-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDESCRIPTION
71 lines (71 loc) · 1.62 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Type: Package
Package: diceR
Title: Diverse Cluster Ensemble in R
Version: 2.2.0
Authors@R: c(
person("Derek", "Chiu", , "[email protected]", role = c("aut", "cre")),
person("Aline", "Talhouk", , "[email protected]", role = "aut"),
person("Johnson", "Liu", , "[email protected]", role = c("ctb", "com"))
)
Description: Performs cluster analysis using an ensemble clustering
framework, Chiu & Talhouk (2018) <doi:10.1186/s12859-017-1996-y>.
Results from a diverse set of algorithms are pooled together using
methods such as majority voting, K-Modes, LinkCluE, and CSPA. There
are options to compare cluster assignments across algorithms using
internal and external indices, visualizations such as heatmaps, and
significance testing for the existence of clusters.
License: MIT + file LICENSE
URL: https://github.com/AlineTalhouk/diceR/,
https://alinetalhouk.github.io/diceR/
BugReports: https://github.com/AlineTalhouk/diceR/issues
Depends:
R (>= 3.5)
Imports:
abind,
assertthat,
class,
clue,
clusterSim,
clv,
clValid,
dplyr (>= 0.7.5),
ggplot2,
infotheo,
klaR,
magrittr,
mclust,
methods,
NMF,
purrr (>= 0.2.3),
RankAggreg,
Rcpp,
stringr,
tidyr,
yardstick
Suggests:
apcluster,
blockcluster,
cluster,
covr,
dbscan,
e1071,
kernlab,
knitr,
kohonen,
pander,
poLCA,
progress,
RColorBrewer,
rlang,
rmarkdown,
Rtsne,
sigclust,
testthat
LinkingTo:
Rcpp
VignetteBuilder:
knitr
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.0