forked from JayMan91/NeurIPSIntopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgd_learner.py
608 lines (546 loc) · 23.9 KB
/
sgd_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import math
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import preprocessing
import torch
from torch import nn, optim
from torch.autograd import Variable
from KnapsackSolving import *
from operator import itemgetter
import itertools
from multiprocessing.pool import ThreadPool
from sklearn.metrics import confusion_matrix
from collections import defaultdict
import sys
from sklearn.metrics import mean_squared_error as mse
from EnergyCost.ICON import *
import logging
import traceback
class LinearRegression(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.linear = nn.Linear(dim_in, dim_out) # input and output is 1 dimension
def forward(self, x):
out = self.linear(x)
return out
class GridRegression(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.linear = nn.Linear(dim_in, dim_out) # input and output is 1 dimension
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(( self.linear(x)))
return out
class LogitRegression(nn.Module):
def __init__(self, dim_in, num_classes):
super().__init__()
self.linear = nn.Linear(dim_in, num_classes) # input and output is 1 dimension
self.softmax = nn.Softmax()
def forward(self, x):
out1 = self.linear(x)
out2 = self.softmax(out1)
return out2
def take_outY(self,x):
self.train(False)
return self.linear(x)
def shortest_path(V_pred,height=3,width=3):
import networkx as nx
V_pred = np.where(V_pred<0,0,V_pred)
def create_graph(height,width):
#G = nx.Graph()
G= nx.DiGraph()
G.add_nodes_from([str(i)+","+str(j) for i in range(height+1) for j in range(width+1) ])
return G
def add_weight(G,L,height,width):
# G is the directed graph L is the the list of weights
t = 0
d = {}
for i in range(height+1):
for j in range(width+1):
if i< width:
#G.add_weighted_edges_from([( str(i)+","+str(j),str(i+1)+","+str(j) ,L[t])])
G.add_edge(str(i)+","+str(j),str(i+1)+","+str(j), weight=L[t] )
d[str(i)+","+str(j),str(i+1)+","+str(j)]= t
#d[str(i+1)+","+str(j),str(i)+","+str(j)]= t
t+=1
if j< height:
#G.add_weighted_edges_from([( str(i)+","+str(j),str(i)+","+str(j+1) ,L[t])])
G.add_edge(str(i)+","+str(j),str(i)+","+str(j+1), weight=L[t] )
d[str(i)+","+str(j),str(i)+","+str(j+1)]= t
#d[str(i)+","+str(j+1), str(i)+","+str(j)]= t
t+=1
return G,d
def path_distance(G,path):
labels = nx.get_edge_attributes(G,'weight')
dist= 0
for l in range(len(path)-1):
dist+= labels[(path[l],path[l+1])]
return dist
H = create_graph(height,width)
H, dt = add_weight(H,V_pred,height,width)
sp = nx.bellman_ford_path(H,"0,0",str(height)+","+str(width) )
#sp = nx.dijkstra_path (H,"0,0",str(height)+","+str(width) )
ret = np.zeros(V_pred.shape[0])
for i in range(len(sp)-1):
ret[dt[sp[i],sp[i+1]]] =1
return ret
def get_kn_indicators(V_pred, c, weights=None,use_dp= True,relaxation=False,warmstart=None):
if weights is None:
weights = np.ones(V_pred.shape[0])
if use_dp:
if relaxation:
solution = solveKnapsackProblemRelaxation(V_pred,weights,c,warmstart=warmstart)
else:
solution = solveKnapsackProblem(V_pred,weights,c,warmstart=warmstart)
return np.asarray(solution['assignments']),solution['runtime']
ret = np.zeros(V_pred.shape[0])
# order by profitability
V_val = V_pred/weights
for val in sorted(set(V_val), reverse=True):
same_val = (V_val == val)
tot_weight = sum(weights[same_val])
if c>= tot_weight:
# all in
ret[same_val] = 1
c = c - tot_weight
elif c > 0:
# equal divide
fraction = c/tot_weight
ret[same_val] = fraction
c = 0
break
else:
break
"""
elif c>0:
eligible_weights = ((weights<=c) & (V_val == val))
tot_weight = sum(weights[eligible_weights])
ret[eligible_weights] = weights[eligible_weights]/tot_weight
c=0
break
"""
'''
for w in sorted(set(weights[same_val]),reverse=True):
if c >= w:
same_weights = ((weights==w) & (V_val == val))
#print(same_weights)
n = min(len(same_weights[same_weights==True]),int(c/w))
c -= n*w
fraction = n/len(same_weights[same_weights==True])
ret[same_weights] = fraction
if c<=0:
break
'''
# penalize negative values, will never be in full solution
ret[V_pred <= 0] = 0
return ret
def get_data(trch,kn_nr,n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items
return trch[kn_start:kn_stop]
def get_data_ICON(trch,kn_nr,n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items+1
return trch[kn_start:kn_stop]
def get_profits(trch_y, kn_nr, n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items
return trch_y[kn_start:kn_stop].data.numpy().T[0]
def get_profits_pred(model, trch_X, kn_nr, n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items
model.eval()
with torch.no_grad():
V_pred = model(Variable(trch_X[kn_start:kn_stop]))
model.train()
return V_pred.data.numpy().T[0]
def get_profits_ICON(trch_y, kn_nr, n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items+1
return trch_y[kn_start:kn_stop].data.numpy().T[0]
def get_profits_pred_ICON(model, trch_X, kn_nr, n_items):
kn_start = kn_nr*n_items
kn_stop = kn_start+n_items+1
model.eval()
with torch.no_grad():
V_pred = model(Variable(trch_X[kn_start:kn_stop]))
model.train()
return V_pred.data.numpy().T[0]
def train_fwdbwd_grad(model, optimizer, sub_X_train, sub_y_train, grad):
inputs = Variable(sub_X_train, requires_grad=True)
target = Variable(sub_y_train)
out = model(inputs)
grad = grad*torch.ones(1)
optimizer.zero_grad()
# backward
# hardcode the gradient, let the automatic chain rule backwarding do the rest
loss = out
loss.backward(gradient=grad)
optimizer.step()
def train_fwdbwd(model, criterion, optimizer, sub_X_train, sub_y_train, mult):
inputs = Variable(sub_X_train)
target = Variable(sub_y_train)
out = model(inputs)
# weighted loss...
loss = torch.tensor(mult)*criterion(out, target)
# backward
optimizer.zero_grad()
loss.backward()
#print("loss",loss)
optimizer.step()
def train_fwdbwd_oneitem(model, criterion, optimizer, trch_X_train, trch_y_train, pos, mult):
train_fwdbwd(model, criterion, optimizer, trch_X_train[pos], trch_y_train[pos], mult)
def test_fwd(model, criterion, trch_X, trch_y, n_items, capacity, knaps_sol,weights=None,relaxation=False):
info = dict()
model.eval()
with torch.no_grad():
# compute loss on whole dataset
inputs = Variable(trch_X)
target = Variable(trch_y)
V_preds = model(inputs)
info['loss'] = criterion(V_preds, target).item()
model.train()
n_knap = len(V_preds)//n_items
regret_smooth = np.zeros(n_knap)
regret_full = np.zeros(n_knap)
cf_list =[]
time =0
# I should probably just slice the trch_y and preds arrays and feed it like that...
for kn_nr in range(n_knap):
V_true = get_profits(trch_y, kn_nr, n_items)
V_pred = get_profits(V_preds, kn_nr, n_items)
assignments_pred,t = get_kn_indicators(V_pred, c=capacity, weights=weights,relaxation=relaxation)
assignments_true = knaps_sol[kn_nr][0]
regret_full[kn_nr] = np.sum(V_true * (assignments_true - assignments_pred ) )
if not relaxation:
cf = confusion_matrix(assignments_true, assignments_pred,labels=[0,1])
cf_list.append(cf)
#sol_true = get_kn_indicators(V_true, capacity, weights=weights)
#sol_pred = get_kn_indicators(V_pred, capacity, weights=weights)
#regret_smooth[kn_nr] = sum(V_true*(sol_true - sol_pred))
#regret_full[kn_nr],cf = regret_knapsack([V_true], [V_pred], weights, capacity,assignments=, relaxation=relaxation)
time+=t
info['nonzero_regrsm'] = sum(regret_smooth != 0)
info['nonzero_regrfl'] = sum(regret_full != 0)
#info['regret_smooth'] = np.average(regret_smooth)
info['regret_full'] = np.median(regret_full)
#info['confusion_matrix'] = np.sum(np.stack(cf_list),axis=0).ravel()
if not relaxation:
tn, fp, fn, tp = np.sum(np.stack(cf_list),axis=0).ravel()
info['tn'],info['fp'],info['fn'],info['tp'] =(tn,fp,fn,tp)
info['accuracy'] = (tn+tp)/(tn+tp+fn+fp)
else:
info['accuracy'] = None
info['runtime'] =time
return info
def diffprof(V_pred, index, newvalue, V_true, c, weights=None,use_dp= True):
sol = get_kn_indicators(V_pred, c, weights,use_dp)
"""# shortcut for 'remains in' and 'remains out'
if len(V_pred[sol > 0]) != 0:
if weights is None:
weights = np.ones(V_pred.shape[0])
V_val = V_pred/weights
minval = min(V_val[sol > 0])
oldvalue = V_val[index]
print("Min",minval,"Old",oldvalue)
if oldvalue > minval and newvalue > minval:
# remains in, no change in 'sol'
return 0
elif oldvalue < minval and newvalue < minval:
# remains out, no change in 'sol'
return 0
"""
Vnew = np.array(V_pred)
Vnew[index] = newvalue
sol_new = get_kn_indicators(Vnew, c, weights,use_dp)
return sum(V_true*(sol - sol_new)) # difference in obj
def diffprof_grid(V_pred, index, newvalue, V_true, height,width):
sol = shortest_path(V_pred,height,width)
Vnew = np.array(V_pred)
Vnew[index] = newvalue
sol_new = shortest_path(Vnew, height,width)
return sum(V_true*(sol - sol_new)) # difference in obj
def knapsack_value(V,sol,**kw):
return sum(V*sol)
# ### grid_searh with threading
# class grid_search:
# def __init__(self,clf,fixed_parameter,variable_parameter,by,max_epochs=10,n_iter= 10):
# self.clf= clf
# self.fixed_parameter = fixed_parameter
# self.variable_parameter = variable_parameter
# self.by = by
# self.n_iter = n_iter
# self.max_epochs= max_epochs
# def fit(self,X_train,y_train,X_val,y_val):
# self.X_train = X_train
# self.y_train = y_train
# by = self.by
# def iterate_values(S):
# keys, values = zip(*S.items())
# L =[]
# for row in itertools.product(*values):
# L.append( dict(zip(keys, row)))
# return L
# def fit_func(kwargs):
# foo = self.clf(**kwargs)
# df = pd.DataFrame()
# for i in range(self.n_iter):
# scr = foo.fit(X_train,y_train,X_val,y_val)
# df = pd.concat([df,scr])
# df = df.groupby(['Epoch'],as_index=False).mean()
# return df[by].min(),df['Epoch'][ df[by].idxmin()]
# fixed ={}
# for k,v in self.fixed_parameter.items():
# fixed[k] =[v]
# var = self.variable_parameter
# z = {**fixed, **var}
# z['epochs']= [self.max_epochs]
# combinations= iterate_values(z)
# pool = ThreadPool(len(combinations))
# results = pool.map(fit_func, combinations)
# pool.close()
# pool.join()
# mean_scr = [i[0] for i in results]
# epochs = [i[1] for i in results]
# index= min(enumerate(mean_scr), key=itemgetter(1))[0]
# params= combinations[ index ]
# params['epochs'] = epochs[index]
# params['early_stopping'] = False
# self.fit_result = {"params": combinations,"score":results,"optimal_parameter":params}
# return dict((k, params[k]) for k in var.keys() )
# def test_score(self,X_test,y_test):
# X_train = self.X_train
# y_train = self.y_train
# def scr_func(kwargs):
# foo = self.clf(**kwargs)
# foo.fit(X_train,y_train)
# train_scr = foo.test_score(X_train,y_train)
# test_scr = foo.test_score(X_test,y_test)
# return [train_scr['regret'],train_scr['loss'],test_scr['regret'],test_scr['loss']]
# params = self.fit_result['optimal_parameter']
# print("Optimum parameter:",params)
# combinations = [params for i in range(self.n_iter)]
# pool = ThreadPool(self.n_iter)
# results = pool.map(scr_func, combinations)
# mean_rslt =np.mean(np.array(results),axis=0)
# return {'train_regret':mean_rslt[0],'train_loss':mean_rslt[1],
# 'test_regret':mean_rslt[2],'test_loss':mean_rslt[3]}
def iterate_values(param_combinations,n_settings=None,seed=None,full =False):
if full:
for k, v in param_combinations.items():
if hasattr(v, "rvs"):
raise "Full factorial does not support distribution"
if not isinstance(v, list):
param_combinations[k] = [v]
keys, values = zip(*param_combinations.items())
L =[]
for row in itertools.product(*values):
L.append( dict(zip(keys, row)))
return L
else:
assert n_settings is not None
params = dict()
for k, v in param_combinations.items():
if hasattr(v, "rvs"):
params[k] = v.rvs(size= n_settings,random_state= seed)
else:
np.random.seed(seed)
if not isinstance(v, list):
v = [v]
params[k] = np.random.choice(v,n_settings)
return [dict(zip(params,t)) for t in zip(*params.values())]
def grid_concat(param_combinations,n_settings = None,seed=None,full = False):
if isinstance(param_combinations, dict):
return iterate_values(param_combinations,n_settings, full = full )
elif isinstance (param_combinations,list):
pa_list = [iterate_values(i,n_settings , full = full) for i in param_combinations]
return [j for i in pa_list for j in i]
else:
raise "Provide data as dictionary or a list of dictionaries"
class grid_search:
def __init__(self,clf,fixed_parameters,variable_parameters,outputfilename,
arguments = None,n_iter= 1,n_settings=None,seed=None,full=False):
self.clf= clf
self.fixed_parameters = fixed_parameters
self.variable_parameters = variable_parameters
self.outputfilename = outputfilename
self.n_settings = n_settings
self.arguments = arguments
self.n_iter = n_iter
self.seed = seed
self.full = full
def fit(self,*args,**kwr):
# if all parameters are prvided in a list it will do grid search
# if atleast one parameter is prvided as distribution it will do random search
# in that case from each list randomly select n_setting items without replacement
variable_param_combinations = grid_concat(self.variable_parameters,
self.n_settings,self.seed,self.full)
if self.arguments is not None:
arguments = iterate_values({**self.arguments})
param_combinations = [{**self.fixed_parameters,**q,**p} for p in variable_param_combinations for q in arguments]
else:
param_combinations = [{**self.fixed_parameters,**p} for p in variable_param_combinations]
#logging.info("param comb %s"%param_combinations)
var_keys = [*variable_param_combinations[0]]
if self.arguments is not None:
var_keys = var_keys + [*self.arguments]
for cnt in range(self.n_iter):
for param in param_combinations:
clf = self.clf(**param)
try:
pdf = clf.fit(*args,**kwr)
for k,v in param.items():
if k in var_keys:
pdf[k] = [v for x in range(pdf.shape[0])]
if os.path.exists(self.outputfilename):
df = pd.read_hdf(self.outputfilename,'df')
df = pd.concat([df,pdf],sort=False)
df.to_hdf(self.outputfilename,key='df')
del df
else:
pdf.to_hdf(self.outputfilename,key='df')
del pdf
except Exception as error:
logging.info("********")
#logging.info("failed with the hyperparameter %s"%param)
logging.info(traceback.format_exc())
logging.info("********")
print(traceback.format_exc())
# print(error)
pass
def find_best_params(table,variable_parameters,arguments=None, loss_column='validation_regret',
filter_values= None,epoch_name= 'subepoch',validate_learning= False):
# filtering of hyperparameter is possible
# provide the filtering as a dictionary
# {'lr':(1e-4,1e-1)} min 1e-4 max 1e-1
# or {'lr':[1e-1,1e-2,1e-3]} lr only among the values in the list
# arguments if we want the optimimum hyperparameter for each arguments
def valid_group(df):
x = df[loss_column] #returns a numpy array
df= df.assign(scaled=preprocessing.scale(x))
sub_df = df.groupby(pd.cut(df[epoch_name],
np.linspace(min(df[epoch_name]), max(df[epoch_name]),
num=6) )).agg({'scaled':['std','mean']})
mean_series = sub_df[('scaled', 'mean')].values
std_series = sub_df[('scaled', 'std')].values
cond1 = (mean_series[0] - mean_series[4]) > 0.2
cond2 = np.sum(np.diff(mean_series[:-1]) <0) > 1
cond3 = np.mean(std_series[0:2]) > np.mean(std_series[2:])
return cond1 or cond2 or cond3
if filter_values is not None:
if not isinstance(filter_values,dict):
raise ValueError('Provide a dictionary format for filtering')
for k,v in filter_values.items():
if isinstance(v, list):
table = table[table[k].isin(v)]
elif isinstance(v, tuple):
table = table[table[k].between(v[0],v[1])]
else:
raise ValueError('Value filtering only by list or tuple')
param_list= variable_parameters
epochparam_list = param_list + [epoch_name]
if arguments is not None:
epochparam_list = epochparam_list + arguments
sum_table = table.groupby(epochparam_list,as_index=False).agg(
{loss_column:['std','mean']})
sum_table.columns= ['_'.join(tup).rstrip('_') for tup in sum_table.columns.values]
if validate_learning:
valid_table = table.groupby(param_list,
as_index=False).apply(valid_group).to_frame().reset_index()
valid_table.columns= [*valid_table.columns[:-1], 'valid_group']
valid_table = valid_table[valid_table['valid_group']==True]
sum_table = sum_table.merge(valid_table,on= param_list)
loss_mean = loss_column+'_mean'
loss_std = loss_column+'_std'
#sum_table['loss_id'] = np.log(sum_table[loss_mean])+ np.log(sum_table[loss_mean])
if arguments is not None:
return sum_table.iloc[sum_table.groupby(arguments).apply(lambda f:
f[loss_mean].idxmin())].reset_index().groupby(arguments).apply(lambda g: g.to_dict('records')).to_dict()
return sum_table.iloc[ sum_table[loss_mean].idxmin()].squeeze().to_dict()
# def ICON_solution(y_pred,y_test,relax,presolve= False,reset=True,n_items=288,solver= Gurobi_ICON,method=-1,**param):
# clf = solver(relax=relax,method=method,reset=reset,presolve=presolve, **param)
# clf.make_model()
# sol_hist = []
# n_knap = len(y_pred)//n_items
# result = []
# for kn_nr in range(n_knap):
# kn_start = kn_nr*n_items
# kn_stop = kn_start+n_items
# V = y_pred[kn_start:kn_stop]
# V_test = y_test[kn_start:kn_stop]
# logging.info("Oracle called")
# sol,_ = clf.solve_model(V)
# logging.info("Oracle returned")
# sol_hist.append(sol)
# if len(sol_hist)>50:
# _= sol_hist.pop(0)
# opt = knapsack_value(V_test,sol)
# result.append({"instance":kn_nr,"optimal_value":opt})
# dd = defaultdict(list)
# for d in result:
# for key, value in d.items():
# dd[key].append(value)
# return dd
def validation_knapsack(n_items,capacity,weights,start_time,epoch=None, subepoch=None,
model_time = None,model=None,
y_target_train=None,y_pred_train = None,
y_target_validation=None,y_pred_validation=None,
y_target_test=None,y_pred_test=None,
relaxation=False,**kwargs):
def test(y_target,y_pred,relaxation= relaxation,**kwargs):
# y_target and y_pred numpy one dimensional array
#model.eval()
#X_tensor= torch.tensor(X,dtype=torch.float)
# y_pred = model(X,**kwargs)
#model.train()
assert len(y_target) == len(y_pred)
n_knapsacks = len(y_pred)//n_items
regret_list= []
cf_list = []
relaxed_regret_list = []
for i in range(n_knapsacks):
n_start = n_items*i
n_stop = n_start + n_items
try:
regret, cf= regret_knapsack([y_target[n_start:n_stop]],[y_pred[n_start:n_stop]],
weights=weights,cap=[capacity],relaxation = relaxation)
except:
logging.info("infinite/ nan in prediction Gurobi failed %s"%y_pred[n_start:n_stop])
raise
regret_list.append(regret)
cf_list.append(cf)
if not relaxation:
tn, fp, fn, tp = np.sum(np.stack(cf_list),axis=0).ravel()
accuracy = (tn+tp)/(tn+fp+fn+tp)
else:
accuracy = None
return np.median(regret_list), mse(y_target,y_pred), accuracy#,np.median(relaxed_regret_list)
dict_validation = {}
if (y_pred_train is not None) and (y_target_train is not None):
#print("train",y_pred_train.shape,y_target_train.shape)
train_result = test(y_target_train,y_pred_train, relaxation = relaxation)
dict_validation['training_regret'] = train_result[0]
dict_validation['training_mse'] = train_result[1]
dict_validation['training_accuracy'] = train_result[2]
if (y_pred_validation is not None) and (y_target_validation is not None):
#print("validation",y_pred_validation.shape,y_target_validation.shape)
validation_result = test(y_target_validation,y_pred_validation,
relaxation = relaxation)
dict_validation['validation_regret'] = validation_result[0]
dict_validation['validation_mse'] = validation_result[1]
dict_validation['validation_accuracy'] = validation_result[2]
if (y_pred_test is not None) and (y_target_test is not None):
#print("test ",y_pred_test.shape,y_target_test.shape)
test_result = test(y_target_test,y_pred_test, relaxation = relaxation)
dict_validation['test_regret'] = test_result[0]
dict_validation['test_mse'] = test_result[1]
dict_validation['test_accuracy'] = test_result[2]
if subepoch is not None:
dict_validation['subepoch'] = subepoch
if epoch is not None:
dict_validation['epoch'] = epoch
dict_validation['Runtime'] = model_time
dict_validation['time'] = time.time() - start_time
return dict_validation