forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbetting-against-beta-factor-in-stocks.py
171 lines (133 loc) · 7.08 KB
/
betting-against-beta-factor-in-stocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# https://quantpedia.com/strategies/betting-against-beta-factor-in-stocks/
#
# The investment universe consists of all stocks from the CRSP database. The beta for each stock is calculated with respect to the MSCI US Equity Index using a 1-year
# rolling window. Stocks are then ranked in ascending order on the basis of their estimated beta. The ranked stocks are assigned to one of two portfolios: low beta and
# high beta. Securities are weighted by the ranked betas, and portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio
# formation. The “Betting-Against-Beta” is the zero-cost zero-beta portfolio that is long on the low-beta portfolio and short on the high-beta portfolio. There are a lot of
# simple modifications (like going long on the bottom beta decile and short on the top beta decile), which could probably improve the strategy’s performance.
#
# QC implementation changes:
# - The investment universe consists of 1000 most liquid US stocks with price > 5$.
from scipy import stats
from AlgorithmImports import *
import numpy as np
class BettingAgainstBetaFactorinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Daily price data.
self.data = {}
self.period = 12 * 21
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.data[self.symbol] = RollingWindow[float](self.period)
self.weight = {}
self.long = []
self.short = []
self.long_lvg = 1 # leverage for long portfolio calculated from average beta
self.short_lvg = 1 # leverage for short portfolio calculated from average beta
self.leverage_cap = 2
self.coarse_count = 1000
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage_cap*3)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
if symbol in self.data:
# Store daily price.
self.data[symbol].Add(stock.AdjustedPrice)
# Selection once a month.
if not self.selection_flag:
return Universe.Unchanged
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5]
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = RollingWindow[float](self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].Add(close)
return [x for x in selected if self.data[x].IsReady]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0]
# if len(fine) > self.coarse_count:
# sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
# top_by_market_cap = sorted_by_market_cap[:self.coarse_count]
# else:
# top_by_market_cap = fine
beta = {}
if not self.data[self.symbol].IsReady: return []
for stock in fine:
symbol = stock.Symbol
market_closes = np.array([x for x in self.data[self.symbol]])
stock_closes = np.array([x for x in self.data[symbol]])
market_returns = (market_closes[:-1] - market_closes[1:]) / market_closes[1:]
stock_returns = (stock_closes[:-1] - stock_closes[1:]) / stock_closes[1:]
cov = np.cov(stock_returns[::-1], market_returns[::-1])[0][1]
market_variance = np.var(market_returns)
beta[symbol] = cov / market_variance
# beta_, intercept, r_value, p_value, std_err = stats.linregress(market_returns[::-1], stock_returns[::-1])
# beta[symbol] = beta_
if len(beta) >= 10:
# sort by beta
sorted_by_beta = sorted(beta.items(), key = lambda x:x[1], reverse=True)
decile = int(len(sorted_by_beta) / 10)
self.long = [x for x in sorted_by_beta[-decile:]]
self.short = [x for x in sorted_by_beta[:decile]]
# create zero-beta portfolio
long_mean_beta = np.mean([x[1] for x in self.long])
short_mean_beta = np.mean([x[1] for x in self.short])
self.long = [x[0] for x in self.long]
self.short = [x[0] for x in self.short]
self.long_lvg = 1/long_mean_beta
self.short_lvg = 1/short_mean_beta
# cap leverage
if self.long_lvg <= 0:
self.long_lvg = self.leverage_cap
else:
self.long_lvg = min(self.leverage_cap, self.long_lvg)
if self.short_lvg <= 0:
self.short_lvg = self.leverage_cap
else:
self.short_lvg = min(self.leverage_cap, self.short_lvg)
return self.long + self.short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
long_len = len(self.long)
short_len = len(self.short)
for symbol in self.long:
self.SetHoldings(symbol, (1/long_len)*self.long_lvg)
for symbol in self.short:
self.SetHoldings(symbol, -(1/short_len)*self.short_lvg)
self.long.clear()
self.short.clear()
self.long_lvg = 1
self.short_lvg = 1
def Selection(self):
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))