diff --git a/Lab3-policy-gradient.ipynb b/Lab3-policy-gradient.ipynb index 4529e50..e2870b5 100644 --- a/Lab3-policy-gradient.ipynb +++ b/Lab3-policy-gradient.ipynb @@ -28,14 +28,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "[2017-09-12 22:50:43,560] Making new env: CartPole-v0\n" + "[2017-11-09 21:06:04,796] Making new env: CartPole-v0\n" ] } ], @@ -103,14 +103,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/andrew/miniconda2/envs/cedl/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + "/data/VSLab/cindy/miniconda2/envs/cedl/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" ] } @@ -152,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "collapsed": true }, @@ -214,6 +214,7 @@ " Sample solution should be only 1 line.\n", " \"\"\"\n", " # YOUR CODE HERE >>>>>>\n", + " a = r - b\n", " # <<<<<<<<\n", "\n", " p[\"returns\"] = r\n", @@ -258,98 +259,101 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 14.85\n", - "Iteration 2: Average Return = 15.59\n", - "Iteration 3: Average Return = 16.61\n", - "Iteration 4: Average Return = 17.43\n", - "Iteration 5: Average Return = 17.08\n", - "Iteration 6: Average Return = 17.24\n", - "Iteration 7: Average Return = 21.3\n", - "Iteration 8: Average Return = 21.42\n", - "Iteration 9: Average Return = 20.62\n", - "Iteration 10: Average Return = 26.82\n", - "Iteration 11: Average Return = 28.0\n", - "Iteration 12: Average Return = 28.41\n", - "Iteration 13: Average Return = 28.96\n", - "Iteration 14: Average Return = 28.15\n", - "Iteration 15: Average Return = 30.64\n", - "Iteration 16: Average Return = 36.2\n", - "Iteration 17: Average Return = 38.13\n", - "Iteration 18: Average Return = 34.5\n", - "Iteration 19: Average Return = 40.37\n", - "Iteration 20: Average Return = 35.78\n", - "Iteration 21: Average Return = 47.81\n", - "Iteration 22: Average Return = 47.21\n", - "Iteration 23: Average Return = 43.34\n", - "Iteration 24: Average Return = 46.1\n", - "Iteration 25: Average Return = 50.25\n", - "Iteration 26: Average Return = 51.02\n", - "Iteration 27: Average Return = 59.81\n", - "Iteration 28: Average Return = 57.49\n", - "Iteration 29: Average Return = 61.39\n", - "Iteration 30: Average Return = 62.26\n", - "Iteration 31: Average Return = 61.98\n", - "Iteration 32: Average Return = 62.16\n", - "Iteration 33: Average Return = 59.89\n", - "Iteration 34: Average Return = 73.46\n", - "Iteration 35: Average Return = 78.51\n", - "Iteration 36: Average Return = 72.79\n", - "Iteration 37: Average Return = 78.74\n", - "Iteration 38: Average Return = 86.95\n", - "Iteration 39: Average Return = 94.08\n", - "Iteration 40: Average Return = 97.58\n", - "Iteration 41: Average Return = 103.42\n", - "Iteration 42: Average Return = 101.17\n", - "Iteration 43: Average Return = 112.39\n", - "Iteration 44: Average Return = 115.09\n", - "Iteration 45: Average Return = 134.65\n", - "Iteration 46: Average Return = 138.92\n", - "Iteration 47: Average Return = 147.15\n", - "Iteration 48: Average Return = 152.35\n", - "Iteration 49: Average Return = 149.66\n", - "Iteration 50: Average Return = 148.15\n", - "Iteration 51: Average Return = 144.82\n", - "Iteration 52: Average Return = 144.43\n", - "Iteration 53: Average Return = 153.21\n", - "Iteration 54: Average Return = 163.66\n", - "Iteration 55: Average Return = 154.28\n", - "Iteration 56: Average Return = 155.07\n", - "Iteration 57: Average Return = 161.53\n", - "Iteration 58: Average Return = 166.28\n", - "Iteration 59: Average Return = 174.05\n", - "Iteration 60: Average Return = 172.8\n", - "Iteration 61: Average Return = 170.78\n", - "Iteration 62: Average Return = 179.58\n", - "Iteration 63: Average Return = 174.84\n", - "Iteration 64: Average Return = 175.74\n", - "Iteration 65: Average Return = 174.99\n", - "Iteration 66: Average Return = 187.7\n", - "Iteration 67: Average Return = 178.94\n", - "Iteration 68: Average Return = 182.74\n", - "Iteration 69: Average Return = 181.42\n", - "Iteration 70: Average Return = 182.19\n", - "Iteration 71: Average Return = 184.58\n", - "Iteration 72: Average Return = 181.9\n", - "Iteration 73: Average Return = 184.29\n", - "Iteration 74: Average Return = 188.8\n", - "Iteration 75: Average Return = 190.46\n", - "Iteration 76: Average Return = 188.89\n", - "Iteration 77: Average Return = 187.9\n", - "Iteration 78: Average Return = 190.19\n", - "Iteration 79: Average Return = 186.28\n", - "Iteration 80: Average Return = 189.1\n", - "Iteration 81: Average Return = 188.16\n", - "Iteration 82: Average Return = 191.32\n", - "Iteration 83: Average Return = 192.03\n", - "Iteration 84: Average Return = 195.45\n", - "Solve at 84 iterations, which equals 8400 episodes.\n" + "Iteration 1: Average Return = 23.85\n", + "Iteration 2: Average Return = 23.57\n", + "Iteration 3: Average Return = 26.73\n", + "Iteration 4: Average Return = 23.72\n", + "Iteration 5: Average Return = 29.51\n", + "Iteration 6: Average Return = 29.11\n", + "Iteration 7: Average Return = 33.62\n", + "Iteration 8: Average Return = 33.97\n", + "Iteration 9: Average Return = 36.23\n", + "Iteration 10: Average Return = 38.44\n", + "Iteration 11: Average Return = 39.96\n", + "Iteration 12: Average Return = 39.45\n", + "Iteration 13: Average Return = 42.85\n", + "Iteration 14: Average Return = 43.61\n", + "Iteration 15: Average Return = 45.27\n", + "Iteration 16: Average Return = 43.89\n", + "Iteration 17: Average Return = 42.31\n", + "Iteration 18: Average Return = 43.78\n", + "Iteration 19: Average Return = 48.6\n", + "Iteration 20: Average Return = 46.76\n", + "Iteration 21: Average Return = 50.42\n", + "Iteration 22: Average Return = 52.99\n", + "Iteration 23: Average Return = 50.61\n", + "Iteration 24: Average Return = 51.63\n", + "Iteration 25: Average Return = 50.24\n", + "Iteration 26: Average Return = 54.49\n", + "Iteration 27: Average Return = 51.36\n", + "Iteration 28: Average Return = 55.87\n", + "Iteration 29: Average Return = 52.58\n", + "Iteration 30: Average Return = 55.4\n", + "Iteration 31: Average Return = 59.45\n", + "Iteration 32: Average Return = 59.11\n", + "Iteration 33: Average Return = 58.57\n", + "Iteration 34: Average Return = 59.13\n", + "Iteration 35: Average Return = 60.21\n", + "Iteration 36: Average Return = 60.96\n", + "Iteration 37: Average Return = 64.74\n", + "Iteration 38: Average Return = 64.05\n", + "Iteration 39: Average Return = 60.94\n", + "Iteration 40: Average Return = 64.21\n", + "Iteration 41: Average Return = 62.26\n", + "Iteration 42: Average Return = 62.89\n", + "Iteration 43: Average Return = 68.1\n", + "Iteration 44: Average Return = 68.12\n", + "Iteration 45: Average Return = 63.39\n", + "Iteration 46: Average Return = 67.38\n", + "Iteration 47: Average Return = 70.87\n", + "Iteration 48: Average Return = 72.09\n", + "Iteration 49: Average Return = 73.45\n", + "Iteration 50: Average Return = 77.83\n", + "Iteration 51: Average Return = 82.17\n", + "Iteration 52: Average Return = 82.36\n", + "Iteration 53: Average Return = 93.19\n", + "Iteration 54: Average Return = 96.17\n", + "Iteration 55: Average Return = 92.18\n", + "Iteration 56: Average Return = 102.75\n", + "Iteration 57: Average Return = 108.82\n", + "Iteration 58: Average Return = 116.45\n", + "Iteration 59: Average Return = 122.99\n", + "Iteration 60: Average Return = 129.69\n", + "Iteration 61: Average Return = 125.34\n", + "Iteration 62: Average Return = 129.97\n", + "Iteration 63: Average Return = 127.21\n", + "Iteration 64: Average Return = 128.79\n", + "Iteration 65: Average Return = 131.9\n", + "Iteration 66: Average Return = 138.26\n", + "Iteration 67: Average Return = 142.85\n", + "Iteration 68: Average Return = 134.08\n", + "Iteration 69: Average Return = 144.27\n", + "Iteration 70: Average Return = 158.98\n", + "Iteration 71: Average Return = 154.36\n", + "Iteration 72: Average Return = 166.53\n", + "Iteration 73: Average Return = 159.18\n", + "Iteration 74: Average Return = 172.68\n", + "Iteration 75: Average Return = 173.62\n", + "Iteration 76: Average Return = 172.15\n", + "Iteration 77: Average Return = 189.19\n", + "Iteration 78: Average Return = 188.13\n", + "Iteration 79: Average Return = 186.94\n", + "Iteration 80: Average Return = 187.69\n", + "Iteration 81: Average Return = 189.64\n", + "Iteration 82: Average Return = 194.26\n", + "Iteration 83: Average Return = 193.36\n", + "Iteration 84: Average Return = 194.6\n", + "Iteration 85: Average Return = 194.76\n", + "Iteration 86: Average Return = 193.97\n", + "Iteration 87: Average Return = 197.55\n", + "Solve at 87 iterations, which equals 8700 episodes.\n" ] } ], @@ -361,6 +365,7 @@ "path_length = 200\n", "discount_rate = 0.99\n", "baseline = LinearFeatureBaseline(env.spec)\n", + "#baseline = None\n", "\n", "po = PolicyOptimizer(env, policy, baseline, n_iter, n_episode, path_length,\n", " discount_rate)\n", @@ -371,14 +376,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl8G/WZ/z9fWT5kSbZ1+IidOyRA\nbiCBQAsJIUCBsk1TltKW9sfS0lIo/IDtttBu6W+XhaZlaSBAN7xYjrbsUiil2dKWHiEkLISUAHHI\nQchJTseX7sOHpO/vj+/M6BpJI1nWSPbz/seWPJr5aizNM8/1eRjnnIMgCIIgiohB7wUQBEEQYw8y\nLgRBEETRIeNCEARBFB0yLgRBEETRIeNCEARBFB0yLgRBEETRIeNCEARBFB0yLgRBEETRIeNCEARB\nFB0yLgRBEETRMeq9AD05efJkQa9zOp3o6+sr8mrGBnRu1KHzkhk6N5kpx3PT3t6uaTvyXAiCIIii\nQ8aFIAiCKDpkXAiCIIiiQ8aFIAiCKDpkXAiCIIiiQ8aFIAiCKDpkXAiCIIiiQ8aFIAiiwuBdx8E/\n3KH3MrJCxoUgCKLC4H94AbFnH9F7GVkh40IQBFFhcJ8HCAb1XkZWyLgQBEFUGj4PMBgGj0X1XklG\nyLgQBEFUGgGf+BkO67uOLJBxIQiCqCB4LAb4veJBuHxDY2RcCIIgKolwEIjFxO8DIX3XkgUyLgRB\nEJWEzxv/PUTGhSAIgigG/gTjEibjQhAEQRSDBOPCKedCEARBFAOe6LloyLlwjws8MjyKK1KHjAtB\nEEQlkUdYjIdDiP3zN8E3vTrKi0qHjAtBEEQl4fcC9Wagypi7FPnDHcBgGHD3l2ZtCRhLfkSCIAii\ncPxewNoEGPy5PZdd74lfBkrfbEnGhSAIooLgfi9gbQBi0aylyJxz8J36GRcKixEEQVQSfi9gbQRM\n9eDZEvonjgAeEQ7Lut0oUTaeS2dnJ5555hnEYjFccsklWLlyZdLfh4eH8dhjj+HQoUOwWq244447\n0NLSAgD47W9/i40bN8JgMOAf/uEfsHDhQj3eAkEQxOjj94KddiZ4KJg156KExJrbxq/nEovF8NRT\nT+F73/se1qxZg7feegvHjx9P2mbjxo0wm8149NFHcdVVV+G//uu/AADHjx/Hli1b8NOf/hTf//73\n8dRTTyEmSyMQBEGMIXgsCgT8iueSLefCd70PTJwKtE0cv8blwIEDaGtrQ2trK4xGIy644AJs27Yt\naZt3330Xy5YtAwAsWbIEu3btAucc27ZtwwUXXIDq6mq0tLSgra0NBw4c0OFdEARBjDLBAMBjgLUJ\nrC6zceHhEHBgD9jcc8DqTOM3oe9yueBwOJTHDocD+/fvz7hNVVUV6uvr4ff74XK5MHPmTGU7u90O\nl8ulepwNGzZgw4YNAIDVq1fD6XQWtF6j0Vjwa8c6dG7UofOSGTo3mUk9N5GwH/0AGto7MORzYWAg\nrHruBrZuhjcaRdMnlmNg858wODxY8nNcFsalVKxYsQIrVqxQHvf19RW0H6fTWfBrxzp0btSh85IZ\nOjeZST03/OjHAAA/DOAwgIeC6O3tBWMs6XWxLa8Dpnp4nROU7Yp1jtvb2zVtVxZhMbvdjv7+eJNP\nf38/7HZ7xm2i0ShCoRCsVmvaa10uV9prCYIgxgRyd761EaivFyGywYGkTZQS5DMXgBmNQJ0JGBwQ\nc2BKSFkYlxkzZqCrqws9PT2IRCLYsmULFi1alLTNOeecg02bNgEAtm7dijlz5oAxhkWLFmHLli0Y\nHh5GT08Purq6cNppp+nwLgiCIEYXRVesoRGoqxe/p+ZdpBJkNvcc8bjOJH6mGKHRpizCYlVVVbjx\nxhtx//33IxaL4eKLL8akSZPwwgsvYMaMGVi0aBGWL1+Oxx57DLfddhssFgvuuOMOAMCkSZNw/vnn\n46677oLBYMBXv/pVGAyjZzNj/70OwUlTgQs/NWrHIAiCUEU2LuYGUS0GiHJkWzxnzXdvBwCwOWeL\nJ2TjMhCOv6YElIVxAYCzzz4bZ599dtJzn//855Xfa2pqcNddd6m+dtWqVVi1atWork+GH96PIXcf\nGReCIEqP3wtYrGBVVYDJDA6key7dJ4CGJjC7lMBPNC4lpCzCYhWFvRnR3m69V0EQxDiE+72ApVE8\nMKmHxbjPAzTYlMdMDp+VuEufjEueMHszon3d4JzrvRSCICqc2J9+g9jG32t/gd8r8i0AYDIDkHpa\nEvG6gcam+GPyXCoEh1MkxoJ+vVdCEESFw99+HXzLRu0v8PsSPBfJaKRKwPg8YA1kXCoOZm8Wv7h6\n9V0IQRCVT9Cf37XE7wFL8VwSw2Kcc8DnTgqLycaFk3Epc8i4EARRBDjnQifM7wUfGsy9fTQq5F+s\nknGprQMYS/ZcwkEgEgHIc6lAJOPCXdRRTBDECBgMA9GI+F3LpMigD+BcMS7MYBC9LolGw+sRPxvT\nPRcyLuWOtRGoriHPhSCIkRFIyNtquZ74fQAAJnsugMi7hBI8F58wLkk5l5pagBnIuJQ7jDFUOVsB\n8lwIghgJCUVBXItxkQwHkoyLOalajPvc4pfEUmTGgLo64SmVEDIuBVDV3Krtw0AQBJGJRM+lP/f1\nhAeE55JsXOqTcy6yAUr0XACg1kR9LpWAwdmq6cNAEASRCcVYANrCYr4E0UoZkzkl5+IGqqoAsyX5\ntaZ6qharBKqaWwGvCzwS0XspBEFUKnJYzKkxEhLwitxJguFgap6LtVEk+xOpMwFhMi5lT5WzTVRt\neDRUeBAEQaghh8UmTdOWw/VJumKGqvhzKdMoU6Vf4tuZKOdSCRiaW8UvlHchCKJQgn7AZAZrbgNc\nvTklpXjAmxwSA9RzLqn5FkDKuZBxKXuqnMK4UFKfIIiCCfgBi1X0zg0PAYk5GDV8GYxLJAI+PCQe\ne91gjenGhdWRcakIqpwt4hdK6hMEUSA86APMVu2SUn5vco8LANTHJWA455KwpYrnQsalMmC1dYCl\ngXpdCIIonETPBch9s+r3AtaG5OcSp1GGAqLjP1POhYxLhWBvprAYQRCFE/SDma0JklKZryc8EhHG\nw5rslbDEaZReuYEyg+cSjYAPDxdl6Vog41Io9mZK6BMEUThBv4iAWKxATQ5JKbUGSiBZGVmWfmnM\n4LkAJfVeyLgUCHM0A/25KzwIgiBS4ZGIMAhmq5BnyRUJOXYYgHTdSSTBc+G5PBegpF36ZFwKxe4U\ndeOpg3oIgiByEZJ6XCxW8dPenDWHG3vzL8LLOWNB8h8k48LDYcAvS7+key7xUcfkuZQ9NDSMIIiC\nkRsozcK4sCxhdu5zAzveAbtgOVh1dfIfk3IuHsBojFeQJUJhsQpCqfCgijGCIPJEMi4s0XPxulUT\n7vytjUA0CvbJy9L3k1gtJjVQMsZUtiPjUjloqPAgCIJQRdYVM0ulxfLNqjv5ZpXHYuBv/gWYORts\nwsS03TCjUcxrCQeFh2NVybcAuow6JuNSKA1NQJWRwmIEQeSNoohskcNiTvE45XoyvOt9oKcL7MLL\nM+/MZI57LmqVYgAl9CsJZjCIpD4ZF4Ig8iWYnHOBQz0SEvrr74B6M9g5F2Tel8kkjIvXkzyBMhHZ\nuJRQvJKMy0igRkqCIAoh4BfJ99o68diW7rlwvw+DWzeDnbcMrKY2875MZvBQQFSLqXXnA0K4EqCc\nS6XAyHMhCKIQgn7A3KAk31l1jQi1J5Qj862vA5FhsItUEvmJmOqBvm4gFlPvcYGUmzFWk3GpGOzN\ngNsFHo3qvRKCICoIHvCnT4u0N4NL+mLc1Qf+xxdRfcZ8sInTsu/MVA/09QCAqiKyQon1xci4jAR7\nM8BjgMel90oIgqgkgr54A6WM1OvCo1HE/vPfgeFhNHzrnpy7YnX14joEZPRcAJBxqSQyVXgQBEFk\nJeCPJ/Ml5EZK/srzwP49YNd/E8aOKbn3ZUpomsyUcwGAunoqRa4YpCQcp3HHBEHkQ9APZkmRz3c4\ngaFB8D+8CHbBJTAsuVjbvuQufYA8lzFDk0P8dJNxqSS4qxd83269l0GMUzjnUkJfxXMBgLaJYF/8\nhvYd1kvGpbom2dCkQsalgqg3i+5YMi4VBf/d84itW633MojxymAYiEbTcy7TzwDOmA/Dzd8VAwm1\nIofFMkm/SJR61LGxZEcagzDGhPdCYbGKgp88CoQC4Jxn/TISxKiQIlopw5rsqPrHf8t7d6yuHhzI\nHhIDyHOpOGwOcDeJV1YKnHOg65i4cxwe0ns5xHgkmCJaOVLkUBgZl7EFszmoFLmScPfHv2AlnilO\nEAASPJeG7NtpRQqLqU6gTKTOBAyGwWOx4hw3B2RcRopNhMVK9Q8jRkjXsfjvZFwIHUgVrRwx+Xgu\nADA0UJzj5oCMy0hpcogQS8Cr90oIDfAk41I6hViCUEgVrRwpDY1Cp6ylPft2JdYXo4T+CGE2p0im\nufuzNzAR5UHX8fjv5LkQepAhoV8orN4Cw7+tE1GUbJhKO+pYd+MSCASwZs0a9Pb2orm5GXfeeScs\nFkvadps2bcLLL78MAFi1ahWWLVsGAHj++efxxhtvIBAI4Je//GUply5I7HWZclrpj0/kBe86KsrH\nhwaBMBkXQgeCfsBkBquqKtoumaMl9zZ1JnEjXKLPve5hsfXr12PevHlYu3Yt5s2bh/Xr16dtEwgE\n8NJLL+GBBx7AAw88gJdeegmBQAAAcM455+CBBx4o9bLjSHcLnHpdKoOu48CUGQAATmExQg8C/uLl\nW/KhxAPDdDcu27Ztw9KlSwEAS5cuxbZt29K26ezsxPz582GxWGCxWDB//nx0dnYCAGbNmgWbTcdw\nVEMjYDBQr0sFwP1eIOADm3a6eKKEg5MIQoYHfcXLt+RDiQeG6R4W83q9inFoamqC15ueGHe5XHA4\n4vFEu90Olyv/8t8NGzZgw4YNAIDVq1fD6XQWtGaj0Zj02l57M2pCATQWuL+xROq5KSeGuo/BDaBh\nwTnw/uW3MBsMMJdoreV8XvRmvJ2b/sEwDDYHbBreczHPTWQwhH4AFqMRphKc75IYl/vuuw8ejyft\n+euuuy7pMWNsVDumV6xYgRUrViiP+/oKa350Op1Jr401NGGg+ySGC9zfWCL13JQTsb1CT8xvbwUA\nBPv7EC7RWsv5vOjNeDs3UY8bzNGq6T0X89zwsChB9vf1IDiCfba356hKkyiJcfnBD36Q8W+NjY1w\nu92w2Wxwu91oaEhvLLLb7dizZ4/y2OVyYfbs2aOy1oKwOYATR/ReBZGLrmNirKyjpeTdypVC7HfP\nA3UmGC5bqfdSxi5BP5CqiFwK6kpbiqx7zmXRokXYvHkzAGDz5s1YvHhx2jYLFy7Ejh07EAgEEAgE\nsGPHDixcuLDUS80IszkBd7+QFiHKFt51TCjOMiYZF0rop8K3vg7++1+BDw3qvZQxCY9EgHAIqE+v\niB11ausAxsaPcVm5ciU++OAD3H777di5cydWrhR3TAcPHsS6desAABaLBZ/73Odwzz334J577sE1\n11yjlCs/99xzuPnmmzE0NISbb74ZL774YunfRJMDGBwQHxqifOk6DjZhkvi9rp48lxQ454DXDYRD\n4Dve0Xs5Y5OQ1OOiQ7UYY0wYmPHS52K1WnHvvfemPT9jxgzMmDFDebx8+XIsX748bbvrr78e119/\n/aiuMSdy85KnX8jwE2UHD4cAdx8wYaJ4os5U0ql8FcFgWPT/AOBbNgKLL9R5QWOQIjdQ5k0Jw8G6\ney5jAUZDw8qfU6Izn7XLnguFxdLwuMVPZyuwezs4CbIWn4CsiKxDzgUoqcdOxqUYyI2U1OtStvCT\nkqZYG4XFMuITxoVdthLgMfB3Nuu8oDFIUL+wGADJYx8nTZRjAsVzGT/llBVH1zEh7tfcBkCaykc5\nsiS4VzIus+YB02aBb9lIRSpFhoeC4hc9EvoAhcUqDVZdDVgbATeFEcoVfuo40NoR13OSZlsQCUjG\nBY1NYOcvF+X1xw7pu6YKge98F3zX+7lHb4SEbNV4MC66J/THDE12mkhZzpw8CpYoLGqiPpc0vG6g\nygiYrWDnXgj+4n+Cv/062OQZuV87juGcI7bux6IYorkNbOkVYJ+4RD2vInsuJlNpFynBSljIQp5L\nsbA5SV+sTOGnjgN9PfFKMUDMtohEwIeH9VtYueF1C6+FMTCzFZh/LvjfNoveDCIz4ZAwLGctETeZ\nLz2D2Pe+LioU07YNAqZ6MEPxFJHzooQeOxmXIsGaHFQtVkZwzsH3foDoY/+G2L23AlVVYPMWxTeo\nK+1si0qAe91Ao115bDhvKeD3Aoc+0nFVFYBcCHHOJ1D1ndVgX/qmMDhqN5uhgDKWWBdqKSxWedgc\nQMAHPjwEVl2j92rGPfyVX4G/8jxgaQC76vNgF18BljjMzZQgP27VqSy03PC5hTSOzMSpAADeewps\n1hx91lQJeIVuIpPGDDNni5ibEgykbcpDQf3yLYDwXCIR8MgwmLF6VA9FxqVYKI2ULqUiidAP/tEH\nwOQZMHx3NVhNbdrflcFJ5LnE8brBpp8Rf2x3CrmQ/m791lQBcJ9cCCHdvMgNkqF044JQQNdGazbn\n7JJ5ThQWKxLMRo2UZUV/L1j7JFXDAqDkIn7lDo9EgIAPaGxSnmPGalFm30fGJSveFOMieSZcxXNB\nKKivcZk2E4ZLPj3qXgtAxqV4NMkTKaliTG94LCri3fbmzBtRziUZvxfgPCnnAgBwtoD39+izpkrB\nJ1XZyeEus/RTzXMJB8H0zLmUEDIuxcImDd8hyQz98biBaDSHcRGeC406lpCT0gmeCwAwRyt5Lrnw\nepQqOwBxz0Tuxk8kFIwbnzEOGZciwUz1ohKDPBf9cfUCAJgjt3Ehz0VC1hVL81xaAbcLPEIl25ng\nPjeQUCzCDFUiryH3tMjbRaPi80aeC5E3Ngfpi5UBXDIuFBbTDvdKHndiRR0AOFsAHgNcdNOUEa87\nnm+RqTeney7hYPxv4wAyLsWk0RZP7hH60a/FuNSJnzrri/HhIcR+9SS436vrOuSwGBpSwmJOMRIa\nlHfJjM+jlCErmK3pCf0QGReiUCxW1dp2osS4eoWESV1miQ1mqBKDk/TWFztyAPy1V8C3b9V3HV63\nOGfVKVVEUt8Lp7yLKjwWBXzedM/FbElP6EueC9Ozz6WEkHEpIsxsVU/iESWFu3pFj0YuykEZOeAT\nP08e1XUZXC20A4hCFYNByOcQ6QR8ImyYEk5k9Zb0G035MXkuRN5IxoVkynWmvyd7SEymhFIYmeB+\nYVz48Y91XYdq3gAQKtI2JzVSZkLuzm9MDYtZKOei9wLGFGarKIHVO9Qy3nH1gWkxLqZ6/Ucdy2Nv\ndfZc4HWDqXkuAOBspbBYJuQca2ohhNkChIJJN5rKLBcThcWS2LVrF3p6hGvsdrvx2GOP4Wc/+xk8\nHs+oLa7ikKfLUd5FN3goKO4QEzWyMlEOo47lsJjfC+7T57vEORcXydQLpARztlBCPwNp0i8y9RYg\nGgEGB+LPycbFTJ5LEk899RQMBrH5L37xC0SjUTDG8MQTT4za4ioNJjdHBSjvohtyn5EWz6WEg5My\nklglduKIPmsIB4HIsHrOBQAcrYDHBT48VNp1VQJSWCy1yk5VXywUBJhBhGPHAZqNi8vlgtPpRDQa\nxY4dO/CNb3wDN910E/bt2zea66ss6mXPhYxLPsSe+Alir71SnJ1Jd9hMQ0KflYFx4QGf0rjI9QqN\npWpjpaKUI/eWZj2VhM8N1JnAauuSnlYqwhKjGJJopdLJP8bRbFxMJhM8Hg/27NmDiRMnok7qE4jQ\nIKE4UlhMVbCOyAjf+S74//6lOPuSGyg1h8X0zrn4gI7J4rOjl+filaVfMoTF5HNJeZd0MoUT1fTF\ndBatLDWajcunPvUp3HPPPVi7di0uv/xyAMDevXvR0dExaourOGRXOOjTdx0VBB8aFHHpE0dEOexI\ncfUKEcHUMIUaKsaFnzqB2Ot/yLvij7t6EfvvdeCJMXYtBHxglkagfYpungvP6blIvS6Ud0mD+zxJ\nStIKiucSj2LwsM6zXEqM5nkuK1euxLnnnguDwYC2NjGvxG634+abbx61xVUcZhVXmMiOP26I+Yed\nYEsuHtn++kWPCzNouG+qqweGh8AjETCj+CrwzX8C3/A/YB1TgFlzNR+Wb3oV/PU/AtYmsKuv077e\ngA+wNoCZzeBvvw7OeenDJrmMS5NdGGzyXNLxusVnJRVzPIqh/Dd1nuVSavIqRW5vb1cMy65du+Dx\neDB58uRRWVglwozVIllHCX3tBBK8vD2dI96daKDUkMwH4uKVCaXjXOrniP3x1/kdt/Nv4uefX45X\nEOV6TWRYNHFarED7FOFF6aHh5XUDxuqMgorMUCWaUslzSceXoflUrghLDYuNE9FKIA/j8sMf/hB7\n9+4FAKxfvx6PPPIIHnnkEbz88sujtriKRK15isiMXC1lbwbfs2PkDaiuXm09LoC6MnJft6jo2b0d\n/MgBTbvhp44DXcfAln9aeEKvvKDt+PJNiKUxfvd7Mv+8Cw/6EXvhKcTW/biw8yddILN6TNTrkgYf\nHhIGQy0EW2sCqqpSEvpBMPJc0jl27BhmzZoFAHjttdfwwx/+EPfffz/++te/jtriKhKzBVxtSBCh\nCpc8F7b4QsDrAk4eK3xf0SjgdgHZpPYTYCZJGTlRAqa/B+y8iwCTWbP3wrcLr4Vd/lmwiz4F/r9/\nBu8+mfuF8nu3NgDtIgLA80jq88gwYhv+B7HvfQN8w/+Av/cWUEC5MPe6RegrC8xJc13SkPuS1JQN\nGBP5lUTjEqawmCryHdGpU6cAABMnToTT6UQwGMz2svGHpSE51ENkJyA8F3buRQAAvmd74fvy9Aud\nJ62eS22y58JDAXEnOnEa2PKrgPff1pRk551bgSmngdmbwa7+PGCsQey3v8h9fPlzYmkQPVJNDuCE\ntqQ+j0QQe+Db4C88BUw9DeziK5PeS154XLkLIBwtotFzcDD//Y9VclTZJYpX8uFhYGhoXCX0NRuX\n008/HU8//TR++ctfYvHixQCEobFaraO2uEpEVbCOyIzfJ4QRJ04FWtrBR5J36dcwJCwRU8pMF0mc\nkTlbwC75O6CmFvxPv8m6C+7pBw59BLbwPPHaBhvYZSuB97aAH/oo+2v9ceMCAOiYDK41LPbxfuDY\nYbDrboLhjn8BpoqoAvKtVgOEZHzqkLBUlF4X8l4UfBmkX2TqLeByiHyc6YoBeRiXW2+9FfX19Zgy\nZQquvfZaAMDJkydx5ZVXjtriKhILKSPnRcAnpN4NBrDZC4F9u8RdXgFoGhKWiJJzkcJicsLa2Qpm\nbQC76HLwv23Ommvgne8AANhZ5yvPsctWAtZGxP7y2+zHDyQbF9YxBTh5TMi454Dv/UC85rylYIyB\nyfNp8vRc+PCw+LyqldMmoPS6UFJfgcvd+ZnOndkal3yRQ+WU0E/HarXii1/8Iq699lqlgfLss8/G\nVVddNWqLq0jMViAUIGVkjXC/F7A2AoAwLkODwKG9he1MvvDZ8jMusnilYkSkCym7dKV4/q0NGXfB\nt28FWiYA7ZOU51idCZg5O3eISzYucn9U+xQhw9JzKufS+d4PgEnTwGSvR6XyTRNK3kCb50JJ/QS8\nboAxwNKo+meWOI0yFIw/N07Q3OcSiUTw8ssv44033oDb7YbNZsNFF12EVatWwWjUvJuxj9kilJEH\nwvGwC5GZgE8xLjh9HmAwgO/pBDt9Xv77cvUB1kaw2lpt26eOOu7vEXkY6WLP7E6R6M4ge8JDAeCj\nD8BW/F1apRVrbQffsQ08GhWy9WoEfEIORPr+sI7J4ICoGGvL3JzMhwaBgx+K6jSZWpXKNy1I441Z\nptCOTEOTKFceR3NdeGQYCAYy51R8bpEvy3T9q08YGKZMoaScSxrPPfccdu7ciZtuugkPPvggbrrp\nJuzatQvPPffcaK6v8jBLd5IUGtOG36fI5rB6MzBtVsF5l7x6XIC0sBjv6wacLcmGosGWsW+F73wP\niEbBFi5J/2Nrh1DFzRZGCvji+RYAmDAJYAw8l8dz4EMgEgE7Y4HKe8nXc5EbKHOExQwGwNkyrjwX\n/p8/Rezf7sr8d68neyGEFBbjsajozgco56LG1q1b8Z3vfAcLFixAe3s7FixYgG9/+9t4++23R3N9\nFYeijEzGRRsBL5g1HlZgZy4Uo38LKYrQOoFSPlZVFVBdk5DQ744nrmUabXHl21S2bxUXl+mnp++7\nVfI8uk9kPD73e5OMC6utE8fPUY7M934geihmzo4/KQkn5is/oxQVWDXI5ThagL7cIbuxAN/xjijt\n9vSDZ9JPzNRAKSM3UoZD424KJVBAKTKRA/P4UUbm+3bnTlpne30sKr50iRfYqTMBzoFTx/PbF+dA\nfx4NlDKSvph4fY/o50iANTTF7+5Tj3lgD9ics9SlZiTjwrMYlzTPBQA6cmuM8b0fANNmidxO4vsA\n8vdclEbO3FWfrGUC0HtqzF8L+EAYsf9eF38iU9+a1509nJiokh4eX4PCgDyMy/nnn48f//jH6Ozs\nxPHjx9HZ2YkHH3wQS5aohATGM7Iy8jiQgOFbXgP/9TPghUqWBAPCkCQmRKUy4rxFEkNBkczWooac\nSJ0JCIfFBWBA5fUNTYDfl1bBxSMRkQxP9XQkmLVB3GicymZc/GK7xNe1TQR6ukRDqAo8FAQ+PgB2\nxvz09wHkb1yCPpFLqdGQp2ppF3fhY7yPi//uv8U004ulYiUVL5pzLv7/WcKJ8ShGUHw+jUagpmY0\nllyWaM7EX3/99fjNb36Dp556Cm63G3a7HRdccAGuueaa0Vxf5TGOxCu5nKt47y2wSz+T/w7ki1Ti\nBVYpec1zdohUhqxljksSdSbwwTCYPAcm1bg02kRjZsCX3M/gcwvD2OTIvO/W9oyd+pxzdc+lTc7V\ndIuLeSr7dgE8lpxvgaRrV2XMv1os4AcsVk1imaxlgig46OmKF2GMMfjRg+AbXgG76FNg8xeDv/4H\n9ShEOCTUELJ5LokhcklXbLzMcgFyGJddu3YlPZ4zZw7mzJmTpNy6d+9ezJ2rXT12zKMitT1mkUt4\n330TSDEuPOADjhwEZi/M/IURlXlbAAAgAElEQVSSdMVYYljMVC/OoStPz8XTL35mu9irYaoX76Mv\n3uOSCGuwiQuq15N8IXGL47EssimstR38ww/U/zg0KC5OKcaFtXaI4506oWpc+N4PxN2vSp5HhPjy\nzLkE/fFQbi5aJojX9HSBzTgjr+NUAjwWQ+wXjwuV6lVfEUYUUL9RzDTeOBHpWsBDAREWG0eVYkAO\n4/If//Efqs/LFwvZyDz22GMFLyAQCGDNmjXo7e1Fc3Mz7rzzTlgs6f+ETZs2KSKZq1atwrJlyzA4\nOIif/vSn6O7uhsFgwDnnnIMvfelLBa+lGDBjtfiSjyPjgkMfgff3JN31x37xGLB9K9g5nwC+cmt8\nMl8iSjI55S7Y0Qyep+fCpYs9bHkal1oT4HXHq6CcqZ6LFPbwuoFJ0+LPSyW82T2XDuDt15U+miRk\nwU41zwVirgybvzjtZXzvB8Bps8Gqq1XeS11hORetxsXRKkQ9ezToplUixw4DRw6AffkWMLMFXPI8\neNCHtNsjqciD5aoWA4BgQBSojKNkPpDDuDz++OOjvoD169dj3rx5WLlyJdavX4/169fj+uuvT9om\nEAjgpZdewurVqwEAd999NxYtWoTq6mpcffXVmDt3LiKRCP71X/8V27dvx1lnnTXq686KeZx06Q+E\nxQX32GHwd98Eu3wVAIAfPywqqU47E3z72+Af74fh6/8ElnK3zVM61BUcLfG7Rq14+kVDW65+jRRY\nnUmErvq7Rc9JqhGU9sd97qQLDHfLxiWL59LWEQ8jTZyU/EdZtDLVc7E0iLydSiEA97mBE0fAzluq\nfkApxJcXQT8wYaKmTVl1tajGy/d/UyHwfSJSw+ZJRt0SNw5p2+bhuUDxXMaXcclrnstosG3bNixd\nKr4sS5cuxbZt29K26ezsxPz582GxWGCxWDB//nx0dnaitrZWCckZjUZMmzYN/f39JV2/Kmbr+Bh1\nHA6BTZoOTJ0Jvu1N5enYKy8ApnoYvvUDGL4jbghiP7kb/IOU/22Gu3fmaAH6e/OrSvK4RANlvg29\npnpgIATe16NeDCDfmaaWI3v7RY4j1TAm0irCWqoVY4EMXhsAtHaAqxQC8L07ASAt36JQW5d3WAxB\nP5hWzwUQeaSxalw+2gm0TACTvd+6euGpqd0o5hqwBskY19QqORdV730Mo3trvdfrhc0m/kFNTU3w\ner1p27hcLjgc8fCD3W6Hy+VK2iYYDOK9997LqnW2YcMGbNggpDxWr14NpzPP5K+E0WjM+lq3zQ4+\nEIa9wP3rSbT3FPzPPArrjf8XVakhohR6hgZQZ7OhataZCDz7GJqGB8CPfwy8vwXmv78BlilTgSlT\nEZu7AH23fB41u99H4/IrlNf7o8MI15vRPGFC0n6Dk6YiMBiGo64WBmuWi3cC7pAfMWcrHHmec7/N\njtDgAKo8/TC2T0KTyut76kwwDQ/AmvA3bziIIbsDzS2ZzxG3WtEDoN7vSfvMhMHhA2CbNAXGlGN6\np0zH0PZ30j5jvqMHMVBvhvPsc1W7/t0NjXl97jjn6An6YWpuTXpv2fBNnoaBNzcU/N1RI9f3qRTw\nWAy9Bz9E7ZJlaExYS4/FirpoBA0p6/NHhhCqqoJz8tSsSfpeawNqohEMDYRQa3Ok7ScX5XBuCqUk\nxuW+++6Dx5PeiHbddcnjYBljBVVTRKNRPPLII7jiiivQ2qpeGgoAK1aswIoVK5THfX2FldA6nc6s\nr41V14J3nyx4/3rBhwYR+/HdwNGDGJ6/GGzRJzNvyzl4KIgBbgA7U4QhXX/5HWp6TgJ1JoQ/cSkG\nEt4/b5uIgaOHMJzwXKynG9xsTTtPXBL369/3IdiUGZrWHu0+BTia8z7nsRiAwQFEu08gdvp81ddz\nayPC3V0YTPhbtLsLaLDlPp69GaFD+2CJRJK2jXUJz8Q9HAVL2UesyQnu7kPvsaPxmTMAons6gakz\n0e9W77uJGqqAgF/zOeDhEBCNImwwJr23bMSsNvCAH70fH0oL6RVKru9TKeBHD4EH/BicclrSWrjJ\njIH+Xgyl/o+6RcVcrkhJrK4eA64+IODHgKEqbT+5KIdzk0p7u0oVowolMS4/+MEPMv6tsbFR0Spz\nu91oaEj/wNrtduzZs0d57HK5MHt2vDv5iSeeQFtbW/mIaFqsaXFaHosBBRrPUsA5B/+vdcDRg+Jx\n4uxvNYaHxJW5ziQaF2ecAb7pVQx6XWBXXJMWamGt7cooYOWYaqW4QEI5cg+g0bjA60rL6WhCvngP\nDaUn82UabWKgViLufmXAV1baOtTLkQPSqAEV/TmlYqz7BDB1JgCIOSonjoBdkbn0n9Wa1IsHMqHk\nvLSHxZLKkYtkXMoBJd8yK6Xy1WKNy+Ynbp8guJoVs0V8VqKRcVctpnvOZdGiRdi8eTMAYPPmzcqs\nmEQWLlyIHTt2IBAIIBAIYMeOHVi4cCEA4Fe/+hVCoRBuuOGGUi47O/UioZ+YM+DPP4HYw/9PvzXl\ngG96FXzLa0pSPmdBgixTbxLNe2zxhYCnH6y2Tr3npbVDDJtKNLoBr/oFyi4u8lxjOTIfHhb5G1sO\nZV81ErrcU7vzFRpscfVgGa8rHpvPAmttB7pPpuePEkYNpJFQMaZw5AAQi4FNy2JA60z59blI/+N8\ncy4Axlzehe/bJUYtpCo8mNNvFAGIz4MWyZx6a3wGDiX0S8vKlSvxwQcf4Pbbb8fOnTuxcqWQOT94\n8CDWrRMSDBaLBZ/73Odwzz334J577sE111wDi8WC/v5+vPzyyzhx4gS++93v4p/+6Z/w2muv6fl2\nBGaLuKtPGJ/Ld28HNEw11AN+YA/4C08C8xaJ+v6amtxNoPIdsnRxZud8AjAaUX/V36uGS5h0UUoq\nY/X7knTFFCxWkQjVWo6spSw4E3UJnkOG7n7W2BRP4EKS6A+HcsvUA8KohoOIpXg+PFENOpXmCSKR\nnFAIwA9Lg8emz8p8rHwT+nlIvyg4W0VV3hgyLjwWA/btBjs9vV+PmS3qigR+L1hDbs+Fmc3x8zzO\njIvuCX2r1Yp777037fkZM2Zgxox4SGT58uVYvnx50jYOhwMvvvjiqK8xbywJmkL1ZtFE1XsKMFYn\nNaCWAzwUROzJfwfszTB87S5xJ12voZQ6LIwLky7OrMkOw33/AfPM0zHgVhF6TNDaYtNmxTvUVRL2\njDHA0aJdAsbjUtaQL6zOBMWnyBQWa7CJGT3Dw6ICSDqeFk9JDnFFTx4FWhJKfjOFBCFVGTlbkqRj\n+KF90hCzLBe0OhMQGQaPRDRVzSnhHrP28BarrgFsTqB37BgXnDwqPu+pITFAmc+UhuawWNxws3E0\nKAwoA89lLMJSxSuPHhI/I8OiM7uM4L9+GnC7YPjaP8ZLJc2W3KXUKZ4LIMJKrCrDRa1ZasCT8w+D\nA6od6gqOZu2eS6Hd+UB8/RarYijTkMuR/Z6k4+UcDQwoYaRIqoy+P7NxAQC0TUwOix3eBzYti9cC\nJAwM0+i9FOK5AEDLhIyyNpUI/yhDvgUQxiEcSlJG5oMD4hxrCosl5FnMlHMhRkqKvhiXkuQAykr0\nj+98D/zNv4J9alVyMtxsBUJacy7aBqIxo3Q3Ll+UsvV5QOp10Zpz8RTYnQ8oOSM4MlcZKsOipF4X\nrnguGo7naAaM1YiePJb8fMCXtdqKtbYDPSfBYzHx/tx92UNigCK7r7lLPyj9D/JMNAt15LHjufB9\nuwBHi3rOTf4uy6rGQLw/S0NYLMmgkOdCjBgpzKB0oB9JNC7l0bnPgwHEfvEo0D4Z7OovJP/RbMmZ\nc1GqkmpNWbdLorUj3lDoV+9QV3C0AAG/tuonj0so+xZSjSOvP1tPj9z1L3dlK56ShrCYoQpomYBo\nwowWHotJgpHZGjA7hJfr6QcO7RP7ypbMB+L5I61J/YAI22aclJmJlnbxvxkDjcKcc2DfLrBZc9Q3\nkKMQid9bWRNPS1gs8TM5znIuZFxGA/luJZTgucgfxGB5eC78hScBnweGG+9I06liWuRrwvl5LkBK\n5VQgg7aWjFy1oyU05nYBNkdhuSw5Z5TFc5H1xZRyZI9LlGBnCqOl0tqOSKLnEg4KpeUsDaJMHnN8\n6gT44X1CDWDy9KyHYXX5ei556IolHkcSsBwT3svJY8KLzjBWW3X4n0/67GoIiyVV4pHnQoyYBGVk\nPhACuk+CnSkkO5TJfzrCP94P/vbroh9lymnpG2Qqv0xkMD3nkpPWDhGr9roSJiBmCYsBmkJj3NOv\nyYtQxWwGFpyrKhKpIF9EJM8l3+Oxtg5Eu0/EZ7T4M2iqJdIWL4Dgh/cBk6aJZHo2avOb6ZKXInIi\nCerIlU7G/hYZZWx5/PvA5dyblrCYfC2oqVEXGx3DkHEZBZjRKO7oA37g6GEx92O2JKZZBoKWXJry\nyJZcrL6B2QoMD4FnKz4Ih0SCXsuQKQmlHLn7ZG7PRTIumirGPP1ghSTzIcJWVd/6Z9UyVGWb6mpx\nTmR9MY9LWxmyTGsHEImIMcqA8t6zdrg32oWxOHlMDAfLlcwHANlzySehn28yHwCcbeLnWFBH3r9b\nFIJk6nFSlJHTw2JJQ+4yIXs+46yBEiDjMnrUi7wFP3oAABTPpSxyLr4cCUktA88GwiI0lE8oKnH0\nb8AnQj2ZwmqNNvH3HGExzrm42BfquWiloQncFzcuWhooZdj00wHGxOApQH1IWuprGBPd/TveEV5i\nrmQ+oHiRmrv08xWtlNdWWysuyGPBczl6CJg2M/PnWG1suc8L1JrEeciF/F0aZyExgIzL6GFpEHc7\nRw4BTXYxIbHeXB7VYn6vGLma4QOfVkqtxkAoXmmlFZsDqK4R/RtSKW6mLzUzGIS8ey7PJRwUie8S\nGBf43HFjlofnwiZMgunyz4Jv/AP4kYPxkGAO+RTW2iGqxKAhmQ8klCLnkXMpVMJllNSRY5v/BH7s\ncNH3qwYPh4DuE2CTs0gMmVSUkf0ebSEx+fXAuEvmA2RcRg+zReRcjhwA5A9vucx58Qvpisx3a7k9\nFz4Qzq9SDJLBkHokhDZTjgublkZK9wi68/OANdpEl37AJ3Si8ix7tlz/DcDagNgvH49LyeQKq8hh\nRLNVyXNkJY+cC49ERGizkJwLpKR+kY0L7z0F/tzPwDe9WtT9ZuSY6D/LJo7KDAaRl0vKuWhsoIRU\nLVhvprAYUTyY2Qq4+oBTJ+IfXktDvDxZR7gvx5dDi+cSDudVKabQ2iHlXHI0EQJgWhopvfK44dE1\nLoq+WIFqAAazFezarwJHDoBv+qNI8OYKq8gVY9nCNonU1AppFi1hMbmPqZCcCyAkavxecfdfJPi2\n/xU/ZTmfQvcTiSD2xp+E5ly27eT+s1ziqKmKFbm+P6k4W8VneZxBxmW0MFtFjwKPxd1uS0OZ5Fxy\nuPVqScxUBsP5VYpJsNZ2oO8U4HXn7hOwt4jKsiwXCS0TIYtCY5NIlMt9OgUYM3buRcCZC4SB0hCO\nksuRNSXzIeVpauu0JfTlz+FIPBegqN4Lf+cN8YtnZMYF+3eD//Jn4G/8Kft2csg61/RSsyUtoZ91\nvHEKhjv+BexzN2jefqxAxmW0SOzMlcp9NfWPlAK/N/uFXb7gqGkqyYRDyaKPWmntAKJRUTmV6wIr\nlyO7hffCY9H0eHweDY0jQh53LN/tFqJjxhgMX/qmaPjUkuvomAq24u/Azl+ee1uZOpM2z0UyLqxQ\nz0VWR5YqD0cKP/4xcOKI8L5Galykbnr+2ivgsWjmYx49GA9ZZyOhNF80wObnuTBrI1gBN2KVDhmX\n0UK+QFsb4xciS4PuCX3OuSS6l+XOq6ZWJPxzJPQL+cIo5chA7rCY3DXf3ysMy9MPI/av/xd8z/b4\nRh6XkK7PoyS6EOQ7VS6rLWSbnZ5tP63tMHz1ThiyzGVRtq2qguHzXwNrbtN+gDqTNs+lANHKJNom\niuKMIwcKe30K/J03AINBlMf7PPGeoEL2JYmqovcUsPM99W0GB4Gu49mT+RLMknBTGA6Km6N8wmLj\nFDIuo4VsXKacFo+XW6zA4EDOWPCoMhgWgpFZ3HrGmFh/thDewAhyLjI5w2IiTs37usGfXQv+t80A\nM4C/t0XZZEQNlPkgGxNJbYEZC2+IY4s+mXXK54jQODCMFzAoLBFmNAKTpomClRHCORfGZfZCYNI0\noV7gV1HW1or8/ustiG34nfo2xw+LkPWU7KoHAJILcZTufDIuuSDjMkrI5bxJd0ZKolxH70Xrl6M+\nszIy51wk9POsFgMgLmZy5Uyu0JDNKYzJy78QigKf+SLY2eeDd/4tHu5wl8q4SMY44C/N8QpF68Cw\n4MhyLgCEusORg1lDT1oY/mgX0N8Ddu7SeKHESEJjkqgqu/TvgL0fgB9PL21WwpuTVRQqUqm3xJWR\nJaOXT85lvELGZbSQviQsofmNyaW3eobGZNG9XHX62fJDQ0Pi7jLfPhdIXpEUGmM5SpGZ0SjOY8AH\ndvV1MHz6OuCsJaIgQRJzhNc1+pVigDCETPq6lOJ4hVJbpy3nEgyI0KespFwIU2eKEFziaIACGHjj\nL0B1DdhZ58UN94iMSxgwGsEuvgqoqQHf8Er6NkckvT8tJeWyAQ4H49355LnkhIzLaDF5OgzfWQ0k\nalapKayWGrnHIpfoXjZlZFluv8AkJZNDYxq+oOziK8H+/h8U5WY2bxFQZQTfvlXE5b2ekngSzFCl\nVNgVMpSsVDCtCX1JV2wkg+vYVHHXzz8uPDTGIxEMvPUa2IJzhRCodG75SI1LnQnMbAU7fzn43zaL\n3pTE4x49CEyeru39Jwz/47nULQgFMi6jBGMMbObs5A+vRX/PRRHdy3FhZ9lmuiiDwgrIuQDx/o1c\nTZQADFdcA8Nln1XOI6s3A2fMA9/+tjCUPFY6T0IOhZSxcdFaiswDvhGFxACI/2Nt3ciS+nt3gPs8\nYOddJB5bm4SHOJJel4QGX3bJ1WI65+Z4YyYfHgZOHtWUzAcSlJEDfhEWY6zwQohxBBmXUiLdAXFd\nPReNbr0Gz6XQ8kp20eVgN96Zu78g0+vPOh/oPaVUjeWj8zUi5KR+OYfFVDwX7vchtmWjyJXJBAsU\nrUyAGaqAydPBP95f0Os554j96WWRv5hzjthnVZUw4iPwXPhASCk2YRMmAfMWgf9lPbhLasg98TEQ\njaorgquh5EoDIixmtuY/A2ccQsallCjy3ToaF79XDIjKJf9tzlLZJl+8CqkWg6j7N5yfQZFZy+sX\nnCsJQf5RPFEiT4JJocRyDovJpcg8FlOe4m9vBH/mYTErXiZQoNx+CmzKTODY4aQxwJrZ/T7w0U5Y\nPn9j8uexyV6UsJiM4bqbgFgMsWfXiso0JZmvoVIMSGoqzqluQSiQcSkhrLpauOt6J/S1zP5OGXiW\nRHhkOZeRwprswPTT4+GYUnkSleC5yBV8QwmhMemOne/bHX8u6M8u+a+VqaeJ0vauY7m3TYDHYoj9\n5hdAcxtMl34m+Y9NdlXPJbr2XxH7/a9y7zwcSvpsspYJYNf8A/DhDqFbduSQ0PvKJLOfinxTGJLC\nYlQppgkyLqXGkqN/ZJThPo+2O68s+mJ8pDmXIsDOWiJ+MRhKdyfpbAWqqoRac7lSly5eySVlZewX\nxkVMAi2S5zJ1pthnnqEx/s4bwPHDYJ/5Uvok1EZ7Ws6FR4aB3e+Dv/d27p0PhtOmhLKlnwLmnAX+\n0jPgu98HJs/QXsxgqhd5loA/t7oFoUDGpdTkEK/kw8OIPvDt5C70YpJLV0yCZVNGHmG1WDFgCyXj\n0mgXyrWlOOYFl8Dwz2uKc8c/WsilxQOJnoswLnzfLmFYBsNC2XmEORcAQHObGN2QR1KfDw+Dr39O\nVGstvjB9gya7EMWMJIRke08BsRhw4kjuJtGBdN07xhgM/+d2UX7d36M5mQ9IysjSfKa8RSvHMWRc\nSk0ufbGek8DhfeAf7c68zUjQeueVTRm5HDyX1nagYwpQQrVZVl0NNnFqyY5XCExtpou7H6ipESMD\nerpGLFqZdDyDAZgyI69yZL75VaC/B4ZV/0f9xkDOaXkTuvTlsBuP5TZk4bDqZ5PZHGBf+Ib4fbqG\n+TiJmC3gPrcIE1MZsiaMei9gvMEsDeC9WZRku6XRsSOUHVeDR6PCWGjJudTLScwA0oIH4bA04jjH\nTPdRxnDz3WKENBEnxXPhkWHA5wZb9Enwbf8Lvm8XmJTILli0MgU2dSb4X/8HfHg4Z6EIHxwA/8OL\nQh169kL1/TXZwQEhSirdPPCuuEAmP/QR2Onz1Pcfi2VV7DYsWQY+aRowYVLO95WE2Rr/bmr5/hDk\nuZScHDkXLs0lH+lMC1WCPnEx1pKQzOa5DIYBU54jjkcB1tYBNmGirmsoO+Q7dtm79LjE//zMBSKc\ns293gudSnPAem3qaCLOd+Djntvzt14GAD4ZPX5f58yNP+Uz8DnQdE3JAbR3ghz7KfAC5xydLyJZ1\nTMk/lGq2KuMWKOeiDTIupcZsBcLBzKqv8t3RSGXH1fBplH4BRBLTYFDPuaRU4xBlhPR/4XJYzC0N\nU7M5gVlzwPfvjs8mKZLnIo+UyBUa47EY+GuviO1nzs68oUqXPj91ApgwUYx7PvRRcs9OIkqZfHE/\nn8xsAeRyawqLaYKMS6mxZu91kT2X0TEu2rrzAUkDrN6i2qXPB9Rj2kQZoITFxEVWaRy0O8FmzgX6\ne4SyM1CUnAsAMXfHYs2dC9mzHTh1HGzF1dm9XkuDqMqTvgM8FhOvmzBJlKD7POJ9qCEbl0JEVbOR\neK4oLKYJMi6lRtEXy1Ax1t2l/L3Y0vyKvpLWL0fCkKQkBshzKVtSS5HlYWo2J9isOQAAvn2reK5I\nxoUxBkydCX54X9btYq+9AjTaco4bYAaD6CmSb7Dc/SLc1TZRScRnDI3J6hEFNvhmJMm4kOeiBTIu\nJUYpY1XJu/CBsIgzy8OhfO7iHlzWFdPq1qeOd5Uhz6V8kT0XOffg6gNM9eJi2zFFNA/2dInniihh\nwmbNE2XCUhguFd51DNj1PtiyK7XNwmm0x/OOUqUYmzBJvIeaWiCjcZErGUfJczEaC1amGG+QcSk1\nliyeizSPXL7DLHpozOcV4QaTWdv2mTwXyrmULayqSlTxKWGxPpEIh+QRzJQ+W8UKicnHnb9IHG9X\nhsmPr70CGKtFM6MWErr0lVHKEyaK9zd1ZhbPZbSMi9T3ZW3SvZClUiDjUmqkCh1Vj0DOt8yaK34W\nu2LMLxrAtFbKMLMlY7UYK3LClCgitQkDw9x9STNLlBuXIhsXtE8G7E7wD95N+xMP+sHf3gi2ZJnm\nSiuWKAHTdVzk/6TXsumnA8cOqYaNuSJNVFzvQh7+RyEx7ZBxKTXZwmJSpRiT7i5HJN6ngmbpF5mM\nnguFxcqaRGVkdx+YPd5oymZKNy7FqhST98uYmLXz4Y60iz5/4y/A0JCQv9dKox0IBcCHBsFPHRNe\nizx2YfrponJLLkxIZHCUPBf5fFGlmGbIuJQYVlsLVNeoh8W6T4ovlaMlqVqmaGgVrZRRKZvmnKvK\naxBlRK1JNCtGhkVllS1BC23ydKDWNCq9GmzeInFx3x9Xl+CRCPjG3wNnzM9P3UAWB/W6gS6pUkxm\nmpjuyg+rhMZGS1RVCotRj4t2yLjogaVBNDSmwHtOAq3t6dUy8t9jMUTv/hpistR8vvg82npcZBRl\n5GD8uaFBIcFBxqV8qZNGHcvJ9cSwWFUVDLfcA3bltcU/7hnzAWM1+M54aIy/vwXw9MOw4jNZXpiO\nMtbgxMfipiihWZY1STdgh1Sq0wbC4sasusjqEUpYjMqQtULGRQ/MVvWBYT1dQjMLSK6WkXH3ifr+\nbB3K2fDnKbqn1qVfBrpiRA7ksJikhsxSVJzZ7IWjomzAauuA0+eC7xRJfc45+IbfAS3twLxz8tuZ\n3Ei5d6fYd4pcC5t+unpSX5pCWfSku8kMzD4L7Iz5xd3vGIaMix5YG9LCYjwUFBf/lgniiUa7CAkk\nckrIT/D+7rwPyQcHhNeRx51XXBk5wbjoPMuF0IA06lgpC7aVbkQAm7cY6D4hvPCDe4HD+0TTZL5y\nK7Jx+XCHeNyWYgynzwL6e8BTvyMJUyiLCTMYUHXnv4DlayTHMWRcdICpKSNLlWKsRXguTGVgEpeM\nC/oydCdnQ+7Oz2fQkey5JA4MkxKmRW9SI4oGkz0XSWq/tMZFXHz5zveE11JvBjt/ef47qrcAxmox\nPbO6Jk39msnGpi/5RotTPrBsIOOiBxZruucia4rJYbEmOxD0gw8PxTfqlur9Pf35d+9LxqWQnAsn\nz6WyqKsXNwHuXnFxL+H/irVMEOKSb/4V/P23wS68vKDjM8bi0vutHWCGlIZP2QP3e5KfJ+NSNugu\nuR8IBLBmzRr09vaiubkZd955JywWS9p2mzZtwssvvwwAWLVqFZYtWwYAuP/+++HxeBCNRnHGGWfg\na1/7GgwlGh5VMJYGIBgEj8Xi4QKpgVLpzpe/WJ54x77iuXAuLhySl6MGP7wfseceh+HW74tSVEX6\npZCcS4LnQjmX8qdWJPQTGyhLCZu7CHzD/wAGA9jyqwrfUZMD6OtWzw9Jn2Pu8yaPhBgICxUCQnd0\nvwqvX78e8+bNw9q1azFv3jysX78+bZtAIICXXnoJDzzwAB544AG89NJLCATEBe/OO+/Egw8+iIce\negg+nw9vv61hDKremK2i4iqcUIXVfQKwN4PV1AKQRr0CyY2U3SfiF4u+7HkX/mEncPQQYs8/KR7n\nqysGJI93lfdbBlMoiRzUmcTUxp4ufYyL1K3PzvlEUo9N3vuRb7DUZq/IN0ny51qGPJeyQXfjsm3b\nNixduhQAsHTpUmzbti1tm87OTsyfPx8WiwUWiwXz589HZ2cnAKC+XtxBR6NRRCKRypBmkBsp/fHQ\nGO/piofEAKDJJn7KEhiDA4CrD2zu2eJxrryL7Al1bgXv/FuCIrL2GR7MIEnFqFWLUYd++SLri/V0\ngSWUIZeMmXPAVnwGbBT8JE0AABHeSURBVOWXRrYfybioeS6sulp8NlONSzhU0jAgkRndw2Jerxc2\nm7iQNjU1wev1pm3jcrngcMS/JHa7HS5X/I7+/vvvx4EDB7Bw4UIsWbIk47E2bNiADRs2AABWr14N\np7Owuzqj0VjwawFgsH0iPAAajQbUSPvp6e1C3SdWoEF6HKsxoheAOTKEeqcTw4f3wQXAuvgC+La8\nBlPID2uWNbjcvWJ+x0AYsRf/E3ULzsWAqR7N7R15rbWvoRHV0WE0SscKGhgCAJwdk0TpaQojPTdj\nlVKel7CzBT4AiEZQP3EKLHr8P279ruZNM52bYPskBAA0nTkP1Sp/72uywzgYRlPC33qGBmCyObJ+\nNyqJSv4+lcS43HffffB4PGnPX3fddUmPGWMFeR7f//73MTQ0hLVr12LXrl2YP1+9Fn3FihVYsWKF\n8rivry/vYwGA0+ks+LUAwKNi0JH3xDEw5wTwgA884MdAgw1D0n4550CVEYETxxDq60Nsr+h6Dlhs\ngM2J8LGPMZhlDdETR8Hmng32yUsR+/HdCG/8A+BszXvd0bp6RF19GJZeF+vvAwwG9Pn8YCxdGmak\n52asUsrzwocjyu+h2noMlPn/I9O54afPA1vxGXhMFjCVv0fNFkT7epTXcs7BwyGEObJ+NyqJcvw+\ntbdnzvUmUhLj8oMf/CDj3xobG+F2u2Gz2eB2u9HQkB62sdvt2LNnj/LY5XJh9uzkSXY1NTVYvHgx\ntm3bltG4lA3OFsBoROylZ2FobVcS5iwhLKZUy8jlyHIyv6UdcLaCZ8m58IGQ6JFpaQc7bTbYhZeB\n/+9fChPdM1vSE/p1+o84JrKQEBbSJSxWJFhLO9jnv5p5A2tjfHIrIMYMcE6S+GWC7jmXRYsWYfPm\nzQCAzZs3Y/HixWnbLFy4EDt27EAgEEAgEMCOHTuwcOFCDAwMwO0WTVTRaBTvv/8+OjryC/voAbM2\nwnDHvwABH2IPfBt806viD6nVX00JXfqnpIR/bS2YszXzJD4A6DkljiMZK7bqK0INuYDkKnO2AieP\ngQ8OiifCIaoUK3cScw72ygypaIE1NCXnXEZrCiVRELrnXFauXIk1a9Zg48aNSikyABw8eBB//etf\ncfPNN8NiseBzn/sc7rnnHgDANddcA4vFAo/Hg5/85CcYHh4G5xxz5szBpZdequfb0Qw7fR4M/7wG\nsf/4EfjW1wFmAJpbkzdqtCuDknj3CaBNMpyOFsDrBh8aVKrLkpCl++WGTEsDDN//qZjzke86z/kE\n+OY/gX/wDtjiC8VsdkqYljeJuTAdqsVKhrVJTGyNRUXxCVUylhW6Gxer1Yp777037fkZM2ZgxowZ\nyuPly5dj+fLkTt+mpib86Ec/GvU1jhbM0QzDd34E/sJTwEA4bUIfa7SB790h8i+nToBdIL1/p2SE\n+nuTBP1klIZMuWdGOlZBnD4XaHKA/20zsPhC4blQ2KG8kS+u9RbVoosxQ0OjCIMF/EJ5YoDUI8oJ\n3Y3LeIfV1IJ9+Rb1PzbZhSJx7ynRcS15LszZAg6IXhe1BrOeLqDRXpSSTGaoAjv3IvDXfgfu94kv\nsNZJloQ+yGGhMRwSA0R4mQMiNJZgXMhzKQ90z7kQWZDF+z6SlGHlsJjkuWRK6ouemQlFWwY7bykQ\njYK/96ZkXOjLW9bIF9exHBID4g3Bcg8XhcXKCjIuZYzSoSzJjqNV8lIabELUL5M6cs9JRQCzKEya\nBkyYJEJjA2FqUitzWHU1UGUEG+vGRdLJk9UnOEkTlRVkXMqZRlFGyvftFMl4qayUGQyAo0XVc+Hh\nkLiTaymi58KY8F4OfAj43PTlrQDY398IdtHlei9jdEmVgKGwWFlBxqWcSZSAaelInonhbFGX3pdk\nX4rquUAKjQFANEpf3grAcMmnwabMyL1hJVNvAQwGwCcZlzB5LuUEGZdyRp5pgYR8iwRztKqGxbhc\nhlzEnAsg9bucdqZ4QNU4RBnADAbhvciy+wNhUdJfQMk9UXzIuJQxSTMtUowLnK1AwB9XKZZRpPuL\n67kACd4LNakR5YK1ETwxoU/qEWUDGZdyJ2FgUhJyr0tqaKz7JNDkAKtVaa4cIWzxhcDM2WDTZxV9\n3wRREIld+lTJWFaQcSlz5LkuaWExZ4v4JUUGhvecLGoyP+mYZiuqvrMabPIYj+UTFQOzNirGhQ+E\nyasuI8i4lDs5PJe0irGeriQBTIIY01ib4gl9KSxGlAfUoV/msE9eCjS3pUtaWBqAmtqksBgPBcVd\n3Ch5LgRRdjQ0AoNhIaw6EKZikzKCjEuZwyZOBZs4Nf15xtKl93tHpwyZIMoWudcl4BW6d7KnT+gO\nhcUqGUeL0BeTUAQrKSxGjBOYIgHjBQbDYNTjUjaQcalg0ua6yD0uzjb1FxDEWKNB7tL3KIPsiPKA\njEslM3EKEA4i+sj/Az9xVPS42JyjUoZMEGWJFBbjPo/o0CfjUjZQzqWCYZ+4FBgIg//+RcT+5Xag\nthaYcpreyyKI0iHnXPp7AB4j6ZcygjyXCoZVVcFw2WdhuP8JsIuvBIaHxr6eFEEkwGrrxORNabQ3\neS7lA3kuYwBmbQD7wtfBP30dUDeGJw8ShBoNTeBSpSR16JcPZFzGEMzaoPcSCKL0WBuVYhaaNVQ+\nUFiMIIjKxtoIBPzid5J/KRvIuBAEUdGwhqb4A+rQLxvIuBAEUdnIFWMAJfTLCDIuBEFUNmRcyhIy\nLgRBVDZJxoXCYuUCGReCICoaJefCmOh5IcoCMi4EQVQ2sudCI47LCjIuBEFUNrLnQmXIZQUZF4Ig\nKhuLVYTEKJlfVpBxIQiiomGGKjGZlXpcygoyLgRBVD7WRvJcygzSFiMIouJhn74OjERbywoyLgRB\nVDyGxZ/UewlEChQWIwiCIIoOGReCIAii6JBxIQiCIIoOGReCIAii6JBxIQiCIIoOGReCIAii6JBx\nIQiCIIoOGReCIAii6DDOOdd7EQRBEMTYgjyXArj77rv1XkLZQudGHTovmaFzk5lKPjdkXAiCIIii\nQ8aFIAiCKDpkXApgxYoVei+hbKFzow6dl8zQuclMJZ8bSugTBEEQRYc8F4IgCKLo0DyXPOjs7MQz\nzzyDWCyGSy65BCtXrtR7SbrR19eHxx9/HB6PB4wxrFixAldeeSUCgQDWrFmD3t5eNDc3484774TF\nYtF7uboQi8Vw9913w2634+6770ZPTw8efvhh+P1+TJ8+HbfddhuMxvH3FQwGg1i3bh2OHTsGxhi+\n+c1vor29fdx/bn7/+99j48aNYIxh0qRJuOWWW+DxeCr2M0Oei0ZisRieeuopfO9738OaNWvw1ltv\n4fjx43ovSzeqqqrw5S9/GWvWrMH999+PP//5zzh+/DjWr1+PefPmYe3atZg3bx7Wr1+v91J1449/\n/CM6OjqUx8899xyuuuoqPProozCbzdi4caOOq9OPZ555BgsXLsTDDz+MBx98EB0dHeP+c+NyufDq\nq69i9erVeOihhxCLxbBly5aK/syQcdHIgQMH0NbWhtbWVhiNRlxwwQXYtm2b3svSDZvNhunTpwMA\nTCYTOjo64HK5sG3bNixduhQAsHTp0nF7jvr7+/H+++/jkksuAQBwzrF7924sWbIEALBs2bJxeW5C\noRA+/PBDLF++HABgNBphNpvpcwNxAzs0NIRoNIqhoSE0NTVV9GemMvyrMsDlcsHhcCiPHQ4H9u/f\nr+OKyoeenh4cPnwYp512GrxeL2w2GwCgqakJXq9X59Xpw7PPPovrr78e4XAYAOD3+1FfX4+qqioA\ngN1uh8vl0nOJutDT04OGhgb87Gc/w5EjRzB9+nTccMMN4/5zY7fbcfXVV+Ob3/wmampqsGDBAkyf\nPr2iPzPkuRAjYmBgAA899BBuuOEG1NfXJ/2NMQbGmE4r04/33nsPjY2NimdHxIlGozh8+DAuu+wy\n/OQnP0FtbW1aCGw8fm4CgQC2bduGxx9/HE888QQGBgbQ2dmp97JGBHkuGrHb7ejv71ce9/f3w263\n67gi/YlEInjooYdw4YUX4rzzzgMANDY2wu12w2azwe12o6GhQedVlp6PPvoI7777LrZv346hoSGE\nw2E8++yzCIVCiEajqKqqgsvlGpefH4fDAYfDgZkzZwIAlixZgvXr14/7z83OnTvR0tKivO/zzjsP\nH330UUV/Zshz0ciMGTPQ1dWFnp4eRCIRbNmyBYsWLdJ7WbrBOce6devQ0dGBT3/608rzixYtwubN\nmwEAmzdvxuLFi/Vaom588YtfxLp16/D444/jjjvuwNy5c3H77bdjzpw52Lp1KwBg06ZN4/Lz09TU\nBIfDgZMnTwIQF9WJEyeO+8+N0+nE/v37MTg4CM65cl4q+TNDTZR58P777+PnP/85YrEYLr74Yqxa\ntUrvJenG3r17ce+992Ly5MlKCOMLX/gCZs6ciTVr1qCvr2/clpQmsnv3brzyyiu4++670d3djYcf\nfhiBQADTpk3Dbbfdhurqar2XWHI+/vhjrFu3DpFIBC0tLbjlllvAOR/3n5sXX3wRW7ZsQVVVFaZO\nnYqbb74ZLperYj8zZFwIgiCIokNhMYIgCKLokHEhCIIgig4ZF4IgCKLokHEhCIIgig4ZF4IgCKLo\nkHEhCA3cdddd2L17ty7H7uvrw5e//GXEYjFdjk8QhUClyASRBy+++CJOnTqF22+/fdSOceutt+Ib\n3/gG5s+fP2rHIIjRhjwXgigh0WhU7yUQREkgz4UgNHDrrbfixhtvxL//+78DEFLxbW1tePDBBxEK\nhfDzn/8c27dvB2MMF198Ma699loYDAZs2rQJr732GmbMmIE33ngDl112GZYtW4YnnngCR44cAWMM\nCxYswFe/+lWYzWY8+uijePPNN2E0GmEwGHDNNdfg/PPPx7e+9S08//zzisbUk08+ib1798JiseAz\nn/mMMmv9xRdfxPHjx1FTU4N33nkHTqcTt956K2bMmAEAWL9+PV599VWEw2HYbDZ87Wtfw7x583Q7\nr8TYhYQrCUIj1dXV+OxnP5sWFnv88cfR2NiItWvXYnBwEKtXr4bD4cCll14KANi/fz8uuOACPPnk\nk4hGo3C5XPjsZz+LM888E+FwGA899BB+/etf44YbbsBtt92GvXv3JoXFenp6ktbxyCOPYNKkSXji\niSdw8uRJ3HfffWhra8PcuXMBCFXmf/zHf8Qtt9yCX/3qV3j66adx//334+TJk/jzn/+MH/3oR7Db\n7ejp6aE8DjFqUFiMIEaAx+PB9u3bccMNN6Curg6NjY246qqrsGXLFmUbm82GK664AlVVVaipqUFb\nWxvmz5+P6upqNDQ04KqrrsKePXs0Ha+vrw979+7Fl770JdTU1GDq1Km45JJLFNFHADjjjDNw9tln\nw2Aw4KKLLsLHH38MADAYDBgeHsbx48cVXa+2traing+CkCHPhSBGQF9fH6LRKL7+9a8rz3HOkwbL\nOZ3OpNd4PB48++yz+PDDDzEwMIBYLKZZpNHtdsNiscBkMiXt/+DBg8rjxsZG5feamhoMDw8jGo2i\nra0NN9xwA37961/j+PHjWLBgAb7yla9UlIw7UTmQcSGIPEgdYuVwOGA0GvHUU08pEwNz8fzzzwMA\nHnroIVgsFrzzzjt4+umnNb3WZrMhEAgg/P/bu2MUhYEAjMJ/FcRGhdzB0k4Q4h1s0tioBLFRBBuP\nYCMewFJIOhs9gJewFxsRIgoWCRiRrVYQ2d0EBpt9XztMSKrHzCQkjp+BOZ1OqQPhOI4cx1EURZrP\n5/J9X4PBINVcIAu2xYAMCoWCwjB8nlWUSiVVKhUtFgtFUaTH46Hj8fjrNlccx8rlcsrn8zqfz1qv\n1y/jxWLx7Zzlm23bKpfLCoJAt9tN+/1em81G9Xr9z3s/HA7abrdKkkSWZcmyrH/3x0d8DnEBMqjV\napIkz/M0Ho8lSf1+X/f7XaPRSJ1OR7PZTJfL5cdruK6r3W6nVqulyWSiarX6Mt5oNLRcLtVut7Va\nrd7mD4dDhWGoXq+n6XQq13VTfROTJIl835fneep2u7per2o2m1keH0iNV5EBAMaxcgEAGEdcAADG\nERcAgHHEBQBgHHEBABhHXAAAxhEXAIBxxAUAYBxxAQAY9wXQF6wwf4zlmgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -386,9 +391,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlcVWX+wPHPc1kERHYUQVxwydxz\nyT1M0SzN0RbLStOpyEgdbfXXTJlTTpgipmk2ZpbVlDaTtmfhgqVT4pYm4pJLkiggFwQBBc7z++PW\nNQaRK9u9cL/v16tX3Oeec8/3Ph75ep5Vaa01QgghxBWY7B2AEEIIxyfJQgghRIUkWQghhKiQJAsh\nhBAVkmQhhBCiQpIshBBCVEiShRBCiApJshBCCFEhSRZCCCEqJMlCCCFEhVztHUB1OnXqVKXPDQoK\nIjMzsxqjqR+kXsondVM+qZvyOVrdhIaG2nScPFkIIYSokCQLIYQQFaqVZqjMzEyWLFlCdnY2Simi\noqK45ZZbyMvLIz4+noyMDIKDg5kxYwbe3t5orVm5ciW7d++mQYMGxMTEEBERURuhCiGEuIxaebJw\ncXFh/PjxxMfHM2fOHNavX09qairr1q2jc+fOLFq0iM6dO7Nu3ToAdu/ezenTp1m0aBHR0dG88cYb\ntRGmEEKIctRKsvD397c+GXh6ehIWFkZWVhZJSUlERkYCEBkZSVJSEgA7duzghhtuQClFu3btOH/+\nPGazuTZCFUIIcRm1PhoqPT2dY8eO0aZNG3JycvD39wfAz8+PnJwcALKysggKCrKeExgYSFZWlvXY\n3yUkJJCQkABAbGxsqXOulqura5XOr6+kXsondVM+qZvy1dW6qdVkUVhYSFxcHBMnTsTLy6vUe0op\nlFJX9XlRUVFERUVZX1dlOJqjDWdzFFIv5ZO6KZ/UTfkcrW4cbuhscXExcXFxDBw4kN69ewPg6+tr\nbV4ym834+PgAEBAQUKoyz549S0BAQG2FKoQQdYax6XP0gR9r/Dq1kiy01ixbtoywsDBGjhxpLe/Z\nsyeJiYkAJCYm0qtXL2v5li1b0Fpz6NAhvLy8yjRBCSGEs9M7t6Hf/yf6269r/Fq10gx18OBBtmzZ\nQvPmzXnyyScBGDduHKNHjyY+Pp6NGzdah84CXHfddezatYtp06bh7u5OTExMbYQphBB1hv45BWPF\nAoi4BjVxWo1fT2mtdY1fpZbIch/VT+qlfFI35ZO6KZ8tdaNLSuDMr1CQD4UFcKEAgppAs1Yokwmd\nnobx0pPg6YXp/+ahGvlWOh5b+yzq1dpQQghRV+jd32NsTUBd2xXVuQeqcSj6bAb6u2/Q330D2WfL\nnuTlDe06wakToDWmabOqlCiuhiQLIYSoZTorE2PlK1BSjP5xO/qD5RAQBObfEkSHbqjR96F8/MDD\nExo0QJ/6BVL2oQ/ug3PZmGbMRoWE1VrMkiyEEKIWaa0xVi2GkmJMsxZZyn7aiU7Zi+o7GDVgKCqo\nSZnzVPPW0OdGy/HFxSjX2v31LclCCCFqUcE3n8D+3ah7HkY1bgqAGjwSBo+s4MxLajtRgKw6K4QQ\ntUafTSdv5WJo3wUVebO9w7kqkiyEEKIW6MICSz8FYJo4DWWqW79+pRlKCCGugk4/hfHSU9CiNarX\nQNR1fVBe3lc+58ckjH8tg6wMGk39K+cDG9dStNVHkoUQQlwFffAnyDsHv/6C3r8I/e5S6NQDU/8o\n6NTD2p+gDQNOncD4bDXs3AahzTE9HYtnnxs4XwfnoEiyEEKIq3HyGDTwxDT3DThxFJ20Bf1DIsae\nH8DHD9W9H9qcCYeTIT8P3NxRY8ajho1GubrZO/pKk2QhhBBXQf96HJq1QJlcoFVbVKu26Nvuh/27\nML5LQH+7HgKboLr3hbYdUB26ofwC7R12lUmyEEIIG2mt4eRx1PUDS5UrV1foej0uXa9HG0ad67y2\nRf37RkIIUVOyMqDgPDRrWe4h9TFRgCQLIYSw3cljAKhmrewcSO2TZCGEEDbSqcctPzRrYdc47EGS\nhRBC2EinHoPgEJSHV8UH1zOSLIQQwlYnj0O48zVBgSQLIYSwib5QCBlpqLCW9g7FLiRZCCGELVKP\ng9YoebIQQghRHv3rccsPVxg2W5/VyqS8pUuXsmvXLnx9fYmLiwMgPj7eumd2fn4+Xl5ezJs3j/T0\ndGbMmGHdF7Zt27ZER0fXRphCCFG+k8fB08uyF7YTqpVkMWjQIIYPH86SJUusZTNmzLD+vGrVKry8\nLo0uCAkJYd68ebURmhBC2ESnHoOwliil7B2KXdRKM1SHDh3w9r78Er5aa/773//Sv3//2ghFCCGu\nmjYMSD2OctImKHCAtaEOHDiAr68vTZs2tZalp6fz1FNP4enpyd133821115rxwiFEE7vbDoUFkB4\nS3tHYjd2TxZbt24t9VTh7+/P0qVLadSoEUePHmXevHnExcWVaqb6XUJCAgkJCQDExsYSFBRU6Thc\nXV2rdH59JfVSPqmb8tX1ujFyzBSfPI5b+84oV1cKf95PDuDf6Trcqvi96mrd2DVZlJSUsH37dmJj\nY61lbm5uuLlZ1nyPiIigSZMmpKWl0bp16zLnR0VFERUVZX2dWYUNRYKCgqp0fn0l9VI+qZvy1cW6\n0VmZ6B82o3/cDkcPgtYQEIwaNgayz4JSZDf0RVXxezla3fw+mKgidk0W+/btIzQ0lMDAS2u9nzt3\nDm9vb0wmE2fOnCEtLY0mTZxz9IEQovYYC2dB2klo3ho18i5oEobe/AX6g39aDmgShmrgYd8g7ahW\nksXChQtJTk4mNzeXyZMnM3bsWAYPHlymCQogOTmZNWvW4OLigslk4qGHHiq3c1wIIaqDNp+FtJOo\nOyZhumnMpTd6R6IPJ2N8sw7V2rn7TmslWUyfPv2y5Y8++miZsj59+tCnT5+aDkkIIaz0kQMAqHad\nyryn2nbApW2H2g7J4cgMbiGE+PkAuDdw2kUCbSHJQgjh9PSRA9CqnWV7VHFZkiyEEE5NFxbAyaNO\n3ydREUkWQginoc9mWJYa/6Njh8AwUG0kWVyJJAshhFPQJSUYL05Hv/da6fKfD4BS0PoaO0VWN0iy\nEEI4hxNHIC8Xvf1b9DmztVgfOQChzVFeMkT/SiRZCCGcgk7Za/mhpBi9Zb2lzCiBn1OkCcoGkiyE\nEE5BH9wHYS2g43XoxK/QxcXw6y+WBQIlWVRIkoUQot7TRUVwJBnVvgumG0dCdhZ69/eXJuPJSKgK\nyaBiIUT9d+wQXLyIat8ZOneHoCboTZ+h/IPBN8Bpd7+7GvJkIYSo93TKXsuIp7adUCYX1I23wOFk\n9N7t0Ka90+5+dzUkWQgh6j19cJ9lNdmGlhFPqn8UuLtDYYF0bttIkoUQot7QWmOsfQd99OClsosX\n4GgK6prO1jLVsBGq9yDLz61lkUBbSLIQQtQfWRnoLz7EeH0uOv+8peznFCguRrXvUupQNWoc6vb7\noUXZjdVEWZIshBD1x7FDlv9nZaLXrAB+668wmaBt6eYm5ReIafjtKJP8GrSF1JIQot7Qxw6Dqytq\n2Gj01gT0vh2W/opW7VAeXvYOr06TZCGEqDf08UMQHoEaPR7CWmC8/SocO1Sqv0JUjiQLIUS9oEtK\n4PgRVKt2KDc3TJOmQ16OZUXZ/+mvEFdPkoUQon5I+wUuXoBW7QBQLVqjRt0DPn4Q0d7OwdV9MoNb\nCFEv6GOHAVC/JQsA0y13ooffhjK52CuseqNWksXSpUvZtWsXvr6+xMXFAbBmzRo2bNiAj48PAOPG\njaN79+4ArF27lo0bN2IymZg0aRLdunWrjTCFEHXZsUPg1RAaNy1VLImietRKshg0aBDDhw9nyZIl\npcpHjBjBqFGjSpWlpqaybds2FixYgNls5oUXXuCVV17BJMPbhBBXoI8dhpbtZOmOGlIrv4E7dOiA\nt7dtG4skJSXRr18/3NzcaNy4MSEhIRw5cqSGIxRC1GX6QiGcOoGKaFfxwaJS7NpnsX79erZs2UJE\nRAQTJkzA29ubrKws2rZtaz0mICCArKysy56fkJBAQkICALGxsQQFBVU6FldX1yqdX19JvZRP6qZ8\ntV03F5P3YDYMfLv0pIGD/5nU1fvGbsli2LBh3HHHHQCsXr2aVatWERMTc1WfERUVRVRUlPV1ZmZm\npeMJCgqq0vn1ldRL+aRuylfbdWPsSQLgXGBjlIP/mTjafRMaGmrTcTYli7y8PD755BNOnDhBYWFh\nqfdmz5599dEBfn5+1p+HDBnC3LlzAcuTxNmzZ63vZWVlERAQUKlrCCGcxLHDENgY5eNv70jqLZuS\nxSuvvEJxcTF9+/bF3d29Wi5sNpvx97f8wW7fvp3w8HAAevbsyaJFixg5ciRms5m0tDTatGlTLdcU\nQtRP+tghVMu2FR4nKs+mZHHo0CHeeOMN3NzcKnWRhQsXkpycTG5uLpMnT2bs2LHs37+f48ePo5Qi\nODiY6OhoAMLDw+nbty+PPfYYJpOJBx54QEZCCSHKpc9lw9l0GDzC3qHUazYli+bNm3P27FlCQkIq\ndZHp06eXKRs8eHC5x992223cdtttlbqWEMLJ/D4Zr6WMhKpJNiWLTp068Y9//INBgwaV6muAK//S\nF0KImqaPHgRlkn0paphNySIlJYXAwED27dtX5j1JFkKImqazz0JeLqpZy7Lv/bQDWl+DauBR+4E5\nkQqThdaayZMnExQUhIuLTJsXQtQuXXQRI34WZGdhmv826g99pzorA345atnxTtSoCnuOlVI88cQT\nMoVeCGEX+uN/walfID8PftpZ+r0fLfMrVNfe9gjNqdg0zKhly5akpaXVdCxCCFGKPnIA/fVaVP8o\naOSL8cPm0u/v+QGahKGaNrNPgE7Epj6Ljh078o9//IPIyMgy09Slz0IIURP0hUKMlQshIBh194PQ\nwAO9ZT06/zzKqyG6IB8O7kMNudXeoToFm5LFwYMHady4MQcOHCjzniQLIURN0B+tgvQ0TE/Mseyf\n3TsSvfEz9O7/Wp409u+CkmJU1+vtHapTsClZzJo1q6bjEEIIK338MHrjZ6ght17aP7tVOwgOQf+Q\nCP2jLE1Q3o2gteyCVxts6rMwDKPc/4QQoroZn60GL2/Un+61limlUL0HQcpe9NkM9L4dqM49UTJK\ns1bY9GQxbty4ct9bvXp1tQUjhBD6l6Pw43bUqHtQnl6l3lO9b0B/9gHG+69D/nlUNxkFVVtsShav\nvvpqqddms5l169bRs2fPGglKCOG8jM/XgKcXasjIMu+pkGbQog38uB1cXaHDdXaI0DnZ1AwVHBxc\n6r927doxZcoUPv7445qOTwjhRPSvv8CubajBI1Fel99dU/WOtPzQvivKw7MWo3NulV7ONT8/n3Pn\nzlVnLEIIJ6e/WAMNPFFRo8o9RvUaCB6el5KGqBU2NUMtXry41AzuCxcucODAAQYOHFhjgQkhnIs+\nnYpO+g510xiUt0+5xym/AEwL3gHXym2ZICrHpmTxv0uTN2jQgKFDh9KlS5caCUoI4Vx0cTHGmjfB\nzRU19E8VHq/cqmcTNmE7m5JFt27daNu27C5UR44ckV3shBBVoouLMd6YD/t2oMZFo3z8Kj5J1Dqb\n+ixefPHFy5bPmTOnWoMRQtQ9uugi+sCPaK3Lvpd+CuOtV9CZZy5/7u+JYuc21NgHMA0uOwJKOIYr\nJovfJ95prdFal5qMl5aWJkuWCyHQa9/BWPAsemtC6fKSEow3FqC3bsCIfQr9y8+l3y8sKJ0obGh+\nEvZzxWaoP07Gu/vuu0u9ZzKZGDNmTM1EJYSoE/T5PPSWr8FkQn+wHN2mAyokzPLe12vh2CHU6PvQ\nW9ZjvPwMpslPQ9sO6E2fo9evhbxzkijqiCsmi1dffRWtNc8//zyzZ89Ga22Zcq8UPj4+uLvb1sm0\ndOlSdu3aha+vL3FxcQC888477Ny5E1dXV5o0aUJMTAwNGzYkPT2dGTNmEBoaCkDbtm2Jjo6u4tcU\nQtQEvfkLuFCAadosjBULMN6IwzRzLsUnfkZ/8i/o0Q91y52o/kMwXvk7xqsvgGdDyDsHHa/DNOoe\nVMQ19v4awgZXTBbBwcGA5Zc9WJqlcnJy8Pf3v6qLDBo0iOHDh7NkyRJrWZcuXbjnnntwcXHh3Xff\nZe3atdx3332AZfTVvHnzruoaQojapS9eQG/4FDr1QHXugWnCFIzXXkJ/tIqcowfBsyGmex+xDLv3\nC8T01EsYby6EoguYRt6FatPB3l9BXAWbRkOdP3+eN954g++//x5XV1feeecdduzYwZEjR8o0T11O\nhw4dSE9PL1XWtWtX68/t2rXj+++/v8rQhRD2pLdtgNwcTMNvB0B174u64Sb0Nx9TDJgmz0Q18rUe\nrzy9cHn0GTtFK6rKptFQy5cvx8vLi6VLl+Lqaskv7dq1Y9u2bdUSxMaNG+nWrZv1dXp6Ok899RSz\nZs267B4aQgj70iUllj6HVu2gXUdruRr7ALRog+fQUage/ewYoahuNj1Z7Nu3j9dff92aKAB8fHzI\nycmpcgAfffQRLi4u1tng/v7+LF26lEaNGnH06FHmzZtHXFwcXl5eZc5NSEggIcEyAiM2NrbMLn5X\nw9XVtUrn11dSL+Vz5rop/PYbcjLP4PvAdDx+a67+nY5/Gzc3N4qLi+0UnWOrq/eNTcnCy8uL3Nzc\nUn0VmZmZV9138b82b97Mzp07ee6556zLibi5ueHmZpnGHxERQZMmTUhLS6N169Zlzo+KiiIqKqpU\nTJUVFBRUpfPrK6mX8jlr3WitMf79NoSEkRtxLXmXqQNnrRtbOFrd/D6YqCI2NUMNGTKEuLg4fvrp\nJ7TWHDp0iCVLljB06NBKB7hnzx4+/vhjnn76aRo0aGAtP3funHVTpTNnzpCWlkaTJk0qfR0hRDXb\nvwt+OYoaNgZlqvRapKKOsenJ4k9/+hPu7u6sWLGCkpISXnvtNaKiorjllltsusjChQtJTk4mNzeX\nyZMnM3bsWNauXUtxcTEvvPACcGmIbHJyMmvWrMHFxQWTycRDDz2Et/fllyoWQtQ+44sPwT8I1fdG\ne4ciapHSl5uj/weGYbB582YGDhxobR5yVKdOnar0uY72aOgopF7K54x1ow8nY7w8E3X3Q5iG3Fru\ncc5YN7ZytLqptmYok8nEqlWrHD5RCCFqnvHlv8HbBzVgmL1DEbXMpgbHHj16sGPHjpqORQjhwPQv\nRy0rw0aNQv2hn1E4B5v6LIqKiliwYAHt2rUjMDCw1EZIU6ZMqbHghBCOQ3/5b8ve2Dfa1lcp6heb\nkkV4eDjh4eE1HYsQwkHp07+id25FDb+93L2xRf1mU7K48847azoOIYQD0xs+AVe3K+6NLeo3GSQt\nhLgiXZiP/u9mVM8BsoudE5NkIYS4Iv3DFrhQgIocbu9QhB1JshBClEtrjd78JYS3Atl3wqlJshBC\nlO/oQUg9hoq8udQoSOF8bOrg1lqzYcMGtm7dSm5uLvPnzyc5OZns7Gz69ZNliIWor3Til+Dhiep9\ng71DEXZm05PF6tWr2bRpE1FRUdZp6oGBgXz88cc1GpwQwn70+Vx00neoPoNQHmW3CBDOxaZkkZiY\nyNNPP03//v2tj6KNGzcus/udEKL+0Fs3QHGRdGwLwMZkYRgGHh4epcoKCwvLlAkh6gdtGOjEr6B1\ne1SzVvYORzgAm5LFddddx6pVqygqKgIsfRirV6+mR48eNRqcEMI+9M6tkH4KdYWVZYVzsSlZTJgw\nAbPZzMSJE8nPz2fChAlkZGRw77331nR8QohapktK0J/8C0Kbo3r0t3c4wkHYvK3qk08+SXZ2NpmZ\nmQQFBeHnJzM5haiP9A+JcPpXTI/MlJ3whJVNyeL3bU59fHzw8fGxlpnkRhKiXtHFxejPPoDmEXBd\nX3uHIxyITcli3Lhxly13cXHB39+f3r17M3bsWOnwFqKO09s2QMZpTFOelUl4ohSbksWkSZNISkpi\n9OjRBAYGkpmZySeffEL37t0JDQ3lww8/5K233mLy5Mk1Ha8QoobooiL056uhVTvo0tPe4QgHY1Oy\n+Pzzz5k7dy5eXpaJOaGhobRu3ZqZM2eyePFimjdvztNPP33Fz1i6dCm7du3C19eXuLg4APLy8oiP\njycjI4Pg4GBmzJiBt7c3WmtWrlzJ7t27adCgATExMURERFTxqwohrkRvTYCsTEz3T5WnClGGTZ0O\n+fn5XLhwoVTZhQsXyM/PB8DPz4+LFy9e8TMGDRrEM888U6ps3bp1dO7cmUWLFtG5c2fWrVsHwO7d\nuzl9+jSLFi0iOjqaN954w+YvJISoHJ30LYS1gGu72TsU4YBsShaRkZG8+OKLJCQksGfPHjZs2MCc\nOXOIjIwE4McffyQ0NPSKn9GhQwe8vUvvsJWUlGT9jMjISJKSkgDYsWMHN9xwA0op2rVrx/nz5zGb\nzVf95YQQttH5eXAkGdX1enmqEJdlUzPUfffdR0hICNu2bcNsNuPn58dNN91EVFQUAB07dmT27NlX\nffGcnBz8/f0By9NJTk4OAFlZWQQFBVmPCwwMJCsry3qsEKJ66f27wTBQnaWvQlyeTcnCZDIxbNgw\nhg0bdtn33d3dqxyIUuqq/0WTkJBAQkICALGxsaUSzNVydXWt0vn1ldRL+epT3eQc2seFRr4E9eqH\ncnGp8ufVp7qpbnW1bmxKFgDZ2dkcOXKE3NxctNbW8sGDB1f64r6+vpjNZvz9/TGbzdY5HAEBAdbV\nbQHOnj1LQEBAmfOjoqKsTzdAqXOuVlBQUJXOr6+kXspXX+pGGyUYO7aiOvXgbDU199aXuqkJjlY3\nFXUh/M6mZLF9+3YWL15M06ZNOXnyJOHh4Zw8eZL27dtXKVn07NmTxMRERo8eTWJiIr169bKWf/XV\nV/Tv35/Dhw/j5eUlTVBC1JRjhyEvF7r0snckwoHZlCxWr15NTEwMffv2ZdKkSbz88sts2rSJkydP\n2nyhhQsXkpycTG5uLpMnT2bs2LGMHj2a+Ph4Nm7caB06C5aFC3ft2sW0adNwd3cnJiamct9OCFGK\nPpcNBfmoJpf+Nan3JoHJhOp4nR0jE47OpmSRmZlJ376lp/5HRkYSHR3NhAkTbLrQ9OnTL1v+3HPP\nlSlTSvHggw/a9LlCCNvotFSMBX+D/POYnolDhTW3lO/dAW2uRXl5V/AJwpnZNHTWx8eH7OxsAIKD\ngzl06BBnzpyxrhklhHBsOvUYxrz/A8MAD0+M115CF+SjszIse2xLE5SogE1PFkOGDCElJYU+ffow\nYsQIZs+ejVKKkSNH1nR8Qogq0scOYSx8Hhp4YHrsBTiXjRH3V4yVC1EdLE1PMmRWVMSmZDFq1Cjr\nCrORkZF07NiRwsJCmjVrVqPBCSGqRmdnYSx4Frx9MD3+IiqoCYSEoe6YhF6zAn1wHwQ1gabh9g5V\nOLgKm6EMw2D8+PHWXfLAMvRLEoUQjk//uB0KCzA9+owlUfxGRY1C9RwA+edRnXvKrG1RoQqfLEwm\nE6GhoeTm5l52roMQwnHpfTsgsDGEtSxVrpSC+6eCV0PUoJvtE5yoU2xqhhowYABz587l5ptvJjAw\nsNS/Qjp16lRjwQkhKk8XFUHKXlTfGy/75KA8PFHjH7VDZKIusilZfP311wB8+OGHpcqVUrz66qvV\nH5UQouoO74cLhahO0nktqs6mZLFkyZKajkMIUc30vp3g6gbtO9s7FFEP2LyJdnFxMQcOHGDbtm0A\nFBYWUlhYWGOBCSGqRv+0E9p1QjWQ7Y5F1dn0ZPHLL78wd+5c3NzcOHv2LP369SM5OZnExETrEh1C\nCMehM07D6VRU5HB7hyLqCZueLJYvX85dd93FwoULcXW15JcOHTqQkpJSo8EJISpH/7QLkMl2ovrY\nlCxSU1MZOHBgqTIPD48Kt1IVQtiH3rcDgkNKLRgoRFXYlCyCg4M5evRoqbIjR44QEhJSI0EJISpP\nF12Eg3vlqUJUK5v6LO666y5iY2MZOnQoxcXFrF27lm+++YaHH364puMTQlytgz/BxYuozj3sHYmo\nR2xKFj169OCZZ55hw4YNdOjQgYyMDJ544gkiIiJqOj4hRAV0cTF6+xYwZ0L+efTh/eDmDu1kwqyo\nPjYli3PnztGqVSvZY0IIB6TXvoP+eq3lhbs7eDZERd6Mcm9g38BEvWJTsoiJiaFjx44MGDCAXr16\n4eEh47aFcAQ6eTf667WoyOGoux5CubnZOyRRT9nUwb106VK6d+/O119/TXR0NAsXLmTHjh2UlJTU\ndHxCiHLo3ByMNxdC03DU2AckUYgaZdOThY+PDzfddBM33XQTGRkZbN26lQ8++IDXXnuNFStW1HSM\nQoj/obXGeGsRnM/DNP15aXISNc7m5T5+l5OTQ3Z2Nrm5uTRs2LAmYhJCVEBv/gL2JqFuvx/VrJW9\nwxFOwKYni9TUVL777ju2bt3KxYsX6du3L08++SRt2rSp0sVPnTpFfHy89XV6ejpjx47l/PnzbNiw\nAR8fHwDGjRtH9+7dq3QtIeoL/esv6A9XQqfuqCG32jsc4SRsShbPPvssvXv3Jjo6mo4dO1q3WK2q\n0NBQ5s2bB1h25Hv44Ye5/vrr2bRpEyNGjGDUqFHVch0h6gtdVITxxnzw8MQ06S+yw52oNTYli+XL\nl1vXhKop+/btIyQkhODg4Bq9jhB1mV67ClKPY5r6LMrH397hCCdiUwZwdXUlOzubI0eOkJubi9ba\n+t7gwYOrJZCtW7fSv39/6+v169ezZcsWIiIimDBhAt7e3mXOSUhIICEhAYDY2FiCgoIqfX1XV9cq\nnV9fSb2Ur7br5sKe7WR/8zGeN9+Oz2DH3gpV7pvy1dW6UfqPv/nLsX37dhYvXkzTpk05efIk4eHh\nnDx5kvbt2zNr1qwqB1FcXMzDDz9MXFwcfn5+ZGdnW/srVq9ejdlsJiYmpsLPOXXqVKVjCAoKIjMz\ns9Ln11dSL+WrzbrRqccwFs4Gr4aY/rbA4Uc/yX1TPkerm9BQ2xabtOnJYvXq1cTExNC3b18mTZrE\nyy+/zKZNmzh58mSVgvzd7t27adWqFX5+fgDW/wMMGTKEuXPnVst1hKhLtGHAvh0YCZ9Ayl5LP8W0\n5xw+UYj6yaZkkZmZSd++fUvKsQsJAAAXMUlEQVSVRUZGEh0dzYQJE6ocxP82QZnNZvz9Le2x27dv\nJzw8vMrXEKKu0Nln0Vs3oLcmQMZpCAiyDJEdOAzVsJG9wxNOyuZJednZ2fj5+REcHMyhQ4do1KgR\nhmFUOYDCwkL27t1LdHS0tezdd9/l+PHjKKUIDg4u9Z4Q9ZVOT8NYswL27gBtQPsuqDETUN37olxc\n7B2ecHI2JYshQ4aQkpJCnz59GDFiBLNnz0YpxciRI6scgIeHB2+++WapsqlTp1b5c4WoS3SOGSP+\nOcjPQw0fgxowFNVYNi4SjsOmZDF69Gjrz5GRkXTs2JHCwkKaNWtWY4EJ4Sx0YT7Gor/DuWxMT8xB\ntWpn75CEKKNSkyfq4rAvIWqLzjGjd2wFowS0BhcX1PWRqEY+ZY8tLsJ4bS6kHsM05W+SKITDqtmZ\ndkI4GW0YGK++CMcPly7f9V9Mj7+I+sPqB1pr9KolkLwbNXGabIMqHJokCyGqkf7uGzh+GHX/VFT3\nvqBM6KQt6HeWohO/Qt14y6VjN36G/u9G1K3jMPWPsmPUQlSsehZ5EkKgz+daluNo1xHVPwrl5Y3y\n9EINvAk6XIf+z1vozDOWYw8noz98E7r1Ro28y86RC1ExSRbCqRnbNmB8/B563w70+dwrHlvRYgd6\n7TuQfx7TuIdLLfCnlMI04VFAYax6FZ2dhfH6XAhsjGnS9FJNU0I4KmmGEk5L79yGXvmK5effC8Na\nWH6Bt2hd+tjkPRjL56N6R6JG34vy8Cr9/okj6C3rUUNuRTVrWeZaKrAx6o770e8tw5jzGBScxzR9\nNspL9oQRdYP8k0Y4Jf3LUYw34yHiGkzx71qGrI4ZDwX5GAv+hj5x5NKxh5MxlswBF1f0xs8wnpuC\n3vO95b1zZvTeJIxVr0IjX9St48q9prphOFzTGbKzUOOnXDapCOGobFpIsK6QhQSrX32sF33OjDHn\ncdBg+mscyvfSUt868wzG/L9a/uX/2AugNUbc38AvANOTL0HGaYx3lsCvJ1A+fuhz2ZYTXVwwPfQE\nqkf/cq762+fnnYNfjqI6dKvJr2h39fG+qS6OVje2LiQoyeI3jvYH6CjqW73osxkYy+fByaOYnppb\nprkJSicMlMmygN9TsagAy/wiXVyM3vgZDTLSuNAkFNW8DTSPQHl41vbXcVj17b6pTo5WN9W66qwQ\ndZXOz0Pv/gFSfkQf2g9ZGQCo6KcumygAVFATTE/+A2PeM1BSbJkfEXBpIqpydUUNG42vg/2lF6Im\nSbIQdYI2StDffAL5eeAfiPIPgsBgaNIM5eZ26TitIScLfWg/Oulb+GknFBeDjx+qbUcYNgbVoSuq\n6ZVXMlaBjTE9vxgMQzqhhUCShagj9Ker0Z99ACYTGMal0UsmEzQOhdBwOJ8Hvx6HvN+GwPoFoAaN\nQF0/EFq2ver9qqVZSYhLJFkIh6d/2on+fDWq72DUxKlwLgfMZ9EZaXDqF/SvJyD1BDT0Rl3XF5q1\nRDVvDRHtUCZZ2luI6iDJQjg0fTYD440FENYCde8jll/+fgGWp4ZWbe0dnhBOQ+ZZCLvSxw+jd/33\n8u8VFVlmOhslmCbPRDWQ7USFsBdJFsJudI4Z45XnMV57CSPxq9LvFRehVy6EY4cwTZyGaiIbAQlh\nT9IMJWqU1hr95kJ0fh6m6CdRDTys5cbbi+HCBWjXCf3eaxgNGmDqc6NlM6DX5lqW7r79flT3fnb+\nFkIISRbCZjrzDHh5X9VQUr3hU/T3mwAwFv0d07TnUA08LEt579uBuutB1A03YSz6O3rlKxhFRejE\nr+DkUdTEabJ0txAOwiGSxaOPPoqHhwcmkwkXFxdiY2PJy8sjPj6ejIwMgoODmTFjBt7e3vYO1WkZ\n/92EXvUqePtgevgpVJtrKzxHn/gZ/e+3oOv1qF4D0SviMRa/gOnuh9CrV0D7LqjBI1EmE6Ypf8VY\n8JzlGu7umGL+iuraq+a/mBDCJg6RLABmzZqFj8+lbSfXrVtH586dGT16NOvWrWPdunXcd999dozQ\nOemSEox/r0SvXwttO0B2Fsb8Z1C3T0RFjYKSYkjZa5kl3bAhatAtqIBgS1PSP+dBI19Ln4O3DwZY\nEsaLj1kSwsS/WJfnVh5emP7yPPqjVah+g1Gt29v3iwshSnGYZPG/kpKSeP755wGIjIzk+eefl2RR\ny3RhPtkvxaJ3bkMNuhl110NwsRBj5SL0mhXo7Vsg/RTkn4cGnnDxAvrrdageA9AXL0DGaUxPvIjy\ntvwjwNQ7EkNr9DuvWobBBgaXup5q6I0aH2OPryqEqIDDJIs5c+YAMHToUKKiosjJycHf37IaqJ+f\nHzk5OfYMz+no4mKM12K5mLIPdc9kTL9vB+rqjSnm/9DffGzZJrRbH0sHdIdulmU2Nn6G/vZrKCxA\n3ToO1a5Tqc819RmE7jkA5eowt54QwgYO8Tf2hRdeICAggJycHF588cUyqyAqpS67VENCQgIJCQkA\nxMbGEhQUVOYYW7m6ulbp/LpKX7xAyZk0XMNbXirTmtxl8yhI3oPf1L/SYPCIsife86Dlvz9q2hTa\nd8SYOIWilH24d+2Fcqm/M6id9Z6xhdRN+epq3ThEsggICADA19eXXr16ceTIEXx9fTGbzfj7+2M2\nm0v1Z/wuKiqKqKhLo2WqsgKooy0bXFuM119G7/gO1Wsg6o5JqIAgjG8+tjQnDb+dBoNHVK5emrcB\ns7n6A3YgznrP2ELqpnyOVje2LlFu90l5hYWFFBQUWH/eu3cvzZs3p2fPniQmJgKQmJhIr14yMqa6\n6d3fo3d8B9d2Re/5AePZRyx7RH/4JnTva9k5TgghcIAni5ycHObPnw9ASUkJAwYMoFu3brRu3Zr4\n+Hg2btxoHTorqo/Oz8N4bxk0a4Vp2izIPouxZoWlv6FFG0x/fsw6UkkIIWSnvN842qPh1dBaW4av\n5uagruuDcnOv8Bxj1avo7xIw/XU+qkWbS5914ggEN7VOvKvL9VLTpG7KJ3VTPkerG9kpz0non1Mw\n1r4DB/dZXjfytcx1GHQzysfv8uek7EV/+zXqpjGlEgVQ5rUQQoAkizpHaw2ZZ9CH91tWa/1xOzTy\nRd0djWoahpHwKfrT99Ff/ht1w02om29H+QVazjUM2Lsd4/3lEByCuvUeO38bIURdIcmiDjG+/A96\n8+eQ9dsjrHcj1Kh7UENHoTy8AHDpcB06LRX99Vp04peWJ4jI4RDWAv31Okg7CUFNMD34uCz5LYSw\nmSSLOsJY/xH6o7ehQzfU8Nstk92ahl+2E1o1bYa6fyr6ljvRn69Gb/wMDMOygdCDj6N6DqjX8x+E\nENVPkkUdYGxNQP/7LctciAcft3mUkgoOQU38C/qWsZCdBW07XPU+1EIIAZIsHIqlTyEJfT4PFRoO\nTZtByj7LSqwdrkP9eXqlhrOqxk2hcdMaiFgI4SwkWTgAXVKCTvoW/cWHlj4FwDqeWSlo2RbTIzNR\nrm52i1EI4dwkWdiZTt5tmRyXnmbpU4h+EhUeAadPok+dhIJ81LAxKA9Pe4cqhHBikizsRBddRH+0\nCp3wCYQ0w/TI/0G33peamULCUN362DdIIYT4jSQLO9C/nsBYPh9+PYG6cQTqjokodxnGKoRwXJIs\napHWGr35C/SaN8HTy7Ifdeee9g5LCCEqJMmilui8cxhvLbLMuO7UA9Okv5S7HIcQQjgaSRY1RGec\nRh8/bJltbc5E79wGuTmoux5ADb5VVnQVQtQpkixqgP71BMaLj0FxkaXAwxPCWmCa8jdUi9b2DU4I\nISpBkkU108VFGCsWWPok/vI8NG6K8vSyd1hCCFEl0hZSzfSnH8DJY5gmTEG1aC2JQghRL0iyqEb6\nyAH0l/9B9Y9Cdett73CEEKLaSDNUJWmt0V/9B4qLIagJKjDYMtopIAh114P2Dk8IIaqVJIvK2rkV\n/dEq60sNoBSmJ+ZI05MQot6RZFEJurjYspVpWAtM/zfPMjw28wy4N7DsMyGEEPWMXZNFZmYmS5Ys\nITs7G6UUUVFR3HLLLaxZs4YNGzbg4+MDwLhx4+jevXutx6cNA/b8AO27oLwaXir/7mtIT8M05VlU\nAw/LUuJNm9V6fEIIUVvsmixcXFwYP348ERERFBQUMHPmTLp06QLAiBEjGDVqlN1i04aBfncp+tuv\noXkEpul/RzXyQRcWWEY8te0AXWSpDiGEc7DraCh/f38iIiIA8PT0JCwsjKysLHuGBPzWef2vZZb9\nq3sNhLRUjLi/os+ZLavEnsvGdPtE2XVOCOE0HKbPIj09nWPHjtGmTRtSUlJYv349W7ZsISIiggkT\nJuDt7V3mnISEBBISEgCIjY0lKCjoqq+rL16g5EwapgJPAgMDAchdvoCCxK/wGnMf3uMfoWjfTsz/\neAoV9yzanEmD3pH49R5QtS9cR7i6ulaqXp2B1E35pG7KV1frRmmtdcWH1azCwkJmzZrFbbfdRu/e\nvcnOzrb2V6xevRqz2UxMTEyFn3Pq1KmrvrY+fhhjzuOWFy4u4OVtWcNp2BjL0uG/PT3oI8kYr8yG\nCxcwzX4V5SR9FEFBQWRmZto7DIckdVM+qZvyOVrdhIaG2nSc3Z8siouLiYuLY+DAgfTubZnI5ud3\naTXWIUOGMHfu3JoLILAJ6sHHaWgUcz4tFc5lQ7OWqCGjSjUzqTYdMM2cB1npTpMohBDid3ZNFlpr\nli1bRlhYGCNHjrSWm81m/P39Adi+fTvh4eE1FoNq5IPqHUnDoCAKKsj2Kqw5hDWvsViEEMJR2TVZ\nHDx4kC1bttC8eXOefPJJwDJMduvWrRw/fhylFMHBwURHR9szTCGEcHp2TRbt27dnzZo1ZcrtMadC\nCCFE+WQhQSGEEBWSZCGEEKJCkiyEEEJUSJKFEEKICkmyEEIIUSFJFkIIISrkEMt9CCGEcGzyZPGb\nmTNn2jsEhyT1Uj6pm/JJ3ZSvrtaNJAshhBAVkmQhhBCiQpIsfhMVFWXvEByS1Ev5pG7KJ3VTvrpa\nN9LBLYQQokLyZCGEEKJCdt/8yN727NnDypUrMQyDIUOGMHr0aHuHZDeZmZksWbKE7OxslFJERUVx\nyy23kJeXR3x8PBkZGQQHBzNjxozLbnNb3xmGwcyZMwkICGDmzJmkp6ezcOFCcnNziYiIYOrUqbi6\nOt9fqfPnz7Ns2TJOnjyJUopHHnmE0NBQuWeAzz77jI0bN6KUIjw8nJiYGLKzs+vkfePUTxaGYbBi\nxQqeeeYZ4uPj2bp1K6mpqfYOy25cXFwYP3488fHxzJkzh/Xr15Oamsq6devo3LkzixYtonPnzqxb\nt87eodrFF198QVhYmPX1u+++y4gRI1i8eDENGzZk48aNdozOflauXEm3bt1YuHAh8+bNIywsTO4Z\nICsriy+//JLY2Fji4uIwDINt27bV2fvGqZPFkSNHCAkJoUmTJri6utKvXz+SkpLsHZbd+Pv7ExER\nAYCnpydhYWFkZWWRlJREZGQkAJGRkU5ZR2fPnmXXrl0MGTIEsOzyuH//fvr06QPAoEGDnLJe8vPz\nOXDgAIMHDwbA1dWVhg0byj3zG8MwuHjxIiUlJVy8eBE/P786e984/rNPDcrKyiIwMND6OjAwkMOH\nD9sxIseRnp7OsWPHaNOmDTk5OdZtbv38/MjJybFzdLXvrbfe4r777qOgoACA3NxcvLy8cHFxASAg\nIICsrCx7hmgX6enp+Pj4sHTpUk6cOEFERAQTJ06UewbLPXHrrbfyyCOP4O7uTteuXYmIiKiz941T\nP1mIyyssLCQuLo6JEyfi5eVV6j2lFEopO0VmHzt37sTX19f61CUuKSkp4dixYwwbNoyXX36ZBg0a\nlGlycsZ7BiAvL4+kpCSWLFnC66+/TmFhIXv27LF3WJXm1E8WAQEBnD171vr67NmzBAQE2DEi+ysu\nLiYuLo6BAwfSu3dvAHx9fTGbzfj7+2M2m/Hx8bFzlLXr4MGD7Nixg927d3Px4kUKCgp46623yM/P\np6SkBBcXF7Kyspzy3gkMDCQwMJC2bdsC0KdPH9atW+f09wzAvn37aNy4sfW79+7dm4MHD9bZ+8ap\nnyxat25NWloa6enpFBcXs23bNnr27GnvsOxGa82yZcsICwtj5MiR1vKePXuSmJgIQGJiIr169bJX\niHZxzz33sGzZMpYsWcL06dPp1KkT06ZNo2PHjnz//fcAbN682SnvHT8/PwIDAzl16hRg+QXZrFkz\np79nAIKCgjh8+DAXLlxAa22tm7p63zj9pLxdu3bx9ttvYxgGN954I7fddpu9Q7KblJQUnnvuOZo3\nb25tNhg3bhxt27YlPj6ezMxMpx4GCbB//34+/fRTZs6cyZkzZ1i4cCF5eXm0atWKqVOn4ubmZu8Q\na93x48dZtmwZxcXFNG7cmJiYGLTWcs8Aa9asYdu2bbi4uNCyZUsmT55MVlZWnbxvnD5ZCCGEqJhT\nN0MJIYSwjSQLIYQQFZJkIYQQokKSLIQQQlRIkoUQQogKSbIQTumxxx5j//79drl2ZmYm48ePxzAM\nu1xfiMqQobPCqa1Zs4bTp08zbdq0GrvGo48+ysMPP0yXLl1q7BpC1DR5shCiCkpKSuwdghC1Qp4s\nhFN69NFH+fOf/8z8+fMBy9LaISEhzJs3j/z8fN5++212796NUoobb7yRsWPHYjKZ2Lx5Mxs2bKB1\n69Zs2bKFYcOGMWjQIF5//XVOnDiBUoquXbvywAMP0LBhQxYvXsx3332Hq6srJpOJO+64g759+zJl\nyhTef/996/pAy5cvJyUlBW9vb/70pz9Z92les2YNqampuLu7s337doKCgnj00Udp3bo1AOvWrePL\nL7+koKAAf39/HnzwQTp37my3ehX1l1MvJCicm5ubG2PGjCnTDLVkyRJ8fX1ZtGgRFy5cIDY2lsDA\nQIYOHQrA4cOH6devH8uXL6ekpISsrCzGjBnDtddeS0FBAXFxcXz44YdMnDiRqVOnkpKSUqoZKj09\nvVQcr7zyCuHh4bz++uucOnWKF154gZCQEDp16gRYVr19/PHHiYmJ4YMPPuDNN99kzpw5nDp1ivXr\n1/PSSy8REBBAenq69IOIGiPNUEL8QXZ2Nrt372bixIl4eHjg6+vLiBEj2LZtm/UYf39/br75Zlxc\nXHB3dyckJIQuXbrg5uaGj48PI0aMIDk52abrZWZmkpKSwr333ou7uzstW7ZkyJAh1kX4ANq3b0/3\n7t0xmUzccMMNHD9+HACTyURRURGpqanWdZlCQkKqtT6E+J08WQjxB5mZmZSUlBAdHW0t01qX2iQr\nKCio1DnZ2dm89dZbHDhwgMLCQgzDsHnRPLPZjLe3N56enqU+/+eff7a+9vX1tf7s7u5OUVERJSUl\nhISEMHHiRD788ENSU1Pp2rUrEyZMqDNLXou6RZKFcGr/uylPYGAgrq6urFixwrqbWUXef/99AOLi\n4vD29mb79u28+eabNp3r7+9PXl4eBQUF1oSRmZlp8y/8AQMGMGDAAPLz8/nnP//Je++9x9SpU206\nV4irIc1Qwqn5+vqSkZFhbev39/ena9eurFq1ivz8fAzD4PTp01dsViooKMDDwwMvLy+ysrL49NNP\nS73v5+dXpp/id0FBQVxzzTX861//4uLFi5w4cYJNmzYxcODACmM/deoUP/30E0VFRbi7u+Pu7u6U\nO9KJ2iHJQji1vn37AvDAAw/w9NNPAzBlyhSKi4t57LHHmDRpEgsWLMBsNpf7GXfeeSfHjh3j/vvv\n56WXXuL6668v9f7o0aP5z3/+w8SJE/nkk0/KnP+Xv/yFjIwMHn74YebPn8+dd95p05yMoqIi3nvv\nPR544AEeeughzp07xz333HM1X18Im8nQWSGEEBWSJwshhBAVkmQhhBCiQpIshBBCVEiShRBCiApJ\nshBCCFEhSRZCCCEqJMlCCCFEhSRZCCGEqJAkCyGEEBX6fzcAQLoA1u3cAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -453,6 +458,315 @@ "If you answer is right, your will solve CartPole with roughly ~ 80 iterations." ] }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class PolicyOptimizer_actor_critic(PolicyOptimizer):\n", + " def __init__(self, env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate=.99):\n", + " PolicyOptimizer.__init__(self, env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate=.99)\n", + " \n", + " def process_paths(self, paths):\n", + " for p in paths:\n", + " if self.baseline != None:\n", + " b = self.baseline.predict(p)\n", + " b[-1] = 0 # terminal state\n", + " else:\n", + " b = 0\n", + " \n", + " \"\"\"\n", + " 1. Variable `b` is the reward predicted by our baseline\n", + " 2. Calculate the advantage function via one-step bootstrap\n", + " A(s, a) = [r(s,a,s') + \\gamma*v(s')] - v(s)\n", + " 3. `target_v` specifies the target of the baseline function\n", + " \"\"\"\n", + " r = util.discount_bootstrap(p[\"rewards\"], self.discount_rate, b)\n", + " target_v = util.discount_cumsum(p[\"rewards\"], self.discount_rate)\n", + " a = r - b\n", + " \n", + " p[\"returns\"] = target_v\n", + " p[\"baselines\"] = b\n", + " p[\"advantages\"] = (a - a.mean()) / (a.std() + 1e-8) # normalize\n", + "\n", + " obs = np.concatenate([ p[\"observations\"] for p in paths ])\n", + " actions = np.concatenate([ p[\"actions\"] for p in paths ])\n", + " rewards = np.concatenate([ p[\"rewards\"] for p in paths ])\n", + " advantages = np.concatenate([ p[\"advantages\"] for p in paths ])\n", + "\n", + " return dict(\n", + " observations=obs,\n", + " actions=actions,\n", + " rewards=rewards,\n", + " advantages=advantages,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1: Average Return = 22.94\n", + "Iteration 2: Average Return = 23.9\n", + "Iteration 3: Average Return = 26.62\n", + "Iteration 4: Average Return = 26.77\n", + "Iteration 5: Average Return = 28.61\n", + "Iteration 6: Average Return = 29.24\n", + "Iteration 7: Average Return = 29.39\n", + "Iteration 8: Average Return = 34.7\n", + "Iteration 9: Average Return = 37.46\n", + "Iteration 10: Average Return = 41.37\n", + "Iteration 11: Average Return = 43.73\n", + "Iteration 12: Average Return = 41.94\n", + "Iteration 13: Average Return = 47.76\n", + "Iteration 14: Average Return = 49.99\n", + "Iteration 15: Average Return = 44.16\n", + "Iteration 16: Average Return = 48.46\n", + "Iteration 17: Average Return = 52.53\n", + "Iteration 18: Average Return = 50.79\n", + "Iteration 19: Average Return = 56.56\n", + "Iteration 20: Average Return = 54.66\n", + "Iteration 21: Average Return = 65.03\n", + "Iteration 22: Average Return = 59.23\n", + "Iteration 23: Average Return = 65.73\n", + "Iteration 24: Average Return = 70.38\n", + "Iteration 25: Average Return = 66.4\n", + "Iteration 26: Average Return = 65.68\n", + "Iteration 27: Average Return = 71.83\n", + "Iteration 28: Average Return = 79.67\n", + "Iteration 29: Average Return = 78.99\n", + "Iteration 30: Average Return = 78.95\n", + "Iteration 31: Average Return = 86.47\n", + "Iteration 32: Average Return = 81.24\n", + "Iteration 33: Average Return = 84.15\n", + "Iteration 34: Average Return = 94.35\n", + "Iteration 35: Average Return = 98.22\n", + "Iteration 36: Average Return = 94.28\n", + "Iteration 37: Average Return = 93.68\n", + "Iteration 38: Average Return = 105.48\n", + "Iteration 39: Average Return = 104.71\n", + "Iteration 40: Average Return = 105.42\n", + "Iteration 41: Average Return = 107.04\n", + "Iteration 42: Average Return = 116.34\n", + "Iteration 43: Average Return = 114.66\n", + "Iteration 44: Average Return = 118.14\n", + "Iteration 45: Average Return = 115.36\n", + "Iteration 46: Average Return = 117.33\n", + "Iteration 47: Average Return = 114.32\n", + "Iteration 48: Average Return = 108.95\n", + "Iteration 49: Average Return = 115.65\n", + "Iteration 50: Average Return = 122.03\n", + "Iteration 51: Average Return = 114.99\n", + "Iteration 52: Average Return = 119.97\n", + "Iteration 53: Average Return = 128.22\n", + "Iteration 54: Average Return = 126.47\n", + "Iteration 55: Average Return = 130.88\n", + "Iteration 56: Average Return = 128.5\n", + "Iteration 57: Average Return = 121.95\n", + "Iteration 58: Average Return = 126.64\n", + "Iteration 59: Average Return = 124.77\n", + "Iteration 60: Average Return = 137.17\n", + "Iteration 61: Average Return = 137.53\n", + "Iteration 62: Average Return = 140.29\n", + "Iteration 63: Average Return = 145.03\n", + "Iteration 64: Average Return = 139.62\n", + "Iteration 65: Average Return = 138.46\n", + "Iteration 66: Average Return = 146.39\n", + "Iteration 67: Average Return = 138.62\n", + "Iteration 68: Average Return = 133.26\n", + "Iteration 69: Average Return = 136.21\n", + "Iteration 70: Average Return = 144.76\n", + "Iteration 71: Average Return = 145.95\n", + "Iteration 72: Average Return = 154.51\n", + "Iteration 73: Average Return = 150.25\n", + "Iteration 74: Average Return = 148.1\n", + "Iteration 75: Average Return = 150.94\n", + "Iteration 76: Average Return = 136.67\n", + "Iteration 77: Average Return = 142.4\n", + "Iteration 78: Average Return = 140.58\n", + "Iteration 79: Average Return = 139.84\n", + "Iteration 80: Average Return = 147.7\n", + "Iteration 81: Average Return = 152.02\n", + "Iteration 82: Average Return = 153.34\n", + "Iteration 83: Average Return = 162.21\n", + "Iteration 84: Average Return = 158.12\n", + "Iteration 85: Average Return = 148.66\n", + "Iteration 86: Average Return = 152.34\n", + "Iteration 87: Average Return = 148.23\n", + "Iteration 88: Average Return = 142.87\n", + "Iteration 89: Average Return = 145.72\n", + "Iteration 90: Average Return = 151.07\n", + "Iteration 91: Average Return = 158.23\n", + "Iteration 92: Average Return = 162.57\n", + "Iteration 93: Average Return = 160.04\n", + "Iteration 94: Average Return = 169.14\n", + "Iteration 95: Average Return = 167.32\n", + "Iteration 96: Average Return = 164.28\n", + "Iteration 97: Average Return = 153.93\n", + "Iteration 98: Average Return = 158.54\n", + "Iteration 99: Average Return = 144.05\n", + "Iteration 100: Average Return = 135.54\n", + "Iteration 101: Average Return = 138.51\n", + "Iteration 102: Average Return = 148.48\n", + "Iteration 103: Average Return = 140.53\n", + "Iteration 104: Average Return = 139.38\n", + "Iteration 105: Average Return = 135.05\n", + "Iteration 106: Average Return = 143.64\n", + "Iteration 107: Average Return = 138.43\n", + "Iteration 108: Average Return = 152.02\n", + "Iteration 109: Average Return = 144.2\n", + "Iteration 110: Average Return = 158.02\n", + "Iteration 111: Average Return = 159.88\n", + "Iteration 112: Average Return = 163.54\n", + "Iteration 113: Average Return = 168.14\n", + "Iteration 114: Average Return = 171.32\n", + "Iteration 115: Average Return = 178.71\n", + "Iteration 116: Average Return = 178.04\n", + "Iteration 117: Average Return = 180.24\n", + "Iteration 118: Average Return = 182.85\n", + "Iteration 119: Average Return = 182.12\n", + "Iteration 120: Average Return = 186.04\n", + "Iteration 121: Average Return = 185.63\n", + "Iteration 122: Average Return = 182.71\n", + "Iteration 123: Average Return = 176.87\n", + "Iteration 124: Average Return = 171.52\n", + "Iteration 125: Average Return = 169.93\n", + "Iteration 126: Average Return = 158.71\n", + "Iteration 127: Average Return = 156.51\n", + "Iteration 128: Average Return = 153.18\n", + "Iteration 129: Average Return = 155.3\n", + "Iteration 130: Average Return = 146.95\n", + "Iteration 131: Average Return = 148.82\n", + "Iteration 132: Average Return = 152.21\n", + "Iteration 133: Average Return = 149.03\n", + "Iteration 134: Average Return = 150.53\n", + "Iteration 135: Average Return = 154.33\n", + "Iteration 136: Average Return = 154.49\n", + "Iteration 137: Average Return = 153.89\n", + "Iteration 138: Average Return = 150.47\n", + "Iteration 139: Average Return = 160.86\n", + "Iteration 140: Average Return = 163.6\n", + "Iteration 141: Average Return = 166.85\n", + "Iteration 142: Average Return = 175.23\n", + "Iteration 143: Average Return = 178.09\n", + "Iteration 144: Average Return = 180.45\n", + "Iteration 145: Average Return = 185.31\n", + "Iteration 146: Average Return = 188.67\n", + "Iteration 147: Average Return = 182.87\n", + "Iteration 148: Average Return = 188.51\n", + "Iteration 149: Average Return = 188.94\n", + "Iteration 150: Average Return = 189.6\n", + "Iteration 151: Average Return = 186.93\n", + "Iteration 152: Average Return = 184.95\n", + "Iteration 153: Average Return = 180.02\n", + "Iteration 154: Average Return = 179.71\n", + "Iteration 155: Average Return = 177.26\n", + "Iteration 156: Average Return = 176.67\n", + "Iteration 157: Average Return = 169.96\n", + "Iteration 158: Average Return = 165.06\n", + "Iteration 159: Average Return = 164.42\n", + "Iteration 160: Average Return = 165.6\n", + "Iteration 161: Average Return = 159.56\n", + "Iteration 162: Average Return = 156.3\n", + "Iteration 163: Average Return = 157.01\n", + "Iteration 164: Average Return = 157.3\n", + "Iteration 165: Average Return = 159.48\n", + "Iteration 166: Average Return = 162.55\n", + "Iteration 167: Average Return = 156.57\n", + "Iteration 168: Average Return = 165.83\n", + "Iteration 169: Average Return = 167.71\n", + "Iteration 170: Average Return = 165.84\n", + "Iteration 171: Average Return = 174.17\n", + "Iteration 172: Average Return = 169.89\n", + "Iteration 173: Average Return = 168.22\n", + "Iteration 174: Average Return = 172.54\n", + "Iteration 175: Average Return = 173.42\n", + "Iteration 176: Average Return = 175.52\n", + "Iteration 177: Average Return = 178.82\n", + "Iteration 178: Average Return = 178.88\n", + "Iteration 179: Average Return = 179.88\n", + "Iteration 180: Average Return = 178.69\n", + "Iteration 181: Average Return = 176.84\n", + "Iteration 182: Average Return = 176.58\n", + "Iteration 183: Average Return = 180.72\n", + "Iteration 184: Average Return = 179.4\n", + "Iteration 185: Average Return = 184.02\n", + "Iteration 186: Average Return = 180.37\n", + "Iteration 187: Average Return = 180.69\n", + "Iteration 188: Average Return = 177.86\n", + "Iteration 189: Average Return = 181.92\n", + "Iteration 190: Average Return = 176.18\n", + "Iteration 191: Average Return = 176.33\n", + "Iteration 192: Average Return = 173.94\n", + "Iteration 193: Average Return = 182.09\n", + "Iteration 194: Average Return = 181.12\n", + "Iteration 195: Average Return = 180.44\n", + "Iteration 196: Average Return = 181.09\n", + "Iteration 197: Average Return = 181.23\n", + "Iteration 198: Average Return = 174.55\n", + "Iteration 199: Average Return = 177.6\n", + "Iteration 200: Average Return = 180.68\n" + ] + } + ], + "source": [ + "sess.run(tf.global_variables_initializer())\n", + "\n", + "n_iter = 200\n", + "n_episode = 100\n", + "path_length = 200\n", + "discount_rate = 0.99\n", + "# reinitialize the baseline function\n", + "baseline = LinearFeatureBaseline(env.spec) \n", + "sess.run(tf.global_variables_initializer())\n", + "po = PolicyOptimizer_actor_critic(env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate)\n", + "\n", + "# Train the policy optimizer\n", + "loss_list, avg_return_list = po.train()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl4XOV977/v7KtGGo0sWbZsQOzG\nxgEBxk0wBjVpk9zUF2ghCb03oRdKS8yF3JIbaHDS+HHqlASXJTS0JSQNpCUB4mxtGoRrU/CFCKiN\njTF4AeNFspYZjWbfznv/eM97lpkzu2YRfj/P40eznOU3Z8bv7/x2QimlEAgEAoFgDjG1WgCBQCAQ\nfPAQykUgEAgEc45QLgKBQCCYc4RyEQgEAsGcI5SLQCAQCOYcoVwEAoFAMOcI5SIQCASCOUcoF4FA\nIBDMOZZWC8DZtWsXHn/8cUiShKuvvhrr1q3Tvb9v3z784Ac/wJEjR3DHHXdg1apVynvbt2/Hs88+\nCwC45pprcOWVVzZTdIFAIBDk0RaWiyRJeOyxx3DPPfdgy5YteOmll3Ds2DHdNoFAAH/+53+OD3/4\nw7rXo9Eonn76aXzjG9/AN77xDTz99NOIRqPNFF8gEAgEebSF5XLw4EH09fWht7cXALB69WqMjo5i\n8eLFyjYLFiwAABBCdPvu2rULK1asgMfjAQCsWLECu3btKlBCRpw4caImeQOBAKampmrat5G0q1xA\n+8om5KoOIVf1tKtstcrV399f0XZtYbkEg0F0d3crz7u7uxEMBmva1+/3V7yvQCAQCBpDW1guzWJk\nZAQjIyMAgM2bNyMQCNR0HIvFUvO+jaRd5QLaVzYhV3UIuaqnXWVrtFxtoVz8fj+mp6eV59PT0/D7\n/RXvu2/fPuV5MBjE+eefb7jt8PAwhoeHlee1mqofNDO3GbSrbEKu6hByVU+7ynZKuMUGBwcxNjaG\niYkJZLNZ7Ny5E0NDQxXtu3LlSuzevRvRaBTRaBS7d+/GypUrGyyxQCAQCErRFpaL2WzGTTfdhE2b\nNkGSJKxduxYDAwN46qmnMDg4iKGhIRw8eBDf+ta3EIvF8Nprr+HHP/4x7r//fng8Hlx77bW4++67\nAQDXXXedEtwXCAQCQWsgp/KwMJEt1jzaVTYhV3UIuaqnXWU7JdxiAoFAIPhgIZSLQHAKQo+/D2n7\nv4Ieftv4fUohvbIDNB5rsmTloe/sBZ2ozesgaB5CuQgEpxj00H5IX/sC6JPfhfTM9403OnIQ9B+/\nDfraS02VrRKk7/0t6LM/bLUYgjII5SIQnGqEQ+yvvweIRgw3oW+9wR4k4k0SqgqSCdCxo62WQlAG\noVwEglMMmsuyB/4AEDPuw0f3y8olmWiSVFWQSQEnT4Dmcq2WRFACoVwEglONrKxcfF1ALIL8hFGa\nzQAH32RPUskmC1caSimQTgO5LDA53mpxBCUQykUgONXIZgAApKOLPU6n9e8ffkd9LdVmlktGI+u4\nvnM6fedN0IP7IGgPhHIRCE41tJYLAMT0cRe6fzdATIDH23aWC9Ip5SEd0ysX6Sffg/TMD5otkaAI\nbVGhLxAImohsueiUi19tYEiPHwF6+wGLBbTdYi4a5YL8oP5MELBamyuPoChCuQgEpxqy5UJ8flCg\nwHJBOAR0+pkLqu0sF9UtRjVuMSpJQGQGsNhaIZXAAOEWEwhONXLcculkf/MzxmZnWDzG4Wy/bDFu\nuXT6gfFjSjICnZ0BcjkglQBNpUocQNAshHIRCE41MlnAZAI8PgAA1VgulFJmufg6AXsbKhce0F8y\nCCTioD/6Lujx95ELqSM7MBtqjWwCHcItJhCcauQygMUCuL3sudZySSWYdeDrAolGQNvOLcasEnLp\nFaCUgr44Ajo1Aem/f1bdJhIGevpaJKCAIywXgeBUI5sFzFbAZgMsVn3MZXaG/e3oAhyONoy5yMql\ntx/m2zeAfGgVcPI4pJCmuy//DIKWIpSLQHCqkWWWCyGEpRvHNZZLmC3MxNfJYi5tVudCeUDfZmd/\nFywEpiaQmzqpbiOUS1sglItAcKqRzTCLBQDcXl3MRYlXdMgxl2yWVey3Czygb5Wzwhb0A1RCZv8e\nVeEI5dIWCOUiEJxqZLMs5gIAbo8u5kJ5U8uOLsDuYI/byTWWkZWLnSkS0ssGV2X272GNOF1uoVza\nhLYJ6O/atQuPP/44JEnC1VdfjXXr1unez2QyePjhh3H48GF4vV7ccccdWLBgASYmJnDnnXcq09HO\nOuss3HLLLa34CALB/CCbVS0XlxeYGoc0+iKQiDK3mEmuzufKJZlUg/+tRrFcuFuM/b+nyYRcFEqF\ncmkT2kK5SJKExx57DF/5ylfQ3d2Nu+++G0NDQ1i8eLGyzbZt2+B2u/HQQw/hpZdewpNPPok777wT\nANDX14f77ruvVeILBPMKms0AZvZfn7g9oEeioD97EojNglx4GeDtBDGZQR0utkOZdGQai4LuGYVp\n1dpGi64WUXK3mMfLrJV4jBWFUgk0IpRLO9AWbrGDBw+ir68Pvb29sFgsWL16NUZHR3XbvPrqq7jy\nyisBAKtWrcLevXsLurkKBIIKyGXVNiluL2ubcvI4EI2AvrNXKa4kDu4WK6NcRv8T9LEtoM2oL0mn\nALMZRHbrEUIU6wWdXYDXB8yGGy+HoCxtYbkEg0F0d3crz7u7u3HgwIGi25jNZrhcLkQiLBA5MTGB\nL33pS3A6nbjhhhtw3nnnGZ5nZGQEIyMjAIDNmzcjEAgYblcOi8VS876NpF3lAtpXtlNRriAAOJzw\nBwKILehFlErqm5PjsF10OboCAaQX9CIEoMNhh12WxUiumM2KKAC/xwNzEZmpJCG5/d/gWPMxEHPt\ny07EbELC7tDJEF5yOpLvHYC7fzFyZjOSb+9pq+/0VPyNAW2iXOqhq6sLjzzyCLxeLw4fPoz77rsP\n3/72t+FyuQq2HR4exvDwsPJ8amqqYJtKCAQCNe/bSNpVLqB9ZTsV5colE4DVhqmpKUjceeHpAAgB\nImFkHC5MTU2BJpkLanZiHESWxUguSU5fDk6cBDEZN46kB9+C9NAmRE1WkAsuqll2aTYMKsuuvOZj\nN50xix2w2UGjEUyOj4FY2qOJ5QftN8bj2+VoC7eY3+/H9LTavmF6ehp+v7/oNrlcDvF4HF6vF1ar\nFV4vCzaeccYZ6O3txdjYWPOEFwiqhO5/A7kNt4GmW9QDK5vVxVwAgJy7Ahg8l73Pe445nABQvjMy\nb+HP/xqRZhlnNL9JZrWkU2q8hSNnjBFfF0uhBoRrrA1oC+UyODiIsbExTExMIJvNYufOnRgaGtJt\nc/HFF2P79u0AgJdffhnLli0DIQSzs7OQJGbWnzx5EmNjY+jt7W32RxAIKoYeOcTaxUdmWyOAXEQJ\nQM0CO28FyJnns8cdcit+bbZYueNp/xqRkRVPIla9vBpoOq3Ws8iQFZfAfe3/AAbPA/HKykUE9VtO\nW7jFzGYzbrrpJmzatAmSJGHt2rUYGBjAU089hcHBQQwNDeGqq67Cww8/jPXr18Pj8eCOO+4AAOzb\ntw8//vGPYTabYTKZcPPNN8Pj8bT4EwkEJeALbCZdersS0Ld2g777Dkwf/8Pqd85mVZfR4Lkgv38d\nyCVXAOPHQQEQfw97z6HWudBImNXEGB6PK5cSlgvfJl6fcjGyXIjTBc+NtyI5NQXqZc04heXSetpC\nuQDARRddhIsu0vtir7/+euWxzWbDF7/4xYL9Vq1ahVWrVjVcPoFgzkjE2d86lIu049+Ava8DNSkX\n1XIhNjvINf+DvX76WTD9xTeAM+WEGJusXEJTkO6+GeTTfwr8wfUGx+NuseKWi1Llzz97raRTSgGl\nIR5midF4FKS+MwnqpC3cYgLBKcUcKBeMH2cWRaaG1izaIso8yDkXgJjN7LHJBNgdoIf2syr9mWnD\nfSpyi82V5ZJJF8ZctCidnuuM7QjqRigXgaDJUEW51Nazi0o5VpcC1LaI5jTtX8phdwBHD7PH6SLK\nsJKAPv+sdcZckE4VxFx0uGTXXf4ANEHTEcpFIGg29cZcpk6qC3ktykXbuLIcdgeb8Aiofb2Mjqf9\na0SOyUvjdS766RSItbhyIWYz4HQJy6UNEMpFIGg2PLW3VuUydlx9HK1FuaipyGWxO9XHReSlsqKj\nTQnop0vHXABmvQjl0nKEchEImo1sudAalQsdP6Y+qXIRpZTqU5HL4dAol6JusUpSkesL6Eu/+Sno\nwbeY9VTKLQYAng7QFrvFaDZbvj7oA45QLgJBs6kz5oLxY6xzMWooSpQkgNLK3WI8HRlQOxLnU0nM\nJVt7zIVmM6BP/wD0hX83LqLMxz13lgvNZEB3j5bfMH+/f3sa0l/fNScyzFeEchEImk2d2WJ0/Bgw\ncAZ7Uq1bjC/y1QT0AYCYiltajc4Wm54EqAQ6Oc4UWBnLhbi9cxbQp7tegfTwRtCJKrt+hKaY3Kcw\nQrkIBE2EZjLqQltrzGX8GMiSM5j1Eauyyp9bFxVaLoTHXBYuLmG5yJ8nV8pykd/LpKt3B/KFffwo\n+2trnuWiXN9qXVyZDJCtI9X8A4BQLgJBM0lqYg41KBcanWXWSt9iVtNR7R16rkrL5exlwEWXs55d\nRS0XrjgqiLkAVbvG6MQJ9oBbaeViLi52Xagkld6uErhSqXbUczYD5HKgPNOuhdDgJKSf/6jpI0qE\nchEImol2Ya0l5sJdah4v4PGCVusW4z2+KswWM/3OMMx/djeLc5QL6Je0XDSfNV5lUD/fJVVJzIVK\n1VsbRtSoXGi91ukcQl98DvQX/wKEihTBNgihXASCZqLNlipWN1KKrEY5uL3Vu8W45WKtsh29zVaf\n5ZKtx3IZY+MAFFnKWC5zWaVfj+UCGF6zSi0I6V/+AdJT/1jdeQ2gRw6xB6WUfwMQykUgaCY65VKD\n5SIrB2K1MuulQrcYzWZA976usVyqUy7Eai8fc6mktxhQfVB/YgxYMqjKUjagL1fp11uwCWhqkqpc\nmDUxJi3S6IuQvnRTRVl+9NB+ln5dL0cOyjLVmJ1YI0K5CATNJFFfzEWrHFhWVIV357t/C+mBrwFj\n7wMAiLXKnrWlLBd+R1zqzjijdgWgVSgXmssB0ydBzl0OEJMqSynm0HKhPEZWs+WSt9/4MWBmGnTH\nr8sfI5Wsu+iUzkwD4ZCxLA1GKBeBoIkofcUIqctygUV2i0UjFblZ+IJOefPJKi0X2EpYLpkiC6mW\nbEYd5JUotCjo2DHQ13cW7jc9wdrPLBwAurpVWUohWy5zUkgpWy60WuWiXJO8ayYraLrtV+WPmU7V\n34uNu8QA4RYTCD7QKAH5DtB6Yi4WC3OL5bJAqoLANbc6+JyTSrPFONZSMZcKA/p81opBlT7992cg\nffdv1MwwjhzMJz0LgcACWZb5FHPJ248/DwdBR18sfYxUEkjE6sryou8dLDx3kxDKRSBoJvxOtKOz\ntv/s2oB+NR2A+bkiXLnUENDP5UCNFEiukoB+li36ZrPi6qHvH1Kq3ykvlPz1s7rd6KScKbagD6Rb\nnjBbNhVZvi7BKUg/ehSUu4VqQYm5VKtc5GuSn2GXSTEl6/YC5eIp6SQ7Tn7cZufzkH7yvYrEoEc0\nyqXJMZe2GRa2a9cuPP7445AkCVdffTXWrVunez+TyeDhhx/G4cOH4fV6cccdd2DBAnYn89Of/hTb\ntm2DyWTC5z//eaxcubIVH0EgKE8yzqwAh7O2mAtfyK1WEE8HKMDqP7oXlN5PtpJopFbLhS3oNM81\nRiVJ6ZpsqHiU82eADivgdCvKRfrVT4CD+2D+9j8BQVbNTnduA/3kDSD+ANtvJsRiLR1dquVSJuZC\nrFY2h+bF55gyHTwX5LI11X1ezlxni2Uy7Pu3WEq6vKgkqYopHtMr1L2vg769B/jDm0qKQLNZ4N13\nmEtx7Oip6RaTJAmPPfYY7rnnHmzZsgUvvfQSjh07pttm27ZtcLvdeOihh/CJT3wCTz75JADg2LFj\n2LlzJ+6//3785V/+JR577DFIc1E8JRA0gkScKRarrX7LRXH/VJCOzM81K8+Wr8VyAYBUnitPu2CV\na/9isbB2+DxIHQ4CszMsDhWcYsWauaw+9hKbBdweEJMJ5PyVwGlnqbGbUri9qpVWiduwGKlalYtx\nthgyaXYtnW41/maEVonnKSGaybAi0TLuMvrqi0B0FmTVlfK5T0G32MGDB9HX14fe3l5YLBasXr0a\no6P6ZnGvvvoqrrzySgBstPHevXtBKcXo6ChWr14Nq9WKBQsWoK+vDwcPHjQ4i0DQBiTi7O69VAyj\nBEoQmMdcUGHgmp8rOqvuXw1y4WK+5aJbsDSNK+n4cdDglOa9DIjFCrg8oHyx5Iru3bfZ+2ctY8+1\nKcTRiPI5yZnnw/yX3wYpV0QJKEF9AEAyWX77YtRpueS3uqGZNGCxAS536WB9WiNzfsZYNlM21kYp\nBX1uK7BwAGTlZey1UzEVORgMoru7W3ne3d2NYDBYdBuz2QyXy4VIJFKwr9/vL9h3LpH+/VlEf/T3\nDTu+4IMNTcTZ3XuNysXQcolWYrnkB/SrtFyKKZcilov0vS2g2rgAH1DmcgNx+a5bjoXQ/XsAACSw\ngDXK1FTW01hE/ZzVwOM7QM2V+jSb0Vgg1da5FHGLpdOsgNXpKj1+IFXcclGOXeqm4u09wPuHQX73\nD9SOBqW6VjeAtom5NIORkRGMjIwAADZv3oxAIFD1MWbeP4T05DgCn7llrsWrG4vFUtNnagbtKluz\n5Qpm0yAdPpg8HmSkXNFzF5Mr7rQjAsC/oBemTj8mHU44wtPoKPMZwiYTkoByt+vvWQBzFZ87GQgg\nDMCUzerkykECt08soOiW35tKJWFKxuGXn0/kcnB4vaAmgsw7b8LvcWFSVlSWQ28hA6DzjLMw43LD\nDqp8nulkAqaeXnSVkTX/eiWGPwnp4ssRffoHcJoIvDV8x9JsGLyvsdNqqeoYJ2UF4LHbdLIFQQG3\nB+ZOP9JHDhX9/jOxMPgtstdsgkOzXRBg18tqhrXI/tGjhxEjBD0fvxZSdBZTADwOO1ya7Rv9228L\n5eL3+zE9rfa9mZ6eht/vN9ymu7sbuVwO8XgcXq+3YN9gMFiwL2d4eBjDw8PK86mpKcPtSiGZLDDF\nYzXt22gCgUBbygW0r2zNlisXmQUWLASRKGgyUfTcxeSSZpgrKTgbAaEEdOB0JN7ag3SZzyBF9NZN\ncHYWpArHBU2yO/BsIo5Zzbno5ITyOJtMKjLnUknkIrPKc5pOI5nNAR4f6NQEpg8eUPbLyFlTMyYr\nJKsdyZmQ8nly4RBI/5Ky31HB9bpwFfv7839BYiaIVA3fMZ0cVx4nIrMVH0Ob5BANheDKZtXrkogD\nbg+yJjNoNIKpqSlIL/wapHcRyDnL1WOMq/3UZidOIqo5d062xGaOHQXpUL02WqSxY4CnA9ORCKj8\n3UdnQohrjlPrb7+/v7+i7drCLTY4OIixsTFMTEwgm81i586dGBoa0m1z8cUXY/v27QCAl19+GcuW\nLQMhBENDQ9i5cycymQwmJiYwNjaGM888s3HCOp2Q6h3VKjh1ScRAlJhLHQF9OWZClp4FHH239Ihh\nyEFgLXPlFtP68bN58RdtTCAnu8W6F7Cg/ftycR8hbICZzc5cWQ6nfoJjbBbwdFQnqxaHs/YGllr5\nq4lXaLfNv1582JnTBaQSoFIOdOuTbBBa/nYco5gLSsfaaDgE+OSbbP5dn4puMbPZjJtuugmbNm2C\nJElYu3YtBgYG8NRTT2FwcBBDQ0O46qqr8PDDD2P9+vXweDy44447AAADAwO4/PLL8cUvfhEmkwl/\n8id/ApOpgTrT4QKVfcZE20xPIKiERIIteBZrjTGXvJb5p50JjKRZqunA6SX2yztXtQF9ni1WLKBv\nd+oXr1wGkGPSbLRyFrBYQbp7WPr0u++wN/uXAMePAP4e9v/J4VQWdZpKsRiFp4aYC8fuBE3VGNDX\nKqVqvqtsiQy6TIYlJDjd7Hk8xros5MuoyxbLUyJKzKVEkWg4BHR2sceKcjlF61wuuugiXHTRRbrX\nrr/+euWxzWbDF7/4RcN9r7nmGlxzzTUNlU/B6WImbyZdvphLIMgnIwd0LVYgk6n+JkUJ6LNgNTnt\nLFAA9L0DIKWUS34x3xzVuSgBfYez0HLJH39ssQByISQ9/DaTf/A8UFm5AGAB/bAcbeAp1rUE9DkO\nR+2Wi3a/au76dZaLQSoyD+gDrL0NlVg1vgadssm3XDKVKJcgyOKl7DFPbDgVs8XmFQ75R5GsciaF\n4JSHUsoWY4uVuUaoVH1hWy4LmEwgJnnB6Oljd8HvlUm/1955a/evFNlyofl1LnyhczgL79hTSdlq\n0bT550rk6GHAZAJOPwsAQLrZ60TrxpJn1ZC6LBdHwcJdMVwOYip0K5ZCu4gb1blY7SAuZrnQCTmu\nky8jf26xFmaV8etcRLlQKcfSvGW3GDGZWHahUC5tDr/jSMzBICLBqUUuB1CqKhegtrYimngJMZmA\n084Efe9AiZ3yzlOt1QKUT0XWWC6KG4xS5t5RXHlWELudtT/JZoGOTpAFcnCYV+Q7nOrCyhdPd2ti\nLkrsx+2pPeZiWKFvVd1ivJdavoz8Onf6C7tI8+MXGxQXnWVxLF+X+prF2vSYi1AuVUKcwnIR1Ij2\nDl5RLlXGXXLZAuVAFp8GnHi/9H7a81QbzAdUy6VYQF9ruWhH+yYTqmLj5+Wtajq6gEVLAIeTJSbw\n4/BOxHzxrMNyIXZn7RX6fMH3dFSkXOjBt1hVvLYmpkC5pJiLka8jfMpm/nXlCraz26DOhR2fFptX\nM8Pqh4hPkzVrEZZL+8PdYqUKoAQCI/hdvtmiToKs2nLJFI4odrqBbKb0vPZMWp2HUuGIYx1yfLEg\n8JzVWy46NxjAFuisXrkQrlx8XSBuL0wP/DPI8ovV46SSLJ13LmIudkftFfqKcvFWtDBLP34M0tPf\n122rrdCnuRyzKDSWi9KYM18BplJyTzVf0WyxojEX3qhTWC7zDKeT/RWWi6BatHfwiuVSZdt9Xumu\nhSeWlDpWJg14ZfdStSOOAaaQiKngDpu3FCF2+f9FLqePI2mVi1VvuRB58SPa7E6HfJxUUnX71BNz\n0brZqiWZYHf8DmfZmwA6M80y4FLJPLeY9rF87XgqMgDwmEu+AkwnAbsdxOUBEjFILz0PaeTncg2N\nfH2LuMUoT4jQKRdhubQ/suVCRcxFUC2aRZbUFXPJszyKpAnTdw8gt2UDC0Zn0swNBdRkuRBCAJut\neG8xrhS0LVMAnXIhXCkGNG6xfPhxkgl2Z253qvvVgt3B6mpKXGc6EzR+Pxln/98t1rILM931W/Yg\nldR/fq1bjJ/DpklF5oogm9HXKqWSTHa50Sf91VOsy7NWcZezXDo1bjGrsFzaHxFzEdQKX6DMltpj\nLnkBfQCq5ZKX9kr3vwHs2wXMTLOFzSd3E651sbYaKBdtQB+QlUueWywv5kL83C1m0N3YrlEumqaV\nNaNYQsY3g5RSSF9bD/ofvyx8M8lqkkgFLiW6+xX2IJNWLRSbPU+5yI8tVjYWIP970DarTKXY/i43\nu2mYHGd/tdcyXqQzcjgIuNz6Bp9mS3UZb3OAUC7VwmMuokpfUC3yAkWsVk3MpTrlQnPZQsvDWqTA\nkXcdjseAXBaEt6qvJVsMMLZcsvmWS1a3ENNkvKCrAPoHWDp03+KCUxCN5UKjdVbna+Uq5hrL5ZgF\nMD1Z8BZNagpei1gu9OQJSL/6MbD/DTUuxSvnnW7998uVP78Z4DeqHI1rjKZTsuWi6e6cSaty+LqY\n7AaZcLrqfI7FemrOc5lPKHcctRZmCU5dsgYxl2gE0s7nKx9la+AWI7YiVlBkRv+3I69iu1qsdgPl\nYmS5aN07hTEX0tMH0988Dpx3YeE5HJqYZq0dkTUQu0M+XpH/r3zBNbpZ5MrFWly5SE/+HejWJwD/\nApDVV7MXubvK5dZbk3KXBMJvLFwaxQHoFWA6yZSQVgGl0+q15S4vI9dYOKSPtwAlP0OjEMqlBojL\nLdxiguoxUC7Si8+BPv4AcPJ4ZccwSEUu6haTLRfeuBD1Wi5WW+GwMEPLpXS2GMCC+YadCbRurOhs\nfQWUgN7NZgRP6zWaraJYLhbD2BillLW1/8hHYd70XeCMc9gbiuXiMrZc+I0FVxz8M2pdd3LMhRdb\nAsizXLhyMUhHngkqyRIKZuPP0EiEcqkBU7lZDAKBEVr3EF9gjh5mfytNEMkYpCJbuXLJW/j5JEbu\nHnM4maulVsvF0C1WQczFQLkURVYGlAf067RcysVckJNlM1IuqQTLgivmFgtOMRkHzgAAViAKqMPO\n8pULX9zzlYvcEkdnufCYC3cLLuiX4zlycgRXHnlTSKmUky2XPLeYVbjF5gXE5dZ3bhUIKkFnucgL\nLc/syV+0i5HLFqYS24qkNc/mucV4CmzNysUOmkwg98g3QPe8xl7LZlj8hFtPOX3MBcmEGkiu5Lxc\nGURnmavK66tNVo7iFkuCzkwXuh+zxm4xms0w5dHpL65c5BsDsoQpF9jkc8muKuJ056Ui51suzCoh\nAQPlkk4yl94Z58B065dBLl8rfw75plZWLgWdkd8/zGRdOqh/Xe5l10yEcqkBlnsuLBdBlWiVi82m\nfy9dYS2GURElDyRr3GJUkgDuDpOnTxKbDfD41DhEtVhtyLx7APivl0H375blkd10XKZMRrUGgDzL\npQJ3HFcux+WOAz29tcmadzw6OQbpyzeD/vYF/ftFlAsOvw2kU2zGisUKSBKzCjTQ9w+zkQGL5AaR\n8nVVFnyXW6/w85SL0u1DTs2m+ZaL3QFiMoFcvJo14NTKyXu0hfVTd+n+N9ixNbNhAIC0oLdY23RF\nnk8Qlxs4eaLVYgjmGZS3BbFY2Rx1LZUW+hnVuRhli8UirDEmAMrdYxYbTJ//3+pCVS02m3oOHkjm\nRZ3cmjKwXKpyi3FFefRdAAAJ9NUmK0f+rPTQfibbof3AZWvU97mrSHaLSU88ApyzgrXTISbgnAuA\n8WNsm0wWsKsNP+nRd4HefjXDjbvF+LVxuoBslil6aKr18ywXxS2m9YbwgD6Hd6WWXW6k0w/qdKlF\nmFymt/cACwcKYy4tcIsJ5VKEuA+JAAAgAElEQVQDIuYiqImc5g7eqlcuNJ1CRY33c1kQc7EKfY1/\nX7ZWAKixF5tNdeHUALHawZ1KNCbfQXNLSmu5cGViMoGmkiD5FfqlzmEysbgL75XWU6dy4QH9I2w4\nGT3+Hvt75CDQt1hVhMkEaC4H+p+/AXa9wnp6LR0EcXlAtfNQ7JoF/+hhEB7E155LUS6y8uDuKEW5\nyMeTLRcS6GXXVb7BoJSqRZQc/nvhsSGLFejp003LpNkscGAfyOqrCq+DcIvND1i2mIi5CKpEG3uw\nWJhLhZOfhVWMbKayCv3ZkPpYibnUUemuPQ+gBq2zcgzIqi7ASqW52ysXUWostkpwOOV5STY1w61m\nme3sOgflOpZj74EGpyBt+gvQnc+ryoVSYPok6/0VDgFHDoKct0Ivt7ZnWCzKZrEMaJS1YrlE2Tm5\nm4x/L1y58Ovo0rvFFOs1m1Wnc8oo6eb8plZWLkrjSwB47wCQSoKcs6LwOoj2L/MD4nQbZ5cIBKXg\nC5nVwtJwtYt9kZgLzeX0bUGMKvSthanIiivMZFKtmDxrqWr4/m6v3i2mtVy0bjFPB1MuuSrcYoAa\ndwn01T3tlWgWeQCslcpLI8xlGI/p40Pjx3VykvNWys/lz6ZdnMeYZaUM5ALUgH48qourUR534d+P\n7BIlF14G8rt/APT2s+vHM9r4b0FnufBMNHndsVpAehYC0xNKLIgeeJO9d/YFhReiBUWULXeLRaNR\nbNmyBZOTk+jp6cGdd94Jj8dTsN327dvx7LPPAmCTJ6+88koAwNe+9jWEQiHY5C/yK1/5Cny+OjNM\nymByuZkvNZNRC6IEgnLwhYy7tSw2wNvJ7oCLxFzok38HGg7BvP5e9oJREaXZLNcxaCwXrly6F7DW\nIUD9ysUfYFX+564APbCPyceVnbwgU61bzO1lGWuZLEBMTM5K4MqlXpcYxy638fcHgOAU6H/8ir2e\nV/BJ5TgqWfdZ4N0DwJnnszeMOliHZWuws1tzHlkZ5HJM0Vg0A9asjgLLhfT0gfzRn6j78gp9/lvQ\nxly45cKVi1m2XHJZltUW6AVCU4DLA+I16GrQArdYy5XL1q1bsXz5cqxbtw5bt27F1q1bceONN+q2\niUajePrpp7F582YAwJe//GUMDQ0pSuj222/H4OBgwbEbhVLYlIwD1sYqMsEHiHz3kNXGZsjPzhRN\nRaYnT6jpyoBxESUgB9u1MZcZZrUEeudMuZCrP4XuP7gBUz94ROMWk4dfWTSWC79D9niByTF5myqW\nGlm5KCm69eJwAmGAfOhy0Od/oSreTF43AbmQlSwfAvmYOjadWKwsJqJ1i/E0b43bjpjNatqyxQJi\ns7H9MmmmXLIZ5i4zahzq0EzM5L8FreXCFY0Sc7GALFjIjj85zr7nWIwNNjNCdotVPVa7DlruFhsd\nHcWaNSx7Y82aNRgdHS3YZteuXVixYgU8Hg88Hg9WrFiBXbt2NVtUBcIDdSKoL6gGJbDNFhfy0XUw\nrf0489UXi7kkE3oXbNagtxjAFp90nuXi9alBZaDumAsxm2Fye1nbklSS1YJweSyau3veQ427xYzG\nBJRizi0XeZE+7Sx1UBnA5NK4iih3i3nz4jwGMRfMzjBFkd/7jJ9LMxBOibmk06wjttHibteMBpB/\nC0SbPMCPxZW61Qr0LGSvyTNhaDxa2FIm/zPseRW5jXeATjQ+27Xllks4HEZXF0ub6+zsRDgcLtgm\nGAyiu1s1P/1+P4JBNb/7kUcegclkwmWXXYZrr7224ZqZuERnZEEN8IJDeX696aPr2Os2e/FU5GRC\n+Z1RSotbLlabLluMzs4AXh+I06lkeCl++3rhd8fxqLHlonWLpZJMriqUC7E7QDEHacgcOR2Z9C0C\nXXwac0NyC0NnuZxg1l7+3X8x5eLpKHT12e0sHqXpfK3UH2XSxb8Dm12tc1HcYlrLJc8tZrECHW52\n3XlQPx5ltTVGcLfl5DgrtKxlYFyVNEW5bNy4ETMzMwWv33DDDbrnhJCqFcPtt98Ov9+PRCKBb3/7\n23jhhRcUSyifkZERjIyMAAA2b96MQCBQ1bk4uZPsbsVns8FW4zEagcViqfkzNZp2la0euSilSL7w\nGzhWr9W3Ny9CxGpF3GItON+U0w0LKDo1r3O5JjMpSOk0ujs7ASphAoDb1wl3wTFcsADKMYKJGEh3\nDyxd3eC3QIG+hfq74RqwWCzw9i3ELIAumxWzoCBOF3y9fZgE4LbZQEERA+Du7UMUgC2TRsZur/g6\nz3Z2IQGg6+xzYalwn1LfY8jrQxpA9/krkM5lkFlyOpI7/wM2sxk2pwNKA5WZaZi6utGzYIFu/3Qg\ngBAAn8ul/H+fScWR6+pGt8F3mcMUzA4nOgI9CAEw5bIIBAIIm01IF7kOQW8HIGXhDwSQes+CGQC+\n3j7lfDmaxRQAczqFHIDu3j6YnC5M9fbDEg6hMxDAVCoBS98i3e+IE/f5EAHgzKQQB9A9sLTh/yeb\nolzuvffeou/5fD6EQiF0dXUhFAqho6MwGOX3+7Fv3z7leTAYxPnnn6+8BwBOpxMf/vCHcfDgwaLK\nZXh4GMPDw8rzqampmj6PTzZ9w2PHQfoGajpGIwgEAjV/pkbTatmkf3sa9LWdMH/lft3r9chFj78P\n6W//CtFkEuTi31Ffl3KQHr0Ppo+uAxk8V5UhMgtYLAXny1msyEUjute5XJJ8pzp17H3FOoilUkjk\nH8Nk1h0jNz0JcuZ5yGiqZ6bCYf3UxxoIBAKI5pgtFDp+DFIyCdidmA6zJTo2G2buH5MJMVY7iFRw\nEiDmiq+zJHvrQyYbSIX7lPoeJbMV8PkRjCeAwfOBwfMhvbwDqWgUqVBIv627o+A4NMbUc3h6WpEn\nNzUBuL2G3yUA5AhBWO4Xl0smMDM1BSkyC2ou/P4B9v1hdoZ95++wtS5scynno1H2O8hF2XWeDs+C\nxOLI+Rcgd+wIpqamkJsNQ7JYDY8vpZj1lBg/DphMmI7F0eNy1/Tb7+/vr2i7lsdchoaGsGPHDgDA\njh07cMkllxRss3LlSuzevRvRaBTRaBS7d+/GypUrkcvlMDvLLnY2m8Vrr72GgYHGL/bmRUtZE799\nrYv7CKrk5HF9TcBcIKeOUlkB0FdfZPNLohHg9Z2g77yp375Y7MFu7BajUk59PaGZi5JfRAnoqucp\npay2paNTjV9YrHUrFgXu149F1Lob7h7ijSstVvXckdmq4j3kI78L8rnb67aylON98nqYbvkL/YsW\nK4sZ5fIyqIzqaoq4xUh+bAZQYy6aLgzcLUYzmaJJFUSbLXbsCODr0md9WfOzxdj1JoFelo5MKXuv\nTMyFhmfYILEmBPVbHnNZt24dtmzZgm3btimpyABw6NAhPPfcc7j11lvh8Xhw7bXX4u677wYAXHfd\ndfB4PEgmk9i0aRNyuRwkScLy5ct1lkmjMDldICsuZYvJ9f8LpNYW5oLmoU2RnbNjyr70dAo0OAnp\n0b8B+Z/rQc6Vi9jyG0katW4BWMwlMlv4unaueiKmLjCGMRe7GvhPxJj10OlXq8brTUPWIi9gNB4F\nslkQixyk5hMb5bgQcXtYvCc4yarhK4T0LTYcJFYrZOFiYGHe8ax5MRc5ZkU6DLI/+cKc1diBs2HA\naFutcrHlBfQz6eLfg0MN6NPjR9R+ZRztzB6LJinA18W+71iEXfeiykX+zcyGAFednaYrpOWrotfr\nxYYNGwpeHxwc1KUXX3XVVbjqKn1bA4fDgW9+85sNl9EIctkVoK++COzfDVxwcUtkEFQOlWdhzGkq\nJlcuyYSampuIq5lf+XUFxSwXmwNIF05C1HWBSCTU9vPFFBRvYshTl7Vt1/MbZdYDlyMW03cM4FXg\nvLDynBXA6WcD775T+wyZRpEf0Pf6mBI0slx4GrX8fdJUilmtBtsSm9wix2JRrDWliLKUcrE7gFSC\nWatjR0Gu/H39cU1yLVN+V2zeQ2xM7n/mNg7oK+nU4RlW79MEWu4Wm7csuxhwuUFf2dFqSQSVkMmw\nFh9yE8E5gWcBpZKqIkgl1QrrvMmQtIhyIXa7cZ2LdgZJIqaZB2NwDG1TyRmmZEinX+28W2ubfSN4\nRhK/W+bHVhZslkFGrFaY/vweVmhY77jiuYbLmtMoF6AytxhvrWO0rdZyUdKH5ZSKTLq4e9Au17lM\njLHtFp1WuA2/QcgbugYAdOwoe14uFTkyUzyjbI5ps9uJ+QOxWplr7M3Xm1qYJKgRvtBnM2p8oE6U\nLreppOrCSicLi+EUGYrFXBzGqcgay4Um40oDSEM3rM2ufEYqKxf4/OpMlzl0ixGzmblx4lHZTaO1\nXLK6WhzS6YdpwwOorCtnE7FY9QqbKwqj+TEFyoVdU2KoXOzqPi4P0L8Eid9sBV21ll2rYkrW7gQo\nBX33ADv24qWF21htzDLW/oY68iyXcm4xSSqugOYYYbnUw2lnsWK1vJkKgjaELwxzGXfhx0olVCsj\nmSzuFitaXW9XrB0a1GTv6Nxi2oB+kToXbklx5dLZpU47nEu3GAC4vaAn3mdBZF6PItfr5FtoxNvB\nCirbCW3MhZhA5NoWQ4WRr1wihdX5CnKMi8ehTH/4eeTGjoFu/1cgkwEpZkFypXR4PyvOXGiQmGQU\nc/MxGeg4s1yKTu7Unrfe6Z4VIpRLHZCB09mD9w+3VhBBebiVMZf9lfhinkyqk0nTSSWASwsC+qVi\nLmnQd96E9H9vYgFdwEC5lBi6pXWLhYOAwwnicKkZW3MZ0AeYa+WdvQAAcpbcg8vhYtehWOJCO8Gt\nrJwcM+KdDIwywLgrKzoL6Zf/Ajp1svi2XEnwLgwXXAzbyktBf/EUcyMWjbnIQ83eGAV6FqqTPbXY\nNFYRx+NjykixXIoVUWq+D2G5zANk5cIHGwnamEwDLBfuhkqnNE0HU5qYS965irrF+IAsdpNC5ZsV\nmq9cciUsF5udJSxIErNceDDf0YCYC8AWqFyOKTXedt7pYt0EtHGYNoVoA/oWi7ooG1kj8vWmL+8A\n/dmPQP99q7ytgQvNpom5yLj/6CbmQpydKWpBkjPOZtZKcArkrPOMhTawXIjFwlxt0xPyyYooDm2s\np0jQf65p89uL9oY4XWxgz1FhubQ92pjLXB8zpWnRkkqCpIwD+gWZPhx+R8obTMoNFBXLhZjY8ZW0\nWYNj8LYimQxoOMjSkAHVcjG6E64H7lo5/Rw1BuRwsowrntnUzvAuwbIiJKefDbpk0DgDzGRinyck\nuyxnplmtSLH4GT++jPXc5exG9Oi7xetcFg7A/PXvsBYwxawbg4A+ACZzJMwsGH4zkY+2NkpYLvOE\ngTOEW2w+0EDLhcVZuFsspcZcjAL6RosuHyqlKBe5qSBXLr5OIK5xixkWUfKZLilgJggiWy7EatWP\nIZ4jlBjFoHqXTZwueX5LESXaTmhjLmYLyIWXwnzvluJjAfiCzhfmYkPMlIC+xrogBGTtJ+TzlnZP\nErujeLEr3zf/2vJ0ZKe7xL4aeYRymR+QJWcAk+OgokNye6PEXOZwYJJRtlgyoSoVgzoXw7td7kqR\nlYvSsTYZZ40UOzpBdanIRWIuADt3OMSC+Rynq6LeZ1Uhu5F0LhyHS008mA+Wi9YtVg4eQ7nqk0Dv\nIsC/wHAzYlc7Iuhev2wNc3v1L6ldZqOYCwDCM8aKucTy92lSQL/NfwHtDxk4nRUnHX0XOHtZq8UR\nFCMrK4L8dh/1oHOLaSyXvDoX6T9+BXLuhfJI4ML/csRuV+dyAMDJE6ydRzLBXE1ON5CMg+ZKKBeu\nPGam2Xk1BZTkQ6tYZuNcEuhlFtcZau80OJ2y+85gFHO7oa1zqURWPp1y8FyQKz5WPLXaXkQB2Oww\nf/07dQgMEKs8HyZfccsZYyXdXdrPKGIu8wS52ImOHQURyqUtoZSqVsRcZovxY6WS+nbpmpgLzWZB\nf/Qo8LFr5BqbEi6trHo8KTSlKheHkwVsS6Qi88pwJZOpU1Uupj++rc4PWgj58EdBVq5SB+cBzHLJ\nZoFkonjKbbsgt6qhxVyVRtsDwOlnKy5BQ2yaeS5zTTG3GLdcShVHWkTMZf7h62KBNFHr0r7ksqw6\nH9DP76gXowr9tLbOJa1aMXIfLsNFRztxUO4plTtxlGWL2Z1sOJ0uFblI40qATX4EK15sJMRiKTwH\nr6mJzs4Dy0WWL5WoLLPNYgX6FpdWLID6XTbCLcjHI+fLK8dcSsZSWqBc2vwX0P4oqYAzQrm0LVpr\nZQ4D+pS72iQJiMpD7pJJfaNCORZDtR2E89EMhSJnXwB6/AiyJ97XuMWc+lTkYo0rAbXzs6+xysUQ\nHm9IJto/5sKVfDJRkSIkF16qBs5LUcQtNidYi8VcOpm7rGTMRf6MZov+ZqaBtPkvYJ7g84OGQ+W3\nE7QG7YRGbWfbetHOrA/LVdvZjDqhNJ1WXWQx2XIpZXUAwGlnAlYbcieOsrtqTcyldBGlXCtzQq7U\nbrDlYgRxujRTL+eBWwxgysWo5Usepus+V9lx/T0gl3wE5JwLapetGMVSkbnSK2GREJOZJYc0qd0+\nINxic0Nnl9qJVtB+aC2XTAY0mZibGeLaOhbewwtgNQeArGgS6vtUMlYMmjtJ0ukHFixE9rjGcnG4\nmHUU47M8SiioIweBJYNsPkiz4TU1QPtbLpbqLJdKIRYrTLfcBWLUvqVeisVcOv2sFqpYejTHYi1t\n3cwxQrnMAcTXJWIu7Yy2DUs2Azryc0gb72Q9sOpBuz+V2J0hoCoXAIjJc1r4zUepwjsA6OgCWbQU\n2XcPsMC4w6mPZQAlLRcAIMtWVvlB5ginpoCv7WMuGuXS7oqQw28g8uQlLg9M/2cjyId/t/T+FkvT\n4i2AUC5zg68bCM+wWQyC9iM/5hIJs0Vl/FhVh5F++wLoay+pL6RT+v/ovNeURrlQPgSMz3sxUi7a\nGhSfH1g6CGl6gsXxtMolEmZNFo0K/TTHIOd/qJqPNXdoq8PbPVusyphLW1Ak5gIA5Jzl6niFYlis\nTatxAapQLnv37sXEBOtfEwqF8PDDD+ORRx7BzMxMmT1PATq72J2r0TRBQevRuq+yWXUc8PvV9YSj\nv9kKaeTnmuNm9C3Uue87p7nJiOb9JgwWMmIysbtSsxlwe0CWnikfJ8saUMqLBi2VhcXvam12YLBI\nb6pGM48sFyXjikrtnzbN4d+xQa1URdgdTe1OXbFyeeyxx2CSzf5/+qd/Qi6XAyEEjz76aF0CRKNR\nbNy4Ebfffjs2btyIaDRquN2mTZvwuc99Dps3b9a9PjExgXvuuQfr16/Hli1bkJ3LVNMK4QN7hGus\nTcm3XHg2V4mGo/TIIeQ23AYa0/wekwmWtaUcNw1o55xrfd75rixOsYXM5gC8nUzRLFEnsMLuVDv2\nllQu8l3tOctZy5dWoLVcjOJC7YT2e5gvbjFrkYB+hZj+1/8B+W83zKFAZc5X6YbBYBCBQAC5XA67\nd+/Gn/7pn+Lmm2/GO++8U5cAW7duxfLly/Hggw9i+fLl2Lp1q+F2n/rUp/CFL3yh4PUnnngCn/jE\nJ/DQQw/B7XZj27ZtdclTEzztUwT12wpp6xPIbflqnuWSUVviHz2M1O5R5B74K9DQtG5f+u7bwNhR\nvessEVPn1AMFw5+IT6NcuPtBG38Bii8Mdodar+B0wczbhDhc6jkmx4svhGYLsHwIpo981Pj9ZmCz\nqXGnWu+um4VWSbe5lcUhxbLFKt3/jHNAevrmUKLSVKxcnE4nZmZmsG/fPixevBgOBwtC1mspjI6O\nYs2aNQCANWvWYHR01HC75cuXw+l06l6jlOLNN9/EqlWrAABXXnll0f0bipz2SUWtS1tBx44Bx99T\nW78ABZZL7Ed/D+x9DdJ9d+sHdUXzAvEASwfOs1x0boYOTR2E/DrNs1yKWhVOty592Dp4DnvgcAJ9\ni4DzP8TkLrIQEkJgvn0Da/XSIoi2K2+7Wy7a72G+uMWshU0x25mKlcvv/d7v4e6778aDDz6Ij33s\nYwCA/fv3Y9GiRXUJEA6H0dXF/lN2dnYiHA6X2UMlEonA5XLBLAc4/X4/gsEWLPAdwi3WlmTSQCLG\nWnwor6kxF8SjyLzzJsjvXA2EpkCf18RTohEAAJXnpdNsltWtJBNsZgo/vtcg5gIAHm655LnFilge\npv/5BV0thUVWLsThZBMNP30L27fdF0LuDmz3BVB7HdtdVk6dbrFmU/FVXbduHS699FKYTCb09THT\nyu/349Zbby2778aNGw0D/zfcoPf/EUIaWuAzMjKCkZERAMDmzZsRCARqOo7FYinYd8LTAUcqgY4a\njzkXGMnVLrRCthAo0uk0PBYzIvJrDosZGSmHXEcn6OwMiM2OwJ99CdPvvAlbOgWfLGM4k0ISgCuT\nhicQgDQbxiQAUIputwvE6cJENgtXTx+4o6xj8RLwWyOHP4AkAHMiBm0OYUd3N+xG1yHvNWn5xYgC\n6Dx9ENZAAAgEEP/8euQmx+Ft49/YtMeL7PQEvF1dcDZRzmp/X5lYGPxW0On1NvSaztVvPzOzAEEA\n3i7/nFzbRv+frEpl9/f3K4/37t0Lk8mE888/v+x+9957b9H3fD4fQqEQurq6EAqF0NFReTaD1+tF\nPB5HLpeD2WxGMBiE31+8Mnl4eBjDw8PK86mpqaLbliIQCBTsS31dSIyPIV3jMecCI7nahVbIlouz\nZT96Qo6bEIJkNAIajwFLzwT27YL9io8imEhBsjuQDE0jI8uYk11k8fHjSE5NqbNWAEwfO6q4veK5\nHAump1OIQE0RTskujFw4xO7mZXfabDwBUsF1CJxxDkybHkXY3wvw7S9by47dxr+xnHx3HUkkEWui\nnNX+vmhETdRIpDMNvaZz9dunJgtgsyHqcM/Jta1VLq0eKEXFbrGvfvWr2L9/PwAWhH/ggQfwwAMP\n4Nlnn61aOC1DQ0PYsWMHAGDHjh245JJLKt6XEIJly5bh5ZdfBgBs374dQ0NDdclTM6KQsv3g7jAe\nVHe4lJgL8fpg+tJfw/v529l7Lrc+niK7s5S2Ptr3EjE1jmO1qUWQ2oA+d4vFIsxtymtTqnBpkAUL\nK962bZBjLqTdM7Cs888tRjq6YHr4JyCD55bfuA2oWLkcPXoUZ599NgDg+eefx1e/+lVs2rQJzz33\nXF0CrFu3Dm+88QZuv/127NmzB+vWrQMAHDp0CN/97neV7TZs2ID7778fe/bswa233opdu3YBAD77\n2c/il7/8JdavX49oNIqrrrqqLnlqhfi6RPPKdoNnifHWLE6XWudis4OccQ5MvE25063PBOOBeL6v\nTrnE1b5iVqva9sTlVpUHD/RTyt7nldHzZCGrFaWQb770FgPaP/lAQ7P6gs0FFf/SqdyyfHycuQcW\nL14MAIjFYkX3qQSv14sNGzYUvD44OIjBQTXf/+tf/7rh/r29vfjrv/7rumSYE3oWAi9vB02lQOxz\nPK/8A0DmvYOgEydBzjineSeV27NQjXKhPFssb6Y8cbr000RjcpSGWy7JPMuFKy6rXT2W3cWsmGwG\ncGvcu3YHS02OhOdNMLZmuKJtd8tlPgb05xkVWy7nnHMOvve97+GHP/yh4roaHx+H19u8dgLtDFm4\nmN2lnqyupcipQvTJRyH989837Pg0EkYuP51Ya7lYLMyFlUkzqyNPucDpAuQYDeUNJ4kJmA2BUsrG\nDPNzJeKKy41wy4XIVfbyjQXxaP5f2B1qw8APunIR2WICmYqVy2233QaXy4WlS5fij/7ojwAAJ06c\nwMc//vGGCTevWMiK3uiYUC5G0GRCX8w41xx9F3jnTdADb6qvKTGXGaZYLFZFgRQqFw8bJUypkoaM\nBQuZGy0eAxIJddtETG2GabUz5eFwMJcFn2miLa7klgvwwV/IeJ1LuytRbZFnu1tZ85SKr6rX68Vn\nPvMZ3WsXXXTRnAs0b+ldyKqT+TwNgZ50qqopkPTIQdCXRkBuuIW1ROGvZ9LA3tcLiwX53JTpCfU1\nrsyiETazw2pVg/v5ysUlt7VPJdV4S/8AcPI4MBvSx2M0lgusVqZceFCfH9ftYRNKKWU9naxWNuuk\n3RfdeuGFzm2uRJX5JlKRMQiCuqn4qmazWTz77LN44YUXlNThK664Atdccw0s4sthze96FoKOC+Vi\nBM2kq5oCSXf9FvQ//hVkzceBRUvU1//rZdB/+BZM3/h7XSsLyuemTE+y55Tqe4oploucgqod0AWo\n7pxEXFEuZNFS0P96mcVdknE140trudhsIIPnqdXTXMnYHUzxpNOq2wz44CuX+VKhD7DvIr+ztWDO\nqPiqPvHEEzh06BBuvvlm9PT0YHJyEs888wzi8Tg+97nPNVDEecTCAWG5FIGm0+qY3kqQLQV6aB+I\nRrkogfZkQr99ij2n0yfZ81yWdarmWG3sDlVRLvluMTlrLB5Tz9HP5tnTcIgpHa0CUiwXG0wf++/q\ncRQLxgFYbEy52B2qgmn3LKo6IWcvA11xCRDobbUo5ZGVy7zpijzPqFi5vPzyy7jvvvuUAH5/fz9O\nP/103HXXXUK5yJCFi0H3jIJmsyDCmtNBq3SLKbGRg28BV/xe4ev58Zs8y0VntQCA1QpisYLK7fDz\nM/qI083cVomYMoOFLFrCXpudkZWLrIAScaYsAaZAtMex2UGJiSkymw2Ig7nFPvJRkIHTQfKV2gcM\nsqAf5vXFi6bbCq7oxf/VhlBxQJ+nIgtK0D/AZnlMjrVakvYjU53lwtOC6cG39G9wJZKvPHjMJTgh\nu8TylA93i3GMssUApkS45dKzkO0TDjG3mzy4i2WLycfPd685HIDdzoL7vBeUPEeDXHBxBZ9c0DT4\n70G4xRpCxVf18ssvxze/+U1cd911StuAZ555RulILADIwgF2p3viKHORCRRoOl2d5cID6JPjoOGQ\nOjOH15vkx2+SsnJJp1nQ3sBy0bmkCgL6zCqhiRiLuTicLM3Y18ViLokYs1wIyavQz3OpDJ6nFlxq\nlIugDeHK5QPuqmwVFV0jFmYAACAASURBVCuXG2+8Ec888wwee+wxhEIh+P1+rF69Gtddd10j5Ztf\n9A0AFgvoobdALl7damnaChbQr0a5xFk6b3SWucb49eQLd75lktLEYKYn9VMRAea+0t6hloq5RGfV\n1GF/AHRqnFlG/h75+BOaCn39cUwf+SjAZ6ooykU/KkLQJnB3mLBcGkLJq7p3717d82XLlmHZsmWg\nlCptCPbv348LLrigcRLOI4jdDpx7IeiuV0D/8KZ51aqhkWjdVFTKsTTQciRiwNkXALt/C/reAUVZ\nK+6yTAa6q5tMqKm/0yfZDBRAfa2c5aKNp0QjSp0KWbQU9JUX2PhhpwsA0RVRlrzrlZULcQjLpS2x\niJhLIyl5Vf/u7/7O8HW+aHIl8/DDD8+9ZPMU8qFVoD/8DhtStfj0VovTHmTz5qnYK1MupMMH6nKr\nQXxAdYvlWS40mWAZSpPjoNOTIN0L2BueDiASBikXc+Ez7LlbjM9p6V/CXkslAMfFqluMpyKXyjRS\n5toL5dKWiIB+Qyl5Vb/zne80S44PDGTlpaBPPAL6+v8DEcqFoVUEuQyA0hlTlFI19VduZ6+QKBJz\nSSWBrm4WjJ+eADJnsdc7OlkMxmotqVwIIWpr/EgYpJe1FSf9csaYJLH3iYlV66fTgMWqK/AsgLvF\nhOXSnigBfRFzaQQVZ4sJKoN0dAGD54K+9Dykf/2JMsnwlCatUS6VxF3SaZZ153QDNrsy8x5A6Wwx\nuxPwLwCdnlDf75Db4JezXADA6QadmQaCk8ACeWZFv6bGxulilfxUYtaN1VZ4DA1EBPTbG+EWayhC\nuTQA09X/DchlQX/6Q9Btv2q1OK0nU6VySciFjrJy0VsusossW1jnQhxOZr3MTCtuK+LVKBdtPykj\nxeB0s+QBSkEGTpf397HWMQBTLnKiAJ2dKUxDzkcE9NsbkYrcUIRyaQBk6MMwf+sHQKe80J3qaF1Y\nldS6cNeX08W6DMvKhbnLilkuCVZPIg/9oorlIisGi8YtZrMbJ1s4XWpfsQGNS5NbLw6XGvifnSnf\nysUmLJd2hoiYS0MRyqWR+LrUSYanMmUsF5pJI/d/bwJ9fSd7QQ7gE1ee5ZLNqMopX7loihyh7cBs\n5BYrViWvHRzGEwLAMsYAVsWvDMMKTpZ1i4k6lzaHKxWhXBqCUC6NpNMPzAjlolMEOYPmlTNBIDgF\n+o7cLl9ruWiVi3aYl8YtRimVYy4OZl1oU4UV5WJVF5EiyoVwq2TgNL1lwy0Xp5O14bfZWJJAOaUR\n6AX8PSDmCrLjBM1HBPQbSstVdjQaxZYtWzA5OYmenh7ceeed8Hg8Bdtt2rQJBw4cwLnnnosvf/nL\nyuvf+c53sG/fPrhc7I7ytttuw2mnndYs8UtCfF2gh99utRitp1zMRW6DT0+eYH95XMXpAbE51IC+\nVrloj5lOya3tnYCUYxaOfAzS0cmyvaw21lsMKG65yFZJfpYfWT7EmjEuPh3E5Ybpb74PuvsVkDLN\nGcnaj4PwgkpB+yEC+g2l5Vd169atWL58OdatW4etW7di69atuPHGGwu2+9SnPoVUKoWRkZGC9/74\nj/+4PdvQ+LqA6CxoLtc2d68tkUVruRgqFznOMcGUixK0z7dctKOGtcfh1fkOJwC5Bx6f28KD8VZr\nebeYYrnkKRd/QNeMkbg9IKuvNj6Gdj+TGbC1x/cuMMBqZXVLpdLJBTXT8qs6OjqKNWvWAADWrFmD\n0dFRw+2WL18Op3OeZd34/OyOms9wbzF03y5I669nqbrNJKPJ9jII6NOIfH2mToJms6qF4irhFtNa\nLryvGHeLAcCsrFwW9AM9fSD9SyuOuZABUZ90KkDOPB+48DLRSaNBtNxyCYfD6OpiTQk7OzsRDoer\nPsY///M/4+mnn8YFF1yAz372s7AWackxMjKiWD6bN29GIBCoSWaLxVLRvsmBpQgD6CQSrDWeay7l\nCm37BdKZNHw0B1sT5OEkHA7Itgk63C7Y884dk7KIAoAkoUvKIAmKmMmEwKIBxDo7EUun0d3djZTV\nAv7rsBGCTvk4mUgQQQAdC3oBQhAGYE3FkbZY0bNkKfD3zwIA0ntfRwiAzeNBl7yv9pplP3w1YsEJ\ndFw41PKRCZX+xprNB0qu3/0k+9dgPlDXrJrjN+zIGjZu3IiZmcK79xtuuEH3nBBS9V3EZz7zGXR2\ndiKbzeLRRx/Fz372s6LNNIeHhzE8PKw8n5qaqupcHN4VuhyUsMs7c+RdkM6ems5VDaXkoifeh7Sb\nWYXh6SmQGj97LUhBNR17djpYcG5p/ITyOPT2m6DTk4DDhenpaUjZHCDlMHVyHPTkONvI6UIqFlU+\nKx1nr0fSaUDuW5aengSsVt31oDFm+aRhUl7XXTOnB7j+Zkwb/FabTaW/sWYj5KqedpWtVrn6+/sr\n2q4pyuXee4sPD/L5fMrY5FAohI6OjqqOza0eq9WKtWvX4he/+EVdss4pPpapRMNBtNrwps//Un1S\nzUTIuaBctlhklgXjUwkW1NdOfeRDvdIpNebi7dTXzvCqfbtTDc4a1aHIzz/oA7sEgnag5TGXoaEh\n7NixAwCwY8cOXHLJJVXtHwqxVF9KKUZHRzEw0EZzVHgabBukI9MDb7IYEFBd6/u5QBMfoUZ1LpEZ\n1sXY6QYmTrCuwzy4zhVBKqXGXLwd+piLNqDPYy6RcGEdClc2dqFcBIJG0/KYy7p167BlyxZs27ZN\nSUUGgEOHDuG5557DrbfeCgDYsGEDjh8/jmQyiVtvvRW33norVq5ciQcffBCzs8yjv3TpUtxyyy0t\n+yz5EIuVdeVth0LKbAbweIFwsKXKpWi2mDwMjJ48wWR15SmXtKxcLFa5kj6i7E5TmoA+r4rP5QqV\ni7V0nYtAIJg7Wq5cvF4vNmzYUPD64OAgBgcHledf//rXDff/6le/2jDZ5gRfF2g42GopmGtKtqRo\nLttcN1259i+RMMji09gI4UP7mfKQK+SJzc6Si7lbzOlig7902WIay0Vb2Jif2MGL5cr1BBMIBHXT\ncrfYBx6fv30sF95AsdmWS4muyJRS5sLydgCnncXa5Y8fU6vldZZLQh0/rD2OLuZiVRsRCstFIGgZ\nQrk0GMJnsLeabEadK5I/C6XRZNJqoVp+QD+ZYPJ4O0Gu/H1Wl5LNqgF9jXKhSTkWY7EWxlzMZsBi\nkeeyyEo033KxOdh27uqSRgQCQfUI5dJoOruA2RBoPNpaObIZEG65NDtbLJtRLZF8q0mppO8Asdpg\nuvHP2HN5zLDecokxpWPNd4uxWS5KGjsP6udZLsThhOnu+yqqrhcIBPUhlEuDISsuBUAg3b+hZQqG\nUsoWdUeL3GKZNIjc+62YciFymxZy3oUw3flXzIoBFOVCNW4xGLnFtNMeiygXACBLzwQR2WICQcMR\nyqXBkDPPg+nP7gaOvQv6rz9pjRB8IeYLcJMsF+mVHaCvvgiaSYM4XKyPU/6583uAASDnfwiEp3Hb\n9HUuxOkqcItRPoWSI7vFSLmW+AKBoGG0PFvsVIBcyDrq0qPvtUYAHmNpckCf/mYrqNkMeH2scNFs\nKQzoGygXHVrlEp1l7jKrDchmQCllrrBUQrXKANVyKTfMSyAQNAxhuTQJ0rcIGD/WmpNz5eJocswl\nFmGWSSbNrAhLoXJRLBdPGeUSjTD3l9enBur555oJqnUx0MxlEZaLQNAyhHJpFn2LgeCkWvDXTHj7\nFavV0HpoGNEIa8OSSYPYZOWSny0WmWXjiYvFQXhNCu/k7PWpSiOTAZ0JAsePgJx9gbpPsWwxgUDQ\nNIRyaRJk4WL24OTx5p+c3+Fb5GmMdVgudPw4pF8/U367bIa5q7g7y2pjRYz5io1ngBWBmMyAxQoa\nnGTPvT7V3ZVNg775Ont9+ZC6U4mAvkAgaA5CuTSLPtbzjI4Vd43Rff8F+vaeuT83VyaW+i0X+up/\ngj7zA1ZzUoqYJjMuOKlaLvk1Npl0+aJGmx2YOskea91imQyw5zU2Tnrxaer2XFkJy0UgaBlCuTSL\nBQsBYioZd5G2Pglp6xNzf27ZLUYsVlZEWI9bLJXS/y2GpvcX0nLMxSign06VtzBsdiAotwbv6FS3\nTyZB39oFsuwi/agGxXIRKccCQasQ2WJNglitQE8vUMJyUarV55qsJuZisRq3va8UPhUylQDQVXy7\n2Kz+uc0OWCyg+S65dIWWC9/P6wOxWkEB0IP7gHgMZPnF+u1FzEUgaDlCuTSThQOgpTLGUkmWYTXX\n5Mdc6rFclHn2ZRITovrPQWTlUnDudKoy5QKw4L7docZcjh9hfxfnzbx3uFizSxFzEQhahnCLNRHS\ntwg4eQJUyhlvkEoCqSQob8RYI3T8GKQnHlHPo1Uu9WaL8Wy3MllvNE9JFnOLVRRz4Zlk3k7m/pKV\nBuUZZPJQNgURcxEIWo5QLs1k6ZlsoX/rDeP3+dCr2foaXdL/egV0x69Z/QcAZDQBfSPXVDXHVtxi\nZSwXrlxkRaCmIhtYLpXEXAC10JIrjekJ9p62Oh/QKBdhuQgErUIolyZCVq4COjohjfxceY2GpkGj\nsyx1l9/Vh+uc4c6VU0JWVkrMxcKsh1wRy6kSKlUu0QhTJt098rltTLnlx5TSqfJjhwuUi6w0piYA\nX5c+mA8A/UtALl8Lctb5pY8rEAgaRstjLtFoFFu2bMHk5KQyidLj8ei2ee+99/AP//APSCQSMJlM\nuOaaa7B69WoAwMTEBP72b/8WkUgEZ5xxBtavXw+LpeUfyxBitYKs/Tjoz34EOnYUZOEApAe+BjJw\nOsgNN6sbztapXHiLfzldmBbEXOoP6NNUovTAsViEtbbv6ATGjzPLxWwBsrHC45VRLnxgGOmQlQuP\nuaQSgO80w+3JTXdW9HEEAkFjaLnlsnXrVixfvhwPPvggli9fjq1btxZsY7PZ8IUvfAH3338/7rnn\nHnz/+99HLMYWqSeeeAKf+MQn8NBDD8HtdmPbtm3N/ghVQdb8PisK3PFrVity4n1WZa4JkNN63WJc\nuaTyLBcLzxZrfCoyjUYAjxfEy+IhxGo3dotl0uUnQ/L35WPpYikdJTLWBAJBy2i5chkdHcWaNWsA\nAGvWrMHo6GjBNv39/Vi4cCEAwO/3w+fzYXZ2FpRSvPnmm1i1ahUA4MorrzTcv50gXh9w9jLQt/cC\nx94DKGWz4VOaIH4Nw8Xoof2YffQ+1l4/nOcW4+1fLJb6A/ppHtAvk3QQjwBujzJamdhsIEbnriZb\njLvFLKoyIvnBfIFA0Ba0XLmEw2F0dbG7z87OToTD4ZLbHzx4ENlsFr29vYhEInC5XDCbzQCY4gkG\n22BefRnI4LnA8SOgB/axFxIxfQzDwC1GczlI//Qw6MkThe9RCumpf0Ti1z9lQXzZ8lGyznTZYnUW\nUVYTc3F7Ae7KshVaLjSbBSSpgoC+PCqgIy/mAgjLRSBoU5oSnNi4cSNmZgoXzBtuuEH3nBBSGJzV\nEAqF8NBDD+G2226DyVS9XhwZGcHIyAgAYPPmzQgEAlUfAwAsFkvN+wJA6kOXYuYX/wLTSyPIASDJ\nBHx2G7i9Yk3E0JV3/OyJo5j+z9/A6e+G93Prde+l9+1C6N13AAAds0HMJFisxWMmcAUCiNltiALo\n7u3DrMuNXDiI7hrln0inQQE4TQTeEseYTMRg7+6BpX8xIgAsDifsbg/SkqRcOykWxSQAd5cf7hLH\ninZ1IQbAt3gJ7IEAJLcTk/J7nkUDcNXxXdT7XTYKIVd1tKtcQPvK1mi5mqJc7r333qLv+Xw+hEIh\ndHV1IRQKoaPDeL55PB7H5s2b8elPfxpnn302AMDr9SIejyOXy8FsNiMYDMLv9xc91/DwMIaHh5Xn\nU1NTNX2eQCBQ874AQLv7AEKQk60QGo8iPKH2zkpPniw4Ph0fAwDER19C6pOf1r2Xe+pxZfRv+PVX\nlNej01OIT01BkrPPpsOzoJIEmkrVLD/v6pyYCSFV5BiUUkizYSQtNhAT+4lJZjNS2RxoWj03jw3F\nMhkkSsgjZVl226xEQKammMUjEzNbEa/ju6j3u2wUQq7qaFe5gPaVrVa5+vv7K9qu5W6xoaEh7Nix\nAwCwY8cOXHLJJQXbZLNZfOtb38IVV1yhxFcAZuksW7YML7/8MgBg+/btGBoaKti/3SAuD7CQNbLk\nMRAaldulLFhonC3GYx0n3gcNqj8Ims0Ce15liQJmM+jBN9V9ZAsGmSybAmk2y+erLVuMZrOqW6tU\nhX4qybbzeIFFpwFeH8wLB1ggXhvQ5y62cjEXl5w92Cm7wMxm1qcNAHzCLSYQtCMtVy7r1q3DG2+8\ngdtvvx179uzBunXrAACHDh3Cd7/7XQDAzp078dZbb2H79u246667cNddd+G99/5/e+cf1eR59vHv\nnYQAIRASAgSs1Ipgu81a+2JbnUKt1Hddu3fWqa/213A67QF1p86zdu85dT2vdXKOUjadnjlPf6in\nc9WziuvO2empteJZ3V6Zxa1V0Uq10yKEkBBBAuTH/f5xP8+TBBIkGJJIr88/JE+eH1eehPub67ru\n+7ouAwCefvpp/PnPf8aaNWvQ3d2NRx55JF5vJSJY4d3iwV1F4m9nh9ieLcSFcx58QMDsLLnMPAAh\nIJwD5lyoc/KBS58HHBOQc9EkiZDjrZTc7w+woX8IcZEXUOr0YNkWqF/bB03++MGTCfqlVsU3KTDJ\nHiiFav0mMCm/IlbpSzPGKOdCEAlJ3BeEpKenY8OGDYO2FxYWorCwEABQWlqK0tLSkMfn5uZi8+bN\no2rjqHD3vcBfj4Ddcx/4xXOAQ5qIkJMnBv+ebpEQl5ET6IwBZxqB2fPEc5dU2l6XBrVlHLzXrojn\nyal+z8Xr8a8N0dzCIsoAcRkyoS/VFWP6ASHOgcImne9miyhZcgowecqAcyWJaczh2iMTBBFX4i4u\nX1fY9NlgEyYB166KCr+S54Jsi/jrdASJi9LBsvBu8Auf+U/UI9b7MF0a1Hl3AI0AVCrAnOOfLeZ2\ni4EduLWpyIHeylD1z+SKyIHiKF/b6wX3+cBUKsAth8VGUKYlSQuo1WAJumCWIL7uxD0s9nWFMQaW\nk++vg9XZAWi1YMYs8XzgWhdJXNidk4Aup184JHFBqvBcAIi1Jbo0vwB43P4wUqhWw8NF9lyYKtiL\nGYhsU1pwpQVF4GTPabg5l1AkJSlraAiCSDxIXOJNapr46+gQoaxMIS68c8B6HdlryJcmAnRIk3Fd\n0kCuS4PGIrVSzjCKhlm9wTkXAKFbDQ8XOe+jTx/Sc+EBgheEIi6SuCk5lxF4LpokSuYTRAJD4hJv\ndNIA3OUUvUokcYFjwBRBaWBneQXieYeYuqwM5Lo0qPMkz8VgBEvx51x4kLioAZ8vfNn/AfC2FnC5\nZbHsaaQbhs65BAheEGrJBknc+C14Lmzu96Aq+07ExxEEERsoYB1v5LAYACSngCUni6m3cg5Gpq9X\nCISUk+Ed7aJwZMBArs4V62eYwSgS/32BOZeAsBggQlMq9ZCmcVcPfK+sBjgHe6AM7D9EsVBkZAK2\n1uB9OQccNjBTtgiLqVRCLAORry17Tm7JcxlBzkX18GMRH0MQROwgzyXepKQOfmzMAncMEJf+XjFY\nZ2QKoZA8F/TcEDmQ5FSwJC3YE/8N9tDDQrTk2WIDcy7A8EJjDpvYT28A/9tRxYNh6Qagvz/Y+/n0\nH/D9/MfC7p4bgC5tcLUFRdika99KzoUgiISGxCXOMJXaLyryL31jlsjBBNLbCyQni1lWWTmilwkg\nBvJUnTKQq/7rKbDJU0T+pr9PCIDHLWZqAYNCU0Mi5X3Y3dI0YJskaHIiPXDtTYdV1AmztwtvamC+\nBfDbIF9bzrmQuBDEmIPEJRGQB2JJXFhm1qCwGO/v9XdczMoGtwck9AfmNgB/uK3XJQbzQWGxm88Y\nU0r3F0wUf23+EjUAgvMucu6n+7rIA4UQFzbQa5I9F+oYSRBjDhKXREASAiZ7MJlZYpV+oHfR5y9N\nz7JylIGe94QRF/lcvS6RcxlJWMwpeS7jhbjwdinPongug8WFd3eFFzzl2pKwufvE9OshipUSBHF7\nQuKSCMheRrI/54LAviyAP+cCiLBYlxO8r08Ki4USF+mcLpc0FTlgESUwvFX6ToewKUf00pGT+Exe\nHBnY08Xl91wQTvCUkJw8FbnvpqVfCIK4PSFxSQQGhsXkhZSBobG+vmBxAQC7NayXoHhBvT2Axw0m\nhcUGhaaGotMu1pLInkqnXXhP8rkDu1HKYbEbQlxYKMEblNDvp3wLQYxRSFwSACZ7LikBCX0geK1L\nX69Sg4uZJXHpEOLChgqL9bmCF1FGlHOxA5lGsCRtsADKIhfguXDFc+kSs9RCei4hci6UbyGIMQmJ\nSyKgDNwBORcE1BsDBoTFcsXrtjYpLDagzAoApErnksNics5l4AA/FE4HmEHqjyN7L9rkAHEJkXO5\n3ilEZxieC3eT50IQYxUSl0RAyblIg3ZauvA0Aqcj9waIi8EoHrf8WyTsQ3kJklDxXpfo56KJTFy4\nnPORxcUwWFx4qNliVtHUbMiEvjsg5zKSopUEQSQ8JC6JwABxYYwNXusS4LkwlQqw3AHe3BR8fKhz\n9vaIENigsNhNPJdel/BMpAZdLD1AXJSQW4C4yGExebpyyEkGAYIHSOJCngtBjEVIXBIB6Vc+C1yt\nH7BKn3u9wtNI9g/ELL8AuHI56Pgg5HO5eoLXuQw3LCZNQ1aKQ8p/A3MuUjdKzrnfc5FKuoTMA8n9\nXeSum/39lHMhiDEKiUsioCT0/eLC0jP9g7DsIWgDanWNKwC4T+wbaraYJkkIitwVUvZYZJG5WUJf\nmgYdMueSpBW1y+RKzf39whNSB5SqC7mwM00Uzux2Ssf13bRRGEEQtydxL1zZ3d2N2tpatLe3Izs7\nGy+88AL0+uAE9eXLl7F79264XC6oVCosWLAAM2eKIoo7duzA2bNnodOJAbqqqgoTJkyI9du4JZgx\nGxwIbtmblu4XBnkQDygEyfILoDRCDpXQB4RYdUkDeYSLKJWS/5mDxYUxJtbRyOeWQ2JZOYC1RTwO\nJXiMCe+lSxJNdz/lXAhijBJ3camrq8OUKVMwf/581NXVoa6uDs8880zQPlqtFqtXr0ZeXh7sdjte\neuklTJ06FWlpYgB79tln8dBDD8XD/OhQ/E2oNu4Ek/uxAKLRVk+3CDnJ60kCwmLIL/A/DuUlAEC6\nAVzu+zIgLMa9Xgy5Ln5AWIxlGMEBUbUZACYWg184Ix7L4pJj8YtLqJwLAOgzwJWwGOVcCGKsEvew\nWENDA8rKygAAZWVlaGhoGLRPfn4+8vLEKnGTyQSDwYDr16/H1M7RhDEWLCyA8Fy8XjGtV1pPwgLD\nYqZs/9TlcOKSkydmlAEBYbHh5lwcIvwli0TgbDEA7BvTgGtXRI0zudWy3KIZCC8u6Qa/x0OLKAli\nzBJ3cXE6nTAaxa/jzMxMOJ3OIfe/ePEiPB4PcnNzlW379+/H+vXr8dZbb8HtHmEL30RDbhF8o9vv\nuaQEhMUY83elDDOQs5w8oEdq9BXpIspOh2g6Jtf9ksNi8oy1b04DAPAzjf5kvlwmhrHgVgKBNukz\ngO4u4ZFR+ReCGLPEJCy2ceNGdHZ2Dtq+ZMmSoOeMsSGLGDocDmzfvh1VVVVQqYQuPvXUU8jMzITH\n48GuXbtw+PBhLFy4MOTxR44cwZEjRwAA1dXVMJvNI3o/Go1mxMcOl968fDgBZCap4UvRohOAIccC\nbcB1nXcVoffy5zDfMR5MpRpkV0/hZHR9IB5nGE1IMZvhS1KjHYA+JQW6Id6DvacLMOfCJO3DDQZY\n1WrozNnQm83gWVmwmcxIaj6H5Adn4zoAQ+FkdAJgOj2yc3KCzifbdj07F71N/4Q5MxNW7kOa0Yi0\nUb6XQxGLz3IkkF2Rkah2AYlr22jbFRNxefnll8O+ZjAY4HA4YDQa4XA4kJGREXK/np4eVFdXY+nS\npSguLla2y15PUlIS5syZg/feey/stcrLy1FeXq48t9lsYfcdCrPZPOJjhwv3inR951dXlZyG09UL\nFnBdPuMRsEwzOuz2kHZxXbryuMvVi26bTWmL3N3ZiZ4h3oPX1gaMuzPofKp1G+HKK0CvtI3fPRV9\njf+H/oJCAMD1FOFB8ZTUQfdHts2nSQLv7oLt6hUAwA23B65RvpdDEYvPciSQXZGRqHYBiWvbSO3K\nz88f1n5xD4uVlJSgvr4eAFBfX4/p06cP2sfj8WDr1q0oLS0dlLh3OMSUWc45GhoaMH78+NE3OhbI\nlYdvdInqx0BwQh8Am1AE1WM/CH+O3IAvwcDZYnIJFp9PhKgGElj6Rb5e8bfA0gPE/557RdhNXsxp\nyhFdMcPlWwB/Lxi5bhrlXAhiTBL32WLz589HbW0tjh49qkxFBoDm5mZ88MEHeP7553HixAmcO3cO\nXV1dOHbsGAD/lONt27Ypyf0777wTK1eujNdbiS5SzoXf6Bbl94HgdS7DITNLJOXd/YNzLlJCn/9u\nC7jXC3XV/yiH8b4+sfgy0zTwjEGwiZPBAfCzjYBGI2aSpenDTzAAAL0QF37lkjhHemhPlSCI25u4\ni0t6ejo2bNgwaHthYSEKC0W4pbS0FKWlpSGP/8UvfjGq9sUNnZzQ7/IvTkyOTFyYSiWS7F99qYgL\nU6mFd+HxgJ//FPzUx35vQmbg6vxwZOcB+nRRCVk+h8EIDCEYTJ8u1uec/1RsyL8zovdEEMTtQdzD\nYkRomDZZLDC80eVfoZ88ghCSHBqTPRdAeC8eN3x/3COedznBe3v8r0sLKAeGxQbZyBhw12TxRBJD\n1YqfQvWDivAHSSLEz38qbMqxhN+XIIjbFhKXREYnrdLv7wWStMLriBCWI4lLUoCTqtGIwf3SBUCa\nUgxrq/Iylztg3sxzAcAmSpMr5Ppod0wIXu8yELm+mL0dyB8/ovdEEETiQ+KSyKTpRc6lr29kXgsA\n5EkTHFICKieraynmrAAAD+1JREFUNcC/vwAAqMq/L7a1+8VFCYvdJOcCiLwLgKGT+IHo/SEzFlhl\ngCCIMUXccy7EEOgzhOeSmhZ5Ml+CPVAKZjCCmf2LTqHRiKKXpmxAEgdua/WXg3E6xD5p6YPON4gJ\nxQBjoasgh7JHoxFeTs8NyrcQxBiGPJdEJk0P3OgWJVaGEaIKBdNolNX0CvIEgQmThCjo04PCYui0\nAxnGIRe0KufXpYH9x7eB4m8O3yjJe2HjyHMhiLEKeS4JDEtLF0Ue7e1gM+ZE78SSuLA7J4nn2Xng\n7deUl7nTHpGYqVb9LLLrpxtEx8px5LkQxFiFPJdERqcHrneKrpB3FkXvvNJaFzZBiAvLtgzIuTiG\nlW8ZMfoMUXTTlD161yAIIq6QuCQyATkPNiH64gLFc7EA9nZwuVJyiNX50UQ1cy7YE4uHFXYjCOL2\nhMJiiYxcGTk5BcgbF73zqjVAtgVMFq/sPMDnA+xWcKNZTCIYYY5nOLD7ZwzdS4YgiNseEpcEhqVJ\nq9kLJkZ1PQh78GFA5R/eWbZFXMfaKlbvA6MbFiMIYsxD4pLISJ5LVENiAFRznwjeIK3i520tikfB\n5N4sBEEQI4DEJZExiV4LrCiCab4jISMTSNUBbVfBZXXJjWIYjiCIrx0kLgkMy8mH6n93ApbRHegZ\nY0DuOPDWr8CYSszkkjtPEgRBjAASlwSH5d0Rm+tYxoFf+AxcrQZy82kmF0EQtwRNRSYEueMAuw24\ncgksd3id5giCIMJB4kIAEJ4LALGAksSFIIhbhMSFEATmdXJIXAiCuDUSIufS3d2N2tpatLe3K62O\n9Xp90D7t7e3YunUrfD4fvF4vvvOd72DevHkAgC+++AI7duxAf38/pk2bhmXLllHOIFJy8gHGAM4p\nLEYQxC2TEJ5LXV0dpkyZgm3btmHKlCmoq6sbtI/RaMSrr76KLVu24Je//CUOHz4Mu130Hdm9ezdW\nrVqFbdu2obW1FadPn471W7jtYdpkf60vEheCIG6RhBCXhoYGlJWVAQDKysrQ0NAwaB+NRoOkJNGq\n1+12w+fzAQAcDgdcLheKi4vBGENpaWnI44lhkDsO0Kf7y8IQBEGMkIQIizmdThiNopZVZmYmnE5n\nyP1sNhuqq6vR2tqKZ555BiaTCc3NzcjKylL2ycrKUjwaIjJU//mk6B1DEARxi8RMXDZu3IjOzs5B\n25csWRL0nDEWNl9iNpuxdetW2O12bNmyBQ899FBENhw5cgRHjhwBAFRXV8NsNkd0vIxGoxnxsaPJ\nLdtVWh49YwYwZu/ZKEF2RUai2gUkrm2jbVfMxOXll18O+5rBYIDD4YDRaITD4UBGRkbYfQHAZDJh\n/PjxaGpqwuTJk9HR0aG81tHRAZMpdNHF8vJylJf7B1CbzRbhuxCYzeYRHzuaJKpdQOLaRnZFBtkV\nOYlq20jtys8fXk42IXIuJSUlqK+vBwDU19dj+vTpg/bp6OhAf38/ADG77Pz588jPz4fRaERqaiou\nXLgAzjmOHz+OkpKSmNpPEARBBJMQOZf58+ejtrYWR48eVaYiA0BzczM++OADPP/88/jqq6+wd+9e\nMMbAOcf3vvc9FBSIHuwrVqzAzp070d/fj/vuuw/Tpk0b6nIEQRDEKMM45zzeRsSLlpaWER031tzc\nWJCotpFdkUF2RU6i2va1CIsRBEEQYwsSF4IgCCLqkLgQBEEQUYfEhSAIgog6X+uEPkEQBDE6kOcy\nAl566aV4mxCSRLULSFzbyK7IILsiJ1FtG227SFwIgiCIqEPiQhAEQUQd9SuvvPJKvI24HZk4cWK8\nTQhJotoFJK5tZFdkkF2Rk6i2jaZdlNAnCIIgog6FxQiCIIiokxCFK28nTp8+jTfffBM+nw9z587F\n/Pnz42KHzWbDjh070NnZCcYYysvL8d3vfhcHDhzAhx9+qLQtWLp0Ke6///6Y2lZVVYWUlBSoVCqo\n1WpUV1eju7sbtbW1aG9vV4qT6vX6mNnU0tKC2tpa5bnVasXixYtx48aNuNyvnTt34pNPPoHBYEBN\nTQ0AhL1HnHO8+eabaGxsRHJyMiorK0ctnBHKrn379uHUqVPQaDTIzc1FZWUl0tLSYLVa8cILLyi1\npoqKirBy5cqY2TXUd/3QoUM4evQoVCoVli1bhvvuuy9mdtXW1ip1C3t6eqDT6bBly5aY3q9w40NM\nv2OcGDZer5evXr2at7a2crfbzdevX8+vXLkSF1vsdjtvbm7mnHPe09PD165dy69cucLfeecdfvjw\n4bjYJFNZWcmdTmfQtn379vFDhw5xzjk/dOgQ37dvXzxM45yLz3HFihXcarXG7X6dOXOGNzc383Xr\n1inbwt2jU6dO8U2bNnGfz8fPnz/Pf/7zn8fUrtOnT3OPx6PYKNvV1tYWtN9oEsqucJ/dlStX+Pr1\n63l/fz9va2vjq1ev5l6vN2Z2BbJnzx5+8OBBznls71e48SGW3zEKi0XAxYsXYbFYkJubC41Gg5kz\nZ6KhoSEuthiNRuWXRWpqKsaNG5fQ7Z0bGhpQVlYGACgrK4vbfQOATz/9FBaLBdnZ2XGz4Rvf+MYg\nzy3cPfrHP/6B0tJSMMZQXFyMGzduwOFwxMyuqVOnQq1WAwCKi4vj8j0LZVc4GhoaMHPmTCQlJSEn\nJwcWiwUXL16MuV2cc/ztb3/Dt7/97VG59lCEGx9i+R2jsFgE2O12ZGVlKc+zsrLw+eefx9EigdVq\nxaVLlzBp0iQ0NTXh/fffx/HjxzFx4kQ899xzMQ0/yWzatAkA8Oijj6K8vBxOpxNGoxEAkJmZCafT\nGXObZD7++OOgf/hEuF8Awt4ju90e1I42KysLdrtd2TeWHD16FDNnzlSeW61W/OxnP0NqaiqWLFmC\ne+65J6b2hPrs7HY7ioqKlH1MJlNcBPHcuXMwGAzIy8tTtsXjfgWOD7H8jpG43Ob09vaipqYGFRUV\n0Ol0mDdvHhYuXAgAeOedd7B3715UVlbG1KaNGzfCZDLB6XTi1VdfHdT/gTEGxlhMbZLxeDw4deoU\nnnrqKQBIiPsVinjeo3C8++67UKvVmD17NgDx63jnzp1IT0/HF198gS1btqCmpgY6nS4m9iTqZycz\n8EdMPO7XwPEhkNH+jlFYLAJMJhM6OjqU5x0dHTCZTHGzx+PxoKamBrNnz8aDDz4IQPwaUalUUKlU\nmDt3Lpqbm2Nul3xPDAYDpk+fjosXL8JgMChutsPhUJKwsaaxsRF33XUXMjMzASTG/ZIJd49MJlNQ\nU6d4fO+OHTuGU6dOYe3atcqAlJSUhPT0dABivURubi6uXbsWM5vCfXYD/0/tdnvM75fX68XJkyeD\nvLxY369Q40Msv2MkLhFQWFiIa9euwWq1wuPx4MSJEygpKYmLLZxz/Pa3v8W4cePwxBNPKNsD46Qn\nT57E+PHjY2pXb28vXC6X8vhf//oXCgoKUFJSgvr6egBAfX09pk+fHlO7ZAb+moz3/Qok3D0qKSnB\n8ePHwTnHhQsXoNPpYhoSO336NA4fPowXX3wRycnJyvbr16/D5/MBANra2nDt2jXk5ubGzK5wn11J\nSQlOnDgBt9sNq9WKa9euYdKkSTGzCxB5vfz8/KAweizvV7jxIZbfMVpEGSGffPIJ9uzZA5/Phzlz\n5mDBggVxsaOpqQkbNmxAQUGB8kty6dKl+Pjjj3H58mUwxpCdnY2VK1fGdCBqa2vD1q1bAYhfb7Nm\nzcKCBQvQ1dWF2tpa2Gy2uExFBoTYVVZW4je/+Y0SIti+fXtc7tevfvUrnD17Fl1dXTAYDFi8eDGm\nT58e8h5xzvH666/jn//8J7RaLSorK1FYWBgzuw4dOgSPx6N8XvIU2r///e84cOAA1Go1VCoVFi1a\nNGo/tkLZdebMmbCf3bvvvouPPvoIKpUKFRUVmDZtWszseuSRR7Bjxw4UFRVh3rx5yr6xvF/hxoei\noqKYfcdIXAiCIIioQ2ExgiAIIuqQuBAEQRBRh8SFIAiCiDokLgRBEETUIXEhCIIgog6JC0EMg3Xr\n1uHMmTNxubbNZsOzzz6rrJEgiNsBmopMEBFw4MABtLa2Yu3ataN2jaqqKqxatQr33nvvqF2DIEYb\n8lwIIoZ4vd54m0AQMYE8F4IYBlVVVfjRj36kVB/QaDSwWCzYsmULenp6sGfPHjQ2NoIxhjlz5mDx\n4sVQqVQ4duwYPvzwQxQWFuL48eOYN28eHn74YezatQtffvklGGOYOnUqli9fjrS0NGzfvh1//etf\nodFooFKpsHDhQsyYMQOrV6/G/v37oVarYbfbsXv3bjQ1NUGv1+P73/8+ysvLAQjP6urVq9BqtTh5\n8iTMZjOqqqqU1dZ1dXX4y1/+ApfLBaPRiBUrVmDKlClxu6/E2IWqIhPEMElKSsKTTz45KCy2Y8cO\nGAwGbNu2DX19faiurkZWVhYeffRRAMDnn3+OmTNnYvfu3fB6vbDb7XjyySdxzz33wOVyoaamBgcP\nHkRFRQXWrFmDpqamoLCY1WoNsuPXv/41xo8fj127dqGlpQUbN26ExWLBt771LQDAqVOn8NOf/hSV\nlZX4wx/+gDfeeAObNm1CS0sL3n//fWzevBkmkwlWq5XyOMSoQWExgrgFOjs70djYiIqKCqSkpMBg\nMODxxx/HiRMnlH2MRiMee+wxqNVqaLVaWCwW3HvvvUhKSkJGRgYef/xxnD17dljXs9lsaGpqwtNP\nPw2tVosJEyZg7ty5SjFCALj77rtx//33Q6VSobS0FJcvXwYAqFQquN1uXL16FR6PR2mkRRCjAXku\nBHEL2Gw2eL3eoF7onPOgariBTZgAIUhvvfUWzp07h97eXvh8vmEX8XQ4HNDr9UhNTQ06f2CrAIPB\noDzWarVwu93wer2wWCyoqKjAwYMHcfXqVUydOhXPPfdcXNtGEGMXEheCiICBzZWysrKg0Wjw+uuv\nK62Ab8b+/fsBADU1NdDr9Th58iTeeOONYR1rNBrR3d0Nl8ulCIzNZhu2QMyaNQuzZs1CT08Pfve7\n3+Htt9/GmjVrhnUsQUQChcUIIgIMBgPa29uVXIXRaMTUqVOxd+9e9PT0wOfzobW1dcgwl8vlQkpK\nCnQ6Hex2O957772g1zMzMwflWWTMZjMmT56M3//+9+jv78eXX36Jjz76SOkOORQtLS347LPP4Ha7\nodVqodVqE67bJTF2IHEhiAiYMWMGAGD58uV48cUXAQCrV6+Gx+PBunXrsGzZMrz22mtBjawGsmjR\nIly6dAk//OEPsXnzZjzwwANBr8+fPx9//OMfUVFRgT/96U+Djv/JT36C9vZ2rFq1Clu3bsWiRYuG\ntSbG7Xbj7bffxvLly/HjH/8Y169fV9o9E0S0oanIBEEQRNQhz4UgCIKIOiQuBEEQRNQhcSEIgiCi\nDokLQRAEEXVIXAiCIIioQ+JCEARBRB0SF4IgCCLqkLgQBEEQUYfEhSAIgog6/w9vb7FZuH2StQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4VOXZ+PHvc7IAIXsmJAQCkpAI\nhE0W2UQQAi5YRasorVKpijb4Wmmt+rZvXaq2WBqxKnTBpWp/VaAVtFqLDSAoYNnXEPYlISH7BiHr\neX5/nGQgJCGTZRbI/bkursycOcs9J2HueXaltdYIIYQQl2C4OwAhhBCeT5KFEEKIZkmyEEII0SxJ\nFkIIIZolyUIIIUSzJFkIIYRoliQLIYQQzZJkIYQQolmSLIQQQjRLkoUQQohmebs7gPaUmZnZ6mNt\nNht5eXntGE37kLhaRuJqOU+NTeJqmdbGFRUV5dB+UrIQQgjRLEkWQgghmiXJQgghRLMkWQghhGiW\nJAshhBDNkmQhhBCiWZIshBBCNEuShRDCY+icTMyvvkBXV7s7FHGRK2pQnhDi8qDLz8Gxg6j+Q9Ba\nw56t6P+uR2/9GkwTvLzgju+5O0xxASlZCCFcTv/zQ8xXf4kuyEVv/QbzjRfRe7ehbpgGvWLQX/wd\nXSOlC08iyUII4VK6ugq9aa31+Ega7NsO/gEYye9h3Pswxq33Qu5pyr9Z7eZIxYUkWQhxhdInjqDL\ny9wdRkO7t0JpsfX4SBr6cBrE9kd5+1jbhlwLPXpz5m9/tqqrhEeQZCHEFUgf3Iv50jzMefdh/uM9\nd4dTj7khBYJCoW9/9J6tkH0KFdvf/royDIzv/wgz9zR65V/dGKm4kCQLIa5Aess34OsLA4ej//0P\n9OlT7g4JAH2uDPZuQ42eiOo7AHKyAFCx/ertp+IG0OXm76LXfIY+ddIdoYqLSLIQ4gqjzRr0jk0w\ncATG/Ung7Y1e/U93h2U5uBdMEzVoOCr2amublzdc1bfBrl2/Owu0Ru/Z4uIg25+5/F3Mf37k7jDa\nRJKFEFcIXVlhjVHYtgmKC1EjxqECQ1DXTkBvXI0+W+ruENH7d1klnph+EFObLHrFoHw7NdjXK9QG\n3aPR+3e7OMr2pSsr0Gs/R69aga6ocHc4rSbJQogrhE75FP3//oD+82/Bxxc1aDgAavKtUFmB3r7J\nzRGCTt0JcQkoHx9UYAgMHIa6dnyT+6v+Q+DwPnRVlQujbGeHUqGqEirOoXdvrveSzstGZxxvcIjO\nPImZ8im62nPetyQLIa4Auvwc+j8rIT4BNXI8asp0VGc/68XoGPAPgCNp7o2xKB+y0lH9h9q3ef34\neYzE25s8RvUfDJWVcPSAK0J0Cr13O3j7QFAI+r/r6r1mvvt7zDdebHjMlyvQS9/CfOUZdFaGVbW4\nfSPmp3/D/Pc/rIGMdfu6qLQiI7iFuALor/4FZ0oxvvsAqq56p5ZSCvpcjXbzB65O3WXF03+I4wfF\nDwRloNN2oa4e6KTInMP88wLw9UUfOWAl8R690Ws+o+a5x1AxV6PunGWVOrSJLshDhdrsx+rTpyA0\nHLIzMZ97DELCoCDX/roaOhoie1jXWfhLVGRPePJXTn0/UrIQ4jKnz5Sgv/gHJFzTIFHUUTFXQ1Y6\nuuyMi6OzaLMG/Z9PIDwSel7l8HHKzx9i4tGfL6PmpZ+ga3tPeQp97BA1v0zC/PDPaLPm/PaCXPSW\nr9EbVsPpDFTCMNT4GyHEBqaJ/uY/6H/9HbRpHXD0fKlPa22VwAaPwHj5j6jJ34Fu3TF+9AzGz39n\n7ZN+1Pp54ohVYmzBPW0tKVkIcZnS2zeiKyusb6flZRh3/7DJfVVsPzTA0YMwcJjLYqyjv10HGcdQ\nDz+JMlr2HdWY8zP0htXoVSsw//EXvH70v06K0jHaNDE/WITOTIfjB8G3M3rNZ9ZAw4d+ijIM9C6r\nbUJNvBm9eT1q6LWoblF4/WYJurQE85kfolM+sUoPpcXoI2moEddZFygtgrKzENkTFRCEuufB89eu\nrrJ6j508CiPHo9d+Dr6dUGMnOf19S7IQ4jKktcb8YBGcsXo4qcnfQfXo3fQBV8WBUuijB1AuTha6\nugr9yV+hd9/zH4gtoELDUd+5F1Nr9D8/RB87hOoT54RIHVO5dzt6/Srr/YyZhPruD9DrV6E/fh+u\n6ouaegd6x7cQ2QPj+z9Cz5yDMrzOv5+AQNS4RPTaf6GGj0UfP2RNe1InK8Par3vPBtdW3j7Qoxf6\n5BGrRLl5vRWDn7/T37dLksXixYvZvn07QUFBJCcnA7Bw4UIyMzMBKCsrw8/PjwULFpCTk8O8efOI\niooCIC4ujjlz5rgiTCEuHyVFcKYUNXI8dO6Cum3mJXdXXfwgqhf6qOsbufXm9VCQh3H/3BaXKi6k\npt6OXvs55ruvWW0zQ0a2Y5SOO/efT8HPH+Pp+SgfX2vjTd9FHzuIXvEBZogNDu5FTZluxX1Boqij\npt6BPrQfNXYyGF5WT7aqSpSPL7o2WRDZMFkAqF6x6J3/RW9IgapK1A23OOV9XswlyWLixIncdNNN\nLFq0yL5t3rx59sfvv/8+fn5+9ueRkZEsWLDAFaEJcXk6dRwAdf2NqH6DHTpExfZDb/kGbdY0+gHm\nDFpr9JcroUdvSGhbiUZ19sN44MeYf/sD5psvYsz9BWroqHaK1DH6TAkV365DTbjpfKLA6kRg3D8X\n81dPoP9sfXZdKjZli8Drud9bT/r2Q6/6GPO151C9YkFr6NTFat9oTK8Y+OY/6H9/bDWcu6C9AlzU\nwD1gwAD8/RsvJmmt2bRpE+PGjXNFKEJcEXTGCevBpaqeLhY3AM6dhbpjXWH/Tjh1wurKq1SbT6eG\njMR46U/g44s+uLcdAmwZvXE1VFehrktsGFtAEMavFmE88QJqzlPnBx02J36g9XsszLdKGJvXQ2SP\nJu+Xio6xHpwpwbhhWmvfSou5vc1i//79BAUF0b17d/u2nJwcnnrqKbp06cK9995L//79L3EGITqg\nzBMQGIwKCHL4EBU3EA3oQ6moXjHOi+0Cetsm6NIVde317XZO5eMDPXqjTx5tt3NeSBflo4LDGm4v\nKUR/tgzfISOp6dmn8di6+Fm90lpwPeXnj9fzb6CrqjB/+SPIz0ElXNP0AdF9QCkICoGho1twpbZx\ne7LYsGFDvVJFSEgIixcvJiAggKNHj7JgwQKSk5PrVVPVSUlJISUlBYD58+djszVRbHOAt7d3m453\nFomrZTpKXPnZpzD6xBHSknPabOSGR+Jz4hDBFxznzHtWkJ8NvWMIveDLoKMuFVdJ/ADKN6whLCys\nXUosdarTj5P/1A8J/sUCOg0fa9+utabkgzcpr6ok+NGnUE66X+fu/xElr71A19ir6XqJa5RMnY5P\nfAJdIiPt25z9t+/WZFFTU8PmzZuZP3++fZuPjw8+Pta89jExMURERJCVlUVsbGyD4xMTE0lMPF8c\nzMvLa3UsNputTcc7i8TVMh0hLm3WYJ48irr+phafU8f2p2LvdnJzc+0fss68ZzUZx1EDh7fq/JeK\nywyPQp8tJS9tHyo8stF9WsPctRW0pnjNFxi94wGsrq4fvAk7vkXdeg8qsofT7pfufw3qnocoGzqa\nc5e6xl2zqQTOXrBPa3+PdZ2JmuPWQXl79uwhKiqKsLDzRb6SkhJM0xqokp2dTVZWFhEREe4KUQjP\nk5dtTYHRkvaKOnEDrPEA2ZntH9dFdNlZKC60jzRuT6p37ZfH9Hauijpt9UTSu7fYB9npZW/B7q2o\n7/4A9Z172/d6F1GGgZF4W6PVYO7mkpLFa6+9RmpqKqWlpTz66KPMmDGDSZMmNaiCAkhNTWXZsmV4\neXlhGAYPP/xwk43jQnRI6ccBLj2uogkqPsFqt9i0FnXHfe0b18WyrTU0lBOSBT16g2GgTx5FDRvb\n/P6Oqlv340wJHD2IvioOvXsLatQEjJu+237XuQy5JFk88cQTjW6fO3dug22jR49m9GjXNdoIcbkx\nN6+3JgZsopH1UlRkT9ToiegvlqNj4lFDrnVChJbmxgu0hfLtBJE9272RW5/OgL4D4NgB9O7NqJoa\nKDvrtjEdnkTmhhKilXR+rsunkNZF+bDzW9TYRKtXUCuo++dCdAzm+2+2c3QXyT4FXl5ga782hQup\nXrFw/FC9GVjbQps1kJ1pzaMVl4De9BV60xrw9oYBQ5s/wRVOkoUQraBNE/NXP8b84yvt9mHl0HW/\nSbFWmrv+xlafQ/l2srqylhRZ7QpOok+fAlskyttJFRjxCVb7S2Z6+5wvPxeqq6xpOu6cZc3ZtCEF\n4gedn+69A5NkIURrFOZD2RnYtdmaJ8gFtNbWh1f/IagIx3qwNKluOuxCJ/YcO53hlMbtOqr2275O\n29Wm8+jyMsy1/4ITh63zRvZE9YlH3fOQ9Xyo86rqLiduH2chxGUpp7Y3UXAYetlb6GtGowKDnXvN\nrHTIy0bd3PaGVhVis2ahLXBSF1CzBnKy7Kv1OYMK6wbhkdZSrZO/0+rz6A+XWMvO+gdaG2rbWNTE\nm1FRvSDWwZHYVzgpWQjRCnXrKhgPPA6Vleivv3T+NfduB0C1cY4lwJoaG2vdBac4lGpV6UQ7d6S4\n6j8UDuxB19R2c21hlaDe+a01hUe3KKsHVNcAVICVNJRSqKsHWjO9CkkWQrRKTpa1VGb/IdB/CPqr\nL+wfWM6i9+2A7tHWN+q2Cg4Bw3BeyWL9l+DXFXWNc3s2qv6DofwcHE5FH07FfPpBq7eYg8zPl0P3\naIxfLrQm6Ovd14nRXt4kWQjRCjonC8IjrUFUk26F2l5KTrteRYU17XV7lCqonTY7uP5Sne1FnylB\nb9+AGjXR6uLqTP2HQBc/zNeew3z1WasNZodjvwetNWSfQvUbjOrcBeOpVzCS3LuwkieTZCFEa+Rk\nQrfa+Y4Gj4CAIPSuLc673sG91mynl5pgrqVCbWgnNHDrTWuhurpNPbYcpboGYDz7e2tdiKsHWaW8\nYwcdO/hMCZwrs/8eVadOqE6dnRjt5U2ShRAtoHdtQZcUQe5pVN2HjOEFEVHo/BznXXfHJmuNg/iE\ndjunCrG1e8lCV1ejV/8T+vZ32ToLyhaBcf9cvH78HGrgcMjPQZcUNh3j8UPo3NNWVSLYf4/i0iRZ\niA7JfCsZ8//9oUXH6PwczDdfxFz8a6iqtBpFa6mwbuCkZKGrqtDbNqCuGd2+1Tqh4VCYh66di609\n6C1fQ36O26bGUDHW5H8cO9To67r8HOarz2J++Gd0rpUskGThEEkWokPSqTvRG9egKyscP2Z3bTVT\n7XrJ9b6RhkVYH7zOaOTeu82acmJU+60JAVhjLaqrMUuK2uV02jTR//6HNW/ToBHtcs4Wi4615ow6\n2nhVlP7vOmsBqGMHIDvLWhciTCYqdYQkC9Hh6LKz1sjfygpI3en4cbu3WN/Gu3S1NlyYLGzdwDSd\nMshN/3cdBARBvyHtel5V233WzD3dPifMyoDMk6hJ09q01nZbqE6doOdV6GMHGrymtUav/dxKEGdK\n0ak7IDS81dOmdDSSLETHk3N+em7tYA8mXVEOaXtQw8aibr0HwrqdHwUN57uz5rdzG8CpE+hd/0WN\nuK79p82ojb8mr52qz/KyAVA9rmqf87WSuiremjPq4lJe2m5riddJt1rPjx6QKqgWkGQhOhxdt5ZD\ndB/0rs2OVR3t32X1Rho8AmPqdIzfLLEatuvYrGSh87Mxv/4S3YISS5NxVldhvvWqtSzprTPafL4G\nQqySRU3myXY5nS6oTTo291brqEHDrV5Oe873TtNmDebf34UQG2r6fVDb66k9F0660kmyEB1PdiYo\nhZoyHc6UwvHGG0MvpFN3Wh8wcQMAGi7lGRJuVW9kZaA//DPmms/aHKb++kvIOIYxay4qMKTN52vA\nPwBirqbs8+Xoc2VtP19ejjVQsQXrgjvFoBEQHIq53hpVr7VGf/UFnDyKuns2qnOX84PvpGThMEkW\nouPJybS+YfapXTazdpGeS9EZxyC6T5NTPygfHwgKtdoXqiqhPRqNszKsUdBDnTMKWimFce8czKIC\n9GdL23w+nZ8NYd3c1l5RR3l5ocYlwt7tmEvfxvzpLPSHf4arB6FGXGftE2PN96TCJVk4SpKF6HB0\nThZERFlVR8qA3OxL7681ZJxoftyArdv5Bu7S4rbHWVIIzihRXED1iaPzpGno1f+85NgEh+TnWm05\nHkBdNwXQ6JRPILY/6v4kjKT/tZcIVf8h1nQn0S1fQKqjkllnRYdin+Lh2uutUkKoDer62zelIM/q\nbtlMw60K64Y+vN960h4li+IiCHJusgDoevv3KF/9Gfrbr6xFkdZ8jvHo0ygvr2aPrSc/B9XLuRMH\nOkrZIjCSfg7Boair4hq+PmAoxqsfoLoGuD64y5QkC3HZMb/+Eo7sx3jgxy0/+EwplJ09P6AuPNIa\nzXspGccAmi9Z1PXXDw6FogJ0+Tmrfry1SgpRLpjYzjv6Kojth17/pbXyX36OVVXXPbrR/XVpCfrD\nP1nVd0GhGFOnQ594qzTlISULADV01KVfl0TRIlINJS47eusG9IbVrZteu7Z9QtUmCxUeCc0kC51x\n3HrQs/elz929h9VwPuYG63lbSxcuKlkAVh1/9qnzo9BPN92OozettkZqBwbDicOYyf+HXveF9aIH\nJQvRviRZiMtP7Qd+Syfu02fPYH74J6vHTu/a6pLw7tbymeVl6GNNrOeccdyaYbaZpTXVyOutSe3i\nB1ob2pAsdPk5qDjn9DaLOmrkePDzh+FjreufzqgXi646v9a43vIN9IrF68fPY/xmidWw/6+/W+eR\nZHHFckk11OLFi9m+fTtBQUEkJycDsGzZMlavXk1goLXQyMyZMxk2zJp+ecWKFaxZswbDMJg9ezZD\nh8pi6cKiKyvsk9/p3ZvhhlscPtZcsgAyT2LM/QUqOAwA1S0SjbX+gl7+DmrOz6wPzguvmXG82fYK\nsHrh0POq8+M2WtHIbX77FXrrNxgzHrQ2BDl59b1aqnMXjJf+AF26Yh55yOqJRe1a479+EhXdB/Xw\nk1aV3fFDqO/+wDrOtxNq9ET0qo+tE9kkWVypXFKymDhxIj//+c8bbJ82bRoLFixgwYIF9kSRkZHB\nxo0befXVV/nFL37B22+/jdmOE52Jy1xOFmhtTbuRttsqEWiN+c+P0FnpTR6miwth3w7UzXdbM5PW\nsVmDsvS//2E937ax/nGVFZCd2bIZVGuXV9WtKVmk7oRdm+0f1k4ZX9EEFRBkjRKP6HG+O/GhVMhK\nR2/9Bl2Uj976jbVvbRdUADVusvXA29tlJSHhei5JFgMGDMDf39+hfbds2cLYsWPx8fGhW7duREZG\ncvjwYSdHKC4btaOv1eTvQHU1evdW2Lsd/enfrDEOTaibBFANu2jMQt0I3tJiUAq9dzu6qvL868cO\ngTZRV7WgobluUForkkVd91Wdttva4Ox1vRuhuveE0xnWYLYN/wHfTmCa6C/+gf7qXxBzNeqCUdqq\nezTEXA22SLePsRDO49beUKtWrWL9+vXExMQwa9Ys/P39KSgoIC7ufFe30NBQCgoKGj0+JSWFlJQU\nAObPn4/NZmt0P0d4e3u36XhnkbjqO1tayBnAdvs9FGxcDf/8ECPUhgl0rixvMq6iA7upCo/ANmTE\nRaOvbeQEBKFLi/G77V7KPvmQwFPH6DRiHABn1h7jrFKEjboOwz/Q4Thz/APpXFlOYG0sjt6v/LOl\nVANeh1OpBkL7xOIVEubwdVvj4tjKYuIp/eoLQqoryN++iS4Tb6ImO5PKNZ+BbydCn5mPz0Xvpeap\nlzHPlTXY3p5xeYqOGpfbksXUqVO56667AFi6dCnvv/8+SUlJLTpHYmIiiYmJ9ud5ea2f8dNms7Xp\neGeRuOozjx6C4FAKzlWg73kI89VfUlPbc+dczmmqq6sbxKWrKjF3/Bc1djL5+fkNzqltEaAU5VPu\nhC8/oXj9fzCuskb41uzcAlG9KCivhHLH368OCOJczmkqa2Ox2WzkfLYcqqowxk9t8ria2okIq48f\nAmVQUFWNcvJ9vvh3qQOsqqT8P/wWKsqpGDbOGmeyfzfGQz+lOKQbXByTly/4+zbc3o5xeYorLa6o\nqKjmd8KNySI4+HzxevLkybzyyiuAVZK48D90QUEBoaGhLo9PeCadfQoiegDWKFw1cjx633ZrW1PV\nPgf2QGUFasjIRl827poNNdXWspoJw9B7tlq9okwTjqShxk5qeaABQVBaPx79n0+hvAyaSBa6psZa\n6tN+jsD6kxW6SqR1f9mzFYaNsaqdlML4/d+anO5EXPncVsFYWHh+aoHNmzcTHW0NABoxYgQbN26k\nqqqKnJwcsrKy6NvX+QOThGfQpcXos2caf01rOH0KVZssANTsJzB+tRgVEdVkstDHa9u8+g5o9HUV\nn2BN/wBw9UAoKrCm2z55FCrKIa7lS5mqwGAouag3VF425GbXbxO5UGmx1XhfV+/vrsbi0HDw9YXA\nYIz75p6fIkMSRYfmkpLFa6+9RmpqKqWlpTz66KPMmDGDffv2cfz4cZRShIeHM2fOHACio6MZM2YM\nP/nJTzAMgwcffBBDGs06DHPxr8E/CK+5DXvPkXsays6c/+ZL3QR+IejAYCgpanycRFa6NcGdA6Op\nVdxAqyvtwX1wtqR2W+NJ5pJq46ljni21YgdrnEjPRuYkKq79AtW7Lxw76LJusxdThoG6by4qsgcq\nwPF2GnFlc0myeOKJJxpsmzSp6aL9nXfeyZ133unMkIQH0AV56PX/Rn1nJsrLy1oL+uQR6NrwA0qf\nPoW58Fno4le/62udwGCoqmx0qm2dmQ5RvRwLqntP6BoAh/aiT52E7tH2MRktEhgM586iqypRPr7U\nZF+w4FJmOqqxZFHbE0r1G4w+dtCl3WYvZtSNQheilnxlF26j132B/nyZtWIZWFNNVFZaa1lf9KFv\nrngfys9hPPmy1bXzYrUfrGZR/Z5z2qyB0xlW904HKMOAuAHWKOXjh1CTprX8jcH5Lq+1A/Nqsi+Y\nrDAro5EDaseCwPkqMRdN9SGEIyRZCLepW01OH9pnbbhwUN3FA+xOnYR+g1G9Yhs9l6r9cL44WZCX\nDdVVEOVYsgBQcQnW+tz+Aagxkx0+rt45gms7ZRRYvVNq6pZyDQhCZ9Vfmc5ctYKa3z9/vhoq5mrU\nyPGNl6CEcBNJFsIt9JkSOGE1POtDqdbPC75x6wuW+tTV1ZB3GnVBW0UDdcmiuADzv+vQdRPhZVpJ\nx9GSBYC62prbSU28BdWpk8PH1VM7UWHdEq412VnQpas1eO2ikoXet90aWHjyqLWEaqfOGHN+Zo9D\nCE/gUJvFmTNn+PTTTzlx4gTl5eX1XnvhhRecEpi4sun9u62ePz37wJH9VnVR1kmry2n5ufoli7xs\nqKmxFixqSm2yqDl1Ev23P6PDu2P8cuH5KUBakCzoFYsx9xeQcE0r3lktWwR4eUO2lRhqsjPB1g3V\nPdoaJV5Tc369iLrEtncrhMrcSsIzOZQsfv/731NdXc2YMWPw9fV1dkyiI9i/0/oWPeU29Lu/h4wT\nVkN0j95wtrReycI+xUfEJUoW/oGgFBVbvrGSUE4m+qM/W0kmOAzV5dIzxl5IKQXNrIXQ7Dm8vKy1\nMmoTQU12prXec/doqKm2FlyK7ImuKD+/ul5lpbRTCI/lULI4ePAgb731Fj4+0s9atJ2uqUHv2Qb9\nBqGuHmx1VT2UajVEj54IZWftVVMAuvbbOZeohlJeXuAfSNXBfaAM1MSb0Ws/t14c4KZZiyN7wOlT\n1kSHuVmohGtQvWPRgLnsHYxHnrImRgRrEr7qanvbixCexqE2i169ejU6TYIQraG3fgNF+RhjJ6HC\nwq1v4P/+O5wrg+69rG/fBbno8toeUadPgX9g8yub1X3Q9uiNuvdh1IPzrHUoEoY59w01QUVEWSWI\nwnyr1GCLQPXojfr+j2Dvdswlv7OXPNQway4qgmS2AuGZHCpZDBw4kF//+tdMnDix3jQdcOnxEkJc\nTGttTQfePRoGXwuA8dBPMd/4FQAqKtoanwBWD6jYflYj8aUat+sEBsOpE6jYq62BZaNvgNFuHC8Q\n0cOaGXe/1eurbqZWY+LNmAW51n2o3abGT0FvXue2gXhCNMehZJGWlkZYWBh79uxp8JokC+EoffQA\nesNqyDiOeuDH9umsVczVGE+/gt68HmL7WetkA/pIGiq2H2SfQg1svnSgAoOtJBPb34nvwnEqsqdV\nxfbPj6BTZ4jpd/61YWPQX/wdvSHFml4jPgF103dRw8a4L2AhLqHZZKG15tFHH8Vms+Hl5YZJzcQV\nQZsmZvL/gVmDGj4ONer6eq+ryJ6o275nPQkOhW7d0Yf2ocdPtcYfRDQyEO9itdVQKrZfMzu6SF1p\nKD+HLjfdQWXXC9Z06RVrVTkVF0CfeJThZV99TghP1GybhVKKJ5988qI1AIRooTMl1syvd/0Q49Gn\nm52UTsUlwOFUa44kQHVvvhpKDRtLl5vuPL+gkbv5B4JfVwD8pt1d7yVlGKjBI6zHl+rlJYSHcKiB\n+6qrriIrK6v5HYVoSpHVQUKFONiAG5cAZ0oxl70N/gEwoPkxD6pvfwIf8ZwvNkopq+rpmtF4N7Is\na12ycKg9Rgg3c6jNIiEhgV//+tdMmDChwUpM0mYhHFJYOw2Hg719VHxCbSP3CdQtd6N8WzmS2s2M\nx/6v6RcThqEmfwd1jbRTCM/nULI4cOAA3bp1Y//+/Q1ek2QhHKGLa7teO7pEqC0CgsOgtAg18Rbn\nBeZk6hLtfMrHF3Xvwy6MRojWcyhZPPfcc86OQ1zpCgtAKYcX9FFKoaZOh4pylJPXoBZCNM+hZGGa\nZpOvycJEwiFF+RAQhPJ2fAkVY8rtTgxICNESDv3PnTlzZpOvLV26tN2CEZc38+sv4dA+1OwnGjQy\n66ICq1pJCHFZcihZvPnmm/WeFxYWsnLlSkaMGOGUoMTlSad8CpknUUNHw8WDy4ryrcFnQojLkkN1\nSOHh4fX+xcfH89hjj/HJJ584Oz5xmdD5OZB5EpTCXPE+uqam/g5F+a1bnlQI4RFa3eBQVlZGSUlJ\ne8YiLkN6+ybMVSvQu7cCWKPZh3rTAAAgAElEQVSQT5+yJgus26eqyprCw9ExFkIIj+NQNdQbb7xR\nrw66oqKC/fv3M378eIcusnjxYrZv305QUBDJyckAfPDBB2zbtg1vb28iIiJISkqia9eu5OTkMG/e\nPKKirIVu4uLimDNnTkvfl3ARc/WncHCfNUVHeCRqynT0Z0vh8H4YNcHaqXZAnsyoKsTly6FkERlZ\nf/qETp06MWXKFAYPHuzQRSZOnMhNN93EokWL7NsGDx7M9773Pby8vPjrX//KihUruO++++zXW7Bg\ngaPvQbhT3RKhRQXWADPDgF4x6JNH0GYN5h9esS+HKl1ghbh8OZQshg4dSlxcXIPthw8fpm/fvs0e\nP2DAAHJycuptGzJkiP1xfHw83377rSOhCA+iz5ZCaTFq0q3ok0dQY60BmqpXX/T6L+DoAdj5rTUS\nG6Q3lBCXMYfaLF566aVGt7/88svtEsSaNWsYOvT8amY5OTk89dRTPPfcc42OGhceom7hnoRr8Hr6\nFVSvWGt77xiorESn/NMaiFe3FG+wVEMJcbm6ZMmibjCe1tr+r052dna7TFn+8ccf4+XlZW//CAkJ\nYfHixQQEBHD06FEWLFhAcnIyfn4N11BOSUkhJSUFgPnz5zeYt6olvL2923S8s3hyXP5niigBQvoP\nwvuCGKuHjCQf0Ns34h3bD79pd1O+/kuCe/dx+iR/nny/PDEu8NzYJK6WcXZcl0wWFw7Gu/fee+u9\nZhgGd9xxR5su/tVXX7Ft2zaeffZZ+4eIj4+Pfa3vmJgYIiIiyMrKIjY2tsHxiYmJJCYm2p/n5eW1\nOhabzdam453Fk+MqPZQG3t4UevmgLohRd+oCvp2gsoKa+EGcHTgCBo5wydK8nny/PDEu8NzYJK6W\naW1cdZ2JmnPJZPHmm2+iteb555/nhRdeQGttzdmjFIGBgfjWVS+0ws6dO/nkk0944YUX6NTp/Iyi\nJSUl+Pv7YxgG2dnZZGVlERER0erriPajtYaDeyF+oPX8dAZE9EAZ9UuYyvCC6D5wJA2VMLSxUwkh\nLjOXTBbh4daI28WLFwNWtVRxcTEhIY5NBlfntddeIzU1ldLSUh599FFmzJjBihUrqK6u5sUXXwTO\nd5FNTU1l2bJleHl5YRgGDz/8MP7+/s1cQbjE3m2Yr/8K46cvQfgkq82iZ+9Gd1VxCdba2TEesmqd\nEKJNHOoNdfbsWd566y2+/fZbvL29+eCDD9i6dSuHDx9uUD3VmCeeeKLBtqamNh89ejSjR492JCzh\nYrp21Tp94gh61HjIzUKNvK7RfdVtM1GJt7Vo4kAhhOdyqDfUkiVL8PPzY/HixXjX/uePj49n48aN\nTg1OeBZ94oj1IOMYNVnpYJrQxJKgyscXFdSyEqgQwnM59LVvz549/OlPf7InCoDAwECKi4udFpjw\nQCetZKHTj1G5fzcA6qqG42+EEFceh0oWfn5+lJaW1tuWl5fX4rYL4bn0icOYf3kdXV3V+OvFhVBU\nAH5d4XQGlds3QYgNIhzrSSGEuLw5lCwmT55McnIye/fuRWvNwYMHWbRoEVOmTHF2fMJFzM+XoTek\noDd/bSWOd15Dl587v0NtqUJdez3U1FCxdQOq3yCnj5sQQngGh6qhbr/9dnx9fXn77bepqanhD3/4\nA4mJidxyy+W7NrIAnXkSvXsLalwi1M4aq//9D2t68ZxM6BOPusH6Hde1V6ixk9FffWG1V/RzbG4w\nIcTlr9lkYZomX331FVOmTJHkcIXRX3+JTvkUveUbqKlG3XgHetUK68XgMPSaz9ATbkIZhpUsInpA\nr1jw8YWqSpQkCyE6jGaroQzD4P3337ePqhZXDp2TZT04eQR69kFNvx96xaKm3I66cxaczoD9u+z7\nqF4xKC8v6NEbr+7RKFn5TogOw6FqqOHDh7N161ZZRvVKk3saBgwFH1+McYkob2+M/3sVpRS6qgq9\n/B30hhSrNFGQC5NuBcC4L4mggACkL5wQHYdDyaKqqopXX32V+Ph4wsLC6jVqPvbYY04LTjiPNk3I\nPY0aPALjrtn27XW/W+Xjg+o/FH1gN+rEYWtbrxjrZ+9YfGw28MD5cYQQzuFQsoiOjiY6OtrZsQhX\nKsqH6ioI7970PvEJsHnd+SVSezeczFEI0TE4lCzuvvtuZ8chXK22vUJ1azpZqLgBaED/d521ZKqf\nzNElREfl0DgLceXRuaetB+GRTe/UPRr8A6G66vzCRkKIDkmSRUeVkwVe3hDa9GIpSinoO8B6IlVQ\nQnRokiw6KJ2bBbaIBmtRXEzFJ1g/JVkI0aHJ/NEdVU4WXKK9oo4aPRGKCyFuoPNjEkJ4LIeShdaa\n1atXs2HDBkpLS/nd735HamoqRUVFjB071tkxinZm7zYbl9DsviogCHXXA84PSgjh0Ryqhlq6dClr\n164lMTHRvsZrWFgYn3zyiVODE86h//kRlJ9DxQ1wdyhCiMuEQ8li3bp1PP3004wbN84+aKtbt27k\n5OQ4NTjRPvTebZgfLUEX5GGu+Qz92UeocZNh+Dh3hyaEuEw4VA1lmiadO3eut628vLzBNuGZzK+/\nhO2b0Kv/aW3oPwT1/R/J9OJCCIc5lCyuueYa3n//fX7wgx8AVhvG0qVLGT58uFODE+2kMB+i+6Cu\nHozq2x+GjZFEIYRoEYeqoWbNmkVhYSEPPPAAZWVlzJo1i9zcXL7//e87Oz7RHgrzUL1iMO55EDV8\nrCQKIUSLOVSy8PPz42c/+xlFRUXk5eVhs9kIDg5u0YUWL17M9u3bCQoKIjk5GYAzZ86wcOFCcnNz\nCQ8PZ968efj7+6O15t1332XHjh106tSJpKQkYmJiWv7uBLq62ur6GtL04DshhGiOQyUL0zQxTZPA\nwEBiYmIIDAzENM0WXWjixIn8/Oc/r7dt5cqVDBo0iNdff51BgwaxcuVKAHbs2MHp06d5/fXXmTNn\nDm+99VaLriUuUFIIWkNImLsjEUJcxhwqWcycObPR7V5eXoSEhDBq1ChmzJhxyQbvAQMGNOg9tWXL\nFp5//nkAJkyYwPPPP899993H1q1buf7661FKER8fz9mzZyksLCQkJMTBtyXsCvMBUFKyEEK0gUPJ\nYvbs2WzZsoXp06cTFhZGXl4en376KcOGDSMqKorly5fzl7/8hUcffbRFFy8uLrYngODgYIqLreV0\nCgoKsNnOf7iFhYVRUFAgyaI1CmvXnJCShRCiDRxKFp9//jmvvPIKfn5+AERFRREbG8szzzzDG2+8\nQa9evXj66afbFIhSqsUNrykpKaSkpAAwf/78egmmpby9vdt0vLO0Ji5dUY7qZJXyzlaWcwYIi70a\nIyDQrXG5gsTVcp4am8TVMs6Oy6FkUVZWRkVFhT1ZAFRUVFBWVgZYpYLKysoWXzwoKMhevVRYWEhg\noPVhFhoaah8pDpCfn09oaGiD4xMTE0lMTLQ/z2vDym02m61NxztLS+PS6ccwX/4pxhPPo/oNxsw4\nAb6dyC+vQFW03/u7Uu6Xq3hqXOC5sUlcLdPauKKiohzaz6EG7gkTJvDSSy+RkpLCzp07Wb16NS+/\n/DITJkwAYNeuXQ5f8EIjRoxg3bp1gDVKfOTIkfbt69evR2vNwYMH8fPzkyooB+n/fgU11ehv11ob\nCvMhxCbdZYUQbeJQyeK+++4jMjKSjRs3UlhYSHBwMDfeeKP9W31CQgIvvPDCJc/x2muvkZqaSmlp\nKY8++igzZsxg+vTpLFy4kDVr1ti7zoI1CHD79u08/vjj+Pr6kpSU1Ma32TFordFbN1iPd/wXfV81\nujBP2iuEEG3mULIwDIOpU6cyderURl/39fVt9hxPPPFEo9ufffbZBtuUUjz00EOOhCYudPww5OfA\n0NGw81s4sAcK81FXy/TiQoi2cXg9i6KiIg4fPkxpaSlaa/v2SZMmOSUw0XJ62zfg5YXx/Ucx9+9C\nb0iB4gIZkCeEaDOHksXmzZt544036N69O+np6URHR5Oenk6/fv0kWXgQfXAfxPZDBYeiRk9Ar/u3\n9YJUQwkh2sihZLF06VKSkpIYM2YMs2fP5re//S1r164lPT3d2fGJlsjPQQ22Ogmo7z2C6j8UveVr\nVMIwNwcmhLjcOdQbKi8vjzFjxtTbNmHCBNavX++UoETL6YoKKCkCWwQAyvBCDR+L8ejTqPBIN0cn\nhLjcOZQsAgMDKSoqAiA8PJyDBw+SnZ3d4vmhhBMV1E6lEtbNvXEIIa5IDlVDTZ48mbS0NEaPHs20\nadN44YUXUEpx6623Ojs+4ag8K1komyQLIUT7cyhZ3HbbbRiGVQiZMGECCQkJlJeX07NnT6cGJxyn\n87KtB7XVUEII0Z6arYYyTZP777+fqqoq+zabzSaJwtPkZ4O3NwTKSHchRPtrNlkYhkFUVBSlpaWu\niEe0Vl4OhHZDGQ41QwkhRIs4VA113XXX8corr3DzzTcTFhZWb56hgQNldLC76NJiVECQ9TgvW6qg\nhBBO41Cy+PLLLwFYvnx5ve1KKd588832j0o0S+/bgfn6CxjPv4nq3tMaY9E71t1hCSGuUA4li0WL\nFjk7DtFC+kgamCY6dYc1QvtMiZQshBBO43AFd3V1Nfv372fjxo0AlJeXU15e7rTAxKXpzBPWz4N7\nrckDQcZYCCGcxqGSxcmTJ3nllVfw8fEhPz+fsWPHkpqayrp16+zTigsXO3XS+nlwLzptDwCqe7Qb\nAxJCXMkcKlksWbKEe+65h9deew1vbyu/DBgwgLS0NKcGJxqnqyohJxNCw+FMKfrTv0GfeFR0H3eH\nJoS4QjmULDIyMhg/fny9bZ07d27VUqqiHZw+BaaJmnCT9bzsDGrKdPfGJIS4ojmULMLDwzl69Gi9\nbYcPHyYyUiaocwedaVVBqSHXWmtVhIajho1p5ighhGg9h9os7rnnHubPn8+UKVOorq5mxYoV/Oc/\n/+GRRx5xdnyilq6uAsNAGV5w6gR4eUNEFMaD88DHF+Xl5e4QhRBXMIeSxfDhw/n5z3/O6tWrGTBg\nALm5uTz55JPExMQ4Oz5Ry/zVE1BTjbrxTvShfRDZA+XtA1cPcndoQogOwKFkUVJSQp8+fWRdbDfR\nZ0shKx06dUF/YI15UWNkhUIhhOs4lCySkpJISEjguuuuY+TIkXTu3NnZcYkLZVkrEhoPPwlhNqio\ngB693ByUEKIjcShZLF68mE2bNvHll1+yZMkShg0bxnXXXcc111yDVxvqyjMzM1m4cKH9eU5ODjNm\nzODs2bOsXr2awMBAAGbOnMmwYR13adC6Bm169ELJKG0hhBs4lCwCAwO58cYbufHGG8nNzWXDhg18\n9NFH/OEPf+Dtt99u9cWjoqJYsGABYE2F/sgjj3Dttdeydu1apk2bxm233dbqc19RMtPBt5M1rkII\nIdygxfNZFxcXU1RURGlpKV27dm23QPbs2UNkZCTh4fKBeDGdlQ7do2X6cSGE2zhUssjIyOCbb75h\nw4YNVFZWMmbMGH72s5/Rt2/fdgtkw4YNjBs3zv581apVrF+/npiYGGbNmoW/v3+DY1JSUkhJSQFg\n/vz52Gy2Vl/f29u7Tcc7i7e3N0b2KXwHDSfIg+Lz5PslcbWMp8YmcbWMs+NSWmvd3E6zZ89m1KhR\njBs3joSEBPsSq+2lurqaRx55hOTkZIKDgykqKrK3VyxdupTCwkKSkpKaPU9mZmarY7DZbOTl5bX6\neGcJ7dKZ3Pumou6chXHzXe4Ox85T75fE1XKeGpvE1TKtjSsqKsqh/RwqWSxZssQ+J5Qz7Nixgz59\n+hAcHAxg/wkwefJkXnnlFadd29NVZxwHZJJAIYR7OZQBvL29KSoq4vDhw5SWlnJhYWTSpLb397+4\nCqqwsJCQEGst6c2bNxMd3XE/KGvSj1kPoqSrrBDCfRxKFps3b+aNN96ge/fupKenEx0dTXp6Ov36\n9WtzsigvL2f37t3MmTPHvu2vf/0rx48fRylFeHh4vdeudLq6Cry87UvXVh05AJ26gE3WqhBCuI9D\nyWLp0qUkJSUxZswYZs+ezW9/+1vWrl1Lenp6mwPo3Lkz77zzTr1t//M//9Pm816OdPk5zP99GHX7\n91ATbwGg6vB+uKqvNSeUEEK4iUMt1Xl5eYwZU39W0wkTJrB+/XqnBNVhHdgLZ0rQG9cAoKuqqD5+\nCHVVnHvjEkJ0eA4PyisqKiI4OJjw8HAOHjxIQEAApmk6O74ORe/bbj04dhBdkAvFhVBdjeojyUII\n4V4OJYvJkyeTlpbG6NGjmTZtGi+88AJKKW699VZnx9eh6H07oHs0ZKWjt2+CuqlUrop3b2BCiA7P\noWQxffr5VdgmTJhAQkIC5eXl9OzZ02mBdTQ69zTkZKLufRj99Zford+gwiMxgkMh1PMGAAkhOpZW\nDZ7wxNGLlzu9bwcAKuEaqKpE/+M99JE0fEaMo6a2Z5QQQriLTDbkRnrXZszPllpPDqVCcChE9EBN\nvQM1+wmI7EnnMTe4N0ghhKCVJQvRPsyvv4S929BTp6NPHoHefa3xFUqhxk6CsZPoYrNx1gOnFhBC\ndCxSsnCn/FyoqYGDeyH7FKp3+03MKIQQ7UmShTvl5wBgfvUFaI3qHevmgIQQonGSLNxEl52Bc2et\nJ7u3WD97SbIQQngmSRbukmeVKujSFbSGoFBUcKh7YxJCiCZIsnCX2iooNWy09VyqoIQQHkyShZvo\numRx7fXWT0kWQggPJl1n3SU/Bzp1hn5DUNPvQ8l4CiGEB5Nk4SY6LwfCuqEMAzVthrvDEUKIS5Jk\n4WJ62wZ0XjbkZ0OYLGgkhLg8SLJwMfNfy+HkUTAMVGx/d4cjhBAOkQZuF9IV5ZBx3HpimrJUqhDi\nsiHJwpWOHwLTRE2/D7oGoGSdCiHEZUKqoVxIH0kDQE24CXXL3dakgUIIcRnwiGQxd+5cOnfujGEY\neHl5MX/+fM6cOcPChQvJzc0lPDycefPm4e/v7+5QW8Vc/g4UF6LPlUFkD5R/oLtDEkKIFvGIZAHw\n3HPPERh4/kN05cqVDBo0iOnTp7Ny5UpWrlzJfffd58YIW0dXVaLX/RsqygFQYye7OSIhhGg5j22z\n2LJlCxMmTACspVy3bNni5ohaaf8uK1FE9LCex17t3niEEKIVPCZZvPzyyzz99NOkpKQAUFxcTEhI\nCADBwcEUFxe7MzyH6cP7qfnVj9ElRdbznf+Fzl0wnvo16sY7UcPHuTlCIYRoOY+ohnrxxRcJDQ2l\nuLiYl156iaioqHqvK6UabQxOSUmxJ5f58+e3aW1wb2/vNq8trmuqKVi6BDP9GAGnjtHpqsnk7d2G\n77AxBMfEwaNPuiUuZ5C4WsZT4wLPjU3iahlnx+URySI01JqaOygoiJEjR3L48GGCgoIoLCwkJCSE\nwsLCeu0ZdRITE0lMTLQ/z2vD8qM2m61Nx4O1iJE+fhiAkl1bUb5dMAvzqew/tNXnbo+4nEHiahlP\njQs8NzaJq2VaG9fFX86b4vZqqPLycs6dO2d/vHv3bnr16sWIESNYt24dAOvWrWPkyJHuDNMh+t//\ngL4DIG4A+ugB9K7N1kjtQSPcHZoQQrSJ20sWxcXF/O53vwOgpqaG6667jqFDhxIbG8vChQtZs2aN\nveusJ9NF+ZCfg5r8HaubbMqn6LNnIH4gquvl2eVXCCHquD1ZREREsGDBggbbAwICePbZZ90QUSsd\nOQCAirkaSorQqz6GnEzUDbe4OTAhhGg7tyeLK4U+mgbe3tY62mVn7NvV0FFujEoIIdqHJIs20nu3\nQ7dI9NED0LsvyscHgkLAFgGdu6BsEe4OUQgh2kySRRvoUycxX/8VhNqgpAg18Wb7a8aD88Cnkxuj\nE0KI9iPJog3Mj98D305QlA81NajYfvbXVN8BboxMCCHal9u7zl6u9MG9sHsLatoMa8pxH1+r26wQ\nQlyBpGTRSvqb/4BfV9TkW1G+ndATb0F17uLusIQQwimkZNEKuroKvXMzauholK/VLiGJQghxJZNk\n0Rr7d8G5s6jhY90diRBCuIQki1bQ2zZAl67Qf6i7QxFCCJeQZNFCuqIcveNb1JBrrTEVQgjRAUiy\naCH9TQqUnUVNuNHdoQghhMtIsmgBXV2N/nIF9B0g4yiEEB2KJIsW0Ns2QEEuxk3fdXcoQgjhUpIs\nWmLXZggOhUHD3R2JEEK4lCQLB2mt0Qf3oeIHogy5bUKIjkU+9RyVmwXFBRCX4O5IhBDC5SRZOEgf\n3AeAipdkIYToeCRZOOrgPvAPhO7R7o5ECCFcTiYSbIYuLkSn7Ubv3wnxCSil3B2SEEK4nCSLJmiz\nBv2P99Br/wVVlQCooaPdHJUQQriHJIsm6H9/jP5yJWrMDajJt0FEd1RnP3eHJYQQbuHWZJGXl8ei\nRYsoKipCKUViYiK33HILy5YtY/Xq1QQGBgIwc+ZMhg0b5pKYdE4W+vB+9Kd/Q424DjX7Cal6EkJ0\neG5NFl5eXtx///3ExMRw7tw5nnnmGQYPHgzAtGnTuO2221wajz5+CHP+U1BTA2HdUPf9SBKFEELg\n5mQREhJCSEgIAF26dKFHjx4UFBS4LR7zX8uhU2eMHz8PPXqjOnV2WyxCCOFJPKbNIicnh2PHjtG3\nb1/S0tJYtWoV69evJyYmhlmzZuHv79/gmJSUFFJSUgCYP38+Nput1dfXWemw41u63j0b/2vHtfo8\n7c3b27tN78tZJK6W8dS4wHNjk7haxtlxKa21dtrZHVReXs5zzz3HnXfeyahRoygqKrK3VyxdupTC\nwkKSkpKaPU9mZmarrq9LCvF661WqjqRhzH8bFRDYqvM4g81mIy8vz91hNCBxtYynxgWeG5vE1TKt\njSsqKsqh/dw+KK+6uprk5GTGjx/PqFGjAAgODsYwDAzDYPLkyRw5csRp19cnDmP+6gmqjuxH3T/X\noxKFEEJ4CrdWQ2mt+eMf/0iPHj249dZb7dsLCwvtbRmbN28mOtqJo6bDukGP3oTO+SnFXYOcdx0h\nhLiMuTVZHDhwgPXr19OrVy9+9rOfAVY32Q0bNnD8+HGUUoSHhzNnzhynxaD8A/Ga9yt8bDbwwKKl\nEEJ4Arcmi379+rFs2bIG2101pkIIIYRj3N5mIYQQwvNJshBCCNEsSRZCCCGaJclCCCFEsyRZCCGE\naJYkCyGEEM2SZCGEEKJZHjE3lBBCCM8mJYtazzzzjLtDaJTE1TISV8t5amwSV8s4Oy5JFkIIIZol\nyUIIIUSzvJ5//vnn3R2Ep4iJiXF3CI2SuFpG4mo5T41N4moZZ8YlDdxCCCGaJdVQQgghmuUxa3C7\ny86dO3n33XcxTZPJkyczffp0t8SRl5fHokWLKCoqQilFYmIit9xyC8uWLWP16tX2ZWZnzpzplinc\n586dS+fOnTEMAy8vL+bPn8+ZM2dYuHAhubm5hIeHM2/evEbXSneWzMxMFi5caH+ek5PDjBkzOHv2\nrMvv2eLFi9m+fTtBQUEkJycDNHl/tNa8++677Nixg06dOpGUlOS06oPG4vrggw/Ytm0b3t7eRERE\nkJSURNeuXcnJyWHevHn2ZTbj4uKcupZMY7Fd6u99xYoVrFmzBsMwmD17NkOHDnVZXAsXLrQv21xW\nVoafnx8LFixw6T1r6jPCZX9nugOrqanRjz32mD59+rSuqqrSTz75pE5PT3dLLAUFBfrIkSNaa63L\nysr0448/rtPT0/XSpUv1J5984paYLpSUlKSLi4vrbfvggw/0ihUrtNZar1ixQn/wwQfuCE1rbf0u\nH3roIZ2Tk+OWe7Zv3z595MgR/ZOf/MS+ran7s23bNv3yyy9r0zT1gQMH9P/+7/+6NK6dO3fq6upq\ne4x1cWVnZ9fbz9kai62p3116erp+8skndWVlpc7OztaPPfaYrqmpcVlcF3rvvff08uXLtdauvWdN\nfUa46u+sQ1dDHT58mMjISCIiIvD29mbs2LFs2bLFLbGEhITYs36XLl3o0aMHBQUFbonFUVu2bGHC\nhAkATJgwwW33DmDPnj1ERkYSHh7ulusPGDCgQamqqfuzdetWrr/+epRSxMfHc/bsWQoLC10W15Ah\nQ/Dy8gIgPj7ebX9njcXWlC1btjB27Fh8fHzo1q0bkZGRHD582OVxaa3ZtGkT48aNc8q1L6WpzwhX\n/Z116GqogoICwsLC7M/DwsI4dOiQGyOy5OTkcOzYMfr27UtaWhqrVq1i/fr1xMTEMGvWLJdW9Vzo\n5ZdfBmDKlCkkJiZSXFxsXys9ODiY4uJit8QFsGHDhnr/gT3hnjV1fwoKCrDZbPb9wsLCKCgosO/r\nSmvWrGHs2LH25zk5OTz11FN06dKFe++9l/79+7s8psZ+dwUFBcTFxdn3CQ0NdUuS279/P0FBQXTv\n3t2+zR337MLPCFf9nXXoZOGJysvLSU5O5oEHHsDPz4+pU6dy1113AbB06VLef/99kpKSXB7Xiy++\nSGhoKMXFxbz00kv2Oto6SimUUi6PC6C6uppt27bxve99D8Bj7tmF3Hl/mvLxxx/j5eXF+PHjAeub\n6+LFiwkICODo0aMsWLCA5ORk/Pz8XBaTJ/7uLnTxlxJ33LOLPyMu5My/sw5dDRUaGkp+fr79eX5+\nPqGhoW6Lp7q6muTkZMaPH8+oUaMA65uCYRgYhsHkyZM5cuSIW2Kruy9BQUGMHDmSw4cPExQUZC/W\nFhYW2hslXW3Hjh306dOH4OBgwHPuWVP3JzQ0lLy8PPt+7vi7++qrr9i2bRuPP/64/cPFx8eHgIAA\nwOqvHxERQVZWlkvjaup3d/H/1YKCApffs5qaGjZv3lyvJObqe9bYZ4Sr/s46dLKIjY0lKyuLnJwc\nqqur2bhxIyNGjHBLLFpr/vjHP9KjRw9uvfVW+/YL6xg3b95MdHS0y2MrLy/n3Llz9se7d++mV69e\njBgxgnXr1gGwbt06Ro4c6fLYoOG3PU+4Z0CT92fEiBGsX78erTUHDx7Ez8/PpVVQO3fu5JNPPuHp\np5+mU6dO9u0lJSWYpvlwJvoAAAWOSURBVAlAdnY2WVlZREREuCwuaPp3N2LECDZu3EhVVRU5OTlk\nZWXRt29fl8a2Z88eoqKi6lVdu/KeNfUZ4aq/sw4/KG/79u289957mKbJDTfcwJ133umWONLS0nj2\n2Wfp1auX/ZvezJkz2bBhA8ePH0cpRXh4OHPmzHF53XZ2dja/+93vAOvb1XXXXcedd95JaWkpCxcu\nJC8vzy1dZ8FKXklJSbz55pv2Ivkbb7zh8nv22muvkZqaSmlpKUFBQcyYMYORI0c2en+01rz99tvs\n2rULX19fkpKSiI2NdVlcK1asoLq62v67quvu+e2337Js2TK8vLwwDIO7777bqV+eGott3759Tf7u\nPv74Y9auXYthGDzwwANcc801Lotr0qRJLFq0iLi4OKZOnWrf15X3rKnPiLi4OJf8nXX4ZCGEEKJ5\nHboaSgghhGMkWQghhGiWJAshhBDNkmQhhBCiWZIshBBCNEuSheiQfvKTn7Bv3z63XDsvL4/777/f\n3j9fiMuBdJ0VHdqyZcs4ffo0jz/+uNOuMXfuXB555BEGDx7stGsI4WxSshCiDWpqatwdghAuISUL\n0SHNnTuXH/7wh/aR6d7e3kRGRrJgwQLKysp477332LFjB0opbrjhBmbMmIFhGHz11VesXr2a2NhY\n1q9fz9SpU5k4cSJ/+tOfOHHiBEophgwZwoMPPkjXrl154403+Oabb/D29sYwDO666y7GjBnDY489\nxocffoiXlxcFBQUsWbKEtLQ0/P39uf3220lMTASskk9GRga+vr5s3rwZm83G3Llz7SNxV65cyRdf\nfMG5c+cICQnhoYceYtCgQW67r+LKJbPOig7Lx8eHO+64o0E11KJFiwgKCuL111+noqKC+fPnExYW\nxpQpUwA4dOgQY8eOZcmSJdTU1FBQUMAdd9xB//79OXfuHMnJySxfvpwHHniA//mf/yEtLa1eNVRO\nTk69OH7/+98THR3Nn/70JzIzM3nxxReJjIxk4MCBAGzbto2f/vSnJCUl8dFHH/HOO+/w8ssvk5mZ\nyapVq/jNb35DaGgoOTk50g4inEaqoYS4QFFRETt27OCBBx6gc+fOBAUFMW3aNDZu3GjfJyQkhJtv\nvhkvLy98fX2JjIxk8ODB+Pj4EBgYyLRp00hNTXXoenl5eaSlpfH9738fX19frrrqKiZPnmyfGA6g\nX79+DBs2DMMwuP766zl+/DgAhmFQVVVFRkYG1dXV9kWBhHAGKVkIcYG8vDxqamrqraOsta430+iF\nC8qAlWD+8pe/sH//fsrLyzFN0+EJFQsLC/H396dLly71zn/htOpBQUH2x76+vlRVVVFTU0NkZCQP\nPPAAy5cvJyMjgyFDhjBr1iy3TrMvrlySLESHdvFCMWFhYXh7e/P222/blx5tzocffghAcnIy/v7+\nbN68mXfeecehY0NCQjhz5gz/v707RlEYCMMw/FUh2KjgHSztBCGHsEltJIiNIth4BBvJASwDsbOJ\nB/AS9mIjQsTCIgEjstUGRHCysMWyvk87TJuXzCT8WZYVwTifz6Uf+I7jyHEcpWmq5XKpKIo0Ho9L\n7QV+gmMofLRqtaokSYqz/nq9rlarpTAMlaapHo+HTqfT22OlLMtk27YqlYoul4s2m83Teq1We7mn\n+NZoNNRsNrVarXS73XQ4HLTdbovpde8cj0ftdjvleS7LsmRZ1p+bxof/g1jgo3U6HUmS7/uazWaS\npNFopPv9rul0qn6/ryAI3g66d11X+/1evV5P8/lc7Xb7ab3b7Wq9XsvzPMVx/LJ/MpkoSRINh0Mt\nFgu5rlvqn4w8zxVFkXzf12Aw0PV6LUbLAr+NT2cBAEa8WQAAjIgFAMCIWAAAjIgFAMCIWAAAjIgF\nAMCIWAAAjIgFAMCIWAAAjL4AiTG+YW5x1ccAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "util.plot_curve(loss_list, \"loss\")\n", + "util.plot_curve(avg_return_list, \"average return\")" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -477,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 38, "metadata": { "collapsed": true }, @@ -523,6 +837,7 @@ " Sample solution should be only 1 line. (you can use `util.discount` in policy_gradient/util.py)\n", " \"\"\"\n", " # YOUR CODE HERE >>>>>>>>\n", + " a = util.discount(a, self.discount_rate * LAMBDA)\n", " # <<<<<<<\n", " p[\"returns\"] = target_v\n", " p[\"baselines\"] = b\n", @@ -543,7 +858,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 41, "metadata": { "scrolled": true }, @@ -552,90 +867,84 @@ "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 25.12\n", - "Iteration 2: Average Return = 31.17\n", - "Iteration 3: Average Return = 30.07\n", - "Iteration 4: Average Return = 31.98\n", - "Iteration 5: Average Return = 36.77\n", - "Iteration 6: Average Return = 36.22\n", - "Iteration 7: Average Return = 43.52\n", - "Iteration 8: Average Return = 45.12\n", - "Iteration 9: Average Return = 50.86\n", - "Iteration 10: Average Return = 58.81\n", - "Iteration 11: Average Return = 58.87\n", - "Iteration 12: Average Return = 65.66\n", - "Iteration 13: Average Return = 69.72\n", - "Iteration 14: Average Return = 76.32\n", - "Iteration 15: Average Return = 77.74\n", - "Iteration 16: Average Return = 78.17\n", - "Iteration 17: Average Return = 94.97\n", - "Iteration 18: Average Return = 89.34\n", - "Iteration 19: Average Return = 98.15\n", - "Iteration 20: Average Return = 103.35\n", - "Iteration 21: Average Return = 106.54\n", - "Iteration 22: Average Return = 109.03\n", - "Iteration 23: Average Return = 113.63\n", - "Iteration 24: Average Return = 119.11\n", - "Iteration 25: Average Return = 115.67\n", - "Iteration 26: Average Return = 126.51\n", - "Iteration 27: Average Return = 131.33\n", - "Iteration 28: Average Return = 138.83\n", - "Iteration 29: Average Return = 143.7\n", - "Iteration 30: Average Return = 146.15\n", - "Iteration 31: Average Return = 146.41\n", - "Iteration 32: Average Return = 157.34\n", - "Iteration 33: Average Return = 160.51\n", - "Iteration 34: Average Return = 159.67\n", - "Iteration 35: Average Return = 169.42\n", - "Iteration 36: Average Return = 170.71\n", - "Iteration 37: Average Return = 174.41\n", - "Iteration 38: Average Return = 172.93\n", - "Iteration 39: Average Return = 173.29\n", - "Iteration 40: Average Return = 177.32\n", - "Iteration 41: Average Return = 177.14\n", - "Iteration 42: Average Return = 179.85\n", - "Iteration 43: Average Return = 181.82\n", - "Iteration 44: Average Return = 182.0\n", - "Iteration 45: Average Return = 181.89\n", - "Iteration 46: Average Return = 183.19\n", - "Iteration 47: Average Return = 183.87\n", - "Iteration 48: Average Return = 183.26\n", - "Iteration 49: Average Return = 183.27\n", - "Iteration 50: Average Return = 189.11\n", - "Iteration 51: Average Return = 181.45\n", - "Iteration 52: Average Return = 186.91\n", - "Iteration 53: Average Return = 188.84\n", - "Iteration 54: Average Return = 189.76\n", - "Iteration 55: Average Return = 189.51\n", - "Iteration 56: Average Return = 186.36\n", - "Iteration 57: Average Return = 190.55\n", - "Iteration 58: Average Return = 189.35\n", - "Iteration 59: Average Return = 189.84\n", - "Iteration 60: Average Return = 187.14\n", - "Iteration 61: Average Return = 191.82\n", - "Iteration 62: Average Return = 189.32\n", - "Iteration 63: Average Return = 190.74\n", - "Iteration 64: Average Return = 188.13\n", - "Iteration 65: Average Return = 190.99\n", - "Iteration 66: Average Return = 189.23\n", - "Iteration 67: Average Return = 186.98\n", - "Iteration 68: Average Return = 188.0\n", - "Iteration 69: Average Return = 191.68\n", - "Iteration 70: Average Return = 188.03\n", - "Iteration 71: Average Return = 193.07\n", - "Iteration 72: Average Return = 191.96\n", - "Iteration 73: Average Return = 189.53\n", - "Iteration 74: Average Return = 186.71\n", - "Iteration 75: Average Return = 190.05\n", - "Iteration 76: Average Return = 191.1\n", - "Iteration 77: Average Return = 193.49\n", - "Iteration 78: Average Return = 188.66\n", - "Iteration 79: Average Return = 191.49\n", - "Iteration 80: Average Return = 191.68\n", - "Iteration 81: Average Return = 193.19\n", - "Iteration 82: Average Return = 193.87\n", - "Iteration 83: Average Return = 195.04\n", - "Solve at 83 iterations, which equals 8300 episodes.\n" + "Iteration 1: Average Return = 26.73\n", + "Iteration 2: Average Return = 29.58\n", + "Iteration 3: Average Return = 30.35\n", + "Iteration 4: Average Return = 31.41\n", + "Iteration 5: Average Return = 32.59\n", + "Iteration 6: Average Return = 34.69\n", + "Iteration 7: Average Return = 37.11\n", + "Iteration 8: Average Return = 38.33\n", + "Iteration 9: Average Return = 37.64\n", + "Iteration 10: Average Return = 38.12\n", + "Iteration 11: Average Return = 40.68\n", + "Iteration 12: Average Return = 40.16\n", + "Iteration 13: Average Return = 41.06\n", + "Iteration 14: Average Return = 45.88\n", + "Iteration 15: Average Return = 46.71\n", + "Iteration 16: Average Return = 48.98\n", + "Iteration 17: Average Return = 42.03\n", + "Iteration 18: Average Return = 43.09\n", + "Iteration 19: Average Return = 51.08\n", + "Iteration 20: Average Return = 42.84\n", + "Iteration 21: Average Return = 48.44\n", + "Iteration 22: Average Return = 52.36\n", + "Iteration 23: Average Return = 47.93\n", + "Iteration 24: Average Return = 52.08\n", + "Iteration 25: Average Return = 49.84\n", + "Iteration 26: Average Return = 51.89\n", + "Iteration 27: Average Return = 49.26\n", + "Iteration 28: Average Return = 50.71\n", + "Iteration 29: Average Return = 53.88\n", + "Iteration 30: Average Return = 55.18\n", + "Iteration 31: Average Return = 54.39\n", + "Iteration 32: Average Return = 56.3\n", + "Iteration 33: Average Return = 56.19\n", + "Iteration 34: Average Return = 55.11\n", + "Iteration 35: Average Return = 54.54\n", + "Iteration 36: Average Return = 55.6\n", + "Iteration 37: Average Return = 57.24\n", + "Iteration 38: Average Return = 59.34\n", + "Iteration 39: Average Return = 59.58\n", + "Iteration 40: Average Return = 63.38\n", + "Iteration 41: Average Return = 61.38\n", + "Iteration 42: Average Return = 62.72\n", + "Iteration 43: Average Return = 61.87\n", + "Iteration 44: Average Return = 64.68\n", + "Iteration 45: Average Return = 68.04\n", + "Iteration 46: Average Return = 68.8\n", + "Iteration 47: Average Return = 74.53\n", + "Iteration 48: Average Return = 75.49\n", + "Iteration 49: Average Return = 73.06\n", + "Iteration 50: Average Return = 82.74\n", + "Iteration 51: Average Return = 81.61\n", + "Iteration 52: Average Return = 83.54\n", + "Iteration 53: Average Return = 83.64\n", + "Iteration 54: Average Return = 91.18\n", + "Iteration 55: Average Return = 99.76\n", + "Iteration 56: Average Return = 102.8\n", + "Iteration 57: Average Return = 106.76\n", + "Iteration 58: Average Return = 125.01\n", + "Iteration 59: Average Return = 140.17\n", + "Iteration 60: Average Return = 150.5\n", + "Iteration 61: Average Return = 161.18\n", + "Iteration 62: Average Return = 164.11\n", + "Iteration 63: Average Return = 169.09\n", + "Iteration 64: Average Return = 165.04\n", + "Iteration 65: Average Return = 161.85\n", + "Iteration 66: Average Return = 173.47\n", + "Iteration 67: Average Return = 167.83\n", + "Iteration 68: Average Return = 166.76\n", + "Iteration 69: Average Return = 171.62\n", + "Iteration 70: Average Return = 181.6\n", + "Iteration 71: Average Return = 182.21\n", + "Iteration 72: Average Return = 183.27\n", + "Iteration 73: Average Return = 187.42\n", + "Iteration 74: Average Return = 186.45\n", + "Iteration 75: Average Return = 187.57\n", + "Iteration 76: Average Return = 186.98\n", + "Iteration 77: Average Return = 196.64\n", + "Solve at 77 iterations, which equals 7700 episodes.\n" ] } ], @@ -658,14 +967,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXt8G/WZ7//5ypJs2ZKv8iV27g4Q\nEhICJDSElkAIbbct3WxgWZay55S2bNPS9jRs+yvZLrSnLDSUpSnQC+w5tN0Ftl1OgLy27e6rS6BJ\nW8LFJTgQQgi5x3ESX3SxZcm6zff3x3dmNJJG0ugykmw/739iSSPpka3MZ54745xzEARBEEQJsVTa\nAIIgCGL6QeJCEARBlBwSF4IgCKLkkLgQBEEQJYfEhSAIgig5JC4EQRBEySFxIQiCIEoOiQtBEARR\nckhcCIIgiJJD4kIQBEGUHGulDagkg4ODBT3P7XZjZGSkxNaUDrKvOMi+4iD7iqPa7evu7jZ0HHku\nBEEQRMkhcSEIgiBKDokLQRAEUXJIXAiCIIiSQ+JCEARBlBwSF4IgCKLkkLgQBEEQJYfEhcgKP/Y+\n+InDlTaDIIgpBokLkRVp+08hPfsvlTaDIIgpxozu0CcMEA4D1nilrSAIYopB4kJkJxoBOK+0FQRB\nTDFIXIjskLgQBFEAJC5EdqLRSltAEMQUhMSFyE4sCjBWaSsIgphikLgQ2SHPhSCIAiBxIbITiwDk\nuBAEkSckLkRGuBQH4nGAkfdCEER+UBMlkZloTPwbi4FLUmVtIQhiSkHiQmQmFkn8HI9Vzg6CIKYc\nJC5EZrTJfErsEwSRB1WTc+nv78fPfvYzSJKEa6+9Fhs2bEh6PBqN4oc//CGOHj0Kl8uFr371q+jo\n6AAAPP/883jppZdgsVhw2223YcWKFZX4CNOPqMZziUUANFTMFIIgphZV4blIkoQnnngCf//3f49t\n27bh5ZdfxsDAQNIxL730EhoaGvDoo4/i4x//OJ5++mkAwMDAAPbs2YPvf//7+OY3v4knnngCEuUH\nSkNM67lQWIwgCONUhbgcPnwYXV1d6OzshNVqxZo1a9DX15d0zJ/+9CdcffXVAIDVq1dj//794Jyj\nr68Pa9asgc1mQ0dHB7q6unD4MI2ILwlJnguFxQiCME5VhMU8Hg/a2trU221tbXj//fczHlNTU4P6\n+nqMj4/D4/HgvPPOU49rbW2Fx+PRfZ+dO3di586dAICtW7fC7XYXZK/Vai34ueWgVPZFRs/CK//c\n4myAtUSfeab8/syC7CsOsq88VIW4lIv169dj/fr16u2RkZGCXsftdhf83HJQKvv4yLD6s3d4CKyh\nqejXBGbO788syL7imE728cPvgr+2C+yvPw9mKU8gqru729BxVREWa21txejoqHp7dHQUra2tGY+J\nx+MIBoNwuVxpz/V4PGnPJQqEwmIEUdVIv/4l+K7/At57u9KmpFEV4tLb24szZ85gaGgIsVgMe/bs\nwcqVK5OOueyyy7Br1y4AwKuvvoqlS5eCMYaVK1diz549iEajGBoawpkzZ7Bo0aIKfIppSIxKkQmi\nWuHeUeDAPvHzH/67wtakUxVhsZqaGnzmM5/BfffdB0mScM0112DOnDn493//d/T29mLlypVYt24d\nfvjDH+LLX/4ynE4nvvrVrwIA5syZgyuuuAJ33nknLBYLPvvZz8JSJvdwusO1gkKeC0FUFfzVXQCX\ngOWrwN98BTwwBuZsrLRZKlUhLgBw6aWX4tJLL02676/+6q/Un+12O+68807d527cuBEbN2401b4Z\niTYsRp4LQVQNnHPwPS8Ci5bA8hd/A+mtPvBXd4Gt/2SlTVOhS3wiMxpvhZPnQhDVw/H3gbMDYGvW\ngc2eDyw4H/yPL4BX0dZYEpc84QffQvTQgUqbUR5o/AtBVCV8z4uA3Q522ZUAAPbB64DTJ4Bjhyps\nWQISlzyR/u1xTOx4utJmlAeqFiOIqoNHI+Cv/wFsxRVg9WIkE7v8Q0BtHfgfX6iwdQlIXPLFXgse\nCVfaivJACX2CqD72vQ4EA2BXrlPvYnX1YCs/CP7678Engxmfyg+8Cenpx8AnAqabSeKSLzY7MFPE\nJUbiQhDVhrTnJaC5DVi8POl+9qEPA+FJ8L4/Znwu/9PL4K/tAmrrTLaSxCV/bLYZ5LlEhJgqPxME\nkRXOuamL9bjPA7yzF+yKa8AsNckPLrwAmDUnY2iMcw7+zpvABcvBrOYXCpO45MtMC4vV1gHMQlOR\nCcIA/MX/gLTldlMEhsdi4M/+HJAksDXr0h5njIF9cD1w9D3wocH0Fzh7GvAMgy29pOS26UHikifM\nZgePzJCr+FhUeC42K4XFiBmB9JtnEP/HO8GDheUk+Gu/BzzDwMi5wp4fnkT0yMG0kmIeDEB65H+L\nXpZP3AzWNVv3+Ur1GN/7SvprH3hTHEPiUqXY7DPIc4kAVitgtVNYbJrC39gDacdTlTajKuBvvgq+\n4yngxGHwf3s8/+eP+4ET8rqPwROF2fBf2+H52mcg3XMHpN/9BnwyCD58FtJ3/z/g0Dtgt/0vWP78\nlozPZ20dwLxF+uLyzptARzdYe1dBtuULiUu+2GdOQp9HFc/FRp7LNEV6/ffgv/tNpc2oOPzsAKSf\nbgPmnwf2sZvAX9sN6bXd6ce9sQfS80/qNivyd/YC8v389MnC7Di0H5aOWUCdA/zfHof09dsg3fd3\nwLgfls3fgWXNtTlfg122Bjh2CNyTmGrOo1HgvbfL5rUAJC75Y5tBORclLGYlcZm2jPmA4MSMnsDA\nJ0OQfvxdwGqDZdNdYJ/8a6B3MfjTj4GPihM05xzSb56B9NhW8P/8f8DJI+kv9PZewNUEtLaLhkYd\npD/8N+Lf3AQeS89h8lgUOH4YdavXouabD8Hy9/8EtuIDQFcPLFseBLvgIkOfh126Rrye1ns5fACI\nhMGWXprhWaWHxCVfZlq1mNUqPBfq0J+ejPnkf/2VtaNCcM7B/+VR4OxpWP7262Bt7WA1NbB8ZjMg\nSZB+9gPRtPjzR8B3PAW28oOA1Qb+8ovJryPFwQ/sFSfv2fPBB/U9F77vdWBoUIxvSeXkUSAagW3x\nMgAAW3A+LJ+9EzV3fQ+s09gOFQDi2J554Hv3JN73nb1AjRUwKFClgMQlX+x2IB4Hj8crbYn5RBOe\ny0y+sp3WjPuS/51h8FdeAv/TH8H+4m/ALrxYvZ91zAK7+XPAe29D+ocvgO95Eez6m8H+9utgl6wW\nzYraC67jh4HAOHDRpWA9c4GzA2n/Zzjnqqjwg/vSbTn8LgDAdsGyoj8Xu3QNcPhdcL/YJcvfeRNY\ndCFYnaPo1zYKiUu+2GrFvzMhwa30uVBYbFrCoxEgJHdzz1DPBcfeB+obwD6aPlWdXbkeuPQKwO8F\n+8xmWD55iyj3XXMtMDEOvPW6eizf/wbALCKn0T0PiMeBc2eSX9A7Cign+3ffSns/fuQg4O5ETWvx\nK47ZZWsAzkWRgs8DDBwva74FqKKR+1MGu6apsIxXARUhFqWw2HRmLOGt8DEfWAVNqRihCaDeCcbS\nPz1jDJbbvw4ExsCaNdttl1wMNLdCevlF1Cilv/v3AgvOE/tUeuaBA+CDJ4QXo6CEwhYtAY4eBA+H\nwWrFxSrnHDjyLlhK133BdM8FOntEaMwu3qPc4kKeS74oHeszodclGgUjz2X6ohGXGRsWCwUBR33G\nx5nVmiwsAJilBuyKa4B39oL7PKIE+fj7YBddJg7o6gEslrSkPj/+PlBTA8uHNwCxmEiyK4ycE17N\nogtL8rkYY2CXXgG89zZ43+9FocHsBSV5baOQuOSLOg5lBiT1YxHhtVjJc5mWyCEaAMlCM5MITQCO\nhryfxtZcC0gS+Gu7RT6Dc1VcmM0OdHSnlSPz4+8DPfOAJSuAGiv4u4m8Cz9yUDy3tzTiAsihMUkC\n9u8FW3oJWJk39JK45AmbYZ4LrDbqc5mmcEVQrLYZLC7ZPZdMsK7Zolx5z4vA/jeEZzCvN/F4z7yk\nRkouScDxw2DzzwerrQN6L0gSFxx5V4TZtWG0YpnbC7R1iJ+XlDckBpC45I99Bg1ylPtcGHXoT08U\nQZk1W4R2ZiKhoLoTJV/YmnXA4EnwN15O9wx65gHDZ8HDk+L20BnhJc1fJJ67+GLg1FHwiXEAAD98\nEFh4QfowyiJgjIlxMMwCtmRFyV7XKCQu+aJUi82EXpeoHBazWUWMmJhejPlESKi1fQZ7LoWFxQCI\nnhebXfzfUPItymM9c0W3/plTAAB+XGyIZAvOE/9euFw8fvBtkfc5faKkITHVjuv/CpYt3wNrain5\na+eCxCVfFM9lmoeJOOfiP42VEvrTljEf0NgM1tgMzEDPhUtSwWExAGD1TrBLVidKkLV0zxPvoeRd\njh8WVVuz5LDX/POBWofodzn2HsAlsEWLC/0omW2sqwdbcH7JX9cIVIqcLzMl56KIic0mPjOFxaYd\nfNwHNDYBLiEuXJLKnvStKOFJ4T0U6LkAAPvLz4CtuVaUIGvp6BIXZXLehR9/H5jbC1Yjwl7MagXO\nXyr6XVxNYq3FggsKtqMamUHfpBIhiwuf7tViipgo1WLkuUw/xnxgjS1AY7OoKpLj/zOG0IT4t0DP\nBQBYc6tu/wiz1ADdc8BPnxBzxE4eBZt/XvIxi5cD506D/+lloGceWBF2VCMkLvkyUzwXpfRYDYvF\ndCfBElMYOSyGxib59gwLjSnTCYrwXLLBuucBp08K7yUaARakiIsybubMKVNCYpWGxCVfZkq1WFJY\nzCbfR0n96QKPRoHgRCLnAgBj3uxPmm7InotpHkPPXMA3Cv5Ov3ifFM8FPfNESAwATEjmVxoSl3xR\nq8Wmubgo4mmVw2La+4ipj9KR39isnuD4TKsYUz0Xc8SF9chJ/T07gQYXkLKki1ks6rgX1jv9PBdK\n6OeLbYacaOWwGLPZwVXPhfIu0wZZSFhjsxAYoCoqxvjbfwI/+DYsf3mb+e8VlHMuBfa55ESuGMPZ\n08DSS/Tnl117PdDcCrg7zbGhgpDnkifMYpkZ1VPasJiVxGXaMabxXOqdQE1NVfS68L2vgL/4q/Lk\n90z2XNDqVl87LSQmw3oXw3LTZ3WFZ6pD4lIAbCaIizYspnprJC7TBa4RF2axAM6m6vBcghNAPJao\n5DITVVycprw8Y0xMJwYq1mtSSUhcCoDV1k7/Dn1FSGx2MPJcph9azwUAGpuqI+eiiEo5KtdCE8Jj\nU4p0TEDJuyCD5zKdoZxLATB7rVi0NJ2hsNj0ZswH1DnA5F0fcDVXRVgMSh4k4AfQY+57yd35Zoak\n2FUfBVrcFRm/UmlIXArBXgs+Y6rF7Jo1A9P8M88klB4XGdbYDH7udAUNkim352JSj4sCm9cLppmW\nPJOgsFgBMHvttD/RqvvBtZ4L5VymDTxFXNAoPJeKN8rKeZByTGnmwQnzkvkEiUshzARxSe5zkR1c\naqKcPqSJS5P4m4dDFTOJc54Ii5VjM2YoaLrnMpMhcSkAZp8B1WKxREKfwmLTkHFfojMfEDkXoLJ5\nl0hEVIoBZQyLkediFiQuhWCfSdViiVJkPg0S+jwSBg9P879dDngsBgTGE4ICgKnzxSooLtry43KU\nRYeC025YZDVR8YR+IBDAtm3bMDw8jPb2dmzevBlOZ3rd+a5du/Dcc88BADZu3Iirr74aAPCLX/wC\nv//97xEIBPDkk0+WxeYZFRaz2adVtZj0zw8C4UnU/N0/VtqUyhGQT9ypORegssMrNeJSls2YFBYz\nlYp7Ljt27MCyZcvwyCOPYNmyZdixY0faMYFAANu3b8f999+P+++/H9u3b0cgEAAAXHbZZbj//vvL\najOz107/2WKxqFiCVFOjGVw5tcWFjw4Bb/UBp45V2pTKoh39oiD/XNFeFyXfYq813XPhkgRMFr4o\njMhNxcWlr68Pa9euBQCsXbsWfX19acf09/dj+fLlcDqdcDqdWL58Ofr7xaTR888/Hy0t5a0hnxme\nSzQhKtOkWoy/vFMsh5oYF6tlZyr+lAZKQHToA5Xt0lfEpbPbfDtKsCiMyE7FxcXv96vi0NzcDL8/\n/Uvl8XjQ1tam3m5tbYXH4ymbjanMiIR+NJJI5E+DsBiX4kJclG7skXOVNaiC8NTufMibERtcFc25\ncGUEfkc3EBgDl+LmvVnI5KGVRHlyLvfeey98vvQv7c0335x0mzFmarfszp07sXPnTgDA1q1b4Xa7\nC3qdiToHEI0U/HyzsVqtRds2Zq1B2F4Lt9sNHo9hCEC93QZnCT5zKezLl/Cbr8LnGUH9X3wKweef\nhisSRF0GGyphXz4Ua99EPIIAgLYFvbBowkIjza2whoNoLvKzF2pf0MIwDqB+fi8m3ngZbXYbLM2t\nRdmSyb6WWjtGATR2dGX8HlSKav/+GaUs4nL33XdnfKypqQlerxctLS3wer1obGxMO6a1tRUHDhxQ\nb3s8HixZsiRvO9avX4/169ert0dGRvJ+DQCos9qAeBzD586pO7GrCbfbXfBnU5DGx8FrahKvwywI\n+vyYLPJ1S2Vfvki/eRZwujC5Zj3w/NMYO3oYgd6lptvHz5wCghMl3ddRrH3SmUHAXgvPRBCYSIQH\n4w0uxEeGiv7shdonDQtvMtgoIhmjJ46BxaSibNHD7XbDe0ZMIxiPxREo83cxF5X4/5EP3d3dho6r\neFhs5cqV2L17NwBg9+7dWLVqVdoxK1aswL59+xAIBBAIBLBv3z6sWLGi3KaqqPOYotO4pFUbFgMA\nm3XKhsX4+Bh4/2tgq68BmlqBWkfZwmLSjqcg/cujZXkvw6Q2UMqwxubKV4vVWMFa28VtM0N0Zo/b\nJyovLhs2bMBbb72Fr3zlK3j77bexYcMGAMCRI0fw2GOPAQCcTiduuOEGbNmyBVu2bMGNN96olis/\n9dRT2LRpEyKRCDZt2oRnnnnGdJtVcdGpGOOeEfDxMdNtMBseiyY68wGRd5mq4vLa74B4DOyD14mw\nq7sDvFw5F783kaiuEvi4vrjA1VSezvhMBCdEDkSpXAuY9/9IXRRGCX3TqHifi8vlwj333JN2f29v\nL3p7EwPf1q1bh3Xr1qUdd+utt+LWW2811cZUEp5L+slWemwrWFcP2Gc2l9WmkhONpnguU7OIgXMO\n/ocXgAXnJ8afuzuB4bPlMWDMV9GRKrqM+dJW7gIQJ/XgBHg0CqZUCpaToDxI0lWGnhsloU+ei2lU\n3HOZkigVR3phMb8HPDBeXnvMIJYSFpuqnsuxQ8DgSbAPJnJtzN0JjJwrz5DGMT8Qnqz8QEgtYymj\nXxSULv0KeS9cHoGPBifALObaoYbFyHMxCxKXAsgWFkMoNCWv8NOI6oXFpt7gSr7nRcBeC7bqqsSd\n7k4xvsfsRr1wWHgtnFfNuCAejwOBscw5F6ByvS4hERYTmzFd5tpRhkVhMx0SlwJIhMWSRYRzDkxO\nI3FJCovZEmP4pxB84Diw8IKkGVLM3Sl+0Mm78MPvIvzGK6V584Dm5DhZJaGxwJgQO92cS4WHVyo5\nFwBobAY3NSxm/qKwmQ6JSwEkPJeUq9FIGODSlO9kBwDEImBpYbEpKJreUbDmtuT7ZHHho0Nph0vb\nf4bxnz5cmvfWnhyrJe+iN/pFodIjYEITYEqYyuzigiDNFTMbEpcCyOS5qHHc6eK5pIbFqkA0+ZkB\n4Y0YOVaSRLVWS0ojXgbPhcfjwMmjiI8OlSZHoj05VovnogiHK7O4VKwcWeO5MFcTYGLVJS/DFsqZ\nDolLIdRmqBablMVlKia+U4mlh8Wq4XNJv/w/kH7+iLGDA2NiP0iK58LqHICzMT0sNnhSXpg1WZLy\n4SQPYHLS2HPCYfBgoOj3zvj6OqNfFFhtnRgaWQHPhcdiwvN3JMJi5uZcaGil2ZC4FIASLuKp1WIh\n+ep0WnguOtViVeC5wDcKeIaNHwuA6Y0QcXem9brw4++nPbcoxvMPi/FfPA7pB98u/r0zkUVc1Psr\nUS2WWr3lbARCE+bl+chzMR0SlwLIWC2meC7VcBIulmg0MbASqBrPBWM+YNxv7KTjlYebpuZckChH\nTuLEYc1zSzB+QxNe4kY9l4NvGRfPQhjziYuGTFftjc2VybmEZG9NTeibPKWZFoWZDolLAWTMuUxO\nD8+Fcy57LglxYVZ7xcWFx+PAhNxDZMCz4MoxOuICdycwOpw0eZcfP6w2F3JvKTwXXyJvNZl7xD8f\n8wKjQ4mreDPwe4DG5sxVUq6mylSLyWFIpuZcTC6LDgVpIrLJkLgUAKvV91zUHSHRaHU1zeWLssc8\nyXOxVt4jU8poAcBnYOWCzyOa8Zp09v24O8XnlF+HR6PAwHGwiz8gHi+BuPBxP9AmFw+EDXguRw+J\nfyNhIaQmwEeHgbb2jI8zs3MdmUid9eUyr6GTFoWVBxKXQrBl6NBXrk65BJh0cigLiohUW4e+5oqa\nGwlb+UbFVbrO5Oq0XpeB42L+2KILYWlqKU3ORTtmxUC1GD/6XuKGAU+nIDxDYG0dmR+vdwLBQPkv\njoIp+1XksJgZc/p4KCgvCiNxMRMSlwJgFosId6TmXLThjKnYE6KghPW086WqTFwMh8Uy7QNRel1k\nceEn5GT+/EWwtLWDG/GMcjHuB2tpE787I+Jy7FDihgmhMR6LijyU4k3p0eASkxjKvMZbrZBziIG0\naqm0GZ6L+l4UFjMTEpdCsdWmn2y1J5BKh5CKQflcSWExe8U/E9eeaIyErbxZxKW1HWAs4bkcf1+E\nYlrbYWnrKDqhzyVJhJdcTUBdXc6wGJfiwgYlhGeG5+IdFV51lrAYGuST+0SZ5+OlhsXqHOL7Z0LP\njaTkd8hzMRUSl0Kx29M79LUnhKmc1M8SFqtoLklbRmtEXHwe4TnowGw2sdtF8VyOHwbmLQJjDDWt\n7cWHxYIBQJKEuNQ6cnsuZ04DkyGwCy8Wt0MmNF3KEwmyhcVYg0v8ECy3uEwIsa9zCDsYk7v0Sy8u\nfII8l3JA4lIoeiPop4vnIn+upLHrStVTJYdXjsnVV91zE5VgGeCRsLj61qsUU5B7XXh4Ehg8BTb/\nPACApc0NBMbFaxSKclJsbAbqHOA5+lz4MTnfsuQS8W+o9Dtg1HE3WXMu8gl3wrxGTl2CE2LWl0Vz\nSnI1iaKIEpMIi5HnYiYkLoVis4NnqhYDprbnoobFUva5aB+rBGN+kaBvacvtufi94t8s4iJ6XYaA\nU0cBLoHNXwQAqFFOvsXkXZQZXq4mcTWey3M5dkhMBJ4ndhhxM8qRR4eEd9CaZT+74rmUOywW1Glq\nbDSnLFpKLR4gTIHEpVDstdPYc1HCYilNlEBFRZOP+0Sit7lN7M2RsuxXl8WHpc4V0+LuBHyj4Iff\nFbfnCXGxKGt2iyhHVif6NjYDtQZyLkcPAfPPT5zwzJhFNjIENLeBWbMsApPFhZfZc9Gb9cVcTaL8\nvNTvRQn9skDiUig2W3rOJRTUlClPYc9Fsd2aUi0GVNhzkdfztrhFqXeWkIkaNmvKHhYD5+B7XxEn\nXTn5r3guuUJvWVGKDwx4Ljw8CZw+Abbw/MQJz4SEPh8dyp7MBxIJfRPnm+kSmkj3JFxiFE2p83yJ\nnAuFxcyExKVQbDod65PBRPPXlC5F1kno26pBXPxgjU0JbyRbRZciDFk8F7XX5dghQA6JAYBFOQEX\nUzE27hchKKdLDITM5rmcOCzCcgvOFx4xs4iR8KVmNEePCyC8rJqaCoXFUk72jU2iJNpIA2oeSMEJ\noMaa/P0mSg6JS6HYa/U9F0VcpnJYLJYeFlNDKRX6XJxzccJWPBcge0WX1yP+RtlCH+5Ev4eSzAcA\nS32D8DaKyrn4AWcjmKUmt+ei9LcsOF9USTkcJfdceDwuxDJbjwvkKq16Z/kT+qGgOvpFxWnOfDEe\nDNCisDJA4lIgTK9aLBxKTJudwmExrjZRppQiA5XzXIIBMa5Fybkgx/wvv0eEurKdQFpaxRUsADZv\nUfJjzW3GpgBkgI/7Et+FWkfWqcj86CGgvUvkGACgrr70TZQ+jyiNzhUWA0TepRLVYvXOpLuYMryy\nxEl9ruclESWHxKVQbPakLmYudzUrJwhe6W72YtDLuai5pAp9Lm2C3NUkQjdZxIV7R4EMPS4KzFKT\nqJyanyIuRirSstrrS3ixdQ4gFsv8nTh2SITEFBz14KXOuYyKfh7mzhEWA4AGp6k7ZVLJOOvLVbzn\nwkNB8DMDSfdJEwFK5pcBEpdCsad4LsqV6bQIi8m9LKnjX4DKeWSa9bzMYhENkNlO/r5RsKYslWIK\nHbOE1+BsTLqbNRcpLuP+hCdSWyf+1ckdcO+oCFeliEupPRc+Ive4tBoRF1d5cy6TIXnWl05CHyiq\n14U//RNI990JHk6EsPlEgDyXMmDNfQihS4rnop4MVHGZumEx6IbFKttEqe4YUX6/LW0Zq7k45yIM\nlK0MWcZy02f1E8YtbmDMCy7FhYeTL0p+CFC7zjEZSvSRKMjNk0meS1196TvTPUoDZe6wGKt3gp8+\nUdr3z0YoQ9+JSxb8An8X3DMM/qc/isrCg/uAiy8X9wcDxkSWKAryXArFZk+uCJtMFZcp7LnohsUq\nnHMZ14x+QQ7PIjAu7MzWnS/Duucmn9gVWlpFjqKAeD+PRpKLO2oVcdHxXI4eEnmfuQsTNjnqS9/n\nMjIENLWqW1Sz0uAsbymyOusrpc/FXiuEuVBxeek3gMQBey34W33q/VJwguaKlQHDnsv+/fvR0dGB\njo4OeL1ePP3007BYLLjlllvQ3JxhZep0xm4H4nHweFyMdJdnQTFXEzgwtT0XxTuxar4eymrnWBQV\nqbEZ84kSXad85d/iBva/Ac55etJeWW+cI+eSDdbiFn9H76ghkUpCO/oFAKtziNfSyaPwc4NAZ3fy\nSd9RX/pqMU/2PS5JNLiAUBA8FgOzliG4kclzAeTlZfmLC58Mgf/ht8Clq8Xtt/rU7woPBqg7vwwY\n9lyeeOIJWOS5P//6r/+KeDwOxhgef/xx04yramzKNko5lqtcaTY4RbJ5qnsuNnvySbsaci6uxkSI\nqqVVhLP0ZnD5Mq83Nozy3ELyLtrRL0DWnAsCYwkPR8GMarGRc7l7XBSURkoT5pvpkm0ci6tJnYbN\njx1CfNs9iH//7pwvyV95CQj390lyAAAgAElEQVROwLL+z8GWXy6+EyePgkuSGK1DCX3TMXxZ4vF4\n4Ha7EY/HsW/fPvz4xz+G1WrF5z//eTPtq17s8pVmJALUaap7HPViJtdUbqKMRZNDYkDFS5G5Mr5e\nQel18XrSSlizrjc2Skui3DlvT03xXLTVYoB+qGtiHJg1J/k+h0Nso9TxHHgsCinPkz6XJMAzAqy8\n0tgT6jVj91OFzwS4Ii56oSpXEzBwHPGffBfY+4q4j7FExEDv9SQJfOd/iCKJ3sVgnd3gjIHvex2s\nvYsWhZUJw56Lw+GAz+fDgQMHMHv2bNTViauxWCWn5FaS1Ct55Uqzrl7kJ6ZyWCwaSa4UAzSzxSr0\n9x7T9I1AzrkA+l30irfRVES41tkociEFjIBJmisGiH0uEKGaNAJjYM6UJH+dfOLT6Y3hz/wUns3/\nU6xlNorfK3qEDCax1bH7Jeh1kV75HaSf/iD7QeouF2faQ6yxWQzcPNAP9slbwDb+TyEOE1lmjr3V\nBwydAbvuz8EYEx7kwgtE3iV1bwxhGoY9l49+9KPYsmULYrEYPv3pTwMADh48iJ6eHrNsq27sclhM\nqRhTPJc6R1Us1iqKaDR9NIbquVQuLMZ6FyduK56FT8ez8I0CrqbsAxpzwCwWsWiskEbK8ZTKNsVz\nSQmLcc5F4jy1gkwJ2YSCaY/xoUHEzw2C/eG3YOs+YcyefHpcgJLOF+N9fwD27wX/H3dk/nuEMs/6\nYld/DGjrALvqo2CuRvA3Xhb5qzEf0Nii+3LSzv8AWt1gl65JvM7yVeDPPwmcFT0vadMAiJJjWFw2\nbNiAyy+/HBaLBV1dYi94a2srNm3aZJpx1Qyz2ZMT98pyp9o6kQifyp5LtrBYpURz3J9YfQskNkzq\n5ES4z5OzgdIQLW2FrTse94uwqZJrqc0QFgsFRZlsiufCHJkLABAQ/Sf8P/8f+JXXgdXW5jSHjw6L\nHwznXJTJyOPFF2+cHRDbL4fPAbNm6x8TnADstbrFA2zuQjBNJZ36HciQ5OcnjwDvvQ12421JYTN2\n8eXgzz8J/tpucQd5LqaTVylyd3e3Kiz79++Hz+fD3LlzTTGs6rGnTD+eDAJ1DnHFa7PnF7bQwMd8\nZR93nmaDXlispkZUa1Ug58LDk+KqXxsWs9qEZ6AXtiqkwksHUe5cgOcyJlYDqAUR9loxxDI1zKU0\nKjYkN3CqYTG94ZXjftT0zAX8XvDd/2nMHmWVs9HeDnXVcXHfQx4JJ9576EzmA0NB49Vb8kgYnqFE\nnL/2e8BqA/vQdckPdM8F2jrEBGyAEvplwLC4fOtb38LBgwcBADt27MDDDz+Mhx9+GM8995xpxlU1\nSrVYRFMtppwU9OaOGUT65wfB/63CFXix9LAYYwywWSvjuYwl97iotLTpzxfzexI5mWJoaRP7XvIc\n+c7H/MlCyJjwYlI9F9kLYQ0puQblqlrXc/GjduWVwIUXg//Xs/p5nFRGh0SY0ICXA0CzjbLILv1z\ngyI/AhHOywTXWxSWCeX3mqn3xTMMtLaDpc4pYwxs+aqEwJPnYjqGxeXUqVM4/3zRbPbiiy/iW9/6\nFu677z688MILphlX1aR6LiHNbCSbrfArfL+nuD0ipSAaTe5xUbAW8bmKQR39klK51OJOC4vxaFSc\neJoNjH7JRXObyKnlm3sY9+mUFzvSS5GVpHRqQl/+HqVuo+ThMBCJwNLYDMuffwoIjIG/9Ouc5vDR\nYeMhMcgz1xwNiRLhAuGDJxM3soiL7i6XTDgaxHczk+fi92T82zO5Q199HcJUDIuLcvV29uxZAMDs\n2bPhdrsxMVGmWvhqI2UzI5fDYuKxwj0XhMPmbCHMB7nPJQ29HTblYFzfc2HNrYAvJWzlV3pcSiAu\narlznmKvnSumUJs+dp8HcoTF0jwdcbVuaWwRxQ3LVoL/9vlEKW8mjOxxSaXBWbzncnZAhFJ75oFn\nC4vl4bkwxtQlYrr4vWBN+ol+nH9RIv9FnovpGBaXCy64AD/96U/x5JNPYtWqVQCE0LhcrhzPnKbI\nYTGuVouFEuJitRUePopUgbjohMUAFPe5iiAxVyw1LOYGAuOJFQFASbrzFdSlZHl4kom9M+meC0/z\nXOSTdwbPJa2JUV75q3hwlj//FBAMiJ6OTPZIkgiL5S0urqJzf/zMKaC9E6xnngiRZSI0kV/1lqsp\nUe6dit8rhprqwGw2YOkK8T2mRWGmY7ha7I477sCvfvUrNDY24pOf/CQAYHBwEB/72MeKMiAQCGDb\ntm0YHh5Ge3s7Nm/eDKczvd59165dan5n48aNuPrqqxEOh/H9738f586dg8ViwWWXXYZPfepTRdlj\nmNR1xqEgoFwxFeO5RML6IalyEo3ql41WLCyW0pSooO2i75gFAODeEnTnK8ieS16NlMEJUQGWKoS1\ndek5FMVzSckPwF4LWCyJCkSFccVzkcfKzOsV3svLO4FP/rW+PeN+8TczWoasUN9QvOdyZkA0iHZ0\nA31/BI9GxQk+lXz3qzQ264bF+GRQhB6bM3guACwbboXzQ+sxQYvCTMfwWczlcuGWW25Juu/SSy8t\n2oAdO3Zg2bJl2LBhA3bs2IEdO3bg1ltvTTomEAhg+/bt2Lp1KwDgrrvuwsqVK2Gz2XD99dfjoosu\nQiwWw3e+8x28+eabuOSSS4q2Kyc61WJMDmcwmy35atogXIqL15us8DxRvWoxALBaC66CK4oxH1Df\nkHZiYi1tomTXlxAX+JX1xiUQF+ViIZ+wWKbigzpHugc0MSY+V0qnOWNMhMZSxIjLnotFWywwfxH4\n/jcyn7jlaq18w2KswQXuKWJZWjwOnBsEW7YS6JwlypFH0suROef55Vwgz+8b1JnarJSNZwqLAWCz\n5sCx7BJMjBSxwpowhOGzWCwWwzPPPIMvfelL+NSnPoUvfelLeOaZZ4ru0O/r68PatWsBAGvXrkVf\nX1/aMf39/Vi+fDmcTiecTieWL1+O/v5+1NbW4qKLLgIAWK1WLFiwAKOjZUqG21KbKEOahH6BTZTK\na4UnRTijUug1UQKVy7mkdOeraEa0qHg9ws5Ub6AAmNUm3jefAovxlLliymvpVYtN6DRQKujtdBmX\nxUU7ecAtjzMZHdJ9Ge7Js8dFodjJyMNnxVSAWXPA2mXh10vqRyLC09Ppzs9IYzMw5k+v4vN7AcDY\nHh/CdAx7Lk899RSOHDmC22+/He3t7RgeHsazzz6LYDCoduwXgt/vR0uLuNJobm6G358eS/V4PGhr\nS1yJtra2wuNJbm6bmJjAG2+8UXSYzjBqQj8sX31pci42W2Gd7JHEQiOEJyuXdNRrogTknEv5m0P5\nuD+ruCgnfy7FxRVtc2vp9qM3Zyh3zoQ6ETl3tRgPjIsxM3rUOdKqxTDuB2pqRJltSHxXWHuX8N5G\nzgJdOtMylCVhRiciK8gLw3SnThvhzClh36zZiZDl0Jn08GKW7vyMNDaJ72hKfww34LkQ5cOwuLz6\n6qt48MEH1QR+d3c3FixYgK9//es5xeXee++Fz5ceI7355puTbjPGCvoix+NxPPzww/izP/szdHZ2\nZjxu586d2LlzJwBg69atcLvdeb8XILyk9o4OnLPa4LDWwOlyYohLaGhrR4PbjfHGJoRisbxfPx6P\nQHHWW+sdqGkr3L5CPxsAnItF4WhshCvlNbz19eCRMFqLeO1C7BuZGId17kI06zxnyFGPutAEHP4R\njP3ke5COHET9J25Ks71Q+3yzZiN67BDa2toMfTeDUgzjAFrnLUSNJjQ33tyCUHgy6XOPhkOwtLSh\nRcdWj6sJLB5NemwsFkG4sRk2m019nbjlQowAaAgFUK/zOmMTY5h0NqJ9dn7NzhMdnQhIEtoa6mHJ\nc1SK1WpF/ZgHAQBtF62Apb4BQ04X6sY8aEyxMRYaxyiAxs4u1Bn8m4W652AMQIvVAqvmOROxiHjP\nhYtgySTaKP7/h9lUu31GMSwu+TaSabn77swjspuamuD1etHS0gKv14vGxvQvRWtrKw4cOKDe9ng8\nWLJkiXr78ccfR1dXFz7+8Y9ntWP9+vVYv369enukwLir2+0Wz7XZEfL7MTkgrtIm4hJCIyOQonHw\nSDjv1+dymTcAeAYHwHhhV9+qfYUSiSAUjSOc8hpxDiAUKu61C7Av7h2FdP5S3efwplaEfv/fCP3n\ns2Ik/+1fw+SqD6XZXqh90gXLwF/bjZE3XgWbf17O50pnTgOMwROJgWlskDgDnwxheGhITHEAEPd5\nwNq7dD9X3GYHxnxJj8WHh4B6J2KxmHo/lzhgsyNw/AiCeq9z8iiQ4T2yfg75uzd68jiYO/MFmx5u\ntxsTh98DmtvgCYaAYAjc3YXQiaOIpNjBB08DAMbjEgIGbeRM5Ki8J46B2R0JmwcHAKsNo6Ew2GTm\n1yr6/4fJVLt93d3dho4znHO54oor8MADD6C/vx8DAwPo7+/Hgw8+iNWrVxdsJACsXLkSu3eLeT+7\nd+9Wy5y1rFixAvv27UMgEEAgEMC+ffuwYsUKAMAvf/nLokNzBWOXq8ImUyat2myAJImkZj5ow2IV\nKkfm8bhIvuolhysw7ZnHoiL2rxcWA4D2LjFZeO1HYbn3x7BcflXpQmKAGH5YYxVjRYww5gMaXOnj\n4JWQaUQTGpsYz5hzYXXpfTEIjKWF0ZjFArg7wYfPQpczA2BdGWZ6ZUGdjFxg3oWfOZWUvGcd3foj\nYNRx+3l4R2qXfko0xO8BmlpK+vcnCsew53Lrrbfi2WefxRNPPAGv14vW1lasWbMGN954Y1EGbNiw\nAdu2bcNLL72kliIDwJEjR/DCCy9g06ZNcDqduOGGG7BlyxYAwI033gin04nR0VE899xz6OnpwTe+\n8Q0AYnrztddeW5RNhlFKjpUtlNrxL4B4rMaR4ck6aE88lep1UcRDR1yY1SZO9uVETmKnlfbKWG79\nIhAOgaXuRCkRrMEJLLsM/E9/AP/LTyeWlWWAnz6h38CpDLGcnBT7f2JR8TdO7XFRcNTr9Ln4wXrm\npx/r7hSDIVNtmQyKfFSmgZHZKGK+GOccODsAdmUiSoDOWUDfH9Kq2rgiXnn2uQCi/0krI9zvLU3z\nLFESsorL/v37k24vXboUS5cuTUryHTx4UK3YKgSXy4V77rkn7f7e3l709vaqt9etW4d169YlHdPW\n1oZnnnmm4PcuGpsdPBIBUz0XTUIfEFVXdfmIS+U9F7XKzapXLWZ+n4v0u98AYz7RIAhoRr/oiwtr\nNT82zS6/Crz/NeDQO8Di5RmP48cOAYffBfvL29IfTF0Yppy0U7vz1eN1Vh3rba2EnNR//5305PtZ\nEXIqxHNRPaoCel2kkXOieEErah1KOfLZ5OVo6n6V/MUlbTKy31uYkBKmkFVcfvKTn+jer3yBlS/z\nD3/4w9JbNhVQPBflhKHnueSDRlz4ZKgyu+oV8dDtczG/Q5/v+i9g8CSkWXNgufyqjKNfyglbfjl4\nbR34678HyyIu0m+fAxwNYFd9JP016upEVZcyODGQoTtfwVEPRCLqNkouxYUg6SWq2zvFdzAwDrgS\nj3N5dwkKERe5lJtPBPL+HsYGjgNAkjfJOrrF5x86kyIu+YfFWE2N+L2lDq/0e7L+fYjyklVcfvSj\nH5XLjqmJ3S7W0aZut1NOzHmWIyeNB6l0WKwCHfpK4x0A8Kd+DL7wAs3oF/PX7WaC1daCrfgA+Bt7\nwG/5vO70An5uENj7CthHb0iER7WoO13kv7E8tJJl63MBhBhZXUJYOE8SD9U+t6YcWfv4mdOi0789\nv4Q8AE1YLNlz4adPAsODYCsy51pjA3KDo1ZEOkUSmJ8bTBar4ITY+GnPcxyLqzlp7D6PhMVrURly\n1VDhVvApji0loa926CueS54n4moKi2VqojTTc5Eb79gnbgY4h/R/H0p0XVfQcwEA9oG1Irn9zpu6\nj/P/3gHUWMGuvV7/BVLDYrk8F3Wni3xlr1yl63ouYsdSalKfnx0A2mcVtJGT2WvF3zsloS/9x9OQ\n/s8/gWdpno4PHBdhNc0FAWtwCW8opZGSnz5RWBK+MWV4pdxASTmX6oHEpRjstaLDWPFc1MGVxYfF\nKiYusrelO0pE9lyKKUvPitJ4t+wysFu/CBw5CP7CDrGlMJ/clRlcuAJwuhKbDDXwMS/4nhfB1qzL\nPJFXtp/LYTGeaVGYDHOkiJFc2JA2bRkQCX1AiLOWswP6jZVGaXCmJ/SPHxbf+YFjGZ8WGzgOzJqd\nLhid3UnTkfnwWWD/G2BrknOpRmCupuScizwNO+Pvnyg7JC5FwGx2cTKeDAFWa+KErE3o50NYFpc6\nR/rWwnKhJvT1Z4sBAIoc+ZMJLosLumbD8oG1YFdcI67wK+y1AACzWsEuuxJ83+tpC7r4i78WHtd1\nGzK/gFotZjTnIucglAuXgFI1pxMWq60Tv6ORRMUYl+LA0GBhyXyFBldCBCFPp5bHyfAj72V8Wmzg\nhG71HuuYlVSOzHf9J8AY2FUfzd+2TJ4LjX6pGkhcisFmF1dx2i2Uyv1AYZ6L1SZOLHpbCMuBWoqc\noVoMMC/vcmYAaG5Tx6+zWz4vQj75zsUyCXb5VSLHtu919T4+GRQnyUtWg2XzEhTPK6zJuVhtwvvV\nPT55GyXPFhYDgPau5LDYyJC4CCimeqq+IdlzOXEk8fORd3Wfwsf9QoT0RK1jFuAZBo9GwMNh8D++\nAHbJFYWtR3A1AcEJdZAq9yniQp5LtVDh2e5THG3ORTsbqVDPJRIWJ5s6B3jquPVyka1aTBEck8Ql\nrfGurh6Wv/8noJJDPLUsWgK0uMG3/xzxV3eB1TnElX1wApaPbMz+3FqdnIvTlTnXIIfFeCgoEuCK\n55JBXJi7E/yw5oQvV4oV67kkeUMn3gcYA5asAD+awXNRZ4rp9B11dIuihJFz4O8fAIITYOs+UZht\n2nXHrW4RFqupySy+RNkhz6UY7MJz4aFgcj+LehIuwHORxaUqE/pKqMyELn3ReHc67aTEnI0Ze1zK\nDbNYwDb+jbgCH/eDDxwTHfCXXwW28ILsz62pEb9Tbc4lU6UYkPBctGExR33m5Hx7F+AZUZtcE2XI\nhedcWErOhR8/DHT2gC29FBgdSgyK1MDPyO/brRMWkyvGcG4Q/He/AWbPB85bknacIduUwaBKaMzv\nBVzN6mgdovKQ51IMNjsQDSeP2wfUq34ejeTXIxCeFLH5CuZceK5SZMAcz8U7Ij5zlTfBWVZfA6y+\nprAna8fuZ5uIDCRyLkp4dDx99EsS7i7RpOgZFh7C2dOAqylzqbMR5MnIKieOgC1eBrbwAlH6fPQg\ncOma5OecPi4+Z4tOc6s8HVl6eScwcBzsf3yp8FEtysQGOanP5dEvRPVAMl8MdrsI2QTGEmEPQFMt\nlt9JmEfC4jV19q2XjSxhMbVgIWpCQl++4jVrjEtVoB27n8tzsduTtlHygD+ruDC5HFkZA8PPDBQv\n1PVOkWOKRoSX4hsF5i0C5vaKxXFHDiYdziUJ/M3XYF92ma4HwRpc4jP3vwbUO8EuX1u4bbI3q/a6\n0OiXqoPEpRiUhWHjfjCHTkI/3yt8OSymO7SwXBgJi5nguaiVYlXuuRRFbV2i0iwwBpapUgyabZRK\nB3uG0S8qqb0uZwsbWJmEdr6YnMxn8xaJi4x5i9LEBe+/A/hG4bjqw5lfU/Ze2AevA6vNUMxghNTh\nlX4vlSFXGSQuxaB0FY+PpVSLFZibiIRFSMFRSc/FQFjMjMnIZwbkxrvqyK+Yguy5cM5Fc2KukJWj\nPiksxrKFxZpaxN9n5Cz4+JgQo6LFJTEZWSTzLcCcBQAA1rsYOHEkaZApf203UFuH2ss/lPElWccs\nUX589Z8VZRqrrRP5yTGfaOgc91MZcpVB4lIMysmWS4mhlYCmFLmAPpeqSegXVi3GY7GCJifzs6f0\nG++mE0q4MxQUq32zeC4AAEc9eCgkxGjcr9vjopAYvX8OOFeCSjHICX0AmAiIZP6s2WozK1u4WHwP\nTh4FAPBoFPyNPWCXrBYn/kyv+ZGNYLd9NRHGK4bGZvF7GVO688lzqSZIXIpB26Og8VxYTY2Ilxfg\nuTB7rTgJxWNqDX9ZyZrQV5oos4jL/30I0j8/mP/7nhmY3vkWIHHRkKM7P3G87LmEJ8XvPFeZbXuX\n8FzOFF8pJuxTJiOPAScOg81blHisV1THqaGxd/YCwUDOPAqbswCWKwosiEjF1SRyLnIDJSPPpaog\ncSkCps1LpO4AL2QOV0SpFlMa6CrgvcSiYkaWXkmngf4dPnAckMe/G4WPj4kr0GLDOFUOq60TFXFy\nd362nAsAeadLMDFXLMfwTubuFCNgzg6I719be3EGK5ORT58Uqw/mJ8SFNbeJ5lZZXPhru4V9F15c\n3HvmQ2OzqBaTR79QtVh1QeJSDNpJrqmzrwrZ2qjtcwEK6tLnwQCk4ETuAzMRjeqHxAA1LJYp7MU5\nFxVFgfHEOA4jZGu8m07UOcRUZHkicq6cC6tzCHFRxciA5xIKCm+iY1bOxWY5kcNi/EC/eH+t5wKI\nkuSj74kpBfteB1t5JZi1fN0NTB4Bk+jOJ8+lmiBxKQZbIiyWNma9kPH0cikyS52gmwfSo/+IsR9v\nzft5KtGIfqUYoEnoZ/hcoWCi1HbwhOG35GdnQKUYANQJz4XnmiumoIwBCuQY/SLDlNH6Rw8VXykG\nCA+aWcSoF0sima/SuxjwjojZatFIcaXFheCScy5+j5gcUCXNtoSAxKUYtFf4jlTPxZ6X58LjcTEL\nyl6XPp7d6GuEJ4GjBxE/N5j74EzEovr5FkBTipzhc/lGE7YMGBcXnBkQHltrkWGcaqfWIRL5Shgn\nV87F4QAmgyJsCGRN6AMQjZSAKDApgVAziwVoaBA2d88V+UDt4wsXi7f7r+0iRNa7uOj3zIvGJkCS\nwAdPAs5GkeskqgYSl2JICouley48n7CYMm4/KSyWp+dy/H3xn02ZQ1UI2cJi1hxNlN6EuOB0Hp7L\nmVNA1+zpP7pD+buODIkr7YYc2xfrxDZKVYycORamKaP3gdLlr+S8S2pIDIDwZOx2IDwJ9oG15a/0\nUzyVU8coJFaFTPP/zSajCYsVndDXEZfU0e65UAYXSuOFiwvPFhbLMRWZK55Le5dYAmWUMwNg0z0k\nBiT+rqNDYh1yrpyI8p0aPiu2NaZ+x1JgdQ416V+SsBiQyAvNTxcXZrWKjn2g/CExaHbbDJ+lMuQq\nhMSlGGxZPJd8E/pKrsJemzZu3SjKpFo+MS72eRRCLJY7LJbpc8meC1t6KTB40pANfDIk5mFN92Q+\nkOj/GB3KnW8BVDHhw2dF2MeIZ6D0jyhDIoulQfFcztN9mF15Hdjqa8B65pbm/fJBk2Oh7vzqg8Sl\nGLJWixXmubBaTc4lj+GVnHMxSFAJLRVaMRaNZA6L1dSIcE6mQgXfqDhpzl8kXmforP5xWs6dBoAZ\n5blgdDh3dz40RSLDZ3PnW5TndM8FOrpLtrmT1bvE3332PN3HLVdeC8tnN5fkvfJGO82BwmJVB01F\nLgZtWCy1K9lmT4xLN0KxOZdzg6Jk9YJlwHtv5566m82ODB3WjDEhPBnDYh6x7Ktnnpiae/pEzka+\nxEyx6e+5qMNNwyFjfxslDOYZAS64yNBbsBtvAyvhRG12xdVAz9zknq5qocEpLqYkiXpcqhDyXIpB\nucKvc6Qno7OchHXRiIu6+yMPcVE6pdnyleIO7aj0fJgIZB/TbrVlXnPsHQWa24BZcwHGwE8fz/1+\nZwbElXH7rILMnVJovAlDo/AVz4VLifxCDliDE6yEVXfsostg+dhfluz1SgmzWBI5JpqIXHWQuBQB\ns1jESJTUfAsAZs2vFBlhWVyUSbH5zhc78i5Q3wDWe6G4Xai4BHLsDbFmySX5RsFa2sS02/ZZorM7\nB3zwFNA+q6zNdxVD6xHmkXMxfPxMRAmNUVis6iBxKRZbrX4Vj82WV86Fa8NiQN7iwo++ByxcrAoD\n1+4+N/oa8biY1ptNXDLkktTJtMoV5Ox5OcuROefAkXfBdCqRpiXaPIgRzyVJXIx5LjMOZSMlhcWq\nDhKXYrHb05P5QN5NlEgVl1qH4VJkHpwABk+C9V6QuMKdKKAcORgQO85zeS564T6/Vzy3uQ0AwHrm\nAUNnEqKpx+ApIUgXLMvf1qmI9ntixBPResQGE/ozDXUFNolL1UHiUiy2TOKSn+eCiFyKrIRO8vFc\njh0COBchMUe9qOgqwHOB0nyZ7cRntepPa5Z7XFiLRly4pM4N04O/95Y4dvHy/G2ditjsYpwKkLs7\nH0hsowTIc8nE7AXArDnVWXAwwyFxKZbGZjEhNhWbPfOYFD2KCIvxI++Kk9aC88AsNSJZHCgg5yI3\nX7JsV8k2u77nojRQKr+LHlG6mm0MDD/4FtDWIab5zgDEdkl5H4oBz4UxJuaLGTx+JsI+vAGWbz9a\naTMIHWZAFtVcLF/Yot/RbrMB8Th4PG5s5pGS0Jdfi9U5Eitrc8CPHAR65ql9ERZXI6RCEvqq55JN\nXGwJL0trgzdFXDpmic+SoWKMSxJw6B2wFZfnb+dUprZOrC42knMBhBhNjOcctz9TYYwJT52oOshz\nKRLW3JrY2KfFwNbGJCKTYiKyEgZx1BvyXLgUB44dAluUGBpocTUVltBXxSXziYx1zBLlw6n4RkU+\nRr7CZpYaYNaczGNgBo6Lk+YFMyQkpqCEUI16IkpSv5CeJYKoICQuZmFVVh0bDI0pu1wUag2GxQZP\niWbNhQlxYc7GwkqRjeRcZi8Axv3gqftavKNAS1vSiBLWMw/IUI7M33tbHDNTkvkKSk7NSM4FSCT1\nSVyIKQaJi1kY2NqYRKq41DnE7g9Jyvo0flRunuzVei5FiEttXdpodS1M2elx6liyHb7RRBmywux5\ngN+jO6WZv/e2WGjV6s7fzqlMnQOw2UUvkBEc9WLI5UzoAyKmFSQuZmHL03MJ64gLoJvfSOLwQRGP\nVwYWokjPJdcV8mwhLsKY5GYAABnuSURBVHwgWVzgHU0rbGA988UPKaExHo8Bh/bPPK8FEH9Xo/kW\nQIiv5m9LEFMFuhwyCWaziflaBj0XHgmLRWEK2vliOhMA1OcNHAPmLUoKR1lcjWLdbSyW1xUvNzCP\njDU4gVZ3kuci1ht7gJaUqjl5Ui4fOJEkJLGjh0Qob6aUIGtgF1+e1xw1duOnwfIpaSeIKoHExSzU\nhH6BORejwyvHfGDzk8ehW5TKomAgbfWrEmbTXcwVGDOWaJ69AFwbFgsGhIeWWpLd1Cqu0lMqxiL7\n9wobZqDnYvnQh/M6ntXVA/pzRAmiqqGwmFnYcuw+SSU8mSQuzIC4cEkSHe6uZAFhivehUzEmPf4A\n+M8f1n/BwFjiuVlgsxcA504nNm2mliErxzEGzF8EvveVpKqxyNt7ReMbdVUTxLSl4p5LIBDAtm3b\nMDw8jPb2dmzevBlOZ3pp765du/Dcc88BADZu3Iirr74aAHDffffB5/MhHo9j8eLF+NznPgdLNazL\nVavF8kjoaxPiirhkG9s/MS7Gjad4JxalCVJvBMzxw+CZNhoaybkAYHPmC2EbPCk2Eard+enDAy23\nbIL04BZI378blq9/F3B3IvruPrDV1+R8H4Igpi4VPwvv2LEDy5YtwyOPPIJly5Zhx44daccEAgFs\n374d999/P+6//35s374dgYC4Kt+8eTMefPBBPPTQQxgbG8Mrr7xS7o+gT74J/Ug4uUrLyMKwMZ/4\nN1VcMnguXIoLIdDuulcei0WFkBkpeZ2zUDxHDo2lNVBqYB2zYLnzHwHOIT30D+BvvAw+GQJbPPNC\nYgQxk6i4uPT19WHtWrF/e+3atejr60s7pr+/H8uXL4fT6YTT6cTy5cvR398PAKivF1fh8XgcsVjM\n2CrYclBsKbK8WCrr8EpZXFiKuCi7P3hqxZjfJzydYAA8nDJQUhkXY0Rc2rtEv8bAcXHb5xH/Ztip\nwWbNhuXO7wCRMPgT3xd3nk/iQhDTmYqLi9/vR0uLiL03NzfD7/enHePxeNDWlrgqbm1thcfjUW/f\nd999uP322+FwOLB69WrzjTaC7LnwfJootfs+lNBVtpxLJs9FCYulzhfzDCd+9qV4LwEDc8VkmMUC\n9MxLJPV9o4CrCcyaYT0yRJ7Gsvl/A3UOWBeeb+h9CIKYupQl53LvvffC5/Ol3X/zzTcn3WaMFeR5\nfPOb30QkEsEjjzyC/fv3Y/ly/RLXnTt3YufOnQCArVu3wu0urIHParXmfG4ccYwAcNXVwmHgfc5F\nwqhvaoZTPpY7GzAEoKHGgoYMz5+IRxEA0LZgYSIUBqCmpgaw1KCex9XXA4DJ9yJQpLtJisKueSxy\n5gS8AJp65iTdn4mxRRdi8uUX0dbWBt/EOKT2TrTlep7bjfgPnhT2tVVv86SRv28lIfuKg+wrD2UR\nl7vvvjvjY01NTfB6vWhpaYHX60VjY/oVbWtrKw4cOKDe9ng8WLJkSdIxdrsdq1atQl9fX0ZxWb9+\nPdavX6/eHhkZyfejAADcbnfO5/Jxke8Y93owkevYWAyIxxGMS5iUj+WcA8yCidERhDI8XzpzGrBa\nMRoKg00mjnG73UB9A4LD59TXAwDpxFH1Z9/xo7DMmpew4bQYje+PczADvxepvQt8Yhwjhw5CGjoD\ntOT+nQAALDa42wweWyGM/H0rCdlXHGRfcXR3dxs6ruJhsZUrV2L37t0AgN27d2PVqlVpx6xYsQL7\n9u1DIBBAIBDAvn37sGLFCkxOTsLrFTOu4vE49u7di56enrLan5F8SpHVXS6aUmTGgLq67H0uYz7A\n1azv7TW40kuRvaNiLTOQFhbjRiYia2Bypz4Gjul25xMEMbOpeCnyhg0bsG3bNrz00ktqKTIAHDly\nBC+88AI2bdoEp9OJG264AVu2bAEA3HjjjXA6nfD5fPje976HaDQKzjmWLl2K6667rpIfJ0E+pcip\nu1wUcgyv5GO+tHyLitOVltDn3mHA3QmM+QFvypWRvMvF8GiS2fK+lmOHRL5GpwyZIIiZS8XFxeVy\n4Z577km7v7e3F729vertdevWYd26dUnHNDc347vf/a7pNhZETY1Y4GVk5H4mccm1MGzMl3m9a70T\n8HuS7/OMAC1uoMaaKB9WCIzlNSCR1dUD7V3gcre9XhkyQRAzl4qHxaYrjDF51bGBsJhcFpw2jbjO\nAZ6jz4U16u9eYU6dbZTeETEIsaUtvdfF6OgXLXMWACcOi/cjcSEIQgOJi5nY7HmGxVKGSNU5Mnbo\ni9EvWcJiKTkXHosBfi/Q0g7W4tbPueS5M0TNuwDpQysJgpjRkLiYidWg51JIWCwYAOLx7OISDonO\ne0CEyDgXItDcCoz5hOAoFCIuc+YnbpDnQhCEBhIXM7HZjHku4fRqMUAeXplJXJQGSlcWcQES3otH\nJPBFWMwthEa7TdLg0MokFM/FbgfqG/J7LkEQ0xoSFzOx2Q15LjxjWKw+82yxDKNfVJT8iVwxxpXu\n/JZ2MCWEpa0YC4wB+XbNt3UAjgagua16xu4QBFEVVLxabFpjsyXCUtkoICyWGP2iXy3GGpxiWZmS\n1FeEpNUNcHl1spx34eEwEInkHxZjDFh0oaiMIwiC0EDiYiYGPRelWkxXXGIx8Fg0fW5XhrliKkpY\nLKiIyyjgqAdz1IO3yCNmvKNggDpXLF9xAQDL334dIK+FIIgUKCxmJvkm9Gt1xAXQ917GfMJjaEjf\nfQNAFRceUMJico8LIPIjdnvCm1GGVhYgLqzOAVZLqxIJgkiGxMVM8i1FVnbAKOQSF1eT/rpiID2h\n7x0RITHI4axmd2JUfhGeC0EQhB4kLmZitIkyIlYcpybFs606zjr6BRDCVFOjJvThGRb9LQotbeCy\n55LvXDGCIIhckLiYCMvHc9ELLdXm8FyyiAtjTIyAmRgHj0aBcb/quQAQFWNKlz6JC0EQJYbExUxs\nNiBmMKGfmswHsofFxn1gmXpcFJyNYnilkltpaU881tIG+Dyi0z8wJuagNVCvCkEQpYHExUzy8Vyy\nikvyCBjOeU7PBYBI9gcS4sJatWExNxCPAQG/EJcGJ5iFSooJgigNJC5mYs2jiTKLuPBUzyU0AcRi\nBsRFzBfjHsVz0YTFlHEt3lExbp9CYgRBlBASFzMxOv4lEk4vQwYAR734N1VccvW4yLAGl0joq935\nyQl9AIB3tKChlQRBENkgcTETmx2Ix8ClePbjMnkumRL6/hyjXxQaREIf3hGgwQWmFTBNI2UhQysJ\ngiCyQeJiJuqq41j248KTuuLCrFbRiJkiLtyg54IGFxAJg8s77pNwNYlSZd8oEBgHy3euGEEQRBZI\nXMxEaYrMVTEWCYOlDq1UqHOkD6/MR1wAYOB4UhkyANF82dQqpiUXsiiMIAgiCyQuZqJ6LrnFRTcs\nBugPrxzzidLhHILAlMfH/cmVYgotbeBnTomqMQqLEQRRQkhczMQqey65kvqZ+lwAoK4eXLNREoDY\nQOlqzF063KARn9SwGOSKscGT4gaJC0EQJYTExUyUsFgWz4VznrlaDACbvwg4fCBpdH/O0S8KWnHR\n9Vzcqm2FDK0kCILIBImLiTA1LJbFc4nFxH6VDJ4LW/EBIBQEDu1P3FmAuDBtd75CS2viZxIXgiBK\nCImLmRjwXBCRVxxnCostvhiw28H7X0vcN+bLXYYMJOdkMnku6rEkLgRBlA4SFzMxktBXFoVl2InC\namuBJZeA73sdnHPjo18AIVhWeR+c0pGvfe0WzX0kLgRBlBASFzNRS5GzhMUyrTjWwFZ8QJQMnzoq\nKseiEUPiwhgTobHG5kSITosiODU1iWkABEEQJYDExUyMeC5yWIxlE5flqwDGRGhM7XFpMWZDg0u3\nUgwA0CznXJyNabtkCIIgisFaaQOmNXIpMo9GkfHUbcRzcTUBvYvB+18Du3CFuM9IWAwAW/nBzJVo\nVpvwgCgkRhBEiSFxMRNDCX0l55JZXAARGuPbfw5+/H1xh0FxsVx/c/YD2joSo/0JgiBKBImLmRgp\nRQ7n9lwAgF0si8sf/lvcYVBccmG59Ysi50IQBFFCSFzMxEgTpYGwGACwrh6gqwc4cwpgrGShLDZ3\nYUlehyAIQgsl9M3EUEJfEZcMgys1sIs/IH5wNoKRt0EQRBVD4mImNVbhZRgpRc6RcwHkkmSgZCEx\ngiAIsyBxMRHGmLyNMlsTZY4OfS0Lzxd7WEhcCIKocijnYjZWm5gflolIWIzPt+o0OabALDWw3P41\nqu4iCKLqIXExG5s9d87FXmu4iZFdeHGJDCMIgjAPCouZjTURFuOSBO4dBY/HE4+Hw4DdXiHjCIIg\nzKHinksgEMC2bdswPDyM9vZ2bN68GU6nM+24Xbt24bnnngMAbNy4EVdffXXS4w888ACGhobw0EMP\nlcNs49js4G+/gfg/fAEYPSdCZHMWwPK1+8DqnfIul9yVYgRBEFOJinsuO3bswLJly/DII49g2bJl\n2LFjR9oxgUAA27dvx/3334/7778f27dvRyCQ2M742muvoa6uOk/Q7OJVQGs7MHse2LWfBNtwKzB4\nCtKj94KHw6LPxUgynyAIYgpRcXHp6+vD2rVrAQBr165FX19f2jH9/f1Yvnw5nE4nnE4nli9fjv7+\nfgDA5OQkfv3rX+OGG24oq91Gsdx4G2ru3oaaTXfBcuOnYfn4TbDc/nfAkYOQHn8ACE2QuBAEMe2o\nuLj4/X60tIgJv83NzfD7/WnHeDwetLUldo+0trbC4/EAAH75y1/i+uuvh30K5S3YZVeC3fpF4O0/\nAe/uI3EhCGLaUZacy7333gufz5d2/803Jw9VZIzlNfr9+PHjOHfuHD796U9jaGgo5/E7d+7Ezp07\nAQBbt26F251hFH0OrFZrwc9V2fgpTPA4Ak89BrvThZZiX09DSewzEbKvOMi+4iD7ykNZxOXuu+/O\n+FhTUxO8Xi9aWlrg9XrR2Jg+M6u1tRUHDhxQb3s8HixZsgSHDh3C0aNHcccddyAej8Pv9+Pb3/42\nvv3tb+u+1/r167F+/Xr19sjISEGfx+12F/xcLfyqPwOLSYi5O0ryegqlss8syL7iIPuKg+wrju7u\nbkPHVbxabOXKldi9ezc2bNiA3bt3Y9WqVWnHrFixAr/4xS/UJP6+fftwyy23wOl04sMf/jAAYGho\nCA888EBGYalGGGNg136i0mYQBEGUnIqLy4YNG7Bt2za89NJLaikyABw5cgQvvPACNm3aBKfTiRtu\nuAFbtmwBANx444265coEQRBEdcA457zSRlSKwcHBgp5X7W4r2VccZF9xkH3FUe32GQ2LVbxajCAI\ngph+kLgQBEEQJYfEhSAIgig5JC4EQRBEySFxIQiCIEoOiQtBEARRcmZ0KTJBEARhDuS5FMBdd91V\naROyQvYVB9lXHGRfcVS7fUYhcSEIgiBKDokLQRAEUXJqvj2VJj1WEQsXLqy0CVkh+4qD7CsOsq84\nqt0+I1BCnyAIgig5FBYjCIIgSk7FR+5PJfr7+/Gzn/0MkiTh2muvxYYNGyptEn784x9j7969aGpq\nwkMPPQQACAQC2LZtG4aHh9U1BpVYUTAyMoIf/ehH8Pl8YIxh/fr1+NjHPlY19gFAJBLBt771LcRi\nMcTjcaxevRo33XQThoaG8IMf/ADj4+NYuHAhvvzlL8Nqrcx/F0mScNddd6G1tRV33XVXVdkGAHfc\ncQfq6upgsVhQU1ODrVu3VtXfeGJiAo899hhOnToFxhi+8IUvoLu7uyrsGxwcxLZt29TbQ0NDuOmm\nm7B27dqqsK8oOGGIeDzOv/SlL/GzZ8/yaDTKv/a1r/FTp05V2iz+zjvv8CNHjvA777xTve/JJ5/k\nzz//POec8+eff54/+eSTFbHN4/HwI0eOcM45DwaD/Ctf+Qo/depU1djHOeeSJPFQKMQ55zwajfIt\nW7bw9957jz/00EP8j3/8I+ec88cff5z/9re/rZiNv/rVr/gPfvAD/t3vfpdzzqvKNs45/+IXv8j9\nfn/SfdX0N3700Uf5zp07OefibxwIBKrKPoV4PM4/97nP8aGhoaq0L18oLGaQw4cPo6urC52dnbBa\nrVizZg36+voqbRaWLFmSdkXT19eHtWvXAgDWrl1bMTtbWlrUxKTD4UBPTw88Hk/V2AeIbaB1dXUA\ngHg8jng8DsYY3nnnHaxevRoAcPXVV1fMxtHRUezduxfXXnstAIBzXjW2ZaNa/sbBYBDvvvsu1q1b\nB0Dsp29oaKga+7S8/fbb6OrqQnt7e1Xaly8UFjOIx+NBW1uberutrQ3vv/9+BS3KjN/vR0tLCwCg\nubkZfr+/whYJd//YsWNYtGhR1dknSRK+8Y1v4OzZs/jIRz6Czs5O1NfXo6amBgDQ2toKj8dTEdt+\n/vOf49Zbb0UoFAIAjP//7d1bSFTrG8fxr6fBVBzHkRiwJBXZhaYQWlkaSRqEQRkqZFSTVoKnwi7q\nqhsTA7XsYGiSaWBGEkheRBeRRklIJlianVBBzMN4yNNMOjPui3DIf7v/1va0Z3Y8nytnlmvWj/Wy\neHjftdb7Tk7aTbZv5efnAxAXF0dsbKzdtPHQ0BCenp5cu3aN3t5eAgIC0Gq1dpPvW8+ePWPr1q2A\nfV7DyyXF5Tfn4OCAg4ODTTMYDAaKi4vRarW4ubkt2mYP+RwdHSksLGR6epqioqKfXqHU2lpbW1Eq\nlQQEBNDR0WHrOD+Ul5eHt7c3nz9/5ty5c9+tVGjLNjaZTHR3d5OamkpQUBA3b96kvr7ebvItMBqN\ntLa2kpKS8t02e8j3M6S4LJG3tzcjIyOWzyMjI3h7e9sw0Y8plUrGxsZQqVSMjY3h6elpsyxGo5Hi\n4mKio6PZtGmT3eX7lru7O8HBwbx7946ZmRlMJhNOTk6Mjo7apK3fvn3LixcvaGtrY3Z2Fr1eT1VV\nlV1k+9bC8ZVKJREREXz48MFu2litVqNWqwkKCgJg8+bN1NfX202+BW1tbfj7++Pl5QXY7zWyHHLP\nZYkCAwP59OkTQ0NDGI1GmpubCQ8Pt3WsvxQeHk5TUxMATU1NRERE2CTH/Pw8ZWVl+Pr6snv3brvL\nBzAxMcH09DTw9cmx9vZ2fH19CQ4O5vnz5wA0NjbapK1TUlIoKyujtLSUkydPEhISQk5Ojl1kW2Aw\nGCxDdgaDgfb2dvz8/Oymjb28vFCr1Zbe6KtXr1i1apXd5Fvw7ZAY2Nc18rPkJcplePnyJdXV1ZjN\nZmJiYti3b5+tI1FSUkJnZyeTk5MolUqSk5OJiIjg4sWL6HQ6mz7G2NXVxdmzZ/Hz87N06/fv309Q\nUJBd5APo7e2ltLQUs9nM/Pw8kZGRJCYmMjg4SElJCVNTU/j7+5OdnY2Li4tNMgJ0dHTQ0NDAmTNn\n7Crb4OAgRUVFwNchqKioKPbt28fk5KTdtHFPTw9lZWUYjUZWrlxJRkYG8/PzdpPPYDCQkZHB1atX\nLcPG9nT+fpYUFyGEEFYnw2JCCCGsToqLEEIIq5PiIoQQwuqkuAghhLA6KS5CCCGsToqLEEuQm5tr\ns7fkdTodBw8exGw22+T4QvwMeRRZiGW4e/cuAwMD5OTk/LJjZGZmkp6eTmho6C87hhC/mvRchPgX\nmUwmW0cQ4l8hPRchliAzM5PU1FTL2+jOzs5oNBoKCwuZmZmhurqatrY2HBwciImJITk5GUdHRxob\nG3n06BGBgYE8efKEnTt3sn37dsrLy+nt7cXBwYGwsDDS0tJwd3fnypUrPH36FGdnZxwdHUlMTCQy\nMpKsrCxqa2st84lVVFTQ1dWFh4cHe/bsITY2Fvjas+rr60OhUNDS0oKPjw+ZmZkEBgYCUF9fz4MH\nD9Dr9ahUKo4ePcr69ettdl7F70smrhRiiVxcXEhISPhuWKy0tBSlUsnly5f58uUL58+fR61WExcX\nB8D79+/ZsmULFRUVmEwmRkdHSUhIYN26dej1eoqLi6mrq0Or1ZKdnU1XV9eiYbGhoaFFOS5dusTq\n1aspLy+nv7+fvLw8NBoNISEhwNfZlE+dOkVGRgZ37tyhsrKS/Px8+vv7efjwIQUFBXh7ezM0NCT3\nccQvI8NiQvwD4+PjtLW1odVqcXV1RalUEh8fT3Nzs+V/VCoVu3btwsnJCYVCgUajITQ0FBcXFzw9\nPYmPj6ezs3NJx9PpdHR1dXHgwAEUCgVr1qxhx44dlkkOAdauXcuGDRtwdHRk27Zt9PT0AF+XFpib\nm6Ovr88yz5ZGo7Hq+RBigfRchPgHdDodJpOJ48ePW76bn59ftLCcj4/Pon3Gx8epqqrizZs3GAwG\nzGbzkiclHBsbw8PDgxUrViz6/Y8fP1o+K5VKy98KhYK5uTlMJhMajQatVktdXR19fX2EhYVx6NAh\nm0/ZL35PUlyEWIb/XbRJrVbj7OzMjRs3LKtD/p3a2loAiouL8fDwoKWlhcrKyiXtq1KpmJqaQq/X\nWwqMTqdbcoGIiooiKiqKmZkZrl+/Tk1NDdnZ2UvaV4jlkGExIZZBqVQyPDxsuVehUqkICwvj1q1b\nzMzMYDabGRgY+L/DXHq9HldXV9zc3BgdHaWhoWHRdi8vr+/usyzw8fHhjz/+4Pbt28zOztLb28vj\nx4+Jjo7+2+z9/f28fv2aubk5FAoFCoXiP7nCofhvkOIixDJERkYCkJaWxunTpwHIysrCaDSSm5vL\nkSNHuHDhAmNjYz/8jaSkJLq7uzl8+DAFBQVs3Lhx0fa9e/dy7949tFot9+/f/27/EydOMDw8THp6\nOkVFRSQlJS3pnZi5uTlqampIS0vj2LFjTExM/OWyukJYgzyKLIQQwuqk5yKEEMLqpLgIIYSwOiku\nQgghrE6KixBCCKuT4iKEEMLqpLgIIYSwOikuQgghrE6KixBCCKuT4iKEEMLq/gS3+0tIVkthbAAA\nAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -673,9 +982,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XtclHX+///HewYQETmjhGKJh1Q8\nH/KQhilqpZW5Zdqaa2nmorVZVu7+Plv5LUvXSNOkWjvaUdtdyWp3bfGYmomKaSISnsI8cEaOcrje\nvz8mJwmUkWGYAV73261bzDXXNddzGOHF9X6/r/dbaa01QgghxBWYnB1ACCGE65NiIYQQokZSLIQQ\nQtRIioUQQogaSbEQQghRIykWQgghaiTFQgghRI2kWAghhKiRFAshhBA1kmIhhBCiRm7ODlCXTp8+\nXetjg4KCyMzMrMM0dUvy2Ufy2Ufy2ceV84WGhtq0n1xZCCGEqFG9XFlkZmaycuVKcnNzUUoRFRXF\nbbfdRkFBAUuXLiUjI4Pg4GDmzp2Lt7c3WmveffddEhMTadasGdHR0YSHh9dHVCGEENWolysLs9nM\n/fffz9KlS1m4cCEbNmzg1KlTxMXF0aNHD5YvX06PHj2Ii4sDIDExkbNnz7J8+XJmzpzJW2+9VR8x\nhRBCXEa9FAt/f3/rlUHz5s1p06YN2dnZJCQkEBkZCUBkZCQJCQkA7Nmzh5tuugmlFJ07d6awsJCc\nnJz6iCqEEKIa9d7BnZ6ezvHjx+nYsSN5eXn4+/sD4OfnR15eHgDZ2dkEBQVZjwkMDCQ7O9u670Xx\n8fHEx8cDsGjRokrHXC03Nze7jnc0yWcfyWcfyWcfV89ni3otFiUlJcTExDBt2jS8vLwqPaeUQil1\nVa8XFRVFVFSU9bE9ow1cebQCSD57ST77SD77uHI+lxsNVV5eTkxMDMOGDWPgwIEA+Pr6WpuXcnJy\n8PHxASAgIKDSNzYrK4uAgID6iiqEEOI36qVYaK154403aNOmDePGjbNu79+/P1u3bgVg69atDBgw\nwLp927ZtaK1JSUnBy8urShOUEEIIMDZ+gd6/y+HnqZdmqCNHjrBt2zbatWvHk08+CcDkyZMZP348\nS5cuZdOmTdahswB9+vRh3759PProo3h4eBAdHV0fMYUQokHRFy6g130IA4aieg9y6LnqpVh06dKF\ntWvXVvvcM888U2WbUooZM2Y4OpYQQjRo+sBuuFCMGhjp8HPJHdxCCNFA6e+2gl8gdO7u8HNJsRBC\niAZI55+HH/aibrgJZXL8r3IpFkII0QDpvduhogI1aHi9nE+KhRBCNED6u60Q2g7aXlcv55NiIYQQ\nDYzOOAuph1EDI6/6ZubakmIhhBANjN69DaBeRkFdJMVCCCEaEK21pQmqYzdUYKt6O68UCyGEaEjS\njsGZtHq9qoBGtqyqEEI0JNow0J+uguJCiOiLiuiDaumLNgw4noLe9y16/3dgVECba1FtrkWfTgOz\nG6r/jfWaVYqFEEI4iY77AL35K/BqAbu2oJWCdh3gfC7kZILZDbr2RHl6oX8+if5hL1RUQN/BKG+f\nes0qxUIIIZzA+HYz+j//REXegrpvFvx0FP3DPvTh/XBtB9Rd96N6DUB5eVuP0WVlkH4GAut/bQwp\nFkIIUc/00WT06hVwfQ/UpJmWO7Cv64S6rhOMu/eyxyl3d2jTrv6CXkI6uIUQoh7p7AyM2BfBPwjT\nrKdRbg3jb/aGkVIIIRowXV6OTj6A3v8deu8OKCvF9MQL9d7vYA8pFkIIUYe0YUBWOpw6gf75BDrt\nBBkpB9EF+eDmDl17YbrtblSoc5qTakuKhRBC1BGtNcbSZyD5gGWDUhDUmmYDhlHapRdE9EE183Ru\nyFqSYiGEEHXl1AlIPoC6eaxlNtjQdijP5vgGBZGZmensdHaRYiGEEHVEJ2wDkwl1+2RUy4bTH2EL\nGQ0lhBB1QGuN3v0NdOvd6AoFSLEQQoi6cewIZKWjBtzk7CQOUS/NULGxsezbtw9fX19iYmIAWLp0\nKadPnwagqKgILy8vlixZQnp6OnPnziU0NBSATp06MXPmzPqIKYQQtaYTvgE3d1Tvgc6O4hD1UiyG\nDx/OLbfcwsqVK63b5s6da/169erVeHl5WR+HhISwZMmS+ogmhBB200YFes926NEP5dXC2XEcol6a\nobp164a3t3e1z2mt+fbbb7nxxvqdQVEIIepMyiHIy2m0TVDgAqOhDh8+jK+vL9dcc411W3p6Ok89\n9RTNmzdn0qRJdO3atdpj4+PjiY+PB2DRokUEBdV+ci03Nze7jnc0yWcfyWcfyXdl5w8mUOLZnOAR\nt1R7H4Wz89UFpxeLHTt2VLqq8Pf3JzY2lpYtW3Ls2DGWLFlCTExMpWaqi6KiooiKirI+tmccc5CL\nj4OWfPaRfPZpSvmMhO2oViGoazvatL8uL8fYsQnV8way8gsgv8Ch+eraxf7hmjh1NFRFRQW7d+9m\nyJAh1m3u7u60bNkSgPDwcFq3bs2ZM2ecFVEI0YTokmL0O69gxL6EvlBi20GH90NhPuqGYY4N52RO\nLRYHDx4kNDSUwMBA67bz589jGAYA586d48yZM7Ru3dpZEYUQTcnh76G8HLIz0F+tsekQvfsby+JF\nEX0cHM656qUZatmyZSQlJZGfn8+sWbOYOHEiI0aMqNIEBZCUlMTatWsxm82YTCYeeuihy3aOCyFE\nXdIHEqB5C1TP/uiv49CDbr7ihH867Th6zzeoIVEoN/d6TFr/6qVYPPbYY9Vunz17dpVtgwYNYtCg\nQY6OJIQQlWjDQB/cg+reF3XvDPTBvRgfv2mZSlypqvuXXsBY9TK08EGNn+KExPVL7uAWQjRq+vD3\n6IyzNe/401HIy4Ge/VEtfVETpsKRg+jvtlb/uv94D86kYXrwT41yeo/fkmIhhGi0dGoSxtJnMf42\nH52TdeV9DySAUqiIfgCoYaOgfWf0Z++giyqPcNIH96A3f4WKugPVrXH3VVwkxUII0SjpkiKMd5aB\nfwAUF2O89jy6pPjy+x/YA+HXW68SlMmM6fd/hPzzGC8+ibHuQ/SJH9HnczDefRXaXGu5+mgipFgI\nIRolvfYdyDyHafoTmB5+EtJOYLwVgzYqqu6bmwUnU1E9B1Tarq7tgGnmPPALQP/3HxgLn8B4egYU\nF2F6aB7K3aO+3o7TOf2mPCGEqGv6+wT0N1+jxtyF6hwBgJo0A/3J39H/fB91z4OV9z+417LPb4oF\ngOo/FHP/oeiC85arj4N7oNcAVJtrHf9GXIgUCyFEo6Lz8zBWr7A0E9356ygl04hxGGd/Rn8dhxEQ\njGnk7b8ec2APBATDFQqA8vZBDRkBQ0Y4NL+rkmIhhGg0dHkZxvsroLAA02MLUO6V731Q985A52Sh\nP12FUVKMuu0eKC+Dw/tRg2+udoissJBiIYRoFHRhAcbrL8GRg6hJM1Fh7avso8xmTA8/hX5/OTru\nQyjIR3XrDRdKqm2CEr+SYiGEaPDKz5zCeOlJyDqHmj4X06CbL7uvcnODBx6DFi3R8Z+jd20GDw+4\nvkc9Jm54pFgIIRo0nXKI7NdfAjSmuc9bO7SvRJlMcO8MS8FY/zH0ugHl0czxYRswKRZCiAZLl5dh\nxL6I2dcfPfsvqFa2TbcNoJRC3T4JHX49hLRxYMrGQe6zEEI0XMkHoDCfltMeuapCcSkV0QcV2KqO\ngzU+UiyEEA2W3vcteDbHo1d/Z0dp9KRYCCEaJG1UoBN3oXr0l/6GeiDFQgjRMP2YBAXnUf2G1Lyv\nsJsUCyFEg6T37gR3D4jo6+woTYIUCyFEg6MNA524CyL6ojybOztOkyDFQgjR8BxPgdwsVN/Bzk7S\nZEixEEI0ODrxWzC7oXrJFB31RYqFEKJB0Vpbhsx27Yny8nZ2nCajXu7gjo2NZd++ffj6+hITEwPA\n2rVr2bhxIz4+llWpJk+eTN++lo6qdevWsWnTJkwmEw888AC9e/euj5hCiIbg1AnIOIu65XfOTtKk\n1EuxGD58OLfccgsrV66stH3s2LHccccdlbadOnWKnTt38sorr5CTk8Pzzz/Pq6++iskkF0FCCND7\ndoIyoXoPdHaUJqVefgN369YNb2/bLhcTEhIYMmQI7u7utGrVipCQEFJTUx2cUAjRUOh930Knbigf\nP2dHaVKc+uf6hg0bmDdvHrGxsRQUFACQnZ1NYGCgdZ+AgACys7OdFVEI4UL0mTQ4/ROqr9yIV9+c\nNuvs6NGjufvuuwFYs2YNq1evJjo6+qpeIz4+nvj4eAAWLVpEUFBQrfO4ubnZdbyjST77SD77uEq+\ngo3rKVSKwFFjMQf8msdV8l2Oq+ezhU3FoqCggPXr13Py5ElKSkoqPbdgwYJandjP79dLyJEjR7J4\n8WLAciWRlZVlfS47O5uAgIBqXyMqKoqoqCjr48zMzFplAQgKCrLreEeTfPaRfPZxlXwV276Gjl3J\nMRRcksdV8l2OK+cLDbVttl6bisWrr75KeXk5gwcPxsPDw65gF+Xk5ODv7w/A7t27CQsLA6B///4s\nX76ccePGkZOTw5kzZ+jYsWOdnFMI0XBZm6AmzXR2lCbJpmKRkpLCW2+9hftvFj+31bJly0hKSiI/\nP59Zs2YxceJEDh06xIkTJ1BKERwczMyZln8AYWFhDB48mMcffxyTycT06dNlJJQQAr1nByiF6id3\nbTuDTcWiXbt2ZGVlERISUquTPPbYY1W2jRgx4rL7T5gwgQkTJtTqXEKIxknv2Q4du6L8AmveWdQ5\nm4pF9+7defHFFxk+fHilvga48i99IYSoC9IE5Xw2FYvk5GQCAwM5ePBgleekWAghHE2aoJyvxmKh\ntWbWrFkEBQVhNpvrI5MQQlQiTVDOV2PPsVKKefPmoZSqjzxCCFGJtQmq31BnR2nSbBpmdN1113Hm\nzBlHZxFCiCqkCco12NRnERERwYsvvkhkZGSVuxClz0II4Uh67w5pgnIBNhWLI0eO0KpVKw4fPlzl\nOSkWQghH0fl58PNJ1IQ/ODtKk2dTsXj22WcdnUMIIao6mgyA6tjVyUGETcXCMIzLPid3VwshHEUf\nTQazG1zbwdlRmjybisXkyZMv+9yaNWvqLIwQQlxKHz0M7cJRHs2cHaXJs6lYvPbaa5Ue5+TkEBcX\nR//+/R0SSgghdHkZnEhFDb/V2VEENg6dDQ4OrvRf586dmTNnDp9//rmj8wkhmqq041BWiuog/RWu\noNYdDkVFRZw/f74uswghhJVO/WX0ZYfrnRtEADY2Q61YsaLSHdwXLlzg8OHDDBs2zGHBhBBNmz56\nGAJbyf0VLsKmYvHbqcmbNWvGqFGj6Nmzp0NCCSGaNq01HE1Gde7h7CjiFzYVi969e9OpU6cq21NT\nU2UVOyFE3cvOgNxs6NjF2UnEL2zqs3jhhReq3b5w4cI6DSOEEPBrf4XqIMXCVVzxyuLizXhaa+t/\nF507d06mLBdCOMbRZGjmCW2uc3YS8YsrFotLb8abNGlSpedMJhN33XWXY1IJIZo0fTQZ2ndGyR+k\nLuOKxeK1115Da81zzz3HggUL0FqjlEIphY+PDx4eHvWVUwjRROiSYjh1HHXbPc6OIi5xxWIRHBwM\nQGxsLGBplsrLy8Pf3/+qThIbG8u+ffvw9fUlJiYGgA8++IC9e/fi5uZG69atiY6OpkWLFqSnpzN3\n7lxCQ0MB6NSpEzNnyrq7QjQZx1PAMKS/wsXYNBqqsLCQt956i127duHm5sYHH3zAnj17SE1NrdI8\nVZ3hw4dzyy23sHLlSuu2nj17ct9992E2m/nwww9Zt24dU6ZMASxDdZcsWVLLtySEaMj0LzPNEi43\n47kSm0ZDrVq1Ci8vL2JjY3Fzs9SXzp07s3PnTptO0q1bN7y9vStt69Wrl7WDvHPnzmRnZ19NbiFE\nI6WPJkNoO5SXd807i3pj05XFwYMHefPNN62FAsDHx4e8vLw6CbFp0yaGDBlifZyens5TTz1F8+bN\nmTRpEl27ytwwQjQFWms4dgTVb0jNO4t6ZVOx8PLyIj8/v1JfRWZm5lX3XVTnX//6F2az2Tp1iL+/\nP7GxsbRs2ZJjx46xZMkSYmJi8PLyqnJsfHw88fHxACxatKjKkq9Xw83Nza7jHU3y2Ufy2ae+8lWk\nnyGzqADviN54XcX55PvneDYVi5EjRxITE8OkSZPQWpOSksInn3zCqFGj7Dr5li1b2Lt3L88884x1\n7il3d3fc3d0BCA8Pp3Xr1pw5c4YOHaoufhIVFUVUVJT1cWZmZq2zBAUF2XW8o0k++0g++9RXPv39\nXgAK/YMpuorzyfev9i4OJqqJTcXizjvvxMPDg7fffpuKigpef/11oqKiuO2222odcP/+/Xz++ecs\nWLCAZs1+Xdjk/PnzeHt7YzKZOHfuHGfOnKF169a1Po8QouHQacdAmeRmPBdUY7EwDIMtW7YwatSo\nWheHZcuWkZSURH5+PrNmzWLixImsW7eO8vJynn/+eeDXIbJJSUmsXbsWs9mMyWTioYceqtI5LoRo\nnHTacWgdimomK+O5mhqLhclkYvXq1YwYMaLWJ3nssceqbLvc6w0aNIhBgwbV+lxCiAbsp2OojjKg\nxRXZNHS2X79+7Nmzx9FZhBBNmC7Mt8w2G9be2VFENWzqsygrK+OVV16hc+fOBAYGVloIac6cOQ4L\nJ4RoQtKOA6DCwp0cRFTHpmIRFhZGWFiYo7MIIZow/UuxkCsL12RTsbjnHpnQSwjhYD8dA78AlI+f\ns5OIatjUZyGEEI6m046BNEG5LCkWQgin02WlcPaU9Fe4MCkWQgjnO50GFRWodtJf4aqkWAghnE7/\ndNTyhXRuuyybOri11mzcuJEdO3aQn5/Pyy+/TFJSErm5uZVmixVCiFpJOw6ezSEoxNlJxGXYdGWx\nZs0aNm/eTFRUlHUyrMDAQD7//HOHhhNCNA067Ti0bY8ySWOHq7Lpk9m6dStPP/00N954o/WGvFat\nWpGenu7QcEKIxk8bBqQdR0kTlEuzqVgYhoGnp2elbSUlJVW2CSHEVcs8CxeKpb/CxdlULPr06cPq\n1aspKysDLH0Ya9asoV+/fg4NJ4RoAi5O89Gu6po1wnXYVCymTp1KTk4O06ZNo6ioiKlTp5KRkcHv\nf/97R+cTQjRy+qfjYDZDqEwp5MpsXlb1ySefJDc3l8zMTIKCgvDzk1vyhRD202nHIKQtyt3D2VHE\nFdhULAzDAMDHxwcfHx/rNpOMXBBC2EEX5sPxI6ju/Z0dRdTApmIxefLkarebzWb8/f0ZOHAgEydO\nlA5vIYTNdFkpxsqFUFKMGn6rs+OIGthULB544AESEhIYP348gYGBZGZmsn79evr27UtoaCifffYZ\n7733HrNmzXJ0XiFEI6ANA/3uq/BjEmrmk6gOXZwdSdTApmLx1VdfsXjxYry8vAAIDQ2lQ4cOzJ8/\nnxUrVtCuXTuefvpphwYVQjQeOu5DdMI3qAl/wDRgmLPjCBvY1OlQVFTEhQsXKm27cOECRUVFAPj5\n+VFaWlr36YQQjY6x7b/o//wDddMY1C0TnB1H2MimK4vIyEheeOEFbr31VoKCgsjKyuLf//43kZGR\nAHz//feEhoZe8TViY2PZt28fvr6+xMTEAFBQUMDSpUvJyMggODiYuXPn4u3tjdaad999l8TERJo1\na0Z0dDTh4TJ1sRANnRG/Hr32bejeF3XfrEpLNAvXZtOVxZQpUxgzZgw7d+7k/fffZ/v27YwZM4Yp\nU6YAEBERwYIFC674GsOHD+cvf/lLpW1xcXH06NGD5cuX06NHD+Li4gBITEzk7NmzLF++nJkzZ/LW\nW2/V5r0JIVyENgyMtW+j17wFvQdi+uOfUWazs2OJq2DTlYXJZGL06NGMHj262uc9PGoeH92tW7cq\nc0klJCTw3HPPAZarl+eee44pU6awZ88ebrrpJpRSdO7cmcLCQnJycvD397clrhDCheiyUvQ7y9B7\ntqNGjEPdOx1lkkLR0NhULAByc3NJTU0lPz8frbV1+4gRI2p98ry8PGsB8PPzIy8vD4Ds7GyCgoKs\n+wUGBpKdnS3FQogGRmuN8doLkLQfdc8DqFHjpempgbKpWOzevZsVK1ZwzTXXkJaWRlhYGGlpaXTp\n0sWuYnEppdRV/yOKj48nPj4egEWLFlUqMFfLzc3NruMdTfLZR/LZp7b5Sg8fICdpP97T5tDizvsc\nkMyisX7/XIlNxWLNmjVER0czePBgHnjgAf72t7+xefNm0tLS7Dq5r6+vtXkpJyfHend4QECAdd0M\ngKysLAICAqocHxUVRVRUlPXxpcdcraCgILuOdzTJZx/JZ5/a5jO+WAOezSnqN4xiB76/xvr9qw81\nDU66yKYO7szMTAYPHlxpW2RkJNu2bbv6ZJfo378/W7duBSxrZgwYMMC6fdu2bWitSUlJwcvLS5qg\nhGhgdGEBes8O1KDhKM/mzo4j7GTTlYWPjw+5ubn4+fkRHBxMSkoKLVu2tM4ZZYtly5aRlJREfn4+\ns2bNYuLEiYwfP56lS5eyadMm69BZsEyJvm/fPh599FE8PDyIjo6u3bsTQjiN/nYTlJWibrrF2VFE\nHbCpWIwcOZLk5GQGDRrE2LFjWbBgAUopxo0bZ/OJHnvssWq3P/PMM1W2KaWYMWOGza8thHAtWmv0\ntg3QvrOsgNdI2FQs7rjjDusMs5GRkURERFBSUkLbtm0dGk4I0UClHoYzaag/POLsJKKO1NhnYRgG\n999/v3WVPLB01kihEEJcjt72X2juhZJ5nxqNGouFyWQiNDSU/Pz8+sgjhGjgdMH5Xzu2m8myBY2F\nTc1QQ4cOZfHixdx6660EBgZWuh+ie/fuDgsnhGh49LebobwMddMYZ0cRdcimYvH1118D8Nlnn1Xa\nrpTitddeq/tUQogGydqxHX49qq10bDcmNhWLlStXOjqHEKIx+GEvnD2FenCus5OIOmbzItrl5eUc\nPnyYnTt3AlBSUkJJSYnDggkhGh5jwzrwD5KO7UbIpiuLn376icWLF+Pu7k5WVhZDhgwhKSmJrVu3\nWm+kE0I0bfrEj3DkoGXCQDeb5ygVDYRNVxarVq3i3nvvZdmyZbj98o+gW7duJCcnOzScEKLh0BvW\nWYbLDpOO7cbIpmJx6tQphg2rfFnp6ekpS6kKIQDQGWfRe3eibroF1dzL2XGEA9hULIKDgzl27Fil\nbampqYSEhDgklBCiYdHx68FkQkXd7uwowkFsali89957WbRoEaNGjaK8vJx169bxv//9j4cfftjR\n+YQQLk4XnEdv/x9qYCTKL9DZcYSD2HRl0a9fP/7yl79w/vx5unXrRkZGBvPmzaNXr16OzieEcGHa\nMNBb/g2lF1Cj73J2HOFANl1ZnD9/nvbt28tMsEI0YVprSNyFsf5jyEyH8lKoqLA82b0fqk075wYU\nDmVTsYiOjiYiIoKhQ4cyYMAAPD1lvhchGiNdXo6x8Akwm1H9hqD6DkG1DqUs9TDG32PgxyS4Jgx1\n02hwcwd3D3B3R/Uf6uzowsFsKhaxsbF8++23fP3116xatYq+ffsydOhQ+vTpg9lsdnRGIUR9Obwf\nTh2H1m3Q/1qN/tdqaHUN2elnoKUvako0augolPzcNzk2r5Q3ZswYxowZQ0ZGBjt27ODTTz/l9ddf\n5+2333Z0RiFEPdG7toKXN6bnlkNeLjpxJ/rgPloMG0Vx5G0yLLYJu+rbLPPy8sjNzSU/P58WLVo4\nIpMQwgl0STF6/y7L1OJu7hAYjIq6E6LuxDsoiJLMTGdHFE5kU7E4deoU27dvZ8eOHZSWljJ48GCe\nfPJJOnbs6Oh8Qoh6ovd/ZxnVNDDS2VGEC7KpWPz1r39l4MCBzJw5k4iICOsSq0KIxkN/txUCgqBj\nN2dHES7IpmKxatUq65xQden06dMsXbrU+jg9PZ2JEydSWFjIxo0b8fHxAWDy5Mn07du3zs8vhLDQ\n53MhKRE1+i6U/DEoqmFTBXBzcyM3N5fU1FTy8/Mt461/MWLEiFqfPDQ0lCVLlgCWtb4ffvhhbrjh\nBjZv3szYsWO54447av3aQgjb6T3bwTCkCUpclk3FYvfu3axYsYJrrrmGtLQ0wsLCSEtLo0uXLnYV\ni0sdPHiQkJAQgoOD6+T1hBCV6fJyOJaM/jEJ1bUXKvz6X5/7biu0uRbV9jrnBRQuzaZisWbNGqKj\noxk8eDAPPPAAf/vb39i8eTNpaWl1FmTHjh3ceOON1scbNmxg27ZthIeHM3XqVLy9vevsXEI0JXrv\nToxdWyD5eygptmz7/GPU2HtQY++F7Aw4dgQ14Q/ODSpcmk3FIjMzk8GDB1faFhkZycyZM5k6dard\nIcrLy9m7dy/33XcfAKNHj+buu+8GLIVq9erVREdHVzkuPj6e+Ph4ABYtWkRQUFCtM7i5udl1vKNJ\nPvs01XylSfvJeWMRpqDWNBs2Co8+g3Dv1JWCj1dR8uUazEcO4n5tB4qBwFvuxHyZDE31+1dXXD2f\nLWy+KS83Nxc/Pz+Cg4NJSUmhZcuWGIZRJyESExNp3749fn5+ANb/A4wcOZLFixdXe1xUVBRRUVHW\nx5l2jAMPCgqy63hHk3z2aYr5dEUFRuxiywin51ZQ2swT6wo0981CdepO+YexlP+YBJ0jyFFucJkM\nTfH7V5dcOV9oaKhN+9lULEaOHElycjKDBg1i7NixLFiwAKUU48aNsyvkRb9tgsrJycHf3x+w9JeE\nhYXVyXmEaEr05q/g55OY/jgf1azqfG6mAUPRHbqg4z5EDambvkfReNlULMaPH2/9OjIykoiICEpK\nSmjbtq3dAUpKSjhw4AAzZ860bvvwww85ceIESimCg4MrPSeEqJnOy0Gv/xgi+kCfwZfdTwUEoR58\nrB6TiYaqVjdP1GXbm6enJ++8806lbY888kidvb4QTZH+x3tQVopp8sMopZwdRzQCcveNEI2MTvkB\nvWuz5Qa71ra1RwtRk7q/LVsIUe90fh4cO4I+mvzLtB3BqNvucXYs0YhIsRCiAdPZmRivvwQnfrRs\nMJuhbXtMEx+stlNbiNqSYiFEA6Wz0jFi/g/y81ATpqI6dIVrO6KaNXN2NNEISbEQogHSGWcthaK4\nENPjz6Pad3Z2JNHISbEQooG16DObAAAXbElEQVTR505bCkXpBUyPv4C6toOzI4kmQIqFEA2IPpps\n6aMwDEzzXkC1be/sSKKJkKGzQtQjrTXG7m3oM1c/CaexcyPGy38Bdw9MT74ohULUK7myEKIe6a/W\noj//CG0yoW4ei7p9MqqFZUZlbVRA0vfohG/A2wfVuTt06grNmqP/8S46fj106Ynp4adQ3j5Ofiei\nqZFiIUQ9MbZtQH/+EeqGSPBsjt70Jfq7rajbJ1FglGP8bz1kZ4JXCyi9gP56HSgFvv6Qm40aeTvq\nngdRZrOz34pogqRYCFEPdOIu9IevQ/d+qAf+hHJzQ0fegrFmFfqTv1OoFHTtjemeB6HXQNCG5Sa7\nlB/QJ1JR4+/HdONIZ78N0YRJsRDCgbTWkHII4+9L4LqOmGY9jfplPXvVLhzTvBch9TABHTqRY3Kv\nfHCXnqguPZ2QWoiqpFgIUYf0qeMYcR9BxlkoLIDCfCgvg5A2mB55pspd1Uop6NTNsuiQi653IARI\nsRCiTuiSIvT6T9Abv7D0OXTujmrREry8oaUPauBwVEvplBYNlxQLIeygDQO9dyd67duQm4W6aQzq\nrvtltJJodKRYiCZHnzkFJUXg7g5uHuDRDPwCUCbbbzvSFRXohG/Q//kHnP4Jwtpb+iM6dHFgciGc\nR4qFaDL02Z8x/vk+7N9V9Um/QFTvgag+gyxNSG7V/2jovBz0vp3or+Mg8xyEtkPNeALVf6gMaRWN\nmhQL0Wjo0z+hd25E7/sWfPxQHbuiOnaFkDDOr1uNsWEduHmg7vy9ZT6lslJ0aSkUF6EP70fvjEdv\n+belz+HajqjQdhAahgq+Bn08Bf39bjieAlpD+86Y7p0BPQdc1RWJEA2VFAvRoGmt0Tvi0ds2WH6R\nm83QrQ8UFaDjv0BvWAdAscmMumk06vZJKB9/6/HWBUdvvg194QIc3o8+kID+6Rh6+//gQgn64j7X\ndkTdcR+q9w3Q5jpZrlQ0KVIsRIOlKyrQH8Zafqm3uRY1cTpqYCTKx8/yfFkpnEhFpx0jYPBwcpt7\nX/H1VLNm0HsgqvdAy/GGATmZcO5nuKYdyj/Q4e9JCFflEsVi9uzZeHp6YjKZMJvNLFq0iIKCApYu\nXUpGRgbBwcHMnTsXb+8r/7AL59MXStBfrUENGYkKaVv9PsdT4JowlGfzy7zGhRoX8NFlpRirXobE\nXahx91r+4v/NX/rK3QM6dUN16oZbLe5jUCYTBLay/CdEE+cSxQLg2Wefxcfn1+GGcXFx9OjRg/Hj\nxxMXF0dcXBxTpkxxYsKmSxechxYta2x20RUVll/g3+9G7/0W0/8Xg/JqUWkf45uv0atfg8BWmO6f\njYro8+vxJUXoL9eg49ej+g5BTZ2N8vSqep6SIoyVL0LyAdS9MzBF3VE3b1QIcVku2zOXkJBAZGQk\nAJGRkSQkJDg5UdOkz5zCmDcNvSP+yvtpjf707/D9btTw2yDzLMZ7r1qmu7i4T8oP6I/egE7dwN0d\nY9mzGO++ii7Mx/huK8Zfoy19DF16ovfswFj4BPrnk78eb1Sg93+HsfjPkPIDavpcKRRC1BOXubJY\nuHAhAKNGjSIqKoq8vDz8/S0dkX5+fuTl5TkzXpOlN30JFeXo+PXoG6Mue3VRtO5D9Jb/oG75Habf\n/QGj1TXotW+jN/wLdcvvLMuAvr4IgltjmvN/4O6B/uJT9IZ/WabkLiuFdh0wzZqP6tAFfeQgxt+X\nYLz4BOreGVBUiN7yH8hKB79ATHP+D9Wjfz1/N4RoulyiWDz//PMEBASQl5fHCy+8QGhoaKXnlVLV\n/pKKj48nPt7yF++iRYsICgqqdQY3Nze7jne0uspXnnacwriPafG7qbiFhl1xX6Mwn8xdmzH5B2H8\nfBLf9FN4XNJsdFHxtq85/8HrNBsahe9Dc1EmE3rSg+SdOs6FdR/g3bkbBR++gUIT8NdXfj3vzMcp\nixpL4adv49FvCM2jbv/1XoWgm6no1pO8V56l7INYANy798Vr+p9odsMwlPnq/uk2lc/XUSSffVw9\nny1colgEBAQA4Ovry4ABA0hNTcXX15ecnBz8/f3Jycmp1J9xUVRUFFFRUdbHmXZMxBYUFGTX8Y5m\nbz5dXm75K/7LT6G8nJLsLMyz/3LFY4yv49Alxag/PQcr/h+5cZ9gal25wOiff8JY8QLuEX0ou++P\nZGVn//rc5JlwLIW8l54GkwnTn54j16N55Y5mn0CY+RTlQFFOTtXcc/6Kaf93ENIWo007CoCCnNyr\nfv+N/fN1NMlnH1fO99s/zi/H6X0WJSUlFBcXW78+cOAA7dq1o3///mzduhWArVu3MmDAAGfGbND0\nqeMYLz2JjvsQ1WsgauTtsH8XOu345Y8xKtCbv7KMJurYFTUkCp34LTr3kmKgNcZHsdCsOX5PvoBy\nrzzFtvL0whT9Zwhshfr9LFS33ledXZnNqH5DUG3aXfWxQoi64/Qri7y8PF5++WUAKioqGDp0KL17\n96ZDhw4sXbqUTZs2WYfOCtvo3Gz0kYOQcgj94yE4kwYtfS39Af2GoAsL0Ds3Yny5BvMf51f/Igf2\nQOY5THdPA0ANvxUd/zn6m69Rt0+ynGfnJvgxCTV1DiZf/2qHpqprwjC9tEpuYBOigXN6sWjdujVL\nliypsr1ly5Y888wzTkjUsOnUJIyY/4PycmjuBR26ogbfjBo22joTqmrhjRp5u2WY6qkTqLbXVXkd\nY9OXEBAEvQdZjmkdChF90Nv+i771bigpQv/jHejQBXVjVJXjLyWFQoiGz+nFQtQdXVSA8dYr4B+E\n6eGnIew6lKn6ye1U1B2WEU5frkHNerry6/x8Eg5/j5rwh0qT45luHovx2gvw/XfoQ4lQVIhpSrTM\njSREEyA/5Y2E1tpyD0NOJqYZT6Cu7XDZQgGgWrREjbjdMoPqzz9Vfq1NX4K7B2rYqMoH9egHga0w\n/vm+pTkq6s5qr0qEEI2PFItGQu/agt69DXX7ZFT49TYdo0bdAR6e6K/WWOZZOnIQY81b6G83owYN\nr7KAjzKZUZG3WpYMDQiy9l0IIRo/aYZqBHTGWfTHljuj1W1323yc8vZBjRiL/u8/f2lWKgA3d+ja\nCzWu+kKgho5C796GacLUy87tJIRofKRYNAC6vLzStBnW7WVlcOwIxj/eBWXCNP2JKzY9VUeNHo/+\n8RAqOMQy22q3PlcsAqqlD+ZnX73q9yCEaNikWLgwrTV643r0P1eT4dEM3TrUMirJPwh98iikHoLS\nUjC7YXpoHiow+KrPobx9MD+92AHphRCNiRQLF6UL8zHefRW+3w3d++HZ9lqKTx5FH/kBcrMsU3wP\nG4Pq0tOyDOhvZncVQoi6JMWinukLJZB62HIPQ+vQKs1GWmtIPYzx1suQl4u6dwZq5O34BAdT+stN\nb7qiQtZ7FkLUKykW9UCXl1uW69y1Fb1/F5ResDzRzBPahaPaXAv559EZZyHjDBQXQXAIpvmLUdd1\nqvJ6UiiEEPVNioWD6b07MD5+E87ngpc3atDNqD4D0efz4GQq+mQq+rtt0NIXWl2D6tjVcsUx6GZp\nWhJCuAwpFg6ii4vQn65C79wI13XCdP9s6N4X5WaZbE8BDBnh1IxCCGErKRYOoH9Mwnj7FcjOtKwP\nPfZelJt8q4UQDZf8BqtDuqgAHfeRZUW3wGBMT71kaVYSQogGTopFHdBao7/biv7sHcg/jxp+K2rC\n/ShPL2dHE0KIOiHFwg76wgX0gQT0ln9Dyg/QvjOmR59FXdvB2dGEEKJOSbG4Srr0AiQlohO2o7/f\nDRdKwNcfNSUaNWzUVU+3IYQQDYEUCxvo/POWK4j930FSouU+Ce+WqIHDUQOGQucIKRJCiEZNikU1\n9LnT6JQf4NgR9NFkOHsKtAb/INSNI1G9BsL1PWSEkxCiyZDfdpfQhoH+4hP0l2ssG7y8LcuG3nAT\nqkd/y93WskSoEKIJkmLxC11SjPHmYtj3reXqYczvfpm7SdaHEkIIpxaLzMxMVq5cSW5uLkopoqKi\nuO2221i7di0bN27Ex8eyUtvkyZPp27evw3LorAyyFz4BJ4+i7p2OGnmHXEEIIcQlnFoszGYz999/\nP+Hh4RQXFzN//nx69uwJwNixY7njjjscnkH/dBRj2XPoinJMj/4V1b2fw88phBANjVOLhb+/P/7+\n/gA0b96cNm3akJ2dXc8hgiCsPQGzniK3uXf9nlsIIRoIl2mQT09P5/jx43Ts2BGADRs2MG/ePGJj\nYykoKHDYeVVLX8xz/x9uYdc57BxCCNHQKV3d4s71rKSkhGeffZYJEyYwcOBAcnNzrf0Va9asIScn\nh+jo6CrHxcfHEx8fD8CiRYsoLS2tdQY3NzfKy8trfbyjST77SD77SD77uHI+Dw8Pm/ZzerEoLy9n\n8eLF9OrVi3HjxlV5Pj09ncWLFxMTE1Pja50+fbrWOYKCgsj8ZSU6VyT57CP57CP57OPK+UJDQ23a\nz6nNUFpr3njjDdq0aVOpUOTk5Fi/3r17N2FhYc6IJ4QQ4hdO7eA+cuQI27Zto127djz55JOAZZjs\njh07OHHiBEopgoODmTlzpjNjCiFEk+fUYtGlSxfWrl1bZbsj76kQQghx9VxmNJQQQgjXJcVCCCFE\njaRYCCGEqJHTh84KIYRwfXJl8Yv58+c7O8IVST77SD77SD77uHo+W0ixEEIIUSMpFkIIIWpkfu65\n555zdghXER4e7uwIVyT57CP57CP57OPq+WoiHdxCCCFqJM1QQgghatTk1+Dev38/7777LoZhMHLk\nSMaPH+/UPLGxsezbtw9fX1/rTLsFBQUsXbqUjIwMgoODmTt3Lt7ezlmo6XJL4bpKxtLSUp599lnK\ny8upqKhg0KBBTJw4kfT0dJYtW0Z+fj7h4eE88sgjuLk575+/YRjMnz+fgIAA5s+f71L5Zs+ejaen\nJyaTCbPZzKJFi1zm8wUoLCzkjTfeIC0tDaUUf/zjHwkNDXWJfKdPn2bp0qXWx+np6UycOJHIyEiX\nyGcX3YRVVFToOXPm6LNnz+qysjI9b948nZaW5tRMhw4d0kePHtWPP/64ddsHH3yg161bp7XWet26\ndfqDDz5wVjydnZ2tjx49qrXWuqioSD/66KM6LS3NZTIahqGLi4u11lqXlZXpP//5z/rIkSM6JiZG\nb9++XWut9Ztvvqk3bNjglHwXffHFF3rZsmX6pZde0lprl8oXHR2t8/LyKm1zlc9Xa61XrFih4+Pj\ntdaWz7igoMCl8l1UUVGhZ8yYodPT010y39Vq0s1QqamphISE0Lp1a9zc3BgyZAgJCQlOzdStW7cq\nf3EkJCQQGRkJQGRkpFMz+vv7WzvqLl0K11UyKqXw9PQEoKKigoqKCpRSHDp0iEGDBgEwfPhwp34P\ns7Ky2LdvHyNHjgQsU/W7Ur7quMrnW1RUxOHDhxkxYgRgWVSoRYsWLpPvUgcPHiQkJITg4GCXzHe1\nmnQzVHZ2NoGBgdbHgYGB/Pjjj05MVL28vDzrWuV+fn7k5eU5OZHFpUvhulJGwzB4+umnOXv2LGPG\njKF169Z4eXlhNpsBCAgIqP+13i/x3nvvMWXKFIqLiwHIz893qXwACxcuBGDUqFFERUW5zOebnp6O\nj48PsbGxnDx5kvDwcKZNm+Yy+S61Y8cObrzxRsB1f4avRpMuFg2RUgqllLNjUFJSQkxMDNOmTcPL\ny6vSc87OaDKZWLJkCYWFhbz88st2raBY1/bu3Yuvry/h4eEcOnTI2XGq9fzzzxMQEEBeXh4vvPBC\nlZXUnPn5VlRUcPz4cR588EE6derEu+++S1xcnMvku6i8vJy9e/dy3333VXnOFfLVRpMuFgEBAWRl\nZVkfZ2VlERAQ4MRE1fP19SUnJwd/f39ycnKs65M7S3l5OTExMQwbNoyBAwe6ZEaAFi1aEBERQUpK\nCkVFRVRUVGA2m8nOznba53zkyBH27NlDYmIipaWlFBcX895777lMPsB6bl9fXwYMGEBqaqrLfL6B\ngYEEBgbSqVMnAAYNGkRcXJzL5LsoMTGR9u3b4+fnB7jmz8fVatJ9Fh06dODMmTOkp6dTXl7Ozp07\n6d+/v7NjVdG/f3+2bt0KwNatWxkwYIDTsujLLIXrKhnPnz9PYWEhYBkZdeDAAdq0aUNERAS7du0C\nYMuWLU77nO+77z7eeOMNVq5cyWOPPUb37t159NFHXSZfSUmJtXmspKSEAwcO0K5dO5f5fP38/AgM\nDLReLR48eJC2bdu6TL6LLm2CAtf5+bBHk78pb9++fbz//vsYhsHNN9/MhAkTnJpn2bJlJCUlkZ+f\nj6+vLxMnTmTAgAEsXbqUzMxMpw+7S05O5plnnqFdu3bWS+nJkyfTqVMnl8h48uRJVq5ciWEYaK0Z\nPHgwd999N+fOnWPZsmUUFBTQvn17HnnkEdzd3es936UOHTrEF198wfz5810m37lz53j55ZcBS5PP\n0KFDmTBhAvn5+S7x+QKcOHGCN954g/Lyclq1akV0dDRaa5fJV1JSQnR0NK+99pq1idaVvn+11eSL\nhRBCiJo16WYoIYQQtpFiIYQQokZSLIQQQtRIioUQQogaSbEQQghRIykWokl6/PHHnXYHdWZmJvff\nfz+GYTjl/ELUhgydFU3a2rVrOXv2LI8++qjDzjF79mwefvhhevbs6bBzCOFocmUhhB0qKiqcHUGI\neiFXFqJJmj17Ng8++KD1bmU3NzdCQkJYsmQJRUVFvP/++yQmJqKU4uabb2bixImYTCa2bNnCxo0b\n6dChA9u2bWP06NEMHz6cN998k5MnT6KUolevXkyfPp0WLVqwYsUKtm/fjpubGyaTibvvvpvBgwcz\nZ84cPvnkE+tcUKtWrSI5ORlvb2/uvPNOoqKiAMuVz6lTp/Dw8GD37t0EBQUxe/ZsOnToAEBcXBz/\n+c9/KC4uxt/fnxkzZtCjRw+nfV9F49WkJxIUTZu7uzt33XVXlWaolStX4uvry/Lly7lw4QKLFi0i\nMDCQUaNGAfDjjz8yZMgQVq1aRUVFBdnZ2dx111107dqV4uJiYmJi+Oyzz5g2bRqPPPIIycnJlZqh\n0tPTK+V49dVXCQsL48033+T06dM8//zzhISE0L17d8AyU+0TTzxBdHQ0n376Ke+88w4LFy7k9OnT\nbNiwgZdeeomAgADS09OlH0Q4jDRDCXGJ3NxcEhMTmTZtGp6envj6+jJ27Fh27txp3cff359bb70V\ns9mMh4cHISEh9OzZE3d3d3x8fBg7dixJSUk2nS8zM5Pk5GR+//vf4+HhwXXXXcfIkSOtk84BdOnS\nhb59+2Iymbjppps4ceIEYJmKvaysjFOnTlnnSQoJCanT74cQF8mVhRCXyMzMpKKigpkzZ1q3aa0r\nLZIVFBRU6Zjc3Fzee+89Dh8+TElJCYZh2DxJXE5ODt7e3jRv3rzS6x89etT62NfX1/q1h4cHZWVl\nVFRUEBISwrRp0/jss884deoUvXr1YurUqS45zb5o+KRYiCbtt4vQBAYG4ubmxttvv21dua4mn3zy\nCQAxMTF4e3uze/du3nnnHZuO9ff3p6CggOLiYmvByMzMtPkX/tChQxk6dChFRUX8/e9/56OPPuKR\nRx6x6VghroY0Q4kmzdfXl4yMDGtbv7+/P7169WL16tUUFRVhGAZnz569YrNScXExnp6eeHl5kZ2d\nzRdffFHpeT8/vyr9FBcFBQVx/fXX8/HHH1NaWsrJkyfZvHkzw4YNqzH76dOn+eGHHygrK8PDwwMP\nD48GuQKbaBikWIgmbfDgwQBMnz6dp59+GoA5c+ZQXl7O448/zgMPPMArr7xCTk7OZV/jnnvu4fjx\n4/zhD3/gpZde4oYbbqj0/Pjx4/nnP//JtGnTWL9+fZXj//SnP5GRkcHDDz/Myy+/zD333GPTPRll\nZWV89NFHTJ8+nYceeojz589Xu4ynEHVBhs4KIYSokVxZCCGEqJEUCyGEEDWSYiGEEKJGUiyEEELU\nSIqFEEKIGkmxEEIIUSMpFkIIIWokxUIIIUSNpFgIIYSo0f8P1GV97M5HqsEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, diff --git a/images/baseline.PNG b/images/baseline.PNG new file mode 100644 index 0000000..6bff5b6 Binary files /dev/null and b/images/baseline.PNG differ diff --git a/images/baseline_0.PNG b/images/baseline_0.PNG new file mode 100644 index 0000000..d3f0cc8 Binary files /dev/null and b/images/baseline_0.PNG differ diff --git a/images/loss_GAE.PNG b/images/loss_GAE.PNG new file mode 100644 index 0000000..1f8e388 Binary files /dev/null and b/images/loss_GAE.PNG differ diff --git a/images/loss_bootstrap.PNG b/images/loss_bootstrap.PNG new file mode 100644 index 0000000..5b4e0c5 Binary files /dev/null and b/images/loss_bootstrap.PNG differ diff --git a/images/loss_nobase.PNG b/images/loss_nobase.PNG new file mode 100644 index 0000000..1f46ce5 Binary files /dev/null and b/images/loss_nobase.PNG differ diff --git a/images/loss_nobase_2.PNG b/images/loss_nobase_2.PNG new file mode 100644 index 0000000..9b34540 Binary files /dev/null and b/images/loss_nobase_2.PNG differ diff --git a/images/loss_nobase_3.PNG b/images/loss_nobase_3.PNG new file mode 100644 index 0000000..f3b912c Binary files /dev/null and b/images/loss_nobase_3.PNG differ diff --git a/images/loss_nobase_4.PNG b/images/loss_nobase_4.PNG new file mode 100644 index 0000000..385f96d Binary files /dev/null and b/images/loss_nobase_4.PNG differ diff --git a/images/loss_nobase_5.PNG b/images/loss_nobase_5.PNG new file mode 100644 index 0000000..d751dd4 Binary files /dev/null and b/images/loss_nobase_5.PNG differ diff --git a/images/loss_nobase_6.PNG b/images/loss_nobase_6.PNG new file mode 100644 index 0000000..7016ee5 Binary files /dev/null and b/images/loss_nobase_6.PNG differ diff --git a/images/loss_withbase.PNG b/images/loss_withbase.PNG new file mode 100644 index 0000000..69958b2 Binary files /dev/null and b/images/loss_withbase.PNG differ diff --git a/images/loss_withbase_2.PNG b/images/loss_withbase_2.PNG new file mode 100644 index 0000000..aabd6ce Binary files /dev/null and b/images/loss_withbase_2.PNG differ diff --git a/images/loss_withbase_3.PNG b/images/loss_withbase_3.PNG new file mode 100644 index 0000000..ba9c08d Binary files /dev/null and b/images/loss_withbase_3.PNG differ diff --git a/images/loss_withbase_4.PNG b/images/loss_withbase_4.PNG new file mode 100644 index 0000000..7712961 Binary files /dev/null and b/images/loss_withbase_4.PNG differ diff --git a/images/loss_withbase_5.PNG b/images/loss_withbase_5.PNG new file mode 100644 index 0000000..368f427 Binary files /dev/null and b/images/loss_withbase_5.PNG differ diff --git a/images/loss_withbase_6.PNG b/images/loss_withbase_6.PNG new file mode 100644 index 0000000..bfc39bc Binary files /dev/null and b/images/loss_withbase_6.PNG differ diff --git a/images/return_GAE.PNG b/images/return_GAE.PNG new file mode 100644 index 0000000..1d07836 Binary files /dev/null and b/images/return_GAE.PNG differ diff --git a/images/return_bootstrap.PNG b/images/return_bootstrap.PNG new file mode 100644 index 0000000..fb0f158 Binary files /dev/null and b/images/return_bootstrap.PNG differ diff --git a/images/return_nobase.PNG b/images/return_nobase.PNG new file mode 100644 index 0000000..df77c93 Binary files /dev/null and b/images/return_nobase.PNG differ diff --git a/images/return_nobase_2.PNG b/images/return_nobase_2.PNG new file mode 100644 index 0000000..75fc3d8 Binary files /dev/null and b/images/return_nobase_2.PNG differ diff --git a/images/return_nobase_3.PNG b/images/return_nobase_3.PNG new file mode 100644 index 0000000..95bbce1 Binary files /dev/null and b/images/return_nobase_3.PNG differ diff --git a/images/return_nobase_4.PNG b/images/return_nobase_4.PNG new file mode 100644 index 0000000..102f413 Binary files /dev/null and b/images/return_nobase_4.PNG differ diff --git a/images/return_nobase_5.PNG b/images/return_nobase_5.PNG new file mode 100644 index 0000000..a67c267 Binary files /dev/null and b/images/return_nobase_5.PNG differ diff --git a/images/return_nobase_6.PNG b/images/return_nobase_6.PNG new file mode 100644 index 0000000..8778586 Binary files /dev/null and b/images/return_nobase_6.PNG differ diff --git a/images/return_withbase.PNG b/images/return_withbase.PNG new file mode 100644 index 0000000..23c3522 Binary files /dev/null and b/images/return_withbase.PNG differ diff --git a/images/return_withbase_2.PNG b/images/return_withbase_2.PNG new file mode 100644 index 0000000..b775d4a Binary files /dev/null and b/images/return_withbase_2.PNG differ diff --git a/images/return_withbase_3.PNG b/images/return_withbase_3.PNG new file mode 100644 index 0000000..00cdd48 Binary files /dev/null and b/images/return_withbase_3.PNG differ diff --git a/images/return_withbase_4.PNG b/images/return_withbase_4.PNG new file mode 100644 index 0000000..065d706 Binary files /dev/null and b/images/return_withbase_4.PNG differ diff --git a/images/return_withbase_5.PNG b/images/return_withbase_5.PNG new file mode 100644 index 0000000..6e6c1d1 Binary files /dev/null and b/images/return_withbase_5.PNG differ diff --git a/images/return_withbase_6.PNG b/images/return_withbase_6.PNG new file mode 100644 index 0000000..0d53887 Binary files /dev/null and b/images/return_withbase_6.PNG differ diff --git a/images/surr_loss.PNG b/images/surr_loss.PNG new file mode 100644 index 0000000..0df2898 Binary files /dev/null and b/images/surr_loss.PNG differ diff --git a/policy_gradient/policy.py b/policy_gradient/policy.py index 99fecf3..c22b0b6 100644 --- a/policy_gradient/policy.py +++ b/policy_gradient/policy.py @@ -30,6 +30,8 @@ def __init__(self, in_dim, out_dim, hidden_dim, optimizer, session): Sample solution is about 2~4 lines. """ # YOUR CODE HERE >>>>>> + hidden1 = tf.layers.dense(inputs=self._observations, units=hidden_dim, activation=tf.nn.tanh) + probs = tf.layers.dense(inputs=hidden1, units=out_dim, activation=tf.nn.softmax) # <<<<<<<< # -------------------------------------------------- @@ -72,6 +74,7 @@ def __init__(self, in_dim, out_dim, hidden_dim, optimizer, session): Sample solution is about 1~3 lines. """ # YOUR CODE HERE >>>>>> + surr_loss = -tf.reduce_mean(self._advantages * log_prob) # <<<<<<<< grads_and_vars = self._opt.compute_gradients(surr_loss) diff --git a/policy_gradient/util.py b/policy_gradient/util.py index 61ef302..dbe25b8 100644 --- a/policy_gradient/util.py +++ b/policy_gradient/util.py @@ -32,7 +32,9 @@ def discount_bootstrap(x, discount_rate, b): Sample code should be about 3 lines """ # YOUR CODE >>>>>>>>>>>>>>>>>>> - # <<<<<<<<<<<<<<<<<<<<<<<<<<<< + b_sift = np.roll(b, -1) + b_sift[-1] = 0.0 + return x + discount_rate * b_sift def plot_curve(data, key, filename=None): # plot the surrogate loss curve diff --git a/report.md b/report.md index 1e5017e..2006056 100644 --- a/report.md +++ b/report.md @@ -1,3 +1,145 @@ +# 105061525 許菀庭 # Homework3-Policy-Gradient report -TA: try to elaborate the algorithms that you implemented and any details worth mentioned. +## Problem 1: Construct a Neural Network to Represent Policy + +```python +hidden1 = tf.layers.dense(inputs=self._observations, units=hidden_dim, activation=tf.nn.tanh) +probs = tf.layers.dense(inputs=hidden1, units=out_dim, activation=tf.nn.softmax) +``` +我用tensorflow中的tf.layers.dense來實現一個2-layer neural network。tf.layers.dense代表的就是fully-connected layer,輸入inputs、output dimension 和 activation function 就可以。這個network代表的是policy,因此inputs是observations,outputs是對應此observation,各個action的probabilities。 + +## Problem 2: Compute the Surrogate Loss + +```python +surr_loss = -tf.reduce_mean(self._advantages * log_prob) +``` +這裡實現了policy gradient的surrogate loss,計算每個episode的每個time step的 advantage * log pi(a|s),然後取平均。因為advantage是越大越好,但optimizer是要minimize loss,所以這裡加一個負號。 + + +## Problem 3: Reduce Variance Using a Baseline + +```python +a = r - b +# a is advantages +# r is rewards +# b is baseline values +``` +這個步驟把reward減掉baseline,baseline是用一個estimate的value function算出來的。這個的目的是要讓我們的model在採取一個action的reward會比baseline還高的時候,才去encourage 這個action。這麼做可以reduce variance,讓training過程更穩定。 + + +## Problem 4: Compare the Results Before and After Adding Baseline + +### 1. Why the baseline won't introduce bias + +加上baseline並不會改變原本的expectation: + + + +把 r 換成 r - b 之後,增加的項就是負的 + +而這項的結果是0,推導如下: + + + +因此,加上baseline並不會造成bias。 + +### 2. Compare with no baseline + +因為有sample的關係,每次實驗結果會有點不一樣,所以我有加baseline和沒加baseline的實驗各跑了六次,六次結果如下: + +#### with baseline + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Loss
Rewards
Iter806174777586
+ +#### no baseline + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Loss
Rewards
Iter55132925773109
+ +從上面兩個表可以觀察出以下幾點: + +* no baseline的收斂速度不一定會比較慢,有的時候會很快就收斂 (e.g. no baseline的第2和第4個實驗) +* with baseline大概都花60 ~ 90個iterations;no baseline的花50 ~ 150個iterations +* with baseline收斂速度相較no baseline穩定很多,雖然no baseline在運氣好的時候可以收斂非常快,但在實驗需要很長的training time時,穩定的收斂速度會比較適合 +* no baseline的rewards,到後半會上升的比較慢,有可能是variance比較大,較難找到好的actions + +## Problem 5: Actor-Critic Algorithm (With Bootstrapping) + +```python +b_sift = np.roll(b, -1) +b_sift[-1] = 0.0 +return x + discount_rate * b_sift +``` +原本在problem 1~3中,reward是計算從time step t到最後一個time step的immediate reward做discount並加總,這樣的算法bias小但variance高。 +而bootstrapping是將reward改成現在這個time step的immediate reward加上discount factor乘以下個time step的value,這樣的算法variance小但bias大。 + +result如下: + + + +改成bootstrap的結果非常差,會一直無法收斂,我推測是因為bias高的關係。 + +## Problem 6: Generalized Advantage Estimation + +```python +a = util.discount(a, self.discount_rate * LAMBDA) +``` + +GAE的算法是將前面兩種reward方式(high variance, low bias和low variance, high bias)結合。 +最後結果如下: + +