forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdollar-carry-trade.py
122 lines (100 loc) · 4.95 KB
/
dollar-carry-trade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# https://quantpedia.com/strategies/dollar-carry-trade/
#
# The investment universe consists of currencies from developed countries (the Euro area, Australia, Canada, Denmark, Japan, New Zealand, Norway, Sweden,
# Switzerland, and the United Kingdom). The average forward discount (AFD) is calculated for this basket of currencies (each currency has an equal weight).
# The average 3-month rate could be used instead of the AFD in the calculation. The AFD is then compared to the 3-month US Treasury rate. The investor
# goes long on the US dollar and goes short on the basket of currencies if the 3-month US Treasury rate is higher than the AFD. The investor goes short
# on the US dollar and long on the basket of currencies if the 3-month US Treasury rate is higher than the AFD. The portfolio is rebalanced monthly.
import numpy as np
from AlgorithmImports import *
class DollarCarryTrade(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = {
"CME_AD1": "OECD/KEI_IR3TIB01_AUS_ST_M", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1": "OECD/KEI_IR3TIB01_GBR_ST_M", # British Pound Futures, Continuous Contract #1
"CME_CD1": "OECD/KEI_IR3TIB01_CAN_ST_M", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1": "OECD/KEI_IR3TIB01_EA19_ST_M", # Euro FX Futures, Continuous Contract #1
"CME_JY1": "OECD/KEI_IR3TIB01_JPN_ST_M", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1": "OECD/KEI_IR3TIB01_MEX_ST_M", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1": "OECD/KEI_IR3TIB01_NZL_ST_M", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1": "SNB/ZIMOMA", # Swiss Franc Futures, Continuous Contract #1
}
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
# Interbank rate data.
cash_rate_symbol = self.symbols[symbol]
self.AddData(QuandlValue, cash_rate_symbol, Resolution.Daily)
self.treasury_rate = self.AddData(
QuandlValue, "FRED/DGS3MO", Resolution.Daily
).Symbol
def OnData(self, data):
fd = {}
for future_symbol, cash_rate_symbol in self.symbols.items():
if cash_rate_symbol in data and data[cash_rate_symbol]:
if (
self.Securities[future_symbol].GetLastData()
and (
self.Time.date()
- self.Securities[future_symbol].GetLastData().Time.date()
).days
< 5
):
cash_rate = data[cash_rate_symbol].Value
# Update cash rate only once a month.
fd[future_symbol] = cash_rate
if len(fd) == 0:
return
afd = np.mean([x[1] for x in fd.items()])
if (
self.Securities[self.treasury_rate].GetLastData()
and (
self.Time.date()
- self.Securities[self.treasury_rate].GetLastData().Time.date()
).days
< 5
):
treasuries_3m_rate = self.Securities[self.treasury_rate].Price
count = len(self.symbols)
if treasuries_3m_rate > afd:
# Long on the US dollar and goes short on the basket of currencies.
for symbol in self.symbols:
self.SetHoldings(symbol, -1 / count)
else:
# Short on the US dollar and long on the basket of currencies.
for symbol in self.symbols:
self.SetHoldings(symbol, 1 / count)
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/futures/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data["back_adjusted"] = float(split[1])
data["spliced"] = float(split[2])
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = "Value"
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))