-
Notifications
You must be signed in to change notification settings - Fork 0
/
forgerard.tex
1879 lines (1726 loc) · 101 KB
/
forgerard.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{aastex61} % use "amsart" instead of "article" for AMSLaTeX format
\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
\geometry{letterpaper} % ... or a4paper or a5paper or ...
%\geometry{landscape} % Activate for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
\usepackage{graphicx} % Use pdf, png, jpg, or eps§ with pdflatex; use eps in DVI mode
% TeX will automatically convert eps --> pdf in pdflatex
%\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{natbib}
\usepackage{lineno}
\usepackage{color}
\defcitealias{1999PASP..111...63F}{F99}
\linenumbers
\begin{document}
\title{Evidence for a Color Parameter Unassociated With Dust Within the Type~Ia Supernovae of the Nearby Supernova Factory}
\author{A.~G.~Kim}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ G.~Smadja}
\affiliation{ Universit\'e de Lyon, F-69622, Lyon, France ; Universit\'e de Lyon 1, Villeurbanne ;
CNRS/IN2P3, Institut de Physique Nucl\'eaire de Lyon}
\author{ G.~Aldering}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ P.~Antilogus}
\affiliation{ Laboratoire de Physique Nucl\'eaire et des Hautes \'Energies,
Universit\'e Pierre et Marie Curie Paris 6, Universit\'e Paris Diderot Paris 7, CNRS-IN2P3,
4 place Jussieu, 75252 Paris Cedex 05, France}
\author{ S.~Bailey}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ C.~Baltay}
\affiliation{ Department of Physics, Yale University,
New Haven, CT, 06250-8121}
\author{ K.~Barbary}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ D.~Baugh}
\affiliation{ Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China }
\author{ K.~Boone}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ S.~Bongard}
\affiliation{ Laboratoire de Physique Nucl\'eaire et des Hautes \'Energies,
Universit\'e Pierre et Marie Curie Paris 6, Universit\'e Paris Diderot Paris 7, CNRS-IN2P3,
4 place Jussieu, 75252 Paris Cedex 05, France}
\author{ C.~Buton}
\affiliation{ Universit\'e de Lyon, F-69622, Lyon, France ; Universit\'e de Lyon 1, Villeurbanne ;
CNRS/IN2P3, Institut de Physique Nucl\'eaire de Lyon}
\author{ J.~Chen}
\affiliation{ Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China }
\author{ N.~Chotard}
\affiliation{ Universit\'e de Lyon, F-69622, Lyon, France ; Universit\'e de Lyon 1, Villeurbanne ;
CNRS/IN2P3, Institut de Physique Nucl\'eaire de Lyon}
\author{ Y.~Copin}
\affiliation{ Universit\'e de Lyon, F-69622, Lyon, France ; Universit\'e de Lyon 1, Villeurbanne ;
CNRS/IN2P3, Institut de Physique Nucl\'eaire de Lyon}
\author{ P.~Fagrelius}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ H.~K.~Fakhouri}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ U.~Feindt}
\affiliation{The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University, SE-106 91 Stockholm, Sweden}
\author{ D.~Fouchez}
\affiliation{ Centre de Physique des Particules de Marseille,
Aix-Marseille Universit\'e , CNRS/IN2P3,
163 avenue de Luminy - Case 902 - 13288 Marseille Cedex 09, France}
\author{ E.~Gangler}
\affiliation{ Clermont Universit\'e, Universit\'e Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire,
BP 10448, F-63000 Clermont-Ferrand, France}
\author{ B.~Hayden}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ W.~Hillebrandt}
\affiliation{ Max-Planck-Institut f\"ur Astrophysik, Karl-Schwarzschild-Str. 1,
D-85748 Garching, Germany}
\author{ M.~Kowalski}
\affiliation{ Institut fur Physik, Humboldt-Universitat zu Berlin,
Newtonstr. 15, 12489 Berlin}
\affiliation{ DESY, D-15735 Zeuthen, Germany}
\author{ P.-F.~Leget}
\affiliation{ Clermont Universit\'e, Universit\'e Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire,
BP 10448, F-63000 Clermont-Ferrand, France}
\author{ S.~Lombardo}
\affiliation{ Institut fur Physik, Humboldt-Universitat zu Berlin,
Newtonstr. 15, 12489 Berlin}
\author{ J.~Nordin}
\affiliation{ Institut fur Physik, Humboldt-Universitat zu Berlin,
Newtonstr. 15, 12489 Berlin}
\author{ R.~Pain}
\affiliation{ Laboratoire de Physique Nucl\'eaire et des Hautes \'Energies,
Universit\'e Pierre et Marie Curie Paris 6, Universit\'e Paris Diderot Paris 7, CNRS-IN2P3,
4 place Jussieu, 75252 Paris Cedex 05, France}
\author{ E.~Pecontal}
\affiliation{ Centre de Recherche Astronomique de Lyon, Universit\'e Lyon 1,
9 Avenue Charles Andr\'e, 69561 Saint Genis Laval Cedex, France}
\author{ R.~Pereira}
\affiliation{ Universit\'e de Lyon, F-69622, Lyon, France ; Universit\'e de Lyon 1, Villeurbanne ;
CNRS/IN2P3, Institut de Physique Nucl\'eaire de Lyon}
\author{ S.~Perlmutter}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ D.~Rabinowitz}
\affiliation{ Department of Physics, Yale University,
New Haven, CT, 06250-8121}
\author{ M.~Rigault}
\affiliation{ Institut fur Physik, Humboldt-Universitat zu Berlin,
Newtonstr. 15, 12489 Berlin}
\author{ D.~Rubin}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{ Department of Physics, Florida State University,
315 Keen Building, Tallahassee, FL 32306-4350}
\author{ K.~Runge}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ C.~Saunders}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ C.~Sofiatti}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\affiliation{
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300, Berkeley, CA, 94720-7300}
\author{ N.~Suzuki}
\affiliation{ Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA, 94720}
\author{ S.~Taubenberger}
\affiliation{ Max-Planck-Institut f\"ur Astrophysik, Karl-Schwarzschild-Str. 1,
D-85748 Garching, Germany}
\author{ C.~Tao}
\affiliation{ Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084, China }
\affiliation{ Centre de Physique des Particules de Marseille,
Aix-Marseille Universit\'e , CNRS/IN2P3,
163 avenue de Luminy - Case 902 - 13288 Marseille Cedex 09, France}
\author{ R.~C.~Thomas}
\affiliation{ Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road MS 50B-4206, Berkeley, CA, 94720}
\collaboration{(The Nearby Supernova Factory)}
\begin{abstract}
\color{red}
An empirical model for SN~Ia peak magnitudes with two color parameters and dependence on the equivalent widths of CaII, SiII, and SiII velocity
is applied to the supernova sample of the Nearby Supernova Factory. The peak magnitudes in synthetic
broadband photometry and their colors are found to be
dependent on the spectral equivalent widths and the color parameters, to better than
%-----
$(1-5\times10^{-5})$
%------
confidence.
The two color parameters exhibit the behavior expected from the two-parameter
\citet{1999PASP..111...63F} dust model, yielding a per-supernova scatter in
total-to-selective extinction, an effective
%-----
$R^F_V=2.24 \pm 0.16$
%------
for the full sample, and a difference in the average $R^F_V$ between extremely blue and red supernovae . The derived dust law is able to reproduce the optical colors of the highly reddened SN~2014J better than the \citet{1999PASP..111...63F} dust model.
Extending the model to three color parameters gives almost identical results for
the two parameters
%-----
$R^F_V=2.23 \pm 0.16$,
%------
plus a detection of a third parameter at $>98$\% confidence; this new parameter is responsible for supernova color diversity
beyond those tracked by the spectral features and dust.
\color{black}
\end{abstract}
\keywords{supernovae: general; supernovae: SN 2014J}
\section{Introduction}
Type~Ia supernovae (SNe~Ia) form a homogenous set of exploding stars and as such were early recognized and utilized as a powerful distance indicator
and probe of cosmology \citep[e.g.][]{1992ARA&A..30..359B, 1993ApJ...415....1S}. After further careful consideration of supernova data, it was recognized
that SN~Ia light-curve shapes \citep{1993ApJ...413L.105P} and colors \citep{1996ApJ...473...88R, 1998A&A...331..815T} exhibit subtle signs of heterogeneity,
which being correlated with absolute magnitude
need to be considered when inferring distances. Empirical models parameterizing SNe~Ia by their light-curve shape \citep{1996ApJ...473...88R,
1997ApJ...483..565P,
1999ApJ...517..565P}
and color \citep{1996ApJ...473...88R} were developed that enabled absolute magnitude corrections
and accurate distance measurements of cosmological supernovae,
which
were subsequently used in the discovery of the accelerating expansion of the Universe \citep{1998AJ....116.1009R,1999ApJ...517..565P}.
The two most commonly used supernova-cosmology light-curve fitters today are SALT2 \citep{2007A&A...466...11G} and MLCS2k2
\citep{2007ApJ...659..122J}.\footnote{Light-curve fitters with more flexible degrees of freedom
\citep[e.g.][]{2008ApJ...681..482C, 2011AJ....141...19B, 2011ApJ...731..120M} are available and have for
the most part been used to study SN~Ia heterogeneity.}
They remain two-parameter models, with one parameter characterizing light-curve shape and the other
color.
\textcolor{red}{In SALT2 the light curve shapes are described by a multiplicative scaling (``stretch'') of the time evolution,
whereas MLCS2k2 varies shapes through additive corrections to magnitudes.}
The physical cause of the color diversity is interpreted differently by the two sets of authors:
\citet{2007A&A...466...11G} pragmatically extract color variation empirically from SNe that span a wide range of colors, with no attribution
to either intrinsic or extrinsic origins;
\citet{2007ApJ...659..122J}
attribute changes in color
\textcolor{red}{partially to intrinsic variations linked to light-curve shape, and partially}
to the attenuation of light from host-galaxy dust.
There is evidence that supports the expectation that a single parameter beyond light-curve shape cannot describe the full range
of colors seen in the SN~Ia population. One approach to look for color diversity is to find correlations between color and spectral features.
\citet{2009ApJ...699L.139W, 2011ApJ...729...55F} find two subpopulations distinguished
by Si velocity with differing $B_{max}-V_{max}$; this color correlation, \textcolor{red}{ in addition to one with $B-R$, is confirmed by
\citet{2014ApJ...797...75M}.
}
\citet{2015MNRAS.451.1973S}
find that high-velocity SiII$\lambda$6355 is found in objects that have red ultraviolet/optical colors near maximum brightness.
\textcolor{red}{
\citet{2011MNRAS.413.3075M} show evidence that supernova asymmetry and viewing angle,
traced by wavelength shifts in nebular emission lines, is an important determinant in controlling supernova color; such correlations are also seen by \citet{2011A&A...534L..15C}.
}
\textcolor{red}{
Another approach to probe color diversity is through multiple colors (at least 3 bands)
of individual supernovae. Color ratios are sensitive to processes of the responsible physics. For example,
relative dust absorption varies as a function of wavelength depending on grain size and shape,
independent (to first order) of the amount of dust along the line of sight.
\citet{2013ApJ...779...23M} find diversity in SNe~Ia UV emission, which they use to distinguish subclasses based on UV-optical colors.}
\textcolor{red}{
Such measurements of $R_V$ are being advanced with the development of flexible empirical light curve models that accommodate flexibility in multi-band colors
\citep[e.g.][]{2011ApJ...731..120M}.}
\citet{2014ApJ...789...32B, 2015MNRAS.453.3300A} find wide
ranges of total-to-selective extinction with average values significantly lower than $R_V = 3.1$,
the canonical value for diffuse Milky Way dust.
They also confirm the \citet{2011ApJ...731..120M, 2011ApJ...729...55F} finding that low $R_V$ is associated with high-extinction supernovae.
In contrast, \citet{2011A&A...529L...4C} argue that after accounting for the diversity of spectral features,
the standard $R_V=3.1$ is recovered on average.
\textcolor{red}
{
Hierarchical modeling has recently opened
the study of intrinsic supernova color based on SN~Ia Hubble diagrams. Latent parameters that are not directly tied to observables,
such as multiple parameters that simultaneously influence color, can be included in the model.
\citet{2016arXiv160904470M} take the approach of modeling the distribution of their parameters, to find that
scatter in the Hubble diagram is better explained by a combination of intrinsic color dispersion and
$R_B=3.7$ dust, rather than by dust with no color dispersion.
They draw these conclusions by using only the SALT2 $x_1$ parameter as the summary statistic that describes color.
}
The Nearby Supernova Factory \citep[SNfactory;][]{2002SPIE.4836...61A} has systematically observed the
spectrophotometric time series of hundreds of Hubble-flow $0.03<z<0.08$ SNe~Ia. The $3200$--$10000$~\AA\ spectral coverage
provides measurements of an array of supernova spectral features while also providing synthetic broadband photometry
spanning near-UV to near-IR SN-frame wavelengths. \textcolor{red}{SNfactory specifically targeted objects
early in their temporal evolution, so} that well over a hundred of these supernovae have coverage over
peak brightness. This dataset provides a homogenous sample with which to study SN~Ia colors and spectral features together.
In this article we use the idea that spectral indicators carry information on intrinsic supernova colors at peak magnitude.
We allow for \textcolor{red}{three independent color parameters, one attributed to intrinsic supernova
properties and two attributed} to
extrinsic processes, which we attribute to dust. The data used in this analysis are described in \S\ref{data:sec}. \textcolor{red}{
In \S\ref{model:sec} we present a
first analysis with two extrinsic parameters and omitting the intrinsic parameter. The properties of the two extrinsic parameters
are consistent with the expectations of parameterized dust designed for the Milky Way, and do an excellent job of fitting the data of the out-of-sample
supernova SN2014J that has an extreme total-to-selective extinction.
In \S\ref{model2:sec} we add to analysis the intrinsic parameter, and find strong evidence for its influence on observed magnitudes.
We summarize our findings, and relate our results with light-curve shape, SiII velocity, and the ``mass step'' in SN~Ia Hubble
residuals in \S\ref{discussion:sec}.}
\section{Data}
\label{data:sec}
Our analysis uses the spectrophotometric data set obtained by
the SNfactory with the SuperNova Integral Field
Spectrograph \citep[SNIFS,][]{2004SPIE.5249..146L}. SNIFS is a fully integrated
instrument optimized for automated observation of point sources on a
structured background over the full ground-based optical window at
moderate spectral resolution ($R \sim 500$). It consists of a
high-throughput wide-band lenslet integral field spectrograph, a
multi-filter photometric channel to image the field in the vicinity of
the IFS for atmospheric transmission monitoring simultaneous with
spectroscopy, and an acquisition/guiding channel. The IFS possesses a
fully-filled $6\farcs 4 \times 6\farcs 4$ spectroscopic field of view
subdivided into a grid of $15 \times 15$ spatial elements, a
dual-channel spectrograph covering 3200--5200~\AA\ and 5100--10000~\AA\
simultaneously, and an internal calibration unit (continuum and arc
lamps). SNIFS is mounted on the south bent Cassegrain port of the
University of Hawaii 2.2~m telescope on Mauna Kea, and is operated
remotely. Observations are reduced using the SNfactory's dedicated data
reduction pipeline, similar to that presented in \S4 of \citet{2001MNRAS.326...23B}.
A discussion of the software pipeline is presented in
\citet{2006ApJ...650..510A} and is updated in \citet{2010ApJ...713.1073S}.
\textcolor{red}{The flux calibration is presented in \citet{2013A&A...549A...8B}. }
A detailed
description of host-galaxy subtraction is given in \citet{2011MNRAS.418..258B}.
A recent description of the data is presented in \citet{2015ApJ...815...58F}.
We provide a brief summary of the points important for this analysis.
The spectral time-series are corrected for Milky Way dust
extinction \citep{1989ApJ...345..245C,1998ApJ...500..525S}.
Each spectral time series is
blue-shifted to rest-frame
based on the systemic redshift of the host \citep[c.f.][]{2013ApJ...770..107C}, and the fluxes are converted to luminosity assuming
distances expected for the supernova redshifts given a flat
$\Lambda$CDM cosmology with $\Omega_M = 0.28$ (with an arbitrarily selected
$H_0$ since the current analysis does not depend on the absolute magnitude scale).
Supernova-frame synthetic supernova-frame photometry is generated for a top-hat filter system
comprised of five
\color{red}
bands with the following wavelength ranges: $U$ $[3300.00 - 3978.02]$\AA;
$B$ $[3978.02-4795.35]$\AA;
$V$ $[4795.35-5780.60]$\AA;
$R$ $[5780.60-6968.29]$\AA;
$I$ $[6968.29-8400.00]$\AA.
For each supernova, the data magnitudes within 5-days of peak brightness are used to regress the peak magnitude
using single-band SALT2 fits.
\color{black}
The equivalent widths of SiII$\lambda 4141$ and the CaII H\&K features are computed as
in \citet{2008A&A...477..717B} and the
\textcolor{red}{wavelength of the SiII$\lambda 6355$ feature}
as in \citet{chotard:thesis}.
Equivalent widths and the
\textcolor{red}{SiII$\lambda 6355$ wavelength are taken from spectra within $\pm 2.5$ days from $B$-band maximum;
the average is used in cases where there are multiple spectral measurements within that time window.}
Our analysis sample is comprised by the
168
supernovae that have the data coverage to
give photometric and spectroscopic statistics described above.
The data are given in Table~\ref{data:tab} \textcolor{red}{[TABLE CAN GO IF THERE IS A NICO PAPER]}.
The peak magnitude uncertainties do have covariance, which is accounted
for in the analysis; only the standard deviation is included in the table.
\startlongtable
\begin{deluxetable}{crrrrrrrr}
\tabletypesize{\tiny}
\tablecaption{Supernova Spectral-Feature and Peak-Magnitude Data
\label{data:tab}}
\tablehead{
\colhead{Name} & \colhead{$EW_{Ca}$ (\AA)} & \colhead{$EW_{Si}$ (\AA)} & \colhead{$\lambda_{Si}$ (\AA)} & \colhead{$U$} & \colhead{$B$} & \colhead{$V$} & \colhead{$R$} & \colhead{$I$}
}
\startdata
SN2007bd & $109.7 \pm 5.9$ & $ 17.5 \pm 0.7$& $ 6098 \pm 4$ & $-29.31 \pm 0.01$ & $-29.12 \pm 0.01$& $-28.60 \pm 0.01$& $-28.35 \pm 0.01$& $-27.60 \pm 0.01$ \\
PTF10zdk & $149.7 \pm 1.2$ & $ 14.3 \pm 0.6$& $ 6150 \pm 3$ & $-28.61 \pm 0.02$ & $-28.69 \pm 0.02$& $-28.32 \pm 0.02$& $-28.08 \pm 0.02$& $-27.40 \pm 0.02$ \\
SNF20080815-017 & $ 63.8 \pm 21.5$ & $ 27.6 \pm 3.8$& $ 6132 \pm 6$ & $-29.04 \pm 0.07$ & $-28.79 \pm 0.07$& $-28.32 \pm 0.07$& $-28.12 \pm 0.07$& $-27.41 \pm 0.07$ \\
PTF09dnl & $129.9 \pm 0.9$ & $ 9.5 \pm 0.7$& $ 6093 \pm 3$ & $-29.23 \pm 0.01$ & $-29.07 \pm 0.01$& $-28.72 \pm 0.01$& $-28.44 \pm 0.01$& $-27.69 \pm 0.01$ \\
SN2010ex & $114.4 \pm 0.9$ & $ 8.4 \pm 0.4$& $ 6129 \pm 6$ & $-29.26 \pm 0.01$ & $-28.99 \pm 0.01$& $-28.50 \pm 0.01$& $-28.20 \pm 0.01$& $-27.44 \pm 0.01$ \\
PTF09dnp & $ 64.9 \pm 4.5$ & $ 16.5 \pm 0.7$& $ 6098 \pm 4$ & $-29.55 \pm 0.02$ & $-29.19 \pm 0.02$& $-28.68 \pm 0.02$& $-28.48 \pm 0.02$& $-27.93 \pm 0.02$ \\
PTF11bnx & $151.4 \pm 3.0$ & $ 13.9 \pm 1.1$& $ 6142 \pm 5$ & $-28.63 \pm 0.02$ & $-28.57 \pm 0.01$& $-28.20 \pm 0.01$& $-27.99 \pm 0.01$& $-27.34 \pm 0.01$ \\
PTF12jqh & $151.9 \pm 1.5$ & $ 7.9 \pm 0.7$& $ 6116 \pm 10$ & $-29.37 \pm 0.01$ & $-29.14 \pm 0.01$& $-28.71 \pm 0.01$& $-28.40 \pm 0.01$& $-27.64 \pm 0.01$ \\
SNF20080802-006 & $108.2 \pm 6.0$ & $ 20.6 \pm 1.9$& $ 6122 \pm 5$ & $-29.02 \pm 0.06$ & $-28.80 \pm 0.06$& $-28.40 \pm 0.06$& $-28.20 \pm 0.06$& $-27.50 \pm 0.06$ \\
PTF10xyt & $123.7 \pm 6.6$ & $ 16.4 \pm 4.3$& $ 6101 \pm 4$ & $-28.26 \pm 0.02$ & $-28.20 \pm 0.02$& $-27.93 \pm 0.02$& $-27.74 \pm 0.02$& $-27.22 \pm 0.04$ \\
PTF11qmo & $101.7 \pm 1.1$ & $ 7.7 \pm 0.7$& $ 6150 \pm 8$ & $-29.77 \pm 0.02$ & $-29.43 \pm 0.02$& $-28.97 \pm 0.02$& $-28.64 \pm 0.02$& $-27.93 \pm 0.02$ \\
SNF20070331-025 & $119.8 \pm 7.4$ & $ 14.2 \pm 2.7$& $ 6120 \pm 10$ & $-28.94 \pm 0.02$ & $-28.75 \pm 0.02$& $-28.32 \pm 0.02$& $-28.07 \pm 0.02$& $-27.31 \pm 0.02$ \\
SNF20070818-001 & $157.5 \pm 7.5$ & $ 16.7 \pm 1.8$& $ 6115 \pm 5$ & $-28.97 \pm 0.02$ & $-28.96 \pm 0.01$& $-28.61 \pm 0.01$& $-28.37 \pm 0.01$& $-27.62 \pm 0.01$ \\
SNBOSS38 & $ 57.1 \pm 0.4$ & $ 17.9 \pm 0.3$& $ 6127 \pm 3$ & $-29.20 \pm 0.01$ & $-28.84 \pm 0.01$& $-28.47 \pm 0.01$& $-28.23 \pm 0.01$& $-27.73 \pm 0.04$ \\
SN2006ob & $ 90.0 \pm 16.5$ & $ 26.5 \pm 1.5$& $ 6112 \pm 5$ & $-29.11 \pm 0.02$ & $-28.82 \pm 0.01$& $-28.42 \pm 0.01$& $-28.19 \pm 0.01$& $-27.54 \pm 0.01$ \\
PTF12eer & $165.6 \pm 10.7$ & $ 12.7 \pm 2.8$& $ 6150 \pm 10$ & $-28.76 \pm 0.01$ & $-28.76 \pm 0.01$& $-28.40 \pm 0.01$& $-28.17 \pm 0.01$& $-27.45 \pm 0.02$ \\
PTF10ops & $ 38.7 \pm 9.9$ & $ 7.2 \pm 8.7$& $ 6141 \pm 5$ & $-27.93 \pm 0.38$ & $-27.76 \pm 0.38$& $-27.73 \pm 0.38$& $-27.59 \pm 0.38$& $-27.21 \pm 0.38$ \\
SNF20080514-002 & $ 83.2 \pm 0.7$ & $ 19.4 \pm 0.6$& $ 6131 \pm 3$ & $-29.30 \pm 0.01$ & $-28.95 \pm 0.01$& $-28.44 \pm 0.01$& $-28.17 \pm 0.01$& $-27.49 \pm 0.01$ \\
PTF12evo & $129.2 \pm 2.8$ & $ 9.1 \pm 1.3$& $ 6156 \pm 4$ & $-29.14 \pm 0.02$ & $-28.98 \pm 0.01$& $-28.56 \pm 0.01$& $-28.28 \pm 0.01$& $-27.61 \pm 0.01$ \\
SNF20080614-010 & $125.4 \pm 5.1$ & $ 26.9 \pm 1.6$& $ 6128 \pm 3$ & $-29.04 \pm 0.04$ & $-28.81 \pm 0.04$& $-28.38 \pm 0.04$& $-28.16 \pm 0.04$& $-27.57 \pm 0.04$ \\
PTF10icb & $104.8 \pm 0.9$ & $ 12.7 \pm 0.3$& $ 6138 \pm 3$ & $-28.58 \pm 0.02$ & $-28.36 \pm 0.02$& $-27.98 \pm 0.02$& $-27.77 \pm 0.02$& $-27.17 \pm 0.02$ \\
SNNGC4424 & $109.0 \pm 0.3$ & $ 8.6 \pm 0.1$& $ 6138 \pm 2$ & $-28.35 \pm 0.01$ & $-28.15 \pm 0.01$& $-27.79 \pm 0.01$& $-27.58 \pm 0.01$& $-26.97 \pm 0.01$ \\
SNF20080516-022 & $100.1 \pm 2.1$ & $ 13.7 \pm 1.1$& $ 6158 \pm 3$ & $-29.46 \pm 0.01$ & $-29.19 \pm 0.01$& $-28.71 \pm 0.01$& $-28.39 \pm 0.01$& $-27.77 \pm 0.01$ \\
PTF12hwb & $ 21.1 \pm 78.0$ & $ -1.8 \pm 8.9$& $ 6090 \pm 14$ & $-28.32 \pm 0.02$ & $-28.24 \pm 0.02$& $-28.03 \pm 0.02$& $-27.79 \pm 0.02$& $-27.05 \pm 0.04$ \\
PTF10qyz & $106.4 \pm 2.1$ & $ 23.0 \pm 1.0$& $ 6120 \pm 5$ & $-29.05 \pm 0.17$ & $-28.92 \pm 0.17$& $-28.41 \pm 0.17$& $-28.14 \pm 0.17$& $-27.30 \pm 0.17$ \\
SNF20060907-000 & $106.1 \pm 10.4$ & $ 17.0 \pm 0.9$& $ 6149 \pm 4$ & $-29.54 \pm 0.02$ & $-29.28 \pm 0.01$& $-28.76 \pm 0.01$& $-28.42 \pm 0.01$& $-27.74 \pm 0.04$ \\
LSQ12fxd & $122.9 \pm 1.7$ & $ 11.4 \pm 0.8$& $ 6119 \pm 4$ & $-29.62 \pm 0.07$ & $-29.39 \pm 0.07$& $-28.95 \pm 0.07$& $-28.64 \pm 0.07$& $-27.91 \pm 0.07$ \\
SNF20080821-000 & $105.1 \pm 2.2$ & $ 8.6 \pm 1.3$& $ 6121 \pm 4$ & $-29.34 \pm 0.01$ & $-29.10 \pm 0.01$& $-28.73 \pm 0.01$& $-28.46 \pm 0.01$& $-27.82 \pm 0.01$ \\
SNF20070802-000 & $158.3 \pm 3.3$ & $ 16.3 \pm 1.7$& $ 6102 \pm 5$ & $-28.90 \pm 0.01$ & $-28.81 \pm 0.01$& $-28.45 \pm 0.01$& $-28.22 \pm 0.01$& $-27.52 \pm 0.01$ \\
PTF10wnm & $105.8 \pm 2.3$ & $ 6.5 \pm 1.0$& $ 6124 \pm 3$ & $-29.38 \pm 0.01$ & $-29.07 \pm 0.01$& $-28.68 \pm 0.01$& $-28.37 \pm 0.01$& $-27.69 \pm 0.01$ \\
PTF10mwb & $116.5 \pm 1.2$ & $ 19.8 \pm 0.9$& $ 6138 \pm 2$ & $-29.02 \pm 0.07$ & $-28.84 \pm 0.07$& $-28.40 \pm 0.07$& $-28.14 \pm 0.07$& $-27.52 \pm 0.07$ \\
SN2010dt & $116.2 \pm 14.9$ & $ 15.5 \pm 0.7$& $ 6138 \pm 6$ & $-29.30 \pm 0.01$ & $-29.15 \pm 0.01$& $-28.64 \pm 0.01$& $-28.35 \pm 0.01$& $-27.63 \pm 0.01$ \\
SNF20080623-001 & $149.1 \pm 1.4$ & $ 14.9 \pm 0.7$& $ 6131 \pm 3$ & $-29.11 \pm 0.01$ & $-28.97 \pm 0.01$& $-28.50 \pm 0.01$& $-28.22 \pm 0.01$& $-27.46 \pm 0.01$ \\
LSQ12fhe & $ 42.8 \pm 1.2$ & $ 4.0 \pm 3.1$& $ 6108 \pm 4$ & $-29.76 \pm 0.02$ & $-29.40 \pm 0.02$& $-29.04 \pm 0.02$& $-28.74 \pm 0.02$& $-28.11 \pm 0.02$ \\
PTF11bju & $ 30.2 \pm 4.4$ & $ 4.0 \pm 3.0$& $ 6139 \pm 5$ & $-29.47 \pm 0.02$ & $-29.10 \pm 0.01$& $-28.75 \pm 0.01$& $-28.45 \pm 0.01$& $-27.87 \pm 0.01$ \\
PTF09fox & $117.6 \pm 2.7$ & $ 9.1 \pm 1.0$& $ 6116 \pm 3$ & $-29.44 \pm 0.03$ & $-29.21 \pm 0.03$& $-28.72 \pm 0.03$& $-28.42 \pm 0.03$& $-27.68 \pm 0.03$ \\
PTF13ayw & $104.6 \pm 2.4$ & $ 26.6 \pm 3.2$& $ 6114 \pm 9$ & $-29.16 \pm 0.02$ & $-28.82 \pm 0.02$& $-28.43 \pm 0.02$& $-28.20 \pm 0.02$& $-27.55 \pm 0.02$ \\
SNF20070810-004 & $126.7 \pm 1.8$ & $ 21.1 \pm 1.1$& $ 6118 \pm 7$ & $-29.22 \pm 0.01$ & $-29.10 \pm 0.01$& $-28.63 \pm 0.01$& $-28.34 \pm 0.01$& $-27.62 \pm 0.01$ \\
PTF11mty & $111.4 \pm 2.3$ & $ 10.6 \pm 1.5$& $ 6138 \pm 5$ & $-29.54 \pm 0.01$ & $-29.23 \pm 0.01$& $-28.80 \pm 0.01$& $-28.46 \pm 0.01$& $-27.82 \pm 0.01$ \\
SNF20080512-010 & $ 95.3 \pm 3.5$ & $ 23.3 \pm 1.5$& $ 6129 \pm 5$ & $-29.22 \pm 0.08$ & $-28.96 \pm 0.08$& $-28.50 \pm 0.08$& $-28.26 \pm 0.08$& $-27.56 \pm 0.08$ \\
PTF11mkx & $ 31.5 \pm 3.7$ & $ 4.5 \pm 1.3$& $ 6168 \pm 6$ & $-29.50 \pm 0.45$ & $-29.25 \pm 0.45$& $-28.89 \pm 0.45$& $-28.61 \pm 0.45$& $-27.97 \pm 0.45$ \\
PTF10tce & $135.7 \pm 1.1$ & $ 11.2 \pm 1.5$& $ 6090 \pm 4$ & $-29.13 \pm 0.02$ & $-28.99 \pm 0.01$& $-28.59 \pm 0.01$& $-28.31 \pm 0.01$& $-27.55 \pm 0.01$ \\
SNF20061020-000 & $ 95.4 \pm 18.8$ & $ 24.1 \pm 1.0$& $ 6120 \pm 5$ & $-29.01 \pm 0.03$ & $-28.78 \pm 0.03$& $-28.35 \pm 0.03$& $-28.17 \pm 0.03$& $-27.54 \pm 0.03$ \\
SN2005ir & $115.6 \pm 2.8$ & $ 13.5 \pm 6.9$& $ 6069 \pm 5$ & $-29.33 \pm 0.02$ & $-29.12 \pm 0.02$& $-28.84 \pm 0.02$& $-28.49 \pm 0.02$& $-27.77 \pm 0.02$ \\
SNF20080717-000 & $ 93.3 \pm 2.6$ & $ 8.3 \pm 2.2$& $ 6104 \pm 3$ & $-28.58 \pm 0.01$ & $-28.47 \pm 0.01$& $-28.29 \pm 0.01$& $-28.05 \pm 0.01$& $-27.50 \pm 0.01$ \\
PTF12ena & $101.1 \pm 1.6$ & $ 7.4 \pm 1.0$& $ 6129 \pm 4$ & $-28.01 \pm 0.01$ & $-28.00 \pm 0.01$& $-27.85 \pm 0.01$& $-27.77 \pm 0.01$& $-27.31 \pm 0.01$ \\
PTF13anh & $166.8 \pm 1.8$ & $ 21.8 \pm 1.2$& $ 6175 \pm 4$ & $-28.67 \pm 0.20$ & $-28.74 \pm 0.20$& $-28.30 \pm 0.20$& $-28.05 \pm 0.20$& $-27.28 \pm 0.20$ \\
CSS110918\_01 & $110.6 \pm 1.0$ & $ 8.0 \pm 1.3$& $ 6101 \pm 2$ & $-29.88 \pm 0.76$ & $-29.58 \pm 0.76$& $-29.09 \pm 0.76$& $-28.71 \pm 0.76$& $-27.91 \pm 0.76$ \\
SNF20070506-006 & $ 94.1 \pm 1.3$ & $ 6.7 \pm 0.6$& $ 6153 \pm 3$ & $-29.72 \pm 0.01$ & $-29.39 \pm 0.01$& $-28.97 \pm 0.01$& $-28.64 \pm 0.01$& $-27.96 \pm 0.01$ \\
SNF20070403-001 & $105.9 \pm 5.4$ & $ 18.3 \pm 1.8$& $ 6124 \pm 4$ & $-29.23 \pm 0.02$ & $-29.04 \pm 0.01$& $-28.63 \pm 0.01$& $-28.35 \pm 0.01$& $-27.62 \pm 0.01$ \\
PTF10hmv & $109.6 \pm 1.3$ & $ 8.9 \pm 0.7$& $ 6143 \pm 3$ & $-28.54 \pm 0.01$ & $-28.40 \pm 0.01$& $-28.11 \pm 0.01$& $-27.89 \pm 0.01$& $-27.31 \pm 0.01$ \\
SNF20071015-000 & $105.0 \pm 3.2$ & $ 6.9 \pm 1.1$& $ 6124 \pm 7$ & $-27.89 \pm 0.02$ & $-27.82 \pm 0.02$& $-27.69 \pm 0.02$& $-27.63 \pm 0.02$& $-27.16 \pm 0.04$ \\
SNhunt89 & $ 88.0 \pm 2.7$ & $ 32.2 \pm 1.9$& $ 6111 \pm 7$ & $-28.37 \pm 0.03$ & $-28.26 \pm 0.03$& $-27.92 \pm 0.03$& $-27.77 \pm 0.03$& $-27.13 \pm 0.03$ \\
SNF20070902-021 & $108.9 \pm 3.5$ & $ 17.1 \pm 1.0$& $ 6131 \pm 6$ & $-29.25 \pm 0.02$ & $-29.02 \pm 0.02$& $-28.56 \pm 0.02$& $-28.32 \pm 0.01$& $-27.65 \pm 0.02$ \\
PTF09dlc & $143.5 \pm 2.2$ & $ 10.2 \pm 0.9$& $ 6143 \pm 3$ & $-29.38 \pm 0.01$ & $-29.17 \pm 0.01$& $-28.69 \pm 0.01$& $-28.40 \pm 0.01$& $-27.62 \pm 0.01$ \\
PTF13ajv & $150.5 \pm 8.9$ & $ 46.3 \pm 8.6$& $ 6110 \pm 21$ & $-28.70 \pm 0.02$ & $-28.61 \pm 0.02$& $-28.16 \pm 0.02$& $-27.91 \pm 0.02$& $-27.07 \pm 0.04$ \\
SNF20080919-000 & $114.7 \pm 2.8$ & $ 9.4 \pm 0.9$& $ 6145 \pm 5$ & $-28.53 \pm 0.02$ & $-28.41 \pm 0.01$& $-28.11 \pm 0.01$& $-27.99 \pm 0.01$& $-27.38 \pm 0.01$ \\
SNF20080919-001 & $ 85.0 \pm 1.1$ & $ 6.0 \pm 0.4$& $ 6150 \pm 5$ & $-29.73 \pm 0.01$ & $-29.43 \pm 0.01$& $-29.04 \pm 0.01$& $-28.72 \pm 0.01$& $-28.07 \pm 0.01$ \\
SN2010kg & $ 95.1 \pm 28.5$ & $ 21.7 \pm 0.7$& $ 6077 \pm 5$ & $-28.85 \pm 0.01$ & $-28.74 \pm 0.01$& $-28.41 \pm 0.01$& $-28.20 \pm 0.01$& $-27.47 \pm 0.01$ \\
SNF20080714-008 & $134.8 \pm 15.7$ & $ 19.7 \pm 3.7$& $ 6100 \pm 6$ & $-28.56 \pm 0.02$ & $-28.63 \pm 0.01$& $-28.32 \pm 0.01$& $-28.13 \pm 0.01$& $-27.42 \pm 0.01$ \\
SNF20070714-007 & $129.6 \pm 5.6$ & $ 31.1 \pm 23.8$& $ 6146 \pm 5$ & $-27.88 \pm 0.02$ & $-28.12 \pm 0.01$& $-28.02 \pm 0.01$& $-27.86 \pm 0.01$& $-27.24 \pm 0.03$ \\
SNF20080522-011 & $122.1 \pm 1.7$ & $ 8.3 \pm 0.5$& $ 6125 \pm 3$ & $-29.63 \pm 0.01$ & $-29.38 \pm 0.01$& $-28.92 \pm 0.01$& $-28.60 \pm 0.01$& $-27.88 \pm 0.01$ \\
SNF20061111-002 & $110.8 \pm 10.7$ & $ 20.4 \pm 1.0$& $ 6145 \pm 6$ & $-29.16 \pm 0.01$ & $-28.99 \pm 0.01$& $-28.59 \pm 0.01$& $-28.29 \pm 0.01$& $-27.61 \pm 0.01$ \\
SNNGC6343 & $ 87.0 \pm 1.4$ & $ 20.7 \pm 0.7$& $ 6136 \pm 3$ & $-28.78 \pm 0.01$ & $-28.66 \pm 0.01$& $-28.30 \pm 0.01$& $-28.08 \pm 0.01$& $-27.41 \pm 0.01$ \\
SNF20080825-010 & $102.4 \pm 13.4$ & $ 19.2 \pm 0.6$& $ 6116 \pm 4$ & $-29.46 \pm 0.01$ & $-29.17 \pm 0.01$& $-28.71 \pm 0.01$& $-28.47 \pm 0.01$& $-27.83 \pm 0.01$ \\
PTF10ufj & $141.1 \pm 3.4$ & $ 11.7 \pm 1.2$& $ 6131 \pm 6$ & $-29.28 \pm 0.15$ & $-29.16 \pm 0.15$& $-28.72 \pm 0.15$& $-28.41 \pm 0.15$& $-27.65 \pm 0.15$ \\
PTF10wof & $129.6 \pm 2.7$ & $ 17.3 \pm 1.0$& $ 6102 \pm 2$ & $-28.91 \pm 0.01$ & $-28.84 \pm 0.01$& $-28.46 \pm 0.01$& $-28.18 \pm 0.01$& $-27.43 \pm 0.01$ \\
SNF20080918-000 & $146.8 \pm 3.5$ & $ 7.5 \pm 2.5$& $ 6110 \pm 5$ & $-28.79 \pm 0.02$ & $-28.65 \pm 0.02$& $-28.35 \pm 0.02$& $-28.12 \pm 0.02$& $-27.46 \pm 0.02$ \\
SNF20080516-000 & $117.4 \pm 2.2$ & $ 9.0 \pm 1.2$& $ 6127 \pm 10$ & $-29.50 \pm 0.01$ & $-29.23 \pm 0.01$& $-28.80 \pm 0.01$& $-28.47 \pm 0.01$& $-27.74 \pm 0.01$ \\
SN2005cf & $159.1 \pm 0.7$ & $ 15.7 \pm 0.8$& $ 6144 \pm 2$ & $-29.37 \pm 0.02$ & $-29.16 \pm 0.02$& $-28.68 \pm 0.02$& $-28.41 \pm 0.02$& $-27.69 \pm 0.02$ \\
CSS130502\_01 & $ 91.5 \pm 10.9$ & $ 15.6 \pm 0.5$& $ 6128 \pm 3$ & $-29.43 \pm 0.02$ & $-29.09 \pm 0.02$& $-28.60 \pm 0.01$& $-28.30 \pm 0.01$& $-27.62 \pm 0.04$ \\
SNF20080620-000 & $107.8 \pm 14.1$ & $ 20.0 \pm 0.7$& $ 6132 \pm 4$ & $-28.82 \pm 0.02$ & $-28.78 \pm 0.01$& $-28.32 \pm 0.01$& $-28.09 \pm 0.01$& $-27.39 \pm 0.01$ \\
SNPGC51271 & $ 92.1 \pm 16.5$ & $ 21.1 \pm 0.7$& $ 6121 \pm 2$ & $-29.28 \pm 0.02$ & $-28.95 \pm 0.02$& $-28.46 \pm 0.02$& $-28.20 \pm 0.02$& $-27.62 \pm 0.04$ \\
PTF11pdk & $128.6 \pm 2.8$ & $ 15.6 \pm 1.7$& $ 6153 \pm 5$ & $-29.35 \pm 0.02$ & $-29.11 \pm 0.02$& $-28.61 \pm 0.02$& $-28.32 \pm 0.02$& $-27.67 \pm 0.02$ \\
SNF20060511-014 & $102.6 \pm 2.8$ & $ 15.6 \pm 1.1$& $ 6141 \pm 8$ & $-29.16 \pm 0.07$ & $-29.04 \pm 0.06$& $-28.56 \pm 0.06$& $-28.30 \pm 0.06$& $-27.63 \pm 0.06$ \\
SNF20080612-003 & $120.0 \pm 1.1$ & $ 7.3 \pm 0.6$& $ 6123 \pm 3$ & $-29.64 \pm 0.02$ & $-29.41 \pm 0.02$& $-28.99 \pm 0.02$& $-28.70 \pm 0.02$& $-28.00 \pm 0.02$ \\
SNF20080626-002 & $130.0 \pm 1.0$ & $ 6.1 \pm 4.2$& $ 6111 \pm 3$ & $-29.42 \pm 0.01$ & $-29.24 \pm 0.01$& $-28.84 \pm 0.01$& $-28.52 \pm 0.01$& $-27.76 \pm 0.01$ \\
SNF20060621-015 & $111.9 \pm 1.3$ & $ 9.8 \pm 0.7$& $ 6144 \pm 3$ & $-29.63 \pm 0.01$ & $-29.36 \pm 0.01$& $-28.88 \pm 0.01$& $-28.54 \pm 0.01$& $-27.81 \pm 0.01$ \\
SNF20080920-000 & $135.2 \pm 1.4$ & $ 5.6 \pm 1.6$& $ 6085 \pm 3$ & $-29.44 \pm 0.02$ & $-29.19 \pm 0.02$& $-28.79 \pm 0.02$& $-28.49 \pm 0.02$& $-27.74 \pm 0.02$ \\
SN2007cq & $ 65.8 \pm 4.1$ & $ 10.2 \pm 0.9$& $ 6137 \pm 3$ & $-29.53 \pm 0.02$ & $-29.30 \pm 0.02$& $-28.89 \pm 0.02$& $-28.56 \pm 0.02$& $-27.90 \pm 0.02$ \\
SNF20080918-004 & $ 87.8 \pm 7.2$ & $ 21.5 \pm 0.9$& $ 6141 \pm 4$ & $-29.00 \pm 0.22$ & $-28.82 \pm 0.22$& $-28.37 \pm 0.22$& $-28.13 \pm 0.22$& $-27.43 \pm 0.22$ \\
CSS120424\_01 & $138.1 \pm 2.1$ & $ 11.7 \pm 0.7$& $ 6138 \pm 3$ & $-29.40 \pm 0.02$ & $-29.23 \pm 0.02$& $-28.77 \pm 0.01$& $-28.45 \pm 0.02$& $-27.68 \pm 0.02$ \\
SNF20080610-000 & $119.9 \pm 10.4$ & $ 16.4 \pm 1.7$& $ 6131 \pm 6$ & $-29.05 \pm 0.07$ & $-28.92 \pm 0.07$& $-28.50 \pm 0.07$& $-28.22 \pm 0.07$& $-27.55 \pm 0.07$ \\
SNF20070701-005 & $101.8 \pm 2.6$ & $ 12.4 \pm 1.0$& $ 6158 \pm 5$ & $-29.46 \pm 0.02$ & $-29.27 \pm 0.02$& $-28.87 \pm 0.02$& $-28.60 \pm 0.02$& $-27.96 \pm 0.02$ \\
SN2007kk & $128.5 \pm 1.4$ & $ 10.6 \pm 1.0$& $ 6098 \pm 4$ & $-29.48 \pm 0.02$ & $-29.31 \pm 0.02$& $-28.87 \pm 0.01$& $-28.54 \pm 0.01$& $-27.77 \pm 0.02$ \\
SNF20060908-004 & $114.4 \pm 1.2$ & $ 12.6 \pm 0.6$& $ 6136 \pm 3$ & $-29.59 \pm 0.23$ & $-29.34 \pm 0.23$& $-28.91 \pm 0.23$& $-28.58 \pm 0.23$& $-27.87 \pm 0.23$ \\
SNF20080909-030 & $ 93.7 \pm 1.0$ & $ 7.8 \pm 0.4$& $ 6171 \pm 3$ & $-29.38 \pm 0.02$ & $-29.12 \pm 0.01$& $-28.74 \pm 0.01$& $-28.44 \pm 0.01$& $-27.78 \pm 0.01$ \\
PTF11bgv & $ 79.4 \pm 3.2$ & $ 12.6 \pm 0.7$& $ 6146 \pm 3$ & $-28.90 \pm 0.02$ & $-28.62 \pm 0.01$& $-28.27 \pm 0.01$& $-28.08 \pm 0.01$& $-27.54 \pm 0.01$ \\
SNNGC2691 & $ 39.0 \pm 22.2$ & $ 4.5 \pm 0.2$& $ 6139 \pm 8$ & $-29.46 \pm 0.02$ & $-29.06 \pm 0.02$& $-28.75 \pm 0.02$& $-28.49 \pm 0.02$& $-27.93 \pm 0.02$ \\
PTF13asv & $ 75.6 \pm 1.1$ & $ 2.2 \pm 0.4$& $ 6148 \pm 4$ & $-29.92 \pm 0.32$ & $-29.49 \pm 0.32$& $-29.02 \pm 0.32$& $-28.63 \pm 0.32$& $-27.90 \pm 0.32$ \\
SNF20070806-026 & $ 98.8 \pm 12.1$ & $ 25.9 \pm 0.7$& $ 6114 \pm 7$ & $-29.14 \pm 0.02$ & $-28.91 \pm 0.02$& $-28.44 \pm 0.02$& $-28.21 \pm 0.02$& $-27.49 \pm 0.02$ \\
SNF20070427-001 & $ 81.3 \pm 2.3$ & $ 6.3 \pm 0.9$& $ 6142 \pm 5$ & $-29.89 \pm 0.02$ & $-29.46 \pm 0.02$& $-28.97 \pm 0.02$& $-28.62 \pm 0.02$& $-27.97 \pm 0.02$ \\
SNF20061108-004 & $129.5 \pm 5.6$ & $ 6.3 \pm 2.5$& $ 6110 \pm 6$ & $-29.53 \pm 0.02$ & $-29.31 \pm 0.02$& $-28.95 \pm 0.02$& $-28.60 \pm 0.02$& $-27.96 \pm 0.02$ \\
SNF20060912-000 & $106.5 \pm 1.8$ & $ 21.4 \pm 1.7$& $ 6163 \pm 7$ & $-28.98 \pm 0.02$ & $-28.92 \pm 0.02$& $-28.66 \pm 0.02$& $-28.42 \pm 0.02$& $-27.77 \pm 0.02$ \\
CSS110918\_02 & $109.1 \pm 9.4$ & $ 15.0 \pm 0.6$& $ 6137 \pm 3$ & $-29.36 \pm 0.02$ & $-29.14 \pm 0.01$& $-28.69 \pm 0.01$& $-28.41 \pm 0.01$& $-27.70 \pm 0.01$ \\
SNF20080918-002 & $ 97.7 \pm 2.8$ & $ 12.6 \pm 1.4$& $ 6141 \pm 6$ & $-29.50 \pm 0.02$ & $-29.11 \pm 0.02$& $-28.61 \pm 0.02$& $-28.34 \pm 0.02$& $-27.71 \pm 0.02$ \\
SNIC3573 & $102.7 \pm 1.8$ & $ 11.9 \pm 1.0$& $ 6142 \pm 5$ & $-29.28 \pm 0.02$ & $-29.14 \pm 0.02$& $-28.74 \pm 0.02$& $-28.46 \pm 0.01$& $-27.76 \pm 0.03$ \\
SNF20080725-004 & $133.6 \pm 2.1$ & $ 6.9 \pm 0.9$& $ 6131 \pm 6$ & $-29.09 \pm 0.01$ & $-28.93 \pm 0.01$& $-28.59 \pm 0.01$& $-28.31 \pm 0.01$& $-27.55 \pm 0.03$ \\
SNF20050728-006 & $127.8 \pm 2.5$ & $ 15.8 \pm 1.3$& $ 6124 \pm 6$ & $-28.80 \pm 0.02$ & $-28.68 \pm 0.02$& $-28.37 \pm 0.02$& $-28.18 \pm 0.02$& $-27.55 \pm 0.02$ \\
SN2012fr & $134.2 \pm 0.5$ & $ 7.4 \pm 0.2$& $ 6102 \pm 1$ & $-29.91 \pm 0.01$ & $-29.70 \pm 0.01$& $-29.31 \pm 0.01$& $-28.94 \pm 0.01$& $-28.10 \pm 0.01$ \\
SNF20060512-002 & $100.2 \pm 2.8$ & $ 13.4 \pm 1.1$& $ 6107 \pm 8$ & $-29.33 \pm 0.02$ & $-29.11 \pm 0.02$& $-28.77 \pm 0.02$& $-28.52 \pm 0.02$& $-27.80 \pm 0.02$ \\
SNF20060512-001 & $ 88.4 \pm 1.2$ & $ 5.4 \pm 0.4$& $ 6169 \pm 3$ & $-29.33 \pm 0.01$ & $-29.05 \pm 0.01$& $-28.68 \pm 0.01$& $-28.40 \pm 0.01$& $-27.79 \pm 0.01$ \\
SNF20071003-016 & $125.2 \pm 4.6$ & $ 17.1 \pm 2.0$& $ 6124 \pm 11$ & $-28.58 \pm 0.02$ & $-28.54 \pm 0.02$& $-28.19 \pm 0.02$& $-27.99 \pm 0.02$& $-27.31 \pm 0.02$ \\
SNF20050821-007 & $141.7 \pm 2.6$ & $ 7.7 \pm 1.0$& $ 6140 \pm 9$ & $-29.38 \pm 0.02$ & $-29.20 \pm 0.02$& $-28.77 \pm 0.02$& $-28.46 \pm 0.02$& $-27.67 \pm 0.02$ \\
SNF20070803-005 & $ 22.7 \pm 21.4$ & $ 0.9 \pm 0.6$& $ 6157 \pm 27$ & $-29.87 \pm 0.01$ & $-29.43 \pm 0.01$& $-29.04 \pm 0.01$& $-28.74 \pm 0.01$& $-28.11 \pm 0.01$ \\
PTF09foz & $127.2 \pm 1.9$ & $ 21.7 \pm 1.2$& $ 6136 \pm 4$ & $-29.14 \pm 0.01$ & $-29.00 \pm 0.01$& $-28.59 \pm 0.01$& $-28.35 \pm 0.01$& $-27.65 \pm 0.01$ \\
PTF12grk & $162.3 \pm 9.8$ & $ 19.6 \pm 1.4$& $ 6085 \pm 8$ & $-28.86 \pm 0.02$ & $-28.87 \pm 0.01$& $-28.42 \pm 0.01$& $-28.19 \pm 0.01$& $-27.50 \pm 0.03$ \\
SNF20080720-001 & $138.5 \pm 4.0$ & $ 14.0 \pm 2.0$& $ 6112 \pm 2$ & $-27.59 \pm 0.02$ & $-27.78 \pm 0.01$& $-27.73 \pm 0.01$& $-27.71 \pm 0.01$& $-27.19 \pm 0.02$ \\
SNF20080810-001 & $ 88.4 \pm 21.6$ & $ 22.3 \pm 1.1$& $ 6145 \pm 5$ & $-29.11 \pm 0.01$ & $-28.89 \pm 0.01$& $-28.45 \pm 0.01$& $-28.23 \pm 0.01$& $-27.60 \pm 0.01$ \\
SNF20050729-002 & $109.4 \pm 2.2$ & $ 11.5 \pm 1.7$& $ 6142 \pm 6$ & $-29.35 \pm 0.13$ & $-29.17 \pm 0.13$& $-28.68 \pm 0.13$& $-28.38 \pm 0.13$& $-27.56 \pm 0.13$ \\
SN2008ec & $103.7 \pm 17.0$ & $ 23.1 \pm 0.4$& $ 6125 \pm 3$ & $-28.67 \pm 0.01$ & $-28.52 \pm 0.01$& $-28.18 \pm 0.01$& $-28.03 \pm 0.01$& $-27.47 \pm 0.01$ \\
SNF20070902-018 & $ 93.8 \pm 12.2$ & $ 23.8 \pm 3.0$& $ 6120 \pm 8$ & $-28.87 \pm 0.02$ & $-28.70 \pm 0.01$& $-28.26 \pm 0.01$& $-28.08 \pm 0.01$& $-27.41 \pm 0.02$ \\
SNF20070424-003 & $122.5 \pm 3.8$ & $ 12.7 \pm 1.6$& $ 6132 \pm 6$ & $-29.10 \pm 0.01$ & $-28.96 \pm 0.01$& $-28.51 \pm 0.01$& $-28.25 \pm 0.01$& $-27.57 \pm 0.01$ \\
SN2006cj & $101.7 \pm 1.3$ & $ 4.8 \pm 0.8$& $ 6127 \pm 3$ & $-29.43 \pm 0.01$ & $-29.14 \pm 0.01$& $-28.74 \pm 0.01$& $-28.43 \pm 0.01$& $-27.76 \pm 0.01$ \\
SN2007nq & $ 89.8 \pm 9.9$ & $ 23.4 \pm 1.1$& $ 6109 \pm 5$ & $-29.11 \pm 0.02$ & $-28.91 \pm 0.02$& $-28.50 \pm 0.02$& $-28.27 \pm 0.02$& $-27.57 \pm 0.02$ \\
SNF20070817-003 & $ 93.9 \pm 2.4$ & $ 18.5 \pm 1.3$& $ 6116 \pm 6$ & $-29.19 \pm 0.02$ & $-29.03 \pm 0.01$& $-28.59 \pm 0.01$& $-28.30 \pm 0.01$& $-27.55 \pm 0.02$ \\
SNF20070403-000 & $ 61.8 \pm 6.5$ & $ 27.1 \pm 1.8$& $ 6154 \pm 8$ & $-28.37 \pm 0.02$ & $-28.27 \pm 0.02$& $-27.97 \pm 0.02$& $-27.80 \pm 0.02$& $-27.24 \pm 0.02$ \\
SNF20061022-005 & $ 64.6 \pm 3.8$ & $ 3.7 \pm 1.4$& $ 6148 \pm 4$ & $-29.49 \pm 0.02$ & $-29.06 \pm 0.02$& $-28.71 \pm 0.02$& $-28.42 \pm 0.02$& $-27.93 \pm 0.02$ \\
SNNGC4076 & $127.3 \pm 2.4$ & $ 15.5 \pm 1.2$& $ 6152 \pm 4$ & $-28.77 \pm 0.01$ & $-28.66 \pm 0.01$& $-28.37 \pm 0.01$& $-28.15 \pm 0.01$& $-27.52 \pm 0.01$ \\
SNF20070727-016 & $ 77.5 \pm 2.5$ & $ 5.1 \pm 0.8$& $ 6140 \pm 4$ & $-29.96 \pm 0.06$ & $-29.56 \pm 0.06$& $-29.06 \pm 0.06$& $-28.75 \pm 0.06$& $-28.01 \pm 0.06$ \\
PTF12fuu & $105.5 \pm 3.0$ & $ 6.2 \pm 1.2$& $ 6124 \pm 5$ & $-29.54 \pm 0.01$ & $-29.23 \pm 0.01$& $-28.74 \pm 0.01$& $-28.40 \pm 0.01$& $-27.64 \pm 0.01$ \\
SNF20070820-000 & $107.2 \pm 3.5$ & $ 18.6 \pm 1.3$& $ 6132 \pm 14$ & $-28.80 \pm 0.02$ & $-28.69 \pm 0.02$& $-28.34 \pm 0.02$& $-28.13 \pm 0.02$& $-27.52 \pm 0.02$ \\
SNF20070725-001 & $108.4 \pm 2.0$ & $ 11.1 \pm 1.5$& $ 6140 \pm 7$ & $-29.61 \pm 0.02$ & $-29.32 \pm 0.02$& $-28.84 \pm 0.02$& $-28.50 \pm 0.02$& $-27.76 \pm 0.02$ \\
SNF20071108-021 & $ 99.1 \pm 2.7$ & $ 5.8 \pm 0.8$& $ 6164 \pm 5$ & $-29.67 \pm 0.01$ & $-29.34 \pm 0.01$& $-28.94 \pm 0.01$& $-28.60 \pm 0.01$& $-27.96 \pm 0.01$ \\
SNF20080914-001 & $126.5 \pm 1.2$ & $ 15.4 \pm 1.1$& $ 6159 \pm 3$ & $-28.67 \pm 0.02$ & $-28.60 \pm 0.02$& $-28.31 \pm 0.02$& $-28.13 \pm 0.02$& $-27.58 \pm 0.02$ \\
SNF20060609-002 & $ 87.7 \pm 3.6$ & $ 7.3 \pm 1.3$& $ 6132 \pm 4$ & $-28.60 \pm 0.02$ & $-28.42 \pm 0.02$& $-28.19 \pm 0.02$& $-28.05 \pm 0.02$& $-27.53 \pm 0.02$ \\
SNF20050624-000 & $121.0 \pm 5.3$ & $ 9.3 \pm 3.1$& $ 6129 \pm 7$ & $-29.75 \pm 0.01$ & $-29.42 \pm 0.01$& $-28.99 \pm 0.01$& $-28.68 \pm 0.01$& $-27.97 \pm 0.01$ \\
SNF20080531-000 & $133.0 \pm 1.5$ & $ 17.6 \pm 0.8$& $ 6114 \pm 5$ & $-29.12 \pm 0.01$ & $-28.98 \pm 0.01$& $-28.54 \pm 0.01$& $-28.28 \pm 0.01$& $-27.51 \pm 0.01$ \\
SN2006do & $106.4 \pm 2.1$ & $ 26.7 \pm 1.3$& $ 6101 \pm 2$ & $-29.00 \pm 0.01$ & $-28.83 \pm 0.01$& $-28.42 \pm 0.01$& $-28.20 \pm 0.01$& $-27.53 \pm 0.04$ \\
PTF12ikt & $110.3 \pm 1.6$ & $ 14.2 \pm 0.7$& $ 6141 \pm 4$ & $-29.34 \pm 0.01$ & $-29.04 \pm 0.01$& $-28.57 \pm 0.01$& $-28.32 \pm 0.01$& $-27.66 \pm 0.01$ \\
SN2006dm & $ 99.5 \pm 1.6$ & $ 30.0 \pm 0.7$& $ 6118 \pm 3$ & $-28.81 \pm 0.01$ & $-28.65 \pm 0.01$& $-28.23 \pm 0.01$& $-28.02 \pm 0.01$& $-27.33 \pm 0.01$ \\
PTF13azs & $138.0 \pm 5.1$ & $ 16.2 \pm 1.6$& $ 6125 \pm 10$ & $-27.84 \pm 0.02$ & $-27.92 \pm 0.02$& $-27.69 \pm 0.02$& $-27.60 \pm 0.02$& $-26.99 \pm 0.02$ \\
SN2005hj & $ 80.8 \pm 2.4$ & $ 4.3 \pm 0.8$& $ 6138 \pm 4$ & $-29.54 \pm 0.02$ & $-29.16 \pm 0.01$& $-28.87 \pm 0.01$& $-28.54 \pm 0.01$& $-28.01 \pm 0.01$ \\
PTF12iiq & $150.4 \pm 2.2$ & $ 22.5 \pm 0.8$& $ 6041 \pm 6$ & $-28.60 \pm 0.01$ & $-28.77 \pm 0.01$& $-28.41 \pm 0.01$& $-28.10 \pm 0.01$& $-27.29 \pm 0.01$ \\
PTF10ndc & $124.2 \pm 2.4$ & $ 6.8 \pm 1.1$& $ 6119 \pm 3$ & $-29.52 \pm 0.01$ & $-29.25 \pm 0.01$& $-28.80 \pm 0.01$& $-28.49 \pm 0.01$& $-27.76 \pm 0.01$ \\
SNF20080919-002 & $103.6 \pm 7.2$ & $ 27.2 \pm 1.9$& $ 6133 \pm 8$ & $-28.74 \pm 0.02$ & $-28.46 \pm 0.01$& $-28.09 \pm 0.01$& $-27.87 \pm 0.01$& $-27.26 \pm 0.04$ \\
SNPGC027923 & $ 85.5 \pm 0.6$ & $ 5.9 \pm 0.3$& $ 6130 \pm 4$ & $-29.87 \pm 0.02$ & $-29.45 \pm 0.02$& $-28.94 \pm 0.02$& $-28.57 \pm 0.02$& $-27.85 \pm 0.02$ \\
SNF20070330-024 & $118.1 \pm 2.1$ & $ 4.6 \pm 2.2$& $ 6101 \pm 3$ & $-29.77 \pm 0.02$ & $-29.52 \pm 0.02$& $-29.08 \pm 0.02$& $-28.74 \pm 0.01$& $-27.94 \pm 0.02$ \\
SNF20061030-010 & $131.4 \pm 2.2$ & $ 17.4 \pm 1.1$& $ 6116 \pm 4$ & $-28.60 \pm 0.02$ & $-28.55 \pm 0.02$& $-28.25 \pm 0.02$& $-28.03 \pm 0.02$& $-27.34 \pm 0.02$ \\
SNhunt46 & $ 94.1 \pm 2.0$ & $ 11.2 \pm 0.6$& $ 6132 \pm 4$ & $-29.50 \pm 0.02$ & $-29.11 \pm 0.02$& $-28.67 \pm 0.02$& $-28.37 \pm 0.02$& $-27.71 \pm 0.02$ \\
SN2005hc & $126.9 \pm 2.5$ & $ 10.0 \pm 0.7$& $ 6123 \pm 3$ & $-29.38 \pm 0.01$ & $-29.13 \pm 0.01$& $-28.69 \pm 0.01$& $-28.37 \pm 0.01$& $-27.61 \pm 0.01$ \\
LSQ12dbr & $106.9 \pm 0.6$ & $ 7.1 \pm 0.7$& $ 6138 \pm 4$ & $-29.29 \pm 0.73$ & $-29.00 \pm 0.73$& $-28.51 \pm 0.73$& $-28.15 \pm 0.73$& $-27.38 \pm 0.73$ \\
LSQ12hjm & $ 82.6 \pm 17.5$ & $ 12.2 \pm 1.4$& $ 6144 \pm 5$ & $-29.51 \pm 0.02$ & $-29.14 \pm 0.01$& $-28.60 \pm 0.01$& $-28.30 \pm 0.01$& $-27.71 \pm 0.02$ \\
SNF20060521-001 & $ 78.9 \pm 20.2$ & $ 21.1 \pm 1.4$& $ 6123 \pm 10$ & $-29.37 \pm 0.05$ & $-29.04 \pm 0.05$& $-28.54 \pm 0.05$& $-28.30 \pm 0.05$& $-27.57 \pm 0.05$ \\
SNF20070630-006 & $125.5 \pm 3.2$ & $ 10.1 \pm 1.6$& $ 6126 \pm 4$ & $-29.34 \pm 0.01$ & $-29.12 \pm 0.01$& $-28.65 \pm 0.01$& $-28.38 \pm 0.01$& $-27.66 \pm 0.01$ \\
PTF11drz & $132.6 \pm 1.4$ & $ 15.2 \pm 1.0$& $ 6116 \pm 5$ & $-29.12 \pm 0.01$ & $-28.95 \pm 0.01$& $-28.53 \pm 0.01$& $-28.27 \pm 0.01$& $-27.55 \pm 0.01$ \\
SNF20080323-009 & $ 95.9 \pm 2.3$ & $ 10.6 \pm 1.1$& $ 6143 \pm 6$ & $-29.59 \pm 0.02$ & $-29.22 \pm 0.02$& $-28.68 \pm 0.02$& $-28.42 \pm 0.02$& $-27.77 \pm 0.02$ \\
SNF20071021-000 & $167.5 \pm 2.2$ & $ 20.4 \pm 0.6$& $ 6112 \pm 4$ & $-28.75 \pm 0.02$ & $-28.78 \pm 0.02$& $-28.40 \pm 0.02$& $-28.18 \pm 0.02$& $-27.41 \pm 0.02$ \\
SNNGC0927 & $155.2 \pm 1.4$ & $ 11.0 \pm 0.7$& $ 6109 \pm 4$ & $-28.87 \pm 0.02$ & $-28.81 \pm 0.01$& $-28.46 \pm 0.01$& $-28.22 \pm 0.01$& $-27.48 \pm 0.01$ \\
SNF20060526-003 & $112.1 \pm 2.5$ & $ 9.8 \pm 1.0$& $ 6121 \pm 3$ & $-29.34 \pm 0.01$ & $-29.09 \pm 0.01$& $-28.68 \pm 0.01$& $-28.39 \pm 0.01$& $-27.70 \pm 0.01$ \\
SNF20080806-002 & $135.8 \pm 1.8$ & $ 7.5 \pm 0.9$& $ 6135 \pm 4$ & $-29.22 \pm 0.02$ & $-29.02 \pm 0.02$& $-28.61 \pm 0.02$& $-28.35 \pm 0.01$& $-27.71 \pm 0.02$ \\
SNF20080803-000 & $117.6 \pm 2.6$ & $ 8.9 \pm 2.0$& $ 6125 \pm 4$ & $-28.84 \pm 0.01$ & $-28.70 \pm 0.01$& $-28.35 \pm 0.01$& $-28.16 \pm 0.01$& $-27.50 \pm 0.01$ \\
SNF20080822-005 & $ 78.5 \pm 1.8$ & $ 6.3 \pm 0.9$& $ 6138 \pm 4$ & $-29.71 \pm 0.01$ & $-29.34 \pm 0.01$& $-28.93 \pm 0.01$& $-28.61 \pm 0.01$& $-27.92 \pm 0.01$ \\
SNF20060618-014 & $137.2 \pm 2.5$ & $ 9.3 \pm 1.1$& $ 6112 \pm 7$ & $-29.27 \pm 0.03$ & $-29.09 \pm 0.03$& $-28.73 \pm 0.03$& $-28.38 \pm 0.03$& $-27.68 \pm 0.03$ \\
PTF12ghy & $ 99.3 \pm 3.6$ & $ 16.8 \pm 0.7$& $ 6134 \pm 3$ & $-28.29 \pm 0.02$ & $-28.27 \pm 0.01$& $-28.05 \pm 0.01$& $-27.95 \pm 0.01$& $-27.40 \pm 0.01$ \\
SNF20070531-011 & $122.4 \pm 2.7$ & $ 21.2 \pm 0.8$& $ 6114 \pm 4$ & $-29.07 \pm 0.01$ & $-28.94 \pm 0.01$& $-28.50 \pm 0.01$& $-28.26 \pm 0.01$& $-27.53 \pm 0.03$ \\
SNF20070831-015 & $112.2 \pm 2.7$ & $ 7.8 \pm 1.0$& $ 6145 \pm 6$ & $-29.42 \pm 0.01$ & $-29.17 \pm 0.01$& $-28.78 \pm 0.01$& $-28.46 \pm 0.01$& $-27.78 \pm 0.01$ \\
SNF20070417-002 & $104.5 \pm 5.5$ & $ 24.4 \pm 2.2$& $ 6123 \pm 9$ & $-29.20 \pm 0.05$ & $-29.01 \pm 0.05$& $-28.48 \pm 0.05$& $-28.23 \pm 0.05$& $-27.54 \pm 0.05$ \\
PTF11cao & $143.3 \pm 1.6$ & $ 18.9 \pm 1.3$& $ 6104 \pm 5$ & $-28.78 \pm 0.02$ & $-28.79 \pm 0.02$& $-28.44 \pm 0.02$& $-28.18 \pm 0.02$& $-27.45 \pm 0.02$ \\
SNF20080522-000 & $ 61.8 \pm 3.5$ & $ 3.3 \pm 0.9$& $ 6131 \pm 7$ & $-29.86 \pm 0.01$ & $-29.41 \pm 0.01$& $-29.03 \pm 0.01$& $-28.70 \pm 0.01$& $-28.06 \pm 0.01$ \\
PTF10qjq & $ 73.9 \pm 2.4$ & $ 12.8 \pm 0.8$& $ 6133 \pm 3$ & $-29.29 \pm 0.02$ & $-28.94 \pm 0.02$& $-28.53 \pm 0.01$& $-28.35 \pm 0.01$& $-27.76 \pm 0.01$ \\
PTF12dxm & $ 95.4 \pm 41.8$ & $ 35.7 \pm 2.8$& $ 6136 \pm 4$ & $-28.71 \pm 0.01$ & $-28.58 \pm 0.01$& $-28.19 \pm 0.01$& $-27.99 \pm 0.01$& $-27.34 \pm 0.01$ \\
SNF20061021-003 & $122.8 \pm 2.3$ & $ 9.7 \pm 1.7$& $ 6131 \pm 4$ & $-29.04 \pm 0.02$ & $-28.86 \pm 0.02$& $-28.56 \pm 0.02$& $-28.30 \pm 0.02$& $-27.64 \pm 0.02$ \\
SNF20080510-005 & $111.6 \pm 2.6$ & $ 6.4 \pm 1.1$& $ 6115 \pm 4$ & $-29.41 \pm 0.01$ & $-29.15 \pm 0.01$& $-28.70 \pm 0.01$& $-28.38 \pm 0.01$& $-27.73 \pm 0.04$ \\
SNF20080507-000 & $ 98.1 \pm 1.6$ & $ 10.6 \pm 2.1$& $ 6143 \pm 5$ & $-29.23 \pm 0.01$ & $-29.05 \pm 0.01$& $-28.71 \pm 0.01$& $-28.45 \pm 0.01$& $-27.79 \pm 0.01$ \\
SNF20080913-031 & $118.2 \pm 1.5$ & $ 11.3 \pm 1.8$& $ 6158 \pm 5$ & $-29.13 \pm 0.08$ & $-29.01 \pm 0.07$& $-28.62 \pm 0.07$& $-28.32 \pm 0.07$& $-27.68 \pm 0.07$ \\
SNF20080510-001 & $118.8 \pm 2.1$ & $ 15.3 \pm 1.3$& $ 6115 \pm 4$ & $-29.35 \pm 0.01$ & $-29.15 \pm 0.01$& $-28.69 \pm 0.01$& $-28.38 \pm 0.01$& $-27.68 \pm 0.01$ \\
SNF20070712-003 & $108.8 \pm 2.7$ & $ 13.5 \pm 0.9$& $ 6155 \pm 6$ & $-29.44 \pm 0.02$ & $-29.19 \pm 0.01$& $-28.74 \pm 0.01$& $-28.42 \pm 0.01$& $-27.78 \pm 0.01$ \\
\enddata
\end{deluxetable}
%Absolute photometric calibration is of extreme importance for the supernova cosmology.
%This analysis, however, is confined to the relative colors for a low-redshift set of supernovae
%and is thus insensitive to uncertainties in these zeropoints.
\section{Supernova Model I: Two Extrinsic Parameters}
\label{model:sec}
We hypothesize that at peak brightness
SN~Ia broadband magnitudes and colors are correlated with
spectral features: equivalent widths and line positions are considered as statistics localized in wavelength that are insensitive to variations in
broadband colors.
%Spectra may not efficiently capture all variations in broadband magnitude, so an additional source
%of intrinsic variation is accommodated.
These intrinsic spectral parameters may not deterministically predict magnitudes, but rather do so with some intrinsic dispersion,
\textcolor{red}{which in this section is not yet associated with a parameter. The intrinsic magnitudes are then
modified by an extrinsic physical process (i.e.\ dust) to produce apparent magnitudes.}
\subsection{Model}
We assume
that peak intrinsic $UBVRI$ magnitudes are linearly dependent
on the
equivalent widths of the CaII H\&K and SiII$\lambda$4141 spectral features
$EW_{Ca}$, $EW_{Si}$,
\textcolor{red}{ and $\lambda_{Si}$ the wavelength of the minimum of
the SiII$\lambda6355$ feature}:
these spectral features are associated with SN~Ia spectroscopic diversity
\citep{2006PASP..118..560B, 2008A&A...492..535A, 2009A&A...500L..17B, 2009PASP..121..238B, 2009ApJ...699L.139W, 2011ApJ...729...55F}.
\textcolor{red}{
The explicit omission of light-curve shape in our model is compensated by its proxy
$EW_{Si}$ at peak brightness}
\citep{2008A&A...492..535A, 2011A&A...529L...4C}.
% An intrinsic-color parameter $D$ describes intrinsic magnitude/color variation unaccounted for by the spectral features.
Residual dispersion is described by a Normal distribution with a parameterized covariance matrix
$C_c$. A grey magnitude offset, $\Delta$, is included for each supernova
to capture intrinsic dispersion and peculiar-velocity errors introduced when converting fluxes to luminosity.
The observed magnitudes are linearly dependent on the
extrinsic-color parameters $k_0$ and $k_1$.
The observables
$U_o, B_o, V_o, R_o, I_o$, $EW_{Ca,o}$, $EW_{Si,o}$, $\lambda_{Si,o}$
shown in Table~\ref{data:tab} have Gaussian measurement uncertainty with covariance $C$.
\textcolor{red}{Unlike the parameters associated with
the spectral measurements, $EW_{Ca}$, $EW_{Si}$ and $\lambda_{Si}$, the latent
parameters $k_0$ and $k_1$ are not directly associated
with observables but are rather drawn from the set of peak magnitudes.}
The model is written as
\begin{equation}
\begin{pmatrix}
U\\B\\V\\R\\I
\end{pmatrix}
\sim \mathcal{N}
\left(
\Delta +
\begin{pmatrix}
c_0+\alpha_0 EW_{Ca} + \beta_0 EW_{Si} + \eta_0 \lambda_{Si} \\
c_1+\alpha_1 EW_{Ca} + \beta_1 EW_{Si} + \eta_1 \lambda_{Si} \\
c_2+\alpha_2 EW_{Ca} + \beta_2 EW_{Si} + \eta_2 \lambda_{Si} \\
c_3+\alpha_3 EW_{Ca} + \beta_3 EW_{Si} + \eta_3 \lambda_{Si} \\
c_4+\alpha_4 EW_{Ca} + \beta_4 EW_{Si}+ \eta_4 \lambda_{Si}
\end{pmatrix}
,C_{c}
\right)
\label{ewsiv:eqn}
\end{equation}
\begin{equation}
\begin{pmatrix}
U_o\\B_o\\ V_o\\R_o\\I_o\\EW_{Si, o}\\ EW_{Ca, o} \\ \lambda_{Si, o}
\end{pmatrix}
\sim \mathcal{N}
\left(
\begin{pmatrix}
U +\gamma^0_{1} k_0 +\gamma^1_{1} k_1 \\B +\gamma^0_{1} k_0 +\gamma^1_{1} k_1 \\
V+\gamma^0_{2} k_0+\gamma^1_{2} k_1\\R+\gamma^0_{3} k_0 + \gamma^1_{3} k_1\\I+\gamma^0_{4} k_0+\gamma^1_{4} k_1\\
EW_{Si}\\ EW_{Ca} \\ \lambda_{Si}
\end{pmatrix}
,C
\right).
\label{dust:eqn}
\end{equation}
The global parameters $c$, $\alpha$, $\beta$, and $\eta$, are the intercepts and slopes of the linear relationships that
relate intrinsic magnitudes with the spectral-feature parameters.
(In this article we freely interchange the parameter indices with $01234$ and $UBVRI$.)
The global parameters $\gamma^0$, $\gamma^1$ are the slopes that connect the extrinsic-color
parameters to observed magnitudes.
To constrain the degrees of freedom and degeneracies inherent in the model we impose that
\color{red}
each of the vectors $k_0+1/N$ and $k_1+1/N$ are simplexes (all elements are $\ge 0$ and sum to one),
where $N$ is the number of objects in our sample: these
conditions break the
degeneracies $\gamma ^0\rightarrow a\gamma^0$, $k_0 \rightarrow a^{-1}k_0$ and $\gamma^1 \rightarrow a\gamma^1$, $k_1 \rightarrow a^{-1}k_1$
up to a $\pm$ sign.
Furthermore we impose
\color{black}
\begin{equation}
\langle \Delta \rangle=0, \langle k_0 \rangle=0, \langle k_1 \rangle=0, \gamma^0_0 > 0, \gamma^1_0 < 0.
\end{equation}
The first two conditions specify the definition of zero color relative to which the color excess is measured:
\textcolor{red}{in a linear model this value is arbitrary.}
The latter two exclude degenerate posterior space
associated
with the $\pm$ sign, i.e.\ simultaneous sign flips of
$\gamma^0$--$k_0$ and $\gamma^1$--$k_1$
\color{red}
(when running our fits, $k_0$ and $k_1$ are set to
identical initial conditions, so the difference in the signs of $\gamma^0_0$ and $\gamma^1_0$ distinguishes the two.)
As $\gamma^0$--$k_0$ and $\gamma^1$--$k_1$ are degenerate with
each other,
the different initial and boundary conditions for $\gamma^0_0$ and $\gamma^1_0$ break the degeneracy of our mixture model;
otherwise identical initial conditions for $\gamma^0$, $\gamma^1$ produce indistinguishable posteriors
with relatively broad credible intervals and lower maximum likelihood.
\color{black}
Having the intrinsic dispersion, $C_c$, as fit parameters seemingly introduces degeneracy in the model, as magnitude and color variation
ascribed to $\Delta$, $\gamma^0 k_0$, and $\gamma^1 k_1$ could also be attributed to intrinsic dispersion. There are several features of the model
that drive the assignation of variations away from $C_c$: Maximizing the posterior disfavors the increase of $\det{(C_c)}$;
The distributions of $\Delta$, $k_0$, and $k_1$ turn out to
be non-Gaussian, and so are not well described by the Normal covariance we impose in $C_c$; the grey magnitude offsets, $\Delta$, would appear as a constant
in all elements of the covariance matrix, which is disfavored for the Bayesian prior selected for $C_c$.
In a Bayesian analysis such as this the priors must be described. A flat prior is used for all parameters except
for the covariance matrix $C_c$, which is constructed from a correlation matrix with $\nu=4$ LKJ prior\footnote{
Visualization of the LKJ correlation distribution can be found in \url{http://www.psychstatistics.com/2014/12/27/d-lkj-priors/}.}
\citep{Lewandowski20091989} and standard
deviations $\sigma_i = \sqrt{C_{c,ii}}$ with a Cauchy distribution prior with location
$0.1$ and scale $0.1$ mag restricted to positive values.
\textcolor{red}{This covariance matrix prior is recommended by STAN, the Monte Carlo we use to evaluate the model.}
We find that imposing a stricter assumption of a
diagonal covariance matrix, with no reference to a correlation matrix with LKJ prior, produces little change in the posteriors of
the other parameters.
\subsection{Results}
\label{results:sec}
The posterior of the model parameters is evaluated using Hamiltonian Monte Carlo as implemented in
STAN \citep{stan}. \textcolor{red}{We run four chains, each with 10000 iterations of which
half are used for warmup.}
STAN provides output statistics to assess
the convergence of the output Markov chains.
\textcolor{red}{The
potential scale reduction statistic, $\hat{R}$ \citep{Gelman92}, measures the convergence of the target distribution
in iterative simulations
by using multiple independent sequences to estimate how much that distribution would sharpen if the simulations were run longer.
$N_{eff}$ is an estimate of the number of independent draws. The output for our data and model gives $\hat{R} \sim 1.0$ for all parameters, meaning there is no evidence for non-convergence. The
output also gives $N_{eff} \gg 100$ for all parameters, indicating that are all densely sampled.}
Empirically, the confidence regions are localized and unimodal as is seen in Figures~\ref{global1:fig}, \ref{global2:fig}, \ref{global3:fig}, \ref{global4:fig},
\ref{global5:fig}. We find no evidence that
the Monte Carlo chains have not converged to the stationary posterior distribution.
We have rurun the analysis with a variety of initial conditions, including one with all the $\gamma$'s equal to zero, except for a small positive
$\gamma^0_0$ and small negative $\gamma^1_0$ to satisfy our limit conditions. Parameter credible intervals
remain consistent within the 68\% credible intervals.
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/coeff0.pdf}
\caption{Posterior contours for $c$, $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$ in the $U$ band.
The contours shown here and in future plots represent 1-$\sigma$ in the parameter distribution (i.e.\ they should be
projected onto the corresponding 1-d parameter axis), not to 68\%, 95\%, etc.\
enclosed probability. \label{global1:fig}}
\end{figure}
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/coeff1.pdf}
\caption{Posterior contours for $c$, $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$ in the $B$ band.
\label{global2:fig}}
\end{figure}
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/coeff2.pdf}
\caption{Posterior contours for $c$, $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$ in the $V$ band.
\label{global3:fig}}
\end{figure}
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/coeff3.pdf}
\caption{Posterior contours for $c$, $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$ in the $R$ band.
\label{global4:fig}}
\end{figure}
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/coeff4.pdf}
\caption{Posterior contours for $c$, $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$ in the $I$ band.
\label{global5:fig}}
\end{figure}
\color{red}
The model-predicted versus observed supernova colors are shown in Figure~\ref{residual:fig}.
The points lie along a line with slope equal to one, and show no evidence of a catastrophic fit nor of extreme
outlying data.
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/residual.pdf}
\caption{\textcolor{red}{Predicted versus observed colors. Overplotted is a line with slope equal to one.}
\label{residual:fig}}
\end{figure}
\color{black}
For each of the five filters, the 68\% equal-tailed credible intervals for the global parameters $\alpha$, $\beta$, $\eta$, $\gamma^0$, $\gamma^1$, and $\sigma$
are given in Table~\ref{global:tab}.
\color{red}
As the $\gamma$ parameters are free up to a multiplicative constant and have non-zero values of $\gamma^i_V$,
their results are shown in terms of $\gamma^i_X/\gamma^i_V-1$.
\color{black}
Contours of the posterior surface for parameter pairs grouped by filter are shown in Figures~\ref{global1:fig} -- \ref{global5:fig} .
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Parameter & $X=U$ &$B$&$V$&$R$&$I$\\ \hline
$\alpha_X$
&
$0.0043^{+0.0009}_{-0.0009}$
&
$0.0016^{+0.0007}_{-0.0007}$
&
$0.0015^{+0.0006}_{-0.0006}$
&
$0.0015^{+0.0005}_{-0.0005}$
&
$0.0026^{+0.0005}_{-0.0004}$
\\
${\alpha_X/\alpha_V-1}$
&
$ 1.9^{+ 1.0}_{ -0.5}$
&
$ 0.1^{+ 0.1}_{ -0.2}$
&
\ldots
&
$ -0.0^{+ 0.1}_{ -0.1}$
&
$ 0.7^{+ 0.7}_{ -0.3}$
\\
$\beta_X$
&
$ 0.032^{+ 0.003}_{-0.003}$
&
$ 0.025^{+ 0.002}_{-0.003}$
&
$ 0.025^{+ 0.002}_{-0.002}$
&
$ 0.020^{+ 0.002}_{-0.002}$
&
$ 0.019^{+ 0.002}_{-0.002}$
\\
${\beta_X/\beta_V-1}$
&
$ 0.26^{+ 0.05}_{ -0.05}$
&
$ -0.01^{+ 0.03}_{ -0.03}$
&
\ldots
&
$ -0.19^{+ 0.01}_{ -0.01}$
&
$ -0.24^{+ 0.03}_{ -0.03}$
\\
$\eta_X$
&
$-0.0002^{+0.0012}_{-0.0011}$
&
$-0.0000^{+0.0010}_{-0.0009}$
&
$0.0005^{+0.0008}_{-0.0008}$
&
$0.0005^{+0.0007}_{-0.0007}$
&
$-0.0003^{+0.0006}_{-0.0006}$
\\
${\eta_X/\eta_V-1}$
&
$ -0.40^{+ 2.33}_{ -1.90}$
&
$ -0.34^{+ 1.60}_{ -1.20}$
&
\ldots
&
$ -0.11^{+ 0.29}_{ -0.27}$
&
$ -0.84^{+ 1.66}_{ -1.27}$
\\
${\gamma^0_X/\gamma^0_V-1}$
&
$ 0.66^{+ 0.06}_{ -0.05}$
&
$ 0.35^{+ 0.03}_{ -0.03}$
&
\ldots
&
$ -0.23^{+ 0.01}_{ -0.01}$
&
$ -0.45^{+ 0.03}_{ -0.03}$
\\
${\gamma^1_X/\gamma^1_V-1}$
&
$ -0.31^{+ 0.17}_{ -0.18}$
&
$ -0.17^{+ 0.09}_{ -0.10}$
&
\ldots
&
$ -0.07^{+ 0.05}_{ -0.04}$
&
$ -0.17^{+ 0.10}_{ -0.09}$
\\
$\sigma_X$
&
$ 0.060^{+ 0.012}_{-0.012}$
&
$ 0.033^{+ 0.007}_{-0.007}$
&
$ 0.021^{+ 0.004}_{-0.006}$
&
$ 0.012^{+ 0.007}_{-0.008}$
&
$ 0.044^{+ 0.005}_{-0.004}$
\\
\hline
\end{tabular}
\caption{68\% credible intervals for the Global Fit Parameters of the 2-Parameter Extrinsic Model in \S\ref{model:sec}.\label{global:tab}}
\end{table}
\textcolor{red}{
We find significant non-zero values for $\alpha$ and $\beta$, indicating that $EW_{Ca}$ and $EW_{Si}$ are indicators of broadband
peak magnitudes.}
This validates our hypothesis that spectral indicators
are tracers of supernova absolute magnitude. On the other hand, the values of $\eta$ (the coefficients attached to $\lambda_{Si}$) are consistent with zero
to within one standard deviation.
The effect of spectral parameters on color is shown in the rows of $\alpha_X/\alpha_V-1$, $\beta_X/\beta_V-1$, and $\eta_X/\eta_V-1$
in Table~\ref{global:tab}:
values of zero signify no color changes associated with magnitude changes.
Both $EW_{Ca}$ and $EW_{Ca}$ are associated with color changes, though not in $B-V$ specifically.
We do not detect a significant association between
$\lambda_{Si}$ and color.
The ideogram for the grey offsets, $\Delta$, for all supernovae is shown in Figure~\ref{hist:fig}. The distribution is non-Gaussian,
has a standard deviation of
%-----
$0.10$
%-----
mag, and a broad tail in the positive (fainter) direction.
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/Delta_hist.pdf}
\caption{Ideogram for the grey offset $\Delta$. This and other ideograms plotted in this article are normalized to have unit area.
\label{hist:fig}}
\end{figure}
Non-trivial residual magnitude dispersions are captured in $C_c$. The diagonal elements are captured by the $\sigma$ parameters;
% Figure~\ref{sigma:fig} shows the confidence regions for $\sigma$, the square root of the diagonal elements of $C_c$.
the residual intrinsic dispersion ranges from
$\sim 0.01$ to 0.06 mag, significantly smaller
than the dispersion in $\Delta$. Given that the
off-diagonal elements of $C_c$ are parameterized by the Cholesky factors of a correlation matrix rather than the matrix elements themselves,
it is not straightforward to present correlation matrix confidences:
the average over Monte Carlo links of the
Cholesky factors will not generally yield a correlation matrix.
To characterize a typical posterior draw of $C_c$ we use the matrix that is the mean of all covariance realizations in the
chain, element by element.
For $UBVRI$ the matrix is
\begin{equation}
C_c(U,B,V,R,I)=
\begin{pmatrix}
\begin{array}{rrrrr}
0.0038 & 0.0010 & -0.0002 & -0.0000 & 0.0003 \\
0.0010 & 0.0011 & 0.0002 & -0.0000 & -0.0006 \\
-0.0002 & 0.0002 & 0.0004 & 0.0000 & -0.0002 \\
-0.0000 & -0.0000 & 0.0000 & 0.0002 & 0.0002 \\
0.0003 & -0.0006 & -0.0002 & 0.0002 & 0.0020
\end{array}
\end{pmatrix} \text{mag}^2.
\label{mag_cov:eqn}
\end{equation}
The covariance of the colors $U-V$, $B-V$, $V-R$, and $V-I$ is
expressed as the standard deviations and
correlation matrix
\begin{equation}
\sigma(U-V, B-V, V-R, V-I)=
\begin{pmatrix}
0.068 & 0.034& 0.023 & 0.053
\end{pmatrix} \text{mag}
\label{color_sd:eqn}
\end{equation}
\begin{equation}
Cor(U-V, B-V, V-R, V-I)=
\begin{pmatrix}
\begin{array}{rrrr}
1.000 & 0.615 & -0.334 & -0.296 \\
0.615 & 1.000 & -0.193 & 0.099 \\
-0.334 & -0.193 & 1.000 & 0.634 \\
-0.296 & 0.099 & 0.634 & 1.000
\end{array}
\end{pmatrix}.
\label{color_cor:eqn}
\end{equation}
\textcolor{red}{
These color variances are smaller than those derived by \citet{2003A&A...404..901N, 2007ApJ...659..122J}, for cases where direct comparison can be made.
}
% \begin{figure}[htbp] % figure placement: here, top, bottom, or page
% \centering
% \includegraphics[width=5.5in]{output11/sigma_corner.pdf}
% \caption{Posterior contours for the parameters $\sigma$, the square root of the diagonal elements of $C_c$.
% \label{sigma:fig}}
%\end{figure}
Each supernova is described by its parameters $EW_{Ca}$, $EW_{Si}$, $\lambda_{Si}$, $E_{\gamma^0}(B-V)=(\gamma^0_B-\gamma^0_V)k_0$, and
$E_{\gamma^1}(B-V)=(\gamma^1_B-\gamma^1_V)k_1$, as well as its grey offset
$\Delta$: their distributions for all Monte Carlo links for all supernovae are shown in Figure~\ref{perobject:fig}.
There is a core concentration in the parameter-space, with around ten objects that occupy its outskirts.
Many outliers appear in the red tail of $E_{\gamma^0}(B-V)$, as would be expected for the (infrequent) selection of supernovae
heavily extinguished by host-galaxy dust.
Outliers are also clearly distinguishable in $EW_{Ca}$--$\lambda_{Si}$ space.
\begin{figure}[htbp] % figure placement: here, top, bottom, or page
\centering
\includegraphics[width=5.5in]{output11/perobject_corner.pdf}
\caption{Distributions for the supernova parameters $EW_{Ca}$, $EW_{Si}$, $\lambda_{Si}$, $E_{\gamma^0}(B-V)$, and $E_{\gamma^1}(B-V)$, as well as the grey offset
$\Delta$. All Monte Carlo links are plotted, so that each supernova contributes a cloud of points.
\label{perobject:fig}}
\end{figure}