forked from tensorflow/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
135 lines (116 loc) · 3.56 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""tensorflow/datasets is a library of datasets ready to use with TensorFlow.
tensorflow/datasets is a library of public datasets ready to use with
TensorFlow. Each dataset definition contains the logic necessary to download and
prepare the dataset, as well as to read it into a model using the
`tf.data.Dataset` API.
Usage outside of TensorFlow is also supported.
See the README on GitHub for further documentation.
"""
import datetime
import os
import sys
from setuptools import find_packages
from setuptools import setup
nightly = False
if '--nightly' in sys.argv:
nightly = True
sys.argv.remove('--nightly')
project_name = 'tensorflow-datasets'
# To enable importing version.py directly, we add its path to sys.path.
version_path = os.path.join(
os.path.dirname(__file__), 'tensorflow_datasets')
sys.path.append(version_path)
from version import __version__ # pylint: disable=g-import-not-at-top
if nightly:
project_name = 'tfds-nightly'
datestring = (os.environ.get('TFDS_NIGHTLY_TIMESTAMP') or
datetime.datetime.now().strftime('%Y%m%d%H%M'))
__version__ += 'dev%s' % datestring
DOCLINES = __doc__.split('\n')
REQUIRED_PKGS = [
'absl-py',
'future',
'numpy',
'promise',
'protobuf>=3.6.1',
'psutil'
'requests',
'six',
'tensorflow-metadata',
'termcolor',
'tqdm',
'wrapt',
]
TESTS_REQUIRE = [
'jupyter',
'pytest',
'apache-beam',
]
if sys.version_info.major == 3:
# Packages only for Python 3
pass
else:
# Packages only for Python 2
TESTS_REQUIRE.append('mock')
REQUIRED_PKGS.append('bz2file')
REQUIRED_PKGS.append('functools32')
REQUIRED_PKGS.append('futures') # concurrent.futures
if sys.version_info < (3, 4):
# enum introduced in Python 3.4
REQUIRED_PKGS.append('enum34')
# Static files needed by datasets.
DATASET_FILES = [
'image/imagenet2012_labels.txt',
'image/imagenet2012_validation_labels.txt',
'image/quickdraw_labels.txt',
'url_checksums/*',
]
DATASET_EXTRAS = {
# In alphabetical order
'cats_vs_dogs': ['matplotlib'],
'colorectal_histology': ['Pillow'],
'imagenet2012_corrupted': [
# This includes pre-built source; you may need to use an alternative
# route to install OpenCV
'opencv-python==3.4.0.14'
],
'librispeech': ['pydub'], # and ffmpeg installed
'svhn': ['scipy'],
'wikipedia': ['mwparserfromhell', 'apache_beam'],
}
all_dataset_extras = []
for deps in DATASET_EXTRAS.values():
all_dataset_extras.extend(deps)
EXTRAS_REQUIRE = {
'apache-beam': ['apache-beam'],
'tensorflow': ['tensorflow>=1.12.0'],
'tensorflow_gpu': ['tensorflow-gpu>=1.12.0'],
'tests': TESTS_REQUIRE + all_dataset_extras,
}
EXTRAS_REQUIRE.update(DATASET_EXTRAS)
setup(
name=project_name,
version=__version__,
description=DOCLINES[0],
long_description='\n'.join(DOCLINES[2:]),
author='Google Inc.',
author_email='[email protected]',
url='http://github.com/tensorflow/datasets',
download_url='https://github.com/tensorflow/datasets/tags',
license='Apache 2.0',
packages=find_packages(),
package_data={
'tensorflow_datasets': DATASET_FILES,
},
scripts=[],
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
keywords='tensorflow machine learning datasets',
)