forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreversal-during-earnings-announcements.py
271 lines (212 loc) · 9.47 KB
/
reversal-during-earnings-announcements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from AlgorithmImports import *
import numpy as np
import statsmodels.api as sm
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager:
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, 1 / self.long_size)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, -1 / self.short_size)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag:
self.long_len -= 1
else:
self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag:
self.long_len -= 1
else:
self.short_len -= 1
break
if symbol_to_delete:
self.symbols.remove(symbol_to_delete)
else:
self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol:
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
# https://quantpedia.com/strategies/reversal-during-earnings-announcements/
#
# The investment universe consists of stocks listed at NYSE, AMEX, and NASDAQ, whose daily price data are available at the CRSP database.
# Earnings-announcement dates are collected from Compustat. Firstly, the investor sorts stocks into quintiles based on firm size. Then he
# further sorts the stocks in the top quintile (the biggest) into quintiles based on their average returns in the 3-day window between
# t-4 and t-2, where t is the day of the earnings announcement. The investor goes long on the bottom quintile (past losers) and short on
# the top quintile (past winners) and holds the stocks during the 3-day window between t-1, t, and t+1. Stocks in the portfolios are
# weighted equally.
#
# QC Impelmentation:
# - Universe consits of stocks, which have earnings dates in Quantpedia data.
# - Maximum of 20 long and 20 short stock are held at the same time.
import data_tools
from AlgorithmImports import *
import numpy as np
from collections import deque
class ReversalDuringEarningsAnnouncements(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1) # earnings dates start in 2010
self.SetCash(100000)
self.ear_period = 4
self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol
# Daily price data.
self.data = {}
# Import earnigns data.
self.earnings_data = {}
# Available symbols from earning_dates.csv.
self.tickers: Set(str) = set()
self.first_date: datetime.date | None = None
earnings_data: str = self.Download(
"data.quantpedia.com/backtesting_data/economic/earnings_dates_eps.json"
)
earnings_data_json: list[dict] = json.loads(earnings_data)
for obj in earnings_data_json:
date: datetime.date = datetime.strptime(obj["date"], "%Y-%m-%d").date()
self.earnings_data[date] = []
if not self.first_date:
self.first_date = date
for stock_data in obj["stocks"]:
ticker: str = stock_data["ticker"]
self.earnings_data[date].append(ticker)
self.tickers.add(ticker)
# EAR history for previous quarter used for statistics.
self.ear_previous_quarter = []
self.ear_actual_quarter = []
# 5 equally weighted brackets for traded symbols. - 20 symbols long , 20 for short, 3 days of holding.
self.trade_manager = data_tools.TradeManager(self, 20, 20, 3)
self.month: int = 0
self.selection_flag = False
self.rebalance_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction)
self.Schedule.On(
self.DateRules.MonthEnd(self.symbol),
self.TimeRules.AfterMarketOpen(self.symbol),
self.Selection,
)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(data_tools.CustomFeeModel())
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
# update daily prices
for stock in coarse:
symbol = stock.Symbol
if symbol in self.data:
self.data[symbol].Add(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
self.selection_flag = False
selected = [x.Symbol for x in coarse if x.Symbol.Value in self.tickers]
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = RollingWindow[float](self.ear_period)
history = self.History(symbol, self.ear_period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].Add(close)
return selected
def OnData(self, data):
date_to_lookup = (self.Time + timedelta(days=1)).date()
# Liquidate opened symbols after three days.
self.trade_manager.TryLiquidate()
ret_t4_t2 = {}
for symbol in self.data:
# Data is ready.
if self.data[symbol].IsReady:
# Earnings is in next two day for the symbol.
if (
date_to_lookup in self.earnings_data
and symbol.Value in self.earnings_data[date_to_lookup]
):
closes = [x for x in self.data[symbol]]
# Calculate t-4 to t-2 return.
ret = (closes[0] - closes[-1]) / closes[-1]
ret_t4_t2[symbol] = ret
# Store return in this month's history.
self.ear_actual_quarter.append(ret)
# Wait until we have history data for previous three months.
if len(self.ear_previous_quarter) != 0:
# Sort by EAR.
ear_values = self.ear_previous_quarter
top_ear_quintile = np.percentile(ear_values, 80)
bottom_ear_quintile = np.percentile(ear_values, 20)
# Store symbol to set.
long = [
x[0]
for x in ret_t4_t2.items()
if x[1] <= bottom_ear_quintile and x[0] in data and data[x[0]]
]
short = [
x[0]
for x in ret_t4_t2.items()
if x[1] >= top_ear_quintile and x[0] in data and data[x[0]]
]
# Open new trades.
for symbol in long:
self.trade_manager.Add(symbol, True)
for symbol in short:
self.trade_manager.Add(symbol, False)
def Selection(self):
# There is no earnings data yet.
if self.Time.date() < self.first_date:
return
self.selection_flag = True
# Every three months.
if self.month % 3 == 0:
# Save quarter history.
self.ear_previous_quarter = [x for x in self.ear_actual_quarter]
self.ear_actual_quarter.clear()
self.month += 1