@@ -216,29 +216,29 @@ def main(output_dir: str, source_type: str, interfacing_water_distance_cutoff: f
216
216
217
217
# Training data distribution
218
218
plt .subplot (131 ) # 1 row, 3 columns, plot 1 (leftmost)
219
- plt .hist (train_complex_num_waters , bins = 10 , color = 'blue ' )
220
- plt .axvline (training_mean , color = 'red ' , linestyle = 'dashed' , linewidth = 2 )
221
- plt .text (training_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f'Mean: { training_mean :.2f} ' , color = 'red ' )
219
+ plt .hist (train_complex_num_waters , bins = 10 , color = 'royalblue ' )
220
+ plt .axvline (training_mean , color = 'limegreen ' , linestyle = 'dashed' , linewidth = 2 )
221
+ plt .text (training_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f' Mean: { training_mean :.2f} ' , color = 'limegreen ' )
222
222
plt .title ('Train Interface Waters' )
223
- plt .xlabel ('Counts ' )
223
+ plt .xlabel ('Count ' )
224
224
plt .ylabel ('Frequency' )
225
225
226
226
# Validation data distribution
227
227
plt .subplot (132 ) # 1 row, 3 columns, plot 2 (middle)
228
- plt .hist (val_complex_num_waters , bins = 10 , color = 'green ' )
229
- plt .axvline (validation_mean , color = 'red ' , linestyle = 'dashed' , linewidth = 2 )
230
- plt .text (validation_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f'Mean: { validation_mean :.2f} ' , color = 'red ' )
228
+ plt .hist (val_complex_num_waters , bins = 10 , color = 'royalblue ' )
229
+ plt .axvline (validation_mean , color = 'limegreen ' , linestyle = 'dashed' , linewidth = 2 )
230
+ plt .text (validation_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f' Mean: { validation_mean :.2f} ' , color = 'limegreen ' )
231
231
plt .title ('Validation Interface Waters' )
232
- plt .xlabel ('Counts ' )
232
+ plt .xlabel ('Count ' )
233
233
plt .ylabel ('Frequency' )
234
234
235
235
# Combined data distribution
236
236
plt .subplot (133 ) # 1 row, 3 columns, plot 3 (rightmost)
237
- plt .hist (train_val_complex_num_waters , bins = 10 , color = 'orange ' )
238
- plt .axvline (training_validation_mean , color = 'red ' , linestyle = 'dashed' , linewidth = 2 )
239
- plt .text (training_validation_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f'Mean: { training_validation_mean :.2f} ' , color = 'red ' )
240
- plt .title ('Train + Validation Interface Waters' )
241
- plt .xlabel ('Counts ' )
237
+ plt .hist (train_val_complex_num_waters , bins = 10 , color = 'royalblue ' )
238
+ plt .axvline (training_validation_mean , color = 'limegreen ' , linestyle = 'dashed' , linewidth = 2 )
239
+ plt .text (training_validation_mean + 0.1 , plt .ylim ()[1 ] * 0.9 , f' Mean: { training_validation_mean :.2f} ' , color = 'limegreen ' )
240
+ plt .title ('Train+ Validation Interface Waters' )
241
+ plt .xlabel ('Count ' )
242
242
plt .ylabel ('Frequency' )
243
243
244
244
plt .tight_layout () # Adjust the spacing between subplots
0 commit comments