-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
74 lines (60 loc) · 1.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from transformers import AutoTokenizer
from data import Data
from model import Model
def train():
# For reproducibility
pl.seed_everything(seed=42, workers=True)
folder_name = "data"
# Configs
configs = {
"pretrained_model_dir": "./bigbird-roberta-base",
"label_encoders_file": "{}/label_encoders.json".format(folder_name),
"data": {
"train": {
"data_file": "{}/train.pkl".format(folder_name),
"batch_size": 4, #
"shuffle": True,
"num_workers": 20,
"use_gold_data": True,
"negative_sampling_rate": 1.0,
},
},
"optimizer": {"lr": 3e-5, "weight_decay": 0.01, "eps": 1e-08},
"scheduler": {
"name": "linear",
"num_training_steps": -1,
"num_warmup_steps": 0.1,
},
# 1 GPU
"trainer": {
"gpus": [0],
"accumulate_grad_batches": 8,
"max_epochs": 20,
"precision": 16,
"deterministic": True,
},
}
# Model
model = Model(configs)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model.hparams.configs["pretrained_model_dir"]
)
# Data
train_data = Data(
config=model.model.config,
tokenizer=tokenizer,
label_encoders=model.label_encoders,
**model.hparams.configs["data"]["train"]
)
train_dataloader = train_data.get_dataloader()
# Training
trainer = pl.Trainer(
callbacks=[ModelCheckpoint(dirpath="checkpoints/3task/", save_top_k=-1)], **model.hparams.configs["trainer"]
)
trainer.fit(model, train_dataloader=train_dataloader)
if __name__ == "__main__":
train()