-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask.py
33 lines (25 loc) · 1018 Bytes
/
flask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from flask import Flask,request
import pandas as pd
import numpy as np
import pickle
app=Flask(__name__) #the point we need to start the application
pickle_in = open('classifier.pkl','rb') #read-only in birany format
classifier = pickle.load(pickle_in)
@app.route('/') #route path
def welcome():
return "Welcome All"
@app.route('/predict') #default get methods
def predit_note_authentication():
variance=request.args.get('variance')
skewness=request.args.get('skewness')
curtosis=request.args.get('curtosis')
entropy=request.args.get('entropy')
prediction = classifier.predict([[variance,skewness,curtosis,entropy]])
return "The predicted value is"+ str(prediction)
@app.route('/predict_file',methods=["POST"])
def predit_note_file():
df_test = pd.read_csv(request.files.get("file"))
prediction = classifier.predict(df_test)
return "The predicted values for the csv file is"+ str(list(prediction))
if __name__ == '__main__':
app.run()