-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
32 lines (25 loc) · 1.03 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import shutil
from typing import Dict
from transformers import TrainingArguments, Trainer, logging
def setTrainingArgs(config: Dict, device) -> TrainingArguments:
training_args = config["train"]
if device.type == 'cuda':
training_args["fp16"] = True
return TrainingArguments(**training_args)
def trainMultimodalModelForVQA(config, device, dataset, collator, model, compute_metrics):
training_args = setTrainingArgs(config, device)
training_args.output_dir = os.path.join(training_args.output_dir, config["model"]["name"])
if os.path.isdir(training_args.output_dir):
shutil.rmtree(training_args.output_dir)
multi_trainer = Trainer(
model,
training_args,
train_dataset=dataset['train'],
eval_dataset=dataset['test'],
data_collator=collator,
compute_metrics=compute_metrics
)
train_multi_metrics = multi_trainer.train()
eval_multi_metrics = multi_trainer.evaluate()
return train_multi_metrics, eval_multi_metrics