diff --git a/docs/source/shallow_learning_methods/logistic_regression.rst b/docs/source/shallow_learning_methods/logistic_regression.rst index aa7f176..4751ada 100644 --- a/docs/source/shallow_learning_methods/logistic_regression.rst +++ b/docs/source/shallow_learning_methods/logistic_regression.rst @@ -103,9 +103,9 @@ Example Usage dataset = dataset.to_numpy() attributes = dataset[:, 0:5] # Columns 1-5 contain our features labels = dataset[:, 5] # Column 6 contains our class labels - log_model = LinRegression(attributes, labels) + log_model = LogRegression(attributes, labels) log_model.run() # This will trigger the command-line interface for parameter input new_data_X = read_csv('/path/to/new_data_X.csv') new_data_X = new_data_X.to_numpy() - classifications = log_model.predict(new_data_X) # This will return and output classifications for new_data_X \ No newline at end of file + classifications = log_model.predict(new_data_X) # This will return and output classifications for new_data_X