-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0000.Union-Find.swift
92 lines (74 loc) · 2.47 KB
/
0000.Union-Find.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class UnionFind {
// The number of elements in this union find
private(set) var size: Int
// Used to track the size of each of the component
private var sz: [Int]
// id[i] points to the parent of i, if id[i] = i then i is a root node
private var id: [Int]
// Tracks the number of components in the union find
private(set) var numComponents: Int
init(size: Int) {
// if (size <= 0) throw new IllegalArgumentException("Size <= 0 is not allowed");
self.size = size
self.numComponents = size
sz = Array(repeating: 0, count: size) // new int[size];
id = Array(repeating: 1, count: size) //new int[size];
for i in 0..<size {
id[i] = i
sz[i] = 1
}
}
// Find which component/set 'p' belongs to, takes amortized constant time.
public func find(_ p: Int) -> Int {
var p = p
// Find the root of the component/set
var root = p;
while (root != id[root]) {
root = id[root]
}
// Compress the path leading back to the root.
// Doing this operation is called "path compression"
// and is what gives us amortized time complexity.
while p != root {
let next = id[p]
id[p] = root
p = next
}
return root
}
// This is an alternative recursive formulation for the find method
public func findRecursive(_ p: Int) -> Int {
if p == id[p] {
return p
}
id[p] = find(id[p])
return id[p]
}
// Return whether or not the elements 'p' and
// 'q' are in the same components/set.
public func connected(_ p: Int, _ q: Int) -> Bool {
find(p) == find(q)
}
// Unify the components/sets containing elements 'p' and 'q'
public func union(_ p: Int, _ q: Int) {
// These elements are already in the same group!
if (connected(p, q)) {
return
}
let root1 = find(p);
let root2 = find(q);
// Merge smaller component/set into the larger one.
if (sz[root1] < sz[root2]) {
sz[root2] += sz[root1];
id[root1] = root2;
sz[root1] = 0;
} else {
sz[root1] += sz[root2];
id[root2] = root1;
sz[root2] = 0;
}
// Since the roots found are different we know that the
// number of components/sets has decreased by one
numComponents -= 1
}
}