@@ -214,6 +214,92 @@ response = completion(
214214
215215</Tabs >
216216
217+ ### Responses API
218+
219+ Use ` litellm.responses() ` for advanced models that support reasoning content like GPT-5, o3, etc.
220+
221+ <Tabs >
222+ <TabItem value =" openai-responses " label =" OpenAI " >
223+
224+ ``` python
225+ from litellm import responses
226+ import os
227+
228+ # # set ENV variables
229+ os.environ[" OPENAI_API_KEY" ] = " your-api-key"
230+
231+ response = responses(
232+ model = " gpt-5-mini" ,
233+ messages = [{ " content" : " What is the capital of France?" ," role" : " user" }],
234+ reasoning_effort = " medium"
235+ )
236+
237+ print (response)
238+ print (response.choices[0 ].message.content) # response
239+ print (response.choices[0 ].message.reasoning_content) # reasoning
240+
241+ ```
242+
243+ </TabItem >
244+ <TabItem value =" anthropic-responses " label =" Anthropic (Claude) " >
245+
246+ ``` python
247+ from litellm import responses
248+ import os
249+
250+ # # set ENV variables
251+ os.environ[" ANTHROPIC_API_KEY" ] = " your-api-key"
252+
253+ response = responses(
254+ model = " claude-3.5-sonnet" ,
255+ messages = [{ " content" : " What is the capital of France?" ," role" : " user" }]
256+ )
257+ ```
258+
259+ </TabItem >
260+
261+ <TabItem value =" vertex-responses " label =" VertexAI " >
262+
263+ ``` python
264+ from litellm import responses
265+ import os
266+
267+ # auth: run 'gcloud auth application-default'
268+ os.environ[" VERTEX_PROJECT" ] = " jr-smith-386718"
269+ os.environ[" VERTEX_LOCATION" ] = " us-central1"
270+
271+ response = responses(
272+ model = " chat-bison" ,
273+ messages = [{ " content" : " What is the capital of France?" ," role" : " user" }]
274+ )
275+ ```
276+
277+ </TabItem >
278+
279+ <TabItem value =" azure-responses " label =" Azure OpenAI " >
280+
281+ ``` python
282+ from litellm import responses
283+ import os
284+
285+ # # set ENV variables
286+ os.environ[" AZURE_API_KEY" ] = " "
287+ os.environ[" AZURE_API_BASE" ] = " "
288+ os.environ[" AZURE_API_VERSION" ] = " "
289+
290+ # azure call
291+ response = responses(
292+ " azure/<your_deployment_name>" ,
293+ messages = [{ " content" : " What is the capital of France?" ," role" : " user" }]
294+ )
295+
296+ print (response)
297+ ```
298+
299+ </TabItem >
300+
301+ </Tabs >
302+
217303### Streaming
218304Set ` stream=True ` in the ` completion ` args.
219305
@@ -504,6 +590,10 @@ model_list:
504590 api_base : os.environ/AZURE_API_BASE # runs os.getenv("AZURE_API_BASE")
505591 api_key : os.environ/AZURE_API_KEY # runs os.getenv("AZURE_API_KEY")
506592 api_version : " 2023-07-01-preview"
593+
594+ litellm_settings :
595+ master_key : sk-1234
596+ database_url : postgres://
507597` ` `
508598
509599### Step 2. RUN Docker Image
@@ -524,6 +614,9 @@ docker run \
524614
525615#### Step 2: Make ChatCompletions Request to Proxy
526616
617+ <Tabs >
618+ <TabItem value =" chat-completions " label =" Chat Completions " >
619+
527620``` python
528621import openai # openai v1.0.0+
529622client = openai.OpenAI(api_key = " anything" ,base_url = " http://0.0.0.0:4000" ) # set proxy to base_url
@@ -538,6 +631,28 @@ response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
538631print (response)
539632```
540633
634+ </TabItem >
635+ <TabItem value =" responses-api " label =" Responses API " >
636+
637+ ``` python
638+ from openai import OpenAI
639+
640+ client = OpenAI(
641+ api_key = " sk-1234" ,
642+ base_url = " http://0.0.0.0:4000"
643+ )
644+
645+ response = client.responses.create(
646+ model = " gpt-5" ,
647+ input = " Tell me a three sentence bedtime story about a unicorn."
648+ )
649+
650+ print (response)
651+ ```
652+
653+ </TabItem >
654+ </Tabs >
655+
541656## More details
542657
543658- [ exception mapping] ( ../../docs/exception_mapping )
0 commit comments