-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlayers.py
125 lines (99 loc) · 4.16 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import tensorflow as tf
import keras as k
from utils import *
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def sparse_dropout(x, keep_prob, noise_shape):
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
def dot(x, y, sparse=False):
if sparse:
res = tf.sparse_tensor_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res
class Layer(object):
def __init__(self, **kwargs):
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.weights = {}
self.sparse_inputs = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
outputs = self._call(inputs)
return outputs
class ConvolutionalLayer(Layer):
def __init__(self, input_dim, output_dim, placeholders, dropout,
sparse_inputs, activation, isLast=False, bias=False, featureless=False, **kwargs):
super(ConvolutionalLayer, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.featureless = featureless
self.activation = activation
self.support = placeholders['support']
self.sparse_inputs = sparse_inputs
self.bias = bias
# helper variable for sparse dropout
self.num_features_nonzero = placeholders['num_features_nonzero']
with tf.variable_scope(self.name + '_weights'):
for i in range(len(self.support)):
self.weights['weights_' + str(i)] = glorot([input_dim, output_dim],
name='weights_' + str(i))
if self.bias:
self.weights['bias'] = zeros([output_dim], name='bias')
def _call(self, inputs):
x = inputs
# dropout
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
else:
x = tf.nn.dropout(x, 1-self.dropout)
# convolve
supports = list()
for i in range(len(self.support)):
if not self.featureless:
pre_sup = dot(x, self.weights['weights_' + str(i)],
sparse=self.sparse_inputs)
else:
pre_sup = self.weights['weights_' + str(i)]
support = dot(self.support[i], pre_sup, sparse=True)
supports.append(support)
output = tf.add_n(supports)
# bias
if self.bias:
output += self.weights['bias']
return self.activation(output)
class PoolingLayer(Layer):
def __init__(self, num_graphs, num_nodes, idx, input_dim, output_dim, placeholders,
sparse_inputs, activation, isLast=False, bias=False, featureless=False, **kwargs):
super(PoolingLayer, self).__init__(**kwargs)
self.num_nodes = num_nodes
self.num_graphs = num_graphs
self.activation = activation
self.output_dim = output_dim
self.input_dim = input_dim
self.idx = idx
def _call(self, inputs):
#pooling_matrix = 0
#matrice con: righe = num nodi e colonne = num grafi
pooling_matrix = np.array([[0. for i in range(self.num_nodes)] for k in range(self.num_graphs)])
idx_aug = np.append(self.idx, self.num_nodes-1)
idx_aug = idx_aug.astype(int)
for i in range(self.num_graphs):
pooling_matrix[i, range(idx_aug[i], idx_aug[i+1])] = (1/(idx_aug[i+1]-idx_aug[i]))
output = dot(tf.cast(pooling_matrix, tf.float32), inputs, sparse = False)
return self.activation(output)