-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsrp_phat_offline.py
43 lines (35 loc) · 1.17 KB
/
srp_phat_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import numpy as np
from pathlib import Path
from scipy.io.wavfile import read
from src.utils.bss import Duet
from src.utils.cmd_parser import parsing_params
from src.utils.ssl import doa_detection
def main():
params = parsing_params()
if Path(params.wave).is_file():
fs, x = read(params.wave)
else:
raise FileExistsError("the file path is not correct or pass via --wave")
params.ignored_channels = [int(i) for i in params.ignored_channels if str(i).isnumeric()]
mask = np.ones(params.channels, bool)
if not params.ignored_channels == []:
mask[params.ignored_channels] = False
x = np.transpose(x)[mask, :]
duet = Duet(
x,
n_sources=params.src,
sample_rate=fs,
delay_max=2.0,
n_delay_bins=50,
output_all_channels=True,
)
estimates = duet()
estimates = estimates.astype(np.float32)
print(f"Find {len(estimates)} available sources.")
doas = doa_detection(torch.from_numpy(estimates))
doas[doas[:, 0] < 0] += torch.FloatTensor([[360, 0]])
for doa in doas:
print(f"azi: {doa[0]: 6.1f}, ele: {doa[1]: 6.1f}")
if __name__ == '__main__':
main()