-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
133 lines (112 loc) · 4.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numbers
import math
import pickle
from shutil import copyfile
import argparse
from evidence import Evidence
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--outputDir', help='output directory for PNG plots', required=True)
parser.add_argument('-c', '--confFile', help='path to JSON configuration file', required=True)
parser.add_argument('-j', '--jobType', help='job type to execute: "simulate" or "analyze"', required=True)
options = parser.parse_args()
return options
def save_config(confFile, outputDir):
nLevels = confFile.count('/')
fileName = confFile.split('/')[nLevels]
copyfile(confFile, outputDir + '/' + fileName)
def saveAllLRPs(allLRPs, outputDir):
fileName = outputDir + '/allLRPs.csv'
with open(fileName, 'w') as f:
f.write(str(allLRPs))
f.close()
def saveProbability(simulation, center, outputDir):
dist = str(simulation.nSmall) + '_' + str(simulation.nMedium) + '_' + str(simulation.nLarge)
outFile = outputDir + '/' + simulation.saType + '_' + str(simulation.saParam) + '_' + simulation.name + '_' + \
center.name + '_' + str(simulation.years) + 'yrs_' + str(simulation.frequency) + '_' + dist + '_probs.dat'
with open(outFile, 'wb') as output:
pickle.dump(center, output, pickle.HIGHEST_PROTOCOL)
def prod(theList):
if not isinstance(theList, list):
if isinstance(theList, numbers.Number):
x=theList
theList=list()
theList.append(x)
else:
raise Exception('argument must be a list of numbers')
result = 1.0
for i in range(len(theList)):
result *= theList[i]
return result
def rpois(num, lam, rng):
#numpy.random.seed()
#return numpy.random.poisson(lam, num)
return rng.poisson(lam, num)
def sample(theList, numSamples, replace, rng):
if len(theList) == 0:
return []
if numSamples > 1:
return list(rng.choice(a=theList, size=numSamples, replace=replace))
elif numSamples == 1:
return list(rng.choice(a=theList, size=numSamples, replace=replace))
else:
return []
def rep(elt, num):
return [elt for i in range(num)]
def getRandomUniformPriorLR(rng):
# the purpose of this method is to return an initial in-silico prediction for the variant to bootstrap the variant LR
#numpy.random.seed()
#myRandProbability = numpy.random.uniform(0.1, 0.9, 1)[0]
myRandProbability = rng.uniform(0.1, 0.9, 1)[0]
return myRandProbability / (1 - myRandProbability)
def sampleEvidenceFromObservations(expectedNum, observations, rng):
# assign random uniform prior LR as first piece of evidence
initialEvidence = [Evidence(getRandomUniformPriorLR(rng), 1/len(observations))]
#initialEvidence = [Evidence(getRandomUniformPriorLR(rng), 0.001)]
sampleEvidence = sample(observations, int(expectedNum), replace=True, rng=rng)
# pull out the lrs from the Evidence objects
'''sampleLRs = list()
for e in sampleEvidence:
sampleLRs.append(e.lr)'''
if len(sampleEvidence) == 0:
return []
else:
return initialEvidence + sampleEvidence
#return sampleLRs
def getExpectedNumsFromPSF(n, PSF):
# for now, we've fixed PSF at a number but could in the future make it a distribution from which we sample
fractionBenign = 1.0 / (PSF +1)
# numBenign = int(fractionBenign * n)
numBenign = math.ceil(fractionBenign * n)
numPathogenic = n - numBenign
return numBenign, numPathogenic
def sampleNumberOfPeopleWithVariant(n, freq, rng):
# here we're using the poisson dist b/c the sampling process satisfies:
# 1. variant occurs randomly
# 2. variant occurs independently
# 3. variant counts are discrete (e.g. whole numbers only)
# P(X=x) = lam^x * e^(-lam) / x! (where lam = mean, lam = variance)
#return sum(rpois(n, freq, rng))
return rng.binomial(n, freq)
def calculateSumOfLogs(lrList):
mySum = 0
for sublist in lrList:
for lr in sublist:
mySum += math.log(lr, 10)
return mySum
def divide(n, d):
res = list()
qu = int(n/d)
rm = n%d
for i in range(d):
if i < rm:
res.append(qu + 1)
else:
res.append(qu)
return res
def getStartAndEnd(partitionSizes, threadID):
start = 0
for i in range(threadID):
start += partitionSizes[i]
end = start + partitionSizes[threadID]
return start, end