-
-
Notifications
You must be signed in to change notification settings - Fork 670
/
Copy pathindex.d.ts
2290 lines (2208 loc) · 130 KB
/
index.d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Environment definitions for compiling AssemblyScript to WebAssembly using asc.
* @module std/assembly
*//***/
/// <reference no-default-lib="true"/>
// Types
/** An 8-bit signed integer. */
declare type i8 = number;
/** A 16-bit signed integer. */
declare type i16 = number;
/** A 32-bit signed integer. */
declare type i32 = number;
/** A 64-bit signed integer. */
declare type i64 = number;
/** A 32-bit signed integer when targeting 32-bit WebAssembly or a 64-bit signed integer when targeting 64-bit WebAssembly. */
declare type isize = number;
/** An 8-bit unsigned integer. */
declare type u8 = number;
/** A 16-bit unsigned integer. */
declare type u16 = number;
/** A 32-bit unsigned integer. */
declare type u32 = number;
/** A 64-bit unsigned integer. */
declare type u64 = number;
/** A 32-bit unsigned integer when targeting 32-bit WebAssembly or a 64-bit unsigned integer when targeting 64-bit WebAssembly. */
declare type usize = number;
/** A 1-bit unsigned integer. */
declare type bool = boolean | number;
/** A 32-bit float. */
declare type f32 = number;
/** A 64-bit float. */
declare type f64 = number;
/** A 128-bit vector. */
declare type v128 = object;
/** Function reference. */
declare type funcref = object | null;
/** External reference. */
declare type externref = object | null;
/** Any reference. */
declare type anyref = object | null;
/** Equatable reference. */
declare type eqref = object | null;
/** 31-bit integer reference. */
declare type i31ref = object | null;
/** Data reference. */
declare type dataref = object | null;
// Compiler hints
/** Compiler target. 0 = JS, 1 = WASM32, 2 = WASM64. */
declare const ASC_TARGET: i32;
/** Runtime type. 0 = Stub, 1 = Minimal, 2 = Incremental. */
declare const ASC_RUNTIME: i32;
/** Provided noAssert option. */
declare const ASC_NO_ASSERT: bool;
/** Provided memoryBase option. */
declare const ASC_MEMORY_BASE: i32;
/** Provided tableBase option. */
declare const ASC_TABLE_BASE: i32;
/** Provided optimizeLevel option. */
declare const ASC_OPTIMIZE_LEVEL: i32;
/** Provided shrinkLevel option. */
declare const ASC_SHRINK_LEVEL: i32;
/** Provided lowMemoryLimit option. */
declare const ASC_LOW_MEMORY_LIMIT: i32;
/** Provided noExportRuntime option. */
declare const ASC_NO_EXPORT_RUNTIME: i32;
/** Whether the sign extension feature is enabled. */
declare const ASC_FEATURE_SIGN_EXTENSION: bool;
/** Whether the mutable globals feature is enabled. */
declare const ASC_FEATURE_MUTABLE_GLOBALS: bool;
/** Whether the non-trapping float-to-int feature is enabled. */
declare const ASC_FEATURE_NONTRAPPING_F2I: bool;
/** Whether the bulk memory feature is enabled. */
declare const ASC_FEATURE_BULK_MEMORY: bool;
/** Whether the SIMD feature is enabled. */
declare const ASC_FEATURE_SIMD: bool;
/** Whether the threads feature is enabled. */
declare const ASC_FEATURE_THREADS: bool;
/** Whether the exception handling feature is enabled. */
declare const ASC_FEATURE_EXCEPTION_HANDLING: bool;
/** Whether the tail calls feature is enabled. */
declare const ASC_FEATURE_TAIL_CALLS: bool;
/** Whether the reference types feature is enabled. */
declare const ASC_FEATURE_REFERENCE_TYPES: bool;
/** Whether the multi value types feature is enabled. */
declare const ASC_FEATURE_MULTI_VALUE: bool;
/** Whether the garbage collection feature is enabled. */
declare const ASC_FEATURE_GC: bool;
/** Whether the memory64 feature is enabled. */
declare const ASC_FEATURE_MEMORY64: bool;
/** Whether the function references feature is enabled. */
declare const ASC_FEATURE_FUNCTION_REFERENCES: bool;
/** Whether the relaxed SIMD feature is enabled. */
declare const ASC_FEATURE_RELAXED_SIMD: bool;
/** Whether the extended const expression feature is enabled. */
declare const ASC_FEATURE_EXTENDED_CONST: bool;
/** Major version of the compiler. */
declare const ASC_VERSION_MAJOR: i32;
/** Minor version of the compiler. */
declare const ASC_VERSION_MINOR: i32;
/** Patch version of the compiler. */
declare const ASC_VERSION_PATCH: i32;
// Builtins
/** Performs the sign-agnostic count leading zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered leading if the value is zero. */
declare function clz<T extends i32 | i64>(value: T): T;
/** Performs the sign-agnostic count tailing zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered trailing if the value is zero. */
declare function ctz<T extends i32 | i64>(value: T): T;
/** Performs the sign-agnostic count number of one bits operation on a 32-bit or 64-bit integer. */
declare function popcnt<T extends i32 | i64>(value: T): T;
/** Performs the sign-agnostic rotate left operation on a 32-bit or 64-bit integer. */
declare function rotl<T extends i32 | i64>(value: T, shift: T): T;
/** Performs the sign-agnostic rotate right operation on a 32-bit or 64-bit integer. */
declare function rotr<T extends i32 | i64>(value: T, shift: T): T;
/** Computes the absolute value of an integer or float. */
declare function abs<T extends i32 | i64 | f32 | f64>(value: T): T;
/** Determines the maximum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function max<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Determines the minimum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function min<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Performs the ceiling operation on a 32-bit or 64-bit float. */
declare function ceil<T extends f32 | f64>(value: T): T;
/** Composes a 32-bit or 64-bit float from the magnitude of `x` and the sign of `y`. */
declare function copysign<T extends f32 | f64>(x: T, y: T): T;
/** Performs the floor operation on a 32-bit or 64-bit float. */
declare function floor<T extends f32 | f64>(value: T): T;
/** Rounds to the nearest integer tied to even of a 32-bit or 64-bit float. */
declare function nearest<T extends f32 | f64>(value: T): T;
/** Reinterprets the bits of the specified value as type `T`. Valid reinterpretations are u32/i32 to/from f32 and u64/i64 to/from f64. */
declare function reinterpret<T extends i32 | i64 | f32 | f64>(value: number): T;
/** Selects one of two pre-evaluated values depending on the condition. */
declare function select<T>(ifTrue: T, ifFalse: T, condition: bool): T;
/** Calculates the square root of a 32-bit or 64-bit float. */
declare function sqrt<T extends f32 | f64>(value: T): T;
/** Rounds to the nearest integer towards zero of a 32-bit or 64-bit float. */
declare function trunc<T extends f32 | f64>(value: T): T;
/** Computes the sum of two integers or floats. */
declare function add<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Computes the difference of two integers or floats. */
declare function sub<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Computes the product of two integers or floats. */
declare function mul<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Computes the quotient of two integers or floats. */
declare function div<T extends i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Return 1 if two numbers are equal to each other, 0 otherwise. */
declare function eq<T extends i32 | i64 | f32 | f64>(left: T, right: T): i32;
/** Return 0 if two numbers are equal to each other, 1 otherwise. */
declare function ne<T extends i32 | i64 | f32 | f64>(left: T, right: T): i32;
/** Computes the remainder of two integers. */
declare function rem<T extends i32 | i64>(left: T, right: T): T;
/** Loads a value of the specified type from memory. Equivalent to dereferncing a pointer in other languages. */
declare function load<T>(ptr: usize, immOffset?: usize, immAlign?: usize): T;
/** Stores a value of the specified type to memory. Equivalent to dereferencing a pointer in other languages when assigning a value. */
declare function store<T>(ptr: usize, value: T, immOffset?: usize, immAlign?: usize): void;
/** Emits an unreachable operation that results in a runtime error when executed. Both a statement and an expression. */
declare function unreachable(): never;
/** NaN (not a number) as a 32-bit or 64-bit float depending on context. */
declare const NaN: f32 | f64;
/** Positive infinity as a 32-bit or 64-bit float depending on context. */
declare const Infinity: f32 | f64;
/** Data end offset. */
declare const __data_end: usize;
/** Stack pointer offset. */
declare var __stack_pointer: usize;
/** Heap base offset. */
declare const __heap_base: usize;
/** Determines the byte size of the specified underlying core type. Compiles to a constant. */
declare function sizeof<T>(): usize;
/** Determines the alignment (log2) of the specified underlying core type. Compiles to a constant. */
declare function alignof<T>(): usize;
/** Determines the end offset of the given class type. Compiles to a constant. */
declare function offsetof<T>(): usize;
/** Determines the offset of the specified field within the given class type. Compiles to a constant. */
declare function offsetof<T>(fieldName: keyof T | string): usize;
/** Determines the offset of the specified field within the given class type. Returns the class type's end offset if field name has been omitted. Compiles to a constant. */
declare function offsetof<T>(fieldName?: string): usize;
/** Determines the name of a given type. */
declare function nameof<T>(value?: T): string;
/** Determines the unique runtime id of a class type. Compiles to a constant. */
declare function idof<T>(): u32;
/** Changes the type of any value of `usize` kind to another one of `usize` kind. Useful for casting class instances to their pointer values and vice-versa. Beware that this is unsafe.*/
declare function changetype<T>(value: any): T;
/** Explicitly requests no bounds checks on the provided expression. Useful for array accesses. */
declare function unchecked<T>(value: T): T;
/** Emits a `call_indirect` instruction, calling the specified function in the function table by index with the specified arguments. Does result in a runtime error if the arguments do not match the called function. */
declare function call_indirect<T>(index: u32, ...args: unknown[]): T;
/** Instantiates a new instance of `T` using the specified constructor arguments. */
declare function instantiate<T>(...args: any[]): T;
/** Tests if a 32-bit or 64-bit float is `NaN`. */
declare function isNaN<T extends f32 | f64>(value: T): bool;
/** Tests if a 32-bit or 64-bit float is finite, that is not `NaN` or +/-`Infinity`. */
declare function isFinite<T extends f32 | f64>(value: T): bool;
/** Tests if the specified type *or* expression is of an integer type and not a reference. Compiles to a constant. */
declare function isInteger<T>(value?: any): value is number;
/** Tests if the specified type *or* expression is of a float type. Compiles to a constant. */
declare function isFloat<T>(value?: any): value is number;
/** Tests if the specified type *or* expression is of a boolean type. */
declare function isBoolean<T>(value?: any): value is number;
/** Tests if the specified type *or* expression can represent negative numbers. Compiles to a constant. */
declare function isSigned<T>(value?: any): value is number;
/** Tests if the specified type *or* expression is of a reference type. Compiles to a constant. */
declare function isReference<T>(value?: any): value is object | string;
/** Tests if the specified type *or* expression can be used as a string. Compiles to a constant. */
declare function isString<T>(value?: any): value is string | String;
/** Tests if the specified type *or* expression can be used as an array. Compiles to a constant. */
declare function isArray<T>(value?: any): value is Array<any>;
/** Tests if the specified type *or* expression can be used as an array like object. Compiles to a constant. */
declare function isArrayLike<T>(value?: any): value is ArrayLike<any>;
/** Tests if the specified type *or* expression is of a function type. Compiles to a constant. */
declare function isFunction<T>(value?: any): value is (...args: any) => any;
/** Tests if the specified type *or* expression is of a nullable reference type. Compiles to a constant. */
declare function isNullable<T>(value?: any): bool;
/** Tests if the specified expression resolves to a defined element. Compiles to a constant. */
declare function isDefined(expression: any): bool;
/** Tests if the specified expression evaluates to a constant value. Compiles to a constant. */
declare function isConstant(expression: any): bool;
/** Tests if the specified type *or* expression is of a managed type. Compiles to a constant. */
declare function isManaged<T>(value?: any): bool;
/** Tests if the specified type is void. Compiles to a constant. */
declare function isVoid<T>(): bool;
/** Traps if the specified value is not true-ish, otherwise returns the (non-nullable) value. */
declare function assert<T>(isTrueish: T, message?: string): T & (object | string | number); // any better way to model `: T != null`?
/** Parses an integer string to a 64-bit float. */
declare function parseInt(str: string, radix?: i32): f64;
/** Parses a string to a 64-bit float. */
declare function parseFloat(str: string): f64;
/** Returns the 64-bit floating-point remainder of `x/y`. */
declare function fmod(x: f64, y: f64): f64;
/** Returns the 32-bit floating-point remainder of `x/y`. */
declare function fmodf(x: f32, y: f32): f32;
/** Returns the number of parameters in the given function signature type. */
declare function lengthof<T extends (...args: any[]) => any>(func?: T): i32;
/** Encodes a text string as a valid Uniform Resource Identifier (URI). */
declare function encodeURI(str: string): string;
/** Encodes a text string as a valid component of a Uniform Resource Identifier (URI). */
declare function encodeURIComponent(str: string): string;
/** Decodes a Uniform Resource Identifier (URI) previously created by encodeURI. */
declare function decodeURI(str: string): string;
/** Decodes a Uniform Resource Identifier (URI) component previously created by encodeURIComponent. */
declare function decodeURIComponent(str: string): string;
/** Atomic operations. */
declare namespace atomic {
/** Atomically loads an integer value from memory and returns it. */
export function load<T>(ptr: usize, immOffset?: usize): T;
/** Atomically stores an integer value to memory. */
export function store<T>(ptr: usize, value: T, immOffset?: usize): void;
/** Atomically adds an integer value in memory. */
export function add<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically subtracts an integer value in memory. */
export function sub<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically performs a bitwise AND operation on an integer value in memory. */
export function and<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically performs a bitwise OR operation on an integer value in memory. */
export function or<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically performs a bitwise XOR operation on an integer value in memory. */
export function xor<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically exchanges an integer value in memory. */
export function xchg<T>(ptr: usize, value: T, immOffset?: usize): T;
/** Atomically compares and exchanges an integer value in memory if the condition is met. */
export function cmpxchg<T>(ptr: usize, expected: T, replacement: T, immOffset?: usize): T;
/** Performs a wait operation on an address in memory suspending this agent if the integer condition is met. */
export function wait<T>(ptr: usize, expected: T, timeout?: i64): AtomicWaitResult;
/** Performs a notify operation on an address in memory waking up suspended agents. */
export function notify(ptr: usize, count?: i32): i32;
/** Performs a fence operation, preserving synchronization guarantees of higher level languages. */
export function fence(): void;
}
/** Describes the result of an atomic wait operation. */
declare enum AtomicWaitResult {
/** Woken by another agent. */
OK,
/** Loaded value did not match the expected value. */
NOT_EQUAL,
/** Not woken before the timeout expired. */
TIMED_OUT
}
/** Converts any other numeric value to an 8-bit signed integer. */
declare function i8(value: any): i8;
declare namespace i8 {
/** Smallest representable value. */
export const MIN_VALUE: i8;
/** Largest representable value. */
export const MAX_VALUE: i8;
}
/** Converts any other numeric value to a 16-bit signed integer. */
declare function i16(value: any): i16;
declare namespace i16 {
/** Smallest representable value. */
export const MIN_VALUE: i16;
/** Largest representable value. */
export const MAX_VALUE: i16;
}
/** Converts any other numeric value to a 32-bit signed integer. */
declare function i32(value: any): i32;
declare namespace i32 {
/** Smallest representable value. */
export const MIN_VALUE: i32;
/** Largest representable value. */
export const MAX_VALUE: i32;
/** Loads an 8-bit signed integer value from memory and returns it as a 32-bit integer. */
export function load8_s(ptr: usize, immOffset?: usize, immAlign?: usize): i32;
/** Loads an 8-bit unsigned integer value from memory and returns it as a 32-bit integer. */
export function load8_u(ptr: usize, immOffset?: usize, immAlign?: usize): i32;
/** Loads a 16-bit signed integer value from memory and returns it as a 32-bit integer. */
export function load16_s(ptr: usize, immOffset?: usize, immAlign?: usize): i32;
/** Loads a 16-bit unsigned integer value from memory and returns it as a 32-bit integer. */
export function load16_u(ptr: usize, immOffset?: usize, immAlign?: usize): i32;
/** Loads a 32-bit integer value from memory. */
export function load(ptr: usize, immOffset?: usize, immAlign?: usize): i32;
/** Stores a 32-bit integer value to memory as an 8-bit integer. */
export function store8(ptr: usize, value: i32, immOffset?: usize, immAlign?: usize): void;
/** Stores a 32-bit integer value to memory as a 16-bit integer. */
export function store16(ptr: usize, value: i32, immOffset?: usize, immAlign?: usize): void;
/** Stores a 32-bit integer value to memory. */
export function store(ptr: usize, value: i32, immOffset?: usize, immAlign?: usize): void;
/** Performs the sign-agnostic count leading zero bits operation on a 32-bit integer. All zero bits are considered leading if the value is zero. */
export function clz(value: i32): i32;
/** Performs the sign-agnostic count tailing zero bits operation on a 32-bit integer. All zero bits are considered trailing if the value is zero. */
export function ctz(value: i32): i32;
/** Performs the sign-agnostic count number of one bits operation on a 32-bit integer. */
export function popcnt(value: i32): i32;
/** Performs the sign-agnostic rotate left operation on a 32-bit integer. */
export function rotl(value: i32, shift: i32): i32;
/** Performs the sign-agnostic rotate right operation on a 32-bit integer. */
export function rotr(value: i32, shift: i32): i32;
/** Reinterprets the bits of the specified 32-bit float as a 32-bit integer. */
export function reinterpret_f32(value: f32): i32;
/** Computes the sum of two 32-bit integers. */
export function add(left: i32, right: i32): i32;
/** Computes the difference of two 32-bit integers. */
export function sub(left: i32, right: i32): i32;
/** Computes the product of two 32-bit integers. */
export function mul(left: i32, right: i32): i32;
/** Computes the signed quotient of two 32-bit integers. */
export function div_s(left: i32, right: i32): i32;
/** Computes the unsigned quotient of two 32-bit integers. */
export function div_u(left: i32, right: i32): i32;
/** Return 1 if two 32-bit integers are equal to each other, 0 otherwise. */
export function eq(left: i32, right: i32): i32;
/** Return 0 if two 32-bit integers are equal to each other, 1 otherwise. */
export function ne(left: i32, right: i32): i32;
/** Computes the signed remainder of two 32-bit integers. */
export function rem_s(left: i32, right: i32): i32;
/** Computes the unsigned remainder of two 32-bit integers. */
export function rem_u(left: u32, right: u32): u32;
/** Atomic 32-bit integer operations. */
export namespace atomic {
/** Atomically loads an 8-bit unsigned integer value from memory and returns it as a 32-bit integer. */
export function load8_u(ptr: usize, immOffset?: usize): i32;
/** Atomically loads a 16-bit unsigned integer value from memory and returns it as a 32-bit integer. */
export function load16_u(ptr: usize, immOffset?: usize): i32;
/** Atomically loads a 32-bit integer value from memory and returns it. */
export function load(ptr: usize, immOffset?: usize): i32;
/** Atomically stores a 32-bit integer value to memory as an 8-bit integer. */
export function store8(ptr: usize, value: i32, immOffset?: usize): void;
/** Atomically stores a 32-bit integer value to memory as a 16-bit integer. */
export function store16(ptr: usize, value: i32, immOffset?: usize): void;
/** Atomically stores a 32-bit integer value to memory. */
export function store(ptr: usize, value: i32, immOffset?: usize): void;
/** Performs a wait operation on a 32-bit integer value in memory suspending this agent if the condition is met. */
export function wait(ptr: usize, expected: i32, timeout?: i64): AtomicWaitResult;
/** Atomic 32-bit integer read-modify-write operations on 8-bit values. */
export namespace rmw8 {
/** Atomically adds an 8-bit unsigned integer value in memory. */
export function add_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically subtracts an 8-bit unsigned integer value in memory. */
export function sub_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise AND operation an 8-bit unsigned integer value in memory. */
export function and_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise OR operation an 8-bit unsigned integer value in memory. */
export function or_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise XOR operation an 8-bit unsigned integer value in memory. */
export function xor_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically exchanges an 8-bit unsigned integer value in memory. */
export function xchg_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically compares and exchanges an 8-bit unsigned integer value in memory if the condition is met. */
export function cmpxchg_u(ptr: usize, expected: i32, replacement: i32, immOffset?: usize): i32;
}
/** Atomic 32-bit integer read-modify-write operations on 16-bit values. */
export namespace rmw16 {
/** Atomically adds a 16-bit unsigned integer value in memory. */
export function add_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically adds a 16-bit unsigned integer value in memory. */
export function sub_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise AND operation a 16-bit unsigned integer value in memory. */
export function and_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise OR operation a 16-bit unsigned integer value in memory. */
export function or_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise XOR operation a 16-bit unsigned integer value in memory. */
export function xor_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically exchanges a 16-bit unsigned integer value in memory. */
export function xchg_u(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically compares and exchanges a 16-bit unsigned integer value in memory if the condition is met. */
export function cmpxchg_u(ptr: usize, expected: i32, replacement: i32, immOffset?: usize): i32;
}
/** Atomic 32-bit integer read-modify-write operations. */
export namespace rmw {
/** Atomically adds a 32-bit integer value in memory. */
export function add(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically subtracts a 32-bit integer value in memory. */
export function sub(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise AND operation a 32-bit integer value in memory. */
export function and(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise OR operation a 32-bit integer value in memory. */
export function or(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically performs a bitwise XOR operation a 32-bit integer value in memory. */
export function xor(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically exchanges a 32-bit integer value in memory. */
export function xchg(ptr: usize, value: i32, immOffset?: usize): i32;
/** Atomically compares and exchanges a 32-bit integer value in memory if the condition is met. */
export function cmpxchg(ptr: usize, expected: i32, replacement: i32, immOffset?: usize): i32;
}
}
}
/** Converts any other numeric value to a 64-bit signed integer. */
declare function i64(value: any): i64;
declare namespace i64 {
/** Smallest representable value. */
export const MIN_VALUE: i64;
/** Largest representable value. */
export const MAX_VALUE: i64;
/** Loads an 8-bit signed integer value from memory and returns it as a 64-bit integer. */
export function load8_s(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads an 8-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load8_u(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads a 16-bit signed integer value from memory and returns it as a 64-bit integer. */
export function load16_s(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads a 16-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load16_u(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads a 32-bit signed integer value from memory and returns it as a 64-bit integer. */
export function load32_s(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads a 32-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load32_u(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Loads a 64-bit unsigned integer value from memory. */
export function load(ptr: usize, immOffset?: usize, immAlign?: usize): i64;
/** Stores a 64-bit integer value to memory as an 8-bit integer. */
export function store8(ptr: usize, value: i64, immOffset?: usize, immAlign?: usize): void;
/** Stores a 64-bit integer value to memory as a 16-bit integer. */
export function store16(ptr: usize, value: i64, immOffset?: usize, immAlign?: usize): void;
/** Stores a 64-bit integer value to memory as a 32-bit integer. */
export function store32(ptr: usize, value: i64, immOffset?: usize, immAlign?: usize): void;
/** Stores a 64-bit integer value to memory. */
export function store(ptr: usize, value: i64, immOffset?: usize, immAlign?: usize): void;
/** Performs the sign-agnostic count leading zero bits operation on a 64-bit integer. All zero bits are considered leading if the value is zero. */
export function clz(value: i64): i64;
/** Performs the sign-agnostic count tailing zero bits operation on a 64-bit integer. All zero bits are considered trailing if the value is zero. */
export function ctz(value: i64): i64;
/** Performs the sign-agnostic count number of one bits operation on a 64-bit integer. */
export function popcnt(value: i64): i64;
/** Performs the sign-agnostic rotate left operation on a 64-bit integer. */
export function rotl(value: i64, shift: i64): i64;
/** Performs the sign-agnostic rotate right operation on a 64-bit integer. */
export function rotr(value: i64, shift: i64): i64;
/** Reinterprets the bits of the specified 64-bit float as a 64-bit integer. */
export function reinterpret_f64(value: f64): i64;
/** Computes the sum of two 64-bit integers. */
export function add(left: i64, right: i64): i64;
/** Computes the difference of two 64-bit integers. */
export function sub(left: i64, right: i64): i64;
/** Computes the product of two 64-bit integers. */
export function mul(left: i64, right: i64): i64;
/** Computes the signed quotient of two 64-bit integers. */
export function div_s(left: i64, right: i64): i64;
/** Computes the unsigned quotient of two 64-bit integers. */
export function div_u(left: i64, right: i64): i64;
/** Return 1 if two 64-bit integers are equal to each other, 0 otherwise. */
export function eq(left: i64, right: i64): i32;
/** Return 0 if two 64-bit integers are equal to each other, 1 otherwise. */
export function ne(left: i64, right: i64): i32;
/** Computes the signed remainder of two 64-bit integers. */
export function rem_s(left: i64, right: i64): i64;
/** Computes the unsigned remainder of two 64-bit integers. */
export function rem_u(left: u64, right: u64): u64;
/** Atomic 64-bit integer operations. */
export namespace atomic {
/** Atomically loads an 8-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load8_u(ptr: usize, immOffset?: usize): i64;
/** Atomically loads a 16-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load16_u(ptr: usize, immOffset?: usize): i64;
/** Atomically loads a 32-bit unsigned integer value from memory and returns it as a 64-bit integer. */
export function load32_u(ptr: usize, immOffset?: usize): i64;
/** Atomically loads a 64-bit integer value from memory and returns it. */
export function load(ptr: usize, immOffset?: usize): i64;
/** Atomically stores a 64-bit integer value to memory as an 8-bit integer. */
export function store8(ptr: usize, value: i64, immOffset?: usize): void;
/** Atomically stores a 64-bit integer value to memory as a 16-bit integer. */
export function store16(ptr: usize, value: i64, immOffset?: usize): void;
/** Atomically stores a 64-bit integer value to memory as a 32-bit integer. */
export function store32(ptr: usize, value: i64, immOffset?: usize): void;
/** Atomically stores a 64-bit integer value to memory. */
export function store(ptr: usize, value: i64, immOffset?: usize): void;
/** Performs a wait operation on a 64-bit integer value in memory suspending this agent if the condition is met. */
export function wait(ptr: usize, expected: i64, timeout?: i64): AtomicWaitResult;
/** Atomic 64-bit integer read-modify-write operations on 8-bit values. */
export namespace rmw8 {
/** Atomically adds an 8-bit unsigned integer value in memory. */
export function add_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically subtracts an 8-bit unsigned integer value in memory. */
export function sub_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise AND operation on an 8-bit unsigned integer value in memory. */
export function and_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise OR operation on an 8-bit unsigned integer value in memory. */
export function or_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise XOR operation on an 8-bit unsigned integer value in memory. */
export function xor_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically exchanges an 8-bit unsigned integer value in memory. */
export function xchg_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically compares and exchanges an 8-bit unsigned integer value in memory if the condition is met. */
export function cmpxchg_u(ptr: usize, expected: i64, replacement: i64, immOffset?: usize): i64;
}
/** Atomic 64-bit integer read-modify-write operations on 16-bit values. */
export namespace rmw16 {
/** Atomically adds a 16-bit unsigned integer value in memory. */
export function add_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically subtracts a 16-bit unsigned integer value in memory. */
export function sub_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise AND operation on a 16-bit unsigned integer value in memory. */
export function and_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise OR operation on a 16-bit unsigned integer value in memory. */
export function or_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise XOR operation on a 16-bit unsigned integer value in memory. */
export function xor_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically exchanges a 16-bit unsigned integer value in memory. */
export function xchg_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically compares and exchanges a 16-bit unsigned integer value in memory if the condition is met. */
export function cmpxchg_u(ptr: usize, expected: i64, replacement: i64, immOffset?: usize): i64;
}
/** Atomic 64-bit integer read-modify-write operations on 32-bit values. */
export namespace rmw32 {
/** Atomically adds a 32-bit unsigned integer value in memory. */
export function add_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically subtracts a 32-bit unsigned integer value in memory. */
export function sub_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise AND operation on a 32-bit unsigned integer value in memory. */
export function and_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise OR operation on a 32-bit unsigned integer value in memory. */
export function or_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise XOR operation on a 32-bit unsigned integer value in memory. */
export function xor_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically exchanges a 32-bit unsigned integer value in memory. */
export function xchg_u(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically compares and exchanges a 32-bit unsigned integer value in memory if the condition is met. */
export function cmpxchg_u(ptr: usize, expected: i64, replacement: i64, immOffset?: usize): i64;
}
/** Atomic 64-bit integer read-modify-write operations. */
export namespace rmw {
/** Atomically adds a 64-bit integer value in memory. */
export function add(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically subtracts a 64-bit integer value in memory. */
export function sub(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise AND operation on a 64-bit integer value in memory. */
export function and(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise OR operation on a 64-bit integer value in memory. */
export function or(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically performs a bitwise XOR operation on a 64-bit integer value in memory. */
export function xor(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically exchanges a 64-bit integer value in memory. */
export function xchg(ptr: usize, value: i64, immOffset?: usize): i64;
/** Atomically compares and exchanges a 64-bit integer value in memory if the condition is met. */
export function cmpxchg(ptr: usize, expected: i64, replacement: i64, immOffset?: usize): i64;
}
}
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) signed integer. */
declare var isize: typeof i32 | typeof i64;
/** Converts any other numeric value to an 8-bit unsigned integer. */
declare function u8(value: any): u8;
declare namespace u8 {
/** Smallest representable value. */
export const MIN_VALUE: u8;
/** Largest representable value. */
export const MAX_VALUE: u8;
}
/** Converts any other numeric value to a 16-bit unsigned integer. */
declare function u16(value: any): u16;
declare namespace u16 {
/** Smallest representable value. */
export const MIN_VALUE: u16;
/** Largest representable value. */
export const MAX_VALUE: u16;
}
/** Converts any other numeric value to a 32-bit unsigned integer. */
declare function u32(value: any): u32;
declare namespace u32 {
/** Smallest representable value. */
export const MIN_VALUE: u32;
/** Largest representable value. */
export const MAX_VALUE: u32;
}
/** Converts any other numeric value to a 64-bit unsigned integer. */
declare function u64(value: any): u64;
declare namespace u64 {
/** Smallest representable value. */
export const MIN_VALUE: u64;
/** Largest representable value. */
export const MAX_VALUE: u64;
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) unsigned integer. */
declare var usize: typeof u32 | typeof u64;
/** Converts any other numeric value to a 1-bit unsigned integer. */
declare function bool(value: any): bool;
declare namespace bool {
/** Smallest representable value. */
export const MIN_VALUE: bool;
/** Largest representable value. */
export const MAX_VALUE: bool;
}
/** Converts any other numeric value to a 32-bit float. */
declare function f32(value: any): f32;
declare namespace f32 {
/** Smallest representable value. */
export const MIN_VALUE: f32;
/** Largest representable value. */
export const MAX_VALUE: f32;
/** Smallest normalized positive value. */
export const MIN_NORMAL_VALUE: f32;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f32;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f32;
/** Positive infinity value. */
export const POSITIVE_INFINITY: f32;
/** Negative infinity value. */
export const NEGATIVE_INFINITY: f32;
/** Not a number value. */
export const NaN: f32;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f32;
/** Loads a 32-bit float from memory. */
export function load(ptr: usize, immOffset?: usize, immAlign?: usize): f32;
/** Stores a 32-bit float to memory. */
export function store(ptr: usize, value: f32, immOffset?: usize, immAlign?: usize): void;
/** Computes the sum of two 32-bit floats. */
export function add(left: f32, right: f32): f32;
/** Computes the difference of two 32-bit floats. */
export function sub(left: f32, right: f32): f32;
/** Computes the product of two 32-bit floats. */
export function mul(left: f32, right: f32): f32;
/** Computes the quotient of two 32-bit floats. */
export function div(left: f32, right: f32): f32;
/** Return 1 two 32-bit floats are equal to each other, 0 otherwise. */
export function eq(left: f32, right: f32): i32;
/** Return 0 two 32-bit floats are equal to each other, 1 otherwise. */
export function ne(left: f32, right: f32): i32;
/** Computes the absolute value of a 32-bit float. */
export function abs(value: f32): f32;
/** Determines the maximum of two 32-bit floats. If either operand is `NaN`, returns `NaN`. */
export function max(left: f32, right: f32): f32;
/** Determines the minimum of two 32-bit floats. If either operand is `NaN`, returns `NaN`. */
export function min(left: f32, right: f32): f32;
/** Performs the ceiling operation on a 32-bit float. */
export function ceil(value: f32): f32;
/** Composes a 32-bit float from the magnitude of `x` and the sign of `y`. */
export function copysign(x: f32, y: f32): f32;
/** Performs the floor operation on a 32-bit float. */
export function floor(value: f32): f32;
/** Rounds to the nearest integer tied to even of a 32-bit float. */
export function nearest(value: f32): f32;
/** Reinterprets the bits of the specified 32-bit integer as a 32-bit float. */
export function reinterpret_i32(value: i32): f32;
/** Calculates the square root of a 32-bit float. */
export function sqrt(value: f32): f32;
/** Rounds to the nearest integer towards zero of a 32-bit float. */
export function trunc(value: f32): f32;
}
/** Converts any other numeric value to a 64-bit float. */
declare function f64(value: any): f64;
declare namespace f64 {
/** Smallest representable value. */
export const MIN_VALUE: f64;
/** Largest representable value. */
export const MAX_VALUE: f64;
/** Smallest normalized positive value. */
export const MIN_NORMAL_VALUE: f64;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f64;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f64;
/** Positive infinity value. */
export const POSITIVE_INFINITY: f64;
/** Negative infinity value. */
export const NEGATIVE_INFINITY: f64;
/** Not a number value. */
export const NaN: f64;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f64;
/** Loads a 64-bit float from memory. */
export function load(ptr: usize, immOffset?: usize, immAlign?: usize): f64;
/** Stores a 64-bit float to memory. */
export function store(ptr: usize, value: f64, immOffset?: usize, immAlign?: usize): void;
/** Computes the sum of two 64-bit floats. */
export function add(left: f64, right: f64): f64;
/** Computes the difference of two 64-bit floats. */
export function sub(left: f64, right: f64): f64;
/** Computes the product of two 64-bit floats. */
export function mul(left: f64, right: f64): f64;
/** Computes the quotient of two 64-bit floats. */
export function div(left: f64, right: f64): f64;
/** Return 1 two 64-bit floats are equal to each other, 0 otherwise. */
export function eq(left: f64, right: f64): i32;
/** Return 0 two 32-bit floats are equal to each other, 1 otherwise. */
export function ne(left: f64, right: f64): i32;
/** Computes the absolute value of a 64-bit float. */
export function abs(value: f64): f64;
/** Determines the maximum of two 64-bit floats. If either operand is `NaN`, returns `NaN`. */
export function max(left: f64, right: f64): f64;
/** Determines the minimum of two 64-bit floats. If either operand is `NaN`, returns `NaN`. */
export function min(left: f64, right: f64): f64;
/** Performs the ceiling operation on a 64-bit float. */
export function ceil(value: f64): f64;
/** Composes a 64-bit float from the magnitude of `x` and the sign of `y`. */
export function copysign(x: f64, y: f64): f64;
/** Performs the floor operation on a 64-bit float. */
export function floor(value: f64): f64;
/** Rounds to the nearest integer tied to even of a 64-bit float. */
export function nearest(value: f64): f64;
/** Reinterprets the bits of the specified 64-bit integer as a 64-bit float. */
export function reinterpret_i64(value: i64): f64;
/** Calculates the square root of a 64-bit float. */
export function sqrt(value: f64): f64;
/** Rounds to the nearest integer towards zero of a 64-bit float. */
export function trunc(value: f64): f64;
}
/** Initializes a 128-bit vector from sixteen 8-bit integer values. Arguments must be compile-time constants. */
declare function v128(a: i8, b: i8, c: i8, d: i8, e: i8, f: i8, g: i8, h: i8, i: i8, j: i8, k: i8, l: i8, m: i8, n: i8, o: i8, p: i8): v128;
declare namespace v128 {
/** Creates a vector with identical lanes. */
export function splat<T>(x: T): v128;
/** Extracts one lane as a scalar. */
export function extract_lane<T>(x: v128, idx: u8): T;
/** Replaces one lane. */
export function replace_lane<T>(x: v128, idx: u8, value: T): v128;
/** Selects lanes from either vector according to the specified lane indexes. */
export function shuffle<T>(a: v128, b: v128, ...lanes: u8[]): v128;
/** Selects 8-bit lanes from the first vector according to the indexes [0-15] specified by the 8-bit lanes of the second vector. */
export function swizzle(a: v128, s: v128): v128;
/** Loads a vector from memory. */
export function load(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Creates a vector by loading the lanes of the specified type and extending each to the next larger type. */
export function load_ext<TFrom>(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Creates a vector by loading a value of the specified type into the lowest bits and initializing all other bits of the vector to zero. */
export function load_zero<TFrom>(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads a single lane from memory into the specified lane of the given vector. Other lanes are bypassed as is. */
export function load_lane<T>(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores the single lane at the specified index of the given vector to memory. */
export function store_lane<T>(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Creates a vector with eight 16-bit integer lanes by loading and sign extending eight 8-bit integers. */
export function load8x8_s(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with eight 16-bit integer lanes by loading and zero extending eight 8-bit integers. */
export function load8x8_u(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with four 32-bit integer lanes by loading and sign extending four 16-bit integers. */
export function load16x4_s(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with four 32-bit integer lanes by loading and zero extending four 16-bit integers. */
export function load16x4_u(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with two 64-bit integer lanes by loading and sign extending two 32-bit integers. */
export function load32x2_s(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with two 64-bit integer lanes by loading and zero extending two 32-bit integers. */
export function load32x2_u(ptr: usize, immOffset?: u32, immAlign?: u32): v128;
/** Creates a vector with identical lanes by loading the splatted value. */
export function load_splat<T>(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads an 8-bit integer and splats it sixteen times forming a new vector. */
export function load8_splat(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads a 16-bit integer and splats it eight times forming a new vector. */
export function load16_splat(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads a 32-bit integer and splats it four times forming a new vector. */
export function load32_splat(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads a 64-bit integer and splats it two times forming a new vector. */
export function load64_splat(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Creates a vector by loading a 32-bit value into the lowest bits and initializing all other bits of the vector to zero. */
export function load32_zero(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Creates a vector by loading a 64-bit value into the lowest bits and initializing all other bits of the vector to zero. */
export function load64_zero(ptr: usize, immOffset?: usize, immAlign?: usize): v128;
/** Loads a single 8-bit lane from memory into the specified lane of the given vector. Other lanes are bypassed as is. */
export function load8_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Loads a single 16-bit lane from memory into the specified lane of the given vector. Other lanes are bypassed as is. */
export function load16_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Loads a single 32-bit lane from memory into the specified lane of the given vector. Other lanes are bypassed as is. */
export function load32_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Loads a single 64-bit lane from memory into the specified lane of the given vector. Other lanes are bypassed as is. */
export function load64_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores the 8-bit lane at the specified lane of the given vector to memory. */
export function store8_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores the 16-bit lane at the specified lane of the given vector to memory. */
export function store16_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores the 32-bit lane at the specified lane of the given vector to memory. */
export function store32_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores the 64-bit lane at the specified lane of the given vector to memory. */
export function store64_lane(ptr: usize, vec: v128, idx: u8, immOffset?: usize, immAlign?: usize): v128;
/** Stores a vector to memory. */
export function store(ptr: usize, value: v128, immOffset?: usize, immAlign?: usize): void;
/** Adds each lane. */
export function add<T>(a: v128, b: v128): v128;
/** Subtracts each lane. */
export function sub<T>(a: v128, b: v128): v128;
/** Multiplies each lane. */
export function mul<T>(a: v128, b: v128): v128; // except i64
/** Divides each lane. */
export function div<T extends f32 | f64>(a: v128, b: v128): v128;
/** Negates each lane of a vector. */
export function neg<T>(a: v128): v128;
/** Adds each lane using saturation. */
export function add_sat<T>(a: v128, b: v128): v128;
/** Subtracts each lane using saturation. */
export function sub_sat<T>(a: v128, b: v128): v128;
/** Performs a bitwise left shift on each lane of a vector by a scalar. */
export function shl<T>(a: v128, b: i32): v128;
/** Performs a bitwise right shift on each lane of a vector by a scalar. */
export function shr<T>(a: v128, b: i32): v128;
/** Performs the bitwise AND operation on two vectors. */
export function and(a: v128, b: v128): v128;
/** Performs the bitwise OR operation on two vectors. */
export function or(a: v128, b: v128): v128;
/** Performs the bitwise XOR operation on two vectors. */
export function xor(a: v128, b: v128): v128;
/** Performs the bitwise ANDNOT operation on two vectors. */
export function andnot(a: v128, b: v128): v128;
/** Performs the bitwise NOT operation on a vector. */
export function not(a: v128): v128;
/** Selects bits of either vector according to the specified mask. */
export function bitselect(v1: v128, v2: v128, mask: v128): v128;
/** Reduces a vector to a scalar indicating whether any lane is considered `true`. */
export function any_true(a: v128): bool;
/** Reduces a vector to a scalar indicating whether all lanes are considered `true`. */
export function all_true<T>(a: v128): bool;
/** Extracts the high bit of each lane and produces a scalar mask with all bits concatenated. */
export function bitmask<T>(a: v128): i32;
/** Counts the number of bits set to one within each lane. */
export function popcnt<T>(a: v128): v128;
/** Computes the minimum of each lane. */
export function min<T>(a: v128, b: v128): v128;
/** Computes the maximum of each lane. */
export function max<T>(a: v128, b: v128): v128;
/** Computes the pseudo-minimum of each lane. */
export function pmin<T>(a: v128, b: v128): v128;
/** Computes the pseudo-maximum of each lane. */
export function pmax<T>(a: v128, b: v128): v128;
/** Computes the dot product of two lanes each, yielding lanes one size wider than the input. */
export function dot<T extends i16>(a: v128, b: v128): v128;
/** Computes the average of each lane. */
export function avgr<T extends u8 | u16>(a: v128, b: v128): v128;
/** Computes the absolute value of each lane. */
export function abs<T extends f32 | f64>(a: v128): v128;
/** Computes the square root of each lane. */
export function sqrt<T extends f32 | f64>(a: v128): v128;
/** Performs the ceiling operation on each lane. */
export function ceil<T extends f32 | f64>(a: v128): v128;
/** Performs the floor operation on each lane. */
export function floor<T extends f32 | f64>(a: v128): v128;
/** Rounds to the nearest integer towards zero of each lane. */
export function trunc<T extends f32 | f64>(a: v128): v128;
/** Rounds to the nearest integer tied to even of each lane. */
export function nearest<T extends f32 | f64>(a: v128): v128;
/** Computes which lanes are equal. */
export function eq<T>(a: v128, b: v128): v128;
/** Computes which lanes are not equal. */
export function ne<T>(a: v128, b: v128): v128;
/** Computes which lanes of the first vector are less than those of the second. */
export function lt<T>(a: v128, b: v128): v128;
/** Computes which lanes of the first vector are less than or equal those of the second. */
export function le<T>(a: v128, b: v128): v128;
/** Computes which lanes of the first vector are greater than those of the second. */
export function gt<T>(a: v128, b: v128): v128;
/** Computes which lanes of the first vector are greater than or equal those of the second. */
export function ge<T>(a: v128, b: v128): v128;
/** Converts each lane of a vector from integer to single-precision floating point. */
export function convert<TFrom extends i32 | u32>(a: v128): v128;
/** Converts the low lanes of a vector from integer to double-precision floating point. */
export function convert_low<TFrom extends i32 | u32>(a: v128): v128;
/** Truncates each lane of a vector from single-precision floating point to integer with saturation. Takes the target type. */
export function trunc_sat<TTo extends i32 | u32>(a: v128): v128;
/** Truncates each lane of a vector from double-precision floating point to integer with saturation. Takes the target type. */
export function trunc_sat_zero<TTo extends i32 | u32>(a: v128): v128;
/** Narrows each lane to their respective narrower lanes. */
export function narrow<TFrom extends i16 | i32>(a: v128, b: v128): v128;
/** Extends the low lanes of a vector to their respective wider lanes. */
export function extend_low<TFrom extends i8 | u8 | i16 | u16 | i32 | u32>(a: v128): v128;
/** Extends the high lanes of a vector to their respective wider lanes. */
export function extend_high<TFrom extends i8 | u8 | i16 | u16 | i32 | u32>(a: v128): v128;
/** Adds lanes pairwise producing twice wider extended results. */
export function extadd_pairwise<TFrom extends i8 | u8 | i16 | u16>(a: v128): v128;
/** Demotes each float lane to lower precision. The higher lanes of the result are initialized to zero. */
export function demote_zero<T extends f64 = f64>(a: v128): v128;
/** Promotes the lower float lanes to higher precision. */
export function promote_low<T extends f32 = f32>(a: v128): v128;
/** Performs the line-wise saturating rounding multiplication in Q15 format. */
export function q15mulr_sat<T extends i16>(a: v128, b: v128): v128;
/** Performs the lane-wise integer extended multiplication of the lower lanes producing a twice wider result than the inputs. */
export function extmul_low<T extends i8 | u8 | i16 | u16 | i32 | u32>(a: v128, b: v128): v128;
/** Performs the lane-wise integer extended multiplication of the higher lanes producing a twice wider result than the inputs. */
export function extmul_high<T extends i8 | u8 | i16 | u16 | i32 | u32>(a: v128, b: v128): v128;
}
/** Initializes a 128-bit vector from sixteen 8-bit integer values. Arguments must be compile-time constants. */
declare function i8x16(a: i8, b: i8, c: i8, d: i8, e: i8, f: i8, g: i8, h: i8, i: i8, j: i8, k: i8, l: i8, m: i8, n: i8, o: i8, p: i8): v128;
declare namespace i8x16 {
/** Creates a vector with sixteen identical 8-bit integer lanes. */
export function splat(x: i8): v128;
/** Extracts one 8-bit integer lane as a signed scalar. */
export function extract_lane_s(x: v128, idx: u8): i8;
/** Extracts one 8-bit integer lane as an unsigned scalar. */
export function extract_lane_u(x: v128, idx: u8): u8;
/** Replaces one 8-bit integer lane. */
export function replace_lane(x: v128, idx: u8, value: i8): v128;
/** Adds each 8-bit integer lane. */
export function add(a: v128, b: v128): v128;
/** Subtracts each 8-bit integer lane. */
export function sub(a: v128, b: v128): v128;
/** Computes the signed minimum of each 8-bit integer lane. */
export function min_s(a: v128, b: v128): v128;
/** Computes the unsigned minimum of each 8-bit integer lane. */
export function min_u(a: v128, b: v128): v128;
/** Computes the signed maximum of each 8-bit integer lane. */
export function max_s(a: v128, b: v128): v128;
/** Computes the unsigned maximum of each 8-bit integer lane. */
export function max_u(a: v128, b: v128): v128;
/** Computes the unsigned average of each 8-bit integer lane. */
export function avgr_u(a: v128, b: v128): v128;
/** Computes the absolute value of each 8-bit integer lane. */
export function abs(a: v128): v128;
/** Negates each 8-bit integer lane. */
export function neg(a: v128): v128;
/** Adds each 8-bit integer lane using signed saturation. */
export function add_sat_s(a: v128, b: v128): v128;
/** Adds each 8-bit integer lane using unsigned saturation. */
export function add_sat_u(a: v128, b: v128): v128;
/** Subtracts each 8-bit integer lane using signed saturation. */
export function sub_sat_s(a: v128, b: v128): v128;
/** Subtracts each 8-bit integer lane using unsigned saturation. */
export function sub_sat_u(a: v128, b: v128): v128;
/** Performs a bitwise left shift on each 8-bit integer lane by a scalar. */
export function shl(a: v128, b: i32): v128;
/** Performs a bitwise arithmetic right shift on each 8-bit integer lane by a scalar. */
export function shr_s(a: v128, b: i32): v128;
/** Performs a bitwise logical right shift on each 8-bit integer lane by a scalar. */
export function shr_u(a: v128, b: i32): v128;
/** Reduces a vector to a scalar indicating whether all 8-bit integer lanes are considered `true`. */
export function all_true(a: v128): bool;
/** Extracts the high bit of each 8-bit integer lane and produces a scalar mask with all bits concatenated. */
export function bitmask(a: v128): i32;
/** Counts the number of bits set to one within each 8-bit integer lane. */
export function popcnt(a: v128): v128;
/** Computes which 8-bit integer lanes are equal. */
export function eq(a: v128, b: v128): v128;
/** Computes which 8-bit integer lanes are not equal. */
export function ne(a: v128, b: v128): v128;
/** Computes which 8-bit signed integer lanes of the first vector are less than those of the second. */
export function lt_s(a: v128, b: v128): v128;
/** Computes which 8-bit unsigned integer lanes of the first vector are less than those of the second. */
export function lt_u(a: v128, b: v128): v128;
/** Computes which 8-bit signed integer lanes of the first vector are less than or equal those of the second. */
export function le_s(a: v128, b: v128): v128;
/** Computes which 8-bit unsigned integer lanes of the first vector are less than or equal those of the second. */
export function le_u(a: v128, b: v128): v128;
/** Computes which 8-bit signed integer lanes of the first vector are greater than those of the second. */
export function gt_s(a: v128, b: v128): v128;
/** Computes which 8-bit unsigned integer lanes of the first vector are greater than those of the second. */
export function gt_u(a: v128, b: v128): v128;
/** Computes which 8-bit signed integer lanes of the first vector are greater than or equal those of the second. */
export function ge_s(a: v128, b: v128): v128;
/** Computes which 8-bit unsigned integer lanes of the first vector are greater than or equal those of the second. */
export function ge_u(a: v128, b: v128): v128;
/** Narrows each 16-bit signed integer lane to 8-bit signed integer lanes. */
export function narrow_i16x8_s(a: v128, b: v128): v128;
/** Narrows each 16-bit signed integer lane to 8-bit unsigned integer lanes. */
export function narrow_i16x8_u(a: v128, b: v128): v128;
/** Selects 8-bit lanes from either vector according to the specified [0-15] respectively [16-31] lane indexes. */
export function shuffle(a: v128, b: v128, l0: u8, l1: u8, l2: u8, l3: u8, l4: u8, l5: u8, l6: u8, l7: u8, l8: u8, l9: u8, l10: u8, l11: u8, l12: u8, l13: u8, l14: u8, l15: u8): v128;
/** Selects 8-bit lanes from the first vector according to the indexes [0-15] specified by the 8-bit lanes of the second vector. */
export function swizzle(a: v128, s: v128): v128;
}
/** Initializes a 128-bit vector from eight 16-bit integer values. Arguments must be compile-time constants. */
declare function i16x8(a: i16, b: i16, c: i16, d: i16, e: i16, f: i16, g: i16, h: i16): v128;
declare namespace i16x8 {
/** Creates a vector with eight identical 16-bit integer lanes. */
export function splat(x: i16): v128;
/** Extracts one 16-bit integer lane as a signed scalar. */
export function extract_lane_s(x: v128, idx: u8): i16;
/** Extracts one 16-bit integer lane as an unsigned scalar. */
export function extract_lane_u(x: v128, idx: u8): u16;
/** Replaces one 16-bit integer lane. */
export function replace_lane(x: v128, idx: u8, value: i16): v128;
/** Adds each 16-bit integer lane. */
export function add(a: v128, b: v128): v128;
/** Subtracts each 16-bit integer lane. */
export function sub(a: v128, b: v128): v128;
/** Multiplies each 16-bit integer lane. */
export function mul(a: v128, b: v128): v128;
/** Computes the signed minimum of each 16-bit integer lane. */
export function min_s(a: v128, b: v128): v128;
/** Computes the unsigned minimum of each 16-bit integer lane. */