2
2
3
3
# Source code for Geometric Transformers for Protein Interface Contact Prediction (ICLR 2022)
4
4
5
- [ ![ Paper] ( http://img.shields.io/badge/paper-arxiv.2110.02423-B31B1B.svg )] ( https://openreview.net/forum?id=CS4463zx6Hi ) [ ![ DOI] ( https://zenodo.org/badge/DOI/10.5281/zenodo.6299835 .svg )] ( https://doi.org/10.5281/zenodo.6299835 )
5
+ [ ![ Paper] ( http://img.shields.io/badge/paper-arxiv.2110.02423-B31B1B.svg )] ( https://openreview.net/forum?id=CS4463zx6Hi ) [ ![ DOI] ( https://zenodo.org/badge/DOI/10.5281/zenodo.6671582 .svg )] ( https://doi.org/10.5281/zenodo.6671582 )
6
6
7
7
[ <img src =" https://twixes.gallerycdn.vsassets.io/extensions/twixes/pypi-assistant/1.0.3/1589834023190/Microsoft.VisualStudio.Services.Icons.Default " width =" 50 " />] ( https://pypi.org/project/DeepInteract/ )
8
8
@@ -248,8 +248,8 @@ Now that we know Docker is functioning properly, we can begin building our Docke
248
248
249
249
```bash
250
250
mkdir -p project/checkpoints
251
- wget -P project/checkpoints https://zenodo.org/record/6299835 /files/LitGINI-GeoTran-DilResNet.ckpt
252
- wget -P project/checkpoints https://zenodo.org/record/6299835 /files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
251
+ wget -P project/checkpoints https://zenodo.org/record/6671582 /files/LitGINI-GeoTran-DilResNet.ckpt
252
+ wget -P project/checkpoints https://zenodo.org/record/6671582 /files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
253
253
```
254
254
255
255
3. Build the Docker image (Warning: Requires ~13GB of Space):
@@ -408,8 +408,8 @@ To train, fine-tune, or test DeepInteract models using CASP-CAPRI, DB5-Plus, or
408
408
# Download CASP-CAPRI
409
409
mkdir -p project/datasets/CASP_CAPRI/final
410
410
cd project/datasets/CASP_CAPRI/final
411
- wget https://zenodo.org/record/6299835 /files/final_raw_casp_capri.tar.gz
412
- wget https://zenodo.org/record/6299835 /files/final_processed_casp_capri.tar.gz
411
+ wget https://zenodo.org/record/6671582 /files/final_raw_casp_capri.tar.gz
412
+ wget https://zenodo.org/record/6671582 /files/final_processed_casp_capri.tar.gz
413
413
414
414
# Extract CASP-CAPRI
415
415
tar -xzf final_raw_casp_capri.tar.gz
@@ -419,8 +419,8 @@ rm final_raw_casp_capri.tar.gz final_processed_casp_capri.tar.gz
419
419
# Download DB5-Plus
420
420
mkdir -p ../../DB5/final
421
421
cd ../../DB5/final
422
- wget https://zenodo.org/record/6299835 /files/final_raw_db5.tar.gz
423
- wget https://zenodo.org/record/6299835 /files/final_processed_db5.tar.gz
422
+ wget https://zenodo.org/record/6671582 /files/final_raw_db5.tar.gz
423
+ wget https://zenodo.org/record/6671582 /files/final_processed_db5.tar.gz
424
424
425
425
# Extract DB5-Plus
426
426
tar -xzf final_raw_db5.tar.gz
@@ -430,9 +430,9 @@ rm final_raw_db5.tar.gz final_processed_db5.tar.gz
430
430
# Download DIPS-Plus
431
431
mkdir -p ../../DIPS/final
432
432
cd ../../DIPS/final
433
- wget https://zenodo.org/record/6299835 /files/final_raw_dips.tar.gz
434
- wget https://zenodo.org/record/6299835 /files/final_processed_dips.tar.gz.partaa
435
- wget https://zenodo.org/record/6299835 /files/final_processed_dips.tar.gz.partab
433
+ wget https://zenodo.org/record/6671582 /files/final_raw_dips.tar.gz
434
+ wget https://zenodo.org/record/6671582 /files/final_processed_dips.tar.gz.partaa
435
+ wget https://zenodo.org/record/6671582 /files/final_processed_dips.tar.gz.partab
436
436
437
437
# First, reassemble all processed DGLGraphs
438
438
# We split the (tar.gz) archive into two separate parts with
@@ -465,8 +465,8 @@ cd "$DI_DIR"
465
465
466
466
# Download our trained model checkpoints
467
467
mkdir -p project/checkpoints
468
- wget -P project/checkpoints https://zenodo.org/record/6299835 /files/LitGINI-GeoTran-DilResNet.ckpt
469
- wget -P project/checkpoints https://zenodo.org/record/6299835 /files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
468
+ wget -P project/checkpoints https://zenodo.org/record/6671582 /files/LitGINI-GeoTran-DilResNet.ckpt
469
+ wget -P project/checkpoints https://zenodo.org/record/6671582 /files/LitGINI-GeoTran-DilResNet-DB5-Fine-Tuned.ckpt
470
470
```
471
471
472
472
### Predict interface contact probability maps
0 commit comments