-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch.py
67 lines (51 loc) · 2.05 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import sys
from random import shuffle
import matplotlib.pyplot as plt
from scipy import spatial
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tqdm import tqdm
import dataset
import features
import paths
def visualize_similar_images(img_paths, max_query_imgs=7, max_matches=5):
img_paths = img_paths[:min(max_query_imgs, len(img_paths))]
fig, axs = plt.subplots(len(img_paths), max_matches + 1, figsize=(10, 10))
for i in tqdm(range(len(img_paths))):
img_path = img_paths[i]
similar = similar_images_paths(img_path, max_imgs=max_matches)
__plot_similarities__(axs[i], img_path, similar)
plt.tight_layout(h_pad=2)
plt.show()
def __plot_similarities__(ax, img_path, similar):
ax[0].set_title('Query image', size=7)
ax[0].imshow(img_to_array(load_img(img_path)) / 255)
ax[0].axis('off')
ax[0].autoscale()
cnt = 1
for path, similarity in similar:
ax[cnt].imshow(img_to_array(load_img(path)) / 255)
ax[cnt].set_title('Related image\n similarity %f' % (similarity,), size=7)
ax[cnt].axis('off')
ax[cnt].autoscale()
cnt += 1
def similar_images_paths(img_path, max_imgs=4):
query_features = features.extract_features(img_path)
stored_features = dataset.get_stored_features()
max_imgs = min(max_imgs, len(stored_features[0]))
similarities = []
for filename, encoding in list(zip(*stored_features)):
h_distance = spatial.distance.hamming(query_features, encoding)
c_distance = spatial.distance.cosine(query_features, encoding)
similarity = 1 - (h_distance + c_distance) / 2
similarities.append((filename, similarity))
similarities.sort(key=lambda tup: -tup[1])
return similarities[:max_imgs]
if __name__ == "__main__":
args = sys.argv
if len(args) > 1:
visualize_similar_images(args[1:])
else:
paths = dataset.get_file_list(paths.query_images_folder_path)
shuffle(paths)
visualize_similar_images(paths)