Skip to content
This repository has been archived by the owner on May 6, 2023. It is now read-only.

Bfzanchetta/ps-lite

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status GitHub license

A light and efficient implementation of the parameter server framework. It provides clean yet powerful APIs. For example, a worker node can communicate with the server nodes by

  • Push(keys, values): push a list of (key, value) pairs to the server nodes
  • Pull(keys): pull the values from servers for a list of keys
  • Wait: wait untill a push or pull finished.

A simple example:

  std::vector<uint64_t> key = {1, 3, 5};
  std::vector<float> val = {1, 1, 1};
  std::vector<float> recv_val;
  ps::KVWorker<float> w;
  w.Wait(w.Push(key, val));
  w.Wait(w.Pull(key, &recv_val));

More features:

  • Flexible and high-performance communication: zero-copy push/pull, supporting dynamic length values, user-defined filters for communication compression
  • Server-side programming: supporting user-defined handles on server nodes

Build

ps-lite requires a C++11 compiler such as g++ >= 4.8. On Ubuntu >= 13.10, we can install it by

sudo apt-get update && sudo apt-get install -y build-essential git

Instructions for gcc 4.8 installation on other platforms:

Then clone and build

git clone https://github.com/dmlc/ps-lite
cd ps-lite && make -j4

How to use

ps-lite provides asynchronous communication for other projects:

Research papers

  1. Mu Li, Dave Andersen, Alex Smola, Junwoo Park, Amr Ahmed, Vanja Josifovski, James Long, Eugene Shekita, Bor-Yiing Su. Scaling Distributed Machine Learning with the Parameter Server. In Operating Systems Design and Implementation (OSDI), 2014
  2. Mu Li, Dave Andersen, Alex Smola, and Kai Yu. Communication Efficient Distributed Machine Learning with the Parameter Server. In Neural Information Processing Systems (NIPS), 2014

About

A lightweight parameter server interface

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 78.5%
  • Python 13.7%
  • CMake 4.0%
  • Makefile 1.9%
  • Shell 1.2%
  • C 0.7%