-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (109 loc) · 4.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import sys
import paddle
import argparse
from PIL import Image
from models import AutoEncoder
from datas import ImageDataset
from paddle.vision import transforms
from paddle.optimizer import Adam
from paddle.io import DataLoader
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), '..'))
from paddle_msssim import ssim, ms_ssim, SSIM, MS_SSIM
class MS_SSIM_Loss(MS_SSIM):
def forward(self, img1, img2):
return 100*(1 - super(MS_SSIM_Loss, self).forward(img1, img2))
class SSIM_Loss(SSIM):
def forward(self, img1, img2):
return 100*(1 - super(SSIM_Loss, self).forward(img1, img2))
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt", default=None, type=str,
help="path to trained model. Leave it None if you want to retrain your model")
parser.add_argument("--loss_type", type=str,
default='ssim', choices=['ssim', 'ms_ssim'])
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--log_interval", type=int, default=10)
parser.add_argument("--total_epochs", type=int, default=50)
return parser
def main():
if not os.path.exists('results'):
os.mkdir('results')
opts = get_argparser().parse_args()
# dataset
train_trainsform = transforms.Compose([
transforms.RandomCrop(size=512, pad_if_needed=True),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
])
val_transform = transforms.Compose([
transforms.CenterCrop(size=512),
transforms.ToTensor()
])
train_loader = DataLoader(
ImageDataset(root='datasets/CLIC/train', transform=train_trainsform),
batch_size=opts.batch_size, shuffle=True, num_workers=0, drop_last=True)
val_loader = DataLoader(
ImageDataset(root='datasets/CLIC/valid', transform=val_transform),
batch_size=1, shuffle=False, num_workers=0)
print("Train set: %d, Val set: %d" %
(len(train_loader.dataset), len(val_loader.dataset)))
model = AutoEncoder(C=128, M=128, in_chan=3, out_chan=3)
# optimizer
optimizer = Adam(parameters=model.parameters(),
learning_rate=1e-4,
weight_decay=1e-5)
# checkpoint
best_score = 0.0
cur_epoch = 0
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
model.set_dict(paddle.load(opts.ckpt))
else:
print("[!] Retrain")
if opts.loss_type == 'ssim':
criterion = SSIM_Loss(data_range=1.0, size_average=True, channel=3)
else:
criterion = MS_SSIM_Loss(data_range=1.0, size_average=True, channel=3)
#========== Train Loop ==========#
for cur_epoch in range(opts.total_epochs):
# ===== Train =====
model.train()
for cur_step, (images, ) in enumerate(train_loader):
optimizer.clear_grad()
outputs = model(images)
loss = criterion(outputs, images)
loss.backward()
optimizer.step()
if (cur_step) % opts.log_interval == 0:
print("Epoch %d, Batch %d/%d, loss=%.6f" %
(cur_epoch, cur_step, len(train_loader), loss.item()))
# ===== Save Latest Model =====
paddle.save(model.state_dict(), 'latest_model.pdparams')
# ===== Validation =====
print("Val...")
best_score = 0.0
cur_score = test(opts, model, val_loader, cur_epoch)
print("%s = %.6f" % (opts.loss_type, cur_score))
# ===== Save Best Model =====
if cur_score > best_score: # save best model
best_score = cur_score
paddle.save(model.state_dict(), 'best_model.pdparams')
print("Best model saved as best_model.pt")
def test(opts, model, val_loader, epoch):
save_dir = os.path.join('results', 'epoch_%d' % epoch)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
model.eval()
cur_score = 0.0
metric = ssim if opts.loss_type == 'ssim' else ms_ssim
with paddle.no_grad():
for i, (images, ) in enumerate(val_loader):
outputs = model(images)
# save the first reconstructed image
cur_score += metric(outputs, images, data_range=1.0)
Image.fromarray((outputs*255).squeeze(0).detach().numpy().astype('uint8').transpose(1, 2, 0)).save(os.path.join(save_dir, 'recons_%s_%d.png' % (opts.loss_type, i)))
cur_score /= len(val_loader.dataset)
return cur_score
if __name__ == '__main__':
main()