-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathofficial_evaluation.py
executable file
·203 lines (165 loc) · 6.24 KB
/
official_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
2Wiki-Multihop QA evaluation script
Adapted from HotpotQA evaluation at https://github.com/hotpotqa/hotpot
"""
import sys
import ujson as json
import re
import string
from collections import Counter
import pickle
def normalize_answer(s):
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
ZERO_METRIC = (0, 0, 0)
if normalized_prediction in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
if normalized_ground_truth in ['yes', 'no', 'noanswer'] and normalized_prediction != normalized_ground_truth:
return ZERO_METRIC
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return ZERO_METRIC
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def update_answer(metrics, prediction, gold):
em = exact_match_score(prediction, gold)
f1, prec, recall = f1_score(prediction, gold)
metrics['em'] += float(em)
metrics['f1'] += f1
metrics['prec'] += prec
metrics['recall'] += recall
return em, prec, recall
def normalize_sp(sps):
new_sps = []
for sp in sps:
sp = list(sp)
sp[0] = sp[0].lower()
new_sps.append(sp)
return new_sps
def update_sp(metrics, prediction, gold):
cur_sp_pred = normalize_sp(set(map(tuple, prediction)))
gold_sp_pred = normalize_sp(set(map(tuple, gold)))
tp, fp, fn = 0, 0, 0
for e in cur_sp_pred:
if e in gold_sp_pred:
tp += 1
else:
fp += 1
for e in gold_sp_pred:
if e not in cur_sp_pred:
fn += 1
prec = 1.0 * tp / (tp + fp) if tp + fp > 0 else 0.0
recall = 1.0 * tp / (tp + fn) if tp + fn > 0 else 0.0
f1 = 2 * prec * recall / (prec + recall) if prec + recall > 0 else 0.0
em = 1.0 if fp + fn == 0 else 0.0
metrics['sp_em'] += em
metrics['sp_f1'] += f1
metrics['sp_prec'] += prec
metrics['sp_recall'] += recall
return em, prec, recall
def normalize_evi(evidences):
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
for idx_1 in range(len(evidences)):
for idx_2 in range(len(evidences[idx_1])):
evidences[idx_1][idx_2] = white_space_fix((remove_punc(lower(evidences[idx_1][idx_2]))))
return evidences
def update_evi(metrics, prediction, gold):
prediction_normalize = normalize_evi(prediction)
gold_normalize = normalize_evi(gold)
#
cur_evi_pred = set(map(tuple, prediction_normalize))
gold_evi_pred = set(map(tuple, gold_normalize))
#
#
tp, fp, fn = 0, 0, 0
for e in cur_evi_pred:
if e in gold_evi_pred:
tp += 1
else:
fp += 1
for e in gold_evi_pred:
if e not in cur_evi_pred:
fn += 1
prec = 1.0 * tp / (tp + fp) if tp + fp > 0 else 0.0
recall = 1.0 * tp / (tp + fn) if tp + fn > 0 else 0.0
f1 = 2 * prec * recall / (prec + recall) if prec + recall > 0 else 0.0
em = 1.0 if fp + fn == 0 else 0.0
metrics['evi_em'] += em
metrics['evi_f1'] += f1
metrics['evi_prec'] += prec
metrics['evi_recall'] += recall
return em, prec, recall
def eval(prediction_file, gold_file):
with open(prediction_file) as f:
prediction = json.load(f)
with open(gold_file) as f:
gold = json.load(f)
metrics = {'em': 0, 'f1': 0, 'prec': 0, 'recall': 0,
'sp_em': 0, 'sp_f1': 0, 'sp_prec': 0, 'sp_recall': 0,
'evi_em': 0, 'evi_f1': 0, 'evi_prec': 0, 'evi_recall': 0,
'joint_em': 0, 'joint_f1': 0, 'joint_prec': 0, 'joint_recall': 0}
for dp in gold:
cur_id = dp['_id']
can_eval_joint = True
if cur_id not in prediction['answer']:
print('missing answer {}'.format(cur_id))
can_eval_joint = False
else:
em, prec, recall = update_answer(
metrics, prediction['answer'][cur_id], dp['answer'])
if cur_id not in prediction['sp']:
print('missing sp fact {}'.format(cur_id))
can_eval_joint = False
else:
sp_em, sp_prec, sp_recall = update_sp(
metrics, prediction['sp'][cur_id], dp['supporting_facts'])
#
if cur_id not in prediction['evidence']:
print('missing evidence {}'.format(cur_id))
can_eval_joint = False
else:
evi_em, evi_prec, evi_recall = update_evi(
metrics, prediction['evidence'][cur_id], dp['evidences'])
if can_eval_joint:
joint_prec = prec * sp_prec * evi_prec
joint_recall = recall * sp_recall * evi_recall
#
if joint_prec + joint_recall > 0:
joint_f1 = 2 * joint_prec * joint_recall / (joint_prec + joint_recall)
else:
joint_f1 = 0.
joint_em = em * sp_em * evi_em
metrics['joint_em'] += joint_em
metrics['joint_f1'] += joint_f1
metrics['joint_prec'] += joint_prec
metrics['joint_recall'] += joint_recall
N = len(gold)
for k in metrics.keys():
metrics[k] = round(metrics[k]/N*100, 2)
print(json.dumps(metrics, indent=4))
if __name__ == '__main__':
eval(sys.argv[1], sys.argv[2])