-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
155 lines (131 loc) · 4.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import time
import json
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import logging
from tqdm import tqdm
from model import BiLSTM
from util import prepare_sequence
from dataset import load_train_data
TRAIN_TAG_PATH = 'tags/train_pacifier.json'
TEST_TAG_PATH = 'tags/test_pacifier.json'
TRAIN_CORPUS_PATH = 'txt_data/train_pacifier.txt'
TEST_CORPUS_PATH = 'txt_data/test_pacifier.txt'
MODEL_NAME = 'train_pacifier_5epoch.pth'
BEST_NAME = 'best_train_pacifier.pth'
EMBEDDING_DIM= 128
HIDDEN_DIM = 128
TRAIN_EPOCH = 5
with open('word_to_ix/train_pacifier_word_to_ix.json', 'r') as j:
WORD_TO_IX = json.load(j)
def train():
logging.basicConfig(level=logging.INFO, filename='log.txt', format='%(message)s')
tag_path = TRAIN_TAG_PATH
corpus_path = TRAIN_CORPUS_PATH
save_model_name = MODEL_NAME
best_model_name = BEST_NAME
load_model_path = None
embedding_dim = EMBEDDING_DIM
hidden_dim = HIDDEN_DIM
train_epoch = TRAIN_EPOCH
word_to_ix = WORD_TO_IX
start_epoch = 0
best_score = 0.
loss_info, train_avg_info, test_avg_info = [], [], []
sentences, tags = load_train_data(tag_path, corpus_path)
tag_to_ix = {'1': 0, '2': 1, '3': 2, '4': 3, '5': 4}
label = torch.tensor([[tag_to_ix[tag]] for tag in tags])
model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim, dropout=0.3)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
if load_model_path is not None:
checkpoints = torch.load(load_model_path)
model.load_state_dict(checkpoints['model_state_dict'])
optimizer.load_state_dict(checkpoints['optim_state_dict'])
start_epoch = checkpoints['epoch']
start_time = time.time()
logging.info('----------------------')
for epoch in range(start_epoch, train_epoch):
running_loss = 0.0
for i, sen in enumerate(tqdm(sentences)):
optimizer.zero_grad()
input = prepare_sequence(sen, word_to_ix)
output = model(input)
loss = criterion(output, label[i])
running_loss += loss.item()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 15)
optimizer.step()
torch.save({
'model_state_dict': model.state_dict(),
'optim_state_dict': optimizer.state_dict(),
'epoch': epoch + 1
}, save_model_name)
train_avg = eval(TRAIN_TAG_PATH, TRAIN_CORPUS_PATH)
test_avg = eval(TEST_TAG_PATH, TEST_CORPUS_PATH)
loss_info.append(running_loss)
train_avg_info.append(train_avg)
test_avg_info.append(test_avg)
logging.info('********')
logging.info('epoch: {}'.format(epoch+1))
logging.info('loss: {}'.format(running_loss))
logging.info('train avg: {}'.format(train_avg))
logging.info('test avg: {}'.format(test_avg))
if test_avg > best_score:
torch.save({
'model_state_dict': model.state_dict(),
}, best_model_name)
best_score = test_avg
print('save best')
print('training time:', time.time() - start_time)
def eval(tag_path, corpus_path):
correct = 0
total = 0
acc_list = []
model_name = MODEL_NAME
embedding_dim = EMBEDDING_DIM
hidden_dim = HIDDEN_DIM
word_to_ix = WORD_TO_IX
model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim)
checkpoint = torch.load(model_name)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
tag_to_ix = {'1': 0, '2': 1, '3': 2, '4': 3, '5': 4}
sentences, tags = load_train_data(tag_path, corpus_path)
labels = torch.tensor([[tag_to_ix[tag]] for tag in tags[:]])
with torch.no_grad():
for i, sen in enumerate(tqdm(sentences[:])):
input = prepare_sequence(sen, word_to_ix)
output = model(input)
_, predicted = torch.max(output.data, 1)
label = labels[i]
total += label.size(0)
correct += (predicted == label).sum().item()
acc = round(100 * correct / total, 2)
acc_list.append(acc)
assert len(acc_list) == len(sentences)
final_acc = acc
plt.plot(list(range(len(tags))), acc_list)
plt.xlabel('pred_num')
plt.ylabel('accuracy / %')
plt.show()
return final_acc
def predict(sentence):
sentence = sentence.split()
model_name = BEST_NAME
embedding_dim = EMBEDDING_DIM
hidden_dim = HIDDEN_DIM
word_to_ix = WORD_TO_IX
model = BiLSTM(len(word_to_ix), 5, embedding_dim, hidden_dim)
checkpoint = torch.load(model_name)
model.load_state_dict(checkpoint['model_state_dict'])
input = prepare_sequence(sentence, word_to_ix)
with torch.no_grad():
output = model(input)
print(output)
_, predicted = torch.max(output.data, 1)
print(predicted)
if __name__ == '__main__':
train()