-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path509. Fibonacci Number
73 lines (54 loc) · 1.37 KB
/
509. Fibonacci Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n, calculate F(n).
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Solution :
//Java
class Solution {
public int fib(int n) {
if(n==0){
return 0;
}
if(n==1){
return 1;
}
int arr[]=new int[n+1];
arr[0]=0;
arr[1]=1;
for(int i=2;i<=n;i++){
arr[i]=arr[i-1]+arr[i-2];
}
return arr[n];
}
}
Solution 2:
//Java
import java.util.*;
public class Fibonacci {
public static void main(String[] args) {
Scanner a=new Scanner(System.in);
int n = a.nextInt(); // Number of terms to print
int first = 0, second = 1;
System.out.print("Fibonacci Series up to " + n + " terms: ");
for (int i = 0; i <= n; i++) {
System.out.print(first + " ");
int next = first + second;
first = second;
second = next;
}
}
}