From ae372c9e1b2aec390256add7086c9db04152e8af Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 09:29:44 +0100 Subject: [PATCH 01/12] updated readme and setup.cfg - s2spy package was missing --- README.md | 6 +- setup.cfg | 1 + workflow/pred_temperature_LSTM.ipynb | 2772 ++++++++++--------- workflow/pred_temperature_autoencoder.ipynb | 130 +- workflow/pred_temperature_ridge.ipynb | 30 +- 5 files changed, 1463 insertions(+), 1476 deletions(-) diff --git a/README.md b/README.md index 0a5d57f..8531787 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,11 @@ Similarly, you can adapt this recipe to your deep learning workflow with a few c The tutorial notebooks include a case study in which we attempt to predict surface temperature over US using the SST over Pacific. We use processed ERA5 fields to perform data-driven forecasts. More details about the data can be found in this [README.md](./data/README.md). -Before playing with these notebooks, please make sure that you have all the dependent packages installed. You can simply install the dependencies by go to this repo and run the following command: +Before playing with these notebooks, please make sure that you have all the dependent packages installed. For example, create a new environment with Python >3.8 and <3.11. +```sh +conda create -n s2scookbook python=3.10 +``` +You can simply install the dependencies by go to this repo and run the following command: ```sh pip install . ``` diff --git a/setup.cfg b/setup.cfg index 7740343..b401ea0 100644 --- a/setup.cfg +++ b/setup.cfg @@ -19,6 +19,7 @@ install_requires = tqdm wandb xarray + s2spy [options.packages.find] include = src, src.* \ No newline at end of file diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index bde2531..5699b77 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -167,7 +167,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3dd1gUV9sG8HsWlqWDIoIFIyoWrKjYYrAkltijURM1xmjsyms0ryXmtStBI9HYW4TYW4zGJJZYMHYFewt2FBBFpErZ3fP9wcfEFVQWFnaB+3ddXmFnZ+Y8c05md56dOedIQggBIiIiIiIiI1MYOwAiIiIiIiKAyQkREREREZkIJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEsyNHUBhodVqERERATs7O0iSZOxwiIiIqAgTQiAhIQFly5aFQsHfkqn4YHKSQxEREXBzczN2GERERFSMhIeHo3z58sYOg6jAMDnJITs7OwAZHxL29vZGjoaIiIiKsvj4eLi5ucnXH0TFBZOTHMp8lMve3p7JCRERERUIPkpOxQ0fYiQiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgksEM8ERFRHgkhkJqaarD9qVSqXHWENlQcuSnfFOrAkDEYuw1SUlLyvA+iwojJCRERUR6lpqaiZ8+eBtvftm3bYGlpabQ4clO+KdSBIWMwdhukp6fneR9EhRGTEyIiIgMJfZSQ533UL5f3eS0uPsn9hW1dZ2WeyjaFOsjL8QN5rwMAQPiZvG3v6pX3GIgKISYnREREBtR0hB/MzC303k6jTsPJpZMMFkeLCSugUKpyvL42PRXB/kMNUrYp1IG+xw8Ytg4AYP0QL6iU+nXvTU3Xot/K8waLgaiwYXJCRERkQGbmFjCz0O+iOD8olCqYW+T8sSS1Acs2hTrQ9/gBw9YBAKiUClgqzQy8V6KijaN1ERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUkwN3YARERERdFhvyF4EfcUkqSA0soGDfpPQomK1XF11yrc/Xs3EqLuw2fsIpSr3yJfytekpeDInEF4/uAmzFVWsCrhgma+AbBzrYCn/5zHyaUToElLgSYtFR5t+8Cz21CDx/C6OkiJi8HJ5ZOR+DgcZkoLeA/8H5yr1Td4+QCwd1J3vIh9/P8x2KLJyLlwqlwbL54/wdG5w5EQeRcKpQWa+QagVFWvfImh7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r42G7g75EgNRYWHUOyd+fn7w9vaGnZ0dSpcujW7duuHmzZs66wghMG3aNJQtWxZWVlZo2bIlrl69Kr//7NkzjB49GtWqVYO1tTUqVKgAX19fxMXF6exn9uzZaNasGaytreHo6FgQh0dERMXYu77fo8N3v+BDv+2o3qE/Tq+aAgBwqdkYLf67FKWrN8j3GKp1+Bw91pxFt2V/w61xWxxfOAYAcGzBf1C39xh0W3oUnQL24sr2xXj+4Oabd5YLr6uDC1sWoFSVOugc8DsaD5mJE0smQqtRG7x8AGg1eS0+Wn4c3Zb9jVofj8KxgFEAgHNrpsO5RkN8vDYE741bgmD/IfkWw9YRDXBpZgtcmOGDce0rYeCaiwCAidtuoEllR4T5t8bagXXRd+V5qDXafImBqLAwanISHByMkSNH4tSpUzhw4ADUajXatm2LpKQkeZ25c+ciICAAixcvxtmzZ+Hq6oo2bdogISEBABAREYGIiAh8//33uHz5MgIDA7F3714MGjRIp6y0tDT07NkTw4cPL9BjJCKi4snCxl7+Oy05EZIkAQBKVakDOxe3fC/fzMISbo3ayuWWruGNhMh78vupifEAgPSUJCiUFlDZlTB4DK+rg/BT++DR5hMAgFPlWrB0cMKTm+cNXj4AqGz/vRORlhQPSBmXPneP/ooanb8EADhXqw8rx9KIvnYmX2JwtFbKf8clp0OhyKiHrWcjMLJ1RQCAdyVHuNhb4MSt2HyJgaiwMOpjXXv37tV5vXbtWpQuXRohISHw8fGBEAILFizA5MmT0b17dwBAUFAQXFxcsHHjRgwdOhS1atXCjh075H1UrlwZs2fPRr9+/aBWq2FunnGI06dPBwAEBgYWzMEREVGxd3LZN/IFb8sJy40ay9VfV6BCk/YAgPfGLcFf0/ogNGgWUuJi8O5/foBVidL5Uu6rdZCa8BxCCFjal5TXsXEui+SYSKBKnXyJIXjuMERd/BsA0Hb2dqTEP4MQWlg5lpLXsXWpgKQnD/OlfADov+o8Dl+PAQDsHdcYMYlp0AoBZ3uVvE7FUtYIf5aSbzEQFQYm1eck81GskiUzPrDu3r2LqKgotG3bVl5HpVKhRYsWOHHiBIYOzf752Li4ONjb28uJSW6kpqYiNTVVfh0fH5/rfRERUfHUdPgcAMCdo7twfuN8tBy/zChxXNw0H/ERd/CubwAA4PK2H+H95QxUavER4iPv4c//dkKJSrXypexX66DpcD/g/++gyITIl7IztRifkRiGHdiEs6unwGf8Ckh4JQbkbww/D87ozxJ0LBz/3XIN64Z4ZYkhn6uBqFAwmdG6hBAYO3Ysmjdvjlq1Mj4go6KiAAAuLi4667q4uMjvvSomJgYzZ858beKSU35+fnBwcJD/ubnl/y14IiIqmir5dEX0tbNITXhe4GVf3rYI947vQdtZ22BuaY2UuBjcP/E7KrX4CABgX6YinKs3xJMb5/I1jsw6yJQS/0z+O+lpJKydyuRr+QDg0eZTRF48Jr9+8fyp/Hfi43DYOJfP9xg+b+6Gwzdi5NdP4v/9IfR+TDLcSlrmewxEpsxkkpNRo0bh0qVL2LRpU5b3JOnVXxZElmVAxt2Njh07wtPTE1OnTs1TPJMmTUJcXJz8Lzw8PE/7IyKi4iM9ORHJsdHy6/CzB2Fh6wAL24IdienKjiW4c2QH2vvtlPteWNg6wkypQuSl4wCAlLgYPLl+Fo4Vqhu07DfVQYVGbRB2YDMAIOb2FaTEPYVzNcOPlJWWFJ/xuNj/u3d8D1T2JaGyK4GKPl1x/bfVAIAnN0PxIvYxSns2MngM8S/SERH776NaO0Mi4WRrgZI2SvT0LoMlh+4BAM7eeY6ouFQ0q2L4vj9EhYlJPNY1evRo7N69G0ePHkX58v/+auHq6gog4w5KmTL//qISHR2d5W5KQkIC2rdvD1tbW+zcuRNKpRJ5oVKpoFKp3r4iERHRK9JeJOLYgq+gSUuBpFBAZVcCLb5eAkmScHXXaoQd2ITUhFicWvEtzJQWaD9nG5SWNgaNIelpBM6s/BZ2ZSriz/GdAQAKpQpdfvwLrSavxZkVk6HVqCE0atT6eDRKVa1n0PLfVAd1P/0Kp5Z+g9/GdoTCXImmw+dAYWYOjUZj2BiS4nFo5ufQpL0AJAUsHUqhzYzNkCQJ3oOmIXjuMGz/ogEU5hbwGb8CCjPDXxbFJavRY8k5vEjTQqEAnO1U2DPGG5Ikwb9nDXy26jw8JhyChbkC6wZ7wdzMZH43JjIKoyYnQgiMHj0aO3fuxJEjR+Du7q7zvru7O1xdXXHgwAF4eWX8opKWlobg4GD4+/vL68XHx6Ndu3ZQqVTYvXs3LC15S5SIiIzHxskV7WZmfRIAAGp2/RI1u36ZZbkmLTWbtfMQQ6myGLgv+5GfytVviXL1j+gsU6cZtiP2m+rAyqEUWk1aadDysmNbujy6LDqYfQwlSqO93y86ywxdBwDg5mSFM1Pey/Y9FwcV9n/dRGdZSrphEzSiwsaoycnIkSOxceNG7Nq1C3Z2dnI/EgcHB1hZWUGSJIwZMwZz5syBh4cHPDw8MGfOHFhbW6NPnz4AMu6YtG3bFsnJyVi/fj3i4+PlzuvOzs4wMzMDADx48ADPnj3DgwcPoNFocOHCBQBAlSpVYGtrW/AHT0REREREOoyanCxbljFqScuWLXWWr127FgMGDAAAjB8/Hi9evMCIESMQGxuLxo0bY//+/bCzswMAhISE4PTp0wAyEo2X3b17FxUrVgQATJkyBUFBQfJ7mXdiDh8+nKV8IiIiIiIqeEZ/rOttJEnCtGnTMG3atGzfb9myZY72ExgYyDlOiIiIiIhMGHtdERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQRzYwdARERUlGjUaQW63eto01Oh1nN9QzGFOtD3+DO3MaTUdG2BbENUlDA5ISIiMqCTSycZOwQAQLD/UKOVbQp1YMzjz9Rv5Xljh0BU6DA5ISIiMpD65eyMHQIAoK6z0mhlm0IdGPP4ZW6N8rZ9erph4iAqZCQhhDB2EIVBfHw8HBwcEBcXB3t7e2OHQ0REJkQIgdRUwz0SpFKpIEmS0eLITfmmUAeGjMHYbRAfHw8XFxded1CxwzsnREREeSRJEiwtLY0dhlHjMIU6KEoxpKUZtg8SUWHB0bqIiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpOgV3KiVqsRFBSEqKio/IqHiIiIiIiKKb2SE3NzcwwfPhypqan5FQ8RERERERVTej/W1bhxY1y4cCEfQiEiIiIiouLMXN8NRowYgbFjxyI8PBwNGjSAjY2Nzvt16tQxWHBEZJqEEAa9g6pSqSBJktHiMHb5jCHvMRARUdEgCSGEPhsoFFlvtkiSBCEEJEmCRqMxWHCmJD4+Hg4ODoiLi4O9vb2xwyEyqpSUFPTs2dNg+9u2bRssLS2NFoexy2cMeY+BqKjhdQcVV3rfObl7925+xEFEhVDoo4Q876N+Obs87+Pik/Rcb1vXWZnn8vNaD8auA8Aw9YDwM3nb3q1R3mMgIqJCTe/k5J133smPOIiokGo6wg9m5hZ6b6dRp+Hk0kkGi6PFhBVQKFU5Xl+bnopg/6EGKz839WDsOgAMXw/rh3hBpdSvO2Nquhb9Vp43WAxERFR46Z2cZLp27RoePHiAtLQ0neVdunTJc1BEVHiYmVvAzEK/C+L8oFCqYG6R88eB1AYu3xTqQd86AAxfDyqlApZKMwPvlYiIigu9k5M7d+7go48+wuXLl+W+JgDkDoxFtc8JERERERHlL72HEv7Pf/4Dd3d3PH78GNbW1rh69SqOHj2Khg0b4siRI/kQIhERERERFQd63zk5efIkDh06BGdnZygUCigUCjRv3hx+fn7w9fXF+fN8bpiIiIiIiPSn950TjUYDW1tbAECpUqUQEREBIKOj/M2bNw0bHRERERERFRt63zmpVasWLl26hEqVKqFx48aYO3cuLCwssHLlSlSqVCk/YiQiIiIiomJA7+Tk22+/RVJSEgBg1qxZ6NSpE9577z04OTlhy5YtBg+QiIiIiIiKB72Tk3bt2sl/V6pUCdeuXcOzZ89QokQJecQuIiIiIiIifend5yTTrVu3sG/fPrx48QIlS5Y0ZExERERERFQM6Z2cxMTE4P3330fVqlXRoUMHREZGAgC+/PJLjBs3zuABEhERERFR8aD3Y11fffUVlEolHjx4gBo1asjLe/fuja+++grz5883aIBERERElD2NRoP09HRjh0H0RhYWFlAocnZPRO/kZP/+/di3bx/Kly+vs9zDwwP379/Xd3dEREREpCchBKKiovD8+XNjh0L0VgqFAu7u7rCwsHjrunonJ0lJSbC2ts6y/OnTp1CpVPrujoiIiIj0lJmYlC5dGtbW1hyUiEyWVqtFREQEIiMjUaFChbf+v6p3cuLj44Off/4ZM2fOBABIkgStVot58+ahVatWuYuaiIiIiHJEo9HIiYmTk5OxwyF6K2dnZ0RERECtVkOpVL5xXb2Tk3nz5qFly5Y4d+4c0tLSMH78eFy9ehXPnj3D8ePHcx00EREREb1dZh+T7J5kITJFmY9zaTSatyYneo/W5enpiUuXLqFRo0Zo06YNkpKS0L17d5w/fx6VK1fOXcREREREpBc+ykWFhT7/r+p95wQAXF1dMX369NxsSkRERERElC2975xUrFgRM2bMQHh4eH7EQ0RERERExZTed07GjRuHwMBAzJgxA61atcKgQYPw0UcfcaQuIiIiImObX8CPeo0TBVuekUmShJ07d6Jbt27GDiXXWrZsiXr16mHBggXGDiVbet85GT16NEJCQhASEgJPT0/4+vqiTJkyGDVqFEJDQ/MjRiIiIiIq5CRJeuO/AQMGGC22ihUr5uhiPTIyEh9++GGO9xsYGAhHR8fcB1YM6Z2cZKpbty4WLlyIR48eYerUqVi9ejW8vb1Rt25d/PTTTxCieGXSRERERPR6kZGR8r8FCxbA3t5eZ9nChQv12l9aWlo+Rfp6rq6uRnlaSKPRQKvVFni5xpDr5CQ9PR1bt25Fly5dMG7cODRs2BCrV69Gr169MHnyZPTt29eQcRIRERFRIebq6ir/c3BwgCRJ8mulUolhw4ahfPnysLa2Ru3atbFp0yad7Vu2bIlRo0Zh7NixKFWqFNq0aQMA2L17Nzw8PGBlZYVWrVohKCgIkiTh+fPn8rYnTpyAj48PrKys4ObmBl9fXyQlJcn7vX//Pr766iv5Ls7rSJKEX3/9FQBw7949SJKEX375Ba1atYK1tTXq1q2LkydPAgCOHDmCL774AnFxcfJ+p02bBgDydBzlypWDjY0NGjdujCNHjsjlZN5x2bNnDzw9PaFSqbBq1SpYWlrqHBcA+Pr6okWLFgCAmJgYfPrpp2+sR1Ond3ISGhqK0aNHo0yZMhg9ejRq1qyJK1eu4NixY/jiiy8wefJk7N69Gzt37syPeImIiIioiElJSUGDBg2wZ88eXLlyBUOGDMFnn32G06dP66wXFBQEc3NzHD9+HCtWrMC9e/fw8ccfo1u3brhw4QKGDh2KyZMn62xz+fJltGvXDt27d8elS5ewZcsWHDt2DKNGjQIA/PLLLyhfvjxmzJgh38XRx+TJk/H111/jwoULqFq1Kj799FOo1Wo0a9Ysyx2ir7/+GgDwxRdf4Pjx49i8eTMuXbqEnj17on379ggLC5P3m5ycDD8/P6xevRpXr15Fv3794OjoiB07dsjraDQabN26Vb4pkNN6NGV6d4j39vZGmzZtsGzZMnTr1i3biVQ8PT3xySefGCRAIiIiIiraypUrJ1+4Axl9nPfu3Ytt27ahcePG8vIqVapg7ty58uuJEyeiWrVqmDdvHgCgWrVquHLlCmbPni2vM2/ePPTp0wdjxowBAHh4eODHH39EixYtsGzZMpQsWRJmZmaws7ODq6ur3rF//fXX6NixIwBg+vTpqFmzJm7duoXq1avr3CHKdPv2bWzatAkPHz5E2bJl5X3s3bsXa9euxZw5cwBkPKW0dOlS1K1bV962d+/e2LhxIwYNGgQAOHjwIGJjY9GzZ0+96tGU6Z2c3LlzB++8884b17GxscHatWtzHRQRERERFR8ajQbfffcdtmzZgkePHiE1NRWpqamwsbHRWa9hw4Y6r2/evAlvb2+dZY0aNdJ5HRISglu3bmHDhg3yMiEEtFot7t69ixo1auQp9jp16sh/lylTBgAQHR2N6tWrZ7t+aGgohBCoWrWqzvLU1FQ4OTnJry0sLHT2DQB9+/ZF06ZNERERgbJly2LDhg3o0KEDSpQoASDn9WjK9E5O3paYEBERERHpY/78+fjhhx+wYMEC1K5dGzY2NhgzZkyWTu+vXmQLIbL0EXl1UCatVouhQ4fC19c3S7kVKlTIc+wvP0WUGcubOq9rtVqYmZkhJCQEZmZmOu/Z2trKf1tZWWU5tkaNGqFy5crYvHkzhg8fjp07d+rcEMhpPZqyXM0QT0RERERkKH///Te6du2Kfv36Aci4gA8LC3vrXY3q1avjjz/+0Fl27tw5ndf169fH1atXUaVKldfux8LCAhqNJpfRv152+/Xy8oJGo0F0dDTee+89vffZp08fbNiwAeXLl4dCoZAfKQNyX4+mJNejdRERERERGUKVKlVw4MABnDhxAtevX8fQoUMRFRX11u2GDh2KGzduYMKECfjnn3+wdetWBAYGAvj3LsaECRNw8uRJjBw5EhcuXEBYWBh2796N0aNHy/upWLEijh49ikePHuHp06cGO66KFSsiMTERBw8exNOnT5GcnIyqVauib9++6N+/P3755RfcvXsXZ8+ehb+/f5ZEKzt9+/ZFaGgoZs+ejY8//hiWlpbye7mtR1PCOydERERERUUhnbH9f//7H+7evYt27drB2toaQ4YMQbdu3RAXF/fG7dzd3bF9+3aMGzcOCxcuRNOmTTF58mQMHz5cno+kTp06CA4OxuTJk/Hee+9BCIHKlSujd+/e8n5mzJiBoUOHonLlykhNTTXYfH3NmjXDsGHD0Lt3b8TExGDq1KmYNm0a1q5di1mzZmHcuHF49OgRnJyc0LRpU3To0OGt+/Tw8IC3tzfOnj2bZeLI3NajKdErOUlPT0e1atXkMZeJiIiIiPQ1YMAAnRnhS5YsKc8f8jovzwPysi5duqBLly7y69mzZ6N8+fI6dxS8vb2xf//+1+67SZMmuHjx4lvjfjlpqVixYpYkxtHRMcuyZcuWYdmyZTrLlEolpk+fjunTp2dbzqv186ozZ85kuzwv9Wgq9EpOlEolUlNT3zg5jT78/Pzwyy+/4MaNG7CyskKzZs3g7++PatWqyesIITB9+nSsXLkSsbGxaNy4MZYsWYKaNWsCAJ49e4apU6di//79CA8PR6lSpdCtWzfMnDkTDg4O8n5iY2Ph6+uL3bt3A8j4H3nRokVwdHQ0yLEQFXeH/YbgRdxTSJICSisbNOg/CSUqVsfVXatw9+/dSIi6D5+xi1Cufot8KV+TloIjcwbh+YObMFdZwaqEC5r5BsDOtQKe3AzF6eWTkP4iEZKkQKOhs1Has9Hbd5oLr6uHlLgYnFw+GYmPw2GmtID3wP+hpHvNfIlh76TueBH7+P9jsEWTkXPhVLk2Xjx/gqNzhyMh8i4USgs08w1AqapeBi+/7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r43mVUsavHwiKl6WLl0Kb29vODk54fjx45g3b548hwkVPno/1jV69Gj4+/tj9erVMDfP21NhwcHBGDlyJLy9vaFWqzF58mS0bdsW165dk0djmDt3LgICAhAYGIiqVati1qxZaNOmDW7evAk7OztEREQgIiIC33//PTw9PXH//n0MGzYMERER2L59u1xWnz598PDhQ+zduxcA5ElpfvvttzwdAxFleNf3e1jY2AMAHp47iNOrpqD97K1wqdkYFZq0x5lVU/I9hmodPkd57zaQJAnXdq3E8YVj0G7ODhyc8Rla/Hc5ytR7D88f/IN9kz5C1+XH8iWG19XDhS0LUKpKHbSasBwxt6/g2MKx6OCfP5PVtpq8FirbjB9n7p/4HccCRqHrkmCcWzMdzjUaot2c7XhyMxSHZn2Oj1aeNHj5W0c0gKN1xug1v4ZGYeCaiwid7oOJ226gSWVH7B3XGGfvPMfHS0Nw27+VwcsnouIlLCwMs2bNwrNnz1ChQgWMGzcOkyZNMnZYlEt6ZxenT5/GwYMHsX//fnmIspf98ssvOd5XZqKQae3atShdujRCQkLg4+MDIQQWLFiAyZMno3v37gAyZgZ1cXHBxo0bMXToUNSqVUtnpszKlStj9uzZ6NevH9RqNczNzXH9+nXs3bsXp06dkiegWbVqFZo2bYqbN2/q3KkhotzJvCAHgLTkRPkOa6kqdV63iUGZWVjCrVFb+XXpGt64unM5UuOfITUhFmXqZYyI4lihKixsHfAo5FC+xPG6egg/tQ+dF2R85jlVrgVLByc8DbuQLzFkJiYAkJYUD0gZY5/cPforegZllOlcrT6sHEsj+lr2jwbkRWZiAgBxyelQKDLqYOvZCNyd2xoA4F3JES72FjgW9gxNKpcweAxEVHz88MMP+OGHH4wdBhmI3smJo6MjevTokR+xyJ11SpbMuM1/9+5dREVFoW3bfy84VCoVWrRogRMnTmDo0KGv3Y+9vb18Z+fkyZNwcHDQmRmzSZMmcHBwwIkTJ7JNTjInrckUHx+f9wMkKuJOLvtGvthtOWG5UWO5+usKVGjSHpYOTrBydMa9v3ej4ntdEH3jHOIe3UZSdHi+lf1qPaQmPIcQApb2/z7CZONcFskx+TeCSvDcYYi6+DcAoO3s7UiJfwYhtLByLCWvY+tSAUlPHuZL+f1Xncfh6zEAgL3jGiMmMQ1aIeBsr5LXqVjKGg9iUtCkcr6EQEREhZDeyUl+zfwuhMDYsWPRvHlz1KpVCwDkoc9cXFx01nVxccH9+/ez3U9MTAxmzpypk7hERUWhdOnSWdYtXbr0a4dX8/Pze20nJSLKXtPhcwAAd47uwvmN89Fy/LK3bJE/Lm6aj/iIO3jXNwAA8MG0DTi7Zhoubp6PEhU94VKzCSQz5Vv2knuv1kPT4X7Aq331DDQSzOu0GJ+RHIYd2ISzq6fAZ/wKSHi1v2D+xfDz4Iy+LEHHwvHfLdewbohXlvLzuQqIiKgQyvU8J0+ePMGxY8dw/PhxPHnyJM+BjBo1CpcuXcKmTZuyvJfdzJ/ZdcqPj49Hx44d4enpialTp75xH2/aDwBMmjQJcXFx8r/w8Pz7lZWoqKnk0xXR184iNeF5gZd9edsi3Du+B21nbYO5pTUAoGSlWmg3ezu6LgmGz3+XITkmCo4VquZ7LJn1kCkl/pn8d9LTSFg7ueZ7DB5tPkXkxX/717x4/u/4/YmPw2HjXD5fy/+8uRsO34iRXz+J//eO9P2YZFRwssxuMyIiKqb0Tk6SkpIwcOBAlClTBj4+PnjvvfdQtmxZDBo0CMnJybkKYvTo0di9ezcOHz6M8uX//aJ0dc344n717kZ0dHSWuykJCQlo3749bG1tsXPnTiiVSp39PH78OEu5T548ybKfTCqVCvb29jr/iCh76cmJSI6Nll+Hnz0IC1sHWLzU96EgXNmxBHeO7EB7v506/S6Sn/17/t/8IwjmltZwrdPc4OW/qR4qNGqDsAObAQAxt68gJe4pSnnUM3gMaUnxSI6JlF/fO74HKvuSUNmVQEWfrrj+22oAwJOboXgR+9jgo5bFv0hHRGyK/HpnSCScbC1Q0kaJnt5lsOTQPQDA2TvPERWXiuYeHK2LiIj+pfdjXWPHjkVwcDB+++03vPvuuwCAY8eOwdfXF+PGjcsyjvObCCEwevRo7Ny5E0eOHIG7u7vO++7u7nB1dcWBAwfg5ZXxiEBaWhqCg4Ph7+8vrxcfH4927dpBpVJh9+7dOuNaA0DTpk0RFxeHM2fOoFGjjC/i06dPIy4uDs2aNdO3CojoFWkvEnFswVfQpKVAUiigsiuBFl8vgSRJuLprNcIObEJqQixOrfgWZkoLtJ+zDUpLm7fvWA9JTyNwZuW3sCtTEX+O7wwAUChV6PLjX7j5RyBuH9oGCAGHClXx/pR1BhsS/WVvqoe6n36FU0u/wW9jO0JhrkTT4XOgMDP8PLhpSfE4NPNzaNJeAJIClg6l0GbGZkiSBO9B0xA8dxi2f9EACnML+IxfYfAY4l6o0XfFebxI00KhAJztVNgzxhuSJMG/Zw18tuo8PCYcgoW5AusGe8HcTAG1VmPQGIiIqPDS+1tpx44d2L59O1q2bCkv69ChA6ysrNCrVy+9kpORI0di48aN2LVrF+zs7OQ7JA4ODrCysoIkSRgzZgzmzJkDDw8PeHh4YM6cObC2tkafPn0AZNwxadu2LZKTk7F+/XrEx8fLndednZ1hZmaGGjVqoH379hg8eDBWrFgBIGMo4U6dOnGkLiIDsHFyRbuZWR/JBICaXb9Eza5fZlmuSUvNZu08xFCqLAbui832Pa9+E+DVb4LOMnVaSrbr5imGN9SDlUMptJq0UmeZoesAAGxLl0eXRQezj6FEabT30x1R0dD14FbSCmemvJftey4OKuz/uolByyMiKgoGDBiA58+fv3UCRVMWGBiIMWPG4Pnz53naj97JSXJycraPQpUuXVrvx7oyE5mXEx0go9N95qyY48ePx4sXLzBixAh5Esb9+/fDzs4OABASEoLTp08DAKpUqaKzn7t376JixYoAgA0bNsDX11ce+atLly5YvHixXvESERERmbJS044WaHlPp/notf6AAQMQFBQEADA3N4ebmxu6d++O6dOnZ5meojhZuHBhlpnl30aSJOzcuRPdunXLn6CMRO/kpGnTppg6dSp+/vln+fGpFy9eYPr06WjatKle+8pJI0iShGnTpmHatGnZvt+yZcsc7adkyZJYv369XvERERERkWG1b98ea9euRXp6Ov7++298+eWXSEpKyvbpm/T0dJ1+xAUpP8pOS0uDhYVFluUODgXbR/Nlxqzj7OjdIX7hwoU4ceIEypcvj/fffx8ffPAB3NzccOLECSxcuDA/YiQiIiKiIkKlUsHV1RVubm7o06cP+vbtKz/ONG3aNNSrVw8//fQTKlWqBJVKBSEE4uLiMGTIEJQuXRr29vZo3bo1Ll68qLPf3bt3o2HDhrC0tESpUqXkCbyBjB+7X31kytHREYGBgQCAe/fuQZIkbN26FS1btoSlpSXWr1+P+/fvo3PnzihRogRsbGxQs2ZN/PHHH/I+goOD0ahRI6hUKpQpUwYTJ06EWq2W32/ZsiVGjRqFsWPHolSpUmjTpk22dTJgwACdOyAtW7aEr68vxo8fj5IlS8LV1VXnh/rMJ4M++ugjSJIkvwaA3377DQ0aNIClpSUqVaqE6dOn68QkSRKWL1+Orl27wsbGBjNmzED58uWxfLnu/GShoaGQJAl37twBAAQEBMgTsLu5uWHEiBFITEzM9njyQu/kpFatWggLC4Ofnx/q1auHOnXq4LvvvkNYWBhq1qxp8ACJiIiIqOiysrJCenq6/PrWrVvYunUrduzYgQsXLgAAOnbsiKioKPzxxx8ICQlB/fr18f777+PZs4wh2n///Xd0794dHTt2xPnz53Hw4EE0bNhQ71gmTJgAX19fXL9+He3atcPIkSORmpqKo0eP4vLly/D394etrS0A4NGjR+jQoQO8vb1x8eJFLFu2DGvWrMGsWbN09hkUFARzc3McP35c7vucE0FBQbCxscHp06cxd+5czJgxAwcOHAAAnD2bMUz92rVrERkZKb/et28f+vXrB19fX1y7dg0rVqxAYGAgZs+erbPvqVOnomvXrrh8+TK+/PJLfPLJJ9iwYYPOOhs3bkTTpk1RqVIlAIBCocCPP/6IK1euICgoCIcOHcL48eP1qN2cydUwLVZWVhg8eLChYyEiIiKiYuTMmTPYuHEj3n//fXlZWloa1q1bB2dnZwDAoUOHcPnyZURHR0OlUgEAvv/+e/z666/Yvn07hgwZgtmzZ+OTTz7RmUC7bt26esczZswYnTsuDx48QI8ePVC7dm0AkC/UAWDp0qVwc3PD4sWLIUkSqlevjoiICEyYMAFTpkyBQpFxD6BKlSqYO3eu3rHUqVNHnrfPw8MDixcvxsGDB9GmTRu5bhwdHeWpNwBg9uzZmDhxIj7//HM53pkzZ2L8+PE6cwD26dMHAwcOlF/37dsXAQEBuH//Pt555x1otVps3rwZ33zzjU7dZHJ3d8fMmTMxfPhwLF26VO9je5NcJSf//PMPjhw5gujoaGi1Wp33pkyZYpDAiIiIiKjo2bNnD2xtbaFWq5Geno6uXbti0aJF8vvvvPOOfPENZAx+lJiYCCcnJ539vHjxArdv3wYAXLhwwSA/nL96t8XX1xfDhw/H/v378cEHH6BHjx6oU6cOAOD69eto2rSpztD07777LhITE/Hw4UNUqFAh233mVGY5mcqUKYPo6OjXrJ0hJCQEZ8+e1blTotFokJKSguTkZFhbW2cbk5eXF6pXr45NmzZh4sSJCA4ORnR0NHr16iWvc/jwYcyZMwfXrl1DfHw81Go1UlJSkJSUZNDBDPROTlatWoXhw4ejVKlScHV11WkQSZKYnBARERHRa7Vq1QrLli2DUqlE2bJls3TGfvVCV6vVokyZMjhy5EiWfTk6OgLIeKrnTSRJyjKA0suPkr2u7C+//BLt2rXD77//jv3798PPzw/z58/H6NGjIYTIMmdWZhkvL8/thfur9SJJUpabAq/SarWYPn26zt2fTC/PA5hdTH379sXGjRsxceJEbNy4Ee3atUOpUqUAAPfv30eHDh0wbNgwzJw5EyVLlsSxY8cwaNCgbOsxL/ROTmbNmoXZs2djwoQJb1+ZiIiIiOglNjY2WaZ/eJP69esjKioK5ubmOh2/X1anTh0cPHgQX3zxRbbvOzs7IzIyUn4dFhaW4ykw3NzcMGzYMAwbNgyTJk3CqlWrMHr0aHh6emLHjh06ScqJEydgZ2eHcuXK5fj4ckupVEKj0Z3Etn79+rh586Ze9ZupT58++PbbbxESEoLt27frjJ527tw5qNVqzJ8/X35cbevWrXk7gNfQu0N8bGwsevbsmR+xEBERERHp+OCDD9C0aVN069YN+/btw71793DixAl8++23OHfuHICMDt6bNm3C1KlTcf36dVy+fFmnn0fr1q2xePFihIaG4ty5cxg2bFiOhs8dM2YM9u3bh7t37yI0NBSHDh1CjRo1AAAjRoxAeHg4Ro8ejRs3bmDXrl2YOnUqxo4dK1/A56eKFSvi4MGDiIqKQmxsxiTEU6ZMwc8//4xp06bh6tWruH79OrZs2YJvv/32rftzd3dHs2bNMGjQIKjVanTt2lV+r3LlylCr1Vi0aBHu3LmDdevWZRndy1D0rrmePXti//79+RELEREREZEOSZLwxx9/wMfHBwMHDkTVqlXxySef4N69e/LE4C1btsS2bduwe/du1KtXD61bt5Yn6QaA+fPnw83NDT4+PujTpw++/vpruf/Fm2g0GowcORI1atRA+/btUa1aNbkDeLly5fDHH3/gzJkzqFu3LoYNG4ZBgwblKBEwhPnz5+PAgQNwc3ODl5cXAKBdu3bYs2cPDhw4AG9vbzRp0gQBAQF45513crTPvn374uLFi+jevbvOo3L16tVDQEAA/P39UatWLWzYsAF+fn75clySyMEMhj/++KP8d1JSEgICAtCxY0fUrl07S9bp6+tr+ChNQHx8PBwcHBAXFwd7e3tjh0NkVCkpKejZsydCHyWgue98mFmo9N6HJi0Vx34ch/rl7LBt2zadZ2H1jePik3S0+jYQ5hY534c6LQWHZw1AXWdlnsvPbT0Yuw4Aw9YDws9g28gGsFSa6bd9ugY9l4QAbo1yHQNRUfOm646UlBTcvXsX7u7uPF+oUNDn/9kc9Tn54YcfdF7b2toiODgYwcHBOsslSSqyyQkREREREeWvHCUnd+/eze84iIiIiIiomMv/3jpEREREREQ5oHdy8vHHH+O7777LsnzevHkcxYuIiIiIiHJN7+QkODgYHTt2zLK8ffv2OHr0qEGCIiIiIqI3y8GYRkQmQZ//V/VOThITE2FhYZFluVKpRHx8vL67IyIiIiI9ZI6UmtNJBImMLS0tDQBgZvb20Rz1niG+Vq1a2LJlC6ZMmaKzfPPmzfD09NR3d0RERESkBzMzMzg6OiI6OhoAYG1tLc9QTmRqtFotnjx5Amtra5ibvz310Ds5+d///ocePXrg9u3baN26NQDg4MGD2LRpE7Zt26Z/xERERESkF1dXVwCQExQiU6ZQKFChQoUcJdF6JyddunTBr7/+ijlz5mD79u2wsrJCnTp18Ndff6FFixa5CpiIiIiIck6SJJQpUwalS5dGenq6scMheiMLCwsoFDnrTaJ3cgIAHTt2zLZTPBEREREVHDMzsxw9x09UWOQqOQEyOrZER0dDq9XqLK9QoUKegyIiIiIiouJH7+QkLCwMAwcOxIkTJ3SWCyEgSRI0Go3BgiMiIiIiouJD7+RkwIABMDc3x549e1CmTBmODkFERERERAahd3Jy4cIFhISEoHr16vkRDxERERERFVN6T8Lo6emJp0+f5kcsRERERERUjOmdnPj7+2P8+PE4cuQIYmJiEB8fr/OPiIiIiIgoN/R+rOuDDz4AALz//vs6y9khnoiIiIiI8kLv5OTw4cP5EQcRERERERVzeicnb5oF/sKFC3mJhYgKIY06rUC3ex1teirUeq5vSLk5HmPXQeY2hpSarn37SgbYhoiIiqZcT8KYKS4uDhs2bMDq1atx8eJFPtZFVMycXDrJ2CEAAIL9hxq1fFOoB2PXAQD0W3ne2CEQEVEhluvk5NChQ/jpp5/wyy+/4J133kGPHj2wZs0aQ8ZGRCaufjk7Y4cAAKjrrDRq+aZQD8auAwCAWyNjR0BERIWcJIQQOV354cOHCAwMxE8//YSkpCT06tULy5cvx8WLF+Hp6ZmfcRpdfHw8HBwcEBcXB3t7e2OHQ2RUQgikphrucSCVSpWrCV0NFYexy2cMeY+BqKjhdQcVVzm+c9KhQwccO3YMnTp1wqJFi9C+fXuYmZlh+fLl+RkfEZkgSZJgaWlp7DCMHoexy2cMRERU1OQ4Odm/fz98fX0xfPhweHh45GdMRERERERUDOV4Esa///4bCQkJaNiwIRo3bozFixfjyZMn+RkbEREREREVIzlOTpo2bYpVq1YhMjISQ4cOxebNm1GuXDlotVocOHAACQkJ+RknEREREREVcXp1iH/VzZs3sWbNGqxbtw7Pnz9HmzZtsHv3bkPGZzLYMY2IiIgKCq87qLjK8Z2T7FSrVg1z587Fw4cPsWnTJkPFRERERERExVCe7pwUJ/wFg4iIiAoKrzuouMrTnRMiIiIiIiJDYXJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBLMjR1AYZOSkgILC4s870elUkGSJL22EUIgNTXVKGUbsnzGkPcYiIiIiIoiJid66t+/P5RKZZ73s23bNlhaWuq1TWpqKnr27GmUsg1ZPmPIewxERERERRGTEz1djEyEwixv1Va/nF3eYniSnutt6zrnPbEKfZSQp+3zevxA3uoAMEw9IPxM3rZ3a5T3GIiIiIiKECYnudB0hB/MzPV/tEujTsPJpZMMEkOLCSugUKpyvL42PRXB/kMNUjaQuzow5PED+tcBYPh6WD/ECyqlfl23UtO16LfyvMFiICIiIioqmJzkgpm5Bcws9LsoNjSFUgVzi5w/DqQ2cPmFsQ4Aw9eDSqmApdLMwHslIiIiKp44WhcREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBHNjFu7n54dffvkFN27cgJWVFZo1awZ/f39Uq1ZNXkcIgenTp2PlypWIjY1F48aNsWTJEtSsWVNeZ+XKldi4cSNCQ0ORkJCA2NhYODo66pQVGhqKCRMm4OzZszAzM0OPHj0QEBAAW1vbXMd/2G8IXsQ9hSQpoLSyQYP+k1CiYnVc3bUKd//ejYSo+/AZuwjl6rfIdRlvok5LwZE5g/D8wU2Yq6xgVcIFzXwDYOdaAU//OY+TSydAk5YCTVoqKr/fK19ieF0dpMTF4OTyyUh8HA4zpQW8B/4PJd1rvn2HubB3Une8iH38/zHYosnIuXCqXBsvnj/B0bnDkRB5FwqlBZr5BqBUVS+Dl9/2+1OIikuFQpJgZ2mORf1qol4FB0THp6L/qgu4HZ0EldIMy/vXRvOqJQ1ePhEREVFRYdQ7J8HBwRg5ciROnTqFAwcOQK1Wo23btkhKSpLXmTt3LgICArB48WKcPXsWrq6uaNOmDRISEuR1kpOT0b59e3zzzTfZlhMREYEPPvgAVapUwenTp7F3715cvXoVAwYMyFP87/p+jw7f/YIP/bajeof+OL1qCgDApWZjtPjvUpSu3iBP+8+Jah0+R481Z9Ft2d9wa9wWxxeOAQAcW/Af1O09Bt2WHkWngL24tnMZ0pMTDV7+6+rgwpYFKFWlDjoH/I7GQ2bixJKJ0GrUBi8fAFpNXouPlh9Ht2V/o9bHo3AsYBQA4Nya6XCu0RAfrw3Be+OWINh/SL7EsHVEA1ya2QIXZvhgXPtKGLjmIgBg4rYbaFLZEWH+rbF2YF30XXkeao3W4OUTERERFRVGvXOyd+9enddr165F6dKlERISAh8fHwghsGDBAkyePBndu3cHAAQFBcHFxQUbN27E0KFDAQBjxowBABw5ciTbcvbs2QOlUoklS5ZAocjIx5YsWQIvLy/cunULVapUyVX8Fjb28t9pyYmQJAkAUKpKnVztT1/mFpZwa9RWfl26hjeu7lwuv05NjAcApKckQWFuAYW50uAxvK4Owk/tQ+cFGe3rVLkWLB2c8DTsgsHLBwCVrcO/MSTFA1JGG989+it6BmWU6VytPqwcSyP62hmDl+9o/W+9xiWnQ6HIqIOtZyNwd25rAIB3JUe42FvgWNgzNKlcwuAxEBERERUFRk1OXhUXFwcAKFky49GXu3fvIioqCm3b/nsBrlKp0KJFC5w4cUJOTt4mNTUVFhYWcmICAFZWVgCAY8eOZZucpKamIjU1VX4dHx+f7b5PLvtGvuBtOWF5tusUlKu/rkCFJu0BAO+NW4K/pvVBaNAspMTFoMnIuXhw4vd8KffVOkhNeA4hBCzt/32Eyca5LJJjovKlfAAInjsMURf/BgC0nb0dKfHPIIQWVo6l5HVsXSog6cnDfCm//6rzOHw9BgCwd1xjxCSmQSsEnO1V8joVS1njQUwKmlTOlxCIiIiICj2T6RAvhMDYsWPRvHlz1KpVCwAQFZVxMevi4qKzrouLi/xeTrRu3RpRUVGYN28e0tLSEBsbKz8CFhkZme02fn5+cHBwkP+5ubllu17T4XPQddFfqN1zNM5vnJ/jmAzt4qb5iI+4gwYDvgUAXN72I7y/nIHe66/go5UncX7dd0h/kfSWveROtnXw/3dQZELkS9mZWoxfjt4brqL+gG9xdnXGo2USXokB+RfDz4O9EB7wAWZ1r4b/brmWbfn5XAVEREREhZ7JJCejRo3CpUuXsGnTpizvSdKrF3kiy7I3qVmzJoKCgjB//nxYW1vD1dUVlSpVgouLC8zMzLLdZtKkSYiLi5P/hYeHv7GMSj5dEX3tLFITnuc4LkO5vG0R7h3fg7aztsHc0hopcTG4f+J3VGrxEQDAvkxFOFerj9TE/I0tsw4ypcQ/k/9OehoJayfXfC0fADzafIrIi8fk1y+eP5X/TnwcDhvn8vla/ufN3XD4Roz8+kn8v3ff7scko4KTZb6WT0RERFSYmURyMnr0aOzevRuHDx9G+fL/Xjy6umZczL56lyQ6OjrL3ZS36dOnD6KiovDo0SPExMRg2rRpePLkCdzd3bNdX6VSwd7eXuffy9KTE5EcGy2/Dj97EBa2DrB4qf9DQbiyYwnuHNmB9n475b4XFraOMFOqEHnpOAAgJS4GT26GQmmV+5HJsvOmOqjQqA3CDmwGAMTcvoKUuKco5VHPoOUDGX1MkmP+vft17/geqOxLQmVXAhV9uuL6b6sBAE9uhuJF7GOU9mxk0PLjX6QjIjZFfr0zJBJOthYoaaNET+8yWHLoHgDg7J3niIpLRXMPjtZFRERE9DpG7XMihMDo0aOxc+dOHDlyJEui4O7uDldXVxw4cABeXhlDwKalpSE4OBj+/v65KjMzqfnpp59gaWmJNm3a5Go/aS8ScWzBV9CkpUBSKKCyK4EWXy+BJEm4ums1wg5sQmpCLE6t+BZmSgu0n7MNSkubXJX1OklPHuHMym9hV6Yi/hzfGQCgUKrQ5ce/0GryWpxZMRlajRpCo0bNj4Yh6v+TFUN5Ux3U/fQrnFr6DX4b2xEKcyWaDp8DhZnh/3dLS4rHoZmfQ5P2ApAUsHQohTYzNkOSJHgPmobgucOw/YsGUJhbwGf8CoPHEPdCjb4rzuNFmhYKBeBsp8KeMd6QJAn+PWvgs1Xn4THhECzMFVg32AvmZgqotRqDxkBERERUVBg1ORk5ciQ2btyIXbt2wc7OTr5D4uDgACsrK0iShDFjxmDOnDnw8PCAh4cH5syZA2tra/Tp00feT1RUFKKionDr1i0AwOXLl2FnZ4cKFSrInesXL16MZs2awdbWFgcOHMB///tffPfdd1nmQ8kpGydXtJuZ9RE0AKjZ9UvU7PplluWatNRs1s49G+dyGLgvNtv3ytVviXL1j8iv1WkpBk9O3lQHVg6l0GrSSp1lhj5+ALAtXR5dFh3MPoYSpdHe7xedZeq0lGzXzS23klY4M+W9bN9zcVBh/9dNDFoeERERUVFm1ORk2bJlAICWLVvqLF+7dq08B8n48ePx4sULjBgxQp6Ecf/+/bCzs5PXX758OaZPny6/9vHxybKfM2fOYOrUqUhMTET16tWxYsUKfPbZZ/l3cEREREREpBejP9b1NpIkYdq0aZg2bdpr13nb+wDw888/6xkdEREREREVJJPoEE9ERERERMTkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMgnmxg6gMNKo0wp0u+xo01Oh1nN9Q8rNsRjy+AH96yBzG0NKTdcWyDZERERExQGTk1w4uXSSsUNAsP9Qo5bPOsjQb+V5Y4dAREREVGQwOdFT3TK2UCqVxo3B2bjl1y9nZ9TyAePXAQDArZGxIyAiIiIqUiQhhDB2EIVBfHw8HBwc8PjxY9jb2+d5fyqVCpIk6bWNEAKpqXl/LCk3ZRuyfMaQ9xiIiKhoy7zuiIuLM8h1B1FhwTsnerK0tISlpaVRypYkyWhlm0L5jIGIiIioaONoXUREREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSOFpXDmWOuBwfH2/kSIiIiKioy7ze4IwPVNwwOcmhhIQEAICbm5uRIyEiIqLiIiEhAQ4ODsYOg6jAcBLGHNJqtYiIiICdnR0nzXuN+Ph4uLm5ITw8nBNGFQJsr8KDbVW4sL0KF1NtLyEEEhISULZsWSgUfAqfig/eOckhhUKB8uXLGzuMQsHe3t6kPuDpzdhehQfbqnBhexUupthevGNCxRFTcSIiIiIiMglMToiIiIiIyCQwOSGDUalUmDp1KlQqlbFDoRxgexUebKvChe1VuLC9iEwLO8QTEREREZFJ4J0TIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOaEci46OhkajMXYYREVOYmKisUOgHOLnIBFR/mJyQm8khEBaWhqGDBmCdu3a4eTJk8YOid7g8ePH+P3338HpiwqHyMhI9O3bF59++ikGDRqE0NBQY4dE2eDnYOETFRWFGTNmYOnSpfjjjz+MHQ4R6YHJCb2RJEmIjo7G7t278eTJExw6dAhxcXEAwAtgE7N48WKULVsWnTt3xtWrV40dDr3F+vXrUatWLaSlpeHDDz/EoUOH4O/vj6ioKGOHRq/g52DhMnPmTFSpUgVnzpxBYGAgPvroI2zcuBEA24uoMGByQm+Vnp6OTp064bPPPsP69etx6tQpABlf2GR8Qgj88ccf+PXXXzF37lx4eXlh+vTp0Gq1xg6NXkOj0eDnn3/G2LFjsW3bNowYMQL+/v4IDg6GlZWVscOjbPBz0PRpNBr4+/vjjz/+wNatW7Fnzx4cPHgQY8eOxaRJkwCwvYgKAyYn9FYPHz7EpUuX4OfnBxsbG2zatEn+1ZCMT5IkuLi44LPPPsPQoUPxww8/YMeOHdi3b5+xQ6PXuHz5Mu7cuYOyZcvKy5KTk9GjRw+eWyaKn4Omz8zMDGlpaWjdujXat28PALCzs0OLFi1gbm6O27dvGzlCIsoJJicEAEhLS8OLFy+yfe/hw4fw9PQEAEycOBFHjx7Fpk2bMGTIEERGRhZkmAQgISEBR48exa1bt+RlDRo0wOeffw5bW1v4+PigZ8+emDx5MhISEowYKQG651bm3SxPT084OTlhzZo1WLlyJXr16oWBAwfi/PnzqFOnDsaMGYPo6Ghjhl0sxcfH49SpU3j06FGW9/g5aHqSkpIQFhaG+Ph4ednXX3+N2bNnQ6FQyI9wPXv2DJaWlqhcubKxQiUiPTA5Ifj7+6N27do4evSozvLMC6n4+Hg8f/4cANC7d2+Ym5vD19cX586dgyRJfIa3AM2cOROVK1fG2LFjUadOHQQEBOh8MWe2mZ+fH27cuIHAwEAjRUpA1nNLoVBArVbDwsICCxcuRK9evbBr1y7cvn0bZ86cwd69e7FgwQKcOXMGS5cuNXL0xYufnx/c3NwwePBgeHp6YuHChTpJCj8HTcvMmTNRu3Zt9OrVC/Xq1ZM7vWc+FqnVauVHuE6ePAkvLy8AGY/nEZFpY3JSjD179gzDhw/Hxo0bERUVhZUrV+Lp06fy+wpFxv8eDx48QLt27fDXX3+hfPnyePHiBezs7NC3b1+UKlWKz/AWgDt37qBt27bYtm0b1q1bh927d2PixIn47rvvdO6OZLZZpUqVMG7cOMyePRsPHz4EkPHYUFJSklHiL27edG6ZmZkBAJo0aQJfX1+kpqZi4MCBaNiwIezt7TFgwADY2dnh8ePHvJAqIH/++SfWrVuHoKAg7N69GxMmTMCqVaswZcoUeZ179+7xc9AE3L9/H127dsWWLVuwePFizJ8/Hz4+Pvjyyy/x+PFjeT2FQiGfP6dPn0aDBg0AAEqlEgA7xhOZMiYnxVhcXBzs7e3h5+eH33//HTt37sRff/0l//qe+V8zMzOMHDkS3bt3x5AhQxAeHo5+/fohKCgIx44dM+YhFBuPHj1Cs2bNsHPnTrRr1w5ly5bFl19+CXt7+9duM3HiRFhaWmLevHlYt24d2rVrxyE1C8ibzq2XL2Lv37+PW7duoXHjxvKy5ORkxMfHo0KFCvKFFOWvvXv3wtLSEt26dYO7uzu++eYbDBs2DMePH8fy5cvl9fg5aHynTp3C8+fPsX37dnTo0AGtW7dGYGAgkpKScObMGZ11lUolwsPDce/ePXTv3h1ARlv36dMH9+/fN0b4RJQTgoottVot7t+/L7/u1auXqFOnjrh7967Oert37xb+/v7in3/+kZdFR0eLGjVqiODg4IIKt1hLS0sT4eHhOq8/+ugj0bx5czFz5kzxzz//CI1GI4QQ8n+FEGLq1KlCkiRhYWEhJk2aVOBxF1c5PbeEEMLLy0u0aNFCrFu3ToSGhopOnTqJmjVriosXLxZgxMWXRqMRw4cPF5988olISUmRl0dERIihQ4eKunXriuTkZPHXX3+JOXPm8HPQSLRarRBCiGfPnolt27bpvBcVFSWqVasm9u/fn2W79evXi/fff1+Eh4eLDz/8UJibm4tx48YVSMxElDtMTkj+0I+JiRFKpVL4+fnpfEmr1Wqd9TNfp6amFlyQJLt+/bqwtrYW3t7eYsqUKaJevXqiadOmYs2aNfI6iYmJYuTIkUKSJDFo0CARGxtrvICLsTedW5nn0c2bN0WDBg1EtWrVRKVKlUSvXr3Es2fPjBZzcZLZPn5+fsLNzS3bH2a8vLxEYGCgzvpC8HPQGF6ufyH+/SHm2rVrwsnJSSdxzFy3f//+QpIkoVQqRceOHcXTp08LLmAiyhU+1lVMiZeet5UkCWq1GiVLlsTkyZMREBCA69evy+9n9mPI3CbzmXkLC4sCjLj4Eq88G+3m5oZ9+/bh1KlTmD59Ok6fPg1HR0ecOXMGaWlpAICnT5/Czs4Of//9N1avXg1HR0cjRF60paSkZLs8p+eWmZkZ1Go1qlatir/++gu///47Dh48iC1btqBEiRIFcgzFXeajq2PGjEFcXBw2bNig837Lli2hVCrl0bhefiSPn4P5Jzo6Wq8+IUePHoW7uzs8PDyybGdubo5atWrhzJkz2LNnD5ycnAwdLhEZGJOTIioyMhI9e/bE1q1bAWRMTpVJrVbLX7KZyzNfT506FRYWFli2bBliY2Nx4MABrF+/XmcdMqzw8HBs374doaGhcgfOzC/Yl9tKrVYDAKytrdG8eXMoFApotVpYWFggMTERUVFR8oXSO++8Az8/P7z77rtGOKKi7e7du6hbty7mzJmT5T19z63MWasdHR1RuXJlVKxYsWAOopiIjIzEyZMnce/evSzvqdVqOcGwtLTElClT4O/vj3Pnzsnr2NnZIS0tDeHh4QUVcrF29+5ddOnSBRMmTMC1a9d03nvTufX333/Dx8dHXnb58mVcuXIFALBw4UJcunQJ9erVK6CjIKK8YnJSRK1ZswY7duzADz/8gOTkZJiZmcm/Epqbm0MIgQkTJmDz5s3QarUwMzOTP/AXLVqENWvWoEWLFmjXrh3nyshHkyZNQtWqVTF//nw0a9YMw4cPx507dyBJErRarU5bbdmyJUuHaoVCgTNnzkCSJAwePNiIR1L0CSEwbNgwVK1aFVWrVoWvr2+WdfQ9txITEwv6MIqNMWPGoHbt2vjPf/6DmjVrYunSpTqTJr7cVuvXr8e4ceNQtWpVTJw4UR44IjQ0FEIIdOvWzUhHUfRl/hDz888/o0GDBrCyssLIkSNRqlQpnfezO7eAjMEnQkJC0K5dO0RGRqJXr16oW7cuHjx4AACwtbU1wlERUV4wOSmiTpw4gd69e8PCwgL+/v467wUFBaFUqVLYv38/6tSpIz+2ZWZmhkePHuHUqVPQarWoWbMmHjx4gBEjRhjjEIq806dPY9euXdi+fTsOHz6MVatWISwsDJ999hmAjMQjKCgITk5OWdrq+vXruHz5MqZMmYIOHTrA09MTrVq1MubhFGm3bt2Ck5MTjh07hjNnzmDbtm3yxdPLeG4Z34MHD9ClSxecOXMGu3fvxtatWzFixAgsW7ZMZzSnl9uqZs2aAIB169bB3t4eH330Edq1a4f33nsPNWrU4B3IfJT5Q8ymTZvwv//9D1u2bEHDhg1hZ2cnvw8AgYGBWc4tSZIQFhaG58+fY+fOnahcuTLi4uJw7949dOzY0ZiHRUR5YG7sAChvhBA6v6Sr1WqYm5ujTJky6Ny5s3wh9cknn6BGjRpISEjAw4cPMWvWLAwZMkR+rAHImMn6+++/x88//4xDhw6hZcuWRjii4uPXX3+FRqORv0Q/++wzVKlSBW3btkVAQADGjh2Le/fuYc6cORg8eLBOW504cQJLliyBubk5tm7ditatWxvrMIqsl88tpVKJsmXLonnz5vDy8sKJEyewY8cOODk5oX79+mjevDlsbW1x9+5dzJ49O0t78dwqOFeuXIG1tTUWLVokz20xb948rF+/HrGxsQCAxMREhIeH67SVEAI1atRAYGAgTp8+jX/++QdTpkxhYpIPXv3eOnLkCG7fvo3Ro0fjxIkT8Pf3R2pqKqpUqYJ+/fqhSZMmuH//frbfW6dOncLjx48RGhqKXbt2oU2bNsY4JCIyIEno0+uMTMqLFy+gUCigUqkA6H7g16lTB5s3b0ZycjLGjx+P2rVrY968eQgLC0P16tV1Ptxf9vjxY7i4uBTYMRQXmW2j1WrlX9N/+OEHBAYG4uTJk7C2tpbXmzFjBhYuXIjIyEi5bV/dT1paGi5cuIBGjRoV+LEUB6+eW1qtFr/++is+/vhjtG3bFjdu3EDDhg1x69YtPHnyBG3atEFgYOAb98lzK39knhOZP8xERETg3r17aNasGYCMttNoNGjatCnGjh2LPn36yMszz0UqOK+eW0DGXeSOHTti9erVmD17Nj744ANYWlri0KFDuHz5Mq5duwZXV1ed/WS2e0JCAnbs2IEBAwYU8JEQUX7hJ3MhNWnSJDRv3hydOnXCjz/+iPj4ePni99GjR7CxsUHFihXRsGFDdO7cGRs3boSlpSUOHjyo0zn+Vbx4MryAgAC58/TLF0MODg5QKpU4ePCgvEySJHz++eewsbFBQEAAgH9HFMp8H8gYIYiJSf7I7txSKBRo1aoVPvvsMyQmJmL37t3YsGEDLly4gGnTpuHUqVNYtmwZAN32ehnPLcN7+dzK7JNQtmxZncREoVAgMjISN2/eRK1ateRtmZgUvOzOLSAj0ahXrx7mzJmDevXqYfbs2Zg6dSr27NmDcuXK4ZtvvgGgO7CLJEkQQsDOzo6JCVERw0/nQiYtLQ09e/bE7t27MX78eJQtWxYrVqyQfw1UKBSws7ODUqmEJEnYuXMnZs2ahfT0dNSpUwe+vr6wsLDQa5hGyp2zZ8+iVatW+Prrr/HLL7/g5MmTACCPyPXxxx8jNTUVe/fuRXR0tLxdmTJl8MEHHyAsLAwajYYXUQXkdefWp59+CgAoUaIEJk2ahAULFqB27dry7O09evSAh4cHLly4wPYqIK87t179XMtsixMnTsDd3V0nOcnEz8L897pz65NPPgGQcaff3t4e586dQ6NGjaBQKKDRaGBnZ4evvvoK+/fvR2JiYpY7/hxBkqho4rdoIXP79m1cvHgRCxYsQO/evREUFISVK1fi0KFDmDdvHgDg3LlzuHXrFho1aoSBAwfim2++wdy5cyFJEpYuXQqAX8gFYd++fShVqhR++ukn+b9ARv+F9PR02NvbY9iwYfjrr7+wa9cueTuVSoWwsDAoFIrXPn5Hhve6c+vw4cPyuVW9enU0bNgQkiRBoVBACIGSJUvixo0bbK8C9LpzK7NNXhUSEoKmTZvKycrhw4fx22+/AeAFbkF43bl15MgRfPfdd7C2tsbgwYNRsmRJbNu2DcC/88iEhYXBw8PjtW1LREVQfs7wSIYXEhIiJEkSMTExQgjdGY4dHR3FnTt3RHp6uvD09BRDhgyRZzyOiIgQvXr1Ej4+Pjqzv5PhZbbJ/fv3xYkTJ4QQGe3TuHFjsXXrViGEEOnp6fL6ffr0EfXq1RMrVqwQsbGxIiQkRNSvX19s3ry54IMvxt50bpUoUUJn9umX/fnnn8Lb21scP368wGItrnJybmXOGp5JrVYLLy8vsWXLFnHnzh3RunVrYWFhIbZs2VKwwRdjbzq3HBwcxO3bt4UQQkybNk04OTmJ//3vf+Kff/4RN27cEC1atBAzZswwWuxEVPCYnBQy58+fFzVr1hSLFi0SQvz7IZ+WliYqVqwoxowZI4QQ4vHjx/J7ma5evcrExEhu374tunXrJrp16yaePXsmhBAiNTVVfm/KlCnCzMxMNGjQQFhZWYlBgwaJtLQ0Y4Zc7Lzp3HJ3dxfjxo0TQmRc/F6+fFkcOnRIDB06VDg4OIiJEycKtVpttNiLs+zOrZcTlIsXLwo7Ozvx4YcfCnNzc9G7d28RHx9vrHCLpbedW5nfW1FRUWLlypXC0dFR1KpVS9jZ2YkvvviC31tExQwf6zIx4i23rd955x14eHjg2LFjiIyMlEepUSqVGD16tDxRX+nSpeXHFTL36enpmWX0J8q9t7XVy+tVqlQJnTt3RmRkpDyqU+Zs7pUqVcL06dNx8eJFTJ8+HaGhoVi9erXcp4EMIy/n1qhRo7Bp0ya5g3VoaChmzpyJf/75B8HBwfDz8+MjXQaU13Pr5X4/YWFhSExMRGpqKs6ePYvNmzfLc2hQwXjbuZX5veXi4oLBgwfj6tWrWL16NUJDQ/HTTz/xe4uomGFyYkKePHmC5ORk+fXLo/6o1WoAGZ1yO3fujBs3bmDr1q0AMkapATJGfypZsiTCw8N19stnqg0vJ22VKXOEmY8//hienp7Ys2cPwsLCAGTMQJ25fc2aNdGxY0dUr149v8MvdqKjo5GQkCC/zs25VaJECdy/fx9ARif4VatW4dChQ6hbt25BHUaxkJO2yvSmc+vcuXMAgMaNG+PgwYM4ePAg6tWrl8/RFz+Z7ZPdKJD6fm9lJqVly5ZF48aNUaVKlYI4BCIyMUxOTEB6ejqGDBmCd999F507d8YXX3yB2NhYnV//zM3NkZKSgs2bN2PgwIGoV68etmzZgsOHD8vrPHz4EM7OznjnnXeMcRjFQk7bKj09HUFBQfJrrVYLe3t79OzZE1qtFtOnT8f777+Phg0bZtmeDEetVmPQoEFo1KgRPvjgA/Tt2xcxMTG5Prfc3d0BADY2NqhcuXKBH09RltO2yum51ahRI8TExKB8+fJo1aqVsQ6ryEpPT8eIESMwdOhQALp3qzITFn2/t/hDGhEBTE6MLjY2Fh06dMCtW7ewdu1afPrpp7h48SI6deqEmzdvyuv9+OOPKFeuHDZv3gwAGDt2LCpVqoT27dvLXxDz589H7969AXA0rvygT1u5urrit99+k2ekzvzirlmzJsLDw7Fx40aULl0akZGRKFGihFGOp6hTq9UYMGAArl27hqCgIHz66ae4dOkSunXrhuvXr8vr8dwyPn3aSp9zy8nJySjHU9SdPn0aH3zwAbZv346goCAcP34ckiTJd08y24TnFhHlipH6utD/27t3r6hVq5a4ceOGvOzatWtCoVAIX19fERsbK9auXSsqVKggNmzYoNPRU6vVijlz5ojBgweLDh06cLSgfKZvW706IMHBgweFra2tqFevnjh37lxBh1/sPHjwQHh4eIh169bJyyIjI0W5cuXE6NGjxbNnz3humQh924rnlnEtWLBADBo0SPzxxx+ie/fuonHjxlnWWbp0qXB3d+e5RUR6Y3JiZEFBQcLR0VFn2fHjx0XJkiWFh4eH+P3334VWqxWJiYk667z65Uz5L7dtlenp06di48aNBREqiYwRgqysrERYWJgQQsgj/ixevFh4eHiI3377TWi1WpGUlKSzHc+tgpfbtsrEc6tgZJ4b4eHh4urVq0KIjB9tnJ2dxerVq4UQ/45CmJ6ezu8tIsoVPtZVgP744w8Aureu3dzc4OTkBH9/f3nZ6tWrMWjQIGi1WuzatQuSJMHKykpnX3w2N38Zsq0y9+Pk5CTPNk6GtXLlSqxatQpHjx6Vl3l4eMDV1RXr168H8O+jJiNHjoSDgwN27NiB1NRUWFtb6+yL51b+MmRbATy38ltmewUHB8vnRrly5eDp6QkAaNiwIT755BNMnz4dGo0GFhYW0Gq1MDc3h42Njc6+eG4RUY4YNzcqHvbs2SPKlSsnJEmSb2Fnzonw7NkzMW/ePCFJkmjWrJmwtbUVtWrVEunp6WLRokWiXLlyxgy92GFbFS4bN24UpUuXFk2bNhX16tUTzs7OYtasWUIIIeLi4sSECROEh4eHePz4sRBCiBcvXgghhFi3bp1wcHCQX1P+Y1sVLm9qr1fn9Dl9+rTw8PAQX3/9tRAi60SYRET6YHKSz/7++2/Rvn17MWrUKPHhhx+Khg0bZrtecHCwWLRokdi/f7+87LvvvhPNmzcXz58/L6hwizW2VeGyYcMGUbduXbF8+XIhhBCPHj0SixYtEjY2NiIuLk4IIcSBAweEt7e3GDFihBDi38dKDh8+LEqXLi0uXrxonOCLGbZV4fKm9spuAsukpCQxb9484eDgIO7fvy+EyGi3zLYlItIHH+vKJ+L/HwdycXFB27ZtMXbsWMycORPXrl3DmjVrAOiO3+/j44NRo0ahTZs2AIC0tDScOnUKXl5ecHBwKPgDKEbYVoVLZnulp6ejcePG6N+/P4CMuRG8vLxQrlw5XLt2DQDQvHlz9OnTB0FBQdi5cyfS09MBAMePH4enpydq165tnIMoJthWhUtO2uvl0dMyWVtbo2vXrvDy8kLPnj3RsGFD9OjRA8+ePSvQ+ImoiDBqalQEhYSEZPn1PPMWeHp6uhg3bpxwdnaWO3y+6saNG+Kff/4R/fv3F+7u7uLkyZP5HnNxxbYqXEJCQkRsbKz8+vnz51keL7lw4YJwdXUVz549k5fFx8eL8ePHCzs7O9GiRQvRs2dPYWVlJZYsWSKEYCfd/MC2Klxy214vu3z5sqhTp46QJEmMGDFC7hhPRKQv3jkxkB07dsDNzQ29evVCnTp1MHXqVERFRQHI6NwphIC5uTlGjhwJS0tLTJ48GUDWcd1///13fPjhh7h37x727duHJk2aFPixFHVsq8Ll5faqW7cupkyZgsePH8PBwQFmZmY6d7UOHTqEypUro0SJEkhLSwMA2NnZwd/fHz/99BNatmwJJycnhIaGYsSIEQDYSdeQ2FaFS17bK9OxY8fQqVMnWFtbIywsDEuWLIGFhUVBHw4RFRXGzY2KhrNnz4rq1auLBQsWiIsXL4qlS5cKZ2dnMXz4cBETEyOE+PcXea1WK5YuXSrMzc3FnTt3hBAZQy9mPscbEREhQkJCjHMgxQDbqnDJSXtpNBqRnp4uhBDio48+EiNHjjRmyMUW26pwMWR7RURE8M4xERkMk5M8yHzEYNmyZaJ8+fI6nf8WL14smjRpImbOnJllu5iYGNGsWTPRtWtXERISItq2bSvWrVvHEU7yEduqcNG3vTQajdBqtaJy5cpiz549Qgghbt68KT755BPx4MGDgg2+mGFbFS5sLyIydXysKw8yHzG4e/cuqlatCnNzc/m9AQMGoEGDBvjzzz9x9epVAIBGowEAlCxZEoMHD8bu3bvh7e0NCwsL9OjRQx7bnwyPbVW46NteCoUCZ8+ehbW1NerXr48xY8agTp06iImJQenSpY1yDMUF26pwYXsRkanjFZYeDhw4AF9fXyxcuBBnzpyRl7/77rs4ceKE3G9Bo9HAxsYGXbt2hSRJ2L9/PwDAzMwMaWlpWLp0KQYNGgQfHx9cunQJv/32W7YT91Husa0Kl7y2F5AxceaVK1dQrVo1HDhwAMePH8f+/fuhUqkK/HiKMrZV4cL2IqLChslJDkRGRqJz587o168fnj17hjVr1qBt27byB33btm1RsWJFeebwzF+m2rRpA4VCgVu3bsn7io2NxT///IO1a9fiyJEjqFmzZsEfUBHGtipcDNleSqUSpUqVQmBgIK5evYoGDRoU/AEVYWyrwoXtRUSFlrGfKzN1SUlJ4vPPPxe9e/eWO0ULIYS3t7cYMGCAECKjA/XPP/8sFAqFPKt4pr59+4pWrVoVaMzFFduqcDFEe7Vs2VJ+HR0dXTCBF0Nsq8KF7UVEhRnvnLyFtbU1VCoVBgwYAHd3d6jVagBAp06d5MmozMzM0KtXL3Tt2hVffvklgoODIYRAVFQUwsLC0LdvX2MeQrHBtipcDNFe/fr1k/fn7OxslOMoDthWhQvbi4gKM0mIVyZvoCzS09OhVCoBZMx1IUkSPvvsM1hZWWHlypXyspSUFHz44Ye4du0a6tWrhytXrqBChQrYunUr3NzcjHwUxQPbqnBhexUebKvChe1FRIUVk5Nc8vHxwcCBAzFgwAAIIaDVamFmZobHjx/j0qVLOHv2LCpWrIg+ffoYO9Rij21VuLC9Cg+2VeHC9iKiwoDJSS7cuXMHzZo1w++//y53DExLS+OMuCaIbVW4sL0KD7ZV4cL2IqLCgn1O9JCZxx07dgy2trbyB/z06dPxn//8B9HR0cYMj17Ctipc2F6FB9uqcGF7EVFhY/72VShT5lCLZ86cQY8ePXDgwAEMGTIEycnJWLduHSekMiFsq8KF7VV4sK0KF7YXERU2fKxLTykpKahduzZu374NCwsLTJ8+HRMmTDB2WJQNtlXhwvYqPNhWhQvbi4gKEyYnudCmTRt4eHggICAAlpaWxg6H3oBtVbiwvQoPtlXhwvYiosKCyUkuaDQamJmZGTsMygG2VeHC9io82FaFC9uLiAoLJidERERERGQSOFoXERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJElAMDBgyAJEmQJAlKpRIuLi5o06YNfvrpJ2i12hzvJzAwEI6OjvkXKBERUSHG5ISIKIfat2+PyMhI3Lt3D3/++SdatWqF//znP+jUqRPUarWxwyMiIir0mJwQEeWQSqWCq6srypUrh/r16+Obb77Brl278OeffyIwMBAAEBAQgNq1a8PGxgZubm4YMWIEEhMTAQBHjhzBF198gbi4OPkuzLRp0wAAaWlpGD9+PMqVKwcbGxs0btwYR44cMc6BEhERGQmTEyKiPGjdujXq1q2LX375BQCgUCjw448/4sqVKwgKCsKhQ4cwfvx4AECzZs2wYMEC2NvbIzIyEpGRkfj6668BAF988QWOHz+OzZs349KlS+jZsyfat2+PsLAwox0bERFRQZOEEMLYQRARmboBAwbg+fPn+PXXX7O898knn+DSpUu4du1alve2bduG4cOH4+nTpwAy+pyMGTMGz58/l9e5ffs2PDw88PDhQ5QtW1Ze/sEHH6BRo0aYM2eOwY+HiIjIFJkbOwAiosJOCAFJkgAAhw8fxpw5c3Dt2jXEx8dDrVYjJSUFSUlJsLGxyXb70NBQCCFQtWpVneWpqalwcnLK9/iJiIhMBZMTIqI8un79Otzd3XH//n106NABw4YNw8yZM1GyZEkcO3YMgwYNQnp6+mu312q1MDMzQ0hICMzMzHTes7W1ze/wiYiITAaTEyKiPDh06BAuX76Mr776CufOnYNarcb8+fOhUGR06du6davO+hYWFtBoNDrLvLy8oNFoEB0djffee6/AYiciIjI1TE6IiHIoNTUVUVFR0Gg0ePz4Mfbu3Qs/Pz906tQJ/fv3x+XLl6FWq7Fo0SJ07twZx48fx/Lly3X2UbFiRSQmJuLgwYOoW7curK2tUbVqVfTt2xf9+/fH/Pnz4eXlhadPn+LQoUOoXbs2OnToYKQjJiIiKlgcrYuIKIf27t2LMmXKoGLFimjfvj0OHz6MH3/8Ebt27YKZmRnq1auHgIAA+Pv7o1atWtiwYQP8/Px09tGsWTMMGzYMvXv3hrOzM+bOnQsAWLt2Lfr3749x48ahWrVq6NKlC06fPg03NzdjHCoREZFRcLQuIiIiIiIyCbxzQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEv4P4rb/DT/9ttoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -519,7 +519,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -552,7 +552,7 @@ "output_type": "stream", "text": [ "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] }, { @@ -570,7 +570,7 @@ { "data": { "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230630_150821-8t0sok9n" + "Run data is saved locally in /Users/semv/surfdrive/Scripts/escience/cookbook/workflow/wandb/run-20230705_090451-b4ivyb49" ], "text/plain": [ "" @@ -582,7 +582,7 @@ { "data": { "text/html": [ - "Syncing run cool-aardvark-22 to Weights & Biases (docs)
" + "Syncing run worldly-dawn-2 to Weights & Biases (docs)
" ], "text/plain": [ "" @@ -594,7 +594,7 @@ { "data": { "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-LSTM" + " View project at https://wandb.ai/ai4s2s-demo/test-LSTM" ], "text/plain": [ "" @@ -606,7 +606,7 @@ { "data": { "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n" + " View run at https://wandb.ai/ai4s2s-demo/test-LSTM/runs/b4ivyb49" ], "text/plain": [ "" @@ -637,7 +637,7 @@ "# initialize weights & biases service\n", "mode = 'online'\n", "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-LSTM', entity='ai4s2s', mode=mode)\n", + "wandb.init(config=hyperparameters, project='test-LSTM', entity='ai4s2s-demo', mode=mode)\n", "config = wandb.config" ] }, @@ -766,1357 +766,1357 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 505.148438\n", - "Epoch : 0 [4/36(11%)]\tLoss: 481.187561\n", - "Epoch : 0 [8/36(22%)]\tLoss: 462.044128\n", - "Epoch : 0 [12/36(33%)]\tLoss: 366.548370\n", - "Epoch : 0 [16/36(44%)]\tLoss: 251.130753\n", - "Epoch : 0 [20/36(56%)]\tLoss: 152.641785\n", - "Epoch : 0 [24/36(67%)]\tLoss: 95.135040\n", - "Epoch : 0 [28/36(78%)]\tLoss: 50.719940\n", - "Epoch : 0 [32/36(89%)]\tLoss: 26.814919\n", - "Epoch : 1 [0/36(0%)]\tLoss: 5.588141\n", - "Epoch : 1 [4/36(11%)]\tLoss: 0.466125\n", - "Epoch : 1 [8/36(22%)]\tLoss: 2.091524\n", - "Epoch : 1 [12/36(33%)]\tLoss: 10.221073\n", - "Epoch : 1 [16/36(44%)]\tLoss: 13.921244\n", - "Epoch : 1 [20/36(56%)]\tLoss: 17.117250\n", - "Epoch : 1 [24/36(67%)]\tLoss: 21.652094\n", - "Epoch : 1 [28/36(78%)]\tLoss: 55.376251\n", - "Epoch : 1 [32/36(89%)]\tLoss: 19.449644\n", - "Epoch : 2 [0/36(0%)]\tLoss: 25.598974\n", - "Epoch : 2 [4/36(11%)]\tLoss: 20.395477\n", - "Epoch : 2 [8/36(22%)]\tLoss: 8.120663\n", - "Epoch : 2 [12/36(33%)]\tLoss: 9.420777\n", - "Epoch : 2 [16/36(44%)]\tLoss: 3.597255\n", - "Epoch : 2 [20/36(56%)]\tLoss: 1.684239\n", - "Epoch : 2 [24/36(67%)]\tLoss: 1.133056\n", - "Epoch : 2 [28/36(78%)]\tLoss: 1.853996\n", - "Epoch : 2 [32/36(89%)]\tLoss: 3.960218\n", - "Epoch : 3 [0/36(0%)]\tLoss: 5.782211\n", - "Epoch : 3 [4/36(11%)]\tLoss: 2.609937\n", - "Epoch : 3 [8/36(22%)]\tLoss: 4.698177\n", - "Epoch : 3 [12/36(33%)]\tLoss: 3.696248\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.770689\n", - "Epoch : 3 [20/36(56%)]\tLoss: 7.983230\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.530883\n", - "Epoch : 3 [28/36(78%)]\tLoss: 2.614764\n", - "Epoch : 3 [32/36(89%)]\tLoss: 2.655967\n", - "Epoch : 4 [0/36(0%)]\tLoss: 0.273827\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.573417\n", - "Epoch : 4 [8/36(22%)]\tLoss: 0.460414\n", - "Epoch : 4 [12/36(33%)]\tLoss: 1.230751\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.158980\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.895503\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.891235\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.686343\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.884769\n", - "Epoch : 5 [0/36(0%)]\tLoss: 1.899021\n", - "Epoch : 5 [4/36(11%)]\tLoss: 2.124950\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.508926\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.603784\n", - "Epoch : 5 [16/36(44%)]\tLoss: 0.967377\n", - "Epoch : 5 [20/36(56%)]\tLoss: 2.262344\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.447259\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.585567\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.005277\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.267711\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.692746\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.934087\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.330126\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.182773\n", - "Epoch : 6 [20/36(56%)]\tLoss: 2.099797\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.140517\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.404310\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.768536\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.887577\n", - "Epoch : 7 [4/36(11%)]\tLoss: 1.446585\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.324149\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.659936\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.752861\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.832946\n", - "Epoch : 7 [24/36(67%)]\tLoss: 0.966665\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.335188\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.858761\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.365670\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.659925\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.393722\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.327984\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.932140\n", - "Epoch : 8 [20/36(56%)]\tLoss: 2.097388\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.133661\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.769539\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.693012\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.408563\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.068734\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.322112\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.574979\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.661888\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.520240\n", - "Epoch : 9 [24/36(67%)]\tLoss: 0.980948\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.352848\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.580777\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.412241\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.963011\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.150706\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.400519\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.670630\n", - "Epoch : 10 [20/36(56%)]\tLoss: 1.628976\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.973781\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.203155\n", - "Epoch : 10 [32/36(89%)]\tLoss: 0.967892\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.318564\n", - "Epoch : 11 [4/36(11%)]\tLoss: 5.368523\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.196310\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.619376\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.729584\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.388925\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.936926\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.305025\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.281577\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.387617\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.665237\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.156064\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.390973\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.640283\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.553416\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.959071\n", - "Epoch : 12 [28/36(78%)]\tLoss: 0.905930\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.281052\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.266963\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.626828\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.223715\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.459082\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.696827\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.533000\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.027120\n", - "Epoch : 13 [28/36(78%)]\tLoss: 0.941354\n", - "Epoch : 13 [32/36(89%)]\tLoss: 0.892558\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.189570\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.549811\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.171009\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.383958\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.663104\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.451902\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.117269\n", - "Epoch : 14 [28/36(78%)]\tLoss: 0.990990\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.136361\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.182192\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.527077\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.267449\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.324529\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.635805\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.173936\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.965765\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.132812\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.357028\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.151217\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.507627\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.520277\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.614567\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.414361\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.368334\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.846762\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.016679\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.598533\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.244999\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.491022\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.267225\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.516404\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.575029\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.294104\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.212664\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.505179\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.012760\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.260495\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.649487\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.184152\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.503276\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.407428\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.148067\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.489842\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.198951\n", - "Epoch : 18 [32/36(89%)]\tLoss: 0.763963\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.304600\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.641902\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.236052\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.573888\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.327249\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.418954\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.489770\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.170379\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.280859\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.500501\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.742929\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.251100\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.474908\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.542650\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.045166\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.458625\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.095053\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.790924\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.154021\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.496545\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.297880\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.246268\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.252153\n", - "Epoch : 21 [20/36(56%)]\tLoss: 0.928596\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.527373\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.072787\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.504416\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.239585\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.576861\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.306901\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.159370\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.313108\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.031682\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.519940\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.341585\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.593542\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.179223\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.574387\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.132475\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.213038\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.284739\n", - "Epoch : 23 [20/36(56%)]\tLoss: 0.824717\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.472143\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.159807\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.444330\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.254970\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.568621\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.216534\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.196348\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.252408\n", - "Epoch : 24 [20/36(56%)]\tLoss: 0.889114\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.317530\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.121642\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.377160\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.162609\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.370015\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.117949\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.226949\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.236665\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.679455\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.281173\n", - "Epoch : 25 [28/36(78%)]\tLoss: 1.085547\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.261526\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.160689\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.468562\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.062409\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.670255\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.209688\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.820774\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.266793\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.984641\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.463211\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.215550\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.658540\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.727886\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.198605\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.206882\n", - "Epoch : 27 [20/36(56%)]\tLoss: 0.661130\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.223412\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.314858\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.314786\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.142954\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.204232\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.326274\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.421265\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.307062\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.861256\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.288486\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.405098\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.186949\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.125017\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.711308\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.184895\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.532898\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.158151\n", - "Epoch : 29 [20/36(56%)]\tLoss: 1.113483\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.180697\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.692520\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.173185\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.212938\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.491663\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.157977\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.073204\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.399520\n", - "Epoch : 30 [20/36(56%)]\tLoss: 0.732387\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.268429\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.683909\n", - "Epoch : 30 [32/36(89%)]\tLoss: 19.948956\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.072119\n", - "Epoch : 31 [4/36(11%)]\tLoss: 1.214102\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.839894\n", - "Epoch : 31 [12/36(33%)]\tLoss: 1.223127\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.823768\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.567715\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.420821\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.014955\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.617566\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.431339\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.768887\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.470974\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.334018\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.237348\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.940603\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.886216\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.167170\n", - "Epoch : 32 [32/36(89%)]\tLoss: 2.265817\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.859351\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.509233\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.366048\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.688142\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.757897\n", - "Epoch : 33 [20/36(56%)]\tLoss: 1.583678\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.766269\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.530918\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.014384\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.243347\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.916030\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.680216\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.500579\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.168039\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.467304\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.092526\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.247370\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.299630\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.234113\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.786768\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.139753\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.369672\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.555399\n", - "Epoch : 35 [20/36(56%)]\tLoss: 1.242628\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.533303\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.543690\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.974949\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.218838\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.926816\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.664061\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.288672\n", - "Epoch : 36 [16/36(44%)]\tLoss: 1.286678\n", - "Epoch : 36 [20/36(56%)]\tLoss: 1.387703\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.272284\n", - "Epoch : 36 [28/36(78%)]\tLoss: 6.353126\n", - "Epoch : 36 [32/36(89%)]\tLoss: 1.238589\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.930272\n", - "Epoch : 37 [4/36(11%)]\tLoss: 1.390698\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.641488\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.343006\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.449105\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.811063\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.622566\n", - "Epoch : 37 [28/36(78%)]\tLoss: 1.277533\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.757840\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.443750\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.794250\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.200156\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.349072\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.323256\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.569961\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.794085\n", - "Epoch : 38 [28/36(78%)]\tLoss: 1.055390\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.414999\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.175185\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.851548\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.420405\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.372467\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.708261\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.600883\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.328008\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.884630\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.379709\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.171745\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.684769\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.154164\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.347881\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.329897\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.748771\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.217129\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.134441\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.384551\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.201660\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.634147\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.488421\n", - "Epoch : 41 [12/36(33%)]\tLoss: 1.124412\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.172175\n", - "Epoch : 41 [20/36(56%)]\tLoss: 1.340690\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.302503\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.861084\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.288902\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.190286\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.618529\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.356948\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.353008\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.072380\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.419466\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.234878\n", - "Epoch : 42 [28/36(78%)]\tLoss: 1.129360\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.123113\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.054506\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.357096\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.250214\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.433666\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.101008\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.244675\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.275862\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.779114\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.165625\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.146699\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.442961\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.158242\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.225024\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.161809\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.686248\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.287028\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.702109\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.107372\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.185690\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.732336\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.133776\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.439040\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.187590\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.513467\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.089012\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.192713\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.037176\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.210400\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.416780\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.165280\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.053342\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.012009\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.568222\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.175414\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.853642\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.203973\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.262228\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.504034\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.252107\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.025600\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.199611\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.553687\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.307200\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.234742\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.235293\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.092998\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.488977\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.134274\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.851267\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.422727\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.608971\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.271737\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.454775\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.063672\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.325508\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.403339\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.243075\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.156796\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.136313\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.076903\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.099951\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.108966\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.245688\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.348731\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.446839\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.197771\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.372488\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.103378\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.343731\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.233521\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.372527\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.043850\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.550775\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.451025\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.119609\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.134784\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.188572\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.366579\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.192190\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.380612\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.111332\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.163350\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.356627\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.216677\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.406206\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.297715\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.141578\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.116860\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.530331\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.170246\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.381275\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.348139\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.335541\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.124847\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.258001\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.178782\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.238619\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.415877\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.100437\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.081156\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.386368\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.837409\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.666803\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.089787\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.189060\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.296038\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.160360\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.486605\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.624062\n", - "Epoch : 55 [4/36(11%)]\tLoss: 1.032569\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.285151\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.336291\n", - "Epoch : 55 [16/36(44%)]\tLoss: 1.106069\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.381215\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.471293\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.367933\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.213155\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.468724\n", - "Epoch : 56 [4/36(11%)]\tLoss: 1.033065\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.111104\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.382226\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.079845\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.159520\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.116626\n", - "Epoch : 56 [28/36(78%)]\tLoss: 1.039907\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.234875\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.088747\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.504149\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.089694\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.109227\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.514877\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.648686\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.396564\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.345732\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.112680\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.200984\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.433660\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.135068\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.410227\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.132842\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.241061\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.383544\n", - "Epoch : 58 [28/36(78%)]\tLoss: 1.599551\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.079575\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.190714\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.442133\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.556801\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.338196\n", - "Epoch : 59 [16/36(44%)]\tLoss: 1.168757\n", - "Epoch : 59 [20/36(56%)]\tLoss: 1.749450\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.656083\n", - "Epoch : 59 [28/36(78%)]\tLoss: 1.078569\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.550618\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.987723\n", - "Epoch : 60 [4/36(11%)]\tLoss: 1.151033\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.093100\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.137183\n", - "Epoch : 60 [16/36(44%)]\tLoss: 1.042699\n", - "Epoch : 60 [20/36(56%)]\tLoss: 2.272436\n", - "Epoch : 60 [24/36(67%)]\tLoss: 1.140916\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.506850\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.981858\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.414156\n", - "Epoch : 61 [4/36(11%)]\tLoss: 1.475227\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.790442\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.959055\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.687017\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.991804\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.540736\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.234528\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.786315\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.291553\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.551487\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.035087\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.514566\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.426550\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.731959\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.342878\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.198309\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.266847\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.395846\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.347448\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.104253\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.464699\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.743897\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.562298\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.348697\n", - "Epoch : 63 [28/36(78%)]\tLoss: 0.081006\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.267587\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.403919\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.583187\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.034230\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.050419\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.518728\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.858394\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.227439\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.271283\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.535153\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.340800\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.950589\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.207805\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.075296\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.121557\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.743605\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.310311\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.039568\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.241201\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.220189\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.986661\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.429216\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.190286\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.342904\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.475970\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.163098\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.199488\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.848465\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.485472\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.500362\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.077705\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.037596\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.107943\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.325441\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.418580\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.657075\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.121216\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.140856\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.551161\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.013699\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.771003\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.240587\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.679748\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.792342\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.306854\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.203654\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.400457\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.839640\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.168603\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.108740\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.308156\n", - "Epoch : 69 [20/36(56%)]\tLoss: 1.052503\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.403796\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.120811\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.132655\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.366187\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.963034\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.330540\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.316742\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.400366\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.674161\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.219539\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.631030\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.089863\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.318906\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.768939\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.174508\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.426376\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.412015\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.379367\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.217094\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.393932\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.260534\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.327018\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.485621\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.088836\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.098148\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.857462\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.504475\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.126964\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.510952\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.107330\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.302419\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.391586\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.210357\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.076893\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.454856\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.395524\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.151184\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.263772\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.064785\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.342791\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.852182\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.161477\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.256317\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.293542\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.757781\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.185360\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.131448\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.751071\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.251350\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.752285\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.331330\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.066289\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.216346\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.365823\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.100306\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.170005\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.091758\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.142475\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.423894\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.255001\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.117551\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.117521\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.288481\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.090718\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.708676\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.289311\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.066839\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.388720\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.172362\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.131603\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.078004\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.184629\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.170910\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.422732\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.123110\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.085224\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.271152\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.096152\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.165972\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.178150\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.089388\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.157062\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.516113\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.128400\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.387980\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.231512\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.177240\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.040197\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.169139\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.216605\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.048632\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.339666\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.040378\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.201622\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.464308\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.083405\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.248514\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.005458\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.205395\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.033503\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.094527\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.075376\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.049962\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.562263\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.069180\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.043206\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.044344\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.210113\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.016055\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.604758\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.165790\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.196803\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.572601\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.059269\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.058224\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.160307\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.384265\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.091639\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.141055\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.324417\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.089226\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.346364\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.345324\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.261385\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.697991\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.180457\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.007168\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.042873\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.282469\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.356585\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.287864\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.075103\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.117800\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.154776\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.101845\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.214729\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.496741\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.086333\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.299150\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.428410\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.540416\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.259992\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.244744\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.281234\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.175025\n", - "Epoch : 85 [28/36(78%)]\tLoss: 0.391115\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.582699\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.364494\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.625559\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.159026\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.125137\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.621458\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.554957\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.067801\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.140771\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.144510\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.291078\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.918951\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.272629\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.133226\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.158878\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.540778\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.251610\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.600893\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.426465\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.119330\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.440438\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.143525\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.581278\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.548583\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.101318\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.284670\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.173301\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.567535\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.591789\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.746135\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.236921\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.190889\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.548965\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.085313\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.580343\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.184932\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.236142\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.139232\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.273177\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.857480\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.582873\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.166760\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.186883\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.240635\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.518828\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.454759\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.634324\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.249185\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.313072\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.636360\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.429538\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.586264\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.177217\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.249414\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.328144\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.699569\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.786770\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.056814\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.031136\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.161279\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.701188\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.457922\n", - "Epoch : 92 [28/36(78%)]\tLoss: 0.605793\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.055673\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.179404\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.821694\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.204717\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.299077\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.417725\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.197114\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.317608\n", - "Epoch : 93 [28/36(78%)]\tLoss: 0.327102\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.064498\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.512139\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.238621\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.092972\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.249808\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.355105\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.205945\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.651016\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.578657\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.149530\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.475559\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.620163\n", - "Epoch : 95 [8/36(22%)]\tLoss: 1.275573\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.194408\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.116959\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.268944\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.823027\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.536795\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.138851\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.147528\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.367619\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.502290\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.277322\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.314263\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.493367\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.279780\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.076003\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.201008\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.373112\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.418882\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.096935\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.142398\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.292992\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.492764\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.136633\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.125291\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.049241\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.257102\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.595618\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.244193\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.274328\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.045561\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.369388\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.119866\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.430298\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.165205\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.442106\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.319470\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.116928\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.516852\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.767723\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.102293\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.164339\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.173098\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.777830\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.586682\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.340665\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.147469\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.182332\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.283462\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.207662\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.497050\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.165086\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.117203\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.083228\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.546391\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.431156\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.398226\n", - "Epoch : 101 [16/36(44%)]\tLoss: 1.288929\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.640342\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.401745\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.407061\n", - "Epoch : 101 [32/36(89%)]\tLoss: 1.305236\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.803203\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.803634\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.246378\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.677488\n", - "Epoch : 102 [16/36(44%)]\tLoss: 1.857794\n", - "Epoch : 102 [20/36(56%)]\tLoss: 1.637340\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.607095\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.254901\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.450059\n", - "Epoch : 103 [0/36(0%)]\tLoss: 1.180508\n", - "Epoch : 103 [4/36(11%)]\tLoss: 1.737358\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.399888\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.145695\n", - "Epoch : 103 [16/36(44%)]\tLoss: 1.078226\n", - "Epoch : 103 [20/36(56%)]\tLoss: 2.185148\n", - "Epoch : 103 [24/36(67%)]\tLoss: 1.145702\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.967929\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.555476\n", - "Epoch : 104 [0/36(0%)]\tLoss: 1.243436\n", - "Epoch : 104 [4/36(11%)]\tLoss: 1.967332\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.957190\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.382028\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.336646\n", - "Epoch : 104 [20/36(56%)]\tLoss: 1.186655\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.802149\n", - "Epoch : 104 [28/36(78%)]\tLoss: 0.526138\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.238018\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.150440\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.649219\n", - "Epoch : 105 [8/36(22%)]\tLoss: 1.940693\n", - "Epoch : 105 [12/36(33%)]\tLoss: 1.726291\n", - "Epoch : 105 [16/36(44%)]\tLoss: 1.048240\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.640212\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.224103\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.495840\n", - "Epoch : 105 [32/36(89%)]\tLoss: 2.218499\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.800397\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.318850\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.186796\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.328822\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.880447\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.526012\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.372196\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.545029\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.210318\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.627842\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.713033\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.506655\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.069775\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.258880\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.485790\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.434654\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.986387\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.479963\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.096445\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.286673\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.381003\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.614597\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.450621\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.669061\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.096559\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.275418\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.804102\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.838495\n", - "Epoch : 109 [4/36(11%)]\tLoss: 1.215745\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.062430\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.159007\n", - "Epoch : 109 [16/36(44%)]\tLoss: 1.296312\n", - "Epoch : 109 [20/36(56%)]\tLoss: 2.450544\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.601764\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.213653\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.523616\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.794437\n", - "Epoch : 110 [4/36(11%)]\tLoss: 1.870096\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.811448\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.082044\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.358022\n", - "Epoch : 110 [20/36(56%)]\tLoss: 1.638812\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.672341\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.718325\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.167818\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.562024\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.820200\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.834176\n", - "Epoch : 111 [12/36(33%)]\tLoss: 1.139762\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.326634\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.946186\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.598871\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.794655\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.416314\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.327260\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.519059\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.187847\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.433497\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.343210\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.408844\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.119463\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.447131\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.275187\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.434932\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.267949\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.038561\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.204059\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.241844\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.217105\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.291218\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.281015\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.333592\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.141699\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.247860\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.084436\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.329118\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.193044\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.250687\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.232723\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.878178\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.440108\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.100904\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.374544\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.009168\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.017287\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.069933\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.550595\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.016625\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.102405\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.142739\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.151976\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.267868\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.548577\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.053482\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.043041\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.148280\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.047300\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.034180\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.058306\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.317567\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.199254\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.029637\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.087505\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.356819\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.124659\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.187283\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.085256\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.185519\n", - "Epoch : 118 [0/36(0%)]\tLoss: 1.665215\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.085111\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.010460\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.127448\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.181292\n", - "Epoch : 118 [20/36(56%)]\tLoss: 1.402862\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.157969\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.158897\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.145005\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.174923\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.194443\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.035642\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.058165\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.118919\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.179913\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.262855\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.503860\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.425094\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.145393\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.149935\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.342409\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.069583\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.189382\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.493422\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.024969\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.103296\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.103516\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.326754\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.450237\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.060618\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.100700\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.117357\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.558369\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.164942\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.278770\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.117040\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.197312\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.513615\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.308748\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.199831\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.065613\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.187940\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.066833\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.310203\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.452692\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.502539\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.451618\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.149488\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.219420\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.589294\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.229330\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.112291\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.193194\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.156191\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.353021\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.679400\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.770952\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.099951\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.170315\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.484753\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.590766\n", - "Epoch : 124 [28/36(78%)]\tLoss: 1.056039\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.291728\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.014179\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.666761\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.898730\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.839078\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.133622\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.296906\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.522242\n", - "Epoch : 125 [28/36(78%)]\tLoss: 1.357634\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.483945\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.249091\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.298418\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.117557\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.204880\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.587431\n", - "Epoch : 126 [20/36(56%)]\tLoss: 1.187847\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.372977\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.206767\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.171439\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.644328\n", - "Epoch : 127 [4/36(11%)]\tLoss: 2.266160\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.580379\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.135999\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.512999\n", - "Epoch : 127 [20/36(56%)]\tLoss: 1.872483\n", - "Epoch : 127 [24/36(67%)]\tLoss: 1.238966\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.521182\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.259993\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.265112\n", - "Epoch : 128 [4/36(11%)]\tLoss: 1.502435\n", - "Epoch : 128 [8/36(22%)]\tLoss: 1.752910\n", - "Epoch : 128 [12/36(33%)]\tLoss: 1.213190\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.182892\n", - "Epoch : 128 [20/36(56%)]\tLoss: 1.473798\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.285437\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.903030\n", - "Epoch : 128 [32/36(89%)]\tLoss: 1.723643\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.712713\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.479779\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.786888\n", - "Epoch : 129 [12/36(33%)]\tLoss: 1.123224\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.927045\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.342439\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.093316\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.230954\n", - "Epoch : 129 [32/36(89%)]\tLoss: 1.265112\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.735851\n", - "Epoch : 130 [4/36(11%)]\tLoss: 1.008205\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.474685\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.268080\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.550381\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.850722\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.801836\n", - "Epoch : 130 [28/36(78%)]\tLoss: 1.241949\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.450840\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.125799\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.547972\n", - "Epoch : 131 [8/36(22%)]\tLoss: 2.403544\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.906547\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.386849\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.363257\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.881987\n", - "Epoch : 131 [28/36(78%)]\tLoss: 1.516602\n", - "Epoch : 131 [32/36(89%)]\tLoss: 1.657330\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.553499\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.270250\n", - "Epoch : 132 [8/36(22%)]\tLoss: 1.147920\n", - "Epoch : 132 [12/36(33%)]\tLoss: 1.012349\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.965370\n", - "Epoch : 132 [20/36(56%)]\tLoss: 1.128829\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.132303\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.443447\n", - "Epoch : 132 [32/36(89%)]\tLoss: 1.139149\n", - "Epoch : 133 [0/36(0%)]\tLoss: 2.019506\n", - "Epoch : 133 [4/36(11%)]\tLoss: 1.483567\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.222766\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.479214\n", - "Epoch : 133 [16/36(44%)]\tLoss: 1.252902\n", - "Epoch : 133 [20/36(56%)]\tLoss: 2.039283\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.835975\n", - "Epoch : 133 [28/36(78%)]\tLoss: 1.013910\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.484830\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.873319\n", - "Epoch : 134 [4/36(11%)]\tLoss: 2.239208\n", - "Epoch : 134 [8/36(22%)]\tLoss: 1.142551\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.698097\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.395490\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.630927\n", - "Epoch : 134 [24/36(67%)]\tLoss: 2.416898\n", - "Epoch : 134 [28/36(78%)]\tLoss: 1.961826\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.963865\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.513699\n", - "Epoch : 135 [4/36(11%)]\tLoss: 1.159483\n", - "Epoch : 135 [8/36(22%)]\tLoss: 1.378969\n", - "Epoch : 135 [12/36(33%)]\tLoss: 1.816255\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.669326\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.399843\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.242482\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.449311\n", - "Epoch : 135 [32/36(89%)]\tLoss: 1.769494\n", - "Epoch : 136 [0/36(0%)]\tLoss: 1.712812\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.357971\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.150119\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.545350\n", - "Epoch : 136 [16/36(44%)]\tLoss: 1.334263\n", - "Epoch : 136 [20/36(56%)]\tLoss: 1.960453\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.963578\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.330901\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.297327\n", - "Epoch : 137 [0/36(0%)]\tLoss: 2.078467\n", - "Epoch : 137 [4/36(11%)]\tLoss: 2.584589\n", - "Epoch : 137 [8/36(22%)]\tLoss: 2.093008\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.218757\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.139294\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.793414\n", - "Epoch : 137 [24/36(67%)]\tLoss: 2.099733\n", - "Epoch : 137 [28/36(78%)]\tLoss: 2.589034\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.720929\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.317908\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.666286\n", - "Epoch : 138 [8/36(22%)]\tLoss: 2.043915\n", - "Epoch : 138 [12/36(33%)]\tLoss: 1.559101\n", - "Epoch : 138 [16/36(44%)]\tLoss: 1.181897\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.792096\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.428118\n", - "Epoch : 138 [28/36(78%)]\tLoss: 1.314481\n", - "Epoch : 138 [32/36(89%)]\tLoss: 1.589546\n", - "Epoch : 139 [0/36(0%)]\tLoss: 1.632950\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.499525\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.559933\n", - "Epoch : 139 [12/36(33%)]\tLoss: 1.184841\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.278426\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.974399\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.395211\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.073856\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.585635\n", - "Epoch : 140 [0/36(0%)]\tLoss: 1.202225\n", - "Epoch : 140 [4/36(11%)]\tLoss: 1.409314\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.254555\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.191000\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.255447\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.781477\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.367237\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.354671\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.152837\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.193786\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.526449\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.141756\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.421991\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.213014\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.204618\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.598376\n", - "Epoch : 141 [28/36(78%)]\tLoss: 0.236039\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.416823\n", - "Epoch : 142 [0/36(0%)]\tLoss: 1.078028\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.915580\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.561300\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.203219\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.573979\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.322530\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.309427\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.163867\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.075040\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.242410\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.312566\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.509524\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.126450\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.726203\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.135466\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.099054\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.439739\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.803386\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.256622\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.951811\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.360674\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.391882\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.858808\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.519849\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.635749\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.867352\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.480857\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.963310\n", - "Epoch : 145 [4/36(11%)]\tLoss: 1.298752\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.179455\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.038442\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.435327\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.476076\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.304078\n", - "Epoch : 145 [28/36(78%)]\tLoss: 1.038557\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.654183\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.204737\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.970392\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.515129\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.710956\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.466451\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.115085\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.297739\n", - "Epoch : 146 [28/36(78%)]\tLoss: 1.263527\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.274987\n", - "Epoch : 147 [0/36(0%)]\tLoss: 1.063654\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.266227\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.040175\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.386203\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.858166\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.287465\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.364928\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.894572\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.207129\n", - "Epoch : 148 [0/36(0%)]\tLoss: 1.035094\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.792202\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.573911\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.181461\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.474999\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.434514\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.521438\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.437689\n", - "Epoch : 148 [32/36(89%)]\tLoss: 1.160885\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.215505\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.336407\n", - "Epoch : 149 [8/36(22%)]\tLoss: 1.062175\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.169331\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.302514\n", - "Epoch : 149 [20/36(56%)]\tLoss: 0.457066\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.534421\n", - "Epoch : 149 [28/36(78%)]\tLoss: 1.031029\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.598749\n", - "--- 0.16259276469548542 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 508.873840\n", + "Epoch : 0 [4/36(11%)]\tLoss: 490.130432\n", + "Epoch : 0 [8/36(22%)]\tLoss: 499.227112\n", + "Epoch : 0 [12/36(33%)]\tLoss: 440.458679\n", + "Epoch : 0 [16/36(44%)]\tLoss: 378.903778\n", + "Epoch : 0 [20/36(56%)]\tLoss: 208.213684\n", + "Epoch : 0 [24/36(67%)]\tLoss: 125.785759\n", + "Epoch : 0 [28/36(78%)]\tLoss: 63.172058\n", + "Epoch : 0 [32/36(89%)]\tLoss: 135.450989\n", + "Epoch : 1 [0/36(0%)]\tLoss: 5.131842\n", + "Epoch : 1 [4/36(11%)]\tLoss: 0.604036\n", + "Epoch : 1 [8/36(22%)]\tLoss: 2.837682\n", + "Epoch : 1 [12/36(33%)]\tLoss: 12.969792\n", + "Epoch : 1 [16/36(44%)]\tLoss: 15.635085\n", + "Epoch : 1 [20/36(56%)]\tLoss: 21.897655\n", + "Epoch : 1 [24/36(67%)]\tLoss: 28.752186\n", + "Epoch : 1 [28/36(78%)]\tLoss: 31.516699\n", + "Epoch : 1 [32/36(89%)]\tLoss: 27.108994\n", + "Epoch : 2 [0/36(0%)]\tLoss: 23.974064\n", + "Epoch : 2 [4/36(11%)]\tLoss: 16.667377\n", + "Epoch : 2 [8/36(22%)]\tLoss: 6.342164\n", + "Epoch : 2 [12/36(33%)]\tLoss: 3.680040\n", + "Epoch : 2 [16/36(44%)]\tLoss: 0.870227\n", + "Epoch : 2 [20/36(56%)]\tLoss: 2.680383\n", + "Epoch : 2 [24/36(67%)]\tLoss: 3.553781\n", + "Epoch : 2 [28/36(78%)]\tLoss: 4.441494\n", + "Epoch : 2 [32/36(89%)]\tLoss: 8.148849\n", + "Epoch : 3 [0/36(0%)]\tLoss: 5.047078\n", + "Epoch : 3 [4/36(11%)]\tLoss: 5.876122\n", + "Epoch : 3 [8/36(22%)]\tLoss: 7.644795\n", + "Epoch : 3 [12/36(33%)]\tLoss: 4.854731\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.451659\n", + "Epoch : 3 [20/36(56%)]\tLoss: 6.211252\n", + "Epoch : 3 [24/36(67%)]\tLoss: 2.830914\n", + "Epoch : 3 [28/36(78%)]\tLoss: 1.660030\n", + "Epoch : 3 [32/36(89%)]\tLoss: 1.711559\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.275324\n", + "Epoch : 4 [4/36(11%)]\tLoss: 3.034325\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.913728\n", + "Epoch : 4 [12/36(33%)]\tLoss: 3.217077\n", + "Epoch : 4 [16/36(44%)]\tLoss: 2.050319\n", + "Epoch : 4 [20/36(56%)]\tLoss: 2.318958\n", + "Epoch : 4 [24/36(67%)]\tLoss: 2.252594\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.704517\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.346983\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.053649\n", + "Epoch : 5 [4/36(11%)]\tLoss: 0.971992\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.406384\n", + "Epoch : 5 [12/36(33%)]\tLoss: 0.318402\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.611969\n", + "Epoch : 5 [20/36(56%)]\tLoss: 3.391224\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.646703\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.885099\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.435098\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.259319\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.564826\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.562128\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.342673\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.794502\n", + "Epoch : 6 [20/36(56%)]\tLoss: 1.758190\n", + "Epoch : 6 [24/36(67%)]\tLoss: 4.840420\n", + "Epoch : 6 [28/36(78%)]\tLoss: 2.265491\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.881545\n", + "Epoch : 7 [0/36(0%)]\tLoss: 1.777344\n", + "Epoch : 7 [4/36(11%)]\tLoss: 2.181722\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.554377\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.855183\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.752429\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.780674\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.211000\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.227526\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.786185\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.237208\n", + "Epoch : 8 [4/36(11%)]\tLoss: 0.475940\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.414749\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.396656\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.051016\n", + "Epoch : 8 [20/36(56%)]\tLoss: 2.206117\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.304066\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.382328\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.799042\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.465650\n", + "Epoch : 9 [4/36(11%)]\tLoss: 1.099131\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.324957\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.480521\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.732446\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.816403\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.152164\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.454315\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.756183\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.379249\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.844666\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.324414\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.374600\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.921172\n", + "Epoch : 10 [20/36(56%)]\tLoss: 2.135494\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.318042\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.617662\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.574798\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.419882\n", + "Epoch : 11 [4/36(11%)]\tLoss: 1.110420\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.233706\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.551158\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.597182\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.852408\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.123245\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.269616\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.560793\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.500013\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.622914\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.216004\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.473687\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.743932\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.740950\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.161934\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.601907\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.890836\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.303943\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.804804\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.166226\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.441748\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.705601\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.338688\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.177491\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.634994\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.697127\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.244323\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.777727\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.139875\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.394818\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.712763\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.665030\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.104227\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.419312\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.485109\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.239339\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.871509\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.109041\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.574643\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.719001\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.650874\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.101695\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.388229\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.798348\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.210160\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.715481\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.100975\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.346072\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.604082\n", + "Epoch : 16 [20/36(56%)]\tLoss: 2.028958\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.872734\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.228837\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.250448\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.289955\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.631083\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.074980\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.453210\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.687822\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.391468\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.019032\n", + "Epoch : 17 [28/36(78%)]\tLoss: 1.312207\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.146695\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.254507\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.631666\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.140849\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.410497\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.659446\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.298271\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.118127\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.390771\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.611371\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.258669\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.713279\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.089660\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.557009\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.676946\n", + "Epoch : 19 [20/36(56%)]\tLoss: 1.117112\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.892611\n", + "Epoch : 19 [28/36(78%)]\tLoss: 1.314889\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.155126\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.221492\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.473941\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.032379\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.758873\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.661017\n", + "Epoch : 20 [20/36(56%)]\tLoss: 1.126770\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.006455\n", + "Epoch : 20 [28/36(78%)]\tLoss: 1.225380\n", + "Epoch : 20 [32/36(89%)]\tLoss: 0.915053\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.325409\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.613160\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.113020\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.815274\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.616964\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.198993\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.222727\n", + "Epoch : 21 [28/36(78%)]\tLoss: 1.233216\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.025893\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.279736\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.691815\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.035172\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.839721\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.692534\n", + "Epoch : 22 [20/36(56%)]\tLoss: 0.897781\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.851499\n", + "Epoch : 22 [28/36(78%)]\tLoss: 1.015693\n", + "Epoch : 22 [32/36(89%)]\tLoss: 0.812722\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.282135\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.650622\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.036473\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.628985\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.665689\n", + "Epoch : 23 [20/36(56%)]\tLoss: 1.150945\n", + "Epoch : 23 [24/36(67%)]\tLoss: 1.101721\n", + "Epoch : 23 [28/36(78%)]\tLoss: 0.997745\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.786482\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.188634\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.490251\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.026564\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.583439\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.653347\n", + "Epoch : 24 [20/36(56%)]\tLoss: 1.027651\n", + "Epoch : 24 [24/36(67%)]\tLoss: 1.107671\n", + "Epoch : 24 [28/36(78%)]\tLoss: 1.003561\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.985056\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.235578\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.521548\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.021516\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.594579\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.635783\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.886841\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.397382\n", + "Epoch : 25 [28/36(78%)]\tLoss: 0.800382\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.199737\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.257258\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.307401\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.105263\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.899901\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.676924\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.752632\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.034847\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.931745\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.780637\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.205336\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.341148\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.046075\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.596985\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.845197\n", + "Epoch : 27 [20/36(56%)]\tLoss: 1.162509\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.943771\n", + "Epoch : 27 [28/36(78%)]\tLoss: 1.244596\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.850173\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.302596\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.626426\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.003192\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.487129\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.566213\n", + "Epoch : 28 [20/36(56%)]\tLoss: 1.136292\n", + "Epoch : 28 [24/36(67%)]\tLoss: 1.038680\n", + "Epoch : 28 [28/36(78%)]\tLoss: 0.826600\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.850921\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.298646\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.824968\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.126300\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.683915\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.659705\n", + "Epoch : 29 [20/36(56%)]\tLoss: 1.239225\n", + "Epoch : 29 [24/36(67%)]\tLoss: 1.062094\n", + "Epoch : 29 [28/36(78%)]\tLoss: 0.729064\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.791068\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.176875\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.678389\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.069754\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.790670\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.692260\n", + "Epoch : 30 [20/36(56%)]\tLoss: 7.177330\n", + "Epoch : 30 [24/36(67%)]\tLoss: 1.333871\n", + "Epoch : 30 [28/36(78%)]\tLoss: 0.947563\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.668681\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.259787\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.840883\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.080106\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.594849\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.663035\n", + "Epoch : 31 [20/36(56%)]\tLoss: 1.152130\n", + "Epoch : 31 [24/36(67%)]\tLoss: 1.173765\n", + "Epoch : 31 [28/36(78%)]\tLoss: 0.906613\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.875077\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.201324\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.575407\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.095162\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.670027\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.667055\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.827369\n", + "Epoch : 32 [24/36(67%)]\tLoss: 1.134882\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.877958\n", + "Epoch : 32 [32/36(89%)]\tLoss: 1.040859\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.311483\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.295122\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.069388\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.764149\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.663060\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.822622\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.861979\n", + "Epoch : 33 [28/36(78%)]\tLoss: 0.683765\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.795664\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.220188\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.395614\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.012631\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.468721\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.609468\n", + "Epoch : 34 [20/36(56%)]\tLoss: 1.571218\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.942780\n", + "Epoch : 34 [28/36(78%)]\tLoss: 0.667342\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.639270\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.111268\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.406786\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.014386\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.396008\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.474780\n", + "Epoch : 35 [20/36(56%)]\tLoss: 1.037158\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.848000\n", + "Epoch : 35 [28/36(78%)]\tLoss: 0.685111\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.536916\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.212783\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.390522\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.029825\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.544195\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.505634\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.760705\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.064677\n", + "Epoch : 36 [28/36(78%)]\tLoss: 0.982392\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.576115\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.090005\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.603586\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.205031\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.787525\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.553718\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.674552\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.920624\n", + "Epoch : 37 [28/36(78%)]\tLoss: 0.584530\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.692822\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.211059\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.474221\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.100506\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.376175\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.408118\n", + "Epoch : 38 [20/36(56%)]\tLoss: 0.535390\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.847956\n", + "Epoch : 38 [28/36(78%)]\tLoss: 0.474443\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.678652\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.213958\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.491789\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.048985\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.232036\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.341362\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.926125\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.741848\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.454370\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.371919\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.320077\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.579571\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.075181\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.442765\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.351605\n", + "Epoch : 40 [20/36(56%)]\tLoss: 1.147112\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.677181\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.704762\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.749214\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.107579\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.554211\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.566252\n", + "Epoch : 41 [12/36(33%)]\tLoss: 1.300966\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.599777\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.702580\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.629129\n", + "Epoch : 41 [28/36(78%)]\tLoss: 2.076705\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.840158\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.465426\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.134492\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.389072\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.827751\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.392805\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.627393\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.646734\n", + "Epoch : 42 [28/36(78%)]\tLoss: 0.533218\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.637066\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.319011\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.105208\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.414245\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.286981\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.275296\n", + "Epoch : 43 [20/36(56%)]\tLoss: 1.169549\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.673866\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.531706\n", + "Epoch : 43 [32/36(89%)]\tLoss: 1.707745\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.515246\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.639214\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.423705\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.137487\n", + "Epoch : 44 [16/36(44%)]\tLoss: 1.535383\n", + "Epoch : 44 [20/36(56%)]\tLoss: 1.693559\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.847805\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.709790\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.615706\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.381202\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.931999\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.515629\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.673196\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.455281\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.615300\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.686116\n", + "Epoch : 45 [28/36(78%)]\tLoss: 2.956760\n", + "Epoch : 45 [32/36(89%)]\tLoss: 1.258639\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.225284\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.349078\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.319058\n", + "Epoch : 46 [12/36(33%)]\tLoss: 1.019282\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.603605\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.561459\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.574158\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.561689\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.782894\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.177028\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.361765\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.150230\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.231546\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.329950\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.791553\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.530819\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.481696\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.608183\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.132291\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.252605\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.098013\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.442169\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.231510\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.508528\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.678600\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.569393\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.357347\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.211211\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.312520\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.158565\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.211903\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.267517\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.534715\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.615254\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.630902\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.465265\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.192027\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.300459\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.154196\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.293866\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.603823\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.350910\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.433121\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.473831\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.454593\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.215443\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.338208\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.125503\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.199447\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.204286\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.339707\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.276649\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.442768\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.309685\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.118346\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.283389\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.289682\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.429693\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.162503\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.525215\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.040603\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.669338\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.303752\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.292318\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.408160\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.140873\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.229101\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.125848\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.464089\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.444936\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.512228\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.306626\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.213254\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.295851\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.166546\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.391983\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.212332\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.376905\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.446454\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.492346\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.523798\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.208500\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.248432\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.217250\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.248693\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.104377\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.795976\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.495851\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.307004\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.792735\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.300838\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.205890\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.304625\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.072691\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.273948\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.327126\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.299012\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.259623\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.251285\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.336458\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.282970\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.285771\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.430327\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.254634\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.472481\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.357581\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.357599\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.324302\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.108201\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.321074\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.341888\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.410048\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.170829\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.274864\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.363386\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.476253\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.796312\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.217456\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.209296\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.121704\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.416346\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.604036\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.286116\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.405946\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.192211\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.303364\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.156366\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.727453\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.507878\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.216829\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.193050\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.556580\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.687664\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.284035\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.323408\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.214212\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.322329\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.327229\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.538185\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.214761\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.314894\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.421954\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.283905\n", + "Epoch : 61 [32/36(89%)]\tLoss: 1.609789\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.181202\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.323712\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.516159\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.029867\n", + "Epoch : 62 [16/36(44%)]\tLoss: 1.891158\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.642565\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.271594\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.310442\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.061917\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.563131\n", + "Epoch : 63 [4/36(11%)]\tLoss: 1.348441\n", + "Epoch : 63 [8/36(22%)]\tLoss: 1.143388\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.890912\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.463829\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.537648\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.452658\n", + "Epoch : 63 [28/36(78%)]\tLoss: 1.927330\n", + "Epoch : 63 [32/36(89%)]\tLoss: 2.293529\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.521955\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.883223\n", + "Epoch : 64 [8/36(22%)]\tLoss: 1.299450\n", + "Epoch : 64 [12/36(33%)]\tLoss: 2.874102\n", + "Epoch : 64 [16/36(44%)]\tLoss: 3.126369\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.606210\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.264699\n", + "Epoch : 64 [28/36(78%)]\tLoss: 1.507539\n", + "Epoch : 64 [32/36(89%)]\tLoss: 1.839272\n", + "Epoch : 65 [0/36(0%)]\tLoss: 1.513958\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.632273\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.063551\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.608927\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.794150\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.661434\n", + "Epoch : 65 [24/36(67%)]\tLoss: 1.700741\n", + "Epoch : 65 [28/36(78%)]\tLoss: 1.108240\n", + "Epoch : 65 [32/36(89%)]\tLoss: 1.084127\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.150321\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.428379\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.687584\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.406413\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.671758\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.942464\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.980272\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.910581\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.773330\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.469103\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.819890\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.095072\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.296573\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.730371\n", + "Epoch : 67 [20/36(56%)]\tLoss: 1.474878\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.766834\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.790829\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.472869\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.250339\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.813773\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.293705\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.740171\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.367752\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.834471\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.750386\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.917888\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.571776\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.163193\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.504996\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.097153\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.637543\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.260625\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.441842\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.723197\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.709766\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.467952\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.241754\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.280895\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.106272\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.663065\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.366662\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.610149\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.444948\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.491679\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.396119\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.081470\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.278904\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.120683\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.337539\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.332378\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.542705\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.650496\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.499311\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.377318\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.145153\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.297225\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.116741\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.243110\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.282257\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.665525\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.489661\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.632787\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.245755\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.095674\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.125610\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.053363\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.151277\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.429600\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.508097\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.622820\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.270462\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.241315\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.162533\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.236978\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.131869\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.367927\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.128570\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.465932\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.665092\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.343864\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.205061\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.132442\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.150944\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.062029\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.318239\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.247747\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.555007\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.475308\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.280316\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.279637\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.063251\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.306671\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.065456\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.166686\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.127966\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.391144\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.631349\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.311330\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.204353\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.035706\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.136111\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.125628\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.056479\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.157077\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.405887\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.523182\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.246331\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.114866\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.102902\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.137338\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.104113\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.006691\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.200359\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.333012\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.523198\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.213554\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.072793\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.085924\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.132442\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.184248\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.051110\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.308355\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.274818\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.485530\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.008185\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.099772\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.075929\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.308773\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.117741\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.300288\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.237174\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.451547\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.258592\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.309387\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.243807\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.135242\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.202742\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.095907\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.141911\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.140263\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.229159\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.775969\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.264566\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.081775\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.200193\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.142620\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.202016\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.258307\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.176433\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.209134\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.735454\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.100767\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.100012\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.377051\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.105698\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.117482\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.288298\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.147637\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.414139\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.373198\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.291938\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.226411\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.172595\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.178300\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.440807\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.218340\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.486127\n", + "Epoch : 84 [20/36(56%)]\tLoss: 1.282809\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.444271\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.184760\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.115273\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.325070\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.330538\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.056976\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.358510\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.528550\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.967816\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.607179\n", + "Epoch : 85 [28/36(78%)]\tLoss: 1.183985\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.940071\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.407545\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.497968\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.049914\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.208569\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.366293\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.680152\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.291524\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.259932\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.537934\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.164652\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.688735\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.162594\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.609662\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.162876\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.366740\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.146941\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.190490\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.388406\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.298411\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.275639\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.250865\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.066148\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.092317\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.452089\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.256137\n", + "Epoch : 88 [28/36(78%)]\tLoss: 0.139065\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.182627\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.062660\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.184578\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.204156\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.211483\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.208578\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.576237\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.235425\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.208969\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.089103\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.045627\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.150648\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.129253\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.132414\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.038734\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.292482\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.365343\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.454155\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.144237\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.038911\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.172370\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.381255\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.285668\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.136312\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.125911\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.938042\n", + "Epoch : 91 [28/36(78%)]\tLoss: 0.187475\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.140455\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.113074\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.093801\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.335990\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.189334\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.263921\n", + "Epoch : 92 [20/36(56%)]\tLoss: 0.142575\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.342586\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.196353\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.065632\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.293192\n", + "Epoch : 93 [4/36(11%)]\tLoss: 0.239174\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.258075\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.037279\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.511609\n", + "Epoch : 93 [20/36(56%)]\tLoss: 0.548055\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.080696\n", + "Epoch : 93 [28/36(78%)]\tLoss: 0.070793\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.052691\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.249344\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.930163\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.607528\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.323242\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.289688\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.677737\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.402996\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.710464\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.695428\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.054136\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.490700\n", + "Epoch : 95 [8/36(22%)]\tLoss: 1.040517\n", + "Epoch : 95 [12/36(33%)]\tLoss: 1.465859\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.602759\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.201746\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.277809\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.935178\n", + "Epoch : 95 [32/36(89%)]\tLoss: 1.171533\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.424403\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.149444\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.141596\n", + "Epoch : 96 [12/36(33%)]\tLoss: 1.025487\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.486114\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.332159\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.386037\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.090947\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.352635\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.366576\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.519218\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.404184\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.025226\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.247837\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.333755\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.558059\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.611007\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.261694\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.034290\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.350866\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.735698\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.483844\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.313919\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.158761\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.218722\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.985238\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.614888\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.505945\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.200531\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.330490\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.344527\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.658445\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.871481\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.217045\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.241145\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.025871\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.466564\n", + "Epoch : 100 [4/36(11%)]\tLoss: 1.491987\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.480286\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.276590\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.349579\n", + "Epoch : 100 [20/36(56%)]\tLoss: 1.315090\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.871585\n", + "Epoch : 100 [28/36(78%)]\tLoss: 1.173056\n", + "Epoch : 100 [32/36(89%)]\tLoss: 1.047209\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.368527\n", + "Epoch : 101 [4/36(11%)]\tLoss: 1.610930\n", + "Epoch : 101 [8/36(22%)]\tLoss: 2.487082\n", + "Epoch : 101 [12/36(33%)]\tLoss: 2.064581\n", + "Epoch : 101 [16/36(44%)]\tLoss: 1.084912\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.185925\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.910671\n", + "Epoch : 101 [28/36(78%)]\tLoss: 1.319913\n", + "Epoch : 101 [32/36(89%)]\tLoss: 2.001544\n", + "Epoch : 102 [0/36(0%)]\tLoss: 1.217804\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.216069\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.352780\n", + "Epoch : 102 [12/36(33%)]\tLoss: 1.018882\n", + "Epoch : 102 [16/36(44%)]\tLoss: 1.903540\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.846042\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.783748\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.044586\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.677636\n", + "Epoch : 103 [0/36(0%)]\tLoss: 1.282952\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.680631\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.769480\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.742970\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.267123\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.812474\n", + "Epoch : 103 [24/36(67%)]\tLoss: 1.816480\n", + "Epoch : 103 [28/36(78%)]\tLoss: 1.620249\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.842898\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.345515\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.316601\n", + "Epoch : 104 [8/36(22%)]\tLoss: 1.753385\n", + "Epoch : 104 [12/36(33%)]\tLoss: 2.521457\n", + "Epoch : 104 [16/36(44%)]\tLoss: 2.137517\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.696258\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.519588\n", + "Epoch : 104 [28/36(78%)]\tLoss: 1.442366\n", + "Epoch : 104 [32/36(89%)]\tLoss: 1.346217\n", + "Epoch : 105 [0/36(0%)]\tLoss: 1.557215\n", + "Epoch : 105 [4/36(11%)]\tLoss: 1.156546\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.111933\n", + "Epoch : 105 [12/36(33%)]\tLoss: 1.042417\n", + "Epoch : 105 [16/36(44%)]\tLoss: 1.847312\n", + "Epoch : 105 [20/36(56%)]\tLoss: 2.385129\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.745193\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.320209\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.153727\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.982332\n", + "Epoch : 106 [4/36(11%)]\tLoss: 2.455973\n", + "Epoch : 106 [8/36(22%)]\tLoss: 1.356735\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.963758\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.272531\n", + "Epoch : 106 [20/36(56%)]\tLoss: 1.292679\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.979626\n", + "Epoch : 106 [28/36(78%)]\tLoss: 2.315293\n", + "Epoch : 106 [32/36(89%)]\tLoss: 1.150874\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.172189\n", + "Epoch : 107 [4/36(11%)]\tLoss: 1.342926\n", + "Epoch : 107 [8/36(22%)]\tLoss: 2.336282\n", + "Epoch : 107 [12/36(33%)]\tLoss: 1.915788\n", + "Epoch : 107 [16/36(44%)]\tLoss: 1.948109\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.240171\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.516419\n", + "Epoch : 107 [28/36(78%)]\tLoss: 1.961102\n", + "Epoch : 107 [32/36(89%)]\tLoss: 1.818166\n", + "Epoch : 108 [0/36(0%)]\tLoss: 1.168305\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.442858\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.441030\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.707012\n", + "Epoch : 108 [16/36(44%)]\tLoss: 1.096587\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.827338\n", + "Epoch : 108 [24/36(67%)]\tLoss: 1.096673\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.884203\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.957478\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.111324\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.685965\n", + "Epoch : 109 [8/36(22%)]\tLoss: 1.479008\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.680490\n", + "Epoch : 109 [16/36(44%)]\tLoss: 1.298086\n", + "Epoch : 109 [20/36(56%)]\tLoss: 1.462033\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.688733\n", + "Epoch : 109 [28/36(78%)]\tLoss: 2.456834\n", + "Epoch : 109 [32/36(89%)]\tLoss: 2.142493\n", + "Epoch : 110 [0/36(0%)]\tLoss: 1.315638\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.565664\n", + "Epoch : 110 [8/36(22%)]\tLoss: 1.559562\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.925461\n", + "Epoch : 110 [16/36(44%)]\tLoss: 3.443424\n", + "Epoch : 110 [20/36(56%)]\tLoss: 2.555580\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.776097\n", + "Epoch : 110 [28/36(78%)]\tLoss: 1.435572\n", + "Epoch : 110 [32/36(89%)]\tLoss: 1.665921\n", + "Epoch : 111 [0/36(0%)]\tLoss: 2.534986\n", + "Epoch : 111 [4/36(11%)]\tLoss: 2.876002\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.661504\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.400195\n", + "Epoch : 111 [16/36(44%)]\tLoss: 3.138060\n", + "Epoch : 111 [20/36(56%)]\tLoss: 2.538248\n", + "Epoch : 111 [24/36(67%)]\tLoss: 1.406030\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.501683\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.811471\n", + "Epoch : 112 [0/36(0%)]\tLoss: 1.604944\n", + "Epoch : 112 [4/36(11%)]\tLoss: 2.762606\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.859456\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.493165\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.873156\n", + "Epoch : 112 [20/36(56%)]\tLoss: 1.285294\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.749677\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.968677\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.661534\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.143567\n", + "Epoch : 113 [4/36(11%)]\tLoss: 1.824848\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.918096\n", + "Epoch : 113 [12/36(33%)]\tLoss: 1.108273\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.873981\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.848100\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.314627\n", + "Epoch : 113 [28/36(78%)]\tLoss: 3.360894\n", + "Epoch : 113 [32/36(89%)]\tLoss: 1.912980\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.081501\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.925770\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.732214\n", + "Epoch : 114 [12/36(33%)]\tLoss: 1.094064\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.525478\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.615610\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.382156\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.792389\n", + "Epoch : 114 [32/36(89%)]\tLoss: 2.072706\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.220307\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.355828\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.341230\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.814696\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.435748\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.486497\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.580306\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.770756\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.823430\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.106207\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.270015\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.479351\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.357525\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.527198\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.464642\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.287562\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.913644\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.572574\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.376875\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.337195\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.227927\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.531005\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.725528\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.860111\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.149836\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.154198\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.355642\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.228140\n", + "Epoch : 118 [4/36(11%)]\tLoss: 1.100083\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.491557\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.457533\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.086370\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.575712\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.323622\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.311284\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.850377\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.104056\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.120084\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.636667\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.540568\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.481268\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.364084\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.161172\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.452666\n", + "Epoch : 119 [32/36(89%)]\tLoss: 1.563967\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.539343\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.163123\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.166168\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.478062\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.161752\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.213631\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.132084\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.257184\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.959554\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.337999\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.216967\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.913261\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.271391\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.184617\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.332692\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.485930\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.349273\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.221844\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.123642\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.266501\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.645455\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.364885\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.891144\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.367009\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.043511\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.550971\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.589366\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.100228\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.652977\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.209308\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.267916\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.755029\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.484346\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.508038\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.391282\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.342703\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.664237\n", + "Epoch : 124 [4/36(11%)]\tLoss: 1.339889\n", + "Epoch : 124 [8/36(22%)]\tLoss: 1.200587\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.497886\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.180552\n", + "Epoch : 124 [20/36(56%)]\tLoss: 2.471370\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.229604\n", + "Epoch : 124 [28/36(78%)]\tLoss: 1.951035\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.843421\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.668810\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.857353\n", + "Epoch : 125 [8/36(22%)]\tLoss: 2.368669\n", + "Epoch : 125 [12/36(33%)]\tLoss: 2.335781\n", + "Epoch : 125 [16/36(44%)]\tLoss: 1.381999\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.467519\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.321630\n", + "Epoch : 125 [28/36(78%)]\tLoss: 2.108628\n", + "Epoch : 125 [32/36(89%)]\tLoss: 1.636176\n", + "Epoch : 126 [0/36(0%)]\tLoss: 1.921440\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.303990\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.094352\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.861919\n", + "Epoch : 126 [16/36(44%)]\tLoss: 1.938497\n", + "Epoch : 126 [20/36(56%)]\tLoss: 1.464210\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.547380\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.620063\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.578433\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.431242\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.652665\n", + "Epoch : 127 [8/36(22%)]\tLoss: 2.627931\n", + "Epoch : 127 [12/36(33%)]\tLoss: 1.181510\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.455653\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.619634\n", + "Epoch : 127 [24/36(67%)]\tLoss: 1.327902\n", + "Epoch : 127 [28/36(78%)]\tLoss: 3.021381\n", + "Epoch : 127 [32/36(89%)]\tLoss: 2.428126\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.802585\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.367999\n", + "Epoch : 128 [8/36(22%)]\tLoss: 1.607184\n", + "Epoch : 128 [12/36(33%)]\tLoss: 1.662059\n", + "Epoch : 128 [16/36(44%)]\tLoss: 2.231620\n", + "Epoch : 128 [20/36(56%)]\tLoss: 1.318273\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.072702\n", + "Epoch : 128 [28/36(78%)]\tLoss: 1.114653\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.822041\n", + "Epoch : 129 [0/36(0%)]\tLoss: 1.661982\n", + "Epoch : 129 [4/36(11%)]\tLoss: 1.576544\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.313812\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.147829\n", + "Epoch : 129 [16/36(44%)]\tLoss: 1.013267\n", + "Epoch : 129 [20/36(56%)]\tLoss: 2.380790\n", + "Epoch : 129 [24/36(67%)]\tLoss: 1.354441\n", + "Epoch : 129 [28/36(78%)]\tLoss: 2.180645\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.450401\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.068901\n", + "Epoch : 130 [4/36(11%)]\tLoss: 2.079331\n", + "Epoch : 130 [8/36(22%)]\tLoss: 2.936857\n", + "Epoch : 130 [12/36(33%)]\tLoss: 2.176387\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.512367\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.239128\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.467121\n", + "Epoch : 130 [28/36(78%)]\tLoss: 1.619057\n", + "Epoch : 130 [32/36(89%)]\tLoss: 2.209124\n", + "Epoch : 131 [0/36(0%)]\tLoss: 1.204074\n", + "Epoch : 131 [4/36(11%)]\tLoss: 1.180954\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.389891\n", + "Epoch : 131 [12/36(33%)]\tLoss: 1.574300\n", + "Epoch : 131 [16/36(44%)]\tLoss: 2.066967\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.585034\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.529648\n", + "Epoch : 131 [28/36(78%)]\tLoss: 1.298509\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.992852\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.842555\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.636128\n", + "Epoch : 132 [8/36(22%)]\tLoss: 1.054157\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.498725\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.794976\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.721247\n", + "Epoch : 132 [24/36(67%)]\tLoss: 3.045617\n", + "Epoch : 132 [28/36(78%)]\tLoss: 1.534261\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.504259\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.126713\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.420135\n", + "Epoch : 133 [8/36(22%)]\tLoss: 2.492815\n", + "Epoch : 133 [12/36(33%)]\tLoss: 2.023402\n", + "Epoch : 133 [16/36(44%)]\tLoss: 1.074246\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.254337\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.297500\n", + "Epoch : 133 [28/36(78%)]\tLoss: 2.208092\n", + "Epoch : 133 [32/36(89%)]\tLoss: 1.112680\n", + "Epoch : 134 [0/36(0%)]\tLoss: 2.517776\n", + "Epoch : 134 [4/36(11%)]\tLoss: 1.098572\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.739978\n", + "Epoch : 134 [12/36(33%)]\tLoss: 2.256545\n", + "Epoch : 134 [16/36(44%)]\tLoss: 2.180690\n", + "Epoch : 134 [20/36(56%)]\tLoss: 1.368535\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.562183\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.072258\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.135826\n", + "Epoch : 135 [0/36(0%)]\tLoss: 1.296791\n", + "Epoch : 135 [4/36(11%)]\tLoss: 3.831761\n", + "Epoch : 135 [8/36(22%)]\tLoss: 1.849476\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.518481\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.351323\n", + "Epoch : 135 [20/36(56%)]\tLoss: 1.403903\n", + "Epoch : 135 [24/36(67%)]\tLoss: 1.866519\n", + "Epoch : 135 [28/36(78%)]\tLoss: 3.736304\n", + "Epoch : 135 [32/36(89%)]\tLoss: 2.566842\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.135908\n", + "Epoch : 136 [4/36(11%)]\tLoss: 2.151020\n", + "Epoch : 136 [8/36(22%)]\tLoss: 3.086261\n", + "Epoch : 136 [12/36(33%)]\tLoss: 2.884285\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.886967\n", + "Epoch : 136 [20/36(56%)]\tLoss: 0.097184\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.319731\n", + "Epoch : 136 [28/36(78%)]\tLoss: 2.201807\n", + "Epoch : 136 [32/36(89%)]\tLoss: 2.278533\n", + "Epoch : 137 [0/36(0%)]\tLoss: 1.048769\n", + "Epoch : 137 [4/36(11%)]\tLoss: 0.254064\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.071731\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.654794\n", + "Epoch : 137 [16/36(44%)]\tLoss: 1.472877\n", + "Epoch : 137 [20/36(56%)]\tLoss: 0.740893\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.735805\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.393911\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.676991\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.362953\n", + "Epoch : 138 [4/36(11%)]\tLoss: 0.332365\n", + "Epoch : 138 [8/36(22%)]\tLoss: 1.248028\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.863968\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.421722\n", + "Epoch : 138 [20/36(56%)]\tLoss: 0.060245\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.655998\n", + "Epoch : 138 [28/36(78%)]\tLoss: 1.570497\n", + "Epoch : 138 [32/36(89%)]\tLoss: 1.324237\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.812873\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.143892\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.988031\n", + "Epoch : 139 [12/36(33%)]\tLoss: 1.524854\n", + "Epoch : 139 [16/36(44%)]\tLoss: 1.221511\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.394091\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.112385\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.445526\n", + "Epoch : 139 [32/36(89%)]\tLoss: 1.224864\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.808468\n", + "Epoch : 140 [4/36(11%)]\tLoss: 1.002913\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.235973\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.098136\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.673696\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.375455\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.820021\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.734001\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.155713\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.271076\n", + "Epoch : 141 [4/36(11%)]\tLoss: 1.196404\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.839406\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.568459\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.037162\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.118469\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.335426\n", + "Epoch : 141 [28/36(78%)]\tLoss: 1.790960\n", + "Epoch : 141 [32/36(89%)]\tLoss: 1.002926\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.427064\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.308203\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.631136\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.650885\n", + "Epoch : 142 [16/36(44%)]\tLoss: 1.202445\n", + "Epoch : 142 [20/36(56%)]\tLoss: 0.169802\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.205490\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.515088\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.338237\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.323473\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.222210\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.219256\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.109114\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.184928\n", + "Epoch : 143 [20/36(56%)]\tLoss: 0.440223\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.376221\n", + "Epoch : 143 [28/36(78%)]\tLoss: 0.570576\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.398297\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.151355\n", + "Epoch : 144 [4/36(11%)]\tLoss: 0.118475\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.302608\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.407753\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.134990\n", + "Epoch : 144 [20/36(56%)]\tLoss: 0.293589\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.580838\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.715597\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.166032\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.633134\n", + "Epoch : 145 [4/36(11%)]\tLoss: 0.299505\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.178851\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.242868\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.057160\n", + "Epoch : 145 [20/36(56%)]\tLoss: 0.193053\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.156066\n", + "Epoch : 145 [28/36(78%)]\tLoss: 0.341833\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.112574\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.035784\n", + "Epoch : 146 [4/36(11%)]\tLoss: 0.352332\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.118474\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.164851\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.091442\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.087206\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.045006\n", + "Epoch : 146 [28/36(78%)]\tLoss: 0.211476\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.063939\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.037456\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.081085\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.065085\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.286722\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.065906\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.055466\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.128045\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.096727\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.065004\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.108625\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.155509\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.039967\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.152228\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.045578\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.115440\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.052350\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.073555\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.121440\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.189385\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.057880\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.137311\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.311848\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.127137\n", + "Epoch : 149 [20/36(56%)]\tLoss: 0.064228\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.047306\n", + "Epoch : 149 [28/36(78%)]\tLoss: 0.202856\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.317108\n", + "--- 0.06582655111948649 minutes ---\n" ] } ], @@ -2185,7 +2185,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADW4UlEQVR4nOzdd3gUVdsG8HvTe6ElhBIQkRC6NJFeFFHpoGJD4JX31SgK2PhUQEVRsCIRLAg2LIAgWCgiICBIR3qR0HtJQnqb74+TszNbs7vZzZbcv+vKNZvNlsmm7NzzPOccnaIoCoiIiIiIiIioQvm5eweIiIiIiIiIKiMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiL9StWzd069bN5ts2bdrUtTtUql69enjkkUcq5LmIvB0DOVElMm/ePOh0Ouh0OmzYsMHk64qioE6dOtDpdLj77rv112dlZWHSpElo2rQpwsPDUbVqVbRs2RJPPfUUzp49q7/d5MmT9Y9v7uP8+fMV8n0SERHZSr43btu2zd27Um5nz57F5MmTsWvXLnfvitPUq1cPOp0OvXr1Mvv1Tz/9VH+cYfwz3LBhA/r06YNatWohJCQEdevWRd++fTF//nyD21k7dvnf//7nsu+NCAAC3L0DRFTxQkJCMH/+fHTq1Mng+nXr1uH06dMIDg7WX1dYWIguXbrg4MGDGD58OJ588klkZWVh3759mD9/PgYOHIiEhASDx5k1axYiIiJMnjcmJsYl3w8REVFltHLlSoPPz549i1deeQX16tVDy5Yt3bNTAA4dOgQ/P+fV/UJCQrBmzRqcP38e8fHxBl/75ptvEBISgry8PIPrFyxYgHvvvVdfQIiNjUVaWhr+/PNPfPrpp7j//vsNbn/bbbfh4YcfNnnum266yWnfB5E5DOREldCdd96JBQsWYMaMGQgIUP8NzJ8/H61bt8bly5f11y1ZsgQ7d+7EN998Y/LmlZeXh4KCApPHHzJkCKpVq+a6b4CIiKgSy8nJQVhYGIKCgty9K2ZpT+w7Q8eOHbF161Z8//33eOqpp/TXnz59GuvXr8fAgQOxaNEig/tMnjwZycnJ2Lx5s8nrdPHiRZPnuOmmm/Dggw86db+JbMGWdaJKaNiwYbhy5QpWrVqlv66goAALFy40Cd3//vsvAPFmaCwkJARRUVGu3VkiIiIPsHPnTvTp0wdRUVGIiIhAz549sXnzZpPb/fPPP+jatStCQ0NRu3ZtTJkyBXPnzoVOp8Px48f1t/vpp59w1113ISEhAcHBwWjQoAFee+01FBcXGzyeHPu9fft2dOnSBWFhYfi///s//dfkGPK1a9eibdu2AIARI0boW67nzZtn8Hj79+9H9+7dERYWhlq1amHatGkGX1+7di10Oh1++OEHvPLKK6hVqxYiIyMxZMgQZGRkID8/H08//TRq1KiBiIgIjBgxAvn5+QaPYW4MeXp6OsaOHYt69eohODgYtWvXxsMPP2xQBLAkJCQEgwYNMmk1//bbbxEbG4vevXub3Offf/9F27ZtzZ60qFGjRpnPSVRRWCEnqoTq1auHDh064Ntvv0WfPn0AAL/99hsyMjJw3333YcaMGfrbJiYmAgC+/PJLvPTSS9DpdGU+/tWrV02uCwgIYMs6ERF5pX379qFz586IiorCc889h8DAQHz88cfo1q0b1q1bh/bt2wMAzpw5g+7du0On02HChAkIDw/HZ599ZrZiPG/ePERERGDcuHGIiIjAH3/8gYkTJyIzMxPTp083uO2VK1fQp08f3HfffXjwwQcRFxdn8niNGzfGq6++iokTJ2L06NHo3LkzAODWW2/V3+batWu44447MGjQINxzzz1YuHAhnn/+eTRr1kx/PCBNnToVoaGheOGFF3D06FF8+OGHCAwMhJ+fH65du4bJkydj8+bNmDdvHurXr4+JEydafP2ysrLQuXNnHDhwACNHjsTNN9+My5cvY+nSpTh9+rRNXXX3338/br/9dvz7779o0KABANHZN2TIEAQGBprcPjExEatXr8bp06dRu3btMh8/Ly/P7MmBqKgoj+1EIB+hEFGlMXfuXAWAsnXrVmXmzJlKZGSkkpOToyiKogwdOlTp3r27oiiKkpiYqNx1112KoihKTk6O0qhRIwWAkpiYqDzyyCPKnDlzlAsXLpg8/qRJkxQAZj8aNWpUcd8oERGRjbTvjZYMGDBACQoKUv7991/9dWfPnlUiIyOVLl266K978sknFZ1Op+zcuVN/3ZUrV5QqVaooAJS0tDT99fL9V+u///2vEhYWpuTl5emv69q1qwJAmT17tsntu3btqnTt2lX/+datWxUAyty5c83eFoDy5Zdf6q/Lz89X4uPjlcGDB+uvW7NmjQJAadq0qVJQUKC/ftiwYYpOp1P69Olj8LgdOnRQEhMTDa5LTExUhg8frv984sSJCgDlxx9/NNmvkpISk+uMH+uuu+5SioqKlPj4eOW1115TFEVR9u/frwBQ1q1bZ/ZnOGfOHAWAEhQUpHTv3l15+eWXlfXr1yvFxcUmz2Hp2AWA8u2331rdP6LyYss6USV1zz33IDc3Fz///DOuX7+On3/+2aRdHQBCQ0Px999/49lnnwUgzuiPGjUKNWvWxJNPPmnSpgYAixYtwqpVqww+5s6d6/LviYiIyNmKi4uxcuVKDBgwADfccIP++po1a+L+++/Hhg0bkJmZCQBYvnw5OnToYDChWpUqVfDAAw+YPG5oaKj+8vXr13H58mV07twZOTk5OHjwoMFtg4ODMWLEiHJ/LxEREQbjpIOCgtCuXTscO3bM5LYPP/ywQeW5ffv2UBQFI0eONLhd+/btcerUKRQVFVl83kWLFqFFixYYOHCgydds6bwDAH9/f9xzzz349ttvAYjJ3OrUqaPvBDA2cuRILF++HN26dcOGDRvw2muvoXPnzmjYsCH++usvk9v379/f5Nhl1apV6N69u037R+QotqwTVVLVq1dHr169MH/+fOTk5KC4uBhDhgwxe9vo6GhMmzYN06ZNw4kTJ7B69Wq8/fbbmDlzJqKjozFlyhSD23fp0oWTuhERkU+4dOkScnJy0KhRI5OvNW7cGCUlJTh16hSaNGmCEydOoEOHDia3u/HGG02u27dvH1566SX88ccf+kAvZWRkGHxeq1Ytp7RN165d2yQAx8bG4p9//jG5bd26dQ0+j46OBgDUqVPH5PqSkhJkZGSgatWqZp/333//xeDBg8uz6wBE2/qMGTOwe/duzJ8/H/fdd5/VQN+7d2/07t0bOTk52L59O77//nvMnj0bd999Nw4ePGgwlrx27doWl1YjciVWyIkqsfvvvx+//fYbZs+ejT59+tg0xjsxMREjR47Exo0bERMTg2+++cb1O0pERORD0tPT0bVrV+zevRuvvvoqli1bhlWrVuGtt94CAJSUlBjcXltNLw9/f3+z1yuKYvNt7XkMZ2vfvj0aNGiAp59+GmlpaWY7+8wJCwtD586dMXPmTLz00ku4du0afvvtNxfvLZFtWCEnqsQGDhyI//73v9i8eTO+//57u+4bGxuLBg0aYO/evS7aOyIiIverXr06wsLCcOjQIZOvHTx4EH5+fvqqcWJiIo4ePWpyO+Pr1q5diytXruDHH39Ely5d9NenpaWVa19tbf+uaM48Xhg2bBimTJmCxo0bO7TWeps2bQAA586dc8r+EJUXK+RElVhERARmzZqFyZMno2/fvmZvs3v3brOzjp44cQL79+8328JHRETkK/z9/XH77bfjp59+Mli27MKFC5g/fz46deqkXwK0d+/e2LRpE3bt2qW/3dWrV026yWSVWVtVLigowEcffVSufQ0PDwcgKvCeZPDgwdi9ezcWL15s8jV7K+v/+c9/MGnSJLzzzjtWb7d69Wqz1//6668AwOMX8hiskBNVcsOHD7f69VWrVmHSpEno168fbrnlFkRERODYsWP4/PPPkZ+fj8mTJ5vcZ+HChYiIiDC5/rbbbjO7VAsREZG7ff7551i+fLnJ9U899RSmTJmCVatWoVOnTnj88ccREBCAjz/+GPn5+QbreD/33HP4+uuvcdttt+HJJ5/UL3tWt25dXL16VV/BvvXWWxEbG4vhw4djzJgx0Ol0+Oqrr8rd9t2gQQPExMRg9uzZiIyMRHh4ONq3b4/69euX63HL69lnn8XChQsxdOhQjBw5Eq1bt8bVq1exdOlSzJ49Gy1atLD5sRITE80eexjr378/6tevj759+6JBgwbIzs7G77//jmXLlqFt27YmhYjDhw/j66+/NnmcuLg43HbbbTbvH5G9GMiJyKrBgwfj+vXrWLlyJf744w9cvXoVsbGxaNeuHcaPH2929tHHHnvM7GOtWbOGgZyIiDzSrFmzzF7/yCOPoEmTJli/fj0mTJiAqVOnoqSkBO3bt8fXX3+tX4McEBOerVmzBmPGjMEbb7yB6tWrIyUlBeHh4RgzZgxCQkIAAFWrVsXPP/+M8ePH46WXXkJsbCwefPBB9OzZE71793b4ewgMDMQXX3yBCRMm4H//+x+Kioowd+5ctwfyiIgIrF+/HpMmTcLixYvxxRdfoEaNGujZs6dNa4Q74rPPPsNPP/2EH374AWfPnoWiKLjhhhvw4osv4vnnn0dAgGEMkrOqG+vatSsDObmUTqmIGRiIiIiIiCqpp59+Gh9//DGysrIsTopGRJUTx5ATERERETlJbm6uwedXrlzBV199hU6dOjGME5EJtqwTERERETlJhw4d0K1bNzRu3BgXLlzAnDlzkJmZiZdfftndu0ZEHoiBnIiIiIjISe68804sXLgQn3zyCXQ6HW6++WbMmTPHYHkzIiKJY8iJiIiIiIiI3IBjyImIiIiIiIjcgIGciIiIiIiIyA18fgx5SUkJzp49i8jISOh0OnfvDhERERRFwfXr15GQkAA/P54bLy++1xMRkaex9b3e5wP52bNnUadOHXfvBhERkYlTp06hdu3a7t4Nr8f3eiIi8lRlvdf7fCCPjIwEIF6IqKgoN+8NERERkJmZiTp16ujfo6h8+F5PRESextb3ep8P5LJ1LSoqim/SRETkUdhe7Rx8ryciIk9V1ns9B64RERGRV0pNTUVycjLatm3r7l0hIiJyCAM5EREReaWUlBTs378fW7dudfeuEBEROYSBnIiIiIiIiMgNfH4MORGRrRRFQVFREYqLi929K+Tl/P39ERAQwDHiREQehu/15CzOeq9nICciAlBQUIBz584hJyfH3btCPiIsLAw1a9ZEUFCQu3eFiIjA93pyPme81zOQE1GlV1JSgrS0NPj7+yMhIQFBQUGsbJLDFEVBQUEBLl26hLS0NDRs2BB+fhwhRkTkTnyvJ2dy5ns9AzkRVXoFBQUoKSlBnTp1EBYW5u7dIR8QGhqKwMBAnDhxAgUFBQgJCXH3Lvmk1NRUpKamsvWUiMrE93pyNme91/OUPRFRKVYxyZn4++R6nGWdiOzF/83kTM74feJvJBEREREREZEbMJATERERERERuQEDORER6dWrVw/vv/++zbdfu3YtdDod0tPTXbZPADBv3jzExMS49DmIiIgqC77few4GciIiL6TT6ax+TJ482aHH3bp1K0aPHm3z7W+99VacO3cO0dHRDj0fERERWcb3e9/HWdaJiLzQuXPn9Je///57TJw4EYcOHdJfFxERob+sKAqKi4sREFD2v/zq1avbtR9BQUGIj4+36z5EzsJZ1onI1/H93vexQm6Hzp2BZs2AtDR37wkRuZKiANnZ7vlQFNv2MT4+Xv8RHR0NnU6n//zgwYOIjIzEb7/9htatWyM4OBgbNmzAv//+i/79+yMuLg4RERFo27Ytfv/9d4PHNW5h0+l0+OyzzzBw4ECEhYWhYcOGWLp0qf7rxi1sstVsxYoVaNy4MSIiInDHHXcYHFAUFRVhzJgxiImJQdWqVfH8889j+PDhGDBggF0/p1mzZqFBgwYICgpCo0aN8NVXX2l+hgomT56MunXrIjg4GAkJCRgzZoz+6x999BEaNmyIkJAQxMXFYciQIXY9N3kGV8yy/vzz4r1+/nynPSQReSh3vd/b+l4P8P0e8P33ewZyO+zfD+zdC+TluXtPiMiVcnKAiAj3fOTkOO/7eOGFF/Dmm2/iwIEDaN68ObKysnDnnXdi9erV2LlzJ+644w707dsXJ0+etPo4r7zyCu655x78888/uPPOO/HAAw/g6tWrVl6/HLz99tv46quv8Oeff+LkyZN45pln9F9/66238M0332Du3LnYuHEjMjMzsWTJEru+t8WLF+Opp57C+PHjsXfvXvz3v//FiBEjsGbNGgDAokWL8N577+Hjjz/GkSNHsGTJEjRr1gwAsG3bNowZMwavvvoqDh06hOXLl6NLly52PT/5rlOnxHv9xYvu3hMicjV3vd87870e4Pu917/fKz4uIyNDAaBkZGSU+7GqVVMUQFH27nXCjhGRx8jNzVX279+v5ObmKoqiKFlZ4m/dHR9ZWfbv/9y5c5Xo6Gj952vWrFEAKEuWLCnzvk2aNFE+/PBD/eeJiYnKe++9p/8cgPLSSy/pP8/KylIAKL/99pvBc127dk2/LwCUo0eP6u+TmpqqxMXF6T+Pi4tTpk+frv+8qKhIqVu3rtK/f3+bv8dbb71VefTRRw1uM3ToUOXOO+9UFEVR3nnnHeWmm25SCgoKTB5r0aJFSlRUlJKZmWnx+ZzB+PdKy5nvTeTc1/Phh8Xf4rRpTtgxIvIY5v4nu+v93pH3ekXh+73kSe/3znivZ4XcDnLd95IS9+4HEblWWBiQleWej7Aw530fbdq0Mfg8KysLzzzzDBo3boyYmBhERETgwIEDZZ4xb968uf5yeHg4oqKicNFK+TAsLAwNGjTQf16zZk397TMyMnDhwgW0a9dO/3V/f3+0bt3aru/twIED6Nixo8F1HTt2xIEDBwAAQ4cORW5uLm644QY8+uijWLx4MYqKigAAt912GxITE3HDDTfgoYcewjfffIMcZ5cryGsFBoptYaF794OIXM9d7/fOfK8H+H7v7e/3DOR2YCAnqhx0OiA83D0fOp3zvo/w8HCDz5955hksXrwYb7zxBtavX49du3ahWbNmKCgosPo4gTKh6F8fHUqs/CM0d3vFngFzTlCnTh0cOnQIH330EUJDQ/H444+jS5cuKCwsRGRkJHbs2IFvv/0WNWvWxMSJE9GiRQuXL+VC3oGBnKjycNf7vTPf6wG+33v7+z0DuR0YyInIm23cuBGPPPIIBg4ciGbNmiE+Ph7Hjx+v0H2Ijo5GXFycwSRcxcXF2LFjh12P07hxY2zcuNHguo0bNyI5OVn/eWhoKPr27YsZM2Zg7dq12LRpE/bs2QMACAgIQK9evTBt2jT8888/OH78OP74449yfGfkKxjIicjb8f3eu97vueyZHRjIicibNWzYED/++CP69u0LnU6Hl19+2eqZb1d58sknMXXqVNx4441ISkrChx9+iGvXrkFnR8ng2WefxT333INWrVqhV69eWLZsGX788Uf9LLLz5s1DcXEx2rdvj7CwMHz99dcIDQ1FYmIifv75Zxw7dgxdunRBbGwsfv31V5SUlKBRo0au+pbJRVyx7BkDORF5O77fe9f7PQO5HRjIicibvfvuuxg5ciRuvfVWVKtWDc8//zwyMzMrfD+ef/55nD9/Hg8//DD8/f0xevRo9O7dG/7+/jY/xoABA/DBBx/g7bffxlNPPYX69etj7ty56NatGwAgJiYGb775JsaNG4fi4mI0a9YMy5YtQ9WqVRETE4Mff/wRkydPRl5eHho2bIhvv/0WTZo0cdF3TK6SkpKClJQUZGZmIjo62imPyUBORN6O7/fe9X6vUyq60b+CyTfpjIwMREVFleux6tcHjh8HNm8G2rd3zv4Rkfvl5eUhLS0N9evXR0hIiLt3p9IpKSlB48aNcc899+C1115z9+44jbXfK2e+N5FzX8+XXwamTAGeeAL48EMn7SARuR3f693PF9/vnfFezwq5HVghJyIqvxMnTmDlypXo2rUr8vPzMXPmTKSlpeH+++93964RsUJOROQkfL+3DSd1swMDORFR+fn5+WHevHlo27YtOnbsiD179uD3339H48aN3b1rRAzkREROwvd727BCbgcGciKi8qtTp47JjKlEnoKBnIjIOfh+bxtWyO3AQE5EROTbGMiJiKgiMZDbgYGciIjItzGQExFRRWIgtwMDORERkW9jICcioorEQG4HBnIiIiLPkZqaiuTkZLRt29Zpj8lATkREFYmB3A4M5ERERJ4jJSUF+/fvx9atW532mAzkRERUkRjI7cBATkRE5NtkIC8ocO9+EBFR5cBAbgcGciLyNd26dcPTTz+t/7xevXp4//33rd5Hp9NhyZIl5X5uZz2ONZMnT0bLli1d+hzkW1ghJyJfxPd7z8VAbgcGciLyFH379sUdd9xh9mvr16+HTqfDP//8Y/fjbt26FaNHjy7v7hmw9CZ57tw59OnTx6nPRVReDORE5En4fu/7GMjtwEBORJ5i1KhRWLVqFU6fPm3ytblz56JNmzZo3ry53Y9bvXp1hIWFOWMXyxQfH4/g4OAKeS4iWzGQE5En4fu972MgtwMDOVEloShAdrZ7PhTFpl28++67Ub16dcybN8/g+qysLCxYsACjRo3ClStXMGzYMNSqVQthYWFo1qwZvv32W6uPa9zCduTIEXTp0gUhISFITk7GqlWrTO7z/PPP46abbkJYWBhuuOEGvPzyyygsTTPz5s3DK6+8gt27d0On00Gn0+n32biFbc+ePejRowdCQ0NRtWpVjB49GllZWfqvP/LIIxgwYADefvtt1KxZE1WrVkVKSor+uWxRUlKCV199FbVr10ZwcDBatmyJ5cuX679eUFCAJ554AjVr1kRISAgSExMxdepUAICiKJg8eTLq1q2L4OBgJCQkYMyYMTY/N3kHBnKiSsRd7/c2vtcDfL+vDO/3AS57ZB/EQE5USeTkABER7nnurCwgPLzMmwUEBODhhx/GvHnz8OKLL0Kn0wEAFixYgOLiYgwbNgxZWVlo3bo1nn/+eURFReGXX37BQw89hAYNGqBdu3ZlPkdJSQkGDRqEuLg4/P3338jIyDAYfyZFRkZi3rx5SEhIwJ49e/Doo48iMjISzz33HO69917s3bsXy5cvx++//w4AiI6ONnmM7Oxs9O7dGx06dMDWrVtx8eJF/Oc//8ETTzxhcBCyZs0a1KxZE2vWrMHRo0dx7733omXLlnj00UfL/H4A4IMPPsA777yDjz/+GK1atcLnn3+Ofv36Yd++fWjYsCFmzJiBpUuX4ocffkDdunVx6tQpnDp1CgCwaNEivPfee/juu+/QpEkTnD9/Hrt377bpecl7BAWJLQM5USXgrvd7G9/rAb7fV4r3e8XHZWRkKACUjIyMcj9Wly6KAijKDz84YceIyGPk5uYq+/fvV3Jzc8UVWVnij90dH1lZNu/3gQMHFADKmjVr9Nd17txZefDBBy3e56677lLGjx+v/7xr167KU089pf88MTFRee+99xRFUZQVK1YoAQEBypkzZ/Rf/+233xQAyuLFiy0+x/Tp05XWrVvrP580aZLSokULk9tpH+eTTz5RYmNjlSzN9//LL78ofn5+yvnz5xVFUZThw4criYmJSlFRkf42Q4cOVe69916L+2L83AkJCcrrr79ucJu2bdsqjz/+uKIoivLkk08qPXr0UEpKSkwe65133lFuuukmpaCgwOLzaZn8Xmk4872JnPt6bt4s/hTr1XPCjhGRxzD7P9ld7/d2vNcrCt/vFcVz3++d8V7PlnU7sEJOVEmEhYmz1+74sGM8V1JSEm699VZ8/vnnAICjR49i/fr1GDVqFACguLgYr732Gpo1a4YqVaogIiICK1aswMmTJ216/AMHDqBOnTpISEjQX9ehQweT233//ffo2LEj4uPjERERgZdeesnm59A+V4sWLRCuqRh07NgRJSUlOHTokP66Jk2awN/fX/95zZo1cfHiRZueIzMzE2fPnkXHjh0Nru/YsSMOHDgAQLTJ7dq1C40aNcKYMWOwcuVK/e2GDh2K3Nxc3HDDDXj00UexePFiFBUV2fV9kudjyzpRJeKu93s7x27z/d633+8ZyO3AQE5USeh0opXMHR+lrWi2GjVqFBYtWoTr169j7ty5aNCgAbp27QoAmD59Oj744AM8//zzWLNmDXbt2oXevXujwIkLLG/atAkPPPAA7rzzTvz888/YuXMnXnzxRac+h1agTEuldDodSpz4T/nmm29GWloaXnvtNeTm5uKee+7BkCFDAAB16tTBoUOH8NFHHyE0NBSPP/44unTpYteYNnKu1NRUJCcno23btk57TAZyokrEXe/3dr7XA3y/9+X3ewZyOzCQE5Gnueeee+Dn54f58+fjyy+/xMiRI/XjyzZu3Ij+/fvjwQcfRIsWLXDDDTfg8OHDNj9248aNcerUKZw7d05/3ebNmw1u89dffyExMREvvvgi2rRpg4YNG+LEiRMGtwkKCkJxcXGZz7V7925kZ2frr9u4cSP8/PzQqFEjm/fZmqioKCQkJGDjxo0G12/cuBHJyckGt7v33nvx6aef4vvvv8eiRYtw9epVAEBoaCj69u2LGTNmYO3atdi0aRP27NnjlP0j+6WkpGD//v3YunWr0x6TgZyIPBHf723nbe/3nNTNDgzkRORpIiIicO+992LChAnIzMzEI488ov9aw4YNsXDhQvz111+IjY3Fu+++iwsXLhi8GVnTq1cv3HTTTRg+fDimT5+OzMxMvPjiiwa3adiwIU6ePInvvvsObdu2xS+//ILFixcb3KZevXpIS0vDrl27ULt2bURGRposf/LAAw9g0qRJGD58OCZPnoxLly7hySefxEMPPYS4uDjHXhwznn32WUyaNAkNGjRAy5YtMXfuXOzatQvffPMNAODdd99FzZo10apVK/j5+WHBggWIj49HTEwM5s2bh+LiYrRv3x5hYWH4+uuvERoaisTERKftH7kfAzkReSK+39vHm97vWSG3AwM5EXmiUaNG4dq1a+jdu7fB+K+XXnoJN998M3r37o1u3bohPj4eAwYMsPlx/fz8sHjxYuTm5qJdu3b4z3/+g9dff93gNv369cPYsWPxxBNPoGXLlvjrr7/w8ssvG9xm8ODBuOOOO9C9e3dUr17d7FIsYWFhWLFiBa5evYq2bdtiyJAh6NmzJ2bOnGnfi1GGMWPGYNy4cRg/fjyaNWuG5cuXY+nSpWjYsCEAMYPstGnT0KZNG7Rt2xbHjx/Hr7/+Cj8/P8TExODTTz9Fx44d0bx5c/z+++9YtmwZqlat6tR9JPdiICciT8X3e9t50/u9TlHsWAjPC2VmZiI6OhoZGRmIiooq12PddRfw66/A558DI0Y4aQeJyO3y8vKQlpaG+vXrIyQkxN27Qz7C2u+VM9+byLmv57lzQEKCOAlfRuclEXkRvteTKzjjvZ4VcjuwQk5EROTbZIW8pITv90RE5HpuD+RnzpzBgw8+iKpVqyI0NBTNmjXDtm3b9F9XFAUTJ05EzZo1ERoail69euHIkSNu2VcGciIiIt+mndiXbetERORqbg3k165dQ8eOHREYGIjffvsN+/fvxzvvvIPY2Fj9baZNm4YZM2Zg9uzZ+PvvvxEeHo7evXsjLy+vwveXgZyIiMi3MZATEVFFcuss62+99Rbq1KmDuXPn6q+rX7++/rKiKHj//ffx0ksvoX///gCAL7/8EnFxcViyZAnuu+++Ct1fBnIiIiLfxkBOREQVya0V8qVLl6JNmzYYOnQoatSogVatWuHTTz/Vfz0tLQ3nz59Hr1699NdFR0ejffv22LRpk9nHzM/PR2ZmpsGHszCQE/k2H5/jkioYf5+8U4CmVMFATuR7+L+ZnMkZv09uDeTHjh3DrFmz0LBhQ6xYsQKPPfYYxowZgy+++AIAcP78eQAwWZMuLi5O/zVjU6dORXR0tP6jTp06TttfBnIi3xRYWhLLyclx856QL5G/T4Hakit5PJ1ODeUM5ES+g+/15ArOeK93a8t6SUkJ2rRpgzfeeAMA0KpVK+zduxezZ8/G8OHDHXrMCRMmYNy4cfrPMzMznRbKGciJfJO/vz9iYmJw8eJFAGKNTJ1O5+a9Im+lKApycnJw8eJFxMTEwN/f3927RHYKDASKihjIiXwJ3+vJmZz5Xu/WQF6zZk0kJycbXNe4cWMsWrQIABAfHw8AuHDhAmrWrKm/zYULF9CyZUuzjxkcHIzg4GCX7C8DOZHvkv9v5Bs1UXnFxMTof6/IuwQGArm5DOREvobv9eRsznivd2sg79ixIw4dOmRw3eHDh5GYmAhATPAWHx+P1atX6wN4ZmYm/v77bzz22GMVvbsM5EQ+TKfToWbNmqhRowYKeRRO5RQYGMjKeAVITU1FamoqiouLnfq4svOwoMCpD0tEbsb3enImZ73XuzWQjx07FrfeeiveeOMN3HPPPdiyZQs++eQTfPLJJwDEH83TTz+NKVOmoGHDhqhfvz5efvllJCQkYMCAARW+v/L1ZiAn8l3+/v4MUkReIiUlBSkpKcjMzER0dLTTHlcGch6vE/kmvteTJ3FrIG/bti0WL16MCRMm4NVXX0X9+vXx/vvv44EHHtDf5rnnnkN2djZGjx6N9PR0dOrUCcuXL0dISEiF7y8r5ERERL6PgZyIiCqKWwM5ANx99924++67LX5dp9Ph1VdfxauvvlqBe2UeAzkREZHvYyAnIqKK4tZlz7wNAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL4vKEhsGciJiMjVGMjtIAO5k1dXISIiIg/CCjkREVUUBnI7sEJORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL6PgZyIiCoKA7kdGMiJiIh8HwM5ERFVFAZyOzCQExER+T4GciIiqigM5HZgICciIvJ9DORERFRRGMjtwEBORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIiz5Gamork5GS0bdvWqY/LQE5ERBWFgdwODORERESeIyUlBfv378fWrVud+rgykBcUOPVhiYiITDCQ24GBnIiIyPexQk5ERBWFgdwODORERES+j4GciIgqCgO5HRjIiYiIfB8DORERVRQGcjswkBMREfk+BnIiIqooDOR2YCAnIiLyfQzkRERUURjI7cBATkRE5PsYyImIqKIwkNuBgZyIiMj3BQWJLQM5ERG5GgO5HRjIiYiIfB8r5EREVFEYyO3AQE5EROT7GMiJiKiiMJDbgYGciIjI9zGQExFRRWEgtwMDORERke9jICcioorCQG4HBnIiIiLfx0BOREQVhYHcDgzkREREvo+BnIiIKgoDuR0YyImIiHwfAzkREVUUBnI7MJATERH5PgZyIiKqKAzkdmAgJyIi8n0mgfzqVWDaNODMGbftExER+SYGcjswkBMREfk+k0A+Zw7w/PPAe++5bZ+IiMg3MZDbgYGciIjI95kE8osXxTYjwy37Q0REvouB3A4M5ERERL7PJJBnZYltUZFb9oeIiHwXA7kdGMiJiIh8n0kgz842uoKIiMg5GMjtwEBORETk+2QgLygovYIVciIichEGcjswkBMREfk+bYVcUcBATkRELsNAbgcGciIiIt8nAzkAFBdDbVlnICciIidjILcDAzkREZHv0wbywkKoFXKOISciIidjILcDAzkREZHvMwnkrJATEZGLuDWQT548GTqdzuAjKSlJ//W8vDykpKSgatWqiIiIwODBg3HhwgW37S8DORERkWsMHDgQsbGxGDJkiLt3xXKFnIGciIiczO0V8iZNmuDcuXP6jw0bNui/NnbsWCxbtgwLFizAunXrcPbsWQwaNMht+8pATkRE5BpPPfUUvvzyS3fvBgDA31+9zEBORESuFOD2HQgIQHx8vMn1GRkZmDNnDubPn48ePXoAAObOnYvGjRtj8+bNuOWWWyp6VxnIiYiIXKRbt25Yu3atu3cDAKDTiSp5YSFQmF8C5OSIL3AMOREROZnbK+RHjhxBQkICbrjhBjzwwAM4efIkAGD79u0oLCxEr1699LdNSkpC3bp1sWnTJouPl5+fj8zMTIMPZ2EgJyIiMvXnn3+ib9++SEhIgE6nw5IlS0xuk5qainr16iEkJATt27fHli1bKn5H7RAUJLZF13NL1z4DK+REROR0bg3k7du3x7x587B8+XLMmjULaWlp6Ny5M65fv47z588jKCgIMTExBveJi4vD+fPnLT7m1KlTER0drf+oU6eO0/aXgZyIiMhUdnY2WrRogdTUVLNf//777zFu3DhMmjQJO3bsQIsWLdC7d29cvHixgvfUdnIceXFmtnolAzkRETmZW1vW+/Tpo7/cvHlztG/fHomJifjhhx8QGhrq0GNOmDAB48aN03+emZnptFDOQE5ERGSqT58+Bu/pxt599108+uijGDFiBABg9uzZ+OWXX/D555/jhRdesPv58vPzkZ+fr//cmd1wkj6QZ2SpV7JlnYiInMztLetaMTExuOmmm3D06FHEx8ejoKAA6enpBre5cOGC2THnUnBwMKKiogw+nIWBnIiIyD4FBQXYvn27wRA0Pz8/9OrVy+oQNGtc2Q0nyUBekqkJ5KyQExGRk3lUIM/KysK///6LmjVronXr1ggMDMTq1av1Xz906BBOnjyJDh06uGX/GMiJiIjsc/nyZRQXFyMuLs7geuMhaL169cLQoUPx66+/onbt2lbD+oQJE5CRkaH/OHXqlNP3WwZyJYst60RE5DpubVl/5pln0LdvXyQmJuLs2bOYNGkS/P39MWzYMERHR2PUqFEYN24cqlSpgqioKDz55JPo0KGDW2ZYBxjIiYiIXOX333+3+bbBwcEIDg524d5oKuTXWSEnIiLXcWsgP336NIYNG4YrV66gevXq6NSpEzZv3ozq1asDAN577z34+flh8ODByM/PR+/evfHRRx+5bX8ZyImIiOxTrVo1+Pv748KFCwbXlzUEzd1kIMd1jiEnIiLXcWsg/+6776x+PSQkBKmpqRZnba1oDORERET2CQoKQuvWrbF69WoMGDAAAFBSUoLVq1fjiSeecO/OWcGWdSIiqghuDeTehoGciIjIVFZWFo4ePar/PC0tDbt27UKVKlVQt25djBs3DsOHD0ebNm3Qrl07vP/++8jOztbPuu4oedK+uLi4vN+CCRnIddlsWSciItdhILcDAzkREZGpbdu2oXv37vrP5fKjw4cPx7x583Dvvffi0qVLmDhxIs6fP4+WLVti+fLlJhO92SslJQUpKSnIzMxEdHR0uR7LmL5lPZsVciIich0GcjswkBMREZnq1q0bFEWxepsnnnjCo1vUjekr5DkcQ05ERK7jUcueeToGciIiospBBnI/tqwTEZELMZDbgYGciIioctAH8ly2rBMRkeswkNuBgZyIiMhzpKamIjk5GW3btnX6Y+sDubZlvaSEBwFERORUDOR2YCAnIiLyHCkpKdi/fz+2bt3q9MeWgdw/N8vwC6ySExGREzGQ24GBnIiIqHLQB/L8bMMvMJATEZETMZDbgYGciIiocpCBPCCPFXIiInIdBnI7MJATERFVDvpAblwh59JnRETkRAzkdmAgJyIiqhxkIA/MZ4WciIhch4HcDgzkRERElQMDORERVQQGcjswkBMREXmOilj2LKiQk7oREZHrMJDbQQZyRREfRERE5D6uX/ZMQWABx5ATEZHrMJDbwU/zajGQExER+a6gICAUufBD6Ru+LJmzQk5ERE7EQG4HbSBn2zoREZHvCgwEIqAZPx4dLbYM5ERE5EQM5HZgICciIqocDAJ5eLgomQMM5ERE5FQM5HZgICciIqocAgOBcJSOHw8PBwICxGWOISciIicKcPcOeBMGciIiosrBoEIeEaF+gRVyIiJyIlbI7cBATkRE5DlcveyZQcs6J3UjIiIXYCC3AwM5ERGR53D1smf6lvWICLVlnYGciIiciIHcDgzkRERElYNJhZxjyImIyAUYyO3AQE5ERFQ5sEJOREQVgYHcDgzkRERElYPJpG4cQ05ERC7AQG4HnU69zEBORETku9iyTkREFYGB3A46nRrKGciJiIh8F1vWiYioIjCQ20m2rTOQExER+S6LFXIGciIiciIGcjsxkBMRkTfYsWMH9uzZo//8p59+woABA/B///d/KCgocOOeOU+FrUPOMeREROQiDOR2YiAnIiJv8N///heHDx8GABw7dgz33XcfwsLCsGDBAjz33HNu3jvncMs65BxDTkRETsRAbicGciIi8gaHDx9Gy5YtAQALFixAly5dMH/+fMybNw+LFi1y7855AbasExFRRWAgtxMDOREReQNFUVBS+mb1+++/48477wQA1KlTB5cvX3bnrnkFTupGREQVgYHcTgzkRETkDdq0aYMpU6bgq6++wrp163DXXXcBANLS0hAXF+fmvfN8JhVyjiEnIiIXYCC3EwM5ERF5g/fffx87duzAE088gRdffBE33ngjAGDhwoW49dZb3bx3ns9kUjeOISciIhcIcPcOeBsGciIi8gbNmzc3mGVdmj59Ovz9/d2wR96FLetERFQRWCG3EwM5ERF5g1OnTuH06dP6z7ds2YKnn34aX375JQJl+zVZxJZ1IiKqCAzkdmIgJyIib3D//fdjzZo1AIDz58/jtttuw5YtW/Diiy/i1VdfdfPeeb7AAIXLnhERkcsxkNuJgZyIiLzB3r170a5dOwDADz/8gKZNm+Kvv/7CN998g3nz5rl357xAUHEu/KAAAJQwLntGRESuwUBuJwZyIiLyBoWFhQgODgYglj3r168fACApKQnnzp1z5655hfCrpwAAeQhGNhjIiYjINRjI7cRATkRE3qBJkyaYPXs21q9fj1WrVuGOO+4AAJw9exZVq1Z18945R2pqKpKTk9G2bVunP3bY9vUAgC1oh0tX/DiGnIiIXIKB3E4M5ERE5A3eeustfPzxx+jWrRuGDRuGFi1aAACWLl2qb2X3dikpKdi/fz+2bt3q9MfWbRCBfD064+JFcAw5ERG5BJc9sxMDOREReYNu3brh8uXLyMzMRGxsrP760aNHIywszI175iU2bAAgAnmLS2DLOhERuQQDuZ0YyImIyFv4+/ujqKgIG0rDZaNGjVCvXj337pQ3OHsWOHYMxfDDX7gV92gr5AzkRETkRB7Tsv7mm29Cp9Ph6aef1l+Xl5eHlJQUVK1aFRERERg8eDAuXLjgvp0EAzkREXmH7OxsjBw5EjVr1kSXLl3QpUsXJCQkYNSoUcjJyXH37nm29aJd/VSVFriOKFy6BI4hJyIil/CIQL5161Z8/PHHaN68ucH1Y8eOxbJly7BgwQKsW7cOZ8+exaBBg9y0lwIDOREReYNx48Zh3bp1WLZsGdLT05Geno6ffvoJ69atw/jx4929e55NBvJ6nQGAY8iJiMhl3B7Is7Ky8MADD+DTTz81GOOWkZGBOXPm4N1330WPHj3QunVrzJ07F3/99Rc2b97stv1lICciIm+waNEizJkzB3369EFUVBSioqJw55134tNPP8XChQvdvXuerTSQX00WgfwSx5ATEZGLuD2Qp6Sk4K677kKvXr0Mrt++fTsKCwsNrk9KSkLdunWxadMmi4+Xn5+PzMxMgw9nYiAnIiJvkJOTg7i4OJPra9SowZZ1a9LTgT17AAC5bcxUyBnIiYjIidwayL/77jvs2LEDU6dONfna+fPnERQUhJiYGIPr4+LicP78eYuPOXXqVERHR+s/6tSp49R99vcXWwZyIiLyZB06dMCkSZOQl5envy43NxevvPIKOnTo4MY983AbNwKKAjRsiKiG4oQGx5ATEZGruG2W9VOnTuGpp57CqlWrEBIS4rTHnTBhAsaNG6f/PDMz06mhnBVyIiLyBh988AF69+6N2rVr69cg3717N0JCQrBixQo3750HK21XR6dOqF5dXOQYciIichW3BfLt27fj4sWLuPnmm/XXFRcX488//8TMmTOxYsUKFBQUID093aBKfuHCBcTHx1t83ODgYAQHB7tsvxnIiYjIGzRt2hRHjhzBN998g4MHDwIAhg0bhgceeAChoaFu3jsPJofFde6MGjXExUuXAMU/ADqAFXIiInIqtwXynj17Yk/pGC1pxIgRSEpKwvPPP486deogMDAQq1evxuDBgwEAhw4dwsmTJ93aasdATkRE3iIsLAyPPvqou3fDuyxfDmzdCjRujOrh4qr8fCC3KBBhAAM5ERE5ldsCeWRkJJo2bWpwXXh4OKpWraq/ftSoURg3bhyqVKmCqKgoPPnkk+jQoQNuueUWd+wyAAZyIiLyXEuXLrX5tv369XPhnnix0FCgSxcAQBiA8HAgOxvIzAkQgZwt60RE5ERuC+S2eO+99+Dn54fBgwcjPz8fvXv3xkcffeTWfWIgJyIiTzVgwACbbqfT6VBcXOzanakAqampSE1Nden3Ur26COTpWQGIB1ghJyIip/KoQL527VqDz0NCQvRvtp6CgZyIiDxVSSV7c0pJSUFKSgoyMzMRHR3tkueoUQM4fhzIyOayZ0RE5HxuX4fc2zCQExERVR5ypvWr17nsGREROR8DuZ0YyImIiCoPOdP6tetc9oyIiJyPgdxODORERESVh75CnsmWdSIicj4GcjsxkBMREVUeskJ+JYOBnIiInI+B3E4M5ERERJWHrJBfzuAYciIicj4GcjsxkBMRkTf49ddfsWLFCpPrV6xYgd9++80Ne+SdZIX80jWOISciIudjILcTAzkREXmDF154wez63Iqi4IUXXnDDHnknGcgvp7NlnYiInI+B3E4M5ERE5A2OHDmC5ORkk+uTkpJw9OhRN+yRd5It6/oKOQM5ERE5EQO5nRjIiYjIG0RHR+PYsWMm1x89ehTh4eFu2CPvJAN5ThHHkBMRkfMxkNuJgZyIiLxB//798fTTT+Pff//VX3f06FGMHz8e/fr1c+OeeZeQECAyEigCx5ATEZHzMZDbiYGciIi8wbRp0xAeHo6kpCTUr18f9evXR+PGjVG1alW8/fbb7t49r1KjhiaQs0JOREROFODuHfA2DOREROQNoqOj8ddff2HVqlXYvXs3QkND0bx5c3Tp0sXdu+Z1qlcH0v5lyzoRETkfA7mdGMiJiMhb6HQ63H777bj99tvdvSterUYN4Ig8ZCopER9+bDIkIqLyYyC3EwM5ERF5qhkzZmD06NEICQnBjBkzrN52zJgxFbRX3q96dU3LOiCq5EFB7tshIiLyGQzkdmIgJyIiT/Xee+/hgQceQEhICN577z2Lt9PpdAzkdjAYQw4wkBMRkdMwkNuJgZyIiDxVWlqa2ctUPjVqAIUIVK/gOHIiInISDoCyEwM5ERFR5RIfb1Qh59JnRETkJA5VyE+dOgWdTofatWsDALZs2YL58+cjOTkZo0ePduoOehoGciIi8gaKomDhwoVYs2YNLl68iBKjN64ff/zRTXvmPKmpqUhNTUVxcbFLnycuDijR1jBYISciIidxqEJ+//33Y82aNQCA8+fP47bbbsOWLVvw4osv4tVXX3XqDnoaBnIiIvIGTz/9NB566CGkpaUhIiIC0dHRBh++ICUlBfv378fWrVtd+jxxcQCgQyHXIiciIidzqEK+d+9etGvXDgDwww8/oGnTpti4cSNWrlyJ//3vf5g4caJTd9KTMJATEZE3+Oqrr/Djjz/izjvvdPeueD0RyMU48kAUMZATEZHTOFQhLywsRHBwMADg999/R79+/QAASUlJOHfunPP2zgMxkBMRkTeIjo7GDTfc4O7d8AmxsUBgoGYcOceQExGRkzgUyJs0aYLZs2dj/fr1WLVqFe644w4AwNmzZ1G1alWn7qCnYSAnIiJvMHnyZLzyyivIzc119654PT8/o6XPWCEnIiIncahl/a233sLAgQMxffp0DB8+HC1atAAALF26VN/K7qsYyImIyBvcc889+Pbbb1GjRg3Uq1cPgYGBBl/fsWOHm/bMO8XFAUVnGMiJiMi5HArk3bp1w+XLl5GZmYnY2Fj99aNHj0ZYWJjTds4TMZATEZE3GD58OLZv344HH3wQcXFx0Ol07t4lrxYfr1mLnIGciIicxKFAnpubC0VR9GH8xIkTWLx4MRo3bozevXs7dQc9DQM5ERF5g19++QUrVqxAp06d3L0rPiEujmPIiYjI+RwaQ96/f398+eWXAID09HS0b98e77zzDgYMGIBZs2Y5dQc9DQM5ERF5gzp16iAqKsrdu+EzDAI5K+REROQkDgXyHTt2oHPnzgCAhQsXIi4uDidOnMCXX36JGTNmOHUHPQ0DOREReYN33nkHzz33HI4fP+7uXfEJcXFsWSciIudzqGU9JycHkZGRAICVK1di0KBB8PPzwy233IITJ044dQc9DQM5ERF5gwcffBA5OTlo0KABwsLCTCZ1u3r1qpv2zDvFx7NlnYiInM+hQH7jjTdiyZIlGDhwIFasWIGxY8cCAC5evOjz7XEM5ERE5A3ef/99d++CT2HLOhERuYJDgXzixIm4//77MXbsWPTo0QMdOnQAIKrlrVq1cuoOehoZyIuL3bsfRERE1gwfPtzdu+BT4uKAHAZyIiJyMocC+ZAhQ9CpUyecO3dOvwY5APTs2RMDBw502s55IlbIiYjIW5SUlODo0aO4ePEiSozeuLp06eKmvfJO8fHAodIx5IW5RQgs4/ZERES2cCiQA0B8fDzi4+Nx+vRpAEDt2rXRrl07p+2Yp2IgJyIib7B582bcf//9OHHiBBRFMfiaTqdDMVu97BIbCxTrAgAFyLhciGru3iEiIvIJDs2yXlJSgldffRXR0dFITExEYmIiYmJi8Nprr5mcgfc1DOREROQN/ve//6FNmzbYu3cvrl69imvXruk/OKGb/XQ6wC9Q1DEyrrBlnYiInMOhCvmLL76IOXPm4M0330THjh0BABs2bMDkyZORl5eH119/3ak76UkYyImIyBscOXIECxcuxI033ujuXfEZ/sEBQAGQeZWBnIiInMOhQP7FF1/gs88+Q79+/fTXNW/eHLVq1cLjjz/OQE5ERORm7du3x9GjRxnIncgvJBC4zkBORETO41Agv3r1KpKSkkyuT0pK8vk2OAZyIiLyVP/884/+8pNPPonx48fj/PnzaNasmck65M2bN6/o3fN6ASHisCnrGtchJyJyquJiIDcXiIhw955UOIcCeYsWLTBz5kzMmDHD4PqZM2f6/Bs8AzkREXmqli1bQqfTGUziNnLkSP1l+TVO6uaYwFBx2JSdwQo5EZFT9esHrF8PHDsGVKtc02Y6FMinTZuGu+66C7///rt+DfJNmzbh1KlT+PXXX526g56GgZyIiDxVWlqau3fBpwWFlVbI0xnIiYicRlGANWtEhfzgQaBTJ3fvUYVyaJb1rl274vDhwxg4cCDS09ORnp6OQYMGYd++ffjqq6+cvY8ehYGciIg8lVz5JDExESdOnECtWrUMrktMTEStWrVw4sQJd++qVwoKF23/OZkM5ERETnPligjjAJCZ6d59cQOH1yFPSEgwmbxt9+7dmDNnDj755JNy75inYiAnIiJv0L17d5w7dw41atQwuD4jIwPdu3dny7oDgsPFYVNuJseQExEBAEaMAPbuBTZsAIKDHXuMU6fUy5UwkDtUIa/MGMiJiMgbyLHixq5cuYLw8HA37JH3C40oDeTXWSEnIkJREfDVV8C2bcCePY4/zsmT6uVKGMgdrpA7w6xZszBr1iwcP34cANCkSRNMnDgRffr0AQDk5eVh/Pjx+O6775Cfn4/evXvjo48+QlxcnNv2mYGciIg82aBBgwCICdweeeQRBGsqFsXFxfjnn39w6623umv3vFpIlGhZL8wrQn6+48UgIiKfcPq0mB1dXm7TxrHHYYXcfWrXro0333wT27dvx7Zt29CjRw/0798f+/btAwCMHTsWy5Ytw4IFC7Bu3TqcPXtWf6DhLgzkRETkyaKjoxEdHQ1FURAZGan/PDo6GvHx8Rg9ejS+/vprd++mVwoundQtEIW4eNHNO0NE5G7a+Ui0odperJDbrqwwnJ6ebteT9+3b1+Dz119/HbNmzcLmzZtRu3ZtzJkzB/Pnz0ePHj0AAHPnzkXjxo2xefNm3HLLLXY9l7MwkBMRkSebO3cuAKBevXp45pln2J7uRLpAcdgUgCJcuQLUqePmHSIicidnBXJWyG2nPctu7iMxMREPP/ywQztSXFyM7777DtnZ2ejQoQO2b9+OwsJC9OrVS3+bpKQk1K1bF5s2bbL4OPn5+cjMzDT4cCYGciIi8gaTJk3yqjD+888/o1GjRmjYsCE+++wzd++OeQFqIL9+3c37QkTkbtpAfvq044/DCrnt5Fl3Z9qzZw86dOiAvLw8REREYPHixUhOTsauXbsQFBSEmJgYg9vHxcXh/PnzFh9v6tSpeOWVV5y+nxIDOREReaqbb74Zq1evRmxsLFq1amV2Ujdpx44dFbhn1hUVFWHcuHFYs2YNoqOj0bp1awwcOBBVq1Z1964ZChRjyANQVBmPGYmIDLFC7hRundQNABo1aoRdu3YhIyMDCxcuxPDhw7Fu3TqHH2/ChAkYN26c/vPMzEzUcWJPGQM5ERF5qv79++sncRswYIB7d8YOW7ZsQZMmTVCrVi0AQJ8+fbBy5UoMGzbMzXtmJEAdQ84KORFVeqUTcwNwvEJeVAScOaN+zkBe8YKCgnDjjTcCAFq3bo2tW7figw8+wL333ouCggKkp6cbVMkvXLiA+Ph4i48XHBxsMKOsszGQExGRp5o0aRIAMQyse/fuaN68uUmnmSv8+eefmD59OrZv345z585h8eLFJicEUlNTMX36dJw/fx4tWrTAhx9+iHbt2gEAzp49qw/jAFCrVi2c0R6geQq2rBMRqbQV8jNnREDys3PO8HPnDINVJQzkHrcOeUlJCfLz89G6dWsEBgZi9erV+q8dOnQIJ0+eRIcOHdy2fwzkRETk6fz9/XH77bfj2rVrFfJ82dnZaNGiBVJTU81+/fvvv8e4ceMwadIk7NixAy1atEDv3r1x0dumKmcgJyISSkoMx34XFgIXLtj/ONrHACplIHdrhXzChAno06cP6tati+vXr2P+/PlYu3YtVqxYgejoaIwaNQrjxo1DlSpVEBUVhSeffBIdOnRw2wzrAAM5ERF5h6ZNm+LYsWOoX7++y5+rT58+6NOnj8Wvv/vuu3j00UcxYsQIAMDs2bPxyy+/4PPPP8cLL7yAhIQEg4r4mTNn9NVzc/Lz85Gfn6//3NkTuFqkGUPOQE5EldqFC0BBAeDvD1SrJj4/fRqoWdO+x5HjxyMigKysShnI3Vohv3jxIh5++GE0atQIPXv2xNatW7FixQrcdtttAID33nsPd999NwYPHowuXbogPj4eP/74ozt3mYGciIi8wpQpU/DMM8/g559/xrlz51y6Aok1BQUF2L59u8GqKX5+fujVq5d+1ZR27dph7969OHPmDLKysvDbb7+hd+/eFh9z6tSpBqu8OHOuGKs4hpyISJDt6rVqAfXqicuOTOwmK+RNmohtJQzkbq2Qz5kzx+rXQ0JCkJqaarEFzh0YyImIyBvceeedAIB+/foZzLauKAp0Oh2Ki4srZD8uX76M4uJixMXFGVwfFxeHgwcPAgACAgLwzjvvoHv37igpKcFzzz1ndYZ1V0/gahFb1omIBDmhW2IiEBcH/P23Y4Fc3qdpU/EY1687Nhbdi7l9Ujdvw0BORETeYM2aNe7eBbv069cP/fr1s+m2rp7A1SIGciLyNenpwJtvAg88ADRrZvv9ZIU8MRGoXl1cdmSmdeMKOSBa16Oi7H8sL8VAbicGciIi8gZdu3Z19y4AAKpVqwZ/f39cMJrsp6xVUzwSx5ATka/5+mvgrbeAQ4eAxYttv58M5PXqAbGx4nJ5KuQNG4r/sYWFom2dgZwsYSAnIiJvkpOTg5MnT6KgoMDg+ubNm1fI8wcFBaF169ZYvXq1fim0kpISrF69Gk888USF7IPTcAw5EfmaQ4fEdt8+++6nrZBHR4vL5RlDXreuCOFXrlS6ceQM5HZiICciIm9w6dIljBgxAr/99pvZrztzDHlWVhaOHj2q/zwtLQ27du1ClSpVULduXYwbNw7Dhw9HmzZt0K5dO7z//vvIzs7Wz7ruKDnPTEWNh2fLOhH5HPm/+99/gfx8wNbhQNox5JGR4rK9Les5OSKAA5U6kFee0fJOwkBORETe4Omnn0Z6ejr+/vtvhIaGYvny5fjiiy/QsGFDLF261KnPtW3bNrRq1QqtWrUCAIwbNw6tWrXCxIkTAQD33nsv3n77bUycOBEtW7bErl27sHz5cpOJ3uyVkpKC/fv3Y+vWreX+HmzClnUi8jX//iu2JSXAkSO23UdRDCvktWuLy2fOAPacINUueRYdrbapuzKQz5kDDB8ODBoEDBkC7N/vuueyESvkdmIgJyIib/DHH3/gp59+Qps2beDn54fExETcdtttiIqKwtSpU3HXXXc57bm6desGRVGs3uaJJ57wvhZ1Y5qW9UpWwCEiX1RUBKSlqZ8fPChmOy/L1atAdra4XLeuOFnp7y/C+PnzYik0W8hAXrcuoNO5PpBfugT85z+G18XHAzNnuub5bMQKuZ0YyImIyBtkZ2ejRo0aAIDY2FhcunQJANCsWTPs2LHDnbvmvdiyTkS+5NQpEcqlAwdsu5+sjsfHAyEhIownJIjr7Glbl+PH5bKVrg7k58+LbWQkcO+94rLRhKPuwEBuJwZyIiLyBo0aNcKh0sl6WrRogY8//hhnzpzB7NmzUbNmTTfvnZfSBPKcHPs6M4mIPI5m7g8AokJuC227uiTb1u2Z2O3sWbGVFXVXB/KrV8U2IQEYOFBcLj1Z7U5sWbcTAzkREXmDp556CufOnQMATJo0CXfccQe++eYbBAUFYd68ee7dOSep8EndNGPIAbFUrpxcmIjI68jx4yEhQF6e7RVy7YRuUp06wKZN9lXIZRgu7eZyeSCXE8hVqQJUqyYuX77smueyAwO5nRjIiYjIGzz44IP6y61bt8aJEydw8OBB1K1bF9XkgYiXS0lJQUpKCjIzMxFdEcm4tEIehEIAwPXrDOREHqe4WLRQu0thITB9OtCpE9Cli/v2wxayQt6jB/Drr2IJtJISNfBYItu8ZZs64FiFXAby6tXF1t5A/tRTYl++/lr//9kqWSGvWlV9Tg+okLNl3U4M5ERE5I3CwsJw8803+0wYdwsZyP1EhZzjyIk8zDPPiMqndqKyijZ3LvDiiyIsejpZIb/9dtEBlJNjW6DOyhJbGaABdRy4PYFcVqcdCeQ5OcCMGcD33wO2rrShrZDL57xyxe3BjhVyOzGQExGRNxg3bpzZ63U6HUJCQnDjjTeif//+qFKlSgXvmReTs6z7FQElDOREHmflSiA9XVR7U1Lsv//Fi6J66miFXVGADz8Ul+UEYp5MVsgbNQIaNhRLgB08aNiKbo785xcRoV4XHy+2Fy/a/vyyOi1PFNsTyLXBf80aoEOHsu+jrZBXrSouFxeL3xk3vhcykNuJgZyIiLzBzp07sWPHDhQXF6NRo0YAgMOHD8Pf3x9JSUn46KOPMH78eGzYsAHJyclu3lsvUTqGPFDHCrlF6enA9u1A9+5lt70SOZv8o3RkJYk9e4CWLYGHHgIcnWdj7Vpg715x+coVEdB1Oscey9UURa2Q33gjkJQkAvmBA0Dv3tbvKyvk2kAux+/Y84+xPC3rxoH8//6v7PtoK+RBQWKfMzLEfrgxkPM/pZ0YyImIyBv0798fvXr1wtmzZ7F9+3Zs374dp0+fxm233YZhw4bhzJkz6NKlC8aOHevuXfUesmVdp44hJyPjxwO9egG//OLuPaHKSAY5RwL5P/+IA/w//3T8+WV1HBBjyeVa3Z7o3DkgN1d0AyQmAo0bi+ttmWndXCC3d/y3olhuWc/IKPv+csk0ANi4EcjPL/s+2go5oFbm3TyOnIHcTgzkRETkDaZPn47XXnsNUZoxftHR0Zg8eTKmTZuGsLAwTJw4Edu3b3fjXpZPamoqkpOT0bZt24p5Qs2yZwADuVmy4ia3RBVFUdQwuHevbQFNS4bAkydFmLbXiRPATz+Jy7IqLgOgJ5J/o4mJovsnKUl8bstM6zKQR0aq19kbyLOy1J9ReVvWc3OBLVvKvo+2Qg6oJwLcPNM6A7mdGMiJiMgbZGRk4KKZsXyXLl1CZunBTkxMDAoKCip615wmJSUF+/fvx1ZbJ/QpLwbysslQY0uFi8iZ8vOBIvG3iaIitXXcVjIEFher62zb46OPREDo1UsdT+3JgVyOH2/QQGydVSG39W9fVqVDQ4HwcMPHsDeQA6JtvSzGFXIPmWmdgdxODOREROQN+vfvj5EjR2Lx4sU4ffo0Tp8+jcWLF2PUqFEYMGAAAGDLli246aab3Luj3kSuQ64wkFskD8bT0926G1QJGYc4e9vWtUHy2DH7n3/xYrF97DG1Aisrsp5IO34cEBO7AWJStrJOJFgL5Pn5tnUnGLerax/DnkDerp3Y2hLIjSvkHrIWOQO5nRjIiYjIG3z88cfo2bMn7rvvPiQmJiIxMRH33XcfevbsidmzZwMAkpKS8Nlnn7l5T71IaYXcX+EYcmN//lk6qTQr5OQs+fnAzp2iFd0WxiHO3uE42vvbO+SipEStqrdurVZgvalCHhGhLl126JD1+5oL5Nr2dVv+ORrPsA4YBvKyfu4ykD/8sNhu2gTk5Vm+vaKwQu4rGMiJiMgbRERE4NNPP8WVK1ewc+dO7Ny5E1euXMEnn3yC8NL2wJYtW6Jly5bu3VFvog/kokJu61BJX7dzJ9C1KzD8YYUVcnKe8eOBm28Gli2z7fbGIbA8FXJ7A/mFC0BBgQgKCQlqBdaTA7lxhRwA4uLEtqzKvrllzwICgLAwcdmWf47GM6wDaiAvKRHrjFuiKOqkbrfdJoYI5OeLUG5JTo5auTeukDOQexcGciIi8iYRERGoUqUKqlSpggjtwRPZr7Rl3a/ETMu6rVU8HyQLVRfScsT4W4CBnMpv3z6xXbvWttvLEBgaKrb//GPf5GzlCeSyOl6rlvg/UVEt645MPicZV8gB21rGi4vFJGqAYSC39f6SuZb18HB1Qjxrj5Gers5gX7u2WGYRsN62Lk+OBAaq+81J3bwTAzkREXmDkpISvPrqq4iOjta3rMfExOC1115DCd/EHFNaIfdTSqBDiRrIX39dVMXS0ty3b26k7xLVBhq2rFN5yTC7a5dtt5cBrkkTsb50fr5tM4Yb3x+wfwy5rNYmJoptRVTIV60SwXL4cOvVZHOys9WTZnXrqtfLtcSthWHtUm7GgdyW+0vmWtZ1OttCvTwLWLWqqMp37Cg+t/a7oh0/LkM/W9a9EwM5ERF5gxdffBEzZ87Em2++qW9Zf+ONN/Dhhx/i5ZdfdvfueafSQA6Imdb1gXzJEjGAeuNGt+yWu8lA7p+lCeGskFN5aQO5LR0o8g8yOhpo1Upctqdt3bhCbk/Xi6yQy3BbEWPI164VbfJffikCqT0nBGUADQ42v3SZtRNqcvy4v7+4v5Y9FXJzLeu2PoYM5HLMe61aYmtmZRE9+fskfzYAW9a9FQM5ERF5gy+++AKfffYZHnvsMTRv3hzNmzfH448/jk8//RTz5s1z9+45hbvWIQeMAvm1a2LryeNFXUgG8oBczQG0rwXyy5eBd95x+4F7paEoaoC6dg04fbrs+8gAFxUlxp4D9gVybQDMzrYe7oxZqpC7smVdu3+7dgFt2gCHD9t2X/l7XKOGWi0GbAvD2jXItfe19f6SuZZ1Wx/DOJDXqCG21n5m8v+z/Nlon5st696FgZyIiLzB1atXkZSUZHJ9UlISrvpIcKzwdchLx5ADFgK53FYyMpBHw6hl3ZfG1c+cCTzzDDBoEA8CK4J2Ai7AtrZ1GeAiI9VAbs9M68ZVYXvGkRtXyCuiZV2Gz5deEt/v1avAwIFqYLblvjLISra0nJubYV2q6Aq5fL1tCeTWKuQ5Ofa3/TsRA7mdGMiJiMgbtGjRAjNnzjS5fubMmWjRooUb9sgHaCrkgSgUgbykRK0G+8iJDnuZDeTFxYZjTb2dDAAbNohwTq5lXLG0J5BHRQGNG4vLtrZxK5oVAho2FFt7xpHLQC4r5BXRsi4DbatWwC+/ADVrAvv3AyNGlH0yzFIgt6Vl3dwM68b3d3QMua2PITsSjCvk2dmWg7W5CnlkJBAUZLg/bsBAbicGciIi8gbTpk3D559/juTkZIwaNQqjRo1CcnIy5s2bh+nTp7t797yTn3rYpK+QZ2aqBwUM5IZf8KWJ3bStxy+8oM5QbaykBHj6aeCbbypkt3yWcav37t1l30cGxagoIDZWXLb1dzA3V10hQFbX7amQu7NlvUYNsezXokWii2fhQmDGDNvu60h12lkVcme2rEdGquPZLQVrcxVync4j2tYZyO3EQE5ERN6ga9euOHz4MAYOHIj09HSkp6dj0KBBOHToEDp37uzu3fNOOp2+Sq4P5No2dbasG37Bl8aRy4P5qCgR3kaONF+F/Osv4IMPgFGj3D4u1asZB1l7W9ZjYsTlnBwx8VlZZHDX6YDmzcVlWwN5ZqbpjOXalnV7h25s3Ajcey/Qtq2oer/wgvnbGVe5O3QApk0Tlz/91PpzaMeQazmrZb2sEyEFBeptnBHIdbqy29bNVcgBj5jYjYHcTgzkRETkLRISEvD6669j0aJFWLRoEaZMmYKSkhKMHj3a3bvmvUrHkQegCIWFQMEFTQhnhdzwC74UyOXP9r33xO/A+vXA8eOmtzt3Tmzz84E5cyps93yODORNm4rtv/+WXXXVtqzLUAfYViXX3leuy21ry7qsjlepooZUGfoKC+0fuvHMM8APPwDbtonVGz77zPQ2eXlqR4A20A4cKLaHD1tfo7w8LevOqJDLk1X+/urJE1sfo6REneRPBnJAfR0sBXJzFXLt/RjIvQcDORERebMrV65gDoOC40or5IEQB7u5Z1khr1Qt661bi/ZgwHwF/MIF9fJHH6lt0GQf+Xo3agTUri0u//OP9ftoW9b9/dVgZ8uJIfm7Gh2tBnJbK+TGE7oBYm1s2UJtb9v6mTNi++qr6v2Nq/wyPAYEGAbaunVFUC4stDysAig7kLu6ZV3+7VStajAUyKbHuHRJvB46nbrcGVD+Cjlb1r0HAzkREVElVhrII4KLAAB551ght6tC/v77wPjxnncglZ0tZlD/8kvTr2mX4KpSxfoM2tpAfvIk8PPPzt/XykAb2Fq2FJfLGkeubVkH1KBqSyCX99UG8vPnbatuG0/oBoiw6MhM64qihu3771cnkjQOmdpArV16TKdTJ7Tbt8/y81gaQ15Rs6xbmmHdlseQ7eo1axqsfFFmIGeF3HcwkBMREXmGCl+HHBCVLwA1wsRBqUHL+rVrvrXUl41sDuSKAkyYALz7LrBli/N3oDyWLwcWLwbeesv0a1lZQJE4AYOqVdUJw8x1RMhALsPKhx+Wf98qI214kqtClDWOXNt2DtgXyGWFXE4IJ3/GtrStG0/oJjkSyLOz1d/nuDjxAYiTA1qWKtwA0KSJ2O7fb/l5LI0ht6dlXZ740LIl0Guf33iGde0+WHoM4xnWJUcr5Azk3oeBnIiIyDNU+DrkgP6gr06IOHgruqQJZY6MF/UBcrlofSAPDRVb44P6vDw1bKxc6ZwnP3BAhKdx48r3OAcPiq25g3kZDkNCxAkZWyrkTz4pDhpXr7YejMg8bSCXFfKyArm2ZR1Qw6G9LesAcMMNYmtLIDfXsg44tvSZDIUhIUB4uDo8wjiQW6swJyeLraUKuaKU3bKen2+4DryWM5Y9szTDuvYxLJ0UMJ7QTZLfi7lgrSjqz8G4Qu4BLesBZd+EtBjIiYjIkw0aNMjq19N9aaItdyg96KsdKIJXyRWjKum1a+YPVH2YSYW8bl3g0CHTIKT9fOVKYOJEyw+6ejUwa5ZocZdjiM3ZskXswO+/O7DnGjKQX7kixn37+6tfM251lYHcWoW8bVugTx+xPvSyZWpIqqzS04FffwWGDFHXfbZGvubVqqmznu/dK4KVtkVbyxkt6zIMJiQA27dbrrZqlVUht2cMubaVXKcTbdmAcyvkmZnqmHRLM5wDInjLcfBarm5Zl9+TnCDRmLkJ3bT3M/czu35d7XJhhdz7MZATEZEni46OtvqRmJiIhx9+2N276b1KD/pq+pce9BmHsko4jtwkkMtgYlzh0n6+ebPlCtj+/cCAAWJd5bLW85ZhR06E5ahDh8RWUUx/ptrx44DazmzuZy3DQFwc0KqVuGxuNvbK5q23gAceAF580bbba0+CJCSIy3l5Yhkzc0pKTCvkjrSsywq5Pe3m5saQ2/sYknEruaUKubVALk/+HDqkhlBz942IULtZJH9/UZkHLP99OjOQm2tZr19fbE+cMD8ponwt5MkKyVogN+5y0fKAZc9YIbcTAzkREXmyuXPnunsXfFvpmM4aEAd9unQGchnIo1B6EC6DiXEQ0h7gFxcDf/yhLtOkvc3AgepBf1lBW77eV6+K9cGNA4YtFEWtkAPiwFwbFIxbXW2pkNeoAdSrJy4zkKvt03PmiNnDy/o5aSd1Cw8Xk3cVFoqfhQyMWtnZ6vwNjgRy7aRugO1hurAQOHtWXDZuWS9PIJdVW0da1uvWFaEzJ0fMtJ6UZPh1a2EeEK9fdrblUG1LIM/JEScDAixETWst67VqifsVFooquXGHjKXv3Vogt9Surn0czrLuPRjIiYiIKrHSg77qJSJ4+WeaaVl3tawsYMwYoCLHzlthtmUdsN6yDpiOI1cUYPhwsYayVFYg17YDy2Bkr3Pn1OoqYFopM25Zt1Qhz8pSK7hxcWqlLy2t7H3IyXH9hICHD4uZ5A8ccO3zmCPH/V67BixYUPbtta+5LTOWy5+fv78a9h2d1A2wPUyfPi1+bsHBpgFX/r7Y07JuayC3Fqr9/NQqubm2dUsTukllTcxmLZBrJ3rT/k1Z2gdzgTwgQG1HN/e3Y+l71wZy478l4y4XLbkPV6+a7yioAAzkdtIulVcJJ1IlIiKq3EoP+qoUiYPCwKzSAC7HHFdEhfzjj8Xs3c8+W77HuXQJ6N8f+O67cj1MXh4QjDwEo3RcqgzkllrWZdVsxQrDg6nt24GffhJjjCdMENfZWiEH1LGl9pLt6pKlQC4P5i2FNVkdDw0VYUVWyE+csH7QuH+/eMwnnrB71+3yzjuWZ5J3NRnIAWD2bOu3LShQw5xxV4Klvy/t+HE5xrwiWta1E7oZj213pEJuvByZI4EcsD6xmy0VcsCxlvWgINEWDlhvW7cWyAHrJ7Ms3Vd+Xlhouu/WKuTakO6mDicGcjtpAzmr5ERERJVM6UFsTIE4qA3KKQ3ksk27Iirk69eL7bZt5sdY2uqDD4ClS4GnnhIHsQ7Ky1Or4yXQqS2mllrWO3cWLchpacC//6pfl5XxW24RY8iBsqve2gNoR8eRa9vVAdPWVeODeUvLnslAHhcnwlnt2uLAMS/PcH1yY1u3ihmtv//etQeXO3aI7bZt1m93/Tpw993OC+45OepJDX9/YNMm62uKy9fbz08N1bYGcu2kZOWZ1M3WMG1pQjd7HkPL3jHklgKttYndyrpvWePArS17pr2/taXT5N+YuTHkgOVAbm2G+JAQdZ+M29atVcgDAtTrbZnEzwUYyO3EQE5ERFSJlY4hj8wTB24huaWhrEEDsXV1haWkBNiwQVzOzjYNk7YqKgLmzROXL14UM2A7SBvIs/0i1YNbSy3rtWsDHTuKy9q2de3kWHIir3PnrB9waduBnRXIy2pZL6tCLteODgoS42EB6+PI5fNdueL4z7MshYXAnj3i8oEDaqgyZ/58MTv8K6+U60SNnqyOR0SIlnnAepVcvt6xsWrnia0t644GcuMKubW15rXkCSP5c9ZyVcu6opTddl6eCnlZLevWlj0Dyg70JSXWx5ADlgP59euWZ4gHLC99Zq1CDqh/s9ZOnLkQA7mdGMiJiIgqsdIDvvDsi/BDMcIK0sX1MpC7ukJ+6JDhAf6WLdZvf/y4YbuwtGKFYYAtx2SA2kCeqYtWD+gttaxHRwO33y4u//GH+nVtII+PFwddRUXWZz92RoVctqxbWv7IUsu68c9aO8O6ZMvEbtqKvDzZ4mwHD6rrSpeUADt3Wr6tnNk+N9f67WylXTf6scfE5a+/VicfMGZ8AgSwr2VdkoHcWqXW+P72tqyb+5lLzpjUTT5udrZ6EiU7W/xsAMuhWlbIzc20XlaYt7VC7mggv3xZdPbodPZXyOXrHR5uOls6YHliN2sVcoCB3NswkBMREVVipQfK/iVFqIuT8FNKDwZuuEFsy1MhLymxXrkE1HZ1ydrEbleuAC1bAm3amC4X9dlnYnvHHWL7yy+2tWvu2wfcequYKbu0eqoN5BmIVoNQbq5azQIMA/nNN4vL2oqwNpAHBKgHydaCtjMr5J06ia2tLeu5uWowAkwr5IBtgVx7AsD45+ssxsHaUtv6iROG++CMEwTaQN6tmwhTWVmWx/xrZ1iXXN2y7uikbtpZ9Y1pH8PWiaeMq9cREWrwlVVyeZvQUPMzzgPibygsTPz9aYeFmHsOY9ZazouL1f8llgJ5WRV2+Xdeq5blNektBfKyxp5bCuSskPsWBnIiIiLPkJqaiuTkZLRt27binjQ4WH+g3wiisloSHKK2WJenQj5hgjiIN559XEsGJLmUkbUK+Q8/iIPqixdF4JbOnweWLROX334baNdOVNG++UZsf/zR8hjf554TY4AnTQJuvRXKwUMGgfxaSbRhKNIe1MtgFBMD3HijuPzvv+oBlfF4XPmaWhpHXlBgeALDXCBftEi0yK9bZ/4xcnLUgCADeVkt61FRaiu19udtLpx5SoVcBnIZgCydyJk/3/BzZwdyna7s8CNfb231tKJb1uXzZWernQXm2FIhLyws+0SbZC5wGreta29jPJGc5OcHNG4sLhuPIy9rDLm1QK09sedohVz+LZgbdy/JQH7mjOFJvbJOJlgK5PJzSxX5yhzIp06dirZt2yIyMhI1atTAgAEDcMhopsu8vDykpKSgatWqiIiIwODBg3HBTS8WoP7/BRjIiYiI3CklJQX79+/H1ope/qv0oK9HgjhmuZAfi437LSyFZavCQuDTT8V23DjLk7XJ6uXYsWL7zz+WW3+//lq9/MMP6uUvvhCP36GDaG195BFx/YcfAq1aAYMHq5Oqae3ZI8aay8m2tm0D2rdD9ZLz+kCerkSjoNhfbR3WhiFt6JFV8Lw8cdCtKIYVckAdl2up8m188sPc7ebNE9cvXmz+MY4cEdsqVdQAU1Yg1+nUsGcukGvDmQwWtlbIjx93fLZ4a2QgHzxYbM1VyBVF/Z0ZOVJsN24s/7JC2kAO2B7IndWynp1tfSx8cbG4DaCGyehoNexaO8lmrUIeFiZO4Fnbby1tK7q5QH7unNiWFUqlhg3F1tEKublALU8s+Pmps6nbc39A/VuQJ6vMiYsTHQAlJYZDbhytkMuTevIkn7nnAypnIF+3bh1SUlKwefNmrFq1CoWFhbj99tuRLf8oAIwdOxbLli3DggULsG7dOpw9exaD5IQQbsAKORERUSVXetD3dB/R6nwVsXjmDQvjim3155/qffftU8fxap0+LQ5m/fyAYcNEtaew0Hw1+9gx4K+/1M9/+UUcTBcUAJ98Iq77z3/E9r77RHBISwP27hXXHT+uhhTp7bfFdvBgEc4bNIAuMxNdsc6gZf36dZivTmoDeUCAGlaPHhWBRT6fXDZNHjxbCuTGk2WdPWt6cCaD59Gj5h9DtqsnJZkfQ15crH4P2vGn5gJieVvWAwPF1tlVckUBdu0Sl+XP/MgR08rx7t2imhocDEydKrYXL1p+7WxVkYFcWyG31Klh6b6AWh3287O83ryWtQq5Leuna8nfg+Bgw+qzcYXc1kAuh9EcO6Zep51QzZGWde34cUvV+XIG8qtXgR49dbgWU/p1bdu6oxVyBnLLli9fjkceeQRNmjRBixYtMG/ePJw8eRLbt28HAGRkZGDOnDl499130aNHD7Ru3Rpz587FX3/9hc2bN7tlnxnIiYiIKrnSg7egY6Ut69GxuIpyVshlBVcewE+cKFplr1wRa3NnZalBrWVLUQls1058bq5DQLYe9+wp2sNzc4GffwZSU8UBeo0awD33iNvExgJjxoiK19ixaijRHgifOqU+5rPPijbw7t0BAE2x1zSQm5vYTQZA+TVZwTtyRK2Ox8WplTdZIbfUsi5f68REEQ6MJ4A7e1YNMWUF8kaN1EB++bJaFU5PVy+bC+RlVchtWYtcBqQePcTW2YE8LU38HIKCxJJz8kRI6fG2njwJdPfd4vdDDgUp7/7IQC5PtFRUIA8IUIOttbZ1ed+QEMMxzWU9Z3Fx2ROkycewZaZ1bdjUhl1LgdxSlVgyNw776lU1wFhq37bWsl7WDOtAuQP5qlXAmjXA7ozSr2v335EKufw/CjCQ2yKj9J92ldJf3u3bt6OwsBC9evXS3yYpKQl169bFpk2bzD5Gfn4+MjMzDT6ciYGciIiokpMHfaVhLjguFldReuCdkSEO1OfPF0H3t9/KfrySEjWQf/yxOGg8cUIE3tq1Rft448YiTAPqWGcZmIzHkWtbjx96SA3eH38sJmMDgNdfNzyofustMT703XfV8d3aytr774vA2727+rxNm4oN9iLGTxxv2VQhl18rfZ7rO49ix2KjdnWg7Aq5DEpxceYngNO2ZaelmR8GIIdKJiWpASU/X60EygP5qCi1gg2Yr56aq5Zq1yI3XksaEB0O8jUaOFBsnT2xm2xXb9pUfA/y52fctr5mjdjK3xf5e1aeQK4o6twAskJuaW1tydwa1Y6MIQdsG0duPKGbrc+pDbeWAqI8qWBPhdz4sSyNIXekQi5/R2NjDX+ftWxpWbe0BnlZ9wfKDOTy/Nv+HDMnFGytkGtPzMlW/6AgzrJelpKSEjz99NPo2LEjmpb+gz9//jyCgoIQI/+YSsXFxeG8hT/iqVOnIjo6Wv9RR/7xO4n2hBUDORERUSUkD/pKD/RCEmKRjhj16+npwJdfiu348WUfMGzdKo5CIyJEdXLyZHH9pk0iyIWHi3Z1GYw6dxZbGayMK+Tbt4ugGRoqQt6994rr164V+9SiBTBihOF9dDr1IMf4QF6ObwfEpG6SJpBX8bfQsq6tkBtPnFVaId+96Ai+nGImkJdVIdcuZWRuvLm2AlxQYH5s9oEDYpuUJF7n0FDxuXZtcPkcWsZhLS9P/f60gTwwUIRywHzbunx8Pz+gb19xec8e2yYis5UM5K1aiW2bNmJr/Hsjv2cZlGQg37jR8efOyFBDXEWPIQdsC+TGS55JZa1FLve/alVRjTdHfg+2rGBgayC3t2X9+HH1f5At97W1Zb2s+5sL5Nq5IiwEcpmfj8FMIC+rQi6v177e2nZ1S2328nfy4sXyz5ngAI8J5CkpKdi7dy++++67cj3OhAkTkJGRof84ZW7tzXLQvl8xkBMREVVCRuNFoxNjUYRAZKI0DFy9qoadAwcsTygGcSyx/aXSr991l2ibHTEC+N//xHbTJnGQ+H//J8JdSAjQpYu4vQzkBw8aHjzL6nj//uLguFkz0ZItvfee4Sy1xowD+dGjogIZHq6uHw7oA3kD/IsEnTiKzkSUYcu6DEIlJaaBvLRCXi39KBJhJZCXVSGvWtX8bY0rwMZt69evi/ALiGEAgOk4ckvLJRmHNRkAgoLUEChZG0cun6dKFREYGjYUgcCZQzMtBXLj10d+rzL83nqr2B46ZH0teGvkcXiVKuq60eUJ5Dk55icxNNeyDri2Qm5t/Lgk28a1VWpL7A3kZbWs164t/s4LCtRQakt13ZYKuaOB/MoVda4IC0VTuatpMpBr/25srZDLtc61D2ipXV17v8LC8q2U4SCPCORPPPEEfv75Z6xZswa15VlEAPHx8SgoKEC60R/RhQsXEC9/OY0EBwcjKirK4MPZZNs6AzkREVElZHQwGJUYi/BwqG3rO3YYHsRPmWJadVm1Cpg8GXvfWIrI338U18mW5YAAYNYs4PPPgVtuEUHm9ddFoNy1S33+GjXUsCfbnIuKAFncePBBsdXp1MuDBunHfltkHMj37RPbJk0Mx+7VqIHCmGrwg4LWRX8DsNKynpWlvgZGLeuJhUdRD8fFddqqmTyAvnLFfAizViFXFLVCLoOL8WzTmzaJg/bERHV8s3YcufY5jAO5cVjTzrZtXIWzFsjl88jnTU62fFtHGQdyuQb8iRPq82uXkNOut96kibjsaNu68YRugGOBPCpK/d0zF5ic0bJuXCEvK5Bbm2FdatBAbG2ZGM9S2HS0ZT0gQD3BJavMtlTIrY0htyeQm6uwy9/rhAR1BnojskKe5kiFvGpV8fenKOrvkXxAa4E8JET9vt3Qtu7WQK4oCp544gksXrwYf/zxB+rLs0ilWrdujcDAQKxevVp/3aFDh3Dy5El06NChondXj4GciIioEjM6mNVViUXTpsA1ObGbXEe8YUNRVd61SywXJs2ZA9xxB/DKK2j+cn/chCPIRxDQp4/1561b17DSDQD9+qmPCQCrV4sDymrVDKvZzz8PLFggWunLIgO5PBCWM6/LcCbpdMiuL6rksSUitFhsWZdbWeUHgHr1oAQEIBR56IDSuYG0FfLYWPW28qBay1qF/MwZ8Tr4+6tLuBmHoj//FNuuXdXr5LhlW1vWZTi0Fs6sLX0mn0c+b82aYmtpfLW9Ll8Wr51OBzRvLq6LjjYdcy9fSz8/w2AqX5uff3bs+e0N5CUl5rsSypr13BUt686okMv5GIxPBplTVoX8wgXx+tjasg6YVuhtqa7LQF1QYHoirLwVchuWPDOpkF+4IDojFKXskxEBAabDBGypkANuHUfu1kCekpKCr7/+GvPnz0dkZCTOnz+P8+fPI7d0Db7o6GiMGjUK48aNw5o1a7B9+3aMGDECHTp0wC233OK2/WYgJyIiqsSMD8BjY9G8uaZCLgN5jx7A44+Ly+PHAzNnivHh//mPOIjo0gUXqjdBMfwwDyNQFOZAV9/o0WK7bJk48JTt6vfeazhpU2AgMGSIOEFQFm2FXFEMK+RGrtdtavC5ySzrMghpZ1iXFeSAABTVrgcAiEfpQbA2kOt01id207ZYGwdy2Y7dpIlo2QdMQ5EM5HIIAGDasm6pQm4cDq2FM3sq5GVNeGYv+fgxMYYhylJrfmysYRfE0KFiu2iRmOzOXtYCeXa2GvCk9HT1ALusrgQtd7Ss21MhP3as7OBgKZDLxy8uFj9PWyvkgOnJNbmVJ37M0f6eGIdqWwK5tQp76d9AXnw9i6Mg5Lm3dMQiHdHq/TIy1PXkrZ1QkL9fMogzkFs3a9YsZGRkoFu3bqhZs6b+4/vvv9ff5r333sPdd9+NwYMHo0uXLoiPj8ePP/7oxr1mICciIqrUjA+EY2PRrJmmQi4nD2vbFhg3TlTtDh0CnnwSeOUV8bXnngPWrsULd+1FMPLxP8y2ad4nE02aAB07ioP1Dz9Ux6vLFnVH1KkjKstyZnArgfxaLQuB3DgIGc+wXionoaHhA2oDOWB9YjdzLevytZft6m3amG8bzssD/hZt9lYDuaUx5JZa1u0N5MYVcmcHckvt2PL5jFvzjTsBOncWQSYjA1i+3P7nNxfIIyLUyfOMw4/cj8hIwyXItPtmLiCXp2XdlRXyxERRtc3Lszw5oWQpkAcGqj+vZ54RoTQszL4KuQzicoK+9u0t38ffX+00MA7V5V32rPRvYPaKemjVyvQcT06OYTONQdu6fL0jI9XOGXPkcopySUP5uls7CQFU3kCuKIrZj0ceeUR/m5CQEKSmpuLq1avIzs7Gjz/+aHH8eEVhICciIqrEoqMNw0JpINdXyKU2bUTA2rpVVMb79BEH6G+/LZYZ0+lw+jRQDDFDs7mubJv8979iO22aqDo2aGD9gLssgYHqmOqDB8U64YDZQH6lZhkVcuOWdaPQk17tRvW+fjGmgcqWCrm5lnVZIW/d2rBtWI5j37JFtOTGx6tfB2wfQ248qZutgdx46TVLFXKHfxmMWKr+WjrxYBzI/f3VWfodmXjZXCDX6QzbsLUsvd7afTMOyEVFIskBjrWsu7JCrh3HXVbburVWdBkmv/pKbKdPtzgG24C22+XcObHV6cTcFNZYGgduT8t6Vpbp73vpDOv7suvhzBlg/37DL8tf+7AwMdXBIZQO0dm9u+zx41LjxmIrV1Bghdw3MZATERFVYjqd4UGzcYUcEBUcOUFXo0bApEliHPnx46J9vZR2Ja6yCmgWDRkiAqI8MHnwQcvL+9hKHsgvXy4CT1SUunyXxsXqhiE9A9GiMGapQm4UyC9GqWH4uJJouuKQtQq5uZb1jAxxUkJbIa9XTxy8ZWerB9vadnXta2XvGHJbKuR16oigWFCgjseXPK1Cbi4I33ef2C5dqs6QbStzgRywHH7kBHTGnRKA5YAsq7ZA+QK5KyrkgHrCp6yJ3awFTm0x8r//BR57zPpjSdoKuayON2tm+r0as1Tltmcdcu3tpdIK+QmIn+/u3YZf1hazW7QANqF0zrC//rJ97DwDeeXAQE5EROR+qampSE5ORlu5/FdFMgrkVasCRZGa0NaypeEYbjMURc0rQDmKoqGhwPDh6ucPPODgA2nIQL5smdgmJ5sN+df9Y3AKalDXL3tmPKmbDERGLeunQ9WW9eNKounEzNaWPtOGyKgodXz8//4nwk1AgJjILChIrfjLUGRu/Dhg/7JncsyztUDu7w/IyYjl80rWxpDbux5yejrw6KOAdmhnWYG8rAo5IIZeNGggqtBLlxp+LSfH8skD7S+4fP0lS+Hnl1/E9o47TB/PUkCWoTE42LRq7MqWdVsq5IA6ZMJahTwnR63ymwvkssuic2dgxgzbT7jJv+MzZ4A//hCX5fry1lgaB25LhTw4WO0g0t5fUVB87DgA4DjqATAN5NoJ0Vu2BP5C6dJ7mzapr7c9FfLcXPVnz0DuWxjIiYiI3C8lJQX79+/HVrnmd0UyCuQAEFFXE2ZsOEkgi7lSubqUH39cVK3uvFMdQ1ke8kBeVpnMtKsDYmjsXoi29YLgCJTA37BlXbZ0WwiGx/zUCvkJJJq+BpZa1vPz1RevShURUGR4lxPbPfaYOtZUW6UsLBQVN6DsQF5Wy3pJiTjgl+PszVV2tc8jl6eTjCvkMhQUFFgPkeY89RTw2WdieIRkKWza2poPiNdWVsmN29Z79RJhe8EC0/tduiR+TtqfjWQu/OTmqqHxrrtMH6+sCrm5qm15Wtblzzgjw7T1WlGcWyGXvwdBQea/j5deEm3qP/1kOrbemqpV1fD8ww9i27Fj2fcrT8u69v7aQH71KvxzxP2vhosTNGVVyHehJXJ1oeJnLpfeK+sESFKS2F68qP5dhoaW3RXAQO5dGMiJiIgqOXnwFhysn6CqSgO1ZX3l1TYYMsR0jKSWtl0dKGcgb9hQhFY5qVt5yUAuNW1q9mb5+WogLwoTB7zXr0Md85qZKQ7qLQTyo0X1UAR/ABYCuaWWdXPLdMnKWFKSGB4wY4Z6e22VcudOEea162xLloKqceU4JEQMdAVE1fviRfG5pRMxnTuL7fr1hpVv4wp5SIgaBO1pW1+6VF3STj4mYDls2lMhB4Bhw8T2t99EcAZERXfzZnGC47771BMh0p49YlunjmmINBd+1qwRj12njvnft7Iq5MbfI1C+Crn8OSiK+WAqXwdnVMi17djmqt9164oJ3WJjTb9mjU6n/i3L32V7ArkjFXIL9887eBwAcBY18ezL4kTZrl2Gfw7aCnmzZkCxLhBblNK/Kdk9UVaFPCJCHSIhl85OSCi7q4CB3LswkBMREVVy8iBcc4Acn6yGmae/aYNFi4C+fS1nAeNA7vAYcsnczNSOMg7kNlTIiyM0gTwqSj3APXLEYsv6+SuB+vbVE0g0fQ20FXLtkbu5Zbo+/lgE03/+MV3TXVYpDx1SK8hduhgu8QWoQTUzU3wjsgpvrnIsf/ay8ti1q+XXv1078bXz59Vgpl1XWT4vYDqx25UrwKxZagA0duWKOrEfoHYlAJZb1u2pkANiyEK1aiJ8y66JAwfUn0lJCfDww8D8+ep9ZBjSrvMuyd8N7UkHGbjuust8eHIkkGsnFywuFhPUDR9u+Ltk6aRFUJAaPI2fUwbo8PCylxI0nlTw6lXg1VcNv3dbJyxzhPZvuXZt0+ED5lhqWbdllnVAfS1PntRfteWH4wCAc8H1MGaMGFFy7Zr5eTRq1hT/zho00LSty/8htswuL0/OaQN5WbSB3N7hIuXEQO4ABnIiIqJKzkwgv7GDOJi+jggoDRuhdm0xqfHDD5s/ZpDDawPEJOtOm1jbKeRkUJKVQL4cd+Bi9I240kOsWa2fY+umm8T28GGLwfDyZeAdjMc6v274Hb1MX4PatUXVODfXsN3AXEU3Lk6cATE3dl9WKRcuFFXe0FBg4kTT28XEiDHfgKiyA+Jzc+2u8rnlOPtevUxvI4WEqNVzOY78+nV1XWVzgVwGttdeE0MSXn/d/GOPHy9uK39meXniA7B9UreyKuQ6nRiPD6h9xnKCuq5dxfAARQEmTFDDjAxDPXuaPp5xNVJRDAO5OWW1rFurkGdlAWvXipMnX35p+LzydTYXhi09p63jxwH155KRIU58PPOMmOTxrbfU28h9sOXx7KX9W+7Y0bbx5+VtWZcdIePH63/HTq4XM6wH3lgPoaFqZ7m2bV1bIQdE27o+kEu2nLSQgVy2udsTyPPzzS/Z5kIM5A5gICciIqrk5MGbJsDU79sUx4Y8h7TnZmPfQX8sWSKKbMuWGR57S7Iy1KKF2HpUIK9SRT0oj4mxuIZvXh5wEXGY/ugRXHlyMgAzgfzIEYvB8NIlYDYew7Ot1yADMaavQXCwOv56xQr1+rIqusZklVKGxS+/FOsqGfPzU8PqyJFie889ppV0QD0ZI0PKbbdZ3wdt2zqgVkXDwtT2d8A0kO/aJbbm1gE/c0ZtFf/mG3U/ZTXRljHkimLb6ykD+T//iK0cn9usGfDOOyKknTwplpRLT1eXnjMXyI2XPdu/XyyJFRIC9Ohh/vkthWP5h6Q9qSFpv++PP1YvHzsmthcvitZ7Pz+7Znbfs9rG8eOAOPkjh17s3Al8/724rJ1xXy4tqF2Cz1m0FXJb2tUBm1rWrRaR33hD/P2fOQOMGAHs349Wh74FAIQ0rgdATNoGmA/k8t9N06bAZhgt0WZPhVx2ldgSyMPC1BMNFdy2zkDuAAZyIiKiSu6uu4B+/YBx49TrdDrcsOAtNH/rAfj5iSWwZ84UX3r5ZbXTV5I5QhZOL1zwoGML7djTJk0sVtVkITYkRJ2LymyF3ELLusykMuuZPSnRu7fYrlypXldWRdfYDTeole/XXxdLxVkiw2pOjliybvZs87fTPneNGhbH2etZCuTGFT/jQH7woNju2KEGZ+nTT0UrdpcuYiZ3GyfT04fXoiJxG1teT+NALgNl06YidN59t/h8wQJg3Trxy3zTTWaXyzOpkMvqePfuhicntCwFcpnomjUzvU9goNpSrp1fQQZyuTU3zt3Cc2ZnA5+8JvY7J9LGirYM2q+/rs6mfviw+vVDh8RW/s04k7ZCbssM60CZs6z/vjkCkZGi4cSsiAjRjRAcDPz8M9CkCZrkbEMBAhF432AA6olIeb4JMF2hrGlT4DKq42SwZqJKWyrksvwu2RLIAbeNI2cgdwADORERUSVXpYqY8XjQIKs3+89/RG4vLhbdvFoykLduLfJuUZHhfFxupw3kFpgL5FlZpYXoMlrWi4rU3GhTIF+3Tq14WZpszZLwcGDePOCDD0x/EMbkAX94uFhCzFwrtPFz9+pVdiuwbBf+91+RPOQP27iyqw3k6emG7dWyDRwQ7e6ffiouP/642MqqvXEgN/4egoPVH9ilS7a9ntqWdUVRK+Ty92OoGLKAhQuB338Xl81VxwE1+GRliYAq2/4ttatr9y0zU231l/sDqCVXY/IkUFGRep1xIDeeM8H4OTWBfNs2IKZQVMhP5asV8ueeEwHSZOk+QB0ysW6det3Jk+rvswznjRqZ34/ykNXi2FjzJy3MMdeyXlKin1Ph7Y8jkZ0t/gVa1KIF8O67+k9/Qj800+1Drb6t9V8G1B+fdoUybYUcAP4s0rSt21Mhlyx0+JhgIPceDORERERkC50OePNNcezw00/qkEZAHUNer56aAcs9sZsz3XmnqBr27WvxJuYCeUlJaRHQXIVcE8ivXhW5TqdTM53Z7z85WbT85uWp1WVL64Nb8+CDwJgxZQfnnj3FNzRvnnhuS7QzXlsbPy5FR6spZP16yxVyGR7On1crp5IMuoCYwO7sWREiBg403KeyKuSAeiLg1Ck1GFp7PZOTxS/ylSviZyon7JI/vD59xEmMEyeAL74Q11kK5JGR6pJ069eLPww/P3H2yhJtd4X8fSooUOcWkK+ttfvJdcrLEcg3bQLiIALb/ss19Lvz3nviHMXmzWYeR9uKHhCgVu2PHhVn6+SSaK6okN9wA7BokahUywkrymKuZV1W9gH8uVO0dh8/bv7u586VrmD32GPAokXYNeNPDMBPKL6hob4RQf64jh4V52XkyTjtCmU33ih+ZH8WawK5uaEJxqpXNzy5xAq572EgJyIiIls1bgyMGiUuP/usOoxZVsjr1FEzmEeNIx81Shwpy1ZkM7SBPDxczbrXr0NUBXU6cVAvvzFNOJJ5NDZWXaXI7Pev06lVcjmO3N6WdXu8+KJIWNba2o2f25ZADqht67/9VnaF/Nw5tV29dGk9rFql/gLNmiW2o0ap7daOBHJZnfX3t9wNIPdBBka5HnlCgvqc2rb169fFz617d/OPpdOp4WfKFLHt00f9RTAnIED9PuTP/+BBEcqjosSZLXO0gfw//xFbWwO58esJEchrQFTIt5yMQ0mJ6LiXBXjjjnoAaoUcECe4ZOn38GFxQiQ/X/wMbZkB3RGDBgG33lr27ST5fe/ZI+YEUBT9pIKFASHIhfh9tBTIR4wQ52LWrNUBgwZha4j4vdeeb6hRQ/yqK4p4Gu34cfl/JCBA/P9cj9K/m7g49aSKNTqdYZWcgdz3MJATERGRPSZPFnll82YxlFWuqgWI4q88XvSoQA6Yn7FcQxvIdTp1TqTr1yEOnGVIkiFSEwy1S3DLExJZWeq8UQaMA7m9k7rZy5aDfhnIGzWyHiS17rtPbOfPVwfPWhtDLgP50KHiZ3H8uAiRBw+K9nWdDhg9Wr2vcYC0NKmb9nllFb5KlbK7B2TbulzezHjcvPYkRqtW1k+YyPAj20a034clxhVr2e/cooXlfZeBvHZt0SUBOFwhVxTDCvmxrBrYs8dweLrZQK6tkI8aZdg9Ik+I3HijOs+Bu3XuLNrb09PFLPp9+ohWHwCvh74OQLzWZ8+K8yFaigJs3Cgu//GH2Mpv0bgBQDuxm/H4calpU+AgGmPJvd+qE+LZgoHctzGQExERkT0SEtT536ZPV9vVY2JEiPXICrkNtIEcMDOxW8OGhnfQBEPtEtyRkWoXr9nXoFcvcQC2b59oLXBlhdxWt90mAuozz9h+n1tvFQGnsBDKt2LW6aJYCxXyy5dF6RAQEw106CAuf/utOnfB3Xcbzg6uDeQFBeoPyFzlW1bItYG8LDKQy4RlPL/AnXeqk7JZaleXtDOUJySI+5bFWiAv63nuvVcNxmfOiNfGnkB+5AjSH/8/tLn0KxIgfkkvIA7LlomGB8lsIG/cWFS/W7USJ5dkMj10yHJadafgYHGi5O67xeu0YgXg7489T32GV66PQ7Vq4m++pMRwHXFAjGSQJ9X+/lts5a+Y8RB5+WNbvdp0hnVJnvP5we8+82vaWyIDeUSE+o+pLAzk3oOBnIiIiOz1xBOiBXPzZvUAXk5ALQ9CPWoMuQ3KDOTakBEaalBxNx5CLYtYZl+DKlXU6ej/7//ExGjyendp0EAEQtkGbav/+z8AgK60a2DfBaMKedWqaqVUlhqTktRl1eSU/bVrAx9+aHhfbSDXTshlLpAbV8ht6TaQgVwyrpCHhYnXIzAQGDbM+mPJEw+AqBrbMr5Z/rxlB4DsMrA0oRsAvPCCGIYwcaL4HuUv6cGDIpgDZQfy3buBDh0QO3sqfsVdaAixTNlF1MDbbxsMrzaZCB+A+N3/919RXg8IMKyQW0qr7hYVBSxZIl67Ro2AJUsw5ZwYe/PAA+p5IOO2de1qblu2iLxk6ZzDPfeIxoaFC8Uwd8ByINc+rk3kHW3tXgEYyL0JAzkRERHZKz5enbNq2jSxlceKPlsh1x6BGy15pm1ZB2x4DeQM3F99pU4o5qqWdVe67TZk3NRG/+mmo0YVcj8/NRjIycuSkgzHqVerJsaTG6+dLV9jbSCPiDDfCi0r5DJR2XJyw7gSbW4G/vfeE/vdqpX1x5Lfo05n+0kNbcVaUWyrkDdsKMapR0UZLue3Zo14jMhIy79H8vlOnQKuXMH5mEY4D7HfxWEROIU6+pdZ/g2YrZADIojLoRDmWtY9qUIu+fuL1+7gQWR3vxtLloirH3lEHY1y4oThXbTBOSNDzLknz58Zf4s336zOr/Hnn2JrrmUdEOdPtJPrl6lnT3Hy6/33bb9P797iJI3cmQrCQO4ABnIiIiJyhBwmK6vDxhVynw7kRuOYtS3rgA2vwdixYhmlRx4B2rcHBgywXhn1VDodljb5P/2nq3ZW1w+x19NWj8PCxC9KmzYiTMbEiBZi47WWAbVCnp5ufUI3QD0TIg9obQnkdeoYPp65Wej9/CyvJa4lK8J33237ZGZyH69cUZeO8/OzujSfCRnI5Yz1N9xgefy5Nqj37o1BdbahFs5gzeR18Nv0F8Lj1FZoOXzeYiDXkkM5rlwBtm4Vlz0xkGucOydGQUREiD87GcitVcgBMey7qEg0CdSqZfq4b7xheK7OuEJet654zsJC4MgRO3bY319MRHf77bbfJzxcnBEoY+4MZ2MgdwADORERETnittsMi5oykHvspG5lyM8XWxnIZY48cKD0BjYEcpsr5BERIpTPnavOjmfrMk4eZuap/tiAjkhHNNZcTNYv6a2nTSWNGomDz4AAURFOSxOlRXO0LetyQjdLM6cbz+5uS7eBTqe2rScm2j4215z77hOTw8kl0mwhU+DXXwN//SUuJyWps9DbQgZyuSa4pXZ1QJxwuPdeYOxYZM1fir/3RaAE/mg4qgt0zZvpmxaqVgX69xeXbQrk4eHqH79sv/fwQC53U/6KldWyLofrf/212DZsqGYorerV1Yn2AdMKuU6nVsnllAq+hoHcAQzkRERE5Ag/P8PuXHMVcpNqqQczrpDLydCXLSu9Qd266pJcNrase9s4enulpwPbdvihJ1ajT4tzuIYq+OUXoxtpK+TascURESavowFzY8jLqpBLto7Hl4HcePy4vQICxDhz7XruZfnf/0SV/tgxICVFXGetXd0cGcCzsw0/N8ffXyzx9u672Lo7CCUl4m9W/t3KSfOHDxfLeAG2BfLcXJierDL+eXgYOXpC/vqZq5AXFakn40aONPy6tfMN//0v0KmTOHdkrunF4XHkXoKB3AEM5EREROSoESPUIb3ywF7mr4ICGytsHkIGcjk09s47xXHSrl2lw7z9/dVSWRkt697aJWCvtWvFMWT9RsF4aLSo7P76q9GNtIHcXGu6JfYEckcq5IBYOiwuDnj4Ydv3y1miooDPPhOX5S+QvcMWjAO4tUCusWmT2MrJ7gHRbZ+WJlYEM54A3pIffhAF8t+OaRJqo0ZlLznnZsYVcnNjyP/9V3TNhIaqJyska3PWBQSIJdLOnTP9tQQYyMkMBnIiIiJyVK1aYsLnnj1FVQgQgVYe0NsTSPfsEfnEXVV14wp59epiZS9ArZIrpeNlS6Jsa1n39Qr56tVi27OnutLXxo1q4AHgnkBua4X8llvEGun33GP7fjnT7bcbrlnuaIXc0ucWbNsmtu3bG15fr54Ycmw835wl69eLr688rgnkHt6uDphWyGXL+unTojIOqIG5SRPxumhXtivrWwwMtDz1AFvWyQQDORERkfulpqYiOTkZbeVyWF5k4kQxp5T2ANTeid0URSxH/eijhusgVyTjQA6oM8kvXSq2qy6J2bY3n1En7lIU05Z1bQusLx9j/fGH2PbsKb7n5GSguFhMmq5X3kCena2uv2UpkMfEGM6+7k0z1r/9tkh4sbFAu3b23Tcx0bAabWMg37lTbC1NHi9f+uJizaSGZsjf+zNhakI96ud9gTw+XoxGKS5W1yKXgbxpU/ESa3805TnnIOcOTEtT563wJQzkDmAgJyIicr+UlBTs378fW+UsxV5Otq9PmaIuj2zNjh3A0aPispyfqiIVF6vLEJkL5GvWACtXAkP+GodhmI/Xs57S3+b6ddGeD6iF2sRE0bqal6ce4Puac+fEMlA6HdCtm7hOVskN2ta1gVzOyG0LbfiWvcSWJnXz8zMM4e5c091ekZHiD+DYMfvGoAOiHUX+sel0pkvHmXHtmjoW2lKHfGioOrectbZ1Gcjvm6gm1E/W3oTi4jJ3w62MW9b9/NSXTv6qaQM5YNhNUJ5AHh8vfuQlJeoSar6EgdwBDORERETkbM89J8aW/vmn6MJ9/XUgNRX48ktxoGt83LFggXp548aK3VfAsFKlDeSNGomD78JCYOBA4Doi8R2GYc22SH0Il6EkLEztEggIUIuVdi1v5EXWrBHbm29W82/nzmJrMD42OVkkkFtusW0JMcnfXw3gMkFaqpADhhOJeVMgB8Qfi7UJ7qxp0EBsa9dWJ0CwYtcusU1MtP4yaVdls0QO1QhLrgeldJWAVSdvwldflbkbbmVcIQdMZ1o3DuS33CK21aqV79dLpzNcut3XMJA7gIGciIiInK1HD1H0u/lmcUD/0kvAE0+IGZybNRPZKSVFjNdUFDE5lLRtW8W3csp2dcAwkANA375im5MjxpHGxoqZpXfsENcbjx+XZDHYVwO5DCzayqGcndsgxFWpIlLO2rX2P4ksYdoSyLXjyL2pZb285JkfJ7WrS7ZM7CZPRlWrGQjdK69gb+vh2I0WePFF8ffiqcwFcu0wk7w89e+2WTOx7d4deP55cWKxvBjIyQADOREREbnCTTeJ5ZWnTQMeeggYMkS0NoeFiYP8jz4Sw2e3bxfjKcPCRI7KzxfXAcCSJaIytXu3a/dVBnJ/f9PlwGXbOiAOxrt0EZfXrxdb4xnWJV8+6AaAixfFVrvMuHwNTKqqVarYVL01IQO57Pu3pUIeECCWVKss5Lh8G8fnOyuQa+dOqFYNwP/9H27cMA91E/1w9izwwQc27Y5bGLesA4YzrR86JIaxxMaqv99+fmIGemfM/ydnaffF/w0M5A4wCOTZ2b475R8RERFVuOBg4NlnRav6ggWizTk9HfjwQ/H1SZNEOzsgll2SLc8bN4pjk2eeAf7+W6xKJcd4u4K5Cd2kTp2AMWOAV14BBg9W91EGcnlQLavDkq9XyC9cEFvt7NMykF+/7qQuB+3sYoDlMeTaJ69a1eOX3XKq0aOB6dNFG4oNnBXIs7LUn7F86UNCgBdeEJdXrrRpd9yirAq5XI2uWTPX/CrJk3WHDjn/sd2NgdwBBoF81CigeXPARyaUISIiIs8TGCja1e+4Q0yGtmSJuP6ee4COHcXljRtFh7Oc9Oiff4D33nPdPlkL5H5+oto3caL4XAbyDRtETvz4Y/H5XXcZ3q8yBvLoaHWyc2tjj21mPMmZLRVybxs/Xl7R0eLMlZzczYrcXODgQXG5vIFcVsdDQsQQeEl2zjvl5+8i5irkcgz5hg3AzJni8rPPuub5fbl7hoHcAQaBXJ6m8cUp/4iIiMhj6HTAJ5+Iub4AcUDfp48ayP/6S3wdUIPt5Mmitd0VrAVyY61aifb6a9fESYLDh0Xhdvhww9vJ/T52TF3b2JfIlnVtZ4BOpw7floGtXOwJ5NoKOZm1Z484iVStGlCrlvXbypexrEBerZphFVnez5MDubUKuezEmTxZdO24gvzfcPGiui++goHcAQaBPDNTfOLJszAQERGRT6hTB3j/fXF52DARcm++WbS5X7qkTvT27bdi7HlurpgYzhVk660tgTwwEOjQQVyWXcKjRpkOW65TR3wvhYXAyZPO21dPoCjmK+SAlXHkjjCeedxaIL/5ZrEtq/RbiWnb1ctqxS6rQm5p7gRtIFcUx/bTlRTFfCCvWVP8bQPAgAHAyy+7bh+iotSx6b7WQcNA7gCDQH79uvgkN9dt+0NERESVx8iR4oBUtogGBwNt24rLiiIyVuvWwOzZ4rpff1WDgDPZUyEH1Lb1/HwRbMydKPDzA268UVz2tdbU69fV18w4kLu0Qm5tDHmnTmLRe3mWh0zIQC7PXVhja8u68eoC8uefn++ZNb7cXOiXLNT+evn7ixNsQ4eKOS/8XJwsfbVtnYHcAWYDuSf+9RAREZFPuvFGwwm4Zds6ADz6qNjK9cABdQZ2Z7I3kMuZ1gGxLJqlFad8dRy5rI5HRJguLS4rphXesg4ACQmuT1JezNYJ3QDbA7lxhTwiQq00e2LbuqyO+/ubdrVMnCg6c+RQGldy1cRuhw8DW7Y49zHtwb8+B8j/WUphkfpuxEBOREREbtKpk9iGhQH3369e37q12LoykNu6Mlf79kBQkLg8Zozl2/lqIDc3flxyasu6NpAHBzu2dBoBEPMY/POPuOzKQK6dR8ATA7mc0C0mxr2T8buiQl5SAvTqJU5quqvyzkDuABnI/XOuq1eyZZ2IiIjc5I47gLFjgc8/N+xQrohAbmuFPCwM+PprMft6jx6Wb2dLIJ83T3y/JSW2PbcnsDR+HHBhy3pZ1XGyKi1N/J6HhalDKayRgdxSqJZDR4xb1gHPDuTmxo+7g72BXFHEGunffy+G+JhbVvDIEeDUKXHy5ccfnbev9ghwz9N6N7OBnBVyIiIicpOAAODdd02vl4F82zbnP6e9gRwQY03LIg+6rQXyZ54RweX++9Xx857OWiB3Wcu6tfHjVCYZoOPjbevq11bIFcW0mmypQg4wkNuiUSOxPXzY/OurdfWqqHrLJesA8Tf42muGt9u8Wb28ZIm6JnxFYoXcAfIPMiCXFXIiIiLyXHIiqlOnnD+xmyOB3BayQn78uDqRlFZurhpaXLWkmyu4pWWdFfJyka3nti7TLm9XWAhkZ5t+3VsC+cWLQLt2wJQp4nNza5C7Q/36Yhx7djZw7pz1265fL8K4vz+QlCSumzFD/V6kTZvUy3//LeY4rGgM5A4wG8hZISciIiIPExVlOrHbzJlihvPyrvPtqkBes6ZYY7242HzgPntWvXz8uHOf25UqrGVdW8ZkIC8XewN5WJg6T4K5ceTe0rL+6afA1q3qSg2eUiEPChKhHCh7Yjf5v2HgQGDfPqBZM7Fa9QcfGN5OVsjlz23pUqftrs0YyB3AMeRERETkLbTjyI8fB556CkhNBX77rXyP66pArtOp43XNta1rK1jeVCF3S8s6A3m52BvIdTrrE7t5Q4VcUYAvvhCXz54V465lIHd3hRywfRz5iRNim5gosptcI/3994GMDHE5KwvYs0dcfuwxsV2yxJl7axsGcgfIQB6Ym6leyQo5EREReSBtIE9NVSdCW7SofI/rqkAOAMnJYvvCC6ZVcE+skGdnl12xk4HcWsu6UwJ5YKBoMQAYyMtJhmMZlm0hb2scyIuL1es8OZBv2qSeCJOTomlnWXc3OaTl33+t304G8nr1xHbwYPF/JSMD+PBDcd3WreL/YZ06wOOPi+v++EM9AVFRGMgdwDHkRERE5C1kIN+0SbSiSkuXirGujnJlIH/pJdG6vm+fGMv611/q1zwxkN9/vxinKtesNkeOIbfWsp6VZX4maLvJUiYndSsXeyvk2tsaB3I50RtgPuB7SiCX1XEpLc1zWtYBoHZtsS1rrLf835CYKLbaKvk774ifh2xXv+UWUXlPThZDecrbPWQvBnIH6CvkeRxDTkRERJ5NTux2/ryoDjVsKMawXrsGrF3r+OO6ukK+ZYtY+/nSJWDAAPXkgfZA/PhxNeS4099/i+2aNZZvY61lPTpaTD4FOHliN1bIy8WZgVx2P8TEiCYGY54QyHNzge++E5dlJ0damudM6gYAtWqJbVmBXNuyLg0dCjRtKk4wTJliGMgB8X8GABYvdtbe2oaB3AH6CjkDOREREXk47cRuADBmjHrgaeu6u6dPm1ajXRnIAVEJW79ePP6lS8DJk+J6bYU8L08Nuu6SlaXuw44d5m+TlycmlALMB3I/PxetRc5AXi7lDeTr1wOPPCJCtrXx44BnBPKffhK/p4mJwD33iOs8rUIuA/np05Zvk5Wlvo7aQO7vL6rjgJjcUp6Q7NBBbAcMAIKD1ZNjFYWB3AFmK+RsWSciIiIPJdvWo6NFQBg0SHy+eLEY22rNhQtA8+aisnT0qHq9bK12VSAHxFDoG24Ql+VzG1fG3N22rp1YzlIgl+3qQUGWM7JTA5lMIXXqOOHBvNuJE8D06eoJEXuUJ5AfOwYMGSJawGfP9o5A/tVXYvvww+rfnTaQe1qF3FJ3jKyOx8SY/r3dfjvQp4/ouMnMFN0KrVqJr7VpI35O337rkl23yK2B/M8//0Tfvn2RkJAAnU6HJUbT2imKgokTJ6JmzZoIDQ1Fr169cMTcdJsVjC3rRERE5E3uvltsx44FIiKAHj3EgeqFC4br8Jrz0kuiZTU7G/jf/9SDYFdXyCU547qcxElWyIODxdbdgfzYMfXyoUPm15/WTuim05l/HKdO7DZ9uug9HjjQCQ/m3V55BXjuOWDuXPvvW55A/vnn6omYNWusL3mmvV96evmXJHTU7t1ie9dd6vJi2pZ1T6qQ5+WZrikumWtX13r7bbUK3qqV+j9MpxP/HyuaWwN5dnY2WrRogdTUVLNfnzZtGmbMmIHZs2fj77//Rnh4OHr37o08+Q7gJjKQB7FCTkRERF5g2DARXCdOFJ8HBQH9+onLr78O7N9v/n47dwJz5qj3Wb1araJVVCBv0EBsjx4VJwNkhbxtW7F199Jn2kBeUgL884/pbayNH5ecGsjj4oB77zU/WLmS2btXbMualduc8gRybefJxo3q762lCrn2OSwFTVcqLhbzTACisUIbyD2pZT0kRO0msDSO3HiGdWPJycB//ysu9+zp1N1ziFsDeZ8+fTBlyhQMNHP2TlEUvP/++3jppZfQv39/NG/eHF9++SXOnj1rUkmvaPoKeT4r5EREROT5dDpRLdJWZ4cPF9vly4EmTYAuXdQqHiDC79ixYjtsmKg0AsC4cSI0uqNCnp6uPq8c9+nuCrlx0DM307q1Jc8kT2hZ9kWWhjqUpbhYDaL2LHumDdb33w/Ex4vf2Z9/FtdZCuSBgeqk+O74Hbh0SXzPfn7i91QG8itXPKtlHTCd2O3UKaBrV2DZMvG58Qzr5rz/vlhp4sUXXbWXtvPYMeRpaWk4f/48evXqpb8uOjoa7du3xyYrvVX5+fnIzMw0+HA2sxXyoqLyrR1CREREVIF69gRWrhQTGfn7iwmo5s9Xv75kCbBuHRAaCrz5JjB+PNCsmThAHz1arUXI1nFX0VbIZbt6lSpA48bisrsDuayQx8eLrblx5NaWPJOcWiEnAOJ3VVab7Q3k2iq1PUE0IUFso6LEBGLduonP5e+FpZZ1wL0nZeTfVlwcEBAg9t+4M8ATKuSAaSD/+mvgzz+BV18Vn5fVsg6IEyB9+4p5KtzNYwP5+dKeiTij/1xxcXH6r5kzdepUREdH6z/quGAyC30gzzcK+2xbJyIiIi9y221iYrc33hCfr1qlfu3jj8V27Figbl1xADtnjmhdX7xYtOECFVchP3ZMnVk5IcGwpdadZCCXE+VZq5C7I5CvXQts3+7cx/QW2qmnrM3KbY5sV4+KEgHVVh07Au++KzpP4uOB7t0Nv26pQg64N5CfOye2NWuq18m/MUCcmHP1yTdbGQfygwfFdscOcSKlrJZ1T+OxgdxREyZMQEZGhv7j1KlTTn8ONZBfN/wCAzkREZFDBg4ciNjYWAwZMsTdu1Ip3X672K5dCxQUANevq2tqP/SQeru2bYFZs8TlkhKxdXUgr1tXVPDz8oCtW8V1CQnqwfaJE+q+VLTiYvWEwNChYrtnj3gNtexpWXdmIP/nHzGBX48elXN0pTaQnz9f9ooCWo6MHwfEsJCxY9UhFT16GH7dlkBuvIa5ra5fF8uVLVpk/31lhVxW+AHDQO4p1XHAdOkzGchLSkSl3JaWdU/isYE8vrTv54LR4pIXLlzQf82c4OBgREVFGXw4mwzkwcaBvDL+pyMiInKCp556Cl9++aW7d6PSat5ctNJmZ4tZ11etEqHyxhuBRo0MbztypFjLXHJ1IA8MVMP3n3+Kba1aYp1yf3+xn1aaJ13q7Fnx/AEBQKdOorW5sBDYt8/wdva0rNtSHT11CujdG/j9d+u3e+cdMQdAZqYYnuDr9u8HPvtMXQlAG8iLi+1bs97RQG6sQQPxuyq5smX999+BBQvEEBN7mQvk2gqzJwZyufSZDOQA8Ouv6v8DBvJyql+/PuLj47F69Wr9dZmZmfj777/RQZ5ychN9hbyAgZyIiMgZunXrhsjISHfvRqXl5yfa1wER3JYuFZf79jW/TNfbb4sW7Vq1xLhyV5Nt63/9JbYJCSIEy6DjrnHksl09MVHsj1zP2Lht3dkt67NmiZ/T229bvs3p04ZzAixebP0x09Mtr6PuDU6fFhMTPvqoOoGa8WrJ9rStOyuQ63SGbeuubFmX+6ydnNFWZVXIPWVCN8AwkJ8/b7jG/Pffi214uH2T8bmTWwN5VlYWdu3ahV27dgEQE7nt2rULJ0+ehE6nw9NPP40pU6Zg6dKl2LNnDx5++GEkJCRgwIAB7tzt0kCuIFgGcjmwhC3rRETkg/7880/07dsXCQkJ0Ol0Zlc7SU1NRb169RASEoL27dtjy5YtFb+jVC4ykK9YAfzyi7gsl0YzFhgo2mJPnqyYA3U5sZtc41sekLt7HLkM5HL/br5ZbI2DrbNb1uX4/QMH1OuuXgXatweefBLIzwdmzBBzDsvG0mXLrM8//NBDQOvW3jnevKhIrAQgg6wcbmEcyO2Z2M1ZgRyouECekSG2jgx78KaWdXki7swZtTou/7bka2C8qoQns2OKAufbtm0bumt+Q8eNGwcAGD58OObNm4fnnnsO2dnZGD16NNLT09GpUycsX74cIa7ujSqDnx8Qilz4KaUDlmrUEL/FrJATEZEPys7ORosWLTBy5EgMkjNXaXz//fcYN24cZs+ejfbt2+P9999H7969cejQIdQoPUpq2bIlioqKTO67cuVKJGiPAG2Qn5+P/Px8/eeuWFGlMpKBXAaymBgxQZU1fhVU2pEVckn+ysiWWndVyOWSZzfcILayQq4N5EVFasCypUKelSUCtaUJtAoLAXm+6+RJcfuICDGJ2JYt4mPHDnX97dmzRdX40iUxk77xmGZJVvV37hTB3B0URUwc2KYN0LKl9dulporv8dZbxT5v2KB+fcMGcRsZyJOSRHBzR4UcECsa+PmJn1N0tOXblTeQy+XJsrNFnTA01Pb7ljWpmydWyC9fBnbvFpfbtRM/39I6r9e0qwNuDuTdunWDIgd5mKHT6fDqq6/iVTmHvYfw8wMioWlXr15dBHJWyImIyAf16dMHffr0sfj1d999F48++ihGjBgBAJg9ezZ++eUXfP7553jhhRcAQN8N5wxTp07FK3JRbHKaWrWA5GQxDhcA+vQRlXBPICvQkjwgd3cglxVyGchlkN25UwTnwEAR2hVFjLW3Vh2NjhZj4ouLRSDTnqeSjyUfW67FDgCHDonnlcEEUFv7k5LEsIN+/UTQXbzYfCAvLFQD2cmTtn//zrZqlTh5cOONwOHD5iucigKMGyfWkQbU1QAAYPp04NlnxQmJ48fVVuYuXUQgd6RC7oy257p1gZ9+EoHcWtXWWRVyQIRVexab8qYx5FWqiBNW+fnAH3+I65KSgJtuUgO5t8ywDnjwGHJPZhDIIyLUBexYISciokqmoKAA27dvR69evfTX+fn5oVevXti0aZNLnrMiVlSprGSVHBBBzlNYqpDLCp6sVFc040DesKEILnl5YrZ1ANi8WWzbtBGB2xI/P7UaK1uOi4uBp54CwsLUmbNlu7ok29b/+Udsx40TwQQAXnpJPK4c7blkiTrhmdbZs+pM9XLJKHeQk/YdPWrabp6TI37Ojz6qhvEHHwRuuUUsxTduHPDMMyL8FheLtakBEUrlCR17ArkMxc6okAPA3Xera5Jb4uxAbquiInVYhTaQh4SoFXNPCuQ6nXpSbt06sU1KMjzZ5E0VcgZyBxgE8shItR+EFXIiIqpkLl++jOLiYsQZ9eLGxcXhvB1TX/fq1QtDhw7Fr7/+itq1a1sN8xWxokplJQN5QABwxx3u3Rctbeusn5/a+t2kidju3m0+aJbl44/FcmWaERB2kScCZODz8xPjuAE1iMvtLbeU/Xiygn74sDisHDpUHQv+1lvia7L6LacwkoFcVsiHDhVVwj17gAceENf16iVqSKdPmx8jrj2n5c4KufbP/rffxDYvT7Qjh4eLEzNz5ojXed484KuvxH3y8sSM8oCY7R4QXwfESRI55thay3pBAfDCC6KtH3Buy7qtnNWyDtgXyC9eFCdk/P1NZ4GXf3ue1LIOqIFcdkEkJQGdO6snvRjIfZxJIA8LE5dZISciInLI77//jkuXLiEnJwenT592+4oqldVttwEPPwy88YZnHYCHhqqhKj5ePehu2lS0cl+9an/buqIA//d/wMKFplVnW2RmqqFHe8JABvK//xZbGcjl9dbIEw1Dh4pwvnixqP4GBIg12HftUvdVTrh34IAYH37unKgcNm0qXq+mTdXHDQkRQxAAYOZM0+fVhnB3BfLiYnVsPCDGxAOiM0CuPx8aKoZVLFoEDB+u3lbbBt65s9jK7oWGDQ1n5bZk4UJx0uPJJ8Xn7g7kjpxgcrRCLtvVtX9bUpcuYivnR/AU8mcqJSUBUVFA//7i992WE2CegoHcAX5+QBRKT8cwkBMRUSVWrVo1+Pv744LRAr8XLlxAvJzembxGUBDwxRdiHK6nkVVobUttcLBYQx0Atm2z7/GOH1dDlz3rU0tyZveqVQ0n6tIG8uxstXXdloDw0ktAhw7iJENOjnjclSvFEnMA8OKLIngHBIhZ0QERyGW7eoMGohJuzpNPiuD6xRfADz8Yfk1bIT91Sm1fd7WsLDV47tsnPpeBcO1a0SXw6afi80mTxOu5b5/agm+ODOSStkIu1602R05qt2+f6JhwZyDPz3csVjhaITc3oZv0xhvi78PSZIDuog3k1aqpr90334gTDBxD7uPYsk5ERCQEBQWhdevWWL16tf66kpISrF692uVV7tTUVCQnJ6Nt27YufR7yDHIcuXFlrE0bsbV3uS7t7S9etH9/jNvVJRnIDx0Cfv9dVH5r1VJDoTU9e4qW9PR00Tq9dy/QtSswerT4+q+/iu3NN6tLrB09qn4v8uSEOZ07i44AQDyetqNAWxUvLBRrO7va+vXiMHrSJPG5bFfv1k28Vnl5wCefiDHCfn7Af/5j2zJWjRsbdnc0bKiexMnJMQytWrLlv6hIhHJ3BPKICHXyPkfa1stbITe34IVOZ325PnfR/h9ISlIvh4R4VnePLRjIHcCWdSIiqkyysrKwa9cu/UzpaWlp2LVrF06WHsWPGzcOn3766f+3d+fxTVVpH8B/SdOkC91rN2jZBISyyjaIM4ogm8vgMqJWBJeXQYuCKOIGuAyjqK8yIoI67iOIqCDgiwwgiyI7FIGWgohspS3QfV9y3j8eb5O0paQLvUn4fT+ffG5yc5Ock6Q5fe455zn45JNPkJKSgoceegiFhYVVWdcvlsTERCQnJ2OHNp6VPJoWgHbp4rhfy2xe3x5y++MbEpAfOCBbLYGaJizMdvLgrbdkW9/hs35+MhdaC+IHDbIljgNkObrYWJlXXVEBfPON7O/Ro+7nnTlTeuBzc4G777b1hFfPi9gcw9a1tcLffFOG/2sB+YABtuH1Tz8t25EjnTuhAcj/6do8ckACcl9fW2B9vmHr9lnqd+8GsrPlenMG5AZD4+aR2wfkZ844/7i6AnJXZf99sA/I3RED8gZgDzkREV1Kdu7ciV69eqHXH5MIp0yZgl69emHGjBkAgNGjR+P111/HjBkz0LNnTyQlJeH777+vkeiNqDEefFCGbz/3nON++x7y+sy7bWwPuba8Um1za7Vecm1JpsbOZzUaJbu4ZuBACd60QESbr15XDzkgva8LF0rAv2WLbai7FoBrPdDNkWldC4wLCiQjem0BufavtTZCwFnasHWDwTa/v67EbhkZjt+BDRts36XmDMgBW0Benx5uQMp7MXrIXdX5esjdEQPyBnAIyAMD2UNOREQe7dprr4VSqsblYy2NMYCJEyfi2LFjKC0txbZt29DfmQxWRPVgNkvSOe3fLk18vNyXk2NL5HUhSjVdQN6zZ837qgfgTZFgatw4CahNJgnIARmebe9CPeSAzK3VZnlovcJaD3m3brJtjh5y+57q11+XzPKAvFeDB9uyyMfE2AJ0Zw0eLNv4eBnCDNSd2M2+dxywnUhp0UK+W81Jyw6uvR/OKiyU6REaBuTugwF5A7CHnIiIiMg1mM22QHTnTpl7/OCDMhT6fH7/3TYkGah/UrfcXFvwX1sQbH8+ymSyDbdvjKgoYM0a4Lvv5DrgGJAHBDi/1JN2EiEpSQI5bb60NtS7OXvIAVuCvE6dpEc6MNBWlvvvtwXnzrrySsnSvmSJbZ99YrfqtIBcmw6hJTlr7t5xwPZd2b27fo+rPje+IUnd3Ckgj46WmAyoeWLK3dTz600A55ATERERuZI+fWRprF27JJnaBx9Itu6777YtJWZP6x339pYkZvXtIdeGesfG2oYY2+vRQzLAl5bK9eq9+g11zTWOt+0Dke7dbQHKhWgnEZKSbL3jAQHN20Ou9cr262db7sx+JMG8ecDixcCTTzbs+YcNc7yt9ajWNmRdC8jvuAN4+WXbuvTuFJDbD1cHGtZDXluWdVdlNsva82fPOuZXcEfsIW8A9pATERHpj1nWSaMldlu5UgIqQIbvLlpU+/FaQjdtrnF9A/K6hqsDEixogdXFXA+5ekDuLK3ce/fagu+4OLkAFz8gLyuzveezZtn22y/M0KUL8MILkriuKTgzZL13b9tJCUDfgHz/ftuJgZ9+ksR2dX0uWkBuscj27FnncirYn5Bypx5yAJg8GfjHP/QuReMxIG8A9pATERHpj1nWSaMldktJkSHrAQFy+9NPaz9e6yEfOVK2hYVycdaFAnJAhs0HBwP33OP889ZX+/a24dzOzB/XdOkij8vOlmXWAOnt14a8X+wh69oQabNZ5nvfdJME3sOHX7zXPN+Q9dJS4OBBud6jh2OSPj0C8rg4ed2KCgnKAVl/ftUq4LPPzv84bci61ltcXg7k51/49TIyJHA3mWQ9b2p+DMgbwGgEApEnNxiQExEREemqSxdb8i6TSdbr9vYG9uwB9u2T/T//DKxe7ZjQbdAgW49ifZaJciYgv/9+CXgvZg+5t3fDeuItFlvv+ooVso2Lk6AckOAuL6/JilmDFhTHxEgm9K+/lsDQ2TnwDXG+IespKRL8BgdL0G7/meoRkBsMjsPWc3OBzZvldl3fUa2HPDraFpo48522H67u7JQHalp82xuAQ9aJiIiIXIe3t23Y+mOPSUKwG2+U2599Bnz5pQxPHz5cEq5lZ0vvbNeutjnmziZ2Ky+39VzWFZA3l6++kjW969NDDtjKrs1Vjo2VZGrBwXK7+trkTUkLyLUg2du76Yamn4/WQ37unON8a224eo8eEgzr3UMOOAbka9bYsqfXNS9c6yEPCrL1dDszj9wdM6x7GgbkDcAh60RERESuZd484NVXgRdflNv33ivb994DEhIAq1UCLm2GQ7duEpRHRMhtZ+eRHzwoc6ADA2UJMb3FxgLXXlv/x1U/maD1jjfHsHU9gsCQEBniD9h6nAHHgByQ74W2HrteAbl2cmn3bhmqrqkrwNZOMgQH1y8g1xIU2i8jRs2LAXkDsIeciIiIyLX06AFMnWobuj5ypARUubkyJPmee4AjR4C//U3u13rQawvIlQKSk4EPP5SEWvbsh6u78xDf6j3qWkK35kjsVr2HvLloWeo3brTtqx6Qt2gBdOwo12vLoN8ctB7yvXtl+oXGmYC8Pj3kpaXA/Ply/ZZbGlZWajw3/hnRD3vIiYiI9Mcs61QXsxkYN06u33Yb8NFHQNu2Mnz97Flg5ky5r3pAvnix7IuPBx54QIa6T5hg+zfPmfnj7qB6QK71kGsB+bFjUuft22V0QVNylYC8pMQ2YsL+87zvPplTrWXhb27t2skIjNJSID3dtr+ph6wvWiTP37IlMHp0o4pMjcCAvAG8VAX88EdvOHvIiYiIdMEs63Qhs2YBmzZJkK1lIwek51Mbllw9IJ87VwIZX1+Zbw4A774rvZbPPSeJ4QD3D8jDw23zqgHbdW3I+tq1Mny7f3/g88+b9rX1Dsh37pQM5KtXy7ZlS8fPc9o0KWOHDs1bPo3R6DiXPT5ets4OWb/ssgsfrxTwxhty/dFHZR4/6YMBeQNYygtsNwIDHXvInVnwj4iIiIguOh8f6eX08jr/MfZJ3ZSyJWzbsgXYulUC05gYIDVVAvwDB+T++iZRc0VaHSIibEP9tR7ynTuB336T61u2NO3r6hWQt24t8/4rKyXr/uLFsn/06JrTD7QTNnrRhq0DtnwIhYXn7/+rrYe8rizra9bICgT+/sD48Y0uLjUCA/IGsJTJcPVyg7esG6H1kFutknqTiIiIiNyCfQ/5iRPS02gy2ZYFGzxYApc5c2To+vXXy9bde8gBWx204eqAbf40YOulTU5uutdUynHZs+am9ZL/3/8By5fLdVccrm0fkI8ebRvhce5c7cfXJ6mbUpIAEZBpGVpmfdIHA/IGMJdKQF5sCpAdWg85wHnkRERERG7EPiDXesc7dZI56JrQUGDSJEmA9d//ytadE7pphg6V7YABtn09ewKffCLzrN9/X/Y1NiBPTZVe2JMnJXDUenn1yOytZaRfsEB6nNu2BVwxDcW110qCuWuvlZ79CwXZziZ1U0qWBly3ToL8yZObuOBUb6YLH0LVaT3kxV4BCARk0oXRKD3kRUU8zURERETkJuwD8n375Hq3bvqVpzn95S+yBJk2bB+Qodr2Q6QBGfp85oxtbnJ9/f3vEuArZQsAQ0Jsg0ybk9ZDXlYm29Gj9R+eXptWrYCjR23vUXi4JGA7X0BuP2RdO1lU/VilgGeeAf71L7n93ntyQoL05QHn9pqfuSQPAFCk9ZAbDLZeciZ2IyIiInIbWkB+5oxtCaxLJSAHJJv4+Xr7/f1ta62npDTs+ffssWU1X75cpgUA+q173aaN4xB9VxyurgkPl89Auw5cuIe8riHrn30GvPKKXH/nHckmT/pjQN4AlhL5xhcZA2w7ufQZERFRs+KyZ9QUtF5fq9UWOHbtql95XE2XLrJt6LD1OXNs1zMzga++kut6BeQGg62XvGNH90nOV1dAXlEBFPyRczooyPadzsqSBHaapUtlO3Uq8NBDF6+sVD8MyOtLKcT/uAAAkFzR0ZZUnUufERERNSsue0ZNwdtb5ogDMnwbuLR6yC+kMQH56dOy1jUAdO8u24ULZatHQjfN/ffLv+7TprnmcPXa1BWQ5+XZrgcF2b7PSgHZ2bb7kpJkO3LkRSkiNRAD8vpatgyhe9ahBBZMK5qBo0f/2M8eciIiIiK3pA1bBySRlrYWNzUuIH/nHVmA6KqrgBkzZJ+eCd00gwbJv+z3369fGeqrroBcG67u5ycnmLy9bSmttKXPsrOB33+X6+4yKuBSwYC8PoqLgSlTAACLWz2Bo2iHDRv+uI895ERERERuyT4gj4/3jAzqTaWhAXlxsWQyBySr9/DhtrXOAX0DcndUV0Bun9DtfMdr+RHatJGEeuQ6+HNTH6+/LqeWWrbE73c9DQC2gJw95ERERERuyT7LOIerO9LWYz992nH484V88okEg61bA6NGSXKy66+33c+AvH6c6SGvLSDXesi14era2vPkOhiQO+vUKeDll+X666/j6mGS8nD9epmfUdVDzoCciIiIyK3Y95AzIHcUGChLcAHOZ1qvrJR+LAB4/HFZ7xoAbrnFdgwD8vpxJiC3X3m5Y0fZbt0qWwbkrosBubOio4F584DbbwdGj8aAATI/4+RJ4LffwGXPiIiIiNwUA/K61XfY+tdfA0eOAGFhjvO0b7pJgnMvLyAurunL6cnqO2RdS9y2cqVsGZC7LgbkzjIaZbG+JUsAgwF+fkD//nLXhg1gDzkRERGRm7IPyLnkWU31CciVAl59Va5PnGhbRxuQoHLFCuDLL20BJjnHPiCvWuXpD7X1kA8bJic+UlKAgwdtnx0DctfDgLwRrr1WtuvXgz3kRERERG5KC8gjI21rOJNNfQLyH34Adu2SvqqJE2veP3w4cOutTVu+S4EWkJeWAoWFjvfV1kMeHAz8+c9y/bXXJNt9cDBHJrgiBuSNMGiQbDdsAJQvk7oRERE1p3nz5qFLly7o27ev3kUhN3f11UDbtsADD+hdEtekBeT79gFlZXUfO3eubB94gL3gTcnPz5alvvqw9dqSugHAjTfK9tNPZduzp/usu34pYUDeCH/6E2A2S7637FIue0ZERNScEhMTkZycjB07duhdFHJzERGSE2jWLL1L4pri4wGLBUhLA664Ali0CLBaax5XUfHHyFEA48Y1axE9nsFw/nnktQ1ZB2wBeUWFbDlc3TUxIG8EPz9g4EC5viuZPeRERERE5HmCg4H//AeIigKOHgXuvhu4/HI5gXH6tO24pCQgL096ahn8Nb3qS5lpahuyDkim9fbtbbd79bpoRaNGYEDeSFOmyHbTDvaQExEREZFnuv124NdfgZdeksDv6FHgueeA7t1ltCgAbNwo26uvloRi1LQu1ENePSA3GGy95ABPkrgqBuSNdMMNkm09p5w95ERERETkufz9JQhPSwM++UTm3Z89C3z+udyvBeTXXKNfGT3Z+QJyrYe8+pB1wBaQm80y3YBcDwPyRjIYgBdfBIohPeTFWQzIiYgASOaf6muz1JdSwMKFwM8/N02ZiIio0fz8gHvvBZ56Sm4vXAhUVgI//ii3tZWIqGlpKwA420MOSBLqyZOBN9+UoJxcDwPyJnD99UBsR+khP5bCIetERPjvf4HoaFlzJSurYc+hFPDII0BCAnDddTI+koiIXMbttwPe3sDevcDixdJTGxDAucoXS2095KdPA0eOyPXWrWs+xstLgvGHH7745aOGYUDeBAwG4LYx0kOefaoIu3bpXCAioqaQkgK88079A+pFi2SMXFYWsHkzMHhwzQw0F6KUJOmYN09ul5baknZcLEVFQEYGkJ7O6UdERE4IDQVGjJDrTzwh24EDAZNJvzJ5stoC8oULJeP9VVdxjXF3xYC8iXTtKz3kPijGAw8A5eU6F8gVHT4M7N6tdynoUqQU8O9/A2+8IRPf6is7W9LLVh8j5qysLGD1amD2bODxx4EDBxr2PM2lsFDGIXbvDiQmSorWN96QoPhCFiyQHu3ycuDmm4HISEm7O2iQBLrOqKgAJk0C5syR208/Laf4ly2TnvcLOXlSHvPSS9Jt48yw+Y8+kv90oqKkZ/+yy4DPPnOuvEREl7C775atlm2d88cvntoCcq2pGjOm+ctDTUR5uNzcXAVA5ebmXtwX2rRJKUAdNnZUgFL//KdSKiNDqXvvVSohQam0tIv7+i7q/feVatVKqRVjFiur2awUoNTLLytltdY8+OhRpX79VanKyvM/odWqVF6eUiUlF35xq1WpnJzaX6s+ioqU2rdPqfLymvdVVir18cdKjRun1BNPKPX663JsbU6eVGruXKU+/VSpzZuVyspqXLk8hdXq3OepSU5WavBgpdq3V+rRR5X68ccLf2cef1y+e4BSRqNSI0YotW2bc6/3++9Kdewoj23RQqnp05XKznbusenpSj32mFI+PrbX155n+XLnnsO+HmvXKvX22/I9eucdKVt1BQVKPfecUn36KHXNNUqNGqXUffcpNWWK/O39/LNSFRXnf51ly5SKi7OVNSrKdr1zZ6UOHz7/YxcutB37yCPyuRw8qFRMjOzr1En+DuqSlaXU0KG255k/X/ZPmiS3r7hCqbKy2h9bWqrUK68o5e/v+H63bSt/d+f7LXjtNcfjDQbb9ZkzG/8bUotma5suEXw/ifRTWOj4s7tli94l8lzr1sl73KWL3N67V26bzUqdO6dv2agmZ9smg1KNzbhz8c2bNw+vvfYa0tPT0aNHD8ydOxf9+vVz6rF5eXkICgpCbm4uAgMDL14hd+0C+vSB1cuE+ZXjscv0J7xpegJBJZkAgLKAUOTPmgvT5W1gOLAfXjnnYI4OgykyDAazt/yGWa1yUQqq0ooTJxROHSlFB58TCC/4XZZUCw8HwsJkwo7BYLsoJRNIkpJk7Yn4eKBvX6BzZ+mhCgmR02knT8r9J09Kb1VQENCmjTxnbi5w7pz0IJ44IcdHR8v4l6Ag6R2zWmXNhCFDZH9SErBnj+35cnMlY4SPDw7kx+G55f1wOQ5jNqbBCLuv2oMPAnPnAj4+QGYmMHUq8Omncl+LFkDPnii9ahB+tAyBuTAb/U9+DcumNVKmigrA1xe44w7gf/4H+NOfHNfWUApYswZ45hn5XLp3B8aPB4YOlYwjRUXA/v1S9qIiWZvjuuvkPSgult7Qw4eB1FRg7Vp5ruJiWXBz+nQ5FWwwAMnJMiHnp58cvwtGI/DQQ9I716IFcOwY8Pbb0nNo38Po5SXv4513yjij1q0Bi8V2f2oq8NZbUobWrYEePaSuQ4fKBC1APo/ycsfH2SsrAwoK5FJRIelQDQa5r7gYWLlSMrBs2SKfQ8+eQL9+Uq5+/eTYnByZGLZ7N/D77zKkVytP585ATIxc4uJs5VBKjispkc/Y1xcIDLS9dlmZ1G/RIknNevy4fLfj4uTU+rhx8rlpz5WbK+VbvlzSu1bvqe3RQxZDHTnS9hraY6dMsfW09uol31ft/X/6aflMvb2lV9jf3/HxBw7I+52WJsdoQ1+Cg2Vs3qOP2j4Le0lJwLvvSgpabSnEyy8H+vSRv63Nm+V1nn1Wvsfx8fK9qaiQ76j956kUsGmTfJ+rJzYzmSSrzrhx8l04cgSYOVP+HusSHg4MHy7DyocOlTIeOiS94CtWyDGtW8vf6MiRUo9nnpHPNCQE+Ppr6fG2t3q1PF9Fhbwvc+bY3ssjR+Rv7Phx6W1ftUq+i3+MaawstyJrcwoqlq5A8JL34Xv6Nyg/Pxg+/RS47TYAQFFaDoydO8In7wxyL2uPvOGjEZxwAwKu7CDZhT74QMp/7Ji85lVXST21v19A/taff15+G1u0ALZtA957D/j4Y7l/6lQZxaCUfDavvCL7hw6VOg0f3mTr+DRb2+Th5s2bh3nz5qGyshKHDh3i+0mkkzFjZCCZv7/8G+XtrXeJPNMvv8i/PBER0iRPnQq8/jpw663SNJNrcbatd/mAfPHixbj33nuxYMEC9O/fH3PmzMGSJUuQmpqKiIiICz6+2f7pKS2Vf9Y2bHDYvQ9dUQYzeoNDtd9GIgpjOmJq2mMwwooKgwlpQZ0RWnQSLcqyoQwGVHqZYapwYlisHWU0oiI8CtbQcJRVGGEtKEZQemrTFt5kkkADkH/IKytt9/n5SWButcqc21WrpFwWC1BeDoPVWnVoYbf+MLbwg/nEEXidPO5YD4MBuZYI5BuDUWS1oFPJL7XX12xGSd8/w5ifC+9fU2AsKkRlUAgqI2MAAMaCfBiKCmAszIeh2tyJ8pg4FIz4G1SlQuA3H8GUl33eKqs2bSSA/f57GIqdSFZoNEqQFRYmwZ22BofG21uGAVut0opc4Kenok17GEtLYDibWaMeZdcNR/mY+2FatQLe3y2FsbBA9nfqiorLYmA1+8DrXAbMx3+FV/Y5AEDO7HdROnY8vH8/DL9XZ8Lnm0XyOi2CYCwthrG8DCowEIaePeVE1P79wMGD8lnHxwPffw9s3w41YwYMfww5L/YPw5nA9igvVSgvs6KizApzeSE6qkNVZU3y6Y9/eL+IlFbXY9hwAwb/pRw9/z0RLb97r+qYSv9AVCoDzEW5sMKADP92SAvuAr/KfMTm7EOLEqmD1eKDyiHD4OVngfF0Ws2TQZo2bSQw9/UFsrOhsrJRnJaF8kO/I2DbGhjzcs/7vitvb5ROfALZic+hUPmhsFDOW5UfP41u00ch5PB2WI1eKA2NhtHHjEqrAWUFZfDPT4e3KsdX3nfhQZ//IL6bEb16SfxeVgZ4px1D4teDEF1sS8xWYTDBoKzwgtWhDMcRi1u9liO3bU8EBMg5naQkYGjxMnyOBPjDcX53JYxVz1EcHIVTj8yG39/HwKoMyD5VhMCP30Krj1+CV4ntcaV+wbAU5dg+p7tm4/AtT8JstmWhDfn63+j70UPwssrfflF4LAqmzETE0w+c9/1zFgPypsX3k0hfmzbJedo77pBz7XRxpKUBLVvKv1yffioB+enTwNKlwKhRepeOqvOYgLx///7o27cv3n77bQCA1WpFbGwsHnnkETylrbVgp7S0FKV2vWd5eXmIjY1tnkZaKWDjRpS/MAteP27A7j9Pwpq//AO/HfNC71X/wN2ZbyIXQdiPrkhHFEKRhXCchQkVsMIIK4xQMFRtYTTCx9+EgwWtcES1RRH8EIZzVY8xQDlcTiAWSeiJU2iJ7vgFfbATbXEUEchEKLJwFuE4iVY4hZY4hZY4jWiEIButcQyhyEI2QpCNEJxGNI4jDucQhiikozWOwR+FKIUF3ijHQGzGX7AJfijGCbTCLvTGEbRHBiKRjRB4oxx+KEInpGJo8HbElf2KA7fPRL8vp6K4xIAbsQLvYTyiYZtPugc9MQELsAu90Qmp6I9tGIK1GOK1HmVGHywpH4VlGIVfcTlyEIzu+AX/g/dxB75ECxTW+ChKYME7eBgLMAHDsBoP4AO0xxGUwxtlMOMQOmIPeqEMZgzCelyJ3VU9+KUw4wja4zA6YBd64zuvvyI7tD3GFb2Dh4teQ7iyTdz5Fn/FZONbOGmMqxqscFXZeryNiYhHMgCgDN7Yhv54ETOwFkMASK/h5TiMO/EFbsFSdEJqjSDDCgNW4kZ8hPsQjrPoiSQMxX/RAb/W+6tZCjMMUDDDMbA9ijZYjpuxBQOQhhhcid24Cj9jJP7P4X3dj3gswygcQXucM0bgcsMRdLPuRTscQUukIVqdqjVIKjNYYFEljqMj7D6jTZah+NpvDH72vgYR1nS0q0jFDXlfYKR1RY2y5iIQp9ASb+Ix/BsPVr2PoTiHaZiNRzAXviip8TrF8MFEvI0P4RhE3Y4lmI+HEI5zdb53G4yDcJfpK5xTobBaAVRW4g4sxguYed7PogzeWIpb8C7+jvUYVFVWG4V78SnuwX8wAFtq/Q5Xf75/40H8A8/hNOTEi9kMXFm2FdPwCq7EbpQY/VDqHYANgTfjw9AnUAzfqoE3GRlAfr48lwnluMb0M26xfIfrS79Dx4pkVMALx41tsFv1wnT1Ig6ic63l8EEx/o0HkYCFtd6/EjfgVnyDctS+rkpLnMQyjEIf1Mx8WQILfjJfh80hN+GDwjtxoiCkxjGtWwM3XluA2L0r0SN1MeKLdyIWMhrgV7TH63gCn2AsSv5YhtJeK5zAi5iBwViHOJwAAOSjBb7FX/Eh7sd6XFdrmTvgEP6OdzEOHyMMWVh98zwM+7bxqWoZQDYtvp9E+vvtNxmU6e+vd0k8V0UFEBvrmJIlNFSCci5p5no8IiAvKyuDn58fvvrqK4yyO+0zduxY5OTk4Ntvv63xmOeffx4vvPBCjf3N3khXVNRIMVlZoQCDAUaj/JNcUCD/JNd2adlSRlz6+MjtNWvkh66y0vGijXC1vw7ICPOgIBlhm5kpI9F9fGR0rckkHfpFRTKs6MwZeQ0fH7koJSONa7uUlsoffKClFCHmQpT4hVaNri0vl0tFhWxHjJCR2toPxLFj0qF37hyQnaUQWngCrc5JwqXt4SORcc4Eg0FGkoaGAjfdJB20BoPUfe1aGfn622/yHJWVQGVZJQxnMmHKTIN/yTlEXKYQFalwyLcHfjkTjdOn5X2+EH8UwIQKFMMXZTDDaDTAZJKePXtmlCICmSiCH4rgV+s//gDghQpcYTwMr8tCYYq+DCazEbm5QF6ejL7WEjgbjVLfdm0VrupwBr2jTiGmRR7CLfnIjemM497tceKEjLLetQvIzFDojBT82boRmYZIpBjjcdZwGaLUacQgDZXwQgFaoNAYIFuDXCoM3vBRxbi+8nuMqvgK3oZyfOU/Dj/5D0NZpZfDZwwAvijCSPwfumI/vsdw7PPtDxgMdSSeVojGaXRCKkKRhcPogEPoiFL4AFDwQQnCcRaRyIAVRpxALM4iHDUDVRGGs+iFPchGCDIRgUxEoNLkAx8f+Uyqfy5eXkBL42kMNGyGv6EYfsZiZCEMh9Xl+FW1R75qUfV3ogkIAFqH5qOd9VccPBOG0yXBaIuj6IU9iEQG9qMr9qAXTiO6RjkNBqBD2wr8LWIj4sKLEB5hRFi4QbaXGZHXridOlEYgJ0cGDISFyQj91atldgAgfxeVlUBJfjmicw8iOs4b7fqGoePlVgSdSkbgyWQUeQXgVGg3/Gq6AjsP+GLPHttaow0RGip/8/a/+iHIQj4CUAHH8YVeXvJPlZ9fzW1c+RGUZeYgJ7MMZm+F7n0t6DnQHxF/7oSwcAMqKiSX2t69MlrcYpHO+tatgfbtFLxVGdKPFCLrVDFaxRnRMd4bbboFwOQvPyZKyaj733+XmQSFhTL4Qvs90OTmAim7i/HblgwcyIvF7ye8cPy4/NacOiV/X6Gh8jdWXCy/Bb6+QNfos+je4ihOBHVFkfKt+u3UfsO05dNDQ6WH32oFSnJK0Of41+j+9I247f5aFnqtJwaQTYvvJxFdKjIyZLbVu+9KW/fkkzLbilyPRwTkaWlpaNmyJX7++WcMGDCgav+TTz6JjRs3Ytu2bTUeo2sPObkkq1UC4NJS+6xNtqDE21tOUmhbLy/5Rx6Qx2gnNIxGOcb+orF/Th8fCQB8fByDB3vaSYu6jtGDUhKMFBdLcF5RIUGJnywiUHUSx2q1pS7QAhhtW1Fhq1Nd2/PdFxAgAWxgoARJpaXyuZjNtmO04Fr7rOrzHmqpGuzPlyklwVphodS7rEyet/rFIANXEBRke0+ak3ayTBtG7u0twW5FhaRXOHtW3hetrNolLEwCWh8f+ZzS0mRGgXYCzWJxDLr9/W1pKtyV/fvgihhANi2+n0R0qamokJmSnTtzmTlX5Wzb5HEfn8VigeV8Ca7okqT1QrdoUf/HWiwyNCg2tmnLZDK55o+nwSB1Pt+fkJ9f8wai53ufvLwanltLC67tGQxyIqC2/GyuxGCQHl7fWgZmOJFSA4AE2q1by8WTNVHuNSIiIpdkMgHduuldCmoKLr0OeXh4OLy8vJCRkeGwPyMjA1FRUTqVioiIiIiIiKjxXDogN5vN6N27N9atW1e1z2q1Yt26dQ5D2ImIiIiIiIjcjQsOmnU0ZcoUjB07Fn369EG/fv0wZ84cFBYW4r777tO7aEREREREREQN5vIB+ejRo3HmzBnMmDED6enp6NmzJ77//ntERkbqXTQiIiIiIiKiBnP5gBwAJk6ciIkTJ+pdDCIiIiIiIqIm49JzyImIiIiIiIg8FQNyIiIiIiIiIh0wICciIiIiIiLSAQNyIiIickvz5s1Dly5d0LdvX72LQkRE1CAMyImIiMgtJSYmIjk5GTt27NC7KERERA3CgJyIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHRg0rsAF5tSCgCQl5enc0mIiIiE1iZpbRQ1Dtt6IiJyNc629R4fkOfn5wMAYmNjdS4JERGRo/z8fAQFBeldDLfHtp6IiFzVhdp6g/Lw0/NWqxVpaWkICAiAwWBo1HPl5eUhNjYWJ06cQGBgYBOVUD+eVB9PqgvgWfXxpLoArI8rc6e6KKWQn5+PmJgYGI2cPdZYbOvPj/VxXZ5UF8Cz6uNJdQE8qz7uVBdn23qP7yE3Go1o1apVkz5nYGCgy38B6sOT6uNJdQE8qz6eVBeA9XFl7lIX9ow3Hbb1F8b6uC5PqgvgWfXxpLoAnlUfd6mLM209T8sTERERERER6YABOREREREREZEOGJDXg8ViwcyZM2GxWPQuSpPwpPp4Ul0Az6qPJ9UFYH1cmSfVhfTjad8j1sd1eVJdAM+qjyfVBfCs+nhSXTQen9SNiIiIiIiIyBWxh5yIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHTAgLwe5s2bhzZt2sDHxwf9+/fH9u3b9S7SBb388svo27cvAgICEBERgVGjRiE1NdXhmJKSEiQmJiIsLAwtWrTAbbfdhoyMDJ1K7LxXXnkFBoMBkydPrtrnbnU5deoU7rnnHoSFhcHX1xfdunXDzp07q+5XSmHGjBmIjo6Gr68vhgwZgsOHD+tY4vOrrKzE9OnT0bZtW/j6+qJ9+/Z46aWXYJ830lXrs2nTJtx0002IiYmBwWDAsmXLHO53ptxZWVlISEhAYGAggoOD8cADD6CgoKAZa2FTV33Ky8sxbdo0dOvWDf7+/oiJicG9996LtLQ0h+dwl/pUN2HCBBgMBsyZM8dhvyvVh1wb23rXwrbetbhzWw94VnvPtt5z2noG5E5avHgxpkyZgpkzZ2L37t3o0aMHhg0bhszMTL2LVqeNGzciMTERW7duxZo1a1BeXo6hQ4eisLCw6pjHHnsMK1aswJIlS7Bx40akpaXh1ltv1bHUF7Zjxw68++676N69u8N+d6pLdnY2Bg4cCG9vb6xatQrJycn43//9X4SEhFQd8+qrr+Ktt97CggULsG3bNvj7+2PYsGEoKSnRseS1mz17NubPn4+3334bKSkpmD17Nl599VXMnTu36hhXrU9hYSF69OiBefPm1Xq/M+VOSEjAgQMHsGbNGqxcuRKbNm3C+PHjm6sKDuqqT1FREXbv3o3p06dj9+7d+Oabb5Camoqbb77Z4Th3qY+9pUuXYuvWrYiJialxnyvVh1wX23rXwraebX1T86T2nm29B7X1ipzSr18/lZiYWHW7srJSxcTEqJdfflnHUtVfZmamAqA2btyolFIqJydHeXt7qyVLllQdk5KSogCoLVu26FXMOuXn56sOHTqoNWvWqGuuuUZNmjRJKeV+dZk2bZq6+uqrz3u/1WpVUVFR6rXXXqval5OToywWi1q0aFFzFLFebrjhBnX//fc77Lv11ltVQkKCUsp96gNALV26tOq2M+VOTk5WANSOHTuqjlm1apUyGAzq1KlTzVb22lSvT222b9+uAKhjx44ppdyzPidPnlQtW7ZU+/fvV61bt1Zvvvlm1X2uXB9yLWzrXQfbetdqGzWe0tYr5VntPdt6167PhbCH3AllZWXYtWsXhgwZUrXPaDRiyJAh2LJli44lq7/c3FwAQGhoKABg165dKC8vd6jbFVdcgbi4OJetW2JiIm644QaHMgPuV5fly5ejT58++Nvf/oaIiAj06tUL77//ftX9R48eRXp6ukN9goKC0L9/f5esz1VXXYV169bh0KFDAIC9e/fip59+wogRIwC4X300zpR7y5YtCA4ORp8+faqOGTJkCIxGI7Zt29bsZa6v3NxcGAwGBAcHA3C/+litVowZMwZTp05FfHx8jfvdrT6kD7b1roVtvWu2jZ7a1gOe396zrXddJr0L4A7Onj2LyspKREZGOuyPjIzEwYMHdSpV/VmtVkyePBkDBw5E165dAQDp6ekwm81Vf5yayMhIpKen61DKun3xxRfYvXs3duzYUeM+d6vLb7/9hvnz52PKlCl45plnsGPHDjz66KMwm80YO3ZsVZlr+965Yn2eeuop5OXl4YorroCXlxcqKysxa9YsJCQkAIDb1UfjTLnT09MRERHhcL/JZEJoaKhL1w2QuZjTpk3DXXfdhcDAQADuV5/Zs2fDZDLh0UcfrfV+d6sP6YNtvetgW++69fHUth7w7Paebb3r1cceA/JLSGJiIvbv34+ffvpJ76I0yIkTJzBp0iSsWbMGPj4+ehen0axWK/r06YN//vOfAIBevXph//79WLBgAcaOHatz6ervyy+/xOeff46FCxciPj4eSUlJmDx5MmJiYtyyPpeC8vJy3HHHHVBKYf78+XoXp0F27dqFf/3rX9i9ezcMBoPexSHSHdt618K2nvTGtt71cci6E8LDw+Hl5VUjg2dGRgaioqJ0KlX9TJw4EStXrsT69evRqlWrqv1RUVEoKytDTk6Ow/GuWLddu3YhMzMTV155JUwmE0wmEzZu3Ii33noLJpMJkZGRblMXAIiOjkaXLl0c9nXu3BnHjx8HgKoyu8v3burUqXjqqadw5513olu3bhgzZgwee+wxvPzyywDcrz4aZ8odFRVVI+lTRUUFsrKyXLZuWgN97NgxrFmzpuqMOeBe9fnxxx+RmZmJuLi4qt+FY8eO4fHHH0ebNm0AuFd9SD9s610D23pU3XbF+nhqWw94ZnvPtt4161MdA3InmM1m9O7dG+vWravaZ7VasW7dOgwYMEDHkl2YUgoTJ07E0qVL8cMPP6Bt27YO9/fu3Rve3t4OdUtNTcXx48ddrm6DBw/Gvn37kJSUVHXp06cPEhISqq67S10AYODAgTWWpTl06BBat24NAGjbti2ioqIc6pOXl4dt27a5ZH2KiopgNDr+pHh5ecFqtQJwv/ponCn3gAEDkJOTg127dlUd88MPP8BqtaJ///7NXuYL0Rrow4cPY+3atQgLC3O4353qM2bMGPzyyy8OvwsxMTGYOnUqVq9eDcC96kP6YVvvGtjWu3bb6KltPeB57T3betetTw365pRzH1988YWyWCzq448/VsnJyWr8+PEqODhYpaen6120Oj300EMqKChIbdiwQZ0+fbrqUlRUVHXMhAkTVFxcnPrhhx/Uzp071YABA9SAAQN0LLXz7DOvKuVeddm+fbsymUxq1qxZ6vDhw+rzzz9Xfn5+6j//+U/VMa+88ooKDg5W3377rfrll1/UX//6V9W2bVtVXFysY8lrN3bsWNWyZUu1cuVKdfToUfXNN9+o8PBw9eSTT1Yd46r1yc/PV3v27FF79uxRANQbb7yh9uzZU5WJ1JlyDx8+XPXq1Utt27ZN/fTTT6pDhw7qrrvucrn6lJWVqZtvvlm1atVKJSUlOfwulJaWul19alM986pSrlUfcl1s610T23rX4c5tvVKe1d6zrfectp4BeT3MnTtXxcXFKbPZrPr166e2bt2qd5EuCECtl48++qjqmOLiYvXwww+rkJAQ5efnp2655RZ1+vRp/QpdD9UbaXery4oVK1TXrl2VxWJRV1xxhXrvvfcc7rdarWr69OkqMjJSWSwWNXjwYJWamqpTaeuWl5enJk2apOLi4pSPj49q166devbZZx1++F21PuvXr6/172Ts2LFKKefKfe7cOXXXXXepFi1aqMDAQHXfffep/Px8HWpTd32OHj163t+F9evXu119alNbI+1K9SHXxrbe9bCtdx3u3NYr5VntPdt6z2nrDUop1TR97URERERERETkLM4hJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJ6KLymAwYNmyZXoXg4iIiC4itvdEDcOAnMiDjRs3DgaDocZl+PDheheNiIiImgjbeyL3ZdK7AER0cQ0fPhwfffSRwz6LxaJTaYiIiOhiYHtP5J7YQ07k4SwWC6KiohwuISEhAGR42fz58zFixAj4+vqiXbt2+Oqrrxwev2/fPlx33XXw9fVFWFgYxo8fj4KCAodjPvzwQ8THx8NisSA6OhoTJ050uP/s2bO45ZZb4Ofnhw4dOmD58uUXt9JERESXGLb3RO6JATnRJW769Om47bbbsHfvXiQkJODOO+9ESkoKAKCwsBDDhg1DSEgIduzYgSVLlmDt2rUODfD8+fORmJiI8ePHY9++fVi+fDkuv/xyh9d44YUXcMcdd+CXX37ByJEjkZCQgKysrGatJxER0aWM7T2Ri1JE5LHGjh2rvLy8lL+/v8Nl1qxZSimlAKgJEyY4PKZ///7qoYceUkop9d5776mQkBBVUFBQdf93332njEajSk9PV0opFRMTo5599tnzlgGAeu6556puFxQUKABq1apVTVZPIiKiSxnbeyL3xTnkRB5u0KBBmD9/vsO+0NDQqusDBgxwuG/AgAFISkoCAKSkpKBHjx7w9/evun/gwIGwWq1ITU2FwWBAWloaBg8eXGcZunfvXnXd398fgYGByMzMbGiViIiIqBq290TuiQE5kYfz9/evMaSsqfj6+jp1nLe3t8Ntg8EAq9V6MYpERER0SWJ7T+SeOIec6BK3devWGrc7d+4MAOjcuTP27t2LwsLCqvs3b94Mo9GITp06ISAgAG3atMG6deuatcxERERUP2zviVwTe8iJPFxpaSnS09Md9plMJoSHhwMAlixZgj59+uDqq6/G559/ju3bt+ODDz4AACQkJGDmzJkYO3Ysnn/+eZw5cwaPPPIIxowZg8jISADA888/jwkTJiAiIgIjRoxAfn4+Nm/ejEceeaR5K0pERHQJY3tP5J4YkBN5uO+//x7R0dEO+zp16oSDBw8CkIyoX3zxBR5++GFER0dj0aJF6NKlCwDAz88Pq1evxqRJk9C3b1/4+fnhtttuwxtvvFH1XGPHjkVJSQnefPNNPPHEEwgPD8ftt9/efBUkIiIitvdEbsqglFJ6F4KI9GEwGLB06VKMGjVK76IQERHRRcL2nsh1cQ45ERERERERkQ4YkBMRERERERHpgEPWiYiIiIiIiHTAHnIiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItLB/wOVqnFl03JwxgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKR0lEQVR4nOzdd3iT1fsG8Dtt6aQtu4NRQGYZZRUEZEsZskQUAREQXNSBoCjyAwoqKH4ZKgVEWQ4QFXCBMmSpoCyRUWRI2ZQyW7qhfX9/nJ68SZq0SZvmTdr7c129kiZpctqmTe73ec45OkVRFBARERERERGRw7lpPQAiIiIiIiKi0oqhnIiIiIiIiEgjDOVEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRhjKiYiIiIiIiDTCUE5ERERERESkEYZyIiIiIiIiIo0wlBMRERERERFphKGcqBRZsWIFdDoddDodduzYked6RVFQp04d6HQ6dO7cWX/5jRs3MGnSJISHh8PPzw+BgYFo0KABhg8fjsOHD5u9f3Mf5h6TiIhIS/K1a//+/VoPxWYjR45EzZo1jS6bOXMmvvvuuzy3deT3GRMTA51OZ5f7Kux7F4DvX8h1eGg9ACJyPH9/fyxdujTPi9fOnTvx33//wd/fX39ZSkoK7r//fqSkpOC1115DREQE0tPTcfLkSaxbtw6HDh1C06ZNje5n+fLlaNCgQZ7HDQ8PL5bvh4iIqDSaMmUKXn75ZaPLZs6ciUGDBmHAgAHaDArAmDFj0LNnT7vepy3vXQC+fyHXwlBOVAoNHjwYX375JWJjYxEQEKC/fOnSpWjbti2Sk5P1l33zzTc4ffo0tm3bhi5duhjdz/jx45GTk5Pn/hs3boxWrVoV3zdARERUiqWlpcHX1xf33Xef1kMxq1q1aqhWrZpd79OW9y4A37+Qa2H7OlEpNGTIEADA6tWr9ZclJSVh7dq1eOqpp4xue+PGDQBASEiI2ftyc+O/ESIiKvl+//13dOvWDf7+/vD19UW7du2wYcMGs7dr27YtvL29UbVqVUyZMgWffvopdDodzp49q7/dmjVrEBUVhZCQEPj4+KBhw4Z44403kJqaanR/I0eORNmyZXHkyBFERUXB398f3bp1019n2L6u0+mQmpqKlStX6luvTSvLd+7cwfPPP49KlSqhYsWKGDhwIC5fvmx0m5o1a6JPnz746aef0Lx5c/34fvrpJwCi3bthw4bw8/ND69at87TEW2pfX7VqFdq2bYuyZcuibNmyaNasGZYuXVrgzx6w7b0LwPcv5Fr4bCQqhQICAjBo0CAsW7ZMf9nq1avh5uaGwYMHG922bdu2AIAnn3wS3333nf5FLj/Z2dm4d++e0Ud2drZ9vwkiIiIH2blzJ7p27YqkpCQsXboUq1evhr+/P/r27Ys1a9bob3f48GF0794daWlpWLlyJRYvXoyDBw/inXfeyXOfp06dQu/evbF06VL88ssvGDduHL7++mv07ds3z22zsrLQr18/dO3aFd9//z2mT59udpx79uyBj48PevfujT179mDPnj1YuHCh0W3GjBmDMmXKYNWqVZg9ezZ27NiBJ554Is99/fPPP5g0aRJef/11rFu3DoGBgRg4cCCmTZuGTz/9FDNnzsSXX36JpKQk9OnTB+np6fn+DKdOnYphw4YhNDQUK1aswPr16zFixAicO3cu36+TbHnvAvD9C7kYhYhKjeXLlysAlH379inbt29XAChHjx5VFEVRIiMjlZEjRyqKoiiNGjVSOnXqpP+6GTNmKJ6engoABYBSq1Yt5bnnnlP++ecfs/dv7sPd3d1h3ycREZG1DF8bLbn//vuVKlWqKHfu3NFfdu/ePaVx48ZKtWrVlJycHEVRFOXRRx9V/Pz8lGvXrulvl52drYSHhysAlPj4eLP3n5OTo9y9e1fZuXOnAsDo9XXEiBEKAGXZsmV5vm7EiBFKWFiY0WV+fn7KiBEjLH6fY8eONbp89uzZCgDlypUr+svCwsIUHx8f5eLFi/rLDh06pABQQkJClNTUVP3l3333nQJA+eGHH/SXTZs2TTGMGWfOnFHc3d2VYcOGmf3+81PY9y6Kwvcv5DpYKScqpTp16oT77rsPy5Ytw5EjR7Bv3z6z7V+AWEjm/PnzWLZsGZ599lmULVsWixcvRsuWLY3ayKTPPvsM+/btM/r466+/ivtbIiIisrvU1FT89ddfGDRoEMqWLau/3N3dHcOHD8fFixdx4sQJAGpFvVKlSvrbubm54bHHHstzv2fOnMHQoUMRHBwMd3d3lClTBp06dQIAHD9+PM/tH3nkEbt8P/369TP6XC52ZlqxbtasGapWrar/vGHDhgCAzp07w9fXN8/l+VW8t2zZguzsbERHRxdp7La8dwH4/oVcBxd6IyqldDodRo0ahQ8//BAZGRmoV68eOnToYPH2QUFBGDVqFEaNGgUA2LVrF3r16oWXX35ZP89LatiwIRdKISKiEuHWrVtQFMXs3OTQ0FAA6vzlGzduICgoKM/tTC9LSUlBhw4d4O3tjbfffhv16tWDr68vLly4gIEDB+ZpBff19TVa3KwoKlasaPS5l5cXAOR5zAoVKhh97unpme/lGRkZFh/z2rVrAFDkxd9sfe8C8P0LuQZWyolKsZEjR+L69etYvHix/sXKWh07dkRUVBSuXbuGxMTEYhohERGRtsqXLw83NzdcuXIlz3VygTRZGa9YsSKuXr2a53YJCQlGn2/btg2XL1/GsmXLMGbMGHTs2BGtWrXKs62XZK89v7VSuXJlAMDFixeLfF9Fee8C8P0LOSeGcqJSrGrVqnjttdfQt29fjBgxwuxtrl69anbbkOzsbJw6dQq+vr4oV65cMY+UiIhIG35+fmjTpg3WrVtnVE3OycnBF198gWrVqqFevXoARHv1tm3bcP36daPbffPNN0b3KUO2rFJLH3/8cZHH6+XlVeCia44WFRUFd3d3LFq0qMj3Zc17F4DvX8i1sH2dqJR79913873+888/x8cff4yhQ4ciMjISgYGBuHjxIj799FMcO3YMU6dO1beuSUePHsW9e/fy3Nd9992nP1pORETkTLZt22a0ZZnUu3dvzJo1C927d0eXLl3w6quvwtPTEwsXLsTRo0exevVqfciePHkyfvzxR3Tr1g2TJ0+Gj48PFi9erN/mTG7D1a5dO5QvXx7PPfccpk2bhjJlyuDLL7/EP//8U+Tvo0mTJtixYwd+/PFHhISEwN/fH/Xr1y/y/RZFzZo18eabb+Ktt95Ceno6hgwZgsDAQMTFxeH69esWV5O3pKD3LgDfv5BrYSgnonw99NBDSEhIwMaNG7Fo0SLcunUL/v7+aNq0KT7//HOz26hYaif75JNPMGbMmOIeMhERkc1ef/11s5fHx8frK+DTpk3DyJEjkZOTg4iICPzwww/o06eP/rYRERHYsmULXn31VTz55JMoX748hg8fjk6dOuH1119HYGAgANHmvmHDBkyYMAFPPPEE/Pz80L9/f6xZswYtWrQo0vfxwQcfIDo6Go8//jjS0tLQqVMn7Nixo0j3aQ8zZsxA3bp18dFHH2HYsGHw8PBA3bp18dJLLxXL4/H9C7kSnaIoitaDICIiIiIqqaKionD27FmcPHlS66EQkRNipZyIiIiIyE7Gjx+P5s2bo3r16rh58ya+/PJLbNmyBUuXLtV6aETkpBjKiYiIiIjsJDs7G1OnTkVCQgJ0Oh3Cw8MttksTEQFsXyciIiIiIiLSDLdEIyIiIiIiItIIQzkRERERERGRRhjKiYiIiIiIiDRS4hd6y8nJweXLl+Hv7w+dTqf1cIiIiKAoCu7cuYPQ0FC4ufH4eFHxtZ6IiJyNLa/1JT6UX758GdWrV9d6GERERHlcuHAB1apV03oYLo+v9URE5Kysea0v8aHc398fgPhhBAQEaDwaIiIiIDk5GdWrV9e/RlHR8LWeiIicjS2v9SU+lMs2toCAAL5QExGRU2GrterChQsYPnw4EhMT4eHhgSlTpuDRRx+16mv5Wk9ERM7Kmtf6Eh/KiYiIyPl5eHhg/vz5aNasGRITE9GiRQv07t0bfn5+Wg+NiIioWDGUExERkeZCQkIQEhICAKhSpQoqVKiAmzdvMpQTEVGJxyVfiYiIqMh27dqFvn37IjQ0FDqdDt99912e2yxcuBC1atWCt7c3WrZsid9++83sfe3fvx85OTlcvI2IiEoFVsqJiHIpioJ79+4hOztb66GQi3N3d4eHh0epmjOempqKiIgIjBo1Co888kie69esWYNx48Zh4cKFaN++PT7++GP06tULcXFxqFGjhv52N27cwJNPPolPP/3U4mNlZmYiMzNT/3lycrJ9vxkiKrH4Wk/2Ys/Xep2iKIodxuS0kpOTERgYiKSkJC7+QkQWZWVl4cqVK0hLS9N6KFRC+Pr6IiQkBJ6ennmuK+mvTTqdDuvXr8eAAQP0l7Vp0wYtWrTAokWL9Jc1bNgQAwYMwKxZswCIsN29e3c8/fTTGD58uMX7j4mJwfTp0/NcXlJ/nkRkH3ytJ3uz12s9K+VEVOrl5OQgPj4e7u7uCA0NhaenZ6mqcJJ9KYqCrKwsXLt2DfHx8ahbty7c3Er3bLGsrCwcOHAAb7zxhtHlUVFR2L17NwDxcxs5ciS6du2abyAHgEmTJmH8+PH6z+W2M0RElvC1nuzJ3q/1DOVEVOplZWXp56/6+vpqPRwqAXx8fFCmTBmcO3cOWVlZ8Pb21npImrp+/Tqys7MRFBRkdHlQUBASEhIAAH/88QfWrFmDpk2b6uejf/7552jSpEme+/Py8oKXl1exj5uISg6+1pO92fO1XtND9/fu3cP//d//oVatWvDx8UHt2rUxY8YM5OTk6G+jKApiYmIQGhoKHx8fdO7cGceOHdNw1ERUUpX2aibZF59PeZlWpRRF0V/2wAMPICcnB4cOHdJ/mAvkRERFwf/NZE/2ej5p+qx87733sHjxYixYsADHjx/H7Nmz8f777+Ojjz7S32b27NmYO3cuFixYgH379iE4OBjdu3fHnTt3NBw5ERERWatSpUpwd3fXV8WlxMTEPNVzIiKi0kbTUL5nzx70798fDz30EGrWrIlBgwYhKioK+/fvByCOoM+fPx+TJ0/GwIED0bhxY6xcuRJpaWlYtWqVlkMnIiIiK3l6eqJly5bYsmWL0eVbtmxBu3btCn2/sbGxCA8PR2RkZFGHSEREpBlNQ/kDDzyAX3/9FSdPngQA/PPPP/j999/Ru3dvAEB8fDwSEhIQFRWl/xovLy906tRJvzCMqczMTCQnJxt9EBGRdTp37oxx48ZZffuzZ89Cp9Ph0KFDxTYmANixYwd0Oh1u375drI9DhZeSkqJvOwfEa/ihQ4dw/vx5AMD48ePx6aefYtmyZTh+/DheeeUVnD9/Hs8991yhHzM6OhpxcXHYt2+fPb4FIqJSg6/3zkXThd5ef/11JCUloUGDBnB3d0d2djbeeecdDBkyBAD0bW7mFoY5d+6c2fucNWuW2W1SiIhKkoJWjB0xYgRWrFhh8/2uW7cOZcqUsfr21atXx5UrV1CpUiWbH4tKlv3796NLly76z+Xq6PK5OHjwYNy4cQMzZszAlStX0LhxY2zcuBFhYWFaDZmIyOnx9b500DSUr1mzBl988QVWrVqFRo0a4dChQxg3bhxCQ0MxYsQI/e3yWxjGFLdJIaLS4MqVK/rza9aswdSpU3HixAn9ZT4+Pka3v3v3rlUvvhUqVLBpHO7u7ggODrbpa6hk6ty5MxRFyfc2Y8eOxdixYx00IiIi18fX+9JB0/b11157DW+88QYef/xxNGnSBMOHD8crr7yCWbNmAYD+F2/LwjBeXl4ICAgw+rCXwYOBJk2A33+3210SkRNSFCA1VZuPAjKNXnBwsP4jMDAQOp1O/3lGRgbKlSuHr7/+Gp07d4a3tze++OIL3LhxA0OGDEG1atXg6+uLJk2aYPXq1Ub3a9rOVrNmTcycORNPPfUU/P39UaNGDSxZskR/vWk7m2w7+/XXX9GqVSv4+vqiXbt2Rm8gAODtt99GlSpV4O/vjzFjxuCNN95As2bNbPo9rV27Fo0aNYKXlxdq1qyJOXPmGF2/cOFC1K1bF97e3ggKCsKgQYP013377bdo0qQJfHx8ULFiRTz44INITU216fGpZPrgA6BpU+D997UeCREVN77ej9N/ztd7bWkaytPS0vIsI+/u7q7fEq1WrVoIDg42WhgmKysLO3fuLNLCMIV1+jRw9CjAhd+JSra0NKBsWW0+0tLs9328/vrreOmll3D8+HH06NEDGRkZaNmyJX766SccPXoUzzzzDIYPH46//vor3/uZM2cOWrVqhb///htjx47F888/j3///Tffr5k8eTLmzJmD/fv3w8PDA0899ZT+ui+//BLvvPMO3nvvPRw4cAA1atTAokWLbPreDhw4gMceewyPP/44jhw5gpiYGEyZMkXfwrd//3689NJLmDFjBk6cOIFffvkFHTt2BCCqDkOGDMFTTz2F48ePY8eOHRg4cGCBVV5yPsWx0NvVq8CRI8ClS3a7SyJyUny9N8bXew0pGhoxYoRStWpV5aefflLi4+OVdevWKZUqVVImTpyov827776rBAYGKuvWrVOOHDmiDBkyRAkJCVGSk5OteoykpCQFgJKUlFTk8bZqpSiAovz0U5HvioicSHp6uhIXF6ekp6criqIoKSnib12Lj5QU28e/fPlyJTAwUP95fHy8AkCZP39+gV/bu3dvZcKECfrPO3XqpLz88sv6z8PCwpQnnnhC/3lOTo5SpUoVZdGiRUaP9ffffyuKoijbt29XAChbt27Vf82GDRsUAPqfb5s2bZTo6GijcbRv316JiIiwOE55v7du3VIURVGGDh2qdO/e3eg2r732mhIeHq4oiqKsXbtWCQgIMPtaceDAAQWAcvbsWYuPZw+mzytD9nxtIvv+PKdOFX+LY8faYWBE5DTM/U/m6/3L+s/5el849nqt13RO+UcffYQpU6Zg7NixSExMRGhoKJ599llMnTpVf5uJEyciPT0dY8eOxa1bt9CmTRts3rwZ/v7+Dh+vLOrnFvKJqITy9QVSUrR7bHtp1aqV0efZ2dl49913sWbNGly6dAmZmZnIzMyEn59fvvfTtGlT/XnZNpeYmGj114SEhAAQU49q1KiBEydO5JlX3Lp1a2zbts2q7wsAjh8/jv79+xtd1r59e8yfPx/Z2dno3r07wsLCULt2bfTs2RM9e/bEww8/DF9fX0RERKBbt25o0qQJevTogaioKAwaNAjly5e3+vGp5JJTMe/e1XYcRFT8+HpvjK/32tG0fd3f3x/z58/HuXPnkJ6ejv/++w9vv/02PD099bfR6XSIiYnBlStXkJGRgZ07d6Jx48aajJehnKh00OkAPz9tPgpYZNUmpi++c+bMwbx58zBx4kRs27YNhw4dQo8ePZCVlZXv/ZguGKPT6fTTjKz5Grkwp+HXmFvA0xaKmQU/De/D398fBw8exOrVqxESEoKpU6ciIiICt2/fhru7O7Zs2YKff/4Z4eHh+Oijj1C/fn3Ex8fbNAYqmRjKiUoPvt4b4+u9djQN5a6GoZyIXNlvv/2G/v3744knnkBERARq166NU6dOOXwc9evXx969e40u279/v033ER4ejt9NVt3cvXs36tWrB3d3dwCAh4cHHnzwQcyePRuHDx/G2bNn9UfndTod2rdvj+nTp+Pvv/+Gp6cn1q9fX4TvikoKhnIicnV8vXe913tN29ddDUM5EbmyOnXqYO3atdi9ezfKly+PuXPnIiEhAQ0bNnToOF588UU8/fTTaNWqFdq1a4c1a9bg8OHDqF27ttX3MWHCBERGRuKtt97C4MGDsWfPHixYsAALFy4EAPz00084c+YMOnbsiPLly2Pjxo3IyclB/fr18ddff+HXX39FVFQUqlSpgr/++gvXrl1z+M+BnJNs1iugoERE5LT4eu96r/cM5TZgKCciVzZlyhTEx8ejR48e8PX1xTPPPIMBAwYgKSnJoeMYNmwYzpw5g1dffRUZGRl47LHHMHLkyDxH0/PTokULfP3115g6dSreeusthISEYMaMGRg5ciQAoFy5cli3bh1iYmKQkZGBunXrYvXq1WjUqBGOHz+OXbt2Yf78+UhOTkZYWBjmzJmDXr16FdN3TMUlNjYWsbGxyM7Ottt9slJORK6Or/eu93qvU2xt7HcxycnJCAwMRFJSUpH3LO/SBdixA/jqK7FnORGVDBkZGYiPj0etWrXg7e2t9XBKpe7duyM4OBiff/651kOxm/yeV/Z8bSL7/jyXLQNGjwYeegj46Sc7DZCINMfXeudQ0l7v7fVaz0q5DVgpJyIqurS0NCxevBg9evSAu7s7Vq9eja1bt2LLli1aD42IlXIiIjvh6731GMptwFBORFR0Op0OGzduxNtvv43MzEzUr18fa9euxYMPPqj10IgYyomI7ISv99ZjKLcBQzkRUdH5+Phg69atWg+DyCyGciIi++DrvfW4JZoNGMqJiIhKNhnKufo6ERE5CkO5DRjKiYiInEdsbCzCw8MRGRlpt/uUW6KxUk5ERI7CUG4DhnIiIiLnER0djbi4OOzbt89u98n2dSIicjSGchswlBMREZVsDOVERORoDOU2YCgnIiIq2RjKiYjI0RjKbcBQTkREVLIxlBMRkaMxlNuAoZyISprOnTtj3Lhx+s9r1qyJ+fPn5/s1Op0O3333XZEf2173k5+YmBg0a9asWB+DShaGciIqifh679wYym3AUE5EzqJv37548MEHzV63Z88e6HQ6HDx40Ob73bdvH5555pmiDs+IpRfKK1euoFevXnZ9LKKi4pZoRORM+HpfOjCU24ChnIicxejRo7Ft2zacO3cuz3XLli1Ds2bN0KJFC5vvt3LlyvD19bXHEAsUHBwMLy8vhzwWkbW4JRoRORO+3pcODOU2YCgnKiUUBUhN1eZDUawaYp8+fVClShWsWLHC6PK0tDSsWbMGo0ePxo0bNzBkyBBUq1YNvr6+aNKkCVavXp3v/Zq2s506dQodO3aEt7c3wsPDsWXLljxf8/rrr6NevXrw9fVF7dq1MWXKFNzNTTQrVqzA9OnT8c8//0Cn00Gn0+nHbNrOduTIEXTt2hU+Pj6oWLEinnnmGaSkpOivHzlyJAYMGID//e9/CAkJQcWKFREdHa1/LGvk5ORgxowZqFatGry8vNCsWTP88ssv+uuzsrLwwgsvICQkBN7e3qhZsyZmzZqlvz4mJgY1atSAl5cXQkND8dJLL1n92GR/xbFPOdvXiUoRvt7rP+frvbav9x7Feu8lDEM5USmRlgaULavNY6ekAH5+Bd7Mw8MDTz75JFasWIGpU6dCp9MBAL755htkZWVh2LBhSEtLQ8uWLfH6668jICAAGzZswPDhw1G7dm20adOmwMfIycnBwIEDUalSJfz5559ITk42mo8m+fv7Y8WKFQgNDcWRI0fw9NNPw9/fHxMnTsTgwYNx9OhR/PLLL9i6dSsAIDAwMM99pKWloWfPnrj//vuxb98+JCYmYsyYMXjhhReM3ohs374dISEh2L59O06fPo3BgwejWbNmePrppwv8fgDggw8+wJw5c/Dxxx+jefPmWLZsGfr164djx46hbt26+PDDD/HDDz/g66+/Ro0aNXDhwgVcuHABAPDtt99i3rx5+Oqrr9CoUSMkJCTgn3/+sepxqXhER0cjOjoaycnJZp9XhcFQTlSK8PUeAF/vneL1XinhkpKSFABKUlJSke/ryScVBVCU2bPtMDAichrp6elKXFyckp6eLi5ISRF/7Fp8pKRYPe7jx48rAJRt27bpL+vYsaMyZMgQi1/Tu3dvZcKECfrPO3XqpLz88sv6z8PCwpR58+YpiqIomzZtUtzd3ZULFy7or//5558VAMr69estPsbs2bOVli1b6j+fNm2aEhERked2hvezZMkSpXz58kqKwfe/YcMGxc3NTUlISFAURVFGjBihhIWFKffu3dPf5tFHH1UGDx5scSymjx0aGqq88847RreJjIxUxo4dqyiKorz44otK165dlZycnDz3NWfOHKVevXpKVlaWxcczlOd5ZcCer01k359nYqL652jmaUBELsrs/2S+3iuKwtd7U7a83tvrtZ6VchuwUk5USvj6iiPYWj22lRo0aIB27dph2bJl6NKlC/777z/89ttv2Lx5MwAgOzsb7777LtasWYNLly4hMzMTmZmZ8LPiyDwAHD9+HDVq1EC1atX0l7Vt2zbP7b799lvMnz8fp0+fRkpKCu7du4eAgACrvw/5WBEREUZja9++PXJycnDixAkEBQUBABo1agR3d3f9bUJCQnDkyBGrHiM5ORmXL19G+/btjS5v3769/gj4yJEj0b17d9SvXx89e/ZEnz59EBUVBQB49NFHMX/+fNSuXRs9e/ZE79690bdvX3h48KW0JJGVckBUy+UccyIqgfh6D4Cv987wes855TZgKCcqJXQ60VKmxUduW5q1Ro8ejbVr1yI5ORnLly9HWFgYunXrBgCYM2cO5s2bh4kTJ2Lbtm04dOgQevTogSwrl5VWzMx305mM788//8Tjjz+OXr164aeffsLff/+NyZMnW/0Yho9let/mHrOMYWLKvS7Hxn/Kpo9j+NgtWrRAfHw83nrrLaSnp+Oxxx7DoEGDAADVq1fHiRMnEBsbCx8fH4wdOxYdO3a0aY4bOT/TUE5EJRhf7wHw9d4ZXu8Zym3AUE5Ezuaxxx6Du7s7Vq1ahZUrV2LUqFH6F5zffvsN/fv3xxNPPIGIiAjUrl0bp06dsvq+w8PDcf78eVy+fFl/2Z49e4xu88cffyAsLAyTJ09Gq1atULdu3TwrxHp6eiI7O7vAxzp06BBSU1ON7tvNzQ316tWzesz5CQgIQGhoKH7//Xejy3fv3o2GDRsa3W7w4MH45JNPsGbNGqxduxY3b94EAPj4+KBfv3748MMPsWPHDuzZs8fqI/fkGgzfB3JbNCJyFny9t54rvt6z584GDOVE5GzKli2LwYMH480330RSUhJGjhypv65OnTpYu3Ytdu/ejfLly2Pu3LlISEgwekHKz4MPPoj69evjySefxJw5c5CcnIzJkycb3aZOnTo4f/48vvrqK0RGRmLDhg1Yv3690W1q1qyJ+Ph4HDp0CNWqVYO/v3+erVGGDRuGadOmYcSIEYiJicG1a9fw4osvYvjw4fpWNnt47bXXMG3aNNx3331o1qwZli9fjkOHDuHLL78EAMybNw8hISFo1qwZ3Nzc8M033yA4OBjlypXDihUrkJ2djTZt2sDX1xeff/45fHx8EBYWZrfxkfZYKSciZ8TXe9u42us9K+U2YCgnImc0evRo3Lp1Cw8++CBq1Kihv3zKlClo0aIFevTogc6dOyM4OBgDBgyw+n7d3Nywfv16ZGZmonXr1hgzZgzeeecdo9v0798fr7zyCl544QU0a9YMu3fvxpQpU4xu88gjj6Bnz57o0qULKleubHabFl9fX2zatAk3b95EZGQkBg0ahG7dumHBggW2/TAK8NJLL2HChAmYMGECmjRpgl9++QU//PAD6tatC0C86XnvvffQqlUrREZG4uzZs9i4cSPc3NxQrlw5fPLJJ2jfvj2aNm2KX3/9FT/++CMqVqxo1zGStnQ6QE4bZCgnImfC13vrudrrvU4xN4mgBJHbpCQlJdm8EIGp6Ghg4UJg6lRg+nQ7DZCINJeRkYH4+HjUqlUL3t7eWg+HSoj8nlf2fG0i+/88fX2B9HQgPh6oWbPo4yMi7fG1noqDvV7rWSm3ASvlREREJR/3KiciIkdiKLcBQzkREZHziI2NRXh4OCIjI+16vwzlRETkSAzlNmAoJyIich7R0dGIi4vDvn377Hq/MpRz9XUiInIEhnIbMJQTERGVfJ6e4pSVciIicgSGchswlBOVbCV83UtyMD6fXBfb14lKLv5vJnuy1/OJodwGDOVEJVOZ3HfgaWlpGo+EShL5fCpjuPE1uQSGcqKSh6/1VBzs9VrvYY/BlBYM5UQlk7u7O8qVK4fExEQAYg9NnU6n8ajIVSmKgrS0NCQmJqJcuXJwd3fXekhkI4ZyopKHr/VkT/Z+rWcotwFDOVHJFRwcDAD6F2uioipXrpz+eUWuhaGcqGTiaz3Zm71e6zUN5TVr1sS5c+fyXD527FjExsZCURRMnz4dS5Yswa1bt9CmTRvExsaiUaNGGoyWoZyoJNPpdAgJCUGVKlVwl+/EqYjKlCnDCrkLYygnKpn4Wk/2ZM/Xek1D+b59+5Cdna3//OjRo+jevTseffRRAMDs2bMxd+5crFixAvXq1cPbb7+N7t2748SJE/D393f4eBnKiUo+d3d3himiUo5bohGVbHytJ2ej6UJvlStXRnBwsP7jp59+wn333YdOnTpBURTMnz8fkydPxsCBA9G4cWOsXLkSaWlpWLVqlSbjZSgnIiIq+bglGhEROZLTrL6elZWFL774Ak899RR0Oh3i4+ORkJCAqKgo/W28vLzQqVMn7N692+L9ZGZmIjk52ejDXhjKiYiISj62rxMRkSM5TSj/7rvvcPv2bYwcORIAkJCQAAAICgoyul1QUJD+OnNmzZqFwMBA/Uf16tXtNkaGciIiopKPoZyIiBzJaUL50qVL0atXL4SGhhpdbrpVgaIo+W5fMGnSJCQlJek/Lly4YLcxMpQTERE5j9jYWISHhyMyMtKu98tQTkREjuQUW6KdO3cOW7duxbp16/SXyaXlExISEBISor88MTExT/XckJeXF7y8vIplnAzlREREziM6OhrR0dFITk5GYGCg3e6XoZyIiBzJKSrly5cvR5UqVfDQQw/pL6tVqxaCg4OxZcsW/WVZWVnYuXMn2rVrp8UwGcqJiIhKAa6+TkREjqR5pTwnJwfLly/HiBEj4OGhDken02HcuHGYOXMm6tati7p162LmzJnw9fXF0KFDNRkrQzkREVHJx0o5ERE5kuahfOvWrTh//jyeeuqpPNdNnDgR6enpGDt2LG7duoU2bdpg8+bNmuxRDjCUExERlQbcEo2IiBxJ81AeFRUFRVHMXqfT6RATE4OYmBjHDsoChnIiIqKSj5VyIiJyJKeYU+4qGMqJiIhKPoZyIiJyJIZyGzCUExERlXwM5URE5EgM5TZgKCciIir5GMqJiMiRGMptwFBORERU8nFLNCIiciSGchswlBMREZV8XH2diIgciaHcBgzlREREJR/b14mIyJEYym0gQ7mFHdyIiIioBGAoJyIiR2IotwEr5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXxcfZ2IiByJodwGDOVEREQlHyvlRETkSAzlNmAoJyIiKvm4JRoRETkSQ7kNGMqJiIicR2xsLMLDwxEZGWnX+2WlnIiIHImh3AY6nThlKCciItJedHQ04uLisG/fPrveL0M5ERE5EkO5DVgpJyIiKvkYyomIyJEYym3AUE5ERFTyMZQTEZEjMZTbgKGciIio5OOWaERE5EgM5TZgKCciIir5WCknIiJHYii3AUM5ERFRycct0YiIyJEYym3AUE5ERFTysVJORESOxFBuA4ZyIiKiko+hnIiIHImh3AYM5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXzcEo2IiByJodwGDOVEREQln1x9XVGA7Gxtx0JERCUfQ7kNGMqJiIhKPlkpB9jCTkRExY+h3AYM5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXzu7up5hnIiIipuDOU2YCgnIiIq+XQ6rsBORESOw1BuA4ZyIiKi0oF7lRMRkaMwlNuAoZyIiKh0kNuiMZQTEVFxYyi3AUM5ERFR6cBKOREROYrmofzSpUt44oknULFiRfj6+qJZs2Y4cOCA/npFURATE4PQ0FD4+Pigc+fOOHbsmCZjZSgnIiIqHRjKiYjIUTQN5bdu3UL79u1RpkwZ/Pzzz4iLi8OcOXNQrlw5/W1mz56NuXPnYsGCBdi3bx+Cg4PRvXt33Llzx+HjZSgnIiIqHRjKiYjIUTy0fPD33nsP1atXx/Lly/WX1axZU39eURTMnz8fkydPxsCBAwEAK1euRFBQEFatWoVnn33WoeNlKCciIiodGMqJiMhRNK2U//DDD2jVqhUeffRRVKlSBc2bN8cnn3yivz4+Ph4JCQmIiorSX+bl5YVOnTph9+7dZu8zMzMTycnJRh/2wlBORERUfB5++GGUL18egwYN0noo3BKNiIgcRtNQfubMGSxatAh169bFpk2b8Nxzz+Gll17CZ599BgBISEgAAAQFBRl9XVBQkP46U7NmzUJgYKD+o3r16nYbL0M5ERFR8TF8D6A1VsqJiMhRNA3lOTk5aNGiBWbOnInmzZvj2WefxdNPP41FixYZ3U6n0xl9rihKnsukSZMmISkpSf9x4cIFu42XoZyIiKj4dOnSBf7+/loPAwC3RCMiIsfRNJSHhIQgPDzc6LKGDRvi/PnzAIDg4GAAyFMVT0xMzFM9l7y8vBAQEGD0YS8M5URERObt2rULffv2RWhoKHQ6Hb777rs8t1m4cCFq1aoFb29vtGzZEr/99pvjB2olVsqJiMhRNA3l7du3x4kTJ4wuO3nyJMLCwgAAtWrVQnBwMLZs2aK/PisrCzt37kS7du0cOlaAoZyIiMiS1NRUREREYMGCBWavX7NmDcaNG4fJkyfj77//RocOHdCrVy/9gXhnw1BORESOounq66+88gratWuHmTNn4rHHHsPevXuxZMkSLFmyBIBoWx83bhxmzpyJunXrom7dupg5cyZ8fX0xdOhQh4+XoZyIiMi8Xr16oVevXhavnzt3LkaPHo0xY8YAAObPn49NmzZh0aJFmDVrlk2PlZmZiczMTP3n9lzUVWIoJyIiR9G0Uh4ZGYn169dj9erVaNy4Md566y3Mnz8fw4YN099m4sSJGDduHMaOHYtWrVrh0qVL2Lx5syZzzhjKiYiIbJeVlYUDBw4Y7aYCAFFRURZ3U8lPcS7qKnH1dSIichRNK+UA0KdPH/Tp08fi9TqdDjExMYiJiXHcoCxgKCciIrLd9evXkZ2dXeBuKj169MDBgweRmpqKatWqYf369YiMjMxzf5MmTcL48eP1nycnJ9s9mLNSTkREjqJ5KHclMpQriviwsAA8ERERmVHQbiqbNm2y6n68vLzg5eVl17GZ4urrRETkKJq2r7saN4OflqJoNw4iIiJXUqlSJbi7u9u0m4rWWCknIiJHYSi3gWEoZws7ERGRdTw9PdGyZUuj3VQAYMuWLUXaTSU2Nhbh4eFmW9yLiqGciIgche3rNmAoJyIiMi8lJQWnT5/Wfx4fH49Dhw6hQoUKqFGjBsaPH4/hw4ejVatWaNu2LZYsWYLz58/jueeeK/RjRkdHIzo6GsnJyQgMDLTHt6HHUE5ERI7CUG4DhnIiIiLz9u/fjy5duug/lwuxjRgxAitWrMDgwYNx48YNzJgxA1euXEHjxo2xceNGhIWFaTXkfDGUExGRozCU24ChnIiIyLzOnTtDKWDBlbFjx2Ls2LEOGlHRcEs0IiJyFM4ptwFDORERUenASjkRETkKQ7kNGMqJiIicR3Eu9MYt0YiIyFEYym3AUE5EROQ8oqOjERcXh3379tn9vlkpJyIiR2EotwFDORERUenAUE5ERI7CUG4DhnIiIqLSgaGciIgchaHcBjqdep6hnIiIqOTi6utEROQoDOU20OnUYM5QTkREVHKxUk5ERI7CUG4j2cLOUE5ERKSt4lx9naGciIgchaHcRgzlREREzqE4V1/nlmhEROQoDOU2YignIiIq+VgpJyIiR2EotxFDORERUcnHUE5ERI7CUG4jhnIiIqKSj6GciIgchaHcRgzlREREJR+3RCMiIkdhKLcRQzkREVHJx0o5ERE5CkO5jRjKiYiInENxbonG1deJiMhRGMptxFBORETkHIpzSzRWyomIyFEYym3EUE5ERFTyMZQTEZGjMJTbiKGciIio5GMoJyIiR2EotxFDORERUcnHUE5ERI7CUG4jhnIiIqKSj1uiERGRozCU24ihnIiIqORjpZyIiByFodxGDOVEREQlH7dEIyIiR2EotxFDORERkXMozn3KWSknIiJHYSi3EUM5ERG5goMHD+LIkSP6z7///nsMGDAAb775JrJKyERpR+1Trih2v3siIiI9hnIbMZQTEZErePbZZ3Hy5EkAwJkzZ/D444/D19cX33zzDSZOnKjx6JyfDOUAkJ2t3TiIiKjkYyi3EUM5ERG5gpMnT6JZs2YAgG+++QYdO3bEqlWrsGLFCqxdu1bbwbkAw1BeQhoLiIjISTGU24ihnIiIXIGiKMjJfbHaunUrevfuDQCoXr06rl+/ruXQXIJhKOe8ciIiKk6ahvKYmBjodDqjj+DgYP31iqIgJiYGoaGh8PHxQefOnXHs2DENR8xQTkRErqFVq1Z4++238fnnn2Pnzp146KGHAADx8fEICgrSeHTOj6GciIgcRfNKeaNGjXDlyhX9h+GiNLNnz8bcuXOxYMEC7Nu3D8HBwejevTvu3Lmj2XgZyomIyBXMnz8fBw8exAsvvIDJkyejTp06AIBvv/0W7dq103h0zs/dXX3NZygnIqLi5KH5ADw8jKrjkqIomD9/PiZPnoyBAwcCAFauXImgoCCsWrUKzz77rKOHCoChnIiIXEPTpk2NDnRL77//Ptzd3TUYkespUwbIzGQoJyKi4qV5pfzUqVMIDQ1FrVq18Pjjj+PMmTMARHtdQkICoqKi9Lf18vJCp06dsHv3bov3l5mZieTkZKMPe2IoJyIiV3DhwgVcvHhR//nevXsxbtw4fPbZZyhj2JtNFnl5idOMDG3HQUREJZumobxNmzb47LPPsGnTJnzyySdISEhAu3btcOPGDSQkJABAnnlvQUFB+uvMmTVrFgIDA/Uf1atXt+uYGcqJiMgVDB06FNu3bwcAJCQkoHv37ti7dy/efPNNzJgxQ+PR2UdsbCzCw8MRGRlZLPdfoYI4vXGjWO6eiIgIgMahvFevXnjkkUfQpEkTPPjgg9iwYQMA0aYu6XQ6o69RFCXPZYYmTZqEpKQk/ceFCxfsOmaGciIicgVHjx5F69atAQBff/01GjdujN27d+u3RSsJoqOjERcXh3379hXL/VeuLE6vXSuWuyciIgLgBO3rhvz8/NCkSROcOnVKP8/ctCqemJiY76qxXl5eCAgIMPqwJ4ZyIiJyBXfv3oVXbv/11q1b0a9fPwBAgwYNcOXKFS2H5jIYyomIyBGcKpRnZmbi+PHjCAkJQa1atRAcHIwtW7bor8/KysLOnTs1XTWWoZyIiFxBo0aNsHjxYvz222/YsmULevbsCQC4fPkyKlasqPHoXMPjN2LxHibi2lW+6BMRUfHRNJS/+uqr2LlzJ+Lj4/HXX39h0KBBSE5OxogRI6DT6TBu3DjMnDkT69evx9GjRzFy5Ej4+vpi6NChmo2ZoZyIiFzBe++9h48//hidO3fGkCFDEBERAQD44Ycf9G3tlI87dzB078uYiPcR8PdOrUdDREQlmKZbol28eBFDhgzB9evXUblyZdx///34888/ERYWBgCYOHEi0tPTMXbsWNy6dQtt2rTB5s2b4e/vr9mYGcqJiMgVdO7cGdevX0dycjLKly+vv/yZZ56Br6+vhiNzEXv2wF3JBgDUOboeQBdtx0NERCWWpqH8q6++yvd6nU6HmJgYxMTEOGZAVmAoJyIiV+Hu7o579+7h999/h06nQ7169VCzZk2th+Uadu3Sn21+dj2gfADks9AsERFRYTnVnHJXIEO5omg7DiIiovykpqbiqaeeQkhICDp27IgOHTogNDQUo0ePRlpamtbDc34GobxyxkVg/34NB0NERCUZQ7mNWCknIiJXMH78eOzcuRM//vgjbt++jdu3b+P777/Hzp07MWHCBK2H59wyMoC//gIAHEALcdn69RoOiIiISjKGchsxlBMRkStYu3Ytli5dil69eum3CO3duzc++eQTfPvtt1oPz7nt3QtkZeFe5WD8D6+KyxjKiYiomDCU24ihnIiIXEFaWhqCgoLyXF6lShW2rxckt3VdeaAjNqI3slAG+Pdf8UFERGRnDOU2YignIiJX0LZtW0ybNg0ZGRn6y9LT0zF9+nS0bdtWw5G5gNxQ7tG1I9LLBOJXdBOXs1pORETFQNPV110RQzkREbmCDz74AD179kS1atUQEREBnU6HQ4cOwdvbG5s2bdJ6eM7r7l1g924AgK5TR1SuDGy4/BB64Rfg9981HhwREZVEDOU2YignIiJX0LhxY5w6dQpffPEF/v33XyiKgscffxzDhg2Dj4+P1sOzi9jYWMTGxiI7O9t+d/r330BqKlC+PNCoESpXBq5friSuY9s/EREVA4ZyGzGUExGRq/Dx8cHTTz+t9TCKTXR0NKKjo5GcnIzAwED73KncCq1DB8DNDZUrAxnwFpdlZtrnMYiIiAwwlNuIoZyIiJzVDz/8YPVt+/XrV4wjcWHXrgFlygAdOwIAKlcGbsFLXMdQTkRExYCh3EYM5URE5KwGDBhg1e10Op19W75LkvfeA2JixNxyiFCewFBORETFiKHcRgzlRETkrHL44mQfPj7iA0ClSkAmQzkRERUjbolmI4ZyIiKi0qNyZYNQbrC9HBERkb0wlNuIoZyIiKj0MArlrJQTEVExYCi3EUM5ERFR6cHV14mIqLgxlNuIoZyIiKj0YKWciIiKG0O5jRjKiYiISo88oVxRtB0QERGVOAzlNmIoJyIiV7Bx40Zs2rQpz+WbNm3Czz//rMGIXFP58kCWDOWAfqs0IiIie2EotxFDORERuYI33njD7F7kiqLgjTfe0GBErsndHShb0SCUcwV2IiKyM4ZyGzGUExGRKzh16hTCw8PzXN6gQQOcPn1agxG5roDKBqGc88qJiMjOGMptxFBORESuIDAwEGfOnMlz+enTp+Hn56fBiFxXpSpuyEIZ8QlDORER2RlDuY0YyomIyBX069cP48aNw3///ae/7PTp05gwYQL69eun4chcD1dgJyKi4sRQbiOGciIicgXvv/8+/Pz80KBBA9SqVQu1atVCw4YNUbFiRfzvf//TenguhaGciIiKk4fWA3A1DOVEROQKAgMDsXv3bmzZsgX//PMPfHx80LRpU3Ts2FHrobmcSpUYyomIqPgwlNuIoZyIiFyFTqdDVFQUoqKitB5KsYiNjUVsbKzZVebtyahSztXXiYjIzhjKbcRQTkREzurDDz/EM888A29vb3z44Yf53vall15y0KiKT3R0NKKjo5GcnIzAwMBie5zgYFbKiYio+DCU24ihnIiInNW8efMwbNgweHt7Y968eRZvp9PpSkQod5QaNYAMeItPGMqJiMjOGMptpNOJU4ZyIiJyNvHx8WbPU9HUqAGcz62UZ6dlwl3j8RARUcnC1ddtxEo5ERFR6RIcDGTpRCi/lcBKORER2VehKuUXLlyATqdDtWrVAAB79+7FqlWrEB4ejmeeecauA3Q2DOVEROQKFEXBt99+i+3btyMxMRE5Ji9c69at02hkrsfNDdB5eQEZwM0rmaik9YCIiKhEKVSlfOjQodi+fTsAICEhAd27d8fevXvx5ptvYsaMGXYdoLNhKCciIlfw8ssvY/jw4YiPj0fZsmURGBho9EG2cfeVlXKuvk5ERPZVqEr50aNH0bp1awDA119/jcaNG+OPP/7A5s2b8dxzz2Hq1Kl2HaQzYSgnIiJX8MUXX2DdunXo3bu31kMpETzKegE3gaREtq8TEZF9FapSfvfuXXh5iSPGW7duRb9+/QAADRo0wJUrV+w3OifEUE5ERK4gMDAQtWvX1noYJYZngFh9/c41hnIiIrKvQoXyRo0aYfHixfjtt9+wZcsW9OzZEwBw+fJlVKxY0a4DdDYM5URE5ApiYmIwffp0pKenaz2UEsE7UBQjUm4ylBMRkX0Vqn39vffew8MPP4z3338fI0aMQEREBADghx9+0Le1l1QM5URE5AoeffRRrF69GlWqVEHNmjVRpkwZo+sPHjyo0chck285EcrTGMqJiMjOChXKO3fujOvXryM5ORnly5fXX/7MM8/A19e3UAOZNWsW3nzzTbz88suYP38+ALFy7PTp07FkyRLcunULbdq0QWxsLBo1alSox7AHhnIiInIFI0eOxIEDB/DEE08gKCgIOp1O6yG5NL8KIpRnJDGUExGRfRUqlKenp0NRFH0gP3fuHNavX4+GDRuiR48eNt/fvn37sGTJEjRt2tTo8tmzZ2Pu3LlYsWIF6tWrh7fffhvdu3fHiRMn4O/vX5ihFxlDORERuYINGzZg06ZNeOCBB7QeSolQtpII5cjMQHIyEBCg7XiIiKjkKNSc8v79++Ozzz4DANy+fRtt2rTBnDlzMGDAACxatMim+0pJScGwYcPwySefGFXdFUXB/PnzMXnyZAwcOBCNGzfGypUrkZaWhlWrVlm8v8zMTCQnJxt92BNDORERuYLq1asjgMnRbrz8RSj3QiYuXNB4MEREVKIUKpQfPHgQHTp0AAB8++23CAoKwrlz5/DZZ5/hww8/tOm+oqOj8dBDD+HBBx80ujw+Ph4JCQmIiorSX+bl5YVOnTph9+7dFu9v1qxZRvuwVq9e3abxFIShnIiIXMGcOXMwceJEnD17VuuhlAxeaig/f17jsRARUYlSqPb1tLQ0ffv45s2bMXDgQLi5ueH+++/HuXPnrL6fr776CgcPHsS+ffvyXJeQkAAACAoKMrpcHgCwZNKkSRg/frz+8+TkZLsGc4ZyIiJyBU888QTS0tJw3333wdfXN89Cbzdv3tRoZC7KW2yJxlBOVEopCvDvv0C9eoC7u9ajcW4XLwI//QQ8+SRQyPXGSptChfI6dergu+++w8MPP4xNmzbhlVdeAQAkJiZa3Sp34cIFvPzyy9i8eTO8c1/ozDFdmEZRlHwXq/Hy8tLvoV4cGMqJiMgVyEVTyU4MKuXHGcqJSp+vvwYefxz4v/8D3npL69E4t2nTgGXLgDJlgNGjtR6NSyhUKJ86dSqGDh2KV155BV27dkXbtm0BiKp58+bNrbqPAwcOIDExES1bttRflp2djV27dmHBggU4ceIEAFExDwkJ0d8mMTExT/XckRjKiYjIFYwYMULrIZQsbF8nKt22bxenx49rOw5XIKdNXbyo6TBcSaFC+aBBg/DAAw/gypUr+j3KAaBbt254+OGHrbqPbt264ciRI0aXjRo1Cg0aNMDrr7+O2rVrIzg4GFu2bNEH/aysLOzcuRPvvfdeYYZtFwzlRETkKnJycnD69GkkJiYix+SFq2PHjhqNykXlhnJvZDCUk2PdugXExgLDhgG1amk9mtLr8GFxeueOtuNwBdeuidMbN7QdhwspVCgHgODgYAQHB+PixYvQ6XSoWrUqWrdubfXX+/v7o3HjxkaX+fn5oWLFivrLx40bh5kzZ6Ju3bqoW7cuZs6cCV9fXwwdOrSwwy4yhnIiInIFf/75J4YOHYpz585BURSj63Q6HbKzszUamYtipZy08tlnwJQpwIULwMcfaz2a0klRgKNHxXk77+xUIiUmilOuXWK1Qq2+npOTgxkzZiAwMBBhYWGoUaMGypUrh7feeivPkfiimDhxIsaNG4exY8eiVatWuHTpEjZv3qzZHuUAQzkREbmG5557Dq1atcLRo0dx8+ZN3Lp1S//BRd4KwSCUX7wI8JgGOUzu4sf6oEOOd+6cWiFnpTx/OTnA9eviPF9rrFaoSvnkyZOxdOlSvPvuu2jfvj0URcEff/yBmJgYZGRk4J133inUYHbs2GH0uU6nQ0xMDGJiYgp1f8WBoZyIiFzBqVOn8O2336JOnTpaD6VkMFh9/d49kZOqVtV4TFQ6JCWJU1ZotSNb1wH+Hgpy+7Z61JKh3GqFqpSvXLkSn376KZ5//nk0bdoUERERGDt2LD755BOsWLHCzkN0LgzlRETkCtq0aYPTp09rPYySI7dSXrZMJgCwhZ0c5/ZtccowqB3DdbBKU6U8MREYPx6oWxcwKZ7m+zUS55RbrVCV8ps3b6JBgwZ5Lm/QoEGJb4ljKCciImd12KCa8+KLL2LChAlISEhAkyZN8uxT3rRpU0cPz7XlhnJfNxHKL13ScjBUqshQLivm5HimlXJFAfLZotnlKQowcyYwaxaQmiou+/FHoHPngr9WLvIGsFJug0KF8oiICCxYsAAffvih0eULFiwo8S/yDOVEROSsmjVrBp1OZ7Sw21NPPaU/L6/jQm+FIFdf12UAMH7fSVSs2L6uPcNKeU4OkJ4O+PpqN57iduGC2I8dAPz8RDBPSbHuaw3/Od66JX5ebjY0ZysK8NNPYqcBk0XBS7JChfLZs2fjoYcewtatW9G2bVvodDrs3r0bFy5cwMaNG+09RqfCUE5ERM4qPj5e6yEU2k8//YQJEyYgJycHr7/+OsaMGaP1kIwZLPQGAFevajkYKlVYKddWRgZw8qTxZcnJ1oXyGzeAb74BBg8GypcvnvEVh1u3xGnlysAbbwATJlgfyg3b1xVFPG+t/d4vXwaeegrYtAmoVw84ccK2cbuwQs0p79SpE06ePImHH34Yt2/fxs2bNzFw4EAcO3YMy5cvt/cYnQpDOREROauwsDD9x7lz51C1alWjy8LCwlC1alWcO3dO66EauXfvHsaPH49t27bh4MGDeO+995xvOlxuKC+TI0I5F8Imh5FhPCMDyMrSdiyl0fHjYuGy8uUBuQOUtfPK588Hnn8eWLCg2IZXLGTLekCA+j0XplIOWN/C/vvvQJMmIpADpW7hjkKFcgAIDQ3FO++8g7Vr12LdunV4++23cevWLaxcudKe43M6DOVEROQKunTpYjbYJiUloUuXLhqMyLK9e/eiUaNGqFq1Kvz9/dG7d29skm/MnEXu6use2Qzl5GCyUg6whV0LsnW9aVMRUgHrfw8XLxqfugoZwMuWFR+GlxXENJRbu9jbtGkiwMuW9YwM8VFKFDqUl1YM5URE5Ark3HFTN27cgJ+fn10fa9euXejbty9CQ0Oh0+nw3Xff5bnNwoULUatWLXh7e6Nly5b47bff9NddvnwZVQ32F6tWrRouOdtKarmVcvfsu9Ahh6GcHOPePbVqCTCUa0GG8iZN1FBubaVctoHLU1dhz1BubaVczgmaN08NXIYHpEq4Qs0pL80YyomIyJkNHDgQgFjUbeTIkfDKDZMAkJ2djcOHD6Ndu3Z2fczU1FRERERg1KhReOSRR/Jcv2bNGowbNw4LFy5E+/bt8fHHH6NXr16Ii4tDjRo1jBamk8wdUJAyMzORmZmp/zzZEUHF4OfoiSwkJnoX/2MSmc4j57xyx5MrrzdtCuzdK85b+z/H1UO5n5/t7eumRyytDeXyuV2uHBAYKH5mt24BwcHWfb2LYyi3EUM5ERE5s8DAQACiUu7v7w8fHx/9dZ6enrj//vvx9NNP2/Uxe/XqhV69elm8fu7cuRg9erR+8bb58+dj06ZNWLRoEWbNmoWqVasaVcYvXryINm3aWLy/WbNmYfr06fb7BqxhEMq9kcFQTo5hGsJZKXc8c+3rpbFSbu33LCvlgYHi+WtrKA8MFPP3ZSgvJWwK5fLouyW3S0GLAUM5ERE5M7ngas2aNfHqq6/avVXdVllZWThw4ADeeOMNo8ujoqKwe/duAEDr1q1x9OhRXLp0CQEBAdi4cSOmTp1q8T4nTZqE8ePH6z9PTk5G9erVi+cbkDw99We9kInEW2LNLYOLiezP9L01Q7ljpaYCV66I8w0b2r7Qm6uGcjlloijt6/Xri84Ca+aU5+SoP9OAAHW19lKQLSWbQrk8+p7f9U8++WSRBuTsGMqJiMgVTJs2TeshAACuX7+O7OxsBAUFGV0eFBSEhIQEAICHhwfmzJmDLl26ICcnBxMnTkTFihUt3qeXl5dRW75D6HQigWdlwUeXCSjA9etAaKhjh0GljGkoYfu6Y8kqb5kyIpDbutCbq4byws4pz8lRQ3mDBiKUW1MpNzzIERgoWtgB1/u5FYFNobykb3dmDYZyIiJyVi1atMCvv/6K8uXLo3nz5vnOyz548KADR5Z3jrjpQnT9+vVDv379HDomm3l7A1lZCKmQiXM3xNRJhnIqVmxf15YMheXLiwNztlTK795VK863b4vw4OYia2wbzimXofzu3YLbg27fFtvHAaJSDlgXyuXz3NNT/J+VlXKGcrKEoZyIiJxV//799RXkAQMGaDuYXJUqVYK7u7u+Ki4lJibmqZ47vdyfbUiFTOAGt0UjB2ClXFuGoRywrVJuGCgVRXyNrAA7O8NKueEUqJQUoEIFy18nq+QBAUBIiDhvSyiXXdlsX6eCMJQTEZGzki3r2dnZ6Ny5M5o2bYry8s2NRjw9PdGyZUts2bIFDz/8sP7yLVu2oH///kW679jYWMTGxiJbVmaKW24oDyrHvcrJQVgp15ZpKLelUm5a5b11yzVDeZky4n9fZqb1obxKFfV21oRy+byWBz1KYfu6i/RQOA+GciIicnbu7u7o0aOHwxZgTUlJwaFDh3Do0CEAQHx8PA4dOoTz588DAMaPH49PP/0Uy5Ytw/Hjx/HKK6/g/PnzeO6554r0uNHR0YiLi8O+ffuK+i1YR4bywAwADOXkAKyUa8telXJznzszw4XeDE8Lmlcu/ylWrqyGcmsWerNUKXeln1kRsVJuI4ZyIiJyBU2aNMGZM2dQq1atYn+s/fv3o0uXLvrP5croI0aMwIoVKzB48GDcuHEDM2bMwJUrV9C4cWNs3LgRYWFhxT42u8oN5ZUDWCknBzGca5uVxUp5Udy7BzzxBHD2LLB9O2CwXaRF9q6UuwrDSrk8vXGj4FAuK+WVKwNysU62r1uFodxGDOVEROQK3nnnHbz66qt466230LJlyzxbowXIio8ddO7cGYqi5HubsWPHYuzYsXZ7TE3khvKKZRnKyUFkKKleHfjvP4byopg+HVizRpzfuxfo1KngrymtlXLDhd4A9WCEtaHcsH391q2CF7kzDeWlsH2dodxGDOVEROQKevbsCUCsam64yrlc9dxh87BLEm9vAAzl5EAyrNSoIUI529cLZ/Nm4J131M+PHStcKC/NlXKg4O/bsH1d/sxycgpe5E4+r+VBD7avU0EYyomIyBVs375d6yEUO60Weivvy1BODiIr5TVqiFNWym13+TIwbJhYAT0wUATAY8es+1pLobwwlXJr2ridRWHnlBu2r3t5iUp7aqr43vML5fLnyfZ1shZDORERuYJO1lSBXFx0dDSio6ORnJyMQPlmrjjlhvJyPgzl5CCmoZyVctt98glw/ToQEQFERwPPPAMcPWrd11pqXy+tlXJbQjkgWthTU8V89Nq1LX8d29cZym3FUE5ERK4kLS0N58+fR1ZWltHlTZs21WhELiw3lAd6qauvKwqg+20XMHs28OGH+b/xJLKVDCtyUURWym0XHy9OH3sMaNlSnD92LPePV2f564D8K+UFfb38Wm9vICPDtQJmYUO5PFJZpYo4rVgRuHCh4C4BSwu9JScD2dmAu7v1Y3dRDOU2YignIiJXcO3aNYwaNQo///yz2es5p7wQckN5gJeolKeniyJQ2SVLgA0bgA4dgNdf13KEVNKYq5RbEyZJdemSOK1WDWjYUPzsbtwQATIoKP+vtVQpz8kR/wB8fQv+2lq1gOPHXSeU37snDiIA6kJvRamUA7aHcsNW96Sk/PdGLyG4T7mNGMqJiMgVjBs3Drdu3cKff/4JHx8f/PLLL1i5ciXq1q2LH374QevhuabcUO6pZOp3U0pMhPqGklVMsidFMV7oDTAOTGSdixfFabVqYhu0++4Tn1vTwm4ayv381AMiBbWwy6+V3TOuEsrlfHLAtkq5oohpAkDhQ7k86FGmjHpAwFV+bkXEUG4jhnIiInIF27Ztw7x58xAZGQk3NzeEhYXhiSeewOzZszFr1iyth+eacldf12Vl6rszExOhhnGGcrKn1FTRugsAVauqYZDPM+spimifBkQoB4BGjcRpQYu9KUreUK7TWb/Ym/xaeRDAVcKlDOXu7voDkVaF8tu3xUEjIG8ov3Ej/8c0XegNKHUrsDOU24ihnIiIXEFqaiqq5CbHChUq4FpuW2GTJk1w8OBBLYdmN7GxsQgPD0dkZKRjHlC+Qc00CeWyYmbN4k9E1pLVQw8PUTWUVUQu9ma95GQ1ZFatKk4bNxanBYXytDTg7l1xXgZEwPpt0Vy1Um44n1weCLImlMv55AEB6v/KwravA6VuBXaGchsxlBMRkSuoX78+Tpw4AQBo1qwZPv74Y1y6dAmLFy9GSEiIxqOzj+joaMTFxWHfvn2OecCCQjkrmGRPMowEBopwJEM5n2fWk63r5cur7dDWVspliJYHRSRrfw/y9+eqodzwe5YHIvIL5VevilP5zxEQC70BhQvlpWwFdi70ZiOGciIicgXjxo3DlStXAADTpk1Djx498OWXX8LT0xMrVqzQdnCuSobyjAxWyqn4yaAiw0lgoGjFZqXcejKUyyo5oIbyo0fzXzRPBsny5Y1vY02l/N499XoZym/fFgHCzclroqYrrxuezy+Unz4tTg13oLCmUm64doI84AGUuvZ1hnIbMZQTEZErGDZsmP588+bNcfbsWfz777+oUaMGKlWqpOHIXJilSjnnlFNxMKyUA6yUF4bhyutS/fpivnRSEnD5snFgN2Q6n1yy5vdg2HJds6Y4VRTxNYYrizuj/EJ5fgciTp4Up3XrqpdZE8rT09W1E9i+TtZiKCciIlfk6+uLFi1aMJAXhZlQfj3hnnhTCbBSTvZlWinnnHLbGa68Lnl5qcExvxZ2S6Hcmkq5/Fp/f9EGLrdrcIWqr5yDb2ul/NQpcVqvnnqZNQu9yeezm5vxY7JSTvlhKCciIlcwfvx4s5frdDp4e3ujTp066N+/PyqUgv1f7cZMKL9zxeBNKkN56XLtGjBmDBAVBURH2//+TSvl8pSVcuuZC+WAaGH/91/Rwh4VZf5ri1IpN/3a8uXFwbtbt8S+5c6ssO3rha2UG7auG04T4Jxyyg9DORERuYK///4bBw8eRHZ2NurXrw9FUXDq1Cm4u7ujQYMGWLhwISZMmIDff/8d4eHhWg+3UGJjYxEbG4ts2fpY3HK3RDMM5WlXDYI4w1LpoSjAU08BP/0EbNsGjB6tPj/sRYZy00o5n2fWsxTKGzcG1q4t/kq5YSi/fNk1Aqa5hd4KCuU5OeqccsNKueFCb5bm05tb5A1g+zrlj6GciIhcQf/+/fHggw/i8uXLOHDgAA4ePIhLly6he/fuGDJkCC5duoSOHTvilVde0Xqohabl6utyGmryRYOAdOeOCGtU8i1eLAI5IILK5s353/7rr4H33rPt+WFuoTfDy6lglkJ5w4biVFZ3zbF3pdzwcltduwbMmKHuuV6cClMpv3gRyMgQK9WHhamXV6okqt85OZZb2M0t8gbY9jO7cQN44AFxsKVTJ3HAzBUOgBhgKLcRQzkREbmC999/H2+99RYCDN7oBAQEICYmBrNnz4avry+mTp2KAwcOaDhKF2Ow+nqdOmKtKF2qQbVMUdT5mOR8UlLUkJafO3eAL78EMjPNXx8XB8jpIXIRr3XrLN/f3bvAyJHAG28AW7daP14u9FZ05hZ6M/xcXm+OvSvlQMFbg1myeDEwbRrw1luF+3pb5BfKMzPVvdsNyfnktWuLYC6VKSOCOQDk7gaSh3w+m1bKbWlfX7MG+OMP0fmwaxewfDnw7bcFf50T0TSUL1q0CE2bNkVAQAACAgLQtm1b/Pzzz/rrFUVBTEwMQkND4ePjg86dO+NYQXsKFjOGciIicgVJSUlITEzMc/m1a9eQnPsmqFy5csjKynL00FyXQaVcrhXlD5M35pxX7pzu3AFatgTq1Ck4mL/1FvDEE8Dkyeavf/FFURXs0QOQ2wv+8IP5sAKIoCAXA/zsM+vH7KqV8t9/Bx56KP8qtCOkpakh2HSFdRnKL1+23L1QUCh3ZKX8v//E6e7dhft6W+S30Jvh9YbMLfImhYSIU0uh3B7t67/+Kk6fflo89wDg3LmCv86JaBrKq1WrhnfffRf79+/H/v370bVrV/Tv318fvGfPno25c+diwYIF2LdvH4KDg9G9e3fc0fAFj6GciIhcQf/+/fHUU09h/fr1uHjxIi5duoT169dj9OjRGDBgAABg7969qGfuTRSZZxDKASA8HAiAyRvz0lTF/PJLoEsX4OpVrUdSsHHjREjMzAT27Mn/tjt3itPly0X4NpSWJipxAPDRR6JltkoVEba2bzd/f/v3q+fXrbP+wE1RKuV37ogDBfJggCO98gqwcaPaTWBJairw6KPA6tXW3/e1a8ALLwDWTFmRVXA/v7yBTwbFzEzLbdUFta/bUimXC54VNpTLtvW4uOL/H2OuUu7pKarehtcbMrfIm1TUUF7Qzyw7W6zrAIi1Hdq3F+et6YpxIpqG8r59+6J3796oV68e6tWrh3feeQdly5bFn3/+CUVRMH/+fEyePBkDBw5E48aNsXLlSqSlpWHVqlWajZmhnIiIXMHHH3+Mbt264fHHH0dYWBhq1KiBxx9/HN26dcPixYsBAA0aNMCnn36q8UhdiEkob9TIxSrl9+7Zd877tGnAjh22hSotrFsHLFumfn70qOXbZmYChw6J8zdvAt99Z3z93r3i51i1KvRzGB5+WFy3dq35+zQM5Wlplm9nqrCV8jNngDZtgP79gQ8+sO6x7OXQIfX73bABOHzY8m1//FG0GL/2mvXPy5dfBmJjrWvjNpxPbriqNyBCplyt0VJ4K4729aKGckWx7oBEUZhb6A1Qv29zoTy/SnlwsDgtKJSbzik3bF/P7/lx8KA4gBUQILphZBeEI+bf25HTzCnPzs7GV199hdTUVLRt2xbx8fFISEhAlME2BV5eXujUqRN259O6kZmZieTkZKMPe2IoJyIiV1C2bFl88sknuHHjhn4l9hs3bmDJkiXwy32z1axZMzRr1kzbgboSg9XXAVEpd5lQ/s8/gK8v8Oab9rm/c+fUltqDB/NeryjAnDnAzJnaLn535QrwzDPivFyAKr9Q/s8/gOGUDtODVr//Lk4feEANeo88Ik6/+05U7UzJdRuaNxenK1daN/bCVMp37QJatwaOHzcer6MsXWr8+bvvWr6tfP5cuqSu3J2fPXvUA0DWtCZbWuRNki3tluaVO8tCb4piHDD/+sv2+7CFuUq54ef2rpRbmlMuf2bZ2fmv1SFb17t0EfPZq1cXn7NSbpsjR46gbNmy8PLywnPPPYf169cjPDwcCQkJAICgoCCj2wcFBemvM2fWrFkIDAzUf1SXvxg7kaGci6sSEZErKFu2LCpUqIBKlSqhrOmbLLKNmfb1PKHcWdvX164Vc55jY+3T0izfCAN5Q3lODjB2LPDqq2JetmGISE4WgdHcGylFEZXdL78s+PFTUkQVtqAqyerVoj25aVNg4UJxWX6hfO9ecdq0qQjdv/6qhkdALCYFiFAude4sAkRiYt4QnJkpgj4AzJ0rTnfssC5UWqqUW3qO3b4t5tPeuKEGE0cu5JieDnzxhTj/3nvidM0a45+fIcPLLbX+Szk5oi1esqYKammRN6mgxd6cpVJ+44bxNIriDuXm5pQbfm76fd+7J7ozAPvOKffxER0NQP4/N7l44oMPilP5e7140aUCm+ahvH79+jh06BD+/PNPPP/88xgxYgTi4uL01+tM2k0URclzmaFJkyYhKSlJ/3HBzq0LrJQTEZEryMnJwYwZMxAYGKhvXy9Xrhzeeust5JSQF7HY2FiEh4cjMjLSMQ9osPo6ANSvDwSazil31kq5fCN/5w5gsKhuoRmuIn78uGjLBkRV6+mnxWrRkmwdVxSge3dxNKNhQ1FFNZzP+/XXYu73iBH5H9zIyQF69QIiIoD77gOmTrX8hv/6dXHapQvQooU4f/q05QMTMpQPHAjIbk05/uxsdaEtOW8VEHNtu3cX500D09Gj4mBI+fJiq6YuXcTln39u+fuTLFXKLbWvnzwpDlZUqSIOlLi5AQkJln829rZunRhzWJg4INOzp/hdvf+++dvbEsq/+kr8bH18xOe3bhW800FRKuWK4jyVctMs89dfxRs2ba2Unz0rgrm3d94F9YB8Q3l2NnD6gIVQrtMVvAJ7erp6IKxbN3Eqf99paS61LZrmodzT0xN16tRBq1atMGvWLEREROCDDz5AcO78A9OqeGJiYp7quSEvLy/9au7yw54YyomIyBVMnjwZCxYswLvvvqtvX585cyY++ugjTJkyRevh2YWW+5TLT6sFWqiUp6WJlbZlKNSSoqhhExABp6j3Z1gpz8lR5w7PnStCrJubWJBLPl5qqphDLMdx4gQwaRIQGSkWiktJASZMENdlZwN//mn58VeuVN+Inz0r5hf37Wv+tobzVYOCgIoVxXj//df87WWobt0aGDNGnF++XLS0Hz0qfr/+/kCTJsZfV6eOODWtgMv51a1aiZDx5JPi82++sfz9AeLx5IEOc+3r5kKZfM8cFia2oZJ7cZubXlAcZKv/6NHi9z9pkvh8+XLzi6kZhvIdOywHTUVRV8KfPFkNhwW1J8vrzQVFw8vN3U9amrqafn6VcmtXbrdHKG/cWLRnX71qXafF5s1iyoRcI8FaluaUWwrlcj55nTpqUDKUTyj//nvg7GELoRwoeAX23bvF/+PQUKBBA3GZt7e6DZu53+21a5Y7LXJy8i7u6CCah3JTiqIgMzMTtWrVQnBwMLZs2aK/LisrCzt37kS7du00G59h+7oLdUQQEVEps3LlSnz66ad4/vnn0bRpU0RERGDs2LH45JNPsEJu40S2MQnlABAaYGFO+dKlouI7Y4aDBpeP06fFm1rZafjTT0Wr6B89Klq1fX2Brl3FZX//LU5l6/mcOcCHH4pK9p07YkGvt98W1730kgjuYWFAfLwI1JMmGVcsZZu4qdu3gddfF+ffflusgA6I+zHHcL6qTieCjfweTN26pc6NjYwE+vUTi1RduQJ8/LF6IKBtW+O9mAF1vrppWJLt461aidOHHhLjOHxYbMdlidwCuFw5NZjI0KIo5uf1ylAuF9aSnQEFhfK//xZBpSjOnhXB2s1N7MkOAB06AM2aiQMMposBZmSov28PDzH2EyfM33dcnLh/Hx/Rwm7tnOGiVMpleHZ3z1sxlgdHsrMtd1xYG8p//12su2BuLQJJBsi6dUV3CGBdC/uiRSKQz55d8G0N2Vopl38zlnbyMAzlJuHp+HEgECKUJ8NMIbWggxmGreuGndTyOWIavhMTxdSURo3M7xrx33/iYETz5g4PepqG8jfffBO//fYbzp49iyNHjmDy5MnYsWMHhg0bBp1Oh3HjxmHmzJlYv349jh49ipEjR8LX1xdDhw7VbMyGB4AYyomIyFndvHkTDWTlwECDBg1wU+7dS7YxE8qDfES4veuee50MgXKOpQxXjpSRoVanAbU63aaNeGOfni6q1uYoCvDss8DQocD58+ZvI6vkHTqIgAqI4Hf+vJg/7eYm9vnW6YBRo8T1r78uVo328RHVzlGjRCWvQgVx+YIF4nay4m0plE+bJgJkw4bAxInqyueWqsfy9yGDlLlQfu+eOJVV7fvuE5U2T08gJkZcNmOG2OYLMJ5PLtWsKU4tVcpbthSnlSurAX3TJvPfI6B2CrRurb759PZWDwaYa52WIUN2lMpQnt+88sOHxdi6dy/aG9vffhOnbdqogcjw9798ufHt5UGUgADxPAIst7Dv2CFO27cXB4KsXV3bHqG8fPm8K7f7+amXmTu4lZ2t/n5MQ/nt28bttmPHir8Hw84TU/L7rFZN/HwB60K5nA68YYPx4oUFsTWUy0q5uUXeADWUp6fned7Gx6vbSu49YaZSXlD7utwKTbauS4bzyiVFAZ5/XhwAklsGmjp2TPx+3Nzy/t6Lmaah/OrVqxg+fDjq16+Pbt264a+//sIvv/yC7rnzciZOnIhx48Zh7NixaNWqFS5duoTNmzfDX7aNaMAwlLOFnYiInFVERAQWyKBjYMGCBYiQ1RayjVx9PTtbX9mqUEa8obzmESquk2/SExPFqaUKbnEaMwYYMkSEVkB9A9+mDfD44+K8bGG/edO4SnfiBLBkiahsNmoEzJsnFu96/XVg+nTRhiwDRLdu6oriBw+KCjwAtGunto+OGCHe3MrA+Oyz6lZU9eqJN8byYEffvsA774jzf/6phmXp+HGxUB0gqvBlyqjV43v3zFctTbdbMg3lr70mrlu3zrh1XRo9WiwecP26GsoN55NLslJ+9qwabjMygCNHxHkZxAExHx7If26/DOX3369eptPlvy1aYSrlv/4qxvvPP2rAMXXxIjB/vjgY8cAD5ueoy/GadrMOHSp+TwcPGm+PJlvXa9dW59kXFMo7dxan1lTKs7LU51xhFnqzNJ8cEL8HmUXMHRwxbLWWoVLej6KoX5OdrXYH5HfwToby6tWtD+WZmeqK9snJln+35hS00JtpKJffg6VKua+v+vdn8tyJj1cr5TsP2di+rijqz03+XCRzlfLVq8XfuWS63SGgHsgID897XTHTNJQvXboUZ8+eRWZmJhITE7F161Z9IAfEIm8xMTG4cuUKMjIysHPnTjSW/0w1wlBORESuYPbs2Vi2bBnCw8MxevRojBkzBuHh4VixYgXet7TwEuVPhkdAXy0PyF19/fw9C6H8/Pm84bI4bdmitpB/9pl4Ay0r5a1bA4MHi/M//yxCScWKoqVaksHI3V187fjxwPDhogU2Jka88Zah/MEH1eB35Ii6/7bh/O5q1YAePcR5T08Rgg21by8mlg4eLNptGzUSwTM1VV21XPriCxFk+vRRV1r281PfnJkLSKbbLRmG8oQEEe7T08VBDLn4mmEo9/BQVxKXPxfTAAAANWqI05QUNdAdPix+95UqqdcDYgE0QPyuLD03ZOgyDOWAGlLMzdE2DeXygMmFC5bb0w3DnZwKYHjdwIFi7K+8IroX/vhDVNVNH9/cQQRAfO/y+WA4bUaG8vvuU0O5uXnlOTmWQ3l+lXL5HC1fXj1AZEpWym/dUufvS/mFciD/UC5/NmXLigMSgPjfIZ+D8mDC+fNqBdtS6z5gHMrlz/fgwfyr3ydPGgeV9est39ZQVpY6l96aUP7vv+r/DPm/wBxZLTdZK+zsWTWUb/ozMG+zhjyAZ+7AydWr4v+EmxtQq5bxdaaV8itX1DUuZMf11q15Ox1kyG/UyPL3Ukycbk65s2MoJyIiV9CpUyecPHkSDz/8MG7fvo2bN29i4MCBOHHiBDrIdlGyjWEoz10MyPueeFN3Ljv3Db58ky5DeXa2dds3WSMlxfL2TYAIl889Z3z7zz9X53u3aSPebEZEiDAo72vTJvXNq3yDPWWKqEqHh4vq6HPPiUB786Z4nIoVxf3UrCmqgXfvqtU400XXJkwQb6AmTBALMpnq0UNU7qtWFbeTLfGmLeyy3XTIEPUynS7/VclN29flm+3z50XYzsoSQTsrS50baxjKATG3XLast2iRdwEsQLTly7bxs2fFqeF8csNW2NatRdv+7dvmK543b6ohzXQs+W0vZdq+7u+vVi/lc8CU4QKAP/4oxn7njjjwcf/9Iswpivj+339f/P6OHRPVfvmzNTyAYhrKAbWF/Ysv1MAnp3fcd5/4Hn19xYED04pxXJzoUvD1FfP8AfOtyaZkR8XIkZbbkAMC1N+l6d9VQaFc/h7MjcFS27ycTiT3kJdt34D1obxuXfH3lpGh3o85suIrV6v//vv8561LhoHb9HkuD0QY3mbiRHG/ffuK9QMsMfO8zc4GrpzLgg/E/9LT1wL0jSV68vlr7ucjD+xUr65unSaZHriZO1f8Tlu2FAeH6tYVf/O//GL8daW1Uu6KGMqJiMhVhIaG4p133sHatWuxbt06vP3228jOzsZTTz2l9dBck4eH+gY/t1LuliJC+SXkhnLTSjlgvxb2Rx8VIcbSm/G33hJhp2pV4P/+T1w2dap481mhgmgVBsSia4sWAbt2qVXfH38U4UtWJbt1E/Ndjx0T84UXLRLVuXnzRFVq/Hh13qVhhaxOHTV8SA8+KAKcbE0viAzAhqH8zBlR3XZ3V9u/pfy2qDJtXy9fXq2QysrwsmXqgnUeHmqFWdLpxB7nzZsb75VtynSxN9k2blpBdHdXt1sz18Iug3LduuLgh6H8Qrlppdzwsc3NK792TTw3dTrxPJDbl/XqJeYhe3iIUBsXJ54Dr74qqvsVK4p1AKKj1fvOzhY/V3Ot4j17igMF166pUwAM29c9PdXfucECzwCM55PL4FVQpTw+Xn2c5583fxtAfN+W5pUXFMplZVYegDEk12Iw7I4A1NXwzYTy7Lh/MWaM2NbdSE6OOrbq1cWY69fP8/V5yHD56KOiQn/1KrBnj+XbSzJwe3qqVX7JtFK+fbv4v+HuXvBicmaetxcvAr7Z6t9sMgLyLrMgv1dzoVy258udDwyZHriRz6Px48X3NWCA+NywgyA7W92VgZVy58dQTkREruzmzZtYuXKl1sNwTTpd3sXecoPgZYSqn+fkGLcL2yOU37kjFkbLzDTzzh2iZVZOS1iwAHjxRfHmU27J1rq1ekChTh1R+e7QQV0o7YcfRAC/dk1UJU0rtIC4v3HjREB+8031csPQ2bev+cqk4eJYBZFztn//XW1nlgvTdeyYNyjlN8/atH0dUFvYs7NF0Bk6VMwvffJJsRK2rC4aatJEhGzDKr0p01Auq8fm1nCQLezmQrml1nVA7TSwNZSbm1cuw3+DBur2ZQsXioMh5cqJlvTly9UwCYgK4vffi/Nr1ojnl6XWdcnDQ0yBAMSUCsC4fR1QD7TIMC2Ztq4DBVfKFy8Wz5uoKMuLj0mFDeVyYb+ihHIZKgG4Jybg66XJePVVk/u6elV0F7i5qb97GUKtCeXNmomuB8C6FnZLi7wZXpaSIv7HyS0Mn3su74E4U2ZCueF88ixPP2TDw3IoP3NG7bKQTJ9DhgwP3KSkqJ0isktM/t8zXAQvPl50IHh7q79fB2IotxFDORERUSlmGMoNtqaSlfK7t+7kXTxNtuoWxZ9/qm885IJqhv76S7Sk16snqkBVqqjVIMB8yAZEazYgWs9l8DWsSlrDsLIs768oWrcWQe7yZTXgytZ1c/dvqVKemam+4Za3AdRQDoiDFx4eojV35cq8c95tYRjUsrPVxeTyC+UHD+bdmkmGXHNz12W4Md1OLSVFXaBLtq8D+Ydyw4Xt+vRRQ2RgoKhYyxXjTbVvL667e1esX1BQKAfUebwbN4rfkzxQJQNV797idOdONRjm5IjPAeNQLgPXrVvq9yxlZIjtCAG1kp8fS4u9yYNZxRnKTUJ1fZzAxYsmT2N54CEkRF15Xx5osCaUh4erAVRORciPpUXeDC+7c0fc199/i7+radPyv09APVBkIZTryomDZr/9ZjK9v2pVcUDv3r28/0fzC+XyYEt6unjOZWeL34d87rRpI/5OkpPVAz9y6kSDBqL672AM5TZiKCciInIOsbGxCA8PR6Sca+oIcgX2zEzxBjb3TW5gQ/Em8M7FZOPWdcA+lXK5RzYg2oVNQ5m56urTT6vnzQU8QLwBrVNHhFdZaTcMQNa4/37xJjYoyPzK5Lby9VXD5O+/i/Alw5npfHXAcqXc8HPDkCFDuZ+f8c+oqAwr5adPi0Dg42O+vTYoSP0eN29WL1eU/CvlltrXZbD39TX+XuVjnDmTt7JsuFWeu7tYYb1TJxHIDVeLN0dOgVm61LpQ3qyZ+DlkZIjV/TMzRciUIaluXRGu7t5V954+dkydT244noAAdX6zaQv711+LrpEaNYwXMLREhjfDn825c+qif5bamIsSyk+cALKzoeSG6nSI/yltAkTrtOygBmA8n1ySodyg0m7k7l11fYTwcHEAyNtb/B8yXAHfHHlAxNy6CYaVcrnv/PPPi23+CmLmeWu4yJtHxUDUqCH+DRktJaHTWZ5Xnl/7ure3Oi6504ThWipubkD//uK87CCQBzI0aF0HGMptxlBORETkHKKjoxEXF4d9+/Y57kENK+WypOXmhudjRHXSLe0O/t1VzKEcyFstN1xhXerWTQSu4GDLYVmnU4OubNmVq2Fbq3Ztsdr1r7/mnYdaWB07itNXXhGVuOxsETDMVcUsVcrl5/7+xpWvAQPE4nLz56tbVtmDYVCTretNmliuuskdhwz3qD51SvwevL2Bpk3zfo1sYTY9KGPYum44TaB8efVnOXeuermi5H3OPPywqBpac5BryBDxt3DkiAhaHh75r76t0wGPPSbOz5snTsPC1OqvTqeG6A0bxKn8uTzwgOWFvAzDdGqqWrV97jnrqp2m7euKIg7UpKSIvxm5haAp+bs297dtKZTXqiV+ZhkZ4iBJbuV3u5vYY/v+8iJ0Gi0ZkV8ot1QpP3VKVJbLlhWdAH5+6g4IBbWwW9O+fvWqOs1A/k4LYhrK//oLD6x5ER/gZQCALiBAv7ZanlkJluaV51cpB9QuCDlWuW6BNHCgOF23Tvx/kZVyDRZ5AxjKbcZQTkREzmzgwIH5fryS30JVVDAZyjMy1EXd/P0R0UEEQ3/cwZdzc6uWMiwWNZTfvatWI+WcZtlqDhgHLMOKuJubqDCfPWs8p9qUYUu4n1/BVVJzOnWyb4XptddEW/z16+qCbJZa4y2tvm668rpUrpxYdXnMGLsNF4BxpTy/+eSS3NZt61a1rVj+nlu2NH+Aw1Kl3Nx8cknO/1+8WF3r4PRpEf69vMyH/4KUL6+GGkB8n76++X/No4+KU3lAwTRMyRb2jRvFyvRy8TDZ6m9IBi7DSvmUKeK5XqOGmJZgDdNQvmyZ6BTw9hbn3SxEJfm7Tkoy3kNbUSyHcnd3ter7yy/Q3buHdHgjvqZYZDDcw8ZQnpCQd0svwLh1XR6gMWxhz481ofzMGdEFUqtW3kURLTF83qanA716ofuJBWiK3OXWu3RBhQri7M2bJl9rLpTfvq1uPWcplMufmVz/w3TXka5dxQKYiYni/yQr5a7F8OAjQzkRETmbwMDAfD/CwsLw5JNPaj1M12VYKZdviA3aad2Rg6xTZ8XlsuIo99O1xSefiHZyRQEOHRITLcuXF1sQASLIycmXZ86Id7KennkDlpeX8VZu5rRvr86d7dDBftXuoqhSRXQHGC6sZimUywMOppVy05XXi5sMarduqZ0N+YXy9u3F7+bSJTVwyDZ9g4MrV6+KLZaPHoUabm7d0m/LB0AN5YbzyaWoKHGgJT1ddAcAaot8ixaF/30b7uIgt7HLT0SE8cJrcjcAqVMnEewvXxYh8soVEWLNraBuWinfuxf44ANx/uOPzYdKcwxD+fnzYnVuQOxkIAO0OX5+anu0YQv7jRvi5wyYX4letrDnrpFwGnXg10pcFpYm+tYLDOXlyql7r5trYTcXLvv2FQcFDh/Of40La0K5NGiQ9Ys3yuft7dvAqlXArVu44lYVQ7AKh745BcycaVsol1XyoCDLv2vDn3/58sYLFgLieS8PLK1erf7gNaqUe2jyqC7OzU0EcoZyIiJyNsuXL9d6CCWbXJk7NVVtj/X3V1cXVxTcB/GGMTmkPgLKHRBvRM+eFW+Sz5wRbxbzW0gtPh545hlxvlYt9Y15+/Yi2FSvLi7btk0s0CUDVvPmti3QJpUpI0LQsmV5txuz0t9/i6KTzKV24esrFhLr1k1UzC3NWS6oUp5fl4A9+fuLH8LNm9aFch8f0VL766/iIEvVqmJONKCumA2xIHpsrHgaffF5OVHFzcgQoVVuzSXnlJurlOt0wOTJ4ne8YAHw0ktmw7/NunYVv/Bz56wL5bKFXW6NZ1rh9PYWv+sff1QX31qyRF3HwZBhpfzuXdH1kJMDPPGE+cq6JfJ+rlwRB4CSk8XzzJqOolq1ROfB2bPqHt3ybzUoyPzBMBkMc7+/U6iLGlH1ga+BctdPwQ3ZOH7coO3eXCgHxMGN69dFq7pptdrcXtsVKoiDHtu2iWq5XDndlDULvUmDBpm/D3PKlRM/j8xM4N13AQBLcsbgKwzBBx0B6NTd/2wK5Zaq5IDxz6x9e/NdD4MHA59+KtYQyMwUYzQ9WOQgrJQXgvydMpQTERGVMrIl9dw54znLOp2+Wt4qUFSv1v1eBYoMTfHxYmnhOnVEgDEMkIpivFq73DYKUPeGBkSAM5wDLlvYzc0nt9W8eWL/cmtWrDaRkCAeWk6RtiudDhg9Gnj9dctVOUuVckvt68VJHpWQbxILag2XLey//iqqdSkpokJrsNieXDLh9GmIn4G5Fvb82tcB0WXQuLH4mQQHiyACFO054+YmFtGKibF+brHh7cwFKsPF2UaPFkHSHMNK+dKlYm57pUrqfHVrBQWJg2vZ2cDu3eK5smqVdfPRzS32ZtK6npICbNqkdlDrtw67dw+ACOXN+oUBXl5wv5uJGjiP//4zaIKwFMrz2xbNXCgHrGthz2eht6Qcf/359Co18qw9kJMjmhTkDAwjhs/b06eh6HRYhlHw9VUbDixWymXHwrVr6roXMpSbW+RNMqyUm7auS507i+eN/AVptPI6wFBeKAzlREREpZR8E3j6tNGccsPTJn7iDeNfZ6vgnM4glC9YIAL4wYOiEpqSIt7FVq4swtm9e+LNhdxH3sNDhH+5l7VcqEiuGrx6tQhj5uaT2yogAHjkkUK9If3vPzH0U6fybiXsEJYq5Y5uXweM9zeuVavgx5ahfNs2YNEicf7ZZ/UHIBRFLLYPGCxNYG5btPza1wHx5vXtt9XP/fxEUJHzuAvr/vvF4moeVjbfNmkiDgR4e5vfcq1PH9EhERKizik3Rwau06fVyvvUqWpbt7Xc3Y0PZHz8sdp9kGvNGtGwkYe5xd4MQvmOHeLb7dkT+PDD3OtNWqjTQuuiQmV3/f+Vlr7/IicnN2vfu6f+js1VyoG8ofzePbWibBrK5RaJu3erzxdTuaH8nndZdOoEjBqlXvXfVbVSfqBm3tb1JUvE+nqPPWZh5zX5vAVwo/mDOI8w1Kyp3o3FUF62rDrNQH5vsm3f2kq56SJvkoeH+L8naTSfHGAoLxSGciIiolLKXCiXwSv3tMwVUd1KRBXsv5nbCrl3r1qh8vMT7c3Vq4t3sTduiHbWhQuBXbvEm/yAAPEuV/LyUhdge/BBUaW6cwd44w11D+qiVD2LwHCbbdPd4ByioEq5o9rXAeP+fWsWUGveXMx3TU4Wawd4eQEjRuivvnhR/ZkmJuZ2F8sV2A0r5fm1r0v9+4vK67Vr4rmza5djfzaASGCbNolwZboQGiDC15Ej4mchU5o5MnCdOiV+SNWqFX57O9mu/NRTeVZbT00VHfEjRuQ95pNfpfy3czXQpYt6lX4nsnr1jMJsQIvc/ye5FfQHKhss9nbmjAgb3t55D7ZY2hbtwAGxr5ivb96fb7Vq4v+GogBr1+b5MQDQh/ILt8pi1y5gxQq1eH7qnCfSIKbvfJH+iNGX3b4t1tkDxFPMdKF0AEah/FCL0QCMj3/IX7dcv82IaQu7Ne3r990nftZly5o/ACQNHqye12g+OcBQXigM5URERKWUfBOYT6VclomuIgh7EnLfda5eLcrILVuKUOLjI97J+vurLb1Tpqh7hQ8eDIwcqbZdRkaqc1Td3NQFu1auFK2X5crl38pZjAxDueF5h7F19fXiZBjK85tPLrm7i7nZ0qBB6uRaAPv3G988Ph6Fa1+XqlUT1WRrF+gqDuXKmQ/kUu3aYqG//JguovZ//2d+7rk15s4FZs5UV/k3cPasKD5nZ6tFcL18Qvna/eL7k8fR9Dfx8TFKojW65Ybr3NAZ4W0QyuW8hWbN8s6HNlcpVxQx3QUQVXFzc6jlCvivvmo+mOfOKTesisstz0//p8NYLMQkzMSy423160wCwIwZYoq7JLeaNyKftxUqYHvgAADmQ3meSjmQN5Tnt0e5VK0a8M03YvvI/Ba77NhRPejRuLHl2xUzhvJCYCgnIiIqpeSbwPh49d2jaSjPdce7CuIyct91yjnjY8aIRYe2bRNbVcXFiTmskZEiRMo9dUeOFMHpk09EZXzSJONxtGtnXNVr3VqzoGUYxC11xRYrZ1l9HTBuX7cmlANqCzsgOicM5BvKZWuzohTcvl7SBASov9eaNY37rG3VqpX4+zKzpZth3jbcfU3/uPJGsl87N5SfRw306iUW6AOMO9yz64kW9lT4omXf3K6H3NB53111BfZ7f4pQviPVzL7xMpQnJqrP+9WrRQeOry/w3nvmv9cXXhBrUmRkiIAuD+5JuWXxfy+qoVwuSn76NLASI/EuJuHuPZ1+7vi//6rHMwyXSMhDHqF49ln8d1GE5EKF8vR0dQu7/CrlgGhNt7QugeTuLtbxeP114zUNHIyhvBAYyomIiEqpqlVF1eXePeDYMXGZSfu6VL1lFcTD4F2nj4+6xdf994u5sNWqiTeFCxeqobpuXXU16/r1xUJv5ub+vveeuhq8Rq3rgAtUyrVqX7c2lPfpIw7otGsnDtgYkPPJ5VMjPh5529dv3xYty0DpCeWAugDYlCmF23XACoZhOk8ol7/r5GTMGH9bnDcI5d26qbn98mV1LbEr5UQoP+tRB7Vq5/5icyu0IQkH4Y57OH4cuPKDCOVLj0QabYUOQDznZTfBqVMiTL/2mvh88mTz27EB4v/F+vXA2LHiQMIrr4hqMiD+fnbvBgDsP6vOzf9XHCfQd4zLY49yAf8JE8S/wz59RMMBAGzfrl/LTjV8uNim4e239T9Xw1AuG0Tu3DGzNoVhKJdfHBho1FVSJFFRYlV4a9dGKAYM5YXAUE5ERFRKubmp1Zm//xan5irlZcqgcftAnEVN9bJHH7UcEFu1ElUsQKyAbk3Vu0YNUemqW1dMfNWI4TxyTSvld+4YvznTon29Xj0xnpo18ywYZlG1aqLaumWL0e9dUdRKuSz2nTmDvJVyeSQkMFA9SFMaLF0qpm8UpUpeAMNKudwSXc/XF6llxUGQnxfG486NLCi5B0ouoDq6dBFrOPr6it+lDPWHvMSCjFeqtlJ/3RERQPnyKJOWjNbYi5Nx91DxvPj/sg+RRgcH9GS1/MQJkYwvXxat/3KvdUvc3cWik7LV/bnnxAGe114DLl9GZvU6+Dqjr/7mhpVyQG3Q2bkT+OUX0dxTpgwwZ47Y9r5cOZHv5QElo8dt1gznLrjhyBFxkeHuY+XKqeflIut6MpT/+6+Y+w+oc8ZLCIbyQmAoJyIi0l5sbCzCw8MRGWmmvbM4yRZ22UIpw7hh+KtSBW3b6ZAJb8R75lb0ClqIav58scDVSy9ZP5ZnnhGTPuWbVg04TaUcUOf5A9q0r/v5ieBw4ID5Ob2WVKiQp3363Dmx6FWZMuqC+2Yr5aWtdV1q2hR48sliDWb5tq8DOO9eEwAQknUWW1degk5RkAEv3CtXGRERYmimU89/LDMQXfEr/npsrnpH7u5ij3YAvTy2oN69Y/BFOpIQgJOoJw7GmJL/h156SV0U8oMPrJtbr9OJTp0WLUS/eI8eYqoMgA2PLEU6fPW7ov37r5hqLp9uMhP/+Scwbpw4/+KL4niUuzvQpYu4zFwLe06O+Pr0dNEU0qSJ8Y9ABvM8Lew1aogQnp0N/PWXuEzD/3nFgaG8EBjKiYiItBcdHY24uDjskwsiOYrp4kIy9BlWyqtU0Xeg981ai5Rvfra8LY/k5gb9O3kXovmccm9vtX3ZcF65Fu3rgFhsLb+Vw60kq+RNm6r5w2hO+Y0boifa2kXeyGb5hfLMTOBoSk0AQE2cxV/fiNb1C6iOjp3d9LsLmu6cduy4G7ajK+5rYfK8jIoCAPTx3IJIiP9pp/xbQoGb+VAuK+U3bojn/2efiR5ya3l6Ap9/LqbjyNJ1dDS+vdoRgLoo+cmT6vpqFSqInReDgsT3f+KEWDdQrrwOqPPKzS32tnChWE7D11es7G563MrivHJ3d+Cff0TSnzdPdANMm2b99+oCGMoLgaGciIioFDMN5eYq5UFBqFJFtGceQ2PsDujpuPE5mOaVcsD8vHIt2tftSLb/tmyptvnGxwNK+QrqQYiEBOu2Q6NCya99fc8e4L/smgBEKL+yV6T286hhtKC+6XpwcXHic5Mty4Hu3QEATdP/RFdsAwCkNxZdQGZDeYsW4rRyZTGJe/hwq78vvfBwdVG4sDBg1iz88Yf4dMgQEZ7v3hUzKwDxr0+nEwuWS2+/bdx6nlvwxx9/wGiF9oMHxVpqgNiC3tzC6fku9ubnJ3YqGDdO9MqzUk4M5URERKWYpVBuUikH1PXa9uxxwLg0kJ5u3DGuSaUcML8Cuxbt63YkK+WtWqlriqWkANdv6Iy3RWOlvFjcuWO8Z/aFC+oi64CoBMs1Izr77kPDnKMARCiXLdyAcShPTBTzpd3c1HXqjG5Ypw7clWw87vY1AOBucxHK5SJrRnr2BH7+WVS527Ur7Lcp2t+//x7YsQMXk/xx/rwoTN9/v5p7f/xRnMp/fbnHD9C0qdhQwlC9emKZhKwsEcL//ltU0tu0ESG9a1fg+efNDyXfvcpLOIbyQmAoJyIiKsXsEMovXhQLHRu+yXdFhou8AU5UKVcU7drX7UBR1Ep5q1aiQ19OJc+zLVppnVNezM6dE6dlc3cHS083ruBu3QocQyMAQNO0P/EGRMX5hm8NNGqk3s4wlMsqee3aFtbky027bjliC0XfDmIbMbOVcp1OBPOi/t51OqBfP6BmTX2VPCJCfN8NGojP5f8v+a9v1CgxjX3jRujb9E3vDhDrybVoIarp9+4BDz8MrFljebkFuZi62Up5CcdQXggM5URERKVY9epi9S3J3JZoJqH8zz/Fm9HFi8X77ho1xEJHcn9fVyVDuAwut26pWz85lGmlPCND3ZPJBSvlt26pK1CHh4tTwxZ2fSiPj1cTk7yM7EK2rterJzrEAbWF/fZtYN8+4Hd0wPUFX+FubbWV2q9RTaNlIQznlMuVzPO0rku588oBAJUqoWo70SJx7pyZLcaKgQzlcmc+OU6ZeWQo9/AQ61ZWrWr+fubOFVPc+/cXU9ZDQoBvvwXWrRNz0C3Jt329hGMoLwSGciIiolLMw8N4u6t8KuVNmoh5mUlJYiuh558XFTZZIZ84Ud3u3BXJUF6/vnqcwrR67hCmlXJ5qtNBv4y0C5Htu2XLilADqE+5M2egls3fekustlW5sm2LfFGBZCivWVPd9lsu9rZjh8gB9eoBlaIHo8zJY5he70v8DxPgO/wRo/uRv7crV8S8akA90JJHly5q6TkyElWr6eDpKQJ5ni3ZioE8aNCypTiVlXLJ3Dxwc7y8xBT3774Tx8kuXQIeeaTAL2MoJ9swlBMREZVyhu9OLWyJBoigOnu2mPLZubPoNo2JEXNEe/USVeVhw0QX8jvviCq6oxeTLwrDNcZyv2VtWthNK+WGi7zZsjWZk5ChRLbzAmq4M6qUy4MPK1eq5VyyC7laes2aojkGUEO5XFlcrjQOd3cM/3kofGP/h2HPG3dmVKyoHhf65RdxarFSHhgItG4tzkdGws3N5GBMMZPdGbKabTpOa0O5IU9P6zeUKM2h3EPrAbgihnIiIqJS7r771POyd9tMpRwAoqPFh6lly0Ql/Z9/RCVOVs+PHxeLI7lCxpIBvEoVEcwvXdJosTfTSrmLr7wuK+WGO6sZhfL7DVrVx48XR3jIrgwr5XJKhqxW5wnlENMLxo7Nez9yr/Jjx8TfB5BPpRwQE7DnzgWefVZ/vydOiFBuuKp7cbh9W5zK1dTr1hW5JydH/Cnl13puD6U5lLveoUMnwFBORERUysmSUdmy6hsDw1BuxeJLwcHA0qXivKIAzZuLrH/pkmj9NH2fce2auiK3s5Ct6kFB6rfsFJXy3HCuBARg3To1bLgKGcoNK+VGc8plf3FkJDBzpkPHVlpYal+/eFGEZDc30f1iDTmvXDJtCzfStSvw00/6KQry9+7ISnn58uLUy0t9fLkdWnFiKCebMJQTERGVcjKUGwbxChXEBPKyZa0uc/frJ7YY/v13sdr2+vViVeZNm4yz1unTYkXkyEh1MSZnIAN4UJC6I5czVcovpQTikUeAGTM0GFMR5Ne+fu4ckN04Ajh1CvjtN3XSOdmVYSg3bF//9VdxvlUrNbwWxDCUV69u/G+jII4K5YqSt1IOqAcQCtO6biuuvk42YSgnIiIq5dq1E2XtAQPUy3x8RF/r1q02BaXOncVqxzqdaGdfsEBcPmWK2Hro8GGgWzexUBQAzJtnt++iyAxDuVNVynNP42+IsH70qAZjKgJz7euhoWKNAv2iX3XqMJAXk+RkNRiGhamh/OJF863rBTEM5fm2rpvhqFB+546abQwPNkSKrdLRrFnxPj5Quvcp55zyQmAoJyIiKuXKlROVStN+TrkHWhGMGiValN95B1ixQnwAIhycOyeq6efOic+1ZhjKr10T552iUp57ejlFXC4X6HIV5irl7u7iONC//4p1B5zh919SyT3KK1QQTy3D9vWUFHHellBuuFmDs4ZyWSX39AS8vdXLX31VzJYo7vnsgBrKk5LEwSePUpRUWSkvBIZyIiIiKq4Jljqd2Olq1y51PblatUSLe7du4v3HwoXF8tA2M13ozfAyh7JQKU+CuPzCBXUhPVdgrlIOiCkMgFgckIqPbF2XYVrux52ZKQ46+fjYdvzNsFJuceV1C+QYbtxQjzkVB8P55Ib/2nx9gYceEt9zcTOs0LvaOhBFxVBeCAzlREREVNweeECEry++APbsEdW6l14S133yCZCWZnz7S5eA69cdN767d9WKrmH7ujNUypUkEcqTIS5PTXWtN/nmFnoDxGKAgFidn4qP4XxyQMwSMFy7sUMH42pyQYrSvu7vr27mUJzVcnPzyR3Nw0P9Uy5t88oZyguBoZyIiIgcwc9P7GMuA8FDD4nK2a1bwJdfqrf780+xfVFEhOPCp2xXd3cX4dGRlfKzZ4FvvjGofst38rkV8uv/iXCe7hGgv8qVWthlIDGtlMt5vYcOOXI0pY9pKAfUFnbAttZ1QPwe69QRDR1Nm9o+Hke0sJuuvK6V0roCO0N5ITCUExERkRbc3YEXXhDn33gD2LFDBIj+/YH0dODyZdH6bk5iopinaS8yfFeuLN4byQMHSUlARob9Hsecp54CHntMrFwPQG1fz62UXzouwnn1xoH6QONKodxSpVyG8pMnRfWfisfly+I0d1cyAOpib4CYRmILnU5sZ3jypG0rr0uOCOXOUCkHSu8K7JqG8lmzZiEyMhL+/v6oUqUKBgwYgBMnThjdRlEUxMTEIDQ0FD4+PujcuTOOHTum0YgFhnIiIiLSyjPPiBWRb94EuncHOnUSgVuGhg8/FG/+DW3cKALGiy/abxyGi7wBIhfLxcCLs1quKMDBg+K8/i2hLIdnZEDJzMLNsyKUN2kfYLSdlaswt9AboG49pyjAkSOOH1dpIQ+KVKqkXiYr5RUqFG4l8sBAtQ3dVjKU//df4b7eGqyUa0vTUL5z505ER0fjzz//xJYtW3Dv3j1ERUUh1eDQ3+zZszF37lwsWLAA+/btQ3BwMLp37447d+5oNm6GciIiIu3FxsYiPDwckXLPnlKibFlg505g6FBR+T5/HggJAXbvFu3t9+4BEyaot797F3jlFSA7G1i+XH3zXVSmoVync8y88qtX1QWv9JVDGcoB/Pd3MjwzxA0au2Aov3tXXa/OtH0d4LxyRzAXyuV+3T16qFnAUerWFaenThXfYzhLpdwwlCuKOPC2fTuwdi0QF6ft2IqTpqH8l19+wciRI9GoUSNERERg+fLlOH/+PA4cOABAVMnnz5+PyZMnY+DAgWjcuDFWrlyJtLQ0rFq1SrNxM5QTERFpLzo6GnFxcdi3b5/WQ3E4Hx+xANycOUDHjsCGDaKSN2eOWCzpp5+AdevEbZcuVSvnmZnAV1/ZZwyJieLUsPrniHnl//6rno+Pzz3j4SGWiQbw985kBECkWq/KgS4Xyg0PmpirWnJeefGTCyYadiqMHg3ExgLz5zt+PPXqiVPTDhh7kqHcmSrlU6cCjRuL7dgGDQLuv1/dkq6kcao55Um5hz0r5P424uPjkZCQgKioKP1tvLy80KlTJ+zevdvsfWRmZiI5Odnow94YyomIiEhrOh0wfryomsvqaf36wMsvi/ODB4tV2mNixOcyzMl9z4vKtFJueL44K+XHj6vn9aEc0M8rj9uTpA/lCHC9Srms0pYrJ9YQMMVQXvzMzen39gbGji18C3pRyFB+8WLxrSUgDwY5S6X8xAlg3jxxvn598fO/c6fkTttwmlCuKArGjx+PBx54AI0bNwYAJOT+Rw8y/G+f+3mChf/2s2bNQmBgoP6juuGqDHYi9+5jKCciIiJnM3MmMGSIaGN/5hkRnu+7T1TPPTyAvXvt0wZqLpSHhIjTHTuKb19w00q56Qrs//2djEAk6S+TbwUvXiye8dibpUXeJHkA5vBh+y7cR0JGhhp8DdvXtVShgvp8OH26eB7D2SrlX38tfg8tWogDcZ06icsZyovZCy+8gMOHD2P16tV5rtMZ7mAPEeBNL5MmTZqEpKQk/ceFYjgsyko5EREROStPT9HaPm6cetmsWUDVqmLOOSDmlp8/D0yaJM7L9zR37wKffgqsWWN8n3fvqvO45edy1oAM4oCY5+7mBqxeDXz0kd2/NQDGofzOHYMFoXIr5Unnb6uV8sBAo1BeXAcK7MnSIm/SffeJrfIyMoq3nbmkUBSxQ4G1v3t5UMTdXV3U3xkUdwu7s1TK5fNe/k/6v/8TBVG5ldzhw9qMq7g5RSh/8cUX8cMPP2D79u2oZrAJYHDuxCTTqnhiYmKe6rnk5eWFgIAAow97YygnIiIiZ+bmBsydC6xaBSxYIOZjAsCoUeJ00SKxb/K774rtxTp2FHPNW7QAnn4aePxxYMsWcdvUVKBNG7F6+6+/isv+9z/RXlqxItCrl/q4nToB778vzr/yCrB5s/2/N8P2dSDvYm8f4UW4I0csBV+uHKpWFW/qMzLUucLOTIZCc4u8AeJ3GxEhzrOFvWDLlgG1aqmt0AUx/PlbqAFqorhDubNVygExn7x/f3G+SRNxalgp37RJHHB0hYNtBdE0lCuKghdeeAHr1q3Dtm3bUKtWLaPra9WqheDgYGyRrwoAsrKysHPnTrRr187Rw9VjKCciIiJnp9OJNvboaDVc9O4t9hVPTRXV7rZtRdX1jz/EbY8eVecxP/20qES//LJY6TstDXj4YdFWOn26uM28eXkruq+8AowcKd4nPf64+mbfHlJS1LnhcjVs/bzy3LJmDVzAXXcvcTTCxweenmqLvSvMKy+oUg6oLex//SVW1SfL1q8Xp/v3W3d7eeDGWVrXpdJSKTcM5ZMnq7lLhvLDh0UIz8kBnngCePNNsa6Gq9M0lEdHR+OLL77AqlWr4O/vj4SEBCQkJCA9PR2AaFsfN24cZs6cifXr1+Po0aMYOXIkfH19MXToUM3GzVBORERErqhMGVE5HDUK2LVLbKN27Jhoa9fpRBA/cwaoWRM4dw548EGxertOJ6qzd+6IBeQyM8V1TzyR9zF0OmDxYhGab90CPvvMfuOXgaRyZaBlS3FeH8pzN3M+gBb4cdoBYMwY/de50mJvBVXKAXWxtw8/FNMVGjWyPnSWJtnZwG+/ifNXrlj3NQXN6ddKaamUN2ggtn1s2RJ49FH18oYNxQHD27eBS5eAf/5RD6CUhO0BNQ3lixYtQlJSEjp37oyQkBD9xxqDiUwTJ07EuHHjMHbsWLRq1QqXLl3C5s2b4e/vr9m4GcqJiIjIVfXpI4J5hw7i87AwsQhcWhqwZAlQo4aYVw6IReEAUbHatUsNg97eInhbau/18gJefFGcX7zYfu2lcj55w4aiJRlQQ3nW5OnoUWYb2mIPGj3WyOjrXDGU5xcK+/QRQdzNTbwfjYsT0wg4x9zY4cPqnu+2hvLSVCm/e1dd3E7rSnnFiuLvdNcu490HvLzEKuyAaGGXU2kAEdBdnebt6+Y+Ro4cqb+NTqdDTEwMrly5goyMDOzcuVO/OrtWGMqJiIiopPH2Vs936yaq5gDQvj0wbZqYsv3zz+Lyr78WC47l54knRGv88eP2ay+V88kbNNAXxvWh/O9/fbD5bhcEVPTUBxjJlUK5bF/Pr1IeHCymGmRliQX7WrYUVcOoKODyZceM0xUYPu+sDeXm9ih3BnXqiNObN9UDB/ZiOMXEGRa3K1cO8PXNe7lhCztDOTGUExERUYn30UfAl1+qW6kBIgwuWQL07Vvw1wcEqO3tixaJiuXjj4tAnZhYuDHJSnmDBmqlXC709scf4rRdu7wVfFcK5ba0T7u7i+9t40agbl0x5eCxx4p3fK5k1y71fHKydXt8O2v7uq+v+jy2d7VczicPCDCuTjsbuQL7wYPGv9u4OFHtd2UM5YXAUE5EREQlnZeX2OKsKO2szz8vTtetA1q3FlutnTgBfPNN4e7PXCg/d07MHf7lF/H5Aw/k/TpXCuXWLPRmqkoVEcwBcXDCnovrFaekpOJbOTsnxzi4AdZVy521fR0ovhZ2Z5lPXhBZKf/+ezHdpnJlcSAhK8t4q0RXxFBeCAzlRERERAWLiBCV63v3RBiX76E2bLD9vu7dU8NIgwZAtWqign/3rljkTLazPvJI3q91pVBuzUJv5tSpI9YDAFxjL+d//xWhymA9Prs6flz8LH181J+LNaHcWdvXgeIL5c6y8npBZKU8M1Ocdu2qXubqLewM5YXAUE5ERERknUmTxHunBx5Q9z7ftk1tJb57V8z9XbIEeO01UVU35+xZURHz9haL07m7i1MAmDlTvC9r1878XPdq1cTppUvOv4VYUdqn5f7lrhBQdu0Sv/vt24vv/gGx7Z8todxZ29cBMUUBKL2V8ho1RGVc6tbNtZ7z+fHQegCuiKGciIiIyDp9+og55LLyGxYmWs63bRNz0595BlixQr19mTLAtWt5F5ySi7zVr6++F6tVC/jvP+CHH8Tnw4ebH0NIiPiae/eAq1eB0FC7fXt2lZ4uPgDbK+WACCg//ugaAUUGy/Pnxe/Fw86pRC7y1qmTWBQPYPu6Ja5SKdfpgMaNxVaOgAjlkis85/PDSnkhMJQTERERWa9iRfGGWqcTIR0QLezHjgErV4rPe/USc6MtVU8PHhSnhpvwyHnlgNiv29IiZx4earVcLgznjOR8cnf3wq2C7UpVw1OnxGl2tuhgsCdFUSvlHTuKgzJAyWlfP3XKvjnEVSrlgNquXrOm2IHBlZ7z+WEoLwSGciIiIqLCeeghcbphAxATIwLUwIFioTIZqmWbu6G//hKnbdqolxmG8j598q8uyzfzhw4VduTFz3A7NEt7wOdHBpSjR0X12ZnJUA6IqQn2dPWqCOA6nXi+WBvK794Vi88BzhnKa9YUB5jS00WHgb24SqUcALp3F6fyf0XjxiKbJSYCCQnajauoGMoLgaGciIiIqHA6dxaLb128CHz7rQhO06eL6+Qb7s2bjb9GUYC9e8V5S6HcUuu61Ly5OP3770IPvdgVdpE36b77xN7wGRnGodfZZGeLaQeS3GveXgx/jj4+1odyeVBEp3POqnGZMurz2NyBq8JypUr5ww+LLdDeflt87uurzrV35Wo5Q3khMJQTERERFY6Pj/Fc0MGD1Zb0zp1FJfD0aeM28//+E0HL01OtBgNAeLg4rVgR6N07/8eVYUa2wTujoi4y5uambhvlzB0B58+LRfske1fKDTsOAOtDufz5lytn/znu9tKvnzj9/nv73acM5a5QKdfpgIYNxQEKqSS0sDOUFwJDOREREVHhyRZ2NzfRwi4FBIjVsgHjSqBsXW/eXOyfLjVtCnz5JfDzzyKw50eG8mPHjAOhMzENk4XhCgHFdKEyZwvlzti6LvXvL063bgVSUvJev2cP8MUX4uPHH0VLfkFcqX3dHFd4zheEobwQGMqJiIiICu/xx4EuXUQLav36xtdFRYlTc6HcsHVdGjoUiIws+DHDwkR77t27Ipg7I3uEQlcIKLK1XlajHRXKb9zI/4CMXOTNGVdelxo3FtM2MjPztrAfOwa0by+mcgwfLqrqn35a8H26Uvu6OXK9CLnKvitiKC8EhnIiIiKiwitXTmyJNmlS3uvkvPJff1UXK8svlFtLp3POeeWKAsybB7z6qljsDij5oVxWyu+/X5zae065aSivWFFtd85vMTBXqJTrdGq13LSF/csvxfOpRg31YJf828mPq1fK5ZzyM2fE9++KGMoLgaGciIiIqHi0aiXCwe3bwP79oiIo50cXJZQDzjmvfMMGYPx4YM4c4LffxGVVqhT+/po0EcHtyhWx37szkpVy2RVx8aJ1bdbWMg3lOh0QHCzO59fC7gqhHFBD+U8/qQeuFAX46itx/v33gXfeEefj4gq+P1evlIeFid9xSora7eBqGMoLgaGciIiIqHi4uwMPPijOr1wpKr5ZWaKluHbtot23M1bKlywRpx06AKNGAWPGACNGFP7+/P3FKuyA81bLZaW8QwfA21u8p7540X73b25uvjXzyl2hfR0AHnhAfG83bgC7d4vL9u0THQd+fmLNBrkI4vHj+VePFcX1K+Xe3kDVquK84QKRroShvBAYyomIiOzr4YcfRvny5TFo0CCth0JOYNQocbp4MTBxojjfunXh9u42JEP5P/+Ibbm0dumSqJQDIpwvWwZ88ola1S0s2cIut5FzJllZ6hzy+vVFlROwbwt7YUO5q1TKPTzUxRK//Vacyip5v34imNepI26XkpL/AY/UVPVvwVUr5YB6wI6hvBRhKCciIrKvl156CZ999pnWwyAn0bs3MGWKOL9zpzgtaus6IEKgj48IIqdPF/3+imrZMvF+skMHoEED+92vbAv/4APgzh373a89xMeL77lsWXHwoWZNcbk9F3uzJZR/+qlYxyAhQQ3lzl4pB4BHHxWnsbFibvmaNeLzxx8Xp2XKqHOtzbWwJyWJn7mskpcpI/42XJUM5f/9p+04CouhvBAYyomIiOyrS5cu8Pf313oY5ERiYoBHHlE/t0cod3dXq8hat7BnZwNLl4rzzzxj3/seOVJUShMTxVx1ZyJb1+vUEZ0PWobyjAzgtdfE9mLvv6+2rzt7pRwA+vQBRo8WeeSRR4DLl4HAQKBHD/U2soXdNJQrijhwU6sW8MQT4rLy5YveiaIlVspLIYZyIiIqTXbt2oW+ffsiNDQUOp0O3333XZ7bLFy4ELVq1YK3tzdatmyJ3+SKVUSF5OYm5pR36iQqfu3b2+d+nWWxty1bgHPnxDxew4MP9uDpCcyaJc7/73/5rzjuaHKRt3r1xGmtWuJUi/b1775TFzlbuhS4cEGcd4VQrtMBixYBPXuq7ecPPwx4eam3sRTKf/tNndqwa5c4ddX55BJDeSnEUE5ERKVJamoqIiIisGDBArPXr1mzBuPGjcPkyZPx999/o0OHDujVqxfOnz+vv03Lli3RuHHjPB+XL1921LdBLsjPD9i+HThxQrQ724MM5b//bp/7K6xly8Tpk08WT9vwI4+I7oLUVGD6dPvff2HJSrlsrdayUr58uXo+KUkN5a7Qvg6IlvNvvhE7FgDAU08ZX28plH/8sTh96CGgY0dxvk6d4hunI8jFDV01lHtoPQBXxFBORESlSa9evdCrVy+L18+dOxejR4/GmDFjAADz58/Hpk2bsGjRIszKLdcdOHDAbuPJzMxEZmam/vPk5GS73Tc5H3u31PboIcLMnj1ir/SuXe17/9ZQFHGwAVDnANubTidasjt2FIvHvfyyfeetF5ZppdzeofzuXUD+S8gvlF+8KLoVAPGz+eAD9bauUCmXypYVB5guXMgbrE1XYNfpRIu+XBxu+nSgRQtRNZf7mrsqWSm/eFFso2jYMeAKWCkvBIZyIiIiISsrCwcOHECUXFkqV1RUFHbLvXrsbNasWQgMDNR/VK9evVgeh0qmGjWAZ58V5ydNUreLuncv/62j8pOTo1ZZrXH2rAhHZcqIUFRcOnQQe1pnZ4vv1RmYVspl+/qlS2Jl9qKS7eiAcUu2DOVXr4qfx2efid93x47AW28BAQHqbV0plAMigJqrdNerJ3LLrVvi+waAFSvEz7llS/Gh04mOCldvX69cWXTWKIqYFuJqGMoLgaGciIhIuH79OrKzsxEUFGR0eVBQEBJsmMjao0cPPProo9i4cSOqVauGffv2WbztpEmTkJSUpP+4YEsaIgLwf/8H+PqKCqFcuTokBGjaFDh2zPb7GzFChH1ZeS2InM/brFnxV/TefVcscPfdd9q37KelqdtzyUp55cqifV9RAIMZL4UmW9cDA8WWYFKVKiKA5uQAM2eq0wdGjRJ7u48eLT739xdz8ksCb2+1rTsuTnzvS5aIz+WBqZJCp3PtFdgZyguBoZyIiMiYzqTHWFGUPJflZ9OmTbh27RrS0tJw8eJFREZGWrytl5cXAgICjD6IbBEUBIwbJ84/8YRoIb9+HTh6VOyHbsvufOvXA198Ic7LlnRTqanAtWvq5zKUt25t89Bt1qABkDuzBK+9VvhuAHuQYal8ebUabe8V2M3NJwdEQG/cWJyfOlWMxc8PGDRIXPbSS2JMDzxQ9DE4k4YNxWlcHLBpk5g+4O8PDBmi7biKgysv9sZQXggM5UREREKlSpXg7u6epyqemJiYp3pO5Exee0207Kamikry5Mlim6i0NFH5lvs+5+fWLWDsWPVz2ZptaN8+0ap9333qfOa//hKnjgjlgNhezs8P+PNPsWK3VsHctHVdkvOZf/216I9hKZQD4qBJbKxYV8DPD5gwQV1AsGZNcVDgxx+LPgZnIueVb9umdgOMHGm/hROdCUN5KcNQTkREJHh6eqJly5bYYtK3u2XLFrRr165YHzs2Nhbh4eH5VtWJLClXDvj8c7FK+e7dwNtvAxs3qitYr19f8H1MmCC2G/P2Fp+bhvJvvxVbul25Aty5A6xeLRYik9uxOSqUBwcDr74qzkdHi2pwMS35kC/TRd6kESPE6ZIl4qBIUeQXyitWFAdRfvkFSEnJuyp92bLiAE1JIkP5+vXieRgeLtr3SyJXXoGdobwQGMqJiKg0SUlJwaFDh3Do0CEAQHx8PA4dOqTf8mz8+PH49NNPsWzZMhw/fhyvvPIKzp8/j+eee65YxxUdHY24uLh8558T5adPHxGcZTh2dweGDhXnZYu5JStXii21dDp1nu6pU+r7w40bgUcfBdLTgWrVxGWrVok56+npYs6zaTgtTpMni7n0Pj4ikHfuXLj580VhqVLet6+oct68KQ6UFEV+obw0kqEcEG3r69aVzCo5wEp5qcNQTkREpcn+/fvRvHlzNM/d4Hn8+PFo3rw5pk6dCgAYPHgw5s+fjxkzZqBZs2bYtWsXNm7ciLCwMC2HTVQocs/n+HjjeeCGvv9ebQV+4w0R5MuUATIy1FXYZfv74MGihd3DAzhwQA2dkZHqe0pHKFNGrDJ++jRw//2iYm9NN4A9WaqUu7uLOd0AMH9+0d5jM5Qba9BA7eRYudL1tz7Lj2Eo13LthMJgKC8EhnIiIipNOnfuDEVR8nysWLFCf5uxY8fi7NmzyMzMxIEDB9CxY0ftBkxUBIGB6n7e5powtmwRQTs7W8zNfecdESrlllQnTojTAwfE6bBhon1c7hr40Ufi1FGt66ZCQ9V2cWtXi7cXS5VyQEwbCAgA/v0X2Ly58I/BUG7Mzw/YsEF0bjz8sNajKV5hYaJzJSXF8gE1Z8VQXggM5UREREQllwzMhi3sV6+K7bOiooDMTLH/9yefiBAAqNXfkyfFvOjjx8XnLVuK02HDxOndu8aPoYXu3cXpnj0iwDhCUhKQmCjOmwvlhtuSzZtX+MdhKM+ra1egVy+tR1H8vL2BqlXF+RkzxPOpqNMhHIWhvBAYyomIiLTHhd6ouMjALCvlhw+Ltl/ZHPLUU8BXXxnvgy3bgk+cAP75R7xPDA4WlWkA6NdP7I1u+hhaqF1brDZ+9y6wc6djHlO2rgcFiYq4Oc8/L05//RXIyirc4zCUl26yhT02VuxFP3p00RcPdASG8kJgKCciItIeF3qj4iKP8+zdK+amvvWWqPRGRIjq8tKl6jxdybBSLlvXZZUcEItrDRggzlerBoSEFOu3kC+dTq2Wb92qXp6aWnyPKUO5uSq5VKeOCOzZ2ea3l7MGQ3np9tprQMeOYp2HChXEgSdXeIlgKC8EhnIiIiKikisiQiyMdv068Pvv6oJon38uFkkzx1wob9HC+DZjx4rq+iOPFM+4bSFDuZxX/sILYsuw4mr3tbTImyGdDmjUSJyPiyvc4zCUl259+ojujy+/BLp1E5f98Ye2Y7IGQ3khyFDuaqv6EREREVHBvLyAZs3E+eeeE5Xbzp2BJk0sf41sXz93Tt0D3LBSDgDt24sFqObMsfeIbde1qwjBx44B774r2n0zM4FnnwWOHrX/4+W3yJshuYVXYbdrYygnqX17ccpQXoBdu3ahb9++CA0NhU6nw3fffWd0vaIoiImJQWhoKHx8fNC5c2ccc/SGimawUk5ERERUssk537Ji+8IL+d++cmWxcruiqAHUNJQDQLlyYrV2rVWsqI5v0iRxGhQk9lB/9FH7LwBnTaUcUCvlhXnLn5MD3LolzjOUkwzlu3c7f27TNJSnpqYiIiICCxYsMHv97NmzMXfuXCxYsAD79u1DcHAwunfvjjt37jh4pMYYyomIiIhKNsOF2KpVE6ut50en+//27jw+qvLs//hnkkwmiyEEAtkIENwAo+xaFgH1EQGXKlp3xNpWEbAgPqgVrZSquPyqtlWxtNZaxcKDBR6eKmJQjCyyCIQtbErYCWHNQsg65/fH7SQZspBAyJkZvu/X67xmcs6ZzHWdzOSea+773Me74GzVqnImaF/lGcIOZqjvunUm5i1bzFD7xlL1i4rT9ZSfTVGem1s5kjUmpuGPl8DSpYuZXPH48cqrIfgqW4vyIUOG8MILLzBs2LBq2yzL4s0332TixIkMGzaM1NRUPvjgAwoLC/n4449tiLaSinIRERH7afZ1OZeqFuWPPuo903ptPEPYwfRCey6X5qtuusnctm4NH31kespnzDA9+R9+CPPnN87zHDliCiOovJ57bTzD17dvb/gM7J6h65GR5hQEOb85nZXvY18fwu6z55RnZWWRnZ3NoEGDKta5XC4GDBjAMs+JOjUoLi4mLy/Pa2lsKspFRETsp9nX5Vy65BLTqxsbC7/8Zf0f41HT0HVf06ePKbyXLzeXbwPo1w/GjjX3x4wxw9nPlqeXPDkZwsPr3jcpqX4zsD/xBKSkQHZ25TqdTy6nqjqE3Zf5bFGe/eM7LC4uzmt9XFxcxbaaTJkyhejo6IolOTm50WNTUS4iIiIS2IKCzCXRMjNNT3J9VC3KT5153VcNHmyK26omTTLXV9+xA155pX6/p6io9p7trVvN7emGroP3DOy1DWG3LHNZup074fPPK9erKJdT+ctkbz5blHs4Thn3Y1lWtXVV/eY3vyE3N7di2bNnT6PHpKJcREREJPA1b27ODa+vU4ev+6uoKHjzTXP/5ZcrJ2mrzaFD5rrr111nerirKi2F118393v2rN/ze4aw13ZZtF27zPnjYM6D91BRLqfq3dt80fP993DwoN3R1M5ni/L4H8fQnNornpOTU633vCqXy0WzZs28lsamolxERERETtWpk7lsWv/+0Lat3dGcnTvugEGDzGXSPEV1bZYuNeeML1lS/Trnf/yjucRay5bw5JP1e+7T9ZSvXVt5X0W51KV588rXky8PYffZojwlJYX4+HjS0tIq1pWUlJCenk6fPn1sjExFuYiIiIhU53LB+vWQnu77k7ydjsNReRm4hQvr3nfDhsr7EydCYaG5v3u3GQoP8NprpjCvj9MV5RkZ3vc9M66rKJeaeEpHX55+xNaivKCggIyMDDJ+fGdlZWWRkZHB7t27cTgcjBs3jpdeeok5c+awceNGHnzwQSIiIrj33nvtDFtFuYiIiIgEvP79zefe7783BXZtNm6svL9/P7zxBuzdC7/4BZw4YSaPGzGi/s97uhnYqxblx46Z5wIV5VKzDh3M7b599sZRF1uL8u+++45u3brRrVs3AMaPH0+3bt347W9/C8CTTz7JuHHjGDVqFD179mTfvn188cUXREVF2Rm2inIREREfoEuiiZxb0dHgeXstWlT7fp6ifPhwc/v735vJ4xYuNJeSmzq18vNzfZxuBnZPUe65TJ3n5yNHzK2KcqnKc2WBOuYKt52tRfnAgQOxLKva8o9//AMwk7xNmjSJAwcOUFRURHp6OqmpqXaGDKgoFxER8QW6JJrIuXftteb2q69q3l5cXFk4v/CCmcytuBjKymDAAFOYN/Tje9UZ2Nes8d529Ghlr/2QIeZ23TozhH3JEvPz6a6FLucXFeUBSkW5iIiIiJwPPEX5l19Wnrtd1datpgCPjjbXIf+f/4FnnoEVK+Drr01hfiY8RfmIEeb+m2+a5/f0infoYIbXgynKMzIgK8tcB/2GG87sOSUweeYIV1EeYFSUi4iIiMj5oG9fCA015+PWdGk0z9D1yy83PdwpKfDii3DllWf3vGPGwFVXmd+ZmQmPP2563T1FedeuZgGz7pNPzP2hQyEy8uyeWwKLp6f80CHzBZIvUlF+BlSUi4iIiMj5IDy8cvbqmoawe4ryxj7DtEsXWL4cDh+unCTu97/3Lsq7dDH3f/gBpk839++4o3HjEP/XqpWp3yzLFOa+SEX5GVBRLiIiIiLni7rOKz9XRblHixam5z00FBYvhrlzzfquXU2xlZBgiq1du8wl6W688dzEIf4rONi8VgAOHrQ3ltqoKD8DKspFRERE5Hxx3XXm9quvqn/+PddFOZjZ2B96yNzPzze3nqHrnluAwYPB5os0iY/y9cneVJSfARXlIiIiInK+6NXLXKLsyBGYMKFywrf8fDO5Gpzbohzg6acrL4HWsiW0aWPue4awA9x++7mNQfyXivIApKJcRETEfrpOuUjTcDrN7OcAr78OEyeawjwz06xLSDCF8rnUrh088IC537WrmQDOc98T4803n9sYxH/5elEeYncA/khFuYiIiP1Gjx7N6NGjycvLIzo62u5wRALaz38OhYVmVvQpUyAvDy65xGw7173kHlOmmNtf/KJy3Q03QI8eMGgQNG/eNHGI/1FRHoBUlIuIiIjI+Wb0aCgpgfHj4e23K3urm6oob90a3nvPe13z5vDdd03z/OK/fL0o1/D1M6CiXERERETOR48/Dp99Bm3bVp5b3lRFuciZUlEegFSUi4iIiMj5asgQ2LTJ9Jj3769zucX3+XpRruHrZ0BFuYiIiIiczy64AP7wB7ujEKkfXy/K1VN+BlSUi4iIiIiI+AdPUZ6bCydP2htLTVSUnwEV5SIiIiIiIv4hOhpcLnP/4MGa98nLg48/hmXLmi4uDxXlZ0BFuYiIiIiIiH9wOE4/hH3LFrjvPrjrrqaLy0NF+RlQUS4iImK/t99+m86dO9OrVy+7QxERER93uqJ8zx5zm5zcNPFUpaL8DKgoFxERsd/o0aPJzMxk1apVdociIiI+7nRF+e7d5rZt26aJpyoV5WdARbmIiIiIiIj/8BTltZ1Trp5yP6OiXERERERExH9o+HqAiYw0tzk5UFZmbywiIiIiIiJSNw1fDzCpScf4H+d9PJz3GqtWWnaHIyIiIiIiInVQT3kgsSyCR/6Kn5V+zGs8SfHEyXZHJCIiIiIiInWoqygvKalcr6LcH0ybBv/+N26HOXQDv54Ef/yjvTGJiIiIiIhIraoW5dYpg5337TPrXC5o1arpY1NR3hAbN8K4cQDkPvMqz/FjL/m4cfDVV7aFJSIiIiIiIrWLizO3RUWQm+u9rerQdYejaeMCFeX1V1gId91l/oqDBxMz+XE+ufRZpnOv2T5njr3xiYiIiIiISI3Cw6F1a3N/61bvbZ5J3uwYug4qyusvNBR+9jNISoIPPoCgIG4Y7OB/+anZ/u239sYnIiIiIiIiterZ09yuWuW93tNTbsfM66CivP5CQmDSJNiypeIrlhtugOX8BABr3TrTmy4iIiIiIiI+58orze3Kld7r7Zx5HVSUN9wFF1TcHTAADjqT2U8CjrIyWLPGxsBERERERESkNrUV5Rq+7sciIuDq/o6K3nKWL7c3IBERkfPI22+/TefOnenVq5fdoYiIiB/wNBdbt8Lx45XrNXzdzz3xROUQ9v3/1nnlIiIiTWX06NFkZmay6tSTA0VERGoQGwsdOpj7331XuV495X5uyBBof5cpyh0rvmVnlnWaR4g0oiNH4Isvql9sUZqOZcH778OvfgWHDtkdjW+zLHjjDXjsMXMlCxEREZEmduoQ9oKCyl5zFeV+7Ffv9qCMYBKsA4y5dS/5+XZHJOeFkyfhmmvMjIOvvWZ3NOenXbtg0CB46CH4299g1Kj6P3b9enMlh/LycxffubB7t7kSRdeu0L49dOtWOebrdP78Zxg/Ht56y9zW1+rV8MorMGECPP44bN58JpGLiIiIVCvKPR9joqOhWTN7Ygqx52kDi7N5JMWpXQjZuIbw9csZOjSZ+fO95oQTaXxPPAEbNpj7zz5risOuXW0Nye+43fDDD7B3L+zfD506Qffu9XvsokXw059Cfj6EhUFpKXzyCcybB7fcUvdjV6yAa681V2xYtgzefRccjrPP51wrK4O77/a+BOSuXfDgg5CWBkF1fM+7YIEpqD2mTjWzZd51V93PuWAB3Hij95cX06ebOTw8489ERERE6slTlK9YYQbx2T10Hfykp/ydd94hJSWFsLAwevToweLFi+0OqRpXfzOEfaDrW5YsgaFD4dC2Y+ZDe2oqrF1rc4RNrLTULL7OsiAvD7KyzNiV0ykoMPvWltuhQ+bCh/Pnw8yZ5iu4un6v2w2bNpnZJkpK6h/37NmmqAHTU1laCvffX78hwSUlDXuuxpSXB9nZJu/Taejw5vLy+j/Gsszf6Ior4JJLTIF8//3Qowf07g0ff1z3MfryS1Mo5ueb/devN1+SAIweTZ3DZbZuNY/1XEJx2jRzucUzlZ8PmZmmYD7XpkwxBXmzZjB3Lnz2mZnx8quvTC94TYqK4F//MsW32w0//zn85jdm269+ZS4zWZuNG+HOO83ftn9/c4yvuMK8z4YMMadvnM6RI7BkCaSnwzffwM6dDc1aREREAki3bhAcbD6S7ttn/yRvAA7L8u2TUWfOnMnw4cN555136Nu3L3/5y1/429/+RmZmJm3rceTy8vKIjo4mNzeXZudyPMKHH8IDD1DQuRcd9i4mMm8/nzGUTpgPnCWhkaSPnAEXXsil30wjZt8mQq+7GtcdN0NCAuTkmJMZXC4IDzevlJIS80E7IsJ8CHY44OBB84E0OBiaNzc9U1u3mg+2DgekpJghpS1amDEYBQWmN3XzZvMcR4+aAi4hARITTS/X8uWmtzA5GS66yDzWUzQlJZneKKfT/I5t20xcISHei9NpbktKzAfpTZsgKAh3ryvJSfkJMUG5uHZvNz2S+fkmrhYtTKytWpmcDhwwsUVEmGMQHm7ul5XB4cNw7JiJsVs306MZGWmOV04O7NhhcsnJMfsWFZmYIiJMz964cWZ/j127TGEwezYUF5t1Tif07Ws+/J84YeIpLoaoKJPbmjWwbp0pEIKDzTs3MdFctz442MwWUdsH/k6dYNgwuPVWU5h+953pIf3mG5MXmN/Rvj1cfLEpFD23KSkmnpwc+P57M5T3k08gL4+DD0xg208n0PfRywnKOWgKmGeeMYWLp+d1yxbTEztzpjk2ZWUm1x494Oqr4dJLoWVL83pyOEzBunOnyXfbNoiJMa+DqChzPE6eNMe3qMj8XF5ufmdoqBke0qxZ5evr+HHIyDDH7YcfKosopxPatDHHMDm58jYpyez/ySem0E1IMH/v1FS48EJzfMrKIDfX/BfduNEse/dWns89aJAp/Lp3N8935IjJu+r9TZtMoQbmNeR5Ha5YUfmFS3w8jBwJ119vXq/5+ZVfKkyeDEVFnBh4I+UzP6FZ6zBTZKemmi9tbrsN99jHyU/tTVRMiOlAPnyY4jmfETTpOZz7d1PQuRf5Q+8m4f/9WMw/8gjWkKEcie7A0f9dTPA3izhZFsIPbQbyfZuBJPTtwFV9Q0hJgcJDJyj5bh3N57xP0Ix/mdfHBReY1++AAeY13LOn+f9QWGi2Fxaa/Jctg6+/Nv9L2rUzuaekmCU52bxPqr4HPf+LVqwwp0uUl7NnykdEPnwfLVpgvhwaNYry0DB2Tv4n8TElROZn4953gLJd+whZ+DlBeccBKOrVj+CvFuIMCzZfhCxebI7/iBHw85/jLiyiaNdBtqw9Scbqcm5Y9XuSSnexo01/1v+/LxhyqwvX0QPwk5+Yr7V79DCnDAwYYF4rDod5n6SlmWXFCvNeP9W118Ivf2nuZ2aa1/uxY2Zp1swcE8+xadfO/M0XLzbv14ceathpCrVosrbpPKHjKSIiDdGtm/nI+e9/m4+pkyfDI4+Yj8yNpSFtk88X5VdddRXdu3dnqqdXEOjUqRO33norU6ZMOe3jm6yh3r7dFFCA2xnKyfJQIt0F7CWJ77mIgaTjxkEQPn24A9aJZvFk9HqYgvIwXEcO0Cfzr4SWV/aqloeEElxWv95jy+nEUUtPueVw4I5PxN2yNe6ISEKyvif4UHadv88dEQmWRdDJwvonBHzLTxhAOqWEMpRP+ZSbKrYda9GB8tBwnKWFRB/JatDvPec8hb/NykNCybj6Mb69ZiIJnWO48EJoUZJN1L+mEfXxu4TkHKjz8Z8G38yw8lmUBbm44gq4/HJot/ULfr/yhop9ThBBPlFYQcG0dmcTjPmyaxsX05elHKYVLzh/x8TSSaePlyAOEoeFgyT2e20rDXbhLC9u+EGoBysoCEeVkQ3/4m7u5WPAQZs20CzK4g+bhzKYz2v9Hbtoyz94kNcZT0FQNM2bQ1z5ft4ruIve5UvqfP7tXMRPWM5RWtKiBdxzD1wenMmIv/QhrDi3XjmcjGuPIzyMYEc5ITu/x3E2r7877oBZs8788T9SEdm4dDxFRKQhHnnEDFa8/XbTHzNvHrzwAkyc2HjPETBFeUlJCREREcyaNYvbbrutYv3YsWPJyMggPT292mOKi4spLq78cJqXl0dycvK5b6gtC8aMMb2RP/YGlnTuwoz7P2XlztbcsXAkA3f8nTKC+TrqZha5B9LrxCKuJ41wTnKElhwjBielRFBIMOWUEEoZIURQSDS5OLA4RCtyaE0w5USTi5NSvuciNtMJCwcd2EFbdtOc40STSwmhbCSVTVzGPpI4SgvKCCGR/SSxj4PEsYKr2EwnEtnPxWznAgpwE0Qw5SSzhw7sIIwiNtOJLXSkgAsIoYwQynBSWnE/hDIsHGyhIxl0xUUxV7OY3s7v2F/aiu1czC7akUczThBJS47Qnp3EcphDtCKbeIpxEc5JwjlJBIWEcxI3QRyiFblEcxHf0421FTGFUcRRWrCDDmSRwkHiOEQrThKOk1IuYRu/ZTIXsqPan2wRA3mKV9hIKieJ4EK+5wYW0IPVHCOGAyRQRBiRnCCCQjLpzFL6sp9E4smmAzuIJ5tWHCKck6yjC9/RkzyivZ4nlkNcTxp38AmD+IIcWvMdPfmOnnzNQNbQnXKCSeAAl7CNi9nOxWyvuN+eneTRjEO0Yi9tWEN3VtOD+QwhskUY0dGmc3YQC3iYadzIp4RR+R4oJ4j/cBPvMpINXM4JImnBUfqxhD4sI4l9xHKY5hw3L2UcZBPPWrqRSWeakUcS+4jkBCcJ//Gom6WEUEpxUk4woZRwAQU05zgJHCCJfRQRRgbdWOfoyvagS9npSKHIEU6c+wDJ1m6S3HtIZjdt2U0ye0hmD3tpw7+5nTSupy276c4aOrKl4rVdQii5RHOIVmwklcygVPYEp3DUGUd0UD4/O/lP7i7/iFgOc9TRkqOOWI46WnKYlhwsj+UILTlMLJ9yIztJqfHt7KSEYczmUabSlt3k0cxr2UgqrzEBR2hotVHuN/A5w/mQG1hALN7Dq9fSlQXOm5nefDR54XEcOwb5+RY/5X8Zymf0Ywkd2MH6sKvY2vZ6oi8op1P2V7TPXo7T7f1Eh2nJAm7gLzzCUvqSykb68w0DSKc/39CaypngywniBJEUcAFr6E46A9hBB9qymxSyaM9OUsgikf0/vu9qPg1gKX24if/giImpGOABkMB+/uMcxgXuPPaWx3OABLIxtxuCu7G2+TW4woM4eLD6mR99WcKTvEoflnGYWA4SR3n4BbSOCyIqpSWLB/6Wbw92YO5cc9q/x8VsYwQfMIB0rmQloZRW5LqCq1jADXxDf9bQ3es92ZZd/JK/MYzZHCOGTDqTFXQRuaGxnAxtTmzwMdo7dpJcvovEkp0klu4k39GMla6r+TakP+2G9+epPyXVeHwaQkVk49LxFBGRhvjnP81AvVPXDR/eeM8RMEX5/v37SUpKYunSpfTp06di/UsvvcQHH3zA1q1bqz1m0qRJ/O53v6u2vskaassyQ6n37IGrrjLDPz3rly0zwyGTzAe6vDzYsa2MggKwgkOwrMoORM/9isVtUV5mUVIWVHFKsGd0e2ioGQ3sdpuRxVUXd7mFK8yB02n2LSkxI449S0iICdHpNCNc8/MrT031jH52OLznoCorM48tKzOjY4ODK5eqPycmmtM+u3UzI03nzzcj4D2jncvKKu/XdltWZvLydK6WllaOnPYsLpcZqe8ZZZ2UZB6flWVGNV8QWsKw438n9cQKnK4ggsOc7OsylKN9b8bCwdatZgRrdrYZbZ2bWz2Ghp4e73B4HxfPsa9JSIjJzTOPlcNROXI4PNzMIeaZPysmxozUveYaMzo5NtasP3TInIWwYwcc+iGPqMwVlLqDKQ4KJzusPUddCZSVmfyOHDGvvfJy7+N96tIUpyhX5XCYEfQtWpglMtLEeuCAibe0tHE62KOjzRkZrVtXjtjPyjLHrrCOwQpBQdCxI/TqVbl07GheN0uWmNH5rVubUe8JCRDfqpyWx38g/1ARxw6XU96iFQm92hAdXfl+Ki8374lVq0y+nTqZsxbCwk55crcbDh2iZMde8nLdhKdehCs+hu3bzXQVmzaZfzl79pj3cEmxRVThQfJLXOSWRlBsheIMdXidbVJaal7rx4+bX1/1/RsS5CYiqIjIoJNEhRZzWa8Irh4cSe/+Tjp0MLHm5pozB44fN+/xxEQTamGhGUEeGWlGgrtc3mlkZ5vHev6veJbgYPMYz3LqvHfl5ebqf/Pmmdidzsol1FHKiaPF5By0OJrvxBVtvqwqKTFnK1Rdznaqi0cfhXfeObvfASoiG5uOp4iINERpqekpnznTfI4LCjKfazp2bLznCLiifNmyZfTu3bti/YsvvsiHH37IlhomCLKtp1wCntvtXaiXlVUvvj1LTRNpFxebgik42HyREhpqCqSqBVp5uSkyfGUibk/OnqXal0W1LG533ds9xygoyCwhIaZYDg6uOx7P8ffMI1ha6v2z220KWk8h6DntPTjYPEdUlPliw1eOrzQtyzKF+qnvY8+XlVW/7Kv6uql626qVmQ7hbKmIbFw6niIicqYOHjSdme3bN+7vbUjb5NOXRIuNjSU4OJjsbO9zcnNycoiLi6vxMS6XC1fVrhmRRuIpIJ3OM3u8y+Xda3gqT0HvS84258bmOUZ6i8uZcDj02hERERFvtZSVTcqnL4kWGhpKjx49SEtL81qflpbmNZxdRERERERExB/5dE85wPjx4xk+fDg9e/akd+/eTJs2jd27dzNy5Ei7QxMRERERERE5Kz5flN91110cOXKEyZMnc+DAAVJTU/nss89o166d3aGJiIiIiIiInBWfL8oBRo0axahRo+wOQ0RERERERKRR+fQ55SIiIiIiIiKBTEW5iIiI+KW3336bzp0706tXL7tDEREROWMqykVERMQvjR49mszMTFatWmV3KCIiImdMRbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITULsDuBcsywLgLy8PJsjERERMTxtkqeNkrOjtl5ERHxNQ9r6gC/K8/PzAUhOTrY5EhEREW/5+flER0fbHYbfU1svIiK+qj5tvcMK8K/p3W43+/fvJyoqCofDcVa/Ky8vj+TkZPbs2UOzZs0aKUL7BFI+gZQLKB9fFki5QGDl40+5WJZFfn4+iYmJBAXpTLKz1ZhtPfjXa+l0AikXCKx8AikXCKx8AikXUD52aUhbH/A95UFBQbRp06ZRf2ezZs18+gXQUIGUTyDlAsrHlwVSLhBY+fhLLuohbzznoq0H/3kt1Ucg5QKBlU8g5QKBlU8g5QLKxw71bev19byIiIiIiIiITVSUi4iIiIiIiNhERXkDuFwunn/+eVwul92hNIpAyieQcgHl48sCKRcIrHwCKRexVyC9lgIpFwisfAIpFwisfAIpF1A+/iDgJ3oTERERERER8VXqKRcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKG+Ad955h5SUFMLCwujRoweLFy+2O6TTmjJlCr169SIqKorWrVtz6623snXrVq99LMti0qRJJCYmEh4ezsCBA9m0aZNNEdfflClTcDgcjBs3rmKdv+Wyb98+7r//flq2bElERARdu3Zl9erVFdv9KZ+ysjKeffZZUlJSCA8Pp0OHDkyePBm3212xj6/m880333DzzTeTmJiIw+Fg7ty5XtvrE3dxcTGPPfYYsbGxREZGcsstt7B3794mzKJSXfmUlpby1FNPcfnllxMZGUliYiIPPPAA+/fv9/od/pLPqR555BEcDgdvvvmm13pfykd8m9p636K23rf4c1sPgdXeq60PrLZeRXk9zZw5k3HjxjFx4kTWrl3L1VdfzZAhQ9i9e7fdodUpPT2d0aNHs3z5ctLS0igrK2PQoEGcOHGiYp9XX32V119/nbfeeotVq1YRHx/P9ddfT35+vo2R123VqlVMmzaNK664wmu9P+Vy7Ngx+vbti9PpZP78+WRmZvKHP/yB5s2bV+zjT/m88sorvPvuu7z11lts3ryZV199lddee40///nPFfv4aj4nTpygS5cuvPXWWzVur0/c48aNY86cOcyYMYMlS5ZQUFDATTfdRHl5eVOlUaGufAoLC1mzZg3PPfcca9asYfbs2Wzbto1bbrnFaz9/yaequXPnsmLFChITE6tt86V8xHeprfctaut9Lx9/bushsNp7tfUB1tZbUi9XXnmlNXLkSK91HTt2tJ5++mmbIjozOTk5FmClp6dblmVZbrfbio+Pt15++eWKfYqKiqzo6Gjr3XfftSvMOuXn51sXX3yxlZaWZg0YMMAaO3asZVn+l8tTTz1l9evXr9bt/pbPjTfeaD300ENe64YNG2bdf//9lmX5Tz6ANWfOnIqf6xP38ePHLafTac2YMaNin3379llBQUHW559/3mSx1+TUfGqycuVKC7B27dplWZZ/5rN3714rKSnJ2rhxo9WuXTvrjTfeqNjmy/mIb1Fb7zvU1vtmPoHS1ltWYLX3aut9O5/6UE95PZSUlLB69WoGDRrktX7QoEEsW7bMpqjOTG5uLgAtWrQAICsri+zsbK/cXC4XAwYM8NncRo8ezY033sh//dd/ea33t1zmzZtHz549+dnPfkbr1q3p1q0bf/3rXyu2+1s+/fr148svv2Tbtm0ArFu3jiVLljB06FDA//LxqE/cq1evprS01GufxMREUlNTfTo3j9zcXBwOR0XPjb/l43a7GT58OBMmTOCyyy6rtt3f8hF7qK33LWrrfTOfQG3rIfDbe7X1vi3E7gD8weHDhykvLycuLs5rfVxcHNnZ2TZF1XCWZTF+/Hj69etHamoqQEX8NeW2a9euJo/xdGbMmMGaNWtYtWpVtW3+lsuOHTuYOnUq48eP55lnnmHlypX8+te/xuVy8cADD/hdPk899RS5ubl07NiR4OBgysvLefHFF7nnnnsA//v7eNQn7uzsbEJDQ4mJiam2j6//jygqKuLpp5/m3nvvpVmzZoD/5fPKK68QEhLCr3/96xq3+1s+Yg+19b5Dbb3v5hOobT0Ednuvtt738jmVivIGcDgcXj9bllVtnS8bM2YM69evZ8mSJdW2+UNue/bsYezYsXzxxReEhYXVup8/5ALmG7+ePXvy0ksvAdCtWzc2bdrE1KlTeeCBByr285d8Zs6cyUcffcTHH3/MZZddRkZGBuPGjSMxMZERI0ZU7Ocv+ZzqTOL29dxKS0u5++67cbvdvPPOO6fd3xfzWb16NX/84x9Zs2ZNg2PzxXzEfv76P8pDbb1vUVtv+Go+NQm09l5tve/lUxMNX6+H2NhYgoODq33LkpOTU+3bNF/12GOPMW/ePBYtWkSbNm0q1sfHxwP4RW6rV68mJyeHHj16EBISQkhICOnp6fzpT38iJCSkIl5/yAUgISGBzp07e63r1KlTxYRC/vS3AZgwYQJPP/00d999N5dffjnDhw/n8ccfZ8qUKYD/5eNRn7jj4+MpKSnh2LFjte7ja0pLS7nzzjvJysoiLS2t4ptz8K98Fi9eTE5ODm3btq34v7Br1y6eeOIJ2rdvD/hXPmIftfW+QW294av5BGpbD4HZ3qut9818aqKivB5CQ0Pp0aMHaWlpXuvT0tLo06ePTVHVj2VZjBkzhtmzZ/PVV1+RkpLitT0lJYX4+Hiv3EpKSkhPT/e53K677jo2bNhARkZGxdKzZ0/uu+8+MjIy6NChg9/kAtC3b99ql6zZtm0b7dq1A/zrbwNmps+gIO9/KcHBwRWXSfG3fDzqE3ePHj1wOp1e+xw4cICNGzf6ZG6eRnr79u0sXLiQli1bem33p3yGDx/O+vXrvf4vJCYmMmHCBBYsWAD4Vz5iH7X1vkFtvW/nE6htPQRee6+23nfzqVFTzirnz2bMmGE5nU7rvffeszIzM61x48ZZkZGR1s6dO+0OrU6PPvqoFR0dbX399dfWgQMHKpbCwsKKfV5++WUrOjramj17trVhwwbrnnvusRISEqy8vDwbI6+fqjOyWpZ/5bJy5UorJCTEevHFF63t27db06dPtyIiIqyPPvqoYh9/ymfEiBFWUlKS9Z///MfKysqyZs+ebcXGxlpPPvlkxT6+mk9+fr61du1aa+3atRZgvf7669batWsrZiitT9wjR4602rRpYy1cuNBas2aNde2111pdunSxysrKfCqf0tJS65ZbbrHatGljZWRkeP1fKC4u9rt8anLqjKyW5Vv5iO9SW++b1Nb7Dn9u6y0rsNp7tfWB1darKG+At99+22rXrp0VGhpqde/eveJSI74MqHF5//33K/Zxu93W888/b8XHx1sul8vq37+/tWHDBvuCboBTG2p/y+X//u//rNTUVMvlclkdO3a0pk2b5rXdn/LJy8uzxo4da7Vt29YKCwuzOnToYE2cONHrn7+v5rNo0aIa3ycjRoywLKt+cZ88edIaM2aM1aJFCys8PNy66aabrN27d9uQTd35ZGVl1fp/YdGiRX6XT01qaqh9KR/xbWrrfY/aet/hz229ZQVWe6+2PrDaeodlWVbj9LmLiIiIiIiISEPonHIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIROeccDgdz5861OwwRERE5R9TWi5w5FeUiAe7BBx/E4XBUWwYPHmx3aCIiItII1NaL+LcQuwMQkXNv8ODBvP/++17rXC6XTdGIiIhIY1NbL+K/1FMuch5wuVzEx8d7LTExMYAZbjZ16lSGDBlCeHg4KSkpzJo1y+vxGzZs4NprryU8PJyWLVvy8MMPU1BQ4LXP3//+dy677DJcLhcJCQmMGTPGa/vhw4e57bbbiIiI4OKLL2bevHnnNmkREZHziNp6Ef+lolxEeO6557j99ttZt24d999/P/fccw+bN28GoLCwkMGDBxMTE8OqVauYNWsWCxcu9GqIp06dyujRo3n44YfZsGED8+bN46KLLvJ6jt/97nfceeedrF+/nqFDh3Lfffdx9OjRJs1TRETkfKW2XsSHWSIS0EaMGGEFBwdbkZGRXsvkyZMty7IswBo5cqTXY6666irr0UcftSzLsqZNm2bFxMRYBQUFFds//fRTKygoyMrOzrYsy7ISExOtiRMn1hoDYD377LMVPxcUFFgOh8OaP39+o+UpIiJyvlJbL+LfdE65yHngmmuuYerUqV7rWrRoUXG/d+/eXtt69+5NRkYGAJs3b6ZLly5ERkZWbO/bty9ut5utW7ficDjYv38/1113XZ0xXHHFFRX3IyMjiYqKIicn50xTEhERkSrU1ov4LxXlIueByMjIakPMTsfhcABgWVbF/Zr2CQ8Pr9fvczqd1R7rdrsbFJOIiIjUTG29iP/SOeUiwvLly6v93LFjRwA6d+5MRkYGJ06cqNi+dOlSgoKCuOSSS4iKiqJ9+/Z8+eWXTRqziIiI1J/aehHfpZ5ykfNAcXEx2dnZXutCQkKIjY0FYNasWfTs2ZN+/foxffp0Vq5cyXvvvQfAfffdx/PPP8+IESOYNGkShw4d4rHHHmP48OHExcUBMGnSJEaOHEnr1q0ZMmQI+fn5LF26lMcee6xpExURETlPqa0X8V8qykXOA59//jkJCQle6y699FK2bNkCmNlSZ8yYwahRo4iPj2f69Ol07twZgIiICBYsWMDYsWPp1asXERER3H777bz++usVv2vEiBEUFRXxxhtv8N///d/ExsZyxx13NF2CIiIi5zm19SL+y2FZlmV3ECJiH4fDwZw5c7j11lvtDkVERETOAbX1Ir5N55SLiIiIiIiI2ERFuYiIiIiIiIhNNHxdRERERERExCbqKRcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZv8f8fZWnNUv4z2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2260,20 +2260,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "726b75ee653e40049d95a790a0ffb6ec", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(Label(value='0.002 MB of 0.002 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -2282,7 +2268,7 @@ " .wandb-row { display: flex; flex-direction: row; flex-wrap: wrap; justify-content: flex-start; width: 100% }\n", " .wandb-col { display: flex; flex-direction: column; flex-basis: 100%; flex: 1; padding: 10px; }\n", " \n", - "

Run history:


testing_loss▁▃█
train_loss█▁▂▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁
validation_loss█▂▂▂▂▂▂▂▂▂▂▂▁▁▂▂▁▁▁▁▂▂▂▂▂▂▃▂▂▂▂▂▂▁▃▁▂▃▁▁

Run summary:


testing_loss1.52785
train_loss0.59875
validation_loss0.95168

" + "

Run history:


testing_loss█▁▂
train_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▁▁▁
validation_loss█▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▁▁▁▂▂▂▂▂▂▃▂▄▂▂▂▂▂▃▁▁▃▁▁▁

Run summary:


testing_loss0.66012
train_loss0.31711
validation_loss2.70098

" ], "text/plain": [ "" @@ -2294,7 +2280,7 @@ { "data": { "text/html": [ - " View run cool-aardvark-22 at: https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + " View run worldly-dawn-2 at: https://wandb.ai/ai4s2s-demo/test-LSTM/runs/b4ivyb49
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" @@ -2306,7 +2292,7 @@ { "data": { "text/html": [ - "Find logs at: ./wandb/run-20230630_150821-8t0sok9n/logs" + "Find logs at: ./wandb/run-20230705_090451-b4ivyb49/logs" ], "text/plain": [ "" @@ -2355,12 +2341,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.342\n" + "The MSE loss is 0.293\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP4UlEQVR4nO3dfVyT5f4H8M+YyuMYom4DRSSfCTWfQ0rpRECaSnU0S1PSX3oMTDIT7ZepaaGeLKtTWMdzQDMrf8cw8hSGKOQT+EAcNYyU8OEoA/NhUxTE7f79MZlOBg4d3Bv35/167WX3dV+79t0S9+V6lAmCIICIiIhIIlzEDoCIiIioKTH5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCktxA7AERmNRpw5cwYKhQIymUzscIiIiMgGgiDg0qVL8Pf3h4tL3f07TH6sOHPmDAICAsQOg4iIiO7CqVOn0KFDhzrvM/mxQqFQADB9eN7e3iJHQ0RERLbQ6/UICAgwf4/XhcmPFTVDXd7e3kx+iIiInMydpqxwwjMRERFJCpMfIiIikhQmP0RERCQpnPNDROQEDAYDqqurxQ6DSFQtW7aEXC6/53aY/BAROTBBEKDVanHx4kWxQyFyCD4+PtBoNPe0Dx+THyIiB1aT+KhUKnh4eHDjVZIsQRBw5coVlJeXAwD8/Pzuui0mP0REDspgMJgTnzZt2ogdDpHo3N3dAQDl5eVQqVR3PQTGCc9ERA6qZo6Ph4eHyJEQOY6an4d7mQPH5IeIyMFxqIvoJnv8PHDYq6kYDcCJ3cDlMsBLDQQOAVzufcY6ERERNYyoPT9JSUkYOHAgFAoFVCoVYmJiUFRUZFEnPDwcMpnM4vGXv/yl3nYFQcCbb74JPz8/uLu7IyIiAkePHm3Mt1K/wnRgZQiw5glg4xTTnytDTOVERETUpERNfnJychAXF4fc3FxkZmaiuroakZGRqKiosKj34osvorS01PxYvnx5ve0uX74cH374IVatWoW8vDx4enoiKioKlZWVjfl2rCtMBzZMBPRnLMv1paZyJkBERHctNjYWMTEx5uvw8HAkJCTcU5v2aIMcm6jDXhkZGRbXqampUKlUOHDgAIYOHWou9/DwgEajsalNQRCwcuVKvPHGGxg9ejQAYO3atVCr1di0aRPGjRtnvzdwJ0YDkJEIQLAWKQAZkDEX6DGCQ2BE1GgMRgF7S86j/FIlVAo3DAryhdylcecRxcbGYs2aNQBMG9N17NgREydOxOuvv44WLRrvq+ebb75By5YtbaqbnZ2NRx55BBcuXICPj89dtUHOyaHm/Oh0OgCAr6+vRfkXX3yBdevWQaPRYOTIkZg/f36dqx9KSkqg1WoRERFhLlMqlRg8eDD27NljNfmpqqpCVVWV+Vqv19vj7Zjm+Nze42NBAPSnTfWCHrbPaxIR3SLjcCkWfVeIUt3Nnm8/pRsWjAxGdMjd75Nii+joaKSkpKCqqgrff/894uLi0LJlS8ybN8+i3rVr19CqVSu7vObt3x9itUGOzWFWexmNRiQkJCAsLAwhISHm8ueeew7r1q3D9u3bMW/ePHz++eeYMGFCne1otVoAgFqttihXq9Xme7dLSkqCUqk0PwICAuzwjmCa3GzPekREDZBxuBTT1+VbJD4AoNVVYvq6fGQcLm3U13d1dYVGo0FgYCCmT5+OiIgIpKenm4eq3n77bfj7+6N79+4AgFOnTmHs2LHw8fGBr68vRo8ejePHj5vbMxgMmDVrFnx8fNCmTRvMmTMHgmDZs377kFVVVRUSExMREBAAV1dXdOnSBf/4xz9w/PhxPPLIIwCA1q1bQyaTITY21mobFy5cwMSJE9G6dWt4eHjg8ccft5hHmpqaCh8fH2zZsgU9e/aEl5cXoqOjUVp68/PNzs7GoEGD4OnpCR8fH4SFheHEiRN2+qSpoRwm+YmLi8Phw4fx1VdfWZRPnToVUVFR6NWrF8aPH4+1a9ciLS0NxcXFdnvtefPmQafTmR+nTp2yT8Ne6jvXaUg9IiIbGYwCFn1XWOegOwAs+q4QBqO1Go3D3d0d165dAwBkZWWhqKgImZmZ2Lx5M6qrqxEVFQWFQoEdO3Zg165d5iSi5jkrVqxAamoq/vnPf2Lnzp04f/480tLS6n3NiRMn4ssvv8SHH36II0eO4NNPP4WXlxcCAgKwceNGAEBRURFKS0vxwQcfWG0jNjYW+/fvR3p6Ovbs2QNBEDB8+HCLfWauXLmCd999F59//jl++uknnDx5ErNnzwYAXL9+HTExMRg2bBgOHjyIPXv2YOrUqdzCQEQOMewVHx+PzZs346effkKHDh3qrTt48GAAwLFjx9C5c+da92vmBpWVlVlsfV1WVoYHHnjAapuurq5wdXW9y+jrETgE8PY3TW62+k+QzHQ/cIj9X5uIJG1vyflaPT63EgCU6iqxt+Q8Qjs37u7RgiAgKysLW7ZswYwZM3D27Fl4enpi9erV5uGudevWwWg0YvXq1eakICUlBT4+PsjOzkZkZCRWrlyJefPm4amnngIArFq1Clu2bKnzdX/77Tds2LABmZmZ5qkQ9913n/l+zfCWSqWymPNzq6NHjyI9PR27du3CkCGmf6u/+OILBAQEYNOmTRgzZgwA04Z7q1atMn8vxcfH46233gJgmkqh0+nwxBNPmO/37Nmz4R8k2Y2oPT+CICA+Ph5paWnYtm0bgoKC7vicgoICAHWf6REUFASNRoOsrCxzmV6vR15eHkJDQ+0St81c5ED0shsXt2f4N66jl3KyMxHZXfkl21a32lrvbmzevBleXl5wc3PD448/jmeeeQYLFy4EAPTq1ctins9//vMfHDt2DAqFAl5eXvDy8oKvry8qKytRXFwMnU6H0tJS8y/AANCiRQsMGDCgztcvKCiAXC7HsGHD7vo9HDlyBC1atLB43TZt2qB79+44cuSIuczDw8PiF3I/Pz/zGVS+vr6IjY1FVFQURo4ciQ8++MBiSIyanqjJT1xcHNatW4f169dDoVBAq9VCq9Xi6tWrAIDi4mIsXrwYBw4cwPHjx5Geno6JEydi6NCh6N27t7mdHj16mLs+ZTIZEhISsGTJEqSnp+PQoUOYOHEi/P39LZZDNpngUcDYtYD3bcmat7+pPHhU08dERM2eSuFm13p345FHHkFBQQGOHj2Kq1evYs2aNfD09AQA8581Ll++jP79+6OgoMDi8dtvv+G55567q9evOQeqKdy+Okwmk1nMR0pJScGePXswZMgQfP311+jWrRtyc3ObLD6yJOqwV3JyMgDT5LJbpaSkIDY2Fq1atcLWrVuxcuVKVFRUICAgAE8//TTeeOMNi/pFRUXmlWIAMGfOHFRUVGDq1Km4ePEiHnroIWRkZMDNrfF+yOsVPMq0nJ07PBNRExkU5As/pRu0usq6Bt2hUZqWvTcWT09PdOnSxaa6/fr1w9dffw2VSgVvb2+rdfz8/JCXl2feCuX69es4cOAA+vXrZ7V+r169YDQakZOTY7ECuEZNz5PBYKgzrp49e+L69evIy8szD3udO3cORUVFCA4Otum91ejbty/69u2LefPmITQ0FOvXr8eDDz7YoDbIPkRNfm6fpX+7gIAA5OTkNLgdmUyGt956yzze6hBc5FzOTkRNRu4iw4KRwZi+Lh8yWM46rBmEXzAyuNH3+7HV+PHj8de//hWjR4/GW2+9hQ4dOuDEiRP45ptvMGfOHHTo0AEzZ87E0qVL0bVrV/To0QPvvfceLl68WGebnTp1wqRJkzB58mR8+OGH6NOnD06cOIHy8nKMHTsWgYGBkMlk2Lx5M4YPHw53d3d4eXlZtNG1a1eMHj0aL774Ij799FMoFArMnTsX7du3N+8ldyclJSX47LPPMGrUKPj7+6OoqAhHjx7FxIkT7+Ujo3vgMKu9iIjIvqJD/JA8oR80Ssteb43SDckT+jX6Pj8N4eHhgZ9++gkdO3bEU089hZ49e2LKlCmorKw09wS9+uqreP755zFp0iSEhoZCoVDgySefrLfd5ORk/PnPf8ZLL72EHj164MUXXzSfItC+fXssWrQIc+fOhVqtRnx8vNU2UlJS0L9/fzzxxBMIDQ2FIAj4/vvvbd4I0cPDA7/++iuefvppdOvWDVOnTkVcXBymTZvWgE+I7Ekm3Kn7RYL0ej2USiV0Ol2d3a9ERI2tsrISJSUlCAoKuqdhezF2eCZqLPX9XNj6/e0QS92JiKjxyF1kjb6cnciZcNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERHTDwoUL8cADD4gdBsLDw5GQkCB2GM0Wkx8iIrI7rVaLmTNnokuXLnBzc4NarUZYWBiSk5Nx5coVscO7a9nZ2ZDJZPWeKSZme2Qb7vBMRNTcGQ3Aid3A5TLASw0EDjEdttxIfv/9d4SFhcHHxwfvvPMOevXqBVdXVxw6dAifffYZ2rdvj1GjRll9bnV1tc1nZjmya9eumU+NJ8fDnh8iouasMB1YGQKseQLYOMX058oQU3kjeemll9CiRQvs378fY8eORc+ePXHfffdh9OjR+Pe//42RI0ea68pkMiQnJ2PUqFHw9PTE22+/DcB0IGnnzp3RqlUrdO/eHZ9//rn5OcePH4dMJkNBQYG57OLFi5DJZMjOzgZws0clKysLAwYMgIeHB4YMGYKioiKLWJcuXQq1Wg2FQmE+SLUux48fxyOPPAIAaN26NWQyGWJjYwGYhqni4+ORkJCAtm3bIioq6o5x1tceABiNRsyZMwe+vr7QaDRYuHChrf8L6A6Y/BARNVeF6cCGiYD+jGW5vtRU3ggJ0Llz5/Djjz8iLi4Onp6eVuvIZJaHqi5cuBBPPvkkDh06hMmTJyMtLQ0zZ87Eq6++isOHD2PatGl44YUXsH379gbH87//+79YsWIF9u/fjxYtWmDy5Mnmexs2bMDChQvxzjvvYP/+/fDz88Mnn3xSZ1sBAQHYuHEjAKCoqAilpaX44IMPzPfXrFmDVq1aYdeuXVi1atUdY7OlPU9PT+Tl5WH58uV46623kJmZ2eDPgGrjsBcRUXNkNAAZiQAEKzcFADIgYy7QY4Rdh8COHTsGQRDQvXt3i/K2bduae1Xi4uKwbNky873nnnsOL7zwgvn62WefRWxsLF566SUAwKxZs5Cbm4t3333X3FNiq7fffhvDhg0DAMydOxcjRoxAZWUl3NzcsHLlSkyZMgVTpkwBACxZsgRbt26ts/dHLpfD19cXAKBSqeDj42Nxv2vXrli+fLn5+vjx4/XGdqf2evfujQULFpjb/tvf/oasrCw89thjNr13qht7foiImqMTu2v3+FgQAP1pU70msHfvXhQUFOD+++9HVVWVxb0BAwZYXB85cgRhYWEWZWFhYThy5EiDX7d3797m//bz8wMAlJeXm19n8ODBFvVDQ0Mb/Bo1+vfvf9fPtebW2AFT/DWx071hzw8RUXN0ucy+9WzUpUsXyGSyWnNr7rvvPgCAu7t7refUNTxWFxcX0+/tgnCzV6u6utpq3VsnT9cMtxmNxga9nq1ufx8NidOa2yd+y2SyRotdatjzQ0TUHHmp7VvPRm3atMFjjz2Gv/3tb6ioqLirNnr27Ildu3ZZlO3atQvBwcEAgHbt2gEASktLzfdvnVTckNfJy8uzKMvNza33OTUruAwGwx3btyXOhrRH9sOeHyKi5ihwCODtb5rcbHXej8x0P3CI3V/6k08+QVhYGAYMGICFCxeid+/ecHFxwb59+/Drr7/ecXjotddew9ixY9G3b19ERETgu+++wzfffIOtW7cCMPUePfjgg1i6dCmCgoJQXl6ON954o8Fxzpw5E7GxsRgwYADCwsLwxRdf4JdffjH3UlkTGBgImUyGzZs3Y/jw4XB3d4eXl5fVurbE2ZD2yH7Y80NE1By5yIHomknFsttu3riOXtoo+/107twZP//8MyIiIjBv3jz06dMHAwYMwEcffYTZs2dj8eLF9T4/JiYGH3zwAd59913cf//9+PTTT5GSkoLw8HBznX/+85+4fv06+vfvj4SEBCxZsqTBcT7zzDOYP38+5syZg/79++PEiROYPn16vc9p3749Fi1ahLlz50KtViM+Pr7e+neKs6HtkX3IhFsHIwkAoNfroVQqodPp4O3tLXY4RCRRlZWVKCkpQVBQENzc3O6ukcJ006qvWyc/e7c3JT7B1jcaJHJk9f1c2Pr9zWEvIqLmLHiUaTl7E+7wTOTomPwQETV3LnIg6GGxoyByGJzzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqg1arxWOPPQZPT0/4+PiIHY7dZGdnQyaT4eLFi6LGsXDhQjzwwANN/rpMfoiIyK5iY2Mhk8nwl7/8pda9uLg4yGQyxMbGNn1gd+H9999HaWkpCgoK8Ntvv4kdTpOSyWTYtGmTw7Z3L5j8EBE1cwajAfu0+/D9799jn3YfDEZDo79mQEAAvvrqK1y9etVcVllZifXr16Njx46N/vr2UlxcjP79+6Nr165QqVR2a/fatWt2a0tMzvo+mPwQETVjW09sRdTGKEzeMhmJOxIxectkRG2MwtYTWxv1dfv164eAgAB888035rJvvvkGHTt2RN++fS3qGo1GJCUlISgoCO7u7ujTpw/+9a9/me8bDAZMmTLFfL979+744IMPLNqIjY1FTEwM3n33Xfj5+aFNmzaIi4tDdXV1vXEmJyejc+fOaNWqFbp3747PP//cfK9Tp07YuHEj1q5dW29v1fXr1/Hyyy/Dx8cHbdq0QWJiIiZNmoSYmBhznfDwcMTHxyMhIQFt27ZFVFQUACAnJweDBg2Cq6sr/Pz8MHfuXFy/ft0ihpUrV1q83gMPPICFCxear2UyGVavXo0nn3wSHh4e6Nq1K9LT0y2e8/3336Nbt25wd3fHI488guPHj9f7uXTq1AkA8OSTT0Imk5mva4apVq9ebXGw6J3irKu9Gp9//jk6deoEpVKJcePG4dKlS/XGd6+Y/BARNVNbT2zFrOxZKLtSZlFefqUcs7JnNXoCNHnyZKSkpJiv//nPf+KFF16oVS8pKQlr167FqlWr8Msvv+CVV17BhAkTkJOTA8CUHHXo0AH/93//h8LCQrz55pt4/fXXsWHDBot2tm/fjuLiYmzfvh1r1qxBamoqUlNT64wvLS0NM2fOxKuvvorDhw9j2rRpeOGFF7B9+3YAwL59+xAdHY2xY8eitLS0VsJVY9myZfjiiy+QkpKCXbt2Qa/XWx3eWbNmDVq1aoVdu3Zh1apVOH36NIYPH46BAwfiP//5D5KTk/GPf/wDS5YsudNHW8uiRYswduxYHDx4EMOHD8f48eNx/vx5AMCpU6fw1FNPYeTIkSgoKMD//M//YO7cufW2t2/fPgBASkoKSktLzdcAcOzYMWzcuBHffPMNCgoKbIqvvvaKi4uxadMmbN68GZs3b0ZOTg6WLl3akLffcALVotPpBACCTqcTOxQikrCrV68KhYWFwtWrVxv83OuG68KjGx4VQlJDrD56pfYSIjZECNcN1+0e96RJk4TRo0cL5eXlgqurq3D8+HHh+PHjgpubm3D27Flh9OjRwqRJkwRBEITKykrBw8ND2L17t0UbU6ZMEZ599tk6XyMuLk54+umnLV4zMDBQuH795vsZM2aM8Mwzz9TZxpAhQ4QXX3zRomzMmDHC8OHDzde3xloXtVot/PWvfzVfX79+XejYsaMwevRoc9mwYcOEvn37Wjzv9ddfF7p37y4YjUZz2ccffyx4eXkJBoNBEARBCAwMFN5//32L5/Xp00dYsGCB+RqA8MYbb5ivL1++LAAQfvjhB0EQBGHevHlCcHCwRRuJiYkCAOHChQt1vi8AQlpamkXZggULhJYtWwrl5eUW5bbGaa09Dw8PQa/Xm8tee+01YfDgwXXGVd/Pha3f3zzVnYioGcovz6/V43MrAQK0V7TIL8/HQM3ARomhXbt2GDFiBFJTUyEIAkaMGIG2bdta1Dl27BiuXLmCxx57zKL82rVrFsNjH3/8Mf75z3/i5MmTuHr1Kq5du1ZrldD9998PuVxuvvbz88OhQ4fqjO/IkSOYOnWqRVlYWFidPTzW6HQ6lJWVYdCgQeYyuVyO/v37w2g0WtTt379/rdcPDQ2FTCazeP3Lly/jv//9b4PmRvXu3dv8356envD29kZ5ebn5dQYPHmxRPzQ01Oa2bxcYGIh27drd9fNv16lTJygUCvO1n5+fOfbGwuSHiKgZOnvlrF3r3a3JkycjPj4egCmBud3ly5cBAP/+97/Rvn17i3uurq4AgK+++gqzZ8/GihUrEBoaCoVCgb/+9a/Iy8uzqN+yZUuLa5lMVisBEZOnp2eDn+Pi4gJTp8lN1uYxNeV7t/Y+bI3TGjH+v3HODxFRM9TOw7bfzG2td7eio6Nx7do1VFdXmyf53io4OBiurq44efIkunTpYvEICAgAAOzatQtDhgzBSy+9hL59+6JLly4oLi6+59h69uyJXbt2WZTt2rULwcHBNrehVCqhVqst5rAYDAbk5+fb9Pp79uyxSBp27doFhUKBDh06ADD1npWWlprv6/V6lJSU2Bxfzevs3bvXoiw3N/eOz2vZsiUMBttWBtoSZ0Paa2xMfugmowEo2QEc+pfpzyZYDktEjaOfqh/UHmrIILN6XwYZNB4a9FP1a9Q45HI5jhw5gsLCQoshqRoKhQKzZ8/GK6+8gjVr1qC4uBj5+fn46KOPsGbNGgBA165dsX//fmzZsgW//fYb5s+fb5Fs3K3XXnsNqampSE5OxtGjR/Hee+/hm2++wezZsxvUzowZM5CUlIRvv/0WRUVFmDlzJi5cuGAxnGXNSy+9hFOnTmHGjBn49ddf8e2332LBggWYNWsWXFxMX89/+tOf8Pnnn2PHjh04dOgQJk2aZPVzrM9f/vIXHD16FK+99hqKioqwfv36eieC1+jUqROysrKg1Wpx4cKFeuvaEmdD2mtsTH7IpDAdWBkCrHkC2DjF9OfKEFM5ETkduYsccweZVvTcngDVXCcOSoTcpWFfpHfD29sb3t7edd5fvHgx5s+fj6SkJPTs2RPR0dH497//jaCgIADAtGnT8NRTT+GZZ57B4MGDce7cObz00kv3HFdMTAw++OADvPvuu7j//vvx6aefIiUlBeHh4Q1qJzExEc8++ywmTpyI0NBQeHl5ISoqyrwMvC7t27fH999/j71796JPnz74y1/+gilTpuCNN94w15k3bx6GDRuGJ554AiNGjEBMTAw6d+7coPg6duyIjRs3YtOmTejTpw9WrVqFd955547PW7FiBTIzMxEQEFBre4Lb2RJnQ9prbDLh9kE6gl6vh1KphE6nq/cHttkoTAc2TARw+1+FG/9gjl0LBI9q6qiIJK+yshIlJSUW+6k01NYTW7F071KLyc8aDw0SByUiIjDCXqHSLYxGI3r27ImxY8di8eLFYofT7NT3c2Hr9zcnPEud0QBkJKJ24oMbZTIgYy7QYwTQBL8hEpF9RQRG4JGAR5Bfno+zV86inUc79FP1a5IeH6k4ceIEfvzxRwwbNgxVVVX429/+hpKSEjz33HNih0Z1YPIjdSd2A/oz9VQQAP1pU72gh5ssLCKyH7mLvNGWs5NppVNqaipmz54NQRAQEhKCrVu3omfPnmKHRnUQdc5PUlISBg4cCIVCAZVKhZiYGBQVFVmtKwgCHn/8cZsORqs5VO/WR3R0dCO8g2bgct37gNxVPSIiiQkICMCuXbug0+mg1+uxe/duDB06VOywqB6iJj85OTmIi4tDbm4uMjMzUV1djcjISFRUVNSqu3LlyjvOnL9VdHQ0SktLzY8vv/zSnqE3H15q+9YjIiJycKIOe2VkZFhcp6amQqVS4cCBAxZZc0FBAVasWIH9+/fDz8/PprZdXV2h0WhsqltVVYWqqirztV6vt+l5zULgEMDbH9CXwvq8H5npfuCQpo6MiG7guhSim+zx8+BQS911Oh0AwNfX11x25coVPPfcc/j4449tTmYAIDs7GyqVCt27d8f06dNx7ty5OusmJSVBqVSaHzUba0mCixyIXnbj4vaetRvX0Us52ZlIBDU73165ckXkSIgcR83Pw+07QzeEwyx1NxqNGDVqFC5evIidO3eay6dNmwaDwYDVq1cDMG17nZaWhpiYmDrb+uqrr+Dh4YGgoCAUFxfj9ddfh5eXF/bs2WN1cyhrPT8BAQHSWeoOmJa7ZyRaTn72bm9KfLjMnUg0paWluHjxIlQqFTw8PBo0/E/kcAQBqL4CGKoBeUugpQdg499pQRBw5coVlJeXw8fHx+pIkNMtdY+Li8Phw4ctEp/09HRs27YNP//8c4PaGjdunPm/e/Xqhd69e6Nz587Izs7Go48+Wqu+q6ur+QwZyQoeZVrOfmK3aXKzl9o01MUeHyJR1fR4N/ZBj0SNrvoKcPUiYLx+s8ylBeDuY0qCbOTj49OgkSBrHCL5iY+Px+bNm/HTTz+ZzzMBgG3btqG4uBg+Pj4W9Z9++mk8/PDDyM7Otqn9++67D23btsWxY8esJj90g4ucy9mJHIxMJoOfnx9UKpXNB0USOZxj24Afre0pVzO9YhnQ5U93bKZly5YNPt7DGlGTH0EQMGPGDKSlpSE7O9u8lXmNuXPn4n/+538synr16oX3338fI0eOtPl1/vvf/+LcuXM2T5YmInI0crncLv/oEzU5owH48VXgcl17ysmAH2cDwYeabLRB1AnPcXFxWLduHdavXw+FQgGtVgutVourV68CMHX3hoSEWDwA0zkltyZKPXr0QFpaGgDg8uXLeO2115Cbm4vjx48jKysLo0ePRpcuXayeKExERESNqCGb6TYRUZOf5ORk6HQ6hIeHw8/Pz/z4+uuvG9ROUVGReaWYXC7HwYMHMWrUKHTr1g1TpkxB//79sWPHDs7rISIiamoOuJmu6MNe9njOrWXu7u7YsmXLPcVFREREduKAm+k61D4/RERE1MzUbKZbay+5GjLT1ipNuJkukx8iIiJqPA64mS6THyIiImpcwaOAsWsB79tWXXv7m8qbeDNdh9jnh4iIiJo5B9pMl8kPERERNQ0H2UyXw15EREQkKUx+iIiISFKY/BAREZGkcM4PEdHdMhocYvImETUMkx8iortRmA5kJFqeWeTtb9rPpImX7RJRw3DYi4iooQrTgQ0Tax/WqC81lRemixMXEdmEyQ8RUUMYDaYeH1g7m/BGWcZcUz0ickhMfoiIGuLE7to9PhYEQH/aVI+IHBKTHyKihrhcZt96RNTkmPwQETWEl9q+9YioyTH5ISJqiMAhplVdtU6nriEDvNub6hGRQ2LyQ0TUEC5y03J2ALUToBvX0Uu53w+RA2PyQ0TUUMGjgLFrAW8/y3Jvf1M59/khcmjc5JCI6G4EjwJ6jOAOz0ROiMkPEdHdcpEDQQ+LHQURNRCHvYiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj9JSUkYOHAgFAoFVCoVYmJiUFRUZLWuIAh4/PHHIZPJsGnTpnrbFQQBb775Jvz8/ODu7o6IiAgcPXq0Ed4BERERORtRk5+cnBzExcUhNzcXmZmZqK6uRmRkJCoqKmrVXblyJWQymU3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlfZ+C0RERORkZIIgCGIHUePs2bNQqVTIycnB0KFDzeUFBQV44oknsH//fvj5+SEtLQ0xMTFW2xAEAf7+/nj11Vcxe/ZsAIBOp4NarUZqairGjRtX6zlVVVWoqqoyX+v1egQEBECn08Hb29u+b5KIiIgahV6vh1KpvOP3t0PN+dHpdAAAX19fc9mVK1fw3HPP4eOPP4ZGo7ljGyUlJdBqtYiIiDCXKZVKDB48GHv27LH6nKSkJCiVSvMjICDgHt8JEREROSqHSX6MRiMSEhIQFhaGkJAQc/krr7yCIUOGYPTo0Ta1o9VqAQBqtdqiXK1Wm+/dbt68edDpdObHqVOn7vJdEBERkaNrIXYANeLi4nD48GHs3LnTXJaeno5t27bh559/btTXdnV1haura6O+BhERETkGh+j5iY+Px+bNm7F9+3Z06NDBXL5t2zYUFxfDx8cHLVq0QIsWplzt6aefRnh4uNW2aobGysrKLMrLyspsGjYjIiKi5k3U5EcQBMTHxyMtLQ3btm1DUFCQxf25c+fi4MGDKCgoMD8A4P3330dKSorVNoOCgqDRaJCVlWUu0+v1yMvLQ2hoaKO9FyIiInIOog57xcXFYf369fj222+hUCjMc3KUSiXc3d2h0Wis9tZ07NjRIlHq0aMHkpKS8OSTT0ImkyEhIQFLlixB165dERQUhPnz58Pf37/OFWJEREQkHaImP8nJyQBQawgrJSUFsbGxNrdTVFRkXikGAHPmzEFFRQWmTp2Kixcv4qGHHkJGRgbc3NzsETYRERE5MYfa58dR2LpPABERETkOp9znh4iIiKixMfkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGktBA7ACIikjijATixG7hcBnipgcAhgItc7KioGWPyQ0RE4ilMBzISAf2Zm2Xe/kD0MiB4lHhxUbPGYS8iIhJHYTqwYaJl4gMA+lJTeWG6OHE5K6MBKNkBHPqX6U+jQeyIHBZ7foiIqOkZDaYeHwhWbgoAZEDGXKDHCA6B2YI9aA3Cnh8iImp6J3bX7vGxIAD606Z6VD/2oDUYkx8iImp6l8vsW0+q7tiDBlMPGofALDD5ISKipueltm89qWIP2l3hnJ8mYjAakF+ej7NXzqKdRzv0U/WD3MHGsZ0ixuvXkH/oc5zVn0Q7747o1+t5yFu0EjssC07xOTJGu2CM9yBwiGlOir4UBgjId3PFWbkc7QwG9Kusghwy0/3AIWJHCsCBP8dbesYMgJXPsXY9MTnK58jkpwlsPbEVS/cuRdmVm3/51B5qzB00FxGBESJGdpNTxLgzCUt/+wJlcpm5TP3z+5jbbTwiHponYmQ3OcXnyBjtgjHeIxc5EL0MWzdPw9I2PihrcfPrSH39Ouaeu4iI6KUOMdnZoT/HGz1jWz3csbRNayuf4wVEXLnqED1ojvQ5ygRBsDZQKGl6vR5KpRI6nQ7e3t731NbWE1sxK3sWhNvGY2UwfYG/F/6e6D88ThHjziTMOvaFKULZzeRHduOv73tdxE+AnOJzZIx2wRjtwxTjKxAEofbPtUyG98Lfd5AYHfhzNBqw9ZNemOXlUve/j5eNiHjpkKiJZFN9jrZ+f9/TnJ/KykqsWbMGn3zyCY4ePXovTTVLBqMBS/curfU/G4C5bNneZTCIOBHNKWK8fg1Lf6ud+ACAcON62W9fwHD9WtMHd4NTfI6M0S4Yo33cjBF1/FzLHChGB/4cASz1bV3/v49tfCHmdGdH/BxtTn5mzZqFGTNmmK+vXbuG0NBQvPjii3j99dfRt29f7Nmzp0EvnpSUhIEDB0KhUEClUiEmJgZFRUUWdaZNm4bOnTvD3d0d7dq1w+jRo/Hrr7/W225sbCxkMpnFIzo6ukGx2UN+eb5F997tBAjQXtEivzy/CaOy5BQxHvrcNNR12w92DUEmg1YuQ/6hz5s4spuc4nNkjHbBGO2DMdpHfnk+yqr19f/7eE0nfowO9jnanPz8+OOPeOyxx8zXX3zxBU6cOIGjR4/iwoULGDNmDJYsWdKgF8/JyUFcXBxyc3ORmZmJ6upqREZGoqKiwlynf//+SElJwZEjR7BlyxYIgoDIyEgYDPVniNHR0SgtLTU/vvzyywbFZg9nr5y1a73G4BQx6k/atV5jcIrPkTHaBWO0D8ZoH4zx7tg84fnkyZMIDg42X//444/485//jMDAQADAzJkzMXz48Aa9eEZGhsV1amoqVCoVDhw4gKFDhwIApk6dar7fqVMnLFmyBH369MHx48fRuXPnOtt2dXWFRqNpUDz21s6jnV3rNQaniNG7o13rNQan+BwZo10wRvtgjPbBGO+OzT0/Li4uuHVudG5uLh588EHztY+PDy5cuHBPweh0OgCAr6+v1fsVFRVISUlBUFAQAgIC6m0rOzsbKpUK3bt3x/Tp03Hu3Lk661ZVVUGv11s87KGfqh/UHmrzhK7bySCDxkODfqp+dnm9u+EUMfZ6HmqDYJ68dzuZIEBjENCv1/NNHNlNTvE5Mka7YIz2wRjtgzHeHZuTn549e+K7774DAPzyyy84efIkHnnkEfP9EydOQK2++6V0RqMRCQkJCAsLQ0hIiMW9Tz75BF5eXvDy8sIPP/yAzMxMtGpV994u0dHRWLt2LbKysrBs2TLk5OTg8ccfr3OoLCkpCUql0vy4U2JlK7mLHHMHzQWAWv/Ta64TByWKuleEU8TYohXmdhtvium2BKjmOrHbeFH3+3GKz5Ex2gVjtA/GaB+M8e7YvNQ9LS0N48aNw0MPPYRffvkFAwcONCdDAJCYmIiSkhJs2LDhrgKZPn06fvjhB+zcuRMdOnSwuKfT6VBeXo7S0lK8++67OH36NHbt2gU3Nzeb2v7999/RuXNnbN26FY8++mit+1VVVaiqqjJf6/V6BAQE2GWpO2B9bwONhwaJgxJFX8ZZwylitLLPj8YgINHB9/lxuM+RMdoFY7QPxmgfjNHE1qXuDdrnJysrC5s3b4ZGo8GMGTPg4eFhvrdo0SIMGzYM4eHhDQ42Pj4e3377LX766ScEBQXVW/fatWto3bo1Vq9ejWeffdbm12jXrh2WLFmCadOm3bGuPff5qeEou1rWxyli5A7PdsEY7YMx2gdjtA/G2AjJz1tvvYXZs2dbJDz3ShAEzJgxA2lpacjOzkbXrl3v+Jyqqiq0bt0an3zyCWJjY216nf/+97/o2LEjNm3ahFGjRt2xfmMkP0RERNS47L7J4aJFi3D58mW7BFcjLi4O69atw/r166FQKKDVaqHVanH16lUApuGqpKQkHDhwACdPnsTu3bsxZswYuLu7W6ws69GjB9LS0gAAly9fxmuvvYbc3FwcP34cWVlZGD16NLp06YKoqCi7xk9ERETOx+bkpzFOwUhOToZOp0N4eDj8/PzMj6+//hoA4Obmhh07dmD48OHo0qULnnnmGSgUCuzevRsqlcrcTlFRkXmlmFwux8GDBzFq1Ch069YNU6ZMQf/+/bFjxw64urra/T0QERGRc7F52MvFxQVlZWVo1068vQKaCoe9iIjIgtEAnNhtOh3dS206bd7B5tOQ7d/fDTrVvVu3bpDVsYV2jfPnzzekSSIiIsdWmA5kJAL6MzfLvP2B6GVA8J3nkZLjaVDys2jRIiiVysaKhYiIyLEUpgMbJgK3H8qpLzWVj13LBMgJNSj5GTdunMVcGyIiombLaDD1+Fg5jdxUJgMy5gI9RnAIzMnYPOH5TsNdREREzcqJ3ZZDXbUIgP60qR45FVFXexERETmsy2V3rtOQeuQwbB72MhqNjRkHERGRY/Gy8bxKW+uRw7C554eIiEhSAoeYVnXVcRo5IAO825vqkVNh8kNERGSNi9y0nB1A7QToxnX0Uk52dkJMfoiIiOoSPMq0nN3bz7Lc25/L3J1Yg5a6ExERSU7wKNNydu7w3Gww+SEiasYMRgF7S86j/FIlVAo3DAryhdyFW5c0mIscCHpY7CjITpj8EBE1UxmHS7Hou0KU6irNZX5KNywYGYzoEL96nknUvHHODxFRM5RxuBTT1+VbJD4AoNVVYvq6fGQcLhUpMiLxMfkhImpmDEYBi74rrPNQBgBY9F0hDEZuXkvSxOSHiKiZ2VtyvlaPz60EAKW6SuwtOd90QRE5ECY/RETNTPmluhOfu6lH1Nww+SEiamZUCje71iNqbrjaq4lwuSkRNZVBQb7wU7pBq6u0Ou9HBkCjNP07RCRFTH6aAJebElFTkrvIsGBkMKavy4cMsEiAan7lWjAymL+AkWRx2KuROdNyU4NRwJ7ic/i24DT2FJ/jShAiJxYd4ofkCf2gUVoObWmUbkie0I+/eJGkseenEd1puakMpuWmjwVrRP8NjL1TRM1PdIgfHgvWcMid6Dbs+WlEzrLc1Jl6p4ioYeQuMoR2boPRD7RHaOc2THyIwOSnUTnDclNuhkZERFLD5KcROcNyU2fpnSIiIrIXJj+NqGa5aV2dzDKY5tWIudzUGXqniIiI7InJTyOqWW4KoFYC5CjLTZ2hd4qIiMiemPw0MkdfbuoMvVNERET2xKXuTcCRl5tyMzQiIpIamSAIXMZzG71eD6VSCZ1OB29vb7HDaRLc54eIiJydrd/f7PkhAI7dO0VERGRPTH7IrGYzNCIiouaMyQ85FYNRYO8UERHdEyY/5DQ4L4mIiOyBS93JKfD8MSIishcmP+TweP4YERHZE5Mfcng8f4yIiOyJyQ85PJ4/RkRE9sTkhxwezx8jIiJ7YvJDDo/njxERkT0x+SGHV3P+GIBaCRDPHyMiooZi8kNOITrED8kT+kGjtBza0ijdkDyhH/f5ISIim3GTQ3IaPH+MiIjsgckPORWeP0ZERPeKw15EREQkKaImP0lJSRg4cCAUCgVUKhViYmJQVFRkUWfatGno3Lkz3N3d0a5dO4wePRq//vprve0KgoA333wTfn5+cHd3R0REBI4ePdqYb4WIiIichKjJT05ODuLi4pCbm4vMzExUV1cjMjISFRUV5jr9+/dHSkoKjhw5gi1btkAQBERGRsJgMNTZ7vLly/Hhhx9i1apVyMvLg6enJ6KiolBZyU3wiIiIpE4mCILDHIh09uxZqFQq5OTkYOjQoVbrHDx4EH369MGxY8fQuXPnWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG3TEOvV4PpVIJnU4Hb2/ve3tTRERE1CRs/f52qDk/Op0OAODra32zuoqKCqSkpCAoKAgBAQFW65SUlECr1SIiIsJcplQqMXjwYOzZs8fqc6qqqqDX6y0eRERE1Dw5TPJjNBqRkJCAsLAwhISEWNz75JNP4OXlBS8vL/zwww/IzMxEq1atrLaj1WoBAGq12qJcrVab790uKSkJSqXS/KgrsSIiIiLn5zDJT1xcHA4fPoyvvvqq1r3x48fj559/Rk5ODrp164axY8fadf7OvHnzoNPpzI9Tp07ZrW0iIiJyLA6xz098fDw2b96Mn376CR06dKh1v6ZHpmvXrnjwwQfRunVrpKWl4dlnn61VV6PRAADKysrg53dz19+ysjI88MADVl/f1dUVrq6u9nkzRERE5NBE7fkRBAHx8fFIS0vDtm3bEBQUZNNzBEFAVVWV1ftBQUHQaDTIysoyl+n1euTl5SE0NNRusRMREZFzEjX5iYuLw7p167B+/XooFApotVpotVpcvXoVAPD7778jKSkJBw4cwMmTJ7F7926MGTMG7u7uGD58uLmdHj16IC0tDQAgk8mQkJCAJUuWID09HYcOHcLEiRPh7++PmJgYMd4mERERORBRh72Sk5MBAOHh4RblKSkpiI2NhZubG3bs2IGVK1fiwoULUKvVGDp0KHbv3g2VSmWuX1RUZF4pBgBz5sxBRUUFpk6diosXL+Khhx5CRkYG3NwsD8UkIiIi6XGofX4cBff5ISIicj5Ouc8PERERUWNj8kNERESSwuSHiIiIJIXJDxEREUmKQ2xySERE5MgMRgF7S86j/FIlVAo3DAryhdxFJnZYdJeY/BAREdUj43ApFn1XiFLdzWOV/JRuWDAyGNEhfvU8kxwVh72IiIjqkHG4FNPX5VskPgCg1VVi+rp8ZBwuFSkyuhdMfoiIiKwwGAUs+q4Q1jbDqylb9F0hDEZul+dsmPwQERFZsbfkfK0en1sJAEp1ldhbcr7pgiK7YPJDRERkRfmluhOfu6lHjoPJDxERkRUqhW3nQdpajxwHV3sR2ZvRAJzYDVwuA7zUQOAQwEUudlQWuGyX6M4GBfnCT+kGra7S6rwfGQCN0vTzQ86FyQ+RPRWmAxmJgP7MzTJvfyB6GRA8Sry4bsFlu0S2kbvIsGBkMKavy4cMsEiAan5VWDAymL84OCEOexHZS2E6sGEihFsTHwCCvhTYMNF0X2RctkvUMNEhfkie0A8apeXQlkbphuQJ/fgLg5OSCYLANXq30ev1UCqV0Ol08Pb2FjsccgZGA7AyBIL+DKz9DihABpm3P5BwSLQhMINRwEPLttW5eqWmC39n4p/4myzRbThU7Bxs/f7msBeRPZzYDdSR+ACADAKgP22qF/Rwk4ZWoyHLdkM7t2m6wIicgNxFxp+LZoTDXkR2YLyktWu9xsBlu0REJkx+iOzgyCUPu9ZrDFy2S47KYBSwp/gcvi04jT3F57hjMjU6DnsR2cExj15oLfhCg/OwNg3AKABatMExj164v+nDA8Blu+SYuPqQxMCeHyI7UHl7YlH1RACmROdWNdeLqp+HytuziSO7qWbZLoBac5O4bJfEwNWHJBYmP0R2MCjIFwcVQ/FSdQK0sOw50aINXqpOwEHFUNF7VbhslxwFDw0lMXHYi8gObm6GVonMqgEY6PIrVLiIcvhgn7EHjHBBsoP0qkSH+OGxYA2X7ZKouPqQxMTkh8hOanpVFn1XiFxdsLncEecvcNkuiY2rD0lMTH6I7Ii9KkS24epDEhOTHyI7Y6+KnTjBAbF097j6kMTE5IeIHI8THBBL94aHhpKYuNqLiBzLjQNicdsBsXCgA2LJPrj6kMTCg02t4MGmRCK5cUBsrcTHTGbqARLxgFiyPx4aSvbCg02JyPncOCC2buIfEEv2x3ly1NQ47EVEjuNymX3rERFZweSHiByHl9q+9YiIrGDyQ0SOI3AIrrprap2PVsMoAFfdNaZl70REd4nJDxE5DANcbDggdiIM/KeLiO4B/wUhIoext+Q8vrr8AKbXcUDs9OoEfHX5AewtOS9ShETUHHC1FxE5jJpznLYYByGzagAG3XJA7N4bB8TeWo+I6G4w+SEih3HrOU5GuCDXGHzHekREDcVhLyJyGDXnPdW1vZ0MgB/PeyKie8Tkh4gcRs15TwBqJUA874mI7IXJDxE5FJ73RESNjXN+iMjhRIf44bFgDc97IqJGweSHiBwSz3sian4c5RBbJj9ERETU6DIOl2LRd4Uo1d3cqsJP6YYFI4ObfDibc36IpMhoAEp2AIf+ZfrTaBA7IiJqxjIOl2L6unyLxAcAtLpKTF+Xj4zDpU0aD3t+iKSmMB3ISAT0Z26WefsD0cuA4FHixUVEzZLBKGDRd4WwdmSfANNKzkXfFeKxYE2TDYGJ2vOTlJSEgQMHQqFQQKVSISYmBkVFReb758+fx4wZM9C9e3e4u7ujY8eOePnll6HT6eptNzY2FjKZzOIRHR3d2G+HyPEVpgMbJlomPgCgLzWVF6aLExcRNVt7S87X6vG5lQCgVFfZpMfWiJr85OTkIC4uDrm5ucjMzER1dTUiIyNRUVEBADhz5gzOnDmDd999F4cPH0ZqaioyMjIwZcqUO7YdHR2N0tJS8+PLL79s7LdD5NiMBlOPT52/fwHImMshMCKyK1uPo2nKY2tEHfbKyMiwuE5NTYVKpcKBAwcwdOhQhISEYOPGjeb7nTt3xttvv40JEybg+vXraNGi7vBdXV2h0WgaLXYip3Nid+0eHwsCoD9tqhf0cJOF5cwcZeUKkSOz9Tiapjy2xqHm/NQMZ/n61r11vU6ng7e3d72JDwBkZ2dDpVKhdevW+NOf/oQlS5agTRvry2arqqpQVVVlvtbr9XcRPZGDu1xm33oS50grV4gcWc2xNVpdpdV+ZxlMm5g25bE1DrPay2g0IiEhAWFhYQgJCbFa548//sDixYsxderUetuKjo7G2rVrkZWVhWXLliEnJwePP/44DAbr3flJSUlQKpXmR0BAwD2/HyKH46W2bz0Jc7SVK0SOzBGPrZEJgmAtEWty06dPxw8//ICdO3eiQ4cOte7r9Xo89thj8PX1RXp6Olq2bGlz27///js6d+6MrVu34tFHH61131rPT0BAgLmXiahZMBqAlSGmyc11/f7l7Q8kHAJc5E0dndMwGAU8tGxbnRM4a36L3Zn4Jw6BEd2iKXpL9Xo9lErlHb+/HWLYKz4+Hps3b8ZPP/1kNfG5dOkSoqOjoVAokJaW1qDEBwDuu+8+tG3bFseOHbOa/Li6usLV1fWu4ydyCi5y03L2DRNh+oq+NQG68SUdvZSJzx00ZOUKd6gmusmRjq0RNfkRBAEzZsxAWloasrOzERQUVKuOXq9HVFQUXF1dkZ6eDje3hk+I+u9//4tz587Bz4/j8CRxwaOAsWvr2OdnKff5sYEjrlwhchaOcmyNqMlPXFwc1q9fj2+//RYKhQJarRYAoFQq4e7uDr1ej8jISFy5cgXr1q2DXq83T0Zu164d5HLTb6g9evRAUlISnnzySVy+fBmLFi3C008/DY1Gg+LiYsyZMwddunRBVFSUaO+VyGEEjwJ6jDCt6rpcZprjEziEPT42csSVK0TUMKImP8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFReaVYnK5HAcPHsSaNWtw8eJF+Pv7IzIyEosXL+bQFlENFzmXs98lR1y5QkQN4zATnh2JrROmiEiaalZ7AVZnTiF5Qj8udycSga3f3w6z1J2IyFlEh/gheUI/aJSWQ1sapRsTHxKNwShgT/E5fFtwGnuKz8FgZN9GXRxitRcRkbNxpJUrRNx0s2E47GUFh72IiMhZ1AzD3v5lLsVhWA57ERERNXMGo4BF3xXWd1wxFn1XyCGw2zD5ISIiclIN2XSTbmLyQ0RE5KS46ebdYfJDRETkpLjp5t1h8kNEROSkajbdrGuNoQymVV/cdNMSkx8iIiInJXeRYcHIYAColQDVXC8YGcwtGG7D5IeIiMiJcdPNhuMmh0RERE6Om242DJMfIiKiZkDuIkNo5zZih+EUOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREkiJq8pOUlISBAwdCoVBApVIhJiYGRUVF5vvnz5/HjBkz0L17d7i7u6Njx454+eWXodPp6m1XEAS8+eab8PPzg7u7OyIiInD06NHGfjtERETkBERNfnJychAXF4fc3FxkZmaiuroakZGRqKioAACcOXMGZ86cwbvvvovDhw8jNTUVGRkZmDJlSr3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlU3xtoiIiMiByQRBEMQOosbZs2ehUqmQk5ODoUOHWq3zf//3f5gwYQIqKirQokWLWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG1XpOVVUVqqqqzNd6vR4BAQHQ6XTw9va207sjIiKixqTX66FUKu/4/e1Qc35qhrN8fX3rrePt7W018QGAkpISaLVaREREmMuUSiUGDx6MPXv2WH1OUlISlEql+REQEHAP74KIyIEYDUDJDuDQv0x/Gg1iR0QkOusZhAiMRiMSEhIQFhaGkJAQq3X++OMPLF68GFOnTq2zHa1WCwBQq9UW5Wq12nzvdvPmzcOsWbPM1zU9P0RETq0wHchIBPRnbpZ5+wPRy4DgUeLFRSQyh0l+4uLicPjwYezcudPqfb1ejxEjRiA4OBgLFy6062u7urrC1dXVrm0SEYmqMB3YMBHAbTMb9KWm8rFrmQCRZDnEsFd8fDw2b96M7du3o0OHDrXuX7p0CdHR0VAoFEhLS0PLli3rbEuj0QAAysrKLMrLysrM94iImjWjwdTjc3viA9wsy5jLITCSLFGTH0EQEB8fj7S0NGzbtg1BQUG16uj1ekRGRqJVq1ZIT0+Hm5tbvW0GBQVBo9EgKyvLoo28vDyEhoba/T0QETmcE7sth7pqEQD9aVM9IgkSNfmJi4vDunXrsH79eigUCmi1Wmi1Wly9ehXAzcSnoqIC//jHP6DX6811DIabv7H06NEDaWlpAACZTIaEhAQsWbIE6enpOHToECZOnAh/f3/ExMSI8TaJiJrW5bI712lIPaJmRtQ5P8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFRRYbH86ZMwcVFRWYOnUqLl68iIceeggZGRl37DUiImoWvNR3rtOQekTNjEPt8+MobN0ngIjIIRkNwMoQ0+Rmq/N+ZKZVXwmHABd5U0dH1Giccp8fIiKyAxe5aTk7AEB2280b19FLmfiQZDH5ISJqjoJHmZaze/tZlnv7c5k7SZ7D7PNDRER2FjwK6DHCtKrrcplpjk/gEPb4kOQx+SEias5c5EDQw2JHQeRQOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksIdnq2oOeher9eLHAkRERHZquZ7u+Z7vC5Mfqy4dOkSACAgIEDkSIiIiKihLl26BKVSWed9mXCn9EiCjEYjzpw5A4VCAZlMZrd29Xo9AgICcOrUKXh7e9utXanh52gf/Bztg5+jffBztA+pf46CIODSpUvw9/eHi0vdM3vY82OFi4sLOnTo0Gjte3t7S/Ivpb3xc7QPfo72wc/RPvg52oeUP8f6enxqcMIzERERSQqTHyIiIpIUJj9NyNXVFQsWLICrq6vYoTg1fo72wc/RPvg52gc/R/vg52gbTngmIiIiSWHPDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPw0oY8//hidOnWCm5sbBg8ejL1794odklNJSkrCwIEDoVAooFKpEBMTg6KiIrHDcnpLly6FTCZDQkKC2KE4ndOnT2PChAlo06YN3N3d0atXL+zfv1/ssJyKwWDA/PnzERQUBHd3d3Tu3BmLFy++49lMUvfTTz9h5MiR8Pf3h0wmw6ZNmyzuC4KAN998E35+fnB3d0dERASOHj0qTrAOiMlPE/n6668xa9YsLFiwAPn5+ejTpw+ioqJQXl4udmhOIycnB3FxccjNzUVmZiaqq6sRGRmJiooKsUNzWvv27cOnn36K3r17ix2K07lw4QLCwsLQsmVL/PDDDygsLMSKFSvQunVrsUNzKsuWLUNycjL+9re/4ciRI1i2bBmWL1+Ojz76SOzQHFpFRQX69OmDjz/+2Or95cuX48MPP8SqVauQl5cHT09PREVFobKysokjdVACNYlBgwYJcXFx5muDwSD4+/sLSUlJIkbl3MrLywUAQk5OjtihOKVLly4JXbt2FTIzM4Vhw4YJM2fOFDskp5KYmCg89NBDYofh9EaMGCFMnjzZouypp54Sxo8fL1JEzgeAkJaWZr42Go2CRqMR/vrXv5rLLl68KLi6ugpffvmlCBE6Hvb8NIFr167hwIEDiIiIMJe5uLggIiICe/bsETEy56bT6QAAvr6+IkfinOLi4jBixAiLv5dku/T0dAwYMABjxoyBSqVC37598fe//13ssJzOkCFDkJWVhd9++w0A8J///Ac7d+7E448/LnJkzqukpARardbiZ1upVGLw4MH8zrmBB5s2gT/++AMGgwFqtdqiXK1W49dffxUpKudmNBqRkJCAsLAwhISEiB2O0/nqq6+Qn5+Pffv2iR2K0/r999+RnJyMWbNm4fXXX8e+ffvw8ssvo1WrVpg0aZLY4TmNuXPnQq/Xo0ePHpDL5TAYDHj77bcxfvx4sUNzWlqtFgCsfufU3JM6Jj/klOLi4nD48GHs3LlT7FCczqlTpzBz5kxkZmbCzc1N7HCcltFoxIABA/DOO+8AAPr27YvDhw9j1apVTH4aYMOGDfjiiy+wfv163H///SgoKEBCQgL8/f35OVKj4bBXE2jbti3kcjnKysosysvKyqDRaESKynnFx8dj8+bN2L59Ozp06CB2OE7nwIEDKC8vR79+/dCiRQu0aNECOTk5+PDDD9GiRQsYDAaxQ3QKfn5+CA4Otijr2bMnTp48KVJEzum1117D3LlzMW7cOPTq1QvPP/88XnnlFSQlJYkdmtOq+V7hd07dmPw0gVatWqF///7IysoylxmNRmRlZSE0NFTEyJyLIAiIj49HWloatm3bhqCgILFDckqPPvooDh06hIKCAvNjwIABGD9+PAoKCiCXy8UO0SmEhYXV2mrht99+Q2BgoEgROacrV67AxcXyq0gul8NoNIoUkfMLCgqCRqOx+M7R6/XIy8vjd84NHPZqIrNmzcKkSZMwYMAADBo0CCtXrkRFRQVeeOEFsUNzGnFxcVi/fj2+/fZbKBQK89i1UqmEu7u7yNE5D4VCUWuelKenJ9q0acP5Uw3wyiuvYMiQIXjnnXcwduxY7N27F5999hk+++wzsUNzKiNHjsTbb7+Njh074v7778fPP/+M9957D5MnTxY7NId2+fJlHDt2zHxdUlKCgoIC+Pr6omPHjkhISMCSJUvQtWtXBAUFYf78+fD390dMTIx4QTsSsZebSclHH30kdOzYUWjVqpUwaNAgITc3V+yQnAoAq4+UlBSxQ3N6XOp+d7777jshJCREcHV1FXr06CF89tlnYofkdPR6vTBz5kyhY8eOgpubm3DfffcJ//u//ytUVVWJHZpD2759u9V/DydNmiQIgmm5+/z58wW1Wi24uroKjz76qFBUVCRu0A5EJgjcRpOIiIikg3N+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iEhyYmNjuc0/kYQx+SGiRhEbGwuZTFbrER0dLXZo+OCDD5Camip2GAAAmUyGTZs2iR0GkaTwYFMiajTR0dFISUmxKHN1dRUpGsBgMEAmk0GpVIoWAxGJjz0/RNRoXF1dodFoLB6tW7dGdnY2WrVqhR07dpjrLl++HCqVCmVlZQCA8PBwxMfHIz4+HkqlEm3btsX8+fNx63GEVVVVmD17Ntq3bw9PT08MHjwY2dnZ5vupqanw8fFBeno6goOD4erqipMnT9Ya9goPD8eMGTOQkJCA1q1bQ61W4+9//zsqKirwwgsvQKFQoEuXLvjhhx8s3t/hw4fx+OOPw8vLC2q1Gs8//zz++OMPi3ZffvllzJkzB76+vtBoNFi4cKH5fqdOnQAATz75JGQymfmaiBoXkx8ianLh4eFISEjA888/D51Oh59//hnz58/H6tWroVarzfXWrFmDFi1aYO/evfjggw/w3nvvYfXq1eb78fHx2LNnD7766iscPHgQY8aMQXR0NI4ePWquc+XKFSxbtgyrV6/GL7/8ApVKZTWmNWvWoG3btti7dy9mzJiB6dOnY8yYMRgyZAjy8/MRGRmJ559/HleuXAEAXLx4EX/605/Qt29f7N+/HxkZGSgrK8PYsWNrtevp6Ym8vDwsX74cb731FjIzMwEA+/btAwCkpKSgtLTUfE1EjUzkU+WJqJmaNGmSIJfLBU9PT4vH22+/LQiCIFRVVQkPPPCAMHbsWCE4OFh48cUXLZ4/bNgwoWfPnoLRaDSXJSYmCj179hQEQRBOnDghyOVy4fTp0xbPe/TRR4V58+YJgiAIKSkpAgChoKCgVmyjR4+2eK2HHnrIfH39+nXB09NTeP75581lpaWlAgBhz549giAIwuLFi4XIyEiLdk+dOiUAEIqKiqy2KwiCMHDgQCExMdF8DUBIS0ur41MkosbAOT9E1GgeeeQRJCcnW5T5+voCAFq1aoUvvvgCvXv3RmBgIN5///1az3/wwQchk8nM16GhoVixYgUMBgMOHToEg8GAbt26WTynqqoKbdq0MV+3atUKvXv3vmOst9aRy+Vo06YNevXqZS6r6ZEqLy8HAPznP//B9u3b4eXlVaut4uJic1y3v7afn5+5DSISB5MfImo0np6e6NKlS533d+/eDQA4f/48zp8/D09PT5vbvnz5MuRyOQ4cOAC5XG5x79aExN3d3SKBqkvLli0trmUymUVZTRtGo9H8+iNHjsSyZctqteXn51dvuzVtEJE4mPwQkSiKi4vxyiuv4O9//zu+/vprTJo0CVu3boWLy82piHl5eRbPyc3NRdeuXSGXy9G3b18YDAaUl5fj4Ycfburw0a9fP2zcuBGdOnVCixZ3/09py5YtYTAY7BgZEd0JJzwTUaOpqqqCVqu1ePzxxx8wGAyYMGECoqKi8MILLyAlJQUHDx7EihUrLJ5/8uRJzJo1C0VFRfjyyy/x0UcfYebMmQCAbt26Yfz48Zg4cSK++eYblJSUYO/evUhKSsK///3vRn9vcXFxOH/+PJ599lns27cPxcXF2LJlC1544YUGJTOdOnVCVlYWtFotLly40IgRE1EN9vwQUaPJyMiwGAICgO7du+O5557DiRMnsHnzZgCmYaLPPvsMzz77LCIjI9GnTx8AwMSJE3H16lUMGjQIcrkcM2fOxNSpU81tpaSkYMmSJXj11Vdx+vRptG3bFg8++CCeeOKJRn9v/v7+2LVrFxITExEZGYmqqioEBgYiOjraovfqTlasWIFZs2bh73//O9q3b4/jx483XtBEBACQCcItm2YQETmI8PBwPPDAA1i5cqXYoRBRM8NhLyIiIpIUJj9EREQkKRz2IiIiIklhzw8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCTl/wEBGwLOjtlfZAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRqklEQVR4nO3deVhUZf8G8PvMoIA4jIIOiyKSO+JGSoKmVoq8mspbiWWBpv0qBdMoQ9vQ3gyp19KyKFvQMk2v1w1NUdxQQ0UlXMLUDJd0EMuacQmUmfP7Y2J02MEZzgzn/lzXXHaeeebMd07C3D7nOc8RRFEUQURERCQjCqkLICIiIqpvDEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7TlIXYI+MRiMuXrwIlUoFQRCkLoeIiIhqQBRFXL16Fb6+vlAoqh7jYQCqwMWLF+Hn5yd1GURERFQH58+fR+vWravswwBUAZVKBcB0AN3d3SWuhoiIiGpCr9fDz8/P/D1eFQagCpSe9nJ3d2cAIiIicjA1mb7CSdBEREQkOwxAREREJDsMQERERCQ7nANEROQADAYDbt26JXUZRJJr3LhxtZe41wQDEBGRHRNFEQUFBfjrr7+kLoXILigUCgQEBKBx48Z3tR8GICIiO1YafjQaDZo0acLFWUnWShcq1mq1aNOmzV39PDAAERHZKYPBYA4/np6eUpdDZBdatmyJixcvoqSkBI0aNarzfjgJmojITpXO+WnSpInElRDZj9JTXwaD4a72wwBERGTneNqL6DZr/TzwFFh9MhqAs1nAtUtAUy/APwxQKKWuioiISHYkHQFKSkpCnz59oFKpoNFoEBkZiRMnTlj0GT9+PARBsHj07du32n2vWrUKgYGBcHZ2RmBgINasWWOrj1EzeWnA/CBgycPAqommP+cHmdqJiIioXkkagDIzMxEbG4t9+/YhIyMDJSUlCA8Px/Xr1y36RUREQKvVmh8bN26scr979+7FmDFjEB0djcOHDyM6OhpRUVHYv3+/LT9O5fLSgJUxgP6iZbtea2pnCCIiqpNZs2ahZ8+e5u3x48cjMjLyrvZpjX2Q/ZP0FFh6errFdmpqKjQaDQ4dOoQBAwaY252dneHt7V3j/c6fPx9DhgzBzJkzAQAzZ85EZmYm5s+fj+XLl1un+JoyGoD0BABiBU+KAAQgfQbQeThPhxGRzRiMIrLzr6DwahE0KheEBHhAqbDd3KLx48djyZIlAAAnJyf4+fnhkUcewezZs+Hm5maz912wYAFEsaLft+WdOXMGAQEB+PHHHy1CVG32QY7LruYA6XQ6AICHh4dF+86dO6HRaNCsWTMMHDgQc+bMgUajqXQ/e/fuxYsvvmjRNnToUMyfP7/C/sXFxSguLjZv6/X6On6CCpzNKj/yY0EE9BdM/QLut977EhH9I/2YFrPX50GrKzK3+ahdkDgiEBFBPjZ734iICKSmpuLWrVvYvXs3nnnmGVy/fh0pKSkW/W7dunVXlzPfSa1W28U+yP7ZzVVgoigiPj4e/fv3R1BQkLn9X//6F7799lts374d8+bNw4EDB/Dggw9aBJayCgoK4OXlZdHm5eWFgoKCCvsnJSVBrVabH35+ftb5UIBpwrM1+xER1UL6MS0mLc2xCD8AUKArwqSlOUg/prXZe5eO3vv5+WHs2LF48sknsXbtWvNpq6+++gr33HMPnJ2dIYoidDodnn32WWg0Gri7u+PBBx/E4cOHLfY5d+5ceHl5QaVSYeLEiSgqsvxcZU9fGY1GJCcno3379nB2dkabNm0wZ84cAEBAQAAAoFevXhAEAYMGDapwH8XFxXjhhReg0Wjg4uKC/v3748CBA+bnd+7cCUEQsG3bNvTu3RtNmjRBWFiYxZzWw4cP44EHHoBKpYK7uzvuvfdeHDx40BqHmerIbgJQXFwcjhw5Uu4U1ZgxYzB8+HAEBQVhxIgR2LRpE06ePInvv/++yv2VvUxOFMVKL52bOXMmdDqd+XH+/Pm7+zB3aupVfZ/a9CMiqiGDUcTs9XmVnoAHgNnr82Aw1s/pHldXV/PaRr/88gtWrlyJVatWITc3FwAwfPhwFBQUYOPGjTh06BCCg4Px0EMP4cqVKwCAlStXIjExEXPmzMHBgwfh4+ODTz75pMr3nDlzJpKTk/HGG28gLy8Py5YtM/8DOTs7GwCwdetWaLVarF69usJ9vPLKK1i1ahWWLFmCnJwctG/fHkOHDjXXVeq1117DvHnzcPDgQTg5OWHChAnm55588km0bt0aBw4cwKFDhzBjxgyrjXpR3djFKbApU6YgLS0Nu3btQuvWravs6+PjA39/f5w6darSPt7e3uVGewoLC8uNCpVydnaGs7Nz7QuvCf8wwN3XNOG5wl9Dgul5/zDbvD8RyVZ2/pVyIz93EgFodUXIzr+C0Ha2XWk6Ozsby5Ytw0MPPQQAuHnzJr755hu0bNkSALB9+3YcPXoUhYWF5t/H//3vf7F27Vr873//w7PPPov58+djwoQJeOaZZwAAb7/9NrZu3VpuFKjU1atXsWDBAixcuBDjxo0DALRr1w79+/cHAPN7e3p6VjrPtPSU3eLFi/Gvf/0LAPD5558jIyMDX375JaZPn27uO2fOHAwcOBAAMGPGDAwfPhxFRUVwcXHBuXPnMH36dHTu3BkA0KFDhzoeSbIWSUeARFFEXFwcVq9eje3bt5uHI6vyxx9/4Pz58/Dxqfy8dWhoKDIyMizatmzZgrAwCUKGQglEJP+zUXYE6p/tiLmcAE1EVld4tfLwU5d+tbVhwwY0bdoULi4uCA0NxYABA/DRRx8BAPz9/c0BBAAOHTqEa9euwdPTE02bNjU/8vPzcfr0aQDA8ePHERoaavEeZbfvdPz4cRQXF5tDV12cPn0at27dQr9+/cxtjRo1QkhICI4fP27Rt3v37ub/Lv2OKiwsBADEx8fjmWeeweDBgzF37lzzZyLpSDoCFBsbi2XLlmHdunVQqVTmURu1Wg1XV1dcu3YNs2bNwqOPPgofHx+cOXMGr776Klq0aIF///vf5v3ExMSgVatWSEpKAgBMnToVAwYMQHJyMkaNGoV169Zh69at2LNnjySfE4EjgaivTVeD3Tkh2t3XFH4CR0pTFxE1aBqVi1X71dYDDzyAlJQUNGrUCL6+vhanfMpeCWY0GuHj44OdO3eW20+zZs3q9P6urq51et2dSq8Gq8m0ijs/X+lzRqMRgOly/bFjx+L777/Hpk2bkJiYiO+++87iu4zql6QjQCkpKdDpdBg0aBB8fHzMjxUrVgAAlEoljh49ilGjRqFjx44YN24cOnbsiL1790KlUpn3c+7cOWi1tyfyhYWF4bvvvkNqaiq6d++OxYsXY8WKFbjvvvvq/TOaBY4Eph0Dxm0AHv3S9Oe0oww/RGQzIQEe8FG7lBt7LiXAdDVYSIBHJT3ujpubG9q3bw9/f/9q57sEBwejoKAATk5OaN++vcWjRYsWAIAuXbpg3759Fq8ru32nDh06wNXVFdu2bavw+ZrcU6p9+/Zo3LixxT+gb926hYMHD6JLly5VfqayOnbsiBdffBFbtmzBI488gtTU1Fq9nqxL0hGg6tZZcHV1xebNm6vdT0X/Ynjsscfw2GOP1bU021Aoeak7EdUbpUJA4ohATFqaAwGWsxBLQ1HiiECbrgdUU4MHD0ZoaCgiIyORnJyMTp064eLFi9i4cSMiIyPRu3dvTJ06FePGjUPv3r3Rv39/fPvtt/jpp59wzz33VLhPFxcXJCQk4JVXXkHjxo3Rr18/XL58GT/99BMmTpwIjUYDV1dXpKeno3Xr1nBxcSl3CbybmxsmTZqE6dOnw8PDA23atMG7776LGzduYOLEiTX6bH///TemT5+Oxx57DAEBAfjtt99w4MABPProo3d93Kju7GISNBER2UZEkA9Sngoutw6Qdz2sA1QbgiBg48aNeO211zBhwgRcvnwZ3t7eGDBggPkCljFjxuD06dNISEhAUVERHn30UUyaNKnKfyi/8cYbcHJywptvvomLFy/Cx8cHzz//PADTAo0ffvgh3nrrLbz55pu4//77K/wH9dy5c2E0GhEdHY2rV6+id+/e2Lx5M5o3b16jz6ZUKvHHH38gJiYGly5dQosWLcyLQpJ0BJHLXZaj1+uhVquh0+ng7u4udTlEJFNFRUXIz89HQEAAXFzubp5Ofa8ETWQrVf1c1Ob7myNAREQyoFQINr/UnciR2M1CiERERET1hQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIjoDrNmzULPnj2lLgODBg3CtGnTpC6jwWIAIiIimygoKMDUqVPRvn17uLi4wMvLC/3798enn36KGzduSF1ene3cuROCIOCvv/6yy/1RzXAlaCIiOTAagLNZwLVLQFMvwD/MdINmG/n111/Rr18/NGvWDO+88w66deuGkpISnDx5El999RV8fX0xcuTICl9769atau8e7whu3rxpvuM82R+OABERNXR5acD8IGDJw8CqiaY/5weZ2m1k8uTJcHJywsGDBxEVFYUuXbqgW7duePTRR/H9999jxIgR5r6CIODTTz/FqFGj4ObmhrfffhsAkJKSgnbt2qFx48bo1KkTvvnmG/Nrzpw5A0EQkJuba27766+/IAiC+YampSMr27ZtQ+/evdGkSROEhYXhxIkTFrXOnTsXXl5eUKlUmDhxIoqKilCZM2fO4IEHHgAANG/eHIIgYPz48QBMp6zi4uIQHx+PFi1aYMiQIdXWWdX+AMBoNOKVV16Bh4cHvL29MWvWrJr+L6BqMAARETVkeWnAyhhAf9GyXa81tdsgBP3xxx/YsmULYmNj4ebmVmEfQbC8EWtiYiJGjRqFo0ePYsKECVizZg2mTp2Kl156CceOHcNzzz2Hp59+Gjt27Kh1Pa+99hrmzZuHgwcPwsnJCRMmTDA/t3LlSiQmJmLOnDk4ePAgfHx88Mknn1S6Lz8/P6xatQoAcOLECWi1WixYsMD8/JIlS+Dk5IQffvgBn332WbW11WR/bm5u2L9/P95991289dZbyMjIqPUxoPJ4CoyIqKEyGoD0BABiBU+KAAQgfQbQebhVT4f98ssvEEURnTp1smhv0aKFeXQlNjYWycnJ5ufGjh1rEUzGjh2L8ePHY/LkyQCA+Ph47Nu3D//973/NIyY1NWfOHAwcOBAAMGPGDAwfPhxFRUVwcXHB/PnzMWHCBDzzzDMAgLfffhtbt26tdBRIqVTCw8MDAKDRaNCsWTOL59u3b493333XvH3mzJkqa6tuf927d0diYiIAoEOHDli4cCG2bduGIUOG1OizU+U4AkRE1FCdzSo/8mNBBPQXTP1soOwoT3Z2NnJzc9G1a1cUFxdbPNe7d2+L7ePHj6Nfv34Wbf369cPx48drXUf37t3N/+3j4wMAKCwsNL9PaGioRf+y27VR9nPcrTtrB0z1l9ZOd4cjQEREDdW1S9btV0Pt27eHIAj4+eefLdrvueceAICrq2u511R0qqxsgBJF0dymUCjMbaVu3bpVYT13Tqgufb3RaKz2c9RF2c9RmzorUnYyuCAINqtdbjgCRETUUDX1sm6/GvL09MSQIUOwcOFCXL9+vU776NKlC/bs2WPRlpWVhS5dugAAWrZsCQDQarXm5++caFyb99m3b59FW9ntskqv7DIYDNXuvyZ11mZ/ZD0cASIiaqj8wwB3X9OE5wrnAQmm5/3DrP7Wn3zyCfr164fevXtj1qxZ6N69OxQKBQ4cOICff/4Z9957b5Wvnz59OqKiohAcHIyHHnoI69evx+rVq7F161YAplGkvn37Yu7cuWjbti1+//13vP7667Wuc+rUqRg3bhx69+6N/v3749tvv8VPP/1kHq2qiL+/PwRBwIYNGzBs2DC4urqiadOmFfatSZ212R9ZD0eAiIgaKoUSiCidaCyUefKf7Yi5NlkPqF27dvjxxx8xePBgzJw5Ez169EDv3r3x0Ucf4eWXX8Z//vOfKl8fGRmJBQsW4L333kPXrl3x2WefITU1FYMGDTL3+eqrr3Dr1i307t0bU6dONV8+XxtjxozBm2++iYSEBNx77704e/YsJk2aVOVrWrVqhdmzZ2PGjBnw8vJCXFxclf2rq7O2+yPrEMQ7T0wSAECv10OtVkOn08Hd3V3qcohIpoqKipCfn4+AgAC4uLjUfUd5aaarwe6cEO3eyhR+AitejJDIXlX1c1Gb72+eAiMiaugCR5ouda/HlaCJ7B0DEBGRHCiUQMD9UldBZDc4B4iIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIioCgUFBRgyZAjc3NzQrFkzqcuxmp07d0IQBPz111+S1jFr1iz07Nmz3t+XAYiIiKxu/PjxEAQBzz//fLnnJk+eDEEQMH78+PovrA4++OADaLVa5Obm4uTJk1KXU68EQcDatWvtdn93gwGIiEgGDEYDDhQcwMZfN+JAwQEYjAabv6efnx++++47/P333+a2oqIiLF++HG3atLH5+1vL6dOnce+996JDhw7QaDRW2+/Nmzetti8p3bp1S+oS6oQBiIiogdt6diuGrhqKCZsnIGF3AiZsnoChq4Zi69mtNn3f4OBgtGnTBqtXrza3rV69Gn5+fujVq5dFX1EU8e677+Kee+6Bq6srevTogf/973/m5w0GAyZOnIiAgAC4urqiU6dOWLBggcU+xo8fj8jISPz3v/+Fj48PPD09ERsbW+0XdEpKCtq1a4fGjRujU6dO+Oabb8zPtW3bFqtWrcLXX39d5ahVSUkJXnjhBTRr1gyenp5ISEjAuHHjEBkZae4zaNAgxMXFIT4+Hi1atMCQIUMAAJmZmQgJCYGzszN8fHwwY8YMlJSUWNQwf/58i/fr2bMnZs2aZd4WBAFffPEF/v3vf6NJkybo0KED0tLSLF6zceNGdOzYEa6urnjggQdw5syZKo9L27ZtAQD//ve/IQiCebv0lNVXX32Fe+65B87OzhBFsdo6K9tfqW+++QZt27aFWq3G448/jqtXr1ZZ391iACIiasC2nt2K+J3xuHTjkkV74Y1CxO+Mt3kIevrpp5Gammre/uqrrzBhwoRy/V5//XWkpqYiJSUFP/30E1588UU89dRTyMzMBAAYjUa0bt0aK1euRF5eHt588028+uqrWLlypcV+duzYgdOnT2PHjh1YsmQJFi9ejMWLF1da35o1azB16lS89NJLOHbsGJ577jk8/fTT2LFjBwDgwIEDiIiIQFRUFLRabbnQVSo5ORnffvstUlNT8cMPP0Cv11d4qmfJkiVwcnLCDz/8gM8++wwXLlzAsGHD0KdPHxw+fBgpKSn48ssv8fbbb1d3aMuZPXs2oqKicOTIEQwbNgxPPvkkrly5AgA4f/48HnnkEQwbNgy5ubl45plnMGPGjCr3d+DAAQBAamoqtFqteRsAfvnlF6xcuRKrVq1Cbm5ujeqran+nT5/G2rVrsWHDBmzYsAGZmZmYO3dubT5+7YlUjk6nEwGIOp1O6lKISMb+/vtvMS8vT/z777/r9PoSQ4n40MqHxKDFQRU+ui3uJg5eOVgsMZRYuXJRHDdunDhq1Cjx8uXLorOzs5ifny+eOXNGdHFxES9fviyOGjVKHDdunCiKonjt2jXRxcVFzMrKstjHxIkTxSeeeKLS95g8ebL46KOPWrynv7+/WFJy+/OMHj1aHDNmTKX7CAsLE//v//7Pom306NHisGHDzNt31loZLy8v8b333jNvl5SUiG3atBFHjRplbhs4cKDYs2dPi9e9+uqrYqdOnUSj0Whu+/jjj8WmTZuKBoNBFEVR9Pf3Fz/44AOL1/Xo0UNMTEw0bwMQX3/9dfP2tWvXREEQxE2bNomiKIozZ84Uu3TpYvE+CQkJIgDxzz//rPRzARDXrFlj0ZaYmCg2atRILCwstGivaZ0V7a9JkyaiXq83t02fPl287777Kqypqp+L2nx/827wREQNVE5hTrmRnzuJEFFwowA5hTno493HJjW0aNECw4cPx5IlSyCKIoYPH44WLVpY9MnLy0NRUZH5lFCpmzdvWpwq+/TTT/HFF1/g7Nmz+Pvvv3Hz5s1yVw917doVSqXSvO3j44OjR49WWt/x48fx7LPPWrT169ev0pGeiuh0Oly6dAkhISHmNqVSiXvvvRdGo9Gib+/evcu9f2hoKARBsHj/a9eu4bfffqvVXKnu3bub/9vNzQ0qlQqFhYXm9+nbt6/F+4SGhtZ432X5+/ujZcuWdX59WW3btoVKpTJv+/j4mGu3FQYgIqIG6vKNy1btV1cTJkxAXFwcAODjjz8u93xpSPj+++/RqlUri+ecnZ0BACtXrsSLL76IefPmITQ0FCqVCu+99x72799v0b9Ro0YW24IglAshZd0ZCgDTfKSybTVR0X7KcnNzq/a9Sl9X2q5QKMrtq6J5TVV99opquRtlPwdQ8zorUpf/b3eLc4CIiBqolk1q9i/0mvarq4iICNy8eRM3b97E0KFDyz0fGBgIZ2dnnDt3Du3bt7d4+Pn5AQB2796NsLAwTJ48Gb169UL79u1x+vTpu66tS5cu2LNnj0VbVlYWunTpUuN9qNVqeHl5ITs729xmMBjw448/VvvawMBAZGVlWQSHrKwsqFQqcxhs2bIltFqt+Xm9Xo/8/Pwa11f6Pvv27bNoK7tdkUaNGsFgqNkVgzWpszb7szUGILJkNAD5u4Gj/zP9WQ+XyhKRbQRrguHVxAsCKh7NECDAu4k3gjXBNq1DqVTi+PHjOH78uMXpqVIqlQovv/wyXnzxRSxZsgSnT5/Gjz/+iI8//hhLliwBALRv3x4HDx7E5s2bcfLkSbzxxhsWk2jravr06Vi8eDE+/fRTnDp1Cu+//z5Wr16Nl19+uVb7mTJlCpKSkrBu3TqcOHECU6dOxZ9//lntSNLkyZNx/vx5TJkyBT///DPWrVuHxMRExMfHQ6EwfUU/+OCD+Oabb7B7924cO3YM48aNq/A4VuX555/H6dOnER8fjxMnTmDZsmVVTg4v1bZtW2zbtg0FBQX4888/q+xbkzprsz9bYwCi2/LSgPlBwJKHgVUTTX/ODzK1E5HDUSqUmBFiutKnbAgq3U4ISYBSUbsv07pwd3eHu7t7pc//5z//wZtvvomkpCR06dIFQ4cOxfr16xEQEADA9AX+yCOPYMyYMbjvvvvwxx9/YPLkyXddV2RkJBYsWID33nsPXbt2xWeffYbU1FQMGjSoVvtJSEjAE088gZiYGISGhqJp06YYOnQoXFxcqnxdq1atsHHjRmRnZ6NHjx54/vnnMXHiRLz++uvmPjNnzsSAAQPw8MMPY9iwYYiMjES7du1qVV+bNm2watUqrF+/Hj169MCnn36Kd955p9rXzZs3DxkZGRUuXVBWTeqszf5sTRCtfWKwAdDr9VCr1dDpdFX+wDYoeWnAyhgAZf86/PNLM+prIHBkfVdFJGtFRUXIz89HQEBAtV+kVdl6divmZs+1mBDt3cQbCSEJGOw/2BqlUhlGoxFdunRBVFQU/vOf/0hdToNS1c9Fbb6/OQmaTKe50hNQPvzgnzYBSJ8BdB4O1MO/FInIugb7D8YDfg8gpzAHl29cRssmLRGsCa6XkR+5OHv2LLZs2YKBAweiuLgYCxcuRH5+PsaOHSt1aVQJBiACzmYB+otVdBAB/QVTv4D7660sIrIepUJps0vdyXQF1OLFi/Hyyy9DFEUEBQVh69attZpMTfVL0jlASUlJ6NOnD1QqFTQaDSIjI3HixIlK+z/33HMQBKHcUttlLV68GIIglHsUFRVZ+RM0ENcqXyekTv2IiGTGz88PP/zwA3Q6HfR6PbKysjBgwACpy6IqSBqAMjMzERsbi3379iEjIwMlJSUIDw/H9evXy/Vdu3Yt9u/fD19f3xrt293dHVqt1uJxN+fQG7SmXtbtR0REZOckPQWWnp5usZ2amgqNRoNDhw5ZJOcLFy4gLi4OmzdvxvDhw2u0b0EQ4O3tXaO+xcXFKC4uNm/r9foava7B8A8D3H0BvRYVzwMSTM/7h9V3ZUQE6y9iR+TIrPXzYFeXwet0OgCAh4eHuc1oNCI6OhrTp09H165da7yva9euwd/fH61bt8bDDz9c5YJUSUlJUKvV5kfpwluyoVACEcn/bJRds+Kf7Yi5nABNVM9KV8e9ceOGxJUQ2Y+bN28CQK3XQirLbiZBi6KI+Ph49O/fH0FBQeb25ORkODk54YUXXqjxvjp37ozFixejW7du0Ov1WLBgAfr164fDhw+jQ4cO5frPnDkT8fHx5m29Xi+/EBQ40nSpe3qC5YRod19T+OEl8ET1TqlUolmzZuZ7IjVp0qROt2ggsiuiCNy6ARhuAcpGQKMmQA3/XhuNRly+fBlNmjSBk9PdRRi7CUBxcXE4cuSIxZLkhw4dwoIFC5CTk1OrH/q+ffuib9++5u1+/fohODgYH330ET788MNy/Z2dnc33m5G1wJGmS93PZpkmPDf1Mp324sgPkWRKT+Xb+saQRPXi1g3g778AY8ntNoUT4NrMFIRqQKFQoE2bNnf9jwG7CEBTpkxBWloadu3ahdatW5vbd+/ejcLCQou74RoMBrz00kuYP38+zpw5U6P9KxQK9OnTB6dOnbJ26Q2PQslL3YnsiCAI8PHxgUajqfGNJYns0i/bgS0VrTlXOtUiGWj/YLW7ady4sfk2IXdD0gAkiiKmTJmCNWvWYOfOneYlz0tFR0dj8GDLVUqHDh2K6OhoPP3007V6n9zcXHTr1s0qdRMR1TelUnnXcx6IJGM0AFteAq5VtuacAGx5GQg8Wm9nHSQNQLGxsVi2bBnWrVsHlUqFgoICAKY767q6usLT0xOenp4Wr2nUqBG8vb3RqVMnc1tMTAxatWqFpKQkAMDs2bPRt29fdOjQAXq9Hh9++CFyc3Px8ccf19+HIyIiIhM7XHBX0gCUkpICAOVuOpeamorx48fXeD/nzp2zGA7766+/8Oyzz6KgoABqtRq9evXCrl27EBISYo2yiYiIqDbscMFd3gy1ArK8GSoREZGt5O8Gljxcfb9xG+5qBKg23992tQ4QERERNUClC+6WW2uulAC4t6rXBXcZgIiIiMi27HDBXQYgIiIisr3SBXfdfSzb3X1N7fW84K5drANEREREMmBHC+4yABEREVH9sZMFd3kKjIiIiGSHAYiIiIhkhwGIiIiIZIdzgIiI7obRYBcTOomodhiAiIjqKi8NSE+wvMeRu69pvZN6vqSXiGqHp8CIiOoiLw1YGVP+Bo96rak9L02auoioRhiAiIhqy2gwjfygolsp/tOWPsPUj4jsEgMQEVFtnc0qP/JjQQT0F0z9iMguMQAREdXWtUvW7UdE9Y4BiIiotpp6WbcfEdU7BiAiotryDzNd7VXurtalBMC9lakfEdklBiAiotpSKE2XugMoH4L+2Y6Yy/WAiOwYAxARUV0EjgSivgbcfSzb3X1N7VwHiMiucSFEIqK6ChwJdB7OlaCJHBADEBHR3VAogYD7pa6CiGqJp8CIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2JA1ASUlJ6NOnD1QqFTQaDSIjI3HixIlK+z/33HMQBAHz58+vdt+rVq1CYGAgnJ2dERgYiDVr1lixciIiInJkkgagzMxMxMbGYt++fcjIyEBJSQnCw8Nx/fr1cn3Xrl2L/fv3w9fXt9r97t27F2PGjEF0dDQOHz6M6OhoREVFYf/+/bb4GERERORgBFEURamLKHX58mVoNBpkZmZiwIAB5vYLFy7gvvvuw+bNmzF8+HBMmzYN06ZNq3Q/Y8aMgV6vx6ZNm8xtERERaN68OZYvX16uf3FxMYqLi83ber0efn5+0Ol0cHd3t86HIyIiIpvS6/VQq9U1+v62qzlAOp0OAODh4WFuMxqNiI6OxvTp09G1a9ca7Wfv3r0IDw+3aBs6dCiysrIq7J+UlAS1Wm1++Pn51fETEBERkSOwmwAkiiLi4+PRv39/BAUFmduTk5Ph5OSEF154ocb7KigogJeXl0Wbl5cXCgoKKuw/c+ZM6HQ68+P8+fN1+xBERETkEJykLqBUXFwcjhw5gj179pjbDh06hAULFiAnJweCINRqf2X7i6JY6T6cnZ3h7Oxc+6KJiIjIIdnFCNCUKVOQlpaGHTt2oHXr1ub23bt3o7CwEG3atIGTkxOcnJxw9uxZvPTSS2jbtm2l+/P29i432lNYWFhuVIiIiIjkSdIAJIoi4uLisHr1amzfvh0BAQEWz0dHR+PIkSPIzc01P3x9fTF9+nRs3ry50v2GhoYiIyPDom3Lli0ICwuzyecgIiIixyLpKbDY2FgsW7YM69atg0qlMo/aqNVquLq6wtPTE56enhavadSoEby9vdGpUydzW0xMDFq1aoWkpCQAwNSpUzFgwAAkJydj1KhRWLduHbZu3Wpxeo2IiIjkS9IRoJSUFOh0OgwaNAg+Pj7mx4oVK2q1n3PnzkGr1Zq3w8LC8N133yE1NRXdu3fH4sWLsWLFCtx3333W/ghERETkgOxqHSB7UZt1BIiIiMg+OOw6QERERET1gQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZMdJ6gKISBoGo4js/CsovFoEjcoFIQEeUCoEqcsiIqoXDEBEMpR+TIvZ6/Og1RWZ23zULkgcEYiIIB8JKyPZMhqAs1nAtUtAUy/APwxQKKWuihowBiAimUk/psWkpTkQy7QX6IowaWkOUp4KZgii+pWXBqQnAPqLt9vcfYGIZCBwpHR1UYPGOUBEMmIwipi9Pq9c+AFgbpu9Pg8GY0U9iGwgLw1YGWMZfgBArzW156VJU5ejMhqA/N3A0f+Z/jQapK7IbnEEiEhGsvOvWJz2KksEoNUVITv/CkLbedZfYSRPRoNp5KfSSC4A6TOAzsN5OqwmOJJWKxwBIpKRwquVh5+69CO6K2ezyo/8WBAB/QVTP6oaR9JqjQGISEY0Kher9iO6K9cuWbefXFU7kgbTSBpPh1lgACKSkZAAD/ioXVDZxe4CTFeDhQR41GdZJFdNvazbT644klYnnANUjwxGA3IKc3D5xmW0bNISwZpgKO3svLZD1FhyEzlHv8Fl/Tm0dG+D4G7RUDo1lrosC/Z6HJUKAYkjAjFpaQ4EGKFokg/B6SrEEhWMNwIAKJA4ItBu1gOy1+N4J9Z4F/zDTHNU9FoYICLHxRmXlUq0NBgQXFQMJQTT8/5hUlcKwI6P4x0jZAagguNYvp+U7OU4MgDVk61nt2Ju9lxcunH7L6BXEy/MCJmBwf6DJazsNoeocU8S5p78FpeUt7+gvX78ADM6PonB/WdKWNlt9n4cI4J8MHn4DXxz6kOIyr/M7YKhGaI7vGA3l8Db+3EEWONdUyiBiGRs3fAc5no2wyWn219JXiUlmPHHXxgcMdcuJkDb9XH8Z4RsaxNXzPVsXsFx/BODb/xtFyNp9nQcBVEUeb1rGXq9Hmq1GjqdDu7u7ne9v61ntyJ+ZzzEMudnhX9ORLw/6H3Jf4AcosY9SYj/5VtThcLtACT881f4/fbShyCHOI6s0SpYo3WYanwRoiiW/7kWBLw/6AM7qdGOj6PRgK2fdEN8U0Xlvx+vGTF48lFJw2R9HMfafH/XeA6Q0WhESUmJRdulS5cwe/ZsvPLKK9izZ0/dqm3gDEYD5mbPLfc/HIC5LTk7GQYJJ6c5RI0lNzH3ZPnwAwDiP9vJJ7+FoeRm/Rf3D4c4jqzRKlijddyuEZX8XAt2VKMdH0cAcz2aV/370dMDUk6BtsfjWOMANHHiREyePNm8ffXqVfTp0wcff/wxNm/ejAceeAAbN26s1ZsnJSWhT58+UKlU0Gg0iIyMxIkTJyz6zJo1C507d4abmxuaN2+OwYMHY//+/VXud/HixRAEodyjqKj+L+3NKcyxGOorS4SIghsFyCnMqceqLDlEjUe/MZ32EiqemyIKAgqUAnKOflPPld3mEMeRNVoFa7QO1mgdOYU5uHRLX/Xvx5s66Wu0s+NY4wD0ww8/4LHHHjNvf/311ygpKcGpU6dw+PBhxMfH47333qvVm2dmZiI2Nhb79u1DRkYGSkpKEB4ejuvXr5v7dOzYEQsXLsTRo0exZ88etG3bFuHh4bh8+XKV+3Z3d4dWq7V4uLjU/6W9l29UXWdt+9mCQ9SoP2fVfrbgEMeRNVoFa7QO1mgdrLFuajwJ+sKFC+jQoYN5e9u2bXj00UehVqsBAOPGjUNqamqt3jw9Pd1iOzU1FRqNBocOHcKAAQMAAGPHjrXo8/777+PLL7/EkSNH8NBDD1W6b0EQ4O3tXat6bKFlk5ZW7WcLDlGjexur9rMFhziOrNEqWKN1sEbrYI11U+MRIBcXF/z999/m7X379qFv374Wz1+7du2uitHpdAAAD4+K1yC5efMmFi1aBLVajR49elS5r2vXrsHf3x+tW7fGww8/jB9//LHSvsXFxdDr9RYPawnWBMOriZd5kldZAgR4N/FGsCbYau9ZWw5RY7doeBlE84S+sgRRhLdBRHC36Hqu7DaHOI6s0SqCNcFQN2qByi4hEUWgWaOWktfoCMeRNd491lg3NQ5APXr0wDffmOZX7N69G5cuXcKDDz5ofv706dPw9fWtcyGiKCI+Ph79+/dHUFCQxXMbNmxA06ZN4eLigg8++AAZGRlo0aJFpfvq3LkzFi9ejLS0NCxfvhwuLi7o168fTp06VWH/pKQkqNVq88PPz6/On6MspUKJGSEzAKDc//jS7YSQBEnXknCIGp0aY0bHJ001lfnWKd1O6PikpOsBOcRxZI1WokDxpREAUC4ElW4XXXoYUq416wjHkTVaB2usmxpfBr9jxw4MGzYMvr6+0Gq1eOKJJ/Dll1+an588eTKuX7+OJUuW1KmQ2NhYfP/999izZw9at25t8dz169eh1Wrx+++/4/PPP8f27duxf/9+aDSaGu3baDQiODgYAwYMwIcfflju+eLiYhQXF5u39Xo9/Pz8rHYZPFDx2gfeTbyREJIg+SWepRyixgrWAfI2iEiw83WA7O44ssa7svf0H3ji831wUh2Ds9d6KBrpzM8Zb6lRfGkESq4GYfn/9ZX8prL2fBxLsUbrYI21uwy+VusA5eXlISMjA97e3hg9ejQUitv/ulm0aBFCQkLQs2fPWhc8ZcoUrF27Frt27UJAQEC1/Tt06IAJEyZg5syaf+H93//9H3777Tds2rSp2r7WXgeolL2sflkVh6iRK0FbBWusu3W5FzD1u9x/toxQ3rGituGfFbUBYMHjPTGqZyupyjSz1+N4J9ZoHXKv0SYBaMKECViwYAFUKpVVigRMp72mTJmCNWvWYOfOnRaTrKvSvn17PPXUU5g1a1aN3yckJATdunXDV199VW1/WwUgImoYSkeAqmMPI0BEcmKThRCXLFliMQnaGmJjY7F06VIsW7YMKpUKBQUFKCgoML/P9evX8eqrr2Lfvn04e/YscnJy8Mwzz+C3337D6NGjzfuJiYmxGA2aPXs2Nm/ejF9//RW5ubmYOHEicnNz8fzzz1u1fiKSJ95Ulsjx1fgyeFvcMSMlJQUAMGjQIIv21NRUjB8/HkqlEj///DOWLFmC33//HZ6enujTpw92796Nrl27mvufO3fO4nTcX3/9hWeffRYFBQVQq9Xo1asXdu3ahZCQEKt/BiKSH8ubysJibdvSUGRPN5UlovJqfApMoVDg0qVLaNlSunUE6gtPgRFRTaQf02L2+jxodbdXmfdRuyBxRKDd3FSWrMhoAM5mme6q3tTLdJd6O5tfI3e1+f6u1d3gO3bsCKGSpbZLXblypTa7JCJyWBFBPhgS6I3s/CsovFoEjcp02osjPw1QXhqQngDoL95uc/cFIpKBwJHS1UV1VqsANHv2bPPKz0REZDodxonODVxeGrAyBih7I0+91tQe9TVDkAOqVQB6/PHHa7z2DhERkcMzGkwjPxXcxdzUJgDpM4DOw3k6zMHU+Cqw6k59ERERNThnsyxPe5UjAvoLpn7kUGocgGxxFRgREZFdu3ap+j616Ud2o8anwIxGoy3rICIisj9Nvazbj+yGdHfqIyIisnf+Yaarvapa9tK9lakfORQGICIiosoolKZL3QGUD0H/bEfM5QRoB8QAREREVJXAkaZL3d3LLG7p7stL4B1YrS6DJyIikqXAkaZL3bkSdIPBAERERFQTCiUQcL/UVZCV8BQYERERyQ4DEBEREckOAxARERHJDucAERERUb0xGEVk519B4dUiaFQuCAnwgFJR/7fbYgAiIiKiepF+TIvZ6/Og1RWZ23zULkgcEYiIIJ8qXml9PAVGRERENpd+TItJS3Mswg8AFOiKMGlpDtKPaeu1HgYgIiIisimDUcTs9Xmo6LbqpW2z1+fBYKy/G68zABEREZFNZedfKTfycycRgFZXhOz8K/VWEwMQERER2VTh1crDT136WQMDEBEREdmURuVi1X7WwABERERENhUS4AEftQsqu9hdgOlqsJAAj3qriQGIiIiogTAYRew9/QfW5V7A3tN/1Ouk4qooFQISRwQCQLkQVLqdOCKwXtcD4jpAREREDYA9rbFTkYggH6Q8FVyuRm+JahREUbSPeGhH9Ho91Go1dDod3N3dpS6HiIioSqVr7JT9Qi8dT0l5KtguQhBg25Wga/P9zREgIiIiB1bdGjsCTGvsDAn0luSWE2UpFQJC23lKXQbnABERETkye1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETm40jV2vNWWp7m81S52dQm8PeFl8ERERA1ARJAPhgR622yNnYaGAYiIiKiBsJc1dhwBT4ERERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7EgagJKSktCnTx+oVCpoNBpERkbixIkTFn1mzZqFzp07w83NDc2bN8fgwYOxf//+ave9atUqBAYGwtnZGYGBgVizZo2tPgYRERE5GEkDUGZmJmJjY7Fv3z5kZGSgpKQE4eHhuH79urlPx44dsXDhQhw9ehR79uxB27ZtER4ejsuXL1e6371792LMmDGIjo7G4cOHER0djaioqBoFJyIiImr4BFEURamLKHX58mVoNBpkZmZiwIABFfbR6/VQq9XYunUrHnrooQr7jBkzBnq9Hps2bTK3RUREoHnz5li+fHm1dZS+h06ng7u7e90+DBEREdWr2nx/29UcIJ1OBwDw8PCo8PmbN29i0aJFUKvV6NGjR6X72bt3L8LDwy3ahg4diqysrAr7FxcXQ6/XWzyIiIio4bKbACSKIuLj49G/f38EBQVZPLdhwwY0bdoULi4u+OCDD5CRkYEWLVpUuq+CggJ4eXlZtHl5eaGgoKDC/klJSVCr1eaHn5/f3X8gIiIislt2E4Di4uJw5MiRCk9RPfDAA8jNzUVWVhYiIiIQFRWFwsLCKvcnCILFtiiK5dpKzZw5Ezqdzvw4f/583T8IERER2T27CEBTpkxBWloaduzYgdatW5d73s3NDe3bt0ffvn3x5ZdfwsnJCV9++WWl+/P29i432lNYWFhuVKiUs7Mz3N3dLR5ERETUcEkagERRRFxcHFavXo3t27cjICCgxq8rLi6u9PnQ0FBkZGRYtG3ZsgVhYWF3VS8RERE1DE5SvnlsbCyWLVuGdevWQaVSmUdt1Go1XF1dcf36dcyZMwcjR46Ej48P/vjjD3zyySf47bffMHr0aPN+YmJi0KpVKyQlJQEApk6digEDBiA5ORmjRo3CunXrsHXrVuzZs0eSz0lERET2RdIAlJKSAgAYNGiQRXtqairGjx8PpVKJn3/+GUuWLMHvv/8OT09P9OnTB7t370bXrl3N/c+dOweF4vZgVlhYGL777ju8/vrreOONN9CuXTusWLEC9913X718rsoYjCKy86+g8GoRNCoXhAR4QKmoeF4SERER2Y5drQNkL2yxDlD6MS1mr8+DVldkbvNRuyBxRCAignys8h5ERERy5rDrADVU6ce0mLQ0xyL8AECBrgiTluYg/ZhWosqIiIjkiQHIxgxGEbPX56GiYbbSttnr82AwciCOiMieGYwi9p7+A+tyL2Dv6T/4e9vBSToHSA6y86+UG/m5kwhAqytCdv4VhLbzrL/CiIioxjiNoeHhCJCNFV6tPPzUpR8REdUvTmNomBiAbEyjcrFqP3IMHConahg4jaHh4ikwGwsJ8ICP2gUFuqIKf4AEAN5q0yXx1DBwqJyo4eA0hoaLI0A2plQISBwRCMAUdu5Uup04IpDrATUQHConalg4jaHhYgCqBxFBPkh5KhjeasvTXN5qF6Q8FcxRgQaCQ+VEDQ+nMTRcPAVWTyKCfDAk0JsrQTdgHConang4jaHhYgCqR0qFwC++BoxD5UQNT+k0hklLcyAAFiGI0xgcG0+BEVkJh8qJGiZOY2iYOAJEZCV3DpULMCJE8TM0+AuFaIZsY2eIUHConMhBcRpDw8MARGQlpUPla5d9ijcbfQ1f4Yr5uYuiB966FYPIEc/zFyaRg+I0hoaFAYjIiiIUBzC08QKIZaZLegtXkNJ4AQTFvQBGSlMcERGZcQ4QkbUYDUB6AgSI5X6wFPhnwmT6DFM/IiKSFAMQkbWczQL0F6voIAL6C6Z+REQkKQYgImu5dsm6/YiIyGYYgIispamXdfsREZHNMAARWYt/GODui/J3fSslAO6tTP2IiEhSDEBE1qJQAhHJ/2xUcuvbiLmmfkREJCkGICJrChwJRH0NuJdZGdbd19QeyEvgiYjsAdcBIrK2wJFA5+Gmq72uXTLN+fEP48gPEZEdYQAisgWFEgi4X+oqiIioEgxAREQkOYNR5H22qF4xABGR/TIaeCpRBtKPaTF7fR60uiJzm4/aBYkjAnmndbIZBiAisk95aUB6guXq2u6+pivtOJm8wUg/psWkpTll7p4HFOiKMGlpDlKeCmYIIpvgVWBEZH/y0oCVMeVvLaLXmtrz0qSpi6zKYBQxe31eufADwNw2e30eDMaKehDdHQYgIrIv/9xUFlV9LfKmsg1Cdv4Vi9NeZYkAtLoiZOdfqb+iSDYYgIjIvvCmsrJReLXy8FOXfkS1wQBERPaFN5WVDY3Kxar9iGqDAYiI7AtvKisbIQEe8FG7VHX3PPioTZfEE1kbAxAR2RfeVFY2lAoBiSMCAVR69zwkjgjkekBkEwxARGRfeFNZWYkI8kHKU8HwVlue5vJWu/ASeLIpQRRFXl9Yhl6vh1qthk6ng7u7u9TlEMlThesAtTKFH64D1OBwJWiyhtp8f3MhRCKyT7yprKwoFQJC23lKXQbJCAMQEdkv3lSWiGyEc4CIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHZ4FRhZ4FocREQkBwxAZJZ+TIvZ6/Og1d2+87KP2gWJIwLtajVWhjQrMRq4xg4RyRYDEAEwhZ9JS3NQdlnwAl0RJi3NsZsl6R0lpNm9CldZ9jXdgoKrLBORDEg6BygpKQl9+vSBSqWCRqNBZGQkTpw4YX7+1q1bSEhIQLdu3eDm5gZfX1/ExMTg4sWLVewVWLx4MQRBKPcoKiqq8nVyZTCKmL0+r1z4AWBum70+DwajtHdNKQ1pd4Yf4HZISz+mlagyB5OXBqyMsQw/AKDXmtrz0qSpi4ioHkkagDIzMxEbG4t9+/YhIyMDJSUlCA8Px/Xr1wEAN27cQE5ODt544w3k5ORg9erVOHnyJEaOrP5fqO7u7tBqtRYPFxeXal8nR9n5V8qFijuJALS6ImTnX6m/ospwlJBm94wG08hPVUcyfYapHxFRAybpKbD09HSL7dTUVGg0Ghw6dAgDBgyAWq1GRkaGRZ+PPvoIISEhOHfuHNq0aVPpvgVBgLe3t03qbmgKr9ZsZKym/WyhNiGN9xOqwtms8iM/FkRAf8HUj7egIKIGzK4ug9fpdAAADw+PKvsIgoBmzZpVua9r167B398frVu3xsMPP4wff/yx0r7FxcXQ6/UWDznRqGo2MlbTfrbgCCHNIVy7ZN1+REQOym4CkCiKiI+PR//+/REUFFRhn6KiIsyYMQNjx46t8jb3nTt3xuLFi5GWlobly5fDxcUF/fr1w6lTpyrsn5SUBLVabX74+flZ5TM5ipAAD/ioXVDZdVQCTBONQwIqD6a25gghzSE09bJuPyIiByWIomgXkyZiY2Px/fffY8+ePWjdunW552/duoXRo0fj3Llz2LlzZ5UBqCyj0Yjg4GAMGDAAH374Ybnni4uLUVxcbN7W6/Xw8/ODTqer1fs4stIJxoDl7JDSUCT1VWAGo4j+ydtRoCuqcPaKAMBb7YI9CQ/ykviqGA3A/CDThOfKjqS7LzDtKC+JJyKHo9froVara/T9bRcjQFOmTEFaWhp27NhRafiJiopCfn4+MjIyah1KFAoF+vTpU+kIkLOzM9zd3S0echMR5IOUp4LhrbYcQfFWu0gefgBAqRCQOCIQAMqNVJVuJ44IZPipjkJputQdQKVHMmIuww8RNXiSjgCJoogpU6ZgzZo12LlzJzp06FCuT2n4OXXqFHbs2IGWLVvW6X1CQkLQrVs3fPXVV9X2r02CbGjsfZFBrgNkJRWuA9TKFH64DhAROajafH9LGoAmT56MZcuWYd26dejUqZO5Xa1Ww9XVFSUlJXj00UeRk5ODDRs2wMvr9rwEDw8PNG7cGAAQExODVq1aISkpCQAwe/Zs9O3bFx06dIBer8eHH36Ib775Bj/88ANCQkKqrUvOAcgR2HtIcxhcCZqIGpjafH9Lehl8SkoKAGDQoEEW7ampqRg/fjx+++03pKWZFmXr2bOnRZ8dO3aYX3fu3DkoFLfP5v3111949tlnUVBQALVajV69emHXrl01Cj9k/5QKgZe6W4NCyUvdiUi27GYStD3hCBAREZHjcbhJ0ERERET1iQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGRH0nWAiIiqwkUvichWGICIyC7xtidEZEs8BUZEdif9mBaTluZYhB8AKNAVYdLSHKQf00pUGRE1FAxARGRXDEYRs9fnoaIl6kvbZq/Pg8HIReyJqO4YgIjIrmTnXyk38nMnEYBWV4Ts/Cv1VxQRNTgMQERkVwqvVh5+6tKPiKgiDEBEZFc0Kher9iMiqggDEBHZlZAAD/ioXVDZxe4CTFeDhQR41GdZRNTAMAARkV1RKgQkjggEgHIhqHQ7cUQg1wMiorvCAEREdiciyAcpTwXDW215mstb7YKUp4K5DhAR3TUuhEhEdikiyAdDAr25EjQR2QQDEBHZLaVCQGg7T6nLIKIGiKfAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHacpC6AiIhsy2AUkZ1/BYVXi6BRuSAkwANKhSB1WUSSYgAiImrA0o9pMXt9HrS6InObj9oFiSMCERHkI2FlRNKS9BRYUlIS+vTpA5VKBY1Gg8jISJw4ccL8/K1bt5CQkIBu3brBzc0Nvr6+iImJwcWLF6vd96pVqxAYGAhnZ2cEBgZizZo1tvwoRER2J/2YFpOW5liEHwAo0BVh0tIcpB/TSlQZkfQkDUCZmZmIjY3Fvn37kJGRgZKSEoSHh+P69esAgBs3biAnJwdvvPEGcnJysHr1apw8eRIjR46scr979+7FmDFjEB0djcOHDyM6OhpRUVHYv39/fXwsIiLJGYwiZq/Pg1jBc6Vts9fnwWCsqAdRwyeIomg3f/svX74MjUaDzMxMDBgwoMI+Bw4cQEhICM6ePYs2bdpU2GfMmDHQ6/XYtGmTuS0iIgLNmzfH8uXLy/UvLi5GcXGxeVuv18PPzw86nQ7u7u53+amIiOrf3tN/4InP91Xbb/n/9UVoO896qIjI9vR6PdRqdY2+v+3qKjCdTgcA8PDwqLKPIAho1qxZpX327t2L8PBwi7ahQ4ciKyurwv5JSUlQq9Xmh5+fX+2LJyKyI4VXb5/2UsCIvoo8jFRkoa8iDwoYK+xHJCd2MwlaFEXEx8ejf//+CAoKqrBPUVERZsyYgbFjx1aZ7AoKCuDl5WXR5uXlhYKCggr7z5w5E/Hx8ebt0hEgIiJHpVG5AACGKrKR2Ohr+ApXzM9dFD0w+1YMNhtDzP2I5MZuAlBcXByOHDmCPXv2VPj8rVu38Pjjj8NoNOKTTz6pdn+CYHmJpyiK5dpKOTs7w9nZufZFExHZqZAADzzeNBfv3Jpf7jlvXEFKo/l4tdErCAkYVv/FEdkBuzgFNmXKFKSlpWHHjh1o3bp1uedv3bqFqKgo5OfnIyMjo9rzet7e3uVGewoLC8uNChERNVRKGJHY6GsAQNklf0q3Ext9DeUdp8OI5ETSACSKIuLi4rB69Wps374dAQEB5fqUhp9Tp05h69at8PSsfrJeaGgoMjIyLNq2bNmCsLAwq9VORGTXzmbB9e+CcuGnlEIAXP8uAM5WPDeSqKGT9BRYbGwsli1bhnXr1kGlUplHbdRqNVxdXVFSUoLHHnsMOTk52LBhAwwGg7mPh4cHGjduDACIiYlBq1atkJSUBACYOnUqBgwYgOTkZIwaNQrr1q3D1q1bKz29RkTU4Fy7ZN1+RA2MpCNAKSkp0Ol0GDRoEHx8fMyPFStWAAB+++03pKWl4bfffkPPnj0t+tx5Rde5c+eg1d5e0CssLAzfffcdUlNT0b17dyxevBgrVqzAfffdV++fkYhIEk1reMq/pv2IGhi7WgfIXtRmHQEiIrtkNADzgwC9FqhwOUQBcPcFph0FFMr6ro7IJhx2HSAiIrIShRKISP5no+xEoH+2I+Yy/JBsMQARETVUgSOBqK8B9zI3PXX3NbUHVn1bIaKGzG7WASIiIhsIHAl0Hm662uvaJdOcH/8wjvyQ7DEAERE1dAolEHC/1FUQ2RWeAiMiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItnhStAVEEXTnZP1er3ElRAREVFNlX5vl36PV4UBqAJXr14FAPj5+UlcCREREdXW1atXoVarq+wjiDWJSTJjNBpx8eJFqFQqCIJg1X3r9Xr4+fnh/PnzcHd3t+q+5YTH0Tp4HK2Dx9E6eBytQ87HURRFXL16Fb6+vlAoqp7lwxGgCigUCrRu3dqm7+Hu7i67v5i2wONoHTyO1sHjaB08jtYh1+NY3chPKU6CJiIiItlhACIiIiLZYQCqZ87OzkhMTISzs7PUpTg0Hkfr4HG0Dh5H6+BxtA4ex5rhJGgiIiKSHY4AERERkewwABEREZHsMAARERGR7DAAERERkewwANWjTz75BAEBAXBxccG9996L3bt3S12SQ0lKSkKfPn2gUqmg0WgQGRmJEydOSF2Ww0tKSoIgCJg2bZrUpTicCxcu4KmnnoKnpyeaNGmCnj174tChQ1KX5VBKSkrw+uuvIyAgAK6urrjnnnvw1ltvwWg0Sl2aXdu1axdGjBgBX19fCIKAtWvXWjwviiJmzZoFX19fuLq6YtCgQfjpp5+kKdZOMQDVkxUrVmDatGl47bXX8OOPP+L+++/Hv/71L5w7d07q0hxGZmYmYmNjsW/fPmRkZKCkpATh4eG4fv261KU5rAMHDmDRokXo3r271KU4nD///BP9+vVDo0aNsGnTJuTl5WHevHlo1qyZ1KU5lOTkZHz66adYuHAhjh8/jnfffRfvvfcePvroI6lLs2vXr19Hjx49sHDhwgqff/fdd/H+++9j4cKFOHDgALy9vTFkyBDzvS4JgEj1IiQkRHz++ect2jp37izOmDFDooocX2FhoQhAzMzMlLoUh3T16lWxQ4cOYkZGhjhw4EBx6tSpUpfkUBISEsT+/ftLXYbDGz58uDhhwgSLtkceeUR86qmnJKrI8QAQ16xZY942Go2it7e3OHfuXHNbUVGRqFarxU8//VSCCu0TR4Dqwc2bN3Ho0CGEh4dbtIeHhyMrK0uiqhyfTqcDAHh4eEhciWOKjY3F8OHDMXjwYKlLcUhpaWno3bs3Ro8eDY1Gg169euHzzz+XuiyH079/f2zbtg0nT54EABw+fBh79uzBsGHDJK7MceXn56OgoMDiO8fZ2RkDBw7kd84deDPUevD777/DYDDAy8vLot3LywsFBQUSVeXYRFFEfHw8+vfvj6CgIKnLcTjfffcdcnJycODAAalLcVi//vorUlJSEB8fj1dffRXZ2dl44YUX4OzsjJiYGKnLcxgJCQnQ6XTo3LkzlEolDAYD5syZgyeeeELq0hxW6fdKRd85Z8+elaIku8QAVI8EQbDYFkWxXBvVTFxcHI4cOYI9e/ZIXYrDOX/+PKZOnYotW7bAxcVF6nIcltFoRO/evfHOO+8AAHr16oWffvoJKSkpDEC1sGLFCixduhTLli1D165dkZubi2nTpsHX1xfjxo2TujyHxu+cqjEA1YMWLVpAqVSWG+0pLCwsl9CpelOmTEFaWhp27dqF1q1bS12Owzl06BAKCwtx7733mtsMBgN27dqFhQsXori4GEqlUsIKHYOPjw8CAwMt2rp06YJVq1ZJVJFjmj59OmbMmIHHH38cANCtWzecPXsWSUlJDEB15O3tDcA0EuTj42Nu53eOJc4BqgeNGzfGvffei4yMDIv2jIwMhIWFSVSV4xFFEXFxcVi9ejW2b9+OgIAAqUtySA899BCOHj2K3Nxc86N379548sknkZuby/BTQ/369Su3DMPJkyfh7+8vUUWO6caNG1AoLL+KlEolL4O/CwEBAfD29rb4zrl58yYyMzP5nXMHjgDVk/j4eERHR6N3794IDQ3FokWLcO7cOTz//PNSl+YwYmNjsWzZMqxbtw4qlco8oqZWq+Hq6ipxdY5DpVKVmzfl5uYGT09PzqeqhRdffBFhYWF45513EBUVhezsbCxatAiLFi2SujSHMmLECMyZMwdt2rRB165d8eOPP+L999/HhAkTpC7Nrl27dg2//PKLeTs/Px+5ubnw8PBAmzZtMG3aNLzzzjvo0KEDOnTogHfeeQdNmjTB2LFjJazazkh7EZq8fPzxx6K/v7/YuHFjMTg4mJdv1xKACh+pqalSl+bweBl83axfv14MCgoSnZ2dxc6dO4uLFi2SuiSHo9frxalTp4pt2rQRXVxcxHvuuUd87bXXxOLiYqlLs2s7duyo8PfhuHHjRFE0XQqfmJgoent7i87OzuKAAQPEo0ePSlu0nRFEURQlyl5EREREkuAcICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIpKl8ePHIzIyUuoyiEgiDEBEZDPjx4+HIAjlHhEREVKXhgULFmDx4sVSlwEAEAQBa9eulboMIlnhzVCJyKYiIiKQmppq0ebs7CxRNYDBYIAgCFCr1ZLVQETS4wgQEdmUs7MzvL29LR7NmzfHzp070bhxY+zevdvcd968eWjRogW0Wi0AYNCgQYiLi0NcXByaNWsGT09PvP7667jzFoY3b97EK6+8glatWsHNzQ333Xcfdu7caX5+8eLFaNasGTZs2IDAwEA4Ozvj7Nmz5U6BDRo0CFOmTMG0adPQvHlzeHl5YdGiRbh+/TqefvppqFQqtGvXDps2bbL4fHl5eRg2bBiaNm0KLy8vREdH4/fff7fY7wsvvIBXXnkFHh4e8Pb2xqxZs8zPt23bFgDw73//G4IgmLeJyLYYgIhIEoMGDcK0adMQHR0NnU6Hw4cP47XXXsPnn38OHx8fc78lS5bAyckJ+/fvx4cffogPPvgAX3zxhfn5p59+Gj/88AO+++47HDlyBKNHj0ZERAROnTpl7nPjxg0kJSXhiy++wE8//QSNRlNhTUuWLEGLFi2QnZ2NKVOmYNKkSRg9ejTCwsKQk5ODoUOHIjo6Gjdu3AAAaLVaDBw4ED179sTBgweRnp6OS5cuISoqqtx+3dzcsH//frz77rt46623kJGRAQA4cOAAACA1NRVarda8TUQ2JvHd6ImoARs3bpyoVCpFNzc3i8dbb70liqIoFhcXi7169RKjoqLErl27is8884zF6wcOHCh26dJFNBqN5raEhASxS5cuoiiK4i+//CIKgiBeuHDB4nUPPfSQOHPmTFEURTE1NVUEIObm5parbdSoURbv1b9/f/N2SUmJ6ObmJkZHR5vbtFqtCEDcu3evKIqi+MYbb4jh4eEW+z1//rwIQDxx4kSF+xVFUezTp4+YkJBg3gYgrlmzppKjSES2wDlARGRTDzzwAFJSUizaPDw8AACNGzfG0qVL0b17d/j7+2P+/PnlXt+3b18IgmDeDg0Nxbx582AwGJCTkwNRFNGxY0eL1xQXF8PT09O83bhxY3Tv3r3aWu/so1Qq4enpiW7dupnbvLy8AACFhYUAgEOHDmHHjh1o2rRpuX2dPn3aXFfZ9/bx8THvg4ikwQBERDbl5uaG9u3bV/p8VlYWAODKlSu4cuUK3Nzcarxvo9EIpVKJQ4cOQalUWjx3ZyhxdXW1CFGVadSokcW2IAgWbaX7MBqN5j9HjBiB5OTkcvu68zReRfst3QcRSYMBiIgkc/r0abz44ov4/PPPsXLlSsTExGDbtm1QKG5PT9y3b5/Fa/bt24cOHTpAqVSiV69eMBgMKCwsxP3331/f5SM4OBirVq1C27Zt4eRU91+njRo1gsFgsGJlRFQdToImIpsqLi5GQUGBxeP333+HwWBAdHQ0wsPD8fTTTyM1NRXHjh3DvHnzLF5//vx5xMfH48SJE1i+fDk++ugjTJ06FQDQsWNHPPnkk4iJicHq1auRn5+PAwcOIDk5GRs3brT5Z4uNjcWVK1fwxBNPIDs7G7/++iu2bNmCCRMm1CrQtG3bFtu2bUNBQQH+/PNPG1ZMRKU4AkRENpWenm5xOggAOnXqhLFjx+LMmTNYv349AMDb2xtffPEFoqKiMGTIEPTs2RMAEBMTg7///hshISFQKpWYMmUKnn32WfO+UlNT8fbbb+Oll17ChQsX4OnpidDQUAwbNszmn83X1xc//PADEhISMHToUBQXF8Pf3x8REREWo1jVmTdvHuLj4/H555+jVatWOHPmjO2KJiIAgCCKdyyoQURkRwYNGoSePXtWODmaiOhu8BQYERERyQ4DEBEREckOT4ERERGR7HAEiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhk5/8BD2LVm8ZJvwYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2382,6 +2368,32 @@ "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([25.0012, 24.5258, 23.5257, 22.7859, 22.5127, 22.6713, 24.3160, 21.9570,\n", + " 23.5879, 23.3990, 23.5648, 24.4520])" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -2400,7 +2412,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.9.16" }, "orig_nbformat": 4 }, diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index ea7d84e..f34ba50 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -168,7 +168,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3dd1gUV9sG8HsWlqWDIoIFIyoWrKjYYrAkltijURM1xmjsyms0ryXmtStBI9HYW4TYW4zGJJZYMHYFewt2FBBFpErZ3fP9wcfEFVQWFnaB+3ddXmFnZ+Y8c05md56dOedIQggBIiIiIiIiI1MYOwAiIiIiIiKAyQkREREREZkIJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEsyNHUBhodVqERERATs7O0iSZOxwiIiIqAgTQiAhIQFly5aFQsHfkqn4YHKSQxEREXBzczN2GERERFSMhIeHo3z58sYOg6jAMDnJITs7OwAZHxL29vZGjoaIiIiKsvj4eLi5ucnXH0TFBZOTHMp8lMve3p7JCRERERUIPkpOxQ0fYiQiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgksEM8ERFRHgkhkJqaarD9qVSqXHWENlQcuSnfFOrAkDEYuw1SUlLyvA+iwojJCRERUR6lpqaiZ8+eBtvftm3bYGlpabQ4clO+KdSBIWMwdhukp6fneR9EhRGTEyIiIgMJfZSQ533UL5f3eS0uPsn9hW1dZ2WeyjaFOsjL8QN5rwMAQPiZvG3v6pX3GIgKISYnREREBtR0hB/MzC303k6jTsPJpZMMFkeLCSugUKpyvL42PRXB/kMNUrYp1IG+xw8Ytg4AYP0QL6iU+nXvTU3Xot/K8waLgaiwYXJCRERkQGbmFjCz0O+iOD8olCqYW+T8sSS1Acs2hTrQ9/gBw9YBAKiUClgqzQy8V6KijaN1ERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUkwN3YARERERdFhvyF4EfcUkqSA0soGDfpPQomK1XF11yrc/Xs3EqLuw2fsIpSr3yJfytekpeDInEF4/uAmzFVWsCrhgma+AbBzrYCn/5zHyaUToElLgSYtFR5t+8Cz21CDx/C6OkiJi8HJ5ZOR+DgcZkoLeA/8H5yr1Td4+QCwd1J3vIh9/P8x2KLJyLlwqlwbL54/wdG5w5EQeRcKpQWa+QagVFWvfImh7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r42G7g75EgNRYWHUOyd+fn7w9vaGnZ0dSpcujW7duuHmzZs66wghMG3aNJQtWxZWVlZo2bIlrl69Kr//7NkzjB49GtWqVYO1tTUqVKgAX19fxMXF6exn9uzZaNasGaytreHo6FgQh0dERMXYu77fo8N3v+BDv+2o3qE/Tq+aAgBwqdkYLf67FKWrN8j3GKp1+Bw91pxFt2V/w61xWxxfOAYAcGzBf1C39xh0W3oUnQL24sr2xXj+4Oabd5YLr6uDC1sWoFSVOugc8DsaD5mJE0smQqtRG7x8AGg1eS0+Wn4c3Zb9jVofj8KxgFEAgHNrpsO5RkN8vDYE741bgmD/IfkWw9YRDXBpZgtcmOGDce0rYeCaiwCAidtuoEllR4T5t8bagXXRd+V5qDXafImBqLAwanISHByMkSNH4tSpUzhw4ADUajXatm2LpKQkeZ25c+ciICAAixcvxtmzZ+Hq6oo2bdogISEBABAREYGIiAh8//33uHz5MgIDA7F3714MGjRIp6y0tDT07NkTw4cPL9BjJCKi4snCxl7+Oy05EZIkAQBKVakDOxe3fC/fzMISbo3ayuWWruGNhMh78vupifEAgPSUJCiUFlDZlTB4DK+rg/BT++DR5hMAgFPlWrB0cMKTm+cNXj4AqGz/vRORlhQPSBmXPneP/ooanb8EADhXqw8rx9KIvnYmX2JwtFbKf8clp0OhyKiHrWcjMLJ1RQCAdyVHuNhb4MSt2HyJgaiwMOpjXXv37tV5vXbtWpQuXRohISHw8fGBEAILFizA5MmT0b17dwBAUFAQXFxcsHHjRgwdOhS1atXCjh075H1UrlwZs2fPRr9+/aBWq2FunnGI06dPBwAEBgYWzMEREVGxd3LZN/IFb8sJy40ay9VfV6BCk/YAgPfGLcFf0/ogNGgWUuJi8O5/foBVidL5Uu6rdZCa8BxCCFjal5TXsXEui+SYSKBKnXyJIXjuMERd/BsA0Hb2dqTEP4MQWlg5lpLXsXWpgKQnD/OlfADov+o8Dl+PAQDsHdcYMYlp0AoBZ3uVvE7FUtYIf5aSbzEQFQYm1eck81GskiUzPrDu3r2LqKgotG3bVl5HpVKhRYsWOHHiBIYOzf752Li4ONjb28uJSW6kpqYiNTVVfh0fH5/rfRERUfHUdPgcAMCdo7twfuN8tBy/zChxXNw0H/ERd/CubwAA4PK2H+H95QxUavER4iPv4c//dkKJSrXypexX66DpcD/g/++gyITIl7IztRifkRiGHdiEs6unwGf8Ckh4JQbkbww/D87ozxJ0LBz/3XIN64Z4ZYkhn6uBqFAwmdG6hBAYO3Ysmjdvjlq1Mj4go6KiAAAuLi4667q4uMjvvSomJgYzZ858beKSU35+fnBwcJD/ubnl/y14IiIqmir5dEX0tbNITXhe4GVf3rYI947vQdtZ22BuaY2UuBjcP/E7KrX4CABgX6YinKs3xJMb5/I1jsw6yJQS/0z+O+lpJKydyuRr+QDg0eZTRF48Jr9+8fyp/Hfi43DYOJfP9xg+b+6Gwzdi5NdP4v/9IfR+TDLcSlrmewxEpsxkkpNRo0bh0qVL2LRpU5b3JOnVXxZElmVAxt2Njh07wtPTE1OnTs1TPJMmTUJcXJz8Lzw8PE/7IyKi4iM9ORHJsdHy6/CzB2Fh6wAL24IdienKjiW4c2QH2vvtlPteWNg6wkypQuSl4wCAlLgYPLl+Fo4Vqhu07DfVQYVGbRB2YDMAIOb2FaTEPYVzNcOPlJWWFJ/xuNj/u3d8D1T2JaGyK4GKPl1x/bfVAIAnN0PxIvYxSns2MngM8S/SERH776NaO0Mi4WRrgZI2SvT0LoMlh+4BAM7eeY6ouFQ0q2L4vj9EhYlJPNY1evRo7N69G0ePHkX58v/+auHq6gog4w5KmTL//qISHR2d5W5KQkIC2rdvD1tbW+zcuRNKpRJ5oVKpoFKp3r4iERHRK9JeJOLYgq+gSUuBpFBAZVcCLb5eAkmScHXXaoQd2ITUhFicWvEtzJQWaD9nG5SWNgaNIelpBM6s/BZ2ZSriz/GdAQAKpQpdfvwLrSavxZkVk6HVqCE0atT6eDRKVa1n0PLfVAd1P/0Kp5Z+g9/GdoTCXImmw+dAYWYOjUZj2BiS4nFo5ufQpL0AJAUsHUqhzYzNkCQJ3oOmIXjuMGz/ogEU5hbwGb8CCjPDXxbFJavRY8k5vEjTQqEAnO1U2DPGG5Ikwb9nDXy26jw8JhyChbkC6wZ7wdzMZH43JjIKoyYnQgiMHj0aO3fuxJEjR+Du7q7zvru7O1xdXXHgwAF4eWX8opKWlobg4GD4+/vL68XHx6Ndu3ZQqVTYvXs3LC15S5SIiIzHxskV7WZmfRIAAGp2/RI1u36ZZbkmLTWbtfMQQ6myGLgv+5GfytVviXL1j+gsU6cZtiP2m+rAyqEUWk1aadDysmNbujy6LDqYfQwlSqO93y86ywxdBwDg5mSFM1Pey/Y9FwcV9n/dRGdZSrphEzSiwsaoycnIkSOxceNG7Nq1C3Z2dnI/EgcHB1hZWUGSJIwZMwZz5syBh4cHPDw8MGfOHFhbW6NPnz4AMu6YtG3bFsnJyVi/fj3i4+PlzuvOzs4wMzMDADx48ADPnj3DgwcPoNFocOHCBQBAlSpVYGtrW/AHT0REREREOoyanCxbljFqScuWLXWWr127FgMGDAAAjB8/Hi9evMCIESMQGxuLxo0bY//+/bCzswMAhISE4PTp0wAyEo2X3b17FxUrVgQATJkyBUFBQfJ7mXdiDh8+nKV8IiIiIiIqeEZ/rOttJEnCtGnTMG3atGzfb9myZY72ExgYyDlOiIiIiIhMGHtdERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQRzYwdARERUlGjUaQW63eto01Oh1nN9QzGFOtD3+DO3MaTUdG2BbENUlDA5ISIiMqCTSycZOwQAQLD/UKOVbQp1YMzjz9Rv5Xljh0BU6DA5ISIiMpD65eyMHQIAoK6z0mhlm0IdGPP4ZW6N8rZ9erph4iAqZCQhhDB2EIVBfHw8HBwcEBcXB3t7e2OHQ0REJkQIgdRUwz0SpFKpIEmS0eLITfmmUAeGjMHYbRAfHw8XFxded1CxwzsnREREeSRJEiwtLY0dhlHjMIU6KEoxpKUZtg8SUWHB0bqIiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpOgV3KiVqsRFBSEqKio/IqHiIiIiIiKKb2SE3NzcwwfPhypqan5FQ8RERERERVTej/W1bhxY1y4cCEfQiEiIiIiouLMXN8NRowYgbFjxyI8PBwNGjSAjY2Nzvt16tQxWHBEZJqEEAa9g6pSqSBJktHiMHb5jCHvMRARUdEgCSGEPhsoFFlvtkiSBCEEJEmCRqMxWHCmJD4+Hg4ODoiLi4O9vb2xwyEyqpSUFPTs2dNg+9u2bRssLS2NFoexy2cMeY+BqKjhdQcVV3rfObl7925+xEFEhVDoo4Q876N+Obs87+Pik/Rcb1vXWZnn8vNaD8auA8Aw9YDwM3nb3q1R3mMgIqJCTe/k5J133smPOIiokGo6wg9m5hZ6b6dRp+Hk0kkGi6PFhBVQKFU5Xl+bnopg/6EGKz839WDsOgAMXw/rh3hBpdSvO2Nquhb9Vp43WAxERFR46Z2cZLp27RoePHiAtLQ0neVdunTJc1BEVHiYmVvAzEK/C+L8oFCqYG6R88eB1AYu3xTqQd86AAxfDyqlApZKMwPvlYiIigu9k5M7d+7go48+wuXLl+W+JgDkDoxFtc8JERERERHlL72HEv7Pf/4Dd3d3PH78GNbW1rh69SqOHj2Khg0b4siRI/kQIhERERERFQd63zk5efIkDh06BGdnZygUCigUCjRv3hx+fn7w9fXF+fN8bpiIiIiIiPSn950TjUYDW1tbAECpUqUQEREBIKOj/M2bNw0bHRERERERFRt63zmpVasWLl26hEqVKqFx48aYO3cuLCwssHLlSlSqVCk/YiQiIiIiomJA7+Tk22+/RVJSEgBg1qxZ6NSpE9577z04OTlhy5YtBg+QiIiIiIiKB72Tk3bt2sl/V6pUCdeuXcOzZ89QokQJecQuIiIiIiIifend5yTTrVu3sG/fPrx48QIlS5Y0ZExERERERFQM6Z2cxMTE4P3330fVqlXRoUMHREZGAgC+/PJLjBs3zuABEhERERFR8aD3Y11fffUVlEolHjx4gBo1asjLe/fuja+++grz5883aIBERERElD2NRoP09HRjh0H0RhYWFlAocnZPRO/kZP/+/di3bx/Kly+vs9zDwwP379/Xd3dEREREpCchBKKiovD8+XNjh0L0VgqFAu7u7rCwsHjrunonJ0lJSbC2ts6y/OnTp1CpVPrujoiIiIj0lJmYlC5dGtbW1hyUiEyWVqtFREQEIiMjUaFChbf+v6p3cuLj44Off/4ZM2fOBABIkgStVot58+ahVatWuYuaiIiIiHJEo9HIiYmTk5OxwyF6K2dnZ0RERECtVkOpVL5xXb2Tk3nz5qFly5Y4d+4c0tLSMH78eFy9ehXPnj3D8ePHcx00EREREb1dZh+T7J5kITJFmY9zaTSatyYneo/W5enpiUuXLqFRo0Zo06YNkpKS0L17d5w/fx6VK1fOXcREREREpBc+ykWFhT7/r+p95wQAXF1dMX369NxsSkRERERElC2975xUrFgRM2bMQHh4eH7EQ0RERERExZTed07GjRuHwMBAzJgxA61atcKgQYPw0UcfcaQuIiIiImObX8CPeo0TBVuekUmShJ07d6Jbt27GDiXXWrZsiXr16mHBggXGDiVbet85GT16NEJCQhASEgJPT0/4+vqiTJkyGDVqFEJDQ/MjRiIiIiIq5CRJeuO/AQMGGC22ihUr5uhiPTIyEh9++GGO9xsYGAhHR8fcB1YM6Z2cZKpbty4WLlyIR48eYerUqVi9ejW8vb1Rt25d/PTTTxCieGXSRERERPR6kZGR8r8FCxbA3t5eZ9nChQv12l9aWlo+Rfp6rq6uRnlaSKPRQKvVFni5xpDr5CQ9PR1bt25Fly5dMG7cODRs2BCrV69Gr169MHnyZPTt29eQcRIRERFRIebq6ir/c3BwgCRJ8mulUolhw4ahfPnysLa2Ru3atbFp0yad7Vu2bIlRo0Zh7NixKFWqFNq0aQMA2L17Nzw8PGBlZYVWrVohKCgIkiTh+fPn8rYnTpyAj48PrKys4ObmBl9fXyQlJcn7vX//Pr766iv5Ls7rSJKEX3/9FQBw7949SJKEX375Ba1atYK1tTXq1q2LkydPAgCOHDmCL774AnFxcfJ+p02bBgDydBzlypWDjY0NGjdujCNHjsjlZN5x2bNnDzw9PaFSqbBq1SpYWlrqHBcA+Pr6okWLFgCAmJgYfPrpp2+sR1Ond3ISGhqK0aNHo0yZMhg9ejRq1qyJK1eu4NixY/jiiy8wefJk7N69Gzt37syPeImIiIioiElJSUGDBg2wZ88eXLlyBUOGDMFnn32G06dP66wXFBQEc3NzHD9+HCtWrMC9e/fw8ccfo1u3brhw4QKGDh2KyZMn62xz+fJltGvXDt27d8elS5ewZcsWHDt2DKNGjQIA/PLLLyhfvjxmzJgh38XRx+TJk/H111/jwoULqFq1Kj799FOo1Wo0a9Ysyx2ir7/+GgDwxRdf4Pjx49i8eTMuXbqEnj17on379ggLC5P3m5ycDD8/P6xevRpXr15Fv3794OjoiB07dsjraDQabN26Vb4pkNN6NGV6d4j39vZGmzZtsGzZMnTr1i3biVQ8PT3xySefGCRAIiIiIiraypUrJ1+4Axl9nPfu3Ytt27ahcePG8vIqVapg7ty58uuJEyeiWrVqmDdvHgCgWrVquHLlCmbPni2vM2/ePPTp0wdjxowBAHh4eODHH39EixYtsGzZMpQsWRJmZmaws7ODq6ur3rF//fXX6NixIwBg+vTpqFmzJm7duoXq1avr3CHKdPv2bWzatAkPHz5E2bJl5X3s3bsXa9euxZw5cwBkPKW0dOlS1K1bV962d+/e2LhxIwYNGgQAOHjwIGJjY9GzZ0+96tGU6Z2c3LlzB++8884b17GxscHatWtzHRQRERERFR8ajQbfffcdtmzZgkePHiE1NRWpqamwsbHRWa9hw4Y6r2/evAlvb2+dZY0aNdJ5HRISglu3bmHDhg3yMiEEtFot7t69ixo1auQp9jp16sh/lylTBgAQHR2N6tWrZ7t+aGgohBCoWrWqzvLU1FQ4OTnJry0sLHT2DQB9+/ZF06ZNERERgbJly2LDhg3o0KEDSpQoASDn9WjK9E5O3paYEBERERHpY/78+fjhhx+wYMEC1K5dGzY2NhgzZkyWTu+vXmQLIbL0EXl1UCatVouhQ4fC19c3S7kVKlTIc+wvP0WUGcubOq9rtVqYmZkhJCQEZmZmOu/Z2trKf1tZWWU5tkaNGqFy5crYvHkzhg8fjp07d+rcEMhpPZqyXM0QT0RERERkKH///Te6du2Kfv36Aci4gA8LC3vrXY3q1avjjz/+0Fl27tw5ndf169fH1atXUaVKldfux8LCAhqNJpfRv152+/Xy8oJGo0F0dDTee+89vffZp08fbNiwAeXLl4dCoZAfKQNyX4+mJNejdRERERERGUKVKlVw4MABnDhxAtevX8fQoUMRFRX11u2GDh2KGzduYMKECfjnn3+wdetWBAYGAvj3LsaECRNw8uRJjBw5EhcuXEBYWBh2796N0aNHy/upWLEijh49ikePHuHp06cGO66KFSsiMTERBw8exNOnT5GcnIyqVauib9++6N+/P3755RfcvXsXZ8+ehb+/f5ZEKzt9+/ZFaGgoZs+ejY8//hiWlpbye7mtR1PCOydERERERUUhnbH9f//7H+7evYt27drB2toaQ4YMQbdu3RAXF/fG7dzd3bF9+3aMGzcOCxcuRNOmTTF58mQMHz5cno+kTp06CA4OxuTJk/Hee+9BCIHKlSujd+/e8n5mzJiBoUOHonLlykhNTTXYfH3NmjXDsGHD0Lt3b8TExGDq1KmYNm0a1q5di1mzZmHcuHF49OgRnJyc0LRpU3To0OGt+/Tw8IC3tzfOnj2bZeLI3NajKdErOUlPT0e1atXkMZeJiIiIiPQ1YMAAnRnhS5YsKc8f8jovzwPysi5duqBLly7y69mzZ6N8+fI6dxS8vb2xf//+1+67SZMmuHjx4lvjfjlpqVixYpYkxtHRMcuyZcuWYdmyZTrLlEolpk+fjunTp2dbzqv186ozZ85kuzwv9Wgq9EpOlEolUlNT3zg5jT78/Pzwyy+/4MaNG7CyskKzZs3g7++PatWqyesIITB9+nSsXLkSsbGxaNy4MZYsWYKaNWsCAJ49e4apU6di//79CA8PR6lSpdCtWzfMnDkTDg4O8n5iY2Ph6+uL3bt3A8j4H3nRokVwdHQ0yLEQFXeH/YbgRdxTSJICSisbNOg/CSUqVsfVXatw9+/dSIi6D5+xi1Cufot8KV+TloIjcwbh+YObMFdZwaqEC5r5BsDOtQKe3AzF6eWTkP4iEZKkQKOhs1Has9Hbd5oLr6uHlLgYnFw+GYmPw2GmtID3wP+hpHvNfIlh76TueBH7+P9jsEWTkXPhVLk2Xjx/gqNzhyMh8i4USgs08w1AqapeBi+/7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r43mVUsavHwiKl6WLl0Kb29vODk54fjx45g3b548hwkVPno/1jV69Gj4+/tj9erVMDfP21NhwcHBGDlyJLy9vaFWqzF58mS0bdsW165dk0djmDt3LgICAhAYGIiqVati1qxZaNOmDW7evAk7OztEREQgIiIC33//PTw9PXH//n0MGzYMERER2L59u1xWnz598PDhQ+zduxcA5ElpfvvttzwdAxFleNf3e1jY2AMAHp47iNOrpqD97K1wqdkYFZq0x5lVU/I9hmodPkd57zaQJAnXdq3E8YVj0G7ODhyc8Rla/Hc5ytR7D88f/IN9kz5C1+XH8iWG19XDhS0LUKpKHbSasBwxt6/g2MKx6OCfP5PVtpq8FirbjB9n7p/4HccCRqHrkmCcWzMdzjUaot2c7XhyMxSHZn2Oj1aeNHj5W0c0gKN1xug1v4ZGYeCaiwid7oOJ226gSWVH7B3XGGfvPMfHS0Nw27+VwcsnouIlLCwMs2bNwrNnz1ChQgWMGzcOkyZNMnZYlEt6ZxenT5/GwYMHsX//fnmIspf98ssvOd5XZqKQae3atShdujRCQkLg4+MDIQQWLFiAyZMno3v37gAyZgZ1cXHBxo0bMXToUNSqVUtnpszKlStj9uzZ6NevH9RqNczNzXH9+nXs3bsXp06dkiegWbVqFZo2bYqbN2/q3KkhotzJvCAHgLTkRPkOa6kqdV63iUGZWVjCrVFb+XXpGt64unM5UuOfITUhFmXqZYyI4lihKixsHfAo5FC+xPG6egg/tQ+dF2R85jlVrgVLByc8DbuQLzFkJiYAkJYUD0gZY5/cPforegZllOlcrT6sHEsj+lr2jwbkRWZiAgBxyelQKDLqYOvZCNyd2xoA4F3JES72FjgW9gxNKpcweAxEVHz88MMP+OGHH4wdBhmI3smJo6MjevTokR+xyJ11SpbMuM1/9+5dREVFoW3bfy84VCoVWrRogRMnTmDo0KGv3Y+9vb18Z+fkyZNwcHDQmRmzSZMmcHBwwIkTJ7JNTjInrckUHx+f9wMkKuJOLvtGvthtOWG5UWO5+usKVGjSHpYOTrBydMa9v3ej4ntdEH3jHOIe3UZSdHi+lf1qPaQmPIcQApb2/z7CZONcFskx+TeCSvDcYYi6+DcAoO3s7UiJfwYhtLByLCWvY+tSAUlPHuZL+f1Xncfh6zEAgL3jGiMmMQ1aIeBsr5LXqVjKGg9iUtCkcr6EQEREhZDeyUl+zfwuhMDYsWPRvHlz1KpVCwDkoc9cXFx01nVxccH9+/ez3U9MTAxmzpypk7hERUWhdOnSWdYtXbr0a4dX8/Pze20nJSLKXtPhcwAAd47uwvmN89Fy/LK3bJE/Lm6aj/iIO3jXNwAA8MG0DTi7Zhoubp6PEhU94VKzCSQz5Vv2knuv1kPT4X7Aq331DDQSzOu0GJ+RHIYd2ISzq6fAZ/wKSHi1v2D+xfDz4Iy+LEHHwvHfLdewbohXlvLzuQqIiKgQyvU8J0+ePMGxY8dw/PhxPHnyJM+BjBo1CpcuXcKmTZuyvJfdzJ/ZdcqPj49Hx44d4enpialTp75xH2/aDwBMmjQJcXFx8r/w8Pz7lZWoqKnk0xXR184iNeF5gZd9edsi3Du+B21nbYO5pTUAoGSlWmg3ezu6LgmGz3+XITkmCo4VquZ7LJn1kCkl/pn8d9LTSFg7ueZ7DB5tPkXkxX/717x4/u/4/YmPw2HjXD5fy/+8uRsO34iRXz+J//eO9P2YZFRwssxuMyIiKqb0Tk6SkpIwcOBAlClTBj4+PnjvvfdQtmxZDBo0CMnJybkKYvTo0di9ezcOHz6M8uX//aJ0dc344n717kZ0dHSWuykJCQlo3749bG1tsXPnTiiVSp39PH78OEu5T548ybKfTCqVCvb29jr/iCh76cmJSI6Nll+Hnz0IC1sHWLzU96EgXNmxBHeO7EB7v506/S6Sn/17/t/8IwjmltZwrdPc4OW/qR4qNGqDsAObAQAxt68gJe4pSnnUM3gMaUnxSI6JlF/fO74HKvuSUNmVQEWfrrj+22oAwJOboXgR+9jgo5bFv0hHRGyK/HpnSCScbC1Q0kaJnt5lsOTQPQDA2TvPERWXiuYeHK2LiIj+pfdjXWPHjkVwcDB+++03vPvuuwCAY8eOwdfXF+PGjcsyjvObCCEwevRo7Ny5E0eOHIG7u7vO++7u7nB1dcWBAwfg5ZXxiEBaWhqCg4Ph7+8vrxcfH4927dpBpVJh9+7dOuNaA0DTpk0RFxeHM2fOoFGjjC/i06dPIy4uDs2aNdO3CojoFWkvEnFswVfQpKVAUiigsiuBFl8vgSRJuLprNcIObEJqQixOrfgWZkoLtJ+zDUpLm7fvWA9JTyNwZuW3sCtTEX+O7wwAUChV6PLjX7j5RyBuH9oGCAGHClXx/pR1BhsS/WVvqoe6n36FU0u/wW9jO0JhrkTT4XOgMDP8PLhpSfE4NPNzaNJeAJIClg6l0GbGZkiSBO9B0xA8dxi2f9EACnML+IxfYfAY4l6o0XfFebxI00KhAJztVNgzxhuSJMG/Zw18tuo8PCYcgoW5AusGe8HcTAG1VmPQGIiIqPDS+1tpx44d2L59O1q2bCkv69ChA6ysrNCrVy+9kpORI0di48aN2LVrF+zs7OQ7JA4ODrCysoIkSRgzZgzmzJkDDw8PeHh4YM6cObC2tkafPn0AZNwxadu2LZKTk7F+/XrEx8fLndednZ1hZmaGGjVqoH379hg8eDBWrFgBIGMo4U6dOnGkLiIDsHFyRbuZWR/JBICaXb9Eza5fZlmuSUvNZu08xFCqLAbui832Pa9+E+DVb4LOMnVaSrbr5imGN9SDlUMptJq0UmeZoesAAGxLl0eXRQezj6FEabT30x1R0dD14FbSCmemvJftey4OKuz/uolByyMiKgoGDBiA58+fv3UCRVMWGBiIMWPG4Pnz53naj97JSXJycraPQpUuXVrvx7oyE5mXEx0go9N95qyY48ePx4sXLzBixAh5Esb9+/fDzs4OABASEoLTp08DAKpUqaKzn7t376JixYoAgA0bNsDX11ce+atLly5YvHixXvESERERmbJS044WaHlPp/notf6AAQMQFBQEADA3N4ebmxu6d++O6dOnZ5meojhZuHBhlpnl30aSJOzcuRPdunXLn6CMRO/kpGnTppg6dSp+/vln+fGpFy9eYPr06WjatKle+8pJI0iShGnTpmHatGnZvt+yZcsc7adkyZJYv369XvERERERkWG1b98ea9euRXp6Ov7++298+eWXSEpKyvbpm/T0dJ1+xAUpP8pOS0uDhYVFluUODgXbR/Nlxqzj7OjdIX7hwoU4ceIEypcvj/fffx8ffPAB3NzccOLECSxcuDA/YiQiIiKiIkKlUsHV1RVubm7o06cP+vbtKz/ONG3aNNSrVw8//fQTKlWqBJVKBSEE4uLiMGTIEJQuXRr29vZo3bo1Ll68qLPf3bt3o2HDhrC0tESpUqXkCbyBjB+7X31kytHREYGBgQCAe/fuQZIkbN26FS1btoSlpSXWr1+P+/fvo3PnzihRogRsbGxQs2ZN/PHHH/I+goOD0ahRI6hUKpQpUwYTJ06EWq2W32/ZsiVGjRqFsWPHolSpUmjTpk22dTJgwACdOyAtW7aEr68vxo8fj5IlS8LV1VXnh/rMJ4M++ugjSJIkvwaA3377DQ0aNIClpSUqVaqE6dOn68QkSRKWL1+Orl27wsbGBjNmzED58uWxfLnu/GShoaGQJAl37twBAAQEBMgTsLu5uWHEiBFITEzM9njyQu/kpFatWggLC4Ofnx/q1auHOnXq4LvvvkNYWBhq1qxp8ACJiIiIqOiysrJCenq6/PrWrVvYunUrduzYgQsXLgAAOnbsiKioKPzxxx8ICQlB/fr18f777+PZs4wh2n///Xd0794dHTt2xPnz53Hw4EE0bNhQ71gmTJgAX19fXL9+He3atcPIkSORmpqKo0eP4vLly/D394etrS0A4NGjR+jQoQO8vb1x8eJFLFu2DGvWrMGsWbN09hkUFARzc3McP35c7vucE0FBQbCxscHp06cxd+5czJgxAwcOHAAAnD2bMUz92rVrERkZKb/et28f+vXrB19fX1y7dg0rVqxAYGAgZs+erbPvqVOnomvXrrh8+TK+/PJLfPLJJ9iwYYPOOhs3bkTTpk1RqVIlAIBCocCPP/6IK1euICgoCIcOHcL48eP1qN2cydUwLVZWVhg8eLChYyEiIiKiYuTMmTPYuHEj3n//fXlZWloa1q1bB2dnZwDAoUOHcPnyZURHR0OlUgEAvv/+e/z666/Yvn07hgwZgtmzZ+OTTz7RmUC7bt26esczZswYnTsuDx48QI8ePVC7dm0AkC/UAWDp0qVwc3PD4sWLIUkSqlevjoiICEyYMAFTpkyBQpFxD6BKlSqYO3eu3rHUqVNHnrfPw8MDixcvxsGDB9GmTRu5bhwdHeWpNwBg9uzZmDhxIj7//HM53pkzZ2L8+PE6cwD26dMHAwcOlF/37dsXAQEBuH//Pt555x1otVps3rwZ33zzjU7dZHJ3d8fMmTMxfPhwLF26VO9je5NcJSf//PMPjhw5gujoaGi1Wp33pkyZYpDAiIiIiKjo2bNnD2xtbaFWq5Geno6uXbti0aJF8vvvvPOOfPENZAx+lJiYCCcnJ539vHjxArdv3wYAXLhwwSA/nL96t8XX1xfDhw/H/v378cEHH6BHjx6oU6cOAOD69eto2rSpztD07777LhITE/Hw4UNUqFAh233mVGY5mcqUKYPo6OjXrJ0hJCQEZ8+e1blTotFokJKSguTkZFhbW2cbk5eXF6pXr45NmzZh4sSJCA4ORnR0NHr16iWvc/jwYcyZMwfXrl1DfHw81Go1UlJSkJSUZNDBDPROTlatWoXhw4ejVKlScHV11WkQSZKYnBARERHRa7Vq1QrLli2DUqlE2bJls3TGfvVCV6vVokyZMjhy5EiWfTk6OgLIeKrnTSRJyjKA0suPkr2u7C+//BLt2rXD77//jv3798PPzw/z58/H6NGjIYTIMmdWZhkvL8/thfur9SJJUpabAq/SarWYPn26zt2fTC/PA5hdTH379sXGjRsxceJEbNy4Ee3atUOpUqUAAPfv30eHDh0wbNgwzJw5EyVLlsSxY8cwaNCgbOsxL/ROTmbNmoXZs2djwoQJb1+ZiIiIiOglNjY2WaZ/eJP69esjKioK5ubmOh2/X1anTh0cPHgQX3zxRbbvOzs7IzIyUn4dFhaW4ykw3NzcMGzYMAwbNgyTJk3CqlWrMHr0aHh6emLHjh06ScqJEydgZ2eHcuXK5fj4ckupVEKj0Z3Etn79+rh586Ze9ZupT58++PbbbxESEoLt27frjJ527tw5qNVqzJ8/X35cbevWrXk7gNfQu0N8bGwsevbsmR+xEBERERHp+OCDD9C0aVN069YN+/btw71793DixAl8++23OHfuHICMDt6bNm3C1KlTcf36dVy+fFmnn0fr1q2xePFihIaG4ty5cxg2bFiOhs8dM2YM9u3bh7t37yI0NBSHDh1CjRo1AAAjRoxAeHg4Ro8ejRs3bmDXrl2YOnUqxo4dK1/A56eKFSvi4MGDiIqKQmxsxiTEU6ZMwc8//4xp06bh6tWruH79OrZs2YJvv/32rftzd3dHs2bNMGjQIKjVanTt2lV+r3LlylCr1Vi0aBHu3LmDdevWZRndy1D0rrmePXti//79+RELEREREZEOSZLwxx9/wMfHBwMHDkTVqlXxySef4N69e/LE4C1btsS2bduwe/du1KtXD61bt5Yn6QaA+fPnw83NDT4+PujTpw++/vpruf/Fm2g0GowcORI1atRA+/btUa1aNbkDeLly5fDHH3/gzJkzqFu3LoYNG4ZBgwblKBEwhPnz5+PAgQNwc3ODl5cXAKBdu3bYs2cPDhw4AG9vbzRp0gQBAQF45513crTPvn374uLFi+jevbvOo3L16tVDQEAA/P39UatWLWzYsAF+fn75clySyMEMhj/++KP8d1JSEgICAtCxY0fUrl07S9bp6+tr+ChNQHx8PBwcHBAXFwd7e3tjh0NkVCkpKejZsydCHyWgue98mFmo9N6HJi0Vx34ch/rl7LBt2zadZ2H1jePik3S0+jYQ5hY534c6LQWHZw1AXWdlnsvPbT0Yuw4Aw9YDws9g28gGsFSa6bd9ugY9l4QAbo1yHQNRUfOm646UlBTcvXsX7u7uPF+oUNDn/9kc9Tn54YcfdF7b2toiODgYwcHBOsslSSqyyQkREREREeWvHCUnd+/eze84iIiIiIiomMv/3jpEREREREQ5oHdy8vHHH+O7777LsnzevHkcxYuIiIiIiHJN7+QkODgYHTt2zLK8ffv2OHr0qEGCIiIiIqI3y8GYRkQmQZ//V/VOThITE2FhYZFluVKpRHx8vL67IyIiIiI9ZI6UmtNJBImMLS0tDQBgZvb20Rz1niG+Vq1a2LJlC6ZMmaKzfPPmzfD09NR3d0RERESkBzMzMzg6OiI6OhoAYG1tLc9QTmRqtFotnjx5Amtra5ibvz310Ds5+d///ocePXrg9u3baN26NQDg4MGD2LRpE7Zt26Z/xERERESkF1dXVwCQExQiU6ZQKFChQoUcJdF6JyddunTBr7/+ijlz5mD79u2wsrJCnTp18Ndff6FFixa5CpiIiIiIck6SJJQpUwalS5dGenq6scMheiMLCwsoFDnrTaJ3cgIAHTt2zLZTPBEREREVHDMzsxw9x09UWOQqOQEyOrZER0dDq9XqLK9QoUKegyIiIiIiouJH7+QkLCwMAwcOxIkTJ3SWCyEgSRI0Go3BgiMiIiIiouJD7+RkwIABMDc3x549e1CmTBmODkFERERERAahd3Jy4cIFhISEoHr16vkRDxERERERFVN6T8Lo6emJp0+f5kcsRERERERUjOmdnPj7+2P8+PE4cuQIYmJiEB8fr/OPiIiIiIgoN/R+rOuDDz4AALz//vs6y9khnoiIiIiI8kLv5OTw4cP5EQcRERERERVzeicnb5oF/sKFC3mJhYgKIY06rUC3ex1teirUeq5vSLk5HmPXQeY2hpSarn37SgbYhoiIiqZcT8KYKS4uDhs2bMDq1atx8eJFPtZFVMycXDrJ2CEAAIL9hxq1fFOoB2PXAQD0W3ne2CEQEVEhluvk5NChQ/jpp5/wyy+/4J133kGPHj2wZs0aQ8ZGRCaufjk7Y4cAAKjrrDRq+aZQD8auAwCAWyNjR0BERIWcJIQQOV354cOHCAwMxE8//YSkpCT06tULy5cvx8WLF+Hp6ZmfcRpdfHw8HBwcEBcXB3t7e2OHQ2RUQgikphrucSCVSpWrCV0NFYexy2cMeY+BqKjhdQcVVzm+c9KhQwccO3YMnTp1wqJFi9C+fXuYmZlh+fLl+RkfEZkgSZJgaWlp7DCMHoexy2cMRERU1OQ4Odm/fz98fX0xfPhweHh45GdMRERERERUDOV4Esa///4bCQkJaNiwIRo3bozFixfjyZMn+RkbEREREREVIzlOTpo2bYpVq1YhMjISQ4cOxebNm1GuXDlotVocOHAACQkJ+RknEREREREVcXp1iH/VzZs3sWbNGqxbtw7Pnz9HmzZtsHv3bkPGZzLYMY2IiIgKCq87qLjK8Z2T7FSrVg1z587Fw4cPsWnTJkPFRERERERExVCe7pwUJ/wFg4iIiAoKrzuouMrTnRMiIiIiIiJDYXJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBLMjR1AYZOSkgILC4s870elUkGSJL22EUIgNTXVKGUbsnzGkPcYiIiIiIoiJid66t+/P5RKZZ73s23bNlhaWuq1TWpqKnr27GmUsg1ZPmPIewxERERERRGTEz1djEyEwixv1Va/nF3eYniSnutt6zrnPbEKfZSQp+3zevxA3uoAMEw9IPxM3rZ3a5T3GIiIiIiKECYnudB0hB/MzPV/tEujTsPJpZMMEkOLCSugUKpyvL42PRXB/kMNUjaQuzow5PED+tcBYPh6WD/ECyqlfl23UtO16LfyvMFiICIiIioqmJzkgpm5Bcws9LsoNjSFUgVzi5w/DqQ2cPmFsQ4Aw9eDSqmApdLMwHslIiIiKp44WhcREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBHNjFu7n54dffvkFN27cgJWVFZo1awZ/f39Uq1ZNXkcIgenTp2PlypWIjY1F48aNsWTJEtSsWVNeZ+XKldi4cSNCQ0ORkJCA2NhYODo66pQVGhqKCRMm4OzZszAzM0OPHj0QEBAAW1vbXMd/2G8IXsQ9hSQpoLSyQYP+k1CiYnVc3bUKd//ejYSo+/AZuwjl6rfIdRlvok5LwZE5g/D8wU2Yq6xgVcIFzXwDYOdaAU//OY+TSydAk5YCTVoqKr/fK19ieF0dpMTF4OTyyUh8HA4zpQW8B/4PJd1rvn2HubB3Une8iH38/zHYosnIuXCqXBsvnj/B0bnDkRB5FwqlBZr5BqBUVS+Dl9/2+1OIikuFQpJgZ2mORf1qol4FB0THp6L/qgu4HZ0EldIMy/vXRvOqJQ1ePhEREVFRYdQ7J8HBwRg5ciROnTqFAwcOQK1Wo23btkhKSpLXmTt3LgICArB48WKcPXsWrq6uaNOmDRISEuR1kpOT0b59e3zzzTfZlhMREYEPPvgAVapUwenTp7F3715cvXoVAwYMyFP87/p+jw7f/YIP/bajeof+OL1qCgDApWZjtPjvUpSu3iBP+8+Jah0+R481Z9Ft2d9wa9wWxxeOAQAcW/Af1O09Bt2WHkWngL24tnMZ0pMTDV7+6+rgwpYFKFWlDjoH/I7GQ2bixJKJ0GrUBi8fAFpNXouPlh9Ht2V/o9bHo3AsYBQA4Nya6XCu0RAfrw3Be+OWINh/SL7EsHVEA1ya2QIXZvhgXPtKGLjmIgBg4rYbaFLZEWH+rbF2YF30XXkeao3W4OUTERERFRVGvXOyd+9enddr165F6dKlERISAh8fHwghsGDBAkyePBndu3cHAAQFBcHFxQUbN27E0KFDAQBjxowBABw5ciTbcvbs2QOlUoklS5ZAocjIx5YsWQIvLy/cunULVapUyVX8Fjb28t9pyYmQJAkAUKpKnVztT1/mFpZwa9RWfl26hjeu7lwuv05NjAcApKckQWFuAYW50uAxvK4Owk/tQ+cFGe3rVLkWLB2c8DTsgsHLBwCVrcO/MSTFA1JGG989+it6BmWU6VytPqwcSyP62hmDl+9o/W+9xiWnQ6HIqIOtZyNwd25rAIB3JUe42FvgWNgzNKlcwuAxEBERERUFRk1OXhUXFwcAKFky49GXu3fvIioqCm3b/nsBrlKp0KJFC5w4cUJOTt4mNTUVFhYWcmICAFZWVgCAY8eOZZucpKamIjU1VX4dHx+f7b5PLvtGvuBtOWF5tusUlKu/rkCFJu0BAO+NW4K/pvVBaNAspMTFoMnIuXhw4vd8KffVOkhNeA4hBCzt/32Eyca5LJJjovKlfAAInjsMURf/BgC0nb0dKfHPIIQWVo6l5HVsXSog6cnDfCm//6rzOHw9BgCwd1xjxCSmQSsEnO1V8joVS1njQUwKmlTOlxCIiIiICj2T6RAvhMDYsWPRvHlz1KpVCwAQFZVxMevi4qKzrouLi/xeTrRu3RpRUVGYN28e0tLSEBsbKz8CFhkZme02fn5+cHBwkP+5ubllu17T4XPQddFfqN1zNM5vnJ/jmAzt4qb5iI+4gwYDvgUAXN72I7y/nIHe66/go5UncX7dd0h/kfSWveROtnXw/3dQZELkS9mZWoxfjt4brqL+gG9xdnXGo2USXokB+RfDz4O9EB7wAWZ1r4b/brmWbfn5XAVEREREhZ7JJCejRo3CpUuXsGnTpizvSdKrF3kiy7I3qVmzJoKCgjB//nxYW1vD1dUVlSpVgouLC8zMzLLdZtKkSYiLi5P/hYeHv7GMSj5dEX3tLFITnuc4LkO5vG0R7h3fg7aztsHc0hopcTG4f+J3VGrxEQDAvkxFOFerj9TE/I0tsw4ypcQ/k/9OehoJayfXfC0fADzafIrIi8fk1y+eP5X/TnwcDhvn8vla/ufN3XD4Roz8+kn8v3ff7scko4KTZb6WT0RERFSYmURyMnr0aOzevRuHDx9G+fL/Xjy6umZczL56lyQ6OjrL3ZS36dOnD6KiovDo0SPExMRg2rRpePLkCdzd3bNdX6VSwd7eXuffy9KTE5EcGy2/Dj97EBa2DrB4qf9DQbiyYwnuHNmB9n475b4XFraOMFOqEHnpOAAgJS4GT26GQmmV+5HJsvOmOqjQqA3CDmwGAMTcvoKUuKco5VHPoOUDGX1MkmP+vft17/geqOxLQmVXAhV9uuL6b6sBAE9uhuJF7GOU9mxk0PLjX6QjIjZFfr0zJBJOthYoaaNET+8yWHLoHgDg7J3niIpLRXMPjtZFRERE9DpG7XMihMDo0aOxc+dOHDlyJEui4O7uDldXVxw4cABeXhlDwKalpSE4OBj+/v65KjMzqfnpp59gaWmJNm3a5Go/aS8ScWzBV9CkpUBSKKCyK4EWXy+BJEm4ums1wg5sQmpCLE6t+BZmSgu0n7MNSkubXJX1OklPHuHMym9hV6Yi/hzfGQCgUKrQ5ce/0GryWpxZMRlajRpCo0bNj4Yh6v+TFUN5Ux3U/fQrnFr6DX4b2xEKcyWaDp8DhZnh/3dLS4rHoZmfQ5P2ApAUsHQohTYzNkOSJHgPmobgucOw/YsGUJhbwGf8CoPHEPdCjb4rzuNFmhYKBeBsp8KeMd6QJAn+PWvgs1Xn4THhECzMFVg32AvmZgqotRqDxkBERERUVBg1ORk5ciQ2btyIXbt2wc7OTr5D4uDgACsrK0iShDFjxmDOnDnw8PCAh4cH5syZA2tra/Tp00feT1RUFKKionDr1i0AwOXLl2FnZ4cKFSrInesXL16MZs2awdbWFgcOHMB///tffPfdd1nmQ8kpGydXtJuZ9RE0AKjZ9UvU7PplluWatNRs1s49G+dyGLgvNtv3ytVviXL1j8iv1WkpBk9O3lQHVg6l0GrSSp1lhj5+ALAtXR5dFh3MPoYSpdHe7xedZeq0lGzXzS23klY4M+W9bN9zcVBh/9dNDFoeERERUVFm1ORk2bJlAICWLVvqLF+7dq08B8n48ePx4sULjBgxQp6Ecf/+/bCzs5PXX758OaZPny6/9vHxybKfM2fOYOrUqUhMTET16tWxYsUKfPbZZ/l3cEREREREpBejP9b1NpIkYdq0aZg2bdpr13nb+wDw888/6xkdEREREREVJJPoEE9ERERERMTkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMgnmxg6gMNKo0wp0u+xo01Oh1nN9Q8rNsRjy+AH96yBzG0NKTdcWyDZERERExQGTk1w4uXSSsUNAsP9Qo5bPOsjQb+V5Y4dAREREVGQwOdFT3TK2UCqVxo3B2bjl1y9nZ9TyAePXAQDArZGxIyAiIiIqUiQhhDB2EIVBfHw8HBwc8PjxY9jb2+d5fyqVCpIk6bWNEAKpqXl/LCk3ZRuyfMaQ9xiIiKhoy7zuiIuLM8h1B1FhwTsnerK0tISlpaVRypYkyWhlm0L5jIGIiIioaONoXUREREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSOFpXDmWOuBwfH2/kSIiIiKioy7ze4IwPVNwwOcmhhIQEAICbm5uRIyEiIqLiIiEhAQ4ODsYOg6jAcBLGHNJqtYiIiICdnR0nzXuN+Ph4uLm5ITw8nBNGFQJsr8KDbVW4sL0KF1NtLyEEEhISULZsWSgUfAqfig/eOckhhUKB8uXLGzuMQsHe3t6kPuDpzdhehQfbqnBhexUupthevGNCxRFTcSIiIiIiMglMToiIiIiIyCQwOSGDUalUmDp1KlQqlbFDoRxgexUebKvChe1VuLC9iEwLO8QTEREREZFJ4J0TIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOaEci46OhkajMXYYREVOYmKisUOgHOLnIBFR/mJyQm8khEBaWhqGDBmCdu3a4eTJk8YOid7g8ePH+P3338HpiwqHyMhI9O3bF59++ikGDRqE0NBQY4dE2eDnYOETFRWFGTNmYOnSpfjjjz+MHQ4R6YHJCb2RJEmIjo7G7t278eTJExw6dAhxcXEAwAtgE7N48WKULVsWnTt3xtWrV40dDr3F+vXrUatWLaSlpeHDDz/EoUOH4O/vj6ioKGOHRq/g52DhMnPmTFSpUgVnzpxBYGAgPvroI2zcuBEA24uoMGByQm+Vnp6OTp064bPPPsP69etx6tQpABlf2GR8Qgj88ccf+PXXXzF37lx4eXlh+vTp0Gq1xg6NXkOj0eDnn3/G2LFjsW3bNowYMQL+/v4IDg6GlZWVscOjbPBz0PRpNBr4+/vjjz/+wNatW7Fnzx4cPHgQY8eOxaRJkwCwvYgKAyYn9FYPHz7EpUuX4OfnBxsbG2zatEn+1ZCMT5IkuLi44LPPPsPQoUPxww8/YMeOHdi3b5+xQ6PXuHz5Mu7cuYOyZcvKy5KTk9GjRw+eWyaKn4Omz8zMDGlpaWjdujXat28PALCzs0OLFi1gbm6O27dvGzlCIsoJJicEAEhLS8OLFy+yfe/hw4fw9PQEAEycOBFHjx7Fpk2bMGTIEERGRhZkmAQgISEBR48exa1bt+RlDRo0wOeffw5bW1v4+PigZ8+emDx5MhISEowYKQG651bm3SxPT084OTlhzZo1WLlyJXr16oWBAwfi/PnzqFOnDsaMGYPo6Ghjhl0sxcfH49SpU3j06FGW9/g5aHqSkpIQFhaG+Ph4ednXX3+N2bNnQ6FQyI9wPXv2DJaWlqhcubKxQiUiPTA5Ifj7+6N27do4evSozvLMC6n4+Hg8f/4cANC7d2+Ym5vD19cX586dgyRJfIa3AM2cOROVK1fG2LFjUadOHQQEBOh8MWe2mZ+fH27cuIHAwEAjRUpA1nNLoVBArVbDwsICCxcuRK9evbBr1y7cvn0bZ86cwd69e7FgwQKcOXMGS5cuNXL0xYufnx/c3NwwePBgeHp6YuHChTpJCj8HTcvMmTNRu3Zt9OrVC/Xq1ZM7vWc+FqnVauVHuE6ePAkvLy8AGY/nEZFpY3JSjD179gzDhw/Hxo0bERUVhZUrV+Lp06fy+wpFxv8eDx48QLt27fDXX3+hfPnyePHiBezs7NC3b1+UKlWKz/AWgDt37qBt27bYtm0b1q1bh927d2PixIn47rvvdO6OZLZZpUqVMG7cOMyePRsPHz4EkPHYUFJSklHiL27edG6ZmZkBAJo0aQJfX1+kpqZi4MCBaNiwIezt7TFgwADY2dnh8ePHvJAqIH/++SfWrVuHoKAg7N69GxMmTMCqVaswZcoUeZ179+7xc9AE3L9/H127dsWWLVuwePFizJ8/Hz4+Pvjyyy/x+PFjeT2FQiGfP6dPn0aDBg0AAEqlEgA7xhOZMiYnxVhcXBzs7e3h5+eH33//HTt37sRff/0l//qe+V8zMzOMHDkS3bt3x5AhQxAeHo5+/fohKCgIx44dM+YhFBuPHj1Cs2bNsHPnTrRr1w5ly5bFl19+CXt7+9duM3HiRFhaWmLevHlYt24d2rVrxyE1C8ibzq2XL2Lv37+PW7duoXHjxvKy5ORkxMfHo0KFCvKFFOWvvXv3wtLSEt26dYO7uzu++eYbDBs2DMePH8fy5cvl9fg5aHynTp3C8+fPsX37dnTo0AGtW7dGYGAgkpKScObMGZ11lUolwsPDce/ePXTv3h1ARlv36dMH9+/fN0b4RJQTgoottVot7t+/L7/u1auXqFOnjrh7967Oert37xb+/v7in3/+kZdFR0eLGjVqiODg4IIKt1hLS0sT4eHhOq8/+ugj0bx5czFz5kzxzz//CI1GI4QQ8n+FEGLq1KlCkiRhYWEhJk2aVOBxF1c5PbeEEMLLy0u0aNFCrFu3ToSGhopOnTqJmjVriosXLxZgxMWXRqMRw4cPF5988olISUmRl0dERIihQ4eKunXriuTkZPHXX3+JOXPm8HPQSLRarRBCiGfPnolt27bpvBcVFSWqVasm9u/fn2W79evXi/fff1+Eh4eLDz/8UJibm4tx48YVSMxElDtMTkj+0I+JiRFKpVL4+fnpfEmr1Wqd9TNfp6amFlyQJLt+/bqwtrYW3t7eYsqUKaJevXqiadOmYs2aNfI6iYmJYuTIkUKSJDFo0CARGxtrvICLsTedW5nn0c2bN0WDBg1EtWrVRKVKlUSvXr3Es2fPjBZzcZLZPn5+fsLNzS3bH2a8vLxEYGCgzvpC8HPQGF6ufyH+/SHm2rVrwsnJSSdxzFy3f//+QpIkoVQqRceOHcXTp08LLmAiyhU+1lVMiZeet5UkCWq1GiVLlsTkyZMREBCA69evy+9n9mPI3CbzmXkLC4sCjLj4Eq88G+3m5oZ9+/bh1KlTmD59Ok6fPg1HR0ecOXMGaWlpAICnT5/Czs4Of//9N1avXg1HR0cjRF60paSkZLs8p+eWmZkZ1Go1qlatir/++gu///47Dh48iC1btqBEiRIFcgzFXeajq2PGjEFcXBw2bNig837Lli2hVCrl0bhefiSPn4P5Jzo6Wq8+IUePHoW7uzs8PDyybGdubo5atWrhzJkz2LNnD5ycnAwdLhEZGJOTIioyMhI9e/bE1q1bAWRMTpVJrVbLX7KZyzNfT506FRYWFli2bBliY2Nx4MABrF+/XmcdMqzw8HBs374doaGhcgfOzC/Yl9tKrVYDAKytrdG8eXMoFApotVpYWFggMTERUVFR8oXSO++8Az8/P7z77rtGOKKi7e7du6hbty7mzJmT5T19z63MWasdHR1RuXJlVKxYsWAOopiIjIzEyZMnce/evSzvqdVqOcGwtLTElClT4O/vj3Pnzsnr2NnZIS0tDeHh4QUVcrF29+5ddOnSBRMmTMC1a9d03nvTufX333/Dx8dHXnb58mVcuXIFALBw4UJcunQJ9erVK6CjIKK8YnJSRK1ZswY7duzADz/8gOTkZJiZmcm/Epqbm0MIgQkTJmDz5s3QarUwMzOTP/AXLVqENWvWoEWLFmjXrh3nyshHkyZNQtWqVTF//nw0a9YMw4cPx507dyBJErRarU5bbdmyJUuHaoVCgTNnzkCSJAwePNiIR1L0CSEwbNgwVK1aFVWrVoWvr2+WdfQ9txITEwv6MIqNMWPGoHbt2vjPf/6DmjVrYunSpTqTJr7cVuvXr8e4ceNQtWpVTJw4UR44IjQ0FEIIdOvWzUhHUfRl/hDz888/o0GDBrCyssLIkSNRqlQpnfezO7eAjMEnQkJC0K5dO0RGRqJXr16oW7cuHjx4AACwtbU1wlERUV4wOSmiTpw4gd69e8PCwgL+/v467wUFBaFUqVLYv38/6tSpIz+2ZWZmhkePHuHUqVPQarWoWbMmHjx4gBEjRhjjEIq806dPY9euXdi+fTsOHz6MVatWISwsDJ999hmAjMQjKCgITk5OWdrq+vXruHz5MqZMmYIOHTrA09MTrVq1MubhFGm3bt2Ck5MTjh07hjNnzmDbtm3yxdPLeG4Z34MHD9ClSxecOXMGu3fvxtatWzFixAgsW7ZMZzSnl9uqZs2aAIB169bB3t4eH330Edq1a4f33nsPNWrU4B3IfJT5Q8ymTZvwv//9D1u2bEHDhg1hZ2cnvw8AgYGBWc4tSZIQFhaG58+fY+fOnahcuTLi4uJw7949dOzY0ZiHRUR5YG7sAChvhBA6v6Sr1WqYm5ujTJky6Ny5s3wh9cknn6BGjRpISEjAw4cPMWvWLAwZMkR+rAHImMn6+++/x88//4xDhw6hZcuWRjii4uPXX3+FRqORv0Q/++wzVKlSBW3btkVAQADGjh2Le/fuYc6cORg8eLBOW504cQJLliyBubk5tm7ditatWxvrMIqsl88tpVKJsmXLonnz5vDy8sKJEyewY8cOODk5oX79+mjevDlsbW1x9+5dzJ49O0t78dwqOFeuXIG1tTUWLVokz20xb948rF+/HrGxsQCAxMREhIeH67SVEAI1atRAYGAgTp8+jX/++QdTpkxhYpIPXv3eOnLkCG7fvo3Ro0fjxIkT8Pf3R2pqKqpUqYJ+/fqhSZMmuH//frbfW6dOncLjx48RGhqKXbt2oU2bNsY4JCIyIEno0+uMTMqLFy+gUCigUqkA6H7g16lTB5s3b0ZycjLGjx+P2rVrY968eQgLC0P16tV1Ptxf9vjxY7i4uBTYMRQXmW2j1WrlX9N/+OEHBAYG4uTJk7C2tpbXmzFjBhYuXIjIyEi5bV/dT1paGi5cuIBGjRoV+LEUB6+eW1qtFr/++is+/vhjtG3bFjdu3EDDhg1x69YtPHnyBG3atEFgYOAb98lzK39knhOZP8xERETg3r17aNasGYCMttNoNGjatCnGjh2LPn36yMszz0UqOK+eW0DGXeSOHTti9erVmD17Nj744ANYWlri0KFDuHz5Mq5duwZXV1ed/WS2e0JCAnbs2IEBAwYU8JEQUX7hJ3MhNWnSJDRv3hydOnXCjz/+iPj4ePni99GjR7CxsUHFihXRsGFDdO7cGRs3boSlpSUOHjyo0zn+Vbx4MryAgAC58/TLF0MODg5QKpU4ePCgvEySJHz++eewsbFBQEAAgH9HFMp8H8gYIYiJSf7I7txSKBRo1aoVPvvsMyQmJmL37t3YsGEDLly4gGnTpuHUqVNYtmwZAN32ehnPLcN7+dzK7JNQtmxZncREoVAgMjISN2/eRK1ateRtmZgUvOzOLSAj0ahXrx7mzJmDevXqYfbs2Zg6dSr27NmDcuXK4ZtvvgGgO7CLJEkQQsDOzo6JCVERw0/nQiYtLQ09e/bE7t27MX78eJQtWxYrVqyQfw1UKBSws7ODUqmEJEnYuXMnZs2ahfT0dNSpUwe+vr6wsLDQa5hGyp2zZ8+iVatW+Prrr/HLL7/g5MmTACCPyPXxxx8jNTUVe/fuRXR0tLxdmTJl8MEHHyAsLAwajYYXUQXkdefWp59+CgAoUaIEJk2ahAULFqB27dry7O09evSAh4cHLly4wPYqIK87t179XMtsixMnTsDd3V0nOcnEz8L897pz65NPPgGQcaff3t4e586dQ6NGjaBQKKDRaGBnZ4evvvoK+/fvR2JiYpY7/hxBkqho4rdoIXP79m1cvHgRCxYsQO/evREUFISVK1fi0KFDmDdvHgDg3LlzuHXrFho1aoSBAwfim2++wdy5cyFJEpYuXQqAX8gFYd++fShVqhR++ukn+b9ARv+F9PR02NvbY9iwYfjrr7+wa9cueTuVSoWwsDAoFIrXPn5Hhve6c+vw4cPyuVW9enU0bNgQkiRBoVBACIGSJUvixo0bbK8C9LpzK7NNXhUSEoKmTZvKycrhw4fx22+/AeAFbkF43bl15MgRfPfdd7C2tsbgwYNRsmRJbNu2DcC/88iEhYXBw8PjtW1LREVQfs7wSIYXEhIiJEkSMTExQgjdGY4dHR3FnTt3RHp6uvD09BRDhgyRZzyOiIgQvXr1Ej4+Pjqzv5PhZbbJ/fv3xYkTJ4QQGe3TuHFjsXXrViGEEOnp6fL6ffr0EfXq1RMrVqwQsbGxIiQkRNSvX19s3ry54IMvxt50bpUoUUJn9umX/fnnn8Lb21scP368wGItrnJybmXOGp5JrVYLLy8vsWXLFnHnzh3RunVrYWFhIbZs2VKwwRdjbzq3HBwcxO3bt4UQQkybNk04OTmJ//3vf+Kff/4RN27cEC1atBAzZswwWuxEVPCYnBQy58+fFzVr1hSLFi0SQvz7IZ+WliYqVqwoxowZI4QQ4vHjx/J7ma5evcrExEhu374tunXrJrp16yaePXsmhBAiNTVVfm/KlCnCzMxMNGjQQFhZWYlBgwaJtLQ0Y4Zc7Lzp3HJ3dxfjxo0TQmRc/F6+fFkcOnRIDB06VDg4OIiJEycKtVpttNiLs+zOrZcTlIsXLwo7Ozvx4YcfCnNzc9G7d28RHx9vrHCLpbedW5nfW1FRUWLlypXC0dFR1KpVS9jZ2YkvvviC31tExQwf6zIx4i23rd955x14eHjg2LFjiIyMlEepUSqVGD16tDxRX+nSpeXHFTL36enpmWX0J8q9t7XVy+tVqlQJnTt3RmRkpDyqU+Zs7pUqVcL06dNx8eJFTJ8+HaGhoVi9erXcp4EMIy/n1qhRo7Bp0ya5g3VoaChmzpyJf/75B8HBwfDz8+MjXQaU13Pr5X4/YWFhSExMRGpqKs6ePYvNmzfLc2hQwXjbuZX5veXi4oLBgwfj6tWrWL16NUJDQ/HTTz/xe4uomGFyYkKePHmC5ORk+fXLo/6o1WoAGZ1yO3fujBs3bmDr1q0AMkapATJGfypZsiTCw8N19stnqg0vJ22VKXOEmY8//hienp7Ys2cPwsLCAGTMQJ25fc2aNdGxY0dUr149v8MvdqKjo5GQkCC/zs25VaJECdy/fx9ARif4VatW4dChQ6hbt25BHUaxkJO2yvSmc+vcuXMAgMaNG+PgwYM4ePAg6tWrl8/RFz+Z7ZPdKJD6fm9lJqVly5ZF48aNUaVKlYI4BCIyMUxOTEB6ejqGDBmCd999F507d8YXX3yB2NhYnV//zM3NkZKSgs2bN2PgwIGoV68etmzZgsOHD8vrPHz4EM7OznjnnXeMcRjFQk7bKj09HUFBQfJrrVYLe3t79OzZE1qtFtOnT8f777+Phg0bZtmeDEetVmPQoEFo1KgRPvjgA/Tt2xcxMTG5Prfc3d0BADY2NqhcuXKBH09RltO2yum51ahRI8TExKB8+fJo1aqVsQ6ryEpPT8eIESMwdOhQALp3qzITFn2/t/hDGhEBTE6MLjY2Fh06dMCtW7ewdu1afPrpp7h48SI6deqEmzdvyuv9+OOPKFeuHDZv3gwAGDt2LCpVqoT27dvLXxDz589H7969AXA0rvygT1u5urrit99+k2ekzvzirlmzJsLDw7Fx40aULl0akZGRKFGihFGOp6hTq9UYMGAArl27hqCgIHz66ae4dOkSunXrhuvXr8vr8dwyPn3aSp9zy8nJySjHU9SdPn0aH3zwAbZv346goCAcP34ckiTJd08y24TnFhHlipH6utD/27t3r6hVq5a4ceOGvOzatWtCoVAIX19fERsbK9auXSsqVKggNmzYoNPRU6vVijlz5ojBgweLDh06cLSgfKZvW706IMHBgweFra2tqFevnjh37lxBh1/sPHjwQHh4eIh169bJyyIjI0W5cuXE6NGjxbNnz3humQh924rnlnEtWLBADBo0SPzxxx+ie/fuonHjxlnWWbp0qXB3d+e5RUR6Y3JiZEFBQcLR0VFn2fHjx0XJkiWFh4eH+P3334VWqxWJiYk667z65Uz5L7dtlenp06di48aNBREqiYwRgqysrERYWJgQQsgj/ixevFh4eHiI3377TWi1WpGUlKSzHc+tgpfbtsrEc6tgZJ4b4eHh4urVq0KIjB9tnJ2dxerVq4UQ/45CmJ6ezu8tIsoVPtZVgP744w8Aureu3dzc4OTkBH9/f3nZ6tWrMWjQIGi1WuzatQuSJMHKykpnX3w2N38Zsq0y9+Pk5CTPNk6GtXLlSqxatQpHjx6Vl3l4eMDV1RXr168H8O+jJiNHjoSDgwN27NiB1NRUWFtb6+yL51b+MmRbATy38ltmewUHB8vnRrly5eDp6QkAaNiwIT755BNMnz4dGo0GFhYW0Gq1MDc3h42Njc6+eG4RUY4YNzcqHvbs2SPKlSsnJEmSb2Fnzonw7NkzMW/ePCFJkmjWrJmwtbUVtWrVEunp6WLRokWiXLlyxgy92GFbFS4bN24UpUuXFk2bNhX16tUTzs7OYtasWUIIIeLi4sSECROEh4eHePz4sRBCiBcvXgghhFi3bp1wcHCQX1P+Y1sVLm9qr1fn9Dl9+rTw8PAQX3/9tRAi60SYRET6YHKSz/7++2/Rvn17MWrUKPHhhx+Khg0bZrtecHCwWLRokdi/f7+87LvvvhPNmzcXz58/L6hwizW2VeGyYcMGUbduXbF8+XIhhBCPHj0SixYtEjY2NiIuLk4IIcSBAweEt7e3GDFihBDi38dKDh8+LEqXLi0uXrxonOCLGbZV4fKm9spuAsukpCQxb9484eDgIO7fvy+EyGi3zLYlItIHH+vKJ+L/HwdycXFB27ZtMXbsWMycORPXrl3DmjVrAOiO3+/j44NRo0ahTZs2AIC0tDScOnUKXl5ecHBwKPgDKEbYVoVLZnulp6ejcePG6N+/P4CMuRG8vLxQrlw5XLt2DQDQvHlz9OnTB0FBQdi5cyfS09MBAMePH4enpydq165tnIMoJthWhUtO2uvl0dMyWVtbo2vXrvDy8kLPnj3RsGFD9OjRA8+ePSvQ+ImoiDBqalQEhYSEZPn1PPMWeHp6uhg3bpxwdnaWO3y+6saNG+Kff/4R/fv3F+7u7uLkyZP5HnNxxbYqXEJCQkRsbKz8+vnz51keL7lw4YJwdXUVz549k5fFx8eL8ePHCzs7O9GiRQvRs2dPYWVlJZYsWSKEYCfd/MC2Klxy214vu3z5sqhTp46QJEmMGDFC7hhPRKQv3jkxkB07dsDNzQ29evVCnTp1MHXqVERFRQHI6NwphIC5uTlGjhwJS0tLTJ48GUDWcd1///13fPjhh7h37x727duHJk2aFPixFHVsq8Ll5faqW7cupkyZgsePH8PBwQFmZmY6d7UOHTqEypUro0SJEkhLSwMA2NnZwd/fHz/99BNatmwJJycnhIaGYsSIEQDYSdeQ2FaFS17bK9OxY8fQqVMnWFtbIywsDEuWLIGFhUVBHw4RFRXGzY2KhrNnz4rq1auLBQsWiIsXL4qlS5cKZ2dnMXz4cBETEyOE+PcXea1WK5YuXSrMzc3FnTt3hBAZQy9mPscbEREhQkJCjHMgxQDbqnDJSXtpNBqRnp4uhBDio48+EiNHjjRmyMUW26pwMWR7RURE8M4xERkMk5M8yHzEYNmyZaJ8+fI6nf8WL14smjRpImbOnJllu5iYGNGsWTPRtWtXERISItq2bSvWrVvHEU7yEduqcNG3vTQajdBqtaJy5cpiz549Qgghbt68KT755BPx4MGDgg2+mGFbFS5sLyIydXysKw8yHzG4e/cuqlatCnNzc/m9AQMGoEGDBvjzzz9x9epVAIBGowEAlCxZEoMHD8bu3bvh7e0NCwsL9OjRQx7bnwyPbVW46NteCoUCZ8+ehbW1NerXr48xY8agTp06iImJQenSpY1yDMUF26pwYXsRkanjFZYeDhw4AF9fXyxcuBBnzpyRl7/77rs4ceKE3G9Bo9HAxsYGXbt2hSRJ2L9/PwDAzMwMaWlpWLp0KQYNGgQfHx9cunQJv/32W7YT91Husa0Kl7y2F5AxceaVK1dQrVo1HDhwAMePH8f+/fuhUqkK/HiKMrZV4cL2IqLChslJDkRGRqJz587o168fnj17hjVr1qBt27byB33btm1RsWJFeebwzF+m2rRpA4VCgVu3bsn7io2NxT///IO1a9fiyJEjqFmzZsEfUBHGtipcDNleSqUSpUqVQmBgIK5evYoGDRoU/AEVYWyrwoXtRUSFlrGfKzN1SUlJ4vPPPxe9e/eWO0ULIYS3t7cYMGCAECKjA/XPP/8sFAqFPKt4pr59+4pWrVoVaMzFFduqcDFEe7Vs2VJ+HR0dXTCBF0Nsq8KF7UVEhRnvnLyFtbU1VCoVBgwYAHd3d6jVagBAp06d5MmozMzM0KtXL3Tt2hVffvklgoODIYRAVFQUwsLC0LdvX2MeQrHBtipcDNFe/fr1k/fn7OxslOMoDthWhQvbi4gKM0mIVyZvoCzS09OhVCoBZMx1IUkSPvvsM1hZWWHlypXyspSUFHz44Ye4du0a6tWrhytXrqBChQrYunUr3NzcjHwUxQPbqnBhexUebKvChe1FRIUVk5Nc8vHxwcCBAzFgwAAIIaDVamFmZobHjx/j0qVLOHv2LCpWrIg+ffoYO9Rij21VuLC9Cg+2VeHC9iKiwoDJSS7cuXMHzZo1w++//y53DExLS+OMuCaIbVW4sL0KD7ZV4cL2IqLCgn1O9JCZxx07dgy2trbyB/z06dPxn//8B9HR0cYMj17Ctipc2F6FB9uqcGF7EVFhY/72VShT5lCLZ86cQY8ePXDgwAEMGTIEycnJWLduHSekMiFsq8KF7VV4sK0KF7YXERU2fKxLTykpKahduzZu374NCwsLTJ8+HRMmTDB2WJQNtlXhwvYqPNhWhQvbi4gKEyYnudCmTRt4eHggICAAlpaWxg6H3oBtVbiwvQoPtlXhwvYiosKCyUkuaDQamJmZGTsMygG2VeHC9io82FaFC9uLiAoLJidERERERGQSOFoXERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJElAMDBgyAJEmQJAlKpRIuLi5o06YNfvrpJ2i12hzvJzAwEI6OjvkXKBERUSHG5ISIKIfat2+PyMhI3Lt3D3/++SdatWqF//znP+jUqRPUarWxwyMiIir0mJwQEeWQSqWCq6srypUrh/r16+Obb77Brl278OeffyIwMBAAEBAQgNq1a8PGxgZubm4YMWIEEhMTAQBHjhzBF198gbi4OPkuzLRp0wAAaWlpGD9+PMqVKwcbGxs0btwYR44cMc6BEhERGQmTEyKiPGjdujXq1q2LX375BQCgUCjw448/4sqVKwgKCsKhQ4cwfvx4AECzZs2wYMEC2NvbIzIyEpGRkfj6668BAF988QWOHz+OzZs349KlS+jZsyfat2+PsLAwox0bERFRQZOEEMLYQRARmboBAwbg+fPn+PXXX7O898knn+DSpUu4du1alve2bduG4cOH4+nTpwAy+pyMGTMGz58/l9e5ffs2PDw88PDhQ5QtW1Ze/sEHH6BRo0aYM2eOwY+HiIjIFJkbOwAiosJOCAFJkgAAhw8fxpw5c3Dt2jXEx8dDrVYjJSUFSUlJsLGxyXb70NBQCCFQtWpVneWpqalwcnLK9/iJiIhMBZMTIqI8un79Otzd3XH//n106NABw4YNw8yZM1GyZEkcO3YMgwYNQnp6+mu312q1MDMzQ0hICMzMzHTes7W1ze/wiYiITAaTEyKiPDh06BAuX76Mr776CufOnYNarcb8+fOhUGR06du6davO+hYWFtBoNDrLvLy8oNFoEB0djffee6/AYiciIjI1TE6IiHIoNTUVUVFR0Gg0ePz4Mfbu3Qs/Pz906tQJ/fv3x+XLl6FWq7Fo0SJ07twZx48fx/Lly3X2UbFiRSQmJuLgwYOoW7curK2tUbVqVfTt2xf9+/fH/Pnz4eXlhadPn+LQoUOoXbs2OnToYKQjJiIiKlgcrYuIKIf27t2LMmXKoGLFimjfvj0OHz6MH3/8Ebt27YKZmRnq1auHgIAA+Pv7o1atWtiwYQP8/Px09tGsWTMMGzYMvXv3hrOzM+bOnQsAWLt2Lfr3749x48ahWrVq6NKlC06fPg03NzdjHCoREZFRcLQuIiIiIiIyCbxzQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEv4P4rb/DT/9ttoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -442,7 +442,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -462,87 +462,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters and initialize config for wandb." + "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled'. " ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230623_144958-ze31innr" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run clear-gorge-3 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-autoencoder" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-autoencoder/runs/ze31innr" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", "hyperparameters = dict(\n", " epoch = 150,\n", " num_encoder_layers = 1,\n", @@ -556,18 +484,38 @@ " periods_of_interest = periods_of_interest,\n", " dataset = 'Weather',\n", " architecture = 'Transformer'\n", - ")\n", - "\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + " " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# call weights & biases service\n", + "wandb.login()\n", "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-autoencoder', entity='ai4s2s', mode=mode)\n", + "mode = 'disabled'\n", + "\n", + "# mode = 'online'\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-autoencoder' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -592,7 +540,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -683,7 +631,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -711,7 +659,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1532,7 +1480,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1571,7 +1519,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1597,7 +1545,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1692,7 +1640,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1743,7 +1691,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.9.16" }, "orig_nbformat": 4 }, diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index ba14e46..7b2377d 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -160,7 +160,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZ0lEQVR4nO3dd1xT1/sH8E+AsJcoiCiKAxW3OFHrVtyLqq20rrr3qtZaB2pdP3frrNZRt9bRarVVFAeuioqzWgdOhkqZQgjk/P7gy9UIKgGSXPTzfr18tcm9uc95DpeQJ/eccxVCCAEiIiIiIiIjMzF2A4iIiIiIiAAWJ0REREREJBMsToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGTBzNgNyC80Gg2ePn0KOzs7KBQKYzeHiIiIPmBCCMTHx8PNzQ0mJvwumT4eLE6y6enTp3B3dzd2M4iIiOgj8ujRIxQrVszYzSAyGBYn2WRnZwcg/U3C3t7eyK0hIiKiD1lcXBzc3d2lzx9EHwsWJ9mUMZTL3t6exQkREREZBIeS08eGgxiJiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgat1ERGRFiEEVCpVjl9vYWGR7RWGDBUrv8QxZCxD/Zw+tHx0iZWbOMnJyTl6HVF+x+KEiIi0qFQqdO3aNcev37lzJywtLWUVK7/EMWQsQ/2cPrR8dImVmzhqtTpHryPK71icEBFRli4+idf5Nd5Fc3bDuNBnun8Qq+qs1Pk1hsopJ/kA8s4J0D2vDy0fIGc54dF53V/jWl331xB9AFicEBHRW/kMmQ1TM/P37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRxD5ZTdfID8kxOQvbw+tHyA3Oe0aUB1WCjfP9VXpdbgi9WXchyHKL9jcUJERG9lamYOU/PsfcDOLROlBczM3z9UJjWXcQyVU3bzAfJPTkD28vrQ8gFyn5OF0gSWStNcHoXow8fVuoiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwGEBGRfB2fPxTJcdFQKEygtLKBd89v4OThhfiIBzi7chJU8TFQWtuiVt8puY51eHJ3JMc+/18sW9QdMhcFy1RB7JO7OPl/g5EcFw1zG3vUG7Eo17GOzR6AJCnWq7xCNszGk4tBSHz+FC0CNuc6zqGJXZD0X2SmnM4un4CHZw8iIfIROi4/AQd3z1zFedvP6fV8Wn2/E/ZuJXMVR2jScGxmb8Q+vgNTc0tYOTqj3vAFsC9aCs/+CcHZFd8gTa1CmioJUJgAzmVzHOttP6PXzz0zSxuYWVoDsMtxHEOdd+0WnUdUfApMFArYWZphqX9FVC/hgH8jEtBrTSieJ6TAwcoMq3pXzlUcovzOqFdOZs+ejVq1asHOzg4uLi7o1KkTbt26pbVPcnIyhg4dioIFC8LW1hZ+fn6IjIyUtoeGhuLzzz+Hu7s7rKys4OXlhSVLlmgdIzw8HD169EDZsmVhYmKCUaNGGSI9IqJ8z2fIHLSZsxutZ+9CudY9cW7VdwCA82uno3STT9FuwX54teuL82sCch2r0YTV6LwyGJ1WnERFv6E4MX8IAOD0ktEo16Y3Pv35Aip3G4ngxSNzHav+iPlZ5uVeuwWaT9kAm0JuuY4BAE0mrcsyJ49POqDtgoOwLeyeJ3He9nPK63wAwLPVl/Bb+zc6rzyF4j6tcWrxCABA8JJRqPrZaHRafgKt5v2G+PAwxMfH5zjO235Gr5975dv0RMzDW+850rsZ6rzbNLA6rsxohMvTG2KMb0n0XnsZADBww1UMaFwct+c0wYQ2pdF/3dVcxSHK74xanBw/fhxDhw7F2bNncfjwYajVarRs2RKJiYnSPqNHj8bvv/+OnTt34vjx43j69Cm6dOkibQ8JCYGLiws2bdqE69evY9KkSZg4cSJ+/PFHaR+VSgVnZ2d89913qFq1qkFzJCLKz8ytX30jrX4ZD0CB5NgXiL53HR4N2gFI/wCcFB2JVFVS7mLZOryKlRgHhUKBpJhneP7vZZRu1g0A4NGgAxKfP4U6OfFth8leLBv7V7H+lxcAuHjVhHVB11wd+3UWWeQEAK6V68PGuWiexcnq5wTkfT4KE1MUq9lMysPFqxYSIh/+b6MCqoQ4AEBq8ksoFAoolcocx8rqZ/TmuVesZjOkpSRrfW7QOY6BzjtH61d9EZuUCgUUiIpT4UJYLL7wST8X/GoWwZP/kpCoSs1xHKL8zqjDug4dOqT1eP369XBxcUFISAgaNmyI2NhYrF27Flu2bEHTpk0BAOvWrYOXlxfOnj2LunXrom/fvlrHKFWqFM6cOYPdu3dj2LBhAAAPDw/pasrPP/9sgMyIiD4cZ1Z8i6gb5wEAjb5ejpfREbAq4AwT0/Q/IQqFAtYFCyMtJTnXsY7PG4SI0JMAgBYzdyDx2RNYORXWimXjXBRpqtzHejMvfXkzJ30xVD6vu753JYr7tAEAfDJ2GY5M64GLG2YiOfYFHNw9YWlpmavjZ+fcMzW3RFJS7gpjQ513PX+6hGM3XwAA/hhdG4+ik1DE0QJmpiZSnGJOVkhK0cA8V5GI8i9ZzTmJjY0FADg5OQFIvyqiVqvRvHlzaZ/y5cujePHiOHPmDOrWrfvW42QcI6dUKhVUKpX0OC4uLlfHIyLKr3wGzwIA3DuxD5e3LUKVrsP0FqvR+JUAgH8Pb8WFtdPg3WuS3mK9mVfj8Sv0EufNnFrO3KmXOIbKJ0Po1gWIe3ofreekz8W4sn0RavaZgtJNu+K/h7fw29DGiHcvmKsYhjr3DHXebexfHQCw4dQjTNh5EzO6lNNLHKL8TDardWk0GowaNQr169dHpUqVAAAREREwNzeHo6Oj1r6FCxdGRERElsc5ffo0tm/fjgEDBuSqPbNnz4aDg4P0z909b8YFExHlV6UadkTUjb9h5VQYSf89gyYtfeiJEAIvX0TC1Dx335K/zrPF5wgPPQWbQm5Iio7UipX47AlMLfIuVkZeqviYPDtmVjJySo6L1mscQ+RzdecPCAvej5Yzd8LM0hrJsS/w4PQBlG7aFQBg51oC5rYOiI7Om1zfde6lpSTDysoqT+IY6rzr1cAdx/55gWIFrBAeo0JqmkaK8zg6CVbmsvl4RmRwsjn7hw4dimvXrmHbtm05Psa1a9fQsWNHTJ06FS1btsxVeyZOnIjY2Fjp36NHj3J1PCKi/EaTmoqk/55Jjx9fCIS5rQMs7QvCqaQXwk7tBwA8On8YVk4uMLPI+QdETaoaL1+8+tLpwekDsLB3gqWjMwqWqYK7genDocJO/QabQkWgtLTJcayUl/F4+V+U9Dgjr9fnHuSFlIRYvHwRLj3OyMnCrkCexnnbzymv88lwY+9K3Av6Fa1m75Hm1JjbOsLMwhpPL58AACTHvkBKQizs7e3fdai3etvP6M1z7/GFQJgqLWBjk7PzwVDnnTpNg6cxr4aE7b0YgYK25nCxN4d3CXtsOvMEAPDrhXAULWAJGwtZDWwhMihZnP3Dhg3D/v37ceLECRQrVkx63tXVFSkpKYiJidG6ehIZGQlXV+0Jfjdu3ECzZs0wYMAAfPfdd7luk4WFBSwsLHJ9HCKi/EqjSUXwD2ORpk6BwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgdLKBrX6TsW1PTkfRqRJS8Wx7/tAo1YBChNYOhRCi+nboFAoUH/EIpxYMBSh2xZCaW2HeiMX4/KmuTmOpX6ZgDMrJiItJTlTXufXBuDppRNIjn2BEwuGIzX5JVC0+fsPmoWUl3E4MXcQ0lKSMuUUvGQUHp0/jKToSPz5rR+UVjZwLJ6zIT7v+jm9ns+xuQOhtLSGfdHSOYoDAKmqZFxYGwC7Ih44OL49AMBEaYEOS4+gyaR1+PunKdCkpUKTmgI71xIoUCBnhdi7fkavn3tmltZwLJHzoVGGOu/UaQLdll+ESq2BiQngbGeB/aNqQaFQYFWvKui99jJm7b8DeyszrOpVBQH7buc4J6L8zqjFiRACw4cPx549exAUFISSJbXXX69RowaUSiUCAwPh5+cHALh16xYePnwIHx8fab/r16+jadOm6NWrF77//nuD5kBE9KEyM7dE43HLYGqe+Ysae7eSaPnafUDSUlSZ9tEploUVWszYDrMshoY5uHui/eK/pMepuZx4b1OoCHxnbM1yW+2vpkr/n5aiwqmlY3Mcx9bFHR1+CMxyW/2Ri7Uep6Yk49jM3jmK866f0+v5ALnPyczCEj1/D8/y51TUuzGKegcByF0+wLt/Rq+fe7nPxzDnnbW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHIfoQGLU4GTp0KLZs2YJ9+/bBzs5Omkfi4OAAKysrODg44KuvvsKYMWPg5OQEe3t7DB8+HD4+PtJk+GvXrqFp06bw9fXFmDFjpGOYmprC2dlZinX58mUAQEJCAp49e4bLly/D3NwcFSpUMGzSRERERESUJaMWJytWpA8BaNy4sdbz69atQ+/evQEAixYtgomJCfz8/KBSqeDr64vly18tkbhr1y48e/YMmzZtwqZNm6TnS5QogbCwMOlx9erVpf8PCQnBli1bMu1DRERERETGY/RhXe9jaWmJZcuWYdmyZVlunzZtGqZNm5YnsYiIiIiIyHhks1oXERERERF93FicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWTAzdgOIiEi+0lJT8nS/d9GoVUjN5n65YaicsptPxr65Ibef04eWT8Z+uaFSa/J0P6IPFYsTIiJ6qzPLJxos1vG5Aw0Sx1A5GSof4MP7OX1o+QDAF6svGSQOUX7H4oSIiLLkXdTOYLGqOisNEsdQORkqH+DD+zl9aPkAANxr6/4atTrv20GUDyiEEMLYjcgP4uLi4ODggNjYWNjb2xu7OUREeiOEgEqV8yEsFhYWUCgUsoqVX+IYMpahfk4fWj66xMpNnLi4OBQuXJifO+ijwysnRESkRaFQwNLS8oOK9aHF+RBjfWj55DZOSkru59MQ5UdcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJgk7FSWpqKjZu3IjIyEh9tYeIiIiIiD5SOhUnZmZmGDRoEJKTk/XVHiIiIiIi+kjpPKyrdu3auHz5sh6aQkREREREHzMzXV8wZMgQjBkzBo8ePUKNGjVgY2Ojtb1KlSp51jiij50QAiqVKsevt7CwgEKh+GDiGDIWc9J/HEPGMmRORESUcwohhNDlBSYmmS+2KBQKCCGgUCiQlpaWZ42Tk7i4ODg4OCA2Nhb29vbGbg59JJKTk9G1a9ccv37nzp2wtLT8YOIYMhZz0n8cQ8YyZE5EeYGfO+hjpfOVk/v37+ujHUT0DhefxOv8Gu+idjq/JvSZWufXVHVW6vyanOQDMKcMcs4pJ/kAhssJj87r/hr32rq/hoiIckTn4qREiRL6aAcRvYfPkNkwNTN/735pqSk4s3xijuM0mrAKJkqL9+6nUatwfO7AHMfJbj4Ac8qK3HLKbT6A4XLaNKA6LJTvn3KpUmvwxepLOY5DRES607k4yXDjxg08fPgQKSkpWs936NAh140iosxMzcxhav7+D265ZaK0gJn5+4evpOYyjqHyAZhTbnyIOVkoTWCpNM3lUYiISB90Lk7u3buHzp074+rVq9JcEwDSRMEPdc4JERERERHpl85LCY8cORIlS5ZEVFQUrK2tcf36dZw4cQI1a9ZEUFCQHppIREREREQfA52vnJw5cwZHjx5FoUKFYGJiAhMTEzRo0ACzZ8/GiBEjcOkSx+cSEREREZHudL5ykpaWBju79NVYChUqhKdPnwJInyh/69atvG0dERERERF9NHS+clKpUiWEhoaiZMmSqFOnDubNmwdzc3OsXr0apUqV0kcbiYiIiIjoI6BzcfLdd98hMTERADB9+nS0a9cOn3zyCQoWLIjt27fneQOJiIiIiOjjoHNx4uvrK/1/mTJl8M8//yA6OhoFChSQVuwiIiIiIiLSlc5zTjLcuXMHf/75J5KSkuDk5JSXbSIiIiIioo+QzsXJixcv0KxZM5QtWxZt2rRBeHg4AOCrr77C2LFj87yBRERERET0cdB5WNfo0aOhVCrx8OFDeHl5Sc93794dY8aMwYIFC/K0gURERESUtbS0NKjVamM3g+itlEolTE1Ns72/zsXJX3/9hT///BPFihXTet7T0xMPHjzQ9XBEREREpCMhBCIiIhATE2PsphC9l6OjI1xdXbM1P13n4iQxMRHW1taZno+OjoaFhYWuhyMiIiIiHWUUJi4uLrC2tuaiRCRLQgi8fPkSUVFRAIAiRYq89zU6FyeffPIJNm7ciBkzZgAAFAoFNBoN5s2bhyZNmuh6OCIiIiLSQVpamlSYFCxY0NjNIXonKysrAEBUVBRcXFzeO8RL5+Jk3rx5aNasGS5cuICUlBSMHz8e169fR3R0NIKDg3PWaiIiIiLKlow5JlmNZCGSo4xzVa1Wv7c40Xm1rkqVKuH27dto0KABOnbsiMTERHTp0gWXLl1C6dKlc9ZiIiIiItIJh3JRfqHLuarzlRMAcHBwwKRJk3LyUiIiIiIioizpfOXEw8MD06dPx6NHj/TRHiIiIiIi+kjpfOVk1KhRWL9+PaZPn44mTZrgq6++QufOnblSFxEREZGxLTDgUK+xwnCxjCwsLAwlS5bEpUuXUK1aNWM3J8c8PDwwatQojBo1ythNeSudr5yMGjUKly9fxvnz5+Hl5YXhw4ejSJEiGDZsGC5evKiPNhIRERFRPqZQKN75b9q0aUZt2969e9+5j7u7O8LDw1GpUqVsH3fatGn5upAxFp2Lkwze3t5YunQpnj59iqlTp2LNmjWoVasWqlWrhp9//hlCfDzVNBERERG9XXh4uPRv8eLFsLe313pu3LhxOh0vJSVFTy3NmqmpKVxdXWFmlqPp2rli6FyNLcfFiVqtxo4dO9ChQweMHTsWNWvWxJo1a+Dn54dvv/0W/v7+edlOIiIiIsqnXF1dpX8ODg5QKBTS48TERPj7+6Nw4cKwtbVFrVq1cOTIEa3Xe3h4YMaMGejZsyfs7e0xYMAAAMBPP/0Ed3d3WFtbo3Pnzli4cCEcHR21Xrtv3z54e3vD0tISpUqVQkBAAFJTU6XjAkDnzp2hUCikx28KCwuDQqHA5cuXAQBBQUFQKBQIDAxEzZo1YW1tjXr16uHWrVsAgPXr1yMgIAChoaHS1aH169cDAGJiYtCvXz84OzvD3t4eTZs2RWhoqBQr44rLmjVrULJkSVhaWmL16tVwc3ODRqPRalfHjh3Rt29fAMDdu3fRsWPHd/ZjfqBzcXLx4kWtoVwVK1bEtWvXcOrUKfTp0weTJ0/GkSNHsGfPHn20l4iIiIg+IAkJCWjTpg0CAwNx6dIltGrVCu3bt8fDhw+19ps/fz6qVq2KS5cuYfLkyQgODsagQYMwcuRIXL58GS1atMD333+v9ZqTJ0+iZ8+eGDlyJG7cuIFVq1Zh/fr10n5///03AGDdunUIDw+XHmfXpEmTsGDBAly4cAFmZmZSodC9e3eMHTsWFStWlK4Ode/eHQDQtWtXREVF4eDBgwgJCYG3tzeaNWuG6Oho6bh37tzBr7/+it27d+Py5cvo2rUrXrx4gWPHjkn7REdH49ChQ9IFgez2o9zpfG2qVq1aaNGiBVasWIFOnTpBqVRm2qdkyZL47LPP8qSBRERERPThqlq1KqpWrSo9njFjBvbs2YPffvsNw4YNk55v2rQpxo4dKz2eNGkSWrduLQ0JK1u2LE6fPo39+/dL+wQEBOCbb75Br169AAClSpXCjBkzMH78eEydOhXOzs4AAEdHR7i6uurc9u+//x6NGjUCAHzzzTdo27YtkpOTYWVlBVtbW5iZmWkd99SpUzh//jyioqKkxaTmz5+PvXv3YteuXdIVoZSUFGzcuFFqHwC0bt0aW7ZsQbNmzQAAu3btQqFChdCkSROd+lHudL5ycu/ePRw6dAhdu3bNsjABABsbG6xbty7XjSMiIiKiD1tCQgLGjRsHLy8vODo6wtbWFjdv3sz0jX/NmjW1Ht+6dQu1a9fWeu7Nx6GhoZg+fTpsbW2lf/3790d4eDhevnyZ67ZXqVJF+v8iRYoAAKKiot66f2hoKBISElCwYEGtNt2/fx93796V9itRooRWYQIA/v7++PXXX6FSqQAAmzdvxmeffQYTk/SP89ntR7nT+cpJiRIl9NEOIiIiIvoIjRs3DocPH8b8+fNRpkwZWFlZ4dNPP800EdzGxkbnYyckJCAgIABdunTJtM3S0jLHbc7w+hf1GXdBf3NeyJvtKVKkCIKCgjJte32uTFa5tm/fHkIIHDhwALVq1cLJkyexaNEiaXt2+1HuDL/kABERERHR/wQHB6N3797o3LkzgPQP8GFhYe99Xbly5TLNEXnzsbe3N27duoUyZcq89ThKpRJpaWm6N/w9zM3NMx3X29sbERERMDMze+vk+7extLREly5dsHnzZty5cwflypWDt7e3tD2n/Sg3LE6IiIiIyGg8PT2xe/dutG/fHgqFApMnT37n1YcMw4cPR8OGDbFw4UK0b98eR48excGDB6UrGAAwZcoUtGvXDsWLF8enn34KExMThIaG4tq1a5g5cyaA9BW7AgMDUb9+fVhYWKBAgQJ5kpeHhwfu37+Py5cvo1ixYrCzs0Pz5s3h4+ODTp06Yd68eShbtiyePn2KAwcOoHPnzpmGrr3J398f7dq1w/Xr1/HFF19obctpP8oNixMiIiKiD0U+vGv7woUL0bdvX9SrVw+FChXChAkTEBcX997X1a9fHytXrkRAQAC+++47+Pr6YvTo0fjxxx+lfXx9fbF//35Mnz4dc+fOhVKpRPny5dGvXz9pnwULFmDMmDH46aefULRo0Ty72uDn54fdu3ejSZMmiImJwbp169C7d2/88ccfmDRpEvr06YNnz57B1dUVDRs2ROHChd97zKZNm8LJyQm3bt1Cjx49tLbltB/lRqfiRK1Wo3z58ti/fz+8vLz01SYiIiIi+kD17t0bvXv3lh57eHjg6NGjWvsMHTpU6/HbCob+/fujf//+Wo/fHMLl6+sLX1/ft7anffv2aN++/Tvb7OHhoXWD8caNG2e64Xi1atW0nrOwsMCuXbsyHcvOzg5Lly7F0qVLs4w1bdo0TJs2LcttJiYmePr06VvbmNN+lBOdihOlUonk5OQ8Cz579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uVSdRkaGoo5c+bg1KlTeP78OTw8PKQ1r18XFBSEMWPG4Pr163B3d8d3332n9YtBJHfH5w9Fclw0FAoTKK1s4N3zGzh5eCE+4gHOrpwEVXwMlNa2qNV3Sq7iHJ7cHcmxz/8XxxZ1h8xFwTJVEPvkLk7+32Akx0XD3MYe9UYsev/B3uPY7AFIkmK9yilkw2w8uRiExOdP0er7nbB3K6mXnM4un4CHZw8iIfIROi4/AQd3z3yRk9Ck4djM3oh9fAem5pawcnRGveELYF+0FJ7duohzKydCnZQIhUKBGn2n5iofQ513gOHOvXaLziMqPgUmCgXsLM2w1L8iqpdwwL8RCei1JhTPE1LgYGWGVb0r5zonItKv+fPno0WLFrCxscHBgwexYcMGLF++3NjNolzQeVjX0KFDMXfuXKxZswZmZrkbFXb8+HEMHToUtWrVQmpqKr799lu0bNkSN27ckFYpGD16NA4cOICdO3fCwcEBw4YNQ5cuXRAcHAwACAkJgYuLCzZt2gR3d3ecPn0aAwYMgKmpqbSm8/3799G2bVsMGjQImzdvRmBgIPr164ciRYq8s5ImkhOfIXNg5VgIAPDo70CcW/UdWs/+FefXTkfpJp+iVKNOeHjuL5xfEwCrAs7vOdrbNZqwGtZO6cV/WPB+nJg/BJ1XnsLpJaNRrk1veLbsgfsn9yF48UhYF9R9TfjX1R8xH+Y29plycq/dAl7t+uDI9F65On6Gt+Xk8UkHVO46AgfGts6TOIDhcvJs9SVK+LSBQqHAjX2rcWrxCLSe9zsCp3+JT8YuQ1Hvxoh9fAcHJ3REgZIVAGS99Pv7GOq8Awx37m0aWB2uDumr9OwJCUfvtZcROr0RBm64igGNi6N3A3fs+vsp+q+7CjdHi1zlRET6df78ecybNw/x8fEoVaoUli5dqjVki/IfnauLv//+G4GBgfjrr79QuXLlTEud7d69O9vHOnTokNbj9evXw8XFBSEhIWjYsCFiY2Oxdu1abNmyBU2bNgWQfgdPLy8vnD17FnXr1pXuxJmhVKlSOHPmDHbv3i0VJytXrkTJkiWxYMECAICXlxdOnTqFRYsWsTihfMPc2k76f/XLeAAKJMe+QPS962jyzSoAgHvtFghZPwtKa1sAdlkf6H1xbB1exUmMg0KhQFLMMzz/9zJ8Z6f/fns06IAzP34NpY0dAMccZgTpQzzwKicAcPF694RAneNkkRMAuFaun6dxAMPkpDAxRbGazaQ8XLxq4dqvP0IVF43k2Oco6t0YAOBQrAzMbR2QHPMcKFwsR7EMdd4Bhjv3HK1fFWqxSalQQIGoOBUuhMXir3F1AAB+NYtg2KZrcLAyhe6LlxKRoezYscPYTaA8pnNx4ujoCD8/P320BbGxsQAAJycnAOlXRdRqNZo3by7tU758eRQvXhxnzpxB3bp133qcjGMAwJkzZ7SOAaSPPxw1atRb26JSqaSb3ADIlxOK6MNzZsW3iLpxHgDQ6OvleBkdAasCzjAxTf9VVigUsC5YGGkpuRt+eXzeIESEngQAtJi5A4nPnsDKqbBWHBvnokhT5X6Y55s56cubOemToXLKcH3vShT3aQNLh4KwdiqMe8f3oFSjznh26yLiHt/N9bA4Q513gOHOvZ4/XcKxmy8AAH+Mro1H0Uko4mgBM1MTKU4xJyskpWhYnBARGZDOxYm+7vyu0WgwatQo1K9fH5UqVQIAREREwNzcXOumNABQuHBhREREZHmc06dPY/v27Thw4ID0XERERKYVEAoXLoy4uDgkJSXBysoq03Fmz56NgICAXGZFlLd8Bs8CANw7sQ+Xty1Cla7D9BKn0fiVAIB/D2/FhbXT4N1rkl7iAJlzajx+hV7ivJlTy5k79RIHMFxOABC6dQHint5H6znp8zCaTd2MC2sDcGX7IhQoUR4uFWojOfZ5rmIY6rwDDHfubexfHQCw4dQjTNh5EzO6lHvPK4iIyBBMcvrCZ8+e4dSpUzh16hSePXuW64YMHToU165dw7Zt23J8jGvXrqFjx46YOnUqWrZsmav2TJw4EbGxsdK/R48e5ep4RHmpVMOOiLrxN6ycCiPpv2fQpKUCAIQQePkiEqbmub/rLQB4tvgc4aGnYFPIDUnRkVpxEp89galF3sQBXuWkio/Js2NmJSOn5LhovcYB9J/T1Z0/ICx4P1rO3AkzS2sAQMHSleE7axc6LT+BRhNWIyk6Akor2zyJZ6jzDjDcudergTuO/fMCxQpYITxGhdQ0jRTncXQSrMxz/GeSiIhyQOd33cTERPTt2xdFihRBw4YN0bBhQ7i5ueGrr77Cy5cvc9SIYcOGYf/+/Th27BiKFXs1LtrV1RUpKSmIiYnR2j8yMhKurtqTIW/cuIFmzZphwIAB+O6777S2ubq6IjIyMtMx7O3ts7xqAqQv/2Zvb6/1j8hYNKmpSPrv1ZcAjy8EwtzWAZb2BeFU0gthp/YDAB6dPwwrJxeYWWR9Xr8/jhovX7y6Kvng9AFY2DvB0tEZBctUwd3A9OFQYad+g02hIlBa5nzAS8rLeLz8LypTTq/PO8gLb8vJwi5vbrL1OkPlBAA39q7EvaBf0Wr2Hli8dvzXc731xwaYWVrDwt4pq0O8l6HOu/RYhjn31GkaPI15NSRs78UIFLQ1h4u9ObxL2GPTmScAgF8vhKNoAUvYWPB2YEREhqTzu+6YMWNw/Phx/P7776hfP30y6alTpzBixAiMHTsWK1Zkf/iCEALDhw/Hnj17EBQUhJIltcdF16hRA0qlEoGBgdI8l1u3buHhw4fw8fGR9rt+/TqaNm2KXr164fvvv88Ux8fHB3/88YfWc4cPH9Y6BpGcaTSpCP5hLNLUKVCYmMDCrgAajVsGhUKBWn2n4Oyq73DjtzVQWtmgVt+puLYnZ8OINGmpOPZ9H2jUKkBhAkuHQmgxfRsUCgXqj1iEEwuGInTbQiit7VBv5GJc3jQ3xzmpXybgzIqJSEtJzpTT+bUBeHrpBJJjX+DY3IFQWlrDvmjpPM8peMkoPDp/GEnRkfjzWz8orWzgWDznw3sMlVOqKhkX1gbArogHDo5PX5vfRGmBDkuP4NbBDbh7dCcgBByKl0Xjb3/G+VU5GxplqPMOMNy5p04T6Lb8IlRqDUxMAGc7C+wfVQsKhQKrelVB77WXMWv/HdhbmWFVryoI2Hc7xzkREZHudC5Ofv31V+zatQuNGzeWnmvTpg2srKzQrVs3nYqToUOHYsuWLdi3bx/s7OykeSQODg6wsrKCg4MDvvrqK4wZMwZOTk6wt7fH8OHD4ePjI02Gv3btGpo2bQpfX1+MGTNGOoapqSmcndOXtRw0aBB+/PFHjB8/Hn379sXRo0exY8cOrXkpRHJmZm6JxuOWwdQ887Km9m4l0TJgs/Q4LUWVaZ9sx7GwQosZ22GWxfAcB3dPtF/8l/Q4NZeTn20KFYHvjK1Zbqv9lfa9OdJSVDi1dGyO4rwrp/ojF2s9Tk1JxrGZvXMUBzBkTpbo+Xt4ljlV/2ICqn8xQXqcm5+Toc47wHDnnrW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHISLKrsaNG6NatWpYvHixsZuSY9OmTcPevXtx+fLlXB9L5+Lk5cuXmSaXA4CLi4vOw7oyCpnXCx0gfdJ9xg0SFy1aBBMTE/j5+WndhDHDrl278OzZM2zatAmbNm2Sni9RooR0F8ySJUviwIEDGD16NJYsWYJixYphzZo1XEaYiIiIPiiFpp0wWKzn0xrqtH/v3r2xYcMGAOk39i5evDh69uyJb7/9Ntf3zsvPdu/eDaUy+/eiCgsLQ8mSJXHp0iVUq1ZNfw0zEp3PBB8fH0ydOhUbN26EpWX6N1xJSUkICAjQeZiUEOK9+1haWmLZsmVYtmxZltunTZuGadOmvfc4jRs3xqVLl3RqHxERERHlnVatWmHdunVQqVT4448/MHToUCiVSkycODHTvikpKTA3Nzd4G4UQSEtLy/OC6W35vH77C0NTq9U6FUaGoPOE+CVLliA4OBjFihVDs2bN0KxZM+nO7EuWLNFHG4mIiIjoA2BhYQFXV1eUKFECgwcPRvPmzfHbb78BSL+y0qlTJ3z//fdwc3NDuXLpcwAfPXqEbt26wdHREU5OTujYsaM0OibDzz//jIoVK8LCwgJFihSRbsQdFhYGhUKhNdwoJiYGCoUCQUFBAICgoCAoFAocPHgQNWrUgIWFBU6dOoXQ0FA0adIEdnZ2sLe3R40aNXDhwgXpOL/++qsU08PDQ7rZdwYPDw/MmDEDPXv2hL29PQYMGJBlnzRu3Fjr3nseHh6YNWsW+vbtCzs7OxQvXhyrV6+WtmfM0a5evToUCoXWCKQ1a9bAy8sLlpaWKF++vNZoo4y+2L59Oxo1agRLS0usWLECVlZWOHjwoFab9uzZAzs7O2lU1IQJE1C2bFlYW1ujVKlSmDx5MtRqdZb55JbOJWGlSpXw77//YvPmzfjnn38AAJ9//jn8/f3fuvIVEREREdGbrKys8OLFC+lxYGAg7O3tcfjwYQDp3+z7+vrCx8cHJ0+ehJmZGWbOnIlWrVrhypUrMDc3x4oVKzBmzBjMmTMHrVu3RmxsLIKDg3VuyzfffIP58+ejVKlSKFCgABo2bIjq1atjxYoVMDU1xeXLl6WrDCEhIejWrRumTZuG7t274/Tp0xgyZAgKFiwoTU0AgPnz52PKlCmYOnXqW6JmbcGCBZgxYwa+/fZb7Nq1C4MHD0ajRo1Qrlw5nD9/HrVr18aRI0dQsWJF6WrM5s2bMWXKFPz444+oXr06Ll26hP79+8PGxga9evXSynPBggWoXr06LC0tcfLkSWzZsgWtW7eW9tm8eTM6deoEa+v0Zert7Oywfv16uLm54erVq+jfvz/s7Owwfvx4nfv5fXJ0vcra2hr9+/fP67YQERER0UdACIHAwED8+eefGD58uPS8jY0N1qxZI33g3rRpEzQaDdasWQOFQgEgfW6yo6MjgoKC0LJlS8ycORNjx47FyJEjpePUqlVL5zZNnz4dLVq0kB4/fPgQX3/9NcqXLw8A8PT0lLYtXLgQzZo1w+TJkwEAZcuWxY0bN/B///d/WsVJ06ZNMXas7ouftGnTBkOGDAGQftVi0aJFOHbsGMqVKyct+FSwYEGtW2tMnToVCxYsQJcuXQCkX2G5ceMGVq1apVWcjBo1StoHAPz9/fHll1/i5cuXsLa2RlxcHA4cOIA9e/ZI+7x+mw4PDw+MGzcO27Ztk09x8u+//+LYsWOIioqCRqPR2jZlypQ8aRgRERERfVj2798PW1tbqNVqaDQa9OjRQ2vucOXKlbXmZYSGhuLOnTuws7PTOk5ycjLu3r2LqKgoPH36FM2aNct122rWrKn1eMyYMejXrx9++eUXNG/eHF27dkXp0ulLwN+8eRMdO3bU2r9+/fpYvHgx0tLSYGpqmuUxs6tKlSrS/ysUCri6uiIqKuqt+ycmJuLu3bv46quvtC4gpKamwsFB+15bb7apTZs2UCqV+O233/DZZ5/h119/hb29PZo3by7ts337dixduhR3795FQkICUlNT9XYPQJ2Lk59++gmDBw9GoUKF4OrqKlWxQHrnsTghIiIioqw0adIEK1asgLm5Odzc3DJNOrex0b7BakJCAmrUqIHNmzfjTc7OzjAxeff06Yztry/C9La5Em/GnjZtGnr06IEDBw7g4MGDmDp1KrZt24bOnTu/M+a7jpldb05SVygUmS4IvC4hIQFA+uf0OnXqaG3LKJTe1iZzc3N8+umn2LJlCz777DNs2bIF3bt3l342Z86cgb+/PwICAuDr6wsHBwds27Yt0xybvKJzcTJz5kx8//33mDBhwvt3JiIiIiL6HxsbG5QpUybb+3t7e2P79u1wcXF56zf1Hh4eCAwMRJMmTTJtyxgCFR4ejurVqwOATvfiKFu2LMqWLYvRo0fj888/x7p169C5c2d4eXllmtcSHByMsmXLZioG8lrGlaW0tFf3YipcuDDc3Nxw7949+Pv763xMf39/tGjRAtevX8fRo0cxc+ZMadvp06dRokQJTJr06oa+Dx48yEUG76bzal3//fcfunbtqo+2EBERERFJ/P39UahQIXTs2BEnT57E/fv3ERQUhBEjRuDx48cA0q9wLFiwAEuXLsW///6Lixcv4ocffgCQPuG+bt26mDNnDm7evInjx49rzZ94m6SkJAwbNgxBQUF48OABgoOD8ffff8PLywsAMHbsWAQGBmLGjBm4ffs2NmzYgB9//BHjxo3TX2f8j4uLC6ysrHDo0CFERkYiNjYWABAQEIDZs2dj6dKluH37Nq5evYp169Zh4cKF7z1mw4YN4erqCn9/f5QsWVLr6ounpycePnyIbdu24e7du1i6dKnWfJS8pnNx0rVrV/z111/v35GIiIiIKBesra1x4sQJFC9eHF26dIGXlxe++uorJCcnS1dSevXqhcWLF2P58uWoWLEi2rVrh3///Vc6xs8//4zU1FTUqFEDo0aN0roq8DampqZ48eIFevbsibJly6Jbt25o3bo1AgICAKRf0dmxYwe2bduGSpUqYcqUKZg+fbrWZHh9MTMzw9KlS7Fq1Sq4ublJc1/69euHNWvWYN26dahcuTIaNWqE9evXS0sPv4tCocDnn3+O0NDQTFdeOnTogNGjR2PYsGGoVq0aTp8+LS0EoA/ZGta1dOlS6f/LlCmDyZMn4+zZs6hcuXKmMXEjRozI2xYSERERUbboetd2Q1q/fn2Otru6ukp3ln+bgQMHYuDAgVlu8/LywunTp7Wee30OSuPGjTPdGNzc3Bxbt259Z0w/Pz/4+fm9dfub92J5m4z7rbzrdW8ORevXrx/69euXab8ePXqgR48eWcbx8PB45w3Q586di7lz52a5bd68eZg3b57Wc6/fmyW7N0XPjmwVJ4sWLdJ6bGtri+PHj+P48eNazysUChYnRERERESUI9kqTu7fv6/vdhARERER0UdO5zknRERERERE+qBzceLn55fleLR58+ZxFS8iIiIiIsoxnYuTEydOoE2bNpmeb926NU6cOJEnjSIiIiIioo+PzsVJQkKCdPOX1ymVSsTFxeVJo4iIiIjo3d618hKRnOhyrupcnFSuXBnbt2/P9Py2bdtQoUIFXQ9HRERERDrIuI3Dy5cvjdwSouzJOFffvAVJVrK1WtfrJk+ejC5duuDu3bto2rQpACAwMBBbt27Fzp07dT0cEREREenA1NQUjo6OiIqKApB+o0KFQmHkVhFlJoTAy5cvERUVBUdHR5iamr73NToXJ+3bt8fevXsxa9Ys7Nq1C1ZWVqhSpQqOHDmCRo0a5ajhRERERJR9rq6uACAVKERy5ujoKJ2z76NzcQIAbdu2Rdu2bXPyUiIiIiLKJYVCgSJFisDFxQVqtdrYzSF6K6VSma0rJhlyVJwAQEpKCqKioqDRaLSeL168eE4PSUREREQ6MDU11emDH5Hc6Vyc/Pvvv+jbty9Onz6t9bwQAgqFAmlpaXnWOCIiIiIi+njoXJz07t0bZmZm2L9/P4oUKcIJWERERERElCd0Lk4uX76MkJAQlC9fXh/tISIiIiKij5TO9zmpUKECnj9/ro+2EBERERHRR0zn4mTu3LkYP348goKC8OLFC8TFxWn9IyIiIiIiygmdh3U1b94cANCsWTOt5zkhnoiIiIiIckPn4uTYsWP6aAcREREREX3kdC5O3nUX+GvXruWqMURERERE9PHK8U0YM8THx2Pr1q1Ys2YNQkJCOKyLSE/SUlPydL+30ahVSM3mfrmhSzuZU2Zyyym3+QCGy0ml1rx/Jx32IyKivJPj4uTEiRNYu3Ytfv31V7i5uaFLly5YtmxZXraNiF5zZvlEg8Q5PnegQeIYKh+AOeXGh5jTF6svGSQOERHpTqfiJCIiAuvXr8fatWsRFxeHbt26QaVSYe/evahQoYK+2kj00fMuameQOFWdlQaJY6h8AOaUGx9iTnCvbZg4RESUIwohhMjOju3bt8eJEyfQtm1b+Pv7o1WrVjA1NYVSqURoaOgHX5zExcXBwcEBsbGxsLe3N3Zz6CMhhIBKlfMhLBYWFlAoFB9MHEPGYk76j2PIWIbMiSgv8HMHfayyfeXk4MGDGDFiBAYPHgxPT099tomI/kehUMDS0pJxZByLOeWPWIbMiYiIci7bN2E8deoU4uPjUaNGDdSpUwc//vgj7xRPRERERER5JtvFSd26dfHTTz8hPDwcAwcOxLZt2+Dm5gaNRoPDhw8jPj5en+0kIiIiIqIPXLbnnGTl1q1bWLt2LX755RfExMSgRYsW+O233/KyfbLBsZ9ERERkKPzcQR+rbF85yUq5cuUwb948PH78GFu3bs2rNhERERER0UcoV1dOPib8BoOIiIgMhZ876GOVqysnREREREREeYXFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwG5DfJyckwNzfX6TUWFhZQKBTZ2lcIAZVKlZOm6RQrt3EMGetDy+lDPB/kFoeIiIjyJxYnOurZsyeUSqVOr9m5cycsLS2zta9KpULXrl1z0jSdYuU2jiFjfWg5fYjng9ziEBERUf7E4kRHoeEJMDHNfrd5F7XLWZxnap1fU9VZt6IJAC4+idf5NUDO8mJOOcsHyFlOcv4Z4dF53V/jXlv31xAREVG+wuJER7X7TYOlXYH37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRyfIbNhapa9oWq5zetjzSm3+QDZzym//Iw2DagOC+X7p72p1Bp8sfpSjuMQERFR/sHiREemZkqYmr//g1teMFFawMz8/UNYUnMZx9TMnDnlQnZyym0+gOFyMtTPyEJpAkulaS6PQkRERB8SrtZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC2bGDD579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uUoXLiwtM+IESMQHByMa9euwcvLC5cvX84Ua8eOHZg1axZu374NZ2dnDBs2DF9//XWO2n1s9gAkxT6HQmECpZUNvHt+AycPL8RHPMDZlZOgio+BmaUNzCytAdjlKAYAHJ7cHclSHFvUHTIXBctUQeyTuzj5f4ORHBcNcxt71BuxKMcx3pdTyIbZeHIxCInPn6LV9zth71YyV3HeltPZ5RPw8OxBJEQ+QsflJ+Dg7pkvchKaNByb2Ruxj+/A1NwSVo7OqDd8AeyLlsKzf0JwdsU3SFOrkKZKAhQmgHPZHMc6Pn8okuOi33neKa1tUavvlBzHAAx73rWcfxYRsSqYKBSwszTDUv+KqF7CAf9GJKDXmlA8T0iBnaUZ7CxNc/GbRERERPmFUYuT48ePY+jQoahVqxZSU1Px7bffomXLlrhx4wZsbGwAAKNHj8aBAwewc+dOODg4YNiwYejSpQuCg4O1jtW3b1+cO3cOV65cyRTn4MGD8Pf3xw8//ICWLVvi5s2b6N+/P6ysrDBs2DCd211/xHyY29gDAB79HYhzq75D69m/4vza6Sjd5FOUatQJYcEHcGH990AZ1xz0TLpGE1bD2im9CAsL3o8T84eg88pTOL1kNMq16Q3Plj1w/+Q+BC8eCeuCOY/zrpzca7eAV7s+ODK9V66On+FtOXl80gGVu47AgbGt8yQOYLicPFt9iRI+baBQKHBj32qcWjwCbf5vP4KXjIJ3z4ko7tMGiS/CsbNnNcSXKpLjOD5D5sDKsVCmfF4/7x6e+wvn1wTAqoBzjuMY8rzbMaQGHK2VAIA9IeHovfYyQqc3wsANVzGgcXH0buCOLWcfY8jGa/gk9/UqERERyZxRh3UdOnQIvXv3RsWKFVG1alWsX78eDx8+REhICAAgNjYWa9euxcKFC9G0aVPUqFED69atw+nTp3H27FnpOEuXLsXQoUNRqlSpLOP88ssv6NSpEwYNGoRSpUqhbdu2mDhxIubOnQshhM7tzvjACwDql/EAFEiOfYHoe9fh0aAdAKBYzWZIS0lGYmKizseX4tg6vIqTGAeFQoGkmGd4/u9llG7WDQDg0aADEp8/hTo553GArHMCABevmrn+AKoVJ4ucAMC1cn3YOBfNsziAYXJSmJiiWM1mUh4uXrWQEPnwfxsVUCXEAQBSk19CoVBAqVTmOJa59atrB28779xrt0BSdCRSVUk5j2PA8y6jMAGA2KRUKKBAVJwKF8Ji8YVP+vnQ2dsVyWpNrn6XiIiIKH8w6pWTN8XGxgIAnJycAAAhISFQq9Vo3ry5tE/58uVRvHhxnDlzBnXr1s3WcVUqFaytrbWes7KywuPHj/HgwQN4eHhk+RqVSiU9jouL09p+ZsW3iLpxHgDQ6OvleBkdAasCzjAxTe9ShUIBU3NLJCXl/EMiAByfNwgRoScBAC1m7kDisyewciqsFcfGuSjSVMm5igNkzklf3sxJnwyVU4bre1eiuE8bAMAnY5fhyLQeuLhhJpJjX8DB3ROWlpa5On52zjvrgoWRlpK788GQ513Pny7h2M0XAIA/RtfGo+gkFHG0gJmpiRTLUmmS698lIiIikj/ZTIjXaDQYNWoU6tevj0qVKgEAIiIiYG5uDkdHR619CxcujIiIiGwf29fXF7t370ZgYCA0Gg1u376NBQsWAADCw8OzfM3s2bPh4OAg/XN3d9fa7jN4Fjr+cASVuw7H5W25H3v/No3Gr0T3zdfh3fs7XFg7TW9xAOaUW6FbFyDu6X3U7JM+5+PK9kWo2WcKum+6hg7LghD7+A7i4+NzFeND/Blt7F8djxY2x8wu5TBh5029xiIiIiJ5k01xMnToUFy7dg3btm3L82P3798fw4YNQ7t27WBubo66devis88+AwCYmGTdBRMnTkRsbKz079GjR1nuV6phR0Td+BtWToWR9N8zaNJSAQBCCKSlJMPKyipPcvBs8TnCQ0/BppAbkqIjteIkPnsCU4vcfSP/uoycVPExeXbMrGTklBwXrdc4gP5zurrzB4QF70fLmTthZmmN5NgXeHD6AEo37QoAsHMtAXNbB0RH502u7zrvXr6IhKl53pwPhjzvejVwx7F/XqBYASuEx6iQmqaRYiWrNXn2u0RERETyJYviZNiwYdi/fz+OHTuGYsWKSc+7uroiJSUFMTExWvtHRkbC1TX7cwYUCgXmzp2LhIQEPHjwABEREahduzYAvHWeioWFBezt7bX+AUDKy3i8/C9K2u/xhUCY2zrA0r4gnEp6IezUful5U6WFNLFfV5pUNV6+eHV16MHpA7Cwd4KlozMKlqmCu4Hpw6HCTv0Gm0JFoLTMWZx35fT63IO88LacLOwK5GkcwHA5AcCNvStxL+hXtJq9Bxb/O765rSPMLKzx9PIJAEBy7AukJMRK55GuNKmpSPrvmfT4befdo/OHYeXkAjOLnH2QN+R5F/NSjaf/vRoWtvdiBAramsPF3hzeJeyx6cwTAMCeixGwVJrk+HeJiIiI8g+jzjkRQmD48OHYs2cPgoKCULKk9pKuNWrUgFKpRGBgIPz8/AAAt27dwsOHD+Hj46NzPFNTUxQtmj7JduvWrfDx8YGzs26rGqUmJeLM8olIS0mGwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgZmlNRxLlHv/Ad9Ck5aKY9/3gUatAhQmsHQohBbTt0GhUKD+iEU4sWAoQrcthNLaDvVGLsblTXNzHEv9MgFnVmSd0/m1AXh66QSSY1/g2NyBUFpaw75o6TzPKXjJKDw6fxhJ0ZH481s/KK1s4Fg85/1nqJxSVcm4sDYAdkU8cHB8ewCAidICHZYeQZNJ6/D3T1OgSUuFJjUFdq4lUKBAzgoxjSYVwT+MRZo65Z3nndLKBrX6TsW1PStyFseA511sUiq+XH0JSSkamJgAznYW2D+qFhQKBVb1qoLeay9j1v47sLM0RVX3nBV1RERElL8YtTgZOnQotmzZgn379sHOzk6aR+Lg4AArKys4ODjgq6++wpgxY+Dk5AR7e3sMHz4cPj4+WpPh79y5g4SEBERERCApKUm6z0mFChVgbm6O58+fY9euXWjcuDGSk5Oxbt067Ny5E8ePH9e5zdYFXeE7Y2uW2+zdSqJlwGYAQFqKCqeWjtX5+BnMLKzQYsZ2mGUxPMfB3RPtF/8lPU7N5eRnm0JF3ppT7a+maj3OTV7vyqn+yMVaj1NTknFsZu8cxQEMmZMlev4enmVORb0bo6h3EIDc52NmbonG45bB1Nwi07bXzzsgPZ8cxzHgeVeioBXOT/kky23litjizHcNAADJ6jR0XRaSq1hERESUPxi1OFmxIv3b3caNG2s9v27dOvTu3RsAsGjRIpiYmMDPz0/rJoyv69evn1ahUb16dQDA/fv3pZW4NmzYgHHjxkEIAR8fHwQFBUlDu4iIiIiIyPiMPqzrfSwtLbFs2TIsW7bsrfsEBQW98xiFChXCmTNndG0eEREREREZkCwmxBMREREREbE4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREsmBm7AbkN2mpaqSlqLKxX0quY2nUKqRmc7/c0KWtuc3rY80pt/kA2W9nfvkZqdSaPN2PiIiI8j8WJzo6v2YaTEwN023H5w40SJwzyycaJA7AnHLDUDkZKp8vVl8ySBwiIiLKP1ic6KhqEVsolUr9x3HWfwwA8C5qZ5A4AHPKDUPlZKh84F7bMHGIiIgoX1EIIYSxG5EfxMXFwcHBAZGRkbC3t9fptRYWFlAoFNnaVwgBlSrnw2WyGyu3cQwZ60PL6UM8H+QWh4gov8v43BEbG6vz5w6i/IxXTnRkaWkJS0tLvR1foVDo9fiGjmPIWMyJcYiIiCh/42pdREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDVurIpY8XluLg4I7eEiIiIPnQZnzd4xwf62LA4yab4+HgAgLu7u5FbQkRERB+L+Ph4ODg4GLsZRAbDmzBmk0ajwdOnT2FnZ8ebwOkgLi4O7u7uePToEW8ilYfYr/rDvtUf9q1+sF/1x5h9K4RAfHw83NzcYGLCUfj08eCVk2wyMTFBsWLFjN2MfMve3p5/NPWA/ao/7Fv9Yd/qB/tVf4zVt7xiQh8jluJERERERCQLLE6IiIiIiEgWWJyQXllYWGDq1KmwsLAwdlM+KOxX/WHf6g/7Vj/Yr/rDviUyPE6IJyIiIiIiWeCVEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUK58uTJE6jVamM344PFxfSIKAPfD4joY8DihHIkPDwcnTt3Rt++fXHmzBljN+eDERMTg7Zt2+L//u//AAAajcbILfpw/Pfff3jw4AEAIC0tzcit+bBERkZi8eLF2L17N27fvg2AH6TzwosXLzBkyBD89ttvANineen58+c4ffo07t27Z+ymENEbWJyQzg4cOABvb28IITBz5kyULl0aAP9w5oW//voLBw8exJw5cxAVFQVTU1MWKHlgzpw5KF68OCZNmgQAMDU1NXKLPhxTpkxB6dKlsX//fgwbNgy9evXCjRs3oFAo+J6QS3PnzsXKlSuxYcMGxMXFwcTEhH2aByZOnAgvLy+MGjUKlSpVwqJFi/DixQtjN4uI/ofFCelsy5Yt6N27N/bu3YtatWrBxsYGAKBQKIzcsvzv+PHj8Pf3h7e3N0aMGGHs5uR7KpUKo0aNwu7du/HJJ5/gwYMH2LNnDwBelcoLv/zyCw4cOIB9+/bhyJEj+OWXX6DRaKSrqXxPyJ3Q0FC0aNECMTExWL9+vbGbk+89ffoUXbt2xZEjR7Br1y7s2rUL48aNw5o1a3D69GljN4+I/ofFCb3Tm9/S3b59G6GhoejTpw+uXLmCtm3bon379ujUqRN2795tpFbmf6mpqQAAR0dHeHt7o2fPnjhw4ABOnDgBExP+muaEEAIWFhYoXbo0+vfvj7lz56JgwYLYtGkTv4XOI4cOHYKzszOaNWsGANJ/a9euLe3DPn6/N/soLS0NKpUKjo6OmDRpEtzd3bFv3z7cvHkTCoWCwxJ18HrfZvTf0qVL0ahRIxQvXhzTp09HYmIiIiMjM+1PRMbBTz30ViqVCi9fvtR6zt7eHnfu3MGVK1fwzTffoFy5cvjiiy9gZWWFzz//HEePHjVSa/OPjD9+r3/AMDMzAwAEBwejTJkyaNu2LZo3b44pU6ZACIHAwECkpKQYpb35ycuXL/Ho0SOkpKRI39oPHDgQ/fv3R+XKldG2bVs8efKE30LnQsYVp5SUFDg7OyM+Ph6XLl3Cixcv4Ofnh0ePHmHq1KmYO3cu0tLSePXkPVJSUrR+t4UQMDU1hYWFBW7fvg13d3d89tlnUKvV2LdvH1JSUhAVFWXEFucfKSkpWu+zlStXxrBhw+Dj4wMg/VwWQqBo0aLSec3zlcj4WJxQlmbMmIFGjRqhffv2+PrrrxEeHi5ta9GihTR2f+bMmRg4cCC2bt2KZs2aISAgAAC/fXqbBQsWoF+/fgC05z1oNBqkpqbCysoKJUqUgJOTE4YMGYKQkBCYmpoiMDAQKpXKWM3OFwICAlC9enX4+fmhWbNmuHXrFgBoXSHp2rUrypUrh99//x3//vsvFAoFh3dlw+rVq/HTTz8BSO9PjUYDc3NzdOnSBU5OTpgwYQJcXFwQExODVatWoVSpUli1ahUGDRoEgEPo3mbatGlo0KABOnbsiNWrV+O///6TPhzfunULJiYm8PDwQKtWrVC3bl2sWrUKlpaW2LVrF/v0PWbOnIlWrVqhY8eO+OGHH/DixQu4uLigYcOGANLPSRMTE0RFReHatWuoXLmykVtMRBJB9JorV64IHx8fUbFiRbFlyxYxevRoUaNGDeHn5yeEECI1NVV88803wtLSUowZM0YIIURycrIQQoi///5bWFlZiUePHhmt/XJ1/fp10b59e2FjYyMKFy4sdu7cKYRI78/X1atXT4SFhYk///xTuLq6igIFCoiCBQtKfZyWlmbwtsvd6dOnRc2aNUWlSpXE3r17xS+//CIaNmwoGjRooLWfRqMRQgjx22+/ifr164tvvvlG2pbRrxn7ULqLFy+Kxo0bC4VCIZo1ayYuXbokhNA+b9PS0sSqVatE27ZtxcuXL6Xn161bJwoXLiyioqIM3WzZU6vV4ssvvxRlypQRGzZsEJ9//rmoWLGiaNeunbRPeHi4aNGihRBCiD/++EM4OzsLW1tb0bBhQ6FSqYQQPF+zEhISImrWrCkqVqwo1q5dK7p37y6qV68uRo8eneX+v//+u/D09JTeY4nI+HjlhCRqtRp79uxBkSJFcPz4cXz++edYuHAhhg0bhrCwMNy/fx+mpqbo2rUrKlSogF27dgEALCwsAADXr19HqVKluEpPFk6fPg2FQoGff/4Zvr6+WLJkCVJSUmBqair11T///IPo6Gg0a9YMfn5+GDZsGHbs2IHChQtj4sSJRs5AvoKDg1GlShUEBwejY8eO+OKLL9C6dWsUKFBAmsvz+rfM7du3R506dRAcHIyjR49ix44dGDp0KAAO6XhdWloa9u/fj8KFC2PFihWIi4vDnj17oNFopPNWCAETExPcunULLi4usLKykl7/6NEjFC5cmN/wZ+HRo0f4+++/sXDhQvTs2RNbtmzBokWLEBgYiEWLFgEAQkJCcOXKFdSrVw/du3fHmDFjMG7cOGg0GuzYscPIGchTQkICtm7divLlyyM4OBh9+/bFtm3b0LZtW9y5cwcxMTGZXnPx4kXUqlVL+jsWHBzM+ZNERsbihCRCCFSsWBFDhgxBwYIFpQ8V5ubmeP78OQoWLAgA8Pb2xvjx45GQkIAvvvgCQUFB+Pfff7Ft2zbUr18fRYsW5Ye8/8koPLp3745x48ahW7du6Ny5M+Lj47Fw4UIArz44ly9fHm5ubmjSpAkuXbqESZMmoX79+vDz88OWLVukSdyULqNvhwwZgvHjx8Pe3h5A+uICR44cQZkyZXD27FkA6UORXp9I3KNHDyQlJaFdu3b44osvpBXn6BVTU1N06dIFI0aMwMCBA1G/fn0EBQXhyJEj0j4Zv+eRkZGIjo6WVjy6ffs2goKC0LRpUxQuXNgo7ZcztVqNW7duoWrVqtJzLVq0wOTJkxEQEIDHjx+jTp06cHJygqenJy5evIhvvvkGffr0gZmZGfbt24ekpCS+z75BCIGSJUti8ODBcHBwkL6ccHBwwK1bt6T3iNf9+eefaNasGZ48eYI2bdqgUaNGiI+PN3TTieh1xrtoQ3L0+jCBjKEuy5cvFw0aNBApKSnScA61Wi0OHz4sypYtK7y8vETBggVFt27dRFxcnFHanZ88f/5cjBkzRlSqVEmEhYUJIYRISkoSQggRFxeXaahGeHi4SEhIMHg786N9+/YJOzs7UblyZdGsWTPh5uYm/P39RUxMjLTP48ePxcCBA4VCoRB9+/YV0dHRRmxx/nH79m1Rt25dMXjwYPHff/8JIYRISUkRQghx9uxZUadOHeHk5CQ6duwo7OzshL+/v4iPjzdii+Xrxo0bolq1amLevHlaz8fGxoqSJUuKsWPHCiGEePToUaahnKdPn2a/vsObQw6FEOK7774T3bp1y7TvrVu3RIECBUTr1q2Fubm56Nixo3j+/LnB2kpEWePXsCQRQmT5Tdzp06dRo0YNKJVKabuJiQmaN2+O8+fPY/fu3Thz5gy2b98OOzs7Qzc7XxFCoGDBgujQoQMcHR0xe/ZsAIClpSUAwM7OTupj8b8rA66urvxm/y3EG8MHU1NTsXnzZly6dAmHDh3CwYMHsWXLFly8eFHaZ9++fTh+/DjOnj2LtWvXokCBAoZudr6j0Wjg6ekJPz8/XLhwAfv37wcAKJVKAECdOnWwZs0aLF68GLVr10ZQUBA2bdoEW1tbYzbbaN48L99UvHhxlCtXDufOnUNYWBiA9D62t7fHkCFDsHPnTiQnJ6NYsWLS1dKMY/r4+Hy0/fo+4n8rnWXIeC+9ePEivL29pX0y3Lt3DzExMYiLi8Px48exd+9eaYQAERkPi5OPSGRkJMLCwpCQkABA+006NTVVqzDJWMkkLS0NJ06cQOPGjQGkFyX37t2TVuxxcHBA+fLl4enpadBc5OTx48dYvHgx7t27ByBzv74uY1hRvXr10K5dOwQFBeHUqVMAIA1BysAhG0B4eDiuXLmC58+fZ9r25jkLAF26dEH79u1hamoKMzMzlC5dGk5OTrh06ZK0z5AhQ3Dz5k2te3F8jO7evYtp06bhzp07mba9ed5mDD0cNGgQChQogP3790sfqq9evQoAqFSpEr788kt8++230gfBj1FsbCwSEhKk94HX59xk9KuNjQ06deqEf//9V5o/klGEODg4wN7eHs+ePdM6Lt8PgLCwMPTs2TPLOTdZ/Q1TKBSIjY3FuXPnpOWDFQoFHjx4AACoUaMG/vzzT5w6dQp169Y1TBJE9F4sTj4SI0aMQMWKFaW7jx89elRamlYIATMzMwghMHnyZACv/lAGBwdDo9FIY3K7deuGMmXKIDw8nPMfALx48QLt2rXDhAkTcOTIEem+DhlFSEa/ZkxyzXisVCrRtm1bVKxYERMnTkSbNm1Qr1493Lx505jpyMqoUaNQrlw5+Pv7o1KlSvj111+lseBZnbNZ2b9/P0qVKgU/Pz9DNVv2hBAYPHgwPD09ER4ejmLFiknbMj5IZ/Ttb7/9Jj1OS0uDra0tvvrqK9y7dw9Lly5FmzZt0KxZs0wfpD9GQgiMGjUKjRo1QqtWrdCzZ0/Ex8fDxMQEarUawKt+3Lx5Mz777DPUq1cPe/bska5EAcDz58/h6OgINzc3Y6UiS1OnToWXlxcSExOhVCqlQi+jCHzzvTbj71NgYCAcHR3RsGFD6W9YrVq1EBkZCWdnZ7Ro0cI4CRHRW/HT5QdOo9Fg8ODBuHTpEg4cOIDly5ejQYMG6NevH3755RcA6d8krVmzBkWLFsWOHTukb5UA4MaNGyhVqhSWLFkCT09PxMfH4/79+yhSpIixUpIVKysrODo6wsvLC7t27ZK+Rc4YWrBmzRoUKVIEO3bswNOnTwG8+gbU2dkZkZGRCA4OhpWVFcLCwuDl5WWcRGTm559/xrFjx/D7779j27Zt6NChAyZPnoylS5cCePc5+/TpUzx8+BDTpk3DqFGj0K5dOxQtWpQryAHYunUrChUqhPPnz+P8+fPSfTMASCtvAen3NXFxccGuXbukFY4yzukmTZrg6dOnWLx4MUxNTRESEgJnZ2ej5CMXZ8+eRfXq1XHu3DnMmjULvr6+uHDhAvr37w/g1fC3n376CW5ubti4cSPUajVGjhyJChUqoHPnzhgyZAiGDx+OuXPnonv37lor+X3sLl++jMDAQGzfvh2//vorOnfuLN24NuP9NKv3WiB9FcTq1atj1qxZ8PT0RExMDEJCQrhQA5GcGWx2CxmcRqMRYWFholKlSmLTpk1a24oXLy68vLzExYsXxfXr10XTpk3FmjVrMt13o127dkKhUIhKlSqJP//805DNzxcuXrwo2rZtK+7duyeKFSsmAgICpMnXu3fvFtWqVcuyX0NDQ4Wnp6coU6aMOHXqlDGaLmudOnUSHTt21Hru66+/FlWqVBHHjx8Xt27dEk2aNMnUt48fPxZz5swRnp6eonLlyuLo0aMGbrm8+fr6Cg8PD/H06VMhhBBXr14Vf/75p7h79650j5KFCxcKS0tL8fPPP2c6bwMDA4VCoRCVK1cWwcHBBm+/HKWmporx48eLzz//XGui+vbt20XJkiVFRESEEEKIjRs3Cnd3d7F27VqhVqu1jjF//nwxYMAA4evrKwIDAw3a/vxg6NChonXr1kIIIYKDg8XIkSPF//3f/4lz584JIYQ4cuSIqFKlSpbvtbVr1xYKhUJ4eXnxbxhRPqEQgl/NfEhSU1Olb5SA9PHgNWvWxLVr16R5ISkpKWjWrBkiIyPRpEkTrFq1CikpKTA3N890rLVr18LW1hb+/v4GzUNu3uxX8b/FA+7fv4++ffvi2LFjGD9+PP766y9s3rwZnp6eMDc3h0qlktbPf11SUhIOHz6MDh06GDINWcvo06SkJHzxxRfw8PDAggULpO1XrlzBt99+K90hW61WS99IZ0hLS8PVq1cRGRkJX19fQ6cge1euXEHnzp3Ro0cP3Lx5EyEhIbC1tcWLFy/QqFEjbN26FUIIxMbGwtHRMdPr4+LisGnTJgwZMsTwjZexP//8E1ZWVtLdxwFgw4YNmDdvHs6ePSstFBIfH6+1aIh4yyIkH7OM+Y7Aqzl6/fv3R+nSpeHo6IiZM2eiadOmuHHjBiIiIvDNN99g5MiRSE5Olq4CZkhMTMSsWbNQoUKFj/5vGFF+wuLkAzJlyhRcu3YNRYsWxZAhQ1CmTBkolUpUr14dJUqUwLx581C2bFmMHj0aV69ehYeHB/755x+sW7fuo57Q/j5v9mvZsmWlIS7btm3DihUrcPz4cQBAhQoVYG1tjYsXL+KPP/5Aq1atMh2PH0he+fnnn+Hu7i6N+87om4EDB+LChQv4888/UahQIWn/pUuXYtOmTZgzZw6aNm1qrGbnC7Nnz0ZUVBTKly+PPn36SF8+jBgxAqtWrYKfnx/GjBkDc3Nz3Lx5E3379sWECRMwZcqULM/R1z80fsx2796N5s2bZ3nPDCD9A7WpqSkWLlyI3bt34+TJkwA4oT07pk+fjvv376NUqVIYMmQInJycoFAo0KNHD9y5cwdlypTBZ599hvbt20OhUGDUqFEICQnB5MmT0bJlS763En0ojHPBhvJSVFSUqF+/vqhcubKYNm2aKFu2rKhatapYuHChEEKIc+fOiUKFCglPT09hY2MjPD09xcOHD8XVq1eFhYWFuHv3rpEzkKf39asQQmzatEl88803Qggh9uzZI+zt7YWFhYUYN26csZqdL5w6dUp4e3tL9xrJGGaUMdzl/v37wtTUVGzcuFHrdbdv3xbu7u5i7969Bm9zfvHPP/+IChUqiMqVK4vu3buLAgUKiMaNG0vDB2NjY8W3334r7t27p/W6//u//xOOjo6ZhsVQumPHjoly5coJhUIhVq1a9db9Mu6t0bFjRzFhwgQhhMh07yLS9vDhQ+Ht7S0qV64shg4dKlxdXUXNmjXFtm3bhBDp99FRKpXCxsZG/PPPP9Lrbt++LapVqybWr19vrKYTkR7wa7APwNmzZxEdHY0DBw5g6tSpuHLlCpo0aYIffvgBJ0+eRO3atXHmzBksW7YMv//+O27fvg13d3ekpaXB3t4esbGxxk5Blt7VrxnL/966dQv79+9Hw4YN0bdvXwQEBKBOnTp49OgRbt++beQM5CkmJgbbt29HzZo18f333yMoKAhBQUEA0lfc0Wg08PDwQP/+/TFlyhStfvT09ERiYiKePHlipNbL34EDB+Dg4ICLFy9i27ZtuHHjBv777z8sXboUt2/fhr29PSZMmICSJUtqva5o0aIwNzfH9evXjdRy+bp58yZWrlyJ5s2bo3///vj+++8RHh6e5b4mJiZISkrCpUuXpCuCCoWCK/G9w9GjR6HRaHDy5En8+OOPuHPnDtzc3PDDDz/gypUrqFOnDrp37w4zMzOtZcU9PT3x7Nmzt/4siCh/YnHyAYiKikJCQoK0+oiFhQUGDRqESpUqYfz48QCAMmXKoEWLFmjSpIn0uh07dsDb2xvVq1c3Srvl7l39+vXXXwMAypUrh+joaJQrVw4XLlzAqFGjEBAQgJ07d+L48eNa9zigdNbW1ujUqRMGDRqEiRMnokyZMti6dStu3boF4NXwl8WLFyM1NRVTp06VisE//vgDRYsW1TqP6ZXU1FRcv34dLi4u0tBDV1dXTJo0CQ8fPsT69esBIMshSWfOnEHdunVRpUoVQzY5X3ByckKLFi0wdOhQzJ8/H2lpaVrzod508uRJmJiYoF69erhx4waaNGmCGjVqICIiwoCtzj/CwsKgVCqlm83a2Nhg7NixsLCwwNy5cwEAkydPhpmZGZYvX47Lly8DAI4fP45ixYqhbdu2xmo6EekBi5MPQEpKCgoXLozQ0FDpuXLlyqFPnz54+vSpdMMqIQTCwsJw8eJFDB48GKtXr8YXX3whbSNt7+rXx48f4/fff0fXrl1x7NgxrF69GqVKlQIANG7cGBs2bEDPnj05Rj8L5ubmaNq0qVQUT5s2DSEhITh06BBSUlKgUCigVqthYWGBTZs2ITY2Fr6+vmjVqhU6d+6M5s2bo1y5ckbOQp7MzMygUqmQlJQEjUYjTSju2rUratSogXPnzmndkPLhw4cICwvDsGHDsHfvXvTs2RMA3w/eVLhwYfTp0wdeXl6ws7PDjBkz8OOPP2q9NwCv+u3q1atwdXXFlClTUKVKFbi5uSEyMhKurq7GaL7sJScnw8zMDFFRUdJzDRs2RJs2bXD9+nUcOXIEZcuWxdq1a3H9+nU0b94cHTp0QJs2bVC/fn1UqFDBiK0nojxn3FFllBsZ45gfPHggnJycxOLFi0VKSoq0/cGDB6JDhw5iwIAB0r4HDhwQLVu2FPXq1ROXL182Srvl4m3jwLPTr+3btxcDBw7MdIyM8eYfu+yOsc/or379+ok6deqIM2fOZNrnxYsX4rfffhOLFy8WV69ezdN2fkgy5oocO3ZMmJiYiEuXLgkhXs3jCQoKEmXKlBE7duwQQqSP1x87dqxwdXUVPj4+4sqVK0Zpd37y+nldp04d0aFDh0zLAgshRJMmTYRCoRCffPKJCAkJMWQT85WM3/+bN28KhUIh9uzZo7X98uXLok6dOmL27NnSc2FhYWL79u1i9uzZfD8g+kBxtS6Zi4iIgEajQYECBWBlZSWtBANoL287bNgw7N+/H3v37kW1atWk1/v5+cHc3Bxbt24FkL6E7dOnT1G6dGmD5yIn8fHxsLW1lYYQiddWedG1XwVXiNGS3b59/XF4eDjq16+P7t27Y+LEibC3t5dW56FXkpKSYGVlleW2jL5MTk5Gq1atoFQqcfjwYa3+L1OmDHr27IkpU6YgKSkJ586dg0aj+ehXPstOv2bI6M+TJ0+icePG2Lt3L9q3b4+0tDRER0fD2dkZW7Zsga2tLZcKf01W75Ov9223bt1w584d/PXXX1or9NWtWxe1a9fG0qVL+V5L9JHgmBOZUqvVGDhwIHx8fNC+fXu0bt0aKpUKpqamUKvVACB9ELl06RKWLFmCtLQ0/Pjjj1p3ywagdb8CKyurj7owUavVGDRoENq0aYNPP/0UGzduBJA+zyE1NRWA7v3KP5bpstu3arUawcHB0uO0tDQUKVIEAwcOxO+//441a9agRYsW6Nu3LxITE42Wj5yo1WoMHjwYXbp0Qc+ePXH27FlpCFFKSgqAV30ZGxuLgIAAHD9+HCtXrpT2+++//2BjY4OCBQsCSH8vaNy48UddmGS3X1NTUxEZGQng1e/7J598gs8//xwBAQEIDAxE27ZtsXTpUqSmpqJHjx4ffWGiVqsxf/587NmzB4D2+2TGcEMzMzOkpKTgzp07mD9/Pv755x8sWrRIWqQlNTUVFhYWKFCgQKZjENEHzDgXbOhdHj9+LOrWrSuaNGkiTp8+LTZs2CBKlSolhg8frrXfkiVLhJ2dnbRs7a5du0Tt2rVFpUqVxJo1a8TIkSNFoUKFxJEjR4yRhuzcvXtXVK1aVTRq1Ej89ttvok+fPsLLy0sMGDBAaz/2q+507duJEydKdyTPGCrz8OFDYWZmJhQKhejUqZN49uyZwfOQo/DwcFG9enVRr149sWzZMlG1alVRtWpVMWfOHK39lixZIszNzaVlVWfOnClcXFxEv379xIkTJ8To0aNFyZIlxc2bN42Rhuzo0q8WFhZi3bp1mYYrnj59WigUCqFQKISvr6+Ijo42ZAqy9ccffwgvLy+hUCiEv7+/ePLkiRAi83DPJUuWCGtrazF37lwhhBCrV68WZcqUEb6+vmLfvn1i9OjRokiRIuL8+fMGz4GIjIfFiQxt3bpVVK1aVYSHh0vP9ezZU3z33XfS47FjxwonJyexadMmrXkOoaGhwt/fX/j6+gofH58sx/B/rH788UfRuHFjkZiYKIRI/0O5YsUKoVAoxK+//irS0tLEN998IwoUKMB+1ZGuffvmh5SdO3cKhUIhatWqJS5evGiMFGRr165domLFiuLx48dCCCFiYmLEtGnThKWlpbh27ZoQQoju3bsLNzc3sWHDBq2+Xbp0qfjkk09E5cqVRdWqVcW5c+eMkoMc6dKvGzdu1OrX1NRUsWHDBqFUKkWdOnV4zr4mISFB9OvXT4wYMULMnj1b1KxZU6xYsUJrH5VKJQYNGiRcXFzEL7/8ovVe+/vvv4s2bdoIHx8fUbNmTXH27FlDp0BERsbiRIZWrFghrK2tpcdPnz4V1apVEwsXLhQnTpwQQqTfIDAuLk7a580Pe7GxsYZpbD4yatQo0aBBAyHEq/5avny5UCgUonr16uLFixciKipKq+/Yr9mTk7593d9///3OG9t9jDI+sK1YsUK4ublpbQsPDxfNmjUTDRs2FEKk36Tu9b59/cNeWlpaphsufsxy068ZEhMTxeLFi3nOZkGj0Yjg4GDpZol+fn6iffv2IjQ0VGuf27dvv/WcFUKIiIgIwzSYiGSHc06M7Pz58wCgdT8MHx8fODo6ok6dOvj0009RvHhxODo64sCBA2jbti0CAgLg6OgIOzs76TVvjsXN6j4GH5Os+tXOzg6Wlpb4448/pP4KDg5GQEAAbty4gd9//x3Ozs7SWvsA+zUredW3r6tZsyYGDBig/8bL3K5du3DkyBGEh4dLy1CbmprC1dUVJ0+elPZzdXXFxIkTcebMGfz111+oU6cObG1tpe2vL2FtYmKS6YaLH5u86tcM1tbWGDlyJM9ZaPctkP6eWa9ePWm574EDB+Lx48fYs2ePNJ9HoVDA09NT6/30zWXXM+4vRUQfIWNXRx+rPXv2CDc3N+Hk5CTu378vhBBaS1Lev39fHDp0SFSoUEFs3LhRen7Lli3C2tpaPHr0yNBNzhey6leVSiWEEOLGjRuic+fOwsHBQXTv3l3Y2tqK2rVriydPnojPPvtMtGvXzogtlz/2rf5s3LhRuLi4iNq1awtnZ2dRv359sWvXLiGEEBcvXhQVKlQQc+bMkfpbiPRvljt06CC+/PJLYzVb9tiv+pNV3+7evVsIkX4V5PWrzkOGDBGNGjWS5ulld6lxIvo48cqJEWzevBmzZs1Cw4YNUaFCBcyZMwcAtJar9PDwQHR0NExNTfHll19K31L7+PhArVbjypUrRmm7nL2tX83NzSGEgJeXF5YsWYJFixahUKFC2LRpE86dOwc3NzckJyfDw8PDuAnIGPtWP1JTU7FkyRLMnj0bs2bNwsmTJ7F3716ULl0aa9euRVJSEqpXr44GDRpg9+7dOH36tPTawoULQ6lUSkuL0yvsV/15V9/+9NNPUKlUMDExgUKhkP5uDR8+HMnJydi3bx8SExMhhMDt27cBvFq5i4goA4sTA8p4Ey5TpgyaNWuGuXPnokOHDggKCkJQUJDWPkD6uvAmJiaIjIyULnn/8ccf8Pb2Ru3atQ3efrnSpV/d3d3Rp08f/Pjjj+jYsSOA9HvJPHr06KNeYvlt2Lf6lZiYiGfPnqFXr17o06cPzM3NUa9ePVSoUAFxcXHScrYBAQFQq9VYvXo1njx5Ir0+KSlJWmaVXmG/6s/7+jZj2XAgfaiWEALly5dH586dceHCBcyYMQO1atWCv7+/1n27iIgkRr1u85G4fft2psvYGUO4rl27Jjp06CDatGkjbcuYGHj48GHRqFEjUalSJbFy5UrRp08f4eTkJBYtWmSwtsuZrv365r5hYWHi8ePHwt/fX1SvXl08ePBA/43OJ9i3+vNm3166dEm6u3vG7/7mzZtFtWrVtIYb7dy5U3zyySeiRIkSYsGCBeLLL78ULi4u4uTJk4ZNQKbYr/qT0759ffvff/8tlEqlUCgUYsCAAZn2IyLKwCsnerRjxw6ULFkS7du3R926dfHzzz9L2zK+LapYsSI6deqEsLAwrFu3DsCricbNmzfHrFmzULJkSezZswfR0dE4ffo0Ro0aZfBc5CSn/Sr+NxkTSP9mdM2aNahSpQoePnyInTt3onjx4oZNRIbYt/rzZt+uXbsWAFCtWjWYmppCo9FIV0gPHDiAatWqwdzcXPqW/9NPP8XWrVvh6+uLkydP4sWLFzhx4gQaNGhgtJzkgP2qPznt2zevnqxcuRK1a9dGkyZNcOfOHaxatQrm5uZGyYmI8gFjV0cfqr/++kt4eHiIZcuWiUOHDokxY8YIpVIpVq9eLd18LuOb6MePH4uvvvpK1KpVS8THxwshhEhOTpaOlZaWJmJiYgyfhAzltl9TUlKkY12+fFkcP37c8EnIFPtWf97Vt0lJSUKI9KtPGo1GJCUliSpVqohffvnlrcfLeM3Hjv2qP3nZt6GhoWL79u2GbD4R5WMsTvJYxqXvgIAAUaNGDa0PbEOGDBE1a9aUVjR53f79+0XNmjXF1KlTRWhoqGjXrp14+PChwdotd+xX/WHf6k9O+vbJkyfCw8ND3L59WwiRPqRm9OjRhmt0PsB+1R/2LREZG4d15bGMezzcuHEDpUuXhlKphFqtBgDMnDkTlpaW2LdvHyIiIgC8mkzcpEkT1K5dG9OnT0eNGjWgVqvh4uJinCRkiP2qP+xb/dG1bwHgyJEjcHd3R5EiRTBy5EhUqFABDx48gFqt1ho+9zFjv+oP+5aIjM7IxVG+99dff4nhw4eLRYsWiXPnzknPr169WtjZ2UmTBjO+fVq9erUoW7asCAoKkvZNSEgQixYtEqampqJx48biypUrhk1Chtiv+sO+1Z+c9u2xY8eEEOnfWnft2lUUKFBAFCxYUFSsWFH8/fffBs9Dbtiv+sO+JSK5YXGSQ0+fPhXt2rUTLi4uwt/fX1SuXFk4ODhIb+63bt0SRYsWFZMnTxZCCK2VSVxdXbVW3Lp+/bqoU6eO1s0WP1bsV/1h3+pPXvVtYmKiaNeunShWrJjYtm2bwfOQG/ar/rBviUiuWJzkQGJioujVq5fo3r27uHfvnvR87dq1Re/evYUQQsTFxYmZM2cKKysraRx+xljeRo0aiX79+hm+4TLHftUf9q3+5HXfXrhwwYCtly/2q/6wb4lIzjjnJAesra1hYWGB3r17o2TJktKyiW3atMHNmzchhICdnR169OgBb29vdOvWDQ8ePIBCocDDhw8RFRWFTp06GTcJGWK/6g/7Vn/yum9r1KhhpEzkhf2qP+xbIpIzhRCcrZYTarUaSqUSAKS13v39/WFjY4PVq1dL+z158gSNGzdGamoqatasidOnT6N8+fLYsmULChcubKzmyxb7VX/Yt/rDvtUP9qv+sG+JSK5YnOShBg0aoH///ujVq5d0I0UTExPcuXMHISEhOHfuHKpWrYpevXoZuaX5C/tVf9i3+sO+1Q/2q/6wb4lIDlic5JF79+6hXr16OHDggHSJOyUlhXfBzSX2q/6wb/WHfasf7Ff9Yd8SkVxwzkkuZdR2p06dgq2trfSmHhAQgJEjRyIqKsqYzcu32K/6w77VH/atfrBf9Yd9S0RyY2bsBuR3GTesOn/+PPz8/HD48GEMGDAAL1++xC+//MKb0uUQ+1V/2Lf6w77VD/ar/rBviUhuOKwrDyQnJ6Ny5cq4e/cuzM3NERAQgAkTJhi7Wfke+1V/2Lf6w77VD/ar/rBviUhOWJzkkRYtWsDT0xMLFy6EpaWlsZvzwWC/6g/7Vn/Yt/rBftUf9i0RyQWLkzySlpYGU1NTYzfjg8N+1R/2rf6wb/WD/ao/7FsikgsWJ0REREREJAtcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiOg9evfuDYVCAYVCAaVSicKFC6NFixb4+eefodFosn2c9evXw9HRUX8NJSIiyudYnBARZUOrVq0QHh6OsLAwHDx4EE2aNMHIkSPRrl07pKamGrt5REREHwQWJ0RE2WBhYQFXV1cULVoU3t7e+Pbbb7Fv3z4cPHgQ69evBwAsXLgQlStXho2NDdzd3TFkyBAkJCQAAIKCgtCnTx/ExsZKV2GmTZsGAFCpVBg3bhyKFi0KGxsb1KlTB0FBQcZJlIiIyIhYnBAR5VDTpk1RtWpV7N69GwBgYmKCpUuX4vr169iwYQOOHj2K8ePHAwDq1auHxYsXw97eHuHh4QgPD8e4ceMAAMOGDcOZM2ewbds2XLlyBV27dkWrVq3w77//Gi03IiIiY1AIIYSxG0FEJGe9e/dGTEwM9u7dm2nbZ599hitXruDGjRuZtu3atQuDBg3C8+fPAaTPORk1ahRiYmKkfR4+fIhSpUrh4cOHcHNzk55v3rw5ateujVmzZuV5PkRERHJlZuwGEBHlZ0IIKBQKAMCRI0cwe/Zs/PPPP4iLi0NqaiqSk5Px8uVLWFtbZ/n6q1evIi0tDWXLltV6XqVSoWDBgnpvPxERkZywOCEiyoWbN2+iZMmSCAsLQ7t27TB48GB8//33cHJywqlTp/DVV18hJSXlrcVJQkICTE1NERISAlNTU61ttra2hkiBiIhINlicEBHl0NGjR3H16lWMHj0aISEh0Gg0WLBgAUxM0qfz7dixQ2t/c3NzpKWlaT1XvXp1pKWlISoqCp988onB2k5ERCRHLE6IiLJBpVIhIiICaWlpiIyMxKFDhzB79my0a9cOPXv2xLVr16BWq/HDDz+gffv2CA4OxsqVK7WO4eHhgYSEBAQGBqJq1aqwtrZG2bJl4e/vj549e2LBggWoXr06nj17hsDAQFSpUgVt27Y1UsZERESGx9W6iIiy4dChQyhSpAg8PDzQqlUrHDt2DEuXLsW+fftgamqKqlWrYuHChZg7dy4qVaqEzZs3Y/bs2VrHqFevHgYNGoTu3bvD2dkZ8+bNAwCsW7cOPXv2xNixY1GuXDl06tQJf//9N4oXL26MVImIiIyGq3UREREREZEs8MoJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAv/D2VWOFOnzY8MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr5klEQVR4nO3dd1gUV9sG8HsW2KWDIIoFOxas2DUGNYli7NFXTWyxJNboazSvJSYqNoKJRmONJWrsPdZYYsHYFWIvwY4KooAUkQV2z/cHH6MroCywyyD377q44szOzDnP4WSZZ+acGUkIIUBERERERJTHVHldASIiIiIiIoDJCRERERERKQSTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkWwzOsK5Bd6vR6PHj2Cg4MDJEnK6+oQERHRO0wIgbi4OBQvXhwqFa8lU8HB5CSLHj16BA8Pj7yuBhERERUgoaGhKFmyZF5Xg8hsmJxkkYODA4DULwlHR8c8rg0RERG9y2JjY+Hh4SGffxAVFExOsihtKJejoyOTEyIiIjILDiWngoaDGImIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrACfFERGRACAGtVpvt/TUaTZYn8ZqrrJyWY86y3rWY3sX+YI5yEhMTs7UfUX7H5ISIiAxotVp06dIl2/tv2rQJ1tbWiiorp+WYs6x3LaZ3sT+Yo5zk5ORs7UeU3zE5ISKiDAU/jDN6n9olsvdOhgtPjD8Rq+lmZfQ+2YkJyF5cjCl78QDm63vm+h0h9Izx+7h7G78P0TuAyQkREWWq0RB/WFiq37qdLiUJJxeMy1FZTcf8CpWV5q3b6ZO1CAwYmO1yshoTkPO4CmpMOY0HMF/fM9fvaPUAb2is3j7VV5usR8/F/2S7HKL8jskJERFlysJSDQv120/ccoPKSgNL9duHyqTksBzGlDNZiSmn8QDmi8lcvyONlQrWVhY5PArRu49P6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEy7yuABERKdth/wF4EfMUkqSClY0d6vQeh0JlKiMxJhInF41H/ONQqCwtYWXrCMAh2+Uc+L4bEuVy7NFw6Ay4lq+OF8+e4OiMwYgLuwOVlRoNBv9gspiubF+CO3/vQFz4PfiMnAv3ag1zVE5mMV1YNxMhf61H7MNb+GjSWhSv3SxfxCT0Ohye2gcxD27CUmMDm0JF0Xj4LDi4l8LTf//ByQVjoEtKhE77ApBUgFvFbJcV+NNQJMZGvbHfWVipUbvX2GyXAZi337X86RTCY7RQSRIcrC0xt2dV1CrlhIhYLXovOY9bEc+htlTB2cYyB/8nEeVveZqc+Pv7Y+vWrbh+/TpsbGzQuHFjBAQEoFKlSvI2Qgj4+flh8eLFiI6ORoMGDTB//nxUrVoVABAVFYWJEydi//79CA0NReHChdGxY0dMmTIFTk5O8nGmTZuG3bt34/z581Cr1Xj27Jm5wyUiypfeG/4T1HaOAIAH5w7i9JIJaDVtI85vmI3CFWqg+ZhFeHI9GId/GAC9Z/Fsl9N0zGLYuhQFANw7sRvHZn2FDvMDcW6ZH9yq1IXv9M14ciMYh6b0RqGyXiaJqWjVBijVsBXOLJmQo+OnySymYt5NUbZpJxz7eViulAOYLybPVr1QulFrSJKEq9sX4/icEWjlvxXHZv8XtXuNRalGrfE8MgybetdCXLli2S6n0ZAfYONcOF08r/a7yFuXcWzO13DyyH4SZM5+t3FIHTjbWgEA/ggOR79lFxDs54Oxm66jYXln7B3VAMdCItHyx9NoUk6fo7KI8qs8HdYVGBiIoUOH4tSpUzhw4ABSUlLQsmVLPH/+XN5mxowZmDVrFubNm4ezZ8/C3d0dLVq0QFxcHADg0aNHePToEX766SdcunQJK1aswN69e9G/f3+DspKSktClSxcMHjzYrDESEeV3aSe8AJCUEA9JkgAAoaf2wbPFpwAAl3JVobJSIyoqKvvl2L+8oJT0PDb1yjuAO0f/QJV2XwAA3CrVhrWzG7Rxz7JdDpB5TIUr1IBDUY8cHdugnExiKlK5LhyLl821cgDzxCSpLFCy7ofysYtUqYe4sLvy59r4WABASmICJEmClZVVtstS2768d5BZv3MtXw3Wji5Iio/Jfjlm7HdpiQkAxCQkQ6VKjWnj2UcY+kEZAEDdMs5QW6p4EZUKrDy9c7J3716D5eXLl6NIkSIICgqCj48PhBCYPXs2xo8fj06dOgEAVq5ciaJFi2Lt2rUYOHAgqlWrhi1btsjHKF++PKZNm4aePXsiJSUFlpapIfr5+QEAVqxYYZ7giIjeIScXfouIq2cAAM3GLII27hmEELB2dJG3sVBbIzExMUflBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB0/K/3OtnBxxD8OzVE55ux3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29jq7bAixcvclwWUX6kqDknMTGpVz5cXFK/dO7cuYPw8HC0bNlS3kaj0aBp06Y4ceIEBg4cmOlxHB0d5cQkO7RaLbRarbwcGxub7WMREeV3jQZPBwDcProd/6ydiUaD/YH/v5L9kshxOU1Hp55QhxxYh7NLJ8Bn9K+QkPvlAOljajZ6Ya4c93Wvx9Ry6iaTlAOYLyYAuLBuJmIf3cZ7w2cBAC5t+gX1vpiMck0/QfT9G9gxtBniS7nmqIws9TuRv/rd7196AwBWHgvF/zZcxaoB3hmURVRwKeZpXUIIjBw5Ek2aNEG1atUAAOHh4QCAokWLGmxbtGhR+bPXRUZGYsqUKZkmLlnl7+8PJycn+cfDI/du8xMR5VflfDog4upZeTkx9uUwLl2SNsdXytN4tvgMYReOycsvnj2V/x0f8QAWGptcKQd4GVNOh+y8TVpMr7aZqZg6pkub5uLu8V1oOXUTLK1tkRgTiXsndqNc008AAA7upaG2d0J0dHSulPemfpcQGQYLdf7rd5838cDh65Hy8pPYlxdEE5J0sLHJvbKI8hPFJCdfffUVLl68iHXr1qX7THrtKokQIt06IPXuRps2beDl5YWJEyfmqD7jxo1DTEyM/BMamrNbxkRE+VHyi3gkREfIy6FnD0Jt7wS1vRNK1W+BkAPrAQBRt69An5wk3/k2lj4lBQmRLy863T2+CxpHF2gcCqGMTwdc27kUAPDkRjBeREdA4+Bskphy05tiym3migkArv6xCLePbEEr/23Q/P/x1fbOsLDSIOzicQBAYkwkkuJj4OCQvWdO6XUpeBH9RF7OrN9F3rqMxJjIbMdpzn4X+yIZj6JfDnvcFhQGV3s1XOys0KVeMcw/dBcAcO7uM2hT9HB2zn5ZRPmZIoZ1DRs2DDt27MDRo0dRsmRJeb27uzuA1DsoxYq9fOJHREREurspcXFxaNWqFezt7bFt27YcTcIDUoePaTSat29IRPQOS06Ix4kFY6FLSoSkUkHjUAhNv5kPSZJQ87OvcWrBt9g5sg1UFpZwLl0ZKlX2rnnpdck4PK0v9MlaQFLB2qkwWkxeD0mSUK//JATOGITNfetAZalGk5FzcW37YpPEdGX7UoQcWAdtXDRO/fodLKzUcCxRPtdjurB+Fq7tXIbEmKf4e+ZQWFhp4Fy6MoDs/e0yV0wp2kScW+YHh2Jl8OfodgAAlZUG7X/5C83HL8eZX8dDr0uBPiUJDsXKZPsEW+hScHzuKOiSk97c7yytUP/Lyfh3/9pslWPOfhfzIgU9fv0HL5L0UKkANwcNdo2oB0mSENClCnot+QeeYw7BykIF71KO2f5/iSi/y9PkRAiBYcOGYdu2bThy5AjKljV8cknZsmXh7u6OAwcOwNs7dYxmUlISAgMDERAQIG8XGxsLX19faDQa7NixI9eGFRARFXS2ru7wnZL+jjYA2DgVRvNxqSdruiQtjv0yKtvlWGps0GLKBlhmMDzHplARtPLfKi+nJCXm6CTxTTFV7fAFqnb4Ql7OSVxviqnmpyNR89OR8nJKUiIOT+2TrXIAc8Zkjd47wzKMqUTtZihR+wiAnMdjobZG02/mw0Kd/iLhq/0OSI0nu8mJOfudh4sNzkx4P8PPijppsP+b1PfPJCbr0GV+EJKzXRJR/panycnQoUOxdu1abN++HQ4ODvI8EicnJ9jY2ECSJIwYMQLTp0+Hp6cnPD09MX36dNja2qJ79+4AUu+YtGzZEgkJCVi9ejViY2Plyetubm6wsLAAANy/fx9RUVG4f/8+dDodzp8/DwCoUKEC7O3tzR88EREREREZyNPkZOHC1KeINGvWzGD98uXL0adPHwDA6NGj8eLFCwwZMkR+CeP+/fvlcaxBQUE4ffo0gNRE41V37txBmTJlAAATJkzAypUr5c/S7sQcPnw4XflERERERGR+eT6s620kScKkSZMwadKkDD9v1qxZlo6zYsUKvuOEiIiIiEjBONuKiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBMu8rgARESmXLiUpV7d7E32yFilZ3C4njKlrTuMqqDHlNB7AfH3PXL8jbbI+V7cjelcxOSEiokydXDDObGUFBgw0SzmMKWfetZjMFU/Pxf+YpRyi/I7JCRERZah2CQezlVXTzcos5TCmnHnXYjJXPPCob/w+ycm5Xw+ifEASQoi8rkR+EBsbCycnJ8TExMDR0TGvq0NEZDJCCGi12R/CotFoIEmSosrKaTnmLOtdi+ld7A/mKCc2NhZFixbleQcVOLxzQkREBiRJgrW19TtVFmPKH2WxnJeSknI+j4soP+LTuoiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiGJWcpKSkYOXKlQgPDzdVfYiIiIiIqIAyKjmxtLTE4MGDodVqTVUfIiIiIiIqoIwe1tWgQQOcP3/eBFUhIiIiIqKCzNLYHYYMGYKRI0ciNDQUderUgZ2dncHnNWrUyLXKERV0Qogc3anUaDSQJEkx5ZizrJyWY86yCmo55izLnDEREVH2SUIIYcwOKlX6my2SJEEIAUmSoNPpcq1yShIbGwsnJyfExMTA0dExr6tDBURiYiK6dOmS7f03bdoEa2trxZRjzrJyWo45yyqo5ZizLHPGRJQbeN5BBZXRd07u3LljinoQ0RsEP4wzep/aJRyM3ufCk2Sj96npZmX0PoCyYwKyF5eSY1JyPIAZ+17oGeP38ahv/D5ERJQtRicnpUuXNkU9iOgtGg3xh4Wl+q3b6VKScHLBuGyX03TMr1BZad66nT5Zi8CAgdkuB1BeTEDO41JaTPklHsB8Ma0e4A2N1dunXGqT9ei5+J9sl0NERMYzOjlJc/XqVdy/fx9JSUkG69u3b5/jShFRehaWalios3aCnRMqKw0s1W8fvpKSC2UpLSYg53EpLab8Eg9gvpg0VipYW1nk8ChERGQKRicnt2/fxieffIJLly7Jc00AyBMF39U5J0REREREZFpGP0r4v//9L8qWLYvHjx/D1tYWV65cwdGjR1G3bl0cOXLEBFUkIiIiIqKCwOg7JydPnsShQ4fg5uYGlUoFlUqFJk2awN/fH8OHD8c//3B8LhERERERGc/oOyc6nQ729vYAgMKFC+PRo0cAUifK37hxI3drR0REREREBYbRd06qVauGixcvoly5cmjQoAFmzJgBtVqNxYsXo1y5cqaoIxERERERFQBGJyffffcdnj9/DgCYOnUq2rZti/fffx+urq7YsGFDrleQiIiIiIgKBqOTE19fX/nf5cqVw9WrVxEVFYVChQrJT+wiIiIiIiIyltFzTtLcvHkT+/btw4sXL+Di4pKbdSIiIiIiogLI6OQkMjISH374ISpWrIjWrVsjLCwMAPDFF19g1KhRuV5BIiIiIiIqGIwe1vX111/DysoK9+/fR5UqVeT13bp1w9dff42ZM2fmagWJiIiIKGM6nQ7Jycl5XQ2iN1Kr1VCpsnZPxOjkZP/+/di3bx9KlixpsN7T0xP37t0z9nBEREREZCQhBMLDw/Hs2bO8rgrRW6lUKpQtWxZqtfqt2xqdnDx//hy2trbp1j99+hQajcbYwxERERGRkdISkyJFisDW1pYPJSLF0uv1ePToEcLCwlCqVKm39lWjkxMfHx/8/vvvmDJlCgBAkiTo9Xr8+OOPaN68efZqTURERERZotPp5MTE1dU1r6tD9FZubm549OgRUlJSYGVl9cZtjU5OfvzxRzRr1gznzp1DUlISRo8ejStXriAqKgrHjx/PdqWJiIiI6O3S5phkNJKFSInShnPpdLq3JidGP63Ly8sLFy9eRP369dGiRQs8f/4cnTp1wj///IPy5ctnr8ZEREREZBQO5aL8wpi+avSdEwBwd3eHn59fdnYlIiIiIiLKkNF3TsqUKYPJkycjNDTUFPUhIiIiIqICyug7J6NGjcKKFSswefJkNG/eHP3798cnn3zCJ3URERER5bWZZh7qNUqYt7w8JkkStm3bho4dO+Z1VbKtWbNmqFWrFmbPnp3XVcmQ0XdOhg0bhqCgIAQFBcHLywvDhw9HsWLF8NVXXyE4ONgUdSQiIiKifE6SpDf+9OnTJ8/qVqZMmSydrIeFheHjjz/O8nFXrFgBZ2fn7FesADI6OUlTs2ZNzJkzBw8fPsTEiROxdOlS1KtXDzVr1sRvv/0GIQpWJk1EREREmQsLC5N/Zs+eDUdHR4N1c+bMMep4SUlJJqpp5tzd3fNktJBOp4Nerzd7uXkh28lJcnIyNm7ciPbt22PUqFGoW7culi5diq5du2L8+PHo0aNHbtaTiIiIiPIxd3d3+cfJyQmSJMnLVlZWGDRoEEqWLAlbW1tUr14d69atM9i/WbNm+OqrrzBy5EgULlwYLVq0AADs2LEDnp6esLGxQfPmzbFy5UpIkoRnz57J+544cQI+Pj6wsbGBh4cHhg8fjufPn8vHvXfvHr7++mv5Lk5mJEnCH3/8AQC4e/cuJEnC1q1b0bx5c9ja2qJmzZo4efIkAODIkSPo27cvYmJi5ONOmjQJAOTXcZQoUQJ2dnZo0KABjhw5IpeTdsdl165d8PLygkajwZIlS2BtbW0QFwAMHz4cTZs2BQBERkbis88+e2M7Kp3RyUlwcDCGDRuGYsWKYdiwYahatSouX76MY8eOoW/fvhg/fjx27NiBbdu2maK+RERERPSOSUxMRJ06dbBr1y5cvnwZAwYMQK9evXD69GmD7VauXAlLS0scP34cv/76K+7evYv//Oc/6NixI86fP4+BAwdi/PjxBvtcunQJvr6+6NSpEy5evIgNGzbg2LFj+OqrrwAAW7duRcmSJTF58mT5Lo4xxo8fj2+++Qbnz59HxYoV8dlnnyElJQWNGzdOd4fom2++AQD07dsXx48fx/r163Hx4kV06dIFrVq1QkhIiHzchIQE+Pv7Y+nSpbhy5Qp69uwJZ2dnbNmyRd5Gp9Nh48aN8k2BrLajkhk9Ib5evXpo0aIFFi5ciI4dO2b4IhUvLy98+umnuVJBIiIiInq3lShRQj5xB1LnOO/duxebNm1CgwYN5PUVKlTAjBkz5OWxY8eiUqVK+PHHHwEAlSpVwuXLlzFt2jR5mx9//BHdu3fHiBEjAACenp745Zdf0LRpUyxcuBAuLi6wsLCAg4MD3N3dja77N998gzZt2gAA/Pz8ULVqVdy8eROVK1c2uEOU5tatW1i3bh0ePHiA4sWLy8fYu3cvli9fjunTpwNIHaW0YMEC1KxZU963W7duWLt2Lfr37w8AOHjwIKKjo9GlSxej2lHJjE5Obt++jdKlS79xGzs7OyxfvjzblSIiIiKigkOn0+GHH37Ahg0b8PDhQ2i1Wmi1WtjZ2RlsV7duXYPlGzduoF69egbr6tevb7AcFBSEmzdvYs2aNfI6IQT0ej3u3LmDKlWq5KjuNWrUkP9drFgxAEBERAQqV66c4fbBwcEQQqBixYoG67VaLVxdXeVltVptcGwA6NGjBxo1aoRHjx6hePHiWLNmDVq3bo1ChQoByHo7KpnRycnbEhMiIiIiImPMnDkTP//8M2bPno3q1avDzs4OI0aMSDfp/fWTbCFEujkirz+USa/XY+DAgRg+fHi6ckuVKpXjur86iiitLm+avK7X62FhYYGgoCBYWFgYfGZvby//28bGJl1s9evXR/ny5bF+/XoMHjwY27ZtM7ghkNV2VLJsvSGeiIiIiCi3/P333+jQoQN69uwJIPUEPiQk5K13NSpXrow9e/YYrDt37pzBcu3atXHlyhVUqFAh0+Oo1WrodLps1j5zGR3X29sbOp0OEREReP/9940+Zvfu3bFmzRqULFkSKpVKHlIGZL8dlSTbT+siIiIiIsoNFSpUwIEDB3DixAlcu3YNAwcORHh4+Fv3GzhwIK5fv44xY8bg33//xcaNG7FixQoAL+9ijBkzBidPnsTQoUNx/vx5hISEYMeOHRg2bJh8nDJlyuDo0aN4+PAhnj59mmtxlSlTBvHx8Th48CCePn2KhIQEVKxYET169EDv3r2xdetW3LlzB2fPnkVAQEC6RCsjPXr0QHBwMKZNm4b//Oc/sLa2lj/LbjsqCe+cEBEREb0r8ukb27///nvcuXMHvr6+sLW1xYABA9CxY0fExMS8cb+yZcti8+bNGDVqFObMmYNGjRph/PjxGDx4sPw+kho1aiAwMBDjx4/H+++/DyEEypcvj27dusnHmTx5MgYOHIjy5ctDq9Xm2vv6GjdujEGDBqFbt26IjIzExIkTMWnSJCxfvhxTp07FqFGj8PDhQ7i6uqJRo0Zo3br1W4/p6emJevXq4ezZs+leHJnddlQSo5KT5ORkVKpUSX7mMhERERGRsfr06WPwRngXFxf5/SGZefU9IK9q37492rdvLy9PmzYNJUuWNLijUK9ePezfvz/TYzds2BAXLlx4a71fTVrKlCmTLolxdnZOt27hwoVYuHChwTorKyv4+fnBz88vw3Jeb5/XnTlzJsP1OWlHpTAqObGysoJWq33jy2mM4e/vj61bt+L69euwsbFB48aNERAQgEqVKsnbCCHg5+eHxYsXIzo6Gg0aNMD8+fNRtWpVAEBUVBQmTpyI/fv3IzQ0FIULF0bHjh0xZcoUODk5yceJjo7G8OHDsWPHDgCpHXnu3LlwdnbOlViITC3wp6FIjI2CJKlgZWOHOr3HoVCZykiMicTJReMR/zgUFlZq1O41NkflHPi+GxJjnv5/OfZoOHQGXMtXx4tnT3B0xmDEhd2BykqNBoN/MFlMV7YvwZ2/dyAu/B58Rs6Fe7WGOS5r77hOeBH9OF1cF9bNRMhf6xH78BY+mrQWxWs3U3xMQq/D4al9EPPgJiw1NrApVBSNh8+Cg3spPLkRjNOLxiH5RTwkSYU6/SbmKB4AOOw/AC/kPpFx31NZWsLK1hGAQ7bLMVffa/vzGUTEJUElSXCwtsTcnlVRq5QTImK16L3kPG5FPIfGygJzuvMiHFF+sGDBAtSrVw+urq44fvw4fvzxR/kdJpT/GD2sa9iwYQgICMDSpUthaZmzUWGBgYEYOnQo6tWrh5SUFIwfPx4tW7bE1atX5acxzJgxA7NmzcKKFStQsWJFTJ06FS1atMCNGzfg4OCAR48e4dGjR/jpp5/g5eWFe/fuYdCgQXj06BE2b94sl9W9e3c8ePAAe/fuBQD5pTQ7d+7MUQxE5tJoyA+wcS4MAHhw7iBOL5mAVtM24vyG2ShcoQaaj1mEyFuXcWzO13DyqPiWo2Wu6ZjFsHUpCgC4d2I3js36Ch3mB+LcMj+4VakL3+mb8eRGMA5N6Y1CZXN28pZZTEWrNkCphq1wZsmEHB3/Vc3HL4fGPvWCxatxFfNuirJNO+HYz8PecoSsMVdMnq16oXSj1pAkCVe3L8bxOSPgO30LDk7uhab/W4Ritd7Hs/v/Yu+4T/7/95T+nVRZ9d7wn6C2c0wX06t978n1YBz+YQD0nsWzXY65+t7qgd5wd0q9ovpHcDj6LbuAYD8fjN10HQ3LO2PvqAY4e/sZOs8/h+olHTg5k0jhQkJCMHXqVERFRaFUqVIYNWoUxo0bl9fVomwyOrs4ffo0Dh48iP3798uPKHvV1q1bs3ystEQhzfLly1GkSBEEBQXBx8cHQgjMnj0b48ePR6dOnQCkvhm0aNGiWLt2LQYOHIhq1aoZvCmzfPnymDZtGnr27ImUlBRYWlri2rVr2Lt3L06dOiW/gGbJkiVo1KgRbty4YXCnhkip1LYvr0gnJcTLdzBDT+1Du9mp/y+5lq8Ga0cXJMXHAHDMXjn2L+84Jj2PBaTUU7M7R/9Al5XnAQBulWrD2tkN2rhnQJGi2SoHyDymwhVqZLZLtmkyiatI5bqZ7ZIt5ohJUlmgZN0P5WMXqVIPV7YtgjY2Ctq4aBSrlfr0F+dSFaG2c0Tis6dA0ZLZLi8tMQEy73su5apCZaVGVFRU9ssxU99ztn2ZqMUkJEOlSo1n49lHuDPjAwBAvXLOKOKoQdTzZBTOVilEZC4///wzfv7557yuBuUSo5MTZ2dndO7c2RR1kSfruLi4AADu3LmD8PBwtGzZUt5Go9GgadOmOHHiBAYOHJjpcRwdHeU7OydPnoSTk5PBmzEbNmwIJycnnDhxIsPkJO2lNWliY2NzHiBRDp1c+C0irqaOM202ZhG0cc8ghIC1o4u8jW3h4oh/HJqjcgJnDEL4hb8BAC2nbUZibBSE0Mt3BADAvogH4sLu5KgcIH1MpvR6XKZizpgA4Mofv6JUw1awdnKFjbMb7v69A2Xeb4+I6+cQ+/A2HIuXzXEZWel7FmprJCYm5qgcc/W93kv+weFrkQCAvaMaIDI+CXoh4Oaokbcp7WqD2xHPc1QOEREZx+jkxFRvfhdCYOTIkWjSpAmqVasGAPKjz4oWNbw6VrRoUdy7dy/D40RGRmLKlCkGiUt4eDiKFCmSbtsiRYpk+ng1f3//TCcpEeWVRoOnAwBuH92Of9bORKPB/sDrc8By4QkjTUennlCHHFiHs0snwGf0r5Dw+lyz3HmSyesxNRu98C17ZN/rcbWcuskk5ZgzpgvrZiL20W28N3wWAOCjSWtwdtkkXFg/E4XKeKGIV30kxuT8sZhZ6nu50CfM1fd+/9IbALDyWCj+t+EqVg3wTldOLj2sh4iIjJDtobRPnjzBsWPHcPz4cTx58iTHFfnqq69w8eJFrFu3Lt1nGb35M6NJ+bGxsWjTpg28vLwwcaLhJNCMts/sOAAwbtw4xMTEyD+hoTm7Ek2Um8r5dEDE1bPycmLsy6E0CZFhsFBbZ7Sb0TxbfIawC8fk5RfPXp7kxkc8gIXGJlfKAV7GpI17lmvHzExaXK+2mymYOqZLm+bi7vFdaDl1EyytbQEALuWqwXfaZnSYHwif/y3Ei6hwWNnYv+VIWfemvqdL0ho8HScnzNX3Pm/igcPXI+XlJ7Ev75jfj3oBa7VFRrsREZGJGJ2cPH/+HP369UOxYsXg4+OD999/H8WLF0f//v2RkJCQrUoMGzYMO3bswOHDh1Gy5Mtx0e7u7gCQ7u5GREREurspcXFxaNWqFezt7bFt2zZYWVkZHOfx48fpyn3y5Em646TRaDRwdHQ0+CHKK3pdCl5Ev7wIEHr2INT2TlDbO6FU/RYIObAeABB56zISYyINxu4bVU5KChIiX/7/dvf4LmgcXaBxKIQyPh1wbedSAMCTG8F4ER0BjYOzSWLKbUkJcUiIDJOXX40rN5kzpqt/LMLtI1vQyn+bwXyahKiX33U39qyEpbUtNK8MvTJW8ot4JERHyMuZ9b2o21egT06Sh+Uay1x9L1mnx6NnL4eebQsKg6u9Gi52VuhSrxjmH7oLADh7+xkex2jhYpf9BwkQEZHxjB7WNXLkSAQGBmLnzp147733AADHjh3D8OHDMWrUqHTPcX4TIQSGDRuGbdu24ciRIyhb1nBcdNmyZeHu7o4DBw7A2zv1FnxSUhICAwMREBAgbxcbGwtfX19oNBrs2LEj3ZW7Ro0aISYmBmfOnEH9+vUBpE7sj4mJQePGjY1tAiKzE7oUHJ87CrrkJEgqFTQOhdD0m/mQJAk1P/sapxZ8i50j20BlaYX6X07Gv/vXZqscvS4Zh6f1hT5ZC0gqWDsVRovJ6yFJEur1n4TAGYOwuW8dqCzVaDJyLq5tX2ySmK5sX4qQA+ugjYvGqV+/g4WVGo4lyme7rOTnsQj8YQB0SS/SxXVh/Sxc27kMiTFP8ffMobCw0sC5dGVk5+lW5oopRZuIc8v84FCsDP4c3Q4AoLLSoP0vf+HGnhW4dWgTIAScSlVEs29/w5lfx2erHABITojHiQVjoUtKfHPfs7CEc+nKUKmyd0PeXH0vRSfQdUEwtMl6qFSAm4MGu0bUgyRJCOhSBb2W/APPMYegtlTht3418Mtfd7NVDhERZY/RycmWLVuwefNmNGvWTF7XunVr2NjYoGvXrkYlJ0OHDsXatWuxfft2ODg4yHdInJycYGNjA0mSMGLECEyfPh2enp7w9PTE9OnTYWtri+7duwNIvWPSsmVLJCQkYPXq1YiNjZUnr7u5ucHCwgJVqlRBq1at8OWXX+LXX38FkPoo4bZt2/JJXZQvWKit0fSb+bBQa9J9ZuNUGM3HvTxR0yVps52cWGps0GLKBlhmMCzMplARtPJ/+TS+lKTEHCUnb4qpaocvULXDF/KyLkmLY7+MynZZdm4l0H7uwQw/q/npSNT8dKS8nJKUiMNT+2SrHHPFZKmxRu+dYRn+nrx7joF3zzHyckpSziao27q6w3dK+uG2gGHfy+nvyFx9z0ZtgV1f14e1VfrhWkWdNNj/zcv3zyQm65icEJFZ9OnTB8+ePXvrCxSVbMWKFRgxYgSePXuWo+MYnZwkJCRkOBSqSJEiRg/rSktkXk10gNRJ92lvxRw9ejRevHiBIUOGyC9h3L9/PxwcUh/XGRQUhNOnTwMAKlSoYHCcO3fuoEyZMgCANWvWYPjw4fKTv9q3b4958+YZVV8iIiIiJSs86ahZy3s6yceo7fv06YOVK1cCACwtLeHh4YFOnTrBz88v3espCpI5c+ake7P820iShG3btqFjx46mqVQeMTo5adSoESZOnIjff/9dHj714sUL+Pn5oVGjRkYdKyu/BEmSMGnSJEyaNCnDz5s1a5al47i4uGD16tVG1Y+IiIiIclerVq2wfPlyJCcn4++//8YXX3yB58+fZzj6Jjk52WAesTmZouykpCSo1ep0652ccn9uYlblZRtnxOjBwXPmzMGJEydQsmRJfPjhh/joo4/g4eGBEydOYM6cOaaoIxERERG9IzQaDdzd3eHh4YHu3bujR48e8nCmSZMmoVatWvjtt99Qrlw5aDQaCCEQExODAQMGoEiRInB0dMQHH3yACxcuGBx3x44dqFu3LqytrVG4cGH5Bd5A6sXu14dMOTs7Y8WKFQCAu3fvQpIkbNy4Ec2aNYO1tTVWr16Ne/fuoV27dihUqBDs7OxQtWpV7NmzRz5GYGAg6tevD41Gg2LFimHs2LFISUmRP2/WrBm++uorjBw5EoULF0aLFi0ybJM+ffoY3AFp1qwZhg8fjtGjR8PFxQXu7u4GF+rTRgZ98sknkCRJXgaAnTt3ok6dOrC2tka5cuXg5+dnUCdJkrBo0SJ06NABdnZ2mDx5MkqWLIlFiwzfyxUcHAxJknD79m0AwKxZs+QXsHt4eGDIkCGIj4/PMJ6cMDo5qVatGkJCQuDv749atWqhRo0a+OGHHxASEoKqVavmegWJiIiI6N1lY2OD5ORkefnmzZvYuHEjtmzZgvPnzwMA2rRpg/DwcOzZswdBQUGoXbs2PvzwQ0RFpT7OfPfu3ejUqRPatGmDf/75BwcPHkTdunWNrsuYMWMwfPhwXLt2Db6+vhg6dCi0Wi2OHj2KS5cuISAgAPb2qY9nf/jwIVq3bo169erhwoULWLhwIZYtW4apU6caHHPlypWwtLTE8ePH5bnPWbFy5UrY2dnh9OnTmDFjBiZPnowDBw4AAM6eTX2k+/LlyxEWFiYv79u3Dz179sTw4cNx9epV/Prrr1ixYgWmTZtmcOyJEyeiQ4cOuHTpEr744gt8+umnWLNmjcE2a9euRaNGjVCuXDkAgEqlwi+//ILLly9j5cqVOHToEEaPHm1E62aN0cO6gNRO9OWXX+Z2XYiIiIioADlz5gzWrl2LDz/8UF6XlJSEVatWwc3NDQBw6NAhXLp0CREREdBoUh848tNPP+GPP/7A5s2bMWDAAEybNg2ffvqpwQu0a9asaXR9RowYYXDH5f79++jcuTOqV68OAPKJOgAsWLAAHh4emDdvHiRJQuXKlfHo0SOMGTMGEyZMkJ9eWKFCBcyYMcPoutSoUUN+b5+npyfmzZuHgwcPokWLFnLbODs7y6/eAIBp06Zh7Nix+Pzzz+X6TpkyBaNHjzZ4B2D37t3Rr18/eblHjx6YNWsW7t27h9KlS0Ov12P9+vX49ttvDdomTdmyZTFlyhQMHjwYCxYsMDq2N8lWcvLvv//iyJEjiIiIgF6vN/hswoQJuVIxIiIiInr37Nq1C/b29khJSUFycjI6dOiAuXPnyp+XLl1aPvkGUh9+FB8fD1dXV4PjvHjxArdu3QIAnD9/PlcunL9+t2X48OEYPHgw9u/fj48++gidO3dGjRo1AADXrl1Do0aNDF7o/d577yE+Ph4PHjxAqVKlMjxmVqWVk6ZYsWKIiIjIZOtUQUFBOHv2rMGdEp1Oh8TERCQkJMDW1jbDOnl7e6Ny5cpYt24dxo4di8DAQERERKBr167yNocPH8b06dNx9epVxMbGIiUlBYmJiXj+/HmuPszA6ORkyZIlGDx4MAoXLgx3d3eDX4gkSUxOiIiIiChTzZs3x8KFC2FlZYXixYunm4z9+omuXq9HsWLFcOTIkXTHcnZ2BpA6qudNJElK9wClV4eSZVb2F198AV9fX+zevRv79++Hv78/Zs6ciWHDhkEIYXAeDLx82NOr67N74v56u0iSlO6mwOv0ej38/PwM7v6kefU9gBnVqUePHli7di3Gjh2LtWvXwtfXF4ULFwYA3Lt3D61bt8agQYMwZcoUuLi44NixY+jfv3+G7ZgTRicnU6dOxbRp0zBmzJi3b0xERERE9Ao7O7t0r394k9q1ayM8PByWlpYGE79fVaNGDRw8eBB9+/bN8HM3NzeEhYXJyyEhIVl+BYaHhwcGDRqEQYMGYdy4cViyZAmGDRsGLy8vbNmyxSBJOXHiBBwcHFCiRIksx5ddVlZW0Ol0Butq166NGzduGNW+abp3747vvvsOQUFB2Lx5s8HT086dO4eUlBTMnDlTHq62cePGnAWQCaMnxEdHR6NLly6mqAsRERERkYGPPvoIjRo1QseOHbFv3z7cvXsXJ06cwHfffYdz584BSJ3gvW7dOkycOBHXrl3DpUuXDOZ5fPDBB5g3bx6Cg4Nx7tw5DBo0KEuPzx0xYgT27duHO3fuIDg4GIcOHUKVKlUAAEOGDEFoaCiGDRuG69evY/v27Zg4cSJGjhwpn8CbUpkyZXDw4EGEh4cjOjoaQOr0it9//x2TJk3ClStXcO3aNWzYsAHffffdW49XtmxZNG7cGP3790dKSgo6dOggf1a+fHmkpKRg7ty5uH37NlatWpXu6V65xeiW69KlC/bv32+KuhARERERGZAkCXv27IGPjw/69euHihUr4tNPP8Xdu3flF4M3a9YMmzZtwo4dO1CrVi188MEH8ku6AWDmzJnw8PCAj48Punfvjm+++Uaef/EmOp0OQ4cORZUqVdCqVStUqlRJngBeokQJ7NmzB2fOnEHNmjUxaNAg9O/fP0uJQG6YOXMmDhw4AA8PD3h7ewMAfH19sWvXLhw4cAD16tVDw4YNMWvWLJQuXTpLx+zRowcuXLiATp06GQyVq1WrFmbNmoWAgABUq1YNa9asgb+/v0niytKwrl9++UX+d4UKFfD999/j1KlTqF69erqsc/jw4blbQyIiIiLKEmPf2G5uae8VyUxmL952cHDAL7/8YnBO+rpOnTplONcCAIoXL459+/YZrHv27Jn87zJlymT4Uu9XJ+pnpGnTpjhz5kymn2c0TyYjr7dLRvu9/p6Wdu3aoV27dum28/X1ha+vb6Zlvenl5UOGDMGQIUMy/Ozrr7/G119/bbCuV69e8r/79OmDPn36ZHrsrMpScvLzzz8bLNvb2yMwMBCBgYEG6yVJYnJCRERERETZkqXk5M6dO6auBxERERERFXCmn61DRERERESUBUYnJ//5z3/www8/pFv/448/8ileRERERESUbUYnJ4GBgWjTpk269a1atcLRo0dzpVJERERE9GZvmthMpCTG9FWjk5P4+Hio1ep0662srBAbG2vs4YiIiIjICGlPSs3qSwSJ8lpSUhIAwMLC4q3bGv2G+GrVqmHDhg2YMGGCwfr169fDy8vL2MMRERERkREsLCzg7OyMiIgIAICtra38hnIipdHr9Xjy5AlsbW1hafn21MPo5OT7779H586dcevWLXzwwQcAgIMHD2LdunXYtGmT8TUmIiIiIqO4u7sDgJygECmZSqVCqVKlspREG52ctG/fHn/88QemT5+OzZs3w8bGBjVq1MBff/2Fpk2bZqvCRERERJR1kiShWLFiKFKkCJKTk/O6OkRvpFaroVJlbTaJ0ckJALRp0ybDSfFEREREZD4WFhZZGsdPlF9kKzkBUie2REREQK/XG6wvVapUjitFREREREQFj9HJSUhICPr164cTJ04YrBdCQJIk6HS6XKscEREREREVHEYnJ3369IGlpSV27dqFYsWK8ekQRERERESUK4xOTs6fP4+goCBUrlzZFPUhIiIiIqICyuiXMHp5eeHp06emqAsRERERERVgRicnAQEBGD16NI4cOYLIyEjExsYa/BAREREREWWH0cO6PvroIwDAhx9+aLCeE+KJiIiIiCgnjE5ODh8+bIp6EBERERFRAWd0cvKmt8CfP38+J3UhojfQpSTl6naZ0SdrkZLF7XJKaTGlbZsTSospv8QDmC8mbbL+7RsZsR0REeWebL+EMU1MTAzWrFmDpUuX4sKFCxzWRWQiJxeMM0s5gQEDzVIOwJhywlwxmSsewHwx9Vz8j1nKISIi42U7OTl06BB+++03bN26FaVLl0bnzp2xbNmy3KwbEf2/2iUczFJOTTcrs5QDMKacMFdM5ooHMOPvyaO+ecohIqJskYQQIqsbP3jwACtWrMBvv/2G58+fo2vXrli0aBEuXLgALy8vU9Yzz8XGxsLJyQkxMTFwdHTM6+pQASGEgFab/SEsGo0mSy9KNVc55iwrp+WYs6yCWo45yzJnTES5gecdVFBl+c5J69atcezYMbRt2xZz585Fq1atYGFhgUWLFpmyfkQFmiRJsLa2fmfKMWdZjEn55ZizLHPGRERE2Zfl5GT//v0YPnw4Bg8eDE9PT1PWiYiIiIiICqAsv4Tx77//RlxcHOrWrYsGDRpg3rx5ePLkiSnrRkREREREBUiWk5NGjRphyZIlCAsLw8CBA7F+/XqUKFECer0eBw4cQFxcnCnrSURERERE7zijJsS/7saNG1i2bBlWrVqFZ8+eoUWLFtixY0du1k8xODGNiIiIzIXnHVRQZfnOSUYqVaqEGTNm4MGDB1i3bl1u1YmIiIiIiAqgHN05KUh4BYOIiIjMhecdVFDl6M4JERERERFRbmFyQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSJY5nUF8pvExESo1Wqj99NoNJAk6a3bCSGg1WqzUzWjyjFnWfmlHHOVVZB/R+Yui4iIiPIXJidG6t27N6ysrIzeb9OmTbC2tn7rdlqtFl26dMlO1Ywqx5xl5ZdyzFVWQf4dmbssIiIiyl+YnBjpQlg8VBbGNVvtEg7Gl/Mk2eh9aroZnzQBQPDDOKP3UXJM2YkHME9M/B29IvSM8ft41M9eWURERJQvMDnJhkZD/GFh+fahXbqUJJxcMC7b5TQd8ytUVpq3bqdP1iIwYGC2ywHevZiyGg9gnpj4O8rY6gHe0Fi9feqbNlmPnov/yVFZREREpHxMTrLBwlINC/XbT95ySmWlgaX67cNXUnKhrHctJnPFA2QtJv6OMqaxUsHayiIXjkRERETvAj6ti4iIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBEs87Jwf39/bN26FdevX4eNjQ0aN26MgIAAVKpUSd5GCAE/Pz8sXrwY0dHRaNCgAebPn4+qVavK2yxevBhr165FcHAw4uLiEB0dDWdnZ4OygoODMWbMGJw9exYWFhbo3LkzZs2aBXt7e6PrHfjTUCTGRkGSVLCysUOd3uNQqExlJMZE4uSi8Yh/HAoLKzVq9xqb7bYBgAPfd0NizNP/L8ceDYfOgGv56njx7AmOzhiMuLA7UFmp0WDwDzkq500xXdm+BHf+3oG48HvwGTkX7tUamiSmC+tmIuSv9Yh9eAsfTVqL4rWb5Timw/4D8EIuyzQxCb0Oh6f2QcyDm7DU2MCmUFE0Hj4LDu6l8PTff3BywRjokhKh074AJBXgVjHbZb2L/a7tz2cQEZcElSTBwdoSc3tWRa1SToiI1aL3kvO4FfEcGisLzOnuleOyiIiISPnyNDkJDAzE0KFDUa9ePaSkpGD8+PFo2bIlrl69Cjs7OwDAjBkzMGvWLKxYsQIVK1bE1KlT0aJFC9y4cQMODg4AgISEBLRq1QqtWrXCuHHj0pXz6NEjfPTRR+jWrRvmzZuH2NhYjBgxAn369MHmzZuNrnejIT/AxrkwAODBuYM4vWQCWk3biPMbZqNwhRpoPmYRIm9dxrE5X8PJI/sno03HLIatS1EAwL0Tu3Fs1lfoMD8Q55b5wa1KXfhO34wnN4JxaEpvFCqbs5O3zGIqWrUBSjVshTNLJuTo+Gkyi6mYd1OUbdoJx34elivlAMB7w3+C2s4RgGlj8mzVC6UbtYYkSbi6fTGOzxmBVv5bcWz2f1G711iUatQazyPDsKl3LcSVK5btct7Ffrd6oDfcnawBAH8Eh6PfsgsI9vPB2E3X0bC8M/aOaoCzt5+h8/xzqF7Sgbd6iYiI3nF5mpzs3bvXYHn58uUoUqQIgoKC4OPjAyEEZs+ejfHjx6NTp04AgJUrV6Jo0aJYu3YtBg4cCAAYMWIEAODIkSMZlrNr1y5YWVlh/vz5UKlST2/mz58Pb29v3Lx5ExUqVDCq3mpbB/nfSQnxkCQJABB6ah/azU6NybV8NVg7uiApPgaAo1HHl8uxd3pZzvPY1CvvAO4c/QNdVp4HALhVqg1rZzdo454BRYpmqxwg85gKV6iR7WNmWE4mMRWpXDdXywEgJyaA6WKSVBYoWfdD+dhFqtTDlW2L5M+18bEAgJTEBEiSBCsrq2yX9S72O2fbl+0Rk5AMlSo1po1nH+HOjA8AAPXKOaOIowZRz5NRONslERERUX6Qp8nJ62JiYgAALi4uAIA7d+4gPDwcLVu2lLfRaDRo2rQpTpw4IScnb6PVaqFWq+XEBABsbGwAAMeOHcswOdFqtdBqtfJybGyswecnF36LiKtnAADNxiyCNu4ZhBCwdnSRt7EtXBzxj0OzVMfMBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB3/Xex3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29T2tUGtyOe57gsIiIiUjbFjJIQQmDkyJFo0qQJqlWrBgAIDw8HABQtanhltmjRovJnWfHBBx8gPDwcP/74I5KSkhAdHY1vv/0WABAWFpbhPv7+/nBycpJ/PDw8DD5vNHg6Osz9C9W7DMM/a2emrvz/K9mvBJXlOmam6ehF6LbmCmr3+Q5nl6YOQ5LwWjnIeTlAJjGZQEYxmYq5YgKAC+tmIvbRbdTp8x0A4NKmX1Dvi8notvoy2s8/gpgHIYiPj89RGe9iv/v9S2+EzvoIUztVwv82XM2wrFwIiYiIiPIBxSQnX331FS5evIh169al+0ySXj9REenWvUnVqlWxcuVKzJw5E7a2tnB3d0e5cuVQtGhRWFhYZLjPuHHjEBMTI/+EhmZ8JbqcTwdEXD0rLyfGRsn/TogMg4U6Z1fK03i2+AxhF47Jyy+ePZX/HR/xABYam1wpB3gZkzbuWa4dMyNpMb3aZqZi6pgubZqLu8d3oeXUTbC0tkViTCTundiNck0/AQA4uJeG2t4J0dHRuVLeu9jvPm/igcPXI+XlJ7Ev71zej3oBa3XG/68SERHRu0MRycmwYcOwY8cOHD58GCVLlpTXu7u7A0C6uyQRERHp7qa8Tffu3REeHo6HDx8iMjISkyZNwpMnT1C2bNkMt9doNHB0dDT4AQC9LgUvop/I24WePQi1vRPU9k4oVb8FQg6sBwBE3rqMxJhIg/H7xtCnpCAh8mXcd4/vgsbRBRqHQijj0wHXdi4FADy5EYwX0RHQODhnq5y3xZSb3hRTbkt+EY+E6Ah52VQxAcDVPxbh9pEtaOW/DZr/P77a3hkWVhqEXTwOAEiMiURSfIz8EAdjvYv9Llmnx6NnifLytqAwuNqr4WJnhS71imH+obsAgLO3n+FxjBYudtmfr0NERET5Q57OORFCYNiwYdi2bRuOHDmSLlEoW7Ys3N3dceDAAXh7ewMAkpKSEBgYiICAgGyVmZbU/Pbbb7C2tkaLFi2Mq7NOh+NzR0GXnARJpYLGoRCafjMfkiSh5mdf49SCb7FzZBuoLK1Q/8vJ+Hf/2mzVU69LxuFpfaFP1gKSCtZOhdFi8npIkoR6/SchcMYgbO5bBypLNZqMnItr2xdnq5zUmFIyjenK9qUIObAO2rhonPr1O1hYqeFYonyux3Rh/Sxc27kMiTFP8ffMobCw0sC5dGUA2TshTU6Ix4kFY6FLSjRpTCnaRJxb5geHYmXw5+h2AACVlQbtf/kLzccvx5lfx0OvS4E+JQkOxcqke8R1Vr3pd5Rf+12KTqDrgmBok/VQqQA3Bw12jagHSZIQ0KUKei35B55jDkFtqcJv/Wrgl7/uZrssIiIiyh/yNDkZOnQo1q5di+3bt8PBwUG+Q+Lk5AQbGxtIkoQRI0Zg+vTp8PT0hKenJ6ZPnw5bW1t0795dPk54eDjCw8Nx8+ZNAMClS5fg4OCAUqVKyZPr582bh8aNG8Pe3h4HDhzA//73P/zwww9GnyxaqDVoPmYRLNSadJ/ZOBVG83EvT9Z0SdpsnyRaamzQYsoGWGYwPMemUBG08t8qL6ckJeboJNFCbY2m38zPMKaqHb5A1Q5fyMu6JC2O/TIqW+W8Kaaan45EzU9HysspSYk4PLVPtsoBAFtXd/hOST9EEMjtmKzRe2dYhjGVqN0MJWofAZDzeN70O8qv/c5GbYFdX9eHtVX64VpFnTTY/83L988kJuuYnBARERUAeZqcLFy4EADQrFkzg/XLly9Hnz59AACjR4/GixcvMGTIEPkljPv37zcYHrNo0SL4+fnJyz4+PumOc+bMGUycOBHx8fGoXLkyfv31V/Tq1ct0wRERERERkVHyfFjX20iShEmTJmHSpEmZbvO2zwHg999/N7J2RERERERkToqYEE9ERERERMTkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKYJlXlcgP9KlJOXqdpnRJ2uRksXtcupdi8mYepojJv6OMqZN1ufqdkRERJS/MTnJhpMLxpmlnMCAgWYpB3j3YjJXPMC7F5M5+13Pxf+YrSwiIiJSPiYnRqpZzB5WVlamL8fN9GWkqV3CwSzlmCsmc8UDvHsxmbPfwaO++coiIiKifEESQoi8rkR+EBsbCycnJzx+/BiOjo5G76/RaCBJ0lu3E0JAq83+cJmslmPOsvJLOeYqqyD/jsxdFhFRfpV23hETE5Ot8w6i/Ip3ToxkbW0Na2trkx1fkiSTHj8vynrXyjFnWe9aOeYui4iIiPIXPq2LiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEfi0rixKe+JybGxsHteEiIiI3nVp5xt84wMVNExOsiguLg4A4OHhkcc1ISIiooIiLi4OTk5OeV0NIrPhSxizSK/X49GjR3BwcOAL4IwQGxsLDw8PhIaG8iVSuYjtajpsW9Nh25oG29V08rJthRCIi4tD8eLFoVJxFD4VHLxzkkUqlQolS5bM62rkW46OjvyjaQJsV9Nh25oO29Y02K6mk1dtyzsmVBAxFSciIiIiIkVgckJERERERIrA5IRMSqPRYOLEidBoNHldlXcK29V02Lamw7Y1Dbar6bBticyPE+KJiIiIiEgReOeEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5oWy7cOECbt26ldfVeCdFRERAp9PldTWIsiw+Pj6vq/DO4vcBERUkTE7IaI8fP0b79u3x0UcfYd++fXjx4kVeV+mdIIRAUlISBgwYAF9fX5w8eTKvq/ROefz4MXbv3g2+2il3hYWFoUePHvjss8/Qv39/BAcH53WV3gn8PjCt8PBwTJ48GQsWLMCePXvyujpE9AomJ2SU0NBQtG3bFpIk4cSJE+jVqxdsbGzyulrvBEmSEBERgR07duDJkyc4dOgQYmJiAIAn1Dk0b948FC9eHO3atcOVK1fyujrvjNWrV6NatWpISkrCxx9/jEOHDiEgIADh4eF5XbV8j98HpjNlyhRUqFABZ86cwYoVK/DJJ59g7dq1ANi2RErA5ISMsmfPHri6umL79u3w9PTEvXv3cP/+faSkpOR11d4JycnJaNu2LXr16oXVq1fj1KlTAFJPVMh4Qgjs2bMHf/zxB2bMmAFvb2/4+flBr9fnddXyPZ1Oh99//x0jR47Epk2bMGTIEAQEBCAwMJAXLHIJvw9yl06nQ0BAAPbs2YONGzdi165dOHjwIEaOHIlx48YBYNsSKQGTE8qStKtJFy9eRPHixREVFYXmzZuja9euaNSoEXr06IGjR4/mcS3zvwcPHuDixYvw9/eHnZ0d1q1bJ18tJeNJkoSiRYuiV69eGDhwIH7++Wds2bIF+/bty+uq5XuXLl3C7du3Ubx4cXldQkICOnfuzD6bS/h9kLssLCyQlJSEDz74AK1atQIAODg4oGnTprC0tOQcSiKFYHJCGXr+/DlCQkIQGxsrr9Pr9YiOjoa9vT3Gjh0LT09PbNmyBbNnz0ZsbCzGjx/P4RxZkJSUlOk8nQcPHsDLywsAMHbsWBw9ehTr1q3DgAEDEBYWZs5q5ktxcXE4evQobt68Ka+rU6cOPv/8c9jb28PHxwddunTB+PHjERcXl4c1zV9e7bNpd528vLzg6uqKZcuWYfHixejatSv69euHf/75BzVq1MCIESMQERGRl9XOF2JjY3Hq1Ck8fPgw3Wf8PsiZjP6OffPNN5g2bRpUKpV80S0qKgrW1tYoX758XlWViF7B5ITSmTJlCqpXr46uXbuiVq1a+PPPP6HX66FSqdCoUSPMmzcP+/btw5AhQ1ClShV06dIFw4YNg06nw4YNG/K6+ooWEBCA6tWrp7vLlHbCFxsbi2fPngEAunXrBktLSwwfPhznzp2DJEkcD/0GU6ZMQfny5TFy5EjUqFEDs2bNSpdcA4C/vz+uX7+OFStW5FFN85fX+6xKpUJKSgrUajXmzJmDrl27Yvv27bh16xbOnDmDvXv3Yvbs2Thz5gwWLFiQx7VXNn9/f3h4eODLL7+El5cX5syZY5Ck8Psg+17/O5Y26T1tyKFer5eHcJ08eRLe3t4AUofSEVHeYnJCsnv37qFDhw7YsGED5s2bh5kzZ8LHxwf9+/fHkydPAED+IxodHQ2V6mX3adGiBZ4/f87xupmIiorC4MGDsXbtWoSHh2Px4sV4+vSp/HlaW96/fx++vr7466+/ULJkSbx48QIODg7o0aMHChcuzPbNwO3bt9GyZUts2rQJq1atwo4dOzB27Fj88MMPBndH0tq4XLlyGDVqFKZNm4YHDx4ASB2O9Pz58zypv1K9qc9aWFgAABo2bIjhw4dDq9WiX79+qFu3LhwdHdGnTx84ODjg8ePHPNnLxJ9//olVq1Zh5cqV2LFjB8aMGYMlS5ZgwoQJ8jZ3797l94GRMvs79sUXX+Dx48fydiqVSu6bp0+fRp06dQAAVlZWADgxnigvMTkh2alTp/Ds2TNs3rwZrVu3xgcffIAVK1bg+fPnOHv2LADA2toa33//PeLj4/Hnn3/KX+BarRaSJMHFxSUvQ1CsmJgYODo6wt/fH7t378a2bdvw119/yVfz0/5rYWGBoUOHolOnThgwYABCQ0PRs2dPrFy5EseOHcvLEBTr4cOHaNy4MbZt2wZfX18UL14cX3zxBRwdHTPdZ+zYsbC2tsaPP/6IVatWwdfXl48Tfc2b+uyrJ8X37t3DzZs30aBBA3ldQkICYmNjUapUKflkjwzt3bsX1tbW6NixI8qWLYtvv/0WgwYNwvHjx7Fo0SJ5O34fGOdNf8fOnDljsK2VlRVCQ0Nx9+5ddOrUCUDq76V79+64d+9eXlSfiABAUIGn1+uFEEJERUWJTZs2GXwWHh4uKlWqJPbv32+wvlevXqJKlSqiS5cuYufOnaJNmzaiTp064sGDB2ard36SkpIi7t27Jy937dpV1KhRQ9y5c8dgux07doiAgADx77//yusiIiJElSpVRGBgoLmqm68kJSWJ0NBQg+VPPvlENGnSREyZMkX8+++/QqfTCSGE/F8hhJg4caKQJEmo1Woxbtw4s9db6bLaZ4UQwtvbWzRt2lSsWrVKBAcHi7Zt24qqVauKCxcumLHG+YdOpxODBw8Wn376qUhMTJTXP3r0SAwcOFDUrFlTJCQkiL/++ktMnz6d3wdZkJ2/Y0IIsXr1avHhhx+K0NBQ8fHHHwtLS0sxatQos9SZiDLG5ISEEC+/2NOkncRdvXpVuLq6yn8cU1JShBBCxMTEiN9//134+PiI+vXri27duomoqCjzVjofSmvnyMhIYWVlJfz9/Q1OTtLa9/VlrVZrvkrmY9euXRO2traiXr16YsKECaJWrVqiUaNGYtmyZfI28fHxYujQoUKSJNG/f38RHR2ddxXOB97UZ9P6540bN0SdOnVEpUqVRLly5UTXrl35fZCJtPb09/cXHh4eGV6g8Pb2FitWrDDYXgh+H7xNVv+Ovbpt7969hSRJwsrKSrRp00Y8ffrUfBUmogxxWBe90dGjR1G2bFl4enpCCCGPNXd0dESvXr1w4MAB7N27F+vXr0ehQoXyuLbKJF4ZuyxJElJSUuDi4oLx48dj1qxZuHbtmvx52ryItH3S2lutVpuxxvmHeG1cuIeHB/bt24dTp07Bz88Pp0+fhrOzM86cOYOkpCQAwNOnT+Hg4IC///4bS5cuhbOzcx7UXBkSExMzXJ/VPmthYYGUlBRUrFgRf/31F3bv3o2DBw9iw4YN/D7IRNoQzhEjRiAmJgZr1qwx+LxZs2awsrKSn8b16hA6fh+kioiIMGpOyOt/x15laWmJatWq4cyZM9i1axdcXV1zu7pEZCQmJwVEaGgodu7ciUuXLkGn0wF4eQKSkpIi/wFM+yxt+e+//4aPj4+87tKlS7h8+bJ8XLVaXeBPQsLCwtClSxds3LgRwMs2BN7cthMnToRarcbChQsRHR2NAwcOYPXq1QbbFHShoaHYvHkzgoOD5cmrGfXbtJeA2traokmTJlCpVNDr9VCr1YiPj0d4eLh8Qle6dGn4+/vjvffey4OIlOHOnTuoWbMmpk+fnu4zY/ts2pu1nZ2dUb58eZQpU8Y8QShUWFgYTp48ibt376b7LCUlRU4wrK2tMWHCBAQEBODcuXPyNg4ODkhKSkJoaKi5qpxv3LlzB+3bt8eYMWNw9epVg8+y+3dszpw5uHjxImrVqmWmKIjobZicFADffPMNKleujDlz5qBJkyYYNmwYbt++DUmSoNfrYWlpCSEExowZg/Xr18tX9mJiYhAUFARfX1+EhYWha9euqFmzJicKvmbZsmXYsmULfv75ZyQkJMDCwkJuw4za1sLCQv7jOXfuXCxbtgxNmzaFr68v373xinHjxqFixYqYOXMmGjdujMGDB2fabzds2JBuorZKpcKZM2cgSRK+/PLLPIxEOYQQGDRoECpWrIiKFSti+PDh6bYxts/Gx8ebOwzFGjFiBKpXr47//ve/qFq1KhYsWGDw0sRX23b16tUYNWoUKlasiLFjx8oPZAgODoYQAh07dsyjKJQl7WLE77//jjp16sDGxgZDhw5F4cKFDT439u/Y/fv3AQD29vZ5EBURvQmTk3fcb7/9hhMnTmDfvn3Yu3cvlixZgsuXL6Nfv34AUk/gVq5cicKFC2P//v2oUaMGVCoVJElCSEgInj17hm3btqF8+fKIiYnB3bt30aZNmzyOSllOnDiBbt26Qa1WIyAgwOCzjNoWSB2e8fDhQ5w6dQp6vR5Vq1bF/fv3MWTIkLwIQXFOnz6N7du3Y/PmzTh8+DCWLFmCkJAQ9OrVC8DLfuvq6pquba9du4ZLly5hwoQJaN26Nby8vNC8efO8DEcRbt68CVdXVxw7dgxnzpzBpk2b5BO8V7HPGu/+/fto3749zpw5gx07dmDjxo0YMmQIFi5caPCEqFfbtmrVqgCAVatWwdHREZ988gl8fX3x/vvvo0qVKgX6zt6r0i5GrFu3Dt9//z02bNiAunXrwsHBQf4cAFasWMG/Y0TvCjPPcSETS5vkl/bf1q1bi549expsM2zYMCFJkli8eLEQQohJkyaJhQsXppuMPXfuXCFJkqhfv36GTzkpaF6fbJmcnCyEEKJfv35i27ZtYty4caJKlSri6tWrQgghYmNjxdSpU8WCBQvSta1WqxUjRowQLi4u4vDhw2apf34yduxYUbFiRYN1J06cEPb29mLmzJlCiMz77dKlS4W3t7eoV6+eOHjwoNnqrESv9tm7d++KqlWrioEDBwohhDh+/LgYOXKkmDZtmvjzzz9FXFycECL1KWYZtSv7bOZ2794tunXrJs6dO2ew3t3dXWzYsEEIIURcXJyYMmWKQdum/X5iYmLE/v37xbx588SxY8fMW3kFev279uDBg8LT01MkJyeL48ePi/bt2wtfX18xdOhQcfLkSSFE6vdBRt+1/DtGlP8wOXmHJCQkGDz5KTo6WrRu3VqMGzfO4BGq//vf/0SlSpVE4cKF5RPsV6X9YYiNjRXLly83eb3zg9fb9tU/ntWrVxdXrlwRZ8+eFc2bNxfDhw8XWq1WXL58Od0fyleFh4ebtM75RVpbvtpHZ82aJWrUqCGeP39usN2kSZNEoUKFDH4Xrx9Hq9WK06dPm7jWyvd6n9XpdGLLli1CkiTh6+srSpcuLTp37ixq1qwpihcvLj7//PO3HpN9NlVaX0v7/nz48KE4fvy4/LlOpxNJSUmiTp06Ys2aNQbr6c1e77dCCHHq1Cnh6uoqtm3bJurWrSvGjh0rJk2aJHx8fEShQoVEWFhYuuPw7xhR/sVhXe+IcePGoUmTJmjbti1++eUXPHv2DM7OzqhSpQoOHDiAqVOnIjIyEqNHj8aKFSswceJEWFlZYcmSJQDSP51HCAEHBwf06dMnjyJSjtfbNjY2Vh5q8PDhQ9jZ2aFMmTKoW7cu2rVrh7Vr18La2hoHDx40mBz/uqJFi5oxCmWaNWuWPCk7bfgQADg5OcHKygoHDx6U10mShM8//xx2dnaYNWsWgJdPPkr7HEh9SEP9+vXNUX3FyqjPqlQqNG/eHL169UJ8fDx27NiBNWvW4Pz585g0aRJOnTqFhQsXAjBs11exzxr22bR5DsWLF0fjxo0BpLadSqVCWFgYbty4gWrVqsn7vtrHKb2M+i2Q+vepVq1amD59OmrVqoVp06Zh4sSJ2LVrF0qUKIFvv/0WgOHDSPh3jCgfy9PUiHJMq9WK//znP8LLy0usX79e9O7dW3h5eQlfX18hROpQgv/+97+iQoUKwsXFRVSrVk2+qvzee++JWbNm5WX1FS2ztm3Tpo28TUxMjHj//fdFQkKC2Lp1q3BxcRFOTk6iZs2a8javD1EgIc6cOSOaNWsmJEkStWvXFidOnBBCpL5AUYjUdq1WrZoYMmSIePz4sbxfYmKi6NOnj+jbt+8b70oVVJn12datW8vbXLt2TZw9e1bo9Xr5Sn5kZKRo27atGDBgANs1E5n12czuhqxbt05Ur149w8/5nWAos3778ccfCyGEeP78ufjkk08MhiOn9dNly5aJEiVKyMMSiSj/42WcfO7WrVu4cOECZs+ejW7dumHlypVYvHgxjh49ih9++AH29vaYPXs2Dh8+jCNHjuDSpUuoX78+tFot/v33X2g0mrwOQbEya9tDhw7hxx9/BACcO3cON2/eRP369dGvXz98++23mDFjBiRJwoIFCwCkfxcHAfv27UPhwoXx22+/yf8FACsrKyQnJ8PR0RGDBg3CX3/9he3bt8v7aTQahISEQKVSyY9kpZcy67OHDx+W+2zlypVRt25dSJIElUoFIQRcXFxw/fp1tusbZNZn09rwdUFBQWjUqJF8t+Tw4cPYuXMnAD4q/HWZ9dsjR47ghx9+gK2tLb788ku4uLhg06ZNAF6+8yUkJASenp6Z/h6IKB/K29yIciooKEhIkiQiIyOFEIZvHy5UqJC4ceOGwfZpn//++++iQYMG4tGjR+atcD7yprZ1dnYWt2/fFsnJycLLy0sMGDBAftPzo0ePRNeuXYWPj0+GcyMKsrQ2vHfvnnzl2d/fXzRo0EBs3LhRCCEM5kF1795d1KpVS/z6668iOjpaBAUFidq1a4v169ebv/L5wNu+D159Q/ar/vzzT1GvXj2DeROUKit99vW7IykpKcLb21ts2LBB3L59W3zwwQdCrVbLk+PJ0Jv6rZOTk7h165YQInXSu6urq/j+++/Fv//+K65fvy6aNm0qJk+enGd1J6Lcx+Qkn/vnn39E1apVxdy5c4UQL7/Uk5KSRNmyZcWoUaOEEKl/LJ8+fSq2bt0qBgwYIOzs7MTkyZOFXq/nEINMvKlty5QpI0aMGCGEEOLx48fp2vDKlStMTLLo1q1bomPHjqJjx44iKipKCJE6zCPtswkTJggLCwtRp04dYWNjI/r37y8P/yJDWf0+0Ol04tKlS+LQoUNi4MCBwsnJSYwdO5ZDurIooz77aoJy4cIF4eDgID7++GNhaWkpunXrJmJjY/Oquor3tn6b9l0bHh4uFi9eLJydnUW1atWEg4OD6Nu3L79rid4xHNaVz5UuXRqenp44duwYwsLCIEkSUlJSYGVlha+++grr1q2TX6Km1+tx4sQJ3L59G8ePH8f3338PSZIK7BAD8ZYhAG9q22HDhskv/itSpIjchmnH9PLyKtBD5t7Wtq9uV65cObRr1w5hYWFYsWIFAMhvcy9Xrhz8/Pxw4cIF+Pn5ITg4GEuXLoWVlZWpqq5oOemzr34fqFQqBAcHY8qUKfj3338RGBgIf3//Aj2kK6d99tXJ7iEhIYiPj4dWq8XZs2exfv16+b0clN7b+m3ad23RokXx5Zdf4sqVK1i6dCmCg4Px22+/FejvWqJ3EZMTBQsNDUVQUBAePXqU7rOUlBQAQKFChdCuXTtcv34dGzduBJD6BBkg9YlHhQoVkt+E6+bmhgkTJuDAgQOoWbOmmaJQpidPniAhIUFefvXpRFltWxcXF4SGhhoct6Ameq/KStumSXu6zn/+8x94eXlh165dCAkJAZD6puy0/atWrYo2bdqgcuXKpq6+YkVERCAuLk5ezk6fLVSoEO7duwcA6Ny5M5YsWYJDhw4V+O+DrLRtmjf12XPnzgEAGjRogIMHD+LgwYOoVauWiWuvbGltmdGTC439rk1LIIsXL44GDRqgQoUK5giBiMyMyYkCJScnY+DAgahduzb69euHmjVr4vjx4wBeftFbWloiMTER69evR79+/VCrVi1s2LABhw8flo/z4MEDuLm5oUyZMvK6gn71Ljk5GQMGDMB7772Hdu3aoW/fvoiOjja46mlM25YuXTovwlCkrLZtcnIyVq5cKS/r9Xo4OjqiS5cu0Ov18PPzw4cffoi6deum278gSklJQf/+/VG/fn189NFH6NGjByIjI7PdZ8uWLQsAsLOzQ/ny5c0ej5JktW2z2mfr16+PyMhIlCxZEs2bN8+rsBQhOTkZQ4YMwcCBAwEY3lnKzt+x0qVL8+IPUUGRdyPKKCNxcXGiffv2onnz5iI4OFhcv35dtGzZUjRt2tRguzlz5ggXFxfRoUMHIUTqGOcePXoItVotBg8eLAYMGCAcHBzEwoULhRB8dKUQQkRFRYmPPvpING/eXBw7dkwsXrxYeHt7i8aNG4vr16/L27FtjWds23bu3Fkeq5/m3r17onz58kKSJPHpp5/yhX8i9eEAPXr0EA0bNhRHjhwRs2bNEtWqVRNNmjQRV69elbdjnzWesW3LPpt1p06dEj4+PsLNzU1YWVnJb71/fU4T+y0RZYTJicKcPn1aeHp6ikOHDsnrlixZItq3by9/Mc+bN0+UKVNGrFmzxmASpl6vF9OnTxdffvmlaN26NZ+885q9e/eKatWqGZwsX716VahUKjF8+HARHR0tli9fLkqVKsW2NZKxbfv6ScbBgweFvb29qFWrljh37py5q69Y9+/fF56enmLVqlXyurCwMFGiRAkxbNgwERUVxT6bTca2Lfts1s2ePVv0799f7NmzR3Tq1Ek0aNAg3TYLFiwQZcuWZb8lonSYnCjMsWPHhCRJ8hfykydPRK1atcSgQYPEokWLhBCpT4V5/vy5wX68ovR2K1euFM7Ozgbrjh8/LlxcXISnp6fYvXu30Ov1Ij4+3mAbtu3bZbdt0zx9+lSsXbvWHFXNV/755x9hY2MjQkJChBBCfirRvHnzhKenp9i5c6fQ6/X8PsiG7LZtGvbZ9NL6XWhoqLhy5YoQIvXChZubm1i6dKkQ4uWT+JKTk/ldS0QZKtiDufPYnj17ABg+Jea9995D8+bN0bdvX3z88ccoWrQo3N3doVar8d1336FLly64fPkybG1tDfbjWFxDGbWth4cHXF1dERAQIK9bunQp+vfvD71ej+3bt0OSJNjY2Bgci21rKDfbNu04rq6u+Oyzz0xfeQVbvHgxlixZgqNHj8rrPD094e7ujtWrVwN4OW5/6NChcHJywpYtW6DVamFra2twLPZZQ7nZtgD77KvS2jYwMFDudyVKlICXlxcAoG7duvj000/h5+cHnU4HtVoNvV4PS0tL2NnZGRyL/ZaIAHDOSV7YtWuXKFGihMEdEp1OJ9/ajo+PFyEhIaJx48bip59+kvc7f/68KFeunPziL0ovo7ZNG+ccFRUlfvzxRyFJkmjcuLGwt7cX1apVE8nJyWLu3LmiRIkSeVl1xWPbmsbatWtFkSJFRKNGjUStWrWEm5ubmDp1qhBCiJiYGDFmzBjh6ekpHj9+LIQQ4sWLF0IIIVatWiWcnJzkZUqPbWs6b2rb1+eWpA1X/uabb4QQ6V9aSUT0KiYnZvb333+LVq1aia+++kp8/PHHom7duhluFxwcLCpVqiQiIiLkW93JycnC2dnZIGGhl7LatoGBgWLu3Lli//798roffvhBNGnSRDx79sxc1c1X2LamsWbNGlGzZk15yObDhw/F3LlzhZ2dnYiJiRFCCHHgwAFRr149MWTIECHEy6Evhw8fFkWKFBEXLlzIm8orHNvWdN7Uthm9bPL58+fixx9/FE5OTuLevXtCiNQ2Tvs9EBG9isO6zET8/xCYokWLomXLlhg5ciSmTJmCq1evYtmyZQAMn61va2uLkJAQhIaGyre6d+3ahXLlyuGDDz4wfwAKZmzb+vj44KuvvkKLFi0AAElJSTh16hS8vb3h5ORk/gAUjG1rGmntmpycjAYNGqB3794AUt/f4O3tjRIlSuDq1asAgCZNmqB79+5YuXIltm3bhuTkZADA8ePH4eXlherVq+dNEArFtjWdrLTttWvX0u1na2uLDh06wNvbG126dEHdunXRuXNnREVFmbX+RJRP5GVmVBAEBQWlu2Kcdss7OTlZjBo1Sri5ucmTMdOu3EVGRorPPvtM2NraikGDBonevXsLBwcHMWHCBE4a/H/Gtu3rrl+/Lv7991/Ru3dvUbZsWXHy5EmT1zm/YNuaRlBQkIiOjpaXnz17lm4IzPnz54W7u7vBY2tjY2PF6NGjhYODg2jatKno0qWLsLGxEfPnzxdCcCKxEGxbU8pu277q0qVLokaNGkKSJDFkyBB5YjwR0et458REtmzZAg8PD3Tt2hU1atTAxIkTER4eDiB14qUQApaWlhg6dCisra0xfvx4AC+vTLm4uGDZsmUYOnQoEhMTAaS+fdjPz6/ATxrMadum2b17Nz7++GPcvXsX+/btQ8OGDc0ei9KwbU3j1XatWbMmJkyYgMePH8PJyQkWFhYGd58OHTqE8uXLo1ChQkhKSgKQ+vLUgIAA/Pbbb2jWrBlcXV0RHByMIUOGACjYE4nZtqaT07ZNc+zYMbRt21YeETB//nyo1Wpzh0NE+UVeZkbvqrNnz4rKlSuL2bNniwsXLogFCxYINzc3MXjwYBEZGSmEeHkVWq/XiwULFghLS0tx+/ZtIUTqIy1fHbebnJxs/iAUKqdtq9Vq5bZ99OiRCAoKyptAFIhtaxpZaVedTif/f/7JJ5+IoUOH5mWV8w22renkZts+evSId0+JKMuYnOSitNv/CxcuFCVLljSY7Ddv3jzRsGFDMWXKlHT7RUZGisaNG4sOHTqIoKAg0bJlS7Fq1SoOJ3hFbrctnxbzEtvWNIxtV51OJ/R6vShfvrzYtWuXEEKIGzduiE8//VTcv3/fvJVXOLat6bBtiSivcVhXLkq7/X/nzh1UrFgRlpaW8md9+vRBnTp18Oeff+LKlSsAAJ1OByB1CNeXX36JHTt2oF69elCr1ejcuXOBHk7wutxu27R3GhDb1lSMbVeVSoWzZ8/C1tYWtWvXxogRI1CjRg1ERkaiSJEieRKDUrFtTYdtS0R5jWcROXDgwAEMHz4cc+bMwZkzZ+T17733Hk6cOCGP1dfpdLCzs0OHDh0gSRL2798PALCwsEBSUhIWLFiA/v37w8fHBxcvXsTOnTszfFldQcK2NR22rWnktF2B1BdcXr58GZUqVcKBAwdw/Phx7N+/HxqNxuzxKAnb1nTYtkSkNExOsiEsLAzt2rVDz549ERUVhWXLlqFly5byF3vLli1RpkwZ+W3ZaVeiWrRoAZVKhZs3b8rHio6Oxr///ovly5fjyJEjqFq1qvkDUhC2remwbU0jN9vVysoKhQsXxooVK3DlyhXUqVPH/AEpCNvWdNi2RKRYeT2uLL95/vy5+Pzzz0W3bt3kicBCCFGvXj3Rp08fIUTqpOHff/9dqFQq+U3aaXr06CGaN29u1jrnF2xb02HbmkZutGuzZs3k5YiICPNUPB9g25oO25aIlIx3Toxka2sLjUaDPn36oGzZskhJSQEAtG3bVn75lIWFBbp27YoOHTrgiy++QGBgIIQQCA8PR0hICHr06JGXISgW29Z02LamkRvt2rNnT/l4bm5ueRKHErFtTYdtS0RKJgnx2gsK6K2Sk5NhZWUFIPX9DpIkoVevXrCxscHixYvldYmJifj4449x9epV1KpVC5cvX0apUqWwceNGeHh45HEUysS2NR22rWmwXU2HbWs6bFsiUiomJ7nEx8cH/fr1Q58+fSCEgF6vh4WFBR4/foyLFy/i7NmzKFOmDLp3757XVc132Lamw7Y1Dbar6bBtTYdtS0RKwOQkF9y+fRuNGzfG7t275YmASUlJfANuLmDbmg7b1jTYrqbDtjUdti0RKQXnnORAWl537Ngx2Nvby1/ofn5++O9//4uIiIi8rF6+xrY1HbatabBdTYdtazpsWyJSGsu3b0KZSXu04pkzZ9C5c2ccOHAAAwYMQEJCAlatWsUXUOUA29Z02LamwXY1Hbat6bBtiUhpOKwrhxITE1G9enXcunULarUafn5+GDNmTF5X653AtjUdtq1psF1Nh21rOmxbIlISJie5oEWLFvD09MSsWbNgbW2d19V5p7BtTYdtaxpsV9Nh25oO25aIlILJSS7Q6XSwsLDI62q8k9i2psO2NQ22q+mwbU2HbUtESsHkhIiIiIiIFIFP6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEWVBnz59IEkSJEmClZUVihYtihYtWuC3336DXq/P8nFWrFgBZ2dn01WUiIgoH2NyQkSURa1atUJYWBju3r2LP//8E82bN8d///tftG3bFikpKXldPSIionyPyQkRURZpNBq4u7ujRIkSqF27Nr799lts374df/75J1asWAEAmDVrFqpXrw47Ozt4eHhgyJAhiI+PBwAcOXIEffv2RUxMjHwXZtKkSQCApKQkjB49GiVKlICdnR0aNGiAI0eO5E2gREREeYTJCRFRDnzwwQeoWbMmtm7dCgBQqVT45ZdfcPnyZaxcuRKHDh3C6NGjAQCNGzfG7Nmz4ejoiLCwMISFheGbb74BAPTt2xfHjx/H+vXrcfHiRXTp0gWtWrVCSEhInsVGRERkbpIQQuR1JYiIlK5Pnz549uwZ/vjjj3Sfffrpp7h48SKuXr2a7rNNmzZh8ODBePr0KYDUOScjRozAs2fP5G1u3boFT09PPHjwAMWLF5fXf/TRR6hfvz6mT5+e6/EQEREpkWVeV4CIKL8TQkCSJADA4cOHMX36dFy9ehWxsbFISUlBYmIinj9/Djs7uwz3Dw4OhhACFStWNFiv1Wrh6upq8voTEREpBZMTIqIcunbtGsqWLYt79+6hdevWGDRoEKZMmQIXFxccO3YM/fv3R3Jycqb76/V6WFhYICgoCBYWFgaf2dvbm7r6REREisHkhIgoBw4dOoRLly7h66+/xrlz55CSkoKZM2dCpUqd0rdx40aD7dVqNXQ6ncE6b29v6HQ6RERE4P333zdb3YmIiJSGyQkRURZptVqEh4dDp9Ph8ePH2Lt3L/z9/dG2bVv07t0bly5dQkpKCubOnYt27drh+PHjWLRokcExypQpg/j4eBw8eBA1a9aEra0tKlasiB49eqB3796YOXMmvL298fTpUxw6dAjVq1dH69at8yhiIiIi8+LTuoiIsmjv3r0oVqwYypQpg1atWuHw4cP45ZdfsH37dlhYWKBWrVqYNWsWAgICUK1aNaxZswb+/v4Gx2jcuDEGDRqEbt26wc3NDTNmzAAALF++HL1798aoUaNQqVIltG/fHqdPn4aHh0dehEpERJQn+LQuIiIiIiJSBN45ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBTh/wD/eko6SfVdNgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -460,7 +460,29 @@ "cell_type": "code", "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", + "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n" + ] + } + ], "source": [ "# cross-validation with Kfold\n", "k_fold_splits = 5\n", @@ -527,7 +549,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlvElEQVR4nO3deViUZfcH8O+AAooC4gKoGO5buC+RpZa4Z2655/amZT8slUyjNzWtNDNNM83S1Op1K3Op3COVXHLHfReFFHAHQUGYeX5/nGYGFJCBmXlm+X6uay6fGZ6ZOYDMnDn3fZ9boyiKAiIiIiIH4aJ2AERERETmxOSGiIiIHAqTGyIiInIoTG6IiIjIoTC5ISIiIofC5IaIiIgcCpMbIiIicihMboiIiMihMLkhIiIih1JE7QCsTafT4dq1ayhZsiQ0Go3a4RAREVE+KIqCe/fuoXz58nBxeUJtRlHRzp07lZdeekkJCAhQAChr167N8/y//vpLefbZZxVfX1/Fw8NDqVmzpjJr1iyTnjMuLk4BwAsvvPDCCy+82OElLi7uie/1qlZuUlNTUb9+ffznP/9Bjx49nni+p6cnRo4ciXr16sHT0xO7du3CG2+8AU9PT7z++uv5es6SJUsCAOLi4uDl5VWo+ImIiMg6kpOTERgYaHgfz4tGUWxj40yNRoO1a9eiW7duJt2vR48e8PT0xI8//piv85OTk+Ht7Y2kpCQmN0RERHbClPdvu55QfOTIEezZswetWrXK9Zz09HQkJydnuxAREZHjssvkpmLFinB3d0eTJk0QFhaGYcOG5XrutGnT4O3tbbgEBgZaMVIiIiKyNrtMbv766y8cPHgQCxYswOzZs7FixYpcz42IiEBSUpLhEhcXZ8VIiYiIyNrscil45cqVAQDBwcFITEzEhx9+iH79+uV4rru7O9zd3U1+Dq1Wi4yMjELFSdZXtGhRuLq6qh0GERGpyC6Tm6x0Oh3S09PN9niKoiAhIQF3794122OSdfn4+MDf3599jIiInJSqyU1KSgouXLhguB4TE4Po6Gj4+vqiUqVKiIiIwNWrV/HDDz8AAObNm4dKlSqhVq1aAICoqCh8/vnnePvtt80Wkz6xKVeuHIoXL843SDuiKAru37+P69evAwACAgJUjoiIiNSganJz8OBBvPDCC4br4eHhAIDBgwdj6dKliI+PR2xsrOHrOp0OERERiImJQZEiRVC1alVMnz4db7zxhlni0Wq1hsSmdOnSZnlMsq5ixYoBAK5fv45y5cpxiIqIyAnZTJ8ba8lrnXxaWhpiYmIQFBRkeJMk+/PgwQNcvnwZlStXhoeHh9rhEBGRGThNnxtL4VCUfePvj4jIuTG5ISIiIofC5IZyFBQUhNmzZ6v+GERERKay+6XgJFq3bo0GDRqYLZk4cOAAPD09zfJYRERE1sTKjRNRFAWZmZn5Ords2bIoXry4hSMiIiKHExUFmLH/XEEwuXEAQ4YMwc6dOzFnzhxoNBpoNBpcvnwZO3bsgEajwaZNm9C4cWO4u7tj165duHjxIrp27Qo/Pz+UKFECTZs2xR9//JHtMR8dUtJoNFi0aBG6d++O4sWLo3r16vj1119NijM2NhZdu3ZFiRIl4OXlhd69eyMxMdHw9aNHj+KFF15AyZIl4eXlhcaNG+PgwYMAgCtXrqBLly4oVaoUPD09UbduXWzcuLHgPzQiIjK/f/4BWrcGypcHkpJUC4PJTT6lpuZ+SUvL/7kPHuTvXFPMmTMHISEhGD58OOLj4xEfH59tg9D33nsPn376KU6fPo169eohJSUFnTp1QmRkJI4cOYIOHTqgS5cu2XoK5WTy5Mno3bs3jh07hk6dOmHAgAG4fft2vmLU6XTo2rUrbt++jZ07d2Lbtm24dOkS+vTpYzhnwIABqFixIg4cOIBDhw7hvffeQ9GiRQEAYWFhSE9PR1RUFI4fP47p06ejRIkSpv2giIjIspYvBxQFePppwNtbtTA45yaf8nof7dQJ2LDBeL1cOeD+/ZzPbdUK2LHDeD0oCLh58/HzTOk+5O3tDTc3NxQvXhz+/v6PfX3KlClo27at4bqvry/q169vuP7RRx9h7dq1+PXXXzFy5Mhcn2fIkCGGPbymTp2KL7/8Evv370eHDh2eGGNkZCSOHz+OmJgYQ+L1ww8/oG7dujhw4ACaNm2K2NhYvPvuu4YO1NWrVzfcPzY2Fj179kRwcDAAoEqVKk98TiIisiJFAX78UY5ffVXVUFi5cQJNmjTJdj0lJQVjx45F7dq14ePjgxIlSuD06dNPrNzUq1fPcOzp6QkvLy/DVgdPcvr0aQQGBmarKNWpUwc+Pj44ffo0AOlQPWzYMISGhuLTTz/FxYsXDee+/fbb+Pjjj9GiRQtMmjQJx44dy9fzEhGRlRw7Bpw4Abi5Ab16qRoKk5t8SknJ/fLLL9nPvX4993M3bcp+7uXLOZ9nTo+ueho7dizWrl2LqVOn4q+//kJ0dDSCg4Px8OHDPB9HP0Skp9FooNPpzBbnhx9+iJMnT6Jz5874888/UadOHaxduxYAMGzYMFy6dAkDBw7E8ePH0aRJE8ydO9dsz01ERIWkr9p06QL4+KgaCpObfPL0zP3yaIf/vM59dFeH3M4zlZubG7Rabb7O3b17N4YMGYLu3bsjODgY/v7+uHz5sulPaoLatWsjLi4OcXFxhttOnTqFu3fvok6dOobbatSogTFjxmDr1q3o0aMHlixZYvhaYGAgRowYgTVr1uCdd97BwoULLRozERHlk1Yr820A1YekACY3DiMoKAj79u3D5cuXcfPmzTwrKtWrV8eaNWsQHR2No0ePon///matwOQkNDQUwcHBGDBgAA4fPoz9+/dj0KBBaNWqFZo0aYIHDx5g5MiR2LFjB65cuYLdu3fjwIEDqF27NgBg9OjR2LJlC2JiYnD48GFs377d8DUiIlLZn38C8fGAr69MRFUZkxsHMXbsWLi6uqJOnTooW7ZsnvNnZs2ahVKlSuHZZ59Fly5d0L59ezRq1Mii8Wk0Gqxfvx6lSpVCy5YtERoaiipVqmDVqlUAAFdXV9y6dQuDBg1CjRo10Lt3b3Ts2BGTJ08GIDu2h4WFoXbt2ujQoQNq1KiB+fPnWzRmIiLKp//9T/7t3Vvm3KiMu4Jnod8VnLtJ2zf+HomIrCg1FfDzk3937waefdYiT8NdwYmIiMg61q+XxKZKFSAkRO1oADC5ISIiosLI2ttGo1E3ln8xuSEiIqKCSUwEtm6VYxtYJaXH5IaIiIgKZsUKQKcDmjcHsnSVVxuTGyIiIioY/SopG6raAExuiIiIqCBOnwYOHQKKFAGybIJsC5jcEBERken0VZsOHYCyZdWN5RFMboiIiMg0Op0xuRk4UN1YcsDkhoiIiEyzaxcQGwt4eclGmTaGyQ0VWuvWrTF69Gi1wyAiImvR97Z55ZXHd4S2AUxuHIQlEowhQ4agW7duZn1MIiKyc2lpwM8/y7GNrZLSY3JDRERE+ff770BSElCxItCqldrR5IjJjQMYMmQIdu7ciTlz5kCj0UCj0eDy5csAgBMnTqBjx44oUaIE/Pz8MHDgQNy8edNw39WrVyM4OBjFihVD6dKlERoaitTUVHz44Yf4/vvvsX79esNj7tixI1/x3LlzB4MGDUKpUqVQvHhxdOzYEefPnzd8/cqVK+jSpQtKlSoFT09P1K1bFxs3bjTcd8CAAShbtiyKFSuG6tWrY8mSJWb7WRERUSHpJxIPGAC42GYaUUTtAGyeogD376vz3MWL52ufjjlz5uDcuXN4+umnMWXKFABA2bJlcffuXbz44osYNmwYvvjiCzx48ADjx49H79698eeffyI+Ph79+vXDZ599hu7du+PevXv466+/oCgKxo4di9OnTyM5OdmQXPj6+uYr7CFDhuD8+fP49ddf4eXlhfHjx6NTp044deoUihYtirCwMDx8+BBRUVHw9PTEqVOnUKJECQDAhAkTcOrUKWzatAllypTBhQsX8ODBgwL+AImIyKxu3QL+/TBqi6uk9JjcPMn9+8C/b7xWl5ICeHo+8TRvb2+4ubmhePHi8Pf3N9z+1VdfoWHDhpg6darhtsWLFyMwMBDnzp1DSkoKMjMz0aNHDzz11FMAgODgYMO5xYoVQ3p6erbHfBJ9UrN79248+++298uWLUNgYCDWrVuHXr16ITY2Fj179jQ8V5UqVQz3j42NRcOGDdGkSRMAQFBQUL6fm4iILOynn4CMDKBBA6BuXbWjyZVt1pPILI4ePYrt27ejRIkShkutWrUAABcvXkT9+vXRpk0bBAcHo1evXli4cCHu3LlTqOc8ffo0ihQpgubNmxtuK126NGrWrInTp08DAN5++218/PHHaNGiBSZNmoRjx44Zzn3zzTexcuVKNGjQAOPGjcOePXsKFQ8REZmRfpWUDVdtACY3T1a8uFRQ1LgUL16o0FNSUtClSxdER0dnu5w/fx4tW7aEq6srtm3bhk2bNqFOnTqYO3cuatasiZiYGDP98HI2bNgwXLp0CQMHDsTx48fRpEkTzJ07FwDQsWNHXLlyBWPGjMG1a9fQpk0bjB071qLxEBFRPly8COzdK/Ns+vVTO5o8Mbl5Eo1GhobUuORjvo2em5sbtFptttsaNWqEkydPIigoCNWqVct28fx3uEuj0aBFixaYPHkyjhw5Ajc3N6xduzbXx3yS2rVrIzMzE/v27TPcduvWLZw9exZ16tQx3BYYGIgRI0ZgzZo1eOedd7Bw4ULD18qWLYvBgwfjf//7H2bPno1vv/3WpBiIiMgC9BOJQ0OBgAB1Y3kCJjcOIigoCPv27cPly5dx8+ZN6HQ6hIWF4fbt2+jXrx8OHDiAixcvYsuWLRg6dCi0Wi327duHqVOn4uDBg4iNjcWaNWtw48YN1K5d2/CYx44dw9mzZ3Hz5k1kZGQ8MY7q1auja9euGD58OHbt2oWjR4/i1VdfRYUKFdC1a1cAwOjRo7FlyxbExMTg8OHD2L59u+E5J06ciPXr1+PChQs4efIkfv/9d8PXiIhIJYpiszuA54TJjYMYO3YsXF1dUadOHZQtWxaxsbEoX748du/eDa1Wi3bt2iE4OBijR4+Gj48PXFxc4OXlhaioKHTq1Ak1atTABx98gJkzZ6Jjx44AgOHDh6NmzZpo0qQJypYti927d+crliVLlqBx48Z46aWXEBISAkVRsHHjRhQtWhQAoNVqERYWhtq1a6NDhw6oUaMG5s+fD0CqRREREahXr55h6GzlypWW+aEREVH+7NsHXLgg0yW6d1c7mifSKIqiqB2ENSUnJ8Pb2xtJSUnw8vLK9rW0tDTExMSgcuXK8PDwUClCKiz+HomIzGzkSGDePOlto6/gWFle79+PYuWGiIiIcvfwIaCvoNv4Kik9JjdERESUuy1bpHmfnx/Qpo3a0eQLkxsiIiLKnb63Tf/+QBH76P3L5IaIiIhylpQE/PqrHNvBKik9VZObqKgodOnSBeXLl4dGo8G6devyPH/NmjVo27YtypYtCy8vL4SEhGDLli1mj8vJ5lg7HP7+iIjMZPVqID0dqFMHaNhQ7WjyTdXkJjU1FfXr18e8efPydX5UVBTatm2LjRs34tChQ3jhhRfQpUsXHDlyxCzx6Jcq31dro0wyC/3vT//7JCKiAsra28aExrJqs5ml4BqNBmvXrkW3bt1Mul/dunXRp08fTJw4Mcevp6enIz093XA9OTkZgYGBuS4li4+Px927d1GuXDkUL14cGjv6ZTo7RVFw//59XL9+HT4+Pgiw8Q6aREQ2LTYW+HdTZVy5AlSqpGo4piwFt4+ZQbnQ6XS4d+8efH19cz1n2rRpmDx5cr4fU78D9vXr1wsdH6nDx8fHpJ3MiYgoB8uXy7+tWqme2JjKrpObzz//HCkpKejdu3eu50RERCA8PNxwXV+5yY1Go0FAQADKlSuXr+0GyLYULVoUrq6uaodBRGTfFMVudgDPid0mN8uXL8fkyZOxfv16lCtXLtfz3N3d4e7ubvLju7q68k2SiIicU3Q0cOoU4O4O9OypdjQms8vkZuXKlRg2bBh+/vlnhIaGqh0OERGRY9FPJH75ZcDHR9VQCsLu+tysWLECQ4cOxYoVK9C5c2e1wyEiInIsmZnG+TZ21NsmK1UrNykpKbhw4YLhekxMDKKjo+Hr64tKlSohIiICV69exQ8//ABAhqIGDx6MOXPmoHnz5khISAAAFCtWDN7e3qp8D0RERA7lzz+BhASgdGmgQwe1oykQVSs3Bw8eRMOGDdHw38ZA4eHhaNiwoWFZd3x8PGJjYw3nf/vtt8jMzERYWBgCAgIMl1GjRqkSPxERkcPRTyTu0wdwc1M3lgKymT431mLKOnkiIiKnkpIiG2Tevw/s3Qs884zaERmY8v5td3NuiIiIyELWrZPEplo1oHlztaMpMCY3REREJOx0u4VHMbkhIiIiID4e2LZNjgcMUDeWQmJyQ0RERMDKlYBOB4SEyLCUHWNyQ0RERMZVUnba2yYrJjdERETO7uRJ4MgRoEgRII/9Gu0FkxsiIiJnp59I3KkTUKaMurGYAZMbIiIiZ6bTAcuWybEDDEkBTG6IiIicW1QUEBcHeHkBXbqoHY1ZMLkhIiJyZvohqV69AA8PdWMxEyY3REREzurBA+Dnn+V44EB1YzEjJjdERETO6vffgeRkoFIl4Pnn1Y7GbJjcEBEROSt9b5sBAwAXx0kJHOc7ISIiovy7eRPYtEmOHWSVlB6TGyIiIme0ahWQmQk0agTUqaN2NGbF5IaIiMgZZd0B3MEwuSEiInI2588Df/8t82z69VM7GrNjckNERORs9B2J27YF/P3VjcUCmNwQERE5E0UxDkk5UG+brJjcEBEROZO//wYuXgQ8PYFu3dSOxiKY3BARETkTfW+bHj0kwXFATG6IiIicxcOHsgQccMhVUnpMboiIiJzFpk3A7dsyibhNG7WjsRgmN0RERM5CP5G4f3/A1VXdWCyIyQ0REZEzuHsX+O03OXbQVVJ6TG6IiIicwerVQHo6ULcuUL++2tFYFJMbIiIiZ6BfJTVwIKDRqBuLhTG5ISIicnRXrgBRUZLU9O+vdjQWx+SGiIjI0em3W2jdGggMVDUUa2ByQ0RE5MgUxTgk5cC9bbJickNEROTIDh8GzpwBPDyAnj3VjsYqmNwQERE5Mn1vm5dfBry91Y3FSpjcEBEROarMTGDFCjl28N42WTG5ISIiclR//AEkJgJlygDt26sdjdUwuSEiInJU+iGpvn2BokXVjcWKmNwQERE5opQUYO1aOXaSVVJ6TG6IiIgc0dq1wP37QPXqQLNmakdjVUxuiIiIHFHW3jYOvt3Co1RNbqKiotClSxeUL18eGo0G69aty/P8+Ph49O/fHzVq1ICLiwtGjx5tlTiJiIjsyrVrQGSkHDvZkBSgcnKTmpqK+vXrY968efk6Pz09HWXLlsUHH3yA+g6+oykREVGBrVgB6HTAs88CVaqoHY3VFVHzyTt27IiOHTvm+/ygoCDMmTMHALB48WJLhUVERGTf9KuknKi3TVaqJjfWkJ6ejvT0dMP15ORkFaMhIiKysBMngOhoWfrdq5fa0ajC4ScUT5s2Dd7e3oZLoBPshkpERE5MX7Xp3BkoXVrdWFTi8MlNREQEkpKSDJe4uDi1QyIiIrIMnQ5YtkyOnXAisZ7DD0u5u7vD3d1d7TCIiIgsb+dO4J9/AB8fqdw4KYev3BARETkNfW+bXr0ADw91Y1GRqpWblJQUXLhwwXA9JiYG0dHR8PX1RaVKlRAREYGrV6/ihx9+MJwTHR1tuO+NGzcQHR0NNzc31KlTx9rhExER2Y4HD4DVq+XYSVdJ6ama3Bw8eBAvvPCC4Xp4eDgAYPDgwVi6dCni4+MRGxub7T4NGzY0HB86dAjLly/HU089hcuXL1slZiIiIpv066/AvXvAU08BLVqoHY2qVE1uWrduDUVRcv360qVLH7str/OJiIicln6V1KuvAi7OPevEub97IiIiR3DjBrB5sxwPGKBuLDaAyQ0REZG9W7UKyMwEGjcGatdWOxrVMbkhIiKyd/pVUk4+kViPyQ0REZE9O3cO2L8fcHUF+vZVOxqbwOSGiIjInuknErdrB/j5qRuLjWByQ0REZK8UJfsqKQLA5IaIiMh+7dkDxMQAJUoA3bqpHY3NYHJDRERkr/RVmx49gOLF1Y3FhjC5ISIiskfp6bIEHOAqqUcwuSEiIrJHmzYBd+4A5csDWbYyIiY3RERE9knf26Z/f1kGTgZMboiIiOzNnTvA77/LMVdJPYbJDRERkb35+Wfg4UMgOBioX1/taGwOkxsiIiJ7w942eWJyQ0REZE8uXwb++gvQaGS+DT2GyQ0REZE9WbZM/n3hBaBiRXVjsVFMboiIiOyFonAH8HwoonYARDbj3j1g8mTA1xdo1Qpo2hRwc1M7KiIio0OHgLNnAQ8P6UpMOWJyQ6Q3ZQowc6bxuocHEBIiiU7LlsAzzwDFiqkXHxGRvmrTrRvg5aVqKLZMoyiKonYQ1pScnAxvb28kJSXBi/8xSC8xEahcGXjwAAgNBY4eBW7cyH6OmxvQrJkkOq1aAc8+K5vVERFZQ0YGUKGCvDb9/jvQubPaEVmVKe/frNwQAcCMGZLYNG8ObN0qt505A0RFATt3yuXaNWDXLrlMnSodQRs3NlZ2nnsO8PFR9dsgIge2bZskNmXLAu3aqR2NTWPlhighAahSRZKbTZuADh0eP0dRgEuXJMnRJzyXL2c/R6ORZlqtWsnl+eeBMmWs8i0QkRPo3x9YsQJ46y3gyy/VjsbqTHn/ZnJD9M47wKxZUrXZu1eSlPyIjTUmOlFRwLlzj59Tt65xGKtlSyAgwLyxE5FzuHcP8POTD2H798uCByfD5CYPTG4om6xVm82bgfbtC/5Y8fHSWEs/jHXy5OPnVK9uTHRatQIqVSr48xGR8/j+e2DIEKBGDRkyz++HMAfCOTdE+fXZZ5LYPPNM4cewAwKA3r3lAgA3b0qyo6/uREcD58/LZdEiOeepp7InO1WrOuWLFhE9gX67hYED+RqRD6zckPOKj5eqTVoasGWL5Sfo3b0L7N5tHMY6eBDQarOfU7589mGs2rX5Qkbk7K5eBQIDjXP/KldWOyJVsHJDlB+ffSaJTUgI0Lat5Z/Px0eWbuqXb6akyBwf/TDW/v2yImvlSrkAsiqiZUtjwhMcDLiwsTiRU1mxQhKb555z2sTGVKzckHPKWrXZutU6yc2TPHgA7NtnHMbau1duy8rHR1Zh6Ss7DRsCRfgZhcih1a8PHDsGLFgAvPGG2tGohhOK88DkhgAAo0cDc+ZII75du2xz6OfhQxm60g9j7dol1Z6sSpQAWrQwJjvcMoLIsRw7JsmNm5ssgChVSu2IVMPkJg9MbgjXrknVJj1dmmKFhqodUf5kZgJHjhgrO3/9JfN4sipWTIbZ9MNYzZtzywgiezZunDQZ7d4dWLNG7WhUxeQmD0xuCKNGSQOs556TRMEWqzb5odMBx48bKztRUdwygsiRaLWyovLqVUlsundXOyJVMbnJA5MbJ3f1qiy3Tk8H/vgDaNNG7YjMR1Gk/4V+gvLOnTK3KCtuGUFkPyIjpbJcqpT8Lbu7qx2Rqrhaiig306dLYvP888CLL6odjXlpNLJ0vHZtYMQISXYuXszeRfnyZVmVtX+/lLo1GqBBA2Nlh1tGENkOfW+b3r2dPrExFSs35DyyVm0iIx0vucmPrFtG7NwpDQUfVbeusbLDLSOI1HH/vmy3kJIi8+uee07tiFTHYak8MLlxYiNHAvPmyRv2jh32O9fGnOLjjfN1nrRlhD7h4ZYRRJa3ciXQrx8QFCSN+/h6xeQmL0xunNQ//0jV5uFD4M8/gRdeUDsi23Tjhiw51w9jRUfL8FZWQUHZuyhzywgi8+vcGdi4EfjgA+Cjj9SOxiYwuckDkxsnFRYGzJ8vb8g7dqgdjf24e1eSHX1l59ChnLeMyLo/Vq1aTHaICuP6dfm70mplkUDNmmpHZBOY3OSByY0TiosDqlWTqs327UDr1mpHZL9SUoA9e4yVnf375eeaFbeMICqcL7+UlhVNm8rfGAHgaimi7KZNkzfg1q2Z2BRWiRKywah+k1H9lhH6Ccp798rQ1i+/yAXglhFEpsq6AzgViKofp6KiotClSxeUL18eGo0G69ate+J9duzYgUaNGsHd3R3VqlXD0qVLLR4n2bG4OGDRIjn+8ENVQ3FIxYpJwjhpksxlSkqSYaypU4H27SUZunsX+O03YOxYaSjo6wt07ChJ5549j1d+iJzZ2bPAgQPSk6pPH7WjsVuqJjepqamoX78+5s2bl6/zY2Ji0LlzZ7zwwguIjo7G6NGjMWzYMGzZssXCkZLdmjoVyMiQCcStWqkdjeNzc5O9riIigM2bgTt3jD11unSRKs69e/K199+Xc318pJnilCkyH+rRzUKJnIm+atOhA1CunLqx2DGbmXOj0Wiwdu1adOvWLddzxo8fjw0bNuDEiROG2/r27Yu7d+9i8+bNOd4nPT0d6enphuvJyckIDAzknBtnEBsrc20yMmTIpGVLtSMirRY4ccI4jBUVBdy8mf0c/ZYR+mEsbhlBzkKnk9WHly8DK1YAffuqHZFNMWXOjV3N8tu7dy9CH9nksH379ti7d2+u95k2bRq8vb0Nl8DAQEuHSbZCX7V58UUmNrbC1VV2OH77bZmTc/269Nb5+mt5IQ8IkGGqXbuATz6Roa1SpYBnnpENBDdseHyzUCJHsWePJDYlSwIvv6x2NHbNrpKbhIQE+Pn5ZbvNz88PycnJeJBLKTsiIgJJSUmGS1xcnDVCJbVduQIsXizHnGtjuzQaoE4d2S5ixQrpIn3+vMyTGjRINg3MzJRJyzNmAC+9JHN2GjUCxowB1q59vPJDZK9+/FH+7dkTKF5c3VjsnMMvWXB3d4c79+RwPvqqTZs2slKH7INGI0OJ1aoBr70mt125kn1/rPPngSNH5DJ7tpyTdcuI1q2lbT2RPUlPB376SY5ffVXdWByAXSU3/v7+SExMzHZbYmIivLy8UKxYMZWiIpvDqo1jeeopWRKrXxZ77Vr2LSNOnZKhrZMnpVFj0aLSur5HD3XjJjKFfsi1QgW2rDADuxqWCgkJQWRkZLbbtm3bhpCQEJUiIpv0yScylBEays3mHFH58jI/Z/58SWiuX5f5O6NGSQUnIwN4/XW5nche6FdJ9e8vc9OoUFRNblJSUhAdHY3o6GgAstQ7OjoasbGxAGS+zKBBgwznjxgxApcuXcK4ceNw5swZzJ8/Hz/99BPGjBmjRvhkiy5fBpYskWNWbZxD2bJSpZk9Gzh8WDoi37olyQ6RPbh9G/j9dzlm4z6zUDW5OXjwIBo2bIiGDRsCAMLDw9GwYUNMnDgRABAfH29IdACgcuXK2LBhA7Zt24b69etj5syZWLRoEdq3b69K/GSD9FWbtm2lhwo5Fzc3GZJ0cZGhqV9/VTsioif7+WepONarJ8k5FZrN9LmxFu4t5cBiYoAaNSS52b1b+qOQcxo/HvjsM1lafuqUNAokslXPPSevWTNmSCdvypHD9rkhypO+atOuHRMbZ/fhh0D16kB8PN8syLZduiSJjUYD9OundjQOg8kNOYZLlwD9PmOca0PFihn3FPvuO+CPP9SNhyg3y5bJv23ayEopMgsmN+QYPvlEWvu3bw9w9RwB0vPm//5PjocPB1JS1I2H6FGKYlwlxd42ZsXkhuzfxYvA99/LMas2lNWnnwKVKskqug8+UDsaouwOHADOnZNKI/symRWTG7J/+qpNhw6yBxGRXsmSwLffyvGXX8rePUS2Ql+16dZN/q+S2TC5Ift24QLwww9yzKoN5aR9e2DwYBkCeO01IC1N7YiIZOn3ypVyzN42ZsfkhuybvmrTsSPQvLna0ZCtmjVL9ps6cwb46CO1oyECtm4FbtwAypWTvlxkVkxuyH5duGDcRZdVG8qLry8wb54cT58um24SqUn/2tWvH1DErrZ5tAtMbsh+ffyxVG06dQKaNVM7GrJ1PXvKRasF/vMfGRYgUkNyMrB+vRxzlZRFmJTcXH/CRnSZmZnYv39/oQIiypfz51m1IdN99RVQqhQQHQ18/rna0ZCz+uUXmftVqxbQuLHa0Tgkk5KbgICAbAlOcHAw4uLiDNdv3brFHbrJOj7+GNDpgM6dgaZN1Y6G7IW/v2ywCQCTJ8scHCJry9rbRqNRNxYHZVJy8+g2VJcvX0bGI6VdJ9uqitRw7pzxxYFVGzLVwIHSNiA9XVZPabVqR0TO5J9/gO3b5XjAAHVjcWBmn3OjYRZKlqav2nTpAjRponY0ZG80GuCbb4ASJaTvjX6iMZE1LF8ubQmefx4IClI7GofFCcVkX86eNe7FMmmSurGQ/apUSVZNAUBEhHQwJrI0RTHOFWRvG4syKbnRaDS4d+8ekpOTkZSUBI1Gg5SUFCQnJxsuRBalr9q8/DIn4lHhjBgh+0/dvy97T3FInSzt2DHgxAnAzQ145RW1o3FoJi2uVxQFNWrUyHa9YcOG2a5zWIos5uxZKekCrNpQ4bm4yM7h9erJruFLlsgScSJL0VdtunSRVXtkMSYlN9v1k6CI1DBlilRtunYFGjVSOxpyBNWry/+rceOA8HCZaFy+vNpRkSPSao0fztjbxuI0ipMtb0pOToa3tzeSkpLg5eWldjiUX2fOAHXqyNDB4cNAloohUaFkZgIhIcDBg5I4r13L5blkfn/8Idss+PoC8fEyNEUmMeX926Q5N5mZmUhPT892W2JiIiZPnoxx48Zh165dpkdLlB9Tpkhi060bExsyryJFgO++k3/Xrwd++kntiMgR6YekevdmYmMFJlVuhg4dCjc3N3zzzTcAgHv37qFu3bpIS0tDQEAATp06hfXr16NTp04WC7iwWLmxQ6dPA3XrSnJz5AjQoIHaEZEjmjRJkuiyZYFTp4AyZdSOiBxFaqo0kExJAXbvBp59Vu2I7JLFKje7d+9Gz549Ddd/+OEHaLVanD9/HkePHkV4eDhmzJhRsKiJcqOv2nTvzsSGLOe//5Uk+sYNYPRotaMhR7J+vSQ2VarIEChZnEnJzdWrV1G9enXD9cjISPTs2RPe3t4AgMGDB+PkyZPmjZCc26lTwKpVcswVUmRJbm7A4sWyimrZMmDDBrUjIkfB7RaszqTkxsPDAw8ePDBc//vvv9G8efNsX09JSTFfdET6qk2PHkD9+mpHQ46uWTNgzBg5fuMNIClJ3XjI/iUmAlu3yjFXSVmNSclNgwYN8OO/k6L++usvJCYm4sUXXzR8/eLFiyjPZZRkLidPGid3smpD1jJlClC1KnD1qiwRJyqMlStlGXjz5tJ6gKzCpORm4sSJmDNnDqpWrYr27dtjyJAhCAgIMHx97dq1aNGihdmDJCelr9r07CmN1oisoXhxae4HAN9+a9zkkKgg9KukWLWxKpP73Jw+fRpbt26Fv78/evXqBRcXY3707bffolmzZmhgw5M+uVrKTpw4IQmNogBHjzK5IesbMUI22KxaVdrmFy+udkRkb06flv5cRYoA167JSjwqMFPev03qUAwAtWvXRu3atXP82uuvv27qwxHlTF+1eeUVJjakjs8+k0nFFy8CEyYAM2eqHRHZG/1E4g4dmNhYmUmVm6ioqHyd17JlywIHZGms3NiBEyeA4GA5Pn4cePppdeMh57VxI9C5s6yg2rNH5k0Q5YdOJ0u/r1yRFZ+9e6sdkd2zWOWmdevWho0xc8uJNBoNtFqtKQ9LlN3kyfJvr15MbEhdnTrJXIn//U821Tx8GHB3Vzsqsge7dkli4+UlG2WSVZk0obhUqVIIDAzEhAkTcP78edy5c+exy+3bty0VKzmD48eB1aulF8TEiWpHQwR88YWxa/HUqWpHQ/ZCPyT1yitAsWLqxuKETEpu4uPjMX36dOzduxfBwcF47bXXsGfPHnh5ecHb29twISowVm3I1pQpA3z1lRxPnSqTi4nykpZmbGPBVVKqMCm5cXNzQ58+fbBlyxacOXMG9erVw8iRIxEYGIj//ve/yMzMtFSc5AyOHQN++YVVG7I9vXrJpq2ZmTI8xdc6ysuGDdIAsmJFoFUrtaNxSiYlN1lVqlQJEydOxB9//IEaNWrg008/RXJysjljI2ejr9r07i17/BDZCo0GmD8f8PEBDh0CZs1SOyKyZfreNgMGyGR0sroC/dTT09OxfPlyhIaG4umnn0aZMmWwYcMG+Pr6mjs+chbR0cCaNazakO0KCDAmNZMmAefOqRsP2aZbt2SVHQAMHKhuLE7MpORm//79ePPNN+Hv748ZM2bg5ZdfRlxcHH766Sd06NDBUjGSM5gyRf7t00eaXhHZoiFDgLZtZU7Fa6/Jcl+irH76CcjIABo0YAVaRSb1uXFxcUGlSpUwePBgNG7cONfzXn75ZbMEZwnsc2ODoqOBhg2lanPyJJBLk0gim3D5skx2T00F5s0D/u//1I6IbEmLFtITaeZMIDxc7Wgciinv3yYnN09i631umNzYoO7dgXXrgH79gOXL1Y6G6MnmzgXefhsoUUKaTj71lNoRkS24eBGoVk3m2fzzjwxlktmY8v5t0rCUTqd74uXevXuFCp6czJEjkthwrg3Zk7Aw+YSekgK88YZsFUK0bJn8GxrKxEZlZpvGnZ6ejlmzZqFKlSom33fevHkICgqCh4cHmjdvjv379+d6bkZGBqZMmYKqVavCw8MD9evXx+bNmwsTOqlJv0KqXz+gVi11YyHKLxcX4LvvpFvxli3ADz+oHRGpTVG4A7gNMSm5SU9PR0REBJo0aYJnn30W69atAwAsXrwYlStXxhdffIExY8aYFMCqVasQHh6OSZMm4fDhw6hfvz7at2+P69ev53j+Bx98gG+++QZz587FqVOnMGLECHTv3h1Hjhwx6XnJBhw+DKxfL28UEyaoHQ2RaWrWBD78UI7HjAESElQNh1S2fz9w4YLsHt+9u9rRkGKCcePGKd7e3krPnj2VgIAApUiRIsrw4cOV4OBgZcWKFUpmZqYpD6coiqI0a9ZMCQsLM1zXarVK+fLllWnTpuV4fkBAgPLVV19lu61Hjx7KgAED8vV8SUlJCgAlKSnJ5FjJzF5+WVEARcnn747I5mRkKEqjRvL/uGdPtaMhNYWF8fXMwkx5/zapcvPzzz/jhx9+wOrVq7F161ZotVpkZmbi6NGj6Nu3L1xdXU1KrB4+fIhDhw4hNDTUcJuLiwtCQ0Oxd+/eHO+Tnp4ODw+PbLcVK1YMu3btyvX85OTkbBeyAYcOAb/+yqoN2bciRWR4qkgR6a79yy9qR0RqyMgAVq6UYw5J2QSTkpt//vnHsAT86aefhru7O8aMGWPYKdxUN2/ehFarhZ+fX7bb/fz8kJBLibd9+/aYNWsWzp8/D51Oh23btmHNmjWIj4/P8fxp06Zl2/cqMDCwQLGSmenn2vTvL+V9InvVoAEwfrwch4UB3DzY+WzeLM37/PxkMjGpzqTkRqvVws3NzXC9SJEiKFGihNmDysucOXNQvXp11KpVC25ubhg5ciSGDh2a6zL1iIgIJCUlGS5xcXFWjZdycPAg8NtvrNqQ45gwQfozJSbK/BtyLvodwPv1kyoeqc6k34KiKBgyZAjc3d0BAGlpaRgxYgQ8PT2znbdmzZp8PV6ZMmXg6uqKxMTEbLcnJibC398/x/uULVsW69atQ1paGm7duoXy5cvjvffey3WVlru7uyFeshH6qs2rrwI1aqgbC5E5uLvL8FSLFrJyqm9foGNHtaMia0hKkoURALdbsCEmVW4GDx6McuXKGYZ4Xn31VZQvXz7bsI+3t3e+H8/NzQ2NGzdGZGSk4TadTofIyEiEhITkeV8PDw9UqFABmZmZ+OWXX9C1a1dTvhVSy4EDwO+/A66uwAcfqB0NkfmEhACjRsnxG28AnN/nHH75BUhPl8pdw4ZqR0P/Mqlys2TJErMHEB4ejsGDB6NJkyZo1qwZZs+ejdTUVAwdOhQAMGjQIFSoUAHTpk0DAOzbtw9Xr15FgwYNcPXqVXz44YfQ6XQYN26c2WMjC8hataleXd1YiMzt44/lU3xMDBARIdszkGPT97YZOFCakZJNUH1wsE+fPrhx4wYmTpyIhIQENGjQAJs3bzZMMo6Njc02nyYtLQ0ffPABLl26hBIlSqBTp0748ccf4ePjo9J3QPm2fz+wYQOrNuS4PD2BhQtlUun8+bIRbMuWakdFlhIbC+zYIcf9+6saCmVn0t5SjoB7S6moc2dg40bZWdkCVUAimzF8OLBokVQnjx4FihVTOyKyhE8/lQpdq1bGJIcsxmJ7SxEV2L59ktiwakPO4PPPgfLlgfPngUmT1I6GLIHbLdg0JjdkHfo29YMGAVWrqhoKkcV5ewMLFsjxzJkykZ4cS3Q0cOqUrJR75RW1o6FHMLkhy/v7b2ly5eoK/Pe/akdDZB1dukjfE50OeO014OFDtSMic9L3tunSBeCcT5vD5IYsT1+1GTyYVRtyLnPmAGXKAMePy/wMcgyZmcDy5XLM3jY2ickNWdbevcCWLdK1k1UbcjZlywJffinHH38MnDihbjxkHn/+KbvAly4NdOigdjSUAyY3ZFlZqza5dJEmcmh9+8rQRUaGDE9ptWpHRIWln0jcpw+QZUsish1Mbshy9uwBtm5l1Yacm0YDfP014OUlvZ5mz1Y7IiqMlBRAv8UQV0nZLCY3ZDn6qs2QIUDlympGQqSuChVk1RQgm2xeuKBuPFRw69YB9+/L/MFnnlE7GsoFkxuyjN27gW3bWLUh0nvtNeDFF4EHD6TJn06ndkRUEPpVUq++yu0WbBiTG7IMfdVm6FAgKEjNSIhsg0YjWzMULy7dbBcuVDsiMlVCgnxoAzgkZeOY3JD57doF/PEHqzZEj6pSBfjkEzl+910gLk7deMg0K1ZIxe2ZZ4Bq1dSOhvLA5IbMT1+1+c9/gKeeUjUUIpvz1ltASAhw7x4wYoS08Sf7oB+SYm8bm8fkhszrr7+AyEigaFHg/ffVjobI9ri6At99J0uIN24Eli1TOyLKj1OngMOHpSLdu7fa0dATMLkh82LVhujJatcGJk6U41GjgOvX1Y2HnkxftenUSbpOk01jckPmExUlnTtZtSF6snHjgPr1gdu3ZaiKbJdOZ6ywcSKxXWByQ+ajr9q89hpQqZKqoRDZvKJFgcWLZZjqp5+kfwrZpr/+AmJjpRFjly5qR0P5wOSGzGPnTmD7dlZtiEzRqJGsmgKAN98E7txRNx7KmX67hV69AA8PdWOhfGFyQ+ahr9oMGwYEBqoaCpFdmTQJqFlTeqi8847a0dCj0tKAn3+WY66SshtMbqjwduyQi5sbEBGhdjRE9sXDQ1ZPaTTAkiXGJnFkG377DUhOlqH2559XOxrKJyY3VHis2hAVTosWwMiRcjx8uGzOSLZBv0pqwADAhW+Z9oK/KSqc7dtlvg2rNkSFM3WqtE+4coXz1mzFzZvSiwjgKik7w+SGCk5RjFWb4cOBihVVDYfIrpUoAXz7rRx/9ZVsPkvq+uknIDNTJn7XqaN2NGQCJjdmpChAnz7AqlVO0lF9+3bpbcOqDZF5tGsnm80qirRUSEtTOyLnpl8lxaqN3WFyY0Y//SSXvn2Bli2lU7fDylq1ef11oEIFVcMhchgzZwL+/sDZs8DkyWpH47wuXAD+/lvm2fTrp3Y0ZCImN2bUpYu83xcrJhtjN2kiH74SEtSOzAL+/FMaW7m7s2pDZE6lSgFffy3HM2Y4+KckG6afSNy2rSSbZFeY3JhR8eLSsuLsWaB/fyluLF4M1KgBTJ8OZGSoHaGZZK3avPEGUL68quEQOZxu3WRzRq1WPiE5zIuHnVAU7gBu55jcWEBgoGxDsmcP0LQpcO+ezMNxmFWEkZFSmvLwAMaPVzsaIsf05ZeAry8QHQ189pna0TiXv/8GLl4EPD0l0SS74yhvtzYpJET+Rr7/XhY/uLrK7ffvA8ePqxtbgbFqQ2Qdfn7AnDlyPGUKcOqUuvE4E33VpkcPSXDI7jC5sTAXF2DQIODZZ423zZgBNGggW8ncuKFaaAXzxx+yRJVVGyLLGzAA6NQJePhQhqe0WrUjcnwPHwIrV8oxV0nZLSY3Krh8GdDpgAULgOrVgdmz7WRIPWvVZsQIICBA1XCIHJ5GIy8UJUtKGfirr9SOyPFt3gzcvi2TiNu0UTsaKiAmNypYskSa+jZsCCQlAWPGAMHBxkaYNmvbNplI5OEBjBundjREziEwUMq9gHQuvnRJ3Xgcnb63Tf/+xrkEZHeY3KikZUvgwAFg0SKgXDlZYdW5s3Rgt0lZqzZvvsmqDZE1DR8OtG4tE/Zef91JuoSq4O5d2SgT4CopO8fkRkWurjKMfv488O67Unm22V5RW7cCe/dKEx9WbYisy8UFWLhQ/v4iI2UXcTK/1auB9HSgbl2gfn21o6FCYHJjA7y8ZKVnXBxQubLx9tGjgXnzZGsTVT1atWFDKyLrq1YN+OgjOX7nHeDqVXXjcURZe9toNOrGQoWiURTnqm8mJyfD29sbSUlJ8PLyUjucXB0+DDRuLMd16wJffCGNMlWxeTPQsaN8aoyJkSWqRGR9Wq0svdy/X1qir1/PN2FzuXIFCAqS49hYmetENsWU929WbmxUvXpStSldGjh5UvbTe/llGcKyKkWRtssA8H//x8SGSE2urtL2vGhRmRuyapXaETmO5cvl39atmdg4ACY3NqpIEcklzp8HRo2S67/9JlWcsWOl67FVbN4snxKLFZOJQUSkrrp1gQ8+kOO33rLDZlmP0+mAa9ey3zZvnhWbnSqKcZUUJxI7BCY3Nq5UKemDc/y4jAxlZMiwsFUGE7NWbcLCWLUhshXvvSf9I27elE8/durCBWDCBJlr2KmT8faLF4G335YKdufOskevRV/zjhwBTp+WNhc9e1rwichamNzYiVq1pA/Oxo3A/PkyCRmQP/gDByz0pJs2yYMXL86qDZEtcXOTFVMuLsCKFcbly3YgOVlaYDz/vDQx/fhjmeJy+XL26k3PnjKdaONGaZ3RogXw669S5TE7fdXm5ZcBb28LPAFZm00kN/PmzUNQUBA8PDzQvHlz7N+/P8/zZ8+ejZo1a6JYsWIIDAzEmDFjkJaWZqVo1dWxo2x3ordyJdCsGdCrl8z1NZtHqzblypnxwYmo0Jo2lVVTgHQMv3tX1XDyY+5cWWw5fLjsveviArRvL/lZfLxxq7qqVYGffpL+X6+/Lrnc3r1A165SsDpxwoxBZWZKAAC3W3AkispWrlypuLm5KYsXL1ZOnjypDB8+XPHx8VESExNzPH/ZsmWKu7u7smzZMiUmJkbZsmWLEhAQoIwZMyZfz5eUlKQAUJKSksz5bahm8mRFcXFRFEBR3N0VJSJCUZKTzfDAv/8uD1q8uKLk8rsgIpXdv68o1avL3+rw4WpH85izZxXl6lXj9d9+k1Br1VKUTz9VlH/+yd/jXLumKOPHK4qXl6J4eytK1pdvna6QQW7aJEGVLq0oDx8W8sHIkkx5/1Y9uWnWrJkSFhZmuK7VapXy5csr06ZNy/H8sLAw5cUXX8x2W3h4uNKiRYscz09LS1OSkpIMl7i4OIdKbhRFUY4dU5Q2beTvE1CUgABFWbpUUbTaAj6gTqcoTZrIg40bZ9ZYicjMdu40/vFHRqodjXL3rqJ8842iPPushBQRYfxaRoai7NtX8ITk7l35dvV0OkUJDVWUCRMU5fr1AgY8YIAEmuV9iGyTKcmNqsNSDx8+xKFDhxAaGmq4zcXFBaGhodi7d2+O93n22Wdx6NAhw9DVpUuXsHHjRnTKOhsti2nTpsHb29twCXTAJX7BwbLt07p1Us6NjweGDJHuxwWyYQNw8CDg6SlLs4jIdrVsKUsrAWDYMCA11eohaLXAli2yHZO/P/DGG7INnYsLcP268bwiRWQYvaCteby95dvV27kT+OMP6W341FOyeOzyZRMeMCUFWLtWjrlKyrFYIdnK1dWrVxUAyp49e7Ld/u677yrNmjXL9X5z5sxRihYtqhQpUkQBoIwYMSLXc52hcpNVWpqifPaZopQsqSjbtxfgAXQ6RWncWD7JjB9v7vCIyBKSkxUlMFD+bkePtupT63SK8vTTxuIRoCh16sjr0LVrln3uzExF+flnY6EZUBRXVynGHDuWjwf44Qe5U/XqZhjfIkuzm8pNQezYsQNTp07F/PnzcfjwYaxZswYbNmzAR/q25I9wd3eHl5dXtosjc3eXhU1xcdKLSm/mTNlB4f79JzzA778Dhw6xakNkT0qWBL79Vo7nzJHZtxZy5w7www/GpdkaDfDcc4Cvr6w9OHBAJvy++67l99d1dQVeeUVacf3xh3Rx12qBZctkGfkTfwz6VVKvvspOz47GCslWrtLT0xVXV1dl7dq12W4fNGiQ8vLLL+d4n+eee04ZO3Zsttt+/PFHpVixYoo2H5NMHG1CcX4kJMi8YEBRKlZUlGXLcvmQotMpSqNGcuJ771k9TiIqpEGD5O+3dm0p45pJRoaibNyoKH36yMIFQFF27zZ+/eZNsz5doRw8qCi9eytKcHD2eYfnzj0yD/HqVeNqjAsXrB4nmc5uKjdubm5o3LgxIiMjDbfpdDpERkYiJCQkx/vcv38fLi7Zw3Z1dQUAKM61TVa+lSsHfP+9jEn/8w8wYID0jHisP85vv8mmViVKGJeYEpH9+OILabZ5+rQ0kCmkU6eA8eOBSpWkyd6qVbJp9tNPZ5/aU7q0VI1tQePGEuf+/TLnB5CK9bPPSnPnpUuBhw8hy791OvlC1apqhkyWYPlcK28rV65U3N3dlaVLlyqnTp1SXn/9dcXHx0dJSEhQFEVRBg4cqLyXpYowadIkpWTJksqKFSuUS5cuKVu3blWqVq2q9O7dO1/P54yVG7379xXl448VxdPTOD49aJCixMcrUrVp2PDx5Q1EZF9Wr5a/4yJFFCU6usAPs29f9nk0pUsryltvKcqhQ/Y3PWXvXllGrv9eKlZUlMQKDeTK/Plqh0f5ZFdLwRVFUebOnatUqlRJcXNzU5o1a6b8/fffhq+1atVKGTx4sOF6RkaG8uGHHypVq1ZVPDw8lMDAQOX//u//lDt37uTruZw5udH75x9FGThQ/q7d3P6tyK5bJzeUKCE1ZiKyXz17yt9zo0YypvQEGRnS2mrpUuNtWq2iVKumKC+/rChr1ihKeroF47WCu3cVZfp0RfH3V5S6OK4ogJKOosrUd27yJc9OmPL+rVEU5xrLMWXLdEe3bx9w9Cjw+nAFaNQIiI7GtSHvI2DxJ5xbR2TPEhKAOnVk9u+0abIXVQ5OnJBhmv/9D0hMBMqUAa5elY7AgAzf6I8dRVoacKb7e2iweTrWoSu6Yx1OnpQfF9k2U96/7W61FJlP8+bS2hzr1gHR0dB6lkTw0nC0bi37yBGRnfL3l/k3gCyTPHvW8KVbt4CvvgKaNJEeWTNnGhObAQOyr6h0tMQGADzcdGhwYhkAwG/sQLz3XvbEZsEC4NgxlYIjs2HlxtnpdFK1OXoUx7r8F823fYy0NFkV+dprMieRm4ET2SFFkVnAmzfLWu2dOwEXF4wdKwkNIE31XnpJmn527OiYycxjtm8HXnxROgImJMhO4P+6ckXmFmu18vN47z3Z4JOVbNvAyg3l37p1MjZVsiTqLQ3H2bNA377yurhokezaO2OGrJAgIjui0eD06G+QVrSE7FI5fz4AYPBgoEEDaYdz7Zo06O3a1UkSG0DG4ACgd+9siQ0gn/VeeUVWWW3aBLRqJYup1q2z0G7kZDGs3DgznQ5o2FBqsB98ID3M/7VrFzB6tPTzA+QPfNcufoIhsnU3bgDLl0v7hyNHgDcxH/MRJo05T5wAgoLUDlE9Dx7IkF1yslSysu7lkMWFC1LdWrLE+MGuVi1g5Uqgfn0rxkvZsHJD+bN2rSQ2Xl7AmDHZvvTcc9InYskSeS0YPJiJDZGt0umA9euB7t2B8uXlg8mRI0DRosD17iNwu+7z0pjm9deNrYWd0W+/SWLz1FPyIpeLatWAr7+WfaoiImQE6+pVuRvZByY3zkqnAyZPluNRo6R3+iNcXGQs/ty57Jtw/vKLtFm/edM6oRJR3jQamR+ybh2QmSmN7ObOlU10V69xge+aRTIEs22bLI9yVvrtFgYMMHb4y4O/PzB1KhAbC/z6K+DjI7frpzNNmCCVMrI9HJZyVqtXA716yUeSmBigVKl83S0jQ+bhXLkif+gffigbEhctatFoiehf16/L3klr1shO3MWLy+3ffCPDKYMHSwfhx3z2mbQb9vGR1sOW3vjJ1ty4IWWtzEz5/mvXLvBD7dolE40BoFgx4D//kabulSubKVbKEYelKG9ZqzajR+c7sQEkiVm6VMad796Vu9erJ5PviMgyHj6UZKZrV6BCBSA8XN5g160znvPGGzL5P8fEBpA7NW4sf7hhYc43PLVqlbGsVYjEBgBCQuTzYdOmMo1n3jz50DdgAJeR2womN87ol19kYqG3t2QnJmrdWiYaf/MNULYscOaMlGg7dZIhLCIyj9hY4O23peDQs6cMjWRmAs2ayRtqhw4mPFiRIsDixfLv2rXy7uxM9KukBg4s9EO5usrvY98+IDISaNdOlo8vXy4f/KKiCv0UVEhMbpxN1qrNmDHGQWQTubrK3MTz56UcW7SoVG/i4swXKpEzyrrkOCND5s7cuiWjSOPGASdPypvq//1fjlPl8lavHvD++3I8cqQ8sDM4d05+aK6u0uvCTDQaaZmzZYvsOdynjxSFWrQwnnPxIpeRq4HJjbNZvVpeHb29ZSJxIXl7A59/Lg85bRrQpo3xa0eOyKdMIspberr8aXbpIm+QelWrApMmyQeH2Fhg+nQzbBPw/vuyPfb16wWq3NqlZdKRGO3aWawracOGslT88GHJoQDZ6qFFC/lxL1ny727kZBWcUOxMdDrpt37qlFRvJk602FNduwbUqCET7GbPzp70EJFMeTl4UPrRLF8u20ABUgVNTDRpKpzp9u2T5lU6HbBhg4wpOypFkbXdly5JktO/v9We+sABoG1bIClJruvnSw0fDpQsabUwHAYnFFPOfv5ZEhsfH7NUbfJy+jTg7i5Te0JDpf/GhQsWfUoiu7FsmUz81c+duXNH3vjee08mpFo0sQFkYzl91eaNN6T3i6Pau1cSmxIlgG7drPrUTZtKxW3GDBlWvHpVhvErVZK+qWynYTlMbpyFVgtMmSLH4eEynmRBbdrIfJy33pIS7bp1UpodN86xX0eJcpKWJhe927flc4aHB9Cvn8zZuHJFhnZr1bJSUB99JONe//wjS8Qdlb63TY8exnXzVuTlBYwdKx03Fi2Sivbdu8Ann0iFmyyDw1LOYuVKeRX18ZG2mxZObrI6dUryqS1b5HrFijK/r1gxq4VAZHWKIsMSS5cCK1bIp/dhw+RrN2/KgqXeva36p/i4HTuAF16Q4+3bZSmkI3n4UDrx3bkjDQxDQ9WOCFqtdJPeu1f+T+gtWiSVHm7vkDsOS1F2Was277xj9VfTOnVkQuTvv8unlj59mNiQ47p2zTjxt3lzaeN/9y6wcaPxnDJlZN6FqokNIMnMG2/I8bBhwP37qoZjdhs3SmJTvrwxiVOZq6sUkbImNlevyuq3Bg1kN/KdO52vDZG5MblxBj/9JJNgSpWSphkq0GiAzp2B48eNK9EB4/LJy5dVCYvIbLRa4KWXgMBAmTtz5owk8QMGSNHg55/VjjAXn30m5dSLFy26yEAV+t42/fsblzDZoIwM6Zvj4gJs3iw5Z0gIdyMvDCY3ju7Rqo3KQ3FubrI5sd4770juVauW7NOSkqJebESmUBQZctVzdZU/N51O9mRctAhISJD319BQG35v9fICFiyQ4y++kB1zHcGdO7JRJgC8+qq6sTxBUJAMXZ47B7z5pszF2rdPFmLUrSttNcg0TG4c3apV8hHS11dm99qYOXOkWpyeDnz8MVCzpsz/46cVslX//GOc+Pv003Jdb/p0mUj/11+y2azdTOvr3FlKTDqdBO4IDVlWr5bvIzjYbiayVK0KzJ8vlez335cpkrGxsrqKTMPkxpHZWNUmJ/XqSfvyNWuAKlVkvsKgQdKCw1E+QJL9u39fetG0by9vNO+/b5wUf/iw8bx69aSlil2aPVv2UzlxQrbCtnf6VVI2XrXJiZ+frKaKjZW5iqVLG7/WtassI79+Xb347AFXSzmyZcvkD9vXV9Yh2vj3m5Ymr6+ffCLDU19/DYwYoXZU5Ox27ZLCRtYWBi1bAkOGAK+84mDN2H76SSbBFSkiWVtwsNoRFczly9JBVKORDKFiRbUjMot9+4BnnpFjDw/jbuRVqqgbl7VwtRTJvgf6qs3YsTaf2ADyx/ree/KJ+IMPjMtmAdnewdEWcpBtio3NXjWsV08mfAYFyVYIFy/KapahQx0ssQGAXr2k0V1mprxz2uv+KfrtFl54wWESGwBo0kT2PW7WTD4Mzp8vu5H37w8cPap2dLaFlRtH9b//ye63pUtL1caOX4XT0mQzOq1WFnb06SMfyIjMJTVV+s4sXQr8+adM0cg6ifPMGWlj4OIMHwevXZN17ElJsl557Fi1IzKNokj8Z87Ihk5DhqgdkdkpirQomj7d2D8MAP74w7G3umHlxtk9WrWx48QGMO6qGxcnfQiffx44dEjtqMjeKYpx4m9AgHwWiIyU2318gHv3jOfWquUkiQ0gPWFmzZLjCRNkhrQ9OXRIEhsPD2ko44A0GilKbd4so4d9+0oFp1Ur4zmXLjn3wgxn+XN1LitWyAtS6dLAyJFqR1NodevKa9WUKdI9ffdu6eT5n//IUluigvi//5O5M4sXSyJTpYr0YIqJkWa9dv6ZoHCGDpUdH9PSZHzYnt4l9b1tunWzi+H4wmrYUF7yjx2TqVKALBJr2VIKWIsXy2pUZ8PkxtFkrdq8+65sFucAihWTD5Fnz8ocaUWRinP16lLRIcpLairwww/Zm0V27Ch/Hv/5DxAVJRu7Tpwoc2ucnkYDfPutNKWKigK++UbtiPInM1Pe6QG7XCVVGB4exuOTJ+X//NmzUpmsUgX4/PPs1UhHx+TG0SxfLq/SZcoAYWFqR2N2FSvKCs+9e2VS3YsvSkdYokfpdMaJv/7+wODBwHffGb/eqZNU/r77ToY6OY/rEUFB0tAHkB1vY2NVDSdftm2TNdJlywLt2qkdjWoaNpRf1+efyyjjtWvyWbdSJeC//wVu3FA7QstjcuNIMjNlp1/Aoao2OXnmGUlwfvjBeFtCAtClC1cNOLuYGBleqlZN2tgvXSqtBapVAypUMJ5XpEj2btmUg7AwoEUL+QGOGGH7Gx7pe9v07QsULapuLCorWVKWiV+6JAl8zZqyx9nUqbIDvaPjailH8v33sjKgTBmpvzvZK/frrwMLF8rEz2HDpONx2bJqR0XmcOYMEB8vu2nrL7duyb9ubjKvQK9RI+NKp5IlZXXdkCHSGJLVmQI4c0Z2dExPl08TAweqHVHO7t2T7ncPHsha/qZN1Y7Ipuh0sht5VJTssqG3ZIlUeho0UC20fDPl/ZvJjaPIzJQlHRcvynrpd99VOyKru3JFquc//STXvbxkDsVbb8kbIKlLq82+v9LmzfI70ycpWS8lSsiSbL3GjbN3As7Kx0e2EdLr0EFeyAcPlr15ihe3yLfjXKZNk7bMvr6yoZafn9oRPU7/4a5GDUnImMk+UUKCjD6mp0v37fHjpdppqz86Jjd5cNjkZulSmVxQtqzU5Z2sapPVX38Bo0YZP71Xry6fVDp3VjcuR5KZCdy+LY0Vs07AXbBAFuo9Wl25eVMKihcuGM9t0iT3Jf2PJix9+8pqkDJlZBFgmTLZL4MHG899+JDJrNllZADNm8sf1Suv2OYW523bSqOXKVNk9QE9UWysNE5dtcq4IK5ZM0lyunWzvfYHTG7y4JDJTUaGVG0uXbLPplsWoNVKvvf++zK/cPTo7KVYMtJqJZHQJyGZmfLpTW/8ePmwnjVZ0SceVapIsVCvaVPg4MGcn8fbW8b89d55R+6rT1AeTVpCQsz9nVKhREfLLzgzU9rk2lIPmatXZWWBosh/KmfZj8BMLl0CZs6U4d20NLmtZk1ZVd+kibqxZcXkJg8OmdwsWSLrWcuVk/+lTly1eVRysqwYGDMGKFVKbtNvs5V1MzpHodMZE5WsVZMiRWRDUr3evWXitT5RyfoqYErCEhQkP0+9WbNkbsyjlZWsyQvZsQ8+kM3f/Pwk4/X1VTsi8fnnMhTfooVsBkYFcv068OWXwLx5kuRcuSJvK7aCyU0eHC65yciQFDsmRv7A33lH7YhsmqJIZ89jx2RFzYgRtr2oImtF5dGhHk/P7NX3pk1lXkpO/dYqV5a8V69ZM+DAgezn+PhIAhIUJNV9vVWrZK7mo9WVUqWMTcPISaSny8zTM2dkfsuSJWpHJOrXlz/qBQuAN95QOxq7d++ebNIZGmq8rWdPGSB4+231plwxucmDwyU3330nS4PKlZMEh7Mn83TzpvTGOX5crteuLcNV7dtbL4ZDh2Qi36PVlZs3JXlYuNB4brVq2asoWT1aNWne3Ljho5dX9qpJpUqyy7re7t0yHKVPVnx9bTvJIxuyd69USBRFZoVb848nJ8eOSXLj5iZlQ1upJjmQw4dlUj8AuLvLQMHYsdYf/WNykweHSm4yMmRlwOXLMmAaHq52RHYhMxNYtEgq7LduyW0vvSQ/who1nnx/RZGSbbFixtt+/hn455+cJ9JWqJB9c7u8EpannsreRfeZZ6T6n9OclAoVsk+vunJFXnh8fTmhlixs9GhgzhzJmk+cUHevinHjZK5h9+7AmjXqxeHA9MvIP/3U+AHKxUU2kR8/XpaSWwOTmzw4VHKzaBEwfLjUCC9dYtXGRHfuyMKKr76ShKdoUdlTqEUL+fqnn0rCkFOFJTg4+0qf6tWzrwTKqlKl7E2zuneXLSNymkgbECCrFPQyMzn0QzYoNVX+CGJipNHfV1+pE4dWK58Irl61vUnODkhRpOv39OlStNOzVgGPyU0eHCa5efhQ5tpcviyzOMeMUTsiu3XmjExVunJFFoTok4kaNXLfEPnRhGXUKGlpntME2nLl5H2AyKFERhonZURFyR4WasXg4yNjve7u1o/BSUVHS0u1v/+WPaz0w9oxMZJvWmIZud0lN/PmzcOMGTOQkJCA+vXrY+7cuWjWrFmO57Zu3Ro7d+587PZOnTphw4YNT3wuh0luFi6Ulrz+/lK1yTpGQgVy545xRRUg87NTUnIeEipdmoUyIgwfLhXk6tVl+Z21X4eGDpWeD6+/bj+bezqYBw+Mv/aMDPmv4O4ueWfFiuZ9LlPev1UveK9atQrh4eFYsGABmjdvjtmzZ6N9+/Y4e/YsyuWwBm3NmjV4+PCh4fqtW7dQv3599OrVy5phq+vhQ1mOCUgHJiY2ZpE1sQHYLojoiWbMADZulBLn5Mkylmst9+8Dq1fLsa1uCeEEsr79nD4t7TcCAmTDTjWp3n9w1qxZGD58OIYOHYo6depgwYIFKF68OBZn3SwmC19fX/j7+xsu27ZtQ/HixZ0ruVm6VMZEAgLkEwsRkRp8fIzL8D7/PPeW05bw669SWg0Kko3DSHX16slb008/qd/dWNWnf/jwIQ4dOoTQLIvpXVxcEBoair179+brMb777jv07dsXnrk0rktPT0dycnK2i11j1YaIbMnLL8v+GFqtrBHOUlm3qP/9T/599VX130nJoGRJoG5dtaNQObm5efMmtFot/B7pCOTn54eEhIQn3n///v04ceIEhg0blus506ZNg7e3t+ESGBhY6LhVtWSJbAgSECDj3UREavvyS5mMduyYLKWxtOvXjct1Xn3V8s9Hdseu093vvvsOwcHBuU4+BoCIiAgkJSUZLnFxcVaM0MyyVm0iIli1ISLbULasJDgA8NFHwMmTln2+VaukUtS0qawaJXqEqslNmTJl4OrqisTExGy3JyYmwt/fP8/7pqamYuXKlXjttdfyPM/d3R1eXl7ZLnZr8WJpkFK+PKs2RGRb+vYFunSRJTOvvSbJh6X8+KP8y6oN5ULV5MbNzQ2NGzdGZGSk4TadTofIyEiEPGFL4J9//hnp6el41Vn+c6enA1OnynFEBODhoW48RERZaTQyudjLSzYm0ldyzO3sWdkYzdVVEiqiHKg+LBUeHo6FCxfi+++/x+nTp/Hmm28iNTUVQ4cOBQAMGjQIERERj93vu+++Q7du3VDaEbd2zom+alOhguwlRURkaypUkFVTAPDf/+a+z0hh6CcSt29vW1tWk01Rvc9Nnz59cOPGDUycOBEJCQlo0KABNm/ebJhkHBsbC5dHZsKfPXsWu3btwtatW9UI2fpYtSEiezFsGLByJfDnnzJ8HhkpVR1zUBRjcsPeNpQHm+hQbE122aF4/nzZv6VCBdnAiMkNEdmyS5dkz5H796VzsLn6ce3aJds8lCwp2y2wTbhTMeX9W/VhKXqCrFWb999nYkNEtq9KFePKznffBf75xzyPq6/a9OzJxIbyxOTG1i1aJDveVqwoKxCIiOzBW28Bzzwj/fjffFOGlAojPV1a3wJcJUVPxOTGlqWlZa/acMdbIrIXrq7Ad98Bbm7A778DK1YU7vE2bpTdbStUAFq3NkuI5LiY3NiyRYuAa9eAwEBpa05EZE/q1AEmTJDjt9+WzsIFpe9t07+/JE5EeWByY6vS0oBp0+SYVRsislfjxwP16wO3bkmCUxC3bwMbNsgxV0lRPjC5sVULF7JqQ0T2r2hR6dPl6irbJqxfb/pj/PyzbD9Tr56swiJ6AiY3tujBA2PV5r//lTFrIiJ71aiRrJoCZHLx3bum3Z+9bchETG5s0cKFQHw8UKkS8G+nZiIiuzZpElCjhry2jR2b//vFxEh/G40G6NfPcvGRQ2FyY2tYtSEiR+ThIaunNBr5948/8ne/Zcvk3zZtZKUUUT4wubE1334rnTefegoYMkTtaIiIzOe556TbOiBbM6Sk5H2+onAHcCoQJje25MED4NNP5ZhVGyJyRNOmyYe3y5fldS4vBw8C584BxYoBPXpYJTxyDExubMk330jVJigIGDxY7WiIiMyvRAmpUAPA3LnAnj25n6uv2nTrJvtJEeUTkxtbcf8+qzZE5BzatZPFEooi28qkpT1+TkaG7C4OcJUUmYzJja345hsgMZFVGyJyDjNnAv7+wJkzwEcfPf71rVuBGzeAcuWAtm2tHx/ZNSY3tuD+fWD6dDn+4ANpekVE5MhKlQLmz5fj6dOBI0eyf13f26ZfP6BIEevGRnaPyY0tWLBAqjaVKwODBqkdDRGRdXTvDvTqBWi10ok9I0NuT04G1q2TY66SogJgcqO21FRWbYjIec2dC/j6AtHRwOefy21r1sg8nFq1gMaNVQ2P7BOTG7UtWCA75VapwklzROR8/PyAOXPkePJkmYOTtbeNRqNebGS3mNyoiVUbIiJgwACgUycgPR3o2xfYvt14O1EBMLlR0/z5shqgalVWbYjIeWk0UsUuWRI4elSWiD//vKweJSoAJjdqSU0FPvtMjidM4GoAInJugYHG10SAH/ioUPiOqpZ584CbN4Fq1Vh6JSICgNdfB3bskC0XevdWOxqyY0xu1JCSAsyYIces2hARCRcXY1diokLgsJQa9FWb6tWB/v3VjoaIiMihMLmxNlZtiIiILIrJjbV99RVw65ZUbfr1UzsaIiIih8Pkxpru3TN24Jw4kVUbIiIiC2ByY036qk2NGtKoioiIiMyOyY21sGpDRERkFUxurGXuXOD2baBmTVZtiIiILIjJjTUkJwMzZ8rxxImAq6u68RARETkwJjfWoK/a1KoF9OmjdjREREQOjcmNpbFqQ0REZFVMbiztyy+BO3eA2rW5VwoREZEVMLmxpKQkYNYsOWbVhoiIyCqY3FhS1qpNr15qR0NEROQUmNxYyt27xqrNpEms2hAREVkJkxtL+fJLSXDq1GHVhoiIyIqY3FjCo1UbF/6YiYiIrMUm3nXnzZuHoKAgeHh4oHnz5ti/f3+e59+9exdhYWEICAiAu7s7atSogY0bN1op2nyYM0cmE9etC7zyitrREBERORXVNzhatWoVwsPDsWDBAjRv3hyzZ89G+/btcfbsWZQrV+6x8x8+fIi2bduiXLlyWL16NSpUqIArV67Ax8fH+sHn5O5d4Isv5JhVGyIiIqtTPbmZNWsWhg8fjqFDhwIAFixYgA0bNmDx4sV47733Hjt/8eLFuH37Nvbs2YOiRYsCAIKCgnJ9/PT0dKSnpxuuJycnm/cbeNTs2VK1efppoGdPyz4XERERPUbVssLDhw9x6NAhhIaGGm5zcXFBaGgo9u7dm+N9fv31V4SEhCAsLAx+fn54+umnMXXqVGi12hzPnzZtGry9vQ2XwMBAi3wvAGTZN6s2REREqlL13ffmzZvQarXw8/PLdrufnx8SEhJyvM+lS5ewevVqaLVabNy4ERMmTMDMmTPx8ccf53h+REQEkpKSDJe4uDizfx8Gs2fLdgvBwUCPHpZ7HiIiIsqV6sNSptLpdChXrhy+/fZbuLq6onHjxrh69SpmzJiBSZMmPXa+u7s73N3dLR/YnTuS3ACs2hAREalI1eSmTJkycHV1RWJiYrbbExMT4e/vn+N9AgICULRoUbhmaYpXu3ZtJCQk4OHDh3Bzc7NozLm6cgXw8wOCgoDu3dWJgYiIiNQdlnJzc0Pjxo0RGRlpuE2n0yEyMhIhISE53qdFixa4cOECdDqd4bZz584hICBAvcQGABo0AE6dAn77jVUbIiIiFan+LhweHo6FCxfi+++/x+nTp/Hmm28iNTXVsHpq0KBBiIiIMJz/5ptv4vbt2xg1ahTOnTuHDRs2YOrUqQgLC1PrWzAqUgSoVEntKIiIiJya6nNu+vTpgxs3bmDixIlISEhAgwYNsHnzZsMk49jYWLhkqYQEBgZiy5YtGDNmDOrVq4cKFSpg1KhRGD9+vFrfAhEREdkQjaIoitpBWFNycjK8vb2RlJQELy8vtcMhIiKifDDl/Vv1YSkiIiIic2JyQ0RERA6FyQ0RERE5FCY3RERE5FCY3BAREZFDYXJDREREDoXJDRERETkUJjdERETkUJjcEBERkUNhckNEREQOhckNERERORTVN860Nv1WWsnJySpHQkRERPmlf9/Oz5aYTpfc3Lt3D4DsLk5ERET25d69e/D29s7zHKfbFVyn0+HatWsoWbIkNBqNWR87OTkZgYGBiIuL447jdoq/Q/vG35/94+/Q/lnqd6goCu7du4fy5cvDxSXvWTVOV7lxcXFBxYoVLfocXl5e/KO0c/wd2jf+/uwff4f2zxK/wydVbPQ4oZiIiIgcCpMbIiIicihMbszI3d0dkyZNgru7u9qhUAHxd2jf+Puzf/wd2j9b+B063YRiIiIicmys3BAREZFDYXJDREREDoXJDRERETkUJjdERETkUJjcmMm8efMQFBQEDw8PNG/eHPv371c7JDJBVFQUunTpgvLly0Oj0WDdunVqh0QmmDZtGpo2bYqSJUuiXLly6NatG86ePat2WGSCr7/+GvXq1TM0fgsJCcGmTZvUDosK6NNPP4VGo8Ho0aNVeX4mN2awatUqhIeHY9KkSTh8+DDq16+P9u3b4/r162qHRvmUmpqK+vXrY968eWqHQgWwc+dOhIWF4e+//8a2bduQkZGBdu3aITU1Ve3QKJ8qVqyITz/9FIcOHcLBgwfx4osvomvXrjh58qTaoZGJDhw4gG+++Qb16tVTLQYuBTeD5s2bo2nTpvjqq68AyP5VgYGBeOutt/Dee++pHB2ZSqPRYO3atejWrZvaoVAB3bhxA+XKlcPOnTvRsmVLtcOhAvL19cWMGTPw2muvqR0K5VNKSgoaNWqE+fPn4+OPP0aDBg0we/Zsq8fByk0hPXz4EIcOHUJoaKjhNhcXF4SGhmLv3r0qRkbkvJKSkgDImyPZH61Wi5UrVyI1NRUhISFqh0MmCAsLQ+fOnbO9J6rB6TbONLebN29Cq9XCz88v2+1+fn44c+aMSlEROS+dTofRo0ejRYsWePrpp9UOh0xw/PhxhISEIC0tDSVKlMDatWtRp04dtcOifFq5ciUOHz6MAwcOqB0KkxsicixhYWE4ceIEdu3apXYoZKKaNWsiOjoaSUlJWL16NQYPHoydO3cywbEDcXFxGDVqFLZt2wYPDw+1w2FyU1hlypSBq6srEhMTs92emJgIf39/laIick4jR47E77//jqioKFSsWFHtcMhEbm5uqFatGgCgcePGOHDgAObMmYNvvvlG5cjoSQ4dOoTr16+jUaNGhtu0Wi2ioqLw1VdfIT09Ha6urlaLh3NuCsnNzQ2NGzdGZGSk4TadTofIyEiOFRNZiaIoGDlyJNauXYs///wTlStXVjskMgOdTof09HS1w6B8aNOmDY4fP47o6GjDpUmTJhgwYACio6OtmtgArNyYRXh4OAYPHowmTZqgWbNmmD17NlJTUzF06FC1Q6N8SklJwYULFwzXY2JiEB0dDV9fX1SqVEnFyCg/wsLCsHz5cqxfvx4lS5ZEQkICAMDb2xvFihVTOTrKj4iICHTs2BGVKlXCvXv3sHz5cuzYsQNbtmxROzTKh5IlSz42x83T0xOlS5dWZe4bkxsz6NOnD27cuIGJEyciISEBDRo0wObNmx+bZEy26+DBg3jhhRcM18PDwwEAgwcPxtKlS1WKivLr66+/BgC0bt062+1LlizBkCFDrB8Qmez69esYNGgQ4uPj4e3tjXr16mHLli1o27at2qGRHWKfGyIiInIonHNDREREDoXJDRERETkUJjdERETkUJjcEBERkUNhckNEREQOhckNERERORQmN0RERORQmNwQERGRQ2FyQ0QOZ8iQIejWrZvaYRCRSpjcEFGBDBkyBBqN5rFLhw4d1A4Nc+bMsZltMzQaDdatW6d2GEROhXtLEVGBdejQAUuWLMl2m7u7u0rRAFqtFhqNBt7e3qrFQETqY+WGiArM3d0d/v7+2S6lSpXCjh074Obmhr/++stw7meffYZy5cohMTERgGxyOXLkSIwcORLe3t4oU6YMJkyYgKzb3aWnp2Ps2LGoUKECPD090bx5c+zYscPw9aVLl8LHxwe//vor6tSpA3d3d8TGxj42LNW6dWu89dZbGD16NEqVKgU/Pz8sXLgQqampGDp0KEqWLIlq1aph06ZN2b6/EydOoGPHjihRogT8/PwwcOBA3Lx5M9vjvv322xg3bhx8fX3h7++PDz/80PD1oKAgAED37t2h0WgM14nIspjcEJHZtW7dGqNHj8bAgQORlJSEI0eOYMKECVi0aBH8/PwM533//fcoUqQI9u/fjzlz5mDWrFlYtGiR4esjR47E3r17sXLlShw7dgy9evVChw4dcP78ecM59+/fx/Tp07Fo0SKcPHkS5cqVyzGm77//HmXKlMH+/fvx1ltv4c0330SvXr3w7LPP4vDhw2jXrh0GDhyI+/fvAwDu3r2LF198EQ0bNsTBgwexefNmJCYmonfv3o89rqenJ/bt24fPPvsMU6ZMwbZt2wAABw4cACC7k8fHxxuuE5GFKUREBTB48GDF1dVV8fT0zHb55JNPFEVRlPT0dKVBgwZK7969lTp16ijDhw/Pdv9WrVoptWvXVnQ6neG28ePHK7Vr11YURVGuXLmiuLq6KlevXs12vzZt2igRERGKoijKkiVLFABKdHT0Y7F17do123M999xzhuuZmZmKp6enMnDgQMNt8fHxCgBl7969iqIoykcffaS0a9cu2+PGxcUpAJSzZ8/m+LiKoihNmzZVxo8fb7gOQFm7dm0uP0UisgTOuSGiAnvhhRfw9ddfZ7vN19cXAODm5oZly5ahXr16eOqpp/DFF188dv9nnnkGGo3GcD0kJAQzZ86EVqvF8ePHodVqUaNGjWz3SU9PR+nSpQ3X3dzcUK9evSfGmvUcV1dXlC5dGsHBwYbb9BWl69evAwCOHj2K7du3o0SJEo891sWLFw1xPfrcAQEBhscgInUwuSGiAvP09ES1atVy/fqePXsAALdv38bt27fh6emZ78dOSUmBq6srDh06BFdX12xfy5pwFCtWLFuClJuiRYtmu67RaLLdpn8MnU5neP4uXbpg+vTpjz1WQEBAno+rfwwiUgeTGyKyiIsXL2LMmDFYuHAhVq1ahcGDB+OPP/6Ai4txqt++ffuy3efvv/9G9erV4erqioYNG0Kr1eL69et4/vnnrR0+GjVqhF9++QVBQUEoUqTgL5VFixaFVqs1Y2RE9CScUExEBZaeno6EhIRsl5s3b0Kr1eLVV19F+/btMXToUCxZsgTHjh3DzJkzs90/NjYW4eHhOHv2LFasWIG5c+di1KhRAIAaNWpgwIABGDRoENasWYOYmBjs378f06ZNw4YNGyz+vYWFheH27dvo168fDhw4gIsXL2LLli0YOnSoSclKUFAQIiMjkZCQgDt37lgwYiLSY+WGiAps8+bN2YZoAKBmzZro378/rly5gt9//x2ADON8++236NevH9q1a4f69esDAAYNGoQHDx6gWbNmcHV1xahRo/D6668bHmvJkiX4+OOP8c477+Dq1asoU6YMnnnmGbz00ksW/97Kly+P3bt3Y/z48WjXrh3S09Px1FNPoUOHDtmqT08yc+ZMhIeHY+HChahQoQIuX75suaCJCACgUZQsTSWIiKykdevWaNCgAWbPnq12KETkYDgsRURERA6FyQ0RERE5FA5LERERkUNh5YaIiIgcCpMbIiIicihMboiIiMihMLkhIiIih8LkhoiIiBwKkxsiIiJyKExuiIiIyKEwuSEiIiKH8v+XX2hIlVOO5wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3deXyM1/cH8M/IJiKLNbbY932J2qpobdEq2h+tatCi9a0gtce+VVTtay1FV0tr6aZKq/YtQVBRa0hKImJJiAhJnt8fp5NJCJLI5M4883m/Xs/LMzPPzByCOXPvuecaNE3TQERERKQTeVQHQERERJSTmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFXvVAeS2lJQUXL16Fa6urjAYDKrDISIiokzQNA137txBiRIlkCfP08dmbC65uXr1Kry8vFSHQURERNkQERGBUqVKPfUam0tuXF1dAcgfjpubm+JoiIiIKDPi4uLg5eWV+jn+NDaX3Binotzc3JjcEBERWZnMlJSwoJiIiIh0hckNERER6QqTGyIiItIVm6u5yazk5GQ8fPhQdRiURQ4ODrCzs1MdBhERKcTk5hGapiEqKgq3b99WHQplk4eHB4oVK8Y+RkRENorJzSOMiU3RokWRL18+fkBaEU3TcO/ePURHRwMAihcvrjgiIiJSgclNGsnJyamJTaFChVSHQ9ng7OwMAIiOjkbRokU5RUVEZINYUJyGscYmX758iiOh52H8+bFmiojINjG5yQCnoqwbf35ERLaNyQ0RERHpCpMbIiIi0hUmN5ShsmXLYu7cucpfg4iIKKu4WkonWrZsibp16+ZYMhEUFAQXF5cceS0iIrIhO3YATZoA/61eVYEjNzZE0zQkJSVl6toiRYpw1RgREWXNxYuAjw9QtSpw7ZqyMJjcZFJ8/JOP+/czf21CQuauzYrevXtj165dmDdvHgwGAwwGAy5duoSdO3fCYDDg999/h7e3N5ycnLBnzx5cuHABnTp1gqenJ/Lnz4+GDRvijz/+SPeaj04pGQwGrFixAl26dEG+fPlQqVIl/PTTT1mKMzw8HJ06dUL+/Pnh5uaGbt264Vqav/zHjx9Hq1at4OrqCjc3NzRo0ADBwcEAgMuXL6Njx44oUKAAXFxcUKNGDWzZsiVrf1BERGReI0YADx5IclO0qLIwmNxkUv78Tz7efDP9tUWLPvlaH5/015Ytm/F1WTFv3jw0adIE/fr1Q2RkJCIjI+Hl5ZX6+IgRIxAYGIjTp0+jdu3auHv3Ljp06IA//vgDx44dQ7t27dCxY0eEh4c/9X0mTZqEbt264cSJE+jQoQN69OiBmzdvZipGTdPQuXNn3Lx5E7t27cL27dtx4cIFvPXWW6nX9OjRA6VKlUJQUBCOHDmCUaNGwcHBAQAwYMAAJCYmYvfu3Th58iQ+/fRT5M/qHxQREZnPrl3Ahg1AnjzA7NmAwrYcrLnRAXd3dzg6OiJfvnwoVqzYY49PnjwZbdq0Sb1dqFAh1KlTJ/X21KlTsWnTJvz000/w8/N74vv07t0b3bt3BwBMmzYNCxYswOHDh9G+fftnxvjHH3/gxIkTCAsLS028vv76a9SoUQNBQUFo2LAhwsPDMXz4cFStWhUAUKlSpdTnh4eH480330StWrUAAOXLl3/mexIRUS5JTgY+/ljOP/wQqFFDaThMbjLp7t0nP/Zoh///tjbKUJ5HxsouXcp2SJnm7e2d7nZ8fDwmTZqEX375BVevXkVSUhISEhKeOXJTu3bt1HMXFxe4urqm7uP0LKdPn4aXl1e6EaXq1avDw8MDp0+fRsOGDTFkyBD07dsXX3/9NVq3bo2uXbuiQoUKAIBBgwbhf//7H7Zt24bWrVvjzTffTBcPEREp9OWXwLFjgLs7MGmS6mg4LZVZLi5PPvLmzfy1jxaPP+m6nI09/QsOHz4cGzZswCeffII9e/YgJCQEtWrVwoMHD576OsYpIiODwYCUlJRMxaBpWoadg9PeP3HiRJw6dQqvvvoqduzYgerVq2PTpk0AgL59++LixYvw9fXFyZMn4e3tjQULFmTqvYmIyIzu3AFGj5bz8eOBIkXUxgMmN7rh6OiI5OTkTF27Z88e9O7dG126dEGtWrVQrFgxXDLzEFL16tURHh6OiIiI1PtCQ0MRGxuLatWqpd5XuXJlfPzxx9i2bRveeOMNrFq1KvUxLy8v9O/fHxs3bsTQoUOxfPlys8ZMRESZEBgoK6MqVgSeUtqQm5jc6ETZsmVx6NAhXLp0CTExMU8dUalYsSI2btyIkJAQHD9+HO+8806mR2Cyq3Xr1qhduzZ69OiBo0eP4vDhw+jZsydatGgBb29vJCQkwM/PDzt37sTly5exb98+BAUFpSY+/v7++P333xEWFoajR49ix44d6ZIiIiJS4NIlKR4GgFmzAEdHpeEYMbnRiWHDhsHOzg7Vq1dHkSJFnlo/M2fOHBQoUABNmzZFx44d0a5dO9SvX9+s8RkMBmzevBkFChTASy+9hNatW6N8+fJYt24dAMDOzg43btxAz549UblyZXTr1g0+Pj6Y9N/cbXJyMgYMGIBq1aqhffv2qFKlChYvXmzWmImI6BlGjgQSE4FXXgE6dlQdTSqDpmma6iByU1xcHNzd3REbGws3N7d0j92/fx9hYWEoV64c8j5aSENWgz9HG7Ztm3x7nD8fqFJFdTRE+rZ3L9C8uayUOXYMMPMij6d9fj+KIzdEpA8JCcD770uC8957gJmnWolsWkoK4O8v5/36mT2xySomN0SkD4sXA1euyPmBA8BXX6mNh0jPvv4aOHIEcHMDJk9WHc1jmNwQkfWLjQWmTZPzpk3l1xEjgNu3lYVEpFt37wIBAXI+dqzSbRaehMkNEVm/WbOAmzdlP5s//pBfr1+XnhtElLM+/RSIjATKlwcGDVIdTYaY3BCRdYuONi1FnTpVOmUaGzwuWgQcP64uNiK9CQ8HZs6U85kzAScntfE8AZMbIrJun3wCxMcD3t7AG2/Ifa1bA//3f1L06OcH2NaiUCLzGTUKuH8faNkS6NxZdTRPxOSGiKzX5cvA55/LeWBg+l2IZ88G8uWT5arffKMmPiI92b8fWLNG/p3NmaN01+9nYXJDRNZr4kTgwQPg5ZdltCYtLy9g3Dg5Hz5cio6JKHtSUky7fvfpA9StqzScZ2FyQ8+tZcuW8Df2OyDKLaGhpuXegYEZXzNkCFC5sux7M3FiroVGpDvffQccPgzkzw9MmaI6mmdicqMT5kgwevfujc4WPKdKNm7sWPk22aUL8MILGV/j6GgqLl6wADh5MvfiI9KL+HiptQGAMWOAYsXUxpMJTG6IyPocPgxs2iRt36dOffq1bdtKoXFyMouLibLjs8+kQWbZsqauxBaOyY0O9O7dG7t27cK8efNgMBhgMBhw6dIlAEBoaCg6dOiA/Pnzw9PTE76+voiJiUl97g8//IBatWrB2dkZhQoVQuvWrREfH4+JEyfiyy+/xI8//pj6mjt37sxUPLdu3ULPnj1RoEAB5MuXDz4+Pjh37lzq45cvX0bHjh1RoEABuLi4oEaNGtiyZUvqc3v06IEiRYrA2dkZlSpVwqpVq3Lsz4p0wthArGdPoHr1Z18/Z44sEd+9WwoiiShz/v0XmDFDzj/7DLCS/frsVQdg8TQNuHdPzXvny5epavR58+bh7NmzqFmzJib/1wa7SJEiiIyMRIsWLdCvXz/Mnj0bCQkJGDlyJLp164YdO3YgMjIS3bt3x4wZM9ClSxfcuXMHe/bsgaZpGDZsGE6fPo24uLjU5KJgwYKZCrt37944d+4cfvrpJ7i5uWHkyJHo0KEDQkND4eDggAEDBuDBgwfYvXs3XFxcEBoaivz58wMAxo0bh9DQUPz2228oXLgwzp8/j4SEhGz+AZIu/fEHsGOHTDllto6mdGkZTh87Fhg2DHjtNWkbT0RPFxAg+7Y1bw68+abqaDKNyc2z3LsnBVQq3L0LuLg88zJ3d3c4OjoiX758KJZmLnTJkiWoX78+phnb0gNYuXIlvLy8cPbsWdy9exdJSUl44403UKZMGQBArVq1Uq91dnZGYmJiutd8FmNSs2/fPjT9rw3+t99+Cy8vL2zevBldu3ZFeHg43nzzzdT3Kl++fOrzw8PDUa9ePXh7ewMAypYtm+n3JhugaaZRm/79gf/+3mbKsGHA6tXA+fOyF46xERkRZezQIWmjYAVLvx+ldFpq9+7d6NixI0qUKAGDwYDNmzc/9fq9e/eiWbNmKFSoEJydnVG1alXMmTMnd4K1QkeOHMFff/2F/Pnzpx5Vq1YFAFy4cAF16tTBK6+8glq1aqFr165Yvnw5bt269Vzvefr0adjb26NRo0ap9xUqVAhVqlTB6dOnAQCDBg3C1KlT0axZM0yYMAEnTpxIvfZ///sf1q5di7p162LEiBHYv3//c8VDOrNxIxAcLEn/mDFZe66TEzB/vpzPnQucOpXj4RHphqaZ6mt69wYaNFAZTZYpTW7i4+NRp04dLFy4MFPXu7i4wM/PD7t378bp06cxduxYjB07FsuWLTNfkPnyyQiKiiNfvucKPSUlBR07dkRISEi649y5c3jppZdgZ2eH7du347fffkP16tWxYMECVKlSBWFhYdl+T+0JxZqapsHwX9bft29fXLx4Eb6+vjh58iS8vb2x4L8VLT4+Prh8+TL8/f1x9epVvPLKKxg2bFi24yEdSUqSaSVAlnhnZ7M+Hx+gUycWFxM9y9q1wMGD8kXik09UR5N1moUAoG3atCnLz+vSpYv27rvvZvr62NhYDYAWGxv72GMJCQlaaGiolpCQkOU4VGvTpo3m5+eX7r7Ro0drVapU0R4+fJip10hKStJKliypzZo1S9M0TevXr5/22muvPfN5LVq00AYPHqxpmqadPXtWA6Dt27cv9fGYmBjN2dlZ+/777zN8/qhRo7RatWpl+Njnn3+uubq6Zip+I2v+OdJTrFypaYCmFSyoabdvZ/91wsI0LW9eea01a3IsPCLdiI/XNC8v+TcydarqaFI97fP7UVa9WurYsWPYv38/WrRo8cRrEhMTERcXl+7Qo7Jly+LQoUO4dOkSYmJikJKSggEDBuDmzZvo3r07Dh8+jIsXL2Lbtm14//33kZycjEOHDmHatGkIDg5GeHg4Nm7ciOvXr6NatWqpr3nixAmcOXMGMTExePjw4TPjqFSpEjp16oR+/fph7969OH78ON59912ULFkSnTp1AgD4+/vj999/R1hYGI4ePYodO3akvuf48ePx448/4vz58zh16hR++eWX1MfIht2/D0yYIOejRwPu7tl/rbJlTXU7Q4cCd+48d3hEujJrFhARIYX4Q4aojiZ7ciHZyhRkYeSmZMmSmqOjo5YnTx5t8uTJT712woQJGoDHDr2N3Jw5c0Zr3Lix5uzsrAHQwsLCNE2TkZQuXbpoHh4emrOzs1a1alXN399fS0lJ0UJDQ7V27dppRYoU0ZycnLTKlStrCxYsSH3N6OhorU2bNlr+/Pk1ANpff/2V4XunHbnRNE27efOm5uvrq7m7u2vOzs5au3bttLNnz6Y+7ufnp1WoUEFzcnLSihQpovn6+moxMTGapmnalClTtGrVqmnOzs5awYIFtU6dOmkXL17M0p+FNf8c6QnmzJFvkSVLatq9e8//egkJmla+vLzm8OHP/3pEevHvv5qWL5/821i7VnU06WRl5MagaZYx6WwwGLBp06ZMdcQNCwvD3bt3cfDgQYwaNQoLFy5E9+7dM7w2MTERiYmJqbfj4uLg5eWF2NhYuD2yFPT+/fsICwtDuXLlkNdK1vLT4/hz1Jk7d4Dy5YGYGGD5cqBv35x53V9+ATp2BOztgRMnAI4QEgG9esm2Jk2byqazFrRCKi4uDu7u7hl+fj/KKpeClytXDoAsW7527RomTpz4xOTGyckJTk5OuRkeEeWk2bMlsalcWVZt5JTXXpPjl1+AgQOB7dst6j9yolwXHGzar23uXKv+92DVNTeArMJJOzJDRDoSEyPz/4Bs1mefw9/H5s2TJeJ//gn88EPOvjaRNUm79LtnT6BhQ6XhPC+lyc3du3dTlycDMt0UEhKC8PBwAEBAQAB69uyZev2iRYvw888/49y5czh37hxWrVqFmTNn4t1331URPhGZW2CgTEvVrw/83//l/OuXL2/aEHDIEGnBQGSLvv8e2LdPWpCkafxqrZROSwUHB6NVq1apt4f8V5Xdq1cvrF69GpGRkamJDiB9WwICAhAWFgZ7e3tUqFAB06dPx4cffpjrsRORmUVEAIsWyfm0abJJpjmMHClD8WFh0s8jMNA870NkqRISgBEj5HzkSKBkSbXx5ACLKSjOLU8rSDIWopYtWxbOzs6KIqTnlZCQgEuXLrGg2Nr17Qt88QXQogXw11/mnf//6Sdp7ufgAJw8CVSpYr73IrI006ZJx+9SpYAzZ567gay5ZKWg2OprbnKSg4MDAOCeqo0yKUcYf37GnydZoX/+AYy7wQcGmr+wsWNHoEMH4OFDYNAgdi4m2xEZaZqG+vRTi01sssoqV0uZi52dHTw8PBAdHQ0AyJcvX+qWAWT5NE3DvXv3EB0dDQ8PD9jZ2akOibJr3DggJQV4/XWgSRPzv5/BIMXFf/wBbNsGbNoEvPGG+d+XSLUxY4D4eKBxY+AJq46tEaelHqFpGqKionD79u3cD45yhIeHB4oVK8bE1FoFB8tKDYNB+s/UrJl77z1uHDB1KuDlBZw+LfvqEOnV0aOAt7eMVB44IAmOBdN9nxtzMhgMKF68OIoWLZqp7QbIsjg4OHDExtqNHi2/vvtu7iY2gGzL8PXXwOXLMlRvjRsGEmWGpgEffyy/9uhh8YlNVnHkhogsx19/AS+/LIW9Z84A/zXszFXGKSlHR+Dvv4FKlXI/BiJz27BB2is4O8u/NS8v1RE9EwuKicj6aJppQ8sPPlCT2ABA585Au3bAgwcsLiZ9un8fGD5czocPt4rEJquY3BCRZfjxR+DQIVmtMXasujgMBmD+fBk92rpV4iLSk3nzpK9TiRKm/jY6w+SGiNRLTpZVG4C0gC9WTGk4qFwZGDZMzv39AbaHIL2IijLVkk2frtuieSY3RKTet98CoaFAgQKm4XLVxoyR4frLl+VDgEgPxo2TLU0aNpRCYp1ickNEaiUmAuPHy/moUYCHh9JwUrm4yI7kADBjBnDhgtp4iJ5XSIh0/QZk129zbWliAfT7OyMi67BsmYyOFC8O+Pmpjia9N98EWreWBGzwYNXREGVf2qXfb78NNG2qOiKzYnJDROrcvStN8wAZvbG01u8GA7BggRQX//or8PPPqiMiyp4ffwR27gTy5rWJaVYmN0Skzty5QHQ0UKEC0KeP6mgyVrUqMGSInA8eLDsoE1mTxERTgfywYUCZMmrjyQVMbohIjRs3gM8+k/MpU2R0xFKNHSs7JoeFSf0NkTVZsEBqxooXB0aOVB1NrmByQ0RqfPopEBcH1KkDvPWW6mieLn9+YNYsOZ8+XZIcImsQHS1fHgDZUiR/frXx5BImN0SU+65ckW+TgPyHaw2rNrp2la0h7t+X3jdE1mD8ePkSUb8+0LOn6mhyjRX8j0JEujN5siQJL74I+PiojiZzDAZg4ULA3h746ScpMCayZCdPAsuXy7nOl34/ynZ+p0RkGc6dM/XaCAyUpMFaVKtmGrUZNEgSNCJLZFz6nZIio47Nm6uOKFcxuSGi3DVunGy38OqrMnJjbcaPlz15Ll40FUQTWZpffgH+/BNwcpL6NhvD5IaIcs+xY8C6dXJu3N/G2ri6AjNnyvm0acClS0rDIXrMgwfA0KFyPmQIUK6c2ngUYHJDRLnHuDlm9+6ySspavf020KKFTEt9/LHqaIjSW7RIpn89PYGAANXRKMHkhohyx+7dwG+/SUHu5Mmqo3k+xuJiOztg82Zg61bVERGJmBhg0iQ5/+QTGWm0QUxuiMj8NM30DbJvX6BiRbXx5ISaNaWoGAAGDpQusESqTZgAxMYCdesCvXurjkYZJjdEZH6//grs3w84O0tBsV5MnAgUKwacP29q8kekyqlTwOefy/mcOTKyaKOY3BCReaWkAKNHy/mgQbLSSC/c3EwrpqZOBcLD1cZDtkvTpHg4JQV44w2gZUvVESnF5IaIzGvNGmkm5u6uz31tevSQHiIJCaYNNoly22+/Adu2AY6O3P8MTG6IyJwePJC+MAAwYgRQoIDaeMwhbXHxhg3A9u2qIyJb8/ChKbH29wcqVFAajiVgckNE5rNihTS78/QEBg9WHY351K4N+PnJ+cCBktQR5ZYlS4AzZ4AiRUztFmwckxsiMo/4eNNuxOPGAS4uauMxt0mTJIk7c0aKOYlyw40bUtgOSN2Xm5vScCwFkxsiMo8FC4CoKOmO2q+f6mjMz93dVOswZQoQEaE2HrINkyYBt27J6GGfPqqjsRhMbogo5926ZdrPZvJkKXK0Bb6+QLNmMmplbH9PZC6nTwOLF8u5jS/9fhSTGyLKeTNmALdvS6O77t1VR5N7DAZpfZ8nD/D998Aff6iOiPRs6FDZhLZTJ+Dll1VHY1GY3BBRzoqMBObNk/NPPrG9b5N16gAffSTnLC4mc9m6VZZ/Ozhwd/oMMLkhopw1ZYr0fGnSBOjYUXU0akyZIitX/vnHlOgR5ZSkJNPS70GDgEqV1MZjgZjcEFHOuXABWL5czgMDZZrGFnl4mGqOJk0CrlxRGg7pzNKlUm9TuDAwdqzqaCwSkxsiyjnjx8u3ynbtgBYtVEejVq9eQOPGUlw8bJjqaEgvbt0yNcacPFkSaXoMkxsiyhknTshWCwAwbZraWCxBnjxSXGwwAGvXAn/9pToi0oPJk4GbN4EaNWyjxUI2MbkhopwxZoxs3tetG1C/vupoLEP9+kD//nLu5ydt8omy68wZ2eoDkKXf9vZq47FgTG6I6Pnt2wf88ousjDJ2JSYxdSpQqBAQGiqNDYmya9gwmfZ97TWgTRvV0Vg0JjdE9Hw0DQgIkPP33wcqV1Ybj6UpWBCYPl3OJ06UpfJEWbV9u3yBsLcHZs5UHY3FY3JDRM9n61Zgzx7AyclU6Ejpvf8+8MILwJ07wPDhqqMha5N26befH1Clitp4rACTGyLKvpQU06iNnx9QqpTaeCxV2uLib78Fdu9WHRFZkxUrgL//llFAfoHIFCY3RJR969cDx4/LTsTGJIcy5u0NfPCBnPv5ybdxome5fRsYN07OJ00CChRQGo61YHJDRNnz8KHpP91hw6Rolp7uk0/k2/fJkzKSQ/QsU6cCMTFAtWrAhx+qjsZqMLkhouxZuRI4f162GfD3Vx2NdShUSDo3AzK9EBWlNh6ybOfOAfPny/ns2bKPFGUKkxsiyrqEBGkmBkj7d1dXtfFYkz59ZIoqLg4YMUJ1NGTJhg+XEVIfH6B9e9XRWBUmN0SUdQsXAlevAmXKcKg8q+zsTMXFX38N7N2rOiKyRDt2AD/+KH9fZs1SHY3VYXJDRFlz+7ZpamXSJFkCTlnzwgsyggMAAwawuJjSS04GPv5Yzj/6SOptKEuY3BBR1sycKZv3Va8OvPuu6misV2CgrHw5cQJYskR1NGRJVq6UvxcFCgATJqiOxioxuSGizLt2Tfa0AWQVh52d2nisWeHCsnoKkFVn166pjYcsQ2ys7NMGSGLDVYjZwuSGiDJv6lTg3j2ZVuncWXU01u+DD2RzzdhYYNQo1dGQJZg2Dbh+XboQf/SR6misFpMbIsqcsDBg6VI5DwyUglh6PnZ2pl2eV68GDhxQGg4pduECMHeunM+axaXfz4HJDRFlzsSJsiy1dWvg5ZdVR6MfTZoA770n5wMGSDEp2aYRI4AHD4C2bYEOHVRHY9WY3BDRs/39tyxbBmTYnHLW9OmAhwdw7JhpdIxsy86dwMaNsg/Z7NkcGX1OSpOb3bt3o2PHjihRogQMBgM2b9781Os3btyINm3aoEiRInBzc0OTJk3w+++/506wRLZs7FhA04A33wQaNlQdjf4ULQpMmSLnY8ZIzQXZjuRk067f/fsDNWqojUcHlCY38fHxqFOnDhYa55yfYffu3WjTpg22bNmCI0eOoFWrVujYsSOOHTtm5kiJbNjBg9JMLE8e0wcw5bz+/YG6daWPEDchtS1ffimjdu7u0juKnptB0zRNdRAAYDAYsGnTJnTO4gqMGjVq4K233sL4J2wDn5iYiMTExNTbcXFx8PLyQmxsLNzc3J4nZCL90zSpr9m5E3j/feCLL1RHpG/79wPNmsn5gQNA48Zq4yHzu3MHqFRJWgHMnm1q3kePiYuLg7u7e6Y+v6265iYlJQV37txBwYIFn3hNYGAg3N3dUw8vL69cjJDIym3fLomNoyObieWGpk2BXr3knMXFtiEwUBKbSpXkZ045wqqTm1mzZiE+Ph7dunV74jUBAQGIjY1NPSIiInIxQiIrlpICjB4t5x99BJQurTYeW/HppzI9cfQosHy56mjInMLCZLQGkM7fjo5q49ERq01u1qxZg4kTJ2LdunUoWrToE69zcnKCm5tbuoOIMmHDBuDIESB/flOSQ+bn6WnacX30aCAmRm08ZD4jRwKJicArrwAdO6qORlesMrlZt24d+vTpg/Xr16N169aqwyHSn6QkWSEFAEOHAkWKqI3H1nz0EVC7tuzhxcRSn/bsAb7/nku/zcTqkps1a9agd+/e+O677/Dqq6+qDodIn1avBs6elX1tjEtUKffY25s6F69YAQQFqY2HclZKiqlwuF8/SWQpRylNbu7evYuQkBCEhIQAAMLCwhASEoLw8HAAUi/Ts2fP1OvXrFmDnj17YtasWWjcuDGioqIQFRWF2NhYFeET6dP9+6blqGPGAJzKVaN5c9l1XdOk0DQlRXVElFO+/lqmfN3cTFOQlKOUJjfBwcGoV68e6tWrBwAYMmQI6tWrl7qsOzIyMjXRAYClS5ciKSkJAwYMQPHixVOPwYMHK4mfSJcWLwb+/Rfw8gL+9z/V0di2GTMAV1cZueEyfH24e9fUx2jcOGngSDnOYvrc5JasrJMnsjlxcUD58sCNGzId0qeP6ohozhyZGixUSKYKn9L6gqzAuHHA1KlAhQrAqVOAk5PqiKyGzfS5IaIcNmuWJDZVqpj6rZBafn7Sjv/GDZkmJOt1+bIs+QaAzz5jYmNGTG6ISERHm3puTJ0qRa2knoMDsGiRnC9dKrUaZJ1GjZKatpYtgSx246esYXJDRGLaNKkHaNBANsgky9GiBdC9O4uLrdn+/cDatbLke84cLv02MyY3RCTD5UuWyHlgIP/jtUQzZ0pDxUOHZKk+WY+UFMDfX8779JENUsmsmNwQkSz9fvAAaNUKYGNMy1SiBDBxopyPHCkN/sg6fPedrHhzdZUpXzI7JjdEti40FPjySzmfNo2jNpZs0CCgenXZkmHcONXRUGbEx0utDSAF4Z6eauOxEUxuiGzduHEybN65M9C4sepo6GkcHEydi5csAY4dUxsPPdtnnwFXrgDlygHsyZZrmNwQ2bKgIGDjRhmt4XC5dWjVCnjrLUlIWVxs2SIipBEjIL/mzas2HhvC5IbIlhk7pfr6Si8Vsg4zZwIuLsCBA8BXX6mOhp4kIABISJCtNLgCMVcxuSGyVX/+KYeDg2kvKbIOpUoB/21TgxEjgNu3lYZDGTh4EPj2Wy79VoTJDZEt0jTTqE3//kDZskrDoWzw9weqVgWuXzclOmQZNM209Lt3b+kdRbmKyQ2RLdq0SeptXFzY0t9aOToCCxbI+aJFwPHjauMhkzVrpB+RiwvwySeqo7FJTG6IbE1yMjB2rJx//DGXplqz1q2B//s/KSr285MRA1Lr3j3T0u/Ro4HixdXGY6OY3BDZmq+/Bk6flt2lhw1THQ09r9mzgXz5gL17gW++UR0NzZolq6TKlJEvD6QEkxsiW5KYCEyYIOejRgHu7mrjoefn5WUaiRs+HIiNVRuPLbtyBZg+Xc4//RRwdlYbjw1jckNkSz7/HAgPl1b+fn6qo6GcMmQIUKkScO2aaYsGyn2jR8u0VNOmQLduqqOxaUxuiGzFnTum4sYJE/itUk+cnEzFxQsWACdPqo3HFgUFmXoOzZ3Lpd+KMbkhshVz5siy4YoVgffeUx0N5bR27YAuXaRgnMXFuSvt0u+ePYGGDZWGQ0xuiGxDTIx0tQVkmwUHB7XxkHnMmSMjcrt3y3Jkyh3r1wP790th97RpqqMhMLkhsg3Tp8u0VN26QNeuqqMhcylTxtS3aNgwIC5ObTy2ICEBGDlSzkeNAkqWVBsPAWByQ6R/ERGmnaSnTQPy8J+9rg0bJlOPkZHcViM3zJkDXL4sq9aGDlUdDf2H/8sR6d3kybIE/KWXgPbtVUdD5ubkBMyfL+fz5gGnTqmNR88iI03TUNOny7QUWQQmN0R6duYMsGqVnAcGcgWHrfDxATp1YnGxuY0ZA8THA40bA927q46G0mByQ6Rn48bJB9xrr0nvDbIdc+cCefMCO3cC69apjkZ/jhwBVq+Wc+76bXGY3BDp1ZEjwPffy3+63LzP9pQta9r5fehQKSinnKFpsrWCpgE9esjIDVkUJjdEejV6tPz6zjtA7dpqYyE1RowAypcHrl4FpkxRHY1+bNgA7Nkjy+4DA1VHQxlgckOkRzt3Atu2Afb2XDFjy/LmlaJiQKZOTp9WG48e3L8vSSMgv3p5qY2HMsTkhkhvNM00HfHBB0CFCmrjIbVee02OpCRg4EAWFz+vefOAsDDpZzN8uOpo6AmY3BDpzU8/AQcPypC5cbdosm3z5skS8T//BH74QXU01isqylS/Nn064OKiNh56IiY3RHqSnGzqUDt4MFC8uNp4yDKUL2/qojtkCHD3rtp4rNW4cVKY3bCh1LKRxWJyQ6Qn330nTds8PEx1AUSAbA1Qtizw779cPZcdISHAF1/I+dy57PRt4fjTIdKLBw+A8ePlfORIoEABtfGQZXF2lg9lAJg1Sxo8UuYYd/3WNODtt9kzygowuSHSi2XLgEuXZCpq0CDV0ZAlev116V788KH8HWFxceZs3gzs2iWrz6ZPVx0NZQKTGyI9uHsXmDpVzseN4x43lDGDQfadcnSUVgGbNqmOyPIlJspmpID8WqaM2ngoU5jcEOnBvHnAtWtSONqnj+poyJJVrGiqx/L3l72R6MkWLAAuXpQRUWNRNlk8JjdE1u7mTeCzz+R8yhT5Vk70NAEBMgIREWHa1ZoeFx1t6uwcGAjkz682Hso0JjdE1u7TT4HYWNli4e23VUdD1iBfPulYDAAzZwLnzqmNx1KNHw/ExQENGgC+vqqjoSxgckNkza5ckRoKQJb3cnkqZVbnzkC7drLKjsXFjztxAli+XM7nzOG/LSvDnxaRNZsyRfa6adYMePVV1dGQNTEWFzs4AFu3Aj/+qDoiy6Fp0uwwJQXo2hVo3lx1RJRFTG6IrNW5c8CKFXIeGCgfVkRZUbmyaSWQvz9w757ScCzGzz/LVhVOTjLtS1aHyQ2RtRo/XrZb8PHhN0vKvjFjZGfry5fZwwWQabqhQ+V8yBCgXDm18VC2MLkhskYhIcDatXLO1S70PFxcgNmz5XzGDODCBbXxqLZoEXD+PODpKavKyCoxuSGyRsbNMd9+G6hbV2kopANvvgm0bi0N6wYPVh2NOjExwKRJcj5tGuDqqjYeyjYmN0TWZs8eYMsWwM4OmDxZdTSkBwaDNKtzcAB+/VVqTmzRhAnSVqFuXaBXL9XR0HNgckNkTTTNNFTety9QqZLaeEg/qlYFPv5YzgcPBhIS1MaT2/7+G/j8czmfM0e+PJDVYnJDZE22bAH27ZMN/MaNUx0N6c24cUDJkkBYmNTf2Iq0S7/feANo2VJ1RPScmNwQWYuUFGD0aDkfOFA+hIhyUv78wKxZcj59uuypZAu2bAG2b5etS2wpqdMxJjdE1mLtWuma6u4OjBqlOhrSq27dgJdfluaQ/v6qozG/hw9l1AaQ32+FCkrDoZzB5IbIGjx4YJqGGj4cKFhQbTykXwYDsHAhYG8vhcW//qo6IvNavBg4exYoWtS0CpGsHpMbImvwxRcyRVC0qG0v1aXcUa2aadRm0CAZxdGjGzdMS7+nTgXc3NTGQzmGyQ2Rpbt3T/aQAmT0Jn9+tfGQbRg/HihRQpLqzz5THY15TJoE3LoF1K4NvP++6mgoBzG5IbJ0CxYAkZFA2bLABx+ojoZshasrMHOmnE+bBly6pDScHHf6tExJAVz6rUNMbogs2a1bpv1+Jk2S1RxEueXtt4EWLWRaytgDRy+GDpW92Tp1kgJq0pUsJTeHDx9GcnJy6m1N09I9npiYiPXr12f69Xbv3o2OHTuiRIkSMBgM2Lx581Ovj4yMxDvvvIMqVaogT5488LeFSn6ybZ99Bty+DdSoAfTooToasjXG4mI7O2DzZmDrVtUR5YzffpPDwUG/U242LkvJTZMmTXDjxo3U2+7u7riYpg/C7du30b1790y/Xnx8POrUqYOFCxdm6vrExEQUKVIEY8aMQZ06dTIfOJE1iowE5s6V808+4bA5qVGzphQVA9JfKTFRbTzP6+FD067fgwaxy7dO2Wfl4kdHah69/aT7nsTHxwc+Pj6Zvr5s2bKYN28eAGDlypWZek5iYiIS0/xjjIuLy/T7ESk1daq0wG/cGHj9ddXRkC2bOBFYs0Z2y541y9RM0hotXSr1NoULA2PHqo6GzCTHa24MBkNOv+RzCQwMhLu7e+rh5eWlOiSiZ7t4EVi2TM4DA2V6gEgVNzfT9M3UqUB4uNp4suvWLdkcE5AViB4eSsMh89F9QXFAQABiY2NTj4iICNUhET3b+PFAUhLQti33uSHL0KMH0Ly5jCYaO/pam8mTgZs3Zaqtb1/V0ZAZZWlaCgBCQ0MRFRUFQKag/vnnH9y9excAEBMTk7PR5QAnJyc4OTmpDoMo806eBL77Ts6nTVMbC5GRsbi4fn1gwwbZi6lNG9VRZd6ZMxI/AMyeLR2YSbey/NN95ZVX0tXVvPbaawBkOkrTNIubliKyOmPGyC7FXbsCDRqojobIpHZtYMAAYP58KS4+ccJ62hMMGyajoa+9Zl1JGWVLlpKbsLAwc8VBRACwb5/s52NnZ+pKTGRJJk2STVzPnJHmdyNHqo7o2bZtA375RUZrjI0JSdeylNyUKVMmR9/87t27OH/+fOrtsLAwhISEoGDBgihdujQCAgJw5coVfPXVV6nXhISEpD73+vXrCAkJgaOjI6pXr56jsRHlOk0zrULp3RuoUkVpOEQZ8vAAZsyQv6OTJwPvvANY8kKNpCRTjZCfH/9d2QiDloW12zdv3sS9e/dQqlSp1PtOnTqFmTNnIj4+Hp07d8Y777yT6TffuXMnWrVq9dj9vXr1wurVq9G7d29cunQJO3fuNAWcwbRXmTJlcCmTrcHj4uLg7u6O2NhYuHGTNLIkW7cCPj6AkxNw7pxlf2CQbUtJAV56SUYau3YFstC8NdctWQJ89BFQsKAsZS9QQHVElE1Z+fzOUnLTvXt3FC9eHLNnzwYAREdHo2rVqihRogQqVKiA3377DV988QV8fX2f73dgRkxuyCKlpEh9TUiIfMucNUt1RERPd/y4FBenpEhxcevWqiN63O3bQMWKsvv3woVSL0RWKyuf31laCn7w4EG8nqaZ2FdffYWCBQsiJCQEP/74I6ZNm4ZFixZlL2oiW/b995LYuLoCAQGqoyF6tjp1ZEQEkOLiBw/UxpORqVMlsaleHfjwQ9XRUC7KUnITFRWFcuXKpd7esWMHunTpAvv/ltS9/vrrOHfuXM5GSKR3Dx8C48bJ+bBh0jmVyBpMmQIUKQL88w/wX/d4i3HunKzqArj02wZlKblxc3PD7du3U28fPnwYjRs3Tr1tMBjSbXVARJmwapX8R1ykiP52XiZ98/AAPv1UzidNAq5cURpOOsOHyxcHHx+gXTvV0VAuy1Jy88ILL2D+/PlISUnBDz/8gDt37uDlNFvFnz17ltsbEGVFQoJ8KACyUsrVVW08RFnVq5fsfxYfLyOPluDPP4Eff5SWCqxfs0lZSm6mTJmCH3/8Ec7OznjrrbcwYsQIFEhTeb527Vq0aNEix4Mk0q1Fi4CrV4HSpYH+/VVHQ5R1efLI32ODQfrf/PWX2niSk00joB99BFSrpjYeUiJLq6UA4Pr169i/fz+KFSuGRo0apXvs119/RfXq1dPV5VgarpYiixEbC5QvL3vdrFwJvPee6oiIsu+jj2TZdfXqUhzv4KAmjmXLpHi4QAGZ7i1USE0clOPMthRcD5jckMUYN05Wc1StKvtJseCRrNnNm0DlyrI6adYsNZtrxsYClSoB169LgfOgQbkfA5mN2ZKbtJ2Cn6Znz56Zfclcx+SGLMK1a0CFClKnsGED8MYbqiMien4rVgD9+knt2JkzQPHiufv+I0dK9+QqVeQLg6rRIzILsyU3efLkQf78+WFvb48nPc1gMODmzZtZizgXMbkhizBoELBgAdCwIXDokNQrEFm7lBSgSRPg8GGgRw/gm29y770vXJApsQcPgF9/BTp0yL33plxhtiZ+1apVg6OjI3r27Ildu3bh1q1bjx2WnNgQWYRLl4DPP5fzadOY2JB+pC0u/vZbYPfu3HvvESMksWnbVpZ/k03LUnJz6tQp/Prrr0hISMBLL70Eb29vLFmyBHFxceaKj0h/Jk6U/huvvGKZLeuJnoe3t0xNAbLdwcOH5n/PnTuBjRsluZo9m18YKGvJDQA0atQIS5cuRWRkJAYNGoT169ejePHi6NGjBxv4ET3LqVOAsXZt2jS1sRCZy7RpslHl33/LSI45pV363b8/UKOGed+PrEKWkxsjZ2dn9OzZE5MmTcILL7yAtWvX4t69ezkZG5H+jB0LaBrQpQvwwguqoyEyj0KFgMBAOZ8wAYiKMt97rV4tS8/d3U0NMcnmZSu5uXLlCqZNm4ZKlSrh7bffRsOGDXHq1Kl0Df2I6BGHDgGbN8vQ+dSpqqMhMq8+fWSKKi5O6mHM4c4dYMwYOZ8wgfuyUaosJTfr16+Hj48PKlWqhKCgIMyaNQsRERGYMWMGqlataq4Yiayfppl2++7ZU1Z1EOmZnZ2puPjrr4G9e3P+PQIDpa1CpUpS30P0nywvBS9dujR69OgBT0/PJ143yIIbJ3EpOCmxfbus4nB0BM6eBcqUUR0RUe7o10/639SuDRw5knPNKsPCZGuFxETgp5+Ajh1z5nXJYpmtz03ZsmVheEYVusFgwMWLFzP7krmOyQ3lOk2TfjZHjgCDBwNz56qOiCj3xMRI5+Jbt4D584GBA3Pmdbt1A77/XlYdbt/OFVI2QOn2C1euXEHJkiVz8iVzFJMbynU//AB07Qq4uAAXLwJFi6qOiCh3LVkie0+5u0vn4qeM/GfKnj3ASy9J/dqxYzIqRLpntiZ+TxMVFYVBgwahYsWKOfWSRNYvKUlWSAGy1w4TG7JFH3wA1K8vez+NGvV8r5WSAvj7y3m/fkxsKENZSm5u376NHj16oEiRIihRogTmz5+PlJQUjB8/HuXLl8eBAwewcuVKc8VKZH2+/FK+qRYqBAwdqjoaIjXs7ICFC+V89WrgwIHsv9ZXXwFHjwJubsDkyTkSHulPlpKb0aNHY/fu3ejVqxcKFiyIjz/+GK+99hr27t2L3377DUFBQejevbu5YiWyLvfvSzdiQFZKubsrDYdIqSZNgPfek/MBA6T5XlbdvWtadThuHEdC6YmylNz8+uuvWLVqFWbOnImffvoJmqahcuXK2LFjB1q0aGGuGIms05IlwL//AqVKSb0Bka2bPh3w8JA6maVLs/f8qCigQoWcK0wmXcpScnP16lVU/68/R/ny5ZE3b1707dvXLIERWbW4OOCTT+R8wgTA2VltPESWoGhRYMoUOR8zBrh+PfPPvXwZmDVLzmfOBJyccj4+0o0sJTcpKSlwcHBIvW1nZwcXF5ccD4rI6s2eDdy4IUtge/dWHQ2R5ejfH6hTB7h92zTFlBmjRslUb6tWQKdOZguP9CHLTfx8fHzg9F/G/PPPP+Pll19+LMHZuHFjzkaZg7gUnMzu+nWgfHmpD1i/XpaBE5HJvn3Aiy/K+YEDQOPGT79+/36gWTPpZXP0KFC3rtlDJMuTlc/vLLWK7NWrV7rb7777btajI9K7adMksalfH3jzTdXREFmeZs1kG5KvvpLi4sOHZUVVRtIu/e7Th4kNZUqON/GzdBy5IbMKD5d9bh48ALZuBdq1Ux0RkWW6dk2mbePipPi+f/+Mr/v6a0mEXF2Bc+eevwEgWS0lTfyICMCkSZLYtGwpe0kRUcY8PU3FxaNHyzYNj4qPNzX9GzOGiQ1lGpMbopxy+rQ0KANkt2LudUP0dB99JB2Gb92SBOdRM2YAV68C5crJvmxEmcTkhiinjBsn9QGvv/7sAkkikh3CjZ2LV6wAgoJMj0VEAJ99JueffQbkzZv78ZHVYnJDlBOCgoANG2S0xtjfhoierXlz4N13AU2T4uKUFLk/IABISJANMt94Q22MZHWY3BDlBOOQ+rvvAjVrqo2FyNrMmCEFw0FBwBdfAAcPAt9+K18W5szhFC9lGZMboue1Ywfwxx+Ag4MUFBNR1hQvbvq3ExAA+PnJee/e0lKBKIuY3BA9D00zdVn98EMpfCSirPPzA2rUkM7eR44ALi6c4qVsY3JD9Dw2b5YGZPnyAWPHqo6GyHo5OACLFplujx4tIzpE2ZClDsVElEZysimh8fdnDw6i59WihYzW/PMP8PHHqqMhK8bkhii7vvkGCA0FChQAhg9XHQ2RPmTU74YoizgtRZQdiYnA+PFyPmoU4OGhNBwiIjJhckOUHUuXyj5SxYubVnYQEZFFYHJDlFV37gBTp8r5hAlSTExERBaDyQ1RVs2dC1y/DlSsCLz/vupoiIjoEUxuiLLixg1g5kw5nzxZlq8SEZFFYXJDlBXTpwNxcUCdOsBbb6mOhoiIMsDkhiiz/v0XWLBAzqdNA/Lwnw8RkSXi/85EmTV5siwBf/FFwMdHdTRERPQETG6IMuPsWWDlSjkPDOQuxUREFozJDVFmjBsn2y28+qqM3BARkcVickP0LEePAuvXyzl3KSYisnhMboiexbjXzTvvyCopIiKyaExuiJ5m1y7g998Be3spKCYiIovH5IboSTQNCAiQ8759gQoV1MZDRESZwuSG6El+/hk4cABwdpaCYiIisgpMbogykpwMjBkj54MGASVKqI2HiIgyTWlys3v3bnTs2BElSpSAwWDA5s2bn/mcXbt2oUGDBsibNy/Kly+Pzz//3PyBku1Zswb4+2/A3R0YOVJ1NERElAVKk5v4+HjUqVMHCxcuzNT1YWFh6NChA5o3b45jx45h9OjRGDRoEDZs2GDmSMmmPHgAjB8v5yNHAgUKqI2HiIiyxF7lm/v4+MAnC23sP//8c5QuXRpz584FAFSrVg3BwcGYOXMm3nzzTTNFSTZn+XIgLAzw9JQpKSIisipWVXNz4MABtG3bNt197dq1Q3BwMB4+fJjhcxITExEXF5fuIHqi+HhgyhQ5HzcOcHFRGw8REWWZVSU3UVFR8PT0THefp6cnkpKSEBMTk+FzAgMD4e7unnp4eXnlRqhkrebNA65dA8qVA/r1Ux0NERFlg9JpqewwPLJhoaZpGd5vFBAQgCFDhqTejouLM0+Cc/OmdLBNK21Mj8aXncdy4jX4+k9/bO1a+XXyZMDREUREZH2sKrkpVqwYoqKi0t0XHR0Ne3t7FCpUKMPnODk5wcnJyfzBPXggnWzJ+tWsCXTvrjoKIiLKJqtKbpo0aYKff/453X3btm2Dt7c3HBwcFEX1H3d34KuvTLf/G1F66nlOXJeb72UL19nZAW+/Lb8SEZFVUprc3L17F+fPn0+9HRYWhpCQEBQsWBClS5dGQEAArly5gq/+Sxr69++PhQsXYsiQIejXrx8OHDiAL774AmvWrFH1WzBxdgZ8fVVHQUREZPOUJjfBwcFo1apV6m1jbUyvXr2wevVqREZGIjw8PPXxcuXKYcuWLfj444+xaNEilChRAvPnz+cycCIiIkpl0LRHx+j1LS4uDu7u7oiNjYWbm5vqcIiIiCgTsvL5bVVLwYmIiIiehckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeUJzeLFy9GuXLlkDdvXjRo0AB79ux56vWLFi1CtWrV4OzsjCpVquCrr77KpUiJiIjIGtirfPN169bB398fixcvRrNmzbB06VL4+PggNDQUpUuXfuz6JUuWICAgAMuXL0fDhg1x+PBh9OvXDwUKFEDHjh0V/A6IiIjI0hg0TdNUvXmjRo1Qv359LFmyJPW+atWqoXPnzggMDHzs+qZNm6JZs2b47LPPUu/z9/dHcHAw9u7dm6n3jIuLg7u7O2JjY+Hm5vb8vwkiIiIyu6x8fiublnrw4AGOHDmCtm3bpru/bdu22L9/f4bPSUxMRN68edPd5+zsjMOHD+Phw4dPfE5cXFy6g4iIiPRLWXITExOD5ORkeHp6prvf09MTUVFRGT6nXbt2WLFiBY4cOQJN0xAcHIyVK1fi4cOHiImJyfA5gYGBcHd3Tz28vLxy/PdCRERElkN5QbHBYEh3W9O0x+4zGjduHHx8fNC4cWM4ODigU6dO6N27NwDAzs4uw+cEBAQgNjY29YiIiMjR+NPSNODdd4HJk4Hffwdu3TLbWxEREdETKCsoLly4MOzs7B4bpYmOjn5sNMfI2dkZK1euxNKlS3Ht2jUUL14cy5Ytg6urKwoXLpzhc5ycnODk5JTj8WfkyhXg22/T31e5MvDCC0CjRsDLLwPVq+dKKERERDZL2ciNo6MjGjRogO3bt6e7f/v27WjatOlTn+vg4IBSpUrBzs4Oa9euxWuvvYY8eZQPQsHZGZg3D3jnHaBiRbnv7Fngm2+AgQOBZctM18bHSyJ0/ryM+BAREVHOULoUfMiQIfD19YW3tzeaNGmCZcuWITw8HP379wcgU0pXrlxJ7WVz9uxZHD58GI0aNcKtW7cwe/Zs/P333/jyyy9V/jZSFSoEDBpkun3jBnD4sByHDgGtWpkeCw6WKSwAKFjQNLrTqJGcFyqUu7ETERHphdLk5q233sKNGzcwefJkREZGombNmtiyZQvKlCkDAIiMjER4eHjq9cnJyZg1axbOnDkDBwcHtGrVCvv370fZsmUV/Q6erlAhwMdHjkclJQGNGwPHjgE3bwJbt8ph9MUXwPvvy3lCAmAwAI8sFCMiIqIMKO1zo4Kl9bl58AA4flxGdowjPGfPAgcPyigOAKxcCfTvD9Spk350p1IlwAJm44iIiMwuK5/fSkduCHB0BBo2lMPo5k0g7c/t5Eng4UOZygoOBhYtkvs9POR5ixZJokNEREQcuVEdTqZoGnDpUvrRnaNHgfv35fHr1wHjYrF582TUx1jDU6+eFDoTERFZs6x8fjO5sVIPH8qIzt9/Az17mu5v0wb44w/TbXt7oHZt03TWO+8ADg65Hy8REdHzYHLzFHpJbp5kzx45Dh2S49o102MeHrKCy1ins26djOq88AJQrJiScImIiDKFNTc2rHlzOQCZzoqIME1naVr6AuSAACAsTM5LlzYVKjdqBDRoAOTLl/vxExERPS+O3NiopCTggw8k6QkNfbyRoLc3EBRkun3xIlCmDPCEXS6IiIjMiiM39Ez29rLEHADi4mQVlrFY+dCh9Ku37t8HqlaVPjve3umXo5cooSZ+IiKiJ+HIDWUoMREwbskVGiqJTHz849eVKgX4+wNDh+ZqeEREZGM4ckPPLe1eo9WrA7GxkuSkXY7+99/Av/+mn9K6cAHo0iV9/U6NGpzOIiKi3MORG8q2u3el307ZslKQDMhmoMY9s4xcXKRAuVEjwNcXqFUr10MlIiIrx6XgT8Hkxrxu3Ei/FD0oSJIgo40bZWQHkH21fv9dkh5vb8DVVU3MRERk+TgtRcoUKgR07iwHACQnA//8Y5rOatzYdO3PPwMTJsi5wSDTX2mns2rWlMJnIiKirODIDSmzeTPw3XeS9Fy+/Pjjx49Ld2VAanns7WX6y2DI1TCJiMgCcFrqKZjcWKaoKElyjMXKp09LwmMsRO7dG/jyS8DT0zSyY5zO8vBQGTkREeUGJjdPweTGOmha+hGabt2ATZuk+eCjatSQ+h3jnlmPPpeIiKwfa27I6j2anKxfDyQkSBJjLFY+fNi0fUTazUDbtpWePMbRnUaNZEUXEx4iItvAkRuyatHRQGQkUKeO3H74EHB3l0QorSJFZDqrXTtg4MDcj5OIiJ4PR27IZhQtKoeRvT0QEpK+2WBICHD9OvDrr7JxqDG50TTAzw+oVk1Gd+rUARwdVfwuiIgoJzG5IV0xGIDKleXw9ZX7EhNNCU+ZMqZr//0XWLzYdNvREahXD2jSBGjaFHjxRaB48VwNn4iIcgCnpchmRUUBS5eaanhu3kz/+ODBwNy5cn7/vmw/Ubs2e+8QEanAaSmiTChWzNREUNOkl86hQ8CBA8D+/TJyY3ToENCyJZAvn0xhNW0KNGsmTQkLFFASPhERPQGTGyLIdFbFinL06PH445GRUqgcGwv89ZccRtWrA/PnA6+8knvxEulRcjJw7pxs2VKtmuxLR5QdeVQHQGQN3n5bpq3+/htYtkyaClaqJI+FhkriY7R+PfD668D06cDu3cC9e0pCJrIaO3bISKm7uyQ1DRvKXnMVK8pedGm/TBBlBkduiDIpTx5pGFijBtCvn9x3/bpMYRmXogPA9u2yb9bPP8tte3spVG7aVI5XX+U3UrItDx4Ap04BR44AR4/KMXw48Oab8rjBAOzbJ+fOzpLYREfLVPGFC6bFAQCwbRswejRQq5bpqF1bupcTGTG5IXoORYoAnTqlv2/gQEmA9u2TIzJSdkcPCgLmzZOEyJjcHDwoDQhr107fiJDI2l26BHzyiSQyJ09KD6q0DhwwJTfe3sBXXwENGgBVqsi2K9HR8ryTJ9NvuHvkiOlIq0gRSXRmzJDXIdvG1VJEZqRpQHi4jO7s3w9cuQJs3Gh6/JVXZEg+Xz5pMpi2ULlgQXVxE2VGfLxscGsckWnWDOjbVx6LiJCNbo0KFADq15ejQQP5O562NUNmXbkiBf4nTwInTsiv58/LvzUg/Ya7CxZIPZxxdMc40lOhgmnfOrIe3FvqKZjckCXp1k2msW7ffvyxJk0kISKyFAkJwOefm5KZf/4xJRUA0Lmz7AEHyP1TpsgoZoMGksiYawuUe/dk2uvkSeDdd03NOPv0AVaufPx6Z2dZCLB+PVC+vNz38CFHTy0dk5unYHJDliYlRT4kjKM7+/YBZ88C7dsDv/1muq5hQ1m+bqzdadhQRnyIctqNG7KP29GjQP78wEcfyf1JSYCbW/rtTUqUMI3GvPgi0Lq1mpgzcv26jO4YR3hOnpQkyBj/nTvy+wOkW/n33z8+ylO9Ov+dWQomN0/B5IasQUwMcOuWaUXW1atAyZLpr7G3B+rWlUTntdeANm1yPUzSiW3bpCbMWOx76ZLpsRo1ZJWg0ahRkhA0aCCF8sWK5Xq4zyU5Gbh4UZacd+hgur9FC1nd+Chjm4hjx0y1crduycquPFxvnKuY3DwFkxuyRklJ8p/rvn2m0Z2rV02Pf/QRsGiRnN+/L8vVmzaVVVwcaidApomuXpXk5do1U20MIAlMaGj66ytUkBGZhg1lZZPexcfLn0HaUZ6TJ2X0p3jx9P/e2rcH9uyRP7e0K7Zq1ZLCZjIPJjdPweSG9EDTpGDTOJXVoYP8hwvI7WbN5NzZWQqVmzWTZKdxY6BQIXVxU+4JDweCgyWZMdbIREfLY/nyAXFxpqLagAC53ljwW68e4OGhLHSLcu2aFDHXr2+6r0IFGf3JSNWqwOnTptsXL0py5Oxs3jhtAZObp2ByQ3p38KAUch44IMPnj1q2zNSn5+FD+YDj8Lr1SkmRD9Djx4E33jAV7XbqBPz0U/pr7eykhqR+fdk3jQlM9iQnywot4+iOcbTn4kWpO0o7vVWxIhAWJlPMj/bmKVeO//aygsnNUzC5IVuRkgKcOZO+UNl4u0kTueabb2SDUONO6MZCZTYZtEzJyVJsbqyNMR5xcfL4v/+aarMCA6VANu3y61q1WBxrTvHxUoxtXAKfmAh4ecnUVkZefFGmt4wOHZJRocKFzR+rNWJy8xRMbsiWxcRIIaSxDsfPz1SrY2RnZypUHjECKFUq18MkSJ3V6dPyzd84pTF8ODBz5uPXOjlJfdXy5aYeL2QZNA2Iikpfx2NctfXOO6al6g8eyJeKpCQp0k67Ysu4aitvXrW/F9WY3DwFkxsik4cPZTojbaHylSumx69elXoBANiwQep8mjaV5MfYS4Se34MHsiIp7WjM8eNSHL5zp6zkAYBvvwU++EBqYowjMvXry35MLBy3LklJMtJj3JcuPBxo1erJtTxvvw2sWSPnKSky5Virlm1NbWXl85vbLxDZMAcHaX3v7S3TU4CpUPnUKVNiAwArVgBbt8p53rwyfWXsqNykCYfSMyshQb7NG6eH1q2TvZMe3Z4AkD2WoqJMt7t2lQ85dte1fvb26TfcLV1a9tG6c8fUkDBtTU+tWqZrL16UDUUBGe2pWTP9iq06daQjtC3jyA0RZcr8+dIPZf/+xwuVXV3lPuOHbmSkbGRoK98on+Tu3fTbExw9KsuNly6V7rmA1Fk0biwfRg0apB+RqVCBf4YkyXBSkml0LjhYFgWEhsqo36PGjpVFBQBw8ybwyy+S9FSrZt1TWxy5IaIcN2iQHCkpUtRqnMbav1/qctKOJrRoIUWUaQuVX3jB1A1WjzTNtFLp779la41HtycwSttTpl49WU1jzu0JyLoZDOmnHb29pe9VUpI0I3y0N0/auqvDh4FeveTczg6oXDn9iq0mTfTZm4cjN0T03NLuyxMXJ9NZ9+6lvyZPHhku79ZNutxaM+P2BGlHZLp2BaZNk8djYkwfGGm3JzCOyJQsyUSGcscff8gozsmTGbeGWL3alPycOSOjs8bpLUvbvJcjN0SUq9J+q3Rzk41AT5wwLUPfv18KJo8dk2+dRg8fAj17mnZEr1fPcguV79yRD4GjR4HLlx9//MgR03nhwrIhas2a1rc9AelL69ZyGDtUP9qbp04d07Xbt8vorFGJEulXbbVvbz2jPBy5IaJc8e+/0liwdGmgUSO5LyhIEhujvHkl+TF2VG7WLPc6KqfdnsA4IuPlZVoqr2nyTda4g3vFiul7yNSrx+7PZN02bwa++EKSnowS+L17Td3P//pLvrQYp7dyY1qVS8GfgskNkeWIiJDlzcbRnRs30j8eGGiawoqNleurV8/ZItspU+S9025PYFSuXPqluevXA0WLylJ4dvclPYuLk9qxtCM9P/9sWuHl7w/Mm2e63tU1/aqt//0v54vhmdw8BZMbIsukaVIcmbaj8uefA82by+Pr1skyaHf3xwuVXV2f/LopKbLE1jgiExsrq5WMvL1NU0pptycwjsgYv6kSkcn69ZLsnDghzSbTtjIoUSJ9v6ycwuTmKZjcEFmnBQtkg8f4+PT358kj3xRXrJBkBJClrzt2SEJz7JhpewJA+ovcvStdfQHg66/ltnF7Am5wSJQ1Dx/KCkrjCI+jIzBxYs6/D5Obp2ByQ2S9kpLkP1DjEvT9+021AeHhUiMDyAjPunWm5xm3JzCOyPTowT2WiKwNV0sRkS7Z20vhbr16si8WIMPfwcGmxAYAOneW2hhuT0BkmzhyQ0RERBYvK5/fbOxNREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4oT24WL16McuXKIW/evGjQoAH27Nnz1Ou//fZb1KlTB/ny5UPx4sXx3nvv4caju+0RERGRzVKa3Kxbtw7+/v4YM2YMjh07hubNm8PHxwfh4eEZXr9371707NkTffr0walTp/D9998jKCgIffv2zeXIiYiIyFIpTW5mz56NPn36oG/fvqhWrRrmzp0LLy8vLFmyJMPrDx48iLJly2LQoEEoV64cXnzxRXz44YcIDg5+4nskJiYiLi4u3UFERET6pSy5efDgAY4cOYK2bdumu79t27bYv39/hs9p2rQp/v33X2zZsgWapuHatWv44Ycf8Oqrrz7xfQIDA+Hu7p56eKXdgIaIiIh0R1lyExMTg+TkZHh6eqa739PTE1FRURk+p2nTpvj222/x1ltvwdHREcWKFYOHhwcWLFjwxPcJCAhAbGxs6hEREZGjvw8iIiKyLMoLig0GQ7rbmqY9dp9RaGgoBg0ahPHjx+PIkSPYunUrwsLC0L9//ye+vpOTE9zc3NIdREREpF/2qt64cOHCsLOze2yUJjo6+rHRHKPAwEA0a9YMw4cPBwDUrl0bLi4uaN68OaZOnYrixYubPW4iIiKybMqSG0dHRzRo0ADbt29Hly5dUu/fvn07OnXqlOFz7t27B3v79CHb2dkBkBGfzDBex8JiIiIi62H83M7U572m0Nq1azUHBwftiy++0EJDQzV/f3/NxcVFu3TpkqZpmjZq1CjN19c39fpVq1Zp9vb22uLFi7ULFy5oe/fu1by9vbUXXngh0+8ZERGhAeDBgwcPHjx4WOERERHxzM96ZSM3APDWW2/hxo0bmDx5MiIjI1GzZk1s2bIFZcqUAQBERkam63nTu3dv3LlzBwsXLsTQoUPh4eGBl19+GZ9++mmm37NEiRKIiIiAq6vrE2t7sisuLg5eXl6IiIhgbY+V4s/QuvHnZ/34M7R+5voZapqGO3fuoESJEs+81qBpmZzPoWeKi4uDu7s7YmNj+Y/SSvFnaN3487N+/BlaP0v4GSpfLUVERESUk5jcEBERka4wuclBTk5OmDBhApycnFSHQtnEn6F148/P+vFnaP0s4WfImhsiIiLSFY7cEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyU0OWbx4McqVK4e8efOiQYMG2LNnj+qQKAt2796Njh07okSJEjAYDNi8ebPqkCgLAgMD0bBhQ7i6uqJo0aLo3Lkzzpw5ozosyoIlS5agdu3acHNzg5ubG5o0aYLffvtNdViUTYGBgTAYDPD391fy/kxucsC6devg7++PMWPG4NixY2jevDl8fHzSbR1Bli0+Ph516tTBwoULVYdC2bBr1y4MGDAABw8exPbt25GUlIS2bdsiPj5edWiUSaVKlcL06dMRHByM4OBgvPzyy+jUqRNOnTqlOjTKoqCgICxbtgy1a9dWFgOXgueARo0aoX79+liyZEnqfdWqVUPnzp0RGBioMDLKDoPBgE2bNqFz586qQ6Fsun79OooWLYpdu3bhpZdeUh0OZVPBggXx2WefoU+fPqpDoUy6e/cu6tevj8WLF2Pq1KmoW7cu5s6dm+txcOTmOT148ABHjhxB27Zt093ftm1b7N+/X1FURLYtNjYWgHw4kvVJTk7G2rVrER8fjyZNmqgOh7JgwIABePXVV9G6dWulcSjdFVwPYmJikJycDE9Pz3T3e3p6IioqSlFURLZL0zQMGTIEL774ImrWrKk6HMqCkydPokmTJrh//z7y58+PTZs2oXr16qrDokxau3Ytjh49iqCgINWhMLnJKQaDId1tTdMeu4+IzM/Pzw8nTpzA3r17VYdCWVSlShWEhITg9u3b2LBhA3r16oVdu3YxwbECERERGDx4MLZt24a8efOqDofJzfMqXLgw7OzsHhuliY6Ofmw0h4jMa+DAgfjpp5+we/dulCpVSnU4lEWOjo6oWLEiAMDb2xtBQUGYN28eli5dqjgyepYjR44gOjoaDRo0SL0vOTkZu3fvxsKFC5GYmAg7O7tci4c1N8/J0dERDRo0wPbt29Pdv337djRt2lRRVES2RdM0+Pn5YePGjdixYwfKlSunOiTKAZqmITExUXUYlAmvvPIKTp48iZCQkNTD29sbPXr0QEhISK4mNgBHbnLEkCFD4OvrC29vbzRp0gTLli1DeHg4+vfvrzo0yqS7d+/i/PnzqbfDwsIQEhKCggULonTp0gojo8wYMGAAvvvuO/z4449wdXVNHUl1d3eHs7Oz4ugoM0aPHg0fHx94eXnhzp07WLt2LXbu3ImtW7eqDo0ywdXV9bEaNxcXFxQqVEhJ7RuTmxzw1ltv4caNG5g8eTIiIyNRs2ZNbNmyBWXKlFEdGmVScHAwWrVqlXp7yJAhAIBevXph9erViqKizDK2YWjZsmW6+1etWoXevXvnfkCUZdeuXYOvry8iIyPh7u6O2rVrY+vWrWjTpo3q0MgKsc8NERER6QprboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMbohId3r37o3OnTurDoOIFGFyQ0TZ0rt3bxgMhseO9u3bqw4N8+bNs5htMwwGAzZv3qw6DCKbwr2liCjb2rdvj1WrVqW7z8nJSVE0QHJyMgwGA9zd3ZXFQETqceSGiLLNyckJxYoVS3cUKFAAO3fuhKOjI/bs2ZN67axZs1C4cGFERkYCkE0u/fz84OfnBw8PDxQqVAhjx45F2u3uHjx4gBEjRqBkyZJwcXFBo0aNsHPnztTHV69eDQ8PD/zyyy+oXr06nJyccPny5cempVq2bImBAwfC398fBQoUgKenJ5YtW4b4+Hi89957cHV1RYUKFfDbb7+l+/2FhoaiQ4cOyJ8/Pzw9PeHr64uYmJh0rzto0CCMGDECBQsWRLFixTBx4sTUx8uWLQsA6NKlCwwGQ+ptIjIvJjdElONatmwJf39/+Pr6IjY2FsePH8eYMWOwfPlyFC9ePPW6L7/8Evb29jh06BDmz5+POXPmYMWKFamPv/fee9i3bx/Wrl2LEydOoGvXrmjfvj3OnTuXes29e/cQGBiIFStW4NSpUyhatGiGMX355ZcoXLgwDh8+jIEDB+J///sfunbtiqZNm+Lo0aNo164dfH19ce/ePQBAZGQkWrRogbp16yI4OBhbt27FtWvX0K1bt8de18XFBYcOHcKMGTMwefJkbN++HQAQFBQEQHYnj4yMTL1NRGamERFlQ69evTQ7OzvNxcUl3TF58mRN0zQtMTFRq1evntatWzetRo0aWt++fdM9v0WLFlq1atW0lJSU1PtGjhypVatWTdM0TTt//rxmMBi0K1eupHveK6+8ogUEBGiapmmrVq3SAGghISGPxdapU6d07/Xiiy+m3k5KStJcXFw0X1/f1PsiIyM1ANqBAwc0TdO0cePGaW3btk33uhERERoA7cyZMxm+rqZpWsOGDbWRI0em3gagbdq06Ql/ikRkDqy5IaJsa9WqFZYsWZLuvoIFCwIAHB0d8c0336B27dooU6YM5s6d+9jzGzduDIPBkHq7SZMmmDVrFpKTk3H06FFomobKlSune05iYiIKFSqUetvR0RG1a9d+Zqxpr7Gzs0OhQoVQq1at1Ps8PT0BANHR0QCAI0eO4K+//kL+/Pkfe60LFy6kxvXoexcvXjz1NYhIDSY3RJRtLi4uqFix4hMf379/PwDg5s2buHnzJlxcXDL92ikpKbCzs8ORI0dgZ2eX7rG0CYezs3O6BOlJHBwc0t02GAzp7jO+RkpKSuqvHTt2xKeffvrYa6WdWsvodY2vQURqMLkhIrO4cOECPv74Yyxfvhzr169Hz5498eeffyJPHlOp38GDB9M95+DBg6hUqRLs7OxQr149JCcnIzo6Gs2bN8/t8FG/fn1s2LABZcuWhb199v+rdHBwQHJycg5GRkTPwoJiIsq2xMREREVFpTtiYmKQnJwMX19ftG3bFu+99x5WrVqFv//+G7NmzUr3/IiICAwZMgRnzpzBmjVrsGDBAgwePBgAULlyZfTo0QM9e/bExo0bERYWhqCgIHz66afYsmWL2X9vAwYMwM2bN9G9e3ccPnwYFy9exLZt2/D+++9nKVkpW7Ys/vzzT0RFReHWrVtmjJiIjDhyQ0TZtnXr1nRTNABQpUoVvPPOO7h06RJ+/vlnAECxYsWwYsUKdOvWDW3atEHdunUBAD179kRCQgJeeOEF2NnZYeDAgfjggw9SX2vVqlWYOnUqhg4diitXrqBQoUJo0qQJOnToYPbfW4kSJbBv3z6MHDkS7dq1Q2JiIsqUKYP27dunG316llmzZmHIkCFYvnw5SpYsiUuXLpkvaCICABg0LU1TCSKiXNKyZUvUrVs3w0JjIqLnwWkpIiIi0hUmN0RERKQrnJYiIiIiXeHIDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdOX/AfewDez6rcttAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -566,7 +588,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.9.16" } }, "nbformat": 4, From c1e2cbac2ed09f28d9261e52327a2aa7ccdf9ac8 Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 09:39:03 +0100 Subject: [PATCH 02/12] more clear explanation W&B --- README.md | 2 +- workflow/pred_temperature_LSTM.ipynb | 2893 +++++++++---------- workflow/pred_temperature_autoencoder.ipynb | 27 +- workflow/pred_temperature_transformer.ipynb | 14 +- 4 files changed, 1392 insertions(+), 1544 deletions(-) diff --git a/README.md b/README.md index 8531787..83808e3 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,7 @@ Before playing with these notebooks, please make sure that you have all the depe ```sh conda create -n s2scookbook python=3.10 ``` -You can simply install the dependencies by go to this repo and run the following command: +You can simply install the dependencies by going to this repo and run the following command: ```sh pip install . ``` diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 5699b77..78a91c7 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -167,7 +167,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3dd1gUV9sG8HsWlqWDIoIFIyoWrKjYYrAkltijURM1xmjsyms0ryXmtStBI9HYW4TYW4zGJJZYMHYFewt2FBBFpErZ3fP9wcfEFVQWFnaB+3ddXmFnZ+Y8c05md56dOedIQggBIiIiIiIiI1MYOwAiIiIiIiKAyQkREREREZkIJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEsyNHUBhodVqERERATs7O0iSZOxwiIiIqAgTQiAhIQFly5aFQsHfkqn4YHKSQxEREXBzczN2GERERFSMhIeHo3z58sYOg6jAMDnJITs7OwAZHxL29vZGjoaIiIiKsvj4eLi5ucnXH0TFBZOTHMp8lMve3p7JCRERERUIPkpOxQ0fYiQiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgksEM8ERFRHgkhkJqaarD9qVSqXHWENlQcuSnfFOrAkDEYuw1SUlLyvA+iwojJCRERUR6lpqaiZ8+eBtvftm3bYGlpabQ4clO+KdSBIWMwdhukp6fneR9EhRGTEyIiIgMJfZSQ533UL5f3eS0uPsn9hW1dZ2WeyjaFOsjL8QN5rwMAQPiZvG3v6pX3GIgKISYnREREBtR0hB/MzC303k6jTsPJpZMMFkeLCSugUKpyvL42PRXB/kMNUrYp1IG+xw8Ytg4AYP0QL6iU+nXvTU3Xot/K8waLgaiwYXJCRERkQGbmFjCz0O+iOD8olCqYW+T8sSS1Acs2hTrQ9/gBw9YBAKiUClgqzQy8V6KijaN1ERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUkwN3YARERERdFhvyF4EfcUkqSA0soGDfpPQomK1XF11yrc/Xs3EqLuw2fsIpSr3yJfytekpeDInEF4/uAmzFVWsCrhgma+AbBzrYCn/5zHyaUToElLgSYtFR5t+8Cz21CDx/C6OkiJi8HJ5ZOR+DgcZkoLeA/8H5yr1Td4+QCwd1J3vIh9/P8x2KLJyLlwqlwbL54/wdG5w5EQeRcKpQWa+QagVFWvfImh7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r42G7g75EgNRYWHUOyd+fn7w9vaGnZ0dSpcujW7duuHmzZs66wghMG3aNJQtWxZWVlZo2bIlrl69Kr//7NkzjB49GtWqVYO1tTUqVKgAX19fxMXF6exn9uzZaNasGaytreHo6FgQh0dERMXYu77fo8N3v+BDv+2o3qE/Tq+aAgBwqdkYLf67FKWrN8j3GKp1+Bw91pxFt2V/w61xWxxfOAYAcGzBf1C39xh0W3oUnQL24sr2xXj+4Oabd5YLr6uDC1sWoFSVOugc8DsaD5mJE0smQqtRG7x8AGg1eS0+Wn4c3Zb9jVofj8KxgFEAgHNrpsO5RkN8vDYE741bgmD/IfkWw9YRDXBpZgtcmOGDce0rYeCaiwCAidtuoEllR4T5t8bagXXRd+V5qDXafImBqLAwanISHByMkSNH4tSpUzhw4ADUajXatm2LpKQkeZ25c+ciICAAixcvxtmzZ+Hq6oo2bdogISEBABAREYGIiAh8//33uHz5MgIDA7F3714MGjRIp6y0tDT07NkTw4cPL9BjJCKi4snCxl7+Oy05EZIkAQBKVakDOxe3fC/fzMISbo3ayuWWruGNhMh78vupifEAgPSUJCiUFlDZlTB4DK+rg/BT++DR5hMAgFPlWrB0cMKTm+cNXj4AqGz/vRORlhQPSBmXPneP/ooanb8EADhXqw8rx9KIvnYmX2JwtFbKf8clp0OhyKiHrWcjMLJ1RQCAdyVHuNhb4MSt2HyJgaiwMOpjXXv37tV5vXbtWpQuXRohISHw8fGBEAILFizA5MmT0b17dwBAUFAQXFxcsHHjRgwdOhS1atXCjh075H1UrlwZs2fPRr9+/aBWq2FunnGI06dPBwAEBgYWzMEREVGxd3LZN/IFb8sJy40ay9VfV6BCk/YAgPfGLcFf0/ogNGgWUuJi8O5/foBVidL5Uu6rdZCa8BxCCFjal5TXsXEui+SYSKBKnXyJIXjuMERd/BsA0Hb2dqTEP4MQWlg5lpLXsXWpgKQnD/OlfADov+o8Dl+PAQDsHdcYMYlp0AoBZ3uVvE7FUtYIf5aSbzEQFQYm1eck81GskiUzPrDu3r2LqKgotG3bVl5HpVKhRYsWOHHiBIYOzf752Li4ONjb28uJSW6kpqYiNTVVfh0fH5/rfRERUfHUdPgcAMCdo7twfuN8tBy/zChxXNw0H/ERd/CubwAA4PK2H+H95QxUavER4iPv4c//dkKJSrXypexX66DpcD/g/++gyITIl7IztRifkRiGHdiEs6unwGf8Ckh4JQbkbww/D87ozxJ0LBz/3XIN64Z4ZYkhn6uBqFAwmdG6hBAYO3Ysmjdvjlq1Mj4go6KiAAAuLi4667q4uMjvvSomJgYzZ858beKSU35+fnBwcJD/ubnl/y14IiIqmir5dEX0tbNITXhe4GVf3rYI947vQdtZ22BuaY2UuBjcP/E7KrX4CABgX6YinKs3xJMb5/I1jsw6yJQS/0z+O+lpJKydyuRr+QDg0eZTRF48Jr9+8fyp/Hfi43DYOJfP9xg+b+6Gwzdi5NdP4v/9IfR+TDLcSlrmewxEpsxkkpNRo0bh0qVL2LRpU5b3JOnVXxZElmVAxt2Njh07wtPTE1OnTs1TPJMmTUJcXJz8Lzw8PE/7IyKi4iM9ORHJsdHy6/CzB2Fh6wAL24IdienKjiW4c2QH2vvtlPteWNg6wkypQuSl4wCAlLgYPLl+Fo4Vqhu07DfVQYVGbRB2YDMAIOb2FaTEPYVzNcOPlJWWFJ/xuNj/u3d8D1T2JaGyK4GKPl1x/bfVAIAnN0PxIvYxSns2MngM8S/SERH776NaO0Mi4WRrgZI2SvT0LoMlh+4BAM7eeY6ouFQ0q2L4vj9EhYlJPNY1evRo7N69G0ePHkX58v/+auHq6gog4w5KmTL//qISHR2d5W5KQkIC2rdvD1tbW+zcuRNKpRJ5oVKpoFKp3r4iERHRK9JeJOLYgq+gSUuBpFBAZVcCLb5eAkmScHXXaoQd2ITUhFicWvEtzJQWaD9nG5SWNgaNIelpBM6s/BZ2ZSriz/GdAQAKpQpdfvwLrSavxZkVk6HVqCE0atT6eDRKVa1n0PLfVAd1P/0Kp5Z+g9/GdoTCXImmw+dAYWYOjUZj2BiS4nFo5ufQpL0AJAUsHUqhzYzNkCQJ3oOmIXjuMGz/ogEU5hbwGb8CCjPDXxbFJavRY8k5vEjTQqEAnO1U2DPGG5Ikwb9nDXy26jw8JhyChbkC6wZ7wdzMZH43JjIKoyYnQgiMHj0aO3fuxJEjR+Du7q7zvru7O1xdXXHgwAF4eWX8opKWlobg4GD4+/vL68XHx6Ndu3ZQqVTYvXs3LC15S5SIiIzHxskV7WZmfRIAAGp2/RI1u36ZZbkmLTWbtfMQQ6myGLgv+5GfytVviXL1j+gsU6cZtiP2m+rAyqEUWk1aadDysmNbujy6LDqYfQwlSqO93y86ywxdBwDg5mSFM1Pey/Y9FwcV9n/dRGdZSrphEzSiwsaoycnIkSOxceNG7Nq1C3Z2dnI/EgcHB1hZWUGSJIwZMwZz5syBh4cHPDw8MGfOHFhbW6NPnz4AMu6YtG3bFsnJyVi/fj3i4+PlzuvOzs4wMzMDADx48ADPnj3DgwcPoNFocOHCBQBAlSpVYGtrW/AHT0REREREOoyanCxbljFqScuWLXWWr127FgMGDAAAjB8/Hi9evMCIESMQGxuLxo0bY//+/bCzswMAhISE4PTp0wAyEo2X3b17FxUrVgQATJkyBUFBQfJ7mXdiDh8+nKV8IiIiIiIqeEZ/rOttJEnCtGnTMG3atGzfb9myZY72ExgYyDlOiIiIiIhMGHtdERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQRzYwdARERUlGjUaQW63eto01Oh1nN9QzGFOtD3+DO3MaTUdG2BbENUlDA5ISIiMqCTSycZOwQAQLD/UKOVbQp1YMzjz9Rv5Xljh0BU6DA5ISIiMpD65eyMHQIAoK6z0mhlm0IdGPP4ZW6N8rZ9erph4iAqZCQhhDB2EIVBfHw8HBwcEBcXB3t7e2OHQ0REJkQIgdRUwz0SpFKpIEmS0eLITfmmUAeGjMHYbRAfHw8XFxded1CxwzsnREREeSRJEiwtLY0dhlHjMIU6KEoxpKUZtg8SUWHB0bqIiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpOgV3KiVqsRFBSEqKio/IqHiIiIiIiKKb2SE3NzcwwfPhypqan5FQ8RERERERVTej/W1bhxY1y4cCEfQiEiIiIiouLMXN8NRowYgbFjxyI8PBwNGjSAjY2Nzvt16tQxWHBEZJqEEAa9g6pSqSBJktHiMHb5jCHvMRARUdEgCSGEPhsoFFlvtkiSBCEEJEmCRqMxWHCmJD4+Hg4ODoiLi4O9vb2xwyEyqpSUFPTs2dNg+9u2bRssLS2NFoexy2cMeY+BqKjhdQcVV3rfObl7925+xEFEhVDoo4Q876N+Obs87+Pik/Rcb1vXWZnn8vNaD8auA8Aw9YDwM3nb3q1R3mMgIqJCTe/k5J133smPOIiokGo6wg9m5hZ6b6dRp+Hk0kkGi6PFhBVQKFU5Xl+bnopg/6EGKz839WDsOgAMXw/rh3hBpdSvO2Nquhb9Vp43WAxERFR46Z2cZLp27RoePHiAtLQ0neVdunTJc1BEVHiYmVvAzEK/C+L8oFCqYG6R88eB1AYu3xTqQd86AAxfDyqlApZKMwPvlYiIigu9k5M7d+7go48+wuXLl+W+JgDkDoxFtc8JERERERHlL72HEv7Pf/4Dd3d3PH78GNbW1rh69SqOHj2Khg0b4siRI/kQIhERERERFQd63zk5efIkDh06BGdnZygUCigUCjRv3hx+fn7w9fXF+fN8bpiIiIiIiPSn950TjUYDW1tbAECpUqUQEREBIKOj/M2bNw0bHRERERERFRt63zmpVasWLl26hEqVKqFx48aYO3cuLCwssHLlSlSqVCk/YiQiIiIiomJA7+Tk22+/RVJSEgBg1qxZ6NSpE9577z04OTlhy5YtBg+QiIiIiIiKB72Tk3bt2sl/V6pUCdeuXcOzZ89QokQJecQuIiIiIiIifend5yTTrVu3sG/fPrx48QIlS5Y0ZExERERERFQM6Z2cxMTE4P3330fVqlXRoUMHREZGAgC+/PJLjBs3zuABEhERERFR8aD3Y11fffUVlEolHjx4gBo1asjLe/fuja+++grz5883aIBERERElD2NRoP09HRjh0H0RhYWFlAocnZPRO/kZP/+/di3bx/Kly+vs9zDwwP379/Xd3dEREREpCchBKKiovD8+XNjh0L0VgqFAu7u7rCwsHjrunonJ0lJSbC2ts6y/OnTp1CpVPrujoiIiIj0lJmYlC5dGtbW1hyUiEyWVqtFREQEIiMjUaFChbf+v6p3cuLj44Off/4ZM2fOBABIkgStVot58+ahVatWuYuaiIiIiHJEo9HIiYmTk5OxwyF6K2dnZ0RERECtVkOpVL5xXb2Tk3nz5qFly5Y4d+4c0tLSMH78eFy9ehXPnj3D8ePHcx00EREREb1dZh+T7J5kITJFmY9zaTSatyYneo/W5enpiUuXLqFRo0Zo06YNkpKS0L17d5w/fx6VK1fOXcREREREpBc+ykWFhT7/r+p95wQAXF1dMX369NxsSkRERERElC2975xUrFgRM2bMQHh4eH7EQ0RERERExZTed07GjRuHwMBAzJgxA61atcKgQYPw0UcfcaQuIiIiImObX8CPeo0TBVuekUmShJ07d6Jbt27GDiXXWrZsiXr16mHBggXGDiVbet85GT16NEJCQhASEgJPT0/4+vqiTJkyGDVqFEJDQ/MjRiIiIiIq5CRJeuO/AQMGGC22ihUr5uhiPTIyEh9++GGO9xsYGAhHR8fcB1YM6Z2cZKpbty4WLlyIR48eYerUqVi9ejW8vb1Rt25d/PTTTxCieGXSRERERPR6kZGR8r8FCxbA3t5eZ9nChQv12l9aWlo+Rfp6rq6uRnlaSKPRQKvVFni5xpDr5CQ9PR1bt25Fly5dMG7cODRs2BCrV69Gr169MHnyZPTt29eQcRIRERFRIebq6ir/c3BwgCRJ8mulUolhw4ahfPnysLa2Ru3atbFp0yad7Vu2bIlRo0Zh7NixKFWqFNq0aQMA2L17Nzw8PGBlZYVWrVohKCgIkiTh+fPn8rYnTpyAj48PrKys4ObmBl9fXyQlJcn7vX//Pr766iv5Ls7rSJKEX3/9FQBw7949SJKEX375Ba1atYK1tTXq1q2LkydPAgCOHDmCL774AnFxcfJ+p02bBgDydBzlypWDjY0NGjdujCNHjsjlZN5x2bNnDzw9PaFSqbBq1SpYWlrqHBcA+Pr6okWLFgCAmJgYfPrpp2+sR1Ond3ISGhqK0aNHo0yZMhg9ejRq1qyJK1eu4NixY/jiiy8wefJk7N69Gzt37syPeImIiIioiElJSUGDBg2wZ88eXLlyBUOGDMFnn32G06dP66wXFBQEc3NzHD9+HCtWrMC9e/fw8ccfo1u3brhw4QKGDh2KyZMn62xz+fJltGvXDt27d8elS5ewZcsWHDt2DKNGjQIA/PLLLyhfvjxmzJgh38XRx+TJk/H111/jwoULqFq1Kj799FOo1Wo0a9Ysyx2ir7/+GgDwxRdf4Pjx49i8eTMuXbqEnj17on379ggLC5P3m5ycDD8/P6xevRpXr15Fv3794OjoiB07dsjraDQabN26Vb4pkNN6NGV6d4j39vZGmzZtsGzZMnTr1i3biVQ8PT3xySefGCRAIiIiIiraypUrJ1+4Axl9nPfu3Ytt27ahcePG8vIqVapg7ty58uuJEyeiWrVqmDdvHgCgWrVquHLlCmbPni2vM2/ePPTp0wdjxowBAHh4eODHH39EixYtsGzZMpQsWRJmZmaws7ODq6ur3rF//fXX6NixIwBg+vTpqFmzJm7duoXq1avr3CHKdPv2bWzatAkPHz5E2bJl5X3s3bsXa9euxZw5cwBkPKW0dOlS1K1bV962d+/e2LhxIwYNGgQAOHjwIGJjY9GzZ0+96tGU6Z2c3LlzB++8884b17GxscHatWtzHRQRERERFR8ajQbfffcdtmzZgkePHiE1NRWpqamwsbHRWa9hw4Y6r2/evAlvb2+dZY0aNdJ5HRISglu3bmHDhg3yMiEEtFot7t69ixo1auQp9jp16sh/lylTBgAQHR2N6tWrZ7t+aGgohBCoWrWqzvLU1FQ4OTnJry0sLHT2DQB9+/ZF06ZNERERgbJly2LDhg3o0KEDSpQoASDn9WjK9E5O3paYEBERERHpY/78+fjhhx+wYMEC1K5dGzY2NhgzZkyWTu+vXmQLIbL0EXl1UCatVouhQ4fC19c3S7kVKlTIc+wvP0WUGcubOq9rtVqYmZkhJCQEZmZmOu/Z2trKf1tZWWU5tkaNGqFy5crYvHkzhg8fjp07d+rcEMhpPZqyXM0QT0RERERkKH///Te6du2Kfv36Aci4gA8LC3vrXY3q1avjjz/+0Fl27tw5ndf169fH1atXUaVKldfux8LCAhqNJpfRv152+/Xy8oJGo0F0dDTee+89vffZp08fbNiwAeXLl4dCoZAfKQNyX4+mJNejdRERERERGUKVKlVw4MABnDhxAtevX8fQoUMRFRX11u2GDh2KGzduYMKECfjnn3+wdetWBAYGAvj3LsaECRNw8uRJjBw5EhcuXEBYWBh2796N0aNHy/upWLEijh49ikePHuHp06cGO66KFSsiMTERBw8exNOnT5GcnIyqVauib9++6N+/P3755RfcvXsXZ8+ehb+/f5ZEKzt9+/ZFaGgoZs+ejY8//hiWlpbye7mtR1PCOydERERERUUhnbH9f//7H+7evYt27drB2toaQ4YMQbdu3RAXF/fG7dzd3bF9+3aMGzcOCxcuRNOmTTF58mQMHz5cno+kTp06CA4OxuTJk/Hee+9BCIHKlSujd+/e8n5mzJiBoUOHonLlykhNTTXYfH3NmjXDsGHD0Lt3b8TExGDq1KmYNm0a1q5di1mzZmHcuHF49OgRnJyc0LRpU3To0OGt+/Tw8IC3tzfOnj2bZeLI3NajKdErOUlPT0e1atXkMZeJiIiIiPQ1YMAAnRnhS5YsKc8f8jovzwPysi5duqBLly7y69mzZ6N8+fI6dxS8vb2xf//+1+67SZMmuHjx4lvjfjlpqVixYpYkxtHRMcuyZcuWYdmyZTrLlEolpk+fjunTp2dbzqv186ozZ85kuzwv9Wgq9EpOlEolUlNT3zg5jT78/Pzwyy+/4MaNG7CyskKzZs3g7++PatWqyesIITB9+nSsXLkSsbGxaNy4MZYsWYKaNWsCAJ49e4apU6di//79CA8PR6lSpdCtWzfMnDkTDg4O8n5iY2Ph6+uL3bt3A8j4H3nRokVwdHQ0yLEQFXeH/YbgRdxTSJICSisbNOg/CSUqVsfVXatw9+/dSIi6D5+xi1Cufot8KV+TloIjcwbh+YObMFdZwaqEC5r5BsDOtQKe3AzF6eWTkP4iEZKkQKOhs1Has9Hbd5oLr6uHlLgYnFw+GYmPw2GmtID3wP+hpHvNfIlh76TueBH7+P9jsEWTkXPhVLk2Xjx/gqNzhyMh8i4USgs08w1AqapeBi+/7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r43mVUsavHwiKl6WLl0Kb29vODk54fjx45g3b548hwkVPno/1jV69Gj4+/tj9erVMDfP21NhwcHBGDlyJLy9vaFWqzF58mS0bdsW165dk0djmDt3LgICAhAYGIiqVati1qxZaNOmDW7evAk7OztEREQgIiIC33//PTw9PXH//n0MGzYMERER2L59u1xWnz598PDhQ+zduxcA5ElpfvvttzwdAxFleNf3e1jY2AMAHp47iNOrpqD97K1wqdkYFZq0x5lVU/I9hmodPkd57zaQJAnXdq3E8YVj0G7ODhyc8Rla/Hc5ytR7D88f/IN9kz5C1+XH8iWG19XDhS0LUKpKHbSasBwxt6/g2MKx6OCfP5PVtpq8FirbjB9n7p/4HccCRqHrkmCcWzMdzjUaot2c7XhyMxSHZn2Oj1aeNHj5W0c0gKN1xug1v4ZGYeCaiwid7oOJ226gSWVH7B3XGGfvPMfHS0Nw27+VwcsnouIlLCwMs2bNwrNnz1ChQgWMGzcOkyZNMnZYlEt6ZxenT5/GwYMHsX//fnmIspf98ssvOd5XZqKQae3atShdujRCQkLg4+MDIQQWLFiAyZMno3v37gAyZgZ1cXHBxo0bMXToUNSqVUtnpszKlStj9uzZ6NevH9RqNczNzXH9+nXs3bsXp06dkiegWbVqFZo2bYqbN2/q3KkhotzJvCAHgLTkRPkOa6kqdV63iUGZWVjCrVFb+XXpGt64unM5UuOfITUhFmXqZYyI4lihKixsHfAo5FC+xPG6egg/tQ+dF2R85jlVrgVLByc8DbuQLzFkJiYAkJYUD0gZY5/cPforegZllOlcrT6sHEsj+lr2jwbkRWZiAgBxyelQKDLqYOvZCNyd2xoA4F3JES72FjgW9gxNKpcweAxEVHz88MMP+OGHH4wdBhmI3smJo6MjevTokR+xyJ11SpbMuM1/9+5dREVFoW3bfy84VCoVWrRogRMnTmDo0KGv3Y+9vb18Z+fkyZNwcHDQmRmzSZMmcHBwwIkTJ7JNTjInrckUHx+f9wMkKuJOLvtGvthtOWG5UWO5+usKVGjSHpYOTrBydMa9v3ej4ntdEH3jHOIe3UZSdHi+lf1qPaQmPIcQApb2/z7CZONcFskx+TeCSvDcYYi6+DcAoO3s7UiJfwYhtLByLCWvY+tSAUlPHuZL+f1Xncfh6zEAgL3jGiMmMQ1aIeBsr5LXqVjKGg9iUtCkcr6EQEREhZDeyUl+zfwuhMDYsWPRvHlz1KpVCwDkoc9cXFx01nVxccH9+/ez3U9MTAxmzpypk7hERUWhdOnSWdYtXbr0a4dX8/Pze20nJSLKXtPhcwAAd47uwvmN89Fy/LK3bJE/Lm6aj/iIO3jXNwAA8MG0DTi7Zhoubp6PEhU94VKzCSQz5Vv2knuv1kPT4X7Aq331DDQSzOu0GJ+RHIYd2ISzq6fAZ/wKSHi1v2D+xfDz4Iy+LEHHwvHfLdewbohXlvLzuQqIiKgQyvU8J0+ePMGxY8dw/PhxPHnyJM+BjBo1CpcuXcKmTZuyvJfdzJ/ZdcqPj49Hx44d4enpialTp75xH2/aDwBMmjQJcXFx8r/w8Pz7lZWoqKnk0xXR184iNeF5gZd9edsi3Du+B21nbYO5pTUAoGSlWmg3ezu6LgmGz3+XITkmCo4VquZ7LJn1kCkl/pn8d9LTSFg7ueZ7DB5tPkXkxX/717x4/u/4/YmPw2HjXD5fy/+8uRsO34iRXz+J//eO9P2YZFRwssxuMyIiKqb0Tk6SkpIwcOBAlClTBj4+PnjvvfdQtmxZDBo0CMnJybkKYvTo0di9ezcOHz6M8uX//aJ0dc344n717kZ0dHSWuykJCQlo3749bG1tsXPnTiiVSp39PH78OEu5T548ybKfTCqVCvb29jr/iCh76cmJSI6Nll+Hnz0IC1sHWLzU96EgXNmxBHeO7EB7v506/S6Sn/17/t/8IwjmltZwrdPc4OW/qR4qNGqDsAObAQAxt68gJe4pSnnUM3gMaUnxSI6JlF/fO74HKvuSUNmVQEWfrrj+22oAwJOboXgR+9jgo5bFv0hHRGyK/HpnSCScbC1Q0kaJnt5lsOTQPQDA2TvPERWXiuYeHK2LiIj+pfdjXWPHjkVwcDB+++03vPvuuwCAY8eOwdfXF+PGjcsyjvObCCEwevRo7Ny5E0eOHIG7u7vO++7u7nB1dcWBAwfg5ZXxiEBaWhqCg4Ph7+8vrxcfH4927dpBpVJh9+7dOuNaA0DTpk0RFxeHM2fOoFGjjC/i06dPIy4uDs2aNdO3CojoFWkvEnFswVfQpKVAUiigsiuBFl8vgSRJuLprNcIObEJqQixOrfgWZkoLtJ+zDUpLm7fvWA9JTyNwZuW3sCtTEX+O7wwAUChV6PLjX7j5RyBuH9oGCAGHClXx/pR1BhsS/WVvqoe6n36FU0u/wW9jO0JhrkTT4XOgMDP8PLhpSfE4NPNzaNJeAJIClg6l0GbGZkiSBO9B0xA8dxi2f9EACnML+IxfYfAY4l6o0XfFebxI00KhAJztVNgzxhuSJMG/Zw18tuo8PCYcgoW5AusGe8HcTAG1VmPQGIiIqPDS+1tpx44d2L59O1q2bCkv69ChA6ysrNCrVy+9kpORI0di48aN2LVrF+zs7OQ7JA4ODrCysoIkSRgzZgzmzJkDDw8PeHh4YM6cObC2tkafPn0AZNwxadu2LZKTk7F+/XrEx8fLndednZ1hZmaGGjVqoH379hg8eDBWrFgBIGMo4U6dOnGkLiIDsHFyRbuZWR/JBICaXb9Eza5fZlmuSUvNZu08xFCqLAbui832Pa9+E+DVb4LOMnVaSrbr5imGN9SDlUMptJq0UmeZoesAAGxLl0eXRQezj6FEabT30x1R0dD14FbSCmemvJftey4OKuz/uolByyMiKgoGDBiA58+fv3UCRVMWGBiIMWPG4Pnz53naj97JSXJycraPQpUuXVrvx7oyE5mXEx0go9N95qyY48ePx4sXLzBixAh5Esb9+/fDzs4OABASEoLTp08DAKpUqaKzn7t376JixYoAgA0bNsDX11ce+atLly5YvHixXvESERERmbJS044WaHlPp/notf6AAQMQFBQEADA3N4ebmxu6d++O6dOnZ5meojhZuHBhlpnl30aSJOzcuRPdunXLn6CMRO/kpGnTppg6dSp+/vln+fGpFy9eYPr06WjatKle+8pJI0iShGnTpmHatGnZvt+yZcsc7adkyZJYv369XvERERERkWG1b98ea9euRXp6Ov7++298+eWXSEpKyvbpm/T0dJ1+xAUpP8pOS0uDhYVFluUODgXbR/Nlxqzj7OjdIX7hwoU4ceIEypcvj/fffx8ffPAB3NzccOLECSxcuDA/YiQiIiKiIkKlUsHV1RVubm7o06cP+vbtKz/ONG3aNNSrVw8//fQTKlWqBJVKBSEE4uLiMGTIEJQuXRr29vZo3bo1Ll68qLPf3bt3o2HDhrC0tESpUqXkCbyBjB+7X31kytHREYGBgQCAe/fuQZIkbN26FS1btoSlpSXWr1+P+/fvo3PnzihRogRsbGxQs2ZN/PHHH/I+goOD0ahRI6hUKpQpUwYTJ06EWq2W32/ZsiVGjRqFsWPHolSpUmjTpk22dTJgwACdOyAtW7aEr68vxo8fj5IlS8LV1VXnh/rMJ4M++ugjSJIkvwaA3377DQ0aNIClpSUqVaqE6dOn68QkSRKWL1+Orl27wsbGBjNmzED58uWxfLnu/GShoaGQJAl37twBAAQEBMgTsLu5uWHEiBFITEzM9njyQu/kpFatWggLC4Ofnx/q1auHOnXq4LvvvkNYWBhq1qxp8ACJiIiIqOiysrJCenq6/PrWrVvYunUrduzYgQsXLgAAOnbsiKioKPzxxx8ICQlB/fr18f777+PZs4wh2n///Xd0794dHTt2xPnz53Hw4EE0bNhQ71gmTJgAX19fXL9+He3atcPIkSORmpqKo0eP4vLly/D394etrS0A4NGjR+jQoQO8vb1x8eJFLFu2DGvWrMGsWbN09hkUFARzc3McP35c7vucE0FBQbCxscHp06cxd+5czJgxAwcOHAAAnD2bMUz92rVrERkZKb/et28f+vXrB19fX1y7dg0rVqxAYGAgZs+erbPvqVOnomvXrrh8+TK+/PJLfPLJJ9iwYYPOOhs3bkTTpk1RqVIlAIBCocCPP/6IK1euICgoCIcOHcL48eP1qN2cydUwLVZWVhg8eLChYyEiIiKiYuTMmTPYuHEj3n//fXlZWloa1q1bB2dnZwDAoUOHcPnyZURHR0OlUgEAvv/+e/z666/Yvn07hgwZgtmzZ+OTTz7RmUC7bt26esczZswYnTsuDx48QI8ePVC7dm0AkC/UAWDp0qVwc3PD4sWLIUkSqlevjoiICEyYMAFTpkyBQpFxD6BKlSqYO3eu3rHUqVNHnrfPw8MDixcvxsGDB9GmTRu5bhwdHeWpNwBg9uzZmDhxIj7//HM53pkzZ2L8+PE6cwD26dMHAwcOlF/37dsXAQEBuH//Pt555x1otVps3rwZ33zzjU7dZHJ3d8fMmTMxfPhwLF26VO9je5NcJSf//PMPjhw5gujoaGi1Wp33pkyZYpDAiIiIiKjo2bNnD2xtbaFWq5Geno6uXbti0aJF8vvvvPOOfPENZAx+lJiYCCcnJ539vHjxArdv3wYAXLhwwSA/nL96t8XX1xfDhw/H/v378cEHH6BHjx6oU6cOAOD69eto2rSpztD07777LhITE/Hw4UNUqFAh233mVGY5mcqUKYPo6OjXrJ0hJCQEZ8+e1blTotFokJKSguTkZFhbW2cbk5eXF6pXr45NmzZh4sSJCA4ORnR0NHr16iWvc/jwYcyZMwfXrl1DfHw81Go1UlJSkJSUZNDBDPROTlatWoXhw4ejVKlScHV11WkQSZKYnBARERHRa7Vq1QrLli2DUqlE2bJls3TGfvVCV6vVokyZMjhy5EiWfTk6OgLIeKrnTSRJyjKA0suPkr2u7C+//BLt2rXD77//jv3798PPzw/z58/H6NGjIYTIMmdWZhkvL8/thfur9SJJUpabAq/SarWYPn26zt2fTC/PA5hdTH379sXGjRsxceJEbNy4Ee3atUOpUqUAAPfv30eHDh0wbNgwzJw5EyVLlsSxY8cwaNCgbOsxL/ROTmbNmoXZs2djwoQJb1+ZiIiIiOglNjY2WaZ/eJP69esjKioK5ubmOh2/X1anTh0cPHgQX3zxRbbvOzs7IzIyUn4dFhaW4ykw3NzcMGzYMAwbNgyTJk3CqlWrMHr0aHh6emLHjh06ScqJEydgZ2eHcuXK5fj4ckupVEKj0Z3Etn79+rh586Ze9ZupT58++PbbbxESEoLt27frjJ527tw5qNVqzJ8/X35cbevWrXk7gNfQu0N8bGwsevbsmR+xEBERERHp+OCDD9C0aVN069YN+/btw71793DixAl8++23OHfuHICMDt6bNm3C1KlTcf36dVy+fFmnn0fr1q2xePFihIaG4ty5cxg2bFiOhs8dM2YM9u3bh7t37yI0NBSHDh1CjRo1AAAjRoxAeHg4Ro8ejRs3bmDXrl2YOnUqxo4dK1/A56eKFSvi4MGDiIqKQmxsxiTEU6ZMwc8//4xp06bh6tWruH79OrZs2YJvv/32rftzd3dHs2bNMGjQIKjVanTt2lV+r3LlylCr1Vi0aBHu3LmDdevWZRndy1D0rrmePXti//79+RELEREREZEOSZLwxx9/wMfHBwMHDkTVqlXxySef4N69e/LE4C1btsS2bduwe/du1KtXD61bt5Yn6QaA+fPnw83NDT4+PujTpw++/vpruf/Fm2g0GowcORI1atRA+/btUa1aNbkDeLly5fDHH3/gzJkzqFu3LoYNG4ZBgwblKBEwhPnz5+PAgQNwc3ODl5cXAKBdu3bYs2cPDhw4AG9vbzRp0gQBAQF45513crTPvn374uLFi+jevbvOo3L16tVDQEAA/P39UatWLWzYsAF+fn75clySyMEMhj/++KP8d1JSEgICAtCxY0fUrl07S9bp6+tr+ChNQHx8PBwcHBAXFwd7e3tjh0NkVCkpKejZsydCHyWgue98mFmo9N6HJi0Vx34ch/rl7LBt2zadZ2H1jePik3S0+jYQ5hY534c6LQWHZw1AXWdlnsvPbT0Yuw4Aw9YDws9g28gGsFSa6bd9ugY9l4QAbo1yHQNRUfOm646UlBTcvXsX7u7uPF+oUNDn/9kc9Tn54YcfdF7b2toiODgYwcHBOsslSSqyyQkREREREeWvHCUnd+/eze84iIiIiIiomMv/3jpEREREREQ5oHdy8vHHH+O7777LsnzevHkcxYuIiIiIiHJN7+QkODgYHTt2zLK8ffv2OHr0qEGCIiIiIqI3y8GYRkQmQZ//V/VOThITE2FhYZFluVKpRHx8vL67IyIiIiI9ZI6UmtNJBImMLS0tDQBgZvb20Rz1niG+Vq1a2LJlC6ZMmaKzfPPmzfD09NR3d0RERESkBzMzMzg6OiI6OhoAYG1tLc9QTmRqtFotnjx5Amtra5ibvz310Ds5+d///ocePXrg9u3baN26NQDg4MGD2LRpE7Zt26Z/xERERESkF1dXVwCQExQiU6ZQKFChQoUcJdF6JyddunTBr7/+ijlz5mD79u2wsrJCnTp18Ndff6FFixa5CpiIiIiIck6SJJQpUwalS5dGenq6scMheiMLCwsoFDnrTaJ3cgIAHTt2zLZTPBEREREVHDMzsxw9x09UWOQqOQEyOrZER0dDq9XqLK9QoUKegyIiIiIiouJH7+QkLCwMAwcOxIkTJ3SWCyEgSRI0Go3BgiMiIiIiouJD7+RkwIABMDc3x549e1CmTBmODkFERERERAahd3Jy4cIFhISEoHr16vkRDxERERERFVN6T8Lo6emJp0+f5kcsRERERERUjOmdnPj7+2P8+PE4cuQIYmJiEB8fr/OPiIiIiIgoN/R+rOuDDz4AALz//vs6y9khnoiIiIiI8kLv5OTw4cP5EQcRERERERVzeicnb5oF/sKFC3mJhYgKIY06rUC3ex1teirUeq5vSLk5HmPXQeY2hpSarn37SgbYhoiIiqZcT8KYKS4uDhs2bMDq1atx8eJFPtZFVMycXDrJ2CEAAIL9hxq1fFOoB2PXAQD0W3ne2CEQEVEhluvk5NChQ/jpp5/wyy+/4J133kGPHj2wZs0aQ8ZGRCaufjk7Y4cAAKjrrDRq+aZQD8auAwCAWyNjR0BERIWcJIQQOV354cOHCAwMxE8//YSkpCT06tULy5cvx8WLF+Hp6ZmfcRpdfHw8HBwcEBcXB3t7e2OHQ2RUQgikphrucSCVSpWrCV0NFYexy2cMeY+BqKjhdQcVVzm+c9KhQwccO3YMnTp1wqJFi9C+fXuYmZlh+fLl+RkfEZkgSZJgaWlp7DCMHoexy2cMRERU1OQ4Odm/fz98fX0xfPhweHh45GdMRERERERUDOV4Esa///4bCQkJaNiwIRo3bozFixfjyZMn+RkbEREREREVIzlOTpo2bYpVq1YhMjISQ4cOxebNm1GuXDlotVocOHAACQkJ+RknEREREREVcXp1iH/VzZs3sWbNGqxbtw7Pnz9HmzZtsHv3bkPGZzLYMY2IiIgKCq87qLjK8Z2T7FSrVg1z587Fw4cPsWnTJkPFRERERERExVCe7pwUJ/wFg4iIiAoKrzuouMrTnRMiIiIiIiJDYXJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBLMjR1AYZOSkgILC4s870elUkGSJL22EUIgNTXVKGUbsnzGkPcYiIiIiIoiJid66t+/P5RKZZ73s23bNlhaWuq1TWpqKnr27GmUsg1ZPmPIewxERERERRGTEz1djEyEwixv1Va/nF3eYniSnutt6zrnPbEKfZSQp+3zevxA3uoAMEw9IPxM3rZ3a5T3GIiIiIiKECYnudB0hB/MzPV/tEujTsPJpZMMEkOLCSugUKpyvL42PRXB/kMNUjaQuzow5PED+tcBYPh6WD/ECyqlfl23UtO16LfyvMFiICIiIioqmJzkgpm5Bcws9LsoNjSFUgVzi5w/DqQ2cPmFsQ4Aw9eDSqmApdLMwHslIiIiKp44WhcREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBHNjFu7n54dffvkFN27cgJWVFZo1awZ/f39Uq1ZNXkcIgenTp2PlypWIjY1F48aNsWTJEtSsWVNeZ+XKldi4cSNCQ0ORkJCA2NhYODo66pQVGhqKCRMm4OzZszAzM0OPHj0QEBAAW1vbXMd/2G8IXsQ9hSQpoLSyQYP+k1CiYnVc3bUKd//ejYSo+/AZuwjl6rfIdRlvok5LwZE5g/D8wU2Yq6xgVcIFzXwDYOdaAU//OY+TSydAk5YCTVoqKr/fK19ieF0dpMTF4OTyyUh8HA4zpQW8B/4PJd1rvn2HubB3Une8iH38/zHYosnIuXCqXBsvnj/B0bnDkRB5FwqlBZr5BqBUVS+Dl9/2+1OIikuFQpJgZ2mORf1qol4FB0THp6L/qgu4HZ0EldIMy/vXRvOqJQ1ePhEREVFRYdQ7J8HBwRg5ciROnTqFAwcOQK1Wo23btkhKSpLXmTt3LgICArB48WKcPXsWrq6uaNOmDRISEuR1kpOT0b59e3zzzTfZlhMREYEPPvgAVapUwenTp7F3715cvXoVAwYMyFP87/p+jw7f/YIP/bajeof+OL1qCgDApWZjtPjvUpSu3iBP+8+Jah0+R481Z9Ft2d9wa9wWxxeOAQAcW/Af1O09Bt2WHkWngL24tnMZ0pMTDV7+6+rgwpYFKFWlDjoH/I7GQ2bixJKJ0GrUBi8fAFpNXouPlh9Ht2V/o9bHo3AsYBQA4Nya6XCu0RAfrw3Be+OWINh/SL7EsHVEA1ya2QIXZvhgXPtKGLjmIgBg4rYbaFLZEWH+rbF2YF30XXkeao3W4OUTERERFRVGvXOyd+9enddr165F6dKlERISAh8fHwghsGDBAkyePBndu3cHAAQFBcHFxQUbN27E0KFDAQBjxowBABw5ciTbcvbs2QOlUoklS5ZAocjIx5YsWQIvLy/cunULVapUyVX8Fjb28t9pyYmQJAkAUKpKnVztT1/mFpZwa9RWfl26hjeu7lwuv05NjAcApKckQWFuAYW50uAxvK4Owk/tQ+cFGe3rVLkWLB2c8DTsgsHLBwCVrcO/MSTFA1JGG989+it6BmWU6VytPqwcSyP62hmDl+9o/W+9xiWnQ6HIqIOtZyNwd25rAIB3JUe42FvgWNgzNKlcwuAxEBERERUFRk1OXhUXFwcAKFky49GXu3fvIioqCm3b/nsBrlKp0KJFC5w4cUJOTt4mNTUVFhYWcmICAFZWVgCAY8eOZZucpKamIjU1VX4dHx+f7b5PLvtGvuBtOWF5tusUlKu/rkCFJu0BAO+NW4K/pvVBaNAspMTFoMnIuXhw4vd8KffVOkhNeA4hBCzt/32Eyca5LJJjovKlfAAInjsMURf/BgC0nb0dKfHPIIQWVo6l5HVsXSog6cnDfCm//6rzOHw9BgCwd1xjxCSmQSsEnO1V8joVS1njQUwKmlTOlxCIiIiICj2T6RAvhMDYsWPRvHlz1KpVCwAQFZVxMevi4qKzrouLi/xeTrRu3RpRUVGYN28e0tLSEBsbKz8CFhkZme02fn5+cHBwkP+5ubllu17T4XPQddFfqN1zNM5vnJ/jmAzt4qb5iI+4gwYDvgUAXN72I7y/nIHe66/go5UncX7dd0h/kfSWveROtnXw/3dQZELkS9mZWoxfjt4brqL+gG9xdnXGo2USXokB+RfDz4O9EB7wAWZ1r4b/brmWbfn5XAVEREREhZ7JJCejRo3CpUuXsGnTpizvSdKrF3kiy7I3qVmzJoKCgjB//nxYW1vD1dUVlSpVgouLC8zMzLLdZtKkSYiLi5P/hYeHv7GMSj5dEX3tLFITnuc4LkO5vG0R7h3fg7aztsHc0hopcTG4f+J3VGrxEQDAvkxFOFerj9TE/I0tsw4ypcQ/k/9OehoJayfXfC0fADzafIrIi8fk1y+eP5X/TnwcDhvn8vla/ufN3XD4Roz8+kn8v3ff7scko4KTZb6WT0RERFSYmURyMnr0aOzevRuHDx9G+fL/Xjy6umZczL56lyQ6OjrL3ZS36dOnD6KiovDo0SPExMRg2rRpePLkCdzd3bNdX6VSwd7eXuffy9KTE5EcGy2/Dj97EBa2DrB4qf9DQbiyYwnuHNmB9n475b4XFraOMFOqEHnpOAAgJS4GT26GQmmV+5HJsvOmOqjQqA3CDmwGAMTcvoKUuKco5VHPoOUDGX1MkmP+vft17/geqOxLQmVXAhV9uuL6b6sBAE9uhuJF7GOU9mxk0PLjX6QjIjZFfr0zJBJOthYoaaNET+8yWHLoHgDg7J3niIpLRXMPjtZFRERE9DpG7XMihMDo0aOxc+dOHDlyJEui4O7uDldXVxw4cABeXhlDwKalpSE4OBj+/v65KjMzqfnpp59gaWmJNm3a5Go/aS8ScWzBV9CkpUBSKKCyK4EWXy+BJEm4ums1wg5sQmpCLE6t+BZmSgu0n7MNSkubXJX1OklPHuHMym9hV6Yi/hzfGQCgUKrQ5ce/0GryWpxZMRlajRpCo0bNj4Yh6v+TFUN5Ux3U/fQrnFr6DX4b2xEKcyWaDp8DhZnh/3dLS4rHoZmfQ5P2ApAUsHQohTYzNkOSJHgPmobgucOw/YsGUJhbwGf8CoPHEPdCjb4rzuNFmhYKBeBsp8KeMd6QJAn+PWvgs1Xn4THhECzMFVg32AvmZgqotRqDxkBERERUVBg1ORk5ciQ2btyIXbt2wc7OTr5D4uDgACsrK0iShDFjxmDOnDnw8PCAh4cH5syZA2tra/Tp00feT1RUFKKionDr1i0AwOXLl2FnZ4cKFSrInesXL16MZs2awdbWFgcOHMB///tffPfdd1nmQ8kpGydXtJuZ9RE0AKjZ9UvU7PplluWatNRs1s49G+dyGLgvNtv3ytVviXL1j8iv1WkpBk9O3lQHVg6l0GrSSp1lhj5+ALAtXR5dFh3MPoYSpdHe7xedZeq0lGzXzS23klY4M+W9bN9zcVBh/9dNDFoeERERUVFm1ORk2bJlAICWLVvqLF+7dq08B8n48ePx4sULjBgxQp6Ecf/+/bCzs5PXX758OaZPny6/9vHxybKfM2fOYOrUqUhMTET16tWxYsUKfPbZZ/l3cEREREREpBejP9b1NpIkYdq0aZg2bdpr13nb+wDw888/6xkdEREREREVJJPoEE9ERERERMTkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMgnmxg6gMNKo0wp0u+xo01Oh1nN9Q8rNsRjy+AH96yBzG0NKTdcWyDZERERExQGTk1w4uXSSsUNAsP9Qo5bPOsjQb+V5Y4dAREREVGQwOdFT3TK2UCqVxo3B2bjl1y9nZ9TyAePXAQDArZGxIyAiIiIqUiQhhDB2EIVBfHw8HBwc8PjxY9jb2+d5fyqVCpIk6bWNEAKpqXl/LCk3ZRuyfMaQ9xiIiKhoy7zuiIuLM8h1B1FhwTsnerK0tISlpaVRypYkyWhlm0L5jIGIiIioaONoXUREREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSOFpXDmWOuBwfH2/kSIiIiKioy7ze4IwPVNwwOcmhhIQEAICbm5uRIyEiIqLiIiEhAQ4ODsYOg6jAcBLGHNJqtYiIiICdnR0nzXuN+Ph4uLm5ITw8nBNGFQJsr8KDbVW4sL0KF1NtLyEEEhISULZsWSgUfAqfig/eOckhhUKB8uXLGzuMQsHe3t6kPuDpzdhehQfbqnBhexUupthevGNCxRFTcSIiIiIiMglMToiIiIiIyCQwOSGDUalUmDp1KlQqlbFDoRxgexUebKvChe1VuLC9iEwLO8QTEREREZFJ4J0TIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOaEci46OhkajMXYYREVOYmKisUOgHOLnIBFR/mJyQm8khEBaWhqGDBmCdu3a4eTJk8YOid7g8ePH+P3338HpiwqHyMhI9O3bF59++ikGDRqE0NBQY4dE2eDnYOETFRWFGTNmYOnSpfjjjz+MHQ4R6YHJCb2RJEmIjo7G7t278eTJExw6dAhxcXEAwAtgE7N48WKULVsWnTt3xtWrV40dDr3F+vXrUatWLaSlpeHDDz/EoUOH4O/vj6ioKGOHRq/g52DhMnPmTFSpUgVnzpxBYGAgPvroI2zcuBEA24uoMGByQm+Vnp6OTp064bPPPsP69etx6tQpABlf2GR8Qgj88ccf+PXXXzF37lx4eXlh+vTp0Gq1xg6NXkOj0eDnn3/G2LFjsW3bNowYMQL+/v4IDg6GlZWVscOjbPBz0PRpNBr4+/vjjz/+wNatW7Fnzx4cPHgQY8eOxaRJkwCwvYgKAyYn9FYPHz7EpUuX4OfnBxsbG2zatEn+1ZCMT5IkuLi44LPPPsPQoUPxww8/YMeOHdi3b5+xQ6PXuHz5Mu7cuYOyZcvKy5KTk9GjRw+eWyaKn4Omz8zMDGlpaWjdujXat28PALCzs0OLFi1gbm6O27dvGzlCIsoJJicEAEhLS8OLFy+yfe/hw4fw9PQEAEycOBFHjx7Fpk2bMGTIEERGRhZkmAQgISEBR48exa1bt+RlDRo0wOeffw5bW1v4+PigZ8+emDx5MhISEowYKQG651bm3SxPT084OTlhzZo1WLlyJXr16oWBAwfi/PnzqFOnDsaMGYPo6Ghjhl0sxcfH49SpU3j06FGW9/g5aHqSkpIQFhaG+Ph4ednXX3+N2bNnQ6FQyI9wPXv2DJaWlqhcubKxQiUiPTA5Ifj7+6N27do4evSozvLMC6n4+Hg8f/4cANC7d2+Ym5vD19cX586dgyRJfIa3AM2cOROVK1fG2LFjUadOHQQEBOh8MWe2mZ+fH27cuIHAwEAjRUpA1nNLoVBArVbDwsICCxcuRK9evbBr1y7cvn0bZ86cwd69e7FgwQKcOXMGS5cuNXL0xYufnx/c3NwwePBgeHp6YuHChTpJCj8HTcvMmTNRu3Zt9OrVC/Xq1ZM7vWc+FqnVauVHuE6ePAkvLy8AGY/nEZFpY3JSjD179gzDhw/Hxo0bERUVhZUrV+Lp06fy+wpFxv8eDx48QLt27fDXX3+hfPnyePHiBezs7NC3b1+UKlWKz/AWgDt37qBt27bYtm0b1q1bh927d2PixIn47rvvdO6OZLZZpUqVMG7cOMyePRsPHz4EkPHYUFJSklHiL27edG6ZmZkBAJo0aQJfX1+kpqZi4MCBaNiwIezt7TFgwADY2dnh8ePHvJAqIH/++SfWrVuHoKAg7N69GxMmTMCqVaswZcoUeZ179+7xc9AE3L9/H127dsWWLVuwePFizJ8/Hz4+Pvjyyy/x+PFjeT2FQiGfP6dPn0aDBg0AAEqlEgA7xhOZMiYnxVhcXBzs7e3h5+eH33//HTt37sRff/0l//qe+V8zMzOMHDkS3bt3x5AhQxAeHo5+/fohKCgIx44dM+YhFBuPHj1Cs2bNsHPnTrRr1w5ly5bFl19+CXt7+9duM3HiRFhaWmLevHlYt24d2rVrxyE1C8ibzq2XL2Lv37+PW7duoXHjxvKy5ORkxMfHo0KFCvKFFOWvvXv3wtLSEt26dYO7uzu++eYbDBs2DMePH8fy5cvl9fg5aHynTp3C8+fPsX37dnTo0AGtW7dGYGAgkpKScObMGZ11lUolwsPDce/ePXTv3h1ARlv36dMH9+/fN0b4RJQTgoottVot7t+/L7/u1auXqFOnjrh7967Oert37xb+/v7in3/+kZdFR0eLGjVqiODg4IIKt1hLS0sT4eHhOq8/+ugj0bx5czFz5kzxzz//CI1GI4QQ8n+FEGLq1KlCkiRhYWEhJk2aVOBxF1c5PbeEEMLLy0u0aNFCrFu3ToSGhopOnTqJmjVriosXLxZgxMWXRqMRw4cPF5988olISUmRl0dERIihQ4eKunXriuTkZPHXX3+JOXPm8HPQSLRarRBCiGfPnolt27bpvBcVFSWqVasm9u/fn2W79evXi/fff1+Eh4eLDz/8UJibm4tx48YVSMxElDtMTkj+0I+JiRFKpVL4+fnpfEmr1Wqd9TNfp6amFlyQJLt+/bqwtrYW3t7eYsqUKaJevXqiadOmYs2aNfI6iYmJYuTIkUKSJDFo0CARGxtrvICLsTedW5nn0c2bN0WDBg1EtWrVRKVKlUSvXr3Es2fPjBZzcZLZPn5+fsLNzS3bH2a8vLxEYGCgzvpC8HPQGF6ufyH+/SHm2rVrwsnJSSdxzFy3f//+QpIkoVQqRceOHcXTp08LLmAiyhU+1lVMiZeet5UkCWq1GiVLlsTkyZMREBCA69evy+9n9mPI3CbzmXkLC4sCjLj4Eq88G+3m5oZ9+/bh1KlTmD59Ok6fPg1HR0ecOXMGaWlpAICnT5/Czs4Of//9N1avXg1HR0cjRF60paSkZLs8p+eWmZkZ1Go1qlatir/++gu///47Dh48iC1btqBEiRIFcgzFXeajq2PGjEFcXBw2bNig837Lli2hVCrl0bhefiSPn4P5Jzo6Wq8+IUePHoW7uzs8PDyybGdubo5atWrhzJkz2LNnD5ycnAwdLhEZGJOTIioyMhI9e/bE1q1bAWRMTpVJrVbLX7KZyzNfT506FRYWFli2bBliY2Nx4MABrF+/XmcdMqzw8HBs374doaGhcgfOzC/Yl9tKrVYDAKytrdG8eXMoFApotVpYWFggMTERUVFR8oXSO++8Az8/P7z77rtGOKKi7e7du6hbty7mzJmT5T19z63MWasdHR1RuXJlVKxYsWAOopiIjIzEyZMnce/evSzvqdVqOcGwtLTElClT4O/vj3Pnzsnr2NnZIS0tDeHh4QUVcrF29+5ddOnSBRMmTMC1a9d03nvTufX333/Dx8dHXnb58mVcuXIFALBw4UJcunQJ9erVK6CjIKK8YnJSRK1ZswY7duzADz/8gOTkZJiZmcm/Epqbm0MIgQkTJmDz5s3QarUwMzOTP/AXLVqENWvWoEWLFmjXrh3nyshHkyZNQtWqVTF//nw0a9YMw4cPx507dyBJErRarU5bbdmyJUuHaoVCgTNnzkCSJAwePNiIR1L0CSEwbNgwVK1aFVWrVoWvr2+WdfQ9txITEwv6MIqNMWPGoHbt2vjPf/6DmjVrYunSpTqTJr7cVuvXr8e4ceNQtWpVTJw4UR44IjQ0FEIIdOvWzUhHUfRl/hDz888/o0GDBrCyssLIkSNRqlQpnfezO7eAjMEnQkJC0K5dO0RGRqJXr16oW7cuHjx4AACwtbU1wlERUV4wOSmiTpw4gd69e8PCwgL+/v467wUFBaFUqVLYv38/6tSpIz+2ZWZmhkePHuHUqVPQarWoWbMmHjx4gBEjRhjjEIq806dPY9euXdi+fTsOHz6MVatWISwsDJ999hmAjMQjKCgITk5OWdrq+vXruHz5MqZMmYIOHTrA09MTrVq1MubhFGm3bt2Ck5MTjh07hjNnzmDbtm3yxdPLeG4Z34MHD9ClSxecOXMGu3fvxtatWzFixAgsW7ZMZzSnl9uqZs2aAIB169bB3t4eH330Edq1a4f33nsPNWrU4B3IfJT5Q8ymTZvwv//9D1u2bEHDhg1hZ2cnvw8AgYGBWc4tSZIQFhaG58+fY+fOnahcuTLi4uJw7949dOzY0ZiHRUR5YG7sAChvhBA6v6Sr1WqYm5ujTJky6Ny5s3wh9cknn6BGjRpISEjAw4cPMWvWLAwZMkR+rAHImMn6+++/x88//4xDhw6hZcuWRjii4uPXX3+FRqORv0Q/++wzVKlSBW3btkVAQADGjh2Le/fuYc6cORg8eLBOW504cQJLliyBubk5tm7ditatWxvrMIqsl88tpVKJsmXLonnz5vDy8sKJEyewY8cOODk5oX79+mjevDlsbW1x9+5dzJ49O0t78dwqOFeuXIG1tTUWLVokz20xb948rF+/HrGxsQCAxMREhIeH67SVEAI1atRAYGAgTp8+jX/++QdTpkxhYpIPXv3eOnLkCG7fvo3Ro0fjxIkT8Pf3R2pqKqpUqYJ+/fqhSZMmuH//frbfW6dOncLjx48RGhqKXbt2oU2bNsY4JCIyIEno0+uMTMqLFy+gUCigUqkA6H7g16lTB5s3b0ZycjLGjx+P2rVrY968eQgLC0P16tV1Ptxf9vjxY7i4uBTYMRQXmW2j1WrlX9N/+OEHBAYG4uTJk7C2tpbXmzFjBhYuXIjIyEi5bV/dT1paGi5cuIBGjRoV+LEUB6+eW1qtFr/++is+/vhjtG3bFjdu3EDDhg1x69YtPHnyBG3atEFgYOAb98lzK39knhOZP8xERETg3r17aNasGYCMttNoNGjatCnGjh2LPn36yMszz0UqOK+eW0DGXeSOHTti9erVmD17Nj744ANYWlri0KFDuHz5Mq5duwZXV1ed/WS2e0JCAnbs2IEBAwYU8JEQUX7hJ3MhNWnSJDRv3hydOnXCjz/+iPj4ePni99GjR7CxsUHFihXRsGFDdO7cGRs3boSlpSUOHjyo0zn+Vbx4MryAgAC58/TLF0MODg5QKpU4ePCgvEySJHz++eewsbFBQEAAgH9HFMp8H8gYIYiJSf7I7txSKBRo1aoVPvvsMyQmJmL37t3YsGEDLly4gGnTpuHUqVNYtmwZAN32ehnPLcN7+dzK7JNQtmxZncREoVAgMjISN2/eRK1ateRtmZgUvOzOLSAj0ahXrx7mzJmDevXqYfbs2Zg6dSr27NmDcuXK4ZtvvgGgO7CLJEkQQsDOzo6JCVERw0/nQiYtLQ09e/bE7t27MX78eJQtWxYrVqyQfw1UKBSws7ODUqmEJEnYuXMnZs2ahfT0dNSpUwe+vr6wsLDQa5hGyp2zZ8+iVatW+Prrr/HLL7/g5MmTACCPyPXxxx8jNTUVe/fuRXR0tLxdmTJl8MEHHyAsLAwajYYXUQXkdefWp59+CgAoUaIEJk2ahAULFqB27dry7O09evSAh4cHLly4wPYqIK87t179XMtsixMnTsDd3V0nOcnEz8L897pz65NPPgGQcaff3t4e586dQ6NGjaBQKKDRaGBnZ4evvvoK+/fvR2JiYpY7/hxBkqho4rdoIXP79m1cvHgRCxYsQO/evREUFISVK1fi0KFDmDdvHgDg3LlzuHXrFho1aoSBAwfim2++wdy5cyFJEpYuXQqAX8gFYd++fShVqhR++ukn+b9ARv+F9PR02NvbY9iwYfjrr7+wa9cueTuVSoWwsDAoFIrXPn5Hhve6c+vw4cPyuVW9enU0bNgQkiRBoVBACIGSJUvixo0bbK8C9LpzK7NNXhUSEoKmTZvKycrhw4fx22+/AeAFbkF43bl15MgRfPfdd7C2tsbgwYNRsmRJbNu2DcC/88iEhYXBw8PjtW1LREVQfs7wSIYXEhIiJEkSMTExQgjdGY4dHR3FnTt3RHp6uvD09BRDhgyRZzyOiIgQvXr1Ej4+Pjqzv5PhZbbJ/fv3xYkTJ4QQGe3TuHFjsXXrViGEEOnp6fL6ffr0EfXq1RMrVqwQsbGxIiQkRNSvX19s3ry54IMvxt50bpUoUUJn9umX/fnnn8Lb21scP368wGItrnJybmXOGp5JrVYLLy8vsWXLFnHnzh3RunVrYWFhIbZs2VKwwRdjbzq3HBwcxO3bt4UQQkybNk04OTmJ//3vf+Kff/4RN27cEC1atBAzZswwWuxEVPCYnBQy58+fFzVr1hSLFi0SQvz7IZ+WliYqVqwoxowZI4QQ4vHjx/J7ma5evcrExEhu374tunXrJrp16yaePXsmhBAiNTVVfm/KlCnCzMxMNGjQQFhZWYlBgwaJtLQ0Y4Zc7Lzp3HJ3dxfjxo0TQmRc/F6+fFkcOnRIDB06VDg4OIiJEycKtVpttNiLs+zOrZcTlIsXLwo7Ozvx4YcfCnNzc9G7d28RHx9vrHCLpbedW5nfW1FRUWLlypXC0dFR1KpVS9jZ2YkvvviC31tExQwf6zIx4i23rd955x14eHjg2LFjiIyMlEepUSqVGD16tDxRX+nSpeXHFTL36enpmWX0J8q9t7XVy+tVqlQJnTt3RmRkpDyqU+Zs7pUqVcL06dNx8eJFTJ8+HaGhoVi9erXcp4EMIy/n1qhRo7Bp0ya5g3VoaChmzpyJf/75B8HBwfDz8+MjXQaU13Pr5X4/YWFhSExMRGpqKs6ePYvNmzfLc2hQwXjbuZX5veXi4oLBgwfj6tWrWL16NUJDQ/HTTz/xe4uomGFyYkKePHmC5ORk+fXLo/6o1WoAGZ1yO3fujBs3bmDr1q0AMkapATJGfypZsiTCw8N19stnqg0vJ22VKXOEmY8//hienp7Ys2cPwsLCAGTMQJ25fc2aNdGxY0dUr149v8MvdqKjo5GQkCC/zs25VaJECdy/fx9ARif4VatW4dChQ6hbt25BHUaxkJO2yvSmc+vcuXMAgMaNG+PgwYM4ePAg6tWrl8/RFz+Z7ZPdKJD6fm9lJqVly5ZF48aNUaVKlYI4BCIyMUxOTEB6ejqGDBmCd999F507d8YXX3yB2NhYnV//zM3NkZKSgs2bN2PgwIGoV68etmzZgsOHD8vrPHz4EM7OznjnnXeMcRjFQk7bKj09HUFBQfJrrVYLe3t79OzZE1qtFtOnT8f777+Phg0bZtmeDEetVmPQoEFo1KgRPvjgA/Tt2xcxMTG5Prfc3d0BADY2NqhcuXKBH09RltO2yum51ahRI8TExKB8+fJo1aqVsQ6ryEpPT8eIESMwdOhQALp3qzITFn2/t/hDGhEBTE6MLjY2Fh06dMCtW7ewdu1afPrpp7h48SI6deqEmzdvyuv9+OOPKFeuHDZv3gwAGDt2LCpVqoT27dvLXxDz589H7969AXA0rvygT1u5urrit99+k2ekzvzirlmzJsLDw7Fx40aULl0akZGRKFGihFGOp6hTq9UYMGAArl27hqCgIHz66ae4dOkSunXrhuvXr8vr8dwyPn3aSp9zy8nJySjHU9SdPn0aH3zwAbZv346goCAcP34ckiTJd08y24TnFhHlipH6utD/27t3r6hVq5a4ceOGvOzatWtCoVAIX19fERsbK9auXSsqVKggNmzYoNPRU6vVijlz5ojBgweLDh06cLSgfKZvW706IMHBgweFra2tqFevnjh37lxBh1/sPHjwQHh4eIh169bJyyIjI0W5cuXE6NGjxbNnz3humQh924rnlnEtWLBADBo0SPzxxx+ie/fuonHjxlnWWbp0qXB3d+e5RUR6Y3JiZEFBQcLR0VFn2fHjx0XJkiWFh4eH+P3334VWqxWJiYk667z65Uz5L7dtlenp06di48aNBREqiYwRgqysrERYWJgQQsgj/ixevFh4eHiI3377TWi1WpGUlKSzHc+tgpfbtsrEc6tgZJ4b4eHh4urVq0KIjB9tnJ2dxerVq4UQ/45CmJ6ezu8tIsoVPtZVgP744w8Aureu3dzc4OTkBH9/f3nZ6tWrMWjQIGi1WuzatQuSJMHKykpnX3w2N38Zsq0y9+Pk5CTPNk6GtXLlSqxatQpHjx6Vl3l4eMDV1RXr168H8O+jJiNHjoSDgwN27NiB1NRUWFtb6+yL51b+MmRbATy38ltmewUHB8vnRrly5eDp6QkAaNiwIT755BNMnz4dGo0GFhYW0Gq1MDc3h42Njc6+eG4RUY4YNzcqHvbs2SPKlSsnJEmSb2Fnzonw7NkzMW/ePCFJkmjWrJmwtbUVtWrVEunp6WLRokWiXLlyxgy92GFbFS4bN24UpUuXFk2bNhX16tUTzs7OYtasWUIIIeLi4sSECROEh4eHePz4sRBCiBcvXgghhFi3bp1wcHCQX1P+Y1sVLm9qr1fn9Dl9+rTw8PAQX3/9tRAi60SYRET6YHKSz/7++2/Rvn17MWrUKPHhhx+Khg0bZrtecHCwWLRokdi/f7+87LvvvhPNmzcXz58/L6hwizW2VeGyYcMGUbduXbF8+XIhhBCPHj0SixYtEjY2NiIuLk4IIcSBAweEt7e3GDFihBDi38dKDh8+LEqXLi0uXrxonOCLGbZV4fKm9spuAsukpCQxb9484eDgIO7fvy+EyGi3zLYlItIHH+vKJ+L/HwdycXFB27ZtMXbsWMycORPXrl3DmjVrAOiO3+/j44NRo0ahTZs2AIC0tDScOnUKXl5ecHBwKPgDKEbYVoVLZnulp6ejcePG6N+/P4CMuRG8vLxQrlw5XLt2DQDQvHlz9OnTB0FBQdi5cyfS09MBAMePH4enpydq165tnIMoJthWhUtO2uvl0dMyWVtbo2vXrvDy8kLPnj3RsGFD9OjRA8+ePSvQ+ImoiDBqalQEhYSEZPn1PPMWeHp6uhg3bpxwdnaWO3y+6saNG+Kff/4R/fv3F+7u7uLkyZP5HnNxxbYqXEJCQkRsbKz8+vnz51keL7lw4YJwdXUVz549k5fFx8eL8ePHCzs7O9GiRQvRs2dPYWVlJZYsWSKEYCfd/MC2Klxy214vu3z5sqhTp46QJEmMGDFC7hhPRKQv3jkxkB07dsDNzQ29evVCnTp1MHXqVERFRQHI6NwphIC5uTlGjhwJS0tLTJ48GUDWcd1///13fPjhh7h37x727duHJk2aFPixFHVsq8Ll5faqW7cupkyZgsePH8PBwQFmZmY6d7UOHTqEypUro0SJEkhLSwMA2NnZwd/fHz/99BNatmwJJycnhIaGYsSIEQDYSdeQ2FaFS17bK9OxY8fQqVMnWFtbIywsDEuWLIGFhUVBHw4RFRXGzY2KhrNnz4rq1auLBQsWiIsXL4qlS5cKZ2dnMXz4cBETEyOE+PcXea1WK5YuXSrMzc3FnTt3hBAZQy9mPscbEREhQkJCjHMgxQDbqnDJSXtpNBqRnp4uhBDio48+EiNHjjRmyMUW26pwMWR7RURE8M4xERkMk5M8yHzEYNmyZaJ8+fI6nf8WL14smjRpImbOnJllu5iYGNGsWTPRtWtXERISItq2bSvWrVvHEU7yEduqcNG3vTQajdBqtaJy5cpiz549Qgghbt68KT755BPx4MGDgg2+mGFbFS5sLyIydXysKw8yHzG4e/cuqlatCnNzc/m9AQMGoEGDBvjzzz9x9epVAIBGowEAlCxZEoMHD8bu3bvh7e0NCwsL9OjRQx7bnwyPbVW46NteCoUCZ8+ehbW1NerXr48xY8agTp06iImJQenSpY1yDMUF26pwYXsRkanjFZYeDhw4AF9fXyxcuBBnzpyRl7/77rs4ceKE3G9Bo9HAxsYGXbt2hSRJ2L9/PwDAzMwMaWlpWLp0KQYNGgQfHx9cunQJv/32W7YT91Husa0Kl7y2F5AxceaVK1dQrVo1HDhwAMePH8f+/fuhUqkK/HiKMrZV4cL2IqLChslJDkRGRqJz587o168fnj17hjVr1qBt27byB33btm1RsWJFeebwzF+m2rRpA4VCgVu3bsn7io2NxT///IO1a9fiyJEjqFmzZsEfUBHGtipcDNleSqUSpUqVQmBgIK5evYoGDRoU/AEVYWyrwoXtRUSFlrGfKzN1SUlJ4vPPPxe9e/eWO0ULIYS3t7cYMGCAECKjA/XPP/8sFAqFPKt4pr59+4pWrVoVaMzFFduqcDFEe7Vs2VJ+HR0dXTCBF0Nsq8KF7UVEhRnvnLyFtbU1VCoVBgwYAHd3d6jVagBAp06d5MmozMzM0KtXL3Tt2hVffvklgoODIYRAVFQUwsLC0LdvX2MeQrHBtipcDNFe/fr1k/fn7OxslOMoDthWhQvbi4gKM0mIVyZvoCzS09OhVCoBZMx1IUkSPvvsM1hZWWHlypXyspSUFHz44Ye4du0a6tWrhytXrqBChQrYunUr3NzcjHwUxQPbqnBhexUebKvChe1FRIUVk5Nc8vHxwcCBAzFgwAAIIaDVamFmZobHjx/j0qVLOHv2LCpWrIg+ffoYO9Rij21VuLC9Cg+2VeHC9iKiwoDJSS7cuXMHzZo1w++//y53DExLS+OMuCaIbVW4sL0KD7ZV4cL2IqLCgn1O9JCZxx07dgy2trbyB/z06dPxn//8B9HR0cYMj17Ctipc2F6FB9uqcGF7EVFhY/72VShT5lCLZ86cQY8ePXDgwAEMGTIEycnJWLduHSekMiFsq8KF7VV4sK0KF7YXERU2fKxLTykpKahduzZu374NCwsLTJ8+HRMmTDB2WJQNtlXhwvYqPNhWhQvbi4gKEyYnudCmTRt4eHggICAAlpaWxg6H3oBtVbiwvQoPtlXhwvYiosKCyUkuaDQamJmZGTsMygG2VeHC9io82FaFC9uLiAoLJidERERERGQSOFoXERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJElAMDBgyAJEmQJAlKpRIuLi5o06YNfvrpJ2i12hzvJzAwEI6OjvkXKBERUSHG5ISIKIfat2+PyMhI3Lt3D3/++SdatWqF//znP+jUqRPUarWxwyMiIir0mJwQEeWQSqWCq6srypUrh/r16+Obb77Brl278OeffyIwMBAAEBAQgNq1a8PGxgZubm4YMWIEEhMTAQBHjhzBF198gbi4OPkuzLRp0wAAaWlpGD9+PMqVKwcbGxs0btwYR44cMc6BEhERGQmTEyKiPGjdujXq1q2LX375BQCgUCjw448/4sqVKwgKCsKhQ4cwfvx4AECzZs2wYMEC2NvbIzIyEpGRkfj6668BAF988QWOHz+OzZs349KlS+jZsyfat2+PsLAwox0bERFRQZOEEMLYQRARmboBAwbg+fPn+PXXX7O898knn+DSpUu4du1alve2bduG4cOH4+nTpwAy+pyMGTMGz58/l9e5ffs2PDw88PDhQ5QtW1Ze/sEHH6BRo0aYM2eOwY+HiIjIFJkbOwAiosJOCAFJkgAAhw8fxpw5c3Dt2jXEx8dDrVYjJSUFSUlJsLGxyXb70NBQCCFQtWpVneWpqalwcnLK9/iJiIhMBZMTIqI8un79Otzd3XH//n106NABw4YNw8yZM1GyZEkcO3YMgwYNQnp6+mu312q1MDMzQ0hICMzMzHTes7W1ze/wiYiITAaTEyKiPDh06BAuX76Mr776CufOnYNarcb8+fOhUGR06du6davO+hYWFtBoNDrLvLy8oNFoEB0djffee6/AYiciIjI1TE6IiHIoNTUVUVFR0Gg0ePz4Mfbu3Qs/Pz906tQJ/fv3x+XLl6FWq7Fo0SJ07twZx48fx/Lly3X2UbFiRSQmJuLgwYOoW7curK2tUbVqVfTt2xf9+/fH/Pnz4eXlhadPn+LQoUOoXbs2OnToYKQjJiIiKlgcrYuIKIf27t2LMmXKoGLFimjfvj0OHz6MH3/8Ebt27YKZmRnq1auHgIAA+Pv7o1atWtiwYQP8/Px09tGsWTMMGzYMvXv3hrOzM+bOnQsAWLt2Lfr3749x48ahWrVq6NKlC06fPg03NzdjHCoREZFRcLQuIiIiIiIyCbxzQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEv4P4rb/DT/9ttoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -539,87 +539,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters, initialize config for wandb and syncronize training information with W&B server." + "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Calling wandb.login() after wandb.init() has no effect.\n" ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /Users/semv/surfdrive/Scripts/escience/cookbook/workflow/wandb/run-20230705_090451-b4ivyb49" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run worldly-dawn-2 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s-demo/test-LSTM" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s-demo/test-LSTM/runs/b4ivyb49" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", "# define hyperparameters and the \n", "hyperparameters = dict(\n", " epoch = 150,\n", @@ -634,10 +570,15 @@ " architecture = 'LSTM'\n", ")\n", "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-LSTM', entity='ai4s2s-demo', mode=mode)\n", + "mode = 'disabled'\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-LSTM' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, @@ -651,7 +592,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -672,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -706,7 +647,7 @@ "[]" ] }, - "execution_count": 19, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -731,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -759,1364 +700,1364 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 508.873840\n", - "Epoch : 0 [4/36(11%)]\tLoss: 490.130432\n", - "Epoch : 0 [8/36(22%)]\tLoss: 499.227112\n", - "Epoch : 0 [12/36(33%)]\tLoss: 440.458679\n", - "Epoch : 0 [16/36(44%)]\tLoss: 378.903778\n", - "Epoch : 0 [20/36(56%)]\tLoss: 208.213684\n", - "Epoch : 0 [24/36(67%)]\tLoss: 125.785759\n", - "Epoch : 0 [28/36(78%)]\tLoss: 63.172058\n", - "Epoch : 0 [32/36(89%)]\tLoss: 135.450989\n", - "Epoch : 1 [0/36(0%)]\tLoss: 5.131842\n", - "Epoch : 1 [4/36(11%)]\tLoss: 0.604036\n", - "Epoch : 1 [8/36(22%)]\tLoss: 2.837682\n", - "Epoch : 1 [12/36(33%)]\tLoss: 12.969792\n", - "Epoch : 1 [16/36(44%)]\tLoss: 15.635085\n", - "Epoch : 1 [20/36(56%)]\tLoss: 21.897655\n", - "Epoch : 1 [24/36(67%)]\tLoss: 28.752186\n", - "Epoch : 1 [28/36(78%)]\tLoss: 31.516699\n", - "Epoch : 1 [32/36(89%)]\tLoss: 27.108994\n", - "Epoch : 2 [0/36(0%)]\tLoss: 23.974064\n", - "Epoch : 2 [4/36(11%)]\tLoss: 16.667377\n", - "Epoch : 2 [8/36(22%)]\tLoss: 6.342164\n", - "Epoch : 2 [12/36(33%)]\tLoss: 3.680040\n", - "Epoch : 2 [16/36(44%)]\tLoss: 0.870227\n", - "Epoch : 2 [20/36(56%)]\tLoss: 2.680383\n", - "Epoch : 2 [24/36(67%)]\tLoss: 3.553781\n", - "Epoch : 2 [28/36(78%)]\tLoss: 4.441494\n", - "Epoch : 2 [32/36(89%)]\tLoss: 8.148849\n", - "Epoch : 3 [0/36(0%)]\tLoss: 5.047078\n", - "Epoch : 3 [4/36(11%)]\tLoss: 5.876122\n", - "Epoch : 3 [8/36(22%)]\tLoss: 7.644795\n", - "Epoch : 3 [12/36(33%)]\tLoss: 4.854731\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.451659\n", - "Epoch : 3 [20/36(56%)]\tLoss: 6.211252\n", - "Epoch : 3 [24/36(67%)]\tLoss: 2.830914\n", - "Epoch : 3 [28/36(78%)]\tLoss: 1.660030\n", - "Epoch : 3 [32/36(89%)]\tLoss: 1.711559\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.275324\n", - "Epoch : 4 [4/36(11%)]\tLoss: 3.034325\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.913728\n", - "Epoch : 4 [12/36(33%)]\tLoss: 3.217077\n", - "Epoch : 4 [16/36(44%)]\tLoss: 2.050319\n", - "Epoch : 4 [20/36(56%)]\tLoss: 2.318958\n", - "Epoch : 4 [24/36(67%)]\tLoss: 2.252594\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.704517\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.346983\n", - "Epoch : 5 [0/36(0%)]\tLoss: 1.053649\n", - "Epoch : 5 [4/36(11%)]\tLoss: 0.971992\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.406384\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.318402\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.611969\n", - "Epoch : 5 [20/36(56%)]\tLoss: 3.391224\n", - "Epoch : 5 [24/36(67%)]\tLoss: 2.646703\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.885099\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.435098\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.259319\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.564826\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.562128\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.342673\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.794502\n", - "Epoch : 6 [20/36(56%)]\tLoss: 1.758190\n", - "Epoch : 6 [24/36(67%)]\tLoss: 4.840420\n", - "Epoch : 6 [28/36(78%)]\tLoss: 2.265491\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.881545\n", - "Epoch : 7 [0/36(0%)]\tLoss: 1.777344\n", - "Epoch : 7 [4/36(11%)]\tLoss: 2.181722\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.554377\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.855183\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.752429\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.780674\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.211000\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.227526\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.786185\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.237208\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.475940\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.414749\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.396656\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.051016\n", - "Epoch : 8 [20/36(56%)]\tLoss: 2.206117\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.304066\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.382328\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.799042\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.465650\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.099131\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.324957\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.480521\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.732446\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.816403\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.152164\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.454315\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.756183\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.379249\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.844666\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.324414\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.374600\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.921172\n", - "Epoch : 10 [20/36(56%)]\tLoss: 2.135494\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.318042\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.617662\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.574798\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.419882\n", - "Epoch : 11 [4/36(11%)]\tLoss: 1.110420\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.233706\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.551158\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.597182\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.852408\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.123245\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.269616\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.560793\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.500013\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.622914\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.216004\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.473687\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.743932\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.740950\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.161934\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.601907\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.890836\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.303943\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.804804\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.166226\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.441748\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.705601\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.338688\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.177491\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.634994\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.697127\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.244323\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.777727\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.139875\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.394818\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.712763\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.665030\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.104227\n", - "Epoch : 14 [28/36(78%)]\tLoss: 1.419312\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.485109\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.239339\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.871509\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.109041\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.574643\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.719001\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.650874\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.101695\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.388229\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.798348\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.210160\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.715481\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.100975\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.346072\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.604082\n", - "Epoch : 16 [20/36(56%)]\tLoss: 2.028958\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.872734\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.228837\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.250448\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.289955\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.631083\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.074980\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.453210\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.687822\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.391468\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.019032\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.312207\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.146695\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.254507\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.631666\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.140849\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.410497\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.659446\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.298271\n", - "Epoch : 18 [24/36(67%)]\tLoss: 1.118127\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.390771\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.611371\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.258669\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.713279\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.089660\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.557009\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.676946\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.117112\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.892611\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.314889\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.155126\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.221492\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.473941\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.032379\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.758873\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.661017\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.126770\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.006455\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.225380\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.915053\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.325409\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.613160\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.113020\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.815274\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.616964\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.198993\n", - "Epoch : 21 [24/36(67%)]\tLoss: 1.222727\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.233216\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.025893\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.279736\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.691815\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.035172\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.839721\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.692534\n", - "Epoch : 22 [20/36(56%)]\tLoss: 0.897781\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.851499\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.015693\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.812722\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.282135\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.650622\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.036473\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.628985\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.665689\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.150945\n", - "Epoch : 23 [24/36(67%)]\tLoss: 1.101721\n", - "Epoch : 23 [28/36(78%)]\tLoss: 0.997745\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.786482\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.188634\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.490251\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.026564\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.583439\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.653347\n", - "Epoch : 24 [20/36(56%)]\tLoss: 1.027651\n", - "Epoch : 24 [24/36(67%)]\tLoss: 1.107671\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.003561\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.985056\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.235578\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.521548\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.021516\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.594579\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.635783\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.886841\n", - "Epoch : 25 [24/36(67%)]\tLoss: 1.397382\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.800382\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.199737\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.257258\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.307401\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.105263\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.899901\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.676924\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.752632\n", - "Epoch : 26 [24/36(67%)]\tLoss: 1.034847\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.931745\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.780637\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.205336\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.341148\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.046075\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.596985\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.845197\n", - "Epoch : 27 [20/36(56%)]\tLoss: 1.162509\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.943771\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.244596\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.850173\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.302596\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.626426\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.003192\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.487129\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.566213\n", - "Epoch : 28 [20/36(56%)]\tLoss: 1.136292\n", - "Epoch : 28 [24/36(67%)]\tLoss: 1.038680\n", - "Epoch : 28 [28/36(78%)]\tLoss: 0.826600\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.850921\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.298646\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.824968\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.126300\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.683915\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.659705\n", - "Epoch : 29 [20/36(56%)]\tLoss: 1.239225\n", - "Epoch : 29 [24/36(67%)]\tLoss: 1.062094\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.729064\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.791068\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.176875\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.678389\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.069754\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.790670\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.692260\n", - "Epoch : 30 [20/36(56%)]\tLoss: 7.177330\n", - "Epoch : 30 [24/36(67%)]\tLoss: 1.333871\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.947563\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.668681\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.259787\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.840883\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.080106\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.594849\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.663035\n", - "Epoch : 31 [20/36(56%)]\tLoss: 1.152130\n", - "Epoch : 31 [24/36(67%)]\tLoss: 1.173765\n", - "Epoch : 31 [28/36(78%)]\tLoss: 0.906613\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.875077\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.201324\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.575407\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.095162\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.670027\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.667055\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.827369\n", - "Epoch : 32 [24/36(67%)]\tLoss: 1.134882\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.877958\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.040859\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.311483\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.295122\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.069388\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.764149\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.663060\n", - "Epoch : 33 [20/36(56%)]\tLoss: 0.822622\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.861979\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.683765\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.795664\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.220188\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.395614\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.012631\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.468721\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.609468\n", - "Epoch : 34 [20/36(56%)]\tLoss: 1.571218\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.942780\n", - "Epoch : 34 [28/36(78%)]\tLoss: 0.667342\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.639270\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.111268\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.406786\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.014386\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.396008\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.474780\n", - "Epoch : 35 [20/36(56%)]\tLoss: 1.037158\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.848000\n", - "Epoch : 35 [28/36(78%)]\tLoss: 0.685111\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.536916\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.212783\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.390522\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.029825\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.544195\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.505634\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.760705\n", - "Epoch : 36 [24/36(67%)]\tLoss: 1.064677\n", - "Epoch : 36 [28/36(78%)]\tLoss: 0.982392\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.576115\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.090005\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.603586\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.205031\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.787525\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.553718\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.674552\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.920624\n", - "Epoch : 37 [28/36(78%)]\tLoss: 0.584530\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.692822\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.211059\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.474221\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.100506\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.376175\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.408118\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.535390\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.847956\n", - "Epoch : 38 [28/36(78%)]\tLoss: 0.474443\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.678652\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.213958\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.491789\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.048985\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.232036\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.341362\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.926125\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.741848\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.454370\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.371919\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.320077\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.579571\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.075181\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.442765\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.351605\n", - "Epoch : 40 [20/36(56%)]\tLoss: 1.147112\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.677181\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.704762\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.749214\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.107579\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.554211\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.566252\n", - "Epoch : 41 [12/36(33%)]\tLoss: 1.300966\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.599777\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.702580\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.629129\n", - "Epoch : 41 [28/36(78%)]\tLoss: 2.076705\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.840158\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.465426\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.134492\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.389072\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.827751\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.392805\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.627393\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.646734\n", - "Epoch : 42 [28/36(78%)]\tLoss: 0.533218\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.637066\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.319011\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.105208\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.414245\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.286981\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.275296\n", - "Epoch : 43 [20/36(56%)]\tLoss: 1.169549\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.673866\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.531706\n", - "Epoch : 43 [32/36(89%)]\tLoss: 1.707745\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.515246\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.639214\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.423705\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.137487\n", - "Epoch : 44 [16/36(44%)]\tLoss: 1.535383\n", - "Epoch : 44 [20/36(56%)]\tLoss: 1.693559\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.847805\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.709790\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.615706\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.381202\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.931999\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.515629\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.673196\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.455281\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.615300\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.686116\n", - "Epoch : 45 [28/36(78%)]\tLoss: 2.956760\n", - "Epoch : 45 [32/36(89%)]\tLoss: 1.258639\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.225284\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.349078\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.319058\n", - "Epoch : 46 [12/36(33%)]\tLoss: 1.019282\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.603605\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.561459\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.574158\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.561689\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.782894\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.177028\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.361765\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.150230\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.231546\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.329950\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.791553\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.530819\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.481696\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.608183\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.132291\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.252605\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.098013\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.442169\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.231510\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.508528\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.678600\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.569393\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.357347\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.211211\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.312520\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.158565\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.211903\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.267517\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.534715\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.615254\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.630902\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.465265\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.192027\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.300459\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.154196\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.293866\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.603823\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.350910\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.433121\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.473831\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.454593\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.215443\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.338208\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.125503\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.199447\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.204286\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.339707\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.276649\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.442768\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.309685\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.118346\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.283389\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.289682\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.429693\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.162503\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.525215\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.040603\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.669338\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.303752\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.292318\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.408160\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.140873\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.229101\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.125848\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.464089\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.444936\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.512228\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.306626\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.213254\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.295851\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.166546\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.391983\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.212332\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.376905\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.446454\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.492346\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.523798\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.208500\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.248432\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.217250\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.248693\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.104377\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.795976\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.495851\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.307004\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.792735\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.300838\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.205890\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.304625\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.072691\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.273948\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.327126\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.299012\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.259623\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.251285\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.336458\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.282970\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.285771\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.430327\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.254634\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.472481\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.357581\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.357599\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.324302\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.108201\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.321074\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.341888\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.410048\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.170829\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.274864\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.363386\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.476253\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.796312\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.217456\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.209296\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.121704\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.416346\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.604036\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.286116\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.405946\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.192211\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.303364\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.156366\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.727453\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.507878\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.216829\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.193050\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.556580\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.687664\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.284035\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.323408\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.214212\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.322329\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.327229\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.538185\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.214761\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.314894\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.421954\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.283905\n", - "Epoch : 61 [32/36(89%)]\tLoss: 1.609789\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.181202\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.323712\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.516159\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.029867\n", - "Epoch : 62 [16/36(44%)]\tLoss: 1.891158\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.642565\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.271594\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.310442\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.061917\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.563131\n", - "Epoch : 63 [4/36(11%)]\tLoss: 1.348441\n", - "Epoch : 63 [8/36(22%)]\tLoss: 1.143388\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.890912\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.463829\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.537648\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.452658\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.927330\n", - "Epoch : 63 [32/36(89%)]\tLoss: 2.293529\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.521955\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.883223\n", - "Epoch : 64 [8/36(22%)]\tLoss: 1.299450\n", - "Epoch : 64 [12/36(33%)]\tLoss: 2.874102\n", - "Epoch : 64 [16/36(44%)]\tLoss: 3.126369\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.606210\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.264699\n", - "Epoch : 64 [28/36(78%)]\tLoss: 1.507539\n", - "Epoch : 64 [32/36(89%)]\tLoss: 1.839272\n", - "Epoch : 65 [0/36(0%)]\tLoss: 1.513958\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.632273\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.063551\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.608927\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.794150\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.661434\n", - "Epoch : 65 [24/36(67%)]\tLoss: 1.700741\n", - "Epoch : 65 [28/36(78%)]\tLoss: 1.108240\n", - "Epoch : 65 [32/36(89%)]\tLoss: 1.084127\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.150321\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.428379\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.687584\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.406413\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.671758\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.942464\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.980272\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.910581\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.773330\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.469103\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.819890\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.095072\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.296573\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.730371\n", - "Epoch : 67 [20/36(56%)]\tLoss: 1.474878\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.766834\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.790829\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.472869\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.250339\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.813773\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.293705\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.740171\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.367752\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.834471\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.750386\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.917888\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.571776\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.163193\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.504996\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.097153\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.637543\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.260625\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.441842\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.723197\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.709766\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.467952\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.241754\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.280895\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.106272\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.663065\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.366662\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.610149\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.444948\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.491679\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.396119\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.081470\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.278904\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.120683\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.337539\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.332378\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.542705\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.650496\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.499311\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.377318\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.145153\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.297225\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.116741\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.243110\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.282257\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.665525\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.489661\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.632787\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.245755\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.095674\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.125610\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.053363\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.151277\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.429600\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.508097\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.622820\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.270462\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.241315\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.162533\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.236978\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.131869\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.367927\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.128570\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.465932\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.665092\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.343864\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.205061\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.132442\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.150944\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.062029\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.318239\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.247747\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.555007\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.475308\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.280316\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.279637\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.063251\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.306671\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.065456\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.166686\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.127966\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.391144\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.631349\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.311330\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.204353\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.035706\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.136111\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.125628\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.056479\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.157077\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.405887\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.523182\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.246331\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.114866\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.102902\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.137338\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.104113\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.006691\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.200359\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.333012\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.523198\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.213554\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.072793\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.085924\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.132442\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.184248\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.051110\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.308355\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.274818\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.485530\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.008185\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.099772\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.075929\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.308773\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.117741\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.300288\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.237174\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.451547\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.258592\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.309387\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.243807\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.135242\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.202742\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.095907\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.141911\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.140263\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.229159\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.775969\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.264566\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.081775\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.200193\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.142620\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.202016\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.258307\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.176433\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.209134\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.735454\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.100767\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.100012\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.377051\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.105698\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.117482\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.288298\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.147637\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.414139\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.373198\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.291938\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.226411\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.172595\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.178300\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.440807\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.218340\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.486127\n", - "Epoch : 84 [20/36(56%)]\tLoss: 1.282809\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.444271\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.184760\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.115273\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.325070\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.330538\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.056976\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.358510\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.528550\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.967816\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.607179\n", - "Epoch : 85 [28/36(78%)]\tLoss: 1.183985\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.940071\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.407545\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.497968\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.049914\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.208569\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.366293\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.680152\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.291524\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.259932\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.537934\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.164652\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.688735\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.162594\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.609662\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.162876\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.366740\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.146941\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.190490\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.388406\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.298411\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.275639\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.250865\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.066148\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.092317\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.452089\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.256137\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.139065\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.182627\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.062660\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.184578\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.204156\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.211483\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.208578\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.576237\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.235425\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.208969\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.089103\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.045627\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.150648\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.129253\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.132414\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.038734\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.292482\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.365343\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.454155\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.144237\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.038911\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.172370\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.381255\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.285668\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.136312\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.125911\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.938042\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.187475\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.140455\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.113074\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.093801\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.335990\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.189334\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.263921\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.142575\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.342586\n", - "Epoch : 92 [28/36(78%)]\tLoss: 0.196353\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.065632\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.293192\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.239174\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.258075\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.037279\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.511609\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.548055\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.080696\n", - "Epoch : 93 [28/36(78%)]\tLoss: 0.070793\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.052691\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.249344\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.930163\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.607528\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.323242\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.289688\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.677737\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.402996\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.710464\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.695428\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.054136\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.490700\n", - "Epoch : 95 [8/36(22%)]\tLoss: 1.040517\n", - "Epoch : 95 [12/36(33%)]\tLoss: 1.465859\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.602759\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.201746\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.277809\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.935178\n", - "Epoch : 95 [32/36(89%)]\tLoss: 1.171533\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.424403\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.149444\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.141596\n", - "Epoch : 96 [12/36(33%)]\tLoss: 1.025487\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.486114\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.332159\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.386037\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.090947\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.352635\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.366576\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.519218\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.404184\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.025226\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.247837\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.333755\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.558059\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.611007\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.261694\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.034290\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.350866\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.735698\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.483844\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.313919\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.158761\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.218722\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.985238\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.614888\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.505945\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.200531\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.330490\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.344527\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.658445\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.871481\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.217045\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.241145\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.025871\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.466564\n", - "Epoch : 100 [4/36(11%)]\tLoss: 1.491987\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.480286\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.276590\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.349579\n", - "Epoch : 100 [20/36(56%)]\tLoss: 1.315090\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.871585\n", - "Epoch : 100 [28/36(78%)]\tLoss: 1.173056\n", - "Epoch : 100 [32/36(89%)]\tLoss: 1.047209\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.368527\n", - "Epoch : 101 [4/36(11%)]\tLoss: 1.610930\n", - "Epoch : 101 [8/36(22%)]\tLoss: 2.487082\n", - "Epoch : 101 [12/36(33%)]\tLoss: 2.064581\n", - "Epoch : 101 [16/36(44%)]\tLoss: 1.084912\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.185925\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.910671\n", - "Epoch : 101 [28/36(78%)]\tLoss: 1.319913\n", - "Epoch : 101 [32/36(89%)]\tLoss: 2.001544\n", - "Epoch : 102 [0/36(0%)]\tLoss: 1.217804\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.216069\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.352780\n", - "Epoch : 102 [12/36(33%)]\tLoss: 1.018882\n", - "Epoch : 102 [16/36(44%)]\tLoss: 1.903540\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.846042\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.783748\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.044586\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.677636\n", - "Epoch : 103 [0/36(0%)]\tLoss: 1.282952\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.680631\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.769480\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.742970\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.267123\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.812474\n", - "Epoch : 103 [24/36(67%)]\tLoss: 1.816480\n", - "Epoch : 103 [28/36(78%)]\tLoss: 1.620249\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.842898\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.345515\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.316601\n", - "Epoch : 104 [8/36(22%)]\tLoss: 1.753385\n", - "Epoch : 104 [12/36(33%)]\tLoss: 2.521457\n", - "Epoch : 104 [16/36(44%)]\tLoss: 2.137517\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.696258\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.519588\n", - "Epoch : 104 [28/36(78%)]\tLoss: 1.442366\n", - "Epoch : 104 [32/36(89%)]\tLoss: 1.346217\n", - "Epoch : 105 [0/36(0%)]\tLoss: 1.557215\n", - "Epoch : 105 [4/36(11%)]\tLoss: 1.156546\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.111933\n", - "Epoch : 105 [12/36(33%)]\tLoss: 1.042417\n", - "Epoch : 105 [16/36(44%)]\tLoss: 1.847312\n", - "Epoch : 105 [20/36(56%)]\tLoss: 2.385129\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.745193\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.320209\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.153727\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.982332\n", - "Epoch : 106 [4/36(11%)]\tLoss: 2.455973\n", - "Epoch : 106 [8/36(22%)]\tLoss: 1.356735\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.963758\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.272531\n", - "Epoch : 106 [20/36(56%)]\tLoss: 1.292679\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.979626\n", - "Epoch : 106 [28/36(78%)]\tLoss: 2.315293\n", - "Epoch : 106 [32/36(89%)]\tLoss: 1.150874\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.172189\n", - "Epoch : 107 [4/36(11%)]\tLoss: 1.342926\n", - "Epoch : 107 [8/36(22%)]\tLoss: 2.336282\n", - "Epoch : 107 [12/36(33%)]\tLoss: 1.915788\n", - "Epoch : 107 [16/36(44%)]\tLoss: 1.948109\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.240171\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.516419\n", - "Epoch : 107 [28/36(78%)]\tLoss: 1.961102\n", - "Epoch : 107 [32/36(89%)]\tLoss: 1.818166\n", - "Epoch : 108 [0/36(0%)]\tLoss: 1.168305\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.442858\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.441030\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.707012\n", - "Epoch : 108 [16/36(44%)]\tLoss: 1.096587\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.827338\n", - "Epoch : 108 [24/36(67%)]\tLoss: 1.096673\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.884203\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.957478\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.111324\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.685965\n", - "Epoch : 109 [8/36(22%)]\tLoss: 1.479008\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.680490\n", - "Epoch : 109 [16/36(44%)]\tLoss: 1.298086\n", - "Epoch : 109 [20/36(56%)]\tLoss: 1.462033\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.688733\n", - "Epoch : 109 [28/36(78%)]\tLoss: 2.456834\n", - "Epoch : 109 [32/36(89%)]\tLoss: 2.142493\n", - "Epoch : 110 [0/36(0%)]\tLoss: 1.315638\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.565664\n", - "Epoch : 110 [8/36(22%)]\tLoss: 1.559562\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.925461\n", - "Epoch : 110 [16/36(44%)]\tLoss: 3.443424\n", - "Epoch : 110 [20/36(56%)]\tLoss: 2.555580\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.776097\n", - "Epoch : 110 [28/36(78%)]\tLoss: 1.435572\n", - "Epoch : 110 [32/36(89%)]\tLoss: 1.665921\n", - "Epoch : 111 [0/36(0%)]\tLoss: 2.534986\n", - "Epoch : 111 [4/36(11%)]\tLoss: 2.876002\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.661504\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.400195\n", - "Epoch : 111 [16/36(44%)]\tLoss: 3.138060\n", - "Epoch : 111 [20/36(56%)]\tLoss: 2.538248\n", - "Epoch : 111 [24/36(67%)]\tLoss: 1.406030\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.501683\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.811471\n", - "Epoch : 112 [0/36(0%)]\tLoss: 1.604944\n", - "Epoch : 112 [4/36(11%)]\tLoss: 2.762606\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.859456\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.493165\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.873156\n", - "Epoch : 112 [20/36(56%)]\tLoss: 1.285294\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.749677\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.968677\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.661534\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.143567\n", - "Epoch : 113 [4/36(11%)]\tLoss: 1.824848\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.918096\n", - "Epoch : 113 [12/36(33%)]\tLoss: 1.108273\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.873981\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.848100\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.314627\n", - "Epoch : 113 [28/36(78%)]\tLoss: 3.360894\n", - "Epoch : 113 [32/36(89%)]\tLoss: 1.912980\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.081501\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.925770\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.732214\n", - "Epoch : 114 [12/36(33%)]\tLoss: 1.094064\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.525478\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.615610\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.382156\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.792389\n", - "Epoch : 114 [32/36(89%)]\tLoss: 2.072706\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.220307\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.355828\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.341230\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.814696\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.435748\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.486497\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.580306\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.770756\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.823430\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.106207\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.270015\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.479351\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.357525\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.527198\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.464642\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.287562\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.913644\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.572574\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.376875\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.337195\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.227927\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.531005\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.725528\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.860111\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.149836\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.154198\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.355642\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.228140\n", - "Epoch : 118 [4/36(11%)]\tLoss: 1.100083\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.491557\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.457533\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.086370\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.575712\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.323622\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.311284\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.850377\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.104056\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.120084\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.636667\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.540568\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.481268\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.364084\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.161172\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.452666\n", - "Epoch : 119 [32/36(89%)]\tLoss: 1.563967\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.539343\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.163123\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.166168\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.478062\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.161752\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.213631\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.132084\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.257184\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.959554\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.337999\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.216967\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.913261\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.271391\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.184617\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.332692\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.485930\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.349273\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.221844\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.123642\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.266501\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.645455\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.364885\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.891144\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.367009\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.043511\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.550971\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.589366\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.100228\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.652977\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.209308\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.267916\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.755029\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.484346\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.508038\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.391282\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.342703\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.664237\n", - "Epoch : 124 [4/36(11%)]\tLoss: 1.339889\n", - "Epoch : 124 [8/36(22%)]\tLoss: 1.200587\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.497886\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.180552\n", - "Epoch : 124 [20/36(56%)]\tLoss: 2.471370\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.229604\n", - "Epoch : 124 [28/36(78%)]\tLoss: 1.951035\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.843421\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.668810\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.857353\n", - "Epoch : 125 [8/36(22%)]\tLoss: 2.368669\n", - "Epoch : 125 [12/36(33%)]\tLoss: 2.335781\n", - "Epoch : 125 [16/36(44%)]\tLoss: 1.381999\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.467519\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.321630\n", - "Epoch : 125 [28/36(78%)]\tLoss: 2.108628\n", - "Epoch : 125 [32/36(89%)]\tLoss: 1.636176\n", - "Epoch : 126 [0/36(0%)]\tLoss: 1.921440\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.303990\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.094352\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.861919\n", - "Epoch : 126 [16/36(44%)]\tLoss: 1.938497\n", - "Epoch : 126 [20/36(56%)]\tLoss: 1.464210\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.547380\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.620063\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.578433\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.431242\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.652665\n", - "Epoch : 127 [8/36(22%)]\tLoss: 2.627931\n", - "Epoch : 127 [12/36(33%)]\tLoss: 1.181510\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.455653\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.619634\n", - "Epoch : 127 [24/36(67%)]\tLoss: 1.327902\n", - "Epoch : 127 [28/36(78%)]\tLoss: 3.021381\n", - "Epoch : 127 [32/36(89%)]\tLoss: 2.428126\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.802585\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.367999\n", - "Epoch : 128 [8/36(22%)]\tLoss: 1.607184\n", - "Epoch : 128 [12/36(33%)]\tLoss: 1.662059\n", - "Epoch : 128 [16/36(44%)]\tLoss: 2.231620\n", - "Epoch : 128 [20/36(56%)]\tLoss: 1.318273\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.072702\n", - "Epoch : 128 [28/36(78%)]\tLoss: 1.114653\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.822041\n", - "Epoch : 129 [0/36(0%)]\tLoss: 1.661982\n", - "Epoch : 129 [4/36(11%)]\tLoss: 1.576544\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.313812\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.147829\n", - "Epoch : 129 [16/36(44%)]\tLoss: 1.013267\n", - "Epoch : 129 [20/36(56%)]\tLoss: 2.380790\n", - "Epoch : 129 [24/36(67%)]\tLoss: 1.354441\n", - "Epoch : 129 [28/36(78%)]\tLoss: 2.180645\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.450401\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.068901\n", - "Epoch : 130 [4/36(11%)]\tLoss: 2.079331\n", - "Epoch : 130 [8/36(22%)]\tLoss: 2.936857\n", - "Epoch : 130 [12/36(33%)]\tLoss: 2.176387\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.512367\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.239128\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.467121\n", - "Epoch : 130 [28/36(78%)]\tLoss: 1.619057\n", - "Epoch : 130 [32/36(89%)]\tLoss: 2.209124\n", - "Epoch : 131 [0/36(0%)]\tLoss: 1.204074\n", - "Epoch : 131 [4/36(11%)]\tLoss: 1.180954\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.389891\n", - "Epoch : 131 [12/36(33%)]\tLoss: 1.574300\n", - "Epoch : 131 [16/36(44%)]\tLoss: 2.066967\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.585034\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.529648\n", - "Epoch : 131 [28/36(78%)]\tLoss: 1.298509\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.992852\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.842555\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.636128\n", - "Epoch : 132 [8/36(22%)]\tLoss: 1.054157\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.498725\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.794976\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.721247\n", - "Epoch : 132 [24/36(67%)]\tLoss: 3.045617\n", - "Epoch : 132 [28/36(78%)]\tLoss: 1.534261\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.504259\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.126713\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.420135\n", - "Epoch : 133 [8/36(22%)]\tLoss: 2.492815\n", - "Epoch : 133 [12/36(33%)]\tLoss: 2.023402\n", - "Epoch : 133 [16/36(44%)]\tLoss: 1.074246\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.254337\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.297500\n", - "Epoch : 133 [28/36(78%)]\tLoss: 2.208092\n", - "Epoch : 133 [32/36(89%)]\tLoss: 1.112680\n", - "Epoch : 134 [0/36(0%)]\tLoss: 2.517776\n", - "Epoch : 134 [4/36(11%)]\tLoss: 1.098572\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.739978\n", - "Epoch : 134 [12/36(33%)]\tLoss: 2.256545\n", - "Epoch : 134 [16/36(44%)]\tLoss: 2.180690\n", - "Epoch : 134 [20/36(56%)]\tLoss: 1.368535\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.562183\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.072258\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.135826\n", - "Epoch : 135 [0/36(0%)]\tLoss: 1.296791\n", - "Epoch : 135 [4/36(11%)]\tLoss: 3.831761\n", - "Epoch : 135 [8/36(22%)]\tLoss: 1.849476\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.518481\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.351323\n", - "Epoch : 135 [20/36(56%)]\tLoss: 1.403903\n", - "Epoch : 135 [24/36(67%)]\tLoss: 1.866519\n", - "Epoch : 135 [28/36(78%)]\tLoss: 3.736304\n", - "Epoch : 135 [32/36(89%)]\tLoss: 2.566842\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.135908\n", - "Epoch : 136 [4/36(11%)]\tLoss: 2.151020\n", - "Epoch : 136 [8/36(22%)]\tLoss: 3.086261\n", - "Epoch : 136 [12/36(33%)]\tLoss: 2.884285\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.886967\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.097184\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.319731\n", - "Epoch : 136 [28/36(78%)]\tLoss: 2.201807\n", - "Epoch : 136 [32/36(89%)]\tLoss: 2.278533\n", - "Epoch : 137 [0/36(0%)]\tLoss: 1.048769\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.254064\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.071731\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.654794\n", - "Epoch : 137 [16/36(44%)]\tLoss: 1.472877\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.740893\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.735805\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.393911\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.676991\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.362953\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.332365\n", - "Epoch : 138 [8/36(22%)]\tLoss: 1.248028\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.863968\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.421722\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.060245\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.655998\n", - "Epoch : 138 [28/36(78%)]\tLoss: 1.570497\n", - "Epoch : 138 [32/36(89%)]\tLoss: 1.324237\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.812873\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.143892\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.988031\n", - "Epoch : 139 [12/36(33%)]\tLoss: 1.524854\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.221511\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.394091\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.112385\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.445526\n", - "Epoch : 139 [32/36(89%)]\tLoss: 1.224864\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.808468\n", - "Epoch : 140 [4/36(11%)]\tLoss: 1.002913\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.235973\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.098136\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.673696\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.375455\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.820021\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.734001\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.155713\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.271076\n", - "Epoch : 141 [4/36(11%)]\tLoss: 1.196404\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.839406\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.568459\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.037162\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.118469\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.335426\n", - "Epoch : 141 [28/36(78%)]\tLoss: 1.790960\n", - "Epoch : 141 [32/36(89%)]\tLoss: 1.002926\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.427064\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.308203\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.631136\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.650885\n", - "Epoch : 142 [16/36(44%)]\tLoss: 1.202445\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.169802\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.205490\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.515088\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.338237\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.323473\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.222210\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.219256\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.109114\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.184928\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.440223\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.376221\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.570576\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.398297\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.151355\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.118475\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.302608\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.407753\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.134990\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.293589\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.580838\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.715597\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.166032\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.633134\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.299505\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.178851\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.242868\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.057160\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.193053\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.156066\n", - "Epoch : 145 [28/36(78%)]\tLoss: 0.341833\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.112574\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.035784\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.352332\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.118474\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.164851\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.091442\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.087206\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.045006\n", - "Epoch : 146 [28/36(78%)]\tLoss: 0.211476\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.063939\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.037456\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.081085\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.065085\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.286722\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.065906\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.055466\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.128045\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.096727\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.065004\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.108625\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.155509\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.039967\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.152228\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.045578\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.115440\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.052350\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.073555\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.121440\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.189385\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.057880\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.137311\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.311848\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.127137\n", - "Epoch : 149 [20/36(56%)]\tLoss: 0.064228\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.047306\n", - "Epoch : 149 [28/36(78%)]\tLoss: 0.202856\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.317108\n", - "--- 0.06582655111948649 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 500.860840\n", + "Epoch : 0 [4/36(11%)]\tLoss: 477.839172\n", + "Epoch : 0 [8/36(22%)]\tLoss: 464.381836\n", + "Epoch : 0 [12/36(33%)]\tLoss: 399.421661\n", + "Epoch : 0 [16/36(44%)]\tLoss: 280.344818\n", + "Epoch : 0 [20/36(56%)]\tLoss: 145.664886\n", + "Epoch : 0 [24/36(67%)]\tLoss: 86.540543\n", + "Epoch : 0 [28/36(78%)]\tLoss: 140.879028\n", + "Epoch : 0 [32/36(89%)]\tLoss: 12.666570\n", + "Epoch : 1 [0/36(0%)]\tLoss: 0.944404\n", + "Epoch : 1 [4/36(11%)]\tLoss: 3.015983\n", + "Epoch : 1 [8/36(22%)]\tLoss: 6.834392\n", + "Epoch : 1 [12/36(33%)]\tLoss: 18.831701\n", + "Epoch : 1 [16/36(44%)]\tLoss: 20.399771\n", + "Epoch : 1 [20/36(56%)]\tLoss: 22.759270\n", + "Epoch : 1 [24/36(67%)]\tLoss: 24.548332\n", + "Epoch : 1 [28/36(78%)]\tLoss: 23.996525\n", + "Epoch : 1 [32/36(89%)]\tLoss: 18.059378\n", + "Epoch : 2 [0/36(0%)]\tLoss: 15.301807\n", + "Epoch : 2 [4/36(11%)]\tLoss: 9.922405\n", + "Epoch : 2 [8/36(22%)]\tLoss: 2.112532\n", + "Epoch : 2 [12/36(33%)]\tLoss: 1.550667\n", + "Epoch : 2 [16/36(44%)]\tLoss: 0.851201\n", + "Epoch : 2 [20/36(56%)]\tLoss: 3.316346\n", + "Epoch : 2 [24/36(67%)]\tLoss: 3.919723\n", + "Epoch : 2 [28/36(78%)]\tLoss: 7.788068\n", + "Epoch : 2 [32/36(89%)]\tLoss: 10.701154\n", + "Epoch : 3 [0/36(0%)]\tLoss: 3.599494\n", + "Epoch : 3 [4/36(11%)]\tLoss: 3.408816\n", + "Epoch : 3 [8/36(22%)]\tLoss: 4.605702\n", + "Epoch : 3 [12/36(33%)]\tLoss: 2.205826\n", + "Epoch : 3 [16/36(44%)]\tLoss: 3.247538\n", + "Epoch : 3 [20/36(56%)]\tLoss: 3.618429\n", + "Epoch : 3 [24/36(67%)]\tLoss: 1.531296\n", + "Epoch : 3 [28/36(78%)]\tLoss: 1.525063\n", + "Epoch : 3 [32/36(89%)]\tLoss: 1.825021\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.858643\n", + "Epoch : 4 [4/36(11%)]\tLoss: 1.924086\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.482357\n", + "Epoch : 4 [12/36(33%)]\tLoss: 2.330732\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.636583\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.956930\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.582981\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.094843\n", + "Epoch : 4 [32/36(89%)]\tLoss: 1.484561\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.865313\n", + "Epoch : 5 [4/36(11%)]\tLoss: 0.867451\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.430974\n", + "Epoch : 5 [12/36(33%)]\tLoss: 0.408260\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.439194\n", + "Epoch : 5 [20/36(56%)]\tLoss: 3.110361\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.991286\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.625073\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.144275\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.393740\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.919644\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.335178\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.496095\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.760814\n", + "Epoch : 6 [20/36(56%)]\tLoss: 1.657203\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.203643\n", + "Epoch : 6 [28/36(78%)]\tLoss: 1.655438\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.815278\n", + "Epoch : 7 [0/36(0%)]\tLoss: 1.218873\n", + "Epoch : 7 [4/36(11%)]\tLoss: 1.476901\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.237620\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.570176\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.899689\n", + "Epoch : 7 [20/36(56%)]\tLoss: 2.625440\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.250027\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.412886\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.666830\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.347323\n", + "Epoch : 8 [4/36(11%)]\tLoss: 0.787471\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.337384\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.327651\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.936593\n", + "Epoch : 8 [20/36(56%)]\tLoss: 3.396663\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.145461\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.375290\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.565472\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.880185\n", + "Epoch : 9 [4/36(11%)]\tLoss: 1.419756\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.375021\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.375262\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.688992\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.736244\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.043986\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.460087\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.673829\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.447048\n", + "Epoch : 10 [4/36(11%)]\tLoss: 1.050086\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.298299\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.357923\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.833184\n", + "Epoch : 10 [20/36(56%)]\tLoss: 1.749276\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.131220\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.379357\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.535813\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.528802\n", + "Epoch : 11 [4/36(11%)]\tLoss: 1.119784\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.335772\n", + "Epoch : 11 [12/36(33%)]\tLoss: 1.854423\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.685598\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.536858\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.108431\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.378405\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.633419\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.463714\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.958314\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.263348\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.445057\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.840532\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.928936\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.127887\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.336379\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.673163\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.285418\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.735326\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.304413\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.460694\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.716832\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.584652\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.900978\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.052345\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.473952\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.401452\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.779314\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.255852\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.481564\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.718846\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.582070\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.034369\n", + "Epoch : 14 [28/36(78%)]\tLoss: 2.307538\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.218512\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.498505\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.823776\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.184388\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.387301\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.687601\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.483187\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.967374\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.149480\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.458512\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.259234\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.638024\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.233757\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.386188\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.759001\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.478403\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.092772\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.127187\n", + "Epoch : 16 [32/36(89%)]\tLoss: 0.972165\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.381718\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.839981\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.229389\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.582390\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.661528\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.354283\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.963398\n", + "Epoch : 17 [28/36(78%)]\tLoss: 0.981779\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.206037\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.252827\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.560113\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.215954\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.410210\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.629857\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.298580\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.928603\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.275650\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.044478\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.321828\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.769126\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.361488\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.448226\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.702904\n", + "Epoch : 19 [20/36(56%)]\tLoss: 1.443682\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.778019\n", + "Epoch : 19 [28/36(78%)]\tLoss: 0.976822\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.426180\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.563052\n", + "Epoch : 20 [4/36(11%)]\tLoss: 1.117306\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.261094\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.791802\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.733730\n", + "Epoch : 20 [20/36(56%)]\tLoss: 1.545072\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.988078\n", + "Epoch : 20 [28/36(78%)]\tLoss: 0.863972\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.182548\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.222809\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.542701\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.082833\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.443004\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.964322\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.276551\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.939358\n", + "Epoch : 21 [28/36(78%)]\tLoss: 0.828233\n", + "Epoch : 21 [32/36(89%)]\tLoss: 0.975860\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.300205\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.581134\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.154799\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.530701\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.735520\n", + "Epoch : 22 [20/36(56%)]\tLoss: 1.293580\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.917181\n", + "Epoch : 22 [28/36(78%)]\tLoss: 0.889105\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.058415\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.209867\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.673189\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.118295\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.637805\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.630513\n", + "Epoch : 23 [20/36(56%)]\tLoss: 1.268479\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.701224\n", + "Epoch : 23 [28/36(78%)]\tLoss: 0.973926\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.876100\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.193538\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.590081\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.072664\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.587072\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.760452\n", + "Epoch : 24 [20/36(56%)]\tLoss: 1.060536\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.604076\n", + "Epoch : 24 [28/36(78%)]\tLoss: 1.030291\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.895506\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.294041\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.618613\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.080192\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.513977\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.584792\n", + "Epoch : 25 [20/36(56%)]\tLoss: 1.439098\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.571706\n", + "Epoch : 25 [28/36(78%)]\tLoss: 0.785756\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.927680\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.264151\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.368093\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.056945\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.575626\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.505951\n", + "Epoch : 26 [20/36(56%)]\tLoss: 1.131324\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.578289\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.313519\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.724932\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.078099\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.633142\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.058193\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.566530\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.407008\n", + "Epoch : 27 [20/36(56%)]\tLoss: 1.002506\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.408994\n", + "Epoch : 27 [28/36(78%)]\tLoss: 0.404211\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.712494\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.174198\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.632870\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.113723\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.630371\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.615283\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.793090\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.406066\n", + "Epoch : 28 [28/36(78%)]\tLoss: 1.026976\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.887841\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.350603\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.556854\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.072004\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.357420\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.470172\n", + "Epoch : 29 [20/36(56%)]\tLoss: 0.777056\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.475010\n", + "Epoch : 29 [28/36(78%)]\tLoss: 0.961690\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.677875\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.225708\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.442096\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.033086\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.480233\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.573499\n", + "Epoch : 30 [20/36(56%)]\tLoss: 1.168702\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.531130\n", + "Epoch : 30 [28/36(78%)]\tLoss: 0.720820\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.852831\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.194140\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.554958\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.115222\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.339805\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.261381\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.667730\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.280039\n", + "Epoch : 31 [28/36(78%)]\tLoss: 0.763842\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.526165\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.134100\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.290026\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.041982\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.167240\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.433164\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.878319\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.329550\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.757582\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.516384\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.499511\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.290761\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.156904\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.078659\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.343556\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.908608\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.342951\n", + "Epoch : 33 [28/36(78%)]\tLoss: 0.973837\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.413990\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.276595\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.574566\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.268064\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.555344\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.232609\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.584455\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.259717\n", + "Epoch : 34 [28/36(78%)]\tLoss: 1.483040\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.624788\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.279082\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.598293\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.230585\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.314571\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.376442\n", + "Epoch : 35 [20/36(56%)]\tLoss: 0.604526\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.406086\n", + "Epoch : 35 [28/36(78%)]\tLoss: 0.582443\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.137094\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.297683\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.544419\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.122774\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.063793\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.335071\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.850576\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.314182\n", + "Epoch : 36 [28/36(78%)]\tLoss: 0.610300\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.426081\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.283758\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.597839\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.347411\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.360243\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.253629\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.875890\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.363222\n", + "Epoch : 37 [28/36(78%)]\tLoss: 0.587339\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.625993\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.215669\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.674504\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.352757\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.285226\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.119057\n", + "Epoch : 38 [20/36(56%)]\tLoss: 0.548397\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.275429\n", + "Epoch : 38 [28/36(78%)]\tLoss: 0.574433\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.408177\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.182965\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.629097\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.248010\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.249907\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.079155\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.305160\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.188616\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.556768\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.146764\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.385527\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.518688\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.203476\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.082750\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.225580\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.426043\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.114062\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.249038\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.190908\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.299140\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.711933\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.097865\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.165601\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.160314\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.414465\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.087012\n", + "Epoch : 41 [28/36(78%)]\tLoss: 0.339995\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.480355\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.064779\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.441638\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.178018\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.114896\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.089521\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.281482\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.158494\n", + "Epoch : 42 [28/36(78%)]\tLoss: 0.726421\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.309361\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.196127\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.377956\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.263749\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.408509\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.111578\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.226838\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.213730\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.470371\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.190240\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.193962\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.434585\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.106904\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.043907\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.105293\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.261842\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.034304\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.279937\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.070193\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.133028\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.544071\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.131022\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.258673\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.048276\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.173829\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.275162\n", + "Epoch : 45 [28/36(78%)]\tLoss: 0.367442\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.265192\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.218713\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.199533\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.073716\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.081429\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.141893\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.166503\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.442261\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.245091\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.402911\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.395589\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.284988\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.095214\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.046279\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.146034\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.246362\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.278639\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.781215\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.064287\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.153025\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.432416\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.466750\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.337885\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.068469\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.213242\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.182356\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.248251\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.125451\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.342938\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.446506\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.024045\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.057960\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.212521\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.523738\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.161227\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.463970\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.135510\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.568550\n", + "Epoch : 50 [4/36(11%)]\tLoss: 1.028290\n", + "Epoch : 50 [8/36(22%)]\tLoss: 1.188928\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.550372\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.512421\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.577856\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.509235\n", + "Epoch : 50 [28/36(78%)]\tLoss: 1.436980\n", + "Epoch : 50 [32/36(89%)]\tLoss: 1.160355\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.098090\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.532154\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.433812\n", + "Epoch : 51 [12/36(33%)]\tLoss: 1.237373\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.394617\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.749716\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.245393\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.507434\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.340950\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.314759\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.299164\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.262064\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.049726\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.141047\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.384076\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.331887\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.199079\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.176853\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.155389\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.413526\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.187015\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.098113\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.182126\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.520318\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.101018\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.686155\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.129516\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.138720\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.316416\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.264260\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.161875\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.024347\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.256596\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.080267\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.637874\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.143881\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.133503\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.229823\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.134869\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.372085\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.076122\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.385757\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.108179\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.488425\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.112177\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.224484\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.279423\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.057556\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.107512\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.127841\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.331097\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.189645\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.428045\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.382838\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.120127\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.199900\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.263710\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.164984\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.081176\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.109742\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.234365\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.633916\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.179006\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.092996\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.139876\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.443379\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.547626\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.078435\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.226548\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.107735\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.502965\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.040990\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.314157\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.522091\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.149853\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.040139\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.267455\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.646224\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.217382\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.249962\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.213069\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.329508\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.411712\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.480768\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.643690\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.144981\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.344981\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.442865\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.605961\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.500419\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.194931\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.373719\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.134384\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.456815\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.464827\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.079968\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.073952\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.302188\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.437714\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.326277\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.575967\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.611395\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.271927\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.190941\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.363734\n", + "Epoch : 62 [24/36(67%)]\tLoss: 1.057470\n", + "Epoch : 62 [28/36(78%)]\tLoss: 1.334099\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.224707\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.179490\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.391240\n", + "Epoch : 63 [8/36(22%)]\tLoss: 1.889966\n", + "Epoch : 63 [12/36(33%)]\tLoss: 1.024471\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.311545\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.338649\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.514769\n", + "Epoch : 63 [28/36(78%)]\tLoss: 1.896218\n", + "Epoch : 63 [32/36(89%)]\tLoss: 1.089414\n", + "Epoch : 64 [0/36(0%)]\tLoss: 1.178035\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.499411\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.301460\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.366107\n", + "Epoch : 64 [16/36(44%)]\tLoss: 1.737603\n", + "Epoch : 64 [20/36(56%)]\tLoss: 1.805889\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.485195\n", + "Epoch : 64 [28/36(78%)]\tLoss: 0.258118\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.434311\n", + "Epoch : 65 [0/36(0%)]\tLoss: 1.165625\n", + "Epoch : 65 [4/36(11%)]\tLoss: 1.262718\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.565953\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.033340\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.451308\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.997573\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.768602\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.513150\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.292876\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.118957\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.669266\n", + "Epoch : 66 [8/36(22%)]\tLoss: 1.338509\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.968214\n", + "Epoch : 66 [16/36(44%)]\tLoss: 1.225478\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.622220\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.470810\n", + "Epoch : 66 [28/36(78%)]\tLoss: 1.679577\n", + "Epoch : 66 [32/36(89%)]\tLoss: 1.370471\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.579377\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.207604\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.499888\n", + "Epoch : 67 [12/36(33%)]\tLoss: 1.013703\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.816012\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.648054\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.322765\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.458588\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.494515\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.508316\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.417039\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.451344\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.106820\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.192256\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.254718\n", + "Epoch : 68 [24/36(67%)]\tLoss: 1.072649\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.569110\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.641103\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.167463\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.365789\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.225432\n", + "Epoch : 69 [12/36(33%)]\tLoss: 1.077193\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.366239\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.570696\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.326066\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.196582\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.584756\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.483438\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.375123\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.094979\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.182347\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.498655\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.521900\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.056920\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.189173\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.074874\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.190394\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.293114\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.063283\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.205613\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.115862\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.484622\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.199270\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.373760\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.237012\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.161748\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.456120\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.655245\n", + "Epoch : 72 [12/36(33%)]\tLoss: 1.065901\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.207339\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.406278\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.278442\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.333258\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.948074\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.059752\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.409405\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.304258\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.314302\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.292920\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.113884\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.334983\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.485375\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.158941\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.221994\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.816401\n", + "Epoch : 74 [8/36(22%)]\tLoss: 1.063054\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.184500\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.008759\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.221660\n", + "Epoch : 74 [24/36(67%)]\tLoss: 1.280460\n", + "Epoch : 74 [28/36(78%)]\tLoss: 1.140869\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.101941\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.097112\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.433810\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.818162\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.821689\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.681837\n", + "Epoch : 75 [20/36(56%)]\tLoss: 1.054362\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.542404\n", + "Epoch : 75 [28/36(78%)]\tLoss: 1.184091\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.605567\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.452610\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.440879\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.258427\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.480357\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.926090\n", + "Epoch : 76 [20/36(56%)]\tLoss: 1.594023\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.129018\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.166759\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.184816\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.644465\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.977767\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.417519\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.201883\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.074505\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.947888\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.360324\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.626139\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.430554\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.105573\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.545730\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.331959\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.513456\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.431798\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.012122\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.060838\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.159959\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.738729\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.276722\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.240304\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.164279\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.165455\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.147933\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.110154\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.367041\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.549882\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.063854\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.276717\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.616404\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.711984\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.119255\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.036864\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.077799\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.186021\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.210444\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.211945\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.249476\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.217401\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.284983\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.173308\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.208548\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.428365\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.337867\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.163141\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.318127\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.564679\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.403497\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.127132\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.060567\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.147470\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.589253\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.421062\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.313225\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.054874\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.271022\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.542002\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.204555\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.172720\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.421394\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.309795\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.345415\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.863627\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.734482\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.605330\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.140630\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.181554\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.756425\n", + "Epoch : 84 [16/36(44%)]\tLoss: 1.143771\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.191310\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.563885\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.811510\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.560566\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.541523\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.216021\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.727178\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.166531\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.738909\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.337637\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.941266\n", + "Epoch : 85 [28/36(78%)]\tLoss: 0.901947\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.372386\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.065576\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.502537\n", + "Epoch : 86 [8/36(22%)]\tLoss: 1.465539\n", + "Epoch : 86 [12/36(33%)]\tLoss: 1.028614\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.431644\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.102459\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.904264\n", + "Epoch : 86 [28/36(78%)]\tLoss: 1.708829\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.531543\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.805454\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.209360\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.826339\n", + "Epoch : 87 [12/36(33%)]\tLoss: 1.151666\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.947333\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.692306\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.263987\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.416684\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.873977\n", + "Epoch : 88 [0/36(0%)]\tLoss: 1.077856\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.837554\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.201341\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.174589\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.781271\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.728517\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.428688\n", + "Epoch : 88 [28/36(78%)]\tLoss: 0.195198\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.071565\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.447790\n", + "Epoch : 89 [4/36(11%)]\tLoss: 1.107496\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.383333\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.678487\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.219711\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.312943\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.524506\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.952193\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.886434\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.142085\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.176253\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.363338\n", + "Epoch : 90 [12/36(33%)]\tLoss: 1.105825\n", + "Epoch : 90 [16/36(44%)]\tLoss: 2.377274\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.098717\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.472504\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.518504\n", + "Epoch : 90 [32/36(89%)]\tLoss: 1.088914\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.843577\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.188284\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.364709\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.329348\n", + "Epoch : 91 [16/36(44%)]\tLoss: 1.650837\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.434663\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.767158\n", + "Epoch : 91 [28/36(78%)]\tLoss: 0.432030\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.298248\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.429765\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.928356\n", + "Epoch : 92 [8/36(22%)]\tLoss: 1.020058\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.393730\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.035774\n", + "Epoch : 92 [20/36(56%)]\tLoss: 0.271959\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.791876\n", + "Epoch : 92 [28/36(78%)]\tLoss: 1.328448\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.604653\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.474761\n", + "Epoch : 93 [4/36(11%)]\tLoss: 0.195124\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.956944\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.682670\n", + "Epoch : 93 [16/36(44%)]\tLoss: 1.305671\n", + "Epoch : 93 [20/36(56%)]\tLoss: 1.309029\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.357441\n", + "Epoch : 93 [28/36(78%)]\tLoss: 1.022260\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.043851\n", + "Epoch : 94 [0/36(0%)]\tLoss: 1.133552\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.802054\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.105467\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.200004\n", + "Epoch : 94 [16/36(44%)]\tLoss: 1.105936\n", + "Epoch : 94 [20/36(56%)]\tLoss: 1.519822\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.716233\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.176366\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.200508\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.655307\n", + "Epoch : 95 [4/36(11%)]\tLoss: 1.735365\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.525611\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.470507\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.183910\n", + "Epoch : 95 [20/36(56%)]\tLoss: 1.140418\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.632072\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.441525\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.628915\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.237222\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.648184\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.579970\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.725630\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.690693\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.283785\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.038399\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.317967\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.911110\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.244772\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.311646\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.180709\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.237841\n", + "Epoch : 97 [16/36(44%)]\tLoss: 1.056298\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.201424\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.292996\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.018821\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.124307\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.090540\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.381823\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.068015\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.057378\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.166520\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.404581\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.239263\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.299741\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.566988\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.173130\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.133655\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.079841\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.216045\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.234635\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.472832\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.006443\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.218985\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.062840\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.107792\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.401737\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.042291\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.023502\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.081897\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.872333\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.650217\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.215659\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.162739\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.448503\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.843836\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.637038\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.332865\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.055570\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.745925\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.321087\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.453840\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.494792\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.106407\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.196718\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.072037\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.559771\n", + "Epoch : 102 [16/36(44%)]\tLoss: 1.072606\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.341109\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.014837\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.233965\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.791686\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.337990\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.383214\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.537570\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.084588\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.568058\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.587416\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.532690\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.856985\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.196335\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.205731\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.927507\n", + "Epoch : 104 [8/36(22%)]\tLoss: 1.306014\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.421690\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.094655\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.185152\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.532630\n", + "Epoch : 104 [28/36(78%)]\tLoss: 1.739050\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.742943\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.054401\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.369710\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.962089\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.472588\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.408242\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.415114\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.134867\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.516429\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.357109\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.718549\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.439695\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.147124\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.183060\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.379364\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.607036\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.718910\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.139090\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.074936\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.357018\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.716352\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.418437\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.249262\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.041594\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.484962\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.354162\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.752654\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.138215\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.093728\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.334614\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.445030\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.164540\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.187484\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.124085\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.238065\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.317737\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.083018\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.119853\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.119658\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.060120\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.134247\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.177608\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.202611\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.164125\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.291412\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.167749\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.329844\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.231856\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.213018\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.021643\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.136050\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.221435\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.213413\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.247189\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.023532\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.073789\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.234951\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.357967\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.162421\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.035321\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.130215\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.174159\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.545385\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.067373\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.135161\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.119575\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.328709\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.171904\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.105152\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.203513\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.032733\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.277305\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.180942\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.475432\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.228126\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.103369\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.308962\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.143837\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.444018\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.120935\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.176922\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.099692\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.297129\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.341089\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.127577\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.197652\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.056693\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.561460\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.387014\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.459541\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.065399\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.061226\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.361531\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.479696\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.555608\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.168793\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.244743\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.374165\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.152996\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.506132\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.210880\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.142731\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.163577\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.744025\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.390455\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.099765\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.053012\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.061495\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.658155\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.549120\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.153442\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.044534\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.248712\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.525163\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.140304\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.206305\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.195594\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.101538\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.215841\n", + "Epoch : 118 [4/36(11%)]\tLoss: 0.585495\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.592127\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.077165\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.023115\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.389115\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.441638\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.335075\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.302933\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.196431\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.262766\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.898415\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.464581\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.586564\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.135919\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.168980\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.852148\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.930194\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.753480\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.368126\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.285928\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.454222\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.376403\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.429101\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.258498\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.184498\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.278598\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.542122\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.731520\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.117994\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.107938\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.111152\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.758449\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.322660\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.267706\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.448966\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.098830\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.174370\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.338684\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.118366\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.190133\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.183156\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.090569\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.113778\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.314737\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.188376\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.207038\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.092399\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.127428\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.643996\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.110745\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.055819\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.618859\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.798681\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.125861\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.170327\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.158975\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.147017\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.231714\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.089886\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.121934\n", + "Epoch : 124 [28/36(78%)]\tLoss: 0.270260\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.387491\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.513300\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.293322\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.149970\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.044250\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.162873\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.274416\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.379834\n", + "Epoch : 125 [28/36(78%)]\tLoss: 0.227710\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.049077\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.314464\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.463960\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.778782\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.242091\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.061362\n", + "Epoch : 126 [20/36(56%)]\tLoss: 0.145166\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.526843\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.717727\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.262357\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.245165\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.224867\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.597088\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.507917\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.647476\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.270783\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.131347\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.515933\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.410239\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.853796\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.182960\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.103542\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.293587\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.504176\n", + "Epoch : 128 [20/36(56%)]\tLoss: 0.468961\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.359279\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.232882\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.108492\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.405741\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.416169\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.175498\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.077775\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.098868\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.529741\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.548258\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.252371\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.032345\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.185783\n", + "Epoch : 130 [4/36(11%)]\tLoss: 0.678955\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.544901\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.429187\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.122353\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.245866\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.442313\n", + "Epoch : 130 [28/36(78%)]\tLoss: 0.594751\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.750259\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.292294\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.291481\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.623523\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.625046\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.466089\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.182227\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.095898\n", + "Epoch : 131 [28/36(78%)]\tLoss: 0.357056\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.580338\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.569618\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.182021\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.032089\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.198717\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.515397\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.389353\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.174077\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.051685\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.258535\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.439473\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.344518\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.236466\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.049458\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.194160\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.245329\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.402822\n", + "Epoch : 133 [28/36(78%)]\tLoss: 0.302380\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.149206\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.175887\n", + "Epoch : 134 [4/36(11%)]\tLoss: 0.221232\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.252408\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.092983\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.025850\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.011891\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.237795\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.229526\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.096217\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.145194\n", + "Epoch : 135 [4/36(11%)]\tLoss: 0.203207\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.098973\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.215663\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.142871\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.197306\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.224951\n", + "Epoch : 135 [28/36(78%)]\tLoss: 0.306632\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.231563\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.204610\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.259171\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.284853\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.396510\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.375887\n", + "Epoch : 136 [20/36(56%)]\tLoss: 0.432036\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.063049\n", + "Epoch : 136 [28/36(78%)]\tLoss: 0.093386\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.140074\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.289426\n", + "Epoch : 137 [4/36(11%)]\tLoss: 0.224624\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.136828\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.102162\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.140717\n", + "Epoch : 137 [20/36(56%)]\tLoss: 0.518264\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.202529\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.056113\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.048121\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.127651\n", + "Epoch : 138 [4/36(11%)]\tLoss: 0.383020\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.297047\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.243177\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.077452\n", + "Epoch : 138 [20/36(56%)]\tLoss: 0.247959\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.155835\n", + "Epoch : 138 [28/36(78%)]\tLoss: 0.465017\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.040198\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.090818\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.353678\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.168241\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.262683\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.235568\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.062148\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.212038\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.128903\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.572803\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.193335\n", + "Epoch : 140 [4/36(11%)]\tLoss: 0.175592\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.114444\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.437122\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.388246\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.059336\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.117234\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.056180\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.133296\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.164787\n", + "Epoch : 141 [4/36(11%)]\tLoss: 0.256338\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.095124\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.200029\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.293943\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.116998\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.068067\n", + "Epoch : 141 [28/36(78%)]\tLoss: 0.016696\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.079837\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.088385\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.232792\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.164618\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.098033\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.071874\n", + "Epoch : 142 [20/36(56%)]\tLoss: 0.068423\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.132002\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.355601\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.039454\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.126108\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.326522\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.349544\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.174849\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.079940\n", + "Epoch : 143 [20/36(56%)]\tLoss: 0.031830\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.146390\n", + "Epoch : 143 [28/36(78%)]\tLoss: 0.225435\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.182341\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.105412\n", + "Epoch : 144 [4/36(11%)]\tLoss: 0.041248\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.255146\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.176687\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.088770\n", + "Epoch : 144 [20/36(56%)]\tLoss: 0.104882\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.043222\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.233147\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.228727\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.143519\n", + "Epoch : 145 [4/36(11%)]\tLoss: 0.090624\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.142998\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.133059\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.098169\n", + "Epoch : 145 [20/36(56%)]\tLoss: 0.208727\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.108924\n", + "Epoch : 145 [28/36(78%)]\tLoss: 0.045321\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.064496\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.183513\n", + "Epoch : 146 [4/36(11%)]\tLoss: 0.192696\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.133563\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.095472\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.139406\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.325611\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.178264\n", + "Epoch : 146 [28/36(78%)]\tLoss: 0.142036\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.066500\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.040962\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.754583\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.381846\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.132955\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.072007\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.387686\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.329752\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.162060\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.071236\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.073229\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.464854\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.613664\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.374067\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.136597\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.306361\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.137563\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.720722\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.687707\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.045067\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.282067\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.441187\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.681002\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.173772\n", + "Epoch : 149 [20/36(56%)]\tLoss: 0.110377\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.210431\n", + "Epoch : 149 [28/36(78%)]\tLoss: 0.387619\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.294078\n", + "--- 0.06244179805119832 minutes ---\n" ] } ], @@ -2180,12 +2121,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKR0lEQVR4nOzdd3iT1fsG8Dtt6aQtu4NRQGYZZRUEZEsZskQUAREQXNSBoCjyAwoqKH4ZKgVEWQ4QFXCBMmSpoCyRUWRI2ZQyW7qhfX9/nJ68SZq0SZvmTdr7c129kiZpctqmTe73ec45OkVRFBARERERERGRw7lpPQAiIiIiIiKi0oqhnIiIiIiIiEgjDOVEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRhjKiYiIiIiIiDTCUE5ERERERESkEYZyIiIiIiIiIo0wlBMRERERERFphKGcqBRZsWIFdDoddDodduzYked6RVFQp04d6HQ6dO7cWX/5jRs3MGnSJISHh8PPzw+BgYFo0KABhg8fjsOHD5u9f3Mf5h6TiIhIS/K1a//+/VoPxWYjR45EzZo1jS6bOXMmvvvuuzy3deT3GRMTA51OZ5f7Kux7F4DvX8h1eGg9ACJyPH9/fyxdujTPi9fOnTvx33//wd/fX39ZSkoK7r//fqSkpOC1115DREQE0tPTcfLkSaxbtw6HDh1C06ZNje5n+fLlaNCgQZ7HDQ8PL5bvh4iIqDSaMmUKXn75ZaPLZs6ciUGDBmHAgAHaDArAmDFj0LNnT7vepy3vXQC+fyHXwlBOVAoNHjwYX375JWJjYxEQEKC/fOnSpWjbti2Sk5P1l33zzTc4ffo0tm3bhi5duhjdz/jx45GTk5Pn/hs3boxWrVoV3zdARERUiqWlpcHX1xf33Xef1kMxq1q1aqhWrZpd79OW9y4A37+Qa2H7OlEpNGTIEADA6tWr9ZclJSVh7dq1eOqpp4xue+PGDQBASEiI2ftyc+O/ESIiKvl+//13dOvWDf7+/vD19UW7du2wYcMGs7dr27YtvL29UbVqVUyZMgWffvopdDodzp49q7/dmjVrEBUVhZCQEPj4+KBhw4Z44403kJqaanR/I0eORNmyZXHkyBFERUXB398f3bp1019n2L6u0+mQmpqKlStX6luvTSvLd+7cwfPPP49KlSqhYsWKGDhwIC5fvmx0m5o1a6JPnz746aef0Lx5c/34fvrpJwCi3bthw4bw8/ND69at87TEW2pfX7VqFdq2bYuyZcuibNmyaNasGZYuXVrgzx6w7b0LwPcv5Fr4bCQqhQICAjBo0CAsW7ZMf9nq1avh5uaGwYMHG922bdu2AIAnn3wS3333nf5FLj/Z2dm4d++e0Ud2drZ9vwkiIiIH2blzJ7p27YqkpCQsXboUq1evhr+/P/r27Ys1a9bob3f48GF0794daWlpWLlyJRYvXoyDBw/inXfeyXOfp06dQu/evbF06VL88ssvGDduHL7++mv07ds3z22zsrLQr18/dO3aFd9//z2mT59udpx79uyBj48PevfujT179mDPnj1YuHCh0W3GjBmDMmXKYNWqVZg9ezZ27NiBJ554Is99/fPPP5g0aRJef/11rFu3DoGBgRg4cCCmTZuGTz/9FDNnzsSXX36JpKQk9OnTB+np6fn+DKdOnYphw4YhNDQUK1aswPr16zFixAicO3cu36+TbHnvAvD9C7kYhYhKjeXLlysAlH379inbt29XAChHjx5VFEVRIiMjlZEjRyqKoiiNGjVSOnXqpP+6GTNmKJ6engoABYBSq1Yt5bnnnlP++ecfs/dv7sPd3d1h3ycREZG1DF8bLbn//vuVKlWqKHfu3NFfdu/ePaVx48ZKtWrVlJycHEVRFOXRRx9V/Pz8lGvXrulvl52drYSHhysAlPj4eLP3n5OTo9y9e1fZuXOnAsDo9XXEiBEKAGXZsmV5vm7EiBFKWFiY0WV+fn7KiBEjLH6fY8eONbp89uzZCgDlypUr+svCwsIUHx8f5eLFi/rLDh06pABQQkJClNTUVP3l3333nQJA+eGHH/SXTZs2TTGMGWfOnFHc3d2VYcOGmf3+81PY9y6Kwvcv5DpYKScqpTp16oT77rsPy5Ytw5EjR7Bv3z6z7V+AWEjm/PnzWLZsGZ599lmULVsWixcvRsuWLY3ayKTPPvsM+/btM/r466+/ivtbIiIisrvU1FT89ddfGDRoEMqWLau/3N3dHcOHD8fFixdx4sQJAGpFvVKlSvrbubm54bHHHstzv2fOnMHQoUMRHBwMd3d3lClTBp06dQIAHD9+PM/tH3nkEbt8P/369TP6XC52ZlqxbtasGapWrar/vGHDhgCAzp07w9fXN8/l+VW8t2zZguzsbERHRxdp7La8dwH4/oVcBxd6IyqldDodRo0ahQ8//BAZGRmoV68eOnToYPH2QUFBGDVqFEaNGgUA2LVrF3r16oWXX35ZP89LatiwIRdKISKiEuHWrVtQFMXs3OTQ0FAA6vzlGzduICgoKM/tTC9LSUlBhw4d4O3tjbfffhv16tWDr68vLly4gIEDB+ZpBff19TVa3KwoKlasaPS5l5cXAOR5zAoVKhh97unpme/lGRkZFh/z2rVrAFDkxd9sfe8C8P0LuQZWyolKsZEjR+L69etYvHix/sXKWh07dkRUVBSuXbuGxMTEYhohERGRtsqXLw83NzdcuXIlz3VygTRZGa9YsSKuXr2a53YJCQlGn2/btg2XL1/GsmXLMGbMGHTs2BGtWrXKs62XZK89v7VSuXJlAMDFixeLfF9Fee8C8P0LOSeGcqJSrGrVqnjttdfQt29fjBgxwuxtrl69anbbkOzsbJw6dQq+vr4oV65cMY+UiIhIG35+fmjTpg3WrVtnVE3OycnBF198gWrVqqFevXoARHv1tm3bcP36daPbffPNN0b3KUO2rFJLH3/8cZHH6+XlVeCia44WFRUFd3d3LFq0qMj3Zc17F4DvX8i1sH2dqJR79913873+888/x8cff4yhQ4ciMjISgYGBuHjxIj799FMcO3YMU6dO1beuSUePHsW9e/fy3Nd9992nP1pORETkTLZt22a0ZZnUu3dvzJo1C927d0eXLl3w6quvwtPTEwsXLsTRo0exevVqfciePHkyfvzxR3Tr1g2TJ0+Gj48PFi9erN/mTG7D1a5dO5QvXx7PPfccpk2bhjJlyuDLL7/EP//8U+Tvo0mTJtixYwd+/PFHhISEwN/fH/Xr1y/y/RZFzZo18eabb+Ktt95Ceno6hgwZgsDAQMTFxeH69esWV5O3pKD3LgDfv5BrYSgnonw99NBDSEhIwMaNG7Fo0SLcunUL/v7+aNq0KT7//HOz26hYaif75JNPMGbMmOIeMhERkc1ef/11s5fHx8frK+DTpk3DyJEjkZOTg4iICPzwww/o06eP/rYRERHYsmULXn31VTz55JMoX748hg8fjk6dOuH1119HYGAgANHmvmHDBkyYMAFPPPEE/Pz80L9/f6xZswYtWrQo0vfxwQcfIDo6Go8//jjS0tLQqVMn7Nixo0j3aQ8zZsxA3bp18dFHH2HYsGHw8PBA3bp18dJLLxXL4/H9C7kSnaIoitaDICIiIiIqqaKionD27FmcPHlS66EQkRNipZyIiIiIyE7Gjx+P5s2bo3r16rh58ya+/PJLbNmyBUuXLtV6aETkpBjKiYiIiIjsJDs7G1OnTkVCQgJ0Oh3Cw8MttksTEQFsXyciIiIiIiLSDLdEIyIiIiIiItIIQzkRERERERGRRhjKiYiIiIiIiDRS4hd6y8nJweXLl+Hv7w+dTqf1cIiIiKAoCu7cuYPQ0FC4ufH4eFHxtZ6IiJyNLa/1JT6UX758GdWrV9d6GERERHlcuHAB1apV03oYLo+v9URE5Kysea0v8aHc398fgPhhBAQEaDwaIiIiIDk5GdWrV9e/RlHR8LWeiIicjS2v9SU+lMs2toCAAL5QExGRU2GrterChQsYPnw4EhMT4eHhgSlTpuDRRx+16mv5Wk9ERM7Kmtf6Eh/KiYiIyPl5eHhg/vz5aNasGRITE9GiRQv07t0bfn5+Wg+NiIioWDGUExERkeZCQkIQEhICAKhSpQoqVKiAmzdvMpQTEVGJxyVfiYiIqMh27dqFvn37IjQ0FDqdDt99912e2yxcuBC1atWCt7c3WrZsid9++83sfe3fvx85OTlcvI2IiEoFVsqJiHIpioJ79+4hOztb66GQi3N3d4eHh0epmjOempqKiIgIjBo1Co888kie69esWYNx48Zh4cKFaN++PT7++GP06tULcXFxqFGjhv52N27cwJNPPolPP/3U4mNlZmYiMzNT/3lycrJ9vxkiKrH4Wk/2Ys/Xep2iKIodxuS0kpOTERgYiKSkJC7+QkQWZWVl4cqVK0hLS9N6KFRC+Pr6IiQkBJ6ennmuK+mvTTqdDuvXr8eAAQP0l7Vp0wYtWrTAokWL9Jc1bNgQAwYMwKxZswCIsN29e3c8/fTTGD58uMX7j4mJwfTp0/NcXlJ/nkRkH3ytJ3uz12s9K+VEVOrl5OQgPj4e7u7uCA0NhaenZ6mqcJJ9KYqCrKwsXLt2DfHx8ahbty7c3Er3bLGsrCwcOHAAb7zxhtHlUVFR2L17NwDxcxs5ciS6du2abyAHgEmTJmH8+PH6z+W2M0RElvC1nuzJ3q/1DOVEVOplZWXp56/6+vpqPRwqAXx8fFCmTBmcO3cOWVlZ8Pb21npImrp+/Tqys7MRFBRkdHlQUBASEhIAAH/88QfWrFmDpk2b6uejf/7552jSpEme+/Py8oKXl1exj5uISg6+1pO92fO1XtND9/fu3cP//d//oVatWvDx8UHt2rUxY8YM5OTk6G+jKApiYmIQGhoKHx8fdO7cGceOHdNw1ERUUpX2aibZF59PeZlWpRRF0V/2wAMPICcnB4cOHdJ/mAvkRERFwf/NZE/2ej5p+qx87733sHjxYixYsADHjx/H7Nmz8f777+Ojjz7S32b27NmYO3cuFixYgH379iE4OBjdu3fHnTt3NBw5ERERWatSpUpwd3fXV8WlxMTEPNVzIiKi0kbTUL5nzx70798fDz30EGrWrIlBgwYhKioK+/fvByCOoM+fPx+TJ0/GwIED0bhxY6xcuRJpaWlYtWqVlkMnIiIiK3l6eqJly5bYsmWL0eVbtmxBu3btCn2/sbGxCA8PR2RkZFGHSEREpBlNQ/kDDzyAX3/9FSdPngQA/PPPP/j999/Ru3dvAEB8fDwSEhIQFRWl/xovLy906tRJvzCMqczMTCQnJxt9EBGRdTp37oxx48ZZffuzZ89Cp9Ph0KFDxTYmANixYwd0Oh1u375drI9DhZeSkqJvOwfEa/ihQ4dw/vx5AMD48ePx6aefYtmyZTh+/DheeeUVnD9/Hs8991yhHzM6OhpxcXHYt2+fPb4FIqJSg6/3zkXThd5ef/11JCUloUGDBnB3d0d2djbeeecdDBkyBAD0bW7mFoY5d+6c2fucNWuW2W1SiIhKkoJWjB0xYgRWrFhh8/2uW7cOZcqUsfr21atXx5UrV1CpUiWbH4tKlv3796NLly76z+Xq6PK5OHjwYNy4cQMzZszAlStX0LhxY2zcuBFhYWFaDZmIyOnx9b500DSUr1mzBl988QVWrVqFRo0a4dChQxg3bhxCQ0MxYsQI/e3yWxjGFLdJIaLS4MqVK/rza9aswdSpU3HixAn9ZT4+Pka3v3v3rlUvvhUqVLBpHO7u7ggODrbpa6hk6ty5MxRFyfc2Y8eOxdixYx00IiIi18fX+9JB0/b11157DW+88QYef/xxNGnSBMOHD8crr7yCWbNmAYD+F2/LwjBeXl4ICAgw+rCXwYOBJk2A33+3210SkRNSFCA1VZuPAjKNXnBwsP4jMDAQOp1O/3lGRgbKlSuHr7/+Gp07d4a3tze++OIL3LhxA0OGDEG1atXg6+uLJk2aYPXq1Ub3a9rOVrNmTcycORNPPfUU/P39UaNGDSxZskR/vWk7m2w7+/XXX9GqVSv4+vqiXbt2Rm8gAODtt99GlSpV4O/vjzFjxuCNN95As2bNbPo9rV27Fo0aNYKXlxdq1qyJOXPmGF2/cOFC1K1bF97e3ggKCsKgQYP013377bdo0qQJfHx8ULFiRTz44INITU216fGpZPrgA6BpU+D997UeCREVN77ej9N/ztd7bWkaytPS0vIsI+/u7q7fEq1WrVoIDg42WhgmKysLO3fuLNLCMIV1+jRw9CjAhd+JSra0NKBsWW0+0tLs9328/vrreOmll3D8+HH06NEDGRkZaNmyJX766SccPXoUzzzzDIYPH46//vor3/uZM2cOWrVqhb///htjx47F888/j3///Tffr5k8eTLmzJmD/fv3w8PDA0899ZT+ui+//BLvvPMO3nvvPRw4cAA1atTAokWLbPreDhw4gMceewyPP/44jhw5gpiYGEyZMkXfwrd//3689NJLmDFjBk6cOIFffvkFHTt2BCCqDkOGDMFTTz2F48ePY8eOHRg4cGCBVV5yPsWx0NvVq8CRI8ClS3a7SyJyUny9N8bXew0pGhoxYoRStWpV5aefflLi4+OVdevWKZUqVVImTpyov827776rBAYGKuvWrVOOHDmiDBkyRAkJCVGSk5OteoykpCQFgJKUlFTk8bZqpSiAovz0U5HvioicSHp6uhIXF6ekp6criqIoKSnib12Lj5QU28e/fPlyJTAwUP95fHy8AkCZP39+gV/bu3dvZcKECfrPO3XqpLz88sv6z8PCwpQnnnhC/3lOTo5SpUoVZdGiRUaP9ffffyuKoijbt29XAChbt27Vf82GDRsUAPqfb5s2bZTo6GijcbRv316JiIiwOE55v7du3VIURVGGDh2qdO/e3eg2r732mhIeHq4oiqKsXbtWCQgIMPtaceDAAQWAcvbsWYuPZw+mzytD9nxtIvv+PKdOFX+LY8faYWBE5DTM/U/m6/3L+s/5el849nqt13RO+UcffYQpU6Zg7NixSExMRGhoKJ599llMnTpVf5uJEyciPT0dY8eOxa1bt9CmTRts3rwZ/v7+Dh+vLOrnFvKJqITy9QVSUrR7bHtp1aqV0efZ2dl49913sWbNGly6dAmZmZnIzMyEn59fvvfTtGlT/XnZNpeYmGj114SEhAAQU49q1KiBEydO5JlX3Lp1a2zbts2q7wsAjh8/jv79+xtd1r59e8yfPx/Z2dno3r07wsLCULt2bfTs2RM9e/bEww8/DF9fX0RERKBbt25o0qQJevTogaioKAwaNAjly5e3+vGp5JJTMe/e1XYcRFT8+HpvjK/32tG0fd3f3x/z58/HuXPnkJ6ejv/++w9vv/02PD099bfR6XSIiYnBlStXkJGRgZ07d6Jx48aajJehnKh00OkAPz9tPgpYZNUmpi++c+bMwbx58zBx4kRs27YNhw4dQo8ePZCVlZXv/ZguGKPT6fTTjKz5Grkwp+HXmFvA0xaKmQU/De/D398fBw8exOrVqxESEoKpU6ciIiICt2/fhru7O7Zs2YKff/4Z4eHh+Oijj1C/fn3Ex8fbNAYqmRjKiUoPvt4b4+u9djQN5a6GoZyIXNlvv/2G/v3744knnkBERARq166NU6dOOXwc9evXx969e40u279/v033ER4ejt9NVt3cvXs36tWrB3d3dwCAh4cHHnzwQcyePRuHDx/G2bNn9UfndTod2rdvj+nTp+Pvv/+Gp6cn1q9fX4TvikoKhnIicnV8vXe913tN29ddDUM5EbmyOnXqYO3atdi9ezfKly+PuXPnIiEhAQ0bNnToOF588UU8/fTTaNWqFdq1a4c1a9bg8OHDqF27ttX3MWHCBERGRuKtt97C4MGDsWfPHixYsAALFy4EAPz00084c+YMOnbsiPLly2Pjxo3IyclB/fr18ddff+HXX39FVFQUqlSpgr/++gvXrl1z+M+BnJNs1iugoERE5LT4eu96r/cM5TZgKCciVzZlyhTEx8ejR48e8PX1xTPPPIMBAwYgKSnJoeMYNmwYzpw5g1dffRUZGRl47LHHMHLkyDxH0/PTokULfP3115g6dSreeusthISEYMaMGRg5ciQAoFy5cli3bh1iYmKQkZGBunXrYvXq1WjUqBGOHz+OXbt2Yf78+UhOTkZYWBjmzJmDXr16FdN3TMUlNjYWsbGxyM7Ottt9slJORK6Or/eu93qvU2xt7HcxycnJCAwMRFJSUpH3LO/SBdixA/jqK7FnORGVDBkZGYiPj0etWrXg7e2t9XBKpe7duyM4OBiff/651kOxm/yeV/Z8bSL7/jyXLQNGjwYeegj46Sc7DZCINMfXeudQ0l7v7fVaz0q5DVgpJyIqurS0NCxevBg9evSAu7s7Vq9eja1bt2LLli1aD42IlXIiIjvh6731GMptwFBORFR0Op0OGzduxNtvv43MzEzUr18fa9euxYMPPqj10IgYyomI7ISv99ZjKLcBQzkRUdH5+Phg69atWg+DyCyGciIi++DrvfW4JZoNGMqJiIhKNhnKufo6ERE5CkO5DRjKiYiInEdsbCzCw8MRGRlpt/uUW6KxUk5ERI7CUG4DhnIiIiLnER0djbi4OOzbt89u98n2dSIicjSGchswlBMREZVsDOVERORoDOU2YCgnIiIq2RjKiYjI0RjKbcBQTkREVLIxlBMRkaMxlNuAoZyISprOnTtj3Lhx+s9r1qyJ+fPn5/s1Op0O3333XZEf2173k5+YmBg0a9asWB+DShaGciIqifh679wYym3AUE5EzqJv37548MEHzV63Z88e6HQ6HDx40Ob73bdvH5555pmiDs+IpRfKK1euoFevXnZ9LKKi4pZoRORM+HpfOjCU24ChnIicxejRo7Ft2zacO3cuz3XLli1Ds2bN0KJFC5vvt3LlyvD19bXHEAsUHBwMLy8vhzwWkbW4JRoRORO+3pcODOU2YCgnKiUUBUhN1eZDUawaYp8+fVClShWsWLHC6PK0tDSsWbMGo0ePxo0bNzBkyBBUq1YNvr6+aNKkCVavXp3v/Zq2s506dQodO3aEt7c3wsPDsWXLljxf8/rrr6NevXrw9fVF7dq1MWXKFNzNTTQrVqzA9OnT8c8//0Cn00Gn0+nHbNrOduTIEXTt2hU+Pj6oWLEinnnmGaSkpOivHzlyJAYMGID//e9/CAkJQcWKFREdHa1/LGvk5ORgxowZqFatGry8vNCsWTP88ssv+uuzsrLwwgsvICQkBN7e3qhZsyZmzZqlvz4mJgY1atSAl5cXQkND8dJLL1n92GR/xbFPOdvXiUoRvt7rP+frvbav9x7Feu8lDEM5USmRlgaULavNY6ekAH5+Bd7Mw8MDTz75JFasWIGpU6dCp9MBAL755htkZWVh2LBhSEtLQ8uWLfH6668jICAAGzZswPDhw1G7dm20adOmwMfIycnBwIEDUalSJfz5559ITk42mo8m+fv7Y8WKFQgNDcWRI0fw9NNPw9/fHxMnTsTgwYNx9OhR/PLLL9i6dSsAIDAwMM99pKWloWfPnrj//vuxb98+JCYmYsyYMXjhhReM3ohs374dISEh2L59O06fPo3BgwejWbNmePrppwv8fgDggw8+wJw5c/Dxxx+jefPmWLZsGfr164djx46hbt26+PDDD/HDDz/g66+/Ro0aNXDhwgVcuHABAPDtt99i3rx5+Oqrr9CoUSMkJCTgn3/+sepxqXhER0cjOjoaycnJZp9XhcFQTlSK8PUeAF/vneL1XinhkpKSFABKUlJSke/ryScVBVCU2bPtMDAichrp6elKXFyckp6eLi5ISRF/7Fp8pKRYPe7jx48rAJRt27bpL+vYsaMyZMgQi1/Tu3dvZcKECfrPO3XqpLz88sv6z8PCwpR58+YpiqIomzZtUtzd3ZULFy7or//5558VAMr69estPsbs2bOVli1b6j+fNm2aEhERked2hvezZMkSpXz58kqKwfe/YcMGxc3NTUlISFAURVFGjBihhIWFKffu3dPf5tFHH1UGDx5scSymjx0aGqq88847RreJjIxUxo4dqyiKorz44otK165dlZycnDz3NWfOHKVevXpKVlaWxcczlOd5ZcCer01k359nYqL652jmaUBELsrs/2S+3iuKwtd7U7a83tvrtZ6VchuwUk5USvj6iiPYWj22lRo0aIB27dph2bJl6NKlC/777z/89ttv2Lx5MwAgOzsb7777LtasWYNLly4hMzMTmZmZ8LPiyDwAHD9+HDVq1EC1atX0l7Vt2zbP7b799lvMnz8fp0+fRkpKCu7du4eAgACrvw/5WBEREUZja9++PXJycnDixAkEBQUBABo1agR3d3f9bUJCQnDkyBGrHiM5ORmXL19G+/btjS5v3769/gj4yJEj0b17d9SvXx89e/ZEnz59EBUVBQB49NFHMX/+fNSuXRs9e/ZE79690bdvX3h48KW0JJGVckBUy+UccyIqgfh6D4Cv987wes855TZgKCcqJXQ60VKmxUduW5q1Ro8ejbVr1yI5ORnLly9HWFgYunXrBgCYM2cO5s2bh4kTJ2Lbtm04dOgQevTogSwrl5VWzMx305mM788//8Tjjz+OXr164aeffsLff/+NyZMnW/0Yho9let/mHrOMYWLKvS7Hxn/Kpo9j+NgtWrRAfHw83nrrLaSnp+Oxxx7DoEGDAADVq1fHiRMnEBsbCx8fH4wdOxYdO3a0aY4bOT/TUE5EJRhf7wHw9d4ZXu8Zym3AUE5Ezuaxxx6Du7s7Vq1ahZUrV2LUqFH6F5zffvsN/fv3xxNPPIGIiAjUrl0bp06dsvq+w8PDcf78eVy+fFl/2Z49e4xu88cffyAsLAyTJ09Gq1atULdu3TwrxHp6eiI7O7vAxzp06BBSU1ON7tvNzQ316tWzesz5CQgIQGhoKH7//Xejy3fv3o2GDRsa3W7w4MH45JNPsGbNGqxduxY3b94EAPj4+KBfv3748MMPsWPHDuzZs8fqI/fkGgzfB3JbNCJyFny9t54rvt6z584GDOVE5GzKli2LwYMH480330RSUhJGjhypv65OnTpYu3Ytdu/ejfLly2Pu3LlISEgwekHKz4MPPoj69evjySefxJw5c5CcnIzJkycb3aZOnTo4f/48vvrqK0RGRmLDhg1Yv3690W1q1qyJ+Ph4HDp0CNWqVYO/v3+erVGGDRuGadOmYcSIEYiJicG1a9fw4osvYvjw4fpWNnt47bXXMG3aNNx3331o1qwZli9fjkOHDuHLL78EAMybNw8hISFo1qwZ3Nzc8M033yA4OBjlypXDihUrkJ2djTZt2sDX1xeff/45fHx8EBYWZrfxkfZYKSciZ8TXe9u42us9K+U2YCgnImc0evRo3Lp1Cw8++CBq1Kihv3zKlClo0aIFevTogc6dOyM4OBgDBgyw+n7d3Nywfv16ZGZmonXr1hgzZgzeeecdo9v0798fr7zyCl544QU0a9YMu3fvxpQpU4xu88gjj6Bnz57o0qULKleubHabFl9fX2zatAk3b95EZGQkBg0ahG7dumHBggW2/TAK8NJLL2HChAmYMGECmjRpgl9++QU//PAD6tatC0C86XnvvffQqlUrREZG4uzZs9i4cSPc3NxQrlw5fPLJJ2jfvj2aNm2KX3/9FT/++CMqVqxo1zGStnQ6QE4bZCgnImfC13vrudrrvU4xN4mgBJHbpCQlJdm8EIGp6Ghg4UJg6lRg+nQ7DZCINJeRkYH4+HjUqlUL3t7eWg+HSoj8nlf2fG0i+/88fX2B9HQgPh6oWbPo4yMi7fG1noqDvV7rWSm3ASvlREREJR/3KiciIkdiKLcBQzkREZHziI2NRXh4OCIjI+16vwzlRETkSAzlNmAoJyIich7R0dGIi4vDvn377Hq/MpRz9XUiInIEhnIbMJQTERGVfJ6e4pSVciIicgSGchswlBOVbCV83UtyMD6fXBfb14lKLv5vJnuy1/OJodwGDOVEJVOZ3HfgaWlpGo+EShL5fCpjuPE1uQSGcqKSh6/1VBzs9VrvYY/BlBYM5UQlk7u7O8qVK4fExEQAYg9NnU6n8ajIVSmKgrS0NCQmJqJcuXJwd3fXekhkI4ZyopKHr/VkT/Z+rWcotwFDOVHJFRwcDAD6F2uioipXrpz+eUWuhaGcqGTiaz3Zm71e6zUN5TVr1sS5c+fyXD527FjExsZCURRMnz4dS5Yswa1bt9CmTRvExsaiUaNGGoyWoZyoJNPpdAgJCUGVKlVwl+/EqYjKlCnDCrkLYygnKpn4Wk/2ZM/Xek1D+b59+5Cdna3//OjRo+jevTseffRRAMDs2bMxd+5crFixAvXq1cPbb7+N7t2748SJE/D393f4eBnKiUo+d3d3himiUo5bohGVbHytJ2ej6UJvlStXRnBwsP7jp59+wn333YdOnTpBURTMnz8fkydPxsCBA9G4cWOsXLkSaWlpWLVqlSbjZSgnIiIq+bglGhEROZLTrL6elZWFL774Ak899RR0Oh3i4+ORkJCAqKgo/W28vLzQqVMn7N692+L9ZGZmIjk52ejDXhjKiYiISj62rxMRkSM5TSj/7rvvcPv2bYwcORIAkJCQAAAICgoyul1QUJD+OnNmzZqFwMBA/Uf16tXtNkaGciIiopKPoZyIiBzJaUL50qVL0atXL4SGhhpdbrpVgaIo+W5fMGnSJCQlJek/Lly4YLcxMpQTERE5j9jYWISHhyMyMtKu98tQTkREjuQUW6KdO3cOW7duxbp16/SXyaXlExISEBISor88MTExT/XckJeXF7y8vIplnAzlREREziM6OhrR0dFITk5GYGCg3e6XoZyIiBzJKSrly5cvR5UqVfDQQw/pL6tVqxaCg4OxZcsW/WVZWVnYuXMn2rVrp8UwGcqJiIhKAa6+TkREjqR5pTwnJwfLly/HiBEj4OGhDken02HcuHGYOXMm6tati7p162LmzJnw9fXF0KFDNRkrQzkREVHJx0o5ERE5kuahfOvWrTh//jyeeuqpPNdNnDgR6enpGDt2LG7duoU2bdpg8+bNmuxRDjCUExERlQbcEo2IiBxJ81AeFRUFRVHMXqfT6RATE4OYmBjHDsoChnIiIqKSj5VyIiJyJKeYU+4qGMqJiIhKPoZyIiJyJIZyGzCUExERlXwM5URE5EgM5TZgKCciIir5GMqJiMiRGMptwFBORERU8nFLNCIiciSGchswlBMREZV8XH2diIgciaHcBgzlREREJR/b14mIyJEYym0gQ7mFHdyIiIioBGAoJyIiR2IotwEr5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXxcfZ2IiByJodwGDOVEREQlHyvlRETkSAzlNmAoJyIiKvm4JRoRETkSQ7kNGMqJiIicR2xsLMLDwxEZGWnX+2WlnIiIHImh3AY6nThlKCciItJedHQ04uLisG/fPrveL0M5ERE5EkO5DVgpJyIiKvkYyomIyJEYym3AUE5ERFTyMZQTEZEjMZTbgKGciIio5OOWaERE5EgM5TZgKCciIir5WCknIiJHYii3AUM5ERFRycct0YiIyJEYym3AUE5ERFTysVJORESOxFBuA4ZyIiKiko+hnIiIHImh3AYM5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXzcEo2IiByJodwGDOVEREQln1x9XVGA7Gxtx0JERCUfQ7kNGMqJiIhKPlkpB9jCTkRExY+h3AYM5URERCUfQzkRETkSQ7kNGMqJiIhKPoZyIiJyJIZyGzCUExERlXzu7up5hnIiIipuDOU2YCgnIiIq+XQ6rsBORESOw1BuA4ZyIiKi0oF7lRMRkaMwlNuAoZyIiKh0kNuiMZQTEVFxYyi3AUM5ERFR6cBKOREROYrmofzSpUt44oknULFiRfj6+qJZs2Y4cOCA/npFURATE4PQ0FD4+Pigc+fOOHbsmCZjZSgnIiIqHRjKiYjIUTQN5bdu3UL79u1RpkwZ/Pzzz4iLi8OcOXNQrlw5/W1mz56NuXPnYsGCBdi3bx+Cg4PRvXt33Llzx+HjZSgnIiIqHRjKiYjIUTy0fPD33nsP1atXx/Lly/WX1axZU39eURTMnz8fkydPxsCBAwEAK1euRFBQEFatWoVnn33WoeNlKCciIiodGMqJiMhRNK2U//DDD2jVqhUeffRRVKlSBc2bN8cnn3yivz4+Ph4JCQmIiorSX+bl5YVOnTph9+7dZu8zMzMTycnJRh/2wlBORERUfB5++GGUL18egwYN0noo3BKNiIgcRtNQfubMGSxatAh169bFpk2b8Nxzz+Gll17CZ599BgBISEgAAAQFBRl9XVBQkP46U7NmzUJgYKD+o3r16nYbL0M5ERFR8TF8D6A1VsqJiMhRNA3lOTk5aNGiBWbOnInmzZvj2WefxdNPP41FixYZ3U6n0xl9rihKnsukSZMmISkpSf9x4cIFu42XoZyIiKj4dOnSBf7+/loPAwC3RCMiIsfRNJSHhIQgPDzc6LKGDRvi/PnzAIDg4GAAyFMVT0xMzFM9l7y8vBAQEGD0YS8M5URERObt2rULffv2RWhoKHQ6Hb777rs8t1m4cCFq1aoFb29vtGzZEr/99pvjB2olVsqJiMhRNA3l7du3x4kTJ4wuO3nyJMLCwgAAtWrVQnBwMLZs2aK/PisrCzt37kS7du0cOlaAoZyIiMiS1NRUREREYMGCBWavX7NmDcaNG4fJkyfj77//RocOHdCrVy/9gXhnw1BORESOounq66+88gratWuHmTNn4rHHHsPevXuxZMkSLFmyBIBoWx83bhxmzpyJunXrom7dupg5cyZ8fX0xdOhQh4+XoZyIiMi8Xr16oVevXhavnzt3LkaPHo0xY8YAAObPn49NmzZh0aJFmDVrlk2PlZmZiczMTP3n9lzUVWIoJyIiR9G0Uh4ZGYn169dj9erVaNy4Md566y3Mnz8fw4YN099m4sSJGDduHMaOHYtWrVrh0qVL2Lx5syZzzhjKiYiIbJeVlYUDBw4Y7aYCAFFRURZ3U8lPcS7qKnH1dSIichRNK+UA0KdPH/Tp08fi9TqdDjExMYiJiXHcoCxgKCciIrLd9evXkZ2dXeBuKj169MDBgweRmpqKatWqYf369YiMjMxzf5MmTcL48eP1nycnJ9s9mLNSTkREjqJ5KHclMpQriviwsAA8ERERmVHQbiqbNm2y6n68vLzg5eVl17GZ4urrRETkKJq2r7saN4OflqJoNw4iIiJXUqlSJbi7u9u0m4rWWCknIiJHYSi3gWEoZws7ERGRdTw9PdGyZUuj3VQAYMuWLUXaTSU2Nhbh4eFmW9yLiqGciIgche3rNmAoJyIiMi8lJQWnT5/Wfx4fH49Dhw6hQoUKqFGjBsaPH4/hw4ejVatWaNu2LZYsWYLz58/jueeeK/RjRkdHIzo6GsnJyQgMDLTHt6HHUE5ERI7CUG4DhnIiIiLz9u/fjy5duug/lwuxjRgxAitWrMDgwYNx48YNzJgxA1euXEHjxo2xceNGhIWFaTXkfDGUExGRozCU24ChnIiIyLzOnTtDKWDBlbFjx2Ls2LEOGlHRcEs0IiJyFM4ptwFDORERUenASjkRETkKQ7kNGMqJiIicR3Eu9MYt0YiIyFEYym3AUE5EROQ8oqOjERcXh3379tn9vlkpJyIiR2EotwFDORERUenAUE5ERI7CUG4DhnIiIqLSgaGciIgchaHcBjqdep6hnIiIqOTi6utEROQoDOU20OnUYM5QTkREVHKxUk5ERI7CUG4j2cLOUE5ERKSt4lx9naGciIgchaHcRgzlREREzqE4V1/nlmhEROQoDOU2YignIiIq+VgpJyIiR2EotxFDORERUcnHUE5ERI7CUG4jhnIiIqKSj6GciIgchaHcRgzlREREJR+3RCMiIkdhKLcRQzkREVHJx0o5ERE5CkO5jRjKiYiInENxbonG1deJiMhRGMptxFBORETkHIpzSzRWyomIyFEYym3EUE5ERFTyMZQTEZGjMJTbiKGciIio5GMoJyIiR2EotxFDORERUcnHUE5ERI7CUG4jhnIiIqKSj1uiERGRozCU24ihnIiIqORjpZyIiByFodxGDOVEREQlH7dEIyIiR2EotxFDORERkXMozn3KWSknIiJHYSi3EUM5ERG5goMHD+LIkSP6z7///nsMGDAAb775JrJKyERpR+1Trih2v3siIiI9hnIbMZQTEZErePbZZ3Hy5EkAwJkzZ/D444/D19cX33zzDSZOnKjx6JyfDOUAkJ2t3TiIiKjkYyi3EUM5ERG5gpMnT6JZs2YAgG+++QYdO3bEqlWrsGLFCqxdu1bbwbkAw1BeQhoLiIjISTGU24ihnIiIXIGiKMjJfbHaunUrevfuDQCoXr06rl+/ruXQXIJhKOe8ciIiKk6ahvKYmBjodDqjj+DgYP31iqIgJiYGoaGh8PHxQefOnXHs2DENR8xQTkRErqFVq1Z4++238fnnn2Pnzp146KGHAADx8fEICgrSeHTOj6GciIgcRfNKeaNGjXDlyhX9h+GiNLNnz8bcuXOxYMEC7Nu3D8HBwejevTvu3Lmj2XgZyomIyBXMnz8fBw8exAsvvIDJkyejTp06AIBvv/0W7dq103h0zs/dXX3NZygnIqLi5KH5ADw8jKrjkqIomD9/PiZPnoyBAwcCAFauXImgoCCsWrUKzz77rKOHCoChnIiIXEPTpk2NDnRL77//Ptzd3TUYkespUwbIzGQoJyKi4qV5pfzUqVMIDQ1FrVq18Pjjj+PMmTMARHtdQkICoqKi9Lf18vJCp06dsHv3bov3l5mZieTkZKMPe2IoJyIiV3DhwgVcvHhR//nevXsxbtw4fPbZZyhj2JtNFnl5idOMDG3HQUREJZumobxNmzb47LPPsGnTJnzyySdISEhAu3btcOPGDSQkJABAnnlvQUFB+uvMmTVrFgIDA/Uf1atXt+uYGcqJiMgVDB06FNu3bwcAJCQkoHv37ti7dy/efPNNzJgxQ+PR2UdsbCzCw8MRGRlZLPdfoYI4vXGjWO6eiIgIgMahvFevXnjkkUfQpEkTPPjgg9iwYQMA0aYu6XQ6o69RFCXPZYYmTZqEpKQk/ceFCxfsOmaGciIicgVHjx5F69atAQBff/01GjdujN27d+u3RSsJoqOjERcXh3379hXL/VeuLE6vXSuWuyciIgLgBO3rhvz8/NCkSROcOnVKP8/ctCqemJiY76qxXl5eCAgIMPqwJ4ZyIiJyBXfv3oVXbv/11q1b0a9fPwBAgwYNcOXKFS2H5jIYyomIyBGcKpRnZmbi+PHjCAkJQa1atRAcHIwtW7bor8/KysLOnTs1XTWWoZyIiFxBo0aNsHjxYvz222/YsmULevbsCQC4fPkyKlasqPHoXMPjN2LxHibi2lW+6BMRUfHRNJS/+uqr2LlzJ+Lj4/HXX39h0KBBSE5OxogRI6DT6TBu3DjMnDkT69evx9GjRzFy5Ej4+vpi6NChmo2ZoZyIiFzBe++9h48//hidO3fGkCFDEBERAQD44Ycf9G3tlI87dzB078uYiPcR8PdOrUdDREQlmKZbol28eBFDhgzB9evXUblyZdx///34888/ERYWBgCYOHEi0tPTMXbsWNy6dQtt2rTB5s2b4e/vr9mYGcqJiMgVdO7cGdevX0dycjLKly+vv/yZZ56Br6+vhiNzEXv2wF3JBgDUOboeQBdtx0NERCWWpqH8q6++yvd6nU6HmJgYxMTEOGZAVmAoJyIiV+Hu7o579+7h999/h06nQ7169VCzZk2th+Uadu3Sn21+dj2gfADks9AsERFRYTnVnHJXIEO5omg7DiIiovykpqbiqaeeQkhICDp27IgOHTogNDQUo0ePRlpamtbDc34GobxyxkVg/34NB0NERCUZQ7mNWCknIiJXMH78eOzcuRM//vgjbt++jdu3b+P777/Hzp07MWHCBK2H59wyMoC//gIAHEALcdn69RoOiIiISjKGchsxlBMRkStYu3Ytli5dil69eum3CO3duzc++eQTfPvtt1oPz7nt3QtkZeFe5WD8D6+KyxjKiYiomDCU24ihnIiIXEFaWhqCgoLyXF6lShW2rxckt3VdeaAjNqI3slAG+Pdf8UFERGRnDOU2YignIiJX0LZtW0ybNg0ZGRn6y9LT0zF9+nS0bdtWw5G5gNxQ7tG1I9LLBOJXdBOXs1pORETFQNPV110RQzkREbmCDz74AD179kS1atUQEREBnU6HQ4cOwdvbG5s2bdJ6eM7r7l1g924AgK5TR1SuDGy4/BB64Rfg9981HhwREZVEDOU2YignIiJX0LhxY5w6dQpffPEF/v33XyiKgscffxzDhg2Dj4+P1sOzi9jYWMTGxiI7O9t+d/r330BqKlC+PNCoESpXBq5friSuY9s/EREVA4ZyGzGUExGRq/Dx8cHTTz+t9TCKTXR0NKKjo5GcnIzAwED73KncCq1DB8DNDZUrAxnwFpdlZtrnMYiIiAwwlNuIoZyIiJzVDz/8YPVt+/XrV4wjcWHXrgFlygAdOwIAKlcGbsFLXMdQTkRExYCh3EYM5URE5KwGDBhg1e10Op19W75LkvfeA2JixNxyiFCewFBORETFiKHcRgzlRETkrHL44mQfPj7iA0ClSkAmQzkRERUjbolmI4ZyIiKi0qNyZYNQbrC9HBERkb0wlNuIoZyIiKj0MArlrJQTEVExYCi3EUM5ERFR6cHV14mIqLgxlNuIoZyIiKj0YKWciIiKG0O5jRjKiYiISo88oVxRtB0QERGVOAzlNmIoJyIiV7Bx40Zs2rQpz+WbNm3Czz//rMGIXFP58kCWDOWAfqs0IiIie2EotxFDORERuYI33njD7F7kiqLgjTfe0GBErsndHShb0SCUcwV2IiKyM4ZyGzGUExGRKzh16hTCw8PzXN6gQQOcPn1agxG5roDKBqGc88qJiMjOGMptxFBORESuIDAwEGfOnMlz+enTp+Hn56fBiFxXpSpuyEIZ8QlDORER2RlDuY0YyomIyBX069cP48aNw3///ae/7PTp05gwYQL69eun4chcD1dgJyKi4sRQbiOGciIicgXvv/8+/Pz80KBBA9SqVQu1atVCw4YNUbFiRfzvf//TenguhaGciIiKk4fWA3A1DOVEROQKAgMDsXv3bmzZsgX//PMPfHx80LRpU3Ts2FHrobmcSpUYyomIqPgwlNuIoZyIiFyFTqdDVFQUoqKitB5KsYiNjUVsbKzZVebtyahSztXXiYjIzhjKbcRQTkREzurDDz/EM888A29vb3z44Yf53vall15y0KiKT3R0NKKjo5GcnIzAwMBie5zgYFbKiYio+DCU24ihnIiInNW8efMwbNgweHt7Y968eRZvp9PpSkQod5QaNYAMeItPGMqJiMjOGMptpNOJU4ZyIiJyNvHx8WbPU9HUqAGcz62UZ6dlwl3j8RARUcnC1ddtxEo5ERFR6RIcDGTpRCi/lcBKORER2VehKuUXLlyATqdDtWrVAAB79+7FqlWrEB4ejmeeecauA3Q2DOVEROQKFEXBt99+i+3btyMxMRE5Ji9c69at02hkrsfNDdB5eQEZwM0rmaik9YCIiKhEKVSlfOjQodi+fTsAICEhAd27d8fevXvx5ptvYsaMGXYdoLNhKCciIlfw8ssvY/jw4YiPj0fZsmURGBho9EG2cfeVlXKuvk5ERPZVqEr50aNH0bp1awDA119/jcaNG+OPP/7A5s2b8dxzz2Hq1Kl2HaQzYSgnIiJX8MUXX2DdunXo3bu31kMpETzKegE3gaREtq8TEZF9FapSfvfuXXh5iSPGW7duRb9+/QAADRo0wJUrV+w3OifEUE5ERK4gMDAQtWvX1noYJYZngFh9/c41hnIiIrKvQoXyRo0aYfHixfjtt9+wZcsW9OzZEwBw+fJlVKxY0a4DdDYM5URE5ApiYmIwffp0pKenaz2UEsE7UBQjUm4ylBMRkX0Vqn39vffew8MPP4z3338fI0aMQEREBADghx9+0Le1l1QM5URE5AoeffRRrF69GlWqVEHNmjVRpkwZo+sPHjyo0chck285EcrTGMqJiMjOChXKO3fujOvXryM5ORnly5fXX/7MM8/A19e3UAOZNWsW3nzzTbz88suYP38+ALFy7PTp07FkyRLcunULbdq0QWxsLBo1alSox7AHhnIiInIFI0eOxIEDB/DEE08gKCgIOp1O6yG5NL8KIpRnJDGUExGRfRUqlKenp0NRFH0gP3fuHNavX4+GDRuiR48eNt/fvn37sGTJEjRt2tTo8tmzZ2Pu3LlYsWIF6tWrh7fffhvdu3fHiRMn4O/vX5ihFxlDORERuYINGzZg06ZNeOCBB7QeSolQtpII5cjMQHIyEBCg7XiIiKjkKNSc8v79++Ozzz4DANy+fRtt2rTBnDlzMGDAACxatMim+0pJScGwYcPwySefGFXdFUXB/PnzMXnyZAwcOBCNGzfGypUrkZaWhlWrVlm8v8zMTCQnJxt92BNDORERuYLq1asjgMnRbrz8RSj3QiYuXNB4MEREVKIUKpQfPHgQHTp0AAB8++23CAoKwrlz5/DZZ5/hww8/tOm+oqOj8dBDD+HBBx80ujw+Ph4JCQmIiorSX+bl5YVOnTph9+7dFu9v1qxZRvuwVq9e3abxFIShnIiIXMGcOXMwceJEnD17VuuhlAxeaig/f17jsRARUYlSqPb1tLQ0ffv45s2bMXDgQLi5ueH+++/HuXPnrL6fr776CgcPHsS+ffvyXJeQkAAACAoKMrpcHgCwZNKkSRg/frz+8+TkZLsGc4ZyIiJyBU888QTS0tJw3333wdfXN89Cbzdv3tRoZC7KW2yJxlBOVEopCvDvv0C9eoC7u9ajcW4XLwI//QQ8+SRQyPXGSptChfI6dergu+++w8MPP4xNmzbhlVdeAQAkJiZa3Sp34cIFvPzyy9i8eTO8c1/ozDFdmEZRlHwXq/Hy8tLvoV4cGMqJiMgVyEVTyU4MKuXHGcqJSp+vvwYefxz4v/8D3npL69E4t2nTgGXLgDJlgNGjtR6NSyhUKJ86dSqGDh2KV155BV27dkXbtm0BiKp58+bNrbqPAwcOIDExES1bttRflp2djV27dmHBggU4ceIEAFExDwkJ0d8mMTExT/XckRjKiYjIFYwYMULrIZQsbF8nKt22bxenx49rOw5XIKdNXbyo6TBcSaFC+aBBg/DAAw/gypUr+j3KAaBbt254+OGHrbqPbt264ciRI0aXjRo1Cg0aNMDrr7+O2rVrIzg4GFu2bNEH/aysLOzcuRPvvfdeYYZtFwzlRETkKnJycnD69GkkJiYix+SFq2PHjhqNykXlhnJvZDCUk2PdugXExgLDhgG1amk9mtLr8GFxeueOtuNwBdeuidMbN7QdhwspVCgHgODgYAQHB+PixYvQ6XSoWrUqWrdubfXX+/v7o3HjxkaX+fn5oWLFivrLx40bh5kzZ6Ju3bqoW7cuZs6cCV9fXwwdOrSwwy4yhnIiInIFf/75J4YOHYpz585BURSj63Q6HbKzszUamYtipZy08tlnwJQpwIULwMcfaz2a0klRgKNHxXk77+xUIiUmilOuXWK1Qq2+npOTgxkzZiAwMBBhYWGoUaMGypUrh7feeivPkfiimDhxIsaNG4exY8eiVatWuHTpEjZv3qzZHuUAQzkREbmG5557Dq1atcLRo0dx8+ZN3Lp1S//BRd4KwSCUX7wI8JgGOUzu4sf6oEOOd+6cWiFnpTx/OTnA9eviPF9rrFaoSvnkyZOxdOlSvPvuu2jfvj0URcEff/yBmJgYZGRk4J133inUYHbs2GH0uU6nQ0xMDGJiYgp1f8WBoZyIiFzBqVOn8O2336JOnTpaD6VkMFh9/d49kZOqVtV4TFQ6JCWJU1ZotSNb1wH+Hgpy+7Z61JKh3GqFqpSvXLkSn376KZ5//nk0bdoUERERGDt2LD755BOsWLHCzkN0LgzlRETkCtq0aYPTp09rPYySI7dSXrZMJgCwhZ0c5/ZtccowqB3DdbBKU6U8MREYPx6oWxcwKZ7m+zUS55RbrVCV8ps3b6JBgwZ5Lm/QoEGJb4ljKCciImd12KCa8+KLL2LChAlISEhAkyZN8uxT3rRpU0cPz7XlhnJfNxHKL13ScjBUqshQLivm5HimlXJFAfLZotnlKQowcyYwaxaQmiou+/FHoHPngr9WLvIGsFJug0KF8oiICCxYsAAffvih0eULFiwo8S/yDOVEROSsmjVrBp1OZ7Sw21NPPaU/L6/jQm+FIFdf12UAMH7fSVSs2L6uPcNKeU4OkJ4O+PpqN57iduGC2I8dAPz8RDBPSbHuaw3/Od66JX5ebjY0ZysK8NNPYqcBk0XBS7JChfLZs2fjoYcewtatW9G2bVvodDrs3r0bFy5cwMaNG+09RqfCUE5ERM4qPj5e6yEU2k8//YQJEyYgJycHr7/+OsaMGaP1kIwZLPQGAFevajkYKlVYKddWRgZw8qTxZcnJ1oXyGzeAb74BBg8GypcvnvEVh1u3xGnlysAbbwATJlgfyg3b1xVFPG+t/d4vXwaeegrYtAmoVw84ccK2cbuwQs0p79SpE06ePImHH34Yt2/fxs2bNzFw4EAcO3YMy5cvt/cYnQpDOREROauwsDD9x7lz51C1alWjy8LCwlC1alWcO3dO66EauXfvHsaPH49t27bh4MGDeO+995xvOlxuKC+TI0I5F8Imh5FhPCMDyMrSdiyl0fHjYuGy8uUBuQOUtfPK588Hnn8eWLCg2IZXLGTLekCA+j0XplIOWN/C/vvvQJMmIpADpW7hjkKFcgAIDQ3FO++8g7Vr12LdunV4++23cevWLaxcudKe43M6DOVEROQKunTpYjbYJiUloUuXLhqMyLK9e/eiUaNGqFq1Kvz9/dG7d29skm/MnEXu6use2Qzl5GCyUg6whV0LsnW9aVMRUgHrfw8XLxqfugoZwMuWFR+GlxXENJRbu9jbtGkiwMuW9YwM8VFKFDqUl1YM5URE5Ark3HFTN27cgJ+fn10fa9euXejbty9CQ0Oh0+nw3Xff5bnNwoULUatWLXh7e6Nly5b47bff9NddvnwZVQ32F6tWrRouOdtKarmVcvfsu9Ahh6GcHOPePbVqCTCUa0GG8iZN1FBubaVctoHLU1dhz1BubaVczgmaN08NXIYHpEq4Qs0pL80YyomIyJkNHDgQgFjUbeTIkfDKDZMAkJ2djcOHD6Ndu3Z2fczU1FRERERg1KhReOSRR/Jcv2bNGowbNw4LFy5E+/bt8fHHH6NXr16Ii4tDjRo1jBamk8wdUJAyMzORmZmp/zzZEUHF4OfoiSwkJnoX/2MSmc4j57xyx5MrrzdtCuzdK85b+z/H1UO5n5/t7eumRyytDeXyuV2uHBAYKH5mt24BwcHWfb2LYyi3EUM5ERE5s8DAQACiUu7v7w8fHx/9dZ6enrj//vvx9NNP2/Uxe/XqhV69elm8fu7cuRg9erR+8bb58+dj06ZNWLRoEWbNmoWqVasaVcYvXryINm3aWLy/WbNmYfr06fb7BqxhEMq9kcFQTo5hGsJZKXc8c+3rpbFSbu33LCvlgYHi+WtrKA8MFPP3ZSgvJWwK5fLouyW3S0GLAUM5ERE5M7ngas2aNfHqq6/avVXdVllZWThw4ADeeOMNo8ujoqKwe/duAEDr1q1x9OhRXLp0CQEBAdi4cSOmTp1q8T4nTZqE8ePH6z9PTk5G9erVi+cbkDw99We9kInEW2LNLYOLiezP9L01Q7ljpaYCV66I8w0b2r7Qm6uGcjlloijt6/Xri84Ca+aU5+SoP9OAAHW19lKQLSWbQrk8+p7f9U8++WSRBuTsGMqJiMgVTJs2TeshAACuX7+O7OxsBAUFGV0eFBSEhIQEAICHhwfmzJmDLl26ICcnBxMnTkTFihUt3qeXl5dRW75D6HQigWdlwUeXCSjA9etAaKhjh0GljGkoYfu6Y8kqb5kyIpDbutCbq4byws4pz8lRQ3mDBiKUW1MpNzzIERgoWtgB1/u5FYFNobykb3dmDYZyIiJyVi1atMCvv/6K8uXLo3nz5vnOyz548KADR5Z3jrjpQnT9+vVDv379HDomm3l7A1lZCKmQiXM3xNRJhnIqVmxf15YMheXLiwNztlTK795VK863b4vw4OYia2wbzimXofzu3YLbg27fFtvHAaJSDlgXyuXz3NNT/J+VlXKGcrKEoZyIiJxV//799RXkAQMGaDuYXJUqVYK7u7u+Ki4lJibmqZ47vdyfbUiFTOAGt0UjB2ClXFuGoRywrVJuGCgVRXyNrAA7O8NKueEUqJQUoEIFy18nq+QBAUBIiDhvSyiXXdlsX6eCMJQTEZGzki3r2dnZ6Ny5M5o2bYry8s2NRjw9PdGyZUts2bIFDz/8sP7yLVu2oH///kW679jYWMTGxiJbVmaKW24oDyrHvcrJQVgp15ZpKLelUm5a5b11yzVDeZky4n9fZqb1obxKFfV21oRy+byWBz1KYfu6i/RQOA+GciIicnbu7u7o0aOHwxZgTUlJwaFDh3Do0CEAQHx8PA4dOoTz588DAMaPH49PP/0Uy5Ytw/Hjx/HKK6/g/PnzeO6554r0uNHR0YiLi8O+ffuK+i1YR4bywAwADOXkAKyUa8telXJznzszw4XeDE8Lmlcu/ylWrqyGcmsWerNUKXeln1kRsVJuI4ZyIiJyBU2aNMGZM2dQq1atYn+s/fv3o0uXLvrP5croI0aMwIoVKzB48GDcuHEDM2bMwJUrV9C4cWNs3LgRYWFhxT42u8oN5ZUDWCknBzGca5uVxUp5Udy7BzzxBHD2LLB9O2CwXaRF9q6UuwrDSrk8vXGj4FAuK+WVKwNysU62r1uFodxGDOVEROQK3nnnHbz66qt466230LJlyzxbowXIio8ddO7cGYqi5HubsWPHYuzYsXZ7TE3khvKKZRnKyUFkKKleHfjvP4byopg+HVizRpzfuxfo1KngrymtlXLDhd4A9WCEtaHcsH391q2CF7kzDeWlsH2dodxGDOVEROQKevbsCUCsam64yrlc9dxh87BLEm9vAAzl5EAyrNSoIUI529cLZ/Nm4J131M+PHStcKC/NlXKg4O/bsH1d/sxycgpe5E4+r+VBD7avU0EYyomIyBVs375d6yEUO60Weivvy1BODiIr5TVqiFNWym13+TIwbJhYAT0wUATAY8es+1pLobwwlXJr2ridRWHnlBu2r3t5iUp7aqr43vML5fLnyfZ1shZDORERuYJO1lSBXFx0dDSio6ORnJyMQPlmrjjlhvJyPgzl5CCmoZyVctt98glw/ToQEQFERwPPPAMcPWrd11pqXy+tlXJbQjkgWthTU8V89Nq1LX8d29cZym3FUE5ERK4kLS0N58+fR1ZWltHlTZs21WhELiw3lAd6qauvKwqg+20XMHs28OGH+b/xJLKVDCtyUURWym0XHy9OH3sMaNlSnD92LPePV2f564D8K+UFfb38Wm9vICPDtQJmYUO5PFJZpYo4rVgRuHCh4C4BSwu9JScD2dmAu7v1Y3dRDOU2YignIiJXcO3aNYwaNQo///yz2es5p7wQckN5gJeolKeniyJQ2SVLgA0bgA4dgNdf13KEVNKYq5RbEyZJdemSOK1WDWjYUPzsbtwQATIoKP+vtVQpz8kR/wB8fQv+2lq1gOPHXSeU37snDiIA6kJvRamUA7aHcsNW96Sk/PdGLyG4T7mNGMqJiMgVjBs3Drdu3cKff/4JHx8f/PLLL1i5ciXq1q2LH374QevhuabcUO6pZOp3U0pMhPqGklVMsidFMV7oDTAOTGSdixfFabVqYhu0++4Tn1vTwm4ayv381AMiBbWwy6+V3TOuEsrlfHLAtkq5oohpAkDhQ7k86FGmjHpAwFV+bkXEUG4jhnIiInIF27Ztw7x58xAZGQk3NzeEhYXhiSeewOzZszFr1iyth+eacldf12Vl6rszExOhhnGGcrKn1FTRugsAVauqYZDPM+spimifBkQoB4BGjcRpQYu9KUreUK7TWb/Ym/xaeRDAVcKlDOXu7voDkVaF8tu3xUEjIG8ov3Ej/8c0XegNKHUrsDOU24ihnIiIXEFqaiqq5CbHChUq4FpuW2GTJk1w8OBBLYdmN7GxsQgPD0dkZKRjHlC+Qc00CeWyYmbN4k9E1pLVQw8PUTWUVUQu9ma95GQ1ZFatKk4bNxanBYXytDTg7l1xXgZEwPpt0Vy1Um44n1weCLImlMv55AEB6v/KwravA6VuBXaGchsxlBMRkSuoX78+Tpw4AQBo1qwZPv74Y1y6dAmLFy9GSEiIxqOzj+joaMTFxWHfvn2OecCCQjkrmGRPMowEBopwJEM5n2fWk63r5cur7dDWVspliJYHRSRrfw/y9+eqodzwe5YHIvIL5VevilP5zxEQC70BhQvlpWwFdi70ZiOGciIicgXjxo3DlStXAADTpk1Djx498OWXX8LT0xMrVqzQdnCuSobyjAxWyqn4yaAiw0lgoGjFZqXcejKUyyo5oIbyo0fzXzRPBsny5Y1vY02l/N499XoZym/fFgHCzclroqYrrxuezy+Unz4tTg13oLCmUm64doI84AGUuvZ1hnIbMZQTEZErGDZsmP588+bNcfbsWfz777+oUaMGKlWqpOHIXJilSjnnlFNxMKyUA6yUF4bhyutS/fpivnRSEnD5snFgN2Q6n1yy5vdg2HJds6Y4VRTxNYYrizuj/EJ5fgciTp4Up3XrqpdZE8rT09W1E9i+TtZiKCciIlfk6+uLFi1aMJAXhZlQfj3hnnhTCbBSTvZlWinnnHLbGa68Lnl5qcExvxZ2S6Hcmkq5/Fp/f9EGLrdrcIWqr5yDb2ul/NQpcVqvnnqZNQu9yeezm5vxY7JSTvlhKCciIlcwfvx4s5frdDp4e3ujTp066N+/PyqUgv1f7cZMKL9zxeBNKkN56XLtGjBmDBAVBURH2//+TSvl8pSVcuuZC+WAaGH/91/Rwh4VZf5ri1IpN/3a8uXFwbtbt8S+5c6ssO3rha2UG7auG04T4Jxyyg9DORERuYK///4bBw8eRHZ2NurXrw9FUXDq1Cm4u7ujQYMGWLhwISZMmIDff/8d4eHhWg+3UGJjYxEbG4ts2fpY3HK3RDMM5WlXDYI4w1LpoSjAU08BP/0EbNsGjB6tPj/sRYZy00o5n2fWsxTKGzcG1q4t/kq5YSi/fNk1Aqa5hd4KCuU5OeqccsNKueFCb5bm05tb5A1g+zrlj6GciIhcQf/+/fHggw/i8uXLOHDgAA4ePIhLly6he/fuGDJkCC5duoSOHTvilVde0Xqohabl6utyGmryRYOAdOeOCGtU8i1eLAI5IILK5s353/7rr4H33rPt+WFuoTfDy6lglkJ5w4biVFZ3zbF3pdzwcltduwbMmKHuuV6cClMpv3gRyMgQK9WHhamXV6okqt85OZZb2M0t8gbY9jO7cQN44AFxsKVTJ3HAzBUOgBhgKLcRQzkREbmC999/H2+99RYCDN7oBAQEICYmBrNnz4avry+mTp2KAwcOaDhKF2Ow+nqdOmKtKF2qQbVMUdT5mOR8UlLUkJafO3eAL78EMjPNXx8XB8jpIXIRr3XrLN/f3bvAyJHAG28AW7daP14u9FZ05hZ6M/xcXm+OvSvlQMFbg1myeDEwbRrw1luF+3pb5BfKMzPVvdsNyfnktWuLYC6VKSOCOQDk7gaSh3w+m1bKbWlfX7MG+OMP0fmwaxewfDnw7bcFf50T0TSUL1q0CE2bNkVAQAACAgLQtm1b/Pzzz/rrFUVBTEwMQkND4ePjg86dO+NYQXsKFjOGciIicgVJSUlITEzMc/m1a9eQnPsmqFy5csjKynL00FyXQaVcrhXlD5M35pxX7pzu3AFatgTq1Ck4mL/1FvDEE8Dkyeavf/FFURXs0QOQ2wv+8IP5sAKIoCAXA/zsM+vH7KqV8t9/Bx56KP8qtCOkpakh2HSFdRnKL1+23L1QUCh3ZKX8v//E6e7dhft6W+S30Jvh9YbMLfImhYSIU0uh3B7t67/+Kk6fflo89wDg3LmCv86JaBrKq1WrhnfffRf79+/H/v370bVrV/Tv318fvGfPno25c+diwYIF2LdvH4KDg9G9e3fc0fAFj6GciIhcQf/+/fHUU09h/fr1uHjxIi5duoT169dj9OjRGDBgAABg7969qGfuTRSZZxDKASA8HAiAyRvz0lTF/PJLoEsX4OpVrUdSsHHjREjMzAT27Mn/tjt3itPly0X4NpSWJipxAPDRR6JltkoVEba2bzd/f/v3q+fXrbP+wE1RKuV37ogDBfJggCO98gqwcaPaTWBJairw6KPA6tXW3/e1a8ALLwDWTFmRVXA/v7yBTwbFzEzLbdUFta/bUimXC54VNpTLtvW4uOL/H2OuUu7pKarehtcbMrfIm1TUUF7Qzyw7W6zrAIi1Hdq3F+et6YpxIpqG8r59+6J3796oV68e6tWrh3feeQdly5bFn3/+CUVRMH/+fEyePBkDBw5E48aNsXLlSqSlpWHVqlWajZmhnIiIXMHHH3+Mbt264fHHH0dYWBhq1KiBxx9/HN26dcPixYsBAA0aNMCnn36q8UhdiEkob9TIxSrl9+7Zd877tGnAjh22hSotrFsHLFumfn70qOXbZmYChw6J8zdvAt99Z3z93r3i51i1KvRzGB5+WFy3dq35+zQM5Wlplm9nqrCV8jNngDZtgP79gQ8+sO6x7OXQIfX73bABOHzY8m1//FG0GL/2mvXPy5dfBmJjrWvjNpxPbriqNyBCplyt0VJ4K4729aKGckWx7oBEUZhb6A1Qv29zoTy/SnlwsDgtKJSbzik3bF/P7/lx8KA4gBUQILphZBeEI+bf25HTzCnPzs7GV199hdTUVLRt2xbx8fFISEhAlME2BV5eXujUqRN259O6kZmZieTkZKMPe2IoJyIiV1C2bFl88sknuHHjhn4l9hs3bmDJkiXwy32z1axZMzRr1kzbgboSg9XXAVEpd5lQ/s8/gK8v8Oab9rm/c+fUltqDB/NeryjAnDnAzJnaLn535QrwzDPivFyAKr9Q/s8/gOGUDtODVr//Lk4feEANeo88Ik6/+05U7UzJdRuaNxenK1daN/bCVMp37QJatwaOHzcer6MsXWr8+bvvWr6tfP5cuqSu3J2fPXvUA0DWtCZbWuRNki3tluaVO8tCb4piHDD/+sv2+7CFuUq54ef2rpRbmlMuf2bZ2fmv1SFb17t0EfPZq1cXn7NSbpsjR46gbNmy8PLywnPPPYf169cjPDwcCQkJAICgoCCj2wcFBemvM2fWrFkIDAzUf1SXvxg7kaGci6sSEZErKFu2LCpUqIBKlSqhrOmbLLKNmfb1PKHcWdvX164Vc55jY+3T0izfCAN5Q3lODjB2LPDqq2JetmGISE4WgdHcGylFEZXdL78s+PFTUkQVtqAqyerVoj25aVNg4UJxWX6hfO9ecdq0qQjdv/6qhkdALCYFiFAude4sAkRiYt4QnJkpgj4AzJ0rTnfssC5UWqqUW3qO3b4t5tPeuKEGE0cu5JieDnzxhTj/3nvidM0a45+fIcPLLbX+Szk5oi1esqYKammRN6mgxd6cpVJ+44bxNIriDuXm5pQbfm76fd+7J7ozAPvOKffxER0NQP4/N7l44oMPilP5e7140aUCm+ahvH79+jh06BD+/PNPPP/88xgxYgTi4uL01+tM2k0URclzmaFJkyYhKSlJ/3HBzq0LrJQTEZEryMnJwYwZMxAYGKhvXy9Xrhzeeust5JSQF7HY2FiEh4cjMjLSMQ9osPo6ANSvDwSazil31kq5fCN/5w5gsKhuoRmuIn78uGjLBkRV6+mnxWrRkmwdVxSge3dxNKNhQ1FFNZzP+/XXYu73iBH5H9zIyQF69QIiIoD77gOmTrX8hv/6dXHapQvQooU4f/q05QMTMpQPHAjIbk05/uxsdaEtOW8VEHNtu3cX500D09Gj4mBI+fJiq6YuXcTln39u+fuTLFXKLbWvnzwpDlZUqSIOlLi5AQkJln829rZunRhzWJg4INOzp/hdvf+++dvbEsq/+kr8bH18xOe3bhW800FRKuWK4jyVctMs89dfxRs2ba2Unz0rgrm3d94F9YB8Q3l2NnD6gIVQrtMVvAJ7erp6IKxbN3Eqf99paS61LZrmodzT0xN16tRBq1atMGvWLEREROCDDz5AcO78A9OqeGJiYp7quSEvLy/9au7yw54YyomIyBVMnjwZCxYswLvvvqtvX585cyY++ugjTJkyRevh2YWW+5TLT6sFWqiUp6WJlbZlKNSSoqhhExABp6j3Z1gpz8lR5w7PnStCrJubWJBLPl5qqphDLMdx4gQwaRIQGSkWiktJASZMENdlZwN//mn58VeuVN+Inz0r5hf37Wv+tobzVYOCgIoVxXj//df87WWobt0aGDNGnF++XLS0Hz0qfr/+/kCTJsZfV6eOODWtgMv51a1aiZDx5JPi82++sfz9AeLx5IEOc+3r5kKZfM8cFia2oZJ7cZubXlAcZKv/6NHi9z9pkvh8+XLzi6kZhvIdOywHTUVRV8KfPFkNhwW1J8vrzQVFw8vN3U9amrqafn6VcmtXbrdHKG/cWLRnX71qXafF5s1iyoRcI8FaluaUWwrlcj55nTpqUDKUTyj//nvg7GELoRwoeAX23bvF/+PQUKBBA3GZt7e6DZu53+21a5Y7LXJy8i7u6CCah3JTiqIgMzMTtWrVQnBwMLZs2aK/LisrCzt37kS7du00G59h+7oLdUQQEVEps3LlSnz66ad4/vnn0bRpU0RERGDs2LH45JNPsEJu40S2MQnlABAaYGFO+dKlouI7Y4aDBpeP06fFm1rZafjTT0Wr6B89Klq1fX2Brl3FZX//LU5l6/mcOcCHH4pK9p07YkGvt98W1730kgjuYWFAfLwI1JMmGVcsZZu4qdu3gddfF+ffflusgA6I+zHHcL6qTieCjfweTN26pc6NjYwE+vUTi1RduQJ8/LF6IKBtW+O9mAF1vrppWJLt461aidOHHhLjOHxYbMdlidwCuFw5NZjI0KIo5uf1ylAuF9aSnQEFhfK//xZBpSjOnhXB2s1N7MkOAB06AM2aiQMMposBZmSov28PDzH2EyfM33dcnLh/Hx/Rwm7tnOGiVMpleHZ3z1sxlgdHsrMtd1xYG8p//12su2BuLQJJBsi6dUV3CGBdC/uiRSKQz55d8G0N2Vopl38zlnbyMAzlJuHp+HEgECKUJ8NMIbWggxmGreuGndTyOWIavhMTxdSURo3M7xrx33/iYETz5g4PepqG8jfffBO//fYbzp49iyNHjmDy5MnYsWMHhg0bBp1Oh3HjxmHmzJlYv349jh49ipEjR8LX1xdDhw7VbMyGB4AYyomIyFndvHkTDWTlwECDBg1wU+7dS7YxE8qDfES4veuee50MgXKOpQxXjpSRoVanAbU63aaNeGOfni6q1uYoCvDss8DQocD58+ZvI6vkHTqIgAqI4Hf+vJg/7eYm9vnW6YBRo8T1r78uVo328RHVzlGjRCWvQgVx+YIF4nay4m0plE+bJgJkw4bAxInqyueWqsfy9yGDlLlQfu+eOJVV7fvuE5U2T08gJkZcNmOG2OYLMJ5PLtWsKU4tVcpbthSnlSurAX3TJvPfI6B2CrRurb759PZWDwaYa52WIUN2lMpQnt+88sOHxdi6dy/aG9vffhOnbdqogcjw9798ufHt5UGUgADxPAIst7Dv2CFO27cXB4KsXV3bHqG8fPm8K7f7+amXmTu4lZ2t/n5MQ/nt28bttmPHir8Hw84TU/L7rFZN/HwB60K5nA68YYPx4oUFsTWUy0q5uUXeADWUp6fned7Gx6vbSu49YaZSXlD7utwKTbauS4bzyiVFAZ5/XhwAklsGmjp2TPx+3Nzy/t6Lmaah/OrVqxg+fDjq16+Pbt264a+//sIvv/yC7rnzciZOnIhx48Zh7NixaNWqFS5duoTNmzfDX7aNaMAwlLOFnYiInFVERAQWyKBjYMGCBYiQ1RayjVx9PTtbX9mqUEa8obzmESquk2/SExPFqaUKbnEaMwYYMkSEVkB9A9+mDfD44+K8bGG/edO4SnfiBLBkiahsNmoEzJsnFu96/XVg+nTRhiwDRLdu6oriBw+KCjwAtGunto+OGCHe3MrA+Oyz6lZU9eqJN8byYEffvsA774jzf/6phmXp+HGxUB0gqvBlyqjV43v3zFctTbdbMg3lr70mrlu3zrh1XRo9WiwecP26GsoN55NLslJ+9qwabjMygCNHxHkZxAExHx7If26/DOX3369eptPlvy1aYSrlv/4qxvvPP2rAMXXxIjB/vjgY8cAD5ueoy/GadrMOHSp+TwcPGm+PJlvXa9dW59kXFMo7dxan1lTKs7LU51xhFnqzNJ8cEL8HmUXMHRwxbLWWoVLej6KoX5OdrXYH5HfwToby6tWtD+WZmeqK9snJln+35hS00JtpKJffg6VKua+v+vdn8tyJj1cr5TsP2di+rijqz03+XCRzlfLVq8XfuWS63SGgHsgID897XTHTNJQvXboUZ8+eRWZmJhITE7F161Z9IAfEIm8xMTG4cuUKMjIysHPnTjSW/0w1wlBORESuYPbs2Vi2bBnCw8MxevRojBkzBuHh4VixYgXet7TwEuVPhkdAXy0PyF19/fw9C6H8/Pm84bI4bdmitpB/9pl4Ay0r5a1bA4MHi/M//yxCScWKoqVaksHI3V187fjxwPDhogU2Jka88Zah/MEH1eB35Ii6/7bh/O5q1YAePcR5T08Rgg21by8mlg4eLNptGzUSwTM1VV21XPriCxFk+vRRV1r281PfnJkLSKbbLRmG8oQEEe7T08VBDLn4mmEo9/BQVxKXPxfTAAAANWqI05QUNdAdPix+95UqqdcDYgE0QPyuLD03ZOgyDOWAGlLMzdE2DeXygMmFC5bb0w3DnZwKYHjdwIFi7K+8IroX/vhDVNVNH9/cQQRAfO/y+WA4bUaG8vvuU0O5uXnlOTmWQ3l+lXL5HC1fXj1AZEpWym/dUufvS/mFciD/UC5/NmXLigMSgPjfIZ+D8mDC+fNqBdtS6z5gHMrlz/fgwfyr3ydPGgeV9est39ZQVpY6l96aUP7vv+r/DPm/wBxZLTdZK+zsWTWUb/ozMG+zhjyAZ+7AydWr4v+EmxtQq5bxdaaV8itX1DUuZMf11q15Ox1kyG/UyPL3Ukycbk65s2MoJyIiV9CpUyecPHkSDz/8MG7fvo2bN29i4MCBOHHiBDrIdlGyjWEoz10MyPueeFN3Ljv3Db58ky5DeXa2dds3WSMlxfL2TYAIl889Z3z7zz9X53u3aSPebEZEiDAo72vTJvXNq3yDPWWKqEqHh4vq6HPPiUB786Z4nIoVxf3UrCmqgXfvqtU400XXJkwQb6AmTBALMpnq0UNU7qtWFbeTLfGmLeyy3XTIEPUynS7/VclN29flm+3z50XYzsoSQTsrS50baxjKATG3XLast2iRdwEsQLTly7bxs2fFqeF8csNW2NatRdv+7dvmK543b6ohzXQs+W0vZdq+7u+vVi/lc8CU4QKAP/4oxn7njjjwcf/9Iswpivj+339f/P6OHRPVfvmzNTyAYhrKAbWF/Ysv1MAnp3fcd5/4Hn19xYED04pxXJzoUvD1FfP8AfOtyaZkR8XIkZbbkAMC1N+l6d9VQaFc/h7MjcFS27ycTiT3kJdt34D1obxuXfH3lpGh3o85suIrV6v//vv8561LhoHb9HkuD0QY3mbiRHG/ffuK9QMsMfO8zc4GrpzLgg/E/9LT1wL0jSV68vlr7ucjD+xUr65unSaZHriZO1f8Tlu2FAeH6tYVf/O//GL8daW1Uu6KGMqJiMhVhIaG4p133sHatWuxbt06vP3228jOzsZTTz2l9dBck4eH+gY/t1LuliJC+SXkhnLTSjlgvxb2Rx8VIcbSm/G33hJhp2pV4P/+T1w2dap481mhgmgVBsSia4sWAbt2qVXfH38U4UtWJbt1E/Ndjx0T84UXLRLVuXnzRFVq/Hh13qVhhaxOHTV8SA8+KAKcbE0viAzAhqH8zBlR3XZ3V9u/pfy2qDJtXy9fXq2QysrwsmXqgnUeHmqFWdLpxB7nzZsb75VtynSxN9k2blpBdHdXt1sz18Iug3LduuLgh6H8Qrlppdzwsc3NK792TTw3dTrxPJDbl/XqJeYhe3iIUBsXJ54Dr74qqvsVK4p1AKKj1fvOzhY/V3Ot4j17igMF166pUwAM29c9PdXfucECzwCM55PL4FVQpTw+Xn2c5583fxtAfN+W5pUXFMplZVYegDEk12Iw7I4A1NXwzYTy7Lh/MWaM2NbdSE6OOrbq1cWY69fP8/V5yHD56KOiQn/1KrBnj+XbSzJwe3qqVX7JtFK+fbv4v+HuXvBicmaetxcvAr7Z6t9sMgLyLrMgv1dzoVy258udDwyZHriRz6Px48X3NWCA+NywgyA7W92VgZVy58dQTkREruzmzZtYuXKl1sNwTTpd3sXecoPgZYSqn+fkGLcL2yOU37kjFkbLzDTzzh2iZVZOS1iwAHjxRfHmU27J1rq1ekChTh1R+e7QQV0o7YcfRAC/dk1UJU0rtIC4v3HjREB+8031csPQ2bev+cqk4eJYBZFztn//XW1nlgvTdeyYNyjlN8/atH0dUFvYs7NF0Bk6VMwvffJJsRK2rC4aatJEhGzDKr0p01Auq8fm1nCQLezmQrml1nVA7TSwNZSbm1cuw3+DBur2ZQsXioMh5cqJlvTly9UwCYgK4vffi/Nr1ojnl6XWdcnDQ0yBAMSUCsC4fR1QD7TIMC2Ztq4DBVfKFy8Wz5uoKMuLj0mFDeVyYb+ihHIZKgG4Jybg66XJePVVk/u6elV0F7i5qb97GUKtCeXNmomuB8C6FnZLi7wZXpaSIv7HyS0Mn3su74E4U2ZCueF88ixPP2TDw3IoP3NG7bKQTJ9DhgwP3KSkqJ0isktM/t8zXAQvPl50IHh7q79fB2IotxFDORERUSlmGMoNtqaSlfK7t+7kXTxNtuoWxZ9/qm885IJqhv76S7Sk16snqkBVqqjVIMB8yAZEazYgWs9l8DWsSlrDsLIs768oWrcWQe7yZTXgytZ1c/dvqVKemam+4Za3AdRQDoiDFx4eojV35cq8c95tYRjUsrPVxeTyC+UHD+bdmkmGXHNz12W4Md1OLSVFXaBLtq8D+Ydyw4Xt+vRRQ2RgoKhYyxXjTbVvL667e1esX1BQKAfUebwbN4rfkzxQJQNV797idOdONRjm5IjPAeNQLgPXrVvq9yxlZIjtCAG1kp8fS4u9yYNZxRnKTUJ1fZzAxYsmT2N54CEkRF15Xx5osCaUh4erAVRORciPpUXeDC+7c0fc199/i7+radPyv09APVBkIZTryomDZr/9ZjK9v2pVcUDv3r28/0fzC+XyYEt6unjOZWeL34d87rRpI/5OkpPVAz9y6kSDBqL672AM5TZiKCciInIOsbGxCA8PR6Sca+oIcgX2zEzxBjb3TW5gQ/Em8M7FZOPWdcA+lXK5RzYg2oVNQ5m56urTT6vnzQU8QLwBrVNHhFdZaTcMQNa4/37xJjYoyPzK5Lby9VXD5O+/i/Alw5npfHXAcqXc8HPDkCFDuZ+f8c+oqAwr5adPi0Dg42O+vTYoSP0eN29WL1eU/CvlltrXZbD39TX+XuVjnDmTt7JsuFWeu7tYYb1TJxHIDVeLN0dOgVm61LpQ3qyZ+DlkZIjV/TMzRciUIaluXRGu7t5V954+dkydT244noAAdX6zaQv711+LrpEaNYwXMLREhjfDn825c+qif5bamIsSyk+cALKzoeSG6nSI/yltAkTrtOygBmA8n1ySodyg0m7k7l11fYTwcHEAyNtb/B8yXAHfHHlAxNy6CYaVcrnv/PPPi23+CmLmeWu4yJtHxUDUqCH+DRktJaHTWZ5Xnl/7ure3Oi6504ThWipubkD//uK87CCQBzI0aF0HGMptxlBORETkHKKjoxEXF4d9+/Y57kENK+WypOXmhudjRHXSLe0O/t1VzKEcyFstN1xhXerWTQSu4GDLYVmnU4OubNmVq2Fbq3Ztsdr1r7/mnYdaWB07itNXXhGVuOxsETDMVcUsVcrl5/7+xpWvAQPE4nLz56tbVtmDYVCTretNmliuuskdhwz3qD51SvwevL2Bpk3zfo1sYTY9KGPYum44TaB8efVnOXeuermi5H3OPPywqBpac5BryBDxt3DkiAhaHh75r76t0wGPPSbOz5snTsPC1OqvTqeG6A0bxKn8uTzwgOWFvAzDdGqqWrV97jnrqp2m7euKIg7UpKSIvxm5haAp+bs297dtKZTXqiV+ZhkZ4iBJbuV3u5vYY/v+8iJ0Gi0ZkV8ot1QpP3VKVJbLlhWdAH5+6g4IBbWwW9O+fvWqOs1A/k4LYhrK//oLD6x5ER/gZQCALiBAv7ZanlkJluaV51cpB9QuCDlWuW6BNHCgOF23Tvx/kZVyDRZ5AxjKbcZQTkREzmzgwIH5fryS30JVVDAZyjMy1EXd/P0R0UEEQ3/cwZdzc6uWMiwWNZTfvatWI+WcZtlqDhgHLMOKuJubqDCfPWs8p9qUYUu4n1/BVVJzOnWyb4XptddEW/z16+qCbJZa4y2tvm668rpUrpxYdXnMGLsNF4BxpTy/+eSS3NZt61a1rVj+nlu2NH+Aw1Kl3Nx8cknO/1+8WF3r4PRpEf69vMyH/4KUL6+GGkB8n76++X/No4+KU3lAwTRMyRb2jRvFyvRy8TDZ6m9IBi7DSvmUKeK5XqOGmJZgDdNQvmyZ6BTw9hbn3SxEJfm7Tkoy3kNbUSyHcnd3ter7yy/Q3buHdHgjvqZYZDDcw8ZQnpCQd0svwLh1XR6gMWxhz481ofzMGdEFUqtW3kURLTF83qanA716ofuJBWiK3OXWu3RBhQri7M2bJl9rLpTfvq1uPWcplMufmVz/w3TXka5dxQKYiYni/yQr5a7F8OAjQzkRETmbwMDAfD/CwsLw5JNPaj1M12VYKZdviA3aad2Rg6xTZ8XlsuIo99O1xSefiHZyRQEOHRITLcuXF1sQASLIycmXZ86Id7KennkDlpeX8VZu5rRvr86d7dDBftXuoqhSRXQHGC6sZimUywMOppVy05XXi5sMarduqZ0N+YXy9u3F7+bSJTVwyDZ9g4MrV6+KLZaPHoUabm7d0m/LB0AN5YbzyaWoKHGgJT1ddAcAaot8ixaF/30b7uIgt7HLT0SE8cJrcjcAqVMnEewvXxYh8soVEWLNraBuWinfuxf44ANx/uOPzYdKcwxD+fnzYnVuQOxkIAO0OX5+anu0YQv7jRvi5wyYX4letrDnrpFwGnXg10pcFpYm+tYLDOXlyql7r5trYTcXLvv2FQcFDh/Of40La0K5NGiQ9Ys3yuft7dvAqlXArVu44lYVQ7AKh745BcycaVsol1XyoCDLv2vDn3/58sYLFgLieS8PLK1erf7gNaqUe2jyqC7OzU0EcoZyIiJyNsuXL9d6CCWbXJk7NVVtj/X3V1cXVxTcB/GGMTmkPgLKHRBvRM+eFW+Sz5wRbxbzW0gtPh545hlxvlYt9Y15+/Yi2FSvLi7btk0s0CUDVvPmti3QJpUpI0LQsmV5txuz0t9/i6KTzKV24esrFhLr1k1UzC3NWS6oUp5fl4A9+fuLH8LNm9aFch8f0VL766/iIEvVqmJONKCumA2xIHpsrHgaffF5OVHFzcgQoVVuzSXnlJurlOt0wOTJ4ne8YAHw0ktmw7/NunYVv/Bz56wL5bKFXW6NZ1rh9PYWv+sff1QX31qyRF3HwZBhpfzuXdH1kJMDPPGE+cq6JfJ+rlwRB4CSk8XzzJqOolq1ROfB2bPqHt3ybzUoyPzBMBkMc7+/U6iLGlH1ga+BctdPwQ3ZOH7coO3eXCgHxMGN69dFq7pptdrcXtsVKoiDHtu2iWq5XDndlDULvUmDBpm/D3PKlRM/j8xM4N13AQBLcsbgKwzBBx0B6NTd/2wK5Zaq5IDxz6x9e/NdD4MHA59+KtYQyMwUYzQ9WOQgrJQXgvydMpQTERGVMrIl9dw54znLOp2+Wt4qUFSv1v1eBYoMTfHxYmnhOnVEgDEMkIpivFq73DYKUPeGBkSAM5wDLlvYzc0nt9W8eWL/cmtWrDaRkCAeWk6RtiudDhg9Gnj9dctVOUuVckvt68VJHpWQbxILag2XLey//iqqdSkpokJrsNieXDLh9GmIn4G5Fvb82tcB0WXQuLH4mQQHiyACFO054+YmFtGKibF+brHh7cwFKsPF2UaPFkHSHMNK+dKlYm57pUrqfHVrBQWJg2vZ2cDu3eK5smqVdfPRzS32ZtK6npICbNqkdlDrtw67dw+ACOXN+oUBXl5wv5uJGjiP//4zaIKwFMrz2xbNXCgHrGthz2eht6Qcf/359Co18qw9kJMjmhTkDAwjhs/b06eh6HRYhlHw9VUbDixWymXHwrVr6roXMpSbW+RNMqyUm7auS507i+eN/AVptPI6wFBeKAzlREREpZR8E3j6tNGccsPTJn7iDeNfZ6vgnM4glC9YIAL4wYOiEpqSIt7FVq4swtm9e+LNhdxH3sNDhH+5l7VcqEiuGrx6tQhj5uaT2yogAHjkkUK9If3vPzH0U6fybiXsEJYq5Y5uXweM9zeuVavgx5ahfNs2YNEicf7ZZ/UHIBRFLLYPGCxNYG5btPza1wHx5vXtt9XP/fxEUJHzuAvr/vvF4moeVjbfNmkiDgR4e5vfcq1PH9EhERKizik3Rwau06fVyvvUqWpbt7Xc3Y0PZHz8sdp9kGvNGtGwkYe5xd4MQvmOHeLb7dkT+PDD3OtNWqjTQuuiQmV3/f+Vlr7/IicnN2vfu6f+js1VyoG8ofzePbWibBrK5RaJu3erzxdTuaH8nndZdOoEjBqlXvXfVbVSfqBm3tb1JUvE+nqPPWZh5zX5vAVwo/mDOI8w1Kyp3o3FUF62rDrNQH5vsm3f2kq56SJvkoeH+L8naTSfHGAoLxSGciIiolLKXCiXwSv3tMwVUd1KRBXsv5nbCrl3r1qh8vMT7c3Vq4t3sTduiHbWhQuBXbvEm/yAAPEuV/LyUhdge/BBUaW6cwd44w11D+qiVD2LwHCbbdPd4ByioEq5o9rXAeP+fWsWUGveXMx3TU4Wawd4eQEjRuivvnhR/ZkmJuZ2F8sV2A0r5fm1r0v9+4vK67Vr4rmza5djfzaASGCbNolwZboQGiDC15Ej4mchU5o5MnCdOiV+SNWqFX57O9mu/NRTeVZbT00VHfEjRuQ95pNfpfy3czXQpYt6lX4nsnr1jMJsQIvc/ye5FfQHKhss9nbmjAgb3t55D7ZY2hbtwAGxr5ivb96fb7Vq4v+GogBr1+b5MQDQh/ILt8pi1y5gxQq1eH7qnCfSIKbvfJH+iNGX3b4t1tkDxFPMdKF0AEah/FCL0QCMj3/IX7dcv82IaQu7Ne3r990nftZly5o/ACQNHqye12g+OcBQXigM5URERKWUfBOYT6VclomuIgh7EnLfda5eLcrILVuKUOLjI97J+vurLb1Tpqh7hQ8eDIwcqbZdRkaqc1Td3NQFu1auFK2X5crl38pZjAxDueF5h7F19fXiZBjK85tPLrm7i7nZ0qBB6uRaAPv3G988Ph6Fa1+XqlUT1WRrF+gqDuXKmQ/kUu3aYqG//JguovZ//2d+7rk15s4FZs5UV/k3cPasKD5nZ6tFcL18Qvna/eL7k8fR9Dfx8TFKojW65Ybr3NAZ4W0QyuW8hWbN8s6HNlcpVxQx3QUQVXFzc6jlCvivvmo+mOfOKTesisstz0//p8NYLMQkzMSy423160wCwIwZYoq7JLeaNyKftxUqYHvgAADmQ3meSjmQN5Tnt0e5VK0a8M03YvvI/Ba77NhRPejRuLHl2xUzhvJCYCgnIiIqpeSbwPh49d2jaSjPdce7CuIyct91yjnjY8aIRYe2bRNbVcXFiTmskZEiRMo9dUeOFMHpk09EZXzSJONxtGtnXNVr3VqzoGUYxC11xRYrZ1l9HTBuX7cmlANqCzsgOicM5BvKZWuzohTcvl7SBASov9eaNY37rG3VqpX4+zKzpZth3jbcfU3/uPJGsl87N5SfRw306iUW6AOMO9yz64kW9lT4omXf3K6H3NB53111BfZ7f4pQviPVzL7xMpQnJqrP+9WrRQeOry/w3nvmv9cXXhBrUmRkiIAuD+5JuWXxfy+qoVwuSn76NLASI/EuJuHuPZ1+7vi//6rHMwyXSMhDHqF49ln8d1GE5EKF8vR0dQu7/CrlgGhNt7QugeTuLtbxeP114zUNHIyhvBAYyomIiEqpqlVF1eXePeDYMXGZSfu6VL1lFcTD4F2nj4+6xdf994u5sNWqiTeFCxeqobpuXXU16/r1xUJv5ub+vveeuhq8Rq3rgAtUyrVqX7c2lPfpIw7otGsnDtgYkPPJ5VMjPh5529dv3xYty0DpCeWAugDYlCmF23XACoZhOk8ol7/r5GTMGH9bnDcI5d26qbn98mV1LbEr5UQoP+tRB7Vq5/5icyu0IQkH4Y57OH4cuPKDCOVLj0QabYUOQDznZTfBqVMiTL/2mvh88mTz27EB4v/F+vXA2LHiQMIrr4hqMiD+fnbvBgDsP6vOzf9XHCfQd4zLY49yAf8JE8S/wz59RMMBAGzfrl/LTjV8uNim4e239T9Xw1AuG0Tu3DGzNoVhKJdfHBho1FVSJFFRYlV4a9dGKAYM5YXAUE5ERFRKubmp1Zm//xan5irlZcqgcftAnEVN9bJHH7UcEFu1ElUsQKyAbk3Vu0YNUemqW1dMfNWI4TxyTSvld+4YvznTon29Xj0xnpo18ywYZlG1aqLaumWL0e9dUdRKuSz2nTmDvJVyeSQkMFA9SFMaLF0qpm8UpUpeAMNKudwSXc/XF6llxUGQnxfG486NLCi5B0ouoDq6dBFrOPr6it+lDPWHvMSCjFeqtlJ/3RERQPnyKJOWjNbYi5Nx91DxvPj/sg+RRgcH9GS1/MQJkYwvXxat/3KvdUvc3cWik7LV/bnnxAGe114DLl9GZvU6+Dqjr/7mhpVyQG3Q2bkT+OUX0dxTpgwwZ47Y9r5cOZHv5QElo8dt1gznLrjhyBFxkeHuY+XKqeflIut6MpT/+6+Y+w+oc8ZLCIbyQmAoJyIi0l5sbCzCw8MRGWmmvbM4yRZ22UIpw7hh+KtSBW3b6ZAJb8R75lb0ClqIav58scDVSy9ZP5ZnnhGTPuWbVg04TaUcUOf5A9q0r/v5ieBw4ID5Ob2WVKiQp3363Dmx6FWZMuqC+2Yr5aWtdV1q2hR48sliDWb5tq8DOO9eEwAQknUWW1degk5RkAEv3CtXGRERYmimU89/LDMQXfEr/npsrnpH7u5ij3YAvTy2oN69Y/BFOpIQgJOoJw7GmJL/h156SV0U8oMPrJtbr9OJTp0WLUS/eI8eYqoMgA2PLEU6fPW7ov37r5hqLp9uMhP/+Scwbpw4/+KL4niUuzvQpYu4zFwLe06O+Pr0dNEU0qSJ8Y9ABvM8Lew1aogQnp0N/PWXuEzD/3nFgaG8EBjKiYiItBcdHY24uDjskwsiOYrp4kIy9BlWyqtU0Xeg981ai5Rvfra8LY/k5gb9O3kXovmccm9vtX3ZcF65Fu3rgFhsLb+Vw60kq+RNm6r5w2hO+Y0boifa2kXeyGb5hfLMTOBoSk0AQE2cxV/fiNb1C6iOjp3d9LsLmu6cduy4G7ajK+5rYfK8jIoCAPTx3IJIiP9pp/xbQoGb+VAuK+U3bojn/2efiR5ya3l6Ap9/LqbjyNJ1dDS+vdoRgLoo+cmT6vpqFSqInReDgsT3f+KEWDdQrrwOqPPKzS32tnChWE7D11es7G563MrivHJ3d+Cff0TSnzdPdANMm2b99+oCGMoLgaGciIioFDMN5eYq5UFBqFJFtGceQ2PsDujpuPE5mOaVcsD8vHIt2tftSLb/tmyptvnGxwNK+QrqQYiEBOu2Q6NCya99fc8e4L/smgBEKL+yV6T286hhtKC+6XpwcXHic5Mty4Hu3QEATdP/RFdsAwCkNxZdQGZDeYsW4rRyZTGJe/hwq78vvfBwdVG4sDBg1iz88Yf4dMgQEZ7v3hUzKwDxr0+nEwuWS2+/bdx6nlvwxx9/wGiF9oMHxVpqgNiC3tzC6fku9ubnJ3YqGDdO9MqzUk4M5URERKWYpVBuUikH1PXa9uxxwLg0kJ5u3DGuSaUcML8Cuxbt63YkK+WtWqlriqWkANdv6Iy3RWOlvFjcuWO8Z/aFC+oi64CoBMs1Izr77kPDnKMARCiXLdyAcShPTBTzpd3c1HXqjG5Ypw7clWw87vY1AOBucxHK5SJrRnr2BH7+WVS527Ur7Lcp2t+//x7YsQMXk/xx/rwoTN9/v5p7f/xRnMp/fbnHD9C0qdhQwlC9emKZhKwsEcL//ltU0tu0ESG9a1fg+efNDyXfvcpLOIbyQmAoJyIiKsXsEMovXhQLHRu+yXdFhou8AU5UKVcU7drX7UBR1Ep5q1aiQ19OJc+zLVppnVNezM6dE6dlc3cHS083ruBu3QocQyMAQNO0P/EGRMX5hm8NNGqk3s4wlMsqee3aFtbky027bjliC0XfDmIbMbOVcp1OBPOi/t51OqBfP6BmTX2VPCJCfN8NGojP5f8v+a9v1CgxjX3jRujb9E3vDhDrybVoIarp9+4BDz8MrFljebkFuZi62Up5CcdQXggM5URERKVY9epi9S3J3JZoJqH8zz/Fm9HFi8X77ho1xEJHcn9fVyVDuAwut26pWz85lGmlPCND3ZPJBSvlt26pK1CHh4tTwxZ2fSiPj1cTk7yM7EK2rterJzrEAbWF/fZtYN8+4Hd0wPUFX+FubbWV2q9RTaNlIQznlMuVzPO0rku588oBAJUqoWo70SJx7pyZLcaKgQzlcmc+OU6ZeWQo9/AQ61ZWrWr+fubOFVPc+/cXU9ZDQoBvvwXWrRNz0C3Jt329hGMoLwSGciIiolLMw8N4u6t8KuVNmoh5mUlJYiuh558XFTZZIZ84Ud3u3BXJUF6/vnqcwrR67hCmlXJ5qtNBv4y0C5Htu2XLilADqE+5M2egls3fekustlW5sm2LfFGBZCivWVPd9lsu9rZjh8gB9eoBlaIHo8zJY5he70v8DxPgO/wRo/uRv7crV8S8akA90JJHly5q6TkyElWr6eDpKQJ5ni3ZioE8aNCypTiVlXLJ3Dxwc7y8xBT3774Tx8kuXQIeeaTAL2MoJ9swlBMREZVyhu9OLWyJBoigOnu2mPLZubPoNo2JEXNEe/USVeVhw0QX8jvviCq6oxeTLwrDNcZyv2VtWthNK+WGi7zZsjWZk5ChRLbzAmq4M6qUy4MPK1eq5VyyC7laes2aojkGUEO5XFlcrjQOd3cM/3kofGP/h2HPG3dmVKyoHhf65RdxarFSHhgItG4tzkdGws3N5GBMMZPdGbKabTpOa0O5IU9P6zeUKM2h3EPrAbgihnIiIqJS7r771POyd9tMpRwAoqPFh6lly0Ql/Z9/RCVOVs+PHxeLI7lCxpIBvEoVEcwvXdJosTfTSrmLr7wuK+WGO6sZhfL7DVrVx48XR3jIrgwr5XJKhqxW5wnlENMLxo7Nez9yr/Jjx8TfB5BPpRwQE7DnzgWefVZ/vydOiFBuuKp7cbh9W5zK1dTr1hW5JydH/Cnl13puD6U5lLveoUMnwFBORERUysmSUdmy6hsDw1BuxeJLwcHA0qXivKIAzZuLrH/pkmj9NH2fce2auiK3s5Ct6kFB6rfsFJXy3HCuBARg3To1bLgKGcoNK+VGc8plf3FkJDBzpkPHVlpYal+/eFGEZDc30f1iDTmvXDJtCzfStSvw00/6KQry9+7ISnn58uLUy0t9fLkdWnFiKCebMJQTERGVcjKUGwbxChXEBPKyZa0uc/frJ7YY/v13sdr2+vViVeZNm4yz1unTYkXkyEh1MSZnIAN4UJC6I5czVcovpQTikUeAGTM0GFMR5Ne+fu4ckN04Ajh1CvjtN3XSOdmVYSg3bF//9VdxvlUrNbwWxDCUV69u/G+jII4K5YqSt1IOqAcQCtO6biuuvk42YSgnIiIq5dq1E2XtAQPUy3x8RF/r1q02BaXOncVqxzqdaGdfsEBcPmWK2Hro8GGgWzexUBQAzJtnt++iyAxDuVNVynNP42+IsH70qAZjKgJz7euhoWKNAv2iX3XqMJAXk+RkNRiGhamh/OJF863rBTEM5fm2rpvhqFB+546abQwPNkSKrdLRrFnxPj5Quvcp55zyQmAoJyIiKuXKlROVStN+TrkHWhGMGiValN95B1ixQnwAIhycOyeq6efOic+1ZhjKr10T552iUp57ejlFXC4X6HIV5irl7u7iONC//4p1B5zh919SyT3KK1QQTy3D9vWUFHHellBuuFmDs4ZyWSX39AS8vdXLX31VzJYo7vnsgBrKk5LEwSePUpRUWSkvBIZyIiIiKq4Jljqd2Olq1y51PblatUSLe7du4v3HwoXF8tA2M13ozfAyh7JQKU+CuPzCBXUhPVdgrlIOiCkMgFgckIqPbF2XYVrux52ZKQ46+fjYdvzNsFJuceV1C+QYbtxQjzkVB8P55Ib/2nx9gYceEt9zcTOs0LvaOhBFxVBeCAzlREREVNweeECEry++APbsEdW6l14S133yCZCWZnz7S5eA69cdN767d9WKrmH7ujNUypUkEcqTIS5PTXWtN/nmFnoDxGKAgFidn4qP4XxyQMwSMFy7sUMH42pyQYrSvu7vr27mUJzVcnPzyR3Nw0P9Uy5t88oZyguBoZyIiIgcwc9P7GMuA8FDD4nK2a1bwJdfqrf780+xfVFEhOPCp2xXd3cX4dGRlfKzZ4FvvjGofst38rkV8uv/iXCe7hGgv8qVWthlIDGtlMt5vYcOOXI0pY9pKAfUFnbAttZ1QPwe69QRDR1Nm9o+Hke0sJuuvK6V0roCO0N5ITCUExERkRbc3YEXXhDn33gD2LFDBIj+/YH0dODyZdH6bk5iopinaS8yfFeuLN4byQMHSUlARob9Hsecp54CHntMrFwPQG1fz62UXzouwnn1xoH6QONKodxSpVyG8pMnRfWfisfly+I0d1cyAOpib4CYRmILnU5sZ3jypG0rr0uOCOXOUCkHSu8K7JqG8lmzZiEyMhL+/v6oUqUKBgwYgBMnThjdRlEUxMTEIDQ0FD4+PujcuTOOHTum0YgFhnIiIiLSyjPPiBWRb94EuncHOnUSgVuGhg8/FG/+DW3cKALGiy/abxyGi7wBIhfLxcCLs1quKMDBg+K8/i2hLIdnZEDJzMLNsyKUN2kfYLSdlaswt9AboG49pyjAkSOOH1dpIQ+KVKqkXiYr5RUqFG4l8sBAtQ3dVjKU//df4b7eGqyUa0vTUL5z505ER0fjzz//xJYtW3Dv3j1ERUUh1eDQ3+zZszF37lwsWLAA+/btQ3BwMLp37447d+5oNm6GciIiIu3FxsYiPDwckXLPnlKibFlg505g6FBR+T5/HggJAXbvFu3t9+4BEyaot797F3jlFSA7G1i+XH3zXVSmoVync8y88qtX1QWv9JVDGcoB/Pd3MjwzxA0au2Aov3tXXa/OtH0d4LxyRzAXyuV+3T16qFnAUerWFaenThXfYzhLpdwwlCuKOPC2fTuwdi0QF6ft2IqTpqH8l19+wciRI9GoUSNERERg+fLlOH/+PA4cOABAVMnnz5+PyZMnY+DAgWjcuDFWrlyJtLQ0rFq1SrNxM5QTERFpLzo6GnFxcdi3b5/WQ3E4Hx+xANycOUDHjsCGDaKSN2eOWCzpp5+AdevEbZcuVSvnmZnAV1/ZZwyJieLUsPrniHnl//6rno+Pzz3j4SGWiQbw985kBECkWq/KgS4Xyg0PmpirWnJeefGTCyYadiqMHg3ExgLz5zt+PPXqiVPTDhh7kqHcmSrlU6cCjRuL7dgGDQLuv1/dkq6kcao55Um5hz0r5P424uPjkZCQgKioKP1tvLy80KlTJ+zevdvsfWRmZiI5Odnow94YyomIiEhrOh0wfryomsvqaf36wMsvi/ODB4tV2mNixOcyzMl9z4vKtFJueL44K+XHj6vn9aEc0M8rj9uTpA/lCHC9Srms0pYrJ9YQMMVQXvzMzen39gbGji18C3pRyFB+8WLxrSUgDwY5S6X8xAlg3jxxvn598fO/c6fkTttwmlCuKArGjx+PBx54AI0bNwYAJOT+Rw8y/G+f+3mChf/2s2bNQmBgoP6juuGqDHYi9+5jKCciIiJnM3MmMGSIaGN/5hkRnu+7T1TPPTyAvXvt0wZqLpSHhIjTHTuKb19w00q56Qrs//2djEAk6S+TbwUvXiye8dibpUXeJHkA5vBh+y7cR0JGhhp8DdvXtVShgvp8OH26eB7D2SrlX38tfg8tWogDcZ06icsZyovZCy+8gMOHD2P16tV5rtMZ7mAPEeBNL5MmTZqEpKQk/ceFYjgsyko5EREROStPT9HaPm6cetmsWUDVqmLOOSDmlp8/D0yaJM7L9zR37wKffgqsWWN8n3fvqvO45edy1oAM4oCY5+7mBqxeDXz0kd2/NQDGofzOHYMFoXIr5Unnb6uV8sBAo1BeXAcK7MnSIm/SffeJrfIyMoq3nbmkUBSxQ4G1v3t5UMTdXV3U3xkUdwu7s1TK5fNe/k/6v/8TBVG5ldzhw9qMq7g5RSh/8cUX8cMPP2D79u2oZrAJYHDuxCTTqnhiYmKe6rnk5eWFgIAAow97YygnIiIiZ+bmBsydC6xaBSxYIOZjAsCoUeJ00SKxb/K774rtxTp2FHPNW7QAnn4aePxxYMsWcdvUVKBNG7F6+6+/isv+9z/RXlqxItCrl/q4nToB778vzr/yCrB5s/2/N8P2dSDvYm8f4UW4I0csBV+uHKpWFW/qMzLUucLOTIZCc4u8AeJ3GxEhzrOFvWDLlgG1aqmt0AUx/PlbqAFqorhDubNVygExn7x/f3G+SRNxalgp37RJHHB0hYNtBdE0lCuKghdeeAHr1q3Dtm3bUKtWLaPra9WqheDgYGyRrwoAsrKysHPnTrRr187Rw9VjKCciIiJnp9OJNvboaDVc9O4t9hVPTRXV7rZtRdX1jz/EbY8eVecxP/20qES//LJY6TstDXj4YdFWOn26uM28eXkruq+8AowcKd4nPf64+mbfHlJS1LnhcjVs/bzy3LJmDVzAXXcvcTTCxweenmqLvSvMKy+oUg6oLex//SVW1SfL1q8Xp/v3W3d7eeDGWVrXpdJSKTcM5ZMnq7lLhvLDh0UIz8kBnngCePNNsa6Gq9M0lEdHR+OLL77AqlWr4O/vj4SEBCQkJCA9PR2AaFsfN24cZs6cifXr1+Po0aMYOXIkfH19MXToUM3GzVBORERErqhMGVE5HDUK2LVLbKN27Jhoa9fpRBA/cwaoWRM4dw548EGxertOJ6qzd+6IBeQyM8V1TzyR9zF0OmDxYhGab90CPvvMfuOXgaRyZaBlS3FeH8pzN3M+gBb4cdoBYMwY/de50mJvBVXKAXWxtw8/FNMVGjWyPnSWJtnZwG+/ifNXrlj3NQXN6ddKaamUN2ggtn1s2RJ49FH18oYNxQHD27eBS5eAf/5RD6CUhO0BNQ3lixYtQlJSEjp37oyQkBD9xxqDiUwTJ07EuHHjMHbsWLRq1QqXLl3C5s2b4e/vr9m4GcqJiIjIVfXpI4J5hw7i87AwsQhcWhqwZAlQo4aYVw6IReEAUbHatUsNg97eInhbau/18gJefFGcX7zYfu2lcj55w4aiJRlQQ3nW5OnoUWYb2mIPGj3WyOjrXDGU5xcK+/QRQdzNTbwfjYsT0wg4x9zY4cPqnu+2hvLSVCm/e1dd3E7rSnnFiuLvdNcu490HvLzEKuyAaGGXU2kAEdBdnebt6+Y+Ro4cqb+NTqdDTEwMrly5goyMDOzcuVO/OrtWGMqJiIiopPH2Vs936yaq5gDQvj0wbZqYsv3zz+Lyr78WC47l54knRGv88eP2ay+V88kbNNAXxvWh/O9/fbD5bhcEVPTUBxjJlUK5bF/Pr1IeHCymGmRliQX7WrYUVcOoKODyZceM0xUYPu+sDeXm9ih3BnXqiNObN9UDB/ZiOMXEGRa3K1cO8PXNe7lhCztDOTGUExERUYn30UfAl1+qW6kBIgwuWQL07Vvw1wcEqO3tixaJiuXjj4tAnZhYuDHJSnmDBmqlXC709scf4rRdu7wVfFcK5ba0T7u7i+9t40agbl0x5eCxx4p3fK5k1y71fHKydXt8O2v7uq+v+jy2d7VczicPCDCuTjsbuQL7wYPGv9u4OFHtd2UM5YXAUE5EREQlnZeX2OKsKO2szz8vTtetA1q3FlutnTgBfPNN4e7PXCg/d07MHf7lF/H5Aw/k/TpXCuXWLPRmqkoVEcwBcXDCnovrFaekpOJbOTsnxzi4AdZVy521fR0ovhZ2Z5lPXhBZKf/+ezHdpnJlcSAhK8t4q0RXxFBeCAzlRERERAWLiBCV63v3RBiX76E2bLD9vu7dU8NIgwZAtWqign/3rljkTLazPvJI3q91pVBuzUJv5tSpI9YDAFxjL+d//xWhymA9Prs6flz8LH181J+LNaHcWdvXgeIL5c6y8npBZKU8M1Ocdu2qXubqLewM5YXAUE5ERERknUmTxHunBx5Q9z7ftk1tJb57V8z9XbIEeO01UVU35+xZURHz9haL07m7i1MAmDlTvC9r1878XPdq1cTppUvOv4VYUdqn5f7lrhBQdu0Sv/vt24vv/gGx7Z8todxZ29cBMUUBKL2V8ho1RGVc6tbNtZ7z+fHQegCuiKGciIiIyDp9+og55LLyGxYmWs63bRNz0595BlixQr19mTLAtWt5F5ySi7zVr6++F6tVC/jvP+CHH8Tnw4ebH0NIiPiae/eAq1eB0FC7fXt2lZ4uPgDbK+WACCg//ugaAUUGy/Pnxe/Fw86pRC7y1qmTWBQPYPu6Ja5SKdfpgMaNxVaOgAjlkis85/PDSnkhMJQTERERWa9iRfGGWqcTIR0QLezHjgErV4rPe/USc6MtVU8PHhSnhpvwyHnlgNiv29IiZx4earVcLgznjOR8cnf3wq2C7UpVw1OnxGl2tuhgsCdFUSvlHTuKgzJAyWlfP3XKvjnEVSrlgNquXrOm2IHBlZ7z+WEoLwSGciIiIqLCeeghcbphAxATIwLUwIFioTIZqmWbu6G//hKnbdqolxmG8j598q8uyzfzhw4VduTFz3A7NEt7wOdHBpSjR0X12ZnJUA6IqQn2dPWqCOA6nXi+WBvK794Vi88BzhnKa9YUB5jS00WHgb24SqUcALp3F6fyf0XjxiKbJSYCCQnajauoGMoLgaGciIiIqHA6dxaLb128CHz7rQhO06eL6+Qb7s2bjb9GUYC9e8V5S6HcUuu61Ly5OP3770IPvdgVdpE36b77xN7wGRnGodfZZGeLaQeS3GveXgx/jj4+1odyeVBEp3POqnGZMurz2NyBq8JypUr5ww+LLdDeflt87uurzrV35Wo5Q3khMJQTERERFY6Pj/Fc0MGD1Zb0zp1FJfD0aeM28//+E0HL01OtBgNAeLg4rVgR6N07/8eVYUa2wTujoi4y5uambhvlzB0B58+LRfske1fKDTsOAOtDufz5lytn/znu9tKvnzj9/nv73acM5a5QKdfpgIYNxQEKqSS0sDOUFwJDOREREVHhyRZ2NzfRwi4FBIjVsgHjSqBsXW/eXOyfLjVtCnz5JfDzzyKw50eG8mPHjAOhMzENk4XhCgHFdKEyZwvlzti6LvXvL063bgVSUvJev2cP8MUX4uPHH0VLfkFcqX3dHFd4zheEobwQGMqJiIiICu/xx4EuXUQLav36xtdFRYlTc6HcsHVdGjoUiIws+DHDwkR77t27Ipg7I3uEQlcIKLK1XlajHRXKb9zI/4CMXOTNGVdelxo3FtM2MjPztrAfOwa0by+mcgwfLqrqn35a8H26Uvu6OXK9CLnKvitiKC8EhnIiIiKiwitXTmyJNmlS3uvkvPJff1UXK8svlFtLp3POeeWKAsybB7z6qljsDij5oVxWyu+/X5zae065aSivWFFtd85vMTBXqJTrdGq13LSF/csvxfOpRg31YJf828mPq1fK5ZzyM2fE9++KGMoLgaGciIiIqHi0aiXCwe3bwP79oiIo50cXJZQDzjmvfMMGYPx4YM4c4LffxGVVqhT+/po0EcHtyhWx37szkpVy2RVx8aJ1bdbWMg3lOh0QHCzO59fC7gqhHFBD+U8/qQeuFAX46itx/v33gXfeEefj4gq+P1evlIeFid9xSora7eBqGMoLgaGciIiIqHi4uwMPPijOr1wpKr5ZWaKluHbtot23M1bKlywRpx06AKNGAWPGACNGFP7+/P3FKuyA81bLZaW8QwfA21u8p7540X73b25uvjXzyl2hfR0AHnhAfG83bgC7d4vL9u0THQd+fmLNBrkI4vHj+VePFcX1K+Xe3kDVquK84QKRroShvBAYyomIiOzr4YcfRvny5TFo0CCth0JOYNQocbp4MTBxojjfunXh9u42JEP5P/+Ibbm0dumSqJQDIpwvWwZ88ola1S0s2cIut5FzJllZ6hzy+vVFlROwbwt7YUO5q1TKPTzUxRK//Vacyip5v34imNepI26XkpL/AY/UVPVvwVUr5YB6wI6hvBRhKCciIrKvl156CZ999pnWwyAn0bs3MGWKOL9zpzgtaus6IEKgj48IIqdPF/3+imrZMvF+skMHoEED+92vbAv/4APgzh373a89xMeL77lsWXHwoWZNcbk9F3uzJZR/+qlYxyAhQQ3lzl4pB4BHHxWnsbFibvmaNeLzxx8Xp2XKqHOtzbWwJyWJn7mskpcpI/42XJUM5f/9p+04CouhvBAYyomIiOyrS5cu8Pf313oY5ERiYoBHHlE/t0cod3dXq8hat7BnZwNLl4rzzzxj3/seOVJUShMTxVx1ZyJb1+vUEZ0PWobyjAzgtdfE9mLvv6+2rzt7pRwA+vQBRo8WeeSRR4DLl4HAQKBHD/U2soXdNJQrijhwU6sW8MQT4rLy5YveiaIlVspLIYZyIiIqTXbt2oW+ffsiNDQUOp0O3333XZ7bLFy4ELVq1YK3tzdatmyJ3+SKVUSF5OYm5pR36iQqfu3b2+d+nWWxty1bgHPnxDxew4MP9uDpCcyaJc7/73/5rzjuaHKRt3r1xGmtWuJUi/b1775TFzlbuhS4cEGcd4VQrtMBixYBPXuq7ecPPwx4eam3sRTKf/tNndqwa5c4ddX55BJDeSnEUE5ERKVJamoqIiIisGDBArPXr1mzBuPGjcPkyZPx999/o0OHDujVqxfOnz+vv03Lli3RuHHjPB+XL1921LdBLsjPD9i+HThxQrQ724MM5b//bp/7K6xly8Tpk08WT9vwI4+I7oLUVGD6dPvff2HJSrlsrdayUr58uXo+KUkN5a7Qvg6IlvNvvhE7FgDAU08ZX28plH/8sTh96CGgY0dxvk6d4hunI8jFDV01lHtoPQBXxFBORESlSa9evdCrVy+L18+dOxejR4/GmDFjAADz58/Hpk2bsGjRIszKLdcdOHDAbuPJzMxEZmam/vPk5GS73Tc5H3u31PboIcLMnj1ir/SuXe17/9ZQFHGwAVDnANubTidasjt2FIvHvfyyfeetF5ZppdzeofzuXUD+S8gvlF+8KLoVAPGz+eAD9bauUCmXypYVB5guXMgbrE1XYNfpRIu+XBxu+nSgRQtRNZf7mrsqWSm/eFFso2jYMeAKWCkvBIZyIiIiISsrCwcOHECUXFkqV1RUFHbLvXrsbNasWQgMDNR/VK9evVgeh0qmGjWAZ58V5ydNUreLuncv/62j8pOTo1ZZrXH2rAhHZcqIUFRcOnQQe1pnZ4vv1RmYVspl+/qlS2Jl9qKS7eiAcUu2DOVXr4qfx2efid93x47AW28BAQHqbV0plAMigJqrdNerJ3LLrVvi+waAFSvEz7llS/Gh04mOCldvX69cWXTWKIqYFuJqGMoLgaGciIhIuH79OrKzsxEUFGR0eVBQEBJsmMjao0cPPProo9i4cSOqVauGffv2WbztpEmTkJSUpP+4YEsaIgLwf/8H+PqKCqFcuTokBGjaFDh2zPb7GzFChH1ZeS2InM/brFnxV/TefVcscPfdd9q37KelqdtzyUp55cqifV9RAIMZL4UmW9cDA8WWYFKVKiKA5uQAM2eq0wdGjRJ7u48eLT739xdz8ksCb2+1rTsuTnzvS5aIz+WBqZJCp3PtFdgZyguBoZyIiMiYzqTHWFGUPJflZ9OmTbh27RrS0tJw8eJFREZGWrytl5cXAgICjD6IbBEUBIwbJ84/8YRoIb9+HTh6VOyHbsvufOvXA198Ic7LlnRTqanAtWvq5zKUt25t89Bt1qABkDuzBK+9VvhuAHuQYal8ebUabe8V2M3NJwdEQG/cWJyfOlWMxc8PGDRIXPbSS2JMDzxQ9DE4k4YNxWlcHLBpk5g+4O8PDBmi7biKgysv9sZQXggM5UREREKlSpXg7u6epyqemJiYp3pO5Exee0207Kamikry5Mlim6i0NFH5lvs+5+fWLWDsWPVz2ZptaN8+0ap9333qfOa//hKnjgjlgNhezs8P+PNPsWK3VsHctHVdkvOZf/216I9hKZQD4qBJbKxYV8DPD5gwQV1AsGZNcVDgxx+LPgZnIueVb9umdgOMHGm/hROdCUN5KcNQTkREJHh6eqJly5bYYtK3u2XLFrRr165YHzs2Nhbh4eH5VtWJLClXDvj8c7FK+e7dwNtvAxs3qitYr19f8H1MmCC2G/P2Fp+bhvJvvxVbul25Aty5A6xeLRYik9uxOSqUBwcDr74qzkdHi2pwMS35kC/TRd6kESPE6ZIl4qBIUeQXyitWFAdRfvkFSEnJuyp92bLiAE1JIkP5+vXieRgeLtr3SyJXXoGdobwQGMqJiKg0SUlJwaFDh3Do0CEAQHx8PA4dOqTf8mz8+PH49NNPsWzZMhw/fhyvvPIKzp8/j+eee65YxxUdHY24uLh8558T5adPHxGcZTh2dweGDhXnZYu5JStXii21dDp1nu6pU+r7w40bgUcfBdLTgWrVxGWrVok56+npYs6zaTgtTpMni7n0Pj4ikHfuXLj580VhqVLet6+oct68KQ6UFEV+obw0kqEcEG3r69aVzCo5wEp5qcNQTkREpcn+/fvRvHlzNM/d4Hn8+PFo3rw5pk6dCgAYPHgw5s+fjxkzZqBZs2bYtWsXNm7ciLCwMC2HTVQocs/n+HjjeeCGvv9ebQV+4w0R5MuUATIy1FXYZfv74MGihd3DAzhwQA2dkZHqe0pHKFNGrDJ++jRw//2iYm9NN4A9WaqUu7uLOd0AMH9+0d5jM5Qba9BA7eRYudL1tz7Lj2Eo13LthMJgKC8EhnIiIipNOnfuDEVR8nysWLFCf5uxY8fi7NmzyMzMxIEDB9CxY0ftBkxUBIGB6n7e5powtmwRQTs7W8zNfecdESrlllQnTojTAwfE6bBhon1c7hr40Ufi1FGt66ZCQ9V2cWtXi7cXS5VyQEwbCAgA/v0X2Ly58I/BUG7Mzw/YsEF0bjz8sNajKV5hYaJzJSXF8gE1Z8VQXggM5UREREQllwzMhi3sV6+K7bOiooDMTLH/9yefiBAAqNXfkyfFvOjjx8XnLVuK02HDxOndu8aPoYXu3cXpnj0iwDhCUhKQmCjOmwvlhtuSzZtX+MdhKM+ra1egVy+tR1H8vL2BqlXF+RkzxPOpqNMhHIWhvBAYyomIiLTHhd6ouMjALCvlhw+Ltl/ZHPLUU8BXXxnvgy3bgk+cAP75R7xPDA4WlWkA6NdP7I1u+hhaqF1brDZ+9y6wc6djHlO2rgcFiYq4Oc8/L05//RXIyirc4zCUl26yhT02VuxFP3p00RcPdASG8kJgKCciItIeF3qj4iKP8+zdK+amvvWWqPRGRIjq8tKl6jxdybBSLlvXZZUcEItrDRggzlerBoSEFOu3kC+dTq2Wb92qXp6aWnyPKUO5uSq5VKeOCOzZ2ea3l7MGQ3np9tprQMeOYp2HChXEgSdXeIlgKC8EhnIiIiKikisiQiyMdv068Pvv6oJon38uFkkzx1wob9HC+DZjx4rq+iOPFM+4bSFDuZxX/sILYsuw4mr3tbTImyGdDmjUSJyPiyvc4zCUl259+ojujy+/BLp1E5f98Ye2Y7IGQ3khyFDuaqv6EREREVHBvLyAZs3E+eeeE5Xbzp2BJk0sf41sXz93Tt0D3LBSDgDt24sFqObMsfeIbde1qwjBx44B774r2n0zM4FnnwWOHrX/4+W3yJshuYVXYbdrYygnqX17ccpQXoBdu3ahb9++CA0NhU6nw3fffWd0vaIoiImJQWhoKHx8fNC5c2ccc/SGimawUk5ERERUssk537Ji+8IL+d++cmWxcruiqAHUNJQDQLlyYrV2rVWsqI5v0iRxGhQk9lB/9FH7LwBnTaUcUCvlhXnLn5MD3LolzjOUkwzlu3c7f27TNJSnpqYiIiICCxYsMHv97NmzMXfuXCxYsAD79u1DcHAwunfvjjt37jh4pMYYyomIiIhKNsOF2KpVE6ut50en+//27jw+qvLs//hnkkwmiyEEAtkIENwAo+xaFgH1EQGXKlp3xNpWEbAgPqgVrZSquPyqtlWxtNZaxcKDBR6eKmJQjCyyCIQtbErYCWHNQsg65/fH7SQZspBAyJkZvu/X67xmcs6ZzHWdzOSea+773Me74GzVqnImaF/lGcIOZqjvunUm5i1bzFD7xlL1i4rT9ZSfTVGem1s5kjUmpuGPl8DSpYuZXPH48cqrIfgqW4vyIUOG8MILLzBs2LBq2yzL4s0332TixIkMGzaM1NRUPvjgAwoLC/n4449tiLaSinIRERH7afZ1OZeqFuWPPuo903ptPEPYwfRCey6X5qtuusnctm4NH31kespnzDA9+R9+CPPnN87zHDliCiOovJ57bTzD17dvb/gM7J6h65GR5hQEOb85nZXvY18fwu6z55RnZWWRnZ3NoEGDKta5XC4GDBjAMs+JOjUoLi4mLy/Pa2lsKspFRETsp9nX5Vy65BLTqxsbC7/8Zf0f41HT0HVf06ePKbyXLzeXbwPo1w/GjjX3x4wxw9nPlqeXPDkZwsPr3jcpqX4zsD/xBKSkQHZ25TqdTy6nqjqE3Zf5bFGe/eM7LC4uzmt9XFxcxbaaTJkyhejo6IolOTm50WNTUS4iIiIS2IKCzCXRMjNNT3J9VC3KT5153VcNHmyK26omTTLXV9+xA155pX6/p6io9p7trVvN7emGroP3DOy1DWG3LHNZup074fPPK9erKJdT+ctkbz5blHs4Thn3Y1lWtXVV/eY3vyE3N7di2bNnT6PHpKJcREREJPA1b27ODa+vU4ev+6uoKHjzTXP/5ZcrJ2mrzaFD5rrr111nerirKi2F118393v2rN/ze4aw13ZZtF27zPnjYM6D91BRLqfq3dt80fP993DwoN3R1M5ni/L4H8fQnNornpOTU633vCqXy0WzZs28lsamolxERERETtWpk7lsWv/+0Lat3dGcnTvugEGDzGXSPEV1bZYuNeeML1lS/Trnf/yjucRay5bw5JP1e+7T9ZSvXVt5X0W51KV588rXky8PYffZojwlJYX4+HjS0tIq1pWUlJCenk6fPn1sjExFuYiIiIhU53LB+vWQnu77k7ydjsNReRm4hQvr3nfDhsr7EydCYaG5v3u3GQoP8NprpjCvj9MV5RkZ3vc9M66rKJeaeEpHX55+xNaivKCggIyMDDJ+fGdlZWWRkZHB7t27cTgcjBs3jpdeeok5c+awceNGHnzwQSIiIrj33nvtDFtFuYiIiIgEvP79zefe7783BXZtNm6svL9/P7zxBuzdC7/4BZw4YSaPGzGi/s97uhnYqxblx46Z5wIV5VKzDh3M7b599sZRF1uL8u+++45u3brRrVs3AMaPH0+3bt347W9/C8CTTz7JuHHjGDVqFD179mTfvn188cUXREVF2Rm2inIREREfoEuiiZxb0dHgeXstWlT7fp6ifPhwc/v735vJ4xYuNJeSmzq18vNzfZxuBnZPUe65TJ3n5yNHzK2KcqnKc2WBOuYKt52tRfnAgQOxLKva8o9//AMwk7xNmjSJAwcOUFRURHp6OqmpqXaGDKgoFxER8QW6JJrIuXftteb2q69q3l5cXFk4v/CCmcytuBjKymDAAFOYN/Tje9UZ2Nes8d529Ghlr/2QIeZ23TozhH3JEvPz6a6FLucXFeUBSkW5iIiIiJwPPEX5l19Wnrtd1datpgCPjjbXIf+f/4FnnoEVK+Drr01hfiY8RfmIEeb+m2+a5/f0infoYIbXgynKMzIgK8tcB/2GG87sOSUweeYIV1EeYFSUi4iIiMj5oG9fCA015+PWdGk0z9D1yy83PdwpKfDii3DllWf3vGPGwFVXmd+ZmQmPP2563T1FedeuZgGz7pNPzP2hQyEy8uyeWwKLp6f80CHzBZIvUlF+BlSUi4iIiMj5IDy8cvbqmoawe4ryxj7DtEsXWL4cDh+unCTu97/3Lsq7dDH3f/gBpk839++4o3HjEP/XqpWp3yzLFOa+SEX5GVBRLiIiIiLni7rOKz9XRblHixam5z00FBYvhrlzzfquXU2xlZBgiq1du8wl6W688dzEIf4rONi8VgAOHrQ3ltqoKD8DKspFRERE5Hxx3XXm9quvqn/+PddFOZjZ2B96yNzPzze3nqHrnluAwYPB5os0iY/y9cneVJSfARXlIiIiInK+6NXLXKLsyBGYMKFywrf8fDO5Gpzbohzg6acrL4HWsiW0aWPue4awA9x++7mNQfyXivIApKJcRETEfrpOuUjTcDrN7OcAr78OEyeawjwz06xLSDCF8rnUrh088IC537WrmQDOc98T4803n9sYxH/5elEeYncA/khFuYiIiP1Gjx7N6NGjycvLIzo62u5wRALaz38OhYVmVvQpUyAvDy65xGw7173kHlOmmNtf/KJy3Q03QI8eMGgQNG/eNHGI/1FRHoBUlIuIiIjI+Wb0aCgpgfHj4e23K3urm6oob90a3nvPe13z5vDdd03z/OK/fL0o1/D1M6CiXERERETOR48/Dp99Bm3bVp5b3lRFuciZUlEegFSUi4iIiMj5asgQ2LTJ9Jj3769zucX3+XpRruHrZ0BFuYiIiIiczy64AP7wB7ujEKkfXy/K1VN+BlSUi4iIiIiI+AdPUZ6bCydP2htLTVSUnwEV5SIiIiIiIv4hOhpcLnP/4MGa98nLg48/hmXLmi4uDxXlZ0BFuYiIiIiIiH9wOE4/hH3LFrjvPrjrrqaLy0NF+RlQUS4iImK/t99+m86dO9OrVy+7QxERER93uqJ8zx5zm5zcNPFUpaL8DKgoFxERsd/o0aPJzMxk1apVdociIiI+7nRF+e7d5rZt26aJpyoV5WdARbmIiIiIiIj/8BTltZ1Trp5yP6OiXERERERExH9o+HqAiYw0tzk5UFZmbywiIiIiIiJSNw1fDzCpScf4H+d9PJz3GqtWWnaHIyIiIiIiInVQT3kgsSyCR/6Kn5V+zGs8SfHEyXZHJCIiIiIiInWoqygvKalcr6LcH0ybBv/+N26HOXQDv54Ef/yjvTGJiIiIiIhIraoW5dYpg5337TPrXC5o1arpY1NR3hAbN8K4cQDkPvMqz/FjL/m4cfDVV7aFJSIiIiIiIrWLizO3RUWQm+u9rerQdYejaeMCFeX1V1gId91l/oqDBxMz+XE+ufRZpnOv2T5njr3xiYiIiIiISI3Cw6F1a3N/61bvbZ5J3uwYug4qyusvNBR+9jNISoIPPoCgIG4Y7OB/+anZ/u239sYnIiIiIiIiterZ09yuWuW93tNTbsfM66CivP5CQmDSJNiypeIrlhtugOX8BABr3TrTmy4iIiIiIiI+58orze3Kld7r7Zx5HVSUN9wFF1TcHTAADjqT2U8CjrIyWLPGxsBERERERESkNrUV5Rq+7sciIuDq/o6K3nKWL7c3IBERkfPI22+/TefOnenVq5fdoYiIiB/wNBdbt8Lx45XrNXzdzz3xROUQ9v3/1nnlIiIiTWX06NFkZmay6tSTA0VERGoQGwsdOpj7331XuV495X5uyBBof5cpyh0rvmVnlnWaR4g0oiNH4Isvql9sUZqOZcH778OvfgWHDtkdjW+zLHjjDXjsMXMlCxEREZEmduoQ9oKCyl5zFeV+7Ffv9qCMYBKsA4y5dS/5+XZHJOeFkyfhmmvMjIOvvWZ3NOenXbtg0CB46CH4299g1Kj6P3b9enMlh/LycxffubB7t7kSRdeu0L49dOtWOebrdP78Zxg/Ht56y9zW1+rV8MorMGECPP44bN58JpGLiIiIVCvKPR9joqOhWTN7Ygqx52kDi7N5JMWpXQjZuIbw9csZOjSZ+fO95oQTaXxPPAEbNpj7zz5risOuXW0Nye+43fDDD7B3L+zfD506Qffu9XvsokXw059Cfj6EhUFpKXzyCcybB7fcUvdjV6yAa681V2xYtgzefRccjrPP51wrK4O77/a+BOSuXfDgg5CWBkF1fM+7YIEpqD2mTjWzZd51V93PuWAB3Hij95cX06ebOTw8489ERERE6slTlK9YYQbx2T10Hfykp/ydd94hJSWFsLAwevToweLFi+0OqRpXfzOEfaDrW5YsgaFD4dC2Y+ZDe2oqrF1rc4RNrLTULL7OsiAvD7KyzNiV0ykoMPvWltuhQ+bCh/Pnw8yZ5iu4un6v2w2bNpnZJkpK6h/37NmmqAHTU1laCvffX78hwSUlDXuuxpSXB9nZJu/Taejw5vLy+j/Gsszf6Ior4JJLTIF8//3Qowf07g0ff1z3MfryS1Mo5ueb/devN1+SAIweTZ3DZbZuNY/1XEJx2jRzucUzlZ8PmZmmYD7XpkwxBXmzZjB3Lnz2mZnx8quvTC94TYqK4F//MsW32w0//zn85jdm269+ZS4zWZuNG+HOO83ftn9/c4yvuMK8z4YMMadvnM6RI7BkCaSnwzffwM6dDc1aREREAki3bhAcbD6S7ttn/yRvAA7L8u2TUWfOnMnw4cN555136Nu3L3/5y1/429/+RmZmJm3rceTy8vKIjo4mNzeXZudyPMKHH8IDD1DQuRcd9i4mMm8/nzGUTpgPnCWhkaSPnAEXXsil30wjZt8mQq+7GtcdN0NCAuTkmJMZXC4IDzevlJIS80E7IsJ8CHY44OBB84E0OBiaNzc9U1u3mg+2DgekpJghpS1amDEYBQWmN3XzZvMcR4+aAi4hARITTS/X8uWmtzA5GS66yDzWUzQlJZneKKfT/I5t20xcISHei9NpbktKzAfpTZsgKAh3ryvJSfkJMUG5uHZvNz2S+fkmrhYtTKytWpmcDhwwsUVEmGMQHm7ul5XB4cNw7JiJsVs306MZGWmOV04O7NhhcsnJMfsWFZmYIiJMz964cWZ/j127TGEwezYUF5t1Tif07Ws+/J84YeIpLoaoKJPbmjWwbp0pEIKDzTs3MdFctz442MwWUdsH/k6dYNgwuPVWU5h+953pIf3mG5MXmN/Rvj1cfLEpFD23KSkmnpwc+P57M5T3k08gL4+DD0xg208n0PfRywnKOWgKmGeeMYWLp+d1yxbTEztzpjk2ZWUm1x494Oqr4dJLoWVL83pyOEzBunOnyXfbNoiJMa+DqChzPE6eNMe3qMj8XF5ufmdoqBke0qxZ5evr+HHIyDDH7YcfKosopxPatDHHMDm58jYpyez/ySem0E1IMH/v1FS48EJzfMrKIDfX/BfduNEse/dWns89aJAp/Lp3N8935IjJu+r9TZtMoQbmNeR5Ha5YUfmFS3w8jBwJ119vXq/5+ZVfKkyeDEVFnBh4I+UzP6FZ6zBTZKemmi9tbrsN99jHyU/tTVRMiOlAPnyY4jmfETTpOZz7d1PQuRf5Q+8m4f/9WMw/8gjWkKEcie7A0f9dTPA3izhZFsIPbQbyfZuBJPTtwFV9Q0hJgcJDJyj5bh3N57xP0Ix/mdfHBReY1++AAeY13LOn+f9QWGi2Fxaa/Jctg6+/Nv9L2rUzuaekmCU52bxPqr4HPf+LVqwwp0uUl7NnykdEPnwfLVpgvhwaNYry0DB2Tv4n8TElROZn4953gLJd+whZ+DlBeccBKOrVj+CvFuIMCzZfhCxebI7/iBHw85/jLiyiaNdBtqw9Scbqcm5Y9XuSSnexo01/1v+/LxhyqwvX0QPwk5+Yr7V79DCnDAwYYF4rDod5n6SlmWXFCvNeP9W118Ivf2nuZ2aa1/uxY2Zp1swcE8+xadfO/M0XLzbv14ceathpCrVosrbpPKHjKSIiDdGtm/nI+e9/m4+pkyfDI4+Yj8yNpSFtk88X5VdddRXdu3dnqqdXEOjUqRO33norU6ZMOe3jm6yh3r7dFFCA2xnKyfJQIt0F7CWJ77mIgaTjxkEQPn24A9aJZvFk9HqYgvIwXEcO0Cfzr4SWV/aqloeEElxWv95jy+nEUUtPueVw4I5PxN2yNe6ISEKyvif4UHadv88dEQmWRdDJwvonBHzLTxhAOqWEMpRP+ZSbKrYda9GB8tBwnKWFRB/JatDvPec8hb/NykNCybj6Mb69ZiIJnWO48EJoUZJN1L+mEfXxu4TkHKjz8Z8G38yw8lmUBbm44gq4/HJot/ULfr/yhop9ThBBPlFYQcG0dmcTjPmyaxsX05elHKYVLzh/x8TSSaePlyAOEoeFgyT2e20rDXbhLC9u+EGoBysoCEeVkQ3/4m7u5WPAQZs20CzK4g+bhzKYz2v9Hbtoyz94kNcZT0FQNM2bQ1z5ft4ruIve5UvqfP7tXMRPWM5RWtKiBdxzD1wenMmIv/QhrDi3XjmcjGuPIzyMYEc5ITu/x3E2r7877oBZs8788T9SEdm4dDxFRKQhHnnEDFa8/XbTHzNvHrzwAkyc2HjPETBFeUlJCREREcyaNYvbbrutYv3YsWPJyMggPT292mOKi4spLq78cJqXl0dycvK5b6gtC8aMMb2RP/YGlnTuwoz7P2XlztbcsXAkA3f8nTKC+TrqZha5B9LrxCKuJ41wTnKElhwjBielRFBIMOWUEEoZIURQSDS5OLA4RCtyaE0w5USTi5NSvuciNtMJCwcd2EFbdtOc40STSwmhbCSVTVzGPpI4SgvKCCGR/SSxj4PEsYKr2EwnEtnPxWznAgpwE0Qw5SSzhw7sIIwiNtOJLXSkgAsIoYwQynBSWnE/hDIsHGyhIxl0xUUxV7OY3s7v2F/aiu1czC7akUczThBJS47Qnp3EcphDtCKbeIpxEc5JwjlJBIWEcxI3QRyiFblEcxHf0421FTGFUcRRWrCDDmSRwkHiOEQrThKOk1IuYRu/ZTIXsqPan2wRA3mKV9hIKieJ4EK+5wYW0IPVHCOGAyRQRBiRnCCCQjLpzFL6sp9E4smmAzuIJ5tWHCKck6yjC9/RkzyivZ4nlkNcTxp38AmD+IIcWvMdPfmOnnzNQNbQnXKCSeAAl7CNi9nOxWyvuN+eneTRjEO0Yi9tWEN3VtOD+QwhskUY0dGmc3YQC3iYadzIp4RR+R4oJ4j/cBPvMpINXM4JImnBUfqxhD4sI4l9xHKY5hw3L2UcZBPPWrqRSWeakUcS+4jkBCcJ//Gom6WEUEpxUk4woZRwAQU05zgJHCCJfRQRRgbdWOfoyvagS9npSKHIEU6c+wDJ1m6S3HtIZjdt2U0ye0hmD3tpw7+5nTSupy276c4aOrKl4rVdQii5RHOIVmwklcygVPYEp3DUGUd0UD4/O/lP7i7/iFgOc9TRkqOOWI46WnKYlhwsj+UILTlMLJ9yIztJqfHt7KSEYczmUabSlt3k0cxr2UgqrzEBR2hotVHuN/A5w/mQG1hALN7Dq9fSlQXOm5nefDR54XEcOwb5+RY/5X8Zymf0Ywkd2MH6sKvY2vZ6oi8op1P2V7TPXo7T7f1Eh2nJAm7gLzzCUvqSykb68w0DSKc/39CaypngywniBJEUcAFr6E46A9hBB9qymxSyaM9OUsgikf0/vu9qPg1gKX24if/giImpGOABkMB+/uMcxgXuPPaWx3OABLIxtxuCu7G2+TW4woM4eLD6mR99WcKTvEoflnGYWA4SR3n4BbSOCyIqpSWLB/6Wbw92YO5cc9q/x8VsYwQfMIB0rmQloZRW5LqCq1jADXxDf9bQ3es92ZZd/JK/MYzZHCOGTDqTFXQRuaGxnAxtTmzwMdo7dpJcvovEkp0klu4k39GMla6r+TakP+2G9+epPyXVeHwaQkVk49LxFBGRhvjnP81AvVPXDR/eeM8RMEX5/v37SUpKYunSpfTp06di/UsvvcQHH3zA1q1bqz1m0qRJ/O53v6u2vskaassyQ6n37IGrrjLDPz3rly0zwyGTzAe6vDzYsa2MggKwgkOwrMoORM/9isVtUV5mUVIWVHFKsGd0e2ioGQ3sdpuRxVUXd7mFK8yB02n2LSkxI449S0iICdHpNCNc8/MrT031jH52OLznoCorM48tKzOjY4ODK5eqPycmmtM+u3UzI03nzzcj4D2jncvKKu/XdltWZvLydK6WllaOnPYsLpcZqe8ZZZ2UZB6flWVGNV8QWsKw438n9cQKnK4ggsOc7OsylKN9b8bCwdatZgRrdrYZbZ2bWz2Ghp4e73B4HxfPsa9JSIjJzTOPlcNROXI4PNzMIeaZPysmxozUveYaMzo5NtasP3TInIWwYwcc+iGPqMwVlLqDKQ4KJzusPUddCZSVmfyOHDGvvfJy7+N96tIUpyhX5XCYEfQtWpglMtLEeuCAibe0tHE62KOjzRkZrVtXjtjPyjLHrrCOwQpBQdCxI/TqVbl07GheN0uWmNH5rVubUe8JCRDfqpyWx38g/1ARxw6XU96iFQm92hAdXfl+Ki8374lVq0y+nTqZsxbCwk55crcbDh2iZMde8nLdhKdehCs+hu3bzXQVmzaZfzl79pj3cEmxRVThQfJLXOSWRlBsheIMdXidbVJaal7rx4+bX1/1/RsS5CYiqIjIoJNEhRZzWa8Irh4cSe/+Tjp0MLHm5pozB44fN+/xxEQTamGhGUEeGWlGgrtc3mlkZ5vHev6veJbgYPMYz3LqvHfl5ebqf/Pmmdidzsol1FHKiaPF5By0OJrvxBVtvqwqKTFnK1Rdznaqi0cfhXfeObvfASoiG5uOp4iINERpqekpnznTfI4LCjKfazp2bLznCLiifNmyZfTu3bti/YsvvsiHH37IlhomCLKtp1wCntvtXaiXlVUvvj1LTRNpFxebgik42HyREhpqCqSqBVp5uSkyfGUibk/OnqXal0W1LG533ds9xygoyCwhIaZYDg6uOx7P8ffMI1ha6v2z220KWk8h6DntPTjYPEdUlPliw1eOrzQtyzKF+qnvY8+XlVW/7Kv6uql626qVmQ7hbKmIbFw6niIicqYOHjSdme3bN+7vbUjb5NOXRIuNjSU4OJjsbO9zcnNycoiLi6vxMS6XC1fVrhmRRuIpIJ3OM3u8y+Xda3gqT0HvS84258bmOUZ6i8uZcDj02hERERFvtZSVTcqnL4kWGhpKjx49SEtL81qflpbmNZxdRERERERExB/5dE85wPjx4xk+fDg9e/akd+/eTJs2jd27dzNy5Ei7QxMRERERERE5Kz5flN91110cOXKEyZMnc+DAAVJTU/nss89o166d3aGJiIiIiIiInBWfL8oBRo0axahRo+wOQ0RERERERKRR+fQ55SIiIiIiIiKBTEW5iIiI+KW3336bzp0706tXL7tDEREROWMqykVERMQvjR49mszMTFatWmV3KCIiImdMRbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITVSUi4iIiIiIiNhERbmIiIiIiIiITULsDuBcsywLgLy8PJsjERERMTxtkqeNkrOjtl5ERHxNQ9r6gC/K8/PzAUhOTrY5EhEREW/5+flER0fbHYbfU1svIiK+qj5tvcMK8K/p3W43+/fvJyoqCofDcVa/Ky8vj+TkZPbs2UOzZs0aKUL7BFI+gZQLKB9fFki5QGDl40+5WJZFfn4+iYmJBAXpTLKz1ZhtPfjXa+l0AikXCKx8AikXCKx8AikXUD52aUhbH/A95UFBQbRp06ZRf2ezZs18+gXQUIGUTyDlAsrHlwVSLhBY+fhLLuohbzznoq0H/3kt1Ucg5QKBlU8g5QKBlU8g5QLKxw71bev19byIiIiIiIiITVSUi4iIiIiIiNhERXkDuFwunn/+eVwul92hNIpAyieQcgHl48sCKRcIrHwCKRexVyC9lgIpFwisfAIpFwisfAIpF1A+/iDgJ3oTERERERER8VXqKRcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKG+Ad955h5SUFMLCwujRoweLFy+2O6TTmjJlCr169SIqKorWrVtz6623snXrVq99LMti0qRJJCYmEh4ezsCBA9m0aZNNEdfflClTcDgcjBs3rmKdv+Wyb98+7r//flq2bElERARdu3Zl9erVFdv9KZ+ysjKeffZZUlJSCA8Pp0OHDkyePBm3212xj6/m880333DzzTeTmJiIw+Fg7ty5XtvrE3dxcTGPPfYYsbGxREZGcsstt7B3794mzKJSXfmUlpby1FNPcfnllxMZGUliYiIPPPAA+/fv9/od/pLPqR555BEcDgdvvvmm13pfykd8m9p636K23rf4c1sPgdXeq60PrLZeRXk9zZw5k3HjxjFx4kTWrl3L1VdfzZAhQ9i9e7fdodUpPT2d0aNHs3z5ctLS0igrK2PQoEGcOHGiYp9XX32V119/nbfeeotVq1YRHx/P9ddfT35+vo2R123VqlVMmzaNK664wmu9P+Vy7Ngx+vbti9PpZP78+WRmZvKHP/yB5s2bV+zjT/m88sorvPvuu7z11lts3ryZV199lddee40///nPFfv4aj4nTpygS5cuvPXWWzVur0/c48aNY86cOcyYMYMlS5ZQUFDATTfdRHl5eVOlUaGufAoLC1mzZg3PPfcca9asYfbs2Wzbto1bbrnFaz9/yaequXPnsmLFChITE6tt86V8xHeprfctaut9Lx9/bushsNp7tfUB1tZbUi9XXnmlNXLkSK91HTt2tJ5++mmbIjozOTk5FmClp6dblmVZbrfbio+Pt15++eWKfYqKiqzo6Gjr3XfftSvMOuXn51sXX3yxlZaWZg0YMMAaO3asZVn+l8tTTz1l9evXr9bt/pbPjTfeaD300ENe64YNG2bdf//9lmX5Tz6ANWfOnIqf6xP38ePHLafTac2YMaNin3379llBQUHW559/3mSx1+TUfGqycuVKC7B27dplWZZ/5rN3714rKSnJ2rhxo9WuXTvrjTfeqNjmy/mIb1Fb7zvU1vtmPoHS1ltWYLX3aut9O5/6UE95PZSUlLB69WoGDRrktX7QoEEsW7bMpqjOTG5uLgAtWrQAICsri+zsbK/cXC4XAwYM8NncRo8ezY033sh//dd/ea33t1zmzZtHz549+dnPfkbr1q3p1q0bf/3rXyu2+1s+/fr148svv2Tbtm0ArFu3jiVLljB06FDA//LxqE/cq1evprS01GufxMREUlNTfTo3j9zcXBwOR0XPjb/l43a7GT58OBMmTOCyyy6rtt3f8hF7qK33LWrrfTOfQG3rIfDbe7X1vi3E7gD8weHDhykvLycuLs5rfVxcHNnZ2TZF1XCWZTF+/Hj69etHamoqQEX8NeW2a9euJo/xdGbMmMGaNWtYtWpVtW3+lsuOHTuYOnUq48eP55lnnmHlypX8+te/xuVy8cADD/hdPk899RS5ubl07NiR4OBgysvLefHFF7nnnnsA//v7eNQn7uzsbEJDQ4mJiam2j6//jygqKuLpp5/m3nvvpVmzZoD/5fPKK68QEhLCr3/96xq3+1s+Yg+19b5Dbb3v5hOobT0Ednuvtt738jmVivIGcDgcXj9bllVtnS8bM2YM69evZ8mSJdW2+UNue/bsYezYsXzxxReEhYXVup8/5ALmG7+ePXvy0ksvAdCtWzc2bdrE1KlTeeCBByr285d8Zs6cyUcffcTHH3/MZZddRkZGBuPGjSMxMZERI0ZU7Ocv+ZzqTOL29dxKS0u5++67cbvdvPPOO6fd3xfzWb16NX/84x9Zs2ZNg2PzxXzEfv76P8pDbb1vUVtv+Go+NQm09l5tve/lUxMNX6+H2NhYgoODq33LkpOTU+3bNF/12GOPMW/ePBYtWkSbNm0q1sfHxwP4RW6rV68mJyeHHj16EBISQkhICOnp6fzpT38iJCSkIl5/yAUgISGBzp07e63r1KlTxYRC/vS3AZgwYQJPP/00d999N5dffjnDhw/n8ccfZ8qUKYD/5eNRn7jj4+MpKSnh2LFjte7ja0pLS7nzzjvJysoiLS2t4ptz8K98Fi9eTE5ODm3btq34v7Br1y6eeOIJ2rdvD/hXPmIftfW+QW294av5BGpbD4HZ3qut9818aqKivB5CQ0Pp0aMHaWlpXuvT0tLo06ePTVHVj2VZjBkzhtmzZ/PVV1+RkpLitT0lJYX4+Hiv3EpKSkhPT/e53K677jo2bNhARkZGxdKzZ0/uu+8+MjIy6NChg9/kAtC3b99ql6zZtm0b7dq1A/zrbwNmps+gIO9/KcHBwRWXSfG3fDzqE3ePHj1wOp1e+xw4cICNGzf6ZG6eRnr79u0sXLiQli1bem33p3yGDx/O+vXrvf4vJCYmMmHCBBYsWAD4Vz5iH7X1vkFtvW/nE6htPQRee6+23nfzqVFTzirnz2bMmGE5nU7rvffeszIzM61x48ZZkZGR1s6dO+0OrU6PPvqoFR0dbX399dfWgQMHKpbCwsKKfV5++WUrOjramj17trVhwwbrnnvusRISEqy8vDwbI6+fqjOyWpZ/5bJy5UorJCTEevHFF63t27db06dPtyIiIqyPPvqoYh9/ymfEiBFWUlKS9Z///MfKysqyZs+ebcXGxlpPPvlkxT6+mk9+fr61du1aa+3atRZgvf7669batWsrZiitT9wjR4602rRpYy1cuNBas2aNde2111pdunSxysrKfCqf0tJS65ZbbrHatGljZWRkeP1fKC4u9rt8anLqjKyW5Vv5iO9SW++b1Nb7Dn9u6y0rsNp7tfWB1darKG+At99+22rXrp0VGhpqde/eveJSI74MqHF5//33K/Zxu93W888/b8XHx1sul8vq37+/tWHDBvuCboBTG2p/y+X//u//rNTUVMvlclkdO3a0pk2b5rXdn/LJy8uzxo4da7Vt29YKCwuzOnToYE2cONHrn7+v5rNo0aIa3ycjRoywLKt+cZ88edIaM2aM1aJFCys8PNy66aabrN27d9uQTd35ZGVl1fp/YdGiRX6XT01qaqh9KR/xbWrrfY/aet/hz229ZQVWe6+2PrDaeodlWVbj9LmLiIiIiIiISEPonHIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIRERERERERm6goFxEREREREbGJinIROeccDgdz5861OwwRERE5R9TWi5w5FeUiAe7BBx/E4XBUWwYPHmx3aCIiItII1NaL+LcQuwMQkXNv8ODBvP/++17rXC6XTdGIiIhIY1NbL+K/1FMuch5wuVzEx8d7LTExMYAZbjZ16lSGDBlCeHg4KSkpzJo1y+vxGzZs4NprryU8PJyWLVvy8MMPU1BQ4LXP3//+dy677DJcLhcJCQmMGTPGa/vhw4e57bbbiIiI4OKLL2bevHnnNmkREZHziNp6Ef+lolxEeO6557j99ttZt24d999/P/fccw+bN28GoLCwkMGDBxMTE8OqVauYNWsWCxcu9GqIp06dyujRo3n44YfZsGED8+bN46KLLvJ6jt/97nfceeedrF+/nqFDh3Lfffdx9OjRJs1TRETkfKW2XsSHWSIS0EaMGGEFBwdbkZGRXsvkyZMty7IswBo5cqTXY6666irr0UcftSzLsqZNm2bFxMRYBQUFFds//fRTKygoyMrOzrYsy7ISExOtiRMn1hoDYD377LMVPxcUFFgOh8OaP39+o+UpIiJyvlJbL+LfdE65yHngmmuuYerUqV7rWrRoUXG/d+/eXtt69+5NRkYGAJs3b6ZLly5ERkZWbO/bty9ut5utW7ficDjYv38/1113XZ0xXHHFFRX3IyMjiYqKIicn50xTEhERkSrU1ov4LxXlIueByMjIakPMTsfhcABgWVbF/Zr2CQ8Pr9fvczqd1R7rdrsbFJOIiIjUTG29iP/SOeUiwvLly6v93LFjRwA6d+5MRkYGJ06cqNi+dOlSgoKCuOSSS4iKiqJ9+/Z8+eWXTRqziIiI1J/aehHfpZ5ykfNAcXEx2dnZXutCQkKIjY0FYNasWfTs2ZN+/foxffp0Vq5cyXvvvQfAfffdx/PPP8+IESOYNGkShw4d4rHHHmP48OHExcUBMGnSJEaOHEnr1q0ZMmQI+fn5LF26lMcee6xpExURETlPqa0X8V8qykXOA59//jkJCQle6y699FK2bNkCmNlSZ8yYwahRo4iPj2f69Ol07twZgIiICBYsWMDYsWPp1asXERER3H777bz++usVv2vEiBEUFRXxxhtv8N///d/ExsZyxx13NF2CIiIi5zm19SL+y2FZlmV3ECJiH4fDwZw5c7j11lvtDkVERETOAbX1Ir5N55SLiIiIiIiI2ERFuYiIiIiIiIhNNHxdRERERERExCbqKRcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZuoKBcRERERERGxiYpyEREREREREZv8f8fZWnNUv4z2AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQjUlEQVR4nOzdd3hT5d8G8Dtt6aKT1cEoe5Qty7JBEEGRKYgDBH7iqMhw8qqAiKKiokgVRQRRUUQEQQVkiYqMyhJkCSK77La0hRba8/7x8OQkaZLmpGlOkt6f6+p10pP05EmaNrnP9xkGRVEUEBEREREREZFb+endACIiIiIiIqLSiIGciIiIiIiISAcM5EREREREREQ6YCAnIiIiIiIi0gEDOREREREREZEOGMiJiIiIiIiIdMBATkRERERERKQDBnIiIiIiIiIiHTCQExEREREREemAgZyIiIiIyAt17twZnTt3dvi2jRo1KtkG3VS9enU89NBDbrkvIm/HQE5UisyfPx8GgwEGgwG///57oesVRUHVqlVhMBhw1113GfdnZWVh0qRJaNSoEcqWLYvy5cujWbNmGDNmDE6fPm283eTJk43Ht/aVlpbmlsdJRETkKPne+Oeff+rdlGI7ffo0Jk+ejF27dundFJepXr06DAYDunXrZvX6OXPmGD9nWP4Of//9d/Ts2ROVK1dGcHAwqlWrht69e2PhwoVmt7P32eXRRx8tscdGBAABejeAiNwvODgYCxcuRPv27c32b9y4ESdPnkRQUJBx3/Xr19GxY0ccOHAAw4YNw+jRo5GVlYW///4bCxcuRL9+/RAfH292nA8//BBhYWGF7jcqKqpEHg8REVFp9PPPP5t9f/r0abz88suoXr06mjVrpk+jABw8eBB+fq6r+wUHB2PDhg1IS0tDbGys2XVffvklgoODce3aNbP9ixcvxuDBg40FhOjoaBw9ehS//vor5syZg/vuu8/s9t27d8fQoUML3XfdunVd9jiIrGEgJyqFevXqhcWLF2PmzJkICFD/DSxcuBAtWrTAhQsXjPuWLVuGnTt34ssvvyz05nXt2jXk5eUVOv7AgQNRoUKFknsAREREpVhOTg5CQ0MRGBiod1OsMj2x7wrt2rVDamoqFi1ahDFjxhj3nzx5Er/99hv69euHJUuWmP3M5MmTkZiYiC1bthR6ns6dO1foPurWrYsHHnjApe0mcgS7rBOVQkOGDMHFixexZs0a4768vDx8++23hUL3kSNHAIg3Q0vBwcGIiIgo2cYSERF5gJ07d6Jnz56IiIhAWFgYbrvtNmzZsqXQ7f766y906tQJISEhqFKlCqZOnYp58+bBYDDgv//+M97u+++/x5133on4+HgEBQWhVq1aeOWVV5Cfn292PDn2e/v27ejYsSNCQ0Pxf//3f8br5BjyX375Ba1atQIADB8+3Njlev78+WbH27dvH7p06YLQ0FBUrlwZb775ptn1v/zyCwwGA7755hu8/PLLqFy5MsLDwzFw4EBkZGQgNzcXY8eORaVKlRAWFobhw4cjNzfX7BjWxpCnp6dj3LhxqF69OoKCglClShUMHTrUrAhgS3BwMPr371+oq/lXX32F6Oho9OjRo9DPHDlyBK1atbJ60qJSpUpF3ieRu7BCTlQKVa9eHUlJSfjqq6/Qs2dPAMDKlSuRkZGBe++9FzNnzjTeNiEhAQCwYMECvPjiizAYDEUe/9KlS4X2BQQEsMs6ERF5pb///hsdOnRAREQEnn32WZQpUwYfffQROnfujI0bN6JNmzYAgFOnTqFLly4wGAyYMGECypYti08++cRqxXj+/PkICwvD+PHjERYWhvXr12PixInIzMzE9OnTzW578eJF9OzZE/feey8eeOABxMTEFDpegwYNMGXKFEycOBGjRo1Chw4dAABt27Y13uby5cu444470L9/fwwaNAjffvstnnvuOTRu3Nj4eUCaNm0aQkJC8Pzzz+Pw4cN4//33UaZMGfj5+eHy5cuYPHkytmzZgvnz56NGjRqYOHGizecvKysLHTp0wP79+zFixAjccsstuHDhApYvX46TJ0861Kvuvvvuw+23344jR46gVq1aAETPvoEDB6JMmTKFbp+QkIB169bh5MmTqFKlSpHHv3btmtWTAxERER7bE4F8hEJEpca8efMUAEpqaqoya9YsJTw8XMnJyVEURVHuuecepUuXLoqiKEpCQoJy5513KoqiKDk5OUq9evUUAEpCQoLy0EMPKXPnzlXOnj1b6PiTJk1SAFj9qlevnvseKBERkYNM3xtt6du3rxIYGKgcOXLEuO/06dNKeHi40rFjR+O+0aNHKwaDQdm5c6dx38WLF5Vy5copAJSjR48a98v3X1OPPPKIEhoaqly7ds24r1OnTgoAZfbs2YVu36lTJ6VTp07G71NTUxUAyrx586zeFoCyYMEC477c3FwlNjZWGTBggHHfhg0bFABKo0aNlLy8POP+IUOGKAaDQenZs6fZcZOSkpSEhASzfQkJCcqwYcOM30+cOFEBoHz33XeF2lVQUFBon+Wx7rzzTuXGjRtKbGys8sorryiKoij79u1TACgbN260+jucO3euAkAJDAxUunTporz00kvKb7/9puTn5xe6D1ufXQAoX331ld32ERUXu6wTlVKDBg3C1atX8cMPP+DKlSv44YcfCnVXB4CQkBBs3boVzzzzDABxRn/kyJGIi4vD6NGjC3VTA4AlS5ZgzZo1Zl/z5s0r8cdERETkavn5+fj555/Rt29f1KxZ07g/Li4O9913H37//XdkZmYCAFatWoWkpCSzCdXKlSuH+++/v9BxQ0JCjJevXLmCCxcuoEOHDsjJycGBAwfMbhsUFIThw4cX+7GEhYWZjZMODAxE69at8e+//xa67dChQ80qz23atIGiKBgxYoTZ7dq0aYMTJ07gxo0bNu93yZIlaNq0Kfr161foOkd63gGAv78/Bg0ahK+++gqAmMytatWqxp4AlkaMGIFVq1ahc+fO+P333/HKK6+gQ4cOqFOnDv74449Ct+/Tp0+hzy5r1qxBly5dHGofkbPYZZ2olKpYsSK6deuGhQsXIicnB/n5+Rg4cKDV20ZGRuLNN9/Em2++iWPHjmHdunV46623MGvWLERGRmLq1Klmt+/YsSMndSMiIp9w/vx55OTkoF69eoWua9CgAQoKCnDixAk0bNgQx44dQ1JSUqHb1a5du9C+v//+Gy+++CLWr19vDPRSRkaG2feVK1d2SbfpKlWqFArA0dHR+Ouvvwrdtlq1ambfR0ZGAgCqVq1aaH9BQQEyMjJQvnx5q/d75MgRDBgwoDhNByC6rc+cORO7d+/GwoULce+999oN9D169ECPHj2Qk5OD7du3Y9GiRZg9ezbuuusuHDhwwGwseZUqVWwurUZUklghJyrF7rvvPqxcuRKzZ89Gz549HRrjnZCQgBEjRmDTpk2IiorCl19+WfINJSIi8iHp6eno1KkTdu/ejSlTpmDFihVYs2YN3njjDQBAQUGB2e1Nq+nF4e/vb3W/oigO31bLMVytTZs2qFWrFsaOHYujR49a7dlnTWhoKDp06IBZs2bhxRdfxOXLl7Fy5coSbi2RY1ghJyrF+vXrh0ceeQRbtmzBokWLNP1sdHQ0atWqhb1795ZQ64iIiPRXsWJFhIaG4uDBg4WuO3DgAPz8/IxV44SEBBw+fLjQ7Sz3/fLLL7h48SK+++47dOzY0bj/6NGjxWqro92/3c2VnxeGDBmCqVOnokGDBk6ttd6yZUsAwJkzZ1zSHqLiYoWcqBQLCwvDhx9+iMmTJ6N3795Wb7N7926rs44eO3YM+/bts9qFj4iIyFf4+/vj9ttvx/fff2+2bNnZs2excOFCtG/f3rgEaI8ePbB582bs2rXLeLtLly4V6k0mq8ymVeW8vDx88MEHxWpr2bJlAYgKvCcZMGAAdu/ejaVLlxa6Tmtl/X//+x8mTZqEt99+2+7t1q1bZ3X/Tz/9BAD8/EIegxVyolJu2LBhdq9fs2YNJk2ahLvvvhu33norwsLC8O+//+LTTz9Fbm4uJk+eXOhnvv32W4SFhRXa3717d6tLtRAREent008/xapVqwrtHzNmDKZOnYo1a9agffv2ePzxxxEQEICPPvoIubm5Zut4P/vss/jiiy/QvXt3jB492rjsWbVq1XDp0iVjBbtt27aIjo7GsGHD8OSTT8JgMODzzz8vdrfvWrVqISoqCrNnz0Z4eDjKli2LNm3aoEaNGsU6bnE988wz+Pbbb3HPPfdgxIgRaNGiBS5duoTly5dj9uzZaNq0qcPHSkhIsPrZw1KfPn1Qo0YN9O7dG7Vq1UJ2djbWrl2LFStWoFWrVoUKEYcOHcIXX3xR6DgxMTHo3r27w+0j0oqBnIjsGjBgAK5cuYKff/4Z69evx6VLlxAdHY3WrVvjqaeesjr76GOPPWb1WBs2bGAgJyIij/Thhx9a3f/QQw+hYcOG+O233zBhwgRMmzYNBQUFaNOmDb744gvjGuSAmPBsw4YNePLJJ/Haa6+hYsWKSE5ORtmyZfHkk08iODgYAFC+fHn88MMPeOqpp/Diiy8iOjoaDzzwAG677Tb06NHD6cdQpkwZfPbZZ5gwYQIeffRR3LhxA/PmzdM9kIeFheG3337DpEmTsHTpUnz22WeoVKkSbrvtNofWCHfGJ598gu+//x7ffPMNTp8+DUVRULNmTbzwwgt47rnnEBBgHoPkrOqWOnXqxEBOJcqguGMGBiIiIiKiUmrs2LH46KOPkJWVZXNSNCIqnTiGnIiIiIjIRa5evWr2/cWLF/H555+jffv2DONEVAi7rBMRERERuUhSUhI6d+6MBg0a4OzZs5g7dy4yMzPx0ksv6d00IvJArJATERGRrk6cOIHOnTsjMTERTZo0weLFi/VuEpHTevXqhZ9++gnjxo3DG2+8gWrVqmHlypVmy5sREUkcQ05ERES6OnPmDM6ePYtmzZohLS0NLVq0wKFDh4xLOBEREfkqdlknIiIiXcXFxSEuLg4AEBsbiwoVKuDSpUsM5ERE5PPYZZ2IiIiK5ddff0Xv3r0RHx8Pg8GAZcuWFbpNSkoKqlevjuDgYLRp0wbbtm2zeqzt27cjPz8fVatWLeFWExER6c/nK+QFBQU4ffo0wsPDYTAY9G4OERERFEXBlStXEB8fDz8/7z83np2djaZNm2LEiBHo379/oesXLVqE8ePHY/bs2WjTpg3effdd9OjRAwcPHkSlSpWMt7t06RKGDh2KOXPmaLp/vtcTEZGncfS93ufHkJ88eZJn2YmIyCOdOHECVapU0bsZLmUwGLB06VL07dvXuK9NmzZo1aoVZs2aBUAE6KpVq2L06NF4/vnnAQC5ubno3r07Hn74YTz44IN27yM3Nxe5ubnG70+dOoXExETXPxgiIqJiKuq93ucr5OHh4QDEExEREaFza4iIiIDMzExUrVrV+B7ly/Ly8rB9+3ZMmDDBuM/Pzw/dunXD5s2bAYgqwkMPPYSuXbsWGcYBYNq0aXj55ZcL7ed7PREReQpH3+t9PpDLrmsRERF8kyYiIo9SGrpXX7hwAfn5+YiJiTHbHxMTgwMHDgAANm3ahEWLFqFJkybG8eeff/45GjdubPWYEyZMwPjx443fyw89fK8nIiJPU9R7vc8HciIiIvJs7du3R0FBgcO3DwoKQlBQUAm2iIiIyD28fyYZIiIi8lgVKlSAv78/zp49a7b/7NmziI2N1alVREREnoGBnIiIiEpMYGAgWrRogXXr1hn3FRQUYN26dUhKStKxZURERPpjl3UiopsURcGNGzeQn5+vd1PIy/n7+yMgIKBUjBEHgKysLBw+fNj4/dGjR7Fr1y6UK1cO1apVw/jx4zFs2DC0bNkSrVu3xrvvvovs7GwMHz68WPebkpKClJQU/s0SkcP4Xk+u4qr3ep9f9iwzMxORkZHIyMjgRC9EZFNeXh7OnDmDnJwcvZtCPiI0NBRxcXEIDAwsdJ2vvTf98ssv6NKlS6H9w4YNw/z58wEAs2bNwvTp05GWloZmzZph5syZaNOmjUvu39eeTyIqGXyvJ1dzxXs9AzkRlXoFBQX4559/4O/vj4oVKyIwMLDUVDbJ9RRFQV5eHs6fP4/8/HzUqVMHfn7mI8T43uRafD6JqCh8rydXcuV7PbusE1Gpl5eXh4KCAlStWhWhoaF6N4d8QEhICMqUKYNjx44hLy8PwcHBejeJiKhU43s9uZqr3us5qRsR0U2WZzaJioOvJyIiz8P/zeRKrng98RVJREREXiklJQWJiYlo1aqV3k0hIiJyiq6BvHr16jAYDIW+kpOTAQDXrl1DcnIyypcvj7CwMAwYMKDQOqZERERUOiUnJ2Pfvn1ITU3VuylERERO0TWQp6am4syZM8avNWvWAADuueceAMC4ceOwYsUKLF68GBs3bsTp06fRv39/PZtMROTTqlevjnfffdfh2//yyy8wGAxIT08vsTYBwPz58xEVFVWi90FERFRa8P3ec+g6qVvFihXNvn/99ddRq1YtdOrUCRkZGZg7dy4WLlyIrl27AgDmzZuHBg0aYMuWLbj11lv1aDIRkUcoambYSZMmYfLkyZqPm5qairJlyzp8+7Zt2+LMmTOIjIzUfF9ERERkH9/vfZ/HzLKel5eHL774AuPHj4fBYMD27dtx/fp1dOvWzXib+vXro1q1ati8ebPNQJ6bm4vc3Fzj95mZmSXediIidztz5ozx8qJFizBx4kQcPHjQuC8sLMx4WVEU5OfnIyCg6H/5lidKixIYGIjY2FhNP0NERESO4fu97/OYSd2WLVuG9PR0PPTQQwCAtLQ0BAYGFuqyEBMTg7S0NJvHmTZtGiIjI41fVatWdVkbO3QAGjcGjh512SGJyAMpCpCdrc+XojjWxtjYWONXZGQkDAaD8fsDBw4gPDwcK1euRIsWLRAUFITff/8dR44cQZ8+fRATE4OwsDC0atUKa9euNTuuZRc2g8GATz75BP369UNoaCjq1KmD5cuXG6+37MImu5qtXr0aDRo0QFhYGO644w6zDxQ3btzAk08+iaioKJQvXx7PPfcchg0bhr59+2r6PX344YeoVasWAgMDUa9ePXz++ecmv0MFkydPRrVq1RAUFIT4+Hg8+eSTxus/+OAD1KlTB8HBwYiJicHAgQM13Tf5rueeE+/1Cxfq3RIiKml6vd87+l4P8P0e8P33e48J5HPnzkXPnj0RHx9frONMmDABGRkZxq8TJ064qIXAvn3A3r3AtWsuOyQReaCcHCAsTJ+vnBzXPY7nn38er7/+Ovbv348mTZogKysLvXr1wrp167Bz507ccccd6N27N44fP273OC+//DIGDRqEv/76C7169cL999+PS5cu2Xn+cvDWW2/h888/x6+//orjx4/j6aefNl7/xhtv4Msvv8S8efOwadMmZGZmYtmyZZoe29KlSzFmzBg89dRT2Lt3Lx555BEMHz4cGzZsAAAsWbIEM2bMwEcffYR//vkHy5YtQ+PGjQEAf/75J5588klMmTIFBw8exKpVq9CxY0dN90+eoSRmWT9xQrzXnzvnskMSkYfS6/3ele/1AN/vvf79XvEA//33n+Ln56csW7bMuG/dunUKAOXy5ctmt61WrZryzjvvOHzsjIwMBYCSkZFR7HZWqKAogKLs3VvsQxGRB7l69aqyb98+5erVq4qiKEpWlvhb1+MrK0t7++fNm6dERkYav9+wYYMCwOx/qi0NGzZU3n//feP3CQkJyowZM4zfA1BefPFF4/dZWVkKAGXlypVm9yX/V8+bN08BoBw+fNj4MykpKUpMTIzx+5iYGGX69OnG72/cuKFUq1ZN6dOnj8OPsW3btsrDDz9sdpt77rlH6dWrl6IoivL2228rdevWVfLy8goda8mSJUpERISSmZlp8/5cwfJ1ZcqV703k2udz6FDxt/jmmy5oGBF5DGv/k/V6v3fmvV5R+H4vedL7vSve6z2iQj5v3jxUqlQJd955p3FfixYtUKZMGaxbt8647+DBgzh+/DiSkpL0aCbkuu8FBbrcPRG5SWgokJWlz1doqOseR8uWLc2+z8rKwtNPP40GDRogKioKYWFh2L9/f5FnzJs0aWK8XLZsWUREROCcnfJhaGgoatWqZfw+Li7OePuMjAycPXsWrVu3Nl7v7++PFi1aaHps+/fvR7t27cz2tWvXDvv37wcgVuu4evUqatasiYcffhhLly7FjRs3AADdu3dHQkICatasiQcffBBffvklclxdriCvVaaM2F6/rm87iKjk6fV+78r3eoDv997+fq97IC8oKMC8efMwbNgwswkIIiMjMXLkSIwfPx4bNmzA9u3bMXz4cCQlJek2wzoDOVHpYDAAZcvq81XEZKqaWM6e+vTTT2Pp0qV47bXX8Ntvv2HXrl1o3Lgx8vLy7B6njEwoxufHgAI7/wit3V7RMmDOBapWrYqDBw/igw8+QEhICB5//HF07NgR169fR3h4OHbs2IGvvvoKcXFxmDhxIpo2bVriS7mQd2AgJyo99Hq/d+V7PcD3e29/v9c9kK9duxbHjx/HiBEjCl03Y8YM3HXXXRgwYAA6duyI2NhYfPfddzq0UmAgJyJvtmnTJjz00EPo168fGjdujNjYWPz3339ubUNkZCRiYmKQmppq3Jefn48dO3ZoOk6DBg2wadMms32bNm1CYmKi8fuQkBD07t0bM2fOxC+//ILNmzdjz549AICAgAB069YNb775Jv766y/8999/WL9+fTEeGfkKBnIi8nZ8v/eu93vdlz27/fbbbZ5JCQ4ORkpKClJSUtzcKusYyInIm9WpUwffffcdevfuDYPBgJdeesnume+SMnr0aEybNg21a9dG/fr18f777+Py5ctFrrVq6plnnsGgQYPQvHlzdOvWDStWrMB3331nnEV2/vz5yM/PR5s2bRAaGoovvvgCISEhSEhIwA8//IB///0XHTt2RHR0NH766ScUFBSgXr16JfWQyYswkBORt+P7vXe93+seyL0JAzkRebN33nkHI0aMQNu2bVGhQgU899xzyMzMdHs7nnvuOaSlpWHo0KHw9/fHqFGj0KNHD/j7+zt8jL59++K9997DW2+9hTFjxqBGjRqYN28eOnfuDACIiorC66+/jvHjxyM/Px+NGzfGihUrUL58eURFReG7777D5MmTce3aNdSpUwdfffUVGjZsWEKPmLwJAzkReTu+33vX+71BcXdHfzfLzMxEZGQkMjIyEBERUaxj1agB/PcfsGUL0KaNa9pHRPq7du0ajh49iho1aiA4OFjv5pQ6BQUFaNCgAQYNGoRXXnlF7+a4jL3XlSvfm0oz2YsuPz8fhw4dcsnz+dJLwNSpwBNPAO+/76KGEpHu+F6vP198v3fFez0r5BqwQk5EVHzHjh3Dzz//jE6dOiE3NxezZs3C0aNHcd999+ndNPIyycnJSE5ONn7ocQVWyImIXIPv947RfVI3b8JATkRUfH5+fpg/fz5atWqFdu3aYc+ePVi7di0aNGigd9OIjIG8iMmIiYioCHy/dwwr5BowkBMRFV/VqlULzZhK5CkCA8WWFXIiouLh+71jWCHXgIGciIjIt7HLOhERuRMDuQYM5ERERL6NgZyIiNyJgVwDBnIiIiLfxkBORETuxECuAQM5ERGRb2MgJyIid2Ig14CBnIiIyHOkpKQgMTERrVq1ctkxGciJiMidGMg1YCAnIiLyHMnJydi3bx9SU1NddkwGciIicicGcg0YyInI13Tu3Bljx441fl+9enW8++67dn/GYDBg2bJlxb5vVx3HnsmTJ6NZs2Yleh/kWxjIicgX8f3eczGQa8BATkSeonfv3rjjjjusXvfbb7/BYDDgr7/+0nzc1NRUjBo1qrjNM2PrTfLMmTPo2bOnS++LqLgYyInIk/D93vcxkGvAQE5EnmLkyJFYs2YNTp48Wei6efPmoWXLlmjSpInm41asWBGhoaGuaGKRYmNjERQU5Jb7InIUAzkReRK+3/s+BnINGMiJSglFAbKz9flSFIeaeNddd6FixYqYP3++2f6srCwsXrwYI0eOxMWLFzFkyBBUrlwZoaGhaNy4Mb766iu7x7XswvbPP/+gY8eOCA4ORmJiItasWVPoZ5577jnUrVsXoaGhqFmzJl566SVcv5lm5s+fj5dffhm7d++GwWCAwWAwttmyC9uePXvQtWtXhISEoHz58hg1ahSysrKM1z/00EPo27cv3nrrLcTFxaF8+fJITk423pcjCgoKMGXKFFSpUgVBQUFo1qwZVq1aZbw+Ly8PTzzxBOLi4hAcHIyEhARMmzYNAKAoCiZPnoxq1aohKCgI8fHxePLJJx2+b/IOMpDn5enbDiJyA73e7x18rwf4fl8a3u8DSuzIPoiBnKiUyMkBwsL0ue+sLKBs2SJvFhAQgKFDh2L+/Pl44YUXYDAYAACLFy9Gfn4+hgwZgqysLLRo0QLPPfccIiIi8OOPP+LBBx9ErVq10Lp16yLvo6CgAP3790dMTAy2bt2KjIwMs/FnUnh4OObPn4/4+Hjs2bMHDz/8MMLDw/Hss89i8ODB2Lt3L1atWoW1a9cCACIjIwsdIzs7Gz169EBSUhJSU1Nx7tw5/O9//8MTTzxh9iFkw4YNiIuLw4YNG3D48GEMHjwYzZo1w8MPP1zk4wGA9957D2+//TY++ugjNG/eHJ9++inuvvtu/P3336hTpw5mzpyJ5cuX45tvvkG1atVw4sQJnDhxAgCwZMkSzJgxA19//TUaNmyItLQ07N6926H7Je8RGCi2rJATlQJ6vd87+F4P8P2+VLzfKz4uIyNDAaBkZGQU+1gdOyoKoCjffOOChhGRx7h69aqyb98+5erVq2JHVpb4Y9fjKyvL4Xbv379fAaBs2LDBuK9Dhw7KAw88YPNn7rzzTuWpp54yft+pUydlzJgxxu8TEhKUGTNmKIqiKKtXr1YCAgKUU6dOGa9fuXKlAkBZunSpzfuYPn260qJFC+P3kyZNUpo2bVrodqbH+fjjj5Xo6Ggly+Tx//jjj4qfn5+SlpamKIqiDBs2TElISFBu3LhhvM0999yjDB482GZbLO87Pj5eefXVV81u06pVK+Xxxx9XFEVRRo8erXTt2lUpKCgodKy3335bqVu3rpKXl2fz/kwVel2ZcOV7E7n2+dy6VfwpJiQUv11E5Dms/k/W6/1ew3u9ovD9XlE89/3eFe/17LKuASvkRKVEaKg4e63Hl4bxXPXr10fbtm3x6aefAgAOHz6M3377DSNHjgQA5Ofn45VXXkHjxo1Rrlw5hIWFYfXq1Th+/LhDx9+/fz+qVq2K+Ph4476kpKRCt1u0aBHatWuH2NhYhIWF4cUXX3T4Pkzvq2nTpihrUjFo164dCgoKcPDgQeO+hg0bwt/f3/h9XFwczp0759B9ZGZm4vTp02jXrp3Z/nbt2mH//v0ARDe5Xbt2oV69enjyySfx888/G293zz334OrVq6hZsyYefvhhLF26FDdu3ND0OMnzcQw5USmi1/u9xrHbfL/37fd7BnINGMiJSgmDQXQl0+PrZlc0R40cORJLlizBlStXMG/ePNSqVQudOnUCAEyfPh3vvfcennvuOWzYsAG7du1Cjx49kOfCwbGbN2/G/fffj169euGHH37Azp078cILL7j0PkyVkWnpJoPBgAIX/lO+5ZZbcPToUbzyyiu4evUqBg0ahIEDBwIAqlatioMHD+KDDz5ASEgIHn/8cXTs2FHTmDbyfAzkRKWIXu/3Gt/rAb7f+/L7PQO5BgzkRORpBg0aBD8/PyxcuBALFizAiBEjjOPLNm3ahD59+uCBBx5A06ZNUbNmTRw6dMjhYzdo0AAnTpzAmTNnjPu2bNlidps//vgDCQkJeOGFF9CyZUvUqVMHx44dM7tNYGAg8vPzi7yv3bt3Izs727hv06ZN8PPzQ7169Rxusz0RERGIj4/Hpk2bzPZv2rQJiYmJZrcbPHgw5syZg0WLFmHJkiW4dOkSACAkJAS9e/fGzJkz8csvv2Dz5s3Ys2ePS9pH2qWkpCAxMRGtWrVy2TEZyInIE/H93nHe9n7PSd00YCAnIk8TFhaGwYMHY8KECcjMzMRDDz1kvK5OnTr49ttv8ccffyA6OhrvvPMOzp49a/ZmZE+3bt1Qt25dDBs2DNOnT0dmZiZeeOEFs9vUqVMHx48fx9dff41WrVrhxx9/xNKlS81uU716dRw9ehS7du1ClSpVEB4eXmj5k/vvvx+TJk3CsGHDMHnyZJw/fx6jR4/Ggw8+iJiYGOeeHCueeeYZTJo0CbVq1UKzZs0wb9487Nq1C19++SUA4J133kFcXByaN28OPz8/LF68GLGxsYiKisL8+fORn5+PNm3aIDQ0FF988QVCQkKQkJDgsvaRNsnJyUhOTkZmZqbVyYOcwUBORJ6I7/faeNP7PSvkGjCQE5EnGjlyJC5fvowePXqYjf968cUXccstt6BHjx7o3LkzYmNj0bdvX4eP6+fnh6VLl+Lq1ato3bo1/ve//+HVV181u83dd9+NcePG4YknnkCzZs3wxx9/4KWXXjK7zYABA3DHHXegS5cuqFixotWlWEJDQ7F69WpcunQJrVq1wsCBA3Hbbbdh1qxZ2p6MIjz55JMYP348nnrqKTRu3BirVq3C8uXLUadOHQBiBtk333wTLVu2RKtWrfDff//hp59+gp+fH6KiojBnzhy0a9cOTZo0wdq1a7FixQqUL1/epW0kfTGQE5Gn4vu947zp/d6gKBoWwvNC8qx5RkYGIiIiinWsO+8EfvoJ+PRTYPhwFzWQiHR37do1HD16FDVq1EBwcLDezSEfYe915cr3JnLt85mWBsTFiSGePAFP5Dv4Xk8lwRXv9ayQa8AKORERkW+TFXJFAYoYCklERFRsDOQaMJATERH5NtOJfdltnYiIShoDuQYM5ERERL7NNJCX0Go+RERERgzkGjCQExER+TZWyImIyJ0YyDVgICfybT4+xyW5GV9P3snfX0zoBjCQE/ki/m8mV3LF64mBXAMGciLfVOZmSSwnJ0fnlpAvka+nMqYlV/J4BgOXPiPyRXyvp5Lgivf6AFc1pjRgICfyTf7+/oiKisK5c+cAiDUyDbJERqSRoijIycnBuXPnEBUVBX9/f72bRBqVKSPGjzOQE/kOvteTK7nyvZ6BXAMGciLfFRsbCwDGN2qi4oqKijK+rsi7sEJO5Jv4Xk+u5or3egZyDRjIiXyXwWBAXFwcKlWqhOv8FE7FVKZMGVbGvRgDOZFv4ns9uZKr3usZyDVgICfyff7+/gxSRF4iJSUFKSkpyM/Pd+lxGciJfBvf68mTcFI3DRjIiYiIPEdycjL27duH1NRUlx6XgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPfJQJ6Xp287iIjI9zGQa8BATkRE5PtYISciIndhINeAgZyIiMj3BQaKLQM5ERGVNN0D+alTp/DAAw+gfPnyCAkJQePGjfHnn38ar1cUBRMnTkRcXBxCQkLQrVs3/PPPP7q0lYGciIjI97FCTkRE7qJrIL98+TLatWuHMmXKYOXKldi3bx/efvttREdHG2/z5ptvYubMmZg9eza2bt2KsmXLokePHrh27Zrb28tATkRE5PsYyImIyF0C9LzzN954A1WrVsW8efOM+2rUqGG8rCgK3n33Xbz44ovo06cPAGDBggWIiYnBsmXLcO+997q1vQzkREREvo+BnIiI3EXXCvny5cvRsmVL3HPPPahUqRKaN2+OOXPmGK8/evQo0tLS0K1bN+O+yMhItGnTBps3b7Z6zNzcXGRmZpp9uQoDORERke9jICciInfRNZD/+++/+PDDD1GnTh2sXr0ajz32GJ588kl89tlnAIC0tDQAQExMjNnPxcTEGK+zNG3aNERGRhq/qlat6rL2MpATERH5PgZyIiJyF10DeUFBAW655Ra89tpraN68OUaNGoWHH34Ys2fPdvqYEyZMQEZGhvHrxIkTLmsvAzkREZHvYyAnIiJ30TWQx8XFITEx0WxfgwYNcPz4cQBAbGwsAODs2bNmtzl79qzxOktBQUGIiIgw+3IVBnIiIiLfx0BORETuomsgb9euHQ4ePGi279ChQ0hISAAgJniLjY3FunXrjNdnZmZi69atSEpKcmtbAQZyIiKi0oCBnIiI3EXXWdbHjRuHtm3b4rXXXsOgQYOwbds2fPzxx/j4448BAAaDAWPHjsXUqVNRp04d1KhRAy+99BLi4+PRt29ft7eXgZyIiMj3yUCel6dvO4iIyPfpGshbtWqFpUuXYsKECZgyZQpq1KiBd999F/fff7/xNs8++yyys7MxatQopKeno3379li1ahWCg4Pd3l4GciIiIt/HCjkREbmLroEcAO666y7cddddNq83GAyYMmUKpkyZ4sZWWcdATkRE5PsCA8WWgZyIiEqarmPIvQ0DORERkedISUlBYmIiWrVq5dLjskJORETuwkCuAQM5ERGR50hOTsa+ffuQmprq0uMykBMRkbswkGvAQE5EROT7GMiJiMhdGMg1YCAnIiLyfQzkRETkLgzkGjCQExER+T4GciIichcGcg0YyImIiHwfAzkREbkLA7kGDORERES+j4GciIjchYFcAwZyIiIi38dATkRE7sJArgEDORERke+TgTwvT992EBGR72Mg14CBnIiIyPexQk5ERO7CQK4BAzkREZHvYyAnIiJ3YSDXgIGciIjI9wUGii0DORERlTQGcg0YyImIiHwfK+REROQuDOQaMJATERH5PgZyIiJyFwZyDRjIiYiIfB8DORERuQsDuQYM5ERERL6PgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPcxkBMRkbswkGvAQE5EROT7ZCDPy9O3HURE5PsYyDVgICciIvJ9rJATEZG7MJBrwEBORETk+xjIiYjIXRjINWAgJyIi8n2BgWLLQE5ERCWNgVwDBnIiIiLfJyvkBQV8zyciopLFQK4BAzkREZHvk4EcYJWciIhKFgO5BgzkREREvo+BnIiI3IWBXAMGciIiopLRr18/REdHY+DAgXo3hYGciIjchoFcAwZyIiKikjFmzBgsWLBA72YAAAIC1MsM5EREVJIYyDVgICciIioZnTt3Rnh4uN7NAAAYDGooZyAnIqKSxECuAQM5ERFRYb/++it69+6N+Ph4GAwGLFu2rNBtUlJSUL16dQQHB6NNmzbYtm2b+xuqAdciJyIid2Ag14CBnIiIqLDs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXPnzjl1f7m5ucjMzDT7cjUZyPPyXH5oIiIiIwZyDRjIiYiICuvZsyemTp2Kfv36Wb3+nXfewcMPP4zhw4cjMTERs2fPRmhoKD799FOn7m/atGmIjIw0flWtWrU4zbeKFXIiInIHBnINGMiJiIi0ycvLw/bt29GtWzfjPj8/P3Tr1g2bN2926pgTJkxARkaG8evEiROuaq4RAzkREblDQNE3IYmBnIiISJsLFy4gPz8fMTExZvtjYmJw4MAB4/fdunXD7t27kZ2djSpVqmDx4sVISkqyesygoCAEBQWVaLsDA8WWgZyIiEoSA7kGDOREREQlY+3atXo3wQwr5ERE5A7ssq4BAzkREZE2FSpUgL+/P86ePWu2/+zZs4iNjdWpVUVjICciIndgINeAgZyIiEibwMBAtGjRAuvWrTPuKygowLp162x2SXdUSkoKEhMT0apVq+I2sxAGciIicgd2WdeAgZyIiKiwrKwsHD582Pj90aNHsWvXLpQrVw7VqlXD+PHjMWzYMLRs2RKtW7fGu+++i+zsbAwfPrxY95ucnIzk5GRkZmYiMjKyuA/DDAM5ERG5AwO5BgzkREREhf3555/o0qWL8fvx48cDAIYNG4b58+dj8ODBOH/+PCZOnIi0tDQ0a9YMq1atKjTRmydhICciInfQtcv65MmTYTAYzL7q169vvP7atWtITk5G+fLlERYWhgEDBhQag+ZODORERESFde7cGYqiFPqaP3++8TZPPPEEjh07htzcXGzduhVt2rTRr8EOYCAnIiJ30H0MecOGDXHmzBnj1++//268bty4cVixYgUWL16MjRs34vTp0+jfv79ubWUgJyIiKh0YyImIyB1077IeEBBgdZbVjIwMzJ07FwsXLkTXrl0BAPPmzUODBg2wZcsW3Hrrre5uKgM5ERGRB0lJSUFKSgry8/NdfmwZyPPyXH5oIiIiI90r5P/88w/i4+NRs2ZN3H///Th+/DgAYPv27bh+/Tq6detmvG39+vVRrVo1bN682ebxcnNzkZmZafblKgzkREREniM5ORn79u1Damqqy4/NCjkREbmDroG8TZs2mD9/PlatWoUPP/wQR48eRYcOHXDlyhWkpaUhMDAQUVFRZj8TExODtLQ0m8ecNm0aIiMjjV9Vq1Z1WXsZyImIiEoHBnIiInIHXbus9+zZ03i5SZMmaNOmDRISEvDNN98gJCTEqWNOmDDBOLsrAGRmZroslDOQExERlQ6BgWLLQE5ERCVJ9y7rpqKiolC3bl0cPnwYsbGxyMvLQ3p6utltzp49a3XMuRQUFISIiAizL1dhICciIiodWCEnIiJ38KhAnpWVhSNHjiAuLg4tWrRAmTJlsG7dOuP1Bw8exPHjx5GUlKRL+xjIiYiISgcGciIicgddu6w//fTT6N27NxISEnD69GlMmjQJ/v7+GDJkCCIjIzFy5EiMHz8e5cqVQ0REBEaPHo2kpCRdZlgHGMiJiIg8iTtmWWcgJyKikqRrID958iSGDBmCixcvomLFimjfvj22bNmCihUrAgBmzJgBPz8/DBgwALm5uejRowc++OAD3drLQE5EROQ5kpOTkZycjMzMTERGRrr02AzkRETkDroG8q+//tru9cHBwcaz356AgZyIiKh0YCAnIiJ38Kgx5J6OgZyIiKh0YCAnIiJ3YCDXgIGciIiodGAgJyIid2Ag18DP5NlSFP3aQURERCVLBvK8PH3bQUREvo2BXAPTQM4qORERke9ihZyIiNyBgVwDBnIiIiLPkZKSgsTERLRq1crlx2YgJyIid2Ag14CBnIiIyHMkJydj3759SE1NdfmxGciJiMgdGMg1YCAnIiIqHQIDxZaBnIiIShIDuQYM5ERERKUDK+REROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BowkBMREZUODOREROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BoYDOplBnIiIiJ9paSkIDExEa1atXL5sWUgz8tz+aGJiIiMGMg1klVyBnIiIiJ9JScnY9++fUhNTXX5sVkhJyIid2Ag14iBnIiIvMGOHTuwZ88e4/fff/89+vbti//7v/9DHsu+RWIgJyIid2Ag14iBnIiIvMEjjzyCQ4cOAQD+/fdf3HvvvQgNDcXixYvx7LPP6tw6z8dATkRE7sBArhEDOREReYNDhw6hWbNmAIDFixejY8eOWLhwIebPn48lS5bo2zgvEBgotgzkRERUkhjINWIgJyIib6AoCgpuvlmtXbsWvXr1AgBUrVoVFy5c0LNpXoEVciIicgcGco0YyImIyBu0bNkSU6dOxeeff46NGzfizjvvBAAcPXoUMTExOrfO8zGQExGROzCQa8RATkRE3uDdd9/Fjh078MQTT+CFF15A7dq1AQDffvst2rZtq3PrPB8DORERuUOA3g3wNgzkRETkDZo0aWI2y7o0ffp0+Pv769Ai78JATkRE7sAKuUYM5ERE5A1OnDiBkydPGr/ftm0bxo4diwULFqCMTJtkEwM5ERG5AwO5RgzkRETkDe677z5s2LABAJCWlobu3btj27ZteOGFFzBlyhSdW+caKSkpSExMRKtWrVx+bBnIb9wAFMXlhyciIgLAQK4ZAzkREXmDvXv3onXr1gCAb775Bo0aNcIff/yBL7/8EvPnz9e3cS6SnJyMffv2ITU11eXHDg1VL+fkuPzwREREABjINWMgJyIib3D9+nUEBQUBEMue3X333QCA+vXr48yZM3o2zSuULQvIofbp6bo2hYiIfBgDuUYM5ERE5A0aNmyI2bNn47fffsOaNWtwxx13AABOnz6N8uXL69w6z2cwAFFR4nJGhq5NISIiH8ZArhEDOREReYM33ngDH330ETp37owhQ4agadOmAIDly5cbu7KTfTKQs0JOREQlhcueacRATkRE3qBz5864cOECMjMzER0dbdw/atQohJoOkCabGMiJiKikMZBrxEBORETewt/fHzdu3MDvv/8OAKhXrx6qV6+ub6O8CAM5ERGVNHZZ14iBnIiIvEF2djZGjBiBuLg4dOzYER07dkR8fDxGjhyJHE4b7hAGciIiKmkM5BoxkBMRkTcYP348Nm7ciBUrViA9PR3p6en4/vvvsXHjRjz11FN6N88rMJATEVFJY5d1jRjIiYjIGyxZsgTffvstOnfubNzXq1cvhISEYNCgQfjwww/1a5yXYCAnIqKSxgq5RgzkRETkDXJychATE1Nof6VKldhl3UEM5EREVNIYyDViICciIm+QlJSESZMm4dq1a8Z9V69excsvv4ykpCQdW+Y9IiPFloGciIhKCrusa8RATkRE3uC9995Djx49UKVKFeMa5Lt370ZwcDBWr16tc+tcIyUlBSkpKcjPzy+R47NCTkREJY2BXCMGciIi8gaNGjXCP//8gy+//BIHDhwAAAwZMgT3338/QkJCdG6dayQnJyM5ORmZmZmIlOVsF2IgJyKiksZArhEDOREReYvQ0FA8/PDDejfDazGQExFRSWMg14iBnIiIPNXy5csdvu3dd99dgi3xDQzkRERU0jwmkL/++uuYMGECxowZg3fffRcAcO3aNTz11FP4+uuvkZubix49euCDDz6wOmusuzCQExGRp+rbt69DtzMYDCU27tqXmAZyRQEMBj1bQ0REvsgjZllPTU3FRx99hCZNmpjtHzduHFasWIHFixdj48aNOH36NPr3769TKwUGciIi8lQFBQUOfTGMO0YG8uvXgatXdW0KERH5KN0DeVZWFu6//37MmTMH0dHRxv0ZGRmYO3cu3nnnHXTt2hUtWrTAvHnz8Mcff2DLli26tZeBnIiIqHQICxPv++VwEfn/9xJw7JjeTSIiIh+jeyBPTk7GnXfeiW7dupnt3759O65fv262v379+qhWrRo2b95s83i5ubnIzMw0+3IlBnIiIqLSwWAQVfK38DTC35sK3BxSR0RE5Cq6jiH/+uuvsWPHDqSmpha6Li0tDYGBgYiS/cVuiomJQVpams1jTps2DS+//LKrm2rEQE5ERFR61Ai/gCGXvhLfZGTo2xgiIvI5ulXIT5w4gTFjxuDLL79EcHCwy447YcIEZGRkGL9OnDjhsmMDDORERESlydDrcxGMXPFNbq6+jSEiIp+jWyDfvn07zp07h1tuuQUBAQEICAjAxo0bMXPmTAQEBCAmJgZ5eXlIt1hr5OzZs4iNjbV53KCgIERERJh9uRIDORERUSmRn4/BFz9Qv8/L068tRETkk3Trsn7bbbdhz549ZvuGDx+O+vXr47nnnkPVqlVRpkwZrFu3DgMGDAAAHDx4EMePH0dSUpIeTQbAQE5ERN7hp59+gr+/P3r06GG2f/Xq1SgoKEDPnj11apkX+eEHxOQeV79nhZyIiFxMt0AeHh6ORo0ame0rW7Ysypcvb9w/cuRIjB8/HuXKlUNERARGjx6NpKQk3HrrrXo0GQADOREReYfnn38er7/+eqH9iqLg+eefZyB3xKxZAIBjqIYEHGcgJyIil9N9lnV7ZsyYgbvuugsDBgxAx44dERsbi++++07XNjGQExGRN/jnn3+QmJhYaH/9+vVx+PBhHVrkZdLTgbVrAQCz8ITYxy7rRETkYrrOsm7pl19+Mfs+ODgYKSkpSElJ0adBVjCQExGRN4iMjMS///6L6tWrm+0/fPgwypYtq0+jvMn58wCA3KBw/JNbR+xjhZyIiFzMoyvknoiBnIiIvEGfPn0wduxYHDlyxLjv8OHDeOqpp3D33Xfr2DIvcfkyACA3NBq5CBL7WCEnIiIXYyDXiIGciIi8wZtvvomyZcuifv36qFGjBmrUqIEGDRqgfPnyeOutt/Runue7GchvhEcjD4FiHyvkRETkYh7VZd0bMJATEZE3iIyMxB9//IE1a9Zg9+7dCAkJQZMmTdCxY0e9m+YdbgbygogotULOQE5ERC7GQK4RAzkREXkLg8GA22+/HbfffrveTfE+NwM5okwq5OyyTkRELsZArhEDOREReaqZM2di1KhRCA4OxsyZM+3e9sknn3RTq0qOnPg1Pz/f9Qe/Gcj9ykezQk5ERCWGgVwjBnIiIvJUM2bMwP3334/g4GDMmDHD5u0MBoNPBPLk5GQkJycjMzMTkZGRrj34zUAeUFEN5EpeHgyuvRciIirlGMg1YiAnIiJPdfToUauXyQk3A3lgLCd1IyKiksNZ1jViICciIioFZCCPicZ1A7usExFRyXCqQn7ixAkYDAZUqVIFALBt2zYsXLgQiYmJGDVqlEsb6GkYyImIyBsoioJvv/0WGzZswLlz51Bg8cb13Xff6dQyLyHHkJeLRnBEIJABGG7cEB8A/FjPICIi13DqHeW+++7Dhg0bAABpaWno3r07tm3bhhdeeAFTpkxxaQM9DQM5ERF5g7Fjx+LBBx/E0aNHERYWhsjISLMvKoKcZT06GiFRQep+zrROREQu5FSFfO/evWjdujUA4JtvvkGjRo2wadMm/Pzzz3j00UcxceJElzbSkzCQExGRN/j888/x3XffoVevXno3xTtZBvJjN/fn5QHBwbo1i4iIfItTFfLr168jKEicLV67di3uvvtuAED9+vVx5swZ17XOAzGQExGRN4iMjETNmjX1bob3MgnkYdFl1P0cR05ERC7kVCBv2LAhZs+ejd9++w1r1qzBHXfcAQA4ffo0ypcv79IGehoGciIi8gaTJ0/Gyy+/jKtXr+rdFO+Tnw9kZorL0dGIjPZDHm6GcgZyIiJyIae6rL/xxhvo168fpk+fjmHDhqFp06YAgOXLlxu7svsqBnIiIvIGgwYNwldffYVKlSqhevXqKFOmjNn1O3bs0KllXiA9Xb0cHY2oKCAPgQjEdY4hJyIil3IqkHfu3BkXLlxAZmYmoqOjjftHjRqF0NBQlzXOEzGQExGRNxg2bBi2b9+OBx54ADExMTAYDHo3yXvI7uplywJlyiAyEshFEMKQzQo5ERG5lFOB/OrVq1AUxRjGjx07hqVLl6JBgwbo0aOHSxvoaRjIiYjIG/z4449YvXo12rdvr3dTvI/J+HEAiIoSgRwAK+RERORSTo0h79OnDxYsWAAASE9PR5s2bfD222+jb9+++PDDD13aQE/DQE5ERN6gatWqiIiI0LsZ3skikJcvL7qsA2CFnIiIXMqpQL5jxw506NABAPDtt98iJiYGx44dw4IFCzBz5kyXNtDTMJATEZE3ePvtt/Hss8/iv//+07sp3sdKIDdWyBnIiYjIhZzqsp6Tk4Pw8HAAwM8//4z+/fvDz88Pt956K44dO1bET3s3BnIiIvIGDzzwAHJyclCrVi2EhoYWmtTt0qVLOrXMC9irkLPLOhERuZBTgbx27dpYtmwZ+vXrh9WrV2PcuHEAgHPnzvl89zgZyBVF33YQERHZ8+677+rdBO/FCjkREbmJU4F84sSJuO+++zBu3Dh07doVSUlJAES1vHnz5i5toKdhhZyIiLzBsGHD9G6C95LLnpkE8lM3A7lyLRecr56IiFzFqUA+cOBAtG/fHmfOnDGuQQ4At912G/r16+eyxnkiBnIiIvIWBQUFOHz4MM6dO4cCizeujh076tQqL2ClQn70Zpf13Ct5CNarXURE5HOcCuQAEBsbi9jYWJw8eRIAUKVKFbRu3dplDfNUDOREROQNtmzZgvvuuw/Hjh2DYjHOymAwID8/X6eWeQGLQB4WBuQZggAFyL6Uy0BOREQu49Qs6wUFBZgyZQoiIyORkJCAhIQEREVF4ZVXXil0Bt7XMJATEZE3ePTRR9GyZUvs3bsXly5dwuXLl41fnNCtCBaB3GAAECgq5NmXOakbERG5jlMV8hdeeAFz587F66+/jnbt2gEAfv/9d0yePBnXrl3Dq6++6tJGehIGciIi8gb//PMPvv32W9SuXVvvpngfi0AOAAgKAnKBnMuc1I2IiFzHqUD+2Wef4ZNPPsHdd99t3NekSRNUrlwZjz/+OAM5ERGRztq0aYPDhw8zkDvDSiA3BAcBmcDVDAZyIiJyHacC+aVLl1C/fv1C++vXr+/z3eAYyImIyFP99ddfxsujR4/GU089hbS0NDRu3LjQOuRNmjRxd/O8h5VA7h8suqxfy2SXdSIich2nAnnTpk0xa9YszJw502z/rFmzfP4NnoGciIg8VbNmzWAwGMwmcRsxYoTxsryOk7rZUVAAZGSIy6aBPFQse5aXyQo5ERG5jlOB/M0338Sdd96JtWvXGtcg37x5M06cOIGffvrJpQ30NAzkRETkqY4ePap3E7xfRgYgT2iYBPIyZW8ue5bFCjlRsZw6BeTlATVq6N0SIo/g1CzrnTp1wqFDh9CvXz+kp6cjPT0d/fv3x99//43PP//c1W30KAzkRETkqeTKJwkJCTh27BgqV65sti8hIQGVK1fGsWPH9G5qIT/88APq1auHOnXq4JNPPtGvIbK7emiocWZ1ACgTJirkN7JYISdymqIArVsDzZoBV67o3Roij+D0OuTx8fGFJm/bvXs35s6di48//rjYDfNUDOREROQNunTpgjNnzqBSpUpm+zMyMtClSxeP6rJ+48YNjB8/Hhs2bEBkZCRatGiBfv36oXz58u5vjLUZ1gEEholwfiOHgZzIaRkZwOnT4vK+fUCbNvq2h8gDOFUhL80YyImIyBvIseKWLl68iLJly+rQItu2bduGhg0bonLlyggLC0PPnj3x888/69MYG4E8KEJUyPNz2GWdyGkXLqiXDxzQrx1EHsTpCnlpxUBORESerH///gDEBG4PPfQQgoKCjNfl5+fjr7/+Qtu2bV16n7/++iumT5+O7du348yZM1i6dCn69u1rdpuUlBRMnz4daWlpaNq0Kd5//320bt0aAHD69GlUrlzZeNvKlSvj1KlTLm2jw2wE8uBI8TwWXGOFnMhpDOREhbBCrhEDORERebLIyEhERkZCURSEh4cbv4+MjERsbCxGjRqFL774wqX3mZ2djaZNmyIlJcXq9YsWLcL48eMxadIk7NixA02bNkWPHj1w7tw5l7bDJWwE8pAo0WVducYKOZHTTAP5/v36tYPIg2iqkMuz7rakp6cXpy1egYGciIg82bx58wAA1atXx9NPP+2W7uk9e/ZEz549bV7/zjvv4OGHH8bw4cMBALNnz8aPP/6ITz/9FM8//zzi4+PNKuKnTp0yVs+tyc3NRW6uWqnOzMx0waO4yUYgLxstKuSG67m4cQMIYB9DIu1YIScqRFOF3PQsu7WvhIQEDB06tKTa6hEYyImIyBtMmjTJI8aK5+XlYfv27ejWrZtxn5+fH7p164bNmzcDAFq3bo29e/fi1KlTyMrKwsqVK9GjRw+bx5w2bZrZ54+qVau6rsE2AnnozQp5EHKNNyEijUwD+ZEjwPXr2n5+716gVy9g61bXtotIR5rO78qz7qUZAzkREXmqW265BevWrUN0dDSaN29udVI3aceOHW5p04ULF5Cfn4+YmBiz/TExMThws0IWEBCAt99+G126dEFBQQGeffZZuzOsT5gwAePHjzd+n5mZ6bpQbiOQ+4eKCnkg8nDxIlCxomvujqhUMQ3kN26IUF6/vuM/P28esHIlcOiQCOfBwa5vI5GbscOVRgzkRETkqfr06WOcxM1yUjVPd/fdd+Puu+926LZBQUFmk9W5lI1Ajpv3F4RcXLxYMndN5PNMAzkgxpFrCeTnz4vtkSPAjBnAhAmuaxuRThjINWIgJyIiTzVp0iQAYjb1Ll26oEmTJoiKitK1TRUqVIC/vz/Onj1rtv/s2bOIjY3VqVV2jBgh1kbu0MF8f6Dosh6IPJxnICdyjgzkfn7iw7TWceQykAPA1KnAgw8CVaq4rn2OUBSge3fgyhVg0yZOKEHFxlnWNWIgJyIiT+fv74/bb78dlz1gsHNgYCBatGiBdevWGfcVFBRg3bp1SEpK0rFlNtxxB/DUU0CzZub7WSEnKj4ZyJs2FVutgVz+fFgYkJMDPPus69rmqN27gXXrgG3bgBMn3H//5HN0DeQffvghmjRpgoiICERERCApKQkrV640Xn/t2jUkJyejfPnyCAsLw4ABAwqdYXc3BnIiIvIGjRo1wr///uuW+8rKysKuXbuwa9cuAMDRo0exa9cuHD9+HAAwfvx4zJkzB5999hn279+Pxx57DNnZ2cZZ152VkpKCxMREtGrVqrgPoWiB6qRuDOTkUooC/PwzoPNnXLeQgbp9e7HVuvSZrJC/8QZgMABffQWcOeO69jli1Sr1Mv8ZkAvoGsirVKmC119/Hdu3b8eff/6Jrl27ok+fPvj7778BAOPGjcOKFSuwePFibNy4EadPny5y6bWSxkBORETeYOrUqXj66afxww8/4MyZM8jMzDT7cqU///wTzZs3R/PmzQGIAN68eXNMnDgRADB48GC89dZbmDhxIpo1a4Zdu3Zh1apVhSZ60yo5ORn79u1DampqsR9DkYLMJ3UjcpkNG4AePYD//U/vlpQ8GcjlkJADB8QJCa0/f/vt6syKpt3Y3cGkeIhLl9x73+STdB300Lt3b7PvX331VXz44YfYsmULqlSpgrlz52LhwoXo2rUrADHLe4MGDbBlyxbceuutejSZgZyIiLxCr169AIjJ0kxnW1cUBQaDAfn5+S67r86dO0Mp4kP1E088gSeeeMJl9+l27LJOJWX3bvOtVhkZwLlzQJ06rmtTScjPVwNsmzaAv78Yh33mDBAfX/TPX70KZGeLyxUqAOHh4nFnZZVcmy1lZAB//KF+z38G5AIeMwtBfn4+Fi9ejOzsbCQlJWH79u24fv262bql9evXR7Vq1bB582abgTw3Nxe5ubnG711dBWAgJyIib7Bhwwa9m+BbTCZ142dwcqmjR8X25EkgN9d48sdhffsCGzcC//wD1Krl8ua5zOXLajU8Lg6oWVO0+cABxwK5rI4HBACRkWIcOeDeQL5unViuTeI/A3IB3QP5nj17kJSUhGvXriEsLAxLly5FYmIidu3ahcDAwEKzw8bExCAtLc3m8aZNm4aXX365xNrLQE5ERN6gU6dOejfBt7BCTiVFBnJFAY4dA+rWdfxn8/LETN+KIsZje3Igl4E6KgooU0Ysd/bPP6LdN3vDOvTzFSqI8eN6BHLT8eMAu6wXRVGAH34Qr8vERL1b47F0n2W9Xr162LVrF7Zu3YrHHnsMw4YNw759+5w+3oQJE5CRkWH8OuHi2Q8ZyImIyJvk5OTgwIED+Ouvv8y+fAEndSOfIAM5AGidiPHgQeD6dXHZco1vT2MaqAGgQQOxdXRiN/nzcuy4uwO5oqiBXK7CwH8GtikK8MwzwN13A3fdpW2ugFJG9wp5YGAgateuDQBo0aIFUlNT8d5772Hw4MHIy8tDenq6WZW8qHVLg4KCEKS1q48GDOREROQNzp8/j+HDh5utXmLKlWPI9ZKcnIzk5GRkZmYiMjKyZO+Mk7pRSVCU4gVy03Hn7p7cTCvLQF6jhtiePOnYz8vHJ3/e3YF83z6xzFlwMNC/P7BrFwO5LYoCjBsHvPee+P7oUfFVs6a+7fJQulfILRUUFCA3NxctWrRAmTJlzNYtPXjwII4fP67ruqUM5ERE5A3Gjh2L9PR0bN26FSEhIVi1ahU+++wz1KlTB8uXL9e7ed7nZiAPQD7SL+az2EOucf68WE9b0hrITXu7eFuFPDpabNPTnft5GcivXHFJ84okq+OdOwNVqojLvtplPT8fmDwZWL/euZ9/9VU1jJcvL7a//uqSpvkiXSvkEyZMQM+ePVGtWjVcuXIFCxcuxC+//ILVq1cjMjISI0eOxPjx41GuXDlERERg9OjRSEpK0m2GdYCBnIiIvMP69evx/fffo2XLlvDz80NCQgK6d++OiIgITJs2DXfeeafeTfQuN7usAwDycpGTE4qyZfVrDvkI0+q4te+L4s2BXPaAdTSQywq5Xl3Wd+0S244dgXLlxGVfrZCvXQu8/DLQqBGwZ4/2n//8c7GdMQM4exZ4/XURyB96yKXN9BW6BvJz585h6NChOHPmDCIjI9GkSROsXr0a3bt3BwDMmDEDfn5+GDBgAHJzc9GjRw988MEHejaZgZyIiLxCdnY2KlWqBACIjo7G+fPnUbduXTRu3Bg7duzQuXVeyGQ4nOi2zkBOLiADuJ+f+HBZnC7rvh7IbVXI3RXI5e+qVi216uurgVy+ro4f1/6zeXnAkSPi8qBB4lgykJNVugbyuXPn2r0+ODgYKSkpSElJcVOLisZATkRE3qBevXo4ePAgqlevjqZNm+Kjjz5C9erVMXv2bMTFxendPO9TpozxYhByceYMUK2aju0h3yBD3i23AH/+KQK5oohZxIty7hxguvKQt40h99ZAXqOGet++2mVdVsUzM8WQitBQx3/28GHR5T08XCxvV7asCFBHjgCnTgGVK5dMm72Yx40h93QM5ERE5A3GjBmDM2fOAAAmTZqElStXolq1apg5cyZee+01nVvnGm6dZd1gMFuLXGvPYiKr/vtPbOWyX5mZjoc8y67EzlTIr10Dpk0TE5aVNFuBPDPTsQ/Wruiyfu2aqOBqlZsLnD4tLteooXZZT08X4dPX7N2rXraz3LRVBw6Ibf364v9mZKQ6K/1vv7mkeb6GgVwjBnIiIvIGDzzwAB66OV6vRYsWOHbsGFJTU3HixAkMHjxY38a5SHJyMvbt24fU1FT33KHJWuQM5OQS8oXUoAEQHy8uO9ptXY4fl8uHORPIFy4E/u//gGef1f6zWlkGcrkygqKIUK7158PDxdbRQH7jhhgT3bChuKzFsWNiW7as6K4uA7miAJcvazuWp7txw3wpupsndh1mGsiljh3Flt3WrWIg14iBnIiIvFFoaChuueUWVJAfZkk7k7XIGci90E8/Ad99p3crzJl2g5ZLQjkayOU439tuE9vLl7UHzW3bxPaff7T9nDMsA3VwsPgCHOu2XtwK+blzotv04cPA33879jOS6e/JYBBDWCIixD6t3davXgUWLHBfV3utDh8WPQIkBvISp/s65N6GgZyIiLzB+PHjre43GAwIDg5G7dq10adPH5STlR4qmsla5LKnMXmJnByxdnRuruieLavKesrPVyuvMpD//rv2CnmnTkBKiqjWXrwIxMQ43obt28X22DHx4davBGt1loEcEN3W09KKDuQFBeoEas6OITftQbB1K9C0qWM/B6hDC6pXV/eVKycq+1ondhs3DvjoI2DLFsBVk1WPHQvs3AmsXKltvLc1pt3VAdcE8vbtxfbvv8XvgSeGzbBCrhEDOREReYOdO3di7ty5+Pjjj7Fx40Zs3LgRc+bMwdy5c7Fu3TqMHz8etWvXxj53jB31FayQe54zZ4AWLYDZs+3fbt8+teo3b17Jt8sRp08D16+Lamvlytoq5DduqFXeW25R1/TW0m39+nU11OfmiuWpSsr160BGhrhsGciBogN5RoY6VttVgVwL0wq55MxM6ydOAJ9+Ki4vXCiq5cW1YYNY8/vXX4E//ij+8SznJtASyBXFeiCvWBFITBSXf/+9eO3zQQzkGjGQExGRN+jTpw+6deuG06dPY/v27di+fTtOnjyJ7t27Y8iQITh16hQ6duyIcePG6d1U72FSIT92zDfncvI6y5cDO3YAn3xi/3amIWPBAhEQS8r58+Zdfm2RIa9aNcDfX1sgP3RITE4WFiaqtjKkagnk+/aZT3BWkt0+ZGg1GNQQDjgeyGV39fBwdQnC4gRy2VXfUfYCuZYu69Onq6+9jAzx+i2OggLz8f8HDxbveIBaIb+5bKamQH7mDHDling916plfl27dmJb3Dk/CgrEcA0f+gfMQK4RAzkREXmD6dOn45VXXkGEHOcIIDIyEpMnT8abb76J0NBQTJw4Edtll1Uq2s0gEOqXi+vX1UmXSUeyh0dR1V3TbrhnzwKrVpVMe06eBKpUAe68s+jbWoY8LYFcjh9v0kR8OJXjqrUEcsu//ZIM5LJd5cqJsCY5GsitdXeXgfzKFW1tAETvAkd/DlB/V5Zd1gHHK+RpacCcOeKyHFP92WeOt8Gab74Ry+VJrgjk8uRV9+5iq2WWdVkdr1lTPXEiNW4stlrH71t69FExa3uvXo5NBugFGMg1YiAnIiJvkJGRgXPnzhXaf/78eWTe/BATFRWFPGeWAPIQbl32DDB2Wa9SUVQ/2W3dA8jZoM+dE91lbZEhIy5ObGW3YVfbsUNUnTdsALKz7d/WMuTJQH78eNEV/MOHxbZePbGVQVXLWuQ7dph/744KueXYYa2BXJ54AMwr5PZ+95bHAMTtTYNsUeRzU5wu62+/LZZdu/VWNZivXq19jLaUmwtMmCAuyzkRDh1y7ljS1avqa0sGci3ts9ZdXZJd1osTyFesUJ+7n38WY9NPnnT+eB6CgVwjBnIiIvIGffr0wYgRI7B06VKcPHkSJ0+exNKlSzFy5Ej07dsXALBt2zbUrVtX34YWg17LnlWpJE5iMJB7AFkhz8uzH+pkhfyVV8T2hx9EiC/KihXa1k6Wk7QVFBQOvJYsK+SxsWLW8YICEcrtOXFCbBMSxNaZLuuyfbVri607KuTOBnJ5osFahTw/37EhApbPjaPd1rOy1Ps3rZBr6bKelQV8+KG4/NJLQN26QFKS+F0vXOhYOyx9+aX4ncXHAzNmiH3FrZDv2ydOVlSooE5650wgtzZpYsOGYnvkiHNj58+fB/73P3F58GDx97JnjzjBUdyqu+TIiZ0SwECuEQM5ERF5g48++gi33XYb7r33XiQkJCAhIQH33nsvbrvtNsy+OQFW/fr18UlRY29JdbNCXrkCK+QeITMTOHVK/d5Wt/WLF9VQMWgQ0KqVmBTtiy/sH//vv4G77wbuuKPoardkGqSLCnyWgdxgUKvkR444dj9Vq4qt1kCenw/s2iUuDxggtp4cyK39fNmy6mVHxpHLY1SuLLaOTuwmn5eoKPPx71q6rP/5p3gNVakC9Owp9g0dKraffeZcEJQV/gcfBJo3F5ePHSveRHHyxFXjxmpvkvPnHV9Oz16FPCZGPGemE79p8dhj4iRaw4bA/PlilvrERPE/oGNH7fMCWLNhg+iF8eCDxT+WBgzkGjGQExGRNwgLC8OcOXNw8eJF7Ny5Ezt37sTFixfx8ccfo+zND7LNmjVDs2bN9G2oN7lZIY8txwq5R5Dd1SVbgVyGjOrVxaRgQ4aI7zdutH/8r78W25wcYP16x9okK+RA0QHBWjdoWfGWFXBb5PXVqomt1jHkBw6I4BYWpnZN9uRAbrkGOQAEBKjrmGsJ5L16ia3WQG76ewK0dVmXvXjatBEnXgBR5Q0MFFVeZyrbsnt6/frieYmKEmFXdjl3hhza0aiROKa/vzimozPw2wvkBoNaJdda0f73X2DJEtGeBQvE7z0hQcws37q16KXQtWvxZ3CXy7K5eWw6A7lGDORERORNwsLCUK5cOZQrVw5hsosnOedmII+JYoXcI1gu2VdUIJeTSslx1/a6hSuKGsgB4McfHWuToxXyggK1al+lirpfViXtTaSlKMWvkMvu6s2aqVV5uRZ5SZDtkiFWKk6FHNA207o8xu23i2B3+rR5DwtbrE3oBmjrsi4Duel8F9HRQNu24vKvvxZ9DEsykNetK8KuHH5UnHHkpn8rfn7qmvaOdFvPylJPFMm/MUvOBnLZY6RePbHMn1S+PLBuHXDbbaIHwujRxet2LtvVqJHzx3ACA7lGDOREROQNCgoKMGXKFERGRhq7rEdFReGVV15BAd/EnHOzy3rFSAZyj2BZIbcVYk2rfoBahTatZlvascO80vjjj4590Dc95n//2R6nfvGi6AZsMKihBxDjYgH7ASgjQw2gloHc0UndZCBv0UKcEPDzc24t8uvXHevO7KpJ3Sx/PjxcbLUE8oQE9bXgSJXc2pJngLYu6zKQt2xpvl/Otq41kOfkqOFXBnEZgoszjlxWuOUEbI6cIJLkiYBKldTnxpKzgVw+Vvl6NxUWBixaJE6Y7tqlfY15U/KEhGynmzCQa8RATkRE3uCFF17ArFmz8Prrrxu7rL/22mt4//338dJLL+ndPO90s0JeIVx0WT916uYyzrm5xesmSs6RFfKQELF1tEIuu3lfvmx76atFi8T2rrvE8U+eVIP9338DmzYV/pncXDW4yDWcbU04KAN3hQpAmTLqfhmA7AVyGU7KlwdCQ8VlrV3WZSC/5RZx/7JKr6XbuqKI5yc2tugqsbzeMqgVp8s64FyFvEIF0XUccCy8FbfL+oUL6jFatDC/rkMHsdUycSCg/r8pV049SVHcQH7jhjpjuew14cgJIkner63qOFAygRwQv4vBg8VlOXmeVoqitouB3LMxkBMRkTf47LPP8Mknn+Cxxx5DkyZN0KRJEzz++OOYM2cO5s+fr3fzvNPNCnlYmVyEhpr0HP7f/4A6dVwzqRAJGRlizGh+vu3byAp5u3Ziay2QK4oayGVVNDxcdBcGrFfJCwrUQD58uBibCgA//SSqgK1bA507F64ayjATEiImggNsvyZkwJEBXHIkkMvu6vLEAqCty7qiADt3istyMjDZHVtLIP/zT7H01MWLRS8hJkOrXl3Wc3LUyc4qVBAznAOOBeGiuqxnZ9uf5V0+N3Xrmk8KB4h2BASI36m9HhuWZPg1XSVDXnY2kJ88Kf7egoLUXhuOvB4l2X7LExemZNA9elT8Thxl7TVv6bHHxHbRIseXojN15ox4Hfr52T+pUAIYyDViICciIm9w6dIl1LcysU79+vVxyZExj17A7euQ36yQG67nGT+bHz0KtcomK6hk24IFwGuvFX27MWOAgQOBzz+3fn1OjhqUOncWW2uB/ORJEe4DAsw/ZMtu69bGkW/ZIvaHh4sZse+8U+z//nsx+3JOjqgmWo5hl4GkWjW1AlsSgdxatVAG1ZycooPOqVOiZ4C/v/qcOBPI5XrQjvyc3hVyGdACA8XPdOokvk9NdXy9eMugGRmpBgN7/1OtjR+XypZVx0RrqZKbjh+XTCvkzoyjlr/DatXUx6UlkDsSmitVEq9VRSk85MSeoirkgPiba95cnBxx5qSzPHFXp446WaCbMJBrxEBORETeoGnTppg1a1ah/bNmzUJTub6sl9NrHXLk5ho/mx89UqAGMS1rQJdGBQXAI48AL7wgZk22JT8fWL5cXP7rL+u3kaGjfHm1K7q1QC4/ZNerZ+zhAMD+OPJvvhHbPn1EtVsG8i1bzAO25dJkpoGkdWtxeds26+HIkUBuK1RZCz7h4WrX96JehzII1a6tPidaA3lWFvDVV+r3RU2oUFQgz8y0/eE6N1cdWmCrQm5r6IFkOqmcwSAeb9Wq4sTKH3/Y/rn0dHFCByhcIffzU3ta2KvI2gvkgHPjyK0F8jp1xGNLT3fuf5H83Zs+TlcHcsC5buuOBHKDQa2Sz56tPazp1F0dYCDXjIGciIi8wZtvvolPP/0UiYmJGDlyJEaOHInExETMnz8f06dP17t53kmGF5NAfuHvszcHksPxCbVKq7NngWvXxGV7M5xv2ybGd9u7nQyVDRqo3WstA3lBAbBmjbhsOWuyDA3WArnsYiyXx6pWzfzna9USW8tALo+VkAA0aSJeL5cuWT/5IAOOHKMryQCUm6sGQUvWwonB4Pg4cjlxV4MG6j6tgXzRIvOqtL1AXlBgO5BHRoqtotheako+Hj+/wl2+Ha2QW3Z5NxjUnhX2lr+Tv9MKFczXPZeKGkeuKLYndJOcGUcuA7lpr4+QEPV17Uy3dU8N5KarChR17PvuAyIixBj7LVscO77EQO49GMiJiMgbdOrUCYcOHUK/fv2Qnp6O9PR09O/fHwcPHkQH+QGQtJEV8rw8YyDP2W8S6Fght880XNtbbmrVKvWyrXG1srt4YqJ5IJdVZbk+8YwZ4nvL17y9LusyQNepo+4bMEBsBw0CnnjC/HaSaWgIDFTHZ1ubOMxWhTw4WA2dtkKQ5ZJnkqPjyE1PZkhaA/knn4jtrbcW/XOm1W/LQB4crHYPttVtXc5UX7Gi+kFccjaQA2q3dXuBXM4LYKsyKx+PrS7rp06JuQb8/dXXg6X27cX2wAHbs/KbUhTrY8hNv3dVINcyqVtJBfLLl9VhGKZLBFpTtqz6e92+3bHjS5ZzTbgRA7lGDOREROQt4uPj8eqrr2LJkiVYsmQJpk6dioKCAowaNUrvpnknkwp57dri4rUD/6nXM5DbJyu7gOOBXEuFXFaVT54EevQQH8jDw4EpU4BHHzX/eVtd1nNy1PAhZ5oGgAkTxNJnn3/uWIUcULsoyxnNTdkK5EDRIUg+j5bBR2sgN51jQoYwR9Yi37tXVB8DAoDJk8U+exVyGVZDQ62PzS1qHLkMqabLw0muCOTbtqkTvlmSgdxWECyqQi6r4w0bqjPiWypXTg2Bv/9u/TamLl5Ue5DIf0SSrJg7sxa5vQp5Wpr9cekZGWqPDnvdygHtgVy+3itUUFdUsEcOydq927HjA+KxyZN8rJB7PgZyIiLyZhcvXsTcuXP1boZ3MqmQy0ma/U+ZBDp2WbfPkUB+/rz5UmHnzlkPS6YV8pAQ0U0VEFXyzZtF1/h69URofuklUaE0ZSuQy1ASGamODwbE775XL3FSxjSQm4YUywqhrIhqDeT2ugkXFNiu2jq6Frm1Luta1iL/9luxvesudfK6c+dsT45mq7u65Gggl0vJmSpOIK9VC4iPF0NObHVvdmS5LcB2IJfDH4qaeFLLOHIZtqtWLRzyi7P0mb0K+fXr9ieuk89TuXLq78QWefLhv/8c6xFg6wSULc4E8hMnxDwEAQHmPWPchIFcIwZyIiKiUspkUreKFUWeqY7/1OtNK5NpaUBKiu1xsZ7iwgV1DHxJcySQr1kjQm6TJuqYXdOfA0R7//lHXE5MFFvTbuu7donLHToUnpVbkh/uT582f/yyG3rNmmKcsTVyvEJGhhpSCgrUQC7Dvpw9e+dO8+CuKM4H8rNnRTjy8xNh0pQjY8jT09Xl2kwr5KZrkRc1QZsMmV27ijAtx4Hb6rZe3EAuTxC4ukJuOo78l1+s/1xRFfKiuqzLbtO2xo9LMpA7Mo7c2vhxqUkTsf3jD21hxXQNctNAHhSkPkatS/HZUr68eoJCTqBoj60hGrbIQL5nj3hcjrA1+aObMJBrxEBORERUSpl0WQfEZ+gE2KiQT5smxhp/9JEbG6jRjh0i/D35pOM/U1Aglv8qKrRZ40ggl93Ve/a0Pc778GExE3t4OFC5sthnGshlZaxZM9ttqVRJdJ9WFPO2mAZyW0JC1PuV3dbPnxevC4NBvS4xUbxm0tPNw2pmplr11xrI5XMYHy+qeaYc6bIuu6tXqSKeP1P2xtWbkiGzRQuxlScobAVyW2uQS3pVyIGix5EXt8u6XCXA3msRUOc42LXL9mR+krUZ1qWkJNFbxLKnSVHkGuSBgbYnGnRVIAeA++8X2y+/LPq2jsywbqpWLXEyLzfX8a77Ok7oBjCQa8ZATkREVEqZdFkHRCA3q5BfuWIM6zh82Hyrlx9+AFautH7dsmWigrR0qePrFs+fD/TtK8LA//6nLZibBnIZdEwVFKiB/I47bM+ELrurN2igVrGtVcjtLe9nMFg/vgzkslu6LTKwy0AuA0l8vHriJjBQ7Z5r2m1dBpuICOvjiu0FIHvBR0sgN62OSzLwWPZIMHXmjKiw+/mpz69xDUAbr4WSrJDLkwrFDeRbtqgrAJgqKpDbGyZw/rz6OyxqorD4ePGaKyiwvwwbYHtCN0D0dLj9dnH5xx/tH8eUPJmSkFB44jwZ0E+ftv3zWgP54MHifrZsKTwXgyWtXdb9/NSlEB3tts5A7l0YyImIyJP179/f7te4ceP0bqL3sqiQd2ivmFfIAbVSJj+8Wgue7nL6tFhL+847xbhqS3LfuXP2Q5ipTZvE9sYNYO5cUfmzNRO6JdPK65kzoiJnas8eEWLCwoC2bW1XbK3NEi7D2r59asVbdt+1xV4gt1chBwpP7CaPYRkaTLutS/a6q5vul13LTdmrFjoyhtza+HFJtt1ehVxWx+vXV4cUyC7OzgZyOVZfjwp53britZObW3isv6IUHcjlsAFrJ0/27BHbWrWKHlcNOL78mb0KOSD+3gHnArnlWuuAejLBXru0VrFjY4HbbhOXTdezt0Zrl3VA+zhyHWdYBxjINWMgJyIiTxYZGWn3KyEhAUOHDtW7mS6RkpKCxMREtCpqwiRXsaiQVw25gLIQy/FcD4sS18kwJEOhvdnELf34o5goy5GJjqTkZBFUrIWotWvFBxZFAUaOVKv3gAjDpstxOdq9VYaM//s/EeoyM4v+QA2I58w0YObnF36csvIn1/C2FRBNJ3STZBVv9WqxrVlTnejNFmsTu8mArTWQW44fl6xN7OZoINdaIZcnJexVMq2dzJAcqZBbdlcHiu6y7qpJ3Vw9hhwQPSXkY5E9K6SMDHWiOjkMwZIM5NaecxkGizoxJDkysVtBgTp/grUx5IAY7gGI15wjy5UB9gN5795iu2KF7QCktUIOiDXDAdFt3V4PHa1hH9AWyK9eVSvkOgXygKJvQqYYyImIyJPNmzdP7ya4TXJyMpKTk5GZmYlIObFUSTKZ1A2AMcidRhz8Q8ohJitdfPDPzVWDuZYK+bPPirA5f764XJRz58QY9fx8Ma579Gjz69euVS/v3w+8+qpYAgwQ93Plinp9aqq61rYt+flqJWnYMPEB+bHHRNf3558X+8+fF5X3Xr3MxzifPi0+dMtJos6cEScrTEOprLDKgFdUl3XTQC7DmqxwFzVmFyhcgVeUkquQawnk9pY9sxdOZMX033/FCRBrk1PZ67LuSIVcPg5rgdxWhby4Y8hll3V7FXLT17IlRbEdyAFx0uSnn8x7MQDq3265craXLJOBPC1N/H2YzuYvx487GshlhTw1VYREa0t8nTol/r8EBNgOvzExQOvWYjm3n34SJ+OKYi+Qd+ggTm6dOyeOKdeeN+VMIO/fX/z/OHBAPPfyb8VUQYF6UlPLsbUE8t9+E8MVKlfWZYZ1gBVyzRjIiYiISimLLuvyQ+wxJOB0nkl3YdMgdfGiOoHX0aNA+/bm62xLR4+qQdPaMlnWfPWV2u3bcv1iRVED+eOPi+20aeoHVNldXY7BdqRC/u+/alCoVUt0hzcYRKVdfmgeMkTsf+wx86qXDJJVqqjdfy17D1gGcmtd1vPz1Uq6tS7rkr3x45Jl4E9LEx/M/fyK/vDvaIW8SRNxvLNn1deFoxXyjIzCS77ZCz7x8WJMdX6+9XG5166pz3FxK+Sm4akkx5ArSvG7rGdlqTPpWwvk8uSNZYXc1vJypipVEr9faz0+tAbyWrXE7z4vTwRfa+RzXK1a4Un9TNnqtv7dd+I+Zsww//u0F8gDA9Wq+/Llha/Pz1efKy2hOSJCrb5PnVp4CAtgvqqArb8Xa+QY8jNnil4GUPaquf122ysrlDAGco0YyImIiEopiy7rMsj9h+r494rJklOW3Vdl8PzsMzEG+7XXCh/b9IOzDD1FWbBAvfz77+YfsPfvFx9Gg4OBt98W1agbN4AXXxTXy0AuP7j/+WfRH25kwGjYUFQC4+LUatn334sJmtatE99/8ok4ASCZVnZl91/LQG5ZnZYf7k+cUNt29Kg4IRIcbB4eLAO5lgq5DOTy/qtVE5Nj2SMD+enTwOXLavd/GU6l0FC1Gi1PtBQVyCMjxeMzva1kr0JuMKj3JceKm/rnH/E8RkVZ7/4tn+8LF6yv/X72rPidGQxqV3xAfR7T062H6uIE8vR0EcgA5wO5rI6HhFivdMvXiuUyWaYnkWwJCLA+VODGDbUbtKOB3GAoehy5DORF9eCQf9c//2w+VGX+fHHiafx4MSmj/F9mL5ADwN13i621QJ6WJh6v/J+gxdix4jlcuhR49NHC/4NMJ0u0dwLCUni4+jdaVJX855/FtkcPx4/vYgzkGslAriiOT0hKREREPsBGhfxCaALOFZjMcG0ZNGX1SI793Lq18IzOpoH88GHrSx/duKF+YN27VwS8MmXE1+nT5mN4ZXW8QwcR7mQ4/vFHcXwZyP/3PxFUMjOLXiLIWsWvb1+xXbZMvQ/ZdfqFF9RljawFcsvu/JYV8sqVxQevvDy127Lscl2vnnn3YGcq5KYVeC3d1QERLuUwieeeE8G5alWxNrcly27rRQVyg8H6OPLsbPV5sFWJlIFcPk+mTMePW6sERkXZXvvdtP316plPUhYWpq6Bbm0ceXECuaw6R0SoJylMyXZcv26+nrwpe93VAfH7Dg8Xf9emJzKKmtBNsjaO/J9/xPHKlnXs9SQVNY7c8m/ElubNxdCH7Gz1WIoiTppJn34KdO8unndra5Cb6tlT/L39/Xfh3hcyNFepYv436Yi2bYGFC8Xf+SefAJaTjmqdYd2UI93WT50S/0sNBqBbN+334SIM5BqZrgTAQE5ERFSK2BhDHlC7Oi7ApMu6rUAul0Cz7JKanQ1s2CAuy3GjluNZ8/OBzp3Fh//Vq4HPPxf777xTHc9r2m1dBnL5IbNuXTGuW1GAl19Wu323b69WO4vqti4ndJPdQQGgXz+xXb9eVM8MBrF9+mmx/7HHxMkH05mSrVXI8/PVSrUMGwEB6m3lddbGjwPmgTwqyrEP8FWqiPbm5org5+iSZ4D4OXm7OXPE9qWX1NeIKfn8yt9pUYHc9DrTifD27BG/v7g42+HSWoX8+nXRO+OFF8xvY+0xmfZKsGRtQjfJXrd1GcidGUNub0I3QD2BANiukhcVyE2XcDPttl6cQC5PXjVuXHgZMXtkIP/jD/NqveRoIPfzE0sHAmqvlf/+E/+fypQRJ9AiIkRY79zZ9hrkUnS02rYVK8yvc2b8uKl77gHk3CczZ5qfjHBmQjfJkUAuq+OtWtl+fboBA7lGpn9T7LZORERUilh2Wb9ZDQxtkIDzMOmyXlSFHDDvkrp+vQiFCQnqh2jLceRLl4ru7mfPimD9wQdi/9ChIlQDaiC/fh345Rdx2bTqM2aM2H7xhdjWrSs+hMpZ6lNTRaV8yBAxEZQM4JK1CnmdOqILuxz/OWCAqKC+8YYIMleuiEBgWumyFshPnxbtDggwD0CW48htBfLQUHVN6qZNHRsLWqaM2pbt27VVyC1vV7Mm8NBD1m+ntUJuep1phVwGenvd8S0DeW4u0K6daNvhwyL8Dhtm++dl8LE2sZtsv7XJt2wtfaYoxauQ25vQDRAhUvZccTaQA4VPmgDFC+RaZ1iXGjYU4Tc72/pcEvI1WlQgB9TeGjKQy+p48+Zinoe1a8XfjGyrtTXITclu60uXmlclixvIAfF/bMQIcXnu3MLHdiaQy7+T33+3Pj4dMB8/riMGco0YyImIiEop0y7rimKs2lZsZVEhlx/M5XjVU6dEKLl8WT2WaRVIdlc3rXabjiNXFGD6dHG5dm3xASQrS3xw79WrcCBPTRVBuFw58/DWvbv5ZF5JSWIrA/mWLcC99wJffy26szZpIo5/5oy4PxkGTCvkgFolB4AJE8TWz0/9AP/990WPIZfHTkgw7/ZqOfO3vWW7ZBXVke7qlm1/8UW1B4Ojgdy0kj5pku1x582bi8d07BiwZo06HEFrIJfVW0cDuaKIEz+pqaJr9xtviOexUyfbP1/cCrlll/XMTDUMyfXGLclAnplZ+MN1URVyoOhx5I4EcmsTu7miQq41kPv5qZVo01USJEcr5IAayHfsEP97ZCCX8z60aiVmYZf/p2x1V5fuvluc6Pr1V2DUKPXEpCsCOSCGzwDA4sXitQCo/xecCeRdu4rX1tGj4n+Qpfx88fcI6Dp+HGAg14yBnIiIqJQyrZCnpxs/NFbvWM1YIVdMK+QtW4rtyZNqdVyGzU2bRJdURSk6kP/2m+jiHhwsfi4lRYSQ8eNFm9q2Fbfbt0/M6i6Pd9tt5h9cDAa1Sg4UDuSpqcDKlaLbfJ8+4mdXrhSztP/9t2hrbKw6XlgaOlR0HR4yxLx6ajoRlGmly9os67aChunEa4qiBnLLCjmgBn3TCceK8tJLokq4c6foJgw4HshlG+rXB+6/3/btIiPVpacefVRsg4PVMejWWFv6TIZFe4+vdm3xGrtyRfysrI727y+W0pO9CGyxVSE/c0bss5zQTZK/NxmgJFkdDwmxvowXoD4PiqIGMamoCjngmkBuWiGX1V89AjmghkNZvZVyc9X7cOQ1Wrmy6K1SUABs3KgG8jZt1Nu0by/+Phs2tN3DQ6pZE3j3XXW8d/fu4vftqkB+663ib+nqVWDRIvG7+OGHwm12VFgYkJwsLr/xhvp73bIF+PhjMdP8pUui674zx3chBnKNGMiJiIhKKdMKuawEVqyI2k3LIiNAfNjPP6sG8n8rtha3OXlSrb62bSuqNtnZ4gPnli3i+pAQoEsXNdAeOqSurfzWW2I7bJgIJo8/Lqqscsb0ihXVyuiLL4oPnwBw112FH8ODD4pgYjColdLatc3D4eefizGmqaki3C1bJk4CANYDRp064kSAHNcude4sAuDZs2owM62QX7miBjBbs0ebVshPnhShKyBAtNnSlCliLfZBgwpfZ0vFisD//Z/5PkcD+b33Am++KQJNUZNZTZokfscysMbF2e9Wb1khv3FDDXn2KuSBgWrl/sCBwnMJFMVWhVyOtW3RQgQYS7JXwsaN4rUtFTV+HBAnlWRYt+y2bm/JM0meZLAVyGWotxfIExPF6+ryZfHYMzPV16bWQC6PARTuTeIIGcj/+MP8BIU8KVW2rP3HYkpWyU3XWbdcR/y228TEZvfdV/TxnnxSjCEPDxeV8tq11RMHzlSxTRkM6omrTz4R/+cKCoDBg50PzKNHi9fXtm2ivR99JE5EPvII8Mwz4ja33Vb0qgoljIFcIwZyIiKiUkpWyBVFHV+dkIDAQCCipviA7HdJDeTPLTEJ5LJCXq+eurTR2rVqxXTAABFKKlUSAUBRREV0/37xAdhgEBVxyXKsp+y2Pnu26Io5dCjwwAOFH0NoqBhfvmaNGuL9/MSHUkAsyTZggLh8yy3Aww+LyzJs2woYQUGFQ2lQkLp+MSAqVpGRYitDnayS2xoba1ohl8tI1alj/QN0x45iUihrS1vZM2aMGiYiI213rbYUGCg+1NepU/Rt4+PFEk9SUctDWQbyQ4fE5HhhYUVPOid/r5s2qT0t5O+3KLYq5DJ02era26aNOJGRlSXWupYuXhRbW+PHJVvjyIvbZf3qVbW7sr1wHBQkqsSA+LuTr8uoKPMZ5a2xDOTyxEnVqurj0qJmTfGaunFDzC8hmfYicXS9bPl7//xzMUdDxYqOdXe3p1cvcSKxRw/xf0pOcllUl3dHPPig+D+ybZu4j7AwsWyjs2JigOHDxeXhw9X/t+3bixOgnTsDzz9f7GYXFwO5RgzkREREpZTpDNrvviu23bsDAOKb3AzkN64b13DeBhHIlbNn1cnIatdWx4hOmSI+vFeoYP6hU3ZbX79e7Qrdp4+6nJg17dqpl/v0ERMj2ZqgqWHDwgFt7lxREZdjwKXJk80DidYuuH36qJerVlWDhOU4cltd1mXF9q+/1Iq/te7qxRESoq4N7+iEcM549lk1mBYVyGXI++8/MURCVjebNi161m4ZyD/+WASmxET1eEWRgfzECbWLb0FB0WNtDQZxEggQM7pLRU3oJskKuOnEh4C2LuuyR4mphQtFl/Vq1YDeve23QfY82LnTsTXIJfncnjsnQq+9ye8cJSd3NO22rmX8uNS5s9jKZRZvvdU1r+/ERGDVKrFawzPPiJUbXPF3GRNj3rPn5ZfV/xXOeuop8Tcjn7+xY0W1fP16sbpF69bFO74LMJBrxEBORERUSsku64D40B4YKLpEAqjXLARZUJdguohyOIGqyEUgDHJyLUBUvmQglx+SZ882Dxzyg/zkyeJ+KlUSXaPt6dVLfHDt3VtMyhYQoO2xRUWpY95NxcSIIClp7YLbq5faFtMxprYCuWV38Ro1RNVaUUTlPzra/izhzrr/fjFe3jRMulpUFPDqq+KyHL9vS2KiGEeekSG6xDsyoZskA7kcA61lfWUZyLOz1UkId+4UoTY8vHB3Z1MykK9frwZaRwO57Fq9cqX5fq0VckVRTyQoihgnDIi/06L+JuQ48vXrzdfWLkqFCmqPjbQ0+5PfOUqe+Fi1Sn08WmZYl8qXN3/N2Pv9OaNuXfG/aeJE153IklXsJk2M/1+LpXZttTv+E08A77xTcifdnMRArhEDORERkWdISUlBYmIiWslJyUpaQID5B7kHHjBWOhs3hjrTOoDTiEf1Gn44hZvBU64nXbu2+OAv10++9161i7hk+kG+XDnRtb2obtGVKokQtHy5mDDMlcaPFwGxVi21W6+joqLUseqmY0xNA/m1a2p3X8uwERoqKvdr1oiAefFi0ZVOZxgMoirpim639jz6qHjM48bZv12ZMuoyUB995NiEbpLlOuOOdlcHRG8BOT5ZhmpZpe3a1f5Y2xo1xMkmRVGHODgyhhwQExoCIpCbfsDWOqnbuHHitp98Iv5u/v5b/K3JGbztuf128Tf+66/q/AyOBHI/P7XHw+nTrgnknTuLE37//af2GnCmQg6Y//51nrzMIXfcIYZbrF/vurHdH38sei7MnOlxYRzQOZBPmzYNrVq1Qnh4OCpVqoS+ffvi4MGDZre5du0akpOTUb58eYSFhWHAgAE4K/84dcBATkRE5BmSk5Oxb98+pKamuucODQbzKvnTTxsvNmoEdS1yAKdQGY89BuRWtPhAX6uW+JD58svAXXdBeX8Wvv1WnfMNgPjQHBoqKsNr1jhelS6pD5ply4oPswcPmj9+Rz39tKhwmp54MA3kcoK8sDDrwa1OHVHlrVzZIz9MaxYfX3S3c0CESINBBEs5A7yWCjkgxuPaW+bMGsul5ooaP25K9l747DMRzB0dQ96+vfj9p6Wp3fOvXVMnNXOkQr5lC/Dee6Ka//DDwMCBYv+IEY6N5W7QAPjiC/Gcy6zhSCAH1G7rBw+KL6B4gbxsWXWuiVWrxNZWL5KiyN4HBoO6ooKna9u26JM4WoSEiJNZHvr/Q9dAvnHjRiQnJ2PLli1Ys2YNrl+/jttvvx3ZJrMzjhs3DitWrMDixYuxceNGnD59Gv3799etzaa/RwZyIiKiUkaOI+/d22wt7OrVgct+aoX8FCqjRw+gSht1/GN6aDwKQm5Wxp96ClixAkt/LY977hFZ58aNmzesUEGMmT5woHjjUF3J2qRtjrrjDhG05LhYQK2Wb95svv63h35g1kWNGqJqCwA5OeL5d6SHQnS0GmBbt7a/vJo1puPIMzPVkwGOBPKBA0X4OXRITMzlaJf1oCC1a/1PP4nt+fNiGxho/zHIQP7tt2Jbv76odGdmFl7qryiDB4tqqqQ1kK9cKU5EVK5s/ySCI0y7rQPOV8i7dhWTK44da32GfNKdroF81apVeOihh9CwYUM0bdoU8+fPx/Hjx7H9ZlePjIwMzJ07F++88w66du2KFi1aYN68efjjjz+wRa6lpwN5UpOBnIiIqJSRH7xNx1VDfDa4Ea0G8sywymjcGAivr36g35VTB48+av75QX72//df4KuvTA5Yq5a6FrUv6t1bXf9bTiRX3NmffdEjj6iXExMdH44gq+Raxo9LphXyDRvEmaJatRyrzEZEiDXPAVEldzSQA2q39R9/FFvT7ur2TtRYzoK+aJE40dOli1hurqhZ6S39739iksOePc0nJbTHNJADxauOS/L5WL1anBSRz6XWv5PgYHGS4513it8mKhEeNYY8IyMDAFDu5h/t9u3bcf36dXQz+WdSv359VKtWDZs3b7Z6jNzcXGRmZpp9uRoDORERUSn17beiC7FcZsxEQKzaZb1co3iRIUwqbEdQG3PmiPmPALGSl1zeGRATfZeazxaVK6sTbu3dK7YM5IXddZc6PtmR7urSs8+KHglygiwtZIX899+Bl14Slx2pjkuy2/rXX6vLtjnS/Vgukbdtm6iOO7IGOWAeyPv1E5OBtWwpxiBPmuR4u02NGCFCrKPrfctAfjPLuCSQJyaKkxsFBcBDD4l9FSoUvQwbeR2PCeQFBQUYO3Ys2rVrh0aNGgEA0tLSEBgYiCiLcR8xMTFIk5OjWJg2bRoiIyONX1WLu0i9FQzkREREpZS1JcNuCk1QP7zXaH+zq7pJIG92j5iY7Y03xFxT8+eL3q233iqGuB44YL6Es88bMcK8G7vWsbGlQZkyam8MR6u1gJjdfuVKx5c7MyUr5Js2AXv2iBfn4487/vNdu4oTLpcvqxOcOVIhr1xZLOumKKKbtiMTugHmAVWe7XI3y+fZVUNNpk0TQxXkxG48aeWTPCaQJycnY+/evfj666+LdZwJEyYgIyPD+HVCzhDpQgzkREREZKlcHTWQN+lZOJC3GFwbffqIHsCPPw7Mmyf2jx6tru7z2mvqKkc+z2AA5sxRxwfXq6dvezzV2LEi3FrOxl9SatdWLw8cCOzfr212fX9/4MEHzfc5EsgBtZv255+rs7wXNRa7aVOxve8+bb0IXMkykLuiQg6IZcVMhy3wpJVP8ohA/sQTT+CHH37Ahg0bUMXkjSs2NhZ5eXlIT083u/3Zs2cRa2NcVVBQECIiIsy+XI2BnIiIiCzVulXtsh6VePMDuumkUHXq4L33xJxXv/4quqxHRYletmPGiImVd+4UE6uXGlWqiH7706c7N965tHBklnBXueUW4IMPxFjuxYudm8vAcq14R2fMHjhQnKhZswaYMkXsK6pCnpQkZuovyTXki2IayOPi1GEGrjBxotoLgBVyn6RrIFcUBU888QSWLl2K9evXo4bFi6xFixYoU6YM1q1bZ9x38OBBHD9+HElJSe5urhEDOREREVkKqnyzQh4QoIaI2FjxVa4cUKcOEhLUYbmAWMo8JETklaFDxb5vvlGv37lTTLS9Y4d7HoMuWrcWS6M5shQYlTyDAXjsMdHt3Vn164vfqxQd7djPNW8OLF0q/iDy88U+R2YrT0gQf3d6MQ3krqqOSzExwNtvi/HjWoYtkNfQ9T9fcnIyvvjiCyxcuBDh4eFIS0tDWloarl69CgCIjIzEyJEjMX78eGzYsAHbt2/H8OHDkZSUhFtvvVW3djOQExERUSH16oklmpo3Vz8s+PuLNL17t0jeECueNW4sbmraG1VOTr18uZpF/u//RLHwmWfc+DjIK1y44OHDG2SVPCTE+Np3SJ8+Yux6z57ij6Rt25JpnytFRakz4Ls6kAPAqFFiojsd8w+VHF0D+YcffoiMjAx07twZcXFxxq9FixYZbzNjxgzcddddGDBgADp27IjY2Fh8p/OMJwzkREREVEilSmLypbVrzffHxZl1XQ8MFBNYHzwI3JzHFgDQqZMYTn3+PLBli5igWs7Cvn69mPSNCBArYVWsCLz8st4tseO++8SZp0GDtP9sXJyY5TwzU3RJ93QGgzo7fcuW+raFvI6OfTtEl/WiBAcHIyUlBSkpKW5okWMYyImIiMgqOUN1ESIixJepMmXEKldffgksWyZ6qpp+1pg9G3j3XZe1lLyYPFHz++/6tsOuqCjgr7+Kd4ygIJc0xS3eeEOcOdOyRBwRPGRSN2/DQE5EREQloW9fsV22DFiwQFyWXdnnzweysx0/1vXrojj58MMe3rWZNJNLt588qW87yES/fsD774sza0QaMJA7gYGciIiISkKPHqJL++HDYhhtUJBYGaxWLSAjA/jqK8ePNXeumCT7k0/EjO7kO/7+W2xPnuTJFiJvx0DuBAZyIiIiKgnh4earf919t5ig/bHHxPcpKY4FsOxs8/HFmza5tp1U8r74Avjll8L7L18GTp0Sl7OzAYvVgYnIyzCQO4GBnIiIiEqK7LYOqBNVP/SQmMR51y7g+++LPsZ77wFpaer3DOSOW7AASEwU8/Pp5dAh4MEHxZJ3f/5pfp2sjkvstk7k3RjIncBATkRERCWlTx8xH1bt2iKQAWJZ5vHjxeUxY+yPJb94UcwvBajjzz168i8P89VXwP79wA8/6NcGOaP+9evA4MFiuIIkx49LDOSqhQuBe+4Rk7MTeQsGcicwkBMREVFJqVQJ2LcP2LrVfH6oF14Qk7gfPw689hpw7hwwYgTQrp3YJ73yiggkTZuKOaYAEeLYtdkxV66I7YkT+rXh33/NLz/yiDpUwTKQ69lOT6IowLPPAt9+K4I5kbdgIHcCAzkREZH+UlJSkJiYiFatWundFJeLixNjx02Fhoqu6AAwfTpQvz4wbx7wxx/A8OHic8nWrWoIf/NNID4eqFlThJUtW9z7GLyVJwTyI0fEtls3ICAAWLRIfAFqIJfL5rFCLhw9qo6tX71a37YQacFA7gQGciIiIv0lJydj3759SE1N1bspbtOnD9Crl+jKfPmyqIKHhorlj999Fxg5Unw+keOPAaB9e7HlOHLHeEIglxXye+4BJkwQl+WEfjKQy8n/WCEXfv1Vvbx+vfgbIfIGDOROYCAnIiIiPRgMwOzZwMCBwIwZYsKvN98U1z31lJjwq2JFcZ3Urp3YMpA7JitLbD0hkNesKbqr+/mJeQA2bxZzBBgM6gkXX6iQT5oEtGxZvOd840b1cmYmsG1b8dtF5A4M5E5gICciIiK9VK0q1hcfO1Z0Z37sMaBrV/X6WbPEJHCSDORbt6pVQ65dbZuskJ85o0+VtaBAdL8GRCCvXFmthj/3nNjWrg3UqSMue3sgVxQxFGP7dtHDw9nXpqyQx8aK7c8/u6Z9RCWNgdwJDORERETkKfz8gE8/FUt1Pfyw6OZsqkEDMWt7Tg7w6qtAo0Zicrg9e3Rprke7cQO4dk1cVhTg9Gn3t+HMGSA3F/D3FydfAGDoULGVs+U3agRUqSIunzjh3SdYjh9XZ5Ffswb45BPbt1UU4L//Cj/ekydFrwI/P/WkhRxHvnWrmPzQdBlAIk/CQO4EBnIiIiLyJAkJorv6xx+L7sym/PyAtm3F5ZdfFrc7eVJUXeXyWiTI7uqSHt3WZXf1atXUWfb79QPCw9XbmAby7GzzZdFcYeVKsfSbO+zaJbb+/mL71FPAsWPWbztrFlCjhjq5oSSr482bi+EcAJCaCuzcKeZcmDfPftAn0hMDuRMYyImIiMib3Hmn2EZFAZMni+By7pzo6n74sJ4t8yyyu7qkZyCvWVPdFxpq3vOhUSOxT87E78pu69u2iRAr17Avabt3i+2QIWJ4xZUrwPjxhW+Xnw+89Za4bBmuZSDv1EmcqEhMFJ/Tu3QBLl0S15XECYbDh0Wbly93/bGp9GAgdwIDOREREXmTRx8VoeXoUTGB1s8/A40bi+7R7dpxAizJUwM5AAwbpl5u2FBsZZd2V7bzxx/F9sABMYFcSZOB/JZbgHfeEZfXrSvcLf2nn0T3dkD08jh4UL1OBvKOHcVWTniXkaH2GCmJ3iCLF4tlB2fPdv2xqfRgIHcCAzkRERF5Ez8/oEMHUSEHgAoVxHjdZs1EpbxzZ+Dzz8UY5R9/FEG9NPKkLuu1apnvb99eLHvXo4dYgx5Qu627skK+Zo16WXYnL0nyPpo2Fa/HgAARpC2fe8vQ+913YnvunFr9lkv89eghtn5+ops7IAK5qz+7y94l3j6xHumLgdwJDORERETk7WJiRGWxVy/g6lUxcViHDsBddwG33aZ36/ThyRVyPz9g2TJg1Sp1vLWrA3lGhnlviZ07XXNcWzIz1cfbtCkQGCgmIQSAv/5Sb3f0qBjXDgDPPCO2MpAvWya2jRurqwvcfjvw0kvA11+LiQ4DAsSkhqdOubb9MpBzLXgqDgZyJzCQExERkS8IDwe+/15MpBUfL5bT8vMTFcfSGDI8OZBb4+ou6xs2iLHa0o4drjmuLTJ0V6mihukmTcyvA8RkhYoiJiJ8+mnxGv3zTzFx24QJ4jYPPqje3s8PmDJFjLsvU0a8rgHXd1uXgTw9vXDvCiJHMZA7gYGciIiIfEVAgJgs69Qp4J9/xIRvALBpk77t0oMM5JUqia27A3lOjro8lyOB3NUV8rVrxVYG2JKukMvx402bqvssA3leHjB3rrj82GPid9Ohg/i+Z08xaVuzZsDYsbbvR3bxNx13XlzZ2ebL4rHbOjmLgdwJDORERETkq+QSaX/8oW879CCrnImJYnv+vLouuTscPSq2UVFAdHTRt3d1IJfjx59+WmwPHhTBs6TIQN6smbrPMpBv2iR+DxUrAr17i30DBojtxYvic/knn6hLxFkjA7krK+SyJ4NUGnuUkGswkDuBgZyIiIh8Vbt2YmstkO/cKdbH/vRT97bJXWSFvFo1sawY4N7Kp5bu6oB5l3XLWcm1On4cOHRIjE+/914gLk4cU4bmkmA6oZskA/nBg+JkyKpV4vuePc3XZZfGjwdatLB/P/Xqia0rA/mRI+bfM5CTsxjIncBATkRERL5KVsh37SpcHf3oIxE8nnpKTMjla2QgDw8vmSXFiqI1kMsKeVZW8X8fsjreujUQGakOXSipbus3bgB79ojLphXyuDgxnrygANi3Tw3kd9yh3qZKFeD558Va6S+/XPR9lUSFXI4flxjIyVkM5E5gICciIiJfVbWqCDz5+YXXJ5ehLT0dSEkRl8+dA+67D/jqK7c2s0TILuveEshDQ4Fy5cTl4rZT/m67dxfbW24RW1cH8hs3xHwFO3aICnjZsuZLvBkMapV81SrRdd1gUNslTZsGLFmi9mSwR1bIT50qPHGfs2QgDwoSW44hJ2cxkDuBgZyIiIh8mbVx5EeOmI+bfftt4MIFsTb2V18B//d/RR/38mUR4D2Vt1XIATVsFnfM/969YpuUJLayQu7KmdYLCkTQr1IFaNNG7GvcWP1sLclAPnOm2LZqBVSo4Pz9RkeLZf4A0S3fFWQgv/VWsWWFnJzFQO4EBnIiIiLyZdbGkcsKatu2YhbuixdFaNuyRez/7z9RObeloEAct0EDEcw9kbVAfvy4++5fztpdubLjP3P33WIr1+V21oULYhsbK7ayQr53r5jp3BUOHFC7qQOi8j1oUOHbyUB+9qzYmnZXd5arx5HLQN6li9gykJOzGMidwEBOREREvkxWyDdvVj/vyEDesyfwwgvi8smTYtm0iAjxvena0ZZSU8X65pcuAdu3l0y7i0t2WQ8L06dCLnsPyGquI/r3F9t16+yfELGnoEAN5BUrim1CgqgsX78OzJol1vVevty540tyKb3OnUXIz8oCxo0rfDsZyKWePYt3v4Brx5Hn5qonajp3Flt2WSdnMZA7gYGciIiIfFnTpkBIiKhkHzggxv2uXy+u694duP9+oE4d8f2HH6qhRM6abc2KFeple8FdT3p2WVcUsbwXoIZiR9StCzRsKH5HP/zg3H2np4s5AwC1a7jBoHZbf+opYNIk4J57xFrpzvr9d7Ft107MmG5r/Hdiovp5OzpadFkvLlcG8v/+E7+vsDB1hvfMTN+c6JBKHgO5ExjIiYiIyJeVKSNm2waApUuBP/8UoS0qCmjZUlz/yy/A1q3A//6nBjd7gdw0LDKQW7/v3FxxWUsgB9QquaPd1kePBnr0ECEeUKvj4eHqJGUAMHKkaMsttwCBgaKqXZwu/LJCLodE2BIaqp7wuf12sRRbcbmyy7rsrl67tgjlcs14T+q2vmoVMGSI5w4PIRUDuRMYyImIiMjXyZD34otqt+LbblPDUXy8GtrlslW2ZuQ+ftx8PWtPD+RhYepY6owM142htkd2Vy9bVnxpIX9Xq1YVXqrOUkGB6NXw889iCAFguzJ/332iXdu3q4H22DFtbZPOnhUTAxoM6sRx9nTtKrbWxpg7Q1bI//lH7Q3giNzcwp/5ZSCXs8PL5ec8KZBPnQp8/TWwcKHeLaGiMJA7gYGciIiIfN3o0eILUCdus1x6SpKB/O+/rYfXH38U22rV1NvJ6qx04wYwYYKoyOvFdNmzqCj1M9/FiyV/3850V5eaNgVq1ACuXgVWr7Z/24wMNZCmpTl+3wkJYutsIJfV8UaNxHNblOnTxQzv8mRDcSUkiJNJubnq4y7KlStA9eqFX/emFXJA7U3hSePI//lHbP/8U992UNEYyJ3AQE5ERES+zmAA3nsPGD9e3WcrkCckAJGRYgIwWXU1JburP/qoqP7m5RVefur774HXXxfdpLVUMF3JtMu6nx9Qvrz4XnbpLkmyQl6pkvafNRjU4PrNN/Zva/pYZDCV++wtLSZPpjjbZd10/LgjypZVh0K4gr+/6NUBOF7J3rtXPEfr16szvgO2A7mnVMivXFFfTwzkno+B3AkM5ERERFQaGAzAW28Bs2cDH31ke31sg0GtkluOI8/OFjOAA2LN8saNxWXLbuvffy+2ly/b7vpekvLz1QnLwsPFVgZUTw/kAHDvvWK7aJH6fFtj+ljOnBFbd1bIHQ3kJUFrcDateMv2A54fyOV69gCwb1/RwxhIXwzkTmAgJyIiotLCYAAeeQQYNcr+7WwF8nXrRDfhGjXEGuRySSvTQH7jhtqtXf6Mu5mGlrAwsZUVcnd2WXc2kLdsKXogAMBDD9mezMtahbykA3lOjuh+DgDt22v/eVcpTiCXFf6sLDHLOqAGcjmG3FO6rB85ol4uKLA/2aKrKIqYVFC+lshxDOROYCAnIiJyrX79+iE6OhoDBw7UuynkJFuBfP58sb3rLhHurQXyTZvE+uTS2rUl1Eg7ZHf1gAB1pvGSrJAfOKCu7Q6oFXJnxpBLb70lQuLJk8ATT1i/TXG7rDsTyFNTxUmX+Hg12OvBFYF89WrxWGrXBipXdu64JU1W8CV3dFtfsQIYMADo27fk78vXMJA7gYGciIjItcaMGYMFCxbo3QwqBtNAriji8v796iRtjz0mttYCueyuLmdt//134Nq1kmxtYabjxw0GcbkkA3nv3mJJLxmeittlHRDjrr/4QoyXXrjQek+D4nZZP3Wq8IR8RTHtri6fWz0UJ5Dv2CF6UcjX6t13q4/F9Ljyta8nWSGX67y7I5DLv+c//hBf5DgGcicwkBMREblW586dES4H7pJXSkwU65Onp6sTf735ptj27Su6qwPqGPITJ0S3akVRQ85zzwFxcSKMu/tDvZxhXXZXB0oukGdlqUH877/Ftrhd1qU2bdSlwuTs+Kac7bIeGyt+v/n5wOnT2toke03IEy56KU4gz88XJxbk0Io+fdTrZKU8O1u8/vUmA3nv3mLrjkAuu/EDwNtvl/z9+RIGcicwkBMRUWny66+/onfv3oiPj4fBYMCyZcsK3SYlJQXVq1dHcHAw2rRpg23btrm/oaSrwEARygFgzhzRtfmLL8T3zz+v3i4qSu3+vGePCKT//iu6id9+u1jrHHD/OHLTCrlUUrOsm3YpPnpUbF3RZV2Sa4bLY5uyViF3pMu6n58aaLV2Wz9wQGzl60Mvzgby6tXF9o03xNCK8uWBtm3V24WGqq8Va8+5u8nX1+DBYnvwIJCZWbL3afq4ly41H8dO9jGQO4GBnIiISpPs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXMyYQBo1qwZGjVqVOjrtNZSG4Dc3FxkZmaafZFnkAHg1VdFNfTGDaBLF1G1NSW7rf/xhzrGvFs3UZ32pEAuA6qrJ3WTa0QD6ozYruiyLtWoIbamVUvJNJBnZIi1yx1dA112W9ey9Fl+vrrEXf36jv9cSZCBPC1NLL1nT0GB2hNAzmC/fr3Y3nWXmGvA1C23iO1zz+mbEfLy1BMOt94qTn4pimtWLjh/3vZQEvlai40V9/fuu8W/v9KCgdwJDORERFSa9OzZE1OnTkW/fv2sXv/OO+/g4YcfxvDhw5GYmIjZs2cjNDQUn376qfE2u3btwt69ewt9xcuFgTWYNm0aIiMjjV9V5ads0t3zzwMpKaJaLgOmaXVckoF8wgS1e6vsAiwDeWqqe7v/ykDuji7rlhXyggL1PlwRyGVFt6gKOSBOCMjl3hwN5Foq5MeOiVn2g4L0ndANEI8vMFAExqLOBZ47J04o+fkBlnNNmnZXl2bOFJXytWuBd94Rv9OFC8Xkeu6YpV/67z9x36GhIhy3bCn2O9ttPTUV6NVLDCWpVEmsDX/9uvlt8vPVkzTTpontp5+aT9ToyT77DHjxRf3G/zOQO4GBnIiISMjLy8P27dvRrVs34z4/Pz9069YNmzdvLpH7nDBhAjIyMoxfJzxlamOCwQA8/rgYu9y2LfDAA0D37oVv16OHejk+XgSeIUPE91WrAnXris9ZGze6p92AOobcWoXc1YHcskKenq5OlOaKLuuyQn78uAhLpiwfy969YlumjPljt8aZmdZld/W6dcVkc3ry81OXKCvq34bsrh4XJyYsjIgQ3wcFWX9N168PvPeeuPx//ydOOt1/vzhB9c03Lmm+Q2RX8Vq1xN+jDOS//CJ6pGzcqG1SvldfBVauVOcbOHAAWLLE/DZyor8yZYAHHxRDE3Jy9FktQauCAiA5WTxOV/QicIaugbyoMWmKomDixImIi4tDSEgIunXrhn9M/4PphIGciIhIuHDhAvLz8xETE2O2PyYmBmnyE5wDunXrhnvuuQc//fQTqlSpYjfMBwUFISIiwuyLPEvz5mICrM8/tz6rdseOIhBduCA+zC9ebF6Z7txZbN05sZu9LuslGciPHgXOnhWXIyNFBbe44uNFOLpxo/Da2PKxyD+bPXvEtmLFomdAd6ZCLgO5nNRPb46OI5fPW5Uq4kRCUpL4Xg6tsGbkSLH01/Xr6mR9psdyB9n7olYtsZWB/IcfxCz3nTsDn3zi+PHk7zolRfRoAURvAFOyu3q1auK5atVKfO8Bsa1IZ86IyfgAYPt2fdqgayAvakzam2++iZkzZ2L27NnYunUrypYtix49euCau9fBsMBATkRE5Fpr167F+fPnkZOTg5MnTyJJfvoln1WlijoRliUZInbscF977E3qlpUlul27imlQuXpVrVK7ors6IEKRDM+m3dbz88XM9gDQqJHYmgbyojgzhnz/frHVe/y4pDWQyxnUH3lEnKAZN872zxgMYkLDBx4QVfKnnxb7nZgqw2mmFXJA9FRp0EBU9uVr2/RkQVHk89ChAzBmjDjRs3mz6MouyUAue2bUqSO2cu4AT2Y6fMSd/29M6RrI7Y1JUxQF7777Ll588UX06dMHTZo0wYIFC3D69Gmrs7u6EwM5ERGRUKFCBfj7++OsLPHddPbsWcTGxurUKvJ2LVqI7fbt7hvXaW3Zs8hItZu1q8YBZ2aqFfHoaLHdulVsXRXIAXUcuenEbnKZOQBo2FBsZSC3N8O6ZNpl3dHfi6yQe2sgl13c+/UTk5rJOQ5siY4WPUNefVU96aFHIK9dW2zLlhUB/OpVYMoUsc/R1/LVq2qPiipVgJgYdYK7999XbydP+sjXXN26YusNFXLTQF4qK+T2HD16FGlpaWZj0iIjI9GmTRu73djcMfMqAzkREZEQGBiIFi1aYJ3JlNgFBQVYt25diVe5U1JSkJiYiFayfyT5jIYNRSXu8mXrM4WXBGsVcj8/1y99JgNAhQrq5HYlEchltdK0Qi4fQ1SUGkzl9Y5UyOXP5OQ4Hup8JZA7Q85ZqWeFHBCVe4NB+xCMU6fEtmxZ8ZoBgCefFNuvv1bHlcu/URnIZYXc2wL5X38VnrDOHTw2kMtxZ1rHpLlj5lUGciIiKk2ysrKwa9cu7Nq1C4A4ab5r1y4cv9lvdfz48ZgzZw4+++wz7N+/H4899hiys7MxfPjwEm1XcnIy9u3bh1TTvpPkE4KCgMaNxWV3Va2sBXLA9ePIZQCoUweoWVNclo/RFRO6SfYCeYUKYgZuU47cd3Cw+nOOjCO/cEG9T1k11Zs7A3lcnNi6K5AXFKjL6JkGcknra1k+R1WqqPMLtGwpusFfvw7MnSv2WXZZl9X5CxfUIRKeyjSQ5+YC+/a5vw0eG8id5Y6ZVxnIiYioNPnzzz/RvHlzNG/eHIAI4M2bN8fEiRMBAIMHD8Zbb72FiRMnolmzZti1axdWrVpV6KQ6kRam3dbdwVqXdUCtkLuqy7qsGtapowaYq1fF1l0V8goV1LAoOXoyQHZbd2Qc+cGDYpuQIKqsnkCPCvmlS7bX73alU6dEqAwIUH9PprT29rD1HIwYIbbLl4utZZf1sDD1sXt6lVwG8jJlxFaPceQeG8jluDOtY9LcMfMqAzkREZUmnTt3hqIohb7mz59vvM0TTzyBY8eOITc3F1u3bkWbNm30azD5BHcHcndVyE0DuayQSyU9htxehdyRMeSAtpnWPW1CN0AN5BcuqCdCLCmK2l27OIE8Olr09gDU7t3FlZtre4JB2V29enURyi05WyG37HDcs6fYpqaKxyWDuzwJBHjHxG6Kogby228XWz3GkXtsIK9RowZiY2PNxqRlZmZi69atus+8ykBOREREVLJkIN+xwz0Tu+kRyE0DDFAyXdZl1RRwTYVcSyD3tPHjgAjJoaHisq3lyEwr2rLS6wyDwbXjyK9eFRPFNWli/WSCnD29Xj3rPy9fy1evinkApPPnrf+N2aqQx8eLNigK8OmnYvb+oCAx6ZvkDRO7nT8vesYYDGK5OqAUVsjtjUkzGAwYO3Yspk6diuXLl2PPnj0YOnQo4uPj0bdvXz2bzUBORETkATipm29r3Fh0I714UdsyW86SXdZ9pUJeqZIInoqiPn+mgdzyvhwN5HJ8sAzb9nhiIDcYiu62LoNopUpqhdtZrgzk338vKrqHDgHfflv4+t27xbZpU+s/HxamrnMvh2CsWyce50svFb69rQo5ANxxh9h+/LHYJiSoGQnwjondZHW8WjUxLh4Adu0SJxjcSddAXtSYtGeffRajR4/GqFGj0KpVK2RlZWHVqlUIDg7Ws9kM5ERERB6Ak7r5tqAgddkoy26k778v1oXOy3Pd/ckKueUYclcG8owMUZUDRGCJiQFCQtTrXRnIDQa127oc42sayMuUMe+m7miXdfk7kWun2yMDeYMGjh3bXRwN5HIN8uJwZSA3GSWEDz8sfL0M5HL2fkvWZlqXi1dt2lT49vbG0ctu67KnhGVvD1kh9+Qu6zKQ164t/h7DwkTvAUdONrmSroG8qDFpBoMBU6ZMQVpaGq5du4a1a9eirgdM0chATkRERFTybrlFbE0D+cmTwNixojK3dKnr7stWl3VXTuomA0BMjLgfg8E8yLgykAOFJ3YzDeSAebd1RyvkMpCfPGl/Bu1r19T79aQKOeB4IC/O+HHJVYH85Eng55/FZX9/EaRlAAdEVVeeJLFVIQcKT+wm22XtubD3PLRta37ySp78kUwr5O4YcuIM00Du5wfcrBG7vdu6x44h92QM5EREREQlz9rEbnPmqJ/BTCuGxVFQ4J4u67L7ruz2Daih2WBQw5KrWE7sZhnI5cRuBgNQrpxjx4yMVGfwtlcl37BBPK/lyrn+RENxyUBuq3rrykAuT3qcOVO843z+uQi2HTsC/fuLfbNnq9cfOSLGhYeEqGHYGsvXswzkJ0+aB+erV9XbWOuyHhgIdOumfm8ZyGvWFK+rzEzg3LkiH54uZCCXS8RZOwHoDgzkTmAgJyIiIip5MpD/+aeYmOz6dRHIpZ9/dk1XYNMJrkqyy7qsaJp2+JTjyMuXF5VPV3K0Qh4dbX1WbluK6rauKMCrr4rLw4apa1h7ik6dxHb5cuvLkXlahVxR1JNPDz0EPPaYuPzFF2rPDvnaatTI/uvI8vUsZ5PPzTV/jcv9oaFAVJT1Y8lx5EDhLuvBweoEgJ46jty0Qg6ogZwVci/AQE5ERERU8po2FQHi4kXg2WeBFStEpbFSJaBNG/FZ7Isvin8/MtT4+ZmP6QZcG8jlus3du6v7ZJApiSpyUYFcVsi1zu7euLHY7tlj/fpffxVjkgMDgaef1nZsd+jUSYwPz8gAfvqp8PWeNoZ882ZRzQ8NBQYOBDp3FjOpZ2Wpr/+iJnSTbFXIAfNu66YTutk6oWIayC0r5IDnT+xmGcjbtxev13Hj3NsOBnInMJATERHpj7Os+76gIGDePHF55kwxdhwARo4EHn5YXJ4/X1QQly4VH6azs7Xfj+n4ccvwIbuRZ2eLampyMtCnj/YJ5Q4dAvbtE5Op9eql7pdVOVtLVRWHDOT//ivam5EhvreskGsN5JYVckURJxtkKJw6VWxHjizesmElxd8fuP9+cdnaCR05UZms8BaHKwL5ggViO3Cg+hp95BGx79NPxbaoCd0k0zkR8vPN10c3DeSO9BJISAAGDRJjr63dryevRX7pkjoHguylUrMmMH060K+fe9vCQO4EBnIiIiL9cZb10uGuu4BnnhGXT5wQYWTUKOCee0Q1e/9+UXHu3x94+21RRddKjh+37K4OiDHTsgvw6tXABx+I8Llhg7b7+P57se3SRRxT6tgR+OUX8674rlK3LlC2rKiGfved2Ofnp3ZBvvVW8f2tt2o7rmmFXFGAJUvESYpmzUT1du1a0QX+2Wdd9EBKwAMPiO2PP4pwJhUUlEwgT083HxrhqBs31CXOZJvl5YAAMZzj77+dq5CfO2eeZ2xVyO1ZtEh08bbsWQJ49lrksjoeHy/+RvTEQO4EBnIiIiIi93n1VSApSVzu1Ut0j42IUCe3WrdOve2//9o/1o0bwLJl5rOmy2qg5YRugPlSUS+/rO5fuVLLIxD3CQB9+xY+fqdOrp/QDfj/9u47zKky3wP4N2WS6b0x9Kb0IgMjomuBVRA7grKIY2WRIoqgXl0s17aoq6w6F6/eXXVXVhQFQVxUBERRGJr0uoq0YWZo01smee8fP8+cZCZTmZmTxO/nefKc5OSc5H1PTvLmd94mgcbEiXL/v/9blrGx+gWGCy+UwOzFFxv3uj16yGvk5UlfY60VAwCsXSvL227z3ozZV/TtK7W6FRWec3rn5Mg6s7l5+pBHRkpTc6BpA7utWSPnany8XMzRJCTIxSoAmDdPD6DrqyF3D8ir19pr3wP3++dyDLQa8sWLZZyCvn0bNl1ea/jpJ1m6D7BoFAbkTcCAnIiIiKj1BAVJk/Q5c4A33tDXT58u/ZR79ADGjJF1Wu1mbd58U5qkXnABsGOHNKe95x55ThtErjotiPnxR32dt77HtcnO1ud7vu66hu/XHKZOleXevbKsPt94TEzjB12z2/Xaz9WrpeUAILXN994rFxjcL174Kq3GecECfZ12/rRtK+fduTKZ9FrypgTkixbJ8qabag68l54uS63ZeseOtQ/ApnEPyLWB2zTeasjPJSC/8EIZp0ApuXiza5eeH6NVH2HdSAzIm4ABOREREVHrSkqSWl73Wte0NAlydu0CRo+WdfUF5FrwdeQIMGyY1DqePCn9YDMyvO/jHsT27i2B0cGDei1bfT77TIKSIUOaZ6CwxujTR5qRa6oH5E2lNVt/+mnpizx4sLReeOstaYKvTY3my8aPl4D522/1GuHmbK6u0frqN7YfucOhdzUYN67m81dfLZ+nFpPU11wd8F5DrsU23vqQ19dkvS6xsfI9y8rSB0qr7aLEihXSf7u15izXpgKsPjq8ERiQNwEDciIiIiLfoDXB1gIo94D8+HHg+ef1wZsOHwY2bJAgbNgw6TuelSU17F9+6dm32517c/LZs2U0ZqDhzdZra67eWqZP1+83d0CudRFw79/sL9q105t4a1NdaYFacza3b+rAblpz9YQEfao2dzabPjgd0LCAXDuX3WvItUH6mrvJOiCtDNq0kQtZgPdj4HJJPh5+GFi37tzer6Fa4nNuKgbkTcCAnIiIiMi3uAfkWi3bs88Cjz8OTJkij7XmspdeKk2tH3oIuPJKYOXKukca14LYuDjglluAUaPksbdm6/n5UrOpOXJEBjkDjAvIr7tOD6yaKyDXgjhALojcckvzvG5r0wLFPXtk2RI15E0NyD/6SJZjxtQ+T7zWbB2ov/84oH/+5eV6s+20NFkeOybxTWmpPi3audSQu6vrGOzapV8027Ched6vPi3xOTcVA/ImYEBORERkPE57Ru60+ZLdg4kdO2S5cKHUgGoBzrhxUrv48stSM15fLeDAgbJ84AEgOFgPyNeskfcD5H/hX/4igf2FF+pTqc2YIYOEXXKJ1MQbwWoFHntM7jd2RPXaaDXkgFzUSEpqntdtbT17ylLrY+8rAbnDIeMmAN6bq2sGDABGjJCxAH73u/pfNyxMxgAA9O9Haqp8dxwOGXldqzkPDa2/T3pD1XUMvvtOv5+Z6X3/gwf17/W5crn05vkMyP0UA3IiIiLjcdozcmez6X11tVpyLcgCZOC2TZvkf5w2OntD3XOPTPH1+OPyuE8fCeLLymQgs61bpQ/7rFkS1GzdKk1wP/1UblYrMH9+4wdPa0733SfB1l13Nc/rde6sjx7uj83VNb16ybI1asgbM6hbZqZMx5aQUHegbTLJOXj8OJCYWP/rus8asH+/LDt21L87R4/q05RpF7mag3YMcnM9W5AAtQfkDgfw3nsy9sJ558lxaI4+5tnZcpHMYmn9MR28YUDeBAzIiYiIiHyPe7P13FxpBmsyST9WbYT0yy5rfG2u1SpBuBacmEx6LfnYsTI6+xdfSO35Y4/J8rPP9JrNWbP0ptFGSkhovgDLbAZeeEGmVWvsBQ5f4l5D7nL5Th9yrU97Wpo+TV1tbDbv84DXRgvInU49fVrT9GPH9C4WF13U8NesT1ycfA+VkqnlNEp5BuTHjunHado04I475EIaIJ+R+0W2ptI+47Zta+8K0JoYkDcBA3IiIiIi3+MekGt/3Dt3BiZN0repq/lvY7jXCsfHA7//vQQOzz2nT0PlcEhgN2dO87ynr7n/fuAf/5ALEP6qWzcJyoqLge3bZQk07yjxWu3z8eMNr+Hdtk2WWneJ5lR9zvuUFL3bxtGj+jR2V13VfO9pNnsfbf6XX+Sx1arPW75xo3T5+Mc/5PGTT8ogjACwatW5p0VrBeELA7oBDMibhAE5ERERke9xD8j37ZP7PXsCf/oTEBkJhIc3X23u734nNX1nz8q0aV99pQ90Nn681B7HxABvv6037SbfExSkz6n+xReyTEpq3osMHTtK/FBYKM2lG0Jr0dESAbn7wH42m8xUoNWQb9gA7N4tLSlGjGje9/XWUkCrHU9N1UeSz8wEli+XLiHdu0tAfs018lxzBuS+0H8cYEDeJAzIiYiIiHyPtxrynj2B5GRpArx5c92jqTdWYmLtg149+qj0AW7uoIaan9ZsXZvGrrlrToOD9aB/5876t6+okKAYaPmAPCVFgm8tINfmPR88uGZN+rmqKyC/+GJ9tPfMTM8BGE0mYPhwefzNN0Bl5bmlgwF5AGBATkREROR7vAXk2sjmXbsC559vTLrIt2kDu/3wgyxbIlDTRqXXRjavy+7d0t0hJqZl0uIekGuDmmlN1svLZTlyZPO/b10B+SWXyOBtgDRZ1y6OaF1MLrgAiIqSaQW11gNNpfUhZ0DuxxiQExEREfme2mrIieqiBeTaIGctGZDXVkOem6vX/GoB54ABLTMyf/UacqDmfOPN2X+8+ntp06qdPKmP9D5smAx8GBYm/fjLy+VimnbcLBYZkBE492br7EMeABiQExERGY/zkFN1WiB19qyM1gwYN/c3+Y/qF21aIiDv10+W3gLyTz6RAc+mTJHH2oBuAwY0fzoAz6bo3gLyqCi9tro5Va8hX7dOlr17S5osFpmxQKM1V9dozdbPJSBXik3WAwIDciIiIuNxHnKqLjxcBqjSJCZ6Piby5rzz9P/3QMvUnGo1vXv2ePaBPnFCZgFwuYB33pFgtSUHdAO815AnJ+vHYMSIlpkOrHpAvn69LLUR1AG9HzlQc0YELSBft04GfGuK06eBkhK5X71VgFEYkDcBA3IiIiIi3+Re68Xm6tQQISFAly7645aoOe3USZpjl5cDBw/KOqWAe++Vwf8ACdTffLNlpzwDvAfkVqt+vyWaq7u/lxaQb9woS/cg/JJLZNm3r9Scu9MGaCwr04P5xtL6jycn+850fQzIm4ABOREREZFvYkBOTeF+rrREQG4269PiaQO7/f3vwOefy9Rj2lz1r7wCFBVJsNhS3S28DeoGADNmAFdcAYwd2zLvqwXkZ85IP/HNm+Wxe/P4a64B3n0X+PjjmvubTJI+AFizxvt77Ngh85fXNt+7r/UfBxiQNwkDciIiIiLf5B5Msf84NZQ2sFtMDBAR0TLv4d6PvKgImDVLHj/7LPCnP0k/8uJiWde3b8s0Gwe815ADkp5Vq2qfyu9cRUfrtdJr1khew8I8L4aYTEB6uj5NXHVaDXptNeR/+IPsX1vA7mv9xwEG5E2iBeTnOgceERERETUv1pBTU2gBeUvWnLqPtP7ee0BeHtCtGzBzptSS//GP+rYt1VwdAEJDpVa6Sxegc+eWe5/qTCb9AsCnn8oyNVUGc2uooUNlmZmpj4qvOXNGn7/9m2+878+APEBoTTsOHDA2HURERETkiQE5NcUNNwA33yw11S1FC8i3bQP++le5P2OGHpBOmqTXirfUCOuaH34A9u2TCwGtSQvIly2TZWNHc9emRiss1Kc21GhN4AF9TvnqGJAHiEGD5Itz/Dhw9KjRqSEiIiIijVbjFx4OtGtnbFrIf0RGAosWATfd1HLvoQXkR47IwG7R0cAdd+jPt2kDzJ4tweK117ZcOgCJZYKCWvY9vNEC8pMnZdnYWSutVj2Ir95sXRskDpAadG+tmbVB3diH3M+FhQH9+8v9DRuMTQsRERER6QYMAB56CHjjDc85jImMFhfn2Wf73nvlwpG755+XoDFQLya55x9o2nznWrP16nGYe0BeVOR9znfWkAeQCy+UJQNyIiIiIt9hMgEvvywDOxH5Gq2W3GIBpk0zNi1GcA/IExOBDh0a/xpaHOZeQ66UHpAnJMiyerP1ggLptw8wIA8I3k4EIiIiaj0ZGRno1asXBje2zSMRkUFSU2U5ZkzTglF/5x6QDxnStFYsWhy2dy9w9qzcP3oUyMmRJu333CPrqgfk+/bJMimpZssEIzEgbyKtqUTCpn+jcs7TQEWFsQkiIiL6jZk6dSr27NmDTZs2GZ0UIqIGmTUL+MtfgPnzjU6JMaoH5E2RkCCj0wN6rbi27NcPGD5c7n//ved+2gjs2nzwvoIBeRN1DcvGp7axWFo5GtZnnwI++cToJBERERERkQ+LjpZpzmJjjU6JMdwD8nNp3KRVjmqtlbWAfMgQuZnN0l/8+HF9Hy0g79276e/bEhiQN8XBgzD17oXrKz7W11W/BENERERERERV2raVZuUWy7kF5NXH83IPyCMi9AG43ZutMyAPJK+8Apw9i9ykPngGv05WWNtkd0RERERERITwcGDBAmDhQhl1vqncR1r/+Wd9DnKtGfxFF8mSAXkgKiqSswjAsVl/xVuYJOt37ACKiw1MGBERERERkW8bNw64+eZze42+fWXe9vx84PzzJQwLDwd69JDntYB83TpZFhTIwG8AA3L/99FHQGEh0LUrut1zGY6b2uMo2gFOJ8BBZYiIiIiIiFqU1Qp89RVw2WVAZaWsGzRImsIDwKWXynLLFuDMGWDPHnmckiL9+H0JA/LGevttWd5zDyKjzejTB1iPX9tMsNk6ERERERFRi+vTB1i9GvjsM2D0aOCxx/Tn2raVmnClgFWrfLe5OsCAvHF27ZKOClYrcMcdAIApU/SAvGwNJyUnOic7dwKnTxudCiIiIiLyAyYTcM01wPLlwJVXej6nPf7qKwnjAAbk/k+rHb/2WiA5GQBw771Afi/ppFDx3Qa5DENEjfc//yOTR3brBvzzn43/Lq1fDzz1FPDBB/Kr63K1SDLr5HIB27dLtxYiIiIiMowWkH/5JWvIA0NZmQQJgEThv7JYgPvfGYgy2BFZfgrfvfMfgxJIAef0aeCPf5QhKGfPltEoGkopacMzdizwwANy/jZFa11gWrYMmD5d7uflAbffDlx/vXT6aYjPPwcuvxx4+mngD3+QkT5GjGh6vhtr2zbg/vuB9u2BAQOAgQNl8stAlJMDLFoko6g0lsslpeLcucCsWcCkScC77wJnzzZ7MomIiOi37Xe/A+x2Gczt229lnS8G5CalfL9KNyMjAy+99BKys7PRv39/vP766xiijWlfj4KCAkRFRSE/Px+RkZFNT0RBAfDqq8DXXwPffKOPGPCrQynD0PnED7g36F1E3Z+O2bOBpCRIQGGxAFFRTX/v34qyMiAoqMaxrSEvTwLFmBjvzyslTZ8XLJCa0vHjJUgzm2tut2OHbLd0KRAaKoHcBRcAt95a1QrCQ2UlcOCAXGY7eBBo106279RJ0nXmDNCxY83P2+mUoPOzz2QoyKuukgkSTaaa7+FwAO+8Ix1h3JtvJycDzz8PTJwo3Sa8qaiQeSReeUVqajUXXggsWeI9T9WPyebNsu2SJZLHsWMlLX371r2v+2ucOQP88ot04KnvPdevB4YPB0pLgbvvBrp0kZpuhwPo1UsCuHbtat9/yRLglltk+7Q0+Zy3bgXKy+VYvfee9+OscbmAjAzg2WdllI/rr5e2T6mpck7UZf9+YM4cCVCr69BBLop07Vr7/vn5MvznunXyWv/5j9Su9+olrQUGDpRJOjt1qjsP7kpK5Dz75hv5DI4cATp3Bu66S1r3BAU17HXcOZ3S3uv//k/O48pKGRUlIwO44Yb69y8ulguar74q35/qgoLkOzFuHHDddY37vczOBj75RC6AZGfLTBiRkfIa2i02Vo5B165yTlb/LaiP0yljhHz6qVyQ1YZwPQfNVjYRAB5PIiLy7ve/l/BNk5fXemFZQ8smnw/IP/zwQ9x+++148803kZaWhnnz5mHRokXYv38/EhMT692/tQrpihmzYXvtZbyPCXgFM9HPuhd/DH8faflfQVmsOD1mEqL+exbKftyLyvcXAqdOoeiy0ai4ZgzCXQWI2v4tgk8cgrlrZwnYwsJQfqoQZSfOIiz3EKxHfpY/5P37y81mkwCmsBA4eRI4dUoSEhwsy6ws4NgxuSzUq5e8JiB/1rOz5c//Tz/J8/HxcouLk1tWlgRzhw/LfoMGybwCxcWyv9ksf6CDgyWACQ8H9u2T/vUHDkiwaLPJa3XuLH+ACwokneXlsn1EhLxmhw6y/r33gH//G0hIAO68U2pI27cHQkKAvXslKFuzRtJ19Kik4fe/l+26dZMgMCtLtlm5UtLjbsgQCbLWr5eAs6hILgDUdvpbrcCNNwJXXy1/5isrpXPK0qX119pqwcXVV0uQmJMjQfLPP3tul5AgczIMGyYBV0yM5PXllyWIAiQInjxZApn//Nr6oksX4JFHgEsukddwOOS4rF8v3SpOnJDtQkPlwsLixfLr064dMG2a7NemjR6slZTIaxw4IAHH8ePe8zVypARM118vaXU6pWbz8GHg0CE5rhs2SFq02lOTSYLt8eOB884DEhPlFhUl2zz9NPDGG3J8R42SYM9qldcYPVrS0r69XDTp3VveVwtMt22T47JggaTlllsk6AsKkl/ekSNl/QsvAPfdJ8egslLOTYtFHufkAM88I+dNdRaLjBaSmipB8cCBcr4HB8uxfvddCVJdLknT2LFyPvbsKXk5cECC1kcfleOWkCDn7q5dwNq18p5btzasaX1srKQjNVXOic6d5bsTGyvf4VOnJM///rd8hrU1mY+Pl3x0767fOnaUdO3eDeTmSv5CQ+W7FxoqvyPvvqufk4Ach7w8uX/55fKaXbrI5xoUJMfYZpPv17Jlcv5raYqKks+2TRv5rD//XO/YBch+vXtLHtu3l9+LsDD5PUlOljwUF8u5t3SpXAxxOOo/hpqYGPkOXHKJHMP4eHl9h0POj8pKuZ+fLxek9u2Tz1n7jX32WeDxxxv+frVgANm8eDyJiMibl14CHn5Y7rdrp0991hoCJiBPS0vD4MGD8cYbbwAAXC4X2rdvj+nTp+PRRx+td/9WK6QXLwbGjGm516dGUTYbMPoauaDwxuswFRV539Bul0B9/HgJDnbuBFasqHPE/FJrOE4m9EZFx+5IKDmMiJ9+hLm4SPaPjKw9YI+JAW67DTh0CGrNGpjqmLfeEZeM3LsfBaZMRWikFUf/Uw68/jq6Ln4RYcUn68z7SVsK3o+9HzvSJqH7kBj0th3E5fOuQ+TxfXXup6kMCcfZC0cBN9wIe4/OcL78CqK//himRv5UqMREmHJzvT8XFARltsBcLk3KT118PTbd/z7OOsKrpq4IOnEEv3/5SsSf2l+1n8NihzMoGCaLBfZi/Thvv+BOfDjibVQ4LYiIkI+h//f/gys+mdqgtDpsodjxh7kI7ZSIdluXIixzNcw52Q3a9/Sw63ByxrNw9e6L0lKJFfP2ZeOiJ0YgPkc6LCmzGcpmh7mstMb+zi7dYL7sUpgG9JeLS2FhEhxv2yYB+/btdQecNhuUw+Hx+bg6dkLl9TejsntPOJPbwrruG9j+9Q4sJ3MalCevYmOlxcE990B16QrHE88gaN6LMDmdDdq9tF035N4yHQU33QlrTARsNvn62WxA8M97ELx8EYIWfwjT3r2NT9uFFwJDh0rAHh4uFwALCiSozs+XYPrnn+UiVGOCdzeu6Bi4Rl0Dyz13wnTF5U16DXcMIJtHRkYGMjIy4HQ6ceDAAR5PIiLysH279CYEpL7siy9a770DIiCvqKhAaGgoPv74Y9zg1iwyPT0deXl5WLp0aY19ysvLUV5eXvW4oKAA7du3b/lCOj9fatEOH4aKi0N5TDIO9rgW/465Dblbj2HMzidxUeV3yEUCloeMw5mw9hhR8AkGVGxCOWzYiCHYi57ohF9wPvbDhgoUIgL5iMJhdMTP6AIrKjEA29AHu2CCQilCUIRwnEI8TiEeTlgQjDKY4UIWUnAcbRGGYvTGbnTFT6iEFSUIxVnEYD/Ox0F0hwVOxOMU4nD611c5hTOIxTYMwGF0RA/swyBsQTTyUIwwlCIEJihYUYlQlCAK+YhCPg6jI9ZjKHagHxRMsKMcSchBF/yMFGQhD9HIRSIqYEMYihGJAqQgCx1wBGa4sAhjsQATcB4O4F68jRH4GlbIH/1SBGMtLsVXuBIbMQS70AfxOIWJ+CduwmJEoBAKJhQiAt/hEqzCcKzGFchHNAAgCdl4BHPRBiewxXYRdoYPRbYzAQXlduRWRKPMFFLj4+yntuNO19/QHQcQg7MIQSnW4lJ8gjH4DpfABb1ZvQkuRJmLUGyOgMlsQi+1G2Nci5CmNqAAkTiFeGzDACzABBSpMCgF2FCOC7AVw/A90pCJJOQgBmfhQBDewiS8iztQjuAa6QpBCSbhLdyNv6EdjiEGeXDCjAM4D9vRH8txDT7CODhg89gvAgW4E+/gUqzFxVhX9Zn9gk4oRAQcCMJpxOHfuBqrMLzGe3fDQdyKhbgZH6M/dng8dwLJOIyO2I7+yEQaNiMV/0E3VFhC0QU/4xbnAlyFL5GEHCQiF1HQ+8LvRi88iFexEtWGxfxVHE7hLUzCxViHRHheiKiEBR9hHF7Fg9iMwV73n4cZmIHXAABlsMOBIATBgSA4kIdonEYcdqM3ZuMl/IRubnsqtMVxpJk24ULLJqRiM3q6diHEVYwQlCILKfgnJuI9pFfbz/OY34W/Yzw+QBo2AgAqEIT/oBu+xzB8g8uwFpfiONohKEiCU4tFGn9oSwCwVJajh2Mn+js2Y0DlZnR1HUBH1y9IwXFYoNeub0c/fIUrsRTX43sMA+DZxN0KB4ZgI87DAXTHwapbRxxGFlKwG71xFO1hRzmigkoQ7CqFzVkCB4LwCcbg6/Ab4QwKhsMhDV0cDuB87MNwrEJX/ITOOIQwFCMIDthQUXXbgX74G+7GWlxaI001KZyHg+ht3Y+ull/QFsdhdxYj1FmEOJxGiukEYnEaxaZw5CMKB8w98LZlMrZiECwWuSZmtcLjvvYYACyqEr3Kf8SQ0m/Qr3Qj4py5iHaeQqirGA7Tr2eGsqLMGYRihOEndMVBdEcm0vAtfodKBDVXBTkD8mbG40lERN64XNJgMScHeOghaYjaWgIiIM/KykLbtm3xww8/YOjQoVXrH374YaxduxaZmZk19nnqqafw9NNP11jfKoW0dii99PVULoVTu3MQ2SUe9jC3/r8nTwIREagwB6OoSGrXCgul1ig+Xlp2FxVJV+IzZ2R59qxUosXESKvSoiLZR1uWlMgfUItFTsKyMvkDHRyst0INDZUAIC9PWrCfOSPJd7n0pXarrJSWv+636uu8PdZatptMevfq0lI92NBuVqveKrW0VLYryHMhWJUixFWMQlMkyk3BHq3LKyslT+XlrTfuWM+ecmWtUydpPX7ggLRoPXy4eQf0DgmRz9bhkGPhdEpr3W7dpAts166SBgAoLXCgpMiFgnI7Skpkuy5dpIZ49265KpibK+dE1a1YybLUhNJqFbZhYdKCubxcWiqXl8t52K2b9DyIiQGSLKdQmOdE9ukgnCwJQ6XFXtVt/MSJ+sfnCrOUoU3QKcTbCnAk+DxY7FYEB0tL5shIvYuz1SrjMLRpI+duZXE5zCdzkJ9bjrzcCuQiEc7YBEREyPckPFz2LSzUx7+z2xRizXmITApBTJtgmEz6d8hike9ZebmkOytLv1U/Lt4kJEjre4dD3rOiQj67kBBJd7t2kqcjR4CS/UdRWViKX8xdUAkrlJLzVusF0hRmOBGOIkSiAGUIxikk1L+PWc6RhAQ5Vvn5cqy087e0VI5HQ9ntctydTnkN7fvvcMgSkO9/TIy0cnc65TiVl8tSu/kqs1nOLadTfl8BYN48YMaMc39tBpDNi8eTiIhq8+CDUn6vWCE9GltLQ8umWkaG8l//9V//hZkzZ1Y91mrIW0Udgy6ZzCYk9PUyuFWC/Im2QVqExsbW3EQbl6hLl2ZKp18wAwj79VY7pVBVY+ftj71S8rGYTHrgVFwswUhoqARkdY2VpV00sNlqHwCivFxaxGpBlvtN299kqnnf2zqrVR8GAJAgp7xcgjzvah+g6+qra3tGz7B2waakRNIQG6sfD6UkQKs5rll8re8JyMWSkhI9gNGaJdtsctzN5mAAdQzSVis7gA6N3McEoJbB/2qhlKS/vFy/mFVWJvkKC9PHC2vc2Gi1/waVlMhFgooKPajVlu7niPuFLLlvgdkcBbM5qsZFrprb6udZfXnPz5eLdEFB+kW/wkK5qOZ06p9lbKycG7W9pnbRzG6vfQxC7T0dDs8AXQvatfez22W7sjJ5zlvetIuH2k27MKjdvKWz+nfRZJILDJGRcgsL0/dzueT70Njx4IiIiMhYc+cCU6bI0Dm+yKcD8vj4eFgsFuTkePZ7zMnJQXItIzfb7XbY7fbWSB75AJNJDxAaIimp+dNgt0vtcUswm+sKxpvn9bUWE9WZTPUPMu6N1pXeXyupTCYJxMLqvhbUbGo7/kYwmaQmOzrac31IiLQGaAytuXhD3rMx32GjmM2td04QERFR87HZfDcYB3x8HnKbzYZBgwZh1apVVetcLhdWrVrl0YSdiIiIiIiIyN/4dA05AMycORPp6elITU3FkCFDMG/ePBQXF+POO+80OmlERERERERETebzAfktt9yCkydP4oknnkB2djYGDBiAL774Akkt0faYiIiIiIiIqJX4fEAOANOmTcO0adOMTgYRERERERFRs/HpPuREREREREREgYoBOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBrEYnoKUppQAABQUFBqeEiIhIaGWSVkZR02RkZCAjIwOVlZUAWNYTEZHvaGhZb1IB/m/g2LFjaN++vdHJICIiquHo0aNo166d0cnweyzriYjIV9VX1gd8QO5yuZCVlYWIiAiYTKZzeq2CggK0b98eR48eRWRkZDOl0DiBlJ9AygsQWPkJpLwAzI8v86e8KKVQWFiIlJQUmM3sPXauWNbXjvnxXYGUFyCw8hNIeQECKz/+lJeGlvUB32TdbDY3e+1DZGSkz58AjRFI+QmkvACBlZ9AygvA/Pgyf8lLVFSU0UkIGCzr68f8+K5AygsQWPkJpLwAgZUff8lLQ8p6XpYnIiIiIiIiMgADciIiIiIiIiIDMCBvBLvdjieffBJ2u93opDSLQMpPIOUFCKz8BFJeAObHlwVSXsg4gXYeMT++K5DyAgRWfgIpL0Bg5SeQ8qIJ+EHdiIiIiIiIiHwRa8iJiIiIiIiIDMCAnIiIiIiIiMgADMiJiIiIiIiIDMCAnIiIiIiIiMgADMgbISMjA506dUJwcDDS0tKwceNGo5NUrxdeeAGDBw9GREQEEhMTccMNN2D//v0e25SVlWHq1KmIi4tDeHg4xowZg5ycHINS3HB//vOfYTKZ8MADD1St87e8HD9+HLfddhvi4uIQEhKCvn37YvPmzVXPK6XwxBNPoE2bNggJCcGIESNw8OBBA1NcO6fTiTlz5qBz584ICQlB165d8cwzz8B93Ehfzc+3336La6+9FikpKTCZTPj00089nm9Ius+cOYMJEyYgMjIS0dHRuPvuu1FUVNSKudDVlR+Hw4FHHnkEffv2RVhYGFJSUnD77bcjKyvL4zX8JT/VTZ48GSaTCfPmzfNY70v5Id/Gst63sKz3Lf5c1gOBVd6zrA+csp4BeQN9+OGHmDlzJp588kls3boV/fv3x1VXXYXc3Fyjk1antWvXYurUqdiwYQNWrlwJh8OBK6+8EsXFxVXbPPjgg/jss8+waNEirF27FllZWbjpppsMTHX9Nm3ahP/93/9Fv379PNb7U17Onj2LYcOGISgoCCtWrMCePXvwl7/8BTExMVXbvPjii3jttdfw5ptvIjMzE2FhYbjqqqtQVlZmYMq9mzt3LubPn4833ngDe/fuxdy5c/Hiiy/i9ddfr9rGV/NTXFyM/v37IyMjw+vzDUn3hAkTsHv3bqxcuRLLly/Ht99+i0mTJrVWFjzUlZ+SkhJs3boVc+bMwdatW7F48WLs378f1113ncd2/pIfd0uWLMGGDRuQkpJS4zlfyg/5Lpb1voVlPcv65hZI5T3L+gAq6xU1yJAhQ9TUqVOrHjudTpWSkqJeeOEFA1PVeLm5uQqAWrt2rVJKqby8PBUUFKQWLVpUtc3evXsVALV+/XqjklmnwsJC1b17d7Vy5Up16aWXqhkzZiil/C8vjzzyiLr44otrfd7lcqnk5GT10ksvVa3Ly8tTdrtdffDBB62RxEYZPXq0uuuuuzzW3XTTTWrChAlKKf/JDwC1ZMmSqscNSfeePXsUALVp06aqbVasWKFMJpM6fvx4q6Xdm+r58Wbjxo0KgDp8+LBSyj/zc+zYMdW2bVu1a9cu1bFjR/Xqq69WPefL+SHfwrLed7Cs962yURMoZb1SgVXes6z37fzUhzXkDVBRUYEtW7ZgxIgRVevMZjNGjBiB9evXG5iyxsvPzwcAxMbGAgC2bNkCh8PhkbcePXqgQ4cOPpu3qVOnYvTo0R5pBvwvL8uWLUNqairGjh2LxMREDBw4EG+//XbV84cOHUJ2drZHfqKiopCWluaT+bnooouwatUqHDhwAACwfft2rFu3DqNGjQLgf/nRNCTd69evR3R0NFJTU6u2GTFiBMxmMzIzM1s9zY2Vn58Pk8mE6OhoAP6XH5fLhYkTJ2L27Nno3bt3jef9LT9kDJb1voVlvW+WjYFa1gOBX96zrPddVqMT4A9OnToFp9OJpKQkj/VJSUnYt2+fQalqPJfLhQceeADDhg1Dnz59AADZ2dmw2WxVX05NUlISsrOzDUhl3RYuXIitW7di06ZNNZ7zt7z8/PPPmD9/PmbOnInHHnsMmzZtwv333w+bzYb09PSqNHs773wxP48++igKCgrQo0cPWCwWOJ1OPPfcc5gwYQIA+F1+NA1Jd3Z2NhITEz2et1qtiI2N9em8AdIX85FHHsH48eMRGRkJwP/yM3fuXFitVtx///1en/e3/JAxWNb7Dpb1vpufQC3rgcAu71nW+15+3DEg/w2ZOnUqdu3ahXXr1hmdlCY5evQoZsyYgZUrVyI4ONjo5Jwzl8uF1NRUPP/88wCAgQMHYteuXXjzzTeRnp5ucOoa76OPPsKCBQvwr3/9C71798a2bdvwwAMPICUlxS/z81vgcDgwbtw4KKUwf/58o5PTJFu2bMFf//pXbN26FSaTyejkEBmOZb1vYVlPRmNZ7/vYZL0B4uPjYbFYaozgmZOTg+TkZINS1TjTpk3D8uXLsWbNGrRr165qfXJyMioqKpCXl+exvS/mbcuWLcjNzcUFF1wAq9UKq9WKtWvX4rXXXoPVakVSUpLf5AUA2rRpg169enms69mzJ44cOQIAVWn2l/Nu9uzZePTRR3Hrrbeib9++mDhxIh588EG88MILAPwvP5qGpDs5ObnGoE+VlZU4c+aMz+ZNK6APHz6MlStXVl0xB/wrP9999x1yc3PRoUOHqt+Fw4cP46GHHkKnTp0A+Fd+yDgs630Dy3pUPfbF/ARqWQ8EZnnPst4381MdA/IGsNlsGDRoEFatWlW1zuVyYdWqVRg6dKiBKaufUgrTpk3DkiVLsHr1anTu3Nnj+UGDBiEoKMgjb/v378eRI0d8Lm/Dhw/Hzp07sW3btqpbamoqJkyYUHXfX/ICAMOGDasxLc2BAwfQsWNHAEDnzp2RnJzskZ+CggJkZmb6ZH5KSkpgNnv+pFgsFrhcLgD+lx9NQ9I9dOhQ5OXlYcuWLVXbrF69Gi6XC2lpaa2e5vpoBfTBgwfx9ddfIy4uzuN5f8rPxIkTsWPHDo/fhZSUFMyePRtffvklAP/KDxmHZb1vYFnv22VjoJb1QOCV9yzrfTc/NRg7ppz/WLhwobLb7erdd99Ve/bsUZMmTVLR0dEqOzvb6KTV6b777lNRUVHqm2++USdOnKi6lZSUVG0zefJk1aFDB7V69Wq1efNmNXToUDV06FADU91w7iOvKuVfedm4caOyWq3queeeUwcPHlQLFixQoaGh6v3336/a5s9//rOKjo5WS5cuVTt27FDXX3+96ty5syotLTUw5d6lp6ertm3bquXLl6tDhw6pxYsXq/j4ePXwww9XbeOr+SksLFQ//vij+vHHHxUA9corr6gff/yxaiTShqR75MiRauDAgSozM1OtW7dOde/eXY0fP97n8lNRUaGuu+461a5dO7Vt2zaP34Xy8nK/y4831UdeVcq38kO+i2W9b2JZ7zv8uaxXKrDKe5b1gVPWMyBvhNdff1116NBB2Ww2NWTIELVhwwajk1QvAF5v77zzTtU2paWlasqUKSomJkaFhoaqG2+8UZ04ccK4RDdC9ULa3/Ly2WefqT59+ii73a569Oih3nrrLY/nXS6XmjNnjkpKSlJ2u10NHz5c7d+/36DU1q2goEDNmDFDdejQQQUHB6suXbqoxx9/3OOH31fzs2bNGq/fk/T0dKVUw9J9+vRpNX78eBUeHq4iIyPVnXfeqQoLCw3ITd35OXToUK2/C2vWrPG7/HjjrZD2pfyQb2NZ73tY1vsOfy7rlQqs8p5lfeCU9SallGqeunYiIiIiIiIiaij2ISciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICeiFmUymfDpp58anQwiIiJqQSzviZqGATlRALvjjjtgMplq3EaOHGl00oiIiKiZsLwn8l9WoxNARC1r5MiReOeddzzW2e12g1JDRERELYHlPZF/Yg05UYCz2+1ITk72uMXExACQ5mXz58/HqFGjEBISgi5duuDjjz/22H/nzp244oorEBISgri4OEyaNAlFRUUe2/z9739H7969Ybfb0aZNG0ybNs3j+VOnTuHGG29EaGgounfvjmXLlrVspomIiH5jWN4T+ScG5ES/cXPmzMGYMWOwfft2TJgwAbfeeiv27t0LACguLsZVV12FmJgYbNq0CYsWLcLXX3/tUQDPnz8fU6dOxaRJk7Bz504sW7YM3bp183iPp59+GuPGjcOOHTtw9dVXY8KECThz5kyr5pOIiOi3jOU9kY9SRBSw0tPTlcViUWFhYR635557TimlFAA1efJkj33S0tLUfffdp5RS6q233lIxMTGqqKio6vnPP/9cmc1mlZ2drZRSKiUlRT3++OO1pgGA+tOf/lT1uKioSAFQK1asaLZ8EhER/ZaxvCfyX+xDThTgLr/8csyfP99jXWxsbNX9oUOHejw3dOhQbNu2DQCwd+9e9O/fH2FhYVXPDxs2DC6XC/v374fJZEJWVhaGDx9eZxr69etXdT8sLAyRkZHIzc1tapaIiIioGpb3RP6JATlRgAsLC6vRpKy5hISENGi7oKAgj8cmkwkul6slkkRERPSbxPKeyD+xDznRb9yGDRtqPO7ZsycAoGfPnti+fTuKi4urnv/+++9hNptx/vnnIyIiAp06dcKqVataNc1ERETUOCzviXwTa8iJAlx5eTmys7M91lmtVsTHxwMAFi1ahNTUVFx88cVYsGABNm7ciL/97W8AgAkTJuDJJ59Eeno6nnrqKZw8eRLTp0/HxIkTkZSUBAB46qmnMHnyZCQmJmLUqFEoLCzE999/j+nTp7duRomIiH7DWN4T+ScG5EQB7osvvkCbNm081p1//vnYt28fABkRdeHChZgyZQratGmDDz74AL169QIAhIaG4ssvv8SMGTMwePBghIaGYsyYMXjllVeqXis9PR1lZWV49dVXMWvWLMTHx+Pmm29uvQwSERERy3siP2VSSimjE0FExjCZTFiyZAluuOEGo5NCRERELYTlPZHvYh9yIiIiIiIiIgMwICciIiIiIiIyAJusExERERERERmANeREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGSA/wdsbXCwTPuk2QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2219,7 +2160,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -2245,63 +2186,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 38, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss█▁▂
train_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▁▁▁
validation_loss█▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▁▁▁▂▂▂▂▂▂▃▂▄▂▂▂▂▂▃▁▁▃▁▁▁

Run summary:


testing_loss0.66012
train_loss0.31711
validation_loss2.70098

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run worldly-dawn-2 at: https://wandb.ai/ai4s2s-demo/test-LSTM/runs/b4ivyb49
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230705_090451-b4ivyb49/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -2334,19 +2221,19 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.293\n" + "The MSE loss is 0.436\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRqklEQVR4nO3deVhUZf8G8PvMoIA4jIIOiyKSO+JGSoKmVoq8mspbiWWBpv0qBdMoQ9vQ3gyp19KyKFvQMk2v1w1NUdxQQ0UlXMLUDJd0EMuacQmUmfP7Y2J02MEZzgzn/lzXXHaeeebMd07C3D7nOc8RRFEUQURERCQjCqkLICIiIqpvDEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7TlIXYI+MRiMuXrwIlUoFQRCkLoeIiIhqQBRFXL16Fb6+vlAoqh7jYQCqwMWLF+Hn5yd1GURERFQH58+fR+vWravswwBUAZVKBcB0AN3d3SWuhoiIiGpCr9fDz8/P/D1eFQagCpSe9nJ3d2cAIiIicjA1mb7CSdBEREQkOwxAREREJDsMQERERCQ7nANEROQADAYDbt26JXUZRJJr3LhxtZe41wQDEBGRHRNFEQUFBfjrr7+kLoXILigUCgQEBKBx48Z3tR8GICIiO1YafjQaDZo0acLFWUnWShcq1mq1aNOmzV39PDAAERHZKYPBYA4/np6eUpdDZBdatmyJixcvoqSkBI0aNarzfjgJmojITpXO+WnSpInElRDZj9JTXwaD4a72wwBERGTneNqL6DZr/TzwFFh9MhqAs1nAtUtAUy/APwxQKKWuioiISHYkHQFKSkpCnz59oFKpoNFoEBkZiRMnTlj0GT9+PARBsHj07du32n2vWrUKgYGBcHZ2RmBgINasWWOrj1EzeWnA/CBgycPAqommP+cHmdqJiIioXkkagDIzMxEbG4t9+/YhIyMDJSUlCA8Px/Xr1y36RUREQKvVmh8bN26scr979+7FmDFjEB0djcOHDyM6OhpRUVHYv3+/LT9O5fLSgJUxgP6iZbtea2pnCCIiqpNZs2ahZ8+e5u3x48cjMjLyrvZpjX2Q/ZP0FFh6errFdmpqKjQaDQ4dOoQBAwaY252dneHt7V3j/c6fPx9DhgzBzJkzAQAzZ85EZmYm5s+fj+XLl1un+JoyGoD0BABiBU+KAAQgfQbQeThPhxGRzRiMIrLzr6DwahE0KheEBHhAqbDd3KLx48djyZIlAAAnJyf4+fnhkUcewezZs+Hm5maz912wYAFEsaLft+WdOXMGAQEB+PHHHy1CVG32QY7LruYA6XQ6AICHh4dF+86dO6HRaNCsWTMMHDgQc+bMgUajqXQ/e/fuxYsvvmjRNnToUMyfP7/C/sXFxSguLjZv6/X6On6CCpzNKj/yY0EE9BdM/QLut977EhH9I/2YFrPX50GrKzK3+ahdkDgiEBFBPjZ734iICKSmpuLWrVvYvXs3nnnmGVy/fh0pKSkW/W7dunVXlzPfSa1W28U+yP7ZzVVgoigiPj4e/fv3R1BQkLn9X//6F7799lts374d8+bNw4EDB/Dggw9aBJayCgoK4OXlZdHm5eWFgoKCCvsnJSVBrVabH35+ftb5UIBpwrM1+xER1UL6MS0mLc2xCD8AUKArwqSlOUg/prXZe5eO3vv5+WHs2LF48sknsXbtWvNpq6+++gr33HMPnJ2dIYoidDodnn32WWg0Gri7u+PBBx/E4cOHLfY5d+5ceHl5QaVSYeLEiSgqsvxcZU9fGY1GJCcno3379nB2dkabNm0wZ84cAEBAQAAAoFevXhAEAYMGDapwH8XFxXjhhReg0Wjg4uKC/v3748CBA+bnd+7cCUEQsG3bNvTu3RtNmjRBWFiYxZzWw4cP44EHHoBKpYK7uzvuvfdeHDx40BqHmerIbgJQXFwcjhw5Uu4U1ZgxYzB8+HAEBQVhxIgR2LRpE06ePInvv/++yv2VvUxOFMVKL52bOXMmdDqd+XH+/Pm7+zB3aupVfZ/a9CMiqiGDUcTs9XmVnoAHgNnr82Aw1s/pHldXV/PaRr/88gtWrlyJVatWITc3FwAwfPhwFBQUYOPGjTh06BCCg4Px0EMP4cqVKwCAlStXIjExEXPmzMHBgwfh4+ODTz75pMr3nDlzJpKTk/HGG28gLy8Py5YtM/8DOTs7GwCwdetWaLVarF69usJ9vPLKK1i1ahWWLFmCnJwctG/fHkOHDjXXVeq1117DvHnzcPDgQTg5OWHChAnm55588km0bt0aBw4cwKFDhzBjxgyrjXpR3djFKbApU6YgLS0Nu3btQuvWravs6+PjA39/f5w6darSPt7e3uVGewoLC8uNCpVydnaGs7Nz7QuvCf8wwN3XNOG5wl9Dgul5/zDbvD8RyVZ2/pVyIz93EgFodUXIzr+C0Ha2XWk6Ozsby5Ytw0MPPQQAuHnzJr755hu0bNkSALB9+3YcPXoUhYWF5t/H//3vf7F27Vr873//w7PPPov58+djwoQJeOaZZwAAb7/9NrZu3VpuFKjU1atXsWDBAixcuBDjxo0DALRr1w79+/cHAPN7e3p6VjrPtPSU3eLFi/Gvf/0LAPD5558jIyMDX375JaZPn27uO2fOHAwcOBAAMGPGDAwfPhxFRUVwcXHBuXPnMH36dHTu3BkA0KFDhzoeSbIWSUeARFFEXFwcVq9eje3bt5uHI6vyxx9/4Pz58/Dxqfy8dWhoKDIyMizatmzZgrAwCUKGQglEJP+zUXYE6p/tiLmcAE1EVld4tfLwU5d+tbVhwwY0bdoULi4uCA0NxYABA/DRRx8BAPz9/c0BBAAOHTqEa9euwdPTE02bNjU/8vPzcfr0aQDA8ePHERoaavEeZbfvdPz4cRQXF5tDV12cPn0at27dQr9+/cxtjRo1QkhICI4fP27Rt3v37ub/Lv2OKiwsBADEx8fjmWeeweDBgzF37lzzZyLpSDoCFBsbi2XLlmHdunVQqVTmURu1Wg1XV1dcu3YNs2bNwqOPPgofHx+cOXMGr776Klq0aIF///vf5v3ExMSgVatWSEpKAgBMnToVAwYMQHJyMkaNGoV169Zh69at2LNnjySfE4EjgaivTVeD3Tkh2t3XFH4CR0pTFxE1aBqVi1X71dYDDzyAlJQUNGrUCL6+vhanfMpeCWY0GuHj44OdO3eW20+zZs3q9P6urq51et2dSq8Gq8m0ijs/X+lzRqMRgOly/bFjx+L777/Hpk2bkJiYiO+++87iu4zql6QjQCkpKdDpdBg0aBB8fHzMjxUrVgAAlEoljh49ilGjRqFjx44YN24cOnbsiL1790KlUpn3c+7cOWi1tyfyhYWF4bvvvkNqaiq6d++OxYsXY8WKFbjvvvvq/TOaBY4Eph0Dxm0AHv3S9Oe0oww/RGQzIQEe8FG7lBt7LiXAdDVYSIBHJT3ujpubG9q3bw9/f/9q57sEBwejoKAATk5OaN++vcWjRYsWAIAuXbpg3759Fq8ru32nDh06wNXVFdu2bavw+ZrcU6p9+/Zo3LixxT+gb926hYMHD6JLly5VfqayOnbsiBdffBFbtmzBI488gtTU1Fq9nqxL0hGg6tZZcHV1xebNm6vdT0X/Ynjsscfw2GOP1bU021Aoeak7EdUbpUJA4ohATFqaAwGWsxBLQ1HiiECbrgdUU4MHD0ZoaCgiIyORnJyMTp064eLFi9i4cSMiIyPRu3dvTJ06FePGjUPv3r3Rv39/fPvtt/jpp59wzz33VLhPFxcXJCQk4JVXXkHjxo3Rr18/XL58GT/99BMmTpwIjUYDV1dXpKeno3Xr1nBxcSl3CbybmxsmTZqE6dOnw8PDA23atMG7776LGzduYOLEiTX6bH///TemT5+Oxx57DAEBAfjtt99w4MABPProo3d93Kju7GISNBER2UZEkA9Sngoutw6Qdz2sA1QbgiBg48aNeO211zBhwgRcvnwZ3t7eGDBggPkCljFjxuD06dNISEhAUVERHn30UUyaNKnKfyi/8cYbcHJywptvvomLFy/Cx8cHzz//PADTAo0ffvgh3nrrLbz55pu4//77K/wH9dy5c2E0GhEdHY2rV6+id+/e2Lx5M5o3b16jz6ZUKvHHH38gJiYGly5dQosWLcyLQpJ0BJHLXZaj1+uhVquh0+ng7u4udTlEJFNFRUXIz89HQEAAXFzubp5Ofa8ETWQrVf1c1Ob7myNAREQyoFQINr/UnciR2M1CiERERET1hQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIjoDrNmzULPnj2lLgODBg3CtGnTpC6jwWIAIiIimygoKMDUqVPRvn17uLi4wMvLC/3798enn36KGzduSF1ene3cuROCIOCvv/6yy/1RzXAlaCIiOTAagLNZwLVLQFMvwD/MdINmG/n111/Rr18/NGvWDO+88w66deuGkpISnDx5El999RV8fX0xcuTICl9769atau8e7whu3rxpvuM82R+OABERNXR5acD8IGDJw8CqiaY/5weZ2m1k8uTJcHJywsGDBxEVFYUuXbqgW7duePTRR/H9999jxIgR5r6CIODTTz/FqFGj4ObmhrfffhsAkJKSgnbt2qFx48bo1KkTvvnmG/Nrzpw5A0EQkJuba27766+/IAiC+YampSMr27ZtQ+/evdGkSROEhYXhxIkTFrXOnTsXXl5eUKlUmDhxIoqKilCZM2fO4IEHHgAANG/eHIIgYPz48QBMp6zi4uIQHx+PFi1aYMiQIdXWWdX+AMBoNOKVV16Bh4cHvL29MWvWrJr+L6BqMAARETVkeWnAyhhAf9GyXa81tdsgBP3xxx/YsmULYmNj4ebmVmEfQbC8EWtiYiJGjRqFo0ePYsKECVizZg2mTp2Kl156CceOHcNzzz2Hp59+Gjt27Kh1Pa+99hrmzZuHgwcPwsnJCRMmTDA/t3LlSiQmJmLOnDk4ePAgfHx88Mknn1S6Lz8/P6xatQoAcOLECWi1WixYsMD8/JIlS+Dk5IQffvgBn332WbW11WR/bm5u2L9/P95991289dZbyMjIqPUxoPJ4CoyIqKEyGoD0BABiBU+KAAQgfQbQebhVT4f98ssvEEURnTp1smhv0aKFeXQlNjYWycnJ5ufGjh1rEUzGjh2L8ePHY/LkyQCA+Ph47Nu3D//973/NIyY1NWfOHAwcOBAAMGPGDAwfPhxFRUVwcXHB/PnzMWHCBDzzzDMAgLfffhtbt26tdBRIqVTCw8MDAKDRaNCsWTOL59u3b493333XvH3mzJkqa6tuf927d0diYiIAoEOHDli4cCG2bduGIUOG1OizU+U4AkRE1FCdzSo/8mNBBPQXTP1soOwoT3Z2NnJzc9G1a1cUFxdbPNe7d2+L7ePHj6Nfv34Wbf369cPx48drXUf37t3N/+3j4wMAKCwsNL9PaGioRf+y27VR9nPcrTtrB0z1l9ZOd4cjQEREDdW1S9btV0Pt27eHIAj4+eefLdrvueceAICrq2u511R0qqxsgBJF0dymUCjMbaVu3bpVYT13Tqgufb3RaKz2c9RF2c9RmzorUnYyuCAINqtdbjgCRETUUDX1sm6/GvL09MSQIUOwcOFCXL9+vU776NKlC/bs2WPRlpWVhS5dugAAWrZsCQDQarXm5++caFyb99m3b59FW9ntskqv7DIYDNXuvyZ11mZ/ZD0cASIiaqj8wwB3X9OE5wrnAQmm5/3DrP7Wn3zyCfr164fevXtj1qxZ6N69OxQKBQ4cOICff/4Z9957b5Wvnz59OqKiohAcHIyHHnoI69evx+rVq7F161YAplGkvn37Yu7cuWjbti1+//13vP7667Wuc+rUqRg3bhx69+6N/v3749tvv8VPP/1kHq2qiL+/PwRBwIYNGzBs2DC4urqiadOmFfatSZ212R9ZD0eAiIgaKoUSiCidaCyUefKf7Yi5NlkPqF27dvjxxx8xePBgzJw5Ez169EDv3r3x0Ucf4eWXX8Z//vOfKl8fGRmJBQsW4L333kPXrl3x2WefITU1FYMGDTL3+eqrr3Dr1i307t0bU6dONV8+XxtjxozBm2++iYSEBNx77704e/YsJk2aVOVrWrVqhdmzZ2PGjBnw8vJCXFxclf2rq7O2+yPrEMQ7T0wSAECv10OtVkOn08Hd3V3qcohIpoqKipCfn4+AgAC4uLjUfUd5aaarwe6cEO3eyhR+AitejJDIXlX1c1Gb72+eAiMiaugCR5ouda/HlaCJ7B0DEBGRHCiUQMD9UldBZDc4B4iIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIioCgUFBRgyZAjc3NzQrFkzqcuxmp07d0IQBPz111+S1jFr1iz07Nmz3t+XAYiIiKxu/PjxEAQBzz//fLnnJk+eDEEQMH78+PovrA4++OADaLVa5Obm4uTJk1KXU68EQcDatWvtdn93gwGIiEgGDEYDDhQcwMZfN+JAwQEYjAabv6efnx++++47/P333+a2oqIiLF++HG3atLH5+1vL6dOnce+996JDhw7QaDRW2+/Nmzetti8p3bp1S+oS6oQBiIiogdt6diuGrhqKCZsnIGF3AiZsnoChq4Zi69mtNn3f4OBgtGnTBqtXrza3rV69Gn5+fujVq5dFX1EU8e677+Kee+6Bq6srevTogf/973/m5w0GAyZOnIiAgAC4urqiU6dOWLBggcU+xo8fj8jISPz3v/+Fj48PPD09ERsbW+0XdEpKCtq1a4fGjRujU6dO+Oabb8zPtW3bFqtWrcLXX39d5ahVSUkJXnjhBTRr1gyenp5ISEjAuHHjEBkZae4zaNAgxMXFIT4+Hi1atMCQIUMAAJmZmQgJCYGzszN8fHwwY8YMlJSUWNQwf/58i/fr2bMnZs2aZd4WBAFffPEF/v3vf6NJkybo0KED0tLSLF6zceNGdOzYEa6urnjggQdw5syZKo9L27ZtAQD//ve/IQiCebv0lNVXX32Fe+65B87OzhBFsdo6K9tfqW+++QZt27aFWq3G448/jqtXr1ZZ391iACIiasC2nt2K+J3xuHTjkkV74Y1CxO+Mt3kIevrpp5Gammre/uqrrzBhwoRy/V5//XWkpqYiJSUFP/30E1588UU89dRTyMzMBAAYjUa0bt0aK1euRF5eHt588028+uqrWLlypcV+duzYgdOnT2PHjh1YsmQJFi9ejMWLF1da35o1azB16lS89NJLOHbsGJ577jk8/fTT2LFjBwDgwIEDiIiIQFRUFLRabbnQVSo5ORnffvstUlNT8cMPP0Cv11d4qmfJkiVwcnLCDz/8gM8++wwXLlzAsGHD0KdPHxw+fBgpKSn48ssv8fbbb1d3aMuZPXs2oqKicOTIEQwbNgxPPvkkrly5AgA4f/48HnnkEQwbNgy5ubl45plnMGPGjCr3d+DAAQBAamoqtFqteRsAfvnlF6xcuRKrVq1Cbm5ujeqran+nT5/G2rVrsWHDBmzYsAGZmZmYO3dubT5+7YlUjk6nEwGIOp1O6lKISMb+/vtvMS8vT/z777/r9PoSQ4n40MqHxKDFQRU+ui3uJg5eOVgsMZRYuXJRHDdunDhq1Cjx8uXLorOzs5ifny+eOXNGdHFxES9fviyOGjVKHDdunCiKonjt2jXRxcVFzMrKstjHxIkTxSeeeKLS95g8ebL46KOPWrynv7+/WFJy+/OMHj1aHDNmTKX7CAsLE//v//7Pom306NHisGHDzNt31loZLy8v8b333jNvl5SUiG3atBFHjRplbhs4cKDYs2dPi9e9+uqrYqdOnUSj0Whu+/jjj8WmTZuKBoNBFEVR9Pf3Fz/44AOL1/Xo0UNMTEw0bwMQX3/9dfP2tWvXREEQxE2bNomiKIozZ84Uu3TpYvE+CQkJIgDxzz//rPRzARDXrFlj0ZaYmCg2atRILCwstGivaZ0V7a9JkyaiXq83t02fPl287777Kqypqp+L2nx/827wREQNVE5hTrmRnzuJEFFwowA5hTno493HJjW0aNECw4cPx5IlSyCKIoYPH44WLVpY9MnLy0NRUZH5lFCpmzdvWpwq+/TTT/HFF1/g7Nmz+Pvvv3Hz5s1yVw917doVSqXSvO3j44OjR49WWt/x48fx7LPPWrT169ev0pGeiuh0Oly6dAkhISHmNqVSiXvvvRdGo9Gib+/evcu9f2hoKARBsHj/a9eu4bfffqvVXKnu3bub/9vNzQ0qlQqFhYXm9+nbt6/F+4SGhtZ432X5+/ujZcuWdX59WW3btoVKpTJv+/j4mGu3FQYgIqIG6vKNy1btV1cTJkxAXFwcAODjjz8u93xpSPj+++/RqlUri+ecnZ0BACtXrsSLL76IefPmITQ0FCqVCu+99x72799v0b9Ro0YW24IglAshZd0ZCgDTfKSybTVR0X7KcnNzq/a9Sl9X2q5QKMrtq6J5TVV99opquRtlPwdQ8zorUpf/b3eLc4CIiBqolk1q9i/0mvarq4iICNy8eRM3b97E0KFDyz0fGBgIZ2dnnDt3Du3bt7d4+Pn5AQB2796NsLAwTJ48Gb169UL79u1x+vTpu66tS5cu2LNnj0VbVlYWunTpUuN9qNVqeHl5ITs729xmMBjw448/VvvawMBAZGVlWQSHrKwsqFQqcxhs2bIltFqt+Xm9Xo/8/Pwa11f6Pvv27bNoK7tdkUaNGsFgqNkVgzWpszb7szUGILJkNAD5u4Gj/zP9WQ+XyhKRbQRrguHVxAsCKh7NECDAu4k3gjXBNq1DqVTi+PHjOH78uMXpqVIqlQovv/wyXnzxRSxZsgSnT5/Gjz/+iI8//hhLliwBALRv3x4HDx7E5s2bcfLkSbzxxhsWk2jravr06Vi8eDE+/fRTnDp1Cu+//z5Wr16Nl19+uVb7mTJlCpKSkrBu3TqcOHECU6dOxZ9//lntSNLkyZNx/vx5TJkyBT///DPWrVuHxMRExMfHQ6EwfUU/+OCD+Oabb7B7924cO3YM48aNq/A4VuX555/H6dOnER8fjxMnTmDZsmVVTg4v1bZtW2zbtg0FBQX4888/q+xbkzprsz9bYwCi2/LSgPlBwJKHgVUTTX/ODzK1E5HDUSqUmBFiutKnbAgq3U4ISYBSUbsv07pwd3eHu7t7pc//5z//wZtvvomkpCR06dIFQ4cOxfr16xEQEADA9AX+yCOPYMyYMbjvvvvwxx9/YPLkyXddV2RkJBYsWID33nsPXbt2xWeffYbU1FQMGjSoVvtJSEjAE088gZiYGISGhqJp06YYOnQoXFxcqnxdq1atsHHjRmRnZ6NHjx54/vnnMXHiRLz++uvmPjNnzsSAAQPw8MMPY9iwYYiMjES7du1qVV+bNm2watUqrF+/Hj169MCnn36Kd955p9rXzZs3DxkZGRUuXVBWTeqszf5sTRCtfWKwAdDr9VCr1dDpdFX+wDYoeWnAyhgAZf86/PNLM+prIHBkfVdFJGtFRUXIz89HQEBAtV+kVdl6divmZs+1mBDt3cQbCSEJGOw/2BqlUhlGoxFdunRBVFQU/vOf/0hdToNS1c9Fbb6/OQmaTKe50hNQPvzgnzYBSJ8BdB4O1MO/FInIugb7D8YDfg8gpzAHl29cRssmLRGsCa6XkR+5OHv2LLZs2YKBAweiuLgYCxcuRH5+PsaOHSt1aVQJBiACzmYB+otVdBAB/QVTv4D7660sIrIepUJps0vdyXQF1OLFi/Hyyy9DFEUEBQVh69attZpMTfVL0jlASUlJ6NOnD1QqFTQaDSIjI3HixIlK+z/33HMQBKHcUttlLV68GIIglHsUFRVZ+RM0ENcqXyekTv2IiGTGz88PP/zwA3Q6HfR6PbKysjBgwACpy6IqSBqAMjMzERsbi3379iEjIwMlJSUIDw/H9evXy/Vdu3Yt9u/fD19f3xrt293dHVqt1uJxN+fQG7SmXtbtR0REZOckPQWWnp5usZ2amgqNRoNDhw5ZJOcLFy4gLi4OmzdvxvDhw2u0b0EQ4O3tXaO+xcXFKC4uNm/r9foava7B8A8D3H0BvRYVzwMSTM/7h9V3ZUQE6y9iR+TIrPXzYFeXwet0OgCAh4eHuc1oNCI6OhrTp09H165da7yva9euwd/fH61bt8bDDz9c5YJUSUlJUKvV5kfpwluyoVACEcn/bJRds+Kf7Yi5nABNVM9KV8e9ceOGxJUQ2Y+bN28CQK3XQirLbiZBi6KI+Ph49O/fH0FBQeb25ORkODk54YUXXqjxvjp37ozFixejW7du0Ov1WLBgAfr164fDhw+jQ4cO5frPnDkT8fHx5m29Xi+/EBQ40nSpe3qC5YRod19T+OEl8ET1TqlUolmzZuZ7IjVp0qROt2ggsiuiCNy6ARhuAcpGQKMmQA3/XhuNRly+fBlNmjSBk9PdRRi7CUBxcXE4cuSIxZLkhw4dwoIFC5CTk1OrH/q+ffuib9++5u1+/fohODgYH330ET788MNy/Z2dnc33m5G1wJGmS93PZpkmPDf1Mp324sgPkWRKT+Xb+saQRPXi1g3g778AY8ntNoUT4NrMFIRqQKFQoE2bNnf9jwG7CEBTpkxBWloadu3ahdatW5vbd+/ejcLCQou74RoMBrz00kuYP38+zpw5U6P9KxQK9OnTB6dOnbJ26Q2PQslL3YnsiCAI8PHxgUajqfGNJYns0i/bgS0VrTlXOtUiGWj/YLW7ady4sfk2IXdD0gAkiiKmTJmCNWvWYOfOneYlz0tFR0dj8GDLVUqHDh2K6OhoPP3007V6n9zcXHTr1s0qdRMR1TelUnnXcx6IJGM0AFteAq5VtuacAGx5GQg8Wm9nHSQNQLGxsVi2bBnWrVsHlUqFgoICAKY767q6usLT0xOenp4Wr2nUqBG8vb3RqVMnc1tMTAxatWqFpKQkAMDs2bPRt29fdOjQAXq9Hh9++CFyc3Px8ccf19+HIyIiIhM7XHBX0gCUkpICAOVuOpeamorx48fXeD/nzp2zGA7766+/8Oyzz6KgoABqtRq9evXCrl27EBISYo2yiYiIqDbscMFd3gy1ArK8GSoREZGt5O8Gljxcfb9xG+5qBKg23992tQ4QERERNUClC+6WW2uulAC4t6rXBXcZgIiIiMi27HDBXQYgIiIisr3SBXfdfSzb3X1N7fW84K5drANEREREMmBHC+4yABEREVH9sZMFd3kKjIiIiGSHAYiIiIhkhwGIiIiIZIdzgIiI7obRYBcTOomodhiAiIjqKi8NSE+wvMeRu69pvZN6vqSXiGqHp8CIiOoiLw1YGVP+Bo96rak9L02auoioRhiAiIhqy2gwjfygolsp/tOWPsPUj4jsEgMQEVFtnc0qP/JjQQT0F0z9iMguMQAREdXWtUvW7UdE9Y4BiIiotpp6WbcfEdU7BiAiotryDzNd7VXurtalBMC9lakfEdklBiAiotpSKE2XugMoH4L+2Y6Yy/WAiOwYAxARUV0EjgSivgbcfSzb3X1N7VwHiMiucSFEIqK6ChwJdB7OlaCJHBADEBHR3VAogYD7pa6CiGqJp8CIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2JA1ASUlJ6NOnD1QqFTQaDSIjI3HixIlK+z/33HMQBAHz58+vdt+rVq1CYGAgnJ2dERgYiDVr1lixciIiInJkkgagzMxMxMbGYt++fcjIyEBJSQnCw8Nx/fr1cn3Xrl2L/fv3w9fXt9r97t27F2PGjEF0dDQOHz6M6OhoREVFYf/+/bb4GERERORgBFEURamLKHX58mVoNBpkZmZiwIAB5vYLFy7gvvvuw+bNmzF8+HBMmzYN06ZNq3Q/Y8aMgV6vx6ZNm8xtERERaN68OZYvX16uf3FxMYqLi83ber0efn5+0Ol0cHd3t86HIyIiIpvS6/VQq9U1+v62qzlAOp0OAODh4WFuMxqNiI6OxvTp09G1a9ca7Wfv3r0IDw+3aBs6dCiysrIq7J+UlAS1Wm1++Pn51fETEBERkSOwmwAkiiLi4+PRv39/BAUFmduTk5Ph5OSEF154ocb7KigogJeXl0Wbl5cXCgoKKuw/c+ZM6HQ68+P8+fN1+xBERETkEJykLqBUXFwcjhw5gj179pjbDh06hAULFiAnJweCINRqf2X7i6JY6T6cnZ3h7Oxc+6KJiIjIIdnFCNCUKVOQlpaGHTt2oHXr1ub23bt3o7CwEG3atIGTkxOcnJxw9uxZvPTSS2jbtm2l+/P29i432lNYWFhuVIiIiIjkSdIAJIoi4uLisHr1amzfvh0BAQEWz0dHR+PIkSPIzc01P3x9fTF9+nRs3ry50v2GhoYiIyPDom3Lli0ICwuzyecgIiIixyLpKbDY2FgsW7YM69atg0qlMo/aqNVquLq6wtPTE56enhavadSoEby9vdGpUydzW0xMDFq1aoWkpCQAwNSpUzFgwAAkJydj1KhRWLduHbZu3Wpxeo2IiIjkS9IRoJSUFOh0OgwaNAg+Pj7mx4oVK2q1n3PnzkGr1Zq3w8LC8N133yE1NRXdu3fH4sWLsWLFCtx3333W/ghERETkgOxqHSB7UZt1BIiIiMg+OOw6QERERET1gQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZMdJ6gKISBoGo4js/CsovFoEjcoFIQEeUCoEqcsiIqoXDEBEMpR+TIvZ6/Og1RWZ23zULkgcEYiIIB8JKyPZMhqAs1nAtUtAUy/APwxQKKWuihowBiAimUk/psWkpTkQy7QX6IowaWkOUp4KZgii+pWXBqQnAPqLt9vcfYGIZCBwpHR1UYPGOUBEMmIwipi9Pq9c+AFgbpu9Pg8GY0U9iGwgLw1YGWMZfgBArzW156VJU5ejMhqA/N3A0f+Z/jQapK7IbnEEiEhGsvOvWJz2KksEoNUVITv/CkLbedZfYSRPRoNp5KfSSC4A6TOAzsN5OqwmOJJWKxwBIpKRwquVh5+69CO6K2ezyo/8WBAB/QVTP6oaR9JqjQGISEY0Kher9iO6K9cuWbefXFU7kgbTSBpPh1lgACKSkZAAD/ioXVDZxe4CTFeDhQR41GdZJFdNvazbT644klYnnANUjwxGA3IKc3D5xmW0bNISwZpgKO3svLZD1FhyEzlHv8Fl/Tm0dG+D4G7RUDo1lrosC/Z6HJUKAYkjAjFpaQ4EGKFokg/B6SrEEhWMNwIAKJA4ItBu1gOy1+N4J9Z4F/zDTHNU9FoYICLHxRmXlUq0NBgQXFQMJQTT8/5hUlcKwI6P4x0jZAagguNYvp+U7OU4MgDVk61nt2Ju9lxcunH7L6BXEy/MCJmBwf6DJazsNoeocU8S5p78FpeUt7+gvX78ADM6PonB/WdKWNlt9n4cI4J8MHn4DXxz6kOIyr/M7YKhGaI7vGA3l8Db+3EEWONdUyiBiGRs3fAc5no2wyWn219JXiUlmPHHXxgcMdcuJkDb9XH8Z4RsaxNXzPVsXsFx/BODb/xtFyNp9nQcBVEUeb1rGXq9Hmq1GjqdDu7u7ne9v61ntyJ+ZzzEMudnhX9ORLw/6H3Jf4AcosY9SYj/5VtThcLtACT881f4/fbShyCHOI6s0SpYo3WYanwRoiiW/7kWBLw/6AM7qdGOj6PRgK2fdEN8U0Xlvx+vGTF48lFJw2R9HMfafH/XeA6Q0WhESUmJRdulS5cwe/ZsvPLKK9izZ0/dqm3gDEYD5mbPLfc/HIC5LTk7GQYJJ6c5RI0lNzH3ZPnwAwDiP9vJJ7+FoeRm/Rf3D4c4jqzRKlijddyuEZX8XAt2VKMdH0cAcz2aV/370dMDUk6BtsfjWOMANHHiREyePNm8ffXqVfTp0wcff/wxNm/ejAceeAAbN26s1ZsnJSWhT58+UKlU0Gg0iIyMxIkTJyz6zJo1C507d4abmxuaN2+OwYMHY//+/VXud/HixRAEodyjqKj+L+3NKcyxGOorS4SIghsFyCnMqceqLDlEjUe/MZ32EiqemyIKAgqUAnKOflPPld3mEMeRNVoFa7QO1mgdOYU5uHRLX/Xvx5s66Wu0s+NY4wD0ww8/4LHHHjNvf/311ygpKcGpU6dw+PBhxMfH47333qvVm2dmZiI2Nhb79u1DRkYGSkpKEB4ejuvXr5v7dOzYEQsXLsTRo0exZ88etG3bFuHh4bh8+XKV+3Z3d4dWq7V4uLjU/6W9l29UXWdt+9mCQ9SoP2fVfrbgEMeRNVoFa7QO1mgdrLFuajwJ+sKFC+jQoYN5e9u2bXj00UehVqsBAOPGjUNqamqt3jw9Pd1iOzU1FRqNBocOHcKAAQMAAGPHjrXo8/777+PLL7/EkSNH8NBDD1W6b0EQ4O3tXat6bKFlk5ZW7WcLDlGjexur9rMFhziOrNEqWKN1sEbrYI11U+MRIBcXF/z999/m7X379qFv374Wz1+7du2uitHpdAAAD4+K1yC5efMmFi1aBLVajR49elS5r2vXrsHf3x+tW7fGww8/jB9//LHSvsXFxdDr9RYPawnWBMOriZd5kldZAgR4N/FGsCbYau9ZWw5RY7doeBlE84S+sgRRhLdBRHC36Hqu7DaHOI6s0SqCNcFQN2qByi4hEUWgWaOWktfoCMeRNd491lg3NQ5APXr0wDffmOZX7N69G5cuXcKDDz5ofv706dPw9fWtcyGiKCI+Ph79+/dHUFCQxXMbNmxA06ZN4eLigg8++AAZGRlo0aJFpfvq3LkzFi9ejLS0NCxfvhwuLi7o168fTp06VWH/pKQkqNVq88PPz6/On6MspUKJGSEzAKDc//jS7YSQBEnXknCIGp0aY0bHJ001lfnWKd1O6PikpOsBOcRxZI1WokDxpREAUC4ElW4XXXoYUq416wjHkTVaB2usmxpfBr9jxw4MGzYMvr6+0Gq1eOKJJ/Dll1+an588eTKuX7+OJUuW1KmQ2NhYfP/999izZw9at25t8dz169eh1Wrx+++/4/PPP8f27duxf/9+aDSaGu3baDQiODgYAwYMwIcfflju+eLiYhQXF5u39Xo9/Pz8rHYZPFDx2gfeTbyREJIg+SWepRyixgrWAfI2iEiw83WA7O44ssa7svf0H3ji831wUh2Ds9d6KBrpzM8Zb6lRfGkESq4GYfn/9ZX8prL2fBxLsUbrYI21uwy+VusA5eXlISMjA97e3hg9ejQUitv/ulm0aBFCQkLQs2fPWhc8ZcoUrF27Frt27UJAQEC1/Tt06IAJEyZg5syaf+H93//9H3777Tds2rSp2r7WXgeolL2sflkVh6iRK0FbBWusu3W5FzD1u9x/toxQ3rGituGfFbUBYMHjPTGqZyupyjSz1+N4J9ZoHXKv0SYBaMKECViwYAFUKpVVigRMp72mTJmCNWvWYOfOnRaTrKvSvn17PPXUU5g1a1aN3yckJATdunXDV199VW1/WwUgImoYSkeAqmMPI0BEcmKThRCXLFliMQnaGmJjY7F06VIsW7YMKpUKBQUFKCgoML/P9evX8eqrr2Lfvn04e/YscnJy8Mwzz+C3337D6NGjzfuJiYmxGA2aPXs2Nm/ejF9//RW5ubmYOHEicnNz8fzzz1u1fiKSJ95Ulsjx1fgyeFvcMSMlJQUAMGjQIIv21NRUjB8/HkqlEj///DOWLFmC33//HZ6enujTpw92796Nrl27mvufO3fO4nTcX3/9hWeffRYFBQVQq9Xo1asXdu3ahZCQEKt/BiKSH8ubysJibdvSUGRPN5UlovJqfApMoVDg0qVLaNlSunUE6gtPgRFRTaQf02L2+jxodbdXmfdRuyBxRKDd3FSWrMhoAM5mme6q3tTLdJd6O5tfI3e1+f6u1d3gO3bsCKGSpbZLXblypTa7JCJyWBFBPhgS6I3s/CsovFoEjcp02osjPw1QXhqQngDoL95uc/cFIpKBwJHS1UV1VqsANHv2bPPKz0REZDodxonODVxeGrAyBih7I0+91tQe9TVDkAOqVQB6/PHHa7z2DhERkcMzGkwjPxXcxdzUJgDpM4DOw3k6zMHU+Cqw6k59ERERNThnsyxPe5UjAvoLpn7kUGocgGxxFRgREZFdu3ap+j616Ud2o8anwIxGoy3rICIisj9Nvazbj+yGdHfqIyIisnf+Yaarvapa9tK9lakfORQGICIiosoolKZL3QGUD0H/bEfM5QRoB8QAREREVJXAkaZL3d3LLG7p7stL4B1YrS6DJyIikqXAkaZL3bkSdIPBAERERFQTCiUQcL/UVZCV8BQYERERyQ4DEBEREckOAxARERHJDucAERERUb0xGEVk519B4dUiaFQuCAnwgFJR/7fbYgAiIiKiepF+TIvZ6/Og1RWZ23zULkgcEYiIIJ8qXml9PAVGRERENpd+TItJS3Mswg8AFOiKMGlpDtKPaeu1HgYgIiIisimDUcTs9Xmo6LbqpW2z1+fBYKy/G68zABEREZFNZedfKTfycycRgFZXhOz8K/VWEwMQERER2VTh1crDT136WQMDEBEREdmURuVi1X7WwABERERENhUS4AEftQsqu9hdgOlqsJAAj3qriQGIiIiogTAYRew9/QfW5V7A3tN/1Ouk4qooFQISRwQCQLkQVLqdOCKwXtcD4jpAREREDYA9rbFTkYggH6Q8FVyuRm+JahREUbSPeGhH9Ho91Go1dDod3N3dpS6HiIioSqVr7JT9Qi8dT0l5KtguQhBg25Wga/P9zREgIiIiB1bdGjsCTGvsDAn0luSWE2UpFQJC23lKXQbnABERETkye1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETkwe1xjxxEwABERETm40jV2vNWWp7m81S52dQm8PeFl8ERERA1ARJAPhgR622yNnYaGAYiIiKiBsJc1dhwBT4ERERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7EgagJKSktCnTx+oVCpoNBpERkbixIkTFn1mzZqFzp07w83NDc2bN8fgwYOxf//+ave9atUqBAYGwtnZGYGBgVizZo2tPgYRERE5GEkDUGZmJmJjY7Fv3z5kZGSgpKQE4eHhuH79urlPx44dsXDhQhw9ehR79uxB27ZtER4ejsuXL1e6371792LMmDGIjo7G4cOHER0djaioqBoFJyIiImr4BFEURamLKHX58mVoNBpkZmZiwIABFfbR6/VQq9XYunUrHnrooQr7jBkzBnq9Hps2bTK3RUREoHnz5li+fHm1dZS+h06ng7u7e90+DBEREdWr2nx/29UcIJ1OBwDw8PCo8PmbN29i0aJFUKvV6NGjR6X72bt3L8LDwy3ahg4diqysrAr7FxcXQ6/XWzyIiIio4bKbACSKIuLj49G/f38EBQVZPLdhwwY0bdoULi4u+OCDD5CRkYEWLVpUuq+CggJ4eXlZtHl5eaGgoKDC/klJSVCr1eaHn5/f3X8gIiIislt2E4Di4uJw5MiRCk9RPfDAA8jNzUVWVhYiIiIQFRWFwsLCKvcnCILFtiiK5dpKzZw5Ezqdzvw4f/583T8IERER2T27CEBTpkxBWloaduzYgdatW5d73s3NDe3bt0ffvn3x5ZdfwsnJCV9++WWl+/P29i432lNYWFhuVKiUs7Mz3N3dLR5ERETUcEkagERRRFxcHFavXo3t27cjICCgxq8rLi6u9PnQ0FBkZGRYtG3ZsgVhYWF3VS8RERE1DE5SvnlsbCyWLVuGdevWQaVSmUdt1Go1XF1dcf36dcyZMwcjR46Ej48P/vjjD3zyySf47bffMHr0aPN+YmJi0KpVKyQlJQEApk6digEDBiA5ORmjRo3CunXrsHXrVuzZs0eSz0lERET2RdIAlJKSAgAYNGiQRXtqairGjx8PpVKJn3/+GUuWLMHvv/8OT09P9OnTB7t370bXrl3N/c+dOweF4vZgVlhYGL777ju8/vrreOONN9CuXTusWLEC9913X718rsoYjCKy86+g8GoRNCoXhAR4QKmoeF4SERER2Y5drQNkL2yxDlD6MS1mr8+DVldkbvNRuyBxRCAignys8h5ERERy5rDrADVU6ce0mLQ0xyL8AECBrgiTluYg/ZhWosqIiIjkiQHIxgxGEbPX56GiYbbSttnr82AwciCOiMieGYwi9p7+A+tyL2Dv6T/4e9vBSToHSA6y86+UG/m5kwhAqytCdv4VhLbzrL/CiIioxjiNoeHhCJCNFV6tPPzUpR8REdUvTmNomBiAbEyjcrFqP3IMHConahg4jaHh4ikwGwsJ8ICP2gUFuqIKf4AEAN5q0yXx1DBwqJyo4eA0hoaLI0A2plQISBwRCMAUdu5Uup04IpDrATUQHConalg4jaHhYgCqBxFBPkh5KhjeasvTXN5qF6Q8FcxRgQaCQ+VEDQ+nMTRcPAVWTyKCfDAk0JsrQTdgHConang4jaHhYgCqR0qFwC++BoxD5UQNT+k0hklLcyAAFiGI0xgcG0+BEVkJh8qJGiZOY2iYOAJEZCV3DpULMCJE8TM0+AuFaIZsY2eIUHConMhBcRpDw8MARGQlpUPla5d9ijcbfQ1f4Yr5uYuiB966FYPIEc/zFyaRg+I0hoaFAYjIiiIUBzC08QKIZaZLegtXkNJ4AQTFvQBGSlMcERGZcQ4QkbUYDUB6AgSI5X6wFPhnwmT6DFM/IiKSFAMQkbWczQL0F6voIAL6C6Z+REQkKQYgImu5dsm6/YiIyGYYgIispamXdfsREZHNMAARWYt/GODui/J3fSslAO6tTP2IiEhSDEBE1qJQAhHJ/2xUcuvbiLmmfkREJCkGICJrChwJRH0NuJdZGdbd19QeyEvgiYjsAdcBIrK2wJFA5+Gmq72uXTLN+fEP48gPEZEdYQAisgWFEgi4X+oqiIioEgxAREQkOYNR5H22qF4xABGR/TIaeCpRBtKPaTF7fR60uiJzm4/aBYkjAnmndbIZBiAisk95aUB6guXq2u6+pivtOJm8wUg/psWkpTll7p4HFOiKMGlpDlKeCmYIIpvgVWBEZH/y0oCVMeVvLaLXmtrz0qSpi6zKYBQxe31eufADwNw2e30eDMaKehDdHQYgIrIv/9xUFlV9LfKmsg1Cdv4Vi9NeZYkAtLoiZOdfqb+iSDYYgIjIvvCmsrJReLXy8FOXfkS1wQBERPaFN5WVDY3Kxar9iGqDAYiI7AtvKisbIQEe8FG7VHX3PPioTZfEE1kbAxAR2RfeVFY2lAoBiSMCAVR69zwkjgjkekBkEwxARGRfeFNZWYkI8kHKU8HwVlue5vJWu/ASeLIpQRRFXl9Yhl6vh1qthk6ng7u7u9TlEMlThesAtTKFH64D1OBwJWiyhtp8f3MhRCKyT7yprKwoFQJC23lKXQbJCAMQEdkv3lSWiGyEc4CIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHZ4FRhZ4FocREQkBwxAZJZ+TIvZ6/Og1d2+87KP2gWJIwLtajVWhjQrMRq4xg4RyRYDEAEwhZ9JS3NQdlnwAl0RJi3NsZsl6R0lpNm9CldZ9jXdgoKrLBORDEg6BygpKQl9+vSBSqWCRqNBZGQkTpw4YX7+1q1bSEhIQLdu3eDm5gZfX1/ExMTg4sWLVewVWLx4MQRBKPcoKiqq8nVyZTCKmL0+r1z4AWBum70+DwajtHdNKQ1pd4Yf4HZISz+mlagyB5OXBqyMsQw/AKDXmtrz0qSpi4ioHkkagDIzMxEbG4t9+/YhIyMDJSUlCA8Px/Xr1wEAN27cQE5ODt544w3k5ORg9erVOHnyJEaOrP5fqO7u7tBqtRYPFxeXal8nR9n5V8qFijuJALS6ImTnX6m/ospwlJBm94wG08hPVUcyfYapHxFRAybpKbD09HSL7dTUVGg0Ghw6dAgDBgyAWq1GRkaGRZ+PPvoIISEhOHfuHNq0aVPpvgVBgLe3t03qbmgKr9ZsZKym/WyhNiGN9xOqwtms8iM/FkRAf8HUj7egIKIGzK4ug9fpdAAADw+PKvsIgoBmzZpVua9r167B398frVu3xsMPP4wff/yx0r7FxcXQ6/UWDznRqGo2MlbTfrbgCCHNIVy7ZN1+REQOym4CkCiKiI+PR//+/REUFFRhn6KiIsyYMQNjx46t8jb3nTt3xuLFi5GWlobly5fDxcUF/fr1w6lTpyrsn5SUBLVabX74+flZ5TM5ipAAD/ioXVDZdVQCTBONQwIqD6a25gghzSE09bJuPyIiByWIomgXkyZiY2Px/fffY8+ePWjdunW552/duoXRo0fj3Llz2LlzZ5UBqCyj0Yjg4GAMGDAAH374Ybnni4uLUVxcbN7W6/Xw8/ODTqer1fs4stIJxoDl7JDSUCT1VWAGo4j+ydtRoCuqcPaKAMBb7YI9CQ/ykviqGA3A/CDThOfKjqS7LzDtKC+JJyKHo9froVara/T9bRcjQFOmTEFaWhp27NhRafiJiopCfn4+MjIyah1KFAoF+vTpU+kIkLOzM9zd3S0echMR5IOUp4LhrbYcQfFWu0gefgBAqRCQOCIQAMqNVJVuJ44IZPipjkJputQdQKVHMmIuww8RNXiSjgCJoogpU6ZgzZo12LlzJzp06FCuT2n4OXXqFHbs2IGWLVvW6X1CQkLQrVs3fPXVV9X2r02CbGjsfZFBrgNkJRWuA9TKFH64DhAROajafH9LGoAmT56MZcuWYd26dejUqZO5Xa1Ww9XVFSUlJXj00UeRk5ODDRs2wMvr9rwEDw8PNG7cGAAQExODVq1aISkpCQAwe/Zs9O3bFx06dIBer8eHH36Ib775Bj/88ANCQkKqrUvOAcgR2HtIcxhcCZqIGpjafH9Lehl8SkoKAGDQoEEW7ampqRg/fjx+++03pKWZFmXr2bOnRZ8dO3aYX3fu3DkoFLfP5v3111949tlnUVBQALVajV69emHXrl01Cj9k/5QKgZe6W4NCyUvdiUi27GYStD3hCBAREZHjcbhJ0ERERET1iQGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGRH0nWAiIiqwkUvichWGICIyC7xtidEZEs8BUZEdif9mBaTluZYhB8AKNAVYdLSHKQf00pUGRE1FAxARGRXDEYRs9fnoaIl6kvbZq/Pg8HIReyJqO4YgIjIrmTnXyk38nMnEYBWV4Ts/Cv1VxQRNTgMQERkVwqvVh5+6tKPiKgiDEBEZFc0Kher9iMiqggDEBHZlZAAD/ioXVDZxe4CTFeDhQR41GdZRNTAMAARkV1RKgQkjggEgHIhqHQ7cUQg1wMiorvCAEREdiciyAcpTwXDW215mstb7YKUp4K5DhAR3TUuhEhEdikiyAdDAr25EjQR2QQDEBHZLaVCQGg7T6nLIKIGiKfAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHacpC6AiIhsy2AUkZ1/BYVXi6BRuSAkwANKhSB1WUSSYgAiImrA0o9pMXt9HrS6InObj9oFiSMCERHkI2FlRNKS9BRYUlIS+vTpA5VKBY1Gg8jISJw4ccL8/K1bt5CQkIBu3brBzc0Nvr6+iImJwcWLF6vd96pVqxAYGAhnZ2cEBgZizZo1tvwoRER2J/2YFpOW5liEHwAo0BVh0tIcpB/TSlQZkfQkDUCZmZmIjY3Fvn37kJGRgZKSEoSHh+P69esAgBs3biAnJwdvvPEGcnJysHr1apw8eRIjR46scr979+7FmDFjEB0djcOHDyM6OhpRUVHYv39/fXwsIiLJGYwiZq/Pg1jBc6Vts9fnwWCsqAdRwyeIomg3f/svX74MjUaDzMxMDBgwoMI+Bw4cQEhICM6ePYs2bdpU2GfMmDHQ6/XYtGmTuS0iIgLNmzfH8uXLy/UvLi5GcXGxeVuv18PPzw86nQ7u7u53+amIiOrf3tN/4InP91Xbb/n/9UVoO896qIjI9vR6PdRqdY2+v+3qKjCdTgcA8PDwqLKPIAho1qxZpX327t2L8PBwi7ahQ4ciKyurwv5JSUlQq9Xmh5+fX+2LJyKyI4VXb5/2UsCIvoo8jFRkoa8iDwoYK+xHJCd2MwlaFEXEx8ejf//+CAoKqrBPUVERZsyYgbFjx1aZ7AoKCuDl5WXR5uXlhYKCggr7z5w5E/Hx8ebt0hEgIiJHpVG5AACGKrKR2Ohr+ApXzM9dFD0w+1YMNhtDzP2I5MZuAlBcXByOHDmCPXv2VPj8rVu38Pjjj8NoNOKTTz6pdn+CYHmJpyiK5dpKOTs7w9nZufZFExHZqZAADzzeNBfv3Jpf7jlvXEFKo/l4tdErCAkYVv/FEdkBuzgFNmXKFKSlpWHHjh1o3bp1uedv3bqFqKgo5OfnIyMjo9rzet7e3uVGewoLC8uNChERNVRKGJHY6GsAQNklf0q3Ext9DeUdp8OI5ETSACSKIuLi4rB69Wps374dAQEB5fqUhp9Tp05h69at8PSsfrJeaGgoMjIyLNq2bNmCsLAwq9VORGTXzmbB9e+CcuGnlEIAXP8uAM5WPDeSqKGT9BRYbGwsli1bhnXr1kGlUplHbdRqNVxdXVFSUoLHHnsMOTk52LBhAwwGg7mPh4cHGjduDACIiYlBq1atkJSUBACYOnUqBgwYgOTkZIwaNQrr1q3D1q1bKz29RkTU4Fy7ZN1+RA2MpCNAKSkp0Ol0GDRoEHx8fMyPFStWAAB+++03pKWl4bfffkPPnj0t+tx5Rde5c+eg1d5e0CssLAzfffcdUlNT0b17dyxevBgrVqzAfffdV++fkYhIEk1reMq/pv2IGhi7WgfIXtRmHQEiIrtkNADzgwC9FqhwOUQBcPcFph0FFMr6ro7IJhx2HSAiIrIShRKISP5no+xEoH+2I+Yy/JBsMQARETVUgSOBqK8B9zI3PXX3NbUHVn1bIaKGzG7WASIiIhsIHAl0Hm662uvaJdOcH/8wjvyQ7DEAERE1dAolEHC/1FUQ2RWeAiMiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItnhStAVEEXTnZP1er3ElRAREVFNlX5vl36PV4UBqAJXr14FAPj5+UlcCREREdXW1atXoVarq+wjiDWJSTJjNBpx8eJFqFQqCIJg1X3r9Xr4+fnh/PnzcHd3t+q+5YTH0Tp4HK2Dx9E6eBytQ87HURRFXL16Fb6+vlAoqp7lwxGgCigUCrRu3dqm7+Hu7i67v5i2wONoHTyO1sHjaB08jtYh1+NY3chPKU6CJiIiItlhACIiIiLZYQCqZ87OzkhMTISzs7PUpTg0Hkfr4HG0Dh5H6+BxtA4ex5rhJGgiIiKSHY4AERERkewwABEREZHsMAARERGR7DAAERERkewwANWjTz75BAEBAXBxccG9996L3bt3S12SQ0lKSkKfPn2gUqmg0WgQGRmJEydOSF2Ww0tKSoIgCJg2bZrUpTicCxcu4KmnnoKnpyeaNGmCnj174tChQ1KX5VBKSkrw+uuvIyAgAK6urrjnnnvw1ltvwWg0Sl2aXdu1axdGjBgBX19fCIKAtWvXWjwviiJmzZoFX19fuLq6YtCgQfjpp5+kKdZOMQDVkxUrVmDatGl47bXX8OOPP+L+++/Hv/71L5w7d07q0hxGZmYmYmNjsW/fPmRkZKCkpATh4eG4fv261KU5rAMHDmDRokXo3r271KU4nD///BP9+vVDo0aNsGnTJuTl5WHevHlo1qyZ1KU5lOTkZHz66adYuHAhjh8/jnfffRfvvfcePvroI6lLs2vXr19Hjx49sHDhwgqff/fdd/H+++9j4cKFOHDgALy9vTFkyBDzvS4JgEj1IiQkRHz++ect2jp37izOmDFDooocX2FhoQhAzMzMlLoUh3T16lWxQ4cOYkZGhjhw4EBx6tSpUpfkUBISEsT+/ftLXYbDGz58uDhhwgSLtkceeUR86qmnJKrI8QAQ16xZY942Go2it7e3OHfuXHNbUVGRqFarxU8//VSCCu0TR4Dqwc2bN3Ho0CGEh4dbtIeHhyMrK0uiqhyfTqcDAHh4eEhciWOKjY3F8OHDMXjwYKlLcUhpaWno3bs3Ro8eDY1Gg169euHzzz+XuiyH079/f2zbtg0nT54EABw+fBh79uzBsGHDJK7MceXn56OgoMDiO8fZ2RkDBw7kd84deDPUevD777/DYDDAy8vLot3LywsFBQUSVeXYRFFEfHw8+vfvj6CgIKnLcTjfffcdcnJycODAAalLcVi//vorUlJSEB8fj1dffRXZ2dl44YUX4OzsjJiYGKnLcxgJCQnQ6XTo3LkzlEolDAYD5syZgyeeeELq0hxW6fdKRd85Z8+elaIku8QAVI8EQbDYFkWxXBvVTFxcHI4cOYI9e/ZIXYrDOX/+PKZOnYotW7bAxcVF6nIcltFoRO/evfHOO+8AAHr16oWffvoJKSkpDEC1sGLFCixduhTLli1D165dkZubi2nTpsHX1xfjxo2TujyHxu+cqjEA1YMWLVpAqVSWG+0pLCwsl9CpelOmTEFaWhp27dqF1q1bS12Owzl06BAKCwtx7733mtsMBgN27dqFhQsXori4GEqlUsIKHYOPjw8CAwMt2rp06YJVq1ZJVJFjmj59OmbMmIHHH38cANCtWzecPXsWSUlJDEB15O3tDcA0EuTj42Nu53eOJc4BqgeNGzfGvffei4yMDIv2jIwMhIWFSVSV4xFFEXFxcVi9ejW2b9+OgIAAqUtySA899BCOHj2K3Nxc86N379548sknkZuby/BTQ/369Su3DMPJkyfh7+8vUUWO6caNG1AoLL+KlEolL4O/CwEBAfD29rb4zrl58yYyMzP5nXMHjgDVk/j4eERHR6N3794IDQ3FokWLcO7cOTz//PNSl+YwYmNjsWzZMqxbtw4qlco8oqZWq+Hq6ipxdY5DpVKVmzfl5uYGT09PzqeqhRdffBFhYWF45513EBUVhezsbCxatAiLFi2SujSHMmLECMyZMwdt2rRB165d8eOPP+L999/HhAkTpC7Nrl27dg2//PKLeTs/Px+5ubnw8PBAmzZtMG3aNLzzzjvo0KEDOnTogHfeeQdNmjTB2LFjJazazkh7EZq8fPzxx6K/v7/YuHFjMTg4mJdv1xKACh+pqalSl+bweBl83axfv14MCgoSnZ2dxc6dO4uLFi2SuiSHo9frxalTp4pt2rQRXVxcxHvuuUd87bXXxOLiYqlLs2s7duyo8PfhuHHjRFE0XQqfmJgoent7i87OzuKAAQPEo0ePSlu0nRFEURQlyl5EREREkuAcICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIpKl8ePHIzIyUuoyiEgiDEBEZDPjx4+HIAjlHhEREVKXhgULFmDx4sVSlwEAEAQBa9eulboMIlnhzVCJyKYiIiKQmppq0ebs7CxRNYDBYIAgCFCr1ZLVQETS4wgQEdmUs7MzvL29LR7NmzfHzp070bhxY+zevdvcd968eWjRogW0Wi0AYNCgQYiLi0NcXByaNWsGT09PvP7667jzFoY3b97EK6+8glatWsHNzQ333Xcfdu7caX5+8eLFaNasGTZs2IDAwEA4Ozvj7Nmz5U6BDRo0CFOmTMG0adPQvHlzeHl5YdGiRbh+/TqefvppqFQqtGvXDps2bbL4fHl5eRg2bBiaNm0KLy8vREdH4/fff7fY7wsvvIBXXnkFHh4e8Pb2xqxZs8zPt23bFgDw73//G4IgmLeJyLYYgIhIEoMGDcK0adMQHR0NnU6Hw4cP47XXXsPnn38OHx8fc78lS5bAyckJ+/fvx4cffogPPvgAX3zxhfn5p59+Gj/88AO+++47HDlyBKNHj0ZERAROnTpl7nPjxg0kJSXhiy++wE8//QSNRlNhTUuWLEGLFi2QnZ2NKVOmYNKkSRg9ejTCwsKQk5ODoUOHIjo6Gjdu3AAAaLVaDBw4ED179sTBgweRnp6OS5cuISoqqtx+3dzcsH//frz77rt46623kJGRAQA4cOAAACA1NRVarda8TUQ2JvHd6ImoARs3bpyoVCpFNzc3i8dbb70liqIoFhcXi7169RKjoqLErl27is8884zF6wcOHCh26dJFNBqN5raEhASxS5cuoiiK4i+//CIKgiBeuHDB4nUPPfSQOHPmTFEURTE1NVUEIObm5parbdSoURbv1b9/f/N2SUmJ6ObmJkZHR5vbtFqtCEDcu3evKIqi+MYbb4jh4eEW+z1//rwIQDxx4kSF+xVFUezTp4+YkJBg3gYgrlmzppKjSES2wDlARGRTDzzwAFJSUizaPDw8AACNGzfG0qVL0b17d/j7+2P+/PnlXt+3b18IgmDeDg0Nxbx582AwGJCTkwNRFNGxY0eL1xQXF8PT09O83bhxY3Tv3r3aWu/so1Qq4enpiW7dupnbvLy8AACFhYUAgEOHDmHHjh1o2rRpuX2dPn3aXFfZ9/bx8THvg4ikwQBERDbl5uaG9u3bV/p8VlYWAODKlSu4cuUK3Nzcarxvo9EIpVKJQ4cOQalUWjx3ZyhxdXW1CFGVadSokcW2IAgWbaX7MBqN5j9HjBiB5OTkcvu68zReRfst3QcRSYMBiIgkc/r0abz44ov4/PPPsXLlSsTExGDbtm1QKG5PT9y3b5/Fa/bt24cOHTpAqVSiV69eMBgMKCwsxP3331/f5SM4OBirVq1C27Zt4eRU91+njRo1gsFgsGJlRFQdToImIpsqLi5GQUGBxeP333+HwWBAdHQ0wsPD8fTTTyM1NRXHjh3DvHnzLF5//vx5xMfH48SJE1i+fDk++ugjTJ06FQDQsWNHPPnkk4iJicHq1auRn5+PAwcOIDk5GRs3brT5Z4uNjcWVK1fwxBNPIDs7G7/++iu2bNmCCRMm1CrQtG3bFtu2bUNBQQH+/PNPG1ZMRKU4AkRENpWenm5xOggAOnXqhLFjx+LMmTNYv349AMDb2xtffPEFoqKiMGTIEPTs2RMAEBMTg7///hshISFQKpWYMmUKnn32WfO+UlNT8fbbb+Oll17ChQsX4OnpidDQUAwbNszmn83X1xc//PADEhISMHToUBQXF8Pf3x8REREWo1jVmTdvHuLj4/H555+jVatWOHPmjO2KJiIAgCCKdyyoQURkRwYNGoSePXtWODmaiOhu8BQYERERyQ4DEBEREckOT4ERERGR7HAEiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhk5/8BD2LVm8ZJvwYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABObklEQVR4nO3deVxU5f4H8M8wyj4Mos4AikjuhPuWUoo3QtRUqqtZlqLeNAOTzET9ZWpaqGmpLVh5A0utvFcxssIQBXfcIjWNlBC9ymIuM4qCOnN+f0yMjgw46AxnhvN5v17zsvOcZ57znZMwX5/tyARBEEBEREQkEU5iB0BERERUm5j8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikpR6Ygdgj/R6Pc6dOweFQgGZTCZ2OERERGQBQRBw5coV+Pv7w8mp6v4dJj9mnDt3DgEBAWKHQURERPfhzJkzaNq0aZXnmfyYoVAoABhunpeXl8jREBERkSW0Wi0CAgKM3+NVYfJjRsVQl5eXF5MfIiIiB3OvKSuc8ExERESSwuSHiIiIJIXJDxEREUkK5/wQETkAnU6Hmzdvih0Gkajq168PuVz+wO0w+SEismOCIKCoqAiXL18WOxQiu+Dt7Q1fX98H2oePyQ8RkR2rSHxUKhXc3d258SpJliAIuHbtGkpKSgAAfn5+990Wkx8iIjul0+mMiU/Dhg3FDodIdG5ubgCAkpISqFSq+x4C44RnIiI7VTHHx93dXeRIiOxHxc/Dg8yBY/JDRGTnONRFdJs1fh447FVb9DqgYDdwtRjwVAOBvQGnB5+xTkRERDUjas9PQkICunfvDoVCAZVKhaioKOTm5prUCQsLg0wmM3m9/PLL1bYrCALeeust+Pn5wc3NDeHh4Thx4oQtP0r1jqUCS0OAVU8C68cZ/lwaYignIiKiWiVq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWmpS76WXXkJhYaHxtWjRomrbXbRoEZYvX44VK1YgOzsbHh4e6N+/P8rKymz5ccw7lgqsGwVoz5mWawsN5UyAiIjuW3R0NKKioozHYWFhiIuLe6A2rdEG2TdRh73S0tJMjpOTk6FSqXDw4EH06dPHWO7u7g5fX1+L2hQEAUuXLsWbb76JoUOHAgC+/PJLqNVqbNy4ESNGjLDeB7gXvQ5IiwcgmIsUgAxImw60HcQhMCKyGZ1ewL78iyi5UgaVwhU9gnwgd7LtPKLo6GisWrUKgGFjumbNmmHUqFGYOXMm6tWz3VfPhg0bUL9+fYvqZmZmol+/frh06RK8vb3vqw1yTHY150ej0QAAfHx8TMrXrFmD1atXw9fXF4MHD8asWbOqXP2Qn5+PoqIihIeHG8uUSiV69uyJPXv2mE1+ysvLUV5ebjzWarXW+DiGOT539/iYEADtWUO9oMesc00iojukHS3E3O+PoVBzu+fbT+mK2YODERly//ukWCIyMhJJSUkoLy/Hjz/+iJiYGNSvXx8zZswwqXfjxg04Oztb5Zp3f3+I1QbZN7tZ7aXX6xEXF4fQ0FCEhIQYy59//nmsXr0a27Ztw4wZM/DVV1/hhRdeqLKdoqIiAIBarTYpV6vVxnN3S0hIgFKpNL4CAgKs8IlgmNxszXpERDWQdrQQE1cfMkl8AKBIU4aJqw8h7WihTa/v4uICX19fBAYGYuLEiQgPD0dqaqpxqOqdd96Bv78/2rRpAwA4c+YMhg8fDm9vb/j4+GDo0KE4deqUsT2dTocpU6bA29sbDRs2xLRp0yAIpj3rdw9ZlZeXIz4+HgEBAXBxcUHLli3x73//G6dOnUK/fv0AAA0aNIBMJkN0dLTZNi5duoRRo0ahQYMGcHd3x4ABA0zmkSYnJ8Pb2xubN29Gu3bt4OnpicjISBQW3r6/mZmZ6NGjBzw8PODt7Y3Q0FAUFBRY6U5TTdlN8hMTE4OjR4/im2++MSkfP348+vfvj/bt22PkyJH48ssvkZKSgry8PKtde8aMGdBoNMbXmTNnrNOwp/redWpSj4jIQjq9gLnfH6ty0B0A5n5/DDq9uRq24ebmhhs3bgAAMjIykJubi/T0dGzatAk3b95E//79oVAosGPHDuzatcuYRFS8Z8mSJUhOTsYXX3yBnTt34uLFi0hJSan2mqNGjcLXX3+N5cuX4/jx4/j000/h6emJgIAArF+/HgCQm5uLwsJCLFu2zGwb0dHROHDgAFJTU7Fnzx4IgoCBAwea7DNz7do1LF68GF999RW2b9+O06dPY+rUqQCAW7duISoqCn379sXhw4exZ88ejB8/nlsYiMguhr1iY2OxadMmbN++HU2bNq22bs+ePQEAJ0+eRIsWLSqdr5gbVFxcbLL1dXFxMTp16mS2TRcXF7i4uNxn9NUI7A14+RsmN5v9FSQznA/sbf1rE5Gk7cu/WKnH504CgEJNGfblX0SvFrbdPVoQBGRkZGDz5s2YNGkSzp8/Dw8PD6xcudI43LV69Wro9XqsXLnSmBQkJSXB29sbmZmZiIiIwNKlSzFjxgw8/fTTAIAVK1Zg8+bNVV73jz/+wLp165Cenm6cCvHQQw8Zz1cMb6lUKpM5P3c6ceIEUlNTsWvXLvTubfhdvWbNGgQEBGDjxo0YNmwYAMOGeytWrDB+L8XGxuLtt98GYJhKodFo8OSTTxrPt2vXruY3kqxG1J4fQRAQGxuLlJQUbN26FUFBQfd8T05ODoCqn+kRFBQEX19fZGRkGMu0Wi2ys7PRq1cvq8RtMSc5ELnw74O7M/y/jyMXcLIzEVldyRXLVrdaWu9+bNq0CZ6ennB1dcWAAQPw7LPPYs6cOQCA9u3bm8zz+fXXX3Hy5EkoFAp4enrC09MTPj4+KCsrQ15eHjQaDQoLC43/AAaAevXqoVu3blVePycnB3K5HH379r3vz3D8+HHUq1fP5LoNGzZEmzZtcPz4cWOZu7u7yT/I/fz8jM+g8vHxQXR0NPr374/Bgwdj2bJlJkNiVPtETX5iYmKwevVqrF27FgqFAkVFRSgqKsL169cBAHl5eZg3bx4OHjyIU6dOITU1FaNGjUKfPn3QoUMHYztt27Y1dn3KZDLExcVh/vz5SE1NxZEjRzBq1Cj4+/ubLIesNcFDgOFfAl53JWte/oby4CG1HxMR1XkqhatV692Pfv36IScnBydOnMD169exatUqeHh4AIDxzwpXr15F165dkZOTY/L6448/8Pzzz9/X9SueA1Ub7l4dJpPJTOYjJSUlYc+ePejduze+/fZbtG7dGnv37q21+MiUqMNeiYmJAAyTy+6UlJSE6OhoODs7Y8uWLVi6dClKS0sREBCAZ555Bm+++aZJ/dzcXONKMQCYNm0aSktLMX78eFy+fBmPPvoo0tLS4Opqux/yagUPMSxn5w7PRFRLegT5wE/piiJNWVWD7vBVGpa924qHhwdatmxpUd0uXbrg22+/hUqlgpeXl9k6fn5+yM7ONm6FcuvWLRw8eBBdunQxW799+/bQ6/XIysoyWQFcoaLnSafTVRlXu3btcOvWLWRnZxuHvS5cuIDc3FwEBwdb9NkqdO7cGZ07d8aMGTPQq1cvrF27Fo888kiN2iDrEDX5uXuW/t0CAgKQlZVV43ZkMhnefvtt43irXXCSczk7EdUauZMMswcHY+LqQ5DBdNZhxSD87MHBNt/vx1IjR47Ee++9h6FDh+Ltt99G06ZNUVBQgA0bNmDatGlo2rQpJk+ejAULFqBVq1Zo27Yt3n//fVy+fLnKNps3b47Ro0dj7NixWL58OTp27IiCggKUlJRg+PDhCAwMhEwmw6ZNmzBw4EC4ubnB09PTpI1WrVph6NCheOmll/Dpp59CoVBg+vTpaNKkiXEvuXvJz8/HZ599hiFDhsDf3x+5ubk4ceIERo0a9SC3jB6A3az2IiIi64oM8UPiC13gqzTt9fZVuiLxhS423+enJtzd3bF9+3Y0a9YMTz/9NNq1a4dx48ahrKzM2BP0+uuv48UXX8To0aPRq1cvKBQKPPXUU9W2m5iYiH/+85945ZVX0LZtW7z00kvGpwg0adIEc+fOxfTp06FWqxEbG2u2jaSkJHTt2hVPPvkkevXqBUEQ8OOPP1q8EaK7uzt+//13PPPMM2jdujXGjx+PmJgYTJgwoQZ3iKxJJtyr+0WCtFotlEolNBpNld2vRES2VlZWhvz8fAQFBT3QsL0YOzwT2Up1PxeWfn/bxVJ3IiKyHbmTzObL2YkcCYe9iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9ERER/mzNnDjp16iR2GAgLC0NcXJzYYdRZTH6IiMjqioqKMHnyZLRs2RKurq5Qq9UIDQ1FYmIirl27JnZ49y0zMxMymazaZ4qJ2R5Zhjs8ExHVdXodULAbuFoMeKqBwN6Ghy3byJ9//onQ0FB4e3vj3XffRfv27eHi4oIjR47gs88+Q5MmTTBkyBCz771586bFz8yyZzdu3DA+NZ7sD3t+iIjqsmOpwNIQYNWTwPpxhj+XhhjKbeSVV15BvXr1cODAAQwfPhzt2rXDQw89hKFDh+KHH37A4MGDjXVlMhkSExMxZMgQeHh44J133gFgeCBpixYt4OzsjDZt2uCrr74yvufUqVOQyWTIyckxll2+fBkymQyZmZkAbveoZGRkoFu3bnB3d0fv3r2Rm5trEuuCBQugVquhUCiMD1KtyqlTp9CvXz8AQIMGDSCTyRAdHQ3AMEwVGxuLuLg4NGrUCP37979nnNW1BwB6vR7Tpk2Dj48PfH19MWfOHEv/F9A9MPkhIqqrjqUC60YB2nOm5dpCQ7kNEqALFy7g559/RkxMDDw8PMzWkclMH6o6Z84cPPXUUzhy5AjGjh2LlJQUTJ48Ga+//jqOHj2KCRMmYMyYMdi2bVuN4/m///s/LFmyBAcOHEC9evUwduxY47l169Zhzpw5ePfdd3HgwAH4+fnhk08+qbKtgIAArF+/HgCQm5uLwsJCLFu2zHh+1apVcHZ2xq5du7BixYp7xmZJex4eHsjOzsaiRYvw9ttvIz09vcb3gCrjsBcRUV2k1wFp8QAEMycFADIgbTrQdpBVh8BOnjwJQRDQpk0bk/JGjRoZe1ViYmKwcOFC47nnn38eY8aMMR4/99xziI6OxiuvvAIAmDJlCvbu3YvFixcbe0os9c4776Bv374AgOnTp2PQoEEoKyuDq6srli5dinHjxmHcuHEAgPnz52PLli1V9v7I5XL4+PgAAFQqFby9vU3Ot2rVCosWLTIenzp1qtrY7tVehw4dMHv2bGPbH330ETIyMvDEE09Y9Nmpauz5ISKqiwp2V+7xMSEA2rOGerVg3759yMnJwcMPP4zy8nKTc926dTM5Pn78OEJDQ03KQkNDcfz48Rpft0OHDsb/9vPzAwCUlJQYr9OzZ0+T+r169arxNSp07dr1vt9rzp2xA4b4K2KnB8OeHyKiuuhqsXXrWahly5aQyWSV5tY89NBDAAA3N7dK76lqeKwqTk6Gf7cLwu1erZs3b5qte+fk6YrhNr1eX6PrWeruz1GTOM25e+K3TCazWexSw54fIqK6yFNt3XoWatiwIZ544gl89NFHKC0tva822rVrh127dpmU7dq1C8HBwQCAxo0bAwAKCwuN5++cVFyT62RnZ5uU7d27t9r3VKzg0ul092zfkjhr0h5ZD3t+iIjqosDegJe/YXKz2Xk/MsP5wN5Wv/Qnn3yC0NBQdOvWDXPmzEGHDh3g5OSE/fv34/fff7/n8NAbb7yB4cOHo3PnzggPD8f333+PDRs2YMuWLQAMvUePPPIIFixYgKCgIJSUlODNN9+scZyTJ09GdHQ0unXrhtDQUKxZswa//fabsZfKnMDAQMhkMmzatAkDBw6Em5sbPD09zda1JM6atEfWw54fIqK6yEkORFZMKpbddfLv48gFNtnvp0WLFvjll18QHh6OGTNmoGPHjujWrRs+/PBDTJ06FfPmzav2/VFRUVi2bBkWL16Mhx9+GJ9++imSkpIQFhZmrPPFF1/g1q1b6Nq1K+Li4jB//vwax/nss89i1qxZmDZtGrp27YqCggJMnDix2vc0adIEc+fOxfTp06FWqxEbG1tt/XvFWdP2yDpkwp2DkQQA0Gq1UCqV0Gg08PLyEjscIpKosrIy5OfnIygoCK6urvfXyLFUw6qvOyc/ezUxJD7B5jcaJLJn1f1cWPr9zWEvIqK6LHiIYTl7Le7wTGTvmPwQEdV1TnIg6DGxoyCyG5zzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqQlFREZ544gl4eHjA29tb7HCsJjMzEzKZDJcvXxY1jjlz5qBTp061fl0mP0REZFXR0dGQyWR4+eWXK52LiYmBTCZDdHR07Qd2Hz744AMUFhYiJycHf/zxh9jh1CqZTIaNGzfabXsPgskPEVEdp9PrsL9oP37880fsL9oPnV5n82sGBATgm2++wfXr141lZWVlWLt2LZo1a2bz61tLXl4eunbtilatWkGlUlmt3Rs3blitLTE56udg8kNEVIdtKdiC/uv7Y+zmsYjfEY+xm8ei//r+2FKwxabX7dKlCwICArBhwwZj2YYNG9CsWTN07tzZpK5er0dCQgKCgoLg5uaGjh074r///a/xvE6nw7hx44zn27Rpg2XLlpm0ER0djaioKCxevBh+fn5o2LAhYmJicPPmzWrjTExMRIsWLeDs7Iw2bdrgq6++Mp5r3rw51q9fjy+//LLa3qpbt27h1Vdfhbe3Nxo2bIj4+HiMHj0aUVFRxjphYWGIjY1FXFwcGjVqhP79+wMAsrKy0KNHD7i4uMDPzw/Tp0/HrVu3TGJYunSpyfU6deqEOXPmGI9lMhlWrlyJp556Cu7u7mjVqhVSU1NN3vPjjz+idevWcHNzQ79+/XDq1Klq70vz5s0BAE899RRkMpnxuGKYauXKlSYPFr1XnFW1V+Grr75C8+bNoVQqMWLECFy5cqXa+B4Ukx8iojpqS8EWTMmcguJrxSblJddKMCVzis0ToLFjxyIpKcl4/MUXX2DMmDGV6iUkJODLL7/EihUr8Ntvv+G1117DCy+8gKysLACG5Khp06b4z3/+g2PHjuGtt97CzJkzsW7dOpN2tm3bhry8PGzbtg2rVq1CcnIykpOTq4wvJSUFkydPxuuvv46jR49iwoQJGDNmDLZt2wYA2L9/PyIjIzF8+HAUFhZWSrgqLFy4EGvWrEFSUhJ27doFrVZrdnhn1apVcHZ2xq5du7BixQqcPXsWAwcORPfu3fHrr78iMTER//73vzF//vx73dpK5s6di+HDh+Pw4cMYOHAgRo4ciYsXLwIAzpw5g6effhqDBw9GTk4O/vWvf2H69OnVtrd//34AQFJSEgoLC43HAHDy5EmsX78eGzZsQE5OjkXxVddeXl4eNm7ciE2bNmHTpk3IysrCggULavLxa06gSjQajQBA0Gg0YodCRBJ2/fp14dixY8L169dr/N5bulvC4+seF0KSQ8y+2ie3F8LXhQu3dLesHvfo0aOFoUOHCiUlJYKLi4tw6tQp4dSpU4Krq6tw/vx5YejQocLo0aMFQRCEsrIywd3dXdi9e7dJG+PGjROee+65Kq8RExMjPPPMMybXDAwMFG7duv15hg0bJjz77LNVttG7d2/hpZdeMikbNmyYMHDgQOPxnbFWRa1WC++9957x+NatW0KzZs2EoUOHGsv69u0rdO7c2eR9M2fOFNq0aSPo9Xpj2ccffyx4enoKOp1OEARBCAwMFD744AOT93Xs2FGYPXu28RiA8OabbxqPr169KgAQfvrpJ0EQBGHGjBlCcHCwSRvx8fECAOHSpUtVfi4AQkpKiknZ7Nmzhfr16wslJSUm5ZbGaa49d3d3QavVGsveeOMNoWfPnlXGVd3PhaXf33yqOxFRHXSo5FClHp87CRBQdK0Ih0oOobtvd5vE0LhxYwwaNAjJyckQBAGDBg1Co0aNTOqcPHkS165dwxNPPGFSfuPGDZPhsY8//hhffPEFTp8+jevXr+PGjRuVVgk9/PDDkMvlxmM/Pz8cOXKkyviOHz+O8ePHm5SFhoZW2cNjjkajQXFxMXr06GEsk8vl6Nq1K/R6vUndrl27Vrp+r169IJPJTK5/9epV/O9//6vR3KgOHToY/9vDwwNeXl4oKSkxXqdnz54m9Xv16mVx23cLDAxE48aN7/v9d2vevDkUCoXx2M/Pzxi7rTD5ISKqg85fO2/Vevdr7NixiI2NBWBIYO529epVAMAPP/yAJk2amJxzcXEBAHzzzTeYOnUqlixZgl69ekGhUOC9995Ddna2Sf369eubHMtkskoJiJg8PDxq/B4nJycYOk1uMzePqTY/u7nPYWmc5ojx/41zfoiI6qDG7pb9y9zSevcrMjISN27cwM2bN42TfO8UHBwMFxcXnD59Gi1btjR5BQQEAAB27dqF3r1745VXXkHnzp3RsmVL5OXlPXBs7dq1w65du0zKdu3aheDgYIvbUCqVUKvVJnNYdDodDh06ZNH19+zZY5I07Nq1CwqFAk2bNgVg6D0rLCw0ntdqtcjPz7c4vorr7Nu3z6Rs796993xf/fr1odNZtjLQkjhr0p6tMfmh2/Q6IH8HcOS/hj9rYTksEdlGF1UXqN3VkEFm9rwMMvi6+6KLqotN45DL5Th+/DiOHTtmMiRVQaFQYOrUqXjttdewatUq5OXl4dChQ/jwww+xatUqAECrVq1w4MABbN68GX/88QdmzZplkmzcrzfeeAPJyclITEzEiRMn8P7772PDhg2YOnVqjdqZNGkSEhIS8N133yE3NxeTJ0/GpUuXTIazzHnllVdw5swZTJo0Cb///ju+++47zJ49G1OmTIGTk+Hr+R//+Ae++uor7NixA0eOHMHo0aPN3sfqvPzyyzhx4gTeeOMN5ObmYu3atdVOBK/QvHlzZGRkoKioCJcuXaq2riVx1qQ9W2PyQwbHUoGlIcCqJ4H14wx/Lg0xlBORw5E7yTG9h2FFz90JUMVxfI94yJ1q9kV6P7y8vODl5VXl+Xnz5mHWrFlISEhAu3btEBkZiR9++AFBQUEAgAkTJuDpp5/Gs88+i549e+LChQt45ZVXHjiuqKgoLFu2DIsXL8bDDz+MTz/9FElJSQgLC6tRO/Hx8XjuuecwatQo9OrVC56enujfv79xGXhVmjRpgh9//BH79u1Dx44d8fLLL2PcuHF48803jXVmzJiBvn374sknn8SgQYMQFRWFFi1a1Ci+Zs2aYf369di4cSM6duyIFStW4N13373n+5YsWYL09HQEBARU2p7gbpbEWZP2bE0m3D1IR9BqtVAqldBoNNX+wNYZx1KBdaMA3P1X4e9fmMO/BIKH1HZURJJXVlaG/Px8k/1UampLwRYs2LfAZPKzr7sv4nvEIzww3Fqh0h30ej3atWuH4cOHY968eWKHU+dU93Nh6fc3JzxLnV4HpMWjcuKDv8tkQNp0oO0goBb+hUhE1hUeGI5+Af1wqOQQzl87j8bujdFF1aVWenykoqCgAD///DP69u2L8vJyfPTRR8jPz8fzzz8vdmhUBSY/UlewG9Ceq6aCAGjPGuoFPVZrYRGR9cid5DZbzk6GlU7JycmYOnUqBEFASEgItmzZgnbt2okdGlVB1Dk/CQkJ6N69OxQKBVQqFaKiopCbm2u2riAIGDBggEUPRqt4qN6dr8jISBt8gjrgatX7gNxXPSIiiQkICMCuXbug0Wig1Wqxe/du9OnTR+ywqBqiJj9ZWVmIiYnB3r17kZ6ejps3byIiIgKlpaWV6i5duvSeM+fvFBkZicLCQuPr66+/tmbodYen2rr1iIiI7Jyow15paWkmx8nJyVCpVDh48KBJ1pyTk4MlS5bgwIED8PPzs6htFxcX+Pr6WlS3vLwc5eXlxmOtVmvR++qEwN6Alz+gLYT5eT8yw/nA3rUdGRH9jetSiG6zxs+DXS1112g0AAAfHx9j2bVr1/D888/j448/tjiZAYDMzEyoVCq0adMGEydOxIULF6qsm5CQAKVSaXxVbKwlCU5yIHLh3wd396z9fRy5gJOdiURQsfPttWvXRI6EyH5U/DzcvTN0TdjNUne9Xo8hQ4bg8uXL2Llzp7F8woQJ0Ol0WLlyJQDDttcpKSmIioqqsq1vvvkG7u7uCAoKQl5eHmbOnAlPT0/s2bPH7OZQ5np+AgICpLPUHTAsd0+LN5387NXEkPhwmTuRaAoLC3H58mWoVCq4u7vXaPifyO4IAnDzGqC7CcjrA/XdAQv/TguCgGvXrqGkpATe3t5mR4Icbql7TEwMjh49apL4pKamYuvWrfjll19q1NaIESOM/92+fXt06NABLVq0QGZmJh5//PFK9V1cXIzPkJGs4CGG5ewFuw2Tmz3VhqEu9vgQiaqix9vWD3oksrmb14DrlwH9rdtlTvUAN29DEmQhb2/vGo0EmWMXyU9sbCw2bdqE7du3G59nAgBbt25FXl4evL29Teo/88wzeOyxx5CZmWlR+w899BAaNWqEkydPmk1+6G9Oci5nJ7IzMpkMfn5+UKlUFj8oksjunNwK/GxuT7mK6RULgZb/uGcz9evXr/HjPcwRNfkRBAGTJk1CSkoKMjMzjVuZV5g+fTr+9a9/mZS1b98eH3zwAQYPHmzxdf73v//hwoULFk+WJiKyN3K53Cq/9IlqnV4H/Pw6cLWqPeVkwM9TgeAjtTbaIOqE55iYGKxevRpr166FQqFAUVERioqKcP36dQCG7t6QkBCTF2B4TsmdiVLbtm2RkpICALh69SreeOMN7N27F6dOnUJGRgaGDh2Kli1bmn2iMBEREdlQTTbTrSWiJj+JiYnQaDQICwuDn5+f8fXtt9/WqJ3c3FzjSjG5XI7Dhw9jyJAhaN26NcaNG4euXbtix44dnNdDRERU2+xwM13Rh72s8Z47y9zc3LB58+YHiouIiIisxA4307WrfX6IiIiojqnYTLfSXnIVZIatVWpxM10mP0RERGQ7driZLpMfIiIisq3gIcDwLwGvu1Zde/kbymt5M1272OeHiIiI6jg72kyXyQ8RERHVDjvZTJfDXkRERCQpTH6IiIhIUpj8EBERkaRwzg8R0f3S6+xi8iYR1QyTHyKi+3EsFUiLN31mkZe/YT+TWl62S0Q1w2EvIqKaOpYKrBtV+WGN2kJD+bFUceIiIosw+SEiqgm9ztDjA3PPJvy7LG26oR4R2SUmP0RENVGwu3KPjwkB0J411CMiu8Tkh4ioJq4WW7ceEdU6Jj9ERDXhqbZuPSKqdUx+iIhqIrC3YVVXpadTV5ABXk0M9YjILjH5ISKqCSe5YTk7gMoJ0N/HkQu43w+RHWPyQ0RUU8FDgOFfAl5+puVe/oZy7vNDZNe4ySER0f0IHgK0HcQdnokcEJMfIqL75SQHgh4TOwoiqiEOexEREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFJETX4SEhLQvXt3KBQKqFQqREVFITc312xdQRAwYMAAyGQybNy4sdp2BUHAW2+9BT8/P7i5uSE8PBwnTpywwScgIiIiRyNq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWlqp7tKlSyGTySxqd9GiRVi+fDlWrFiB7OxseHh4oH///igrK7P2RyAiIiIHIxMEQRA7iArnz5+HSqVCVlYW+vTpYyzPycnBk08+iQMHDsDPzw8pKSmIiooy24YgCPD398frr7+OqVOnAgA0Gg3UajWSk5MxYsSISu8pLy9HeXm58Vir1SIgIAAajQZeXl7W/ZBERERkE1qtFkql8p7f33Y150ej0QAAfHx8jGXXrl3D888/j48//hi+vr73bCM/Px9FRUUIDw83limVSvTs2RN79uwx+56EhAQolUrjKyAg4AE/CREREdkru0l+9Ho94uLiEBoaipCQEGP5a6+9ht69e2Po0KEWtVNUVAQAUKvVJuVqtdp47m4zZsyARqMxvs6cOXOfn4KIiIjsXT2xA6gQExODo0ePYufOncay1NRUbN26Fb/88otNr+3i4gIXFxebXoOIiIjsg130/MTGxmLTpk3Ytm0bmjZtaizfunUr8vLy4O3tjXr16qFePUOu9swzzyAsLMxsWxVDY8XFxSblxcXFFg2bERERUd0mavIjCAJiY2ORkpKCrVu3IigoyOT89OnTcfjwYeTk5BhfAPDBBx8gKSnJbJtBQUHw9fVFRkaGsUyr1SI7Oxu9evWy2WchIiIixyDqsFdMTAzWrl2L7777DgqFwjgnR6lUws3NDb6+vmZ7a5o1a2aSKLVt2xYJCQl46qmnIJPJEBcXh/nz56NVq1YICgrCrFmz4O/vX+UKMSIiIpIOUZOfxMREAKg0hJWUlITo6GiL28nNzTWuFAOAadOmobS0FOPHj8fly5fx6KOPIi0tDa6urtYIm4iIiByYXe3zYy8s3SeAiIiI7IdD7vNDREREZGtMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCn1xA6AiIgkTq8DCnYDV4sBTzUQ2BtwkosdFdVhTH6IiEg8x1KBtHhAe+52mZc/ELkQCB4iXlxUp3HYi4iIxHEsFVg3yjTxAQBtoaH8WKo4cTkqvQ7I3wEc+a/hT71O7IjsFnt+iIio9ul1hh4fCGZOCgBkQNp0oO0gDoFZgj1oNcKeHyIiqn0Fuyv3+JgQAO1ZQz2qHnvQaozJDxER1b6rxdatJ1X37EGDoQeNQ2AmmPwQEVHt81Rbt55UsQftvnDOTy3R6XU4VHII56+dR2P3xuii6gK5nY1jO0SMt27g0JGvcF57Go29mqFL+xchr+csdlgmHOI+MkarYIwPILC3YU6KthA6CDjk6oLzcjka63ToUlYOOWSG84G9xY4UgB3fxzt6xnSAmftYuZ6Y7OU+MvmpBVsKtmDBvgUovnb7L5/aXY3pPaYjPDBcxMhuc4gYdyZgwR9rUCyXGcvUv3yA6a1HIvzRGSJGdptD3EfGaBWM8QE5yYHIhdiyaQIWNPRGcb3bX0fqW7cw/cJlhEcusIvJznZ9H//uGdvi7oYFDRuYuY+XEH7tul30oNnTfZQJgmBuoFDStFotlEolNBoNvLy8HqitLQVbMCVzCoS7xmNlMHyBvx/2vug/PA4R484ETDm5xhCh7HbyI/v7r+/7LcVPgBziPjJGq2CM1mGI8TUIglD551omw/thH9hJjHZ8H/U6bPmkPaZ4OlX9+/GqHuGvHBE1kayt+2jp9/cDzfkpKyvDqlWr8Mknn+DEiRMP0lSdpNPrsGDfgkr/swEYyxbuWwidiBPRHCLGWzew4I/KiQ8ACH8fL/xjDXS3btR+cH9ziPvIGK2CMVrH7RhRxc+1zI5itOP7CGCBT4Pqfz829IGY053t8T5anPxMmTIFkyZNMh7fuHEDvXr1wksvvYSZM2eic+fO2LNnT40unpCQgO7du0OhUEClUiEqKgq5ubkmdSZMmIAWLVrAzc0NjRs3xtChQ/H7779X2250dDRkMpnJKzIyskaxWcOhkkMm3Xt3EyCg6FoRDpUcqsWoTDlEjEe+Mgx13fWDXUGQyVAkl+HQka9qObLbHOI+MkarYIzWwRit41DJIRTf1Fb/+/GGRvwY7ew+Wpz8/Pzzz3jiiSeMx2vWrEFBQQFOnDiBS5cuYdiwYZg/f36NLp6VlYWYmBjs3bsX6enpuHnzJiIiIlBaWmqs07VrVyQlJeH48ePYvHkzBEFAREQEdLrqM8TIyEgUFhYaX19//XWNYrOG89fOW7WeLThEjNrTVq1nCw5xHxmjVTBG62CM1sEY74/FE55Pnz6N4OBg4/HPP/+Mf/7znwgMDAQATJ48GQMHDqzRxdPS0kyOk5OToVKpcPDgQfTp0wcAMH78eOP55s2bY/78+ejYsSNOnTqFFi1aVNm2i4sLfH19axSPtTV2b2zVerbgEDF6NbNqPVtwiPvIGK2CMVoHY7QOxnh/LO75cXJywp1zo/fu3YtHHnnEeOzt7Y1Lly49UDAajQYA4OPjY/Z8aWkpkpKSEBQUhICAgGrbyszMhEqlQps2bTBx4kRcuHChyrrl5eXQarUmL2voouoCtbvaOKHrbjLI4Ovuiy6qLla53v1wiBjbvwi1TjBO3rubTBDgqxPQpf2LtRzZbQ5xHxmjVTBG62CM1sEY74/FyU+7du3w/fffAwB+++03nD59Gv369TOeLygogFp9/0vp9Ho94uLiEBoaipCQEJNzn3zyCTw9PeHp6YmffvoJ6enpcHauem+XyMhIfPnll8jIyMDChQuRlZWFAQMGVDlUlpCQAKVSaXzdK7GylNxJjuk9pgNApf/pFcfxPeJF3SvCIWKs54zprUcaYrorAao4jm89UtT9fhziPjJGq2CM1sEYrYMx3h+Ll7qnpKRgxIgRePTRR/Hbb7+he/fuxmQIAOLj45Gfn49169bdVyATJ07ETz/9hJ07d6Jp06Ym5zQaDUpKSlBYWIjFixfj7Nmz2LVrF1xdXS1q+88//0SLFi2wZcsWPP7445XOl5eXo7y83His1WoREBBglaXugPm9DXzdfRHfI170ZZwVHCJGM/v8+OoExNv5Pj92dx8Zo1UwRutgjNbBGA0sXepeo31+MjIysGnTJvj6+mLSpElwd3c3nps7dy769u2LsLCwGgcbGxuL7777Dtu3b0dQUFC1dW/cuIEGDRpg5cqVeO655yy+RuPGjTF//nxMmDDhnnWtuc9PBXvZ1bI6DhEjd3i2CsZoHYzROhijdTBGGyQ/b7/9NqZOnWqS8DwoQRAwadIkpKSkIDMzE61atbrne8rLy9GgQQN88skniI6Otug6//vf/9CsWTNs3LgRQ4YMuWd9WyQ/REREZFtW3+Rw7ty5uHr1qlWCqxATE4PVq1dj7dq1UCgUKCoqQlFREa5fvw7AMFyVkJCAgwcP4vTp09i9ezeGDRsGNzc3k5Vlbdu2RUpKCgDg6tWreOONN7B3716cOnUKGRkZGDp0KFq2bIn+/ftbNX4iIiJyPBYnP7Z4CkZiYiI0Gg3CwsLg5+dnfH377bcAAFdXV+zYsQMDBw5Ey5Yt8eyzz0KhUGD37t1QqVTGdnJzc40rxeRyOQ4fPowhQ4agdevWGDduHLp27YodO3bAxcXF6p+BiIiIHIvFw15OTk4oLi5G48bi7RVQWzjsRUREJvQ6oGC34enonmrD0+btbD4NWf79XaOnurdu3RqyKrbQrnDx4sWaNElERGTfjqUCafGA9tztMi9/IHIhEHzveaRkf2qU/MydOxdKpdJWsRAREdmXY6nAulHA3Q/l1BYayod/yQTIAdUo+RkxYoTJXBsiIqI6S68z9PiYeRq5oUwGpE0H2g7iEJiDsXjC872Gu4iIiOqUgt2mQ12VCID2rKEeORRRV3sRERHZravF965Tk3pkNywe9tLr9baMg4iIyL54Wvi8Skvrkd2wuOeHiIhIUgJ7G1Z1VfE0ckAGeDUx1COHwuSHiIjIHCe5YTk7gMoJ0N/HkQs42dkBMfkhIiKqSvAQw3J2Lz/Tci9/LnN3YDVa6k5ERCQ5wUMMy9m5w3OdweSHiIjoXpzkQNBjYkdBVsJhLyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUUZOfhIQEdO/eHQqFAiqVClFRUcjNzTWpM2HCBLRo0QJubm5o3Lgxhg4dit9//73adgVBwFtvvQU/Pz+4ubkhPDwcJ06csOVHISIiIgchavKTlZWFmJgY7N27F+np6bh58yYiIiJQWlpqrNO1a1ckJSXh+PHj2Lx5MwRBQEREBHQ6XZXtLlq0CMuXL8eKFSuQnZ0NDw8P9O/fH2VlZbXxsYiIiMiOyQRBEMQOosL58+ehUqmQlZWFPn36mK1z+PBhdOzYESdPnkSLFi0qnRcEAf7+/nj99dcxdepUAIBGo4FarUZycjJGjBhxzzi0Wi2USiU0Gg28vLwe7EMRERFRrbD0+9uu5vxoNBoAgI+Pj9nzpaWlSEpKQlBQEAICAszWyc/PR1FREcLDw41lSqUSPXv2xJ49e8y+p7y8HFqt1uRFREREdZPdJD96vR5xcXEIDQ1FSEiIyblPPvkEnp6e8PT0xE8//YT09HQ4OzubbaeoqAgAoFarTcrVarXx3N0SEhKgVCqNr6oSKyIiInJ8dpP8xMTE4OjRo/jmm28qnRs5ciR++eUXZGVloXXr1hg+fLhV5+/MmDEDGo3G+Dpz5ozV2iYiIiL7Uk/sAAAgNjYWmzZtwvbt29G0adNK5yt6ZFq1aoVHHnkEDRo0QEpKCp577rlKdX19fQEAxcXF8PPzM5YXFxejU6dOZq/v4uICFxcX63wYIiIismui9vwIgoDY2FikpKRg69atCAoKsug9giCgvLzc7PmgoCD4+voiIyPDWKbVapGdnY1evXpZLXYiIiJyTKImPzExMVi9ejXWrl0LhUKBoqIiFBUV4fr16wCAP//8EwkJCTh48CBOnz6N3bt3Y9iwYXBzc8PAgQON7bRt2xYpKSkAAJlMhri4OMyfPx+pqak4cuQIRo0aBX9/f0RFRYnxMYmIiMiOiDrslZiYCAAICwszKU9KSkJ0dDRcXV2xY8cOLF26FJcuXYJarUafPn2we/duqFQqY/3c3FzjSjEAmDZtGkpLSzF+/HhcvnwZjz76KNLS0uDq6lorn4uIiIjsl13t82MvuM8PERGR43HIfX6IiIiIbI3JDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhS7GKHZyIiIqr7dHoB+/IvouRKGVQKV/QI8oHcSVbrcTD5ISIiIptLO1qIud8fQ6Hm9rM5/ZSumD04GJEhftW80/o47EVERFQH6PQC9uRdwHc5Z7En7wJ0evvZxi/taCEmrj5kkvgAQJGmDBNXH0La0cJajYc9P0RERA7OnnpV7qbTC5j7/TGYS8UEADIAc78/hieCfWttCIw9P0RERA7M3npV7rYv/2Kl2O4kACjUlGFf/sVai4nJD5EE2XP3OBFZ7l69KoChV0XMn/GSK1UnPvdTzxo47EVkbXodULAbuFoMeKqBwN6Ak1zsqIzsuXuciGqmJr0qvVo0rL3A7qBSWPZQcUvrWQOTHyJrOpYKpMUD2nO3y7z8gciFQPAQ8eL6W0X3+N3/BqzoHk98oQsTICIHYo+9KnfrEeQDP6UrijRlZnuoZAB8lYZl77WFw15E1nIsFVg3yjTxAQBtoaH8WKo4cf3NEbrHiahm7LFX5W5yJxlmDw4GYEh07lRxPHtwcK3u98Pkh8ga9DpDj091qUXadEM9kdjjpEMiejAVvSpVpQ0yGIa1a7NXxZzIED8kvtAFvkrTJMxX6SpKjzOHvYisoWB35R4fEwKgPWuoF/RYrYV1J0foHieimqnoVZm4+hBkMP3nl1i9KlWJDPHDE8G+3OGZqM64WmzdejbgCN3jRFRzFb0qdy9k8LXDhQxyJ5loE6/vxOSHyBo81datZwP2OOmQCLCf5z05MnvqVXEETH6IrCGwt2FVl7YQ5uf9yAznA3vXdmRGjtQ9TtLBrResx156VRwBJzwTWYOT3LCcHUCV6xkiF4i+34+9TTokabP3nYmp7pIJgsB1rXfRarVQKpXQaDTw8vISOxxyJGb3+WliSHzsYJ+fChxmILHp9AIeXbi1yhWIFcOwO+P/wb+bZDFLv7857EVkTcFDgLaD7HqHZ4Dd4yQ+R9iZmOouJj9E1uYkF205O5Gj4NYLJCbO+SEiolrHrRdITOz5ISL7ZOcPiKUHw60XSExMfojI/tj5A2LpwXHrBRITh72IyL7Y+QNiyXq49QKJhUvdzeBSdyKR6HXA0pBqnpP292aRcUc4BFaHcOsFshYudScix+MAD4gl6+PWC1TbOOxFRPbDAR4QS0SOjz0/RFbGLvwH4AAPiCUix8fkh8iK+JDGB+QAD4glIsfHYS8iK+FDGq3AQR4QS0SOjckPkRXo9ALmfn/MbF9FRdnc749Bp+fiynsKHgIM/xLwuqunzMvfUG5H+/zo9AL25F3AdzlnsSfvAv//EjkIDnsRWQEf0mhlDvCAWA5xEjkuJj9EVsCHNNqAHT8gtmKI8+5+noohTm7QR2TfOOxFZAV8SKN0cIiTyPEx+SGygoqHNFa1oF0Gw5AIH9Lo+GoyxElE9onJD5EVVDykEahyjRIf0lhHcIhTmji5vW7hnB9yKPa8gWDFQxrvngTry0mwdQqHOKWHk9vrHiY/5DAc4RdQZIgfngj2tdsEjR5cxRBnkaasqm0Y4cshzjqDk9vrJg57kUNwpA0EKx7SOLRTE/Rq0ZCJTx3DIU7p4OT2uovJD9k9/gKyAb0OyN8BHPmv4U+9TuyIHErFEKev0nRoy1fpyp6AOoST2+suDnuR3eMGglZ2LBVIiwe0526XefkbHithR7sn2zsOcdZ9nNxed4na85OQkIDu3btDoVBApVIhKioKubm5xvMXL17EpEmT0KZNG7i5uaFZs2Z49dVXodFoqm03OjoaMpnM5BUZGWnrj0M2wl9AVnQsFVg3yjTxAQwPEl03ynCeLOYIQ5xcpXT/OLm97hK15ycrKwsxMTHo3r07bt26hZkzZyIiIgLHjh2Dh4cHzp07h3PnzmHx4sUIDg5GQUEBXn75ZZw7dw7//e9/q207MjISSUlJxmMXFxdbfxyyEf4CshK9ztDjU+UAogxIm254rIQdPUaC7p8jLBKwZ5zcXneJmvykpaWZHCcnJ0OlUuHgwYPo06cPQkJCsH79euP5Fi1a4J133sELL7yAW7duoV69qsN3cXGBr6+vzWKn2sNfQFZSsLtyj48JAdCeNdSz08dKkOW4SunBVUxun7j6EGQw/WcDJ7c7Nrua8FwxnOXjU/WXmEajgZeXV7WJDwBkZmZCpVKhTZs2mDhxIi5cuFBl3fLycmi1WpMX2Q+urrGSq8XWrUd2i4sErIeT2+smu5nwrNfrERcXh9DQUISEhJit89dff2HevHkYP358tW1FRkbi6aefRlBQEPLy8jBz5kwMGDAAe/bsgVxeuTs/ISEBc+fOtcrnINvgBoJW4Km2bj2yW1wkYF2c3F73yARBsIvUf+LEifjpp5+wc+dONG3atNJ5rVaLJ554Aj4+PkhNTUX9+vUtbvvPP/9EixYtsGXLFjz++OOVzpeXl6O8vNzkWgEBAcZeJrIf9rzDs93T64ClIYbJzVUNIHr5A3FHOOfHwX2XcxaTv8m5Z71lIzphaKcmtg+IqJZotVoolcp7fn/bRc9PbGwsNm3ahO3bt5tNfK5cuYLIyEgoFAqkpKTUKPEBgIceegiNGjXCyZMnzSY/Li4unBDtICpW19B9cJIblrOvGwVUNYMhcgETnzqAiwSIqifqnB9BEBAbG4uUlBRs3boVQUFBlepotVpERETA2dkZqampcHWt+Q/r//73P1y4cAF+fhwaIYkLHgIM/xLwuutnwcvfUM59fuqEikUCVfWJymBY9cVFAiRVog57vfLKK1i7di2+++47tGnTxliuVCrh5uZmTHyuXbuGlJQUeHh4GOs0btzYOH+nbdu2SEhIwFNPPYWrV69i7ty5eOaZZ+Dr64u8vDxMmzYNV65cwZEjRyzq4bG026yu4ZCShOh1hlVdV4sNc3wCe7PHp46pWO0FmF+lxMm6VBdZ+v0tavIjk5n/Yk1KSkJ0dDQyMzPRr18/s3Xy8/PRvHlzYzsV77l+/TqioqLwyy+/4PLly/D390dERATmzZsHtdqyiZxSTH64HwhR3cOfa5Iah0h+7JXUkp+q9gPhvxCJHB97dElKHGrCM4nnXvuByGDYD+SJYF/+wiRyQFwkQFSZXW1ySLWPTy0mIiKpYfIjcXxoKBERSQ2TH4njfiBERCQ1TH4kjvuBEBGR1DD5kTg+NJSIiKSGyQ/xqcVERCQpXOpOAPjUYiIikg4mP2TE/UCIiEgKmPwQkV3izsREZCtMfojI7vCZVERkS5zwTER2peJZc3fvPF6kKcPE1YeQdrRQpMiIqK5g8kNEduNez5oDDM+a0+n5PGYiun9MfmqJTi9gT94FfJdzFnvyLvCXN5EZfNYcEdUGzvmpBZy/QGQZPmuOiGoDe35sjPMXiCzHZ80RUW1g8mNDnL9AVDN81hwR1QYmPzbE+QtENcNnzRFRbWDyY0Ocv0BUc3zWHBHZGic82xDnLxDdHz5rjohsicmPDVXMXyjSlJmd9yOD4V+znL9AVBmfNUdEtsJhLxvi/AUiIiL7w+THxjh/gYiIyL5w2KsWcP4CERGR/WDyU0s4f4GIiMg+cNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj8JCQno3r07FAoFVCoVoqKikJubazx/8eJFTJo0CW3atIGbmxuaNWuGV199FRqNptp2BUHAW2+9BT8/P7i5uSE8PBwnTpyw9cchIiIiByBq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWgoAOHfuHM6dO4fFixfj6NGjSE5ORlpaGsaNG1dtu4sWLcLy5cuxYsUKZGdnw8PDA/3790dZWVltfCwiIiKyYzJBEASxg6hw/vx5qFQqZGVloU+fPmbr/Oc//8ELL7yA0tJS1KtXr9J5QRDg7++P119/HVOnTgUAaDQaqNVqJCcnY8SIEZXeU15ejvLycuOxVqtFQEAANBoNvLy8rPTpiIiIyJa0Wi2USuU9v7/tas5PxXCWj49PtXW8vLzMJj4AkJ+fj6KiIoSHhxvLlEolevbsiT179ph9T0JCApRKpfEVEBDwAJ+CiMiO6HVA/g7gyH8Nf+p1YkdEJDrzGYQI9Ho94uLiEBoaipCQELN1/vrrL8ybNw/jx4+vsp2ioiIAgFqtNilXq9XGc3ebMWMGpkyZYjyu6PkhInJox1KBtHhAe+52mZc/ELkQCB4iXlxEIrOb5CcmJgZHjx7Fzp07zZ7XarUYNGgQgoODMWfOHKte28XFBS4uLlZtk4hIVMdSgXWjANw1s0FbaCgf/iUTIJIsuxj2io2NxaZNm7Bt2zY0bdq00vkrV64gMjISCoUCKSkpqF+/fpVt+fr6AgCKi4tNyouLi43niIjqNL3O0ONzd+ID3C5Lm84hMJIsUZMfQRAQGxuLlJQUbN26FUFBQZXqaLVaREREwNnZGampqXB1da22zaCgIPj6+iIjI8OkjezsbPTq1cvqn4GIyO4U7DYd6qpEALRnDfWIJEjU5CcmJgarV6/G2rVroVAoUFRUhKKiIly/fh3A7cSntLQU//73v6HVao11dLrb/2Jp27YtUlJSAAAymQxxcXGYP38+UlNTceTIEYwaNQr+/v6IiooS42MSEdWuq8X3rlOTekR1jKhzfhITEwEAYWFhJuVJSUmIjo7GoUOHkJ2dDQBo2bKlSZ38/Hw0b94cAJCbm2uy8eG0adNQWlqK8ePH4/Lly3j00UeRlpZ2z14jIqI6wVN97zo1qUdUx9jVPj/2wtJ9AoiI7JJeBywNMUxuNjvvR2ZY9RV3BHCS13Z0RDbjkPv8EBGRFTjJDcvZAQCyu07+fRy5gIkPSRaTHyKiuih4iGE5u5efabmXP5e5k+TZzT4/RERkZcFDgLaDDKu6rhYb5vgE9maPD0kekx8iorrMSQ4EPSZ2FER2hcNeREREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCnc4dmMigfda7VakSMhIiIiS1V8b1d8j1eFyY8ZV65cAQAEBASIHAkRERHV1JUrV6BUKqs8LxPulR5JkF6vx7lz56BQKCCTyazWrlarRUBAAM6cOQMvLy+rtSs1vI/WwftoHbyP1sH7aB1Sv4+CIODKlSvw9/eHk1PVM3vY82OGk5MTmjZtarP2vby8JPmX0tp4H62D99E6eB+tg/fROqR8H6vr8anACc9EREQkKUx+iIiISFKY/NQiFxcXzJ49Gy4uLmKH4tB4H62D99E6eB+tg/fROngfLcMJz0RERCQp7PkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTn1r08ccfo3nz5nB1dUXPnj2xb98+sUNyKAkJCejevTsUCgVUKhWioqKQm5srdlgOb8GCBZDJZIiLixM7FIdz9uxZvPDCC2jYsCHc3NzQvn17HDhwQOywHIpOp8OsWbMQFBQENzc3tGjRAvPmzbvns5mkbvv27Rg8eDD8/f0hk8mwceNGk/OCIOCtt96Cn58f3NzcEB4ejhMnTogTrB1i8lNLvv32W0yZMgWzZ8/GoUOH0LFjR/Tv3x8lJSVih+YwsrKyEBMTg7179yI9PR03b95EREQESktLxQ7NYe3fvx+ffvopOnToIHYoDufSpUsIDQ1F/fr18dNPP+HYsWNYsmQJGjRoIHZoDmXhwoVITEzERx99hOPHj2PhwoVYtGgRPvzwQ7FDs2ulpaXo2LEjPv74Y7PnFy1ahOXLl2PFihXIzs6Gh4cH+vfvj7KyslqO1E4JVCt69OghxMTEGI91Op3g7+8vJCQkiBiVYyspKREACFlZWWKH4pCuXLkitGrVSkhPTxf69u0rTJ48WeyQHEp8fLzw6KOPih2Gwxs0aJAwduxYk7Knn35aGDlypEgROR4AQkpKivFYr9cLvr6+wnvvvWcsu3z5suDi4iJ8/fXXIkRof9jzUwtu3LiBgwcPIjw83Fjm5OSE8PBw7NmzR8TIHJtGowEA+Pj4iByJY4qJicGgQYNM/l6S5VJTU9GtWzcMGzYMKpUKnTt3xueffy52WA6nd+/eyMjIwB9//AEA+PXXX7Fz504MGDBA5MgcV35+PoqKikx+tpVKJXr27MnvnL/xwaa14K+//oJOp4NarTYpV6vV+P3330WKyrHp9XrExcUhNDQUISEhYofjcL755hscOnQI+/fvFzsUh/Xnn38iMTERU6ZMwcyZM7F//368+uqrcHZ2xujRo8UOz2FMnz4dWq0Wbdu2hVwuh06nwzvvvIORI0eKHZrDKioqAgCz3zkV56SOyQ85pJiYGBw9ehQ7d+4UOxSHc+bMGUyePBnp6elwdXUVOxyHpdfr0a1bN7z77rsAgM6dO+Po0aNYsWIFk58aWLduHdasWYO1a9fi4YcfRk5ODuLi4uDv78/7SDbDYa9a0KhRI8jlchQXF5uUFxcXw9fXV6SoHFdsbCw2bdqEbdu2oWnTpmKH43AOHjyIkpISdOnSBfXq1UO9evWQlZWF5cuXo169etDpdGKH6BD8/PwQHBxsUtauXTucPn1apIgc0xtvvIHp06djxIgRaN++PV588UW89tprSEhIEDs0h1XxvcLvnKox+akFzs7O6Nq1KzIyMoxler0eGRkZ6NWrl4iRORZBEBAbG4uUlBRs3boVQUFBYofkkB5//HEcOXIEOTk5xle3bt0wcuRI5OTkQC6Xix2iQwgNDa201cIff/yBwMBAkSJyTNeuXYOTk+lXkVwuh16vFykixxcUFARfX1+T7xytVovs7Gx+5/yNw161ZMqUKRg9ejS6deuGHj16YOnSpSgtLcWYMWPEDs1hxMTEYO3atfjuu++gUCiMY9dKpRJubm4iR+c4FApFpXlSHh4eaNiwIedP1cBrr72G3r17491338Xw4cOxb98+fPbZZ/jss8/EDs2hDB48GO+88w6aNWuGhx9+GL/88gvef/99jB07VuzQ7NrVq1dx8uRJ43F+fj5ycnLg4+ODZs2aIS4uDvPnz0erVq0QFBSEWbNmwd/fH1FRUeIFbU/EXm4mJR9++KHQrFkzwdnZWejRo4ewd+9esUNyKADMvpKSksQOzeFxqfv9+f7774WQkBDBxcVFaNu2rfDZZ5+JHZLD0Wq1wuTJk4VmzZoJrq6uwkMPPST83//9n1BeXi52aHZt27ZtZn8fjh49WhAEw3L3WbNmCWq1WnBxcREef/xxITc3V9yg7YhMELiNJhEREUkH5/wQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQkeRER0dzm38iCWPyQ0Q2ER0dDZlMVukVGRkpdmhYtmwZkpOTxQ4DACCTybBx40axwyCSFD7YlIhsJjIyEklJSSZlLi4uIkUD6HQ6yGQyKJVK0WIgIvGx54eIbMbFxQW+vr4mrwYNGiAzMxPOzs7YsWOHse6iRYugUqlQXFwMAAgLC0NsbCxiY2OhVCrRqFEjzJo1C3c+jrC8vBxTp05FkyZN4OHhgZ49eyIzM9N4Pjk5Gd7e3khNTUVwcDBcXFxw+vTpSsNeYWFhmDRpEuLi4tCgQQOo1Wp8/vnnKC0txZgxY6BQKNCyZUv89NNPJp/v6NGjGDBgADw9PaFWq/Hiiy/ir7/+Mmn31VdfxbRp0+Dj4wNfX1/MmTPHeL558+YAgKeeegoymcx4TES2xeSHiGpdWFgY4uLi8OKLL0Kj0eCXX37BrFmzsHLlSqjVamO9VatWoV69eti3bx+WLVuG999/HytXrjSej42NxZ49e/DNN9/g8OHDGDZsGCIjI3HixAljnWvXrmHhwoVYuXIlfvvtN6hUKrMxrVq1Co0aNcK+ffswadIkTJw4EcOGDUPv3r1x6NAhRERE4MUXX8S1a9cAAJcvX8Y//vEPdO7cGQcOHEBaWhqKi4sxfPjwSu16eHggOzsbixYtwttvv4309HQAwP79+wEASUlJKCwsNB4TkY2J/FR5IqqjRo8eLcjlcsHDw8Pk9c477wiCIAjl5eVCp06dhOHDhwvBwcHCSy+9ZPL+vn37Cu3atRP0er2xLD4+XmjXrp0gCIJQUFAgyOVy4ezZsybve/zxx4UZM2YIgiAISUlJAgAhJyenUmxDhw41udajjz5qPL5165bg4eEhvPjii8aywsJCAYCwZ88eQRAEYd68eUJERIRJu2fOnBEACLm5uWbbFQRB6N69uxAfH288BiCkpKRUcReJyBY454eIbKZfv35ITEw0KfPx8QEAODs7Y82aNejQoQMCAwPxwQcfVHr/I488AplMZjzu1asXlixZAp1OhyNHjkCn06F169Ym7ykvL0fDhg2Nx87OzujQocM9Y72zjlwuR8OGDdG+fXtjWUWPVElJCQDg119/xbZt2+Dp6Vmprby8PGNcd1/bz8/P2AYRiYPJDxHZjIeHB1q2bFnl+d27dwMALl68iIsXL8LDw8Pitq9evQq5XI6DBw9CLpebnLszIXFzczNJoKpSv359k2OZTGZSVtGGXq83Xn/w4MFYuHBhpbb8/PyqbbeiDSISB5MfIhJFXl4eXnvtNXz++ef49ttvMXr0aGzZsgVOTrenImZnZ5u8Z+/evWjVqhXkcjk6d+4MnU6HkpISPPbYY7UdPrp06YL169ejefPmqFfv/n+V1q9fHzqdzoqREdG9cMIzEdlMeXk5ioqKTF5//fUXdDodXnjhBfTv3x9jxoxBUlISDh8+jCVLlpi8//Tp05gyZQpyc3Px9ddf48MPP8TkyZMBAK1bt8bIkSMxatQobNiwAfn5+di3bx8SEhLwww8/2PyzxcTE4OLFi3juueewf/9+5OXlYfPmzRgzZkyNkpnmzZsjIyMDRUVFuHTpkg0jJqIK7PkhIptJS0szGQICgDZt2uD5559HQUEBNm3aBMAwTPTZZ5/hueeeQ0REBDp27AgAGDVqFK5fv44ePXpALpdj8uTJGD9+vLGtpKQkzJ8/H6+//jrOnj2LRo0a4ZFHHsGTTz5p88/m7++PXbt2IT4+HhERESgvL0dgYCAiIyNNeq/uZcmSJZgyZQo+//xzNGnSBKdOnbJd0EQEAJAJwh2bZhAR2YmwsDB06tQJS5cuFTsUIqpjOOxFREREksLkh4iIiCSFw15EREQkKez5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpPw/PrlIRqXe7ggAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2368,32 +2255,6 @@ "plt.legend()\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "tensor([25.0012, 24.5258, 23.5257, 22.7859, 22.5127, 22.6713, 24.3160, 21.9570,\n", - " 23.5879, 23.3990, 23.5648, 24.4520])" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -2412,7 +2273,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.10.12" }, "orig_nbformat": 4 }, diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index f34ba50..cf4f35d 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -462,12 +462,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled'. " + "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -484,29 +484,14 @@ " periods_of_interest = periods_of_interest,\n", " dataset = 'Weather',\n", " architecture = 'Transformer'\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - " " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ + ")\n", + "\n", "# call weights & biases service\n", "wandb.login()\n", + "\n", "# initialize weights & biases service\n", "mode = 'disabled'\n", - "\n", - "# mode = 'online'\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", "team = 'ai4s2s-demo' # <- your own team namehere\n", "project = 'test-autoencoder' # <- your own project name here\n", "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index 601e9c5..fb6aba6 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -541,9 +541,6 @@ } ], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", "hyperparameters = dict(\n", " epoch = 100,\n", " num_encoder_layers = 1,\n", @@ -559,10 +556,15 @@ " architecture = 'Transformer'\n", ")\n", "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-transformer', entity='ai4s2s', mode=mode)\n", + "mode = 'disabled'\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-transformer' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, From b061d9b5c176af4417eb730955d1e569007cc424 Mon Sep 17 00:00:00 2001 From: jannesvaningen <82503135+jannesvaningen@users.noreply.github.com> Date: Wed, 5 Jul 2023 09:54:50 +0100 Subject: [PATCH 03/12] removed '/models' in output_path for model --- workflow/pred_temperature_transformer.ipynb | 1005 +------------------ 1 file changed, 45 insertions(+), 960 deletions(-) diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index fb6aba6..15a7abe 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -89,31 +89,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='08-01',\n", - " allow_overlap=True,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", - " ]\n", - ")" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check calendar\n", "calendar" @@ -130,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -163,20 +141,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -195,99 +162,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-4-3-2-11
anchor_year
2021[2020-12-01, 2021-01-01)[2021-02-01, 2021-03-01)[2021-04-01, 2021-05-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-12-01, 2020-01-01)[2020-02-01, 2020-03-01)[2020-04-01, 2020-05-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-12-01, 2019-01-01)[2019-02-01, 2019-03-01)[2019-04-01, 2019-05-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "calendar.show()[:3]" ] @@ -302,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -324,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -345,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -363,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -373,7 +250,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -405,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -436,19 +313,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pytorch version 2.0.1+cu117\n", - "Is CUDA available? False\n", - "Device to be used for computation: cpu\n" - ] - } - ], + "outputs": [], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -468,78 +335,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230623_145035-vm4vj2j9" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run vocal-fire-2 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-transformer" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-transformer/runs/vm4vj2j9" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "hyperparameters = dict(\n", " epoch = 100,\n", @@ -561,7 +359,7 @@ "\n", "# initialize weights & biases service\n", "mode = 'disabled'\n", - "# mode = 'online' # <- uncomment this line to enable wandb\n", + "#mode = 'online' # <- uncomment this line to enable wandb\n", "team = 'ai4s2s-demo' # <- your own team namehere\n", "project = 'test-transformer' # <- your own project name here\n", "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", @@ -570,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -595,116 +393,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model details:\n", - " Transformer(\n", - " (encoder): TransformerEncoder(\n", - " (layers): ModuleList(\n", - " (0): TransformerEncoderLayer(\n", - " (attention): Residual(\n", - " (sublayer): MultiHeadAttention(\n", - " (heads): ModuleList(\n", - " (0-1): 2 x AttentionHead(\n", - " (q): Linear(in_features=65, out_features=32, bias=True)\n", - " (k): Linear(in_features=65, out_features=32, bias=True)\n", - " (v): Linear(in_features=65, out_features=32, bias=True)\n", - " )\n", - " )\n", - " (linear): Linear(in_features=64, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (feed_forward): Residual(\n", - " (sublayer): Sequential(\n", - " (0): Linear(in_features=65, out_features=12, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=12, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (decoder): TransformerDecoder(\n", - " (layers): ModuleList(\n", - " (0): TransformerDecoderLayer(\n", - " (attention_1): Residual(\n", - " (sublayer): MultiHeadAttention(\n", - " (heads): ModuleList(\n", - " (0-1): 2 x AttentionHead(\n", - " (q): Linear(in_features=65, out_features=32, bias=True)\n", - " (k): Linear(in_features=65, out_features=32, bias=True)\n", - " (v): Linear(in_features=65, out_features=32, bias=True)\n", - " )\n", - " )\n", - " (linear): Linear(in_features=64, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (attention_2): Residual(\n", - " (sublayer): MultiHeadAttention(\n", - " (heads): ModuleList(\n", - " (0-1): 2 x AttentionHead(\n", - " (q): Linear(in_features=65, out_features=32, bias=True)\n", - " (k): Linear(in_features=65, out_features=32, bias=True)\n", - " (v): Linear(in_features=65, out_features=32, bias=True)\n", - " )\n", - " )\n", - " (linear): Linear(in_features=64, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (feed_forward): Residual(\n", - " (sublayer): Sequential(\n", - " (0): Linear(in_features=65, out_features=12, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=12, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " )\n", - " (linear): Linear(in_features=65, out_features=65, bias=True)\n", - " )\n", - ")\n", - "Optimizer details:\n", - " Adam (\n", - "Parameter Group 0\n", - " amsgrad: False\n", - " betas: (0.9, 0.999)\n", - " capturable: False\n", - " differentiable: False\n", - " eps: 1e-08\n", - " foreach: None\n", - " fused: None\n", - " lr: 0.01\n", - " maximize: False\n", - " weight_decay: 0\n", - ")\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Initialize model\n", "model = Transformer(num_encoder_layers = config[\"num_encoder_layers\"],\n", @@ -725,17 +416,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "58905\n" - ] - } - ], + "outputs": [], "source": [ "# display the total number of parameters\n", "utils.total_num_param(model)\n", @@ -753,517 +436,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 506.848511\n", - "Epoch : 0 [8/36(22%)]\tLoss: 479.035522\n", - "Epoch : 0 [16/36(44%)]\tLoss: 440.041077\n", - "Epoch : 0 [24/36(67%)]\tLoss: 390.214905\n", - "Epoch : 0 [32/36(89%)]\tLoss: 335.310120\n", - "Epoch : 1 [0/36(0%)]\tLoss: 293.446838\n", - "Epoch : 1 [8/36(22%)]\tLoss: 259.905426\n", - "Epoch : 1 [16/36(44%)]\tLoss: 216.974609\n", - "Epoch : 1 [24/36(67%)]\tLoss: 172.168121\n", - "Epoch : 1 [32/36(89%)]\tLoss: 124.433838\n", - "Epoch : 2 [0/36(0%)]\tLoss: 93.938248\n", - "Epoch : 2 [8/36(22%)]\tLoss: 67.571129\n", - "Epoch : 2 [16/36(44%)]\tLoss: 44.122723\n", - "Epoch : 2 [24/36(67%)]\tLoss: 22.394480\n", - "Epoch : 2 [32/36(89%)]\tLoss: 8.160757\n", - "Epoch : 3 [0/36(0%)]\tLoss: 2.009966\n", - "Epoch : 3 [8/36(22%)]\tLoss: 0.719012\n", - "Epoch : 3 [16/36(44%)]\tLoss: 2.384625\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.834548\n", - "Epoch : 3 [32/36(89%)]\tLoss: 7.573400\n", - "Epoch : 4 [0/36(0%)]\tLoss: 5.742430\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.594237\n", - "Epoch : 4 [16/36(44%)]\tLoss: 2.898134\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.557976\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.145669\n", - "Epoch : 5 [0/36(0%)]\tLoss: 2.663598\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.843780\n", - "Epoch : 5 [16/36(44%)]\tLoss: 4.107868\n", - "Epoch : 5 [24/36(67%)]\tLoss: 3.902971\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.992874\n", - "Epoch : 6 [0/36(0%)]\tLoss: 2.885126\n", - "Epoch : 6 [8/36(22%)]\tLoss: 2.093903\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.867421\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.338427\n", - "Epoch : 6 [32/36(89%)]\tLoss: 2.824705\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.421961\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.625339\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.148382\n", - "Epoch : 7 [24/36(67%)]\tLoss: 0.898688\n", - "Epoch : 7 [32/36(89%)]\tLoss: 2.202924\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.652444\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.860731\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.394376\n", - "Epoch : 8 [24/36(67%)]\tLoss: 0.981092\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.431546\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.444997\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.336203\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.597337\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.194982\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.307454\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.473219\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.273837\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.553731\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.798171\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.150871\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.492550\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.177561\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.655222\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.843735\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.034000\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.154700\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.228733\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.488245\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.571231\n", - "Epoch : 12 [32/36(89%)]\tLoss: 0.877148\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.368715\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.330869\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.166710\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.713053\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.331161\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.270578\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.162220\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.677632\n", - "Epoch : 14 [24/36(67%)]\tLoss: 0.858638\n", - "Epoch : 14 [32/36(89%)]\tLoss: 0.536049\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.262854\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.130524\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.395074\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.340181\n", - "Epoch : 15 [32/36(89%)]\tLoss: 0.352723\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.384992\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.103216\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.229468\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.437432\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.284868\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.314149\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.125167\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.292324\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.342788\n", - "Epoch : 17 [32/36(89%)]\tLoss: 0.475190\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.312881\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.596178\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.203140\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.300921\n", - "Epoch : 18 [32/36(89%)]\tLoss: 0.282739\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.605104\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.193903\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.074257\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.393801\n", - "Epoch : 19 [32/36(89%)]\tLoss: 0.163913\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.205284\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.360815\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.537282\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.345712\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.180386\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.450000\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.364916\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.206945\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.408634\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.256134\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.214822\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.188485\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.132451\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.599292\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.067293\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.161922\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.789965\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.772256\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.432028\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.841089\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.606690\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.774147\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.182367\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.159290\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.240445\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.619967\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.648902\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.587635\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.235405\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.475745\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.333566\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.191834\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.344198\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.377331\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.092283\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.410456\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.163014\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.143389\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.305504\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.186263\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.540375\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.056296\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.204373\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.244346\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.130143\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.242088\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.079659\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.230799\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.128707\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.321657\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.189523\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.126227\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.216011\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.234395\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.126628\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.113820\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.128858\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.192441\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.169585\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.192076\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.209211\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.194972\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.138663\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.185183\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.196941\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.157668\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.485672\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.105384\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.074767\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.264901\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.162515\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.180244\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.214017\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.110434\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.034858\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.089005\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.180495\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.258385\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.171338\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.119491\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.198059\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.309062\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.094557\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.108073\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.111008\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.208943\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.179174\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.374412\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.116462\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.355236\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.231515\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.129103\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.249394\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.144955\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.359770\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.304215\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.131935\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.973840\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.268413\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.217418\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.237138\n", - "Epoch : 40 [8/36(22%)]\tLoss: 1.206033\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.840835\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.761829\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.335101\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.655939\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.101246\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.686123\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.428574\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.123327\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.583178\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.859293\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.331502\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.329749\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.509361\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.453968\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.421292\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.152019\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.403852\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.247997\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.285804\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.626770\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.089035\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.338086\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.330154\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.158841\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.115720\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.215260\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.053637\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.149543\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.309592\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.234094\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.061765\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.097515\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.165004\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.523732\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.249221\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.091936\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.380973\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.260711\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.217910\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.177622\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.055748\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.692775\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.267048\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.250883\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.325217\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.390601\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.264333\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.584951\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.374119\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.105202\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.255951\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.155214\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.213034\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.289947\n", - "Epoch : 51 [8/36(22%)]\tLoss: 1.034734\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.143418\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.230599\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.838659\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.359575\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.177598\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.144284\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.230643\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.403467\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.130289\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.289564\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.110637\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.140722\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.221947\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.178951\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.286507\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.052972\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.148073\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.271139\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.376206\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.058762\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.175952\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.243074\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.479789\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.060441\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.083182\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.310517\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.134782\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.351070\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.202404\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.455333\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.536763\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.118149\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.517128\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.347775\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.236945\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.130258\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.287902\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.655633\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.462769\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.135369\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.188913\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.085767\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.133039\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.140621\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.569223\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.514103\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.742989\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.612317\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.205751\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.423879\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.258010\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.174012\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.275707\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.561602\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.180038\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.392376\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.406189\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.114902\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.353193\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.567040\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.136843\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.252463\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.500932\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.202716\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.313177\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.620070\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.167405\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.665032\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.203738\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.543210\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.613920\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.361434\n", - "Epoch : 65 [32/36(89%)]\tLoss: 1.751765\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.618242\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.392969\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.338882\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.856144\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.006482\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.252412\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.563535\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.528036\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.759142\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.573742\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.474981\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.326544\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.313856\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.775568\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.076462\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.144858\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.101875\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.260904\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.346376\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.733353\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.447490\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.108432\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.418013\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.075870\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.305480\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.644891\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.385999\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.911676\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.426606\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.233098\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.244345\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.444482\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.205612\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.492621\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.310789\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.323392\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.856434\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.477649\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.367764\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.070272\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.304791\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.128368\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.334180\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.195161\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.085249\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.183626\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.552058\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.409967\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.189552\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.451177\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.329867\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.136543\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.386204\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.378852\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.282318\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.289674\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.300620\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.277177\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.553929\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.427097\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.307480\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.654997\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.641936\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.173159\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.268265\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.538889\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.094089\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.417990\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.160866\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.378208\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.601766\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.165433\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.544712\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.707402\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.541544\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.132002\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.211833\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.077363\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.674272\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.210960\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.262706\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.203072\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.288109\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.157536\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.104414\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.220589\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.162281\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.182407\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.055218\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.117788\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.171839\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.060537\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.286876\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.422444\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.047662\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.019567\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.192655\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.174887\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.129845\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.031812\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.189844\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.253176\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.127147\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.426703\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.052161\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.108247\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.093209\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.093898\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.207033\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.200808\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.043087\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.089898\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.202342\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.058563\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.200725\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.040310\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.102071\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.168990\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.285932\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.103282\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.029690\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.169831\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.056690\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.417997\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.121710\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.073497\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.199093\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.176235\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.525791\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.092257\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.201691\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.068071\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.329633\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.141586\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.123630\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.040553\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.282625\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.309049\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.122125\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.133711\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.071071\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.093829\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.143103\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.198800\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.164563\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.038688\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.093938\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.110451\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.367351\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.023568\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.054144\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.444904\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.120347\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.379137\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.339739\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.290379\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.175280\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.424046\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.420090\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.159792\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.143495\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.492418\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.090576\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.322962\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.154129\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.167062\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.813580\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.282443\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.036228\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.470829\n", - "--- 0.39097688992818197 minutes ---\n" - ] - } - ], + "outputs": [], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -1325,20 +500,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9qUlEQVR4nOzdd3xT5fcH8E+6dwsIbVmlIHtvAWXIVraCIChLcTBEUJSfLHGgqKCIX0BEigqKLMUBiAxlTwGZApYllN2W7tLc3x8nNzdp09Jx06Tp5/165ZXk5vbmaZo2Pfec5zwGRVEUEBEREREREZHTcXP0AIiIiIiIiIjINgbtRERERERERE6KQTsRERERERGRk2LQTkREREREROSkGLQTEREREREROSkG7UREREREREROikE7ERERERERkZNi0E5ERERERETkpBi0ExERERERETkpBu1ERERERC6qbdu2aNu2ba73rVOnjn0HZFKpUiUMGTKkUJ6LqKhj0E5EVqKiomAwGGAwGLB9+/YsjyuKggoVKsBgMKBbt27m7QkJCZg6dSrq1KkDf39/lCpVCg0aNMBLL72Ey5cvm/ebNm2a+fi2LjExMYXyfRIREeWW+tm4f/9+Rw+lwC5fvoxp06bh0KFDjh6KbipVqgSDwYAOHTrYfHzhwoXm/zMy/wy3b9+Orl27oly5cvDx8UHFihXRvXt3LFu2zGq/nP53ef755+32vREBgIejB0BEzsnHxwfLli3Dgw8+aLX9jz/+wKVLl+Dt7W3elp6ejtatW+PkyZMYPHgwRo8ejYSEBBw7dgzLli1D7969UbZsWavjzJs3DwEBAVmeNyQkxC7fDxERUXH022+/Wd2/fPky3nzzTVSqVAkNGjRwzKAAnDp1Cm5u+uUPfXx8sGXLFsTExCAsLMzqsaVLl8LHxwcpKSlW21esWIEnnnjCnGQoUaIEoqOj8eeff2LhwoV48sknrfbv2LEjnn766SzPXa1aNd2+DyJbGLQTkU2PPPIIVqxYgTlz5sDDQ/tTsWzZMjRu3Bg3btwwb/vhhx/w119/YenSpVk+4FJSUpCWlpbl+I8//jjuu+8++30DRERExVhSUhL8/Pzg5eXl6KHYZHnyXw+tWrXCvn37sHz5crz00kvm7ZcuXcK2bdvQu3dvrFq1yuprpk2bhlq1amH37t1ZXqdr165leY5q1aph0KBBuo6bKDdYHk9ENg0YMAA3b97Exo0bzdvS0tKwcuXKLIH52bNnAcgHZmY+Pj4ICgqy72CJiIicwF9//YWuXbsiKCgIAQEBaN++PXbv3p1lvyNHjqBNmzbw9fVF+fLl8fbbb2Px4sUwGAw4d+6ceb8ff/wRjz76KMqWLQtvb29UqVIFb731FjIyMqyOp85FP3DgAFq3bg0/Pz/83//9n/kxdU771q1b0bRpUwDA0KFDzeXdUVFRVsc7fvw42rVrBz8/P5QrVw4zZ860enzr1q0wGAz4/vvv8eabb6JcuXIIDAzE448/jri4OKSmpmLs2LEoU6YMAgICMHToUKSmplodw9ac9tjYWLz88suoVKkSvL29Ub58eTz99NNWiYLs+Pj4oE+fPlnK2r/99luUKFECnTt3zvI1Z8+eRdOmTW2e2ChTpsw9n5OosDDTTkQ2VapUCS1atMC3336Lrl27AgDWrVuHuLg49O/fH3PmzDHvGxERAQD46quvMGnSJBgMhnse/9atW1m2eXh4sDyeiIiKpGPHjuGhhx5CUFAQJkyYAE9PTyxYsABt27bFH3/8gebNmwMA/vvvP7Rr1w4GgwETJ06Ev78/vvjiC5uZ56ioKAQEBGDcuHEICAjA5s2bMWXKFMTHx+ODDz6w2vfmzZvo2rUr+vfvj0GDBiE0NDTL8WrWrInp06djypQpGDFiBB566CEAQMuWLc373L59G126dEGfPn3Qr18/rFy5Eq+99hrq1q1r/n9ANWPGDPj6+uL111/HmTNn8Omnn8LT0xNubm64ffs2pk2bht27dyMqKgqRkZGYMmVKtq9fQkICHnroIZw4cQLDhg1Do0aNcOPGDaxduxaXLl3KVXXek08+iU6dOuHs2bOoUqUKAKkQfPzxx+Hp6Zll/4iICGzatAmXLl1C+fLl73n8lJQUmycQgoKCnLaigVyEQkRkYfHixQoAZd++fcrcuXOVwMBAJSkpSVEURenbt6/Srl07RVEUJSIiQnn00UcVRVGUpKQkpXr16goAJSIiQhkyZIiyaNEi5erVq1mOP3XqVAWAzUv16tUL7xslIiLKJcvPxuz06tVL8fLyUs6ePWvedvnyZSUwMFBp3bq1edvo0aMVg8Gg/PXXX+ZtN2/eVEqWLKkAUKKjo83b1c9fS88995zi5+enpKSkmLe1adNGAaDMnz8/y/5t2rRR2rRpY76/b98+BYCyePFim/sCUL766ivzttTUVCUsLEx57LHHzNu2bNmiAFDq1KmjpKWlmbcPGDBAMRgMSteuXa2O26JFCyUiIsJqW0REhDJ48GDz/SlTpigAlNWrV2cZl9FozLIt87EeffRR5e7du0pYWJjy1ltvKYqiKMePH1cAKH/88YfNn+GiRYsUAIqXl5fSrl07ZfLkycq2bduUjIyMLM+R3f8uAJRvv/02x/ERFRTL44koW/369UNycjJ+/vln3LlzBz///HOW0ngA8PX1xZ49e/Dqq68CkMzA8OHDER4ejtGjR2cpiQOAVatWYePGjVaXxYsX2/17IiIi0ltGRgZ+++039OrVC5UrVzZvDw8Px5NPPont27cjPj4eALB+/Xq0aNHCqglcyZIlMXDgwCzH9fX1Nd++c+cObty4gYceeghJSUk4efKk1b7e3t4YOnRogb+XgIAAq3nbXl5eaNasGf79998s+z799NNWGezmzZtDURQMGzbMar/mzZvj4sWLuHv3brbPu2rVKtSvXx+9e/fO8lhuKvgAwN3dHf369cO3334LQBrQVahQwVxRkNmwYcOwfv16tG3bFtu3b8dbb72Fhx56CFWrVsXOnTuz7N+zZ88s/7ts3LgR7dq1y9X4iPKL5fFElK3SpUujQ4cOWLZsGZKSkpCRkYHHH3/c5r7BwcGYOXMmZs6cifPnz2PTpk348MMPMXfuXAQHB+Ptt9+22r9169ZsREdERC7h+vXrSEpKQvXq1bM8VrNmTRiNRly8eBG1a9fG+fPn0aJFiyz73X///Vm2HTt2DJMmTcLmzZvNQb8qLi7O6n65cuV0KdEuX758liC5RIkSOHLkSJZ9K1asaHU/ODgYAFChQoUs241GI+Li4lCqVCmbz3v27Fk89thjBRk6ACmRnzNnDg4fPoxly5ahf//+OQb9nTt3RufOnZGUlIQDBw5g+fLlmD9/Prp164aTJ09azW0vX758tsvKEdkTM+1ElKMnn3wS69atw/z589G1a9dczTmPiIjAsGHDsGPHDoSEhGDp0qX2HygREZELiY2NRZs2bXD48GFMnz4dP/30EzZu3Ij3338fAGA0Gq32t8zKF4S7u7vN7Yqi5HrfvBxDb82bN0eVKlUwduxYREdH26wQtMXPzw8PPfQQ5s6di0mTJuH27dtYt26dnUdLlDvMtBNRjnr37o3nnnsOu3fvxvLly/P0tSVKlECVKlVw9OhRO42OiIjI8UqXLg0/Pz+cOnUqy2MnT56Em5ubOfscERGBM2fOZNkv87atW7fi5s2bWL16NVq3bm3eHh0dXaCx5rbUvLDp+f/CgAED8Pbbb6NmzZr5Wou+SZMmAIArV67oMh6igmKmnYhyFBAQgHnz5mHatGno3r27zX0OHz5ss5vq+fPncfz4cZvlgkRERK7C3d0dnTp1wo8//mi1ZNvVq1exbNkyPPjgg+blTzt37oxdu3bh0KFD5v1u3bqVpSpNzVZbZqfT0tLwv//9r0Bj9ff3ByCZfGfy2GOP4fDhw1izZk2Wx/KaoX/mmWcwdepUfPTRRznut2nTJpvbf/31VwDg/y/kNJhpJ6J7Gjx4cI6Pb9y4EVOnTkWPHj3wwAMPICAgAP/++y++/PJLpKamYtq0aVm+ZuXKlQgICMiyvWPHjjaXqSEiInK0L7/8EuvXr8+y/aWXXsLbb7+NjRs34sEHH8SLL74IDw8PLFiwAKmpqVbrnE+YMAHffPMNOnbsiNGjR5uXfKtYsSJu3bplzoS3bNkSJUqUwODBgzFmzBgYDAZ8/fXXBS4xr1KlCkJCQjB//nwEBgbC398fzZs3R2RkZIGOW1CvvvoqVq5cib59+2LYsGFo3Lgxbt26hbVr12L+/PmoX79+ro8VERFh83+PzHr27InIyEh0794dVapUQWJiIn7//Xf89NNPaNq0aZZkxT///INvvvkmy3FCQ0PRsWPHXI+PKK8YtBNRgT322GO4c+cOfvvtN2zevBm3bt1CiRIl0KxZM4wfP95mV9UXXnjB5rG2bNnCoJ2IiJzSvHnzbG4fMmQIateujW3btmHixImYMWMGjEYjmjdvjm+++ca8RjsgTdq2bNmCMWPG4N1330Xp0qUxcuRI+Pv7Y8yYMfDx8QEAlCpVCj///DPGjx+PSZMmoUSJEhg0aBDat2+Pzp075/t78PT0xJIlSzBx4kQ8//zzuHv3LhYvXuzwoD0gIADbtm3D1KlTsWbNGixZsgRlypRB+/btc7WGen588cUX+PHHH/H999/j8uXLUBQFlStXxhtvvIHXXnsNHh7WoZLaLT6zNm3aMGgnuzIohdERgoiIiIiIsjV27FgsWLAACQkJ2TZyI6LiiXPaiYiIiIgKUXJystX9mzdv4uuvv8aDDz7IgJ2IsmB5PBERERFRIWrRogXatm2LmjVr4urVq1i0aBHi4+MxefJkRw+NiJwQg3YiIiIiokL0yCOPYOXKlfj8889hMBjQqFEjLFq0yGppNyIiFee0ExERERERETkpzmknIiIiIiIiclIM2omIiIiIiIicFOe0AzAajbh8+TICAwNhMBgcPRwiIirmFEXBnTt3ULZsWbi58fw6AEybNg1vvvmm1bbq1avj5MmTufp6ftYTEZGzye3nPYN2AJcvX0aFChUcPQwiIiIrFy9eRPny5R09DKdRu3Zt/P777+b7Hh65/zeGn/VEROSs7vV5z6AdQGBgIAB5sYKCghw8GiIiKu7i4+NRoUIF8+cTCQ8PD4SFheXra/lZT0REzia3n/cM2gFzmVxQUBA/yImIyGmwjNva6dOnUbZsWfj4+KBFixaYMWMGKlasaHPf1NRUpKammu/fuXMHAD/riYjI+dzr854T5YiIiMjpNW/eHFFRUVi/fj3mzZuH6OhoPPTQQ+ZgPLMZM2YgODjYfGFpPBERFVVcpx1SlhAcHIy4uDiefSciIofj59K9xcbGIiIiArNmzcLw4cOzPJ45066WIPI1JSIiZ5Hbz3uWxxMREVGRExISgmrVquHMmTM2H/f29oa3t3chj4qIiEh/DNqJiPIgIyMD6enpjh4GuQBPT0+4u7s7ehhFVkJCAs6ePYunnnrK0UMhIhejKAru3r2LjIwMRw+Fijh3d3d4eHgUuEcNg3YiolxKSEjApUuXwFlFpAeDwYDy5csjICDA0UMpEl555RV0794dERERuHz5MqZOnQp3d3cMGDDA0UMjIheSlpaGK1euICkpydFDIRfh5+eH8PBweHl55fsYDNqJiHIhIyMDly5dgp+fH0qXLs2u3lQgiqLg+vXruHTpEqpWrcqMey5cunQJAwYMwM2bN1G6dGk8+OCD2L17N0qXLu3ooRGRizAajYiOjoa7uzvKli0LLy8vft5TvimKgrS0NFy/fh3R0dGoWrUq3Nzy1weeQTsRUS6kp6dDURSULl0avr6+jh4OuYDSpUvj3LlzSE9PZ9CeC999952jh0BELi4tLQ1GoxEVKlSAn5+fo4dDLsDX1xeenp44f/480tLS4OPjk6/jcMk3IqI84Bl30gvfS0REzim/2VAiW/R4P/EdSUREREREROSkGLQTEREREREROSkG7URElCeVKlXCxx9/nOv9t27dCoPBgNjYWLuNCQCioqIQEhJi1+cgIiIqDvhZ71wYtBMRuSiDwZDjZdq0afk67r59+zBixIhc79+yZUtcuXIFwcHB+Xo+IiIiso2f9cUDu8cTEbmoK1eumG8vX74cU6ZMwalTp8zbLNcHVxQFGRkZ8PC498dCXpfY8vLyQlhYWJ6+hoiIiO6Nn/XFAzPtOjp1CqhfH2jb1tEjISJ7UxQgMdExF0XJ3RjDwsLMl+DgYBgMBvP9kydPIjAwEOvWrUPjxo3h7e2N7du34+zZs+jZsydCQ0MREBCApk2b4vfff7c6buaSOYPBgC+++AK9e/eGn58fqlatirVr15ofz1wyp5a2bdiwATVr1kRAQAC6dOli9Y/H3bt3MWbMGISEhKBUqVJ47bXXMHjwYPTq1StPP6d58+ahSpUq8PLyQvXq1fH1119b/AwVTJs2DRUrVoS3tzfKli2LMWPGmB//3//+h6pVq8LHxwehoaF4/PHH8/Tc5JoUBWjfHoiIACzeskTkgvhZ/7H5Pj/rHYtBu47u3gWOHAGOH3f0SIjI3pKSgIAAx1ySkvT7Pl5//XW89957OHHiBOrVq4eEhAQ88sgj2LRpE/766y906dIF3bt3x4ULF3I8zptvvol+/frhyJEjeOSRRzBw4EDcunUrh9cvCR9++CG+/vpr/Pnnn7hw4QJeeeUV8+Pvv/8+li5disWLF2PHjh2Ij4/HDz/8kKfvbc2aNXjppZcwfvx4HD16FM899xyGDh2KLVu2AABWrVqF2bNnY8GCBTh9+jR++OEH1K1bFwCwf/9+jBkzBtOnT8epU6ewfv16tG7dOk/PT67JYADOnAEuXACiox09GiKyJ37WW+NnvQMppMTFxSkAlLi4uAId59QpRQEUJThYn3ERkfNITk5Wjh8/riQnJyuKoigJCfL77ohLQkLex7948WIl2OKP05YtWxQAyg8//HDPr61du7by6aefmu9HREQos2fPNt8HoEyaNMl8PyEhQQGgrFu3zuq5bt++bR4LAOXMmTPmr/nss8+U0NBQ8/3Q0FDlgw8+MN+/e/euUrFiRaVnz565/h5btmypPPvss1b79O3bV3nkkUcURVGUjz76SKlWrZqSlpaW5VirVq1SgoKClPj4+Gyfr6Ayv6cs6fW5RBo9X9M2beR38ZtvCj4uInIe/KznZ7096PF5z0y7jry85Do93bHjICL78/MDEhIcc/Hz0+/7aNKkidX9hIQEvPLKK6hZsyZCQkIQEBCAEydO3PPse7169cy3/f39ERQUhGvXrmW7v5+fH6pUqWK+Hx4ebt4/Li4OV69eRbNmzcyPu7u7o3Hjxnn63k6cOIFWrVpZbWvVqhVOnDgBAOjbty+Sk5NRuXJlPPvss1izZg3u3r0LAOjYsSMiIiJQuXJlPPXUU1i6dCmS9Ex7UJEWGSnX5845dBhEZGf8rLfGz3rHYdCuI09PuU5Lc+w4iMj+DAbA398xF4NBv+/D39/f6v4rr7yCNWvW4N1338W2bdtw6NAh1K1bF2n3+MPmqf4BNL8+BhiNxjztr+R2Ap9OKlSogFOnTuF///sffH198eKLL6J169ZIT09HYGAgDh48iG+//Rbh4eGYMmUK6tevb/elbKhoUIN2lscTuTZ+1lvjZ73jMGjXkZppv3s3980jiIicyY4dOzBkyBD07t0bdevWRVhYGM4VcjoxODgYoaGh2Ldvn3lbRkYGDh48mKfj1KxZEzt27LDatmPHDtSqVct839fXF927d8ecOXOwdetW7Nq1C3///TcAwMPDAx06dMDMmTNx5MgRnDt3Dps3by7Ad0augkE7ERVl/Kwvep/1XPJNR2rQDkiJvOV9IqKioGrVqli9ejW6d+8Og8GAyZMn53gW3V5Gjx6NGTNm4P7770eNGjXw6aef4vbt2zDkIfXw6quvol+/fmjYsCE6dOiAn376CatXrzZ3yI2KikJGRgaaN28OPz8/fPPNN/D19UVERAR+/vln/Pvvv2jdujVKlCiBX3/9FUajEdWrV7fXt0xFCIN2IirK+Flf9D7rGbTryLICJC2NQTsRFT2zZs3CsGHD0LJlS9x333147bXXEB8fX+jjeO211xATE4Onn34a7u7uGDFiBDp37gx3d/dcH6NXr1745JNP8OGHH+Kll15CZGQkFi9ejLamdTlDQkLw3nvvYdy4ccjIyEDdunXx008/oVSpUggJCcHq1asxbdo0pKSkoGrVqvj2229Ru3ZtO33HVJSoQfuFC1Jdl4slj4mInAY/64veZ71BKeyJBU4oPj4ewcHBiIuLQ1BQUL6Pc/euFrjfvAmULKnTAInI4VJSUhAdHY3IyEj4+Pg4ejjFjtFoRM2aNdGvXz+89dZbjh6OLnJ6T+n1uUQaPV9To1GaRKWmSra9UiV9xkhEjsXPesdyxc96QJ/Pe54b1pG7uzSNUBR2kCciKojz58/jt99+Q5s2bZCamoq5c+ciOjoaTz75pKOHRgQ3NyAiAvjnHwbtRET5xc/63GMjOh0ZDOwgT0SkBzc3N0RFRaFp06Zo1aoV/v77b/z++++oWbOmo4dGBEAL1DmvnYgof/hZn3vMtOvMy0sCdmbaiYjyr0KFClm6wRI5jdWrMSQpBjvxFKKjAx09GiKiIomf9bnHTLvOmGknIiJycSNGYMD2kaiIC8y0ExGR3TFo15naMZ5BOxERkYsqU0aucI1BOxER2R2Ddp2pQTvL44mIiFwUg3YiIipEDNp1xvJ4IiIiF1e6tFzhOq5cAZKTHTweIiJyaQzadcZMOxERkYszZdrLe14DAJw/78jBEBGRq2PQrjNm2omIiFycKdNeOVCCdpbIExGRPTFo1xkb0RGRq2nbti3Gjh1rvl+pUiV8/PHHOX6NwWDADz/8UODn1us4OZk2bRoaNGhg1+cgF6Nm2r2vA2DQTkRFHz/rnRuDdp2xPJ6InEX37t3RpUsXm49t27YNBoMBR44cyfNx9+3bhxEjRhR0eFay+zC9cuUKunbtqutzERWYKWgPNTDTTkSOxc/64oFBu85YHk9EzmL48OHYuHEjLl26lOWxxYsXo0mTJqhXr16ej1u6dGn4+fnpMcR7CgsLg7e3d6E8F1GumcrjS6YzaCcix+JnffHg0KD9zz//RPfu3VG2bFmbZRGKomDKlCkIDw+Hr68vOnTogNOnT1vtc+vWLQwcOBBBQUEICQnB8OHDkZCQUIjfhTWWxxMVE4oCJCY65qIouRpit27dULp0aURFRVltT0hIwIoVKzB8+HDcvHkTAwYMQLly5eDn54e6devi22+/zfG4mUvmTp8+jdatW8PHxwe1atXCxo0bs3zNa6+9hmrVqsHPzw+VK1fG5MmTkW4qSYqKisKbb76Jw4cPw2AwwGAwmMec+bPh77//xsMPPwxfX1+UKlUKI0aMsPqbP2TIEPTq1QsffvghwsPDUapUKYwcOdL8XLlhNBoxffp0lC9fHt7e3mjQoAHWr19vfjwtLQ2jRo1CeHg4fHx8EBERgRkzZgCQz61p06ahYsWK8Pb2RtmyZTFmzJhcPzcVEaZMu3+ylMefO+fAsRCR/fCz3nyfn/WO/az3sOvR7yExMRH169fHsGHD0KdPnyyPz5w5E3PmzMGSJUsQGRmJyZMno3Pnzjh+/Dh8fHwAAAMHDsSVK1ewceNGpKenY+jQoRgxYgSWLVtW2N8OAC3TzvJ4IheXlAQEBDjmuRMSAH//e+7m4eGBp59+GlFRUXjjjTdgMBgAACtWrEBGRgYGDBiAhIQENG7cGK+99hqCgoLwyy+/4KmnnkKVKlXQrFmzez6H0WhEnz59EBoaij179iAuLs5qTpwqMDAQUVFRKFu2LP7++288++yzCAwMxIQJE/DEE0/g6NGjWL9+PX7//XcAQHBwcJZjJCYmonPnzmjRogX27duHa9eu4ZlnnsGoUaOs/lnZsmULwsPDsWXLFpw5cwZPPPEEGjRogGefffae3w8AfPLJJ/joo4+wYMECNGzYEF9++SV69OiBY8eOoWrVqpgzZw7Wrl2L77//HhUrVsTFixdx8eJFAMCqVaswe/ZsfPfdd6hduzZiYmJw+PDhXD0vFSGmoN0r4TY8kI7oaE8HD4iI7IKf9QD4We8Un/WKkwCgrFmzxnzfaDQqYWFhygcffGDeFhsbq3h7eyvffvutoiiKcvz4cQWAsm/fPvM+69atUwwGg/Lff/9l+1wpKSlKXFyc+XLx4kUFgBIXF1fg76NnT0UBFGXBggIfioicSHJysnL8+HElOTlZNiQkyC+7Iy4JCbke94kTJxQAypYtW8zbHnroIWXQoEHZfs2jjz6qjB8/3ny/TZs2yksvvWS+HxERocyePVtRFEXZsGGD4uHhYfU3d926dVn+pmf2wQcfKI0bNzbfnzp1qlK/fv0s+1ke5/PPP1dKlCihJFh8/7/88ovi5uamxMTEKIqiKIMHD1YiIiKUu3fvmvfp27ev8sQTT2Q7lszPXbZsWeWdd96x2qdp06bKiy++qCiKoowePVp5+OGHFaPRmOVYH330kVKtWjUlLS0t2+dTZXlPWYiLi9Ptc4mErq9pRoaiuLsrCqCE4bICKAp/VERFHz/rXzLf52e9Pp/1iqLP573TzmmPjo5GTEwMOnToYN4WHByM5s2bY9euXQCAXbt2ISQkBE2aNDHv06FDB7i5uWHPnj3ZHnvGjBkIDg42XypUqKDbuNmIjqiY8POTs+COuORhjlmNGjXQsmVLfPnllwCAM2fOYNu2bRg+fDgAICMjA2+99Rbq1q2LkiVLIiAgABs2bMCFCxdydfwTJ06gQoUKKFu2rHlbixYtsuy3fPlytGrVCmFhYQgICMCkSZNy/RyWz1W/fn34W2QeWrVqBaPRiFOnTpm31a5dG+7u7ub74eHhuHbtWq6eIz4+HpcvX0arVq2strdq1QonTpwAIGV5hw4dQvXq1TFmzBj89ttv5v369u2L5ORkVK5cGc8++yzWrFmDu3fv5un7pCLAzQ247z4AQPUQzmsncln8rAfAz3pn+Kx32qA9JiYGABAaGmq1PTQ01PxYTEwMyphK1FQeHh4oWbKkeR9bJk6ciLi4OPNFLXXQAxvRERUTBoOUrTniYip9y63hw4dj1apVuHPnDhYvXowqVaqgTZs2AIAPPvgAn3zyCV577TVs2bIFhw4dQufOnZGm4x+xXbt2YeDAgXjkkUfw888/46+//sIbb7yh63NY8vS0LlU2GAwwGo26Hb9Ro0aIjo7GW2+9heTkZPTr1w+PP/44AKBChQo4deoU/ve//8HX1xcvvvgiWrdunad5dlREmJrR1SnDoJ3IZfGzPtf4WW/fz3qnDdrtydvbG0FBQVYXvbARHRE5m379+sHNzQ3Lli3DV199hWHDhpnnvO3YsQM9e/bEoEGDUL9+fVSuXBn//PNPro9ds2ZNXLx4EVeuXDFv2717t9U+O3fuREREBN544w00adIEVatWxfnz56328fLyQkZGxj2f6/Dhw0hMTDRv27FjB9zc3FC9evVcjzknQUFBKFu2LHbs2GG1fceOHahVq5bVfk888QQWLlyI5cuXY9WqVbh16xYAwNfXF927d8ecOXOwdetW7Nq1C3///bcu4yPx3nvvwWAw2JxTWWhMSYNqJbhWOxE5Hj/rc68oftY7tBFdTsLCwgAAV69eRXh4uHn71atXzev7hYWFZSmDuHv3Lm7dumX++sLG8ngicjYBAQF44oknMHHiRMTHx2PIkCHmx6pWrYqVK1di586dKFGiBGbNmoWrV69afWjlpEOHDqhWrRoGDx6MDz74APHx8XjjjTes9qlatSouXLiA7777Dk2bNsUvv/yCNWvWWO1TqVIlREdH49ChQyhfvjwCAwOzLP8ycOBATJ06FYMHD8a0adNw/fp1jB49Gk899VSWqqyCePXVVzF16lRUqVIFDRo0wOLFi3Ho0CEsXboUADBr1iyEh4ejYcOGcHNzw4oVKxAWFoaQkBBERUUhIyMDzZs3h5+fH7755hv4+voiIiJCt/EVd/v27cOCBQvytYSRrkxBe6Q/M+1E5Hj8rM+bovZZ77SZ9sjISISFhWHTpk3mbfHx8dizZ495DkWLFi0QGxuLAwcOmPfZvHkzjEYjmjdvXuhjBlgeT0TOafjw4bh9+zY6d+5sNSdt0qRJaNSoETp37oy2bdsiLCwMvXr1yvVx3dzcsGbNGiQnJ6NZs2Z45pln8M4771jt06NHD7z88ssYNWoUGjRogJ07d2Ly5MlW+zz22GPo0qUL2rVrh9KlS9tcisbPzw8bNmzArVu30LRpUzz++ONo37495s6dm7cX4x7GjBmDcePGYfz48ahbty7Wr1+PtWvXomrVqgCkO+7MmTPRpEkTNG3aFOfOncOvv/4KNzc3hISEYOHChWjVqhXq1auH33//HT/99BNKlSql6xiLq4SEBAwcOBALFy5EiRIlHDsYU3l8eS8G7UTkHPhZn3tF7bPeoCi5XATQDhISEnDmzBkAQMOGDTFr1iy0a9cOJUuWRMWKFfH+++/jvffes1ry7ciRI1ZLvnXt2hVXr17F/PnzzUu+NWnSJE9LvsXHxyM4OBhxcXEFLpUfNw6YPRt4/XXAtJQfEbmAlJQUREdHIzIy0vz3h6ggcnpP6fm55EoGDx6MkiVLYvbs2Wjbti0aNGhgtY6wpdTUVKSmpprvx8fHo0KFCvq9pm+/DUyejEtdnkGF9QtRuzZw9GjBD0tEjsPPerIHPT7vHVoev3//frRr1858f9y4cQDkQzkqKgoTJkxAYmIiRowYgdjYWDz44INYv3691Te7dOlSjBo1Cu3bt4ebmxsee+wxzJkzp9C/FxUz7URERPr77rvvcPDgQezbty9X+8+YMQNvvvmm/QZkyrSHpGuZdkXJc+8oIiKie3Jo0N62bVvklOg3GAyYPn06pk+fnu0+JUuWzFNW3d7YiI6IiEhfFy9exEsvvYSNGzfmOvs1ceJEczIA0DLtujHNafdLkKA9KQm4fRsoWVK/pyAiIgKcuBFdUcVGdERERPo6cOAArl27hkaNGpm3ZWRk4M8//8TcuXORmppqtV4vICvFZG5wpCtT0O524zp8fYHkZCAujkE7ERHpj0G7zlgeT0REpK/27dtnWUpn6NChqFGjBl577bUsAXuhMJXH49o1hIRoQTsREZHeGLTrjOXxRK7Ngb07ycXwvZR7gYGBqFOnjtU2f39/lCpVKsv2QmPKtOPOHZQOT8GVKz4M2olcBP8+k570eD857ZJvRZWaaWd5PJFrUTN5aTwjRzpR30sOyRJTwQUHmz/0I/yuAwBiYx04HiIqME/T73RSUpKDR0KuRH0/qe+v/GCmXWfMtBO5Jg8PD/j5+eH69evw9PSEmxvPeVL+GY1GXL9+HX5+fvDw4EdxfmzdutWxAzAYpET+8mVU8LkGoAIz7URFnLu7O0JCQnDtmjSY9PPzg4FLQlA+KYqCpKQkXLt2DSEhIQU6Sc//FHTGRnRErslgMCA8PBzR0dE4f/68o4dDLsDNzQ0VK1bkP4RFWZkywOXLKOspmXYG7URFX1hYGACYA3eiggoJCTG/r/KLQbvO2IiOyHV5eXmhatWqLJEnXXh5ebFio6gzNaMLd5N/7hm0ExV96kn6MmXKIJ1ZOCogT09PXabBMWjXGcvjiVybm5tbrteJJiIXZ2pGV1ph0E7katzd3dlzhJwGT/HrjOXxRERExYQpaC9lZHk8ERHZD4N2nbE8noiIqJgwlceHpDHTTkRE9sOgXWfMtBMRERUTpkx7UAqDdiIish8G7Tpjpp2IiKiYMAXt/slcp52IiOyHQbvO2IiOiIiomDCVx/vGM9NORET2w6BdZyyPJyIiKiZMmXavOAbtRERkPwzadcbyeCIiomLClGl3S0mGHxIZtBMRkV0waNcZy+OJiIiKiYAAwMcHAFAG15CUxEo7IiLSH4N2namZdn5oExERuTiDwVwiXxrSjC4+3pEDIiIiV8SgXWfMtBMRERUjphL5Ct6c105ERPbBoF1nbERHRERUjJgy7RE+DNqJiMg+GLTrTC2PNxqBjAzHjoWIiIjszBS0l/OS8ngG7UREpDcG7TpTM+0AS+SJiIhcnqk8PtxDMu2xsQ4cCxERuSQG7TqzDNpZIk9EROTiTJn2ULA8noiI7INBu87U8niAmXYiIiKXZ8q0l1JYHk9ERPbBoF1nbm6Au7vcZqadiIjIxZky7SXTmWknIiL7YNBuB2q2nZl2IiIiF2cK2oNSGbQTEZF9MGi3A67VTkREVEyYyuMDkq8DUBi0ExGR7hi02wHXaiciIiomTEG7R0YaAnGHQTsREemOQbsdsDyeiIiomPD11W4imUE7ERHpjkG7HbA8noiIqJgwGABvbwCAD1K4TjsREemOQbsdqJl2lscTEREVAz4+AABvpDLTTkREumPQbgfMtBMRERUjFpl2Bu1ERKQ3Bu12wEZ0RERExQgz7UREZEcM2u2AjeiIiIiKEVPQ7oMUJCfzpD0REemLQbsdsDyeiIioGLEojwfAbDsREemKQbsdsDyeiIioGDFl2oO9UwEwaCciIn0xaLcDlscTEREVI6ZMe0k/ZtqJiEh/DNrtgJl2IiKiYsSUaQ/xZaadiIj0x6DdDphpJyIi0te8efNQr149BAUFISgoCC1atMC6descPSyhBu0+kmmPjXXgWIiIyOUwaLcDNqIjIiLSV/ny5fHee+/hwIED2L9/Px5++GH07NkTx44dc/TQzOXxQT7MtBMRkf48HD0AV8TyeCIiIn11797d6v4777yDefPmYffu3ahdu7aDRmViyrQHeXFOOxER6Y9Bux2wPJ6IiMh+MjIysGLFCiQmJqJFixY290lNTUVqaqr5fnx8vP0GpGbaPRm0ExGR/lgebwfMtBMREenv77//RkBAALy9vfH8889jzZo1qFWrls19Z8yYgeDgYPOlQoUK9huYKdPu78HyeCIi0h+Ddjtgpp2IiEh/1atXx6FDh7Bnzx688MILGDx4MI4fP25z34kTJyIuLs58uXjxov0GZg7amWknIiL9sTzeDtiIjoiISH9eXl64//77AQCNGzfGvn378Mknn2DBggVZ9vX29oa3qWzd7kzP4+fOTDsREemPmXY7YHk8ERGR/RmNRqt56w5jyrT7GZhpJyIi/THTbgcsjyciItLXxIkT0bVrV1SsWBF37tzBsmXLsHXrVmzYsMHRQzNn2n0MXKediIj0x6DdDlgeT0REpK9r167h6aefxpUrVxAcHIx69ephw4YN6Nixo6OHZs60+4Dl8UREpD8G7XbA8ngiIiJ9LVq0yNFDyJ4paPdWWB5PRET645x2O2B5PBERUTFiKo/3VJhpJyIi/TFotwNm2omIiIoRU6bdM0My7SkpPHFPRET6YdCup3/+AZo0QY+5Mr+OH9hERETFgCnT7pGeYt7EbDsREemFQbue0tOBAwdQ6tJhAAzaiYiIigVTpt2QloqAANnEoJ2IiPTCoF1Ppsns7hkSrbM8noiIqBgwZdqRkoLgYLnJoJ2IiPTCoF1PpsnsbhkSrTPTTkREVAyYMu1ITWXQTkREunPqoD0jIwOTJ09GZGQkfH19UaVKFbz11ltQFMW8j6IomDJlCsLDw+Hr64sOHTrg9OnTjhmwKdPudpeZdiIiomJDDdotMu2xsQ4bDRERuRinDtrff/99zJs3D3PnzsWJEyfw/vvvY+bMmfj000/N+8ycORNz5szB/PnzsWfPHvj7+6Nz585ISUnJ4ch2Ys603wWgMNNORERUHKjl8cy0ExGRHXg4egA52blzJ3r27IlHH30UAFCpUiV8++232Lt3LwDJsn/88ceYNGkSevbsCQD46quvEBoaih9++AH9+/cv3AGra70B8EQ60tK8ctiZiIiIXIJFpj0kRG4yaCciIr04daa9ZcuW2LRpE/755x8AwOHDh7F9+3Z07doVABAdHY2YmBh06NDB/DXBwcFo3rw5du3ale1xU1NTER8fb3XRhak8HgC8kMbyeCIiouKAjeiIiMiOnDrT/vrrryM+Ph41atSAu7s7MjIy8M4772DgwIEAgJiYGABAaGio1deFhoaaH7NlxowZePPNN/UfsEWm3QtpLI8nIiIqDtRM+927CAnMAODOoJ2IiHTj1Jn277//HkuXLsWyZctw8OBBLFmyBB9++CGWLFlSoONOnDgRcXFx5svFixf1GbC7O2AwAFDL4/U5LBERETkxNWgHUNI/FQAz7UREpB+nzrS/+uqreP31181z0+vWrYvz589jxowZGDx4MMLCwgAAV69eRXh4uPnrrl69igYNGmR7XG9vb3irpWx6MhikRD4tTTLtLI8nIiJyfRb/U0jQ7segnYiIdOPUmfakpCS4uVkP0d3dHUajEQAQGRmJsLAwbNq0yfx4fHw89uzZgxYtWhTqWM1MJfLMtBMRERUTHh6A6f+VEr6yeg2DdiIi0otTZ9q7d++Od955BxUrVkTt2rXx119/YdasWRg2bBgAwGAwYOzYsXj77bdRtWpVREZGYvLkyShbtix69erlmEGbmtGxER0REVExYTBItj05GcHeDNqJiEhfTh20f/rpp5g8eTJefPFFXLt2DWXLlsVzzz2HKVOmmPeZMGECEhMTMWLECMTGxuLBBx/E+vXr4WMxv6xQmTLtbERHRERUjPj4SNDuI3PaY2MdOxwiInIdBkVRFEcPwtHi4+MRHByMuLg4BAUFFexgFSsCFy+iMfbjIBrDaDT3piMiIsoVXT+XCEAhvKZlywJXruDUd3+hRv8GKFMGuHpV/6chIiLXkdvPJqee014kWZTHA8Ddu44cDBERERUKUzO6QC/JtN+548jBEBGRK2HQrjeL8ngALJEnIiIqDkzT8rwVmdOenAywlpGIiPTAoF1vFt3jAbAZHRERUXFgyrT7IMW8iSfuiYhIDwza9ZapPJ4f2ERERMWAKdPupaSaNyUnO2owRETkShi0682UafdzZ9BORERUbJiCdo+7KeqS7QzaiYhIFwza9WYK2n09WB5PRERUbJjK4w1pqfD1lU0M2omISA8M2vVmKo/3ZaadiIio+DBl2pGSwqCdiIh0xaBdb6ZMu4+7pNgZtBMRERUDpkw7UplpJyIifTFo11umTDvL44mIiIoBZtqJiMhOGLTrzZxpZ3k8ERFRsaFm2hm0ExGRzhi0600N2t3YiI6IiKjYUDPtLI8nIiKdMWjXm6k83seNmXYiIqJig+XxRERkJwza9WbOtDNoJyIiKjbYiI6IiOyEQbveTEG7N8vjiYiIig9m2omIyE4YtOvNVB7vbWCmnYiIqNhgIzoiIrITBu16UzPtBi75RkREpIcZM2agadOmCAwMRJkyZdCrVy+cOnXK0cOyxkZ0RERkJwza9WYK2r0MEq0z005ERFQwf/zxB0aOHIndu3dj48aNSE9PR6dOnZCYmOjooWlYHk9ERHbi4egBuBxTebwXy+OJiIh0sX79eqv7UVFRKFOmDA4cOIDWrVs7aFSZsBEdERHZCYN2vWXKtLM8noiISF9xcXEAgJIlS2a7T2pqKlJTU8334+Pj7TsoZtqJiMhOWB6vNzXTrjDTTkREpDej0YixY8eiVatWqFOnTrb7zZgxA8HBweZLhQoV7DswNqIjIiI7YdCuNzXTDgbtREREehs5ciSOHj2K7777Lsf9Jk6ciLi4OPPl4sWL9h0YG9EREZGdsDxeb6ag3RMsjyciItLTqFGj8PPPP+PPP/9E+fLlc9zX29sb3mr2uzCwPJ6IiOyEQbveTOXxniyPJyIi0oWiKBg9ejTWrFmDrVu3IjIy0tFDyoqN6IiIyE4YtOvNnGnnOu1ERER6GDlyJJYtW4Yff/wRgYGBiImJAQAEBwfDV42QHY2ZdiIishPOadebKWj3ULhOOxERkR7mzZuHuLg4tG3bFuHh4ebL8uXLHT00DTPtRERkJ8y0600tjzeyPJ6IiFzLwYMH4enpibp16wIAfvzxRyxevBi1atXCtGnT4GU6ca03RVHsclxdMdNORER2wky73syZdpbHExGRa3nuuefwzz//AAD+/fdf9O/fH35+flixYgUmTJjg4NE5GIN2IiKyEwbtejNl2t2NLI8nIiLX8s8//6BBgwYAgBUrVqB169ZYtmwZoqKisGrVKscOztHU8nijEb6edwEwaCciIn0waNebmmk3MtNORESuRVEUGI1GAMDvv/+ORx55BABQoUIF3Lhxw5FDczw10w7Azy0FAIN2IiLSB4N2vZmCdmbaiYjI1TRp0gRvv/02vv76a/zxxx949NFHAQDR0dEIDQ118OgczGJNeD/3VAAM2omISB8M2vWmlsdnsBEdERG5lo8//hgHDx7EqFGj8MYbb+D+++8HAKxcuRItW7Z08OgczN0d8JD+vr4GybSnpwMZGY4cFBERuQJ2j9ebmmnPYHk8ERG5lnr16uHvv//Osv2DDz6Au7u7A0bkZHx8gIQE+CDFvCk5GQgIcOCYiIioyGOmXW/moJ3l8URE5FouXryIS5cume/v3bsXY8eOxVdffQVPU6VZsWYqkfdGqnkTS+SJiKigGLTrzfRPixvL44mIyMU8+eST2LJlCwAgJiYGHTt2xN69e/HGG29g+vTpDh6dEzA1o3NLSzFPcWfQTkREBcWgXW+mTLvbXZbHExGRazl69CiaNWsGAPj+++9Rp04d7Ny5E0uXLkVUVJRjB+cM1Eg9NZVrtRMRkW4YtOtNDdoz0gEozLQTEZHLSE9Ph7cpMP3999/Ro0cPAECNGjVw5coVRw7NOajLvqWkMGgnIiLdMGjXm6k83qAocEcGM+1EROQyateujfnz52Pbtm3YuHEjunTpAgC4fPkySpUq5eDROQFm2omIyA4YtOvNlGkHAC+kMdNOREQu4/3338eCBQvQtm1bDBgwAPXr1wcArF271lw2X6wx005ERHbAJd/0ZtE91xPpDNqJiMhltG3bFjdu3EB8fDxKlChh3j5ixAj4+fk5cGROgkE7ERHZAYN2vVkE7V5IY3k8ERG5FHd3d9y9exfbt28HAFSvXh2VKlVy7KCcBcvjiYjIDlgerzc3N8BDzoUw005ERK4kMTERw4YNQ3h4OFq3bo3WrVujbNmyGD58OJKSkhw9PMdjpp2IiOyAQbs9mLLtzLQTEZErGTduHP744w/89NNPiI2NRWxsLH788Uf88ccfGD9+vKOH53jMtBMRkR2wPN4evLyA5GR4IQ23mWknIiIXsWrVKqxcuRJt27Y1b3vkkUfg6+uLfv36Yd68eY4bnDNgpp2IiOyAmXZ7MHWQZ3k8ERG5kqSkJISGhmbZXqZMGZbHAwzaiYjILhi02wPL44mIyAW1aNECU6dORUpKinlbcnIy3nzzTbRo0cKBI3MSLI8nIiI7YHm8PZgy7V5IQ0YGkJEBuLs7eExEREQF9Mknn6Bz584oX768eY32w4cPw8fHBxs2bHDw6JwAM+1ERGQHDNrtwaI8HgDS0xm0ExFR0VenTh2cPn0aS5cuxcmTJwEAAwYMwMCBA+GrRqnFmWWm3bSMPYN2IiIqKAbt9mBRHg9I0K6efCciIirK/Pz88Oyzzzp6GM6JmXYiIrIDBu32kCnTzmZ0RERUVK1duzbX+/bo0cOOIykCGLQTEZEdMGi3B1Om3ceQBihgMzoiIiqyevXqlav9DAYDMjIy7DsYZ8dGdEREZAcM2u3BlGn3dU8D7jLTTkRERZfRaHT0EIoOZtqJiMgOuOSbPahBuwfL44mIiIoNZtqJiMgOGLTbg6k83tdDa0RHRERELo6ZdiIisgMG7fagZtrdJGhnpp2IiKgYUIN2ZtqJiEhHTh+0//fffxg0aBBKlSoFX19f1K1bF/v37zc/rigKpkyZgvDwcPj6+qJDhw44ffq0A0cMc9Du466t005EREQuTi2PZ6adiIh05NRB++3bt9GqVSt4enpi3bp1OH78OD766COUKFHCvM/MmTMxZ84czJ8/H3v27IG/vz86d+6MlJQUxw1c7R7PTDsREVHxwfJ4IiKyA6fuHv/++++jQoUKWLx4sXlbZGSk+baiKPj4448xadIk9OzZEwDw1VdfITQ0FD/88AP69+9f6GMGYN09HgzaiYjINfz6669wd3dH586drbZv2LABRqMRXbt2ddDInAQb0RERkR04daZ97dq1aNKkCfr27YsyZcqgYcOGWLhwofnx6OhoxMTEoEOHDuZtwcHBaN68OXbt2pXtcVNTUxEfH2910ZUpaPd2Y3k8ERG5jtdff93mWuyKouD11193wIicDDPtRERkB04dtP/777+YN28eqlatig0bNuCFF17AmDFjsGTJEgBATEwMACA0NNTq60JDQ82P2TJjxgwEBwebLxUqVNB34KbyeG8DM+1EROQ6Tp8+jVq1amXZXqNGDZw5c8auz/3nn3+ie/fuKFu2LAwGA3744Qe7Pl++ZJNpVxTHDYmIiIo+pw7ajUYjGjVqhHfffRcNGzbEiBEj8Oyzz2L+/PkFOu7EiRMRFxdnvly8eFGnEZtkyrQzaCciIlcQHByMf//9N8v2M2fOwN/f367PnZiYiPr16+Ozzz6z6/MUiI1MOwCkpjpmOERE5BqcOmgPDw/Pcka/Zs2auHDhAgAgLCwMAHD16lWrfa5evWp+zBZvb28EBQVZXXSVKdPO8ngiInIFPXv2xNixY3H27FnztjNnzmD8+PHo0aOHXZ+7a9euePvtt9G7d2+7Pk+BWAbtPlp6nSXyRERUEE4dtLdq1QqnTp2y2vbPP/8gIiICgDSlCwsLw6ZNm8yPx8fHY8+ePWjRokWhjtWKmmlneTwREbmQmTNnwt/fHzVq1EBkZCQiIyNRs2ZNlCpVCh9++KGjh2fF7v1rbFHL4wF4Ih3u7nKbQTsRERWEU3ePf/nll9GyZUu8++676NevH/bu3YvPP/8cn3/+OQDAYDBg7NixePvtt1G1alVERkZi8uTJKFu2LHr16uW4gZuCdi8DG9EREZHrCA4Oxs6dO7Fx40YcPnwYvr6+qFevHlq3bu3ooWUxY8YMvPnmm4X7pGqmHTCVyHshIYFBOxERFYxTB+1NmzbFmjVrMHHiREyfPh2RkZH4+OOPMXDgQPM+EyZMQGJiIkaMGIHY2Fg8+OCDWL9+PXwsPzgLm6k83ouZdiIicjEGgwGdOnVCp06dHD2UHE2cOBHjxo0z34+Pj9e/8WxmppP2AMzN6Bi0ExFRQTl10A4A3bp1Q7du3bJ93GAwYPr06Zg+fXohjuoe1PJ4MGgnIqKibc6cORgxYgR8fHwwZ86cHPcdM2ZMIY3q3ry9veFtUa5eKNzc5H+AtDQu+0ZERLpx+qC9SDIF7Z5geTwRERVts2fPxsCBA+Hj44PZs2dnu5/BYHCqoN1hfHwYtBMRka4YtNuDqTzek5l2IiIq4qKjo23eLmwJCQlWa8FHR0fj0KFDKFmyJCpWrOiwcWWRzVrtRERE+cWg3R7URnQKl3wjIiLSw/79+9GuXTvzfXW++uDBgxEVFeWgUdlgY612Bu1ERFQQ+QraL168CIPBgPLlywMA9u7di2XLlqFWrVoYMWKErgMskkyZdg9TeTwz7URE5AoURcHKlSuxZcsWXLt2DUaj0erx1atX2+2527ZtC0VR7r2jozHTTkREOsvXOu1PPvkktmzZAgCIiYlBx44dsXfvXrzxxhvO1RDOUdQ57QrL44mIyHWMHTsWTz31FKKjoxEQEIDg4GCrC4GZdiIi0l2+Mu1Hjx5Fs2bNAADff/896tSpgx07duC3337D888/jylTpug6yCLHFLR7KGxER0REruPrr7/G6tWr8cgjjzh6KM5LDdqZaSciIp3kK9Oenp5uXkbl999/R48ePQAANWrUwJUrV/QbXVGlNqIzMtNORESuIzg4GJUrV3b0MJybWh7PTDsREekkX0F77dq1MX/+fGzbtg0bN25Ely5dAACXL19GqVKldB1gkaRm2hm0ExGRC5k2bRrefPNNJDMKzR7L44mISGf5Ko9///330bt3b3zwwQcYPHgw6tevDwBYu3atuWy+WDMF7e4sjyciIhfSr18/fPvttyhTpgwqVaoET1NlmergwYMOGpkTYSM6IiLSWb6C9rZt2+LGjRuIj49HiRIlzNtHjBgBPz8/3QZXZKnd45lpJyIiFzJ48GAcOHAAgwYNQmhoKAwGg6OH5HyYaSciIp3lK2hPTk6GoijmgP38+fNYs2YNatasic6dO+s6wCJJzbRncJ12IiJyHb/88gs2bNiABx980NFDcV5sREdERDrL15z2nj174quvvgIAxMbGonnz5vjoo4/Qq1cvzJs3T9cBFklq0G7kOu1EROQ6KlSogKCgIEcPw7mxER0REeksX0H7wYMH8dBDDwEAVq5cidDQUJw/fx5fffUV5syZo+sAiyRTebz7XZbHExGR6/joo48wYcIEnDt3ztFDcV4sjyciIp3lqzw+KSkJgYGBAIDffvsNffr0gZubGx544AGcP39e1wEWSaZMuxvL44mIyIUMGjQISUlJqFKlCvz8/LI0ort165aDRuZE2IiOiIh0lq+g/f7778cPP/yA3r17Y8OGDXj55ZcBANeuXWPZHGDOtLtlsDyeiIhcx8cff+zoITg/ZtqJiEhn+Qrap0yZgieffBIvv/wyHn74YbRo0QKAZN0bNmyo6wCLJDXTfpeZdiIich2DBw929BCcHzPtRESks3wF7Y8//jgefPBBXLlyxbxGOwC0b98evXv31m1wRZYatBszYIARqan5ah1ARETkdIxGI86cOYNr167BaDRaPda6dWsHjcqJMNNOREQ6y1fQDgBhYWEICwvDpUuXAADly5dHs2bNdBtYkWYxx88T6UhN9XbgYIiIiPSxe/duPPnkkzh//jwURbF6zGAwICMjw0EjcyIM2omISGf5SgEbjUZMnz4dwcHBiIiIQEREBEJCQvDWW29lOeteLJky7QDghTSkpDhwLERERDp5/vnn0aRJExw9ehS3bt3C7du3zRc2oTNheTwREeksX5n2N954A4sWLcJ7772HVq1aAQC2b9+OadOmISUlBe+8846ugyxyLIJ2ybQ7cCxEREQ6OX36NFauXIn777/f0UNxXsy0ExGRzvIVtC9ZsgRffPEFevToYd5Wr149lCtXDi+++CKDdnd3wGAAFAVeSGPQTkRELqF58+Y4c+YMg/acMNNOREQ6y1fQfuvWLdSoUSPL9ho1arA8TuXlBaSmwgtpiGPQTkRERdSRI0fMt0ePHo3x48cjJiYGdevWzbJOe7169Qp7eM6HmXYiItJZvoL2+vXrY+7cuZgzZ47V9rlz5/IDW2UK2j2RzjntRERUZDVo0AAGg8Gq8dywYcPMt9XH2IjORA3aLTLtd+/KxSPf7X+JiKg4y9fHx8yZM/Hoo4/i999/N6/RvmvXLly8eBG//vqrrgMsskzZBy+kIS0NUBSpmCciIipKoqOjHT2EokUtj7fItAOSbQ8MdMyQiIioaMtX9/g2bdrgn3/+Qe/evREbG4vY2Fj06dMHx44dw9dff633GIsmUzM6T6QDANLSHDkYIiKi/FFXiYmIiMD58+dRrlw5q20REREoV64czp8/7+ihOgeL8nj1JsASeSIiyr98F2qVLVs2S8O5w4cPY9GiRfj8888LPLAizyLTDgApKdrJdyIioqKoXbt2uHLlCsqUKWO1PS4uDu3atWN5PGDViM5gkBg+JYVBOxER5V++Mu2UC6ZMuxq0s4M8EREVderc9cxu3rwJf39/B4zICVlk2gGwGR0RERUYW6LYiylo9/NIB+4yaCcioqKrT58+AKTp3JAhQ+BtUTqWkZGBI0eOoGXLlo4annNRT17ExwNpafD19cLt2wzaiYgo/xi024upPD7AKw24C3aQJyKiIis4OBiAZNoDAwPha9FhzcvLCw888ACeffZZRw3PuUREAGXKANeuAbt2wde3DQAG7URElH95CtrVM+3ZiY2NLchYXIs5087yeCIiKtoWL14MAKhUqRJeeeUVlsLnxM0N6NwZ+PprYP16Bu1ERFRgeQra1TPtOT3+9NNPF2hALkMN2j2lezyDdiIiKuqmTp3q6CEUDVZB+wwADNqJiCj/8hS0q2faKRdM5fFqpp3l8UREVBQ1atQImzZtQokSJdCwYUObjehUBw8eLMSRObFOnQCDATh0COWaX8E+hDNoJyKifOOcdntheTwREbmAnj17mhvP9erVy7GDKSpKlwYaNwb270erxN/wAwYzaCcionxj0G4vpky7jwfL44mIqOhSS+IzMjLQrl071KtXDyEhIY4dVFHQpQuwfz+a314PMGgnIqIC4Drt9mLKtPu6szyeiIiKPnd3d3Tq1Am3b9929FCKhi5dAAANrv8GN2QwaCcionxj0G4v5qCdmXYiInINderUwb///uvoYRQNzZsDwcEITLuFJtjPoJ2IiPKNQbu9qOXxbpzTTkREruHtt9/GK6+8gp9//hlXrlxBfHy81cXePvvsM1SqVAk+Pj5o3rw59u7da/fnzDcPD6BjRwBAF6xn0E5ERPnGoN1eTJl2NWhneTwRERV1jzzyCA4fPowePXqgfPnyKFGiBEqUKIGQkBCUKFHCrs+9fPlyjBs3DlOnTsXBgwdRv359dO7cGdeuXbPr8xaIqUSeQTsRERUEG9HZixq0szyeiIhcxJYtWxz23LNmzcKzzz6LoUOHAgDmz5+PX375BV9++SVef/11h40rR507AwCaYS9+uH0TQCnHjoeIiIokBu32YiqP9zawPJ6IiFxDmzZtHPK8aWlpOHDgACZOnGje5ubmhg4dOmDXrl02vyY1NRWpFh++hVG+n0X58rgWWgdlrh5F5NnfATxR+GMgIqIij0G7vZgy7WrQzvJ4IiJyFUlJSbhw4QLS0tKstterV88uz3fjxg1kZGQgNDTUantoaChOnjxp82tmzJiBN9980y7jyYsLtbqgzNWjqHl+PRi0ExFRfjBotxc1aHdjeTwREbmG69evY+jQoVi3bp3NxzMyMgp5RNmbOHEixo0bZ74fHx+PChUqFPo4rtbpAGz5EFWv7Sj05yYiItfARnT2YiqP9wLL44mIyDWMHTsWsbGx2LNnD3x9fbF+/XosWbIEVatWxdq1a+32vPfddx/c3d1x9epVq+1Xr15FWFiYza/x9vZGUFCQ1cURUiKqAwDuSzoPGI0OGQM5sePHgcqVgS++cPRIiMiJMWi3F1OmnUE7ERG5is2bN2PWrFlo0qQJ3NzcEBERgUGDBmHmzJmYMWOG3Z7Xy8sLjRs3xqZNm8zbjEYjNm3ahBYtWtjtefWglCuPu3CHl5IGxMQ4ejjkbBYsAKKjgWXLHD0SInJiDNrtRc20G6Q8nnPaiYioqEtMTESZMmUAACVKlMD169cBAHXr1sXBgwft+tzjxo3DwoULsWTJEpw4cQIvvPACEhMTzd3knZVPgAcuobzcOXfOoWMhJ6RONbl0ybHjICKnxjnt9mLKtHsqzLQTEZFrqF69Ok6dOoVKlSqhfv36WLBgASpVqoT58+cjPDzcrs/9xBNP4Pr165gyZQpiYmLQoEEDrF+/PktzOmcTFAREIxKVcB6pJ6Ph3bKlo4dEzuLMGeD0abl96RKgKIDB4NgxEZFTYtBuL2rQDjaiIyIi1/DSSy/hypUrAICpU6eiS5cuWLp0Kby8vBAVFWX35x81ahRGjRpl9+fRU/PmwFr/SkAisHv5ObQZ5ugRkdOwbOiYnAzcvg2ULOm48RCR02LQbi+m8ng1087yeCIiKuoGDRpkvt24cWOcP38eJ0+eRMWKFXHfffc5cGTOy9sbqNapErAGOLflHOrcBEqVcvSoyClkXoXh0iUG7URkE+e024sp0+7B8ngiInJRfn5+aNSoEQP2e6jbvRIAoGz6Obz7rmPHQk4iORnYskVuqysbcF47EWWDmXZ7UYN2I8vjiYjINViue27JYDDAx8cH999/P3r27ImSzBZacatcCQBQCecwdy4wejRQqZJDh0SO9scfUoZZvjxQvz7wyy8M2okoWwza7cVUHu9hZHk8ERG5hr/++gsHDx5ERkYGqleX9cf/+ecfuLu7o0aNGvjf//6H8ePHY/v27ahVq5aDR+tEIiMBAJUM53E3LQOTJ7vj668dPCZyLLU0vmtXwN1dbv/3n+PGQ0ROjeXx9mLKtLsbWR5PRESuoWfPnujQoQMuX76MAwcO4MCBA7h06RI6duyIAQMG4L///kPr1q3x8ssvO3qozqVsWcDDA55KOsJxBUuXAocOOXpQ5FC//irXjzwi2XaAmXYiyhaDdnsxB+0sjyciItfwwQcf4K233kKQOgcXQHBwMKZNm4aZM2fCz88PU6ZMwYEDBxw4Sifk4QFUqAAAeKb9OSgKMGIEq/CKrTNn5OLpCbRvD5QrJ9sZtFNepaUBFy86ehRUCBi024upPN49g+XxRETkGuLi4nDt2rUs269fv474+HgAQEhICNLS0gp7aM7PNIl9VLdzKFkS2LdPAndFceywyAHU0vgHHwQCA5lpp/xRFKBbN/nbsmePo0dDdsag3V7UTPtdlscTEZFr6NmzJ4YNG4Y1a9bg0qVLuHTpEtasWYPhw4ejV69eAIC9e/eiWrVqjh2oMzIF7ffdicb338s05q+/BmbNcuywyAEs57MDDNopf6KigI0bAaMRWLrU0aMhOytSQft7770Hg8GAsWPHmrelpKRg5MiRKFWqFAICAvDYY4/h6tWrjhukypRpd8tgeTwREbmGBQsWoH379ujfvz8iIiIQERGB/v37o3379pg/fz4AoEaNGvjiiy8cPFInZGpGh3Pn0L69FqxPmABs2OC4YVEhs1zqTQ3a1fL4+Hi5FBXLlgH9+wNJSY4eSfFz/Trwyiva/R9/ZNmOiysy3eP37duHBQsWoF69elbbX375Zfzyyy9YsWIFgoODMWrUKPTp0wc7duxw0EhNTJl2w12WxxMRkWsICAjAwoULMXv2bPz7778AgMqVKyMgIMC8T4MGDRw0OienrvF27hwAWfbtyBFg0SLgiSeAvXsBFigUwNy5cvajdGmgTBm51K0LtG1rTqQ4hZ07taXeateWbYGBQHAwEBcnHeQtekY4talTZW5+//6AqdKGCskrrwC3bsl7/MwZ4MIF4PBhgH9/XVaRyLQnJCRg4MCBWLhwIUqUKGHeHhcXh0WLFmHWrFl4+OGH0bhxYyxevBg7d+7E7t27HThimIN2ZtqJiMjVBAQEoGTJkihZsqRVwE45yBS0GwzAZ58BLVtKrDZtWu4O88orQNWqwO3b9hhkEZWSAowdC/z8M7B4MfD++8D48UCnTkBYGDB8uJSkp6c7eqQSWAHAAw/Im0CllsgXlWXf7t41v5dx9qxDh1LsbN4MfPWVvH8WLpT3OQCsXevYcZFdFYmgfeTIkXj00UfRoUMHq+0HDhxAenq61fYaNWqgYsWK2LVrV7bHS01NRXx8vNVFd6azuoZ0ybSnpbFqhYiIijaj0Yjp06cjODjYXB4fEhKCt956C0aj0dHDc25q0H7hApCRAQDw9tbK5Neulcrpe1m2TBJre/faZ5h2deKEfc42nDkjr2lgIPDOO8BLL0n5Qpkyko388ktZWq1fP/2fO6+OHJHrunWttxe1ee0XLkjgDjBoL0wpKcDzz8vtF18EmjcHevaU+z/+6Lhxkd05fdD+3Xff4eDBg5gxY0aWx2JiYuDl5YWQkBCr7aGhoYiJicn2mDNmzEBwcLD5UsG0DIuu1PL4dK2DLrPtRERUlL3xxhuYO3cu3nvvPfz111/466+/8O677+LTTz/F5MmTHT0851a2rJzQv3vXKpvarBlQsSKQmKj1J8uO0QiozfuvX7fjWO3h77+BOnWAxx7T/9gnT8p17drA//0f8PHHwHffAZcvy/zxkSNl2b0ffgCOHs369f/9Bzz9tLT0t7e//5broh60WwbqDNoLz0cfAadPA+HhcoIKAB59VLLuBw9y+TcX5tRB+8WLF/HSSy9h6dKl8PHx0e24EydORFxcnPly0R5vcFPQblmKxaCdiIiKsiVLluCLL77ACy+8gHr16qFevXp48cUXsXDhQkRFRTl6eM7N3V2ic0ArK4b8r923r9xesSLnQ9y8aU7SF72gfccOOeuwZYv+gYUatNeoYb3d3V3mtM+dC/ToIdsWLcr69a+/Lq38hw+3b1lkRgZw/Ljczhy0F7W12hm0F76MDGDePLn9/vvSBwGQipKWLeU2S+RdllMH7QcOHMC1a9fQqFEjeHh4wMPDA3/88QfmzJkDDw8PhIaGIi0tDbGxsVZfd/XqVYSFhWV7XG9vbwQFBVlddKeWx6elAZAPAAbtRERUlN26dQs1MgdGkKlpt27dcsCIiphM89pVatX2Tz/lXCJvuThOkQva1WAVkIy3ntSgvXr17Pd55hm5/uor63/ILl2SrDwgWXA9WvmvWSOXzM6ckfJmPz+gcmXrx4papv3MGe32+fNaqTzZz++/S1VIyZJZp3qoJ6UYtLsspw7a27dvj7///huHDh0yX5o0aYKBAweab3t6emLTpk3mrzl16hQuXLiAFi1aOHDk0DLtAPw85Q8ZO8gTEVFRVr9+fcydOzfL9rlz56J+/foOGFERk03Q3rQpEBFx7xJ5y5l/RS5oP3FCu20roC2IU6fk2sYJJbNOnSQwvnXLeu7vnDkScLqZ/iX+4IOCjSUmBnj8cSmfyLwEsVoaX6eO9nyqoha0W2bX795lWXZhWLxYrp98UhpiWFLntW/ZIp0tyeU4ddAeGBiIOnXqWF38/f1RqlQp1KlTB8HBwRg+fDjGjRuHLVu24MCBAxg6dChatGiBBx54wLGDtwjaA33YQZ6IiIq+mTNn4ssvv0StWrUwfPhwDB8+HLVq1UJUVBQ+KGiwUxxkE7Rblsh//332X+4ymfY//5Rafz0oSvbl8Zbc3YGhQ+X2F1/IdXw8sGCB3J47V+a9b94MHDiQ//Fs3CjTADIygO3brR/LrgkdULSDdlv3nYnRKJUWzz4rDfRyw9k6SN++rVWoqO9jS9WryyU9HVi/PnfHvHZNMvbq7wM5NacO2nNj9uzZ6NatGx577DG0bt0aYWFhWL16taOHZbUmaICXNKNj0E5EREVZmzZt8M8//6B3796IjY1FbGws+vTpg1OnTuGhhx5y9PCcX2SkXEdHZ3lIDdp//hlISrL95UU20x4XJ03hAKBKFQlof/pJn2NfvgwkJEhQnrnkPDM12Nm4UU6cLFokgXuNGsBzz8l640DBsu2//abd3rbN+rHsmtABWtB+86bzl2Yqihakq1MSnDloP3pUftZffAFUqwa89hqQaWqtlY0bJZP9v/8V2hDv6dtvJZCoVw9o2ND2PnkpkY+NBTp3lkYaEyc61wkKsqnIBe1bt27Fxx9/bL7v4+ODzz77DLdu3UJiYiJWr16d43z2QsOgnYiIXFDZsmXxzjvvYNWqVVi1ahXefvttGI1GjBgxwtFDc37ZZNqB3JXIF9mgXS2NL1sWGDRIbutVIq9m2atUsapytCkyElCXCV64ULrMA7Kmu5sb8Oqrcn/FCu3EiqJIhnP0aCmtz4nRKAGf6s8/rR/PKWgPCZG57oDzr9UeEyNnltzcgHbtZJszB+2HD8u1h4f8Mz5zJnD//dmfOFLLXb75pnDGlxtqafyQIVKaY4taIv/rr1aNsLNISgK6dwcOHZL7N27kvgKBHKbIBe1FhsEgfxwA+HvJL46znzglIiLKj5s3b2KRra7cZE0N2i9ezNK4y2DQektl10W+yJbHq0F7zZpA795y+7ff5AxFQeVmPrul4cPleuZMCVTKlNFOJNSrJ9lHoxGYNUtOrnTvLmOeO1fWe8/J33/LD0k9eXD4sDa/ODER+PdfuW0raDcYik6JvBqgV6yove5FIWh//nkJ1GvWlIqG55+3nWFWp0ccOJC7f94vXcp6gkZPR48C+/dLXKG+V2154AGgVCnJoh88aHuftDRZdnH7duk+r65oURjLHVKBMGi3J9MfbWbaiYiICOHhUomXkWEzm6qWyP/0k+0SectMe2xszsk0p6LOZ69VSwLjyEgJhvTo1J6b+eyWevWS7tvqSZNRowDLZYXVbPsXX8h4f/lFe+xegZlaGt+xo2T+jUZg507ZduyYBIhhYUDp0ra/vqgs+6YG6PffL9+n5TZnpAbt9esD3bppAfDly1kb6KWmSpAMyC9Ybvob9O8PtGkD/PGHvuNWqVn2bt2yf+8AMkVEPSH0zz+29xk6VOa8+/lJRr5rV9m+f79+4yW7YNBuT6ag3c+TjeiIiIiKPTc3qYEHbJbIN2kiyfikJNsl8pmbkd+4ofsI7cMy024waNl2PUrkc7PcmyUfHy1b6esLvPCC9eMPPww0aiQnFZKTZZ33qCh5TF1rPjtq0N6pE6D2eFAD/Zya0KmKSqZdXe6tShXroN0Z50UrinXQDkjAWq+e3N6zx3r/v/+2Phu2Y0fOx09N1Y5hj3L69HTtuLYa0GVWrZpc2wraT58Gli2TExarV8va7k2ayGMM2nPvzz/l5F52J0bshEG7PZnmtft7Sqad5fFERETFXA7N6AwG4JFH5Lat/6EtM+1AESqRt8y0A5LtBqTrXm7LBRTF9lrgec20A8DLL8uya2+9Bdx3n/VjBgMwfz7QpQuwZIl0k3/ySQn0bt2yXrrOUlKS1niuUyegdWu5rW7LaT67qqgE7WpWvUoVeT8bDNIM0BnfkDExMi43N/mZq5o3l+vMQXvmzLpaKZGdEye09+Xq1fqXv6xbJ13ey5TRsuI5UYP206ezPnbsmFzXry/TQADroD2nE1KkmTsX+PBDWS6yEHkU6rMVN6ZMuxq0M9NORERFUZ8+fXJ8PDanTsxkLXMzOjWjW6IEAC1xmTkRn5GhZdZLlJAVoIpEpj0pSftmataU65Ytpcz3+nVg61YpJ7+XV18FPvtMgii1e3ZiolbenNtMOyA/AzWItqVpU+tSB09PmS+8ebME4bVrZ/2abdvkH70KFWQspr5G2LtXfr6uGLTff79ULpQrJ2M+e1aCS2eiZtmrVZPKCtUDDwDz5mUftLdtK+/NnTvlhFF2zd/UZm6AnNTZvFkLiPWgTs8YMMCqyXW2qlaVa1tZYPWEk+UJrtq15WcYFyc/P/XrybZr17Sl9559tlCfmpl2ezIF7b4eLI8nIqKiKzg4OMdLREQEnn76aUcPs2hQg/aZMwF/fwkkSpYEpk61ejhz0H79uiTC3Ny0hLUzJjazOHVKgp5SpbT5uO7uWqfrlSvvfYz0dOn2npIiWXCVGpjcd58c354efFCuM6+9rrIsjTcY5OxLeLiMfc+evAXtzt493jLTbnmtNtqzJT1dKhu+/tq+Y8ssc2m8Ss20HzhgnR1Xg/Znn5Vl365f16YD5HR8N1NIlV0XyfxSx9OqVe72tyyPzzxdwXKaisrTE2jQQG6zRP7eliyR90vz5lnfU3bGTLs9mc6I+XmwPJ6IiIquxWojJCo4NVhITrbePn060KgRKlWSYDZz0K6Wxt93n/QyAwo5aFcUCV6Sk7X5wLmReT67qn9/afb2zTfAu+/mHHRv2ybrqQPAqlVSnurpmb/S+PxS56hnXntdZRm0A/K9PvSQLB+2YoWURViecbGlKGTaY2Ol8zoAVK4s11WqSBO2nJrRvfoq8MkncvvcOWDyZHuOUpNd0F61qiyzFxsrJ1QaNZLsmnpyRZ3vvWOHZNuzy0Crxx80CPjqKymRnzcv56z4li3yS2wZPNuSlqaNp3HjnPdVVa4s77PERPmjER6uPab+vmR+3iZNgN27pYP8gAG5e57iSFHk5CFQ6Fl2gJl2+1Ib0XmwPJ6IiIggjc7+/lvKps+elaBhzBh5bPBgRGZIVi8mxjquV5vQWTYftxm0nzkDnD+vz1jT04HvvpNl0ipVkixe/frArl25P4YatGcOVh9+WMrck5Kk7D0nlutp37wpJchA4QbtDzwgFQIXLmRd0/ryZek4bjAA7dtr29VA/6uv5LpqVesS7czUoD0mxn5LA6xbp81tzg81MA8NBQIC5LYavGcXtH/9tRawA8CUKVJZUhiN67IL2t3cgGbN5LZaIq82oStZUhpGtmwp27NrRqcoWnn86NHymty+DWzalP14jh+X90inTveeQ370qATuJUpovTDuxctLK9exLJFXlOx/X9iMzlp8PPDcc9rfGdUff0ivgMBA4IknCn1YDNrtyXSWzced5fFEREQECezq1JF505Ury1rJH3wgAUJcHEKeeQyl/WW9N8vYUM205xi0x8fLcVu00CfoGzpUMm9ffmk9mLyUAKtN6DJn9wwGYMIEuf3pp7bXuAMk2FCDdjVwWb5crtU12vMynz2/AgIkGwtkLZHfuFGumzSxrhhQm9ElJMh1TqXxgJRReHnJ93zlSsHHnNmPP0qnw0aNpIt4fljOZ1fltOzb/v1aVnLyZHmvA1JZMnmyvGd//13u9++ffSVDfqSkaO8RW6XMmZvRqaXojRvL+1MtSc+uGd2lSxKke3jIz/axx2T7999nP6ZNm+Tne+mSdkIhO+p4GjXKfk69LbY6yP/3H3Dnjpx4svzZAVrQfvCgNM8o7hYvBj7/HOjRQ/v7Bcg2QBpTqiesChGDdntS57S7szyeiIiIsuHlJf/olykDw5EjWOj5AgDFqkRezbSHhuYQtB8/Lpn7K1e0tabz68ABYOlSCRbGjZO1nZcskcd+/TX3x8ku0w4Ajz8ugfiNG9pa1JmdOiXBoJeXBPeAlCCnphZuph3Q5rVnDiwzl8ar6tSREmzVvYJ2NzegbFm5rXeJvNFo7puAtDRg4EBgxoy8Z7stl3tTZRe0X7smy/ulpsoa49OmAa+8AsyeLY+/8468Ph07ytiWLweef16/DPyxYxKEliqlva6WcgraATn5pR7HVrNNNcteo4bMf+/XT+6vWSOvsS3qEoCA9r7JTubx5JatoF39Pbz/fnN8YlajhvTXSEzUTnIUNYqiX3WK+jNKTAT69JETSzdvytQcABgxQp/nySMG7fZk+qVgpp2IiIhyVK6clKK7uaFn7FfohR+sgvZcZdot/+HO3BU7ryZNkuuBA4GPPpKO2D17SlZRDaTvJT1dW3rK1vxdDw9g/Hi5/eGHtpd0U7PsbdvKkldly0qn6/Xrte+3sIJ2W/Par16VpeuArF3w3dy0QB+4d9AO2G9e+w8/SGY3IAB48UXZ9n//J2XAtl737GRuQmd5OyZGAh1AThI88YR8H9WqSe8CtVnb2LHaCRhFkRM36rJ6x4/fe5m13LIsjbeVqVbL40+elKA8c5BcpoyWlbY1JUQ9vtrI7cEH5Rc0NlaqBzJTFOv3jr2Ddstl37Kbzw5I9l2tItm3L2/P5SxGjZJpDbaqF4xGeX898ohURuREUbRKGn9/+RszbJicsExLk5+F+loVMgbt9qSWx7txTjsRERHdQ7t2kmkE0B6b8p5pt8ys7d2b/3Fs2yZBsYeHZEdVwcFaEJqbbPuZMxIQBgRowWhmQ4dKWfi5c7Y7yatBe/fuEvT17Sv3P/hAShgt5/Dam/q9Hzsmy3sBwEsvSSauYUPrAF2lBvpA4QTtQ4bInGnL9QAts+xjx0oPgU8/lddz4UIJmkePltLte2UrbQXtJUtqFQVqB/k1a2TJNH9/OWEQHGx9nFGjJKi8fFm+ZulSbZ6wWoZcUNnNZ1eVLq3Nx9+xw3bTt5xK5NVMu3p8d3epHgFsl8ifPi2/yOrJi+3btZMcmaWlAUeOZB1Pbtha9s3Wcm+WnH1ee1qa/I2wVYWRnAxERck0lLffzvr4r78C334r/Ry6dNGaWtpy+rRUiHh7y9d5ekqG/Y035HEHNKBTMWi3JzXT7sbyeCIiIsqFpk0BADVxIttM+333yW27ZNoVRTKwgDSgswzOAMlWAbkL2i3ns2c3J9fPTwJGAHj/fet/ym/e1JqAde8u12pgp26//35tTXR7K11aC3p27JA1tJcv14Jfd/esX9OmjVwHBmoBYk7UoD3z8gG5ER0tGcHNm6UqwbLj/tGjQFCQTHUAJGhes0aC7UuXpCN/hw7yBlPXobbF1px2wLpEPiNDms0B8nzZdUm//37r7ubPPSfX339/74xobtwraAekwSAgKxmkp0vTN8uTQGozOltBe+ZMO6CVyP/wQ9ZsnZplb9UKqFhRAlHLcnlLahO6kJDcvW8sqZl29WcB2F7uzZLp745TBe27d0uvg/bt5XWIjLTdtHLrVq0nxurVWauA3ntPu713r/xuqH0mMlOz7M2aSU8KtYFiSoqcgHJgd30G7fZkCtq93VgeT0RElF/vvPMOWrZsCT8/P4RYzhF2RaZ/qjMH7bYy7TdvZmpAbRm0nziRc0YpOxs2yD+u3t62l+VSg/YtW7JvHmc5BuDeS1uNHCnB+6FD1icD1q+Xb7BuXenmDUiQpd4GCq80XqVm09etA154QW6PG5d9NrRZM5nD/fXXWoY1Jw0bynV+SsQtu5bv3y/TGRITgTfflG1jx0pQqurRQzLdP/0kJ2hKl5YKgiFDZHtmyclaBUDmkzmWa7UvXy4nbEJCtJMEudGsmSwnmJIi5fQFoSi5C9rVee1r18q12oROpQbte/ZYTyO4c0eb3295/FattCkcmU9sqQF669Za/wO1iWFmmZvi5UWFCvL7m5amNZDMqTwe0DLthw7Zb+WCvHj3XekpMHWqnIRSl9KYPz/rvr/8ot02GoFZs7T727fLCTYvL9kvJER+t7p3t/33Sz2xov6eP/888NRTcvupp+TEl4MwaLcnU3m8t4Hl8URERPmVlpaGvn374gU1SHJlpn+qy+IKbv0ba95sK9NuNGpV2jAatTmsvr4StOQ1a6YoWhnoqFEyzz6zWrUkaE5NzbokUmZqpj2ntckBaRSmNnfq318LZCxL41UGg5bNBAo/aFfL3efNAy5elOyfGhTbYjBIsNyzZ+6Or2bm//pLAr+8UOdR9+kjmf2tW2X+7bFjUp7+8stZv8bXV5rEffGFBOpNm8rzjhyZtRQ5Olqug4Ksu+QDWjb41CmtFP/VV60b8d2LwaC9DxYsKFhDuosXZW65h0fOJ43UoF09+5X55EutWvLaJSZq5eqAVkpftqx2Fg2QEzMDB8ptdak/lRq0P/SQFrRnN689v/PZAan4UE+i/POPvA7qH5DsVlqoUkW+z5SU/C0JePWq9L74v/+zXqsyP374Qfs71Lu3ZNd375bA+9gx6yabiqL1lFBPEC1erE0PUbPsQ4bICccNG7TfDVtZczVoV3/PDQZZPWPdOvn+HIhBuz2pmXYDy+OJiIjy680338TLL7+MurmZE2ySmpqK+Ph4q0uREBSEjHAJlkteO4HkZEl83bwpD4eGyr8X6hRhc4n8hQsSSHt5SfknkPd57StXyrJPAQHA66/b3sdgyH2JfG4z7YBWBpuQIMdfskQy7YAElZYs10gujOXeLFnOUQckuPTz0+/45cpJ2bjRmHVpOUDK5pcuzRrQGo1apv3llyWQ8fHR5jWPG3fvANrDQ4J3Dw8JnNRu2SrL+eyZs79qkPj115KBvu8+YMyYe3yzNgwcKCcSjh2z3fwtt9Qse82aknXOToMG1t3UMwfJbm5aF3nL5nI5ZfGfflquf/lFCx4vXpSfnZubZO/bt5fX8NgxWY4ts4IE7YB1B3n197BcuewzxW5u2nPl9mRfRoYsI9irlxz7lVdkRYJhw/J/wuXvv4FBg+T2qFFS7v7ii3JyRf279u232v7HjgHnz8t7ffp0+R6SkyXQP3JEfgZubnICCZBqjvXrJbG6dq3WlwCQVTfOnpWfi/ozB+T3oUsXfX/P84FBuz2Z/gh4GVgeT0REVJhmzJiB4OBg86VChQqOHlKuudXWSuQvXJC+SIAk0NQEZ5ZmdGpp/P33W5f05tatW1qQNX68ls63xTJoz+6f84wMrST3Xpl2QLJfv/4q2a+7dyUzFhcn36ja5VvVqJGUzLu5ZX3M3ipV0ioQnn46a8d4PbRtK9dbt2Z97MknJaiJirLefuSIBIgBARLgtG4tQbeHh7yGL72Uu+euVw+YOFFujxxpUcoBrRw883x2QAva1Szr66/nby3rkBCptgAK1pAuN6XxgAT0lnPSbQXJvXrJ9cyZ2uuhBnuWX6uqU0feo+npsiIEoGVwGzWS93rJkto88swl8gVpQqey7CB/r9J4lTqexYvlvZfTmu2KIr+rvXpJ4J6RISX2Hh7yPdtqCHcvN27IlI3ERODhh63L3AEtM/7dd9rfHbU0vl07mXM+YYLc//RTrQLm8cet37MtW0oGH5CTbir1JFm9enmrECkkDNrtyVQe7wWWxxMRERWmiRMnIi4uzny5ePGio4eUawZTkFsLx3HunFbZGhqqTYvOErSrGdVq1bRANi+Z9pdekieqUSP7LLuqXTsJds6f17J4mR09KiWG3t5SQp4bXl4yl3nsWG3bo49mbfBmMEiZ6759hV8ebzBI5/onn9TWG9dbdkH7+fNa9nnRIuvH1Cxwmzbm/z/xyCMyReHgwazd23PyxhsS4F27Jidwrl+XwFKtrMg8nz3ztvBwbb5/fqgl8suX574h3Xvvyff+1lsSsOc2aAe0EvkSJWy/V4cPB2rXlnIXtfT/XscfPFiu1RL5zGXXQPYl8seO5b8JncpWpv1eQbv6vtu5U37Hy5WTbLetSoBFi4AVK+S99uqrMuZ9+4D//U8enzJFHs+tuDgJrs+dk/fS999r72NVt26S7f73X60aQC2NV6tx+vSRn+HNm5KlB4DXXsv6fGrTw6VLtaZ0atCeuZrGSTBotyc10w6WxxMREVl6/fXXYTAYcrycVDNE+eDt7Y2goCCrS5GRqRmdZRM6VbaZ9urVJZvn7i5zlHOzdNjatdo62lFRUmqaE39/+acesG4CZUnt8vzII7a7qmfHzU0ybLNnS0A+cqTt/cLDHbZeMgYMkH/2S5a0z/HVee0HD1rPa7dcEm/HDuvGg2rQ3qGD9bGqVs1+ub3seHtLmbzBIO+HMmUkwFSfw1blRLlyWhn6G28UrJS4eXOppEhJyV22/dIlYNIkmTM+ZYpkv9XXKjdB+8MPy/VDD9lu+ubhoXUR/9//JGBXM+HZHX/AAPm6ffskaLZsQqeybEZn2VFSLY1v1CjvTehUlsu+3Wu5N1WXLjLFYtgwOYFx9ar8HrdqpfUzACR7r1ZuvPOOVCCo74lnn9VOug0eLN/L3buSuUxKypq9v3tXst1VqwJ//CFVCD/+mLVnAiB/d3r0kNvffitVD2rDxkcflWsPD+vmh5062f470a6dnNi4c0crt8/chM7JMGi3J9MZIk+wPJ6IiMjS+PHjceLEiRwvlfObZSrqLDLt589bN6FTqUG7eTluy6Dd319KdIF7Z9tv3dKyTq+8omUd7yWnee03bsjcZsB287N7UZu3nTihdbUuTsqX1+a1q0vbAVrm0tdXrhcvluuUFC0ozBy051fLltY/u6pVgb595WSKZSNAlbu7ZLufeUYuBWEwaEHhlCnSlC8nCxdKMFi7tgR16uvj46N1489Jz55y4spWZ3JV+/bAY4/Jz+SJJ2QagK+vFhxnVrq09jsya5bWlNEyIHzgAZlCcOOG9dzqgs5nB7RM+7lz1vP77+XhhyWLHhMjv9tVq0qFR9u2kuFOT5fpGUlJEviOH5/1GB98ICcAkpPl99fTU34W/v4yp75FC6nE+Phj+fk8/7ycfaxeXZ6zdu3sx6dOnVi+XPY1GuVvneWKEkOHatN7curNYdn0MD5ee52cNGiHQkpcXJwCQImLi9P3wK++qiiAcrbPeAVQlEaN9D08ERG5Jrt9LhVxixcvVoKDg/P1tUXqNb12TVEAJQMGZXDfROXddxUFUJQhQ7RdXn9dto0ZY9pQsaJs2L5d7o8YIfdfey3n5xo4UParWVNRkpNzP8YzZ+TrPDwU5epV68feflsx/+NjNOb+mKR55hl5DV99Ve6fPy/3DQZF+ewzuR0erijp6YqyebPcDw3V9/XOyFCUo0cVJT5ev2PmltGoKN27y/dVpYqiZPd7m5YmrwOgKMuXy7bEREX55RdF2btX3zFFRyuKj488F6AozZrlvP/KldrPDFCUWrWy7qN+jzNmaNuaNrX+fvLDaFSUwEBtrICiXLmS9+P895+iVK8uX1++vPZ3JSREUS5cyP7rYmMVpXlz6+fP7lKihKLMmSM/y3tJSVGU4GD5uvvvz/5v3NGjirJuXc7Hun5dUby85Bjq36zIyHuPQWe5/Wxipt2eTOXxngoz7URERPl14cIFHDp0CBcuXEBGRgYOHTqEQ4cOIUGdi+hqSpdGamApuEEBTp3KMdN+/Tok66Wux6x2U1fntefUjG7VKinzzm1ZvKUqVaTs9O5dyVipjaHS0rTS+Jdfzn95b3Gnlsir89rVTu4PPSSZ7Pvuk27XGzZYl8br+Xq7uUnWMzBQv2PmllqaX7GidPR+9lnbTQ9//FFeh7AwrWGcn59kudXGanqpVElrdAbYbkJnqVs3KTNXx21ZGq9SS+Tff1/m49+4UfAmdIC8fmq2HZCeBpbza3KrbFl5D9asKdMQ1OkK8+fLevDZCQ6W/gvXrsn88thYKUU/cULK0V97TUraJ0yQBoejR2edw26Lt7fMWwe0xoiZV5cA5H3bpUvOx7rvPqkeAeS1B5x2PjvA8nj7Mr35PBTOaSciIsqvKVOmoGHDhpg6dSoSEhLQsGFDNGzYEPvzug55EZJ2v5TI+184btWITmUVtKvrs5csqZWFqkH7/v22u0D/+6802ALkH+j8dGFftEgSFD/+qP0zv2KFBFHh4bbLqCl31KD9wAEp3VVL4x9/XF7zp56S+19+mf189qKuZEkpg/bwkMZktsrX1cZnzzxjvXSbvbz2mhas3qungre3Vs4N2A4IBw6UbuWxsTIVoGJFyfIVpAmdyrJ0v2bN/J/QCQsDtmzRytYHDbJedjE7BoP8oSpZUoL4gACZV9+/v0yl+PlnOVmR194Qlq9piRIyzSC/1KlBamaVQXsxpWbajeweT0RElF9RUVFQFCXLpa3a7dgFedaV+afhsSdw/rxsyzbTbtk5XlWrlswhTUjI2uE9LU3+8Y2Lk7nL6tJIedWggazLDEhW/cQJraP6yJGFE0S5qgoVpJrBaJQlrtSu8Y89JtfDhsn12rVaJ+327Qt/nPb2wAMS2AHyHlObhQHyftuyRSoC1PnJ9ubnB/z0kzTbU9djz4naRR6wHRCWKCENB5ctk8BaXTKvIE3oVJZ/D3Iznz0noaHSX+HHH+VEkSM9/LD2B7BrVzmpk18PPmj92jjrfHYwaLcv04eVO8vjiYiIKA+8G2rN6NQeVdlm2i2b0Knc3bUmbpmb0U2YIF2tS5aUUtXclKVmZ+xYKfFNTpY1yw8ckDJ7NYNF+aeelJo0Sa5btZJyZUCabzVpItMTjEb52edUrlyUvfyyNJhLTZVqAnXt83nz5LpHj8L93uvXl3XI1YZ3OWnWDPi//wOmT89+jO7u0m3+6FGpKOjXT/YvKD2DdkCy5T16FOzvhR48PKSc3mDQqoXyy2CQRniAVClZ/g11Mgza7Uktj89geTwRERHlnqGWtuybetI/u0y7YitoB7RO8Dt3aktKrVmjLV+1ZImU4xaEOh/+vvu09Zyfekor06f8U4N2dV0/df6tSs22A65XGm/JYJCTS717S5XIgAGyXvqSJfL4iy86dnw5MRhkWbTJk++9r5ub/IyXL5cTNAVlWR5/r+XeippJk6SKSF2uryCGD5eO87NnO3UPDgbt9qRm2lkeT0RERHlhyozdjzPwhPwfYStoT08HMk7YKI8HtHnqixZJIqFkSW0+6Kuv2m7glB/h4dryY4C2XBcVjDqvXaWWxqsGDNCaB7piabwlPz+Z168uQzd9usz1r1rV9b/3/NI70+5MDAZ5T+jB319K/gcN0ud4dlKASQB0T2rQniHl8Wlp0kDSiU/iEBERkTMoXx4pngHwSU/A/TiDs161EBKiPezrK/9rJiYqMPyTTaa9fXsJak6flkz77duyvVUryf7pqVs3rWw5p3WWKfcqVJBmZP/+K2tbly9v/XhIiDRi27tXvxMwzszdXdY8r1IFGDNG3tPPPy8ZasoqJEROcsTGymtGRRqDdnsylce7mcrjAcm252VFFSIiIiqGDAbcDquJ8Iv7UBMnkBBaK8tJ/9KlAf/Ea3C/EycZgcz/mIeESJO6lBT5x11ddql2bfvMS81NR2nKmx49gI8/tm5oZmnoULkUJyNHSuZ40ybnLo13BrNmOXoEpBMG7fakZtrvMmgnIiKivEmtXAu4uA+1cBwXQk2l0Skpsu5xuXIoXRrwPmcqjY+IyL4xlo+P1NZb1tdT0fDuu7LMW8uWjh6Jc3n4YX3mMxMVEawnsSfTWWyDqTwe4Lx2IiIiyh2PulozurAwADExsqZzhQrA/PnS7BjZlMaTa/D1lekMnFtJVKwxaLcnb28AgCE11bxUKTvIExERUW4ENdeC9siQ27K02unT0iDnhRcwNGaGFrRnbkJHREQug+Xx9qR2NUxKgo+PNKJjpp2IiIhyI7C5rNVeAyfxypZHgf/+lhL3vn2BTz9F37/+D/EIlJ2ZaSciclkM2u3J31+uExLUpDuDdiIiIsoVQ+VIpBq84aukoOJ/u4ASJYCNG4E6dYDISGDcOAThjuzMoJ2IyGWxPN6eAgLkOjHRHLSzPJ6IiIhyxd0d10Kk7D3D1x9Yt04CdgB4+WVsG/olMuCGDIM7l1kjInJhDNrtiZl2IiIiKoDw1wbjblh5uP/0I9C8udVjsb2HogV2Ycz964DwcAeNkIiI7I1Buz2pQXtqKvy8M9SbRERERLni8dp4eFy5CLRvn+Wx0qWBfWiGX9I6OmBkVBh27gT69AHOnXP0SIjIkRi025NaHg8gxDMRAMvjiYiISB+lS8v19euOHQfZz5w5wJo1wOefO3okRORIDNrtydsbcJOXOMQjAQAz7URERKQPNWhPSpILuZ7//pPr/fsdOw4iciwG7fZkMJiz7cEekmln0E5ERER6CAwEgoPl9ujRwN27jh0P6e/yZbnevx9QFMeOhYgch0G7vZnmtQe5szyeiIiI9GMwAJ98IkV9X34J9OoFJCY6elSkF0UBrlyR27dvA//+69jxEJHjMGi3NzVod2N5PBEREelr8GCZ8+zjA/zyC/Dww8CNG44eFekhLg5ITtbu79uXdZ9Ll2xvJyLXwqDd3kzl8YFuLI8nIiIi/fXoAWzaBJQsCezdC7RuLQEfFW1qll2VeV67ogBduwIPPACcOFF44yKiwseg3d5MmfYAA4N2IiIiso+WLYHt24GyZSWAGzIEMBodPSoqCHU+uypz0P7PP8DRo/Jz3r278MZFRIWPQbu9qUE7pDyec9qJiIjIHmrWlFJ5Ly/ghx+A99/Pef8TJ4Dhw4HNmwtleJRHatAeFibXBw4AGRna4+vWabf//rvwxkVEhY9Bu72ZyuOZaSciIiJ7a9YMmDtXbk+aBGzcaHu/bdskO//ll0CXLsDKlYU3RsodtTy+XTvAzw9ISJDsuopBO1HxwaDd3kyZdj8jG9ERERGR/T37rGTQjUagf3/g3Dnrx1esADp0AGJjZR58ejrwxBNAVJQDBkvZUjPtFSsCjRrJbbXpXGIisHWrtu/Ro4U6NCIqZAza7U0N2hUu+UZERESFY+5coEkT4NYtoFo1ycCPHg28+irQrx+Qlgb07g2cP68F+EOHall6cjw1aA8Pl58loM1r37JFfobh4XI/JoarBhC5Mgbt9mYqj/c1sjyeiIiICoePD7BqlcxzT0+XDO3cucCHH8rjo0ZJxj0gAFi4EBg7VraPHi3byfHU8viyZYGmTeW2GrSrpfG9egGVK8ttlsgTuS4PRw/A5Zky7b4ZLI8nIiKiwlOxInDsmJTH79kjl5MngZ49geeeAwwG2c9gAGbNkuD+s8+Ar74C+vZ16NAJWqa9bFmgdGm5/ddf8nP69Ve537Ur8N9/wL//Sol8u3aOGauzSUoC7t4FgoIcPRIifTBotzdT0O6dwfJ4IiIiKlwGAxAZKZf+/XPe75lnJGhXS6+9vApvnGRNUazL4ytVAoKDgbg4YPVqORHj5QU8/LCcjFm7lpl2laIAzZtLz4aTJ83/ihdYQgKwY4f0Erh+XVZnKFVKn2MT3QvL4+3NVB7vfZfl8UREROS86tWTjG5iouPX/f7jD6BjR+tu6cVJXJyW6AkPB9zcgMaN5f5bb8l1mzYSkNatK/cZtIvLl6Xq4NIlYO/egh/vwAFZaSEkRFZaeO89YNEiYPLkgh+bKLcYtNubmmlPZ3k8EREROS83N+kqDwC//ebYsXz0EfD778Dbbzt2HI6iZtlDQgBfX7mtNqM7dkyuu3aV6zp15ProUckyF3enT2u39+wp+PHefhvYtQvIyJCKhz59ZPsXXwAXLhT8+ES5waDd3kyZdq90lscTERGRc+vUSa6zW99dTydPAsnJth87dEiuV6+WzH9mp08D69fbbWgOZzmfXaU2o1OpQXu1aoCnp5Rvnz9fOONzZpbVGQUN2tPSgE2b5PbvvwPR0dLgsW1b6S3w7rsFOz5Rbjl10D5jxgw0bdoUgYGBKFOmDHr16oVTp05Z7ZOSkoKRI0eiVKlSCAgIwGOPPYarV686aMQ2mDLtnqnMtBMREZFz69hRrvfvl+Xi7GXNGulsP3581sdu3QIuXpTbiYkyX9tSaqrM5e7aFdi+3X5jdCTLzvEqNdMOSI+C6tXltqenvJYAS+QB60x7Qcvjd+0C7twB7rvPusnfm2/K9Zdf8kQJFQ6nDtr/+OMPjBw5Ert378bGjRuRnp6OTp06IdHilOvLL7+Mn376CStWrMAff/yBy5cvo49at+IM1KA9jXPaiYiI8urcuXMYPnw4IiMj4evriypVqmDq1KlIS0tz9NBcUrlyQK1asm775s32e55PPpFrtQu6pcOHre9/8431/WXLZL4yAHz7rf5jcwaWTehUERESPAJywkLt/g9Yl8gXd5aZ9suXtfdKfqjVHJ07y/QRVevWQPv2km1/5538H58ot5w6aF+/fj2GDBmC2rVro379+oiKisKFCxdw4MABAEBcXBwWLVqEWbNm4eGHH0bjxo2xePFi7Ny5E7sd3UFFZSqP90hleTwREVFenTx5EkajEQsWLMCxY8cwe/ZszJ8/H//3f//n6KG5LDXbbq8S+dOnpdEcIFnKzAWSatCuBqIbNki3bkBOJqhrzQNSqpyRYZ9xOpKtTLvBAHTrJsHjgAHW+7MZnUbNtKtBdkFK5Netk2t1KoIlNdu+eLGUzRPZk1MH7ZnFxcUBAEqWLAkAOHDgANLT09FB7ZoCoEaNGqhYsSJ27dqV7XFSU1MRHx9vdbEbU6bdPZnl8URERHnVpUsXLF68GJ06dULlypXRo0cPvPLKK1i9erWjh+ay1KD9t9/s09jsyy+t72cuYVbns/ftKx3TMzKA77+XbevWAcePA4GB0qTt6lVg2zb9x+hotua0A8D//gecPQs8+KD1dgbtIiNDXh9Aex/nN2i/fFlOIBkMWq8HS61ayXPcvctsO9lfkQnajUYjxo4di1atWqGO6dRrTEwMvLy8EBISYrVvaGgoYmJisj3WjBkzEBwcbL5UqFDBfgNXg/aURAAKg3YiIqICiouLM5/Az06hnqB3MW3ayDzpc+e0AEgv6elAVJTcLldOrrML2uvXBwYNkttqifzMmXL93HNA795ye8UKfcfoDGyVxwPSSb5Spaz7q1UJJ09K87Ti6sIF+f69vIDHH5dt+Q3a1RUUGjeWpRBtUbPtUVGc2072VWSC9pEjR+Lo0aP47rvvCnysiRMnIi4uzny5qHY7sQdTebzBaIQ3UlkeT0REVABnzpzBp59+iueeey7H/Qr1BL2LCQiQdamB7EvkjUbg+edlibg7d3J/7F9/BWJigDJlgAkTZJtl0J6WJpl0AGjQAOjfX8qcd++W+et//iknFF56CejXT/ZzxRJ5W+XxOalYEQgKkqxvcV3bHtBK46tUAVq0kNv798vrklfqfPYuXbLfp0ULmd+ekQH8+GPen4Mot4pE0D5q1Cj8/PPP2LJlC8qXL2/eHhYWhrS0NMTGxlrtf/XqVYSFhWV7PG9vbwQFBVld7MaUaQeAACQw005ERATg9ddfh8FgyPFy8uRJq6/577//0KVLF/Tt2xfPPvtsjscv1BP0Luhe89rfegtYsECWw5o7N/fH/eILuR48WCvx3rtXK8M/cUKy8SEhEoiGhWlrxw8fLtdPPgmULy+NwEqUcL0SeUXJvjw+OwaDlm0vziXy6gmLatWAGjVkGkVSknYiKLcyMrRMe05BOwB07y7X+VmC0GiU35/MzReJMnPqoF1RFIwaNQpr1qzB5s2bERkZafV448aN4enpiU3qAooATp06hQsXLqCFenrN0dzdAW9vAIA/Ehm0ExERARg/fjxOnDiR46Vy5crm/S9fvox27dqhZcuW+Pzzz+95/EI9Qe+C1Dm8mzZlzVKuXQtMm6bd/+ij3GXb//tP6xY/fLjMw/bxAWJjtQypGrzUr691R1dL5NU13V95Ra49PV2zRD42VmtcnLk8PifsIK+9j6pWlX/B1bXt81oiv28fcPu2nDxq3jznfdWgfutW7T2aWz//DIweLYF/enrevpaKF6cO2keOHIlvvvkGy5YtQ2BgIGJiYhATE4Nk029EcHAwhg8fjnHjxmHLli04cOAAhg4dihYtWuCBBx5w8OgtmErk/ZGItDQ5q0ZERFSclS5dGjVq1Mjx4uXlBUAy7G3btjWvEuPm5tT/vriERo0kix0fL9lxNXA/eVILol94QTKaN28Cn31272MuWSL/Az34oKwx7ukpzwNoJfKW89lVvXrJXG5AunirwSkgzeoA1yqRV0vjS5SQkxq5xWZ01pl2QAu4LYP22Fjpvj91avaBsto1vmNHwMMj5+esXVv6MyQny/SNvNi5U64vXgRWrszb11Lx4tSfevPmzUNcXBzatm2L8PBw82X58uXmfWbPno1u3brhscceQ+vWrREWFuZ8HWVNJfIBkA7yxblBCBERUV6oAXvFihXx4Ycf4vr16+aT+GQ/7u4SLAMSnEdGSofsnj0lq966tay1Pnmy7PPhh0BCQvbHMxqBRYvk9jPPaNubNZNrNWhXM+0NGmj7BAbK/HkfHwm0LLliiXx2TejuxdFB+9NPy8/TtNiTQ1hm2gHbQfuYMcB33wHTp0tQnnnJQSB389lVBoO2JFxeS+T37dNuf/ihfVZrINfg1EG7oig2L0OGDDHv4+Pjg88++wy3bt1CYmIiVq9eneN8doewyLQDXPaNiIgotzZu3IgzZ85g06ZNKF++vNVJfLKvTz4B3nhDOmdfugRMmiSZzAoVpBzd01MaxeUm2/7778C//0qzNLWrN2AdtCuKlmm3DNoBKcGPi8taquyKJfJ5nc+uUisQzp2TZfX0DgB37ZKTJ7duZX3s5Eng668lCJ0/X9/nza20NPneAS3Trr6/jh2Tk00//ijjdHOTf8//+EO6w1sG9TduaMF05865e241uM9L0G40SpM8QAL/gwdlPES2OHXQ7jIyZdrZQZ6IiCh3hgwZku1JfLKvwEDg7bdlGa0lS2R+cFgYsGaNdH8HpHR40iS5/cEH2WfbP/hArocMserRaw6q/vpLgvpbt+SYtWpZf73BIMt42aKWyH/3HfDpp1rgVlTltXO8qlQpoE8fuT18ONCjh3Tq18vrr0vzwRkzsj62dKl2++OPHfO/bnS0TJHw99eqFMLD5SSTokhAPWKEbH/lFQnMa9SQXgutWwNNmkiwX7267F+3rrYs4b20by/VKSdP5v79d/q0TD/x8dGqTz78ME/fsu7i4pjtzywxUaqErl937DgYtBcG06dTsDsz7URERFS0+PhI6fPevRJQNm5s/fiAAVKOnF22/eBBybS7uwPjxlk/VrmyBJtpacBXX8m2mjXNPXxzpX17Cc5u3ZLS58hIyTovWJC379NZ5Lc8HgC+/x54/305wfHzzzLf+pdfCj6m9HQt+xwVZf2/rKIAy5bJbXd3OVHw9dcFf86cxMZal5YD1qXxahNDQKvOGD4cuHZNTgi9+aYE7Hv2SKVGWhpw4IAcQ60kGDw49+MJCdGWmNuwIXdfo46/YUPg1VdlzL/8Iiso6GXlSuDzz3MXiO/bJ7+L48fr9/yu4NNP5aRK69ZSheEoDNoLg6k8PtiDQTsRERG5Fg8PbW77Bx9knSOsZtn79wciIqwfMxi0bLs6592yCV1ueHrKCYUPPgDatJHA8dgxmYuvBsBFSX4z7YB87xMmSNl1gwYSgD75ZP7WKbd0+LDWGf3GDam2UO3eLVUS/v4SDAPys7BnY8D+/eV98/PP2ja1CZ06n12lBu137sjr89VXWoO/oCBpYrh1qxxr2zb5Xi9dynvwqpbIq03s7kUN2ps2lTH37Cn3Z83K2/Nm5/p1eZ2eew4YNerejbB/+01+Zrk96VBc7Ngh1ydPSu+C3KyUYQ8M2guDKdMe4iE1YwzaiYiIyJUMGCDlxDdvSnd5NUCIjtbmmr/6qu2vVYP2//6T68zz2XOjfHkped66VbKpTZpIdvH77/N+LEfL75x2S3XrShbZz09KsM+eLdiYdu2SazWDbVnFoJbG9+oFvPSSNAY8fRr44YeCPWd2/v1XCyw//VTbrmba1fnsKvX9BQD/939ZK0UMBjnZ8+ijsrJBvXq5L4u3pDaj27Qpd02nLYN2QFvK8OuvtRNfRmP+T378+qv2tf/7nwTvOR3r2DG5Pn264Cd5XMmBA3Lt5SUnw3r1ckwsx6C9MJiC9iBTeTzntBMREZEr8fCQOeV+flIK/957sn32bAkUOnXKPoNuGVQBec+0Z1aypJTzA8C33xbsWI5QkPJ4S15eMtUA0AKy/Nq9W66feUaauG3dCpw6JWXz6qJOAwdKcenIkXL//fftMz9anUYBSHb433/ldubO8armzSUw7thR679gDw0aSK+HhARtKbfspKdLHwdAC9pbtpSxpqbKSQM3N6kM8PeXaoC8+ukn7bhubrJ049Ch2QfkR49qY1Nf0+Lu8mWpfHFzk/daQACwebM+1St5xaC9MJjK4wPdWB5PRERErqlWLW1O++TJkmn94gu5P2FC9l+nBi2qggbtANCvn/yjvXdvwbPMhUlRClYen1nt2nJ9/Hju9k9Oth1oq5n2vn2BRx6R259/DmzcKOXypUtLUAwAo0dL+fm+fRLc68lo1IL24GC5XrhQrjOv0a7y9pb3wW+/Zd/MUA9ublq3+Xt1kT92TJJ4QUHaSQaDQVvSMCND+zmkpgKLF9s+zqefSqB/8aL19rQ0rRph9mw5eeXuLln855/Pepz0dCn/Vuk5r74oU7PstWpJNcYPP8h7aPVqqSopTAzaC4OaaXdjeTwRERG5rsGDgaeekuCqTx8JAhs1Ah5+OPuvKV1amscBEqiWLl3wcYSGSoM6QCoAiorYWK0iU49VDdUu/LkJ2tetk0qJzHOqr16VaQ4GgwSIzz0n25cskaXlAOCJJ6TaApBs87Bhcvv99wv+PVjavl3GEhgIzJ0r2778UqYAqIFr5kx7YbKc155TlYFaGt+kiQT7qq5d5STIhQty8mbzZtm+bVvW0nZFAd59V05IfPSR9WN//CEZ/7AweY5+/bRpKurrZenMGQncVQzahboknzqlon17OQFSsqS85wsTg/bCoC75ZmB5PBEREbkug0Hmz1arpgUtEyZYd/O2RW0Wlp/57NkZMECuly0rOstYqaXxJUpozdIKQg3ac1Me//nncq1OaVCpWfbatSUz3LWrLKN286ZWtj1okPWxxo+Xn/mGDVqvAj1ERcl1v34SNIWFSQ8D9URDSIh0QHeUTp3k+z5yBKhYUTrWL1+eNUjOPJ/dUqlS8vqGhUnH8qAg+frDh633O35cW9Jv8WLr5RbV0vhu3bSTAr17y5gURcsgq9TSeJVl1r04U4P2Jk20bX36yPSB1q0LdywM2guDqTxeXaedmXYiIiJyVQEB0gAuIECWXnvssXt/Tf/+cv344/qNo3dvKWU9fhz4+2/9jmtPepbGA1p5/KlTOc/BTUmR8nFAguw//9QeU+ezq0uaubtr64oDQJUqWfsSVK6sBaTqcQsqMVHLFg8ZIqsGDB8u99X1zatVu/cJInu67z5Z1tDbWzrQf/mlvLfr1wdu39b2yylot+TuLs3xAMmeW/r9d+12fDzwzTdyW1G0oL17d+uvUX9Oe/dab1eDdvWEBzPt1ic3MjcvVKdmFCYG7YXBlGn3B+e0ExERkeurXx84d04CPrVsOic9e0rgOGSIfmMICdHmX+elId3y5ZLpzu3SXXrSqwmdKiIC8PWV/z2jo7Pfb/NmIClJu692hAe0TPsDD2jbhg+XgBKQBnS2AuXczu/OrdWrJZtcpQrQqpVse+YZee5E+RfboaXxqg8/lAB9/XoJ4MPC5HdBbYKXnKydRLpX0A7IXGog+6D9/vvl+rPPJNA8dkyez8cH6NDB+mvuFbT37i3XJ04UneoUe/nvP5ka4u6uT5+NgmLQXhhMmXZfheXxREREVDyUKmXOW+SKt7f+WdInn5Tr777LXRCSkSHLgsXG6rdedm5dvaotUadXpt3dHahRQ27nVCKvZmbr1ZPrlSvl/9X0dC0rrGbaAeluPno0UKmSddbdkjq/e+NGfdZsX7JErp9+WnufVKqknRwAsjahcxRfXxnXRx/J9AwAmDdPXstDh+T1KFNGyuDvRQ3at23TllJMT9ea/H3+ufQiOHpUKiTUn2X79rLdUnZBu/re6NlT3jN37mhVH8WVZRO6zK+jIzBoLwymTyw/I8vjiYiIiApLt26SO1Gz/vfyyy/acldbtsi8bXtLSgLeeUcypr/8ItvattXv+PfqIG9ZTv3uu7LmfVycrPN95IhkhkNCgOrVrb9u9mzJ3mcXeDZrJl93+7YW+OfXhQtaUzZ1OT/ViBHabWfItGfWrp3M+VcU4IUXtPdh06a5O0nVqJGEErduaRnxvXul6qBUKQnq1Z4Cc+dmXxoPSJm3m5uU7qtVHSkp2nJ5jRpJJQPAEnlb89kdiUF7YTAF7b5GlscTERERFRZfX6BXL7n96quyhviQIdKkTl0Sy9Inn2i3MzKAtWvtO759+yQTPmmSBGFNmkgZ9NCh+j3HvTrI//WXlAL7+0t21rKBnxpgNm9u3eU8Nzw8tGXgCloi/803EvS2bSvZdUvdukmDNYMBaNiwYM9jLx9+KPOgDxyQEzRA7krjAZm7r04HUEvk1dL49u3l5zJypNxfs0b7mXXrlvVYAQHa+0E9kXLypGTwS5SQaRk1a8r24h60q5l2Bu3Fiak83ieD5fFEREREhUktkd+xQzrbL1ki5fJ9+0oGXvX335LNdXPTlixTu6Pbw65dMuf44kUJOpcuBfbs0b8r9b06yKuZ2Y4dZR60+nr9/LMWbFuWxueFXvPa1a9XTyhY8vSUn9vmzdpUAGcTGipVDIBWvZHboB3IOq990ya5Vues16sn7xt1ffdGjWQKgy2ZS+TV90WdOnLiQ30Ni3PQrihZl3tzNAbthUHNtN9leTwRERFRYerSRUq5x40DJk8G3ntPAqY7d2RdeXW+9Zw5ct27N/Dyy3J748asy3XlRWqqlCl37SqBljqvfts2WR4sPl6CraNHJVjOazY7N9Ty+JMnbc8tV4P2Hj3kun59CfRTUyVwBwoetO/dm/+pBmlpWlZYDV4zq1JF3ykF9vDcc9ZZ2/wE7X/+Ke9btTlg+/baPmq2HbBdGq/KHLSrJfd16si1mmkvzsu+XbwIXL8u1SJqnwdHY9BeGExBu9ddlscTERERFSaDARg7VpqCTZ8OvPaaZNoDAiQImj0buHFDWzLrpZck0K1WTQJGdZ55fmzbpmWsO3SQ4Hf2bDmRkJAAPPywzB0PDNTlW7UpMlKa/KWkWFcWAFIWf+CAvEaPPirbDAbpCG8p85JuuVW+vASDimK9RFleHDwoY7/vPudpNJcf7u7SjM7bWzLhpUvn/mubNpWpHtevAwsWyPJ9kZGytJ5KXYfdYJC1xLOj/iz37ZOyeDVoV0/usDxeK42vXVted2fAoL0wmMrjvTJS4IYMlscTEREROVDlyhI8A8AbbwDjx0tg2LChrIttMGjryxekRH7PHrmuUEFKz/fskYx/UpJk2n/+OW8d9vMjpw7yaia9eXPpZq5SS+QBybqHhOT/+dUu8vktkd+xQ65btnTsGux6aNIEOHUq7ycwvLzk+weA99+X68zLuXl6Skf57dtzzg7XqSPvxbg4aUBnWR4PaA0Hr1yRfYojZ2tCBzBoLxwWf439kchMOxEREZGDDR8uzbrS0oCvvpJtL72kBYZq0L5unfUa5nmhNgUbP16y3K+9Jg2/Hn8c+PHHwsviZddBPnNpvKpSJa35WX5L41WW89rzs/b39u1yrY6nqIuIkPdAXqkl8jduyHXmoB2Q7Lsa3GfH01My/YD0AYiOltvqeyQ4WFtysLiWyDtbEzqAQXvh8PExfwIwaCciIiJyPIMBWLhQls0CJNPcv7/2eKNGErwmJeUvS6wo1t3XQ0NlPv3Nm8CKFfLvYWGx1UE+MVHL+NqaA/3OO1KWbTlXOj8efFDWuY6JkSXk8kJRtEy7qwTt+ZV5Pv/DD+f/WGqJfFSUXIeFyfQDVXEukXfGJnQAg/bCYTCYS+QDkMDyeCIiIiInEBYm3eRDQoCpU2W+scpybnB+SuSjoyUr6uVlvRSZI0q8bXWQ//576bNUqZKWZbXUpo00KyvoMmo+PrJWOaCd/DAaZf32I0ck2z93rrz+6nrhqjNnZB63l5dzBVCO0KyZ9v5s0MA6yM7PsQCtGV3mn39x7iB//rycWPP0dJ4mdADg4egBFBv+/sCdO8y0ExERETmRRx+VANKWxx4DZs2SwHLzZpmPfOyYBKKvv55z4KRm2Rs0sD4Z4AhqUHbihATMsbFSqg8Azz9v/xMJXbpIQ7+335bX8+ZN253sN23SyuEBLcvetGnhViY4Ix8f4IEHZNk3W6XxeZG5saA6n11VnDvIf/GFXNep4/jfW0sM2guLaV67PxLNc1GIiIiIyHk98IDM77182Xp5LQBYu1bmu1epYvtr1SZ0Dzxg3zHmRuXKkq1OTpa59TNmSAa7Vi1teTt76tZN5vUnJMhFVaqUzPGOiJATIzt2SPZdzXCyNN7a1KnAhx8CY8YU7DiVKwMlSwK3bsn97IL24pRpVxRg2jSZFgIAI0Y4dDhZsDy+sFiUx1+86OCxEBEREdE9ublJUOvpKYFO9+7Aq6/K0lqnT0uTNrXEODM10+4MQbuHh9YV/PPPtWziggUSzNtbpUrA4cNSrXD4sCw1l5Ii0wcOHABWr5YlywBZFk3FoN1au3ZSsVChQsGOYzBYZ9szB+1qefzZs8VjqWpFkVUkpk+X+++9JxUozoRBe2GxyLRfvJi/7plEREREVLheeUUCl7NnJbs+c6YE5A0bSra6bVvpBG8pNRU4dEhuN29e2CO2TS2RV5cMGz5cmsQVlho1JOisV0+qFzKXHr/wglx/8w0QHy9ZYDXTe6+O6JR3lkG72vNAFR4OBAXJVIozZwp3XI4wYYJUnwAyfUOdOuJMGLQXFlOm3R+JSEnRylGIiIiIyLllnvMdHi5zi7t0kZLzxx+3nv/711+ylFzp0rIMlzOwDMxKl5aTD86kbVsJ7BMSJHDfuVO2V69esKZrZJtaAVKpkgTolgyG4tOM7sABmXIASEPEwpgukh8M2guLKdMeHiATeVgiT0RERFR0BQZK5r1jR+DuXesg2HKpN0d0i7fFskP4Rx/JnGZnYjBo2fZ581gab2+dOwNvvSXLHtpSXOa1Hz0q1w8/XPDlDe2JQXthMQXtZYMTATBoJyIiIirqPD21ebBff639f+dMTehUbdoA5csDffsCgwY5ejS2Pf20rOl+9Kg2755Bu324uQGTJmXfiV49yaNO83BV587JdeXKDh3GPTFoLyym8vgwZtqJiIiIXMYDD0hp9927Mh8WcK4mdKpSpYALF4Dly50n+59ZSAgwYIDcVldbKsx596RR37s7d7p2L67oaLmuVMmhw7gnBu2FxZRpv8+PmXYiIiIiVzJxolx//jlw/Lhk7wwGWV/cmRgMzhuwq158UbtdujRQtarjxlKcNWkiqw7ExADnzzt6NPajZtqdpfdEdhi0FxZT0F7Sm0E7ERERkSvp2FG6ySclAUOGyLZatbI2+KJ7a9RI62zesqXzn2RwVb6+8rMAtKaArkgN2plpJ2Eqjy/hIeXxly45cjBEREREpBeDQcu279sn186y1FtR9O67EkQ521rZxY261J6rBu3p6VoilUE7CVOmPdCNmXYiIiIiV9Onj3UptzPNZy9q2reXucZdujh6JMWbGrSrnfzzy2gEhg8HRo92rvnxly7J2Ly9gbAwR48mZwzaC4spaPeHBO3qm4SIiIiIij53d2DCBO0+g3Yq6tTO/UeOAHfu5P84u3YBX34p66BfuKDP2PSglsZHREg3fWfm5MNzIabyeO+7CTAYgLQ04Pp1B4+JiIioCOjRowcqVqwIHx8fhIeH46mnnsLly5cdPSyiLJ56SprPtWghc9qJirKyZSWgNRqBvXvzf5w1a7Tb27YVfFz79wPPPgvcvFmw4xSVzvEAg/bCY8q0uyUlIjRUNrFEnoiI6N7atWuH77//HqdOncKqVatw9uxZPP74444eFlEW3t6yRvvOnZJ5JyrqCjqvXVGA1au1+9u3F3xMzz0HfPEF8OGHBTtOUekcDzBoLzymTDsSE1GhgtxkMzoiIqJ7e/nll/HAA//f3p1HSVXe+R9/36rqWrrpvelulmZTBERUIoqgmUyCc0CdicQl0cNou0TGCEbjjJG4JZkcB+c3cxyzeDDJKMmZEElwFI1xDSRkVDYVUGRVUZamu4Gm96W6q57fHw9V1dXdQHXRdlXbn9c599Tte2/deupbt+rp732e+9wLGT16NDNnzmTRokWsW7eO9vb2VBdNpBuNdi6fJ6eatG/ZEmvRhlNvaX/3XTsBPP/8qe1roIwcD0ra+8+xlnYaG6NJu1raRUREeqempoZly5Yxc+ZMMjIyjrtdW1sb9fX1cZOIiPRO5Lr2tWuTG48r0sp+8cX2cdu2U+vW/t//HZvfvh12705+X+oeL91FkvZOLe1K2kVERBJz7733kpWVRWFhIXv37uX5kzSxLF68mNzc3OhUFql8RUQkYVOm2DSmrs4m3L0VSdrnz4eJE+18sq32zc2wbJmdLy62j6fS2q7u8dJdpHt8YyNlI+29DpS0i4jIYLVo0SIcxznhtGPHjuj299xzD5s2beK1117D7XZzww03YE5w76Dvfe971NXVRad9qnRFRHrN44Hp0+18b5PtXbvggw/sPv7+7+GLX7TLk+0iv2IF1NfbJPuBB+yylSuT21cwCAcO2PmB0NLuSXUBBo1IS3s4zKiSNsCvpF1ERAatf/7nf+bGG2884Tbjxo2LzhcVFVFUVMQZZ5zBpEmTKCsrY926dcyYMaPH5/p8Pnw+X18WWURkUJo5E1avtkn7/Pk9b/Pzn8Mrr8Djj9tR5yE2avxXvgL5+baL/C9/mfxgdJGu8bfcAnPnwre/bctUXR1reU/U3r12kLxAoPfPTQUl7f0lkrQDo4uaAL8GohMRkUFr6NChDB06NKnnho9dWNnW1taXRRIRkR5Erms/Xkt7Rwfce6/tQr9rF6xZA0VFsa7xV15pHyPXtb/9NrS02IQ5UTt22GTf5YKbbrInBr7wBTso3Ysvws039+49dR6EbiAMHqnu8f3F47H3AQFG5jUCtktGKJTKQomIiKS39evX87Of/YzNmzfz6aefsnr1aq677jpOO+2047ayi4hI37nwQvu4e7dt1e5q7VqbsIO97n32bNi61d7b3XHgiivsurFjbbLd3t77+74/+aR9vPzyWEv+3Ln2MZnr2gfSyPGgpL1/HWttL85qwuWyZ6WqqlJcJhERkTSWmZnJs88+y6xZs5gwYQK33HILZ599NmvWrFH3dxGRfpCXB5Mn2/m1a7uvf/ll+/g3fwNDh9rW70ir+syZUFpq5x0ntrw317UHg/DrX9v5b34ztjxyMuC116CpKfH9wcAaOR6UtPevY0m7p60peoZI17WLiIgc35QpU1i9ejVHjhyhtbWVPXv2sGTJEkaMGJHqoomIDBqRZDuSoHf20kv28dZb4fXXbZIfaXmPdI2PiAxG15vr2p97Dg4dgmHD4LLLYsunTLFJd2urfd3eGEgjx4OS9v7VaQT5kSPtrJJ2ERERERFJZ9dcYx+XL7dJckRFBWzZYlvRZ8+Gc86xA9INGQIZGXDVVfH7iST/b72V2GXChw/D3Xfb+VtusVccRzhO8l3k1T1ejq+He7VrMDoREREREUlnX/4ylJXZFvTOCfIrr9jH88+3XePB3iLuvfdg40YYPTp+P1OmQE4ONDTYbU7EGJuoV1TYe7wvWtR9m0gX+T/8wV56nCh1j5fj6yFpV0u7iIiIiIikM5cLysvt/K9+FVse6S5/6aXx248da1vdu3K77XXucPIu8k88AS+8AF4vPP103M24oi6+GAoK4MiR2C3hTqa1FQ4ejJVzIFDS3p86dY9X0i4iIiIiIgPFDTfYx9des63f7e2xa8m7Ju0nkshgdFu3xrrF//u/w7nn9rydx2Pv1w5w++2wdOnJX3/vXvuYlQWFhQkVOeWUtPcntbSLiIiIiMgANH68vWd7OAy/+U3sVm+FhTBtWuL7iQxG9/LL8OGH3de3tMB119kW8TlzYkn58Tz0ECxcGOtO37knQE86d40fCPdoByXt/UsD0YmIiIiIyADVuYt8pGv87Nm223uiLrrItrY3NsLVV9skPaK93SbsW7dCcbF9HddJMlbHgZ/8BBYssIn7zTefOHEfaCPHg5L2/tVDS/vBg70bNEFERERERCQVvv518Pth+3b4+c/tss63YUuE2w2/+51Nyrdssa3kYEeTv+EGO9Cdz2dHqi8pSWyfjgM//Wkscb/lFti0qedtB9rI8aCkvX91StpLSuw1GOFwbCAEERERERGRdJWbG7v3+tGjsVu99dbw4fDb39pW9KeegiefhPnzbaKekQH/+792xPreiCTuV15pc6wHHuh5u4E2cjwoae9fnbrHu90wYoT9U13kRURERERkIIh0kQd7q7eiouT2M2sW/Ou/2vlvftMm7y6XTeYvvzy5fTqOHbjO7YaXXrL3g+9K3ePlxCIt7X/8I9x3H7Nz1+EQVtIuIiIiIiIDwqxZscbH3owa35PvfS+2D8ex16JfffWp7fP00+Gmm+z8/ffb7vKdqXt8Cj3++OOMGTMGv9/P9OnT2bBhQ6qL1N3MmRAIQGUlLF7Mz9+bwQFG4H1oES/8eA9vvGG7a9TV2S4dMgiFw7BzJ/zP/8Add8A118Dvf6+BD6T3WlvtaC4iIiIifcjthh//2HaL/6d/OrV9uVx2JPoFC2DFCrj++r4p40MP2fu7/+UvsGpVbPnRo1BVZecHUtLuGNP13MPA87vf/Y4bbriBJ554gunTp/PYY4+xYsUKdu7cSXFx8UmfX19fT25uLnV1deTk5Hy2hT161A61+PzztK58GX+wAYAwDi9xGUu5iRoKcDkwJMuQnesif2QWRaOzKBmXxchzCpn2t0MoLY3tsqoKnnkGVq6EzEyYNw+++lU7SERUKGT74efmQn5+8uXv6ID6entmoaXFJpnhsN1/Vpa9QCVyGcCJGGPLs3at7beybZsdjWLcONtXZcwY29emoMBOgUD3ezK0tMCBA/ZGkaEQlJbaKS/PLluzxk5vvmnL7Dj2l8Fx7IACkcnrtc8bOdJOQ4fCkSP25EplJTQ02GWR/efmQjAYmwIBe0pv/HgYPdru0xibNDU02Pf54Yfw0Uf21F5BAUycaKfRo+17f/NNG4d162xsuyors6N03Hpr8p9fW5stl88Xi6Ux0NRkX7OhwZbd54tNbreNmdtt151oaNCGBvvL+Oqr9tcxIwP+7u/sL/oXv2jjBLFjqLERmpvt67e02O0DAXvg+v22bJHjy+Wy7zs3t2/uzREMwo4ddvSTbdtsmbxeO/n99hicONF+poEA1NTYYUw/+ACqq+1xOmGCnXJzu++/pcXuP7LvESPsd2PECMjJ6f4ejLHH3MGD9n2Wltp4H09NDezaZY+p/fvtMbZ/v33+oUN2amy0+4iUdeJEmDLF9mM744zYUKxtbfZ9bd0KtbX282hstDEaNw4mT7ZTOt3INHJsRB5druPHq7HR/j5kZ3cffjYUiv02+P3x342eXrOmxn7+Pp/9vcvMtPuMxLy62k5XXtnzcdEL/VovDRKKqYjI4HLXXfbkwgUX2H+xN2+Gb3wDdu+2/1p/+mnqb/mWaN30uUjap0+fzvnnn8/PfvYzAMLhMGVlZdxxxx0sWrTopM9PVUV+5GCQ17/zEmf+dQlnH3wt4edVMIy9vjNoHDGBqvBQDnzSjod2MmjH4NCBB5c3gwmTXJyWsZeCyg/Iq9yBp6MNgGBmLs3FY2gtHk3Y64djB6tjDE6wDSfYiivYhivYgifYjKetGXdbE57WRjytTSctXzgrm/bi4YRz8iAQwPH7we/D1daKq7Eep6EO15HDOIeqE37PxuPBeH2EM3yEPV6cYBsZDUd7fv0ML672YML77lMej/1HvrEx+e4Sfj+cdx7m/Avs/FNP4lTHYtVRUExz3nBqM4fT6s4kO3iEzJYj+JtrcMJhgkPyaQ3k0+rPx9PRwpD6Cvw1FXgaaqP7MD4fxuvDaW7CCYUSLpo5lqw4WVl2PmwwYUM4bHAf3I9znJbdsM+Pyc3D1VCP09KcXFzAnjQoKLAnZgIBCAQwgQDG68O4Mwgfm2gP4m6ow9VQh9NQj2nvIISLsHERDht8VXtxdZy8Fdo4ji13bc/HGkB7dj6hwBA7+YfgaaolUPERznE+f+P1YgoKIb8Ak5eHU3MEZ99enOZYXIzLRXhoKe1Dh4HXi+Nx42R47Hfo4924ao70OnRxZcjOpv2sqbhqj+LevR0ngZ4c4YJC8Ptx3C6cSJIcOdERSXZbWuyJmOZmm/SHQrHJ47HHc+TETE8ngDqfWAuF7AmPUMj2GGhpiU09HWd5efZEX2Gh3UdVlT3pFomr49hEOi/P7rO21p5o6srvj22Xl2e/z5WVsHevPaGRgNDGd3FPm5rQtsejBLPvKaYiIoNLVZVtf2huttfhP/20/fekrMx2ZL3wwlSXcBAl7cFgkMzMTJ555hnmzp0bXV5eXk5tbS3PP/98t+e0tbXR1tYW/bu+vp6ysrLUVuS7d8OSJfCnPxHuCNn/c8MOoWAI09iEq6UJT1sT3nDbyfd1HG148dE3yWwzAZrJJISbMC7CuMihnmwaE95HB242cy5vMZPNnEsRhxnLHsbxMWXso5AjFFBDBsdPKJrI5AAjCOOihCryqQUghItNTGUNX+Kv/A0VDMfBRCc3ITx04KEDP60M4yBl7GMk+xnKIQ5TRBWlVLtKaXCyKQwfosRUUkolOdQTxEsQHx0uL7lOHaeFP2Ss+YgArd3KWOWUsMd9Op+4T2e/Zwz5ocOMbd/JGaEdjGQ/exjDWmbyljOT9c4M3jNTCJqM6PN9tHIty7mLxziXLYl/SL3QjodGsnHTgY+2pI+TjxjHq8zmdf4OL0Fm8yqzeZURVHTbtg0vTWTRTCatTgAPHQRMCz5a8dOKwYkeWx46eoztqaglly2cw/tMoYUA3mOf6hAaOY2PmMT26PEE8Amj2cpZVFHCaXzEBHYyjMrj7v8IBXzAZFrxM4IDDKcibn89OUwhudSd8JiP2MdIPuR09lHGPso46BpJlWsYFR3FVDOUwxSRRRMT2MlEdjCRHUxlE1/gXTJpidvXEQp4j7OpooQmsmh1ZWHcbsZ27OZM8wFj+eSk5RksjpKHlyBZxE6ytOKjmmIOMZRqiin77f/jrOumnNLrKMHse4qpiMjgc999sHhx7O8rrrAD3hUUpK5MnSVaN52g/+XAcPjwYUKhECVdbuJXUlLCjh07enzO4sWL+eEPf9gfxUvc+PHw6KOAHWjABWT0tF1tLU2bdvHJa7uoXb+TQLCWcRO95BVl2O7FxmDaO9i/p50Pd3RQYYbxadaZfJI1mQMZY3CCbRQ1fsLQxj0UtuzDHe7AwUQHaGh3++nw+Gn3+Olw+2g+llQ1mizqQ1kcCuZS3ZpDbbOXYND2GO3cQzXX1cAIVwUjqGBIuJ6MUCsZoRYyQq20EKCOXOrJoY5cdjCRZrJwHFt0ny/WaOd2H+s53WjwtDWSSx2Z7iD5WUHyM9twMjzsC4/gUDCX1jaHcNg+b4inlWGuKuqcPLuu1fZSj/Skhe6DUZzQyRrLO613CDOCAwRooYFsGsimmUyMcUEHdupyzsVDOx2RT9ocm7pow8+vuZFfU04Rh5mYXcGUwgomZh8g29NCdUcBB9oK2d9cSEfYRYmvluKMoxS6j9Ia9rEnOJwPm4azu6GU5qAHn2nFG27FRytNZFFLHs1kEu1ycey9ZNCO27ZP4yZEBu1k0kwWTQyhES/BTqdBHA47xXxkxsWV/fd8AzCc5dmJz7RSE7KffQPZtOONbZjAZ+KjlUKOUMgR8qjFfyy5D9CCjzYyjvU2yaCdDjzUkRud2snA5wmTmx0mZ0iY/U4ZO1tH09DoRBtiI43HkR7U4ZCxJ2vCB9njjKPRyY5ud6yRnxJ/HSOdA2SaJjJNE1mmkWYTYLtrMhWhEoLtDsEg0eMwQDNFHI6+j3yOUkMBexnFPspow49DmGKqGe3az8iMKtzhdkwohBMOEcLNR5zGbsbTTFb3Y7HL8VpLPgcYyWpmRZe56eBMtnEumzlKPps5l/2MjPv8u+5rCA2M4RM8dESPCQ8d0RMdXoK4CNNMJi3HTugF8UZP6oVw4yZEgJboZ+bqUtjOJ9VchI+dUotNrfhpIUALAdrwxZ0w9BKkkCMUcZgiDuMmhD3FVkoVJXTgIZc68jlKHrV04KGWvOjxAcQdT7nUkUct+RxlCI1UUcKnjI5+RpGDNkALHkI0MCQufhvHn/x4FhERkc/ePffA0qX2Crf//E97tWmqu8QnY8C3tFdUVDBixAjeeustZsyYEV3+3e9+lzVr1rB+/fpuz0nLlvZBIHLpeyhk591um6x3vcy0q0jv2BNdbtpboVDskvSuPW07n4gIhex85HLuyGWzHR32ee3tdpvO5Yo8v/PU+X137lXs9XZ/XqR3cOSx8+Tz2d66fcEYezlzpDdzS0vsdSOT12s/I6/X/t35fRsTS14jn004bNcFg7Hnezzxl9BHPs/IdpHpZGUNh2O9pSOX5neOY0ZGbHKc2Gu0t8cuk+/p+AmHY/H9LEXi3fUEUuQ46+iw836//Ywzupy1i2zXdVlbW2yKnLyKxMZx4j8ztzs+bl3L0PkEQzAYK0ukPG1ttod4ZBiC9vbY/js64ochMMa+XmSKvFbn47zz+s6fb+T46jx1/oy6fi8cJ7afyO9J5575PX0nO3/PO+8X4od18Pli34fI9yNy3AcCsSEsIsd2OJzY79rJqFW47ymmIiKD06FDtp5OYKizfjdoWtqLiopwu91URYYBPKaqqorSzqO1deLz+fD5fP1RPOkk8o9v12TkZDr/099X3O7YP92DVWTsLb+/77oIuVyxROd4rxkZ/++zjv2JytHZqSZXiYrEO1mR709Xp/pTFklEI2MQZmcff9vIdybZ+7F+XkVOHPTXsSQiIiKJGzo01SU4dQP+Xwyv18t5553Hqk5j+YfDYVatWhXX8i4iIiIiIiIy0Az4lnaAu+++m/LycqZNm8YFF1zAY489RlNTEzfddFOqiyYiIiIiIiKStM9F0v6Nb3yDQ4cO8dBDD1FZWcm5557LK6+80m1wOhEREREREZGB5HORtAMsXLiQhQsXproYIiIiIiIiIn1mwF/TLiIiIiIiIvJ5paRdREREREREJE0paRcRERERERFJU0raRURERERERNKUknYRERERERGRNKWkXURERERERCRNKWkXERERERERSVNK2kVERERERETSlJJ2ERERERERkTSlpF1EREREREQkTXlSXYB0YIwBoL6+PsUlERERidVHkfpJTp3qehERSTeJ1vdK2oGGhgYAysrKUlwSERGRmIaGBnJzc1NdjM8F1fUiIpKuTlbfO0an8QmHw1RUVJCdnY3jOKe0r/r6esrKyti3bx85OTl9VMLPP8Wt9xSz5ChuvaeYJedU4maMoaGhgeHDh+Ny6Uq2vqC6PvUUt95TzJKjuCVHceu9U41ZovW9WtoBl8vFyJEj+3SfOTk5OtiToLj1nmKWHMWt9xSz5CQbN7Ww9y3V9elDces9xSw5iltyFLfeO5WYJVLf6/S9iIiIiIiISJpS0i4iIiIiIiKSppS09zGfz8f3v/99fD5fqosyoChuvaeYJUdx6z3FLDmK2+eXPtvkKG69p5glR3FLjuLWe/0VMw1EJyIiIiIiIpKm1NIuIiIiIiIikqaUtIuIiIiIiIikKSXtIiIiIiIiImlKSbuIiIiIiIhImlLS3ocef/xxxowZg9/vZ/r06WzYsCHVRUorixcv5vzzzyc7O5vi4mLmzp3Lzp0747ZpbW1lwYIFFBYWMmTIEK666iqqqqpSVOL088gjj+A4DnfddVd0mWLWswMHDvCP//iPFBYWEggEmDJlCm+//XZ0vTGGhx56iGHDhhEIBLjkkkvYvXt3CkuceqFQiAcffJCxY8cSCAQ47bTT+NGPfkTn8UoHe9z++te/8g//8A8MHz4cx3FYuXJl3PpE4lNTU8O8efPIyckhLy+PW265hcbGxn58F3KqVN8fn+r6U6e6PnGq63tPdX1i0q6+N9Inli9fbrxer3nqqafMBx98YG699VaTl5dnqqqqUl20tDF79myzdOlSs3XrVrN582Zz2WWXmVGjRpnGxsboNrfddpspKyszq1atMm+//ba58MILzcyZM1NY6vSxYcMGM2bMGHP22WebO++8M7pcMeuupqbGjB492tx4441m/fr15uOPPzavvvqq+fDDD6PbPPLIIyY3N9esXLnSbNmyxXz1q181Y8eONS0tLSkseWo9/PDDprCw0Lz44otmz549ZsWKFWbIkCHmxz/+cXSbwR63l156ydx///3m2WefNYB57rnn4tYnEp85c+aYc845x6xbt8783//9nzn99NPNdddd18/vRJKl+v7EVNefGtX1iVNdnxzV9YlJt/peSXsfueCCC8yCBQuif4dCITN8+HCzePHiFJYqvVVXVxvArFmzxhhjTG1trcnIyDArVqyIbrN9+3YDmLVr16aqmGmhoaHBjB8/3rz++uvmS1/6UrQiV8x6du+995qLL774uOvD4bApLS01//Ef/xFdVltba3w+n3n66af7o4hp6fLLLzc333xz3LIrr7zSzJs3zxijuHXVtRJPJD7btm0zgNm4cWN0m5dfftk4jmMOHDjQb2WX5Km+7x3V9YlTXd87quuTo7q+99Khvlf3+D4QDAZ55513uOSSS6LLXC4Xl1xyCWvXrk1hydJbXV0dAAUFBQC88847tLe3x8Vx4sSJjBo1atDHccGCBVx++eVxsQHF7HheeOEFpk2bxjXXXENxcTFTp07ll7/8ZXT9nj17qKysjItbbm4u06dPH9RxmzlzJqtWrWLXrl0AbNmyhTfeeINLL70UUNxOJpH4rF27lry8PKZNmxbd5pJLLsHlcrF+/fp+L7P0jur73lNdnzjV9b2juj45qutPXSrqe8+pF1sOHz5MKBSipKQkbnlJSQk7duxIUanSWzgc5q677uKiiy7irLPOAqCyshKv10teXl7ctiUlJVRWVqaglOlh+fLlvPvuu2zcuLHbOsWsZx9//DFLlizh7rvv5r777mPjxo18+9vfxuv1Ul5eHo1NT9/ZwRy3RYsWUV9fz8SJE3G73YRCIR5++GHmzZsHoLidRCLxqayspLi4OG69x+OhoKBAMRwAVN/3jur6xKmu7z3V9clRXX/qUlHfK2mXlFiwYAFbt27ljTfeSHVR0tq+ffu48847ef311/H7/akuzoARDoeZNm0a//Zv/wbA1KlT2bp1K0888QTl5eUpLl36+v3vf8+yZcv47W9/y+TJk9m8eTN33XUXw4cPV9xEpNdU1ydGdX1yVNcnR3X9wKTu8X2gqKgIt9vdbRTPqqoqSktLU1Sq9LVw4UJefPFF/vznPzNy5Mjo8tLSUoLBILW1tXHbD+Y4vvPOO1RXV/OFL3wBj8eDx+NhzZo1/OQnP8Hj8VBSUqKY9WDYsGGceeaZccsmTZrE3r17AaKx0Xc23j333MOiRYu49tprmTJlCtdffz3f+c53WLx4MaC4nUwi8SktLaW6ujpufUdHBzU1NYrhAKD6PnGq6xOnuj45quuTo7r+1KWivlfS3ge8Xi/nnXceq1atii4Lh8OsWrWKGTNmpLBk6cUYw8KFC3nuuedYvXo1Y8eOjVt/3nnnkZGRERfHnTt3snfv3kEbx1mzZvH++++zefPm6DRt2jTmzZsXnVfMurvooou63WJo165djB49GoCxY8dSWloaF7f6+nrWr18/qOPW3NyMyxVfLbjdbsLhMKC4nUwi8ZkxYwa1tbW888470W1Wr15NOBxm+vTp/V5m6R3V9yenur73VNcnR3V9clTXn7qU1PfJjqIn8ZYvX258Pp/51a9+ZbZt22bmz59v8vLyTGVlZaqLlja+9a1vmdzcXPOXv/zFHDx4MDo1NzdHt7ntttvMqFGjzOrVq83bb79tZsyYYWbMmJHCUqefziPKGqOY9WTDhg3G4/GYhx9+2OzevdssW7bMZGZmmt/85jfRbR555BGTl5dnnn/+efPee++ZK664YtDdzqSr8vJyM2LEiOhtYJ599llTVFRkvvvd70a3Gexxa2hoMJs2bTKbNm0ygHn00UfNpk2bzKeffmqMSSw+c+bMMVOnTjXr1683b7zxhhk/frxu+TaAqL4/MdX1fUN1/cmprk+O6vrEpFt9r6S9D/30pz81o0aNMl6v11xwwQVm3bp1qS5SWgF6nJYuXRrdpqWlxdx+++0mPz/fZGZmmq997Wvm4MGDqSt0GupakStmPfvDH/5gzjrrLOPz+czEiRPNL37xi7j14XDYPPjgg6akpMT4fD4za9Yss3PnzhSVNj3U19ebO++804waNcr4/X4zbtw4c//995u2trboNoM9bn/+8597/B0rLy83xiQWnyNHjpjrrrvODBkyxOTk5JibbrrJNDQ0pODdSLJU3x+f6vq+obo+Marre091fWLSrb53jDGm9+3zIiIiIiIiIvJZ0zXtIiIiIiIiImlKSbuIiIiIiIhImlLSLiIiIiIiIpKmlLSLiIiIiIiIpCkl7SIiIiIiIiJpSkm7iIiIiIiISJpS0i4iIiIiIiKSppS0i4iIiIiIiKQpJe0iknKO47By5cpUF0NEREQ+I6rrRZKnpF1kkLvxxhtxHKfbNGfOnFQXTURERPqA6nqRgc2T6gKISOrNmTOHpUuXxi3z+XwpKo2IiIj0NdX1IgOXWtpFBJ/PR2lpadyUn58P2O5sS5Ys4dJLLyUQCDBu3DieeeaZuOe///77fOUrXyEQCFBYWMj8+fNpbGyM2+app55i8uTJ+Hw+hg0bxsKFC+PWHz58mK997WtkZmYyfvx4Xnjhhc/2TYuIiAwiqutFBi4l7SJyUg8++CBXXXUVW7ZsYd68eVx77bVs374dgKamJmbPnk1+fj4bN25kxYoV/OlPf4qrqJcsWcKCBQuYP38+77//Pi+88AKnn3563Gv88Ic/5Otf/zrvvfcel112GfPmzaOmpqZf36eIiMhgpbpeJI0ZERnUysvLjdvtNllZWXHTww8/bIwxBjC33XZb3HOmT59uvvWtbxljjPnFL35h8vPzTWNjY3T9H//4R+NyuUxlZaUxxpjhw4eb+++//7hlAMwDDzwQ/buxsdEA5uWXX+6z9ykiIjJYqa4XGdh0TbuI8OUvf5klS5bELSsoKIjOz5gxI27djBkz2Lx5MwDbt2/nnHPOISsrK7r+oosuIhwOs3PnThzHoaKiglmzZp2wDGeffXZ0Pisri5ycHKqrq5N9SyIiItKJ6nqRgUtJu4iQlZXVrQtbXwkEAgltl5GREfe34ziEw+HPokgiIiKDjup6kYFL17SLyEmtW7eu29+TJk0CYNKkSWzZsoWmpqbo+jfffBOXy8WECRPIzs5mzJgxrFq1ql/LLCIiIolTXS+SvtTSLiK0tbVRWVkZt8zj8VBUVATAihUrmDZtGhdffDHLli1jw4YNPPnkkwDMmzeP73//+5SXl/ODH/yAQ4cOcccdd3D99ddTUlICwA9+8ANuu+02iouLufTSS2loaODNN9/kjjvu6N83KiIiMkiprhcZuJS0iwivvPIKw4YNi1s2YcIEduzYAdjRXpcvX87tt9/OsGHDePrppznzzDMByMzM5NVXX+XOO+/k/PPPJzMzk6uuuopHH300uq/y8nJaW1v5r//6L/7lX/6FoqIirr766v57gyIiIoOc6nqRgcsxxphUF0JE0pfjODz33HPMnTs31UURERGRz4DqepH0pmvaRURERERERNKUknYRERERERGRNKXu8SIiIiIiIiJpSi3tIiIiIiIiImlKSbuIiIiIiIhImlLSLiIiIiIiIpKmlLSLiIiIiIiIpCkl7SIiIiIiIiJpSkm7iIiIiIiISJpS0i4iIiIiIiKSppS0i4iIiIiIiKSp/w8TikPyVptJQwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -1364,12 +528,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# save the checkpoint model training\n", - "output_path = \"../models/\"\n", + "output_path = \"./\"\n", "\n", "torch.save({\n", " 'epoch': epoch,\n", @@ -1390,77 +554,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c47e1fb378274dd387b9de1a49f2a38b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(Label(value='0.002 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.063496…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss█▁█
train_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss1.87753
train_loss0.47083
validation_loss3.46838

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run vocal-fire-2 at: https://wandb.ai/ai4s2s/test-transformer/runs/vm4vj2j9
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230623_145035-vm4vj2j9/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -1485,27 +581,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.427\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD80lEQVR4nO3de1zUVeL/8feACshlCG24KBqpqYTdvKWW2WZIFy9tm9vFjOqXfQ1KsjLdXVNLI93atdrCLrtYa3b5fosit2jJC2UKluamWWSG5iZoac4oBtnM5/cHMTUCCjrDzPB5PR+Pedh8PmfOnM+IzZtzzucci2EYhgAAAEwixN8NAAAAaE2EHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCrt/N2AQORyubRr1y5FR0fLYrH4uzkAAKAZDMPQgQMHlJSUpJCQpvt3CD+N2LVrl5KTk/3dDAAAcBx27typrl27Nnme8NOI6OhoSXUfXkxMjJ9bAwAAmsPhcCg5Odn9Pd4Uwk8j6oe6YmJiCD8AAASZY01ZYcIzAAAwFcIPAAAwFcIPAAAwFeb8AAAChtPp1OHDh/3dDASo9u3bKzQ09ITrIfwAAPzOMAxVVVVp//79/m4KAlxsbKwSEhJOaB0+wg8AwO/qg4/NZlPHjh1ZYBYNGIahQ4cOac+ePZKkxMTE466L8AMA8Cun0+kOPp06dfJ3cxDAIiIiJEl79uyRzWY77iEwJjwDAPyqfo5Px44d/dwSBIP6n5MTmRtG+AEABASGutAc3vg5Ydirtbic0o410sHdUlS81H2oFHLiM9YBAEDL+LXnJzc3VwMHDlR0dLRsNpvGjRun8vJyjzIjRoyQxWLxePzP//zPUes1DEP33XefEhMTFRERoZEjR2rr1q2+vJSj21IoLUyTnrtcevXmuj8XptUdBwAArcqv4aekpERZWVkqLS1VcXGxDh8+rPT0dFVXV3uUu+WWW1RZWel+LFiw4Kj1LliwQI899pgWLVqksrIyRUZGatSoUaqpqfHl5TRuS6H0ykTJscvzuKOy7jgBCABwDJmZmRo3bpz7+YgRI5STk3NCdXqjjmDl12GvoqIij+eLFy+WzWbT+vXrNXz4cPfxjh07KiEhoVl1GoahhQsX6k9/+pPGjh0rSXr++ecVHx+v119/XVdffbX3LuBYXE6p6F5JRmMtlWSRiqZLfS5jCAwAvMDpMrSuYp/2HKiRLTpcg1LiFBriu7lEmZmZeu655yTVLcDXrVs3TZw4UX/4wx/Urp3vvmJfe+01tW/fvlllV61apQsvvFDff/+9YmNjj6uOtiag5vzY7XZJUlxcnMfxF154QUuWLFFCQoJGjx6tmTNnNnlXQEVFhaqqqjRy5Ej3MavVqsGDB2vt2rWNhp/a2lrV1ta6nzscDm9cTt0cnyN7fDwYkuObunIp53vnPQHApIo2V2rOm1tUaf+llz/RGq5Zo1OVkXb8a8IcS0ZGhvLz81VbW6u33npLWVlZat++vWbMmOFR7scff1SHDh288p5Hfk/6q45gFTB3e7lcLuXk5GjYsGFKS0tzH7/22mu1ZMkSrVy5UjNmzNA///lPTZgwocl6qqqqJEnx8fEex+Pj493njpSbmyur1ep+JCcne+GKVDe52ZvlAACNKtpcqclLNngEH0mqstdo8pINKtpc6bP3DgsLU0JCgrp3767Jkydr5MiRKiwsdA9VzZs3T0lJSerdu7ckaefOnRo/frxiY2MVFxensWPHavv27e76nE6npk6dqtjYWHXq1EnTpk2TYXiOIBw5ZFVbW6t7771XycnJCgsLU8+ePfX3v/9d27dv14UXXihJOumkk2SxWJSZmdloHd9//70mTpyok046SR07dtQll1ziMV928eLFio2N1TvvvKO+ffsqKipKGRkZqqz85bNdtWqVBg0apMjISMXGxmrYsGHasWOHlz5p7wmY8JOVlaXNmzfrpZde8jg+adIkjRo1Sv369dN1112n559/XgUFBdq2bZvX3nvGjBmy2+3ux86dO71TcVT8scu0pBwAoAGny9CcN7c0OcFAkua8uUVOV2MlvC8iIkI//vijJGn58uUqLy9XcXGxli1bpsOHD2vUqFGKjo7W+++/rw8++MAdIupf88gjj2jx4sX6xz/+odWrV2vfvn0qKCg46ntOnDhRL774oh577DF99tlneuqppxQVFaXk5GS9+uqrkqTy8nJVVlbq0UcfbbSOzMxMffTRRyosLNTatWtlGIYuvfRSj/V0Dh06pIcfflj//Oc/9d577+nrr7/W3XffLUn66aefNG7cOF1wwQX65JNPtHbtWk2aNCkglzAIiGGv7OxsLVu2TO+99566du161LKDBw+WJH355Zfq0aNHg/P1c4N2797tsfT17t27ddZZZzVaZ1hYmMLCwo6z9UfRfagUk1Q3ubnRf5aWuvPdh3r/vQHAJNZV7GvQ4/NrhqRKe43WVezTkB6+W0HaMAwtX75c77zzjm6//XZ9++23ioyM1LPPPuse7lqyZIlcLpeeffZZdyjIz89XbGysVq1apfT0dC1cuFAzZszQb3/7W0nSokWL9M477zT5vl988YVeeeUVFRcXu6d8nHrqqe7z9cNbNpvNY87Pr23dulWFhYX64IMPNHRo3XfSCy+8oOTkZL3++uu66qqrJNUtLLho0SL39292drbuv/9+SXVTRux2uy6//HL3+b59+7b8g2wFfu35MQxD2dnZKigo0IoVK5SSknLM12zcuFFS03t6pKSkKCEhQcuXL3cfczgcKisr05AhQ7zS7mYLCZUy5v/85Mjk+/PzjIeY7AwAJ2DPgebdydvcci21bNkyRUVFKTw8XJdccol+//vfa/bs2ZKkfv36eczz+c9//qMvv/xS0dHRioqKUlRUlOLi4lRTU6Nt27bJbrersrLS/Yu+JLVr104DBgxo8v03btyo0NBQXXDBBcd9DZ999pnatWvn8b6dOnVS79699dlnn7mPdezY0aPjITEx0b3XVlxcnDIzMzVq1CiNHj1ajz76qMeQWCDxa/jJysrSkiVLtHTpUkVHR6uqqkpVVVX64YcfJEnbtm3TAw88oPXr12v79u0qLCzUxIkTNXz4cJ1xxhnuevr06ePuErRYLMrJydHcuXNVWFioTZs2aeLEiUpKSvK4TbDVpI6Rxj8vxRwR1mKS6o6njmn9NgFAG2KLDvdquZa68MILtXHjRm3dulU//PCDnnvuOUVGRkqS+896Bw8eVP/+/bVx40aPxxdffKFrr732uN6/fr+r1nDk3WEWi8VjPlJ+fr7Wrl2roUOH6uWXX9Zpp52m0tLSVmtfc/l12CsvL09S3aSrX8vPz1dmZqY6dOigd999VwsXLlR1dbWSk5N15ZVX6k9/+pNH+fLycvedYpI0bdo0VVdXa9KkSdq/f7/OO+88FRUVKTzcNz/4x5Q6pu52dlZ4BgCvG5QSp0RruKrsNU1NMFCCte62d1+IjIxUz549m1X2nHPO0csvvyybzaaYmJhGyyQmJqqsrMy95MtPP/2k9evX65xzzmm0fL9+/eRyuVRSUuJxp3O9+p4np9PZZLv69u2rn376SWVlZe5hr71796q8vFypqanNurZ6Z599ts4++2zNmDFDQ4YM0dKlS3Xuuee2qA5f82v4OXL2+pGSk5NVUlLS4nosFovuv/9+9zhkQAgJ5XZ2APCB0BCLZo1O1eQlG2SR5wzL+gkHs0an+nS9n+a67rrr9Oc//1ljx47V/fffr65du2rHjh167bXXNG3aNHXt2lVTpkzRQw89pF69eqlPnz76y1/+ov379zdZ5ymnnKIbbrhBN910kx577DGdeeaZ2rFjh/bs2aPx48ere/fuslgsWrZsmS699FJFREQoKirKo45evXpp7NixuuWWW/TUU08pOjpa06dPV5cuXdxr5h1LRUWFnn76aY0ZM0ZJSUkqLy/X1q1bNXHixBP5yHwiYO72AgDgeGWkJSpvwjlKsHr28CdYw5U34RyfrvPTEh07dtR7772nbt266be//a369u2rm2++WTU1Ne6eoLvuukvXX3+9brjhBg0ZMkTR0dG64oorjlpvXl6efve73+m2225Tnz59dMstt7h3S+jSpYvmzJmj6dOnKz4+XtnZ2Y3WkZ+fr/79++vyyy/XkCFDZBiG3nrrrWYvhNixY0d9/vnnuvLKK3Xaaadp0qRJysrK0q233tqCT6h1WIxjdb+YkMPhkNVqld1ub7JbEgDgHTU1NaqoqFBKSsoJT09o7RWe0fqO9vPS3O/vgLjVHQAAbwgNsfj0dna0DQx7AQAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AABgQrNnz9ZZZ53l72ZoxIgRysnJadX3JPwAAHACqqqqNGXKFPXs2VPh4eGKj4/XsGHDlJeXp0OHDvm7ecdt1apVslgsR91XzJ/1nQhWeAYAtB0up7RjjXRwtxQVL3UfWrextI989dVXGjZsmGJjY/Xggw+qX79+CgsL06ZNm/T000+rS5cuGjNmTKOvPXz4cLP3zQpkP/74o3vn+GBBzw8AoG3YUigtTJOeu1x69ea6Pxem1R33kdtuu03t2rXTRx99pPHjx6tv37469dRTNXbsWP3rX//S6NGj3WUtFovy8vI0ZswYRUZGat68eZLqNiXt0aOHOnTooN69e+uf//yn+zXbt2+XxWLRxo0b3cf2798vi8WiVatWSfqlR2X58uUaMGCAOnbsqKFDh6q8vNyjrQ899JDi4+MVHR3t3ky1Kdu3b9eFF14oSTrppJNksViUmZkpqW6YKjs7Wzk5OercubNGjRp1zHYerT5JcrlcmjZtmuLi4pSQkKDZs2c396/guBB+AADBb0uh9MpEybHL87ijsu64DwLQ3r179e9//1tZWVmKjIxstIzF4rmp6uzZs3XFFVdo06ZNuummm1RQUKApU6borrvu0ubNm3Xrrbfqxhtv1MqVK1vcnj/+8Y965JFH9NFHH6ldu3a66aab3OdeeeUVzZ49Ww8++KA++ugjJSYm6sknn2yyruTkZL366quSpPLyclVWVurRRx91n3/uuefUoUMHffDBB1q0aNEx29ac+iIjI1VWVqYFCxbo/vvvV3FxcYs/g+Zi2AsAENxcTqnoXklGIycNSRapaLrU5zKvDoF9+eWXMgxDvXv39jjeuXNnd69KVlaW5s+f7z537bXX6sYbb3Q/v+aaa5SZmanbbrtNkjR16lSVlpbq4YcfdveUNNe8efN0wQUXSJKmT5+uyy67TDU1NQoPD9fChQt188036+abb5YkzZ07V++++26TvT+hoaGKi4uTJNlsNsXGxnqc79WrlxYsWOB+vn379qO27Vj1nXHGGZo1a5a77r/97W9avny5Lr744mZde0vR8wMACG471jTs8fFgSI5v6sq1gnXr1mnjxo06/fTTVVtb63FuwIABHs8/++wzDRs2zOPYsGHD9Nlnn7X4fc844wz3fycmJkqS9uzZ436fwYMHe5QfMmRIi9+jXv/+/Y/7tY35dduluvbXt90X6PkBAAS3g7u9W66ZevbsKYvF0mBuzamnnipJioiIaPCapobHmhISUtdHYRi/9GodPny40bK/njxdP9zmcrla9H7NdeR1tKSdjTly4rfFYvFZ2yV6fgAAwS4q3rvlmqlTp066+OKL9be//U3V1dXHVUffvn31wQcfeBz74IMPlJqaKkk6+eSTJUmVlZXu87+eVNyS9ykrK/M4VlpaetTX1N/B5XQ6j1l/c9rZkvp8jZ4fAEBw6z5Uikmqm9zc6LwfS9357kO9/tZPPvmkhg0bpgEDBmj27Nk644wzFBISog8//FCff/75MYeH7rnnHo0fP15nn322Ro4cqTfffFOvvfaa3n33XUl1vUfnnnuuHnroIaWkpGjPnj3605/+1OJ2TpkyRZmZmRowYICGDRumF154QZ9++qm7l6ox3bt3l8Vi0bJly3TppZcqIiJCUVFRjZZtTjtbUp+v0fMDAAhuIaFSRv2kYssRJ39+nvGQT9b76dGjhz7++GONHDlSM2bM0JlnnqkBAwbo8ccf1913360HHnjgqK8fN26cHn30UT388MM6/fTT9dRTTyk/P18jRoxwl/nHP/6hn376Sf3791dOTo7mzp3b4nb+/ve/18yZMzVt2jT1799fO3bs0OTJk4/6mi5dumjOnDmaPn264uPjlZ2dfdTyx2pnS+vzJYvx6wE6SJIcDoesVqvsdrtiYmL83RwAaNNqampUUVGhlJQUhYeHH39FWwrr7vr69eTnmC51wSe18YUGEXyO9vPS3O9vhr0AAG1D6pi629lbcYVnBCfCDwCg7QgJlVLO93crEOCY8wMAAEyF8AMAAEyF8AMACAjcf4Pm8MbPCeEHAOBX9av7Hjp0yM8tQTCo/zk5clXolmDCMwDAr0JDQxUbG+vey6ljx44NdkMHDMPQoUOHtGfPHsXGxio09Pjv4iP8AAD8LiEhQZJ8upkl2obY2Fj3z8vxIvwAAPzOYrEoMTFRNputRRtiwlzat29/Qj0+9Qg/AICAERoa6pUvN+BomPAMAABMhfADAABMhfADAABMhfADAABMhfADAABMhbu98AuXU9qxRjq4W4qKl7oPrdshGQCANoTwgzpbCqWieyXHrl+OxSRJGfOl1DH+axcAAF7GsBfqgs8rEz2DjyQ5KuuObyn0T7sAAPABwo/ZuZx1PT5qbJfcn48VTa8rBwBAG+DX8JObm6uBAwcqOjpaNptN48aNU3l5eaNlDcPQJZdcIovFotdff/2o9WZmZspisXg8MjIyfHAFbcCONQ17fDwYkuObunIAALQBfg0/JSUlysrKUmlpqYqLi3X48GGlp6erurq6QdmFCxe2aJffjIwMVVZWuh8vvviiN5vedhzc7d1yAAAEOL9OeC4qKvJ4vnjxYtlsNq1fv17Dhw93H9+4caMeeeQRffTRR0pMTGxW3WFhYSe866spRMV7txwAAAEuoOb82O12SVJcXJz72KFDh3TttdfqiSeeaFGYWbVqlWw2m3r37q3Jkydr7969TZatra2Vw+HweJhG96F1d3WpqV41ixTTpa4cAABtQMCEH5fLpZycHA0bNkxpaWnu43feeaeGDh2qsWPHNruujIwMPf/881q+fLnmz5+vkpISXXLJJXI6G5+0m5ubK6vV6n4kJyef8PUEjZDQutvZJTUMQD8/z3iI9X4AACfO5ZQq3pc2/V/dn366mcZiGEZjt/m0usmTJ+vtt9/W6tWr1bVrV0lSYWGh7rrrLn388ceKioqSJFksFhUUFGjcuHHNrvurr75Sjx499O677+qiiy5qcL62tla1tbXu5w6HQ8nJybLb7YqJiTmxCwsWja7z06Uu+LDODwDgRLXCenIOh0NWq/WY398Bschhdna2li1bpvfee88dfCRpxYoV2rZtm2JjYz3KX3nllTr//PO1atWqZtV/6qmnqnPnzvryyy8bDT9hYWEKCws7kUsIfqljpD6XscIzAMD76teTO3JZlfr15MY/36q/aPs1/BiGodtvv10FBQVatWqVUlJSPM5Pnz5d/+///T+PY/369dNf//pXjR49utnv89///ld79+5t9mRp0woJlVLO93crAABtyTHXk7PUrSfX57JW+4Xbr3N+srKytGTJEi1dulTR0dGqqqpSVVWVfvjhB0lSQkKC0tLSPB6S1K1bN4+g1KdPHxUUFEiSDh48qHvuuUelpaXavn27li9frrFjx6pnz54aNWpU618kAABmFoDryfk1/OTl5clut2vEiBFKTEx0P15++eUW1VNeXu6+Uyw0NFSffPKJxowZo9NOO00333yz+vfvr/fff5+hLQAAWlsArifn92Evb7zm18ciIiL0zjvvnFC7AACAlwTgenIBc6s7AABogwJwPTnCDwAA8J0AXE+O8AMAAHwrdUzd7ewxR9x1HZPU6re5SwGyzg8AAGjjAmg9OcIPAABoHQGynhzDXgAAwFTo+WklTpehdRX7tOdAjWzR4RqUEqfQkKZmvgMAAF8h/LSCos2VmvPmFlXaa9zHEq3hmjU6VRlpbLkBBC2XMyDmLwBoGcKPjxVtrtTkJRsa7GhSZa/R5CUblDfhHAIQEIxaYYdqAL7BnB8fcroMzXlzS5NbuUnSnDe3yOlq+UrXAPyofofqI/crqt+hekuhf9oFoFkIPz60rmKfx1DXkQxJlfYaravY13qNAnBijrlDtep2qHY5W7NVAFqA8ONDew40HXyOpxyAABCAO1QDaBnCjw/ZosO9Wg5AAAjAHaoBtAzhx4cGpcQp0Rp+tK3clGitu+0dQJAIwB2qAbQM4ceHQkMsmjU6VVKTW7lp1uhU1vsBgkkA7lANoGUIPz6WkZaovAnnKMHqObSVYA3nNncgGAXgDtUAWsZiGAb3WR/B4XDIarXKbrcrJibGK3WywjPQxjS6zk+XuuDDOj+AXzT3+5tFDltJaIhFQ3p08nczAHhLAO1QDaBlCD8AcLwCZIdqAC3DnB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqfg0/ubm5GjhwoKKjo2Wz2TRu3DiVl5c3WtYwDF1yySWyWCx6/fXXj1qvYRi67777lJiYqIiICI0cOVJbt271wRUAAIBg49fwU1JSoqysLJWWlqq4uFiHDx9Wenq6qqurG5RduHChLBZLs+pdsGCBHnvsMS1atEhlZWWKjIzUqFGjVFNT4+1LAAAAQcZiGIbh70bU+/bbb2Wz2VRSUqLhw4e7j2/cuFGXX365PvroIyUmJqqgoEDjxo1rtA7DMJSUlKS77rpLd999tyTJbrcrPj5eixcv1tVXX93gNbW1taqtrXU/dzgcSk5Olt1uV0xMjHcvEgAA+ITD4ZDVaj3m93dAzfmx2+2SpLi4OPexQ4cO6dprr9UTTzyhhISEY9ZRUVGhqqoqjRw50n3MarVq8ODBWrt2baOvyc3NldVqdT+Sk5NP8EoAAECgCpjw43K5lJOTo2HDhiktLc19/M4779TQoUM1duzYZtVTVVUlSYqPj/c4Hh8f7z53pBkzZshut7sfO3fuPM6rAAAAga6dvxtQLysrS5s3b9bq1avdxwoLC7VixQp9/PHHPn3vsLAwhYWF+fQ9AABAYAiInp/s7GwtW7ZMK1euVNeuXd3HV6xYoW3btik2Nlbt2rVTu3Z1We3KK6/UiBEjGq2rfmhs9+7dHsd3797drGEzAADQtvk1/BiGoezsbBUUFGjFihVKSUnxOD99+nR98skn2rhxo/shSX/961+Vn5/faJ0pKSlKSEjQ8uXL3cccDofKyso0ZMgQn10LAAAIDn4d9srKytLSpUv1xhtvKDo62j0nx2q1KiIiQgkJCY321nTr1s0jKPXp00e5ubm64oorZLFYlJOTo7lz56pXr15KSUnRzJkzlZSU1OQdYgAAwDz8Gn7y8vIkqcEQVn5+vjIzM5tdT3l5uftOMUmaNm2aqqurNWnSJO3fv1/nnXeeioqKFB4e7o1mAwCAIBZQ6/wEiuauEwAAAAJHUK7zAwAA4GuEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCrt/N0AAIDJuZzSjjXSwd1SVLzUfagUEurvVqENI/wAAPxnS6FUdK/k2PXLsZgkKWO+lDrGf+1Cm8awFwDAP7YUSq9M9Aw+kuSorDu+pdA/7QpWLqdU8b606f/q/nQ5/d2igEXPDwCg9bmcdT0+Mho5aUiySEXTpT6XMQTWHPSgtQg9PwCA1rdjTcMeHw+G5PimrhyOjh60FiP8AABa38Hd3i1nVsfsQVNdDxpDYB4IPwgujGkDbUNUvHfLmRU9aMeFOT8IHoxpA21H96F1/34dlWq818JSd7770NZuWXChB+240POD4MCYNtC2hITW/eIiSbIccfLn5xkPMdn5WOhBOy6EHwQ+xrSBtil1jDT+eSkm0fN4TFLdcXp0j62+B61BgKxnkWK60IN2BL+Gn9zcXA0cOFDR0dGy2WwaN26cysvLPcrceuut6tGjhyIiInTyySdr7Nix+vzzz49ab2ZmpiwWi8cjIyPDl5cCX2JMG2i7UsdIOZulG5ZJV/697s+cTQSf5qIH7bj4NfyUlJQoKytLpaWlKi4u1uHDh5Wenq7q6mp3mf79+ys/P1+fffaZ3nnnHRmGofT0dDmdR/8tPyMjQ5WVle7Hiy++6OvLga8wpg20bSGhUsr5Ur/f1f3JF3XL0IPWYn6d8FxUVOTxfPHixbLZbFq/fr2GDx8uSZo0aZL7/CmnnKK5c+fqzDPP1Pbt29WjR48m6w4LC1NCQoJvGo7WxZg2ABxd6pi6BSHZI61ZAupuL7vdLkmKi4tr9Hx1dbXy8/OVkpKi5OTko9a1atUq2Ww2nXTSSfrNb36juXPnqlOnTo2Wra2tVW1trfu5w+E4ziuAT3BXCAAcW30PGo4pYCY8u1wu5eTkaNiwYUpLS/M49+STTyoqKkpRUVF6++23VVxcrA4dOjRZV0ZGhp5//nktX75c8+fPV0lJiS655JImh8pyc3NltVrdj2MFK7QyxrQBAF5kMQyjsV+lW93kyZP19ttva/Xq1eratavHObvdrj179qiyslIPP/ywvvnmG33wwQcKDw9vVt1fffWVevTooXfffVcXXXRRg/ON9fwkJyfLbrcrJibmxC4M3tPoOj9d6oIPY9oAYHoOh0NWq/WY398BMeyVnZ2tZcuW6b333msQfCS5e2R69eqlc889VyeddJIKCgp0zTXXNKv+U089VZ07d9aXX37ZaPgJCwtTWFjYCV8HfIwxbQCAF/g1/BiGodtvv10FBQVatWqVUlJSmvUawzA8emqO5b///a/27t2rxMTEYxdGYGNMGwBwgvw65ycrK0tLlizR0qVLFR0draqqKlVVVemHH36QVDdclZubq/Xr1+vrr7/WmjVrdNVVVykiIkKXXnqpu54+ffqooKBAknTw4EHdc889Ki0t1fbt27V8+XKNHTtWPXv21KhRo/xynQAAIHD4Nfzk5eXJbrdrxIgRSkxMdD9efvllSVJ4eLjef/99XXrpperZs6d+//vfKzo6WmvWrJHNZnPXU15e7r5TLDQ0VJ988onGjBmj0047TTfffLP69++v999/n6EtAMDxYVPlNuWEJjzX1NTo5ZdfVnV1tS6++GL16tXLm23zm+ZOmAIAmACbKgeN5n5/Nzv8TJ06VYcPH9bjjz8uSfrxxx81ePBgffrpp+rYsaN++uknFRcXa8iQId65Aj8i/AAAJP2yqXKDNcZ+XmaDFZQDSnO/v5s97PXvf/9bF198sfv5Cy+8oB07dmjr1q36/vvvddVVV2nu3Lkn1moAAAIFmyq3Wc0OP19//bVSU1Pdz//973/rd7/7nbp37y6LxaIpU6bo448/9kkjAQBodWyq3GY1O/yEhITo1yNkpaWlOvfcc93PY2Nj9f3333u3dQAA+AubKrdZzQ4/ffv21ZtvvilJ+vTTT/X111/rwgsvdJ/fsWOH4uPZWBIA0EawqXKb1exFDqdNm6arr75a//rXv/Tpp5/q0ksv9ViU8K233tKgQYN80kgAAFodmyq3Wc3u+bniiiv01ltv6YwzztCdd97pXounXseOHXXbbbd5vYEAAPgFmyq3Wc2+1f3+++/X3XffrY4dO/q6TX7Hre4AADc2VQ4aXl/nJzQ0VJWVlR4rK7dVhB8AgAeXk02Vg4DXd3U/gYWgAQAIbmyq3Ka0aG8vi+XIMU8AAIDg0uyeH0k67bTTjhmA9u3bd0INAgAA8KUWhZ85c+bIarX6qi0AAAA+16Lwc/XVV5tiwjMAAGi7mj3nh/k+AACgLWh2+OFuLwAA0BY0e9jL5XL5sh0AAACtokW3ugMAAAQ7wg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADCVdv5uANASTpehdRX7tOdAjWzR4RqUEqfQEIu/mwUACCJ+7fnJzc3VwIEDFR0dLZvNpnHjxqm8vNyjzK233qoePXooIiJCJ598ssaOHavPP//8qPUahqH77rtPiYmJioiI0MiRI7V161ZfXgpaQdHmSp03f4WueaZUU17aqGueKdV581eoaHOlv5sGAAgifg0/JSUlysrKUmlpqYqLi3X48GGlp6erurraXaZ///7Kz8/XZ599pnfeeUeGYSg9PV1Op7PJehcsWKDHHntMixYtUllZmSIjIzVq1CjV1NS0xmXBB4o2V2rykg2qtHv+HVbZazR5yQYCEACg2SyGYRj+bkS9b7/9VjabTSUlJRo+fHijZT755BOdeeaZ+vLLL9WjR48G5w3DUFJSku666y7dfffdkiS73a74+HgtXrxYV199dYPX1NbWqra21v3c4XAoOTlZdrtdMTExXro6HC+ny9B581c0CD71LJISrOFafe9vGAIDABNzOByyWq3H/P4OqAnPdrtdkhQXF9fo+erqauXn5yslJUXJycmNlqmoqFBVVZVGjhzpPma1WjV48GCtXbu20dfk5ubKarW6H03VDf9YV7GvyeAjSYakSnuN1lXsa71GAQCCVsCEH5fLpZycHA0bNkxpaWke55588klFRUUpKipKb7/9toqLi9WhQ4dG66mqqpIkxcfHexyPj493nzvSjBkzZLfb3Y+dO3d64YrgLXsONG+4srnlAADmFjDhJysrS5s3b9ZLL73U4Nx1112njz/+WCUlJTrttNM0fvx4r87fCQsLU0xMjMcDgcMWHe7VcgAAcwuI8JOdna1ly5Zp5cqV6tq1a4PzVqtVvXr10vDhw/V///d/+vzzz1VQUNBoXQkJCZKk3bt3exzfvXu3+xyCy6CUOCVaw9XUbB6LpERr3W3vAAAci1/Dj2EYys7OVkFBgVasWKGUlJRmvcYwDI8Jyr+WkpKihIQELV++3H3M4XCorKxMQ4YM8Vrb0XpCQyyaNTpVkhoEoPrns0anMtkZANAsfg0/WVlZWrJkiZYuXaro6GhVVVWpqqpKP/zwgyTpq6++Um5urtavX6+vv/5aa9as0VVXXaWIiAhdeuml7nr69Onj7gmyWCzKycnR3LlzVVhYqE2bNmnixIlKSkrSuHHj/HGZ8IKMtETlTThHCVbPoa0Ea7jyJpyjjLREP7UMABBs/LrCc15eniRpxIgRHsfz8/OVmZmp8PBwvf/++1q4cKG+//57xcfHa/jw4VqzZo1sNpu7fHl5uftOMUmaNm2aqqurNWnSJO3fv1/nnXeeioqKFB7OnJBglpGWqItTE1jhGQBwQgJqnZ9A0dx1AgAAQOAIynV+AAAAfI3wAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATMWv21sAbZLLKe1YIx3cLUXFS92HSiGh/m4VAOBnhB/Am7YUSkX3So5dvxyLSZIy5kupY/zXLgCAG8NegLdsKZRemegZfCTJUVl3fEuhf9oFAPBA+AG8weWs6/FRY/sE/3ysaHpdOQCAXxF+AG/YsaZhj48HQ3J8U1cOAOBXhB/AGw7u9m45AIDPEH4Ab4iK9245AIDPEH4Ab+g+tO6uLlmaKGCRYrrUlQMA+BXhB/CGkNC629klNQxAPz/PeIj1fgAgABB+AG9JHSONf16KSfQ8HpNUd5x1fgAgILDIIeBNqWOkPpexwjMABDDCD+BtIaFSyvn+bgUAoAmEHwCBiT3SAPgI4QdA4GGPNAA+xIRnAIGFPdIA+BjhB0DgYI80AK2A8AMgcLBHGoBWQPgBEDjYIw1AKyD8AAgc7JEGoBUQfgAEDvZIA9AKCD8AAgd7pAFoBYQfAIGFPdIA+BiLHAIIPOyRBsCHCD8AAhN7pAHwEYa9AACAqdDzAwDwK6fL0LqKfdpzoEa26HANSolTaEhTd/wBJ47wAwDwm6LNlZrz5hZV2mvcxxKt4Zo1OlUZaYlHeSVw/Bj2AkzI6TK0dttevbHxG63dtldOV2N7aQG+VbS5UpOXbPAIPpJUZa/R5CUbVLS50k8tQ1tHzw9gMkWbK/VA4SYlH/yPbNqvPYrVzqgzNXNMP37TRqtxugzNeXNLk1vYWiTNeXOLLk5NYAisDQmUIU7CD2AiRZsr9frSRfrf9s8rqcM+9/FdtXG6f+lE6dr/IQChVayr2Negx+fXDEmV9hqtq9inIT06tV7D4DOBNMTJsBdgEk6XoVWv/0NPtl+oBO3zOJegfXqy/UKtev0fDIGhVew50HTwOZ5yCGyBNsTp1/CTm5urgQMHKjo6WjabTePGjVN5ebn7/L59+3T77berd+/eioiIULdu3XTHHXfIbrcftd7MzExZLBaPR0ZGhq8vBwho67Z9qzsOPytJOrKXuf75HYf/rnXbvm3llsGMbNHhXi2HwHWsIU6pboizNX/x8mv4KSkpUVZWlkpLS1VcXKzDhw8rPT1d1dXVkqRdu3Zp165devjhh7V582YtXrxYRUVFuvnmm49Zd0ZGhiorK92PF1980deXAwQ05/YPlGTZ1yD41AuxSEmWvXJu/6B1GwZTGpQSp0Rr+NG2sFWitW5OCIJbS4Y4W4tf5/wUFRV5PF+8eLFsNpvWr1+v4cOHKy0tTa+++qr7fI8ePTRv3jxNmDBBP/30k9q1a7r5YWFhSkhI8FnbgWBjs+z3ajngRISGWDRrdKomL9kgi+TRK1AfiGaNTmWycxsQiEOcATXnp344Ky6u6aRvt9sVExNz1OAjSatWrZLNZlPv3r01efJk7d27t8mytbW1cjgcHg+grelxag+vlgNOVEZaovImnKMEq+fQVoI1XHkTzmHyfRsRiEOcFsMwAmJ2o8vl0pgxY7R//36tXr260TLfffed+vfvrwkTJmjevHlN1vXSSy+pY8eOSklJ0bZt2/SHP/xBUVFRWrt2rUJDG26MOHv2bM2ZM6fB8fqgBbQJLqd++HOqwg5VNTr05TKk2o4JirhnCxuIolUFyu3P8A2ny9B581eoyl7T6Lwfi+oC7+p7f3PCf+8Oh0NWq/WY398BE34mT56st99+W6tXr1bXrl0bnHc4HLr44osVFxenwsJCtW/fvtl1f/XVV+rRo4feffddXXTRRQ3O19bWqra21uO9kpOTCT9oe7YUynhlogwZHt2+LkkWWWQZ/3zdjuoA4EX1d3tJjQ9xequnr7nhJyCGvbKzs7Vs2TKtXLmy0eBz4MABZWRkKDo6WgUFBS0KPpJ06qmnqnPnzvryyy8bPR8WFqaYmBiPB9AmpY6RZfzzssQkeRy2xHQh+ADwmUAb4vTrhGfDMHT77beroKBAq1atUkpKSoMyDodDo0aNUlhYmAoLCxUe3vIxwf/+97/au3evEhMZPwaUOkaWPpdJO9ZIB3dLUfGydB/KUBcAn8pIS9TFqQkBMcTp12Gv2267TUuXLtUbb7yh3r17u49brVZFRETI4XAoPT1dhw4dUkFBgSIjI91lTj75ZPf8nT59+ig3N1dXXHGFDh48qDlz5ujKK69UQkKCtm3bpmnTpunAgQPatGmTwsLCjtmu5nabAQCAwNHc72+/9vzk5eVJkkaMGOFxPD8/X5mZmdqwYYPKysokST179vQoU1FRoVNOOUWSVF5e7r5TLDQ0VJ988omee+457d+/X0lJSUpPT9cDDzzQrOADAADatoCZ8BxI6PkBAAQb7poLkp4fAABw4gJp09BgEBB3ewEAgOMTaJuGBgPCDwAAQSoQNw0NBoQfAACCVCBuGhoMCD8AAASpQNw0NBgQfgAACFKBuGloMCD8AAAQpAalxCnRGq6mbmi3qO6ur0Epca3ZrIBH+AGANszpMrR22169sfEbrd22l4mvbUxoiEWzRqdKUoMAVP981uhU0633cyys8wMAbRRrv5hD/aahR/5dJ/B33SRWeG4EKzwDCHb1a78c+T/4+t///bGTNnyLFZ5Z4RkATOtYa79YVLf2y8WpCab7cmzLQkMsGtKjk7+bERSY8wMAbQxrvwBHR/gBgDaGtV+Ao2PYCwDaGNZ+8T7m07QthB8AaGPq136pstc0Ou/Horo7gVj7pXm4a67tYdgLANoY1n7xHnZMb5sIPwDQBtWv/ZJg9RzaSrCGc5t7M7FjetvFsBcAtFEZaYm6ODWBuSrHqSV3zXGLeXAh/ABAG8baL8ePu+baLoa9AABoBHfNtV2EHwAAGsGO6W0X4QcAgEZw11zbRfiBm9NlaO22vXpj4zdau20vdzAAMD3ummubmPAMSSziBQBN4a65tsdiGAa/3h/B4XDIarXKbrcrJibG383xufpFvI78Qaj/Z81vNwCAYNDc72+GvUyORbwAAGZD+DG5liziBQBAW0D4MTkW8QIAmA3hx+RYxAsAYDbc7WVy9Yt4VdlrGp33Y1HdLZ0s4oXW5nQZ3F0DwCcIPyZXv4jX5CUbZJE8AhCLeMFfWHoBgC8x7AUW8UJAqV964ciJ+FX2Gk1eskFFmyv91DIAbQU9P5DEIl4IDMdaesGiuqUXLk5N4GcTwHEj/MAtNMSiIT06+bsZMLGWLL3AzyqA40X4ARAwgm3pBSZlA8GJ8AMgYATT0gtMygaCFxOeAQSM+qUXmuo7saguYPh76QUmZQPBjfADIGDUL70gqUEACpSlF9gPDwh+hB8AASXQl15gPzwg+DHnB0DACeSlF4JtUjaAhgg/AAJSoC69EEyTsgE0zq/DXrm5uRo4cKCio6Nls9k0btw4lZeXu8/v27dPt99+u3r37q2IiAh169ZNd9xxh+x2+1HrNQxD9913nxITExUREaGRI0dq69atvr4cACYQLJOyATTNr+GnpKREWVlZKi0tVXFxsQ4fPqz09HRVV1dLknbt2qVdu3bp4Ycf1ubNm7V48WIVFRXp5ptvPmq9CxYs0GOPPaZFixaprKxMkZGRGjVqlGpq6IYGcGKCYVI2gKOzGIYRMLckfPvtt7LZbCopKdHw4cMbLfO///u/mjBhgqqrq9WuXcNRO8MwlJSUpLvuukt33323JMlutys+Pl6LFy/W1Vdf3eA1tbW1qq2tdT93OBxKTk6W3W5XTEyMl64OQFvCOj9A4HE4HLJarcf8/g6oOT/1w1lxcU13F9dfUGPBR5IqKipUVVWlkSNHuo9ZrVYNHjxYa9eubTT85Obmas6cOSfYegBmEsiTsj24nNKONdLB3VJUvNR9qBQS6u9WAX4VMOHH5XIpJydHw4YNU1paWqNlvvvuOz3wwAOaNGlSk/VUVVVJkuLj4z2Ox8fHu88dacaMGZo6dar7eX3PDwAcTaBOynbbUigV3Ss5dv1yLCZJypgvpY7xX7sAPwuY8JOVlaXNmzdr9erVjZ53OBy67LLLlJqaqtmzZ3v1vcPCwhQWFubVOgHAr7YUSq9MlI5cjtFRWXd8/PMEIJhWQCxymJ2drWXLlmnlypXq2rVrg/MHDhxQRkaGoqOjVVBQoPbt2zdZV0JCgiRp9+7dHsd3797tPgcAbZrLWdfjc7R1qIum15UDTMiv4ccwDGVnZ6ugoEArVqxQSkpKgzIOh0Pp6enq0KGDCgsLFR5+9LUzUlJSlJCQoOXLl3vUUVZWpiFDhnj9GgAg4OxY4znU1YAhOb6pKweYkF/DT1ZWlpYsWaKlS5cqOjpaVVVVqqqq0g8//CDpl+BTXV2tv//973I4HO4yTucvv7H06dNHBQUFkiSLxaKcnBzNnTtXhYWF2rRpkyZOnKikpCSNGzfOH5cJAK3r4O5jl2lJOaCN8eucn7y8PEnSiBEjPI7n5+crMzNTGzZsUFlZmSSpZ8+eHmUqKip0yimnSJLKy8s9Fj6cNm2aqqurNWnSJO3fv1/nnXeeioqKjtlrBABtQlT8scu0pBzQxgTUOj+BornrBABAQHI5pYVpdZObG533Y6m76ytnE7e9o01p7vd3QEx4BgB4UUho3e3skppchzrjIYIPTIvwAwBtUeqYutvZY45YbTomidvcYXoBs84PAMDLUsdIfS5jhWfgCIQfAGjLQkKllPP93QogoDDsBQAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXtLQAvc7oMravYpz0HamSLDteglDiFhhy5szYAwF8IP4AXFW2u1Jw3t6jSXuM+lmgN16zRqcpISzzKKwEArYVhL8BLijZXavKSDR7BR5Kq7DWavGSDijZX+qllAIBfI/wAXuB0GZrz5hYZjZyrPzbnzS1yuhorAQBoTYQfwAvWVexr0OPza4akSnuN1lXsa71GAQAaRfgBvGDPgaaDz/GUAwD4DuEH8AJbdLhXywEAfIfwA3jBoJQ4JVrD1dQN7RbV3fU1KCWuNZsFAGgE4QfwgtAQi2aNTpWkBgGo/vms0ams9wMAAYDwA3hJRlqi8iacowSr59BWgjVceRPOYZ0fAAgQLHIIeFFGWqIuTk1ghWcACGCEH8DLQkMsGtKjk7+bAQBoAsNeAADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVFjhuRGGYUiSHA6Hn1sCAACaq/57u/57vCmEn0YcOHBAkpScnOznlgAAgJY6cOCArFZrk+ctxrHikQm5XC7t2rVL0dHRsli8tyGlw+FQcnKydu7cqZiYGK/VazZ8jt7B5+gdfI7ewefoHWb/HA3D0IEDB5SUlKSQkKZn9tDz04iQkBB17drVZ/XHxMSY8ofS2/gcvYPP0Tv4HL2Dz9E7zPw5Hq3Hpx4TngEAgKkQfgAAgKkQflpRWFiYZs2apbCwMH83JajxOXoHn6N38Dl6B5+jd/A5Ng8TngEAgKnQ8wMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8NOKnnjiCZ1yyikKDw/X4MGDtW7dOn83Kajk5uZq4MCBio6Ols1m07hx41ReXu7vZgW9hx56SBaLRTk5Of5uStD55ptvNGHCBHXq1EkRERHq16+fPvroI383K6g4nU7NnDlTKSkpioiIUI8ePfTAAw8cc28ms3vvvfc0evRoJSUlyWKx6PXXX/c4bxiG7rvvPiUmJioiIkIjR47U1q1b/dPYAET4aSUvv/yypk6dqlmzZmnDhg0688wzNWrUKO3Zs8ffTQsaJSUlysrKUmlpqYqLi3X48GGlp6erurra300LWh9++KGeeuopnXHGGf5uStD5/vvvNWzYMLVv315vv/22tmzZokceeUQnnXSSv5sWVObPn6+8vDz97W9/02effab58+drwYIFevzxx/3dtIBWXV2tM888U0888USj5xcsWKDHHntMixYtUllZmSIjIzVq1CjV1NS0cksDlIFWMWjQICMrK8v93Ol0GklJSUZubq4fWxXc9uzZY0gySkpK/N2UoHTgwAGjV69eRnFxsXHBBRcYU6ZM8XeTgsq9995rnHfeef5uRtC77LLLjJtuusnj2G9/+1vjuuuu81OLgo8ko6CgwP3c5XIZCQkJxp///Gf3sf379xthYWHGiy++6IcWBh56flrBjz/+qPXr12vkyJHuYyEhIRo5cqTWrl3rx5YFN7vdLkmKi4vzc0uCU1ZWli677DKPn0s0X2FhoQYMGKCrrrpKNptNZ599tp555hl/NyvoDB06VMuXL9cXX3whSfrPf/6j1atX65JLLvFzy4JXRUWFqqqqPP5tW61WDR48mO+cn7GxaSv47rvv5HQ6FR8f73E8Pj5en3/+uZ9aFdxcLpdycnI0bNgwpaWl+bs5Qeell17Shg0b9OGHH/q7KUHrq6++Ul5enqZOnao//OEP+vDDD3XHHXeoQ4cOuuGGG/zdvKAxffp0ORwO9enTR6GhoXI6nZo3b56uu+46fzctaFVVVUlSo9859efMjvCDoJSVlaXNmzdr9erV/m5K0Nm5c6emTJmi4uJihYeH+7s5QcvlcmnAgAF68MEHJUlnn322Nm/erEWLFhF+WuCVV17RCy+8oKVLl+r000/Xxo0blZOTo6SkJD5H+AzDXq2gc+fOCg0N1e7duz2O7969WwkJCX5qVfDKzs7WsmXLtHLlSnXt2tXfzQk669ev1549e3TOOeeoXbt2ateunUpKSvTYY4+pXbt2cjqd/m5iUEhMTFRqaqrHsb59++rrr7/2U4uC0z333KPp06fr6quvVr9+/XT99dfrzjvvVG5urr+bFrTqv1f4zmka4acVdOjQQf3799fy5cvdx1wul5YvX64hQ4b4sWXBxTAMZWdnq6CgQCtWrFBKSoq/mxSULrroIm3atEkbN250PwYMGKDrrrtOGzduVGhoqL+bGBSGDRvWYKmFL774Qt27d/dTi4LToUOHFBLi+VUUGhoql8vlpxYFv5SUFCUkJHh85zgcDpWVlfGd8zOGvVrJ1KlTdcMNN2jAgAEaNGiQFi5cqOrqat14443+blrQyMrK0tKlS/XGG28oOjraPXZttVoVERHh59YFj+jo6AbzpCIjI9WpUyfmT7XAnXfeqaFDh+rBBx/U+PHjtW7dOj399NN6+umn/d20oDJ69GjNmzdP3bp10+mnn66PP/5Yf/nLX3TTTTf5u2kB7eDBg/ryyy/dzysqKrRx40bFxcWpW7duysnJ0dy5c9WrVy+lpKRo5syZSkpK0rhx4/zX6EDi79vNzOTxxx83unXrZnTo0MEYNGiQUVpa6u8mBRVJjT7y8/P93bSgx63ux+fNN9800tLSjLCwMKNPnz7G008/7e8mBR2Hw2FMmTLF6NatmxEeHm6ceuqpxh//+EejtrbW300LaCtXrmz0/4c33HCDYRh1t7vPnDnTiI+PN8LCwoyLLrrIKC8v92+jA4jFMFhGEwAAmAdzfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgCYTmZmJsv8AyZG+AHgE5mZmbJYLA0eGRkZ/m6aHn30US1evNjfzZAkWSwWvf766/5uBmAqbGwKwGcyMjKUn5/vcSwsLMxPrZGcTqcsFousVqvf2gDA/+j5AeAzYWFhSkhI8HicdNJJWrVqlTp06KD333/fXXbBggWy2WzavXu3JGnEiBHKzs5Wdna2rFarOnfurJkzZ+rX2xHW1tbq7rvvVpcuXRQZGanBgwdr1apV7vOLFy9WbGysCgsLlZqaqrCwMH399dcNhr1GjBih22+/XTk5OTrppJMUHx+vZ555RtXV1brxxhsVHR2tnj176u233/a4vs2bN+uSSy5RVFSU4uPjdf311+u7777zqPeOO+7QtGnTFBcXp4SEBM2ePdt9/pRTTpEkXXHFFbJYLO7nAHyL8AOg1Y0YMUI5OTm6/vrrZbfb9fHHH2vmzJl69tlnFR8f7y733HPPqV27dlq3bp0effRR/eUvf9Gzzz7rPp+dna21a9fqpZde0ieffKKrrrpKGRkZ2rp1q7vMoUOHNH/+fD377LP69NNPZbPZGm3Tc889p86dO2vdunW6/fbbNXnyZF111VUaOnSoNmzYoPT0dF1//fU6dOiQJGn//v36zW9+o7PPPlsfffSRioqKtHv3bo0fP75BvZGRkSorK9OCBQt0//33q7i4WJL04YcfSpLy8/NVWVnpfg7Ax/y8qzyANuqGG24wQkNDjcjISI/HvHnzDMMwjNraWuOss84yxo8fb6Smphq33HKLx+svuOACo2/fvobL5XIfu/fee42+ffsahmEYO3bsMEJDQ41vvvnG43UXXXSRMWPGDMMwDCM/P9+QZGzcuLFB28aOHevxXuedd577+U8//WRERkYa119/vftYZWWlIclYu3atYRiG8cADDxjp6eke9e7cudOQZJSXlzdar2EYxsCBA417773X/VySUVBQ0MSnCMAXmPMDwGcuvPBC5eXleRyLi4uTJHXo0EEvvPCCzjjjDHXv3l1//etfG7z+3HPPlcVicT8fMmSIHnnkETmdTm3atElOp1OnnXaax2tqa2vVqVMn9/MOHTrojDPOOGZbf10mNDRUnTp1Ur9+/dzH6nuk9uzZI0n6z3/+o5UrVyoqKqpBXdu2bXO368j3TkxMdNcBwD8IPwB8JjIyUj179mzy/Jo1ayRJ+/bt0759+xQZGdnsug8ePKjQ0FCtX79eoaGhHud+HUgiIiI8AlRT2rdv7/HcYrF4HKuvw+Vyud9/9OjRmj9/foO6EhMTj1pvfR0A/IPwA8Avtm3bpjvvvFPPPPOMXn75Zd1www169913FRLyy1TEsrIyj9eUlpaqV69eCg0N1dlnny2n06k9e/bo/PPPb+3m65xzztGrr76qU045Re3aHf//Stu3by+n0+nFlgE4FiY8A/CZ2tpaVVVVeTy+++47OZ1OTZgwQaNGjdKNN96o/Px8ffLJJ3rkkUc8Xv/1119r6tSpKi8v14svvqjHH39cU6ZMkSSddtppuu666zRx4kS99tprqqio0Lp165Sbm6t//etfPr+2rKws7du3T9dcc40+/PBDbdu2Te+8845uvPHGFoWZU045RcuXL1dVVZW+//57H7YYQD16fgD4TFFRkccQkCT17t1b1157rXbs2KFly5ZJqhsmevrpp3XNNdcoPT1dZ555piRp4sSJ+uGHHzRo0CCFhoZqypQpmjRpkruu/Px8zZ07V3fddZe++eYbde7cWeeee64uv/xyn19bUlKSPvjgA917771KT09XbW2tunfvroyMDI/eq2N55JFHNHXqVD3zzDPq0qWLtm/f7rtGA5AkWQzjV4tmAECAGDFihM466ywtXLjQ300B0MYw7AUAAEyF8AMAAEyFYS8AAGAq9PwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABT+f+m2Rio2G8e7AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", @@ -1518,6 +596,13 @@ "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1536,7 +621,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.10.0" }, "orig_nbformat": 4 }, From c1012c48c5e923309c2bebc01f476210d756809a Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 10:00:37 +0100 Subject: [PATCH 04/12] ridge to ridgeCV --- workflow/comp_pred_ridge_and_LSTM.ipynb | 2866 +++++++++---------- workflow/pred_temperature_LSTM.ipynb | 8 +- workflow/pred_temperature_autoencoder.ipynb | 8 +- workflow/pred_temperature_ridge.ipynb | 774 ++++- 4 files changed, 2142 insertions(+), 1514 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index afcdc2f..856fa05 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -40,7 +40,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -87,46 +87,46 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", "periods_of_interest = 8\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", + " anchor='07-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] }, - "execution_count": 3, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -147,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -180,12 +180,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZ0lEQVR4nO3dd1xT1/sH8E+AsJcoiCiKAxW3OFHrVtyLqq20rrr3qtZaB2pdP3frrNZRt9bRarVVFAeuioqzWgdOhkqZQgjk/P7gy9UIKgGSXPTzfr18tcm9uc95DpeQJ/eccxVCCAEiIiIiIiIjMzF2A4iIiIiIiAAWJ0REREREJBMsToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGTBzNgNyC80Gg2ePn0KOzs7KBQKYzeHiIiIPmBCCMTHx8PNzQ0mJvwumT4eLE6y6enTp3B3dzd2M4iIiOgj8ujRIxQrVszYzSAyGBYn2WRnZwcg/U3C3t7eyK0hIiKiD1lcXBzc3d2lzx9EHwsWJ9mUMZTL3t6exQkREREZBIeS08eGgxiJiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgat1ERGRFiEEVCpVjl9vYWGR7RWGDBUrv8QxZCxD/Zw+tHx0iZWbOMnJyTl6HVF+x+KEiIi0qFQqdO3aNcev37lzJywtLWUVK7/EMWQsQ/2cPrR8dImVmzhqtTpHryPK71icEBFRli4+idf5Nd5Fc3bDuNBnun8Qq+qs1Pk1hsopJ/kA8s4J0D2vDy0fIGc54dF53V/jWl331xB9AFicEBHRW/kMmQ1TM/P37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRxD5ZTdfID8kxOQvbw+tHyA3Oe0aUB1WCjfP9VXpdbgi9WXchyHKL9jcUJERG9lamYOU/PsfcDOLROlBczM3z9UJjWXcQyVU3bzAfJPTkD28vrQ8gFyn5OF0gSWStNcHoXow8fVuoiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwGEBGRfB2fPxTJcdFQKEygtLKBd89v4OThhfiIBzi7chJU8TFQWtuiVt8puY51eHJ3JMc+/18sW9QdMhcFy1RB7JO7OPl/g5EcFw1zG3vUG7Eo17GOzR6AJCnWq7xCNszGk4tBSHz+FC0CNuc6zqGJXZD0X2SmnM4un4CHZw8iIfIROi4/AQd3z1zFedvP6fV8Wn2/E/ZuJXMVR2jScGxmb8Q+vgNTc0tYOTqj3vAFsC9aCs/+CcHZFd8gTa1CmioJUJgAzmVzHOttP6PXzz0zSxuYWVoDsMtxHEOdd+0WnUdUfApMFArYWZphqX9FVC/hgH8jEtBrTSieJ6TAwcoMq3pXzlUcovzOqFdOZs+ejVq1asHOzg4uLi7o1KkTbt26pbVPcnIyhg4dioIFC8LW1hZ+fn6IjIyUtoeGhuLzzz+Hu7s7rKys4OXlhSVLlmgdIzw8HD169EDZsmVhYmKCUaNGGSI9IqJ8z2fIHLSZsxutZ+9CudY9cW7VdwCA82uno3STT9FuwX54teuL82sCch2r0YTV6LwyGJ1WnERFv6E4MX8IAOD0ktEo16Y3Pv35Aip3G4ngxSNzHav+iPlZ5uVeuwWaT9kAm0JuuY4BAE0mrcsyJ49POqDtgoOwLeyeJ3He9nPK63wAwLPVl/Bb+zc6rzyF4j6tcWrxCABA8JJRqPrZaHRafgKt5v2G+PAwxMfH5zjO235Gr5975dv0RMzDW+850rsZ6rzbNLA6rsxohMvTG2KMb0n0XnsZADBww1UMaFwct+c0wYQ2pdF/3dVcxSHK74xanBw/fhxDhw7F2bNncfjwYajVarRs2RKJiYnSPqNHj8bvv/+OnTt34vjx43j69Cm6dOkibQ8JCYGLiws2bdqE69evY9KkSZg4cSJ+/PFHaR+VSgVnZ2d89913qFq1qkFzJCLKz8ytX30jrX4ZD0CB5NgXiL53HR4N2gFI/wCcFB2JVFVS7mLZOryKlRgHhUKBpJhneP7vZZRu1g0A4NGgAxKfP4U6OfFth8leLBv7V7H+lxcAuHjVhHVB11wd+3UWWeQEAK6V68PGuWiexcnq5wTkfT4KE1MUq9lMysPFqxYSIh/+b6MCqoQ4AEBq8ksoFAoolcocx8rqZ/TmuVesZjOkpSRrfW7QOY6BzjtH61d9EZuUCgUUiIpT4UJYLL7wST8X/GoWwZP/kpCoSs1xHKL8zqjDug4dOqT1eP369XBxcUFISAgaNmyI2NhYrF27Flu2bEHTpk0BAOvWrYOXlxfOnj2LunXrom/fvlrHKFWqFM6cOYPdu3dj2LBhAAAPDw/pasrPP/9sgMyIiD4cZ1Z8i6gb5wEAjb5ejpfREbAq4AwT0/Q/IQqFAtYFCyMtJTnXsY7PG4SI0JMAgBYzdyDx2RNYORXWimXjXBRpqtzHejMvfXkzJ30xVD6vu753JYr7tAEAfDJ2GY5M64GLG2YiOfYFHNw9YWlpmavjZ+fcMzW3RFJS7gpjQ513PX+6hGM3XwAA/hhdG4+ik1DE0QJmpiZSnGJOVkhK0cA8V5GI8i9ZzTmJjY0FADg5OQFIvyqiVqvRvHlzaZ/y5cujePHiOHPmDOrWrfvW42QcI6dUKhVUKpX0OC4uLlfHIyLKr3wGzwIA3DuxD5e3LUKVrsP0FqvR+JUAgH8Pb8WFtdPg3WuS3mK9mVfj8Sv0EufNnFrO3KmXOIbKJ0Po1gWIe3ofreekz8W4sn0RavaZgtJNu+K/h7fw29DGiHcvmKsYhjr3DHXebexfHQCw4dQjTNh5EzO6lNNLHKL8TDardWk0GowaNQr169dHpUqVAAAREREwNzeHo6Oj1r6FCxdGRERElsc5ffo0tm/fjgEDBuSqPbNnz4aDg4P0z909b8YFExHlV6UadkTUjb9h5VQYSf89gyYtfeiJEAIvX0TC1Dx335K/zrPF5wgPPQWbQm5Iio7UipX47AlMLfIuVkZeqviYPDtmVjJySo6L1mscQ+RzdecPCAvej5Yzd8LM0hrJsS/w4PQBlG7aFQBg51oC5rYOiI7Om1zfde6lpSTDysoqT+IY6rzr1cAdx/55gWIFrBAeo0JqmkaK8zg6CVbmsvl4RmRwsjn7hw4dimvXrmHbtm05Psa1a9fQsWNHTJ06FS1btsxVeyZOnIjY2Fjp36NHj3J1PCKi/EaTmoqk/55Jjx9fCIS5rQMs7QvCqaQXwk7tBwA8On8YVk4uMLPI+QdETaoaL1+8+tLpwekDsLB3gqWjMwqWqYK7genDocJO/QabQkWgtLTJcayUl/F4+V+U9Dgjr9fnHuSFlIRYvHwRLj3OyMnCrkCexnnbzymv88lwY+9K3Av6Fa1m75Hm1JjbOsLMwhpPL58AACTHvkBKQizs7e3fdai3etvP6M1z7/GFQJgqLWBjk7PzwVDnnTpNg6cxr4aE7b0YgYK25nCxN4d3CXtsOvMEAPDrhXAULWAJGwtZDWwhMihZnP3Dhg3D/v37ceLECRQrVkx63tXVFSkpKYiJidG6ehIZGQlXV+0Jfjdu3ECzZs0wYMAAfPfdd7luk4WFBSwsLHJ9HCKi/EqjSUXwD2ORpk6BwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgdLKBrX6TsW1PTkfRqRJS8Wx7/tAo1YBChNYOhRCi+nboFAoUH/EIpxYMBSh2xZCaW2HeiMX4/KmuTmOpX6ZgDMrJiItJTlTXufXBuDppRNIjn2BEwuGIzX5JVC0+fsPmoWUl3E4MXcQ0lKSMuUUvGQUHp0/jKToSPz5rR+UVjZwLJ6zIT7v+jm9ns+xuQOhtLSGfdHSOYoDAKmqZFxYGwC7Ih44OL49AMBEaYEOS4+gyaR1+PunKdCkpUKTmgI71xIoUCBnhdi7fkavn3tmltZwLJHzoVGGOu/UaQLdll+ESq2BiQngbGeB/aNqQaFQYFWvKui99jJm7b8DeyszrOpVBQH7buc4J6L8zqjFiRACw4cPx549exAUFISSJbXXX69RowaUSiUCAwPh5+cHALh16xYePnwIHx8fab/r16+jadOm6NWrF77//nuD5kBE9KEyM7dE43HLYGqe+Ysae7eSaPnafUDSUlSZ9tEploUVWszYDrMshoY5uHui/eK/pMepuZx4b1OoCHxnbM1yW+2vpkr/n5aiwqmlY3Mcx9bFHR1+CMxyW/2Ri7Uep6Yk49jM3jmK866f0+v5ALnPyczCEj1/D8/y51TUuzGKegcByF0+wLt/Rq+fe7nPxzDnnbW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHIfoQGLU4GTp0KLZs2YJ9+/bBzs5Omkfi4OAAKysrODg44KuvvsKYMWPg5OQEe3t7DB8+HD4+PtJk+GvXrqFp06bw9fXFmDFjpGOYmprC2dlZinX58mUAQEJCAp49e4bLly/D3NwcFSpUMGzSRERERESUJaMWJytWpA8BaNy4sdbz69atQ+/evQEAixYtgomJCfz8/KBSqeDr64vly18tkbhr1y48e/YMmzZtwqZNm6TnS5QogbCwMOlx9erVpf8PCQnBli1bMu1DRERERETGY/RhXe9jaWmJZcuWYdmyZVlunzZtGqZNm5YnsYiIiIiIyHhks1oXERERERF93FicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWTAzdgOIiEi+0lJT8nS/d9GoVUjN5n65YaicsptPxr65Ibef04eWT8Z+uaFSa/J0P6IPFYsTIiJ6qzPLJxos1vG5Aw0Sx1A5GSof4MP7OX1o+QDAF6svGSQOUX7H4oSIiLLkXdTOYLGqOisNEsdQORkqH+DD+zl9aPkAANxr6/4atTrv20GUDyiEEMLYjcgP4uLi4ODggNjYWNjb2xu7OUREeiOEgEqV8yEsFhYWUCgUsoqVX+IYMpahfk4fWj66xMpNnLi4OBQuXJifO+ijwysnRESkRaFQwNLS8oOK9aHF+RBjfWj55DZOSkru59MQ5UdcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJgk7FSWpqKjZu3IjIyEh9tYeIiIiIiD5SOhUnZmZmGDRoEJKTk/XVHiIiIiIi+kjpPKyrdu3auHz5sh6aQkREREREHzMzXV8wZMgQjBkzBo8ePUKNGjVgY2Ojtb1KlSp51jiij50QAiqVKsevt7CwgEKh+GDiGDIWc9J/HEPGMmRORESUcwohhNDlBSYmmS+2KBQKCCGgUCiQlpaWZ42Tk7i4ODg4OCA2Nhb29vbGbg59JJKTk9G1a9ccv37nzp2wtLT8YOIYMhZz0n8cQ8YyZE5EeYGfO+hjpfOVk/v37+ujHUT0DhefxOv8Gu+idjq/JvSZWufXVHVW6vyanOQDMKcMcs4pJ/kAhssJj87r/hr32rq/hoiIckTn4qREiRL6aAcRvYfPkNkwNTN/735pqSk4s3xijuM0mrAKJkqL9+6nUatwfO7AHMfJbj4Ac8qK3HLKbT6A4XLaNKA6LJTvn3KpUmvwxepLOY5DRES607k4yXDjxg08fPgQKSkpWs936NAh140iosxMzcxhav7+D265ZaK0gJn5+4evpOYyjqHyAZhTbnyIOVkoTWCpNM3lUYiISB90Lk7u3buHzp074+rVq9JcEwDSRMEPdc4JERERERHpl85LCY8cORIlS5ZEVFQUrK2tcf36dZw4cQI1a9ZEUFCQHppIREREREQfA52vnJw5cwZHjx5FoUKFYGJiAhMTEzRo0ACzZ8/GiBEjcOkSx+cSEREREZHudL5ykpaWBju79NVYChUqhKdPnwJInyh/69atvG0dERERERF9NHS+clKpUiWEhoaiZMmSqFOnDubNmwdzc3OsXr0apUqV0kcbiYiIiIjoI6BzcfLdd98hMTERADB9+nS0a9cOn3zyCQoWLIjt27fneQOJiIiIiOjjoHNx4uvrK/1/mTJl8M8//yA6OhoFChSQVuwiIiIiIiLSlc5zTjLcuXMHf/75J5KSkuDk5JSXbSIiIiIioo+QzsXJixcv0KxZM5QtWxZt2rRBeHg4AOCrr77C2LFj87yBRERERET0cdB5WNfo0aOhVCrx8OFDeHl5Sc93794dY8aMwYIFC/K0gURERESUtbS0NKjVamM3g+itlEolTE1Ns72/zsXJX3/9hT///BPFihXTet7T0xMPHjzQ9XBEREREpCMhBCIiIhATE2PsphC9l6OjI1xdXbM1P13n4iQxMRHW1taZno+OjoaFhYWuhyMiIiIiHWUUJi4uLrC2tuaiRCRLQgi8fPkSUVFRAIAiRYq89zU6FyeffPIJNm7ciBkzZgAAFAoFNBoN5s2bhyZNmuh6OCIiIiLSQVpamlSYFCxY0NjNIXonKysrAEBUVBRcXFzeO8RL5+Jk3rx5aNasGS5cuICUlBSMHz8e169fR3R0NIKDg3PWaiIiIiLKlow5JlmNZCGSo4xzVa1Wv7c40Xm1rkqVKuH27dto0KABOnbsiMTERHTp0gWXLl1C6dKlc9ZiIiIiItIJh3JRfqHLuarzlRMAcHBwwKRJk3LyUiIiIiIioizpfOXEw8MD06dPx6NHj/TRHiIiIiIi+kjpfOVk1KhRWL9+PaZPn44mTZrgq6++QufOnblSFxEREZGxLTDgUK+xwnCxjCwsLAwlS5bEpUuXUK1aNWM3J8c8PDwwatQojBo1ythNeSudr5yMGjUKly9fxvnz5+Hl5YXhw4ejSJEiGDZsGC5evKiPNhIRERFRPqZQKN75b9q0aUZt2969e9+5j7u7O8LDw1GpUqVsH3fatGn5upAxFp2Lkwze3t5YunQpnj59iqlTp2LNmjWoVasWqlWrhp9//hlCfDzVNBERERG9XXh4uPRv8eLFsLe313pu3LhxOh0vJSVFTy3NmqmpKVxdXWFmlqPp2rli6FyNLcfFiVqtxo4dO9ChQweMHTsWNWvWxJo1a+Dn54dvv/0W/v7+edlOIiIiIsqnXF1dpX8ODg5QKBTS48TERPj7+6Nw4cKwtbVFrVq1cOTIEa3Xe3h4YMaMGejZsyfs7e0xYMAAAMBPP/0Ed3d3WFtbo3Pnzli4cCEcHR21Xrtv3z54e3vD0tISpUqVQkBAAFJTU6XjAkDnzp2hUCikx28KCwuDQqHA5cuXAQBBQUFQKBQIDAxEzZo1YW1tjXr16uHWrVsAgPXr1yMgIAChoaHS1aH169cDAGJiYtCvXz84OzvD3t4eTZs2RWhoqBQr44rLmjVrULJkSVhaWmL16tVwc3ODRqPRalfHjh3Rt29fAMDdu3fRsWPHd/ZjfqBzcXLx4kWtoVwVK1bEtWvXcOrUKfTp0weTJ0/GkSNHsGfPHn20l4iIiIg+IAkJCWjTpg0CAwNx6dIltGrVCu3bt8fDhw+19ps/fz6qVq2KS5cuYfLkyQgODsagQYMwcuRIXL58GS1atMD333+v9ZqTJ0+iZ8+eGDlyJG7cuIFVq1Zh/fr10n5///03AGDdunUIDw+XHmfXpEmTsGDBAly4cAFmZmZSodC9e3eMHTsWFStWlK4Ode/eHQDQtWtXREVF4eDBgwgJCYG3tzeaNWuG6Oho6bh37tzBr7/+it27d+Py5cvo2rUrXrx4gWPHjkn7REdH49ChQ9IFgez2o9zpfG2qVq1aaNGiBVasWIFOnTpBqVRm2qdkyZL47LPP8qSBRERERPThqlq1KqpWrSo9njFjBvbs2YPffvsNw4YNk55v2rQpxo4dKz2eNGkSWrduLQ0JK1u2LE6fPo39+/dL+wQEBOCbb75Br169AAClSpXCjBkzMH78eEydOhXOzs4AAEdHR7i6uurc9u+//x6NGjUCAHzzzTdo27YtkpOTYWVlBVtbW5iZmWkd99SpUzh//jyioqKkxaTmz5+PvXv3YteuXdIVoZSUFGzcuFFqHwC0bt0aW7ZsQbNmzQAAu3btQqFChdCkSROd+lHudL5ycu/ePRw6dAhdu3bNsjABABsbG6xbty7XjSMiIiKiD1tCQgLGjRsHLy8vODo6wtbWFjdv3sz0jX/NmjW1Ht+6dQu1a9fWeu7Nx6GhoZg+fTpsbW2lf/3790d4eDhevnyZ67ZXqVJF+v8iRYoAAKKiot66f2hoKBISElCwYEGtNt2/fx93796V9itRooRWYQIA/v7++PXXX6FSqQAAmzdvxmeffQYTk/SP89ntR7nT+cpJiRIl9NEOIiIiIvoIjRs3DocPH8b8+fNRpkwZWFlZ4dNPP800EdzGxkbnYyckJCAgIABdunTJtM3S0jLHbc7w+hf1GXdBf3NeyJvtKVKkCIKCgjJte32uTFa5tm/fHkIIHDhwALVq1cLJkyexaNEiaXt2+1HuDL/kABERERHR/wQHB6N3797o3LkzgPQP8GFhYe99Xbly5TLNEXnzsbe3N27duoUyZcq89ThKpRJpaWm6N/w9zM3NMx3X29sbERERMDMze+vk+7extLREly5dsHnzZty5cwflypWDt7e3tD2n/Sg3LE6IiIiIyGg8PT2xe/dutG/fHgqFApMnT37n1YcMw4cPR8OGDbFw4UK0b98eR48excGDB6UrGAAwZcoUtGvXDsWLF8enn34KExMThIaG4tq1a5g5cyaA9BW7AgMDUb9+fVhYWKBAgQJ5kpeHhwfu37+Py5cvo1ixYrCzs0Pz5s3h4+ODTp06Yd68eShbtiyePn2KAwcOoHPnzpmGrr3J398f7dq1w/Xr1/HFF19obctpP8oNixMiIiKiD0U+vGv7woUL0bdvX9SrVw+FChXChAkTEBcX997X1a9fHytXrkRAQAC+++47+Pr6YvTo0fjxxx+lfXx9fbF//35Mnz4dc+fOhVKpRPny5dGvXz9pnwULFmDMmDH46aefULRo0Ty72uDn54fdu3ejSZMmiImJwbp169C7d2/88ccfmDRpEvr06YNnz57B1dUVDRs2ROHChd97zKZNm8LJyQm3bt1Cjx49tLbltB/lRqfiRK1Wo3z58ti/fz+8vLz01SYiIiIi+kD17t0bvXv3lh57eHjg6NGjWvsMHTpU6/HbCob+/fujf//+Wo/fHMLl6+sLX1/ft7anffv2aN++/Tvb7OHhoXWD8caNG2e64Xi1atW0nrOwsMCuXbsyHcvOzg5Lly7F0qVLs4w1bdo0TJs2LcttJiYmePr06VvbmNN+lBOdihOlUonk5OQ8Cz579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uVSdRkaGoo5c+bg1KlTeP78OTw8PKQ1r18XFBSEMWPG4Pr163B3d8d3332n9YtBJHfH5w9Fclw0FAoTKK1s4N3zGzh5eCE+4gHOrpwEVXwMlNa2qNV3Sq7iHJ7cHcmxz/8XxxZ1h8xFwTJVEPvkLk7+32Akx0XD3MYe9UYsev/B3uPY7AFIkmK9yilkw2w8uRiExOdP0er7nbB3K6mXnM4un4CHZw8iIfIROi4/AQd3z3yRk9Ck4djM3oh9fAem5pawcnRGveELYF+0FJ7duohzKydCnZQIhUKBGn2n5iofQ513gOHOvXaLziMqPgUmCgXsLM2w1L8iqpdwwL8RCei1JhTPE1LgYGWGVb0r5zonItKv+fPno0WLFrCxscHBgwexYcMGLF++3NjNolzQeVjX0KFDMXfuXKxZswZmZrkbFXb8+HEMHToUtWrVQmpqKr799lu0bNkSN27ckFYpGD16NA4cOICdO3fCwcEBw4YNQ5cuXRAcHAwACAkJgYuLCzZt2gR3d3ecPn0aAwYMgKmpqbSm8/3799G2bVsMGjQImzdvRmBgIPr164ciRYq8s5ImkhOfIXNg5VgIAPDo70CcW/UdWs/+FefXTkfpJp+iVKNOeHjuL5xfEwCrAs7vOdrbNZqwGtZO6cV/WPB+nJg/BJ1XnsLpJaNRrk1veLbsgfsn9yF48UhYF9R9TfjX1R8xH+Y29plycq/dAl7t+uDI9F65On6Gt+Xk8UkHVO46AgfGts6TOIDhcvJs9SVK+LSBQqHAjX2rcWrxCLSe9zsCp3+JT8YuQ1Hvxoh9fAcHJ3REgZIVAGS99Pv7GOq8Awx37m0aWB2uDumr9OwJCUfvtZcROr0RBm64igGNi6N3A3fs+vsp+q+7CjdHi1zlRET6df78ecybNw/x8fEoVaoUli5dqjVki/IfnauLv//+G4GBgfjrr79QuXLlTEud7d69O9vHOnTokNbj9evXw8XFBSEhIWjYsCFiY2Oxdu1abNmyBU2bNgWQfgdPLy8vnD17FnXr1pXuxJmhVKlSOHPmDHbv3i0VJytXrkTJkiWxYMECAICXlxdOnTqFRYsWsTihfMPc2k76f/XLeAAKJMe+QPS962jyzSoAgHvtFghZPwtKa1sAdlkf6H1xbB1exUmMg0KhQFLMMzz/9zJ8Z6f/fns06IAzP34NpY0dAMccZgTpQzzwKicAcPF694RAneNkkRMAuFaun6dxAMPkpDAxRbGazaQ8XLxq4dqvP0IVF43k2Oco6t0YAOBQrAzMbR2QHPMcKFwsR7EMdd4Bhjv3HK1fFWqxSalQQIGoOBUuhMXir3F1AAB+NYtg2KZrcLAyhe6LlxKRoezYscPYTaA8pnNx4ujoCD8/P320BbGxsQAAJycnAOlXRdRqNZo3by7tU758eRQvXhxnzpxB3bp133qcjGMAwJkzZ7SOAaSPPxw1atRb26JSqaSb3ADIlxOK6MNzZsW3iLpxHgDQ6OvleBkdAasCzjAxTf9VVigUsC5YGGkpuRt+eXzeIESEngQAtJi5A4nPnsDKqbBWHBvnokhT5X6Y55s56cubOemToXLKcH3vShT3aQNLh4KwdiqMe8f3oFSjznh26yLiHt/N9bA4Q513gOHOvZ4/XcKxmy8AAH+Mro1H0Uko4mgBM1MTKU4xJyskpWhYnBARGZDOxYm+7vyu0WgwatQo1K9fH5UqVQIAREREwNzcXOumNABQuHBhREREZHmc06dPY/v27Thw4ID0XERERKYVEAoXLoy4uDgkJSXBysoq03Fmz56NgICAXGZFlLd8Bs8CANw7sQ+Xty1Cla7D9BKn0fiVAIB/D2/FhbXT4N1rkl7iAJlzajx+hV7ivJlTy5k79RIHMFxOABC6dQHint5H6znp8zCaTd2MC2sDcGX7IhQoUR4uFWojOfZ5rmIY6rwDDHfubexfHQCw4dQjTNh5EzO6lHvPK4iIyBBMcvrCZ8+e4dSpUzh16hSePXuW64YMHToU165dw7Zt23J8jGvXrqFjx46YOnUqWrZsmav2TJw4EbGxsdK/R48e5ep4RHmpVMOOiLrxN6ycCiPpv2fQpKUCAIQQePkiEqbmub/rLQB4tvgc4aGnYFPIDUnRkVpxEp89galF3sQBXuWkio/Js2NmJSOn5LhovcYB9J/T1Z0/ICx4P1rO3AkzS2sAQMHSleE7axc6LT+BRhNWIyk6Akor2zyJZ6jzDjDcudergTuO/fMCxQpYITxGhdQ0jRTncXQSrMxz/GeSiIhyQOd33cTERPTt2xdFihRBw4YN0bBhQ7i5ueGrr77Cy5cvc9SIYcOGYf/+/Th27BiKFXs1LtrV1RUpKSmIiYnR2j8yMhKurtqTIW/cuIFmzZphwIAB+O6777S2ubq6IjIyMtMx7O3ts7xqAqQv/2Zvb6/1j8hYNKmpSPrv1ZcAjy8EwtzWAZb2BeFU0gthp/YDAB6dPwwrJxeYWWR9Xr8/jhovX7y6Kvng9AFY2DvB0tEZBctUwd3A9OFQYad+g02hIlBa5nzAS8rLeLz8LypTTq/PO8gLb8vJwi5vbrL1OkPlBAA39q7EvaBf0Wr2Hli8dvzXc731xwaYWVrDwt4pq0O8l6HOu/RYhjn31GkaPI15NSRs78UIFLQ1h4u9ObxL2GPTmScAgF8vhKNoAUvYWPB2YEREhqTzu+6YMWNw/Phx/P7776hfP30y6alTpzBixAiMHTsWK1Zkf/iCEALDhw/Hnj17EBQUhJIltcdF16hRA0qlEoGBgdI8l1u3buHhw4fw8fGR9rt+/TqaNm2KXr164fvvv88Ux8fHB3/88YfWc4cPH9Y6BpGcaTSpCP5hLNLUKVCYmMDCrgAajVsGhUKBWn2n4Oyq73DjtzVQWtmgVt+puLYnZ8OINGmpOPZ9H2jUKkBhAkuHQmgxfRsUCgXqj1iEEwuGInTbQiit7VBv5GJc3jQ3xzmpXybgzIqJSEtJzpTT+bUBeHrpBJJjX+DY3IFQWlrDvmjpPM8peMkoPDp/GEnRkfjzWz8orWzgWDznw3sMlVOqKhkX1gbArogHDo5PX5vfRGmBDkuP4NbBDbh7dCcgBByKl0Xjb3/G+VU5GxplqPMOMNy5p04T6Lb8IlRqDUxMAGc7C+wfVQsKhQKrelVB77WXMWv/HdhbmWFVryoI2Hc7xzkREZHudC5Ofv31V+zatQuNGzeWnmvTpg2srKzQrVs3nYqToUOHYsuWLdi3bx/s7OykeSQODg6wsrKCg4MDvvrqK4wZMwZOTk6wt7fH8OHD4ePjI02Gv3btGpo2bQpfX1+MGTNGOoapqSmcndOXtRw0aBB+/PFHjB8/Hn379sXRo0exY8cOrXkpRHJmZm6JxuOWwdQ887Km9m4l0TJgs/Q4LUWVaZ9sx7GwQosZ22GWxfAcB3dPtF/8l/Q4NZeTn20KFYHvjK1Zbqv9lfa9OdJSVDi1dGyO4rwrp/ojF2s9Tk1JxrGZvXMUBzBkTpbo+Xt4ljlV/2ICqn8xQXqcm5+Toc47wHDnnrW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHISLKrsaNG6NatWpYvHixsZuSY9OmTcPevXtx+fLlXB9L5+Lk5cuXmSaXA4CLi4vOw7oyCpnXCx0gfdJ9xg0SFy1aBBMTE/j5+WndhDHDrl278OzZM2zatAmbNm2Sni9RooR0F8ySJUviwIEDGD16NJYsWYJixYphzZo1XEaYiIiIPiiFpp0wWKzn0xrqtH/v3r2xYcMGAOk39i5evDh69uyJb7/9Ntf3zsvPdu/eDaUy+/eiCgsLQ8mSJXHp0iVUq1ZNfw0zEp3PBB8fH0ydOhUbN26EpWX6N1xJSUkICAjQeZiUEOK9+1haWmLZsmVYtmxZltunTZuGadOmvfc4jRs3xqVLl3RqHxERERHlnVatWmHdunVQqVT4448/MHToUCiVSkycODHTvikpKTA3Nzd4G4UQSEtLy/OC6W35vH77C0NTq9U6FUaGoPOE+CVLliA4OBjFihVDs2bN0KxZM+nO7EuWLNFHG4mIiIjoA2BhYQFXV1eUKFECgwcPRvPmzfHbb78BSL+y0qlTJ3z//fdwc3NDuXLpcwAfPXqEbt26wdHREU5OTujYsaM0OibDzz//jIoVK8LCwgJFihSRbsQdFhYGhUKhNdwoJiYGCoUCQUFBAICgoCAoFAocPHgQNWrUgIWFBU6dOoXQ0FA0adIEdnZ2sLe3R40aNXDhwgXpOL/++qsU08PDQ7rZdwYPDw/MmDEDPXv2hL29PQYMGJBlnzRu3Fjr3nseHh6YNWsW+vbtCzs7OxQvXhyrV6+WtmfM0a5evToUCoXWCKQ1a9bAy8sLlpaWKF++vNZoo4y+2L59Oxo1agRLS0usWLECVlZWOHjwoFab9uzZAzs7O2lU1IQJE1C2bFlYW1ujVKlSmDx5MtRqdZb55JbOJWGlSpXw77//YvPmzfjnn38AAJ9//jn8/f3fuvIVEREREdGbrKys8OLFC+lxYGAg7O3tcfjwYQDp3+z7+vrCx8cHJ0+ehJmZGWbOnIlWrVrhypUrMDc3x4oVKzBmzBjMmTMHrVu3RmxsLIKDg3VuyzfffIP58+ejVKlSKFCgABo2bIjq1atjxYoVMDU1xeXLl6WrDCEhIejWrRumTZuG7t274/Tp0xgyZAgKFiwoTU0AgPnz52PKlCmYOnXqW6JmbcGCBZgxYwa+/fZb7Nq1C4MHD0ajRo1Qrlw5nD9/HrVr18aRI0dQsWJF6WrM5s2bMWXKFPz444+oXr06Ll26hP79+8PGxga9evXSynPBggWoXr06LC0tcfLkSWzZsgWtW7eW9tm8eTM6deoEa+v0Zert7Oywfv16uLm54erVq+jfvz/s7Owwfvx4nfv5fXJ0vcra2hr9+/fP67YQERER0UdACIHAwED8+eefGD58uPS8jY0N1qxZI33g3rRpEzQaDdasWQOFQgEgfW6yo6MjgoKC0LJlS8ycORNjx47FyJEjpePUqlVL5zZNnz4dLVq0kB4/fPgQX3/9NcqXLw8A8PT0lLYtXLgQzZo1w+TJkwEAZcuWxY0bN/B///d/WsVJ06ZNMXas7ouftGnTBkOGDAGQftVi0aJFOHbsGMqVKyct+FSwYEGtW2tMnToVCxYsQJcuXQCkX2G5ceMGVq1apVWcjBo1StoHAPz9/fHll1/i5cuXsLa2RlxcHA4cOIA9e/ZI+7x+mw4PDw+MGzcO27Ztk09x8u+//+LYsWOIioqCRqPR2jZlypQ8aRgRERERfVj2798PW1tbqNVqaDQa9OjRQ2vucOXKlbXmZYSGhuLOnTuws7PTOk5ycjLu3r2LqKgoPH36FM2aNct122rWrKn1eMyYMejXrx9++eUXNG/eHF27dkXp0ulLwN+8eRMdO3bU2r9+/fpYvHgx0tLSYGpqmuUxs6tKlSrS/ysUCri6uiIqKuqt+ycmJuLu3bv46quvtC4gpKamwsFB+15bb7apTZs2UCqV+O233/DZZ5/h119/hb29PZo3by7ts337dixduhR3795FQkICUlNT9XYPQJ2Lk59++gmDBw9GoUKF4OrqKlWxQHrnsTghIiIioqw0adIEK1asgLm5Odzc3DJNOrex0b7BakJCAmrUqIHNmzfjTc7OzjAxeff06Yztry/C9La5Em/GnjZtGnr06IEDBw7g4MGDmDp1KrZt24bOnTu/M+a7jpldb05SVygUmS4IvC4hIQFA+uf0OnXqaG3LKJTe1iZzc3N8+umn2LJlCz777DNs2bIF3bt3l342Z86cgb+/PwICAuDr6wsHBwds27Yt0xybvKJzcTJz5kx8//33mDBhwvt3JiIiIiL6HxsbG5QpUybb+3t7e2P79u1wcXF56zf1Hh4eCAwMRJMmTTJtyxgCFR4ejurVqwOATvfiKFu2LMqWLYvRo0fj888/x7p169C5c2d4eXllmtcSHByMsmXLZioG8lrGlaW0tFf3YipcuDDc3Nxw7949+Pv763xMf39/tGjRAtevX8fRo0cxc+ZMadvp06dRokQJTJr06oa+Dx48yEUG76bzal3//fcfunbtqo+2EBERERFJ/P39UahQIXTs2BEnT57E/fv3ERQUhBEjRuDx48cA0q9wLFiwAEuXLsW///6Lixcv4ocffgCQPuG+bt26mDNnDm7evInjx49rzZ94m6SkJAwbNgxBQUF48OABgoOD8ffff8PLywsAMHbsWAQGBmLGjBm4ffs2NmzYgB9//BHjxo3TX2f8j4uLC6ysrHDo0CFERkYiNjYWABAQEIDZs2dj6dKluH37Nq5evYp169Zh4cKF7z1mw4YN4erqCn9/f5QsWVLr6ounpycePnyIbdu24e7du1i6dKnWfJS8pnNx0rVrV/z111/v35GIiIiIKBesra1x4sQJFC9eHF26dIGXlxe++uorJCcnS1dSevXqhcWLF2P58uWoWLEi2rVrh3///Vc6xs8//4zU1FTUqFEDo0aN0roq8DampqZ48eIFevbsibJly6Jbt25o3bo1AgICAKRf0dmxYwe2bduGSpUqYcqUKZg+fbrWZHh9MTMzw9KlS7Fq1Sq4ublJc1/69euHNWvWYN26dahcuTIaNWqE9evXS0sPv4tCocDnn3+O0NDQTFdeOnTogNGjR2PYsGGoVq0aTp8+LS0EoA/ZGta1dOlS6f/LlCmDyZMn4+zZs6hcuXKmMXEjRozI2xYSERERUbboetd2Q1q/fn2Otru6ukp3ln+bgQMHYuDAgVlu8/LywunTp7Wee30OSuPGjTPdGNzc3Bxbt259Z0w/Pz/4+fm9dfub92J5m4z7rbzrdW8ORevXrx/69euXab8ePXqgR48eWcbx8PB45w3Q586di7lz52a5bd68eZg3b57Wc6/fmyW7N0XPjmwVJ4sWLdJ6bGtri+PHj+P48eNazysUChYnRERERESUI9kqTu7fv6/vdhARERER0UdO5zknRERERERE+qBzceLn55fleLR58+ZxFS8iIiIiIsoxnYuTEydOoE2bNpmeb926NU6cOJEnjSIiIiIioo+PzsVJQkKCdPOX1ymVSsTFxeVJo4iIiIjo3d618hKRnOhyrupcnFSuXBnbt2/P9Py2bdtQoUIFXQ9HRERERDrIuI3Dy5cvjdwSouzJOFffvAVJVrK1WtfrJk+ejC5duuDu3bto2rQpACAwMBBbt27Fzp07dT0cEREREenA1NQUjo6OiIqKApB+o0KFQmHkVhFlJoTAy5cvERUVBUdHR5iamr73NToXJ+3bt8fevXsxa9Ys7Nq1C1ZWVqhSpQqOHDmCRo0a5ajhRERERJR9rq6uACAVKERy5ujoKJ2z76NzcQIAbdu2Rdu2bXPyUiIiIiLKJYVCgSJFisDFxQVqtdrYzSF6K6VSma0rJhlyVJwAQEpKCqKioqDRaLSeL168eE4PSUREREQ6MDU11emDH5Hc6Vyc/Pvvv+jbty9Onz6t9bwQAgqFAmlpaXnWOCIiIiIi+njoXJz07t0bZmZm2L9/P4oUKcIJWERERERElCd0Lk4uX76MkJAQlC9fXh/tISIiIiKij5TO9zmpUKECnj9/ro+2EBERERHRR0zn4mTu3LkYP348goKC8OLFC8TFxWn9IyIiIiIiygmdh3U1b94cANCsWTOt5zkhnoiIiIiIckPn4uTYsWP6aAcREREREX3kdC5O3nUX+GvXruWqMURERERE9PHK8U0YM8THx2Pr1q1Ys2YNQkJCOKyLSE/SUlPydL+30ahVSM3mfrmhSzuZU2Zyyym3+QCGy0ml1rx/Jx32IyKivJPj4uTEiRNYu3Ytfv31V7i5uaFLly5YtmxZXraNiF5zZvlEg8Q5PnegQeIYKh+AOeXGh5jTF6svGSQOERHpTqfiJCIiAuvXr8fatWsRFxeHbt26QaVSYe/evahQoYK+2kj00fMuameQOFWdlQaJY6h8AOaUGx9iTnCvbZg4RESUIwohhMjOju3bt8eJEyfQtm1b+Pv7o1WrVjA1NYVSqURoaOgHX5zExcXBwcEBsbGxsLe3N3Zz6CMhhIBKlfMhLBYWFlAoFB9MHEPGYk76j2PIWIbMiSgv8HMHfayyfeXk4MGDGDFiBAYPHgxPT099tomI/kehUMDS0pJxZByLOeWPWIbMiYiIci7bN2E8deoU4uPjUaNGDdSpUwc//vgj7xRPRERERER5JtvFSd26dfHTTz8hPDwcAwcOxLZt2+Dm5gaNRoPDhw8jPj5en+0kIiIiIqIPXLbnnGTl1q1bWLt2LX755RfExMSgRYsW+O233/KyfbLBsZ9ERERkKPzcQR+rbF85yUq5cuUwb948PH78GFu3bs2rNhERERER0UcoV1dOPib8BoOIiIgMhZ876GOVqysnREREREREeYXFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwG5DfJyckwNzfX6TUWFhZQKBTZ2lcIAZVKlZOm6RQrt3EMGetDy+lDPB/kFoeIiIjyJxYnOurZsyeUSqVOr9m5cycsLS2zta9KpULXrl1z0jSdYuU2jiFjfWg5fYjng9ziEBERUf7E4kRHoeEJMDHNfrd5F7XLWZxnap1fU9VZt6IJAC4+idf5NUDO8mJOOcsHyFlOcv4Z4dF53V/jXlv31xAREVG+wuJER7X7TYOlXYH37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRyfIbNhapa9oWq5zetjzSm3+QDZzym//Iw2DagOC+X7p72p1Bp8sfpSjuMQERFR/sHiREemZkqYmr//g1teMFFawMz8/UNYUnMZx9TMnDnlQnZyym0+gOFyMtTPyEJpAkulaS6PQkRERB8SrtZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC2bGDD579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uUoXLiwtM+IESMQHByMa9euwcvLC5cvX84Ua8eOHZg1axZu374NZ2dnDBs2DF9//XWO2n1s9gAkxT6HQmECpZUNvHt+AycPL8RHPMDZlZOgio+BmaUNzCytAdjlKAYAHJ7cHclSHFvUHTIXBctUQeyTuzj5f4ORHBcNcxt71BuxKMcx3pdTyIbZeHIxCInPn6LV9zth71YyV3HeltPZ5RPw8OxBJEQ+QsflJ+Dg7pkvchKaNByb2Ruxj+/A1NwSVo7OqDd8AeyLlsKzf0JwdsU3SFOrkKZKAhQmgHPZHMc6Pn8okuOi33neKa1tUavvlBzHAAx73rWcfxYRsSqYKBSwszTDUv+KqF7CAf9GJKDXmlA8T0iBnaUZ7CxNc/GbRERERPmFUYuT48ePY+jQoahVqxZSU1Px7bffomXLlrhx4wZsbGwAAKNHj8aBAwewc+dOODg4YNiwYejSpQuCg4O1jtW3b1+cO3cOV65cyRTn4MGD8Pf3xw8//ICWLVvi5s2b6N+/P6ysrDBs2DCd211/xHyY29gDAB79HYhzq75D69m/4vza6Sjd5FOUatQJYcEHcGH990AZ1xz0TLpGE1bD2im9CAsL3o8T84eg88pTOL1kNMq16Q3Plj1w/+Q+BC8eCeuCOY/zrpzca7eAV7s+ODK9V66On+FtOXl80gGVu47AgbGt8yQOYLicPFt9iRI+baBQKHBj32qcWjwCbf5vP4KXjIJ3z4ko7tMGiS/CsbNnNcSXKpLjOD5D5sDKsVCmfF4/7x6e+wvn1wTAqoBzjuMY8rzbMaQGHK2VAIA9IeHovfYyQqc3wsANVzGgcXH0buCOLWcfY8jGa/gk9/UqERERyZxRh3UdOnQIvXv3RsWKFVG1alWsX78eDx8+REhICAAgNjYWa9euxcKFC9G0aVPUqFED69atw+nTp3H27FnpOEuXLsXQoUNRqlSpLOP88ssv6NSpEwYNGoRSpUqhbdu2mDhxIubOnQshhM7tzvjACwDql/EAFEiOfYHoe9fh0aAdAKBYzWZIS0lGYmKizseX4tg6vIqTGAeFQoGkmGd4/u9llG7WDQDg0aADEp8/hTo553GArHMCABevmrn+AKoVJ4ucAMC1cn3YOBfNsziAYXJSmJiiWM1mUh4uXrWQEPnwfxsVUCXEAQBSk19CoVBAqVTmOJa59atrB28779xrt0BSdCRSVUk5j2PA8y6jMAGA2KRUKKBAVJwKF8Ji8YVP+vnQ2dsVyWpNrn6XiIiIKH8w6pWTN8XGxgIAnJycAAAhISFQq9Vo3ry5tE/58uVRvHhxnDlzBnXr1s3WcVUqFaytrbWes7KywuPHj/HgwQN4eHhk+RqVSiU9jouL09p+ZsW3iLpxHgDQ6OvleBkdAasCzjAxTe9ShUIBU3NLJCXl/EMiAByfNwgRoScBAC1m7kDisyewciqsFcfGuSjSVMm5igNkzklf3sxJnwyVU4bre1eiuE8bAMAnY5fhyLQeuLhhJpJjX8DB3ROWlpa5On52zjvrgoWRlpK788GQ513Pny7h2M0XAIA/RtfGo+gkFHG0gJmpiRTLUmmS698lIiIikj/ZTIjXaDQYNWoU6tevj0qVKgEAIiIiYG5uDkdHR619CxcujIiIiGwf29fXF7t370ZgYCA0Gg1u376NBQsWAADCw8OzfM3s2bPh4OAg/XN3d9fa7jN4Fjr+cASVuw7H5W25H3v/No3Gr0T3zdfh3fs7XFg7TW9xAOaUW6FbFyDu6X3U7JM+5+PK9kWo2WcKum+6hg7LghD7+A7i4+NzFeND/Blt7F8djxY2x8wu5TBh5029xiIiIiJ5k01xMnToUFy7dg3btm3L82P3798fw4YNQ7t27WBubo66devis88+AwCYmGTdBRMnTkRsbKz079GjR1nuV6phR0Td+BtWToWR9N8zaNJSAQBCCKSlJMPKyipPcvBs8TnCQ0/BppAbkqIjteIkPnsCU4vcfSP/uoycVPExeXbMrGTklBwXrdc4gP5zurrzB4QF70fLmTthZmmN5NgXeHD6AEo37QoAsHMtAXNbB0RH502u7zrvXr6IhKl53pwPhjzvejVwx7F/XqBYASuEx6iQmqaRYiWrNXn2u0RERETyJYviZNiwYdi/fz+OHTuGYsWKSc+7uroiJSUFMTExWvtHRkbC1TX7cwYUCgXmzp2LhIQEPHjwABEREahduzYAvHWeioWFBezt7bX+AUDKy3i8/C9K2u/xhUCY2zrA0r4gnEp6IezUful5U6WFNLFfV5pUNV6+eHV16MHpA7Cwd4KlozMKlqmCu4Hpw6HCTv0Gm0JFoLTMWZx35fT63IO88LacLOwK5GkcwHA5AcCNvStxL+hXtJq9Bxb/O765rSPMLKzx9PIJAEBy7AukJMRK55GuNKmpSPrvmfT4befdo/OHYeXkAjOLnH2QN+R5F/NSjaf/vRoWtvdiBAramsPF3hzeJeyx6cwTAMCeixGwVJrk+HeJiIiI8g+jzjkRQmD48OHYs2cPgoKCULKk9pKuNWrUgFKpRGBgIPz8/AAAt27dwsOHD+Hj46NzPFNTUxQtmj7JduvWrfDx8YGzs26rGqUmJeLM8olIS0mGwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgZmlNRxLlHv/Ad9Ck5aKY9/3gUatAhQmsHQohBbTt0GhUKD+iEU4sWAoQrcthNLaDvVGLsblTXNzHEv9MgFnVmSd0/m1AXh66QSSY1/g2NyBUFpaw75o6TzPKXjJKDw6fxhJ0ZH481s/KK1s4Fg85/1nqJxSVcm4sDYAdkU8cHB8ewCAidICHZYeQZNJ6/D3T1OgSUuFJjUFdq4lUKBAzgoxjSYVwT+MRZo65Z3nndLKBrX6TsW1PStyFseA511sUiq+XH0JSSkamJgAznYW2D+qFhQKBVb1qoLeay9j1v47sLM0RVX3nBV1RERElL8YtTgZOnQotmzZgn379sHOzk6aR+Lg4AArKys4ODjgq6++wpgxY+Dk5AR7e3sMHz4cPj4+WpPh79y5g4SEBERERCApKUm6z0mFChVgbm6O58+fY9euXWjcuDGSk5Oxbt067Ny5E8ePH9e5zdYFXeE7Y2uW2+zdSqJlwGYAQFqKCqeWjtX5+BnMLKzQYsZ2mGUxPMfB3RPtF/8lPU7N5eRnm0JF3ppT7a+maj3OTV7vyqn+yMVaj1NTknFsZu8cxQEMmZMlev4enmVORb0bo6h3EIDc52NmbonG45bB1Nwi07bXzzsgPZ8cxzHgeVeioBXOT/kky23litjizHcNAADJ6jR0XRaSq1hERESUPxi1OFmxIv3b3caNG2s9v27dOvTu3RsAsGjRIpiYmMDPz0/rJoyv69evn1ahUb16dQDA/fv3pZW4NmzYgHHjxkEIAR8fHwQFBUlDu4iIiIiIyPiMPqzrfSwtLbFs2TIsW7bsrfsEBQW98xiFChXCmTNndG0eEREREREZkCwmxBMREREREbE4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREsmBm7AbkN2mpaqSlqLKxX0quY2nUKqRmc7/c0KWtuc3rY80pt/kA2W9nfvkZqdSaPN2PiIiI8j8WJzo6v2YaTEwN023H5w40SJwzyycaJA7AnHLDUDkZKp8vVl8ySBwiIiLKP1ic6KhqEVsolUr9x3HWfwwA8C5qZ5A4AHPKDUPlZKh84F7bMHGIiIgoX1EIIYSxG5EfxMXFwcHBAZGRkbC3t9fptRYWFlAoFNnaVwgBlSrnw2WyGyu3cQwZ60PL6UM8H+QWh4gov8v43BEbG6vz5w6i/IxXTnRkaWkJS0tLvR1foVDo9fiGjmPIWMyJcYiIiCh/42pdREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDVurIpY8XluLg4I7eEiIiIPnQZnzd4xwf62LA4yab4+HgAgLu7u5FbQkRERB+L+Ph4ODg4GLsZRAbDmzBmk0ajwdOnT2FnZ8ebwOkgLi4O7u7uePToEW8ilYfYr/rDvtUf9q1+sF/1x5h9K4RAfHw83NzcYGLCUfj08eCVk2wyMTFBsWLFjN2MfMve3p5/NPWA/ao/7Fv9Yd/qB/tVf4zVt7xiQh8jluJERERERCQLLE6IiIiIiEgWWJyQXllYWGDq1KmwsLAwdlM+KOxX/WHf6g/7Vj/Yr/rDviUyPE6IJyIiIiIiWeCVEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUK58uTJE6jVamM344PFxfSIKAPfD4joY8DihHIkPDwcnTt3Rt++fXHmzBljN+eDERMTg7Zt2+L//u//AAAajcbILfpw/Pfff3jw4AEAIC0tzcit+bBERkZi8eLF2L17N27fvg2AH6TzwosXLzBkyBD89ttvANineen58+c4ffo07t27Z+ymENEbWJyQzg4cOABvb28IITBz5kyULl0aAP9w5oW//voLBw8exJw5cxAVFQVTU1MWKHlgzpw5KF68OCZNmgQAMDU1NXKLPhxTpkxB6dKlsX//fgwbNgy9evXCjRs3oFAo+J6QS3PnzsXKlSuxYcMGxMXFwcTEhH2aByZOnAgvLy+MGjUKlSpVwqJFi/DixQtjN4uI/ofFCelsy5Yt6N27N/bu3YtatWrBxsYGAKBQKIzcsvzv+PHj8Pf3h7e3N0aMGGHs5uR7KpUKo0aNwu7du/HJJ5/gwYMH2LNnDwBelcoLv/zyCw4cOIB9+/bhyJEj+OWXX6DRaKSrqXxPyJ3Q0FC0aNECMTExWL9+vbGbk+89ffoUXbt2xZEjR7Br1y7s2rUL48aNw5o1a3D69GljN4+I/ofFCb3Tm9/S3b59G6GhoejTpw+uXLmCtm3bon379ujUqRN2795tpFbmf6mpqQAAR0dHeHt7o2fPnjhw4ABOnDgBExP+muaEEAIWFhYoXbo0+vfvj7lz56JgwYLYtGkTv4XOI4cOHYKzszOaNWsGANJ/a9euLe3DPn6/N/soLS0NKpUKjo6OmDRpEtzd3bFv3z7cvHkTCoWCwxJ18HrfZvTf0qVL0ahRIxQvXhzTp09HYmIiIiMjM+1PRMbBTz30ViqVCi9fvtR6zt7eHnfu3MGVK1fwzTffoFy5cvjiiy9gZWWFzz//HEePHjVSa/OPjD9+r3/AMDMzAwAEBwejTJkyaNu2LZo3b44pU6ZACIHAwECkpKQYpb35ycuXL/Ho0SOkpKRI39oPHDgQ/fv3R+XKldG2bVs8efKE30LnQsYVp5SUFDg7OyM+Ph6XLl3Cixcv4Ofnh0ePHmHq1KmYO3cu0tLSePXkPVJSUrR+t4UQMDU1hYWFBW7fvg13d3d89tlnUKvV2LdvH1JSUhAVFWXEFucfKSkpWu+zlStXxrBhw+Dj4wMg/VwWQqBo0aLSec3zlcj4WJxQlmbMmIFGjRqhffv2+PrrrxEeHi5ta9GihTR2f+bMmRg4cCC2bt2KZs2aISAgAAC/fXqbBQsWoF+/fgC05z1oNBqkpqbCysoKJUqUgJOTE4YMGYKQkBCYmpoiMDAQKpXKWM3OFwICAlC9enX4+fmhWbNmuHXrFgBoXSHp2rUrypUrh99//x3//vsvFAoFh3dlw+rVq/HTTz8BSO9PjUYDc3NzdOnSBU5OTpgwYQJcXFwQExODVatWoVSpUli1ahUGDRoEgEPo3mbatGlo0KABOnbsiNWrV+O///6TPhzfunULJiYm8PDwQKtWrVC3bl2sWrUKlpaW2LVrF/v0PWbOnIlWrVqhY8eO+OGHH/DixQu4uLigYcOGANLPSRMTE0RFReHatWuoXLmykVtMRBJB9JorV64IHx8fUbFiRbFlyxYxevRoUaNGDeHn5yeEECI1NVV88803wtLSUowZM0YIIURycrIQQoi///5bWFlZiUePHhmt/XJ1/fp10b59e2FjYyMKFy4sdu7cKYRI78/X1atXT4SFhYk///xTuLq6igIFCoiCBQtKfZyWlmbwtsvd6dOnRc2aNUWlSpXE3r17xS+//CIaNmwoGjRooLWfRqMRQgjx22+/ifr164tvvvlG2pbRrxn7ULqLFy+Kxo0bC4VCIZo1ayYuXbokhNA+b9PS0sSqVatE27ZtxcuXL6Xn161bJwoXLiyioqIM3WzZU6vV4ssvvxRlypQRGzZsEJ9//rmoWLGiaNeunbRPeHi4aNGihRBCiD/++EM4OzsLW1tb0bBhQ6FSqYQQPF+zEhISImrWrCkqVqwo1q5dK7p37y6qV68uRo8eneX+v//+u/D09JTeY4nI+HjlhCRqtRp79uxBkSJFcPz4cXz++edYuHAhhg0bhrCwMNy/fx+mpqbo2rUrKlSogF27dgEALCwsAADXr19HqVKluEpPFk6fPg2FQoGff/4Zvr6+WLJkCVJSUmBqair11T///IPo6Gg0a9YMfn5+GDZsGHbs2IHChQtj4sSJRs5AvoKDg1GlShUEBwejY8eO+OKLL9C6dWsUKFBAmsvz+rfM7du3R506dRAcHIyjR49ix44dGDp0KAAO6XhdWloa9u/fj8KFC2PFihWIi4vDnj17oNFopPNWCAETExPcunULLi4usLKykl7/6NEjFC5cmN/wZ+HRo0f4+++/sXDhQvTs2RNbtmzBokWLEBgYiEWLFgEAQkJCcOXKFdSrVw/du3fHmDFjMG7cOGg0GuzYscPIGchTQkICtm7divLlyyM4OBh9+/bFtm3b0LZtW9y5cwcxMTGZXnPx4kXUqlVL+jsWHBzM+ZNERsbihCRCCFSsWBFDhgxBwYIFpQ8V5ubmeP78OQoWLAgA8Pb2xvjx45GQkIAvvvgCQUFB+Pfff7Ft2zbUr18fRYsW5Ye8/8koPLp3745x48ahW7du6Ny5M+Lj47Fw4UIArz44ly9fHm5ubmjSpAkuXbqESZMmoX79+vDz88OWLVukSdyULqNvhwwZgvHjx8Pe3h5A+uICR44cQZkyZXD27FkA6UORXp9I3KNHDyQlJaFdu3b44osvpBXn6BVTU1N06dIFI0aMwMCBA1G/fn0EBQXhyJEj0j4Zv+eRkZGIjo6WVjy6ffs2goKC0LRpUxQuXNgo7ZcztVqNW7duoWrVqtJzLVq0wOTJkxEQEIDHjx+jTp06cHJygqenJy5evIhvvvkGffr0gZmZGfbt24ekpCS+z75BCIGSJUti8ODBcHBwkL6ccHBwwK1bt6T3iNf9+eefaNasGZ48eYI2bdqgUaNGiI+PN3TTieh1xrtoQ3L0+jCBjKEuy5cvFw0aNBApKSnScA61Wi0OHz4sypYtK7y8vETBggVFt27dRFxcnFHanZ88f/5cjBkzRlSqVEmEhYUJIYRISkoSQggRFxeXaahGeHi4SEhIMHg786N9+/YJOzs7UblyZdGsWTPh5uYm/P39RUxMjLTP48ePxcCBA4VCoRB9+/YV0dHRRmxx/nH79m1Rt25dMXjwYPHff/8JIYRISUkRQghx9uxZUadOHeHk5CQ6duwo7OzshL+/v4iPjzdii+Xrxo0bolq1amLevHlaz8fGxoqSJUuKsWPHCiGEePToUaahnKdPn2a/vsObQw6FEOK7774T3bp1y7TvrVu3RIECBUTr1q2Fubm56Nixo3j+/LnB2kpEWePXsCQRQmT5Tdzp06dRo0YNKJVKabuJiQmaN2+O8+fPY/fu3Thz5gy2b98OOzs7Qzc7XxFCoGDBgujQoQMcHR0xe/ZsAIClpSUAwM7OTupj8b8rA66urvxm/y3EG8MHU1NTsXnzZly6dAmHDh3CwYMHsWXLFly8eFHaZ9++fTh+/DjOnj2LtWvXokCBAoZudr6j0Wjg6ekJPz8/XLhwAfv37wcAKJVKAECdOnWwZs0aLF68GLVr10ZQUBA2bdoEW1tbYzbbaN48L99UvHhxlCtXDufOnUNYWBiA9D62t7fHkCFDsHPnTiQnJ6NYsWLS1dKMY/r4+Hy0/fo+4n8rnWXIeC+9ePEivL29pX0y3Lt3DzExMYiLi8Px48exd+9eaYQAERkPi5OPSGRkJMLCwpCQkABA+006NTVVqzDJWMkkLS0NJ06cQOPGjQGkFyX37t2TVuxxcHBA+fLl4enpadBc5OTx48dYvHgx7t27ByBzv74uY1hRvXr10K5dOwQFBeHUqVMAIA1BysAhG0B4eDiuXLmC58+fZ9r25jkLAF26dEH79u1hamoKMzMzlC5dGk5OTrh06ZK0z5AhQ3Dz5k2te3F8jO7evYtp06bhzp07mba9ed5mDD0cNGgQChQogP3790sfqq9evQoAqFSpEr788kt8++230gfBj1FsbCwSEhKk94HX59xk9KuNjQ06deqEf//9V5o/klGEODg4wN7eHs+ePdM6Lt8PgLCwMPTs2TPLOTdZ/Q1TKBSIjY3FuXPnpOWDFQoFHjx4AACoUaMG/vzzT5w6dQp169Y1TBJE9F4sTj4SI0aMQMWKFaW7jx89elRamlYIATMzMwghMHnyZACv/lAGBwdDo9FIY3K7deuGMmXKIDw8nPMfALx48QLt2rXDhAkTcOTIEem+DhlFSEa/ZkxyzXisVCrRtm1bVKxYERMnTkSbNm1Qr1493Lx505jpyMqoUaNQrlw5+Pv7o1KlSvj111+lseBZnbNZ2b9/P0qVKgU/Pz9DNVv2hBAYPHgwPD09ER4ejmLFiknbMj5IZ/Ttb7/9Jj1OS0uDra0tvvrqK9y7dw9Lly5FmzZt0KxZs0wfpD9GQgiMGjUKjRo1QqtWrdCzZ0/Ex8fDxMQEarUawKt+3Lx5Mz777DPUq1cPe/bska5EAcDz58/h6OgINzc3Y6UiS1OnToWXlxcSExOhVCqlQi+jCHzzvTbj71NgYCAcHR3RsGFD6W9YrVq1EBkZCWdnZ7Ro0cI4CRHRW/HT5QdOo9Fg8ODBuHTpEg4cOIDly5ejQYMG6NevH3755RcA6d8krVmzBkWLFsWOHTukb5UA4MaNGyhVqhSWLFkCT09PxMfH4/79+yhSpIixUpIVKysrODo6wsvLC7t27ZK+Rc4YWrBmzRoUKVIEO3bswNOnTwG8+gbU2dkZkZGRCA4OhpWVFcLCwuDl5WWcRGTm559/xrFjx/D7779j27Zt6NChAyZPnoylS5cCePc5+/TpUzx8+BDTpk3DqFGj0K5dOxQtWpQryAHYunUrChUqhPPnz+P8+fPSfTMASCtvAen3NXFxccGuXbukFY4yzukmTZrg6dOnWLx4MUxNTRESEgJnZ2ej5CMXZ8+eRfXq1XHu3DnMmjULvr6+uHDhAvr37w/g1fC3n376CW5ubti4cSPUajVGjhyJChUqoHPnzhgyZAiGDx+OuXPnonv37lor+X3sLl++jMDAQGzfvh2//vorOnfuLN24NuP9NKv3WiB9FcTq1atj1qxZ8PT0RExMDEJCQrhQA5GcGWx2CxmcRqMRYWFholKlSmLTpk1a24oXLy68vLzExYsXxfXr10XTpk3FmjVrMt13o127dkKhUIhKlSqJP//805DNzxcuXrwo2rZtK+7duyeKFSsmAgICpMnXu3fvFtWqVcuyX0NDQ4Wnp6coU6aMOHXqlDGaLmudOnUSHTt21Hru66+/FlWqVBHHjx8Xt27dEk2aNMnUt48fPxZz5swRnp6eonLlyuLo0aMGbrm8+fr6Cg8PD/H06VMhhBBXr14Vf/75p7h79650j5KFCxcKS0tL8fPPP2c6bwMDA4VCoRCVK1cWwcHBBm+/HKWmporx48eLzz//XGui+vbt20XJkiVFRESEEEKIjRs3Cnd3d7F27VqhVqu1jjF//nwxYMAA4evrKwIDAw3a/vxg6NChonXr1kIIIYKDg8XIkSPF//3f/4lz584JIYQ4cuSIqFKlSpbvtbVr1xYKhUJ4eXnxbxhRPqEQgl/NfEhSU1Olb5SA9PHgNWvWxLVr16R5ISkpKWjWrBkiIyPRpEkTrFq1CikpKTA3N890rLVr18LW1hb+/v4GzUNu3uxX8b/FA+7fv4++ffvi2LFjGD9+PP766y9s3rwZnp6eMDc3h0qlktbPf11SUhIOHz6MDh06GDINWcvo06SkJHzxxRfw8PDAggULpO1XrlzBt99+K90hW61WS99IZ0hLS8PVq1cRGRkJX19fQ6cge1euXEHnzp3Ro0cP3Lx5EyEhIbC1tcWLFy/QqFEjbN26FUIIxMbGwtHRMdPr4+LisGnTJgwZMsTwjZexP//8E1ZWVtLdxwFgw4YNmDdvHs6ePSstFBIfH6+1aIh4yyIkH7OM+Y7Aqzl6/fv3R+nSpeHo6IiZM2eiadOmuHHjBiIiIvDNN99g5MiRSE5Olq4CZkhMTMSsWbNQoUKFj/5vGFF+wuLkAzJlyhRcu3YNRYsWxZAhQ1CmTBkolUpUr14dJUqUwLx581C2bFmMHj0aV69ehYeHB/755x+sW7fuo57Q/j5v9mvZsmWlIS7btm3DihUrcPz4cQBAhQoVYG1tjYsXL+KPP/5Aq1atMh2PH0he+fnnn+Hu7i6N+87om4EDB+LChQv4888/UahQIWn/pUuXYtOmTZgzZw6aNm1qrGbnC7Nnz0ZUVBTKly+PPn36SF8+jBgxAqtWrYKfnx/GjBkDc3Nz3Lx5E3379sWECRMwZcqULM/R1z80fsx2796N5s2bZ3nPDCD9A7WpqSkWLlyI3bt34+TJkwA4oT07pk+fjvv376NUqVIYMmQInJycoFAo0KNHD9y5cwdlypTBZ599hvbt20OhUGDUqFEICQnB5MmT0bJlS763En0ojHPBhvJSVFSUqF+/vqhcubKYNm2aKFu2rKhatapYuHChEEKIc+fOiUKFCglPT09hY2MjPD09xcOHD8XVq1eFhYWFuHv3rpEzkKf39asQQmzatEl88803Qggh9uzZI+zt7YWFhYUYN26csZqdL5w6dUp4e3tL9xrJGGaUMdzl/v37wtTUVGzcuFHrdbdv3xbu7u5i7969Bm9zfvHPP/+IChUqiMqVK4vu3buLAgUKiMaNG0vDB2NjY8W3334r7t27p/W6//u//xOOjo6ZhsVQumPHjoly5coJhUIhVq1a9db9Mu6t0bFjRzFhwgQhhMh07yLS9vDhQ+Ht7S0qV64shg4dKlxdXUXNmjXFtm3bhBDp99FRKpXCxsZG/PPPP9Lrbt++LapVqybWr19vrKYTkR7wa7APwNmzZxEdHY0DBw5g6tSpuHLlCpo0aYIffvgBJ0+eRO3atXHmzBksW7YMv//+O27fvg13d3ekpaXB3t4esbGxxk5Blt7VrxnL/966dQv79+9Hw4YN0bdvXwQEBKBOnTp49OgRbt++beQM5CkmJgbbt29HzZo18f333yMoKAhBQUEA0lfc0Wg08PDwQP/+/TFlyhStfvT09ERiYiKePHlipNbL34EDB+Dg4ICLFy9i27ZtuHHjBv777z8sXboUt2/fhr29PSZMmICSJUtqva5o0aIwNzfH9evXjdRy+bp58yZWrlyJ5s2bo3///vj+++8RHh6e5b4mJiZISkrCpUuXpCuCCoWCK/G9w9GjR6HRaHDy5En8+OOPuHPnDtzc3PDDDz/gypUrqFOnDrp37w4zMzOtZcU9PT3x7Nmzt/4siCh/YnHyAYiKikJCQoK0+oiFhQUGDRqESpUqYfz48QCAMmXKoEWLFmjSpIn0uh07dsDb2xvVq1c3Srvl7l39+vXXXwMAypUrh+joaJQrVw4XLlzAqFGjEBAQgJ07d+L48eNa9zigdNbW1ujUqRMGDRqEiRMnokyZMti6dStu3boF4NXwl8WLFyM1NRVTp06VisE//vgDRYsW1TqP6ZXU1FRcv34dLi4u0tBDV1dXTJo0CQ8fPsT69esBIMshSWfOnEHdunVRpUoVQzY5X3ByckKLFi0wdOhQzJ8/H2lpaVrzod508uRJmJiYoF69erhx4waaNGmCGjVqICIiwoCtzj/CwsKgVCqlm83a2Nhg7NixsLCwwNy5cwEAkydPhpmZGZYvX47Lly8DAI4fP45ixYqhbdu2xmo6EekBi5MPQEpKCgoXLozQ0FDpuXLlyqFPnz54+vSpdMMqIQTCwsJw8eJFDB48GKtXr8YXX3whbSNt7+rXx48f4/fff0fXrl1x7NgxrF69GqVKlQIANG7cGBs2bEDPnj05Rj8L5ubmaNq0qVQUT5s2DSEhITh06BBSUlKgUCigVqthYWGBTZs2ITY2Fr6+vmjVqhU6d+6M5s2bo1y5ckbOQp7MzMygUqmQlJQEjUYjTSju2rUratSogXPnzmndkPLhw4cICwvDsGHDsHfvXvTs2RMA3w/eVLhwYfTp0wdeXl6ws7PDjBkz8OOPP2q9NwCv+u3q1atwdXXFlClTUKVKFbi5uSEyMhKurq7GaL7sJScnw8zMDFFRUdJzDRs2RJs2bXD9+nUcOXIEZcuWxdq1a3H9+nU0b94cHTp0QJs2bVC/fn1UqFDBiK0nojxn3FFllBsZ45gfPHggnJycxOLFi0VKSoq0/cGDB6JDhw5iwIAB0r4HDhwQLVu2FPXq1ROXL182Srvl4m3jwLPTr+3btxcDBw7MdIyM8eYfu+yOsc/or379+ok6deqIM2fOZNrnxYsX4rfffhOLFy8WV69ezdN2fkgy5oocO3ZMmJiYiEuXLgkhXs3jCQoKEmXKlBE7duwQQqSP1x87dqxwdXUVPj4+4sqVK0Zpd37y+nldp04d0aFDh0zLAgshRJMmTYRCoRCffPKJCAkJMWQT85WM3/+bN28KhUIh9uzZo7X98uXLok6dOmL27NnSc2FhYWL79u1i9uzZfD8g+kBxtS6Zi4iIgEajQYECBWBlZSWtBANoL287bNgw7N+/H3v37kW1atWk1/v5+cHc3Bxbt24FkL6E7dOnT1G6dGmD5yIn8fHxsLW1lYYQiddWedG1XwVXiNGS3b59/XF4eDjq16+P7t27Y+LEibC3t5dW56FXkpKSYGVlleW2jL5MTk5Gq1atoFQqcfjwYa3+L1OmDHr27IkpU6YgKSkJ586dg0aj+ehXPstOv2bI6M+TJ0+icePG2Lt3L9q3b4+0tDRER0fD2dkZW7Zsga2tLZcKf01W75Ov9223bt1w584d/PXXX1or9NWtWxe1a9fG0qVL+V5L9JHgmBOZUqvVGDhwIHx8fNC+fXu0bt0aKpUKpqamUKvVACB9ELl06RKWLFmCtLQ0/Pjjj1p3ywagdb8CKyurj7owUavVGDRoENq0aYNPP/0UGzduBJA+zyE1NRWA7v3KP5bpstu3arUawcHB0uO0tDQUKVIEAwcOxO+//441a9agRYsW6Nu3LxITE42Wj5yo1WoMHjwYXbp0Qc+ePXH27FlpCFFKSgqAV30ZGxuLgIAAHD9+HCtXrpT2+++//2BjY4OCBQsCSH8vaNy48UddmGS3X1NTUxEZGQng1e/7J598gs8//xwBAQEIDAxE27ZtsXTpUqSmpqJHjx4ffWGiVqsxf/587NmzB4D2+2TGcEMzMzOkpKTgzp07mD9/Pv755x8sWrRIWqQlNTUVFhYWKFCgQKZjENEHzDgXbOhdHj9+LOrWrSuaNGkiTp8+LTZs2CBKlSolhg8frrXfkiVLhJ2dnbRs7a5du0Tt2rVFpUqVxJo1a8TIkSNFoUKFxJEjR4yRhuzcvXtXVK1aVTRq1Ej89ttvok+fPsLLy0sMGDBAaz/2q+507duJEydKdyTPGCrz8OFDYWZmJhQKhejUqZN49uyZwfOQo/DwcFG9enVRr149sWzZMlG1alVRtWpVMWfOHK39lixZIszNzaVlVWfOnClcXFxEv379xIkTJ8To0aNFyZIlxc2bN42Rhuzo0q8WFhZi3bp1mYYrnj59WigUCqFQKISvr6+Ijo42ZAqy9ccffwgvLy+hUCiEv7+/ePLkiRAi83DPJUuWCGtrazF37lwhhBCrV68WZcqUEb6+vmLfvn1i9OjRokiRIuL8+fMGz4GIjIfFiQxt3bpVVK1aVYSHh0vP9ezZU3z33XfS47FjxwonJyexadMmrXkOoaGhwt/fX/j6+gofH58sx/B/rH788UfRuHFjkZiYKIRI/0O5YsUKoVAoxK+//irS0tLEN998IwoUKMB+1ZGuffvmh5SdO3cKhUIhatWqJS5evGiMFGRr165domLFiuLx48dCCCFiYmLEtGnThKWlpbh27ZoQQoju3bsLNzc3sWHDBq2+Xbp0qfjkk09E5cqVRdWqVcW5c+eMkoMc6dKvGzdu1OrX1NRUsWHDBqFUKkWdOnV4zr4mISFB9OvXT4wYMULMnj1b1KxZU6xYsUJrH5VKJQYNGiRcXFzEL7/8ovVe+/vvv4s2bdoIHx8fUbNmTXH27FlDp0BERsbiRIZWrFghrK2tpcdPnz4V1apVEwsXLhQnTpwQQqTfIDAuLk7a580Pe7GxsYZpbD4yatQo0aBBAyHEq/5avny5UCgUonr16uLFixciKipKq+/Yr9mTk7593d9///3OG9t9jDI+sK1YsUK4ublpbQsPDxfNmjUTDRs2FEKk36Tu9b59/cNeWlpaphsufsxy068ZEhMTxeLFi3nOZkGj0Yjg4GDpZol+fn6iffv2IjQ0VGuf27dvv/WcFUKIiIgIwzSYiGSHc06M7Pz58wCgdT8MHx8fODo6ok6dOvj0009RvHhxODo64sCBA2jbti0CAgLg6OgIOzs76TVvjsXN6j4GH5Os+tXOzg6Wlpb4448/pP4KDg5GQEAAbty4gd9//x3Ozs7SWvsA+zUredW3r6tZsyYGDBig/8bL3K5du3DkyBGEh4dLy1CbmprC1dUVJ0+elPZzdXXFxIkTcebMGfz111+oU6cObG1tpe2vL2FtYmKS6YaLH5u86tcM1tbWGDlyJM9ZaPctkP6eWa9ePWm574EDB+Lx48fYs2ePNJ9HoVDA09NT6/30zWXXM+4vRUQfIWNXRx+rPXv2CDc3N+Hk5CTu378vhBBaS1Lev39fHDp0SFSoUEFs3LhRen7Lli3C2tpaPHr0yNBNzhey6leVSiWEEOLGjRuic+fOwsHBQXTv3l3Y2tqK2rVriydPnojPPvtMtGvXzogtlz/2rf5s3LhRuLi4iNq1awtnZ2dRv359sWvXLiGEEBcvXhQVKlQQc+bMkfpbiPRvljt06CC+/PJLYzVb9tiv+pNV3+7evVsIkX4V5PWrzkOGDBGNGjWS5ulld6lxIvo48cqJEWzevBmzZs1Cw4YNUaFCBcyZMwcAtJar9PDwQHR0NExNTfHll19K31L7+PhArVbjypUrRmm7nL2tX83NzSGEgJeXF5YsWYJFixahUKFC2LRpE86dOwc3NzckJyfDw8PDuAnIGPtWP1JTU7FkyRLMnj0bs2bNwsmTJ7F3716ULl0aa9euRVJSEqpXr44GDRpg9+7dOH36tPTawoULQ6lUSkuL0yvsV/15V9/+9NNPUKlUMDExgUKhkP5uDR8+HMnJydi3bx8SExMhhMDt27cBvFq5i4goA4sTA8p4Ey5TpgyaNWuGuXPnokOHDggKCkJQUJDWPkD6uvAmJiaIjIyULnn/8ccf8Pb2Ru3atQ3efrnSpV/d3d3Rp08f/Pjjj+jYsSOA9HvJPHr06KNeYvlt2Lf6lZiYiGfPnqFXr17o06cPzM3NUa9ePVSoUAFxcXHScrYBAQFQq9VYvXo1njx5Ir0+KSlJWmaVXmG/6s/7+jZj2XAgfaiWEALly5dH586dceHCBcyYMQO1atWCv7+/1n27iIgkRr1u85G4fft2psvYGUO4rl27Jjp06CDatGkjbcuYGHj48GHRqFEjUalSJbFy5UrRp08f4eTkJBYtWmSwtsuZrv365r5hYWHi8ePHwt/fX1SvXl08ePBA/43OJ9i3+vNm3166dEm6u3vG7/7mzZtFtWrVtIYb7dy5U3zyySeiRIkSYsGCBeLLL78ULi4u4uTJk4ZNQKbYr/qT0759ffvff/8tlEqlUCgUYsCAAZn2IyLKwCsnerRjxw6ULFkS7du3R926dfHzzz9L2zK+LapYsSI6deqEsLAwrFu3DsCricbNmzfHrFmzULJkSezZswfR0dE4ffo0Ro0aZfBc5CSn/Sr+NxkTSP9mdM2aNahSpQoePnyInTt3onjx4oZNRIbYt/rzZt+uXbsWAFCtWjWYmppCo9FIV0gPHDiAatWqwdzcXPqW/9NPP8XWrVvh6+uLkydP4sWLFzhx4gQaNGhgtJzkgP2qPznt2zevnqxcuRK1a9dGkyZNcOfOHaxatQrm5uZGyYmI8gFjV0cfqr/++kt4eHiIZcuWiUOHDokxY8YIpVIpVq9eLd18LuOb6MePH4uvvvpK1KpVS8THxwshhEhOTpaOlZaWJmJiYgyfhAzltl9TUlKkY12+fFkcP37c8EnIFPtWf97Vt0lJSUKI9KtPGo1GJCUliSpVqohffvnlrcfLeM3Hjv2qP3nZt6GhoWL79u2GbD4R5WMsTvJYxqXvgIAAUaNGDa0PbEOGDBE1a9aUVjR53f79+0XNmjXF1KlTRWhoqGjXrp14+PChwdotd+xX/WHf6k9O+vbJkyfCw8ND3L59WwiRPqRm9OjRhmt0PsB+1R/2LREZG4d15bGMezzcuHEDpUuXhlKphFqtBgDMnDkTlpaW2LdvHyIiIgC8mkzcpEkT1K5dG9OnT0eNGjWgVqvh4uJinCRkiP2qP+xb/dG1bwHgyJEjcHd3R5EiRTBy5EhUqFABDx48gFqt1ho+9zFjv+oP+5aIjM7IxVG+99dff4nhw4eLRYsWiXPnzknPr169WtjZ2UmTBjO+fVq9erUoW7asCAoKkvZNSEgQixYtEqampqJx48biypUrhk1Chtiv+sO+1Z+c9u2xY8eEEOnfWnft2lUUKFBAFCxYUFSsWFH8/fffBs9Dbtiv+sO+JSK5YXGSQ0+fPhXt2rUTLi4uwt/fX1SuXFk4ODhIb+63bt0SRYsWFZMnTxZCCK2VSVxdXbVW3Lp+/bqoU6eO1s0WP1bsV/1h3+pPXvVtYmKiaNeunShWrJjYtm2bwfOQG/ar/rBviUiuWJzkQGJioujVq5fo3r27uHfvnvR87dq1Re/evYUQQsTFxYmZM2cKKysraRx+xljeRo0aiX79+hm+4TLHftUf9q3+5HXfXrhwwYCtly/2q/6wb4lIzjjnJAesra1hYWGB3r17o2TJktKyiW3atMHNmzchhICdnR169OgBb29vdOvWDQ8ePIBCocDDhw8RFRWFTp06GTcJGWK/6g/7Vn/yum9r1KhhpEzkhf2qP+xbIpIzhRCcrZYTarUaSqUSAKS13v39/WFjY4PVq1dL+z158gSNGzdGamoqatasidOnT6N8+fLYsmULChcubKzmyxb7VX/Yt/rDvtUP9qv+sG+JSK5YnOShBg0aoH///ujVq5d0I0UTExPcuXMHISEhOHfuHKpWrYpevXoZuaX5C/tVf9i3+sO+1Q/2q/6wb4lIDlic5JF79+6hXr16OHDggHSJOyUlhXfBzSX2q/6wb/WHfasf7Ff9Yd8SkVxwzkkuZdR2p06dgq2trfSmHhAQgJEjRyIqKsqYzcu32K/6w77VH/atfrBf9Yd9S0RyY2bsBuR3GTesOn/+PPz8/HD48GEMGDAAL1++xC+//MKb0uUQ+1V/2Lf6w77VD/ar/rBviUhuOKwrDyQnJ6Ny5cq4e/cuzM3NERAQgAkTJhi7Wfke+1V/2Lf6w77VD/ar/rBviUhOWJzkkRYtWsDT0xMLFy6EpaWlsZvzwWC/6g/7Vn/Yt/rBftUf9i0RyQWLkzySlpYGU1NTYzfjg8N+1R/2rf6wb/WD/ao/7FsikgsWJ0REREREJAtcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiOg9evfuDYVCAYVCAaVSicKFC6NFixb4+eefodFosn2c9evXw9HRUX8NJSIiyudYnBARZUOrVq0QHh6OsLAwHDx4EE2aNMHIkSPRrl07pKamGrt5REREHwQWJ0RE2WBhYQFXV1cULVoU3t7e+Pbbb7Fv3z4cPHgQ69evBwAsXLgQlStXho2NDdzd3TFkyBAkJCQAAIKCgtCnTx/ExsZKV2GmTZsGAFCpVBg3bhyKFi0KGxsb1KlTB0FBQcZJlIiIyIhYnBAR5VDTpk1RtWpV7N69GwBgYmKCpUuX4vr169iwYQOOHj2K8ePHAwDq1auHxYsXw97eHuHh4QgPD8e4ceMAAMOGDcOZM2ewbds2XLlyBV27dkWrVq3w77//Gi03IiIiY1AIIYSxG0FEJGe9e/dGTEwM9u7dm2nbZ599hitXruDGjRuZtu3atQuDBg3C8+fPAaTPORk1ahRiYmKkfR4+fIhSpUrh4cOHcHNzk55v3rw5ateujVmzZuV5PkRERHJlZuwGEBHlZ0IIKBQKAMCRI0cwe/Zs/PPPP4iLi0NqaiqSk5Px8uVLWFtbZ/n6q1evIi0tDWXLltV6XqVSoWDBgnpvPxERkZywOCEiyoWbN2+iZMmSCAsLQ7t27TB48GB8//33cHJywqlTp/DVV18hJSXlrcVJQkICTE1NERISAlNTU61ttra2hkiBiIhINlicEBHl0NGjR3H16lWMHj0aISEh0Gg0WLBgAUxM0qfz7dixQ2t/c3NzpKWlaT1XvXp1pKWlISoqCp988onB2k5ERCRHLE6IiLJBpVIhIiICaWlpiIyMxKFDhzB79my0a9cOPXv2xLVr16BWq/HDDz+gffv2CA4OxsqVK7WO4eHhgYSEBAQGBqJq1aqwtrZG2bJl4e/vj549e2LBggWoXr06nj17hsDAQFSpUgVt27Y1UsZERESGx9W6iIiy4dChQyhSpAg8PDzQqlUrHDt2DEuXLsW+fftgamqKqlWrYuHChZg7dy4qVaqEzZs3Y/bs2VrHqFevHgYNGoTu3bvD2dkZ8+bNAwCsW7cOPXv2xNixY1GuXDl06tQJf//9N4oXL26MVImIiIyGq3UREREREZEs8MoJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAv/D2VWOFOnzY8MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -212,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -262,37 +262,37 @@ " \n", " \n", " 2021\n", - " [2020-04-01, 2020-05-01)\n", - " [2020-06-01, 2020-07-01)\n", - " [2020-08-01, 2020-09-01)\n", - " [2020-10-01, 2020-11-01)\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", - " [2019-04-01, 2019-05-01)\n", - " [2019-06-01, 2019-07-01)\n", - " [2019-08-01, 2019-09-01)\n", - " [2019-10-01, 2019-11-01)\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", - " [2018-04-01, 2018-05-01)\n", - " [2018-06-01, 2018-07-01)\n", - " [2018-08-01, 2018-09-01)\n", - " [2018-10-01, 2018-11-01)\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", @@ -303,27 +303,27 @@ "text/plain": [ "i_interval -8 -7 \\\n", "anchor_year \n", - "2021 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2020 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "2019 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", "\n", "i_interval -6 -5 \\\n", "anchor_year \n", - "2021 [2020-08-01, 2020-09-01) [2020-10-01, 2020-11-01) \n", - "2020 [2019-08-01, 2019-09-01) [2019-10-01, 2019-11-01) \n", - "2019 [2018-08-01, 2018-09-01) [2018-10-01, 2018-11-01) \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -332,7 +332,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -572,7 +572,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -597,23 +597,11 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 29, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - } - ], + "outputs": [], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", - "# define hyperparameters and the \n", + "# define hyperparameters\n", "hyperparameters = dict(\n", " epoch = 150,\n", " input_dim = lat_precursor*lon_precursor,\n", @@ -626,10 +614,15 @@ " architecture = 'LSTM'\n", ")\n", "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "# initialize weights & biases service\n", - "#mode = 'online'\n", "mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-LSTM-ridge', entity='ai4s2s', mode=mode)\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team name here\n", + "project = 'comp-ridge-lstm' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, @@ -643,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -664,7 +657,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -698,7 +691,7 @@ "[]" ] }, - "execution_count": 19, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -731,1364 +724,1364 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 505.868927\n", - "Epoch : 0 [4/36(11%)]\tLoss: 452.809204\n", - "Epoch : 0 [8/36(22%)]\tLoss: 345.182434\n", - "Epoch : 0 [12/36(33%)]\tLoss: 244.612686\n", - "Epoch : 0 [16/36(44%)]\tLoss: 194.716461\n", - "Epoch : 0 [20/36(56%)]\tLoss: 144.448227\n", - "Epoch : 0 [24/36(67%)]\tLoss: 92.115929\n", - "Epoch : 0 [28/36(78%)]\tLoss: 186.740005\n", - "Epoch : 0 [32/36(89%)]\tLoss: 28.873085\n", - "Epoch : 1 [0/36(0%)]\tLoss: 7.791169\n", - "Epoch : 1 [4/36(11%)]\tLoss: 1.433643\n", - "Epoch : 1 [8/36(22%)]\tLoss: 0.459206\n", - "Epoch : 1 [12/36(33%)]\tLoss: 4.517264\n", - "Epoch : 1 [16/36(44%)]\tLoss: 8.117401\n", - "Epoch : 1 [20/36(56%)]\tLoss: 12.550220\n", - "Epoch : 1 [24/36(67%)]\tLoss: 19.369085\n", - "Epoch : 1 [28/36(78%)]\tLoss: 144.784576\n", - "Epoch : 1 [32/36(89%)]\tLoss: 26.871742\n", - "Epoch : 2 [0/36(0%)]\tLoss: 30.213608\n", - "Epoch : 2 [4/36(11%)]\tLoss: 28.394127\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.885115\n", - "Epoch : 2 [12/36(33%)]\tLoss: 16.847855\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.829281\n", - "Epoch : 2 [20/36(56%)]\tLoss: 5.078614\n", - "Epoch : 2 [24/36(67%)]\tLoss: 3.114647\n", - "Epoch : 2 [28/36(78%)]\tLoss: 2.412072\n", - "Epoch : 2 [32/36(89%)]\tLoss: 1.749253\n", - "Epoch : 3 [0/36(0%)]\tLoss: 0.249646\n", - "Epoch : 3 [4/36(11%)]\tLoss: 0.985059\n", - "Epoch : 3 [8/36(22%)]\tLoss: 2.914584\n", - "Epoch : 3 [12/36(33%)]\tLoss: 3.061846\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.956815\n", - "Epoch : 3 [20/36(56%)]\tLoss: 9.961458\n", - "Epoch : 3 [24/36(67%)]\tLoss: 8.052092\n", - "Epoch : 3 [28/36(78%)]\tLoss: 5.547617\n", - "Epoch : 3 [32/36(89%)]\tLoss: 5.837566\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.796307\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.487273\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.592918\n", - "Epoch : 4 [12/36(33%)]\tLoss: 0.505678\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.177660\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.934569\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.162263\n", - "Epoch : 4 [28/36(78%)]\tLoss: 1.891203\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.384902\n", - "Epoch : 5 [0/36(0%)]\tLoss: 2.416747\n", - "Epoch : 5 [4/36(11%)]\tLoss: 3.250417\n", - "Epoch : 5 [8/36(22%)]\tLoss: 1.535215\n", - "Epoch : 5 [12/36(33%)]\tLoss: 2.102344\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.213885\n", - "Epoch : 5 [20/36(56%)]\tLoss: 1.698686\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.289840\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.650280\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.773039\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.523278\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.844665\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.505700\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.361074\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.487744\n", - "Epoch : 6 [20/36(56%)]\tLoss: 3.001874\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.919618\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.523617\n", - "Epoch : 6 [32/36(89%)]\tLoss: 2.033085\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.230014\n", - "Epoch : 7 [4/36(11%)]\tLoss: 0.715810\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.483225\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.356363\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.918716\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.929919\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.174172\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.430676\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.769604\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.697093\n", - "Epoch : 8 [4/36(11%)]\tLoss: 1.082502\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.394569\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.468086\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.700455\n", - "Epoch : 8 [20/36(56%)]\tLoss: 1.946148\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.086986\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.324211\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.727469\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.425495\n", - "Epoch : 9 [4/36(11%)]\tLoss: 0.902846\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.346853\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.572478\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.836403\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.921503\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.088817\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.317592\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.723617\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.496810\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.982382\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.404747\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.400887\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.923654\n", - "Epoch : 10 [20/36(56%)]\tLoss: 2.071748\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.272049\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.324446\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.728342\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.289029\n", - "Epoch : 11 [4/36(11%)]\tLoss: 0.946272\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.405571\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.404457\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.908659\n", - "Epoch : 11 [20/36(56%)]\tLoss: 2.022605\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.239774\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.336871\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.723972\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.501567\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.994994\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.403743\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.408175\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.915480\n", - "Epoch : 12 [20/36(56%)]\tLoss: 2.054635\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.247475\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.327676\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.726546\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.460873\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.954353\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.406351\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.398019\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.857349\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.935332\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.157066\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.321208\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.693309\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.514711\n", - "Epoch : 14 [4/36(11%)]\tLoss: 1.021664\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.401726\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.434902\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.871525\n", - "Epoch : 14 [20/36(56%)]\tLoss: 2.085438\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.166548\n", - "Epoch : 14 [28/36(78%)]\tLoss: 1.319055\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.731804\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.419262\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.914709\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.401154\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.452206\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.791090\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.858875\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.051510\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.324856\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.724734\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.444260\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.947594\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.404545\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.410441\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.746452\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.754496\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.008835\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.331563\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.721272\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.442310\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.909099\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.372034\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.562995\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.773436\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.889671\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.137831\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.318743\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.508154\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.291329\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.788357\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.376943\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.493650\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.798847\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.850037\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.982550\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.331565\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.737868\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.351521\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.829106\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.299537\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.527907\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.645568\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.474883\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.836616\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.319750\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.736887\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.411557\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.903745\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.415566\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.373183\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.604230\n", - "Epoch : 20 [20/36(56%)]\tLoss: 2.122118\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.991165\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.328638\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.724847\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.499272\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.994358\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.404339\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.397249\n", - "Epoch : 21 [16/36(44%)]\tLoss: 1.111414\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.322230\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.753772\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.319483\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.747594\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.364894\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.799397\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.377647\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.505742\n", - "Epoch : 22 [16/36(44%)]\tLoss: 1.191379\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.385556\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.749409\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.322767\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.754161\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.374667\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.843083\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.403863\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.372814\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.691475\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.230959\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.690859\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.319582\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.744133\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.376114\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.820050\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.238674\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.348286\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.720515\n", - "Epoch : 24 [20/36(56%)]\tLoss: 1.298939\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.689298\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.332487\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.672423\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.331695\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.800276\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.453014\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.941776\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.660891\n", - "Epoch : 25 [20/36(56%)]\tLoss: 1.754490\n", - "Epoch : 25 [24/36(67%)]\tLoss: 1.167154\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.773134\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.473746\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.294903\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.925039\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.407648\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.393006\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.919096\n", - "Epoch : 26 [20/36(56%)]\tLoss: 2.053365\n", - "Epoch : 26 [24/36(67%)]\tLoss: 1.228329\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.735094\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.355983\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.551441\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.726935\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.381791\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.769962\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.580929\n", - "Epoch : 27 [20/36(56%)]\tLoss: 1.460432\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.705546\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.406020\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.862664\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.102308\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.857084\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.406836\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.443350\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.715727\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.965979\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.611315\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.344794\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.726779\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.406132\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.838300\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.466561\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.339639\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.659391\n", - "Epoch : 29 [20/36(56%)]\tLoss: 1.273315\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.486871\n", - "Epoch : 29 [28/36(78%)]\tLoss: 1.342458\n", - "Epoch : 29 [32/36(89%)]\tLoss: 1.792928\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.351461\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.850593\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.318539\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.372448\n", - "Epoch : 30 [16/36(44%)]\tLoss: 1.063122\n", - "Epoch : 30 [20/36(56%)]\tLoss: 1.984210\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.457488\n", - "Epoch : 30 [28/36(78%)]\tLoss: 1.319440\n", - "Epoch : 30 [32/36(89%)]\tLoss: 1.747633\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.374386\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.854999\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.308031\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.345826\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.294435\n", - "Epoch : 31 [20/36(56%)]\tLoss: 2.092935\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.426296\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.333133\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.784763\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.330256\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.832680\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.433625\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.362315\n", - "Epoch : 32 [16/36(44%)]\tLoss: 1.032565\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.699036\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.473904\n", - "Epoch : 32 [28/36(78%)]\tLoss: 1.320336\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.749421\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.609454\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.873893\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.416253\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.384187\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.445767\n", - "Epoch : 33 [20/36(56%)]\tLoss: 2.047354\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.597016\n", - "Epoch : 33 [28/36(78%)]\tLoss: 1.354282\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.727368\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.490947\n", - "Epoch : 34 [4/36(11%)]\tLoss: 1.028034\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.301150\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.361445\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.359778\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.780309\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.527170\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.387970\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.895122\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.255002\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.724450\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.282094\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.345860\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.551627\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.907181\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.427955\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.334642\n", - "Epoch : 35 [32/36(89%)]\tLoss: 1.800251\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.861659\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.740438\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.579319\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.355685\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.347218\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.934110\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.393477\n", - "Epoch : 36 [28/36(78%)]\tLoss: 1.323416\n", - "Epoch : 36 [32/36(89%)]\tLoss: 1.745268\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.274721\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.960473\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.373123\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.947425\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.161654\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.619886\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.380159\n", - "Epoch : 37 [28/36(78%)]\tLoss: 1.377837\n", - "Epoch : 37 [32/36(89%)]\tLoss: 1.933404\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.233311\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.600754\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.343902\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.736654\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.751583\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.684011\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.351800\n", - "Epoch : 38 [28/36(78%)]\tLoss: 1.391128\n", - "Epoch : 38 [32/36(89%)]\tLoss: 1.869545\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.280096\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.789606\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.314445\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.878178\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.588050\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.609332\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.347360\n", - "Epoch : 39 [28/36(78%)]\tLoss: 1.456646\n", - "Epoch : 39 [32/36(89%)]\tLoss: 2.049901\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.132291\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.693695\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.294127\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.794719\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.170253\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.822204\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.477801\n", - "Epoch : 40 [28/36(78%)]\tLoss: 1.321665\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.759653\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.339392\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.808571\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.285708\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.348385\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.335499\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.546088\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.370891\n", - "Epoch : 41 [28/36(78%)]\tLoss: 1.363673\n", - "Epoch : 41 [32/36(89%)]\tLoss: 1.854724\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.273581\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.719452\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.476761\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.343598\n", - "Epoch : 42 [16/36(44%)]\tLoss: 1.035865\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.429626\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.525539\n", - "Epoch : 42 [28/36(78%)]\tLoss: 1.320490\n", - "Epoch : 42 [32/36(89%)]\tLoss: 1.750692\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.345155\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.803219\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.479028\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.339847\n", - "Epoch : 43 [16/36(44%)]\tLoss: 1.121274\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.487049\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.388805\n", - "Epoch : 43 [28/36(78%)]\tLoss: 1.319610\n", - "Epoch : 43 [32/36(89%)]\tLoss: 1.747554\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.395405\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.885347\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.426154\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.357707\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.104895\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.379792\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.348632\n", - "Epoch : 44 [28/36(78%)]\tLoss: 1.348185\n", - "Epoch : 44 [32/36(89%)]\tLoss: 1.836718\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.280525\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.753140\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.431213\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.380724\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.114018\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.395712\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.336151\n", - "Epoch : 45 [28/36(78%)]\tLoss: 1.300567\n", - "Epoch : 45 [32/36(89%)]\tLoss: 1.749476\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.272692\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.675420\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.440002\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.362591\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.102963\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.277533\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.471455\n", - "Epoch : 46 [28/36(78%)]\tLoss: 1.344404\n", - "Epoch : 46 [32/36(89%)]\tLoss: 1.842715\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.265941\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.749575\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.496735\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.341810\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.101833\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.733381\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.515509\n", - "Epoch : 47 [28/36(78%)]\tLoss: 1.323838\n", - "Epoch : 47 [32/36(89%)]\tLoss: 1.793728\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.293635\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.763050\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.501461\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.339749\n", - "Epoch : 48 [16/36(44%)]\tLoss: 1.089632\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.411788\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.544856\n", - "Epoch : 48 [28/36(78%)]\tLoss: 1.321003\n", - "Epoch : 48 [32/36(89%)]\tLoss: 1.774300\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.312707\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.777943\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.494007\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.339702\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.124814\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.362475\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.582134\n", - "Epoch : 49 [28/36(78%)]\tLoss: 1.342342\n", - "Epoch : 49 [32/36(89%)]\tLoss: 1.824891\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.285838\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.776064\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.472203\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.346010\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.096625\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.340138\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.471772\n", - "Epoch : 50 [28/36(78%)]\tLoss: 1.338768\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.850932\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.250305\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.727430\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.534012\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.339628\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.260193\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.329007\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.505994\n", - "Epoch : 51 [28/36(78%)]\tLoss: 1.322017\n", - "Epoch : 51 [32/36(89%)]\tLoss: 1.783618\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.303167\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.768677\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.500960\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.339651\n", - "Epoch : 52 [16/36(44%)]\tLoss: 1.045214\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.501765\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.464626\n", - "Epoch : 52 [28/36(78%)]\tLoss: 1.321990\n", - "Epoch : 52 [32/36(89%)]\tLoss: 1.734326\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.416521\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.878101\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.442674\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.343617\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.102305\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.335679\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.394986\n", - "Epoch : 53 [28/36(78%)]\tLoss: 1.411011\n", - "Epoch : 53 [32/36(89%)]\tLoss: 1.968452\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.234290\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.715282\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.091444\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.339681\n", - "Epoch : 54 [16/36(44%)]\tLoss: 1.149960\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.441373\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.360616\n", - "Epoch : 54 [28/36(78%)]\tLoss: 1.476308\n", - "Epoch : 54 [32/36(89%)]\tLoss: 2.077668\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.228152\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.611676\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.521463\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.259324\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.212808\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.430828\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.321434\n", - "Epoch : 55 [28/36(78%)]\tLoss: 1.448545\n", - "Epoch : 55 [32/36(89%)]\tLoss: 1.936255\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.263300\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.752485\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.261454\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.230997\n", - "Epoch : 56 [16/36(44%)]\tLoss: 1.206819\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.326768\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.358422\n", - "Epoch : 56 [28/36(78%)]\tLoss: 1.494289\n", - "Epoch : 56 [32/36(89%)]\tLoss: 2.136947\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.233501\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.562453\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.061266\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.570469\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.479584\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.557943\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.734816\n", - "Epoch : 57 [28/36(78%)]\tLoss: 1.656065\n", - "Epoch : 57 [32/36(89%)]\tLoss: 2.192225\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.227400\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.733153\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.439279\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.417969\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.766179\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.445223\n", - "Epoch : 58 [24/36(67%)]\tLoss: 1.078274\n", - "Epoch : 58 [28/36(78%)]\tLoss: 1.392294\n", - "Epoch : 58 [32/36(89%)]\tLoss: 1.726504\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.331944\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.726690\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.666322\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.405058\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.247288\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.801042\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.379412\n", - "Epoch : 59 [28/36(78%)]\tLoss: 1.333986\n", - "Epoch : 59 [32/36(89%)]\tLoss: 1.759605\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.419672\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.949145\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.408957\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.381782\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.095300\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.542523\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.230977\n", - "Epoch : 60 [28/36(78%)]\tLoss: 1.338652\n", - "Epoch : 60 [32/36(89%)]\tLoss: 1.822799\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.286688\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.772019\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.481909\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.343274\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.093202\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.510063\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.432082\n", - "Epoch : 61 [28/36(78%)]\tLoss: 1.323312\n", - "Epoch : 61 [32/36(89%)]\tLoss: 1.788890\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.300590\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.761825\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.499046\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.339719\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.158962\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.525118\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.240851\n", - "Epoch : 62 [28/36(78%)]\tLoss: 1.320245\n", - "Epoch : 62 [32/36(89%)]\tLoss: 1.747907\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.399078\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.813433\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.457930\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.340610\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.022204\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.596082\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.186337\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.371887\n", - "Epoch : 63 [32/36(89%)]\tLoss: 1.846977\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.297797\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.776962\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.453006\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.349292\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.053277\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.478318\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.192861\n", - "Epoch : 64 [28/36(78%)]\tLoss: 1.350552\n", - "Epoch : 64 [32/36(89%)]\tLoss: 1.844639\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.277386\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.706085\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.500749\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.339769\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.030301\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.514067\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.190480\n", - "Epoch : 65 [28/36(78%)]\tLoss: 1.342904\n", - "Epoch : 65 [32/36(89%)]\tLoss: 1.814551\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.290288\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.763758\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.476402\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.340716\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.340393\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.490211\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.173064\n", - "Epoch : 66 [28/36(78%)]\tLoss: 1.363891\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.852997\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.284121\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.735974\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.477211\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.342463\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.083201\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.427549\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.215755\n", - "Epoch : 67 [28/36(78%)]\tLoss: 1.330377\n", - "Epoch : 67 [32/36(89%)]\tLoss: 1.801526\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.307043\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.733463\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.498010\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.339699\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.018530\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.486948\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.169463\n", - "Epoch : 68 [28/36(78%)]\tLoss: 1.362717\n", - "Epoch : 68 [32/36(89%)]\tLoss: 1.842225\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.295624\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.791121\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.449493\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.356063\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.056747\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.389450\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.217806\n", - "Epoch : 69 [28/36(78%)]\tLoss: 1.341950\n", - "Epoch : 69 [32/36(89%)]\tLoss: 1.846552\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.155576\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.687550\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.515612\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.339632\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.041704\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.436559\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.184901\n", - "Epoch : 70 [28/36(78%)]\tLoss: 1.352539\n", - "Epoch : 70 [32/36(89%)]\tLoss: 1.835621\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.291150\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.746810\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.487235\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.340164\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.040555\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.440026\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.175046\n", - "Epoch : 71 [28/36(78%)]\tLoss: 1.366766\n", - "Epoch : 71 [32/36(89%)]\tLoss: 1.857727\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.278999\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.735098\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.486831\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.340959\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.050514\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.421593\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.181140\n", - "Epoch : 72 [28/36(78%)]\tLoss: 1.361365\n", - "Epoch : 72 [32/36(89%)]\tLoss: 1.860167\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.096435\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.761748\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.459607\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.349717\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.088762\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.394844\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.187770\n", - "Epoch : 73 [28/36(78%)]\tLoss: 1.444084\n", - "Epoch : 73 [32/36(89%)]\tLoss: 1.884095\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.260504\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.682250\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.514732\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.339715\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.051906\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.411870\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.191557\n", - "Epoch : 74 [28/36(78%)]\tLoss: 1.353456\n", - "Epoch : 74 [32/36(89%)]\tLoss: 1.840459\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.286271\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.731543\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.496514\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.339752\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.043434\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.434196\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.172854\n", - "Epoch : 75 [28/36(78%)]\tLoss: 1.367064\n", - "Epoch : 75 [32/36(89%)]\tLoss: 1.861606\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.280985\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.737206\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.484154\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.341322\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.054471\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.415148\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.179682\n", - "Epoch : 76 [28/36(78%)]\tLoss: 1.365909\n", - "Epoch : 76 [32/36(89%)]\tLoss: 1.868003\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.273324\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.712269\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.495818\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.340381\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.229853\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.379780\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.237157\n", - "Epoch : 77 [28/36(78%)]\tLoss: 1.327940\n", - "Epoch : 77 [32/36(89%)]\tLoss: 1.795770\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.311732\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.744039\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.411218\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.343051\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.491373\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.542632\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.435091\n", - "Epoch : 78 [28/36(78%)]\tLoss: 1.536235\n", - "Epoch : 78 [32/36(89%)]\tLoss: 2.103830\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.131391\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.760100\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.279053\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.408707\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.169290\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.185491\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.275192\n", - "Epoch : 79 [28/36(78%)]\tLoss: 1.344708\n", - "Epoch : 79 [32/36(89%)]\tLoss: 1.914532\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.232785\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.696696\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.607709\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.341712\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.096961\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.206790\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.257552\n", - "Epoch : 80 [28/36(78%)]\tLoss: 1.325853\n", - "Epoch : 80 [32/36(89%)]\tLoss: 1.808537\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.287414\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.757018\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.517869\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.339620\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.095812\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.169370\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.202106\n", - "Epoch : 81 [28/36(78%)]\tLoss: 1.346745\n", - "Epoch : 81 [32/36(89%)]\tLoss: 1.838780\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.283566\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.773400\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.482525\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.344099\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.099332\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.203964\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.196728\n", - "Epoch : 82 [28/36(78%)]\tLoss: 1.369475\n", - "Epoch : 82 [32/36(89%)]\tLoss: 1.908694\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.247910\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.733551\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.509942\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.343572\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.105263\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.216924\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.233656\n", - "Epoch : 83 [28/36(78%)]\tLoss: 1.346812\n", - "Epoch : 83 [32/36(89%)]\tLoss: 1.878143\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.250888\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.726206\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.536519\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.339895\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.099461\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.207723\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.225708\n", - "Epoch : 84 [28/36(78%)]\tLoss: 1.345168\n", - "Epoch : 84 [32/36(89%)]\tLoss: 1.862167\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.260846\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.740270\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.518094\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.340486\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.099620\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.202651\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.213885\n", - "Epoch : 85 [28/36(78%)]\tLoss: 1.353786\n", - "Epoch : 85 [32/36(89%)]\tLoss: 1.878349\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.256532\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.739117\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.513680\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.341592\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.101862\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.204423\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.217721\n", - "Epoch : 86 [28/36(78%)]\tLoss: 1.351982\n", - "Epoch : 86 [32/36(89%)]\tLoss: 1.868376\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.162241\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.688119\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.596935\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.340751\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.117953\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.237344\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.334768\n", - "Epoch : 87 [28/36(78%)]\tLoss: 1.320325\n", - "Epoch : 87 [32/36(89%)]\tLoss: 1.803904\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.269173\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.764383\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.581742\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.344554\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.098826\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.392660\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.249078\n", - "Epoch : 88 [28/36(78%)]\tLoss: 1.319670\n", - "Epoch : 88 [32/36(89%)]\tLoss: 1.758652\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.365540\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.829773\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.475792\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.340042\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.099603\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.439212\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.207821\n", - "Epoch : 89 [28/36(78%)]\tLoss: 1.341189\n", - "Epoch : 89 [32/36(89%)]\tLoss: 1.803132\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.333087\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.835782\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.449225\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.349597\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.102136\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.381473\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.204768\n", - "Epoch : 90 [28/36(78%)]\tLoss: 1.349687\n", - "Epoch : 90 [32/36(89%)]\tLoss: 1.849835\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.279482\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.769997\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.485999\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.344110\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.114276\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.363005\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.243261\n", - "Epoch : 91 [28/36(78%)]\tLoss: 1.332608\n", - "Epoch : 91 [32/36(89%)]\tLoss: 1.819246\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.289535\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.762661\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.505216\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.340107\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.102342\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.349611\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.233417\n", - "Epoch : 92 [28/36(78%)]\tLoss: 1.331472\n", - "Epoch : 92 [32/36(89%)]\tLoss: 1.808716\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.304003\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.729718\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.521677\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.341758\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.105608\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.169243\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.163110\n", - "Epoch : 93 [28/36(78%)]\tLoss: 1.392903\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.904835\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.267198\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.781158\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.457405\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.358568\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.124686\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.227148\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.211126\n", - "Epoch : 94 [28/36(78%)]\tLoss: 1.386397\n", - "Epoch : 94 [32/36(89%)]\tLoss: 1.971749\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.233157\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.711671\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.535730\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.343544\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.122530\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.222827\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.364176\n", - "Epoch : 95 [28/36(78%)]\tLoss: 1.355385\n", - "Epoch : 95 [32/36(89%)]\tLoss: 1.935799\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.232947\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.664553\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.190651\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.347325\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.288300\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.703077\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.565004\n", - "Epoch : 96 [28/36(78%)]\tLoss: 1.268018\n", - "Epoch : 96 [32/36(89%)]\tLoss: 1.796919\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.445510\n", - "Epoch : 97 [4/36(11%)]\tLoss: 1.615897\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.414863\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.339707\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.335237\n", - "Epoch : 97 [20/36(56%)]\tLoss: 2.588415\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.494587\n", - "Epoch : 97 [28/36(78%)]\tLoss: 1.355083\n", - "Epoch : 97 [32/36(89%)]\tLoss: 1.759944\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.855938\n", - "Epoch : 98 [4/36(11%)]\tLoss: 1.202902\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.414261\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.339874\n", - "Epoch : 98 [16/36(44%)]\tLoss: 1.397464\n", - "Epoch : 98 [20/36(56%)]\tLoss: 2.685573\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.732715\n", - "Epoch : 98 [28/36(78%)]\tLoss: 1.385529\n", - "Epoch : 98 [32/36(89%)]\tLoss: 1.818341\n", - "Epoch : 99 [0/36(0%)]\tLoss: 1.078576\n", - "Epoch : 99 [4/36(11%)]\tLoss: 1.367623\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.405614\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.339986\n", - "Epoch : 99 [16/36(44%)]\tLoss: 1.487274\n", - "Epoch : 99 [20/36(56%)]\tLoss: 2.517620\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.521946\n", - "Epoch : 99 [28/36(78%)]\tLoss: 1.326511\n", - "Epoch : 99 [32/36(89%)]\tLoss: 1.740404\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.855810\n", - "Epoch : 100 [4/36(11%)]\tLoss: 1.298409\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.456272\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.502141\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.642042\n", - "Epoch : 100 [20/36(56%)]\tLoss: 1.250310\n", - "Epoch : 100 [24/36(67%)]\tLoss: 1.053737\n", - "Epoch : 100 [28/36(78%)]\tLoss: 1.552728\n", - "Epoch : 100 [32/36(89%)]\tLoss: 1.810406\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.601646\n", - "Epoch : 101 [4/36(11%)]\tLoss: 1.421792\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.488719\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.536362\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.935109\n", - "Epoch : 101 [20/36(56%)]\tLoss: 2.072074\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.462209\n", - "Epoch : 101 [28/36(78%)]\tLoss: 1.329150\n", - "Epoch : 101 [32/36(89%)]\tLoss: 1.778090\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.369899\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.861804\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.451668\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.344279\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.944787\n", - "Epoch : 102 [20/36(56%)]\tLoss: 1.943122\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.444941\n", - "Epoch : 102 [28/36(78%)]\tLoss: 1.382966\n", - "Epoch : 102 [32/36(89%)]\tLoss: 1.739462\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.628128\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.946007\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.494134\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.360619\n", - "Epoch : 103 [16/36(44%)]\tLoss: 1.452377\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.922644\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.430628\n", - "Epoch : 103 [28/36(78%)]\tLoss: 1.353728\n", - "Epoch : 103 [32/36(89%)]\tLoss: 1.764713\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.851432\n", - "Epoch : 104 [4/36(11%)]\tLoss: 1.177245\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.422009\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.342051\n", - "Epoch : 104 [16/36(44%)]\tLoss: 1.272308\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.996185\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.427671\n", - "Epoch : 104 [28/36(78%)]\tLoss: 1.303907\n", - "Epoch : 104 [32/36(89%)]\tLoss: 1.727776\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.818111\n", - "Epoch : 105 [4/36(11%)]\tLoss: 1.159888\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.288700\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.339398\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.280459\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.604270\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.536030\n", - "Epoch : 105 [28/36(78%)]\tLoss: 1.320953\n", - "Epoch : 105 [32/36(89%)]\tLoss: 1.824346\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.431491\n", - "Epoch : 106 [4/36(11%)]\tLoss: 1.026880\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.690378\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.408856\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.309510\n", - "Epoch : 106 [20/36(56%)]\tLoss: 1.183441\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.327204\n", - "Epoch : 106 [28/36(78%)]\tLoss: 1.504107\n", - "Epoch : 106 [32/36(89%)]\tLoss: 1.908097\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.369913\n", - "Epoch : 107 [4/36(11%)]\tLoss: 1.021298\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.836862\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.360729\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.728261\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.648691\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.371643\n", - "Epoch : 107 [28/36(78%)]\tLoss: 1.893952\n", - "Epoch : 107 [32/36(89%)]\tLoss: 2.333931\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.245825\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.851973\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.466234\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.496789\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.135288\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.491185\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.486259\n", - "Epoch : 108 [28/36(78%)]\tLoss: 1.355052\n", - "Epoch : 108 [32/36(89%)]\tLoss: 1.949944\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.232006\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.834402\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.590736\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.339676\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.105910\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.532389\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.542910\n", - "Epoch : 109 [28/36(78%)]\tLoss: 1.321758\n", - "Epoch : 109 [32/36(89%)]\tLoss: 1.828723\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.262562\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.722256\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.582159\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.342450\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.122106\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.719857\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.391320\n", - "Epoch : 110 [28/36(78%)]\tLoss: 1.323597\n", - "Epoch : 110 [32/36(89%)]\tLoss: 1.730762\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.445018\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.865001\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.474730\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.345506\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.156313\n", - "Epoch : 111 [20/36(56%)]\tLoss: 1.238474\n", - "Epoch : 111 [24/36(67%)]\tLoss: 1.242364\n", - "Epoch : 111 [28/36(78%)]\tLoss: 1.621951\n", - "Epoch : 111 [32/36(89%)]\tLoss: 2.295954\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.234959\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.714026\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.455711\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.419262\n", - "Epoch : 112 [16/36(44%)]\tLoss: 107.679787\n", - "Epoch : 112 [20/36(56%)]\tLoss: 1.695190\n", - "Epoch : 112 [24/36(67%)]\tLoss: 1.159147\n", - "Epoch : 112 [28/36(78%)]\tLoss: 1.738487\n", - "Epoch : 112 [32/36(89%)]\tLoss: 1.783019\n", - "Epoch : 113 [0/36(0%)]\tLoss: 1.037259\n", - "Epoch : 113 [4/36(11%)]\tLoss: 42.077614\n", - "Epoch : 113 [8/36(22%)]\tLoss: 9.878567\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.993058\n", - "Epoch : 113 [16/36(44%)]\tLoss: 3.474497\n", - "Epoch : 113 [20/36(56%)]\tLoss: 52.891251\n", - "Epoch : 113 [24/36(67%)]\tLoss: 7.039252\n", - "Epoch : 113 [28/36(78%)]\tLoss: 10.559747\n", - "Epoch : 113 [32/36(89%)]\tLoss: 7.512505\n", - "Epoch : 114 [0/36(0%)]\tLoss: 3.346862\n", - "Epoch : 114 [4/36(11%)]\tLoss: 1.051875\n", - "Epoch : 114 [8/36(22%)]\tLoss: 3.843843\n", - "Epoch : 114 [12/36(33%)]\tLoss: 3.514356\n", - "Epoch : 114 [16/36(44%)]\tLoss: 11.783563\n", - "Epoch : 114 [20/36(56%)]\tLoss: 10.607683\n", - "Epoch : 114 [24/36(67%)]\tLoss: 45.566887\n", - "Epoch : 114 [28/36(78%)]\tLoss: 5.277311\n", - "Epoch : 114 [32/36(89%)]\tLoss: 6.987385\n", - "Epoch : 115 [0/36(0%)]\tLoss: 11.867386\n", - "Epoch : 115 [4/36(11%)]\tLoss: 7.382057\n", - "Epoch : 115 [8/36(22%)]\tLoss: 1.756971\n", - "Epoch : 115 [12/36(33%)]\tLoss: 4.031797\n", - "Epoch : 115 [16/36(44%)]\tLoss: 1.568375\n", - "Epoch : 115 [20/36(56%)]\tLoss: 11.004314\n", - "Epoch : 115 [24/36(67%)]\tLoss: 1.341885\n", - "Epoch : 115 [28/36(78%)]\tLoss: 3.746224\n", - "Epoch : 115 [32/36(89%)]\tLoss: 3.196247\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.333178\n", - "Epoch : 116 [4/36(11%)]\tLoss: 2.676649\n", - "Epoch : 116 [8/36(22%)]\tLoss: 2.612855\n", - "Epoch : 116 [12/36(33%)]\tLoss: 5.082934\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.958132\n", - "Epoch : 116 [20/36(56%)]\tLoss: 1.860196\n", - "Epoch : 116 [24/36(67%)]\tLoss: 1.096822\n", - "Epoch : 116 [28/36(78%)]\tLoss: 2.553409\n", - "Epoch : 116 [32/36(89%)]\tLoss: 3.385683\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.121930\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.688391\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.265732\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.292842\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.677380\n", - "Epoch : 117 [20/36(56%)]\tLoss: 1.300677\n", - "Epoch : 117 [24/36(67%)]\tLoss: 2.066779\n", - "Epoch : 117 [28/36(78%)]\tLoss: 1.045409\n", - "Epoch : 117 [32/36(89%)]\tLoss: 2.254893\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.230135\n", - "Epoch : 118 [4/36(11%)]\tLoss: 1.128905\n", - "Epoch : 118 [8/36(22%)]\tLoss: 1.027342\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.349222\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.750840\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.747957\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.228183\n", - "Epoch : 118 [28/36(78%)]\tLoss: 1.416448\n", - "Epoch : 118 [32/36(89%)]\tLoss: 1.600921\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.320268\n", - "Epoch : 119 [4/36(11%)]\tLoss: 1.503850\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.073279\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.653241\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.449346\n", - "Epoch : 119 [20/36(56%)]\tLoss: 1.431417\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.320783\n", - "Epoch : 119 [28/36(78%)]\tLoss: 1.239929\n", - "Epoch : 119 [32/36(89%)]\tLoss: 2.468767\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.496580\n", - "Epoch : 120 [4/36(11%)]\tLoss: 1.329498\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.212545\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.401947\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.795469\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.227294\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.146377\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.797868\n", - "Epoch : 120 [32/36(89%)]\tLoss: 1.508107\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.373707\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.625583\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.294734\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.296944\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.512068\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.184261\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.518800\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.292019\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.913085\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.105474\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.362970\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.385958\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.842102\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.433981\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.255932\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.491283\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.458304\n", - "Epoch : 122 [32/36(89%)]\tLoss: 1.574129\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.641714\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.588053\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.408781\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.508579\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.354621\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.133906\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.281638\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.784268\n", - "Epoch : 123 [32/36(89%)]\tLoss: 1.092653\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.303241\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.659352\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.196398\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.404929\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.096755\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.178530\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.252993\n", - "Epoch : 124 [28/36(78%)]\tLoss: 0.560531\n", - "Epoch : 124 [32/36(89%)]\tLoss: 1.331570\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.450643\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.471208\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.241225\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.348469\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.667367\n", - "Epoch : 125 [20/36(56%)]\tLoss: 1.141148\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.134643\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.597573\n", - "Epoch : 125 [32/36(89%)]\tLoss: 1.033038\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.261483\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.501263\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.147147\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.315711\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.168286\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.233669\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.235317\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.458585\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.917091\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.204877\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.378307\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.133581\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.269956\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.165193\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.347857\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.240298\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.397952\n", - "Epoch : 127 [32/36(89%)]\tLoss: 1.013468\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.218075\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.427327\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.106589\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.262903\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.182383\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.373225\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.129266\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.372429\n", - "Epoch : 128 [32/36(89%)]\tLoss: 1.197997\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.095596\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.427785\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.422760\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.269683\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.064525\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.435171\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.099316\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.485027\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.494174\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.398091\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.261668\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.366371\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.349054\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.102390\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.064781\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.689252\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.579529\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.986484\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.421221\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.277819\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.076739\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.444298\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.259264\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.093930\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.312389\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.802015\n", - "Epoch : 131 [32/36(89%)]\tLoss: 1.190497\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.107920\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.727148\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.384293\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.240719\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.414718\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.154325\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.444278\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.450049\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.222543\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.331570\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.219660\n", - "Epoch : 133 [8/36(22%)]\tLoss: 1.179513\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.507278\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.332183\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.615503\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.685250\n", - "Epoch : 133 [28/36(78%)]\tLoss: 0.814147\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.681970\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.233180\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.201039\n", - "Epoch : 134 [8/36(22%)]\tLoss: 1.218483\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.683112\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.496025\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.166943\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.246609\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.649869\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.882147\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.950412\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.720058\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.293573\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.407930\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.310307\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.480428\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.100876\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.689427\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.472137\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.400257\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.872630\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.431947\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.868511\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.106388\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.196197\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.411208\n", - "Epoch : 136 [28/36(78%)]\tLoss: 2.043366\n", - "Epoch : 136 [32/36(89%)]\tLoss: 1.193917\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.358517\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.533059\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.251978\n", - "Epoch : 137 [12/36(33%)]\tLoss: 1.076772\n", - "Epoch : 137 [16/36(44%)]\tLoss: 1.465810\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.164098\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.195267\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.999646\n", - "Epoch : 137 [32/36(89%)]\tLoss: 1.600786\n", - "Epoch : 138 [0/36(0%)]\tLoss: 1.040351\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.316218\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.072007\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.320886\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.418012\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.440652\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.422802\n", - "Epoch : 138 [28/36(78%)]\tLoss: 0.769675\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.215521\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.115633\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.216503\n", - "Epoch : 139 [8/36(22%)]\tLoss: 1.387242\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.782575\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.566309\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.169618\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.321079\n", - "Epoch : 139 [28/36(78%)]\tLoss: 1.892269\n", - "Epoch : 139 [32/36(89%)]\tLoss: 1.578717\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.972915\n", - "Epoch : 140 [4/36(11%)]\tLoss: 0.357358\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.241630\n", - "Epoch : 140 [12/36(33%)]\tLoss: 1.979794\n", - "Epoch : 140 [16/36(44%)]\tLoss: 1.005613\n", - "Epoch : 140 [20/36(56%)]\tLoss: 2.075208\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.361093\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.700552\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.790920\n", - "Epoch : 141 [0/36(0%)]\tLoss: 1.033034\n", - "Epoch : 141 [4/36(11%)]\tLoss: 1.490320\n", - "Epoch : 141 [8/36(22%)]\tLoss: 1.694446\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.284531\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.684254\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.924268\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.852715\n", - "Epoch : 141 [28/36(78%)]\tLoss: 2.647202\n", - "Epoch : 141 [32/36(89%)]\tLoss: 2.387078\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.515756\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.645689\n", - "Epoch : 142 [8/36(22%)]\tLoss: 2.698315\n", - "Epoch : 142 [12/36(33%)]\tLoss: 2.020222\n", - "Epoch : 142 [16/36(44%)]\tLoss: 2.305176\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.251027\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.100128\n", - "Epoch : 142 [28/36(78%)]\tLoss: 1.517791\n", - "Epoch : 142 [32/36(89%)]\tLoss: 2.365940\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.627280\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.945482\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.548452\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.475816\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.632295\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.802314\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.869394\n", - "Epoch : 143 [28/36(78%)]\tLoss: 1.126444\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.794685\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.244318\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.433870\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.847268\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.564828\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.316582\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.440226\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.164335\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.768544\n", - "Epoch : 144 [32/36(89%)]\tLoss: 1.127977\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.730341\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.662882\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.428531\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.767850\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.671206\n", - "Epoch : 145 [20/36(56%)]\tLoss: 1.436890\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.333507\n", - "Epoch : 145 [28/36(78%)]\tLoss: 1.077127\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.513798\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.488236\n", - "Epoch : 146 [4/36(11%)]\tLoss: 1.707183\n", - "Epoch : 146 [8/36(22%)]\tLoss: 1.131946\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.337823\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.644723\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.432891\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.394648\n", - "Epoch : 146 [28/36(78%)]\tLoss: 1.821868\n", - "Epoch : 146 [32/36(89%)]\tLoss: 1.246490\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.463571\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.483670\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.736627\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.479373\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.696391\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.193805\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.501059\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.925222\n", - "Epoch : 147 [32/36(89%)]\tLoss: 1.307393\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.854597\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.545664\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.529505\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.441990\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.178986\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.571213\n", - "Epoch : 148 [24/36(67%)]\tLoss: 1.163178\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.965102\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.520753\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.142795\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.744774\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.818580\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.774485\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.585282\n", - "Epoch : 149 [20/36(56%)]\tLoss: 1.528380\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.171141\n", - "Epoch : 149 [28/36(78%)]\tLoss: 1.406376\n", - "Epoch : 149 [32/36(89%)]\tLoss: 1.642578\n", - "--- 0.24148858785629274 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 503.178345\n", + "Epoch : 0 [4/36(11%)]\tLoss: 457.924194\n", + "Epoch : 0 [8/36(22%)]\tLoss: 360.173706\n", + "Epoch : 0 [12/36(33%)]\tLoss: 267.052551\n", + "Epoch : 0 [16/36(44%)]\tLoss: 312.387878\n", + "Epoch : 0 [20/36(56%)]\tLoss: 174.208801\n", + "Epoch : 0 [24/36(67%)]\tLoss: 117.404907\n", + "Epoch : 0 [28/36(78%)]\tLoss: 76.204758\n", + "Epoch : 0 [32/36(89%)]\tLoss: 47.436565\n", + "Epoch : 1 [0/36(0%)]\tLoss: 17.978914\n", + "Epoch : 1 [4/36(11%)]\tLoss: 5.041893\n", + "Epoch : 1 [8/36(22%)]\tLoss: 0.822194\n", + "Epoch : 1 [12/36(33%)]\tLoss: 2.056358\n", + "Epoch : 1 [16/36(44%)]\tLoss: 5.545856\n", + "Epoch : 1 [20/36(56%)]\tLoss: 10.134520\n", + "Epoch : 1 [24/36(67%)]\tLoss: 17.314133\n", + "Epoch : 1 [28/36(78%)]\tLoss: 23.840561\n", + "Epoch : 1 [32/36(89%)]\tLoss: 24.329853\n", + "Epoch : 2 [0/36(0%)]\tLoss: 27.401665\n", + "Epoch : 2 [4/36(11%)]\tLoss: 25.906647\n", + "Epoch : 2 [8/36(22%)]\tLoss: 17.193579\n", + "Epoch : 2 [12/36(33%)]\tLoss: 15.565414\n", + "Epoch : 2 [16/36(44%)]\tLoss: 8.191076\n", + "Epoch : 2 [20/36(56%)]\tLoss: 4.808751\n", + "Epoch : 2 [24/36(67%)]\tLoss: 2.932098\n", + "Epoch : 2 [28/36(78%)]\tLoss: 2.422240\n", + "Epoch : 2 [32/36(89%)]\tLoss: 1.781340\n", + "Epoch : 3 [0/36(0%)]\tLoss: 0.230404\n", + "Epoch : 3 [4/36(11%)]\tLoss: 0.962230\n", + "Epoch : 3 [8/36(22%)]\tLoss: 2.848607\n", + "Epoch : 3 [12/36(33%)]\tLoss: 2.919164\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.528171\n", + "Epoch : 3 [20/36(56%)]\tLoss: 9.339956\n", + "Epoch : 3 [24/36(67%)]\tLoss: 7.123151\n", + "Epoch : 3 [28/36(78%)]\tLoss: 4.986446\n", + "Epoch : 3 [32/36(89%)]\tLoss: 5.238743\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.415620\n", + "Epoch : 4 [4/36(11%)]\tLoss: 1.202363\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.225445\n", + "Epoch : 4 [12/36(33%)]\tLoss: 0.408883\n", + "Epoch : 4 [16/36(44%)]\tLoss: 0.977273\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.771851\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.200103\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.004102\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.420876\n", + "Epoch : 5 [0/36(0%)]\tLoss: 2.370485\n", + "Epoch : 5 [4/36(11%)]\tLoss: 3.113795\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.371114\n", + "Epoch : 5 [12/36(33%)]\tLoss: 1.877741\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.076646\n", + "Epoch : 5 [20/36(56%)]\tLoss: 1.543281\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.147942\n", + "Epoch : 5 [28/36(78%)]\tLoss: 1.468159\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.725366\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.366017\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.737038\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.581998\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.399940\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.485980\n", + "Epoch : 6 [20/36(56%)]\tLoss: 2.856046\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.685582\n", + "Epoch : 6 [28/36(78%)]\tLoss: 1.491078\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.966711\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.243580\n", + "Epoch : 7 [4/36(11%)]\tLoss: 0.734068\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.394242\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.441483\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.758439\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.633475\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.077462\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.427599\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.761415\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.734514\n", + "Epoch : 8 [4/36(11%)]\tLoss: 1.214020\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.380743\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.559149\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.747551\n", + "Epoch : 8 [20/36(56%)]\tLoss: 1.705707\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.118988\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.319830\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.774456\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.302211\n", + "Epoch : 9 [4/36(11%)]\tLoss: 0.724784\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.390431\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.395785\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.856209\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.863278\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.071814\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.319270\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.741389\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.415760\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.918707\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.336921\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.518177\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.718241\n", + "Epoch : 10 [20/36(56%)]\tLoss: 1.580044\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.937096\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.326185\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.732777\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.416417\n", + "Epoch : 11 [4/36(11%)]\tLoss: 0.861934\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.329564\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.462502\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.748910\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.674610\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.966996\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.321697\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.762546\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.349526\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.806388\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.322133\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.486105\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.714322\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.548378\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.889888\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.319382\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.748087\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.393181\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.852129\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.311861\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.509217\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.693244\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.519646\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.867711\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.320597\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.759588\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.351083\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.813959\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.310924\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.513126\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.666297\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.463923\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.823535\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.313078\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.752797\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.367629\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.826174\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.316144\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.551270\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.604624\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.386365\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.744200\n", + "Epoch : 15 [28/36(78%)]\tLoss: 1.276119\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.747335\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.203675\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.700023\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.429016\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.481342\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.619850\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.367613\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.673022\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.273382\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.689480\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.647690\n", + "Epoch : 17 [4/36(11%)]\tLoss: 1.303180\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.399097\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.867957\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.406226\n", + "Epoch : 17 [20/36(56%)]\tLoss: 1.090443\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.709065\n", + "Epoch : 17 [28/36(78%)]\tLoss: 1.275817\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.830320\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.268906\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.728838\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.435796\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.461821\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.435040\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.087052\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.569893\n", + "Epoch : 18 [28/36(78%)]\tLoss: 1.319282\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.733701\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.430666\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.904162\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.330532\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.470367\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.339455\n", + "Epoch : 19 [20/36(56%)]\tLoss: 0.977162\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.533471\n", + "Epoch : 19 [28/36(78%)]\tLoss: 1.336241\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.800457\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.271176\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.692506\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.418219\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.473269\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.364341\n", + "Epoch : 20 [20/36(56%)]\tLoss: 0.873214\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.423143\n", + "Epoch : 20 [28/36(78%)]\tLoss: 1.313610\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.715056\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.391481\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.814590\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.202729\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.468928\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.240356\n", + "Epoch : 21 [20/36(56%)]\tLoss: 0.771711\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.340132\n", + "Epoch : 21 [28/36(78%)]\tLoss: 1.420958\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.960288\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.233866\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.694798\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.347781\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.388731\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.321078\n", + "Epoch : 22 [20/36(56%)]\tLoss: 0.678515\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.370469\n", + "Epoch : 22 [28/36(78%)]\tLoss: 1.320091\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.737368\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.379971\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.805473\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.233908\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.557117\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.155161\n", + "Epoch : 23 [20/36(56%)]\tLoss: 0.582319\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.307136\n", + "Epoch : 23 [28/36(78%)]\tLoss: 1.586828\n", + "Epoch : 23 [32/36(89%)]\tLoss: 2.167473\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.232640\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.674496\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.282630\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.353972\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.199448\n", + "Epoch : 24 [20/36(56%)]\tLoss: 0.606161\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.394137\n", + "Epoch : 24 [28/36(78%)]\tLoss: 0.939639\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.726236\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.584586\n", + "Epoch : 25 [4/36(11%)]\tLoss: 1.019323\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.279715\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.496717\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.186185\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.643835\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.331512\n", + "Epoch : 25 [28/36(78%)]\tLoss: 2.531025\n", + "Epoch : 25 [32/36(89%)]\tLoss: 2.052746\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.228698\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.611918\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.234595\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.490427\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.193442\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.522645\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.444204\n", + "Epoch : 26 [28/36(78%)]\tLoss: 1.320444\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.824135\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.263970\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.650282\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.294387\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.389462\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.137373\n", + "Epoch : 27 [20/36(56%)]\tLoss: 0.509940\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.292775\n", + "Epoch : 27 [28/36(78%)]\tLoss: 1.376208\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.916585\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.244145\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.709825\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.176946\n", + "Epoch : 28 [12/36(33%)]\tLoss: 145.015121\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.100105\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.609050\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.305911\n", + "Epoch : 28 [28/36(78%)]\tLoss: 1.461711\n", + "Epoch : 28 [32/36(89%)]\tLoss: 2.020985\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.229414\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.614445\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.127927\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.373865\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.157635\n", + "Epoch : 29 [20/36(56%)]\tLoss: 0.439078\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.334122\n", + "Epoch : 29 [28/36(78%)]\tLoss: 1.338353\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.751005\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.267305\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.905187\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.283059\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.558009\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.159822\n", + "Epoch : 30 [20/36(56%)]\tLoss: 0.317310\n", + "Epoch : 30 [24/36(67%)]\tLoss: 1.087021\n", + "Epoch : 30 [28/36(78%)]\tLoss: 1.941854\n", + "Epoch : 30 [32/36(89%)]\tLoss: 2.437685\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.236174\n", + "Epoch : 31 [4/36(11%)]\tLoss: 1.044965\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.378517\n", + "Epoch : 31 [12/36(33%)]\tLoss: 1.405712\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.520493\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.323836\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.248294\n", + "Epoch : 31 [28/36(78%)]\tLoss: 1.151715\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.937806\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.225004\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.646947\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.485586\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.360529\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.243632\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.251156\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.234266\n", + "Epoch : 32 [28/36(78%)]\tLoss: 1.217214\n", + "Epoch : 32 [32/36(89%)]\tLoss: 1.908403\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.249206\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.695857\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.300963\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.540238\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.176402\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.424893\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.233285\n", + "Epoch : 33 [28/36(78%)]\tLoss: 1.205938\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.980837\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.225400\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.594547\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.306091\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.373396\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.407281\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.257345\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.201874\n", + "Epoch : 34 [28/36(78%)]\tLoss: 1.123373\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.957004\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.233791\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.700010\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.361034\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.313492\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.576694\n", + "Epoch : 35 [20/36(56%)]\tLoss: 1.114911\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.620049\n", + "Epoch : 35 [28/36(78%)]\tLoss: 1.273666\n", + "Epoch : 35 [32/36(89%)]\tLoss: 1.708840\n", + "Epoch : 36 [0/36(0%)]\tLoss: 1.229454\n", + "Epoch : 36 [4/36(11%)]\tLoss: 1.290738\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.463947\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.538113\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.876014\n", + "Epoch : 36 [20/36(56%)]\tLoss: 2.363982\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.280424\n", + "Epoch : 36 [28/36(78%)]\tLoss: 1.437995\n", + "Epoch : 36 [32/36(89%)]\tLoss: 1.820354\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.316190\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.807350\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.189287\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.535133\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.680069\n", + "Epoch : 37 [20/36(56%)]\tLoss: 1.723880\n", + "Epoch : 37 [24/36(67%)]\tLoss: 1.069982\n", + "Epoch : 37 [28/36(78%)]\tLoss: 1.322038\n", + "Epoch : 37 [32/36(89%)]\tLoss: 1.614946\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.422661\n", + "Epoch : 38 [4/36(11%)]\tLoss: 1.009917\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.212094\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.353738\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.793585\n", + "Epoch : 38 [20/36(56%)]\tLoss: 1.362756\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.606379\n", + "Epoch : 38 [28/36(78%)]\tLoss: 1.390654\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.361518\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.273852\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.717453\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.273761\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.493903\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.545373\n", + "Epoch : 39 [20/36(56%)]\tLoss: 0.914425\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.271769\n", + "Epoch : 39 [28/36(78%)]\tLoss: 1.354388\n", + "Epoch : 39 [32/36(89%)]\tLoss: 1.166714\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.292110\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.749744\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.173272\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.643247\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.620165\n", + "Epoch : 40 [20/36(56%)]\tLoss: 1.107056\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.341826\n", + "Epoch : 40 [28/36(78%)]\tLoss: 1.316162\n", + "Epoch : 40 [32/36(89%)]\tLoss: 1.012212\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.239238\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.701892\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.224737\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.669942\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.251357\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.609222\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.260417\n", + "Epoch : 41 [28/36(78%)]\tLoss: 1.367832\n", + "Epoch : 41 [32/36(89%)]\tLoss: 1.687828\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.224218\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.435441\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.264067\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.570626\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.579580\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.419082\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.446059\n", + "Epoch : 42 [28/36(78%)]\tLoss: 1.212990\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.981847\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.242047\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.428969\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.382768\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.214054\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.294550\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.250901\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.257606\n", + "Epoch : 43 [28/36(78%)]\tLoss: 1.241180\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.853346\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.244013\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.343569\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.179504\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.288435\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.274510\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.670702\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.240100\n", + "Epoch : 44 [28/36(78%)]\tLoss: 1.044821\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.740691\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.195253\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.461094\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.217756\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.535302\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.296258\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.311963\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.159988\n", + "Epoch : 45 [28/36(78%)]\tLoss: 1.186778\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.820004\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.239005\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.460044\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.221026\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.199157\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.241614\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.120257\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.134094\n", + "Epoch : 46 [28/36(78%)]\tLoss: 1.437921\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.741662\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.227553\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.512453\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.125251\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.388277\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.218701\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.226003\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.336060\n", + "Epoch : 47 [28/36(78%)]\tLoss: 1.278245\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.786286\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.279427\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.485421\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.270122\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.229801\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.231037\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.213490\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.484043\n", + "Epoch : 48 [28/36(78%)]\tLoss: 1.140589\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.418549\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.239889\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.442337\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.204896\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.378016\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.279093\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.224107\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.080197\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.909222\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.312700\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.239270\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.441070\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.125483\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.636142\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.312729\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.026864\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.165640\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.935623\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.578310\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.551905\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.344370\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.102759\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.465916\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.338024\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.063835\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.603642\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.562386\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.509238\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.471082\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.329474\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.204140\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.229005\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.396720\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.047237\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.441175\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.997307\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.330256\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.313362\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.283678\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.191889\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.182189\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.233585\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.054125\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.172834\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.835944\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.303751\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.190035\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.380003\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.145438\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.024641\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.252931\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.182542\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.128258\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.899256\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.275700\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.182236\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.370744\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.110807\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.161528\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.389434\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.027345\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.218906\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.870497\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.151483\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.184581\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.285398\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.245891\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.026604\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.330179\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.034387\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.232804\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.512839\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.046992\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.147107\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.261400\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.195394\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.162001\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.195808\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.019405\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.201627\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.595176\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.108039\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.165265\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.257418\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.165311\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.170014\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.110672\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.096310\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.103812\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.560958\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.042310\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.101775\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.296771\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.053257\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.041769\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.101384\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.052617\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.107140\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.525252\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.042948\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.106764\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.221106\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.073584\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.050138\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.056112\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.046304\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.212153\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.620759\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.057369\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.088309\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.200086\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.137862\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.182453\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.144738\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.045997\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.153667\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.612423\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.088354\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.120547\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.250232\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.091194\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.094404\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.141051\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.099035\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.143107\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.516202\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.040306\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.120427\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.263418\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.017005\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.024935\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.052078\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.087749\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.093480\n", + "Epoch : 63 [28/36(78%)]\tLoss: 0.459202\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.034149\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.110469\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.251491\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.017651\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.078758\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.071442\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.116787\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.053752\n", + "Epoch : 64 [28/36(78%)]\tLoss: 0.320198\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.058729\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.102869\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.191737\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.100408\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.131954\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.028141\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.130830\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.047525\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.232110\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.236489\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.230697\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.203834\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.070551\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.564120\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.094035\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.058618\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.067648\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.229017\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.230216\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.277089\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.249396\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.123751\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.004391\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.087248\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.178111\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.252284\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.490447\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.027011\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.124999\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.201652\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.426717\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.312224\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.149630\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.195675\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.311867\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.817156\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.123012\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.104120\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.177279\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.131101\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.211594\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.289513\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.225336\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.094179\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.443788\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.160347\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.251355\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.303139\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.234794\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.012494\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.108769\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.470565\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.232539\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.722723\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.129887\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.132576\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.633786\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.147029\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.452759\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.143295\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.016448\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.150644\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.974577\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.518207\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.412108\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.315837\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.091829\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.226914\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.350459\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.291452\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.198820\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.893304\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.063850\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.447456\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.555277\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.217952\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.127995\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.023428\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.065326\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.287312\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.705237\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.115809\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.041775\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.496800\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.391117\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.296389\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.034597\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.115208\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.126644\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.586886\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.102113\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.033605\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.484420\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.161815\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.165903\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.090231\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.028259\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.048657\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.453014\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.057995\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.044505\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.382405\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.039811\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.089067\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.102414\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.068165\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.101849\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.468232\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.117198\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.024324\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.239014\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.127863\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.064564\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.082732\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.038194\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.036165\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.460943\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.022184\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.032318\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.161347\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.053221\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.014750\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.052786\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.013113\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.033532\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.594814\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.032485\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.097318\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.275161\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.083925\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.011849\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.044999\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.006125\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.100468\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.501644\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.011094\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.077271\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.133353\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.065654\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.014418\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.020564\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.034509\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.020265\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.344038\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.010591\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.032579\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.153787\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.062211\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.026991\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.039985\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.053290\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.023552\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.239686\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.023532\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.026329\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.235256\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.016865\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.015905\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.053099\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.021916\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.010988\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.204743\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.011291\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.020749\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.139108\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.036798\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.032654\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.043080\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.024879\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.027339\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.454378\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.020734\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.018680\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.128275\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.040437\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.064291\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.070596\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.042206\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.003816\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.284550\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.049931\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.100442\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.138152\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.030553\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.133993\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.046445\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.036057\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.017925\n", + "Epoch : 85 [28/36(78%)]\tLoss: 0.302239\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.028228\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.016384\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.140373\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.021901\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.024603\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.058770\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.031765\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.006684\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.163186\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.040923\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.007179\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.162918\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.017663\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.029812\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.044094\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.055710\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.002356\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.180908\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.039728\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.025067\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.139175\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.022675\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.024480\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.039568\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.016457\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.029376\n", + "Epoch : 88 [28/36(78%)]\tLoss: 0.244765\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.019179\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.021523\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.109931\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.028939\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.017397\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.030944\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.023687\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.011119\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.207417\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.012758\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.087568\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.117876\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.016464\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.011482\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.020931\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.029594\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.031208\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.141839\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.029830\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.010242\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.119751\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.020603\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.011215\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.055416\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.012234\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.009746\n", + "Epoch : 91 [28/36(78%)]\tLoss: 0.239964\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.063593\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.003935\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.169979\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.019174\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.006296\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.069233\n", + "Epoch : 92 [20/36(56%)]\tLoss: 0.019702\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.003036\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.343634\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.061155\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.038265\n", + "Epoch : 93 [4/36(11%)]\tLoss: 0.228213\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.075801\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.046396\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.033194\n", + "Epoch : 93 [20/36(56%)]\tLoss: 0.015084\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.065155\n", + "Epoch : 93 [28/36(78%)]\tLoss: 0.353255\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.043230\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.015026\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.121735\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.046515\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.101432\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.090944\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.071311\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.006578\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.324356\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.114163\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.142309\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.102048\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.009287\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.041881\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.134287\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.093013\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.000116\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.296137\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.010974\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.007859\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.152626\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.032190\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.019116\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.038347\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.103540\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.034633\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.268095\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.156101\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.035093\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.196963\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.189158\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.278087\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.184788\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.036564\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.071729\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.312853\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.163874\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.057978\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.192524\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.027074\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.054705\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.253052\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.028499\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.013431\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.211210\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.108856\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.042065\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.240247\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.165172\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.025447\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.066070\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.036935\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.133403\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.435766\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.026751\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.004907\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.215268\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.299957\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.137765\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.050819\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.022497\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.064850\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.468282\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.252081\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.041759\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.154451\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.070899\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.208340\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.065484\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.053085\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.011135\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.279662\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.106936\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.076599\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.169017\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.062297\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.078071\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.063212\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.223816\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.015072\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.294487\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.023091\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.136737\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.129450\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.028825\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.035214\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.067138\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.062083\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.015474\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.272009\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.019668\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.014475\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.134410\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.020068\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.062479\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.017078\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.048808\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.000608\n", + "Epoch : 104 [28/36(78%)]\tLoss: 0.228868\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.014226\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.065258\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.143710\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.027483\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.011561\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.028689\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.060611\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.028119\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.335211\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.065576\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.028896\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.119552\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.022030\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.026103\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.088798\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.028337\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.036825\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.149138\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.110833\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.021898\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.130819\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.017771\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.023368\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.115815\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.050631\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.000479\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.169841\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.085578\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.186990\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.143928\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.018801\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.031663\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.134477\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.031736\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.007679\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.170105\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.068340\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.030620\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.195154\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.030833\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.013435\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.065152\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.005027\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.017383\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.256841\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.021440\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.022482\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.167479\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.044958\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.072255\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.014452\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.020203\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.011073\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.457233\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.013430\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.037443\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.142633\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.039317\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.065895\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.027505\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.044275\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.044781\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.189712\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.020125\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.011625\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.117130\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.069379\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.010729\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.019206\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.016791\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.032728\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.254117\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.067671\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.035955\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.117537\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.026061\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.013356\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.052902\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.033630\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.000485\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.181283\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.048052\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.018790\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.152216\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.031689\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.012718\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.064522\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.022529\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.049934\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.362005\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.026577\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.071428\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.173358\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.043168\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.108363\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.013408\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.029815\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.032562\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.305786\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.254842\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.020899\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.179398\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.050830\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.047090\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.011188\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.027738\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.020067\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.323177\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.044193\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.009663\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.127132\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.027926\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.042515\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.015308\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.055785\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.000929\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.324059\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.036442\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.051456\n", + "Epoch : 118 [4/36(11%)]\tLoss: 0.122848\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.111864\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.059237\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.011248\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.062339\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.181747\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.137391\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.075956\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.060288\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.130628\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.108127\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.026640\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.060414\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.009358\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.049313\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.274916\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.181477\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.111186\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.148061\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.065392\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.087524\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.212177\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.093112\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.034176\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.164706\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.282813\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.024223\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.212002\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.031036\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.104365\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.033590\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.042313\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.025873\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.304567\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.159777\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.146732\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.310799\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.151920\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.017637\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.079121\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.125782\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.073754\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.325736\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.033178\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.238237\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.227425\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.052256\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.020045\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.117079\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.044384\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.060985\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.323698\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.036308\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.061263\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.311642\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.195866\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.118993\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.010432\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.001197\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.035190\n", + "Epoch : 124 [28/36(78%)]\tLoss: 0.335447\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.156186\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.196833\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.174737\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.125885\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.109811\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.064658\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.053605\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.042991\n", + "Epoch : 125 [28/36(78%)]\tLoss: 0.545270\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.062709\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.088962\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.145869\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.108022\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.121428\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.025515\n", + "Epoch : 126 [20/36(56%)]\tLoss: 0.084098\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.000495\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.279945\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.163778\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.140329\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.121367\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.012044\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.031375\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.017761\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.128774\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.029009\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.195271\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.051530\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.075845\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.166814\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.060886\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.018845\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.020374\n", + "Epoch : 128 [20/36(56%)]\tLoss: 0.044682\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.134486\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.196333\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.207644\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.015231\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.162790\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.234627\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.143064\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.194302\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.030634\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.115640\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.469535\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.383690\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.029778\n", + "Epoch : 130 [4/36(11%)]\tLoss: 0.126775\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.156875\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.209336\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.306612\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.089005\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.062917\n", + "Epoch : 130 [28/36(78%)]\tLoss: 0.259386\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.471272\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.300310\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.170941\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.042751\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.111729\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.296071\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.369457\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.054395\n", + "Epoch : 131 [28/36(78%)]\tLoss: 0.491294\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.099348\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.148014\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.266024\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.029238\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.048622\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.115927\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.259786\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.044733\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.280872\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.067169\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.208407\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.219595\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.039789\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.032128\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.112294\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.108873\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.142538\n", + "Epoch : 133 [28/36(78%)]\tLoss: 0.299966\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.067290\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.077977\n", + "Epoch : 134 [4/36(11%)]\tLoss: 0.602418\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.285343\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.301284\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.118943\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.037711\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.351414\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.690217\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.122347\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.179407\n", + "Epoch : 135 [4/36(11%)]\tLoss: 0.368611\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.447390\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.573371\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.142610\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.076752\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.091456\n", + "Epoch : 135 [28/36(78%)]\tLoss: 0.501237\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.425766\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.344495\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.425801\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.304393\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.643385\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.260239\n", + "Epoch : 136 [20/36(56%)]\tLoss: 0.108308\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.052601\n", + "Epoch : 136 [28/36(78%)]\tLoss: 0.417574\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.538874\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.337470\n", + "Epoch : 137 [4/36(11%)]\tLoss: 0.225723\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.181831\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.227077\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.252939\n", + "Epoch : 137 [20/36(56%)]\tLoss: 0.154232\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.056429\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.203698\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.085032\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.280657\n", + "Epoch : 138 [4/36(11%)]\tLoss: 0.348434\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.077367\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.353557\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.242745\n", + "Epoch : 138 [20/36(56%)]\tLoss: 0.377659\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.326760\n", + "Epoch : 138 [28/36(78%)]\tLoss: 0.261116\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.039732\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.172420\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.551046\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.468180\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.208500\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.070513\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.273778\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.665008\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.504763\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.100592\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.161505\n", + "Epoch : 140 [4/36(11%)]\tLoss: 0.490944\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.118742\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.150294\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.024130\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.041191\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.144893\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.174645\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.190375\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.184361\n", + "Epoch : 141 [4/36(11%)]\tLoss: 0.175660\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.052373\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.126840\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.048932\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.004078\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.208174\n", + "Epoch : 141 [28/36(78%)]\tLoss: 0.438563\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.315590\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.212502\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.388865\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.554425\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.385303\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.237346\n", + "Epoch : 142 [20/36(56%)]\tLoss: 0.005521\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.285374\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.547101\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.718612\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.158075\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.095546\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.277150\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.452845\n", + "Epoch : 143 [16/36(44%)]\tLoss: 1.107589\n", + "Epoch : 143 [20/36(56%)]\tLoss: 0.765814\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.479638\n", + "Epoch : 143 [28/36(78%)]\tLoss: 1.295234\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.830299\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.668582\n", + "Epoch : 144 [4/36(11%)]\tLoss: 0.479996\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.340356\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.417905\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.773232\n", + "Epoch : 144 [20/36(56%)]\tLoss: 0.701948\n", + "Epoch : 144 [24/36(67%)]\tLoss: 1.850685\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.557239\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.229089\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.755722\n", + "Epoch : 145 [4/36(11%)]\tLoss: 1.502325\n", + "Epoch : 145 [8/36(22%)]\tLoss: 1.834995\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.601102\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.430494\n", + "Epoch : 145 [20/36(56%)]\tLoss: 1.055566\n", + "Epoch : 145 [24/36(67%)]\tLoss: 2.952103\n", + "Epoch : 145 [28/36(78%)]\tLoss: 1.551479\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.474689\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.386815\n", + "Epoch : 146 [4/36(11%)]\tLoss: 1.568366\n", + "Epoch : 146 [8/36(22%)]\tLoss: 3.858020\n", + "Epoch : 146 [12/36(33%)]\tLoss: 1.904857\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.398824\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.066750\n", + "Epoch : 146 [24/36(67%)]\tLoss: 1.324936\n", + "Epoch : 146 [28/36(78%)]\tLoss: 2.532109\n", + "Epoch : 146 [32/36(89%)]\tLoss: 4.765606\n", + "Epoch : 147 [0/36(0%)]\tLoss: 1.457372\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.556567\n", + "Epoch : 147 [8/36(22%)]\tLoss: 2.292585\n", + "Epoch : 147 [12/36(33%)]\tLoss: 4.161591\n", + "Epoch : 147 [16/36(44%)]\tLoss: 5.659739\n", + "Epoch : 147 [20/36(56%)]\tLoss: 1.782422\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.591082\n", + "Epoch : 147 [28/36(78%)]\tLoss: 3.539562\n", + "Epoch : 147 [32/36(89%)]\tLoss: 7.365869\n", + "Epoch : 148 [0/36(0%)]\tLoss: 3.606438\n", + "Epoch : 148 [4/36(11%)]\tLoss: 1.306701\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.880968\n", + "Epoch : 148 [12/36(33%)]\tLoss: 2.374666\n", + "Epoch : 148 [16/36(44%)]\tLoss: 6.808629\n", + "Epoch : 148 [20/36(56%)]\tLoss: 4.629188\n", + "Epoch : 148 [24/36(67%)]\tLoss: 1.138486\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.973117\n", + "Epoch : 148 [32/36(89%)]\tLoss: 5.704468\n", + "Epoch : 149 [0/36(0%)]\tLoss: 6.284386\n", + "Epoch : 149 [4/36(11%)]\tLoss: 3.748318\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.304721\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.828287\n", + "Epoch : 149 [16/36(44%)]\tLoss: 4.537404\n", + "Epoch : 149 [20/36(56%)]\tLoss: 6.042223\n", + "Epoch : 149 [24/36(67%)]\tLoss: 2.609040\n", + "Epoch : 149 [28/36(78%)]\tLoss: 0.530469\n", + "Epoch : 149 [32/36(89%)]\tLoss: 2.557973\n", + "--- 0.08562923272450765 minutes ---\n" ] } ], @@ -2152,12 +2145,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBqElEQVR4nOzdd3hTZRsG8Dvde1Chg1GG7C3LiiwFEZWtKKIiojgqCDgRBUT8QFyIVEBFEAVFQBBRQEBARUBkyd6yyoa2dK/z/fH05CRt2iZtdu/fdfU6ycnpyZtSmtzneYdOURQFRERERERERGRXHo5uABEREREREVFFxEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBOREREROSCOnfujM6dO5t9bJMmTWzboAI1a9bE448/bpfnInJ1DOREFci8efOg0+mg0+nw559/FnlcURRUr14dOp0O9913n35/amoqxo8fjyZNmiAwMBARERFo0aIFXnjhBSQmJuqPmzBhgv78pr4uXLhgl9dJRERkLvW98Z9//nF0U8otMTEREyZMwO7dux3dFKupWbMmdDodunbtavLxzz//XP85o/C/4Z9//okePXqgatWq8PPzQ40aNdCzZ08sXLjQ6LiSPrs888wzNnttRADg5egGEJH9+fn5YeHChbj99tuN9m/atAlnz56Fr6+vfl9OTg46duyIQ4cOYfDgwRg+fDhSU1Oxf/9+LFy4EH379kVMTIzReWbOnImgoKAizxsWFmaT10NERFQR/frrr0b3ExMT8dZbb6FmzZpo0aKFYxoF4PDhw/DwsF7dz8/PDxs2bMCFCxcQFRVl9NiCBQvg5+eHzMxMo/2LFy/Ggw8+qC8ghIeH4+TJk/j999/x+eef4+GHHzY6vlu3bnjssceKPHe9evWs9jqITGEgJ6qA7rnnHixevBjTp0+Hl5f2Z2DhwoVo1aoVrly5ot+3fPly7Nq1CwsWLCjy5pWZmYns7Owi57///vtx00032e4FEBERVWDp6ekICAiAj4+Po5tikuGFfWto3749tm/fjkWLFuGFF17Q7z979iz++OMP9O3bF0uXLjX6ngkTJqBRo0bYunVrkZ/TpUuXijxHvXr18Mgjj1i13UTmYJd1ogpo4MCBuHr1KtauXavfl52djSVLlhQJ3cePHwcgb4aF+fn5ISQkxLaNJSIicgK7du1Cjx49EBISgqCgINx5553YunVrkeP+/fdfdOrUCf7+/qhWrRomTZqEuXPnQqfT4b///tMf9+OPP+Lee+9FTEwMfH19UadOHbz99tvIy8szOp869nvHjh3o2LEjAgIC8Prrr+sfU8eQb9y4EW3atAEADBkyRN/let68eUbnO3DgALp06YKAgABUrVoVU6dONXp848aN0Ol0+P777/HWW2+hatWqCA4Oxv3334/k5GRkZWVh5MiRqFKlCoKCgjBkyBBkZWUZncPUGPKkpCSMGjUKNWvWhK+vL6pVq4bHHnvMqAhQHD8/P/Tr169IV/Nvv/0W4eHh6N69e5HvOX78ONq0aWPyokWVKlVKfU4ie2GFnKgCqlmzJuLi4vDtt9+iR48eAIBVq1YhOTkZDz30EKZPn64/NjY2FgAwf/58vPHGG9DpdKWe/9q1a0X2eXl5scs6ERG5pP3796NDhw4ICQnBK6+8Am9vb8yePRudO3fGpk2b0K5dOwDAuXPn0KVLF+h0OowZMwaBgYH44osvTFaM582bh6CgIIwePRpBQUH47bffMG7cOKSkpOC9994zOvbq1avo0aMHHnroITzyyCOIjIwscr6GDRti4sSJGDduHIYNG4YOHToAAG677Tb9MdevX8fdd9+Nfv36YcCAAViyZAleffVVNG3aVP95QDV58mT4+/vjtddew7Fjx/DJJ5/A29sbHh4euH79OiZMmICtW7di3rx5qFWrFsaNG1fszy81NRUdOnTAwYMH8cQTT+CWW27BlStXsGLFCpw9e9asXnUPP/ww7rrrLhw/fhx16tQBID377r//fnh7exc5PjY2FuvXr8fZs2dRrVq1Us+fmZlp8uJASEiI0/ZEIDehEFGFMXfuXAWAsn37dmXGjBlKcHCwkp6eriiKojzwwANKly5dFEVRlNjYWOXee+9VFEVR0tPTlfr16ysAlNjYWOXxxx9X5syZo1y8eLHI+cePH68AMPlVv359+71QIiIiMxm+NxanT58+io+Pj3L8+HH9vsTERCU4OFjp2LGjft/w4cMVnU6n7Nq1S7/v6tWrSqVKlRQAysmTJ/X71fdfQ08//bQSEBCgZGZm6vd16tRJAaDMmjWryPGdOnVSOnXqpL+/fft2BYAyd+5ck8cCUObPn6/fl5WVpURFRSn9+/fX79uwYYMCQGnSpImSnZ2t3z9w4EBFp9MpPXr0MDpvXFycEhsba7QvNjZWGTx4sP7+uHHjFADKDz/8UKRd+fn5RfYVPte9996r5ObmKlFRUcrbb7+tKIqiHDhwQAGgbNq0yeS/4Zw5cxQAio+Pj9KlSxflzTffVP744w8lLy+vyHMU99kFgPLtt9+W2D6i8mKXdaIKasCAAcjIyMDKlStx48YNrFy5skh3dQDw9/fHtm3b8PLLLwOQK/pDhw5FdHQ0hg8fXqSbGgAsXboUa9euNfqaO3euzV8TERGRteXl5eHXX39Fnz59ULt2bf3+6OhoPPzww/jzzz+RkpICAFi9ejXi4uKMJlSrVKkSBg0aVOS8/v7++ts3btzAlStX0KFDB6Snp+PQoUNGx/r6+mLIkCHlfi1BQUFG46R9fHzQtm1bnDhxosixjz32mFHluV27dlAUBU888YTRce3atcOZM2eQm5tb7PMuXboUzZs3R9++fYs8Zk7POwDw9PTEgAED8O233wKQydyqV6+u7wlQ2BNPPIHVq1ejc+fO+PPPP/H222+jQ4cOqFu3Lv76668ix/fu3bvIZ5e1a9eiS5cuZrWPqKzYZZ2ogqpcuTK6du2KhQsXIj09HXl5ebj//vtNHhsaGoqpU6di6tSpOHXqFNavX4/3338fM2bMQGhoKCZNmmR0fMeOHTmpGxERuYXLly8jPT0d9evXL/JYw4YNkZ+fjzNnzqBx48Y4deoU4uLiihx38803F9m3f/9+vPHGG/jtt9/0gV6VnJxsdL9q1apW6TZdrVq1IgE4PDwc//77b5Fja9SoYXQ/NDQUAFC9evUi+/Pz85GcnIyIiAiTz3v8+HH079+/PE0HIN3Wp0+fjj179mDhwoV46KGHSgz03bt3R/fu3ZGeno4dO3Zg0aJFmDVrFu677z4cOnTIaCx5tWrVil1ajciWWCEnqsAefvhhrFq1CrNmzUKPHj3MGuMdGxuLJ554Aps3b0ZYWBgWLFhg+4YSERG5kaSkJHTq1Al79uzBxIkT8dNPP2Ht2rV49913AQD5+flGxxtW08vD09PT5H5FUcw+1pJzWFu7du1Qp04djBw5EidPnjTZs8+UgIAAdOjQATNmzMAbb7yB69evY9WqVTZuLZF5WCEnqsD69u2Lp59+Glu3bsWiRYss+t7w8HDUqVMH+/bts1HriIiIHK9y5coICAjA4cOHizx26NAheHh46KvGsbGxOHbsWJHjCu/buHEjrl69ih9++AEdO3bU7z958mS52mpu9297s+bnhYEDB2LSpElo2LBhmdZab926NQDg/PnzVmkPUXmxQk5UgQUFBWHmzJmYMGECevbsafKYPXv2mJx19NSpUzhw4IDJLnxERETuwtPTE3fddRd+/PFHo2XLLl68iIULF+L222/XLwHavXt3bNmyBbt379Yfd+3atSK9ydQqs2FVOTs7G59++mm52hoYGAhAKvDOpH///tizZw+WLVtW5DFLK+tPPvkkxo8fjw8++KDE49avX29y/y+//AIA/PxCToMVcqIKbvDgwSU+vnbtWowfPx69evXCrbfeiqCgIJw4cQJffvklsrKyMGHChCLfs2TJEgQFBRXZ361bN5NLtRARETnal19+idWrVxfZ/8ILL2DSpElYu3Ytbr/9djz33HPw8vLC7NmzkZWVZbSO9yuvvIJvvvkG3bp1w/Dhw/XLntWoUQPXrl3TV7Bvu+02hIeHY/DgwRgxYgR0Oh2+/vrrcnf7rlOnDsLCwjBr1iwEBwcjMDAQ7dq1Q61atcp13vJ6+eWXsWTJEjzwwAN44okn0KpVK1y7dg0rVqzArFmz0Lx5c7PPFRsba/KzR2G9e/dGrVq10LNnT9SpUwdpaWlYt24dfvrpJ7Rp06ZIIeLIkSP45ptvipwnMjIS3bp1M7t9RJZiICeiEvXv3x83btzAr7/+it9++w3Xrl1DeHg42rZtixdffNHk7KPPPvusyXNt2LCBgZyIiJzSzJkzTe5//PHH0bhxY/zxxx8YM2YMJk+ejPz8fLRr1w7ffPONfg1yQCY827BhA0aMGIH//e9/qFy5MuLj4xEYGIgRI0bAz88PABAREYGVK1fixRdfxBtvvIHw8HA88sgjuPPOO9G9e/cyvwZvb2989dVXGDNmDJ555hnk5uZi7ty5Dg/kQUFB+OOPPzB+/HgsW7YMX331FapUqYI777zTrDXCy+KLL77Ajz/+iO+//x6JiYlQFAW1a9fG2LFj8eqrr8LLyzgGqbOqF9apUycGcrIpnWKPGRiIiIiIiCqokSNHYvbs2UhNTS12UjQiqpg4hpyIiIiIyEoyMjKM7l+9ehVff/01br/9doZxIiqCXdaJiIiIiKwkLi4OnTt3RsOGDXHx4kXMmTMHKSkpePPNNx3dNCJyQgzkRERERERWcs8992DJkiX47LPPoNPpcMstt2DOnDlGy5sREak4hpyIiIiIiIjIATiGnIiIiIiIiMgBGMiJiIiIiIiIHMDtx5Dn5+cjMTERwcHB0Ol0jm4OERERFEXBjRs3EBMTAw8PXhsvL77XExGRszH3vd7tA3liYiKqV6/u6GYQEREVcebMGVSrVs3RzXB5fK8nIiJnVdp7vdsH8uDgYADygwgJCXFwa4iIiICUlBRUr15d/x5F5cP3eiIicjbmvte7fSBXu66FhITwTZqIiJwKu1dbB9/riYjIWZX2Xs+Ba0REROSSEhIS0KhRI7Rp08bRTSEiIioTBnIiIiJySfHx8Thw4AC2b9/u6KYQERGVCQM5ERERERERkQO4/RhyIiJzKYqC3Nxc5OXlObop5OI8PT3h5eXFMeJERE6G7/VkLdZ6r2cgJyICkJ2djfPnzyM9Pd3RTSE3ERAQgOjoaPj4+Di6KUREBL7Xk/VZ472egZyIKrz8/HycPHkSnp6eiImJgY+PDyubVGaKoiA7OxuXL1/GyZMnUbduXXh4cIQYEZEj8b2erMma7/UM5ERU4WVnZyM/Px/Vq1dHQECAo5tDbsDf3x/e3t44deoUsrOz4efn5+gmERFVaHyvJ2uz1ns9L9kTERVgFZOsib9Ptsdlz4jIUvzbTNZkjd8n/kYSERGRS+KyZ0RE5OoYyImIiIiIiIgcgIGciIj0atasiWnTppl9/MaNG6HT6ZCUlGSzNgHAvHnzEBYWZtPnICIiqij4fu88GMiJiFyQTqcr8WvChAllOu/27dsxbNgws4+/7bbbcP78eYSGhpbp+YiIiKh4fL93f5xlnYjIBZ0/f15/e9GiRRg3bhwOHz6s3xcUFKS/rSgK8vLy4OVV+p/8ypUrW9QOHx8fREVFWfQ9REREZB6+37s/Vsgt0KED0LQpcPKko1tCRLakKEBammO+FMW8NkZFRem/QkNDodPp9PcPHTqE4OBgrFq1Cq1atYKvry/+/PNPHD9+HL1790ZkZCSCgoLQpk0brFu3zui8hbuw6XQ6fPHFF+jbty8CAgJQt25drFixQv944S5salezNWvWoGHDhggKCsLdd99t9IEiNzcXI0aMQFhYGCIiIvDqq69i8ODB6NOnj0X/TjNnzkSdOnXg4+OD+vXr4+uvvzb4N1QwYcIE1KhRA76+voiJicGIESP0j3/66aeoW7cu/Pz8EBkZifvvv9+i5yb39eqr8l6/cKGjW0JEtuao93tz3+sBvt8D7v9+z0BugQMHgH37gMxMR7eEiGwpPR0ICnLMV3q69V7Ha6+9hilTpuDgwYNo1qwZUlNTcc8992D9+vXYtWsX7r77bvTs2ROnT58u8TxvvfUWBgwYgH///Rf33HMPBg0ahGvXrpXw80vH+++/j6+//hq///47Tp8+jZdeekn/+LvvvosFCxZg7ty52Lx5M1JSUrB8+XKLXtuyZcvwwgsv4MUXX8S+ffvw9NNPY8iQIdiwYQMAYOnSpfjoo48we/ZsHD16FMuXL0fTpk0BAP/88w9GjBiBiRMn4vDhw1i9ejU6duxo0fOT+zpzRt7rL11ydEuIyNYc9X5vzfd6gO/3Lv9+r7i55ORkBYCSnJxc7nPddJOiAIqyb58VGkZETiMjI0M5cOCAkpGRoSiKoqSmyv91R3ylplre/rlz5yqhoaH6+xs2bFAAKMuXLy/1exs3bqx88skn+vuxsbHKRx99pL8PQHnjjTf091NTUxUAyqpVq4ye6/r16/q2AFCOHTum/56EhAQlMjJSfz8yMlJ577339Pdzc3OVGjVqKL179zb7Nd52223KU089ZXTMAw88oNxzzz2KoijKBx98oNSrV0/Jzs4ucq6lS5cqISEhSkpKSrHPZw2Ff68MWfO9qSKbMWOG0rBhQ6VevXpW+3kOHiz/F999t/ztIyLnYepvsqPe78vyXq8ofL9XOdP7vTXe6x1eIT937hweeeQRREREwN/fH02bNsU///yjf1xRFIwbNw7R0dHw9/dH165dcfToUYe0VV33PS/PIU9PRHYSEACkpjrmKyDAeq+jdevWRvdTU1Px0ksvoWHDhggLC0NQUBAOHjxY6hXzZs2a6W8HBgYiJCQEl0ooHwYEBKBOnTr6+9HR0frjk5OTcfHiRbRt21b/uKenJ1q1amXRazt48CDat29vtK99+/Y4ePAgAOCBBx5ARkYGateujaeeegrLli1Dbm4uAKBbt26IjY1F7dq18eijj2LBggVIt3a5guzCFuuQe3vLNifHaqckIiflqPd7a77XA3y/d/X3e4cG8uvXr6N9+/bw9vbGqlWrcODAAXzwwQcIDw/XHzN16lRMnz4ds2bNwrZt2xAYGIju3bsj0wH9xj09ZZufb/enJiI70umAwEDHfOl01nsdgYGBRvdfeuklLFu2DP/73//wxx9/YPfu3WjatCmys7NLPI+3mlD0Px8d8kv4Q2jqeMWSAXNWUL16dRw+fBiffvop/P398dxzz6Fjx47IyclBcHAwdu7ciW+//RbR0dEYN24cmjdvbvOlXMg1+PjItpT/FkTkBhz1fm/N93qA7/eu/n7v0ED+7rvvonr16pg7dy7atm2LWrVq4a677tJfaVEUBdOmTcMbb7yB3r17o1mzZpg/fz4SExMtHn9gDWqFnIGciFzR5s2b8fjjj6Nv375o2rQpoqKi8N9//9m1DaGhoYiMjDSqaObl5WHnzp0Wnadhw4bYvHmz0b7NmzejUaNG+vv+/v7o2bMnpk+fjo0bN2LLli3Yu3cvAMDLywtdu3bF1KlT8e+//+K///7Db7/9Vo5XRu5CDeSskBORq+L7vWu93zt02bMVK1age/fueOCBB7Bp0yZUrVoVzz33HJ566ikAwMmTJ3HhwgV07dpV/z2hoaFo164dtmzZgoceeqjIObOyspCVlaW/n5KSYrX2MpATkSurW7cufvjhB/Ts2RM6nQ5vvvlmiVe+bWX48OGYPHkybr75ZjRo0ACffPIJrl+/Dp0FJYOXX34ZAwYMQMuWLdG1a1f89NNP+OGHH/SzyM6bNw95eXlo164dAgIC8M0338Df3x+xsbFYuXIlTpw4gY4dOyI8PBy//PIL8vPzUb9+fVu9ZHIhasGHFXIiclV8v3et93uHVshPnDiBmTNnom7dulizZg2effZZjBgxAl999RUA4MKFCwCAyMhIo++LjIzUP1bY5MmTERoaqv+qXr261drLQE5EruzDDz9EeHg4brvtNvTs2RPdu3fHLbfcYvd2vPrqqxg4cCAee+wxxMXFISgoCN27d4efn5/Z5+jTpw8+/vhjvP/++2jcuDFmz56NuXPnonPnzgCAsLAwfP7552jfvj2aNWuGdevW4aeffkJERATCwsLwww8/4I477kDDhg0xa9YsfPvtt2jcuLGNXjG5ElbIicjV8f3etd7vdYq9O/ob8PHxQevWrfHXX3/p940YMQLbt2/Hli1b8Ndff6F9+/ZITExEdHS0/pgBAwZAp9Nh0aJFRc5pqkJevXp1JCcnIyQkpFztrV1b1iDfsgW49dZynYqInEhmZiZOnjyJWrVqWfQmQdaRn5+Phg0bYsCAAXj77bcd3RyrKen3KiUlBaGhoVZ5byLr/jzfeguYMAF45hlg5kzrtI+IHI/v9Y7nju/31nivd2iX9ejoaKP+/4CME1i6dCkAICoqCgBw8eJFo0B+8eJFtGjRwuQ5fX194evra5P2skJORFR+p06dwq+//opOnTohKysLM2bMwMmTJ/Hwww87umlErJATEVkJ3+/N49Au6+3bt8fhw4eN9h05cgSxsbEAgFq1aiEqKgrr16/XP56SkoJt27YhLi7Orm0FGMiJiKzBw8MD8+bNQ5s2bdC+fXvs3bsX69atQ8OGDR3dNCKOIScishK+35vHoRXyUaNG4bbbbsP//vc/DBgwAH///Tc+++wzfPbZZwBk6vyRI0di0qRJqFu3LmrVqoU333wTMTEx6NOnj93by0BORFR+1atXLzJjKpGzYIWciMg6+H5vHocG8jZt2mDZsmUYM2YMJk6ciFq1amHatGkYNGiQ/phXXnkFaWlpGDZsGJKSknD77bdj9erVDhn7wUBORETkPBISEpCQkIC8vDyrnZMVciIisieHBnIAuO+++3DfffcV+7hOp8PEiRMxceJEO7bKNDWQW/F9n4iIiMooPj4e8fHx+olzrEGtkDOQExGRPTh0DLmr8fSULSvkRERE7kmtkLPLOhER2QMDuQXYZZ2IiMi9sUJORET2xEBuAQZyIiIi98YKORER2RMDuQUYyImIiNwbK+RERGRPDOQWYCAnInfTuXNnjBw5Un+/Zs2amDZtWonfo9PpsHz58nI/t7XOU5IJEyagRYsWNn0Oci+skBORO+L7vfNiILcAAzkROYuePXvi7rvvNvnYH3/8AZ1Oh3///dfi827fvh3Dhg0rb/OMFPcmef78efTo0cOqz0VUXqyQE5Ez4fu9+2MgtwADORE5i6FDh2Lt2rU4e/Zskcfmzp2L1q1bo1mzZhaft3LlyggICLBGE0sVFRUFX19fuzwXkblYISciZ8L3e/fHQG4BBnKiCkJRgLQ0x3wpillNvO+++1C5cmXMmzfPaH9qaioWL16MoUOH4urVqxg4cCCqVq2KgIAANG3aFN9++22J5y3che3o0aPo2LEj/Pz80KhRI6xdu7bI97z66quoV68eAgICULt2bbz55pvIKUgz8+bNw1tvvYU9e/ZAp9NBp9Pp21y4C9vevXtxxx13wN/fHxERERg2bBhSU1P1jz/++OPo06cP3n//fURHRyMiIgLx8fH65zJHfn4+Jk6ciGrVqsHX1xctWrTA6tWr9Y9nZ2fj+eefR3R0NPz8/BAbG4vJkycDABRFwYQJE1CjRg34+voiJiYGI0aMMPu5yTWwQk5UgTjq/d7M93qA7/cV4f3ey2ZndkMM5EQVRHo6EBTkmOdOTQUCA0s9zMvLC4899hjmzZuHsWPHQqfTAQAWL16MvLw8DBw4EKmpqWjVqhVeffVVhISE4Oeff8ajjz6KOnXqoG3btqU+R35+Pvr164fIyEhs27YNycnJRuPPVMHBwZg3bx5iYmKwd+9ePPXUUwgODsYrr7yCBx98EPv27cPq1auxbt06AEBoaGiRc6SlpaF79+6Ii4vD9u3bcenSJTz55JN4/vnnjT6EbNiwAdHR0diwYQOOHTuGBx98EC1atMBTTz1V6usBgI8//hgffPABZs+ejZYtW+LLL79Er169sH//ftStWxfTp0/HihUr8P3336NGjRo4c+YMzpw5AwBYunQpPvroI3z33Xdo3LgxLly4gD179pj1vOQ61EDOCjlRBeCo93sz3+sBvt9XiPd7xc0lJycrAJTk5ORyn6tzZ0UBFOXbb63QMCJyGhkZGcqBAweUjIwM2ZGaKv/ZHfGVmmp2uw8ePKgAUDZs2KDf16FDB+WRRx4p9nvuvfde5cUXX9Tf79Spk/LCCy/o78fGxiofffSRoiiKsmbNGsXLy0s5d+6c/vFVq1YpAJRly5YV+xzvvfee0qpVK/398ePHK82bNy9ynOF5PvvsMyU8PFxJNXj9P//8s+Lh4aFcuHBBURRFGTx4sBIbG6vk5ubqj3nggQeUBx98sNi2FH7umJgY5Z133jE6pk2bNspzzz2nKIqiDB8+XLnjjjuU/Pz8Iuf64IMPlHr16inZ2dnFPp+hIr9XBqz53lSRzZgxQ2nYsKFSr149q/089+6V/4qVK1uhgUTkNEz+TXbU+70F7/WKwvd7RXHe93trvNezy7oFPD1lywo5kZsLCJCr1474smA8V4MGDXDbbbfhyy+/BAAcO3YMf/zxB4YOHQoAyMvLw9tvv42mTZuiUqVKCAoKwpo1a3D69Gmzzn/w4EFUr14dMTEx+n1xcXFFjlu0aBHat2+PqKgoBAUF4Y033jD7OQyfq3nz5gg0qBi0b98e+fn5OHz4sH5f48aN4an+MQYQHR2NS5cumfUcKSkpSExMRPv27Y32t2/fHgcPHgQg3eR2796N+vXrY8SIEfj111/1xz3wwAPIyMhA7dq18dRTT2HZsmXIzc216HWSdcXHx+PAgQPYvn271c7JCjlRBeKo93sLx27z/d693+8ZyC3ALutEFYROJ13JHPFV0BXNXEOHDsXSpUtx48YNzJ07F3Xq1EGnTp0AAO+99x4+/vhjvPrqq9iwYQN2796N7t27I9uKg2O3bNmCQYMG4Z577sHKlSuxa9cujB071qrPYchbnXGrgE6nQ74V/yjfcsstOHnyJN5++21kZGRgwIABuP/++wEA1atXx+HDh/Hpp5/C398fzz33HDp27GjRmDZyfuqvGMeQE1UAjnq/t/C9HuD7vTu/3zOQW4CBnIiczYABA+Dh4YGFCxdi/vz5eOKJJ/TjyzZv3ozevXvjkUceQfPmzVG7dm0cOXLE7HM3bNgQZ86cwfnz5/X7tm7danTMX3/9hdjYWIwdOxatW7dG3bp1cerUKaNjfHx8kJeXV+pz7dmzB2lpafp9mzdvhoeHB+rXr292m0sSEhKCmJgYbN682Wj/5s2b0ahRI6PjHnzwQXz++edYtGgRli5dimvXrgEA/P390bNnT0yfPh0bN27Eli1bsHfvXqu0j5wDK+RE5Iz4fm8+V3u/56RuFmAgJyJnExQUhAcffBBjxoxBSkoKHn/8cf1jdevWxZIlS/DXX38hPDwcH374IS5evGj0ZlSSrl27ol69ehg8eDDee+89pKSkYOzYsUbH1K1bF6dPn8Z3332HNm3a4Oeff8ayZcuMjqlZsyZOnjyJ3bt3o1q1aggODi6y/MmgQYMwfvx4DB48GBMmTMDly5cxfPhwPProo4iMjCzbD8eEl19+GePHj0edOnXQokULzJ07F7t378aCBQsAAB9++CGio6PRsmVLeHh4YPHixYiKikJYWBjmzZuHvLw8tGvXDgEBAfjmm2/g7++P2NhYq7WPHM9w2TNFKVMhi4jI6vh+bxlXer9nhdwCDORE5IyGDh2K69evo3v37kbjv9544w3ccsst6N69Ozp37oyoqCj06dPH7PN6eHhg2bJlyMjIQNu2bfHkk0/inXfeMTqmV69eGDVqFJ5//nm0aNECf/31F958802jY/r374+7774bXbp0QeXKlU0uxRIQEIA1a9bg2rVraNOmDe6//37ceeedmDFjhmU/jFKMGDECo0ePxosvvoimTZti9erVWLFiBerWrQtAZpCdOnUqWrdujTZt2uC///7DL7/8Ag8PD4SFheHzzz9H+/bt0axZM6xbtw4//fQTIiIirNpGciy1Qg4AnCKAiJwJ3+/N50rv9zpFsWAhPBeUkpKC0NBQJCcnIyQkpFzn6tUL+Okn4PPPgSeftFIDicjhMjMzcfLkSdSqVQt+fn6Obg65iZJ+r6z53kTW/XmmpWmrIFmwMhEROTm+15MtWOO9nhVyC7BCTkRE5N4MK+Sc2I2IiGyNgdwCDORERETuzctgdh1O7EZERLbGQG4BBnIiIiL3ptNx6TMiIrIfBnILqIG8lNn8iYiIyIUZzrRORERkSwzkFvD0lC0r5ETuyc3nuCQ74++T61LHkbNCTuR++LeZrMkav08M5BZgl3Ui9+RdUA5LT093cEvInai/T+rvF7kOVsiJ3A/f68kWrPFe71X6IaRiICdyT56enggLC8OlS5cAyBqZOp3Owa0iV6UoCtLT03Hp0iWEhYXBU+1eRS6DFXIi98P3erIma77XM5BbgIGcyH1FRUUBgP6Nmqi8wsLC9L9X5FpYISdyT3yvJ2uzxns9A7kFGMiJ3JdOp0N0dDSqVKmCHH4Kp3Ly9vZmZdwOEhISkJCQgDwrz7bKCjmRe+J7PVmTtd7rGcgtwEBO5P48PT0ZpIhcRHx8POLj45GSkoLQ0FCrnVcN5Py8TuSe+F5PzoSTulmAgZyIiMj9cR1yIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gBrIrTx3DBERETkRVsiJiMheGMgtoM79wAo5ERGR+2KFnIiI7IWB3ALssk5EROT+uOwZERHZCwO5BRjIiYiI3J9aIWeXdSIisjUGcgswkBMREbk/VsiJiMheGMgtwEBORETk/lghJyIie2EgtwADORERkftjhZyIiOyFgdwCDORERETujxVyIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gKenbBnIiYiI3Bcr5EREZC8M5BZQK+R5eY5tBxEREdkOK+RERGQvDOQWYJd1IiIi98cKORER2QsDuQUYyImIiNyfGshZISciIltjILcAAzkREZH7U7uss0JORES2xkBuAQZyIiIi98cKORER2QsDuQUYyImIiNwfK+RERGQvDg3kEyZMgE6nM/pq0KCB/vHMzEzEx8cjIiICQUFB6N+/Py5evOiw9jKQExEROY+EhAQ0atQIbdq0sep5OakbERHZi8Mr5I0bN8b58+f1X3/++af+sVGjRuGnn37C4sWLsWnTJiQmJqJfv34OaysDORERkfOIj4/HgQMHsH37dquel8ueERGRvXg5vAFeXoiKiiqyPzk5GXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvt3VQGciIiogqAFXIiIrIXh1fIjx49ipiYGNSuXRuDBg3C6dOnAQA7duxATk4Ounbtqj+2QYMGqFGjBrZs2VLs+bKyspCSkmL0ZS2enrJlICciInJfrJATEZG9ODSQt2vXDvPmzcPq1asxc+ZMnDx5Eh06dMCNGzdw4cIF+Pj4ICwszOh7IiMjceHChWLPOXnyZISGhuq/qlevbrX2qhXyvDyrnZKIiIicDCvkRERkLw7tst6jRw/97WbNmqFdu3aIjY3F999/D39//zKdc8yYMRg9erT+fkpKitVCObusExERuT9WyImIyF4c3mXdUFhYGOrVq4djx44hKioK2dnZSEpKMjrm4sWLJsecq3x9fRESEmL0ZS0M5ERERO6PFXIiIrIXpwrkqampOH78OKKjo9GqVSt4e3tj/fr1+scPHz6M06dPIy4uziHtYyAnIiJyf6yQExGRvTi0y/pLL72Enj17IjY2FomJiRg/fjw8PT0xcOBAhIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6ZYR1gICciIqoIWCEnIiJ7cWggP3v2LAYOHIirV6+icuXKuP3227F161ZUrlwZAPDRRx/Bw8MD/fv3R1ZWFrp3745PP/3UYe1lICciInJ/rJATEZG9ODSQf/fddyU+7ufnh4SEBCQkJNipRSVjICciInJ/rJATEZG9ONUYcmfHQE5EROT+WCEnIiJ7YSC3AAM5ERGR+2OFnIiI7IWB3AKenrJlICciInJfaiDPyQEUxbFtISIi98ZAbgG1Qp6X59h2EBERke2oXdYVhe/5RERkWwzkFmCXdSIiIvenVsgBjiMnIiLbYiC3AAM5ERGR+1Mr5ADHkRMRkW0xkFuAgZyIiMj9MZATEZG9MJBbgIGciIjI/Xl4aBO5sss6ERHZEgO5BRjIiYiIKgYufUZERPbAQG4BBnIiIqKKQe22zgo5ERHZEgO5BRjIiYiIKgZWyImIyB4YyC3AQE5ERFQxsEJORET2wEBuAXWCFwZyIiIi98YKORER2QMDuQXUCnlenmPbQURERLbFCjkREdkDA7kF2GWdiIioYmCFnIiI7IGB3AIM5ERERBUDK+RERGQPDOQWYCAnIiKqGFghJyIie2AgtwADORERUcXACjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMREdlG3759ER4ejvvvv9/RTQGgdVlnhZyIiGyJgdwCDORERES28cILL2D+/PmOboYeu6wTEZE9MJBbwNNTtgzkRERE1tW5c2cEBwc7uhl6nNSNiIjsgYHcAmqFPC/Pse0gIiJyJr///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8/fff9m+oBVghJyIie2AgtwC7rBMRERWVlpaG5s2bIyEhweTjixYtwujRozF+/Hjs3LkTzZs3R/fu3XHp0qUyPV9WVhZSUlKMvqyNFXIiIrIHBnILMJATEREV1aNHD0yaNAl9+/Y1+fiHH36Ip556CkOGDEGjRo0wa9YsBAQE4MsvvyzT802ePBmhoaH6r+rVq5en+SaxQk5ERPbAQG4BBnIiIiLLZGdnY8eOHejatat+n4eHB7p27YotW7aU6ZxjxoxBcnKy/uvMmTPWaq4eK+RERGQPXo5ugCthICciIrLMlStXkJeXh8jISKP9kZGROHTokP5+165dsWfPHqSlpaFatWpYvHgx4uLiTJ7T19cXvr6+Nm03K+RERGQPDOQWYCAnIiKyjXXr1jm6CUZYISciIntgl3ULMJATERFZ5qabboKnpycuXrxotP/ixYuIiopyUKtKxwo5ERHZAwO5BRjIiYiILOPj44NWrVph/fr1+n35+flYv359sV3SnQEr5EREZA/ssm4BBnIiIqKiUlNTcezYMf39kydPYvfu3ahUqRJq1KiB0aNHY/DgwWjdujXatm2LadOmIS0tDUOGDCnX8yYkJCAhIQF5eXnlfQlFsEJORET2wEBuAU9P2TKQExERaf755x906dJFf3/06NEAgMGDB2PevHl48MEHcfnyZYwbNw4XLlxAixYtsHr16iITvVkqPj4e8fHxSElJQWhoaLnOVRgr5EREZA8M5BbwMOjgn59vfJ+IiKii6ty5MxRFKfGY559/Hs8//7ydWlR+rJATEZE9MFJaoHAgJyIiIvfECjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMRETmPhIQENGrUCG3atLH6udUu66yQExGRLTGQW4CBnIiIyHnEx8fjwIED2L59u9XPzS7rRERkDwzkFmAgJyIiqhg4qRsREdkDA7kFGMiJiIgqBlbIiYjIHhjILeDpqd1mICciInJfrJATEZE9MJBbgBVyIiKiioEVciIisgcGcgvodNrtvDzHtYOIiIhsixVyIiKyBwZyC6lVclbIiYiIHMuWy56xQk5ERPbAQG4hBnIiIiLnYMtlz1ghJyIie2AgtxADORERkftjhZyIiOzBaQL5lClToNPpMHLkSP2+zMxMxMfHIyIiAkFBQejfvz8uXrzouEaCgZyIiKgiYIWciIjswSkC+fbt2zF79mw0a9bMaP+oUaPw008/YfHixdi0aRMSExPRr18/B7VSMJATERG5P1bIiYjIHhweyFNTUzFo0CB8/vnnCA8P1+9PTk7GnDlz8OGHH+KOO+5Aq1atMHfuXPz111/YunWrw9rLQE5EROT+1ECenw/k5jq2LURE5L4cHsjj4+Nx7733omvXrkb7d+zYgZycHKP9DRo0QI0aNbBly5Ziz5eVlYWUlBSjL2tiICciInJ/oaHa7aQkhzWDiIjcnEMD+XfffYedO3di8uTJRR67cOECfHx8EBYWZrQ/MjISFy5cKPackydPRmhoqP6revXqVm2zp6dsGciJiMiZ7dy5E3v37tXf//HHH9GnTx+8/vrryGY/7FJ5eWmh/OpVx7aFiIjcl8MC+ZkzZ/DCCy9gwYIF8PPzs9p5x4wZg+TkZP3XmTNnrHZugBVyIiJyDU8//TSOHDkCADhx4gQeeughBAQEYPHixXjllVcc3DrrsOU65ABQqZJsGciJiMhWHBbId+zYgUuXLuGWW26Bl5cXvLy8sGnTJkyfPh1eXl6IjIxEdnY2kgr1E7t48SKioqKKPa+vry9CQkKMvqxJDeR5eVY9LRERkVUdOXIELVq0AAAsXrwYHTt2xMKFCzFv3jwsXbrUsY2zEluuQw4AERGyZSAnIiJb8XLUE995551GXekAYMiQIWjQoAFeffVVVK9eHd7e3li/fj369+8PADh8+DBOnz6NuLg4RzQZACvkRETkGhRFQX7Bm9W6detw3333AQCqV6+OK1euOLJpLkMN5NeuObYdRETkvhwWyIODg9GkSROjfYGBgYiIiNDvHzp0KEaPHo1KlSohJCQEw4cPR1xcHG699VZHNBkAAzkREbmG1q1bY9KkSejatSs2bdqEmTNnAgBOnjyJyMhIB7fONbBCTkREtuawQG6Ojz76CB4eHujfvz+ysrLQvXt3fPrppw5tEwM5ERG5gmnTpmHQoEFYvnw5xo4di5tvvhkAsGTJEtx2220Obp1r4BhyIiKyNacK5Bs3bjS67+fnh4SEBCQkJDimQSYwkBMRkSto1qxZkaFhAPDee+/BU10yhErECjkREdmaw9chdzUM5ERE5ArOnDmDs2fP6u///fffGDlyJObPnw9vb28Htsx1MJATEZGtMZBbiIGciIhcwcMPP4wNGzYAAC5cuIBu3brh77//xtixYzFx4kQHt841cFI3IiKyNQZyCzGQExGRK9i3bx/atm0LAPj+++/RpEkT/PXXX1iwYAHmzZvn2Ma5CI4hJyIiW2Mgt5A67I6BnIiInFlOTg58fX0ByLJnvXr1AgA0aNAA58+fd2TTXIOioNWnQzENLzCQExGRzTCQW4gVciIicgWNGzfGrFmz8Mcff2Dt2rW4++67AQCJiYmIUPtiu7iEhAQ0atQIbdq0sf7J9+9H5Z++xAuYjuQrOdY/PxERERjILaYG8rw8x7aDiIioJO+++y5mz56Nzp07Y+DAgWjevDkAYMWKFfqu7K4uPj4eBw4cwPbt261/8r/+0t/MzcxBRob1n4KIiMiplj1zBayQExGRK+jcuTOuXLmClJQUhIeH6/cPGzYMAQEBDmyZizAI5D7IxrVrAaha1YHtISIit8RAbiEGciIichWenp7Izc3Fn3/+CQCoX78+atas6dhGuYpCgfzqVTCQExGR1bHLuoUYyImIyBWkpaXhiSeeQHR0NDp27IiOHTsiJiYGQ4cORXp6uqOb59wuXwaOHtXfVQM5ERGRtTGQW4iBnIiIXMHo0aOxadMm/PTTT0hKSkJSUhJ+/PFHbNq0CS+++KKjm+fctmwxuuuNHK5FTkRENsEu6xZiICciIlewdOlSLFmyBJ07d9bvu+eee+Dv748BAwZg5syZjmucszPorg6wQk5ERLbDCrmFGMiJiMgVpKenIzIyssj+KlWqsMt6aRjIiYjIThjILcRATkREriAuLg7jx49HZmamfl9GRgbeeustxMXFObBlTi47G1CXUfP0BMBATkREtsMu6xYqeG9mICciIqf28ccfo3v37qhWrZp+DfI9e/bAz88Pa9ascXDrnNiuXUBmJhARAQQHA//9xzHkRERkMwzkFmKFnIiIXEGTJk1w9OhRLFiwAIcOHQIADBw4EIMGDYK/v7+DW+fE1O7qt90GHDkCgBVyIiKyHQZyC6mBPC/Pse0gIiIqTUBAAJ566ilHN8NmEhISkJCQgDxrvikbBvL//gPAQE5ERLbDQG4hVsiJiMhZrVixwuxje/XqZcOW2Ed8fDzi4+ORkpKC0NBQ65y0Vy/Axwe44w5gyRIAEsjPMZATEZENMJBbiIGciIicVZ8+fcw6TqfTWbeq7E4efVS+AMDbG4AEco4hJyJ7UhRgzhygQQPg9tsd3RqyJQZyCzGQExGRs8rnm5N1+fgAgH5SN0UBdDoHt4mIKoTffgOeegqoVQs4ccLRrSFb4rJnFmIgJyIiqiAKArkPspGbC6SkOLg9RFRhLF0q2//+A7KyHNoUsjEGcgsxkBMREVUQBYE8yDsbADixGxHZRX4+8OOPcltRgNOnHdsesi0GcgsxkBMREVUQBYE8LFACOceRE5E9bN8OJCZq90+edFxbyPYYyC3EQE5ERFRBFEzqFhaQA4AVciKyj+XLje8XrMBIboqB3EKenrJlICciInJzBRXyUH92WSci+1m2TLbR0bJlhdy9MZBbiBVyIiJyBb/88gvWrFlTZP+aNWuwatUqB7TIBTGQE5GdHToEHD4sf36eekr2sULu3hjILaQGci7fSkREzuy1114zuda4oih47bXXHNAiF1QQyIN9OYaciOxDrY7feSfQrJncZoXcvTGQW4gVciIicgVHjx5Fo0aNiuxv0KABjh075oAWuaCCMeRBvhxDTkT2sXatbHv1kjXIAVbI3R0DuYUYyImIyBWEhobixIkTRfYfO3YMgYGBDmiRCyqokAcULHuWnOzIxhBRRaD+nYmNBWrWlNsXLwLp6Q5rEtkYA7mFGMiJiMgV9O7dGyNHjsTx48f1+44dO4YXX3wRvXr1cmDLXEhBIPf3kECemurIxhBRRZAjHXLg7Q2EhwMhIXL/1CnHtYlsi4HcQgzkRETkCqZOnYrAwEA0aNAAtWrVQq1atdCwYUNERETg/fffd3TzXENBIPcrCOQ3bjiyMURUERgGcp1Oq5JzHLn78nJ0A1wNAzkREbmC0NBQ/PXXX1i7di327NkDf39/NGvWDB07dnR006wmISEBCQkJJievs4qCMeS+HvIJmYGciGzNMJADMo783385jtydMZBbiIGciIhchU6nw1133YW77rrL0U2xifj4eMTHxyMlJQWhoaHWf4KCCrmPjhVyIrKPwoGcFXL3x0BuIU9P2TKQExGRs5k+fTqGDRsGPz8/TJ8+vcRjR4wYYadWubCCQO4LBnIiso/cXNkaVsgBVsjdGQO5hVghJyIiZ/XRRx9h0KBB8PPzw0cffVTscTqdjoHcHAWB3FthICci+1Ar5F4FKY0VcvfHQG4hBnIiInJWJw0+sZ3kp7fyMxHIFUUmWiIisgVTY8gBVsjdGWdZt5AayG01fwwRERE5iYJPxF6KfELOzQWyshzZICJyd8WNIb96lb103FWZKuRnzpyBTqdDtWrVAAB///03Fi5ciEaNGmHYsGFWbaCzYYWciIhcgaIoWLJkCTZs2IBLly4hv9Ab1w8//OCglrmQggq5Z362fteNG4Cfn6MaRETurnAgDwkBKlUCrl2TKnnTpg5rGtlImSrkDz/8MDZs2AAAuHDhArp164a///4bY8eOxcSJE63aQGfDQE5ERK5g5MiRePTRR3Hy5EkEBQUhNDTU6IvMUBDIPXKy4e8vu1JTHdgeInJ7hQM5oFXJ2W3dPZWpQr5v3z60bdsWAPD999+jSZMm2Lx5M3799Vc888wzGDdunFUb6UwYyImIyBV8/fXX+OGHH3DPPfc4uimuqyCQIzsbwcFARga7jBKR7eTlyTwVgHEgr1UL2LmTgdxdlalCnpOTA19fXwDAunXr0KtXLwBAgwYNcP78eeu1zgkxkBMRkSsIDQ1F7dq1Hd0M16Z+Is7JQXCw3GQgJyJbUZc8A4wDeVSUbC9ftm97yD7KFMgbN26MWbNm4Y8//sDatWtx9913AwASExMRERFh1QY6GwZyIiJyBRMmTMBbb72FjIwMRzfFdRWqkAMM5ERkO2p3dcA4kFeqJNtr1+zbHrKPMnVZf/fdd9G3b1+89957GDx4MJo3bw4AWLFihb4ru7tiICciIlcwYMAAfPvtt6hSpQpq1qwJb8NPdwB27tzpoJa5EMNAXvCBmIGciGzFMJB7GaQ0NZBfvWrf9pB9lCmQd+7cGVeuXEFKSgrCw8P1+4cNG4aAgACrNc4ZeXrKloGciIic2eDBg7Fjxw488sgjiIyMhI6LZ1vOIJAHBclNBnIispXSAjkr5O6pTIE8IyMDiqLow/ipU6ewbNkyNGzYEN27d7dqA50NK+REROQKfv75Z6xZswa33367o5viutRAzjHkRGQHaiD38gIMr6EykLu3Mo0h7927N+bPnw8ASEpKQrt27fDBBx+gT58+mDlzplUb6GwYyImIyBVUr14dISEhjm6Ga1O7+XMMORHZgaklzwAGcndXpkC+c+dOdOjQAQCwZMkSREZG4tSpU5g/fz6mT59u1QY6GzWQ5+U5th1EREQl+eCDD/DKK6/gP66TU3ac1I2I7EidZZ2BvGIpUyBPT09HcME706+//op+/frBw8MDt956K06dOmX2eWbOnIlmzZohJCQEISEhiIuLw6pVq/SPZ2ZmIj4+HhEREQgKCkL//v1x8eLFsjTZalghJyIiV/DII49gw4YNqFOnDoKDg1GpUiWjLzKDiUCemuq45hCReyutQp6UxKKgOyrTGPKbb74Zy5cvR9++fbFmzRqMGjUKAHDp0iWLusdVq1YNU6ZMQd26daEoCr766iv07t0bu3btQuPGjTFq1Cj8/PPPWLx4MUJDQ/H888+jX79+2Lx5c1mabRUM5ERE5AqmTZvm6Ca4PlbIiciOigvkBnNoIykJcPNVpiucMgXycePG4eGHH8aoUaNwxx13IC4uDoBUy1u2bGn2eXr27Gl0/5133sHMmTOxdetWVKtWDXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvL0vRyYyAnIiJXMHjwYEc3wfWpn4rz8xESmAfAk4GciGzGcFI3Q97eQEgIkJIi3dYZyN1LmQL5/fffj9tvvx3nz5/Xr0EOAHfeeSf69u1bpobk5eVh8eLFSEtLQ1xcHHbs2IGcnBx07dpVf0yDBg1Qo0YNbNmypdhAnpWVhaysLP39lJSUMrWnOAzkRETkKvLz83Hs2DFcunQJ+YXeuDp27OigVrkQtUIOIMQ/BwzkRGRLxVXIAem2rgZyci9lCuQAEBUVhaioKJw9exaAdD9v27atxefZu3cv4uLikJmZiaCgICxbtgyNGjXC7t274ePjg7CwMKPjIyMjceHChWLPN3nyZLz11lsWt8NcDOREROQKtm7diocffhinTp2CoihGj+l0OuRxIGLpDAJ5qH82AD8GciKymdIC+X//MZC7ozJN6pafn4+JEyciNDQUsbGxiI2NRVhYGN5+++0iV+BLU79+fezevRvbtm3Ds88+i8GDB+PAgQNlaRYAYMyYMUhOTtZ/nTlzpsznMoWBnIiIXMEzzzyD1q1bY9++fbh27RquX7+u/7rGT3TmMfhUHOKXDYBjyInIdkoL5ABw9ar92kP2UaYK+dixYzFnzhxMmTIF7du3BwD8+eefmDBhAjIzM/HOO++YfS4fHx/cfPPNAIBWrVph+/bt+Pjjj/Hggw8iOzsbSUlJRlXyixcvIioqqtjz+fr6wtfXtywvyyyenrJlICciImd29OhRLFmyRP8e644SEhKQkJBgu2q/p6d85eUhyFc+KTOQE5GtFLfsGcClz9xZmSrkX331Fb744gs8++yzaNasGZo1a4bnnnsOn3/+OebNm1euBuXn5yMrKwutWrWCt7c31q9fr3/s8OHDOH36tH4SOUdghZyIiFxBu3btcOzYMUc3w6bi4+Nx4MABbN++3XZPUvDJOMiHFXIisi1zKuQM5O6nTBXya9euoUGDBkX2N2jQwKJucGPGjEGPHj1Qo0YN3LhxAwsXLsTGjRuxZs0ahIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6bYR1gICciIuf177//6m8PHz4cL774Ii5cuICmTZvCu9AnvGbNmtm7ea7JxwfIzDQK5IoC6HQObhcRuR0G8oqpTIG8efPmmDFjBqZPn260f8aMGRa9wV+6dAmPPfYYzp8/j9DQUDRr1gxr1qxBt27dAAAfffQRPDw80L9/f2RlZaF79+749NNPy9Jkq2EgJyIiZ9WiRQvodDqjSdyeeOIJ/W31MU7qZoGCid3UQJ6fD2RmAv7+jmwUEbmj4pY9AxjI3VmZAvnUqVNx7733Yt26dfru41u2bMGZM2fwyy+/mH2eOXPmlPi4n5+ffnyYs1ADOT/HEBGRszl58qSjm+B+CgJ5gHeOfteNGwzkRGR9OTmAF3IQlXcJQFWjxxjI3VeZxpB36tQJR44cQd++fZGUlISkpCT069cP+/fvx9dff23tNjoVVsiJiMhZqSufxMbG4tSpU6hatarRvtjYWFStWhWnTp1ydFNdR0HfUY/cbAQGyi6OIyciW8jJAeZiCL7dXB3Yv9/oMQZy91XmdchjYmKKzKa+Z88ezJkzB5999lm5G+asGMiJiMgVdOnSBefPn0eVKlWM9icnJ6NLly7ssm4udS3y7GwEBwNpaQzkRGQbOTlAC+yFBxTg8GGgcWP9YxERsmUgdz9lqpBXZAzkRETkCtSx4oVdvXoVgWqpl0pXKJADDOREZBu5uUAQUuVOZqbRY6yQu68yV8grKgZyIiJyZv369QMgE7g9/vjj8PX11T+Wl5eHf//9F7fddpujmud6CgXyp/AZqk/9F7j9E061TkRWlZMDBCJN7hQTyK9flxziwbKq22AgtxADORERObPQ0FAAUiEPDg6Gv8HsYz4+Prj11lvx1FNPOap5rkcN5Dk5CAoC3sFYVF55BTj4HNCokWPbRkRuJSen+Ap5eLhs8/OBlBQgLMy+bSPbsSiQq1fdi5OUlFSetrgET0/ZMpATEZEzmjt3LgCgZs2aeOmll9g9vbzUBYELKuQhSJH7GRmOaxMRuaWcrHwEIF3uFArkvr5AYKDMY3H1KgO5O7EokKtX3Ut6/LHHHitXg5wdK+REROQKxo8f7+gmuAeDLuthgTnwhaxHjqwsx7WJiNxTRoZM6AYUCeSAdFtPS5Nx5HXq2LltZDMWBXL1qntFxkBORETO6pZbbsH69esRHh6Oli1bmpzUTbVz5047tsyFGQTyCL80bT8DORFZmS7d4G9MMYH8zBlO7OZuOIbcQgzkRETkrHr37q2fxK1Pnz6ObYy7MBhDHuGbqu1nICciK9OlGfyNKSaQAwzk7oaB3EJqIOfyrURE5GzUbup5eXno0qULmjVrhjAONCwfgzHk4T6skBOR7XhmMJBXRJww30KskBMRkbPz9PTEXXfdhevXrzu6Ka7PcAy5NyvkRGQ7Hhmld1kHGMjdDQO5hRjIiYjIFTRp0gQnTpxwdDNcn0EgD/U0+LCcne2Y9hCR2/LKLLlCHhEhWwZy98JAbiEGciIicgWTJk3CSy+9hJUrV+L8+fNISUkx+iIzGYwhD/FghZyIbMcjkxXyiohjyC3EQE5ERK7gnnvuAQD06tXLaLZ1RVGg0+mQx8lQzGO4DrkHx5ATke2UViFnIHdPDOQWYiAnIiJXsGHDBkc3wT0YdFkPVFghJyLb8WKFvEJiILeQp6dsGciJiMiZderUydFNcA8GgTzAkxVyIrId7yxWyCsiBnILsUJORESuJD09HadPn0Z2oUnImjVr5qAWuRiDQO7PdciJyIZ8ss0L5Fev2qlBZBcM5BZiICciIldw+fJlDBkyBKtWrTL5OMeQm8lgUjc/L61CrmRlQ1fMtxARlYV3tvld1hUF0PGPkFvgLOsWYiAnIiJXMHLkSCQlJWHbtm3w9/fH6tWr8dVXX6Fu3bpYsWKFo5vnOgwmdfPN0apXuWmskBORdfnkmFchz8sDbtywU6PI5lght5AayFlYICIiZ/bbb7/hxx9/ROvWreHh4YHY2Fh069YNISEhmDx5Mu69915HN9E1GHRZ9zYYQ56dmgVvBzWJiNyTT07JFXI/P7lGmJMDJCcDISF2bBzZDCvkFmKFnIiIXEFaWhqqVKkCAAgPD8fly5cBAE2bNsXOnTsd2TTXYhDIdWkGFfJUVsiJyLp8S6mQ63RAWJjcTkqyS5PIDhjILcRATkRErqB+/fo4fPgwAKB58+aYPXs2zp07h1mzZiE6OtrBrXMhBmPIkaZVr3LTGciJyLp8c0uukANaIE9Otn17yD7YZd1CDOREROQKXnjhBZw/fx4AMH78eNx9991YsGABfHx8MG/ePMc2zpUYjCE3/ICcz0BORFbml1tyhRwAQkNlywq5+2AgtxADORERuYJHHnlEf7tVq1Y4deoUDh06hBo1auCmm25yYMtcjEGXdcMKeX4mAzkRWZd/nkEgz8mRSas8PY2OYYXc/TCQW0j9P8FATkREriQgIAC33HKLo5vhegwDear2YVnJzC7mG4iIysYvL814R1YWEBBgtItjyN0PA7mFWCEnIiJXMHr0aJP7dTod/Pz8cPPNN6N3796opK6j42ArV67Eiy++iPz8fLz66qt48sknHd0kUcwYcoUVciKyMqMKOSDd1gsFcnZZdz8M5BZiICciIlewa9cu7Ny5E3l5eahfvz4A4MiRI/D09ESDBg3w6aef4sUXX8Sff/6JRo0aObStubm5GD16NDZs2IDQ0FC0atUKffv2RUREhEPbBaDYCjmyGMiJyLr88wtVyE2MI2eXdffDWdYtxEBORESuoHfv3ujatSsSExOxY8cO7NixA2fPnkW3bt0wcOBAnDt3Dh07dsSoUaMc3VT8/fffaNy4MapWrYqgoCD06NEDv/76q6ObJQwndTMM5NkM5ERkRYqCQMVEhbwQdll3PwzkFmIgJyIiV/Dee+/h7bffRkhIiH5faGgoJkyYgKlTpyIgIADjxo3Djh07yv1cv//+O3r27ImYmBjodDosX768yDEJCQmoWbMm/Pz80K5dO/z999/6xxITE1G1alX9/apVq+LcuXPlbpdVqBXyjAyjD8c6BnIisqbMTHhAAQDk+/jq9xXGLuvuh4HcQmogz8tzbDuIiIhKkpycjEuXLhXZf/nyZaSkpAAAwsLCkJ1d/snJ0tLS0Lx5cyQkJJh8fNGiRRg9ejTGjx+PnTt3onnz5ujevbvJ9jkdNZAX+vTrkcNATkRWZNADJy+0YG6PjIwih7HLuvthILcQK+REROQKevfujSeeeALLli3D2bNncfbsWSxbtgxDhw5Fnz59AEhX8Xr16pX7uXr06IFJkyahb9++Jh//8MMP8dRTT2HIkCFo1KgRZs2ahYCAAHz55ZcAgJiYGKOK+Llz5xATE1Ps82VlZSElJcXoy2bUQH79utFuj1zOsk5EVlQQyNPhDyUgUPaxy3qFwEBuIQZyIiJyBbNnz8add96Jhx56CLGxsYiNjcVDDz2EO++8E7NmzQIANGjQAF988YVN25GdnY0dO3aga9eu+n0eHh7o2rUrtmzZAgBo27Yt9u3bh3PnziE1NRWrVq1C9+7diz3n5MmTERoaqv+qXr267V6AOoa8UNc4z1xWyInIigpWcUhFEODnJ/vYZb1C4CzrFmIgJyIiVxAUFITPP/8cH330EU6cOAEAqF27NoKCgvTHtGjRwubtuHLlCvLy8hAZGWm0PzIyEocOHQIAeHl54YMPPkCXLl2Qn5+PV155pcQZ1seMGWO0rFtKSortQrlaIS+EgZyIrKqgQp6KIISVEMjZZd39MJBbiIGciIhcSVBQkH6tccMw7mx69eqFXr16mXWsr68vfH19bdyiAoUCeb7OAx5KPrzyGMiJyHqU1DToAKQhsMQKObusux92WbeQp6dsGciJiMiZ5efnY+LEiQgNDdV3WQ8LC8Pbb7+NfDu+id10003w9PTExYsXjfZfvHgRUVFRdmtHmRUK5NlBcnHDO5+BnIisJz9Fq5DrzOiynpVl8mFyQQzkFmKFnIiIXMHYsWMxY8YMTJkyBbt27cKuXbvwv//9D5988gnefPNNu7XDx8cHrVq1wvr16/X78vPzsX79esTFxdmtHWVWKJDnhhQEciWHHwaIyGryUmQMeRoCofMvPpAHBwM6ndxmt3X3wC7rFmIgJyIiV/DVV1/hiy++MOoG3qxZM1StWhXPPfcc3nnnHas9V2pqKo4dO6a/f/LkSezevRuVKlVCjRo1MHr0aAwePBitW7dG27ZtMW3aNKSlpWHIkCFWa4PNqJO6FcgLrQSoE8Ln5AD26jpPRG4tL9mgQu5f8HfHRCD38JAqeVKSfBWanqPiunBBfhjq1QoXwgq5hRjIiYjIFVy7dg0NGjQosr9Bgwa4du2aVZ/rn3/+QcuWLdGyZUsAwOjRo9GyZUuMGzcOAPDggw/i/fffx7hx49CiRQvs3r0bq1evLjLRm6USEhLQqFEjtGnTptyvoViFKuRKeCXtTha7rRORdSg3JJCnIRC6gOIr5ABnWi9i/XogOhoYO9bRLSkTBnILMZATEZEraN68OWbMmFFk/4wZM9C8eXOrPlfnzp2hKEqRr3nz5umPef7553Hq1ClkZWVh27ZtaNeuXbmfNz4+HgcOHMD27dvLfa5iFZ5lvRIDORFZX/4Ntct6EDxMdVlPSdHf5EzrhezaJdsdOxzbjjJil3ULGQZyRXHJXhFERFQBTJ06Fffeey/WrVunH6u9ZcsWnDlzBr/88ouDW+dCPD3lzV5R5G5oMLLhDR/kMJATkdWoFfJ0jyDAL1t2qoH8ww+BF18EVq4E7r3XvWdaP30aePhh4JFHgGeeMe971CsTVu79ZS+skFvIw+AnVvDeTERE5HQ6deqEI0eOoG/fvkhKSkJSUhL69euHw4cPo0OHDo5unuvQ6YzGkXuGBiILMm48L52BnIisQ0mVCnmGh4llz7Zske3q1QDcvMv6Sy8BmzcDn31m/ve4eCBnhdxChoE8P9/4PhERkTOJiYkpMnnb2bNnMWzYMHxmyYedis7HB8iWipV3WBDS4YtgpCIjKQvOu7I7EbkSJVUq5BleQYBfQdVPDeRq4Ny3D4Abd1nfsgVYvFhuW/LiXDyQM05aqHAgJyIiciVXr17FnDlzHN0M12IwjtwrLAjZkPsZydmOahERuZs0qZBneZqokKuBc/9+AG5aIVcUYPRo7b4lL079+SQlAXl51myVXTCQW4iBnIiIyDnYZZZ1wCiQ64ICka2TLuuZyeyyTkTWoUuTCnmmV1DRQK6G08uXgcuX3bNCvmQJsHUr4FXQgTs52fzxwYbh3QWvUjCQW8jTU7vNQE5EROQ4dpllHTCeaT0oCDkeEsizUhjIicg61ECe7V1ChRwA9u9HWBgQiFS02zoNOHfOru20SEYG0L07MGlS6cdOnixbtUqel6fvNVAqw5+PC3ZbZyC3ECvkREREFYzBpG4IDESuJwM5EVmXLr2gy7q3iQq5YeDctw+hocBITMOjO0ZpQdYZrV8P/PorkJBQ+rFnz8p20CDtb6651e6yBPL9+4H77gP++ce8422Ik7pZiIGciIicWb9+/Up8PMkFu/M5XKEKuRrIs28wkBORdXikS4W8SCDPyjJej3z/foR1BXpgldw/f97OLbXA33/L1py+9enpsg0MlFnrLl+WQF6tWunfW5ZA/vnnwM8/AxERwFdfmfc9NuLQCvnkyZPRpk0bBAcHo0qVKujTpw8OHz5sdExmZibi4+MRERGBoKAg9O/fHxcvXnRQixnIiYjIuYWGhpb4FRsbi8cee8zRzXQthoE8MBD5XnI/J5WBnIiswyNDKuRFuqwXDrP79yPCOwXtsE3uO/NA8m0FbczIAHJyij9OUeQYAPD3t2zWOkUpWyA/dEi2BTPXO5JDK+SbNm1CfHw82rRpg9zcXLz++uu46667cODAAQQGBgIARo0ahZ9//hmLFy9GaGgonn/+efTr1w+bN292SJsZyImIyJnNnTvX0U1wP4Uq5HleUiFnICcia/HMKBhD7hNUaiCvenQjvFAwm7izBnJF0SrkAHDjBlCpkuljc3K0YBUQYNm6bmlpxjOrmxvI1SLwgQPy/YYThdmZQwP56oLF7VXz5s1DlSpVsGPHDnTs2BHJycmYM2cOFi5ciDvuuAOAfNBo2LAhtm7diltvvdXubTYM5C44qz4RERFZqtAY8nzvgkCexmXPiMgKFAWemVIhz/UtpkJ+000SNq9dQ/S6r7XvddZAfvSocYU7Obn4QK52VwekQq4GcnMq5IVfvzmBPCMDOHVKbmdmAsePA/Xqlf59NuJUk7olF/xAKxX8Y+3YsQM5OTno2rWr/pgGDRqgRo0a2LJli8lzZGVlISUlxejLmnQ67TYr5ERERI7jiGXPEBQExUcCeW4aK+REZAVZWfDIl0pfjm+hCrkaSiMjgZtvBgAE/vqD/lsVZw3khtVxACgpk6nd1T085O+trQP5sWPGS6o5uNu60wTy/Px8jBw5Eu3bt0eTJk0AABcuXICPjw/C1H+UApGRkbhw4YLJ80yePNlorFz16tWt3la1Ss5ATkRE5DgOWfYsMFAfyPPSGciJyApSU/U38/wCpUoMGFfIQ0OBxo0BADrDEOIOgVytkPv7S/XTkjHkZQnkheYsw969pX+PDTlNII+Pj8e+ffvw3Xffles8Y8aMQXJysv7rzJkzVmqhhoGciIioAjEM5AEBgG9BIM9gICciKyhYbzsDfvD08TTdZd0gkAPAYV19AIAuK0tmYi/OtWvAlCnAd98ZV4VtTZ3QTVXShQO1Qh4QIFtbV8jVQK52fWaFHHj++eexcuVKbNiwAdUMpraPiopCdnZ2kSVaLl68iKioKJPn8vX1RUhIiNGXtTGQExERVSDqGPKAAMDDAzpfCej5DOREZA0FFfJUBMmfG1OBPCzMKJD/GthX+35TYTctDZg0CahVCxgzBhg4EHjySeMl1GwlKwvYvVtu16wpW3Mr5IBlk7oVDu2WBPKOHWVbkSvkiqLg+eefx7Jly/Dbb7+hVq1aRo+3atUK3t7eWL9+vX7f4cOHcfr0acTFxdm7uXrqJHwM5ERERBWAWiEPCgIA6Aoq5AoDORFZQ0GFPA2B8PKC6THkhSrk/1TqjhQEyx1TwfW554A335QgfPPNUlH88kugQwfgyhXbvRYA2LMHyM6WiehatCi+jSprVMjVCePMCeRHjsi2f3/ZHj1qnwsVxXBoII+Pj8c333yDhQsXIjg4GBcuXMCFCxeQUfCPEhoaiqFDh2L06NHYsGEDduzYgSFDhiAuLs4hM6yrWCEnIiKqQNRAXrAkq4d/QSDP4izrRGQFxVXIc3O1gBkaCtSvD9SpA9Spg/+i45CMgrHWpsLu/v2ynTRJKsKrV0to/ecfICHBtq9HHT/etq02HtySCnlZxpCrhd3SArmiaBXyzp3lZ5KfDxw8WPpz2YhDA/nMmTORnJyMzp07Izo6Wv+1aNEi/TEfffQR7rvvPvTv3x8dO3ZEVFQUfvjhhxLOansM5ERERBVIoQq5FshZISciKzCokBsFcgC4eFG2YWHyt2jPHmD3bgRW8i05kF++LNuuXSW8dOsGvPKK7Dt2zCYvQ08dP962LaAOHzZnlvXCXdbLGshLCmmXL8t5dTrpOVAwmbgjx5E7dB1yxYyJBfz8/JCQkIAEW1/JsQADORERUQVSqELuGSCBXMdATkTWUFAh1wfygmExAAB1ZSm1alzwdyg0FMUHckXRAnnlytp+dfUpG0x6bUStkLdrB2zebLqNhtQKeeEu6+aMIS8cyPPzgRs3tJ9XYWp1PDZWLgA0bQr8/rtDA7lTTOrmahjIiYiIHM9u65Crk7oVVMi9AiSg67IZyInICq5eBQBcQyX5c+Ppqf3dUSvkhQJmWFgJgTwtTas62zuQX7+ujdFu06ZsFXJLuqyrx1SpogX6krqtq4G8Xj3ZqhVyB07sxkBeBmogz8tzbDuIiIgqMruvQ64G8sCCCnkOAzkRWUFBFfwCovQ5XN9tvSyBXK2O+/np/24B0AL52bO2qyyqf4/r1AEiIiwbQ25qUrfSelQbzkJvzsRuaiCvL8vGOUOXdQbyMmCFnIiIqAIp1GXdO0gCuScDOZUkK0vCiT3XfibXVBC6LyKyaCA3DJwGSuyybthdXV1rGwCqVpX72dnApUvWa78hw+7qgFYhN2eW9cJjyLOzS5/93HCd9vIE8jNnzKvI2wADeRkwkBMREVUgwQVLCxV82FMDuS6Xs6xTCV59VSa1WrLE0S0hZ2cQyL3UGb4MJ3YDilTISwzkatg27K4OSDf46Gi5batu64YTugGWdVlXK+RBQVrgKm0ceXkDeViYLM8GAKdPl/xcNsJAXgYM5ERERBXI44/L7MQvvAAA8AmWQO6Va6JC/tdfwMmTdmwcOaX8fODbb+X2X385ti3Wpigy3paTGlpPSRVyVaFAHhJiRoW8SpWiz2XpOHJFMb9yrChFK+RlWfbMw0ML8qU9tyWBPCcHOHFCbquBHNC+7/r1kp/LRhjIy4CBnIiIqAKJigLefVfGRMIgkOdnGX8WOH0auP124L77HNBIcir//KNVKY8fd2xbrG3ePKBZMwk08+ZxUiVzZGYCO3Zo48ELKxhDbkkgN7vLemGWBvK33pLAunFj6ceeOiW/997eQIsWss+SLutqhRwwf+kzS8aQnz8va7t7e0v3fRUDuevx9JQtAzkREVHF4xssY8p9kaX/HAlAZhZWFFnjl+OGrSc9HcY/aBfw00/abXcL5Js2yfbUKWDIECAuTqtwOovcXOnVMn++Y9uxfj3QsqUMe2ndGmjVqmjPAkXRB3WTk7oBUg00nJwNdgzkmzdLG3/9tfRj1ep48+Za+83psl64Qg6YF8jz8y2rkKv7K1XSKqwAEB4uWwZy18EKORERUcWlVsh9kaUuHyzOn5dtdrYsO0Tll50NNGggFVlX+uC1cqV2+/hx12p7afbske2AARI0t28HVq8u3zlnzAAeeEDWj7aGH34A3nsPGDwY+Pxz65yzLN59F9i9Wy4QAMC5c8CKFcbHpKToQ3qxFfKQEOMAiVK6rBc3hhywPJCr4X7//tKPLTx+HNAq+1lZxQ9zKKlCXlJlPTVVu/hpTiBXA7d6nIqB3PUwkBMREVVcHv5aIDfK3WogB/TrClM5HTwoweHYMVmqyRmkpZX873v2rIQwnU66VWZlAYmJdmueTeXkAAcOyO0pU2R+BcC86mlx/vsPGDVKJr/78svytlDMm6fdfuYZYOlS65zXUocOyXblSuD11+X23LnGxxRUxzO8g5EJf9OBvFB3dXWXXcaQWxLIC48fB7RJMYHiq+SmKuTmrEWuvm5vb/l5WVIhN8RA7noYyImIiBwvISEBjRo1Qps2bez7xL5mBPIrV+zbJndluDbw0aOOa4ehW2+V+QSKq+b+/LNs4+KAmjXltrt0Wz98WHotBAfLa+vWTfavXVv2c/7vf1oFedas8g/3SEwE1qyR2336yAf2hx8Gdu4s33ktlZamhd527aR7PyBtO3dOO64gkCf7RQKA6UBeaMkzwDiQK5Z0Wa9RQ7bmBHJF0f6WnThR8tCE3FwZJw8YV8g9PbXu9sUF8sLLngHmdVk37K6u0zGQVyQM5ERERI4XHx+PAwcOYPv27fZ94oJA7oNsVshtzTCQHzvmuHaorl2TNiUnFx+y1e7q992nnwjQbQK52l29WTMJQJ07A15eEtYKv8akJBkzXasWcP/9wNSpRf9fnDqlVYy9vaWi/Pvv5WvjggXyIb19e6m633WXXET44YfynddS6gWkiAhZVuvmm4EOHaRthmPbCyZ0u+4bBQCmlz0zUSEPDi7nGPLERO1CSHFu3JCfHSDhXK34m7JvnwTr0FCgXj3jx0qb2E0N+pZO6lZ4jXYG8opDDeScVJKIiKgCKlQhv3RJ5m5ihdwGHFEh370beO010/MAGLZBDT2G0tOBdevktjsG8n//lW3z5rINDpaeAEDRKvm0aVKV/u8/6TL+6qtAo0bG67JPniyh8M47gSeekH2zZpW9fYqidVd//HGpzt59t9w/cqTs5y2LwutdA1qVfO5crSdAQYU8yaeECrmJQO7lBeQGyH5dZqbx+Gx1DLmpLuuRkfIk+fmlD6Uo/DuuDlcwZe9e2bZsWWS8e6kTu5VUIS9pDLka1tWfT3kDeUnrl9sQA3kZsEJORERUgflos6ynpcnn/q5dgfTjrJBbneG4VXsE8hs3gJ49ZTKuGTOKPm4Y6kwF8g0bZImrGjWAJk3cL5CrFXI1kANSgQaMA3lSkgRyAJg0SarjDRtKUHzgAenS3Lu3NmZ8/Hjg6afl9tKlWqC01D//SGj095fnAbRqrTME8gceAAID5XdZXZ++IJBf87YskAOALjREu6MG17Q0LeCaqpB7eGhLfpXWbb3w73hJ48jVJd0MlxNTlbYWuakKuSVjyE0FclNDH9QKuBrAVVz2zPUwkBMREVVgBhXyK1cKquMAPC+zQm5VqanAyZPa/fJ0WVcUmTjsySeLn+kZAN54Q5s87scfiz5eWiA37K6u0zkukG/bJq+3tDWc//lHZrF//XXzxm6bCuTqOPLfftO6QH/8sYSlxo2BMWOAl18Gdu2Sn6+Xl8zMvmKFTBLXpYt05W7ZUsZa5+QUnfjMXGrA79tXC2lqID961L4f3k0F8qAg7UKB2lPAnEBuYgw5AASFeuIGCsZnq+FU/b309S2yVJqeuRO7Ff47VlIgL6mbfGld1q0xhhzQgnV2tunx7uyy7j4YyImIiCowg0C+bq2C7GwgEKnwzTZYA40VctMURQKXOdTusWpCMVw+bPRoCXLmLi+3aJFUbOfMkVm3TYXP7duBTz7R7m/dqlX9VCUFckUxDuSAdQJ5Xp62xr05Dh0CuneX1zthQvHHZWQAjzwiwXHyZOCFF4yfQ1FkwrWmTWX27EuXZLyzTifVf1Xr1hKekpIk4CclAR99JI+NG6d9cPb1Bd5+W2bO//ZbYPZsCe4LFmjneuYZ2RrOkm4oPx/YskV6IRR24ID8+wLA0KHa/po15SJAerp9Z7s3FcgBoFMn2aoXNwrGkF/xtLxCbnKmdcPu6jqd6baZG8jV33E12Jc1kJdWIS9p2TNLxpAHBOh7MJnsfs5A7j4YyImIiCqwgkDuAQXrVktFMAoXjI9hIDetc2epWJqqlGVlAYMGAQkJcl/98N++vaSUrCypXt+4IUFu40bgl19Kf84bN4AXX9Tuz5sna1QbyskBhg2TEDpokIRMw4CtKimQ79kj7QsIkIsFAFC7tmyvXy/b+NSzZ4GOHSXUPfecFph37pSJ0jZuND7+2jXpcq/+fD/7rPju3xMmSGhUw9InnwDPPy8BMTtbxmKMHSvj+J99VsbWAzI5WWCgdh5PTxkDDkg1/N575fkbNZI2FnbzzcBDD8nPe8QIIDpae6xvXwnPhw7JRHGFvfEGcNttUkk3vMiRny9d3nNy5PWrP39AfnfUfwd7dVtXlOIDuXoxQ50foeCiz2VPmdSt3IG8pGCsMnemdfVct98u25Mni59pXa2ml1QhL8uyZyWNIS9cIS9tpnVzAnl5Z/kvAwbyMvD0lC0DORERUQVUEMgBIC1JZiCOxnnjY9yty/oPPwALF5bvHMnJMoP2f/+ZDtK//SbPMXq0Nps5IN2j1UB19KhUSNUPYeryVoWtWwesWiUBbeJEqYzWqQO8/748/tprwFdfye28PGDwYAmclSoBH34o45sB427rilLypG5qeO/aVQtTgYFa4LS0Sv7rr9KNWx1rPGuWhOiNG+XCxtKlcvFADTO5ucCAAdK1PzYWaNFCKo9qtVqVnw/8+af2s5g/H/jiC7n96afS3mrVZL+np4SknTu1arthd3WVOo5840atvRMnFp3cqzShoVr4U5ePU12+LBdiAJlcrlUrqbSnp0sX9z//lJ/3jBlFK8P2HkeemChDLjw9tV4SqkaNpH2XL0sYVwO5h+UV8pCQMgZySyvkjRrJTPGKIj0cSjrW0i7rilL2CnnhSd2A8gXy3Fzze91YEQN5GbBCTkREVIGpXSIh3dYBE4HcnSrkGRnAwIES/srT9drwe1esKPq4GsCzsyWYq/ebNJGqKiCB+I8/tO9Zs6ZoRWvPHhnXfM89EizVycWmT5dKeXy8fM/jj0uVdtgwCXZeXsDXX0tX31695HvWrtU+oJ8/b/xhvbhArnZXV5Wl2/rJk1LpvXJFQrkahidOlNemroGemKiF1AkTZEKDwED5+U6cKPtnzJCq98SJ8tq8vLTltwYNktc6dCjw3XfyXGpYDAqS1/Taa3KeLVtk26xZ0fY+8ohU0Z99Vn7Of/4J9O9v/us1dM89si180WbaNAnfzZpJlTw5WdYXDw+Xyr7681Grv4bsHcjV6nitWkZ/LwBI6FR/n/fu1QfySzoJ5CaXPStmDHmJFXJTM6yr1EB++nTJr0O9sHjTTTIfAFD8TOtl7bKek6MtXVXeMeRAyYG8uEndAgK0KyEO6LbOQF4GDOREREQVmJcX8iEVOF9koXp1oGGoBPLM6JpyjDtVyM+e1dYiLtyF2xKGk7L98ot2TpXhEmdz52pd1hs3BurW1c5hGMjPni0aEBYt0m5fuiRVr169tKD38cfS9VmnAz7/XCYC8/CQiwDqMU2bytjjzExtGbPCYc4wkF+8KOOsAe0cquIC+SefAP36yfOqFULD15CdDdx6q1Scx4+XL0BeT+/eWlV7yhRg8WIZ7w3IOOpmzeTCQPPmUqmtW1e+//Jl7QJG27ZamAeABx+USvilS8Dy5TIJ2913S48Fw3BnqkIeECDV9U8/BYYPl2EGZXXvvbLdsEG7AHL9uja+/6235LHXX5cZvbOz5d+pRQvpAm+KowJ54e7qKrXb+l9/6cfDX4SVKuTqEAVrVsgrV9YCeXHjyNVjb7rJdEMB04Hc8HffVIU8Pb34eScsCeTZ2fJ/wfAYlU7n0KXPGMjLgIGciIioAtPpkOelTezWpQvQoCCQX45sKse4U4VcnXUcKD2Qp6dLYFYrXoYMA3lKinRfN2QYyHfuBM6dk9uGgXz/fplBHNCCrmG3dUXRZq+ePx/46ScJoupkX4B0I377bekSHhkpH8bnztVmvwZkX+Fu62qYi42VrWEgX7VKnvuWW4ou+2QqkF+7JkF32TKpUkdHG09utnixbIcM0YLZ+PFSff7f/+Q1Dhki4TglRbqqK4rMIv/gg9prGDtWbqemymtdsEAuHmRmys8xIgJF3HSTvHa1ihsUBLz5pva4qUBuTQ0bysWQrCwZxgDI675xQy6U9OolVed33pFAeeSIXNRYvdqgvFyIswXypgV/J9SLPUFBuJEnYdQuY8jVQH75ctGLQYYMz9Wokdw2FcizsrSwbWmXdXXIhU5n3JtA/Z7ivs9wv2EPguICuVr51ulM/zwduPQZA3kZMJATERFVbIaBvHNnoJafBPLjAQWVr/T0kj/ouhLDKtqmTcVPzJSdDdxxh0xC1qFD0cq1GsjVyXgMu63n5WnHt2yp7a9RQz6Yq+Fw3ToJk5UryyRngHEg37dPurX7+gJ9+kiVeMIE01W7rl3l2OPHgcceK/q42m19xQp5bWqYU6u/165py3wV110dMB3Ily+X742OloCfnCzdva9dk8nMdu6Un1Pfvtr36HRSfR4zRoKnh4esl65q2NC44g1IBf7ll+Xr4EHp4l2litE8CGYZNgzo0UMmaTPVJdyadDrjbusHDmjDDsaONR6XrtPJxZqBA+WCQ3HUQH7iRNGeGbagBvIGDUw/rlbI1WEAUVH6XyVLlj0rc5f1SpW0n5d6UcAUw4na1Ar59u2yAoHhUBH1OE9P020tqcu64fhxw7H/Xl7a7O7FdVu3pEKu3g8L0/4GGXLgTOsM5GWg/h0wdfGXiIiI7CMhIQGNGjVCmzZt7P7c+d7GFXJ1DPn+7Hpalc5dquSGFfKcHBlXbcorr2jV6y1bJFjPnq09rgbyAQNk++OP2of6EyckaPv5SZdklRoC1Aq5mlpuv126UwNykUCtsi1dKtvu3YHg4NJfW3CwjPM1pWNHCcxXr0ooVwP5rbdqwUH9N961S7aGs3urTAVytVv988/La2/WTCrA06dr1fEuXUqucgIymVq/fhJCvvvOuMsvIMFj6lT5Kjxu1hI+PhKOFy8ufikta1K7rS9dKv8OSUkyiZupWdvNERMjP5u8POO17W3F3Aq5+vscGanvlW2XLus6nfTMAEpe892wQt6smTTu4kUgLk4q5jt2GB93002mJ/Izp0JuOH5cZWoc+bp18nfhpZe0ZQktCeSFu6urGMhdCyvkREREjhcfH48DBw5g+/btdn9uxUcCeWxUNmrWBCplSSDfezVG+8DnLoFcrZCrScFUt/WlS7Xq7OzZUuHMzpaKrloBUwP5M8/Ih+/Tp2W2bEDrBtuokVRi1ZnJ1UpijRoGSQVSgW/YULreZmVp3d/VQF7WCcUMeXkBTzwhtz/7TAvkDRtqXb0vX5aQp06OVXhGbUC7mHDunAT3y5dl8jVALk54eMiYdkB+hl9/LbcNu9AXR6eT7uuXLpmebM1VdekigfTyZfl/1Lat9IQwVdk0h05nv27rmZmykgBQfCC/+WbjXgplDOShoUASwuSOJV3WAZnUEJBhHYUnKATk/5U6eeBNN8nftT//BB59VP7/Hjok/y+Akpc8M2x/SRVycwP5t99Kr4kPPtDabU4gL25CNxUDuWthICciIqrYfINkrOMTg2SW9YAUCeQ7EqOhqN2j3WViN7VCrobcn382/hB09qwWXF95Rbo3r1wJREVJRX3nThnDfL5gJvqmTbVlstTx2YYzqnt5yXjpsDCtIurpqS19Bkgg1+mkEg7IGPHt2+U83t4yQ7k1DB0qz7N2rXZBoV49LXhcviyvPzdXnjcmpug5KlWSdbcBqYgvXSoh/pZbtK74/fpJ9+akJLk4Ubi7ekl0urIHVWfl76/923buLFVRU+PdLVGWQJ6SIhdUzP23AOT3RFEkJBbXbdzLSy7sqEoK5F5epsMqytFlHZD/h61aye+uqSUN1fN4eWnBuG1bmZvh00/lvnrhobSLACVN6qZWyAv37gC0oG0YyNW/I+rQCT8/47XsWSGvGBjIiYiIKjavQKlu9b0nC8jOhud1qYafzIpGVlBBcHDGCrnaLXryZK27bGnUCvlDD8kH68uXJfyqZs+WD9pt2gCTJsk+nU66dgMy3lTtrl2pknzwVSdMW7RIwothIAeAp5+WD8Zt22rPo1aag4JkRm1AgiwgVWL12DvvLF/3bEO1amkXD/Ly5MN/tWrGgVwNJTVqFB+M33tPliP76y+ZHRzQJl8D5PvUCdgACaGlVTjdXUKCrBX/yy/mDT8oTVkC+W+/ScBevtz82be3bpVtkyYld+9Xu60DRoG8yLJnYWHFnqdIl/W0NC3gmvP7o1bJ580r+pjhkmeFn79mTdlaGsiTk4suU1hShVy9uKl2wwdkqT8AmDlT5kXYtUsbaw4wkFcU6t9aBnIiIqIKSu1umpWlH8eYDW9cRQRSvAs+RDoqkB85IhVmw/GaGRkyGVj16sALL0goHDas6IdjU9RAXru2Nm57+XLZ5uZqM5i//LJxt/J27WS7datWXTasCPv5SdfTnTuLBnJT1EAeF6ellh49pGJnWG00p6u3JYYN027ffLNUZgwDuTomubix6ICEeHWmcvUDf+F2PvSQ9vNRx9lXZFWrymR7xVSHLVaWQG64EsA//5j3Pb/+Kttu3Uo+zjCQR0UVrZDXrSsXcQwvShVSpEKuBmNfX+OQWpyBA2V+gN275ctQSSFbDeSnTkkgKmnJM7WhgPy9KFjmTc9wUrfCqlWTrbriAqBVyGNipFdJ4YnzyhvIueyZa2CFnIiIqIIzDOQFHxCT/aMA6HBZKaiQO6LLemamdNeeOBF48UVt/6hRsl51crKMc/b0lMmcXn216Dm2bNECdHq69gG1WjUtRCYkABcuSPf18+flQ7ta9VapFfJt24oG8tBQmQUdkPW01Umw1EncTHn0UfnwPWpU0f379snSYzNnAoMHF3+OsujZU5uRWg11lgZyQNqtfn/btkWP9/KSLvwffaQNASDrKUsgN1zz3py5KvLytFnL1Z4VxTG8+GSqy3rlylINNlyNoBDDQK4YBvIqVcybfC8iQltN4PPPjR8rKWRXrSqBSL0gWVqFPDBQa0/hbuslTeqmLiGoDpvJydGq5Ybd1A2VNoa8uEDOZc9cCwM5ERFRBWcikGeEyQfE81mldFlXFOky/sADpidTKo9Jk7TA8eWXMmnav/9qH7a//loeV++/956EWNXJkzKrdY8e0k71g3BgoHSd7ddPuqbfuCFdrNVJnR5/3HgNYQBo3Vo+NJ05IzOhA1ogB7TgPGeOVM6Cg7X1kU1p2VK6qPboUfQxDw+p3j/zjPXHU3t7y9hvQFvyrCyB3MdHugY3awaMG2f6mEaNgJEji19Pm8pODeSJicUv3Wfoxg3pvaH6++/Sv2fHDgl0oaHy/6QkhbqsF1n2DJCu3iX8Phfpsr5nj9y2ZLjDM8/I9osvpOKtKilke3tr1etTp0oP5B4e2rCDwjOtW1IhV2dV9/Qs8lwpKQUdftRgnZ5uXI1nl3X3wkBORERUwanhMztbH8iVKlEAgJM3Ck3qNmYM8OSTWmVnwgTpMr5kiVSV1Q+NixcD8fHGQf7XX6Xr6rPPyprZJdm7V1uXul49+XT68ssS8PLzpRv0I4/IB5khQ7TlxdRQDUi31dxcqWgnJmqBvFo1qXB5eGizqc+dK1VpQF5fYUFBWuhQu/Gq3c4B6dIbHQ19abC0MbeO9PrrEsiGD5f7ZQnkgHS337NHW9aL7Cc8XKuqHjxY+vFbtsj/GzUQb9tW+hAP9ff8zjtLv6hStar8v/L0hFKrtulAXgp/fyDNUwK5LjNT/r8DWu8Tc9xxh8xqn50tQ11Upc2cbjiOvLRjgeJnWrekQq6OH4+K0gey9HS5XhYaKh2DjC5iGIZrNZBzlnX3wEBORERUwZmokHvHyof9I1cNKuRnzkhX8TlzpDv2008XfGqEVIS2bJFxso8/LoH500+1JbDy8iQAHjsGzJolSyg98YTsLywvD3jqKQnTvXvLRFje3hIQNmyQ9qphXaXO/H34sPahRu06Dki1Tx0/bli5josDHn5YwomiyId5tfpYmDqOXG2zYYXc01MuEKhKGj/uaB4eUvFU05KpSd3UgELOSx0Soc5ZUBJ1/Hi/fvK7evGiFgyLowby0rqrA3Lxad064PffkRsRqd9tSSDX6QBdaIi2IylJeqa89pplJ5kyRW7Pn6/9bEqresfGyva//8xbaq24mdbNqZCfPSt/awzHj0OuH7ZqJSNoAGDz5oLXY2o8OCvk7oWBnIiIqIIzEchD6ksgP3zVYFI3tas2IFUktRr99tsy/trbWyrjX32lVYfnzJFuoEuXSvfy8HDgvvvkA+ncudpa24beflsqeCEh8um0Th2tmzUAvPRS0cBYq5Y8f0aGFrwNx9fu2GFcITc0ZYpW0XrqqeJ/Tuo4cpVhIAeMx3s7cyAvTA0e585p3WnNqZCTY6mBXF33viTq+PG77tJ6epTUbT0lRS6wqd9jjvr1gdtu03cSASwL5AAQFOqJGyiYwC0gAFiwwPKTtG0rFx4URZvtv7SQbVghNyeQhxp0rTdkToU8LU1+vmqFPDoa+fnyZ/HQIa3Dkn4EkKlx5JYEcnMmu7QiBvIyUAO5qQvUREREVAGYCOSBdaIREQFcgcGkbmogHzFCKt9BQdKFfexYWdrq888liFerBmzcKN1Hc3KAd94B/vc/7Xt/+kkbdzxlivEHxrVrtap7QoL2IfaNN6SyffPNpitm3t5aQFYr4+ZUyNX7S5dKO0uaEdwwkIeGFl1LunFjWVMcAG6/vfjzOBs1eBw9Kv8WAQGlr/tMjqde9CmtQp6ZKRe4AJlTQZ3pvKRAvnGj9FCpW9fiizOGgdzS6QNCQ4GzKLhg9uGHxfdWKc0770jIWbFCXqfhsmemqIH8xAltmI21K+Tq3BWAXPgyqJAnJsouLy9t3rsSA3lpk7qpgTwvD0hNLf512AADeRmwQk5ERFTBGQbygmqbrnYtNGwIXIVBl3U1kHfrJlXslBQJ2mo1fPBgWaP78GH54K+O6/78cxlrHBQkgRyQbUCArLurdo09dw4YNEhC4bBhxl3AK1WS8+7dW/wSSOqSQYcOydbcCjkgk6u9/nrJk6jVr69Vxm6+2fQY8eXLZfKsW24p/jzOpnDwqFnTece/k8bcCvn27fJ/u0oVCdhqIC9ppnVLuqsXUp4KeWgoMAgL8NcLi4yX6LNUgwbytwQApk0zv0K+c6d2gbDwBTdDhmuRGyqpQg4Yd1s3qJCrU2rUqqWtenj5cqGJ3dRAnp9feiD399dK7XZe+oyBvAwYyImIiCo4NZCfOCGTenl4AO3aoVEj4AoKKkopKVJB1em06q+p0FarllYduv12oGtX7bFnn9U+QEZEaB+4p0yRoN2tm3wKbdFCm2zNkL+/rPddHMNAfu2aVhXz8JBlzdS1l0ua/bwkBT8XAEW7q6sqVZIZ1F1J4aohu6u7BjWQJyaWPFZY7a7esaP8n1UD+T//mO4im5MjS9YB5QrkHh5azjBXSAiwC7dgf+MB5b8oNHKkbBcv1mZcL20MuVodDw8vubyvnufCBeP9aoW8uECu9vgpVCE3XElRPXV2tkyOXySQp6Rowa24Sd10OoctfcZAXgYM5ERERBWcWklR1xxu0QIICUHDhkASwpAPgw/GLVpo3S7NMWGCbP38gNGjjR8bPVpKaBs3yuRNBw/KjMOLF5ccvItjGMjV6ni1alrJSV1mqKyBHNDWJ+/UqezncDbe3sb/ppzQzTWEhGi/yyVVyTdskK06nKJhQ7loduOG8bAO1eLFUsGNjCxTIC/LDOuq4oZml8ktt8hFiNxcrXJdXCCvXt34AkBpS62pF63UVQlU6vOY6rIOFFshNwzk/v7Sux0oKOwXDuTqNiBAu5hqioMmdmMgLwO1ZxYDORERUQWlfqhTZ9ju2BGALCOdD08kexp0i7Q0iLZvL2PG162TsG2oenWtW3p2NnDPPdK1vbjqc2lMBfJ69WTqYkOmuqyb69ln5cLB00+X/RzOyDCAsELuOgp1W3/uOel8Ur++/Df++etrcsELkLXtAan8qv8n1LHlKkUB3n9fbj//fJkujKkV8rIE8uJ6gpfZCy8Y3y+ui7ePj1a9BsoeyMtYIVe7rKt/+gwXPig2kBf3WlQM5K6DFXIiIiLHS0hIQKNGjdCmTRv7P3nhKktBJU0tLF/KMxhLWZbK8H33STA3ZdIk4P77ZQK3lSvLN5lY/fqyPX9eGx9bv75xIA8K0spwZaHTSfC3tC+us2Mgd00GE7slJsqKgteuyfWoP/4A1o1YIRXipk2NJ0hT/z8uW2Z8vo0bZV4Hf3+5+FQG5QnkxS3vXWa9e2s9PsLDS26U2m0dMD+QnzhhvL+kSd0A7WLgf/8Bly7JbYMKed26slVHkZgM5KWNH1cxkLsOBnIiIiLHi4+Px4EDB7C9pImWbKWYQF6tmuRX/cRuBo9ZTUyMdJF97rnyjxkNDdWq8OpUxYUr5NWqccIyUxjIXZNBhXzpUilwt24tubpSJeCOpIJlBe+/3/j71CX6fv5ZW30AAD74QLZDhpQ8qVkJrBHIrVYh9/QEhg+X25GRJR9rOFSjtEBeu7ZsL182nsW8tEnd1Aq5OnmcpyeUmyobdVk3fHpWyCsIBnIiIqIKzjCQN2ig/zSo00mVXD+xW9OmZf6Qbjdqt/XTp2Vbv76Me1c/8JRn/Lg7YyB3TWqFfP9+fP+93Hz4YenIMrhvCu5CwWzp/fsbf1+DBrJUYX4+8MUXsm/fPgnoOh0walSZm6QGckuXPANs0GUdAJ55Ri74vfNOycdZEshDQ7XAqw71AcyvkKuzvkdGIvGiJzIy5NqB2gQG8gqGgZyIiKiCUyd1A4pUwBs1Ai6j4NOhK0xkpgZyVb16MkOSur8848fdmZoAQkMtm7SPHEs/ruQSDv8pIU8thj9bfSV8kY3DugZIi21U9HufeUa2n38ufcTV+Rz69Cn7PA5wsi7rgITjhASgX7+Sj7MkkANaldyw27q5FXKVwQzrNWtqPzOzAnlxM6yr1Me57JnzYyAnIiKq4Awr5AUTuqkaNgRm4Rn8Xa1v0QmSnJFhIPf21saFqks9sfprmpoA+PNxLYGB+n+zRtiPuDitE8jNe5YAAL5X7sey5SaGafTtK//u58/LmPI9e2QOh+nTy9Ukp5ll3VKGY8gLLwVoiqmJ3UqrkFeqZDxRXqEZ1lUlBnJzx5Bz2TPXoQZyU8sQEhERUQVgGMhNVMj/QRs8fdMPxVbNli4FXn/d+HPf3r1SlDIcXpmVBfz1l40/cxgG8ptv1vrNvvmmNNLdZke3lmbNZKuus06uo6DbemPsxwMPFOxLS4Nu9WoAwFL0x/z5svrZ44/L/0sA0jNm6FC5vW+f9JletKjcvUicapZ1S1haITcVyEurkOt0xlXyQmuQF356o0CekiI/XHZZdz+skBMREVVwaiCvXt24SgStR+yhQ1L5+uADYOJELWh/8YV0kZ08WTLdmjXAG2/IEsDPPy8F98RE4NQp4LbbpBA3eLDMZ2QThoHccFbp2rVlDGl5ZnF3Z3feKf/IH3/s6JaQhW7ESiC/Fz/j/v4F/7FmzgQyMpBTvTb2oDnWrgXuuAP46itgxAhZdQsAMGyYNsnhlCkyrrycnK7Lurlq1NBul7XLemkVcsD4gkd0tH7JM3WGdcOnv3wZxkNIkpK05yu8jGRhderIChe33VbycVZWhqkDiIGciIiogrvtNvlwqY4pNVCrluT1zEz5bLdmjez/8kvgoYeAqVPlflgYcPasttQxID0zd+2S3uKZmcDVq7J/wQKgSxetOGdV1atLdSojQ1sGjczDn5dL+iXsYfTF+7gHq4AN86WXw5tvAgC8x7+OjvN1+P13yYghIcCFCxLMX38d8h987lypuo4caZX2ONUs65bw9ZV5Mg4dMr6YV5yyVMiBohXygpXniq2Qe3rKH9ikJBleoK4dHxdXcvvatwd++qmUF2F9rJCXAQM5ERFRBVezJnD8OPDyy0Ue8vTUctqaNXK/alWpeL/7rlS6n39eVk568kk5rkoVYMkSYP9+KVifOydhvFUr4MUX5Zjhw6WXrNV5eGgNNudDNZGL25raBOPxltwZMUKmWc/MBLp3B554At9+C3z7rVwwmzJFDpszx+Cz/+DBMqu6lZYDtEaX9aws+bK79etl1vSgoNKPNVyLXFHkhavjcUoK5AYVciXKjDHkgNY9fe1a+betXNlp/74xkJeBp6dsGciJiIjIlEYFEzT7+QHLl0sBadQoKSiNGCFzQAUFyWTNBw8CR4/KKku1a8uY8ccflyD+xx9SUe/eXQrYPXtqEzz//bdcDxg2DDhwwHQ7fvsNWLfOjAa/8gpw111A795W+gkQOa8zZ4CpeAWJtW6T/0y7dkmy/eILQKdDTIz0ZgkPl+ElwcGSITdtsk17rLHsGeCgbuuensaTrpUkNlYuYqSnS3JWq+NAyV3WDSrkV3xikJYm1xEN51NUA3l6esFp1UD+44+yvf12q11AsTaHBvLff/8dPXv2RExMDHQ6HZYvX270uKIoGDduHKKjo+Hv74+uXbviqDpowIFYISciIqKSjBgB3HOPFGfuu0/C94cfAmlpMuTY8HNhgwbGH6rDw6VH7PvvS9HIwwOYP196lv/3nwTw8HDpZfv++xLQmzcHxoyR86v27gW6dgW6dQOeekobqmnSwIFSzjdnpmQiF3fmDJAPT+x76SstCH70kcnJ2QIDpYAOaMuPW1t5KuSenlpx2iHd1i3h66uF65MntT9KOp3xRJmFGfy7HM+IASDZ3nD1yeBg7b7RxG6bN8u20OSbzsShgTwtLQ3NmzdHgn7qQmNTp07F9OnTMWvWLGzbtg2BgYHo3r07MjMz7dxSYwzkREREVJK4OODnn6UoY0jtZWepKlWkiPf++xLg8/MlKDz4IHDvvTJ53JQpEsDVJZT+9z9tIrgvvpA2ffedweRURBXUmTOyrdT2Zuly/c03wJAhxR6vDi1ZutR4Au7UVPl2w5URDO3bV/RCmSlqV3PDgGkJNXueOlW277crw27rhuPHS6peq4HcwwOHrkopvPACFjpdMTOtq4Gt8B9jJ+LQQN6jRw9MmjQJffv2LfKYoiiYNm0a3njjDfTu3RvNmjXD/PnzkZiYWKSSbm8M5ERERGRvERHSjf3AAeDYMeDSJQnYK1dKr8zQUGDrVin0HT4sqzEBwLRp8kF1zx4phFerJsWi4qppu3ZJsXzfPulq/957cvygQaaXXzt5UiZbfu450+f77Tf58Pzbb1b5MRCVS3a2TNIGFKw/fuut8stdQiBs1UpWRMjKAtq0kREe8fFATIxcBDM1t1turgxDmTJFeryU5L//ZGs4d5kl7rhDtitWaPs+/FAmDVfP7TTUmdYNK+QljR8HgMaNgdhYKHffjfUb5aqmqRUlTQZyQK5etmxZvnbbkNOOIT958iQuXLiArl276veFhoaiXbt22LJlS7Hfl5WVhZSUFKMva2MgJyIiIkfR6eSDtuGQy1695AM4AIwbJ5PGKYqMOX/hBQnZo0bJ0moeHsCff0pQL+zffyVw3H030LSpLOH2yity/MKFMm69sClTpOI4cybwyy9FH3/3XZn/7oMPrPLyicolMVH+b/j4mLdSFyD/56ZMkaHSx4/LRapPPwVu3JDHly0rerHq66+BI0fk9u7dJZ9fHZFb1jnH+vWT7Q8/SD5JTQUmTJAitAMmDS+Z4Uzr5ix5BkigPnYMH3ReiW++kV19+hQ9rNhAHhenH6C/fz/0k8I5C6cN5BcKLl1FRkYa7Y+MjNQ/ZsrkyZMRGhqq/6pevbrV28ZATkRERM5myBAZL56ZqU3k9sYbsq1aVQL7jh0yezQglXTD7reAdInPy5NqfHi4fIa9806pEAJFP9yry0GpnnvOuHtuUpJWGd+woZRx7ER2oHZXr1ZN+0xvjh49pFfK998DjzwCPPqo9CQJD5cV0AwvVmVnA2+9pd3fu7fkc5taV9sS3brJOPKzZ4F//pHeMerFguPHy3ZOmzFci9ycJc8KLPzeCy+/Ir0Y3n9f5qAsTA3kly7BOJAXdFe/fFnm3ujY0XRvH0dx2kBeVmPGjEFycrL+64z6v86K1P+8zvQPSURERBWbTgd89pkUkwD5wNq2bdHj7r8faNJEuqx/9JG2/+xZLayvXi0hIztbwv2oUbK/cCD/5BPpxtuqlXRbP3XKOIj88os2pj0jw3azVBOZS40GZanZBQcDDzwg1e/58+X/WLdu8phh75AvvpD/C+r/xf37iy/kKYpWSS9rIPfzk7kkABnn/tln2mNOF8jLUCG/dg144gm5PWqUthRkYcVWyAsmdPvzT7lgeP68c82l4bSBPCoqCgBw8eJFo/0XL17UP2aKr68vQkJCjL6sjRVyIiIickY1a0oYaNFCutWa4uGhheZp02S9c0CWYsvNBTp3Blq3ln3qsNoePWRCun37tDGpqanSbRcAxo4F1Dl6P/xQxqsD0pUX0CarMtWlncieyhPITenRQ7arVsk2IwOYNElu/+9/Mnl4WprkT1OuXpWeJIAMRSkrtdv6558bV+udNpCfPq3NQldKhfzECbnwFxkp1fHimAzkXl5SFocsKaky1W3999/l3+CZZ8x4HVbktIG8Vq1aiIqKwvr16/X7UlJSsG3bNsTFxTmwZQzkRERE5LweekjGjDdrVvwxffpIaL9xQ2aQ3rMHmD1bHnvppaLHV6oEtG8vt9Uq+RdfSJCoW1fGsN93n1Tf8/KAp5+W3qhqSHn5Zdn+/LM28zuRI1g7kN99t2x37AAuXgSmTpUKbGys/D9o1Ege//df09+vdlevXr30odQl6dFDwr86DKVNG9meOOFkmSUmRtZpzMuTKegBsyrkgATykoYZGAXyxo3lKmK3bvquCuoKaIDpQL5vn/y87F09d2ggT01Nxe7du7G7YKaDkydPYvfu3Th9+jR0Oh1GjhyJSZMmYcWKFdi7dy8ee+wxxMTEoI+pUfx2xEBORERErszDQ6p3ALB8uYTzlBSZxE2t+BXWs6dsV6yQqptaBXzpJW05t48/lm6927bJhYG0NBmr++qrssbyiRNaACFyBGsH8qgobQLv2bNl8jdAgrmvr0yOCBQ/jry848dVwcFA9+7a/bffluJwVpZzdc+GTicTT3h7a0m7lAq5ephhL3RTjAJ57dpShf/hBwAyt8aOHdqxpgL5wYOyVS+i2ItDA/k///yDli1bomXBb/Ho0aPRsmVLjBs3DgDwyiuvYPjw4Rg2bBjatGmD1NRUrF69Gn5+fo5stv5Nh4GciIiIXFWPHtJFU63wARKui6tAqYF80yaphl+9KmPHBw/WjomJASZPlttqJb1PHwkLnTrJ/cLd1hVFG2duysGDDPFkPdYO5IB2EWv8eAl+d9whY80B+wVyQHqoALIkWLduUqUHnLDbevPm2hU9wDaBHJA/SAW5cccOmRNDZSqQHzgg24YNS34ea3NoIO/cuTMURSnyNW/ePACATqfDxIkTceHCBWRmZmLdunWoV9b1AKyIFXIiIiJyBx06SLfy3bulkDRkSPHH1q8voSEnR9Ynr1pVquW+vsbHPfOM8WRyasfGe+6RbeFA/vjjsob6Rx8V/Wy1fLl0vW/TRhtn62rOnJEu+yWNfSX7sWUgB6Qq/ckn2vwLpQVydUI3a0Schx+WuSCWLpW8oo5Jd7pADsjMbB07yu3w8BIPLXMgN6B2Vw8Lky0r5C6OgZyIiIjcSfPmQN++WogojlolDwiQMB4TU/QYT0/puuvjI93V1c/camjZtEn7wPznnzJbdXo6MHq0hPaDB+Uz1vLlUmXMzZUZ4RcuLLltSUlauDHXpUvaBHTWcvAg8OOPwDffAPHxUq18/30J5T//bN3nIstkZABXrshtawbyW2/Vgt6IEcaBTg3kR4+aXvbPmhVyT09g+HBt/oibb5atUwZyT09ZQ+6114qfNr2ApYH8xg3pqm9IndDtwQdle+yY8XwWSUky9h8AGjQovfnWxEBeBgzkREREjpeQkIBGjRqhjTp7EdncqFHSLXb5cuCWW4o/rkULmSBpyxYZKgpIhb1FC+k2Ony4fBh+/XV5rG1b6Vm6Zo2EmbAwLYyrkzLPnm16QrhTp6Rd1arJc6jrnpcmLw/o0kVexz//lHzsX39J9/zCy7Zdvmy8DO6hQxLA+vSRdao//VReb9Wq8vgLL0iXZleWmyu9KdR1rl3J2bOyDQgotShrES8vqUw/8QQwYYLxY9HREiTz87UKrEpRrBvIC3PqCjkgs7RNnlxq9wBzA3lYmDa02LBKrihaIH/4YTkmI0ML4ID2b1OtGmCDRbpKxEBeBgzkREREjhcfH48DBw5g+/btjm5KhVGtGrB4sbb2cknq1pXjVTqdLMnk6QksWgQ89xzwxx/S5X3pUhnjeccdcv/GDQl+Dz8sSzj5+cks1YbLOQFyv0EDWb4tLU32ffmlea/lxx9lzGh+PjBnTsnHvv02sHMn8Pzz2ue/lStlQi91jXYAWLJEAnpUFNC1KzBwoFwgOHhQgtnx47IsnCubNg3o3x94801Ht8Ryht3VS+sNYqlHH5Xfo+Bg4/06XfHd1i9ckOUDPTxkDjJrc/pAbiZ1acbSArmHB3DTTXLbMJAfPSr3fX1lBbSaNWW/Ybd1R40fBxjIy4SBnIiIiMhyrVtrKx3NmiXb+HgJ7o0aAevXS0DZuxdYu1a6s990EzBggBz72WfauRQFeOUVqTi3aaOtu/7jj6a7BhtSFON12r/7rvjK9ZUr0hZAqv4//yzj6EeNks+CX34pXe4BbSK7t9+W71m4UKrwwcHaGPJ33tGCoSv68UfZbtzo0GaUiS3Gj5ujuECuVsdr1pQhHtamBvLC3bOdWW6u9FhJTtb2qRXyiIjSvz8yUraJido+tTreurWEcrUrv2Egd9T4cYCBvEzUQG7YRYmIiIiISvfmm9oY16AgGUJqyMsLaNJEKsxq99Nhw2T73XfaB/XffpMu5D4+Upl+8UWgRg0J9Or658XZvBnYulU+nEdGyvjRlStNH7t0qfFnvsmT5cKA+mE+LU1C+oULWgX/3nuLnmfgQJlELz1dLkK4SkAylJwswxAAuTihXohwFc4ayG3RXR3Qqu7JyVqodVanTskqD9WqyQU29f88YH6XdUD7WRquzKAG8vbtZWsqkLNC7mJYISciIiIqGx8fmfDslltkZnV1IqaS3HabVK7S02W1pLw8YOxYeeyZZySI63RaJX3RopLPp1bHH3tMm1l+/nzTx373nWxffFEC/JYtUpkHtArkd99pE7a1aSPd0wvT6WRMuY+PVNILFhVyKb/9pl2cyMsDdu1ybHss5ehAvnWr/K6oP0NbB/KAAO130dm7rffsCXzwAXDxotw3XDPckkCuDkc3nODx339l27q1bFkhdwMM5ERERERl17SpfOB+8knzjtfpgJEj5fb770sFfds2Wb5Y7QIPaDMor1ypjSkv7NAhmSFep5OQ/dhjsn/VKpl13dC5c9pEbiNGaOE9PV0++Kth/eeftVng1ZnoTWnSBJg4UW6/8IJUBV3JmjXG9wuP6Xd2jgrkzZtLME5JkZ4SDRoAM2bIcoOAdZY8K45Tz7ReIDdXq1C/+65sz5+XXiSKUr5ArijauRs3lm3hQJ6WBvz3n9xmhdxFMJATERER2deTT8qkcEFBEqoBCclRUdoxrVpJN9309OKXGFMnI+vVS2Zlb9hQqtq5ucC33xofu3ixfKBv316q8C+/rHWjnzxZnq9BA1liSZ3d/b77Sn4dL70kFf8bN4DBg4Hr1y37OTiKomiB/NZbZetq8yk6KpAHBAD798vFmEqVJAgOH679PG1VIQdcY2K3c+ek14CPD/Dss7IvPV3+j6Smyv9NoGyB/Nw5OY+XlxbEDQO5ogCHD8v9ypW1SeHsiYG8DNQ/xAzkRERERPah00ko//dfWa+8XTsJyIWPUbutFw7XgIwdX7JEiitvv63tHzxYtq+/Lt3Zc3JkVuavv5b9Dz0k29q1gQULpKu9um67+hgg419btCj5dXh6Al99JSFt0yY55+TJRSv6J04UP+73v/+AoUNllnp7OXZMntfbW+uyzwq5+cLD5WLQqVOyRJoaHL29tS7ttuAKgfzkSdnGxsoEiOpM9efPa/8HfH2lR0xp1J/rmTMS6tXqeN262sR5tWrJ/90bN+T/uSPHjwMM5GXCCjkRERGRY9SqJdXvrVtNz7o8cKBsly/XupEDUgl78UW5/cQTxiHo8ceBzp3lA/wrr0jVvUoVWerMw0PWXlc9+KB0n1eXzVK7yQNSHTdnOa2bbwZ++UW6sCclyYWA2FjgrbeAdevkPHXqSAW/8Nrn6elS3f/yS+ker3a1tTW1mtu+PdCpk9w+ftw+k4Xl5sp67uX5/pdeksnNPDwcE8hVQUFSHT94UHpVbNigrVNvC4YzrTsr9XdYXY5MHfd+/ry25FlEhHn/t266SaukHzumhW3DseG+vtLjpaRj7ImBvAwYyImIiIicU7NmWuV8yBCpigMy0du2bUBgoHF1HJB9v/0GzJ0rH+jVkNm0qVQzDbvFF9aggVTrAeCBB8xvZ6dOMob4668lNF29CkyYIGu8q93tr1yR2eZnzdLG0z77rDZbd3KyrNWek2P+85aVGsi7d5fAo3b7tWW39ePHZXm5iAjpUVC/PtCvn/w7paSU/L25ufL9a9ZImz/4QPZPnFh0rXBH8PCQJfHUmb9txZUq5KYCuSXjx1Vqlfzw4eLDtmG3dXVCN0dVyL0c87SujYGciIiIyHlNmSIzWC9fLlXkmBhtnOirr5oO2DqdVMr79JGg3KSJ+eNJly2T83fubFk7PT2BRx6Rbu9LlwJTp8r4+IEDpYo6ZYpMHPfss9KtvVkzmbDOwwOYM0cq9Vu2AE89pVX0c3OlChsdLa/VMDjPni3dfmNiJPw0aSIhV+3Kqygyc/ovv0jY9/GRivyWLVrw7t5dtm3bSpjZvl3bZy1XrshFla++Ml4e7sgR+Vq2TJaO69xZKp3Vqkmw7dBBXv+MGfLzMqzeBwbKzPaGvR0qAnXps/PngcxMwM/Pse0xRa2Q16olW8NArg4VtjSQb90qvyvFdUevUwdYv17+z6scVSFnIC8DBnIiIiIi5+XhIUurdewoIVWdOC0uTuu2XpywMMuDdXS06aXOzOXlJV3fDbu/A9Llvnlz6cp++rR8ARI2H39cgvcDD0hwNeXbb4Fp02SN9AkTjNdTN3zuyEipQl+/ro2zNqVDB2kPIBPhLVyojSNPT5eLGv7+Eqi//loez8mR2a0bNJCf0U03ybjpGzdk3Lyvr7wOHx/pln7mjFSxr1yR8/boIZP3NWkilcytW2Uc/+HDRdebv+kmOd+5c3Lfz0+CV6NGwPjx2izbFUlEhPx8U1Nl/Hr9+o5uUVEldVkPCJDb1q6Q9+ol/2+ysuR+aKhM0ugIDORlwEBORERE5NwCA4Fff5WZ0mNjJYxVr27eOFRnodMBr70mgXTjRul+Xbmy1iX//vslrP/yi0wm17atdMdOTZWwsWmTVM9V/fpJMD53Tqrb//4rwfjcOS3EBgRIxbtOHQnTOp0ElfbtJTCpP782bWS7ebNMcPfTTxL4/f3l+9SZsQFgzx7LX3uTJsBnn8lFFFW1atKl/403ZNm8HTuAxETpjr1qlRbiq1WTYQmPPqpVWCsqnU7+3fbtk+DrjIFc7bJuqkIeHi63yxLI//hDLjJ5eBRdWu7ee2X+huRk+apSRS7GOQIDeRl4FfzU1CsqREREROR8IiKAZ55xdCvKLyBAZpa/556ij40bJ1+FPfaYjJt+4w0JyQkJwKBBxhckFAU4e1bWX796VYJL+/bmzWbdsqWE3WvXZGiAKiNDtq1ayUzw1apJlfLIEXmey5clsIeEyEWT7Gy5gJCdLdVtX1+pio8cKZV0U3Q6oHVr+VLl5soFiKtXZZiCOa+hojAM5I6Ul1f0Akl2tnYxyFSFXB1eYkkgVy86qK+3dm3Tvw9+fvIVGWn+uW2BgbwM1JkZHf1LTURERERkiqenzBj/yCMSOkwFGp1OPteWZdbxgAAJ3L/8It3m1fCtjttWq52ABGRb8/IC7rzT9s/jitR/C7US7Qiffy49PZYtA+6+W9t/9qz0OjYMxoaBPDZWbptaUaE46rwJKkeNDTcXA3kZ1K0r29On5Sogr8ARERERkTOKibHduWfPLrovNNR2z0dlo1aeHVlMXLVKJpWbMME4kBvOsK723lAD+YUL2rJnllTIAwLkIpM6H4KzB3Iue1YGN92kjTFw5iUEiIiIiIioYitLID92TCbds5aLF2W7bZvxUnmFJ3QDtEB+/brMEQBYFsgB4zHjDORuSKfTquRHjji2LURERERERMWxtMv6gQMSaPv3t14bLlzQbickaLcLT+gGSOHT11duq2uEWxrIDSevYyB3U+pVl6NHHdsOIiIiIiKi4qjV50uXZHk6QCZ5W7/e9KpRv/0mE/7t3Gm9NhgG8u++k8n9ANMVcp1Oq5KrVfryVMgbNLDse+2NgbyMWCEnIiIiIiJnFx6uje0/dUpWiurUCejaFWjWTNarN1yj/p9/ZHv5snVWlUpN1S4ENG4s55wzR+6bCuSAFshVlgZyNYTXqiWz+TszBvKyuHYNj2wcijuxjhVyIiIiIiJyamrgPXkS+PtvbTb8/fuBhx+W9exVO3Zot9Ux3OWhVscDAoCXX5bbn34qk7yZ6rIOlD+Q33knMGoU8PHHlrfX3hjIy+Kdd1Bn45cYh4kM5ERERERE5NQMJ3b7/Xe53aMHMHq03J4/X7qpp6XJGHLV2bPlf251QreoKODBB2Xm/zNngDfe0AJ/SRVyHx/Lq9xeXsCHH9pnyb3yYiC31LVr+jUequEsLlwAUlIc3CYiIiIiIqJiqBVow0B+zz1SGff2lq7sJ04Ae/YYjyu3RiBXK+SRkbLeuDqp2wcfyDYgQFaxMmQYyCtV0pZEc0cM5Jb69FP97AIxSASg4NgxxzaJiIiIiIioOGoF+uhRYPNmud2xIxAUBMTFyf1167Tx4yprV8gBoE8f4xnca9UqGrgLB3J3xkBuifR0o4EIfshCJVzjxG5EREREROS01ED+669SWwwLA5o0kX1du8p23Tpt/Li3t2ytXSFXffKJNtFc4e7qAAM5FefLL4ErV+S3puA3IwaJHEdOREREREROS+2yrs523qED4FGQBNVA/ttvMuEbANxxh2xtUSEHJHAnJMhY7+7di34PAzkVlZMDvP++3H75ZaBaNQASyFkhJyIiIiIiZ1W4Ct2pk3a7TRsgOFimyjp0SPb17i1ba1bIDQM5AAwaJHNxDR9e9HsYyKmo5GSgdWv5TRoyRKYHBCvkRGR/S5dKt6+vv3Z0S4iIiMgVhIQYB9uOHbXbXl5Aly7a/ZgYCekAcO5c+Z9brZAbdllX+fub/p7KlQFPT7kdEVH+NjgzBnJz3XQTsGQJcPiw/OYYBHJWyInIXv75B3jkEeDSJWDSJFmihIiIiKg0apU8MBBo2dL4MbXbOiA1yILOwDh/HsjNLd/zFlchL4mHhxbgWSEnYyEhsi0I5FVxDtevA1evOrBNRFQhnD8vM5NmZsr9I0eAbdsc2iQiIiJyEWogb99equKGDAN5q1ZAlSpyTH6+FqjLQlFKrpCXRO22zkBOplWtCgCo4yer2bNKTkS2pCjAAw9I17GGDSWYA8BXXzm0WURW07dvX4SHh+P+++93dFOIiNzS7bfLtl+/oo81aKBVxdu2lQp1Qf2xXOPIU1K0QoKlgVztNt+8edmf3xUwkJdVwW9orI8E8j17HNkYInJ3Z87IuqFeXsBPPwHx8bL/u++0NzoiV/bCCy9g/vz5jm4GEZHbGj4c2L8fGDas6GM6HbBgATB1qjbruRrQzQ3kmZnAvHnS5b16deDUKa26HhwMBARY1t4ZM+Tzj7pOurtiIC+rgkAerUgg37LFkY0hInd3+LBs69YF6tSRyVeqVQOSkiSgE7m6zp07Izg42NHNICJyW15eQKNGEr5N6dhRFpNSH7ckkB89Kl3ihwyRtczPnpVJaE0teWYuT0+tDe6MgbysCgJ5cNoFeCCPgZyIbEoN5PXqydbTE3j0UbnNbutka7///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8rS5mS0RELsmSQP7zzxK+q1TR1jD/80+tQm5pd/WKhIG8rKpUATw84JGfhyq4hKNHgcuXHd0oInJX6jwV9etr+wYPlu3q1doVaCJbSEtLQ/PmzZGQkGDy8UWLFmH06NEYP348du7ciebNm6N79+64dOmS/pgWLVqgSZMmRb4SE//f3p3HR1Xf+x9/zWSSyb4RsrEjyCYisolo64IV6tWiVq1GTGl/etGoKNaqbdV6vYhLq1aloN6qvb2utOJaUIyK0soiGBZZFWQ1CQFC9m3m+/vjy0wYkkBYZ+H9fDzOYzLnnJn5fM6cmW8+c77ne7YfrzREROQQ+Ary9lz6bPVqe3v99fDgg/bvfQvywzlCfqJwHXwVaZXLZfes7dsZ1X07//guhwUL4OKLgx2YiESi/Y+Qgy3Ohw+HRYvgjTfsuWEix8LYsWMZO3Zsm8sff/xxrr/+eiZMmADAjBkzeP/993nhhRe4++67ASgqKjpq8dTX11NfX++/X1FRcdSeW0RErEM5Qu4ryPv1s6O0x8bag5Wff27nqyBvm46QH4m93dZ/2Nv+uv/vfwczGBGJZK0dIQe45hp7+8orxzceEZ+GhgaWLFnC6H2umeN0Ohk9ejRfHKPzuaZOnUpKSop/6tKlyzF5HRGRE9nhFuRutz1gAPDPf9pbdVlvmwryI7G3ID89y/bj0HnkInIs1NbakUoh8Ag5wJVX2kuTLFgAGzYc/9hEysrK8Hg8ZO3331ZWVhbFh3Dx2tGjR3PFFVfwz3/+k86dOx+wmL/nnnvYs2ePf9qyZcthxy8iIq3bt8u619v2emVldoLmAwe+S6zV1NhbHSFvmwryI7G3ID85yR4hX7QIGhuDGZCIRKJvvrHXIf95/Bt0/PzNgGU5Oc2Dp7z6ahCCEzlKPvroI3bs2EFNTQ1bt25l5AGuc+N2u0lOTg6YRETk6MrOtiOuNzYeeKws39Hxbt0gIcH+7SvIfXSEvG0qyI/E3oI8o347XVIq+GftOeyacEeQgxKRSLNuHZzMWl6suQrHlVfAfoNgXX21vX3lFVu4ixxPGRkZREVFUbLfyIIlJSVk65CIiEjYio5uPrK9f7f1hobmv/ftru4zcmTg5dXUHLRNBfmR6NQJAMf32/lN7kucwzwyX3lCwx2LyFG1di1M4EV7x+uFt98OWH7ZZRATA6tWwYoVQQhQTmgxMTEMGTKEwsJC/zyv10thYeEBj3KLiEjo83Vb//Zbe1tfbweRTUiAF16w81oryFNTYeDA5vs6Qt42FeRHYu8RcrZt4/KyGQA4jIF33gliUCISab5Z00Q++1xs/M3AbuupqXDRRfbvl18+fnHJiaOqqoqioiL/SOkbN26kqKiIzZs3AzB58mSef/55/vrXv7J69WpuvPFGqqur/aOuHyvTpk2jf//+DBs27Ji+jojIiapHD3s7fjzccQeMGgXPPANNTfDss3ZZawU5BHZbV0HeNhXkR8JXkK9YQccdq/2zPTPfbOMBIiKHLm3RB+RQTGNsop3x6aewa1fAOnl59vbPfwaNbyVH25dffsngwYMZPHgwYAvwwYMHc9999wFw1VVX8Yc//IH77ruP0047jaKiIubMmdNioLejraCggFWrVrF48eJj+joiIieqhx6yY9U0NMDjj8OSJZCebrujL1pkz6JrqyA/+2x7m5pqR16X1qkgPxK+gnzvSZv/dp9r739cCOXlwYlJRCKKMXDOBtsnrPyn19v+X01N8N57doXKStiyhUsvtedrVVXBTTdF6Lnku3fDmjWHltzOnbaL/74nu8khO+ecczDGtJheeukl/zo333wzmzZtor6+noULFzJixIjgBSwiIkfFSSfBRx/B++/D0KEwejQUFcEZZ9jlr7wCeztLtSjIf/Qj6NoVxo07nhGHHxXkR6JDB3vi5l67f/dHvqY/UZ5GKl97P4iBiUik2LV2Bxc2vgtA4i0T7AnjYLutb95sC/SuXXGOu4SXb5zPhVEfcc57d7D57GvaPlRujK3cS0vtOmVlx7dg3boV/vAH+I//gA8/PPC61dVw7bW2r1t6um3tCwraV5SXltr/GMaNgyuuaF+OVVXw9NMwaZLtiRCRv2yIiIi0n8MBP/4xLF4Mc+dCly7NRfYTT9jbjh1tabSv9HT47jt48cXjGW34cRgT2f9tVFRUkJKSwp49e47NZVF69LB72rBheBcs4i+593J9yX+z7KTLGPTNP2hstDuxa2eJPUpzwQXNJ2PIkamosH1lTjrp+GxTY+zRSJcL4uNbX/7dd5CRAUlJLZd7vbBxI6xcaSeHw15EulevYx76YTMmcIjMA6mrg88+g6+/tsNyxsbab+zBgyEzM3Ddyko7+KExdnu2NjU12X5Q27bZ5+rVy17jq73xtJZLWZm9htjmzbbvVEqKvUZHz56H95yHy+u1Fw5ftw48HhtbTg707g3duzf/0FdXx/fX3EHOrD+zLGYog+oXw/LlMGhQ8/Zdv77Nl2nq3A3Xp4X2M+LzySe2oF29uuUDcnJsIXrTTa3vw/ubP9++P+edZ1vithgDX34JH3wAc+bAv//dXOhGR8M//gEXX9z64/LyWr+e26RJ9r+AtvaHyko491zbt87n4oth5szW+81VVNgfCZ55xh6J9+nXD+66C6677vD3vVYc87bpBKPtKSJyfK1b13zNcYAf/ADmzQtePKGovW1TWBTk06ZN47HHHqO4uJhBgwbx9NNPM3z48HY99pg30hdeaI/wvPACTJjAgulfccZNp1NDHBf1/47qtVv5f46/8HPvX4jx1uONjoHbJ+O8fZI9erNhgy083G5wOqG2Fmpq7N8JCRAXZy/+V19vi5T0dFtEVFfbrpjV1c0FTHKy/WkqOdmuX1vb/Hw1NfYfzj17bAGQlmZP6Kirs/98VlTY12lqsv8gJyTY1xk0CAYMsLmuWGGnnBx7VK66Gl5/3XaddbttMdGzp40hLc0+V1mZnXbutLd1dXbduDi77sCBNvY5c2x/GKfTFiS+qVs3KC62hV5Rkc2/a1d7/uz8+fY1wPahOfNMOxz1ihX2Nfr1g5NPtsVzdLQ9jeDbb20xZoyd57uw4s6dNo6EBEhMtFNCgn3+3bvtY8vLbSEFthDq08fG16mT/ef/7bft+5mcbIuF66+3Mc+ZY4uRr7+222x/Z50FQ4bY3Fwu2LTJTnV1Nka32xb5mZk23g0b7PKqKvu+GmPjTUqy8VZX2/V8j3E4bOx79jTfOp32+hNZWfbxvn2ltta+ru/vxkZbHMbGNk8xMXad6mr73JmZdl9atsw+pjWZmfZxXq/d16qqDu/zFh9vC/Peve1+VlvbfKS3uNjmFhNjJ7fb3jocdn/ZubPt+Pr2hZ/8xBZwp58OHTvi9dq3vr7eruJyQVpSE9G7SuwPK2vW2NtOnex+3KePjSkqyj7A67Wx7dljc9661f4YsGyZHfixrasxuN227/nw4fbztWkTAI/1f5E7v/65fb96924e7rRbN3jpJfjb3+Bvf8NkZDCrZgyn7JnPyaynLj2H2D8/YT/3H34If/1r4OvFxLQ8cpyebvukZWU17ydZWfZ9zMiwn5nf/c5+ZsHuT2ecYT+bLpf9/J93nt2eH34IU6bYvPd19tn2e+DDD+1+/uqr9uj/vkXvE0/A5Mn2Od94w/6g+cYb8Mtf2uU33gi33WY/55s322J75UoavFHUL1xG0tovqUvKYPW1UzjtxUk46ursfwwPP2y3Mdjt+cYbcPvt8P33dl6vXvb75B//aP7MXnABPPec/V46ClRAHl3aniIix1+/fvbfIYD//E+YMSO48YSaiCnIX3/9da677jpmzJjBiBEjePLJJ5k5cyZr164lc/+jbq045o30t9/CwoX2QsAOBxhDcXxPsuu+a7HqFjrTha0tnyPENbjiMDhwN9UEO5QWypM6k1y1HafxBjsUAIzDYUfab0OTy82Ojv3ZkXUKidWldP9mbsjEfjRUpeSyreuZuN0QTw2JJd8Qv2Vdq+s2xSVinFE4PE3+yen1BKzTmJRGXYdORNXXEFfyHQ7vkW+rmowuVHfsjrOpgejqPSSWfIPT0xSwTqkzi3JvMjXEE4WHeGpIpoIO7MRJ2++vFwdVrlSiTBMJnsoDxlHlSmFd2ghiEmKIjzMkV24lpXQ90Q2Bn7OS6M78qvEhUm66lmem7S1W77oLHn3U/jj2+efNR8A9HnA62bDRwcRxxfxxxQUMZGWLGOd0m8jMgf9FZt90TurtpFf3JnplVZK16F2iHv5vXBvaPuq+LxMdjePkk+2PTQcTH29PJhszxvZ769IFmprwXHMtUTNfB6ApOY3aQWdgcjoRFRNF/Kv/g8PjYUHeU3x5xi14vfb3jnPWzGDAMzf6n3pXfCfSa7a13MYkcA6fsoShjIku5C3vxbg99keZqlNH0uCMJXrbdyTt2AjA94m9eP+sh6kbM44u3aNw11fQ7b1p9H7tv3A11lHnSmDDLU/Q//Hr27V9DkQF5NGl7Skicvzdc4/9jRvgySft8ShpFjEF+YgRIxg2bBjPPPMMYK9t2qVLF2655Rbuvvvugz4+GI101d0PkviIHXnWk9aBqgEjeOfkO3l+3Q/JXPw+U+rvoA/rKKMDG+hJHbHE0ICLJmqIp5Y4HBgSqCaOWhqJph43MTSQxm5SKaeKRHbSgSoSicJDNI2ksIcO7CSZCuqIpZa4gGkPKZSTihen/3nqiGU3aVSQTAMxNOEimkYSqCaTUk5nKSlUAFBOCssYRDbF9OIbAD7mPGZyBbXE0Zv1dOc70thNGrtpJJoyMthJB8rIoIwM6ojFTT0JVNOHtQxkBYlU8THnMZuxVJNAd74LmCpI5jN+wEJGkEQlXdmMhyjmcgHf0ouOlHIZb9KXNayiP8s5FTf19GM1PdmAm3pcNFFNAhvoyXd0p5FoomnEi5MddGQnHXBgSKSKRKpIoJokKmkkmnJS2U2a/9YXex/W0pmtdGIbTrzMZiwfMZoLmMv9PMAglrOBHsxmLPP4Ics5lW/ohQeXf1/JZRuXMotObCOdXcTQwGa6soluVJFINI3EUkcGZWRRgocoNtCTTXSjnFRqsT+WJFLlj7eaBDxE0YGdZFGy971L9b//5aQShYccvieLErw4A/aTffedBmKIoYFY6oilDjf1uKmnjliqSSAKD5mU0oGdrKEvXzMACOzWm0glvVmPA4MXJ1Uksp1cakho5dNjiMKDC1sg1xPrXxJNA935jt6spzfrSaaCahKoIZ4ddKSYbMpJxUUTbuqJoYEYGojCwy7SKSODErKoIy7gFVMoZyyzuYj3GcZi+tD6Dwg+TUSxlc6soS8b6UEXtjCQFXRjc6vrNxDNHlIoIYtv6MU39OJDfsSnnEMjMfutbTiZdZzDp5zBAlbRn2kUUEs8L70E+fl7V9u9257nfM01bZ7yUF8PD962kwEzbuYkvqWSJHbQkae4lS84s838nHgYwxx6s54sSsiihGyKyaKEjuygAzuJoYHXuYr/jnmQqo496OzdzNkNhSRRSbSjiS5NG/lB9Wy6Nn7LHmcqz8bcyh8aJ7HTpPs7pyQk2M4AZcVN/IlbmcCLxFHXIp6/cS3X8b/sv19dypv8J89yLp8QQyNeHHzO2czlAgwO0pK9LO1+GdvTBlBcbDvP9ORb7mEq1/G/xNDof6463DzEb3iUXwfscz69Wcf/8P/4AZ8z5yfTGfPWxDa3X3upgDw6pk2bxrRp0/B4PKxbt07bU0TkOFq4sHlwtw8+sL+7S7OIKMgbGhqIj4/n73//O+P2GZ4vPz+f8vJy3n777RaPqa+vp97XxxS7Ibp06XJ8G2nfucIZGbbb9z48Hli31lD8bTWu1ESio+38pia7LDa2ufe619s8eTyB910u+0+t02l7FTc0BE7GBE5eb3Pvda/XhpW49wpKDQ3Nz9Hitt5LcvE6opyGxp59SEx24nJBVEMtTm8TTXFJe7ez7ZHu6w3tctkjWfvf+uKorW3uYe9228fu2GHjq6uzrx0fbyeXqzl/3y3Ynra+U419Pa19va0djuaey77J623uve+bGhrsdvRNLpddNyHBTg5HYC/uujq7bZxOuywx0W7LmBj7fL4zCOJiDcneckobUtlT4SAqyvbiTUmxj93//dz3ffZ4bE6tTR6Pfd19J2h537cb7rvNfI89VpKTbY5ut30vS0pa9oTe//X3vd+eZQfK+XDv+/52Ou1ZFGeesoehaRvISqwmLaaa6NgoSEjAE5dIuTuL4qYMauvt58DhsPv+rl1QXd5IbM0uYqp24Y2KpjEumRpXMqUVsZSW2s+hb7/yTbW19qti0yZbQO//Wc/MtD3hTzvNHlh2HsYwnF99Zc/i8H0+k5LsflhTYzv4+KaNG+375duvfb39W9t+3kYPpTujDvrauWxjN2nU0sqYC/tISIBOHRvoVb2M/jWLSWzcjauxjmJHDh93/wWdToolLc3mX19vz1tbt85+p1wwfA8/7boIxykD8GTlkp5uz2DxXQQD7LZfvtz2TF+5Euq/2cJpW97Fm5yCJ7szDb36k9SzI5mZ+Iv37dubH5uRAT26ebmg8k0633oZQ4cf+XioKsiPLm1PEZHjz+uFU0+148N++61tL6VZe9smV5tLQkBZWRkej6fFdUyzsrJY4zthYT9Tp07lgQceOB7htc3pDBxEaR9RUdCvv4N+/ROPc1CHywn0bWV+XCvzpJkDSAt2EHJYUoDBLeZGAR32Tq2LBrL2TqFj8GA7HYzHY4v0hIT2FP5R1Nfb8dx8Qyvs/6OZ/bsT8fH2B4CkJPw/YjQ22tPr6+ps4WyHOogBhu2drAONKdjU5BsKIgW44IDROhx2OIxBg3xzugA3HXyjBHACPz3Ex4iIiEQup9MO81Rfr2L8SIR0QX447rnnHiZPnuy/7ztCLiIibYuKat/A6j5u97EfnP5APTpcEdd6iYiIhJ/09GBHEP5C+l+ajIwMoqKiKNlvNOKSkhKys7NbfYzb7cbd2iVtRERERERERELIkZ8IdwzFxMQwZMgQCgsL/fO8Xi+FhYWM9F2yRkRERERERCQMhfQRcoDJkyeTn5/P0KFDGT58OE8++STV1dVMmDAh2KGJiIiIiIiIHLaQL8ivuuoqduzYwX333UdxcTGnnXYac+bMaTHQm4iIiJxY9r3smYiISDgK6cueHQ26FIqIiIQatU1Hl7aniIiEmva2TSF9DrmIiIiIiIhIpFJBLiIiIiIiIhIEKshFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREwtK0adPo378/w4YNC3YoIiIih0UFuYiIiISlgoICVq1axeLFi4MdioiIyGFRQS4iIiIiIiISBK5gB3CsGWMAqKioCHIkIiIilq9N8rVRcmTU1ouISKhpb1sf8QV5ZWUlAF26dAlyJCIiIoEqKytJSUkJdhhhT229iIiEqoO19Q4T4T/Pe71etm/fTlJSEg6H44ieq6Kigi5durBlyxaSk5OPUoTBE0n5RFIuEFn5RFIuoHxCWTjlYoyhsrKS3NxcnE6dPXak1Na3TfmErkjKBSIrn0jKBSIrn3DKpb1tfcQfIXc6nXTu3PmoPmdycnLI7wCHIpLyiaRcILLyiaRcQPmEsnDJRUfGjx619QenfEJXJOUCkZVPJOUCkZVPuOTSnrZeP8uLiIiIiIiIBIEKchEREREREZEgUEF+CNxuN/fffz9utzvYoRwVkZRPJOUCkZVPJOUCyieURVIuEjyRth8pn9AVSblAZOUTSblAZOUTSbn4RPygbiIiIiIiIiKhSEfIRURERERERIJABbmIiIiIiIhIEKggFxEREREREQkCFeQiIiIiIiIiQaCC/BBMmzaN7t27Exsby4gRI1i0aFGwQzqoqVOnMmzYMJKSksjMzGTcuHGsXbs2YJ26ujoKCgro0KEDiYmJXH755ZSUlAQp4vZ7+OGHcTgc3Hbbbf554ZbLtm3buPbaa+nQoQNxcXEMHDiQL7/80r/cGMN9991HTk4OcXFxjB49mvXr1wcx4rZ5PB7uvfdeevToQVxcHCeddBIPPvgg+44bGar5fPbZZ1x88cXk5ubicDh46623Apa3J+5du3aRl5dHcnIyqamp/PKXv6Sqquo4ZtHsQPk0NjZy1113MXDgQBISEsjNzeW6665j+/btAc8RLvnsb+LEiTgcDp588smA+aGUj4Q2tfWhRW19aAnnth4iq71XWx85bb0K8nZ6/fXXmTx5Mvfffz9Lly5l0KBBXHjhhZSWlgY7tAOaN28eBQUFLFiwgLlz59LY2MiPfvQjqqur/evcfvvtvPvuu8ycOZN58+axfft2LrvssiBGfXCLFy/m2Wef5dRTTw2YH0657N69m1GjRhEdHc3s2bNZtWoVf/zjH0lLS/Ov8+ijj/LUU08xY8YMFi5cSEJCAhdeeCF1dXVBjLx1jzzyCNOnT+eZZ55h9erVPPLIIzz66KM8/fTT/nVCNZ/q6moGDRrEtGnTWl3enrjz8vL4+uuvmTt3Lu+99x6fffYZN9xww/FKIcCB8qmpqWHp0qXce++9LF26lDfffJO1a9dyySWXBKwXLvnsa9asWSxYsIDc3NwWy0IpHwldautDi9p6tfVHWyS192rrI6itN9Iuw4cPNwUFBf77Ho/H5ObmmqlTpwYxqkNXWlpqADNv3jxjjDHl5eUmOjrazJw507/O6tWrDWC++OKLYIV5QJWVlaZ3795m7ty55oc//KGZNGmSMSb8crnrrrvMWWed1eZyr9drsrOzzWOPPeafV15ebtxut3n11VePR4iH5KKLLjK/+MUvAuZddtllJi8vzxgTPvkAZtasWf777Yl71apVBjCLFy/2rzN79mzjcDjMtm3bjlvsrdk/n9YsWrTIAGbTpk3GmPDMZ+vWraZTp05m5cqVplu3buaJJ57wLwvlfCS0qK0PHWrrQ6tt9ImUtt6YyGrv1daHdj4HoyPk7dDQ0MCSJUsYPXq0f57T6WT06NF88cUXQYzs0O3ZsweA9PR0AJYsWUJjY2NAbn379qVr164hm1tBQQEXXXRRQMwQfrm88847DB06lCuuuILMzEwGDx7M888/71++ceNGiouLA/JJSUlhxIgRIZnPmWeeSWFhIevWrQNg2bJlzJ8/n7FjxwLhl49Pe+L+4osvSE1NZejQof51Ro8ejdPpZOHChcc95kO1Z88eHA4HqampQPjl4/V6GT9+PHfeeScDBgxosTzc8pHgUFsfWtTWh2bbGKltPUR+e6+2PnS5gh1AOCgrK8Pj8ZCVlRUwPysrizVr1gQpqkPn9Xq57bbbGDVqFKeccgoAxcXFxMTE+D+cPllZWRQXFwchygN77bXXWLp0KYsXL26xLNxy2bBhA9OnT2fy5Mn85je/YfHixdx6663ExMSQn5/vj7m1/S4U87n77rupqKigb9++REVF4fF4mDJlCnl5eQBhl49Pe+IuLi4mMzMzYLnL5SI9PT2kcwN7LuZdd93F1VdfTXJyMhB++TzyyCO4XC5uvfXWVpeHWz4SHGrrQ4fa+tDNJ1Lbeojs9l5tfejlsy8V5CeQgoICVq5cyfz584MdymHZsmULkyZNYu7cucTGxgY7nCPm9XoZOnQoDz30EACDBw9m5cqVzJgxg/z8/CBHd+jeeOMNXn75ZV555RUGDBhAUVERt912G7m5uWGZz4mgsbGRK6+8EmMM06dPD3Y4h2XJkiX86U9/YunSpTgcjmCHIxJ0autDi9p6CTa19aFPXdbbISMjg6ioqBYjeJaUlJCdnR2kqA7NzTffzHvvvccnn3xC586d/fOzs7NpaGigvLw8YP1QzG3JkiWUlpZy+umn43K5cLlczJs3j6eeegqXy0VWVlbY5AKQk5ND//79A+b169ePzZs3A/hjDpf97s477+Tuu+/mZz/7GQMHDmT8+PHcfvvtTJ06FQi/fHzaE3d2dnaLQZ+amprYtWtXyObma6A3bdrE3Llz/b+YQ3jl8/nnn1NaWkrXrl393wubNm3ijjvuoHv37kB45SPBo7Y+NKitx38/FPOJ1LYeIrO9V1sfmvnsTwV5O8TExDBkyBAKCwv987xeL4WFhYwcOTKIkR2cMYabb76ZWbNm8fHHH9OjR4+A5UOGDCE6Ojogt7Vr17J58+aQy+38889nxYoVFBUV+aehQ4eSl5fn/ztccgEYNWpUi8vSrFu3jm7dugHQo0cPsrOzA/KpqKhg4cKFIZlPTU0NTmfgV0pUVBRerxcIv3x82hP3yJEjKS8vZ8mSJf51Pv74Y7xeLyNGjDjuMR+Mr4Fev349H330ER06dAhYHk75jB8/nuXLlwd8L+Tm5nLnnXfywQcfAOGVjwSP2vrQoLY+tNvGSG3rIfLae7X1oZtPC8EdUy58vPbaa8btdpuXXnrJrFq1ytxwww0mNTXVFBcXBzu0A7rxxhtNSkqK+fTTT83333/vn2pqavzrTJw40XTt2tV8/PHH5ssvvzQjR440I0eODGLU7bfvyKvGhFcuixYtMi6Xy0yZMsWsX7/evPzyyyY+Pt783//9n3+dhx9+2KSmppq3337bLF++3PzkJz8xPXr0MLW1tUGMvHX5+fmmU6dO5r333jMbN240b775psnIyDC//vWv/euEaj6VlZXmq6++Ml999ZUBzOOPP26++uor/0ik7Yl7zJgxZvDgwWbhwoVm/vz5pnfv3ubqq68OuXwaGhrMJZdcYjp37myKiooCvhfq6+vDLp/W7D/yqjGhlY+ELrX1oUltfegI57bemMhq79XWR05br4L8EDz99NOma9euJiYmxgwfPtwsWLAg2CEdFNDq9OKLL/rXqa2tNTfddJNJS0sz8fHx5tJLLzXff/998II+BPs30uGWy7vvvmtOOeUU43a7Td++fc1zzz0XsNzr9Zp7773XZGVlGbfbbc4//3yzdu3aIEV7YBUVFWbSpEmma9euJjY21vTs2dP89re/DfjiD9V8Pvnkk1Y/J/n5+caY9sW9c+dOc/XVV5vExESTnJxsJkyYYCorK4OQzYHz2bhxY5vfC5988knY5dOa1hrpUMpHQpva+tCjtj50hHNbb0xktfdq6yOnrXcYY8zROdYuIiIiIiIiIu2lc8hFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREREREJAhUkIuIiIiIiIgEgQpyERERERERkSBQQS4iIiIiIiISBCrIReSYcjgcvPXWW8EOQ0RERI4htfcih0cFuUgE+/nPf47D4WgxjRkzJtihiYiIyFGi9l4kfLmCHYCIHFtjxozhxRdfDJjndruDFI2IiIgcC2rvRcKTjpCLRDi32012dnbAlJaWBtjuZdOnT2fs2LHExcXRs2dP/v73vwc8fsWKFZx33nnExcXRoUMHbrjhBqqqqgLWeeGFFxgwYABut5ucnBxuvvnmgOVlZWVceumlxMfH07t3b955551jm7SIiMgJRu29SHhSQS5ygrv33nu5/PLLWbZsGXl5efzsZz9j9erVAFRXV3PhhReSlpbG4sWLmTlzJh999FFAAzx9+nQKCgq44YYbWLFiBe+88w69evUKeI0HHniAK6+8kuXLl/PjH/+YvLw8du3adVzzFBEROZGpvRcJUUZEIlZ+fr6JiooyCQkJAdOUKVOMMcYAZuLEiQGPGTFihLnxxhuNMcY899xzJi0tzVRVVfmXv//++8bpdJri4mJjjDG5ubnmt7/9bZsxAOZ3v/ud/35VVZUBzOzZs49aniIiIicytfci4UvnkItEuHPPPZfp06cHzEtPT/f/PXLkyIBlI0eOpKioCIDVq1czaNAgEhIS/MtHjRqF1+tl7dq1OBwOtm/fzvnnn3/AGE499VT/3wkJCSQnJ1NaWnq4KYmIiMh+1N6LhCcV5CIRLiEhoUWXsqMlLi6uXetFR0cH3Hc4HHi93mMRkoiIyAlJ7b1IeNI55CInuAULFrS4369fPwD69evHsmXLqK6u9i//17/+hdPppE+fPiQlJdG9e3cKCwuPa8wiIiJyaNTei4QmHSEXiXD19fUUFxcHzHO5XGRkZAAwc+ZMhg4dyllnncXLL7/MokWL+Mtf/gJAXl4e999/P/n5+fz+979nx44d3HLLLYwfP56srCwAfv/73zNx4kQyMzMZO3YslZWV/Otf/+KWW245vomKiIicwNTei4QnFeQiEW7OnDnk5OQEzOvTpw9r1qwB7Iior732GjfddBM5OTm8+uqr9O/fH4D4+Hg++OADJk2axLBhw4iPj+fyyy/n8ccf9z9Xfn4+dXV1PPHEE/zqV78iIyODn/70p8cvQREREVF7LxKmHMYYE+wgRCQ4HA4Hs2bNYty4ccEORURERI4RtfcioUvnkIuIiIiIiIgEgQpyERERERERkSBQl3URERERERGRINARchEREREREZEgUEEuIiIiIiIiEgQqyEVERERERESCQAW5iIiIiIiISBCoIBcREREREREJAhXkIiIiIiIiIkGgglxEREREREQkCFSQi4iIiIiIiATB/wcBVOnh9eXmNwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGI0lEQVR4nOzdd3hT5fsG8DstnXSyWsooyC57gwiUoYiKLBcuUARHWYKK/FBAUFEcIFJFEcGFXycoDhAQ2Qiy99CyKbstLbSl7fn98fTNSdp0pE16kvb+XFevk5ykJ29L6Ml9nneYNE3TQEREREREREQlysPoBhARERERERGVRQzkRERERERERAZgICciIiIiIiIyAAM5ERERERERkQEYyImIiIiIiIgMwEBOREREREREZAAGciIiIiIiIiIDMJATERERERERGYCBnIiIiIiIiMgADORERERERG4oOjoa0dHRhX5ukyZNnNugbLVq1cKQIUNK5LWI3B0DOVEZsnDhQphMJphMJqxfvz7X45qmoUaNGjCZTLjrrrvM+5OTkzF58mQ0adIE5cuXR8WKFdGiRQuMHj0aZ86cMT9vypQp5uPb+oqPjy+Rn5OIiKiw1Lnxn3/+MbopxXbmzBlMmTIFO3fuNLopDlOrVi2YTCb07NnT5uPz5s0zf87I+W+4fv169O7dG9WqVYOvry9q1qyJPn36YNGiRVbPy++zy1NPPeW0n40IAMoZ3QAiKnm+vr5YtGgRbrnlFqv9a9aswalTp+Dj42Ped+PGDXTp0gUHDx7E4MGDMXLkSCQnJ2Pfvn1YtGgR+vfvj4iICKvjfPjhhwgICMj1uiEhIU75eYiIiMqiP/74w+r+mTNn8Morr6BWrVpo0aKFMY0CcOjQIXh4OK7u5+vri9WrVyM+Ph7h4eFWj3311Vfw9fVFamqq1f7vvvsO999/v7mAEBoairi4OKxduxbz5s3Dgw8+aPX8W2+9FY8++miu165fv77Dfg4iWxjIicqgO+64A9999x1mz56NcuX0PwOLFi1C69atcfHiRfO+JUuWYMeOHfjqq69ynbxSU1ORnp6e6/j33HMPKlWq5LwfgIiIqAy7du0a/P394e3tbXRTbLK8sO8InTp1wtatW/HNN99g9OjR5v2nTp3CunXr0L9/f/zwww9W3zNlyhRERUVh8+bNuX5P58+fz/Ua9evXx8MPP+zQdhMVBrusE5VBgwYNwqVLl7BixQrzvvT0dHz//fe5Qve///4LQE6GOfn6+iIoKMi5jSUiInIBO3bsQO/evREUFISAgAD06NEDmzdvzvW83bt3o2vXrvDz80P16tXx6quvYsGCBTCZTDh27Jj5eT/99BPuvPNOREREwMfHB3Xq1MG0adOQmZlpdTw19nvbtm3o0qUL/P398X//93/mx9QY8r/++gtt27YFADz22GPmLtcLFy60Ot7+/fvRrVs3+Pv7o1q1apgxY4bV43/99RdMJhO+/fZbvPLKK6hWrRoCAwNxzz33IDExEWlpaRgzZgyqVKmCgIAAPPbYY0hLS7M6hq0x5AkJCXj22WdRq1Yt+Pj4oHr16nj00UetigB58fX1xYABA3J1Nf/6668RGhqKXr165fqef//9F23btrV50aJKlSoFviZRSWGFnKgMqlWrFjp27Iivv/4avXv3BgD8/vvvSExMxAMPPIDZs2ebnxsZGQkA+Pzzz/HSSy/BZDIVePzLly/n2leuXDl2WSciIre0b98+dO7cGUFBQXjhhRfg5eWFjz76CNHR0VizZg3at28PADh9+jS6desGk8mECRMmoHz58vjkk09sVowXLlyIgIAAjB07FgEBAfjzzz8xadIkJCUl4a233rJ67qVLl9C7d2888MADePjhhxEWFpbreI0aNcLUqVMxadIkDB8+HJ07dwYA3HzzzebnXLlyBbfffjsGDBiA++67D99//z3Gjx+Ppk2bmj8PKNOnT4efnx9efPFFHD16FO+//z68vLzg4eGBK1euYMqUKdi8eTMWLlyI2rVrY9KkSXn+/pKTk9G5c2ccOHAAjz/+OFq1aoWLFy/i559/xqlTpwrVq+7BBx/Ebbfdhn///Rd16tQBID377rnnHnh5eeV6fmRkJFatWoVTp06hevXqBR4/NTXV5sWBoKAgl+2JQKWERkRlxoIFCzQA2tatW7U5c+ZogYGB2rVr1zRN07R7771X69atm6ZpmhYZGandeeedmqZp2rVr17QGDRpoALTIyEhtyJAh2vz587Vz587lOv7kyZM1ADa/GjRoUHI/KBERUSFZnhvz0q9fP83b21v7999/zfvOnDmjBQYGal26dDHvGzlypGYymbQdO3aY9126dEmrUKGCBkCLi4sz71fnX0tPPvmk5u/vr6Wmppr3de3aVQOgzZ07N9fzu3btqnXt2tV8f+vWrRoAbcGCBTafC0D7/PPPzfvS0tK08PBwbeDAgeZ9q1ev1gBoTZo00dLT0837Bw0apJlMJq13795Wx+3YsaMWGRlptS8yMlIbPHiw+f6kSZM0ANqPP/6Yq11ZWVm59uU81p133qllZGRo4eHh2rRp0zRN07T9+/drALQ1a9bY/DecP3++BkDz9vbWunXrpr388svaunXrtMzMzFyvkddnFwDa119/nW/7iIqLXdaJyqj77rsP169fxy+//IKrV6/il19+ydVdHQD8/Pzw999/4/nnnwcgV/SHDh2KqlWrYuTIkbm6qQHADz/8gBUrVlh9LViwwOk/ExERkaNlZmbijz/+QL9+/XDTTTeZ91etWhUPPvgg1q9fj6SkJADAsmXL0LFjR6sJ1SpUqICHHnoo13H9/PzMt69evYqLFy+ic+fOuHbtGg4ePGj1XB8fHzz22GPF/lkCAgKsxkl7e3ujXbt2+O+//3I999FHH7WqPLdv3x6apuHxxx+3el779u1x8uRJZGRk5Pm6P/zwA5o3b47+/fvneqwwPe8AwNPTE/fddx++/vprADKZW40aNcw9AXJ6/PHHsWzZMkRHR2P9+vWYNm0aOnfujHr16mHjxo25nt+3b99cn11WrFiBbt26Fap9REXFLutEZVTlypXRs2dPLFq0CNeuXUNmZibuuecem88NDg7GjBkzMGPGDBw/fhyrVq3C22+/jTlz5iA4OBivvvqq1fO7dOnCSd2IiKhUuHDhAq5du4YGDRrkeqxRo0bIysrCyZMn0bhxYxw/fhwdO3bM9by6devm2rdv3z689NJL+PPPP82BXklMTLS6X61aNYd0m65evXquABwaGordu3fnem7NmjWt7gcHBwMAatSokWt/VlYWEhMTUbFiRZuv+++//2LgwIHFaToA6bY+e/Zs7Nq1C4sWLcIDDzyQb6Dv1asXevXqhWvXrmHbtm345ptvMHfuXNx11104ePCg1Vjy6tWr57m0GpEzsUJOVIY9+OCD+P333zF37lz07t27UGO8IyMj8fjjj2PDhg0ICQnBV1995fyGEhERlSIJCQno2rUrdu3ahalTp2Lp0qVYsWIF3nzzTQBAVlaW1fMtq+nF4enpaXO/pmmFfq49x3C09u3bo06dOhgzZgzi4uJs9uyzxd/fH507d8acOXPw0ksv4cqVK/j999+d3FqiwmGFnKgM69+/P5588kls3rwZ33zzjV3fGxoaijp16mDv3r1Oah0REZHxKleuDH9/fxw6dCjXYwcPHoSHh4e5ahwZGYmjR4/mel7OfX/99RcuXbqEH3/8EV26dDHvj4uLK1ZbC9v9u6Q58vPCoEGD8Oqrr6JRo0ZFWmu9TZs2AICzZ886pD1ExcUKOVEZFhAQgA8//BBTpkxBnz59bD5n165dNmcdPX78OPbv32+zCx8REVFp4enpidtuuw0//fST1bJl586dw6JFi3DLLbeYlwDt1asXNm3ahJ07d5qfd/ny5Vy9yVSV2bKqnJ6ejg8++KBYbS1fvjwAqcC7koEDB2LXrl1YvHhxrsfsraw/8cQTmDx5Mt555518n7dq1Sqb+3/77TcA4OcXchmskBOVcYMHD8738RUrVmDy5Mm4++670aFDBwQEBOC///7Dp59+irS0NEyZMiXX93z//fcICAjItf/WW2+1uVQLERGR0T799FMsW7Ys1/7Ro0fj1VdfxYoVK3DLLbfgmWeeQbly5fDRRx8hLS3Nah3vF154AV9++SVuvfVWjBw50rzsWc2aNXH58mVzBfvmm29GaGgoBg8ejFGjRsFkMuGLL74odrfvOnXqICQkBHPnzkVgYCDKly+P9u3bo3bt2sU6bnE9//zz+P7773Hvvffi8ccfR+vWrXH58mX8/PPPmDt3Lpo3b17oY0VGRtr87JFT3759Ubt2bfTp0wd16tRBSkoKVq5ciaVLl6Jt27a5ChGHDx/Gl19+mes4YWFhuPXWWwvdPiJ7MZATUb4GDhyIq1ev4o8//sCff/6Jy5cvIzQ0FO3atcO4ceNszj769NNP2zzW6tWrGciJiMglffjhhzb3DxkyBI0bN8a6deswYcIETJ8+HVlZWWjfvj2+/PJL8xrkgEx4tnr1aowaNQqvv/46KleujJiYGJQvXx6jRo2Cr68vAKBixYr45ZdfMG7cOLz00ksIDQ3Fww8/jB49eqBXr15F/hm8vLzw2WefYcKECXjqqaeQkZGBBQsWGB7IAwICsG7dOkyePBmLFy/GZ599hipVqqBHjx6FWiO8KD755BP89NNP+Pbbb3HmzBlomoabbroJEydOxPjx41GunHUMUrOq59S1a1cGcnIqk1YSMzAQEREREZVRY8aMwUcffYTk5OQ8J0UjorKJY8iJiIiIiBzk+vXrVvcvXbqEL774ArfccgvDOBHlwi7rREREREQO0rFjR0RHR6NRo0Y4d+4c5s+fj6SkJLz88stGN42IXBADORERERGRg9xxxx34/vvv8fHHH8NkMqFVq1aYP3++1fJmREQKx5ATERERERERGYBjyImIiIiIiIgMwEBOREREREREZIBSP4Y8KysLZ86cQWBgIEwmk9HNISIigqZpuHr1KiIiIuDhwWvjxcVzPRERuZrCnutLfSA/c+YMatSoYXQziIiIcjl58iSqV69udDPcHs/1RETkqgo615f6QB4YGAhAfhFBQUEGt4aIiAhISkpCjRo1zOcoKh6e64mIyNUU9lxf6gO56roWFBTEkzQREbkUdq92DJ7riYjIVRV0rufANSIiInJLsbGxiIqKQtu2bY1uChERUZEwkBMREZFbiomJwf79+7F161ajm0JERFQkDOREREREREREBij1Y8iJiApL0zRkZGQgMzPT6KaQm/P09ES5cuU4RpyIyMXwXE+O4qhzPQM5ERGA9PR0nD17FteuXTO6KVRK+Pv7o2rVqvD29ja6KUREBJ7ryfEcca5nICeiMi8rKwtxcXHw9PREREQEvL29WdmkItM0Denp6bhw4QLi4uJQr149eHhwhJgzxMbGIjY2lpUuIioQz/XkSI481zOQE1GZl56ejqysLNSoUQP+/v5GN4dKAT8/P3h5eeH48eNIT0+Hr6+v0U0qlWJiYhATE4OkpCQEBwcb3RwicmE815OjOepcz0v2RETZWMUkR+L7iYjI9fBvMzmSI95PfEcSERERERERGYCBnIiIiIiIiMgADORERGRWq1YtzJo1q9DP/+uvv2AymZCQkOC0NgHAwoULERIS4tTXICIiKit4vncdDORERG7IZDLl+zVlypQiHXfr1q0YPnx4oZ9/88034+zZs5xQiwwRGxuLqKgotG3b1uimEBE5Bc/3pR9nWScickNnz5413/7mm28wadIkHDp0yLwvICDAfFvTNGRmZqJcuYL/5FeuXNmudnh7eyM8PNyu7yFyFM6yTkSlHc/3pR8r5Hbo3Blo2hSIizO6JUTkTJoGpKQY86VphWtjeHi4+Ss4OBgmk8l8/+DBgwgMDMTvv/+O1q1bw8fHB+vXr8e///6Lvn37IiwsDAEBAWjbti1WrlxpddycXdhMJhM++eQT9O/fH/7+/qhXrx5+/vln8+M5u7CprmbLly9Ho0aNEBAQgNtvv93qA0VGRgZGjRqFkJAQVKxYEePHj8fgwYPRr18/u/6dPvzwQ9SpUwfe3t5o0KABvvjiC4t/Qw1TpkxBzZo14ePjg4iICIwaNcr8+AcffIB69erB19cXYWFhuOeee+x6bSq9xo+Xc/2iRUa3hIiczajzfWHP9QDP90DpP98zkNth/35g714gNdXolhCRM127BgQEGPN17Zrjfo4XX3wRb7zxBg4cOIBmzZohOTkZd9xxB1atWoUdO3bg9ttvR58+fXDixIl8j/PKK6/gvvvuw+7du3HHHXfgoYcewuXLl/P5/V3D22+/jS+++AJr167FiRMn8Nxzz5kff/PNN/HVV19hwYIF2LBhA5KSkrBkyRK7frbFixdj9OjRGDduHPbu3Ysnn3wSjz32GFavXg0A+OGHHzBz5kx89NFHOHLkCJYsWYKmTZsCAP755x+MGjUKU6dOxaFDh7Bs2TJ06dLFrten0uvkSTnXnz9vdEuIyNmMOt878lwP8Hzv9ud7rZRLTEzUAGiJiYnFPlalSpoGaNrevQ5oGBG5jOvXr2v79+/Xrl+/rmmapiUny/91I76Sk+1v/4IFC7Tg4GDz/dWrV2sAtCVLlhT4vY0bN9bef/998/3IyEht5syZ5vsAtJdeesl8Pzk5WQOg/f7771avdeXKFXNbAGhHjx41f09sbKwWFhZmvh8WFqa99dZb5vsZGRlazZo1tb59+xb6Z7z55pu1YcOGWT3n3nvv1e644w5N0zTtnXfe0erXr6+lp6fnOtYPP/ygBQUFaUlJSXm+niPkfF9ZcuS5iRz7+3z0Ufm/OGOGAxpGRC7D1t9ko873RTnXaxrP94orne8dca5nhdwOat33rCxj20FEzuXvDyQnG/Pl7++4n6NNmzZW95OTk/Hcc8+hUaNGCAkJQUBAAA4cOFDgFfNmzZqZb5cvXx5BQUE4n0/50N/fH3Xq1DHfr1q1qvn5iYmJOHfuHNq1a2d+3NPTE61bt7brZztw4AA6depkta9Tp044cOAAAODee+/F9evXcdNNN2HYsGFYvHgxMjIyAAC33norIiMjcdNNN+GRRx7BV199hWuOLleQ2/Lyku2NG8a2g4icz6jzvSPP9QDP9+5+vmcgtwMDOVHZYDIB5csb82UyOe7nKF++vNX95557DosXL8brr7+OdevWYefOnWjatCnS09PzPY6XSijm348JWfn8IbT1fM2eAXMOUKNGDRw6dAgffPAB/Pz88Mwzz6BLly64ceMGAgMDsX37dnz99deoWrUqJk2ahObNmzt9KRdyPGfMsu7tLdsC/lsQUSlg1Pneked6gOd7dz/fM5DbgYGciNzZhg0bMGTIEPTv3x9NmzZFeHg4jh07VqJtCA4ORlhYGLZu3Wrel5mZie3bt9t1nEaNGmHDhg1W+zZs2ICoqCjzfT8/P/Tp0wezZ8/GX3/9hU2bNmHPnj0AgHLlyqFnz56YMWMGdu/ejWPHjuHPP/8sxk9GRoiJicH+/fut3k/FxQo5Ebk7nu/d63zPZc/swEBORO6sXr16+PHHH9GnTx+YTCa8/PLL+V75dpaRI0di+vTpqFu3Lho2bIj3338fV65cgcmOksHzzz+P++67Dy1btkTPnj2xdOlS/Pjjj+ZZZBcuXIjMzEy0b98e/v7++PLLL+Hn54fIyEj88ssv+O+//9ClSxeEhobit99+Q1ZWFho0aOCsH5ncCAM5Ebk7nu/d63zPQG4HBnIicmfvvvsuHn/8cdx8882oVKkSxo8fj6SkpBJvx/jx4xEfH49HH30Unp6eGD58OHr16gVPT89CH6Nfv35477338Pbbb2P06NGoXbs2FixYgOjoaABASEgI3njjDYwdOxaZmZlo2rQpli5diooVKyIkJAQ//vgjpkyZgtTUVNSrVw9ff/01Gjdu7KSfmNwJAzkRuTue793rfG/SSrqjfwlLSkpCcHAwEhMTERQUVKxj1a4NHDsGbN4MtG/vmPYRkfFSU1MRFxeH2rVrw9fX1+jmlDlZWVlo1KgR7rvvPkybNs3o5jhMfu8rR56byLG/z0mTgGnTgJgYYM4cBzWQiAzHc73xSuP53hHnelbI7cAKORFR8R0/fhx//PEHunbtirS0NMyZMwdxcXF48MEHjW4aESd1IyJyEJ7vC4eTutmBgZyIqPg8PDywcOFCtG3bFp06dcKePXuwcuVKNGrUyOimEbHLOhGRg/B8XziskNuBgZyIqPhq1KiRa8ZUIlfBQE5E5Bg83xcOK+R2YCAnIiJyHc5Yh5yBnIiIShIDuR0YyImIiFyHM9Yh5xhyIiIqSQzkdmAgJyIiKt1YISciopLEQG4HBnIiIqLSjYGciIhKEgO5HRjIiYiISjcGciIiKkkM5HZgICciIirdOIaciIhKEgO5HRjIiai0iY6OxpgxY8z3a9WqhVmzZuX7PSaTCUuWLCn2azvqOPmZMmUKWrRo4dTXoNKFFXIiKo14vnddDOR2YCAnIlfRp08f3H777TYfW7duHUwmE3bv3m33cbdu3Yrhw4cXt3lW8jpJnj17Fr1793boaxEVFwM5EbkSnu9LPwZyOzCQE5GrGDp0KFasWIFTp07lemzBggVo06YNmjVrZvdxK1euDH9/f0c0sUDh4eHw8fEpkdciKiwGciJyJTzfl36GB/LTp0/j4YcfRsWKFeHn54emTZvin3/+MT+uaRomTZqEqlWrws/PDz179sSRI0cMaSsDOVEZoWlASooxX5pWqCbeddddqFy5MhYuXGi1Pzk5Gd999x2GDh2KS5cuYdCgQahWrRr8/f3RtGlTfP311/keN2cXtiNHjqBLly7w9fVFVFQUVqxYket7xo8fj/r168Pf3x833XQTXn75ZdzITjMLFy7EK6+8gl27dsFkMsFkMpnbnLML2549e9C9e3f4+fmhYsWKGD58OJKTk82PDxkyBP369cPbb7+NqlWromLFioiJiTG/VmFkZWVh6tSpqF69Onx8fNCiRQssW7bM/Hh6ejpGjBiBqlWrwtfXF5GRkZg+fToAOR9NmTIFNWvWhI+PDyIiIjBq1KhCvzY5XmxsLKKiotC2bVuHHZOBnKgMMep8X8hzPcDzfVk435dz2pEL4cqVK+jUqRO6deuG33//HZUrV8aRI0cQGhpqfs6MGTMwe/ZsfPbZZ6hduzZefvll9OrVC/v374evr2+JtpeBnKiMuHYNCAgw5rWTk4Hy5Qt8Wrly5fDoo49i4cKFmDhxIkwmEwDgu+++Q2ZmJgYNGoTk5GS0bt0a48ePR1BQEH799Vc88sgjqFOnDtq1a1fga2RlZWHAgAEICwvD33//jcTERKvxZ0pgYCAWLlyIiIgI7NmzB8OGDUNgYCBeeOEF3H///di7dy+WLVuGlStXAgCCg4NzHSMlJQW9evVCx44dsXXrVpw/fx5PPPEERowYYfUhZPXq1ahatSpWr16No0eP4v7770eLFi0wbNiwAn8eAHjvvffwzjvv4KOPPkLLli3x6aef4u6778a+fftQr149zJ49Gz///DO+/fZb1KxZEydPnsTJkycBAD/88ANmzpyJ//3vf2jcuDHi4+Oxa9euQr0uOUdMTAxiYmKQlJRk831VFJzUjagMMep8X8hzPcDzfZk432sGGj9+vHbLLbfk+XhWVpYWHh6uvfXWW+Z9CQkJmo+Pj/b1118X6jUSExM1AFpiYmKx29uli6YBmvbtt8U+FBG5kOvXr2v79+/Xrl+/LjuSk+U/uxFfycmFbveBAwc0ANrq1avN+zp37qw9/PDDeX7PnXfeqY0bN858v2vXrtro0aPN9yMjI7WZM2dqmqZpy5cv18qVK6edPn3a/Pjvv/+uAdAWL16c52u89dZbWuvWrc33J0+erDVv3jzX8yyP8/HHH2uhoaFassXP/+uvv2oeHh5afHy8pmmaNnjwYC0yMlLLyMgwP+fee+/V7r///jzbkvO1IyIitNdee83qOW3bttWeeeYZTdM0beTIkVr37t21rKysXMd65513tPr162vp6el5vp6lXO8rC448N5Fjf5///CP/FatXd0DDiMhl2PybbNT53o5zvabxfK9prnu+d8S53tAu6z///DPatGmDe++9F1WqVEHLli0xb9488+NxcXGIj49Hz549zfuCg4PRvn17bNq0yeYx09LSkJSUZPXlKKyQE5UR/v5y9dqILzvGczVs2BA333wzPv30UwDA0aNHsW7dOgwdOhQAkJmZiWnTpqFp06aoUKECAgICsHz5cpw4caJQxz9w4ABq1KiBiIgI876OHTvmet4333yDTp06ITw8HAEBAXjppZcK/RqWr9W8eXOUt6gYdOrUCVlZWTh06JB5X+PGjeHp6Wm+X7VqVZw/f75Qr5GUlIQzZ86gU6dOVvs7deqEAwcOAJBucjt37kSDBg0watQo/PHHH+bn3Xvvvbh+/TpuuukmDBs2DIsXL0ZGRoZdPye5PnZZJypDjDrf2zl2m+f70n2+NzSQ//fff/jwww9Rr149LF++HE8//TRGjRqFzz77DAAQHx8PAAgLC7P6vrCwMPNjOU2fPh3BwcHmrxo1ajisvQzkRGWEySRdyYz4yu6KVlhDhw7FDz/8gKtXr2LBggWoU6cOunbtCgB466238N5772H8+PFYvXo1du7ciV69eiHdgX1xN23ahIceegh33HEHfvnlF+zYsQMTJ0506GtY8lJpKZvJZEKWA/8ot2rVCnFxcZg2bRquX7+O++67D/fccw8AoEaNGjh06BA++OAD+Pn54ZlnnkGXLl3sGtNGro+BnKgMMep8b+e5HuD5vjSf7w0N5FlZWWjVqhVef/11tGzZEsOHD8ewYcMwd+7cIh9zwoQJSExMNH+psQCOwEBORK7mvvvug4eHBxYtWoTPP/8cjz/+uHl82YYNG9C3b188/PDDaN68OW666SYcPny40Mdu1KgRTp48ibNnz5r3bd682eo5GzduRGRkJCZOnIg2bdqgXr16OH78uNVzvL29kZmZWeBr7dq1CykpKeZ9GzZsgIeHBxo0aFDoNucnKCgIERER2LBhg9X+DRs2ICoqyup5999/P+bNm4dvvvkGP/zwAy5fvgwA8PPzQ58+fTB79mz89ddf2LRpE/bs2eOQ9pFr4BhyInJFPN8Xnrud7w2d1K1q1apWvxRA/pF++OEHADJFPgCcO3cOVatWNT/n3LlzeS787uPj47Rp9RnIicjVBAQE4P7778eECROQlJSEIUOGmB+rV68evv/+e2zcuBGhoaF49913ce7cuVx/d/PSs2dP1K9fH4MHD8Zbb72FpKQkTJw40eo59erVw4kTJ/C///0Pbdu2xa+//orFixdbPadWrVqIi4vDzp07Ub16dQQGBub6O/3QQw9h8uTJGDx4MKZMmYILFy5g5MiReOSRR3L1kiqO559/HpMnT0adOnXQokULLFiwADt37sRXX30FAHj33XdRtWpVtGzZEh4eHvjuu+8QHh6OkJAQLFy4EJmZmWjfvj38/f3x5Zdfws/PD5GRkQ5rHxmPFXIickU839vHnc73hlbIO3XqZDVWAAAOHz5s/mFr166N8PBwrFq1yvx4UlIS/v77b5vjGpxNBXI7ViogInK6oUOH4sqVK+jVq5fV+K+XXnoJrVq1Qq9evRAdHY3w8HD069ev0Mf18PDA4sWLcf36dbRr1w5PPPEEXnvtNavn3H333Xj22WcxYsQItGjRAhs3bsTLL79s9ZyBAwfi9ttvR7du3VC5cmWbS7H4+/tj+fLluHz5Mtq2bYt77rkHPXr0wJw5c+z7ZRRg1KhRGDt2LMaNG4emTZti2bJl+Pnnn1GvXj0AMoPsjBkz0KZNG7Rt2xbHjh3Db7/9Bg8PD4SEhGDevHno1KkTmjVrhpUrV2Lp0qWoWLGiQ9tIxmIgJyJXxfN94bnT+d6kacbFy61bt+Lmm2/GK6+8gvvuuw9btmzBsGHD8PHHH+Ohhx4CALz55pt44403rJY92717d6GXPVNLoSQmJiIoKKhY7b3zTuC334AFCwCLi1JE5OZSU1MRFxeH2rVrl/hyilR65fe+cuS5iRz7+7x4EahcWW5nZuoX44nIvfFcT87giHO9oV3W27Zti8WLF2PChAmYOnUqateujVmzZpnDOAC88MILSElJwfDhw5GQkIBbbrkFy5YtM+Q/kpp/gV3WiYiISic1hhyQKrmTRsEREREBMDiQA8Bdd92Fu+66K8/HTSYTpk6diqlTp5Zgq2zjGHIiIqLSzXJi3/R0BnIiInIudsSyAwM5ERFR6WYZyDmOnIiInI2B3A4M5ERERK4jNjYWUVFRaNu2rcOO6emp32YgJyIiZ2MgtwMDOVHpZuAcl1QK8f3kfDExMdi/fz+2bt3qsGOaTJxpnag0499mciRHvJ8YyO3AQE5UOnllf/q+du2awS2h0kS9n7ws+0CTW1ATu6WnG9sOInIcnuvJGRxxrjd8Ujd3wkBOVDp5enoiJCQE58+fByBrZJrUsgpEdtI0DdeuXcP58+cREhICT8s+0OQWWCEnKn14ridHcuS5noHcDgzkRKVXeHg4AJhP1ETFFRISYn5fkXthICcqnXiuJ0dzxLmegdwODOREpZfJZELVqlVRpUoV3OCncComLy8vVsbdGAM5UenEcz05kqPO9QzkdmAgJyr9PD09GaSIyjg1hpyf14lKJ57ryZVwUjc7MJATERGVfqpCzkndiIjI2RjI7cBATkREVPqxyzoREZUUBnI7MJATERGVfgzkRERUUhjI7cBATkREVPoxkBMRUUlhILcDAzkREVHppyZ14xhyIiJyNgZyOzCQExERlX6skBMRUUlhILcDAzkREVHpx0BOREQlhYHcDgzkREREpR8DORERlRQGcjswkBMREZV+HENOREQlhYHcDgzkREREriM2NhZRUVFo27atQ4/LCjkREZUUBnI7MJATERG5jpiYGOzfvx9bt2516HEZyImIqKQwkNuBgZyIiKj0YyAnIqKSwkBuBwZyIiKi0k+NIWcgJyIiZ2MgtwMDORERUemnKuSc1I2IiJyNgdwODORERESlH7usExFRSWEgtwMDORERUenHQE5ERCWFgdwODORERESlHwM5ERGVFAZyOzCQExERlX5qUjeOISciImdjILcDAzkREVHpxwo5ERGVFAZyOzCQExERlX4M5EREVFIYyO3AQE5ERFT6MZATEVFJYSC3AwM5ERFR6afGkDOQExGRszGQ24GBnIiIqPRTFXJO6kZERM7GQG4HBnIiIqLSj13WiYiopDCQ24GBnIiIqPRjICciopLCQG4HBnIiIqLSj2PIiYiopDCQ24GBnIiIqPTjGHIiIiopDOR2YCAnIiIq/dhlnYiISgoDuR0YyImIiEo/BnIiIiopDOR2YCAnIiIq/RjIiYiopDCQ24GBnIiIqPTjpG5ERFRSGMjtoAK5phnbDiIiInIeTupGREQlhYHcDqyQExEROUf//v0RGhqKe+65x+imsMs6ERGVGAZyOzCQExEROcfo0aPx+eefG90MAAzkRERUchjI7cBATkRE5BzR0dEIDAw0uhkAOIaciIhKjqGBfMqUKTCZTFZfDRs2ND+empqKmJgYVKxYEQEBARg4cCDOnTtnWHsZyImIiHJbu3Yt+vTpg4iICJhMJixZsiTXc2JjY1GrVi34+vqiffv22LJlS8k3tJA4hpyIiEqK4RXyxo0b4+zZs+av9evXmx979tlnsXTpUnz33XdYs2YNzpw5gwEDBhjWVgZyIiKi3FJSUtC8eXPExsbafPybb77B2LFjMXnyZGzfvh3NmzdHr169cP78+RJuaeGwyzoREZWUcoY3oFw5hIeH59qfmJiI+fPnY9GiRejevTsAYMGCBWjUqBE2b96MDh06lHRTGciJiIhs6N27N3r37p3n4++++y6GDRuGxx57DAAwd+5c/Prrr/j000/x4osv2v16aWlpSEtLM99PSkqyv9H5YCAnIqKSYniF/MiRI4iIiMBNN92Ehx56CCdOnAAAbNu2DTdu3EDPnj3Nz23YsCFq1qyJTZs25Xm8tLQ0JCUlWX05CgM5ERGRfdLT07Ft2zar87mHhwd69uyZ7/k8P9OnT0dwcLD5q0aNGo5qLgA9kGdl8ZxPRETOZWggb9++PRYuXIhly5bhww8/RFxcHDp37oyrV68iPj4e3t7eCAkJsfqesLAwxMfH53lMZ56kTSbZ8uRMRERUOBcvXkRmZibCwsKs9uc8n/fs2RP33nsvfvvtN1SvXj3fsD5hwgQkJiaav06ePOnQNqtJ3QBWyYmIyLkM7bJu2b2tWbNmaN++PSIjI/Htt9/Cz8+vSMecMGECxo4da76flJTksFDOCjkREZFzrFy5stDP9fHxgY+Pj9PaoirkgEzs5sSXIiKiMs7wLuuWQkJCUL9+fRw9ehTh4eFIT09HQkKC1XPOnTtnc8y54uPjg6CgIKsvR2EgJyIisk+lSpXg6emZa5WUgs7nRrIM5KyQExGRM7lUIE9OTsa///6LqlWronXr1vDy8sKqVavMjx86dAgnTpxAx44dDWkfAzkREZF9vL290bp1a6vzeVZWFlatWlXs83lsbCyioqLQtm3b4jbTiqenfpuBnIiInMnQLuvPPfcc+vTpg8jISJw5cwaTJ0+Gp6cnBg0ahODgYAwdOhRjx45FhQoVEBQUhJEjR6Jjx46GzLAOMJATERHZkpycjKNHj5rvx8XFYefOnahQoQJq1qyJsWPHYvDgwWjTpg3atWuHWbNmISUlxTzrelHFxMQgJiYGSUlJCA4OLu6PYWYyyTjy9HQGciIici5DA/mpU6cwaNAgXLp0CZUrV8Ytt9yCzZs3o3LlygCAmTNnwsPDAwMHDkRaWhp69eqFDz74wLD2MpATERHl9s8//6Bbt27m+2oul8GDB2PhwoW4//77ceHCBUyaNAnx8fFo0aIFli1blmuiN1fi5SWBPD3d6JYQEVFpZtI0TTO6Ec6krponJiYWezz58uXA7bcDLVoAO3Y4pn1ERFT2OPLcRM75fYaGAgkJwMGDQIMGDjkkERGVIYU9N7nUGHJXxwo5ERFR2aAmdmOXdSIiciYGcjswkBMREbkOZ03qBuhrkTOQExGRMzGQ24GBnIiIyHXExMRg//792Lp1q8OPrSrkHENORETOxEBuBwZyIiKisoFd1omIqCQwkNuBgZyIiKiU++47YOxYtMrYAoCBnIiInIuB3A4M5ERERKXcd98BM2eiddpGAAzkRETkXAzkdmAgJyIich1OmdStdm0AQI2MOAAM5ERE5FwM5HZgICciInIdTpnULTuQV7/xHwBO6kZERM7FQG4HBnIiIqJSLjuQV0tjhZyIiJyPgdwODORERESl3E03AQDCU+MAaAzkRETkVAzkdmAgJyIiKuVq1gRMJvhlXUMVnGcgJyIip2IgtwMDORERUSnn4wNUqwYAqI04jiEnIiKnYiC3AwM5ERFRGZA9jrw24lghJyIip2IgtwMDORERketwyrJngHkcOQM5ERE5GwO5HRjIiYiIXIdTlj0DzBXym/AfAzkRETkVA7kdGMiJiIjKAHZZJyKiEsJAbgcGciIiojLAIpBzUjciInImBnI7MJATERGVAdljyGviBDLTMgxuDBERlWYM5HZgICciIioDqlbFDU8flEMm/C+dNLo1RERUijGQ24GBnIiIqAzw8EBCcCQAIOhynMGNISKi0oyB3A4M5ERERK7DacueAUgIlXHkwZcYyImIyHkYyO3AQE5EROQ6nLbsGYDEijKOPDSBgZyIiJyHgdwODORERERlw9WKUiGvmPifwS0hIqLSjIHcDgzkREREZUNKlexAfpUVciIich4Gcjt4WPy2NM24dhAREZFzqUBeOZmBnIiInIeB3A6WgZxVciIiotIrtUpNAEBI6jkgg2uRExGRczCQ24GBnIiIqGwwlffX76SmGtcQF3PtGjB3LnD6tNEtISIqHRjI7cAu60RERGWDh5+PfictzbiGuJj//Q94+mlg2jSjW0JEVDowkNuBFXIiIqKywcuvHG6gnNxhhdzs0iXrLRERFQ8DuR0YyImIiFxHbGwsoqKi0LZtW4cf28sLSIWv3GEgN7txQ7YcVk9E5BgM5HZgICciInIdMTEx2L9/P7Zu3erwYzOQ26YCudoSEVHxMJDbgYGciIiobPDyAtKQPY6cY8jNGMiJiByLgdwODORERERlg7c3K+S2MJATETkWA7kdGMiJiIjKBnZZt42BnIjIsRjI7cBATkREVDYwkNvGQE5E5FgM5HYwmfTbDORERESlF8eQ26ZmV+cs60REjsFAbidVJWcgJyIiV7Z9+3bs2bPHfP+nn35Cv3798H//939IT083sGXugWPIbWOFnIjIsRjI7cRATkRE7uDJJ5/E4cOHAQD//fcfHnjgAfj7++O7777DCy+8YHDrXB+7rNvGQE5E5FgM5HZiICciIndw+PBhtGjRAgDw3XffoUuXLli0aBEWLlyIH374wdjGuQEGctsYyImIHIuB3E4M5ERE5A40TUNW9slq5cqVuOOOOwAANWrUwMWLF41smluwGkPOQG7GQE5E5FgM5HZiICciInfQpk0bvPrqq/jiiy+wZs0a3HnnnQCAuLg4hIWFGdw612dZIT+4Kw1HjhjcIBfBQE5E5FgM5HZiICciIncwa9YsbN++HSNGjMDEiRNRt25dAMD333+Pm2++2eDWOUZsbCyioqLQtm1bhx+7fHkgLTuQ/++zVNSvD8TGOvxl3I4K4pxlnYjIMcoZ3QB3o5Y+YyAnIiJX1qxZM6tZ1pW33noLnp6eBrTI8WJiYhATE4OkpCQEBwc79NhBQcAtPX2BlUCVoFQgCfj7byAmxqEv43ZYIScicixWyO3ECjkREbmDkydP4tSpU+b7W7ZswZgxY/D555/Dy8vLwJa5j6ZtZAx557YyhjwhwcDGuAgGciIix3KZQP7GG2/AZDJhzJgx5n2pqamIiYlBxYoVERAQgIEDB+LcuXPGNRIM5ERE5B4efPBBrF69GgAQHx+PW2+9FVu2bMHEiRMxdepUg1vnJnyly7q/RxoA4MoVIxvjGhjIiYgcyyUC+datW/HRRx+hWbNmVvufffZZLF26FN999x3WrFmDM2fOYMCAAQa1UjCQExGRO9i7dy/atWsHAPj222/RpEkTbNy4EV999RUWLlxobOPcRXYg9/NghVxhICcicizDA3lycjIeeughzJs3D6Ghoeb9iYmJmD9/Pt599110794drVu3xoIFC7Bx40Zs3rzZsPYykBMRkTu4ceMGfHyky/XKlStx9913AwAaNmyIs2fPGtk095EdyH01CeSskOtBPCuLn4WIiBzB8EAeExODO++8Ez179rTav23bNty4ccNqf8OGDVGzZk1s2rQpz+OlpaUhKSnJ6suRGMiJiMgdNG7cGHPnzsW6deuwYsUK3H777QCAM2fOoGLFiga3zk1kX9Dw0VghVywr45xpnYio+AwN5P/73/+wfft2TJ8+Pddj8fHx8Pb2RkhIiNX+sLAwxMfH53nM6dOnIzg42PxVo0YNh7aZgZyIiNzBm2++iY8++gjR0dEYNGgQmjdvDgD4+eefzV3ZqQDZFXIvTcaQp6Swq7blz1/WfxdERI5g2LJnJ0+exOjRo7FixQr4Zp/wHGHChAkYO3as+X5SUpJDQzkDORERuYPo6GhcvHgRSUlJVkPChg8fDn9/fwNb5kZUIM9INe9KSAAqVzaoPS6AgZyIyLEMC+Tbtm3D+fPn0apVK/O+zMxMrF27FnPmzMHy5cuRnp6OhIQEqyr5uXPnEB4enudxfXx8zGPmnIGBnIiI3IWnpycyMjKwfv16AECDBg1Qq1YtYxvlTrIDuSktFUFBQFKSjCNnIM99m4iIisawLus9evTAnj17sHPnTvNXmzZt8NBDD5lve3l5YdWqVebvOXToEE6cOIGOHTsa1WwGciIicgspKSl4/PHHUbVqVXTp0gVdunRBREQEhg4dimvXrhndPPegevClpkJ1Mijr48gZyImIHMuwCnlgYCCaNGlita98+fKoWLGief/QoUMxduxYVKhQAUFBQRg5ciQ6duyIDh06GNFkAAzkRETkHsaOHYs1a9Zg6dKl6NSpEwBg/fr1GDVqFMaNG4cPP/zQ4Ba6AdXjLi0NISHA8eOcad1yIjdO6kZEVHyGBfLCmDlzJjw8PDBw4ECkpaWhV69e+OCDDwxtEwM5ERG5gx9++AHff/89oqOjzfvuuOMO+Pn54b777mMgLwzLCnkVuVnWAzkr5EREjuVSgfyvv/6yuu/r64vY2FjExsYa0yAbGMiJiMgdXLt2DWFhYbn2V6lShV3WC8sikKvpbNhl3fZtIiIqGsPXIXc3DOREROQOOnbsiMmTJyM1VZ8h/Pr163jllVcMnYvFrdgYQ84Kue3bRERUNC5VIXcHDOREROQO3nvvPfTq1QvVq1c3r0G+a9cu+Pr6Yvny5Qa3zk3kGEMOlO0KuaYxkBMRORoDuZ0YyImIyB00adIER44cwVdffYWDBw8CAAYNGoSHHnoIfn5+BrfOTbBCbiUz0/o+J3UjIio+BnI7MZATEZG78Pf3x7Bhw4xuhtOoeWYycyZFR1GBPDMToYEZAMqV6Qp5zoo4K+RERMXHQG4nBnIiInJVP//8c6Gfe/fddzuxJSUjJiYGMTExSEpKQnBwsONfQAVyAJUCUgEElOkKOQM5EZHjMZDbiYGciIhcVb9+/Qr1PJPJ5LyqcmmixpADCPVPAxDACnk+94mIyH4M5HZiICciIleVxZOTY3l6AuXKARkZqOAvs9WzQp73fSIish+XPbMTAzkREVEZkt1tPdhHAjkr5HnfJyIi+zGQ24mBnIiIqAzJDuQhvnog1zQD22OgnAGcs6wTERUfA7mdGMiJiIjKkOxx5EHeEsgzM4HkZCMbZBxWyImIHI+B3E4M5ERERGVIdoXcB2nw9pZdZXUcOQM5EZHjMZDbiYGciIioDMkO5Ka0VISGyq6yOo6cgZyIyPEYyO3EQE5ERO7gt99+w/Lly3PtX758OX7//XcDWuSm1FrkqakICZGbrJDbvk9ERPZjILcTAzkREbmDF1980eZa45qm4cUXXzSgRW7KIpCzQm59n5O6EREVHwO5nVQgL6szrBIRkXs4cuQIoqKicu1v2LAhjh49akCL3FT2pG5IS0NICNAK2xC4crGhTTIKK+RE5DY0DfjsM2D3bqNbUiAGcjuxQk5ERO4gODgY//33X679R48eRfny5Q1okZvKUSH/Fveh+5wBwIkTxrbLADkr4gzkROSy1q0DhgwBHnvM6JYUiIHcTgzkRETkDvr27YsxY8bg33//Ne87evQoxo0bh7vvvtvAlrkZyzHkwRpqIjuInz9vXJsMwgo5EbmN9etl6wY9whjI7cRATkRE7mDGjBkoX748GjZsiNq1a6N27dpo1KgRKlasiLffftvo5rkPi0BeJeAavJBdJr5+3bg2GYSBnIjcxtatsk1Kki8XVs7oBrgbBnIiInIHwcHB2LhxI1asWIFdu3bBz88PzZo1Q5cuXYxumnuxGEMe5m0xvfq1a8a0x0AM5ETkNrZs0W+fPg0EBRnXlgIwkNuJgZyIiNyFyWTCbbfdhttuu83oprgvywq5d4K+nxVyzrJORK7p9GngzBnr+40aGdeeAjCQ24mBnIiIXNXs2bMxfPhw+Pr6Yvbs2fk+d9SoUSXUKjdnEcgrlreokDOQs0JORK7JsjoOAKdOGdOOQmIgtxMDORERuaqZM2fioYcegq+vL2bOnJnn80wmEwN5YVnOsh6QoO9nl3UGciJyTWr8uMJAXrowkBMRkauKi4uzeZuKwWIMeVAmK+T53ScicgmqQh4RIV3XXTyQc5Z1OzGQExERlSEWFfLAzAR9PwM5AzkRuZ6sLL1C3r+/bE+fNq49hVCkCvnJkydhMplQvXp1AMCWLVuwaNEiREVFYfjw4Q5toKthICciInegaRq+//57rF69GufPn0dWjhPXjz/+aFDL3IxFIPdP1yvkmVevwdOgJhmFgZyIXN7hw7LMmZ8f0KsXEBtbOivkDz74IFavXg0AiI+Px6233ootW7Zg4sSJmDp1qkMb6GoYyImIyB2MGTMGjzzyCOLi4hAQEIDg4GCrLyoki0Due10P5KlXWCHnLOtE5HJUdbxVKyAyUm67eCAvUoV87969aNeuHQDg22+/RZMmTbBhwwb88ccfeOqppzBp0iSHNtKVMJATEZE7+OKLL/Djjz/ijjvuMLophfLLL79g3LhxyMrKwvjx4/HEE08Y3SRhMYbcIzHBvDs98TrKG9Miw7BCTkQuT40fb9cOyO7NjYsXgdRU/QKriylShfzGjRvwyT5BrVy5EnfffTcAoGHDhjh79qzjWueCGMiJiMgdBAcH46abbjK6GYWSkZGBsWPH4s8//8SOHTvw1ltv4dKlS0Y3S1hUyHFFr5BnJJXdWdZNJuv7REQu459/ZNu2LRAaKl3XAet1yV1MkQJ548aNMXfuXKxbtw4rVqzA7bffDgA4c+YMKlas6NAGuhoGciIicgdTpkzBK6+8gutuMPnYli1b0LhxY1SrVg0BAQHo3bs3/vjjD6ObJSwDeUKCeXdmsuv/Xh1NBXB/f+v7REQuQ3VPr1dPrh6qKrkLd1svUiB/88038dFHHyE6OhqDBg1C8+bNAQA///yzuSt7acVATkRE7uC+++7DlStXUKVKFTRt2hStWrWy+nKktWvXok+fPoiIiIDJZMKSJUtyPSc2Nha1atWCr68v2rdvjy2qWyHkgn61atXM96tVq4bTrjIrbh4V8qwUBnIGciJyKZoGXLggtytXlq06t7hwIC/SGPLo6GhcvHgRSUlJCA0NNe8fPnw4/NVf6VKKgZyIiNzB4MGDsW3bNjz88MMICwuDSfUzdoKUlBQ0b94cjz/+OAYMGJDr8W+++QZjx47F3Llz0b59e8yaNQu9evXCoUOHUKVKFbtfLy0tDWlpaeb7SUlJxWp/vizGkOPqVfNuLaXsdllXH/U4qRsRuZTkZPlbDQCVKslWVchd5SKvDUUK5NevX4emaeYwfvz4cSxevBiNGjVCr169HNpAV8NATkRE7uDXX3/F8uXLccsttzj9tXr37o3evXvn+fi7776LYcOG4bHHHgMAzJ07F7/++is+/fRTvPjii4iIiLCqiJ8+fTrfHnfTp0/HK6+84rgfID95VMjL8jrkrJATkUu6eFG2fn5A+expN0trl/W+ffvi888/BwAkJCSgffv2eOedd9CvXz98+OGHDm2gq2EgJyIid1CjRg0EBQUZ3Qykp6dj27Zt6Nmzp3mfh4cHevbsiU2bNgEA2rVrh7179+L06dNITk7G77//nu8F/gkTJiAxMdH8dfLkSef9ACqQJyfLVzbT9bJbIVdzJDGQE5FLUd3VVXUccIsu60UK5Nu3b0fnzp0BAN9//z3CwsJw/PhxfP7555g9e7ZDG+hqGMiJiMgdvPPOO3jhhRdw7NgxQ9tx8eJFZGZmIiwszGp/WFgY4uPjAQDlypXDO++8g27duqFFixYYN25cvpPE+vj4ICgoyOrLaVQgVx/0snmklb0Kueqizgo5EbkkVSFX48cBt6iQF6nL+rVr1xAYGAgA+OOPPzBgwAB4eHigQ4cOOH78uEMb6GoYyImIyB08/PDDuHbtGurUqQN/f394eXlZPX758mWDWmbb3XffbV5G1aWoQK5pVrs90steIGeXdSJyabYq5KV1DHndunWxZMkS9O/fH8uXL8ezzz4LADh//rxLdI9zJgZyIiJyB7NmzTK6CQCASpUqwdPTE+fOnbPaf+7cOYSHhxvUKjuoSd1y8LpRdrusM5ATkUuyVSFXXdbPnpVuPuWKFH+dqkgtmjRpEh588EE8++yz6N69Ozp27AhAquUtW7Z0aANdjZqkloGciIhc2eDBg41uAgDA29sbrVu3xqpVq9CvXz8AQFZWFlatWoURI0YU69ixsbGIjY1FZmamA1qaB1Uhz5ZRzgflMtLglcEKOWdZJyKXYqtCXqWKhPCMDCA+Xq+Yu5AiBfJ77rkHt9xyC86ePWtegxwAevTogf79+zusca6IFXIiInIXWVlZOHr0KM6fP4+sHCeuLl26OOx1kpOTcfToUfP9uLg47Ny5ExUqVEDNmjUxduxYDB48GG3atEG7du0wa9YspKSkmGddL6qYmBjExMQgKSkJwcHBxf0xbMsRyFMrRCDgfBy8GchZISci12KrQu7pCUREACdOyDjy0hLIASA8PBzh4eE4lT1Avnr16vkuUVJaMJATEZE72Lx5Mx588EEcP34cWo7xzyaTyaFV5X/++QfdunUz3x87diwAqdIvXLgQ999/Py5cuIBJkyYhPj4eLVq0wLJly3JN9OaScnRZT68UAZyPg7eWBmRmyoe9MoKzrBORS7NVIQckhJ844bLjyIs0y3pWVhamTp2K4OBgREZGIjIyEiEhIZg2bVquK/ClDQM5ERG5g6eeegpt2rTB3r17cfnyZVy5csX85egJ3aKjo6FpWq6vhQsXmp8zYsQIHD9+HGlpafj777/Rvn17h7bBaTw9rcYcZoVF6I+lphrQIOOwQu7mzpwBXnrJpWebJioWWxVyAKhaVbbZK3u4miJVyCdOnIj58+fjjTfeQKdOnQAA69evx5QpU5CamorXXnvNoY10JQzkRETkDo4cOYLvv/8edevWNbop7s/XV1+DXH2wA4Dr14Hy5Y1pkwEYyN3cBx8Ar70GJCYC779vdGuIHE9VyHMG8uzVwcx/x11MkQL5Z599hk8++cRqeZJmzZqhWrVqeOaZZxjIiYiIDNa+fXscPXq0VAfyEpnUDbAK5OWqVEAqfOCLNOBa2ZppnZO6ubkzZ2S7bZux7SBylry6rAcEyNYikCclAZ99BiQkSK7LzNS/6tYFnniiZJoMFDGQX758GQ0bNsy1v2HDhi63rqmjMZATEZGr2r17t/n2yJEjMW7cOMTHx6Np06a51iFv1qxZSTfP4UpkUjfAamI377BQXIcffJGG9MTr8Hbeq7ocVsjd3KVLst21q8zNf0BlwI0bkq6B3BVyG4F8zhxg4kTbh+rZ0w0CefPmzTFnzhzMnj3bav+cOXPsOsF/+OGH+PDDD3Hs2DEAQOPGjTFp0iT07t0bAJCamopx48bhf//7H9LS0tCrVy988MEHhk4Cw0BORESuqkWLFjCZTFaTuD3++OPm2+oxR0/qVupZTOzmExaCK/BHKBJw7VLZDOSc1M1NqfG1164BR44ANoprRG5LXXAymYDQUOvHbATyfftke/PNQLNmcn3Kw0O2DRqUQHstFCmQz5gxA3feeSdWrlxpXoN806ZNOHnyJH777bdCH6d69ep44403UK9ePWiahs8++wx9+/bFjh070LhxYzz77LP49ddf8d133yE4OBgjRozAgAEDsGHDhqI02yEYyImIyFXFxcUZ3YTSyaJC7lkpFKkmP0ADrl+6hhDjWlXicgbyzExA0+TzL7kBFVgAYOdOBnIqXdQFp4oVc/f+sBHI1elyzBjg3nud37z8FGmW9a5du+Lw4cPo378/EhISkJCQgAEDBmDfvn344osvCn2cPn364I477kC9evVQv359vPbaawgICMDmzZuRmJiI+fPn491330X37t3RunVrLFiwABs3bsTmzZuL0myHYCAnIiJXpVY+iYyMxPHjx1GtWjWrfZGRkahWrRqOHz9udFPdi+Va5KGhSPeURHr9ctlaizxnl3XLfeQGLAP5jh3GtYNKJ00D/vgDMGr4cl7jxwF98s2UFPMuFchr14Z0dTdw9YEir0MeERGRa/K2Xbt2Yf78+fj444/tPl5mZia+++47pKSkoGPHjti2bRtu3LiBnj17mp/TsGFD1KxZE5s2bUKHDh1sHictLQ1paWnm+0lJSXa3JT8M5ERE5A66deuGs2fPokqVKlb7ExMT0a1bt1LRZb1EJ3VTQkKQ7ukPZDCQq33eZanfvrvKyrIOSgzk5Gh//AHcfjvQuzdgR49ph8lryTMgV4X8+nV9BbRatQB06QIcPSprldsK9E5WpAq5I+3ZswcBAQHw8fHBU089hcWLFyMqKgrx8fHw9vZGSEiI1fPDwsIQn88actOnT0dwcLD5q0aNGg5tLwM5ERG5AzVWPKdLly6hfClZqismJgb79+/H1q1bnftCFmPIERqKDC+pkKcllO1Z1gHOtO421FTSys6dUtEkcpQDB2S7bBlw+nTJv35+FfIcgVx1EgsIACp6JgB79khKN+hCVZEr5I7SoEED7Ny5E4mJifj+++8xePBgrFmzpsjHmzBhAsaOHWu+n5SU5NBQzkBORESubMCAAQBkArchQ4bAxyJMZmZmYvfu3bj55puNap57ylEhz/CWQJ6eUDYr5GoMueU+cnGqeujnB6SnS3g5cwaoVs3YdpFxNm0Crl4FbrvNMcc7f162mgZ88w1gkcdKhB0Vcsvu6qaDB/TnHT4M3HqrExtpm+GB3Nvb27xGauvWrbF161a89957uP/++5Geno6EhASrKvm5c+cQHh6e5/F8fHysPnw4GgM5ERG5MrX8l6ZpCAwMhJ9FevL29kaHDh0wbNgwo5rnnlQg9/IC/P2R5SMl4htJZTOQ+/jI56GsLAZyt6HGj4eHSxeHffukGshAXjZlZAC9eklV+Pz53LOSF4UK5ADw1VclH8jtqJBbjR/fv19/3qFDzmtfPuwK5Oqqe14S1NpvxZCVlYW0tDS0bt0aXl5eWLVqFQYOHAgAOHToEE6cOGGe2d0IDOREROTKFixYAACoVasWnnvuuVLTPd1QKpCHhAAmE7J85SJHRlLZ6rKuuqd7eQHlykmhlYHcTahAXrGizK6+b590W7/rLkObRQY5dUqq44D0lHB0IN++HTh4sGRn8i9ihdzc1R5wj0Currrn9/ijjz5a6ONNmDABvXv3Rs2aNXH16lUsWrQIf/31F5YvX47g4GAMHToUY8eORYUKFRAUFISRI0eiY8eOeU7oVhIYyImIyB1MnjzZ6CaUHqrnnfrQmt3rIDO5bFbIvbzki4HcQIcPA4MHAy+8APTvX/DzLZeEatkS+PJLTuxWlv33n35bvTeKS1Woy5eX2cy/+gqYNs0xx7bn9Qsxy7pVIP/DzQK5uuruKOfPn8ejjz6Ks2fPIjg4GM2aNcPy5ctxa3bf/ZkzZ8LDwwMDBw5EWloaevXqhQ8++MChbbAXAzkREbmqVq1aYdWqVQgNDUXLli1tTuqmbN++vQRb5hwlPst69hA6U/asZlnXynYgBzipm2GWLgU2bwamTy9cIFcV8kqVgBYt5DYDedmlEinguECuKuSPPQbMmQMsWgRMnQrkcx5yKBXI86uQp6cD6emIi5OlIXJ1WT9xQrrxW06UUQIMHUM+f/78fB/39fU1n2xdBQM5ERG5qr59+5rnUenXr5+xjSkBMTExiImJQVJSUoG9+IpFBfLsCrnJP/vDWkrZ6bKuadZd1lUgd8sK+fXrwMyZwAMPADfdZHRrikYtYfbPPxKoClqqybJCrgJ5XJzMvp5jRSMqA5xRIVeBfOhQYMECeY3ly2UptJKgfo78KuQAkJKCY8ckkN8UlqJPue7rC6SmAkeOAM2aObmx1gyf1M3dMJATEZGrUt3UMzMz0a1bNzRr1izX8qFUBDkq5J4B2YH8etmpkFtWwt0+kM+aBUycKJWxL780ujVFc+WKbDUNWLECGDQo/+dbjiGvUAGoUkUC1LFjekCnssPRgfz6dfP4bNSuDTz+OPD++8ATTwC7dsn7zpk0Lf8Kube3fKWn4+rZZFy+LBdXa6cfku+tVAmoW1d6nRw6VOKB3PB1yN0NAzkREbk6T09P3HbbbbiiPrRT8agPeNnLqHoGZi/EnVp2Arll8FaTuuXc7zZWrpTt4cPGtqM4LP9vL19e8PMtu6wD+uzqRqwXTcZzdJd1FYa9vYGgIBlKUb++vL+GD3f+mvdXr+p/jPLqLZLdbf30IblwULEiUP5E9vjxRo2ABg3ktgHjyBnI7cRATkRE7qBJkyb4z7IKQkX3xBPAvHnA+PEAAK8gqZB7ppadLus5A7nbVshTU4ENG+S26qrqjnIG8oICj2WXdUAP5GfOOL5t5PocXSFX3dUrV5Yx4+XLyxhyLy/gxx+BAoYpF5u6IODvL1+2ZAfy+KMSyK1mWGcgdy8qkDv7Qg8REVFxvPrqq3juuefwyy+/4OzZs0hKSrL6IjsEBkooz668eIXIBz7P9LJbIXfbQL5pE5CWJrfPn3ffYQeWgTw+Hti9O//n56yQR0TIlhXysic5WQ+wgGMDeZUq+r7WrYFXX5Xbkyc7Nzzlt+SZkh3IL8RZBHI1oVtUFAO5O2GFnIiI3MEdd9yBXbt24e6770b16tURGhqK0NBQhISEINQRa86WYT7B2RXyG24a5opABW8PD/ly21nW//zT+v6JE8a0o7gSEmRboYJsC+q2zgp52WQrBFt2Vwcc22XdMpADwKhR0o39zJncr+tI+S15pmRP7Hb5pCx9lm+FvIQrr5zUzU4M5ERE5A5Wr15tdBNKLd9QCeTeGTa6rH/5JVCrFnDLLSXbKCdTgVyNHXfbCnnOQH78uP5B3J2oCvk99wAffwwsWyZrktuiadaTugGskJcFU6cC774LrFol1WpFBWNPTyAz03kVckAmxGzdWnqmbNjgvFUN8pvQTcmukCeelgp5nRrpwNGj8lhUlHyvhweQlAScOweEhzunrTYwkNuJgZyIiNxB165djW6C05XYOuQ5+FWULuvemdehaRbL7P7zD/DII0D16sDJkyXaJmezXIPccutWgTw5GdiyRW5HRUl3VXccR65peiB/4AEJ5OvXy8+n1lu2dPWq3pWBFfKy45tvgMRECeY//aTvV+PHmzYFdu50/BjynDp1kkC+fr38fXSG7dtlW7du3s/J/r+Rck4CeZT3Ufl/ERgo/x9MJrmY+t9/UiUvwUDOLut2YiAnIiJ3cu3aNRw8eBC7d++2+ioNYmJisH//fmzdurVEX9evglTI/XAdKSkWD6heCadOyeRhjjZxIvDYY477EHLjBvD228CePYV6KqAH8TxnWZ85U/qC/v23Y9roSOvXywfw2rUBdcHKHQN5SooesNu1A2rWlH8IFUpyUoHLz0+f8Ko4FfIjR4BbbwXGjgW2bePESq7oxg19FYGlS61XFFAV8nbtZJucXPy/V3lVyAEJ5IA+maIzrFkj2/wuRGcH8usXJZDflJbdXb1hQ/2qav36si3hFRgYyO3EQE5ERO7gwoULuOuuuxAYGIjGjRujZcuWVl9UdD4hEsj9cQ1W8+OtXavfdnRX4Ph44PXXgYULgYMHHXPMn34Cnn9eglUBClUh//df4MUXZW3rBx+UyqwrUd3Vu3cHIiPltjsGclUd9/KSgF27ttw/e9b283NO6AboFfILF4D0dPte/913Zem4mTOBNm2Ajh2tJ5kj4x09ql+00TT5t1JUhbxFC+m2DujvkaLKaww5ANx8s2z37XPO++TiRf2iYpcueT8vO5B7pyfDZAKqXM7+O9qokf4cgyZ2YyC3EwM5ERG5gzFjxiAhIQF///03/Pz8sGzZMnz22WeoV68efv75Z6Ob59ZM5aXK6IfreiDPzATWrdOf5OhAbjn22VETke3bJ9tCTLaUVyC3mtTt+ef1cPfff8CzzzqmnY5iK5AfO2ZYc4pMhZrQUKnsqa618fG2n59z/Li67e0tt/MK8nlZsUK2N98sY4T//lt6b5DrULOHBwXJduFCPTSr/+916ugXaYrbbT2/CnmVKkC9enJ706bivY4t6u9uVJTt11eyA3kAklGzJlDuQvb7vkYN/TkM5O6BgZyIiNzBn3/+iXfffRdt2rSBh4cHIiMj8fDDD2PGjBmYPn260c1zb37WFfIDB4CvJ+6V8ZrKqVOOfc2VK/XbRRmfvmmTVEWXLNH3qW6ZZ84U2O24wAr5n38CixdLxe2DDyQozp8PxMQA0dHSrfrVV437AHX5st6lOzq6dFTI1WoJBQXynDOsA/Lvo7qt2zOOPC5OekJ4egK//y5fADB3rj4+v6SlpgL/9395d9kvi1Qg79dPJlVLTQU+/FD+n6tAXru24wN5XpOqObPbemG6qwPmWdbLI0Vyt/qZLXuOREXJOHTVg6SEMJDbiYGciIjcQUpKCqpkVwtCQ0NxIbs60rRpU2znB9fi8dPHkCclanjkEWDjm2utn+PIQK5p1oHcskJ+8CDw9dcFj+P94gsJXgsW6PtUIL9+3fpiwubNuarm+QbyjAxgzBjZ8fTT8vXcc3L/gw/kA/PJk8DLLwN33VX87rFFsXKl/I6aNJEgqgL56dNuNjMd9EAeEiJbFcjt6bIOFG0c+apVsm3fXqqv0dEyUZemAU89Zd1NuqQsWABMny49NEioQN64sf5/cdYsYMcO4No1uSATGemYQK5p+VfIAecG8r/+km10dP7Ps6iQN2gA2zOzd+0qcyTMnevoVuaLgdxODOREROQOGjRogEPZ3e6aN2+Ojz76CKdPn8bcuXNRtWpVg1vn5rInxvKAhsN707FtG9AF2YE8O6xbBfLXXpOx1UUNKUePWlfFLQP544/LeG0VlPKiPqCrsZaaZj1xkaqSnjghH56bNZNgni3fSd2WL5fjhoYCU6bIA9OmAY8+CvTtC8TGypevr1RUO3cu+RD8xx+yve022YaHS5ftrCz3W/rLERVyoGgzravu6rfequ97+225OLBjh0yQFRIiM1c/9ZS+zrMzqQkE9+51/msV1dWrUn3t3FmGt+Tns89k8karGSPtpP6/R0XJ0nitW8v7pn9/2V+9urz/VSBX4bQokpOBtDS5XVCFfMsW++csyM/ly4CapDS/8eOAVSBv2BC2K+QGYSC3EwM5ERG5g9GjR+NsdsVs8uTJ+P3331GzZk3Mnj0br7/+usGtc3MqdAP45dtrADQ9kPftK1sVyC9fBl56CXjzTb2SYy8VttVMwCqQaxqwa5fcXrs29/dZshwvnpwsFS3LGelUKNu3Tz7kJCcDvXoB2TPY37gBVMMp9E/+Ahg/HjWuHzbvN4e0++7TQ5+PjwSLJUuAZ56Rr82b5WLGgQMlO0ZT03IHcg8P6UYP5O62vn+/XFBwxkz5jpAzkKsLbAWNIS9uhTwrS38v9uyp769SRd7fgHRnT0yUMPnRRxIIH3hA3k/OorrKnz9vTO+Lwpg7V97369dbDxuxpGkyFn/IEBnz/cMPRXutjAz9/1dUlFw9+/pr6bKt/nao9cAdUSFX1fHy5c3dwnNp2FD+Nly/LhduHGXdOvm9NWhQ8DJlOSvk6mfOb+3yEsJAbicGciIicgcPP/wwhgwZAgBo3bo1jh8/jq1bt+LkyZO4//77jW2cu/PyQqZJZifeufk66uEIwnAeqfBBVt/sCpQK5JbBMza2aK+nuqurqqT6UH3mjHQ/BfJfZuz8eesP3Pv25Q7EKpRZhtOkJKBHD6BRI0TfWwmnUAOvnXwUmDEDj+8YCSA7kKuQ1qNH/j9H8+ayzi+Qd3h0hkOHpIeBj49UKJW8xpFPnAhMmgTMnl1ybbSHvRVyW5O6AfZXyHftkmMFBEiXdUvDhknvh19/lffXX39JNdZkkvWwb7nFcZMRWkpMtF51oCQq8vZKTZWZ6ZU338zdWyYjQ3q7WF4s3bixaK8XFycVaz8//T1erx4wZ47+HDUzvyMDeX4TqplM+mzrFj1vik2NHy+ouzqADF+LQF5f03sFsELufhjIiYjIHfn7+6NVq1ao5AIfPhwlNjYWUVFRaNu2bYm/dno5faZ1VR3/G+0R51lXnqACuWVYWLIk99jykyeBVq2AceOsP6SvWyfV6cxMfX3zxx7TvycrS8Y6Klu25N0lXlXHlT17cq+zq0KZmnV8yBD5AH31KnDwILyTLiETHjhYvhUAoFH8nwjBFXhfOad3Fe7WzfbrWyooPDrD8uWy7dxZX4cbyDuQq9/BTz85vWlFklcgv3DBdnfovLqs21shVz0hoqP1sQuKyQTcfjtwxx1Sle3aFfjxRwmVYWES5tu1y/1eLK6c66C7YiD/7DN5v0dEyLCNrVtz95aZPFmq4p6egLpgWtRArrqrN2yoL2sGAIMHy/AWAFB/Mx0ZyAuqNKvlxdSya46gfo8FTegG4OxVCeRBHsmoFnRVHzbjAufEckY3wN0wkBMRkTsYm8fa0iaTCb6+vqhbty769u2LChUqlHDLHCcmJgYxMTFISkpCcHBwib52hpcfcOMq/HENt/msBdKAteiC+vHVUQeQD+A3blhXojMzgY8/BqZO1feNHy9dOHfskA8X77wj1dnXXpPH27aVbu+BgdId3sNDjnv+vHUgT0iQ+/XrS0C5cUNf1ipnCNq7V39MUYFchdMmTaSb7V9/AV5e+GNHZQx8rhZatgrE2oRmKLdnD+7Gz6h+JPs4LVoU7oOtCo/nzun7Pv1UZmj/4gt9orLCSEqSmaO/+goYPhwYMcL281R39V69rPfnFcjV5GibNsnvOb/KnxFyBvJKleR9kZUloTxn1928uqzbWyFXPTUsu6sXpEMHuVh0990SyocOlaDp4aCaYPaQCjNXC+QZGcCMGXJ7/Hj5e/DBB7JPXcBau1YmpQOAzz+XZfm++Ub+nyYl6UuXFZbl+HFLJpMcf/RouQgIOCaQ57cGuSU1RKSoPSUOHwaCg+UCDyD/9jt2yM9ViAr5sYsBqAEg1CsZpovZbfb3t75IZxBWyO3EQE5ERO5gx44dmD9/Pj7++GOsWbMGa9aswbx58zB//nysWrUKY8eORd26dbFffXgju2R66TOtd/L9BwCwCR2x4VAlCbuaJsFOBXI14dDHH+uTGm3ZImM71djwWbNkMjUVxj099cARHS1dUFVV88QJ60AO6N3WZ8yQ56p1t1UgV99rWSFv2FC2OQN5ZKR08e7VC+jeHZcimiIZgVIYHTAAADAQPyDyaCG7qyu2KuQzZgC//CK/i8L66iv5gP/ii/LzTJmSY1H0bGlpehVNjR9XbAXyjAy94qdp0q7C+OknuSighhA4U85A7umphyFbM607okKenq6v92w5oVth1Kwp3dkDA+U9ajnTf3Gp8eP168u2oED+/vvyVVL+9z+pCFeqBDzxhPSE8fAAli0Dvv9eLkypWeqHDJEKdni4dCnXtPyHouQlr0AOyHulXTt9VsaS6rIO6P/fihLIL1yQIS9NmkgPIU0DXnhBHnv4YX0ehXz8Gy/j2wNNKS41fhxgILcbAzkREbmDvn37omfPnjhz5gy2bduGbdu24dSpU7j11lsxaNAgnD59Gl26dMGzzz5rdFPdUqavVFVCkICqVyXc7kYzbN3moVceT53Su6yPHy8B6Nw5fT1g1Yth8GB9fOe+fdIdeOFCCdyPPy4zIo+UMdtWVSYVyAMDZbtliwTQt96SDyrz5unHBPSusJaBXFWWcnZZV2O9s1nNsj5wIADgNvyBekez16EuaiDXNL0bv+paXpDMTJnBOzFRusGGhEgV2NbEdhs2SEgOCwOaNrV+zFYgP3/eugt0Ybutv/CC/L4/+6xwzy+OnIEcyH8oQF5jyFUgT06WoQn5OXxYxkIHBeldj+1Rtao+A/+LL0qvD0dQgfzRR2WbXyA/dQoYNUq+1GSIgFz0+vZbxy/V9uefwJNPyu3Ro6USe9NNwL33yr5775V/txMnZL/lnAVqvHVe3dazsiSsx8bmniFd/Q5sBfKcSjKQ5zWJYmHs2yfvv4sX5e/Yzz/LhTYfH5mAsRAOnZYu6/5ZyS41fhxgILcbAzkREbmDt956C9OmTUOQRXfH4OBgTJkyBTNmzIC/vz8mTZqEbdu2GdhK96X5SIW8lWkHPLIykRkYjNOohp07gaxq1eVJcXEy6zQglZ2nnpLbY8ZIZXrDBvmQ/uqrQEyMhPKOHWWs7uDBUiWbP18qQqoqWaOGbE+c0EN1dkDG338DS5fqAez336WyqQL5PfdINf7CBb1yr7rNnjkjYV5VWFVYzWYVyJs0wYXQevBFGoKTz0i1zXKytPzkDI5qRm5AAkxhlkM7cEBCZECALHmkfn5bs1Jbzq6ueiIolhU79cFO/fxq7O2KFQVXvdPSZGm6vNrgaPYE8mvX9Nnic4aPgAC9O3RBVXJVdW3UKPfvsbBGjpR1sS9elDXD1VJZRXX2rIRsDw+pkgIS9vKa0V2Fd0AuigHyu7z1Vj3k2ePCBXnPzp9vPQQDAH77TcbTX7sm771x4/THYmPlQpuq6pYrJz0+1IU1IP9APmmSfG+HDjJMQ4V+QN7H9gRyVSG+eLHoFyQKO4ZcBfJLl+xf0k1dKARkKMl998ntkSNz/a3Ky95jEsi9bzCQuz0GciIicgeJiYk4rz4oWbhw4QKSspe7CgkJQboj14QtQzwDJJDfXlG6q3s0a4LgYBNSU4HEgOxAvm6dBEw/P6lyjx8vlVR/fz1MP/+8XlGPiZEP4PlNUKQ+1B47pof9hx6S7c6dMj5VSUwEvvtOqpEeHkDLlkCdOvJYVpZUl9Rs2WfP6pUrP79cH1StArnJhP0NB+oPduhgXlKoQDmDo+Ukd1evFm4GZtWNv3VrCTPZXeixeHHuD2iq276tcc/Vq8vvJS1ND1QqkDdvLh/0r1/Xx07n5cgR/XX/+sv5S2/ZCuR5LX2m/gZ4e9v+NyrsOHJ7Ql5evLz07uKffirvheHDiz7uW70PGjeWfysVCPNaUs8ykH/5pYzPnjlT/p8AsjxhQWuEAxJcb79dKsI9ekhX9F699Asfa9YA/frJ+6pvXwn6FkslomJFCfGnT8s48X375P+QJcsZyS3f0wcPSkX4/Hk9wP/0k/5/98QJuQjg7a0vbZYf9f88La3o654Xdgx5SIh+AejkSfteQ/18DRrINj1d3v//93+FPsTu/+T9b9I0vds8u6y7JwZyIiJyB3379sXjjz+OxYsX49SpUzh16hQWL16MoUOHol+/fgCALVu2oL4ae0l2CYmQLuu3+EgoMDVpgtat5bGTWnYgV8uBNWggHyC8vWXJo7g4CedPPCGB3B4qkG/cKB+ivbyk23mlSpKa1Yzsqiv6G2/I9qabJBRYdtuuV0+6LZtM8r2qt0RkZK4qqArkaujpoSYWgbyw3dWB/AM5ULhu6yqIqZmie/SQD/pnz1oH+oQE/Wfq3j33cby89ECqPvCrYBoRIRORAQV3W7echyEz07mzs2uafRVyFXxq1LBd2S7sOHIVmovSXd1St27SNbtaNfn3mTdP5k144YX8u83v2aNfgFJUwFbvA9W2vAK+ZSBPSZF2zJol9z09JRz/738F/wyHDunv0zp1ZKKxXbuA556T99E998h/mIED5YKYj4/t45hMcjHB1t/gJk1kTe+kJOv31+LFsu3eXaraPXpIKFEV/2XLZNuggf6fNT/+/jLzO1D0buuF7bIOFH1iN1Uhf+QRPYS/9pr1/4F8XLoEnLxsMXmbOh4r5O6JgZyIiNzBRx99hB49euCBBx5AZGQkIiMj8cADD6BHjx6YO3cuAKBhw4b45JNPDG6pezL5S8Wr3OnsINe4Mdq0kZsHk7MDuerGrKo6SpUqEpTnzZMP3fZQH2i3b5dtnTrywbtdO/05XbtKt3hAX5KscWPZNmmiP69+fQml6oO06h6bY/w4kKNCDuBCzdY4guwl3u64o/DtV8Hx4kU5qAqMqot4UQK5jw/Qp4/ctuwyvnatfGCrX1+q4bao9ZjVUkyqQl61qh7If/kl/w9+KgCqn0G14auvpI2OnDjx2jX9H6MwgVxdaFDvm5zsrZAXN5AD0s34+HHpvXDXXTKR3ltvyQWiCRNyV7hPnJDfY7t2ElAVFbDVe19V720F8sxM4B/pzYKhQ2X78styEaB5c318+6RJ1sMmNE1m8racLE/1mOjRQ/6PqxAfGytDNy5elFnMv/gi9/JwhVWunN57xbLbugrk998vF/jUygKffCIXLF58Ue4PGVK41zGZCh5Hvm4dMGiQ7cfT0vSLavYEcnvHkVvObfHaa3IR4OmnC/3thw4BGjyQYipvfTxWyN0TAzkREbmDgIAAzJs3D5cuXcKOHTuwY8cOXLp0CR9//DHKZ4fAFi1aoEWLFsY21F1ZdkEFgCZNzIH8n/gc4U/NZO4I6gOtGu9Zr55s1Yd3QAJHz5565QvQA7llhVxV5lSVdNMm2doYk5kzkJfzMqE3fsdbPZdbXwwoSMWKenA9f978YV67407Zt21b/pW6tDR9Qi7L9ectx5Gr343qrp7f+uiqC7+qvloG8i5dpIJ4/nz+62erAPjII7JduVKC0+DBEgJV9RKQyuzcuUVfh11Vxz09rbugq0Cec5Z1VYnMa5xtYSrkmZl6SHZEIAek/d26yZwHS5dKD45z5+RCVcOG+gzagCzVlZYmQy8WLpR9CQn6+1W9/1Tb1AWQ1av1Cy2HDkn4Ll9eeqlY/v995RW5gFWlijz/ySflYsqHH0r1vlUroFMnfRZ/tR67GgZx++16e0+elJC3eHHuvxH2yjmO/NQpuRhlMklXeEAuRNWsKSXgzp2l+33btjJxXWEVFMhHj5aLDtkXcq1MmCD/LhUr6n+L8lPUmdZzTjZpZ5BWc2umeQVYH48VcvfEQE5ERO4kICAAFSpUQIUKFRBQ2HG+VLCca9c2aWLOh+uP5QjkOSvkxaEmdVPUh2A1BjUwUMJp+fLW46YLE8h37pRtIQK5lxfwL+piZ5Xbcj03Xx4e+jrC8fHmQP7airZIb9hUwnR+Y7Z375bGVKxoXcnv1Uv+TY4f1yvoKpDb6q6u5BfIvb0liAH60mm2qEA+cKCEyfR0ua3GI6sAB8gSb08/LeEp50RghWHZXd2yC3pxK+T5jemNi5NA7Otrs/dEsd11l/wOv/9ebgPAO+9I9VnTrGeuf/99+RD+9tsyeVvjxlLhBqy7rL/5pvy7d+sm7xdVTW/dWt47gwbJ/VatpCdEQAAwcaLsW7BAJol75hm9h0lcnPw7ZmTow0Isl3979VW5HxwsP0dev297qEC+bJlcgFiyRN+v/g95eko7AXnvennJ+PzCdFdX8gvkcXHSQwDQL4Aov/0mY/ABec3C9PYpSpf1jAy9Cl/ICdxyUteTMn2z26je76yQuycGciIicgdZWVmYOnUqgoODzV3WQ0JCMG3aNGTxJFZ8ltWvKlWAypURGSmf9Y9lOjGQV6hgfTFABfKePaXS9/XX+uOqyzWgB/K6dfUxrep7VSBXAbIQXdbVtjCToudiI5AfSa2B/dV7yf6c3dZTU/WZzi3HDVsGUn9/oH9/uf3qqzLR1J49cl+Np7clv0AO6NV1FcJyylk9VpV6TQPatJEPjocO6QHg++9le/SoXERISMi7bbbYGj8O5B3IC6qQN2sm2w0b8v5wqy44NGig925wNG9v+d0tXSpDIFTo3rhRflfly0vYPXpUAroa+z1tmv7hXHVZP3RI77p94oT0msjZvf211+TCyBdf6O+jmBjgvfdkBvSuXeW5M2fKfUCq81u2SKW9QgWZJFHx8pL37Zkz0rPCEbp1k/fnuXPSzV91V1fvc+WJJ/TeMC+9ZD0spTDyC+Q//qjftpxg7uxZ6QECSDXe8m9NforSZf3MGQnlXl6FWm/cFjV6yNyrRP2tY4XcPTGQExGRO5g4cSLmzJmDN954w9xl/fXXX8f777+Pl19+2ejmuT/LQJ79Adhkkgx2DmHI8rAILo6cOM9ksq6+qVDt4SHjX++8U3/srrsk6AQF6RcFypWTD+39+und3FUgVwpZIQf0Xrx2UeHx3DloJyWQn0J1rPLuLfu//lqfnG3HDvl5mzSRwJBz/LilSZMkMC5dKqEckB4B+Y1tVTNRFxTI16yx/eFPVY99fORCxqBB0oaaNaUdqp0rVsjM+vv3y79BWJh0vVdjqAtLBfi8AvnVq9azZRdUIe/YUXpVXLigz0uQkyPHjxfG+PGyXbhQxpYDEtafeEJuDx8uP2ObNvI+ViIirJcOU+2dNUsP5Oo9Hx4uKxJYzhrv6Snhcv586RHx99/SlV1VoH/6SSZpA2T8uEeOGGUy5e45Uxy+vnLBwMNDZoVXPT5yBvKKFeUixf/9n34hwh4qlJ48CSxaJGPh1XvSMpBfvqyvDvHWW/L/sUUL6fVRWEXpsq66l9esWeQLQmpEhkdgjl5irJC7JwZyIiJyB5999hk++eQTPP3002jWrBmaNWuGZ555BvPmzcNCNQ7TzcXGxiIqKgptbYUzZ7P84G1RkWrTBsiCJ674ZYfc6tULvyRYYdkK5LZUrSpB8s8/rceTv/SSVNtUqi5GIC9ShdyimmsZyL86HS1jYtVyUb/+Kt2AL1yQ4Dt6dP6BvH59PbTNni3b/LqrA3qF/OxZ6QKtKszqd9K6tVRnL1+W7vI5qbDasKGEhcaNpTK/c6f8nKpb84oVepfj7t1lffSgIKlMW3ZpL4iqkIeEWO8PDNTfk6orvOXyTnlVyL289KENv/9u+zlqTHZxljyzR+fOcqEgLU2fsX7IEJnAzMNDD4uvvmrdS8Jk0t8XI0dKrwZvbwnWarZ9e+Y7UFq1kn/XtDRgzhzZZ9ld3Zk6drQO2c2b217O7L77pOrv7W3/a6hA/u67soTiiBESss+c0cevq4uKmzbJ+0pV6ydNynsWeVvU365Tpwq3xBygX1QqYnd1QJ+z0DMkx99iVsjdEwM5ERG5g8uXL6OhjcnEGjZsiMuXLxvQIseLiYnB/v37sVWFtJJkWSFX3cEB88Rup9TSZ46c0E1RH2p9ffOePVzp0AHm9djyosYRA3l2C801qVs56/12UYH88GF4JMus2adRDXv2eSD100VSdTt/XqrHly5JEPTwkOqdCod5XYSZPNn6YklBgbxCBekKDUjYz8iQYKe61Xt5SUAEbI8jV+2xrB43aqRXsFVwW7lSrzb27y9dxR98UO4vXap/7/LlUvV94AG5uKCWsVLy6rJuMuWe2O3yZb1annPuAUu9s3sm5HwtpaQr5CaTXiUHJIh17So9ENRkZp07A7fZmL9g4UL5fc6aJf+G6ncMyP38fg/5tUd1z1YXA2yta+8skyfr3ePvucfxx7ccoqJ6k0yZIkNgALkooHoibNwoF6aOHZO/gb162fdaVavKhasbNwo/sWHOCd3slJWl/5fwrmARyE2mQi+b5mwM5HZiICciInfQvHlzzFHVHAtz5sxBczUJEhVdPhVyADh8PTsoO3L8uKICeZ06ubvNFoVlhbxmTZvHdEqFPHsZqisIQQoCkJEB7IkLkECl2tS8uSy79Nxz+vdXr64fI6eqVfUl3zw8Ch7PazLpVfL162VbqZL1clX5jSMvKKx26CA9JC5elEotoI+3VUu1/fKLVB0zM4Fhw6Qq/M030nX6zjulp4CSVyAHco8jV9XxsDDrHhI5qVC1ebN+fEXTSj6QA/K7Ua/3yCP6e3LmTOCpp2QSMVvrqteoIRdy1PNHj9Yfa9fO9vcUxsMP68esU0dfLq8keHvLBGqxscC4cY4//qBBcmw1Br5fP/mP/fHH8vjAgRLKAamQq54et91mfxf9cuX0i4iF7bZezEB+8aJ+HcW3okUgt1zxwWAM5HZiICciIncwY8YMfPrpp4iKisLQoUMxdOhQREVFYeHChXhLjcukosujQl6tmuSf37TeyPL2Ae68Eykp0hvaYdREXCr9F5dlIM+jW6hTAnl20DsFvcq/bRvkA/uaNTJT9sqVUsV+5RX94kZBQxReeEEq42PG5O7abUvOQJ6zh4DlOPKc3WwLCqve3taTynXooP++u3WT99HJkzKe/I8/5HZoqEwu1q+ffOB84AG9u7w9gbyg8eNKzZrSCyErK3f3+TNnZFy6p2fhlrVyFNUj4rnnrJdAi4yU5cjq1i3ccVq00H//KlQWRdWqekW+pLqrWwoPl7HsxV1KzRZvbzn2bbfJv/NHH1l35R4wQP/d7dsnS8IB1uP37WHvTOvqfVzEQK66q1epAngEWswE7yLd1QEGcrupC2sM5ERE5Mq6du2Kw4cPo3///khISEBCQgIGDBiAQ4cOobPqgktFpz4Y16ihd3mGPrHbQjyGD2ckI7lzbzRtKkMwi7r0dC59+ki19r33HHO8ypX1SlEeH3qdEsizP0ydRA3zMHs11Bd160oQUx+afX2laty7t3W13JbgYGDVKlk6qzBUIFfLOuUM5C1byhjtxER9DXTAunqc3/hqywBnOSGXn5/+2NKlwLx5cvuRR2RysW+/lQsLyclS9Y2PL1qFvDBjby27rScny3jiH37Q11+vW7do45OLo0ULmTzMcqK2ovj8c5mNfeTI4h1n1iwZy/5//1e847i6KlX06ninTtIbICxMH7t+5IhcMFFL1NnL3pnWVYW8iGPIVSCPiID1fB4uMqEbANixSB0BrJATEZH7iIiIwGuvvWa179SpUxg+fDg+Vh+4qGhUtdbGklpt2kgv4607yiFxtsxHBkjv2W++ccBre3jkv5RXUY5XtapMtJTHh17V5dOhs6xnO4Xq6NNHJlfP7sVuW/Pm0nXX0VTQuHpVtjkDebly0vX9118l6LdqJftPny5c9TivQA7IxZWff5bZtNUbZdgw2Xp5yTJpHTvKUl5jxwJJMubeoRVyALj9drmAsWSJ3nUZ0HsYlGR3dUerUUMmMiyuBg1kjfKyoH9/mZzQsvfMzTcD//0ntzt3LnqF2Z6Z1rOy9OcVs0KeK5CzQu6+GMiJiMidXbp0CfPnzze6Ge6vXTtZKktVNS2oHtVr1livCPTtt5K9XJKa2K0kK+TZTqG6efnuvXtl2fESpSrkSs5Z5wG9gvzll1IZB/TqeJ06+VePGzaUibleey13cFfL1B05Ilc3OnSwXkc6NFSuVJhMslXLd9kK5OpCQlEq5J07y3jgK1ckwURGSmVaLbPmzoGciqZJExkuolh2+VeT6xWFPV3Wz56VPzLlytn+f1kI7lAhZyC3EwM5ERERAZDKqo0lf9Sk5seOSS/npk2B55+Xfc88I/tczgsvyIdsNdFYDg6dZT0w0Gos7ClUR9euMsdSRoYU5kpUzkBuY5Z5PPigdJvfvVtfeu3bb2WrZsDOi8kks1bb6upctar1mHi1bJulli2BRx+V2xcuyDa/Crnq4mtPhdzHB3j6aQlg06YBBw/KBacxY2TOgvvvL/gYVLoZEcjVe7l6df2Pjp1YIS+FGMiJiIgoP+Hh1quRTZsmc5LVqSO9nBs1kiHCX38tk0aPHy9zlxXFgQPWRdsiGzBAuivnsQyQQyvklkt0AbjkWx0VK+pz1JnHkZeU6tWtZ1W3FchDQ/Ulpz75RMLEZ5/J/VGjivf66iJIQEDewffVV61nSrf179SunXxQ3btXwrQ9FXIAePttWWbupZfktSpXljforl0yXIDKtubN5YrixIm210IvLPV+PH684D9cxZxhHWCFvFRiICciIqKCqHDZrp2scuXnJ8OEK1WSXpjvvy9F17FjpVv7rbcCw4frw5gLE7Bv3JCe1I884vyu8A4N5IB1t/Xq1WEy6T0L8h1H7gyentbLWNkK5IBevf76a+Dll+WH795dxtYWx9Ch8oZ57TXrwGCpenXrJa9sBfIqVYAePeT2woXAuXNyuzAVcqKCeHjI8mivvlq840RGyhCPhASZWCO/UFXMGdYBPZBXqwaXrZBzUjc7MZATEZErGzBgQL6PJ6gxoeRUo0dLsfG99/QVWjp2lAr5ihXS2/nff+VDooeHTPY2bx7w448Sdi9ckIr6M8/IxM4WE7mbffed/nn122+L14vU0i+/SLsse2Kr4K16jRZrUjfAKpD71pXuBCqQ//WXvJ5l0drp6tQBDh+W23kF8i5dZLr8w4dl5m7AMZOFRUTo3eDzM3488L//ySD7vNr44IPyBouNlfvly1uPAyYyWvny8ofx6aflyuSlSzJZnq15GIo5wzqQo0J+hcuelQoM5ERE5MqCg4Pz/YqMjMSjajwqOU10NLB2be7hxd7eMo/XZ5/JstfffCMF1z//lM+cly7JnFyZmZL7xoyR4uiwYcDGjXrlXNNkRShl6VLHTIZ26JBU9Pv0sa7S51chz8iQgvGqVXa8UHYgT0QQwuoFAZBluStWlAsVb7xRzB/EXpZdcPMKuyaT9RjvTp0cO9t9QQIDgZ07ZQI4G3MXAJDZsX189OXRatbUrwgRuYqnnpL1zMuVk/XmW7aUbj45uwbt2CFbyx4sdsjI0DuKuHKXdVbI7cRATkRErmxBWVmWp5SJjpYln7dtA4KCZLWpZcuA2bNlnPgnn8hXy5ZSJD1+XLKZv788Pz5eCqN5zMlWaLt2yWfi06eBkyf13s75Teq2bJn0Yn33XZmQrVDDS7MD+SlUN3/WDg3Vu/JPmwb06ycT4pUINbFbaKj1WO2cHn1UJmfLyJDqeEmH3by6tCvBwcAddwCLF8v9YlQWiZzqwQel98ZDDwH790sXn549gZ9+kj9su3bJ+JVy5WRZviI4f14ym6dndv6+5Jpd1lkhtxMDORERETlD+fLSK7pFCxky+dRTEtL/+gsYPFg+o+7YIZNyP/usfM/QocB998ntH34ofhsOHtRvq+IUkH+FfO9euX3tGvDYY4X8jJS9zNoJ1LQqfj3wgATxGzekq36Rx6jbq3592VrOxmdLWJiMD/jgA6BXL+e3qygefFC/zfHj5Mpuv126xLz4olwIW7lSruwBwEcfybZ/f/l/VwSqu3p4uIRyV62QM5DbiYGciIiISorJBHTtKnN0/fuv9JJOSpKg7ukpk8KpNbx/+glITy/e6x06pN/evl2/nV8gtwzxa9dKlbtAAwZgoe9TmIaXreZrMpmADz+UQvX27fpQbae77TYZH/DmmwU/t39/Gf/qql3B77xTurcDrJCT6wsJAaZPBz79VO7PmAHExcnyEQDw5JNFPrTV+HFAhqPUqiUTVvj7F/m4jsZAbicGciIiIjJCeLiMNX/mGbn/xBPy2bJTJykgJSTI45om1eqiKEqF/MABua0KxhMmAP/9l//rJHuF4rHUD7EJN+eaQDk8XC40AM6fPd7My0uW+Ordu4Re0In8/GTKfkCu5hC5g/vvl6B89ap0Xb96FahbVyaXKKJcgdzbW/7Ibd5c/PY6EAO5nRjIiYiIyCje3jKB9tmz0msakEq5mlz/scek4BQYKBPG2UPT7K+QZ2bqgfztt4HOnYHr12WiuvyoyZNDQuQrpzvukO2qVcWv+pdJb74pA2g7dTK6JUSF4+Eh1XFAv6I3fLgevoogVyAHZNLDcq41jZqhgXz69Olo27YtAgMDUaVKFfTr1w+HLM8EAFJTUxETE4OKFSsiICAAAwcOxDk1XZ4B1HuiMOuDEhERkfPExsYiKioKbdu2NbopJS483Ppz6v33yzY+Xrq0Z2VJBV2t5JUXy88zp08DKSkS8E0muX/hgjyWVyAHpJDl6SnDsO+5R/atW5f/66pAntfkyS1aSNU/JQXYsCH/Y5EN5lmsiNxI9+56LxVvb5lIohhsBnIXZGggX7NmDWJiYrB582asWLECN27cwG233YaUlBTzc5599lksXboU3333HdasWYMzZ84UuMaqM1me/BjKiYiIjBMTE4P9+/dja2HWcC7lunaVSd0+/1wmJ46OBpKTJair5dByfm7Zvl2C/aRJcl/VROrUkZ6igN5tPa9Z1pU6deTzc5cucn/jRqme50UdV82llpOHh94FftmyvI9DRKXMO+9Igh4zptgXlRjIC2HZsmUYMmQIGjdujObNm2PhwoU4ceIEtm3bBgBITEzE/Pnz8e6776J79+5o3bo1FixYgI0bN2JzHn3/09LSkJSUZPXlSJaBnN3WiYiIyFUMGAA88gjQrJks8VupkiyN1ratjDVXw6QB+Qzz1FPSq/mDDyQ8q/HjDRoArVrJbdVtPb8KOQA0aiTbpk1lGbarV+XCQF5WrpRtfsND1UpHDOREZUijRtI9pzATLBaAgbwIEhMTAQAVKlQAAGzbtg03btxAz549zc9p2LAhatasiU2bNtk8xvTp0xEcHGz+qlGjhkPbyEBOREREri4iAvjiC7m9d6+sW56ZCTz3HLB6NbBgAaA6Fly6JMFbVcgbNpT1zoG8K+Q5A3nDhrL19NSHLa9da7ttKSmA+hjXo0feP8Ott0rX+d279Q/WRESFxUBup6ysLIwZMwadOnVCkyZNAADx8fHw9vZGSI7ZPsLCwhAfH2/zOBMmTEBiYqL56+TJkw5tJwM5ERERuYPbb5fq8kcfSTh+9FH57PLAAzITOqCvjrVsme0KeV6BXI0zV1SFHJCJ3YC8x5GvWyfHi4yUru55qVRJqvsAsHw58Pvvskb5okUcNkhE+UtP1+fAcPVA7jJTzMXExGDv3r1Yv359sY7j4+MDHx8fB7UqNwZyIiIichdqHDYgKwrt3CkVZ0BCdEwMMGKEBF5Vw2jYUEI5ABw5IpPEZWTIfcvKuJeXPgN6XoFc03Iv1626q/fsWfBS3rffDmzZIpX9y5dl308/yVj5Dz/Me1I4IirbVO3WywuoWNHYthTEJSrkI0aMwC+//ILVq1ejevXq5v3h4eFIT09HQkKC1fPPnTuH8PDwEm6lYCAnIiIid+TvD3z/vYzxBoDZs4G77pLbmzcDJ07I7QYNpDqtPpJt25a7Qg5YT+ymuqwDUtX28ZHqlK1Z3i0DeUHUOPLLl+Uz2IABcuzly6WKz67sRGTLvn2yrVq14At/RjM0kGuahhEjRmDx4sX4888/UTvHZc7WrVvDy8sLq1atMu87dOgQTpw4gY4dO5Z0cwEwkBMREZH7qldPwvfq1RKIIyMlTKsZ0StWlDAO6N3Wu3fXH89ZIQeAatX0kA9IYG7XTm6vWyev9fjjUp2/cEGf7K1794Lb266ddFOPjgb+/ltmkt+9G4iKAhISgPnz7f8dEFHplpYGjBsnt9VFPVdmaJf1mJgYLFq0CD/99BMCAwPN48KDg4Ph5+eH4OBgDB06FGPHjkWFChUQFBSEkSNHomPHjujQoYMhbWYgJyIiInfWqJF1F/NevazHjyuPPy5jz1VHxapVActpfVQgt6yOK507Sxh/+WW96+jixTKzOyAzwVepUnBbPT3l+yzVrw/83/8BDz8MfPKJ3Pb0LPhYRFQ2vP46cOCA/I2ZPt3o1hTM0Ar5hx9+iMTERERHR6Nq1armr2+++cb8nJkzZ+Kuu+7CwIED0aVLF4SHh+PHH380rM0M5ERERFSaWFaQLMN1377SVTwhQbp/Hjxou0JuGe4VtR65CuM1a8px3nhD7hemu3p+Bg4EQkOlm/2KFcU7FhGVHnv2SCAHgDlzgOzFu1ya4V3WbX0NGTLE/BxfX1/Exsbi8uXLSElJwY8//mjY+HGAgZyIiIhKly5dpJs5YF0hB2TsZXCwdBG37JYO5B/Ib7lFusPXqydd1nfv1mdMB4ofyH19ZdZ4APj44+Idi4hKj+efl0ko+/UD7rnH6NYUjktM6uZOLCcFYCAnIiIid+fvL9VwQJ8hvTACAmSbvVqtlfLlgaNHZW3z6GgJ9cuXy/GbNgW6di12szFsmGx//hk4e7b4xyMi9/fPP7J9+WXXn8xNYSC3k8mk/+MykBMREVFpMH++dEu3Z87cmTOBqVOlGm5LuXLWH4hDQ4E1a2RSN3//4rUXABo3Bm6+WSacW7iw+McjIvd29Spw6ZLcrlvX2LbYg4G8CFS3dQZyIiIiKg0CAqRbuj1uu02qUB52fJq0LGw4gqqSf/ml445JRO7p2DHZVqiQe4iNK2MgLwIGciIiIiLj9e0rM6zv3w/895/RrSEiI8XFyTbHStouj4G8CBjIiYiIiIwXGqqPe//lF2PbQkTGUhXyWrWMbIX9GMiLgIGciIiIyDXcdZdsly41th1EZCxWyMsQBnIiIiIi19Cnj2zXrAGSkoxtCxEZR1XIGcjLAAZyIiIiItdQv7583bghS6sRUdmkKuTssl4GMJATERERuQ5VJWe3daKyixXyMoSBnIiIiMh1qED+22+yLrmSkcHZ14nKgitXgMREuR0ZaWxb7MVAXgQM5ERERESuo1MnmXH90iVg7Fj5cL5xI9C6NVCnDvDmm/pzMzOB1auB69eNay8ROZbqrh4WBvj7G9sWezGQFwEDORERkWP1798foaGhuOeee4xuCrmhcuWAmBi5PXu2VMg6dQJ275Z9kyYBBw4AmgY8/TTQvTtw221SQSci9+euS54BDORFwkBORETkWKNHj8bnn39udDPIjU2dKmuRN2kCXL0q+x57TIJ3ejrwxBPAnDnAvHny2Pr1wBtvGNdeInIcd13yDGAgLxIGciIiIseKjo5GYGCg0c0gN2YyAXfeCezcCfz4I/D338Cnn0oADwiQLuyjRslz77hDtlOmyPOIyL2564RuAAN5kTCQExFRWbJ27Vr06dMHERERMJlMWLJkSa7nxMbGolatWvD19UX79u2xZcuWkm8oEQBPT6B/f6BdO7lfs6Z1Jfzhh6WSPmiQjCd/6CHg2jVj2kpEjuGuS54BDORFwkBORERlSUpKCpo3b47Y2Fibj3/zzTcYO3YsJk+ejO3bt6N58+bo1asXzp8/b35OixYt0KRJk1xfZ86cKakfg8qwp58GhgwB7rkH+PhjqaZ/8AFQrRrw77/ATz8Z3UIiKg53rpCXM7oB7oiBnIiIypLevXujd+/eeT7+7rvvYtiwYXjssccAAHPnzsWvv/6KTz/9FC+++CIAYOfOnQ5rT1paGtLS0sz3k5KSHHZsKp08PIAFC6z3hYQAjz4KTJ8OLFkiFXNLN24A69YBQUEyW7vJVFKtJSJ7aBor5GUOAzkREZFIT0/Htm3b0LNnT/M+Dw8P9OzZE5s2bXLKa06fPh3BwcHmrxo1ajjldaj069dPtr/9BqhrPBcuAM8+C1SvDvToAbRtK93fv/rKeo1zInINFy/KsBOTSYaouBsG8iJgICciIhIXL15EZmYmwsLCrPaHhYUhPj6+0Mfp2bMn7r33Xvz222+oXr16vmF+woQJSExMNH+dPHmyyO2nsq1NGyAiAkhOBv78Uypt/foBs2YB588DlSoBPj7AP//I2PO33za6xUSUk6qOR0TI/1d3w0BeBAzkREREjrVy5UpcuHAB165dw6lTp9CxY8c8n+vj44OgoCCrL6Ki8PAA+vaV20uWAL/+KrOx+/kBP/8MnDkDnDwJPP64PGfVKsOaSkR5cOclzwAG8iJhICciIhKVKlWCp6cnzp07Z7X/3LlzCA8PN6hVRIWnuq3/9BPw0ktye+RIoE8fwMsLqFwZiImR/Vu28PMfkas5fVq27jp6iYG8CBjIiYiIhLe3N1q3bo1VFqXDrKwsrFq1Kt8qtyPExsYiKioKbdu2derrUOkWHQ0EBwPnzgG7dskkbuPHWz+naVPA1xdITAQOHzakmcW2ezdw++1yUYGoNLlwQbaVKxvbjqJiIC8CBnIiIipLkpOTsXPnTvNM6XFxcdi5cydOnDgBABg7dizmzZuHzz77DAcOHMDTTz+NlJQU86zrzhITE4P9+/dj69atTn0dKt28vYE779TvP/88UKGC9XO8vGSmdcB9A+3bbwPLlwOPPAKkpxvdGiJrr70myxLeuGH/9zKQl0EM5EREVJb8888/aNmyJVq2bAlAAnjLli0xadIkAMD999+Pt99+G5MmTUKLFi2wc+dOLFu2LNdEb0Suqn9/2VauDIwebfs57dvL9u+/S6ZNjqRpwF9/ye3Dh2UNdiJXsXy5DBf54Qdg8+bcj2dlyTCS99+3/f3uHsi5DnkRqHUoGciJiKgsiI6OhqZp+T5nxIgRGDFiRAm1iMixBgyQmdU7dgQCA20/x50DeVycTE6nvPKKzBpfqZJxbSICZIWDJ5/U7586lfs5mzcDc+YA5csDI0boWUxRgbxKFee105lYIS8CVsiJiIiISg8PD6mMt2uX93PUY7t2Adevl0y7HEVVxzt0AFq0ABISgOwOLkSGmjQJOH5cv68maLO0fr1sU1IkwOfk7hVyBvIiYCAnIiIyHid1o5IUGSkVuIwMYMcOo1tjHxXIe/SQngAA8NFHwN69RrWISCrf770nt9UcDfkFckAmX8yJgbwMYiAnIiIyHid1o5JkMund1t1pYjfL8ePR0UDXrsDAgfI59tln5XGiknbxInD//fI+fOghmWwQyN1lPSsL2LBBv58zkKeny+oHAAN5mcJATkRERFT2uPI48owM4MUXgRUrrPer8eNeXjJGHgDeektml1+5Eli6tOTbSmVbZqbMYXDiBFC3LhAbC1SvLo/lrJAfPAhcvqzfzxnIL16UracnEBLitCY7FQN5ETCQExEREZU9rhzIV6wA3nxTZqO2pKrj7drJpFgAULs2MHas3B43DkhLK7FmEuHVV2VmdT8/mVk9OBioVk0ey1khX7fO+n7OQK66q1eqpGc0d+OmzTYWAzkRERFR2dOmjWzj4qS7d0KCoc2xcviwbI8cAVJT9f2W3dUt/d//AeHhwNGjMoM1UUm4fl3WHAeAuXOBZs3ktqqQnz0rFXTFcvw4kDuQnz8vW3ftrg4wkBcJAzkRERFR2RMSoq9TPmsWUL++TJR2yy0yLtvWDNAl5ehR2WZlSTdfIPf4cUuBgVKpBIB33gFu3CiJVlJZFx8v7zVfX33cOCAXhzw8ZOiFCtmAHsg7dJBtXhVyBvIyRgVyToJBRERkHM6yTkaYNUu62zZsKGHgzz9l0qkff5Tut0b591/99r59sj1+XMaPlyunjx+39PDDMnP82bPAkiUl0kwq4yzXDLdcT7xcOQnlgD6O/NQp4NgxyV79+sk+BnICwAo5ERGRK+As62SU224Ddu8GfvoJWLQIuPde2W85G3RJswzkajkzNda9RQt9/LglHx9g2DC5HRvr1OYRAci/i7kaR64Cufr/1LIlUKeO9fcrDORlFAM5ERERUdnm5QXcfTcwaJDe9TbneNeSkpkp49oVVSFXy7OpyehsefJJmaF6zRquS07OpwJ1lSq5H1PjyNXEbur/0y23AGFhcpsVcgLAQE5EREREuptvlu2BA/oyTCXp5EnrMeAqkKsKebt2eX9vjRpA375y+4MPnNM+IiW/AJ1XhfzmmxnIKQcGciIiIiJSKlYEoqLk9saNJf/6qru6CiX//QckJgLbtsn9/CrkABATI9vPP5fvI3KWwlbIr12TYSGATOimAvnVqzJTu8JAXkYxkBMRERGRpVtuka0R3dZVIG/bVg8m334ry58FBwP16uX//d26yYzxKSnAypXObSuVbZaTuuVkWSHfvl2GYlStKr04goJkzgPAukrOQF5GMZATEREZj7OskysxMpCrJc/q1gWaNJHbn34q23bt9M+ueTGZ9G73HEdOzpTfpG6WFXI13KJ9e3l/mky2u60zkJdRDORERETG4yzr5EpUIP/nH+sutSVBVcjr1AEaN5bbmzfLtqDu6krTprLds8exbSOylF+XdcsKuWUgV3IG8owM4PJluc1AXsYwkBMRERGRpVq1pHvtjRtASV8jshXIlfwmdLOkKuuskJMzFWZSt5QUYNUquZ1fIL90SbYmk8zj4K4YyIuAgZyIiIiILJlMepV83bqSe11N0wO5ZZd1pbAVcvV9R47I2HOiotqzB3j//dxZSdPyr5D7+wOhoXL78mX5P9Wmjf64+h4VyFW4r1BBlu5zVwzkRcBATkREREQ5qUD+8cfAU08B77wjs0U70/nzQHKyhJdatawr5LVq2Q4+tlStKmEoKws4eNAZLaWyIDUV6N0bGDUK+P1368euXgXS0+V2Xl3M1ThyQN7LgYH6/ZwV8tIwfhwwOJCvXbsWffr0QUREBEwmE5YsWWL1uKZpmDRpEqpWrQo/Pz/07NkTR44cMaaxFhjIiYiIiCinW2+VYHziBPDRR8BzzwGTJjn3NVV1vEYNmYU6NFTCNVD47uqAtJvd1qm45s3T1xHP+T5S1fHy5aUabovqtg7k7t3BQO4EKSkpaN68OWJjY20+PmPGDMyePRtz587F33//jfLly6NXr15INbgfDQM5EREREeXUqJFM6jZvHjBihOyLjQXOnHHea1p2V1eaNZNthw72HYsTu1FxXLsGvP66fj9nHTW/7uqKZYW8rATycka+eO/evdG7d2+bj2mahlmzZuGll15C3759AQCff/45wsLCsGTJEjzwwAMl2VQrDORERETGi42NRWxsLDIzM41uCpFZq1bypWnAjh3Ahg3Aq68CH3zguNfIyABWrABat9aXPKtTR398+nTp7jt8uH3HZYWc7PXvv/LVpQswdy4QH68/ljOQFyZAs0LuQuLi4hAfH4+ePXua9wUHB6N9+/bYtGlTnt+XlpaGpKQkqy9HYyAnIiIyHpc9I1dmMunVwnnzgP/+c9yxv/oKuOMOCeFffin7LAN5y5Yyfr18efuOy0BO9rr9dqBXLwnLU6bIvqeeku3hw9bPtadCXr587hUDcgby/NY0dycuG8jjsy+vhKnffLawsDDzY7ZMnz4dwcHB5q8aNWo4vG0M5ERERERUkC5dgNtuk4r2K6/k/bzMTKmoF9aWLbJNTtaDvmWX9aJSAejECcAJNS0qZa5f13toJCXJpG116kiPEECq5Vev6s9XFe38AnmLFrLt0SP3zOkqFiYkAGlprJC7rAkTJiAxMdH8dfLkSYe/BgM5ERERERXGa6/J9ssvZSmnnHbuBIKC7Otevm+fbB99FLjpJiAgwP7x4rZUqABERMhtVsmpIKpG6uMDrF0rExj++KOsCa5Ct2W39cJUtNu0kTkMVM8PS6GhQLly+rEYyJ0sPDwcAHBO9UnIdu7cOfNjtvj4+CAoKMjqy9EYyImIiIioMNq0AaKi5HPj6tW5H586VSbD+uQT4LffCndMFchHjZLAc+6c9djb4lATuzGQU0HOnpVt1apA587SC0RNKFivnmxtBfKCluJr0sR6uTPFw0P/XgbyElC7dm2Eh4dj1apV5n1JSUn4+++/0bFjRwNbxkBORERERIV3662yXbHCev+hQ4Dlqr/PPAOkpOR/rPPngYsXZYx6o0byuTSvJaSKguPIqbDU6gGqV4UlFcgtx5E7IkCrbuvx8RxD7hDJycnYuXMndu7cCUAmctu5cydOnDgBk8mEMWPG4NVXX8XPP/+MPXv24NFHH0VERAT69etnZLMZyImIiIio0NQcxStXWu9/+20ZO37bbUDNmsDx41Ixz4+qjteu7dggrqhAvnu344/tLo4dAxYu5Gf9glhWyHOqX1+2RamQ50cF8iFD5MJUXq/vTgwN5P/88w9atmyJli1bAgDGjh2Lli1bYtKkSQCAF154ASNHjsTw4cPRtm1bJCcnY9myZfD19TWy2QzkRERERFRoXbvK2Nd//wXi4mTf2bPA55/L7cmTZb1yQGZHP3Ag72OpQJ5zBmpHadtWtmvWAN9845zXcAUnTuT9Wf6JJ4DHHrPuvUC55RfI86uQOyKQX7woM7G//37xjucKDA3k0dHR0DQt19fChQsBACaTCVOnTkV8fDxSU1OxcuVK1FeXWwzEQE5EREREhRUYqE+6pqrk770HpKcDnToBN98M3HWXLB+VmQn89FPex9q/X7bOCuSNGwPjxsntIUOA0riq4LffApGRsl57TtevA+vWye1du0q2Xe7Gngp5VpZjuqxHR8twjXvvBQ4eBEaMKPqxXIXLjiF3ZQzkRERERGQPy3HkBw4As2fL/Rde0J/Tu7ds167N+zjOrpADwJtvAnfeCaSmAn376sGrtPj7b9mq4G1pyxa5UALkXkebrOU3hlwtw3f5MnDpkixVlpEh+4oTyIcMkXkWvv1WX7Pc3TGQFwEDORERkfFiY2MRFRWFtqqPLZELU+PIV60CBg2SSuxttwF9+ujP6dJFths2SKU8J00rmUDu6QksWiSvcfYs8NFHznstI5w+LVu1hrYly4shZTWQZ2UBn34K7NiR//Pyq5D7++sz/x85olfHg4JkmbTi8PMr3ve7GgbyImAgJyIiMl5MTAz279+PraWxTy2VOu3aSdf1y5elK3SlSjJxmMmkP6dZMwksSUm2J1U7f16qjSYT0LChc9sbFASMHCm3//rLua9V0lQgP3YMuHHD+rE1a/Tbhw/LRZCy5pNPgKFDgYcfzv95+QVywLrbuiMmdCutGMiLgIGciIiIiOxRrhzQrZt+f8GC3EHG01PGlAO2u1Or6vhNN5VMlTA6WrabN0v39dJCBfLMTH2SPUC6qm/cqN9PTpY13suSlBSZZBCQ+QoSEmw/Lz294FnOLSd2c8SEbqUVA3kRMJATERERkb0efFC2zz4rk7jZorqt2xpHXhLd1S3Vry+zWqelydjq0kDT9EAOWHdb375dhhJUrAjUqiX7SnO3dVvV/5kzZY1v5Z9/bH+vek65cvL7ssVWhdzd1wx3BgbyImAgJyIiIiJ73XefBJl33sn7OZ07y3bt2tyBqaQDuckkS7YB1l253dnFi/qkbYD1OtnqZ+zSRR8SUBoDuabJnAZNm8rwCOXCBWDGDLmtlhfL60KMZXd1jzwSpaqQr1mjrxzACnluDORFwEBORERERPYymSToWI4bz6lNG8DXV8JRzjBY0oEcKH2B3LI6DlhXyFWvhC5dbK+jXVocPy6TC+7bJ8vvKVOnAlevAq1bA889J/vymqKjoPHjgLyX/fzkItSyZbKPFfLcGMgLKz0dGDUK6NED3pnXATCQExEREZFj+fgA7dvLbctu6xkZxgbyjRutK8vuKmcgVxXyzExg/Xq53aWL3t3a3QP5jRsyVGLKFH2fZch++22ZaHDtWiA2Vva9+ab+HixOII+IAA4dkqB/002yr3v3Iv0YpRoDeWF5ecn6D3/+ibArBwEwkBMRERGR46lx5JYTu82dC1y5AlSoADRqVHJtiYqSGeGvX897PLE7UYE8JES2KpDv2iXdt4OCgObNrcc/u7MNG4CvvwamTdMnaLPshp6UBEyaBDz6qHRlHzoU6NEDaNVKegWfPq2vN25J7csvkANAjRrAyy9LT4Tr1+XYZI2BvLBMJqBJEwBA+MW9ABjIiYiIiMjx1DjyX38F/v1XljqbNEn2TZtW/HWc7WE5jjzn8mf//AN8/33JtcURVCBXFz2OHZPK//Ll+n5PTz2QHz1qe014d7F5s2yzsvQeFyqQ9+8v29hY6cZeu7ZM6gYA5cvLxRjAdpVcVcgjIgrXDpNJhmJQbgzk9mjaFAAQfmEPAAZyIiIiInK8rl3lY+fly1JRfOYZqY43bQoMH25MewDrceRJSTIx2L33yvJY7kIF8jZtAH9/+Tx/7Jhc/ACAO++UbY0acuEjPR04ccKQpjqECuQAsHq1XFzYtk3uT50KtG0rtz08gC++AAID9eerx/IL5AVVyKlgDOT2yK6Qh11ghZyIiIiInMPbWyq29epJ5fLbb2X/7NmyzFRJU4F8wwa5MAAAH38MJCbKbTW23R2oQF69OlC3rtzevBnYtEluq0Du6QnUqSO33XUcuaZZB/I//wQOHJC1xgMCZOjDrFkyJOH114FOnay/n4G8ZDCQ2yM7kFdhICciIjJcbGwsoqKi0FZ9aiQqRapWlZmwIyPl/j33ANHRxrSlSROZSC4lBZg4UarGqmszIN3q3cWpU7KtVk0P5O+/L5/rmzWTyrji7hO7HTsGnDsnFxcAYPdu4Lff5HabNrL/5ptlRv/x43N/f7t2st26NfcSfAzkjsNAbo/sQB6ceBLBSGAgJyIiMlBMTAz279+PrXlNA0zk5mrUkKr0++8D8+cb1w4PD2DOHLk9dy4wbpz1RF+WS4e5OlUhr1ZNX9pMTVZ3113Wz3XFQD5rlvSUKAxVHW/VSp+ZXy1zVpjrmE2bSm+NK1esL7pkZEjQBwo/hpzyxkBuj+Bg82WzxtjHQE5ERERETlWtGjBihMz+baToaOChh6RSqsJ5y5aydZcK+fXrepd7y0CuqO7qigrkmzcD77wDPPusrKltlDNnpA2jR+uBOD8qkHfsqC83pi6kqOp3fry9gRYt5Lbldc/z5+V94OHBdcUdgYHcXtlV8ibYy0BORERERGXG22/rFwaCgoDp0+W2u1TIVXXc31/qbKrLOgBUrKivva1YVtCfe06q02+9VSJNtWnnTv32nj0FP18F8g4dgG7drB8rTCAHgNatZbtjh75PdVcPC9O7w1PRMZDbK3umdQZyIiIiIipLwsOlUgwAzz8vXaEBGZd9/bpx7Sosy+7qJpN1hbx379zhsk0bGVdepYoeTC3Xhi9plqG4oECemqo/v0MHmZjPZJL7VapYj5XPj6qQW14M4Phxx2Igt1d2hbwp9jCQExEREVGZ8sQTMgnYxIkyO7eqmMfFGduuwrAM5IAESn9/uZ1z/Dggj+3aJd3D1XrrO3YA1645v6222FMh374duHFDqti1agEVKgDNm8tj7drp4bwgloFcTeymur1z/LhjMJDby7LLeqZWwJOJiIiIiEqXSpUk0JlM+tJg7jCOPGcgN5mAF1+UMN6nT/7fGxkp35eRAWzZ4tx25sWyQr57d/7PteyursJ3//6y7dWr8K/ZpImMFb9wQR8/r2aqZ4XcMRjI7dWoEbJMHqiESwi8VojZFIiIiIiISik1DtsVxpFPnAj4+UlFuEsXYOFC68ct1yBXXn4ZWLpUr5TnxWTS1+nesMFRLS68pCTrix779gGZmXk/f+VK2XbooO/7v/+T9dafeabwr+vvDzRoILdVhV79/M2aFf44lDcGcnv5+iKhsgw4qX6lELMpEBERERGVUiqQG10hz8oCPvxQxk4fPy5jvR97DPjiC/05OSvk9jIykKuKeESEXHRITc37d758OfD771LZtqz8lysnAd3DzgRo2W09NVX/+Xv0sO84ZBsDeRFcjpBu69UT9hrcEiIiIiIi46gu60ZXyHfvliXNAgKA9ev1KvDQocCff8pt1dW6uIF840aU+FxSqrt669b6muK2uq1fv67/7KNG6c8tDjX2fNcu+dnT0qS7esOGxT82MZAXyZXsQF4jkYGciIiIiMquonZZ37tXujx/+61j2vHXX7Lt3FmC8/vvA/ffLxObDRgAzJwJHDsmzylqIG/eHChfHkhMlC7jxXXwoHQhLwzVXbxFC/OiTzYndnv9deC//+RnnDq1+G1Ur6naoC5udO9e+InhKH8M5EVwJUIuNUUkHTC4Ja7l33+B2Fi5akZEREREpZ+qkB8/LuHXlqws4MQJ631vvCGBcsECx7RDBfLoaNl6eMgY8v9v787jmyrz/YF/TpImXehK6QYtICA7FCl0Kgg/FkVccUN4VajLHS5aEOy44DgIzgyXYRwV0Q6K9zreGVEZGEDEC4iFAUHWIosWWcta2lK6723O8/vj8SQNXSjdTpJ+3q9XXknOOT15vmmap9/zbCNHygQ6Kck+KVlTE3KTyb5WeXO7rVutMqkdPVq+dzeitZAPGWIfu319Qn72LLBkiXz87ruAr2/zyqjREvKTJ+V4e4Dd1VsSE/ImKOnUDQDQqbQRfz3tyIsvArNmAf/6l94lISIiIqK2EBEBeHrK2cevT7o1774rZylPTpbPi4qAtWvlY63VujlUFdi5Uz4ePdq+3dNTjqdetsze3bxHD7meelONHCnvbyYhr64GJk8GEhPt244elet5V1Xd+FyVlfYW+Zot5Nd3WV+7Vp5v1CjZK6ClhIbK90wI+2uOHdty52/vmJA3gZaQB5ZfYXNwDSdPOt4TERERkXszGIBbbpGP65tk7Msv5f3vfy/X8P7Xv+RYZ0Am5KKZKwkfO2YfP37bbY77vL2B2bPluPKsLNnt2mRq+mvVN7HbqVNyIrW67N8PrF4N/PWv9vXatQsI2v6G/PyzTMr9/eUM8lpCfvYsUFJiP07rTv7ggy3fnVxrJQfkRY2uXVv2/O0ZE/ImqPQLRim8YIAALl7UuzhOQQj7VdH6ro4SERERkftpaBy51QocPCgfZ2cDH33kOPN5ebnc3hxad/WRIwEPj/qPCwmRSXtzaOt6p6fLBF8zdSpwzz1ydvfr7dhhf7x5s7y/mYRc664eHS1fOyREtloLYW85r6y0n7M1upNrE7u11vnbMybkTWAwKjiHbvJJYwZ9tAP5+UBxsXzMhJyIiIio/dDGkdfVQp6W5tiKu2gRsH27fKyNcW5ut3Ut4dXGj7cmPz+gl1wB2dZ9u6zMnjRv3Fj7Z7QLBoBMyIVwTMgPHap//D3gOKGb5vqJ3Q4ckO9zcLB9X0uq+dpMyFsWE/ImMBiA8/ilnwYTcgCOSTgTciIiIqL2Q2shT0urvW/fPnk/YgTQpQtw9apMSEePlhOUAc1LyFXVnpDXHD/emrRJ1Y4ckfc//WRfBm3LFsdjrx8jnpIiE/mcHDnG3d9fjoCta8Z0jbZPe92aj7X3NyVF3o8Zc/PrjDdGzYS8LS58tCdMyJvAYIC9hbwlZqJwAzWvS1y40PyxQERERDeSnJyMfv36YdiwYXoXhahd+9Wv5P3mzY7dswF7wnjHHcDLL9u3T58ux0MDzft3+scfgdxcuRzZ0KFNP8/N0JJhrYW85uRqR47YZ3MHgNRU2XIdFCS7mZeUyKXJACAuDhg+XD5uqNu61i295prid98t7z/9VL6elpC3Vut1797AggXA0qWyyzy1HCbkTVCzhXzdu+cxcaL8ImjParaKV1TIq59EREStKTExEWlpaThw4IDeRSFq1267Dfj1r+XjZ55x7KKuJeSxscB//Ifs7h0RATz6aMsk5I0dP96SGkrIAeCbb+yPtQsUo0bZk2ht7fXRo2+ckOfm2hP8fv3s28ePlxdCyspkoqytZ95aCbmiAAsXAnPmtM752zMm5E3Qvz9wydgNABBUeA6bNwOff65vmfR2fTd1dlsnIiIiaj/+8hcgMlKOI3/tNbmtuNjeuhsbC3h5ybHWJ07IsdgtkZC35fhxjTbBWVqa7JKuJeRRUfK+Zrd17YLB6NH2hFwzatSNE3Lt/YuKclxXXFGAN96Qj1eskOWIjLSP5yfXwYS8CQYPBt7bIFvIB/jKvtraMgPtFRNyIiIiovbLz0/OoA7Idb+/+05211ZVOXY8PFzu8/Gxz3Te3IRcj/HjgFzyy9dXJsE//2wfSz53rrzfulWWrbpaLrcGyAsGd91lH9/t4SEvUmgjbtLS5Prs19PG5dfsrq65807g9tvtz8eNa/nlzqj1MSFvosAh3QAAQaWXYEQ1tm+3T+bQHmkJuKen43MiIiIiah8mTJBd1oUAnn7a3jocG1v38TUT8qbMP/TTT8C1a3Kt8ZiYJhS4iRTF3m1982bZrdxolF3yO3SQQzcPH5a9AYqLgYAAOfN5UJD9vRg2TJY7PFy2bAshL2Bcr67x4zXLobWSA5z93FUxIW+q0FDAbIZitaK3z2Xk5dmvjrVH2qRu2pcME3IiIiKi9uett4DOneWa5IsWyW31JeRdusgW46auRa61jrfl+HGNlpB/+qm8791btpqPGSOfr1gB/PWv8vEdd8iEHZDrlQPApEn2czXUbb2hhByQSfjkyXKm+3vuaVIopDMm5E1lMMj+KgAeGHQOgH12w/amshK4ckU+vuMOec+EnIiIiKj98feXyShgX1u7voTcw0Mm5UDTuq1rLfB6LMN1/cRu2vMJE+T9hx8Cn3wiH2tJOgDMmiVbz5OS7Nu0hPyNN4DHHgO+/tq+T0vIa07oVpOiAKtWAadOyRZ4cj1MyJvjl4R8dLf2PY788mXZzcZisS83wYSciIiIqH265x7gySflY4NBzsJen6aOIxdCn/Hjmpprgtd8/thjsjX7llvkJG6vvCK7smsURc5HpbWYaz/TsydQWgqsWQPcd5/sCn/tGpCVJY+pLyEn12fSuwAu7ZeEPDrgHABg5055JbCtu8zoTUu+o6JsbwkTciIiIqJ27O235ZDG6Gj7JG516dZN/g99swl5WhqQk9P248c1Awc6PtcS8pAQuTb6zejeHTh5Ejh0SLaSf/UVsHy5jA2Q/1839B6Sa2MLeXP8ckkvtPw8woIqsahkDs7P/299y6SDmgm5ttxDVpYcD0RE5HS++w6Ij5ez7RARUasIDJS9R99+u+HjtMac6xPyTZvkutelpXX/nNZdfcQIwGxuRkGbyNdXtoJrtKXQmkpRZE/TJUvk86+/tg+HrW/8OLkHJuTN8cs3iHL+HP4Y9SHmYBm6/+U5ebmuHamZkAcF2a/mXbyoX5mIiGoRAnjvPWDsWOCzz4D775f9AYmISDfXd1k/fVp22b7nHtlaXF9Cr+f4cY3WKh4YKCeyawl9+wJxcYDVao+dCbl7Y0LeHNo3yIkTmHpWTiNptFYBf/+7fmXSgTbDelSUvLqntZKz2zoROQ1VlYP4nn9eLgzr7S0nwHj66aattUNERC2iZkL+7beyK3jNSc3WrKn9M4WF9tZjPcaPa7SEfNCgll3/+5ln5H1xsbxnQu7emJA3h9bH5vJleBdmoRpydoaSdz9qV//gaYm39nYwIXdBQgAlJXqXgqj1LFwIfPyxnF3orbeAXbtkH8cNG4D339e7dERE7ZaWkJ85I5cCKy+Xs5Lv3i0nPjtyRM4gXtMf/wjk5QG33lr/DO5tYfp0OWHd7Nkte97JkwEfH/tzJuTujQl5c0REACb7vHhr71iKEnjD58LPqPz39zoWrG3V7LJe854JuYsoKJA1X0CAnBL1+HG9S0R6O3HCflm+JZw7Jxdj/eYboKio5c7bWOvWAX/4g3z8ySdyrZkhQ4C//EVue/FF4OBBALIH+8yZQGQkcGt4EWYFrsRjHbchIlwgIsK+piwREbUMbS3yqirZNjB+vBw/fvvtco1twLGV/NQpYOlS+fiddxz+FW9zPXoAqanAI4+07Hl9fWVSrunTp2XPT87FJRLy5ORkdOvWDZ6enoiNjcX+/fv1LpJkMtkXT+zbFxPWP4sNXo8DAI4nfQRA/u9ZnF8t/1r//nfg7FnHc7RES/q1a3LWjOtnw7Ba5e1GKiuB7GzHbbm5wJ49QEWF4/aKCodzCtGIhDwvT043+c03wMaNwP79QHq67Ot+5oy8ZWa2bAJwM6xWmYQuXw48+qisAZYvrx27KyguBhIS5CKgI0YA8+fLKTvrk5Mjx9Pu2CG78f7v/8rLsFOm1P6s3kh1tVyM88svZV+zrVuBAwfkZALl5bLLcFv3HLFaXWNOh6qqxr03QjT/PSwuBlavlp/xLVvkYL2iInneAwfkGi19+sjbrl3Ney0A+Ne/5Ew3iYlycdaAANmkMWYMMG0akJwsLwC0xmcjP18m49Ony+dz58rX1MyaJZtjKishHnkUn713DX36AGs+zMGMS/OxN7Mr3s9/Aqtzx2F9ZiyGXvkKJcXtp/cTEVFbMJvt/07HxABr18qldAH5bxkgqy3Nb34jq82JE+U4c3c1Y4bsBj9oEGdYd3eKEM7dt3rVqlWYPn06PvjgA8TGxmLp0qVYvXo1Tpw4gZCQkBv+fGFhIfz9/VFQUAA/P7+WL+CUKcCqVcD69cCDD2Lr7/fgzgW3oxRe+Gvga+iftwsjsBt+kK1CqmJA0fiH4TF+FJRvvoFldwqEhxnVnbtCDe8Mg7cnDJ5mGMpKoGRnQcnPA7y8AD8/KAaDvHRYVib78Fgs8h/OM2dkWRRFfjvddx+wYwfE//0foKpQYmPltI2FhTJLrqqSix1GRclWoa1b5T/kt94K3HmnTOy/+UYeFx4ux1yGhwMrV8oBO6oqvxk8PaFaVRTkqTBAhZ+PFYqHB3ICemDLud7oEVyAX5l/ADIyGv9+Dhgg+/088ACufbYFpf9YA1N5CYwD+iIgrg/MoUGyD4/RKN+HsjLA01MmoJWVMvlMTZUXKSor5T/5UVFAr16yyatjR1n206eBY8dkApmWVveU8BERwH/+J3DXXUDv3vL3/N//LeO59VaZsPTuLe979pTrXPj5ydfU3usdO+RaHuXl8jJq167yfS0ulhd0evaUU3QWFckLFNeuybGtPj7yfFFR8j4vT140KS+X6+qZzfLm4WH7fODaNfl5TEurHcvEicDvfgcMGyZ/Ji9PXn5etEge36kTsGwZ8M9/ygQGkMfNnAmMGiXLGBRU+7zp6cD27TLOgwfrnwq1JkWRl8KNRln2Dh1kvDXv69p2/X1lJXDpEnDliryUHBYmt+fmymn+Dx6U/d0KCuTv67775CKeJSXyfQwMBEJD5WcoNVV+Hry85OckIAC4elW+5x4e8nfQsaMsu3ZhQVVlPJ06yZlcTCa5Zsnp0/I1VFUe7+cnP5+A/D1rt+Ji+RqXLsmLBj4+8rVDQ+W5tM94QYH8Oy8okJ8rf39g+HD5uwwPl+evrpYXUM6dk69ttcqfDw+3zzKTlyfLtnlz3Z93s1m+pzUZjcBvfysv0lit8hg/P/ndk5EhP7NCyBlo+vSRr33hgvydFBTIC13/+Ic8V//+8vORnl7356JrV+Dxx4GpU+WxJlPDA/KEAH76SX73pqTIsgYEyPusLFmGU6fsif6YMfJ7rUZTSlERsHVNAeKej0F48WlsxgTsxgi8YngTHVT5nV3RuTs8rmXCUF4GACh96jl4f5xcf7kaqdXrpnaG7yeRa/vkE3mNeNkyWa1qcnJk9W61yips3z65SIbJJKttd2853rVLVuPdu+tdEmqKxtZNTp+Qx8bGYtiwYXj/lzF+qqoiMjISs2fPxrx58274861eSRcWyhbAXwZ3CFXggt8AdC1xTIoK4IfT6ImhaKC1shkuGqIQqbZsH/FSYwd4W1um1fqa0hHZpgioJjOCxVUEVF0FAKiKCYpQYbaWwgD9PopVZm/k9IhFZt+xqLZ4o9+Wd+CTe+mmzyNMHoBqhaIlazoQ4eFQkz+Aci0HypbNwLq1UGr0alADAqEUFdq2VYVE4ERyCgoj+sBoBHzTj6LLey/D7/stN//ivr6ydhRCJnd5ebL3Q1VVS4VHLaFHD5lEnz0rE+QymWzCYACeeEI2P7z5JvDppy3zei+/LAf8eXjIidROn5YJ/ZkzcprcXbtq9UgRBgNUsyeExdN2b/D2hNFiksl+bi4MxTfu/l4e1QtX+o3Ht//vjzidG4T8fHk9IjNTvnRlJTAQR7EXv4I3yuw/OGQI8NprsgX92jU57jw5WV7IuuOOZr8lTCBbFt9PIvd1551ysrfoaODwYbktKUl+LRM5M7dIyCsrK+Ht7Y01a9Zg0qRJtu0JCQnIz8/Hl19+WetnKioqUFHjH7vCwkJERka2aSVd/PlXqHpxHqp79oX33aNQfNsobM8ZiO++N6Lo+2MY99O7iKg6j53GMdjtdw+qFDNCys6jY+UVGKyVMKMSZfBCFkKRh0B4ohy+KIIJ1SiBD0rhDQNUWFCBClhwCLchH4HoiVN4FssxDAewGyOwHpNQjA64Hd9jEI7iGjriAqJghRG9cArdcA4ncSu+xr04jZ4Yg+0Yi23IQTD+ick4gx54HKswC+/DC2VYjcfwBaYgD4HwQyG8UAYVBlhhxLDhBqz8wgiUliJnzym8+euTKIE3fsAQHMUgFMP3Bu+aQBByMR1/x2y8h1uQjuPog11dpiLXtyu8zh1H57JT8EMhOqAYRlhRCm+UwxOeKIcfCqFA4DCikYqhuIhIVMIMI6zohnPohVOIQAY64hr8UIhz6IZjGIhjGIijGISzuAWixggOMyowFZ/jPmzEWGxDEPJwHH3wIf4TexCHnjiNPvjZduuOdHSA46RoReiAPYjDdoxBHgLRA2cQiYuogAVF8IUXytALp9Ad6SiAPy4gCtkIgRfK4IsihCILUbiATshBHgKQhVCUwQseqIIZlbZ7b5TCD4UwQsW3GIcn8CmyEGYrRw+cxqtYjHishCfsfxvHMABf4X4kIxEZqL1Wx534BtPwD/TAGfTAGfjCnvwIyJbLXARhJ0ZhO8bge4zAGVNvGD0MtgZekwnwMKoINBbCbLTCw6jCqMgeFUZRDU9RBm+1GN6iGN5qCbzVYniJEvioxfBSS37Z7rhPe25VjLhiikSOMQzeohidqjPhrRYj39gRecZgnDH3xQHPO3DR1B2/Kt2G0SX/hyBrNkrQARWwwF/NRSdrFlQYcMQwBEcM0TCq1YhQL8Ff5CPfoxPyzSHwUKoRrGYjUL0G8UvsKgwQMEARKoLVbISpl2ERFThr6oWzxltRYAiECgMMsMJXLYSvKICAghKlA0oUXxT/ciswBOKyIRLZhjD4qfnorF5EkJoDI6wwimqUK14oVPxRZPBHgRKAQvghTM3AbdX7MaD6BwSqufAVhRBQcMHYHReM3VEIP1QrJphFJULVKwhTZQ+VfCUQ1wydsN08AUcN0fbWZyHgjVIEqTkoV7yQY5A9j4QqMKXy75hS8b8ABFQY4YFK+IpCeIlSZBnCcdHQFQoE+lh/Qg/rSRQpfsgwROKKIQKFSgAKFX9sMt2PnR7jGvzr9xKlGFWyCY9Wy7+5mp/ThpTDgm9wF77C/SiBDwKQD7NSjWyEIAuh+FH0QzZCGzzHrbcCDz0E/IfXSvT4/XQo3bvLniOPPSYvUNRUUGDv7dBMTCBbFt9PIvf14Yeyw57mhRfkWt0eHvqViagx3CIhz8jIQOfOnfH9998jLi7Otv3ll1/Gjh07sG/fvlo/s3DhQrzxxhu1tjtTJa2qslXG07PufeXlsgdqzZ6x19+07dXVshtPdbVshKyulvv8/WXvzepq2ev26lX7ObWb1Wp/XF0tG6jKy2US5e0t7/Py5M9aLLJBrUcP2X0oPV1uF0L+z/rgg7JXs2bdOnlM795yu9Uqe7NeuyZ7kmZlyZ8zm+W5tZvZDFhMVnQUORh8Zwj8/GXSIITsiVxYKM+Tny/PkZ0ty16TEPK9KC2t/1aTlpfUyE9sw++tVkBUW+FflolMQwSsqoK6Gr+rq4HKgjJYinJQWuWBfASgHJ628zXmVh8FqsPFgroJeKIc5fCqc6/BAPh4qfAqy0WwmoUi+OIiouDlJX/X3t7yvdc+S9qtruc6Nv5TO+BjrkInr2L4GMvhYyyHt0He1NJyVBSUw4QqFMAfeQhErlcXKD7eMJvld1VZWe3zhYTIkQBRUfZRK9pIidGj5fearWd8drYcmtEGMwQxgWxZfD+J3NfVq/b/MT/+WF4vJXIFja2bdJyXsHW8+uqrSEpKsj3XWsidicFQdzKu7fP2btnXCwu78TE3a+TIhvc/9FBzzm4ErmvVUhT5j3THjs05b3PKU7sFuTYvAM37rNWdqBsakdArEMKrzn2ennJ4sqIYIEQwKiqCYbXKpOT6BsDG0C7m1JWw15fE13yuDa1uS0ajfdi6wXDjx0LYL1BdfwHi+rI3JpaWOqatX68ty202y3GDPj4eAALrPMZqleO+LRb5ua55TiHksPyCAvl7VBQ5TUB937V1asS8JERE1LY6dZJThnh68mua3JNTJ+TBwcEwGo3Iyspy2J6VlYWwerJMi8UCizY1I5GLUZTWTVYV5SYTlDpoiSu7ilFb0+Ztq4uiyCkMfG80OoaIiFyOtoIPkTty6mXPzGYzhg4dipSUFNs2VVWRkpLi0IWdiIiIiIiIyNU4dQs5ACQlJSEhIQExMTEYPnw4li5dipKSEjz11FN6F42IiIiIiIioyZw+IX/88cdx9epVvP7668jMzER0dDQ2b96M0NCGZ84lIiIi13Dx4kVMmzYN2dnZMJlMmD9/Ph7jzE1ERNQOOPUs6y2BM68SEZGzYd3k6MqVK8jKykJ0dDQyMzMxdOhQnDx5Ej4+Po36eb6fRETkbNrtLOtERETkWsLDwxEeHg4ACAsLQ3BwMHJzcxudkBMREbkqp57UjYiIiPS3c+dO3H///YiIiICiKFi/fn2tY5KTk9GtWzd4enoiNjYW+/fvb9Jrpaamwmq1Ot2SpURERK2BCTkRERE1qKSkBIMHD0ZycnKd+1etWoWkpCQsWLAAhw4dwuDBgzFhwgRkZ2fbjomOjsaAAQNq3TIyMmzH5ObmYvr06VixYkWrx0REROQMOIaciIiojbly3aQoCtatW4dJkybZtsXGxmLYsGF4//33AcglSiMjIzF79mzMmzevUeetqKjAnXfeiV//+teYNm3aDY+tqKiwPS8sLERkZKRLvp9EROSeGlvXs4WciIiImqyyshKpqakYP368bZvBYMD48eOxZ8+eRp1DCIEnn3wSY8eOvWEyDgCLFy+Gv7+/7cbu7URE5KqYkBMREVGT5eTkwGq11lqONDQ0FJmZmY06x+7du7Fq1SqsX78e0dHRiI6OxrFjx+o9/tVXX0VBQYHtdvHixWbFQEREpBfOsk5ERES6GjlyJFRVbfTxFosFFoulFUtERETUNthCTkRERE0WHBwMo9GIrKwsh+1ZWVkICwvTqVRERESugQk5ERERNZnZbMbQoUORkpJi26aqKlJSUhAXF9eqr52cnIx+/fph2LBhrfo6RERErYVd1omIiKhBxcXFOH36tO15eno6Dh8+jKCgIERFRSEpKQkJCQmIiYnB8OHDsXTpUpSUlOCpp55q1XIlJiYiMTHRNpMtERGRq3H7hFxb1a2wsFDnkhAREUlaneQqK48ePHgQY8aMsT1PSkoCACQkJOCTTz7B448/jqtXr+L1119HZmYmoqOjsXnz5loTvbUW1vVERORsGlvXu/065JcuXeJyKERE5JQuXryILl266F0Ml8e6noiInNWN6nq3T8hVVUVGRgZ8fX2hKEqzzlVYWIjIyEhcvHixwcXdXYU7xeNOsQDuFY87xQIwHmfmSrEIIVBUVISIiAgYDJzOpblY19eP8Tgvd4oFcK943CkWwL3icaVYGlvXu32XdYPB0OKtD35+fk7/AbgZ7hSPO8UCuFc87hQLwHicmavEwjHPLYd1/Y0xHuflTrEA7hWPO8UCuFc8rhJLY+p6XpYnIiIiIiIi0gETciIiIiIiIiIdMCG/CRaLBQsWLIDFYtG7KC3CneJxp1gA94rHnWIBGI8zc6dYSD/u9jliPM7LnWIB3Csed4oFcK943CkWjdtP6kZERERERETkjNhCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCfhOSk5PRrVs3eHp6IjY2Fvv379e7SDe0ePFiDBs2DL6+vggJCcGkSZNw4sQJh2PKy8uRmJiIjh07okOHDnjkkUeQlZWlU4kb709/+hMURcHcuXNt21wtlsuXL+OJJ55Ax44d4eXlhYEDB+LgwYO2/UIIvP766wgPD4eXlxfGjx+PU6dO6Vji+lmtVsyfPx/du3eHl5cXevTogT/84Q+oOW+ks8azc+dO3H///YiIiICiKFi/fr3D/saUOzc3F/Hx8fDz80NAQACeeeYZFBcXt2EUdg3FU1VVhVdeeQUDBw6Ej48PIiIiMH36dGRkZDicw1Xiud7MmTOhKAqWLl3qsN2Z4iHnxrreubCudy6uXNcD7lXfs653n7qeCXkjrVq1CklJSViwYAEOHTqEwYMHY8KECcjOzta7aA3asWMHEhMTsXfvXmzduhVVVVW46667UFJSYjvmhRdewFdffYXVq1djx44dyMjIwMMPP6xjqW/swIED+PDDDzFo0CCH7a4US15eHkaMGAEPDw9s2rQJaWlpeOuttxAYGGg75s9//jOWLVuGDz74APv27YOPjw8mTJiA8vJyHUtetyVLlmD58uV4//33cfz4cSxZsgR//vOf8d5779mOcdZ4SkpKMHjwYCQnJ9e5vzHljo+Px08//YStW7di48aN2LlzJ2bMmNFWIThoKJ7S0lIcOnQI8+fPx6FDh7B27VqcOHECDzzwgMNxrhJPTevWrcPevXsRERFRa58zxUPOi3W9c2Fdz7q+pblTfc+63o3qekGNMnz4cJGYmGh7brVaRUREhFi8eLGOpbp52dnZAoDYsWOHEEKI/Px84eHhIVavXm075vjx4wKA2LNnj17FbFBRUZHo1auX2Lp1qxg9erSYM2eOEML1YnnllVfEyJEj692vqqoICwsTb775pm1bfn6+sFgs4vPPP2+LIt6Ue++9Vzz99NMO2x5++GERHx8vhHCdeACIdevW2Z43ptxpaWkCgDhw4IDtmE2bNglFUcTly5fbrOx1uT6euuzfv18AEOfPnxdCuGY8ly5dEp07dxY//vij6Nq1q3jnnXds+5w5HnIurOudB+t656obNe5S1wvhXvU963rnjudG2ELeCJWVlUhNTcX48eNt2wwGA8aPH489e/boWLKbV1BQAAAICgoCAKSmpqKqqsohtj59+iAqKsppY0tMTMS9997rUGbA9WLZsGEDYmJi8NhjjyEkJARDhgzBRx99ZNufnp6OzMxMh3j8/f0RGxvrlPHcfvvtSElJwcmTJwEAR44cwa5duzBx4kQArhePpjHl3rNnDwICAhATE2M7Zvz48TAYDNi3b1+bl/lmFRQUQFEUBAQEAHC9eFRVxbRp0/DSSy+hf//+tfa7WjykD9b1zoV1vXPWje5a1wPuX9+zrndeJr0L4ApycnJgtVoRGhrqsD00NBQ///yzTqW6eaqqYu7cuRgxYgQGDBgAAMjMzITZbLb9cWpCQ0ORmZmpQykb9sUXX+DQoUM4cOBArX2uFsvZs2exfPlyJCUl4be//S0OHDiA559/HmazGQkJCbYy1/W5c8Z45s2bh8LCQvTp0wdGoxFWqxWLFi1CfHw8ALhcPJrGlDszMxMhISEO+00mE4KCgpw6NkCOxXzllVcwdepU+Pn5AXC9eJYsWQKTyYTnn3++zv2uFg/pg3W982Bd77zxuGtdD7h3fc+63vniqYkJeTuSmJiIH3/8Ebt27dK7KE1y8eJFzJkzB1u3boWnp6fexWk2VVURExOD//qv/wIADBkyBD/++CM++OADJCQk6Fy6m/fPf/4TK1euxGeffYb+/fvj8OHDmDt3LiIiIlwynvagqqoKkydPhhACy5cv17s4TZKamop3330Xhw4dgqIoeheHSHes650L63rSG+t658cu640QHBwMo9FYawbPrKwshIWF6VSqmzNr1ixs3LgR27dvR5cuXWzbw8LCUFlZifz8fIfjnTG21NRUZGdn47bbboPJZILJZMKOHTuwbNkymEwmhIaGukwsABAeHo5+/fo5bOvbty8uXLgAALYyu8rn7qWXXsK8efMwZcoUDBw4ENOmTcMLL7yAxYsXA3C9eDSNKXdYWFitSZ+qq6uRm5vrtLFpFfT58+exdetW2xVzwLXi+e6775CdnY2oqCjb98L58+fxm9/8Bt26dQPgWvGQfljXOwfW9bA9d8Z43LWuB9yzvmdd75zxXI8JeSOYzWYMHToUKSkptm2qqiIlJQVxcXE6luzGhBCYNWsW1q1bh23btqF79+4O+4cOHQoPDw+H2E6cOIELFy44XWzjxo3DsWPHcPjwYdstJiYG8fHxtseuEgsAjBgxotayNCdPnkTXrl0BAN27d0dYWJhDPIWFhdi3b59TxlNaWgqDwfErxWg0QlVVAK4Xj6Yx5Y6Li0N+fj5SU1Ntx2zbtg2qqiI2NrbNy3wjWgV96tQpfPvtt+jYsaPDfleKZ9q0aTh69KjD90JERAReeuklbNmyBYBrxUP6YV3vHFjXO3fd6K51PeB+9T3reueNpxZ955RzHV988YWwWCzik08+EWlpaWLGjBkiICBAZGZm6l20Bj377LPC399f/Pvf/xZXrlyx3UpLS23HzJw5U0RFRYlt27aJgwcPiri4OBEXF6djqRuv5syrQrhWLPv37xcmk0ksWrRInDp1SqxcuVJ4e3uLTz/91HbMn/70JxEQECC+/PJLcfToUfHggw+K7t27i7KyMh1LXreEhATRuXNnsXHjRpGeni7Wrl0rgoODxcsvv2w7xlnjKSoqEj/88IP44YcfBADx9ttvix9++ME2E2ljyn333XeLIUOGiH379oldu3aJXr16ialTpzpdPJWVleKBBx4QXbp0EYcPH3b4XqioqHC5eOpy/cyrQjhXPOS8WNc7J9b1zsOV63oh3Ku+Z13vPnU9E/Kb8N5774moqChhNpvF8OHDxd69e/Uu0g0BqPP2t7/9zXZMWVmZeO6550RgYKDw9vYWDz30kLhy5Yp+hb4J11fSrhbLV199JQYMGCAsFovo06ePWLFihcN+VVXF/PnzRWhoqLBYLGLcuHHixIkTOpW2YYWFhWLOnDkiKipKeHp6iltuuUW89tprDl/8zhrP9u3b6/w7SUhIEEI0rtzXrl0TU6dOFR06dBB+fn7iqaeeEkVFRTpE03A86enp9X4vbN++3eXiqUtdlbQzxUPOjXW982Fd7zxcua4Xwr3qe9b17lPXK0II0TJt7URERERERETUWBxDTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkStSlEUrF+/Xu9iEBERUStifU/UNEzIidzYk08+CUVRat3uvvtuvYtGRERELYT1PZHrMuldACJqXXfffTf+9re/OWyzWCw6lYaIiIhaA+t7ItfEFnIiN2exWBAWFuZwCwwMBCC7ly1fvhwTJ06El5cXbrnlFqxZs8bh548dO4axY8fCy8sLHTt2xIwZM1BcXOxwzMcff4z+/fvDYrEgPDwcs2bNctifk5ODhx56CN7e3ujVqxc2bNjQukETERG1M6zviVwTE3Kidm7+/Pl45JFHcOTIEcTHx2PKlCk4fvw4AKCkpAQTJkxAYGAgDhw4gNWrV+Pbb791qICXL1+OxMREzJgxA8eOHcOGDRvQs2dPh9d44403MHnyZBw9ehT33HMP4uPjkZub26ZxEhERtWes74mclCAit5WQkCCMRqPw8fFxuC1atEgIIQQAMXPmTIefiY2NFc8++6wQQogVK1aIwMBAUVxcbNv/9ddfC4PBIDIzM4UQQkRERIjXXnut3jIAEL/73e9sz4uLiwUAsWnTphaLk4iIqD1jfU/kujiGnMjNjRkzBsuXL3fYFhQUZHscFxfnsC8uLg6HDx8GABw/fhyDBw+Gj4+Pbf+IESOgqipOnDgBRVGQkZGBcePGNViGQYMG2R77+PjAz88P2dnZTQ2JiIiIrsP6nsg1MSEncnM+Pj61upS1FC8vr0Yd5+Hh4fBcURSoqtoaRSIiImqXWN8TuSaOISdq5/bu3Vvred++fQEAffv2xZEjR1BSUmLbv3v3bhgMBvTu3Ru+vr7o1q0bUlJS2rTMREREdHNY3xM5J7aQE7m5iooKZGZmOmwzmUwIDg4GAKxevRoxMTEYOXIkVq5cif379+N//ud/AADx8fFYsGABEhISsHDhQly9ehWzZ8/GtGnTEBoaCgBYuHAhZs6ciZCQEEycOBFFRUXYvXs3Zs+e3baBEhERtWOs74lcExNyIje3efNmhIeHO2zr3bs3fv75ZwByRtQvvvgCzz33HMLDw/H555+jX79+AABvb29s2bIFc+bMwbBhw+Dt7Y1HHnkEb7/9tu1cCQkJKC8vxzvvvIMXX3wRwcHBePTRR9suQCIiImJ9T+SiFCGE0LsQRKQPRVGwbt06TJo0Se+iEBERUSthfU/kvDiGnIiIiIiIiEgHTMiJiIiIiIiIdMAu60REREREREQ6YAs5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHp4P8DquZ1KNVi7c0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2200,7 +2193,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -2235,19 +2228,19 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.319\n" + "The MSE loss is 0.435\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIElEQVR4nO3de1xUdf4/8NdhkPswiDozoIgkphJq3lNapRWRMpVqtbtSfrM1MMlMtM3UtFA3N60t7LILtmrl/gpF2zBEobzhLVPSSAkvKRfzMiMgiDPn98fE6Mhw02HODOf13Mc82vM5n/nM+xzEefv5fM7nI4iiKIKIiIhIJlykDoCIiIjInpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQNwREajEWfPnoVSqYQgCFKHQ0RERE0giiIuX76MwMBAuLjU37/D5MeKs2fPIigoSOowiIiI6BacPn0anTp1qvc8kx8rlEolANPN8/X1lTgaIiIiagq9Xo+goCDz93h9mPxYUTvU5evry+SHiIjIyTQ2ZYUTnomIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWuMKzvRgNwMmdQHkp4KMBgocCLgqpoyIiIpIdSXt+kpOTMXDgQCiVSqjVasTGxqKgoMCiTmRkJARBsHj99a9/bbBdURTx+uuvIyAgAJ6enoiKisKxY8da8lIadiQDWB4OrHoQ+HKy6b/Lw03lREREZFeSJj+5ubmIj4/H7t27kZWVhZqaGkRHR6OiosKi3nPPPYfi4mLza+nSpQ22u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqqolL8e6IxnAuomA/qxlub7YVM4EiIiIyK4kHfbKzMy0OE5LS4Narcb+/fsxbNgwc7mXlxe0Wm2T2hRFEcuXL8drr72GcePGAQA+/fRTaDQarF+/Ho899pjtLqAxRgOQmQRAtBYpAAHInA30GM0hMCIiIjtxqAnPOp0OAODv729RvmbNGrRv3x7h4eGYM2cOKisr622jqKgIJSUliIqKMpepVCoMHjwYu3btsvqe6upq6PV6i5dNnNxZt8fHggjoz5jqERERkV04zIRno9GIxMREREREIDw83Fz+xBNPIDg4GIGBgTh06BCSkpJQUFCAr776ymo7JSUlAACNRmNRrtFozOdulpycjAULFtjoSm5QXmrbekRERHTbHCb5iY+PR35+PrZv325RPmXKFPP/79WrFwICAjBixAgUFhaia9euNvnsOXPmYMaMGeZjvV6PoKCg22/YR9N4nebUIyIiotvmEMNeCQkJ2LRpE7Zt24ZOnTo1WHfw4MEAgOPHj1s9Xzs3qLTUsjeltLS03nlD7u7u8PX1tXjZRPBQwDcQgFBPBQHw7WiqR0RERHYhafIjiiISEhKQnp6OrVu3IiQkpNH3HDx4EAAQEBBg9XxISAi0Wi2ys7PNZXq9Hnl5eRgyZIhN4m4yFwUQs+SPg5sToD+OYxZzsjMREZEdSZr8xMfHY/Xq1Vi7di2USiVKSkpQUlKCK1euAAAKCwuxcOFC7N+/HydOnEBGRgYmTpyIYcOGoXfv3uZ2evTogfT0dACAIAhITEzEokWLkJGRgcOHD2PixIkIDAxEbGys/S8ybCww4VPA96ZkzTfQVB421v4xERERyZikc35SUlIAmBYyvFFqairi4uLg5uaGLVu2YPny5aioqEBQUBAeeeQRvPbaaxb1CwoKzE+KAcCsWbNQUVGBKVOm4NKlS7j33nuRmZkJDw+PFr8mq8LGmh5n5wrPREREkhNEUbS2CI2s6fV6qFQq6HQ6283/ISIiohbV1O9vh5jwTERERGQvTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQMgB2I0ACd3AuWlgI8GCB4KuCikjoqIiMimmPyQyZEMIDMJ0J+9XuYbCMQsAcLGShcXERGRjXHYi0yJz7qJlokPAOiLTeVHMqSJi4hum8EoYlfheWw4eAa7Cs/DYBSlDolIcuz5kTujwdTjA2t/IYoABCBzNtBjNIfAiJxMZn4xFmw8gmJdlbksQOWBeWPCEBMeIGFkRNJiz4/cndxZt8fHggjoz5jqEZHTyMwvxtTVBywSHwAo0VVh6uoDyMwvligyIulJmvwkJydj4MCBUCqVUKvViI2NRUFBgdW6oiji/vvvhyAIWL9+fYPtxsXFQRAEi1dMTEwLXEErUF5q23pEJDmDUcSCjUfq7c8FgAUbj3AIjGRL0uQnNzcX8fHx2L17N7KyslBTU4Po6GhUVFTUqbt8+XIIgtDktmNiYlBcXGx+ffbZZ7YMvfXw0di2HhFJbk/RhTo9PjcSARTrqrCn6IL9giJyIJLO+cnMzLQ4TktLg1qtxv79+zFs2DBz+cGDB7Fs2TLs27cPAQFNG6d2d3eHVqttUt3q6mpUV1ebj/V6fZPe1yoEDzU91aUvhvV5P4LpfPBQe0dGRLeo7HL9ic+t1CNqbRxqzo9OpwMA+Pv7m8sqKyvxxBNP4P33329yMgMAOTk5UKvV6N69O6ZOnYrz58/XWzc5ORkqlcr8CgoKuvWLcDYuCtPj7ACAm3vW/jiOWczJzkRORK30sGk9otZGEEXRIQZ9jUYjxo4di0uXLmH79u3m8ueffx4GgwGffPIJAEAQBKSnpyM2Nrbetj7//HN4eXkhJCQEhYWFePXVV+Hj44Ndu3ZBoaj7JW6t5ycoKAg6nQ6+vr62u0hHZnWdn46mxIfr/BA5FYNRxL1LtqJEV1Vffy60Kg9sT/ozFC5Nn05AdNtaeDFdvV4PlUrV6Pe3wzzqHh8fj/z8fIvEJyMjA1u3bsUPP/zQrLYee+wx8//v1asXevfuja5duyInJwcjRoyoU9/d3R3u7u63HnxrEDbW9Dg7V3gmcnoKFwHzxoRh6uoDEGA5oF2b6swbE8bEh+zLgRbTdYhhr4SEBGzatAnbtm1Dp06dzOVbt25FYWEh/Pz84OrqCldXU672yCOPIDIyssnt33HHHWjfvj2OHz9u69BbFxcFEPInoNdfTP9l4kPktGLCA5DyVD9oVZZDW1qVB1Ke6sd1fsi+HGwxXUmHvURRxLRp05Ceno6cnBx069bN4nxJSQl+//13i7JevXphxYoVGDNmDEJCQpr0Ob/99hs6d+6M9evXY+zYxrPLpnabERE5OoNRxJ6iCyi7XAW10gODQvzZ40P2ZTQAy8MbWFPujwdrEg/f9j+6nWLYKz4+HmvXrsWGDRugVCpRUlICAFCpVPD09IRWq7U6yblz584WiU+PHj2QnJyMhx56COXl5ViwYAEeeeQRaLVaFBYWYtasWQgNDcWoUaPsdm1ERI5A4SJgSNd2UodBctacxXRD/mSXkCQd9kpJSYFOp0NkZCQCAgLMry+++KJZ7RQUFJifFFMoFDh06BDGjh2LO++8E5MnT0b//v3x/fffc14PERGRvTngYrqS9vzcyoibtffcWObp6YnNmzffVlxERERkIw64mK7DPO1F1FpwjgUR0Q0ccDFdJj9ENsRdtImIblK7mO66iUB9iy/YeTFdh3jUnag14C7aRET1CBsLTPgU8L3pH4G+gaZyO6/zw54fIhtobBdtAaZdtEeGaTkERkTy5ECL6TL5IbKB5uyizceOiUi2ahfTlToMqQMgag24izYRkfNg8kNkA9xFm4jIeTD5IbKBQSH+CFB5oL7ZPAJMT30NCvG3Z1hERGQFkx8iG6jdRRtAnQSIu2i3YkYDUPQ9cPj/mf5rNEgdERE1ASc8E9lI7S7aN6/zo+U6P63TkQwgM8lyzyLfQNN6JnZ+bJeImkfSXd0dFXd1p9vBFZ5l4EjGHwu23fzX5x8/ZwnWLSEiJ9nVnag14i7arZzRYOrxaWhVp8zZpvVMJFi/hIgaxzk/RETNcXKn5VBXHSKgP2OqR0QOickPEVFzlJfath4R2R2THyKi5vDR2LYeEdkd5/wQETVH8FDTU136Ylif9yOYzgcPtXdkRA7PUR4IYfJDRNQcLgrT4+zrJsL0dNeNCdAff4nHLOZkZ6KbZOYX11kKJECipUA47EVE1FxhY02Ps/ve9Be2byAfcyeyIjO/GFNXH6izAXSJrgpTVx9AZn6xXeNhzw8R0a0IG2t6nP3kTtPkZh+NaaiLPT5EFgxGEQs2HmlocQgs2HgEI8O0dhsCY/JDRHSrXBRAyJ+kjoLIoe0pulCnx+dGIoBiXRX2FF2w2xppHPYiIiKiFlN2uf7E51bq2QKTHyIiImoxaqWHTevZApMfIiIiajGDQvwRoPJAfbN5BJie+hoU4m+3mJj8EBERUYtRuAiYNyYMAOokQLXH88aE2XW9HyY/RERE1KJiwgOQ8lQ/aFWWQ1talQdSnupn93V++LQXERERtbiY8ACMDNNyhWciIiKSD4WLYLfH2RvCYS8iIiKSFSY/REREJCsc9iIiImoFHGXHdGfA5IeIiMjJOdKO6c6Aw15EREROzNF2THcGTH6IiIicVGM7pgOmHdMNRms15IvJDxERkZNqzo7pdB2THyIiIifliDumOwMmP0RERE7KEXdMdwZMfoiIiJyUI+6Y7gyY/BARETkpR9wx3Rkw+SEiInJijrZjujPgIodEREROzpF2THcGTH6IiIhaAUfZMd0ZcNiLiIiIZIXJDxEREckKkx8iIiKSFUmTn+TkZAwcOBBKpRJqtRqxsbEoKCiwWlcURdx///0QBAHr169vsF1RFPH6668jICAAnp6eiIqKwrFjx1rgCoiIiMjZSJr85ObmIj4+Hrt370ZWVhZqamoQHR2NioqKOnWXL18OQWjarPWlS5fi3XffxcqVK5GXlwdvb2+MGjUKVVVc3puIiEjuBFEUHWar13PnzkGtViM3NxfDhg0zlx88eBAPPvgg9u3bh4CAAKSnpyM2NtZqG6IoIjAwEC+//DJmzpwJANDpdNBoNEhLS8Njjz1W5z3V1dWorq42H+v1egQFBUGn08HX19e2F0lEREQtQq/XQ6VSNfr97VBzfnQ6HQDA3//6MtyVlZV44okn8P7770Or1TbaRlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PcnJyVCpVOZXUFDQbV4JEREROSqHSX6MRiMSExMRERGB8PBwc/lLL72EoUOHYty4cU1qp6SkBACg0WgsyjUajfnczebMmQOdTmd+nT59+havgoiIiBydwyxyGB8fj/z8fGzfvt1clpGRga1bt+KHH35o0c92d3eHu7t7i34GEREROQaH6PlJSEjApk2bsG3bNnTq1MlcvnXrVhQWFsLPzw+urq5wdTXlao888ggiIyOttlU7NFZaWmpRXlpa2qRhMyIiImrdJE1+RFFEQkIC0tPTsXXrVoSEhFicnz17Ng4dOoSDBw+aXwDwzjvvIDU11WqbISEh0Gq1yM7ONpfp9Xrk5eVhyJAhLXYtRERE5BwkHfaKj4/H2rVrsWHDBiiVSvOcHJVKBU9PT2i1Wqu9NZ07d7ZIlHr06IHk5GQ89NBDEAQBiYmJWLRoEbp164aQkBDMnTsXgYGB9T4hRkRERPIhafKTkpICAHWGsFJTUxEXF9fkdgoKCsxPigHArFmzUFFRgSlTpuDSpUu49957kZmZCQ8PD1uETURERE7Modb5cRRNXSeAiIiIHIdTrvNDRERE1NKY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK65SB0DUHAajiD1FF1B2uQpqpQcGhfhD4SJIHRYRETkRJj/kNDLzi7Fg4xEU66rMZQEqD8wbE4aY8AAJIyMiImfCYS9yCpn5xZi6+oBF4gMAJboqTF19AJn5xRJFRi3FYBSxq/A8Nhw8g12F52EwilKHREStBHt+yOEZjCIWbDwCa199IgABwIKNRzAyTMshsFaCvXxE1JLY80MOb0/RhTo9PjcSARTrqrCn6IL9gqIWw14+ImppTH7I4ZVdrj/xuZV65Lga6+UDTL18HAIjotvB5IccnlrpYdN65LjYy0dE9sA5P3bCR7Rv3aAQfwSoPFCiq7LaIyAA0KpM95ScG3v5iMgemPzYASdv3h6Fi4B5Y8IwdfUBCIBFAlSbPs4bE8ZkshVgLx8R2QOHvVoYJ2/aRkx4AFKe6getyvJLT6vyQMpT/ZhEthK1vXz1pbECTP9wYC8fEd0O9vy0ID6ibVsx4QEYGabl8GErxl4+clScutC6MPlpQc2ZvDmkazv7BebEFC4C71UrV9vLd/NQsZZDxSQRTl1ofZj8tCBO3iS6NezlI0dRO3Xh5h782qkLHHZ3Tkx+WhAnbxLdOvbykdQ4daH14oTnFsTJm0REzovrTrVeTH5aUO3kTQB1EiBO3iQiMnHUTWw5daH14rBXC+PkTSKi+jnyZGJOXWi9mPzYASdvEhHVVTuZWIAR97j8DDUuoQx+2Kvr4RCTibm6fOvF5MdOOHmTHAnXLCGp1U4mjnbZg3ltPkWgcH3ezFnRH2/UTMSCjR6STibmulOtF5MfIplx5GEGko89RRfQ+/J3SGmzvM45LS7ggzbLMfUysKfobkn/4ehUUxeMBuDkTqC8FPDRAMFDAReF1FE5JEEURceYWeZA9Ho9VCoVdDodfH19pQ6HyGbqW7Ok9t+tUg8zkHxs+OEUBq4fDi0uwFrHiVEEStAOe2NzMK5vZ/sHeBOH7y09kgFkJgH6s9fLfAOBmCVA2Fjp4rKzpn5/82kvIplobM0SwLRmiaM8aUOtW2jlYQQK1hMfAHARgEDhPEIrD9s3sHrUTl0Yd3dHDOnazvESn3UTLRMfANAXm8qPZEgTlwNj8kNmjvq4KdkG1ywhR9JTWWnTerJlNJh6fBr6Z03mbFM9MuOcHwLAeSBywDVLyJG4KLU2rSdbJ3fW7fGxIAL6M6Z6IX+yW1iOjsmPnRiMBhwoO4BzlefQwasD+qn7QeEgE9GuzwMxQuFVBMH1MsRrSpToQhzicdMbGa5dxYHD/8E5/Sl08O2Mfr2ehsLVTeqwLDjqz9pyLRLLn7WhMgS1HcGOsmaJo97HGzHG2xA8FPANhKgvhhEiDni445xCgQ4GA/pVVcMFAgTfQFM9B+Cw97G81Px/DUCd+6iwUk9KjnIfmfzYwZaTW7B4z2KUVl7/w6fx0mD2oNmICo6SMLLr80AUyny4azbCpY3OfM5Yo0J16RjJHzettWV7Mhb/sgaliutxaH54B7PvfBJR986RMLLrHPlnXbtmyTnjvnp/1h1cBjjEmiWOfB9rMcbb5KIAYpYge9PzWNzOD6Wu17+ONNeuYfb5S4iKWewQTys59H300QAAtnh5YnG7tlbu40VEVV4x15OSI91HzvlpYVtObsGMnBkWP2wAKKssw4ycGdhycotEkZnsKbqAc8Z98Oi4GoKrzuKc4KqDR8fVOGfcJ/k8kC3bkzHj+BqU3vQntswFmHF8DbZsT5YmsBs4+s9a4SLg4XsvNPizfvjeC9InuQ5+HwHGaCtbvL0wQ9MepQrLBKdMocAMTXts8faSKLLrHP4+Bg/FlvYdMUNdz31Ut8eW9h0l70FztPt4W8lPVVUVVq1ahQ8++ADHjh2zVUythsFowOI9iyFamYhWW7ZkzxIYJJyIVqKvgLtmIwBAuOk7r/bYXbMRJfoKO0d2neHaVSz+ZY3pjt0UpPjH8ZJf1sBw7ar9g/uDM/ysDUYDNpd8CEGw/rMWBODbko8kj9EZ7iNjvH3XY0Q9v9eCA8XowPcRwGL/tg3//djOH1JOd3bE+9jk5GfGjBmYNm2a+fjq1asYMmQInnvuObz66qvo27cvdu3a1awPT05OxsCBA6FUKqFWqxEbG4uCggKLOs8//zy6du0KT09PdOjQAePGjcPPP//cYLtxcXEQBMHiFRMT06zYbOFA2YE6We6NRIgoqSzBgbIDdozKks74C1za6Op8GdYSBMCljQ464y/2DewGBw7/xzTUVU+QoiCgRCHgwOH/2Dmy65zhZ91YjAAcPkZnuI+MsWkYo20cKDuA0hp9w38/XtVJH6OD3ccmJz/ffvstRo4caT5es2YNTp48iWPHjuHixYsYP348Fi1a1KwPz83NRXx8PHbv3o2srCzU1NQgOjoaFRXXexn69++P1NRUHD16FJs3b4YoioiOjobB0HCGGBMTg+LiYvPrs88+a1ZstnCu8pxN67WE9n7VNq3XEs7pT9m0Xktwhp81Y7QNxmgbjNE2GOOtafKE51OnTiEsLMx8/O233+Ivf/kLgoODAQDTp0/HAw880KwPz8zMtDhOS0uDWq3G/v37MWzYMADAlClTzOe7dOmCRYsWoU+fPjhx4gS6du1ab9vu7u7QaqV9RLKDVweb1msJGm+1Teu1hA6+TVvdtan1WoIz/KwZo20wRttgjLbBGG9Nk3t+XFxccONOGLt378Y999xjPvbz88PFixdvKxidzjQJ09/f+tMmFRUVSE1NRUhICIKCghpsKycnB2q1Gt27d8fUqVNx/vz5eutWV1dDr9dbvGyhn7ofNF4aCLDeHSlAgNZLi37qfjb5vFtRG2NDJI+x19PQGEQI9ezEIogitAYR/Xo9befIrnOmnzVjvD2M0TYYo20wxlvT5OSnZ8+e2LjRNDH2p59+wqlTp3DfffeZz588eRIaza0/Smc0GpGYmIiIiAiEh4dbnPvggw/g4+MDHx8ffPPNN8jKyoKbW/1ru8TExODTTz9FdnY2lixZgtzcXNx///31DpUlJydDpVKZX40lVk2lcFFg9qDZAFDnh157nDQoSdK1ImpjFP74341qyySP0dUNs+980hTTTQlQ7XHSnU9Kut6PM/2sb4ypFmNsOsZoG4zRNhjjrWnyxqbp6el47LHHcO+99+Knn37CwIEDzckQACQlJaGoqAjr1q27pUCmTp2Kb775Btu3b0enTp0szul0OpSVlaG4uBhvv/02zpw5gx07dsDDo2mLsf3666/o2rUrtmzZghEjRtQ5X11djerq63Na9Ho9goKCbLaxqbW1DbReWiQNSpJ+jYg/OEWMVtb50RpEJDn4Oj8Odx8Zo00wRttgjLbBGE2aurFps3Z1z87OxqZNm6DVajFt2jR4eV1fg2HBggUYPnw4IiMjmx1sQkICNmzYgO+++w4hISEN1r169Sratm2LTz75BI8//niTP6NDhw5YtGgRnn/++UbrtsSu7o6yqmVDnCJGrvBsE4zRNhijbTBG22CMLZD8vPHGG5g5c6ZFwnO7RFHEtGnTkJ6ejpycHHTr1q3R91RXV6Nt27b44IMPEBcX16TP+e2339C5c2esX78eY8eObbR+SyQ/RERE1LKa+v3d5Dk/CxYsQHl5uU2CqxUfH4/Vq1dj7dq1UCqVKCkpQUlJCa5cuQLANFyVnJyM/fv349SpU9i5cyfGjx8PT09PiyfLevTogfT0dABAeXk5XnnlFezevRsnTpxAdnY2xo0bh9DQUIwaNcqm8RMREZHzafKj7s0YHWuylJQUAKgzVJaamoq4uDh4eHjg+++/x/Lly3Hx4kVoNBoMGzYMO3fuhFp9/dHrgoIC85NiCoUChw4dwqpVq3Dp0iUEBgYiOjoaCxcuhLu7u82vgYjky2AUsafoAsouV0Gt9MCgEH/JtwchosY1edjLxcUFpaWl6NBBurUC7IXDXkTUmMz8YizYeATFuipzWYDKA/PGhCEmPEDCyKhFGA3AyZ2m3dF9NKa9shxsPg21wJwfFxcXqFQqCPXtg/CHCxek3QDTFpj8EFFDMvOLMXX1gTo7FdX+7ZjyVD8mQK3JkQwgMwnQn71e5hsIxCwBwhqfR0r209Tv7yYPewGmeT8qleq2gyMiclYGo4gFG49Y2aIREGFKgBZsPIKRYVoOgbUGRzKAdROBm3/i+mJT+YRPmQA5oWYlP4899pjFXBsiIrnZU3TBYqjrZiKAYl0V9hRdwJCu7ewXGNme0WDq8Wko1c2cDfQYzSEwJ9Pkp70aG+4iIpKDssv1Jz63Uo8c2MmdlkNddYiA/oypHjmVJic/LfG0FxGRs1Erm7ayfFPrkQMrL228TnPqkcNo8rCX0WhsyTiIiJzCoBB/BKg8UKKrsjoYIgDQqkyPvZOT82nifpVNrUcOo8k9P0REBChcBMwbEwYAuHkyQO3xvDFhnOzcGgQPNT3VVc9u5IAA+HY01SOnwuSHiKiZYsIDkPJUP2hVlkNbWpUHH3NvTVwUpsfZAdSb6sYs5mRnJ9SsjU3lguv8EFFTcIVnmbC6zk9HU+LDx9wdSous80NERNcpXAQ+zi4HYWNNj7NzhedWg8kPERFRY1wUQMifpI6CbIRzfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWJE1+kpOTMXDgQCiVSqjVasTGxqKgoMCizvPPP4+uXbvC09MTHTp0wLhx4/Dzzz832K4oinj99dcREBAAT09PREVF4dixYy15KUREROQkJE1+cnNzER8fj927dyMrKws1NTWIjo5GRUWFuU7//v2RmpqKo0ePYvPmzRBFEdHR0TAYDPW2u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqsoel0VEREQOTBBFUZQ6iFrnzp2DWq1Gbm4uhg0bZrXOoUOH0KdPHxw/fhxdu3atc14URQQGBuLll1/GzJkzAQA6nQ4ajQZpaWl47LHHGo1Dr9dDpVJBp9PB19f39i6KiIiI7KKp398ONedHp9MBAPz9/a2er6ioQGpqKkJCQhAUFGS1TlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PdXV1dDr9RYvIiIiap0cJvkxGo1ITExEREQEwsPDLc598MEH8PHxgY+PD7755htkZWXBzc3NajslJSUAAI1GY1Gu0WjM526WnJwMlUplftWXWBEREZHzc5jkJz4+Hvn5+fj888/rnHvyySfxww8/IDc3F3feeScmTJhg0/k7c+bMgU6nM79Onz5ts7aJiIjIsbhKHQAAJCQkYNOmTfjuu+/QqVOnOudre2S6deuGe+65B23btkV6ejoef/zxOnW1Wi0AoLS0FAEBAeby0tJS3H333VY/393dHe7u7ra5GCIiInJokvb8iKKIhIQEpKenY+vWrQgJCWnSe0RRRHV1tdXzISEh0Gq1yM7ONpfp9Xrk5eVhyJAhNoudiIiInJOkyU98fDxWr16NtWvXQqlUoqSkBCUlJbhy5QoA4Ndff0VycjL279+PU6dOYefOnRg/fjw8PT3xwAMPmNvp0aMH0tPTAQCCICAxMRGLFi1CRkYGDh8+jIkTJyIwMBCxsbFSXCYRERE5EEmHvVJSUgAAkZGRFuWpqamIi4uDh4cHvv/+eyxfvhwXL16ERqPBsGHDsHPnTqjVanP9goIC85NiADBr1ixUVFRgypQpuHTpEu69915kZmbCw8PDLtdFREREjsuh1vlxFFznh4iIyPk45To/RERERC2NyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVJNzYlapWMBuDkTqC8FPDRAMFDAReF1FEREdEfmPwQ2dKRDCAzCdCfvV7mGwjELAHCxkoXFxERmXHYi8hWjmQA6yZaJj4AoC82lR/JkCYuIiKywOSHyBaMBlOPD0QrJ/8oy5xtqkdERJJi8kNkCyd31u3xsSAC+jOmekREJCkmP0S2UF5q23pERNRimPwQ2YKPxrb1iIioxTD5IbKF4KGmp7og1FNBAHw7muoREZGkmPwQ2YKLwvQ4O4C6CdAfxzGLud4PEZEDYPJDZCthY4EJnwK+AZblvoGmcq7zQ0TkELjIIZEthY0FeozmCs9ERA6MyQ+RrbkogJA/SR0FERHVg8NeREREJCvs+SEix8QNYomohTD5ISLHww1iiagFcdiLiBwLN4glohbG5IeIHAc3iCUiO2DyQ0SOgxvEEpEdMPkhIsfBDWKJyA6Y/BCR4+AGsURkB0x+iMhxcINYIrIDJj9E5Di4QSwR2QGTHyJyLNwglohaGBc5JCLHww1iiagFMfkhIsfEDWKJqIVw2IuIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGs8FF3IjkyGriGDhHJFpMfIrk5kgFkJgH6s9fLfANN20pw9WQikgFJh72Sk5MxcOBAKJVKqNVqxMbGoqCgwHz+woULmDZtGrp37w5PT0907twZL774InQ6XYPtxsXFQRAEi1dMTExLXw6R4zuSAaybaJn4AIC+2FR+JEOauIiI7EjS5Cc3Nxfx8fHYvXs3srKyUFNTg+joaFRUVAAAzp49i7Nnz+Ltt99Gfn4+0tLSkJmZicmTJzfadkxMDIqLi82vzz77rKUvh8ixGQ2mHh+IVk7+UZY521SPiKgVk3TYKzMz0+I4LS0NarUa+/fvx7BhwxAeHo4vv/zSfL5r165488038dRTT+HatWtwda0/fHd3d2i12haLncjpnNxZt8fHggjoz5jqcVsJImrFHOppr9rhLH9//wbr+Pr6Npj4AEBOTg7UajW6d++OqVOn4vz58/XWra6uhl6vt3gRtTrlpbatR0TkpBwm+TEajUhMTERERATCw8Ot1vn999+xcOFCTJkypcG2YmJi8OmnnyI7OxtLlixBbm4u7r//fhgM1rvzk5OToVKpzK+goKDbvh4ih+OjsW09IiInJYiiaG0CgN1NnToV33zzDbZv345OnTrVOa/X6zFy5Ej4+/sjIyMDbdq0aXLbv/76K7p27YotW7ZgxIgRdc5XV1ejurra4rOCgoLMvUxErYLRACwPN01utjrvRzA99ZV4mI+9E5FT0uv1UKlUjX5/O8Sj7gkJCdi0aRO+++47q4nP5cuXERMTA6VSifT09GYlPgBwxx13oH379jh+/LjV5Mfd3R3u7u7NjttgMKCmpqbZ7yOSTPSyPyY9A5YJkPDH+SXA1RoATf9z3aZNGygUTJaIyHlImvyIoohp06YhPT0dOTk5CAkJqVNHr9dj1KhRcHd3R0ZGBjw8PJr9Ob/99hvOnz+PgIAAW4QNURRRUlKCS5cu2aQ9IrtRhADRacCVS4Dx2vVyF1fA0w9QeAFFRc1u1s/PD1qtFoIg2CpSIqIWI2nyEx8fj7Vr12LDhg1QKpUoKSkBAKhUKnh6ekKv1yM6OhqVlZVYvXq1xWTkDh06mP+12aNHDyQnJ+Ohhx5CeXk5FixYgEceeQRarRaFhYWYNWsWQkNDMWrUKJvEXZv4qNVqeHl58S98cj6iCNRUAoYaQNEGaOMF3MKfY1EUUVlZibKyMgCw2T8wiIhakqTJT0pKCgAgMjLSojw1NRVxcXE4cOAA8vLyAAChoaEWdYqKitClSxcAQEFBgflJMYVCgUOHDmHVqlW4dOkSAgMDER0djYULF97S0NbNDAaDOfFp167dbbdHJBlPTxs1Y2qnrKwMarWaQ2BE5PAkH/ZqSGRkZKN1bm7H09MTmzdvvu3Y6lM7x8fLy6vFPoPI2dT+PtTU1DD5ISKH5zCPujsbDnURXcffByJyJkx+iIiISFaY/JDNxcXFITY21nwcGRmJxMTE22rTFm0QEREBTH5k5cbd7t3c3BAaGoo33ngD165da/zNt+Grr77CwoULm1Q3JycHgiDUWUagOW0QERE1xCEWOZQjg1HEnqILKLtcBbXSA4NC/KFwafl5EzExMUhNTUV1dTX+97//IT4+Hm3atMGcOXMs6l29ehVubm42+cyG9mqzZxtEREQAe34kkZlfjHuXbMXjH+/G9M8P4vGPd+PeJVuRmV/c4p9du9t9cHAwpk6diqioKGRkZJiHqt58800EBgaie/fuAIDTp09jwoQJ8PPzg7+/P8aNG4cTJ06Y2zMYDJgxYwb8/PzQrl07zJo1q84TejcPWVVXVyMpKQlBQUFwd3dHaGgo/vWvf+HEiRO47777AABt27aFIAiIi4uz2sbFixcxceJEtG3bFl5eXrj//vtx7Ngx8/m0tDT4+flh8+bN6NmzJ3x8fBATE4Pi4uv3OCcnB4MGDYK3tzf8/PwQERGBkydP2uhOExGRo2LyY2eZ+cWYuvoAinVVFuUluipMXX3ALgnQjTw9PXH16lUAQHZ2NgoKCpCVlYVNmzahpqYGo0aNglKpxPfff48dO3aYk4ja9yxbtgxpaWn497//je3bt+PChQtIT09v8DMnTpyIzz77DO+++y6OHj2KDz/8ED4+PggKCsKXX34JwLR2U3FxMVasWGG1jbi4OOzbtw8ZGRnYtWsXRFHEAw88YLHdSGVlJd5++2385z//wXfffYdTp05h5syZAIBr164hNjYWw4cPx6FDh7Br1y5MmTKFTy0REckAh73syGAUsWDjEatbSoow7a60YOMRjAzTtvgQmCiKyM7OxubNmzFt2jScO3cO3t7e+OSTT8zDXatXr4bRaMQnn3xiTgpSU1Ph5+eHnJwcREdHY/ny5ZgzZw4efvhhAMDKlSsbXGfpl19+wbp165CVlYWoqCgApr3XatUOb6nVavj5+Vlt49ixY8jIyMCOHTswdOhQAMCaNWsQFBSE9evXY/z48QBMa86sXLkSXbt2BWDaQ+6NN94AYNo2RafT4cEHHzSf79mzZ/NvJBEROR32/NjRnqILdXp8biQCKNZVYU/RhRaLYdOmTfDx8YGHhwfuv/9+PProo5g/fz4AoFevXhbzfH788UccP34cSqUSPj4+8PHxgb+/P6qqqlBYWAidTofi4mIMHjzY/B5XV1cMGDCg3s8/ePAgFAoFhg8ffsvXcPToUbi6ulp8brt27dC9e3ccPXrUXObl5WVObADT1gu12zD4+/sjLi4Oo0aNwpgxY7BixQqLITEiImq92PNjR2WX6098bqXerbjvvvuQkpICNzc3BAYGwtX1+h8Bb29vi7rl5eXo378/1qxZU6edDh063NLne9poS4WmaNOmjcWxIAgW85FSU1Px4osvIjMzE1988QVee+01ZGVl4Z577rFbjEREZH/s+bEjtbJpO9I3td6t8Pb2RmhoKDp37myR+FjTr18/HDt2DGq1GqGhoRYvlUoFlUqFgIAA8/5rgGkuzf79++tts1evXjAajcjNzbV6vrbnyWAw1NtGz549ce3aNYvPPX/+PAoKChAWFtbgNd2sb9++mDNnDnbu3Inw8HCsXbu2We8nIiLnw+THjgaF+CNA5YH6ZvMIAAJUpsfeHcGTTz6J9u3bY9y4cfj+++9RVFSEnJwcvPjii/jtt98AANOnT8fixYuxfv16/Pzzz3jhhRfqrNFzoy5dumDSpEl49tlnsX79enOb69atAwAEBwdDEARs2rQJ586dQ3l5eZ02unXrhnHjxuG5557D9u3b8eOPP+Kpp55Cx44dMW7cuCZdW1FREebMmYNdu3bh5MmT+Pbbb3Hs2DHO+yEikgEmP3akcBEwb4ypZ+LmBKj2eN6YMLus99MUXl5e+O6779C5c2c8/PDD6NmzJyZPnoyqqir4+voCAF5++WU8/fTTmDRpEoYMGQKlUomHHnqowXZTUlLwl7/8BS+88AJ69OiB5557DhUVFQCAjh07YsGCBZg9ezY0Gg0SEhKstpGamor+/fvjwQcfxJAhQyCKIv73v//VGepq6Np+/vlnPPLII7jzzjsxZcoUxMfH4/nnn2/GHSIiImckiE3ZNl1m9Ho9VCoVdDqd+Uu+VlVVFYqKihASEgIPj1sbnsrML8aCjUcsJj8HqDwwb0wYYsIDbit2IinY4veCiOh2NfT9fSNOeJZATHgARoZpJVnhmYiISO6Y/EhE4SJgSNd2UodBREQkO5zzQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhhzd//nzcfffdUoeByMhIJCYmSh0GERHdJiY/MlJSUoLp06cjNDQUHh4e0Gg0iIiIQEpKCiorK6UO75bl5ORAEIQGN1SVsj0iInIsXOFZKkYDcHInUF4K+GiA4KGAi6LFPu7XX39FREQE/Pz88NZbb6FXr15wd3fH4cOH8dFHH6Fjx44YO3as1ffW1NQ0ecNQR3b16lW4ublJHQYREUmMPT9SOJIBLA8HVj0IfDnZ9N/l4abyFvLCCy/A1dUV+/btw4QJE9CzZ0/ccccdGDduHL7++muMGTPGXFcQBKSkpGDs2LHw9vbGm2++CcC0G3vXrl3h5uaG7t274z//+Y/5PSdOnIAgCDh48KC57NKlSxAEATk5OQCu96hkZ2djwIAB8PLywtChQ1FQUGAR6+LFi6HRaKBUKs27yNfnxIkTuO+++wAAbdu2hSAIiIuLA2AapkpISEBiYiLat2+PUaNGNRpnQ+0BgNFoxKxZs+Dv7w+tVov58+c39UdAREQOgsmPvR3JANZNBPRnLcv1xabyFkiAzp8/j2+//Rbx8fHw9va2WkcQLDdVnT9/Ph566CEcPnwYzz77LNLT0zF9+nS8/PLLyM/Px/PPP49nnnkG27Zta3Y8f/vb37Bs2TLs27cPrq6uePbZZ83n1q1bh/nz5+Ott97Cvn37EBAQgA8++KDetoKCgvDll18CAAoKClBcXIwVK1aYz69atQpubm7YsWMHVq5c2WhsTWnP29sbeXl5WLp0Kd544w1kZWU1+x4QEZF0OOxlT0YDkJkEQLRyUgQgAJmzgR6jbToEdvz4cYiiiO7du1uUt2/f3tyrEh8fjyVLlpjPPfHEE3jmmWfMx48//jji4uLwwgsvAABmzJiB3bt34+233zb3lDTVm2++ieHDhwMAZs+ejdGjR6OqqgoeHh5Yvnw5Jk+ejMmTJwMAFi1ahC1bttTb+6NQKODv7w8AUKvV8PPzszjfrVs3LF261Hx84sSJBmNrrL3evXtj3rx55rb/+c9/Ijs7GyNHjmzStRMRkfTY82NPJ3fW7fGxIAL6M6Z6drBnzx4cPHgQd911F6qrqy3ODRgwwOL46NGjiIiIsCiLiIjA0aNHm/25vXv3Nv//gIAAAEBZWZn5cwYPHmxRf8iQIc3+jFr9+/e/5fdac2PsgCn+2tiJiMg5sOfHnspLbVuviUJDQyEIQp25NXfccQcAwNPTs8576hseq4+LiymPFsXrvVo1NTVW6944ebp2uM1oNDbr85rq5utoTpzW3DzxWxCEFoudiIhaBnt+7MlHY9t6TdSuXTuMHDkS//znP1FRUXFLbfTs2RM7duywKNuxYwfCwsIAAB06dAAAFBcXm8/fOKm4OZ+Tl5dnUbZ79+4G31P7BJfBYGi0/abE2Zz2iIjI+bDnx56ChwK+gabJzVbn/Qim88FDbf7RH3zwASIiIjBgwADMnz8fvXv3houLC/bu3Yuff/650eGhV155BRMmTEDfvn0RFRWFjRs34quvvsKWLVsAmHqP7rnnHixevBghISEoKyvDa6+91uw4p0+fjri4OAwYMAARERFYs2YNfvrpJ3MvlTXBwcEQBAGbNm3CAw88AE9PT/j4+Fit25Q4m9MeERE5H/b82JOLAoipnVQs3HTyj+OYxS2y3k/Xrl3xww8/ICoqCnPmzEGfPn0wYMAAvPfee5g5cyYWLlzY4PtjY2OxYsUKvP3227jrrrvw4YcfIjU1FZGRkeY6//73v3Ht2jX0798fiYmJWLRoUbPjfPTRRzF37lzMmjUL/fv3x8mTJzF16tQG39OxY0csWLAAs2fPhkajQUJCQoP1G4uzue0REZFzEcQbJz8QAECv10OlUkGn08HX19fiXFVVFYqKihASEgIPD49b+4AjGaanvm6c/Ozb0ZT4hFlfaJDIkdnk94KI6DY19P19Iw57SSFsrOlxdjuu8ExEREQmTH6k4qIAQv4kdRRERESywzk/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx9yOiUlJRg5ciS8vb3h5+cndTg2k5OTA0EQcOnSJUnjmD9/Pu6++25JYyAiakmSJj/JyckYOHAglEol1Go1YmNjUVBQYD5/4cIFTJs2Dd27d4enpyc6d+6MF198ETqdrsF2RVHE66+/joCAAHh6eiIqKgrHjh1r6ctxaHFxcRAEAX/961/rnIuPj4cgCIiLi7N/YLfgnXfeQXFxMQ4ePIhffvlF6nDsShAErF+/3mHbIyJyBpImP7m5uYiPj8fu3buRlZWFmpoaREdHo6KiAgBw9uxZnD17Fm+//Tby8/ORlpaGzMxMTJ48ucF2ly5dinfffRcrV65EXl4evL29MWrUKFRVVdnjsprEYDRgb8le/O/X/2FvyV4YjIYW/8ygoCB8/vnnuHLlirmsqqoKa9euRefOnVv8822lsLAQ/fv3R7du3aBWq23W7tWrV23WlpRay3UQEbUY0YGUlZWJAMTc3Nx666xbt050c3MTa2pqrJ43Go2iVqsV//73v5vLLl26JLq7u4ufffaZ1fdUVVWJOp3O/Dp9+rQIQNTpdHXqXrlyRTxy5Ih45cqVZl7ddVknssQR60aI4Wnh5teIdSPErBNZt9xmYyZNmiSOGzdODA8PF1evXm0uX7Nmjdi7d29x3Lhx4qRJk8zlBoNBfOutt8QuXbqIHh4eYu/evcX//ve/5vPXrl0Tn332WfP5O++8U1y+fLnVz/z73/8uarVa0d/fX3zhhRfEq1evNhjrBx98IN5xxx1imzZtxDvvvFP89NNPzeeCg4NFAObXjTHfqKamRpw2bZqoUqlEf39/cdasWeLEiRPFcePGmesMHz5cjI+PF6dPny62a9dOjIyMFEVRFHNycsSBAweKbm5uolarFZOSkiz+vAUHB4vvvPOOxef16dNHnDdvnvkYgPjxxx+LsbGxoqenpxgaGipu2LDB4j1ff/212K1bN9HDw0OMjIwUU1NTRQDixYsXrV7TzdceHBwsiqIozps3T+zTp4/48ccfi126dBEFQWhSnI219+mnn4rBwcGir6+v+Oijj4p6vd5qXKJom98LIqLbpdPp6v3+vpFDzfmpHc7y9/dvsI6vry9cXa1vS1ZUVISSkhJERUWZy1QqFQYPHoxdu3ZZfU9ycjJUKpX5FRQUdBtX0bAtJ7dgRs4MlFaWWpSXVZZhRs4MbDm5pcU+GwCeffZZpKammo///e9/45lnnqlTLzk5GZ9++ilWrlyJn376CS+99BKeeuop5ObmAgCMRiM6deqE//73vzhy5Ahef/11vPrqq1i3bp1FO9u2bUNhYSG2bduGVatWIS0tDWlpafXGl56ejunTp+Pll19Gfn4+nn/+eTzzzDPYtm0bAGDv3r2IiYnBhAkTUFxcjBUrVlhtZ8mSJVizZg1SU1OxY8cO6PV6q8M7q1atgpubG3bs2IGVK1fizJkzeOCBBzBw4ED8+OOPSElJwb/+9S8sWrSosVtbx4IFCzBhwgQcOnQIDzzwAJ588klcuHABAHD69Gk8/PDDGDNmDA4ePIj/+7//w+zZsxtsb+/evQCA1NRUFBcXm48B4Pjx4/jyyy/x1Vdf4eDBg02Kr6H2CgsLsX79emzatAmbNm1Cbm4uFi9e3JzLJ0dhNABF3wOH/5/pv3boZSZyeHZKxhplMBjE0aNHixEREfXWOXfunNi5c2fx1VdfrbfOjh07RADi2bNnLcrHjx8vTpgwwep77NXzc81wrU6Pz42vXmm9xKh1UeI1w7Vmt92Y2l6YsrIy0d3dXTxx4oR44sQJ0cPDQzx37pxFz09VVZXo5eUl7ty506KNyZMni48//ni9nxEfHy8+8sgjFp8ZHBwsXrt2/XrGjx8vPvroo/W2MXToUPG5556zKBs/frz4wAMPmI9v7qWyRqPRWPT+Xbt2TezcuXOdnp++fftavO/VV18Vu3fvLhqNRnPZ+++/L/r4+IgGg0EUxab3/Lz22mvm4/LychGA+M0334iiKIpz5swRw8LCLNpISkpqsOentt309HSLsnnz5olt2rQRy8rKLMqbGqe19ry8vCx6el555RVx8ODB9cbFnh8H9dMGUVzWQxTn+V5/LethKidqhZra8+Mwu7rHx8cjPz8f27dvt3per9dj9OjRCAsLw/z582362e7u7nB3d7dpm9YcKDtQp8fnRiJElFSW4EDZAQzUDmyRGDp06IDRo0cjLS0Noihi9OjRaN++vUWd48ePo7KyEiNHjrQov3r1Kvr27Ws+fv/99/Hvf/8bp06dwpUrV3D16tU6TwndddddUCgU5uOAgAAcPny43viOHj2KKVOmWJRFRETU28NjjU6nQ2lpKQYNGmQuUygU6N+/P4xGo0Xd/v371/n8IUOGQBAEi88vLy/Hb7/91qy5Ub179zb/f29vb/j6+qKsrMz8OYMHD7aoP2TIkCa3fbPg4GB06NDhlt9/sy5dukCpVJqPAwICzLGTkziSAaybCNOo5g30xabyCZ8CYWMlCY1Iag6R/CQkJGDTpk347rvv0KlTpzrnL1++jJiYGCiVSqSnp6NNmzb1tqXVagEApaWlCAgIMJeXlpZK/vjuucpzNq13q5599lkkJCQAMCUwNysvLwcAfP311+jYsaPFudok8fPPP8fMmTOxbNkyDBkyBEqlEn//+9+Rl5dnUf/mn5UgCHUSECl5e3s3+z0uLi4QRcsvlJqamjr17Hnt1q6jqXFa4+g/N2qE0QBkJqFO4gP8USYAmbOBHqMBF4WVOkStm6RzfkRRREJCAtLT07F161aEhITUqaPX6xEdHQ03NzdkZGTAw8OjwTZDQkKg1WqRnZ1t0UZeXt5t/cvaFjp4Ne1f5k2td6tiYmJw9epV1NTUYNSoUXXOh4WFwd3dHadOnUJoaKjFq3Y+1I4dOzB06FC88MIL6Nu3L0JDQ1FYWHjbsfXs2RM7duywKNuxYwfCwsKa3IZKpYJGo7GYw2IwGHDgwIEmff6uXbsskoYdO3ZAqVSaE/MOHTqguLjYfF6v16OoqKjJ8dV+zp49eyzKdu/e3ej72rRpA4OhaXM2mhJnc9ojJ3JyJ6A/20AFEdCfMdUjkiFJk5/4+HisXr0aa9euhVKpRElJCUpKSsyPYtcmPhUVFfjXv/4FvV5vrnPjX9g9evRAeno6ANO/UBMTE7Fo0SJkZGTg8OHDmDhxIgIDAxEbGyvFZZr1U/eDxksDAYLV8wIEaL206Kfu16JxKBQKHD16FEeOHLEYkqqlVCoxc+ZMvPTSS1i1ahUKCwtx4MABvPfee1i1ahUAoFu3bti3bx82b96MX375BXPnzrVINm7VK6+8grS0NKSkpODYsWP4xz/+ga+++gozZ85sVjvTpk1DcnIyNmzYgIKCAkyfPh0XL160GM6y5oUXXsDp06cxbdo0/Pzzz9iwYQPmzZuHGTNmwMXF9Ovy5z//Gf/5z3/w/fff4/Dhw5g0aZLV+9iQv/71rzh27BheeeUVFBQUYO3atQ1OBK/VpUsXZGdno6SkBBcvXmywblPibE575ETK6x9ev6V6RK2MpMlPSkoKdDodIiMjERAQYH598cUXAIADBw4gLy8Phw8fRmhoqEWd06dPm9spKCiwWPhw1qxZmDZtGqZMmYKBAweivLwcmZmZjfYatTSFiwKzB5me6Lk5Aao9ThqUBIUduqF9fX3h6+tb7/mFCxdi7ty5SE5ORs+ePRETE4Ovv/7a3Dv3/PPP4+GHH8ajjz6KwYMH4/z583jhhRduO67Y2FisWLECb7/9Nu666y58+OGHSE1NRWRkZLPaSUpKwuOPP46JEydiyJAh8PHxwahRoxr9M9CxY0f873//w549e9CnTx/89a9/xeTJk/Haa6+Z68yZMwfDhw/Hgw8+iNGjRyM2NhZdu3ZtVnydO3fGl19+ifXr16NPnz5YuXIl3nrrrUbft2zZMmRlZSEoKMhi/pU1TYmzOe2RE/HR2LYeUSsjiDdPCiDo9XqoVCrzY/U3qqqqQlFREUJCQm45mdpycgsW71lsMflZ66VF0qAkRAVHNfBOulVGoxE9e/bEhAkTsHDhQqnDaXVs8XtBNmQ0AMvDTZObrc77EQDfQCDxMOf8UKvS0Pf3jRxiwrPcRAVH4b6g+3Cg7ADOVZ5DB68O6KfuZ5ceH7k4efIkvv32WwwfPhzV1dX45z//iaKiIjzxxBNSh0bU8lwUQMySP572EmCZAP3R6xyzmIkPyRaTH4koXBQt9jg7mZ50SktLw8yZMyGKIsLDw7Flyxb07NlT6tCI7CNsrOlx9swky8nPvoGmxIePuZOMMfmhVikoKKjOU2NEshM21vQ4+8mdpsnNPhogeCh7fEj2mPwQEbVmLgog5E9SR0HkUBxqby9nwnniRNfx94GInAmTn2aqXfm2srJS4kiIHEft70NDq68TETkKDns1k0KhgJ+fn3mfIy8vr0YXziNqrURRRGVlJcrKyuDn59fsxR6JiKTA5OcW1O4fxo0eiUz8/PzMvxdERI6Oyc8tEAQBAQEBUKvVTd4okqi1atOmDXt8iMipMPm5DQqFgn/pExERORlOeCYiIiJZYfJDREREssLkh4iIiGSFc36sqF2wTa/XSxwJERERNVXt93ZjC68y+bHi8uXLAEz7QxEREZFzuXz5MlQqVb3nBZHr0tdhNBpx9uxZKJVKmy5gqNfrERQUhNOnT8PX19dm7coN76Nt8D7aBu+jbfA+2obc76Moirh8+TICAwPh4lL/zB72/Fjh4uKCTp06tVj7vr6+svxDaWu8j7bB+2gbvI+2wftoG3K+jw31+NTihGciIiKSFSY/REREJCtMfuzI3d0d8+bNg7u7u9ShODXeR9vgfbQN3kfb4H20Dd7HpuGEZyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJjx29//776NKlCzw8PDB48GDs2bNH6pCcSnJyMgYOHAilUgm1Wo3Y2FgUFBRIHZbTW7x4MQRBQGJiotShOJ0zZ87gqaeeQrt27eDp6YlevXph3759UoflVAwGA+bOnYuQkBB4enqia9euWLhwYaN7M8ndd999hzFjxiAwMBCCIGD9+vUW50VRxOuvv46AgAB4enoiKioKx44dkyZYB8Tkx06++OILzJgxA/PmzcOBAwfQp08fjBo1CmVlZVKH5jRyc3MRHx+P3bt3IysrCzU1NYiOjkZFRYXUoTmtvXv34sMPP0Tv3r2lDsXpXLx4EREREWjTpg2++eYbHDlyBMuWLUPbtm2lDs2pLFmyBCkpKfjnP/+Jo0ePYsmSJVi6dCnee+89qUNzaBUVFejTpw/ef/99q+eXLl2Kd999FytXrkReXh68vb0xatQoVFVV2TlSByWSXQwaNEiMj483HxsMBjEwMFBMTk6WMCrnVlZWJgIQc3NzpQ7FKV2+fFns1q2bmJWVJQ4fPlycPn261CE5laSkJPHee++VOgynN3r0aPHZZ5+1KHv44YfFJ598UqKInA8AMT093XxsNBpFrVYr/v3vfzeXXbp0SXR3dxc/++wzCSJ0POz5sYOrV69i//79iIqKMpe5uLggKioKu3btkjAy56bT6QAA/v7+EkfinOLj4zF69GiLP5fUdBkZGRgwYADGjx8PtVqNvn374uOPP5Y6LKczdOhQZGdn45dffgEA/Pjjj9i+fTvuv/9+iSNzXkVFRSgpKbH43VapVBg8eDC/c/7AjU3t4Pfff4fBYIBGo7Eo12g0+PnnnyWKyrkZjUYkJiYiIiIC4eHhUofjdD7//HMcOHAAe/fulToUp/Xrr78iJSUFM2bMwKuvvoq9e/fixRdfhJubGyZNmiR1eE5j9uzZ0Ov16NGjBxQKBQwGA9588008+eSTUofmtEpKSgDA6ndO7Tm5Y/JDTik+Ph75+fnYvn271KE4ndOnT2P69OnIysqCh4eH1OE4LaPRiAEDBuCtt94CAPTt2xf5+flYuXIlk59mWLduHdasWYO1a9firrvuwsGDB5GYmIjAwEDeR2oxHPayg/bt20OhUKC0tNSivLS0FFqtVqKonFdCQgI2bdqEbdu2oVOnTlKH43T279+PsrIy9OvXD66urnB1dUVubi7effdduLq6wmAwSB2iUwgICEBYWJhFWc+ePXHq1CmJInJOr7zyCmbPno3HHnsMvXr1wtNPP42XXnoJycnJUofmtGq/V/idUz8mP3bg5uaG/v37Izs721xmNBqRnZ2NIUOGSBiZcxFFEQkJCUhPT8fWrVsREhIidUhOacSIETh8+DAOHjxofg0YMABPPvkkDh48CIVCIXWITiEiIqLOUgu//PILgoODJYrIOVVWVsLFxfKrSKFQwGg0ShSR8wsJCYFWq7X4ztHr9cjLy+N3zh847GUnM2bMwKRJkzBgwAAMGjQIy5cvR0VFBZ555hmpQ3Ma8fHxWLt2LTZs2AClUmkeu1apVPD09JQ4OuehVCrrzJPy9vZGu3btOH+qGV566SUMHToUb731FiZMmIA9e/bgo48+wkcffSR1aE5lzJgxePPNN9G5c2fcdddd+OGHH/CPf/wDzz77rNShObTy8nIcP37cfFxUVISDBw/C398fnTt3RmJiIhYtWoRu3bohJCQEc+fORWBgIGJjY6UL2pFI/biZnLz33nti586dRTc3N3HQoEHi7t27pQ7JqQCw+kpNTZU6NKfHR91vzcaNG8Xw8HDR3d1d7NGjh/jRRx9JHZLT0ev14vTp08XOnTuLHh4e4h133CH+7W9/E6urq6UOzaFt27bN6t+HkyZNEkXR9Lj73LlzRY1GI7q7u4sjRowQCwoKpA3agQiiyGU0iYiISD4454eIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIZCcuLo7L/BPJGJMfImoRcXFxEAShzismJkbq0LBixQqkpaVJHQYAQBAErF+/XuowiGSFG5sSUYuJiYlBamqqRZm7u7tE0QAGgwGCIEClUkkWAxFJjz0/RNRi3N3dodVqLV5t27ZFTk4O3Nzc8P3335vrLl26FGq1GqWlpQCAyMhIJCQkICEhASqVCu3bt8fcuXNx43aE1dXVmDlzJjp27Ahvb28MHjwYOTk55vNpaWnw8/NDRkYGwsLC4O7ujlOnTtUZ9oqMjMS0adOQmJiItm3bQqPR4OOPP0ZFRQWeeeYZKJVKhIaG4ptvvrG4vvz8fNx///3w8fGBRqPB008/jd9//92i3RdffBGzZs2Cv78/tFot5s+fbz7fpUsXAMBDDz0EQRDMx0TUspj8EJHdRUZGIjExEU8//TR0Oh1++OEHzJ07F5988gk0Go253qpVq+Dq6oo9e/ZgxYoV+Mc//oFPPvnEfD4hIQG7du3C559/jkOHDmH8+PGIiYnBsWPHzHUqKyuxZMkSfPLJJ/jpp5+gVqutxrRq1Sq0b98ee/bswbRp0zB16lSMHz8eQ4cOxYEDBxAdHY2nn34alZWVAIBLly7hz3/+M/r27Yt9+/YhMzMTpaWlmDBhQp12vb29kZeXh6VLl+KNN95AVlYWAGDv3r0AgNTUVBQXF5uPiaiFSbyrPBG1UpMmTRIVCoXo7e1t8XrzzTdFURTF6upq8e677xYnTJgghoWFic8995zF+4cPHy727NlTNBqN5rKkpCSxZ8+eoiiK4smTJ0WFQiGeOXPG4n0jRowQ58yZI4qiKKampooAxIMHD9aJbdy4cRafde+995qPr127Jnp7e4tPP/20uay4uFgEIO7atUsURVFcuHChGB0dbdHu6dOnRQBiQUGB1XZFURQHDhwoJiUlmY8BiOnp6fXcRSJqCZzzQ0Qt5r777kNKSopFmb+/PwDAzc0Na9asQe/evREcHIx33nmnzvvvueceCIJgPh4yZAiWLVsGg8GAw4cPw2Aw4M4777R4T3V1Ndq1a2c+dnNzQ+/evRuN9cY6CoUC7dq1Q69evcxltT1SZWVlAIAff/wR27Ztg4+PT522CgsLzXHd/NkBAQHmNohIGkx+iKjFeHt7IzQ0tN7zO3fuBABcuHABFy5cgLe3d5PbLi8vh0KhwP79+6FQKCzO3ZiQeHp6WiRQ9WnTpo3FsSAIFmW1bRiNRvPnjxkzBkuWLKnTVkBAQIPt1rZBRNJg8kNEkigsLMRLL72Ejz/+GF988QUmTZqELVu2wMXl+lTEvLw8i/fs3r0b3bp1g0KhQN++fWEwGFBWVoY//elP9g4f/fr1w5dffokuXbrA1fXW/ypt06YNDAaDDSMjosZwwjMRtZjq6mqUlJRYvH7//XcYDAY89dRTGDVqFJ555hmkpqbi0KFDWLZsmcX7T506hRkzZqCgoACfffYZ3nvvPUyfPh0AcOedd+LJJ5/ExIkT8dVXX6GoqAh79uxBcnIyvv766xa/tvj4eFy4cAGPP/449u7di8LCQmzevBnPPPNMs5KZLl26IDs7GyUlJbh48WILRkxEtdjzQ0QtJjMz02IICAC6d++OJ554AidPnsSmTZsAmIaJPvroIzz++OOIjo5Gnz59AAATJ07ElStXMGjQICgUCkyfPh1Tpkwxt5WamopFixbh5ZdfxpkzZ9C+fXvcc889ePDBB1v82gIDA7Fjxw4kJSUhOjoa1dXVCA4ORkxMjEXvVWOWLVuGGTNm4OOPP0bHjh1x4sSJlguaiAAAgijesGgGEZGDiIyMxN13343ly5dLHQoRtTIc9iIiIiJZYfJDREREssJhLyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhW/j8xLgdl6+NuxAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNZ0lEQVR4nO3deVxU9f4/8NdhlH0YRIUBRSRxI9TcU7pJV0LKVKqr7Up50xRMMhPtm6lpoZZlK7bcQFMr768wshuGKOQGmmZqGinhkrKYy4yAIM58fn9MjI4sgg5zZjyv5+MxjzrnfOYz7zkOzIvP+ZxzJCGEABEREZFCOMldABEREZEtMfwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGitJC7AHtkNBpx8uRJqNVqSJIkdzlERETUCEIInD9/HgEBAXByqn98h+GnDidPnkRgYKDcZRAREdF1OH78ONq3b1/vdoafOqjVagCmnefl5SVzNURERNQYer0egYGB5u/x+jD81KHmUJeXlxfDDxERkYO51pQVTngmIiIiRWH4ISIiIkVh+CEiIiJFYfghIiIiRWH4ISIiIkVh+CEiIiJFYfghIiIiRWH4ISIiIkVh+CEiIiJF4RWebcVoAI5uA8pKAE8/IGgw4KSSuyoiIiLFkXXkJykpCf3794darYavry9iYmKQn59v0SYiIgKSJFk8nnnmmQb7FULg5Zdfhr+/P9zc3BAZGYlDhw4151tp2IF0YGkYsPw+4Kvxpv8uDTOtJyIiIpuSNfzk5OQgLi4Oubm5yMzMRHV1NaKiolBeXm7R7umnn0ZRUZH5sXjx4gb7Xbx4Md555x0sW7YMeXl58PDwwLBhw1BZWdmcb6duB9KBNWMB/UnL9foi03oGICIiIpuS9bBXRkaGxXJqaip8fX2xa9cu3Hnnneb17u7u0Gq1jepTCIGlS5fipZdewqhRowAAK1asgJ+fH9auXYuHH37Yem/gWowGICMRgKirUgASkDET6Dach8CIiIhsxK4mPOt0OgCAj4+PxfpVq1ahTZs2CAsLw6xZs1BRUVFvH4WFhSguLkZkZKR5nUajwcCBA7F9+/Y6n1NVVQW9Xm/xsIqj22qP+FgQgP6EqR0RERHZhN1MeDYajUhISEB4eDjCwsLM6x999FEEBQUhICAAe/fuRWJiIvLz8/H111/X2U9xcTEAwM/Pz2K9n5+fedvVkpKSMG/ePCu9kyuUlVi3HREREd0wuwk/cXFx2L9/P7Zs2WKxfsKECeb/79GjB/z9/TF06FAUFBSgU6dOVnntWbNmYdq0aeZlvV6PwMDAG+/Y0+/abZrSjoiIiG6YXRz2io+Px7p167Bp0ya0b9++wbYDBw4EABw+fLjO7TVzg0pKLEdTSkpK6p035OLiAi8vL4uHVQQNBrwCAEj1NJAAr3amdkRERGQTsoYfIQTi4+ORlpaGjRs3Ijg4+JrP2bNnDwDA39+/zu3BwcHQarXIysoyr9Pr9cjLy8OgQYOsUnejOamA6EV/L1wdgP5ejl7Iyc5EREQ2JGv4iYuLw8qVK7F69Wqo1WoUFxejuLgYFy5cAAAUFBRg/vz52LVrF44cOYL09HSMHTsWd955J3r27Gnup1u3bkhLSwMASJKEhIQELFiwAOnp6di3bx/Gjh2LgIAAxMTE2P5Nho4ExqwAvK4Ka14BpvWhI21fExERkYLJOucnOTkZgOlChldKSUlBbGwsnJ2dsWHDBixduhTl5eUIDAzEgw8+iJdeesmifX5+vvlMMQCYMWMGysvLMWHCBJw7dw533HEHMjIy4Orq2uzvqU6hI02ns/MKz0RERLKThBB1XYRG0fR6PTQaDXQ6nfXm/xAREVGzauz3t11MeCYiIiKyFYYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlKUFnIXoBQGo8COwjMoPV8JX7UrBgT7QOUkyV2WBdZI1DSO8Hl0hBqJbI3hxwYy9hdh3rcHUKSrNK/z17hizohQRIf5y1jZZRn7izA/fR8Cy36BL86hFN447tkLs0f2sKsa7X0/AvyysRZ734+O8Hl0hBqJ5CAJIYTcRdgbvV4PjUYDnU4HLy+vG+orY38RJq3cjat3cs2v8OTH+8j+SyhjfxHWrl6Gl1uuQIB0xrz+pPDBK9VjEfPoM3ZRo73vR4BfNtZi7/vRET6PjlAjkbU19vubc36akcEoMO/bA7V++QAwr5v37QEYjPLlT4NRIHvtp/ig5VJoccZimxZn8EHLpche+6nsNdr7fgQuf9lc+YUNAMW6SkxauRsZ+4tkqsyx2Pt+dITPoyPUSCQnhp9mtKPwTK1f4FcSAIp0ldhReKbeNs1tR8EpPFv9CQDg6iMKNcvPVv8HOwpO2biyyxxhP/LLxjocYT86wufREWokkhPDTzMqPV//L5/radccDEe2IkA6Uyv41HCSgADpNAxHttq2sCs4wn7kl411OMJ+dITPoyPUSCQnWcNPUlIS+vfvD7VaDV9fX8TExCA/P7/OtkII3HPPPZAkCWvXrm2w39jYWEiSZPGIjo5uhnfQMF+1q1XbNQdf6ZxV2zUHR9iP/LKxDkfYj47weXSEGq9kMApsLziNb/acwPaC0xwhvU7cj40n69leOTk5iIuLQ//+/XHp0iW8+OKLiIqKwoEDB+Dh4WHRdunSpZCkxp/pER0djZSUFPOyi4uL1epurAHBPvDXuKJYV1nnML4EQKsxncUil063dAK2NLKdTBxhPzral429coT96AifR0eosYa9T253FNyPTSPryE9GRgZiY2Nx6623olevXkhNTcWxY8ewa9cui3Z79uzBkiVL8Omnnza6bxcXF2i1WvOjVatW9batqqqCXq+3eFiDyknCnBGhAC6fYVGjZnnOiFBZT99VdQzHBTct6vsDwSiAC25aqDqG27awKzjCfqz5sqmvAgmmX0T28GVjzxxhPzrC59ERagTsf3K7o+B+bDq7mvOj0+kAAD4+l3+xVVRU4NFHH8X7778PrVbb6L6ys7Ph6+uLrl27YtKkSTh9+nS9bZOSkqDRaMyPwMDA638TV4kO80fy432g1Vj+parVuNrHqaZOKriNeB2SJMF41SYjAEmS4DbidcBJJUd1Zva+Hx3ly8beOcp+tPfPI2D/NTrC5HZHwP14fezmOj9GoxEjR47EuXPnsGXL5eMwEydOhMFgwCefmM5IkiQJaWlpiImJqbevL774Au7u7ggODkZBQQFefPFFeHp6Yvv27VCpan+JV1VVoaqqyrys1+sRGBholev81LD3C7bhQDpERiIk/UnzKuHVDlL0QiB0pIyFWbL3/cihZ+twlP1o759HwH5r3F5wGo98nHvNdp8/fTsGdWptg4oaxv1oJUYDcHQbUFYCePoBQYOt+sd1Y6/zYzdXeI6Li8P+/fstgk96ejo2btyIn3/+uUl9Pfzww+b/79GjB3r27IlOnTohOzsbQ4cOrdXexcWl2ecEqZwk+/jg1Sd0JKRuwy0+lJKVP5TWYO/7MTrMH3eHau3yl6QjcZT9aO+fR8B+a3SEye017DmMO9J+xIF0ICMRuOKPbHgFANGLbP5Htl2En/j4eKxbtw4//vgj2rdvb16/ceNGFBQUwNvb26L9gw8+iH/84x/Izs5uVP+33HIL2rRpg8OHD9cZfuhvTiog+B9yV+Hw7PXL5kr2+lfslRxhP9L1c4TJ7UD9V8qumU8j9yFER9mPOJAOrBkLXL0n9UWm9WNW2DQAyRp+hBCYMmUK0tLSkJ2djeDgYIvtM2fOxL///W+LdT169MBbb72FESNGNPp1/vzzT5w+fRr+/vYzXE4kF3v+K5aUwxHOSLvWfBoJpvk0d4dqZfvjwRH2I4wG04hPQ3syYybQbbjNjjbIOuE5Li4OK1euxOrVq6FWq1FcXIzi4mJcuHABAKDVahEWFmbxAIAOHTpYBKVu3bohLS0NAFBWVoYXXngBubm5OHLkCLKysjBq1CiEhIRg2LBhtn+TRHaEZ4WQvXCEye2OcNFNR9iPOLrN8lBXLQLQnzC1sxFZw09ycjJ0Oh0iIiLg7+9vfnz55ZdN6ic/P998pphKpcLevXsxcuRIdOnSBePHj0ffvn2xefNmWa71Q2QveFYI2Rt7PyPNUebT2Pt+RFmJddtZgeyHvazxnCvXubm5Yf369TdUF9HNqCl/xXKuDdmKPU9ud5j5NLDv/QhPP+u2swK7mPBMRM3PUf6KJeWx18ntDjGf5gr2uh8NgYPwF1qjrThd530kjQIolVqjbeAg2Or8Yru6yCERNR9H+iuWyB44xHwaB7DjqA4vX3wCAGrdTaBmec7FJ7DjqM5mNTH8ECmEI9w6gsje2P18GgdQer4S640DMKk6AcWw/P1SjNaYVJ2A9cYBNh115mEvIoWo+St20srdkGB50in/iiWqn13Pp3EANaPJ640DkFnVDwOcfoMvzqEU3thh7Abj3+Mwthx1ZvghUpCav2Kvvs6Pltf5IWqQvc6ncQRXzp0ywgm5xlCL7XLMnWL4IVIY/hVLRLZkj6POdnNjU3vS2BujERERUePY4uryDndjUyIiIrp52dOoM8MPEdH1MhpMl+QvKzFdoC1osM3uTUTkiOxl7hTDDxHR9TiQbrpZ45X3LPIKAKIX2fTu1ETUdLzODxFRUx1IB9aMrX2zRn2Raf2BdHnqIqJGYfghImoKo8E04tPQLWIzZpraEZFdYvghImqKo9tqj/hYEID+hKkdEdklhh8ioqYoK7FuOyKyOYYfIqKm8PSzbjsisjmGHyKipggabDqrq6FbxHq1M7UjIrvE8ENE1BROKtPp7ABqB6C/l6MX8no/RHaM4YeIqKlCRwJjVgBeV12S3yvAtJ7X+SGya7zIIRHR9QgdCXQbzis8Ezkghh8iouvlpAKC/yF3FUTURDzsRURERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREiiJr+ElKSkL//v2hVqvh6+uLmJgY5Ofn19lWCIF77rkHkiRh7dq1DfYrhMDLL78Mf39/uLm5ITIyEocOHWqGd0BERESORtbwk5OTg7i4OOTm5iIzMxPV1dWIiopCeXl5rbZLly6FJEmN6nfx4sV45513sGzZMuTl5cHDwwPDhg1DZWWltd8CERERORhJCCHkLqLGqVOn4Ovri5ycHNx5553m9Xv27MF9992Hn376Cf7+/khLS0NMTEydfQghEBAQgOeffx7Tp08HAOh0Ovj5+SE1NRUPP/xwredUVVWhqqrKvKzX6xEYGAidTgcvLy/rvkkiIiJqFnq9HhqN5prf33Y150en0wEAfHx8zOsqKirw6KOP4v3334dWq71mH4WFhSguLkZkZKR5nUajwcCBA7F9+/Y6n5OUlASNRmN+BAYG3uA7ISIiIntlN+HHaDQiISEB4eHhCAsLM69/7rnnMHjwYIwaNapR/RQXFwMA/Pz8LNb7+fmZt11t1qxZ0Ol05sfx48ev810QERGRvWshdwE14uLisH//fmzZssW8Lj09HRs3bsTPP//crK/t4uICFxeXZn0NIiIisg92MfITHx+PdevWYdOmTWjfvr15/caNG1FQUABvb2+0aNECLVqYstqDDz6IiIiIOvuqOTRWUlJisb6kpKRRh82IiIjo5iZr+BFCID4+Hmlpadi4cSOCg4Mtts+cORN79+7Fnj17zA8AeOutt5CSklJnn8HBwdBqtcjKyjKv0+v1yMvLw6BBg5rtvRAREZFjkPWwV1xcHFavXo1vvvkGarXaPCdHo9HAzc0NWq22ztGaDh06WASlbt26ISkpCffffz8kSUJCQgIWLFiAzp07Izg4GLNnz0ZAQEC9Z4gRERGRcsgafpKTkwGg1iGslJQUxMbGNrqf/Px885liADBjxgyUl5djwoQJOHfuHO644w5kZGTA1dXVGmUTERGRA7Or6/zYi8ZeJ4CIiIjsh0Ne54eIiIiouTH8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGitJC7ACIiUjijATi6DSgrATz9gKDBgJNK7qroJsbwQ0RE8jmQDmQkAvqTl9d5BQDRi4DQkfLVRTc1HvYiIiJ5HEgH1oy1DD4AoC8yrT+QLk9djspoAAo3A/v+n+m/RoPcFdktjvwQEZHtGQ2mER+IOjYKABKQMRPoNpyHwBqDI2hNwpEfIiKyvaPbao/4WBCA/oSpHTWMI2hNxvBDRES2V1Zi3XZKdc0RNJhG0HgIzALDDxER2Z6nn3XbKRVH0K4L5/zYiMFowO7S3ThVcQpt3duij28fqOzsOLZD1HjpInbv+wyn9MfQ1qsD+vR4AqoWznKXZcEh9iNrtArWeAOCBpvmpOiLYIDAblcXnFKp0NZgQJ/KKqggmbYHDZa7UgB2vB+vGBkzAHXsx9rt5GQv+5HhxwY2HN2AhTsWoqTi8ofPz90PMwfMRGRQpIyVXeYQNW5JwsLfV6FEJZnX+f38FmZ2eQyRd8ySsbLLHGI/skarYI03yEkFRC/ChnUTsbC1N0paXP468rt0CTNPn0Nk9EK7mOxs1/vx75GxDe5uWNi6VR378SwiKy7YxQiaPe1HSQhR14FCRdPr9dBoNNDpdPDy8rqhvjYc3YBp2dMgrjoeK8H0Bf5mxJuy//A4RI1bkjDt8CpThdLl8CP9/fF9M0T+AOQQ+5E1WgVrtA5Tjc9BCFH751qS8GbEW3ZSox3vR6MBGz7ogWmeTvX/fiwzInLyPlmDpK32Y2O/v29ozk9lZSWWL1+ODz74AIcOHbqRrm5KBqMBC3csrPWPDcC8btGORTDIOBHNIWq8dBELf68dfABA/L286PdVMFy6aPvi/uYQ+5E1WgVrtI7LNaKen2vJjmq04/0IYKFPq4Z/P7b2gZzTne1xPzY6/EybNg1TpkwxL1+8eBGDBg3C008/jRdffBG9e/fG9u3bm/TiSUlJ6N+/P9RqNXx9fRETE4P8/HyLNhMnTkSnTp3g5uaGtm3bYtSoUfjtt98a7Dc2NhaSJFk8oqOjm1SbNewu3W0xvHc1AYHiimLsLt1tw6osOUSN+z4zHeq66ge7hpAkFKsk7N73mY0ru8wh9iNrtArWaB2s0Tp2l+5GSbW+4d+PF3Xy12hn+7HR4eeHH37A3XffbV5etWoVjh49ikOHDuHs2bMYPXo0FixY0KQXz8nJQVxcHHJzc5GZmYnq6mpERUWhvLzc3KZv375ISUnBwYMHsX79egghEBUVBYOh4YQYHR2NoqIi8+Pzzz9vUm3WcKrilFXbNQeHqFF/zKrtmoND7EfWaBWs0TpYo3WwxuvT6AnPx44dQ2hoqHn5hx9+wL/+9S8EBQUBAKZOnYp77723SS+ekZFhsZyamgpfX1/s2rULd955JwBgwoQJ5u0dO3bEggUL0KtXLxw5cgSdOnWqt28XFxdotdom1WNtbd3bWrVdc3CIGr06WLVdc3CI/cgarYI1WgdrtA7WeH0aPfLj5OSEK+dG5+bm4vbbbzcve3t74+zZszdUjE6nAwD4+PjUub28vBwpKSkIDg5GYGBgg31lZ2fD19cXXbt2xaRJk3D69Ol621ZVVUGv11s8rKGPbx/4ufuZJ3RdTYIErbsWfXz7WOX1rodD1NjjCfgZhHny3tUkIaA1CPTp8YSNK7vMIfYja7QK1mgdrNE6WOP1aXT46d69O7799lsAwK+//opjx47hrrvuMm8/evQo/Pyu/1Q6o9GIhIQEhIeHIywszGLbBx98AE9PT3h6euL7779HZmYmnJ3rv7ZLdHQ0VqxYgaysLCxatAg5OTm455576j1UlpSUBI1GY35cK1g1lspJhZkDZgJArX/0muXEAYmyXivCIWps4YyZXR4z1XRVAKpZTuzymKzX+3GI/cgarYI1WgdrtA7WeH0afap7WloaHn74Ydxxxx349ddf0b9/f3MYAoDExEQUFhZizZo111XIpEmT8P3332PLli1o3769xTadTofS0lIUFRXhjTfewIkTJ7B161a4uro2qu8//vgDnTp1woYNGzB06NBa26uqqlBVVWVe1uv1CAwMtMqp7kDd1zbQumuROCBR9tM4azhEjXVc50drEEi08+v82N1+ZI1WwRqtgzVaB2s0aeyp7k26zk9WVhbWrVsHrVaLKVOmwN3d3bxt3rx5GDJkCCIiIppcbHx8PL755hv8+OOPCA4ObrDtxYsX0apVK3zyySd45JFHGv0abdu2xYIFCzBx4sRrtrXmdX5q2MtVLRviEDXyCs9WwRqtgzVaB2u0DtbYDOHnlVdewfTp0y0Cz40SQmDKlClIS0tDdnY2OnfufM3nVFVVoVWrVvjggw8QGxvbqNf5888/0aFDB6xduxYjR468ZvvmCD9ERETUvKx+kcN58+ahrKzMKsXViIuLw8qVK7F69Wqo1WoUFxejuLgYFy5cAGA6XJWUlIRdu3bh2LFj2LZtG0aPHg03NzeLM8u6deuGtLQ0AEBZWRleeOEF5Obm4siRI8jKysKoUaMQEhKCYcOGWbV+IiIicjyNDj/NcReM5ORk6HQ6REREwN/f3/z48ssvAQCurq7YvHkz7r33XoSEhOChhx6CWq3Gtm3b4Ovra+4nPz/ffKaYSqXC3r17MXLkSHTp0gXjx49H3759sXnzZri4uFj9PRAREZFjafRhLycnJ5SUlKBtW/muFWArPOxFREQWjAbg6DbT3dE9/Ux3m7ez+TTU+O/vJt3VvUuXLpDquYR2jTNnzjSlSyIiIvt2IB3ISAT0Jy+v8woAohcBodeeR0r2p0nhZ968edBoNM1VCxERkX05kA6sGQtcfVNOfZFp/ZgVDEAOqEnh5+GHH7aYa0NERHTTMhpMIz513I3ctE4CMmYC3YbzEJiDafSE52sd7iIiIrqpHN1meairFgHoT5jakUOR9WwvIiIiu1VWcu02TWlHdqPRh72MRmNz1kFERGRfPBt5v8rGtiO70eiRHyIiIkUJGmw6q6ueu5EDEuDVztSOHArDDxERUV2cVKbT2QHUDkB/L0cv5GRnB8TwQ0REVJ/QkabT2b38Ldd7BfA0dwfWpFPdiYiIFCd0pOl0dl7h+abB8ENERHQtTiog+B9yV0FWwsNeREREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKLKGn6SkJPTv3x9qtRq+vr6IiYlBfn6+RZuJEyeiU6dOcHNzQ9u2bTFq1Cj89ttvDfYrhMDLL78Mf39/uLm5ITIyEocOHWrOt0JEREQOQtbwk5OTg7i4OOTm5iIzMxPV1dWIiopCeXm5uU3fvn2RkpKCgwcPYv369RBCICoqCgaDod5+Fy9ejHfeeQfLli1DXl4ePDw8MGzYMFRWVtribREREZEdk4QQQu4iapw6dQq+vr7IycnBnXfeWWebvXv3olevXjh8+DA6depUa7sQAgEBAXj++ecxffp0AIBOp4Ofnx9SU1Px8MMPX7MOvV4PjUYDnU4HLy+vG3tTREREZBON/f62qzk/Op0OAODj41Pn9vLycqSkpCA4OBiBgYF1tiksLERxcTEiIyPN6zQaDQYOHIjt27fX+Zyqqiro9XqLBxEREd2c7Cb8GI1GJCQkIDw8HGFhYRbbPvjgA3h6esLT0xPff/89MjMz4ezsXGc/xcXFAAA/Pz+L9X5+fuZtV0tKSoJGozE/6gtWRERE5PjsJvzExcVh//79+OKLL2pte+yxx/Dzzz8jJycHXbp0wZgxY6w6f2fWrFnQ6XTmx/Hjx63WNxEREdmXFnIXAADx8fFYt24dfvzxR7Rv377W9poRmc6dO+P2229Hq1atkJaWhkceeaRWW61WCwAoKSmBv7+/eX1JSQluu+22Ol/fxcUFLi4u1nkzREREZNdkHfkRQiA+Ph5paWnYuHEjgoODG/UcIQSqqqrq3B4cHAytVousrCzzOr1ej7y8PAwaNMhqtRMREZFjkjX8xMXFYeXKlVi9ejXUajWKi4tRXFyMCxcuAAD++OMPJCUlYdeuXTh27Bi2bduG0aNHw83NDffee6+5n27duiEtLQ0AIEkSEhISsGDBAqSnp2Pfvn0YO3YsAgICEBMTI8fbJCIiIjsi62Gv5ORkAEBERITF+pSUFMTGxsLV1RWbN2/G0qVLcfbsWfj5+eHOO+/Etm3b4Ovra26fn59vPlMMAGbMmIHy8nJMmDAB586dwx133IGMjAy4urra5H0RERGR/bKr6/zYC17nh4iIyPE45HV+iIiIiJobww8REREpCsMPERERKQrDDxERESkKww8REREpCsMPERERKQrDDxERESkKww8REREpCsMPERERKQrDDxERESkKww8REREpiqw3NiW6KRkNwNFtQFkJ4OkHBA0GnFRyV0VERH9j+CGypgPpQEYioD95eZ1XABC9CAgdKV9dRERkxsNeRNZyIB1YM9Yy+ACAvsi0/kC6PHUREZEFhh8iazAaTCM+EHVs/HtdxkxTOyIikhXDD5E1HN1We8THggD0J0ztiIhIVgw/RNZQVmLddkRE1GwYfoiswdPPuu2IiKjZMPwQWUPQYNNZXZDqaSABXu1M7YiISFYMP0TW4KQync4OoHYA+ns5eiGv90NEZAcYfoisJXQkMGYF4OVvud4rwLSe1/khIrILvMghkTWFjgS6DecVnomI7BjDD5G1OamA4H/IXQUREdWDh72IiIhIUTjyQ0T2iTeIJaJmwvBDRPaHN4glombEw15EZF94g1giamYMP0RkP3iDWCKyAYYfIrIfvEEsEdkAww8R2Q/eIJaIbIDhh4jsB28QS0Q2wPBDRPaDN4glIhtg+CEi+8EbxBKRDTD8EJF94Q1iiaiZ8SKHRGR/eINYImpGDD9EZJ94g1giaiY87EVERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrCU92JlMho4DV0iEixGH6IlOZAOpCRCOhPXl7nFWC6rQSvnkxECiDrYa+kpCT0798farUavr6+iImJQX5+vnn7mTNnMGXKFHTt2hVubm7o0KEDnn32Weh0ugb7jY2NhSRJFo/o6OjmfjtE9u9AOrBmrGXwAQB9kWn9gXR56iIisiFZw09OTg7i4uKQm5uLzMxMVFdXIyoqCuXl5QCAkydP4uTJk3jjjTewf/9+pKamIiMjA+PHj79m39HR0SgqKjI/Pv/88+Z+O0T2zWgwjfhA1LHx73UZM03tiIhuYrIe9srIyLBYTk1Nha+vL3bt2oU777wTYWFh+Oqrr8zbO3XqhFdffRWPP/44Ll26hBYt6i/fxcUFWq222WoncjhHt9Ue8bEgAP0JUzveVoKIbmJ2dbZXzeEsHx+fBtt4eXk1GHwAIDs7G76+vujatSsmTZqE06dP19u2qqoKer3e4kF00ykrsW47IiIHZTfhx2g0IiEhAeHh4QgLC6uzzV9//YX58+djwoQJDfYVHR2NFStWICsrC4sWLUJOTg7uueceGAx1D+cnJSVBo9GYH4GBgTf8fojsjqefddsRETkoSQhR1wQAm5s0aRK+//57bNmyBe3bt6+1Xa/X4+6774aPjw/S09PRsmXLRvf9xx9/oFOnTtiwYQOGDh1aa3tVVRWqqqosXiswMNA8ykR0UzAagKVhpsnNdc77kUxnfSXs42nvROSQ9Ho9NBrNNb+/7eJU9/j4eKxbtw4//vhjncHn/PnziI6OhlqtRlpaWpOCDwDccsstaNOmDQ4fPlxn+HFxcYGLi0uT6zYYDKiurm7y84hkE7Xk70nPgGUAkv7evgi4WA2g8Z/rli1bQqViWCIixyFr+BFCYMqUKUhLS0N2djaCg4NrtdHr9Rg2bBhcXFyQnp4OV1fXJr/On3/+idOnT8Pf398aZUMIgeLiYpw7d84q/RHZjCoYiEoFLpwDjJcur3dqAbh5Ayp3oLCwyd16e3tDq9VCkiRrVUpE1GxkDT9xcXFYvXo1vvnmG6jVahQXFwMANBoN3NzcoNfrERUVhYqKCqxcudJiMnLbtm3Nf21269YNSUlJuP/++1FWVoZ58+bhwQcfhFarRUFBAWbMmIGQkBAMGzbMKnXXBB9fX1+4u7vzFz45HiGA6grAUA2oWgIt3YHr+BwLIVBRUYHS0lIAsNofGEREzUnW8JOcnAwAiIiIsFifkpKC2NhY7N69G3l5eQCAkJAQizaFhYXo2LEjACA/P998pphKpcLevXuxfPlynDt3DgEBAYiKisL8+fOv69DW1QwGgzn4tG7d+ob7I5KNm5uVujH1U1paCl9fXx4CIyK7J/thr4ZERERcs83V/bi5uWH9+vU3XFt9aub4uLu7N9trEDmamp+H6upqhh8isnt2c6q7o+GhLqLL+PNARI6E4YeIiIgUheGHrC42NhYxMTHm5YiICCQkJNxQn9bog4iICGD4UZQr73bv7OyMkJAQvPLKK7h06dK1n3wDvv76a8yfP79RbbOzsyFJUq3LCDSlDyIioobYxUUOlchgFNhReAal5yvhq3bFgGAfqJyaf95EdHQ0UlJSUFVVhf/973+Ii4tDy5YtMWvWLIt2Fy9ehLOzs1Ves6F7tdmyDyIiIoAjP7LI2F+EOxZtxCMf52LqF3vwyMe5uGPRRmTsL2r21665231QUBAmTZqEyMhIpKenmw9VvfrqqwgICEDXrl0BAMePH8eYMWPg7e0NHx8fjBo1CkeOHDH3ZzAYMG3aNHh7e6N169aYMWNGrTP0rj5kVVVVhcTERAQGBsLFxQUhISH4z3/+gyNHjuCuu+4CALRq1QqSJCE2NrbOPs6ePYuxY8eiVatWcHd3xz333INDhw6Zt6empsLb2xvr169H9+7d4enpiejoaBQVXd7H2dnZGDBgADw8PODt7Y3w8HAcPXrUSnuaiIjsFcOPjWXsL8KklbtRpKu0WF+sq8SklbttEoCu5ObmhosXLwIAsrKykJ+fj8zMTKxbtw7V1dUYNmwY1Go1Nm/ejK1bt5pDRM1zlixZgtTUVHz66afYsmULzpw5g7S0tAZfc+zYsfj888/xzjvv4ODBg/jwww/h6emJwMBAfPXVVwBM124qKirC22+/XWcfsbGx+Omnn5Ceno7t27dDCIF7773X4nYjFRUVeOONN/DZZ5/hxx9/xLFjxzB9+nQAwKVLlxATE4MhQ4Zg79692L59OyZMmMCzloiIFICHvWzIYBSY9+2BOm8pKWC6u9K8bw/g7lBtsx8CE0IgKysL69evx5QpU3Dq1Cl4eHjgk08+MR/uWrlyJYxGIz755BNzKEhJSYG3tzeys7MRFRWFpUuXYtasWXjggQcAAMuWLWvwOku///471qxZg8zMTERGRgIw3XutRs3hLV9fX3h7e9fZx6FDh5Ceno6tW7di8ODBAIBVq1YhMDAQa9euxejRowGYrjmzbNkydOrUCYDpHnKvvPIKANNtU3Q6He677z7z9u7duzd9RxIRkcPhyI8N7Sg8U2vE50oCQJGuEjsKzzRbDevWrYOnpydcXV1xzz334KGHHsLcuXMBAD169LCY5/PLL7/g8OHDUKvV8PT0hKenJ3x8fFBZWYmCggLodDoUFRVh4MCB5ue0aNEC/fr1q/f19+zZA5VKhSFDhlz3ezh48CBatGhh8bqtW7dG165dcfDgQfM6d3d3c7ABTLdeqLkNg4+PD2JjYzFs2DCMGDECb7/9tsUhMSIiunlx5MeGSs/XH3yup931uOuuu5CcnAxnZ2cEBASgRYvLHwEPDw+LtmVlZejbty9WrVpVq5+2bdte1+u7WemWCo3RsmVLi2VJkizmI6WkpODZZ59FRkYGvvzyS7z00kvIzMzE7bffbrMaiYjI9jjyY0O+6sbdkb6x7a6Hh4cHQkJC0KFDB4vgU5c+ffrg0KFD8PX1RUhIiMVDo9FAo9HA39/ffP81wDSXZteuXfX22aNHDxiNRuTk5NS5vWbkyWAw1NtH9+7dcenSJYvXPX36NPLz8xEaGtrge7pa7969MWvWLGzbtg1hYWFYvXp1k55PRESOh+HHhgYE+8Bf44r6ZvNIAPw1ptPe7cFjjz2GNm3aYNSoUdi8eTMKCwuRnZ2NZ599Fn/++ScAYOrUqVi4cCHWrl2L3377DZMnT651jZ4rdezYEePGjcNTTz2FtWvXmvtcs2YNACAoKAiSJGHdunU4deoUysrKavXRuXNnjBo1Ck8//TS2bNmCX375BY8//jjatWuHUaNGNeq9FRYWYtasWdi+fTuOHj2KH374AYcOHeK8HyIiBWD4sSGVk4Q5I0wjE1cHoJrlOSNCbXK9n8Zwd3fHjz/+iA4dOuCBBx5A9+7dMX78eFRWVsLLywsA8Pzzz+OJJ57AuHHjMGjQIKjVatx///0N9pucnIx//etfmDx5Mrp164ann34a5eXlAIB27dph3rx5mDlzJvz8/BAfH19nHykpKejbty/uu+8+DBo0CEII/O9//6t1qKuh9/bbb7/hwQcfRJcuXTBhwgTExcVh4sSJTdhDRETkiCTRmNumK4xer4dGo4FOpzN/ydeorKxEYWEhgoOD4ep6fYenMvYXYd63BywmP/trXDFnRCiiw/xvqHYiOVjj54KI6EY19P19JU54lkF0mD/uDtXKcoVnIiIipWP4kYnKScKgTq3lLoOIiEhxOOeHiIiIFIXhh4iIiBSF4YeIiIgUheGHiIiIFIXhh4iIiBSF4YeIiIgUheGHiIiIFIXhh+ze3Llzcdttt8ldBiIiIpCQkCB3GUREdIMYfhSkuLgYU6dORUhICFxdXeHn54fw8HAkJyejoqJC7vKuW3Z2NiRJavCGqnL2R0RE9oVXeJaL0QAc3QaUlQCefkDQYMBJ1Wwv98cffyA8PBze3t547bXX0KNHD7i4uGDfvn346KOP0K5dO4wcObLO51ZXVzf6hqH27OLFi3B2dpa7DCIikhlHfuRwIB1YGgYsvw/4arzpv0vDTOubyeTJk9GiRQv89NNPGDNmDLp3745bbrkFo0aNwnfffYcRI0aY20qShOTkZIwcORIeHh549dVXAZjuxt6pUyc4Ozuja9eu+Oyzz8zPOXLkCCRJwp49e8zrzp07B0mSkJ2dDeDyiEpWVhb69esHd3d3DB48GPn5+Ra1Lly4EH5+flCr1ea7yNfnyJEjuOuuuwAArVq1giRJiI2NBWA6TBUfH4+EhAS0adMGw4YNu2adDfUHAEajETNmzICPjw+0Wi3mzp3b2H8CIiKyEww/tnYgHVgzFtCftFyvLzKtb4YAdPr0afzwww+Ii4uDh4dHnW0kyfKmqnPnzsX999+Pffv24amnnkJaWhqmTp2K559/Hvv378fEiRPx5JNPYtOmTU2u5//+7/+wZMkS/PTTT2jRogWeeuop87Y1a9Zg7ty5eO211/DTTz/B398fH3zwQb19BQYG4quvvgIA5Ofno6ioCG+//bZ5+/Lly+Hs7IytW7di2bJl16ytMf15eHggLy8PixcvxiuvvILMzMwm7wMiIpIPD3vZktEAZCQCEHVsFAAkIGMm0G24VQ+BHT58GEIIdO3a1WJ9mzZtzKMqcXFxWLRokXnbo48+iieffNK8/MgjjyA2NhaTJ08GAEybNg25ubl44403zCMljfXqq69iyJAhAICZM2di+PDhqKyshKurK5YuXYrx48dj/PjxAIAFCxZgw4YN9Y7+qFQq+Pj4AAB8fX3h7e1tsb1z585YvHixefnIkSMN1nat/nr27Ik5c+aY+37vvfeQlZWFu+++u1HvnYiI5MeRH1s6uq32iI8FAehPmNrZwI4dO7Bnzx7ceuutqKqqstjWr18/i+WDBw8iPDzcYl14eDgOHjzY5Nft2bOn+f/9/f0BAKWlpebXGThwoEX7QYMGNfk1avTt2/e6n1uXK2sHTPXX1E5ERI6BIz+2VFZi3XaNFBISAkmSas2tueWWWwAAbm5utZ5T3+Gx+jg5mXK0EJdHtaqrq+tse+Xk6ZrDbUajsUmv11hXv4+m1FmXqyd+S5LUbLUTEVHz4MiPLXn6WbddI7Vu3Rp333033nvvPZSXl19XH927d8fWrVst1m3duhWhoaEAgLZt2wIAioqKzNuvnFTclNfJy8uzWJebm9vgc2rO4DIYDNfsvzF1NqU/IiJyPBz5saWgwYBXgGlyc53zfiTT9qDBVn/pDz74AOHh4ejXrx/mzp2Lnj17wsnJCTt37sRvv/12zcNDL7zwAsaMGYPevXsjMjIS3377Lb7++mts2LABgGn06Pbbb8fChQsRHByM0tJSvPTSS02uc+rUqYiNjUW/fv0QHh6OVatW4ddffzWPUtUlKCgIkiRh3bp1uPfee+Hm5gZPT8862zamzqb0R0REjocjP7bkpAKiayYVS1dt/Hs5emGzXO+nU6dO+PnnnxEZGYlZs2ahV69e6NevH959911Mnz4d8+fPb/D5MTExePvtt/HGG2/g1ltvxYcffoiUlBRERESY23z66ae4dOkS+vbti4SEBCxYsKDJdT700EOYPXs2ZsyYgb59++Lo0aOYNGlSg89p164d5s2bh5kzZ8LPzw/x8fENtr9WnU3tj4iIHIskrpz8QAAAvV4PjUYDnU4HLy8vi22VlZUoLCxEcHAwXF1dr+8FDqSbzvq6cvKzVztT8Amt+0KDRPbMKj8XREQ3qKHv7yvxsJccQkeaTme34RWeiYiIyIThRy5OKiD4H3JXQUREpDic80NERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDDqe4uBh33303PDw84O3tLXc5VpOdnQ1JknDu3DlZ65g7dy5uu+02WWsgImpOsoafpKQk9O/fH2q1Gr6+voiJiUF+fr55+5kzZzBlyhR07doVbm5u6NChA5599lnodLoG+xVC4OWXX4a/vz/c3NwQGRmJQ4cONffbsWuxsbGQJAnPPPNMrW1xcXGQJAmxsbG2L+w6vPXWWygqKsKePXvw+++/y12OTUmShLVr19ptf0REjkDW8JOTk4O4uDjk5uYiMzMT1dXViIqKQnl5OQDg5MmTOHnyJN544w3s378fqampyMjIwPjx4xvsd/HixXjnnXewbNky5OXlwcPDA8OGDUNlZaUt3lajGIwG7Czeif/98T/sLN4Jg9HQ7K8ZGBiIL774AhcuXDCvq6ysxOrVq9GhQ4dmf31rKSgoQN++fdG5c2f4+vpard+LFy9arS853Szvg4io2Qg7UlpaKgCInJycetusWbNGODs7i+rq6jq3G41GodVqxeuvv25ed+7cOeHi4iI+//zzOp9TWVkpdDqd+XH8+HEBQOh0ulptL1y4IA4cOCAuXLjQxHd3WeaRTDF0zVARlhpmfgxdM1RkHsm87j6vZdy4cWLUqFEiLCxMrFy50rx+1apVomfPnmLUqFFi3Lhx5vUGg0G89tpromPHjsLV1VX07NlT/Pe//zVvv3TpknjqqafM27t06SKWLl1a52u+/vrrQqvVCh8fHzF58mRx8eLFBmv94IMPxC233CJatmwpunTpIlasWGHeFhQUJACYH1fWfKXq6moxZcoUodFohI+Pj5gxY4YYO3asGDVqlLnNkCFDRFxcnJg6dapo3bq1iIiIEEIIkZ2dLfr37y+cnZ2FVqsViYmJFp+3oKAg8dZbb1m8Xq9evcScOXPMywDExx9/LGJiYoSbm5sICQkR33zzjcVzvvvuO9G5c2fh6uoqIiIiREpKigAgzp49W+d7uvq9BwUFCSGEmDNnjujVq5f4+OOPRceOHYUkSY2q81r9rVixQgQFBQkvLy/x0EMPCb1eX2ddQljn54KI6EbpdLp6v7+vZFdzfmoOZ/n4+DTYxsvLCy1a1H1bssLCQhQXFyMyMtK8TqPRYODAgdi+fXudz0lKSoJGozE/AgMDb+BdNGzD0Q2Ylj0NJRUlFutLK0oxLXsaNhzd0GyvDQBPPfUUUlJSzMuffvopnnzyyVrtkpKSsGLFCixbtgy//vornnvuOTz++OPIyckBABiNRrRv3x7//e9/ceDAAbz88st48cUXsWbNGot+Nm3ahIKCAmzatAnLly9HamoqUlNT660vLS0NU6dOxfPPP4/9+/dj4sSJePLJJ7Fp0yYAwM6dOxEdHY0xY8agqKgIb7/9dp39LFq0CKtWrUJKSgq2bt0KvV5f5+Gd5cuXw9nZGVu3bsWyZctw4sQJ3Hvvvejfvz9++eUXJCcn4z//+Q8WLFhwrV1by7x58zBmzBjs3bsX9957Lx577DGcOXMGAHD8+HE88MADGDFiBPbs2YN///vfmDlzZoP97dy5EwCQkpKCoqIi8zIAHD58GF999RW+/vpr7Nmzp1H1NdRfQUEB1q5di3Xr1mHdunXIycnBwoULm/L2yV4YDUDhZmDf/zP91wajzER2z0Zh7JoMBoMYPny4CA8Pr7fNqVOnRIcOHcSLL75Yb5utW7cKAOLkyZMW60ePHi3GjBlT53NsNfJzyXCp1ojPlY8eqT1E5JpIcclwqcl9X0vNKExpaalwcXERR44cEUeOHBGurq7i1KlTFiM/lZWVwt3dXWzbts2ij/Hjx4tHHnmk3teIi4sTDz74oMVrBgUFiUuXLr+f0aNHi4ceeqjePgYPHiyefvppi3WjR48W9957r3n56lGquvj5+VmM/l26dEl06NCh1shP7969LZ734osviq5duwqj0Whe9/777wtPT09hMBiEEI0f+XnppZfMy2VlZQKA+P7774UQQsyaNUuEhoZa9JGYmNjgyE9Nv2lpaRbr5syZI1q2bClKS0st1je2zrr6c3d3txjpeeGFF8TAgQPrrYsjP3bq12+EWNJNiDlelx9LupnWE92EGjvyYzd3dY+Li8P+/fuxZcuWOrfr9XoMHz4coaGhmDt3rlVf28XFBS4uLlbtsy67S3fXGvG5koBAcUUxdpfuRn9t/2apoW3bthg+fDhSU1MhhMDw4cPRpk0bizaHDx9GRUUF7r77bov1Fy9eRO/evc3L77//Pj799FMcO3YMFy5cwMWLF2udJXTrrbdCpVKZl/39/bFv37566zt48CAmTJhgsS48PLzeEZ666HQ6lJSUYMCAAeZ1KpUKffv2hdFotGjbt2/fWq8/aNAgSJJk8fplZWX4888/mzQ3qmfPnub/9/DwgJeXF0pLS82vM3DgQIv2gwYNanTfVwsKCkLbtm2v+/lX69ixI9RqtXnZ39/fXDs5iAPpwJqxMB3VvIK+yLR+zAogdKQspRHJzS7CT3x8PNatW4cff/wR7du3r7X9/PnziI6OhlqtRlpaGlq2bFlvX1qtFgBQUlICf39/8/qSkhLZT989VXHKqu2u11NPPYX4+HgApgBztbKyMgDAd999h3bt2llsqwmJX3zxBaZPn44lS5Zg0KBBUKvVeP3115GXl2fR/up/K0mSagUQOXl4eDT5OU5OThDC8gulurq6Vjtbvve63kdj66yLvf+70TUYDUBGImoFH+DvdRKQMRPoNhxwUtXRhujmJuucHyEE4uPjkZaWho0bNyI4OLhWG71ej6ioKDg7OyM9PR2urq4N9hkcHAytVousrCyLPvLy8m7oL2traOveuL/MG9vuekVHR+PixYuorq7GsGHDam0PDQ2Fi4sLjh07hpCQEItHzXyorVu3YvDgwZg8eTJ69+6NkJAQFBQU3HBt3bt3x9atWy3Wbd26FaGhoY3uQ6PRwM/Pz2IOi8FgwO7duxv1+tu3b7cIDVu3boVarTYH87Zt26KoqMi8Xa/Xo7CwsNH11bzOjh07LNbl5uZe83ktW7aEwdC4ORuNqbMp/ZEDOboN0J9soIEA9CdM7YgUSNbwExcXh5UrV2L16tVQq9UoLi5GcXGx+VTsmuBTXl6O//znP9Dr9eY2V/7C7tatG9LS0gCY/kJNSEjAggULkJ6ejn379mHs2LEICAhATEyMHG/TrI9vH/i5+0GCVOd2CRK07lr08e3TrHWoVCocPHgQBw4csDgkVUOtVmP69Ol47rnnsHz5chQUFGD37t149913sXz5cgBA586d8dNPP2H9+vX4/fffMXv2bIuwcb1eeOEFpKamIjk5GYcOHcKbb76Jr7/+GtOnT29SP1OmTEFSUhK++eYb5OfnY+rUqTh79qzF4ay6TJ48GcePH8eUKVPw22+/4ZtvvsGcOXMwbdo0ODmZflz++c9/4rPPPsPmzZuxb98+jBs3rs792JBnnnkGhw4dwgsvvID8/HysXr26wYngNTp27IisrCwUFxfj7NmzDbZtTJ1N6Y8cSFn9h9evqx3RTUbW8JOcnAydToeIiAj4+/ubH19++SUAYPfu3cjLy8O+ffsQEhJi0eb48ePmfvLz8y0ufDhjxgxMmTIFEyZMQP/+/VFWVoaMjIxrjho1N5WTCjMHmM7ouToA1SwnDkiEygbD0F5eXvDy8qp3+/z58zF79mwkJSWhe/fuiI6OxnfffWcenZs4cSIeeOABPPTQQxg4cCBOnz6NyZMn33BdMTExePvtt/HGG2/g1ltvxYcffoiUlBREREQ0qZ/ExEQ88sgjGDt2LAYNGgRPT08MGzbsmp+Bdu3a4X//+x927NiBXr164ZlnnsH48ePx0ksvmdvMmjULQ4YMwX333Yfhw4cjJiYGnTp1alJ9HTp0wFdffYW1a9eiV69eWLZsGV577bVrPm/JkiXIzMxEYGCgxfyrujSmzqb0Rw7E08+67YhuMpK4elIAQa/XQ6PRmE+rv1JlZSUKCwsRHBx83WFqw9ENWLhjocXkZ627FokDEhEZFNnAM+l6GY1GdO/eHWPGjMH8+fPlLuemY42fC7IiowFYGmaa3FznvB8J8AoAEvZxzg/dVBr6/r6SXUx4VprIoEjcFXgXdpfuxqmKU2jr3hZ9fPvYZMRHKY4ePYoffvgBQ4YMQVVVFd577z0UFhbi0Ucflbs0oubnpAKiF/19tpcEywD096hz9EIGH1Ishh+ZqJxUzXY6O5nOdEpNTcX06dMhhEBYWBg2bNiA7t27y10akW2EjjSdzp6RaDn52SvAFHx4mjspGMMP3ZQCAwNrnTVGpDihI02nsx/dZprc7OkHBA3miA8pHsMPEdHNzEkFBP9D7iqI7Ipd3dvLkXCeONFl/HkgIkfC8NNENVe+raiokLkSIvtR8/PQ0NXXiYjsBQ97NZFKpYK3t7f5Pkfu7u7XvHAe0c1KCIGKigqUlpbC29u7yRd7JCKSA8PPdai5fxhv9Ehk4u3tbf65ICKydww/10GSJPj7+8PX17fRN4okulm1bNmSIz5E5FAYfm6ASqXiL30iIiIHwwnPREREpCgMP0RERKQoDD9ERESkKJzzU4eaC7bp9XqZKyEiIqLGqvnevtaFVxl+6nD+/HkApvtDERERkWM5f/48NBpNvdslwevS12I0GnHy5Emo1WqrXsBQr9cjMDAQx48fh5eXl9X6VRruR+vgfrQO7kfr4H60DqXvRyEEzp8/j4CAADg51T+zhyM/dXByckL79u2brX8vLy9FfiitjfvROrgfrYP70Tq4H61DyfuxoRGfGpzwTERERIrC8ENERESKwvBjQy4uLpgzZw5cXFzkLsWhcT9aB/ejdXA/Wgf3o3VwPzYOJzwTERGRonDkh4iIiBSF4YeIiIgUheGHiIiIFIXhh4iIiBSF4ceG3n//fXTs2BGurq4YOHAgduzYIXdJDiUpKQn9+/eHWq2Gr68vYmJikJ+fL3dZDm/hwoWQJAkJCQlyl+JwTpw4gccffxytW7eGm5sbevTogZ9++knushyKwWDA7NmzERwcDDc3N3Tq1Anz58+/5r2ZlO7HH3/EiBEjEBAQAEmSsHbtWovtQgi8/PLL8Pf3h5ubGyIjI3Ho0CF5irVDDD828uWXX2LatGmYM2cOdu/ejV69emHYsGEoLS2VuzSHkZOTg7i4OOTm5iIzMxPV1dWIiopCeXm53KU5rJ07d+LDDz9Ez5495S7F4Zw9exbh4eFo2bIlvv/+exw4cABLlixBq1at5C7NoSxatAjJycl47733cPDgQSxatAiLFy/Gu+++K3dpdq28vBy9evXC+++/X+f2xYsX45133sGyZcuQl5cHDw8PDBs2DJWVlTau1E4JsokBAwaIuLg487LBYBABAQEiKSlJxqocW2lpqQAgcnJy5C7FIZ0/f1507txZZGZmiiFDhoipU6fKXZJDSUxMFHfccYfcZTi84cOHi6eeespi3QMPPCAee+wxmSpyPABEWlqaedloNAqtVitef/1187pz584JFxcX8fnnn8tQof3hyI8NXLx4Ebt27UJkZKR5nZOTEyIjI7F9+3YZK3NsOp0OAODj4yNzJY4pLi4Ow4cPt/hcUuOlp6ejX79+GD16NHx9fdG7d298/PHHcpflcAYPHoysrCz8/vvvAIBffvkFW7ZswT333CNzZY6rsLAQxcXFFj/bGo0GAwcO5HfO33hjUxv466+/YDAY4OfnZ7Hez88Pv/32m0xVOTaj0YiEhASEh4cjLCxM7nIczhdffIHdu3dj586dcpfisP744w8kJydj2rRpePHFF7Fz5048++yzcHZ2xrhx4+Quz2HMnDkTer0e3bp1g0qlgsFgwKuvvorHHntM7tIcVnFxMQDU+Z1Ts03pGH7IIcXFxWH//v3YsmWL3KU4nOPHj2Pq1KnIzMyEq6ur3OU4LKPRiH79+uG1114DAPTu3Rv79+/HsmXLGH6aYM2aNVi1ahVWr16NW2+9FXv27EFCQgICAgK4H6nZ8LCXDbRp0wYqlQolJSUW60tKSqDVamWqynHFx8dj3bp12LRpE9q3by93OQ5n165dKC0tRZ8+fdCiRQu0aNECOTk5eOedd9CiRQsYDAa5S3QI/v7+CA0NtVjXvXt3HDt2TKaKHNMLL7yAmTNn4uGHH0aPHj3wxBNP4LnnnkNSUpLcpTmsmu8VfufUj+HHBpydndG3b19kZWWZ1xmNRmRlZWHQoEEyVuZYhBCIj49HWloaNm7ciODgYLlLckhDhw7Fvn37sGfPHvOjX79+eOyxx7Bnzx6oVCq5S3QI4eHhtS618PvvvyMoKEimihxTRUUFnJwsv4pUKhWMRqNMFTm+4OBgaLVai+8cvV6PvLw8fuf8jYe9bGTatGkYN24c+vXrhwEDBmDp0qUoLy/Hk08+KXdpDiMuLg6rV6/GN998A7VabT52rdFo4ObmJnN1jkOtVteaJ+Xh4YHWrVtz/lQTPPfccxg8eDBee+01jBkzBjt27MBHH32Ejz76SO7SHMqIESPw6quvokOHDrj11lvx888/480338RTTz0ld2l2raysDIcPHzYvFxYWYs+ePfDx8UGHDh2QkJCABQsWoHPnzggODsbs2bMREBCAmJgY+Yq2J3KfbqYk7777rujQoYNwdnYWAwYMELm5uXKX5FAA1PlISUmRuzSHx1Pdr8+3334rwsLChIuLi+jWrZv46KOP5C7J4ej1ejF16lTRoUMH4erqKm655Rbxf//3f6Kqqkru0uzapk2b6vx9OG7cOCGE6XT32bNnCz8/P+Hi4iKGDh0q8vPz5S3ajkhC8DKaREREpByc80NERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0SKExsby8v8EykYww8RNYvY2FhIklTrER0dLXdpePvtt5Gamip3GQAASZKwdu1aucsgUhTe2JSImk10dDRSUlIs1rm4uMhUDWAwGCBJEjQajWw1EJH8OPJDRM3GxcUFWq3W4tGqVStkZ2fD2dkZmzdvNrddvHgxfH19UVJSAgCIiIhAfHw84uPjodFo0KZNG8yePRtX3o6wqqoK06dPR7t27eDh4YGBAwciOzvbvD01NRXe3t5IT09HaGgoXFxccOzYsVqHvSIiIjBlyhQkJCSgVatW8PPzw8cff4zy8nI8+eSTUKvVCAkJwffff2/x/vbv34977rkHnp6e8PPzwxNPPIG//vrLot9nn30WM2bMgI+PD7RaLebOnWve3rFjRwDA/fffD0mSzMtE1LwYfojI5iIiIpCQkIAnnngCOp0OP//8M2bPno1PPvkEfn5+5nbLly9HixYtsGPHDrz99tt488038cknn5i3x8fHY/v27fjiiy+wd+9ejB49GtHR0Th06JC5TUVFBRYtWoRPPvkEv/76K3x9feusafny5WjTpg127NiBKVOmYNKkSRg9ejQGDx6M3bt3IyoqCk888QQqKioAAOfOncM///lP9O7dGz/99BMyMjJQUlKCMWPG1OrXw8MDeXl5WLx4MV555RVkZmYCAHbu3AkASElJQVFRkXmZiJqZzHeVJ6Kb1Lhx44RKpRIeHh4Wj1dffVUIIURVVZW47bbbxJgxY0RoaKh4+umnLZ4/ZMgQ0b17d2E0Gs3rEhMTRffu3YUQQhw9elSoVCpx4sQJi+cNHTpUzJo1SwghREpKigAg9uzZU6u2UaNGWbzWHXfcYV6+dOmS8PDwEE888YR5XVFRkQAgtm/fLoQQYv78+SIqKsqi3+PHjwsAIj8/v85+hRCif//+IjEx0bwMQKSlpdWzF4moOXDODxE1m7vuugvJyckW63x8fAAAzs7OWLVqFXr27ImgoCC89dZbtZ5/++23Q5Ik8/KgQYOwZMkSGAwG7Nu3DwaDAV26dLF4TlVVFVq3bm1ednZ2Rs+ePa9Z65VtVCoVWrdujR49epjX1YxIlZaWAgB++eUXbNq0CZ6enrX6KigoMNd19Wv7+/ub+yAieTD8EFGz8fDwQEhISL3bt23bBgA4c+YMzpw5Aw8Pj0b3XVZWBpVKhV27dkGlUllsuzKQuLm5WQSo+rRs2dJiWZIki3U1fRiNRvPrjxgxAosWLarVl7+/f4P91vRBRPJg+CEiWRQUFOC5557Dxx9/jC+//BLjxo3Dhg0b4OR0eSpiXl6exXNyc3PRuXNnqFQq9O7dGwaDAaWlpfjHP/5h6/LRp08ffPXVV+jYsSNatLj+X6UtW7aEwWCwYmVEdC2c8ExEzaaqqgrFxcUWj7/++gsGgwGPP/44hg0bhieffBIpKSnYu3cvlixZYvH8Y8eOYdq0acjPz8fnn3+Od999F1OnTgUAdOnSBY899hjGjh2Lr7/+GoWFhdixYweSkpLw3XffNft7i4uLw5kzZ/DII49g586dKCgowPr16/Hkk082Kcx07NgRWVlZKC4uxtmzZ5uxYiKqwZEfImo2GRkZFoeAAKBr16549NFHcfToUaxbtw6A6TDRRx99hEceeQRRUVHo1asXAGDs2LG4cOECBgwYAJVKhalTp2LChAnmvlJSUrBgwQI8//zzOHHiBNq0aYPbb78d9913X7O/t4CAAGzduhWJiYmIiopCVVUVgoKCEB0dbTF6dS1LlizBtGnT8PHHH6Ndu3Y4cuRI8xVNRAAASYgrLppBRGQnIiIicNttt2Hp0qVyl0JENxke9iIiIiJFYfghIiIiReFhLyIiIlIUjvwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaL8f0rW5gZTbFW7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2294,7 +2287,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -2330,7 +2323,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -2375,7 +2368,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -2412,7 +2405,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -2432,21 +2425,21 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 1.276\n", + "The MSE of LSTM forecasts is 1.740\n", "The MSE of baseline ridge forecasts is 1.795\n", "The MSE of mean of training data is 97.538\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkMElEQVR4nO3deVxU5f4H8M9h2LdBFGZAUUkNRdTcQ0rxioCZgXmzXUh/6VVQybwqlqlpol67aRvW9QZWWnlLlKxQNCH3ndRUVMSdxVxmFARh5vz+QCaHTdBhzgzzeb9e86pzzjPPfM9BnK/PKoiiKIKIiIjIglhJHQARERGRsTEBIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCyOtdQBmCKtVovLly/DxcUFgiBIHQ4RERHVgyiKuHnzJry9vWFlVXcbDxOgGly+fBk+Pj5Sh0FEREQP4MKFC2jVqlWdZZgA1cDFxQVAxQN0dXWVOBoiIiKqD7VaDR8fH933eF2YANWgstvL1dWVCRAREZGZqc/wFQ6CJiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLw5WgjUmrAc7tBG4VAM4KoE0/wEomdVREREQWR9IWoISEBPTu3RsuLi7w9PREZGQksrOz9coEBwdDEAS91z/+8Y866xVFEe+88w68vLzg4OCAkJAQnDp1qjFv5f6OpQJLA4CVTwM/jKn479KAivNERERkVJImQJmZmYiJicHu3buRnp6OsrIyhIaGoqioSK/c66+/jry8PN1r8eLFdda7ePFifPjhh1i+fDn27NkDJycnhIWFoaSkpDFvp3bHUoE1owD1Zf3z6ryK80yCiIiIjErSLrC0tDS94+TkZHh6euLAgQPo37+/7ryjoyOUSmW96hRFEUuXLsXbb7+NiIgIAMCXX34JhUKBdevW4YUXXjDcDdSHVgOkTQcg1nBRBCAAaTOAjkPZHUZERGQkJjUIWqVSAQDc3d31zq9atQotWrRAQEAA4uPjUVxcXGsdubm5yM/PR0hIiO6cXC5H3759sWvXrhrfU1paCrVarfcymHM7q7f86BEB9aWKckRERGQUJjMIWqvVIi4uDkFBQQgICNCdf+mll9CmTRt4e3vj8OHDmD59OrKzs7F27doa68nPzwcAKBQKvfMKhUJ3raqEhATMnTvXQHdSxa0Cw5YjIiKih2YyCVBMTAyOHj2K7du3650fO3as7v+7dOkCLy8vDBo0CDk5OWjXrp1BPjs+Ph5TpkzRHavVavj4+Bikbjgr7l+mIeWIiIjooZlEF1hsbCw2bNiArVu3olWrVnWW7du3LwDg9OnTNV6vHCtUUKDfolJQUFDrOCI7Ozu4urrqvQymTT/A1RuAUEsBAXBtWVGOiIiIjELSBEgURcTGxiIlJQW//vorfH197/uerKwsAICXl1eN1319faFUKrFlyxbdObVajT179iAwMNAgcTeIlQwIX3T3oGoSdPc4fCEHQBMRERmRpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++DQDIycnBvHnzcODAAZw9exapqakYNWoU+vfvj65du+rq6dixI1JSUgAAgiAgLi4O8+fPR2pqKo4cOYJRo0bB29sbkZGRUtwm4P8MMPJLwLVK0ubqXXHe/xlp4iIiIrJQko4BSkxMBFCx2OG9kpKSEB0dDVtbW2zevBlLly5FUVERfHx8MGLECLz99tt65bOzs3UzyABg2rRpKCoqwtixY3Hjxg088cQTSEtLg729faPfU638n6mY6s6VoImIiCQniKJY0wI1Fk2tVkMul0OlUhl2PBARERE1moZ8f5vEIGgiIiIiY2ICRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkca6kDIBOj1QDndgK3CgBnBdCmH2AlkzoqIiIig2ICRH85lgqkTQfUl/865+oNhC8C/J+RLi4ieigarYi9uddQeLMEni726OPrDpmVIHVYRJJiAkQVjqUCa0YBEPXPq/Mqzo/8kkkQkRlKO5qHuT8eQ56qRHfOS26P2cP8ER7gJWFkRNLiGCCq6PZKm45qyQ/w17m0GRXliMhspB3Nw/ivD+olPwCQryrB+K8PIu1onkSREUlP0gQoISEBvXv3houLCzw9PREZGYns7Oway4qiiCFDhkAQBKxbt67OeqOjoyEIgt4rPDy8Ee6giTi3U7/bqxoRUF+qKEdEZkGjFTH3x2N1/bMGc388Bo22phJETZ+kCVBmZiZiYmKwe/dupKeno6ysDKGhoSgqKqpWdunSpRCE+vdZh4eHIy8vT/f65ptvDBl603KrwLDliEhye3OvVWv5uZcIIE9Vgr2514wXFJEJkXQMUFpamt5xcnIyPD09ceDAAfTv3193PisrC++//z72798PL6/69Vnb2dlBqVQaNN4my1lh2HJEJLnCm7UnPw9SjqipMakxQCqVCgDg7u6uO1dcXIyXXnoJn3zySYMSmoyMDHh6esLPzw/jx4/H1atXay1bWloKtVqt97IobfpVzPZCbS1sAuDasqIcEZkFTxd7g5YjMgitBsjdBhz5vuK/Eo4tNZlZYFqtFnFxcQgKCkJAQIDu/BtvvIF+/fohIiKi3nWFh4fj2Wefha+vL3JycjBz5kwMGTIEu3btgkxWfU2bhIQEzJ071yD3YZasZBVT3deMQkUSdO+YgLtJUfhCrgdEZEb6+LrDS26PfFVJjeOABABKecWUeCKjMLGlVgRRFE1iBNz48ePxyy+/YPv27WjVqhUAIDU1FW+++SYOHToEZ2dnAIAgCEhJSUFkZGS96z5z5gzatWuHzZs3Y9CgQdWul5aWorS0VHesVqvh4+MDlUoFV1fXh7sxc1LjH86WFckPp8ATmZ3KWWBAjf+sQeIrPTgVnoyjtqVWKv80GmipFbVaDblcXq/vb5NoAYqNjcWGDRvw22+/6ZIfAPj111+Rk5MDNzc3vfIjRozAk08+iYyMjHrV/8gjj6BFixY4ffp0jQmQnZ0d7OzsHuYWmgb/Z4COQ7kSNFETER7ghcRXelRbB0jJdYDImO671IpQsdRKx6FG/b6RNAESRRETJ05ESkoKMjIy4Ovrq3d9xowZ+L//+z+9c126dMEHH3yAYcOG1ftzLl68iKtXr9Z7ALVFs5IBvk9KHQURGUh4gBcG+yu5EjRJpyFLrRjx+0fSBCgmJgarV6/G+vXr4eLigvz8fACAXC6Hg4MDlEpljQOfW7durZcsdezYEQkJCRg+fDhu3bqFuXPnYsSIEVAqlcjJycG0adPQvn17hIWFGe3eiIhMhcxKQGC75lKHQZbKRJdakTQBSkxMBAAEBwfrnU9KSkJ0dHS968nOztbNIJPJZDh8+DBWrlyJGzduwNvbG6GhoZg3bx67uchouPcSEdFdJrrUiuRdYIZ4z73nHBwcsHHjxoeKi+hhcO8lIqJ7VC61os5DzeOAhIrrRl5qxaTWASIyd9x7iYioisqlVgBUX29OuqVWmAARGQj3XiIiqoX/MxVT3V2rtIK7ehtsCnxDmcQ0eKKmoCF7L3FAKhFZHBNbaoUJEJGBcO8lIqL7MKGlVpgAERkI916yUFqNyfyLlojqjwkQkYFw7yULZGJ7GxFR/XEQNJGByKwEzB7mD6DWeQ6YPcyf6wE1FZV7G1Vd4VadV3H+WKo0cRFRvTABIjKgyr2XlHL9bi6l3J4bTzYl993bCBV7G2k1xoyKiBqAXWBEBsa9lyyAie5tRET1xwSIqBFw76UmzkT3NiKi+mMCRETUUCa6txGRqTOlfRKZABERNZSJ7m1EZMpMbZ9EDoImImooE93biMhUmeI+iUyAiIgehAnubURkikx1n0R2gRERPSgT29uIyBSZ6j6JTICIiB6GCe1tRGSKTHWfRHaBERERUaMx1X0SmQARERFRo6ncJ7G2ye4CKmaDGXufRCZARERE1GhMdZ9EJkBERETUqExxn0QOgiYiIqJGZ2r7JDIBIiIiIqMwpX0SmQARERE1Aaa0z5Y5YAJERERk5kxtny1zwEHQREREZswU99kyB0yAiIiIzJSp7rNlDpgAERERmamG7LNF+pgAERERmSlT3WfLHDABIiIiMlOmus+WOWACREREZKZMdZ8tc8AEiIiIyEyZ6j5b5oAJEBERkRkzxX22zAEXQiQiIjJzprbPljlgAkRERNQEmNI+W+ZA0i6whIQE9O7dGy4uLvD09ERkZCSys7NrLCuKIoYMGQJBELBu3bo66xVFEe+88w68vLzg4OCAkJAQnDp1qhHugIiIiMyRpAlQZmYmYmJisHv3bqSnp6OsrAyhoaEoKiqqVnbp0qUQhPo15S1evBgffvghli9fjj179sDJyQlhYWEoKeE6CERERAQIoiiazPrYV65cgaenJzIzM9G/f3/d+aysLDz99NPYv38/vLy8kJKSgsjIyBrrEEUR3t7eePPNNzF16lQAgEqlgkKhQHJyMl544YX7xqFWqyGXy6FSqeDq6mqQeyMiIqLG1ZDvb5OaBaZSqQAA7u5/rVdQXFyMl156CZ988gmUSuV968jNzUV+fj5CQkJ05+RyOfr27Ytdu3bV+J7S0lKo1Wq9FxERETVdJpMAabVaxMXFISgoCAEBAbrzb7zxBvr164eIiIh61ZOfnw8AUCgUeucVCoXuWlUJCQmQy+W6l4+PzwPeBREREZkDk5kFFhMTg6NHj2L79u26c6mpqfj1119x6NChRv3s+Ph4TJkyRXesVquZBBERETVhJtECFBsbiw0bNmDr1q1o1aqV7vyvv/6KnJwcuLm5wdraGtbWFfnaiBEjEBwcXGNdld1kBQUFeucLCgpq7UKzs7ODq6ur3ouIiIiaLkkTIFEUERsbi5SUFPz666/w9fXVuz5jxgwcPnwYWVlZuhcAfPDBB0hKSqqxTl9fXyiVSmzZskV3Tq1WY8+ePQgMDGy0eyEiIiLzIWkXWExMDFavXo3169fDxcVFN0ZHLpfDwcEBSqWyxlab1q1b6yVLHTt2REJCAoYPHw5BEBAXF4f58+ejQ4cO8PX1xaxZs+Dt7V3rzDEiIiKyLJImQImJiQBQrTsrKSkJ0dHR9a4nOztbN4MMAKZNm4aioiKMHTsWN27cwBNPPIG0tDTY29vXUQsRERFZCpNaB8hUcB0gIiIi82O26wARERERGQMTICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOJIuhkq0YPQaEXszb2Gwpsl8HSxRx9fd8isBKnDIiIiM8IEiMxK2tE8zP3xGPJUJbpzXnJ7zB7mj/AALwkjIyIic8IuMDIbaUfzMP7rg3rJDwDkq0ow/uuDSDuaJ1FkRERkbpgAkVnQaEXM/fEYxBquVZ6b++MxaLQ1lSBzpdGK2JVzFeuzLmFXzlX+fInIYNgFRmZhb+61ai0/9xIB5KlKsDf3GgLbNTdeYNRo2N1JRI2JLUBkFgpv1p78PEg5Mm3s7iSixsYEyIjYnP/gPF3sDVqOTBe7O4nIGNgFZiRszn84fXzd4SW3R76qpMYvRgGAUl4xJZ7MG7s7icgY2AJkBGzOf3gyKwGzh/kDqEh27lV5PHuYP9cDagLY3UlExsAEqJGxOd9wwgO8kPhKDyjl+t1cSrk9El/pwZa0JoLdnWSKOISh6WEXWCNjc75hhQd4YbC/kitBN2Hs7iRTwyEMTRNbgBoZm/MNT2YlILBdc0Q81hKB7Zoz+Wli2N1JpoRDGJouJkCNjM35RA3H7k4yBRzC0LSxC6yRsTmf6MGwu9OymOImxxzC0LQxAWpklc35478+CAHQS4LYnE9Ut8ruTmra0o7mYV7qEfjc+h2euIFCuOGCczfMeqaLpK19HMLQtDEBMoLK5vyqg+iUHERHRBYu7Wge1q1ejv/ZfAlv22u685dL3fHu6lHAS/+Q7O9IDmFo2pgAGQmb88nUmGKXA1kWjVZExrov8KnN0mrXlLiGT22WYuY6Wwz2nynJn00OYWjamAAZEZvzyVRwWi+Zgr05VzCpbAUAoGp+YyUAWhGYVPZf7M15HYEdPI0en9kNYdBqgHM7gVsFgLMCaNMPsJJJHZXJ4iwwIgvDab1kKjRnd8BbuFYt+alkJQDewlVozu4wbmD3MJsZicdSgaUBwMqngR/GVPx3aUDFeaoRW4BID7tFmrb7TesVUDGtd7C/kj93anSewg2DlmssJj+E4VgqsGYUUPU3W51XcX7kl4D/M5KEZsqYABmRRqvBwcKDuFJ8BR6OHujh2QMyE2qeTDuahzk/HsWVsuMQrG9CLHeBh00nzBkWYDr/ygGgKb+Dg0e+whX1eXi4tkaPLq9CZm0rdVh6TPVnrT+tVwuZY67uZ60p9oUIK5Oa1muqz/FejPHBtXukHbC94v81AA7a2+GKTAYPjQY9Skohu7ec5LSwdjoDG+EKrB09ALgBkP4ZQqsB0qYDEGt5hgKQNgPoONQkusNM6c8iEyAj2XxuMxbuXYiC4gLdOYWjAjP6zEBImxAJI6uQdjQPseu/hJ3iRzjaqHTnb5bJEbt+GD7GKJNIgjZvT8DCk6tQIPvrX16KQx9gxqMvI+SJeAkj+4sp/6wrp+tauxyFneJHWN3zs9aWyVFaMAzlNwNMYlqvKT/HSozx4cjaBuG2gxLboMLiFs1QYP3XV5KivBzT/ryOJyGHQ9sgCaM07WeIczsB9WVsdnTAwubVn+GMq9cRor5UUc73SQkDNb3nyDFARrD53GZMyZii90MHgMLiQkzJmILN5zZLFFkFjVbErPRvYN/yawjWKr1rgrUK9i2/xqz0byRf7XTz9gRMOb0KBVX+1BZaAVNOr8Lm7QnSBHYPU/9Ze7rYw9rlaJ0/a2uXo5JP6zX15wgwRoOwkmFHUDSmKlqgQKbfClAok2GqogV2BEVL2nJh8s/wVgE2OzpgimfNz3CKZwtsdnSoGBgtIVN8jkyAGplGq8HCvQsh1jDqovLcor2LoNFqjB2azu4zV1DsshYAIFTp0q48LnZZi91nrhg5sr9oyu9g4clVFU+sSpDi3eNFJ1dBU37H+MHdZQ4/655t5HD02gCg9p+1o3IDeraRGzmyv5jDc2SMhqHRarAwb0vF73BNv9eCgEV5v0oWo1k8QycPLGzerO6/G5s3g8bJw/jB3WWqz1HSBCghIQG9e/eGi4sLPD09ERkZiezsbL0y48aNQ7t27eDg4AAPDw9ERETgxIkTddYbHR0NQRD0XuHh4Y15K7U6WHiwWsZ7LxEi8ovzcbDwoBGj0rc3fz+sbFTVvhArCQJgZaPC3vz9xg3sHgePfFXR7VVLkKIgIF8m4OCRr4wc2V/M4Wf9+5+HIMpu1PmzFq1v4Pc/Dxk3sHuYw3NkjIZx/xghaYxm8Qzt7Sq6ver6u9HaGgft7Ywc2V9M9TlKmgBlZmYiJiYGu3fvRnp6OsrKyhAaGoqioiJdmZ49eyIpKQnHjx/Hxo0bIYoiQkNDodHUnSmGh4cjLy9P9/rmm28a+3ZqdKW4fq0m9S3XGKysbxm0XGO4oj5v0HKNwRx+1ozRMBijYZh6jKYeHwBcKbl2/0INKNcYTPU5SjoIOi0tTe84OTkZnp6eOHDgAPr37w8AGDt2rO5627ZtMX/+fHTr1g1nz55Fu3a1zwyws7ODUqmsVxylpaUoLS3VHavV6obcRp08HOvX7Fjfco2hb+u2WJFdv3JS8XBtbdByjcEcftaM0TAYo2GYeoymHl9DPpsxVmdSY4BUqopBme7uNS8rXlRUhKSkJPj6+sLHx6fOujIyMuDp6Qk/Pz+MHz8eV69erbVsQkIC5HK57nW/uhuih2cPKBwVEFBz86QAAUpHJXp49jDYZzZUb2VPyG1aQKxljLMoAm42Huit7GncwO7Ro8urUGhECLUEKYgilBoRPbq8auTI/mIOP2vGaBj3xihoRfif0yLoDy38z2khaEWTi7EmjPH+TD0+gDE+DJNJgLRaLeLi4hAUFISAgAC9a59++imcnZ3h7OyMX375Benp6bC1rX3dl/DwcHz55ZfYsmULFi1ahMzMTAwZMqTWbrP4+HioVCrd68KFCwa7L5mVDDP6zACAaj/8yuPpfaZLuiaHzEqGOUFvVXQhV80vxIqu5dlBM6WN0doWMx59GQCqJUGVx9MffVnS9YDM5WfNGB9eZYx9srX45FMN5qzWYnKqFnNWVxz3ydaaTIyA6T/He2OqZAoxmnp8AGN8GIIo1vbvfuMaP348fvnlF2zfvh2tWrXSu6ZSqVBYWIi8vDwsWbIEly5dwo4dO2BvX7+pumfOnEG7du2wefNmDBo06L7l1Wo15HI5VCoVXF1dH+h+qqpp/QOloxLT+0yXfh2Ju2peo0GJGaYUYw3rACk1Iqab+DpA5vCzZowNo960CRcnTQYAvb/SK/9CbfXhMriGhho9rqpM/TkCph+jqccHMMZKDfn+NokEKDY2FuvXr8dvv/0GX1/fOsveuXMHzZo1w4oVK/Diiy/W+zM8PDwwf/58jBs37r5lGyMBAkxrBczamEWMXAnaIBjjgxM1GpweFILy/PyaCwgCrBUKtN+yGYJM+nhN9Tney9RjNPX4AMYINOz7W9JB0KIoYuLEiUhJSUFGRsZ9k5/K94iiqDdo+X4uXryIq1evwstL2pWMrUTA/5yI8isirD1EWEk3Jq1WMisZeit7Sx1GnWTWtujdfYzUYdTJLJ4jY3xgxfsP1J78AIAoojw/H8X7D8Cpbx/jBVYLU32O9zL1GE09PoAxNpSkCVBMTAxWr16N9evXw8XFBfl3/0KRy+VwcHDAmTNn8N133yE0NBQeHh64ePEiFi5cCAcHBzz11FO6ejp27IiEhAQMHz4ct27dwty5czFixAgolUrk5ORg2rRpaN++PcLCwqS6Vag3bULBggS9vzStlUooZsabRDM5EdVf+ZX6TdetbzkyA1pNxXYStwoAZwXQpp9J7K1FD07SBCgxMREAEBwcrHc+KSkJ0dHRsLe3x7Zt27B06VJcv34dCoUC/fv3x86dO+Hp6akrn52drZtBJpPJcPjwYaxcuRI3btyAt7c3QkNDMW/ePNjZSbMQlHrTJlyaHIeq06zKCwoqzi9byiSIyIxYe9Sv+ba+5cjEHUut2HBUffmvc67eQPgi7rJuxkxiDJCpMeQYIHMbK0BE91deVo49fZ+EW/GNGqfSagFcd3TD43u2wdqGe06btWOpwJpRqD5F9u7Q95FfMgkyIQ35/jaZafBNVUPGChCRedh3XoVPAiIgoCLZuZcWFV+NnwZEYN95VfU3k/nQaipafmrYw0p3Lm1GRTkyO0yAGhnHChA1PYU3S7DTuwvm94nCVXv9jWP/dHDD/D5R2OndBYU3SySKkAzi3E79bq9qREB9qaIcmR22zTYyjhUgano8XSrWINvp3QW7vTqj859n4F56E9fsXPBHi0egFaz0ypGZulX7Bp4PVI5MChOgRubYqyeslUqUFxRUGwQNQDcGyLGXdNtMEFHD9PF1h5fcHvmqEmgFKxzxaK93XQCglNujj2/N2/qQmXBWGLYcmRR2gTUyQSaDYubdFYqFKvug3D1WzIznAGgiMyKzEjB7mD8AVFnY/6/j2cP8IbOqee8jMhNt+lXM9qplDytAAFxbVpQjs8MEyAhcQ0PRctlSWCv0/5VgrVCgJafAE5ml8AAvJL7SA0q5fjeXUm6PxFd6IDxA2oVXyQCsZBVT3QHUmuqGL+R6QGaK0+Br0FhbYYgaTcWssCtXYO3hAcdePdnyQ2TmNFoRe3OvofBmCTxdKrq92PLTxNS4DlDLiuSHU+BNitntBWZqGisBIiIiM8WVoM2C2ewFRkREZBasZIDvk1JHQQbEMUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZnIdaCLGkpATfffcdioqKMHjwYHTo0MFQcRERERE1mnonQFOmTEFZWRk++ugjAMCdO3cQGBiIP/74A46Ojpg2bRrS09MRGBjYaMESERERGUK9u8A2bdqEwYMH645XrVqFc+fO4dSpU7h+/Tqee+45zJ8/v1GCJCIiIjKkeidA58+fh7+/v+5406ZN+Pvf/442bdpAEARMnjwZhw4dapQgiYiIiAyp3gmQlZUV7t04fvfu3Xj88cd1x25ubrh+/bphoyMiIiJqBPVOgDp16oQff/wRAPDHH3/g/PnzGDhwoO76uXPnoFAoDB8hERERkYHVexD0tGnT8MILL+Cnn37CH3/8gaeeegq+vr666z///DP69OnTKEESERERGVK9W4CGDx+On3/+GV27dsUbb7yB7777Tu+6o6MjJkyYYPAAiYiIiAxNEO8d2FOHd999F1OnToWjo2NjxyQ5tVoNuVwOlUoFV1dXqcMhIiKiemjI93e9W4Dmzp2LW7duPXRwRERERFKrdwJUz4YiIiIiIpPXoL3ABEForDiIiIiIjKZBe4E9+uij902Crl279lABERERETW2BiVAc+fOhVwub6xYiIiIiIyiQQnQCy+8AE9Pz8aKhYiIiMgo6j0GiON/iIiIqKngLDAiIiKyOPVOgLRarcG7vxISEtC7d2+4uLjA09MTkZGRyM7O1iszbtw4tGvXDg4ODvDw8EBERAROnDhRZ72iKOKdd96Bl5cXHBwcEBISglOnThk0diIiIjJfDZoGb2iZmZmIiYnB7t27kZ6ejrKyMoSGhqKoqEhXpmfPnkhKSsLx48exceNGiKKI0NBQaDSaWutdvHgxPvzwQyxfvhx79uyBk5MTwsLCUFJSYozbIiIiIhNX760wjOHKlSvw9PREZmYm+vfvX2OZw4cPo1u3bjh9+jTatWtX7booivD29sabb76JqVOnAgBUKhUUCgWSk5Pxwgsv3DcOboVh2kSNBsX7D6D8yhVYe3jAsVdPCDKZ1GEREZHEGvL93aBZYI1NpVIBANzd3Wu8XlRUhKSkJPj6+sLHx6fGMrm5ucjPz0dISIjunFwuR9++fbFr164aE6DS0lKUlpbqjtVq9cPcBjUi9aZNKFiQgPL8fN05a6USipnxcA0NlTAyItPFfzQQVSdpF9i9tFot4uLiEBQUhICAAL1rn376KZydneHs7IxffvkF6enpsLW1rbGe/LtfjAqFQu+8QqHQXasqISEBcrlc96otuSJpqTdtwqXJcXrJDwCUFxTg0uQ4qDdtkigyItOl3rQJpweF4HxUFC5PnYrzUVE4PSiEvy9k8UwmAYqJicHRo0fx7bffVrv28ssv49ChQ8jMzMSjjz6KkSNHGnQ8T3x8PFQqle514cIFg9VNhiFqNChYkADU1GN791zBggSIdYwNI7I0/EcDUe1MIgGKjY3Fhg0bsHXrVrRq1aradblcjg4dOqB///74/vvvceLECaSkpNRYl1KpBAAUFBTonS8oKNBdq8rOzg6urq56LzItxfsPVPtLXI8oojw/H8X7DxgvKCITxn80ENVN0gRIFEXExsYiJSUFv/76K3x9fev1HlEU9cbs3MvX1xdKpRJbtmzRnVOr1dizZw8CAwMNFjsZV/mVKwYtR9TU8R8NRHWTNAGKiYnB119/jdWrV8PFxQX5+fnIz8/H7du3AQBnzpxBQkICDhw4gPPnz2Pnzp147rnn4ODggKeeekpXT8eOHXUtQoIgIC4uDvPnz0dqaiqOHDmCUaNGwdvbG5GRkVLcJhmAtYeHQcsRNXX8RwNR3SSdBZaYmAgACA4O1juflJSE6Oho2NvbY9u2bVi6dCmuX78OhUKB/v37Y+fOnXqLMmZnZ+tmkAHAtGnTUFRUhLFjx+LGjRt44oknkJaWBnt7e6PcFxmeY6+esFYqUV5QUHOTviDAWqGAY6+exg+OyATxHw1EdTOpdYBMBdcBMk2VAzoB6CdBd/epa7lsKafCE90lajQ4PSjkvv9oaL9lM6fEU5PRkO9vkxgETVQfrqGhaLlsKayrLHFgrVAw+SGqQpDJoJgZf/egymbWd48VM+OZ/JDFYgtQDdgCZNq4qBtR/XHxULIkDfn+ZgJUAyZARNSU8B8NZCnMdisMIiIyPEEmg1PfPlKHQWRSOAaIiIiILA4TICIiIrI4TICIiIjI4nAMEFFj0GqAczuBWwWAswJo0w+w4qBTIiJTwQSI9HC2iAEcSwXSpgPqy3+dc/UGwhcB/s9IFxcREekwASIdrhdiAMdSgTWjAFRZXUKdV3F+5JdMgoiITADHABGAv7aZqLp7dHlBAS5NjoN60yaJIjMjWk1Fy0/V5Af461zajIpyREQkKSZABFGjQcGChJr3C7p7rmBBAkQNv7jrdG6nfrdXNSKgvlRRjoiIJMUEiCrG/FRp+dEjiijPz0fx/gPGC8oc3SowbDkiImo0TIAI5VeuGLScxXJW3L9MQ8oREVGjYQJEsPbwMGg5i9WmX8VsLwi1FBAA15YV5YiISFJMgAiOvXrCWqkEhFq+uAUB1kolHHv1NG5g5sZKVjHVHUD1JOjucfhCrgdERGQCmAARBJkMipnxdw+qfHHfPVbMjOd6QPXh/0zFVHdXL/3zrt6cAk9EZEIEUaxp6o9lU6vVkMvlUKlUcHV1lToco+E6QAbElaCJiIyuId/fTIBqYKkJEMCVoMnEMJEkogZoyPc3V4ImPYJMBqe+faQOg4hbihBRo+IYICIyPZVbilRdWLJyS5FjqdLERURNBhMgIjIt3FKEiIyACRARmRZuKUJERsAEiIhMC7cUISIjYAJERKaFW4oQkREwASIi08ItRYjICJgAEZFp4ZYiRGQETICIyPRwSxEiamRcCJGITJP/M0DHoVwJmogaBRMgIjJdVjLA90mpoyCiJohdYERERGRxmAARERGRxWEXGJGlMoOd1kWNBsX7D6D8yhVYe3jAsVdPCDLTipGIzBMTICJLZAY7ras3bULBggSU5+frzlkrlVDMjIdraKiEkZElYjLe9AiiKNa046BFU6vVkMvlUKlUcHV1lTocIsOq3Gm92majd9fYMYFp5upNm3BpchxQ9a8noSLGlsuWMgkio2Eybj4a8v0t6RighIQE9O7dGy4uLvD09ERkZCSys7N1169du4aJEyfCz88PDg4OaN26NSZNmgSVSlVnvdHR0RAEQe8VHh7e2LdDZPrMYKd1UaNBwYKE6skPoDtXsCABooa7wVPjq0zG701+AKC8oACXJsdBvWmTRJHRw5I0AcrMzERMTAx2796N9PR0lJWVITQ0FEVFRQCAy5cv4/Lly1iyZAmOHj2K5ORkpKWlYcyYMfetOzw8HHl5ebrXN99809i3Q2T6zGCn9eL9B6p92egRRZTn56N4/wHjBUUWicl40ybpGKC0tDS94+TkZHh6euLAgQPo378/AgIC8MMPP+iut2vXDu+99x5eeeUVlJeXw9q69vDt7OygVCrrFUdpaSlKS0t1x2q1uoF3QmQmzGCn9fIrVwxajuhBNSQZd+rbx3iBkUGY1DT4yq4td3f3Osu4urrWmfwAQEZGBjw9PeHn54fx48fj6tWrtZZNSEiAXC7XvXx8fB7sBohMnRnstG7t4WHQckQPisl402YyCZBWq0VcXByCgoIQEBBQY5k///wT8+bNw9ixY+usKzw8HF9++SW2bNmCRYsWITMzE0OGDIGmlmbK+Ph4qFQq3evChQsPfT9EJskMdlp37NUT1kqlbsBzNYIAa6USjr16GjcwsjhMxps2k5kFNn78ePzyyy/Yvn07WrVqVe26Wq3G4MGD4e7ujtTUVNjY2NS77jNnzqBdu3bYvHkzBg0adN/ynAVGTZpuFhigPxjaBGeBAfrjLzgLjIxI1GhwelAIygsKah4HJAiwVijQfstmTok3EWYzC6xSbGwsNmzYgK1bt9aY/Ny8eRPh4eFwcXFBSkpKg5IfAHjkkUfQokULnD592lAhE5kvM9hp3TU0FC2XLYW1Qr8rzlqhYPJDRiPIZFDMjL97UKVF8u6xYmY8kx8zJekgaFEUMXHiRKSkpCAjIwO+vr7VyqjVaoSFhcHOzg6pqamwt7dv8OdcvHgRV69ehZeX1/0LE1kCM9hp3TU0FC6DBnHxOZKUa2gosGxp9XWAFAquA2TmJO0CmzBhAlavXo3169fDz89Pd14ul8PBwQFqtRqhoaEoLi5GSkoKnJycdGU8PDwgu/sXYceOHZGQkIDhw4fj1q1bmDt3LkaMGAGlUomcnBxMmzYNN2/exJEjR2BnZ3ffuNgFRkRE9+JK0OahId/fkrYAJSYmAgCCg4P1ziclJSE6OhoHDx7Enj17AADt27fXK5Obm4u2bdsCALKzs3UzyGQyGQ4fPoyVK1fixo0b8Pb2RmhoKObNm1ev5IeIiIzP1BMMQSbjVPcmxmQGQZsStgARERkPt5ogQzG7QdBERGSZuNUESYUJEBERSYJbTZCUmAAREZEkuO8bSYkJEBERSYJbTZCUmAAREZEkuNUESYkJEBERSYL7vpGUmAAREZEkuNUESYkJEBERSYb7vpFUJF0JmoiIiPu+kRSYABERkeS41QQZG7vAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhcCJHIQokaDVfeJSKLxQSIqBGYenKh3rQJBQsSUJ6frztnrVRCMTOeey8RkUVgAkRkYKaeXKg3bcKlyXGAKOqdLy8oqDjPDSiJyAJwDBCRAVUmF/cmP8BfyYV60yaJIqsgajQoWJBQLfmpuFhxrmBBAkSNxsiREREZF1uAHoJGo0FZWZnUYZCJEDUaXF6xAlqlsuYCgoDLK1bAJihIsu6w4t8P444gAF5etZa5A+D6/gNw7Na1XnXa2NhAZkLde0RE9SGIYk3/FLRsarUacrkcKpUKrq6u1a6Looj8/HzcuHHD+MGRydKWlkJz9ep9y8maN4eVnZ0RIqpOe/s2NNev37ecrFkzWDk41LteNzc3KJVKCILwMOERET2U+31/34stQA+gMvnx9PSEo6Mj/9InAEC5Wo1yq/v3KlsrlbC+zy9mY9EUFaPM+v6/9jYtW0Hm5HjfcqIoori4GIWFhQAArzpaloiITAkToAbSaDS65Kd58+ZSh0MmRFOuwZ16JEC2jk6Q2dsbIaLqRDs7lP55BWIdXbeCjQ3s3JvVO7F3uNtSVFhYCE9PT3aHEZFZ4CDoBqoc8+PoeP9/HZNlsXJyhGBjU2cZwcYGVvVoWWksgiDAprYxSnfZPEBXVuXvA8fEEZG5YAL0gNjtRVU1VnJhaDK5HLY+PtWSNcHGBrY+PpDJ5Q2uU+p7IiJqKHaBERmQTC6HLYCy/Hy9bibBxgY2SuUDJReNQSaXw8rVFdqiYojlZRCsK1qmmMgQkaVgAkQGFx0djRs3bmDdunUAgODgYDz22GNYunTpA9dpiDqMxVySC0EQIHN2kjoMIiJJsAvMgkRHR0MQBAiCAFtbW7Rv3x7vvvsuysvLG/Vz165di3nz5tWrbEZGBgRBqLbEQEPqaCxz5szBY489Vuv13NxcvPTSS/D29oaDgwPadPTDiKgonLp4AStXrtQ9+9peZ8+exZw5cyAIAsLDw6vV/69//QuCICA4OLjxbpKIyEKwBUgiGq2IvbnXUHizBJ4u9ujj6w6ZVeO3EISHhyMpKQmlpaX4+eefERMTAxsbG8THx+uVu3PnDmxtbQ3yme7u7iZRR2MqKyvD4MGD4efnh7Vr18LLywsXL17EL7/8ghs3buD555/XS2qeffZZBAQE4N1339Wd8/DwAFAxlXzr1q24ePEiWrVqpbv+xRdfoHXr1sa7KSKiJowtQBJIO5qHJxb9ihf/sxuTv83Ci//ZjScW/Yq0o3mN/tl2dnZQKpVo06YNxo8fj5CQEKSmpiI6OhqRkZF477334O3tDT8/PwDAhQsXMHLkSLi5ucHd3R0RERE4e/asrj6NRoMpU6bAzc0NzZs3x7Rp01B1bc3g4GDExcXpjktLSzF9+nT4+PjAzs4O7du3x3//+1+cPXsWAwcOBAA0a1YxDTs6OrrGOq5fv45Ro0ahWbNmcHR0xJAhQ3Dq1Cnd9eTkZLi5uWHjxo3o1KkTnJ2dER4ejry8v55xRkYG+vTpAycnJ7i5uSEoKAjnzp17oOf6xx9/ICcnB59++ikef/xxtGnTBkFBQZg/fz4ef/xxODg4QKlU6l62trZwdHTUO1c5fdzT0xOhoaFYuXKlrv6dO3fizz//xNChQx8oPiIiUyBqNCjasxeqDT+haM9eSbfdYQJkZGlH8zD+64PIU5Xonc9XlWD81weNkgTdy8HBAXfu3AEAbNmyBdnZ2UhPT8eGDRtQVlaGsLAwuLi4YNu2bdixY4cukah8z/vvv4/k5GR88cUX2L59O65du4aUlJQ6P3PUqFH45ptv8OGHH+L48eP47LPP4OzsDB8fH/zwww8AgOzsbOTl5WHZsmU11hEdHY39+/cjNTUVu3btgiiKeOqpp/SmYRcXF2PJkiX46quv8Ntvv+H8+fOYOnUqAKC8vByRkZEYMGAADh8+jF27dmHs2LEPPE7Hw8MDVlZW+P7776ExwC/06NGjkZycrDv+4osv8PLLLxusVY6IyNjUmzbh9KAQnI+KwuWpU3E+KgqnB4VItkeipAlQQkICevfuDRcXF3h6eiIyMhLZ2dm669euXcPEiRPh5+cHBwcHtG7dGpMmTYJKpaqzXlEU8c4778DLywsODg4ICQnRax2QikYrYu6Px1DT3iOV5+b+eAwabePvTiKKIjZv3oyNGzfib3/7GwDAyckJK1asQOfOndG5c2d899130Gq1WLFiBbp06YJOnTohKSkJ58+fR0ZGBgBg6dKliI+Px7PPPotOnTph+fLlkNcx0+nkyZNYs2YNvvjiCwwfPhyPPPIIBg0ahOeffx4ymUzX1eXp6QmlUlljXadOnUJqaipWrFiBJ598Et26dcOqVatw6dIl3cBroKJbavny5ejVqxd69OiB2NhYbNmyBUDFcukqlQpPP/002rVrh06dOiEqKuqBu5hatmyJDz/8EO+88w6aNWuGv/3tb5g3bx7OnDnzQPU9/fTTUKvV+O2331BUVIQ1a9Zg9OjRD1QXEZHUTHGjaEkToMzMTMTExGD37t1IT09HWVkZQkNDUVRUBAC4fPkyLl++jCVLluDo0aNITk5GWloaxowZU2e9ixcvxocffojly5djz549cHJyQlhYGEpKSup8X2Pbm3utWsvPvUQAeaoS7M291mgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LUw/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eui0b3N3dER0djbCwMAwbNgzLli3TdY+dP39ed7/Ozs5YsGBBveKKiYlBfn4+Vq1ahcDAQPzvf/9D586dkZ6e3uB7tLGxwSuvvIKkpCT873//w6OPPoquXeu3OSkRkSkRNRoULEgAatp69O65ggUJRu8Ok3QQdFpamt5xcnIyPD09ceDAAfTv3x8BAQG6LhEAaNeuHd577z288sorKC8vh3UNexqJooilS5fi7bffRkREBADgyy+/hEKhwLp16/DCCy807k3VofBm/RKw+pZ7EAMHDkRiYiJsbW3h7e2t9wydnPSnRN+6dQs9e/bEqlWrqtVTOWC3oRwasMHmw7KputCfIOiNT0pKSsKkSZOQlpaG7777Dm+//TbS09PRq1cvZGVl6co1ZAC2i4sLhg0bhmHDhmH+/PkICwvD/PnzMXjw4AbHP3r0aPTt2xdHjx5l6w8Rma3i/QeqtfzoEUWU5+ejeP8BOPXtY7S4TGoMUGXXVl1fOJU7vNaU/AAVU5Hz8/MREhKiOyeXy9G3b1/s2rWrxveUlpZCrVbrvRqDp0v99n+qb7kH4eTkhPbt26N169a1PsNKPXr0wKlTp+Dp6Yn27dvrveRyOeRyOby8vLBnzx7de8rLy3HgwIFa6+zSpQu0Wi0yMzNrvF7ZAlXXOJpOnTqhvLxc73OvXr2K7Oxs+Pv713lPVXXv3h3x8fHYuXMnAgICsHr1alhbW+vd64POQBMEAR07dtS1aDZUZVfk0aNH8dJLLz1QHUQAAK0GyN0GHPm+4r9a6QaekuUpv3LFoOUMxWQSIK1Wi7i4OAQFBSEgIKDGMn/++SfmzZuHsWPH1lpP/t0sU6FQ6J1XKBS6a1UlJCTovtDlcjl8fHwe8C7q1sfXHV5ye9Q2zFYA4CWvmBJvCl5++WW0aNECERER2LZtG3Jzc5GRkYFJkybh4sWLAIDJkydj4cKFWLduHU6cOIEJEyZUW8PnXm3btkVUVBRGjx6NdevW6epcs2YNAKBNmzYQBAEbNmzAlStXcOvWrWp1dOjQAREREXj99dexfft2/P7773jllVfQsmVLXavf/eTm5iI+Ph67du3CuXPnsGnTJpw6dQqdOnWq8323b99GVlaW3isnJwdZWVmIiIjA999/j2PHjuH06dP473//iy+++KLeMdXk119/RV5eHtzc3B64DrJwx1KBpQHAyqeBH8ZU/HdpQMV5IiOwrmePQX3LGYrJJEAxMTE4evQovv322xqvq9VqDB06FP7+/roxK4YSHx8PlUqle124cMGg9VeSWQmYPayihaJqElR5PHuYv1HWA6oPR0dH/Pbbb2jdurVukPOYMWNQUlICV1dXAMCbb76JV199FVFRUQgMDISLiwuGDx9eZ72JiYn4+9//jgkTJqBjx454/fXXda0kLVu2xNy5czFjxgwoFArExsbWWEdSUhJ69uyJp59+GoGBgRBFET///HO1bq+67u3EiRMYMWIEHn30UYwdOxYxMTEYN25cne87efIkunfvrvcaN24cWrVqhbZt22Lu3Lno27cvevTogWXLlmHu3Ll466236hVTTSqn6BM9kGOpwJpRgPqy/nl1XsV5JkFkBI69esJaqQRqm2UrCLBWKuHYq6dR4xLEqou2SCA2Nhbr16/Hb7/9Bl9f32rXb968ibCwMDg6OmLDhg2wt6+9i+jMmTNo164dDh06pLdq74ABA/DYY4/VOq36Xmq1GnK5XNfddq+SkhLk5ubC19e3zjjqknY0D3N/PKY3INpLbo/Zw/wRHuD1QHUSSckQvxdkYFpNRUtP1eRHRwBcvYG4I4CVzKihkeWpnAUGQH8w9N2kqOWypXANDX34z6nj+7sqSQdBi6KIiRMnIiUlBRkZGTUmP2q1GmFhYbCzs0Nqaup9/3L19fWFUqnEli1bdAmQWq3Gnj17MH78+Ma4jQYLD/DCYH+lJCtBE5GFOLezjuQHAERAfaminO+TRguLLJNraCiwbCkKFiToDYi2ViigmBlvkOSnoSRNgGJiYrB69WqsX78eLi4uujE6crkcDg4OUKvVCA0NRXFxMb7++mu9AcoeHh66lXM7duyIhIQEDB8+HIIgIC4uDvPnz0eHDh3g6+uLWbNmwdvbG5GRkVLdajUyKwGB7ZpLHQYRNVW3CgxbjughuYaGwmXQoIpZYVeuwNrDA469ekKQSdMCKWkClJiYCADVNndMSkpCdHQ0Dh48qJvp0759e70yubm5aNu2LYCKVYPvXRxx2rRpKCoqwtixY3Hjxg088cQTSEtLY9M8EVkOZ8X9yzSkHJEBCDKZUae618UkxgCZmsYeA0TU1PD3wgTpxgDlATWuP88xQNT0NGQMkMnMAiMiIgOykgHhi+4e1DLvNHwhkx+yWEyAiIiaKv9ngJFfAq5VZpe6elec939GmriITICkY4CIiKiR+T8DdBxaMdvrVkHFmJ82/djyQxaPCRARUVNnJeNUd6Iq2AVGREREFocJEJm8OXPm6K3qLZXg4GDExcVJHQYRERkAEyALkp+fj8mTJ6N9+/awt7eHQqFAUFAQEhMTUVxcLHV4DywjIwOCINS5CauU9RERkenhGCCpaDVGHZR45swZBAUFwc3NDQsWLECXLl1gZ2eHI0eO4PPPP0fLli3xzDM1zwgpKyur9yajpuzOnTuwtbWVOgwiIjIBbAGSwrHUigXKVj4N/DCm4r9LAxp1Z+YJEybA2toa+/fvx8iRI9GpUyc88sgjiIiIwE8//YRhw4bpygqCgMTERDzzzDNwcnLCe++9B6Bi5e527drB1tYWfn5++Oqrr3TvOXv2LARBQFZWlu7cjRs3IAgCMjIyAPzVsrJlyxb06tULjo6O6NevH7Kzs/ViXbhwIRQKBVxcXHS7z9fm7NmzGDhwIACgWbNmEAQB0dHRACq6rGJjYxEXF4cWLVogLCzsvnHWVR8AaLVaTJs2De7u7lAqlZgzZ059fwRERGRCmAAZ27FUYM2o6psUqvMqzjdCEnT16lVs2rQJMTExcHJyqrGMIOgvlDZnzhwMHz4cR44cwejRo5GSkoLJkyfjzTffxNGjRzFu3Di89tpr2Lp1a4Pjeeutt/D+++9j//79sLa2xujRo3XX1qxZgzlz5mDBggXYv38/vLy88Omnn9Zal4+PD3744QcAFVui5OXlYdmyZbrrK1euhK2tLXbs2IHly5ffN7b61Ofk5IQ9e/Zg8eLFePfdd5Gent7gZ0BERNJiF5gxaTVA2nTUvCy9CEAA0mZUrNlhwO6w06dPQxRF+Pn56Z1v0aKFrnUlJiYGixYt0l176aWX8Nprr+mOX3zxRURHR2PChAkAgClTpmD37t1YsmSJrsWkvt577z0MGDAAADBjxgwMHToUJSUlsLe3x9KlSzFmzBiMGTMGADB//nxs3ry51lYgmUwGd3d3AICnpyfc3Nz0rnfo0AGLFy/WHZ89e7bO2O5XX9euXTF79mxd3R9//DG2bNmCwYMH1+veiYjINLAFyJjO7aze8qNHBNSXKsoZwd69e5GVlYXOnTujtLRU71qvXr30jo8fP46goCC9c0FBQTh+/HiDP7dr1666//fyqlihtrCwUPc5ffv21SsfGBjY4M+o1LNnzwd+b03ujR2oiL8ydiIiMh9sATKmWwWGLVdP7du3hyAI1cbaPPLIIwAABweHau+prausNlZWFbn0vXvrlpWV1Vj23gHVlV1vWq22QZ9XX1XvoyFx1qTqYHBBEBotdiIiajxsATImZ4Vhy9VT8+bNMXjwYHz88ccoKip6oDo6deqEHTt26J3bsWMH/P39AQAeHh4AgLy8PN31ewcaN+Rz9uzZo3du9+7ddb6ncmaXRqO5b/31ibMh9RERkXliC5AxtelXsQmhOg81jwMSKq636Wfwj/70008RFBSEXr16Yc6cOejatSusrKywb98+nDhx4r5dRf/85z8xcuRIdO/eHSEhIfjxxx+xdu1abN68GUBFK9Ljjz+OhQsXwtfXF4WFhXj77bcbHOfkyZMRHR2NXr16ISgoCKtWrcIff/yha62qSZs2bSAIAjZs2ICnnnoKDg4OcHZ2rrFsfeJsSH1ERGSe2AJkTFYyILxyoLFQ5eLd4/CFjbIeULt27XDo0CGEhIQgPj4e3bp1Q69evfDRRx9h6tSpmDdvXp3vj4yMxLJly7BkyRJ07twZn332GZKSkhAcHKwr88UXX6C8vBw9e/ZEXFwc5s+f3+A4n3/+ecyaNQvTpk1Dz549ce7cOYwfP77O97Rs2RJz587FjBkzoFAoEBsbW2f5+8XZ0PqIiMj8COK9gyEIAKBWqyGXy6FSqeDq6qp3raSkBLm5ufD19YW9vf2DfcCx1IrZYPcOiHZtWZH8+Ne8GCGRKTPI7wUR0UOq6/u7KnaBScH/mYqp7kZcCZqIiIj+wgRIKlYywPdJqaMgIiKySBwDRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAkdnJz8/H4MGD4eTkBDc3N6nDMZiMjAwIgoAbN25IGsecOXPw2GOPSRoDEVFjYwJkIaKjoyEIAv7xj39UuxYTEwNBEBAdHW38wB7ABx98gLy8PGRlZeHkyZNSh2NUgiBg3bp1JlsfEZG5YAIkEY1Wg335+/DzmZ+xL38fNFpNo3+mj48Pvv32W9y+fVt3rqSkBKtXr0br1q0b/fMNJScnBz179kSHDh3g6elpsHrv3LljsLqk1FTug4ioMTEBksDmc5sR9kMYRm8cjenbpmP0xtEI+yEMm89tbtTP7dGjB3x8fLB27VrdubVr16J169bo3r27XlmtVouEhAT4+vrCwcEB3bp1w/fff6+7rtFoMGbMGN11Pz8/LFu2TK+O6OhoREZGYsmSJfDy8kLz5s0RExODsrKyOuNMTExEu3btYGtrCz8/P3z11Ve6a23btsUPP/yAL7/8ss5Wq/LyckyaNAlubm5o3rw5pk+fjqioKERGRurKBAcHIzY2FnFxcWjRogXCwsIAAJmZmejTpw/s7Ozg5eWFGTNmoLy8XC+GpUuX6n3eY489hjlz5uiOBUHAihUrMHz4cDg6OqJDhw5ITU3Ve8/PP/+MRx99FA4ODhg4cCDOnj1b53Np27YtAGD48OEQBEF3XNlltWLFCr3NSO8XZ231Vfrqq6/Qtm1byOVyvPDCC7h582ad8RERmRMmQEa2+dxmTMmYgoLiAr3zhcWFmJIxpdGToNGjRyMpKUl3/MUXX+C1116rVi4hIQFffvklli9fjj/++ANvvPEGXnnlFWRmZgKoSJBatWqF//3vfzh27BjeeecdzJw5E2vWrNGrZ+vWrcjJycHWrVuxcuVKJCcnIzk5udb4UlJSMHnyZLz55ps4evQoxo0bh9deew1bt24FAOzbtw/h4eEYOXIk8vLyqiVdlRYtWoRVq1YhKSkJO3bsgFqtrrGrZ+XKlbC1tcWOHTuwfPlyXLp0CU899RR69+6N33//HYmJifjvf/+L+fPn3+/RVjN37lyMHDkShw8fxlNPPYWXX34Z165dAwBcuHABzz77LIYNG4asrCz83//9H2bMmFFnffv27QMAJCUlIS8vT3cMAKdPn8YPP/yAtWvXIisrq17x1VVfTk4O1q1bhw0bNmDDhg3IzMzEwoULG3L7RESmTaRqVCqVCEBUqVTVrt2+fVs8duyYePv27QbXW64pFwetGSQGJAfU+OqS3EUMWRMilmvKDXEbeqKiosSIiAixsLBQtLOzE8+ePSuePXtWtLe3F69cuSJGRESIUVFRoiiKYklJiejo6Cju3LlTr44xY8aIL774Yq2fERMTI44YMULvM9u0aSOWl/91P88995z4/PPP11pHv379xNdff13v3HPPPSc+9dRTuuN7Y62NQqEQ//Wvf+mOy8vLxdatW4sRERG6cwMGDBC7d++u976ZM2eKfn5+olar1Z375JNPRGdnZ1Gj0YiiKIpt2rQRP/jgA733devWTZw9e7buGID49ttv645v3bolAhB/+eUXURRFMT4+XvT399erY/r06SIA8fr167XeFwAxJSVF79zs2bNFGxsbsbCwUO98feOsqT5HR0dRrVbrzv3zn/8U+/btW2tcD/N7QURkKHV9f1fF3eCN6GDhwWotP/cSISK/OB8HCw+it7J3o8Tg4eGBoUOHIjk5GaIoYujQoWjRooVemdOnT6O4uBiDBw/WO3/nzh29rrJPPvkEX3zxBc6fP4/bt2/jzp071WYPde7cGTKZTHfs5eWFI0eO1Brf8ePHMXbsWL1zQUFBtbb01ESlUqGgoAB9+vTRnZPJZOjZsye0Wq1e2Z49e1b7/MDAQAiCoPf5t27dwsWLFxs0Vqpr1666/3dycoKrqysKCwt1n9O3b1+98oGBgfWuu6o2bdrAw8Pjgd9fVdu2beHi4qI79vLy0sVORNQUMAEyoivFVwxa7kGNHj0asbGxACqSmKpu3boFAPjpp5/QsmVLvWt2dnYAgG+//RZTp07F+++/j8DAQLi4uOBf//oX9uzZo1fexsZG71gQhGpJiJScnJwa/B4rKyuIoqh3rqZxTca895ruo75x1sTUf25ERA+LY4CMyMOxfv9Cr2+5BxUeHo47d+6grKxMN/D3Xv7+/rCzs8P58+fRvn17vZePjw8AYMeOHejXrx8mTJiA7t27o3379sjJyXno2Dp16oQdO3bonduxYwf8/f3rXYdcLodCodAb06LRaHDw4MF6ff6uXbv0EocdO3bAxcUFrVq1AlDRipaXl6e7rlarkZubW+/4Kj9n7969eud279593/fZ2NhAo6nfjMH6xNmQ+oiImhJJE6CEhAT07t0bLi4u8PT0RGRkJLKzs/XKfP755wgODoarq2u9F4mbM2cOBEHQe3Xs2LGR7qL+enj2gMJRAQFCjdcFCFA6KtHDs0ejxiGTyXD8+HEcO3ZMr3uqkouLC6ZOnYo33ngDK1euRE5ODg4ePIiPPvoIK1euBAB06NAB+/fvx8aNG3Hy5EnMmjVLL+F4UP/85z+RnJyMxMREnDp1Cv/+97+xdu1aTJ06tUH1TJw4EQkJCVi/fj2ys7MxefJkXL9+Xa9rqyYTJkzAhQsXMHHiRJw4cQLr16/H7NmzMWXKFFhZVfy6/O1vf8NXX32Fbdu24ciRI4iKiqrxOdblH//4B06dOoV//vOfyM7OxurVq+scHF6pbdu22LJlC/Lz83H9+vU6y9YnzobUR0TUlEiaAGVmZiImJga7d+9Geno6ysrKEBoaiqKiIl2Z4uJihIeHY+bMmQ2qu3PnzsjLy9O9tm/fbujwG0xmJcOMPhUzfaomQZXH0/tMh8yqYV+mD8LV1RWurq61Xp83bx5mzZqFhIQEdOrUCeHh4fjpp5/g6+sLABg3bhyeffZZPP/88+jbty+uXr2KCRMmPHRckZGRWLZsGZYsWYLOnTvjs88+Q1JSEoKDgxtUz/Tp0/Hiiy9i1KhRCAwMhLOzM8LCwnRTxGvTsmVL/Pzzz9i7dy+6deuGf/zjHxgzZgzefvttXZn4+HgMGDAATz/9NIYOHYrIyEi0a9euQfG1bt0aP/zwA9atW4du3bph+fLlWLBgwX3f9/777yM9PR0+Pj7Vli6oqj5xNqQ+IqKmRBCrDhKQ0JUrV+Dp6YnMzEz0799f71pGRgYGDhyI69ev33f7gzlz5mDdunX1ng5cWlqK0tJS3bFarYaPjw9UKlW1JKGkpAS5ubl666001OZzm7Fw70K9AdFKRyWm95mOkDYhD1Qn1U2r1aJTp04YOXIk5s2bJ3U4TY4hfi+IiB6WWq2GXC6v8fu7KpMaBK1SqQAA7u7uD13XqVOn4O3tDXt7ewQGBiIhIaHWGTwJCQmYO3fuQ39mfYW0CcFAn4E4WHgQV4qvwMPRAz08exil5cdSnDt3Dps2bcKAAQNQWlqKjz/+GLm5uXjppZekDo2IiEyAyQyC1mq1iIuLQ1BQEAICAh6qrr59+yI5ORlpaWlITExEbm4unnzyyVpXso2Pj4dKpdK9Lly48FCfXx8yKxl6K3vjqUeeQm9lbyY/BmZlZYXk5GT07t0bQUFBOHLkCDZv3oxOnTpJHRoREZkAk2kBiomJwdGjRw0yVmfIkCG6/+/atSv69u2LNm3aYM2aNRgzZky18nZ2drrp3dQ0+Pj4VJtNRkREVMkkEqDY2Fhs2LABv/32m26qsSG5ubnh0UcfxenTpw1eNxEREZkfSbvARFFEbGwsUlJS8Ouvv+pmGBnarVu3kJOTAy8vr0apn4iIiMyLpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++rSuTn5+PrKwsXevNkSNHkJWVpdtUEgAGDRqEjz/+WHc8depUZGZm4uzZs9i5cyeGDx8OmUyGF1980Xg3R0RERCZL0gQoMTERKpUKwcHB8PLy0r2+++47XZnly5eje/fueP311wEA/fv3R/fu3ZGamqork5OTgz///FN3fPHiRbz44ovw8/PDyJEj0bx5c+zevdugeyURERGR+TKpdYBMRV3rCHC9E6Lq+HtBRKagIesAmcw0eCIiIiJjYQJEBhcdHY3IyEjdcXBwMOLi4h6qTkPUYSyCIGDdunW1Xj979iwEQaj3SuVERGR4TIAsSHR0tG5zWFtbW7Rv3x7vvvsuysvLG/Vz165dW+/tJzIyMmrc9LYhdTSWezfZlclk8PHxwdixY/UG5ANAXl6e3lpURERkekxiHSBLJGo0KN5/AOVXrsDawwOOvXpCaOCO4g8iPDwcSUlJKC0txc8//4yYmBjY2NggPj5er9ydO3dga2trkM80xNYmhqjDEDp37ozNmzdDo9Hg+PHjGD16NFQqld7AfaVSKWGERERUH2wBkoB60yacHhSC81FRuDx1Ks5HReH0oBCoN21q9M+2s7ODUqlEmzZtMH78eISEhCA1NVXXbfXee+/B29sbfn5+AIALFy5g5MiRcHNzg7u7OyIiInD27FldfRqNBlOmTIGbmxuaN2+OadOmoeq4+qrdV6WlpZg+fTp8fHxgZ2eH9u3b47///S/Onj2LgQMHAgCaNWsGQRAQHR1dYx3Xr1/HqFGj0KxZMzg6OmLIkCE4deqU7npycjLc3NywceNGdOrUCc7OzggPD0deXp6uTEZGBvr06QMnJye4ubkhKCgI586dq/P5WVtbQ6lUomXLlggJCcFzzz2H9PR0vTJVu8D27t2L7t27w97eHr169cKhQ4eq1ZuamooOHTrA3t4eAwcOxMqVK6u1hG3fvh1PPvkkHBwc4OPjg0mTJqGoqKjOeImIqGZMgIxMvWkTLk2OQ3l+vt758oICXJocZ5Qk6F4ODg64c+cOAGDLli3Izs5Geno6NmzYgLKyMoSFhcHFxQXbtm3Djh07dIlE5Xvef/99JCcn44svvsD27dtx7do1pKSk1PmZo0aNwjfffIMPP/wQx48fx2effQZnZ2f4+Pjghx9+AABkZ2cjLy8Py5Ytq7GO6Oho7N+/H6mpqdi1axdEUcRTTz2FsrIyXZni4mIsWbIEX331FX777TecP38eU6dOBQCUl5cjMjISAwYMwOHDh7Fr1y6MHTsWgiDU+9mdPXsWGzdurLOl7NatW3j66afh7++PAwcOYM6cOboYKuXm5uLvf/87IiMj8fvvv2PcuHF466239Mrk5OQgPDwcI0aMwOHDh/Hdd99h+/btiI2NrXe8RNS0iRoNivbshWrDTyjasxeiRiN1SKZNpGpUKpUIQFSpVNWu3b59Wzx27Jh4+/btBterLS8XTw4IFo/5daz51bGTeHJAsKgtLzfEbVQTFRUlRkREVMSi1Yrp6eminZ2dOHXqVDEqKkpUKBRiaWmprvxXX30l+vn5iVqtVneutLRUdHBwEDdu3CiKoih6eXmJixcv1l0vKysTW7VqpfscURTFAQMGiJMnTxZFURSzs7NFAGJ6enqNMW7dulUEIF6/fl3v/L11nDx5UgQg7tixQ3f9zz//FB0cHMQ1a9aIoiiKSUlJIgDx9OnTujKffPKJqFAoRFEUxatXr4oAxIyMjHo8uQqzZ88WraysRCcnJ9He3l4EIAIQ//3vf+uVAyCmpKSIoiiKn332mdi8eXO9Py+JiYkiAPHQoUOiKIri9OnTxYCAAL063nrrLb3nMGbMGHHs2LF6ZbZt2yZaWVk90J9FQ3uY3wsieniqjRurfb+cHBAsqu7+XW0p6vr+rootQEZUvP9AtZYfPaKI8vx8FO8/0GgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LVm/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eKCwsBFAxpig6OhphYWEYNmwYli1bpuseO3/+vO5+nZ2dsWDBAl0dfn5+yMrKwr59+zB9+nSEhYVh4sSJdcbatWtXvbVxAgMD9cpkZ2ejd+/eeuf69Omjd/z7778jOTlZL66wsDBotVrk5ube95kRUdNlaj0L5oKDoI2o/MoVg5Z7EAMHDkRiYiJsbW3h7e0Na+u//gg4OTnplb116xZ69uyJVatWVavnQVfVdnBweKD3PQgbGxu9Y0EQ9MYnJSUlYdKkSUhLS8N3332Ht99+G+np6ejVq5feFPV7B2BXzp4DgIULF2Lo0KGYO3duo89Qu3XrFsaNG4dJkyZVu9a6detG/WwiMl2iRoOCBQlATWsaiyIgCChYkACXQYOMMtHGnLAFyIis65k01Lfcg3ByckL79u3RunVrveSnJj169MCpU6fg6emJ9u3b673kcjnkcjm8vLywZ88e3XvKy8tx4EDtLVhdunSBVqtFZmZmjdcrW6A0dfRdd+rUCeXl5Xqfe/XqVWRnZ8Pf37/Oe6qqe/fuiI+Px86dOxEQEIDVq1fD2tpa717rmoH29ttvY8mSJbh8+XKtsR4+fBglJSW6c7t379Yr4+fnh/379+ud27dvn95xjx49cOzYsWo/h/bt2xtsth4RmR9T6FkwV0yAjMixV09YK5VAbQNtBQHWSiUce/U0bmC1ePnll9GiRQtERERg27ZtyM3NRUZGBiZNmoSLFy8CACZPnoyFCxdi3bp1OHHiBCZMmFBtDZ97tW3bFlFRURg9ejTWrVunq3PNmjUAgDZt2kAQBGzYsAFXrlzBrVu3qtXRoUMHRERE4PXXX8f27dvx+++/45VXXkHLli0RERFRr3vLzc1FfHw8du3ahXPnzmHTpk04deoUOnXq1KBnFBgYiK5du+p1k93rpZdegiAIeP3113Hs2DH8/PPPWLJkiV6ZcePG4cSJE5g+fTpOnjyJNWvWIDk5GQB0g7KnT5+OnTt3IjY2FllZWTh16hTWr1/PQdBEFs4UehbMFRMgIxJkMihm3l1vp2oSdPdYMTPeZJopHR0d8dtvv6F169Z49tln0alTJ4wZMwYlJSW6PVbefPNNvPrqq4iKikJgYCBcXFwwfPjwOutNTEzE3//+d0yYMAEdO3bE66+/rpvO3bJlS8ydOxczZsyAQqGo9Qs+KSkJPXv2xNNPP43AwECIooiff/65WrdXXfd24sQJjBgxAo8++ijGjh2LmJgYjBs3rgFPqMIbb7yBFStW4MKFC9WuOTs748cff8SRI0fQvXt3vPXWW1i0aJFeGV9fX3z//fdYu3YtunbtisTERN0sMDs7OwBA165dkZmZiZMnT+LJJ59E9+7d8c4778Db27vB8RJR02EKPQvmipuh1qCxN0NVb9qEggUJes2W1kolFDPj4Roa+lCxU9Pw3nvvYfny5TUmVaaIm6ESSUPUaHB6UAjKCwpqHgckCLBWKNB+y2aT+cd1Y2rIZqgcBC0B19BQuAwaJMlK0GSaPv30U/Tu3RvNmzfHjh078K9//YvdW0R0X5U9C5cmx1X0JNybBJlgz4IpYQIkEUEmg1PfPvcvSBbh1KlTmD9/Pq5du4bWrVvjzTffrLY9CRFRTVxDQ4FlS6v3LCgU7FmoA7vAatDYXWBETQ1/L4ikJ9Uek6aEXWBEREQWhj0LDcNZYA+IDWdEf+HvAxGZGyZADVQ5zbq4uFjiSIhMR+XvQ32XISAikhq7wBpIJpPBzc1Nt6eUo6Njg3YQJ2pKRFFEcXExCgsL4ebmBpmFjTcgIvPFBOgBKJVKANAlQUSWzs3NTfd7QURkDpgAPQBBEODl5QVPT0+UlZVJHQ6RpGxsbNjyQ0RmhwnQQ5DJZPyLn4iIyAxxEDQRERFZHCZAREREZHGYABEREZHF4RigGlQu6qZWqyWOhIiIiOqr8nu7PouzMgGqwc2bNwEAPj4+EkdCREREDXXz5k3I5fI6y3Az1BpotVpcvnwZLi4uBl/kUK1Ww8fHBxcuXLjvRm1UOz5Hw+BzNAw+R8Pgc3x4lv4MRVHEzZs34e3tDSurukf5sAWoBlZWVmjVqlWjfoarq6tF/uE0ND5Hw+BzNAw+R8Pgc3x4lvwM79fyU4mDoImIiMjiMAEiIiIii8MEyMjs7Owwe/Zs2NnZSR2KWeNzNAw+R8PgczQMPseHx2dYfxwETURERBaHLUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQEb0ySefoG3btrC3t0ffvn2xd+9eqUMyKwkJCejduzdcXFzg6emJyMhIZGdnSx2W2Vu4cCEEQUBcXJzUoZidS5cu4ZVXXkHz5s3h4OCALl26YP/+/VKHZVY0Gg1mzZoFX19fODg4oF27dpg3b1699nKyZL/99huGDRsGb29vCIKAdevW6V0XRRHvvPMOvLy84ODggJCQEJw6dUqaYE0UEyAj+e677zBlyhTMnj0bBw8eRLdu3RAWFobCwkKpQzMbmZmZiImJwe7du5Geno6ysjKEhoaiqKhI6tDM1r59+/DZZ5+ha9euUodidq5fv46goCDY2Njgl19+wbFjx/D++++jWbNmUodmVhYtWoTExER8/PHHOH78OBYtWoTFixfjo48+kjo0k1ZUVIRu3brhk08+qfH64sWL8eGHH2L58uXYs2cPnJycEBYWhpKSEiNHasJEMoo+ffqIMTExumONRiN6e3uLCQkJEkZl3goLC0UAYmZmptShmKWbN2+KHTp0ENPT08UBAwaIkydPljokszJ9+nTxiSeekDoMszd06FBx9OjReueeffZZ8eWXX5YoIvMDQExJSdEda7VaUalUiv/61790527cuCHa2dmJ33zzjQQRmia2ABnBnTt3cODAAYSEhOjOWVlZISQkBLt27ZIwMvOmUqkAAO7u7hJHYp5iYmIwdOhQvT+XVH+pqano1asXnnvuOXh6eqJ79+74z3/+I3VYZqdfv37YsmULTp48CQD4/fffsX37dgwZMkTiyMxXbm4u8vPz9X635XI5+vbty++ce3AzVCP4888/odFooFAo9M4rFAqcOHFCoqjMm1arRVxcHIKCghAQECB1OGbn22+/xcGDB7Fv3z6pQzFbZ86cQWJiIqZMmYKZM2di3759mDRpEmxtbREVFSV1eGZjxowZUKvV6NixI2QyGTQaDd577z28/PLLUodmtvLz8wGgxu+cymvEBIjMVExMDI4ePYrt27dLHYrZuXDhAiZPnoz09HTY29tLHY7Z0mq16NWrFxYsWAAA6N69O44ePYrly5czAWqANWvWYNWqVVi9ejU6d+6MrKwsxMXFwdvbm8+RGhW7wIygRYsWkMlkKCgo0DtfUFAApVIpUVTmKzY2Fhs2bMDWrVvRqlUrqcMxOwcOHEBhYSF69OgBa2trWFtbIzMzEx9++CGsra2h0WikDtEseHl5wd/fX+9cp06dcP78eYkiMk///Oc/MWPGDLzwwgvo0qULXn31VbzxxhtISEiQOjSzVfm9wu+cujEBMgJbW1v07NkTW7Zs0Z3TarXYsmULAgMDJYzMvIiiiNjYWKSkpODXX3+Fr6+v1CGZpUGDBuHIkSPIysrSvXr16oWXX34ZWVlZkMlkUodoFoKCgqotw3Dy5Em0adNGoojMU3FxMays9L+KZDIZtFqtRBGZP19fXyiVSr3vHLVajT179vA75x7sAjOSKVOmICoqCr169UKfPn2wdOlSFBUV4bXXXpM6NLMRExOD1atXY/369XBxcdH1Zcvlcjg4OEgcnflwcXGpNm7KyckJzZs353iqBnjjjTfQr18/LFiwACNHjsTevXvx+eef4/PPP5c6NLMybNgwvPfee2jdujU6d+6MQ4cO4d///jdGjx4tdWgm7datWzh9+rTuODc3F1lZWXB3d0fr1q0RFxeH+fPno0OHDvD19cWsWbPg7e2NyMhI6YI2NVJPQ7MkH330kdi6dWvR1tZW7NOnj7h7926pQzIrAGp8JSUlSR2a2eM0+Afz448/igEBAaKdnZ3YsWNH8fPPP5c6JLOjVqvFyZMni61btxbt7e3FRx55RHzrrbfE0tJSqUMzaVu3bq3x78OoqChRFCumws+aNUtUKBSinZ2dOGjQIDE7O1vaoE2MIIpcbpOIiIgsC8cAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABGRxYmOjuaWAEQWjgkQETWK6OhoCIJQ7RUeHi51aFi2bBmSk5OlDgMAIAgC1q1bJ3UYRBaHm6ESUaMJDw9HUlKS3jk7OzuJogE0Gg0EQYBcLpcsBiIyDWwBIqJGY2dnB6VSqfdq1qwZMjIyYGtri23btunKLl68GJ6enigoKAAABAcHIzY2FrGxsZDL5WjRogVmzZqFe7cvLC0txdSpU9GyZUs4OTmhb9++yMjI0F1PTk6Gm5sbUlNT4e/vDzs7O5w/f75aF1hwcDAmTpyIuLg4NGvWDAqFAv/5z39QVFSE1157DS4uLmjfvj1++eUXvfs7evQohgwZAmdnZygUCrz66qv4888/9eqdNGkSpk2bBnd3dyiVSsyZM0d3vW3btgCA4cOHQxAE3TERNT4mQERkdMHBwYiLi8Orr74KlUqFQ4cOYdasWVixYgUUCoWu3MqVK2FtbY29e/di2bJl+Pe//40VK1borsfGxmLXrl349ttvcfjwYTz33HMIDw/HqVOndGWKi4uxaNEirFixAn/88Qc8PT1rjGnlypVo0aIF9u7di4kTJ2L8+PF47rnn0K9fPxw8eBChoaF49dVXUVxcDAC4ceMG/va3v6F79+7Yv38/0tLSUFBQgJEjR1ar18nJCXv27MHixYvx7rvvIj09HQCwb98+AEBSUhLy8vJ0x0RkBBLvRk9ETVRUVJQok8lEJycnvdd7770niqIolpaWio899pg4cuRI0d/fX3z99df13j9gwACxU6dOolar1Z2bPn262KlTJ1EURfHcuXOiTCYTL126pPe+QYMGifHx8aIoimJSUpIIQMzKyqoWW0REhN5nPfHEE7rj8vJy0cnJSXz11Vd15/Ly8kQA4q5du0RRFMV58+aJoaGhevVeuHBBBCBmZ2fXWK8oimLv3r3F6dOn644BiCkpKbU8RSJqLBwDRESNZuDAgUhMTNQ75+7uDgCwtbXFqlWr0LVrV7Rp0wYffPBBtfc//vjjEARBdxwYGIj3338fGo0GR44cgUajwaOPPqr3ntLSUjRv3lx3bGtri65du9431nvLyGQyNG/eHF26dNGdq2yZKiwsBAD8/vvv2Lp1K5ydnavVlZOTo4ur6md7eXnp6iAi6TABIqJG4+TkhPbt29d6fefOnQCAa9eu4dq1a3Bycqp33bdu3YJMJsOBAwcgk8n0rt2blDg4OOglUbWxsbHROxYEQe9cZR1arVb3+cOGDcOiRYuq1eXl5VVnvZV1EJF0mAARkSRycnLwxhtv4D//+Q++++47REVFYfPmzbCy+mto4p49e/Tes3v3bnTo0AEymQzdu3eHRqNBYWEhnnzySWOHjx49euCHH35A27ZtYW394H+V2tjYQKPRGDAyIqoPDoImokZTWlqK/Px8vdeff/4JjUaDV155BWFhYXjttdeQlJSEw4cP4/3339d7//nz5zFlyhRkZ2fjm2++wUcffYTJkycDAB599FG8/PLLGDVqFNauXYvc3Fzs3bsXCQkJ+Omnnxr93mJiYnDt2jW8+OKL2LdvH3JycrBx40a89tprDUpo2rZtiy1btiA/Px/Xr19vxIiJ6F5sASKiRpOWlqbXHQQAfn5+eOmll3Du3Dls2LABQEWX0eeff44XX3wRoaGh6NatGwBg1KhRuH37Nvr06QOZTIbJkydj7NixurqSkpIwf/58vPnmm7h06RJatGiBxx9/HE8//XSj35u3tzd27NiB6dOnIzQ0FKWlpWjTpg3Cw8P1WrHu5/3338eUKVPwn//8By1btsTZs2cbL2gi0hFE8Z5FNYiITERwcDAee+wxLF26VOpQiKgJYhcYERERWRwmQERERGRx2AVGREREFoctQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVmc/wcH7wnUSd3QtwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABieElEQVR4nO3deVxUVf8H8M9lkB0GUZkBRSRRFFFTUUNK8ZEAMwPryXYh/aWPgkpmKpaluaBmpW1Y+QRWWvqUKFmhuEDuO6mpqIQ7oLnMKAjCzP39gUwOm6DD3Bnn83695mX33DNnvvcG3O/cc+45giiKIoiIiIgsiJXUARAREREZGxMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOJYSx2AKdJqtbhw4QKcnZ0hCILU4RAREVE9iKKI69evw9PTE1ZWdd/jYQJUgwsXLsDLy0vqMIiIiOgenD17Fq1ataqzDhOgGjg7OwOoOIEuLi4SR0NERET1oVar4eXlpbuO14UJUA0qu71cXFyYABEREZmZ+gxf4SBoIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4nAnamLQa4PR24EYh4KQAvPsAVjKpoyIiIrI4kt4BSkxMRM+ePeHs7Ax3d3dERUUhJydHr05ISAgEQdB7/ec//6mzXVEU8c4778DDwwP29vYIDQ3FiRMnGvNQ7u5IGrAwAFj6JPDTiIp/FwZUlBMREZFRSZoAZWVlITY2Fjt37kRGRgbKysoQFhaGoqIivXqvvfYa8vPzda/58+fX2e78+fPx8ccfY/Hixdi1axccHR0RHh6OkpKSxjyc2h1JA1YOA9QX9MvV+RXlTIKIiIiMStIusPT0dL3tlJQUuLu7Y9++fejbt6+u3MHBAUqlsl5tiqKIhQsX4u2330ZkZCQA4JtvvoFCocDq1avx/PPPG+4A6kOrAdInAxBr2CkCEID0KUCHQewOIyIiMhKTGgStUqkAAG5ubnrly5YtQ/PmzREQEICEhAQUFxfX2kZeXh4KCgoQGhqqK5PL5ejduzd27NhR43tKS0uhVqv1XgZzenv1Oz96REB9vqIeERERGYXJDILWarWIj49HcHAwAgICdOUvvvgivL294enpiYMHD2Ly5MnIycnBqlWramynoKAAAKBQKPTKFQqFbl9ViYmJmDFjhoGOpIobhYatR0RERPfNZBKg2NhYHD58GFu3btUrHzlypO6/O3fuDA8PDwwYMAC5ublo27atQT47ISEBEyZM0G2r1Wp4eXkZpG04Ke5epyH1iIiI6L6ZRBdYXFwc1q5di82bN6NVq1Z11u3duzcA4OTJkzXurxwrVFiof0elsLCw1nFEtra2cHFx0XsZjHcfwMUTgFBLBQFwaVlRj4iIiIxC0gRIFEXExcUhNTUVmzZtgo+Pz13fk52dDQDw8PCocb+Pjw+USiU2btyoK1Or1di1axeCgoIMEneDWMmAiHm3N6omQbe3I+ZyADQREZERSZoAxcbG4rvvvsPy5cvh7OyMgoICFBQU4ObNmwCA3NxczJw5E/v27cOpU6eQlpaGYcOGoW/fvujSpYuunQ4dOiA1NRUAIAgC4uPjMWvWLKSlpeHQoUMYNmwYPD09ERUVJcVhAv5PAUO/AVyqJG0unhXl/k9JExcREZGFknQMUFJSEoCKyQ7vlJycjJiYGNjY2GDDhg1YuHAhioqK4OXlhWeeeQZvv/22Xv2cnBzdE2QAMGnSJBQVFWHkyJG4du0aHn30UaSnp8POzq7Rj6lW/k9VPOrOmaCJiIgkJ4iiWNMENRZNrVZDLpdDpVIZdjwQERERNZqGXL9NYhA0ERERkTExASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIotjLXUAlkSjFbE77wouXi+Bu7Mdevm4QWYlSB2WHsZI1DDm8PNoDjESGRsTICNJP5yPGT8fQb6qRFfmIbfDu4P9ERHgIWFk/0g/nI+ZaYfgdeMPuOMaLsIVZ526YtpTnU0qRlM/jwAvOIZi6ufRHH4ezSFGIikIoiiKUgdhatRqNeRyOVQqFVxcXO67vfTD+Rj93X5UPdGVf8aTXu4u+R+i9MP5WL18Md5p8g08hSu68guiG94rG4aoF/9jEjGa+nkEeMExFFM/j+bw82gOMRIZUkOu3xwD1Mg0WhEzfj5S7Q8QAF3ZjJ+PQKOVLg/VaEVkrv4anzdZCCWu6O1T4go+b7IQmau/ljxGUz+PwD8XnDsv2gBQoCrB6O/2I/1wvkSRmRdTP4/m8PNoDjESSYkJUCPbnXel2h/xO4kA8lUl2J13pdY6jW137iWMK1sCAKjau1C5Pa7sv9ide8nIkf3DHM4jLziGYQ7n0Rx+Hs0hRiIpSZoAJSYmomfPnnB2doa7uzuioqKQk5NTY11RFDFw4EAIgoDVq1fX2W5MTAwEQdB7RURENMIR3N3F67X/AbqXeo1Bc2obPIUr1ZKfSlYC4ClchubUNuMGdgdzOI+84BiGOZxHc/h5NIcY76TRitiRexlrss9jR+5lflG4BzyHDSPpIOisrCzExsaiZ8+eKC8vx9SpUxEWFoYjR47A0dFRr+7ChQshCPUf/BgREYHk5GTdtq2trcHibgh3ZzuD1msM7sI1g9ZrDOZwHs3tgmOqzOE8msPPoznEWMnUx3uZA57DhpM0AUpPT9fbTklJgbu7O/bt24e+ffvqyrOzs/HBBx9g79698PCo3/9IW1tbKJVKg8Z7L3r5uMFDbocCVUmNt/QFAEp5xdMtUmn7UFtgaz3rScQczqM5XXBMmTmcR3P4eTSHGIHaB2pXjvfiQO274zm8NyY1BkilUgEA3Nz++YUsLi7Giy++iM8++6xBCU1mZibc3d3h5+eH0aNH4/Lly7XWLS0thVqt1nsZisxKwLuD/QH88+RFpcrtdwf7S/por6xNMG7aK1Hb3VKtCNy0V0LWJti4gd3BHM5j5QWntggEVHwjk/qCY+rM4Tyaw8+jOcRoDuO9Kplq95I5nUMAgFYD5G0BDv1Y8a9WI1koJpMAabVaxMfHIzg4GAEBAbry119/HX369EFkZGS924qIiMA333yDjRs3Yt68ecjKysLAgQOh0dR8ohMTEyGXy3UvLy+v+z4evXgCPJD0cnco5frfWJVyO9PIzK1ksB/8PgRBgLbKLi0AQRBgP/h9wEomRXQ6pn4ezeGCYw7M5Tya+s8jYPoxmsN4L6DiDsuj8zbhha92YvwP2Xjhq514dN4myZ9GBMznHAIAjqQBCwOApU8CP42o+HdhQEW5BExmHqDRo0fjt99+w9atW9GqVSsAQFpaGt544w0cOHAATk5OACouxqmpqYiKiqp323/99Rfatm2LDRs2YMCAAdX2l5aWorS0VLetVqvh5eVlsHmAKpn6pG44kgYxfTIE9QVdkejSEkLEXMD/KQkD02fq59Fc+uJ5Hg3D1M8jYLoxrsk+j/E/ZN+13qLnH0bkwy0bP6AamPpcSuZwDgFUJDkrhwG1ncmh3xjkOtOQeYBMYibouLg4rF27Fr///rsu+QGATZs2ITc3F66urnr1n3nmGTz22GPIzMysV/sPPfQQmjdvjpMnT9aYANna2hplkLTMSkBQ22aN/jn3zP8pCB0GAae3AzcKAScFBO8+kt/5qcrUz2NEgAce91ea5AWnkjkkF+ZwHgHT/3kETDdGUx/vdbfuJQEV3UuP+ysl+7k09XMIoKKbK30yqic/gO5Mpk8BOgwy6vVG0gRIFEWMHTsWqampyMzMhI+Pj97+KVOm4P/+7//0yjp37oyPPvoIgwcPrvfnnDt3DpcvX673AGqLZiUDfB6TOgqzZ6oXHMC8Bkya8nmk+2fqA7Ub0r0k1c+pqZ9DABVfqu/oWahOBNTnK+oZ8foj6Rig2NhYfPfdd1i+fDmcnZ1RUFCAgoIC3Lx5EwCgVCoREBCg9wKA1q1b6yVLHTp0QGpqKgDgxo0bePPNN7Fz506cOnUKGzduRGRkJHx9fREeHm78gyQyIWY3YJIeaKY+3sscpmQw9XMIoKJHwZD1DETSBCgpKQkqlQohISHw8PDQvVasWNGgdnJycnRPkMlkMhw8eBBPPfUU2rdvjxEjRqBHjx7YsmWLZHMBEZkKsxowSRbBlAdqm0X3Ekz7HAKAxtHdoPUMRfIuMEO8584ye3t7rFu37r7iInpQmcM3WrI8pjreyyy6l24z1XMIALs1HeAtukGJmlcc0IpAAZrhtKYDgowYl0kMgiYi4zCXb7RkeUxxvFdl99Lo7/ZDgP4QXpPpXrqDKZ5DALhYVIaUsmFIarIQWlF/zcnK3vYZZa/giaIyo8ZlMvMAEVHjM4dJBolMial3L5kDd2c7rNP2wuiyeBRA/29LAZphdFk81ml7Gf2LF+8AEVkQc/tGS2QKTLl7yRxUfvFar+qFjNJA9LI6Bndcw0W4Yre2A0RYSfLFy2QmQjQlDZlIicgcmcM8QET04KicfgOo+YuXoe6mNeT6zQSoBkyAyBKY6uzAZker0Zs8FCY4eSiRKTDGFy8mQPeJCRAR1cuRtIoZbu+c5M3FE4iYZ1LLxxCZisb+4mV2S2EQEZmd2tY2UudXlBtobSOiB4kpPanGp8CIiBrqrmsboWJtI63GmFERUQMwASIiaqiGrG1ERCaJCRARUUOZ6NpGRFR/TICIiBrKSWHYekRkdEyAiIgayrtPxdNedc2p7dKyoh4RmSQmQEREDWUlq3jUHUD1JOj2dsRczgdEZMKYABER3Qv/pyoedXepMoGbiycfgScyA5wHiIjoXvk/BXQYxJmgicwQEyAiovthJQN8HpM6CiJqIHaBERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBZH0gQoMTERPXv2hLOzM9zd3REVFYWcnJwa64qiiIEDB0IQBKxevbrOdkVRxDvvvAMPDw/Y29sjNDQUJ06caIQjICIiInMkaQKUlZWF2NhY7Ny5ExkZGSgrK0NYWBiKioqq1V24cCEEQahXu/Pnz8fHH3+MxYsXY9euXXB0dER4eDhKSkoMfQhERERkhgRRFEWpg6h06dIluLu7IysrC3379tWVZ2dn48knn8TevXvh4eGB1NRUREVF1diGKIrw9PTEG2+8gYkTJwIAVCoVFAoFUlJS8Pzzz981DrVaDblcDpVKBRcXF4McGxERETWuhly/TWoMkEqlAgC4ubnpyoqLi/Hiiy/is88+g1KpvGsbeXl5KCgoQGhoqK5MLpejd+/e2LFjR43vKS0thVqt1nsRERHRg8tkEiCtVov4+HgEBwcjICBAV/7666+jT58+iIyMrFc7BQUFAACFQqFXrlAodPuqSkxMhFwu1728vLzu8SiIiIjIHFhLHUCl2NhYHD58GFu3btWVpaWlYdOmTThw4ECjfnZCQgImTJig21ar1UyCiIiIHmAmcQcoLi4Oa9euxebNm9GqVStd+aZNm5CbmwtXV1dYW1vD2roiX3vmmWcQEhJSY1uV3WSFhYV65YWFhbV2odna2sLFxUXvRURERA8uSRMgURQRFxeH1NRUbNq0CT4+Pnr7p0yZgoMHDyI7O1v3AoCPPvoIycnJNbbp4+MDpVKJjRs36srUajV27dqFoKCgRjsWIiIiMh+SdoHFxsZi+fLlWLNmDZydnXVjdORyOezt7aFUKmu8a9O6dWu9ZKlDhw5ITEzEkCFDIAgC4uPjMWvWLLRr1w4+Pj6YNm0aPD09a31yjIiIiCyLpAlQUlISAFTrzkpOTkZMTEy928nJydE9QQYAkyZNQlFREUaOHIlr167h0UcfRXp6Ouzs7AwRNhEREZk5k5oHyFRwHiAiIiLzY7bzABEREREZAxMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsjrXUARAREUGrAU5vB24UAk4KwLsPYCWTOip6gDEBIiIiaR1JA9InA+oL/5S5eAIR8wD/p6SLix5o7AIjIiLpHEkDVg7TT34AQJ1fUX4kTZq46IHHBIiIiKSh1VTc+YFYw87bZelTKurR3Wk1QN4W4NCPFf/yvNWJXWBERCSN09ur3/nRIwLq8xX1fB4zWlhmid2IDcY7QEREJI0bhYatZ6nYjXhPeAfIiDRaDfZf3I9LxZfQwqEFurt3h8zEnnIwixjLb2H/oW9xSX0GLVxao3vnVyCztpE6LD1mcR4Zo0EwxvvgpND9pwbAfjtbXJLJ0EKjQfeSUshqqCcVkz2Hd3Qj1nwOhYpuxA6DTOKpOlM6j0yAjGTD6Q2Yu3suCov/+SajcFBgSq8pCPUOlTCyf5hFjFsTMff4MhTKBF2Z4sBHmNL+JYQ+miBhZP8wi/PIGA2CMd4n7z6Aiyc2lF/D3GauKLT+55KkKC/HlMvXEGrdtKKehEz6HN7uRtzgYI+5zZrWcA6vItREuhFN7TwKoijWNPrMoqnVasjlcqhUKri4uNx3extOb8CEzAkQqwz0E1BxEf8w5EPJf4nMIsatiZhwcllFhMI/CZBw+0f4Q1/pkyCzOI+M0SAYo2GY+u+1yZ/DQz9iw29xmODevPZzePFvhA78FOj8b2lihPHOY0Ou3xwD1Mg0Wg3m7p5b7X86AF3ZvN3zoJFwtL5ZxFh+C3OPV/8jCQDi7e15x5dBU37L+MHdZhbnkTEaBGM0DI1Wg7n5Gyt+h2v6vRYEzMvfJFmMZnEOHVtgbrOmdf9tbNYUGscWxg/uNlM9j5ImQImJiejZsyecnZ3h7u6OqKgo5OTk6NUZNWoU2rZtC3t7e7Ro0QKRkZE4duxYne3GxMRAEAS9V0RERGMeSq32X9yvd7uvKhEiCooLsP/ifiNGpc8sYjz0bUW3V5Vf8EqiIKBAJmD/oW+NHNk/zOI8MkaDYIyGcfcYIWmMZnEO7Wwrur3q+ttobY39drZGjuwfpnoeJU2AsrKyEBsbi507dyIjIwNlZWUICwtDUVGRrk6PHj2QnJyMo0ePYt26dRBFEWFhYdBo6s4UIyIikJ+fr3t9//33jX04NbpUfMmg9RqDWcSoPmPQeo3BLM4jYzQIxmgYph6jqccHAJdKrhi0XmMw1fMo6SDo9PR0ve2UlBS4u7tj37596Nu3LwBg5MiRuv1t2rTBrFmz0LVrV5w6dQpt27attW1bW1solcp6xVFaWorS0lLdtlqtbshh1KmFQ/1uO9a3XmMwixhdWhu0XmMwi/PIGA2CMRqGqcdo6vE15LMZY3UmNQZIpVIBANzc3GrcX1RUhOTkZPj4+MDLy6vOtjIzM+Hu7g4/Pz+MHj0aly9frrVuYmIi5HK57nW3thuiu3t3KBwUuoFeVQkQoHRQort7d4N9ZkOZRYydX4FCI+oG9VUliCKUGhHdO79i5Mj+YRbnkTEaxJ0xCloR/qe1CP5TC//TWgha0eRirAljvDtTjw9gjPfDZBIgrVaL+Ph4BAcHIyAgQG/f559/DicnJzg5OeG3335DRkYGbGxqn/clIiIC33zzDTZu3Ih58+YhKysLAwcOrLXbLCEhASqVSvc6e/aswY5LZiXDlF5TAKDa//zK7cm9Jks6n4RZxGhtgyntX6qIqUoSVLk9uf1Lks4HZBbnkTEaRGWMvXK0+OxzDaYv12J8mhbTl1ds98rRmkyMgOmfxztjqmQKMZp6fABjvB8m8xj86NGj8dtvv2Hr1q1o1aqV3j6VSoWLFy8iPz8fCxYswPnz57Ft2zbY2dnVq+2//voLbdu2xYYNGzBgwIC71jf0Y/BAzfMfKB2UmNxrsuSPoVYyixhrmAdIqREx2cTnATK588gY75t6/XqcGzceAPT+pFf+QW318SK4hIUZPa6qTP08AqYfo6nHBzDGSg25fptEAhQXF4c1a9bg999/h4+PT511b926haZNm2LJkiV44YUX6v0ZLVq0wKxZszBq1Ki71m2MBAgwrRkwa2MWMXImaINgjPdO1GhwckAoygsKaq4gCLBWKOC7cQMEmfTxmup5vJOpx2jq8QGMEWjY9VvSQdCiKGLs2LFITU1FZmbmXZOfyveIoqg3aPluzp07h8uXL8PDw+N+wr1vViLgf1pE+SUR1i1EWEk3Jq1WMisZeip7Sh1GnWTWNujZbYTUYdTJLM4jY7xnxXv31Z78AIAoorygAMV798Gxdy/jBVYLUz2PdzL1GE09PoAxNpSkCVBsbCyWL1+ONWvWwNnZGQW3/6DI5XLY29vjr7/+wooVKxAWFoYWLVrg3LlzmDt3Luzt7fHEE0/o2unQoQMSExMxZMgQ3LhxAzNmzMAzzzwDpVKJ3NxcTJo0Cb6+vggPD5fqUKFevx6FcxL1/mhaK5VQTE0widvkRFR/5Zfq97hufeuRGdBqKpaTuFFYsTaZdx+TWFuL7p2kCVBSUhIAICQkRK88OTkZMTExsLOzw5YtW7Bw4UJcvXoVCoUCffv2xfbt2+Hu7q6rn5OTo3uCTCaT4eDBg1i6dCmuXbsGT09PhIWFYebMmbC1lWYiKPX69Tg/Ph6o0ttYXlhYUb5oIZMgIjNi3aJ+t2/rW49M3JG0igVH71xt3cUTiJgH+D8lXVx0X0xiDJCpMeQYIHMbK0BEd6f7vS4srPbFBgB/rx8kR9KAlcOAass43B76PvQbJkEmhGuBmZCGjBUgIvMgyGRQTL391GHVJQhubyumJjD5MXdaTcWdnxrWsNKVpU+pqEdmhwlQI+NYAaIHk0tYGFouWghrhUKv3FqhQEt2az8YTm/X7/aqRgTU5yvqkdmRdAyQJeBYAaIHl0tYGJwHDKi403vpEqxbtIBDYA/e+XlQ3Kh9Ac97qkcmhQlQI3MI7AFrpfKuYwUcAnsYPzgium+CTGYSj7pTI3BS3L1OQ+qRSWEXWCPjWAEiIjPl3afiaa9a1rACBMClZUU9MjtMgIyAYwWIiMyQlaziUXcA1ZOg29sRczkfkJniY/A1aKylMESNhmMFiIjMTY3zALWsSH74CLxJMbu1wExNYyVARERkpjgTtFkwm7XAiIiIzIKVDPB5TOooyIA4BoiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLc18TIZaUlGDFihUoKirC448/jnbt2hkqLiIiIqJGU+8EaMKECSgrK8Mnn3wCALh16xaCgoLw559/wsHBAZMmTUJGRgaCgoIaLVgiIiIiQ6h3F9j69evx+OOP67aXLVuG06dP48SJE7h69SqeffZZzJo1q1GCJCIiIjKkeidAZ86cgb+/v257/fr1+Pe//w1vb28IgoDx48fjwIEDjRIkERERkSHVOwGysrLCnQvH79y5E4888ohu29XVFVevXjVsdERERESNoN4JUMeOHfHzzz8DAP7880+cOXMG/fv31+0/ffo0FAqF4SMkIiIiMrB6D4KeNGkSnn/+efzyyy/4888/8cQTT8DHx0e3/9dff0WvXr0aJUgiIiIiQ6r3HaAhQ4bg119/RZcuXfD6669jxYoVevsdHBwwZswYgwdIREREZGiCeOfAnjq89957mDhxIhwcHBo7Jsmp1WrI5XKoVCq4uLhIHQ4RERHVQ0Ou3/W+AzRjxgzcuHHjvoMjIiIiklq9E6B63igiIiIiMnkNWgtMEITGioOIiIjIaBq0Flj79u3vmgRduXLlvgIiIiIiamwNSoBmzJgBuVzeWLEQERERGUWDEqDnn38e7u7ujRULERERkVHUewwQx/8QERHRg4JPgREREZHFqXcCpNVqDd79lZiYiJ49e8LZ2Rnu7u6IiopCTk6OXp1Ro0ahbdu2sLe3R4sWLRAZGYljx47V2a4oinjnnXfg4eEBe3t7hIaG4sSJEwaNnYiIiMxXgx6DN7SsrCzExsZi586dyMjIQFlZGcLCwlBUVKSr06NHDyQnJ+Po0aNYt24dRFFEWFgYNBpNre3Onz8fH3/8MRYvXoxdu3bB0dER4eHhKCkpMcZhERERkYmr91IYxnDp0iW4u7sjKysLffv2rbHOwYMH0bVrV5w8eRJt27attl8URXh6euKNN97AxIkTAQAqlQoKhQIpKSl4/vnn7xoHl8IwbaJGg+K9+1B+6RKsW7SAQ2APCDKZ1GEREZHEGnL9btBTYI1NpVIBANzc3GrcX1RUhOTkZPj4+MDLy6vGOnl5eSgoKEBoaKiuTC6Xo3fv3tixY0eNCVBpaSlKS0t122q1+n4OgxqRev16FM5JRHlBga7MWqmEYmoCXMLCJIyMyHTxSwNRdZJ2gd1Jq9UiPj4ewcHBCAgI0Nv3+eefw8nJCU5OTvjtt9+QkZEBGxubGtspuH1hVCgUeuUKhUK3r6rExETI5XLdq7bkiqSlXr8e58fH6yU/AFBeWIjz4+OhXr9eosiITJd6/XqcHBCKM9HRuDBxIs5ER+PkgFD+vpDFM5kEKDY2FocPH8YPP/xQbd9LL72EAwcOICsrC+3bt8fQoUMNOp4nISEBKpVK9zp79qzB2ibDEDUaFM5JBGrqsb1dVjgnEWIdY8OILA2/NBDVziQSoLi4OKxduxabN29Gq1atqu2Xy+Vo164d+vbtix9//BHHjh1DampqjW0plUoAQGFhoV55YWGhbl9Vtra2cHFx0XuRaSneu6/aH3E9oojyggIU791nvKCITBi/NBDVTdIESBRFxMXFITU1FZs2bYKPj0+93iOKot6YnTv5+PhAqVRi48aNujK1Wo1du3YhKCjIYLGTcZVfumTQekQPOn5pIKqbpAlQbGwsvvvuOyxfvhzOzs4oKChAQUEBbt68CQD466+/kJiYiH379uHMmTPYvn07nn32Wdjb2+OJJ57QtdOhQwfdHSFBEBAfH49Zs2YhLS0Nhw4dwrBhw+Dp6YmoqCgpDpMMwLpFC4PWI3rQ8UsDUd0kfQosKSkJABASEqJXnpycjJiYGNjZ2WHLli1YuHAhrl69CoVCgb59+2L79u16kzLm5OToniADgEmTJqGoqAgjR47EtWvX8OijjyI9PR12dnZGOS4yPIfAHrBWKlFeWFjzLX1BgLVCAYfAHsYPjsgE8UsDUd1Mah4gU8F5gExT5YBOAPpJ0O116louWshH4YluEzUanBwQetcvDb4bN/CReHpgNOT6bRKDoInqwyUsDC0XLYR1lSkOrBUKJj9EVQgyGRRTE25vVFnM+va2YmoCkx+yWLwDVAPeATJtnNSNqP44eShZkoZcv5kA1YAJEBE9SPilgSyF2S6FQUREhifIZHDs3UvqMIhMCscAERERkcVhAkREREQWhwkQERERWRyOASJqDFoNcHo7cKMQcFIA3n0AKw46JSIyFUyASA+fFjGAI2lA+mRAfeGfMhdPIGIe4P+UdHEREZEOEyDS4XwhBnAkDVg5DECV2SXU+RXlQ79hEkREZAI4BogA/LPMRNXVo8sLC3F+fDzU69dLFJkZ0Woq7vxUTX6Af8rSp1TUIyIiSTEBIogaDQrnJNa8XtDtssI5iRA1vHDX6fR2/W6vakRAfb6iHhERSYoJEFWM+aly50ePKKK8oADFe/cZLyhzdKPQsPWIiKjRMAEilF+6ZNB6FstJcfc6DalHRESNhgkQwbpFC4PWs1jefSqe9oJQSwUBcGlZUY+IiCTFBIjgENgD1kolINRy4RYEWCuVcAjsYdzAzI2VrOJRdwDVk6Db2xFzOR8QEZEJYAJEEGQyKKYm3N6ocuG+va2YmsD5gOrD/6mKR91dPPTLXTz5CDwRkQkRRLGmR38sm1qthlwuh0qlgouLi9ThGA3nATIgzgRNRGR0Dbl+MwGqgaUmQABngiYTw0SSiBqgIddvzgRNegSZDI69e0kdBhGXFCGiRsUxQERkeiqXFKk6sWTlkiJH0qSJi4geGEyAiMi0cEkRIjICJkBEZFq4pAgRGQETICIyLVxShIiMgAkQEZkWLilCREbABIiITAuXFCEiI2ACRESmhUuKEJERMAEiItPDJUWIqJFxIkQiMk3+TwEdBnEmaCJqFEyAiMh0WckAn8ekjoKIHkDsAiMiIiKLwwSIiIiILA67wIgslRmstC5qNCjeuw/lly7BukULOAT2gCAzrRiJyDwxASKyRGaw0rp6/XoUzklEeUGBrsxaqYRiagJcwsIkjIwsEZPxB48gimJNKw5aNLVaDblcDpVKBRcXF6nDITKsypXWqy02enuOHRN4zFy9fj3Oj48Hqv55EipibLloIZMgMhom4+ajIddvSccAJSYmomfPnnB2doa7uzuioqKQk5Oj23/lyhWMHTsWfn5+sLe3R+vWrTFu3DioVKo6242JiYEgCHqviIiIxj4cItNnBiutixoNCuckVk9+AF1Z4ZxEiBquBk+NrzIZvzP5AYDywkKcHx8P9fr1EkVG90vSBCgrKwuxsbHYuXMnMjIyUFZWhrCwMBQVFQEALly4gAsXLmDBggU4fPgwUlJSkJ6ejhEjRty17YiICOTn5+te33//fWMfDpHpM4OV1ov37qt2sdEjiigvKEDx3n3GC4osEpPxB5ukY4DS09P1tlNSUuDu7o59+/ahb9++CAgIwE8//aTb37ZtW8yePRsvv/wyysvLYW1de/i2trZQKpX1iqO0tBSlpaW6bbVa3cAjITITZrDSevmlSwatR3SvGpKMO/buZbzAyCBM6jH4yq4tNze3Ouu4uLjUmfwAQGZmJtzd3eHn54fRo0fj8uXLtdZNTEyEXC7Xvby8vO7tAIhMnRmstG7dooVB6xHdKybjDzaTSYC0Wi3i4+MRHByMgICAGuv8/fffmDlzJkaOHFlnWxEREfjmm2+wceNGzJs3D1lZWRg4cCA0tdymTEhIgEql0r3Onj1738dDZJLMYKV1h8AesFYqdQOeqxEEWCuVcAjsYdzAyOIwGX+wmcxTYKNHj8Zvv/2GrVu3olWrVtX2q9VqPP7443Bzc0NaWhqaNGlS77b/+usvtG3bFhs2bMCAAQPuWp9PgdEDTfcUGKA/GNoEnwID9Mdf8CkwMiJRo8HJAaEoLyyseRyQIMBaoYDvxg18JN5EmM1TYJXi4uKwdu1abN68ucbk5/r164iIiICzszNSU1MblPwAwEMPPYTmzZvj5MmThgqZyHyZwUrrLmFhaLloIawV+l1x1goFkx8yGkEmg2Jqwu2NKnckb28rpiYw+TFTkg6CFkURY8eORWpqKjIzM+Hj41OtjlqtRnh4OGxtbZGWlgY7O7sGf865c+dw+fJleHh43L0ykSUwg5XWXcLC4DxgACefI0m5hIUBixZWnwdIoeA8QGZO0i6wMWPGYPny5VizZg38/Px05XK5HPb29lCr1QgLC0NxcTFSU1Ph6Oioq9OiRQvIbv8h7NChAxITEzFkyBDcuHEDM2bMwDPPPAOlUonc3FxMmjQJ169fx6FDh2Bra3vXuNgFRkREd+JM0OahIddvSe8AJSUlAQBCQkL0ypOTkxETE4P9+/dj165dAABfX1+9Onl5eWjTpg0AICcnR/cEmUwmw8GDB7F06VJcu3YNnp6eCAsLw8yZM+uV/BARkfGZeoIhyGR81P0BYzKDoE0J7wARERkPl5ogQzG7QdBERGSZuNQESYUJEBERSYJLTZCUmAAREZEkuO4bSYkJEBERSYJLTZCUmAAREZEkuNQESYkJEBERSYLrvpGUmAAREZEkuNQESYkJEBERSYbrvpFUJJ0JmoiIiOu+kRSYABERkeS41AQZG7vAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjicCJHIQokaDWfeJSKLxQSIqBGYenKhXr8ehXMSUV5QoCuzViqhmJrAtZeIyCIwASIyMFNPLtTr1+P8+HhAFPXKywsLK8q5ACURWQCOASIyoMrk4s7kB/gnuVCvXy9RZBVEjQaFcxKrJT8VOyvKCuckQtRojBwZEZFx8Q7QfdBoNCgrK5M6DDIRokaDC0uWQKtU1lxBEHBhyRI0CQ6WrDus+I+DuCUIgIdHrXVuAbi6dx8cunapV5tNmjSBzIS694iI6kMQxZq+Clo2tVoNuVwOlUoFFxeXavtFUURBQQGuXbtm/ODIZGlLS6G5fPmu9WTNmsHK1tYIEVWnvXkTmqtX71pP1rQprOzt692uq6srlEolBEG4n/CIiO7L3a7fd+IdoHtQmfy4u7vDwcGBf/QJAFCuVqPc6u69ytZKJazv8ovZWDRFxSizvvuvfZOWrSBzdLhrPVEUUVxcjIsXLwIAPOq4s0REZEqYADWQRqPRJT/NmjWTOhwyIZpyDW7VIwGycXCEzM7OCBFVJ9raovTvSxDr6LoVmjSBrVvTeif29rfvFF28eBHu7u7sDiMis8BB0A1UOebHweHu347Jslg5OkBo0qTOOkKTJrCqx52VxiIIAprUNkbptib30JVV+fvAMXFEZC6YAN0jdntRVY2VXBiaTC6HjZdXtWRNaNIENl5ekMnlDW5T6mMiImoodoERGZBMLocNgLKCAr1uJqFJEzRRKu8puWgMMrkcVi4u0BYVQywvg2BdcWeKiQwRWQomQGRwMTExuHbtGlavXg0ACAkJwcMPP4yFCxfec5uGaMNYzCW5EAQBMidHqcMgIpIEu8AsSExMDARBgCAIsLGxga+vL9577z2Ul5c36ueuWrUKM2fOrFfdzMxMCIJQbYqBhrTRWKZPn46HH3641v15eXl48cUX4enpCXt7e3h38MMz0dE4ce4sli5dqjv3tb1OnTqF6dOnQxAEREREVGv//fffhyAICAkJabyDJCKyELwDJBGNVsTuvCu4eL0E7s526OXjBplV498hiIiIQHJyMkpLS/Hrr78iNjYWTZo0QUJCgl69W7duwcbGxiCf6ebmZhJtNKaysjI8/vjj8PPzw6pVq+Dh4YFz587ht99+w7Vr1/Dcc8/pJTVPP/00AgIC8N577+nKWrRoAaDiUfLNmzfj3LlzaNWqlW7/119/jdatWxvvoIiIHmC8AySB9MP5eHTeJrzw1U6M/yEbL3y1E4/O24T0w/mN/tm2trZQKpXw9vbG6NGjERoairS0NMTExCAqKgqzZ8+Gp6cn/Pz8AABnz57F0KFD4erqCjc3N0RGRuLUqVO69jQaDSZMmABXV1c0a9YMkyZNQtW5NUNCQhAfH6/bLi0txeTJk+Hl5QVbW1v4+vriv//9L06dOoX+/fsDAJo2rXgMOyYmpsY2rl69imHDhqFp06ZwcHDAwIEDceLECd3+lJQUuLq6Yt26dejYsSOcnJwQERGB/Px/znFmZiZ69eoFR0dHuLq6Ijg4GKdPn76n8/rnn38iNzcXn3/+OR555BF4e3sjODgYs2bNwiOPPAJ7e3solUrdy8bGBg4ODnpllY+Pu7u7IywsDEuXLtW1v337dvz9998YNGjQPcVHRGQKRI0GRbt2Q7X2FxTt2i3psjtMgIws/XA+Rn+3H/mqEr3yAlUJRn+33yhJ0J3s7e1x69YtAMDGjRuRk5ODjIwMrF27FmVlZQgPD4ezszO2bNmCbdu26RKJyvd88MEHSElJwddff42tW7fiypUrSE1NrfMzhw0bhu+//x4ff/wxjh49ii+++AJOTk7w8vLCTz/9BADIyclBfn4+Fi1aVGMbMTEx2Lt3L9LS0rBjxw6IoognnnhC7zHs4uJiLFiwAN9++y1+//13nDlzBhMnTgQAlJeXIyoqCv369cPBgwexY8cOjBw58p7H6bRo0QJWVlb48ccfoTHAL/Tw4cORkpKi2/7666/x0ksvGeyuHBGRsanXr8fJAaE4Ex2NCxMn4kx0NE4OCJVsjURJE6DExET07NkTzs7OcHd3R1RUFHJycnT7r1y5grFjx8LPzw/29vZo3bo1xo0bB5VKVWe7oijinXfegYeHB+zt7REaGqp3d0AqGq2IGT8fQU1rj1SWzfj5CDTaxl+dRBRFbNiwAevWrcO//vUvAICjoyOWLFmCTp06oVOnTlixYgW0Wi2WLFmCzp07o2PHjkhOTsaZM2eQmZkJAFi4cCESEhLw9NNPo2PHjli8eDHkdTzpdPz4caxcuRJff/01hgwZgoceeggDBgzAc889B5lMpuvqcnd3h1KprLGtEydOIC0tDUuWLMFjjz2Grl27YtmyZTh//rxu4DVQ0S21ePFiBAYGonv37oiLi8PGjRsBVEyXrlKp8OSTT6Jt27bo2LEjoqOj77mLqWXLlvj444/xzjvvoGnTpvjXv/6FmTNn4q+//rqn9p588kmo1Wr8/vvvKCoqwsqVKzF8+PB7aouISGqmuFC0pAlQVlYWYmNjsXPnTmRkZKCsrAxhYWEoKioCAFy4cAEXLlzAggULcPjwYaSkpCA9PR0jRoyos9358+fj448/xuLFi7Fr1y44OjoiPDwcJSUldb6vse3Ou1Ltzs+dRAD5qhLszrvSaDGsXbsWTk5OsLOzw8CBA/Hcc89h+vTpAIDOnTvr3WH4448/cPLkSTg7O8PJyQlOTk5wc3NDSUkJcnNzoVKpkJ+fj969e+veY21tjcDAwFo/Pzs7GzKZDP369bvnYzh69Cisra31PrdZs2bw8/PD0aNHdWUODg5o27atbtvDw0O3ZIObmxtiYmIQHh6OwYMHY9GiRbrusTNnzuiO18nJCXPmzKlXXLGxsSgoKMCyZcsQFBSE//3vf+jUqRMyMjIafIxNmjTByy+/jOTkZPzvf/9D+/bt0aVL/RYnJSIyJaJGg8I5iUBNS4/eLiuck2j07jBJB0Gnp6frbaekpMDd3R379u1D3759ERAQoOsSAYC2bdti9uzZePnll1FeXg7rGtY0EkURCxcuxNtvv43IyEgAwDfffAOFQoHVq1fj+eefb9yDqsPF6/VLwOpb7170798fSUlJsLGxgaenp945dHTUfyT6xo0b6NGjB5YtW1atncoBuw1l34AFNu9Xk6oT/QmC3vik5ORkjBs3Dunp6VixYgXefvttZGRkIDAwENnZ2bp6DRmA7ezsjMGDB2Pw4MGYNWsWwsPDMWvWLDz++OMNjn/48OHo3bs3Dh8+zLs/RGS2ivfuq3bnR48oorygAMV798Gxdy+jxWVSY4Aqu7bquuBUrvBaU/IDVDyKXFBQgNDQUF2ZXC5H7969sWPHjhrfU1paCrVarfdqDO7O9Vv/qb717oWjoyN8fX3RunXrWs9hpe7du+PEiRNwd3eHr6+v3ksul0Mul8PDwwO7du3Svae8vBz79u2rtc3OnTtDq9UiKyurxv2Vd6DqGkfTsWNHlJeX633u5cuXkZOTA39//zqPqapu3bohISEB27dvR0BAAJYvXw5ra2u9Y73XJ9AEQUCHDh10dzQbqrIr8vDhw3jxxRfvqQ0iAIBWA+RtAQ79WPGvVrqBp2R5yi9dMmg9QzGZBEir1SI+Ph7BwcEICAiosc7ff/+NmTNnYuTIkbW2U3A7y1QoFHrlCoVCt6+qxMRE3QVdLpfDy8vrHo+ibr183OAht0Ntw2wFAB7yikfiTcFLL72E5s2bIzIyElu2bEFeXh4yMzMxbtw4nDt3DgAwfvx4zJ07F6tXr8axY8cwZsyYanP43KlNmzaIjo7G8OHDsXr1al2bK1euBAB4e3tDEASsXbsWly5dwo0bN6q10a5dO0RGRuK1117D1q1b8ccff+Dll19Gy5YtdXf97iYvLw8JCQnYsWMHTp8+jfXr1+PEiRPo2LFjne+7efMmsrOz9V65ubnIzs5GZGQkfvzxRxw5cgQnT57Ef//7X3z99df1jqkmmzZtQn5+PlxdXe+5DbJwR9KAhQHA0ieBn0ZU/LswoKKcyAis69ljUN96hmIyCVBsbCwOHz6MH374ocb9arUagwYNgr+/v27MiqEkJCRApVLpXmfPnjVo+5VkVgLeHVxxh6JqElS5/e5gf6PMB1QfDg4O+P3339G6dWvdIOcRI0agpKQELi4uAIA33ngDr7zyCqKjoxEUFARnZ2cMGTKkznaTkpLw73//G2PGjEGHDh3w2muv6e6StGzZEjNmzMCUKVOgUCgQFxdXYxvJycno0aMHnnzySQQFBUEURfz666/Vur3qOrZjx47hmWeeQfv27TFy5EjExsZi1KhRdb7v+PHj6Natm95r1KhRaNWqFdq0aYMZM2agd+/e6N69OxYtWoQZM2bgrbfeqldMNal8RJ/onhxJA1YOA9QX9MvV+RXlTILICBwCe8BaqQRqe8pWEGCtVMIhsIdR4xLEqpO2SCAuLg5r1qzB77//Dh8fn2r7r1+/jvDwcDg4OGDt2rWws6u9i+ivv/5C27ZtceDAAb1Ze/v164eHH3641seq76RWqyGXy3XdbXcqKSlBXl4efHx86oyjLumH8zHj5yN6A6I95HZ4d7A/IgI87qlNIikZ4veCDEyrqbjTUzX50REAF08g/hBgJTNqaGR5Kp8CA6A/GPp2UtRy0UK4hIXd/+fUcf2uStJB0KIoYuzYsUhNTUVmZmaNyY9arUZ4eDhsbW2RlpZ21z+uPj4+UCqV2Lhxoy4BUqvV2LVrF0aPHt0Yh9FgEQEeeNxfKclM0ERkIU5vryP5AQARUJ+vqOfzmNHCIsvkEhYGLFqIwjmJegOirRUKKKYmGCT5aShJE6DY2FgsX74ca9asgbOzs26Mjlwuh729PdRqNcLCwlBcXIzvvvtOb4ByixYtdDPndujQAYmJiRgyZAgEQUB8fDxmzZqFdu3awcfHB9OmTYOnpyeioqKkOtRqZFYCgto2kzoMInpQ3Sg0bD2i++QSFgbnAQMqngq7dAnWLVrAIbAHBJk0dyAlTYCSkpIAoNrijsnJyYiJicH+/ft1T/r4+vrq1cnLy0ObNm0AVMwafOfkiJMmTUJRURFGjhyJa9eu4dFHH0V6ejpvzROR5XBS3L1OQ+oRGYAgkxn1Ufe6mMQYIFPT2GOAiB40/L0wQboxQPlAjfPPcwwQPXgaMgbIZJ4CIyIiA7KSARHzbm/U8txpxFwmP2SxmAARET2o/J8Chn4DuFR5utTFs6Lc/ylp4iIyAZKOASIiokbm/xTQYVDF0143CivG/Hj34Z0fsnhMgIiIHnRWMj7qTlQFu8CIiIjI4jABIpM3ffp0vVm9pRISEoL4+HipwyAiIgNgAmRBCgoKMH78ePj6+sLOzg4KhQLBwcFISkpCcXGx1OHds8zMTAiCUOcirFK2R0REpodjgKSi1Rh1UOJff/2F4OBguLq6Ys6cOejcuTNsbW1x6NAhfPnll2jZsiWeeqrmJ0LKysrqvcioKbt16xZsbGykDoOIiEwA7wBJ4UhaxQRlS58EfhpR8e/CgEZdmXnMmDGwtrbG3r17MXToUHTs2BEPPfQQIiMj8csvv2Dw4MG6uoIgICkpCU899RQcHR0xe/ZsABUzd7dt2xY2Njbw8/PDt99+q3vPqVOnIAgCsrOzdWXXrl2DIAjIzMwE8M+dlY0bNyIwMBAODg7o06cPcnJy9GKdO3cuFAoFnJ2ddavP1+bUqVPo378/AKBp06YQBAExMTEAKrqs4uLiEB8fj+bNmyM8PPyucdbVHgBotVpMmjQJbm5uUCqVmD59en3/FxARkQlhAmRsR9KAlcOqL1Kozq8ob4Qk6PLly1i/fj1iY2Ph6OhYYx1B0J8obfr06RgyZAgOHTqE4cOHIzU1FePHj8cbb7yBw4cPY9SoUXj11VexefPmBsfz1ltv4YMPPsDevXthbW2N4cOH6/atXLkS06dPx5w5c7B37154eHjg888/r7UtLy8v/PTTTwAqlkTJz8/HokWLdPuXLl0KGxsbbNu2DYsXL75rbPVpz9HREbt27cL8+fPx3nvvISMjo8HngIiIpMUuMGPSaoD0yah5WnoRgACkT6mYs8OA3WEnT56EKIrw8/PTK2/evLnu7kpsbCzmzZun2/fiiy/i1Vdf1W2/8MILiImJwZgxYwAAEyZMwM6dO7FgwQLdHZP6mj17Nvr16wcAmDJlCgYNGoSSkhLY2dlh4cKFGDFiBEaMGAEAmDVrFjZs2FDrXSCZTAY3NzcAgLu7O1xdXfX2t2vXDvPnz9dtnzp1qs7Y7tZely5d8O677+ra/vTTT7Fx40Y8/vjj9Tp2IiIyDbwDZEynt1e/86NHBNTnK+oZwe7du5GdnY1OnTqhtLRUb19gYKDe9tGjRxEcHKxXFhwcjKNHjzb4c7t06aL7bw+PihlqL168qPuc3r1769UPCgpq8GdU6tGjxz2/tyZ3xg5UxF8ZOxERmQ/eATKmG4WGrVdPvr6+EASh2libhx56CABgb29f7T21dZXVxsqqIpe+c23dsrKyGuveOaC6sutNq9U26PPqq+pxNCTOmlQdDC4IQqPFTkREjYd3gIzJSWHYevXUrFkzPP744/j0009RVFR0T2107NgR27Zt0yvbtm0b/P39AQAtWrQAAOTn5+v23znQuCGfs2vXLr2ynTt31vmeyie7NBrNXduvT5wNaY+IiMwT7wAZk3efikUI1fmoeRyQULHfu4/BP/rzzz9HcHAwAgMDMX36dHTp0gVWVlbYs2cPjh07dteuojfffBNDhw5Ft27dEBoaip9//hmrVq3Chg0bAFTcRXrkkUcwd+5c+Pj44OLFi3j77bcbHOf48eMRExODwMBABAcHY9myZfjzzz91d6tq4u3tDUEQsHbtWjzxxBOwt7eHk5NTjXXrE2dD2iMiIvPEO0DGZCUDIioHGgtVdt7ejpjbKPMBtW3bFgcOHEBoaCgSEhLQtWtXBAYG4pNPPsHEiRMxc+bMOt8fFRWFRYsWYcGCBejUqRO++OILJCcnIyQkRFfn66+/Rnl5OXr06IH4+HjMmjWrwXE+99xzmDZtGiZNmoQePXrg9OnTGD16dJ3vadmyJWbMmIEpU6ZAoVAgLi6uzvp3i7Oh7RERkfkRxDsHQxAAQK1WQy6XQ6VSwcXFRW9fSUkJ8vLy4OPjAzs7u3v7gCNpFU+D3Tkg2qVlRfLjX/NkhESmzCC/F0RE96mu63dV7AKTgv9TFY+6G3EmaCIiIvoHEyCpWMkAn8ekjoKIiMgicQwQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEZqegoACPP/44HB0d4erqKnU4BpOZmQlBEHDt2jVJ45g+fToefvhhSWMgImpsTIAsRExMDARBwH/+859q+2JjYyEIAmJiYowf2D346KOPkJ+fj+zsbBw/flzqcIxKEASsXr3aZNsjIjIXTIAkotFqsKdgD37961fsKdgDjVbT6J/p5eWFH374ATdv3tSVlZSUYPny5WjdunWjf76h5ObmokePHmjXrh3c3d0N1u6tW7cM1paUHpTjICJqTEyAJLDh9AaE/xSO4euGY/KWyRi+bjjCfwrHhtMbGvVzu3fvDi8vL6xatUpXtmrVKrRu3RrdunXTq6vVapGYmAgfHx/Y29uja9eu+PHHH3X7NRoNRowYodvv5+eHRYsW6bURExODqKgoLFiwAB4eHmjWrBliY2NRVlZWZ5xJSUlo27YtbGxs4Ofnh2+//Va3r02bNvjpp5/wzTff1HnXqry8HOPGjYOrqyuaNWuGyZMnIzo6GlFRUbo6ISEhiIuLQ3x8PJo3b47w8HAAQFZWFnr16gVbW1t4eHhgypQpKC8v14th4cKFep/38MMPY/r06bptQRCwZMkSDBkyBA4ODmjXrh3S0tL03vPrr7+iffv2sLe3R//+/XHq1Kk6z0ubNm0AAEOGDIEgCLrtyi6rJUuW6C1Gerc4a2uv0rfffos2bdpALpfj+eefx/Xr1+uMj4jInDABMrINpzdgQuYEFBYX6pVfLL6ICZkTGj0JGj58OJKTk3XbX3/9NV599dVq9RITE/HNN99g8eLF+PPPP/H666/j5ZdfRlZWFoCKBKlVq1b43//+hyNHjuCdd97B1KlTsXLlSr12Nm/ejNzcXGzevBlLly5FSkoKUlJSao0vNTUV48ePxxtvvIHDhw9j1KhRePXVV7F582YAwJ49exAREYGhQ4ciPz+/WtJVad68eVi2bBmSk5Oxbds2qNXqGrt6li5dChsbG2zbtg2LFy/G+fPn8cQTT6Bnz574448/kJSUhP/+97+YNWvW3U5tNTNmzMDQoUNx8OBBPPHEE3jppZdw5coVAMDZs2fx9NNPY/DgwcjOzsb//d//YcqUKXW2t2fPHgBAcnIy8vPzddsAcPLkSfz0009YtWoVsrOz6xVfXe3l5uZi9erVWLt2LdauXYusrCzMnTu3IYdPRGTaRKpGpVKJAESVSlVt382bN8UjR46IN2/ebHC75ZpyccDKAWJASkCNr84pncXQlaFiuabcEIehJzo6WoyMjBQvXrwo2traiqdOnRJPnTol2tnZiZcuXRIjIyPF6OhoURRFsaSkRHRwcBC3b9+u18aIESPEF154odbPiI2NFZ955hm9z/T29hbLy/85nmeffVZ87rnnam2jT58+4muvvaZX9uyzz4pPPPGEbvvOWGujUCjE999/X7ddXl4utm7dWoyMjNSV9evXT+zWrZve+6ZOnSr6+fmJWq1WV/bZZ5+JTk5OokajEUVRFL29vcWPPvpI731du3YV3333Xd02APHtt9/Wbd+4cUMEIP7222+iKIpiQkKC6O/vr9fG5MmTRQDi1atXaz0uAGJqaqpe2bvvvis2adJEvHjxol55feOsqT0HBwdRrVbryt58802xd+/etcZ1P78XRESGUtf1uyquBm9E+y/ur3bn504iRBQUF2D/xf3oqezZKDG0aNECgwYNQkpKCkRRxKBBg9C8eXO9OidPnkRxcTEef/xxvfJbt27pdZV99tln+Prrr3HmzBncvHkTt27dqvb0UKdOnSCTyXTbHh4eOHToUK3xHT16FCNHjtQrCw4OrvVOT01UKhUKCwvRq1cvXZlMJkOPHj2g1Wr16vbo0aPa5wcFBUEQBL3Pv3HjBs6dO9egsVJdunTR/bejoyNcXFxw8eJF3ef07t1br35QUFC9267K29sbLVq0uOf3V9WmTRs4Ozvrtj08PHSxExE9CJgAGdGl4ksGrXevhg8fjri4OAAVSUxVN27cAAD88ssvaNmypd4+W1tbAMAPP/yAiRMn4oMPPkBQUBCcnZ3x/vvvY9euXXr1mzRporctCEK1JERKjo6ODX6PlZUVRFHUK6tpXJMxj72m46hvnDUx9f9vRET3i2OAjKiFQ/2+ode33r2KiIjArVu3UFZWphv4eyd/f3/Y2trizJkz8PX11Xt5eXkBALZt24Y+ffpgzJgx6NatG3x9fZGbm3vfsXXs2BHbtm3TK9u2bRv8/f3r3YZcLodCodAb06LRaLB///56ff6OHTv0Eodt27bB2dkZrVq1AlBxFy0/P1+3X61WIy8vr97xVX7O7t279cp27tx51/c1adIEGk39nhisT5wNaY+I6EEiaQKUmJiInj17wtnZGe7u7oiKikJOTo5enS+//BIhISFwcXGp9yRx06dPhyAIeq8OHTo00lHUX3f37lA4KCBAqHG/AAFKByW6u3dv1DhkMhmOHj2KI0eO6HVPVXJ2dsbEiRPx+uuvY+nSpcjNzcX+/fvxySefYOnSpQCAdu3aYe/evVi3bh2OHz+OadOm6SUc9+rNN99ESkoKkpKScOLECXz44YdYtWoVJk6c2KB2xo4di8TERKxZswY5OTkYP348rl69qte1VZMxY8bg7NmzGDt2LI4dO4Y1a9bg3XffxYQJE2BlVfHr8q9//QvffvsttmzZgkOHDiE6OrrG81iX//znPzhx4gTefPNN5OTkYPny5XUODq/Upk0bbNy4EQUFBbh69WqddesTZ0PaIyJ6kEiaAGVlZSE2NhY7d+5ERkYGysrKEBYWhqKiIl2d4uJiREREYOrUqQ1qu1OnTsjPz9e9tm7daujwG0xmJcOUXhVP+lRNgiq3J/eaDJlVwy6m98LFxQUuLi617p85cyamTZuGxMREdOzYEREREfjll1/g4+MDABg1ahSefvppPPfcc+jduzcuX76MMWPG3HdcUVFRWLRoERYsWIBOnTrhiy++QHJyMkJCQhrUzuTJk/HCCy9g2LBhCAoKgpOTE8LDw3WPiNemZcuW+PXXX7F792507doV//nPfzBixAi8/fbbujoJCQno168fnnzySQwaNAhRUVFo27Ztg+Jr3bo1fvrpJ6xevRpdu3bF4sWLMWfOnLu+74MPPkBGRga8vLyqTV1QVX3ibEh7REQPEkGsOkhAQpcuXYK7uzuysrLQt29fvX2ZmZno378/rl69etflD6ZPn47Vq1fX+3Hg0tJSlJaW6rbVajW8vLygUqmqJQklJSXIy8vTm2+loTac3oC5u+fqDYhWOigxuddkhHqH3lObVDetVouOHTti6NChmDlzptThPHAM8XtBRHS/1Go15HJ5jdfvqkxqELRKpQIAuLm53XdbJ06cgKenJ+zs7BAUFITExMRan+BJTEzEjBkz7vsz6yvUOxT9vfpj/8X9uFR8CS0cWqC7e3ej3PmxFKdPn8b69evRr18/lJaW4tNPP0VeXh5efPFFqUMjIiITYDKDoLVaLeLj4xEcHIyAgID7aqt3795ISUlBeno6kpKSkJeXh8cee6zWmWwTEhKgUql0r7Nnz97X59eHzEqGnsqeeOKhJ9BT2ZPJj4FZWVkhJSUFPXv2RHBwMA4dOoQNGzagY8eOUodGREQmwGTuAMXGxuLw4cMGGaszcOBA3X936dIFvXv3hre3N1auXIkRI0ZUq29ra6t7vJseDF5eXtWeJiMiIqpkEglQXFwc1q5di99//133qLEhubq6on379jh58qTB2yYiIiLzI2kXmCiKiIuLQ2pqKjZt2qR7wsjQbty4gdzcXHh4eDRK+0RERGReJE2AYmNj8d1332H58uVwdnZGQUEBCgoKcPPmTV2dgoICZGdn6+7eHDp0CNnZ2bpFJQFgwIAB+PTTT3XbEydORFZWFk6dOoXt27djyJAhkMlkeOGFF4x3cERERGSyJE2AkpKSoFKpEBISAg8PD91rxYoVujqLFy9Gt27d8NprrwEA+vbti27duiEtLU1XJzc3F3///bdu+9y5c3jhhRfg5+eHoUOHolmzZti5c6dB10oiIiIi82VS8wCZirrmEeB8J0TV8feCiExBQ+YBMpnH4ImIiIiMhQkQGVxMTAyioqJ02yEhIYiPj7+vNg3RhrEIgoDVq1fXuv/UqVMQBKHeM5UTEZHhMQGyIDExMbrFYW1sbODr64v33nsP5eXljfq5q1atqvfyE5mZmTUuetuQNhrLnYvsymQyeHl5YeTIkXoD8gEgPz9fby4qIiIyPSYxD5AlEjUaFO/dh/JLl2DdogUcAntAaOCK4vciIiICycnJKC0txa+//orY2Fg0adIECQkJevVu3boFGxsbg3ymIZY2MUQbhtCpUyds2LABGo0GR48exfDhw6FSqfQG7iuVSgkjJCKi+uAdIAmo16/HyQGhOBMdjQsTJ+JMdDRODgiFev36Rv9sW1tbKJVKeHt7Y/To0QgNDUVaWpqu22r27Nnw9PSEn58fAODs2bMYOnQoXF1d4ebmhsjISJw6dUrXnkajwYQJE+Dq6opmzZph0qRJqDquvmr3VWlpKSZPngwvLy/Y2trC19cX//3vf3Hq1Cn0798fANC0aVMIgoCYmJga27h69SqGDRuGpk2bwsHBAQMHDsSJEyd0+1NSUuDq6op169ahY8eOcHJyQkREBPLz83V1MjMz0atXLzg6OsLV1RXBwcE4ffp0nefP2toaSqUSLVu2RGhoKJ599llkZGTo1anaBbZ7925069YNdnZ2CAwMxIEDB6q1m5aWhnbt2sHOzg79+/fH0qVLq90J27p1Kx577DHY29vDy8sL48aNQ1FRUZ3xEhFRzZgAGZl6/XqcHx+P8oICvfLywkKcHx9vlCToTvb29rh16xYAYOPGjcjJyUFGRgbWrl2LsrIyhIeHw9nZGVu2bMG2bdt0iUTlez744AOkpKTg66+/xtatW3HlyhWkpqbW+ZnDhg3D999/j48//hhHjx7FF198AScnJ3h5eeGnn34CAOTk5CA/Px+LFi2qsY2YmBjs3bsXaWlp2LFjB0RRxBNPPIGysjJdneLiYixYsADffvstfv/9d5w5cwYTJ04EAJSXlyMqKgr9+vXDwYMHsWPHDowcORKCINT73J06dQrr1q2r807ZjRs38OSTT8Lf3x/79u3D9OnTdTFUysvLw7///W9ERUXhjz/+wKhRo/DWW2/p1cnNzUVERASeeeYZHDx4ECtWrMDWrVsRFxdX73iJ6MEmajQo2rUbqrW/oGjXbogajdQhmTaRqlGpVCIAUaVSVdt38+ZN8ciRI+LNmzcb3K62vFw83i9EPOLXoeZXh47i8X4hora83BCHUU10dLQYGRlZEYtWK2ZkZIi2trbixIkTxejoaFGhUIilpaW6+t9++63o5+cnarVaXVlpaalob28vrlu3ThRFUfTw8BDnz5+v219WVia2atVK9zmiKIr9+vUTx48fL4qiKObk5IgAxIyMjBpj3Lx5swhAvHr1ql75nW0cP35cBCBu27ZNt//vv/8W7e3txZUrV4qiKIrJyckiAPHkyZO6Op999pmoUChEURTFy5cviwDEzMzMepy5Cu+++65oZWUlOjo6inZ2diIAEYD44Ycf6tUDIKampoqiKIpffPGF2KxZM72fl6SkJBGAeODAAVEURXHy5MliQECAXhtvvfWW3nkYMWKEOHLkSL06W7ZsEa2srO7pZ9HQ7uf3gojun2rdumrXl+P9QkTV7b/VlqKu63dVvANkRMV791W786NHFFFeUIDivfsaLYa1a9fCyckJdnZ2GDhwIJ577jlMnz4dANC5c2e9uxl//PEHTp48CWdnZzg5OcHJyQlubm4oKSlBbm4uVCoV8vPz0bt3b917rK2tERgYWOvnZ2dnQyaToV+/fvd8DEePHoW1tbXe5zZr1gx+fn44evSorszBwQFt27bVbXt4eODixYsAKsYUxcTEIDw8HIMHD8aiRYt03WNnzpzRHa+TkxPmzJmja8PPzw/Z2dnYs2cPJk+ejPDwcIwdO7bOWLt06aI3N05QUJBenZycHPTs2VOvrFevXnrbf/zxB1JSUvTiCg8Ph1arRV5e3l3PGRE9uEytZ8FccBC0EZVfumTQeveif//+SEpKgo2NDTw9PWFt/c+PgKOjo17dGzduoEePHli2bFm1du51Vm17e/t7et+9aNKkid62IAh645OSk5Mxbtw4pKenY8WKFXj77beRkZGBwMBAvUfU7xyAXfn0HADMnTsXgwYNwowZMxr9CbUbN25g1KhRGDduXLV9rVu3btTPJiLTJWo0KJyTCNQ0p7EoAoKAwjmJcB4wwCgP2pgT3gEyIut6Jg31rXcvHB0d4evri9atW+slPzXp3r07Tpw4AXd3d/j6+uq95HI55HI5PDw8sGvXLt17ysvLsW9f7XewOnfuDK1Wi6ysrBr3V96B0tTRd92xY0eUl5frfe7ly5eRk5MDf3//Oo+pqm7duiEhIQHbt29HQEAAli9fDmtra71jresJtLfffhsLFizAhQsXao314MGDKCkp0ZXt3LlTr46fnx/27t2rV7Znzx697e7du+PIkSPV/j/4+voa7Gk9IjI/ptCzYK6YABmRQ2APWCuVQG0DbQUB1kolHAJ7GDewWrz00kto3rw5IiMjsWXLFuTl5SEzMxPjxo3DuXPnAADjx4/H3LlzsXr1ahw7dgxjxoypNofPndq0aYPo6GgMHz4cq1ev1rW5cuVKAIC3tzcEQcDatWtx6dIl3Lhxo1ob7dq1Q2RkJF577TVs3boVf/zxB15++WW0bNkSkZGR9Tq2vLw8JCQkYMeOHTh9+jTWr1+PEydOoGPHjg06R0FBQejSpYteN9mdXnzxRQiCgNdeew1HjhzBr7/+igULFujVGTVqFI4dO4bJkyfj+PHjWLlyJVJSUgBANyh78uTJ2L59O+Li4pCdnY0TJ05gzZo1HARNZOFMoWfBXDEBMiJBJoNi6u35dqomQbe3FVMTTOY2pYODA37//Xe0bt0aTz/9NDp27IgRI0agpKREt8bKG2+8gVdeeQXR0dEICgqCs7MzhgwZUme7SUlJ+Pe//40xY8agQ4cOeO2113SPc7ds2RIzZszAlClToFAoar3AJycno0ePHnjyyScRFBQEURTx66+/Vuv2quvYjh07hmeeeQbt27fHyJEjERsbi1GjRjXgDFV4/fXXsWTJEpw9e7baPicnJ/z88884dOgQunXrhrfeegvz5s3Tq+Pj44Mff/wRq1atQpcuXZCUlKR7CszW1hYA0KVLF2RlZeH48eN47LHH0K1bN7zzzjvw9PRscLxE9OAwhZ4Fc8XFUGvQ2IuhqtevR+GcRL3bltZKJRRTE+ASFnZfsdODYfbs2Vi8eHGNSZUp4mKoRNIQNRqcHBCK8sLCmscBCQKsFQr4btxgMl+uG1NDFkPlIGgJuISFwXnAAElmgibT9Pnnn6Nnz55o1qwZtm3bhvfff5/dW0R0V5U9C+fHx1f0JNyZBJlgz4IpYQIkEUEmg2PvXnevSBbhxIkTmDVrFq5cuYLWrVvjjTfeqLY8CRFRTVzCwoBFC6v3LCgU7FmoA7vAatDYXWBEDxr+XhBJT6o1Jk0Ju8CIiIgsDHsWGoZPgd0j3jgj+gd/H4jI3DABaqDKx6yLi4sljoTIdFT+PtR3GgIiIqmxC6yBZDIZXF1ddWtKOTg4NGgFcaIHiSiKKC4uxsWLF+Hq6gqZhY03ICLzxQToHiiVSgDQJUFEls7V1VX3e0FEZA6YAN0DQRDg4eEBd3d3lJWVSR0OkaSaNGnCOz9EZHaYAN0HmUzGP/xERERmiIOgiYiIyOIwASIiIiKLwwSIiIiILA7HANWgclI3tVotcSRERERUX5XX7fpMzsoEqAbXr18HAHh5eUkcCRERETXU9evXIZfL66zDxVBroNVqceHCBTg7Oxt8kkO1Wg0vLy+cPXv2rgu1Ue14Hg2D59EweB4Ng+fx/ln6ORRFEdevX4enpyesrOoe5cM7QDWwsrJCq1atGvUzXFxcLPKH09B4Hg2D59EweB4Ng+fx/lnyObzbnZ9KHARNREREFocJEBEREVkcJkBGZmtri3fffRe2trZSh2LWeB4Ng+fRMHgeDYPn8f7xHNYfB0ETERGRxeEdICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgI/rss8/Qpk0b2NnZoXfv3ti9e7fUIZmVxMRE9OzZE87OznB3d0dUVBRycnKkDsvszZ07F4IgID4+XupQzM758+fx8ssvo1mzZrC3t0fnzp2xd+9eqcMyKxqNBtOmTYOPjw/s7e3Rtm1bzJw5s15rOVmy33//HYMHD4anpycEQcDq1av19ouiiHfeeQceHh6wt7dHaGgoTpw4IU2wJooJkJGsWLECEyZMwLvvvov9+/eja9euCA8Px8WLF6UOzWxkZWUhNjYWO3fuREZGBsrKyhAWFoaioiKpQzNbe/bswRdffIEuXbpIHYrZuXr1KoKDg9GkSRP89ttvOHLkCD744AM0bdpU6tDMyrx585CUlIRPP/0UR48exbx58zB//nx88sknUodm0oqKitC1a1d89tlnNe6fP38+Pv74YyxevBi7du2Co6MjwsPDUVJSYuRITZhIRtGrVy8xNjZWt63RaERPT08xMTFRwqjM28WLF0UAYlZWltShmKXr16+L7dq1EzMyMsR+/fqJ48ePlzokszJ58mTx0UcflToMszdo0CBx+PDhemVPP/20+NJLL0kUkfkBIKampuq2tVqtqFQqxffff19Xdu3aNdHW1lb8/vvvJYjQNPEOkBHcunUL+/btQ2hoqK7MysoKoaGh2LFjh4SRmTeVSgUAcHNzkzgS8xQbG4tBgwbp/VxS/aWlpSEwMBDPPvss3N3d0a1bN3z11VdSh2V2+vTpg40bN+L48eMAgD/++ANbt27FwIEDJY7MfOXl5aGgoEDvd1sul6N379685tyBi6Eawd9//w2NRgOFQqFXrlAocOzYMYmiMm9arRbx8fEIDg5GQECA1OGYnR9++AH79+/Hnj17pA7FbP31119ISkrChAkTMHXqVOzZswfjxo2DjY0NoqOjpQ7PbEyZMgVqtRodOnSATCaDRqPB7Nmz8dJLL0kdmtkqKCgAgBqvOZX7iAkQmanY2FgcPnwYW7dulToUs3P27FmMHz8eGRkZsLOzkzocs6XVahEYGIg5c+YAALp164bDhw9j8eLFTIAaYOXKlVi2bBmWL1+OTp06ITs7G/Hx8fD09OR5pEbFLjAjaN68OWQyGQoLC/XKCwsLoVQqJYrKfMXFxWHt2rXYvHkzWrVqJXU4Zmffvn24ePEiunfvDmtra1hbWyMrKwsff/wxrK2todFopA7RLHh4eMDf31+vrGPHjjhz5oxEEZmnN998E1OmTMHzzz+Pzp0745VXXsHrr7+OxMREqUMzW5XXFV5z6sYEyAhsbGzQo0cPbNy4UVem1WqxceNGBAUFSRiZeRFFEXFxcUhNTcWmTZvg4+MjdUhmacCAATh06BCys7N1r8DAQLz00kvIzs6GTCaTOkSzEBwcXG0ahuPHj8Pb21uiiMxTcXExrKz0L0UymQxarVaiiMyfj48PlEql3jVHrVZj165dvObcgV1gRjJhwgRER0cjMDAQvXr1wsKFC1FUVIRXX31V6tDMRmxsLJYvX441a9bA2dlZ15ctl8thb28vcXTmw9nZudq4KUdHRzRr1ozjqRrg9ddfR58+fTBnzhwMHToUu3fvxpdffokvv/xS6tDMyuDBgzF79my0bt0anTp1woEDB/Dhhx9i+PDhUodm0m7cuIGTJ0/qtvPy8pCdnQ03Nze0bt0a8fHxmDVrFtq1awcfHx9MmzYNnp6eiIqKki5oUyP1Y2iW5JNPPhFbt24t2tjYiL169RJ37twpdUhmBUCNr+TkZKlDM3t8DP7e/Pzzz2JAQIBoa2srdujQQfzyyy+lDsnsqNVqcfz48WLr1q1FOzs78aGHHhLfeustsbS0VOrQTNrmzZtr/HsYHR0timLFo/DTpk0TFQqFaGtrKw4YMEDMycmRNmgTI4gip9skIiIiy8IxQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBEZHFiYmK4JACRhWMCRESNIiYmBoIgVHtFRERIHRoWLVqElJQUqcMAAAiCgNWrV0sdBpHF4WKoRNRoIiIikJycrFdma2srUTSARqOBIAiQy+WSxUBEpoF3gIio0dja2kKpVOq9mjZtiszMTNjY2GDLli26uvPnz4e7uzsKCwsBACEhIYiLi0NcXBzkcjmaN2+OadOm4c7lC0tLSzFx4kS0bNkSjo6O6N27NzIzM3X7U1JS4OrqirS0NPj7+8PW1hZnzpyp1gUWEhKCsWPHIj4+Hk2bNoVCocBXX32FoqIivPrqq3B2doavry9+++03veM7fPgwBg4cCCcnJygUCrzyyiv4+++/9dodN24cJk2aBDc3NyiVSkyfPl23v02bNgCAIUOGQBAE3TYRNT4mQERkdCEhIYiPj8crr7wClUqFAwcOYNq0aViyZAkUCoWu3tKlS2FtbY3du3dj0aJF+PDDD7FkyRLd/ri4OOzYsQM//PADDh48iGeffRYRERE4ceKErk5xcTHmzZuHJUuW4M8//4S7u3uNMS1duhTNmzfH7t27MXbsWIwePRrPPvss+vTpg/379yMsLAyvvPIKiouLAQDXrl3Dv/71L3Tr1g179+5Feno6CgsLMXTo0GrtOjo6YteuXZg/fz7ee+89ZGRkAAD27NkDAEhOTkZ+fr5um4iMQOLV6InoARUdHS3KZDLR0dFR7zV79mxRFEWxtLRUfPjhh8WhQ4eK/v7+4muvvab3/n79+okdO3YUtVqtrmzy5Mlix44dRVEUxdOnT4symUw8f/683vsGDBggJiQkiKIoisnJySIAMTs7u1pskZGRep/16KOP6rbLy8tFR0dH8ZVXXtGV5efniwDEHTt2iKIoijNnzhTDwsL02j179qwIQMzJyamxXVEUxZ49e4qTJ0/WbQMQU1NTazmLRNRYOAaIiBpN//79kZSUpFfm5uYGALCxscGyZcvQpUsXeHt746OPPqr2/kceeQSCIOi2g4KC8MEHH0Cj0eDQoUPQaDRo37693ntKS0vRrFkz3baNjQ26dOly11jvrCOTydCsWTN07txZV1Z5Z+rixYsAgD/++AObN2+Gk5NTtbZyc3N1cVX9bA8PD10bRCQdJkBE1GgcHR3h6+tb6/7t27cDAK5cuYIrV67A0dGx3m3fuHEDMpkM+/btg0wm09t3Z1Jib2+vl0TVpkmTJnrbgiDolVW2odVqdZ8/ePBgzJs3r1pbHh4edbZb2QYRSYcJEBFJIjc3F6+//jq++uorrFixAtHR0diwYQOsrP4Zmrhr1y699+zcuRPt2rWDTCZDt27doNFocPHiRTz22GPGDh/du3fHTz/9hDZt2sDa+t7/lDZp0gQajcaAkRFRfXAQNBE1mtLSUhQUFOi9/v77b2g0Grz88ssIDw/Hq6++iuTkZBw8eBAffPCB3vvPnDmDCRMmICcnB99//z0++eQTjB8/HgDQvn17vPTSSxg2bBhWrVqFvLw87N69G4mJifjll18a/dhiY2Nx5coVvPDCC9izZw9yc3Oxbt06vPrqqw1KaNq0aYONGzeioKAAV69ebcSIiehOvANERI0mPT1drzsIAPz8/PDiiy/i9OnTWLt2LYCKLqMvv/wSL7zwAsLCwtC1a1cAwLBhw3Dz5k306tULMpkM48ePx8iRI3VtJScnY9asWXjjjTdw/vx5NG/eHI888giefPLJRj82T09PbNu2DZMnT0ZYWBhKS0vh7e2NiIgIvbtYd/PBBx9gwoQJ+Oqrr9CyZUucOnWq8YImIh1BFO+YVIOIyESEhITg4YcfxsKFC6UOhYgeQOwCIyIiIovDBIiIiIgsDrvAiIiIyOLwDhARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQW5/8BM56lVEAUR18AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2476,6 +2469,13 @@ "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 78a91c7..9b23cc0 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -78,12 +78,12 @@ "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\")\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", - "periods_of_interest = 4\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index cf4f35d..4c950e3 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -79,12 +79,12 @@ "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", - "periods_of_interest = 4\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 7b2377d..31a03eb 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ "from pathlib import Path\n", "from s2spy import preprocess\n", "from s2spy import RGDR\n", - "from sklearn.linear_model import Ridge\n", + "from sklearn.linear_model import RidgeCV\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import KFold" ] @@ -64,46 +64,46 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", "periods_of_interest = 8\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", + " anchor='07-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] }, - "execution_count": 3, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -124,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -155,12 +155,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr5klEQVR4nO3dd1gUV9sG8HsW2KWDIIoFOxas2DUGNYli7NFXTWyxJNboazSvJSYqNoKJRmONJWrsPdZYYsHYFWIvwY4KooAUkQV2z/cHH6MroCywyyD377q44szOzDnP4WSZZ+acGUkIIUBERERERJTHVHldASIiIiIiIoDJCRERERERKQSTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkWwzOsK5Bd6vR6PHj2Cg4MDJEnK6+oQERHRO0wIgbi4OBQvXhwqFa8lU8HB5CSLHj16BA8Pj7yuBhERERUgoaGhKFmyZF5Xg8hsmJxkkYODA4DULwlHR8c8rg0RERG9y2JjY+Hh4SGffxAVFExOsihtKJejoyOTEyIiIjILDiWngoaDGImIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrACfFERGRACAGtVpvt/TUaTZYn8ZqrrJyWY86y3rWY3sX+YI5yEhMTs7UfUX7H5ISIiAxotVp06dIl2/tv2rQJ1tbWiiorp+WYs6x3LaZ3sT+Yo5zk5ORs7UeU3zE5ISKiDAU/jDN6n9olsvdOhgtPjD8Rq+lmZfQ+2YkJyF5cjCl78QDm63vm+h0h9Izx+7h7G78P0TuAyQkREWWq0RB/WFiq37qdLiUJJxeMy1FZTcf8CpWV5q3b6ZO1CAwYmO1yshoTkPO4CmpMOY0HMF/fM9fvaPUAb2is3j7VV5usR8/F/2S7HKL8jskJERFlysJSDQv120/ccoPKSgNL9duHyqTksBzGlDNZiSmn8QDmi8lcvyONlQrWVhY5PArRu49P6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEy7yuABERKdth/wF4EfMUkqSClY0d6vQeh0JlKiMxJhInF41H/ONQqCwtYWXrCMAh2+Uc+L4bEuVy7NFw6Ay4lq+OF8+e4OiMwYgLuwOVlRoNBv9gspiubF+CO3/vQFz4PfiMnAv3ag1zVE5mMV1YNxMhf61H7MNb+GjSWhSv3SxfxCT0Ohye2gcxD27CUmMDm0JF0Xj4LDi4l8LTf//ByQVjoEtKhE77ApBUgFvFbJcV+NNQJMZGvbHfWVipUbvX2GyXAZi337X86RTCY7RQSRIcrC0xt2dV1CrlhIhYLXovOY9bEc+htlTB2cYyB/8nEeVveZqc+Pv7Y+vWrbh+/TpsbGzQuHFjBAQEoFKlSvI2Qgj4+flh8eLFiI6ORoMGDTB//nxUrVoVABAVFYWJEydi//79CA0NReHChdGxY0dMmTIFTk5O8nGmTZuG3bt34/z581Cr1Xj27Jm5wyUiypfeG/4T1HaOAIAH5w7i9JIJaDVtI85vmI3CFWqg+ZhFeHI9GId/GAC9Z/Fsl9N0zGLYuhQFANw7sRvHZn2FDvMDcW6ZH9yq1IXv9M14ciMYh6b0RqGyXiaJqWjVBijVsBXOLJmQo+OnySymYt5NUbZpJxz7eViulAOYLybPVr1QulFrSJKEq9sX4/icEWjlvxXHZv8XtXuNRalGrfE8MgybetdCXLli2S6n0ZAfYONcOF08r/a7yFuXcWzO13DyyH4SZM5+t3FIHTjbWgEA/ggOR79lFxDs54Oxm66jYXln7B3VAMdCItHyx9NoUk6fo7KI8qs8HdYVGBiIoUOH4tSpUzhw4ABSUlLQsmVLPH/+XN5mxowZmDVrFubNm4ezZ8/C3d0dLVq0QFxcHADg0aNHePToEX766SdcunQJK1aswN69e9G/f3+DspKSktClSxcMHjzYrDESEeV3aSe8AJCUEA9JkgAAoaf2wbPFpwAAl3JVobJSIyoqKvvl2L+8oJT0PDb1yjuAO0f/QJV2XwAA3CrVhrWzG7Rxz7JdDpB5TIUr1IBDUY8cHdugnExiKlK5LhyLl821cgDzxCSpLFCy7ofysYtUqYe4sLvy59r4WABASmICJEmClZVVtstS2768d5BZv3MtXw3Wji5Iio/Jfjlm7HdpiQkAxCQkQ6VKjWnj2UcY+kEZAEDdMs5QW6p4EZUKrDy9c7J3716D5eXLl6NIkSIICgqCj48PhBCYPXs2xo8fj06dOgEAVq5ciaJFi2Lt2rUYOHAgqlWrhi1btsjHKF++PKZNm4aePXsiJSUFlpapIfr5+QEAVqxYYZ7giIjeIScXfouIq2cAAM3GLII27hmEELB2dJG3sVBbIzExMUflBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB0/K/3OtnBxxD8OzVE55ux3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29jq7bAixcvclwWUX6kqDknMTGpVz5cXFK/dO7cuYPw8HC0bNlS3kaj0aBp06Y4ceIEBg4cmOlxHB0d5cQkO7RaLbRarbwcGxub7WMREeV3jQZPBwDcProd/6ydiUaD/YH/v5L9kshxOU1Hp55QhxxYh7NLJ8Bn9K+QkPvlAOljajZ6Ya4c93Wvx9Ry6iaTlAOYLyYAuLBuJmIf3cZ7w2cBAC5t+gX1vpiMck0/QfT9G9gxtBniS7nmqIws9TuRv/rd7196AwBWHgvF/zZcxaoB3hmURVRwKeZpXUIIjBw5Ek2aNEG1atUAAOHh4QCAokWLGmxbtGhR+bPXRUZGYsqUKZkmLlnl7+8PJycn+cfDI/du8xMR5VflfDog4upZeTkx9uUwLl2SNsdXytN4tvgMYReOycsvnj2V/x0f8QAWGptcKQd4GVNOh+y8TVpMr7aZqZg6pkub5uLu8V1oOXUTLK1tkRgTiXsndqNc008AAA7upaG2d0J0dHSulPemfpcQGQYLdf7rd5838cDh65Hy8pPYlxdEE5J0sLHJvbKI8hPFJCdfffUVLl68iHXr1qX7THrtKokQIt06IPXuRps2beDl5YWJEyfmqD7jxo1DTEyM/BMamrNbxkRE+VHyi3gkREfIy6FnD0Jt7wS1vRNK1W+BkAPrAQBRt69An5wk3/k2lj4lBQmRLy863T2+CxpHF2gcCqGMTwdc27kUAPDkRjBeREdA4+Bskphy05tiym3migkArv6xCLePbEEr/23Q/P/x1fbOsLDSIOzicQBAYkwkkuJj4OCQvWdO6XUpeBH9RF7OrN9F3rqMxJjIbMdpzn4X+yIZj6JfDnvcFhQGV3s1XOys0KVeMcw/dBcAcO7uM2hT9HB2zn5ZRPmZIoZ1DRs2DDt27MDRo0dRsmRJeb27uzuA1DsoxYq9fOJHREREurspcXFxaNWqFezt7bFt27YcTcIDUoePaTSat29IRPQOS06Ix4kFY6FLSoSkUkHjUAhNv5kPSZJQ87OvcWrBt9g5sg1UFpZwLl0ZKlX2rnnpdck4PK0v9MlaQFLB2qkwWkxeD0mSUK//JATOGITNfetAZalGk5FzcW37YpPEdGX7UoQcWAdtXDRO/fodLKzUcCxRPtdjurB+Fq7tXIbEmKf4e+ZQWFhp4Fy6MoDs/e0yV0wp2kScW+YHh2Jl8OfodgAAlZUG7X/5C83HL8eZX8dDr0uBPiUJDsXKZPsEW+hScHzuKOiSk97c7yytUP/Lyfh3/9pslWPOfhfzIgU9fv0HL5L0UKkANwcNdo2oB0mSENClCnot+QeeYw7BykIF71KO2f5/iSi/y9PkRAiBYcOGYdu2bThy5AjKljV8cknZsmXh7u6OAwcOwNs7dYxmUlISAgMDERAQIG8XGxsLX19faDQa7NixI9eGFRARFXS2ru7wnZL+jjYA2DgVRvNxqSdruiQtjv0yKtvlWGps0GLKBlhmMDzHplARtPLfKi+nJCXm6CTxTTFV7fAFqnb4Ql7OSVxviqnmpyNR89OR8nJKUiIOT+2TrXIAc8Zkjd47wzKMqUTtZihR+wiAnMdjobZG02/mw0Kd/iLhq/0OSI0nu8mJOfudh4sNzkx4P8PPijppsP+b1PfPJCbr0GV+EJKzXRJR/panycnQoUOxdu1abN++HQ4ODvI8EicnJ9jY2ECSJIwYMQLTp0+Hp6cnPD09MX36dNja2qJ79+4AUu+YtGzZEgkJCVi9ejViY2Plyetubm6wsLAAANy/fx9RUVG4f/8+dDodzp8/DwCoUKEC7O3tzR88EREREREZyNPkZOHC1KeINGvWzGD98uXL0adPHwDA6NGj8eLFCwwZMkR+CeP+/fvlcaxBQUE4ffo0gNRE41V37txBmTJlAAATJkzAypUr5c/S7sQcPnw4XflERERERGR+eT6s620kScKkSZMwadKkDD9v1qxZlo6zYsUKvuOEiIiIiEjBONuKiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBMu8rgARESmXLiUpV7d7E32yFilZ3C4njKlrTuMqqDHlNB7AfH3PXL8jbbI+V7cjelcxOSEiokydXDDObGUFBgw0SzmMKWfetZjMFU/Pxf+YpRyi/I7JCRERZah2CQezlVXTzcos5TCmnHnXYjJXPPCob/w+ycm5Xw+ifEASQoi8rkR+EBsbCycnJ8TExMDR0TGvq0NEZDJCCGi12R/CotFoIEmSosrKaTnmLOtdi+ld7A/mKCc2NhZFixbleQcVOLxzQkREBiRJgrW19TtVFmPKH2WxnJeSknI+j4soP+LTuoiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiGJWcpKSkYOXKlQgPDzdVfYiIiIiIqIAyKjmxtLTE4MGDodVqTVUfIiIiIiIqoIwe1tWgQQOcP3/eBFUhIiIiIqKCzNLYHYYMGYKRI0ciNDQUderUgZ2dncHnNWrUyLXKERV0Qogc3anUaDSQJEkx5ZizrJyWY86yCmo55izLnDEREVH2SUIIYcwOKlX6my2SJEEIAUmSoNPpcq1yShIbGwsnJyfExMTA0dExr6tDBURiYiK6dOmS7f03bdoEa2trxZRjzrJyWo45yyqo5ZizLHPGRJQbeN5BBZXRd07u3LljinoQ0RsEP4wzep/aJRyM3ufCk2Sj96npZmX0PoCyYwKyF5eSY1JyPIAZ+17oGeP38ahv/D5ERJQtRicnpUuXNkU9iOgtGg3xh4Wl+q3b6VKScHLBuGyX03TMr1BZad66nT5Zi8CAgdkuB1BeTEDO41JaTPklHsB8Ma0e4A2N1dunXGqT9ei5+J9sl0NERMYzOjlJc/XqVdy/fx9JSUkG69u3b5/jShFRehaWalios3aCnRMqKw0s1W8fvpKSC2UpLSYg53EpLab8Eg9gvpg0VipYW1nk8ChERGQKRicnt2/fxieffIJLly7Jc00AyBMF39U5J0REREREZFpGP0r4v//9L8qWLYvHjx/D1tYWV65cwdGjR1G3bl0cOXLEBFUkIiIiIqKCwOg7JydPnsShQ4fg5uYGlUoFlUqFJk2awN/fH8OHD8c//3B8LhERERERGc/oOyc6nQ729vYAgMKFC+PRo0cAUifK37hxI3drR0REREREBYbRd06qVauGixcvoly5cmjQoAFmzJgBtVqNxYsXo1y5cqaoIxERERERFQBGJyffffcdnj9/DgCYOnUq2rZti/fffx+urq7YsGFDrleQiIiIiIgKBqOTE19fX/nf5cqVw9WrVxEVFYVChQrJT+wiIiIiIiIyltFzTtLcvHkT+/btw4sXL+Di4pKbdSIiIiIiogLI6OQkMjISH374ISpWrIjWrVsjLCwMAPDFF19g1KhRuV5BIiIiIiIqGIwe1vX111/DysoK9+/fR5UqVeT13bp1w9dff42ZM2fmagWJiIiIKGM6nQ7Jycl5XQ2iN1Kr1VCpsnZPxOjkZP/+/di3bx9KlixpsN7T0xP37t0z9nBEREREZCQhBMLDw/Hs2bO8rgrRW6lUKpQtWxZqtfqt2xqdnDx//hy2trbp1j99+hQajcbYwxERERGRkdISkyJFisDW1pYPJSLF0uv1ePToEcLCwlCqVKm39lWjkxMfHx/8/vvvmDJlCgBAkiTo9Xr8+OOPaN68efZqTURERERZotPp5MTE1dU1r6tD9FZubm549OgRUlJSYGVl9cZtjU5OfvzxRzRr1gznzp1DUlISRo8ejStXriAqKgrHjx/PdqWJiIiI6O3S5phkNJKFSInShnPpdLq3JidGP63Ly8sLFy9eRP369dGiRQs8f/4cnTp1wj///IPy5ctnr8ZEREREZBQO5aL8wpi+avSdEwBwd3eHn59fdnYlIiIiIiLKkNF3TsqUKYPJkycjNDTUFPUhIiIiIqICyug7J6NGjcKKFSswefJkNG/eHP3798cnn3zCJ3URERER5bWZZh7qNUqYt7w8JkkStm3bho4dO+Z1VbKtWbNmqFWrFmbPnp3XVcmQ0XdOhg0bhqCgIAQFBcHLywvDhw9HsWLF8NVXXyE4ONgUdSQiIiKifE6SpDf+9OnTJ8/qVqZMmSydrIeFheHjjz/O8nFXrFgBZ2fn7FesADI6OUlTs2ZNzJkzBw8fPsTEiROxdOlS1KtXDzVr1sRvv/0GIQpWJk1EREREmQsLC5N/Zs+eDUdHR4N1c+bMMep4SUlJJqpp5tzd3fNktJBOp4Nerzd7uXkh28lJcnIyNm7ciPbt22PUqFGoW7culi5diq5du2L8+PHo0aNHbtaTiIiIiPIxd3d3+cfJyQmSJMnLVlZWGDRoEEqWLAlbW1tUr14d69atM9i/WbNm+OqrrzBy5EgULlwYLVq0AADs2LEDnp6esLGxQfPmzbFy5UpIkoRnz57J+544cQI+Pj6wsbGBh4cHhg8fjufPn8vHvXfvHr7++mv5Lk5mJEnCH3/8AQC4e/cuJEnC1q1b0bx5c9ja2qJmzZo4efIkAODIkSPo27cvYmJi5ONOmjQJAOTXcZQoUQJ2dnZo0KABjhw5IpeTdsdl165d8PLygkajwZIlS2BtbW0QFwAMHz4cTZs2BQBERkbis88+e2M7Kp3RyUlwcDCGDRuGYsWKYdiwYahatSouX76MY8eOoW/fvhg/fjx27NiBbdu2maK+RERERPSOSUxMRJ06dbBr1y5cvnwZAwYMQK9evXD69GmD7VauXAlLS0scP34cv/76K+7evYv//Oc/6NixI86fP4+BAwdi/PjxBvtcunQJvr6+6NSpEy5evIgNGzbg2LFj+OqrrwAAW7duRcmSJTF58mT5Lo4xxo8fj2+++Qbnz59HxYoV8dlnnyElJQWNGzdOd4fom2++AQD07dsXx48fx/r163Hx4kV06dIFrVq1QkhIiHzchIQE+Pv7Y+nSpbhy5Qp69uwJZ2dnbNmyRd5Gp9Nh48aN8k2BrLajkhk9Ib5evXpo0aIFFi5ciI4dO2b4IhUvLy98+umnuVJBIiIiInq3lShRQj5xB1LnOO/duxebNm1CgwYN5PUVKlTAjBkz5OWxY8eiUqVK+PHHHwEAlSpVwuXLlzFt2jR5mx9//BHdu3fHiBEjAACenp745Zdf0LRpUyxcuBAuLi6wsLCAg4MD3N3dja77N998gzZt2gAA/Pz8ULVqVdy8eROVK1c2uEOU5tatW1i3bh0ePHiA4sWLy8fYu3cvli9fjunTpwNIHaW0YMEC1KxZU963W7duWLt2Lfr37w8AOHjwIKKjo9GlSxej2lHJjE5Obt++jdKlS79xGzs7OyxfvjzblSIiIiKigkOn0+GHH37Ahg0b8PDhQ2i1Wmi1WtjZ2RlsV7duXYPlGzduoF69egbr6tevb7AcFBSEmzdvYs2aNfI6IQT0ej3u3LmDKlWq5KjuNWrUkP9drFgxAEBERAQqV66c4fbBwcEQQqBixYoG67VaLVxdXeVltVptcGwA6NGjBxo1aoRHjx6hePHiWLNmDVq3bo1ChQoByHo7KpnRycnbEhMiIiIiImPMnDkTP//8M2bPno3q1avDzs4OI0aMSDfp/fWTbCFEujkirz+USa/XY+DAgRg+fHi6ckuVKpXjur86iiitLm+avK7X62FhYYGgoCBYWFgYfGZvby//28bGJl1s9evXR/ny5bF+/XoMHjwY27ZtM7ghkNV2VLJsvSGeiIiIiCi3/P333+jQoQN69uwJIPUEPiQk5K13NSpXrow9e/YYrDt37pzBcu3atXHlyhVUqFAh0+Oo1WrodLps1j5zGR3X29sbOp0OEREReP/9940+Zvfu3bFmzRqULFkSKpVKHlIGZL8dlSTbT+siIiIiIsoNFSpUwIEDB3DixAlcu3YNAwcORHh4+Fv3GzhwIK5fv44xY8bg33//xcaNG7FixQoAL+9ijBkzBidPnsTQoUNx/vx5hISEYMeOHRg2bJh8nDJlyuDo0aN4+PAhnj59mmtxlSlTBvHx8Th48CCePn2KhIQEVKxYET169EDv3r2xdetW3LlzB2fPnkVAQEC6RCsjPXr0QHBwMKZNm4b//Oc/sLa2lj/LbjsqCe+cEBEREb0r8ukb27///nvcuXMHvr6+sLW1xYABA9CxY0fExMS8cb+yZcti8+bNGDVqFObMmYNGjRph/PjxGDx4sPw+kho1aiAwMBDjx4/H+++/DyEEypcvj27dusnHmTx5MgYOHIjy5ctDq9Xm2vv6GjdujEGDBqFbt26IjIzExIkTMWnSJCxfvhxTp07FqFGj8PDhQ7i6uqJRo0Zo3br1W4/p6emJevXq4ezZs+leHJnddlQSo5KT5ORkVKpUSX7mMhERERGRsfr06WPwRngXFxf5/SGZefU9IK9q37492rdvLy9PmzYNJUuWNLijUK9ePezfvz/TYzds2BAXLlx4a71fTVrKlCmTLolxdnZOt27hwoVYuHChwTorKyv4+fnBz88vw3Jeb5/XnTlzJsP1OWlHpTAqObGysoJWq33jy2mM4e/vj61bt+L69euwsbFB48aNERAQgEqVKsnbCCHg5+eHxYsXIzo6Gg0aNMD8+fNRtWpVAEBUVBQmTpyI/fv3IzQ0FIULF0bHjh0xZcoUODk5yceJjo7G8OHDsWPHDgCpHXnu3LlwdnbOlViITC3wp6FIjI2CJKlgZWOHOr3HoVCZykiMicTJReMR/zgUFlZq1O41NkflHPi+GxJjnv5/OfZoOHQGXMtXx4tnT3B0xmDEhd2BykqNBoN/MFlMV7YvwZ2/dyAu/B58Rs6Fe7WGOS5r77hOeBH9OF1cF9bNRMhf6xH78BY+mrQWxWs3U3xMQq/D4al9EPPgJiw1NrApVBSNh8+Cg3spPLkRjNOLxiH5RTwkSYU6/SbmKB4AOOw/AC/kPpFx31NZWsLK1hGAQ7bLMVffa/vzGUTEJUElSXCwtsTcnlVRq5QTImK16L3kPG5FPIfGygJzuvMiHFF+sGDBAtSrVw+urq44fvw4fvzxR/kdJpT/GD2sa9iwYQgICMDSpUthaZmzUWGBgYEYOnQo6tWrh5SUFIwfPx4tW7bE1atX5acxzJgxA7NmzcKKFStQsWJFTJ06FS1atMCNGzfg4OCAR48e4dGjR/jpp5/g5eWFe/fuYdCgQXj06BE2b94sl9W9e3c8ePAAe/fuBQD5pTQ7d+7MUQxE5tJoyA+wcS4MAHhw7iBOL5mAVtM24vyG2ShcoQaaj1mEyFuXcWzO13DyqPiWo2Wu6ZjFsHUpCgC4d2I3js36Ch3mB+LcMj+4VakL3+mb8eRGMA5N6Y1CZXN28pZZTEWrNkCphq1wZsmEHB3/Vc3HL4fGPvWCxatxFfNuirJNO+HYz8PecoSsMVdMnq16oXSj1pAkCVe3L8bxOSPgO30LDk7uhab/W4Ritd7Hs/v/Yu+4T/7/95T+nVRZ9d7wn6C2c0wX06t978n1YBz+YQD0nsWzXY65+t7qgd5wd0q9ovpHcDj6LbuAYD8fjN10HQ3LO2PvqAY4e/sZOs8/h+olHTg5k0jhQkJCMHXqVERFRaFUqVIYNWoUxo0bl9fVomwyOrs4ffo0Dh48iP3798uPKHvV1q1bs3ystEQhzfLly1GkSBEEBQXBx8cHQgjMnj0b48ePR6dOnQCkvhm0aNGiWLt2LQYOHIhq1aoZvCmzfPnymDZtGnr27ImUlBRYWlri2rVr2Lt3L06dOiW/gGbJkiVo1KgRbty4YXCnhkip1LYvr0gnJcTLdzBDT+1Du9mp/y+5lq8Ga0cXJMXHAHDMXjn2L+84Jj2PBaTUU7M7R/9Al5XnAQBulWrD2tkN2rhnQJGi2SoHyDymwhVqZLZLtmkyiatI5bqZ7ZIt5ohJUlmgZN0P5WMXqVIPV7YtgjY2Ctq4aBSrlfr0F+dSFaG2c0Tis6dA0ZLZLi8tMQEy73su5apCZaVGVFRU9ssxU99ztn2ZqMUkJEOlSo1n49lHuDPjAwBAvXLOKOKoQdTzZBTOVilEZC4///wzfv7557yuBuUSo5MTZ2dndO7c2RR1kSfruLi4AADu3LmD8PBwtGzZUt5Go9GgadOmOHHiBAYOHJjpcRwdHeU7OydPnoSTk5PBmzEbNmwIJycnnDhxIsPkJO2lNWliY2NzHiBRDp1c+C0irqaOM202ZhG0cc8ghIC1o4u8jW3h4oh/HJqjcgJnDEL4hb8BAC2nbUZibBSE0Mt3BADAvogH4sLu5KgcIH1MpvR6XKZizpgA4Mofv6JUw1awdnKFjbMb7v69A2Xeb4+I6+cQ+/A2HIuXzXEZWel7FmprJCYm5qgcc/W93kv+weFrkQCAvaMaIDI+CXoh4Oaokbcp7WqD2xHPc1QOEREZx+jkxFRvfhdCYOTIkWjSpAmqVasGAPKjz4oWNbw6VrRoUdy7dy/D40RGRmLKlCkGiUt4eDiKFCmSbtsiRYpk+ng1f3//TCcpEeWVRoOnAwBuH92Of9bORKPB/sDrc8By4QkjTUennlCHHFiHs0snwGf0r5Dw+lyz3HmSyesxNRu98C17ZN/rcbWcuskk5ZgzpgvrZiL20W28N3wWAOCjSWtwdtkkXFg/E4XKeKGIV30kxuT8sZhZ6nu50CfM1fd+/9IbALDyWCj+t+EqVg3wTldOLj2sh4iIjJDtobRPnjzBsWPHcPz4cTx58iTHFfnqq69w8eJFrFu3Lt1nGb35M6NJ+bGxsWjTpg28vLwwcaLhJNCMts/sOAAwbtw4xMTEyD+hoTm7Ek2Um8r5dEDE1bPycmLsy6E0CZFhsFBbZ7Sb0TxbfIawC8fk5RfPXp7kxkc8gIXGJlfKAV7GpI17lmvHzExaXK+2mymYOqZLm+bi7vFdaDl1EyytbQEALuWqwXfaZnSYHwif/y3Ei6hwWNnYv+VIWfemvqdL0ho8HScnzNX3Pm/igcPXI+XlJ7Ev75jfj3oBa7VFRrsREZGJGJ2cPH/+HP369UOxYsXg4+OD999/H8WLF0f//v2RkJCQrUoMGzYMO3bswOHDh1Gy5Mtx0e7u7gCQ7u5GREREurspcXFxaNWqFezt7bFt2zZYWVkZHOfx48fpyn3y5Em646TRaDRwdHQ0+CHKK3pdCl5Ev7wIEHr2INT2TlDbO6FU/RYIObAeABB56zISYyINxu4bVU5KChIiX/7/dvf4LmgcXaBxKIQyPh1wbedSAMCTG8F4ER0BjYOzSWLKbUkJcUiIDJOXX40rN5kzpqt/LMLtI1vQyn+bwXyahKiX33U39qyEpbUtNK8MvTJW8ot4JERHyMuZ9b2o21egT06Sh+Uay1x9L1mnx6NnL4eebQsKg6u9Gi52VuhSrxjmH7oLADh7+xkex2jhYpf9BwkQEZHxjB7WNXLkSAQGBmLnzp147733AADHjh3D8OHDMWrUqHTPcX4TIQSGDRuGbdu24ciRIyhb1nBcdNmyZeHu7o4DBw7A2zv1FnxSUhICAwMREBAgbxcbGwtfX19oNBrs2LEj3ZW7Ro0aISYmBmfOnEH9+vUBpE7sj4mJQePGjY1tAiKzE7oUHJ87CrrkJEgqFTQOhdD0m/mQJAk1P/sapxZ8i50j20BlaYX6X07Gv/vXZqscvS4Zh6f1hT5ZC0gqWDsVRovJ6yFJEur1n4TAGYOwuW8dqCzVaDJyLq5tX2ySmK5sX4qQA+ugjYvGqV+/g4WVGo4lyme7rOTnsQj8YQB0SS/SxXVh/Sxc27kMiTFP8ffMobCw0sC5dGVk5+lW5oopRZuIc8v84FCsDP4c3Q4AoLLSoP0vf+HGnhW4dWgTIAScSlVEs29/w5lfx2erHABITojHiQVjoUtKfHPfs7CEc+nKUKmyd0PeXH0vRSfQdUEwtMl6qFSAm4MGu0bUgyRJCOhSBb2W/APPMYegtlTht3418Mtfd7NVDhERZY/RycmWLVuwefNmNGvWTF7XunVr2NjYoGvXrkYlJ0OHDsXatWuxfft2ODg4yHdInJycYGNjA0mSMGLECEyfPh2enp7w9PTE9OnTYWtri+7duwNIvWPSsmVLJCQkYPXq1YiNjZUnr7u5ucHCwgJVqlRBq1at8OWXX+LXX38FkPoo4bZt2/JJXZQvWKit0fSb+bBQa9J9ZuNUGM3HvTxR0yVps52cWGps0GLKBlhmMCzMplARtPJ/+TS+lKTEHCUnb4qpaocvULXDF/KyLkmLY7+MynZZdm4l0H7uwQw/q/npSNT8dKS8nJKUiMNT+2SrHHPFZKmxRu+dYRn+nrx7joF3zzHyckpSziao27q6w3dK+uG2gGHfy+nvyFx9z0ZtgV1f14e1VfrhWkWdNNj/zcv3zyQm65icEJFZ9OnTB8+ePXvrCxSVbMWKFRgxYgSePXuWo+MYnZwkJCRkOBSqSJEiRg/rSktkXk10gNRJ92lvxRw9ejRevHiBIUOGyC9h3L9/PxwcUh/XGRQUhNOnTwMAKlSoYHCcO3fuoEyZMgCANWvWYPjw4fKTv9q3b4958+YZVV8iIiIiJSs86ahZy3s6yceo7fv06YOVK1cCACwtLeHh4YFOnTrBz88v3espCpI5c+ake7P820iShG3btqFjx46mqVQeMTo5adSoESZOnIjff/9dHj714sUL+Pn5oVGjRkYdKyu/BEmSMGnSJEyaNCnDz5s1a5al47i4uGD16tVG1Y+IiIiIclerVq2wfPlyJCcn4++//8YXX3yB58+fZzj6Jjk52WAesTmZouykpCSo1ep0652ccn9uYlblZRtnxOjBwXPmzMGJEydQsmRJfPjhh/joo4/g4eGBEydOYM6cOaaoIxERERG9IzQaDdzd3eHh4YHu3bujR48e8nCmSZMmoVatWvjtt99Qrlw5aDQaCCEQExODAQMGoEiRInB0dMQHH3yACxcuGBx3x44dqFu3LqytrVG4cGH5Bd5A6sXu14dMOTs7Y8WKFQCAu3fvQpIkbNy4Ec2aNYO1tTVWr16Ne/fuoV27dihUqBDs7OxQtWpV7NmzRz5GYGAg6tevD41Gg2LFimHs2LFISUmRP2/WrBm++uorjBw5EoULF0aLFi0ybJM+ffoY3AFp1qwZhg8fjtGjR8PFxQXu7u4GF+rTRgZ98sknkCRJXgaAnTt3ok6dOrC2tka5cuXg5+dnUCdJkrBo0SJ06NABdnZ2mDx5MkqWLIlFiwzfyxUcHAxJknD79m0AwKxZs+QXsHt4eGDIkCGIj4/PMJ6cMDo5qVatGkJCQuDv749atWqhRo0a+OGHHxASEoKqVavmegWJiIiI6N1lY2OD5ORkefnmzZvYuHEjtmzZgvPnzwMA2rRpg/DwcOzZswdBQUGoXbs2PvzwQ0RFpT7OfPfu3ejUqRPatGmDf/75BwcPHkTdunWNrsuYMWMwfPhwXLt2Db6+vhg6dCi0Wi2OHj2KS5cuISAgAPb2qY9nf/jwIVq3bo169erhwoULWLhwIZYtW4apU6caHHPlypWwtLTE8ePH5bnPWbFy5UrY2dnh9OnTmDFjBiZPnowDBw4AAM6eTX2k+/LlyxEWFiYv79u3Dz179sTw4cNx9epV/Prrr1ixYgWmTZtmcOyJEyeiQ4cOuHTpEr744gt8+umnWLNmjcE2a9euRaNGjVCuXDkAgEqlwi+//ILLly9j5cqVOHToEEaPHm1E62aN0cO6gNRO9OWXX+Z2XYiIiIioADlz5gzWrl2LDz/8UF6XlJSEVatWwc3NDQBw6NAhXLp0CREREdBoUh848tNPP+GPP/7A5s2bMWDAAEybNg2ffvqpwQu0a9asaXR9RowYYXDH5f79++jcuTOqV68OAPKJOgAsWLAAHh4emDdvHiRJQuXKlfHo0SOMGTMGEyZMkJ9eWKFCBcyYMcPoutSoUUN+b5+npyfmzZuHgwcPokWLFnLbODs7y6/eAIBp06Zh7Nix+Pzzz+X6TpkyBaNHjzZ4B2D37t3Rr18/eblHjx6YNWsW7t27h9KlS0Ov12P9+vX49ttvDdomTdmyZTFlyhQMHjwYCxYsMDq2N8lWcvLvv//iyJEjiIiIgF6vN/hswoQJuVIxIiIiInr37Nq1C/b29khJSUFycjI6dOiAuXPnyp+XLl1aPvkGUh9+FB8fD1dXV4PjvHjxArdu3QIAnD9/PlcunL9+t2X48OEYPHgw9u/fj48++gidO3dGjRo1AADXrl1Do0aNDF7o/d577yE+Ph4PHjxAqVKlMjxmVqWVk6ZYsWKIiIjIZOtUQUFBOHv2rMGdEp1Oh8TERCQkJMDW1jbDOnl7e6Ny5cpYt24dxo4di8DAQERERKBr167yNocPH8b06dNx9epVxMbGIiUlBYmJiXj+/HmuPszA6ORkyZIlGDx4MAoXLgx3d3eDX4gkSUxOiIiIiChTzZs3x8KFC2FlZYXixYunm4z9+omuXq9HsWLFcOTIkXTHcnZ2BpA6qudNJElK9wClV4eSZVb2F198AV9fX+zevRv79++Hv78/Zs6ciWHDhkEIYXAeDLx82NOr67N74v56u0iSlO6mwOv0ej38/PwM7v6kefU9gBnVqUePHli7di3Gjh2LtWvXwtfXF4ULFwYA3Lt3D61bt8agQYMwZcoUuLi44NixY+jfv3+G7ZgTRicnU6dOxbRp0zBmzJi3b0xERERE9Ao7O7t0r394k9q1ayM8PByWlpYGE79fVaNGDRw8eBB9+/bN8HM3NzeEhYXJyyEhIVl+BYaHhwcGDRqEQYMGYdy4cViyZAmGDRsGLy8vbNmyxSBJOXHiBBwcHFCiRIksx5ddVlZW0Ol0Butq166NGzduGNW+abp3747vvvsOQUFB2Lx5s8HT086dO4eUlBTMnDlTHq62cePGnAWQCaMnxEdHR6NLly6mqAsRERERkYGPPvoIjRo1QseOHbFv3z7cvXsXJ06cwHfffYdz584BSJ3gvW7dOkycOBHXrl3DpUuXDOZ5fPDBB5g3bx6Cg4Nx7tw5DBo0KEuPzx0xYgT27duHO3fuIDg4GIcOHUKVKlUAAEOGDEFoaCiGDRuG69evY/v27Zg4cSJGjhwpn8CbUpkyZXDw4EGEh4cjOjoaQOr0it9//x2TJk3ClStXcO3aNWzYsAHffffdW49XtmxZNG7cGP3790dKSgo6dOggf1a+fHmkpKRg7ty5uH37NlatWpXu6V65xeiW69KlC/bv32+KuhARERERGZAkCXv27IGPjw/69euHihUr4tNPP8Xdu3flF4M3a9YMmzZtwo4dO1CrVi188MEH8ku6AWDmzJnw8PCAj48Punfvjm+++Uaef/EmOp0OQ4cORZUqVdCqVStUqlRJngBeokQJ7NmzB2fOnEHNmjUxaNAg9O/fP0uJQG6YOXMmDhw4AA8PD3h7ewMAfH19sWvXLhw4cAD16tVDw4YNMWvWLJQuXTpLx+zRowcuXLiATp06GQyVq1WrFmbNmoWAgABUq1YNa9asgb+/v0niytKwrl9++UX+d4UKFfD999/j1KlTqF69erqsc/jw4blbQyIiIiLKEmPf2G5uae8VyUxmL952cHDAL7/8YnBO+rpOnTplONcCAIoXL459+/YZrHv27Jn87zJlymT4Uu9XJ+pnpGnTpjhz5kymn2c0TyYjr7dLRvu9/p6Wdu3aoV27dum28/X1ha+vb6Zlvenl5UOGDMGQIUMy/Ozrr7/G119/bbCuV69e8r/79OmDPn36ZHrsrMpScvLzzz8bLNvb2yMwMBCBgYEG6yVJYnJCRERERETZkqXk5M6dO6auBxERERERFXCmn61DRERERESUBUYnJ//5z3/www8/pFv/448/8ileRERERESUbUYnJ4GBgWjTpk269a1atcLRo0dzpVJERERE9GZvmthMpCTG9FWjk5P4+Hio1ep0662srBAbG2vs4YiIiIjICGlPSs3qSwSJ8lpSUhIAwMLC4q3bGv2G+GrVqmHDhg2YMGGCwfr169fDy8vL2MMRERERkREsLCzg7OyMiIgIAICtra38hnIipdHr9Xjy5AlsbW1hafn21MPo5OT7779H586dcevWLXzwwQcAgIMHD2LdunXYtGmT8TUmIiIiIqO4u7sDgJygECmZSqVCqVKlspREG52ctG/fHn/88QemT5+OzZs3w8bGBjVq1MBff/2Fpk2bZqvCRERERJR1kiShWLFiKFKkCJKTk/O6OkRvpFaroVJlbTaJ0ckJALRp0ybDSfFEREREZD4WFhZZGsdPlF9kKzkBUie2REREQK/XG6wvVapUjitFREREREQFj9HJSUhICPr164cTJ04YrBdCQJIk6HS6XKscEREREREVHEYnJ3369IGlpSV27dqFYsWK8ekQRERERESUK4xOTs6fP4+goCBUrlzZFPUhIiIiIqICyuiXMHp5eeHp06emqAsRERERERVgRicnAQEBGD16NI4cOYLIyEjExsYa/BAREREREWWH0cO6PvroIwDAhx9+aLCeE+KJiIiIiCgnjE5ODh8+bIp6EBERERFRAWd0cvKmt8CfP38+J3UhojfQpSTl6naZ0SdrkZLF7XJKaTGlbZsTSospv8QDmC8mbbL+7RsZsR0REeWebL+EMU1MTAzWrFmDpUuX4sKFCxzWRWQiJxeMM0s5gQEDzVIOwJhywlwxmSsewHwx9Vz8j1nKISIi42U7OTl06BB+++03bN26FaVLl0bnzp2xbNmy3KwbEf2/2iUczFJOTTcrs5QDMKacMFdM5ooHMOPvyaO+ecohIqJskYQQIqsbP3jwACtWrMBvv/2G58+fo2vXrli0aBEuXLgALy8vU9Yzz8XGxsLJyQkxMTFwdHTM6+pQASGEgFab/SEsGo0mSy9KNVc55iwrp+WYs6yCWo45yzJnTES5gecdVFBl+c5J69atcezYMbRt2xZz585Fq1atYGFhgUWLFpmyfkQFmiRJsLa2fmfKMWdZjEn55ZizLHPGRERE2Zfl5GT//v0YPnw4Bg8eDE9PT1PWiYiIiIiICqAsv4Tx77//RlxcHOrWrYsGDRpg3rx5ePLkiSnrRkREREREBUiWk5NGjRphyZIlCAsLw8CBA7F+/XqUKFECer0eBw4cQFxcnCnrSURERERE7zijJsS/7saNG1i2bBlWrVqFZ8+eoUWLFtixY0du1k8xODGNiIiIzIXnHVRQZfnOSUYqVaqEGTNm4MGDB1i3bl1u1YmIiIiIiAqgHN05KUh4BYOIiIjMhecdVFDl6M4JERERERFRbmFyQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSJY5nUF8pvExESo1Wqj99NoNJAk6a3bCSGg1WqzUzWjyjFnWfmlHHOVVZB/R+Yui4iIiPIXJidG6t27N6ysrIzeb9OmTbC2tn7rdlqtFl26dMlO1Ywqx5xl5ZdyzFVWQf4dmbssIiIiyl+YnBjpQlg8VBbGNVvtEg7Gl/Mk2eh9aroZnzQBQPDDOKP3UXJM2YkHME9M/B29IvSM8ft41M9eWURERJQvMDnJhkZD/GFh+fahXbqUJJxcMC7b5TQd8ytUVpq3bqdP1iIwYGC2ywHevZiyGg9gnpj4O8rY6gHe0Fi9feqbNlmPnov/yVFZREREpHxMTrLBwlINC/XbT95ySmWlgaX67cNXUnKhrHctJnPFA2QtJv6OMqaxUsHayiIXjkRERETvAj6ti4iIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBEs87Jwf39/bN26FdevX4eNjQ0aN26MgIAAVKpUSd5GCAE/Pz8sXrwY0dHRaNCgAebPn4+qVavK2yxevBhr165FcHAw4uLiEB0dDWdnZ4OygoODMWbMGJw9exYWFhbo3LkzZs2aBXt7e6PrHfjTUCTGRkGSVLCysUOd3uNQqExlJMZE4uSi8Yh/HAoLKzVq9xqb7bYBgAPfd0NizNP/L8ceDYfOgGv56njx7AmOzhiMuLA7UFmp0WDwDzkq500xXdm+BHf+3oG48HvwGTkX7tUamiSmC+tmIuSv9Yh9eAsfTVqL4rWb5Timw/4D8EIuyzQxCb0Oh6f2QcyDm7DU2MCmUFE0Hj4LDu6l8PTff3BywRjokhKh074AJBXgVjHbZb2L/a7tz2cQEZcElSTBwdoSc3tWRa1SToiI1aL3kvO4FfEcGisLzOnuleOyiIiISPnyNDkJDAzE0KFDUa9ePaSkpGD8+PFo2bIlrl69Cjs7OwDAjBkzMGvWLKxYsQIVK1bE1KlT0aJFC9y4cQMODg4AgISEBLRq1QqtWrXCuHHj0pXz6NEjfPTRR+jWrRvmzZuH2NhYjBgxAn369MHmzZuNrnejIT/AxrkwAODBuYM4vWQCWk3biPMbZqNwhRpoPmYRIm9dxrE5X8PJI/sno03HLIatS1EAwL0Tu3Fs1lfoMD8Q55b5wa1KXfhO34wnN4JxaEpvFCqbs5O3zGIqWrUBSjVshTNLJuTo+Gkyi6mYd1OUbdoJx34elivlAMB7w3+C2s4RgGlj8mzVC6UbtYYkSbi6fTGOzxmBVv5bcWz2f1G711iUatQazyPDsKl3LcSVK5btct7Ffrd6oDfcnawBAH8Eh6PfsgsI9vPB2E3X0bC8M/aOaoCzt5+h8/xzqF7Sgbd6iYiI3nF5mpzs3bvXYHn58uUoUqQIgoKC4OPjAyEEZs+ejfHjx6NTp04AgJUrV6Jo0aJYu3YtBg4cCAAYMWIEAODIkSMZlrNr1y5YWVlh/vz5UKlST2/mz58Pb29v3Lx5ExUqVDCq3mpbB/nfSQnxkCQJABB6ah/azU6NybV8NVg7uiApPgaAo1HHl8uxd3pZzvPY1CvvAO4c/QNdVp4HALhVqg1rZzdo454BRYpmqxwg85gKV6iR7WNmWE4mMRWpXDdXywEgJyaA6WKSVBYoWfdD+dhFqtTDlW2L5M+18bEAgJTEBEiSBCsrq2yX9S72O2fbl+0Rk5AMlSo1po1nH+HOjA8AAPXKOaOIowZRz5NRONslERERUX6Qp8nJ62JiYgAALi4uAIA7d+4gPDwcLVu2lLfRaDRo2rQpTpw4IScnb6PVaqFWq+XEBABsbGwAAMeOHcswOdFqtdBqtfJybGyswecnF36LiKtnAADNxiyCNu4ZhBCwdnSRt7EtXBzxj0OzVMfMBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB3/Xex3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29T2tUGtyOe57gsIiIiUjbFjJIQQmDkyJFo0qQJqlWrBgAIDw8HABQtanhltmjRovJnWfHBBx8gPDwcP/74I5KSkhAdHY1vv/0WABAWFpbhPv7+/nBycpJ/PDw8DD5vNHg6Osz9C9W7DMM/a2emrvz/K9mvBJXlOmam6ehF6LbmCmr3+Q5nl6YOQ5LwWjnIeTlAJjGZQEYxmYq5YgKAC+tmIvbRbdTp8x0A4NKmX1Dvi8notvoy2s8/gpgHIYiPj89RGe9iv/v9S2+EzvoIUztVwv82XM2wrFwIiYiIiPIBxSQnX331FS5evIh169al+0ySXj9REenWvUnVqlWxcuVKzJw5E7a2tnB3d0e5cuVQtGhRWFhYZLjPuHHjEBMTI/+EhmZ8JbqcTwdEXD0rLyfGRsn/TogMg4U6Z1fK03i2+AxhF47Jyy+ePZX/HR/xABYam1wpB3gZkzbuWa4dMyNpMb3aZqZi6pgubZqLu8d3oeXUTbC0tkViTCTundiNck0/AQA4uJeG2t4J0dHRuVLeu9jvPm/igcPXI+XlJ7Ev71zej3oBa3XG/68SERHRu0MRycmwYcOwY8cOHD58GCVLlpTXu7u7A0C6uyQRERHp7qa8Tffu3REeHo6HDx8iMjISkyZNwpMnT1C2bNkMt9doNHB0dDT4AQC9LgUvop/I24WePQi1vRPU9k4oVb8FQg6sBwBE3rqMxJhIg/H7xtCnpCAh8mXcd4/vgsbRBRqHQijj0wHXdi4FADy5EYwX0RHQODhnq5y3xZSb3hRTbkt+EY+E6Ah52VQxAcDVPxbh9pEtaOW/DZr/P77a3hkWVhqEXTwOAEiMiURSfIz8EAdjvYv9Llmnx6NnifLytqAwuNqr4WJnhS71imH+obsAgLO3n+FxjBYudtmfr0NERET5Q57OORFCYNiwYdi2bRuOHDmSLlEoW7Ys3N3dceDAAXh7ewMAkpKSEBgYiICAgGyVmZbU/Pbbb7C2tkaLFi2Mq7NOh+NzR0GXnARJpYLGoRCafjMfkiSh5mdf49SCb7FzZBuoLK1Q/8vJ+Hf/2mzVU69LxuFpfaFP1gKSCtZOhdFi8npIkoR6/SchcMYgbO5bBypLNZqMnItr2xdnq5zUmFIyjenK9qUIObAO2rhonPr1O1hYqeFYonyux3Rh/Sxc27kMiTFP8ffMobCw0sC5dGUA2TshTU6Ix4kFY6FLSjRpTCnaRJxb5geHYmXw5+h2AACVlQbtf/kLzccvx5lfx0OvS4E+JQkOxcqke8R1Vr3pd5Rf+12KTqDrgmBok/VQqQA3Bw12jagHSZIQ0KUKei35B55jDkFtqcJv/Wrgl7/uZrssIiIiyh/yNDkZOnQo1q5di+3bt8PBwUG+Q+Lk5AQbGxtIkoQRI0Zg+vTp8PT0hKenJ6ZPnw5bW1t0795dPk54eDjCw8Nx8+ZNAMClS5fg4OCAUqVKyZPr582bh8aNG8Pe3h4HDhzA//73P/zwww9GnyxaqDVoPmYRLNSadJ/ZOBVG83EvT9Z0SdpsnyRaamzQYsoGWGYwPMemUBG08t8qL6ckJeboJNFCbY2m38zPMKaqHb5A1Q5fyMu6JC2O/TIqW+W8Kaaan45EzU9HysspSYk4PLVPtsoBAFtXd/hOST9EEMjtmKzRe2dYhjGVqN0MJWofAZDzeN70O8qv/c5GbYFdX9eHtVX64VpFnTTY/83L988kJuuYnBARERUAeZqcLFy4EADQrFkzg/XLly9Hnz59AACjR4/GixcvMGTIEPkljPv37zcYHrNo0SL4+fnJyz4+PumOc+bMGUycOBHx8fGoXLkyfv31V/Tq1ct0wRERERERkVHyfFjX20iShEmTJmHSpEmZbvO2zwHg999/N7J2RERERERkToqYEE9ERERERMTkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKYJlXlcgP9KlJOXqdpnRJ2uRksXtcupdi8mYepojJv6OMqZN1ufqdkRERJS/MTnJhpMLxpmlnMCAgWYpB3j3YjJXPMC7F5M5+13Pxf+YrSwiIiJSPiYnRqpZzB5WVlamL8fN9GWkqV3CwSzlmCsmc8UDvHsxmbPfwaO++coiIiKifEESQoi8rkR+EBsbCycnJzx+/BiOjo5G76/RaCBJ0lu3E0JAq83+cJmslmPOsvJLOeYqqyD/jsxdFhFRfpV23hETE5Ot8w6i/Ip3ToxkbW0Na2trkx1fkiSTHj8vynrXyjFnWe9aOeYui4iIiPIXPq2LiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEfi0rixKe+JybGxsHteEiIiI3nVp5xt84wMVNExOsiguLg4A4OHhkcc1ISIiooIiLi4OTk5OeV0NIrPhSxizSK/X49GjR3BwcOAL4IwQGxsLDw8PhIaG8iVSuYjtajpsW9Nh25oG29V08rJthRCIi4tD8eLFoVJxFD4VHLxzkkUqlQolS5bM62rkW46OjvyjaQJsV9Nh25oO29Y02K6mk1dtyzsmVBAxFSciIiIiIkVgckJERERERIrA5IRMSqPRYOLEidBoNHldlXcK29V02Lamw7Y1Dbar6bBticyPE+KJiIiIiEgReOeEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5oWy7cOECbt26ldfVeCdFRERAp9PldTWIsiw+Pj6vq/DO4vcBERUkTE7IaI8fP0b79u3x0UcfYd++fXjx4kVeV+mdIIRAUlISBgwYAF9fX5w8eTKvq/ROefz4MXbv3g2+2il3hYWFoUePHvjss8/Qv39/BAcH53WV3gn8PjCt8PBwTJ48GQsWLMCePXvyujpE9AomJ2SU0NBQtG3bFpIk4cSJE+jVqxdsbGzyulrvBEmSEBERgR07duDJkyc4dOgQYmJiAIAn1Dk0b948FC9eHO3atcOVK1fyujrvjNWrV6NatWpISkrCxx9/jEOHDiEgIADh4eF5XbV8j98HpjNlyhRUqFABZ86cwYoVK/DJJ59g7dq1ANi2RErA5ISMsmfPHri6umL79u3w9PTEvXv3cP/+faSkpOR11d4JycnJaNu2LXr16oXVq1fj1KlTAFJPVMh4Qgjs2bMHf/zxB2bMmAFvb2/4+flBr9fnddXyPZ1Oh99//x0jR47Epk2bMGTIEAQEBCAwMJAXLHIJvw9yl06nQ0BAAPbs2YONGzdi165dOHjwIEaOHIlx48YBYNsSKQGTE8qStKtJFy9eRPHixREVFYXmzZuja9euaNSoEXr06IGjR4/mcS3zvwcPHuDixYvw9/eHnZ0d1q1bJ18tJeNJkoSiRYuiV69eGDhwIH7++Wds2bIF+/bty+uq5XuXLl3C7du3Ubx4cXldQkICOnfuzD6bS/h9kLssLCyQlJSEDz74AK1atQIAODg4oGnTprC0tOQcSiKFYHJCGXr+/DlCQkIQGxsrr9Pr9YiOjoa9vT3Gjh0LT09PbNmyBbNnz0ZsbCzGjx/P4RxZkJSUlOk8nQcPHsDLywsAMHbsWBw9ehTr1q3DgAEDEBYWZs5q5ktxcXE4evQobt68Ka+rU6cOPv/8c9jb28PHxwddunTB+PHjERcXl4c1zV9e7bNpd528vLzg6uqKZcuWYfHixejatSv69euHf/75BzVq1MCIESMQERGRl9XOF2JjY3Hq1Ck8fPgw3Wf8PsiZjP6OffPNN5g2bRpUKpV80S0qKgrW1tYoX758XlWViF7B5ITSmTJlCqpXr46uXbuiVq1a+PPPP6HX66FSqdCoUSPMmzcP+/btw5AhQ1ClShV06dIFw4YNg06nw4YNG/K6+ooWEBCA6tWrp7vLlHbCFxsbi2fPngEAunXrBktLSwwfPhznzp2DJEkcD/0GU6ZMQfny5TFy5EjUqFEDs2bNSpdcA4C/vz+uX7+OFStW5FFN85fX+6xKpUJKSgrUajXmzJmDrl27Yvv27bh16xbOnDmDvXv3Yvbs2Thz5gwWLFiQx7VXNn9/f3h4eODLL7+El5cX5syZY5Ck8Psg+17/O5Y26T1tyKFer5eHcJ08eRLe3t4AUofSEVHeYnJCsnv37qFDhw7YsGED5s2bh5kzZ8LHxwf9+/fHkydPAED+IxodHQ2V6mX3adGiBZ4/f87xupmIiorC4MGDsXbtWoSHh2Px4sV4+vSp/HlaW96/fx++vr7466+/ULJkSbx48QIODg7o0aMHChcuzPbNwO3bt9GyZUts2rQJq1atwo4dOzB27Fj88MMPBndH0tq4XLlyGDVqFKZNm4YHDx4ASB2O9Pz58zypv1K9qc9aWFgAABo2bIjhw4dDq9WiX79+qFu3LhwdHdGnTx84ODjg8ePHPNnLxJ9//olVq1Zh5cqV2LFjB8aMGYMlS5ZgwoQJ8jZ3797l94GRMvs79sUXX+Dx48fydiqVSu6bp0+fRp06dQAAVlZWADgxnigvMTkh2alTp/Ds2TNs3rwZrVu3xgcffIAVK1bg+fPnOHv2LADA2toa33//PeLj4/Hnn3/KX+BarRaSJMHFxSUvQ1CsmJgYODo6wt/fH7t378a2bdvw119/yVfz0/5rYWGBoUOHolOnThgwYABCQ0PRs2dPrFy5EseOHcvLEBTr4cOHaNy4MbZt2wZfX18UL14cX3zxBRwdHTPdZ+zYsbC2tsaPP/6IVatWwdfXl48Tfc2b+uyrJ8X37t3DzZs30aBBA3ldQkICYmNjUapUKflkjwzt3bsX1tbW6NixI8qWLYtvv/0WgwYNwvHjx7Fo0SJ5O34fGOdNf8fOnDljsK2VlRVCQ0Nx9+5ddOrUCUDq76V79+64d+9eXlSfiABAUIGn1+uFEEJERUWJTZs2GXwWHh4uKlWqJPbv32+wvlevXqJKlSqiS5cuYufOnaJNmzaiTp064sGDB2ard36SkpIi7t27Jy937dpV1KhRQ9y5c8dgux07doiAgADx77//yusiIiJElSpVRGBgoLmqm68kJSWJ0NBQg+VPPvlENGnSREyZMkX8+++/QqfTCSGE/F8hhJg4caKQJEmo1Woxbtw4s9db6bLaZ4UQwtvbWzRt2lSsWrVKBAcHi7Zt24qqVauKCxcumLHG+YdOpxODBw8Wn376qUhMTJTXP3r0SAwcOFDUrFlTJCQkiL/++ktMnz6d3wdZkJ2/Y0IIsXr1avHhhx+K0NBQ8fHHHwtLS0sxatQos9SZiDLG5ISEEC+/2NOkncRdvXpVuLq6yn8cU1JShBBCxMTEiN9//134+PiI+vXri27duomoqCjzVjofSmvnyMhIYWVlJfz9/Q1OTtLa9/VlrVZrvkrmY9euXRO2traiXr16YsKECaJWrVqiUaNGYtmyZfI28fHxYujQoUKSJNG/f38RHR2ddxXOB97UZ9P6540bN0SdOnVEpUqVRLly5UTXrl35fZCJtPb09/cXHh4eGV6g8Pb2FitWrDDYXgh+H7xNVv+Ovbpt7969hSRJwsrKSrRp00Y8ffrUfBUmogxxWBe90dGjR1G2bFl4enpCCCGPNXd0dESvXr1w4MAB7N27F+vXr0ehQoXyuLbKJF4ZuyxJElJSUuDi4oLx48dj1qxZuHbtmvx52ryItH3S2lutVpuxxvmHeG1cuIeHB/bt24dTp07Bz88Pp0+fhrOzM86cOYOkpCQAwNOnT+Hg4IC///4bS5cuhbOzcx7UXBkSExMzXJ/VPmthYYGUlBRUrFgRf/31F3bv3o2DBw9iw4YN/D7IRNoQzhEjRiAmJgZr1qwx+LxZs2awsrKSn8b16hA6fh+kioiIMGpOyOt/x15laWmJatWq4cyZM9i1axdcXV1zu7pEZCQmJwVEaGgodu7ciUuXLkGn0wF4eQKSkpIi/wFM+yxt+e+//4aPj4+87tKlS7h8+bJ8XLVaXeBPQsLCwtClSxds3LgRwMs2BN7cthMnToRarcbChQsRHR2NAwcOYPXq1QbbFHShoaHYvHkzgoOD5cmrGfXbtJeA2traokmTJlCpVNDr9VCr1YiPj0d4eLh8Qle6dGn4+/vjvffey4OIlOHOnTuoWbMmpk+fnu4zY/ts2pu1nZ2dUb58eZQpU8Y8QShUWFgYTp48ibt376b7LCUlRU4wrK2tMWHCBAQEBODcuXPyNg4ODkhKSkJoaKi5qpxv3LlzB+3bt8eYMWNw9epVg8+y+3dszpw5uHjxImrVqmWmKIjobZicFADffPMNKleujDlz5qBJkyYYNmwYbt++DUmSoNfrYWlpCSEExowZg/Xr18tX9mJiYhAUFARfX1+EhYWha9euqFmzJicKvmbZsmXYsmULfv75ZyQkJMDCwkJuw4za1sLCQv7jOXfuXCxbtgxNmzaFr68v373xinHjxqFixYqYOXMmGjdujMGDB2fabzds2JBuorZKpcKZM2cgSRK+/PLLPIxEOYQQGDRoECpWrIiKFSti+PDh6bYxts/Gx8ebOwzFGjFiBKpXr47//ve/qFq1KhYsWGDw0sRX23b16tUYNWoUKlasiLFjx8oPZAgODoYQAh07dsyjKJQl7WLE77//jjp16sDGxgZDhw5F4cKFDT439u/Y/fv3AQD29vZ5EBURvQmTk3fcb7/9hhMnTmDfvn3Yu3cvlixZgsuXL6Nfv34AUk/gVq5cicKFC2P//v2oUaMGVCoVJElCSEgInj17hm3btqF8+fKIiYnB3bt30aZNmzyOSllOnDiBbt26Qa1WIyAgwOCzjNoWSB2e8fDhQ5w6dQp6vR5Vq1bF/fv3MWTIkLwIQXFOnz6N7du3Y/PmzTh8+DCWLFmCkJAQ9OrVC8DLfuvq6pquba9du4ZLly5hwoQJaN26Nby8vNC8efO8DEcRbt68CVdXVxw7dgxnzpzBpk2b5BO8V7HPGu/+/fto3749zpw5gx07dmDjxo0YMmQIFi5caPCEqFfbtmrVqgCAVatWwdHREZ988gl8fX3x/vvvo0qVKgX6zt6r0i5GrFu3Dt9//z02bNiAunXrwsHBQf4cAFasWMG/Y0TvCjPPcSETS5vkl/bf1q1bi549expsM2zYMCFJkli8eLEQQohJkyaJhQsXppuMPXfuXCFJkqhfv36GTzkpaF6fbJmcnCyEEKJfv35i27ZtYty4caJKlSri6tWrQgghYmNjxdSpU8WCBQvSta1WqxUjRowQLi4u4vDhw2apf34yduxYUbFiRYN1J06cEPb29mLmzJlCiMz77dKlS4W3t7eoV6+eOHjwoNnqrESv9tm7d++KqlWrioEDBwohhDh+/LgYOXKkmDZtmvjzzz9FXFycECL1KWYZtSv7bOZ2794tunXrJs6dO2ew3t3dXWzYsEEIIURcXJyYMmWKQdum/X5iYmLE/v37xbx588SxY8fMW3kFev279uDBg8LT01MkJyeL48ePi/bt2wtfX18xdOhQcfLkSSFE6vdBRt+1/DtGlP8wOXmHJCQkGDz5KTo6WrRu3VqMGzfO4BGq//vf/0SlSpVE4cKF5RPsV6X9YYiNjRXLly83eb3zg9fb9tU/ntWrVxdXrlwRZ8+eFc2bNxfDhw8XWq1WXL58Od0fyleFh4ebtM75RVpbvtpHZ82aJWrUqCGeP39usN2kSZNEoUKFDH4Xrx9Hq9WK06dPm7jWyvd6n9XpdGLLli1CkiTh6+srSpcuLTp37ixq1qwpihcvLj7//PO3HpN9NlVaX0v7/nz48KE4fvy4/LlOpxNJSUmiTp06Ys2aNQbr6c1e77dCCHHq1Cnh6uoqtm3bJurWrSvGjh0rJk2aJHx8fEShQoVEWFhYuuPw7xhR/sVhXe+IcePGoUmTJmjbti1++eUXPHv2DM7OzqhSpQoOHDiAqVOnIjIyEqNHj8aKFSswceJEWFlZYcmSJQDSP51HCAEHBwf06dMnjyJSjtfbNjY2Vh5q8PDhQ9jZ2aFMmTKoW7cu2rVrh7Vr18La2hoHDx40mBz/uqJFi5oxCmWaNWuWPCk7bfgQADg5OcHKygoHDx6U10mShM8//xx2dnaYNWsWgJdPPkr7HEh9SEP9+vXNUX3FyqjPqlQqNG/eHL169UJ8fDx27NiBNWvW4Pz585g0aRJOnTqFhQsXAjBs11exzxr22bR5DsWLF0fjxo0BpLadSqVCWFgYbty4gWrVqsn7vtrHKb2M+i2Q+vepVq1amD59OmrVqoVp06Zh4sSJ2LVrF0qUKIFvv/0WgOHDSPh3jCgfy9PUiHJMq9WK//znP8LLy0usX79e9O7dW3h5eQlfX18hROpQgv/+97+iQoUKwsXFRVSrVk2+qvzee++JWbNm5WX1FS2ztm3Tpo28TUxMjHj//fdFQkKC2Lp1q3BxcRFOTk6iZs2a8javD1EgIc6cOSOaNWsmJEkStWvXFidOnBBCpL5AUYjUdq1WrZoYMmSIePz4sbxfYmKi6NOnj+jbt+8b70oVVJn12datW8vbXLt2TZw9e1bo9Xr5Sn5kZKRo27atGDBgANs1E5n12czuhqxbt05Ur149w8/5nWAos3778ccfCyGEeP78ufjkk08MhiOn9dNly5aJEiVKyMMSiSj/42WcfO7WrVu4cOECZs+ejW7dumHlypVYvHgxjh49ih9++AH29vaYPXs2Dh8+jCNHjuDSpUuoX78+tFot/v33X2g0mrwOQbEya9tDhw7hxx9/BACcO3cON2/eRP369dGvXz98++23mDFjBiRJwoIFCwCkfxcHAfv27UPhwoXx22+/yf8FACsrKyQnJ8PR0RGDBg3CX3/9he3bt8v7aTQahISEQKVSyY9kpZcy67OHDx+W+2zlypVRt25dSJIElUoFIQRcXFxw/fp1tusbZNZn09rwdUFBQWjUqJF8t+Tw4cPYuXMnAD4q/HWZ9dsjR47ghx9+gK2tLb788ku4uLhg06ZNAF6+8yUkJASenp6Z/h6IKB/K29yIciooKEhIkiQiIyOFEIZvHy5UqJC4ceOGwfZpn//++++iQYMG4tGjR+atcD7yprZ1dnYWt2/fFsnJycLLy0sMGDBAftPzo0ePRNeuXYWPj0+GcyMKsrQ2vHfvnnzl2d/fXzRo0EBs3LhRCCEM5kF1795d1KpVS/z6668iOjpaBAUFidq1a4v169ebv/L5wNu+D159Q/ar/vzzT1GvXj2DeROUKit99vW7IykpKcLb21ts2LBB3L59W3zwwQdCrVbLk+PJ0Jv6rZOTk7h165YQInXSu6urq/j+++/Fv//+K65fvy6aNm0qJk+enGd1J6Lcx+Qkn/vnn39E1apVxdy5c4UQL7/Uk5KSRNmyZcWoUaOEEKl/LJ8+fSq2bt0qBgwYIOzs7MTkyZOFXq/nEINMvKlty5QpI0aMGCGEEOLx48fp2vDKlStMTLLo1q1bomPHjqJjx44iKipKCJE6zCPtswkTJggLCwtRp04dYWNjI/r37y8P/yJDWf0+0Ol04tKlS+LQoUNi4MCBwsnJSYwdO5ZDurIooz77aoJy4cIF4eDgID7++GNhaWkpunXrJmJjY/Oquor3tn6b9l0bHh4uFi9eLJydnUW1atWEg4OD6Nu3L79rid4xHNaVz5UuXRqenp44duwYwsLCIEkSUlJSYGVlha+++grr1q2TX6Km1+tx4sQJ3L59G8ePH8f3338PSZIK7BAD8ZYhAG9q22HDhskv/itSpIjchmnH9PLyKtBD5t7Wtq9uV65cObRr1w5hYWFYsWIFAMhvcy9Xrhz8/Pxw4cIF+Pn5ITg4GEuXLoWVlZWpqq5oOemzr34fqFQqBAcHY8qUKfj3338RGBgIf3//Aj2kK6d99tXJ7iEhIYiPj4dWq8XZs2exfv16+b0clN7b+m3ad23RokXx5Zdf4sqVK1i6dCmCg4Px22+/FejvWqJ3EZMTBQsNDUVQUBAePXqU7rOUlBQAQKFChdCuXTtcv34dGzduBJD6BBkg9YlHhQoVkt+E6+bmhgkTJuDAgQOoWbOmmaJQpidPniAhIUFefvXpRFltWxcXF4SGhhoct6Ameq/KStumSXu6zn/+8x94eXlh165dCAkJAZD6puy0/atWrYo2bdqgcuXKpq6+YkVERCAuLk5ezk6fLVSoEO7duwcA6Ny5M5YsWYJDhw4V+O+DrLRtmjf12XPnzgEAGjRogIMHD+LgwYOoVauWiWuvbGltmdGTC439rk1LIIsXL44GDRqgQoUK5giBiMyMyYkCJScnY+DAgahduzb69euHmjVr4vjx4wBeftFbWloiMTER69evR79+/VCrVi1s2LABhw8flo/z4MEDuLm5oUyZMvK6gn71Ljk5GQMGDMB7772Hdu3aoW/fvoiOjja46mlM25YuXTovwlCkrLZtcnIyVq5cKS/r9Xo4OjqiS5cu0Ov18PPzw4cffoi6deum278gSklJQf/+/VG/fn189NFH6NGjByIjI7PdZ8uWLQsAsLOzQ/ny5c0ej5JktW2z2mfr16+PyMhIlCxZEs2bN8+rsBQhOTkZQ4YMwcCBAwEY3lnKzt+x0qVL8+IPUUGRdyPKKCNxcXGiffv2onnz5iI4OFhcv35dtGzZUjRt2tRguzlz5ggXFxfRoUMHIUTqGOcePXoItVotBg8eLAYMGCAcHBzEwoULhRB8dKUQQkRFRYmPPvpING/eXBw7dkwsXrxYeHt7i8aNG4vr16/L27FtjWds23bu3Fkeq5/m3r17onz58kKSJPHpp5/yhX8i9eEAPXr0EA0bNhRHjhwRs2bNEtWqVRNNmjQRV69elbdjnzWesW3LPpt1p06dEj4+PsLNzU1YWVnJb71/fU4T+y0RZYTJicKcPn1aeHp6ikOHDsnrlixZItq3by9/Mc+bN0+UKVNGrFmzxmASpl6vF9OnTxdffvmlaN26NZ+885q9e/eKatWqGZwsX716VahUKjF8+HARHR0tli9fLkqVKsW2NZKxbfv6ScbBgweFvb29qFWrljh37py5q69Y9+/fF56enmLVqlXyurCwMFGiRAkxbNgwERUVxT6bTca2Lfts1s2ePVv0799f7NmzR3Tq1Ek0aNAg3TYLFiwQZcuWZb8lonSYnCjMsWPHhCRJ8hfykydPRK1atcSgQYPEokWLhBCpT4V5/vy5wX68ovR2K1euFM7Ozgbrjh8/LlxcXISnp6fYvXu30Ov1Ij4+3mAbtu3bZbdt0zx9+lSsXbvWHFXNV/755x9hY2MjQkJChBBCfirRvHnzhKenp9i5c6fQ6/X8PsiG7LZtGvbZ9NL6XWhoqLhy5YoQIvXChZubm1i6dKkQ4uWT+JKTk/ldS0QZKtiDufPYnj17ABg+Jea9995D8+bN0bdvX3z88ccoWrQo3N3doVar8d1336FLly64fPkybG1tDfbjWFxDGbWth4cHXF1dERAQIK9bunQp+vfvD71ej+3bt0OSJNjY2Bgci21rKDfbNu04rq6u+Oyzz0xfeQVbvHgxlixZgqNHj8rrPD094e7ujtWrVwN4OW5/6NChcHJywpYtW6DVamFra2twLPZZQ7nZtgD77KvS2jYwMFDudyVKlICXlxcAoG7duvj000/h5+cHnU4HtVoNvV4PS0tL2NnZGRyL/ZaIAHDOSV7YtWuXKFGihMEdEp1OJ9/ajo+PFyEhIaJx48bip59+kvc7f/68KFeunPziL0ovo7ZNG+ccFRUlfvzxRyFJkmjcuLGwt7cX1apVE8nJyWLu3LmiRIkSeVl1xWPbmsbatWtFkSJFRKNGjUStWrWEm5ubmDp1qhBCiJiYGDFmzBjh6ekpHj9+LIQQ4sWLF0IIIVatWiWcnJzkZUqPbWs6b2rb1+eWpA1X/uabb4QQ6V9aSUT0KiYnZvb333+LVq1aia+++kp8/PHHom7duhluFxwcLCpVqiQiIiLkW93JycnC2dnZIGGhl7LatoGBgWLu3Lli//798roffvhBNGnSRDx79sxc1c1X2LamsWbNGlGzZk15yObDhw/F3LlzhZ2dnYiJiRFCCHHgwAFRr149MWTIECHEy6Evhw8fFkWKFBEXLlzIm8orHNvWdN7Uthm9bPL58+fixx9/FE5OTuLevXtCiNQ2Tvs9EBG9isO6zET8/xCYokWLomXLlhg5ciSmTJmCq1evYtmyZQAMn61va2uLkJAQhIaGyre6d+3ahXLlyuGDDz4wfwAKZmzb+vj44KuvvkKLFi0AAElJSTh16hS8vb3h5ORk/gAUjG1rGmntmpycjAYNGqB3794AUt/f4O3tjRIlSuDq1asAgCZNmqB79+5YuXIltm3bhuTkZADA8ePH4eXlherVq+dNEArFtjWdrLTttWvX0u1na2uLDh06wNvbG126dEHdunXRuXNnREVFmbX+RJRP5GVmVBAEBQWlu2Kcdss7OTlZjBo1Sri5ucmTMdOu3EVGRorPPvtM2NraikGDBonevXsLBwcHMWHCBE4a/H/Gtu3rrl+/Lv7991/Ru3dvUbZsWXHy5EmT1zm/YNuaRlBQkIiOjpaXnz17lm4IzPnz54W7u7vBY2tjY2PF6NGjhYODg2jatKno0qWLsLGxEfPnzxdCcCKxEGxbU8pu277q0qVLokaNGkKSJDFkyBB5YjwR0et458REtmzZAg8PD3Tt2hU1atTAxIkTER4eDiB14qUQApaWlhg6dCisra0xfvx4AC+vTLm4uGDZsmUYOnQoEhMTAaS+fdjPz6/ATxrMadum2b17Nz7++GPcvXsX+/btQ8OGDc0ei9KwbU3j1XatWbMmJkyYgMePH8PJyQkWFhYGd58OHTqE8uXLo1ChQkhKSgKQ+vLUgIAA/Pbbb2jWrBlcXV0RHByMIUOGACjYE4nZtqaT07ZNc+zYMbRt21YeETB//nyo1Wpzh0NE+UVeZkbvqrNnz4rKlSuL2bNniwsXLogFCxYINzc3MXjwYBEZGSmEeHkVWq/XiwULFghLS0tx+/ZtIUTqIy1fHbebnJxs/iAUKqdtq9Vq5bZ99OiRCAoKyptAFIhtaxpZaVedTif/f/7JJ5+IoUOH5mWV8w22renkZts+evSId0+JKMuYnOSitNv/CxcuFCVLljSY7Ddv3jzRsGFDMWXKlHT7RUZGisaNG4sOHTqIoKAg0bJlS7Fq1SoOJ3hFbrctnxbzEtvWNIxtV51OJ/R6vShfvrzYtWuXEEKIGzduiE8//VTcv3/fvJVXOLat6bBtiSivcVhXLkq7/X/nzh1UrFgRlpaW8md9+vRBnTp18Oeff+LKlSsAAJ1OByB1CNeXX36JHTt2oF69elCr1ejcuXOBHk7wutxu27R3GhDb1lSMbVeVSoWzZ8/C1tYWtWvXxogRI1CjRg1ERkaiSJEieRKDUrFtTYdtS0R5jWcROXDgwAEMHz4cc+bMwZkzZ+T17733Hk6cOCGP1dfpdLCzs0OHDh0gSRL2798PALCwsEBSUhIWLFiA/v37w8fHBxcvXsTOnTszfFldQcK2NR22rWnktF2B1BdcXr58GZUqVcKBAwdw/Phx7N+/HxqNxuzxKAnb1nTYtkSkNExOsiEsLAzt2rVDz549ERUVhWXLlqFly5byF3vLli1RpkwZ+W3ZaVeiWrRoAZVKhZs3b8rHio6Oxr///ovly5fjyJEjqFq1qvkDUhC2remwbU0jN9vVysoKhQsXxooVK3DlyhXUqVPH/AEpCNvWdNi2RKRYeT2uLL95/vy5+Pzzz0W3bt3kicBCCFGvXj3Rp08fIUTqpOHff/9dqFQq+U3aaXr06CGaN29u1jrnF2xb02HbmkZutGuzZs3k5YiICPNUPB9g25oO25aIlIx3Toxka2sLjUaDPn36oGzZskhJSQEAtG3bVn75lIWFBbp27YoOHTrgiy++QGBgIIQQCA8PR0hICHr06JGXISgW29Z02LamkRvt2rNnT/l4bm5ueRKHErFtTYdtS0RKJgnx2gsK6K2Sk5NhZWUFIPX9DpIkoVevXrCxscHixYvldYmJifj4449x9epV1KpVC5cvX0apUqWwceNGeHh45HEUysS2NR22rWmwXU2HbWs6bFsiUiomJ7nEx8cH/fr1Q58+fSCEgF6vh4WFBR4/foyLFy/i7NmzKFOmDLp3757XVc132Lamw7Y1Dbar6bBtTYdtS0RKwOQkF9y+fRuNGzfG7t275YmASUlJfANuLmDbmg7b1jTYrqbDtjUdti0RKQXnnORAWl537Ngx2Nvby1/ofn5++O9//4uIiIi8rF6+xrY1HbatabBdTYdtazpsWyJSGsu3b0KZSXu04pkzZ9C5c2ccOHAAAwYMQEJCAlatWsUXUOUA29Z02LamwXY1Hbat6bBtiUhpOKwrhxITE1G9enXcunULarUafn5+GDNmTF5X653AtjUdtq1psF1Nh21rOmxbIlISJie5oEWLFvD09MSsWbNgbW2d19V5p7BtTYdtaxpsV9Nh25oO25aIlILJSS7Q6XSwsLDI62q8k9i2psO2NQ22q+mwbU2HbUtESsHkhIiIiIiIFIFP6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEWVBnz59IEkSJEmClZUVihYtihYtWuC3336DXq/P8nFWrFgBZ2dn01WUiIgoH2NyQkSURa1atUJYWBju3r2LP//8E82bN8d///tftG3bFikpKXldPSIionyPyQkRURZpNBq4u7ujRIkSqF27Nr799lts374df/75J1asWAEAmDVrFqpXrw47Ozt4eHhgyJAhiI+PBwAcOXIEffv2RUxMjHwXZtKkSQCApKQkjB49GiVKlICdnR0aNGiAI0eO5E2gREREeYTJCRFRDnzwwQeoWbMmtm7dCgBQqVT45ZdfcPnyZaxcuRKHDh3C6NGjAQCNGzfG7Nmz4ejoiLCwMISFheGbb74BAPTt2xfHjx/H+vXrcfHiRXTp0gWtWrVCSEhInsVGRERkbpIQQuR1JYiIlK5Pnz549uwZ/vjjj3Sfffrpp7h48SKuXr2a7rNNmzZh8ODBePr0KYDUOScjRozAs2fP5G1u3boFT09PPHjwAMWLF5fXf/TRR6hfvz6mT5+e6/EQEREpkWVeV4CIKL8TQkCSJADA4cOHMX36dFy9ehWxsbFISUlBYmIinj9/Djs7uwz3Dw4OhhACFStWNFiv1Wrh6upq8voTEREpBZMTIqIcunbtGsqWLYt79+6hdevWGDRoEKZMmQIXFxccO3YM/fv3R3Jycqb76/V6WFhYICgoCBYWFgaf2dvbm7r6REREisHkhIgoBw4dOoRLly7h66+/xrlz55CSkoKZM2dCpUqd0rdx40aD7dVqNXQ6ncE6b29v6HQ6RERE4P333zdb3YmIiJSGyQkRURZptVqEh4dDp9Ph8ePH2Lt3L/z9/dG2bVv07t0bly5dQkpKCubOnYt27drh+PHjWLRokcExypQpg/j4eBw8eBA1a9aEra0tKlasiB49eqB3796YOXMmvL298fTpUxw6dAjVq1dH69at8yhiIiIi8+LTuoiIsmjv3r0oVqwYypQpg1atWuHw4cP45ZdfsH37dlhYWKBWrVqYNWsWAgICUK1aNaxZswb+/v4Gx2jcuDEGDRqEbt26wc3NDTNmzAAALF++HL1798aoUaNQqVIltG/fHqdPn4aHh0dehEpERJQn+LQuIiIiIiJSBN45ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBTh/wD/eko6SfVdNgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3dd1gUV9sG8HuW3lFEsGCwYG8o2GJQEwuxR2OJGmM09kiM5rPERCUWgkajsbcIsfdojLHEgr2BvQU7Cogi0mFh93x/8LK6gsrCwg5w/67LS3ZmzjnP2cOw8+yUIwkhBIiIiIiIiAxMYegAiIiIiIiIACYnREREREQkE0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHY0AEUFmq1GuHh4bCxsYEkSYYOh4iIiIowIQTi4+NRtmxZKBT8LpmKDyYnORQeHg4XFxdDh0FERETFSFhYGMqXL2/oMIgKDJOTHLKxsQGQ8UfC1tbWwNEQERFRURYXFwcXFxfN8QdRccHkJIcyL+WytbVlckJEREQFgpeSU3HDixiJiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywBviiYiIsiGEQGpqql7Km5mZ6XxjsyHLF+a29VWHvtrPrZSUlDyVJyqsmJwQERFlIzU1FT169Mh1eZVKheDgYACAh4eHzhPpGbJ8YW5bX3UAwJYtW2Bubq5zubz+7gBAWlpansoTFVZMToiIiN4i5HF8rsoJtRqxKekwLeOGy89UkCSVjuVViFMKKEqUxcXwBEDXsxd5aL8wt53X9jPVczTRuUwWYWdzX9bZPe/tExVCTE6IiIjeoekIPxgZm+pURpkcj38mdAcAfDBuKUzMdPsGPi0xFjuGfQAAaDxsps7l89J+YW47r+2r01IR5D9U5zbfZO0Qd5iZ5PzMTWqaGv2WX9Bb+0SFDZMTIiKidzAyNoWRqZluZdJe3nNgZGIKY1PdDrJVypf3HBR0+4W57by2n65za29nZqKAuYmRnmslKrr4tC4iIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZMDZ0AERERIXBYb8hSI59BklSwMTCCg37T0QJ1+pIiY3GqaWTkPAkDEYmpvAc+CMcqzXIUn7vxG5Ijnnyv/LWaDJyFhwq18GlDXMQ+u9GxD2+g9ZT16NCE2+dY7i2cwXuHduF+MgH8BqzAOUatNAqp1Km4N+fB+PFw1swNrOARQknNPOZCxvnCnj23wWcWjweKmUKVMpUuLXtg2rtv9BLu+/qe/KLpzg6azjiI+5BYWKKZj5zUcK1ht76nZv2S1V1f+P7n1ttfzmNyNhUKCQJNubGWNCvFupXsENUXCr6r7iIO1GJMDMxwtL+deBR0U7v7RMVJgZNTvz8/LB9+3bcvHkTFhYWaNasGfz9/VGtWjXNNkII+Pr6Yvny5YiJiUHjxo2xaNEi1KpVCwDw/PlzTJkyBfv370dYWBhKlSqFrl27Ytq0abCze7mDz5gxA3///TcuXrwIU1NTvHjxoqC7S0REhdj7Pr/A1MoWAPDo/EGcWTEZ3jM24+KmeShVpS5ajV+K6DtXcXz+GHT6dU+W8q0mrYaZdcbn0oOTf+P43K/RZVEQyri3QMUW3XD811G5jsGpVmNUaOKNsysmv7FstfZfoLxnG0iShOs7l+PE/NHw9tuO4/O+QYPPJ6BC0/ZIjYvBtq8awblOM721+7a+n1/lC8caHmg3cyue3grBoelfoPPCw3rtt67tf7L81Fvryo3NIxrC3tIEAPBnSCQGrrqEEF8vTNhyE00q22Pv2MY4d/cFPl0cjGvTvfTePlFhYtDLuoKCgjBy5EicPn0aBw4cQHp6Otq2bYvExETNNrNmzcLcuXOxcOFCnDt3Ds7OzmjTpg3i4+MBAOHh4QgPD8cvv/yCK1euICAgAHv37sWgQYO02lIqlejRoweGDx9eoH0kIqKiIfPgGACUSQmQJAkAEHZ6H9za9AYAOFSuDXM7Bzy9dSFL+cyDYwBQJsYBUsZHcOnqHrAtWzFPMZSqUhc2Ti5vLGdkag6XRm0125eu4Yn4iPua9akJcQCAtJREKExMYWptr5d2M72p7/eO/okanb4CADhWawAL+9J4euO83vqdm/ajrp99Z326ykxMACA2KQ0KRUb8m8+FY+SHrgAAz0r2cLI1xcnbMXpvn6gwMeiZk71792q9Xr16NUqXLo3g4GB4eXlBCIF58+Zh0qRJ6NatGwAgMDAQTk5OWL9+PYYOHYratWtj27ZtmjoqV66MGTNmoF+/fkhPT4excUYXfX19AQABAQEF0zkiIipyTi35XnPw2nL8UqTGv4AQAua2JTXbWDmWRVJ0BEq8Vy1L+aBZwxB56RgAoO2MrXqJITeu/blMc/nYB2MX4d+pfRASOB0psdF4/5tfYVHCUe/tvt73lLjnEEINC/tSmm2snSog8dnjbMsXWPtPH+lcd070X3EBh29EAwD2jm2M6AQl1ELA0dZMs41rKUuEPU/Jl/aJCgtZ3XMSGxsLAChZMuOP/L179xAZGYm2bdtqtjEzM0OLFi1w8uRJDB069I312NraahKT3EhNTUVqaqrmdVxcXK7rIiKioqHp8JkAgLtHd+LC+jloOtwP+N+3+BpCvLF8i3EZB9WhBzbg3MrJaDt9S55jaDluiU7lL22Yg7jwu3jfZy4A4MqW3+D51U+o1OITxEXcxz//1xF2Lm56b/f1vnuNWwYJr713ePN7Z+j28+qPwRn3sgQeD8P/bbqONUPcs7T/ll8domJDNk/rEkJgzJgxaN68OWrXrg0AiIyMBAA4OTlpbevk5KRZ97ro6GhMmzbtjYlLTvn5+cHOzk7zz8Xl3aeNiYioeKjk1QVR189pXqfEPdf8nPgsApYOZd5a3q3NZ4i4dFyrXG5jSI1/keMyV7YswP0Tu9F2+hYYm1siJTYaD07+jUotPgEA2JZxhWN1Dzy9FaLXdl+V2fdMyS+eaX5OeBIGq1Ll3lo+39t3LJ+renPqi+YuOHwzWvP6adzLL0IfRCfBpaR5vrZPJHeySU6+/vprXL58GRs2bMiyTpJe/2ZBZFkGZJzd6NChA2rWrIkpU6bkKZ6JEyciNjZW8y8sLCxP9RERUeGVlpyApJgozeuwcwdham0HU2s7VGjUBqEHNgIAou9cRUrsMzhW037ikzIpHknREZrX90/shpltSZjZlMh5DElvjiEnrm5bhLtHtsHbb4fmHgxTa3sYmZgh4vIJAEBKbDSe3jgH+wpVc9T3nHhb3129uuDGXysBAE9vhSA55gkca3jotd+6tl+6ZqMc1ZtTcclpCI95eanWjuAIOFiboqSVCXp4lsGiQ/cBAOfuvkBkbCqaVcn57wRRUSSLy7pGjRqFXbt24ejRoyhf/uU3Fs7OzgAyzqCUKfPyW6ioqKgsZ1Pi4+Ph7e0Na2tr7NixAyYmJsgLMzMzmJmZvXtDIiIq8tKSEnBy8QSolCmQFAqY2ZRAi+8WQZIk1PvsW5xe/D3+GtMBCmMTNB0+Ewoj7Y/XtMQ4HJs1DCplMiApYG5XCm1+2ghJknBp41zc+GsVUmKf4dickTAyNUeXRUFQvHZpsjI5AcfnfZttDNd2rkTogQ1IjY/B6WU/wMjEFB/98LumbOKzcJxd/gNsyrjin3GdAAAKEzN0/u1ftJq0GmeXTYJalQ6hSkftT0fBoUq9l7EnJ+L00ok5btd75hat/r+t756DpiJo1jBs/bIhFMam8Bq3LMt7p2u/9d1+XsUmp6PvsgtIVqqhUACONmbYPdoTkiTBv0cNfL7iAtzGH4KpsQJrBrvD2Eg23xsTGYRBkxMhBEaNGoUdO3bgyJEjqFhR+2klFStWhLOzMw4cOAB394xvoZRKJYKCguDv76/ZLi4uDu3atYOZmRl27doFc3OeEiUiIv2xdHBGu2lZz+wDgIVdKbSauPyt5a0cy6HzgoPZrqvXewzq9R6TZXlqwgvtOt4SQ60uX6FWl6+0likTX94raVWqLAbuy/4pUOUatES5Bkfe2LZlSSed2s3S9lv6blGiNLz9tr+xbUD3fue1/XSlfm9IdylpgbOTP8h2nZOdGfZ/10RrWUqaSq/tExU2Bk1ORo4cifXr12Pnzp2wsbHR3EdiZ2cHCwsLSJKE0aNHY+bMmXBzc4ObmxtmzpwJS0tL9OnTB0DGGZO2bdsiKSkJa9euRVxcnObmdUdHRxgZGQEAHj58iOfPn+Phw4dQqVS4ePEiAKBKlSqwtrYu+M4TEREREZEWgyYnS5ZkPGmjZcuWWstXr16NAQMGAADGjRuH5ORkjBgxQjMJ4/79+2FjYwMACA4OxpkzZwBkJBqvunfvHlxdXQEAkydPRmBgoGZd5pmYw4cPZ2mfiIiIiIgKnsEv63oXSZIwdepUTJ06Ndv1LVu2zFE9AQEBnOOEiIiIiEjGeNcVERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC8aGDoCIiEjuVOnKPJVRpSmRrtDt+0B1WqpWXQqlbuXz0n5hbluf7etDapo6X7cnKmqYnBAREb3DqcUTdS4j1C8PMo/NGgZJ0rW8SvPzmaXfQ9cK8tJ+YW47r+3rW7/lFwzXOFEhxOSEiIjoLRqUs8lVOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dIo92XT0vQXB1EhIgkhhKGDKAzi4uJgZ2eH2NhY2NraGjocIiLKZ0IIpKbm/hKfV8ubmZlB0vXsgwHLF+a29VWHvtrPrbi4ODg5OfG4g4odnjkhIiLKhiRJMDc3z1MdFhYWhbZ8YW5bX3Xklj5+d5RK3e9zIioK+LQuIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAs6JSfp6ekIDAxEZGRkfsVDRERERETFlE7JibGxMYYPH47U1NT8ioeIiIiIiIopnS/raty4MS5evJgPoRARERERUXFmrGuBESNGYMyYMQgLC0PDhg1hZWWltb5u3bp6C46IDE8Ikeuzpa+WNTMzgyRJBVo+r3UYOn5Dl39VXtvPi7zGTkREhYckhBC6FFAosp5skSQJQghIkgSVSqW34OQkLi4OdnZ2iI2Nha2traHDISowKSkp6NGjR67KqlQqBAcHAwA8PDyy/fuRn+XzWoeh4zd0+Vdt2bIF5ubmOpXJy+9OXtsmKux43EHFlc5nTu7du5cfcRCRzIU8jte5jFCrEZuSDtMybrj8TAVJ0u3LC6FWIU4poChRFhfDE4DcnDnJQwx5bd/Q/c9r+5nqOZrkqpxG2Nncl3VplLe2iYioUNE5OXnvvffyIw4iKgSajvCDkbFpjrdXJsfjnwndAQAfjFsKEzPdvv1OS4zFjmEfAAAaD5upc/m8xpDX9g3d/7y2r05LRZD/UJ3KvMnaIe4wM8n5mZvUNDX6Lb+gl7aJiKjw0Dk5yXT9+nU8fPgQSqVSa3nnzp3zHBQRyZORsSmMTM1yvn3ay/sNjExMYWyq28GxSpmS67b1EUNe2zd0//PafrpOW7+dmYkC5iZGeqyRiIiKIp2Tk7t37+KTTz7BlStXNPeaANDcrFhU7zkhIiIiIqL8pfPdkd988w0qVqyIJ0+ewNLSEteuXcPRo0fh4eGBI0eO5EOIRERERERUHOh85uTUqVM4dOgQHB0doVAooFAo0Lx5c/j5+cHHxwcXLvAaYSIiIiIi0p3OZ05UKhWsra0BAKVKlUJ4eDiAjBvlb926pd/oiIiIiIio2ND5zEnt2rVx+fJlVKpUCY0bN8asWbNgamqK5cuXo1KlSvkRIxERERERFQM6Jyc//PADEhMTAQDTp09Hx44d8cEHH8DBwQGbNm3Se4BERERERFQ86JyctGvXTvNzpUqVcP36dTx//hwlSpTQPLGLiIiIiIhIVzrfc5Lp9u3b2LdvH5KTk1GyZEl9xkRERERERMWQzslJdHQ0PvroI1StWhXt27dHREQEAOCrr77C2LFj9R4gEREREREVDzpf1vXtt9/CxMQEDx8+RI0aNTTLe/XqhW+//RZz5szRa4BERERElD2VSoW0tDRDh0H0VqamplAocnZOROfkZP/+/di3bx/Kly+vtdzNzQ0PHjzQtToiIiIi0pEQApGRkXjx4oWhQyF6J4VCgYoVK8LU1PSd2+qcnCQmJsLS0jLL8mfPnsHMzEzX6oiIiIhIR5mJSenSpWFpacmHEpFsqdVqhIeHIyIiAhUqVHjn76rOyYmXlxf++OMPTJs2DQAgSRLUajVmz56NVq1a5S5qIiIiIsoRlUqlSUwcHBwMHQ7ROzk6OiI8PBzp6ekwMTF567Y6JyezZ89Gy5Ytcf78eSiVSowbNw7Xrl3D8+fPceLEiVwHTURERETvlnmPSXZXshDJUeblXCqV6p3Jic5P66pZsyYuX76MRo0aoU2bNkhMTES3bt1w4cIFVK5cOXcRExEREZFOeCkXFRa6/K7qfOYEAJydneHr65ubokRERERERNnS+cyJq6srfvrpJ4SFheVHPEREREREVEzpfOZk7NixCAgIwE8//YRWrVph0KBB+OSTT/ikLiIiIiJDm1PAl3qNFQXbnoFJkoQdO3aga9euhg4l11q2bIn69etj3rx5hg4lWzqfORk1ahSCg4MRHByMmjVrwsfHB2XKlMHXX3+NkJCQ/IiRiIiIiAo5SZLe+m/AgAEGi83V1TVHB+sRERH4+OOPc1xvQEAA7O3tcx9YMaRzcpKpXr16mD9/Ph4/fowpU6Zg5cqV8PT0RL169fD7779DiOKVSRMRERHRm0VERGj+zZs3D7a2tlrL5s+fr1N9SqUynyJ9M2dnZ4NcLaRSqaBWqwu8XUPIdXKSlpaGzZs3o3Pnzhg7diw8PDywcuVK9OzZE5MmTULfvn31GScRERERFWLOzs6af3Z2dpAkSfPaxMQEw4YNQ/ny5WFpaYk6depgw4YNWuVbtmyJr7/+GmPGjEGpUqXQpk0bAMCuXbvg5uYGCwsLtGrVCoGBgZAkCS9evNCUPXnyJLy8vGBhYQEXFxf4+PggMTFRU++DBw/w7bffas7ivIkkSfjzzz8BAPfv34ckSdi+fTtatWoFS0tL1KtXD6dOnQIAHDlyBF9++SViY2M19U6dOhUANNNxlCtXDlZWVmjcuDGOHDmiaSfzjMvu3btRs2ZNmJmZYcWKFTA3N9fqFwD4+PigRYsWAIDo6Gh89tlnb30f5U7n5CQkJASjRo1CmTJlMGrUKNSqVQtXr17F8ePH8eWXX2LSpEnYtWsXduzYkR/xEhEREVERk5KSgoYNG2L37t24evUqhgwZgs8//xxnzpzR2i4wMBDGxsY4ceIEli1bhvv37+PTTz9F165dcfHiRQwdOhSTJk3SKnPlyhW0a9cO3bp1w+XLl7Fp0yYcP34cX3/9NQBg+/btKF++PH766SfNWRxdTJo0Cd999x0uXryIqlWr4rPPPkN6ejqaNWuW5QzRd999BwD48ssvceLECWzcuBGXL19Gjx494O3tjdDQUE29SUlJ8PPzw8qVK3Ht2jX069cP9vb22LZtm2YblUqFzZs3a04K5PR9lDOdb4j39PREmzZtsGTJEnTt2jXbiVRq1qyJ3r176yVAIiIiIiraypUrpzlwBzLucd67dy+2bNmCxo0ba5ZXqVIFs2bN0ryeMGECqlWrhtmzZwMAqlWrhqtXr2LGjBmabWbPno0+ffpg9OjRAAA3Nzf89ttvaNGiBZYsWYKSJUvCyMgINjY2cHZ21jn27777Dh06dAAA+Pr6olatWrh9+zaqV6+udYYo0507d7BhwwY8evQIZcuW1dSxd+9erF69GjNnzgSQcZXS4sWLUa9ePU3ZXr16Yf369Rg0aBAA4ODBg4iJiUGPHj10eh/lTOfk5O7du3jvvffeuo2VlRVWr16d66CIiIiIqPhQqVT4+eefsWnTJjx+/BipqalITU2FlZWV1nYeHh5ar2/dugVPT0+tZY0aNdJ6HRwcjNu3b2PdunWaZUIIqNVq3Lt3DzVq1MhT7HXr1tX8XKZMGQBAVFQUqlevnu32ISEhEEKgatWqWstTU1Ph4OCgeW1qaqpVNwD07dsXTZs2RXh4OMqWLYt169ahffv2KFGiBICcv49ypnNy8q7EhIiIiIhIF3PmzMGvv/6KefPmoU6dOrCyssLo0aOz3PT++kG2ECLLPSKvP5RJrVZj6NCh8PHxydJuhQoV8hz7q1cRZcbytpvX1Wo1jIyMEBwcDCMjI6111tbWmp8tLCyy9K1Ro0aoXLkyNm7ciOHDh2PHjh1aJwRy+j7KWa5miCciIiIi0pdjx46hS5cu6NevH4CMA/jQ0NB3ntWoXr069uzZo7Xs/PnzWq8bNGiAa9euoUqVKm+sx9TUFCqVKpfRv1l29bq7u0OlUiEqKgoffPCBznX26dMH69atQ/ny5aFQKDSXlAG5fx/lJNdP6yIiIiIi0ocqVargwIEDOHnyJG7cuIGhQ4ciMjLyneWGDh2KmzdvYvz48fjvv/+wefNmBAQEAHh5FmP8+PE4deoURo4ciYsXLyI0NBS7du3CqFGjNPW4urri6NGjePz4MZ49e6a3frm6uiIhIQEHDx7Es2fPkJSUhKpVq6Jv377o378/tm/fjnv37uHcuXPw9/fPkmhlp2/fvggJCcGMGTPw6aefwtzcXLMut++jnPDMCREREVFRUUhnbP/xxx9x7949tGvXDpaWlhgyZAi6du2K2NjYt5arWLEitm7dirFjx2L+/Plo2rQpJk2ahOHDh2vmI6lbty6CgoIwadIkfPDBBxBCoHLlyujVq5emnp9++glDhw5F5cqVkZqaqrf5+po1a4Zhw4ahV69eiI6OxpQpUzB16lSsXr0a06dPx9ixY/H48WM4ODigadOmaN++/TvrdHNzg6enJ86dO5dl4sjcvo9yolNykpaWhmrVqmmeuUxEREREpKsBAwZozQhfsmRJzfwhb/LqPCCv6ty5Mzp37qx5PWPGDJQvX17rjIKnpyf279//xrqbNGmCS5cuvTPuV5MWV1fXLEmMvb19lmVLlizBkiVLtJaZmJjA19cXvr6+2bbz+vvzurNnz2a7PC/vo1zolJyYmJggNTX1rZPT6MLPzw/bt2/HzZs3YWFhgWbNmsHf3x/VqlXTbCOEgK+vL5YvX46YmBg0btwYixYtQq1atQAAz58/x5QpU7B//36EhYWhVKlS6Nq1K6ZNmwY7OztNPTExMfDx8cGuXbsAZPwiL1iwAPb29nrpC1FxcdhvCJJjn0GSFDCxsELD/hNRwrU6UmKjcWrpJCQ8CYORiSk8B/4Iu/JZr+/dO7EbkmOe/K+8NZqMnAWHynVwacMchP67EXGP76D11PWo0MRbp/av7VyBe8d2IT7yAbzGLEC5Bi2ylFUpU/Dvz4Px4uEtGJtZwKKEE5r5zIWNcwU8vRWCM0snIi05AZKkQKOhM+BQpa5e239b/5NfPMXRWcMRH3EPChNTNPOZixKuWa8Rzkv7urTtXLtptvHnRdtfTiMyNhUKSYKNuTEW9KuF+hXsEBWXiv4rLuJOVCLMTIywtH8deFS0e3eFREQAFi9eDE9PTzg4OODEiROYPXu2Zg4TKnx0vqxr1KhR8Pf3x8qVK2FsnLerwoKCgjBy5Eh4enoiPT0dkyZNQtu2bXH9+nXN0xhmzZqFuXPnIiAgAFWrVsX06dPRpk0b3Lp1CzY2NggPD0d4eDh++eUX1KxZEw8ePMCwYcMQHh6OrVu3atrq06cPHj16hL179wKAZlKav/76K099ICpu3vf5BaZWtgCAR+cP4syKyfCesRkXN81DqSp10Wr8UkTfuYrj88eg3fSNWcq3mrQaZtYZB54PTv6N43O/RpdFQSjj3gIVW3TD8V9HZSmTk/adajVGhSbeOLti8lvLV2v/Bcp7toEkSbi+czlOzB+NdjO34eBPn6PF/y1Fmfof4MXD/7Bv4ifo+NtBvbf/pv6fX+ULxxoeaDdzK57eCsGh6V+g88LDem1fl7Z7BFx4az9yY/OIhrC3zHiqzZ8hkRi46hJCfL0wYctNNKlsj71jG+Pc3Rf4dHEwrk330nv7RFQ0hYaGYvr06Xj+/DkqVKiAsWPHYuLEiYYOi3JJ5+zizJkzOHjwIPbv3695RNmrtm/fnuO6MhOFTKtXr0bp0qURHBwMLy8vCCEwb948TJo0Cd26dQOQMTOok5MT1q9fj6FDh6J27dpaM2VWrlwZM2bMQL9+/ZCeng5jY2PcuHEDe/fuxenTpzUT0KxYsQJNmzbFrVu3tM7UENHbZR4YA4AyKUFzJjXs9D50mpexTztUrg1zOwdE376cpXzmwTEAKBPjACnjuRylq3tk2VaX9ktlc5bjdUam5nBp1FbzunQNT1zbsRSpcc+RGh+DMvUznppiX6EqTK3tEH7hiF7bB97c/3tH/0SPwIsAAMdqDWBhXxpPb5zPUj4v7evS9pOrp+FYI2djklOZiQkAxCalQaHIiH3zuXDcm/UhAMCzkj2cbE1x8naMXtsmoqLr119/xa+//mroMEhPdE5O7O3t0b179/yIRXOzTsmSJQEA9+7dQ2RkJNq2fXkwYWZmhhYtWuDkyZMYOnToG+uxtbXVnNk5deoU7OzstGbGbNKkCezs7HDy5Mlsk5PMSWsyxcXF5b2DREXEqSXfI+p6xvWuLccvRWr8CwghYG5bUrONlWNZJD1/km35oFnDEHnpGACg7Yyt2W6jS/u5de3PZajQxBvmdg6wsHfE/WO74PpBZ0TdPI/Yx3eQGPUoX9p/vf8pcc8hhBoW9qU021g7VUDis8d6bz+nbSdEPdJ7cgIA/VdcwOEb0QCAvWMbIzpBCbUQcLQ102zjWsoSYc9T9N42ERHJn87JSX7N/C6EwJgxY9C8eXPUrl0bADSPPnNyctLa1snJCQ8ePMi2nujoaEybNk0rcYmMjETp0qWzbFu6dOk3Pl7Nz8/vjTcpERV3TYfPBADcPboTF9bPQdPhfsDr96K95UknLcZlHFCHHtiAcysno+30LXlqv+W4Je8okdWlDXMQF34X7/vMBQC0nroO51ZNxaWNc1DCtSacajWB4g2Xrua1/df77zVuGSS8fi/fm9+/vLSf17bz6o/B7gCAwONh+L9N17FmiHuW9vX0kBwiIiqEcj3PydOnT3H8+HGcOHECT58+zXMgX3/9NS5fvowNGzZkWZfdzJ/Z3ZQfFxeHDh06oGbNmpgyZcpb63hbPQAwceJExMbGav6FhYXp0h2iYqGSVxdEXT+neZ0S91zzc+KzCFiWdMqumIZbm88Qcem4VrnctJ8a/0Kncle2LMD9E7vRdvoWGJtbAgBKVqqNdjO2osuiIHj93xIkRUfCrrxbvrSfKbP/mZJfvHy2fsKTMFiVKpdv7b+rbevS5XWuUxdfNHfB4ZvRmtdP416eqX4QnQSXkubZFSMioiJO5+QkMTERAwcORJkyZeDl5YUPPvgAZcuWxaBBg5CUlJSrIEaNGoVdu3bh8OHDKF/+5Qeis7MzAGQ5uxEVFZXlbEp8fDy8vb1hbW2NHTt2wMTERKueJ0+yXl7y9OnTLPVkMjMzg62trdY/ouIuLTkBSTFRmtdh5w7C1NoOptZ2qNCoDUIPZNwAH33nKlJin2V52pUyMQ5J0RGa1/dP7IaZbUmY2ZTIWftJb24/p65uW4S7R7bB22+H1j0Yr16CdmtPIIzNLeFUp5le239b/129uuDGXysBAE9vhSA55kmWy6ry0r4yKV6ntp1qN8lRn3IqLjkN4TEvL9XaERwBB2tTlLQyQQ/PMlh06D4A4NzdF4iMTUWzKjn7nSAioqJF58u6xowZg6CgIPz11194//33AQDHjx+Hj48Pxo4dm+U5zm8jhMCoUaOwY8cOHDlyBBUrVtRaX7FiRTg7O+PAgQNwd8+4FECpVCIoKAj+/v6a7eLi4tCuXTuYmZlh165dWs+1BoCmTZsiNjYWZ8+eRaNGjQBk3NgfGxuLZs20Dz6I6M3SkhJwcvEEqJQpkBQKmNmUQIvvFkGSJNT77FucXvw9/hrTAQpjEzQdPhMKI+0/McrEOBya9gVUymRAUsDcrhTa/LQRkiTh0sa5uPHXKqTEPsOxOSNhZGqOj2ft0i6fnIDj877Ntv1rO1ci9MAGpMbH4PSyH2BkYgrvmVu0Ykh8Fo6zy3+ATRlX/DOuEwBAYWKGzr/9i1t7AnDn0BZACNhVqIqPJq/JcmZV1/Y/+uH3HPffc9BUBM0ahq1fNoTC2BRe45Zlff/y0H5aYhyOzRqmU9tqVXruf1leE5ucjr7LLiBZqYZCATjamGH3aE9IkgT/HjXw+YoLcBt/CKbGCqwZ7A5jo1yf2CciokJM5+Rk27Zt2Lp1K1q2bKlZ1r59e1hYWKBnz546JScjR47E+vXrsXPnTtjY2GjOkNjZ2cHCwgKSJGH06NGYOXMm3Nzc4ObmhpkzZ8LS0hJ9+vQBkHHGpG3btkhKSsLatWsRFxenuXnd0dERRkZGqFGjBry9vTF48GAsW7YMQMajhDt27MgndRHpwNLBGe2mZb30EgAs7Eqh1cTlWsuUidoPkrAuXR6dF2R9PC8A1Os9BvV6j9FalprwQuu11Vvar9XlK9Tq8lWW5a/GYFWqLAbuy/4pUO79xsO933i9tq9L/y1KlIa3n/bTDvXZvpVjOZ3a1jeXkhY4O/mDbNc52Zlh/3faZ2pS0lT5Gg8RkZwMGDAAL168eOcEinIWEBCA0aNH48WLF3mqR+fkJCkpKdtLoUqXLq3zZV2ZicyriQ6QcdN95qyY48aNQ3JyMkaMGKGZhHH//v2wsbEBAAQHB+PMmTMAgCpVtCd8u3fvHlxdXQEA69atg4+Pj+bJX507d8bChQt1ipeIiIhIzkpNPVqg7T2bqtucRAMGDEBgYCAAwNjYGC4uLujWrRt8fX2zTE9RnMyfPz/LzPLvIkkSduzYga5du+ZPUAaic3LStGlTTJkyBX/88Yfm8qnk5GT4+vqiaVPdZhTOySBIkoSpU6di6tSp2a5v2bJljuopWbIk1q5dq1N8RERERKRf3t7eWL16NdLS0nDs2DF89dVXSExMzPbqm7S0NK37iAtSfrStVCphamqaZbmdXc7vndQ3Q77H2dH5ot758+fj5MmTKF++PD766CO0bt0aLi4uOHnyJObPn58fMRIRERFREWFmZgZnZ2e4uLigT58+6Nu3r+ZypqlTp6J+/fr4/fffUalSJZiZmUEIgdjYWAwZMgSlS5eGra0tPvzwQ1y6dEmr3l27dsHDwwPm5uYoVaqUZgJvIOPL7tcvmbK3t0dAQAAA4P79+5AkCZs3b0bLli1hbm6OtWvX4sGDB+jUqRNKlCgBKysr1KpVC3v27NHUERQUhEaNGsHMzAxlypTBhAkTkJ7+8n69li1b4uuvv8aYMWNQqlQptGnTJtv3ZMCAAVpnQFq2bAkfHx+MGzcOJUuWhLOzs9YX9ZlXBn3yySeQJEnzGgD++usvNGzYEObm5qhUqRJ8fX21YpIkCUuXLkWXLl1gZWWFn376CeXLl8fSpdrzZoWEhECSJNy9excAMHfuXM0E7C4uLhgxYgQSEhKy7U9e6Jyc1K5dG6GhofDz80P9+vVRt25d/PzzzwgNDUWtWrX0HiARERERFV0WFhZIS0vTvL59+zY2b96Mbdu24eLFiwCADh06IDIyEnv27EFwcDAaNGiAjz76CM+fZzyK/u+//0a3bt3QoUMHXLhwAQcPHoSHh+4TyY4fPx4+Pj64ceMG2rVrh5EjRyI1NRVHjx7FlStX4O/vD2trawDA48eP0b59e3h6euLSpUtYsmQJVq1ahenTp2vVGRgYCGNjY5w4cUJz73NOBAYGwsrKCmfOnMGsWbPw008/4cCBAwCAc+cyHuO/evVqREREaF7v27cP/fr1g4+PD65fv45ly5YhICAAM2bM0Kp7ypQp6NKlC65cuYKvvvoKvXv3xrp167S2Wb9+PZo2bYpKlSoBABQKBX777TdcvXoVgYGBOHToEMaNG6fDu5szOl/WBWT8Eg0ePFjfsRARERFRMXL27FmsX78eH330kWaZUqnEmjVr4OjoCAA4dOgQrly5gqioKJiZmQEAfvnlF/z555/YunUrhgwZghkzZqB3795aE2jXq1dP53hGjx6tdcbl4cOH6N69O+rUqQMAmgN1AFi8eDFcXFywcOFCSJKE6tWrIzw8HOPHj8fkyZOhUGScA6hSpQpmzZqlcyx169bVzNvn5uaGhQsX4uDBg2jTpo3mvbG3t9dMvQEAM2bMwIQJE/DFF19o4p02bRrGjRunNQdgnz59MHDgQM3rvn37Yu7cuXjw4AHee+89qNVqbNy4Ed9//73We5OpYsWKmDZtGoYPH47Fixfr3Le3yVVy8t9//+HIkSOIioqCWq3WWjd58mS9BEZERERERc/u3bthbW2N9PR0pKWloUuXLliwYIFm/Xvvvac5+AYyHn6UkJAABwcHrXqSk5Nx584dAMDFixf18sX562dbfHx8MHz4cOzfvx+tW7dG9+7dUbduxhxeN27cQNOmTbUeO//+++8jISEBjx49QoUKFbKtM6cy28lUpkwZREVFvWHrDMHBwTh37pzWmRKVSoWUlBQkJSXB0tIy25jc3d1RvXp1bNiwARMmTEBQUBCioqLQs2dPzTaHDx/GzJkzcf36dcTFxSE9PR0pKSlITEzU68MMdE5OVqxYgeHDh6NUqVJwdnbWGhBJkpicEBEREdEbtWrVCkuWLIGJiQnKli2b5Wbs1w901Wo1ypQpgyNHjmSpy97eHkDGVT1vI0lSlgcovXop2Zva/uqrr9CuXTv8/fff2L9/P/z8/DBnzhyMGjUKQogs82FltvHq8tweuL/+vkiSlOWkwOvUajV8fX21zv5kenUewOxi6tu3L9avX48JEyZg/fr1aNeuHUqVKgUAePDgAdq3b49hw4Zh2rRpKFmyJI4fP45BgwZl+z7mhc7JyfTp0zFjxgyMHz/+3RsTEREREb3Cysoqy/QPb9OgQQNERkbC2NhY68bvV9WtWxcHDx7El19+me16R0dHREREaF6HhobmeAoMFxcXDBs2DMOGDcPEiROxYsUKjBo1CjVr1sS2bdu0kpSTJ0/CxsYG5cqVy3H/csvExAQqlfacUA0aNMCtW7d0en8z9enTBz/88AOCg4OxdetWraennT9/Hunp6ZgzZ47mcrXNmzfnrQNvoPMN8TExMejRo0d+xEJEREREpKV169Zo2rQpunbtin379uH+/fs4efIkfvjhB5w/fx5Axg3eGzZswJQpU3Djxg1cuXJF6z6PDz/8EAsXLkRISAjOnz+PYcOG5ejxuaNHj8a+fftw7949hISE4NChQ6hRowYAYMSIEQgLC8OoUaNw8+ZN7Ny5E1OmTMGYMWM0B/D5ydXVFQcPHkRkZCRiYjImGJ48eTL++OMPTJ06FdeuXcONGzewadMm/PDDD++sr2LFimjWrBkGDRqE9PR0dOnSRbOucuXKSE9Px4IFC3D37l2sWbMmy9O99EXnd65Hjx7Yv39/fsRCRERERKRFkiTs2bMHXl5eGDhwIKpWrYrevXvj/v37monBW7ZsiS1btmDXrl2oX78+PvzwQ80k3QAwZ84cuLi4wMvLC3369MF3332nuf/ibVQqFUaOHIkaNWrA29sb1apV09wAXq5cOezZswdnz55FvXr1MGzYMAwaNChHiYA+zJkzBwcOHICLiwvc3d0BAO3atcPu3btx4MABeHp6okmTJpg7dy7ee++9HNXZt29fXLp0Cd26ddO6VK5+/fqYO3cu/P39Ubt2baxbtw5+fn750q8cXdb122+/aX6uUqUKfvzxR5w+fRp16tTJknX6+PjoN0IiIiIiyhFdZ2wvaJnzirzJmybetrGxwW+//aZ1TPq6bt26ZXuvBQCULVsW+/bt01r24sULzc+urq7ZTur96o362WnRogXOnj37xvXZ3SeTndffl+zKvT5PS6dOndCpU6cs27Vr1w7t2rV7Y1tvm7x8xIgRGDFiRLbrvv32W3z77bdayz7//HPNzwMGDMCAAQPeWHdO5Sg5+fXXX7VeW1tbIygoCEFBQVrLJUlickJERERERLmSo+Tk3r17+R0HEREREREVc/l/tw4REREREVEO6JycfPrpp/j555+zLJ89ezaf4kVERERERLmmc3ISFBSEDh06ZFnu7e2No0eP6iUoIiIiInq7t93YTCQnuvyu6pycJCQkwNTUNMtyExMTxMXF6VodEREREekg80mpOZ1EkMjQlEolAMDIyOid2+o8Q3zt2rWxadMmTJ48WWv5xo0bUbNmTV2rIyIiIiIdGBkZwd7eHlFRUQAAS0tLzQzlRHKjVqvx9OlTWFpawtj43amHzsnJjz/+iO7du+POnTv48MMPAQAHDx7Ehg0bsGXLFt0jJiIiIiKdODs7A4AmQSGSM4VCgQoVKuQoidY5OencuTP+/PNPzJw5E1u3boWFhQXq1q2Lf//9Fy1atMhVwERERESUc5IkoUyZMihdujTS0tIMHQ7RW5mamkKhyNndJDonJwDQoUOHbG+KJyIiIqKCY2RklKPr+IkKi1wlJ0DGjS1RUVFQq9VayytUqJDnoIiIiIiIqPjROTkJDQ3FwIEDcfLkSa3lQghIkgSVSqW34IiIiIiIqPjQOTkZMGAAjI2NsXv3bpQpU4ZPhyAiIiIiIr3QOTm5ePEigoODUb169fyIh4iIiIiIiimdJ2GsWbMmnj17lh+xEBERERFRMaZzcuLv749x48bhyJEjiI6ORlxcnNY/IiIiIiKi3ND5sq7WrVsDAD766COt5bwhnoiIiIiI8kLn5OTw4cP5EQcRERERERVzOicnb5sF/uLFi3mJhYhkTpWuzPX2qjQl0nM4O2wmdVqqVl0Kpc5XouYphry2b+j+67P9vEpNU797ozxsT0RERUOuJ2HMFBsbi3Xr1mHlypW4dOkSL+siKsJOLZ6o0/bilUlaj80aBl2fPC7UL/+enFn6PXSuII8x5LV9Q/c/r+3rU7/lFwzXOBERFRq5Tk4OHTqE33//Hdu3b8d7772H7t27Y9WqVfqMjYhkpEE5G53LqFQqBEcYAzH3ULeyBxQ6fnOvUikQ/EACEiNQv0Y5ncvnNYa8tm/o/ue1fb1xaWSYdomIqNDRKTl59OgRAgIC8PvvvyMxMRE9e/ZEWloatm3bhpo1a+ZXjERkQGZmZtiyZUuuygohkJqaqqlH10lb81o+r3UYOn5Dl3+VmZlZrsrk9ncnr20TEVHhlOPkpH379jh+/Dg6duyIBQsWwNvbG0ZGRli6dGl+xkdEBiZJEszNzXNd3sLCIk/t57V8XuswdPyGLp8Xef3dISKi4ifHycn+/fvh4+OD4cOHw83NLT9jIiIiIiKiYijHFyAfO3YM8fHx8PDwQOPGjbFw4UI8ffo0P2MjIiIiIqJiJMfJSdOmTbFixQpERERg6NCh2LhxI8qVKwe1Wo0DBw4gPj4+P+MkIiIiIqIiThJCiNwWvnXrFlatWoU1a9bgxYsXaNOmDXbt2qXP+GQjLi4OdnZ2iI2Nha2traHDISIioiKMxx1UXOXpuZLVqlXDrFmz8OjRI2zYsEFfMRERERERUTGUpzMnxQm/wSAiIqKCwuMOKq4MNCMXERERERGRNiYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyYKxoQMobFJSUmBqaqpzOSEEUlNTAQBmZmaQJKnQlC/MbeurDn21nxd5iZ2IiIioMGByoqP+/fvDxMRE53IqlQrBwcEAAA8PDygUup20MmT5wty2vuoAgC1btsDc3FzncqmpqejRo0eu2tRH+0RERESFBZMTHV2KSIDCSPe3TajViE1Jh2kZN1x+poIkqXQsr0KcUkBRoiwuhicAup69yEP7hbntvLafqZ6j7glpFmFnc1/WpVHe2yciIiKSOSYnudB0hB+MjHW7tEuZHI9/JnQHAHwwbilMzHT7BjwtMRY7hn0AAGg8bKbO5fPSfmFuO6/tq9NSEeQ/VOc232TtEHeYmeT8zE1qmhr9ll/QW/tEREREcsbkJBeMjE1hZGqmW5m0l/ccGJmYwthUt4NslTLFYO0X5rbz2n66zq29nZmJAuYmRnqulYiIiKho4NO6iIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHYkI37+flh+/btuHnzJiwsLNCsWTP4+/ujWrVqmm2EEPD19cXy5csRExODxo0bY9GiRahVq5Zmm+XLl2P9+vUICQlBfHw8YmJiYG9vr9VWSEgIxo8fj3PnzsHIyAjdu3fH3LlzYW1tnavYD/sNQXLsM0iSAiYWVmjYfyJKuFZHSmw0Ti2dhIQnYTAyMYXnwB/hWK1BlvJ7J3ZDcsyT/5W3RpORs+BQuQ4ubZiD0H83Iu7xHbSeuh4VmnjrHMO1nStw79guxEc+gNeYBSjXoIVWOZUyBf/+PBgvHt6CsZkFLEo4oZnPXNg4V8Cz/y7g1OLxUClToFKmwq1tH1Rr/4Ve2n1X35NfPMXRWcMRH3EPChNTNPOZixKuNfTW79y0X6qq+xvf/9xq+8tpRMamQiFJsDE3xoJ+tVC/gh2i4lLRf8VF3IlKhJmJEZb2rwOPinZ6b5+IiIhIrgyanAQFBWHkyJHw9PREeno6Jk2ahLZt2+L69euwsrICAMyaNQtz585FQEAAqlatiunTp6NNmza4desWbGxsAABJSUnw9vaGt7c3Jk6cmKWd8PBwtG7dGr169cLChQsRFxeH0aNHY8CAAdi6dWuuYn/f5xeYWtkCAB6dP4gzKybDe8ZmXNw0D6Wq1EWr8UsRfecqjs8fg06/7slSvtWk1TCzzjjwfHDybxyf+zW6LApCGfcWqNiiG47/OirXMTjVaowKTbxxdsXkN5at1v4LlPdsA0mScH3ncpyYPxrefttxfN43aPD5BFRo2h6pcTHY9lUjONdpprd239b386t84VjDA+1mbsXTWyE4NP0LdF54WK/91rX9T5afemtdubF5REPYW5oAAP4MicTAVZcQ4uuFCVtuoklle+wd2xjn7r7Ap4uDcW26l97bJyIiIpIrgyYne/fu1Xq9evVqlC5dGsHBwfDy8oIQAvPmzcOkSZPQrVs3AEBgYCCcnJywfv16DB06FAAwevRoAMCRI0eybWf37t0wMTHBokWLoFBkXMm2aNEiuLu74/bt26hSpYrOsWceHAOAMikBkiQBAMJO70OneRn9cqhcG+Z2Dnh66wJKvFdNq3zmwTEAKBPjACkjrtLVPfIcQ6kqdd9azsjUHC6N2mpel67hiWs7lmpepybEAQDSUhKhMDGFqbW9XtrN9Ka+3zv6J3oEXgQAOFZrAAv70nh643yW8gXZftT1szmqUxeZiQkAxCalQaHIiH/zuXDcm/UhAMCzkj2cbE1x8naM3tsnIiIikiuDJievi42NBQCULFkSAHDv3j1ERkaibduXB9JmZmZo0aIFTp48qUlO3iU1NRWmpqaaxAQALCwsAADHjx/PNjlJTU1Famqq5nVcXFyWbU4t+V5z8Npy/FKkxr+AEALmtiU121g5lkVSdESW5AQAgmYNQ+SlYwCAtjNydwbn9Rhy49qfyzSXj30wdhH+ndoHIYHTkRIbjfe/+RUWJRz13u7rfU+Jew4h1LCwL6XZxtqpAhKfPc62fIG1//SRznXnRP8VF3D4RjQAYO/YxohOUEItBBxtzTTbuJayRNjzlHxpn4iIiEiOZHNDvBACY8aMQfPmzVG7dm0AQGRkJADAyclJa1snJyfNupz48MMPERkZidmzZ0OpVCImJgbff/89ACAiIiLbMn5+frCzs9P8c3FxybJN0+Ez0WXBv6jTYxQurJ+TsfB/3+K/0rE3xtVi3FL0WncNDQb8gHMr334p0ptkG4MOLm2Yg7jwu2g44AcAwJUtv8Hzq5/Qa+1VfLL8FIIDpiPu8R29t5td3yW89t7hze+dodvPqz8GuyNsbmtM71YN/7fperbtv+VXh4iIiKhIkk1y8vXXX+Py5cvYsGFDlnWS9PpBm8iy7G1q1aqFwMBAzJkzB5aWlnB2dkalSpXg5OQEIyOjbMtMnDgRsbGxmn9hYWFvrL+SVxdEXT+neZ0S91zzc+KzCFg6lHlrfG5tPkPEpeNa5XSVGUNq/Iscl7myZQHun9iNttO3wNjcEimx0Xhw8m9UavEJAMC2jCscq3vg6a0Qvbb7qsy+Z0p+8Uzzc8KTMFiVKvfW8vnevmP5XNWbU180d8Hhm9Ga10/jXp6texCdBJeS5vnaPhEREZGcyCI5GTVqFHbt2oXDhw+jfPmXB4POzs4AkOUsSVRUVJazKe/Sp08fREZG4vHjx4iOjsbUqVPx9OlTVKxYMdvtzczMYGtrq/UvU1pyApJiojSvw84dhKm1HUyt7VChURuEHtgIAIi+cxUpsc/gWE37iU/KpHgkRb88Y3P/xG6Y2ZaEmU2JHPcnLenNMeTE1W2LcPfINnj77dDcg2FqbQ8jEzNEXD4BAEiJjcbTG+dgX6FqjvqeE2/ru6tXF9z4ayUA4OmtECTHPIFjDe17cPLab13bL12zUY7qzam45DSEx7y8VGtHcAQcrE1R0soEPTzLYNGh+wCAc3dfIDI2Fc2q5Px3goiIiKiwM+g9J0IIjBo1Cjt27MCRI0eyJAoVK1aEs7MzDhw4AHf3jAN8pVKJoKAg+Pv756rNzKTm999/h7m5Odq0aaNzHWlJCTi5eAJUyhRICgXMbEqgxXeLIEkS6n32LU4v/h5/jekAhbEJmg6fCYWR9tuclhiHY7OGQaVMBiQFzO1Koc1PGyFJEi5tnIsbf61CSuwzHJszEkam5uiyKAgKY+06lMkJOD7v22xjuLZzJUIPbEBqfAxOL/sBRiam+OiH3zVlE5+F4+zyH2BTxhX/jOsEAFCYmKHzb/+i1aTVOLtsEtSqdAhVOmp/OgoOVeq9jD05EaeXTsxxu94zt2j1/2199xw0FUGzhmHrlw2hMDaF17hlWd47Xfut7/bzKjY5HX2XXUCyUg2FAnC0McPu0Z6QJAn+PWrg8xUX4Db+EEyNFVgz2B3GRrL4/oCIiIioQBg0ORk5ciTWr1+PnTt3wsbGRnOGxM7ODhYWFpAkCaNHj8bMmTPh5uYGNzc3zJw5E5aWlujTp4+mnsjISERGRuL27dsAgCtXrsDGxgYVKlTQ3Fy/cOFCNGvWDNbW1jhw4AD+7//+Dz///HOW+VBywtLBGe2mZb38DAAs7Eqh1cTlby1v5VgOnRcczHZdvd5jUK/3mCzLUxNeaNfxlhhqdfkKtbp8pbVMmfjyhn6rUmUxcF/2T4Eq16AlyjU48sa2LUs66dRulrbf0neLEqXh7bf9jW0Duvc7r+2nK/V7Q7pLSQucnfxBtuuc7Myw/7smWstS0lR6bZ+IiIhIzgyanCxZsgQA0LJlS63lq1evxoABAwAA48aNQ3JyMkaMGKGZhHH//v2aOU4AYOnSpfD19dW89vLyylLP2bNnMWXKFCQkJKB69epYtmwZPv/88/zrHBERERER6cTgl3W9iyRJmDp1KqZOnfrGbd61HgD++OMPHaMjIiIiIqKCxAvaiYiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWTA2dACFkSpdmacyqjQl0hW65YXqtFStuhRK3crnpf3C3LY+29eH1DR1vm5PREREVJgxOcmFU4sn6lxGqF8eZB6bNQySpGt5lebnM0u/h64V5KX9wtx2XtvXt37LLxiucSIiIiKZY3Kio3plrGFiYqJzOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dLIMO0SERERFRKSEEIYOojCIC4uDnZ2dnjy5AlsbW11Li+EQGpqxiVCZmZmkHQ9+2DA8oW5bX3Voa/28yIvsRMRUeGSedwRGxubq+MOosKKZ050ZG5uDnNz81yVtbCwyFPbhixfmNvWVx25JUlSrn9niIiIiIoTPq2LiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFvi0rhzKfOJyXFycgSMhIiKioi7zeIMzPlBxw+Qkh+Lj4wEALi4uBo6EiIiIiov4+HjY2dkZOgyiAsNJGHNIrVYjPDwcNjY2nAhPz+Li4uDi4oKwsDBONCVDHB/54xjJG8dH/uQ4RkIIxMfHo2zZslAoeBU+FR88c5JDCoUC5cuXN3QYRZqtra1sPhQoK46P/HGM5I3jI39yGyOeMaHiiKk4ERERERHJApMTIiIiIiKSBSYnZHBmZmaYMmUKzMzMDB0KZYPjI38cI3nj+Mgfx4hIPnhDPBERERERyQLPnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJieUr6KioqBSqQwdBlGhlZCQYOgQ6B34d46ISH+YnJDeCSGgVCoxZMgQtGvXDqdOnTJ0SJSNJ0+e4O+//wanOpKniIgI9O3bF5999hkGDRqEkJAQQ4dEr+DfOfmLjIzETz/9hMWLF2PPnj2GDoeIcojJCemdJEmIiorCrl278PTpUxw6dAixsbEAwANhmVi4cCHKli2LTp064dq1a4YOh16zdu1a1K5dG0qlEh9//DEOHToEf39/REZGGjo0+h/+nZO3adOmoUqVKjh79iwCAgLwySefYP369QA4PkRyx+SE8kVaWho6duyIzz//HGvXrsXp06cBZHygk+EIIbBnzx78+eefmDVrFtzd3eHr6wu1Wm3o0Oh/VCoV/vjjD4wZMwZbtmzBiBEj4O/vj6CgIFhYWBg6PHoF/87Jj0qlgr+/P/bs2YPNmzdj9+7dOHjwIMaMGYOJEycC4PgQyR2TE8oXjx49wuXLl+Hn5wcrKyts2LBB860iGY4kSXBycsLnn3+OoUOH4tdff8W2bduwb98+Q4dG/3PlyhXcvXsXZcuW1SxLSkpC9+7duQ/JDP/OyY+RkRGUSiU+/PBDeHt7AwBsbGzQokULGBsb486dOwaOkIjehckJ5ZpSqURycnK26x49eoSaNWsCACZMmICjR49iw4YNGDJkCCIiIgoyzGItPj4eR48exe3btzXLGjZsiC+++ALW1tbw8vJCjx49MGnSJMTHxxsw0uLp1X0o8+xVzZo14eDggFWrVmH58uXo2bMnBg4ciAsXLqBu3boYPXo0oqKiDBl2sRIXF4fTp0/j8ePHWdbx75zhJSYmIjQ0FHFxcZpl3333HWbMmAGFQqG5hOv58+cwNzdH5cqVDRUqEeUQkxPKFX9/f9SpUwdHjx7VWp55gBUXF4cXL14AAHr16gVjY2P4+Pjg/PnzkCSJ1/wWgGnTpqFy5coYM2YM6tati7lz52p9gGeOlZ+fH27evImAgAADRVo8vb4PKRQKpKenw9TUFPPnz0fPnj2xc+dO3LlzB2fPnsXevXsxb948nD17FosXLzZw9MWDn58fXFxcMHjwYNSsWRPz58/XSlL4d86wpk2bhjp16qBnz56oX7++5qb3zMsf1Wq15hKuU6dOwd3dHUDG5XhEJF9MTkgnz58/x/Dhw7F+/XpERkZi+fLlePbsmWa9QpHxK/Xw4UO0a9cO//77L8qXL4/k5GTY2Nigb9++KFWqFK/5zUd3795F27ZtsWXLFqxZswa7du3ChAkT8PPPP2udHckcq0qVKmHs2LGYMWMGHj16BCDjMqLExESDxF/UvW0fMjIyAgA0adIEPj4+SE1NxcCBA+Hh4QFbW1sMGDAANjY2ePLkCQ+w8tk///yDNWvWIDAwELt27cL48eOxYsUKTJ48WbPN/fv3+XfOAB48eIAuXbpg06ZNWLhwIebMmQMvLy989dVXePLkiWY7hUKh2U/OnDmDhg0bAgBMTEwA8MZ4IrlickI6iY2Nha2tLfz8/PD3339jx44d+PfffzXfwmf+b2RkhJEjR6Jbt24YMmQIwsLC0K9fPwQGBuL48eOG7EKR9/jxYzRr1gw7duxAu3btULZsWXz11VewtbV9Y5kJEybA3Nwcs2fPxpo1a9CuXTs+ejOfvG0fevVg9sGDB7h9+zYaN26sWZaUlIS4uDhUqFBBc4BF+WPv3r0wNzdH165dUbFiRXz//fcYNmwYTpw4gaVLl2q249+5gnf69Gm8ePECW7duRfv27fHhhx8iICAAiYmJOHv2rNa2JiYmCAsLw/3799GtWzcAGWPbp08fPHjwwBDhE9G7CCIdpKeniwcPHmhe9+zZU9StW1fcu3dPa7tdu3YJf39/8d9//2mWRUVFiRo1aoigoKCCCrdYUiqVIiwsTOv1J598Ipo3by6mTZsm/vvvP6FSqYQQQvO/EEJMmTJFSJIkTE1NxcSJEws87uIip/uQEEK4u7uLFi1aiDVr1oiQkBDRsWNHUatWLXHp0qUCjLj4UalUYvjw4aJ3794iJSVFszw8PFwMHTpU1KtXTyQlJYl///1XzJw5k3/nCoharRZCCPH8+XOxZcsWrXWRkZGiWrVqYv/+/VnKrV27Vnz00UciLCxMfPzxx8LY2FiMHTu2QGImIt0xOaFcyfyQiI6OFiYmJsLPz0/rQzw9PV1r+8zXqampBRckiRs3bghLS0vh6ekpJk+eLOrXry+aNm0qVq1apdkmISFBjBw5UkiSJAYNGiRiYmIMF3Ax8rZ9KHN/uXXrlmjYsKGoVq2aqFSpkujZs6d4/vy5wWIuDjLHxc/PT7i4uGT7xYu7u7sICAjQ2l4I/p0rCK++30K8/ILl+vXrwsHBQStRzNy2f//+QpIkYWJiIjp06CCePXtWcAETkc54WRflmHjl+lxJkpCeno6SJUti0qRJmDt3Lm7cuKFZn3k/Q2aZzGvpTU1NCzDi4ke8dg21i4sL9u3bh9OnT8PX1xdnzpyBvb09zp49C6VSCQB49uwZbGxscOzYMaxcuRL29vYGiLxoSUlJyXZ5TvchIyMjpKeno2rVqvj333/x999/4+DBg9i0aRNKlChRIH0orjIvTR09ejRiY2Oxbt06rfUtW7aEiYmJ5mlcr16Kx79z+hMVFaXTPSFHjx5FxYoV4ebmlqWcsbExateujbNnz2L37t1wcHDQd7hEpEdMTkgjIiICPXr0wObNmwFkTGaVKT09XfMhnLk88/WUKVNgamqKJUuWICYmBgcOHMDatWu1tiH9CAsLw9atWxESEqK50TPzg/jVMUpPTwcAWFpaonnz5lAoFFCr1TA1NUVCQgIiIyM1B1Dvvfce/Pz88P777xugR0XLvXv3UK9ePcycOTPLOl33oczZrO3t7VG5cmW4uroWTCeKuIiICJw6dQr379/Psi49PV2TYJibm2Py5Mnw9/fH+fPnNdvY2NhAqVQiLCysoEIuVu7du4fOnTtj/PjxuH79uta6t+1Dx44dg5eXl2bZlStXcPXqVQDA/PnzcfnyZdSvX7+AekFEecHkhDRWrVqFbdu24ddff0VSUhKMjIw03yIaGxtDCIHx48dj48aNUKvVMDIy0nxALFiwAKtWrUKLFi3Qrl07zpmRDyZOnIiqVatizpw5aNasGYYPH467d+9CkiSo1WqtMdq0aVOWG6wVCgXOnj0LSZIwePBgA/ak6BFCYNiwYahatSqqVq0KHx+fLNvoug8lJCQUdDeKvNGjR6NOnTr45ptvUKtWLSxevFhr0sRXx2jt2rUYO3YsqlatigkTJmgeEBESEgIhBLp27WqgXhQ9mV+w/PHHH2jYsCEsLCwwcuRIlCpVSmt9dvsQkPGQieDgYLRr1w4RERHo2bMn6tWrh4cPHwIArK2tDdArIsotJiekcfLkSfTq1Qumpqbw9/fXWhcYGIhSpUph//79qFu3ruayLSMjIzx+/BinT5+GWq1GrVq18PDhQ4wYMcIQXSiyzpw5g507d2Lr1q04fPgwVqxYgdDQUHz++ecAMhKPwMBAODg4ZBmjGzdu4MqVK5g8eTLat2+PmjVrolWrVobsTpFy+/ZtODg44Pjx4zh79iy2bNmiOah6Ffchw3n48CE6d+6Ms2fPYteuXdi8eTNGjBiBJUuWaD3d6dUxqlWrFgBgzZo1sLW1xSeffIJ27drhgw8+QI0aNXimUY8yv2DZsGEDfvzxR2zatAkeHh6wsbHRrAeAgICALPuQJEkIDQ3FixcvsGPHDlSuXBmxsbG4f/8+OnToYMhuEVEuGRs6ACp4Qgitb9TT09NhbGyMMmXKoFOnTpoDrN69e6NGjRqIj4/Ho0ePMH36dAwZMkRz2QOQMcP1L7/8gj/++AOHDh1Cy5YtDdCjou/PP/+ESqXSfNh+/vnnqFKlCtq2bYu5c+dizJgxuH//PmbOnInBgwdrjdHJkyexaNEiGBsbY/Pmzfjwww8N1Y0i49V9yMTEBGXLlkXz5s3h7u6OkydPYtu2bXBwcECDBg3QvHlzWFtb4969e5gxY0aW8eE+lP+uXr0KS0tLLFiwQDPXxezZs7F27VrExMQAABISEhAWFqY1RkII1KhRAwEBAThz5gz+++8/TJ48mYmJHrz+OXTkyBHcuXMHo0aNwsmTJ+Hv74/U1FRUqVIF/fr1Q5MmTfDgwYNsP4dOnz6NJ0+eICQkBDt37kSbNm0M0SUi0hNJ6HLHGRV6ycnJUCgUMDMzA6D9AVG3bl1s3LgRSUlJGDduHOrUqYPZs2cjNDQU1atX1/oweNWTJ0/g5ORUYH0o6jLHRK1Wa75d//XXXxEQEIBTp07B0tJSs91PP/2E+fPnIyIiQjOmr9ejVCpx8eJFNGrUqMD7UhS9vg+p1Wr8+eef+PTTT9G2bVvcvHkTHh4euH37Np4+fYo2bdogICDgrXVyH9KvzN/9zC9ewsPDcf/+fTRr1gxAxpipVCo0bdoUY8aMQZ8+fTTLM/c5yj+v70NAxtnhDh06YOXKlZgxYwZat24Nc3NzHDp0CFeuXMH169fh7OysVU/mOMfHx2Pbtm0YMGBAAfeEiPID/woXIxMnTkTz5s3RsWNH/Pbbb4iLi9McBD9+/BhWVlZwdXWFh4cHOnXqhPXr18Pc3BwHDx7Uujn+dTyo0p+5c+dqbqZ+9SDJzs4OJiYmOHjwoGaZJEn44osvYGVlhblz5wJ4+aShzPVAxpODmJjoR3b7kEKhQKtWrfD5558jISEBu3btwrp163Dx4kVMnToVp0+fxpIlSwBoj8+ruA/pz6v7UOY9CmXLltVKTBQKBSIiInDr1i3Url1bU5aJSf7Lbh8CMhKN+vXrY+bMmahfvz5mzJiBKVOmYPfu3ShXrhy+//57ANoPapEkCUII2NjYMDEhKkL4l7gYUCqV6NGjB3bt2oVx48ahbNmyWLZsmebbQoVCARsbG5iYmECSJOzYsQPTp09HWloa6tatCx8fH5iamur0WEfSzblz59CqVSt899132L59O06dOgUAmidyffrpp0hNTcXevXsRFRWlKVemTBm0bt0aoaGhUKlUPLjKJ2/ahz777DMAQIkSJTBx4kTMmzcPderU0cze3r17d7i5ueHixYscn3z2pn3o9b9bmWNw8uRJVKxYUSs5ycS/dfr3pn2od+/eADLO3Nva2uL8+fNo1KgRFAoFVCoVbGxs8O2332L//v1ISEjIcgafT4QkKnr4SVkM3LlzB5cuXcK8efPQq1cvBAYGYvny5Th06BBmz54NADh//jxu376NRo0aYeDAgfj+++8xa9YsSJKExYsXA+AHdn7at28fSpUqhd9//13zP5BxP0NaWhpsbW0xbNgw/Pvvv9i5c6emnJmZGUJDQ6FQKN542R3l3Zv2ocOHD2v2oerVq8PDwwOSJEGhUEAIgZIlS+LmzZscnwLwpn0ocyxeFxwcjKZNm2qSlcOHD+Ovv/4CwAPe/PCmfejIkSP4+eefYWlpicGDB6NkyZLYsmULgJfzxoSGhsLNze2NY0lERUx+zvBI8hAcHCwkSRLR0dFCCO0ZkO3t7cXdu3dFWlqaqFmzphgyZIhmRuTw8HDRs2dP4eXlpTX7O+lP5lg8ePBAnDx5UgiRMS6NGzcWmzdvFkIIkZaWptm+T58+on79+mLZsmUiJiZGBAcHiwYNGoiNGzcWfPDFyNv2oRIlSmjNSv2qf/75R3h6eooTJ04UWKzFTU72ocxZxDOlp6cLd3d3sWnTJnH37l3x4YcfClNTU7Fp06aCDb4Yeds+ZGdnJ+7cuSOEEGLq1KnCwcFB/Pjjj+K///4TN2/eFC1atBA//fSTwWInooLF5KQYuHDhgqhVq5ZYsGCBEOLlh4JSqRSurq5i9OjRQgghnjx5olmX6dq1a0xMCtidO3dE165dRdeuXcXz58+FEEKkpqZq1k2ePFkYGRmJhg0bCgsLCzFo0CChVCoNGXKR97Z9qGLFimLs2LFCiIyD4CtXrohDhw6JoUOHCjs7OzFhwgSRnp5usNiLo+z2oVcTlEuXLgkbGxvx8ccfC2NjY9GrVy8RFxdnqHCLhXftQ5mfQ5GRkWL58uXC3t5e1K5dW9jY2Igvv/ySn0NExQgv6yoCxDtOc7/33ntwc3PD8ePHERERoXmKjYmJCUaNGqWZsK906dKayxky66xZs2aWp0CR7t41Rq9uV6lSJXTq1AkRERGapzxlzuZeqVIl+Pr64tKlS/D19UVISAhWrlypuceBcicv+9DXX3+NDRs2aG60DgkJwbRp0/Dff/8hKCgIfn5+vKRLD/K6D716v09oaCgSEhKQmpqKc+fOYePGjZo5NSh/vGsfyvwccnJywuDBg3Ht2jWsXLkSISEh+P333/k5RFSMMDkp5J4+fYqkpCTN61efBpSeng4g42bdTp064ebNm9i8eTOAjKfYABlPgSpZsiTCwsK06uU11/qTkzHKlPkkmk8//RQ1a9bE7t27ERoaCiBjZurM8rVq1UKHDh1QvXr1/A6/yIuKikJ8fLzmdW72oRIlSuDBgwcAMm6CX7FiBQ4dOoR69eoVVDeKtJyMUaa37UPnz58HADRu3BgHDx7EwYMHUb9+/XyOvujLHI/snuqo6+dQZhJatmxZNG7cGFWqVCmILhCRjDA5KaTS0tIwZMgQvP/+++jUqRO+/PJLxMTEaH07aGxsjJSUFGzcuBEDBw5E/fr1sWnTJhw+fFizzaNHj+Do6Ij33nvPEN0o0nI6RmlpaQgMDNS8VqvVsLW1RY8ePaBWq+Hr64uPPvoIHh4eWcpT7qWnp2PQoEFo1KgRWrdujb59+yI6OjrX+1DFihUBAFZWVqhcuXKB96coyukY5XQfatSoEaKjo1G+fHm0atXKUN0qMtLS0jBixAgMHToUgPbZqcyERdfPIX4xRkQ8yimEYmJi0L59e9y+fRurV6/GZ599hkuXLqFjx464deuWZrvffvsN5cqVw8aNGwEAY8aMQaVKleDt7a35QJkzZw569eoFgE/j0iddxsjZ2Rl//fWXZqbqzA/4WrVqISwsDOvXr0fp0qURERGBEiVKGKQ/RU16ejoGDBiA69evIzAwEJ999hkuX76Mrl274saNG5rtuA8Zji5jpMs+5ODgYJD+FDVnzpxB69atsXXrVgQGBuLEiROQJElz9iRzDLgPEZHODHSvC+XB3r17Re3atcXNmzc1y65fvy4UCoXw8fERMTExYvXq1aJChQpi3bp1WjeCqtVqMXPmTDF48GDRvn17PkUon+g6Rq8/iODgwYPC2tpa1K9fX5w/f76gwy/yHj58KNzc3MSaNWs0yyIiIkS5cuXEqFGjxPPnz7kPGZiuY8R9qGDNmzdPDBo0SOzZs0d069ZNNG7cOMs2ixcvFhUrVuQ+REQ6YXJSCAUGBgp7e3utZSdOnBAlS5YUbm5u4u+//xZqtVokJCRobfP6hzfln9yOUaZnz56J9evXF0SoxdKFCxeEhYWFCA0NFUIIzZOAFi5cKNzc3MRff/0l1Gq1SExM1CrHfajg5HaMMnEfyh+Z+0BYWJi4du2aECLjyxhHR0excuVKIcTLpwumpaXxc4iIdMbLumRuz549ALRPdbu4uMDBwQH+/v6aZStXrsSgQYOgVquxc+dOSJIECwsLrbp4LW/+0OcYZdbj4OCgmX2c8mb58uVYsWIFjh49qlnm5uYGZ2dnrF27FsDLS1BGjhwJOzs7bNu2DampqbC0tNSqi/tQ/tDnGAHch/Qtc3yCgoI0+0C5cuVQs2ZNAICHhwd69+4NX19fqFQqmJqaQq1Ww9jYGFZWVlp1cR8ioncybG5Eb7J7925Rrlw5IUmS5pR35lwJz58/F7NnzxaSJIlmzZoJa2trUbt2bZGWliYWLFggypUrZ8jQiw2OkbytX79elC5dWjRt2lTUr19fODo6iunTpwshhIiNjRXjx48Xbm5u4smTJ0IIIZKTk4UQQqxZs0bY2dlpXlP+4RjJ29vG5/W5e86cOSPc3NzEd999J4TIOvElEVFOMTmRoWPHjglvb2/x9ddfi48//lh4eHhku11QUJBYsGCB2L9/v2bZzz//LJo3by5evHhRUOEWSxwjeVu3bp2oV6+eWLp0qRBCiMePH4sFCxYIKysrERsbK4QQ4sCBA8LT01OMGDFCCPHycpPDhw+L0qVLi0uXLhkm+GKCYyRvbxuf7CasTExMFLNnzxZ2dnbiwYMHQoiMccocSyKinOJlXTIi/ndZkJOTE9q2bYsxY8Zg2rRpuH79OlatWgVA+/n+Xl5e+Prrr9GmTRsAgFKpxOnTp+Hu7g47O7uC70AxwDGSt8zxSUtLQ+PGjdG/f38AGXMmuLu7o1y5crh+/ToAoHnz5ujTpw8CAwOxY8cOpKWlAQBOnDiBmjVrok6dOobpRBHHMZK3nIzPq09Ly2RpaYkuXbrA3d0dPXr0gIeHB7p3747nz58XaPxEVAQYNDUiIYQQwcHBWb5FzzxlnpaWJsaOHSscHR01N4S+7ubNm+K///4T/fv3FxUrVhSnTp3K95iLG46RvAUHB4uYmBjN6xcvXmS57OTixYvC2dlZPH/+XLMsLi5OjBs3TtjY2IgWLVqIHj16CAsLC7Fo0SIhBG/e1SeOkbzldnxedeXKFVG3bl0hSZIYMWKE5sZ4IiJd8MyJAW3btg0uLi7o2bMn6tatiylTpiAyMhJAxs2fQggYGxtj5MiRMDc3x6RJkwBkfQ7833//jY8//hj379/Hvn370KRJkwLvS1HFMZK3V8enXr16mDx5Mp48eQI7OzsYGRlpncU6dOgQKleujBIlSkCpVAIAbGxs4O/vj99//x0tW7aEg4MDQkJCMGLECAC8eVcfOEbyltfxyXT8+HF07NgRlpaWCA0NxaJFi2BqalrQ3SGiosCwuVHxde7cOVG9enUxb948cenSJbF48WLh6Ogohg8fLqKjo4UQL7+ZV6vVYvHixcLY2FjcvXtXCJHxqMbM637Dw8NFcHCwYTpShHGM5C0n46NSqURaWpoQQohPPvlEjBw50pAhFzscI3nT5/iEh4fzjDAR6QWTkwKWeQnCkiVLRPny5bVuFly4cKFo0qSJmDZtWpZy0dHRolmzZqJLly4iODhYtG3bVqxZs4ZPRMkHHCN503V8VCqVUKvVonLlymL37t1CCCFu3bolevfuLR4+fFiwwRcTHCN54/gQkZzxsq4ClnkJwr1791C1alUYGxtr1g0YMAANGzbEP//8g2vXrgEAVCoVAKBkyZIYPHgwdu3aBU9PT5iamqJ79+6aZ/+T/nCM5E3X8VEoFDh37hwsLS3RoEEDjB49GnXr1kV0dDRKly5tkD4UdRwjeeP4EJGc8agpnx04cAA+Pj6YP38+zp49q1n+/vvv4+TJk5r7F1QqFaysrNClSxdIkoT9+/cDAIyMjKBUKrF48WIMGjQIXl5euHz5Mv76669sJ/Aj3XGM5C2v4wNkTJR59epVVKtWDQcOHMCJEyewf/9+mJmZFXh/iiKOkbxxfIioMGFykk8iIiLQqVMn9OvXD8+fP8eqVavQtm1bzQdD27Zt4erqqplBPPObrDZt2kChUOD27duaumJiYvDff/9h9erVOHLkCGrVqlXwHSqCOEbyps/xMTExQalSpRAQEIBr166hYcOGBd+hIohjJG8cHyIqlAx9XVlRlJiYKL744gvRq1cvzc3RQgjh6ekpBgwYIITIuJH6jz/+EAqFQjO7eKa+ffuKVq1aFWjMxQ3HSN70MT4tW7bUvI6KiiqYwIsRjpG8cXyIqLDimZN8YGlpCTMzMwwYMAAVK1ZEeno6AKBjx46ayauMjIzQs2dPdOnSBV999RWCgoIghEBkZCRCQ0PRt29fQ3ahyOMYyZs+xqdfv36a+hwdHQ3Sj6KMYyRvHB8iKqwkIV6bkIH0Ii0tDSYmJgAy5ryQJAmff/45LCwssHz5cs2ylJQUfPzxx7h+/Trq16+Pq1evokKFCti8eTNcXFwM3IuijWMkbxwf+eMYyRvHh4gKIyYnBcjLywsDBw7EgAEDIISAWq2GkZERnjx5gsuXL+PcuXNwdXVFnz59DB1qscUxkjeOj/xxjOSN40NEcsfkpIDcvXsXzZo1w99//625kVCpVHIGXRnhGMkbx0f+OEbyxvEhosKA95zks8zc7/jx47C2ttZ8IPj6+uKbb75BVFSUIcMjcIzkjuMjfxwjeeP4EFFhYvzuTSgvMh/NePbsWXTv3h0HDhzAkCFDkJSUhDVr1nACKxngGMkbx0f+OEbyxvEhosKEl3UVgJSUFNSpUwd37tyBqakpfH19MX78eEOHRa/gGMkbx0f+OEbyxvEhosKCyUkBadOmDdzc3DB37lyYm5sbOhzKBsdI3jg+8scxkjeODxEVBkxOCohKpYKRkZGhw6C34BjJG8dH/jhG8sbxIaLCgMkJERERERHJAp/WRUREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiyoEBAwZAkiRIkgQTExM4OTmhTZs2+P3336FWq3NcT0BAAOzt7fMvUCIiokKMyQkRUQ55e3sjIiIC9+/fxz///INWrVrhm2++QceOHZGenm7o8IiIiAo9JidERDlkZmYGZ2dnlCtXDg0aNMD333+PnTt34p9//kFAQAAAYO7cuahTpw6srKzg4uKCESNGICEhAQBw5MgRfPnll4iNjdWchZk6dSoAQKlUYty4cShXrhysrKzQuHFjHDlyxDAdJSIiMhAmJ0REefDhhx+iXr162L59OwBAoVDgt99+w9WrVxEYGIhDhw5h3LhxAIBmzZph3rx5sLW1RUREBCIiIvDdd98BAL788kucOHECGzduxOXLl9GjRw94e3sjNDTUYH0jIiIqaJIQQhg6CCIiuRswYABevHiBP//8M8u63r174/Lly7h+/XqWdVu2bMHw4cPx7NkzABn3nIwePRovXrzQbHPnzh24ubnh0aNHKFu2rGZ569at0ahRI8ycOVPv/SEiIpIjY0MHQERU2AkhIEkSAODw4cOYOXMmrl+/jri4OKSnpyMlJQWJiYmwsrLKtnxISAiEEKhatarW8tTUVDg4OOR7/ERERHLB5ISIKI9u3LiBihUr4sGDB2jfvj2GDRuGadOmoWTJkjh+/DgGDRqEtLS0N5ZXq9UwMjJCcHAwjIyMtNZZW1vnd/hERESyweSEiCgPDh06hCtXruDbb7/F+fPnkZ6ejjlz5kChyLilb/PmzVrbm5qaQqVSaS1zd3eHSqVCVFQUPvjggwKLnYiISG6YnBAR5VBqaioiIyOhUqnw5MkT7N27F35+fujYsSP69++PK1euID09HQsWLECnTp1w4sQJLF26VKsOV1dXJCQk4ODBg6hXrx4sLS1RtWpV9O3bF/3798ecOXPg7u6OZ8+e4dChQ6hTpw7at29voB4TEREVLD6ti4goh/bu3YsyZcrA1dUV3t7eOHz4MH777Tfs3LkTRkZGqF+/PubOnQt/f3/Url0b69atg5+fn1YdzZo1w7Bhw9CrVy84Ojpi1qxZAIDVq1ejf//+GDt2LKpVq4bOnTvjzJkzcHFxMURXiYiIDIJP6yIiIiIiIlngmRMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFv4fsX39WEf9RfQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -187,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -237,61 +237,61 @@ " \n", " \n", " 2021\n", - " [2020-04-01, 2020-05-01)\n", - " [2020-06-01, 2020-07-01)\n", - " [2020-08-01, 2020-09-01)\n", - " [2020-10-01, 2020-11-01)\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", - " [2019-04-01, 2019-05-01)\n", - " [2019-06-01, 2019-07-01)\n", - " [2019-08-01, 2019-09-01)\n", - " [2019-10-01, 2019-11-01)\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", - " [2018-04-01, 2018-05-01)\n", - " [2018-06-01, 2018-07-01)\n", - " [2018-08-01, 2018-09-01)\n", - " [2018-10-01, 2018-11-01)\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", " \n", " 2018\n", - " [2017-04-01, 2017-05-01)\n", - " [2017-06-01, 2017-07-01)\n", - " [2017-08-01, 2017-09-01)\n", - " [2017-10-01, 2017-11-01)\n", + " [2017-11-01, 2017-12-01)\n", " [2017-12-01, 2018-01-01)\n", + " [2018-01-01, 2018-02-01)\n", " [2018-02-01, 2018-03-01)\n", + " [2018-03-01, 2018-04-01)\n", " [2018-04-01, 2018-05-01)\n", + " [2018-05-01, 2018-06-01)\n", " [2018-06-01, 2018-07-01)\n", " [2018-08-01, 2018-08-31)\n", " \n", " \n", " 2017\n", - " [2016-04-01, 2016-05-01)\n", - " [2016-06-01, 2016-07-01)\n", - " [2016-08-01, 2016-09-01)\n", - " [2016-10-01, 2016-11-01)\n", + " [2016-11-01, 2016-12-01)\n", " [2016-12-01, 2017-01-01)\n", + " [2017-01-01, 2017-02-01)\n", " [2017-02-01, 2017-03-01)\n", + " [2017-03-01, 2017-04-01)\n", " [2017-04-01, 2017-05-01)\n", + " [2017-05-01, 2017-06-01)\n", " [2017-06-01, 2017-07-01)\n", " [2017-08-01, 2017-08-31)\n", " \n", @@ -302,35 +302,35 @@ "text/plain": [ "i_interval -8 -7 \\\n", "anchor_year \n", - "2021 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2020 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "2019 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", - "2018 [2017-04-01, 2017-05-01) [2017-06-01, 2017-07-01) \n", - "2017 [2016-04-01, 2016-05-01) [2016-06-01, 2016-07-01) \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "2018 [2017-11-01, 2017-12-01) [2017-12-01, 2018-01-01) \n", + "2017 [2016-11-01, 2016-12-01) [2016-12-01, 2017-01-01) \n", "\n", "i_interval -6 -5 \\\n", "anchor_year \n", - "2021 [2020-08-01, 2020-09-01) [2020-10-01, 2020-11-01) \n", - "2020 [2019-08-01, 2019-09-01) [2019-10-01, 2019-11-01) \n", - "2019 [2018-08-01, 2018-09-01) [2018-10-01, 2018-11-01) \n", - "2018 [2017-08-01, 2017-09-01) [2017-10-01, 2017-11-01) \n", - "2017 [2016-08-01, 2016-09-01) [2016-10-01, 2016-11-01) \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "2018 [2018-01-01, 2018-02-01) [2018-02-01, 2018-03-01) \n", + "2017 [2017-01-01, 2017-02-01) [2017-02-01, 2017-03-01) \n", "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", - "2018 [2017-12-01, 2018-01-01) [2018-02-01, 2018-03-01) \n", - "2017 [2016-12-01, 2017-01-01) [2017-02-01, 2017-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", + "2018 [2018-03-01, 2018-04-01) [2018-04-01, 2018-05-01) \n", + "2017 [2017-03-01, 2017-04-01) [2017-04-01, 2017-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "2018 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", - "2017 [2017-04-01, 2017-05-01) [2017-06-01, 2017-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", + "2018 [2018-05-01, 2018-06-01) [2018-06-01, 2018-07-01) \n", + "2017 [2017-05-01, 2017-06-01) [2017-06-01, 2017-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -341,7 +341,7 @@ "2017 [2017-08-01, 2017-08-31) " ] }, - "execution_count": 7, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -362,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -385,7 +385,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -406,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +458,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -520,7 +520,7 @@ " clusters_train = rgdr.transform(x_train)\n", " clusters_test = rgdr.transform(x_test)\n", " # train model\n", - " ridge = Ridge(alpha=1.0)\n", + " ridge = RidgeCV(alphas=[0.1, 10, 25, 50])\n", " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", @@ -534,6 +534,627 @@ " prediction))" ] }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'sst' (anchor_year: 50, i_interval: 1, cluster_labels: 2)>\n",
+       "array([[[-0.97626738,  0.44366444]],\n",
+       "\n",
+       "       [[-0.35536136, -0.16670312]],\n",
+       "\n",
+       "       [[ 0.49199139, -0.06453097]],\n",
+       "\n",
+       "       [[ 0.53587579, -0.0327614 ]],\n",
+       "\n",
+       "       [[ 0.45312712,  0.12878606]],\n",
+       "\n",
+       "       [[ 0.88973063, -0.53432375]],\n",
+       "\n",
+       "       [[ 0.4807509 , -0.28606691]],\n",
+       "\n",
+       "       [[ 0.51968035, -0.65672427]],\n",
+       "\n",
+       "       [[ 0.50233281,  0.11060942]],\n",
+       "\n",
+       "       [[-0.68087629,  0.50536389]],\n",
+       "\n",
+       "...\n",
+       "\n",
+       "       [[-0.66575862,  2.31406735]],\n",
+       "\n",
+       "       [[-0.39876976,  1.31702337]],\n",
+       "\n",
+       "       [[ 0.77408958, -0.87420737]],\n",
+       "\n",
+       "       [[-0.36998757,  0.12183744]],\n",
+       "\n",
+       "       [[ 0.28319172, -1.22992618]],\n",
+       "\n",
+       "       [[ 0.50763789,  0.8780428 ]],\n",
+       "\n",
+       "       [[-0.33881888,  0.89358637]],\n",
+       "\n",
+       "       [[-0.27616542,  0.6507888 ]],\n",
+       "\n",
+       "       [[ 0.31922811,  0.98354972]],\n",
+       "\n",
+       "       [[ 1.04343428,  0.15593146]]])\n",
+       "Coordinates:\n",
+       "  * anchor_year     (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n",
+       "  * i_interval      (i_interval) int64 -2\n",
+       "    left_bound      (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n",
+       "    right_bound     (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n",
+       "    is_target       (i_interval) bool False\n",
+       "  * cluster_labels  (cluster_labels) int16 -1 1\n",
+       "    latitude        (cluster_labels) float64 42.59 27.5\n",
+       "    longitude       (cluster_labels) float64 208.0 190.0\n",
+       "Attributes:\n",
+       "    data:         Clustered data with Response Guided Dimensionality Reduction.\n",
+       "    coordinates:  Latitudes and longitudes are geographical centers associate...
" + ], + "text/plain": [ + "\n", + "array([[[-0.97626738, 0.44366444]],\n", + "\n", + " [[-0.35536136, -0.16670312]],\n", + "\n", + " [[ 0.49199139, -0.06453097]],\n", + "\n", + " [[ 0.53587579, -0.0327614 ]],\n", + "\n", + " [[ 0.45312712, 0.12878606]],\n", + "\n", + " [[ 0.88973063, -0.53432375]],\n", + "\n", + " [[ 0.4807509 , -0.28606691]],\n", + "\n", + " [[ 0.51968035, -0.65672427]],\n", + "\n", + " [[ 0.50233281, 0.11060942]],\n", + "\n", + " [[-0.68087629, 0.50536389]],\n", + "\n", + "...\n", + "\n", + " [[-0.66575862, 2.31406735]],\n", + "\n", + " [[-0.39876976, 1.31702337]],\n", + "\n", + " [[ 0.77408958, -0.87420737]],\n", + "\n", + " [[-0.36998757, 0.12183744]],\n", + "\n", + " [[ 0.28319172, -1.22992618]],\n", + "\n", + " [[ 0.50763789, 0.8780428 ]],\n", + "\n", + " [[-0.33881888, 0.89358637]],\n", + "\n", + " [[-0.27616542, 0.6507888 ]],\n", + "\n", + " [[ 0.31922811, 0.98354972]],\n", + "\n", + " [[ 1.04343428, 0.15593146]]])\n", + "Coordinates:\n", + " * anchor_year (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n", + " * i_interval (i_interval) int64 -2\n", + " left_bound (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n", + " right_bound (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n", + " is_target (i_interval) bool False\n", + " * cluster_labels (cluster_labels) int16 -1 1\n", + " latitude (cluster_labels) float64 42.59 27.5\n", + " longitude (cluster_labels) float64 208.0 190.0\n", + "Attributes:\n", + " data: Clustered data with Response Guided Dimensionality Reduction.\n", + " coordinates: Latitudes and longitudes are geographical centers associate..." + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clusters_train" + ] + }, { "attachments": {}, "cell_type": "markdown", @@ -544,12 +1165,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3deXyM1/cH8M/IJiKLNbbY932J2qpobdEq2h+tatCi9a0gtce+VVTtay1FV0tr6aZKq/YtQVBRa0hKImJJiAhJnt8fp5NJCJLI5M4883m/Xs/LMzPPzByCOXPvuecaNE3TQERERKQTeVQHQERERJSTmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFXvVAeS2lJQUXL16Fa6urjAYDKrDISIiokzQNA137txBiRIlkCfP08dmbC65uXr1Kry8vFSHQURERNkQERGBUqVKPfUam0tuXF1dAcgfjpubm+JoiIiIKDPi4uLg5eWV+jn+NDaX3Binotzc3JjcEBERWZnMlJSwoJiIiIh0hckNERER6QqTGyIiItIVm6u5yazk5GQ8fPhQdRiURQ4ODrCzs1MdBhERKcTk5hGapiEqKgq3b99WHQplk4eHB4oVK8Y+RkRENorJzSOMiU3RokWRL18+fkBaEU3TcO/ePURHRwMAihcvrjgiIiJSgclNGsnJyamJTaFChVSHQ9ng7OwMAIiOjkbRokU5RUVEZINYUJyGscYmX758iiOh52H8+bFmiojINjG5yQCnoqwbf35ERLaNyQ0RERHpCpMbIiIi0hUmN5ShsmXLYu7cucpfg4iIKKu4WkonWrZsibp16+ZYMhEUFAQXF5cceS0iIrIhO3YATZoA/61eVYEjNzZE0zQkJSVl6toiRYpw1RgREWXNxYuAjw9QtSpw7ZqyMJjcZFJ8/JOP+/czf21CQuauzYrevXtj165dmDdvHgwGAwwGAy5duoSdO3fCYDDg999/h7e3N5ycnLBnzx5cuHABnTp1gqenJ/Lnz4+GDRvijz/+SPeaj04pGQwGrFixAl26dEG+fPlQqVIl/PTTT1mKMzw8HJ06dUL+/Pnh5uaGbt264Vqav/zHjx9Hq1at4OrqCjc3NzRo0ADBwcEAgMuXL6Njx44oUKAAXFxcUKNGDWzZsiVrf1BERGReI0YADx5IclO0qLIwmNxkUv78Tz7efDP9tUWLPvlaH5/015Ytm/F1WTFv3jw0adIE/fr1Q2RkJCIjI+Hl5ZX6+IgRIxAYGIjTp0+jdu3auHv3Ljp06IA//vgDx44dQ7t27dCxY0eEh4c/9X0mTZqEbt264cSJE+jQoQN69OiBmzdvZipGTdPQuXNn3Lx5E7t27cL27dtx4cIFvPXWW6nX9OjRA6VKlUJQUBCOHDmCUaNGwcHBAQAwYMAAJCYmYvfu3Th58iQ+/fRT5M/qHxQREZnPrl3Ahg1AnjzA7NmAwrYcrLnRAXd3dzg6OiJfvnwoVqzYY49PnjwZbdq0Sb1dqFAh1KlTJ/X21KlTsWnTJvz000/w8/N74vv07t0b3bt3BwBMmzYNCxYswOHDh9G+fftnxvjHH3/gxIkTCAsLS028vv76a9SoUQNBQUFo2LAhwsPDMXz4cFStWhUAUKlSpdTnh4eH480330StWrUAAOXLl3/mexIRUS5JTgY+/ljOP/wQqFFDaThMbjLp7t0nP/Zoh///tjbKUJ5HxsouXcp2SJnm7e2d7nZ8fDwmTZqEX375BVevXkVSUhISEhKeOXJTu3bt1HMXFxe4urqm7uP0LKdPn4aXl1e6EaXq1avDw8MDp0+fRsOGDTFkyBD07dsXX3/9NVq3bo2uXbuiQoUKAIBBgwbhf//7H7Zt24bWrVvjzTffTBcPEREp9OWXwLFjgLs7MGmS6mg4LZVZLi5PPvLmzfy1jxaPP+m6nI09/QsOHz4cGzZswCeffII9e/YgJCQEtWrVwoMHD576OsYpIiODwYCUlJRMxaBpWoadg9PeP3HiRJw6dQqvvvoqduzYgerVq2PTpk0AgL59++LixYvw9fXFyZMn4e3tjQULFmTqvYmIyIzu3AFGj5bz8eOBIkXUxgMmN7rh6OiI5OTkTF27Z88e9O7dG126dEGtWrVQrFgxXDLzEFL16tURHh6OiIiI1PtCQ0MRGxuLatWqpd5XuXJlfPzxx9i2bRveeOMNrFq1KvUxLy8v9O/fHxs3bsTQoUOxfPlys8ZMRESZEBgoK6MqVgSeUtqQm5jc6ETZsmVx6NAhXLp0CTExMU8dUalYsSI2btyIkJAQHD9+HO+8806mR2Cyq3Xr1qhduzZ69OiBo0eP4vDhw+jZsydatGgBb29vJCQkwM/PDzt37sTly5exb98+BAUFpSY+/v7++P333xEWFoajR49ix44d6ZIiIiJS4NIlKR4GgFmzAEdHpeEYMbnRiWHDhsHOzg7Vq1dHkSJFnlo/M2fOHBQoUABNmzZFx44d0a5dO9SvX9+s8RkMBmzevBkFChTASy+9hNatW6N8+fJYt24dAMDOzg43btxAz549UblyZXTr1g0+Pj6Y9N/cbXJyMgYMGIBq1aqhffv2qFKlChYvXmzWmImI6BlGjgQSE4FXXgE6dlQdTSqDpmma6iByU1xcHNzd3REbGws3N7d0j92/fx9hYWEoV64c8j5aSENWgz9HG7Ztm3x7nD8fqFJFdTRE+rZ3L9C8uayUOXYMMPMij6d9fj+KIzdEpA8JCcD770uC8957gJmnWolsWkoK4O8v5/36mT2xySomN0SkD4sXA1euyPmBA8BXX6mNh0jPvv4aOHIEcHMDJk9WHc1jmNwQkfWLjQWmTZPzpk3l1xEjgNu3lYVEpFt37wIBAXI+dqzSbRaehMkNEVm/WbOAmzdlP5s//pBfr1+XnhtElLM+/RSIjATKlwcGDVIdTYaY3BCRdYuONi1FnTpVOmUaGzwuWgQcP64uNiK9CQ8HZs6U85kzAScntfE8AZMbIrJun3wCxMcD3t7AG2/Ifa1bA//3f1L06OcH2NaiUCLzGTUKuH8faNkS6NxZdTRPxOSGiKzX5cvA55/LeWBg+l2IZ88G8uWT5arffKMmPiI92b8fWLNG/p3NmaN01+9nYXJDRNZr4kTgwQPg5ZdltCYtLy9g3Dg5Hz5cio6JKHtSUky7fvfpA9StqzScZ2FyQ8+tZcuW8Df2OyDKLaGhpuXegYEZXzNkCFC5sux7M3FiroVGpDvffQccPgzkzw9MmaI6mmdicqMT5kgwevfujc4WPKdKNm7sWPk22aUL8MILGV/j6GgqLl6wADh5MvfiI9KL+HiptQGAMWOAYsXUxpMJTG6IyPocPgxs2iRt36dOffq1bdtKoXFyMouLibLjs8+kQWbZsqauxBaOyY0O9O7dG7t27cK8efNgMBhgMBhw6dIlAEBoaCg6dOiA/Pnzw9PTE76+voiJiUl97g8//IBatWrB2dkZhQoVQuvWrREfH4+JEyfiyy+/xI8//pj6mjt37sxUPLdu3ULPnj1RoEAB5MuXDz4+Pjh37lzq45cvX0bHjh1RoEABuLi4oEaNGtiyZUvqc3v06IEiRYrA2dkZlSpVwqpVq3Lsz4p0wthArGdPoHr1Z18/Z44sEd+9WwoiiShz/v0XmDFDzj/7DLCS/frsVQdg8TQNuHdPzXvny5epavR58+bh7NmzqFmzJib/1wa7SJEiiIyMRIsWLdCvXz/Mnj0bCQkJGDlyJLp164YdO3YgMjIS3bt3x4wZM9ClSxfcuXMHe/bsgaZpGDZsGE6fPo24uLjU5KJgwYKZCrt37944d+4cfvrpJ7i5uWHkyJHo0KEDQkND4eDggAEDBuDBgwfYvXs3XFxcEBoaivz58wMAxo0bh9DQUPz2228oXLgwzp8/j4SEhGz+AZIu/fEHsGOHTDllto6mdGkZTh87Fhg2DHjtNWkbT0RPFxAg+7Y1bw68+abqaDKNyc2z3LsnBVQq3L0LuLg88zJ3d3c4OjoiX758KJZmLnTJkiWoX78+phnb0gNYuXIlvLy8cPbsWdy9exdJSUl44403UKZMGQBArVq1Uq91dnZGYmJiutd8FmNSs2/fPjT9rw3+t99+Cy8vL2zevBldu3ZFeHg43nzzzdT3Kl++fOrzw8PDUa9ePXh7ewMAypYtm+n3JhugaaZRm/79gf/+3mbKsGHA6tXA+fOyF46xERkRZezQIWmjYAVLvx+ldFpq9+7d6NixI0qUKAGDwYDNmzc/9fq9e/eiWbNmKFSoEJydnVG1alXMmTMnd4K1QkeOHMFff/2F/Pnzpx5Vq1YFAFy4cAF16tTBK6+8glq1aqFr165Yvnw5bt269Vzvefr0adjb26NRo0ap9xUqVAhVqlTB6dOnAQCDBg3C1KlT0axZM0yYMAEnTpxIvfZ///sf1q5di7p162LEiBHYv3//c8VDOrNxIxAcLEn/mDFZe66TEzB/vpzPnQucOpXj4RHphqaZ6mt69wYaNFAZTZYpTW7i4+NRp04dLFy4MFPXu7i4wM/PD7t378bp06cxduxYjB07FsuWLTNfkPnyyQiKiiNfvucKPSUlBR07dkRISEi649y5c3jppZdgZ2eH7du347fffkP16tWxYMECVKlSBWFhYdl+T+0JxZqapsHwX9bft29fXLx4Eb6+vjh58iS8vb2x4L8VLT4+Prh8+TL8/f1x9epVvPLKKxg2bFi24yEdSUqSaSVAlnhnZ7M+Hx+gUycWFxM9y9q1wMGD8kXik09UR5N1moUAoG3atCnLz+vSpYv27rvvZvr62NhYDYAWGxv72GMJCQlaaGiolpCQkOU4VGvTpo3m5+eX7r7Ro0drVapU0R4+fJip10hKStJKliypzZo1S9M0TevXr5/22muvPfN5LVq00AYPHqxpmqadPXtWA6Dt27cv9fGYmBjN2dlZ+/777zN8/qhRo7RatWpl+Njnn3+uubq6Zip+I2v+OdJTrFypaYCmFSyoabdvZ/91wsI0LW9eea01a3IsPCLdiI/XNC8v+TcydarqaFI97fP7UVa9WurYsWPYv38/WrRo8cRrEhMTERcXl+7Qo7Jly+LQoUO4dOkSYmJikJKSggEDBuDmzZvo3r07Dh8+jIsXL2Lbtm14//33kZycjEOHDmHatGkIDg5GeHg4Nm7ciOvXr6NatWqpr3nixAmcOXMGMTExePjw4TPjqFSpEjp16oR+/fph7969OH78ON59912ULFkSnTp1AgD4+/vj999/R1hYGI4ePYodO3akvuf48ePx448/4vz58zh16hR++eWX1MfIht2/D0yYIOejRwPu7tl/rbJlTXU7Q4cCd+48d3hEujJrFhARIYX4Q4aojiZ7ciHZyhRkYeSmZMmSmqOjo5YnTx5t8uTJT712woQJGoDHDr2N3Jw5c0Zr3Lix5uzsrAHQwsLCNE2TkZQuXbpoHh4emrOzs1a1alXN399fS0lJ0UJDQ7V27dppRYoU0ZycnLTKlStrCxYsSH3N6OhorU2bNlr+/Pk1ANpff/2V4XunHbnRNE27efOm5uvrq7m7u2vOzs5au3bttLNnz6Y+7ufnp1WoUEFzcnLSihQpovn6+moxMTGapmnalClTtGrVqmnOzs5awYIFtU6dOmkXL17M0p+FNf8c6QnmzJFvkSVLatq9e8//egkJmla+vLzm8OHP/3pEevHvv5qWL5/821i7VnU06WRl5MagaZYx6WwwGLBp06ZMdcQNCwvD3bt3cfDgQYwaNQoLFy5E9+7dM7w2MTERiYmJqbfj4uLg5eWF2NhYuD2yFPT+/fsICwtDuXLlkNdK1vLT4/hz1Jk7d4Dy5YGYGGD5cqBv35x53V9+ATp2BOztgRMnAI4QEgG9esm2Jk2byqazFrRCKi4uDu7u7hl+fj/KKpeClytXDoAsW7527RomTpz4xOTGyckJTk5OuRkeEeWk2bMlsalcWVZt5JTXXpPjl1+AgQOB7dst6j9yolwXHGzar23uXKv+92DVNTeArMJJOzJDRDoSEyPz/4Bs1mefw9/H5s2TJeJ//gn88EPOvjaRNUm79LtnT6BhQ6XhPC+lyc3du3dTlycDMt0UEhKC8PBwAEBAQAB69uyZev2iRYvw888/49y5czh37hxWrVqFmTNn4t1331URPhGZW2CgTEvVrw/83//l/OuXL2/aEHDIEGnBQGSLvv8e2LdPWpCkafxqrZROSwUHB6NVq1apt4f8V5Xdq1cvrF69GpGRkamJDiB9WwICAhAWFgZ7e3tUqFAB06dPx4cffpjrsRORmUVEAIsWyfm0abJJpjmMHClD8WFh0s8jMNA870NkqRISgBEj5HzkSKBkSbXx5ACLKSjOLU8rSDIWopYtWxbOzs6KIqTnlZCQgEuXLrGg2Nr17Qt88QXQogXw11/mnf//6Sdp7ufgAJw8CVSpYr73IrI006ZJx+9SpYAzZ567gay5ZKWg2OprbnKSg4MDAOCeqo0yKUcYf37GnydZoX/+AYy7wQcGmr+wsWNHoEMH4OFDYNAgdi4m2xEZaZqG+vRTi01sssoqV0uZi52dHTw8PBAdHQ0AyJcvX+qWAWT5NE3DvXv3EB0dDQ8PD9jZ2akOibJr3DggJQV4/XWgSRPzv5/BIMXFf/wBbNsGbNoEvPGG+d+XSLUxY4D4eKBxY+AJq46tEaelHqFpGqKionD79u3cD45yhIeHB4oVK8bE1FoFB8tKDYNB+s/UrJl77z1uHDB1KuDlBZw+LfvqEOnV0aOAt7eMVB44IAmOBdN9nxtzMhgMKF68OIoWLZqp7QbIsjg4OHDExtqNHi2/vvtu7iY2gGzL8PXXwOXLMlRvjRsGEmWGpgEffyy/9uhh8YlNVnHkhogsx19/AS+/LIW9Z84A/zXszFXGKSlHR+Dvv4FKlXI/BiJz27BB2is4O8u/NS8v1RE9EwuKicj6aJppQ8sPPlCT2ABA585Au3bAgwcsLiZ9un8fGD5czocPt4rEJquY3BCRZfjxR+DQIVmtMXasujgMBmD+fBk92rpV4iLSk3nzpK9TiRKm/jY6w+SGiNRLTpZVG4C0gC9WTGk4qFwZGDZMzv39AbaHIL2IijLVkk2frtuieSY3RKTet98CoaFAgQKm4XLVxoyR4frLl+VDgEgPxo2TLU0aNpRCYp1ickNEaiUmAuPHy/moUYCHh9JwUrm4yI7kADBjBnDhgtp4iJ5XSIh0/QZk129zbWliAfT7OyMi67BsmYyOFC8O+Pmpjia9N98EWreWBGzwYNXREGVf2qXfb78NNG2qOiKzYnJDROrcvStN8wAZvbG01u8GA7BggRQX//or8PPPqiMiyp4ffwR27gTy5rWJaVYmN0Skzty5QHQ0UKEC0KeP6mgyVrUqMGSInA8eLDsoE1mTxERTgfywYUCZMmrjyQVMbohIjRs3gM8+k/MpU2R0xFKNHSs7JoeFSf0NkTVZsEBqxooXB0aOVB1NrmByQ0RqfPopEBcH1KkDvPWW6mieLn9+YNYsOZ8+XZIcImsQHS1fHgDZUiR/frXx5BImN0SU+65ckW+TgPyHaw2rNrp2la0h7t+X3jdE1mD8ePkSUb8+0LOn6mhyjRX8j0JEujN5siQJL74I+PiojiZzDAZg4ULA3h746ScpMCayZCdPAsuXy7nOl34/ynZ+p0RkGc6dM/XaCAyUpMFaVKtmGrUZNEgSNCJLZFz6nZIio47Nm6uOKFcxuSGi3DVunGy38OqrMnJjbcaPlz15Ll40FUQTWZpffgH+/BNwcpL6NhvD5IaIcs+xY8C6dXJu3N/G2ri6AjNnyvm0acClS0rDIXrMgwfA0KFyPmQIUK6c2ngUYHJDRLnHuDlm9+6ySspavf020KKFTEt9/LHqaIjSW7RIpn89PYGAANXRKMHkhohyx+7dwG+/SUHu5Mmqo3k+xuJiOztg82Zg61bVERGJmBhg0iQ5/+QTGWm0QUxuiMj8NM30DbJvX6BiRbXx5ISaNaWoGAAGDpQusESqTZgAxMYCdesCvXurjkYZJjdEZH6//grs3w84O0tBsV5MnAgUKwacP29q8kekyqlTwOefy/mcOTKyaKOY3BCReaWkAKNHy/mgQbLSSC/c3EwrpqZOBcLD1cZDtkvTpHg4JQV44w2gZUvVESnF5IaIzGvNGmkm5u6uz31tevSQHiIJCaYNNoly22+/Adu2AY6O3P8MTG6IyJwePJC+MAAwYgRQoIDaeMwhbXHxhg3A9u2qIyJb8/ChKbH29wcqVFAajiVgckNE5rNihTS78/QEBg9WHY351K4N+PnJ+cCBktQR5ZYlS4AzZ4AiRUztFmwckxsiMo/4eNNuxOPGAS4uauMxt0mTJIk7c0aKOYlyw40bUtgOSN2Xm5vScCwFkxsiMo8FC4CoKOmO2q+f6mjMz93dVOswZQoQEaE2HrINkyYBt27J6GGfPqqjsRhMbogo5926ZdrPZvJkKXK0Bb6+QLNmMmplbH9PZC6nTwOLF8u5jS/9fhSTGyLKeTNmALdvS6O77t1VR5N7DAZpfZ8nD/D998Aff6iOiPRs6FDZhLZTJ+Dll1VHY1GY3BBRzoqMBObNk/NPPrG9b5N16gAffSTnLC4mc9m6VZZ/Ozhwd/oMMLkhopw1ZYr0fGnSBOjYUXU0akyZIitX/vnHlOgR5ZSkJNPS70GDgEqV1MZjgZjcEFHOuXABWL5czgMDZZrGFnl4mGqOJk0CrlxRGg7pzNKlUm9TuDAwdqzqaCwSkxsiyjnjx8u3ynbtgBYtVEejVq9eQOPGUlw8bJjqaEgvbt0yNcacPFkSaXoMkxsiyhknTshWCwAwbZraWCxBnjxSXGwwAGvXAn/9pToi0oPJk4GbN4EaNWyjxUI2MbkhopwxZoxs3tetG1C/vupoLEP9+kD//nLu5ydt8omy68wZ2eoDkKXf9vZq47FgTG6I6Pnt2wf88ousjDJ2JSYxdSpQqBAQGiqNDYmya9gwmfZ97TWgTRvV0Vg0JjdE9Hw0DQgIkPP33wcqV1Ybj6UpWBCYPl3OJ06UpfJEWbV9u3yBsLcHZs5UHY3FY3JDRM9n61Zgzx7AyclU6Ejpvf8+8MILwJ07wPDhqqMha5N26befH1Clitp4rACTGyLKvpQU06iNnx9QqpTaeCxV2uLib78Fdu9WHRFZkxUrgL//llFAfoHIFCY3RJR969cDx4/LTsTGJIcy5u0NfPCBnPv5ybdxome5fRsYN07OJ00CChRQGo61YHJDRNnz8KHpP91hw6Rolp7uk0/k2/fJkzKSQ/QsU6cCMTFAtWrAhx+qjsZqMLkhouxZuRI4f162GfD3Vx2NdShUSDo3AzK9EBWlNh6ybOfOAfPny/ns2bKPFGUKkxsiyrqEBGkmBkj7d1dXtfFYkz59ZIoqLg4YMUJ1NGTJhg+XEVIfH6B9e9XRWBUmN0SUdQsXAlevAmXKcKg8q+zsTMXFX38N7N2rOiKyRDt2AD/+KH9fZs1SHY3VYXJDRFlz+7ZpamXSJFkCTlnzwgsyggMAAwawuJjSS04GPv5Yzj/6SOptKEuY3BBR1sycKZv3Va8OvPuu6misV2CgrHw5cQJYskR1NGRJVq6UvxcFCgATJqiOxioxuSGizLt2Tfa0AWQVh52d2nisWeHCsnoKkFVn166pjYcsQ2ys7NMGSGLDVYjZwuSGiDJv6lTg3j2ZVuncWXU01u+DD2RzzdhYYNQo1dGQJZg2Dbh+XboQf/SR6misFpMbIsqcsDBg6VI5DwyUglh6PnZ2pl2eV68GDhxQGg4pduECMHeunM+axaXfz4HJDRFlzsSJsiy1dWvg5ZdVR6MfTZoA770n5wMGSDEp2aYRI4AHD4C2bYEOHVRHY9WY3BDRs/39tyxbBmTYnHLW9OmAhwdw7JhpdIxsy86dwMaNsg/Z7NkcGX1OSpOb3bt3o2PHjihRogQMBgM2b9781Os3btyINm3aoEiRInBzc0OTJk3w+++/506wRLZs7FhA04A33wQaNlQdjf4ULQpMmSLnY8ZIzQXZjuRk067f/fsDNWqojUcHlCY38fHxqFOnDhYa55yfYffu3WjTpg22bNmCI0eOoFWrVujYsSOOHTtm5kiJbNjBg9JMLE8e0wcw5bz+/YG6daWPEDchtS1ffimjdu7u0juKnptB0zRNdRAAYDAYsGnTJnTO4gqMGjVq4K233sL4J2wDn5iYiMTExNTbcXFx8PLyQmxsLNzc3J4nZCL90zSpr9m5E3j/feCLL1RHpG/79wPNmsn5gQNA48Zq4yHzu3MHqFRJWgHMnm1q3kePiYuLg7u7e6Y+v6265iYlJQV37txBwYIFn3hNYGAg3N3dUw8vL69cjJDIym3fLomNoyObieWGpk2BXr3knMXFtiEwUBKbSpXkZ045wqqTm1mzZiE+Ph7dunV74jUBAQGIjY1NPSIiInIxQiIrlpICjB4t5x99BJQurTYeW/HppzI9cfQosHy56mjInMLCZLQGkM7fjo5q49ERq01u1qxZg4kTJ2LdunUoWrToE69zcnKCm5tbuoOIMmHDBuDIESB/flOSQ+bn6WnacX30aCAmRm08ZD4jRwKJicArrwAdO6qORlesMrlZt24d+vTpg/Xr16N169aqwyHSn6QkWSEFAEOHAkWKqI3H1nz0EVC7tuzhxcRSn/bsAb7/nku/zcTqkps1a9agd+/e+O677/Dqq6+qDodIn1avBs6elX1tjEtUKffY25s6F69YAQQFqY2HclZKiqlwuF8/SWQpRylNbu7evYuQkBCEhIQAAMLCwhASEoLw8HAAUi/Ts2fP1OvXrFmDnj17YtasWWjcuDGioqIQFRWF2NhYFeET6dP9+6blqGPGAJzKVaN5c9l1XdOk0DQlRXVElFO+/lqmfN3cTFOQlKOUJjfBwcGoV68e6tWrBwAYMmQI6tWrl7qsOzIyMjXRAYClS5ciKSkJAwYMQPHixVOPwYMHK4mfSJcWLwb+/Rfw8gL+9z/V0di2GTMAV1cZueEyfH24e9fUx2jcOGngSDnOYvrc5JasrJMnsjlxcUD58sCNGzId0qeP6ohozhyZGixUSKYKn9L6gqzAuHHA1KlAhQrAqVOAk5PqiKyGzfS5IaIcNmuWJDZVqpj6rZBafn7Sjv/GDZkmJOt1+bIs+QaAzz5jYmNGTG6ISERHm3puTJ0qRa2knoMDsGiRnC9dKrUaZJ1GjZKatpYtgSx246esYXJDRGLaNKkHaNBANsgky9GiBdC9O4uLrdn+/cDatbLke84cLv02MyY3RCTD5UuWyHlgIP/jtUQzZ0pDxUOHZKk+WY+UFMDfX8779JENUsmsmNwQkSz9fvAAaNUKYGNMy1SiBDBxopyPHCkN/sg6fPedrHhzdZUpXzI7JjdEti40FPjySzmfNo2jNpZs0CCgenXZkmHcONXRUGbEx0utDSAF4Z6eauOxEUxuiGzduHEybN65M9C4sepo6GkcHEydi5csAY4dUxsPPdtnnwFXrgDlygHsyZZrmNwQ2bKgIGDjRhmt4XC5dWjVCnjrLUlIWVxs2SIipBEjIL/mzas2HhvC5IbIlhk7pfr6Si8Vsg4zZwIuLsCBA8BXX6mOhp4kIABISJCtNLgCMVcxuSGyVX/+KYeDg2kvKbIOpUoB/21TgxEjgNu3lYZDGTh4EPj2Wy79VoTJDZEt0jTTqE3//kDZskrDoWzw9weqVgWuXzclOmQZNM209Lt3b+kdRbmKyQ2RLdq0SeptXFzY0t9aOToCCxbI+aJFwPHjauMhkzVrpB+RiwvwySeqo7FJTG6IbE1yMjB2rJx//DGXplqz1q2B//s/KSr285MRA1Lr3j3T0u/Ro4HixdXGY6OY3BDZmq+/Bk6flt2lhw1THQ09r9mzgXz5gL17gW++UR0NzZolq6TKlJEvD6QEkxsiW5KYCEyYIOejRgHu7mrjoefn5WUaiRs+HIiNVRuPLbtyBZg+Xc4//RRwdlYbjw1jckNkSz7/HAgPl1b+fn6qo6GcMmQIUKkScO2aaYsGyn2jR8u0VNOmQLduqqOxaUxuiGzFnTum4sYJE/itUk+cnEzFxQsWACdPqo3HFgUFmXoOzZ3Lpd+KMbkhshVz5siy4YoVgffeUx0N5bR27YAuXaRgnMXFuSvt0u+ePYGGDZWGQ0xuiGxDTIx0tQVkmwUHB7XxkHnMmSMjcrt3y3Jkyh3r1wP790th97RpqqMhMLkhsg3Tp8u0VN26QNeuqqMhcylTxtS3aNgwIC5ObTy2ICEBGDlSzkeNAkqWVBsPAWByQ6R/ERGmnaSnTQPy8J+9rg0bJlOPkZHcViM3zJkDXL4sq9aGDlUdDf2H/8sR6d3kybIE/KWXgPbtVUdD5ubkBMyfL+fz5gGnTqmNR88iI03TUNOny7QUWQQmN0R6duYMsGqVnAcGcgWHrfDxATp1YnGxuY0ZA8THA40bA927q46G0mByQ6Rn48bJB9xrr0nvDbIdc+cCefMCO3cC69apjkZ/jhwBVq+Wc+76bXGY3BDp1ZEjwPffy3+63LzP9pQta9r5fehQKSinnKFpsrWCpgE9esjIDVkUJjdEejV6tPz6zjtA7dpqYyE1RowAypcHrl4FpkxRHY1+bNgA7Nkjy+4DA1VHQxlgckOkRzt3Atu2Afb2XDFjy/LmlaJiQKZOTp9WG48e3L8vSSMgv3p5qY2HMsTkhkhvNM00HfHBB0CFCmrjIbVee02OpCRg4EAWFz+vefOAsDDpZzN8uOpo6AmY3BDpzU8/AQcPypC5cbdosm3z5skS8T//BH74QXU01isqylS/Nn064OKiNh56IiY3RHqSnGzqUDt4MFC8uNp4yDKUL2/qojtkCHD3rtp4rNW4cVKY3bCh1LKRxWJyQ6Qn330nTds8PEx1AUSAbA1Qtizw779cPZcdISHAF1/I+dy57PRt4fjTIdKLBw+A8ePlfORIoEABtfGQZXF2lg9lAJg1Sxo8UuYYd/3WNODtt9kzygowuSHSi2XLgEuXZCpq0CDV0ZAlev116V788KH8HWFxceZs3gzs2iWrz6ZPVx0NZQKTGyI9uHsXmDpVzseN4x43lDGDQfadcnSUVgGbNqmOyPIlJspmpID8WqaM2ngoU5jcEOnBvHnAtWtSONqnj+poyJJVrGiqx/L3l72R6MkWLAAuXpQRUWNRNlk8JjdE1u7mTeCzz+R8yhT5Vk70NAEBMgIREWHa1ZoeFx1t6uwcGAjkz682Hso0JjdE1u7TT4HYWNli4e23VUdD1iBfPulYDAAzZwLnzqmNx1KNHw/ExQENGgC+vqqjoSxgckNkza5ckRoKQJb3cnkqZVbnzkC7drLKjsXFjztxAli+XM7nzOG/LSvDnxaRNZsyRfa6adYMePVV1dGQNTEWFzs4AFu3Aj/+qDoiy6Fp0uwwJQXo2hVo3lx1RJRFTG6IrNW5c8CKFXIeGCgfVkRZUbmyaSWQvz9w757ScCzGzz/LVhVOTjLtS1aHyQ2RtRo/XrZb8PHhN0vKvjFjZGfry5fZwwWQabqhQ+V8yBCgXDm18VC2MLkhskYhIcDatXLO1S70PFxcgNmz5XzGDODCBbXxqLZoEXD+PODpKavKyCoxuSGyRsbNMd9+G6hbV2kopANvvgm0bi0N6wYPVh2NOjExwKRJcj5tGuDqqjYeyjYmN0TWZs8eYMsWwM4OmDxZdTSkBwaDNKtzcAB+/VVqTmzRhAnSVqFuXaBXL9XR0HNgckNkTTTNNFTety9QqZLaeEg/qlYFPv5YzgcPBhIS1MaT2/7+G/j8czmfM0e+PJDVYnJDZE22bAH27ZMN/MaNUx0N6c24cUDJkkBYmNTf2Iq0S7/feANo2VJ1RPScmNwQWYuUFGD0aDkfOFA+hIhyUv78wKxZcj59uuypZAu2bAG2b5etS2wpqdMxJjdE1mLtWuma6u4OjBqlOhrSq27dgJdfluaQ/v6qozG/hw9l1AaQ32+FCkrDoZzB5IbIGjx4YJqGGj4cKFhQbTykXwYDsHAhYG8vhcW//qo6IvNavBg4exYoWtS0CpGsHpMbImvwxRcyRVC0qG0v1aXcUa2aadRm0CAZxdGjGzdMS7+nTgXc3NTGQzmGyQ2Rpbt3T/aQAmT0Jn9+tfGQbRg/HihRQpLqzz5THY15TJoE3LoF1K4NvP++6mgoBzG5IbJ0CxYAkZFA2bLABx+ojoZshasrMHOmnE+bBly6pDScHHf6tExJAVz6rUNMbogs2a1bpv1+Jk2S1RxEueXtt4EWLWRaytgDRy+GDpW92Tp1kgJq0pUsJTeHDx9GcnJy6m1N09I9npiYiPXr12f69Xbv3o2OHTuiRIkSMBgM2Lx581Ovj4yMxDvvvIMqVaogT5488LeFSn6ybZ99Bty+DdSoAfTooToasjXG4mI7O2DzZmDrVtUR5YzffpPDwUG/U242LkvJTZMmTXDjxo3U2+7u7riYpg/C7du30b1790y/Xnx8POrUqYOFCxdm6vrExEQUKVIEY8aMQZ06dTIfOJE1iowE5s6V808+4bA5qVGzphQVA9JfKTFRbTzP6+FD067fgwaxy7dO2Wfl4kdHah69/aT7nsTHxwc+Pj6Zvr5s2bKYN28eAGDlypWZek5iYiIS0/xjjIuLy/T7ESk1daq0wG/cGHj9ddXRkC2bOBFYs0Z2y541y9RM0hotXSr1NoULA2PHqo6GzCTHa24MBkNOv+RzCQwMhLu7e+rh5eWlOiSiZ7t4EVi2TM4DA2V6gEgVNzfT9M3UqUB4uNp4suvWLdkcE5AViB4eSsMh89F9QXFAQABiY2NTj4iICNUhET3b+PFAUhLQti33uSHL0KMH0Ly5jCYaO/pam8mTgZs3Zaqtb1/V0ZAZZWlaCgBCQ0MRFRUFQKag/vnnH9y9excAEBMTk7PR5QAnJyc4OTmpDoMo806eBL77Ts6nTVMbC5GRsbi4fn1gwwbZi6lNG9VRZd6ZMxI/AMyeLR2YSbey/NN95ZVX0tXVvPbaawBkOkrTNIubliKyOmPGyC7FXbsCDRqojobIpHZtYMAAYP58KS4+ccJ62hMMGyajoa+9Zl1JGWVLlpKbsLAwc8VBRACwb5/s52NnZ+pKTGRJJk2STVzPnJHmdyNHqo7o2bZtA375RUZrjI0JSdeylNyUKVMmR9/87t27OH/+fOrtsLAwhISEoGDBgihdujQCAgJw5coVfPXVV6nXhISEpD73+vXrCAkJgaOjI6pXr56jsRHlOk0zrULp3RuoUkVpOEQZ8vAAZsyQv6OTJwPvvANY8kKNpCRTjZCfH/9d2QiDloW12zdv3sS9e/dQqlSp1PtOnTqFmTNnIj4+Hp07d8Y777yT6TffuXMnWrVq9dj9vXr1wurVq9G7d29cunQJO3fuNAWcwbRXmTJlcCmTrcHj4uLg7u6O2NhYuHGTNLIkW7cCPj6AkxNw7pxlf2CQbUtJAV56SUYau3YFstC8NdctWQJ89BFQsKAsZS9QQHVElE1Z+fzOUnLTvXt3FC9eHLNnzwYAREdHo2rVqihRogQqVKiA3377DV988QV8fX2f73dgRkxuyCKlpEh9TUiIfMucNUt1RERPd/y4FBenpEhxcevWqiN63O3bQMWKsvv3woVSL0RWKyuf31laCn7w4EG8nqaZ2FdffYWCBQsiJCQEP/74I6ZNm4ZFixZlL2oiW/b995LYuLoCAQGqoyF6tjp1ZEQEkOLiBw/UxpORqVMlsaleHfjwQ9XRUC7KUnITFRWFcuXKpd7esWMHunTpAvv/ltS9/vrrOHfuXM5GSKR3Dx8C48bJ+bBh0jmVyBpMmQIUKQL88w/wX/d4i3HunKzqArj02wZlKblxc3PD7du3U28fPnwYjRs3Tr1tMBjSbXVARJmwapX8R1ykiP52XiZ98/AAPv1UzidNAq5cURpOOsOHyxcHHx+gXTvV0VAuy1Jy88ILL2D+/PlISUnBDz/8gDt37uDlNFvFnz17ltsbEGVFQoJ8KACyUsrVVW08RFnVq5fsfxYfLyOPluDPP4Eff5SWCqxfs0lZSm6mTJmCH3/8Ec7OznjrrbcwYsQIFEhTeb527Vq0aNEix4Mk0q1Fi4CrV4HSpYH+/VVHQ5R1efLI32ODQfrf/PWX2niSk00joB99BFSrpjYeUiJLq6UA4Pr169i/fz+KFSuGRo0apXvs119/RfXq1dPV5VgarpYiixEbC5QvL3vdrFwJvPee6oiIsu+jj2TZdfXqUhzv4KAmjmXLpHi4QAGZ7i1USE0clOPMthRcD5jckMUYN05Wc1StKvtJseCRrNnNm0DlyrI6adYsNZtrxsYClSoB169LgfOgQbkfA5mN2ZKbtJ2Cn6Znz56Zfclcx+SGLMK1a0CFClKnsGED8MYbqiMien4rVgD9+knt2JkzQPHiufv+I0dK9+QqVeQLg6rRIzILsyU3efLkQf78+WFvb48nPc1gMODmzZtZizgXMbkhizBoELBgAdCwIXDokNQrEFm7lBSgSRPg8GGgRw/gm29y770vXJApsQcPgF9/BTp0yL33plxhtiZ+1apVg6OjI3r27Ildu3bh1q1bjx2WnNgQWYRLl4DPP5fzadOY2JB+pC0u/vZbYPfu3HvvESMksWnbVpZ/k03LUnJz6tQp/Prrr0hISMBLL70Eb29vLFmyBHFxceaKj0h/Jk6U/huvvGKZLeuJnoe3t0xNAbLdwcOH5n/PnTuBjRsluZo9m18YKGvJDQA0atQIS5cuRWRkJAYNGoT169ejePHi6NGjBxv4ET3LqVOAsXZt2jS1sRCZy7RpslHl33/LSI45pV363b8/UKOGed+PrEKWkxsjZ2dn9OzZE5MmTcILL7yAtWvX4t69ezkZG5H+jB0LaBrQpQvwwguqoyEyj0KFgMBAOZ8wAYiKMt97rV4tS8/d3U0NMcnmZSu5uXLlCqZNm4ZKlSrh7bffRsOGDXHq1Kl0Df2I6BGHDgGbN8vQ+dSpqqMhMq8+fWSKKi5O6mHM4c4dYMwYOZ8wgfuyUaosJTfr16+Hj48PKlWqhKCgIMyaNQsRERGYMWMGqlataq4Yiayfppl2++7ZU1Z1EOmZnZ2puPjrr4G9e3P+PQIDpa1CpUpS30P0nywvBS9dujR69OgBT0/PJ143yIIbJ3EpOCmxfbus4nB0BM6eBcqUUR0RUe7o10/639SuDRw5knPNKsPCZGuFxETgp5+Ajh1z5nXJYpmtz03ZsmVheEYVusFgwMWLFzP7krmOyQ3lOk2TfjZHjgCDBwNz56qOiCj3xMRI5+Jbt4D584GBA3Pmdbt1A77/XlYdbt/OFVI2QOn2C1euXEHJkiVz8iVzFJMbynU//AB07Qq4uAAXLwJFi6qOiCh3LVkie0+5u0vn4qeM/GfKnj3ASy9J/dqxYzIqRLpntiZ+TxMVFYVBgwahYsWKOfWSRNYvKUlWSAGy1w4TG7JFH3wA1K8vez+NGvV8r5WSAvj7y3m/fkxsKENZSm5u376NHj16oEiRIihRogTmz5+PlJQUjB8/HuXLl8eBAwewcuVKc8VKZH2+/FK+qRYqBAwdqjoaIjXs7ICFC+V89WrgwIHsv9ZXXwFHjwJubsDkyTkSHulPlpKb0aNHY/fu3ejVqxcKFiyIjz/+GK+99hr27t2L3377DUFBQejevbu5YiWyLvfvSzdiQFZKubsrDYdIqSZNgPfek/MBA6T5XlbdvWtadThuHEdC6YmylNz8+uuvWLVqFWbOnImffvoJmqahcuXK2LFjB1q0aGGuGIms05IlwL//AqVKSb0Bka2bPh3w8JA6maVLs/f8qCigQoWcK0wmXcpScnP16lVU/68/R/ny5ZE3b1707dvXLIERWbW4OOCTT+R8wgTA2VltPESWoGhRYMoUOR8zBrh+PfPPvXwZmDVLzmfOBJyccj4+0o0sJTcpKSlwcHBIvW1nZwcXF5ccD4rI6s2eDdy4IUtge/dWHQ2R5ejfH6hTB7h92zTFlBmjRslUb6tWQKdOZguP9CHLTfx8fHzg9F/G/PPPP+Pll19+LMHZuHFjzkaZg7gUnMzu+nWgfHmpD1i/XpaBE5HJvn3Aiy/K+YEDQOPGT79+/36gWTPpZXP0KFC3rtlDJMuTlc/vLLWK7NWrV7rb7777btajI9K7adMksalfH3jzTdXREFmeZs1kG5KvvpLi4sOHZUVVRtIu/e7Th4kNZUqON/GzdBy5IbMKD5d9bh48ALZuBdq1Ux0RkWW6dk2mbePipPi+f/+Mr/v6a0mEXF2Bc+eevwEgWS0lTfyICMCkSZLYtGwpe0kRUcY8PU3FxaNHyzYNj4qPNzX9GzOGiQ1lGpMbopxy+rQ0KANkt2LudUP0dB99JB2Gb92SBOdRM2YAV68C5crJvmxEmcTkhiinjBsn9QGvv/7sAkkikh3CjZ2LV6wAgoJMj0VEAJ99JueffQbkzZv78ZHVYnJDlBOCgoANG2S0xtjfhoierXlz4N13AU2T4uKUFLk/IABISJANMt94Q22MZHWY3BDlBOOQ+rvvAjVrqo2FyNrMmCEFw0FBwBdfAAcPAt9+K18W5szhFC9lGZMboue1Ywfwxx+Ag4MUFBNR1hQvbvq3ExAA+PnJee/e0lKBKIuY3BA9D00zdVn98EMpfCSirPPzA2rUkM7eR44ALi6c4qVsY3JD9Dw2b5YGZPnyAWPHqo6GyHo5OACLFplujx4tIzpE2ZClDsVElEZysimh8fdnDw6i59WihYzW/PMP8PHHqqMhK8bkhii7vvkGCA0FChQAhg9XHQ2RPmTU74YoizgtRZQdiYnA+PFyPmoU4OGhNBwiIjJhckOUHUuXyj5SxYubVnYQEZFFYHJDlFV37gBTp8r5hAlSTExERBaDyQ1RVs2dC1y/DlSsCLz/vupoiIjoEUxuiLLixg1g5kw5nzxZlq8SEZFFYXJDlBXTpwNxcUCdOsBbb6mOhoiIMsDkhiiz/v0XWLBAzqdNA/Lwnw8RkSXi/85EmTV5siwBf/FFwMdHdTRERPQETG6IMuPsWWDlSjkPDOQuxUREFozJDVFmjBsn2y28+qqM3BARkcVickP0LEePAuvXyzl3KSYisnhMboiexbjXzTvvyCopIiKyaExuiJ5m1y7g998Be3spKCYiIovH5IboSTQNCAiQ8759gQoV1MZDRESZwuSG6El+/hk4cABwdpaCYiIisgpMbogykpwMjBkj54MGASVKqI2HiIgyTWlys3v3bnTs2BElSpSAwWDA5s2bn/mcXbt2oUGDBsibNy/Kly+Pzz//3PyBku1Zswb4+2/A3R0YOVJ1NERElAVKk5v4+HjUqVMHCxcuzNT1YWFh6NChA5o3b45jx45h9OjRGDRoEDZs2GDmSMmmPHgAjB8v5yNHAgUKqI2HiIiyxF7lm/v4+MAnC23sP//8c5QuXRpz584FAFSrVg3BwcGYOXMm3nzzTTNFSTZn+XIgLAzw9JQpKSIisipWVXNz4MABtG3bNt197dq1Q3BwMB4+fJjhcxITExEXF5fuIHqi+HhgyhQ5HzcOcHFRGw8REWWZVSU3UVFR8PT0THefp6cnkpKSEBMTk+FzAgMD4e7unnp4eXnlRqhkrebNA65dA8qVA/r1Ux0NERFlg9JpqewwPLJhoaZpGd5vFBAQgCFDhqTejouLM0+Cc/OmdLBNK21Mj8aXncdy4jX4+k9/bO1a+XXyZMDREUREZH2sKrkpVqwYoqKi0t0XHR0Ne3t7FCpUKMPnODk5wcnJyfzBPXggnWzJ+tWsCXTvrjoKIiLKJqtKbpo0aYKff/453X3btm2Dt7c3HBwcFEX1H3d34KuvTLf/G1F66nlOXJeb72UL19nZAW+/Lb8SEZFVUprc3L17F+fPn0+9HRYWhpCQEBQsWBClS5dGQEAArly5gq/+Sxr69++PhQsXYsiQIejXrx8OHDiAL774AmvWrFH1WzBxdgZ8fVVHQUREZPOUJjfBwcFo1apV6m1jbUyvXr2wevVqREZGIjw8PPXxcuXKYcuWLfj444+xaNEilChRAvPnz+cycCIiIkpl0LRHx+j1LS4uDu7u7oiNjYWbm5vqcIiIiCgTsvL5bVVLwYmIiIiehckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeUJzeLFy9GuXLlkDdvXjRo0AB79ux56vWLFi1CtWrV4OzsjCpVquCrr77KpUiJiIjIGtirfPN169bB398fixcvRrNmzbB06VL4+PggNDQUpUuXfuz6JUuWICAgAMuXL0fDhg1x+PBh9OvXDwUKFEDHjh0V/A6IiIjI0hg0TdNUvXmjRo1Qv359LFmyJPW+atWqoXPnzggMDHzs+qZNm6JZs2b47LPPUu/z9/dHcHAw9u7dm6n3jIuLg7u7O2JjY+Hm5vb8vwkiIiIyu6x8fiublnrw4AGOHDmCtm3bpru/bdu22L9/f4bPSUxMRN68edPd5+zsjMOHD+Phw4dPfE5cXFy6g4iIiPRLWXITExOD5ORkeHp6prvf09MTUVFRGT6nXbt2WLFiBY4cOQJN0xAcHIyVK1fi4cOHiImJyfA5gYGBcHd3Tz28vLxy/PdCRERElkN5QbHBYEh3W9O0x+4zGjduHHx8fNC4cWM4ODigU6dO6N27NwDAzs4uw+cEBAQgNjY29YiIiMjR+NPSNODdd4HJk4Hffwdu3TLbWxEREdETKCsoLly4MOzs7B4bpYmOjn5sNMfI2dkZK1euxNKlS3Ht2jUUL14cy5Ytg6urKwoXLpzhc5ycnODk5JTj8WfkyhXg22/T31e5MvDCC0CjRsDLLwPVq+dKKERERDZL2ciNo6MjGjRogO3bt6e7f/v27WjatOlTn+vg4IBSpUrBzs4Oa9euxWuvvYY8eZQPQsHZGZg3D3jnHaBiRbnv7Fngm2+AgQOBZctM18bHSyJ0/ryM+BAREVHOULoUfMiQIfD19YW3tzeaNGmCZcuWITw8HP379wcgU0pXrlxJ7WVz9uxZHD58GI0aNcKtW7cwe/Zs/P333/jyyy9V/jZSFSoEDBpkun3jBnD4sByHDgGtWpkeCw6WKSwAKFjQNLrTqJGcFyqUu7ETERHphdLk5q233sKNGzcwefJkREZGombNmtiyZQvKlCkDAIiMjER4eHjq9cnJyZg1axbOnDkDBwcHtGrVCvv370fZsmUV/Q6erlAhwMdHjkclJQGNGwPHjgE3bwJbt8ph9MUXwPvvy3lCAmAwAI8sFCMiIqIMKO1zo4Kl9bl58AA4flxGdowjPGfPAgcPyigOAKxcCfTvD9Spk350p1IlwAJm44iIiMwuK5/fSkduCHB0BBo2lMPo5k0g7c/t5Eng4UOZygoOBhYtkvs9POR5ixZJokNEREQcuVEdTqZoGnDpUvrRnaNHgfv35fHr1wHjYrF582TUx1jDU6+eFDoTERFZs6x8fjO5sVIPH8qIzt9/Az17mu5v0wb44w/TbXt7oHZt03TWO+8ADg65Hy8REdHzYHLzFHpJbp5kzx45Dh2S49o102MeHrKCy1ins26djOq88AJQrJiScImIiDKFNTc2rHlzOQCZzoqIME1naVr6AuSAACAsTM5LlzYVKjdqBDRoAOTLl/vxExERPS+O3NiopCTggw8k6QkNfbyRoLc3EBRkun3xIlCmDPCEXS6IiIjMiiM39Ez29rLEHADi4mQVlrFY+dCh9Ku37t8HqlaVPjve3umXo5cooSZ+IiKiJ+HIDWUoMREwbskVGiqJTHz849eVKgX4+wNDh+ZqeEREZGM4ckPPLe1eo9WrA7GxkuSkXY7+99/Av/+mn9K6cAHo0iV9/U6NGpzOIiKi3MORG8q2u3el307ZslKQDMhmoMY9s4xcXKRAuVEjwNcXqFUr10MlIiIrx6XgT8Hkxrxu3Ei/FD0oSJIgo40bZWQHkH21fv9dkh5vb8DVVU3MRERk+TgtRcoUKgR07iwHACQnA//8Y5rOatzYdO3PPwMTJsi5wSDTX2mns2rWlMJnIiKirODIDSmzeTPw3XeS9Fy+/Pjjx49Ld2VAanns7WX6y2DI1TCJiMgCcFrqKZjcWKaoKElyjMXKp09LwmMsRO7dG/jyS8DT0zSyY5zO8vBQGTkREeUGJjdPweTGOmha+hGabt2ATZuk+eCjatSQ+h3jnlmPPpeIiKwfa27I6j2anKxfDyQkSBJjLFY+fNi0fUTazUDbtpWePMbRnUaNZEUXEx4iItvAkRuyatHRQGQkUKeO3H74EHB3l0QorSJFZDqrXTtg4MDcj5OIiJ4PR27IZhQtKoeRvT0QEpK+2WBICHD9OvDrr7JxqDG50TTAzw+oVk1Gd+rUARwdVfwuiIgoJzG5IV0xGIDKleXw9ZX7EhNNCU+ZMqZr//0XWLzYdNvREahXD2jSBGjaFHjxRaB48VwNn4iIcgCnpchmRUUBS5eaanhu3kz/+ODBwNy5cn7/vmw/Ubs2e+8QEanAaSmiTChWzNREUNOkl86hQ8CBA8D+/TJyY3ToENCyJZAvn0xhNW0KNGsmTQkLFFASPhERPQGTGyLIdFbFinL06PH445GRUqgcGwv89ZccRtWrA/PnA6+8knvxEulRcjJw7pxs2VKtmuxLR5QdeVQHQGQN3n5bpq3+/htYtkyaClaqJI+FhkriY7R+PfD668D06cDu3cC9e0pCJrIaO3bISKm7uyQ1DRvKXnMVK8pedGm/TBBlBkduiDIpTx5pGFijBtCvn9x3/bpMYRmXogPA9u2yb9bPP8tte3spVG7aVI5XX+U3UrItDx4Ap04BR44AR4/KMXw48Oab8rjBAOzbJ+fOzpLYREfLVPGFC6bFAQCwbRswejRQq5bpqF1bupcTGTG5IXoORYoAnTqlv2/gQEmA9u2TIzJSdkcPCgLmzZOEyJjcHDwoDQhr107fiJDI2l26BHzyiSQyJ09KD6q0DhwwJTfe3sBXXwENGgBVqsi2K9HR8ryTJ9NvuHvkiOlIq0gRSXRmzJDXIdvG1VJEZqRpQHi4jO7s3w9cuQJs3Gh6/JVXZEg+Xz5pMpi2ULlgQXVxE2VGfLxscGsckWnWDOjbVx6LiJCNbo0KFADq15ejQQP5O562NUNmXbkiBf4nTwInTsiv58/LvzUg/Ya7CxZIPZxxdMc40lOhgmnfOrIe3FvqKZjckCXp1k2msW7ffvyxJk0kISKyFAkJwOefm5KZf/4xJRUA0Lmz7AEHyP1TpsgoZoMGksiYawuUe/dk2uvkSeDdd03NOPv0AVaufPx6Z2dZCLB+PVC+vNz38CFHTy0dk5unYHJDliYlRT4kjKM7+/YBZ88C7dsDv/1muq5hQ1m+bqzdadhQRnyIctqNG7KP29GjQP78wEcfyf1JSYCbW/rtTUqUMI3GvPgi0Lq1mpgzcv26jO4YR3hOnpQkyBj/nTvy+wOkW/n33z8+ylO9Ov+dWQomN0/B5IasQUwMcOuWaUXW1atAyZLpr7G3B+rWlUTntdeANm1yPUzSiW3bpCbMWOx76ZLpsRo1ZJWg0ahRkhA0aCCF8sWK5Xq4zyU5Gbh4UZacd+hgur9FC1nd+Chjm4hjx0y1crduycquPFxvnKuY3DwFkxuyRklJ8p/rvn2m0Z2rV02Pf/QRsGiRnN+/L8vVmzaVVVwcaidApomuXpXk5do1U20MIAlMaGj66ytUkBGZhg1lZZPexcfLn0HaUZ6TJ2X0p3jx9P/e2rcH9uyRP7e0K7Zq1ZLCZjIPJjdPweSG9EDTpGDTOJXVoYP8hwvI7WbN5NzZWQqVmzWTZKdxY6BQIXVxU+4JDweCgyWZMdbIREfLY/nyAXFxpqLagAC53ljwW68e4OGhLHSLcu2aFDHXr2+6r0IFGf3JSNWqwOnTptsXL0py5Oxs3jhtAZObp2ByQ3p38KAUch44IMPnj1q2zNSn5+FD+YDj8Lr1SkmRD9Djx4E33jAV7XbqBPz0U/pr7eykhqR+fdk3jQlM9iQnywot4+iOcbTn4kWpO0o7vVWxIhAWJlPMj/bmKVeO//aygsnNUzC5IVuRkgKcOZO+UNl4u0kTueabb2SDUONO6MZCZTYZtEzJyVJsbqyNMR5xcfL4v/+aarMCA6VANu3y61q1WBxrTvHxUoxtXAKfmAh4ecnUVkZefFGmt4wOHZJRocKFzR+rNWJy8xRMbsiWxcRIIaSxDsfPz1SrY2RnZypUHjECKFUq18MkSJ3V6dPyzd84pTF8ODBz5uPXOjlJfdXy5aYeL2QZNA2Iikpfx2NctfXOO6al6g8eyJeKpCQp0k67Ysu4aitvXrW/F9WY3DwFkxsik4cPZTojbaHylSumx69elXoBANiwQep8mjaV5MfYS4Se34MHsiIp7WjM8eNSHL5zp6zkAYBvvwU++EBqYowjMvXry35MLBy3LklJMtJj3JcuPBxo1erJtTxvvw2sWSPnKSky5Virlm1NbWXl85vbLxDZMAcHaX3v7S3TU4CpUPnUKVNiAwArVgBbt8p53rwyfWXsqNykCYfSMyshQb7NG6eH1q2TvZMe3Z4AkD2WoqJMt7t2lQ85dte1fvb26TfcLV1a9tG6c8fUkDBtTU+tWqZrL16UDUUBGe2pWTP9iq06daQjtC3jyA0RZcr8+dIPZf/+xwuVXV3lPuOHbmSkbGRoK98on+Tu3fTbExw9KsuNly6V7rmA1Fk0biwfRg0apB+RqVCBf4YkyXBSkml0LjhYFgWEhsqo36PGjpVFBQBw8ybwyy+S9FSrZt1TWxy5IaIcN2iQHCkpUtRqnMbav1/qctKOJrRoIUWUaQuVX3jB1A1WjzTNtFLp779la41HtycwSttTpl49WU1jzu0JyLoZDOmnHb29pe9VUpI0I3y0N0/auqvDh4FeveTczg6oXDn9iq0mTfTZm4cjN0T03NLuyxMXJ9NZ9+6lvyZPHhku79ZNutxaM+P2BGlHZLp2BaZNk8djYkwfGGm3JzCOyJQsyUSGcscff8gozsmTGbeGWL3alPycOSOjs8bpLUvbvJcjN0SUq9J+q3Rzk41AT5wwLUPfv18KJo8dk2+dRg8fAj17mnZEr1fPcguV79yRD4GjR4HLlx9//MgR03nhwrIhas2a1rc9AelL69ZyGDtUP9qbp04d07Xbt8vorFGJEulXbbVvbz2jPBy5IaJc8e+/0liwdGmgUSO5LyhIEhujvHkl+TF2VG7WLPc6KqfdnsA4IuPlZVoqr2nyTda4g3vFiul7yNSrx+7PZN02bwa++EKSnowS+L17Td3P//pLvrQYp7dyY1qVS8GfgskNkeWIiJDlzcbRnRs30j8eGGiawoqNleurV8/ZItspU+S9025PYFSuXPqluevXA0WLylJ4dvclPYuLk9qxtCM9P/9sWuHl7w/Mm2e63tU1/aqt//0v54vhmdw8BZMbIsukaVIcmbaj8uefA82by+Pr1skyaHf3xwuVXV2f/LopKbLE1jgiExsrq5WMvL1NU0pptycwjsgYv6kSkcn69ZLsnDghzSbTtjIoUSJ9v6ycwuTmKZjcEFmnBQtkg8f4+PT358kj3xRXrJBkBJClrzt2SEJz7JhpewJA+ovcvStdfQHg66/ltnF7Am5wSJQ1Dx/KCkrjCI+jIzBxYs6/D5Obp2ByQ2S9kpLkP1DjEvT9+021AeHhUiMDyAjPunWm5xm3JzCOyPTowT2WiKwNV0sRkS7Z20vhbr16si8WIMPfwcGmxAYAOneW2hhuT0BkmzhyQ0RERBYvK5/fbOxNREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4oT24WL16McuXKIW/evGjQoAH27Nnz1Ou//fZb1KlTB/ny5UPx4sXx3nvv4caju+0RERGRzVKa3Kxbtw7+/v4YM2YMjh07hubNm8PHxwfh4eEZXr9371707NkTffr0walTp/D9998jKCgIffv2zeXIiYiIyFIpTW5mz56NPn36oG/fvqhWrRrmzp0LLy8vLFmyJMPrDx48iLJly2LQoEEoV64cXnzxRXz44YcIDg5+4nskJiYiLi4u3UFERET6pSy5efDgAY4cOYK2bdumu79t27bYv39/hs9p2rQp/v33X2zZsgWapuHatWv44Ycf8Oqrrz7xfQIDA+Hu7p56eKXdgIaIiIh0R1lyExMTg+TkZHh6eqa739PTE1FRURk+p2nTpvj222/x1ltvwdHREcWKFYOHhwcWLFjwxPcJCAhAbGxs6hEREZGjvw8iIiKyLMoLig0GQ7rbmqY9dp9RaGgoBg0ahPHjx+PIkSPYunUrwsLC0L9//ye+vpOTE9zc3NIdREREpF/2qt64cOHCsLOze2yUJjo6+rHRHKPAwEA0a9YMw4cPBwDUrl0bLi4uaN68OaZOnYrixYubPW4iIiKybMqSG0dHRzRo0ADbt29Hly5dUu/fvn07OnXqlOFz7t27B3v79CHb2dkBkBGfzDBex8JiIiIi62H83M7U572m0Nq1azUHBwftiy++0EJDQzV/f3/NxcVFu3TpkqZpmjZq1CjN19c39fpVq1Zp9vb22uLFi7ULFy5oe/fu1by9vbUXXngh0+8ZERGhAeDBgwcPHjx4WOERERHxzM96ZSM3APDWW2/hxo0bmDx5MiIjI1GzZk1s2bIFZcqUAQBERkam63nTu3dv3LlzBwsXLsTQoUPh4eGBl19+GZ9++mmm37NEiRKIiIiAq6vrE2t7sisuLg5eXl6IiIhgbY+V4s/QuvHnZ/34M7R+5voZapqGO3fuoESJEs+81qBpmZzPoWeKi4uDu7s7YmNj+Y/SSvFnaN3487N+/BlaP0v4GSpfLUVERESUk5jcEBERka4wuclBTk5OmDBhApycnFSHQtnEn6F148/P+vFnaP0s4WfImhsiIiLSFY7cEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyU0OWbx4McqVK4e8efOiQYMG2LNnj+qQKAt2796Njh07okSJEjAYDNi8ebPqkCgLAgMD0bBhQ7i6uqJo0aLo3Lkzzpw5ozosyoIlS5agdu3acHNzg5ubG5o0aYLffvtNdViUTYGBgTAYDPD391fy/kxucsC6devg7++PMWPG4NixY2jevDl8fHzSbR1Bli0+Ph516tTBwoULVYdC2bBr1y4MGDAABw8exPbt25GUlIS2bdsiPj5edWiUSaVKlcL06dMRHByM4OBgvPzyy+jUqRNOnTqlOjTKoqCgICxbtgy1a9dWFgOXgueARo0aoX79+liyZEnqfdWqVUPnzp0RGBioMDLKDoPBgE2bNqFz586qQ6Fsun79OooWLYpdu3bhpZdeUh0OZVPBggXx2WefoU+fPqpDoUy6e/cu6tevj8WLF2Pq1KmoW7cu5s6dm+txcOTmOT148ABHjhxB27Zt093ftm1b7N+/X1FURLYtNjYWgHw4kvVJTk7G2rVrER8fjyZNmqgOh7JgwIABePXVV9G6dWulcSjdFVwPYmJikJycDE9Pz3T3e3p6IioqSlFURLZL0zQMGTIEL774ImrWrKk6HMqCkydPokmTJrh//z7y58+PTZs2oXr16qrDokxau3Ytjh49iqCgINWhMLnJKQaDId1tTdMeu4+IzM/Pzw8nTpzA3r17VYdCWVSlShWEhITg9u3b2LBhA3r16oVdu3YxwbECERERGDx4MLZt24a8efOqDofJzfMqXLgw7OzsHhuliY6Ofmw0h4jMa+DAgfjpp5+we/dulCpVSnU4lEWOjo6oWLEiAMDb2xtBQUGYN28eli5dqjgyepYjR44gOjoaDRo0SL0vOTkZu3fvxsKFC5GYmAg7O7tci4c1N8/J0dERDRo0wPbt29Pdv337djRt2lRRVES2RdM0+Pn5YePGjdixYwfKlSunOiTKAZqmITExUXUYlAmvvPIKTp48iZCQkNTD29sbPXr0QEhISK4mNgBHbnLEkCFD4OvrC29vbzRp0gTLli1DeHg4+vfvrzo0yqS7d+/i/PnzqbfDwsIQEhKCggULonTp0gojo8wYMGAAvvvuO/z4449wdXVNHUl1d3eHs7Oz4ugoM0aPHg0fHx94eXnhzp07WLt2LXbu3ImtW7eqDo0ywdXV9bEaNxcXFxQqVEhJ7RuTmxzw1ltv4caNG5g8eTIiIyNRs2ZNbNmyBWXKlFEdGmVScHAwWrVqlXp7yJAhAIBevXph9erViqKizDK2YWjZsmW6+1etWoXevXvnfkCUZdeuXYOvry8iIyPh7u6O2rVrY+vWrWjTpo3q0MgKsc8NERER6QprboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMbohId3r37o3OnTurDoOIFGFyQ0TZ0rt3bxgMhseO9u3bqw4N8+bNs5htMwwGAzZv3qw6DCKbwr2liCjb2rdvj1WrVqW7z8nJSVE0QHJyMgwGA9zd3ZXFQETqceSGiLLNyckJxYoVS3cUKFAAO3fuhKOjI/bs2ZN67axZs1C4cGFERkYCkE0u/fz84OfnBw8PDxQqVAhjx45F2u3uHjx4gBEjRqBkyZJwcXFBo0aNsHPnztTHV69eDQ8PD/zyyy+oXr06nJyccPny5cempVq2bImBAwfC398fBQoUgKenJ5YtW4b4+Hi89957cHV1RYUKFfDbb7+l+/2FhoaiQ4cOyJ8/Pzw9PeHr64uYmJh0rzto0CCMGDECBQsWRLFixTBx4sTUx8uWLQsA6NKlCwwGQ+ptIjIvJjdElONatmwJf39/+Pr6IjY2FsePH8eYMWOwfPlyFC9ePPW6L7/8Evb29jh06BDmz5+POXPmYMWKFamPv/fee9i3bx/Wrl2LEydOoGvXrmjfvj3OnTuXes29e/cQGBiIFStW4NSpUyhatGiGMX355ZcoXLgwDh8+jIEDB+J///sfunbtiqZNm+Lo0aNo164dfH19ce/ePQBAZGQkWrRogbp16yI4OBhbt27FtWvX0K1bt8de18XFBYcOHcKMGTMwefJkbN++HQAQFBQEQHYnj4yMTL1NRGamERFlQ69evTQ7OzvNxcUl3TF58mRN0zQtMTFRq1evntatWzetRo0aWt++fdM9v0WLFlq1atW0lJSU1PtGjhypVatWTdM0TTt//rxmMBi0K1eupHveK6+8ogUEBGiapmmrVq3SAGghISGPxdapU6d07/Xiiy+m3k5KStJcXFw0X1/f1PsiIyM1ANqBAwc0TdO0cePGaW3btk33uhERERoA7cyZMxm+rqZpWsOGDbWRI0em3gagbdq06Ql/ikRkDqy5IaJsa9WqFZYsWZLuvoIFCwIAHB0d8c0336B27dooU6YM5s6d+9jzGzduDIPBkHq7SZMmmDVrFpKTk3H06FFomobKlSune05iYiIKFSqUetvR0RG1a9d+Zqxpr7Gzs0OhQoVQq1at1Ps8PT0BANHR0QCAI0eO4K+//kL+/Pkfe60LFy6kxvXoexcvXjz1NYhIDSY3RJRtLi4uqFix4hMf379/PwDg5s2buHnzJlxcXDL92ikpKbCzs8ORI0dgZ2eX7rG0CYezs3O6BOlJHBwc0t02GAzp7jO+RkpKSuqvHTt2xKeffvrYa6WdWsvodY2vQURqMLkhIrO4cOECPv74Yyxfvhzr169Hz5498eeffyJPHlOp38GDB9M95+DBg6hUqRLs7OxQr149JCcnIzo6Gs2bN8/t8FG/fn1s2LABZcuWhb199v+rdHBwQHJycg5GRkTPwoJiIsq2xMREREVFpTtiYmKQnJwMX19ftG3bFu+99x5WrVqFv//+G7NmzUr3/IiICAwZMgRnzpzBmjVrsGDBAgwePBgAULlyZfTo0QM9e/bExo0bERYWhqCgIHz66afYsmWL2X9vAwYMwM2bN9G9e3ccPnwYFy9exLZt2/D+++9nKVkpW7Ys/vzzT0RFReHWrVtmjJiIjDhyQ0TZtnXr1nRTNABQpUoVvPPOO7h06RJ+/vlnAECxYsWwYsUKdOvWDW3atEHdunUBAD179kRCQgJeeOEF2NnZYeDAgfjggw9SX2vVqlWYOnUqhg4diitXrqBQoUJo0qQJOnToYPbfW4kSJbBv3z6MHDkS7dq1Q2JiIsqUKYP27dunG316llmzZmHIkCFYvnw5SpYsiUuXLpkvaCICABg0LU1TCSKiXNKyZUvUrVs3w0JjIqLnwWkpIiIi0hUmN0RERKQrnJYiIiIiXeHIDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdOX/AfewDez6rcttAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOw0lEQVR4nO3deViUVf8G8HvYBQQEkUVR3BXXFDM0t3LFTKzUcsWtLFwQl7J6W3x985dprmmpiWtquaCVmqYpprmLmpgriAsuuLCpKPD8/jjNDMgiIDNn5pn7c11z+czMw8xXULg5zznnq1EURQERERGRSljJLoCIiIioNDHcEBERkaow3BAREZGqMNwQERGRqjDcEBERkaow3BAREZGqMNwQERGRqtjILsDYsrOzce3aNZQtWxYajUZ2OURERFQEiqIgNTUVvr6+sLIqfGzG4sLNtWvX4OfnJ7sMIiIiKoHLly+jUqVKhZ5jceGmbNmyAMQnx8XFRXI1REREVBQpKSnw8/PT/RwvjMWFG+2lKBcXF4YbIiIiM1OUKSWcUExERESqwnBDREREqsJwQ0RERKpicXNuiiorKwuPHz+WXQYVk62tLaytrWWXQUREEjHcPEFRFFy/fh337t2TXQqVkJubG7y9vbmPERGRhWK4eYI22FSoUAGOjo78AWlGFEXB/fv3cfPmTQCAj4+P5IqIiEgGhpscsrKydMHGw8NDdjlUAmXKlAEA3Lx5ExUqVOAlKiIiC8QJxTlo59g4OjpKroSehfbrxzlTRESWieEmH7wUZd749SMismwMN0RERKQqDDdERESkKgw3lC9/f3/MnDlT+msQEREVF1dLqUTbtm3RuHHjUgsThw4dgpOTU6m8FhERWZA//gCCggAHB2klSB25iY6ORrdu3eDr6wuNRoOoqKinfkxGRgY++ugjVKlSBfb29qhevToWL15s+GJVQFEUZGZmFulcT09PrhojIqLiuXQJ6NABqFoVSEqSVobUcJOeno5GjRph7ty5Rf6YXr16YceOHfj+++9x5swZrFq1CnXq1DFglUJ6esG3hw+Lfu6DB0U7tzhCQ0Oxe/duzJo1CxqNBhqNBvHx8di1axc0Gg1+++03BAYGwt7eHnv27MGFCxfQvXt3eHl5wdnZGc2aNcPvv/+e6zWfvKSk0WiwaNEi9OjRA46OjqhZsyY2bdpUrDoTEhLQvXt3ODs7w8XFBb169cKNGzd0zx8/fhzt2rVD2bJl4eLigqZNm+Lw4cMAgEuXLqFbt24oV64cnJycUK9ePWzevLl4nygiIjKsmTOBrCygXj2gfHlpZUi9LNWlSxd06dKlyOdv3boVu3fvxsWLF+Hu7g5A/BA2Bmfngp8LDgZ+/VV/v0IF4P79/M9t0wbYtUt/398//3CrKEWvbdasWTh79izq16+PSZMmARAjL/Hx8QCACRMmYNq0aahWrRrc3Nxw5coVBAcHY/LkyXBwcMDSpUvRrVs3nDlzBpUrVy7wfT7//HNMnToVX331FebMmYO+ffvi0qVLuq9FYRRFQUhICJycnLB7925kZmbivffeQ+/evbHr309I37598dxzz2H+/PmwtrZGTEwMbG1tAQBhYWF49OgRoqOj4eTkhNjYWDgX9kUhIiLjunsXWLhQHE+YILUUs5pzs2nTJgQGBmLq1KlYvnw5nJyc8Oqrr+K///2vbmfaJ2VkZCAjI0N3PyUlxVjlGo2rqyvs7Ozg6OgIb2/vPM9PmjQJHTp00N338PBAo0aNdPcnT56MDRs2YNOmTRgxYkSB7xMaGoq33noLAPDFF19gzpw5OHjwIDp37vzUGn///XecOHECcXFx8PPzAwAsX74c9erVw6FDh9CsWTMkJCRg/PjxupG4mjVr6j4+ISEBr7/+Oho0aAAAqFat2lPfk4iIjGj+fHHpoVEjcWlKIrMKNxcvXsSff/4JBwcHbNiwAUlJSXjvvfdw586dAufdTJkyBZ9//vkzv3daWsHPPbnD/7+tjfJl9cSFwH8HVwwqMDAw1/309HR8/vnn+OWXX3Dt2jVkZmbiwYMHSEhIKPR1GjZsqDt2cnJC2bJldX2cnub06dPw8/PTBRsACAgIgJubG06fPo1mzZohIiICQ4cOxfLly9G+fXv07NkT1atXBwCMGjUK7777LrZt24b27dvj9ddfz1UPERFJ9PAhMGuWOB4/HpC8mapZLQXPzs6GRqPBypUr8fzzzyM4OBhff/01lixZggdPTmb518SJE5GcnKy7Xb58uUTv7eRU8O3JCeGFnfvkAFNB55WmJ1c9jR8/HuvWrcP//vc/7NmzBzExMWjQoAEePXpU6OtoLxFpaTQaZGdnF6kGRVHy3Tk45+OfffYZTp06ha5du2Lnzp0ICAjAhg0bAABDhw7FxYsX0b9/f5w8eRKBgYGYM2dOkd6biIgMbNky8Zt95cpAr16yqzGvcOPj44OKFSvC1dVV91jdunWhKAquXLmS78fY29vDxcUl102N7OzskJWVVaRz9+zZg9DQUPTo0QMNGjSAt7e3bn6OoQQEBCAhISFXuIyNjUVycjLq1q2re6xWrVoYM2YMtm3bhtdeew2RkZG65/z8/DB8+HCsX78eY8eOxULttV0iIpInKwuYNk0cR0QAT/wiLINZhZuWLVvi2rVrSMtxjejs2bOwsrJCpUqVJFYmn7+/Pw4cOID4+HgkJSUVOqJSo0YNrF+/HjExMTh+/Dj69OlT5BGYkmrfvj0aNmyIvn374ujRozh48CAGDBiANm3aIDAwEA8ePMCIESOwa9cuXLp0CXv37sWhQ4d0wSc8PBy//fYb4uLicPToUezcuTNXKCIiIkk2bQLOnQPKlQOGDJFdDQDJ4SYtLQ0xMTGIiYkBAMTFxSEmJkY392PixIkYMGCA7vw+ffrAw8MDgwYNQmxsLKKjozF+/HgMHjy4wAnFlmLcuHGwtrZGQEAAPD09C50/M2PGDJQrVw4tWrRAt27d0KlTJzRp0sSg9Wn3MSpXrhxat26N9u3bo1q1alizZg0AwNraGrdv38aAAQNQq1Yt9OrVC126dNHNl8rKykJYWBjq1q2Lzp07o3bt2pg3b55BayYioqdQFODLL8Xxe+8VvrTYiDSKUpxFx6Vr165daNeuXZ7HBw4ciCVLliA0NFS3X4vWP//8g5EjR2Lv3r3w8PBAr169MHny5CKHm5SUFLi6uiI5OTnPJaqHDx8iLi4OVatWhYPEnRXp2fDrSERkJHv2AK1bA/b2YgM/Ly+DvVVhP7+fJHW1VNu2bVFYtlqyZEmex+rUqYPt27cbsCoiIiIqkqlTxZ+hoQYNNsVlVnNuiIiIyETExgK//CKWfY8dK7uaXBhuiIiIqPi0K6Reew3IsemqKWC4ISIiouK5ehVYsUIcjx8vt5Z8MNwQERFR8cyaBTx+LCYTN28uu5o8GG6IiIio6JKTgW+/FceSG2QWhOGGiIiIiu6774DUVKBePaBLF9nV5IvhhoiIiIomIyN3g8wnu0GbCNOsisxK27ZtER4eLrsMIiIytB9+AK5dAypWBN56S3Y1BWK4UQlDBIzQ0FCEhISU6msSEZGZys4GvvpKHIeHA3Z2UsspDMMNERERPd2vvwKnTwMuLsDbb8uuplAMNyoQGhqK3bt3Y9asWdBoNNBoNIiPjwcAxMbGIjg4GM7OzvDy8kL//v2RlJSk+9i1a9eiQYMGKFOmDDw8PNC+fXukp6fjs88+w9KlS7Fx40bda+bs8VWYu3fvYsCAAShXrhwcHR3RpUsXnDt3Tvf8pUuX0K1bN5QrVw5OTk6oV68eNm/erPvYvn37wtPTE2XKlEHNmjURGRlZap8rIiIqIW2rhXffFQHHhEntLWUWFAW4f1/Oezs6im2tn2LWrFk4e/Ys6tevj0mTJgEAPD09kZiYiDZt2mDYsGH4+uuv8eDBA7z//vvo1asXdu7cicTERLz11luYOnUqevTogdTUVOzZsweKomDcuHE4ffo0UlJSdOHC3d29SGWHhobi3Llz2LRpE1xcXPD+++8jODgYsbGxsLW1RVhYGB49eoTo6Gg4OTkhNjYWzv92kv3Pf/6D2NhYbNmyBeXLl8f58+fx4MGDEn4CiYioVPz1F/Dnn4CtLTBqlOxqnorh5mnu35fXwj0tDXByeupprq6usLOzg6OjI7y9vXWPz58/H02aNMEXX3yhe2zx4sXw8/PD2bNnkZaWhszMTLz22muoUqUKAKBBgwa6c8uUKYOMjIxcr/k02lCzd+9etGjRAgCwcuVK+Pn5ISoqCj179kRCQgJef/113XtVq1ZN9/EJCQl47rnnEBgYCADw9/cv8nsTEZGBaOfa9O8P+PrKraUIeFlKxY4cOYI//vgDzs7OuludOnUAABcuXECjRo3w8ssvo0GDBujZsycWLlyIu3fvPtN7nj59GjY2NmieY8dKDw8P1K5dG6dPnwYAjBo1CpMnT0bLli3x6aef4sSJE7pz3333XaxevRqNGzfGhAkTsG/fvmeqh4iIntGZM0BUlDgeN05qKUXFcPM0jo5iBEXGzdHxmUrPzs5Gt27dEBMTk+t27tw5tG7dGtbW1ti+fTu2bNmCgIAAzJkzB7Vr10ZcXFyJ31NRlAIf1/x7iW3o0KG4ePEi+vfvj5MnTyIwMBBz5swBAHTp0gWXLl1CeHg4rl27hpdffhnjzOQ/ExGRKk2fLqZovPoqULeu7GqKhOHmaTQacWlIxq0I82207OzskJWVleuxJk2a4NSpU/D390eNGjVy3Zz+vdyl0WjQsmVLfP755zh27Bjs7OywYcOGAl/zaQICApCZmYkDBw7oHrt9+zbOnj2Lujn+U/j5+WH48OFYv349xo4di4ULF+qe8/T0RGhoKFasWIGZM2diwYIFxaqBiIhKyfXrwNKl4thEWy3kh+FGJfz9/XHgwAHEx8cjKSkJ2dnZCAsLw507d/DWW2/h4MGDuHjxIrZt24bBgwcjKysLBw4cwBdffIHDhw8jISEB69evx61bt3QhxN/fHydOnMCZM2eQlJSEx48fP7WOmjVronv37hg2bBj+/PNPHD9+HP369UPFihXRvXt3AEB4eDh+++03xMXF4ejRo9i5c6fuPT/55BNs3LgR58+fx6lTp/DLL7/kCkVERGREc+YAjx4BQUFAy5ayqykyhhuVGDduHKytrREQEABPT08kJCTA19cXe/fuRVZWFjp16oT69etj9OjRcHV1hZWVFVxcXBAdHY3g4GDUqlULH3/8MaZPn44u//YKGTZsGGrXro3AwEB4enpi7969RaolMjISTZs2xSuvvIKgoCAoioLNmzfD1tYWAJCVlYWwsDDUrVsXnTt3Ru3atTFv3jwAYrRo4sSJaNiwoe7S2erVqw3zSSMiooKlpgL/fm82p1EbANAoBU2SUKmUlBS4uroiOTkZLk+s03/48CHi4uJQtWpVODg4SKqQnhW/jkREpWDGDCAiAqhVS2zeJ7mPVGE/v5/EkRsiIiLK7fFj4OuvxbEJN8gsiHlVS0RERIa3ejVw5Qrg7Q306ye7mmJjuCEiIiI9RdFv2jdqFGCGl/cZboiIiEjvt9+AkyfF7vzDh8uupkQYbvJhYXOsVYdfPyKiZ6BtkPn220C5cnJrKSGGmxy0S5Xvy2qUSaVC+/XTfj2JiKiIDh0C/vgDsLEBwsNlV1NibJyZg7W1Ndzc3HDz5k0AgKOjo65lAJk+RVFw//593Lx5E25ubrC2tpZdEhGRedHOtenTB/Dzk1vLM2C4eYK2A7Y24JD5cXNzK1YncyIiAnDhArBunTg2855+DDdP0Gg08PHxQYUKFYrUboBMi62tLUdsiIhK4uuvgexsoEsXoEED2dU8E4abAlhbW/OHJBERWYZbt4DFi8WxmbVayA8nFBMREVm6uXOBhw+BZs2ANm1kV/PMGG6IiIgsWXq6CDeAGLVRwUIahhsiIiJLFhkJ3LkDVK8O9Oghu5pSwXBDRERkqTIzgenTxfHYsYBK5poy3BAREVmqtWuB+HjA0xMIDZVdTalhuCEiIrJEiqJvtTByJFCmjNx6ShHDDRERkSXasQM4dgxwdATee092NaWK4YaIiMgSaVstDBkCeHjIraWUMdwQERFZmpgYYNs2MYE4IkJ2NaWO4YaIiMjSaEdtevUC/P2llmIIDDdERESWJD4eWLNGHI8fL7UUQ2G4ISIisiQzZgBZWUCHDsBzz8muxiAYboiIiCzF7dvAokXiWKWjNgDDDRERkeWYPx+4fx9o3Bho3152NQbDcENERGQJHjwAZs8WxyppkFkQhhsiIiJLsHQpcOsWUKUK0LOn7GoMiuGGiIhI7bKycjfItLGRW4+BMdwQERGpXVQUcP484O4ODB4suxqDY7ghIiJSM0UBvvxSHIeFAU5OcusxAoYbIiIiNYuOBg4dAhwcgBEjZFdjFAw3REREajZ1qvhz0CCgQgW5tRgJww0REZFa/f03sHkzYGWlygaZBWG4ISIiUqtp08Sfr70G1KghtxYjYrghIiJSoytXgJUrxfGECXJrMTKGGyIiIjWaORPIzATatgWaNZNdjVEx3BAREanNvXvAd9+JYwsbtQEYboiIiNTnu++AtDSgfn2gc2fZ1Rgdww0REZGaZGSIS1IAMH68qhtkFoThhoiISE1WrACuXwcqVQLefFN2NVIw3BAREalFdjbw1VfieMwYwM5Obj2SMNwQERGpxc8/A2fOAK6uwLBhsquRhuGGiIhILbSjNu++C5QtK7cWiRhuiIiI1GDvXnGzswNGjZJdjVQMN0RERGqgHbUZMADw8ZFbi2QMN0RERObun3+AjRvFsu9x42RXIx3DDRERkbnTNsjs3h2oXVtuLSaA4YaIiMicJSYCy5eL4/Hj5dZiIhhuiIiIzNns2cCjR0DLlkCLFrKrMQkMN0REROYqJQWYP18cW2CDzIIw3BAREZmrhQuB5GSgTh3glVdkV2MyGG6IiIjM0aNHwIwZ4nj8eMCKP9K1pH4moqOj0a1bN/j6+kKj0SAqKqrIH7t3717Y2NigcePGBquPiIjIZK1eDVy9Kva06dtXdjUmRWq4SU9PR6NGjTB37txifVxycjIGDBiAl19+2UCVERERmTBFAaZOFcejRwP29nLrMTE2Mt+8S5cu6NKlS7E/7p133kGfPn1gbW1drNEeIiIiVdiyBTh1SvSPeucd2dWYHLO7QBcZGYkLFy7g008/LdL5GRkZSElJyXUjIiIya9pRm3feAdzcpJZiiswq3Jw7dw4ffPABVq5cCRubog06TZkyBa6urrqbn5+fgaskIiIyoIMHgd27AVtbcUmK8jCbcJOVlYU+ffrg888/R61atYr8cRMnTkRycrLudvnyZQNWSUREZGDaBpl9+gCVKsmtxURJnXNTHKmpqTh8+DCOHTuGESNGAACys7OhKApsbGywbds2vPTSS3k+zt7eHvacaEVERGpw/jywbp04ZoPMAplNuHFxccHJkydzPTZv3jzs3LkTa9euRdWqVSVVRkREZCTTp4uVUl27AvXry67GZEkNN2lpaTh//rzuflxcHGJiYuDu7o7KlStj4sSJuHr1KpYtWwYrKyvUf+ILWaFCBTg4OOR5nIiISHVu3AAiI8UxWy0USmq4OXz4MNq1a6e7HxERAQAYOHAglixZgsTERCQkJMgqj4iIyHTMnQtkZADNmwOtWsmuxqRpFEVRZBdhTCkpKXB1dUVycjJcXFxkl0NERPR0aWlA5crA3bvA2rXA66/LrsjoivPz22xWSxEREVmsxYtFsKlRAwgJkV2NyWO4ISIiMmWPH4uJxIBYIWVtLbceM8BwQ0REZMp++glISAAqVAAGDJBdjVlguCEiIjJVORtkjhoFlCkjtx4zwXBDRERkqn7/HTh+HHByAt59V3Y1ZoPhhoiIyFRpR22GDgXc3eXWYkYYboiIiEzR0aNi5MbaGhgzRnY1ZoXhhoiIyBRpG2S++SZQpYrcWswMww0REZGpiYsDfvxRHI8fL7cWM8RwQ0REZGpmzACys4GOHYFGjWRXY3YYboiIiExJUhKwaJE4ZoPMEmG4ISIiMiXz5gEPHgBNmgAvvSS7GrPEcENERGQq7t8H5swRxxMmABqN3HrMFMMNERGRqViyRFyWqlrVIjt/lxaGGyIiIlOQlaVvkBkRAdjYyK3HjDHcEBERmYL164GLFwEPD2DQINnVmDWGGyIiItkUBfjyS3E8YoToJUUlxnBDREQk265dwJEjout3WJjsasweww0REZFs2gaZgwcDnp5ya1EBhhsiIiKZTpwAtm4FrKzERGJ6Zgw3REREMk2bJv584w2gWjW5tagEww0REZEsCQnAqlXimA0ySw3DDRERkSwzZwKZmaLNQmCg7GpUg+GGiIhIhrt3gQULxDFHbUoVww0REZEM334LpKcDDRoAnTrJrkZVGG6IiIiM7eFDYNYsccwGmaWO4YaIiMjYli8HbtwA/PyA3r1lV6M6DDdERETGlJWlX/4dEQHY2sqtR4UYboiIiIxp0ybg7FnAzQ0YOlR2NarEcENERGQsiqJvtfDee4Czs9x6VIrhhoiIyFj27gX27wfs7YGRI2VXo1oMN0RERMaiHbUZOBDw9pZbi4ox3BARERlDbCzw889i2ffYsbKrUTWGGyIiImPQrpAKCQFq1ZJaitox3BARERnatWvAihXieMIEubVYAIYbIiIiQ5s1C3j8GGjVCnjhBdnVqB7DDRERkSElJ4s+UgBHbYyE4YaIiMiQFiwAUlKAgAAgOFh2NRaB4YaIiMhQHj0CZs4Ux+PGAVb8sWsM/CwTEREZyg8/iMnEvr5Anz6yq7EYDDdERESGkJ0NfPWVOA4PF7sSk1Ew3BARERnC5s1i4z4XF+Dtt2VXY1EYboiIiAxB22ph+HDA1VVuLRaG4YaIiKi07d8P7NkD2NoCo0fLrsbiMNwQERGVNu1cm379xGRiMiqGGyIiotJ09iywYYM4HjdObi0WiuGGiIioNE2fDigK0K2b2LiPjI7hhoiIqLRcvw4sXSqO2WpBGoYbIiKi0jJnDpCRIZpjtmwpuxqLxXBDRERUGtLSgHnzxPGECYBGI7ceC8ZwQ0REVBoWLQLu3QNq1QJefVV2NRaN4YaIiOhZPX4MfP21OB43DrC2lluPhWO4ISIielZr1gCXLwNeXkD//rKrsXgMN0RERM9CUfStFkaNAhwc5NZDDDdERETPZNs24ORJwMkJePdd2dUQGG6ISA3u3gVWrAB69gTq1QN++UV2RWRJtKM2b78NlCsntxYCANjILoCIqEQSEoCNG8Vt1y4gK0v/XPfuwOzZQFiYtPLIQhw+DOzcCdjYAOHhsquhfzHcEJF5UBQx9B8VJQLN0aO5n69fHwgJAa5cAZYsAUaMAC5eFA0MrThITQaibZD51ltA5cpyayEdhhsiMl2ZmcDevfpAExenf87KSuwAGxIiRmqqVxePKwpQuzYwcaJYmhsfDyxfDjg6SvgLkKpdvAisXSuO2SDTpDDcEJFpuX9fTNCMihJzZ27f1j/n4AB07CgCzSuvAJ6eeT9eowE++ADw9wcGDgTWrweuXgU2bQIqVDDSX4IswtdfA9nZQOfOQMOGsquhHBhuiEi+W7dEkImKArZvBx480D/n7i66K4eEAB06iBUpRfHmm0DFiuLjDhwQvX42bwbq1DHAX4Aszq1bwOLF4pgNMk1OscLNwYMH0bRpU1j/u/OioijQ5OidkZGRgY0bN6JXr16lWyURqc+FC+JSU1SUuPSUna1/zt9fhJKQEHHpyaaEv4e1agXs2wcEB4tLCC1aiPdr3fqZyycL9803IoQHBgJt28quhp6gURRFKerJ1tbWSExMRIV/h3ZdXFwQExODatWqAQBu3LgBX19fZOVctWBiUlJS4OrqiuTkZLi4uMguh8hyKIqYBBwVJW5//537+eee0weaBg1Kt+ngrVui18/+/YCdHRAZCfTpU3qvT5YlPR2oUkVcMv3xR7EFARlccX5+F+vXoSdzUH65qBhZiYjU7vFjYPdu/YTgK1f0z1lbA23aiDDz6qvih4WheHqK5boDBogJoH37isnJH37Izs1UfJGRIthUqwa89prsaigfpT7nRsNvFESWLTUV2LpVBJpffwWSk/XPOTmJyZchIeJSkbu78eoqU0b0//ngA7F89+OPxaWqb78FbG2NVweZt8xMfYPMsWPZINNEcUIxET2769fFaqSoKGDHDuDRI/1zFSqIkZmQEODll+X23bGyErvJ+vsDI0eKCaEJCWI0x9VVXl1kPtatE6N+5csDoaGyq6ECFDvcxMbG4vr16wDEJah//vkHaWlpAICkpKTSrY6ITNc//+gnBB84IObUaNWsqZ8/07y56f12+9574jJY797A778DL74oRpm4CRsVJmeDzJEjuXeSCSvWhGIrKytoNJp859VoH9doNJxQTKRG2dnAwYP6CcFnzuR+/vnn9YGmTh3zmMty9KjYLycxEfDxEcvRmzSRXRWZqh07gPbtxSXOhAQxekNGY7AJxXE5dwclIvXLyBATcaOixGWnf0dtAYh5Ki+9pJ8Q7Osrq8qSa9JEjDoFB4vVW61bi3k5XbvKroxMkXbUZsgQBhsTV6yRGzXgyA3RU9y7Jza7i4oCtmwB/r3sDABwcRFBICRETAxWyzyV5GSxnHf7djEvZ84ccemKSOv4caBxY/Hv4/x5oGpV2RVZHION3Ny5cwf3799HpUqVdI+dOnUK06ZNQ3p6OkJCQtCHe0cQmZ/Ll/UTgnftEitCtHx9Re+mkBCxWZmdnZwaDcnVVcy5GT5cTDIOCxOTRr/8kk03SdA2yOzVi8HGDBTrf21YWBi+1i6BA3Dz5k20atUKhw4dQkZGBkJDQ7F8+fIiv150dDS6desGX19faDQaREVFFXr++vXr0aFDB3h6esLFxQVBQUH47bffivNXICJA32F78mSxw2rlyqKL9u+/i2ATECD2gDl4UASfefNETyc1BhstW1tg0SLxOQGAadPED7KcrSDIMl26BKxeLY7Hj5dbCxVJscLN/v378eqrr+ruL1u2DO7u7oiJicHGjRvxxRdf4Jtvviny66Wnp6NRo0aYO3dukc6Pjo5Ghw4dsHnzZhw5cgTt2rVDt27dcOzYseL8NYgsU1YWEB0t9uaoUUM0+vvPf4AjR8Tk35YtxW+nZ88Cp04B//sf0KyZZY1caDTARx8BK1eKILdunZhXdOuW7MpIphkzxP+fl1/mhHMzUaw5N2XKlME///yDKv/uJBocHIx69erhq3+H686ePYugoCDcztnFt6iFaDTYsGEDQkJCivVx9erVQ+/evfHJJ58U6XzOuSGLcv++GI2JigJ+/hnIuV2Dvb1oRKntsO3lJatK0xQdLT43d++KnWi3bAFq1ZJdFRnbnTuAn5/4v/Tbb2IEk6Qw2JwbFxcX3Lt3TxduDh48iCFDhuie12g0yMjIKEHJJZOdnY3U1FS4F7LLaUZGRq6aUlJSjFEakTxJSWJJ88aN4ptxzssq5cqJIBMSIr5JOztLK9PktW4N/PUX0KWL2Mk4KEiExFatZFdGxjR/vgg2jRqJXwbILBRrvPn555/H7NmzkZ2djbVr1yI1NRUvvfSS7vmzZ8/Cz8+v1IssyPTp05Genl5oF/IpU6bA1dVVdzNmfURGExcHzJwpJvx6eQGDBokfxA8eiPk0o0aJJd03bgDLlol+OAw2T1e7tmi22by5+A2+fXtg1SrZVZGxPHgAzJ4tjidMMI+9mwhAMUdu/vvf/6J9+/ZYsWIFMjMz8eGHH6JcuXK651evXo02bdqUepH5WbVqFT777DNs3LhR16U8PxMnTkRERITufkpKCgMOmT9FAY4d0+8QfOJE7ucbNdJvqNeoEb8pP4sKFUQw7NcP2LBBdBOPjxc9qvh5Vbdly4CbN8Vu1uz8bVaKFW4aN26M06dPY9++ffD29kbz5s1zPf/mm28iICCgVAvMz5o1azBkyBD89NNPaN++faHn2tvbw97e3uA1ERnc48diHog20Fy+rH/OykpcRgkJEcu2/f0lFalSjo7ATz+J396//lqsJLt4UawiY9NNdcrKEivmAGDMGH6dzUyxe0t5enqie/fu+T7X1Qi7eq5atQqDBw/GqlWrjPJ+RFKlpYkO2xs3ink09+7pn3N0BDp1EoGma1fAw0NWlZbB2hqYPl1MLh41SiwbT0gQoYeLE9QnKkps1leunNiRmMxKscLNsmXLinTegAEDinReWloazp8/r7sfFxeHmJgYuLu7o3Llypg4cSKuXr2qe99Vq1ZhwIABmDVrFl544QVdA88yZcrAVS07pRLduCE21Nu4Uax0yjlJv3x5fYdtbY8bMq6wMH3TzW3b9E03eblbPXI2yAwL4/w0M1TsxpnOzs6wsbHJt3kmIFZM3blzp0ivt2vXLrRr1y7P4wMHDsSSJUsQGhqK+Ph47Nq1CwDQtm1b7N69u8Dzi4JLwckknT0rflPcuFGs0Mn5/6t6df38maAg0+uwbamOHBErz65fF7s4//qr2J6fzF90NNCmjdguISFBzLsi6Yrz87tY4aZevXq4ceMG+vXrh8GDB6Nhw4bPXKyxMdyQScjOBg4d0gea06dzPx8YqA80AQGcuGqqLl0SlwRPnRK/3f/4o1g6TubtlVf07Tjmz5ddDf3LYOEGAA4cOIDFixdjzZo1qFGjBoYMGYK+ffuaTVBguCFpMjKAP/7Qd9hOTNQ/Z2MDtGun77Cdo38bmbh794A33gB27BCjat98A7zzjuyqqKROnQLq1xe/UJw5A9SsKbsi+pdBw43WgwcP8NNPPyEyMhIHDx5ESEgIFi9ebPIrkxhuyKiSk3N32E5N1T/n7KzvsN2lC+DmJqlIemaPHolAo708PmECMGWKZbWuUItBg8TX8fXXgbVrZVdDORgl3GhFR0fj008/RXR0NJKSknLte2OKGG7I4K5cyd1h+/Fj/XPe3voO2+3aiWv6pA6KIppualvB9OwJLF3KSd/m5MoVsRru8WP95o1kMgzWfkHr6tWrWLp0KSIjI5Geno5+/fph/vz5Jh9siAxCUYDYWBFmoqKAw4dzP1+njn7+jKU1orQkGo1oRFq1KjB4sFgifvWqmFNVvrzs6qgoZs0SwaZNGwYbM1escPPjjz8iMjISu3fvRqdOnTB9+nR07doV1ly9QZYmK0usatIGmgsX9M9pNMALL+g31KtdW1KRJEW/fmLOVI8ewL59YoXb5s2cu2Hq7t0DvvtOHE+YILUUenbFXgpeuXJl9O3bF16FdBAeNWpUqRRnCLwsRSX24EHuDtu3bumfs7MT+86EhADduonLT2TZTp8Wc6ri48UGixs3Ai1byq6KCvLll6KlRr16wMmTXKFoggw258bf3x+ap3zBNRoNLl68WNSXNDqGGyqW27fFktCoKNFh+/59/XNubmIZcEiI2Cm4bFlJRZLJunFDrH47eFDMr1q6VGz+R6YlI0NcTkxMFJOJBw6UXRHlw2BzbuLj4596ztWrV4vzkkSmJz5e379pzx5xCUqrUiX9/JnWrdlvhgrn5SWW//ftK/49vfmm+PfFDtOmZeVKEWwqVgTeekt2NVQKSjShOD/Xr1/HF198gYULF+LBgwel9bJEpePxY+DOHXEpKSlJ3PI7vnIl74Z6DRroA81zz/GHEhWPo6NYUjxuHDBzprj0cfGi2A/HptS+BVNJZWcDX30ljseMEZeYyewV63/WvXv3EBYWhm3btsHW1hYffPABRowYgc8++wzTpk1DvXr1sHjxYkPVSiQoCpCS8vSgkvN+zoaTT2NlJfoFaScEV6tmqL8JWQpra2DGDHHpIzwcWLBAbOv/44+8nCnbL78A//wDuLoCw4bJroZKSbHCzYcffojo6GgMHDgQW7duxZgxY7B161Y8fPgQW7ZsQZs2bQxVJ6nZw4d5w0hhQSUpCcjMLP77aDSAu7tYllu+PODpmf/x889z6S4ZxqhRgL+/uPSxdSvQqpX44codqeXRNsgcPpzd3VWkWBOKq1Spgu+//x7t27fHxYsXUaNGDYwaNQozZ840YImlixOKDSw7W1z+KU5QSUsr2Xs5OT09qOS8X64cLwOQaTh8WPQvunFDzPP49VegUSPZVVmeffvECjY7OyAuTjRAJZNlsAnF165dQ0BAAACgWrVqcHBwwNChQ0teKZk2RQHS04sXVO7cEQGnuKytnx5Ungwt3PmVzFVgoNgBNzhYzPF68UWx6V/nzrIrsyzauTb9+zPYqEyxwk12djZsc6wOsba2hpOTU6kXRQby+LFY2lzUoJKUJC4ZlYSra/GCipsbJ+qSZfH3FyMHr70mVlS98gowbx7w9tuyK7MM//wjVkUCYrI3qUqxwo2iKAgNDdU1x3z48CGGDx+eJ+CsX7++9Cqk/CmKaMpYnKBSnEm1OdnbF3ypJ79jd3euOCAqCjc3Mfdm2DBg2TLRfDMuDvjf/9imw9CmTxffR7t3Fy1SSFWKFW4GPrGxUb9+/Uq1GIumnVRbWDh58rlnmVRblBEV7bGTE0dViAzFzk5sHFetGvDZZ8D//Z8IOEuWAA4OkotTqcREESYBYPx4ubWQQRQr3ERGRhqqDnXJygLu3i16ULl1S8xtKQln56KPqGgn1bIXGJFp0WiATz8Vl6qGDQPWrBF7LkVFceWeIcyZAzx6BLRowZYYKsWlI6UlIUFswX/rlphUW/RFaHo2NsULKh4enFRLpCYDBwJ+fmIezt694ofv5s1AjRqyK1OP1FQxtwlgg0wVY7gpLU5OYoJaTm5uhS9NfvLY1ZWXf4gs3UsviYnGwcHAuXOiw/ymTSLo0LNbuFDMV6xdWzS5JVViuCkt5cqJFQ/aoOLhwb5DRFQyAQFiqXi3bmJPnJdeApYvB3r2lF2ZeXv0SOwUDYi5Npy0rVr8ypYWKyugbVugfn3A25vBhoiejbc3sGuX6CqekQH06iX2ZSnJJW8SVq8Wc5m8vQEuiFE1hhsiIlPl5ASsXy/aNgBijsh775VspaSlUxT9pn2jR4stLki1GG6IiEyZtTUwa5boKK7RAN9+K0ZzUlNlV2Zetm4F/v5brDAdPlx2NWRgDDdEROZg9GgxilOmDLBlC9C6NXD1quyqzIe2QeY774jFHqRqDDdEROYiJETMw6lQAYiJESupTpyQXJQZOHhQfN5sbIDwcNnVkBEw3BARmZPnnxcrqerUEZNjX3wR2LZNdlWmTTvXpk8foFIlubWQUTDcEBGZm6pVxV44bduKuTfBwcCiRbKrMk3nz4vLeQAbZFoQhhsiInNUrpyYJNuvn2j5MmwY8NFHQHa27MpMy9dfi89JcDDQoIHsashIGG6IiMyVvb1oAPnJJ+L+F1+IsJORIbcuU3HzJqDtichWCxaF4YaIyJxpNMDnn4sf4jY2wKpVQIcOwO3bsiuTb+5c4OFDMU+pdWvZ1ZARMdwQEalBaKi4TOXiAuzZI3pRXbgguyp50tOBb74Rx+PHs2+fhWG4ISJSi5dfFt3EK1cGzp4VS8X/+kt2VXIsXgzcuQNUrw706CG7GjIyhhsiIjWpX18sFW/SBEhKEk03162TXZVxZWYC06eL43HjxC7PZFEYboiI1MbHB9i9G3jlFTHnpGdP8cPeUppu/vQTcOkS4OkJDBwouxqSgOGGiEiNnJ2BqCggLEyEmnHjgBEj1N90U1H0rRZGjhTtKsjiMNwQEamVtTUwZ47Y60WjAebNEy0c0tJkV2Y4v/8uWlM4OooO6mSRGG6IiNRMowHGjAHWrgUcHIBffxXLoq9dk12ZYWhbLQwdCnh4yK2FpGG4ISKyBK+9JppHenoCx46JlVQnT8quqnQdOwZs3y5GrMaMkV0NScRwQ0RkKZo3FyupatcGLl8WTTd//112VaVHO2rTuzfg7y+1FJKL4YaIyJJUqyaabrZuDaSkAF26iD1hzF1cHPDjj+J4/Hi5tZB0DDdERJbG3R3Ytg3o00esnhoyBPjPf8x7qfiMGaKBaIcOQOPGsqshyRhuiIgskb09sGIF8PHH4v7kyebbdPP2beD778UxG2QSGG6IiCyXRgP8978iGNjYAD/8AHTsKNoWmJN584D794HnnhMtKMjiMdwQEVm6wYOBzZtF083oaNF08+JF2VUVzYMHwOzZ4njCBDbIJAAMN0REBIi5Kn/+Cfj5AWfOiKXiBw7IrurpliwRPbT8/YE33pBdDZkIhhsiIhIaNBBLxZ97Drh1C2jbFli/XnZVBcvK0jfIjIgQl9aIwHBDREQ5+fqKS1Ndu4qmm2+8IVYimeJKqg0bgAsXxOqvwYNlV0MmhOGGiIhy0zbdfPddEWoiIoBRo8RIianI2SBzxAjAyUluPWRSGG6IiCgvGxvgm2+AadPE/blzgR49gPR0uXVp7d4NHDok+mWNGCG7GjIxDDdERJQ/jQYYOxb46ScRIn7+GWjTBkhMlF2ZftRm0CDRL4soB4YbIiIq3BtvADt3AuXLA0eOiJVUp07Jq+fkSWDLFsDKSlwyI3oCww0RET1dUJBYSVWrFpCQIPbC2bFDTi3aS2Wvvw7UqCGnBjJpDDdERFQ01auLppsvviiabnbuLPaZMabLl8VOygAbZFKBGG6IiKjoPDyA7duBN98UTTcHDQI+/dR4S8VnzhTv264d0KyZcd6TzA7DDRERFY+DA7ByJfDhh+L+pEnAwIHAo0eGfd+7d4EFC8QxR22oEAw3RERUfFZWwP/+ByxcCFhbA8uXA506iQBiKN9+C6SlAfXri0tiRAVguCEiopIbOhT49VegbFlg1y4x0TgurvTf5+FDNsikImO4ISKiZ9Opk2i6WakS8M8/Yqn4wYOl+x4rVgDXr4vGnm++WbqvTarDcENERM+uYUOxVLxxY+DmTdF0MyqqdF47Oxv46itxPGYMYGtbOq9LqsVwQ0REpaNiRdF0s0sX4MED4LXXgFmznv11N20Czp4FXF3FZTCip2C4ISKi0lO2rAgj77wjloeHhwOjRz9b001tq4X33hOvT/QUDDdERFS6bGyA+fP1oWT2bDGKU5Kmm3v3An/9BdjZic7kREXAcENERKVPoxF70fz4I2BvL0Zz2rYVk4KLQxuQBg4EvL1LvUxSJ4YbIiIynJ49RdNNDw/g8GGxkio2tmgfe/q0CEXa7uRERcRwQ0REhtWihVhJVaMGcOmSuL9z59M/Ttsgs3t3oHZtw9ZIqsJwQ0REhlejhpg707IlkJwsdhhetqzg869dE7seA2LTPqJiYLghIiLjKF8e+P13oHdv4PFjMY/m88/zb7o5e7Y458UXgaAg49dKZo3hhoiIjMfBAfjhB+CDD8T9zz4DQkNzN91MSRGrrQCO2lCJMNwQEZFxWVkBU6YA330nmm4uWyYuU927J55fsEAEnLp1ga5dpZZK5onhhoiI5Hj7beCXXwBnZ+CPP8R8nLNngRkzxPPjxokgRFRMUv/VREdHo1u3bvD19YVGo0FUEfqQ7N69G02bNoWDgwOqVauGb7/91vCFEhGRYXTuLJpuVqwolog3bCgmE/v4AH37yq6OzJTUcJOeno5GjRph7ty5RTo/Li4OwcHBaNWqFY4dO4YPP/wQo0aNwrp16wxcKRERGUyjRmKpeMOGQEaGeCw8XGz+R1QCGkXJb5q68Wk0GmzYsAEhISEFnvP+++9j06ZNOH36tO6x4cOH4/jx4/jrr7+K9D4pKSlwdXVFcnIyXFxcnrVsIiIqLSkpon/U9evA+vUAv0dTDsX5+W1jpJpKxV9//YWOHTvmeqxTp074/vvv8fjxY9ja2ub5mIyMDGRofxOA+OQQEZEJcnEBVqyQXQWpgFnN1Lp+/Tq8vLxyPebl5YXMzEwkJSXl+zFTpkyBq6ur7ubn52eMUomIiEgSswo3gLh8lZP2qtqTj2tNnDgRycnJutvly5cNXiMRERHJY1aXpby9vXH9iY6yN2/ehI2NDTw8PPL9GHt7e9hzUhoREZHFMKuRm6CgIGzfvj3XY9u2bUNgYGC+822IiIjI8kgNN2lpaYiJiUFMTAwAsdQ7JiYGCQkJAMQlpQEDBujOHz58OC5duoSIiAicPn0aixcvxvfff49x48bJKJ+IiIhMkNTLUocPH0a7du109yMiIgAAAwcOxJIlS5CYmKgLOgBQtWpVbN68GWPGjME333wDX19fzJ49G6+//rrRayciIiLTZDL73BgL97khIiIyP8X5+W1Wc26IiIiInobhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGmlB0+DNy7J7sKIiIiy2UjuwA1efgQaN4cyM4GfH2BevXy3lxcZFdJRESkbgw3pejaNaBiReDyZXF87Rqwfbv++X79gOXLxXFmpjiuVw8ICACcneXUTEREpDYMN6WoWjUgIQFITgZiY4FTp3Lf6tfXn3v+PDB4sP6+v3/uEZ6WLYHq1Y3+VyAiIjJ7GkVRFNlFGFNKSgpcXV2RnJwMFyNfI8rOBqz+neV0/DgQESFCz40bec/97DPg00/FcWIiMGeOPvjUqQM4OBitbCIiIumK8/ObIzdGZJVj+najRsCOHeL49m0Rcv7+Wz/KExioP/foUWDKlNyvU726Puz07Clej4iIiDhyI7ucIjl6FFi4UB987tzJ/fyKFUDfvuJ4/35g2rTcl7hq1QJsbY1fNxERUWnhyI3KNGkCzJ8vjhVFXMbKOcrTrJn+3AMHgHXrxE3L1lYEnHr1gIkTgcaNjVo+ERGRUXHkRmX+/hvYti33ROa0NP3zf/0FvPCCOF68GJg5U4Se+vX1Iz3VqgHW1lLKJyIiyhdHbixY/fq5V2Upiliarp3TU6+e/rljx4CTJ8UtJwcHMWl51SrxJwDcvy8et+K2j0RkAGlp4ubtLbsSUgOO3Fiwq1dFwMk5mfn0abEZIQDcugWULy+Ox40Tl8bq1s27MWHlygw9RJRXZiaQmgqUK6d/bNo04NIl4Pp1cUtMFH+mp4tNUPfv1587erT4paplS6BFC/33I7JMHLmhIqlYUdxeeUX/WFYWEBcHnDmT+xvJP/+I0ZsjR8QtJ2dn4OJFwNNT3D9/HrC3BypVAjQaw/89iMh4FEX8AlSmjP6x+fOB+Hh9YNGGlqQkMSfwwAH9ufPmie8x+UlO1h8/fiwWUjx4oH+sTh3gxRdF2GnVinuBUcE4ckNFkpkJXLiQd2PCM2cAR0fg7l19kAkJATZuFK0m8mtB4ePD0ENkarKycs+1W7o0/xGW69eBhg1zB5bq1cUvOPnx988dZv73P/GLkre3uPn46I9z7tT+8CGwZg2wdy/w559iVDmn4GDg11/1948cARo0AOzsSvwpIBNXnJ/fDDf0TB4/Fpe3/P31j3XtKiY1Z2bmPd/RUQxTay9jbd0qVnPVqwd4eTH0EBnS2rUisOQMKtrgUr06cPCg/twaNcQvNPnx8xO7sWt98on4f60NKTlDi4dH6SxQuH0b2LdPhJ29e8UvUWPHiueuXBE1OTiIS1stW4oRnqAgwM3t2d+bTAPDTSEYbozj0SPg7Nm8Iz1ubrmvqTdoIOb7AIC7e+5VWw0biqFnIirYr7+KoPHk6Mr16+LS8L59+nNr1hSXjfNTqZJYfKD1/vtiRDbnyIr25uUlflExFXv2AD16iACUk0Yjvpd89BHw5ptyaqPSw3BTCIYbuXK2oFAU8Q3n6FHxG+KT/xLr1dMHHwCYOjX3pS53d+PVTWRMO3eKoJHfJSEfH+CPP/TnFhZYKlYUoxpa4eFiocCTgSXnKIu5UhRxmfzPP/WXsrSfl1Wr9OHm0CHgq6/0c3caNQJsOPvULDDcFILhxjQ9eCAmLedcuVW9utiHBxChqGxZca1ey8dHH3RefBF44w0ppRMVyYEDuQNLztDi6Sku0WrVqgWcO5f/6/j6ikvBWu++K17jyfkr2vt+fob9e5myGzdE0GnVSr/g4csvgQ8+0J/j5CT2/tJeymrZ0rRGpUiP4aYQDDfm6f590UhUe3kr5/V+AOjeHYiKEseKArz2GlC1qj78BASIUR+i0nTyZMGBxd1dTKzXql1bXKrNj48PcO2a/v6QIWLEJb9Jtz4+4rWoZE6cAH7+WYSefftyr9ACxGXz5s3F8aVLYr5QpUrGr5PyYrgpBMONOqSmArGx+rDTsCEwcKB47urV/L8Z+fmJOT2vvy5+eBDl5/x58W8ov0m3rq7Ajz/qz61TR1wKyY+3t/gYrX79xHLp/C4H+fiINitkXNnZ4vuH9lLWkSPA8eP6FVfDhwPffSf28tKO6rRsKb6PcBd342O4KQTDjfrduydWheTsv5Xzh8zYsWIjMUC/D4e2BUVAgLj8ZWUlbrVri0sEgAhUf/0lHtdo9Odoj/38gCpVxLkPH4r3z/l8zo9xd9fvxJqZKX5DLOhcR0fxQxUQo1L37uV/rkYj5g5w/kBe166JW36Tbp2cgGXL9OfWrSsukebHy0t8jNYbb4gl0AUFlhdfNOzfiwzrzTeBn34SISgnFxexqWBUlNjTi4yD4aYQDDeW6c4d/UhPo0b6/lq7dwNt2xb8cf/9L/Dxx+L4+PHCm45+8AEwZYo4Pn9eTPQsyMiRwOzZ4vjaNTHxsyBDhgCLFonj5OTCl7a++aaYPAmIfUtsbEToyS8IvfKK+Mat5e0tlvbnF95at9a/LgA0bSpqeTLgaTTic7Rihf7c4GAxiTW/c2vUACIj9ecOHixGTfKrwddX30AWEJ/v+Pi8r5uZKQLLggX6cwMC8u6TolWhgpibofXqq2I0Jr/5Kz4+QMeOBX/+SX1SU8V8Ke0k5f37RZuIGjVyz4sKDxf//rSjO2wjUfq4QzHRE9zdxW/RT/4m3bQpsGuXfiLzmTNi1CU7W4yS5AwdDg7i8pei6J/PztYf59zR2dpajOQUdG7OzcoAcf/Jc7THOVtbPO1XkZz7BGl/21QU/evl9OhR7vu3b+e/NxEgRrhyunAh71wFrSe/58TE5B45yyk1Nff9PXsKXvlTo0bu+1u3isCZH0/P3OHGzw9IScl/WbOvb+6P3bQp/9cky1S2LNC+vbgB4v/IiRO5l51nZgLffy9Cz4wZ4rHq1fWXslq35jwpY+PIDZEZURTxjfTJ0KT908ZGv9JDUcSISUHnlikjRi20zpzJG660fzo75x6JOnhQ1JHfuS4uQGCg/twdO8RquPzCm6sr0KGD/tyNG0UIye9cFxegd2/9uatW5f77ac+1shKXj/r2zf154waRZCiPHolRUO3ozt9/5/5FpEMHsbGp1qFDYo8vBwfj12rOeFmqEAw3RERkSPfuictX2onKXboAEyaI527cECOGdnbilwDt6A4bgz4dw00hGG6IiEiW/ftF64ic87y06tQBPvwQ6N/f6GWZheL8/LYq9FkiIiIqNS+8IOagnTsHLFkCDBsmVugBeVfpHTsm9uyaPl1Man5ynhwVTHq4mTdvHqpWrQoHBwc0bdoUe/bsKfT8lStXolGjRnB0dISPjw8GDRqE2082FCEiIjJR2pWCAweKie+xsWLS/qZNQKdO+vN27gQ2bADGjROhyNVVrO786CNg82YxgZnyJ/Wy1Jo1a9C/f3/MmzcPLVu2xHfffYdFixYhNjYWlStXznP+n3/+iTZt2mDGjBno1q0brl69iuHDh6NmzZrYsGFDkd6Tl6WIiMgcxMYCv/yi74T+5O/x0dH65sLx8eLPKlXUO3nebObcNG/eHE2aNMH8HJtX1K1bFyEhIZii3TAkh2nTpmH+/Pm4cOGC7rE5c+Zg6tSpuJyznW0OGRkZyMjI0N1PSUmBn58fww0REZmNJxuDHjggdlQuU0Y8P2IE8M03YmuDnH2y1NQY1Czm3Dx69AhHjhxBxyd2xOrYsSP27duX78e0aNECV65cwebNm6EoCm7cuIG1a9eia9euBb7PlClT4Orqqrv5WXIXOSIiMksajZhwPHSo2PgyNlYfbACxZ5SNjdgU9KefgNGjxWosNzexR0/OpsOWQFq4SUpKQlZWFry8vHI97uXlhes59zfPoUWLFli5ciV69+4NOzs7eHt7w83NDXPmzCnwfSZOnIjk5GTdraARHiIiInO1dKnYWPOPP4DJk8Xyc1dXID1dbIyZs9P5mDFil/Q1a0SDVjWSPlileeLioKIoeR7Tio2NxahRo/DJJ5+gU6dOSExMxPjx4zF8+HB8//33+X6Mvb097Nn8g4iIVM7RUUw41raU0TYGzbnsPDtbrNK6dw+YO1c8VqWK/lJW69ai1565kxZuypcvD2tr6zyjNDdv3swzmqM1ZcoUtGzZEuPHjwcANGzYEE5OTmjVqhUmT54MHx8fg9dNRERkDqysxE7IDRroH8vKEp3OtXN3YmJE495Ll4AffhDB6I8/9Ofv3y/azuQc+TEH0sKNnZ0dmjZtiu3bt6NHjx66x7dv347u3bvn+zH379+HzRMzo6z/7TtvYXsREhERFZutLdCrl7gBeRuDvvSS/tw7d4CgIDGXp0kT/STlli1FixNTZhJLwb/99lsEBQVhwYIFWLhwIU6dOoUqVapg4sSJuHr1KpYtWwYAWLJkCYYNG4bZs2frLkuFh4fDysoKBw4cKNJ7cik4ERHR0x09Crz6KnD1at7natQAJk4EBg82Xj1m0xW8d+/euH37NiZNmoTExETUr18fmzdvRpUqVQAAiYmJSEhI0J0fGhqK1NRUzJ07F2PHjoWbmxteeuklfPnll7L+CkRERKrUpAlw+TKQkKC/jLV3L3DypJiknNPJk6J1hHZ0JygI+PfCihTsLUVERERFpm0M2rixaAIKAHPmAKNGieOyZYG7d0s/3JjNyA0RERGZFzc3oHPn3I916gR8/bUY4SlTRu6oDcCRG9nlEBERURGYxQ7FRERERIbAcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqYiO7AGNTFAWAaJ1ORERE5kH7c1v7c7wwFhduUlNTAQB+fn6SKyEiIqLiSk1Nhaura6HnaJSiRCAVyc7OxrVr11C2bFloNJpSfe2UlBT4+fnh8uXLcHFxKdXXJuPg19C88etn/vg1NH+G+hoqioLU1FT4+vrCyqrwWTUWN3JjZWWFSpUqGfQ9XFxc+J/SzPFraN749TN//BqaP0N8DZ82YqPFCcVERESkKgw3REREpCoMN6XI3t4en376Kezt7WWXQiXEr6F549fP/PFraP5M4WtocROKiYiISN04ckNERESqwnBDREREqsJwQ0RERKrCcENERESqwnBTSubNm4eqVavCwcEBTZs2xZ49e2SXRMUQHR2Nbt26wdfXFxqNBlFRUbJLomKYMmUKmjVrhrJly6JChQoICQnBmTNnZJdFxTB//nw0bNhQt/FbUFAQtmzZIrssKqEpU6ZAo9EgPDxcyvsz3JSCNWvWIDw8HB999BGOHTuGVq1aoUuXLkhISJBdGhVReno6GjVqhLlz58ouhUpg9+7dCAsLw/79+7F9+3ZkZmaiY8eOSE9Pl10aFVGlSpXwf//3fzh8+DAOHz6Ml156Cd27d8epU6dkl0bFdOjQISxYsAANGzaUVgOXgpeC5s2bo0mTJpg/f77usbp16yIkJARTpkyRWBmVhEajwYYNGxASEiK7FCqhW7duoUKFCti9ezdat24tuxwqIXd3d3z11VcYMmSI7FKoiNLS0tCkSRPMmzcPkydPRuPGjTFz5kyj18GRm2f06NEjHDlyBB07dsz1eMeOHbFv3z5JVRFZtuTkZADihyOZn6ysLKxevRrp6ekICgqSXQ4VQ1hYGLp27Yr27dtLrcPiGmeWtqSkJGRlZcHLyyvX415eXrh+/bqkqogsl6IoiIiIwIsvvoj69evLLoeK4eTJkwgKCsLDhw/h7OyMDRs2ICAgQHZZVESrV6/G0aNHcejQIdmlMNyUFo1Gk+u+oih5HiMiwxsxYgROnDiBP//8U3YpVEy1a9dGTEwM7t27h3Xr1mHgwIHYvXs3A44ZuHz5MkaPHo1t27bBwcFBdjkMN8+qfPnysLa2zjNKc/PmzTyjOURkWCNHjsSmTZsQHR2NSpUqyS6HisnOzg41atQAAAQGBuLQoUOYNWsWvvvuO8mV0dMcOXIEN2/eRNOmTXWPZWVlITo6GnPnzkVGRgasra2NVg/n3DwjOzs7NG3aFNu3b8/1+Pbt29GiRQtJVRFZFkVRMGLECKxfvx47d+5E1apVZZdEpUBRFGRkZMgug4rg5ZdfxsmTJxETE6O7BQYGom/fvoiJiTFqsAE4clMqIiIi0L9/fwQGBiIoKAgLFixAQkIChg8fLrs0KqK0tDScP39edz8uLg4xMTFwd3dH5cqVJVZGRREWFoYffvgBGzduRNmyZXUjqa6urihTpozk6qgoPvzwQ3Tp0gV+fn5ITU3F6tWrsWvXLmzdulV2aVQEZcuWzTPHzcnJCR4eHlLmvjHclILevXvj9u3bmDRpEhITE1G/fn1s3rwZVapUkV0aFdHhw4fRrl073f2IiAgAwMCBA7FkyRJJVVFRabdhaNu2ba7HIyMjERoaavyCqNhu3LiB/v37IzExEa6urmjYsCG2bt2KDh06yC6NzBD3uSEiIiJV4ZwbIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiUp3Q0FCEhITILoOIJGG4IaISCQ0NhUajyXPr3Lmz7NIwa9Ysk2mbodFoEBUVJbsMIovC3lJEVGKdO3dGZGRkrsfs7e0lVQNkZWVBo9HA1dVVWg1EJB9HboioxOzt7eHt7Z3rVq5cOezatQt2dnbYs2eP7tzp06ejfPnySExMBCCaXI4YMQIjRoyAm5sbPDw88PHHHyNnu7tHjx5hwoQJqFixIpycnNC8eXPs2rVL9/ySJUvg5uaGX375BQEBAbC3t8elS5fyXJZq27YtRo4cifDwcJQrVw5eXl5YsGAB0tPTMWjQIJQtWxbVq1fHli1bcv39YmNjERwcDGdnZ3h5eaF///5ISkrK9bqjRo3ChAkT4O7uDm9vb3z22We65/39/QEAPXr0gEaj0d0nIsNiuCGiUte2bVuEh4ejf//+SE5OxvHjx/HRRx9h4cKF8PHx0Z23dOlS2NjY4MCBA5g9ezZmzJiBRYsW6Z4fNGgQ9u7di9WrV+PEiRPo2bMnOnfujHPnzunOuX//PqZMmYJFixbh1KlTqFChQr41LV26FOXLl8fBgwcxcuRIvPvuu+jZsydatGiBo0ePolOnTujfvz/u378PAEhMTESbNm3QuHFjHD58GFu3bsWNGzfQq1evPK/r5OSEAwcOYOrUqZg0aRK2b98OADh06BAA0Z08MTFRd5+IDEwhIiqBgQMHKtbW1oqTk1Ou26RJkxRFUZSMjAzlueeeU3r16qXUq1dPGTp0aK6Pb9OmjVK3bl0lOztb99j777+v1K1bV1EURTl//ryi0WiUq1ev5vq4l19+WZk4caKiKIoSGRmpAFBiYmLy1Na9e/dc7/Xiiy/q7mdmZipOTk5K//79dY8lJiYqAJS//vpLURRF+c9//qN07Ngx1+tevnxZAaCcOXMm39dVFEVp1qyZ8v777+vuA1A2bNhQwGeRiAyBc26IqMTatWuH+fPn53rM3d0dAGBnZ4cVK1agYcOGqFKlCmbOnJnn41944QVoNBrd/aCgIEyfPh1ZWVk4evQoFEVBrVq1cn1MRkYGPDw8dPft7OzQsGHDp9aa8xxra2t4eHigQYMGuse8vLwAADdv3gQAHDlyBH/88QecnZ3zvNaFCxd0dT353j4+PrrXICI5GG6IqMScnJxQo0aNAp/ft28fAODOnTu4c+cOnJycivza2dnZsLa2xpEjR2BtbZ3ruZyBo0yZMrkCUkFsbW1z3ddoNLke075Gdna27s9u3brhyy+/zPNaOS+t5fe62tcgIjkYbojIIC5cuIAxY8Zg4cKF+PHHHzFgwADs2LEDVlb6qX779+/P9TH79+9HzZo1YW1tjeeeew5ZWVm4efMmWrVqZezy0aRJE6xbtw7+/v6wsSn5t0pbW1tkZWWVYmVE9DScUExEJZaRkYHr16/nuiUlJSErKwv9+/dHx44dMWjQIERGRuLvv//G9OnTc3385cuXERERgTNnzmDVqlWYM2cORo8eDQCoVasW+vbtiwEDBmD9+vWIi4vDoUOH8OWXX2Lz5s0G/7uFhYXhzp07eOutt3Dw4EFcvHgR27Ztw+DBg4sVVvz9/bFjxw5cv34dd+/eNWDFRKTFkRsiKrGtW7fmukQDALVr10afPn0QHx+Pn3/+GQDg7e2NRYsWoVevXujQoQMaN24MABgwYAAePHiA559/HtbW1hg5ciTefvtt3WtFRkZi8uTJGDt2LK5evQoPDw8EBQUhODjY4H83X19f7N27F++//z46deqEjIwMVKlSBZ07d841+vQ006dPR0REBBYuXIiKFSsiPj7ecEUTEQBAoyg5NpUgIjKStm3bonHjxvlONCYieha8LEVERESqwnBDREREqsLLUkRERKQqHLkhIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlX5fwmGSovDOsy5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -570,6 +1191,13 @@ "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 4f6bb0adb1c1292d3233cbe97ed0584e061b57be Mon Sep 17 00:00:00 2001 From: jannesvaningen <82503135+jannesvaningen@users.noreply.github.com> Date: Wed, 5 Jul 2023 10:06:47 +0100 Subject: [PATCH 05/12] corrected output path models --- workflow/pred_temperature_LSTM.ipynb | 1644 +------------------ workflow/pred_temperature_autoencoder.ipynb | 1120 +------------ 2 files changed, 64 insertions(+), 2700 deletions(-) diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 9b23cc0..ed9acf2 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -73,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -88,31 +88,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='08-01',\n", - " allow_overlap=False,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", - " ]\n", - ")" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check calendar\n", "calendar" @@ -129,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -162,20 +140,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -194,99 +161,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-4-3-2-11
anchor_year
2021[2020-12-01, 2021-01-01)[2021-02-01, 2021-03-01)[2021-04-01, 2021-05-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-12-01, 2020-01-01)[2020-02-01, 2020-03-01)[2020-04-01, 2020-05-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-12-01, 2019-01-01)[2019-02-01, 2019-03-01)[2019-04-01, 2019-05-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "calendar.show()[:3]" ] @@ -301,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -325,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -346,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -364,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -374,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -421,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +335,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -512,19 +389,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pytorch version 2.0.1\n", - "Is CUDA available? False\n", - "Device to be used for computation: cpu\n" - ] - } - ], + "outputs": [], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -544,17 +411,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Calling wandb.login() after wandb.init() has no effect.\n" - ] - } - ], + "outputs": [], "source": [ "# define hyperparameters and the \n", "hyperparameters = dict(\n", @@ -592,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -613,45 +472,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model details:\n", - " LSTM(\n", - " (lstm): LSTM(65, 130, num_layers=2, batch_first=True, dropout=0.1)\n", - " (linear): Linear(in_features=130, out_features=1, bias=True)\n", - ")\n", - "Optimizer details:\n", - " Adam (\n", - "Parameter Group 0\n", - " amsgrad: False\n", - " betas: (0.9, 0.999)\n", - " capturable: False\n", - " differentiable: False\n", - " eps: 1e-08\n", - " foreach: None\n", - " fused: None\n", - " lr: 0.02\n", - " maximize: False\n", - " weight_decay: 0\n", - ")\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Initialize model\n", "model = LSTM(input_dim = config[\"input_dim\"],\n", @@ -672,17 +495,9 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "238811\n" - ] - } - ], + "outputs": [], "source": [ "# display the total number of parameters\n", "utils.total_num_param(model)\n", @@ -700,1367 +515,9 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 500.860840\n", - "Epoch : 0 [4/36(11%)]\tLoss: 477.839172\n", - "Epoch : 0 [8/36(22%)]\tLoss: 464.381836\n", - "Epoch : 0 [12/36(33%)]\tLoss: 399.421661\n", - "Epoch : 0 [16/36(44%)]\tLoss: 280.344818\n", - "Epoch : 0 [20/36(56%)]\tLoss: 145.664886\n", - "Epoch : 0 [24/36(67%)]\tLoss: 86.540543\n", - "Epoch : 0 [28/36(78%)]\tLoss: 140.879028\n", - "Epoch : 0 [32/36(89%)]\tLoss: 12.666570\n", - "Epoch : 1 [0/36(0%)]\tLoss: 0.944404\n", - "Epoch : 1 [4/36(11%)]\tLoss: 3.015983\n", - "Epoch : 1 [8/36(22%)]\tLoss: 6.834392\n", - "Epoch : 1 [12/36(33%)]\tLoss: 18.831701\n", - "Epoch : 1 [16/36(44%)]\tLoss: 20.399771\n", - "Epoch : 1 [20/36(56%)]\tLoss: 22.759270\n", - "Epoch : 1 [24/36(67%)]\tLoss: 24.548332\n", - "Epoch : 1 [28/36(78%)]\tLoss: 23.996525\n", - "Epoch : 1 [32/36(89%)]\tLoss: 18.059378\n", - "Epoch : 2 [0/36(0%)]\tLoss: 15.301807\n", - "Epoch : 2 [4/36(11%)]\tLoss: 9.922405\n", - "Epoch : 2 [8/36(22%)]\tLoss: 2.112532\n", - "Epoch : 2 [12/36(33%)]\tLoss: 1.550667\n", - "Epoch : 2 [16/36(44%)]\tLoss: 0.851201\n", - "Epoch : 2 [20/36(56%)]\tLoss: 3.316346\n", - "Epoch : 2 [24/36(67%)]\tLoss: 3.919723\n", - "Epoch : 2 [28/36(78%)]\tLoss: 7.788068\n", - "Epoch : 2 [32/36(89%)]\tLoss: 10.701154\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.599494\n", - "Epoch : 3 [4/36(11%)]\tLoss: 3.408816\n", - "Epoch : 3 [8/36(22%)]\tLoss: 4.605702\n", - "Epoch : 3 [12/36(33%)]\tLoss: 2.205826\n", - "Epoch : 3 [16/36(44%)]\tLoss: 3.247538\n", - "Epoch : 3 [20/36(56%)]\tLoss: 3.618429\n", - "Epoch : 3 [24/36(67%)]\tLoss: 1.531296\n", - "Epoch : 3 [28/36(78%)]\tLoss: 1.525063\n", - "Epoch : 3 [32/36(89%)]\tLoss: 1.825021\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.858643\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.924086\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.482357\n", - "Epoch : 4 [12/36(33%)]\tLoss: 2.330732\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.636583\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.956930\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.582981\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.094843\n", - "Epoch : 4 [32/36(89%)]\tLoss: 1.484561\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.865313\n", - "Epoch : 5 [4/36(11%)]\tLoss: 0.867451\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.430974\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.408260\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.439194\n", - "Epoch : 5 [20/36(56%)]\tLoss: 3.110361\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.991286\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.625073\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.144275\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.393740\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.919644\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.335178\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.496095\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.760814\n", - "Epoch : 6 [20/36(56%)]\tLoss: 1.657203\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.203643\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.655438\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.815278\n", - "Epoch : 7 [0/36(0%)]\tLoss: 1.218873\n", - "Epoch : 7 [4/36(11%)]\tLoss: 1.476901\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.237620\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.570176\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.899689\n", - "Epoch : 7 [20/36(56%)]\tLoss: 2.625440\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.250027\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.412886\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.666830\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.347323\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.787471\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.337384\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.327651\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.936593\n", - "Epoch : 8 [20/36(56%)]\tLoss: 3.396663\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.145461\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.375290\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.565472\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.880185\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.419756\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.375021\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.375262\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.688992\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.736244\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.043986\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.460087\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.673829\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.447048\n", - "Epoch : 10 [4/36(11%)]\tLoss: 1.050086\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.298299\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.357923\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.833184\n", - "Epoch : 10 [20/36(56%)]\tLoss: 1.749276\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.131220\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.379357\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.535813\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.528802\n", - "Epoch : 11 [4/36(11%)]\tLoss: 1.119784\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.335772\n", - "Epoch : 11 [12/36(33%)]\tLoss: 1.854423\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.685598\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.536858\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.108431\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.378405\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.633419\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.463714\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.958314\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.263348\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.445057\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.840532\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.928936\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.127887\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.336379\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.673163\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.285418\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.735326\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.304413\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.460694\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.716832\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.584652\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.900978\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.052345\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.473952\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.401452\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.779314\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.255852\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.481564\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.718846\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.582070\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.034369\n", - "Epoch : 14 [28/36(78%)]\tLoss: 2.307538\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.218512\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.498505\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.823776\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.184388\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.387301\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.687601\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.483187\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.967374\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.149480\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.458512\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.259234\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.638024\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.233757\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.386188\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.759001\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.478403\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.092772\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.127187\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.972165\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.381718\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.839981\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.229389\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.582390\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.661528\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.354283\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.963398\n", - "Epoch : 17 [28/36(78%)]\tLoss: 0.981779\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.206037\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.252827\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.560113\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.215954\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.410210\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.629857\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.298580\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.928603\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.275650\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.044478\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.321828\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.769126\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.361488\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.448226\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.702904\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.443682\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.778019\n", - "Epoch : 19 [28/36(78%)]\tLoss: 0.976822\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.426180\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.563052\n", - "Epoch : 20 [4/36(11%)]\tLoss: 1.117306\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.261094\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.791802\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.733730\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.545072\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.988078\n", - "Epoch : 20 [28/36(78%)]\tLoss: 0.863972\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.182548\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.222809\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.542701\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.082833\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.443004\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.964322\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.276551\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.939358\n", - "Epoch : 21 [28/36(78%)]\tLoss: 0.828233\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.975860\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.300205\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.581134\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.154799\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.530701\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.735520\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.293580\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.917181\n", - "Epoch : 22 [28/36(78%)]\tLoss: 0.889105\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.058415\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.209867\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.673189\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.118295\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.637805\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.630513\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.268479\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.701224\n", - "Epoch : 23 [28/36(78%)]\tLoss: 0.973926\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.876100\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.193538\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.590081\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.072664\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.587072\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.760452\n", - "Epoch : 24 [20/36(56%)]\tLoss: 1.060536\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.604076\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.030291\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.895506\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.294041\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.618613\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.080192\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.513977\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.584792\n", - "Epoch : 25 [20/36(56%)]\tLoss: 1.439098\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.571706\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.785756\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.927680\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.264151\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.368093\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.056945\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.575626\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.505951\n", - "Epoch : 26 [20/36(56%)]\tLoss: 1.131324\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.578289\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.313519\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.724932\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.078099\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.633142\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.058193\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.566530\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.407008\n", - "Epoch : 27 [20/36(56%)]\tLoss: 1.002506\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.408994\n", - "Epoch : 27 [28/36(78%)]\tLoss: 0.404211\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.712494\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.174198\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.632870\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.113723\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.630371\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.615283\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.793090\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.406066\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.026976\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.887841\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.350603\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.556854\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.072004\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.357420\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.470172\n", - "Epoch : 29 [20/36(56%)]\tLoss: 0.777056\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.475010\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.961690\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.677875\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.225708\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.442096\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.033086\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.480233\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.573499\n", - "Epoch : 30 [20/36(56%)]\tLoss: 1.168702\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.531130\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.720820\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.852831\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.194140\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.554958\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.115222\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.339805\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.261381\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.667730\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.280039\n", - "Epoch : 31 [28/36(78%)]\tLoss: 0.763842\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.526165\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.134100\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.290026\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.041982\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.167240\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.433164\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.878319\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.329550\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.757582\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.516384\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.499511\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.290761\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.156904\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.078659\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.343556\n", - "Epoch : 33 [20/36(56%)]\tLoss: 0.908608\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.342951\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.973837\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.413990\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.276595\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.574566\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.268064\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.555344\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.232609\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.584455\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.259717\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.483040\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.624788\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.279082\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.598293\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.230585\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.314571\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.376442\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.604526\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.406086\n", - "Epoch : 35 [28/36(78%)]\tLoss: 0.582443\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.137094\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.297683\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.544419\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.122774\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.063793\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.335071\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.850576\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.314182\n", - "Epoch : 36 [28/36(78%)]\tLoss: 0.610300\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.426081\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.283758\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.597839\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.347411\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.360243\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.253629\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.875890\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.363222\n", - "Epoch : 37 [28/36(78%)]\tLoss: 0.587339\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.625993\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.215669\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.674504\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.352757\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.285226\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.119057\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.548397\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.275429\n", - "Epoch : 38 [28/36(78%)]\tLoss: 0.574433\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.408177\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.182965\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.629097\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.248010\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.249907\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.079155\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.305160\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.188616\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.556768\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.146764\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.385527\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.518688\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.203476\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.082750\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.225580\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.426043\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.114062\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.249038\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.190908\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.299140\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.711933\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.097865\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.165601\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.160314\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.414465\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.087012\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.339995\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.480355\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.064779\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.441638\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.178018\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.114896\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.089521\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.281482\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.158494\n", - "Epoch : 42 [28/36(78%)]\tLoss: 0.726421\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.309361\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.196127\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.377956\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.263749\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.408509\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.111578\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.226838\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.213730\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.470371\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.190240\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.193962\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.434585\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.106904\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.043907\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.105293\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.261842\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.034304\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.279937\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.070193\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.133028\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.544071\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.131022\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.258673\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.048276\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.173829\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.275162\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.367442\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.265192\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.218713\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.199533\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.073716\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.081429\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.141893\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.166503\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.442261\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.245091\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.402911\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.395589\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.284988\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.095214\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.046279\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.146034\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.246362\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.278639\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.781215\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.064287\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.153025\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.432416\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.466750\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.337885\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.068469\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.213242\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.182356\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.248251\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.125451\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.342938\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.446506\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.024045\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.057960\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.212521\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.523738\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.161227\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.463970\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.135510\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.568550\n", - "Epoch : 50 [4/36(11%)]\tLoss: 1.028290\n", - "Epoch : 50 [8/36(22%)]\tLoss: 1.188928\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.550372\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.512421\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.577856\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.509235\n", - "Epoch : 50 [28/36(78%)]\tLoss: 1.436980\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.160355\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.098090\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.532154\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.433812\n", - "Epoch : 51 [12/36(33%)]\tLoss: 1.237373\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.394617\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.749716\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.245393\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.507434\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.340950\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.314759\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.299164\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.262064\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.049726\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.141047\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.384076\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.331887\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.199079\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.176853\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.155389\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.413526\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.187015\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.098113\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.182126\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.520318\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.101018\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.686155\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.129516\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.138720\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.316416\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.264260\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.161875\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.024347\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.256596\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.080267\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.637874\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.143881\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.133503\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.229823\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.134869\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.372085\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.076122\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.385757\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.108179\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.488425\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.112177\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.224484\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.279423\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.057556\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.107512\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.127841\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.331097\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.189645\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.428045\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.382838\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.120127\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.199900\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.263710\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.164984\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.081176\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.109742\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.234365\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.633916\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.179006\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.092996\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.139876\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.443379\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.547626\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.078435\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.226548\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.107735\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.502965\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.040990\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.314157\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.522091\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.149853\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.040139\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.267455\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.646224\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.217382\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.249962\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.213069\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.329508\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.411712\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.480768\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.643690\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.144981\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.344981\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.442865\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.605961\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.500419\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.194931\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.373719\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.134384\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.456815\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.464827\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.079968\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.073952\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.302188\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.437714\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.326277\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.575967\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.611395\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.271927\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.190941\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.363734\n", - "Epoch : 62 [24/36(67%)]\tLoss: 1.057470\n", - "Epoch : 62 [28/36(78%)]\tLoss: 1.334099\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.224707\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.179490\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.391240\n", - "Epoch : 63 [8/36(22%)]\tLoss: 1.889966\n", - "Epoch : 63 [12/36(33%)]\tLoss: 1.024471\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.311545\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.338649\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.514769\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.896218\n", - "Epoch : 63 [32/36(89%)]\tLoss: 1.089414\n", - "Epoch : 64 [0/36(0%)]\tLoss: 1.178035\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.499411\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.301460\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.366107\n", - "Epoch : 64 [16/36(44%)]\tLoss: 1.737603\n", - "Epoch : 64 [20/36(56%)]\tLoss: 1.805889\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.485195\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.258118\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.434311\n", - "Epoch : 65 [0/36(0%)]\tLoss: 1.165625\n", - "Epoch : 65 [4/36(11%)]\tLoss: 1.262718\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.565953\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.033340\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.451308\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.997573\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.768602\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.513150\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.292876\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.118957\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.669266\n", - "Epoch : 66 [8/36(22%)]\tLoss: 1.338509\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.968214\n", - "Epoch : 66 [16/36(44%)]\tLoss: 1.225478\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.622220\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.470810\n", - "Epoch : 66 [28/36(78%)]\tLoss: 1.679577\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.370471\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.579377\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.207604\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.499888\n", - "Epoch : 67 [12/36(33%)]\tLoss: 1.013703\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.816012\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.648054\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.322765\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.458588\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.494515\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.508316\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.417039\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.451344\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.106820\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.192256\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.254718\n", - "Epoch : 68 [24/36(67%)]\tLoss: 1.072649\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.569110\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.641103\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.167463\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.365789\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.225432\n", - "Epoch : 69 [12/36(33%)]\tLoss: 1.077193\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.366239\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.570696\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.326066\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.196582\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.584756\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.483438\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.375123\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.094979\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.182347\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.498655\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.521900\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.056920\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.189173\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.074874\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.190394\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.293114\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.063283\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.205613\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.115862\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.484622\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.199270\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.373760\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.237012\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.161748\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.456120\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.655245\n", - "Epoch : 72 [12/36(33%)]\tLoss: 1.065901\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.207339\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.406278\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.278442\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.333258\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.948074\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.059752\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.409405\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.304258\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.314302\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.292920\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.113884\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.334983\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.485375\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.158941\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.221994\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.816401\n", - "Epoch : 74 [8/36(22%)]\tLoss: 1.063054\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.184500\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.008759\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.221660\n", - "Epoch : 74 [24/36(67%)]\tLoss: 1.280460\n", - "Epoch : 74 [28/36(78%)]\tLoss: 1.140869\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.101941\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.097112\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.433810\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.818162\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.821689\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.681837\n", - "Epoch : 75 [20/36(56%)]\tLoss: 1.054362\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.542404\n", - "Epoch : 75 [28/36(78%)]\tLoss: 1.184091\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.605567\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.452610\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.440879\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.258427\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.480357\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.926090\n", - "Epoch : 76 [20/36(56%)]\tLoss: 1.594023\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.129018\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.166759\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.184816\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.644465\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.977767\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.417519\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.201883\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.074505\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.947888\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.360324\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.626139\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.430554\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.105573\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.545730\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.331959\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.513456\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.431798\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.012122\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.060838\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.159959\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.738729\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.276722\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.240304\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.164279\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.165455\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.147933\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.110154\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.367041\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.549882\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.063854\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.276717\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.616404\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.711984\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.119255\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.036864\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.077799\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.186021\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.210444\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.211945\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.249476\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.217401\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.284983\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.173308\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.208548\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.428365\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.337867\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.163141\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.318127\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.564679\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.403497\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.127132\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.060567\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.147470\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.589253\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.421062\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.313225\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.054874\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.271022\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.542002\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.204555\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.172720\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.421394\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.309795\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.345415\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.863627\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.734482\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.605330\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.140630\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.181554\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.756425\n", - "Epoch : 84 [16/36(44%)]\tLoss: 1.143771\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.191310\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.563885\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.811510\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.560566\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.541523\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.216021\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.727178\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.166531\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.738909\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.337637\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.941266\n", - "Epoch : 85 [28/36(78%)]\tLoss: 0.901947\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.372386\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.065576\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.502537\n", - "Epoch : 86 [8/36(22%)]\tLoss: 1.465539\n", - "Epoch : 86 [12/36(33%)]\tLoss: 1.028614\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.431644\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.102459\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.904264\n", - "Epoch : 86 [28/36(78%)]\tLoss: 1.708829\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.531543\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.805454\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.209360\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.826339\n", - "Epoch : 87 [12/36(33%)]\tLoss: 1.151666\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.947333\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.692306\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.263987\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.416684\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.873977\n", - "Epoch : 88 [0/36(0%)]\tLoss: 1.077856\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.837554\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.201341\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.174589\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.781271\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.728517\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.428688\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.195198\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.071565\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.447790\n", - "Epoch : 89 [4/36(11%)]\tLoss: 1.107496\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.383333\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.678487\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.219711\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.312943\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.524506\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.952193\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.886434\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.142085\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.176253\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.363338\n", - "Epoch : 90 [12/36(33%)]\tLoss: 1.105825\n", - "Epoch : 90 [16/36(44%)]\tLoss: 2.377274\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.098717\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.472504\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.518504\n", - "Epoch : 90 [32/36(89%)]\tLoss: 1.088914\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.843577\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.188284\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.364709\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.329348\n", - "Epoch : 91 [16/36(44%)]\tLoss: 1.650837\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.434663\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.767158\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.432030\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.298248\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.429765\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.928356\n", - "Epoch : 92 [8/36(22%)]\tLoss: 1.020058\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.393730\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.035774\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.271959\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.791876\n", - "Epoch : 92 [28/36(78%)]\tLoss: 1.328448\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.604653\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.474761\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.195124\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.956944\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.682670\n", - "Epoch : 93 [16/36(44%)]\tLoss: 1.305671\n", - "Epoch : 93 [20/36(56%)]\tLoss: 1.309029\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.357441\n", - "Epoch : 93 [28/36(78%)]\tLoss: 1.022260\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.043851\n", - "Epoch : 94 [0/36(0%)]\tLoss: 1.133552\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.802054\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.105467\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.200004\n", - "Epoch : 94 [16/36(44%)]\tLoss: 1.105936\n", - "Epoch : 94 [20/36(56%)]\tLoss: 1.519822\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.716233\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.176366\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.200508\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.655307\n", - "Epoch : 95 [4/36(11%)]\tLoss: 1.735365\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.525611\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.470507\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.183910\n", - "Epoch : 95 [20/36(56%)]\tLoss: 1.140418\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.632072\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.441525\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.628915\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.237222\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.648184\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.579970\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.725630\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.690693\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.283785\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.038399\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.317967\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.911110\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.244772\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.311646\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.180709\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.237841\n", - "Epoch : 97 [16/36(44%)]\tLoss: 1.056298\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.201424\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.292996\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.018821\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.124307\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.090540\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.381823\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.068015\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.057378\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.166520\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.404581\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.239263\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.299741\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.566988\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.173130\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.133655\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.079841\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.216045\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.234635\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.472832\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.006443\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.218985\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.062840\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.107792\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.401737\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.042291\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.023502\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.081897\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.872333\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.650217\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.215659\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.162739\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.448503\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.843836\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.637038\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.332865\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.055570\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.745925\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.321087\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.453840\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.494792\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.106407\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.196718\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.072037\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.559771\n", - "Epoch : 102 [16/36(44%)]\tLoss: 1.072606\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.341109\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.014837\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.233965\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.791686\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.337990\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.383214\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.537570\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.084588\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.568058\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.587416\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.532690\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.856985\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.196335\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.205731\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.927507\n", - "Epoch : 104 [8/36(22%)]\tLoss: 1.306014\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.421690\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.094655\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.185152\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.532630\n", - "Epoch : 104 [28/36(78%)]\tLoss: 1.739050\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.742943\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.054401\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.369710\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.962089\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.472588\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.408242\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.415114\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.134867\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.516429\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.357109\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.718549\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.439695\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.147124\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.183060\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.379364\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.607036\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.718910\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.139090\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.074936\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.357018\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.716352\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.418437\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.249262\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.041594\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.484962\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.354162\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.752654\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.138215\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.093728\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.334614\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.445030\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.164540\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.187484\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.124085\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.238065\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.317737\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.083018\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.119853\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.119658\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.060120\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.134247\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.177608\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.202611\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.164125\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.291412\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.167749\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.329844\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.231856\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.213018\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.021643\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.136050\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.221435\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.213413\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.247189\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.023532\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.073789\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.234951\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.357967\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.162421\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.035321\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.130215\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.174159\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.545385\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.067373\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.135161\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.119575\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.328709\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.171904\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.105152\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.203513\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.032733\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.277305\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.180942\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.475432\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.228126\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.103369\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.308962\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.143837\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.444018\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.120935\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.176922\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.099692\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.297129\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.341089\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.127577\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.197652\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.056693\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.561460\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.387014\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.459541\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.065399\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.061226\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.361531\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.479696\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.555608\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.168793\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.244743\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.374165\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.152996\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.506132\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.210880\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.142731\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.163577\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.744025\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.390455\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.099765\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.053012\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.061495\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.658155\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.549120\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.153442\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.044534\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.248712\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.525163\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.140304\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.206305\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.195594\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.101538\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.215841\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.585495\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.592127\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.077165\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.023115\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.389115\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.441638\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.335075\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.302933\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.196431\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.262766\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.898415\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.464581\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.586564\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.135919\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.168980\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.852148\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.930194\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.753480\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.368126\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.285928\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.454222\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.376403\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.429101\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.258498\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.184498\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.278598\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.542122\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.731520\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.117994\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.107938\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.111152\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.758449\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.322660\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.267706\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.448966\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.098830\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.174370\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.338684\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.118366\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.190133\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.183156\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.090569\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.113778\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.314737\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.188376\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.207038\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.092399\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.127428\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.643996\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.110745\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.055819\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.618859\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.798681\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.125861\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.170327\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.158975\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.147017\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.231714\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.089886\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.121934\n", - "Epoch : 124 [28/36(78%)]\tLoss: 0.270260\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.387491\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.513300\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.293322\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.149970\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.044250\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.162873\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.274416\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.379834\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.227710\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.049077\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.314464\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.463960\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.778782\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.242091\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.061362\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.145166\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.526843\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.717727\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.262357\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.245165\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.224867\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.597088\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.507917\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.647476\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.270783\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.131347\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.515933\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.410239\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.853796\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.182960\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.103542\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.293587\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.504176\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.468961\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.359279\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.232882\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.108492\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.405741\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.416169\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.175498\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.077775\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.098868\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.529741\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.548258\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.252371\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.032345\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.185783\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.678955\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.544901\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.429187\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.122353\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.245866\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.442313\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.594751\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.750259\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.292294\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.291481\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.623523\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.625046\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.466089\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.182227\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.095898\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.357056\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.580338\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.569618\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.182021\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.032089\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.198717\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.515397\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.389353\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.174077\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.051685\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.258535\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.439473\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.344518\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.236466\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.049458\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.194160\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.245329\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.402822\n", - "Epoch : 133 [28/36(78%)]\tLoss: 0.302380\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.149206\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.175887\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.221232\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.252408\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.092983\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.025850\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.011891\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.237795\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.229526\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.096217\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.145194\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.203207\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.098973\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.215663\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.142871\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.197306\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.224951\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.306632\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.231563\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.204610\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.259171\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.284853\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.396510\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.375887\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.432036\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.063049\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.093386\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.140074\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.289426\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.224624\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.136828\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.102162\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.140717\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.518264\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.202529\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.056113\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.048121\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.127651\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.383020\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.297047\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.243177\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.077452\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.247959\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.155835\n", - "Epoch : 138 [28/36(78%)]\tLoss: 0.465017\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.040198\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.090818\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.353678\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.168241\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.262683\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.235568\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.062148\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.212038\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.128903\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.572803\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.193335\n", - "Epoch : 140 [4/36(11%)]\tLoss: 0.175592\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.114444\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.437122\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.388246\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.059336\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.117234\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.056180\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.133296\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.164787\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.256338\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.095124\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.200029\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.293943\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.116998\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.068067\n", - "Epoch : 141 [28/36(78%)]\tLoss: 0.016696\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.079837\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.088385\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.232792\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.164618\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.098033\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.071874\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.068423\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.132002\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.355601\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.039454\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.126108\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.326522\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.349544\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.174849\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.079940\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.031830\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.146390\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.225435\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.182341\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.105412\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.041248\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.255146\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.176687\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.088770\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.104882\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.043222\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.233147\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.228727\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.143519\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.090624\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.142998\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.133059\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.098169\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.208727\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.108924\n", - "Epoch : 145 [28/36(78%)]\tLoss: 0.045321\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.064496\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.183513\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.192696\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.133563\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.095472\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.139406\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.325611\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.178264\n", - "Epoch : 146 [28/36(78%)]\tLoss: 0.142036\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.066500\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.040962\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.754583\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.381846\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.132955\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.072007\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.387686\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.329752\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.162060\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.071236\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.073229\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.464854\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.613664\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.374067\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.136597\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.306361\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.137563\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.720722\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.687707\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.045067\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.282067\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.441187\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.681002\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.173772\n", - "Epoch : 149 [20/36(56%)]\tLoss: 0.110377\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.210431\n", - "Epoch : 149 [28/36(78%)]\tLoss: 0.387619\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.294078\n", - "--- 0.06244179805119832 minutes ---\n" - ] - } - ], + "outputs": [], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -2121,20 +578,9 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQjUlEQVR4nOzdd3hT5d8G8Dtt6aKT1cEoe5Qty7JBEEGRKYgDBH7iqMhw8qqAiKKiokgVRQRRUUQEQQVkiYqMyhJkCSK77La0hRba8/7x8OQkaZLmpGlOkt6f6+p10pP05EmaNrnP9xkGRVEUEBEREREREZFb+endACIiIiIiIqLSiIGciIiIiIiISAcM5EREREREREQ6YCAnIiIiIiIi0gEDOREREREREZEOGMiJiIiIiIiIdMBATkRERERERKQDBnIiIiIiIiIiHTCQExEREREREemAgZyIiIiIyAt17twZnTt3dvi2jRo1KtkG3VS9enU89NBDbrkvIm/HQE5UisyfPx8GgwEGgwG///57oesVRUHVqlVhMBhw1113GfdnZWVh0qRJaNSoEcqWLYvy5cujWbNmGDNmDE6fPm283eTJk43Ht/aVlpbmlsdJRETkKPne+Oeff+rdlGI7ffo0Jk+ejF27dundFJepXr06DAYDunXrZvX6OXPmGD9nWP4Of//9d/Ts2ROVK1dGcHAwqlWrht69e2PhwoVmt7P32eXRRx8tscdGBAABejeAiNwvODgYCxcuRPv27c32b9y4ESdPnkRQUJBx3/Xr19GxY0ccOHAAw4YNw+jRo5GVlYW///4bCxcuRL9+/RAfH292nA8//BBhYWGF7jcqKqpEHg8REVFp9PPPP5t9f/r0abz88suoXr06mjVrpk+jABw8eBB+fq6r+wUHB2PDhg1IS0tDbGys2XVffvklgoODce3aNbP9ixcvxuDBg40FhOjoaBw9ehS//vor5syZg/vuu8/s9t27d8fQoUML3XfdunVd9jiIrGEgJyqFevXqhcWLF2PmzJkICFD/DSxcuBAtWrTAhQsXjPuWLVuGnTt34ssvvyz05nXt2jXk5eUVOv7AgQNRoUKFknsAREREpVhOTg5CQ0MRGBiod1OsMj2x7wrt2rVDamoqFi1ahDFjxhj3nzx5Er/99hv69euHJUuWmP3M5MmTkZiYiC1bthR6ns6dO1foPurWrYsHHnjApe0mcgS7rBOVQkOGDMHFixexZs0a4768vDx8++23hUL3kSNHAIg3Q0vBwcGIiIgo2cYSERF5gJ07d6Jnz56IiIhAWFgYbrvtNmzZsqXQ7f766y906tQJISEhqFKlCqZOnYp58+bBYDDgv//+M97u+++/x5133on4+HgEBQWhVq1aeOWVV5Cfn292PDn2e/v27ejYsSNCQ0Pxf//3f8br5BjyX375Ba1atQIADB8+3Njlev78+WbH27dvH7p06YLQ0FBUrlwZb775ptn1v/zyCwwGA7755hu8/PLLqFy5MsLDwzFw4EBkZGQgNzcXY8eORaVKlRAWFobhw4cjNzfX7BjWxpCnp6dj3LhxqF69OoKCglClShUMHTrUrAhgS3BwMPr371+oq/lXX32F6Oho9OjRo9DPHDlyBK1atbJ60qJSpUpF3ieRu7BCTlQKVa9eHUlJSfjqq6/Qs2dPAMDKlSuRkZGBe++9FzNnzjTeNiEhAQCwYMECvPjiizAYDEUe/9KlS4X2BQQEsMs6ERF5pb///hsdOnRAREQEnn32WZQpUwYfffQROnfujI0bN6JNmzYAgFOnTqFLly4wGAyYMGECypYti08++cRqxXj+/PkICwvD+PHjERYWhvXr12PixInIzMzE9OnTzW578eJF9OzZE/feey8eeOABxMTEFDpegwYNMGXKFEycOBGjRo1Chw4dAABt27Y13uby5cu444470L9/fwwaNAjffvstnnvuOTRu3Nj4eUCaNm0aQkJC8Pzzz+Pw4cN4//33UaZMGfj5+eHy5cuYPHkytmzZgvnz56NGjRqYOHGizecvKysLHTp0wP79+zFixAjccsstuHDhApYvX46TJ0861Kvuvvvuw+23344jR46gVq1aAETPvoEDB6JMmTKFbp+QkIB169bh5MmTqFKlSpHHv3btmtWTAxERER7bE4F8hEJEpca8efMUAEpqaqoya9YsJTw8XMnJyVEURVHuuecepUuXLoqiKEpCQoJy5513KoqiKDk5OUq9evUUAEpCQoLy0EMPKXPnzlXOnj1b6PiTJk1SAFj9qlevnvseKBERkYNM3xtt6du3rxIYGKgcOXLEuO/06dNKeHi40rFjR+O+0aNHKwaDQdm5c6dx38WLF5Vy5copAJSjR48a98v3X1OPPPKIEhoaqly7ds24r1OnTgoAZfbs2YVu36lTJ6VTp07G71NTUxUAyrx586zeFoCyYMEC477c3FwlNjZWGTBggHHfhg0bFABKo0aNlLy8POP+IUOGKAaDQenZs6fZcZOSkpSEhASzfQkJCcqwYcOM30+cOFEBoHz33XeF2lVQUFBon+Wx7rzzTuXGjRtKbGys8sorryiKoij79u1TACgbN260+jucO3euAkAJDAxUunTporz00kvKb7/9puTn5xe6D1ufXQAoX331ld32ERUXu6wTlVKDBg3C1atX8cMPP+DKlSv44YcfCnVXB4CQkBBs3boVzzzzDABxRn/kyJGIi4vD6NGjC3VTA4AlS5ZgzZo1Zl/z5s0r8cdERETkavn5+fj555/Rt29f1KxZ07g/Li4O9913H37//XdkZmYCAFatWoWkpCSzCdXKlSuH+++/v9BxQ0JCjJevXLmCCxcuoEOHDsjJycGBAwfMbhsUFIThw4cX+7GEhYWZjZMODAxE69at8e+//xa67dChQ80qz23atIGiKBgxYoTZ7dq0aYMTJ07gxo0bNu93yZIlaNq0Kfr161foOkd63gGAv78/Bg0ahK+++gqAmMytatWqxp4AlkaMGIFVq1ahc+fO+P333/HKK6+gQ4cOqFOnDv74449Ct+/Tp0+hzy5r1qxBly5dHGofkbPYZZ2olKpYsSK6deuGhQsXIicnB/n5+Rg4cKDV20ZGRuLNN9/Em2++iWPHjmHdunV46623MGvWLERGRmLq1Klmt+/YsSMndSMiIp9w/vx55OTkoF69eoWua9CgAQoKCnDixAk0bNgQx44dQ1JSUqHb1a5du9C+v//+Gy+++CLWr19vDPRSRkaG2feVK1d2SbfpKlWqFArA0dHR+Ouvvwrdtlq1ambfR0ZGAgCqVq1aaH9BQQEyMjJQvnx5q/d75MgRDBgwoDhNByC6rc+cORO7d+/GwoULce+999oN9D169ECPHj2Qk5OD7du3Y9GiRZg9ezbuuusuHDhwwGwseZUqVWwurUZUklghJyrF7rvvPqxcuRKzZ89Gz549HRrjnZCQgBEjRmDTpk2IiorCl19+WfINJSIi8iHp6eno1KkTdu/ejSlTpmDFihVYs2YN3njjDQBAQUGB2e1Nq+nF4e/vb3W/oigO31bLMVytTZs2qFWrFsaOHYujR49a7dlnTWhoKDp06IBZs2bhxRdfxOXLl7Fy5coSbi2RY1ghJyrF+vXrh0ceeQRbtmzBokWLNP1sdHQ0atWqhb1795ZQ64iIiPRXsWJFhIaG4uDBg4WuO3DgAPz8/IxV44SEBBw+fLjQ7Sz3/fLLL7h48SK+++47dOzY0bj/6NGjxWqro92/3c2VnxeGDBmCqVOnokGDBk6ttd6yZUsAwJkzZ1zSHqLiYoWcqBQLCwvDhx9+iMmTJ6N3795Wb7N7926rs44eO3YM+/bts9qFj4iIyFf4+/vj9ttvx/fff2+2bNnZs2excOFCtG/f3rgEaI8ePbB582bs2rXLeLtLly4V6k0mq8ymVeW8vDx88MEHxWpr2bJlAYgKvCcZMGAAdu/ejaVLlxa6Tmtl/X//+x8mTZqEt99+2+7t1q1bZ3X/Tz/9BAD8/EIegxVyolJu2LBhdq9fs2YNJk2ahLvvvhu33norwsLC8O+//+LTTz9Fbm4uJk+eXOhnvv32W4SFhRXa3717d6tLtRAREent008/xapVqwrtHzNmDKZOnYo1a9agffv2ePzxxxEQEICPPvoIubm5Zut4P/vss/jiiy/QvXt3jB492rjsWbVq1XDp0iVjBbtt27aIjo7GsGHD8OSTT8JgMODzzz8vdrfvWrVqISoqCrNnz0Z4eDjKli2LNm3aoEaNGsU6bnE988wz+Pbbb3HPPfdgxIgRaNGiBS5duoTly5dj9uzZaNq0qcPHSkhIsPrZw1KfPn1Qo0YN9O7dG7Vq1UJ2djbWrl2LFStWoFWrVoUKEYcOHcIXX3xR6DgxMTHo3r27w+0j0oqBnIjsGjBgAK5cuYKff/4Z69evx6VLlxAdHY3WrVvjqaeesjr76GOPPWb1WBs2bGAgJyIij/Thhx9a3f/QQw+hYcOG+O233zBhwgRMmzYNBQUFaNOmDb744gvjGuSAmPBsw4YNePLJJ/Haa6+hYsWKSE5ORtmyZfHkk08iODgYAFC+fHn88MMPeOqpp/Diiy8iOjoaDzzwAG677Tb06NHD6cdQpkwZfPbZZ5gwYQIeffRR3LhxA/PmzdM9kIeFheG3337DpEmTsHTpUnz22WeoVKkSbrvtNofWCHfGJ598gu+//x7ffPMNTp8+DUVRULNmTbzwwgt47rnnEBBgHoPkrOqWOnXqxEBOJcqguGMGBiIiIiKiUmrs2LH46KOPkJWVZXNSNCIqnTiGnIiIiIjIRa5evWr2/cWLF/H555+jffv2DONEVAi7rBMRERERuUhSUhI6d+6MBg0a4OzZs5g7dy4yMzPx0ksv6d00IvJArJATERGRrk6cOIHOnTsjMTERTZo0weLFi/VuEpHTevXqhZ9++gnjxo3DG2+8gWrVqmHlypVmy5sREUkcQ05ERES6OnPmDM6ePYtmzZohLS0NLVq0wKFDh4xLOBEREfkqdlknIiIiXcXFxSEuLg4AEBsbiwoVKuDSpUsM5ERE5PPYZZ2IiIiK5ddff0Xv3r0RHx8Pg8GAZcuWFbpNSkoKqlevjuDgYLRp0wbbtm2zeqzt27cjPz8fVatWLeFWExER6c/nK+QFBQU4ffo0wsPDYTAY9G4OERERFEXBlStXEB8fDz8/7z83np2djaZNm2LEiBHo379/oesXLVqE8ePHY/bs2WjTpg3effdd9OjRAwcPHkSlSpWMt7t06RKGDh2KOXPmaLp/vtcTEZGncfS93ufHkJ88eZJn2YmIyCOdOHECVapU0bsZLmUwGLB06VL07dvXuK9NmzZo1aoVZs2aBUAE6KpVq2L06NF4/vnnAQC5ubno3r07Hn74YTz44IN27yM3Nxe5ubnG70+dOoXExETXPxgiIqJiKuq93ucr5OHh4QDEExEREaFza4iIiIDMzExUrVrV+B7ly/Ly8rB9+3ZMmDDBuM/Pzw/dunXD5s2bAYgqwkMPPYSuXbsWGcYBYNq0aXj55ZcL7ed7PREReQpH3+t9PpDLrmsRERF8kyYiIo9SGrpXX7hwAfn5+YiJiTHbHxMTgwMHDgAANm3ahEWLFqFJkybG8eeff/45GjdubPWYEyZMwPjx443fyw89fK8nIiJPU9R7vc8HciIiIvJs7du3R0FBgcO3DwoKQlBQUAm2iIiIyD28fyYZIiIi8lgVKlSAv78/zp49a7b/7NmziI2N1alVREREnoGBnIiIiEpMYGAgWrRogXXr1hn3FRQUYN26dUhKStKxZURERPpjl3UiopsURcGNGzeQn5+vd1PIy/n7+yMgIKBUjBEHgKysLBw+fNj4/dGjR7Fr1y6UK1cO1apVw/jx4zFs2DC0bNkSrVu3xrvvvovs7GwMHz68WPebkpKClJQU/s0SkcP4Xk+u4qr3ep9f9iwzMxORkZHIyMjgRC9EZFNeXh7OnDmDnJwcvZtCPiI0NBRxcXEIDAwsdJ2vvTf98ssv6NKlS6H9w4YNw/z58wEAs2bNwvTp05GWloZmzZph5syZaNOmjUvu39eeTyIqGXyvJ1dzxXs9AzkRlXoFBQX4559/4O/vj4oVKyIwMLDUVDbJ9RRFQV5eHs6fP4/8/HzUqVMHfn7mI8T43uRafD6JqCh8rydXcuV7PbusE1Gpl5eXh4KCAlStWhWhoaF6N4d8QEhICMqUKYNjx44hLy8PwcHBejeJiKhU43s9uZqr3us5qRsR0U2WZzaJioOvJyIiz8P/zeRKrng98RVJREREXiklJQWJiYlo1aqV3k0hIiJyiq6BvHr16jAYDIW+kpOTAQDXrl1DcnIyypcvj7CwMAwYMKDQOqZERERUOiUnJ2Pfvn1ITU3VuylERERO0TWQp6am4syZM8avNWvWAADuueceAMC4ceOwYsUKLF68GBs3bsTp06fRv39/PZtMROTTqlevjnfffdfh2//yyy8wGAxIT08vsTYBwPz58xEVFVWi90FERFRa8P3ec+g6qVvFihXNvn/99ddRq1YtdOrUCRkZGZg7dy4WLlyIrl27AgDmzZuHBg0aYMuWLbj11lv1aDIRkUcoambYSZMmYfLkyZqPm5qairJlyzp8+7Zt2+LMmTOIjIzUfF9ERERkH9/vfZ/HzLKel5eHL774AuPHj4fBYMD27dtx/fp1dOvWzXib+vXro1q1ati8ebPNQJ6bm4vc3Fzj95mZmSXediIidztz5ozx8qJFizBx4kQcPHjQuC8sLMx4WVEU5OfnIyCg6H/5lidKixIYGIjY2FhNP0NERESO4fu97/OYSd2WLVuG9PR0PPTQQwCAtLQ0BAYGFuqyEBMTg7S0NJvHmTZtGiIjI41fVatWdVkbO3QAGjcGjh512SGJyAMpCpCdrc+XojjWxtjYWONXZGQkDAaD8fsDBw4gPDwcK1euRIsWLRAUFITff/8dR44cQZ8+fRATE4OwsDC0atUKa9euNTuuZRc2g8GATz75BP369UNoaCjq1KmD5cuXG6+37MImu5qtXr0aDRo0QFhYGO644w6zDxQ3btzAk08+iaioKJQvXx7PPfcchg0bhr59+2r6PX344YeoVasWAgMDUa9ePXz++ecmv0MFkydPRrVq1RAUFIT4+Hg8+eSTxus/+OAD1KlTB8HBwYiJicHAgQM13Tf5rueeE+/1Cxfq3RIiKml6vd87+l4P8P0e8P33e48J5HPnzkXPnj0RHx9frONMmDABGRkZxq8TJ064qIXAvn3A3r3AtWsuOyQReaCcHCAsTJ+vnBzXPY7nn38er7/+Ovbv348mTZogKysLvXr1wrp167Bz507ccccd6N27N44fP273OC+//DIGDRqEv/76C7169cL999+PS5cu2Xn+cvDWW2/h888/x6+//orjx4/j6aefNl7/xhtv4Msvv8S8efOwadMmZGZmYtmyZZoe29KlSzFmzBg89dRT2Lt3Lx555BEMHz4cGzZsAAAsWbIEM2bMwEcffYR//vkHy5YtQ+PGjQEAf/75J5588klMmTIFBw8exKpVq9CxY0dN90+eoSRmWT9xQrzXnzvnskMSkYfS6/3ele/1AN/vvf79XvEA//33n+Ln56csW7bMuG/dunUKAOXy5ctmt61WrZryzjvvOHzsjIwMBYCSkZFR7HZWqKAogKLs3VvsQxGRB7l69aqyb98+5erVq4qiKEpWlvhb1+MrK0t7++fNm6dERkYav9+wYYMCwOx/qi0NGzZU3n//feP3CQkJyowZM4zfA1BefPFF4/dZWVkKAGXlypVm9yX/V8+bN08BoBw+fNj4MykpKUpMTIzx+5iYGGX69OnG72/cuKFUq1ZN6dOnj8OPsW3btsrDDz9sdpt77rlH6dWrl6IoivL2228rdevWVfLy8goda8mSJUpERISSmZlp8/5cwfJ1ZcqV703k2udz6FDxt/jmmy5oGBF5DGv/k/V6v3fmvV5R+H4vedL7vSve6z2iQj5v3jxUqlQJd955p3FfixYtUKZMGaxbt8647+DBgzh+/DiSkpL0aCbkuu8FBbrcPRG5SWgokJWlz1doqOseR8uWLc2+z8rKwtNPP40GDRogKioKYWFh2L9/f5FnzJs0aWK8XLZsWUREROCcnfJhaGgoatWqZfw+Li7OePuMjAycPXsWrVu3Nl7v7++PFi1aaHps+/fvR7t27cz2tWvXDvv37wcgVuu4evUqatasiYcffhhLly7FjRs3AADdu3dHQkICatasiQcffBBffvklclxdriCvVaaM2F6/rm87iKjk6fV+78r3eoDv997+fq97IC8oKMC8efMwbNgwswkIIiMjMXLkSIwfPx4bNmzA9u3bMXz4cCQlJek2wzoDOVHpYDAAZcvq81XEZKqaWM6e+vTTT2Pp0qV47bXX8Ntvv2HXrl1o3Lgx8vLy7B6njEwoxufHgAI7/wit3V7RMmDOBapWrYqDBw/igw8+QEhICB5//HF07NgR169fR3h4OHbs2IGvvvoKcXFxmDhxIpo2bVriS7mQd2AgJyo99Hq/d+V7PcD3e29/v9c9kK9duxbHjx/HiBEjCl03Y8YM3HXXXRgwYAA6duyI2NhYfPfddzq0UmAgJyJvtmnTJjz00EPo168fGjdujNjYWPz3339ubUNkZCRiYmKQmppq3Jefn48dO3ZoOk6DBg2wadMms32bNm1CYmKi8fuQkBD07t0bM2fOxC+//ILNmzdjz549AICAgAB069YNb775Jv766y/8999/WL9+fTEeGfkKBnIi8nZ8v/eu93vdlz27/fbbbZ5JCQ4ORkpKClJSUtzcKusYyInIm9WpUwffffcdevfuDYPBgJdeesnume+SMnr0aEybNg21a9dG/fr18f777+Py5ctFrrVq6plnnsGgQYPQvHlzdOvWDStWrMB3331nnEV2/vz5yM/PR5s2bRAaGoovvvgCISEhSEhIwA8//IB///0XHTt2RHR0NH766ScUFBSgXr16JfWQyYswkBORt+P7vXe93+seyL0JAzkRebN33nkHI0aMQNu2bVGhQgU899xzyMzMdHs7nnvuOaSlpWHo0KHw9/fHqFGj0KNHD/j7+zt8jL59++K9997DW2+9hTFjxqBGjRqYN28eOnfuDACIiorC66+/jvHjxyM/Px+NGzfGihUrUL58eURFReG7777D5MmTce3aNdSpUwdfffUVGjZsWEKPmLwJAzkReTu+33vX+71BcXdHfzfLzMxEZGQkMjIyEBERUaxj1agB/PcfsGUL0KaNa9pHRPq7du0ajh49iho1aiA4OFjv5pQ6BQUFaNCgAQYNGoRXXnlF7+a4jL3XlSvfm0oz2YsuPz8fhw4dcsnz+dJLwNSpwBNPAO+/76KGEpHu+F6vP198v3fFez0r5BqwQk5EVHzHjh3Dzz//jE6dOiE3NxezZs3C0aNHcd999+ndNPIyycnJSE5ONn7ocQVWyImIXIPv947RfVI3b8JATkRUfH5+fpg/fz5atWqFdu3aYc+ePVi7di0aNGigd9OIjIG8iMmIiYioCHy/dwwr5BowkBMRFV/VqlULzZhK5CkCA8WWFXIiouLh+71jWCHXgIGciIjIt7HLOhERuRMDuQYM5ERERL6NgZyIiNyJgVwDBnIiIiLfxkBORETuxECuAQM5ERGRb2MgJyIid2Ig14CBnIiIyHOkpKQgMTERrVq1ctkxGciJiMidGMg1YCAnIiLyHMnJydi3bx9SU1NddkwGciIicicGcg0YyInI13Tu3Bljx441fl+9enW8++67dn/GYDBg2bJlxb5vVx3HnsmTJ6NZs2Yleh/kWxjIicgX8f3eczGQa8BATkSeonfv3rjjjjusXvfbb7/BYDDgr7/+0nzc1NRUjBo1qrjNM2PrTfLMmTPo2bOnS++LqLgYyInIk/D93vcxkGvAQE5EnmLkyJFYs2YNTp48Wei6efPmoWXLlmjSpInm41asWBGhoaGuaGKRYmNjERQU5Jb7InIUAzkReRK+3/s+BnINGMiJSglFAbKz9flSFIeaeNddd6FixYqYP3++2f6srCwsXrwYI0eOxMWLFzFkyBBUrlwZoaGhaNy4Mb766iu7x7XswvbPP/+gY8eOCA4ORmJiItasWVPoZ5577jnUrVsXoaGhqFmzJl566SVcv5lm5s+fj5dffhm7d++GwWCAwWAwttmyC9uePXvQtWtXhISEoHz58hg1ahSysrKM1z/00EPo27cv3nrrLcTFxaF8+fJITk423pcjCgoKMGXKFFSpUgVBQUFo1qwZVq1aZbw+Ly8PTzzxBOLi4hAcHIyEhARMmzYNAKAoCiZPnoxq1aohKCgI8fHxePLJJx2+b/IOMpDn5enbDiJyA73e7x18rwf4fl8a3u8DSuzIPoiBnKiUyMkBwsL0ue+sLKBs2SJvFhAQgKFDh2L+/Pl44YUXYDAYAACLFy9Gfn4+hgwZgqysLLRo0QLPPfccIiIi8OOPP+LBBx9ErVq10Lp16yLvo6CgAP3790dMTAy2bt2KjIwMs/FnUnh4OObPn4/4+Hjs2bMHDz/8MMLDw/Hss89i8ODB2Lt3L1atWoW1a9cCACIjIwsdIzs7Gz169EBSUhJSU1Nx7tw5/O9//8MTTzxh9iFkw4YNiIuLw4YNG3D48GEMHjwYzZo1w8MPP1zk4wGA9957D2+//TY++ugjNG/eHJ9++inuvvtu/P3336hTpw5mzpyJ5cuX45tvvkG1atVw4sQJnDhxAgCwZMkSzJgxA19//TUaNmyItLQ07N6926H7Je8RGCi2rJATlQJ6vd87+F4P8P2+VLzfKz4uIyNDAaBkZGQU+1gdOyoKoCjffOOChhGRx7h69aqyb98+5erVq2JHVpb4Y9fjKyvL4Xbv379fAaBs2LDBuK9Dhw7KAw88YPNn7rzzTuWpp54yft+pUydlzJgxxu8TEhKUGTNmKIqiKKtXr1YCAgKUU6dOGa9fuXKlAkBZunSpzfuYPn260qJFC+P3kyZNUpo2bVrodqbH+fjjj5Xo6Ggly+Tx//jjj4qfn5+SlpamKIqiDBs2TElISFBu3LhhvM0999yjDB482GZbLO87Pj5eefXVV81u06pVK+Xxxx9XFEVRRo8erXTt2lUpKCgodKy3335bqVu3rpKXl2fz/kwVel2ZcOV7E7n2+dy6VfwpJiQUv11E5Dms/k/W6/1ew3u9ovD9XlE89/3eFe/17LKuASvkRKVEaKg4e63Hl4bxXPXr10fbtm3x6aefAgAOHz6M3377DSNHjgQA5Ofn45VXXkHjxo1Rrlw5hIWFYfXq1Th+/LhDx9+/fz+qVq2K+Ph4476kpKRCt1u0aBHatWuH2NhYhIWF4cUXX3T4Pkzvq2nTpihrUjFo164dCgoKcPDgQeO+hg0bwt/f3/h9XFwczp0759B9ZGZm4vTp02jXrp3Z/nbt2mH//v0ARDe5Xbt2oV69enjyySfx888/G293zz334OrVq6hZsyYefvhhLF26FDdu3ND0OMnzcQw5USmi1/u9xrHbfL/37fd7BnINGMiJSgmDQXQl0+PrZlc0R40cORJLlizBlStXMG/ePNSqVQudOnUCAEyfPh3vvfcennvuOWzYsAG7du1Cjx49kOfCwbGbN2/G/fffj169euGHH37Azp078cILL7j0PkyVkWnpJoPBgAIX/lO+5ZZbcPToUbzyyiu4evUqBg0ahIEDBwIAqlatioMHD+KDDz5ASEgIHn/8cXTs2FHTmDbyfAzkRKWIXu/3Gt/rAb7f+/L7PQO5BgzkRORpBg0aBD8/PyxcuBALFizAiBEjjOPLNm3ahD59+uCBBx5A06ZNUbNmTRw6dMjhYzdo0AAnTpzAmTNnjPu2bNlidps//vgDCQkJeOGFF9CyZUvUqVMHx44dM7tNYGAg8vPzi7yv3bt3Izs727hv06ZN8PPzQ7169Rxusz0RERGIj4/Hpk2bzPZv2rQJiYmJZrcbPHgw5syZg0WLFmHJkiW4dOkSACAkJAS9e/fGzJkz8csvv2Dz5s3Ys2ePS9pH2qWkpCAxMRGtWrVy2TEZyInIE/H93nHe9n7PSd00YCAnIk8TFhaGwYMHY8KECcjMzMRDDz1kvK5OnTr49ttv8ccffyA6OhrvvPMOzp49a/ZmZE+3bt1Qt25dDBs2DNOnT0dmZiZeeOEFs9vUqVMHx48fx9dff41WrVrhxx9/xNKlS81uU716dRw9ehS7du1ClSpVEB4eXmj5k/vvvx+TJk3CsGHDMHnyZJw/fx6jR4/Ggw8+iJiYGOeeHCueeeYZTJo0CbVq1UKzZs0wb9487Nq1C19++SUA4J133kFcXByaN28OPz8/LF68GLGxsYiKisL8+fORn5+PNm3aIDQ0FF988QVCQkKQkJDgsvaRNsnJyUhOTkZmZqbVyYOcwUBORJ6I7/faeNP7PSvkGjCQE5EnGjlyJC5fvowePXqYjf968cUXccstt6BHjx7o3LkzYmNj0bdvX4eP6+fnh6VLl+Lq1ato3bo1/ve//+HVV181u83dd9+NcePG4YknnkCzZs3wxx9/4KWXXjK7zYABA3DHHXegS5cuqFixotWlWEJDQ7F69WpcunQJrVq1wsCBA3Hbbbdh1qxZ2p6MIjz55JMYP348nnrqKTRu3BirVq3C8uXLUadOHQBiBtk333wTLVu2RKtWrfDff//hp59+gp+fH6KiojBnzhy0a9cOTZo0wdq1a7FixQqUL1/epW0kfTGQE5Gn4vu947zp/d6gKBoWwvNC8qx5RkYGIiIiinWsO+8EfvoJ+PRTYPhwFzWQiHR37do1HD16FDVq1EBwcLDezSEfYe915cr3JnLt85mWBsTFiSGePAFP5Dv4Xk8lwRXv9ayQa8AKORERkW+TFXJFAYoYCklERFRsDOQaMJATERH5NtOJfdltnYiIShoDuQYM5ERERL7NNJCX0Go+RERERgzkGjCQExER+TZWyImIyJ0YyDVgICfybT4+xyW5GV9P3snfX0zoBjCQE/ki/m8mV3LF64mBXAMGciLfVOZmSSwnJ0fnlpAvka+nMqYlV/J4BgOXPiPyRXyvp5Lgivf6AFc1pjRgICfyTf7+/oiKisK5c+cAiDUyDbJERqSRoijIycnBuXPnEBUVBX9/f72bRBqVKSPGjzOQE/kOvteTK7nyvZ6BXAMGciLfFRsbCwDGN2qi4oqKijK+rsi7sEJO5Jv4Xk+u5or3egZyDRjIiXyXwWBAXFwcKlWqhOv8FE7FVKZMGVbGvRgDOZFv4ns9uZKr3usZyDVgICfyff7+/gxSRF4iJSUFKSkpyM/Pd+lxGciJfBvf68mTcFI3DRjIiYiIPEdycjL27duH1NRUlx6XgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPfJQJ6Xp287iIjI9zGQa8BATkRE5PtYISciIndhINeAgZyIiMj3BQaKLQM5ERGVNN0D+alTp/DAAw+gfPnyCAkJQePGjfHnn38ar1cUBRMnTkRcXBxCQkLQrVs3/PPPP7q0lYGciIjI97FCTkRE7qJrIL98+TLatWuHMmXKYOXKldi3bx/efvttREdHG2/z5ptvYubMmZg9eza2bt2KsmXLokePHrh27Zrb28tATkRE5PsYyImIyF0C9LzzN954A1WrVsW8efOM+2rUqGG8rCgK3n33Xbz44ovo06cPAGDBggWIiYnBsmXLcO+997q1vQzkREREvo+BnIiI3EXXCvny5cvRsmVL3HPPPahUqRKaN2+OOXPmGK8/evQo0tLS0K1bN+O+yMhItGnTBps3b7Z6zNzcXGRmZpp9uQoDORERke9jICciInfRNZD/+++/+PDDD1GnTh2sXr0ajz32GJ588kl89tlnAIC0tDQAQExMjNnPxcTEGK+zNG3aNERGRhq/qlat6rL2MpATERH5PgZyIiJyF10DeUFBAW655Ra89tpraN68OUaNGoWHH34Ys2fPdvqYEyZMQEZGhvHrxIkTLmsvAzkREZHvYyAnIiJ30TWQx8XFITEx0WxfgwYNcPz4cQBAbGwsAODs2bNmtzl79qzxOktBQUGIiIgw+3IVBnIiIiLfx0BORETuomsgb9euHQ4ePGi279ChQ0hISAAgJniLjY3FunXrjNdnZmZi69atSEpKcmtbAQZyIiKi0oCBnIiI3EXXWdbHjRuHtm3b4rXXXsOgQYOwbds2fPzxx/j4448BAAaDAWPHjsXUqVNRp04d1KhRAy+99BLi4+PRt29ft7eXgZyIiMj3yUCel6dvO4iIyPfpGshbtWqFpUuXYsKECZgyZQpq1KiBd999F/fff7/xNs8++yyys7MxatQopKeno3379li1ahWCg4Pd3l4GciIiIt/HCjkREbmLroEcAO666y7cddddNq83GAyYMmUKpkyZ4sZWWcdATkRE5PsCA8WWgZyIiEqarmPIvQ0DORERkedISUlBYmIiWrVq5dLjskJORETuwkCuAQM5ERGR50hOTsa+ffuQmprq0uMykBMRkbswkGvAQE5EROT7GMiJiMhdGMg1YCAnIiLyfQzkRETkLgzkGjCQExER+T4GciIichcGcg0YyImIiHwfAzkREbkLA7kGDORERES+j4GciIjchYFcAwZyIiIi38dATkRE7sJArgEDORERke+TgTwvT992EBGR72Mg14CBnIiIyPexQk5ERO7CQK4BAzkREZHvYyAnIiJ3YSDXgIGciIjI9wUGii0DORERlTQGcg0YyImIiHwfK+REROQuDOQaMJATERH5PgZyIiJyFwZyDRjIiYiIfB8DORERuQsDuQYM5ERERL6PgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPcxkBMRkbswkGvAQE5EROT7ZCDPy9O3HURE5PsYyDVgICciIvJ9rJATEZG7MJBrwEBORETk+xjIiYjIXRjINWAgJyIi8n2BgWLLQE5ERCWNgVwDBnIiIiLfJyvkBQV8zyciopLFQK4BAzkREZHvk4EcYJWciIhKFgO5BgzkREREvo+BnIiI3IWBXAMGciIiopLRr18/REdHY+DAgXo3hYGciIjchoFcAwZyIiKikjFmzBgsWLBA72YAAAIC1MsM5EREVJIYyDVgICciIioZnTt3Rnh4uN7NAAAYDGooZyAnIqKSxECuAQM5ERFRYb/++it69+6N+Ph4GAwGLFu2rNBtUlJSUL16dQQHB6NNmzbYtm2b+xuqAdciJyIid2Ag14CBnIiIqLDs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXPnzjl1f7m5ucjMzDT7cjUZyPPyXH5oIiIiIwZyDRjIiYiICuvZsyemTp2Kfv36Wb3+nXfewcMPP4zhw4cjMTERs2fPRmhoKD799FOn7m/atGmIjIw0flWtWrU4zbeKFXIiInIHBnINGMiJiIi0ycvLw/bt29GtWzfjPj8/P3Tr1g2bN2926pgTJkxARkaG8evEiROuaq4RAzkREblDQNE3IYmBnIiISJsLFy4gPz8fMTExZvtjYmJw4MAB4/fdunXD7t27kZ2djSpVqmDx4sVISkqyesygoCAEBQWVaLsDA8WWgZyIiEoSA7kGDOREREQlY+3atXo3wQwr5ERE5A7ssq4BAzkREZE2FSpUgL+/P86ePWu2/+zZs4iNjdWpVUVjICciIndgINeAgZyIiEibwMBAtGjRAuvWrTPuKygowLp162x2SXdUSkoKEhMT0apVq+I2sxAGciIicgd2WdeAgZyIiKiwrKwsHD582Pj90aNHsWvXLpQrVw7VqlXD+PHjMWzYMLRs2RKtW7fGu+++i+zsbAwfPrxY95ucnIzk5GRkZmYiMjKyuA/DDAM5ERG5AwO5BgzkREREhf3555/o0qWL8fvx48cDAIYNG4b58+dj8ODBOH/+PCZOnIi0tDQ0a9YMq1atKjTRmydhICciInfQtcv65MmTYTAYzL7q169vvP7atWtITk5G+fLlERYWhgEDBhQag+ZODORERESFde7cGYqiFPqaP3++8TZPPPEEjh07htzcXGzduhVt2rTRr8EOYCAnIiJ30H0MecOGDXHmzBnj1++//268bty4cVixYgUWL16MjRs34vTp0+jfv79ubWUgJyIiKh0YyImIyB1077IeEBBgdZbVjIwMzJ07FwsXLkTXrl0BAPPmzUODBg2wZcsW3Hrrre5uKgM5ERGRB0lJSUFKSgry8/NdfmwZyPPyXH5oIiIiI90r5P/88w/i4+NRs2ZN3H///Th+/DgAYPv27bh+/Tq6detmvG39+vVRrVo1bN682ebxcnNzkZmZafblKgzkREREniM5ORn79u1Damqqy4/NCjkREbmDroG8TZs2mD9/PlatWoUPP/wQR48eRYcOHXDlyhWkpaUhMDAQUVFRZj8TExODtLQ0m8ecNm0aIiMjjV9Vq1Z1WXsZyImIiEoHBnIiInIHXbus9+zZ03i5SZMmaNOmDRISEvDNN98gJCTEqWNOmDDBOLsrAGRmZroslDOQExERlQ6BgWLLQE5ERCVJ9y7rpqKiolC3bl0cPnwYsbGxyMvLQ3p6utltzp49a3XMuRQUFISIiAizL1dhICciIiodWCEnIiJ38KhAnpWVhSNHjiAuLg4tWrRAmTJlsG7dOuP1Bw8exPHjx5GUlKRL+xjIiYiISgcGciIicgddu6w//fTT6N27NxISEnD69GlMmjQJ/v7+GDJkCCIjIzFy5EiMHz8e5cqVQ0REBEaPHo2kpCRdZlgHGMiJiIg8iTtmWWcgJyKikqRrID958iSGDBmCixcvomLFimjfvj22bNmCihUrAgBmzJgBPz8/DBgwALm5uejRowc++OAD3drLQE5EROQ5kpOTkZycjMzMTERGRrr02AzkRETkDroG8q+//tru9cHBwcaz356AgZyIiKh0YCAnIiJ38Kgx5J6OgZyIiKh0YCAnIiJ3YCDXgIGciIiodGAgJyIid2Ag18DP5NlSFP3aQURERCVLBvK8PH3bQUREvo2BXAPTQM4qORERke9ihZyIiNyBgVwDBnIiIiLPkZKSgsTERLRq1crlx2YgJyIid2Ag14CBnIiIyHMkJydj3759SE1NdfmxGciJiMgdGMg1YCAnIiIqHQIDxZaBnIiIShIDuQYM5ERERKUDK+REROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BowkBMREZUODOREROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BoYDOplBnIiIiJ9paSkIDExEa1atXL5sWUgz8tz+aGJiIiMGMg1klVyBnIiIiJ9JScnY9++fUhNTXX5sVkhJyIid2Ag14iBnIiIvMGOHTuwZ88e4/fff/89+vbti//7v/9DHsu+RWIgJyIid2Ag14iBnIiIvMEjjzyCQ4cOAQD+/fdf3HvvvQgNDcXixYvx7LPP6tw6z8dATkRE7sBArhEDOREReYNDhw6hWbNmAIDFixejY8eOWLhwIebPn48lS5bo2zgvEBgotgzkRERUkhjINWIgJyIib6AoCgpuvlmtXbsWvXr1AgBUrVoVFy5c0LNpXoEVciIicgcGco0YyImIyBu0bNkSU6dOxeeff46NGzfizjvvBAAcPXoUMTExOrfO8zGQExGROzCQa8RATkRE3uDdd9/Fjh078MQTT+CFF15A7dq1AQDffvst2rZtq3PrPB8DORERuUOA3g3wNgzkRETkDZo0aWI2y7o0ffp0+Pv769Ai78JATkRE7sAKuUYM5ERE5A1OnDiBkydPGr/ftm0bxo4diwULFqCMTJtkEwM5ERG5AwO5RgzkRETkDe677z5s2LABAJCWlobu3btj27ZteOGFFzBlyhSdW+caKSkpSExMRKtWrVx+bBnIb9wAFMXlhyciIgLAQK4ZAzkREXmDvXv3onXr1gCAb775Bo0aNcIff/yBL7/8EvPnz9e3cS6SnJyMffv2ITU11eXHDg1VL+fkuPzwREREABjINWMgJyIib3D9+nUEBQUBEMue3X333QCA+vXr48yZM3o2zSuULQvIofbp6bo2hYiIfBgDuUYM5ERE5A0aNmyI2bNn47fffsOaNWtwxx13AABOnz6N8uXL69w6z2cwAFFR4nJGhq5NISIiH8ZArhEDOREReYM33ngDH330ETp37owhQ4agadOmAIDly5cbu7KTfTKQs0JOREQlhcueacRATkRE3qBz5864cOECMjMzER0dbdw/atQohJoOkCabGMiJiKikMZBrxEBORETewt/fHzdu3MDvv/8OAKhXrx6qV6+ub6O8CAM5ERGVNHZZ14iBnIiIvEF2djZGjBiBuLg4dOzYER07dkR8fDxGjhyJHE4b7hAGciIiKmkM5BoxkBMRkTcYP348Nm7ciBUrViA9PR3p6en4/vvvsXHjRjz11FN6N88rMJATEVFJY5d1jRjIiYjIGyxZsgTffvstOnfubNzXq1cvhISEYNCgQfjwww/1a5yXYCAnIqKSxgq5RgzkRETkDXJychATE1Nof6VKldhl3UEM5EREVNIYyDViICciIm+QlJSESZMm4dq1a8Z9V69excsvv4ykpCQdW+Y9IiPFloGciIhKCrusa8RATkRE3uC9995Djx49UKVKFeMa5Lt370ZwcDBWr16tc+tcIyUlBSkpKcjPzy+R47NCTkREJY2BXCMGciIi8gaNGjXCP//8gy+//BIHDhwAAAwZMgT3338/QkJCdG6dayQnJyM5ORmZmZmIlOVsF2IgJyKiksZArhEDOREReYvQ0FA8/PDDejfDazGQExFRSWMg14iBnIiIPNXy5csdvu3dd99dgi3xDQzkRERU0jwmkL/++uuYMGECxowZg3fffRcAcO3aNTz11FP4+uuvkZubix49euCDDz6wOmusuzCQExGRp+rbt69DtzMYDCU27tqXmAZyRQEMBj1bQ0REvsgjZllPTU3FRx99hCZNmpjtHzduHFasWIHFixdj48aNOH36NPr3769TKwUGciIi8lQFBQUOfTGMO0YG8uvXgatXdW0KERH5KN0DeVZWFu6//37MmTMH0dHRxv0ZGRmYO3cu3nnnHXTt2hUtWrTAvHnz8Mcff2DLli26tZeBnIiIqHQICxPv++VwEfn/9xJw7JjeTSIiIh+jeyBPTk7GnXfeiW7dupnt3759O65fv262v379+qhWrRo2b95s83i5ubnIzMw0+3IlBnIiIqLSwWAQVfK38DTC35sK3BxSR0RE5Cq6jiH/+uuvsWPHDqSmpha6Li0tDYGBgYiS/cVuiomJQVpams1jTps2DS+//LKrm2rEQE5ERFR61Ai/gCGXvhLfZGTo2xgiIvI5ulXIT5w4gTFjxuDLL79EcHCwy447YcIEZGRkGL9OnDjhsmMDDORERESlydDrcxGMXPFNbq6+jSEiIp+jWyDfvn07zp07h1tuuQUBAQEICAjAxo0bMXPmTAQEBCAmJgZ5eXlIt1hr5OzZs4iNjbV53KCgIERERJh9uRIDORERUSmRn4/BFz9Qv8/L068tRETkk3Trsn7bbbdhz549ZvuGDx+O+vXr47nnnkPVqlVRpkwZrFu3DgMGDAAAHDx4EMePH0dSUpIeTQbAQE5ERN7hp59+gr+/P3r06GG2f/Xq1SgoKEDPnj11apkX+eEHxOQeV79nhZyIiFxMt0AeHh6ORo0ame0rW7Ysypcvb9w/cuRIjB8/HuXKlUNERARGjx6NpKQk3HrrrXo0GQADOREReYfnn38er7/+eqH9iqLg+eefZyB3xKxZAIBjqIYEHGcgJyIil9N9lnV7ZsyYgbvuugsDBgxAx44dERsbi++++07XNjGQExGRN/jnn3+QmJhYaH/9+vVx+PBhHVrkZdLTgbVrAQCz8ITYxy7rRETkYrrOsm7pl19+Mfs+ODgYKSkpSElJ0adBVjCQExGRN4iMjMS///6L6tWrm+0/fPgwypYtq0+jvMn58wCA3KBw/JNbR+xjhZyIiFzMoyvknoiBnIiIvEGfPn0wduxYHDlyxLjv8OHDeOqpp3D33Xfr2DIvcfkyACA3NBq5CBL7WCEnIiIXYyDXiIGciIi8wZtvvomyZcuifv36qFGjBmrUqIEGDRqgfPnyeOutt/Runue7GchvhEcjD4FiHyvkRETkYh7VZd0bMJATEZE3iIyMxB9//IE1a9Zg9+7dCAkJQZMmTdCxY0e9m+YdbgbygogotULOQE5ERC7GQK4RAzkREXkLg8GA22+/HbfffrveTfE+NwM5okwq5OyyTkRELsZArhEDOREReaqZM2di1KhRCA4OxsyZM+3e9sknn3RTq0qOnPg1Pz/f9Qe/Gcj9ykezQk5ERCWGgVwjBnIiIvJUM2bMwP3334/g4GDMmDHD5u0MBoNPBPLk5GQkJycjMzMTkZGRrj34zUAeUFEN5EpeHgyuvRciIirlGMg1YiAnIiJPdfToUauXyQk3A3lgLCd1IyKiksNZ1jViICciIioFZCCPicZ1A7usExFRyXCqQn7ixAkYDAZUqVIFALBt2zYsXLgQiYmJGDVqlEsb6GkYyImIyBsoioJvv/0WGzZswLlz51Bg8cb13Xff6dQyLyHHkJeLRnBEIJABGG7cEB8A/FjPICIi13DqHeW+++7Dhg0bAABpaWno3r07tm3bhhdeeAFTpkxxaQM9DQM5ERF5g7Fjx+LBBx/E0aNHERYWhsjISLMvKoKcZT06GiFRQep+zrROREQu5FSFfO/evWjdujUA4JtvvkGjRo2wadMm/Pzzz3j00UcxceJElzbSkzCQExGRN/j888/x3XffoVevXno3xTtZBvJjN/fn5QHBwbo1i4iIfItTFfLr168jKEicLV67di3uvvtuAED9+vVx5swZ17XOAzGQExGRN4iMjETNmjX1bob3MgnkYdFl1P0cR05ERC7kVCBv2LAhZs+ejd9++w1r1qzBHXfcAQA4ffo0ypcv79IGehoGciIi8gaTJ0/Gyy+/jKtXr+rdFO+Tnw9kZorL0dGIjPZDHm6GcgZyIiJyIae6rL/xxhvo168fpk+fjmHDhqFp06YAgOXLlxu7svsqBnIiIvIGgwYNwldffYVKlSqhevXqKFOmjNn1O3bs0KllXiA9Xb0cHY2oKCAPgQjEdY4hJyIil3IqkHfu3BkXLlxAZmYmoqOjjftHjRqF0NBQlzXOEzGQExGRNxg2bBi2b9+OBx54ADExMTAYDHo3yXvI7uplywJlyiAyEshFEMKQzQo5ERG5lFOB/OrVq1AUxRjGjx07hqVLl6JBgwbo0aOHSxvoaRjIiYjIG/z4449YvXo12rdvr3dTvI/J+HEAiIoSgRwAK+RERORSTo0h79OnDxYsWAAASE9PR5s2bfD222+jb9+++PDDD13aQE/DQE5ERN6gatWqiIiI0LsZ3skikJcvL7qsA2CFnIiIXMqpQL5jxw506NABAPDtt98iJiYGx44dw4IFCzBz5kyXNtDTMJATEZE3ePvtt/Hss8/iv//+07sp3sdKIDdWyBnIiYjIhZzqsp6Tk4Pw8HAAwM8//4z+/fvDz88Pt956K44dO1bET3s3BnIiIvIGDzzwAHJyclCrVi2EhoYWmtTt0qVLOrXMC9irkLPLOhERuZBTgbx27dpYtmwZ+vXrh9WrV2PcuHEAgHPnzvl89zgZyBVF33YQERHZ8+677+rdBO/FCjkREbmJU4F84sSJuO+++zBu3Dh07doVSUlJAES1vHnz5i5toKdhhZyIiLzBsGHD9G6C95LLnpkE8lM3A7lyLRecr56IiFzFqUA+cOBAtG/fHmfOnDGuQQ4At912G/r16+eyxnkiBnIiIvIWBQUFOHz4MM6dO4cCizeujh076tQqL2ClQn70Zpf13Ct5CNarXURE5HOcCuQAEBsbi9jYWJw8eRIAUKVKFbRu3dplDfNUDOREROQNtmzZgvvuuw/Hjh2DYjHOymAwID8/X6eWeQGLQB4WBuQZggAFyL6Uy0BOREQu49Qs6wUFBZgyZQoiIyORkJCAhIQEREVF4ZVXXil0Bt7XMJATEZE3ePTRR9GyZUvs3bsXly5dwuXLl41fnNCtCBaB3GAAECgq5NmXOakbERG5jlMV8hdeeAFz587F66+/jnbt2gEAfv/9d0yePBnXrl3Dq6++6tJGehIGciIi8gb//PMPvv32W9SuXVvvpngfi0AOAAgKAnKBnMuc1I2IiFzHqUD+2Wef4ZNPPsHdd99t3NekSRNUrlwZjz/+OAM5ERGRztq0aYPDhw8zkDvDSiA3BAcBmcDVDAZyIiJyHacC+aVLl1C/fv1C++vXr+/z3eAYyImIyFP99ddfxsujR4/GU089hbS0NDRu3LjQOuRNmjRxd/O8h5VA7h8suqxfy2SXdSIich2nAnnTpk0xa9YszJw502z/rFmzfP4NnoGciIg8VbNmzWAwGMwmcRsxYoTxsryOk7rZUVAAZGSIy6aBPFQse5aXyQo5ERG5jlOB/M0338Sdd96JtWvXGtcg37x5M06cOIGffvrJpQ30NAzkRETkqY4ePap3E7xfRgYgT2iYBPIyZW8ue5bFCjlRsZw6BeTlATVq6N0SIo/g1CzrnTp1wqFDh9CvXz+kp6cjPT0d/fv3x99//43PP//c1W30KAzkRETkqeTKJwkJCTh27BgqV65sti8hIQGVK1fGsWPH9G5qIT/88APq1auHOnXq4JNPPtGvIbK7emiocWZ1ACgTJirkN7JYISdymqIArVsDzZoBV67o3Roij+D0OuTx8fGFJm/bvXs35s6di48//rjYDfNUDOREROQNunTpgjNnzqBSpUpm+zMyMtClSxeP6rJ+48YNjB8/Hhs2bEBkZCRatGiBfv36oXz58u5vjLUZ1gEEholwfiOHgZzIaRkZwOnT4vK+fUCbNvq2h8gDOFUhL80YyImIyBvIseKWLl68iLJly+rQItu2bduGhg0bonLlyggLC0PPnj3x888/69MYG4E8KEJUyPNz2GWdyGkXLqiXDxzQrx1EHsTpCnlpxUBORESerH///gDEBG4PPfQQgoKCjNfl5+fjr7/+Qtu2bV16n7/++iumT5+O7du348yZM1i6dCn69u1rdpuUlBRMnz4daWlpaNq0Kd5//320bt0aAHD69GlUrlzZeNvKlSvj1KlTLm2jw2wE8uBI8TwWXGOFnMhpDOREhbBCrhEDORERebLIyEhERkZCURSEh4cbv4+MjERsbCxGjRqFL774wqX3mZ2djaZNmyIlJcXq9YsWLcL48eMxadIk7NixA02bNkWPHj1w7tw5l7bDJWwE8pAo0WVducYKOZHTTAP5/v36tYPIg2iqkMuz7rakp6cXpy1egYGciIg82bx58wAA1atXx9NPP+2W7uk9e/ZEz549bV7/zjvv4OGHH8bw4cMBALNnz8aPP/6ITz/9FM8//zzi4+PNKuKnTp0yVs+tyc3NRW6uWqnOzMx0waO4yUYgLxstKuSG67m4cQMIYB9DIu1YIScqRFOF3PQsu7WvhIQEDB06tKTa6hEYyImIyBtMmjTJI8aK5+XlYfv27ejWrZtxn5+fH7p164bNmzcDAFq3bo29e/fi1KlTyMrKwsqVK9GjRw+bx5w2bZrZ54+qVau6rsE2AnnozQp5EHKNNyEijUwD+ZEjwPXr2n5+716gVy9g61bXtotIR5rO78qz7qUZAzkREXmqW265BevWrUN0dDSaN29udVI3aceOHW5p04ULF5Cfn4+YmBiz/TExMThws0IWEBCAt99+G126dEFBQQGeffZZuzOsT5gwAePHjzd+n5mZ6bpQbiOQ+4eKCnkg8nDxIlCxomvujqhUMQ3kN26IUF6/vuM/P28esHIlcOiQCOfBwa5vI5GbscOVRgzkRETkqfr06WOcxM1yUjVPd/fdd+Puu+926LZBQUFmk9W5lI1Ajpv3F4RcXLxYMndN5PNMAzkgxpFrCeTnz4vtkSPAjBnAhAmuaxuRThjINWIgJyIiTzVp0iQAYjb1Ll26oEmTJoiKitK1TRUqVIC/vz/Onj1rtv/s2bOIjY3VqVV2jBgh1kbu0MF8f6Dosh6IPJxnICdyjgzkfn7iw7TWceQykAPA1KnAgw8CVaq4rn2OUBSge3fgyhVg0yZOKEHFxlnWNWIgJyIiT+fv74/bb78dlz1gsHNgYCBatGiBdevWGfcVFBRg3bp1SEpK0rFlNtxxB/DUU0CzZub7WSEnKj4ZyJs2FVutgVz+fFgYkJMDPPus69rmqN27gXXrgG3bgBMn3H//5HN0DeQffvghmjRpgoiICERERCApKQkrV640Xn/t2jUkJyejfPnyCAsLw4ABAwqdYXc3BnIiIvIGjRo1wr///uuW+8rKysKuXbuwa9cuAMDRo0exa9cuHD9+HAAwfvx4zJkzB5999hn279+Pxx57DNnZ2cZZ152VkpKCxMREtGrVqrgPoWiB6qRuDOTkUooC/PwzoPNnXLeQgbp9e7HVuvSZrJC/8QZgMABffQWcOeO69jli1Sr1Mv8ZkAvoGsirVKmC119/Hdu3b8eff/6Jrl27ok+fPvj7778BAOPGjcOKFSuwePFibNy4EadPny5y6bWSxkBORETeYOrUqXj66afxww8/4MyZM8jMzDT7cqU///wTzZs3R/PmzQGIAN68eXNMnDgRADB48GC89dZbmDhxIpo1a4Zdu3Zh1apVhSZ60yo5ORn79u1DampqsR9DkYLMJ3UjcpkNG4AePYD//U/vlpQ8GcjlkJADB8QJCa0/f/vt6syKpt3Y3cGkeIhLl9x73+STdB300Lt3b7PvX331VXz44YfYsmULqlSpgrlz52LhwoXo2rUrADHLe4MGDbBlyxbceuutejSZgZyIiLxCr169AIjJ0kxnW1cUBQaDAfn5+S67r86dO0Mp4kP1E088gSeeeMJl9+l27LJOJWX3bvOtVhkZwLlzQJ06rmtTScjPVwNsmzaAv78Yh33mDBAfX/TPX70KZGeLyxUqAOHh4nFnZZVcmy1lZAB//KF+z38G5AIeMwtBfn4+Fi9ejOzsbCQlJWH79u24fv262bql9evXR7Vq1bB582abgTw3Nxe5ubnG711dBWAgJyIib7Bhwwa9m+BbTCZ142dwcqmjR8X25EkgN9d48sdhffsCGzcC//wD1Krl8ua5zOXLajU8Lg6oWVO0+cABxwK5rI4HBACRkWIcOeDeQL5unViuTeI/A3IB3QP5nj17kJSUhGvXriEsLAxLly5FYmIidu3ahcDAwEKzw8bExCAtLc3m8aZNm4aXX365xNrLQE5ERN6gU6dOejfBt7BCTiVFBnJFAY4dA+rWdfxn8/LETN+KIsZje3Igl4E6KgooU0Ysd/bPP6LdN3vDOvTzFSqI8eN6BHLT8eMAu6wXRVGAH34Qr8vERL1b47F0n2W9Xr162LVrF7Zu3YrHHnsMw4YNw759+5w+3oQJE5CRkWH8OuHi2Q8ZyImIyJvk5OTgwIED+Ouvv8y+fAEndSOfIAM5AGidiPHgQeD6dXHZco1vT2MaqAGgQQOxdXRiN/nzcuy4uwO5oqiBXK7CwH8GtikK8MwzwN13A3fdpW2ugFJG9wp5YGAgateuDQBo0aIFUlNT8d5772Hw4MHIy8tDenq6WZW8qHVLg4KCEKS1q48GDOREROQNzp8/j+HDh5utXmLKlWPI9ZKcnIzk5GRkZmYiMjKyZO+Mk7pRSVCU4gVy03Hn7p7cTCvLQF6jhtiePOnYz8vHJ3/e3YF83z6xzFlwMNC/P7BrFwO5LYoCjBsHvPee+P7oUfFVs6a+7fJQulfILRUUFCA3NxctWrRAmTJlzNYtPXjwII4fP67ruqUM5ERE5A3Gjh2L9PR0bN26FSEhIVi1ahU+++wz1KlTB8uXL9e7ed7nZiAPQD7SL+az2EOucf68WE9b0hrITXu7eFuFPDpabNPTnft5GcivXHFJ84okq+OdOwNVqojLvtplPT8fmDwZWL/euZ9/9VU1jJcvL7a//uqSpvkiXSvkEyZMQM+ePVGtWjVcuXIFCxcuxC+//ILVq1cjMjISI0eOxPjx41GuXDlERERg9OjRSEpK0m2GdYCBnIiIvMP69evx/fffo2XLlvDz80NCQgK6d++OiIgITJs2DXfeeafeTfQuN7usAwDycpGTE4qyZfVrDvkI0+q4te+L4s2BXPaAdTSQywq5Xl3Wd+0S244dgXLlxGVfrZCvXQu8/DLQqBGwZ4/2n//8c7GdMQM4exZ4/XURyB96yKXN9BW6BvJz585h6NChOHPmDCIjI9GkSROsXr0a3bt3BwDMmDEDfn5+GDBgAHJzc9GjRw988MEHejaZgZyIiLxCdnY2KlWqBACIjo7G+fPnUbduXTRu3Bg7duzQuXVeyGQ4nOi2zkBOLiADuJ+f+HBZnC7rvh7IbVXI3RXI5e+qVi216uurgVy+ro4f1/6zeXnAkSPi8qBB4lgykJNVugbyuXPn2r0+ODgYKSkpSElJcVOLisZATkRE3qBevXo4ePAgqlevjqZNm+Kjjz5C9erVMXv2bMTFxendPO9TpozxYhByceYMUK2aju0h3yBD3i23AH/+KQK5oohZxIty7hxguvKQt40h99ZAXqOGet++2mVdVsUzM8WQitBQx3/28GHR5T08XCxvV7asCFBHjgCnTgGVK5dMm72Yx40h93QM5ERE5A3GjBmDM2fOAAAmTZqElStXolq1apg5cyZee+01nVvnGm6dZd1gMFuLXGvPYiKr/vtPbOWyX5mZjoc8y67EzlTIr10Dpk0TE5aVNFuBPDPTsQ/Wruiyfu2aqOBqlZsLnD4tLteooXZZT08X4dPX7N2rXraz3LRVBw6Ibf364v9mZKQ6K/1vv7mkeb6GgVwjBnIiIvIGDzzwAB66OV6vRYsWOHbsGFJTU3HixAkMHjxY38a5SHJyMvbt24fU1FT33KHJWuQM5OQS8oXUoAEQHy8uO9ptXY4fl8uHORPIFy4E/u//gGef1f6zWlkGcrkygqKIUK7158PDxdbRQH7jhhgT3bChuKzFsWNiW7as6K4uA7miAJcvazuWp7txw3wpupsndh1mGsiljh3Flt3WrWIg14iBnIiIvFFoaChuueUWVJAfZkk7k7XIGci90E8/Ad99p3crzJl2g5ZLQjkayOU439tuE9vLl7UHzW3bxPaff7T9nDMsA3VwsPgCHOu2XtwK+blzotv04cPA33879jOS6e/JYBBDWCIixD6t3davXgUWLHBfV3utDh8WPQIkBvISp/s65N6GgZyIiLzB+PHjre43GAwIDg5G7dq10adPH5STlR4qmsla5LKnMXmJnByxdnRuruieLavKesrPVyuvMpD//rv2CnmnTkBKiqjWXrwIxMQ43obt28X22DHx4davBGt1loEcEN3W09KKDuQFBeoEas6OITftQbB1K9C0qWM/B6hDC6pXV/eVKycq+1ondhs3DvjoI2DLFsBVk1WPHQvs3AmsXKltvLc1pt3VAdcE8vbtxfbvv8XvgSeGzbBCrhEDOREReYOdO3di7ty5+Pjjj7Fx40Zs3LgRc+bMwdy5c7Fu3TqMHz8etWvXxj53jB31FayQe54zZ4AWLYDZs+3fbt8+teo3b17Jt8sRp08D16+Lamvlytoq5DduqFXeW25R1/TW0m39+nU11OfmiuWpSsr160BGhrhsGciBogN5RoY6VttVgVwL0wq55MxM6ydOAJ9+Ki4vXCiq5cW1YYNY8/vXX4E//ij+8SznJtASyBXFeiCvWBFITBSXf/+9eO3zQQzkGjGQExGRN+jTpw+6deuG06dPY/v27di+fTtOnjyJ7t27Y8iQITh16hQ6duyIcePG6d1U72FSIT92zDfncvI6y5cDO3YAn3xi/3amIWPBAhEQS8r58+Zdfm2RIa9aNcDfX1sgP3RITE4WFiaqtjKkagnk+/aZT3BWkt0+ZGg1GNQQDjgeyGV39fBwdQnC4gRy2VXfUfYCuZYu69Onq6+9jAzx+i2OggLz8f8HDxbveIBaIb+5bKamQH7mDHDling916plfl27dmJb3Dk/CgrEcA0f+gfMQK4RAzkREXmD6dOn45VXXkGEHOcIIDIyEpMnT8abb76J0NBQTJw4Edtll1Uq2s0gEOqXi+vX1UmXSUeyh0dR1V3TbrhnzwKrVpVMe06eBKpUAe68s+jbWoY8LYFcjh9v0kR8OJXjqrUEcsu//ZIM5LJd5cqJsCY5GsitdXeXgfzKFW1tAETvAkd/DlB/V5Zd1gHHK+RpacCcOeKyHFP92WeOt8Gab74Ry+VJrgjk8uRV9+5iq2WWdVkdr1lTPXEiNW4stlrH71t69FExa3uvXo5NBugFGMg1YiAnIiJvkJGRgXPnzhXaf/78eWTe/BATFRWFPGeWAPIQbl32DDB2Wa9SUVQ/2W3dA8jZoM+dE91lbZEhIy5ObGW3YVfbsUNUnTdsALKz7d/WMuTJQH78eNEV/MOHxbZePbGVQVXLWuQ7dph/744KueXYYa2BXJ54AMwr5PZ+95bHAMTtTYNsUeRzU5wu62+/LZZdu/VWNZivXq19jLaUmwtMmCAuyzkRDh1y7ljS1avqa0sGci3ts9ZdXZJd1osTyFesUJ+7n38WY9NPnnT+eB6CgVwjBnIiIvIGffr0wYgRI7B06VKcPHkSJ0+exNKlSzFy5Ej07dsXALBt2zbUrVtX34YWg17LnlWpJE5iMJB7AFkhz8uzH+pkhfyVV8T2hx9EiC/KihXa1k6Wk7QVFBQOvJYsK+SxsWLW8YICEcrtOXFCbBMSxNaZLuuyfbVri607KuTOBnJ5osFahTw/37EhApbPjaPd1rOy1Ps3rZBr6bKelQV8+KG4/NJLQN26QFKS+F0vXOhYOyx9+aX4ncXHAzNmiH3FrZDv2ydOVlSooE5650wgtzZpYsOGYnvkiHNj58+fB/73P3F58GDx97JnjzjBUdyqu+TIiZ0SwECuEQM5ERF5g48++gi33XYb7r33XiQkJCAhIQH33nsvbrvtNsy+OQFW/fr18UlRY29JdbNCXrkCK+QeITMTOHVK/d5Wt/WLF9VQMWgQ0KqVmBTtiy/sH//vv4G77wbuuKPoardkGqSLCnyWgdxgUKvkR444dj9Vq4qt1kCenw/s2iUuDxggtp4cyK39fNmy6mVHxpHLY1SuLLaOTuwmn5eoKPPx71q6rP/5p3gNVakC9Owp9g0dKraffeZcEJQV/gcfBJo3F5ePHSveRHHyxFXjxmpvkvPnHV9Oz16FPCZGPGemE79p8dhj4iRaw4bA/PlilvrERPE/oGNH7fMCWLNhg+iF8eCDxT+WBgzkGjGQExGRNwgLC8OcOXNw8eJF7Ny5Ezt37sTFixfx8ccfo+zND7LNmjVDs2bN9G2oN7lZIY8txwq5R5Dd1SVbgVyGjOrVxaRgQ4aI7zdutH/8r78W25wcYP16x9okK+RA0QHBWjdoWfGWFXBb5PXVqomt1jHkBw6I4BYWpnZN9uRAbrkGOQAEBKjrmGsJ5L16ia3WQG76ewK0dVmXvXjatBEnXgBR5Q0MFFVeZyrbsnt6/frieYmKEmFXdjl3hhza0aiROKa/vzimozPw2wvkBoNaJdda0f73X2DJEtGeBQvE7z0hQcws37q16KXQtWvxZ3CXy7K5eWw6A7lGDORERORNwsLCUK5cOZQrVw5hsosnOedmII+JYoXcI1gu2VdUIJeTSslx1/a6hSuKGsgB4McfHWuToxXyggK1al+lirpfViXtTaSlKMWvkMvu6s2aqVV5uRZ5SZDtkiFWKk6FHNA207o8xu23i2B3+rR5DwtbrE3oBmjrsi4Duel8F9HRQNu24vKvvxZ9DEsykNetK8KuHH5UnHHkpn8rfn7qmvaOdFvPylJPFMm/MUvOBnLZY6RePbHMn1S+PLBuHXDbbaIHwujRxet2LtvVqJHzx3ACA7lGDOREROQNCgoKMGXKFERGRhq7rEdFReGVV15BAd/EnHOzy3rFSAZyj2BZIbcVYk2rfoBahTatZlvascO80vjjj4590Dc95n//2R6nfvGi6AZsMKihBxDjYgH7ASgjQw2gloHc0UndZCBv0UKcEPDzc24t8uvXHevO7KpJ3Sx/PjxcbLUE8oQE9bXgSJXc2pJngLYu6zKQt2xpvl/Otq41kOfkqOFXBnEZgoszjlxWuOUEbI6cIJLkiYBKldTnxpKzgVw+Vvl6NxUWBixaJE6Y7tqlfY15U/KEhGynmzCQa8RATkRE3uCFF17ArFmz8Prrrxu7rL/22mt4//338dJLL+ndPO90s0JeIVx0WT916uYyzrm5xesmSs6RFfKQELF1tEIuu3lfvmx76atFi8T2rrvE8U+eVIP9338DmzYV/pncXDW4yDWcbU04KAN3hQpAmTLqfhmA7AVyGU7KlwdCQ8VlrV3WZSC/5RZx/7JKr6XbuqKI5yc2tugqsbzeMqgVp8s64FyFvEIF0XUccCy8FbfL+oUL6jFatDC/rkMHsdUycSCg/r8pV049SVHcQH7jhjpjuew14cgJIkner63qOFAygRwQv4vBg8VlOXmeVoqitouB3LMxkBMRkTf47LPP8Mknn+Cxxx5DkyZN0KRJEzz++OOYM2cO5s+fr3fzvNPNCnlYmVyEhpr0HP7f/4A6dVwzqRAJGRlizGh+vu3byAp5u3Ziay2QK4oayGVVNDxcdBcGrFfJCwrUQD58uBibCgA//SSqgK1bA507F64ayjATEiImggNsvyZkwJEBXHIkkMvu6vLEAqCty7qiADt3istyMjDZHVtLIP/zT7H01MWLRS8hJkOrXl3Wc3LUyc4qVBAznAOOBeGiuqxnZ9uf5V0+N3Xrmk8KB4h2BASI36m9HhuWZPg1XSVDXnY2kJ88Kf7egoLUXhuOvB4l2X7LExemZNA9elT8Thxl7TVv6bHHxHbRIseXojN15ox4Hfr52T+pUAIYyDViICciIm9w6dIl1LcysU79+vVxyZExj17A7euQ36yQG67nGT+bHz0KtcomK6hk24IFwGuvFX27MWOAgQOBzz+3fn1OjhqUOncWW2uB/ORJEe4DAsw/ZMtu69bGkW/ZIvaHh4sZse+8U+z//nsx+3JOjqgmWo5hl4GkWjW1AlsSgdxatVAG1ZycooPOqVOiZ4C/v/qcOBPI5XrQjvyc3hVyGdACA8XPdOokvk9NdXy9eMugGRmpBgN7/1OtjR+XypZVx0RrqZKbjh+XTCvkzoyjlr/DatXUx6UlkDsSmitVEq9VRSk85MSeoirkgPiba95cnBxx5qSzPHFXp446WaCbMJBrxEBORETeoGnTppg1a1ah/bNmzUJTub6sl9NrHXLk5ho/mx89UqAGMS1rQJdGBQXAI48AL7wgZk22JT8fWL5cXP7rL+u3kaGjfHm1K7q1QC4/ZNerZ+zhAMD+OPJvvhHbPn1EtVsG8i1bzAO25dJkpoGkdWtxeds26+HIkUBuK1RZCz7h4WrX96JehzII1a6tPidaA3lWFvDVV+r3RU2oUFQgz8y0/eE6N1cdWmCrQm5r6IFkOqmcwSAeb9Wq4sTKH3/Y/rn0dHFCByhcIffzU3ta2KvI2gvkgHPjyK0F8jp1xGNLT3fuf5H83Zs+TlcHcsC5buuOBHKDQa2Sz56tPazp1F0dYCDXjIGciIi8wZtvvolPP/0UiYmJGDlyJEaOHInExETMnz8f06dP17t53kmGF5NAfuHvszcHksPxCbVKq7NngWvXxGV7M5xv2ybGd9u7nQyVDRqo3WstA3lBAbBmjbhsOWuyDA3WArnsYiyXx6pWzfzna9USW8tALo+VkAA0aSJeL5cuWT/5IAOOHKMryQCUm6sGQUvWwonB4Pg4cjlxV4MG6j6tgXzRIvOqtL1AXlBgO5BHRoqtotheako+Hj+/wl2+Ha2QW3Z5NxjUnhX2lr+Tv9MKFczXPZeKGkeuKLYndJOcGUcuA7lpr4+QEPV17Uy3dU8N5KarChR17PvuAyIixBj7LVscO77EQO49GMiJiMgbdOrUCYcOHUK/fv2Qnp6O9PR09O/fHwcPHkQH+QGQtJEV8rw8YyDP2W8S6Fght880XNtbbmrVKvWyrXG1srt4YqJ5IJdVZbk+8YwZ4nvL17y9LusyQNepo+4bMEBsBw0CnnjC/HaSaWgIDFTHZ1ubOMxWhTw4WA2dtkKQ5ZJnkqPjyE1PZkhaA/knn4jtrbcW/XOm1W/LQB4crHYPttVtXc5UX7Gi+kFccjaQA2q3dXuBXM4LYKsyKx+PrS7rp06JuQb8/dXXg6X27cX2wAHbs/KbUhTrY8hNv3dVINcyqVtJBfLLl9VhGKZLBFpTtqz6e92+3bHjS5ZzTbgRA7lGDOREROQt4uPj8eqrr2LJkiVYsmQJpk6dioKCAowaNUrvpnknkwp57dri4rUD/6nXM5DbJyu7gOOBXEuFXFaVT54EevQQH8jDw4EpU4BHHzX/eVtd1nNy1PAhZ5oGgAkTxNJnn3/uWIUcULsoyxnNTdkK5EDRIUg+j5bBR2sgN51jQoYwR9Yi37tXVB8DAoDJk8U+exVyGVZDQ62PzS1qHLkMqabLw0muCOTbtqkTvlmSgdxWECyqQi6r4w0bqjPiWypXTg2Bv/9u/TamLl5Ue5DIf0SSrJg7sxa5vQp5Wpr9cekZGWqPDnvdygHtgVy+3itUUFdUsEcOydq927HjA+KxyZN8rJB7PgZyIiLyZhcvXsTcuXP1boZ3MqmQy0ma/U+ZBDp2WbfPkUB+/rz5UmHnzlkPS6YV8pAQ0U0VEFXyzZtF1/h69URofuklUaE0ZSuQy1ASGamODwbE775XL3FSxjSQm4YUywqhrIhqDeT2ugkXFNiu2jq6Frm1Luta1iL/9luxvesudfK6c+dsT45mq7u65Gggl0vJmSpOIK9VC4iPF0NObHVvdmS5LcB2IJfDH4qaeFLLOHIZtqtWLRzyi7P0mb0K+fXr9ieuk89TuXLq78QWefLhv/8c6xFg6wSULc4E8hMnxDwEAQHmPWPchIFcIwZyIiKiUspkUreKFUWeqY7/1OtNK5NpaUBKiu1xsZ7iwgV1DHxJcySQr1kjQm6TJuqYXdOfA0R7//lHXE5MFFvTbuu7donLHToUnpVbkh/uT582f/yyG3rNmmKcsTVyvEJGhhpSCgrUQC7Dvpw9e+dO8+CuKM4H8rNnRTjy8xNh0pQjY8jT09Xl2kwr5KZrkRc1QZsMmV27ijAtx4Hb6rZe3EAuTxC4ukJuOo78l1+s/1xRFfKiuqzLbtO2xo9LMpA7Mo7c2vhxqUkTsf3jD21hxXQNctNAHhSkPkatS/HZUr68eoJCTqBoj60hGrbIQL5nj3hcjrA1+aObMJBrxEBORERUSpl0WQfEZ+gE2KiQT5smxhp/9JEbG6jRjh0i/D35pOM/U1Aglv8qKrRZ40ggl93Ve/a0Pc778GExE3t4OFC5sthnGshlZaxZM9ttqVRJdJ9WFPO2mAZyW0JC1PuV3dbPnxevC4NBvS4xUbxm0tPNw2pmplr11xrI5XMYHy+qeaYc6bIuu6tXqSKeP1P2xtWbkiGzRQuxlScobAVyW2uQS3pVyIGix5EXt8u6XCXA3msRUOc42LXL9mR+krUZ1qWkJNFbxLKnSVHkGuSBgbYnGnRVIAeA++8X2y+/LPq2jsywbqpWLXEyLzfX8a77Ok7oBjCQa8ZATkREVEqZdFkHRCA3q5BfuWIM6zh82Hyrlx9+AFautH7dsmWigrR0qePrFs+fD/TtK8LA//6nLZibBnIZdEwVFKiB/I47bM+ELrurN2igVrGtVcjtLe9nMFg/vgzkslu6LTKwy0AuA0l8vHriJjBQ7Z5r2m1dBpuICOvjiu0FIHvBR0sgN62OSzLwWPZIMHXmjKiw+/mpz69xDUAbr4WSrJDLkwrFDeRbtqgrAJgqKpDbGyZw/rz6OyxqorD4ePGaKyiwvwwbYHtCN0D0dLj9dnH5xx/tH8eUPJmSkFB44jwZ0E+ftv3zWgP54MHifrZsKTwXgyWtXdb9/NSlEB3tts5A7l0YyImIyJP179/f7te4ceP0bqL3sqiQd2ivmFfIAbVSJj+8Wgue7nL6tFhL+847xbhqS3LfuXP2Q5ipTZvE9sYNYO5cUfmzNRO6JdPK65kzoiJnas8eEWLCwoC2bW1XbK3NEi7D2r59asVbdt+1xV4gt1chBwpP7CaPYRkaTLutS/a6q5vul13LTdmrFjoyhtza+HFJtt1ehVxWx+vXV4cUyC7OzgZyOVZfjwp53britZObW3isv6IUHcjlsAFrJ0/27BHbWrWKHlcNOL78mb0KOSD+3gHnArnlWuuAejLBXru0VrFjY4HbbhOXTdezt0Zrl3VA+zhyHWdYBxjINWMgJyIiTxYZGWn3KyEhAUOHDtW7mS6RkpKCxMREtCpqwiRXsaiQVw25gLIQy/FcD4sS18kwJEOhvdnELf34o5goy5GJjqTkZBFUrIWotWvFBxZFAUaOVKv3gAjDpstxOdq9VYaM//s/EeoyM4v+QA2I58w0YObnF36csvIn1/C2FRBNJ3STZBVv9WqxrVlTnejNFmsTu8mArTWQW44fl6xN7OZoINdaIZcnJexVMq2dzJAcqZBbdlcHiu6y7qpJ3Vw9hhwQPSXkY5E9K6SMDHWiOjkMwZIM5NaecxkGizoxJDkysVtBgTp/grUx5IAY7gGI15wjy5UB9gN5795iu2KF7QCktUIOiDXDAdFt3V4PHa1hH9AWyK9eVSvkOgXygKJvQqYYyImIyJPNmzdP7ya4TXJyMpKTk5GZmYlIObFUSTKZ1A2AMcidRhz8Q8ohJitdfPDPzVWDuZYK+bPPirA5f764XJRz58QY9fx8Ma579Gjz69euVS/v3w+8+qpYAgwQ93Plinp9aqq61rYt+flqJWnYMPEB+bHHRNf3558X+8+fF5X3Xr3MxzifPi0+dMtJos6cEScrTEOprLDKgFdUl3XTQC7DmqxwFzVmFyhcgVeUkquQawnk9pY9sxdOZMX033/FCRBrk1PZ67LuSIVcPg5rgdxWhby4Y8hll3V7FXLT17IlRbEdyAFx0uSnn8x7MQDq3265craXLJOBPC1N/H2YzuYvx487GshlhTw1VYREa0t8nTol/r8EBNgOvzExQOvWYjm3n34SJ+OKYi+Qd+ggTm6dOyeOKdeeN+VMIO/fX/z/OHBAPPfyb8VUQYF6UlPLsbUE8t9+E8MVKlfWZYZ1gBVyzRjIiYiISimLLuvyQ+wxJOB0nkl3YdMgdfGiOoHX0aNA+/bm62xLR4+qQdPaMlnWfPWV2u3bcv1iRVED+eOPi+20aeoHVNldXY7BdqRC/u+/alCoVUt0hzcYRKVdfmgeMkTsf+wx86qXDJJVqqjdfy17D1gGcmtd1vPz1Uq6tS7rkr3x45Jl4E9LEx/M/fyK/vDvaIW8SRNxvLNn1deFoxXyjIzCS77ZCz7x8WJMdX6+9XG5166pz3FxK+Sm4akkx5ArSvG7rGdlqTPpWwvk8uSNZYXc1vJypipVEr9faz0+tAbyWrXE7z4vTwRfa+RzXK1a4Un9TNnqtv7dd+I+Zsww//u0F8gDA9Wq+/Llha/Pz1efKy2hOSJCrb5PnVp4CAtgvqqArb8Xa+QY8jNnil4GUPaquf122ysrlDAGco0YyImIiEopiy7rMsj9h+r494rJklOW3Vdl8PzsMzEG+7XXCh/b9IOzDD1FWbBAvfz77+YfsPfvFx9Gg4OBt98W1agbN4AXXxTXy0AuP7j/+WfRH25kwGjYUFQC4+LUatn334sJmtatE99/8ok4ASCZVnZl91/LQG5ZnZYf7k+cUNt29Kg4IRIcbB4eLAO5lgq5DOTy/qtVE5Nj2SMD+enTwOXLavd/GU6l0FC1Gi1PtBQVyCMjxeMzva1kr0JuMKj3JceKm/rnH/E8RkVZ7/4tn+8LF6yv/X72rPidGQxqV3xAfR7T062H6uIE8vR0EcgA5wO5rI6HhFivdMvXiuUyWaYnkWwJCLA+VODGDbUbtKOB3GAoehy5DORF9eCQf9c//2w+VGX+fHHiafx4MSmj/F9mL5ADwN13i621QJ6WJh6v/J+gxdix4jlcuhR49NHC/4NMJ0u0dwLCUni4+jdaVJX855/FtkcPx4/vYgzkGslAriiOT0hKREREPsBGhfxCaALOFZjMcG0ZNGX1SI793Lq18IzOpoH88GHrSx/duKF+YN27VwS8MmXE1+nT5mN4ZXW8QwcR7mQ4/vFHcXwZyP/3PxFUMjOLXiLIWsWvb1+xXbZMvQ/ZdfqFF9RljawFcsvu/JYV8sqVxQevvDy127Lscl2vnnn3YGcq5KYVeC3d1QERLuUwieeeE8G5alWxNrcly27rRQVyg8H6OPLsbPV5sFWJlIFcPk+mTMePW6sERkXZXvvdtP316plPUhYWpq6Bbm0ceXECuaw6R0SoJylMyXZcv26+nrwpe93VAfH7Dg8Xf9emJzKKmtBNsjaO/J9/xPHKlnXs9SQVNY7c8m/ElubNxdCH7Gz1WIoiTppJn34KdO8unndra5Cb6tlT/L39/Xfh3hcyNFepYv436Yi2bYGFC8Xf+SefAJaTjmqdYd2UI93WT50S/0sNBqBbN+334SIM5BqZrgTAQE5ERFSK2BhDHlC7Oi7ApMu6rUAul0Cz7JKanQ1s2CAuy3GjluNZ8/OBzp3Fh//Vq4HPPxf777xTHc9r2m1dBnL5IbNuXTGuW1GAl19Wu323b69WO4vqti4ndJPdQQGgXz+xXb9eVM8MBrF9+mmx/7HHxMkH05mSrVXI8/PVSrUMGwEB6m3lddbGjwPmgTwqyrEP8FWqiPbm5org5+iSZ4D4OXm7OXPE9qWX1NeIKfn8yt9pUYHc9DrTifD27BG/v7g42+HSWoX8+nXRO+OFF8xvY+0xmfZKsGRtQjfJXrd1GcidGUNub0I3QD2BANiukhcVyE2XcDPttl6cQC5PXjVuXHgZMXtkIP/jD/NqveRoIPfzE0sHAmqvlf/+E/+fypQRJ9AiIkRY79zZ9hrkUnS02rYVK8yvc2b8uKl77gHk3CczZ5qfjHBmQjfJkUAuq+OtWtl+fboBA7lGpn9T7LZORERUilh2Wb9ZDQxtkIDzMOmyXlSFHDDvkrp+vQiFCQnqh2jLceRLl4ru7mfPimD9wQdi/9ChIlQDaiC/fh345Rdx2bTqM2aM2H7xhdjWrSs+hMpZ6lNTRaV8yBAxEZQM4JK1CnmdOqILuxz/OWCAqKC+8YYIMleuiEBgWumyFshPnxbtDggwD0CW48htBfLQUHVN6qZNHRsLWqaM2pbt27VVyC1vV7Mm8NBD1m+ntUJuep1phVwGenvd8S0DeW4u0K6daNvhwyL8Dhtm++dl8LE2sZtsv7XJt2wtfaYoxauQ25vQDRAhUvZccTaQA4VPmgDFC+RaZ1iXGjYU4Tc72/pcEvI1WlQgB9TeGjKQy+p48+Zinoe1a8XfjGyrtTXITclu60uXmlclixvIAfF/bMQIcXnu3MLHdiaQy7+T33+3Pj4dMB8/riMGco0YyImIiEop0y7rimKs2lZsZVEhlx/M5XjVU6dEKLl8WT2WaRVIdlc3rXabjiNXFGD6dHG5dm3xASQrS3xw79WrcCBPTRVBuFw58/DWvbv5ZF5JSWIrA/mWLcC99wJffy26szZpIo5/5oy4PxkGTCvkgFolB4AJE8TWz0/9AP/990WPIZfHTkgw7/ZqOfO3vWW7ZBXVke7qlm1/8UW1B4Ojgdy0kj5pku1x582bi8d07BiwZo06HEFrIJfVW0cDuaKIEz+pqaJr9xtviOexUyfbP1/cCrlll/XMTDUMyfXGLclAnplZ+MN1URVyoOhx5I4EcmsTu7miQq41kPv5qZVo01USJEcr5IAayHfsEP97ZCCX8z60aiVmYZf/p2x1V5fuvluc6Pr1V2DUKPXEpCsCOSCGzwDA4sXitQCo/xecCeRdu4rX1tGj4n+Qpfx88fcI6Dp+HGAg14yBnIiIqJQyrZCnpxs/NFbvWM1YIVdMK+QtW4rtyZNqdVyGzU2bRJdURSk6kP/2m+jiHhwsfi4lRYSQ8eNFm9q2Fbfbt0/M6i6Pd9tt5h9cDAa1Sg4UDuSpqcDKlaLbfJ8+4mdXrhSztP/9t2hrbKw6XlgaOlR0HR4yxLx6ajoRlGmly9os67aChunEa4qiBnLLCjmgBn3TCceK8tJLokq4c6foJgw4HshlG+rXB+6/3/btIiPVpacefVRsg4PVMejWWFv6TIZFe4+vdm3xGrtyRfysrI727y+W0pO9CGyxVSE/c0bss5zQTZK/NxmgJFkdDwmxvowXoD4PiqIGMamoCjngmkBuWiGX1V89AjmghkNZvZVyc9X7cOQ1Wrmy6K1SUABs3KgG8jZt1Nu0by/+Phs2tN3DQ6pZE3j3XXW8d/fu4vftqkB+663ib+nqVWDRIvG7+OGHwm12VFgYkJwsLr/xhvp73bIF+PhjMdP8pUui674zx3chBnKNGMiJiIhKKdMKuawEVqyI2k3LIiNAfNjPP6sG8n8rtha3OXlSrb62bSuqNtnZ4gPnli3i+pAQoEsXNdAeOqSurfzWW2I7bJgIJo8/Lqqscsb0ihXVyuiLL4oPnwBw112FH8ODD4pgYjColdLatc3D4eefizGmqaki3C1bJk4CANYDRp064kSAHNcude4sAuDZs2owM62QX7miBjBbs0ebVshPnhShKyBAtNnSlCliLfZBgwpfZ0vFisD//Z/5PkcD+b33Am++KQJNUZNZTZokfscysMbF2e9Wb1khv3FDDXn2KuSBgWrl/sCBwnMJFMVWhVyOtW3RQgQYS7JXwsaN4rUtFTV+HBAnlWRYt+y2bm/JM0meZLAVyGWotxfIExPF6+ryZfHYMzPV16bWQC6PARTuTeIIGcj/+MP8BIU8KVW2rP3HYkpWyU3XWbdcR/y228TEZvfdV/TxnnxSjCEPDxeV8tq11RMHzlSxTRkM6omrTz4R/+cKCoDBg50PzKNHi9fXtm2ivR99JE5EPvII8Mwz4ja33Vb0qgoljIFcIwZyIiKiUkpWyBVFHV+dkIDAQCCipviA7HdJDeTPLTEJ5LJCXq+eurTR2rVqxXTAABFKKlUSAUBRREV0/37xAdhgEBVxyXKsp+y2Pnu26Io5dCjwwAOFH0NoqBhfvmaNGuL9/MSHUkAsyTZggLh8yy3Aww+LyzJs2woYQUGFQ2lQkLp+MSAqVpGRYitDnayS2xoba1ohl8tI1alj/QN0x45iUihrS1vZM2aMGiYiI213rbYUGCg+1NepU/Rt4+PFEk9SUctDWQbyQ4fE5HhhYUVPOid/r5s2qT0t5O+3KLYq5DJ02era26aNOJGRlSXWupYuXhRbW+PHJVvjyIvbZf3qVbW7sr1wHBQkqsSA+LuTr8uoKPMZ5a2xDOTyxEnVqurj0qJmTfGaunFDzC8hmfYicXS9bPl7//xzMUdDxYqOdXe3p1cvcSKxRw/xf0pOcllUl3dHPPig+D+ybZu4j7AwsWyjs2JigOHDxeXhw9X/t+3bixOgnTsDzz9f7GYXFwO5RgzkREREpZTpDNrvviu23bsDAOKb3AzkN64b13DeBhHIlbNn1cnIatdWx4hOmSI+vFeoYP6hU3ZbX79e7Qrdp4+6nJg17dqpl/v0ERMj2ZqgqWHDwgFt7lxREZdjwKXJk80DidYuuH36qJerVlWDhOU4cltd1mXF9q+/1Iq/te7qxRESoq4N7+iEcM549lk1mBYVyGXI++8/MURCVjebNi161m4ZyD/+WASmxET1eEWRgfzECbWLb0FB0WNtDQZxEggQM7pLRU3oJskKuOnEh4C2LuuyR4mphQtFl/Vq1YDeve23QfY82LnTsTXIJfncnjsnQq+9ye8cJSd3NO22rmX8uNS5s9jKZRZvvdU1r+/ERGDVKrFawzPPiJUbXPF3GRNj3rPn5ZfV/xXOeuop8Tcjn7+xY0W1fP16sbpF69bFO74LMJBrxEBORERUSsku64D40B4YKLpEAqjXLARZUJdguohyOIGqyEUgDHJyLUBUvmQglx+SZ882Dxzyg/zkyeJ+KlUSXaPt6dVLfHDt3VtMyhYQoO2xRUWpY95NxcSIIClp7YLbq5faFtMxprYCuWV38Ro1RNVaUUTlPzra/izhzrr/fjFe3jRMulpUFPDqq+KyHL9vS2KiGEeekSG6xDsyoZskA7kcA61lfWUZyLOz1UkId+4UoTY8vHB3Z1MykK9frwZaRwO57Fq9cqX5fq0VckVRTyQoihgnDIi/06L+JuQ48vXrzdfWLkqFCmqPjbQ0+5PfOUqe+Fi1Sn08WmZYl8qXN3/N2Pv9OaNuXfG/aeJE153IklXsJk2M/1+LpXZttTv+E08A77xTcifdnMRArhEDORERkWdISUlBYmIiWslJyUpaQID5B7kHHjBWOhs3hjrTOoDTiEf1Gn44hZvBU64nXbu2+OAv10++9161i7hk+kG+XDnRtb2obtGVKokQtHy5mDDMlcaPFwGxVi21W6+joqLUseqmY0xNA/m1a2p3X8uwERoqKvdr1oiAefFi0ZVOZxgMoirpim639jz6qHjM48bZv12ZMuoyUB995NiEbpLlOuOOdlcHRG8BOT5ZhmpZpe3a1f5Y2xo1xMkmRVGHODgyhhwQExoCIpCbfsDWOqnbuHHitp98Iv5u/v5b/K3JGbztuf128Tf+66/q/AyOBHI/P7XHw+nTrgnknTuLE37//af2GnCmQg6Y//51nrzMIXfcIYZbrF/vurHdH38sei7MnOlxYRzQOZBPmzYNrVq1Qnh4OCpVqoS+ffvi4MGDZre5du0akpOTUb58eYSFhWHAgAE4K/84dcBATkRE5BmSk5Oxb98+pKamuucODQbzKvnTTxsvNmoEdS1yAKdQGY89BuRWtPhAX6uW+JD58svAXXdBeX8Wvv1WnfMNgPjQHBoqKsNr1jhelS6pD5ply4oPswcPmj9+Rz39tKhwmp54MA3kcoK8sDDrwa1OHVHlrVzZIz9MaxYfX3S3c0CESINBBEs5A7yWCjkgxuPaW+bMGsul5ooaP25K9l747DMRzB0dQ96+vfj9p6Wp3fOvXVMnNXOkQr5lC/Dee6Ka//DDwMCBYv+IEY6N5W7QAPjiC/Gcy6zhSCAH1G7rBw+KL6B4gbxsWXWuiVWrxNZWL5KiyN4HBoO6ooKna9u26JM4WoSEiJNZHvr/Q9dAvnHjRiQnJ2PLli1Ys2YNrl+/jttvvx3ZJrMzjhs3DitWrMDixYuxceNGnD59Gv3799etzaa/RwZyIiKiUkaOI+/d22wt7OrVgct+aoX8FCqjRw+gSht1/GN6aDwKQm5Wxp96ClixAkt/LY977hFZ58aNmzesUEGMmT5woHjjUF3J2qRtjrrjDhG05LhYQK2Wb95svv63h35g1kWNGqJqCwA5OeL5d6SHQnS0GmBbt7a/vJo1puPIMzPVkwGOBPKBA0X4OXRITMzlaJf1oCC1a/1PP4nt+fNiGxho/zHIQP7tt2Jbv76odGdmFl7qryiDB4tqqqQ1kK9cKU5EVK5s/ySCI0y7rQPOV8i7dhWTK44da32GfNKdroF81apVeOihh9CwYUM0bdoU8+fPx/Hjx7H9ZlePjIwMzJ07F++88w66du2KFi1aYN68efjjjz+wRa6lpwN5UpOBnIiIqJSRH7xNx1VDfDa4Ea0G8sywymjcGAivr36g35VTB48+av75QX72//df4KuvTA5Yq5a6FrUv6t1bXf9bTiRX3NmffdEjj6iXExMdH44gq+Raxo9LphXyDRvEmaJatRyrzEZEiDXPAVEldzSQA2q39R9/FFvT7ur2TtRYzoK+aJE40dOli1hurqhZ6S39739iksOePc0nJbTHNJADxauOS/L5WL1anBSRz6XWv5PgYHGS4513it8mKhEeNYY8IyMDAFDu5h/t9u3bcf36dXQz+WdSv359VKtWDZs3b7Z6jNzcXGRmZpp9uRoDORERUSn17beiC7FcZsxEQKzaZb1co3iRIUwqbEdQG3PmiPmPALGSl1zeGRATfZeazxaVK6sTbu3dK7YM5IXddZc6PtmR7urSs8+KHglygiwtZIX899+Bl14Slx2pjkuy2/rXX6vLtjnS/Vgukbdtm6iOO7IGOWAeyPv1E5OBtWwpxiBPmuR4u02NGCFCrKPrfctAfjPLuCSQJyaKkxsFBcBDD4l9FSoUvQwbeR2PCeQFBQUYO3Ys2rVrh0aNGgEA0tLSEBgYiCiLcR8xMTFIk5OjWJg2bRoiIyONX1WLu0i9FQzkREREpZS1JcNuCk1QP7zXaH+zq7pJIG92j5iY7Y03xFxT8+eL3q233iqGuB44YL6Es88bMcK8G7vWsbGlQZkyam8MR6u1gJjdfuVKx5c7MyUr5Js2AXv2iBfn4487/vNdu4oTLpcvqxOcOVIhr1xZLOumKKKbtiMTugHmAVWe7XI3y+fZVUNNpk0TQxXkxG48aeWTPCaQJycnY+/evfj666+LdZwJEyYgIyPD+HVCzhDpQgzkREREZKlcHTWQN+lZOJC3GFwbffqIHsCPPw7Mmyf2jx6tru7z2mvqKkc+z2AA5sxRxwfXq6dvezzV2LEi3FrOxl9SatdWLw8cCOzfr212fX9/4MEHzfc5EsgBtZv255+rs7wXNRa7aVOxve8+bb0IXMkykLuiQg6IZcVMhy3wpJVP8ohA/sQTT+CHH37Ahg0bUMXkjSs2NhZ5eXlIT083u/3Zs2cRa2NcVVBQECIiIsy+XI2BnIiIiCzVulXtsh6VePMDuumkUHXq4L33xJxXv/4quqxHRYletmPGiImVd+4UE6uXGlWqiH7706c7N965tHBklnBXueUW4IMPxFjuxYudm8vAcq14R2fMHjhQnKhZswaYMkXsK6pCnpQkZuovyTXki2IayOPi1GEGrjBxotoLgBVyn6RrIFcUBU888QSWLl2K9evXo4bFi6xFixYoU6YM1q1bZ9x38OBBHD9+HElJSe5urhEDOREREVkKqnyzQh4QoIaI2FjxVa4cUKcOEhLUYbmAWMo8JETklaFDxb5vvlGv37lTTLS9Y4d7HoMuWrcWS6M5shQYlTyDAXjsMdHt3Vn164vfqxQd7djPNW8OLF0q/iDy88U+R2YrT0gQf3d6MQ3krqqOSzExwNtvi/HjWoYtkNfQ9T9fcnIyvvjiCyxcuBDh4eFIS0tDWloarl69CgCIjIzEyJEjMX78eGzYsAHbt2/H8OHDkZSUhFtvvVW3djOQExERUSH16oklmpo3Vz8s+PuLNL17t0jeECueNW4sbmraG1VOTr18uZpF/u//RLHwmWfc+DjIK1y44OHDG2SVPCTE+Np3SJ8+Yux6z57ij6Rt25JpnytFRakz4Ls6kAPAqFFiojsd8w+VHF0D+YcffoiMjAx07twZcXFxxq9FixYZbzNjxgzcddddGDBgADp27IjY2Fh8p/OMJwzkREREVEilSmLypbVrzffHxZl1XQ8MFBNYHzwI3JzHFgDQqZMYTn3+PLBli5igWs7Cvn69mPSNCBArYVWsCLz8st4tseO++8SZp0GDtP9sXJyY5TwzU3RJ93QGgzo7fcuW+raFvI6OfTtEl/WiBAcHIyUlBSkpKW5okWMYyImIiMgqOUN1ESIixJepMmXEKldffgksWyZ6qpp+1pg9G3j3XZe1lLyYPFHz++/6tsOuqCjgr7+Kd4ygIJc0xS3eeEOcOdOyRBwRPGRSN2/DQE5EREQloW9fsV22DFiwQFyWXdnnzweysx0/1vXrojj58MMe3rWZNJNLt588qW87yES/fsD774sza0QaMJA7gYGciIiISkKPHqJL++HDYhhtUJBYGaxWLSAjA/jqK8ePNXeumCT7k0/EjO7kO/7+W2xPnuTJFiJvx0DuBAZyIiIiKgnh4earf919t5ig/bHHxPcpKY4FsOxs8/HFmza5tp1U8r74Avjll8L7L18GTp0Sl7OzAYvVgYnIyzCQO4GBnIiIiEqK7LYOqBNVP/SQmMR51y7g+++LPsZ77wFpaer3DOSOW7AASEwU8/Pp5dAh4MEHxZJ3f/5pfp2sjkvstk7k3RjIncBATkRERCWlTx8xH1bt2iKQAWJZ5vHjxeUxY+yPJb94UcwvBajjzz168i8P89VXwP79wA8/6NcGOaP+9evA4MFiuIIkx49LDOSqhQuBe+4Rk7MTeQsGcicwkBMREVFJqVQJ2LcP2LrVfH6oF14Qk7gfPw689hpw7hwwYgTQrp3YJ73yiggkTZuKOaYAEeLYtdkxV66I7YkT+rXh33/NLz/yiDpUwTKQ69lOT6IowLPPAt9+K4I5kbdgIHcCAzkREZH+UlJSkJiYiFatWundFJeLixNjx02Fhoqu6AAwfTpQvz4wbx7wxx/A8OHic8nWrWoIf/NNID4eqFlThJUtW9z7GLyVJwTyI0fEtls3ICAAWLRIfAFqIJfL5rFCLhw9qo6tX71a37YQacFA7gQGciIiIv0lJydj3759SE1N1bspbtOnD9Crl+jKfPmyqIKHhorlj999Fxg5Unw+keOPAaB9e7HlOHLHeEIglxXye+4BJkwQl+WEfjKQy8n/WCEXfv1Vvbx+vfgbIfIGDOROYCAnIiIiPRgMwOzZwMCBwIwZYsKvN98U1z31lJjwq2JFcZ3Urp3YMpA7JitLbD0hkNesKbqr+/mJeQA2bxZzBBgM6gkXX6iQT5oEtGxZvOd840b1cmYmsG1b8dtF5A4M5E5gICciIiK9VK0q1hcfO1Z0Z37sMaBrV/X6WbPEJHCSDORbt6pVQ65dbZuskJ85o0+VtaBAdL8GRCCvXFmthj/3nNjWrg3UqSMue3sgVxQxFGP7dtHDw9nXpqyQx8aK7c8/u6Z9RCWNgdwJDORERETkKfz8gE8/FUt1Pfyw6OZsqkEDMWt7Tg7w6qtAo0Zicrg9e3Rprke7cQO4dk1cVhTg9Gn3t+HMGSA3F/D3FydfAGDoULGVs+U3agRUqSIunzjh3SdYjh9XZ5Ffswb45BPbt1UU4L//Cj/ekydFrwI/P/WkhRxHvnWrmPzQdBlAIk/CQO4EBnIiIiLyJAkJorv6xx+L7sym/PyAtm3F5ZdfFrc7eVJUXeXyWiTI7uqSHt3WZXf1atXUWfb79QPCw9XbmAby7GzzZdFcYeVKsfSbO+zaJbb+/mL71FPAsWPWbztrFlCjhjq5oSSr482bi+EcAJCaCuzcKeZcmDfPftAn0hMDuRMYyImIiMib3Hmn2EZFAZMni+By7pzo6n74sJ4t8yyyu7qkZyCvWVPdFxpq3vOhUSOxT87E78pu69u2iRAr17Avabt3i+2QIWJ4xZUrwPjxhW+Xnw+89Za4bBmuZSDv1EmcqEhMFJ/Tu3QBLl0S15XECYbDh0Wbly93/bGp9GAgdwIDOREREXmTRx8VoeXoUTGB1s8/A40bi+7R7dpxAizJUwM5AAwbpl5u2FBsZZd2V7bzxx/F9sABMYFcSZOB/JZbgHfeEZfXrSvcLf2nn0T3dkD08jh4UL1OBvKOHcVWTniXkaH2GCmJ3iCLF4tlB2fPdv2xqfRgIHcCAzkRERF5Ez8/oEMHUSEHgAoVxHjdZs1EpbxzZ+Dzz8UY5R9/FEG9NPKkLuu1apnvb99eLHvXo4dYgx5Qu627skK+Zo16WXYnL0nyPpo2Fa/HgAARpC2fe8vQ+913YnvunFr9lkv89eghtn5+ops7IAK5qz+7y94l3j6xHumLgdwJDORERETk7WJiRGWxVy/g6lUxcViHDsBddwG33aZ36/ThyRVyPz9g2TJg1Sp1vLWrA3lGhnlviZ07XXNcWzIz1cfbtCkQGCgmIQSAv/5Sb3f0qBjXDgDPPCO2MpAvWya2jRurqwvcfjvw0kvA11+LiQ4DAsSkhqdOubb9MpBzLXgqDgZyJzCQExERkS8IDwe+/15MpBUfL5bT8vMTFcfSGDI8OZBb4+ou6xs2iLHa0o4drjmuLTJ0V6mihukmTcyvA8RkhYoiJiJ8+mnxGv3zTzFx24QJ4jYPPqje3s8PmDJFjLsvU0a8rgHXd1uXgTw9vXDvCiJHMZA7gYGciIiIfEVAgJgs69Qp4J9/xIRvALBpk77t0oMM5JUqia27A3lOjro8lyOB3NUV8rVrxVYG2JKukMvx402bqvssA3leHjB3rrj82GPid9Ohg/i+Z08xaVuzZsDYsbbvR3bxNx13XlzZ2ebL4rHbOjmLgdwJDORERETkq+QSaX/8oW879CCrnImJYnv+vLouuTscPSq2UVFAdHTRt3d1IJfjx59+WmwPHhTBs6TIQN6smbrPMpBv2iR+DxUrAr17i30DBojtxYvic/knn6hLxFkjA7krK+SyJ4NUGnuUkGswkDuBgZyIiIh8Vbt2YmstkO/cKdbH/vRT97bJXWSFvFo1sawY4N7Kp5bu6oB5l3XLWcm1On4cOHRIjE+/914gLk4cU4bmkmA6oZskA/nBg+JkyKpV4vuePc3XZZfGjwdatLB/P/Xqia0rA/mRI+bfM5CTsxjIncBATkRERL5KVsh37SpcHf3oIxE8nnpKTMjla2QgDw8vmSXFiqI1kMsKeVZW8X8fsjreujUQGakOXSipbus3bgB79ojLphXyuDgxnrygANi3Tw3kd9yh3qZKFeD558Va6S+/XPR9lUSFXI4flxjIyVkM5E5gICciIiJfVbWqCDz5+YXXJ5ehLT0dSEkRl8+dA+67D/jqK7c2s0TILuveEshDQ4Fy5cTl4rZT/m67dxfbW24RW1cH8hs3xHwFO3aICnjZsuZLvBkMapV81SrRdd1gUNslTZsGLFmi9mSwR1bIT50qPHGfs2QgDwoSW44hJ2cxkDuBgZyIiIh8mbVx5EeOmI+bfftt4MIFsTb2V18B//d/RR/38mUR4D2Vt1XIATVsFnfM/969YpuUJLayQu7KmdYLCkTQr1IFaNNG7GvcWP1sLclAPnOm2LZqBVSo4Pz9RkeLZf4A0S3fFWQgv/VWsWWFnJzFQO4EBnIiIiLyZdbGkcsKatu2YhbuixdFaNuyRez/7z9RObeloEAct0EDEcw9kbVAfvy4++5fztpdubLjP3P33WIr1+V21oULYhsbK7ayQr53r5jp3BUOHFC7qQOi8j1oUOHbyUB+9qzYmnZXd5arx5HLQN6li9gykJOzGMidwEBOREREvkxWyDdvVj/vyEDesyfwwgvi8smTYtm0iAjxvena0ZZSU8X65pcuAdu3l0y7i0t2WQ8L06dCLnsPyGquI/r3F9t16+yfELGnoEAN5BUrim1CgqgsX78OzJol1vVevty540tyKb3OnUXIz8oCxo0rfDsZyKWePYt3v4Brx5Hn5qonajp3Flt2WSdnMZA7gYGciIiIfFnTpkBIiKhkHzggxv2uXy+u694duP9+oE4d8f2HH6qhRM6abc2KFeple8FdT3p2WVcUsbwXoIZiR9StCzRsKH5HP/zg3H2np4s5AwC1a7jBoHZbf+opYNIk4J57xFrpzvr9d7Ft107MmG5r/Hdiovp5OzpadFkvLlcG8v/+E7+vsDB1hvfMTN+c6JBKHgO5ExjIiYiIyJeVKSNm2waApUuBP/8UoS0qCmjZUlz/yy/A1q3A//6nBjd7gdw0LDKQW7/v3FxxWUsgB9QquaPd1kePBnr0ECEeUKvj4eHqJGUAMHKkaMsttwCBgaKqXZwu/LJCLodE2BIaqp7wuf12sRRbcbmyy7rsrl67tgjlcs14T+q2vmoVMGSI5w4PIRUDuRMYyImIiMjXyZD34otqt+LbblPDUXy8GtrlslW2ZuQ+ftx8PWtPD+RhYepY6owM142htkd2Vy9bVnxpIX9Xq1YVXqrOUkGB6NXw889iCAFguzJ/332iXdu3q4H22DFtbZPOnhUTAxoM6sRx9nTtKrbWxpg7Q1bI//lH7Q3giNzcwp/5ZSCXs8PL5ec8KZBPnQp8/TWwcKHeLaGiMJA7gYGciIiIfN3o0eILUCdus1x6SpKB/O+/rYfXH38U22rV1NvJ6qx04wYwYYKoyOvFdNmzqCj1M9/FiyV/3850V5eaNgVq1ACuXgVWr7Z/24wMNZCmpTl+3wkJYutsIJfV8UaNxHNblOnTxQzv8mRDcSUkiJNJubnq4y7KlStA9eqFX/emFXJA7U3hSePI//lHbP/8U992UNEYyJ3AQE5ERES+zmAA3nsPGD9e3WcrkCckAJGRYgIwWXU1JburP/qoqP7m5RVefur774HXXxfdpLVUMF3JtMu6nx9Qvrz4XnbpLkmyQl6pkvafNRjU4PrNN/Zva/pYZDCV++wtLSZPpjjbZd10/LgjypZVh0K4gr+/6NUBOF7J3rtXPEfr16szvgO2A7mnVMivXFFfTwzkno+B3AkM5ERERFQaGAzAW28Bs2cDH31ke31sg0GtkluOI8/OFjOAA2LN8saNxWXLbuvffy+2ly/b7vpekvLz1QnLwsPFVgZUTw/kAHDvvWK7aJH6fFtj+ljOnBFbd1bIHQ3kJUFrcDateMv2A54fyOV69gCwb1/RwxhIXwzkTmAgJyIiotLCYAAeeQQYNcr+7WwF8nXrRDfhGjXEGuRySSvTQH7jhtqtXf6Mu5mGlrAwsZUVcnd2WXc2kLdsKXogAMBDD9mezMtahbykA3lOjuh+DgDt22v/eVcpTiCXFf6sLDHLOqAGcjmG3FO6rB85ol4uKLA/2aKrKIqYVFC+lshxDOROYCAnIiJyrX79+iE6OhoDBw7UuynkJFuBfP58sb3rLhHurQXyTZvE+uTS2rUl1Eg7ZHf1gAB1pvGSrJAfOKCu7Q6oFXJnxpBLb70lQuLJk8ATT1i/TXG7rDsTyFNTxUmX+Hg12OvBFYF89WrxWGrXBipXdu64JU1W8CV3dFtfsQIYMADo27fk78vXMJA7gYGciIjItcaMGYMFCxbo3QwqBtNAriji8v796iRtjz0mttYCueyuLmdt//134Nq1kmxtYabjxw0GcbkkA3nv3mJJLxmeittlHRDjrr/4QoyXXrjQek+D4nZZP3Wq8IR8RTHtri6fWz0UJ5Dv2CF6UcjX6t13q4/F9Ljyta8nWSGX67y7I5DLv+c//hBf5DgGcicwkBMREblW586dES4H7pJXSkwU65Onp6sTf735ptj27Su6qwPqGPITJ0S3akVRQ85zzwFxcSKMu/tDvZxhXXZXB0oukGdlqUH877/Ftrhd1qU2bdSlwuTs+Kac7bIeGyt+v/n5wOnT2toke03IEy56KU4gz88XJxbk0Io+fdTrZKU8O1u8/vUmA3nv3mLrjkAuu/EDwNtvl/z9+RIGcicwkBMRUWny66+/onfv3oiPj4fBYMCyZcsK3SYlJQXVq1dHcHAw2rRpg23btrm/oaSrwEARygFgzhzRtfmLL8T3zz+v3i4qSu3+vGePCKT//iu6id9+u1jrHHD/OHLTCrlUUrOsm3YpPnpUbF3RZV2Sa4bLY5uyViF3pMu6n58aaLV2Wz9wQGzl60Mvzgby6tXF9o03xNCK8uWBtm3V24WGqq8Va8+5u8nX1+DBYnvwIJCZWbL3afq4ly41H8dO9jGQO4GBnIiISpPs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXMyYQBo1qwZGjVqVOjrtNZSG4Dc3FxkZmaafZFnkAHg1VdFNfTGDaBLF1G1NSW7rf/xhzrGvFs3UZ32pEAuA6qrJ3WTa0QD6ozYruiyLtWoIbamVUvJNJBnZIi1yx1dA112W9ey9Fl+vrrEXf36jv9cSZCBPC1NLL1nT0GB2hNAzmC/fr3Y3nWXmGvA1C23iO1zz+mbEfLy1BMOt94qTn4pimtWLjh/3vZQEvlai40V9/fuu8W/v9KCgdwJDORERFSa9OzZE1OnTkW/fv2sXv/OO+/g4YcfxvDhw5GYmIjZs2cjNDQUn376qfE2u3btwt69ewt9xcuFgTWYNm0aIiMjjV9V5ads0t3zzwMpKaJaLgOmaXVckoF8wgS1e6vsAiwDeWqqe7v/ykDuji7rlhXyggL1PlwRyGVFt6gKOSBOCMjl3hwN5Foq5MeOiVn2g4L0ndANEI8vMFAExqLOBZ47J04o+fkBlnNNmnZXl2bOFJXytWuBd94Rv9OFC8Xkeu6YpV/67z9x36GhIhy3bCn2O9ttPTUV6NVLDCWpVEmsDX/9uvlt8vPVkzTTpontp5+aT9ToyT77DHjxRf3G/zOQO4GBnIiISMjLy8P27dvRrVs34z4/Pz9069YNmzdvLpH7nDBhAjIyMoxfJzxlamOCwQA8/rgYu9y2LfDAA0D37oVv16OHejk+XgSeIUPE91WrAnXris9ZGze6p92AOobcWoXc1YHcskKenq5OlOaKLuuyQn78uAhLpiwfy969YlumjPljt8aZmdZld/W6dcVkc3ry81OXKCvq34bsrh4XJyYsjIgQ3wcFWX9N168PvPeeuPx//ydOOt1/vzhB9c03Lmm+Q2RX8Vq1xN+jDOS//CJ6pGzcqG1SvldfBVauVOcbOHAAWLLE/DZyor8yZYAHHxRDE3Jy9FktQauCAiA5WTxOV/QicIaugbyoMWmKomDixImIi4tDSEgIunXrhn9M/4PphIGciIhIuHDhAvLz8xETE2O2PyYmBmnyE5wDunXrhnvuuQc//fQTqlSpYjfMBwUFISIiwuyLPEvz5mICrM8/tz6rdseOIhBduCA+zC9ebF6Z7txZbN05sZu9LuslGciPHgXOnhWXIyNFBbe44uNFOLpxo/Da2PKxyD+bPXvEtmLFomdAd6ZCLgO5nNRPb46OI5fPW5Uq4kRCUpL4Xg6tsGbkSLH01/Xr6mR9psdyB9n7olYtsZWB/IcfxCz3nTsDn3zi+PHk7zolRfRoAURvAFOyu3q1auK5atVKfO8Bsa1IZ86IyfgAYPt2fdqgayAvakzam2++iZkzZ2L27NnYunUrypYtix49euCau9fBsMBATkRE5Fpr167F+fPnkZOTg5MnTyJJfvoln1WlijoRliUZInbscF977E3qlpUlul27imlQuXpVrVK7ors6IEKRDM+m3dbz88XM9gDQqJHYmgbyojgzhnz/frHVe/y4pDWQyxnUH3lEnKAZN872zxgMYkLDBx4QVfKnnxb7nZgqw2mmFXJA9FRp0EBU9uVr2/RkQVHk89ChAzBmjDjRs3mz6MouyUAue2bUqSO2cu4AT2Y6fMSd/29M6RrI7Y1JUxQF7777Ll588UX06dMHTZo0wYIFC3D69Gmrs7u6EwM5ERGRUKFCBfj7++OsLPHddPbsWcTGxurUKvJ2LVqI7fbt7hvXaW3Zs8hItZu1q8YBZ2aqFfHoaLHdulVsXRXIAXUcuenEbnKZOQBo2FBsZSC3N8O6ZNpl3dHfi6yQe2sgl13c+/UTk5rJOQ5siY4WPUNefVU96aFHIK9dW2zLlhUB/OpVYMoUsc/R1/LVq2qPiipVgJgYdYK7999XbydP+sjXXN26YusNFXLTQF4qK+T2HD16FGlpaWZj0iIjI9GmTRu73djcMfMqAzkREZEQGBiIFi1aYJ3JlNgFBQVYt25diVe5U1JSkJiYiFayfyT5jIYNRSXu8mXrM4WXBGsVcj8/1y99JgNAhQrq5HYlEchltdK0Qi4fQ1SUGkzl9Y5UyOXP5OQ4Hup8JZA7Q85ZqWeFHBCVe4NB+xCMU6fEtmxZ8ZoBgCefFNuvv1bHlcu/URnIZYXc2wL5X38VnrDOHTw2kMtxZ1rHpLlj5lUGciIiKk2ysrKwa9cu7Nq1C4A4ab5r1y4cv9lvdfz48ZgzZw4+++wz7N+/H4899hiys7MxfPjwEm1XcnIy9u3bh1TTvpPkE4KCgMaNxWV3Va2sBXLA9ePIZQCoUweoWVNclo/RFRO6SfYCeYUKYgZuU47cd3Cw+nOOjCO/cEG9T1k11Zs7A3lcnNi6K5AXFKjL6JkGcknra1k+R1WqqPMLtGwpusFfvw7MnSv2WXZZl9X5CxfUIRKeyjSQ5+YC+/a5vw0eG8id5Y6ZVxnIiYioNPnzzz/RvHlzNG/eHIAI4M2bN8fEiRMBAIMHD8Zbb72FiRMnolmzZti1axdWrVpV6KQ6kRam3dbdwVqXdUCtkLuqy7qsGtapowaYq1fF1l0V8goV1LAoOXoyQHZbd2Qc+cGDYpuQIKqsnkCPCvmlS7bX73alU6dEqAwIUH9PprT29rD1HIwYIbbLl4utZZf1sDD1sXt6lVwG8jJlxFaPceQeG8jluDOtY9LcMfMqAzkREZUmnTt3hqIohb7mz59vvM0TTzyBY8eOITc3F1u3bkWbNm30azD5BHcHcndVyE0DuayQSyU9htxehdyRMeSAtpnWPW1CN0AN5BcuqCdCLCmK2l27OIE8Olr09gDU7t3FlZtre4JB2V29enURyi05WyG37HDcs6fYpqaKxyWDuzwJBHjHxG6Kogby228XWz3GkXtsIK9RowZiY2PNxqRlZmZi69atus+8ykBOREREVLJkIN+xwz0Tu+kRyE0DDFAyXdZl1RRwTYVcSyD3tPHjgAjJoaHisq3lyEwr2rLS6wyDwbXjyK9eFRPFNWli/WSCnD29Xj3rPy9fy1evinkApPPnrf+N2aqQx8eLNigK8OmnYvb+oCAx6ZvkDRO7nT8vesYYDGK5OqAUVsjtjUkzGAwYO3Yspk6diuXLl2PPnj0YOnQo4uPj0bdvXz2bzUBORETkATipm29r3Fh0I714UdsyW86SXdZ9pUJeqZIInoqiPn+mgdzyvhwN5HJ8sAzb9nhiIDcYiu62LoNopUpqhdtZrgzk338vKrqHDgHfflv4+t27xbZpU+s/HxamrnMvh2CsWyce50svFb69rQo5ANxxh9h+/LHYJiSoGQnwjondZHW8WjUxLh4Adu0SJxjcSddAXtSYtGeffRajR4/GqFGj0KpVK2RlZWHVqlUIDg7Ws9kM5ERERB6Ak7r5tqAgddkoy26k778v1oXOy3Pd/ckKueUYclcG8owMUZUDRGCJiQFCQtTrXRnIDQa127oc42sayMuUMe+m7miXdfk7kWun2yMDeYMGjh3bXRwN5HIN8uJwZSA3GSWEDz8sfL0M5HL2fkvWZlqXi1dt2lT49vbG0ctu67KnhGVvD1kh9+Qu6zKQ164t/h7DwkTvAUdONrmSroG8qDFpBoMBU6ZMQVpaGq5du4a1a9eirgdM0chATkRERFTybrlFbE0D+cmTwNixojK3dKnr7stWl3VXTuomA0BMjLgfg8E8yLgykAOFJ3YzDeSAebd1RyvkMpCfPGl/Bu1r19T79aQKOeB4IC/O+HHJVYH85Eng55/FZX9/EaRlAAdEVVeeJLFVIQcKT+wm22XtubD3PLRta37ySp78kUwr5O4YcuIM00Du5wfcrBG7vdu6x44h92QM5EREREQlz9rEbnPmqJ/BTCuGxVFQ4J4u67L7ruz2Daih2WBQw5KrWE7sZhnI5cRuBgNQrpxjx4yMVGfwtlcl37BBPK/lyrn+RENxyUBuq3rrykAuT3qcOVO843z+uQi2HTsC/fuLfbNnq9cfOSLGhYeEqGHYGsvXswzkJ0+aB+erV9XbWOuyHhgIdOumfm8ZyGvWFK+rzEzg3LkiH54uZCCXS8RZOwHoDgzkTmAgJyIiIip5MpD/+aeYmOz6dRHIpZ9/dk1XYNMJrkqyy7qsaJp2+JTjyMuXF5VPV3K0Qh4dbX1WbluK6rauKMCrr4rLw4apa1h7ik6dxHb5cuvLkXlahVxR1JNPDz0EPPaYuPzFF2rPDvnaatTI/uvI8vUsZ5PPzTV/jcv9oaFAVJT1Y8lx5EDhLuvBweoEgJ46jty0Qg6ogZwVci/AQE5ERERU8po2FQHi4kXg2WeBFStEpbFSJaBNG/FZ7Isvin8/MtT4+ZmP6QZcG8jlus3du6v7ZJApiSpyUYFcVsi1zu7euLHY7tlj/fpffxVjkgMDgaef1nZsd+jUSYwPz8gAfvqp8PWeNoZ882ZRzQ8NBQYOBDp3FjOpZ2Wpr/+iJnSTbFXIAfNu66YTutk6oWIayC0r5IDnT+xmGcjbtxev13Hj3NsOBnInMJATERHpj7Os+76gIGDePHF55kwxdhwARo4EHn5YXJ4/X1QQly4VH6azs7Xfj+n4ccvwIbuRZ2eLampyMtCnj/YJ5Q4dAvbtE5Op9eql7pdVOVtLVRWHDOT//ivam5EhvreskGsN5JYVckURJxtkKJw6VWxHjizesmElxd8fuP9+cdnaCR05UZms8BaHKwL5ggViO3Cg+hp95BGx79NPxbaoCd0k0zkR8vPN10c3DeSO9BJISAAGDRJjr63dryevRX7pkjoHguylUrMmMH060K+fe9vCQO4EBnIiIiL9cZb10uGuu4BnnhGXT5wQYWTUKOCee0Q1e/9+UXHu3x94+21RRddKjh+37K4OiDHTsgvw6tXABx+I8Llhg7b7+P57se3SRRxT6tgR+OUX8674rlK3LlC2rKiGfved2Ofnp3ZBvvVW8f2tt2o7rmmFXFGAJUvESYpmzUT1du1a0QX+2Wdd9EBKwAMPiO2PP4pwJhUUlEwgT083HxrhqBs31CXOZJvl5YAAMZzj77+dq5CfO2eeZ2xVyO1ZtEh08bbsWQJ49lrksjoeHy/+RvTEQO4EBnIiIiIi93n1VSApSVzu1Ut0j42IUCe3WrdOve2//9o/1o0bwLJl5rOmy2qg5YRugPlSUS+/rO5fuVLLIxD3CQB9+xY+fqdOrp/QDfj/9u47zKky3wP4N2WS6b0x9Kb0IgMjomuBVRA7grKIY2WRIoqgXl0s17aoq6w6F6/eXXVXVhQFQVxUBERRGJr0uoq0YWZo01smee8fP8+cZCZTmZmTxO/nefKc5OSc5H1PTvLmd94mgcbEiXL/v/9blrGx+gWGCy+UwOzFFxv3uj16yGvk5UlfY60VAwCsXSvL227z3ozZV/TtK7W6FRWec3rn5Mg6s7l5+pBHRkpTc6BpA7utWSPnany8XMzRJCTIxSoAmDdPD6DrqyF3D8ir19pr3wP3++dyDLQa8sWLZZyCvn0bNl1ea/jpJ1m6D7BoFAbkTcCAnIiIiKj1BAVJk/Q5c4A33tDXT58u/ZR79ADGjJF1Wu1mbd58U5qkXnABsGOHNKe95x55ThtErjotiPnxR32dt77HtcnO1ud7vu66hu/XHKZOleXevbKsPt94TEzjB12z2/Xaz9WrpeUAILXN994rFxjcL174Kq3GecECfZ12/rRtK+fduTKZ9FrypgTkixbJ8qabag68l54uS63ZeseOtQ/ApnEPyLWB2zTeasjPJSC/8EIZp0ApuXiza5eeH6NVH2HdSAzIm4ABOREREVHrSkqSWl73Wte0NAlydu0CRo+WdfUF5FrwdeQIMGyY1DqePCn9YDMyvO/jHsT27i2B0cGDei1bfT77TIKSIUOaZ6CwxujTR5qRa6oH5E2lNVt/+mnpizx4sLReeOstaYKvTY3my8aPl4D522/1GuHmbK6u0frqN7YfucOhdzUYN67m81dfLZ+nFpPU11wd8F5DrsU23vqQ19dkvS6xsfI9y8rSB0qr7aLEihXSf7u15izXpgKsPjq8ERiQNwEDciIiIiLfoDXB1gIo94D8+HHg+ef1wZsOHwY2bJAgbNgw6TuelSU17F9+6dm32517c/LZs2U0ZqDhzdZra67eWqZP1+83d0CudRFw79/sL9q105t4a1NdaYFacza3b+rAblpz9YQEfao2dzabPjgd0LCAXDuX3WvItUH6mrvJOiCtDNq0kQtZgPdj4HJJPh5+GFi37tzer6Fa4nNuKgbkTcCAnIiIiMi3uAfkWi3bs88Cjz8OTJkij7XmspdeKk2tH3oIuPJKYOXKukca14LYuDjglluAUaPksbdm6/n5UrOpOXJEBjkDjAvIr7tOD6yaKyDXgjhALojcckvzvG5r0wLFPXtk2RI15E0NyD/6SJZjxtQ+T7zWbB2ov/84oH/+5eV6s+20NFkeOybxTWmpPi3audSQu6vrGOzapV8027Ched6vPi3xOTcVA/ImYEBORERkPE57Ru60+ZLdg4kdO2S5cKHUgGoBzrhxUrv48stSM15fLeDAgbJ84AEgOFgPyNeskfcD5H/hX/4igf2FF+pTqc2YIYOEXXKJ1MQbwWoFHntM7jd2RPXaaDXkgFzUSEpqntdtbT17ylLrY+8rAbnDIeMmAN6bq2sGDABGjJCxAH73u/pfNyxMxgAA9O9Haqp8dxwOGXldqzkPDa2/T3pD1XUMvvtOv5+Z6X3/gwf17/W5crn05vkMyP0UA3IiIiLjcdozcmez6X11tVpyLcgCZOC2TZvkf5w2OntD3XOPTPH1+OPyuE8fCeLLymQgs61bpQ/7rFkS1GzdKk1wP/1UblYrMH9+4wdPa0733SfB1l13Nc/rde6sjx7uj83VNb16ybI1asgbM6hbZqZMx5aQUHegbTLJOXj8OJCYWP/rus8asH+/LDt21L87R4/q05RpF7mag3YMcnM9W5AAtQfkDgfw3nsy9sJ558lxaI4+5tnZcpHMYmn9MR28YUDeBAzIiYiIiHyPe7P13FxpBmsyST9WbYT0yy5rfG2u1SpBuBacmEx6LfnYsTI6+xdfSO35Y4/J8rPP9JrNWbP0ptFGSkhovgDLbAZeeEGmVWvsBQ5f4l5D7nL5Th9yrU97Wpo+TV1tbDbv84DXRgvInU49fVrT9GPH9C4WF13U8NesT1ycfA+VkqnlNEp5BuTHjunHado04I475EIaIJ+R+0W2ptI+47Zta+8K0JoYkDcBA3IiIiIi3+MekGt/3Dt3BiZN0repq/lvY7jXCsfHA7//vQQOzz2nT0PlcEhgN2dO87ynr7n/fuAf/5ALEP6qWzcJyoqLge3bZQk07yjxWu3z8eMNr+Hdtk2WWneJ5lR9zvuUFL3bxtGj+jR2V13VfO9pNnsfbf6XX+Sx1arPW75xo3T5+Mc/5PGTT8ogjACwatW5p0VrBeELA7oBDMibhAE5ERERke9xD8j37ZP7PXsCf/oTEBkJhIc3X23u734nNX1nz8q0aV99pQ90Nn681B7HxABvv6037SbfExSkz6n+xReyTEpq3osMHTtK/FBYKM2lG0Jr0dESAbn7wH42m8xUoNWQb9gA7N4tLSlGjGje9/XWUkCrHU9N1UeSz8wEli+XLiHdu0tAfs018lxzBuS+0H8cYEDeJAzIiYiIiHyPtxrynj2B5GRpArx5c92jqTdWYmLtg149+qj0AW7uoIaan9ZsXZvGrrlrToOD9aB/5876t6+okKAYaPmAPCVFgm8tINfmPR88uGZN+rmqKyC/+GJ9tPfMTM8BGE0mYPhwefzNN0Bl5bmlgwF5AGBATkREROR7vAXk2sjmXbsC559vTLrIt2kDu/3wgyxbIlDTRqXXRjavy+7d0t0hJqZl0uIekGuDmmlN1svLZTlyZPO/b10B+SWXyOBtgDRZ1y6OaF1MLrgAiIqSaQW11gNNpfUhZ0DuxxiQExEREfme2mrIieqiBeTaIGctGZDXVkOem6vX/GoB54ABLTMyf/UacqDmfOPN2X+8+ntp06qdPKmP9D5smAx8GBYm/fjLy+VimnbcLBYZkBE492br7EMeABiQExERGY/zkFN1WiB19qyM1gwYN/c3+Y/qF21aIiDv10+W3gLyTz6RAc+mTJHH2oBuAwY0fzoAz6bo3gLyqCi9tro5Va8hX7dOlr17S5osFpmxQKM1V9dozdbPJSBXik3WAwIDciIiIuNxHnKqLjxcBqjSJCZ6Piby5rzz9P/3QMvUnGo1vXv2ePaBPnFCZgFwuYB33pFgtSUHdAO815AnJ+vHYMSIlpkOrHpAvn69LLUR1AG9HzlQc0YELSBft04GfGuK06eBkhK5X71VgFEYkDcBA3IiIiIi3+Re68Xm6tQQISFAly7645aoOe3USZpjl5cDBw/KOqWAe++Vwf8ACdTffLNlpzwDvAfkVqt+vyWaq7u/lxaQb9woS/cg/JJLZNm3r9Scu9MGaCwr04P5xtL6jycn+850fQzIm4ABOREREZFvYkBOTeF+rrREQG4269PiaQO7/f3vwOefy9Rj2lz1r7wCFBVJsNhS3S28DeoGADNmAFdcAYwd2zLvqwXkZ85IP/HNm+Wxe/P4a64B3n0X+PjjmvubTJI+AFizxvt77Ngh85fXNt+7r/UfBxiQNwkDciIiIiLf5B5Msf84NZQ2sFtMDBAR0TLv4d6PvKgImDVLHj/7LPCnP0k/8uJiWde3b8s0Gwe815ADkp5Vq2qfyu9cRUfrtdJr1khew8I8L4aYTEB6uj5NXHVaDXptNeR/+IPsX1vA7mv9xwEG5E2iBeTnOgceERERETUv1pBTU2gBeUvWnLqPtP7ee0BeHtCtGzBzptSS//GP+rYt1VwdAEJDpVa6Sxegc+eWe5/qTCb9AsCnn8oyNVUGc2uooUNlmZmpj4qvOXNGn7/9m2+878+APEBoTTsOHDA2HURERETkiQE5NcUNNwA33yw11S1FC8i3bQP++le5P2OGHpBOmqTXirfUCOuaH34A9u2TCwGtSQvIly2TZWNHc9emRiss1Kc21GhN4AF9TvnqGJAHiEGD5Itz/Dhw9KjRqSEiIiIijVbjFx4OtGtnbFrIf0RGAosWATfd1HLvoQXkR47IwG7R0cAdd+jPt2kDzJ4tweK117ZcOgCJZYKCWvY9vNEC8pMnZdnYWSutVj2Ir95sXRskDpAadG+tmbVB3diH3M+FhQH9+8v9DRuMTQsRERER6QYMAB56CHjjDc85jImMFhfn2Wf73nvlwpG755+XoDFQLya55x9o2nznWrP16nGYe0BeVOR9znfWkAeQCy+UJQNyIiIiIt9hMgEvvywDOxH5Gq2W3GIBpk0zNi1GcA/IExOBDh0a/xpaHOZeQ66UHpAnJMiyerP1ggLptw8wIA8I3k4EIiIiaj0ZGRno1asXBje2zSMRkUFSU2U5ZkzTglF/5x6QDxnStFYsWhy2dy9w9qzcP3oUyMmRJu333CPrqgfk+/bJMimpZssEIzEgbyKtqUTCpn+jcs7TQEWFsQkiIiL6jZk6dSr27NmDTZs2GZ0UIqIGmTUL+MtfgPnzjU6JMaoH5E2RkCCj0wN6rbi27NcPGD5c7n//ved+2gjs2nzwvoIBeRN1DcvGp7axWFo5GtZnnwI++cToJBERERERkQ+LjpZpzmJjjU6JMdwD8nNp3KRVjmqtlbWAfMgQuZnN0l/8+HF9Hy0g79276e/bEhiQN8XBgzD17oXrKz7W11W/BENERERERERV2raVZuUWy7kF5NXH83IPyCMi9AG43ZutMyAPJK+8Apw9i9ykPngGv05WWNtkd0RERERERITwcGDBAmDhQhl1vqncR1r/+Wd9DnKtGfxFF8mSAXkgKiqSswjAsVl/xVuYJOt37ACKiw1MGBERERERkW8bNw64+eZze42+fWXe9vx84PzzJQwLDwd69JDntYB83TpZFhTIwG8AA3L/99FHQGEh0LUrut1zGY6b2uMo2gFOJ8BBZYiIiIiIiFqU1Qp89RVw2WVAZaWsGzRImsIDwKWXynLLFuDMGWDPHnmckiL9+H0JA/LGevttWd5zDyKjzejTB1iPX9tMsNk6ERERERFRi+vTB1i9GvjsM2D0aOCxx/Tn2raVmnClgFWrfLe5OsCAvHF27ZKOClYrcMcdAIApU/SAvGwNJyUnOic7dwKnTxudCiIiIiLyAyYTcM01wPLlwJVXej6nPf7qKwnjAAbk/k+rHb/2WiA5GQBw771Afi/ppFDx3Qa5DENEjfc//yOTR3brBvzzn43/Lq1fDzz1FPDBB/Kr63K1SDLr5HIB27dLtxYiIiIiMowWkH/5JWvIA0NZmQQJgEThv7JYgPvfGYgy2BFZfgrfvfMfgxJIAef0aeCPf5QhKGfPltEoGkopacMzdizwwANy/jZFa11gWrYMmD5d7uflAbffDlx/vXT6aYjPPwcuvxx4+mngD3+QkT5GjGh6vhtr2zbg/vuB9u2BAQOAgQNl8stAlJMDLFoko6g0lsslpeLcucCsWcCkScC77wJnzzZ7MomIiOi37Xe/A+x2Gczt229lnS8G5CalfL9KNyMjAy+99BKys7PRv39/vP766xiijWlfj4KCAkRFRSE/Px+RkZFNT0RBAfDqq8DXXwPffKOPGPCrQynD0PnED7g36F1E3Z+O2bOBpCRIQGGxAFFRTX/v34qyMiAoqMaxrSEvTwLFmBjvzyslTZ8XLJCa0vHjJUgzm2tut2OHbLd0KRAaKoHcBRcAt95a1QrCQ2UlcOCAXGY7eBBo106279RJ0nXmDNCxY83P2+mUoPOzz2QoyKuukgkSTaaa7+FwAO+8Ix1h3JtvJycDzz8PTJwo3Sa8qaiQeSReeUVqajUXXggsWeI9T9WPyebNsu2SJZLHsWMlLX371r2v+2ucOQP88ot04KnvPdevB4YPB0pLgbvvBrp0kZpuhwPo1UsCuHbtat9/yRLglltk+7Q0+Zy3bgXKy+VYvfee9+OscbmAjAzg2WdllI/rr5e2T6mpck7UZf9+YM4cCVCr69BBLop07Vr7/vn5MvznunXyWv/5j9Su9+olrQUGDpRJOjt1qjsP7kpK5Dz75hv5DI4cATp3Bu66S1r3BAU17HXcOZ3S3uv//k/O48pKGRUlIwO44Yb69y8ulguar74q35/qgoLkOzFuHHDddY37vczOBj75RC6AZGfLTBiRkfIa2i02Vo5B165yTlb/LaiP0yljhHz6qVyQ1YZwPQfNVjYRAB5PIiLy7ve/l/BNk5fXemFZQ8smnw/IP/zwQ9x+++148803kZaWhnnz5mHRokXYv38/EhMT692/tQrpihmzYXvtZbyPCXgFM9HPuhd/DH8faflfQVmsOD1mEqL+exbKftyLyvcXAqdOoeiy0ai4ZgzCXQWI2v4tgk8cgrlrZwnYwsJQfqoQZSfOIiz3EKxHfpY/5P37y81mkwCmsBA4eRI4dUoSEhwsy6ws4NgxuSzUq5e8JiB/1rOz5c//Tz/J8/HxcouLk1tWlgRzhw/LfoMGybwCxcWyv9ksf6CDgyWACQ8H9u2T/vUHDkiwaLPJa3XuLH+ACwokneXlsn1EhLxmhw6y/r33gH//G0hIAO68U2pI27cHQkKAvXslKFuzRtJ19Kik4fe/l+26dZMgMCtLtlm5UtLjbsgQCbLWr5eAs6hILgDUdvpbrcCNNwJXXy1/5isrpXPK0qX119pqwcXVV0uQmJMjQfLPP3tul5AgczIMGyYBV0yM5PXllyWIAiQInjxZApn//Nr6oksX4JFHgEsukddwOOS4rF8v3SpOnJDtQkPlwsLixfLr064dMG2a7NemjR6slZTIaxw4IAHH8ePe8zVypARM118vaXU6pWbz8GHg0CE5rhs2SFq02lOTSYLt8eOB884DEhPlFhUl2zz9NPDGG3J8R42SYM9qldcYPVrS0r69XDTp3VveVwtMt22T47JggaTlllsk6AsKkl/ekSNl/QsvAPfdJ8egslLOTYtFHufkAM88I+dNdRaLjBaSmipB8cCBcr4HB8uxfvddCVJdLknT2LFyPvbsKXk5cECC1kcfleOWkCDn7q5dwNq18p5btzasaX1srKQjNVXOic6d5bsTGyvf4VOnJM///rd8hrU1mY+Pl3x0767fOnaUdO3eDeTmSv5CQ+W7FxoqvyPvvqufk4Ach7w8uX/55fKaXbrI5xoUJMfYZpPv17Jlcv5raYqKks+2TRv5rD//XO/YBch+vXtLHtu3l9+LsDD5PUlOljwUF8u5t3SpXAxxOOo/hpqYGPkOXHKJHMP4eHl9h0POj8pKuZ+fLxek9u2Tz1n7jX32WeDxxxv+frVgANm8eDyJiMibl14CHn5Y7rdrp0991hoCJiBPS0vD4MGD8cYbbwAAXC4X2rdvj+nTp+PRRx+td/9WK6QXLwbGjGm516dGUTYbMPoauaDwxuswFRV539Bul0B9/HgJDnbuBFasqHPE/FJrOE4m9EZFx+5IKDmMiJ9+hLm4SPaPjKw9YI+JAW67DTh0CGrNGpjqmLfeEZeM3LsfBaZMRWikFUf/Uw68/jq6Ln4RYcUn68z7SVsK3o+9HzvSJqH7kBj0th3E5fOuQ+TxfXXup6kMCcfZC0cBN9wIe4/OcL78CqK//himRv5UqMREmHJzvT8XFARltsBcLk3KT118PTbd/z7OOsKrpq4IOnEEv3/5SsSf2l+1n8NihzMoGCaLBfZi/Thvv+BOfDjibVQ4LYiIkI+h//f/gys+mdqgtDpsodjxh7kI7ZSIdluXIixzNcw52Q3a9/Sw63ByxrNw9e6L0lKJFfP2ZeOiJ0YgPkc6LCmzGcpmh7mstMb+zi7dYL7sUpgG9JeLS2FhEhxv2yYB+/btdQecNhuUw+Hx+bg6dkLl9TejsntPOJPbwrruG9j+9Q4sJ3MalCevYmOlxcE990B16QrHE88gaN6LMDmdDdq9tF035N4yHQU33QlrTARsNvn62WxA8M97ELx8EYIWfwjT3r2NT9uFFwJDh0rAHh4uFwALCiSozs+XYPrnn+UiVGOCdzeu6Bi4Rl0Dyz13wnTF5U16DXcMIJtHRkYGMjIy4HQ6ceDAAR5PIiLysH279CYEpL7siy9a770DIiCvqKhAaGgoPv74Y9zg1iwyPT0deXl5WLp0aY19ysvLUV5eXvW4oKAA7du3b/lCOj9fatEOH4aKi0N5TDIO9rgW/465Dblbj2HMzidxUeV3yEUCloeMw5mw9hhR8AkGVGxCOWzYiCHYi57ohF9wPvbDhgoUIgL5iMJhdMTP6AIrKjEA29AHu2CCQilCUIRwnEI8TiEeTlgQjDKY4UIWUnAcbRGGYvTGbnTFT6iEFSUIxVnEYD/Ox0F0hwVOxOMU4nD611c5hTOIxTYMwGF0RA/swyBsQTTyUIwwlCIEJihYUYlQlCAK+YhCPg6jI9ZjKHagHxRMsKMcSchBF/yMFGQhD9HIRSIqYEMYihGJAqQgCx1wBGa4sAhjsQATcB4O4F68jRH4GlbIH/1SBGMtLsVXuBIbMQS70AfxOIWJ+CduwmJEoBAKJhQiAt/hEqzCcKzGFchHNAAgCdl4BHPRBiewxXYRdoYPRbYzAQXlduRWRKPMFFLj4+yntuNO19/QHQcQg7MIQSnW4lJ8gjH4DpfABb1ZvQkuRJmLUGyOgMlsQi+1G2Nci5CmNqAAkTiFeGzDACzABBSpMCgF2FCOC7AVw/A90pCJJOQgBmfhQBDewiS8iztQjuAa6QpBCSbhLdyNv6EdjiEGeXDCjAM4D9vRH8txDT7CODhg89gvAgW4E+/gUqzFxVhX9Zn9gk4oRAQcCMJpxOHfuBqrMLzGe3fDQdyKhbgZH6M/dng8dwLJOIyO2I7+yEQaNiMV/0E3VFhC0QU/4xbnAlyFL5GEHCQiF1HQ+8LvRi88iFexEtWGxfxVHE7hLUzCxViHRHheiKiEBR9hHF7Fg9iMwV73n4cZmIHXAABlsMOBIATBgSA4kIdonEYcdqM3ZuMl/IRubnsqtMVxpJk24ULLJqRiM3q6diHEVYwQlCILKfgnJuI9pFfbz/OY34W/Yzw+QBo2AgAqEIT/oBu+xzB8g8uwFpfiONohKEiCU4tFGn9oSwCwVJajh2Mn+js2Y0DlZnR1HUBH1y9IwXFYoNeub0c/fIUrsRTX43sMA+DZxN0KB4ZgI87DAXTHwapbRxxGFlKwG71xFO1hRzmigkoQ7CqFzVkCB4LwCcbg6/Ab4QwKhsMhDV0cDuB87MNwrEJX/ITOOIQwFCMIDthQUXXbgX74G+7GWlxaI001KZyHg+ht3Y+ull/QFsdhdxYj1FmEOJxGiukEYnEaxaZw5CMKB8w98LZlMrZiECwWuSZmtcLjvvYYACyqEr3Kf8SQ0m/Qr3Qj4py5iHaeQqirGA7Tr2eGsqLMGYRihOEndMVBdEcm0vAtfodKBDVXBTkD8mbG40lERN64XNJgMScHeOghaYjaWgIiIM/KykLbtm3xww8/YOjQoVXrH374YaxduxaZmZk19nnqqafw9NNP11jfKoW0dii99PVULoVTu3MQ2SUe9jC3/r8nTwIREagwB6OoSGrXCgul1ig+Xlp2FxVJV+IzZ2R59qxUosXESKvSoiLZR1uWlMgfUItFTsKyMvkDHRyst0INDZUAIC9PWrCfOSPJd7n0pXarrJSWv+636uu8PdZatptMevfq0lI92NBuVqveKrW0VLYryHMhWJUixFWMQlMkyk3BHq3LKyslT+XlrTfuWM+ecmWtUydpPX7ggLRoPXy4eQf0DgmRz9bhkGPhdEpr3W7dpAts166SBgAoLXCgpMiFgnI7Skpkuy5dpIZ49265KpibK+dE1a1YybLUhNJqFbZhYdKCubxcWiqXl8t52K2b9DyIiQGSLKdQmOdE9ukgnCwJQ6XFXtVt/MSJ+sfnCrOUoU3QKcTbCnAk+DxY7FYEB0tL5shIvYuz1SrjMLRpI+duZXE5zCdzkJ9bjrzcCuQiEc7YBEREyPckPFz2LSzUx7+z2xRizXmITApBTJtgmEz6d8hike9ZebmkOytLv1U/Lt4kJEjre4dD3rOiQj67kBBJd7t2kqcjR4CS/UdRWViKX8xdUAkrlJLzVusF0hRmOBGOIkSiAGUIxikk1L+PWc6RhAQ5Vvn5cqy087e0VI5HQ9ntctydTnkN7fvvcMgSkO9/TIy0cnc65TiVl8tSu/kqs1nOLadTfl8BYN48YMaMc39tBpDNi8eTiIhq8+CDUn6vWCE9GltLQ8umWkaG8l//9V//hZkzZ1Y91mrIW0Udgy6ZzCYk9PUyuFWC/Im2QVqExsbW3EQbl6hLl2ZKp18wAwj79VY7pVBVY+ftj71S8rGYTHrgVFwswUhoqARkdY2VpV00sNlqHwCivFxaxGpBlvtN299kqnnf2zqrVR8GAJAgp7xcgjzvah+g6+qra3tGz7B2waakRNIQG6sfD6UkQKs5rll8re8JyMWSkhI9gNGaJdtsctzN5mAAdQzSVis7gA6N3McEoJbB/2qhlKS/vFy/mFVWJvkKC9PHC2vc2Gi1/waVlMhFgooKPajVlu7niPuFLLlvgdkcBbM5qsZFrprb6udZfXnPz5eLdEFB+kW/wkK5qOZ06p9lbKycG7W9pnbRzG6vfQxC7T0dDs8AXQvatfez22W7sjJ5zlvetIuH2k27MKjdvKWz+nfRZJILDJGRcgsL0/dzueT70Njx4IiIiMhYc+cCU6bI0Dm+yKcD8vj4eFgsFuTkePZ7zMnJQXItIzfb7XbY7fbWSB75AJNJDxAaIimp+dNgt0vtcUswm+sKxpvn9bUWE9WZTPUPMu6N1pXeXyupTCYJxMLqvhbUbGo7/kYwmaQmOzrac31IiLQGaAytuXhD3rMx32GjmM2td04QERFR87HZfDcYB3x8HnKbzYZBgwZh1apVVetcLhdWrVrl0YSdiIiIiIiIyN/4dA05AMycORPp6elITU3FkCFDMG/ePBQXF+POO+80OmlERERERERETebzAfktt9yCkydP4oknnkB2djYGDBiAL774Akkt0faYiIiIiIiIqJX4fEAOANOmTcO0adOMTgYRERERERFRs/HpPuREREREREREgYoBOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBrEYnoKUppQAABQUFBqeEiIhIaGWSVkZR02RkZCAjIwOVlZUAWNYTEZHvaGhZb1IB/m/g2LFjaN++vdHJICIiquHo0aNo166d0cnweyzriYjIV9VX1gd8QO5yuZCVlYWIiAiYTKZzeq2CggK0b98eR48eRWRkZDOl0DiBlJ9AygsQWPkJpLwAzI8v86e8KKVQWFiIlJQUmM3sPXauWNbXjvnxXYGUFyCw8hNIeQECKz/+lJeGlvUB32TdbDY3e+1DZGSkz58AjRFI+QmkvACBlZ9AygvA/Pgyf8lLVFSU0UkIGCzr68f8+K5AygsQWPkJpLwAgZUff8lLQ8p6XpYnIiIiIiIiMgADciIiIiIiIiIDMCBvBLvdjieffBJ2u93opDSLQMpPIOUFCKz8BFJeAObHlwVSXsg4gXYeMT++K5DyAgRWfgIpL0Bg5SeQ8qIJ+EHdiIiIiIiIiHwRa8iJiIiIiIiIDMCAnIiIiIiIiMgADMiJiIiIiIiIDMCAnIiIiIiIiMgADMgbISMjA506dUJwcDDS0tKwceNGo5NUrxdeeAGDBw9GREQEEhMTccMNN2D//v0e25SVlWHq1KmIi4tDeHg4xowZg5ycHINS3HB//vOfYTKZ8MADD1St87e8HD9+HLfddhvi4uIQEhKCvn37YvPmzVXPK6XwxBNPoE2bNggJCcGIESNw8OBBA1NcO6fTiTlz5qBz584ICQlB165d8cwzz8B93Ehfzc+3336La6+9FikpKTCZTPj00089nm9Ius+cOYMJEyYgMjIS0dHRuPvuu1FUVNSKudDVlR+Hw4FHHnkEffv2RVhYGFJSUnD77bcjKyvL4zX8JT/VTZ48GSaTCfPmzfNY70v5Id/Gst63sKz3Lf5c1gOBVd6zrA+csp4BeQN9+OGHmDlzJp588kls3boV/fv3x1VXXYXc3Fyjk1antWvXYurUqdiwYQNWrlwJh8OBK6+8EsXFxVXbPPjgg/jss8+waNEirF27FllZWbjpppsMTHX9Nm3ahP/93/9Fv379PNb7U17Onj2LYcOGISgoCCtWrMCePXvwl7/8BTExMVXbvPjii3jttdfw5ptvIjMzE2FhYbjqqqtQVlZmYMq9mzt3LubPn4833ngDe/fuxdy5c/Hiiy/i9ddfr9rGV/NTXFyM/v37IyMjw+vzDUn3hAkTsHv3bqxcuRLLly/Ht99+i0mTJrVWFjzUlZ+SkhJs3boVc+bMwdatW7F48WLs378f1113ncd2/pIfd0uWLMGGDRuQkpJS4zlfyg/5Lpb1voVlPcv65hZI5T3L+gAq6xU1yJAhQ9TUqVOrHjudTpWSkqJeeOEFA1PVeLm5uQqAWrt2rVJKqby8PBUUFKQWLVpUtc3evXsVALV+/XqjklmnwsJC1b17d7Vy5Up16aWXqhkzZiil/C8vjzzyiLr44otrfd7lcqnk5GT10ksvVa3Ly8tTdrtdffDBB62RxEYZPXq0uuuuuzzW3XTTTWrChAlKKf/JDwC1ZMmSqscNSfeePXsUALVp06aqbVasWKFMJpM6fvx4q6Xdm+r58Wbjxo0KgDp8+LBSyj/zc+zYMdW2bVu1a9cu1bFjR/Xqq69WPefL+SHfwrLed7Cs962yURMoZb1SgVXes6z37fzUhzXkDVBRUYEtW7ZgxIgRVevMZjNGjBiB9evXG5iyxsvPzwcAxMbGAgC2bNkCh8PhkbcePXqgQ4cOPpu3qVOnYvTo0R5pBvwvL8uWLUNqairGjh2LxMREDBw4EG+//XbV84cOHUJ2drZHfqKiopCWluaT+bnooouwatUqHDhwAACwfft2rFu3DqNGjQLgf/nRNCTd69evR3R0NFJTU6u2GTFiBMxmMzIzM1s9zY2Vn58Pk8mE6OhoAP6XH5fLhYkTJ2L27Nno3bt3jef9LT9kDJb1voVlvW+WjYFa1gOBX96zrPddVqMT4A9OnToFp9OJpKQkj/VJSUnYt2+fQalqPJfLhQceeADDhg1Dnz59AADZ2dmw2WxVX05NUlISsrOzDUhl3RYuXIitW7di06ZNNZ7zt7z8/PPPmD9/PmbOnInHHnsMmzZtwv333w+bzYb09PSqNHs773wxP48++igKCgrQo0cPWCwWOJ1OPPfcc5gwYQIA+F1+NA1Jd3Z2NhITEz2et1qtiI2N9em8AdIX85FHHsH48eMRGRkJwP/yM3fuXFitVtx///1en/e3/JAxWNb7Dpb1vpufQC3rgcAu71nW+15+3DEg/w2ZOnUqdu3ahXXr1hmdlCY5evQoZsyYgZUrVyI4ONjo5Jwzl8uF1NRUPP/88wCAgQMHYteuXXjzzTeRnp5ucOoa76OPPsKCBQvwr3/9C71798a2bdvwwAMPICUlxS/z81vgcDgwbtw4KKUwf/58o5PTJFu2bMFf//pXbN26FSaTyejkEBmOZb1vYVlPRmNZ7/vYZL0B4uPjYbFYaozgmZOTg+TkZINS1TjTpk3D8uXLsWbNGrRr165qfXJyMioqKpCXl+exvS/mbcuWLcjNzcUFF1wAq9UKq9WKtWvX4rXXXoPVakVSUpLf5AUA2rRpg169enms69mzJ44cOQIAVWn2l/Nu9uzZePTRR3Hrrbeib9++mDhxIh588EG88MILAPwvP5qGpDs5ObnGoE+VlZU4c+aMz+ZNK6APHz6MlStXVl0xB/wrP9999x1yc3PRoUOHqt+Fw4cP46GHHkKnTp0A+Fd+yDgs630Dy3pUPfbF/ARqWQ8EZnnPst4381MdA/IGsNlsGDRoEFatWlW1zuVyYdWqVRg6dKiBKaufUgrTpk3DkiVLsHr1anTu3Nnj+UGDBiEoKMgjb/v378eRI0d8Lm/Dhw/Hzp07sW3btqpbamoqJkyYUHXfX/ICAMOGDasxLc2BAwfQsWNHAEDnzp2RnJzskZ+CggJkZmb6ZH5KSkpgNnv+pFgsFrhcLgD+lx9NQ9I9dOhQ5OXlYcuWLVXbrF69Gi6XC2lpaa2e5vpoBfTBgwfx9ddfIy4uzuN5f8rPxIkTsWPHDo/fhZSUFMyePRtffvklAP/KDxmHZb1vYFnv22VjoJb1QOCV9yzrfTc/NRg7ppz/WLhwobLb7erdd99Ve/bsUZMmTVLR0dEqOzvb6KTV6b777lNRUVHqm2++USdOnKi6lZSUVG0zefJk1aFDB7V69Wq1efNmNXToUDV06FADU91w7iOvKuVfedm4caOyWq3queeeUwcPHlQLFixQoaGh6v3336/a5s9//rOKjo5WS5cuVTt27FDXX3+96ty5syotLTUw5d6lp6ertm3bquXLl6tDhw6pxYsXq/j4ePXwww9XbeOr+SksLFQ//vij+vHHHxUA9corr6gff/yxaiTShqR75MiRauDAgSozM1OtW7dOde/eXY0fP97n8lNRUaGuu+461a5dO7Vt2zaP34Xy8nK/y4831UdeVcq38kO+i2W9b2JZ7zv8uaxXKrDKe5b1gVPWMyBvhNdff1116NBB2Ww2NWTIELVhwwajk1QvAF5v77zzTtU2paWlasqUKSomJkaFhoaqG2+8UZ04ccK4RDdC9ULa3/Ly2WefqT59+ii73a569Oih3nrrLY/nXS6XmjNnjkpKSlJ2u10NHz5c7d+/36DU1q2goEDNmDFDdejQQQUHB6suXbqoxx9/3OOH31fzs2bNGq/fk/T0dKVUw9J9+vRpNX78eBUeHq4iIyPVnXfeqQoLCw3ITd35OXToUK2/C2vWrPG7/HjjrZD2pfyQb2NZ73tY1vsOfy7rlQqs8p5lfeCU9SallGqeunYiIiIiIiIiaij2ISciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICeiFmUymfDpp58anQwiIiJqQSzviZqGATlRALvjjjtgMplq3EaOHGl00oiIiKiZsLwn8l9WoxNARC1r5MiReOeddzzW2e12g1JDRERELYHlPZF/Yg05UYCz2+1ITk72uMXExACQ5mXz58/HqFGjEBISgi5duuDjjz/22H/nzp244oorEBISgri4OEyaNAlFRUUe2/z9739H7969Ybfb0aZNG0ybNs3j+VOnTuHGG29EaGgounfvjmXLlrVspomIiH5jWN4T+ScG5ES/cXPmzMGYMWOwfft2TJgwAbfeeiv27t0LACguLsZVV12FmJgYbNq0CYsWLcLXX3/tUQDPnz8fU6dOxaRJk7Bz504sW7YM3bp183iPp59+GuPGjcOOHTtw9dVXY8KECThz5kyr5pOIiOi3jOU9kY9SRBSw0tPTlcViUWFhYR635557TimlFAA1efJkj33S0tLUfffdp5RS6q233lIxMTGqqKio6vnPP/9cmc1mlZ2drZRSKiUlRT3++OO1pgGA+tOf/lT1uKioSAFQK1asaLZ8EhER/ZaxvCfyX+xDThTgLr/8csyfP99jXWxsbNX9oUOHejw3dOhQbNu2DQCwd+9e9O/fH2FhYVXPDxs2DC6XC/v374fJZEJWVhaGDx9eZxr69etXdT8sLAyRkZHIzc1tapaIiIioGpb3RP6JATlRgAsLC6vRpKy5hISENGi7oKAgj8cmkwkul6slkkRERPSbxPKeyD+xDznRb9yGDRtqPO7ZsycAoGfPnti+fTuKi4urnv/+++9hNptx/vnnIyIiAp06dcKqVataNc1ERETUOCzviXwTa8iJAlx5eTmys7M91lmtVsTHxwMAFi1ahNTUVFx88cVYsGABNm7ciL/97W8AgAkTJuDJJ59Eeno6nnrqKZw8eRLTp0/HxIkTkZSUBAB46qmnMHnyZCQmJmLUqFEoLCzE999/j+nTp7duRomIiH7DWN4T+ScG5EQB7osvvkCbNm081p1//vnYt28fABkRdeHChZgyZQratGmDDz74AL169QIAhIaG4ssvv8SMGTMwePBghIaGYsyYMXjllVeqXis9PR1lZWV49dVXMWvWLMTHx+Pmm29uvQwSERERy3siP2VSSimjE0FExjCZTFiyZAluuOEGo5NCRERELYTlPZHvYh9yIiIiIiIiIgMwICciIiIiIiIyAJusExERERERERmANeREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGSA/wdsbXCwTPuk2QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2160,7 +606,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2186,7 +632,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2221,27 +667,9 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.436\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABObklEQVR4nO3deVxU5f4H8M8wyj4Mos4AikjuhPuWUoo3QtRUqqtZlqLeNAOTzET9ZWpaqGmpLVh5A0utvFcxssIQBXfcIjWNlBC9ymIuM4qCOnN+f0yMjgw46AxnhvN5v17zsvOcZ57znZMwX5/tyARBEEBEREQkEU5iB0BERERUm5j8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikpR6Ygdgj/R6Pc6dOweFQgGZTCZ2OERERGQBQRBw5coV+Pv7w8mp6v4dJj9mnDt3DgEBAWKHQURERPfhzJkzaNq0aZXnmfyYoVAoABhunpeXl8jREBERkSW0Wi0CAgKM3+NVYfJjRsVQl5eXF5MfIiIiB3OvKSuc8ExERESSwuSHiIiIJIXJDxEREUkK5/wQETkAnU6Hmzdvih0Gkajq168PuVz+wO0w+SEismOCIKCoqAiXL18WOxQiu+Dt7Q1fX98H2oePyQ8RkR2rSHxUKhXc3d258SpJliAIuHbtGkpKSgAAfn5+990Wkx8iIjul0+mMiU/Dhg3FDodIdG5ubgCAkpISqFSq+x4C44RnIiI7VTHHx93dXeRIiOxHxc/Dg8yBY/JDRGTnONRFdJs1fh447FVb9DqgYDdwtRjwVAOBvQGnB5+xTkRERDUjas9PQkICunfvDoVCAZVKhaioKOTm5prUCQsLg0wmM3m9/PLL1bYrCALeeust+Pn5wc3NDeHh4Thx4oQtP0r1jqUCS0OAVU8C68cZ/lwaYignIiKiWiVq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWmpS76WXXkJhYaHxtWjRomrbXbRoEZYvX44VK1YgOzsbHh4e6N+/P8rKymz5ccw7lgqsGwVoz5mWawsN5UyAiIjuW3R0NKKioozHYWFhiIuLe6A2rdEG2TdRh73S0tJMjpOTk6FSqXDw4EH06dPHWO7u7g5fX1+L2hQEAUuXLsWbb76JoUOHAgC+/PJLqNVqbNy4ESNGjLDeB7gXvQ5IiwcgmIsUgAxImw60HcQhMCKyGZ1ewL78iyi5UgaVwhU9gnwgd7LtPKLo6GisWrUKgGFjumbNmmHUqFGYOXMm6tWz3VfPhg0bUL9+fYvqZmZmol+/frh06RK8vb3vqw1yTHY150ej0QAAfHx8TMrXrFmD1atXw9fXF4MHD8asWbOqXP2Qn5+PoqIihIeHG8uUSiV69uyJPXv2mE1+ysvLUV5ebjzWarXW+DiGOT539/iYEADtWUO9oMesc00iojukHS3E3O+PoVBzu+fbT+mK2YODERly//ukWCIyMhJJSUkoLy/Hjz/+iJiYGNSvXx8zZswwqXfjxg04Oztb5Zp3f3+I1QbZN7tZ7aXX6xEXF4fQ0FCEhIQYy59//nmsXr0a27Ztw4wZM/DVV1/hhRdeqLKdoqIiAIBarTYpV6vVxnN3S0hIgFKpNL4CAgKs8IlgmNxszXpERDWQdrQQE1cfMkl8AKBIU4aJqw8h7WihTa/v4uICX19fBAYGYuLEiQgPD0dqaqpxqOqdd96Bv78/2rRpAwA4c+YMhg8fDm9vb/j4+GDo0KE4deqUsT2dTocpU6bA29sbDRs2xLRp0yAIpj3rdw9ZlZeXIz4+HgEBAXBxcUHLli3x73//G6dOnUK/fv0AAA0aNIBMJkN0dLTZNi5duoRRo0ahQYMGcHd3x4ABA0zmkSYnJ8Pb2xubN29Gu3bt4OnpicjISBQW3r6/mZmZ6NGjBzw8PODt7Y3Q0FAUFBRY6U5TTdlN8hMTE4OjR4/im2++MSkfP348+vfvj/bt22PkyJH48ssvkZKSgry8PKtde8aMGdBoNMbXmTNnrNOwp/redWpSj4jIQjq9gLnfH6ty0B0A5n5/DDq9uRq24ebmhhs3bgAAMjIykJubi/T0dGzatAk3b95E//79oVAosGPHDuzatcuYRFS8Z8mSJUhOTsYXX3yBnTt34uLFi0hJSan2mqNGjcLXX3+N5cuX4/jx4/j000/h6emJgIAArF+/HgCQm5uLwsJCLFu2zGwb0dHROHDgAFJTU7Fnzx4IgoCBAwea7DNz7do1LF68GF999RW2b9+O06dPY+rUqQCAW7duISoqCn379sXhw4exZ88ejB8/nlsYiMguhr1iY2OxadMmbN++HU2bNq22bs+ePQEAJ0+eRIsWLSqdr5gbVFxcbLL1dXFxMTp16mS2TRcXF7i4uNxn9NUI7A14+RsmN5v9FSQznA/sbf1rE5Gk7cu/WKnH504CgEJNGfblX0SvFrbdPVoQBGRkZGDz5s2YNGkSzp8/Dw8PD6xcudI43LV69Wro9XqsXLnSmBQkJSXB29sbmZmZiIiIwNKlSzFjxgw8/fTTAIAVK1Zg8+bNVV73jz/+wLp165Cenm6cCvHQQw8Zz1cMb6lUKpM5P3c6ceIEUlNTsWvXLvTubfhdvWbNGgQEBGDjxo0YNmwYAMOGeytWrDB+L8XGxuLtt98GYJhKodFo8OSTTxrPt2vXruY3kqxG1J4fQRAQGxuLlJQUbN26FUFBQfd8T05ODoCqn+kRFBQEX19fZGRkGMu0Wi2ys7PRq1cvq8RtMSc5ELnw74O7M/y/jyMXcLIzEVldyRXLVrdaWu9+bNq0CZ6ennB1dcWAAQPw7LPPYs6cOQCA9u3bm8zz+fXXX3Hy5EkoFAp4enrC09MTPj4+KCsrQ15eHjQaDQoLC43/AAaAevXqoVu3blVePycnB3K5HH379r3vz3D8+HHUq1fP5LoNGzZEmzZtcPz4cWOZu7u7yT/I/fz8jM+g8vHxQXR0NPr374/Bgwdj2bJlJkNiVPtETX5iYmKwevVqrF27FgqFAkVFRSgqKsL169cBAHl5eZg3bx4OHjyIU6dOITU1FaNGjUKfPn3QoUMHYztt27Y1dn3KZDLExcVh/vz5SE1NxZEjRzBq1Cj4+/ubLIesNcFDgOFfAl53JWte/oby4CG1HxMR1XkqhatV692Pfv36IScnBydOnMD169exatUqeHh4AIDxzwpXr15F165dkZOTY/L6448/8Pzzz9/X9SueA1Ub7l4dJpPJTOYjJSUlYc+ePejduze+/fZbtG7dGnv37q21+MiUqMNeiYmJAAyTy+6UlJSE6OhoODs7Y8uWLVi6dClKS0sREBCAZ555Bm+++aZJ/dzcXONKMQCYNm0aSktLMX78eFy+fBmPPvoo0tLS4Opqux/yagUPMSxn5w7PRFRLegT5wE/piiJNWVWD7vBVGpa924qHhwdatmxpUd0uXbrg22+/hUqlgpeXl9k6fn5+yM7ONm6FcuvWLRw8eBBdunQxW799+/bQ6/XIysoyWQFcoaLnSafTVRlXu3btcOvWLWRnZxuHvS5cuIDc3FwEBwdb9NkqdO7cGZ07d8aMGTPQq1cvrF27Fo888kiN2iDrEDX5uXuW/t0CAgKQlZVV43ZkMhnefvtt43irXXCSczk7EdUauZMMswcHY+LqQ5DBdNZhxSD87MHBNt/vx1IjR47Ee++9h6FDh+Ltt99G06ZNUVBQgA0bNmDatGlo2rQpJk+ejAULFqBVq1Zo27Yt3n//fVy+fLnKNps3b47Ro0dj7NixWL58OTp27IiCggKUlJRg+PDhCAwMhEwmw6ZNmzBw4EC4ubnB09PTpI1WrVph6NCheOmll/Dpp59CoVBg+vTpaNKkiXEvuXvJz8/HZ599hiFDhsDf3x+5ubk4ceIERo0a9SC3jB6A3az2IiIi64oM8UPiC13gqzTt9fZVuiLxhS423+enJtzd3bF9+3Y0a9YMTz/9NNq1a4dx48ahrKzM2BP0+uuv48UXX8To0aPRq1cvKBQKPPXUU9W2m5iYiH/+85945ZVX0LZtW7z00kvGpwg0adIEc+fOxfTp06FWqxEbG2u2jaSkJHTt2hVPPvkkevXqBUEQ8OOPP1q8EaK7uzt+//13PPPMM2jdujXGjx+PmJgYTJgwoQZ3iKxJJtyr+0WCtFotlEolNBpNld2vRES2VlZWhvz8fAQFBT3QsL0YOzwT2Up1PxeWfn/bxVJ3IiKyHbmTzObL2YkcCYe9iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9ERER/mzNnDjp16iR2GAgLC0NcXJzYYdRZTH6IiMjqioqKMHnyZLRs2RKurq5Qq9UIDQ1FYmIirl27JnZ49y0zMxMymazaZ4qJ2R5Zhjs8ExHVdXodULAbuFoMeKqBwN6Ghy3byJ9//onQ0FB4e3vj3XffRfv27eHi4oIjR47gs88+Q5MmTTBkyBCz771586bFz8yyZzdu3DA+NZ7sD3t+iIjqsmOpwNIQYNWTwPpxhj+XhhjKbeSVV15BvXr1cODAAQwfPhzt2rXDQw89hKFDh+KHH37A4MGDjXVlMhkSExMxZMgQeHh44J133gFgeCBpixYt4OzsjDZt2uCrr74yvufUqVOQyWTIyckxll2+fBkymQyZmZkAbveoZGRkoFu3bnB3d0fv3r2Rm5trEuuCBQugVquhUCiMD1KtyqlTp9CvXz8AQIMGDSCTyRAdHQ3AMEwVGxuLuLg4NGrUCP37979nnNW1BwB6vR7Tpk2Dj48PfH19MWfOHEv/F9A9MPkhIqqrjqUC60YB2nOm5dpCQ7kNEqALFy7g559/RkxMDDw8PMzWkclMH6o6Z84cPPXUUzhy5AjGjh2LlJQUTJ48Ga+//jqOHj2KCRMmYMyYMdi2bVuN4/m///s/LFmyBAcOHEC9evUwduxY47l169Zhzpw5ePfdd3HgwAH4+fnhk08+qbKtgIAArF+/HgCQm5uLwsJCLFu2zHh+1apVcHZ2xq5du7BixYp7xmZJex4eHsjOzsaiRYvw9ttvIz09vcb3gCrjsBcRUV2k1wFp8QAEMycFADIgbTrQdpBVh8BOnjwJQRDQpk0bk/JGjRoZe1ViYmKwcOFC47nnn38eY8aMMR4/99xziI6OxiuvvAIAmDJlCvbu3YvFixcbe0os9c4776Bv374AgOnTp2PQoEEoKyuDq6srli5dinHjxmHcuHEAgPnz52PLli1V9v7I5XL4+PgAAFQqFby9vU3Ot2rVCosWLTIenzp1qtrY7tVehw4dMHv2bGPbH330ETIyMvDEE09Y9Nmpauz5ISKqiwp2V+7xMSEA2rOGerVg3759yMnJwcMPP4zy8nKTc926dTM5Pn78OEJDQ03KQkNDcfz48Rpft0OHDsb/9vPzAwCUlJQYr9OzZ0+T+r169arxNSp07dr1vt9rzp2xA4b4K2KnB8OeHyKiuuhqsXXrWahly5aQyWSV5tY89NBDAAA3N7dK76lqeKwqTk6Gf7cLwu1erZs3b5qte+fk6YrhNr1eX6PrWeruz1GTOM25e+K3TCazWexSw54fIqK6yFNt3XoWatiwIZ544gl89NFHKC0tva822rVrh127dpmU7dq1C8HBwQCAxo0bAwAKCwuN5++cVFyT62RnZ5uU7d27t9r3VKzg0ul092zfkjhr0h5ZD3t+iIjqosDegJe/YXKz2Xk/MsP5wN5Wv/Qnn3yC0NBQdOvWDXPmzEGHDh3g5OSE/fv34/fff7/n8NAbb7yB4cOHo3PnzggPD8f333+PDRs2YMuWLQAMvUePPPIIFixYgKCgIJSUlODNN9+scZyTJ09GdHQ0unXrhtDQUKxZswa//fabsZfKnMDAQMhkMmzatAkDBw6Em5sbPD09zda1JM6atEfWw54fIqK6yEkORFZMKpbddfLv48gFNtnvp0WLFvjll18QHh6OGTNmoGPHjujWrRs+/PBDTJ06FfPmzav2/VFRUVi2bBkWL16Mhx9+GJ9++imSkpIQFhZmrPPFF1/g1q1b6Nq1K+Li4jB//vwax/nss89i1qxZmDZtGrp27YqCggJMnDix2vc0adIEc+fOxfTp06FWqxEbG1tt/XvFWdP2yDpkwp2DkQQA0Gq1UCqV0Gg08PLyEjscIpKosrIy5OfnIygoCK6urvfXyLFUw6qvOyc/ezUxJD7B5jcaJLJn1f1cWPr9zWEvIqK6LHiIYTl7Le7wTGTvmPwQEdV1TnIg6DGxoyCyG5zzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqQlFREZ544gl4eHjA29tb7HCsJjMzEzKZDJcvXxY1jjlz5qBTp061fl0mP0REZFXR0dGQyWR4+eWXK52LiYmBTCZDdHR07Qd2Hz744AMUFhYiJycHf/zxh9jh1CqZTIaNGzfabXsPgskPEVEdp9PrsL9oP37880fsL9oPnV5n82sGBATgm2++wfXr141lZWVlWLt2LZo1a2bz61tLXl4eunbtilatWkGlUlmt3Rs3blitLTE56udg8kNEVIdtKdiC/uv7Y+zmsYjfEY+xm8ei//r+2FKwxabX7dKlCwICArBhwwZj2YYNG9CsWTN07tzZpK5er0dCQgKCgoLg5uaGjh074r///a/xvE6nw7hx44zn27Rpg2XLlpm0ER0djaioKCxevBh+fn5o2LAhYmJicPPmzWrjTExMRIsWLeDs7Iw2bdrgq6++Mp5r3rw51q9fjy+//LLa3qpbt27h1Vdfhbe3Nxo2bIj4+HiMHj0aUVFRxjphYWGIjY1FXFwcGjVqhP79+wMAsrKy0KNHD7i4uMDPzw/Tp0/HrVu3TGJYunSpyfU6deqEOXPmGI9lMhlWrlyJp556Cu7u7mjVqhVSU1NN3vPjjz+idevWcHNzQ79+/XDq1Klq70vz5s0BAE899RRkMpnxuGKYauXKlSYPFr1XnFW1V+Grr75C8+bNoVQqMWLECFy5cqXa+B4Ukx8iojpqS8EWTMmcguJrxSblJddKMCVzis0ToLFjxyIpKcl4/MUXX2DMmDGV6iUkJODLL7/EihUr8Ntvv+G1117DCy+8gKysLACG5Khp06b4z3/+g2PHjuGtt97CzJkzsW7dOpN2tm3bhry8PGzbtg2rVq1CcnIykpOTq4wvJSUFkydPxuuvv46jR49iwoQJGDNmDLZt2wYA2L9/PyIjIzF8+HAUFhZWSrgqLFy4EGvWrEFSUhJ27doFrVZrdnhn1apVcHZ2xq5du7BixQqcPXsWAwcORPfu3fHrr78iMTER//73vzF//vx73dpK5s6di+HDh+Pw4cMYOHAgRo4ciYsXLwIAzpw5g6effhqDBw9GTk4O/vWvf2H69OnVtrd//34AQFJSEgoLC43HAHDy5EmsX78eGzZsQE5OjkXxVddeXl4eNm7ciE2bNmHTpk3IysrCggULavLxa06gSjQajQBA0Gg0YodCRBJ2/fp14dixY8L169dr/N5bulvC4+seF0KSQ8y+2ie3F8LXhQu3dLesHvfo0aOFoUOHCiUlJYKLi4tw6tQp4dSpU4Krq6tw/vx5YejQocLo0aMFQRCEsrIywd3dXdi9e7dJG+PGjROee+65Kq8RExMjPPPMMybXDAwMFG7duv15hg0bJjz77LNVttG7d2/hpZdeMikbNmyYMHDgQOPxnbFWRa1WC++9957x+NatW0KzZs2EoUOHGsv69u0rdO7c2eR9M2fOFNq0aSPo9Xpj2ccffyx4enoKOp1OEARBCAwMFD744AOT93Xs2FGYPXu28RiA8OabbxqPr169KgAQfvrpJ0EQBGHGjBlCcHCwSRvx8fECAOHSpUtVfi4AQkpKiknZ7Nmzhfr16wslJSUm5ZbGaa49d3d3QavVGsveeOMNoWfPnlXGVd3PhaXf33yqOxFRHXSo5FClHp87CRBQdK0Ih0oOobtvd5vE0LhxYwwaNAjJyckQBAGDBg1Co0aNTOqcPHkS165dwxNPPGFSfuPGDZPhsY8//hhffPEFTp8+jevXr+PGjRuVVgk9/PDDkMvlxmM/Pz8cOXKkyviOHz+O8ePHm5SFhoZW2cNjjkajQXFxMXr06GEsk8vl6Nq1K/R6vUndrl27Vrp+r169IJPJTK5/9epV/O9//6vR3KgOHToY/9vDwwNeXl4oKSkxXqdnz54m9Xv16mVx23cLDAxE48aN7/v9d2vevDkUCoXx2M/Pzxi7rTD5ISKqg85fO2/Vevdr7NixiI2NBWBIYO529epVAMAPP/yAJk2amJxzcXEBAHzzzTeYOnUqlixZgl69ekGhUOC9995Ddna2Sf369eubHMtkskoJiJg8PDxq/B4nJycYOk1uMzePqTY/u7nPYWmc5ojx/41zfoiI6qDG7pb9y9zSevcrMjISN27cwM2bN42TfO8UHBwMFxcXnD59Gi1btjR5BQQEAAB27dqF3r1745VXXkHnzp3RsmVL5OXlPXBs7dq1w65du0zKdu3aheDgYIvbUCqVUKvVJnNYdDodDh06ZNH19+zZY5I07Nq1CwqFAk2bNgVg6D0rLCw0ntdqtcjPz7c4vorr7Nu3z6Rs796993xf/fr1odNZtjLQkjhr0p6tMfmh2/Q6IH8HcOS/hj9rYTksEdlGF1UXqN3VkEFm9rwMMvi6+6KLqotN45DL5Th+/DiOHTtmMiRVQaFQYOrUqXjttdewatUq5OXl4dChQ/jwww+xatUqAECrVq1w4MABbN68GX/88QdmzZplkmzcrzfeeAPJyclITEzEiRMn8P7772PDhg2YOnVqjdqZNGkSEhIS8N133yE3NxeTJ0/GpUuXTIazzHnllVdw5swZTJo0Cb///ju+++47zJ49G1OmTIGTk+Hr+R//+Ae++uor7NixA0eOHMHo0aPN3sfqvPzyyzhx4gTeeOMN5ObmYu3atdVOBK/QvHlzZGRkoKioCJcuXaq2riVx1qQ9W2PyQwbHUoGlIcCqJ4H14wx/Lg0xlBORw5E7yTG9h2FFz90JUMVxfI94yJ1q9kV6P7y8vODl5VXl+Xnz5mHWrFlISEhAu3btEBkZiR9++AFBQUEAgAkTJuDpp5/Gs88+i549e+LChQt45ZVXHjiuqKgoLFu2DIsXL8bDDz+MTz/9FElJSQgLC6tRO/Hx8XjuuecwatQo9OrVC56enujfv79xGXhVmjRpgh9//BH79u1Dx44d8fLLL2PcuHF48803jXVmzJiBvn374sknn8SgQYMQFRWFFi1a1Ci+Zs2aYf369di4cSM6duyIFStW4N13373n+5YsWYL09HQEBARU2p7gbpbEWZP2bE0m3D1IR9BqtVAqldBoNNX+wNYZx1KBdaMA3P1X4e9fmMO/BIKH1HZURJJXVlaG/Px8k/1UampLwRYs2LfAZPKzr7sv4nvEIzww3Fqh0h30ej3atWuH4cOHY968eWKHU+dU93Nh6fc3JzxLnV4HpMWjcuKDv8tkQNp0oO0goBb+hUhE1hUeGI5+Af1wqOQQzl87j8bujdFF1aVWenykoqCgAD///DP69u2L8vJyfPTRR8jPz8fzzz8vdmhUBSY/UlewG9Ceq6aCAGjPGuoFPVZrYRGR9cid5DZbzk6GlU7JycmYOnUqBEFASEgItmzZgnbt2okdGlVB1Dk/CQkJ6N69OxQKBVQqFaKiopCbm2u2riAIGDBggEUPRqt4qN6dr8jISBt8gjrgatX7gNxXPSIiiQkICMCuXbug0Wig1Wqxe/du9OnTR+ywqBqiJj9ZWVmIiYnB3r17kZ6ejps3byIiIgKlpaWV6i5duvSeM+fvFBkZicLCQuPr66+/tmbodYen2rr1iIiI7Jyow15paWkmx8nJyVCpVDh48KBJ1pyTk4MlS5bgwIED8PPzs6htFxcX+Pr6WlS3vLwc5eXlxmOtVmvR++qEwN6Alz+gLYT5eT8yw/nA3rUdGRH9jetSiG6zxs+DXS1112g0AAAfHx9j2bVr1/D888/j448/tjiZAYDMzEyoVCq0adMGEydOxIULF6qsm5CQAKVSaXxVbKwlCU5yIHLh3wd396z9fRy5gJOdiURQsfPttWvXRI6EyH5U/DzcvTN0TdjNUne9Xo8hQ4bg8uXL2Llzp7F8woQJ0Ol0WLlyJQDDttcpKSmIioqqsq1vvvkG7u7uCAoKQl5eHmbOnAlPT0/s2bPH7OZQ5np+AgICpLPUHTAsd0+LN5387NXEkPhwmTuRaAoLC3H58mWoVCq4u7vXaPifyO4IAnDzGqC7CcjrA/XdAQv/TguCgGvXrqGkpATe3t5mR4Icbql7TEwMjh49apL4pKamYuvWrfjll19q1NaIESOM/92+fXt06NABLVq0QGZmJh5//PFK9V1cXIzPkJGs4CGG5ewFuw2Tmz3VhqEu9vgQiaqix9vWD3oksrmb14DrlwH9rdtlTvUAN29DEmQhb2/vGo0EmWMXyU9sbCw2bdqE7du3G59nAgBbt25FXl4evL29Teo/88wzeOyxx5CZmWlR+w899BAaNWqEkydPmk1+6G9Oci5nJ7IzMpkMfn5+UKlUFj8oksjunNwK/GxuT7mK6RULgZb/uGcz9evXr/HjPcwRNfkRBAGTJk1CSkoKMjMzjVuZV5g+fTr+9a9/mZS1b98eH3zwAQYPHmzxdf73v//hwoULFk+WJiKyN3K53Cq/9IlqnV4H/Pw6cLWqPeVkwM9TgeAjtTbaIOqE55iYGKxevRpr166FQqFAUVERioqKcP36dQCG7t6QkBCTF2B4TsmdiVLbtm2RkpICALh69SreeOMN7N27F6dOnUJGRgaGDh2Kli1bmn2iMBEREdlQTTbTrSWiJj+JiYnQaDQICwuDn5+f8fXtt9/WqJ3c3FzjSjG5XI7Dhw9jyJAhaN26NcaNG4euXbtix44dnNdDRERU2+xwM13Rh72s8Z47y9zc3LB58+YHiouIiIisxA4307WrfX6IiIiojqnYTLfSXnIVZIatVWpxM10mP0RERGQ7driZLpMfIiIisq3gIcDwLwGvu1Zde/kbymt5M1272OeHiIiI6jg72kyXyQ8RERHVDjvZTJfDXkRERCQpTH6IiIhIUpj8EBERkaRwzg8R0f3S6+xi8iYR1QyTHyKi+3EsFUiLN31mkZe/YT+TWl62S0Q1w2EvIqKaOpYKrBtV+WGN2kJD+bFUceIiIosw+SEiqgm9ztDjA3PPJvy7LG26oR4R2SUmP0RENVGwu3KPjwkB0J411CMiu8Tkh4ioJq4WW7ceEdU6Jj9ERDXhqbZuPSKqdUx+iIhqIrC3YVVXpadTV5ABXk0M9YjILjH5ISKqCSe5YTk7gMoJ0N/HkQu43w+RHWPyQ0RUU8FDgOFfAl5+puVe/oZy7vNDZNe4ySER0f0IHgK0HcQdnokcEJMfIqL75SQHgh4TOwoiqiEOexEREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFJETX4SEhLQvXt3KBQKqFQqREVFITc312xdQRAwYMAAyGQybNy4sdp2BUHAW2+9BT8/P7i5uSE8PBwnTpywwScgIiIiRyNq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWlqp7tKlSyGTySxqd9GiRVi+fDlWrFiB7OxseHh4oH///igrK7P2RyAiIiIHIxMEQRA7iArnz5+HSqVCVlYW+vTpYyzPycnBk08+iQMHDsDPzw8pKSmIiooy24YgCPD398frr7+OqVOnAgA0Gg3UajWSk5MxYsSISu8pLy9HeXm58Vir1SIgIAAajQZeXl7W/ZBERERkE1qtFkql8p7f33Y150ej0QAAfHx8jGXXrl3D888/j48//hi+vr73bCM/Px9FRUUIDw83limVSvTs2RN79uwx+56EhAQolUrjKyAg4AE/CREREdkru0l+9Ho94uLiEBoaipCQEGP5a6+9ht69e2Po0KEWtVNUVAQAUKvVJuVqtdp47m4zZsyARqMxvs6cOXOfn4KIiIjsXT2xA6gQExODo0ePYufOncay1NRUbN26Fb/88otNr+3i4gIXFxebXoOIiIjsg130/MTGxmLTpk3Ytm0bmjZtaizfunUr8vLy4O3tjXr16qFePUOu9swzzyAsLMxsWxVDY8XFxSblxcXFFg2bERERUd0mavIjCAJiY2ORkpKCrVu3IigoyOT89OnTcfjwYeTk5BhfAPDBBx8gKSnJbJtBQUHw9fVFRkaGsUyr1SI7Oxu9evWy2WchIiIixyDqsFdMTAzWrl2L7777DgqFwjgnR6lUws3NDb6+vmZ7a5o1a2aSKLVt2xYJCQl46qmnIJPJEBcXh/nz56NVq1YICgrCrFmz4O/vX+UKMSIiIpIOUZOfxMREAKg0hJWUlITo6GiL28nNzTWuFAOAadOmobS0FOPHj8fly5fx6KOPIi0tDa6urtYIm4iIiByYXe3zYy8s3SeAiIiI7IdD7vNDREREZGtMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCn1xA6AiIgkTq8DCnYDV4sBTzUQ2BtwkosdFdVhTH6IiEg8x1KBtHhAe+52mZc/ELkQCB4iXlxUp3HYi4iIxHEsFVg3yjTxAQBtoaH8WKo4cTkqvQ7I3wEc+a/hT71O7IjsFnt+iIio9ul1hh4fCGZOCgBkQNp0oO0gDoFZgj1oNcKeHyIiqn0Fuyv3+JgQAO1ZQz2qHnvQaozJDxER1b6rxdatJ1X37EGDoQeNQ2AmmPwQEVHt81Rbt55UsQftvnDOTy3R6XU4VHII56+dR2P3xuii6gK5nY1jO0SMt27g0JGvcF57Go29mqFL+xchr+csdlgmHOI+MkarYIwPILC3YU6KthA6CDjk6oLzcjka63ToUlYOOWSG84G9xY4UgB3fxzt6xnSAmftYuZ6Y7OU+MvmpBVsKtmDBvgUovnb7L5/aXY3pPaYjPDBcxMhuc4gYdyZgwR9rUCyXGcvUv3yA6a1HIvzRGSJGdptD3EfGaBWM8QE5yYHIhdiyaQIWNPRGcb3bX0fqW7cw/cJlhEcusIvJznZ9H//uGdvi7oYFDRuYuY+XEH7tul30oNnTfZQJgmBuoFDStFotlEolNBoNvLy8HqitLQVbMCVzCoS7xmNlMHyBvx/2vug/PA4R484ETDm5xhCh7HbyI/v7r+/7LcVPgBziPjJGq2CM1mGI8TUIglD551omw/thH9hJjHZ8H/U6bPmkPaZ4OlX9+/GqHuGvHBE1kayt+2jp9/cDzfkpKyvDqlWr8Mknn+DEiRMP0lSdpNPrsGDfgkr/swEYyxbuWwidiBPRHCLGWzew4I/KiQ8ACH8fL/xjDXS3btR+cH9ziPvIGK2CMVrH7RhRxc+1zI5itOP7CGCBT4Pqfz829IGY053t8T5anPxMmTIFkyZNMh7fuHEDvXr1wksvvYSZM2eic+fO2LNnT40unpCQgO7du0OhUEClUiEqKgq5ubkmdSZMmIAWLVrAzc0NjRs3xtChQ/H7779X2250dDRkMpnJKzIyskaxWcOhkkMm3Xt3EyCg6FoRDpUcqsWoTDlEjEe+Mgx13fWDXUGQyVAkl+HQka9qObLbHOI+MkarYIzWwRit41DJIRTf1Fb/+/GGRvwY7ew+Wpz8/Pzzz3jiiSeMx2vWrEFBQQFOnDiBS5cuYdiwYZg/f36NLp6VlYWYmBjs3bsX6enpuHnzJiIiIlBaWmqs07VrVyQlJeH48ePYvHkzBEFAREQEdLrqM8TIyEgUFhYaX19//XWNYrOG89fOW7WeLThEjNrTVq1nCw5xHxmjVTBG62CM1sEY74/FE55Pnz6N4OBg4/HPP/+Mf/7znwgMDAQATJ48GQMHDqzRxdPS0kyOk5OToVKpcPDgQfTp0wcAMH78eOP55s2bY/78+ejYsSNOnTqFFi1aVNm2i4sLfH19axSPtTV2b2zVerbgEDF6NbNqPVtwiPvIGK2CMVoHY7QOxnh/LO75cXJywp1zo/fu3YtHHnnEeOzt7Y1Lly49UDAajQYA4OPjY/Z8aWkpkpKSEBQUhICAgGrbyszMhEqlQps2bTBx4kRcuHChyrrl5eXQarUmL2voouoCtbvaOKHrbjLI4Ovuiy6qLla53v1wiBjbvwi1TjBO3rubTBDgqxPQpf2LtRzZbQ5xHxmjVTBG62CM1sEY74/FyU+7du3w/fffAwB+++03nD59Gv369TOeLygogFp9/0vp9Ho94uLiEBoaipCQEJNzn3zyCTw9PeHp6YmffvoJ6enpcHauem+XyMhIfPnll8jIyMDChQuRlZWFAQMGVDlUlpCQAKVSaXzdK7GylNxJjuk9pgNApf/pFcfxPeJF3SvCIWKs54zprUcaYrorAao4jm89UtT9fhziPjJGq2CM1sEYrYMx3h+Ll7qnpKRgxIgRePTRR/Hbb7+he/fuxmQIAOLj45Gfn49169bdVyATJ07ETz/9hJ07d6Jp06Ym5zQaDUpKSlBYWIjFixfj7Nmz2LVrF1xdXS1q+88//0SLFi2wZcsWPP7445XOl5eXo7y83His1WoREBBglaXugPm9DXzdfRHfI170ZZwVHCJGM/v8+OoExNv5Pj92dx8Zo1UwRutgjNbBGA0sXepeo31+MjIysGnTJvj6+mLSpElwd3c3nps7dy769u2LsLCwGgcbGxuL7777Dtu3b0dQUFC1dW/cuIEGDRpg5cqVeO655yy+RuPGjTF//nxMmDDhnnWtuc9PBXvZ1bI6DhEjd3i2CsZoHYzROhijdTBGGyQ/b7/9NqZOnWqS8DwoQRAwadIkpKSkIDMzE61atbrne8rLy9GgQQN88skniI6Otug6//vf/9CsWTNs3LgRQ4YMuWd9WyQ/REREZFtW3+Rw7ty5uHr1qlWCqxATE4PVq1dj7dq1UCgUKCoqQlFREa5fvw7AMFyVkJCAgwcP4vTp09i9ezeGDRsGNzc3k5Vlbdu2RUpKCgDg6tWreOONN7B3716cOnUKGRkZGDp0KFq2bIn+/ftbNX4iIiJyPBYnP7Z4CkZiYiI0Gg3CwsLg5+dnfH377bcAAFdXV+zYsQMDBw5Ey5Yt8eyzz0KhUGD37t1QqVTGdnJzc40rxeRyOQ4fPowhQ4agdevWGDduHLp27YodO3bAxcXF6p+BiIiIHIvFw15OTk4oLi5G48bi7RVQWzjsRUREJvQ6oGC34enonmrD0+btbD4NWf79XaOnurdu3RqyKrbQrnDx4sWaNElERGTfjqUCafGA9tztMi9/IHIhEHzveaRkf2qU/MydOxdKpdJWsRAREdmXY6nAulHA3Q/l1BYayod/yQTIAdUo+RkxYoTJXBsiIqI6S68z9PiYeRq5oUwGpE0H2g7iEJiDsXjC872Gu4iIiOqUgt2mQ12VCID2rKEeORRRV3sRERHZravF965Tk3pkNywe9tLr9baMg4iIyL54Wvi8Skvrkd2wuOeHiIhIUgJ7G1Z1VfE0ckAGeDUx1COHwuSHiIjIHCe5YTk7gMoJ0N/HkQs42dkBMfkhIiKqSvAQw3J2Lz/Tci9/LnN3YDVa6k5ERCQ5wUMMy9m5w3OdweSHiIjoXpzkQNBjYkdBVsJhLyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUUZOfhIQEdO/eHQqFAiqVClFRUcjNzTWpM2HCBLRo0QJubm5o3Lgxhg4dit9//73adgVBwFtvvQU/Pz+4ubkhPDwcJ06csOVHISIiIgchavKTlZWFmJgY7N27F+np6bh58yYiIiJQWlpqrNO1a1ckJSXh+PHj2Lx5MwRBQEREBHQ6XZXtLlq0CMuXL8eKFSuQnZ0NDw8P9O/fH2VlZbXxsYiIiMiOyQRBEMQOosL58+ehUqmQlZWFPn36mK1z+PBhdOzYESdPnkSLFi0qnRcEAf7+/nj99dcxdepUAIBGo4FarUZycjJGjBhxzzi0Wi2USiU0Gg28vLwe7EMRERFRrbD0+9uu5vxoNBoAgI+Pj9nzpaWlSEpKQlBQEAICAszWyc/PR1FREcLDw41lSqUSPXv2xJ49e8y+p7y8HFqt1uRFREREdZPdJD96vR5xcXEIDQ1FSEiIyblPPvkEnp6e8PT0xE8//YT09HQ4OzubbaeoqAgAoFarTcrVarXx3N0SEhKgVCqNr6oSKyIiInJ8dpP8xMTE4OjRo/jmm28qnRs5ciR++eUXZGVloXXr1hg+fLhV5+/MmDEDGo3G+Dpz5ozV2iYiIiL7Uk/sAAAgNjYWmzZtwvbt29G0adNK5yt6ZFq1aoVHHnkEDRo0QEpKCp577rlKdX19fQEAxcXF8PPzM5YXFxejU6dOZq/v4uICFxcX63wYIiIismui9vwIgoDY2FikpKRg69atCAoKsug9giCgvLzc7PmgoCD4+voiIyPDWKbVapGdnY1evXpZLXYiIiJyTKImPzExMVi9ejXWrl0LhUKBoqIiFBUV4fr16wCAP//8EwkJCTh48CBOnz6N3bt3Y9iwYXBzc8PAgQON7bRt2xYpKSkAAJlMhri4OMyfPx+pqak4cuQIRo0aBX9/f0RFRYnxMYmIiMiOiDrslZiYCAAICwszKU9KSkJ0dDRcXV2xY8cOLF26FJcuXYJarUafPn2we/duqFQqY/3c3FzjSjEAmDZtGkpLSzF+/HhcvnwZjz76KNLS0uDq6lorn4uIiIjsl13t82MvuM8PERGR43HIfX6IiIiIbI3JDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhS7GKHZyIiIqr7dHoB+/IvouRKGVQKV/QI8oHcSVbrcTD5ISIiIptLO1qIud8fQ6Hm9rM5/ZSumD04GJEhftW80/o47EVERFQH6PQC9uRdwHc5Z7En7wJ0evvZxi/taCEmrj5kkvgAQJGmDBNXH0La0cJajYc9P0RERA7OnnpV7qbTC5j7/TGYS8UEADIAc78/hieCfWttCIw9P0RERA7M3npV7rYv/2Kl2O4kACjUlGFf/sVai4nJD5EE2XP3OBFZ7l69KoChV0XMn/GSK1UnPvdTzxo47EVkbXodULAbuFoMeKqBwN6Ak1zsqIzsuXuciGqmJr0qvVo0rL3A7qBSWPZQcUvrWQOTHyJrOpYKpMUD2nO3y7z8gciFQPAQ8eL6W0X3+N3/BqzoHk98oQsTICIHYo+9KnfrEeQDP6UrijRlZnuoZAB8lYZl77WFw15E1nIsFVg3yjTxAQBtoaH8WKo4cf3NEbrHiahm7LFX5W5yJxlmDw4GYEh07lRxPHtwcK3u98Pkh8ga9DpDj091qUXadEM9kdjjpEMiejAVvSpVpQ0yGIa1a7NXxZzIED8kvtAFvkrTJMxX6SpKjzOHvYisoWB35R4fEwKgPWuoF/RYrYV1J0foHieimqnoVZm4+hBkMP3nl1i9KlWJDPHDE8G+3OGZqM64WmzdejbgCN3jRFRzFb0qdy9k8LXDhQxyJ5loE6/vxOSHyBo81datZwP2OOmQCLCf5z05MnvqVXEETH6IrCGwt2FVl7YQ5uf9yAznA3vXdmRGjtQ9TtLBrResx156VRwBJzwTWYOT3LCcHUCV6xkiF4i+34+9TTokabP3nYmp7pIJgsB1rXfRarVQKpXQaDTw8vISOxxyJGb3+WliSHzsYJ+fChxmILHp9AIeXbi1yhWIFcOwO+P/wb+bZDFLv7857EVkTcFDgLaD7HqHZ4Dd4yQ+R9iZmOouJj9E1uYkF205O5Gj4NYLJCbO+SEiolrHrRdITOz5ISL7ZOcPiKUHw60XSExMfojI/tj5A2LpwXHrBRITh72IyL7Y+QNiyXq49QKJhUvdzeBSdyKR6HXA0pBqnpP292aRcUc4BFaHcOsFshYudScix+MAD4gl6+PWC1TbOOxFRPbDAR4QS0SOjz0/RFbGLvwH4AAPiCUix8fkh8iK+JDGB+QAD4glIsfHYS8iK+FDGq3AQR4QS0SOjckPkRXo9ALmfn/MbF9FRdnc749Bp+fiynsKHgIM/xLwuqunzMvfUG5H+/zo9AL25F3AdzlnsSfvAv//EjkIDnsRWQEf0mhlDvCAWA5xEjkuJj9EVsCHNNqAHT8gtmKI8+5+noohTm7QR2TfOOxFZAV8SKN0cIiTyPEx+SGygoqHNFa1oF0Gw5AIH9Lo+GoyxElE9onJD5EVVDykEahyjRIf0lhHcIhTmji5vW7hnB9yKPa8gWDFQxrvngTry0mwdQqHOKWHk9vrHiY/5DAc4RdQZIgfngj2tdsEjR5cxRBnkaasqm0Y4cshzjqDk9vrJg57kUNwpA0EKx7SOLRTE/Rq0ZCJTx3DIU7p4OT2uovJD9k9/gKyAb0OyN8BHPmv4U+9TuyIHErFEKev0nRoy1fpyp6AOoST2+suDnuR3eMGglZ2LBVIiwe0526XefkbHithR7sn2zsOcdZ9nNxed4na85OQkIDu3btDoVBApVIhKioKubm5xvMXL17EpEmT0KZNG7i5uaFZs2Z49dVXodFoqm03OjoaMpnM5BUZGWnrj0M2wl9AVnQsFVg3yjTxAQwPEl03ynCeLOYIQ5xcpXT/OLm97hK15ycrKwsxMTHo3r07bt26hZkzZyIiIgLHjh2Dh4cHzp07h3PnzmHx4sUIDg5GQUEBXn75ZZw7dw7//e9/q207MjISSUlJxmMXFxdbfxyyEf4CshK9ztDjU+UAogxIm254rIQdPUaC7p8jLBKwZ5zcXneJmvykpaWZHCcnJ0OlUuHgwYPo06cPQkJCsH79euP5Fi1a4J133sELL7yAW7duoV69qsN3cXGBr6+vzWKn2sNfQFZSsLtyj48JAdCeNdSz08dKkOW4SunBVUxun7j6EGQw/WcDJ7c7Nrua8FwxnOXjU/WXmEajgZeXV7WJDwBkZmZCpVKhTZs2mDhxIi5cuFBl3fLycmi1WpMX2Q+urrGSq8XWrUd2i4sErIeT2+smu5nwrNfrERcXh9DQUISEhJit89dff2HevHkYP358tW1FRkbi6aefRlBQEPLy8jBz5kwMGDAAe/bsgVxeuTs/ISEBc+fOtcrnINvgBoJW4Km2bj2yW1wkYF2c3F73yARBsIvUf+LEifjpp5+wc+dONG3atNJ5rVaLJ554Aj4+PkhNTUX9+vUtbvvPP/9EixYtsGXLFjz++OOVzpeXl6O8vNzkWgEBAcZeJrIf9rzDs93T64ClIYbJzVUNIHr5A3FHOOfHwX2XcxaTv8m5Z71lIzphaKcmtg+IqJZotVoolcp7fn/bRc9PbGwsNm3ahO3bt5tNfK5cuYLIyEgoFAqkpKTUKPEBgIceegiNGjXCyZMnzSY/Li4unBDtICpW19B9cJIblrOvGwVUNYMhcgETnzqAiwSIqifqnB9BEBAbG4uUlBRs3boVQUFBlepotVpERETA2dkZqampcHWt+Q/r//73P1y4cAF+fhwaIYkLHgIM/xLwuutnwcvfUM59fuqEikUCVfWJymBY9cVFAiRVog57vfLKK1i7di2+++47tGnTxliuVCrh5uZmTHyuXbuGlJQUeHh4GOs0btzYOH+nbdu2SEhIwFNPPYWrV69i7ty5eOaZZ+Dr64u8vDxMmzYNV65cwZEjRyzq4bG026yu4ZCShOh1hlVdV4sNc3wCe7PHp46pWO0FmF+lxMm6VBdZ+v0tavIjk5n/Yk1KSkJ0dDQyMzPRr18/s3Xy8/PRvHlzYzsV77l+/TqioqLwyy+/4PLly/D390dERATmzZsHtdqyiZxSTH64HwhR3cOfa5Iah0h+7JXUkp+q9gPhvxCJHB97dElKHGrCM4nnXvuByGDYD+SJYF/+wiRyQFwkQFSZXW1ySLWPTy0mIiKpYfIjcXxoKBERSQ2TH4njfiBERCQ1TH4kjvuBEBGR1DD5kTg+NJSIiKSGyQ/xqcVERCQpXOpOAPjUYiIikg4mP2TE/UCIiEgKmPwQkV3izsREZCtMfojI7vCZVERkS5zwTER2peJZc3fvPF6kKcPE1YeQdrRQpMiIqK5g8kNEduNez5oDDM+a0+n5PGYiun9MfmqJTi9gT94FfJdzFnvyLvCXN5EZfNYcEdUGzvmpBZy/QGQZPmuOiGoDe35sjPMXiCzHZ80RUW1g8mNDnL9AVDN81hwR1QYmPzbE+QtENcNnzRFRbWDyY0Ocv0BUc3zWHBHZGic82xDnLxDdHz5rjohsicmPDVXMXyjSlJmd9yOD4V+znL9AVBmfNUdEtsJhLxvi/AUiIiL7w+THxjh/gYiIyL5w2KsWcP4CERGR/WDyU0s4f4GIiMg+cNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj8JCQno3r07FAoFVCoVoqKikJubazx/8eJFTJo0CW3atIGbmxuaNWuGV199FRqNptp2BUHAW2+9BT8/P7i5uSE8PBwnTpyw9cchIiIiByBq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWgoAOHfuHM6dO4fFixfj6NGjSE5ORlpaGsaNG1dtu4sWLcLy5cuxYsUKZGdnw8PDA/3790dZWVltfCwiIiKyYzJBEASxg6hw/vx5qFQqZGVloU+fPmbr/Oc//8ELL7yA0tJS1KtXr9J5QRDg7++P119/HVOnTgUAaDQaqNVqJCcnY8SIEZXeU15ejvLycuOxVqtFQEAANBoNvLy8rPTpiIiIyJa0Wi2USuU9v7/tas5PxXCWj49PtXW8vLzMJj4AkJ+fj6KiIoSHhxvLlEolevbsiT179ph9T0JCApRKpfEVEBDwAJ+CiMiO6HVA/g7gyH8Nf+p1YkdEJDrzGYQI9Ho94uLiEBoaipCQELN1/vrrL8ybNw/jx4+vsp2ioiIAgFqtNilXq9XGc3ebMWMGpkyZYjyu6PkhInJox1KBtHhAe+52mZc/ELkQCB4iXlxEIrOb5CcmJgZHjx7Fzp07zZ7XarUYNGgQgoODMWfOHKte28XFBS4uLlZtk4hIVMdSgXWjANw1s0FbaCgf/iUTIJIsuxj2io2NxaZNm7Bt2zY0bdq00vkrV64gMjISCoUCKSkpqF+/fpVt+fr6AgCKi4tNyouLi43niIjqNL3O0ONzd+ID3C5Lm84hMJIsUZMfQRAQGxuLlJQUbN26FUFBQZXqaLVaREREwNnZGampqXB1da22zaCgIPj6+iIjI8OkjezsbPTq1cvqn4GIyO4U7DYd6qpEALRnDfWIJEjU5CcmJgarV6/G2rVroVAoUFRUhKKiIly/fh3A7cSntLQU//73v6HVao11dLrb/2Jp27YtUlJSAAAymQxxcXGYP38+UlNTceTIEYwaNQr+/v6IiooS42MSEdWuq8X3rlOTekR1jKhzfhITEwEAYWFhJuVJSUmIjo7GoUOHkJ2dDQBo2bKlSZ38/Hw0b94cAJCbm2uy8eG0adNQWlqK8ePH4/Lly3j00UeRlpZ2z14jIqI6wVN97zo1qUdUx9jVPj/2wtJ9AoiI7JJeBywNMUxuNjvvR2ZY9RV3BHCS13Z0RDbjkPv8EBGRFTjJDcvZAQCyu07+fRy5gIkPSRaTHyKiuih4iGE5u5efabmXP5e5k+TZzT4/RERkZcFDgLaDDKu6rhYb5vgE9maPD0kekx8iorrMSQ4EPSZ2FER2hcNeREREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCnc4dmMigfda7VakSMhIiIiS1V8b1d8j1eFyY8ZV65cAQAEBASIHAkRERHV1JUrV6BUKqs8LxPulR5JkF6vx7lz56BQKCCTyazWrlarRUBAAM6cOQMvLy+rtSs1vI/WwftoHbyP1sH7aB1Sv4+CIODKlSvw9/eHk1PVM3vY82OGk5MTmjZtarP2vby8JPmX0tp4H62D99E6eB+tg/fROqR8H6vr8anACc9EREQkKUx+iIiISFKY/NQiFxcXzJ49Gy4uLmKH4tB4H62D99E6eB+tg/fROngfLcMJz0RERCQp7PkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTn1r08ccfo3nz5nB1dUXPnj2xb98+sUNyKAkJCejevTsUCgVUKhWioqKQm5srdlgOb8GCBZDJZIiLixM7FIdz9uxZvPDCC2jYsCHc3NzQvn17HDhwQOywHIpOp8OsWbMQFBQENzc3tGjRAvPmzbvns5mkbvv27Rg8eDD8/f0hk8mwceNGk/OCIOCtt96Cn58f3NzcEB4ejhMnTogTrB1i8lNLvv32W0yZMgWzZ8/GoUOH0LFjR/Tv3x8lJSVih+YwsrKyEBMTg7179yI9PR03b95EREQESktLxQ7NYe3fvx+ffvopOnToIHYoDufSpUsIDQ1F/fr18dNPP+HYsWNYsmQJGjRoIHZoDmXhwoVITEzERx99hOPHj2PhwoVYtGgRPvzwQ7FDs2ulpaXo2LEjPv74Y7PnFy1ahOXLl2PFihXIzs6Gh4cH+vfvj7KyslqO1E4JVCt69OghxMTEGI91Op3g7+8vJCQkiBiVYyspKREACFlZWWKH4pCuXLkitGrVSkhPTxf69u0rTJ48WeyQHEp8fLzw6KOPih2Gwxs0aJAwduxYk7Knn35aGDlypEgROR4AQkpKivFYr9cLvr6+wnvvvWcsu3z5suDi4iJ8/fXXIkRof9jzUwtu3LiBgwcPIjw83Fjm5OSE8PBw7NmzR8TIHJtGowEA+Pj4iByJY4qJicGgQYNM/l6S5VJTU9GtWzcMGzYMKpUKnTt3xueffy52WA6nd+/eyMjIwB9//AEA+PXXX7Fz504MGDBA5MgcV35+PoqKikx+tpVKJXr27MnvnL/xwaa14K+//oJOp4NarTYpV6vV+P3330WKyrHp9XrExcUhNDQUISEhYofjcL755hscOnQI+/fvFzsUh/Xnn38iMTERU6ZMwcyZM7F//368+uqrcHZ2xujRo8UOz2FMnz4dWq0Wbdu2hVwuh06nwzvvvIORI0eKHZrDKioqAgCz3zkV56SOyQ85pJiYGBw9ehQ7d+4UOxSHc+bMGUyePBnp6elwdXUVOxyHpdfr0a1bN7z77rsAgM6dO+Po0aNYsWIFk58aWLduHdasWYO1a9fi4YcfRk5ODuLi4uDv78/7SDbDYa9a0KhRI8jlchQXF5uUFxcXw9fXV6SoHFdsbCw2bdqEbdu2oWnTpmKH43AOHjyIkpISdOnSBfXq1UO9evWQlZWF5cuXo169etDpdGKH6BD8/PwQHBxsUtauXTucPn1apIgc0xtvvIHp06djxIgRaN++PV588UW89tprSEhIEDs0h1XxvcLvnKox+akFzs7O6Nq1KzIyMoxler0eGRkZ6NWrl4iRORZBEBAbG4uUlBRs3boVQUFBYofkkB5//HEcOXIEOTk5xle3bt0wcuRI5OTkQC6Xix2iQwgNDa201cIff/yBwMBAkSJyTNeuXYOTk+lXkVwuh16vFykixxcUFARfX1+T7xytVovs7Gx+5/yNw161ZMqUKRg9ejS6deuGHj16YOnSpSgtLcWYMWPEDs1hxMTEYO3atfjuu++gUCiMY9dKpRJubm4iR+c4FApFpXlSHh4eaNiwIedP1cBrr72G3r17491338Xw4cOxb98+fPbZZ/jss8/EDs2hDB48GO+88w6aNWuGhx9+GL/88gvef/99jB07VuzQ7NrVq1dx8uRJ43F+fj5ycnLg4+ODZs2aIS4uDvPnz0erVq0QFBSEWbNmwd/fH1FRUeIFbU/EXm4mJR9++KHQrFkzwdnZWejRo4ewd+9esUNyKADMvpKSksQOzeFxqfv9+f7774WQkBDBxcVFaNu2rfDZZ5+JHZLD0Wq1wuTJk4VmzZoJrq6uwkMPPST83//9n1BeXi52aHZt27ZtZn8fjh49WhAEw3L3WbNmCWq1WnBxcREef/xxITc3V9yg7YhMELiNJhEREUkH5/wQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQkeRER0dzm38iCWPyQ0Q2ER0dDZlMVukVGRkpdmhYtmwZkpOTxQ4DACCTybBx40axwyCSFD7YlIhsJjIyEklJSSZlLi4uIkUD6HQ6yGQyKJVK0WIgIvGx54eIbMbFxQW+vr4mrwYNGiAzMxPOzs7YsWOHse6iRYugUqlQXFwMAAgLC0NsbCxiY2OhVCrRqFEjzJo1C3c+jrC8vBxTp05FkyZN4OHhgZ49eyIzM9N4Pjk5Gd7e3khNTUVwcDBcXFxw+vTpSsNeYWFhmDRpEuLi4tCgQQOo1Wp8/vnnKC0txZgxY6BQKNCyZUv89NNPJp/v6NGjGDBgADw9PaFWq/Hiiy/ir7/+Mmn31VdfxbRp0+Dj4wNfX1/MmTPHeL558+YAgKeeegoymcx4TES2xeSHiGpdWFgY4uLi8OKLL0Kj0eCXX37BrFmzsHLlSqjVamO9VatWoV69eti3bx+WLVuG999/HytXrjSej42NxZ49e/DNN9/g8OHDGDZsGCIjI3HixAljnWvXrmHhwoVYuXIlfvvtN6hUKrMxrVq1Co0aNcK+ffswadIkTJw4EcOGDUPv3r1x6NAhRERE4MUXX8S1a9cAAJcvX8Y//vEPdO7cGQcOHEBaWhqKi4sxfPjwSu16eHggOzsbixYtwttvv4309HQAwP79+wEASUlJKCwsNB4TkY2J/FR5IqqjRo8eLcjlcsHDw8Pk9c477wiCIAjl5eVCp06dhOHDhwvBwcHCSy+9ZPL+vn37Cu3atRP0er2xLD4+XmjXrp0gCIJQUFAgyOVy4ezZsybve/zxx4UZM2YIgiAISUlJAgAhJyenUmxDhw41udajjz5qPL5165bg4eEhvPjii8aywsJCAYCwZ88eQRAEYd68eUJERIRJu2fOnBEACLm5uWbbFQRB6N69uxAfH288BiCkpKRUcReJyBY454eIbKZfv35ITEw0KfPx8QEAODs7Y82aNejQoQMCAwPxwQcfVHr/I488AplMZjzu1asXlixZAp1OhyNHjkCn06F169Ym7ykvL0fDhg2Nx87OzujQocM9Y72zjlwuR8OGDdG+fXtjWUWPVElJCQDg119/xbZt2+Dp6Vmprby8PGNcd1/bz8/P2AYRiYPJDxHZjIeHB1q2bFnl+d27dwMALl68iIsXL8LDw8Pitq9evQq5XI6DBw9CLpebnLszIXFzczNJoKpSv359k2OZTGZSVtGGXq83Xn/w4MFYuHBhpbb8/PyqbbeiDSISB5MfIhJFXl4eXnvtNXz++ef49ttvMXr0aGzZsgVOTrenImZnZ5u8Z+/evWjVqhXkcjk6d+4MnU6HkpISPPbYY7UdPrp06YL169ejefPmqFfv/n+V1q9fHzqdzoqREdG9cMIzEdlMeXk5ioqKTF5//fUXdDodXnjhBfTv3x9jxoxBUlISDh8+jCVLlpi8//Tp05gyZQpyc3Px9ddf48MPP8TkyZMBAK1bt8bIkSMxatQobNiwAfn5+di3bx8SEhLwww8/2PyzxcTE4OLFi3juueewf/9+5OXlYfPmzRgzZkyNkpnmzZsjIyMDRUVFuHTpkg0jJqIK7PkhIptJS0szGQICgDZt2uD5559HQUEBNm3aBMAwTPTZZ5/hueeeQ0REBDp27AgAGDVqFK5fv44ePXpALpdj8uTJGD9+vLGtpKQkzJ8/H6+//jrOnj2LRo0a4ZFHHsGTTz5p88/m7++PXbt2IT4+HhERESgvL0dgYCAiIyNNeq/uZcmSJZgyZQo+//xzNGnSBKdOnbJd0EQEAJAJwh2bZhAR2YmwsDB06tQJS5cuFTsUIqpjOOxFREREksLkh4iIiCSFw15EREQkKez5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpPw/PrlIRqXe7ggAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", @@ -2273,7 +701,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.10.0" }, "orig_nbformat": 4 }, diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index 4c950e3..0b65112 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -89,31 +89,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='08-01',\n", - " allow_overlap=True,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", - " ]\n", - ")" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check calendar\n", "calendar" @@ -130,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -163,20 +141,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3dd1gUV9sG8HsWlqWDIoIFIyoWrKjYYrAkltijURM1xmjsyms0ryXmtStBI9HYW4TYW4zGJJZYMHYFewt2FBBFpErZ3fP9wcfEFVQWFnaB+3ddXmFnZ+Y8c05md56dOedIQggBIiIiIiIiI1MYOwAiIiIiIiKAyQkREREREZkIJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEsyNHUBhodVqERERATs7O0iSZOxwiIiIqAgTQiAhIQFly5aFQsHfkqn4YHKSQxEREXBzczN2GERERFSMhIeHo3z58sYOg6jAMDnJITs7OwAZHxL29vZGjoaIiIiKsvj4eLi5ucnXH0TFBZOTHMp8lMve3p7JCRERERUIPkpOxQ0fYiQiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgksEM8ERFRHgkhkJqaarD9qVSqXHWENlQcuSnfFOrAkDEYuw1SUlLyvA+iwojJCRERUR6lpqaiZ8+eBtvftm3bYGlpabQ4clO+KdSBIWMwdhukp6fneR9EhRGTEyIiIgMJfZSQ533UL5f3eS0uPsn9hW1dZ2WeyjaFOsjL8QN5rwMAQPiZvG3v6pX3GIgKISYnREREBtR0hB/MzC303k6jTsPJpZMMFkeLCSugUKpyvL42PRXB/kMNUrYp1IG+xw8Ytg4AYP0QL6iU+nXvTU3Xot/K8waLgaiwYXJCRERkQGbmFjCz0O+iOD8olCqYW+T8sSS1Acs2hTrQ9/gBw9YBAKiUClgqzQy8V6KijaN1ERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUkwN3YARERERdFhvyF4EfcUkqSA0soGDfpPQomK1XF11yrc/Xs3EqLuw2fsIpSr3yJfytekpeDInEF4/uAmzFVWsCrhgma+AbBzrYCn/5zHyaUToElLgSYtFR5t+8Cz21CDx/C6OkiJi8HJ5ZOR+DgcZkoLeA/8H5yr1Td4+QCwd1J3vIh9/P8x2KLJyLlwqlwbL54/wdG5w5EQeRcKpQWa+QagVFWvfImh7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r42G7g75EgNRYWHUOyd+fn7w9vaGnZ0dSpcujW7duuHmzZs66wghMG3aNJQtWxZWVlZo2bIlrl69Kr//7NkzjB49GtWqVYO1tTUqVKgAX19fxMXF6exn9uzZaNasGaytreHo6FgQh0dERMXYu77fo8N3v+BDv+2o3qE/Tq+aAgBwqdkYLf67FKWrN8j3GKp1+Bw91pxFt2V/w61xWxxfOAYAcGzBf1C39xh0W3oUnQL24sr2xXj+4Oabd5YLr6uDC1sWoFSVOugc8DsaD5mJE0smQqtRG7x8AGg1eS0+Wn4c3Zb9jVofj8KxgFEAgHNrpsO5RkN8vDYE741bgmD/IfkWw9YRDXBpZgtcmOGDce0rYeCaiwCAidtuoEllR4T5t8bagXXRd+V5qDXafImBqLAwanISHByMkSNH4tSpUzhw4ADUajXatm2LpKQkeZ25c+ciICAAixcvxtmzZ+Hq6oo2bdogISEBABAREYGIiAh8//33uHz5MgIDA7F3714MGjRIp6y0tDT07NkTw4cPL9BjJCKi4snCxl7+Oy05EZIkAQBKVakDOxe3fC/fzMISbo3ayuWWruGNhMh78vupifEAgPSUJCiUFlDZlTB4DK+rg/BT++DR5hMAgFPlWrB0cMKTm+cNXj4AqGz/vRORlhQPSBmXPneP/ooanb8EADhXqw8rx9KIvnYmX2JwtFbKf8clp0OhyKiHrWcjMLJ1RQCAdyVHuNhb4MSt2HyJgaiwMOpjXXv37tV5vXbtWpQuXRohISHw8fGBEAILFizA5MmT0b17dwBAUFAQXFxcsHHjRgwdOhS1atXCjh075H1UrlwZs2fPRr9+/aBWq2FunnGI06dPBwAEBgYWzMEREVGxd3LZN/IFb8sJy40ay9VfV6BCk/YAgPfGLcFf0/ogNGgWUuJi8O5/foBVidL5Uu6rdZCa8BxCCFjal5TXsXEui+SYSKBKnXyJIXjuMERd/BsA0Hb2dqTEP4MQWlg5lpLXsXWpgKQnD/OlfADov+o8Dl+PAQDsHdcYMYlp0AoBZ3uVvE7FUtYIf5aSbzEQFQYm1eck81GskiUzPrDu3r2LqKgotG3bVl5HpVKhRYsWOHHiBIYOzf752Li4ONjb28uJSW6kpqYiNTVVfh0fH5/rfRERUfHUdPgcAMCdo7twfuN8tBy/zChxXNw0H/ERd/CubwAA4PK2H+H95QxUavER4iPv4c//dkKJSrXypexX66DpcD/g/++gyITIl7IztRifkRiGHdiEs6unwGf8Ckh4JQbkbww/D87ozxJ0LBz/3XIN64Z4ZYkhn6uBqFAwmdG6hBAYO3Ysmjdvjlq1Mj4go6KiAAAuLi4667q4uMjvvSomJgYzZ858beKSU35+fnBwcJD/ubnl/y14IiIqmir5dEX0tbNITXhe4GVf3rYI947vQdtZ22BuaY2UuBjcP/E7KrX4CABgX6YinKs3xJMb5/I1jsw6yJQS/0z+O+lpJKydyuRr+QDg0eZTRF48Jr9+8fyp/Hfi43DYOJfP9xg+b+6Gwzdi5NdP4v/9IfR+TDLcSlrmewxEpsxkkpNRo0bh0qVL2LRpU5b3JOnVXxZElmVAxt2Njh07wtPTE1OnTs1TPJMmTUJcXJz8Lzw8PE/7IyKi4iM9ORHJsdHy6/CzB2Fh6wAL24IdienKjiW4c2QH2vvtlPteWNg6wkypQuSl4wCAlLgYPLl+Fo4Vqhu07DfVQYVGbRB2YDMAIOb2FaTEPYVzNcOPlJWWFJ/xuNj/u3d8D1T2JaGyK4GKPl1x/bfVAIAnN0PxIvYxSns2MngM8S/SERH776NaO0Mi4WRrgZI2SvT0LoMlh+4BAM7eeY6ouFQ0q2L4vj9EhYlJPNY1evRo7N69G0ePHkX58v/+auHq6gog4w5KmTL//qISHR2d5W5KQkIC2rdvD1tbW+zcuRNKpRJ5oVKpoFKp3r4iERHRK9JeJOLYgq+gSUuBpFBAZVcCLb5eAkmScHXXaoQd2ITUhFicWvEtzJQWaD9nG5SWNgaNIelpBM6s/BZ2ZSriz/GdAQAKpQpdfvwLrSavxZkVk6HVqCE0atT6eDRKVa1n0PLfVAd1P/0Kp5Z+g9/GdoTCXImmw+dAYWYOjUZj2BiS4nFo5ufQpL0AJAUsHUqhzYzNkCQJ3oOmIXjuMGz/ogEU5hbwGb8CCjPDXxbFJavRY8k5vEjTQqEAnO1U2DPGG5Ikwb9nDXy26jw8JhyChbkC6wZ7wdzMZH43JjIKoyYnQgiMHj0aO3fuxJEjR+Du7q7zvru7O1xdXXHgwAF4eWX8opKWlobg4GD4+/vL68XHx6Ndu3ZQqVTYvXs3LC15S5SIiIzHxskV7WZmfRIAAGp2/RI1u36ZZbkmLTWbtfMQQ6myGLgv+5GfytVviXL1j+gsU6cZtiP2m+rAyqEUWk1aadDysmNbujy6LDqYfQwlSqO93y86ywxdBwDg5mSFM1Pey/Y9FwcV9n/dRGdZSrphEzSiwsaoycnIkSOxceNG7Nq1C3Z2dnI/EgcHB1hZWUGSJIwZMwZz5syBh4cHPDw8MGfOHFhbW6NPnz4AMu6YtG3bFsnJyVi/fj3i4+PlzuvOzs4wMzMDADx48ADPnj3DgwcPoNFocOHCBQBAlSpVYGtrW/AHT0REREREOoyanCxbljFqScuWLXWWr127FgMGDAAAjB8/Hi9evMCIESMQGxuLxo0bY//+/bCzswMAhISE4PTp0wAyEo2X3b17FxUrVgQATJkyBUFBQfJ7mXdiDh8+nKV8IiIiIiIqeEZ/rOttJEnCtGnTMG3atGzfb9myZY72ExgYyDlOiIiIiIhMGHtdERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQRzYwdARERUlGjUaQW63eto01Oh1nN9QzGFOtD3+DO3MaTUdG2BbENUlDA5ISIiMqCTSycZOwQAQLD/UKOVbQp1YMzjz9Rv5Xljh0BU6DA5ISIiMpD65eyMHQIAoK6z0mhlm0IdGPP4ZW6N8rZ9erph4iAqZCQhhDB2EIVBfHw8HBwcEBcXB3t7e2OHQ0REJkQIgdRUwz0SpFKpIEmS0eLITfmmUAeGjMHYbRAfHw8XFxded1CxwzsnREREeSRJEiwtLY0dhlHjMIU6KEoxpKUZtg8SUWHB0bqIiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpOgV3KiVqsRFBSEqKio/IqHiIiIiIiKKb2SE3NzcwwfPhypqan5FQ8RERERERVTej/W1bhxY1y4cCEfQiEiIiIiouLMXN8NRowYgbFjxyI8PBwNGjSAjY2Nzvt16tQxWHBEZJqEEAa9g6pSqSBJktHiMHb5jCHvMRARUdEgCSGEPhsoFFlvtkiSBCEEJEmCRqMxWHCmJD4+Hg4ODoiLi4O9vb2xwyEyqpSUFPTs2dNg+9u2bRssLS2NFoexy2cMeY+BqKjhdQcVV3rfObl7925+xEFEhVDoo4Q876N+Obs87+Pik/Rcb1vXWZnn8vNaD8auA8Aw9YDwM3nb3q1R3mMgIqJCTe/k5J133smPOIiokGo6wg9m5hZ6b6dRp+Hk0kkGi6PFhBVQKFU5Xl+bnopg/6EGKz839WDsOgAMXw/rh3hBpdSvO2Nquhb9Vp43WAxERFR46Z2cZLp27RoePHiAtLQ0neVdunTJc1BEVHiYmVvAzEK/C+L8oFCqYG6R88eB1AYu3xTqQd86AAxfDyqlApZKMwPvlYiIigu9k5M7d+7go48+wuXLl+W+JgDkDoxFtc8JERERERHlL72HEv7Pf/4Dd3d3PH78GNbW1rh69SqOHj2Khg0b4siRI/kQIhERERERFQd63zk5efIkDh06BGdnZygUCigUCjRv3hx+fn7w9fXF+fN8bpiIiIiIiPSn950TjUYDW1tbAECpUqUQEREBIKOj/M2bNw0bHRERERERFRt63zmpVasWLl26hEqVKqFx48aYO3cuLCwssHLlSlSqVCk/YiQiIiIiomJA7+Tk22+/RVJSEgBg1qxZ6NSpE9577z04OTlhy5YtBg+QiIiIiIiKB72Tk3bt2sl/V6pUCdeuXcOzZ89QokQJecQuIiIiIiIifend5yTTrVu3sG/fPrx48QIlS5Y0ZExERERERFQM6Z2cxMTE4P3330fVqlXRoUMHREZGAgC+/PJLjBs3zuABEhERERFR8aD3Y11fffUVlEolHjx4gBo1asjLe/fuja+++grz5883aIBERERElD2NRoP09HRjh0H0RhYWFlAocnZPRO/kZP/+/di3bx/Kly+vs9zDwwP379/Xd3dEREREpCchBKKiovD8+XNjh0L0VgqFAu7u7rCwsHjrunonJ0lJSbC2ts6y/OnTp1CpVPrujoiIiIj0lJmYlC5dGtbW1hyUiEyWVqtFREQEIiMjUaFChbf+v6p3cuLj44Off/4ZM2fOBABIkgStVot58+ahVatWuYuaiIiIiHJEo9HIiYmTk5OxwyF6K2dnZ0RERECtVkOpVL5xXb2Tk3nz5qFly5Y4d+4c0tLSMH78eFy9ehXPnj3D8ePHcx00EREREb1dZh+T7J5kITJFmY9zaTSatyYneo/W5enpiUuXLqFRo0Zo06YNkpKS0L17d5w/fx6VK1fOXcREREREpBc+ykWFhT7/r+p95wQAXF1dMX369NxsSkRERERElC2975xUrFgRM2bMQHh4eH7EQ0RERERExZTed07GjRuHwMBAzJgxA61atcKgQYPw0UcfcaQuIiIiImObX8CPeo0TBVuekUmShJ07d6Jbt27GDiXXWrZsiXr16mHBggXGDiVbet85GT16NEJCQhASEgJPT0/4+vqiTJkyGDVqFEJDQ/MjRiIiIiIq5CRJeuO/AQMGGC22ihUr5uhiPTIyEh9++GGO9xsYGAhHR8fcB1YM6Z2cZKpbty4WLlyIR48eYerUqVi9ejW8vb1Rt25d/PTTTxCieGXSRERERPR6kZGR8r8FCxbA3t5eZ9nChQv12l9aWlo+Rfp6rq6uRnlaSKPRQKvVFni5xpDr5CQ9PR1bt25Fly5dMG7cODRs2BCrV69Gr169MHnyZPTt29eQcRIRERFRIebq6ir/c3BwgCRJ8mulUolhw4ahfPnysLa2Ru3atbFp0yad7Vu2bIlRo0Zh7NixKFWqFNq0aQMA2L17Nzw8PGBlZYVWrVohKCgIkiTh+fPn8rYnTpyAj48PrKys4ObmBl9fXyQlJcn7vX//Pr766iv5Ls7rSJKEX3/9FQBw7949SJKEX375Ba1atYK1tTXq1q2LkydPAgCOHDmCL774AnFxcfJ+p02bBgDydBzlypWDjY0NGjdujCNHjsjlZN5x2bNnDzw9PaFSqbBq1SpYWlrqHBcA+Pr6okWLFgCAmJgYfPrpp2+sR1Ond3ISGhqK0aNHo0yZMhg9ejRq1qyJK1eu4NixY/jiiy8wefJk7N69Gzt37syPeImIiIioiElJSUGDBg2wZ88eXLlyBUOGDMFnn32G06dP66wXFBQEc3NzHD9+HCtWrMC9e/fw8ccfo1u3brhw4QKGDh2KyZMn62xz+fJltGvXDt27d8elS5ewZcsWHDt2DKNGjQIA/PLLLyhfvjxmzJgh38XRx+TJk/H111/jwoULqFq1Kj799FOo1Wo0a9Ysyx2ir7/+GgDwxRdf4Pjx49i8eTMuXbqEnj17on379ggLC5P3m5ycDD8/P6xevRpXr15Fv3794OjoiB07dsjraDQabN26Vb4pkNN6NGV6d4j39vZGmzZtsGzZMnTr1i3biVQ8PT3xySefGCRAIiIiIiraypUrJ1+4Axl9nPfu3Ytt27ahcePG8vIqVapg7ty58uuJEyeiWrVqmDdvHgCgWrVquHLlCmbPni2vM2/ePPTp0wdjxowBAHh4eODHH39EixYtsGzZMpQsWRJmZmaws7ODq6ur3rF//fXX6NixIwBg+vTpqFmzJm7duoXq1avr3CHKdPv2bWzatAkPHz5E2bJl5X3s3bsXa9euxZw5cwBkPKW0dOlS1K1bV962d+/e2LhxIwYNGgQAOHjwIGJjY9GzZ0+96tGU6Z2c3LlzB++8884b17GxscHatWtzHRQRERERFR8ajQbfffcdtmzZgkePHiE1NRWpqamwsbHRWa9hw4Y6r2/evAlvb2+dZY0aNdJ5HRISglu3bmHDhg3yMiEEtFot7t69ixo1auQp9jp16sh/lylTBgAQHR2N6tWrZ7t+aGgohBCoWrWqzvLU1FQ4OTnJry0sLHT2DQB9+/ZF06ZNERERgbJly2LDhg3o0KEDSpQoASDn9WjK9E5O3paYEBERERHpY/78+fjhhx+wYMEC1K5dGzY2NhgzZkyWTu+vXmQLIbL0EXl1UCatVouhQ4fC19c3S7kVKlTIc+wvP0WUGcubOq9rtVqYmZkhJCQEZmZmOu/Z2trKf1tZWWU5tkaNGqFy5crYvHkzhg8fjp07d+rcEMhpPZqyXM0QT0RERERkKH///Te6du2Kfv36Aci4gA8LC3vrXY3q1avjjz/+0Fl27tw5ndf169fH1atXUaVKldfux8LCAhqNJpfRv152+/Xy8oJGo0F0dDTee+89vffZp08fbNiwAeXLl4dCoZAfKQNyX4+mJNejdRERERERGUKVKlVw4MABnDhxAtevX8fQoUMRFRX11u2GDh2KGzduYMKECfjnn3+wdetWBAYGAvj3LsaECRNw8uRJjBw5EhcuXEBYWBh2796N0aNHy/upWLEijh49ikePHuHp06cGO66KFSsiMTERBw8exNOnT5GcnIyqVauib9++6N+/P3755RfcvXsXZ8+ehb+/f5ZEKzt9+/ZFaGgoZs+ejY8//hiWlpbye7mtR1PCOydERERERUUhnbH9f//7H+7evYt27drB2toaQ4YMQbdu3RAXF/fG7dzd3bF9+3aMGzcOCxcuRNOmTTF58mQMHz5cno+kTp06CA4OxuTJk/Hee+9BCIHKlSujd+/e8n5mzJiBoUOHonLlykhNTTXYfH3NmjXDsGHD0Lt3b8TExGDq1KmYNm0a1q5di1mzZmHcuHF49OgRnJyc0LRpU3To0OGt+/Tw8IC3tzfOnj2bZeLI3NajKdErOUlPT0e1atXkMZeJiIiIiPQ1YMAAnRnhS5YsKc8f8jovzwPysi5duqBLly7y69mzZ6N8+fI6dxS8vb2xf//+1+67SZMmuHjx4lvjfjlpqVixYpYkxtHRMcuyZcuWYdmyZTrLlEolpk+fjunTp2dbzqv186ozZ85kuzwv9Wgq9EpOlEolUlNT3zg5jT78/Pzwyy+/4MaNG7CyskKzZs3g7++PatWqyesIITB9+nSsXLkSsbGxaNy4MZYsWYKaNWsCAJ49e4apU6di//79CA8PR6lSpdCtWzfMnDkTDg4O8n5iY2Ph6+uL3bt3A8j4H3nRokVwdHQ0yLEQFXeH/YbgRdxTSJICSisbNOg/CSUqVsfVXatw9+/dSIi6D5+xi1Cufot8KV+TloIjcwbh+YObMFdZwaqEC5r5BsDOtQKe3AzF6eWTkP4iEZKkQKOhs1Has9Hbd5oLr6uHlLgYnFw+GYmPw2GmtID3wP+hpHvNfIlh76TueBH7+P9jsEWTkXPhVLk2Xjx/gqNzhyMh8i4USgs08w1AqapeBi+/7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r43mVUsavHwiKl6WLl0Kb29vODk54fjx45g3b548hwkVPno/1jV69Gj4+/tj9erVMDfP21NhwcHBGDlyJLy9vaFWqzF58mS0bdsW165dk0djmDt3LgICAhAYGIiqVati1qxZaNOmDW7evAk7OztEREQgIiIC33//PTw9PXH//n0MGzYMERER2L59u1xWnz598PDhQ+zduxcA5ElpfvvttzwdAxFleNf3e1jY2AMAHp47iNOrpqD97K1wqdkYFZq0x5lVU/I9hmodPkd57zaQJAnXdq3E8YVj0G7ODhyc8Rla/Hc5ytR7D88f/IN9kz5C1+XH8iWG19XDhS0LUKpKHbSasBwxt6/g2MKx6OCfP5PVtpq8FirbjB9n7p/4HccCRqHrkmCcWzMdzjUaot2c7XhyMxSHZn2Oj1aeNHj5W0c0gKN1xug1v4ZGYeCaiwid7oOJ226gSWVH7B3XGGfvPMfHS0Nw27+VwcsnouIlLCwMs2bNwrNnz1ChQgWMGzcOkyZNMnZYlEt6ZxenT5/GwYMHsX//fnmIspf98ssvOd5XZqKQae3atShdujRCQkLg4+MDIQQWLFiAyZMno3v37gAyZgZ1cXHBxo0bMXToUNSqVUtnpszKlStj9uzZ6NevH9RqNczNzXH9+nXs3bsXp06dkiegWbVqFZo2bYqbN2/q3KkhotzJvCAHgLTkRPkOa6kqdV63iUGZWVjCrVFb+XXpGt64unM5UuOfITUhFmXqZYyI4lihKixsHfAo5FC+xPG6egg/tQ+dF2R85jlVrgVLByc8DbuQLzFkJiYAkJYUD0gZY5/cPforegZllOlcrT6sHEsj+lr2jwbkRWZiAgBxyelQKDLqYOvZCNyd2xoA4F3JES72FjgW9gxNKpcweAxEVHz88MMP+OGHH4wdBhmI3smJo6MjevTokR+xyJ11SpbMuM1/9+5dREVFoW3bfy84VCoVWrRogRMnTmDo0KGv3Y+9vb18Z+fkyZNwcHDQmRmzSZMmcHBwwIkTJ7JNTjInrckUHx+f9wMkKuJOLvtGvthtOWG5UWO5+usKVGjSHpYOTrBydMa9v3ej4ntdEH3jHOIe3UZSdHi+lf1qPaQmPIcQApb2/z7CZONcFskx+TeCSvDcYYi6+DcAoO3s7UiJfwYhtLByLCWvY+tSAUlPHuZL+f1Xncfh6zEAgL3jGiMmMQ1aIeBsr5LXqVjKGg9iUtCkcr6EQEREhZDeyUl+zfwuhMDYsWPRvHlz1KpVCwDkoc9cXFx01nVxccH9+/ez3U9MTAxmzpypk7hERUWhdOnSWdYtXbr0a4dX8/Pze20nJSLKXtPhcwAAd47uwvmN89Fy/LK3bJE/Lm6aj/iIO3jXNwAA8MG0DTi7Zhoubp6PEhU94VKzCSQz5Vv2knuv1kPT4X7Aq331DDQSzOu0GJ+RHIYd2ISzq6fAZ/wKSHi1v2D+xfDz4Iy+LEHHwvHfLdewbohXlvLzuQqIiKgQyvU8J0+ePMGxY8dw/PhxPHnyJM+BjBo1CpcuXcKmTZuyvJfdzJ/ZdcqPj49Hx44d4enpialTp75xH2/aDwBMmjQJcXFx8r/w8Pz7lZWoqKnk0xXR184iNeF5gZd9edsi3Du+B21nbYO5pTUAoGSlWmg3ezu6LgmGz3+XITkmCo4VquZ7LJn1kCkl/pn8d9LTSFg7ueZ7DB5tPkXkxX/717x4/u/4/YmPw2HjXD5fy/+8uRsO34iRXz+J//eO9P2YZFRwssxuMyIiKqb0Tk6SkpIwcOBAlClTBj4+PnjvvfdQtmxZDBo0CMnJybkKYvTo0di9ezcOHz6M8uX//aJ0dc344n717kZ0dHSWuykJCQlo3749bG1tsXPnTiiVSp39PH78OEu5T548ybKfTCqVCvb29jr/iCh76cmJSI6Nll+Hnz0IC1sHWLzU96EgXNmxBHeO7EB7v506/S6Sn/17/t/8IwjmltZwrdPc4OW/qR4qNGqDsAObAQAxt68gJe4pSnnUM3gMaUnxSI6JlF/fO74HKvuSUNmVQEWfrrj+22oAwJOboXgR+9jgo5bFv0hHRGyK/HpnSCScbC1Q0kaJnt5lsOTQPQDA2TvPERWXiuYeHK2LiIj+pfdjXWPHjkVwcDB+++03vPvuuwCAY8eOwdfXF+PGjcsyjvObCCEwevRo7Ny5E0eOHIG7u7vO++7u7nB1dcWBAwfg5ZXxiEBaWhqCg4Ph7+8vrxcfH4927dpBpVJh9+7dOuNaA0DTpk0RFxeHM2fOoFGjjC/i06dPIy4uDs2aNdO3CojoFWkvEnFswVfQpKVAUiigsiuBFl8vgSRJuLprNcIObEJqQixOrfgWZkoLtJ+zDUpLm7fvWA9JTyNwZuW3sCtTEX+O7wwAUChV6PLjX7j5RyBuH9oGCAGHClXx/pR1BhsS/WVvqoe6n36FU0u/wW9jO0JhrkTT4XOgMDP8PLhpSfE4NPNzaNJeAJIClg6l0GbGZkiSBO9B0xA8dxi2f9EACnML+IxfYfAY4l6o0XfFebxI00KhAJztVNgzxhuSJMG/Zw18tuo8PCYcgoW5AusGe8HcTAG1VmPQGIiIqPDS+1tpx44d2L59O1q2bCkv69ChA6ysrNCrVy+9kpORI0di48aN2LVrF+zs7OQ7JA4ODrCysoIkSRgzZgzmzJkDDw8PeHh4YM6cObC2tkafPn0AZNwxadu2LZKTk7F+/XrEx8fLndednZ1hZmaGGjVqoH379hg8eDBWrFgBIGMo4U6dOnGkLiIDsHFyRbuZWR/JBICaXb9Eza5fZlmuSUvNZu08xFCqLAbui832Pa9+E+DVb4LOMnVaSrbr5imGN9SDlUMptJq0UmeZoesAAGxLl0eXRQezj6FEabT30x1R0dD14FbSCmemvJftey4OKuz/uolByyMiKgoGDBiA58+fv3UCRVMWGBiIMWPG4Pnz53naj97JSXJycraPQpUuXVrvx7oyE5mXEx0go9N95qyY48ePx4sXLzBixAh5Esb9+/fDzs4OABASEoLTp08DAKpUqaKzn7t376JixYoAgA0bNsDX11ce+atLly5YvHixXvESERERmbJS044WaHlPp/notf6AAQMQFBQEADA3N4ebmxu6d++O6dOnZ5meojhZuHBhlpnl30aSJOzcuRPdunXLn6CMRO/kpGnTppg6dSp+/vln+fGpFy9eYPr06WjatKle+8pJI0iShGnTpmHatGnZvt+yZcsc7adkyZJYv369XvERERERkWG1b98ea9euRXp6Ov7++298+eWXSEpKyvbpm/T0dJ1+xAUpP8pOS0uDhYVFluUODgXbR/Nlxqzj7OjdIX7hwoU4ceIEypcvj/fffx8ffPAB3NzccOLECSxcuDA/YiQiIiKiIkKlUsHV1RVubm7o06cP+vbtKz/ONG3aNNSrVw8//fQTKlWqBJVKBSEE4uLiMGTIEJQuXRr29vZo3bo1Ll68qLPf3bt3o2HDhrC0tESpUqXkCbyBjB+7X31kytHREYGBgQCAe/fuQZIkbN26FS1btoSlpSXWr1+P+/fvo3PnzihRogRsbGxQs2ZN/PHHH/I+goOD0ahRI6hUKpQpUwYTJ06EWq2W32/ZsiVGjRqFsWPHolSpUmjTpk22dTJgwACdOyAtW7aEr68vxo8fj5IlS8LV1VXnh/rMJ4M++ugjSJIkvwaA3377DQ0aNIClpSUqVaqE6dOn68QkSRKWL1+Orl27wsbGBjNmzED58uWxfLnu/GShoaGQJAl37twBAAQEBMgTsLu5uWHEiBFITEzM9njyQu/kpFatWggLC4Ofnx/q1auHOnXq4LvvvkNYWBhq1qxp8ACJiIiIqOiysrJCenq6/PrWrVvYunUrduzYgQsXLgAAOnbsiKioKPzxxx8ICQlB/fr18f777+PZs4wh2n///Xd0794dHTt2xPnz53Hw4EE0bNhQ71gmTJgAX19fXL9+He3atcPIkSORmpqKo0eP4vLly/D394etrS0A4NGjR+jQoQO8vb1x8eJFLFu2DGvWrMGsWbN09hkUFARzc3McP35c7vucE0FBQbCxscHp06cxd+5czJgxAwcOHAAAnD2bMUz92rVrERkZKb/et28f+vXrB19fX1y7dg0rVqxAYGAgZs+erbPvqVOnomvXrrh8+TK+/PJLfPLJJ9iwYYPOOhs3bkTTpk1RqVIlAIBCocCPP/6IK1euICgoCIcOHcL48eP1qN2cydUwLVZWVhg8eLChYyEiIiKiYuTMmTPYuHEj3n//fXlZWloa1q1bB2dnZwDAoUOHcPnyZURHR0OlUgEAvv/+e/z666/Yvn07hgwZgtmzZ+OTTz7RmUC7bt26esczZswYnTsuDx48QI8ePVC7dm0AkC/UAWDp0qVwc3PD4sWLIUkSqlevjoiICEyYMAFTpkyBQpFxD6BKlSqYO3eu3rHUqVNHnrfPw8MDixcvxsGDB9GmTRu5bhwdHeWpNwBg9uzZmDhxIj7//HM53pkzZ2L8+PE6cwD26dMHAwcOlF/37dsXAQEBuH//Pt555x1otVps3rwZ33zzjU7dZHJ3d8fMmTMxfPhwLF26VO9je5NcJSf//PMPjhw5gujoaGi1Wp33pkyZYpDAiIiIiKjo2bNnD2xtbaFWq5Geno6uXbti0aJF8vvvvPOOfPENZAx+lJiYCCcnJ539vHjxArdv3wYAXLhwwSA/nL96t8XX1xfDhw/H/v378cEHH6BHjx6oU6cOAOD69eto2rSpztD07777LhITE/Hw4UNUqFAh233mVGY5mcqUKYPo6OjXrJ0hJCQEZ8+e1blTotFokJKSguTkZFhbW2cbk5eXF6pXr45NmzZh4sSJCA4ORnR0NHr16iWvc/jwYcyZMwfXrl1DfHw81Go1UlJSkJSUZNDBDPROTlatWoXhw4ejVKlScHV11WkQSZKYnBARERHRa7Vq1QrLli2DUqlE2bJls3TGfvVCV6vVokyZMjhy5EiWfTk6OgLIeKrnTSRJyjKA0suPkr2u7C+//BLt2rXD77//jv3798PPzw/z58/H6NGjIYTIMmdWZhkvL8/thfur9SJJUpabAq/SarWYPn26zt2fTC/PA5hdTH379sXGjRsxceJEbNy4Ee3atUOpUqUAAPfv30eHDh0wbNgwzJw5EyVLlsSxY8cwaNCgbOsxL/ROTmbNmoXZs2djwoQJb1+ZiIiIiOglNjY2WaZ/eJP69esjKioK5ubmOh2/X1anTh0cPHgQX3zxRbbvOzs7IzIyUn4dFhaW4ykw3NzcMGzYMAwbNgyTJk3CqlWrMHr0aHh6emLHjh06ScqJEydgZ2eHcuXK5fj4ckupVEKj0Z3Etn79+rh586Ze9ZupT58++PbbbxESEoLt27frjJ527tw5qNVqzJ8/X35cbevWrXk7gNfQu0N8bGwsevbsmR+xEBERERHp+OCDD9C0aVN069YN+/btw71793DixAl8++23OHfuHICMDt6bNm3C1KlTcf36dVy+fFmnn0fr1q2xePFihIaG4ty5cxg2bFiOhs8dM2YM9u3bh7t37yI0NBSHDh1CjRo1AAAjRoxAeHg4Ro8ejRs3bmDXrl2YOnUqxo4dK1/A56eKFSvi4MGDiIqKQmxsxiTEU6ZMwc8//4xp06bh6tWruH79OrZs2YJvv/32rftzd3dHs2bNMGjQIKjVanTt2lV+r3LlylCr1Vi0aBHu3LmDdevWZRndy1D0rrmePXti//79+RELEREREZEOSZLwxx9/wMfHBwMHDkTVqlXxySef4N69e/LE4C1btsS2bduwe/du1KtXD61bt5Yn6QaA+fPnw83NDT4+PujTpw++/vpruf/Fm2g0GowcORI1atRA+/btUa1aNbkDeLly5fDHH3/gzJkzqFu3LoYNG4ZBgwblKBEwhPnz5+PAgQNwc3ODl5cXAKBdu3bYs2cPDhw4AG9vbzRp0gQBAQF45513crTPvn374uLFi+jevbvOo3L16tVDQEAA/P39UatWLWzYsAF+fn75clySyMEMhj/++KP8d1JSEgICAtCxY0fUrl07S9bp6+tr+ChNQHx8PBwcHBAXFwd7e3tjh0NkVCkpKejZsydCHyWgue98mFmo9N6HJi0Vx34ch/rl7LBt2zadZ2H1jePik3S0+jYQ5hY534c6LQWHZw1AXWdlnsvPbT0Yuw4Aw9YDws9g28gGsFSa6bd9ugY9l4QAbo1yHQNRUfOm646UlBTcvXsX7u7uPF+oUNDn/9kc9Tn54YcfdF7b2toiODgYwcHBOsslSSqyyQkREREREeWvHCUnd+/eze84iIiIiIiomMv/3jpEREREREQ5oHdy8vHHH+O7777LsnzevHkcxYuIiIiIiHJN7+QkODgYHTt2zLK8ffv2OHr0qEGCIiIiIqI3y8GYRkQmQZ//V/VOThITE2FhYZFluVKpRHx8vL67IyIiIiI9ZI6UmtNJBImMLS0tDQBgZvb20Rz1niG+Vq1a2LJlC6ZMmaKzfPPmzfD09NR3d0RERESkBzMzMzg6OiI6OhoAYG1tLc9QTmRqtFotnjx5Amtra5ibvz310Ds5+d///ocePXrg9u3baN26NQDg4MGD2LRpE7Zt26Z/xERERESkF1dXVwCQExQiU6ZQKFChQoUcJdF6JyddunTBr7/+ijlz5mD79u2wsrJCnTp18Ndff6FFixa5CpiIiIiIck6SJJQpUwalS5dGenq6scMheiMLCwsoFDnrTaJ3cgIAHTt2zLZTPBEREREVHDMzsxw9x09UWOQqOQEyOrZER0dDq9XqLK9QoUKegyIiIiIiouJH7+QkLCwMAwcOxIkTJ3SWCyEgSRI0Go3BgiMiIiIiouJD7+RkwIABMDc3x549e1CmTBmODkFERERERAahd3Jy4cIFhISEoHr16vkRDxERERERFVN6T8Lo6emJp0+f5kcsRERERERUjOmdnPj7+2P8+PE4cuQIYmJiEB8fr/OPiIiIiIgoN/R+rOuDDz4AALz//vs6y9khnoiIiIiI8kLv5OTw4cP5EQcRERERERVzeicnb5oF/sKFC3mJhYgKIY06rUC3ex1teirUeq5vSLk5HmPXQeY2hpSarn37SgbYhoiIiqZcT8KYKS4uDhs2bMDq1atx8eJFPtZFVMycXDrJ2CEAAIL9hxq1fFOoB2PXAQD0W3ne2CEQEVEhluvk5NChQ/jpp5/wyy+/4J133kGPHj2wZs0aQ8ZGRCaufjk7Y4cAAKjrrDRq+aZQD8auAwCAWyNjR0BERIWcJIQQOV354cOHCAwMxE8//YSkpCT06tULy5cvx8WLF+Hp6ZmfcRpdfHw8HBwcEBcXB3t7e2OHQ2RUQgikphrucSCVSpWrCV0NFYexy2cMeY+BqKjhdQcVVzm+c9KhQwccO3YMnTp1wqJFi9C+fXuYmZlh+fLl+RkfEZkgSZJgaWlp7DCMHoexy2cMRERU1OQ4Odm/fz98fX0xfPhweHh45GdMRERERERUDOV4Esa///4bCQkJaNiwIRo3bozFixfjyZMn+RkbEREREREVIzlOTpo2bYpVq1YhMjISQ4cOxebNm1GuXDlotVocOHAACQkJ+RknEREREREVcXp1iH/VzZs3sWbNGqxbtw7Pnz9HmzZtsHv3bkPGZzLYMY2IiIgKCq87qLjK8Z2T7FSrVg1z587Fw4cPsWnTJkPFRERERERExVCe7pwUJ/wFg4iIiAoKrzuouMrTnRMiIiIiIiJDYXJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBLMjR1AYZOSkgILC4s870elUkGSJL22EUIgNTXVKGUbsnzGkPcYiIiIiIoiJid66t+/P5RKZZ73s23bNlhaWuq1TWpqKnr27GmUsg1ZPmPIewxERERERRGTEz1djEyEwixv1Va/nF3eYniSnutt6zrnPbEKfZSQp+3zevxA3uoAMEw9IPxM3rZ3a5T3GIiIiIiKECYnudB0hB/MzPV/tEujTsPJpZMMEkOLCSugUKpyvL42PRXB/kMNUjaQuzow5PED+tcBYPh6WD/ECyqlfl23UtO16LfyvMFiICIiIioqmJzkgpm5Bcws9LsoNjSFUgVzi5w/DqQ2cPmFsQ4Aw9eDSqmApdLMwHslIiIiKp44WhcREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBHNjFu7n54dffvkFN27cgJWVFZo1awZ/f39Uq1ZNXkcIgenTp2PlypWIjY1F48aNsWTJEtSsWVNeZ+XKldi4cSNCQ0ORkJCA2NhYODo66pQVGhqKCRMm4OzZszAzM0OPHj0QEBAAW1vbXMd/2G8IXsQ9hSQpoLSyQYP+k1CiYnVc3bUKd//ejYSo+/AZuwjl6rfIdRlvok5LwZE5g/D8wU2Yq6xgVcIFzXwDYOdaAU//OY+TSydAk5YCTVoqKr/fK19ieF0dpMTF4OTyyUh8HA4zpQW8B/4PJd1rvn2HubB3Une8iH38/zHYosnIuXCqXBsvnj/B0bnDkRB5FwqlBZr5BqBUVS+Dl9/2+1OIikuFQpJgZ2mORf1qol4FB0THp6L/qgu4HZ0EldIMy/vXRvOqJQ1ePhEREVFRYdQ7J8HBwRg5ciROnTqFAwcOQK1Wo23btkhKSpLXmTt3LgICArB48WKcPXsWrq6uaNOmDRISEuR1kpOT0b59e3zzzTfZlhMREYEPPvgAVapUwenTp7F3715cvXoVAwYMyFP87/p+jw7f/YIP/bajeof+OL1qCgDApWZjtPjvUpSu3iBP+8+Jah0+R481Z9Ft2d9wa9wWxxeOAQAcW/Af1O09Bt2WHkWngL24tnMZ0pMTDV7+6+rgwpYFKFWlDjoH/I7GQ2bixJKJ0GrUBi8fAFpNXouPlh9Ht2V/o9bHo3AsYBQA4Nya6XCu0RAfrw3Be+OWINh/SL7EsHVEA1ya2QIXZvhgXPtKGLjmIgBg4rYbaFLZEWH+rbF2YF30XXkeao3W4OUTERERFRVGvXOyd+9enddr165F6dKlERISAh8fHwghsGDBAkyePBndu3cHAAQFBcHFxQUbN27E0KFDAQBjxowBABw5ciTbcvbs2QOlUoklS5ZAocjIx5YsWQIvLy/cunULVapUyVX8Fjb28t9pyYmQJAkAUKpKnVztT1/mFpZwa9RWfl26hjeu7lwuv05NjAcApKckQWFuAYW50uAxvK4Owk/tQ+cFGe3rVLkWLB2c8DTsgsHLBwCVrcO/MSTFA1JGG989+it6BmWU6VytPqwcSyP62hmDl+9o/W+9xiWnQ6HIqIOtZyNwd25rAIB3JUe42FvgWNgzNKlcwuAxEBERERUFRk1OXhUXFwcAKFky49GXu3fvIioqCm3b/nsBrlKp0KJFC5w4cUJOTt4mNTUVFhYWcmICAFZWVgCAY8eOZZucpKamIjU1VX4dHx+f7b5PLvtGvuBtOWF5tusUlKu/rkCFJu0BAO+NW4K/pvVBaNAspMTFoMnIuXhw4vd8KffVOkhNeA4hBCzt/32Eyca5LJJjovKlfAAInjsMURf/BgC0nb0dKfHPIIQWVo6l5HVsXSog6cnDfCm//6rzOHw9BgCwd1xjxCSmQSsEnO1V8joVS1njQUwKmlTOlxCIiIiICj2T6RAvhMDYsWPRvHlz1KpVCwAQFZVxMevi4qKzrouLi/xeTrRu3RpRUVGYN28e0tLSEBsbKz8CFhkZme02fn5+cHBwkP+5ubllu17T4XPQddFfqN1zNM5vnJ/jmAzt4qb5iI+4gwYDvgUAXN72I7y/nIHe66/go5UncX7dd0h/kfSWveROtnXw/3dQZELkS9mZWoxfjt4brqL+gG9xdnXGo2USXokB+RfDz4O9EB7wAWZ1r4b/brmWbfn5XAVEREREhZ7JJCejRo3CpUuXsGnTpizvSdKrF3kiy7I3qVmzJoKCgjB//nxYW1vD1dUVlSpVgouLC8zMzLLdZtKkSYiLi5P/hYeHv7GMSj5dEX3tLFITnuc4LkO5vG0R7h3fg7aztsHc0hopcTG4f+J3VGrxEQDAvkxFOFerj9TE/I0tsw4ypcQ/k/9OehoJayfXfC0fADzafIrIi8fk1y+eP5X/TnwcDhvn8vla/ufN3XD4Roz8+kn8v3ff7scko4KTZb6WT0RERFSYmURyMnr0aOzevRuHDx9G+fL/Xjy6umZczL56lyQ6OjrL3ZS36dOnD6KiovDo0SPExMRg2rRpePLkCdzd3bNdX6VSwd7eXuffy9KTE5EcGy2/Dj97EBa2DrB4qf9DQbiyYwnuHNmB9n475b4XFraOMFOqEHnpOAAgJS4GT26GQmmV+5HJsvOmOqjQqA3CDmwGAMTcvoKUuKco5VHPoOUDGX1MkmP+vft17/geqOxLQmVXAhV9uuL6b6sBAE9uhuJF7GOU9mxk0PLjX6QjIjZFfr0zJBJOthYoaaNET+8yWHLoHgDg7J3niIpLRXMPjtZFRERE9DpG7XMihMDo0aOxc+dOHDlyJEui4O7uDldXVxw4cABeXhlDwKalpSE4OBj+/v65KjMzqfnpp59gaWmJNm3a5Go/aS8ScWzBV9CkpUBSKKCyK4EWXy+BJEm4ums1wg5sQmpCLE6t+BZmSgu0n7MNSkubXJX1OklPHuHMym9hV6Yi/hzfGQCgUKrQ5ce/0GryWpxZMRlajRpCo0bNj4Yh6v+TFUN5Ux3U/fQrnFr6DX4b2xEKcyWaDp8DhZnh/3dLS4rHoZmfQ5P2ApAUsHQohTYzNkOSJHgPmobgucOw/YsGUJhbwGf8CoPHEPdCjb4rzuNFmhYKBeBsp8KeMd6QJAn+PWvgs1Xn4THhECzMFVg32AvmZgqotRqDxkBERERUVBg1ORk5ciQ2btyIXbt2wc7OTr5D4uDgACsrK0iShDFjxmDOnDnw8PCAh4cH5syZA2tra/Tp00feT1RUFKKionDr1i0AwOXLl2FnZ4cKFSrInesXL16MZs2awdbWFgcOHMB///tffPfdd1nmQ8kpGydXtJuZ9RE0AKjZ9UvU7PplluWatNRs1s49G+dyGLgvNtv3ytVviXL1j8iv1WkpBk9O3lQHVg6l0GrSSp1lhj5+ALAtXR5dFh3MPoYSpdHe7xedZeq0lGzXzS23klY4M+W9bN9zcVBh/9dNDFoeERERUVFm1ORk2bJlAICWLVvqLF+7dq08B8n48ePx4sULjBgxQp6Ecf/+/bCzs5PXX758OaZPny6/9vHxybKfM2fOYOrUqUhMTET16tWxYsUKfPbZZ/l3cEREREREpBejP9b1NpIkYdq0aZg2bdpr13nb+wDw888/6xkdEREREREVJJPoEE9ERERERMTkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMgnmxg6gMNKo0wp0u+xo01Oh1nN9Q8rNsRjy+AH96yBzG0NKTdcWyDZERERExQGTk1w4uXSSsUNAsP9Qo5bPOsjQb+V5Y4dAREREVGQwOdFT3TK2UCqVxo3B2bjl1y9nZ9TyAePXAQDArZGxIyAiIiIqUiQhhDB2EIVBfHw8HBwc8PjxY9jb2+d5fyqVCpIk6bWNEAKpqXl/LCk3ZRuyfMaQ9xiIiKhoy7zuiIuLM8h1B1FhwTsnerK0tISlpaVRypYkyWhlm0L5jIGIiIioaONoXUREREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSOFpXDmWOuBwfH2/kSIiIiKioy7ze4IwPVNwwOcmhhIQEAICbm5uRIyEiIqLiIiEhAQ4ODsYOg6jAcBLGHNJqtYiIiICdnR0nzXuN+Ph4uLm5ITw8nBNGFQJsr8KDbVW4sL0KF1NtLyEEEhISULZsWSgUfAqfig/eOckhhUKB8uXLGzuMQsHe3t6kPuDpzdhehQfbqnBhexUupthevGNCxRFTcSIiIiIiMglMToiIiIiIyCQwOSGDUalUmDp1KlQqlbFDoRxgexUebKvChe1VuLC9iEwLO8QTEREREZFJ4J0TIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOaEci46OhkajMXYYREVOYmKisUOgHOLnIBFR/mJyQm8khEBaWhqGDBmCdu3a4eTJk8YOid7g8ePH+P3338HpiwqHyMhI9O3bF59++ikGDRqE0NBQY4dE2eDnYOETFRWFGTNmYOnSpfjjjz+MHQ4R6YHJCb2RJEmIjo7G7t278eTJExw6dAhxcXEAwAtgE7N48WKULVsWnTt3xtWrV40dDr3F+vXrUatWLaSlpeHDDz/EoUOH4O/vj6ioKGOHRq/g52DhMnPmTFSpUgVnzpxBYGAgPvroI2zcuBEA24uoMGByQm+Vnp6OTp064bPPPsP69etx6tQpABlf2GR8Qgj88ccf+PXXXzF37lx4eXlh+vTp0Gq1xg6NXkOj0eDnn3/G2LFjsW3bNowYMQL+/v4IDg6GlZWVscOjbPBz0PRpNBr4+/vjjz/+wNatW7Fnzx4cPHgQY8eOxaRJkwCwvYgKAyYn9FYPHz7EpUuX4OfnBxsbG2zatEn+1ZCMT5IkuLi44LPPPsPQoUPxww8/YMeOHdi3b5+xQ6PXuHz5Mu7cuYOyZcvKy5KTk9GjRw+eWyaKn4Omz8zMDGlpaWjdujXat28PALCzs0OLFi1gbm6O27dvGzlCIsoJJicEAEhLS8OLFy+yfe/hw4fw9PQEAEycOBFHjx7Fpk2bMGTIEERGRhZkmAQgISEBR48exa1bt+RlDRo0wOeffw5bW1v4+PigZ8+emDx5MhISEowYKQG651bm3SxPT084OTlhzZo1WLlyJXr16oWBAwfi/PnzqFOnDsaMGYPo6Ghjhl0sxcfH49SpU3j06FGW9/g5aHqSkpIQFhaG+Ph4ednXX3+N2bNnQ6FQyI9wPXv2DJaWlqhcubKxQiUiPTA5Ifj7+6N27do4evSozvLMC6n4+Hg8f/4cANC7d2+Ym5vD19cX586dgyRJfIa3AM2cOROVK1fG2LFjUadOHQQEBOh8MWe2mZ+fH27cuIHAwEAjRUpA1nNLoVBArVbDwsICCxcuRK9evbBr1y7cvn0bZ86cwd69e7FgwQKcOXMGS5cuNXL0xYufnx/c3NwwePBgeHp6YuHChTpJCj8HTcvMmTNRu3Zt9OrVC/Xq1ZM7vWc+FqnVauVHuE6ePAkvLy8AGY/nEZFpY3JSjD179gzDhw/Hxo0bERUVhZUrV+Lp06fy+wpFxv8eDx48QLt27fDXX3+hfPnyePHiBezs7NC3b1+UKlWKz/AWgDt37qBt27bYtm0b1q1bh927d2PixIn47rvvdO6OZLZZpUqVMG7cOMyePRsPHz4EkPHYUFJSklHiL27edG6ZmZkBAJo0aQJfX1+kpqZi4MCBaNiwIezt7TFgwADY2dnh8ePHvJAqIH/++SfWrVuHoKAg7N69GxMmTMCqVaswZcoUeZ179+7xc9AE3L9/H127dsWWLVuwePFizJ8/Hz4+Pvjyyy/x+PFjeT2FQiGfP6dPn0aDBg0AAEqlEgA7xhOZMiYnxVhcXBzs7e3h5+eH33//HTt37sRff/0l//qe+V8zMzOMHDkS3bt3x5AhQxAeHo5+/fohKCgIx44dM+YhFBuPHj1Cs2bNsHPnTrRr1w5ly5bFl19+CXt7+9duM3HiRFhaWmLevHlYt24d2rVrxyE1C8ibzq2XL2Lv37+PW7duoXHjxvKy5ORkxMfHo0KFCvKFFOWvvXv3wtLSEt26dYO7uzu++eYbDBs2DMePH8fy5cvl9fg5aHynTp3C8+fPsX37dnTo0AGtW7dGYGAgkpKScObMGZ11lUolwsPDce/ePXTv3h1ARlv36dMH9+/fN0b4RJQTgoottVot7t+/L7/u1auXqFOnjrh7967Oert37xb+/v7in3/+kZdFR0eLGjVqiODg4IIKt1hLS0sT4eHhOq8/+ugj0bx5czFz5kzxzz//CI1GI4QQ8n+FEGLq1KlCkiRhYWEhJk2aVOBxF1c5PbeEEMLLy0u0aNFCrFu3ToSGhopOnTqJmjVriosXLxZgxMWXRqMRw4cPF5988olISUmRl0dERIihQ4eKunXriuTkZPHXX3+JOXPm8HPQSLRarRBCiGfPnolt27bpvBcVFSWqVasm9u/fn2W79evXi/fff1+Eh4eLDz/8UJibm4tx48YVSMxElDtMTkj+0I+JiRFKpVL4+fnpfEmr1Wqd9TNfp6amFlyQJLt+/bqwtrYW3t7eYsqUKaJevXqiadOmYs2aNfI6iYmJYuTIkUKSJDFo0CARGxtrvICLsTedW5nn0c2bN0WDBg1EtWrVRKVKlUSvXr3Es2fPjBZzcZLZPn5+fsLNzS3bH2a8vLxEYGCgzvpC8HPQGF6ufyH+/SHm2rVrwsnJSSdxzFy3f//+QpIkoVQqRceOHcXTp08LLmAiyhU+1lVMiZeet5UkCWq1GiVLlsTkyZMREBCA69evy+9n9mPI3CbzmXkLC4sCjLj4Eq88G+3m5oZ9+/bh1KlTmD59Ok6fPg1HR0ecOXMGaWlpAICnT5/Czs4Of//9N1avXg1HR0cjRF60paSkZLs8p+eWmZkZ1Go1qlatir/++gu///47Dh48iC1btqBEiRIFcgzFXeajq2PGjEFcXBw2bNig837Lli2hVCrl0bhefiSPn4P5Jzo6Wq8+IUePHoW7uzs8PDyybGdubo5atWrhzJkz2LNnD5ycnAwdLhEZGJOTIioyMhI9e/bE1q1bAWRMTpVJrVbLX7KZyzNfT506FRYWFli2bBliY2Nx4MABrF+/XmcdMqzw8HBs374doaGhcgfOzC/Yl9tKrVYDAKytrdG8eXMoFApotVpYWFggMTERUVFR8oXSO++8Az8/P7z77rtGOKKi7e7du6hbty7mzJmT5T19z63MWasdHR1RuXJlVKxYsWAOopiIjIzEyZMnce/evSzvqdVqOcGwtLTElClT4O/vj3Pnzsnr2NnZIS0tDeHh4QUVcrF29+5ddOnSBRMmTMC1a9d03nvTufX333/Dx8dHXnb58mVcuXIFALBw4UJcunQJ9erVK6CjIKK8YnJSRK1ZswY7duzADz/8gOTkZJiZmcm/Epqbm0MIgQkTJmDz5s3QarUwMzOTP/AXLVqENWvWoEWLFmjXrh3nyshHkyZNQtWqVTF//nw0a9YMw4cPx507dyBJErRarU5bbdmyJUuHaoVCgTNnzkCSJAwePNiIR1L0CSEwbNgwVK1aFVWrVoWvr2+WdfQ9txITEwv6MIqNMWPGoHbt2vjPf/6DmjVrYunSpTqTJr7cVuvXr8e4ceNQtWpVTJw4UR44IjQ0FEIIdOvWzUhHUfRl/hDz888/o0GDBrCyssLIkSNRqlQpnfezO7eAjMEnQkJC0K5dO0RGRqJXr16oW7cuHjx4AACwtbU1wlERUV4wOSmiTpw4gd69e8PCwgL+/v467wUFBaFUqVLYv38/6tSpIz+2ZWZmhkePHuHUqVPQarWoWbMmHjx4gBEjRhjjEIq806dPY9euXdi+fTsOHz6MVatWISwsDJ999hmAjMQjKCgITk5OWdrq+vXruHz5MqZMmYIOHTrA09MTrVq1MubhFGm3bt2Ck5MTjh07hjNnzmDbtm3yxdPLeG4Z34MHD9ClSxecOXMGu3fvxtatWzFixAgsW7ZMZzSnl9uqZs2aAIB169bB3t4eH330Edq1a4f33nsPNWrU4B3IfJT5Q8ymTZvwv//9D1u2bEHDhg1hZ2cnvw8AgYGBWc4tSZIQFhaG58+fY+fOnahcuTLi4uJw7949dOzY0ZiHRUR5YG7sAChvhBA6v6Sr1WqYm5ujTJky6Ny5s3wh9cknn6BGjRpISEjAw4cPMWvWLAwZMkR+rAHImMn6+++/x88//4xDhw6hZcuWRjii4uPXX3+FRqORv0Q/++wzVKlSBW3btkVAQADGjh2Le/fuYc6cORg8eLBOW504cQJLliyBubk5tm7ditatWxvrMIqsl88tpVKJsmXLonnz5vDy8sKJEyewY8cOODk5oX79+mjevDlsbW1x9+5dzJ49O0t78dwqOFeuXIG1tTUWLVokz20xb948rF+/HrGxsQCAxMREhIeH67SVEAI1atRAYGAgTp8+jX/++QdTpkxhYpIPXv3eOnLkCG7fvo3Ro0fjxIkT8Pf3R2pqKqpUqYJ+/fqhSZMmuH//frbfW6dOncLjx48RGhqKXbt2oU2bNsY4JCIyIEno0+uMTMqLFy+gUCigUqkA6H7g16lTB5s3b0ZycjLGjx+P2rVrY968eQgLC0P16tV1Ptxf9vjxY7i4uBTYMRQXmW2j1WrlX9N/+OEHBAYG4uTJk7C2tpbXmzFjBhYuXIjIyEi5bV/dT1paGi5cuIBGjRoV+LEUB6+eW1qtFr/++is+/vhjtG3bFjdu3EDDhg1x69YtPHnyBG3atEFgYOAb98lzK39knhOZP8xERETg3r17aNasGYCMttNoNGjatCnGjh2LPn36yMszz0UqOK+eW0DGXeSOHTti9erVmD17Nj744ANYWlri0KFDuHz5Mq5duwZXV1ed/WS2e0JCAnbs2IEBAwYU8JEQUX7hJ3MhNWnSJDRv3hydOnXCjz/+iPj4ePni99GjR7CxsUHFihXRsGFDdO7cGRs3boSlpSUOHjyo0zn+Vbx4MryAgAC58/TLF0MODg5QKpU4ePCgvEySJHz++eewsbFBQEAAgH9HFMp8H8gYIYiJSf7I7txSKBRo1aoVPvvsMyQmJmL37t3YsGEDLly4gGnTpuHUqVNYtmwZAN32ehnPLcN7+dzK7JNQtmxZncREoVAgMjISN2/eRK1ateRtmZgUvOzOLSAj0ahXrx7mzJmDevXqYfbs2Zg6dSr27NmDcuXK4ZtvvgGgO7CLJEkQQsDOzo6JCVERw0/nQiYtLQ09e/bE7t27MX78eJQtWxYrVqyQfw1UKBSws7ODUqmEJEnYuXMnZs2ahfT0dNSpUwe+vr6wsLDQa5hGyp2zZ8+iVatW+Prrr/HLL7/g5MmTACCPyPXxxx8jNTUVe/fuRXR0tLxdmTJl8MEHHyAsLAwajYYXUQXkdefWp59+CgAoUaIEJk2ahAULFqB27dry7O09evSAh4cHLly4wPYqIK87t179XMtsixMnTsDd3V0nOcnEz8L897pz65NPPgGQcaff3t4e586dQ6NGjaBQKKDRaGBnZ4evvvoK+/fvR2JiYpY7/hxBkqho4rdoIXP79m1cvHgRCxYsQO/evREUFISVK1fi0KFDmDdvHgDg3LlzuHXrFho1aoSBAwfim2++wdy5cyFJEpYuXQqAX8gFYd++fShVqhR++ukn+b9ARv+F9PR02NvbY9iwYfjrr7+wa9cueTuVSoWwsDAoFIrXPn5Hhve6c+vw4cPyuVW9enU0bNgQkiRBoVBACIGSJUvixo0bbK8C9LpzK7NNXhUSEoKmTZvKycrhw4fx22+/AeAFbkF43bl15MgRfPfdd7C2tsbgwYNRsmRJbNu2DcC/88iEhYXBw8PjtW1LREVQfs7wSIYXEhIiJEkSMTExQgjdGY4dHR3FnTt3RHp6uvD09BRDhgyRZzyOiIgQvXr1Ej4+Pjqzv5PhZbbJ/fv3xYkTJ4QQGe3TuHFjsXXrViGEEOnp6fL6ffr0EfXq1RMrVqwQsbGxIiQkRNSvX19s3ry54IMvxt50bpUoUUJn9umX/fnnn8Lb21scP368wGItrnJybmXOGp5JrVYLLy8vsWXLFnHnzh3RunVrYWFhIbZs2VKwwRdjbzq3HBwcxO3bt4UQQkybNk04OTmJ//3vf+Kff/4RN27cEC1atBAzZswwWuxEVPCYnBQy58+fFzVr1hSLFi0SQvz7IZ+WliYqVqwoxowZI4QQ4vHjx/J7ma5evcrExEhu374tunXrJrp16yaePXsmhBAiNTVVfm/KlCnCzMxMNGjQQFhZWYlBgwaJtLQ0Y4Zc7Lzp3HJ3dxfjxo0TQmRc/F6+fFkcOnRIDB06VDg4OIiJEycKtVpttNiLs+zOrZcTlIsXLwo7Ozvx4YcfCnNzc9G7d28RHx9vrHCLpbedW5nfW1FRUWLlypXC0dFR1KpVS9jZ2YkvvviC31tExQwf6zIx4i23rd955x14eHjg2LFjiIyMlEepUSqVGD16tDxRX+nSpeXHFTL36enpmWX0J8q9t7XVy+tVqlQJnTt3RmRkpDyqU+Zs7pUqVcL06dNx8eJFTJ8+HaGhoVi9erXcp4EMIy/n1qhRo7Bp0ya5g3VoaChmzpyJf/75B8HBwfDz8+MjXQaU13Pr5X4/YWFhSExMRGpqKs6ePYvNmzfLc2hQwXjbuZX5veXi4oLBgwfj6tWrWL16NUJDQ/HTTz/xe4uomGFyYkKePHmC5ORk+fXLo/6o1WoAGZ1yO3fujBs3bmDr1q0AMkapATJGfypZsiTCw8N19stnqg0vJ22VKXOEmY8//hienp7Ys2cPwsLCAGTMQJ25fc2aNdGxY0dUr149v8MvdqKjo5GQkCC/zs25VaJECdy/fx9ARif4VatW4dChQ6hbt25BHUaxkJO2yvSmc+vcuXMAgMaNG+PgwYM4ePAg6tWrl8/RFz+Z7ZPdKJD6fm9lJqVly5ZF48aNUaVKlYI4BCIyMUxOTEB6ejqGDBmCd999F507d8YXX3yB2NhYnV//zM3NkZKSgs2bN2PgwIGoV68etmzZgsOHD8vrPHz4EM7OznjnnXeMcRjFQk7bKj09HUFBQfJrrVYLe3t79OzZE1qtFtOnT8f777+Phg0bZtmeDEetVmPQoEFo1KgRPvjgA/Tt2xcxMTG5Prfc3d0BADY2NqhcuXKBH09RltO2yum51ahRI8TExKB8+fJo1aqVsQ6ryEpPT8eIESMwdOhQALp3qzITFn2/t/hDGhEBTE6MLjY2Fh06dMCtW7ewdu1afPrpp7h48SI6deqEmzdvyuv9+OOPKFeuHDZv3gwAGDt2LCpVqoT27dvLXxDz589H7969AXA0rvygT1u5urrit99+k2ekzvzirlmzJsLDw7Fx40aULl0akZGRKFGihFGOp6hTq9UYMGAArl27hqCgIHz66ae4dOkSunXrhuvXr8vr8dwyPn3aSp9zy8nJySjHU9SdPn0aH3zwAbZv346goCAcP34ckiTJd08y24TnFhHlipH6utD/27t3r6hVq5a4ceOGvOzatWtCoVAIX19fERsbK9auXSsqVKggNmzYoNPRU6vVijlz5ojBgweLDh06cLSgfKZvW706IMHBgweFra2tqFevnjh37lxBh1/sPHjwQHh4eIh169bJyyIjI0W5cuXE6NGjxbNnz3humQh924rnlnEtWLBADBo0SPzxxx+ie/fuonHjxlnWWbp0qXB3d+e5RUR6Y3JiZEFBQcLR0VFn2fHjx0XJkiWFh4eH+P3334VWqxWJiYk667z65Uz5L7dtlenp06di48aNBREqiYwRgqysrERYWJgQQsgj/ixevFh4eHiI3377TWi1WpGUlKSzHc+tgpfbtsrEc6tgZJ4b4eHh4urVq0KIjB9tnJ2dxerVq4UQ/45CmJ6ezu8tIsoVPtZVgP744w8Aureu3dzc4OTkBH9/f3nZ6tWrMWjQIGi1WuzatQuSJMHKykpnX3w2N38Zsq0y9+Pk5CTPNk6GtXLlSqxatQpHjx6Vl3l4eMDV1RXr168H8O+jJiNHjoSDgwN27NiB1NRUWFtb6+yL51b+MmRbATy38ltmewUHB8vnRrly5eDp6QkAaNiwIT755BNMnz4dGo0GFhYW0Gq1MDc3h42Njc6+eG4RUY4YNzcqHvbs2SPKlSsnJEmSb2Fnzonw7NkzMW/ePCFJkmjWrJmwtbUVtWrVEunp6WLRokWiXLlyxgy92GFbFS4bN24UpUuXFk2bNhX16tUTzs7OYtasWUIIIeLi4sSECROEh4eHePz4sRBCiBcvXgghhFi3bp1wcHCQX1P+Y1sVLm9qr1fn9Dl9+rTw8PAQX3/9tRAi60SYRET6YHKSz/7++2/Rvn17MWrUKPHhhx+Khg0bZrtecHCwWLRokdi/f7+87LvvvhPNmzcXz58/L6hwizW2VeGyYcMGUbduXbF8+XIhhBCPHj0SixYtEjY2NiIuLk4IIcSBAweEt7e3GDFihBDi38dKDh8+LEqXLi0uXrxonOCLGbZV4fKm9spuAsukpCQxb9484eDgIO7fvy+EyGi3zLYlItIHH+vKJ+L/HwdycXFB27ZtMXbsWMycORPXrl3DmjVrAOiO3+/j44NRo0ahTZs2AIC0tDScOnUKXl5ecHBwKPgDKEbYVoVLZnulp6ejcePG6N+/P4CMuRG8vLxQrlw5XLt2DQDQvHlz9OnTB0FBQdi5cyfS09MBAMePH4enpydq165tnIMoJthWhUtO2uvl0dMyWVtbo2vXrvDy8kLPnj3RsGFD9OjRA8+ePSvQ+ImoiDBqalQEhYSEZPn1PPMWeHp6uhg3bpxwdnaWO3y+6saNG+Kff/4R/fv3F+7u7uLkyZP5HnNxxbYqXEJCQkRsbKz8+vnz51keL7lw4YJwdXUVz549k5fFx8eL8ePHCzs7O9GiRQvRs2dPYWVlJZYsWSKEYCfd/MC2Klxy214vu3z5sqhTp46QJEmMGDFC7hhPRKQv3jkxkB07dsDNzQ29evVCnTp1MHXqVERFRQHI6NwphIC5uTlGjhwJS0tLTJ48GUDWcd1///13fPjhh7h37x727duHJk2aFPixFHVsq8Ll5faqW7cupkyZgsePH8PBwQFmZmY6d7UOHTqEypUro0SJEkhLSwMA2NnZwd/fHz/99BNatmwJJycnhIaGYsSIEQDYSdeQ2FaFS17bK9OxY8fQqVMnWFtbIywsDEuWLIGFhUVBHw4RFRXGzY2KhrNnz4rq1auLBQsWiIsXL4qlS5cKZ2dnMXz4cBETEyOE+PcXea1WK5YuXSrMzc3FnTt3hBAZQy9mPscbEREhQkJCjHMgxQDbqnDJSXtpNBqRnp4uhBDio48+EiNHjjRmyMUW26pwMWR7RURE8M4xERkMk5M8yHzEYNmyZaJ8+fI6nf8WL14smjRpImbOnJllu5iYGNGsWTPRtWtXERISItq2bSvWrVvHEU7yEduqcNG3vTQajdBqtaJy5cpiz549Qgghbt68KT755BPx4MGDgg2+mGFbFS5sLyIydXysKw8yHzG4e/cuqlatCnNzc/m9AQMGoEGDBvjzzz9x9epVAIBGowEAlCxZEoMHD8bu3bvh7e0NCwsL9OjRQx7bnwyPbVW46NteCoUCZ8+ehbW1NerXr48xY8agTp06iImJQenSpY1yDMUF26pwYXsRkanjFZYeDhw4AF9fXyxcuBBnzpyRl7/77rs4ceKE3G9Bo9HAxsYGXbt2hSRJ2L9/PwDAzMwMaWlpWLp0KQYNGgQfHx9cunQJv/32W7YT91Husa0Kl7y2F5AxceaVK1dQrVo1HDhwAMePH8f+/fuhUqkK/HiKMrZV4cL2IqLChslJDkRGRqJz587o168fnj17hjVr1qBt27byB33btm1RsWJFeebwzF+m2rRpA4VCgVu3bsn7io2NxT///IO1a9fiyJEjqFmzZsEfUBHGtipcDNleSqUSpUqVQmBgIK5evYoGDRoU/AEVYWyrwoXtRUSFlrGfKzN1SUlJ4vPPPxe9e/eWO0ULIYS3t7cYMGCAECKjA/XPP/8sFAqFPKt4pr59+4pWrVoVaMzFFduqcDFEe7Vs2VJ+HR0dXTCBF0Nsq8KF7UVEhRnvnLyFtbU1VCoVBgwYAHd3d6jVagBAp06d5MmozMzM0KtXL3Tt2hVffvklgoODIYRAVFQUwsLC0LdvX2MeQrHBtipcDNFe/fr1k/fn7OxslOMoDthWhQvbi4gKM0mIVyZvoCzS09OhVCoBZMx1IUkSPvvsM1hZWWHlypXyspSUFHz44Ye4du0a6tWrhytXrqBChQrYunUr3NzcjHwUxQPbqnBhexUebKvChe1FRIUVk5Nc8vHxwcCBAzFgwAAIIaDVamFmZobHjx/j0qVLOHv2LCpWrIg+ffoYO9Rij21VuLC9Cg+2VeHC9iKiwoDJSS7cuXMHzZo1w++//y53DExLS+OMuCaIbVW4sL0KD7ZV4cL2IqLCgn1O9JCZxx07dgy2trbyB/z06dPxn//8B9HR0cYMj17Ctipc2F6FB9uqcGF7EVFhY/72VShT5lCLZ86cQY8ePXDgwAEMGTIEycnJWLduHSekMiFsq8KF7VV4sK0KF7YXERU2fKxLTykpKahduzZu374NCwsLTJ8+HRMmTDB2WJQNtlXhwvYqPNhWhQvbi4gKEyYnudCmTRt4eHggICAAlpaWxg6H3oBtVbiwvQoPtlXhwvYiosKCyUkuaDQamJmZGTsMygG2VeHC9io82FaFC9uLiAoLJidERERERGQSOFoXERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJElAMDBgyAJEmQJAlKpRIuLi5o06YNfvrpJ2i12hzvJzAwEI6OjvkXKBERUSHG5ISIKIfat2+PyMhI3Lt3D3/++SdatWqF//znP+jUqRPUarWxwyMiIir0mJwQEeWQSqWCq6srypUrh/r16+Obb77Brl278OeffyIwMBAAEBAQgNq1a8PGxgZubm4YMWIEEhMTAQBHjhzBF198gbi4OPkuzLRp0wAAaWlpGD9+PMqVKwcbGxs0btwYR44cMc6BEhERGQmTEyKiPGjdujXq1q2LX375BQCgUCjw448/4sqVKwgKCsKhQ4cwfvx4AECzZs2wYMEC2NvbIzIyEpGRkfj6668BAF988QWOHz+OzZs349KlS+jZsyfat2+PsLAwox0bERFRQZOEEMLYQRARmboBAwbg+fPn+PXXX7O898knn+DSpUu4du1alve2bduG4cOH4+nTpwAy+pyMGTMGz58/l9e5ffs2PDw88PDhQ5QtW1Ze/sEHH6BRo0aYM2eOwY+HiIjIFJkbOwAiosJOCAFJkgAAhw8fxpw5c3Dt2jXEx8dDrVYjJSUFSUlJsLGxyXb70NBQCCFQtWpVneWpqalwcnLK9/iJiIhMBZMTIqI8un79Otzd3XH//n106NABw4YNw8yZM1GyZEkcO3YMgwYNQnp6+mu312q1MDMzQ0hICMzMzHTes7W1ze/wiYiITAaTEyKiPDh06BAuX76Mr776CufOnYNarcb8+fOhUGR06du6davO+hYWFtBoNDrLvLy8oNFoEB0djffee6/AYiciIjI1TE6IiHIoNTUVUVFR0Gg0ePz4Mfbu3Qs/Pz906tQJ/fv3x+XLl6FWq7Fo0SJ07twZx48fx/Lly3X2UbFiRSQmJuLgwYOoW7curK2tUbVqVfTt2xf9+/fH/Pnz4eXlhadPn+LQoUOoXbs2OnToYKQjJiIiKlgcrYuIKIf27t2LMmXKoGLFimjfvj0OHz6MH3/8Ebt27YKZmRnq1auHgIAA+Pv7o1atWtiwYQP8/Px09tGsWTMMGzYMvXv3hrOzM+bOnQsAWLt2Lfr3749x48ahWrVq6NKlC06fPg03NzdjHCoREZFRcLQuIiIiIiIyCbxzQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEv4P4rb/DT/9ttoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -195,99 +162,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-4-3-2-11
anchor_year
2021[2020-12-01, 2021-01-01)[2021-02-01, 2021-03-01)[2021-04-01, 2021-05-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-12-01, 2020-01-01)[2020-02-01, 2020-03-01)[2020-04-01, 2020-05-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-12-01, 2019-01-01)[2019-02-01, 2019-03-01)[2019-04-01, 2019-05-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "calendar.show()[:3]" ] @@ -302,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -324,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -345,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -363,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -373,7 +250,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -404,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -435,19 +312,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pytorch version 2.0.1\n", - "Is CUDA available? False\n", - "Device to be used for computation: cpu\n" - ] - } - ], + "outputs": [], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -467,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -500,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -527,75 +394,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model details:\n", - " Transformer(\n", - " (encoder): TransformerEncoder(\n", - " (layers): ModuleList(\n", - " (0): TransformerEncoderLayer(\n", - " (attention): Residual(\n", - " (sublayer): MultiHeadAttention(\n", - " (heads): ModuleList(\n", - " (0-1): 2 x AttentionHead(\n", - " (q): Linear(in_features=65, out_features=32, bias=True)\n", - " (k): Linear(in_features=65, out_features=32, bias=True)\n", - " (v): Linear(in_features=65, out_features=32, bias=True)\n", - " )\n", - " )\n", - " (linear): Linear(in_features=64, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " (feed_forward): Residual(\n", - " (sublayer): Sequential(\n", - " (0): Linear(in_features=65, out_features=12, bias=True)\n", - " (1): ReLU()\n", - " (2): Linear(in_features=12, out_features=65, bias=True)\n", - " )\n", - " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (decoder): TransformerDecoder(\n", - " (layer): TransformerDecoderLayer(\n", - " (linear): Linear(in_features=65, out_features=1, bias=True)\n", - " )\n", - " )\n", - ")\n", - "Optimizer details:\n", - " Adam (\n", - "Parameter Group 0\n", - " amsgrad: False\n", - " betas: (0.9, 0.999)\n", - " capturable: False\n", - " differentiable: False\n", - " eps: 1e-08\n", - " foreach: None\n", - " fused: None\n", - " lr: 0.01\n", - " maximize: False\n", - " weight_decay: 0\n", - ")\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Initialize model\n", "model = Transformer(num_encoder_layers = config[\"num_encoder_layers\"],\n", @@ -618,15 +417,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18860\n" - ] - } - ], + "outputs": [], "source": [ "# display the total number of parameters\n", "utils.total_num_param(model)\n", @@ -646,765 +437,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 541.216675\n", - "Epoch : 0 [8/36(22%)]\tLoss: 372.463257\n", - "Epoch : 0 [16/36(44%)]\tLoss: 311.742798\n", - "Epoch : 0 [24/36(67%)]\tLoss: 269.896881\n", - "Epoch : 0 [32/36(89%)]\tLoss: 218.248810\n", - "Epoch : 1 [0/36(0%)]\tLoss: 179.946609\n", - "Epoch : 1 [8/36(22%)]\tLoss: 150.188629\n", - "Epoch : 1 [16/36(44%)]\tLoss: 118.381966\n", - "Epoch : 1 [24/36(67%)]\tLoss: 83.189682\n", - "Epoch : 1 [32/36(89%)]\tLoss: 50.084595\n", - "Epoch : 2 [0/36(0%)]\tLoss: 32.328728\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.110308\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.016559\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.474893\n", - "Epoch : 2 [32/36(89%)]\tLoss: 2.393358\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.284974\n", - "Epoch : 3 [8/36(22%)]\tLoss: 5.560195\n", - "Epoch : 3 [16/36(44%)]\tLoss: 8.409901\n", - "Epoch : 3 [24/36(67%)]\tLoss: 10.086982\n", - "Epoch : 3 [32/36(89%)]\tLoss: 8.864871\n", - "Epoch : 4 [0/36(0%)]\tLoss: 7.792433\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.915362\n", - "Epoch : 4 [16/36(44%)]\tLoss: 0.917453\n", - "Epoch : 4 [24/36(67%)]\tLoss: 3.928596\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.894675\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.691974\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.857225\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.241071\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.330382\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.884715\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.636225\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.723160\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.826412\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.093073\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.707489\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.269681\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.491391\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.295755\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.733817\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.789469\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.386416\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.341573\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.138120\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.249920\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.827636\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.664209\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.447931\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.145177\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.095599\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.822225\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.427189\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.491902\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.933871\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.138529\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.872352\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.460773\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.520807\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.784851\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.113303\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.644507\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.435244\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.416872\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.948044\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.132804\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.596077\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.358088\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.381118\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.931934\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.082265\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.482515\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.629727\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.306449\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.905534\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.272481\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.684866\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.457737\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.445701\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.903659\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.270124\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.781919\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.469775\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.356240\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.916117\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.339794\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.519456\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.622190\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.493773\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.791172\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.283159\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.623535\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.365303\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.208351\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.787075\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.932445\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.716154\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.416628\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.417500\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.953316\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.872090\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.492597\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.515885\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.302691\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.967424\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.027460\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.765638\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.541161\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.248560\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.935115\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.987096\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.433187\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.447987\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.472928\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.717649\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.716006\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.427337\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.504845\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.298365\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.886021\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.884795\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.619280\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.411408\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.296022\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.970702\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.653332\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.311742\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.388399\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.336000\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.883631\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.755074\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.516615\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.323514\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.297856\n", - "Epoch : 26 [16/36(44%)]\tLoss: 1.210429\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.293790\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.219159\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.540436\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.390810\n", - "Epoch : 27 [16/36(44%)]\tLoss: 1.090009\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.509291\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.338627\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.390286\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.478726\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.887393\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.365262\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.115665\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.458086\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.312295\n", - "Epoch : 29 [16/36(44%)]\tLoss: 1.142823\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.457661\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.974813\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.470369\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.335175\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.738867\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.294043\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.905344\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.392974\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.490405\n", - "Epoch : 31 [16/36(44%)]\tLoss: 1.111357\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.377593\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.719874\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.357076\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.297911\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.477689\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.484403\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.841330\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.339447\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.265898\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.677046\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.445825\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.770480\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.388840\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.511289\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.911979\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.348144\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.875994\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.371368\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.359988\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.799647\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.558390\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.578227\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.276555\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.339674\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.695427\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.391352\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.653624\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.292756\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.172401\n", - "Epoch : 37 [16/36(44%)]\tLoss: 1.018906\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.297300\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.590415\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.356787\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.326823\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.436051\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.506713\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.816568\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.437991\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.403067\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.356810\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.557380\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.487023\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.210397\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.278202\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.472461\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.375055\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.396197\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.291317\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.352984\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.588180\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.251341\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.367773\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.499722\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.236385\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.340980\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.516522\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.129800\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.237869\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.073700\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.109997\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.402983\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.227278\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.333813\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.168749\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.197237\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.385935\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.144716\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.233937\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.173382\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.334855\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.139161\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.093227\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.225221\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.462397\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.012123\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.268755\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.093079\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.135769\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.130330\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.048600\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.302103\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.179291\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.203552\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.270936\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.052788\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.262503\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.008751\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.102244\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.109133\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.145420\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.262328\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.079507\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.047305\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.040127\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.256827\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.159077\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.087569\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.207496\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.165961\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.293109\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.111410\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.052562\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.047893\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.127481\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.086027\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.111488\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.190006\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.213329\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.152304\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.195969\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.252908\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.133211\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.212453\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.285137\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.038173\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.458509\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.368229\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.158178\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.645823\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.306397\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.289743\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.112454\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.633461\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.107223\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.380145\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.108391\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.196207\n", - "Epoch : 57 [0/36(0%)]\tLoss: 1.101857\n", - "Epoch : 57 [8/36(22%)]\tLoss: 1.049977\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.399197\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.781938\n", - "Epoch : 57 [32/36(89%)]\tLoss: 1.348178\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.278211\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.430482\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.570131\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.321804\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.595418\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.316053\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.239389\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.254973\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.264362\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.452063\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.290053\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.176844\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.320263\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.235300\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.339196\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.115637\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.249379\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.281833\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.241623\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.315301\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.194464\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.218149\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.150943\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.169594\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.475779\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.138744\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.241365\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.236964\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.226969\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.358091\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.081558\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.219290\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.133819\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.144687\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.173827\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.073536\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.170127\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.201148\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.244045\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.097265\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.147697\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.280904\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.090755\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.149697\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.098561\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.049476\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.311009\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.015644\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.046731\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.239608\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.106274\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.160677\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.033371\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.168071\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.212426\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.079138\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.246454\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.067158\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.233357\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.217183\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.069212\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.146886\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.087745\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.053598\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.125170\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.093005\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.139315\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.141534\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.040081\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.179946\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.098925\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.092422\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.185684\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.147706\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.119041\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.056176\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.176125\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.106780\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.103024\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.034529\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.153144\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.129176\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.118329\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.044209\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.076424\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.073848\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.125681\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.039618\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.029977\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.207782\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.023384\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.136556\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.193569\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.032104\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.066320\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.073674\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.219207\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.099452\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.140827\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.025776\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.046584\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.152300\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.049067\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.098103\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.211856\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.035970\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.142106\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.191532\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.088300\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.050837\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.206382\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.073510\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.080327\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.041483\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.100533\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.026807\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.194391\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.101643\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.010090\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.395808\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.063395\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.147265\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.206970\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.082032\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.249874\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.068278\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.262697\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.041307\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.247910\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.084219\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.057175\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.254035\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.062086\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.101665\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.143167\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.152569\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.116719\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.200850\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.140120\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.056359\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.072830\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.052341\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.130750\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.025637\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.117669\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.081578\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.218741\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.142211\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.042854\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.328880\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.089676\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.184939\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.096419\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.039460\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.016206\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.031430\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.072926\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.043438\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.055044\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.084085\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.051438\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.163799\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.096610\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.021141\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.051110\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.249322\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.076720\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.045858\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.052160\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.046225\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.015984\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.089279\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.068036\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.024702\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.049682\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.008792\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.034245\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.105702\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.009552\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.070001\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.037535\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.041684\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.010694\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.084721\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.009930\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.036149\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.065707\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.061920\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.082191\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.030147\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.017542\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.061619\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.033791\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.080878\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.018274\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.040446\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.025190\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.102350\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.024543\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.036418\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.029245\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.050001\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.049536\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.025373\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.042934\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.029761\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.044818\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.032136\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.069991\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.019095\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.051803\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.037791\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.063464\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.064291\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.125718\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.012501\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.047244\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.023361\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.019202\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.062802\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.054783\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.095024\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.016610\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.037319\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.014645\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.002118\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.095011\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.032820\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.032570\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.035309\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.056849\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.067593\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.100215\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.013066\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.024940\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.083619\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.031679\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.028986\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.024054\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.013077\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.049917\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.089619\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.030046\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.073138\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.021436\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.016525\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.082073\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.005117\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.013319\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.031002\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.007939\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.183094\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.054382\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.004845\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.157076\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.078293\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.065076\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.128163\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.036073\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.067588\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.035304\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.214726\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.035644\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.154826\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.053674\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.021976\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.339147\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.035353\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.186452\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.123911\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.075428\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.053511\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.215588\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.040826\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.038436\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.151798\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.181479\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.038506\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.103296\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.143493\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.045379\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.311960\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.054292\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.098189\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.210574\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.042058\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.119325\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.070137\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.070119\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.093155\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.051780\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.117982\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.024356\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.068099\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.078059\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.059857\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.072933\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.094853\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.011835\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.011542\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.107981\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.025622\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.040330\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.015960\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.022070\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.005884\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.038325\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.006309\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.058548\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.076782\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.007531\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.128264\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.012115\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.037781\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.101377\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.031116\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.056723\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.104950\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.021562\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.075588\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.060054\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.024013\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.073479\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.078773\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.019911\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.043748\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.249664\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.026390\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.163119\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.060042\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.068596\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.194896\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.122795\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.127159\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.045278\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.167913\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.053188\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.057347\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.045813\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.036833\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.111922\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.119135\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.105036\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.043624\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.051447\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.044073\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.115727\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.046751\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.067133\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.233611\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.062298\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.136207\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.095411\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.048249\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.108854\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.122710\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.068460\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.079570\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.080867\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.020799\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.006218\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.302558\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.009904\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.059585\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.068753\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.127319\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.066899\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.181372\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.031047\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.061843\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.215610\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.060278\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.076904\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.092089\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.072276\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.045909\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.188941\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.011950\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.089004\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.112781\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.010586\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.132176\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.032573\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.013117\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.034493\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.035670\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.041419\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.011501\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.046226\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.012849\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.004978\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.042741\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.029500\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.014241\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.003887\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.049683\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.010458\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.009967\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.022414\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.028405\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.010606\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.075091\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.057027\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.017411\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.086091\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.027665\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.060709\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.023060\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.012547\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.010077\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.019467\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.109039\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.005581\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.055565\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.017230\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.042831\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.093298\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.016111\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.041922\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.022894\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.086113\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.035045\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.032294\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.034180\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.015215\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.043998\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.094201\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.063414\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.036211\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.008663\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.005006\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.100268\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.038128\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.031280\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.099242\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.020143\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.107985\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.114500\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.023308\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.054647\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.008002\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.037215\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.040919\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.021440\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.009456\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.021814\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.076972\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.026827\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.030531\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.050185\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.015440\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.078629\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.011867\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.073098\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.022489\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.093717\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.007622\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.033272\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.131271\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.077427\n", - "--- 0.5099315802256267 minutes ---\n" - ] - } - ], + "outputs": [], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -1467,18 +500,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmPUlEQVR4nOzdd3hT1R8G8Dfp3pQCLaOUvfeUDYJMZYMIKEvQnwxZioiyFUWWiLJEQGTJHspeMgXZe++92tI9cn5/nN6MLpo26U3T9/M8eW5yc5OcpIXbN98zNEIIASIiIiIiIiLKVFq1G0BERERERESUHTGQExEREREREamAgZyIiIiIiIhIBQzkRERERERERCpgICciIiIiIiJSAQM5ERERERERkQoYyImIiIiIiIhUwEBOREREREREpAIGciIiIiIiIiIVMJATEREREWVBDRs2RMOGDdN8bLly5azboASFChVCz549M+W1iLI6BnKibGTRokXQaDTQaDQ4cOBAkvuFEAgMDIRGo8Hbb7+t3x8WFoYxY8agXLly8PDwgJ+fHypVqoRPP/0UDx480B83duxY/fMnd3n06FGmvE8iIqK0Us6N//33n9pNybAHDx5g7NixOHXqlNpNsZhChQpBo9GgSZMmyd4/f/58/d8ZiX+GBw4cQIsWLZA/f364urqiYMGCeOedd7Bs2TKT41L72+Xjjz+22nsjAgBHtRtARJnP1dUVy5YtQ926dU3279u3D/fu3YOLi4t+X2xsLOrXr49Lly6hR48eGDhwIMLCwnD+/HksW7YM7dq1Q758+UyeZ/bs2fD09Ezyujly5LDK+yEiIsqOtm/fbnL7wYMHGDduHAoVKoRKlSqp0ygAly9fhlZrubqfq6sr9uzZg0ePHiEgIMDkvqVLl8LV1RVRUVEm+1etWoV3331XX0Dw9fXFzZs38c8//2D+/Pno2rWryfFvvfUWPvjggySvXaJECYu9D6LkMJATZUMtW7bEqlWrMHPmTDg6Gv4bWLZsGapWrYpnz57p961fvx4nT57E0qVLk5y8oqKiEBMTk+T5O3bsiFy5clnvDRAREWVjERERcHd3h7Ozs9pNSZbxF/uWUKdOHRw7dgwrV67Ep59+qt9/79497N+/H+3atcOaNWtMHjN27FiUKVMGR44cSfI5PXnyJMlrlChRAt27d7dou4nSgl3WibKh9957D8+fP8eOHTv0+2JiYrB69eokofv69esA5MkwMVdXV3h7e1u3sURERDbg5MmTaNGiBby9veHp6YnGjRvjyJEjSY47c+YMGjRoADc3NxQoUAATJ07EwoULodFocOvWLf1xGzZsQKtWrZAvXz64uLigaNGimDBhAuLj402eTxn7ffz4cdSvXx/u7u748ssv9fcpY8j37t2L6tWrAwB69eql73K9aNEik+e7cOECGjVqBHd3d+TPnx+TJ082uX/v3r3QaDT4888/MW7cOOTPnx9eXl7o2LEjQkJCEB0djcGDByNPnjzw9PREr169EB0dbfIcyY0hDw4OxpAhQ1CoUCG4uLigQIEC+OCDD0yKAClxdXVF+/btk3Q1X758OXx9fdGsWbMkj7l+/TqqV6+e7JcWefLkee1rEmUWVsiJsqFChQqhVq1aWL58OVq0aAEA2LJlC0JCQtClSxfMnDlTf2xQUBAA4Pfff8dXX30FjUbz2ud/8eJFkn2Ojo7ssk5ERFnS+fPnUa9ePXh7e+Pzzz+Hk5MT5s6di4YNG2Lfvn2oWbMmAOD+/fto1KgRNBoNRo4cCQ8PD/z666/JVowXLVoET09PDB06FJ6enti9ezdGjx6N0NBQ/PDDDybHPn/+HC1atECXLl3QvXt3+Pv7J3m+0qVLY/z48Rg9ejT69euHevXqAQBq166tP+bly5do3rw52rdvj86dO2P16tUYMWIEypcvr/97QDFp0iS4ubnhiy++wLVr1/DTTz/ByckJWq0WL1++xNixY3HkyBEsWrQIhQsXxujRo1P8/MLCwlCvXj1cvHgRvXv3RpUqVfDs2TNs3LgR9+7dS1Ovuq5du6Jp06a4fv06ihYtCkD27OvYsSOcnJySHB8UFIRdu3bh3r17KFCgwGufPyoqKtkvB7y9vW22JwLZCUFE2cbChQsFAHHs2DExa9Ys4eXlJSIiIoQQQnTq1Ek0atRICCFEUFCQaNWqlRBCiIiICFGyZEkBQAQFBYmePXuKBQsWiMePHyd5/jFjxggAyV5KliyZeW+UiIgojYzPjSlp27atcHZ2FtevX9fve/DggfDy8hL169fX7xs4cKDQaDTi5MmT+n3Pnz8XOXPmFADEzZs39fuV86+xjz76SLi7u4uoqCj9vgYNGggAYs6cOUmOb9CggWjQoIH+9rFjxwQAsXDhwmSPBSB+//13/b7o6GgREBAgOnTooN+3Z88eAUCUK1dOxMTE6Pe/9957QqPRiBYtWpg8b61atURQUJDJvqCgINGjRw/97dGjRwsAYu3atUnapdPpkuxL/FytWrUScXFxIiAgQEyYMEEIIcSFCxcEALFv375kf4YLFiwQAISzs7No1KiR+Prrr8X+/ftFfHx8ktdI6W8XAGL58uWpto8oo9hlnSib6ty5MyIjI7F582a8evUKmzdvTtJdHQDc3Nzw77//4rPPPgMgv9Hv06cP8ubNi4EDBybppgYAa9aswY4dO0wuCxcutPp7IiIisrT4+Hhs374dbdu2RZEiRfT78+bNi65du+LAgQMIDQ0FAGzduhW1atUymVAtZ86c6NatW5LndXNz019/9eoVnj17hnr16iEiIgKXLl0yOdbFxQW9evXK8Hvx9PQ0GSft7OyMGjVq4MaNG0mO/eCDD0wqzzVr1oQQAr179zY5rmbNmrh79y7i4uJSfN01a9agYsWKaNeuXZL70tLzDgAcHBzQuXNnLF++HICczC0wMFDfEyCx3r17Y+vWrWjYsCEOHDiACRMmoF69eihevDgOHTqU5Pg2bdok+dtlx44daNSoUZraR5Re7LJOlE3lzp0bTZo0wbJlyxAREYH4+Hh07Ngx2WN9fHwwefJkTJ48Gbdv38auXbswZcoUzJo1Cz4+Ppg4caLJ8fXr1+ekbkREZBeePn2KiIgIlCxZMsl9pUuXhk6nw927d1G2bFncvn0btWrVSnJcsWLFkuw7f/48vvrqK+zevVsf6BUhISEmt/Pnz2+RbtMFChRIEoB9fX1x5syZJMcWLFjQ5LaPjw8AIDAwMMl+nU6HkJAQ+Pn5Jfu6169fR4cOHTLSdACy2/rMmTNx+vRpLFu2DF26dEk10Ddr1gzNmjVDREQEjh8/jpUrV2LOnDl4++23cenSJZOx5AUKFEhxaTUia2KFnCgb69q1K7Zs2YI5c+agRYsWaRrjHRQUhN69e+PgwYPIkSMHli5dav2GEhER2ZHg4GA0aNAAp0+fxvjx47Fp0ybs2LED33//PQBAp9OZHG9cTc8IBweHZPcLIdJ8rDnPYWk1a9ZE0aJFMXjwYNy8eTPZnn3JcXd3R7169TBr1ix89dVXePnyJbZs2WLl1hKlDSvkRNlYu3bt8NFHH+HIkSNYuXKlWY/19fVF0aJFce7cOSu1joiISH25c+eGu7s7Ll++nOS+S5cuQavV6qvGQUFBuHbtWpLjEu/bu3cvnj9/jrVr16J+/fr6/Tdv3sxQW9Pa/TuzWfLvhffeew8TJ05E6dKl07XWerVq1QAADx8+tEh7iDKKFXKibMzT0xOzZ8/G2LFj8c477yR7zOnTp5OddfT27du4cOFCsl34iIiI7IWDgwOaNm2KDRs2mCxb9vjxYyxbtgx169bVLwHarFkzHD58GKdOndIf9+LFiyS9yZQqs3FVOSYmBr/88kuG2urh4QFAVuBtSYcOHXD69GmsW7cuyX3mVtY//PBDjBkzBlOnTk31uF27diW7/++//wYA/v1CNoMVcqJsrkePHqnev2PHDowZMwatW7fGG2+8AU9PT9y4cQO//fYboqOjMXbs2CSPWb16NTw9PZPsf+utt5JdqoWIiEhtv/32G7Zu3Zpk/6effoqJEydix44dqFu3Lj755BM4Ojpi7ty5iI6ONlnH+/PPP8cff/yBt956CwMHDtQve1awYEG8ePFCX8GuXbs2fH190aNHDwwaNAgajQZLlizJcLfvokWLIkeOHJgzZw68vLzg4eGBmjVronDhwhl63oz67LPPsHr1anTq1Am9e/dG1apV8eLFC2zcuBFz5sxBxYoV0/xcQUFByf7tkVibNm1QuHBhvPPOOyhatCjCw8Oxc+dObNq0CdWrV09SiLhy5Qr++OOPJM/j7++Pt956K83tIzIXAzkRpapDhw549eoVtm/fjt27d+PFixfw9fVFjRo1MGzYsGRnH/3f//6X7HPt2bOHgZyIiGzS7Nmzk93fs2dPlC1bFvv378fIkSMxadIk6HQ61KxZE3/88Yd+DXJATni2Z88eDBo0CN9++y1y586N/v37w8PDA4MGDYKrqysAwM/PD5s3b8awYcPw1VdfwdfXF927d0fjxo3RrFmzdL8HJycnLF68GCNHjsTHH3+MuLg4LFy4UPVA7unpif3792PMmDFYt24dFi9ejDx58qBx48ZpWiM8PX799Vds2LABf/75Jx48eAAhBIoUKYJRo0ZhxIgRcHQ0jUHKrOqJNWjQgIGcrEojMmMGBiIiIiKibGrw4MGYO3cuwsLCUpwUjYiyJ44hJyIiIiKykMjISJPbz58/x5IlS1C3bl2GcSJKgl3WiYiIiIgspFatWmjYsCFKly6Nx48fY8GCBQgNDcXXX3+tdtOIyAYxkBMRERERWUjLli2xevVqzJs3DxqNBlWqVMGCBQtMljcjIlJwDDkRERERERGRCjiGnIiIiIiIiEgFDOREREREREREKrD7MeQ6nQ4PHjyAl5cXNBqN2s0hIiKCEAKvXr1Cvnz5oNXyu/GM4rmeiIhsTVrP9XYfyB88eIDAwEC1m0FERJTE3bt3UaBAAbWbkeXxXE9ERLbqded6uw/kXl5eAOQH4e3trXJriIiIgNDQUAQGBurPUZQxPNcTEZGtSeu53u4DudJ1zdvbmydpIiKyKexebRk81xMRka163bmeA9eIiIiIiIiIVMBATkRERERERKQCBnIiIiIiIiIiFdj9GHIiorQSQiAuLg7x8fFqN4WyOAcHBzg6OnKMOBGRjeG5nizFUud6BnIiIgAxMTF4+PAhIiIi1G4K2Ql3d3fkzZsXzs7OajeFiIjAcz1ZniXO9QzkRJTt6XQ63Lx5Ew4ODsiXLx+cnZ1Z2aR0E0IgJiYGT58+xc2bN1G8eHFotRwhRkSkJp7ryZIsea5nICeibC8mJgY6nQ6BgYFwd3dXuzlkB9zc3ODk5ITbt28jJiYGrq6uajeJiChb47meLM1S53p+ZU9ElIBVTLIk/j4REdke/t9MlmSJ3yf+RhIRERERERGpgIGciIiIiIiISAUM5EREpFeoUCHMmDEjzcfv3bsXGo0GwcHBVmsTACxatAg5cuSw6msQERFlFzzf2w4GciKiLEij0aR6GTt2bLqe99ixY+jXr1+aj69duzYePnwIHx+fdL0eERERpYzne/vHWdaJiLKghw8f6q+vXLkSo0ePxuXLl/X7PD099deFEIiPj4ej4+v/y8+dO7dZ7XB2dkZAQIBZjyEiIqK04fne/rFCboZ69YBy5YCbN9VuCRFZkxBAeLg6FyHS1saAgAD9xcfHBxqNRn/70qVL8PLywpYtW1C1alW4uLjgwIEDuH79Otq0aQN/f394enqievXq2Llzp8nzJu7CptFo8Ouvv6Jdu3Zwd3dH8eLFsXHjRv39ibuwKV3Ntm3bhtKlS8PT0xPNmzc3+YMiLi4OgwYNQo4cOeDn54cRI0agR48eaNu2rVk/p9mzZ6No0aJwdnZGyZIlsWTJEqOfocDYsWNRsGBBuLi4IF++fBg0aJD+/l9++QXFixeHq6sr/P390bFjR7Nem+zX558DZcsCK1ao3RIisja1zvdpPdcDPN8D9n++ZyA3w4ULwPnzQGSk2i0hImuKiAA8PdW5RERY7n188cUX+O6773Dx4kVUqFABYWFhaNmyJXbt2oWTJ0+iefPmeOedd3Dnzp1Un2fcuHHo3Lkzzpw5g5YtW6Jbt2548eJFKp9fBKZMmYIlS5bgn3/+wZ07dzB8+HD9/d9//z2WLl2KhQsX4uDBgwgNDcX69evNem/r1q3Dp59+imHDhuHcuXP46KOP0KtXL+zZswcAsGbNGkyfPh1z587F1atXsX79epQvXx4A8N9//2HQoEEYP348Ll++jK1bt6J+/fpmvT7ZrwcP5Pn+3j21W0JE1qbW+d6S53qA5/ssf74Xdi4kJEQAECEhIRl+rty5hQCEOHPGAg0jIpsRGRkpLly4ICIjI4UQQoSFyX/ralzCwsxv/8KFC4WPj4/+9p49ewQAsX79+tc+tmzZsuKnn37S3w4KChLTp0/X3wYgvvrqK/3tsLAwAUBs2bLF5LVevnypbwsAce3aNf1jfv75Z+Hv76+/7e/vL3744Qf97bi4OFGwYEHRpk2bNL/H2rVri759+5oc06lTJ9GyZUshhBBTp04VJUqUEDExMUmea82aNcLb21uEhoam+HqWkPj3ypglz01k2c9z4ED5b/HLLy3QMCKyGcn9n6zW+T4953oheL5X2NL53hLnelbIzeDgILfx8eq2g4isy90dCAtT5+Lubrn3Ua1aNZPbYWFhGD58OEqXLo0cOXLA09MTFy9efO035hUqVNBf9/DwgLe3N548eZLi8e7u7ihatKj+dt68efXHh4SE4PHjx6hRo4b+fgcHB1StWtWs93bx4kXUqVPHZF+dOnVw8eJFAECnTp0QGRmJIkWKoG/fvli3bh3i4uIAAG+99RaCgoJQpEgRvP/++1i6dCkiLF2uoCzL11duX75Utx1EZH1qne8tea4HeL7P6ud7BnIzaBM+LZ1O3XYQkXVpNICHhzoXjcZy78PDw8Pk9vDhw7Fu3Tp8++232L9/P06dOoXy5csjJiYm1edxcnJK9PlooEvlP8LkjhfmDJizgMDAQFy+fBm//PIL3Nzc8Mknn6B+/fqIjY2Fl5cXTpw4geXLlyNv3rwYPXo0KlasaPWlXChrYCAnyj7UOt9b8lwP8Hyf1c/3DORmYIWciLKygwcPomfPnmjXrh3Kly+PgIAA3Lp1K1Pb4OPjA39/fxw7dky/Lz4+HidOnDDreUqXLo2DBw+a7Dt48CDKlCmjv+3m5oZ33nkHM2fOxN69e3H48GGcPXsWAODo6IgmTZpg8uTJOHPmDG7duoXdu3dn4J2RvWAgJ6Ksjuf7rHW+57JnZmAgJ6KsrHjx4li7di3eeecdaDQafP3116l+820tAwcOxKRJk1CsWDGUKlUKP/30E16+fAmNGSWDzz77DJ07d0blypXRpEkTbNq0CWvXrtXPIrto0SLEx8ejZs2acHd3xx9//AE3NzcEBQVh8+bNuHHjBurXrw9fX1/8/fff0Ol0KFmypLXeMmUhSiBPZR4jIiKbxvN91jrfM5CbgYGciLKyadOmoXfv3qhduzZy5cqFESNGIDQ0NNPbMWLECDx69AgffPABHBwc0K9fPzRr1gwOyn+yadC2bVv8+OOPmDJlCj799FMULlwYCxcuRMOGDQEAOXLkwHfffYehQ4ciPj4e5cuXx6ZNm+Dn54ccOXJg7dq1GDt2LKKiolC8eHEsX74cZcuWtdI7pqyEFXIiyup4vs9a53uNyOyO/pksNDQUPj4+CAkJgbe3d4aeq2RJ4MoVYN8+wBZnzCei9ImKisLNmzdRuHBhuLq6qt2cbEen06F06dLo3LkzJkyYoHZzLCa13ytLnpvIsp/n+fNAuXKAnx/w7JmFGkhEquO5Xn32eL63xLmeFXIzsEJORJRxt2/fxvbt29GgQQNER0dj1qxZuHnzJrp27ap204j0FfLgYLlAkaUnXyIiyi54vk8bVSd1i4+Px9dff43ChQvDzc0NRYsWxYQJE0xm5xNCYPTo0cibNy/c3NzQpEkTXL16VZX2MpATEWWcVqvFokWLUL16ddSpUwdnz57Fzp07Ubp0abWbRqQP5PHxwKtX6raFiCgr4/k+bVStkH///feYPXs2Fi9ejLJly+K///5Dr1694OPjg0GDBgEAJk+ejJkzZ2Lx4sUoXLgwvv76azRr1gwXLlzI9O4mDORERBkXGBiYZMZUIlvh5ga4uADR0XIcOUcUEBGlD8/3aaNqhfzQoUNo06YNWrVqhUKFCqFjx45o2rQpjh49CkBWx2fMmIGvvvoKbdq0QYUKFfD777/jwYMHWL9+faa3VwnkXIeciIjIfnGmdSIiyiyqBvLatWtj165duHLlCgDg9OnTOHDgAFq0aAEAuHnzJh49eoQmTZroH+Pj44OaNWvi8OHDyT5ndHQ0QkNDTS6Wok34tFghJyIiso7vvvsOGo0GgwcPVq0NnGmdiIgyi6pd1r/44guEhoaiVKlScHBwQHx8PL755ht069YNAPDo0SMAgL+/v8nj/P399fclNmnSJIwbN84q7WWXdSIiIus5duwY5s6diwoVKqjajpw55ZaBnIiIrE3VCvmff/6JpUuXYtmyZThx4gQWL16MKVOmYPHixel+zpEjRyIkJER/uXv3rsXay0BORERkHWFhYejWrRvmz58PX6VEnQJr9oYDWCEnIqLMo2og/+yzz/DFF1+gS5cuKF++PN5//30MGTIEkyZNAgAEBAQAAB4/fmzyuMePH+vvS8zFxQXe3t4mF0thICciIrKO/v37o1WrVibD1FIyadIk+Pj46C+BgYEWbQsDORERZRZVA3lERAS0WtMmODg4QJcwa1rhwoUREBCAXbt26e8PDQ3Fv//+i1q1amVqW2Xb5JaBnIiIyHJWrFiBEydO6L+Qfx1r9obDhg149+oEVMMxTupGRERWp2ogf+edd/DNN9/gr7/+wq1bt7Bu3TpMmzYN7dq1AwD9pC4TJ07Exo0bcfbsWXzwwQfIly8f2rZtm+ntZSAnInvTsGFDk8mzChUqhBkzZqT6GI1GY5GVLiz1PKkZO3YsKlWqZNXXoIy5e/cuPv30UyxdujTNy5laszccli9HqyOjUQuHWSEnIrvB873tUnVSt59++glff/01PvnkEzx58gT58uXDRx99hNGjR+uP+fzzzxEeHo5+/fohODgYdevWxdatWzN9DXKAgZyIbMc777yD2NhYbN26Ncl9+/fvR/369XH69GmzJ8c6duwYPDw8LNVMAPIkuX79epw6dcpk/8OHD187Vpjs3/Hjx/HkyRNUqVJFvy8+Ph7//PMPZs2ahejoaDgoJ+DMkPD774kwXGcgJyKV8Xxv/1QN5F5eXpgxY0aq385oNBqMHz8e48ePz7yGpYDrkBORrejTpw86dOiAe/fuoUCBAib3LVy4ENWqVUvXTNW5c+e2VBNfK6W5QCh7ady4Mc6ePWuyr1evXihVqhRGjBiRuWEc0AdyD4SzQk5EquP53v6p2mU9q+E65ETZhBBAeLg6FyHS1MS3334buXPnxqJFi0z2h4WFYdWqVejTpw+eP3+O9957D/nz54e7uzvKly+P5cuXp/q8ibuwXb16FfXr14erqyvKlCmDHTt2JHnMiBEjUKJECbi7u6NIkSL4+uuvERsbCwBYtGgRxo0bh9OnT0Oj0UCj0ejbnLgL29mzZ/Hmm2/Czc0Nfn5+6NevH8LCwvT39+zZE23btsWUKVOQN29e+Pn5oX///vrXSgudTofx48ejQIECcHFxQaVKlUyqDjExMRgwYADy5s0LV1dXBAUF6cc1CyEwduxYFCxYEC4uLsiXLx8GDRqU5tem5Hl5eaFcuXImFw8PD/j5+aFcuXKZ3yBPTwAM5ETZglrn+zSe6wGe77PD+V7VCnlWwy7rRNlERIT+j/JMFxamr9ClxtHRER988AEWLVqEUaNGQaPRAABWrVqF+Ph4vPfeewgLC0PVqlUxYsQIeHt746+//sL777+PokWLokaNGq99DZ1Oh/bt28Pf3x///vsvQkJCTMafKby8vLBo0SLky5cPZ8+eRd++feHl5YXPP/8c7777Ls6dO4etW7di586dAAAfH58kzxEeHo5mzZqhVq1aOHbsGJ48eYIPP/wQAwYMMPkjZM+ePcibNy/27NmDa9eu4d1330WlSpXQt2/f174fAPjxxx8xdepUzJ07F5UrV8Zvv/2G1q1b4/z58yhevDhmzpyJjRs34s8//0TBggVx9+5d/YRha9aswfTp07FixQqULVsWjx49wunTp9P0upSFGHVZZyAnsnNqne/TeK4HeL7PFud7YedCQkIEABESEpLh52rXTghAiF9+sUDDiMhmREZGigsXLojIyEi5IyxM/mNX4xIWluZ2X7x4UQAQe/bs0e+rV6+e6N69e4qPadWqlRg2bJj+doMGDcSnn36qvx0UFCSmT58uhBBi27ZtwtHRUdy/f19//5YtWwQAsW7duhRf44cffhBVq1bV3x4zZoyoWLFikuOMn2fevHnC19dXhBm9/7/++ktotVrx6NEjIYQQPXr0EEFBQSIuLk5/TKdOncS7776bYlsSv3a+fPnEN998Y3JM9erVxSeffCKEEGLgwIHizTffFDqdLslzTZ06VZQoUULExMSk+HrGkvxeGbHkuYks/HlOny4EIJahi/D1zfjTEZFtSPb/ZLXO92ac64Xg+V4I2z3fW+Jczy7rZmCFnCibcHeX316rcXF3T3MzS5Uqhdq1a+O3334DAFy7dg379+9Hnz59AMiJsSZMmIDy5csjZ86c8PT0xLZt23Dnzp00Pf/FixcRGBiIfPny6fclt+TkypUrUadOHQQEBMDT0xNfffVVml/D+LUqVqxoMsFMnTp1oNPpcPnyZf2+smXLmowpzps3L548eZKm1wgNDcWDBw9Qp04dk/116tTBxYsXAchucqdOnULJkiUxaNAgbN++XX9cp06dEBkZiSJFiqBv375Yt24d4uLizHqflAUYdVkPDua8MUR2Ta3zvRnneoDne8C+z/cM5GZgICfKJjQa2ZVMjUtCV7S06tOnD9asWYNXr15h4cKFKFq0KBo0aAAA+OGHH/Djjz9ixIgR2LNnD06dOoVmzZohJibGYh/V4cOH0a1bN7Rs2RKbN2/GyZMnMWrUKIu+hjEnJyeT2xqNBjoLJqYqVarg5s2bmDBhAiIjI9G5c2d07NgRABAYGIjLly/jl19+gZubGz755BPUr1/frDFtlAUYdVkXAggNVbk9RGQ9ap3vzTzXAzzf2/P5noHcDAzkRGRrOnfuDK1Wi2XLluH3339H79699ePLDh48iDZt2qB79+6oWLEiihQpgitXrqT5uUuXLo27d+/i4cOH+n1HjhwxOebQoUMICgrCqFGjUK1aNRQvXhy3b982OcbZ2Rnxr/mPs3Tp0jh9+jTCw8P1+w4ePAitVouSJUumuc2p8fb2Rr58+XDw4EGT/QcPHkSZMmVMjnv33Xcxf/58rFy5EmvWrMGLFy8AAG5ubnjnnXcwc+ZM7N27F4cPH04yQzhlcQmB3Esjfxc5jpyIbAHP92mX1c73nNTNDAzkRGRrPD098e6772LkyJEIDQ1Fz5499fcVL14cq1evxqFDh+Dr64tp06bh8ePHJiej1DRp0gQlSpRAjx498MMPPyA0NBSjRo0yOaZ48eK4c+cOVqxYgerVq+Ovv/7CunXrTI4pVKgQbt68iVOnTqFAgQLw8vKCi4uLyTHdunXDmDFj0KNHD4wdOxZPnz7FwIED8f7778Pf3z99H04yPvvsM4wZMwZFixZFpUqVsHDhQpw6dQpLly4FAEybNg158+ZF5cqVodVqsWrVKgQEBCBHjhxYtGgR4uPjUbNmTbi7u+OPP/6Am5sbgoKCLNY+sgFKIHcIB+JkIC9cWOU2EVG2x/O9ebLS+Z4VcjNwHXIiskV9+vTBy5cv0axZM5PxX1999RWqVKmCZs2aoWHDhggICEDbtm3T/LxarRbr1q1DZGQkatSogQ8//BDffPONyTGtW7fGkCFDMGDAAFSqVAmHDh3C119/bXJMhw4d0Lx5czRq1Ai5c+dOdikWd3d3bNu2DS9evED16tXRsWNHNG7cGLNmzTLvw3iNQYMGYejQoRg2bBjKly+PrVu3YuPGjShevDgAOYPs5MmTUa1aNVSvXh23bt3C33//Da1Wixw5cmD+/PmoU6cOKlSogJ07d2LTpk3w8/OzaBtJZQljyL00cgkeVsiJyFbwfJ92Wel8rxHCjIXwsqDQ0FD4+PggJCQE3t7eGXquDz8EFiwAvvkG+PJLCzWQiFQXFRWFmzdvonDhwnB1dVW7OWQnUvu9suS5iSz8eZ47B5Qvj2DHXPCNe4o//wQ6dbJMO4lIPTzXkzVY4lzPCrkZtAmfFrusExER2amELutuOo4hJyIi62MgNwPHkBMREdm5hC7rLrpIaBHPQE5ERFbFQG4GBnIiIiI7Z7Q2rjsiGMiJiMiqGMjNwEBORERk59zc9GsEeyCcgZyIiKyKgdwMDORE9s3O57ikTMbfpyxKo9FXyT0QjoQlaYnITvD/ZrIkS/w+MZCbgYGcyD45OTkBACIiIlRuCdkT5fdJ+f2iLCQhkHsijBVyIjvBcz1ZgyXO9Y6Wakx2wEBOZJ8cHByQI0cOPHnyBIBcI1OT0GWVyFxCCERERODJkyfIkSMHHJSTB2UdRhVyBnIi+8BzPVmSJc/1DORmUD5nnU7ddhCR5QUEBACA/kRNlFE5cuTQ/15RFpMw07oHwvGIgZzIbvBcT5ZmiXM9A7kZuA45kf3SaDTImzcv8uTJg9jYWLWbQ1mck5MTK+NZGbusE9klnuvJkix1rmcgNwO7rBPZPwcHBwYpouzOqMt6SIjsGaflrDtEdoPnerIlPL2YgYGciIgoGzDqsi4EEB2tcnuIiMhuMZCbgYGciIgoGzDqsg4AUVFqNoaIiOwZA7kZGMiJiIiyASWQa8IBMJATEZH1MJCbgYGciIgoG0josu7jwEBORETWxUBuBgZyIiKibCChQu7NQE5ERFbGQG4GrkNORESUDSiBXMsx5EREZF0M5GZghZyIiCgbUMaQa1khJyIi62IgN4OyBikDORERkR1LGEPOSd2IiMjaGMjNwAo5ERFRNsBlz4iIKJMwkJuBgZyIiCgbSAjk7oIVciIisi4GcjMwkBMREWUDCV3WlUAeHa1mY4iIyJ4xkJuBgZyIiCgbUCrkOnZZJyIi62IgNwMDORERUTaQEMhd49llnYiIrIuB3Axch5yIiCgbSOiyzkBORETWxkBuBlbIiYiIsoGECrmjLhZOiGEgJyIiq2EgNwPXISciIsoGEgI5AHggnIGciIishoHcDKyQExERZQPOzoCTEwAGciIisi4GcjMwkBMREWUTCVVyBnIiIrImBnIzMJATERFlEwmB3BNhDORERGQ1DORmYCAnIiLKJhJmWmeFnIiIrImB3AwM5ERERNkEu6wTEVEmYCA3A9chJyIiyibYZZ2IiDIBA7kZWCEnIiLKJowq5NHRKreFiIjsFgO5GRjIiYiIsgmOISciokzAQG4GbcKnxUBORERk59hlnYiIMgEDuRlYISciIsomOKkbERFlAgZyMzCQExERZRPssk5ERJmAgdwMDORERETZBLusExFRJmAgNwMDORERUTbBLutERJQJGMjNwEBORESUTbDLOhERZQIGcjMogVynU7cdREREZGWskBMRUSZgIDcDK+RERETZRKIx5EKo3B4iIrJLDORmYCAnIiLKJoy6rANATIyajSEiInvFQG4GbcKnxUBORERk54y6rANgt3UiIrIKBnIzsEJORESUTRh1WQeA6Gg1G0NERPaKgdwMDORERETZRKIu66yQExGRNTCQm0EJ5ABnWiciIrJrJl3WBQM5ERFZBQO5GYwDOavkREREdszNDQCghYATYhnIiYjIKhjIzcAKORERUTbh7Ky/6oJoBnIiIrIKBnIzsEJORESUTRgFcmfEMJATEZFVMJCbgYGciIgom3Bw0J/4GciJiMhaGMjNoDX6tBjIiYiI7FxClZxd1omIyFoYyM3ACjkREVE2khDIWSEnIiJrYSA3AwM5ERFRNsJATkREVsZAbgaNRl4ABnIiIiK75+ICgIGciIish4HcTEqVnIGciIjIMiZNmoTq1avDy8sLefLkQdu2bXH58mW1m2Uyhjw6WuW2EBGRXWIgN5MSyLkOORERkWXs27cP/fv3x5EjR7Bjxw7ExsaiadOmCA8PV7dh7LJORERW5qh2A7IaVsiJiIgsa+vWrSa3Fy1ahDx58uD48eOoX7++Sq0Cu6wTEZHVMZCbiYGciIjIukJCQgAAOXPmTPb+6OhoRBv1IQ8NDbVOQ7jsGRERWRm7rJuJgZyIiMh6dDodBg8ejDp16qBcuXLJHjNp0iT4+PjoL4GBgdZpDLusExGRlTGQm0mb8IkxkBMREVle//79ce7cOaxYsSLFY0aOHImQkBD95e7du9ZpDAM5ERFZGbusm4kVciIiIusYMGAANm/ejH/++QcFChRI8TgXFxe4JIzvtiqOISciIitjIDcTAzkREZFlCSEwcOBArFu3Dnv37kXhwoXVbpJkNIY8goGciIisgIHcTAzkREREltW/f38sW7YMGzZsgJeXFx49egQA8PHxgZubm3oNM+qy/oKBnIiIrIBjyM3EdciJiIgsa/bs2QgJCUHDhg2RN29e/WXlypXqNoxd1omIyMpUD+T3799H9+7d4efnBzc3N5QvXx7//fef/n4hBEaPHo28efPCzc0NTZo0wdWrV1VrLyvkREREliWESPbSs2dPdRvGZc+IiMjKVA3kL1++RJ06deDk5IQtW7bgwoULmDp1Knx9ffXHTJ48GTNnzsScOXPw77//wsPDA82aNUOUSmdGBnIiIqJsgrOsExGRlak6hvz7779HYGAgFi5cqN9nPJGLEAIzZszAV199hTZt2gAAfv/9d/j7+2P9+vXo0qVLkueMjo5GdHS0/nZoaKhF28xATkRElE0YBXKjPy2IiIgsRtUK+caNG1GtWjV06tQJefLkQeXKlTF//nz9/Tdv3sSjR4/QpEkT/T4fHx/UrFkThw8fTvY5J02aBB8fH/0lMDDQom3mOuRERETZBMeQExGRlakayG/cuIHZs2ejePHi2LZtG/73v/9h0KBBWLx4MQDoZ1n19/c3eZy/v7/+vsRGjhyJkJAQ/eXu3bsWbTMr5ERERNkEx5ATEZGVqdplXafToVq1avj2228BAJUrV8a5c+cwZ84c9OjRI13P6eLiApeEb7StgYGciIgom+AYciIisjJVK+R58+ZFmTJlTPaVLl0ad+7cAQAEBAQAAB4/fmxyzOPHj/X3ZTYGciIiomyCXdaJiMjKVA3kderUweXLl032XblyBUFBQQDkBG8BAQHYtWuX/v7Q0FD8+++/qFWrVqa2VcFATkRElE2wyzoREVmZql3WhwwZgtq1a+Pbb79F586dcfToUcybNw/z5s0DAGg0GgwePBgTJ05E8eLFUbhwYXz99dfIly8f2rZtq0qblUCu06ny8kRERJRZ2GWdiIisTNVAXr16daxbtw4jR47E+PHjUbhwYcyYMQPdunXTH/P5558jPDwc/fr1Q3BwMOrWrYutW7fC1dVVlTazQk5ERJRNGAXy+HggLg5wVPUvJyIisjeqn1befvttvP322yner9FoMH78eIwfPz4TW5UyBnIiIqJswmgMOQBERQGenmo2iIiI7I2qY8izIgZyIiKibMJoDDkAdlsnIiKLYyA3kzbhE2MgJyIisnNKINcYKuRERESWxEBuJlbIiYiIsomELuuuDORERGQlDORmYiAnIiLKJhIq5K4a2WU9OlrNxhARkT1iIDcTAzkREVE2wS7rRERkZQzkZuI65ERERNmEsuwZAzkREVkJA7mZWCEnIiLKJpJZ9oyIiMiSGMjNxEBORESUTSgVcsFlz4iIyDoYyM3EQE5ERJRNKIGcFXIiIrISBnIzcR1yIiKibCKhy7qTjoGciIisg4HcTKyQExERZRMJFXIndlknIiIrYSA3EwM5ERFRNpEQyB1EPLSIZyAnIiKLYyA3EwM5ERFRNpEQyAHACbEM5EREZHEM5GbiOuRERETZRMIYckBO7MZATkRElsZAbiZWyImIiLIJJyf9VRdEM5ATEZHFMZCbiYGciIgom9BqAUdHALJCHh2tcnuIiMjuMJCbiYGciIjs1YkTJ3D27Fn97Q0bNqBt27b48ssvERMTo2LLVJTQbd0ZMYiMVLktRERkdxjIzcRATkRE9uqjjz7ClStXAAA3btxAly5d4O7ujlWrVuHzzz9XuXUqSZjYzQXRuH1b5bYQEZHdYSA3kzbhE2MgJyIie3PlyhVUqlQJALBq1SrUr18fy5Ytw6JFi7BmzRp1G6eWhEDujBicPKlyW4iIyO4wkJuJFXIiIrJXQgjoEpYR2blzJ1q2bAkACAwMxLNnz9RsmnqMAvm9e0B2/RiIiMg6GMjNxEBORET2qlq1apg4cSKWLFmCffv2oVWrVgCAmzdvwt/fX+XWqSRhDHnh/HIM/enTajaGiIjsDQO5mbgOORER2asZM2bgxIkTGDBgAEaNGoVixYoBAFavXo3atWur3DqVJFTIyxSRU6yfOqViW4iIyO44qt2ArIYVciIislcVKlQwmWVd8cMPP8BBOQFmNwmBvGThGGA/AzkREVkWK+RmYiAnIiJ7dffuXdy7d09/++jRoxg8eDB+//13ODk5qdgyFSV0WS8WJLusc2I3IiKyJAZyMzGQExGRveratSv27NkDAHj06BHeeustHD16FKNGjcL48eNVbp1KEirkRfPLLuuXLoHrkRMRkcUwkJuJgZyIiOzVuXPnUKNGDQDAn3/+iXLlyuHQoUNYunQpFi1apG7j1JIQyHN6xiBXLnn+P39e5TYREZHdYCA3E9chJyIiexUbGwuXhC7aO3fuROvWrQEApUqVwsOHD9VsmnoSArkmNgYJS7RzHDkREVkMA7k55s1DtQPTkQMvGciJiMjulC1bFnPmzMH+/fuxY8cONG/eHADw4MED+Pn5qdw6lSR8QYEYBnIiIrI8BnJzjByJhhuGwh+PGciJiMjufP/995g7dy4aNmyI9957DxUrVgQAbNy4Ud+VPdtJqJAjOlofyDmxGxERWQqXPTOHo/y4HBHHdciJiMjuNGzYEM+ePUNoaCh8fX31+/v16wd3d3cVW6YiJZAbVchPnwZ0OsMwNiIiovRiIDdHwoxujohjhZyIiOySg4MD4uLicODAAQBAyZIlUahQIXUbpSajLuslSwKurkB4OHDzJlC0qLpNIyKirI/f7ZrDqELOQE5ERPYmPDwcvXv3Rt68eVG/fn3Ur18f+fLlQ58+fRAREaF289Rh1GXd0REoWFDeNFqunYiIKN0YyM2REMgdEM9ATkREdmfo0KHYt28fNm3ahODgYAQHB2PDhg3Yt28fhg0bpnbz1GHUZR0AAgLkzUePVGoPERHZFXZZNwcr5EREZMfWrFmD1atXo2HDhvp9LVu2hJubGzp37ozZs2er1zi1MJATEZEVsUJuDgZyIiKyYxEREfD390+yP0+ePNm3y7rRGHKAgZyIiCyLgdwcDORERGTHatWqhTFjxiAqKkq/LzIyEuPGjUOtWrVUbJmKjMaQAwzkRERkWeyybg6jWdajGciJiMjO/Pjjj2jWrBkKFCigX4P89OnTcHV1xbZt21RunUrYZZ2IiKyIgdwcnNSNiIjsWLly5XD16lUsXboUly5dAgC899576NatG9zc3FRunUrYZZ2IiKyIgdwcRl3WdTqV20JERGQF7u7u6Nu3r9rNsB2JuqznzStvPnyoUnuIiMiuMJCbg2PIiYjIzmzcuDHNx7Zu3dqKLbFRKXRZf/oUiI/Xj2YjIiJKFwZyczCQExGRnWnbtm2ajtNoNIjPjie/RIE8975VGKO5gHG60Xj6VKMP6EREROnBWdbNYTSpW3b8m4SIiOyPTqdL0yVbhnEgyRhyh0EDMFaMRVmc5zhyIiLKMAZyc3BSNyIiouzFeAx5fLzsqw4gP+4zkBMRUYYxkJuDXdaJiIiyF+Mu6y9fAkIAAPzxmIGciIgyjIHcHAzkRERE2Ytxl/Xnz/W7A/CIM60TEVGGMZCbg4GciIgoezHusp4okLNCTkREGcVAbg6jSd24DjkREVE2YNxl3SiQs8s6ERFZAgO5OTipGxER2bG///4b27ZtS7J/27Zt2LJliwotsgEpBHJWyImIyBIYyM3BLutERGTHvvjii2SXNxNC4IsvvlChRTbAeAz5s2f63QzkRERkCQzk5mAgJyIiO3b16lWUKVMmyf5SpUrh2rVrKrTIBqQwhpxd1omIyBIYyM3BQE5ERHbMx8cHN27cSLL/2rVr8PDwUKFFNiCFLuu58ByRoTGIiFCpXUREZBcYyM1hNKkbAzkREdmbNm3aYPDgwbh+/bp+37Vr1zBs2DC0bt3a6q//888/o1ChQnB1dUXNmjVx9OhRq7/ma6Ww7BkA5METVsmJiChDGMjNwUndiIjIjk2ePBkeHh4oVaoUChcujMKFC6N06dLw8/PDlClTrPraK1euxNChQzFmzBicOHECFStWRLNmzfDkyROrvu5rKRVynQ5I1BZ2WyciooxyVLsBWQq7rBMRkR3z8fHBoUOHsGPHDpw+fRpubm6oUKEC6tevb/XXnjZtGvr27YtevXoBAObMmYO//voLv/32m7oTyimBHAAePDC5ixO7ERFRRjGQm8MokHMdciIiskcajQZNmzZF06ZNM+01Y2JicPz4cYwcOVK/T6vVokmTJjh8+HCS46OjoxEdHa2/HRoaar3GGQfyhw/lNm9e4OFDVsiJiCjDGMjNwQo5ERHZmZkzZ6Jfv35wdXXFzJkzUz120KBBVmnDs2fPEB8fD39/f5P9/v7+uHTpUpLjJ02ahHHjxlmlLUk4ORmuR0bKbdmywMOHrJATEVGGMZCbg5O6ERGRnZk+fTq6desGV1dXTJ8+PcXjNBqN1QK5uUaOHImhQ4fqb4eGhiIwMNA6L6bRyCp5TIxhX5kywM6dCMAjnH1onZclIqLsgYHcHKyQExGRnbl582ay1zNTrly54ODggMePH5vsf/z4MQICApIc7+LiAhdl9vPMYBzIXVyAIkUAyEndtjOQExFRBnCWdXNwlnUiIiKLc3Z2RtWqVbFr1y79Pp1Oh127dqFWrVoqtiyBcfj385NjyCEndUu0EhoREZFZ0lUhv3v3LjQaDQoUKAAAOHr0KJYtW4YyZcqgX79+Fm2gTTGqkANyBRQtv9IgIiI7IYTA6tWrsWfPHjx58gS6RDOYrl271mqvPXToUPTo0QPVqlVDjRo1MGPGDISHh+tnXVeV8cRufn5Awlj3ADxCcLA6TSIiIvuQrkDetWtX9OvXD++//z4ePXqEt956C2XLlsXSpUvx6NEjjB492tLttA2JAnl8PAM5ERHZj8GDB2Pu3Llo1KgR/P39odFoMu213333XTx9+hSjR4/Go0ePUKlSJWzdujXJRG+qSBzIE7rR++MxXr5UqU1ERGQX0hXIz507hxo1agAA/vzzT5QrVw4HDx7E9u3b8fHHH9tvIDea1A2Qgdx48lUiIqKsbMmSJVi7di1atmypyusPGDAAAwYMUOW1U2UcyHPl0gfyHAhB1MtIAG7qtIuIiLK8dNV3Y2Nj9ZOp7Ny5E61btwYAlCpVCg8f2vHsJsl0WSciIrIXPj4+KJIwYRkZSTyG3NsbImFfjpjH+tXQiIiIzJWuQF62bFnMmTMH+/fvx44dO9C8eXMAwIMHD+Dn52fRBtoUo0ndAHBiNyIisitjx47FuHHjEMmEaSpxl3WNxqTbOseRExFReqWry/r333+Pdu3a4YcffkCPHj1QsWJFAMDGjRv1XdntUjJjyImIiOxF586dsXz5cuTJkweFChWCU6JxWSdOnFCpZSpLHMgBaAICgNu39RO7JUy8TkREZJZ0BfKGDRvi2bNnCA0Nha+vr35/v3794O7ubrHG2RwGciIismM9evTA8ePH0b1790yf1M2mJe6yDpjMtM6J3YiIKL3SFcgjIyMhhNCH8du3b2PdunUoXbo0mjVrZtEG2pRkJnUjIiKyF3/99Re2bduGunXrqt0U25JMhZxd1omIyBLSNYa8TZs2+P333wEAwcHBqFmzJqZOnYq2bdti9uzZFm2gTWGFnIiI7FhgYCC8vb3VbobtSSWQs0JOREQZka5AfuLECdSrVw8AsHr1avj7++P27dv4/fffMXPmTIs20KYogVzDSd2IiMj+TJ06FZ9//jlu3bqldlNsy2sCOSvkRESUXunqsh4REQEvLy8AwPbt29G+fXtotVq88cYbuH37tkUbaFMSArkTK+RERGSHunfvjoiICBQtWhTu7u5JJnV78eKFSi1TWXJjyBMCeV48xMXgzG8SERHZh3QF8mLFimH9+vVo164dtm3bhiFDhgAAnjx5Yt9d3fQV8jhAMJATEZF9mTFjhtpNsE1KhVyrBXLkkNcTplXPi4fssk5EROmWrkA+evRodO3aFUOGDMGbb76JWrVqAZDV8sqVK1u0gTYl0aRuOp2ajSEiIrKsHj16qN0E26QEcl9f/d8CyJdPbvAAwS8FAM5IT0RE5ktXIO/YsSPq1q2Lhw8f6tcgB4DGjRujXbt2FmuczWGXdSIisnM6nQ7Xrl3DkydPoEv0zXP9+vVVapXKlC7rSnd1QN9l3RmxiHv8HECuzG8XERFleema1A0AAgICULlyZTx48AD37t0DANSoUQOlSpVK1/N999130Gg0GDx4sH5fVFQU+vfvDz8/P3h6eqJDhw54/PhxepuccQmB3IGTuhERkR06cuQIihUrhtKlS6N+/fpo2LCh/tKoUSO1m6cepUJuHMidnRHlnRsA4PT0gQqNIiIie5CuQK7T6TB+/Hj4+PggKCgIQUFByJEjByZMmJDk2/S0OHbsGObOnYsKFSqY7B8yZAg2bdqEVatWYd++fXjw4AHat2+fniZbBpc9IyIiO/bxxx+jWrVqOHfuHF68eIGXL1/qL9l2Qjcg+UAOIMZPdlt3efEws1tERER2Il1d1keNGoUFCxbgu+++Q506dQAABw4cwNixYxEVFYVvvvkmzc8VFhaGbt26Yf78+Zg4caJ+f0hICBYsWIBly5bhzTffBAAsXLgQpUuXxpEjR/DGG2+kp+kZw0BORER27OrVq1i9ejWKFSumdlNsSwqBPD4gH3DzNNyDWSEnIqL0SVeFfPHixfj111/xv//9DxUqVECFChXwySefYP78+Vi0aJFZz9W/f3+0atUKTZo0Mdl//PhxxMbGmuwvVaoUChYsiMOHD6f4fNHR0QgNDTW5WEyiSd0YyImIyJ7UrFkT165dU7sZtqdpUyAwEGjb1mS3JmFiN+8wBnIiIkqfdFXIX7x4kexY8VKlSpnVpW3FihU4ceIEjh07luS+R48ewdnZGTmU5UUS+Pv749GjRyk+56RJkzBu3Lg0t8EsrJATEZGdOXPmjP76wIEDMWzYMDx69Ajly5dPsg554qFl2UbdusCdO0l2OwbKpc9yRj2ATidXRSMiIjJHugJ5xYoVMWvWLMycOdNk/6xZs9J8sr579y4+/fRT7NixA66urulpRrJGjhyJoUOH6m+HhoYiMDDQMk+uTOoGTupGRET2oVKlStBoNBBC6Pf17t1bf125T6PRIJ4nPhMuhWWFPC8e4NUrwMdH5QaRbVm5Evj6a7m152WBiShD0hXIJ0+ejFatWmHnzp36NcgPHz6Mu3fv4u+//07Tcxw/fhxPnjxBlSpV9Pvi4+Pxzz//YNasWdi2bRtiYmIQHBxsUiV//PgxAhKWGkmOi4sLXJTlSSwtUYWc65ATEVFWd/PmTbWbkGU5BRmtRR7MQE6JLF4MXL0KrF3LQE5EKUpX56oGDRrgypUraNeuHYKDgxEcHIz27dvj/PnzWLJkSZqeo3Hjxjh79ixOnTqlv1SrVg3dunXTX3dycsKuXbv0j7l8+TLu3Lmj/xIg0ykVcsEu60REZB+U1VKCgoJw+/Zt5M+f32RfUFAQ8ufPj9u3b6vdVNuTzxDIX75UuS1ke65ckVvOy0BEqUhXhRwA8uXLl2Q29dOnT2PBggWYN2/eax/v5eWFcuXKmezz8PCAn5+ffn+fPn0wdOhQ5MyZE97e3hg4cCBq1aqlzgzrACd1IyIiu9aoUSM8fPgQefLkMdkfEhKCRo0asct6YvmULusPcf2FDumsc5A9iokBlN4nV6+q2xYismnpDuSZYfr06dBqtejQoQOio6PRrFkz/PLLL+o1iBVyIiKyY8pY8cSeP38ODw8PFVpk4/z9oYMGjohHxO2nAPzVbhHZihs3DGMbr14FhACS+bdFRGRTgXzv3r0mt11dXfHzzz/j559/VqdBiXFSNyIiskPt27cHICdw69mzp8lcLPHx8Thz5gxq166tVvNsl6Mjgl38kTP6EWJvPwADOekp3dUBIDQUePYMyJ1bvfYQkc1i3ypzsEJORER2yMfHBz4+PhBCwMvLS3/bx8cHAQEB6NevH/744w+1m2mTQtzl0me6+w9VbglZ1dy5MlB7egJ+fkCzZkBsrOF+nQ6IjDTcNg7kALutE1GKzKqQK9+gpyQ4ODgjbbF9+gq5DhroEB/P7zOIiCjrW7hwIQCgUKFCGD58OLunmyHMOx/w8iQ0jx6o3RRKjU4HTJkiQ/OXXwJOTml/7JQpwGefGW6HhwPbtwNnzgBVq8p9H30ELF8OnDgBlCiRNJBfuwZYqpdJfDywYwfw119At26AWnMrEZFFmJUojb8xT+4SFBSEDz74wFptVV/CpG6A7LbOCjkREdmTMWPGMIybKcpXTuzm/JSB3GbFxwN9+gAjRgBjxwLvvgtER7/+cVFRwFdfGcL4F18A168DNWrI25cvG47duFEG9XXrTO9T1sKzRIVcpwOmTQMKFwZatABmzQIaNZKvTURZllkVcuUb9GzL0fBxOSIOOp0Z364SERHZoCpVqmDXrl3w9fVF5cqVk53UTXHixIlMbFnWEJtbBnKXFwzkNikuDujRA1i2TBZWHBxkaG7XDvjwQ+DRI7mveXMgKEg+5vZtefyPPwKPH8t9EycCo0bJ6xUrAkePApcuydvPnwNPnsjr+/bJ4K9UyJs1A/78M+NLn4WEAB98YAjfOXPKYH78ONC+PTB/PtCrV8Zeg4hUYVOTutk8o0DOCjkREdmDNm3a6Cdxa9u2rbqNyYLiA2Qg9wxlIM9UV64ADx4ADRumftykSTJcOzrKLuU5cgCtWwNbtsiLsfLlgeBg4O5dw76CBYHx42WoV5QsKbdKFfziRcN9Bw4AL1/KoA8ALVvKQJ6RCvmlS0DbtvL1XFyA6dNl+HZ0BPr2BRYtAnr3BiIigP790/866XHhgvwy4nU/ByJKEQO5ORJVyBnIiYgoqxszZgwAOZt6o0aNUKFCBeTIkUPdRmUh2vwykPuEM5BnqlatZPfxq1eBokWTP0YIYPFief3nn4GOHeX17duBkSNlV/aAADkD+sGDwNmz8n4HB9kt/X//A7p0STrevFQpuVUq5MaB/NUrYNUqeT1PHqBaNXk9vUuf/f038N57cqb2AgVkdV95TgD47Tc5ydzUqcCAAXJfekP5gQPyM+jTB3B2Tv3Y+Hjgu++AMWPk9SVLgO7d0/e6RNkcA7k5jMaQM5ATEZE9cXBwQNOmTXHx4kUGcjM4BclAnjOKgTzThIQYuoCfOpVyID97VoZ2V1ega1fD/rp1gf37TY999gzYvVt2BX/jDTmbekqUCvmVK3Jc94ULpvf/+qvcligh26bRmL/0mRDADz/IcetCyDavWSNDvjGNRh7n6Ah8/70M5aGhwOefG/5ujYuTxxn9HWvi/n1g+HBgxQp5+6+/gNWr5eeWnHv35Odp/Bl+9BFQqRJQrlza3h8gK+uXLgHVqwNubml/HGUNOh2g5QTYacFPyRxarf6bTQZyIiKyN+XKlcONGzfUbkaW4lJYLnvmF/dYBh+yPuPJ1BLPZm5szRq5bdYs9YANALlyAZ07A02avP7YQoVkBTkqCrhzx1AhL1FCbo8dk9uSJWWoDQyUt9PabT0yEnj/fTkWXQigXz9g166kYVyh0ciu+SNGyNtffgnUqwds2wYMGiTfW+nSsheAsZgYYPJk2c4VK+TfuS4uMpC/846cpC6xXbuAypVlGPf0BBYuBN56S3aX79hR9hBITUiI/NKgYEHA3x9o0MDw+LS4fVsOIUjLZykEcP68rOT36GHo0ZCasDD5OEo/nU4OqQgIAHbuVLs15lu/Pu2/jxbCQG6uhG7rDORERGRvJk6ciOHDh2Pz5s14+PAhQkNDTS6UlFeRPIiHFg7QQTx+gjlzsubfoFmKcSA3vp6YEsg7dLDs6zs6AsWLy+uXLhkq5B9/bHqcEtCLFZPbtEzsdv8+UL8+sHSprGj//DMwZ87ru5AroXzePMDLCzh8WE5U99NPMgRfvSqfd/hw+dw//SQnpxsxQgbvWrWA//6TId7DQ/4S169v6MYfGiq7pzdtKiv9lSvL3gk9e8rny59f/izefz/lL6Z27ZLj9H/+WY7T12jkcICDB4FOnUzXdU/OqVOy98KYMXK5ufXrkz9OCNm1v2xZWbEfORL4/Xe57FzinhHG5s6VPSRatzbvy7W4OODhQ+DkSTkvwcKFstdCaq+V2PPnwNq1wM2baX+MsZUrgaFD5c/d0l8oxMWZzqvwOuPGyXkNnj4F2rQBDh1K2+NiY+W/p4cP07YKgrEHD+TyhP/9Z97jEps7V074+Pbb5rchI4SdCwkJEQBESEiIZZ7QzU0IQBTELTF/vmWekoiIsheLn5ssRKPR6C9arVZ/UW7bKjU/z+fPhbiHfEIA4u/xxwQghLu73E9W8uWXQsjYIcQbbyR/zKVL8n5HRyFevLB8G9q3l88/YYKhLY8fC+HhYbi9bp089qOP5O2vvkr9OQ8fFiIgQB7r5yfE7t3pa9udO0K0bCmEg4MQbdsKsWmTED17GtplfMmTR4hFi4SIjzc8/tAhIXx9DZ/fe+8JkSOH4TG9ewsREWH6mocOCeHsLO/v00cInc70/qlTDY8vWlSIzZuFCA0VYv9+IVxd5f7u3ZM+TrFrlxBeXvI45XjlMUOGyMvIkUJMnChEw4aG+11chGjRQohq1Qy3E79fnU6IceNMP5cRIwz3h4cLceyYEH/8IcQPPwixbZts+9mz8rMwbk/iS9OmQvz3X8o/qyNHhOjSxfDZOTvL35Pw8LT9rIUQYu9eIbRaw2uWKiXEjz8KERaW9udIycWLQlSoIJ93+fLXH//nn4Z2lC4ttz4+Qpw4kfrjzp0TonBhw2M1GtOfQUqePRPis89MfwadOglx+XLKj4mJkb+v33wjf3+WLJH7fvvN8BzDh6f8u2iGtJ6bGMjNlfCfQRFcE3PmWOYpiYgoe7HVQL53795UL7ZKzc8zLk6Io5B/7PfyXav/e+677zK9KdlHhw6GP5x9fZP/w/mbb+T9zZpZpw3KlwJVq8qtv7/c/9ZbhradPy/3/fCDvN2lS8rPt2iRIZSVKyfEjRsZb2N0tOntdeuEaNxYiCZN5BcKX38txMuXyT/2wQMZ5o3DZalSqYeytWsNwdA40CxdaniOjz8W4tUr08dt3iy/PADksYkdOyaDNCDD9tOnQgwenHIIVkL7V18JofyfEB5u+n6KFZM/lzFjhHjzTcN+42NmzxZi6FDTL1mUi9Je5aLVyi9TKlWSXwC0ayeEk5Ph/p9/Nn1PL18K0a+f6XPkz2+4XqiQEGfOpPxZK548ESKf/EJQlC8vvw1UnsPPT4jRo+UXBzqd/H3Yvl2I77+XX4QYfykhhDxm2zb5b+enn+R/YsbPFxQkRFRUym3ZudNw/NCh8jOvW9fw7+POneQft3WrEN7ehi9MjL9c2LQp6fE6nfyyqmtXw++F8vup0cjrTk5CrF6d9LEHDwoRGJj055k/v+GxgwZZJIwLwUCuZ/GTdMI3hiVwSfzyi2WekoiIshdbDeRZldqf5+9OvYQAxCSM0P8tmS9f0jxEFlK2rOkf00+eJD2mShV537x51mnD4sWmbWjUSO6fONFQ4VPCy/r1hvCenN27TQNhaKh12mwunU6IVauE6NxZiDVrkga45CxYYHgv5coJMXasIZgOGZLy45SeBoUKmYa+p0+FKFhQ3teihRCRkYb7tmyRVdQvvpDbTz+V1fkhQ4S4dSvpa8TFyUq4cbXfuCL700/yuGHDkt6fO7cQ9esL0bGjbKMSwjt2FOLAAfnciV2/LsS77xqeY+5c+Z/CvHmGnhCAEB98IMTx4/LzXrPG8H5z5ky9uh4fLz8TJYyGhckvIH75RYgiRUzbHxhoCL3KJW9e2XNi0iT5hUHFisl/udG4sTwWEGLWrKTt0OmEmDHD8CVF8+ZCxMbK+4KD5RcFgPyyInHVftYsQwCvX19WvOPjDT+DfPlMe7jcuye/ZDNuX5UqQvz1l2zHmTOGL8UcHIRYtszQxpkzZY8P5bNt315W1/39Tb8wslAYF4KBXM/iJ+lcuYQARBmc0/+7JSIiMofaAfJ1wsPDxcWLF8Xp06dNLrZK7c9zSM5FQgDiMGqKyZMNf7v+8YcqzbFvcXGGSrLSTXX/ftNj7t41BKbHj63Tjn//NQ0Fn3xiur9sWcOx587Jfd7eyf+x37GjvL9797SFXlv3yy9Jq8qdO6f+3sLDDZXeadPkvrg4Wc1XKtopVfPN9eqVDKBNmgjRo4fs3m1cjY6NNbxuvXpC/P130p/bvXtp+93S6WS1OLkqeMmSQuzbl/QxL14IUaOG4Xfm0KHkn3v2bMO/g8TV9NhYIVaskIHduDu3v78Qb78tu5EnF749PGRPjg4dZHf7adPkz+Hnn+X9AQGm3eljYuSXIMrj33/f9EsTIeSXI7lzy/vbt5ehOzZWiAEDDI/r1cv0G8yICCFKlJD3de0qv7T68UfDlymurnIoyNGjSX82cXGGIRoajRA1a8oArrxWp06mX3pFRsru6j//bPF/fwzkCSx+kk74RqsCTokZMyzzlERElL2oHSBT8uTJE9GqVSuT8ePGF1ul9ufZovRNIQARCwcR9eyVvrd0lSoWLbaQEEJcu2b4g7xxY3l9wQLTY9askfsrV7ZeO4KDTYOMceVw0yZDd3UhZMVXCUVnz5o+z5MnhgryqVPWa29me/lSdo0uUkSId95JGtKSM3++oXq5a5cQrVrJ2+7uaeu+bUmxsULcvGmZ59LphBg40PC7EhAgxPTpqX8mISHyywAlRCfuNfHqlRz/D4jXBpLwcNlV/fBhQ+CMjpZfNIwbJ78IatRIXk9p8ovoaNllHRDi22/lewoJkaFd+fJrypSU/8M7cMDwRZoS/JXA/P33yT/u4EFDN3LjS/Xqcmx7auLjkw4JcHWVXzBk4n/KDOQJLH6SLlBACEBUxnExdaplnpKIiLIXtQNkSrp27Srq1Kkjjh07Jjw8PMT27dvFkiVLRMmSJcXmzZvVbl6K1P48O3US4iaC5B9927aJZ8/0c8CKPXtUaZL9+usv+cGWL2+osH3+uekxo0bJ/X36WLctxt2Od+1K/di335bHTZxoun/aNLk/pe7s2UlsrGEiMOWi1aZtMjFbp9PJCuwvvySdEC8l4eGyZwAgx7obUyahK1ZMVqkzg/GkZ0WKCFG8uOELk+TGeie2erWhu7/yuLVrU3/MhAnyC5qSJeVY/8mTDd3hX0enk8MaVqwQ4uRJ8ybKs5C0npu47Jm5uOwZERHZqd27d2PatGmoVq0atFotgoKC0L17d0yePBmTJk1Su3k2a/ZswL15A3lj7174+cnVoABg9Gj516eCS5VnkLKWdKlScv1sIOnSZydPym3lytZtS6lShutlyqR+bOvWcrthg2GfEMCCBfJ6nz6WbVtW5OgolwsD5JJv778PnDkDdOmibrssQaMBPvkE+N//ADe3tD3G3V0uZQfIJb0ePpTXnzwxfE7ffCOXjssM778v13N3cgJu3JBL6eXJA+zbJ5cJe50OHeSybmFh8t/o3btyibHUfPWVXBLu0iW5bN5nn+mz2GtpNHLpv3ffBSpVkp+njWIgNxcDORER2anw8HDkyZMHAODr64unT58CAMqXL48TJ06o2TSb5ucH5OncUN7Ytw8A8OWXgKurXIr4r7/kXX/8Afj6AsOGmYb09NLpgOnTgd695TLR2YISyEuWVD+QK6+fIwfg75/k7qVLgcKFgePHAbzzjtx57JhcM1m5fv68/EV57z3rtjWraNVKfmA3bsi1w8uWVbtF6urQAahZU64VP24c8OqVXFc9LAyoVg3o2DHz2uLoKNcXf/EC2LgRGDsW+Pdf2Q5zeHjIgJwzpxUamTUxkJvLwQEAAzkREdmfkiVL4nJCuKlYsSLmzp2L+/fvY86cOcibN6/KrbNxDRIq5MeOAeHhKFAA+PRTueuLL4C9e2VwDgsDpk0DJk5M+1PfvZs0wD97BrRsCQwdCixcCMyYYYk3kQUo4du4Qn79uqHrwaNHspKo0QAVK1q3LUqFvHRp+XqJLFgA3LoFbN4MICBABisA2LTJcAAgQ1eOHNZta1ZSpQpQsKDarbANGo2hGj5vngyxv/0mb3//PaBVIcp5esovmMaMAQoVyvzXt0MM5OZihZyIiOzUp59+iocJ3SLHjBmDLVu2oGDBgpg5cya+/fZblVtn4woXBgoUAGJjgcOHAQAjRsiK+PnzQNOm8i6l4Dd6tPz7+nW+/lpmk2bNZM4UAli/XhZ/t20z/D0+c6Ysotk94y7rBQrI7r+xsbIrLGCojpcsKStx1tSxo/wiZujQJHcJASidSu7fT9jZpo3cbtwov6FRghW7q1Nq6tWTXbuFkF88FS0qu7C/+abaLSMLYSA3V0Igd0A8AzkREdmV7t27o2fC4OeqVavi9u3bOHbsGO7evYt3331X3cbZOo0GaNhQXk/otu7rK7uuAzIzVq0KHD0KjBol9330kfxbe/ly4MgRmdO2boX+74tDh+QQUQDYsUMWfBs0kH+b37sHlCghe/cWKSKHWSr5DrBMl3ib8/KlHD8LyDev1cotAFy5IreZ1V0dkF8I7N2bbLfh69eBkBB5Xemhrh9HvmuXrIrHxcnxrcrvDVFKFi8G1qyRXfmvXZPjXshuMJCby6hCrtOp3BYiIiIrcnd3R5UqVZArVy61m5I1KN3Wt27Vd6EeMAAoVw4oVkwGbnd3YMIEYPhwOQruwAGga1egVi1ZQG3RAnjrLRnoevSQwbp1axnGnz6VY9JdXGSoP35cDsX87DP5slOmyK7sPXrIwnGhQrIyP2uWnQR0pbt6/vyAl5e8rgRy5T4lkFepkrltS8R4ygV9hbxMGVndjI6W43Br1JDjDZLp7k5kwssLaN9e9sQhu5PGaepIj13WiYjITg1NpustAGg0Gri6uqJYsWJo06YNcnIynuQ1bSr/TvjvP1kBXb4cru7uOHNGTsCWMA2NfljokCHAr78CS5bI/J47N3DhArBnj+xxHR8vi7CLF8t5v775RhaIv/wSCAoyvGyPHnI455078u/1sDC5//ZtedmxQ/bonjIlC2W/48fljHWRkfKDiIszlJqNZzdPPLGbkoQzo0KeiuPHDdf1FXKNRn7rMm2a/MGuX5/2GbeJyG4xkJuLgZyIiOzUyZMnceLECcTHx6NkQtC5cuUKHBwcUKpUKfzyyy8YNmwYDhw4gDKvW+YpOypYEPjzTzlj9saNQOPGQPfu0OTKBYcnT+TY8kuXgEaNgKFDkS9/foweLceTAwCEwOUz0ejQzRXnz8tdCxYY5vuaMCH5l3VzkxPIjRolw3ixYsCcOTLE79olw/q0afJLgWnTDKH86lW5WlHPnnLiZpsRGir75d+9m/z91asbrpcuLbfbtsl+/DduyNs2FMifPAFiYgBnZ8gP2tkZ6NUL4ESJRAQGcvNxlnUiIrJTSvV74cKF8Pb2BgCEhITgww8/RN26ddG3b1907doVQ4YMwbZt21RurY1q1w7YuVPOQnzkiLwkdvKk7Ef+9ttyoLlWK9PxyZMo+eoVTjdqgg2lPoC2Qnk0dXoObAqT/c9LlJD91ZMxYABw+jQQGChXR1LmM6tTR07w/dFHcib2gAA52Rwgvwi4ckUG9u7d5WPTJT5eLsb+xhvmL4GUnOHDZRgvXNiw7rCDg9x6eMh+/Yq335ZfhNy+LZfMAmT3ARV7cRhP6KZ4+DChV0OuXIa1pYmIAGiEsItRRSkKDQ2Fj48PQkJC9H9cZEjjxsDu3XgPyxAw+D1Mn57xpyQiouzF4ucmC8mfPz927NiRpPp9/vx5NG3aFPfv38eJEyfQtGlTPHv2TKVWJmWTn+fly8DPP8v+yk+fyqWC3nhDBuv58+VgcHM5OMgxyGXKmF5KlpSD01MxaxYwcKA87PJlOSN76dKGseUffywzdbr8/LP8RiBPHlmhzsjs5tu3yynlATlhmjIuPzUHDsjjlMl92rYF1q1Lfxsy6OZNOdGek5PM3w8fygn6atVSrUlEpIK0nptYITcXZ1knIiI7FRISgidPniQJ5E+fPkVoaCgAIEeOHIiJiVGjeVlLyZJyLbLkvP++TGiHD8u+zLGxsjxdpYrsf758uby8fAn4+cl9yrTdV67Iy/r1hufTaGQ12TiklysnZ3xL6NnXvz+wYgVw8KCskDs7yzBesqQM6AsWyPXSjcemp0lEhGFR9SdPgB9/NEwtb66QEODDD+X1AQPSFsYBoG5duT7cuHHyto1M6Fa+vOzQ8PCh0cRuRESJMJCbi2PIiYjITrVp0wa9e/fG1KlTUT1hnO6xY8cwfPhwtG3bFgBw9OhRlFBmtqb0q11bXpIzZoy8GBNCJrsLF5Jenj+XlekbN4DNmw2PyZlTTjRXrhw0QmBFNRfUO9gJy5YV0k8wt2iRHHu+e7fsST1njpnvY/Zs4NEjOWA9KgqYPFmW23PmlG1zd5e9Al5HCNmv/u5dWV7+7jvz2vHVV7Kivm+fnKZeRcr48apV5XcqAAM5EaWMgdxcDORERGSn5s6diyFDhqBLly6IS1i2y9HRET169MD0hDFapUqVwq+//qpmM7MnjQbIl09emjQxve/p06Qh/fhxubTWihX6wwoAuOQwBqPjx2Ba/FA0buyEN94Axo6VgXzBAlnddXcHunSRuTpVr14ZgvOsWbJHwJkzslodHw/MnSv/bhowQA5Y9/VN+bl++w1YuVJW9JcuNb/bu6Oj7O5+967s1q8iJZBXqSLn8AOMZlonIkqEY8jN1b49sG4dPsZs6Pp+jHnzMv6URESUvdjkmGcjYWFhuJEwW3WRIkXg6empcotSZ+ufpyri4oB//5Vroj98KAP9+fOymzyA58gJz1yucHFzALp2xdsnJ+Cv7U76hzs5AY8fp5Ch4+KAU6eAX36R62gXLy6/BNi6VU5mlxw/P2DtWqB+/aT3Xbwoy8mRkTLgK7POZUFCyKH0z54BR4/KJexGjAC6dQP++EPt1hFRZuIYcmsxqpBHskJORER2yNPTU7/WuK2HcUqBo6OcYr1OHcM+IYDff0fckOHwe/kMUObl+/57bKh1EEdW/YmXrnnx2Weysrt2LdCnT8Lj/vhDBu6LF+WdkZGG5x03Tr5eq1ZyPPeBA3JG+HnzZDf2IUPk4957Dzh71nQG9Jcv5ZrtkZGyq/lnn2XGp2M1d+/KMO7oKMeQX7ki97NCTkQp0ardgCyHk7oREZGd0ul0GD9+PHx8fBAUFISgoCDkyJEDEyZMgE6ZwZqyLo0G6NEDjndvyb7pJ07IoO3tDYfDB1Dnw9J4+/t6WO3SFUMwDTt+uyvL5G+/DXzwAbBsmVyyLTJSLo7esqXs596li+H5N26UM5yfPi0nZWvWDPjvPzl73IMHcnY5RUyMDOMXLwL58wO//y6XgMvClGXQixSRw+rz55e3OYaciFLCCrm5OIaciIjs1KhRo7BgwQJ89913qJNQWT1w4ADGjh2LqKgofPPNNyq3kCzCwwOoXFler1wZqFFDBuOzZ4EDB1AWwDQsBw4Ng66IB7QR4XK68GHD5LGlSwPFiiUfnn195bJjxtzdgSVL5LpfK1bIoF61qpyRfc8ewMsL+PtvuUh6Fvf8udzmyiW3+fLJ7f37sqOBRqNOu4jIdjGQm4uBnIiI7NTixYvx66+/onXr1vp9FSpUQP78+fHJJ58wkNur4sXlTGT//QfcuQPcvImTk7agYuh+aCPCEV+uAkbkX4o7V8vhjzFyyTSzVa8uJ3sbOxb43/8M+x0cgFWrgAoVLPVuVPXihdz6+cmtUiEPD5dz4HGKAyJKjIHcXAnrhDCQExGRvXnx4gVKlSqVZH+pUqXwQkkaZJ+cnGQFu1YtAMAhry/QasADdCh8Amfcm+Cfba4A5Eptgwen8zW+/BI4cgT45x85jjxPHrn4ebNmlnkPNkCpkCvD5D08AB8fucT6/fsM5ESUVNYeqKMGVsiJiMhOVaxYEbNmzUqyf9asWahYsaIKLSK1dOoEPHHIh1k338Y/R13hlDAB+7hxhtAZFyeDZpo5OQFbtshy8d27sirfqZPF266mxBVywNBtnRO7EVFyGMjNxUndiIjITk2ePBm//fYbypQpgz59+qBPnz4oU6YMFi1ahB9++EHt5lEmypPHsNy5n59cLa1CBSA4WIbyAwfkPG0BAXION5ISV8gBTuxGRKljIDeXUYWcE84SEZE9adCgAa5cuYJ27dohODgYwcHBaN++PS5fvox69eqp3TzKZN99JydX37tXzsE2fbrc//PPcjnxGzfkqmadOskJ2MkQyJOrkDOQE1FyOIbcXOyyTkREdixfvnxJJm+7d+8e+vXrh3nz5qnUKlJDpUrA4sWG22++CbRpA2zYIG/36AHodHIC9e7d5Wpoffqo0lSbkVyXdaVCzi7rRJQcBnJzcVI3IiLKZp4/f44FCxYwkBNmz5bd1Fu0kOFcp5MTl82ZA3z4IRARAQwcqHYr1cMu60RkLnZZNxcr5ERERBZz69Yt9OnTB4ULF4abmxuKFi2KMWPGICYmRu2mUTLy5pXhu00beVurBX75BRg6VN4eNAj4/vuUHx8TA0RHW7+dakltUjcGciJKDivk5jKa1C0uTuW2EBERZXGXLl2CTqfD3LlzUaxYMZw7dw59+/ZFeHg4pkyZonbzKA00GmDKFFkpnzBBrmRWuDDQubPpcRERclW1p0+B06eB3LnVaa+1CJF6hZxd1okoOayQm8uoQh4bq3JbiIiIsrjmzZtj4cKFaNq0KYoUKYLWrVtj+PDhWLt2rdpNIzNoNMD48cBnn8nbX36JJH8njRoFnDkDPHwITJ2a+W20trAww3tObgz5w4dg70oiSoIVcnMZBXL2piMiInvQvn37VO8PDg7OnIYkCAkJQU7jEmMi0dHRiDbq9xwaGpoZzaI0GD1aTgR3/TqwYAHw8cdy/4EDwI8/Go6bNQsYPhzIlUuddlqD0l3dxQVwdzfsDwgAXF3ljPQ3bwLFiqnTPiKyTayQm8toUjcGciIisgc+Pj6pXoKCgvDBBx9kSluuXbuGn376CR999FGKx0yaNMmkfYGBgZnSNno9T0/gq6/k9fHjZTf18HCgd2/ZpbtnT6ByZblv2jRVm2pxxt3VNRrDfgcHoFQpef3ChcxvFxHZNlbIzcUKORER2ZmFCxda/Dm/+OILfJ/a7F4ALl68iFJKUgFw//59NG/eHJ06dULfvn1TfNzIkSMxVJlFDLJCzlBuO/r1k2H71i2gaVMZQl++lJObTZ8u1zVv1w746Sdg2DDT7t1ZWXITuinKlAFOnZKfRevWmdosIrJxDOTmMprUjYGciIgoecOGDUPPnj1TPaZIkSL66w8ePECjRo1Qu3bt1y6v5uLiAhcXF0s0k6zAxQUYN06uU37woNyXLx+wfDmQI4ecob1iRTmx2/TpwMSJqjbXYpKb0E1RpozcskJORIkxkJuLFXIiIqLXyp07N3KncRrt+/fvo1GjRqhatSoWLlwIrZYj6rK6bt1k4A4LA959F2jQQD/qDxqNHGveoQMwc6askvv6qtteS1ACeUoVcoCBnIiSYiA3FwM5ERGRxdy/fx8NGzZEUFAQpkyZgqdPn+rvCwgIULFllBEODqnPpN62LVC+PHD2LDBjhqyoZ3Wv67IOABcvAjqdXL+diAjgpG7m46RuREREFrNjxw5cu3YNu3btQoECBZA3b179heyXViur5ICcfT2TJ/K3itS6rBctCjg7y0nu7tzJ3HYRkW1jIDcXK+REREQW07NnTwghkr2QfWvfHihXDggJMV0SLatKrcu6oyNQsqS8zm7rRGSMgdxcnNSNiIiIKMO0WuDrr+X1qVOB7t2B//1PzkJeuDDg4wNs365uG82hdFlPrkIOcBw5ESWPY8jNlahCLoTpWpNERERElDYdOsgq+blzwNKlSe/v1Qs4f17Ozm7rUquQAwzkRJQ8BnJzGQVyAIiLA5yc1GwQERERUdbk4ABs3Qps2SK7roeGArlzA2XLAh99BFy9Cnz2GTB/vtotfb3UJnUDGMiJKHkM5OYymtQNAGJiGMiJiIiI0it/fuDDD5PuX7AAqF8f+PVXuXRakyaZ3zZzpDapG2AayNnDkogUHENurkQV8uhoNRtDREREZJ/q1QMGDJDXP/pILhdmq3Q64OVLeT2lCnmxYvLPyFevgPv3M69tRGTbGMjNZTSpGwBO7EZERERkJZMmAV5ewI0bwKlTarcmZSEhhi8MUqqQOzsDxYvL6+y2TkQKBnJzJQRyJ42hyzoRERERWZ6nJ9Cwoby+a5eqTUmV0l3dwwNwcUn5OI4jJ6LEGMjNxUBORERElGkaN5bbnTsN+95/X67rfemSOm1K7HVLninKlpXbQ4es2x4iyjoYyM2VMKmbExjIiYiIiKxNmcxt/345d8/Fi8AffwBXrgBvvilnYlfb65Y8U7RpI7fr1wNPn1q1SUSURTCQm0uZ1I0VciIiIiKrK1MGCAgAIiOBI0eA334z3PfwoQzlN26o1z4g7YG8ShWgenUgNhZYtMjqzSKiLICB3Fz6WdY5qRsRERGRtWk0MnQDcr3y33+X1+fNA0qXBu7dAz79VL32AWnvsg7IGeMBYO5c2545nogyBwO5uRIte8ZATkRERGRdSrf1n34CnjwB/P2Bnj2BxYvl/sOH5dremenmTaBCBdmmtFbIAaBLF8DbG7h+Hdi927ptJCLbx0BuLgZyIiIiokylTOwWESG3H3wAODkB5cvL6X2eP8/8tb1XrgTOnpXV+b/+kvvSUiH38JCT0gHAnDnWax8RZQ0M5OZKmNTNgYGciIiIKFMULGhYwxsAevWSW1dX2W0dAE6fztw2nTkjt0IAx4/L62mpkAOGbusbNgCPH1u+bUSUdTCQm4sVciIiIqJMp1TJa9UyhHAAqFhRbk+dytz2KF8AuLsb9qU1kJcvD1SrBsTFGarrRJQ9MZCbKyGQawUndSMiIiLKLMOHA61aAdOnm+6vVEluM7NCHhUFXL4sr69aBbi4yOv+/ml/jrffllvjQC4EJ3ojym4YyM3FCjkRERFRpitaFNi8GahZ03S/UiHPzEB+4QIQHy/HjLdoIbueDxtmqOKnRatWcrt9u1xfHQA++wzw8pJrrRNR9sBAbq6EQO4gGMiJiIiI1KYE8qtXgfDwzHlNJfxXrCiXZWvWDJgyRU40l1ZVqsiKelgYsH+/XL7txx/lxHUbN1qn3URkexjIzaVM6ibiAQj9N5pERERElPny5AHy5pXdvc+ezZzXNA7k6aXVGqrkf/0FzJolx5QDwMmTGWsfEWUdDOTmSqiQA4AD4lkhJyIiIlJZZk/spgTyChUy9jxKIF+/Hpg717CfgZwo+2AgNxcDOREREZFNycxx5EIYljzLSIUcAN56S3Zzv3ULCA4G8uWT+69elV3Zicj+MZCbyyiQOyKOgZyIiIhIZZk50/r9+8CLF3IUY5kyGXsuLy+gfn3D7VGjDN3vM3tddSJSBwO5uRjIiYiIiGyKUqk+c0ZO7LZpk2FZMktTgnKpUoCra8afT1n+zNcX6NEDqFxZ3ma3daLsQdVAPmnSJFSvXh1eXl7IkycP2rZti8uJ/veMiopC//794efnB09PT3To0AGPHz9WqcXQT+oGMJATERER2YLixWU4Dg8HAgKA1q3lEmTx8YZjbt0Crl3L+Gsp3dUzOn5c0asX0LkzMG8e4OHBQE6U3agayPft24f+/fvjyJEj2LFjB2JjY9G0aVOEG61ZMWTIEGzatAmrVq3Cvn378ODBA7Rv3169RmsNHxkDOREREZH6HB0NVXJl7PX9+8ChQ4Z91asD1aoBISEZey1LzLBuzMcHWLkS6NhR3mYgJ8peHF9/iPVs3brV5PaiRYuQJ08eHD9+HPXr10dISAgWLFiAZcuW4c033wQALFy4EKVLl8aRI0fwxhtvZH6jNRr5v35cHAM5ERERkY2YMUMG25YtgYULgeXL5Xre9eoBGzYAz57J4w4fBpo3T//rWDqQJ6YE8nPngJgYwNnZOq9DRLbBpsaQhyR8ZZkzZ04AwPHjxxEbG4smTZrojylVqhQKFiyIw4cPJ/sc0dHRCA0NNblYXMI4cs6yTkRERGQb3ngDmD5dzlzerp3ct2GDnCBt6VLDcUrVPD3Cw4ErV+R1awXywoVl1Tw2FrhwwTqvQUS2w2YCuU6nw+DBg1GnTh2UK1cOAPDo0SM4OzsjR44cJsf6+/vj0aNHyT7PpEmT4OPjo78EBgZavrEJgZwVciIiIiLb07y5rCxfvQrs3w9s32647+DB9D/vqVOATieXJ8ubN8PNTJZGY5g1nt3WieyfzQTy/v3749y5c1ixYkWGnmfkyJEICQnRX+7evWuhFhpJmNiNgZyIiIjI9nh5AY0ayesffignd8uTR97+918gLi59z/vff3JbrVrG25gajiMnyj5sIpAPGDAAmzdvxp49e1CgQAH9/oCAAMTExCA4ONjk+MePHyMgICDZ53JxcYG3t7fJxeJYISciIiKyaW3ayO3Vq3I7YoTsCh4ebpgp3VxKIK9aNePtSw0DOVH2oWogF0JgwIABWLduHXbv3o3ChQub3F+1alU4OTlh165d+n2XL1/GnTt3UKtWrcxurgEDOREREZFNa93acF2rBd57D1D+fEzvOPLjx+XW2hXyKlXk9sQJIDrauq9FROpSNZD3798ff/zxB5YtWwYvLy88evQIjx49QmRkJADAx8cHffr0wdChQ7Fnzx4cP34cvXr1Qq1atdSZYV3BSd2IiIiIbFr+/Ibg/Oabcsx37drydnoC+atXwKVL8rq1K+RlygD+/kBERMYmoaOsQwi1W0BqUTWQz549GyEhIWjYsCHy5s2rv6xcuVJ/zPTp0/H222+jQ4cOqF+/PgICArB27VoVWw2TCjm/tSQiIiKyTcOGATlyyO7qAFCnjtymZ2K3kydlaCpQQIZla9JqgaZN5fVEqwSTHbpwAcidG5g8We2WkBpU77Ke3KVnz576Y1xdXfHzzz/jxYsXCA8Px9q1a1McP55pOKkbERERkc3r0gV4+RJQVtCtUUP+GXfnDnDvnnnPlVnd1RXKWunbtmXO65F6tmwBnj+Xy/RR9mMTk7plORxDTkRERJTleHoa1g83tyt4Zs2wrnjrLbkE2unTwMOHmfOapA5l4sEUVnUmO8dAnh4M5ERERERZkjKOfP1688btZtYM64rcuQ2vZbyOOtkf40DOseTZDwN5enBSNyIiIqIsqUMHuV2+HJg6NW2PCQ0FrlyR1zMrkANAs2ZyazyOnIHN/ii/WxERQFiYum2hzMdAnh6skBMRERFlSQ0bAlOmyOuffQYsXfr6x5w4IbdBQbJynVmUceQ7dgA7dwKlSwPly8tx8WQfIiJM5zNgt/Xsh4E8PTipGxEREVGWNWwYMGSIvP7++3K89ooVSPbvushIYP58eT0zq+MAULMm4O0tJ/x66y257Nr58/KLBLIP16+b3mYgz34YyNODFXIiIiKiLG3KFKBfP9kFfOdO4L33gDZtTLuE//efDOHLlsnb776buW10cjLMEA8AnTrJid4WLJBttjfBwXKMv9KDITtQuqsrOIFf9sNAnh4M5ERERERZmlYLzJ0L3LgBfP014OYmx2qvWCHvP3ECqFsXuHgRCAgANm0COnfO/HaOHg107w7s3Qv8+SfQv7/c37cvEB6e+e1Jj2fPgFmzXj8+eu9e4PBhYObMTGmWTVAmdFOwQp79MJCnByd1IyIiIrILhQsD48cDo0bJ28OHA/fvy/AdHS0r1OfOAW+/rU77KlYEliwBGjSQt7/9FihYELh1S4Z1W7NqFfDOO8DTp4Z9o0YBAwfKoQKpuX1bbu/elUMFsgMGcmIgTw9WyImIiIjsyrBhQNGiwIMHQKVKcmxvUBCwciXg56d26wy8vIA5c+T1mTPluHJbIYQc3755s+xWr+zbskVeX7w49cB5547heuKx1fZK6bJerpzcMpBnPwzk6ZFoUjcuP0FERESUtbm6Aj/+KK8/eybrLytXAjlzqtuu5LRoIavQcXFycjohgKgo2S181CjZBf+nn2SFPzOdPWuocv/1l9xeuSIr3oBsT2rd0Y0DeeLKsb1S3mf9+nLLQJ79MJCnh1GFXAggPl7l9hARERFRhrVqBbRtK6//8IOc5dxWTZ0qJ33bulWG3DfekN3Cv/0WmDgRGDRIrrWemTZuNFw/dEguz7Zjh7ydI4fc/vKLXNc9OdktkIeGAo8fy+v16smtcSCPiwMOHgS+/BLo2pUTvtkrBvL0MArkQPJLZBARERFR1rN8uaz0Dh6sdktSV7y4oY2DBwOnT8s10gcOBKpXl/tPncrcNm3aZLiu0wHbtxsC+WefAaVKASEhwLx5yT8+uwVy5T3myQOULCmvK4H85UugWDE5seCkSfL38tdf1WknWRcDeXoYTeoGZH53ICIiIiKyDldXw3heW/fVV3IGeAB4800ZymfOlMu5AcCFC5nXlocPgaNH5fXu3eV2wwZgzx55vWlTw/rpU6YAx46ZPj4qyrQ6nJ0CefHihp/j48ey9+3+/bL7v7u7/CIDyD7j6rMbBvL0YIWciIiIiFTm7Q0cOACsXy+r0Xnzyv1lysjtxYuZ15bNm+W2Rg2gTx95feVK4NUrOQ6/cmWgWzegRAkZOmvVkuPdlcLWvXumz5edAnmJErJ3g0YjexY8ewacOSPva98eGDNGXr9xQ512knUxkKdHQiB3dWAgJyIiIiL1FC0KtGmjn3MYAFC6tNzeu5d0vPbz50DLlnLMuSV7eSrjx1u3BurUkV8W6HRyX+PGsn0uLnJMdJcusgr87beGsKl0V/f3l9sHD7LOOuvppcywXry4jBe5c8vbjx4ZAnmFCnJpPgC4eTPz20jWx0CeHgn/47kwkBMRERGRjfH1NXSBNl4W7fZtOSZ5yxbg33+Bkyct83rh4cDOnfJ669ZysrmmTQ33v/WW4XquXHI89PTp8rayJJoSyCtWNMxsf+2aZdpnq4y7rAOGn5lxIK9YEShSRF6/f1927Sf7wkCeHgkVcgZyIiIiIrJFSpVc6bZ+7ZrsJm4c0M+ft8xr7d0rg2KhQobx9y1bGu43DuSKDh0MbYiKMiyXFhRkCKj23m3duMs6YAjkN24Y7qtQQX6J4ekpl7dTPieyHwzk6ZEQyJ0d5KRuDOREREREZEsSB/LvvpMTr5UpA3TuLPedO2eZ1/r3X7lt2FCOgwbkOun+/nJfoUJJH1OggAya8fFyVnulQl6wYPYI5M+fAy9eyOvFismtMgfA7t2yu3/u3PIz1GgMVfKsNo780SMgLEztVtg2BvL0YIWciIiIiGyYMrHbhQuysrp1q7w9bZqhYp3WCrkQcqz3Rx8Bly8nvV+ZMV1Zbg2QYfvWLTnZXHI0GqBKFXn9xInsF8iV95Y/v5xJHTBUyJXu/xUqGL7gyIxAHhVluvRcYuHh5o3rv3xZznHQqJFhPgFKioE8PZQKuZaBnIiIiIhsj3GF/Px5Of7Y1RWoX9/QrTytgfzaNWD8eLl+eJkyQM+ecp1sQIb1//6T16tVM32cq6scT54SBnJDd3XAEMiDg+W2QgXDfUogt9bEblevyuXVihY1LFVnLDxc/lyqVgUiI9P2nNOnAxER8vfjr78s2157wkCeHgmTujGQExEREZEtUgL5jRtyWTRAVird3AzV8wcPDME6Nfv3y627u6x0Ll5sWFP89m25TJeTk5yAzBxKIP/vP0Mgzy5jyI1nWFcogVxhHMiVmdatUSE/cwaoV0/+LOPigP/9L2m+OXlSDnm4fBn49dfXP+fz58DvvxtuT55s2TbbEwby9GCFnIiIiIhsWEAAkCOHDNCzZ8t9zZvLrbc3EBgor6elSq4E8k8/BVatktc3bJDjv5XqePnyclkzcyiB/ORJ2V1ao5FduJWQ+vhx0mXb7EXiGdaB1AO5tbqs37wJNGggP+uKFeWY9cuXgalTTY87fdpw/bvvXj/b+7x5spJeooT8subAAeDQIcu23V4wkKdHQiB34qRuRERERGSDNBpDlfzBA7lVAjlgXrd1JZDXqyfXPPfxkVXxo0eTHz+eVkWKyOcSQt7Omxdwdpb7lDW57XXps9S6rAOAVmvoyQCYBnLl87KENWtkF/kKFeRs+VOmyP0TJsg5ABTKMmyA/H1auDDl54yNBWbNktdHjQLef19e/+EHy7XbnjCQp4dSIdewQk5EREREtkkJ5IAMdMbV2LJl5fZ1gfzBA+D6dRnwa9eW1c4WLeR9mzenPH48LYwndgPk+HGFPXdbF+L1XdZLlpRj8BXKTPWvXsnu4JZy757cNmsme1R06yZnxo+MBD7/3HCcUiFv0EBuJ00CoqMN9z9+LNeg79wZ6NNH/t4EBADvvgsMHy6P2bAh+UkBszsG8vRQKuTssk5ERERENsq4wtq8uWHGbiDtgVypjleqJCvXAPD223K7cSNw/Li8np4KOWAayIOCDNftOZA/fiyXAtNqDZVvQH6+Srd/4+7qgAzn+fPL65bstn7/vtwWKCC3Go2hu/qmTTJ0K0vTAcCMGbInw927wKJFhueZMkUev2oVsGSJ3PfJJ/L9lC4tv8QRwjCfARkwkKeHMqkbK+REREREZKOMK+TG3dUBQyB/3Vrkxt3VjZ9Lq5WPDQmRYVF5PnNlxwq58p6CgkzH3Ws0hrXIEwdywDozrSuBXAn7AFC5shxLHhUFHD4se0hERMifc/nywIgR8rjJk+UkcFFRhi7sH38MfPAB0L27nHNAobyfhw8t13Z7wUCeHkqFPCGQG3fXICIiIiKyBco61m5ucoZ1Y0r1/MkTOR68f385k3fisJdcIPfzk93XFZUr6/88Nlt2DOTJdVdXKPtq1kx6nzVmWle6rCsVckD+zrz5pry+e7ehu3q5crIu+eGH8nfgxg05Bn31atmNPjBQjh1fvFhWyb29Dc/p7y+3jx5Zru32goE8PRL+x3HUcFI3IiIiIrJNBQrIsLR5M+DpaXqfh4ch4H3yCfDLL3ISr++/NxwTHGzoqmwcyAFDt3Ug/d3VATmpmdK27BLIk5vQTfHrr8DatYZAbMzSM63Hxxsq1sYVcgBo3Fhud+82TOimLGvn4QEMHCivf/edYRb/fv30HYmTUMbHP35smbbbEwby9EhUIWcgJyIiyrjo6GhUqlQJGo0Gp06dUrs5RHahffvkwx1g6GauLGUGyOrmkyfy+sGDctxv8eKGCqfCOJCnZ0I3hVYL9Owpq6vGVfdixeT22TP5xYAxnQ6YM0eGQUvOOJ5ZklvyTFGwINCunel4f4WlA/mTJ7LLuVabdMk15Xfm33/l7wFgus78gAFyXfpTp+RyZg4OcjK3lCi/PwzkSTGQpwcDORERkcV9/vnnyJcvn9rNIMo2jMd9d+kiK91RUbJaDshZsYGk1XFAdnmvWFGOK1Zm3k6vn34Cbt8GcuUy7PPyMoRE4yp5cLAMrP/7HzBypAyEWU1qXdZTY+lArowfDwhIOuSgcGF5iYsD9uyR+4wDuZ+frIgr2rY1jH9PDrusp4yBPD0S+mI4goGciIjIErZs2YLt27djirIILhFZXa1acluunOwqPWyYvP3zz8DEicD8+fJ2u3ZJH6vRADt3yondjLuap1dyFeHE3dZv3QKqVpWzuyv++Sfjr50Zjh8HLl6U1X1lbfXkuqynRgnkd+8a1pbPCGX8eOLu6orEPSsSTzQ3dKghyH/8ceqvpXy58vIls1NiDOTpoYwhZyAnIiLKsMePH6Nv375YsmQJ3N3dX3t8dHQ0QkNDTS5EZL7WrYGtW+XEbR4eQIcOcubvZ8+Ar7+Wx0ycaNo93ViuXEDRotZrX+JAPnmyrA4XKiTXywYMk87ZsufPgTp15OR3v/8ueyE4Opou85YWAQFAjRpy7Hffvhnvrp94ybPEjAN5UJBcp9xYYCCwciXw44+GMecp8fU1hHdlSARJDOTpkfDb5MBJ3YiIiDJECIGePXvi448/RrU0DkSdNGkSfHx89JfAwEArt5LIPmk0QLNmhqDl6AgMGWK4/8svgVGjVGkagKSBfO9euZ0+3VCR3b/f9seRnz8vV2WKjgZ69ZL7ihQxf2Z6jQb47TfA2Rn4+2/DUmPpZU6F3Li7urH27YFBg5Lv4WBMqwXy5JHX2W3dFAN5erBCTkRElKovvvgCGo0m1culS5fw008/4dWrVxg5cmSan3vkyJEICQnRX+7evWvFd0KUvfTtC7z7LvDNN7I6riYlkF+7JquqFy/K2/XqyfHuLi5yv63PxH75ctJ95nZXV5Qta/i5DB4M3LmT7ma9tkIeEGBYHi+lQG4OzrSevHSuGJjNuboCAFziIgAwkBMRESU2bNgw9OzZM9VjihQpgt27d+Pw4cNwcXExua9atWro1q0bFi9enORxLi4uSY4nIstwdwdWrFC7FZJxhXzfPnm9fHk5oRggu2/v3y8v6Q24mUEJ5B9+CFy6BBw4ILuvp9fQocD69XJ281Gj5Jrf6fG6CjkgQ/+ECfJLmoziTOvJYyBPj4R+Pa4xIQAYyImIiBLLnTs3cufO/drjZs6ciYlGZbgHDx6gWbNmWLlyJWrWrGnNJhKRjVOWPnvxAli3Tl43ntG9Xj1DIE9tya30iI0FnJws81zKrOqVKwMzZshx+02bpv/5HBxkt/2aNeWSdT/+COTMaf7zvK5CDsgeE337pq+diXGm9eSxy3p6JARyt6hgAAzkRERE6VWwYEGUK1dOfymRUOYqWrQoCqT2VyIR2T13d0P1du1auU0cyAHLT+z2xRfyz/2zZy3zfEqFvGRJw+R5Xl4Ze87q1WU38uho4I8/zH+8EIZAnlqF3JJYIU8eA3l6JARyl8iXABjIiYiIiIisQem2Hh0tt/XrG+6rXVtOFnbjhiFcZpQQsgt4RARw+HDGny821rBueMmSGX8+hUZjWAd83jzzJ7YLCQHCw+X1zArkWWEMufJ7lpkYyNMjIZA7x4TDEbEM5ERERBZSqFAhCCFQqVIltZtCRDZACeSAnGBMmakbALy9AeW/CktVyW/cMKzx/fRpxp/v5k0gLk5W+/Ply/jzGevWDXBzk7O4Hzli3mOVLzB8fWXbMkNmd1m/fx8IDk778Zcvyy8NBg/O3Jn7GcjTw8fHcBUhDORERERERFZgHMiNu6srlG7r//xjmdczDvaWWC9b6a5eooSs5luSj49hsrX58817bFomdLO0zOyy/s8/QOHCQK5cslfF1Kmvr37/+qsM8DduvH4ZN0tiIE8PR0f9wI8cCFalawMRERERkb17XSBv0kRu//xTdjPPKONgb4kKufH4cWtQJlxbsUJ2Q0+rtEzoZmmZ1WU9IgLo3VsOF4iPl1+yDB+e+uoB0dHAokXyuqUmsUsrBvL0Sui2ngPBrJATEREREVnB6wJ5ixayEvr8efqX/zJmXCG3RCBXZli3ViCvVQsoWhSIjAQOHkz749SskL98ad2x2qNGAdevyy8bzpwB3npL7lfec3LWrweePZOfR4sW1mtbchjI0yshkPviJQM5EREREZEVlC4N9OwJfPaZocJqzMEB+PRTeX3aNECnS3pMWivnDx8C164ZbluyQm6tddI1GuCNN+T148fT/jg1KuS+vrKjMWCZ4QDJOXRILgMHyG785csb1nx//jzlx82bJ7d9+hjamFkYyNOLFXIiIiIiIqvSaoGFC4HJk1M+pndvOZ76yhXg779N75s+HfD0BLZsef1rKdVxNze5zQpd1gGgalW5NSeQq1Eh12ozPrHb8eNAy5bAhQvJ3//553JCtp49gebN5T4/P7lNKZBfuwbs3i2/3OjdO33tyggG8vTy9QXAQE5EREREpCYvL8MSYNOmmd63c6cMaMo65qlRxo8rQe7pU/Nn2759GwgKksEuJMQwXtpaFXIAqFZNbm29Qg5kfGK3Tz+VX65MmJD0vvh4w2fw5ZeG/Tlzyu2LF8k/56+/ym3z5vJnl9kYyNOLFXIiIiIiIpswcKDsvr5nD3DunGH/nTtym5Y1xZUKefv2chsba95EaQDwzTfyNRcuBEaOlPsCAuQSbdZSubKs7t67l7agGx8P3L0rr2dmhRzIWCA/fdowTv6vv5KOQ795E4iKAlxdgSJFDPtTq5DHxRkmc1O+1MlsDOTpxUBORERERGQTAgMNk74pVVIhZMUakF2cUwvXL18CZ8/K62+9BXh4yOvmdFu/f98Q7gBg9my5tWZ3dUB2yVdeI3GVPD5efjEwdiwQFibH2H/4oawWu7vLCfEykzIPQHq6rP/8s+H6q1eym7mx8+fltlQp+eWMIrUK+e7d8ssBPz+gVSvz22QJDOTpxUndiIiIiIhsRrFicnvjhtyGhMjgBshw/u+/KT/28GF5TIkSsoqbO7fcn1wgf/DAMHu6sSlTZFW9bl259rXC2oEcSHkc+datwHffAePGAeXKAZ07yy8NHByA33/Xr+ScadJbIX/5EvjjD3m9ShW5TTwMQQnkZcua7k+tQr58udx27gw4OZnXJkthIE8vVsiJiIiIiGyG0k355k25VbqrK5Ru61FRcgZu47CthDkl7OXJI7eJA/mLF0ClSjJkN2oEbNokQ/jTp4aZur/6Cli82BB2MyOQK+PI//vPdP/vv8utg4PsLbBmjezevmQJ0KGD9duVWHoD+aJFcmm38uXlFwwAsGGD7AGgeF0gf/HCdBb+qChDqH/vPfPaY0kM5OnFSd2IiIiIiGyG0v1aqZAr3dUVR47I7ddfy/HCo0cb7rt0SW5LlZLblCrk339v2Ld3L9C6tQze1arJ5dWqVgWaNgUKFQJWrwY6dgS6d7fEu0tdchXy4GAZWpW2DhsmJ3FbvFi9AJqeLus6HfDLL/J6//5Aw4ayNvr0qVzmTKHMvJ44kCtd1nU6IDTUsP/vv+XtwECgTh1z3oVlMZCnFyvkREREREQ2QwnkiSvkyszZR47ILuzz58vbR48aHqsE8tKl5Ta5QH7/PjBzprw+d65cG93PT04uprzWqFGyAg3IYL5qlaHabk3KxG737xvC7urVsm1ly8rAOWWKnMzt/fet356UpKdCfuCAXJrM2xvo1k12LX/nHXmfUuGOjzf8DBMHchcXw5wAxt3Wly2T2/fek0uyqYWBPL04hpyIiIiIyGYoXdYfPJDdkZWQ3KqVXFs8OFh2J1cmdzt/Xs6yLQRw8aLcl7hC/uSJ4fknTJDPW6cO0LevXBv96VMZFleskOG7bVtrv8vkJTex25IlcvvBB4YvCdSWnkC+YoXctm8v36dyHQDWrZM/vxs35M/GzU32Tkgs8cRuISHA5s3yuprd1QEG8vQzqpDrdKbjF4iIiIiIKHPlzGkYt33rlqHLetGiQPXq8vpPPxmOj46WYfrpUzlpmEYDFC8u70tcIb961bBe9aRJhoCr0cjnf/dd2T1dzeBrvB75rVtyXXWNBujaVb02JaZ0WQ8OlrO+v05cnKz0A0CXLob9TZvKWeJv35Y9H1KaYV2ReGK3DRvkz790aaBixXS9FYthIE8vo0AOgFVyIiIiIiIVaTSmE7spFfKCBYE33pDXhZBV1jJl5O0zZwzV8cKFZYUVSBrIZ8+WBbgWLYB69az/XtJDGUf+3XeGNjZuLMeN2wpfX/nzAGRX9NfZs0f+DHLlAt5807Df3V1+AQLINd9TmtBNkTiQK70IWrVSv/cAA3l6JUzq5oYouCAqycL0RERERESUuYwndjMeQ16rluGYnj2B2rXl9bNnk07oBiQN5CdOyK1xldbWtGwpewhERgL37sl9vXur26bENBqgSRN5fefO1x+/cqXcduiQdFmyXr3kdsUKw+zyKQXyxF3W796V2+S6t2c2R7UbkGV5eUFoNNAIAR+EICbGVe0WERERERFla0ogv3xZjiUHZEW2YEE5cZdOBwwYAGzfLu87c8awVrkyoRtguuyZEPI4QC67ZatKlJBjs69flz0EhDBMfmZLmjQBfvsN2LUr9eNiYuQybUDyX4TUry9/3jdvGmaTT2uFXAnkgYHmtd0aGMjTS6uFxscHCA5OmNjNX+0WERERERFla0qX9f37ZSB1cZHVbq1WVls1Gjn52cOH8rgzZ6Dv6ZpShfzBAznG3MHBNLTbIjc3oFw5ebFVStfzU6fk56t81olt3y7HmufNm/wwAa1W9nYYM0b+rIHXV8htMZCzy3pGcOkzIiIiIiKboVTIT5+WW6UyDsgxxx06yOtKpfvWLcN44uQCeXQ0cPCgvF6iBODKTrEZ5u9v+Pz37En5uD//lNtOnZKfqA0AevQwjAFPaYZ1wFAhf/FC/kyVWd5tYXw9A3lGJIwjZyAnIiIiIlKfUiFXKqbKBGKJ+fkB+fLJ68+eya1x9dvDwzDB2+7dcmvL3dWzmteNIxfCMKygXbuUnycoyFBxL1065fXEjbusK0MZXF3lZHFqYyDPCFbIiYiIiIhsRuIKaUqBHAAqVDBcz5XLENoUSpVcCeTGx1PGvC6QX7woq9hubqYT8iVnyBBZJW/ePOVjjCd1U7qrFyig/gzrAAN5xjCQExERERHZDDc3w1rXgKygpsQ4YCc3NlwJ5Fevyi0r5JZTvz7g6CgnZLtxI+n9ypcgdevKeQBS06qVnBNg3LiUjzGukNvS+HGAgTxjEgK5nNRN3aYQEREREZGh2zqQeoXcOGAbjx9XKDOtK1ghtxxPT8Pa8MnNtq7sM157PDX+/jLgp8R4UjcGcnvCCjkRERERkU1RJnYD0t5lPbUKOSDX906t2k7ma9xYbv/5x3R/fDywd6+8ntZA/jpKhTwkRE7kB9jGhG4AA3nGcFI3IiIiIiKbktYKealShqpqchVy40BevrxtjDe2J1WqyO3Zs6b7T52Sy515exuOyaiE2AbAsKY8K+T2wKhCHhWlblOIiIiIiMi0Qp5a6HJ2lsug5c9v6D5tLHEgJ8tSPtOLF4HYWMN+Zfx4gwapd0M3h6Mj4OMjrzOQ2xOjMeQ//WRYXoGIiIiIiNRRtKjcBgS8ft3wFSuA27dNK6gKBnLrCgqSY8ljYgwT5wGGQK50abcUpdt6eLjcMpDbg4RAnlMTjJ07gTlz1G0OEREREVF2V7s28OGHwLffpu14B4fk9xsHck7oZnlaLVCunLx+7pzcxsQYxpRbavy4QpnYTcEx5PYg4au0ormCAQDDhwPXr6vYHiIiIiKibM7REZg/H+jVK2PPYxzIleBIlqX0PFDGkR89CkREyM++bFnLvpbxOvPu7sn3ilADA3lGGI0hb9RI/vL07s2u60REREREWV3JknJ29WrVbCe82Rvliw4lkG/fLrdvvikr6JZkHMgDA21nkj4G8oxICOSa4GD8tkDA3V12sVi2TN1mERERERFRxvj6AjdvAvv3q90S+5W4Qr5tm9w2a2b51zLusm4r48cBBvKMSQjkiI1FIc1tXPF7AwvQG58P1+HVK1VbRkREREREGeTn9/qJ4Sj9lEB+4wZw5w5w7Ji83bSp5V/LuEJuK+PHAQbyjPHwMMwC0b078t/9F72xED0fTcLEieo2jYiIiIiIyJblyiVnwweAH3+UQ3/LlZNL0VkaK+T2SKMxDCg5eFA/0GECvsbZqdtx/ryKbSMiIiIiIrJxSpV8/ny5tUZ3dSDpGHJbkSUC+c8//4xChQrB1dUVNWvWxNGjR9VukoHSbR0Axo8H+vaFFgJL4t/DZ43+w7VrqrWMiIiIiIjIpikTuylDfrNbIHdUuwGvs3LlSgwdOhRz5sxBzZo1MWPGDDRr1gyXL19Gnjx51G6eIZDXqAGMGAHExSH22En4nfoPfz+tjjUVuyN64RfQFSuBkAgneHrK7hI5c8oe77Yyu59dEAK4dQv491/A2xuoVSvplJhCAM+fA1evAteuAQ8eAGFhQHg44OQkfyhubvJYnU4en9o2IkI+PipKPkajAYoVAxo3lms1/PefnOkvPl7+b1OgALBrF7BuHRAaCrz9NtCpE1C1quF1FTqdbOvz50BkpHyNqCjT6yld4uLkgCd3d8PFzc1w3dERiI2Vx2m1cuiFo6PcOjjI9sbEANHRhq1WK5/Tzc2w1WoN9yd3cXKS05N6ehq2bm5yv4ODPCYy0nBR2h4fLz8DV9eUL4D8uYWHy59DeLhsi6Oj6cXBwbr/0Kz93Ikvjo7y/bu4mG6dnOT98fHyjBYSIi+hoYafc+KLg0Py+43vB+RzKj+XuDjDJT5evm7OnPLfmvK7Ex8vf3/j4+XPNCLCcAkPl8+Z0s/VxUU+NjbWcImJMVzX6eTvkbe3PDZxe4xvJ0erTfo7Api+nvI6jo7y/cXEGNpfogRQuLD1fuZERETZjFIhB+SfAnXrWud1jLus29IYco0Qtr1IV82aNVG9enXMmjULAKDT6RAYGIiBAwfiiy++eO3jQ0ND4ePjg5CQEHh7e1u+gbNnAwsXAn/8If9QA4AnTxD5yTC4rflDf1g8tLiLQETAHfFwQBwcodM4QOPgAB208m9XoYFGo4FGC/1W/rEv/+AXRluh0ehvA/L66/Ynt0+j1ci/yR200DhqoXXQIk5oERPngNh4LbROWjg6aaFx0EJotNBpHODorIWzqxYOjoAmNhaauFg4Ig5Omlg4IRZaXRwcdHKrjY+FVsQj3tkdsa6eEE4u0Gg1+myhLGcQp3FEHBwhHByhcXSExkELRxELRxELB51hq42PhSZebrVx8rpDfIw85tkjOD55qP/MhUaD2MIlIXLmhNbDDQ6vQqC5fhWakBDL/x5YQKyXL3Q5/KCNjYYmOhIOoS+hUYIpUVq4uMgvOch6pk4Fhg7N8NNY/dyUzfDzJCLKuv77D6heXV5v1gzYutU6r3P9uqybAUBwMODjY53XUaT13GTTFfKYmBgcP34cI0eO1O/TarVo0qQJDh8+nOxjoqOjEW30B2loaKh1G/m//8mLsTx54LZ6CZ5t/RTX3xuFcsEH4IEIFMJt0+MEgMRFHAFAZ8X22rlYOOIkKsMHISgprsD5xiXgRtLj7qIArqI47iIQofBGJNzhiDh4acLghkjoNFoIaKCDFkjYCmj0+0XC7QiNO8LhiSi4Ii5eAwcRi6o4jkbYAz+8wD3kx140RATcUR5nURg3cRQ1sA7t8AI50R5r8Q42ISdewunVS+DVyyRtfQFfRMAdUXBFFFwRCTdEwRXRcEW0xnCJSrgdpXFFPBzgiii4iwi4IwKuiIS7iIAbIuAuIuCEWMRqnBAPR2g1OjggXl6E/LooHo6I0TgjFs6I1rggFs7QQMBVRMIFUXAVkXAVUdAiHjEaF0TDBTEaF8TABTEaZ8TABdEaFziJWHiIMHiKV/qtC6LgJGLhgDjEaFwQBTdEatwQpXFDFNwQq3FK+NwBF0TDVUTBBVFwEVFwM3p9AIjQeCBS64EojTsitB6I1Tjr34OjiIMD4uAgkq+UJlvXNrfY/ZqvM5O9W6TtPg0EIAQ0QgAQ0GrkxRFxcBbRcBFRcEGM6eON/u+LggvCtN4I0/ogTuOU8FuccBE6aBGvv258n0bIrYOIhwY6aCD0XyDGQX5xFq9xTPiNcYQTYpBD9wKeIsykKQnPjmiNKyI17ojUuCMqYSuggTMS3kPiS8J7ioET4jROiNU4I07jpL8IaOGmC4OXLgTOIgaxCe3RwQFxGqVtjojXOBh9OWmgFTo4IA5aEQ/HhN8PDYR8fjghNuF1dNDCUcTBEbGIhTMiEn7Pnp7NiYap/9iJiIjIDGXKyEKdENbrrg7IbuolSsiJ5Kwdxs1h04H82bNniI+Ph7+/v8l+f39/XLp0KdnHTJo0CePGjcuM5r1WrubVkOvlNgidAB4/kt2p/9/evQdHVd5/HP+czW6WJBISkuYmRNAychEpEmFSnOm0MAXq1ButlUlpajvDAImCtBRbi9jpUIRO1WqdWB1r/yiVlo5YoINODBSLwyUmXAUj8yuDFAgRMeQCue15fn+su7BJCAkGztnD+zVzZnfPOdl8P5vNfvPsnuektVWmI6TW5g411ofUVN8hn2WUmGgUSDDhIy3bP7/sMAq1R/5Cv+gyslx0O/LHu7HD6yO3u91f4T/yjR3+Pm1tRh2tttrbjNpbbQV8IQ1ItJXot9Xeaqv1vC27w5Zlhw9DjazraDdSICDjD6hNAbV2+NVqBxTyBRSy/OqwwtdtYynQcV6B1iYldLQqZFuyjWSHIuXYSvSFFPCF5DMdUnv40NM2E1CrCajNDqj186XNBNSuC5etdkDn2gNqbgvoTEeq9iWMV2tCsnw+KUt1Ghvao4SWZgXtczqnZB3WCP2fblGLOh0eHmE6XV4hS7Yy9KlOK1M+n6WcnPBR6XfcIY0cKc2/JXxE7fbt92reDqOGY2eVUHtcvrOf6Zw9QI0dSTodStfJji/pfEfg0t/IfPFaHXXFj3fk+WxJ18tBBN38rC3ZSlSbBqgl/OaFWnReSTqrQWpTMPzmXn+9wXeZn5Ff7bJkFFJC9I2sS9XdE0v25wNpqxdfay7s14sae3S5r/38ebZqtBiQAwDQj5KTw4epV1VJ99579b5PYqL0wQcXjtB1C1cPyK/Ez3/+cy266HDChoYGDXV41r7ls6Tc3PCi8J+pAz5fvuRkYZ6XJSn8TwwjU6EvNyU8chlx8YSOzpM7Ot8OBC4sfr9PgcCXFAj0/EtfWCiFnxFpny/di0yNjUz7vvgyclR7d7Veqv5I1s5Lf02H7o/7ubiurj8jK3rb7mbA2d1EnEs9Fj09Vt09Jldy2+frfjr45dYHAuGj0P3+8FTs5uZw3gvTvH3y+cKvJpEp25HH5OJp3JeamNTT+s71Ra5HLrs+VoFu1sXuG7ne3brIzzMU8nWbobPw11mXvL8rud6b/fLzu9YCAAC+mA0bwqfAudpzu/0uHP26sKQLMjMzlZCQoFOnTsWsP3XqlHIi/7Cuk2AwqGAweC3KQxwJBsNLvIqcay2eMwAAAADdGTTIXYeRX0su+8A+VmJioiZMmKCKioroOtu2VVFRocLwR4sAAAAAAMQlV39CLkmLFi1ScXGxCgoKNHHiRD333HNqbm7Www8/7HRpAAAAAABcMdcPyL/3ve/pk08+0ZNPPqna2lp95Stf0VtvvdXlRG8AAAAAAMQT1w/IJam0tFSlpaVOlwEAAAAAQL9x9RxyAAAAAAC8igE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADvA7XcDVZoyRJDU0NDhcCQAAYZGeFOlR+GLo9QAAt+ltr/f8gLyxsVGSNHToUIcrAQAgVmNjowYNGuR0GXGPXg8AcKvL9XrLePztedu2deLECQ0cOFCWZX2h+2poaNDQoUN17Ngxpaam9lOFzvFSHi9lkbyVx0tZJPK4WTxlMcaosbFReXl58vmYPfZF0esvjTzu5aUskrfyeCmL5K088ZSlt73e85+Q+3w+DRkypF/vMzU11fVPgL7wUh4vZZG8lcdLWSTyuFm8ZOGT8f5Dr7888riXl7JI3srjpSySt/LES5be9HrelgcAAAAAwAEMyAEAAAAAcAAD8j4IBoNatmyZgsGg06X0Cy/l8VIWyVt5vJRFIo+beSkLnOO15xF53MtLWSRv5fFSFslbebyUJcLzJ3UDAAAAAMCN+IQcAAAAAAAHMCAHAAAAAMABDMgBAAAAAHAAA3IAAAAAABzAgLwPXnzxRQ0bNkwDBgzQpEmTtGvXLqdLuqwVK1bozjvv1MCBA5WVlaX77rtPNTU1Mfu0tLSopKREGRkZuuGGGzRz5kydOnXKoYp77+mnn5ZlWVq4cGF0XbxlOX78uL7//e8rIyNDSUlJGjt2rN5///3odmOMnnzySeXm5iopKUlTp07V4cOHHaz40kKhkJYuXarhw4crKSlJt9xyi37961/r4vNGujXPu+++q29/+9vKy8uTZVl68803Y7b3pu4zZ86oqKhIqampSktL049//GM1NTVdwxQX9JSnvb1dS5Ys0dixY5WSkqK8vDz94Ac/0IkTJ2LuI17ydDZ37lxZlqXnnnsuZr2b8sDd6PXuQq93l3ju9ZK3+j293ju9ngF5L/3tb3/TokWLtGzZMlVXV2vcuHGaNm2a6urqnC6tR1u3blVJSYl27Nih8vJytbe365vf/Kaam5uj+zz22GPasGGD1q5dq61bt+rEiRN64IEHHKz68iorK/XHP/5Rt99+e8z6eMry2WefafLkyQoEAtq0aZMOHjyo3/3ud0pPT4/us2rVKj3//PN66aWXtHPnTqWkpGjatGlqaWlxsPLurVy5UmVlZfrDH/6gQ4cOaeXKlVq1apVeeOGF6D5uzdPc3Kxx48bpxRdf7HZ7b+ouKirSBx98oPLycm3cuFHvvvuu5syZc60ixOgpz7lz51RdXa2lS5equrpab7zxhmpqanTPPffE7BcveS62bt067dixQ3l5eV22uSkP3Ite7y70enp9f/NSv6fXe6jXG/TKxIkTTUlJSfR2KBQyeXl5ZsWKFQ5W1Xd1dXVGktm6dasxxpj6+noTCATM2rVro/scOnTISDLbt293qsweNTY2mhEjRpjy8nLzta99zSxYsMAYE39ZlixZYu66665Lbrdt2+Tk5Jjf/va30XX19fUmGAya119//VqU2Cd33323+dGPfhSz7oEHHjBFRUXGmPjJI8msW7cuers3dR88eNBIMpWVldF9Nm3aZCzLMsePH79mtXenc57u7Nq1y0gyR48eNcbEZ57//e9/5sYbbzQHDhwwN910k3n22Wej29ycB+5Cr3cPer27emOEV3q9Md7q9/R6d+e5HD4h74W2tjZVVVVp6tSp0XU+n09Tp07V9u3bHays786ePStJGjx4sCSpqqpK7e3tMdlGjhyp/Px812YrKSnR3XffHVOzFH9Z1q9fr4KCAn33u99VVlaWxo8fr1deeSW6/ciRI6qtrY3JM2jQIE2aNMmVeb761a+qoqJCH330kSRp79692rZtm2bMmCEp/vJE9Kbu7du3Ky0tTQUFBdF9pk6dKp/Pp507d17zmvvq7NmzsixLaWlpkuIvj23bmj17thYvXqwxY8Z02R5veeAMer270Ovd2Ru92usl7/d7er17+Z0uIB6cPn1aoVBI2dnZMeuzs7P14YcfOlRV39m2rYULF2ry5Mm67bbbJEm1tbVKTEyM/nJGZGdnq7a21oEqe7ZmzRpVV1ersrKyy7Z4y/Lf//5XZWVlWrRokX7xi1+osrJSjz76qBITE1VcXBytubvnnRvzPP7442poaNDIkSOVkJCgUCik5cuXq6ioSJLiLk9Eb+qura1VVlZWzHa/36/Bgwe7OpsUnou5ZMkSzZo1S6mpqZLiL8/KlSvl9/v16KOPdrs93vLAGfR696DXuzePV3u95O1+T693X56LMSC/jpSUlOjAgQPatm2b06VckWPHjmnBggUqLy/XgAEDnC7nC7NtWwUFBfrNb34jSRo/frwOHDigl156ScXFxQ5X13d///vftXr1av31r3/VmDFjtGfPHi1cuFB5eXlxmed60N7ergcffFDGGJWVlTldzhWpqqrS73//e1VXV8uyLKfLARxHr3cXej2cRq93Pw5Z74XMzEwlJCR0OYPnqVOnlJOT41BVfVNaWqqNGzdqy5YtGjJkSHR9Tk6O2traVF9fH7O/G7NVVVWprq5Od9xxh/x+v/x+v7Zu3arnn39efr9f2dnZcZNFknJzczV69OiYdaNGjdLHH38sSdGa4+V5t3jxYj3++ON66KGHNHbsWM2ePVuPPfaYVqxYISn+8kT0pu6cnJwuJ33q6OjQmTNnXJst0qCPHj2q8vLy6DvmUnzl+c9//qO6ujrl5+dHXxeOHj2qn/zkJxo2bJik+MoD59Dr3YFer+htN+bxaq+XvNnv6fXuzNMZA/JeSExM1IQJE1RRURFdZ9u2KioqVFhY6GBll2eMUWlpqdatW6fNmzdr+PDhMdsnTJigQCAQk62mpkYff/yx67JNmTJF+/fv1549e6JLQUGBioqKotfjJYskTZ48ucu/pfnoo4900003SZKGDx+unJycmDwNDQ3auXOnK/OcO3dOPl/sS0pCQoJs25YUf3kielN3YWGh6uvrVVVVFd1n8+bNsm1bkyZNuuY1X06kQR8+fFjvvPOOMjIyYrbHU57Zs2dr3759Ma8LeXl5Wrx4sd5++21J8ZUHzqHXuwO93t290au9XvJev6fXuzdPF86eUy5+rFmzxgSDQfPnP//ZHDx40MyZM8ekpaWZ2tpap0vr0bx588ygQYPMv//9b3Py5Mnocu7cueg+c+fONfn5+Wbz5s3m/fffN4WFhaawsNDBqnvv4jOvGhNfWXbt2mX8fr9Zvny5OXz4sFm9erVJTk42f/nLX6L7PP300yYtLc3885//NPv27TP33nuvGT58uDl//ryDlXevuLjY3HjjjWbjxo3myJEj5o033jCZmZnmZz/7WXQft+ZpbGw0u3fvNrt37zaSzDPPPGN2794dPRNpb+qePn26GT9+vNm5c6fZtm2bGTFihJk1a5br8rS1tZl77rnHDBkyxOzZsyfmdaG1tTXu8nSn85lXjXFXHrgXvd6d6PXuEc+93hhv9Xt6vXd6PQPyPnjhhRdMfn6+SUxMNBMnTjQ7duxwuqTLktTt8tprr0X3OX/+vJk/f75JT083ycnJ5v777zcnT550rug+6Nyk4y3Lhg0bzG233WaCwaAZOXKkefnll2O227Ztli5darKzs00wGDRTpkwxNTU1DlXbs4aGBrNgwQKTn59vBgwYYG6++WbzxBNPxLzwuzXPli1buv09KS4uNsb0ru5PP/3UzJo1y9xwww0mNTXVPPzww6axsdGBND3nOXLkyCVfF7Zs2RJ3ebrTXZN2Ux64G73efej17hHPvd4Yb/V7er13er1ljDH981k7AAAAAADoLeaQAwAAAADgAAbkAAAAAAA4gAE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAO4qizL0ptvvul0GQAA4Cqi3wNXhgE54GE//OEPZVlWl2X69OlOlwYAAPoJ/R6IX36nCwBwdU2fPl2vvfZazLpgMOhQNQAA4Gqg3wPxiU/IAY8LBoPKycmJWdLT0yWFDy8rKyvTjBkzlJSUpJtvvln/+Mc/Yr5+//79+sY3vqGkpCRlZGRozpw5ampqitnnT3/6k8aMGaNgMKjc3FyVlpbGbD99+rTuv/9+JScna8SIEVq/fv3VDQ0AwHWGfg/EJwbkwHVu6dKlmjlzpvbu3auioiI99NBDOnTokCSpublZ06ZNU3p6uiorK7V27Vq98847MQ24rKxMJSUlmjNnjvbv36/169fry1/+csz3+NWvfqUHH3xQ+/bt07e+9S0VFRXpzJkz1zQnAADXM/o94FIGgGcVFxebhIQEk5KSErMsX77cGGOMJDN37tyYr5k0aZKZN2+eMcaYl19+2aSnp5umpqbo9n/961/G5/OZ2tpaY4wxeXl55oknnrhkDZLML3/5y+jtpqYmI8ls2rSp33ICAHA9o98D8Ys55IDHff3rX1dZWVnMusGDB0evFxYWxmwrLCzUnj17JEmHDh3SuHHjlJKSEt0+efJk2batmpoaWZalEydOaMqUKT3WcPvtt0evp6SkKDU1VXV1dVcaCQAAdEK/B+ITA3LA41JSUrocUtZfkpKSerVfIBCIuW1ZlmzbvholAQBwXaLfA/GJOeTAdW7Hjh1dbo8aNUqSNGrUKO3du1fNzc3R7e+99558Pp9uvfVWDRw4UMOGDVNFRcU1rRkAAPQN/R5wJz4hBzyutbVVtbW1Mev8fr8yMzMlSWvXrlVBQYHuuusurV69Wrt27dKrr74qSSoqKtKyZctUXFysp556Sp988okeeeQRzZ49W9nZ2ZKkp556SnPnzlVWVpZmzJihxsZGvffee3rkkUeubVAAAK5j9HsgPjEgBzzurbfeUm5ubsy6W2+9VR9++KGk8BlR16xZo/nz5ys3N1evv/66Ro8eLUlKTk7W22+/rQULFujOO+9UcnKyZs6cqWeeeSZ6X8XFxWppadGzzz6rn/70p8rMzNR3vvOdaxcQAADQ74E4ZRljjNNFAHCGZVlat26d7rvvPqdLAQAAVwn9HnAv5pADAAAAAOAABuQAAAAAADiAQ9YBAAAAAHAAn5ADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADmBADgAAAACAA/4f5vRQbrowtTkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -1509,7 +531,7 @@ "outputs": [], "source": [ "# save the checkpoint model training\n", - "output_path = \"../models/\"\n", + "output_path = \"./\"\n", "\n", "torch.save({\n", " 'epoch': epoch,\n", @@ -1532,75 +554,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c1bdee8769fa4b9593d2aee441370864", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(Label(value='0.002 MB of 0.002 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss█▇▁
train_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss0.29413
train_loss0.07743
validation_loss0.5721

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run clear-gorge-3 at: https://wandb.ai/ai4s2s/test-autoencoder/runs/ze31innr
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230623_144958-ze31innr/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -1627,25 +581,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.303\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFmUlEQVR4nO3de1yUdd7/8fcwKiCHUXSHg6IhmkrYQU1TW7M7Qzp4aNu8O5hR/XJvA5OsTHdvM8uW8q57re4Nt9rFWrPDfbe46G60ZkJ5wtJMyWLV8LAJWpozikE2c/3+ICZHQEEHZobr9Xw85mFzXd+55nNN4ry5vofLYhiGIQAAAJMI8XcBAAAArYnwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATKWdvwsIRG63W/v371dUVJQsFou/ywEAAE1gGIaOHj2qhIQEhYQ0fn2H8NOA/fv3KzEx0d9lAACAs7Bv3z5179690f2EnwZERUVJqv3woqOj/VwNAABoCqfTqcTERM/3eGMIPw2o6+qKjo4m/AAAEGTONGSFAc8AAMBUCD8AAMBUCD8AAMBUGPMDAAgYLpdLJ06c8HcZCFDt27eX1Wo95+MQfgAAfmcYhiorK3XkyBF/l4IA16lTJ8XFxZ3TOnyEHwCA39UFH7vdro4dO7LALOoxDEPHjx/XwYMHJUnx8fFnfSzCDwDAr1wulyf4dOnSxd/lIICFh4dLkg4ePCi73X7WXWAMeAYA+FXdGJ+OHTv6uRIEg7q/J+cyNozwAwAICHR1oSl88feEbi8AOEsut6GN5Yd18Gi17FFhGpIUI2sIX+BAoCP8AMBZKCyt0Lzl21XhqPZsi7eFae7YFKWnnv1ATAAtj24vAGimwtIKTV2y2Sv4SFKlo1pTl2xWYWmFnypDW5WRkaEJEyZ4no8aNUrZ2dnndExfHCNYEX4AoBlcbkPzlm+X0cC+um3zlm+Xy91QC7Q0l9vQ+l2H9NctX2n9rkMt/v8hIyNDFotFFotFHTp0UO/evfXYY4/phx9+aNH3/ctf/qLHH3+8SW2LiopksVjqraHUnGO0NXR7AUAzbCw/XO+Kz8kMSRWOam0sP6xhyUzbbk3+6opMT09XXl6eampq9Pe//12ZmZlq3769Zs+e7dXu+++/V4cOHXzynjExMQFxjGDFlR8AaIaDRxsPPmfTDr7hz67I0NBQxcXFqWfPnpo6dapGjx6tgoICT1fVE088oYSEBPXt21eStG/fPk2cOFGdOnVSTEyMxo8fr927d3uO53K5NGPGDHXq1EldunTRzJkzZRjeV7BO7bKqqanRww8/rMTERIWGhqp379764x//qN27d+vKK6+UJHXu3FkWi0UZGRkNHuPbb7/V5MmT1blzZ3Xs2FHXXHONduzY4dm/ePFiderUSe+++6769++vyMhIpaenq6Lip8+2qKhIQ4YMUUREhDp16qQRI0Zoz549PvqkfYfwAwDNYI8K82k7nLtA64oMDw/X999/L0latWqVysrKtHLlSq1YsUInTpzQmDFjFBUVpQ8//FBr1671hIi61zzzzDNavHix/vSnP2nNmjU6fPiw8vPzT/uekydP1uuvv67nnntOn3/+uf7whz8oMjJSiYmJevvttyVJZWVlqqio0LPPPtvgMTIyMvTxxx+roKBA69evl2EYuvbaa73W0zl+/Liefvpp/fnPf9YHH3ygvXv36sEHH5Qk/fDDD5owYYKuuOIKbd26VevXr9eUKVMCcgkDur0AoBmGJMUo3hamSkd1g1+2Fklxttpp72gdgdIVaRiGVq1apXfffVfTpk3T119/rYiICL388sue7q4lS5bI7Xbr5Zdf9oSCvLw8derUSUVFRUpLS9PChQs1e/Zs/eIXv5AkLVq0SO+++26j7/vPf/5Tb731llauXKnRo0dLknr16uXZX9e9Zbfb1alTpwaPsWPHDhUUFGjt2rUaPny4JOm1115TYmKili1bpptuuklS7cKCixYtUnJysiQpKytLjz32mCTJ6XTK4XDo+uuv9+zv379/8z/IVsCVHwBoBmuIRXPHpkiqDTonq3s+d2wK6/20In93Ra5YsUKRkZEKCwvTNddco3//93/Xo48+KkkaMGCA1zifTz/9VDt37lRUVJQiIyMVGRmpmJgYVVdXa9euXXI4HKqoqNDQoUM9r2nXrp0GDx7c6Ptv2bJFVqtVV1xxxVmfw+eff6527dp5vW+XLl3Ut29fff75555tHTt29AQbqfb+WnX32oqJiVFGRobGjBmjsWPH6tlnn/XqEgskhB8AaKb01HjlThqoOJt311acLUy5kwayzk8r83dX5JVXXqktW7Zox44d+u677/TKK68oIiJCkjx/1jl27JgGDRqkLVu2eD3++c9/6tZbbz2r96+731VraN++vddzi8XiNR4pLy9P69ev1/Dhw/Xmm2/q/PPP14YNG1qtvqai2wsAzkJ6aryuToljhecA4O+uyIiICPXu3btJbQcOHKg333xTdrtd0dHRDbaJj49XSUmJRo4cKal2LM2mTZs0cODABtsPGDBAbrdbxcXFnm6vk9VdeXK5XI3W1b9/f/3www8qKSnxdHsdOnRIZWVlSklJadK51bnkkkt0ySWXaPbs2Ro2bJiWLl2qyy67rFnHaGlc+QGAs2QNsWhYcheNv7ibhiV3Ifj4STB1Rd52223q2rWrxo8frw8//FDl5eUqKirSfffdp3/961+SpOnTp+vJJ5/UsmXL9MUXX+jee++tt0bPyc477zzdcccduuuuu7Rs2TLPMd966y1JUs+ePWWxWLRixQp9/fXXOnbsWL1j9OnTR+PHj9c999yjNWvW6NNPP9WkSZPUrVs3jR8/vknnVl5ertmzZ2v9+vXas2eP/vGPf2jHjh0BOe6H8AMACHrB0hXZsWNHffDBB+rRo4d+8YtfqH///rr77rtVXV3tuRL0wAMP6Pbbb9cdd9yhYcOGKSoqSjfccMNpj5ubm6tf/vKXuvfee9WvXz/dc889qqqqkiR169ZN8+bN06xZsxQbG6usrKwGj5GXl6dBgwbp+uuv17Bhw2QYhv7+97/X6+o63bl98cUXuvHGG3X++edrypQpyszM1K9+9atmfEKtw2KcungA5HQ6ZbPZ5HA4Gr0sCQDwjerqapWXlyspKUlhYec2LoebzbZ9p/v70tTvb8b8AADajLquSOB06PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAMCEHn30UV188cX+LkOjRo1SdnZ2q74n4QcAgHNQWVmp6dOnq3fv3goLC1NsbKxGjBih3NxcHT9+3N/lnbWioiJZLJbT3lfMn8c7F6zwDABoO9wuac866dgBKTJW6jlcCrG22Nt9+eWXGjFihDp16qTf/va3GjBggEJDQ7Vt2za9+OKL6tatm8aNG9fga0+cONHk+2YFsu+//95z5/hgwZWf1uJ2SeUfStv+r/ZPt8vfFQFA27K9QFqYKr1yvfT23bV/Lkyt3d5C7r33XrVr104ff/yxJk6cqP79+6tXr14aP368/va3v2ns2LGethaLRbm5uRo3bpwiIiL0xBNPSKq9KWlycrI6dOigvn376s9//rPnNbt375bFYtGWLVs8244cOSKLxaKioiJJP11RWbVqlQYPHqyOHTtq+PDhKisr86r1ySefVGxsrKKiojw3U23M7t27deWVV0qSOnfuLIvFooyMDEm13VRZWVnKzs5W165dNWbMmDPWebrjSZLb7dbMmTMVExOjuLg4Pfroo039X3BW/Bp+cnJydOmllyoqKkp2u10TJkyo9z9r1KhRslgsXo//+I//OO1xDcPQI488ovj4eIWHh2v06NHasWNHS57K6fnhBxIATGV7gfTWZMm533u7s6J2ewv8e3vo0CH94x//UGZmpiIiIhpsY7F431T10Ucf1Q033KBt27bprrvuUn5+vqZPn64HHnhApaWl+tWvfqU777xTq1evbnY9v/nNb/TMM8/o448/Vrt27XTXXXd59r311lt69NFH9dvf/lYff/yx4uPj9cILLzR6rMTERL399tuSpLKyMlVUVOjZZ5/17H/llVfUoUMHrV27VosWLTpjbU05XkREhEpKSrRgwQI99thjWrlyZbM/g6bya/gpLi5WZmamNmzYoJUrV+rEiRNKS0tTVVWVV7t77rlHFRUVnseCBQtOe9wFCxboueee06JFi1RSUqKIiAiNGTPmtCm3xfjhBxIATMXtkgoflmQ0sPPHbYWzfH7FfefOnTIMQ3379vXa3rVrV0VGRioyMlIPP/yw175bb71Vd955p3r16qUePXro6aefVkZGhu69916df/75mjFjhn7xi1/o6aefbnY9TzzxhK644gqlpKRo1qxZWrduned7b+HChbr77rt19913q2/fvpo/f75SUlIaPZbValVMTIwkyW63Ky4uTjabzbO/T58+WrBggfr27Vvv/M/meBdeeKHmzp2rPn36aPLkyRo8eLBWrVrV7M+gqfwafgoLC5WRkaELLrhAF110kRYvXqy9e/dq06ZNXu06duyouLg4z+N0t6k3DEMLFy7Uf/7nf2r8+PG68MIL9eqrr2r//v1atmxZC5/RKfz0AwkAprJnXf1fML0YkvOr2natYOPGjdqyZYsuuOAC1dTUeO0bPHiw1/PPP/9cI0aM8No2YsQIff75581+3wsvvNDz3/Hx8ZKkgwcPet5n6NChXu2HDRvW7PeoM2jQoLN+bUNOrl2qrb+u9pYQUGN+HA6HJHnSYZ3XXntNXbt2VWpqqmbPnn3a0fPl5eWqrKzU6NGjPdtsNpuGDh2q9evXN/iampoaOZ1Or4dPBNgPJAC0SccO+LZdE/Xu3VsWi6XecI1evXqpd+/eCg8Pr/eaxrrHGhMSUvs1bRg//RJ94sSJBtuePHi6rrvN7XY36/2a6tTzaE6dDTl14LfFYmmx2qUACj9ut1vZ2dkaMWKEUlNTPdtvvfVWLVmyRKtXr9bs2bP15z//WZMmTWr0OJWVlZKk2NhYr+2xsbGefafKycmRzWbzPBITE31wRvLbDyQAmEpk7JnbNKddE3Xp0kVXX321/ud//qfecI2m6t+/v9auXeu1be3atZ4uqZ/97GeSpIqKCs/+kwcVN+d9SkpKvLZt2LDhtK+pm8Hlcp25d6IpdTbneC0tYKa6Z2ZmqrS0VGvWrPHaPmXKFM9/DxgwQPHx8brqqqu0a9cuJScn++S9Z8+erRkzZnieO51O3wQgP/1AAoCp9BwuRSfUjqVscJiBpXZ/z+E+f+sXXnhBI0aM0ODBg/Xoo4/qwgsvVEhIiD766CN98cUXZ+weeuihhzRx4kRdcsklGj16tJYvX66//OUveu+99yRJ4eHhuuyyy/Tkk08qKSlJBw8e1H/+5382u87p06crIyNDgwcP1ogRI/Taa6/ps88+U69evRp9Tc+ePWWxWLRixQpde+21Cg8PV2RkZINtm1Jnc47X0gLiyk9WVpZWrFih1atXq3v37qdtW9dnuXPnzgb3x8XFSZIOHPC+mnLgwAHPvlOFhoYqOjra6+ETdT+QsjTSwCJFd2uRH0gAMI0Qq5T+1I9PTv339sfn6U+2yHo/ycnJ+uSTTzR69GjNnj1bF110kQYPHqznn39eDz74oB5//PHTvn7ChAl69tln9fTTT+uCCy7QH/7wB+Xl5WnUqFGeNn/605/0ww8/aNCgQcrOztb8+fObXee///u/a86cOZo5c6YGDRqkPXv2aOrUqad9Tbdu3TRv3jzNmjVLsbGxysrKOm37M9XZ3OO1JItxcgddKzMMQ9OmTVN+fr6KiorUp0+fM75m7dq1uvzyy/Xpp5/WGyBVd8yEhAQ9+OCDeuCBByTVXsmx2+1avHixbr755jO+h9PplM1mk8PhOPcgVDfbq7a6k3b8+AM58VUppeEFsADADKqrq1VeXq6kpCSFhYWd/YG2F9ROMjl5rGV0t9rgw7+zbcbp/r409fvbr91emZmZWrp0qf76178qKirKMybHZrMpPDxcu3bt0tKlS3XttdeqS5cu2rp1q+6//36NHDnSK/j069dPOTk5uuGGG2SxWDyJs0+fPkpKStKcOXOUkJCgCRMmtP5JpoyrDTj1fiAT+IEEAF9KGSf1u65VV3hGcPJr+MnNzZUkr8t7kpSXl6eMjAx16NBB7733nhYuXKiqqiolJibqxhtvrNePWFZW5pkpJkkzZ85UVVWVpkyZoiNHjujyyy9XYWHhuf1GcS74gQSA1hFilZJ+7u8qEOD82u0VqHza7QUAOC2fdXvBFHzR7RUQA54BAABaC+EHABAQ6IhAU/ji7wnhBwDgV3Wr+55u9X6gTt3fk1NXhW6OgFnkEABgTlarVZ06dfLcy6ljx4717oYOGIah48eP6+DBg+rUqZOs1rOfNET4AQD4Xd0itC15M0u0DZ06dWp00eKmIvwAAPzOYrEoPj5edru9WTfEhLm0b9/+nK741CH8AAAChtVq9cmXG3A6DHgGAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACm0s7fBQDN4XIb2lh+WAePVsseFaYhSTGyhlj8XRYAIIgQfhA0CksrNG/5dlU4qj3b4m1hmjs2Remp8X6sDAAQTOj2QlAoLK3Q1CWbvYKPJFU6qjV1yWYVllb4qTIAQLAh/CDgudyG5i3fLqOBfXXb5i3fLpe7oRYAAHgj/CDgbSw/XO+Kz8kMSRWOam0sP9x6RQEAghbhBwHv4NHGg8/ZtAMAmBvhBwHPHhXm03YAAHMj/CDgDUmKUbwtTI1NaLeodtbXkKSY1iwLABCkCD8IeNYQi+aOTZGkegGo7vncsSms9wMAaBLCD4JCemq8cicNVJzNu2srzham3EkDWecHANBkLHKIoJGeGq+rU+JY4RkAcE4IPwgq1hCLhiV38XcZAIAgRrcXAAAwFa784Cdul7RnnXTsgBQZK/UcLoVY/V0VAAA+RfhBre0FUuHDknP/T9uiE6T0p6SUcf6rCwAAH6PbC7XB563J3sFHkpwVtdu3F/inLgAAWgDhx+zcrtorPqe7bWjhrNp2AAC0AX4NPzk5Obr00ksVFRUlu92uCRMmqKysrMG2hmHommuukcVi0bJly0573IyMDFksFq9Henp6C5xBG7BnXf0rPl4MyflVbTsAANoAv4af4uJiZWZmasOGDVq5cqVOnDihtLQ0VVVV1Wu7cOFCWSxNX88lPT1dFRUVnsfrr7/uy9LbjmMHfNsOAIAA59cBz4WFhV7PFy9eLLvdrk2bNmnkyJGe7Vu2bNEzzzyjjz/+WPHxTVvJNzQ0VHFxcT6tt02KjPVtOwAAAlxAjflxOBySpJiYn25Qefz4cd166636/e9/36wwU1RUJLvdrr59+2rq1Kk6dOhQo21ramrkdDq9HqbRc3jtrK7T3TY0ulttOwAA2oCACT9ut1vZ2dkaMWKEUlNTPdvvv/9+DR8+XOPHj2/ysdLT0/Xqq69q1apVeuqpp1RcXKxrrrlGLlfDg3ZzcnJks9k8j8TExHM+n6ARYq2dzi6p0duGpj/Jej8AgHPndknlH0rb/q/2Tz9NprEYhtHQNJ9WN3XqVL3zzjtas2aNunfvLkkqKCjQAw88oE8++USRkZGSJIvFovz8fE2YMKHJx/7yyy+VnJys9957T1dddVW9/TU1NaqpqfE8dzqdSkxMlMPhUHR09LmdWLBocJ2fbrXBh3V+AADnqhXWk3M6nbLZbGf8/g6IRQ6zsrK0YsUKffDBB57gI0nvv/++du3apU6dOnm1v/HGG/Xzn/9cRUVFTTp+r1691LVrV+3cubPB8BMaGqrQ0NBzOYXglzJO6ncdKzwDAHyvbj25U5dVqVtPbuKrrfqLtl/Dj2EYmjZtmvLz81VUVKSkpCSv/bNmzdL/+3//z2vbgAED9Lvf/U5jx45t8vv861//0qFDh5o8WNq0QqxS0s/9XQUAoC0543pyltr15Ppd12q/cPt1zE9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nSYqLi1NqaqrXQ5J69OjhFZT69eun/Px8SdKxY8f00EMPacOGDdq9e7dWrVql8ePHq3fv3hozZkzrnyQAAGYWgOvJ+TX85ObmyuFwaNSoUYqPj/c83nzzzWYdp6yszDNTzGq1auvWrRo3bpzOP/983X333Ro0aJA+/PBDurYAAGhtAbienN+7vXzxmpO3hYeH69133z2nugAAgI8E4HpyATPVHQAAtEEBuJ4c4QcAALScAFxPjvADAABaVsq42uns0afMuo5OaPVp7lKArPMDAADauABaT47wAwAAWkeArCdHtxcAADAVwg8AADAVur0A4Gy5XQExfgFA8xB+AOBstMIdqgG0DLq9AKC56u5Qfer9iuruUL29wD91AWgSwg88XG5D63cd0l+3fKX1uw7J5W7+7UeANu+Md6hW7R2q3a7WrApAM9DtBUlSYWmF5i3frgpHtWdbvC1Mc8emKD01/jSvBEymOXeoDoApvQDq48oPVFhaoalLNnsFH0mqdFRr6pLNKiyt8FNlQAAKwDtUA2gewo/JudyG5i3ffroL+Jq3fDtdYECdALxDNYDmIfyY3Mbyw/Wu+JzMkFThqNbG8sOtVxQQyALwDtUAmofwY3IHjzYefM6mHdDmBeAdqgE0D+HH5OxRYT5tB5hCgN2hGkDzMNvL5IYkxSjeFqZKR3WD434skuJsYRqSFNPapQGBLYDuUA2gebjyY3LWEIvmjk2R1OgFfM0dmyJrSGPjGwATq7tD9YBf1v5J8AGCAuEHSk+NV+6kgYqzeXdtxdnClDtpIOv8AADaFLq9IKk2AF2dEqeN5Yd18Gi17FG1XV1c8QEAtDWEH3hYQywaltzF32UAANCi6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwiKHANCGudwGK7cDpyD8AEAbVVhaoXnLt6vCUe3ZFm8L09yxKdyzD6ZGtxcAtEGFpRWaumSzV/CRpEpHtaYu2azC0go/VQb4H+EHANoYl9vQvOXbZTSwr27bvOXb5XI31AJo+wg/ANDGbCw/XO+Kz8kMSRWOam0sP9x6RQEBhPADAG3MwaONB5+zaQe0NYQfAGhj7FFhPm0HtDWEHwBoY4YkxSjeFqbGJrRbVDvra0hSTGuWBQQMwg8AtDHWEIvmjk2RpHoBqO753LEprPcD0yL8AEAblJ4ar9xJAxVn8+7airOFKXfSQNb5gamxyCEAtFHpqfG6OiWOFZ6BU/j1yk9OTo4uvfRSRUVFyW63a8KECSorK2uwrWEYuuaaa2SxWLRs2bLTHtcwDD3yyCOKj49XeHi4Ro8erR07drTAGQBAYLOGWDQsuYvGX9xNw5K7EHwA+Tn8FBcXKzMzUxs2bNDKlSt14sQJpaWlqaqqql7bhQsXymJp2g/tggUL9Nxzz2nRokUqKSlRRESExowZo+pqpnUCAGB2FsMwAmaJz6+//lp2u13FxcUaOXKkZ/uWLVt0/fXX6+OPP1Z8fLzy8/M1YcKEBo9hGIYSEhL0wAMP6MEHH5QkORwOxcbGavHixbr55pvrvaampkY1NTWe506nU4mJiXI4HIqOjvbtSQIAgBbhdDpls9nO+P0dUAOeHQ6HJCkm5qfpl8ePH9ett96q3//+94qLizvjMcrLy1VZWanRo0d7ttlsNg0dOlTr169v8DU5OTmy2WyeR2Ji4jmeCQAACFQBE37cbreys7M1YsQIpaamerbff//9Gj58uMaPH9+k41RWVkqSYmNjvbbHxsZ69p1q9uzZcjgcnse+ffvO8iwAAECgC5jZXpmZmSotLdWaNWs82woKCvT+++/rk08+adH3Dg0NVWhoaIu+BwAACAwBceUnKytLK1as0OrVq9W9e3fP9vfff1+7du1Sp06d1K5dO7VrV5vVbrzxRo0aNarBY9V1jR04cMBr+4EDB5rUbQYAANo2v4YfwzCUlZWl/Px8vf/++0pKSvLaP2vWLG3dulVbtmzxPCTpd7/7nfLy8ho8ZlJSkuLi4rRq1SrPNqfTqZKSEg0bNqzFzgUAAAQHv3Z7ZWZmaunSpfrrX/+qqKgoz5gcm82m8PBwxcXFNXi1pkePHl5BqV+/fsrJydENN9wgi8Wi7OxszZ8/X3369FFSUpLmzJmjhISERmeIAQAA8/Br+MnNzZWkel1YeXl5ysjIaPJxysrKPDPFJGnmzJmqqqrSlClTdOTIEV1++eUqLCxUWBh3MAYAwOwCap2fQNHUdQIAAEDgCMp1fgAAAFoa4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJhKO38XAAAwN5fb0Mbywzp4tFr2qDANSYqRNcTi77LQhhF+AAB+U1haoXnLt6vCUe3ZFm8L09yxKUpPjfdjZWjL6PYCAPhFYWmFpi7Z7BV8JKnSUa2pSzarsLTCT5WhrSP8AABancttaN7y7TIa2Fe3bd7y7XK5G2oBnBvCDwCg1W0sP1zvis/JDEkVjmptLD/cekXBNAg/AIBWd/Bo48HnbNoBzUH4AQC0OntUmE/bAc1B+AEAtLohSTGKt4WpsQntFtXO+hqSFNOaZcEkCD8AgFZnDbFo7tgUSaoXgOqezx2bwno/aBGEHwCAX6Snxit30kDF2by7tuJsYcqdNJB1ftBiWOQQAOA36anxujoljhWe0arOKfxUV1frzTffVFVVla6++mr16dPHV3UBAEzCGmLRsOQu/i4DJtLk8DNjxgydOHFCzz//vCTp+++/17Bhw/TZZ5+pY8eOmjlzplauXKlhw4a1WLEAAADnqsljfv7xj3/o6quv9jx/7bXXtGfPHu3YsUPffvutbrrpJs2fP79FigQAAPCVJoefvXv3KiUlxfP8H//4h375y1+qZ8+eslgsmj59uj755JMWKRIA0Ia5XVL5h9K2/6v90+3yd0Vo45rc7RUSEiLD+OkeKxs2bNCcOXM8zzt16qRvv/3Wt9UBANq27QVS4cOSc/9P26ITpPSnpJRx/qsLbVqTr/z0799fy5cvlyR99tln2rt3r6688krP/j179ig2Ntb3FQIA2qbtBdJbk72DjyQ5K2q3by/wT11o85p85WfmzJm6+eab9be//U2fffaZrr32WiUlJXn2//3vf9eQIUNapEgAQBvjdtVe8Wn0vu4WqXCW1O86KcTaysUFKbdL2rNOOnZAioyVeg4PuM/O5TYCYlmDJoefG264QX//+9+1YsUKpaWladq0aV77O3bsqHvvvdfnBQIA2qA96+pf8fFiSM6vatsl/bzVygpaQdB9WFhaoXnLt6vC8dPNauNtYZo7NqXVF7S0GCcP5DmNxx57TA8++KA6duzY0jX5ndPplM1mk8PhUHR0tL/LAYC2Z9v/SW/ffeZ2N/5RGvDLlq8nmNV1H9a7ivbjFZWJr/o9ABWWVmjqks2NVeizFb2b+v3d5DE/8+bN07Fjx865MAAAFNnEMaJNbWdWZ+w+VG33oR9n0LnchuYt3366CjVv+Xa53E26FuMTTQ4/TbxABLQspsQCbUPP4bXdMqe7r3t0t9p2aFxzug/9ZGP5Ya+urlMZkioc1dpYfrjVamrW7S0sFu61Aj8Kgj5tAE0UYq392X1rsmoD0Mm/YP/4XZP+ZMAN2A04xw74tl0LOHi08eBzNu18oVnh5/zzzz9jADp8uPWSG0yksT7tuimxAdCnDaCZUsbV/uw2+EvNk/xMN0UQdB/ao8J82s4XmhV+5s2bJ5vN1lK1AA1jSizQdqWMq/3ZDfAp2gGrrvvQWaGG/4201O73Y/fhkKQYxdvCVOmobqxCxdlqp723lmaFn5tvvll2u91nb56Tk6O//OUv+uKLLxQeHq7hw4frqaeeUt++fT1tfvWrX+m9997T/v37FRkZ6WnTr1+/Ro+bkZGhV155xWvbmDFjVFhY6LPa0YqYEgu0bSFWfnbPVhB0H1pDLJo7NkVTl2xurELNHZvSquv9NHnAc0uM9ykuLlZmZqY2bNiglStX6sSJE0pLS1NVVZWnzaBBg5SXl6fPP/9c7777rgzDUFpamlyu0w90TU9PV0VFhefx+uuv+7x+tJIg6NMGAL+p6z6MPmWqeHRCwAwJSE+NV+6kgYqzeXdtxdnCfDbNvTmavM5PSEiIKisrfXrl51Rff/217Ha7iouLNXLkyAbbbN26VRdddJF27typ5OTkBttkZGToyJEjWrZsWZPet6amRjU1NZ7nTqdTiYmJrPMTKMo/lF65/szt7ljBb48AzIsVnpu8zk+Tu73cbrdPCjsdh8MhSYqJabjfr6qqSnl5eUpKSlJiYuJpj1VUVCS73a7OnTvr3/7t3zR//nx16dKlwbY5OTmaN2/euRWPlhMEfdoA4HdB0H1oDbFoWHLD38WtqclXflqa2+3WuHHjdOTIEa1Zs8Zr3wsvvKCZM2eqqqpKffv21d/+9rdGr/pI0htvvKGOHTsqKSlJu3bt0q9//WtFRkZq/fr1slrrp2Cu/AQBz2wvqcEe4wC5tAsA8J+mXvkJmPAzdepUvfPOO1qzZo26d+/utc/hcOjgwYOqqKjQ008/ra+++kpr165VWFjTpsV9+eWXSk5O1nvvvaerrrrqjO25vUWAanCdn25MiQUASGqBbq+WlJWVpRUrVuiDDz6oF3wkyWazyWazqU+fPrrsssvUuXNn5efn65ZbbmnS8Xv16qWuXbtq586dTQo/CFBMiQUA+IBfw49hGJo2bZry8/NVVFSkpKSkJr3GMAyvbqoz+de//qVDhw4pPr51R5OjBQRBnzYAILA1eap7S8jMzNSSJUu0dOlSRUVFqbKyUpWVlfruu+8k1XZX5eTkaNOmTdq7d6/WrVunm266SeHh4br22ms9x+nXr5/y8/MlSceOHdNDDz2kDRs2aPfu3Vq1apXGjx+v3r17a8yYMX45TwBAcHO5Da3fdUh/3fKV1u861Ko34YTv+fXKT25uriRp1KhRXtvz8vKUkZGhsLAwffjhh1q4cKG+/fZbxcbGauTIkVq3bp3XlPuysjLPTDGr1aqtW7fqlVde0ZEjR5SQkKC0tDQ9/vjjCg0NbbVzAwC0DYWlFXq8YJsSj30qu47ooDppX+RFmjNuQKuvTwPfCJgBz4GEAc8AAKk2+CxbukiPtH9VCZaf7l2534jRYycma8Kt/0EACiBN/f72a7cXAACByuU2VLTsT3qh/ULFyfum3XE6rBfaL1TRsj/RBRaECD8AADRg466vdd+JlyVJpy5CXPf8vhN/1MZdX7dyZThXhB8AABrg2r1WCZbD9YJPnRCLlGA5JNfuta1bGM4Z4QcAgAbYLUd82g6Bg/ADAEADkns1fhuls2mHwEH4AQCgAdbzRui78Dg1Np7ZbUjfhcfJet6I1i0M54zwA5gQC7YBTRBiVfjY/5LFYpH7lF1uSRaLReFj/4tb7AShgLi3F4DWU1haoXnLt6vCUe3ZFm8L09yxKaxXApwqZZwsE1+td1NlS3Q3WbipctBikcMGsMgh2qrC0gpNXbJZp/7Q101myZ00kAAENMTt4qbKQSCo7uoOoOW53IbmLd9eL/hIkqHaADRv+XZdnRIna2NzewGz4qbKbQpjfgCT2Fh+2Kur61SGpApHtTaWH260DQC0BYQfwCQOHm08+JxNOwAIVoQfwCTsUWE+bQcAwYrwA5jEkKQYxdvC1NhoHotqZ30NSYppzbIAoNURfgCTsIZYNHdsiiTVC0B1z+eOTWGwM4A2j/ADmEh6arxyJw1UnM27ayvOFsY0dwCmwVR3wGTSU+N1dUqcNpYf1sGj1bJH1XZ1ccUHgFkQfgATsoZYNCy5i7/LAAC/oNsLAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCoscAghILrfBKtQAWgThB0DAKSyt0Lzl21XhqPZsi7eFae7YFO4/BuCc0e0FIKAUllZo6pLNXsFHkiod1Zq6ZLMKSyv8VBmAtoLwAyBguNyG5i3fLqOBfXXb5i3fLpe7oRYA0DSEHwABY2P54XpXfE5mSKpwVGtj+eHWKwpAm0P4ARAwDh5tPPicTTsAaAjhB0DAsEeF+bQdADSE8AMgYAxJilG8LUyNTWi3qHbW15CkmNYsC0AbQ/gBEDCsIRbNHZsiSfUCUN3zuWNTWO8HwDkh/AAIKOmp8cqdNFBxNu+urThbmHInDWSdHwDnjEUOAR9jZeJzl54ar6tT4vgcAbQIwg/gQ6xM7DvWEIuGJXfxdxkA2iC6vQAfYWViAAgOhB/AB1iZGACCh1/DT05Oji699FJFRUXJbrdrwoQJKisr82rzq1/9SsnJyQoPD9fPfvYzjR8/Xl988cVpj2sYhh555BHFx8crPDxco0eP1o4dO1ryVGByrEwMAMHDr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVnjaDBg1SXl6ePv/8c7377rsyDENpaWlyuVyNHnfBggV67rnntGjRIpWUlCgiIkJjxoxRdTWrwqJlsDIxAAQPi2EYAXMd/uuvv5bdbldxcbFGjhzZYJutW7fqoosu0s6dO5WcnFxvv2EYSkhI0AMPPKAHH3xQkuRwOBQbG6vFixfr5ptvrveampoa1dTUeJ47nU4lJibK4XAoOjraR2eHtmz9rkO65aUNZ2z3+j2XMYgXQItgpmnt97fNZjvj93dAzfZyOBySpJiYhldvraqqUl5enpKSkpSYmNhgm/LyclVWVmr06NGebTabTUOHDtX69esbDD85OTmaN2+eD84AZlW3MnGlo7rBcT8W1a5Tw8rEAFoCM02bJ2AGPLvdbmVnZ2vEiBFKTU312vfCCy8oMjJSkZGReuedd7Ry5Up16NChweNUVlZKkmJjY722x8bGevadavbs2XI4HJ7Hvn37fHBGMBNWJgbgL8w0bb6ACT+ZmZkqLS3VG2+8UW/fbbfdpk8++UTFxcU6//zzNXHiRJ+O3wkNDVV0dLTXA2guViYG0NqYaXp2AqLbKysrSytWrNAHH3yg7t2719tvs9lks9nUp08fXXbZZercubPy8/N1yy231GsbFxcnSTpw4IDi43/6sjlw4IAuvvjiFjsHQGJlYgCtqzkzTRlv+BO/XvkxDENZWVnKz8/X+++/r6SkpCa9xjAMrwHKJ0tKSlJcXJxWrVrl2eZ0OlVSUqJhw4b5rHagMXUrE4+/uJuGJXch+ABoMcw0PTt+DT+ZmZlasmSJli5dqqioKFVWVqqyslLfffedJOnLL79UTk6ONm3apL1792rdunW66aabFB4ermuvvdZznH79+ik/P1+SZLFYlJ2drfnz56ugoEDbtm3T5MmTlZCQoAkTJvjjNAEAaBH2qLAzN2pGO7Pwa7dXbm6uJGnUqFFe2/Py8pSRkaGwsDB9+OGHWrhwob799lvFxsZq5MiRWrdunex2u6d9WVmZZ6aYJM2cOVNVVVWaMmWKjhw5ossvv1yFhYUKC+N/PgCg7WCm6dkJqHV+AkVT1wkAAMDf6mZ7SfIKQHUd7maacNHU7++Ame0FAACaj5mmzRcQs70AAMDZY6Zp8xB+AABoA+pmmuLM6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwlR3wNfcLmnPOunYASkyVuo5XAqx+rsqAMCPCD+AL20vkAoflpz7f9oWnSClPyWljPNfXQAAD7q9AF/ZXiC9Ndk7+EiSs6J2+/YC/9QFAPBC+AF8we2qveLT4H2Vf9xWOKu2HQDArwg/gC/sWVf/io8XQ3J+VdsOAOBXhB/AF44d8G07AECLIfwAvhAZ69t2AIAWQ/gBfKHn8NpZXbI00sAiRXerbQcA8CvCD+ALIdba6eyS6gegH5+nP8l6PwAQAAg/gK+kjJMmvipFx3tvj06o3c46PwAQEFjkEPCllHFSv+tY4RkAAhjhB/C1EKuU9HN/VwEAaAThB0Bg4h5pAFoI4QdA4OEeaQBaEAOeAQQW7pEGoIURfgAEDu6RBqAVEH4ABA7ukQagFRB+AAQO7pEGoBUw4LmVuNyGNpYf1sGj1bJHhWlIUoysIY3dCgEwKe6RBqAVEH5aQWFpheYt364KR7VnW7wtTHPHpig9Nf40rwRMpu4eac4KNTzux1K7n3ukATgHdHu1sMLSCk1dstkr+EhSpaNaU5dsVmFphZ8qAwIQ90gD0AoIPy3I5TY0b/n2081b0bzl2+VyN9QCMCnukQaghdHt1YI2lh+ud8XnZIakCke1NpYf1rDkLq1XGBDouEcagBZE+GlBB482HnzOph1gKtwjDUALodurBdmjwnzaDgAAnDvCTwsakhSjeFtYvWGbdSyqnfU1JCmmNcsCAMDUCD8tyBpi0dyxKZIanbeiuWNTWO8HAIBWRPhpYemp8cqdNFBxNu+urThbmHInDWSdHwAAWhkDnltBemq8rk6JY4VnBA63i5lUAEyL8NNKrCEWprMjMGwvqL1z+sk3EI1OqF1ckDV0AJgA3V6AmWwvkN6aXP/O6c6K2u3bC/xTFwC0Ir+Gn5ycHF166aWKioqS3W7XhAkTVFZW5tl/+PBhTZs2TX379lV4eLh69Oih++67Tw6H47THzcjIkMVi8Xqkp6e39OkAgc3tqr3ic7o1xwtn1bYDgDbMr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVkqT9+/dr//79evrpp1VaWqrFixersLBQd9999xmPnZ6eroqKCs/j9ddfb+nTAQLbnnX1r/h4MSTnV7XtAKAN8+uYn8LCQq/nixcvlt1u16ZNmzRy5Eilpqbq7bff9uxPTk7WE088oUmTJumHH35Qu3aNlx8aGqq4uLgm1VFTU6OamhrPc6fT2cwzAYLAsQO+bQcAQSqgxvzUdWfFxDS+6J/D4VB0dPRpg48kFRUVyW63q2/fvpo6daoOHTrUaNucnBzZbDbPIzEx8exOAAhkkbG+bQcAQcpiGEZA3FLc7XZr3LhxOnLkiNasWdNgm2+++UaDBg3SpEmT9MQTTzR6rDfeeEMdO3ZUUlKSdu3apV//+teKjIzU+vXrZbXWn87b0JWfxMRET9AC2gS3S1qYWju4ucFxP5baWV/Z25j2DiAoOZ1O2Wy2M35/B0z4mTp1qt555x2tWbNG3bt3r7ff6XTq6quvVkxMjAoKCtS+ffsmH/vLL79UcnKy3nvvPV111VVnbN/UDw8IOnWzvSR5B6Af15ya+CrT3QEEraZ+fwdEt1dWVpZWrFih1atXNxh8jh49qvT0dEVFRSk/P79ZwUeSevXqpa5du2rnzp2+KhkITinjagNO9Ckri0cnEHwAmIZfBzwbhqFp06YpPz9fRUVFSkpKqtfG6XRqzJgxCg0NVUFBgcLCmn8H9H/96186dOiQ4uO5lQSglHFSv+tY4RmAafn1yk9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nqTb41E19/+Mf/yin0+lp43L9tBZJv379lJ+fL0k6duyYHnroIW3YsEG7d+/WqlWrNH78ePXu3Vtjxozxy3kCASfEKiX9XBrwy9o/CT4ATMSvV35yc3MlSaNGjfLanpeXp4yMDG3evFklJSWSpN69e3u1KS8v13nnnSdJKisr88wUs1qt2rp1q1555RUdOXJECQkJSktL0+OPP67Q0NCWPSEAABDwAmbAcyBhwDMAAMEnqAY8AwAAtBbCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBW/hp+cnBxdeumlioqKkt1u14QJE1RWVubZf/jwYU2bNk19+/ZVeHi4evToofvuu08Oh+O0xzUMQ4888oji4+MVHh6u0aNHa8eOHS19OgAAIAj4NfwUFxcrMzNTGzZs0MqVK3XixAmlpaWpqqpKkrR//37t379fTz/9tEpLS7V48WIVFhbq7rvvPu1xFyxYoOeee06LFi1SSUmJIiIiNGbMGFVXV7fGaQEAgABmMQzD8HcRdb7++mvZ7XYVFxdr5MiRDbb53//9X02aNElVVVVq165dvf2GYSghIUEPPPCAHnzwQUmSw+FQbGysFi9erJtvvvmMdTidTtlsNjkcDkVHR5/bSQEAgFbR1O/vgBrzU9edFRMTc9o20dHRDQYfSSovL1dlZaVGjx7t2Waz2TR06FCtX7++wdfU1NTI6XR6PQCgTXC7pPIPpW3/V/un2+XvigC/azhB+IHb7VZ2drZGjBih1NTUBtt88803evzxxzVlypRGj1NZWSlJio2N9doeGxvr2XeqnJwczZs37ywrB4AAtb1AKnxYcu7/aVt0gpT+lJQyzn91AX4WMFd+MjMzVVpaqjfeeKPB/U6nU9ddd51SUlL06KOP+vS9Z8+eLYfD4Xns27fPp8cHgFa3vUB6a7J38JEkZ0Xt9u0F/qkLCAABEX6ysrK0YsUKrV69Wt27d6+3/+jRo0pPT1dUVJTy8/PVvn37Ro8VFxcnSTpw4IDX9gMHDnj2nSo0NFTR0dFeDwAIWm5X7RUfNTSk88dthbPoAoNp+TX8GIahrKws5efn6/3331dSUlK9Nk6nU2lpaerQoYMKCgoUFhZ22mMmJSUpLi5Oq1at8jpGSUmJhg0b5vNzAICAs2dd/Ss+XgzJ+VVtO8CE/Bp+MjMztWTJEi1dulRRUVGqrKxUZWWlvvvuO0k/BZ+qqir98Y9/lNPp9LRxuX76jaVfv37Kz8+XJFksFmVnZ2v+/PkqKCjQtm3bNHnyZCUkJGjChAn+OE0AaF3HDpy5TXPaAW2MXwc85+bmSpJGjRrltT0vL08ZGRnavHmzSkpKJEm9e/f2alNeXq7zzjtPklRWVua18OHMmTNVVVWlKVOm6MiRI7r88stVWFh4xqtGANAmRMaeuU1z2gFtTECt8xMoWOcHQFBzu6SFqbWDmxsc92OpnfWVvU0KsbZ2dUCLCcp1fgAAPhBirZ3OLkmynLLzx+fpTxJ8YFqEHwBoi1LGSRNflaLjvbdHJ9RuZ50fmFjALHIIAPCxlHFSv+tqZ3UdO1A7xqfncK74wPQIPwDQloVYpaSf+7sKIKDQ7QUAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyFFZ4bUHeje6fT6edKAABAU9V9b9d9jzeG8NOAo0ePSpISExP9XAkAAGiuo0ePymazNbrfYpwpHpmQ2+3W/v37FRUVJYvF4rPjOp1OJSYmat++fYqOjvbZcc2Gz9E3+Bx9g8/RN/gcfcPsn6NhGDp69KgSEhIUEtL4yB6u/DQgJCRE3bt3b7HjR0dHm/Ivpa/xOfoGn6Nv8Dn6Bp+jb5j5czzdFZ86DHgGAACmQvgBAACmQvhpRaGhoZo7d65CQ0P9XUpQ43P0DT5H3+Bz9A0+R9/gc2waBjwDAABT4coPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcJPK/r973+v8847T2FhYRo6dKg2btzo75KCSk5Oji699FJFRUXJbrdrwoQJKisr83dZQe/JJ5+UxWJRdna2v0sJOl999ZUmTZqkLl26KDw8XAMGDNDHH3/s77KCisvl0pw5c5SUlKTw8HAlJyfr8ccfP+O9mczugw8+0NixY5WQkCCLxaJly5Z57TcMQ4888oji4+MVHh6u0aNHa8eOHf4pNgARflrJm2++qRkzZmju3LnavHmzLrroIo0ZM0YHDx70d2lBo7i4WJmZmdqwYYNWrlypEydOKC0tTVVVVf4uLWh99NFH+sMf/qALL7zQ36UEnW+//VYjRoxQ+/bt9c4772j79u165pln1LlzZ3+XFlSeeuop5ebm6n/+53/0+eef66mnntKCBQv0/PPP+7u0gFZVVaWLLrpIv//97xvcv2DBAj333HNatGiRSkpKFBERoTFjxqi6urqVKw1QBlrFkCFDjMzMTM9zl8tlJCQkGDk5OX6sKrgdPHjQkGQUFxf7u5SgdPToUaNPnz7GypUrjSuuuMKYPn26v0sKKg8//LBx+eWX+7uMoHfdddcZd911l9e2X/ziF8Ztt93mp4qCjyQjPz/f89ztdhtxcXHGf/3Xf3m2HTlyxAgNDTVef/11P1QYeLjy0wq+//57bdq0SaNHj/ZsCwkJ0ejRo7V+/Xo/VhbcHA6HJCkmJsbPlQSnzMxMXXfddV5/L9F0BQUFGjx4sG666SbZ7XZdcskleumll/xdVtAZPny4Vq1apX/+85+SpE8//VRr1qzRNddc4+fKgld5ebkqKyu9frZtNpuGDh3Kd86PuLFpK/jmm2/kcrkUGxvrtT02NlZffPGFn6oKbm63W9nZ2RoxYoRSU1P9XU7QeeONN7R582Z99NFH/i4laH355ZfKzc3VjBkz9Otf/1offfSR7rvvPnXo0EF33HGHv8sLGrNmzZLT6VS/fv1ktVrlcrn0xBNP6LbbbvN3aUGrsrJSkhr8zqnbZ3aEHwSlzMxMlZaWas2aNf4uJejs27dP06dP18qVKxUWFubvcoKW2+3W4MGD9dvf/laSdMkll6i0tFSLFi0i/DTDW2+9pddee01Lly7VBRdcoC1btig7O1sJCQl8jmgxdHu1gq5du8pqterAgQNe2w8cOKC4uDg/VRW8srKytGLFCq1evVrdu3f3dzlBZ9OmTTp48KAGDhyodu3aqV27diouLtZzzz2ndu3ayeVy+bvEoBAfH6+UlBSvbf3799fevXv9VFFweuihhzRr1izdfPPNGjBggG6//Xbdf//9ysnJ8XdpQavue4XvnMYRflpBhw4dNGjQIK1atcqzze12a9WqVRo2bJgfKwsuhmEoKytL+fn5ev/995WUlOTvkoLSVVddpW3btmnLli2ex+DBg3Xbbbdpy5Ytslqt/i4xKIwYMaLeUgv//Oc/1bNnTz9VFJyOHz+ukBDvryKr1Sq32+2nioJfUlKS4uLivL5znE6nSkpK+M75Ed1erWTGjBm64447NHjwYA0ZMkQLFy5UVVWV7rzzTn+XFjQyMzO1dOlS/fWvf1VUVJSn79pmsyk8PNzP1QWPqKioeuOkIiIi1KVLF8ZPNcP999+v4cOH67e//a0mTpyojRs36sUXX9SLL77o79KCytixY/XEE0+oR48euuCCC/TJJ5/ov//7v3XXXXf5u7SAduzYMe3cudPzvLy8XFu2bFFMTIx69Oih7OxszZ8/X3369FFSUpLmzJmjhIQETZgwwX9FBxJ/Tzczk+eff97o0aOH0aFDB2PIkCHGhg0b/F1SUJHU4CMvL8/fpQU9prqfneXLlxupqalGaGio0a9fP+PFF1/0d0lBx+l0GtOnTzd69OhhhIWFGb169TJ+85vfGDU1Nf4uLaCtXr26wX8P77jjDsMwaqe7z5kzx4iNjTVCQ0ONq666yigrK/Nv0QHEYhgsowkAAMyDMT8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8ATCcjI4Nl/gETI/wAaBEZGRmyWCz1Hunp6f4uTc8++6wWL17s7zIkSRaLRcuWLfN3GYCpcGNTAC0mPT1deXl5XttCQ0P9VI3kcrlksVhks9n8VgMA/+PKD4AWExoaqri4OK9H586dVVRUpA4dOujDDz/0tF2wYIHsdrsOHDggSRo1apSysrKUlZUlm82mrl27as6cOTr5doQ1NTV68MEH1a1bN0VERGjo0KEqKiry7F+8eLE6deqkgoICpaSkKDQ0VHv37q3X7TVq1ChNmzZN2dnZ6ty5s2JjY/XSSy+pqqpKd955p6KiotS7d2+98847XudXWlqqa665RpGRkYqNjdXtt9+ub775xuu49913n2bOnKmYmBjFxcXp0Ucf9ew/77zzJEk33HCDLBaL5zmAlkX4AdDqRo0apezsbN1+++1yOBz65JNPNGfOHL388suKjY31tHvllVfUrl07bdy4Uc8++6z++7//Wy+//LJnf1ZWltavX6833nhDW7du1U033aT09HTt2LHD0+b48eN66qmn9PLLL+uzzz6T3W5vsKZXXnlFXbt21caNGzVt2jRNnTpVN910k4YPH67NmzcrLS1Nt99+u44fPy5JOnLkiP7t3/5Nl1xyiT7++GMVFhbqwIEDmjhxYr3jRkREqKSkRAsWLNBjjz2mlStXSpI++ugjSVJeXp4qKio8zwG0MD/fVR5AG3XHHXcYVqvViIiI8Ho88cQThmEYRk1NjXHxxRcbEydONFJSUox77rnH6/VXXHGF0b9/f8Ptdnu2Pfzww0b//v0NwzCMPXv2GFar1fjqq6+8XnfVVVcZs2fPNgzDMPLy8gxJxpYtW+rVNn78eK/3uvzyyz3Pf/jhByMiIsK4/fbbPdsqKioMScb69esNwzCMxx9/3EhLS/M67r59+wxJRllZWYPHNQzDuPTSS42HH37Y81ySkZ+f38inCKAlMOYHQIu58sorlZub67UtJiZGktShQwe99tpruvDCC9WzZ0/97ne/q/f6yy67TBaLxfN82LBheuaZZ+RyubRt2za5XC6df/75Xq+pqalRly5dPM87dOigCy+88Iy1ntzGarWqS5cuGjBggGdb3RWpgwcPSpI+/fRTrV69WpGRkfWOtWvXLk9dp753fHy85xgA/IPwA6DFREREqHfv3o3uX7dunSTp8OHDOnz4sCIiIpp87GPHjslqtWrTpk2yWq1e+04OJOHh4V4BqjHt27f3em6xWLy21R3D7XZ73n/s2LF66qmn6h0rPj7+tMetOwYA/yD8APCLXbt26f7779dLL72kN998U3fccYfee+89hYT8NBSxpKTE6zUbNmxQnz59ZLVadckll8jlcungwYP6+c9/3trla+DAgXr77bd13nnnqV27s/+ntH379nK5XD6sDMCZMOAZQIupqalRZWWl1+Obb76Ry+XSpEmTNGbMGN15553Ky8vT1q1b9cwzz3i9fu/evZoxY4bKysr0+uuv6/nnn9f06dMlSeeff75uu+02TZ48WX/5y19UXl6ujRs3KicnR3/7299a/NwyMzN1+PBh3XLLLfroo4+0a9cuvfvuu7rzzjubFWbOO+88rVq1SpWVlfr2229bsGIAdbjyA6DFFBYWenUBSVLfvn116623as+ePVqxYoWk2m6iF198UbfccovS0tJ00UUXSZImT56s7777TkOGDJHVatX06dM1ZcoUz7Hy8vI0f/58PfDAA/rqq6/UtWtXXXbZZbr++utb/NwSEhK0du1aPfzww0pLS1NNTY169uyp9PR0r6tXZ/LMM89oxowZeumll9StWzft3r275YoGIEmyGMZJi2YAQIAYNWqULr74Yi1cuNDfpQBoY+j2AgAApkL4AQAApkK3FwAAMBWu/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFP5/8WsQxoSnpCUAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", From c1c605378b09053de741984eeaf215cb1e50a9be Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 11:10:57 +0100 Subject: [PATCH 06/12] added timeseries plots with years instead of experiments to lstm notebook --- workflow/pred_temperature_LSTM.ipynb | 2545 ++++++++----------- workflow/pred_temperature_autoencoder.ipynb | 1660 ++++++------ 2 files changed, 1998 insertions(+), 2207 deletions(-) diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 9b23cc0..02237d1 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -95,15 +95,19 @@ "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", - " allow_overlap=False,\n", + " anchor='07-01',\n", + " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] @@ -167,7 +171,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -218,6 +222,10 @@ " \n", " \n", " i_interval\n", + " -8\n", + " -7\n", + " -6\n", + " -5\n", " -4\n", " -3\n", " -2\n", @@ -231,30 +239,46 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " 2021\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", @@ -263,17 +287,29 @@ "" ], "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -380,7 +416,8 @@ "source": [ "# select variables and intervals\n", "precursor_field_sel = precursor_field_resample['sst']\n", - "target_series_sel = target_field_resample['t2m'].sel(cluster=3)" + "# selecting 1-d timeseries of cluster 3 for target\n", + "target_series_sel = target_field_resample['t2m'].sel(cluster=3) " ] }, { @@ -393,19 +430,20 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ - "# slice and reshape input desired by transformer\n", - "sequence_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", + "# slice and reshape input desired by LSTM (samples, lags, space)\n", + "sequence_lags_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", "lat_precursor = len(precursor_field_sel.latitude)\n", "lon_precursor = len(precursor_field_sel.longitude)\n", "\n", "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", "\n", - "X_torch = X_torch.view(-1, sequence_precursor, lat_precursor*lon_precursor)\n", + "# shape (samples, lags, space)\n", + "X_torch = X_torch.view(-1, sequence_lags_precursor, lat_precursor*lon_precursor)\n", "\n", "# turn nan to 0.0\n", "X_torch = torch.nan_to_num(X_torch, 0.0)" @@ -421,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -468,10 +506,19 @@ " \"\"\"\n", " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", " Expected input timeseries dimension [batch_size, sequence, channels]\n", + "\n", + " args:\n", + " input_dim: The number of expected features in the input x\n", + " hidden_dim: The number of features in the hidden state h\n", + " output_dim: The number of output features h\n", + " num_layers: Number of recurrent layers. E.g., setting num_layers=2 would \n", + " mean stacking two LSTMs together to form a stacked LSTM, with the second \n", + " LSTM taking in outputs of the first LSTM and computing the final results. \n", + " Default: 1\n", " \"\"\"\n", " super().__init__()\n", " self.hidden_dim = hidden_dim\n", - " self.batch_size = batch_size\n", + " self.batch_size = batch_size \n", " self.num_layers = num_layers\n", " # Define the LSTM layer\n", " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", @@ -493,15 +540,6 @@ " return x" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Hyper-parameter tuning with W&B\n", - "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
" - ] - }, { "attachments": {}, "cell_type": "markdown", @@ -512,7 +550,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -539,20 +577,76 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " + "#### Hyper-parameter tuning with W&B\n", + "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
\n", + "\n", + "You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 41, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Calling wandb.login() after wandb.init() has no effect.\n" - ] + "data": { + "text/html": [ + "Tracking run with wandb version 0.15.4" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/semv/surfdrive/Scripts/escience/cookbook/workflow/wandb/run-20230705_105625-l6u3oc68" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run zany-totem-8 to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/ai4s2s-demo/test-LSTM" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/ai4s2s-demo/test-LSTM/runs/l6u3oc68" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -562,7 +656,7 @@ " input_dim = lat_precursor*lon_precursor,\n", " hidden_dim = lat_precursor*lon_precursor*2,\n", " output_dim = 1,\n", - " batch_size = 4, \n", + " batch_size = 6, \n", " num_layers = 2,\n", " dropout = 0.0,\n", " learning_rate = 0.02,\n", @@ -575,7 +669,7 @@ "\n", "# initialize weights & biases service\n", "mode = 'disabled'\n", - "# mode = 'online' # <- uncomment this line to enable wandb\n", + "mode = 'online' # <- uncomment this line to enable wandb\n", "team = 'ai4s2s-demo' # <- your own team namehere\n", "project = 'test-LSTM' # <- your own project name here\n", "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", @@ -592,14 +686,14 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# create data loader and use batch \n", - "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = False)\n", - "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = False)\n", - "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = False)" + "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = True)\n", + "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = True)\n", + "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = True)" ] }, { @@ -613,7 +707,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -647,7 +741,7 @@ "[]" ] }, - "execution_count": 33, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -672,7 +766,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -700,1364 +794,914 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 500.860840\n", - "Epoch : 0 [4/36(11%)]\tLoss: 477.839172\n", - "Epoch : 0 [8/36(22%)]\tLoss: 464.381836\n", - "Epoch : 0 [12/36(33%)]\tLoss: 399.421661\n", - "Epoch : 0 [16/36(44%)]\tLoss: 280.344818\n", - "Epoch : 0 [20/36(56%)]\tLoss: 145.664886\n", - "Epoch : 0 [24/36(67%)]\tLoss: 86.540543\n", - "Epoch : 0 [28/36(78%)]\tLoss: 140.879028\n", - "Epoch : 0 [32/36(89%)]\tLoss: 12.666570\n", - "Epoch : 1 [0/36(0%)]\tLoss: 0.944404\n", - "Epoch : 1 [4/36(11%)]\tLoss: 3.015983\n", - "Epoch : 1 [8/36(22%)]\tLoss: 6.834392\n", - "Epoch : 1 [12/36(33%)]\tLoss: 18.831701\n", - "Epoch : 1 [16/36(44%)]\tLoss: 20.399771\n", - "Epoch : 1 [20/36(56%)]\tLoss: 22.759270\n", - "Epoch : 1 [24/36(67%)]\tLoss: 24.548332\n", - "Epoch : 1 [28/36(78%)]\tLoss: 23.996525\n", - "Epoch : 1 [32/36(89%)]\tLoss: 18.059378\n", - "Epoch : 2 [0/36(0%)]\tLoss: 15.301807\n", - "Epoch : 2 [4/36(11%)]\tLoss: 9.922405\n", - "Epoch : 2 [8/36(22%)]\tLoss: 2.112532\n", - "Epoch : 2 [12/36(33%)]\tLoss: 1.550667\n", - "Epoch : 2 [16/36(44%)]\tLoss: 0.851201\n", - "Epoch : 2 [20/36(56%)]\tLoss: 3.316346\n", - "Epoch : 2 [24/36(67%)]\tLoss: 3.919723\n", - "Epoch : 2 [28/36(78%)]\tLoss: 7.788068\n", - "Epoch : 2 [32/36(89%)]\tLoss: 10.701154\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.599494\n", - "Epoch : 3 [4/36(11%)]\tLoss: 3.408816\n", - "Epoch : 3 [8/36(22%)]\tLoss: 4.605702\n", - "Epoch : 3 [12/36(33%)]\tLoss: 2.205826\n", - "Epoch : 3 [16/36(44%)]\tLoss: 3.247538\n", - "Epoch : 3 [20/36(56%)]\tLoss: 3.618429\n", - "Epoch : 3 [24/36(67%)]\tLoss: 1.531296\n", - "Epoch : 3 [28/36(78%)]\tLoss: 1.525063\n", - "Epoch : 3 [32/36(89%)]\tLoss: 1.825021\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.858643\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.924086\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.482357\n", - "Epoch : 4 [12/36(33%)]\tLoss: 2.330732\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.636583\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.956930\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.582981\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.094843\n", - "Epoch : 4 [32/36(89%)]\tLoss: 1.484561\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.865313\n", - "Epoch : 5 [4/36(11%)]\tLoss: 0.867451\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.430974\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.408260\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.439194\n", - "Epoch : 5 [20/36(56%)]\tLoss: 3.110361\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.991286\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.625073\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.144275\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.393740\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.919644\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.335178\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.496095\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.760814\n", - "Epoch : 6 [20/36(56%)]\tLoss: 1.657203\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.203643\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.655438\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.815278\n", - "Epoch : 7 [0/36(0%)]\tLoss: 1.218873\n", - "Epoch : 7 [4/36(11%)]\tLoss: 1.476901\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.237620\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.570176\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.899689\n", - "Epoch : 7 [20/36(56%)]\tLoss: 2.625440\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.250027\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.412886\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.666830\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.347323\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.787471\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.337384\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.327651\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.936593\n", - "Epoch : 8 [20/36(56%)]\tLoss: 3.396663\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.145461\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.375290\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.565472\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.880185\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.419756\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.375021\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.375262\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.688992\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.736244\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.043986\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.460087\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.673829\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.447048\n", - "Epoch : 10 [4/36(11%)]\tLoss: 1.050086\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.298299\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.357923\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.833184\n", - "Epoch : 10 [20/36(56%)]\tLoss: 1.749276\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.131220\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.379357\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.535813\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.528802\n", - "Epoch : 11 [4/36(11%)]\tLoss: 1.119784\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.335772\n", - "Epoch : 11 [12/36(33%)]\tLoss: 1.854423\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.685598\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.536858\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.108431\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.378405\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.633419\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.463714\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.958314\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.263348\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.445057\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.840532\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.928936\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.127887\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.336379\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.673163\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.285418\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.735326\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.304413\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.460694\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.716832\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.584652\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.900978\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.052345\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.473952\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.401452\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.779314\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.255852\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.481564\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.718846\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.582070\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.034369\n", - "Epoch : 14 [28/36(78%)]\tLoss: 2.307538\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.218512\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.498505\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.823776\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.184388\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.387301\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.687601\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.483187\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.967374\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.149480\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.458512\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.259234\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.638024\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.233757\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.386188\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.759001\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.478403\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.092772\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.127187\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.972165\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.381718\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.839981\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.229389\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.582390\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.661528\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.354283\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.963398\n", - "Epoch : 17 [28/36(78%)]\tLoss: 0.981779\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.206037\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.252827\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.560113\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.215954\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.410210\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.629857\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.298580\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.928603\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.275650\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.044478\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.321828\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.769126\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.361488\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.448226\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.702904\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.443682\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.778019\n", - "Epoch : 19 [28/36(78%)]\tLoss: 0.976822\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.426180\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.563052\n", - "Epoch : 20 [4/36(11%)]\tLoss: 1.117306\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.261094\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.791802\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.733730\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.545072\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.988078\n", - "Epoch : 20 [28/36(78%)]\tLoss: 0.863972\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.182548\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.222809\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.542701\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.082833\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.443004\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.964322\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.276551\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.939358\n", - "Epoch : 21 [28/36(78%)]\tLoss: 0.828233\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.975860\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.300205\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.581134\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.154799\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.530701\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.735520\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.293580\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.917181\n", - "Epoch : 22 [28/36(78%)]\tLoss: 0.889105\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.058415\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.209867\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.673189\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.118295\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.637805\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.630513\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.268479\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.701224\n", - "Epoch : 23 [28/36(78%)]\tLoss: 0.973926\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.876100\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.193538\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.590081\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.072664\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.587072\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.760452\n", - "Epoch : 24 [20/36(56%)]\tLoss: 1.060536\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.604076\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.030291\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.895506\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.294041\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.618613\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.080192\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.513977\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.584792\n", - "Epoch : 25 [20/36(56%)]\tLoss: 1.439098\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.571706\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.785756\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.927680\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.264151\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.368093\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.056945\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.575626\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.505951\n", - "Epoch : 26 [20/36(56%)]\tLoss: 1.131324\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.578289\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.313519\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.724932\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.078099\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.633142\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.058193\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.566530\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.407008\n", - "Epoch : 27 [20/36(56%)]\tLoss: 1.002506\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.408994\n", - "Epoch : 27 [28/36(78%)]\tLoss: 0.404211\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.712494\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.174198\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.632870\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.113723\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.630371\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.615283\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.793090\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.406066\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.026976\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.887841\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.350603\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.556854\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.072004\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.357420\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.470172\n", - "Epoch : 29 [20/36(56%)]\tLoss: 0.777056\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.475010\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.961690\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.677875\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.225708\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.442096\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.033086\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.480233\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.573499\n", - "Epoch : 30 [20/36(56%)]\tLoss: 1.168702\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.531130\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.720820\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.852831\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.194140\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.554958\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.115222\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.339805\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.261381\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.667730\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.280039\n", - "Epoch : 31 [28/36(78%)]\tLoss: 0.763842\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.526165\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.134100\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.290026\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.041982\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.167240\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.433164\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.878319\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.329550\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.757582\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.516384\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.499511\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.290761\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.156904\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.078659\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.343556\n", - "Epoch : 33 [20/36(56%)]\tLoss: 0.908608\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.342951\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.973837\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.413990\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.276595\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.574566\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.268064\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.555344\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.232609\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.584455\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.259717\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.483040\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.624788\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.279082\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.598293\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.230585\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.314571\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.376442\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.604526\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.406086\n", - "Epoch : 35 [28/36(78%)]\tLoss: 0.582443\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.137094\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.297683\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.544419\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.122774\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.063793\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.335071\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.850576\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.314182\n", - "Epoch : 36 [28/36(78%)]\tLoss: 0.610300\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.426081\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.283758\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.597839\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.347411\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.360243\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.253629\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.875890\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.363222\n", - "Epoch : 37 [28/36(78%)]\tLoss: 0.587339\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.625993\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.215669\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.674504\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.352757\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.285226\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.119057\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.548397\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.275429\n", - "Epoch : 38 [28/36(78%)]\tLoss: 0.574433\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.408177\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.182965\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.629097\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.248010\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.249907\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.079155\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.305160\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.188616\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.556768\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.146764\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.385527\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.518688\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.203476\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.082750\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.225580\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.426043\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.114062\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.249038\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.190908\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.299140\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.711933\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.097865\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.165601\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.160314\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.414465\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.087012\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.339995\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.480355\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.064779\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.441638\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.178018\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.114896\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.089521\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.281482\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.158494\n", - "Epoch : 42 [28/36(78%)]\tLoss: 0.726421\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.309361\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.196127\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.377956\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.263749\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.408509\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.111578\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.226838\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.213730\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.470371\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.190240\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.193962\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.434585\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.106904\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.043907\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.105293\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.261842\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.034304\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.279937\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.070193\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.133028\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.544071\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.131022\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.258673\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.048276\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.173829\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.275162\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.367442\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.265192\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.218713\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.199533\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.073716\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.081429\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.141893\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.166503\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.442261\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.245091\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.402911\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.395589\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.284988\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.095214\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.046279\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.146034\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.246362\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.278639\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.781215\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.064287\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.153025\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.432416\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.466750\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.337885\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.068469\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.213242\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.182356\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.248251\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.125451\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.342938\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.446506\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.024045\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.057960\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.212521\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.523738\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.161227\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.463970\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.135510\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.568550\n", - "Epoch : 50 [4/36(11%)]\tLoss: 1.028290\n", - "Epoch : 50 [8/36(22%)]\tLoss: 1.188928\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.550372\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.512421\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.577856\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.509235\n", - "Epoch : 50 [28/36(78%)]\tLoss: 1.436980\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.160355\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.098090\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.532154\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.433812\n", - "Epoch : 51 [12/36(33%)]\tLoss: 1.237373\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.394617\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.749716\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.245393\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.507434\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.340950\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.314759\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.299164\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.262064\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.049726\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.141047\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.384076\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.331887\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.199079\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.176853\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.155389\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.413526\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.187015\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.098113\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.182126\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.520318\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.101018\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.686155\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.129516\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.138720\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.316416\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.264260\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.161875\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.024347\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.256596\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.080267\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.637874\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.143881\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.133503\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.229823\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.134869\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.372085\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.076122\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.385757\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.108179\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.488425\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.112177\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.224484\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.279423\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.057556\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.107512\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.127841\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.331097\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.189645\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.428045\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.382838\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.120127\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.199900\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.263710\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.164984\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.081176\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.109742\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.234365\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.633916\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.179006\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.092996\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.139876\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.443379\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.547626\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.078435\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.226548\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.107735\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.502965\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.040990\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.314157\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.522091\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.149853\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.040139\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.267455\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.646224\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.217382\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.249962\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.213069\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.329508\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.411712\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.480768\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.643690\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.144981\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.344981\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.442865\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.605961\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.500419\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.194931\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.373719\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.134384\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.456815\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.464827\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.079968\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.073952\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.302188\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.437714\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.326277\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.575967\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.611395\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.271927\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.190941\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.363734\n", - "Epoch : 62 [24/36(67%)]\tLoss: 1.057470\n", - "Epoch : 62 [28/36(78%)]\tLoss: 1.334099\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.224707\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.179490\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.391240\n", - "Epoch : 63 [8/36(22%)]\tLoss: 1.889966\n", - "Epoch : 63 [12/36(33%)]\tLoss: 1.024471\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.311545\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.338649\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.514769\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.896218\n", - "Epoch : 63 [32/36(89%)]\tLoss: 1.089414\n", - "Epoch : 64 [0/36(0%)]\tLoss: 1.178035\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.499411\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.301460\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.366107\n", - "Epoch : 64 [16/36(44%)]\tLoss: 1.737603\n", - "Epoch : 64 [20/36(56%)]\tLoss: 1.805889\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.485195\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.258118\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.434311\n", - "Epoch : 65 [0/36(0%)]\tLoss: 1.165625\n", - "Epoch : 65 [4/36(11%)]\tLoss: 1.262718\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.565953\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.033340\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.451308\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.997573\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.768602\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.513150\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.292876\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.118957\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.669266\n", - "Epoch : 66 [8/36(22%)]\tLoss: 1.338509\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.968214\n", - "Epoch : 66 [16/36(44%)]\tLoss: 1.225478\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.622220\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.470810\n", - "Epoch : 66 [28/36(78%)]\tLoss: 1.679577\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.370471\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.579377\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.207604\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.499888\n", - "Epoch : 67 [12/36(33%)]\tLoss: 1.013703\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.816012\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.648054\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.322765\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.458588\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.494515\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.508316\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.417039\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.451344\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.106820\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.192256\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.254718\n", - "Epoch : 68 [24/36(67%)]\tLoss: 1.072649\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.569110\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.641103\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.167463\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.365789\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.225432\n", - "Epoch : 69 [12/36(33%)]\tLoss: 1.077193\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.366239\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.570696\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.326066\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.196582\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.584756\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.483438\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.375123\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.094979\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.182347\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.498655\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.521900\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.056920\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.189173\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.074874\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.190394\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.293114\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.063283\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.205613\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.115862\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.484622\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.199270\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.373760\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.237012\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.161748\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.456120\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.655245\n", - "Epoch : 72 [12/36(33%)]\tLoss: 1.065901\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.207339\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.406278\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.278442\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.333258\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.948074\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.059752\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.409405\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.304258\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.314302\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.292920\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.113884\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.334983\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.485375\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.158941\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.221994\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.816401\n", - "Epoch : 74 [8/36(22%)]\tLoss: 1.063054\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.184500\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.008759\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.221660\n", - "Epoch : 74 [24/36(67%)]\tLoss: 1.280460\n", - "Epoch : 74 [28/36(78%)]\tLoss: 1.140869\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.101941\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.097112\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.433810\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.818162\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.821689\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.681837\n", - "Epoch : 75 [20/36(56%)]\tLoss: 1.054362\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.542404\n", - "Epoch : 75 [28/36(78%)]\tLoss: 1.184091\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.605567\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.452610\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.440879\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.258427\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.480357\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.926090\n", - "Epoch : 76 [20/36(56%)]\tLoss: 1.594023\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.129018\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.166759\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.184816\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.644465\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.977767\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.417519\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.201883\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.074505\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.947888\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.360324\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.626139\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.430554\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.105573\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.545730\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.331959\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.513456\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.431798\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.012122\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.060838\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.159959\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.738729\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.276722\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.240304\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.164279\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.165455\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.147933\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.110154\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.367041\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.549882\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.063854\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.276717\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.616404\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.711984\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.119255\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.036864\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.077799\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.186021\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.210444\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.211945\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.249476\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.217401\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.284983\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.173308\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.208548\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.428365\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.337867\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.163141\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.318127\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.564679\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.403497\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.127132\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.060567\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.147470\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.589253\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.421062\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.313225\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.054874\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.271022\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.542002\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.204555\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.172720\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.421394\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.309795\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.345415\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.863627\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.734482\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.605330\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.140630\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.181554\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.756425\n", - "Epoch : 84 [16/36(44%)]\tLoss: 1.143771\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.191310\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.563885\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.811510\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.560566\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.541523\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.216021\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.727178\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.166531\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.738909\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.337637\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.941266\n", - "Epoch : 85 [28/36(78%)]\tLoss: 0.901947\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.372386\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.065576\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.502537\n", - "Epoch : 86 [8/36(22%)]\tLoss: 1.465539\n", - "Epoch : 86 [12/36(33%)]\tLoss: 1.028614\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.431644\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.102459\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.904264\n", - "Epoch : 86 [28/36(78%)]\tLoss: 1.708829\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.531543\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.805454\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.209360\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.826339\n", - "Epoch : 87 [12/36(33%)]\tLoss: 1.151666\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.947333\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.692306\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.263987\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.416684\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.873977\n", - "Epoch : 88 [0/36(0%)]\tLoss: 1.077856\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.837554\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.201341\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.174589\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.781271\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.728517\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.428688\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.195198\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.071565\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.447790\n", - "Epoch : 89 [4/36(11%)]\tLoss: 1.107496\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.383333\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.678487\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.219711\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.312943\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.524506\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.952193\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.886434\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.142085\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.176253\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.363338\n", - "Epoch : 90 [12/36(33%)]\tLoss: 1.105825\n", - "Epoch : 90 [16/36(44%)]\tLoss: 2.377274\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.098717\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.472504\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.518504\n", - "Epoch : 90 [32/36(89%)]\tLoss: 1.088914\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.843577\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.188284\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.364709\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.329348\n", - "Epoch : 91 [16/36(44%)]\tLoss: 1.650837\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.434663\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.767158\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.432030\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.298248\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.429765\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.928356\n", - "Epoch : 92 [8/36(22%)]\tLoss: 1.020058\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.393730\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.035774\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.271959\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.791876\n", - "Epoch : 92 [28/36(78%)]\tLoss: 1.328448\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.604653\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.474761\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.195124\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.956944\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.682670\n", - "Epoch : 93 [16/36(44%)]\tLoss: 1.305671\n", - "Epoch : 93 [20/36(56%)]\tLoss: 1.309029\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.357441\n", - "Epoch : 93 [28/36(78%)]\tLoss: 1.022260\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.043851\n", - "Epoch : 94 [0/36(0%)]\tLoss: 1.133552\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.802054\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.105467\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.200004\n", - "Epoch : 94 [16/36(44%)]\tLoss: 1.105936\n", - "Epoch : 94 [20/36(56%)]\tLoss: 1.519822\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.716233\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.176366\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.200508\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.655307\n", - "Epoch : 95 [4/36(11%)]\tLoss: 1.735365\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.525611\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.470507\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.183910\n", - "Epoch : 95 [20/36(56%)]\tLoss: 1.140418\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.632072\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.441525\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.628915\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.237222\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.648184\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.579970\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.725630\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.690693\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.283785\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.038399\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.317967\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.911110\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.244772\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.311646\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.180709\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.237841\n", - "Epoch : 97 [16/36(44%)]\tLoss: 1.056298\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.201424\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.292996\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.018821\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.124307\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.090540\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.381823\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.068015\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.057378\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.166520\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.404581\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.239263\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.299741\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.566988\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.173130\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.133655\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.079841\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.216045\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.234635\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.472832\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.006443\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.218985\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.062840\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.107792\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.401737\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.042291\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.023502\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.081897\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.872333\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.650217\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.215659\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.162739\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.448503\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.843836\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.637038\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.332865\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.055570\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.745925\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.321087\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.453840\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.494792\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.106407\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.196718\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.072037\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.559771\n", - "Epoch : 102 [16/36(44%)]\tLoss: 1.072606\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.341109\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.014837\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.233965\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.791686\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.337990\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.383214\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.537570\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.084588\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.568058\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.587416\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.532690\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.856985\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.196335\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.205731\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.927507\n", - "Epoch : 104 [8/36(22%)]\tLoss: 1.306014\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.421690\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.094655\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.185152\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.532630\n", - "Epoch : 104 [28/36(78%)]\tLoss: 1.739050\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.742943\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.054401\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.369710\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.962089\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.472588\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.408242\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.415114\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.134867\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.516429\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.357109\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.718549\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.439695\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.147124\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.183060\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.379364\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.607036\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.718910\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.139090\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.074936\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.357018\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.716352\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.418437\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.249262\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.041594\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.484962\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.354162\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.752654\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.138215\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.093728\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.334614\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.445030\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.164540\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.187484\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.124085\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.238065\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.317737\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.083018\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.119853\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.119658\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.060120\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.134247\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.177608\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.202611\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.164125\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.291412\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.167749\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.329844\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.231856\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.213018\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.021643\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.136050\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.221435\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.213413\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.247189\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.023532\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.073789\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.234951\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.357967\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.162421\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.035321\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.130215\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.174159\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.545385\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.067373\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.135161\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.119575\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.328709\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.171904\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.105152\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.203513\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.032733\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.277305\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.180942\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.475432\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.228126\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.103369\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.308962\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.143837\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.444018\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.120935\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.176922\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.099692\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.297129\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.341089\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.127577\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.197652\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.056693\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.561460\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.387014\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.459541\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.065399\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.061226\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.361531\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.479696\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.555608\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.168793\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.244743\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.374165\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.152996\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.506132\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.210880\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.142731\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.163577\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.744025\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.390455\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.099765\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.053012\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.061495\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.658155\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.549120\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.153442\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.044534\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.248712\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.525163\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.140304\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.206305\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.195594\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.101538\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.215841\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.585495\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.592127\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.077165\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.023115\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.389115\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.441638\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.335075\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.302933\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.196431\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.262766\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.898415\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.464581\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.586564\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.135919\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.168980\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.852148\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.930194\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.753480\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.368126\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.285928\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.454222\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.376403\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.429101\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.258498\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.184498\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.278598\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.542122\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.731520\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.117994\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.107938\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.111152\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.758449\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.322660\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.267706\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.448966\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.098830\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.174370\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.338684\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.118366\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.190133\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.183156\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.090569\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.113778\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.314737\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.188376\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.207038\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.092399\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.127428\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.643996\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.110745\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.055819\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.618859\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.798681\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.125861\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.170327\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.158975\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.147017\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.231714\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.089886\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.121934\n", - "Epoch : 124 [28/36(78%)]\tLoss: 0.270260\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.387491\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.513300\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.293322\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.149970\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.044250\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.162873\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.274416\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.379834\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.227710\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.049077\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.314464\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.463960\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.778782\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.242091\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.061362\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.145166\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.526843\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.717727\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.262357\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.245165\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.224867\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.597088\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.507917\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.647476\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.270783\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.131347\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.515933\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.410239\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.853796\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.182960\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.103542\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.293587\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.504176\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.468961\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.359279\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.232882\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.108492\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.405741\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.416169\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.175498\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.077775\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.098868\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.529741\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.548258\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.252371\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.032345\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.185783\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.678955\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.544901\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.429187\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.122353\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.245866\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.442313\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.594751\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.750259\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.292294\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.291481\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.623523\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.625046\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.466089\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.182227\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.095898\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.357056\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.580338\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.569618\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.182021\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.032089\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.198717\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.515397\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.389353\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.174077\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.051685\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.258535\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.439473\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.344518\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.236466\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.049458\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.194160\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.245329\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.402822\n", - "Epoch : 133 [28/36(78%)]\tLoss: 0.302380\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.149206\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.175887\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.221232\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.252408\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.092983\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.025850\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.011891\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.237795\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.229526\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.096217\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.145194\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.203207\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.098973\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.215663\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.142871\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.197306\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.224951\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.306632\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.231563\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.204610\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.259171\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.284853\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.396510\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.375887\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.432036\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.063049\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.093386\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.140074\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.289426\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.224624\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.136828\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.102162\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.140717\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.518264\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.202529\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.056113\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.048121\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.127651\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.383020\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.297047\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.243177\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.077452\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.247959\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.155835\n", - "Epoch : 138 [28/36(78%)]\tLoss: 0.465017\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.040198\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.090818\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.353678\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.168241\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.262683\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.235568\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.062148\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.212038\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.128903\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.572803\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.193335\n", - "Epoch : 140 [4/36(11%)]\tLoss: 0.175592\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.114444\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.437122\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.388246\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.059336\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.117234\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.056180\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.133296\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.164787\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.256338\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.095124\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.200029\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.293943\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.116998\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.068067\n", - "Epoch : 141 [28/36(78%)]\tLoss: 0.016696\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.079837\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.088385\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.232792\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.164618\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.098033\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.071874\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.068423\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.132002\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.355601\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.039454\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.126108\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.326522\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.349544\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.174849\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.079940\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.031830\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.146390\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.225435\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.182341\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.105412\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.041248\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.255146\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.176687\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.088770\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.104882\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.043222\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.233147\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.228727\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.143519\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.090624\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.142998\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.133059\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.098169\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.208727\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.108924\n", - "Epoch : 145 [28/36(78%)]\tLoss: 0.045321\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.064496\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.183513\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.192696\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.133563\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.095472\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.139406\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.325611\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.178264\n", - "Epoch : 146 [28/36(78%)]\tLoss: 0.142036\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.066500\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.040962\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.754583\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.381846\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.132955\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.072007\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.387686\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.329752\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.162060\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.071236\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.073229\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.464854\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.613664\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.374067\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.136597\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.306361\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.137563\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.720722\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.687707\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.045067\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.282067\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.441187\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.681002\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.173772\n", - "Epoch : 149 [20/36(56%)]\tLoss: 0.110377\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.210431\n", - "Epoch : 149 [28/36(78%)]\tLoss: 0.387619\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.294078\n", - "--- 0.06244179805119832 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 537.214661\n", + "Epoch : 0 [6/36(17%)]\tLoss: 506.129059\n", + "Epoch : 0 [12/36(33%)]\tLoss: 331.627045\n", + "Epoch : 0 [18/36(50%)]\tLoss: 237.798050\n", + "Epoch : 0 [24/36(67%)]\tLoss: 160.055832\n", + "Epoch : 0 [30/36(83%)]\tLoss: 122.470222\n", + "Epoch : 1 [0/36(0%)]\tLoss: 76.818764\n", + "Epoch : 1 [6/36(17%)]\tLoss: 39.870541\n", + "Epoch : 1 [12/36(33%)]\tLoss: 9.038580\n", + "Epoch : 1 [18/36(50%)]\tLoss: 2.933393\n", + "Epoch : 1 [24/36(67%)]\tLoss: 0.221226\n", + "Epoch : 1 [30/36(83%)]\tLoss: 2.963395\n", + "Epoch : 2 [0/36(0%)]\tLoss: 12.271305\n", + "Epoch : 2 [6/36(17%)]\tLoss: 22.714966\n", + "Epoch : 2 [12/36(33%)]\tLoss: 26.928640\n", + "Epoch : 2 [18/36(50%)]\tLoss: 27.592337\n", + "Epoch : 2 [24/36(67%)]\tLoss: 30.918043\n", + "Epoch : 2 [30/36(83%)]\tLoss: 33.511547\n", + "Epoch : 3 [0/36(0%)]\tLoss: 28.643997\n", + "Epoch : 3 [6/36(17%)]\tLoss: 19.674597\n", + "Epoch : 3 [12/36(33%)]\tLoss: 12.950837\n", + "Epoch : 3 [18/36(50%)]\tLoss: 11.981021\n", + "Epoch : 3 [24/36(67%)]\tLoss: 7.406203\n", + "Epoch : 3 [30/36(83%)]\tLoss: 2.446291\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.032790\n", + "Epoch : 4 [6/36(17%)]\tLoss: 0.757454\n", + "Epoch : 4 [12/36(33%)]\tLoss: 1.740635\n", + "Epoch : 4 [18/36(50%)]\tLoss: 2.897151\n", + "Epoch : 4 [24/36(67%)]\tLoss: 13.719960\n", + "Epoch : 4 [30/36(83%)]\tLoss: 6.676116\n", + "Epoch : 5 [0/36(0%)]\tLoss: 32.570557\n", + "Epoch : 5 [6/36(17%)]\tLoss: 3.946040\n", + "Epoch : 5 [12/36(33%)]\tLoss: 7.919172\n", + "Epoch : 5 [18/36(50%)]\tLoss: 3.697055\n", + "Epoch : 5 [24/36(67%)]\tLoss: 6.057917\n", + "Epoch : 5 [30/36(83%)]\tLoss: 4.029850\n", + "Epoch : 6 [0/36(0%)]\tLoss: 3.209529\n", + "Epoch : 6 [6/36(17%)]\tLoss: 0.283198\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.536970\n", + "Epoch : 6 [18/36(50%)]\tLoss: 1.610113\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.949334\n", + "Epoch : 6 [30/36(83%)]\tLoss: 1.886792\n", + "Epoch : 7 [0/36(0%)]\tLoss: 3.189968\n", + "Epoch : 7 [6/36(17%)]\tLoss: 2.293593\n", + "Epoch : 7 [12/36(33%)]\tLoss: 4.225748\n", + "Epoch : 7 [18/36(50%)]\tLoss: 1.752522\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.907105\n", + "Epoch : 7 [30/36(83%)]\tLoss: 1.751075\n", + "Epoch : 8 [0/36(0%)]\tLoss: 2.013773\n", + "Epoch : 8 [6/36(17%)]\tLoss: 1.190419\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.914285\n", + "Epoch : 8 [18/36(50%)]\tLoss: 0.367563\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.229560\n", + "Epoch : 8 [30/36(83%)]\tLoss: 1.808972\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.354426\n", + "Epoch : 9 [6/36(17%)]\tLoss: 1.274560\n", + "Epoch : 9 [12/36(33%)]\tLoss: 2.393844\n", + "Epoch : 9 [18/36(50%)]\tLoss: 2.254026\n", + "Epoch : 9 [24/36(67%)]\tLoss: 0.727915\n", + "Epoch : 9 [30/36(83%)]\tLoss: 2.403752\n", + "Epoch : 10 [0/36(0%)]\tLoss: 1.128570\n", + "Epoch : 10 [6/36(17%)]\tLoss: 2.173399\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.457491\n", + "Epoch : 10 [18/36(50%)]\tLoss: 1.614061\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.043922\n", + "Epoch : 10 [30/36(83%)]\tLoss: 0.280667\n", + "Epoch : 11 [0/36(0%)]\tLoss: 1.708669\n", + "Epoch : 11 [6/36(17%)]\tLoss: 0.457464\n", + "Epoch : 11 [12/36(33%)]\tLoss: 1.233230\n", + "Epoch : 11 [18/36(50%)]\tLoss: 0.330367\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.532190\n", + "Epoch : 11 [30/36(83%)]\tLoss: 1.734928\n", + "Epoch : 12 [0/36(0%)]\tLoss: 1.442943\n", + "Epoch : 12 [6/36(17%)]\tLoss: 1.228699\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.427792\n", + "Epoch : 12 [18/36(50%)]\tLoss: 0.868189\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.836113\n", + "Epoch : 12 [30/36(83%)]\tLoss: 1.627854\n", + "Epoch : 13 [0/36(0%)]\tLoss: 1.728366\n", + "Epoch : 13 [6/36(17%)]\tLoss: 0.154262\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.622464\n", + "Epoch : 13 [18/36(50%)]\tLoss: 1.212502\n", + "Epoch : 13 [24/36(67%)]\tLoss: 2.114266\n", + "Epoch : 13 [30/36(83%)]\tLoss: 0.347760\n", + "Epoch : 14 [0/36(0%)]\tLoss: 1.419634\n", + "Epoch : 14 [6/36(17%)]\tLoss: 1.402489\n", + "Epoch : 14 [12/36(33%)]\tLoss: 1.620194\n", + "Epoch : 14 [18/36(50%)]\tLoss: 0.868947\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.573760\n", + "Epoch : 14 [30/36(83%)]\tLoss: 0.300871\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.530906\n", + "Epoch : 15 [6/36(17%)]\tLoss: 2.419029\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.803424\n", + "Epoch : 15 [18/36(50%)]\tLoss: 0.317607\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.162494\n", + "Epoch : 15 [30/36(83%)]\tLoss: 2.001626\n", + "Epoch : 16 [0/36(0%)]\tLoss: 1.059544\n", + "Epoch : 16 [6/36(17%)]\tLoss: 1.328513\n", + "Epoch : 16 [12/36(33%)]\tLoss: 2.306227\n", + "Epoch : 16 [18/36(50%)]\tLoss: 0.854471\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.319406\n", + "Epoch : 16 [30/36(83%)]\tLoss: 0.883090\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.192214\n", + "Epoch : 17 [6/36(17%)]\tLoss: 2.821173\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.351567\n", + "Epoch : 17 [18/36(50%)]\tLoss: 0.999178\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.968820\n", + "Epoch : 17 [30/36(83%)]\tLoss: 0.738982\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.302303\n", + "Epoch : 18 [6/36(17%)]\tLoss: 0.477616\n", + "Epoch : 18 [12/36(33%)]\tLoss: 1.938997\n", + "Epoch : 18 [18/36(50%)]\tLoss: 2.417249\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.945781\n", + "Epoch : 18 [30/36(83%)]\tLoss: 0.401923\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.653807\n", + "Epoch : 19 [6/36(17%)]\tLoss: 1.497959\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.894000\n", + "Epoch : 19 [18/36(50%)]\tLoss: 1.156134\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.701136\n", + "Epoch : 19 [30/36(83%)]\tLoss: 1.694180\n", + "Epoch : 20 [0/36(0%)]\tLoss: 1.558648\n", + "Epoch : 20 [6/36(17%)]\tLoss: 0.667567\n", + "Epoch : 20 [12/36(33%)]\tLoss: 1.208150\n", + "Epoch : 20 [18/36(50%)]\tLoss: 1.174055\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.316042\n", + "Epoch : 20 [30/36(83%)]\tLoss: 1.571421\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.488345\n", + "Epoch : 21 [6/36(17%)]\tLoss: 1.767262\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.774232\n", + "Epoch : 21 [18/36(50%)]\tLoss: 0.676050\n", + "Epoch : 21 [24/36(67%)]\tLoss: 2.187728\n", + "Epoch : 21 [30/36(83%)]\tLoss: 0.500831\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.452262\n", + "Epoch : 22 [6/36(17%)]\tLoss: 0.932727\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.254846\n", + "Epoch : 22 [18/36(50%)]\tLoss: 1.404937\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.794450\n", + "Epoch : 22 [30/36(83%)]\tLoss: 2.782969\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.771286\n", + "Epoch : 23 [6/36(17%)]\tLoss: 2.079049\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.395288\n", + "Epoch : 23 [18/36(50%)]\tLoss: 0.822632\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.487351\n", + "Epoch : 23 [30/36(83%)]\tLoss: 1.627838\n", + "Epoch : 24 [0/36(0%)]\tLoss: 1.426548\n", + "Epoch : 24 [6/36(17%)]\tLoss: 0.502704\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.580346\n", + "Epoch : 24 [18/36(50%)]\tLoss: 1.844574\n", + "Epoch : 24 [24/36(67%)]\tLoss: 1.096297\n", + "Epoch : 24 [30/36(83%)]\tLoss: 0.827446\n", + "Epoch : 25 [0/36(0%)]\tLoss: 1.046302\n", + "Epoch : 25 [6/36(17%)]\tLoss: 1.057019\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.955201\n", + "Epoch : 25 [18/36(50%)]\tLoss: 0.901667\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.461110\n", + "Epoch : 25 [30/36(83%)]\tLoss: 1.756502\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.773905\n", + "Epoch : 26 [6/36(17%)]\tLoss: 1.456534\n", + "Epoch : 26 [12/36(33%)]\tLoss: 1.552308\n", + "Epoch : 26 [18/36(50%)]\tLoss: 0.501002\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.480679\n", + "Epoch : 26 [30/36(83%)]\tLoss: 0.581090\n", + "Epoch : 27 [0/36(0%)]\tLoss: 1.106854\n", + "Epoch : 27 [6/36(17%)]\tLoss: 0.649500\n", + "Epoch : 27 [12/36(33%)]\tLoss: 1.286423\n", + "Epoch : 27 [18/36(50%)]\tLoss: 1.039536\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.911150\n", + "Epoch : 27 [30/36(83%)]\tLoss: 1.588489\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.503840\n", + "Epoch : 28 [6/36(17%)]\tLoss: 1.374116\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.834917\n", + "Epoch : 28 [18/36(50%)]\tLoss: 0.291989\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.486363\n", + "Epoch : 28 [30/36(83%)]\tLoss: 2.562623\n", + "Epoch : 29 [0/36(0%)]\tLoss: 1.095417\n", + "Epoch : 29 [6/36(17%)]\tLoss: 0.954428\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.668044\n", + "Epoch : 29 [18/36(50%)]\tLoss: 0.973567\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.534046\n", + "Epoch : 29 [30/36(83%)]\tLoss: 2.071871\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.369274\n", + "Epoch : 30 [6/36(17%)]\tLoss: 1.710114\n", + "Epoch : 30 [12/36(33%)]\tLoss: 1.710076\n", + "Epoch : 30 [18/36(50%)]\tLoss: 1.395767\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.596990\n", + "Epoch : 30 [30/36(83%)]\tLoss: 0.404180\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.419481\n", + "Epoch : 31 [6/36(17%)]\tLoss: 2.297931\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.319933\n", + "Epoch : 31 [18/36(50%)]\tLoss: 1.524339\n", + "Epoch : 31 [24/36(67%)]\tLoss: 1.118804\n", + "Epoch : 31 [30/36(83%)]\tLoss: 0.670730\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.415988\n", + "Epoch : 32 [6/36(17%)]\tLoss: 0.497521\n", + "Epoch : 32 [12/36(33%)]\tLoss: 1.640100\n", + "Epoch : 32 [18/36(50%)]\tLoss: 1.922404\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.865600\n", + "Epoch : 32 [30/36(83%)]\tLoss: 0.880363\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.364012\n", + "Epoch : 33 [6/36(17%)]\tLoss: 1.236763\n", + "Epoch : 33 [12/36(33%)]\tLoss: 1.405932\n", + "Epoch : 33 [18/36(50%)]\tLoss: 1.129161\n", + "Epoch : 33 [24/36(67%)]\tLoss: 1.146710\n", + "Epoch : 33 [30/36(83%)]\tLoss: 1.225394\n", + "Epoch : 34 [0/36(0%)]\tLoss: 2.039155\n", + "Epoch : 34 [6/36(17%)]\tLoss: 1.157453\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.979569\n", + "Epoch : 34 [18/36(50%)]\tLoss: 0.241365\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.514946\n", + "Epoch : 34 [30/36(83%)]\tLoss: 1.805462\n", + "Epoch : 35 [0/36(0%)]\tLoss: 1.163878\n", + "Epoch : 35 [6/36(17%)]\tLoss: 1.475458\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.282988\n", + "Epoch : 35 [18/36(50%)]\tLoss: 2.191022\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.323980\n", + "Epoch : 35 [30/36(83%)]\tLoss: 1.202717\n", + "Epoch : 36 [0/36(0%)]\tLoss: 1.649696\n", + "Epoch : 36 [6/36(17%)]\tLoss: 0.268630\n", + "Epoch : 36 [12/36(33%)]\tLoss: 2.161625\n", + "Epoch : 36 [18/36(50%)]\tLoss: 0.490790\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.370448\n", + "Epoch : 36 [30/36(83%)]\tLoss: 0.929666\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.920507\n", + "Epoch : 37 [6/36(17%)]\tLoss: 1.153859\n", + "Epoch : 37 [12/36(33%)]\tLoss: 1.381284\n", + "Epoch : 37 [18/36(50%)]\tLoss: 0.494656\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.391871\n", + "Epoch : 37 [30/36(83%)]\tLoss: 2.152559\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.337904\n", + "Epoch : 38 [6/36(17%)]\tLoss: 0.713314\n", + "Epoch : 38 [12/36(33%)]\tLoss: 1.341203\n", + "Epoch : 38 [18/36(50%)]\tLoss: 2.377471\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.731587\n", + "Epoch : 38 [30/36(83%)]\tLoss: 0.852197\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.929458\n", + "Epoch : 39 [6/36(17%)]\tLoss: 0.892609\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.392642\n", + "Epoch : 39 [18/36(50%)]\tLoss: 0.468804\n", + "Epoch : 39 [24/36(67%)]\tLoss: 2.177077\n", + "Epoch : 39 [30/36(83%)]\tLoss: 1.526771\n", + "Epoch : 40 [0/36(0%)]\tLoss: 2.087554\n", + "Epoch : 40 [6/36(17%)]\tLoss: 0.536815\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.263967\n", + "Epoch : 40 [18/36(50%)]\tLoss: 1.145328\n", + "Epoch : 40 [24/36(67%)]\tLoss: 1.312997\n", + "Epoch : 40 [30/36(83%)]\tLoss: 1.005764\n", + "Epoch : 41 [0/36(0%)]\tLoss: 1.860027\n", + "Epoch : 41 [6/36(17%)]\tLoss: 1.418359\n", + "Epoch : 41 [12/36(33%)]\tLoss: 1.266940\n", + "Epoch : 41 [18/36(50%)]\tLoss: 0.145474\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.373937\n", + "Epoch : 41 [30/36(83%)]\tLoss: 1.320650\n", + "Epoch : 42 [0/36(0%)]\tLoss: 2.074313\n", + "Epoch : 42 [6/36(17%)]\tLoss: 1.417323\n", + "Epoch : 42 [12/36(33%)]\tLoss: 1.286606\n", + "Epoch : 42 [18/36(50%)]\tLoss: 0.342291\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.628414\n", + "Epoch : 42 [30/36(83%)]\tLoss: 0.794000\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.198906\n", + "Epoch : 43 [6/36(17%)]\tLoss: 1.796054\n", + "Epoch : 43 [12/36(33%)]\tLoss: 1.079291\n", + "Epoch : 43 [18/36(50%)]\tLoss: 0.172186\n", + "Epoch : 43 [24/36(67%)]\tLoss: 3.076715\n", + "Epoch : 43 [30/36(83%)]\tLoss: 0.586140\n", + "Epoch : 44 [0/36(0%)]\tLoss: 2.298107\n", + "Epoch : 44 [6/36(17%)]\tLoss: 0.846269\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.185503\n", + "Epoch : 44 [18/36(50%)]\tLoss: 0.482241\n", + "Epoch : 44 [24/36(67%)]\tLoss: 1.888540\n", + "Epoch : 44 [30/36(83%)]\tLoss: 0.574820\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.445379\n", + "Epoch : 45 [6/36(17%)]\tLoss: 0.880762\n", + "Epoch : 45 [12/36(33%)]\tLoss: 1.221424\n", + "Epoch : 45 [18/36(50%)]\tLoss: 0.554912\n", + "Epoch : 45 [24/36(67%)]\tLoss: 1.612856\n", + "Epoch : 45 [30/36(83%)]\tLoss: 1.813487\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.289277\n", + "Epoch : 46 [6/36(17%)]\tLoss: 1.622387\n", + "Epoch : 46 [12/36(33%)]\tLoss: 1.143483\n", + "Epoch : 46 [18/36(50%)]\tLoss: 1.112325\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.963447\n", + "Epoch : 46 [30/36(83%)]\tLoss: 1.584727\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.262395\n", + "Epoch : 47 [6/36(17%)]\tLoss: 1.035969\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.780747\n", + "Epoch : 47 [18/36(50%)]\tLoss: 2.143095\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.571790\n", + "Epoch : 47 [30/36(83%)]\tLoss: 1.433040\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.667465\n", + "Epoch : 48 [6/36(17%)]\tLoss: 2.213444\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.780623\n", + "Epoch : 48 [18/36(50%)]\tLoss: 0.336762\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.294496\n", + "Epoch : 48 [30/36(83%)]\tLoss: 2.069488\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.727157\n", + "Epoch : 49 [6/36(17%)]\tLoss: 0.899093\n", + "Epoch : 49 [12/36(33%)]\tLoss: 2.107972\n", + "Epoch : 49 [18/36(50%)]\tLoss: 0.818264\n", + "Epoch : 49 [24/36(67%)]\tLoss: 2.013226\n", + "Epoch : 49 [30/36(83%)]\tLoss: 0.263024\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.584985\n", + "Epoch : 50 [6/36(17%)]\tLoss: 0.329929\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.376595\n", + "Epoch : 50 [18/36(50%)]\tLoss: 2.546384\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.451018\n", + "Epoch : 50 [30/36(83%)]\tLoss: 2.793118\n", + "Epoch : 51 [0/36(0%)]\tLoss: 1.071699\n", + "Epoch : 51 [6/36(17%)]\tLoss: 0.239505\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.849240\n", + "Epoch : 51 [18/36(50%)]\tLoss: 1.812247\n", + "Epoch : 51 [24/36(67%)]\tLoss: 1.660099\n", + "Epoch : 51 [30/36(83%)]\tLoss: 1.169790\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.715493\n", + "Epoch : 52 [6/36(17%)]\tLoss: 1.405793\n", + "Epoch : 52 [12/36(33%)]\tLoss: 1.429204\n", + "Epoch : 52 [18/36(50%)]\tLoss: 1.611920\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.799592\n", + "Epoch : 52 [30/36(83%)]\tLoss: 0.304293\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.438599\n", + "Epoch : 53 [6/36(17%)]\tLoss: 1.385082\n", + "Epoch : 53 [12/36(33%)]\tLoss: 2.311841\n", + "Epoch : 53 [18/36(50%)]\tLoss: 0.425994\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.357787\n", + "Epoch : 53 [30/36(83%)]\tLoss: 1.526216\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.496606\n", + "Epoch : 54 [6/36(17%)]\tLoss: 1.689038\n", + "Epoch : 54 [12/36(33%)]\tLoss: 1.115358\n", + "Epoch : 54 [18/36(50%)]\tLoss: 1.684772\n", + "Epoch : 54 [24/36(67%)]\tLoss: 1.784578\n", + "Epoch : 54 [30/36(83%)]\tLoss: 0.478278\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.254631\n", + "Epoch : 55 [6/36(17%)]\tLoss: 1.687453\n", + "Epoch : 55 [12/36(33%)]\tLoss: 1.701128\n", + "Epoch : 55 [18/36(50%)]\tLoss: 1.850870\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.450649\n", + "Epoch : 55 [30/36(83%)]\tLoss: 0.457418\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.339251\n", + "Epoch : 56 [6/36(17%)]\tLoss: 1.285602\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.431091\n", + "Epoch : 56 [18/36(50%)]\tLoss: 1.573620\n", + "Epoch : 56 [24/36(67%)]\tLoss: 1.021966\n", + "Epoch : 56 [30/36(83%)]\tLoss: 1.524201\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.500293\n", + "Epoch : 57 [6/36(17%)]\tLoss: 1.594618\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.466686\n", + "Epoch : 57 [18/36(50%)]\tLoss: 1.762429\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.286487\n", + "Epoch : 57 [30/36(83%)]\tLoss: 1.695944\n", + "Epoch : 58 [0/36(0%)]\tLoss: 1.685174\n", + "Epoch : 58 [6/36(17%)]\tLoss: 0.692479\n", + "Epoch : 58 [12/36(33%)]\tLoss: 1.359795\n", + "Epoch : 58 [18/36(50%)]\tLoss: 1.144143\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.895599\n", + "Epoch : 58 [30/36(83%)]\tLoss: 0.770552\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.458026\n", + "Epoch : 59 [6/36(17%)]\tLoss: 1.125767\n", + "Epoch : 59 [12/36(33%)]\tLoss: 1.691487\n", + "Epoch : 59 [18/36(50%)]\tLoss: 1.302797\n", + "Epoch : 59 [24/36(67%)]\tLoss: 1.460669\n", + "Epoch : 59 [30/36(83%)]\tLoss: 1.256553\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.913979\n", + "Epoch : 60 [6/36(17%)]\tLoss: 2.176805\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.462630\n", + "Epoch : 60 [18/36(50%)]\tLoss: 1.747602\n", + "Epoch : 60 [24/36(67%)]\tLoss: 2.336875\n", + "Epoch : 60 [30/36(83%)]\tLoss: 0.481550\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.964768\n", + "Epoch : 61 [6/36(17%)]\tLoss: 0.868872\n", + "Epoch : 61 [12/36(33%)]\tLoss: 1.310866\n", + "Epoch : 61 [18/36(50%)]\tLoss: 2.161905\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.425669\n", + "Epoch : 61 [30/36(83%)]\tLoss: 0.563550\n", + "Epoch : 62 [0/36(0%)]\tLoss: 1.070552\n", + "Epoch : 62 [6/36(17%)]\tLoss: 1.515896\n", + "Epoch : 62 [12/36(33%)]\tLoss: 1.046095\n", + "Epoch : 62 [18/36(50%)]\tLoss: 1.037375\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.267091\n", + "Epoch : 62 [30/36(83%)]\tLoss: 1.616859\n", + "Epoch : 63 [0/36(0%)]\tLoss: 1.762485\n", + "Epoch : 63 [6/36(17%)]\tLoss: 0.682213\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.834791\n", + "Epoch : 63 [18/36(50%)]\tLoss: 0.452423\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.560777\n", + "Epoch : 63 [30/36(83%)]\tLoss: 2.565921\n", + "Epoch : 64 [0/36(0%)]\tLoss: 84.875992\n", + "Epoch : 64 [6/36(17%)]\tLoss: 1.385235\n", + "Epoch : 64 [12/36(33%)]\tLoss: 1.718098\n", + "Epoch : 64 [18/36(50%)]\tLoss: 1.606350\n", + "Epoch : 64 [24/36(67%)]\tLoss: 1.332806\n", + "Epoch : 64 [30/36(83%)]\tLoss: 1.334762\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.520202\n", + "Epoch : 65 [6/36(17%)]\tLoss: 1.440099\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.982175\n", + "Epoch : 65 [18/36(50%)]\tLoss: 1.416511\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.681862\n", + "Epoch : 65 [30/36(83%)]\tLoss: 2.109303\n", + "Epoch : 66 [0/36(0%)]\tLoss: 1.638727\n", + "Epoch : 66 [6/36(17%)]\tLoss: 1.377309\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.364346\n", + "Epoch : 66 [18/36(50%)]\tLoss: 0.965996\n", + "Epoch : 66 [24/36(67%)]\tLoss: 2.084986\n", + "Epoch : 66 [30/36(83%)]\tLoss: 2.346563\n", + "Epoch : 67 [0/36(0%)]\tLoss: 10.941096\n", + "Epoch : 67 [6/36(17%)]\tLoss: 1.898646\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.406414\n", + "Epoch : 67 [18/36(50%)]\tLoss: 1.581081\n", + "Epoch : 67 [24/36(67%)]\tLoss: 1.013406\n", + "Epoch : 67 [30/36(83%)]\tLoss: 0.463039\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.945418\n", + "Epoch : 68 [6/36(17%)]\tLoss: 1.330296\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.962525\n", + "Epoch : 68 [18/36(50%)]\tLoss: 0.988336\n", + "Epoch : 68 [24/36(67%)]\tLoss: 1.241776\n", + "Epoch : 68 [30/36(83%)]\tLoss: 0.697924\n", + "Epoch : 69 [0/36(0%)]\tLoss: 1.266509\n", + "Epoch : 69 [6/36(17%)]\tLoss: 1.007661\n", + "Epoch : 69 [12/36(33%)]\tLoss: 3.261967\n", + "Epoch : 69 [18/36(50%)]\tLoss: 0.449004\n", + "Epoch : 69 [24/36(67%)]\tLoss: 1.407189\n", + "Epoch : 69 [30/36(83%)]\tLoss: 0.364296\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.711008\n", + "Epoch : 70 [6/36(17%)]\tLoss: 0.310496\n", + "Epoch : 70 [12/36(33%)]\tLoss: 1.495621\n", + "Epoch : 70 [18/36(50%)]\tLoss: 2.305916\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.732428\n", + "Epoch : 70 [30/36(83%)]\tLoss: 0.528862\n", + "Epoch : 71 [0/36(0%)]\tLoss: 1.718302\n", + "Epoch : 71 [6/36(17%)]\tLoss: 0.931345\n", + "Epoch : 71 [12/36(33%)]\tLoss: 1.857045\n", + "Epoch : 71 [18/36(50%)]\tLoss: 0.668325\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.792116\n", + "Epoch : 71 [30/36(83%)]\tLoss: 0.480310\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.875219\n", + "Epoch : 72 [6/36(17%)]\tLoss: 0.483078\n", + "Epoch : 72 [12/36(33%)]\tLoss: 1.234598\n", + "Epoch : 72 [18/36(50%)]\tLoss: 1.612638\n", + "Epoch : 72 [24/36(67%)]\tLoss: 1.175516\n", + "Epoch : 72 [30/36(83%)]\tLoss: 0.484906\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.538387\n", + "Epoch : 73 [6/36(17%)]\tLoss: 1.698932\n", + "Epoch : 73 [12/36(33%)]\tLoss: 1.265606\n", + "Epoch : 73 [18/36(50%)]\tLoss: 0.816364\n", + "Epoch : 73 [24/36(67%)]\tLoss: 1.258480\n", + "Epoch : 73 [30/36(83%)]\tLoss: 0.471460\n", + "Epoch : 74 [0/36(0%)]\tLoss: 1.185903\n", + "Epoch : 74 [6/36(17%)]\tLoss: 1.364666\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.794909\n", + "Epoch : 74 [18/36(50%)]\tLoss: 1.338371\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.280815\n", + "Epoch : 74 [30/36(83%)]\tLoss: 0.310333\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.107324\n", + "Epoch : 75 [6/36(17%)]\tLoss: 0.903991\n", + "Epoch : 75 [12/36(33%)]\tLoss: 1.545552\n", + "Epoch : 75 [18/36(50%)]\tLoss: 0.783958\n", + "Epoch : 75 [24/36(67%)]\tLoss: 1.090466\n", + "Epoch : 75 [30/36(83%)]\tLoss: 0.626279\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.764176\n", + "Epoch : 76 [6/36(17%)]\tLoss: 1.327731\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.674239\n", + "Epoch : 76 [18/36(50%)]\tLoss: 1.953715\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.413900\n", + "Epoch : 76 [30/36(83%)]\tLoss: 0.664301\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.560103\n", + "Epoch : 77 [6/36(17%)]\tLoss: 1.417058\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.601386\n", + "Epoch : 77 [18/36(50%)]\tLoss: 0.533109\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.523443\n", + "Epoch : 77 [30/36(83%)]\tLoss: 148.150101\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.756887\n", + "Epoch : 78 [6/36(17%)]\tLoss: 0.410608\n", + "Epoch : 78 [12/36(33%)]\tLoss: 1.624181\n", + "Epoch : 78 [18/36(50%)]\tLoss: 2.047395\n", + "Epoch : 78 [24/36(67%)]\tLoss: 1.687059\n", + "Epoch : 78 [30/36(83%)]\tLoss: 0.319489\n", + "Epoch : 79 [0/36(0%)]\tLoss: 2.872068\n", + "Epoch : 79 [6/36(17%)]\tLoss: 0.272958\n", + "Epoch : 79 [12/36(33%)]\tLoss: 1.408789\n", + "Epoch : 79 [18/36(50%)]\tLoss: 1.395026\n", + "Epoch : 79 [24/36(67%)]\tLoss: 1.047319\n", + "Epoch : 79 [30/36(83%)]\tLoss: 0.531596\n", + "Epoch : 80 [0/36(0%)]\tLoss: 1.236332\n", + "Epoch : 80 [6/36(17%)]\tLoss: 0.669565\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.487453\n", + "Epoch : 80 [18/36(50%)]\tLoss: 0.484343\n", + "Epoch : 80 [24/36(67%)]\tLoss: 1.773318\n", + "Epoch : 80 [30/36(83%)]\tLoss: 2.341851\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.545951\n", + "Epoch : 81 [6/36(17%)]\tLoss: 0.781931\n", + "Epoch : 81 [12/36(33%)]\tLoss: 1.064940\n", + "Epoch : 81 [18/36(50%)]\tLoss: 2.370858\n", + "Epoch : 81 [24/36(67%)]\tLoss: 1.621506\n", + "Epoch : 81 [30/36(83%)]\tLoss: 0.821480\n", + "Epoch : 82 [0/36(0%)]\tLoss: 1.524612\n", + "Epoch : 82 [6/36(17%)]\tLoss: 0.843513\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.702695\n", + "Epoch : 82 [18/36(50%)]\tLoss: 1.594073\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.464707\n", + "Epoch : 82 [30/36(83%)]\tLoss: 2.951015\n", + "Epoch : 83 [0/36(0%)]\tLoss: 1.728197\n", + "Epoch : 83 [6/36(17%)]\tLoss: 0.464762\n", + "Epoch : 83 [12/36(33%)]\tLoss: 1.098948\n", + "Epoch : 83 [18/36(50%)]\tLoss: 0.466038\n", + "Epoch : 83 [24/36(67%)]\tLoss: 1.822444\n", + "Epoch : 83 [30/36(83%)]\tLoss: 0.818035\n", + "Epoch : 84 [0/36(0%)]\tLoss: 1.075148\n", + "Epoch : 84 [6/36(17%)]\tLoss: 1.175780\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.745045\n", + "Epoch : 84 [18/36(50%)]\tLoss: 1.366348\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.594020\n", + "Epoch : 84 [30/36(83%)]\tLoss: 0.801590\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.823187\n", + "Epoch : 85 [6/36(17%)]\tLoss: 0.577923\n", + "Epoch : 85 [12/36(33%)]\tLoss: 1.330412\n", + "Epoch : 85 [18/36(50%)]\tLoss: 2.679612\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.497717\n", + "Epoch : 85 [30/36(83%)]\tLoss: 1.007496\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.895901\n", + "Epoch : 86 [6/36(17%)]\tLoss: 1.214218\n", + "Epoch : 86 [12/36(33%)]\tLoss: 1.024545\n", + "Epoch : 86 [18/36(50%)]\tLoss: 1.397998\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.433758\n", + "Epoch : 86 [30/36(83%)]\tLoss: 0.603197\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.432823\n", + "Epoch : 87 [6/36(17%)]\tLoss: 0.476022\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.775149\n", + "Epoch : 87 [18/36(50%)]\tLoss: 1.050679\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.795953\n", + "Epoch : 87 [30/36(83%)]\tLoss: 0.942496\n", + "Epoch : 88 [0/36(0%)]\tLoss: 1.147189\n", + "Epoch : 88 [6/36(17%)]\tLoss: 1.195835\n", + "Epoch : 88 [12/36(33%)]\tLoss: 1.685126\n", + "Epoch : 88 [18/36(50%)]\tLoss: 0.705215\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.425568\n", + "Epoch : 88 [30/36(83%)]\tLoss: 1.057306\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.227159\n", + "Epoch : 89 [6/36(17%)]\tLoss: 0.387548\n", + "Epoch : 89 [12/36(33%)]\tLoss: 0.223372\n", + "Epoch : 89 [18/36(50%)]\tLoss: 1.508683\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.790339\n", + "Epoch : 89 [30/36(83%)]\tLoss: 0.453632\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.794568\n", + "Epoch : 90 [6/36(17%)]\tLoss: 0.450855\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.834802\n", + "Epoch : 90 [18/36(50%)]\tLoss: 1.467523\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.785641\n", + "Epoch : 90 [30/36(83%)]\tLoss: 0.413529\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.534109\n", + "Epoch : 91 [6/36(17%)]\tLoss: 0.903379\n", + "Epoch : 91 [12/36(33%)]\tLoss: 0.477475\n", + "Epoch : 91 [18/36(50%)]\tLoss: 0.298127\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.774154\n", + "Epoch : 91 [30/36(83%)]\tLoss: 0.821470\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.369243\n", + "Epoch : 92 [6/36(17%)]\tLoss: 0.612523\n", + "Epoch : 92 [12/36(33%)]\tLoss: 0.210638\n", + "Epoch : 92 [18/36(50%)]\tLoss: 0.807545\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.834265\n", + "Epoch : 92 [30/36(83%)]\tLoss: 0.919870\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.082235\n", + "Epoch : 93 [6/36(17%)]\tLoss: 0.838530\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.447084\n", + "Epoch : 93 [18/36(50%)]\tLoss: 0.629929\n", + "Epoch : 93 [24/36(67%)]\tLoss: 1.086087\n", + "Epoch : 93 [30/36(83%)]\tLoss: 1.136212\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.305527\n", + "Epoch : 94 [6/36(17%)]\tLoss: 0.777225\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.674538\n", + "Epoch : 94 [18/36(50%)]\tLoss: 0.338778\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.442373\n", + "Epoch : 94 [30/36(83%)]\tLoss: 0.386233\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.233329\n", + "Epoch : 95 [6/36(17%)]\tLoss: 0.083582\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.714232\n", + "Epoch : 95 [18/36(50%)]\tLoss: 0.608171\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.112548\n", + "Epoch : 95 [30/36(83%)]\tLoss: 0.317948\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.732103\n", + "Epoch : 96 [6/36(17%)]\tLoss: 0.421450\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.555804\n", + "Epoch : 96 [18/36(50%)]\tLoss: 0.516436\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.284155\n", + "Epoch : 96 [30/36(83%)]\tLoss: 0.545753\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.260096\n", + "Epoch : 97 [6/36(17%)]\tLoss: 0.650825\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.369085\n", + "Epoch : 97 [18/36(50%)]\tLoss: 0.164952\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.471970\n", + "Epoch : 97 [30/36(83%)]\tLoss: 0.615105\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.525643\n", + "Epoch : 98 [6/36(17%)]\tLoss: 0.333596\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.672653\n", + "Epoch : 98 [18/36(50%)]\tLoss: 0.481140\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.448534\n", + "Epoch : 98 [30/36(83%)]\tLoss: 0.363117\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.331447\n", + "Epoch : 99 [6/36(17%)]\tLoss: 0.545106\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.237451\n", + "Epoch : 99 [18/36(50%)]\tLoss: 0.122573\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.188235\n", + "Epoch : 99 [30/36(83%)]\tLoss: 0.916856\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.081245\n", + "Epoch : 100 [6/36(17%)]\tLoss: 0.384125\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.839042\n", + "Epoch : 100 [18/36(50%)]\tLoss: 0.953421\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.478191\n", + "Epoch : 100 [30/36(83%)]\tLoss: 0.306942\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.260774\n", + "Epoch : 101 [6/36(17%)]\tLoss: 0.248327\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.551252\n", + "Epoch : 101 [18/36(50%)]\tLoss: 0.507644\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.802037\n", + "Epoch : 101 [30/36(83%)]\tLoss: 0.665714\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.684311\n", + "Epoch : 102 [6/36(17%)]\tLoss: 0.130606\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.080905\n", + "Epoch : 102 [18/36(50%)]\tLoss: 0.128411\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.134917\n", + "Epoch : 102 [30/36(83%)]\tLoss: 0.544069\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.069645\n", + "Epoch : 103 [6/36(17%)]\tLoss: 0.462690\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.280148\n", + "Epoch : 103 [18/36(50%)]\tLoss: 0.408361\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.354704\n", + "Epoch : 103 [30/36(83%)]\tLoss: 0.267196\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.056629\n", + "Epoch : 104 [6/36(17%)]\tLoss: 0.147716\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.245234\n", + "Epoch : 104 [18/36(50%)]\tLoss: 0.283803\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.422772\n", + "Epoch : 104 [30/36(83%)]\tLoss: 0.504356\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.240412\n", + "Epoch : 105 [6/36(17%)]\tLoss: 0.232444\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.122680\n", + "Epoch : 105 [18/36(50%)]\tLoss: 0.503923\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.261035\n", + "Epoch : 105 [30/36(83%)]\tLoss: 0.110653\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.814736\n", + "Epoch : 106 [6/36(17%)]\tLoss: 0.865316\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.186844\n", + "Epoch : 106 [18/36(50%)]\tLoss: 0.301851\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.613877\n", + "Epoch : 106 [30/36(83%)]\tLoss: 0.763012\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.271422\n", + "Epoch : 107 [6/36(17%)]\tLoss: 0.435840\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.276299\n", + "Epoch : 107 [18/36(50%)]\tLoss: 0.280282\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.271152\n", + "Epoch : 107 [30/36(83%)]\tLoss: 0.265185\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.031045\n", + "Epoch : 108 [6/36(17%)]\tLoss: 0.692301\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.410590\n", + "Epoch : 108 [18/36(50%)]\tLoss: 0.320845\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.256157\n", + "Epoch : 108 [30/36(83%)]\tLoss: 0.107320\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.213731\n", + "Epoch : 109 [6/36(17%)]\tLoss: 0.801541\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.082019\n", + "Epoch : 109 [18/36(50%)]\tLoss: 0.269103\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.156343\n", + "Epoch : 109 [30/36(83%)]\tLoss: 0.128098\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.182944\n", + "Epoch : 110 [6/36(17%)]\tLoss: 0.282494\n", + "Epoch : 110 [12/36(33%)]\tLoss: 1.363879\n", + "Epoch : 110 [18/36(50%)]\tLoss: 0.646381\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.288880\n", + "Epoch : 110 [30/36(83%)]\tLoss: 0.652773\n", + "Epoch : 111 [0/36(0%)]\tLoss: 1.078531\n", + "Epoch : 111 [6/36(17%)]\tLoss: 0.768241\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.461333\n", + "Epoch : 111 [18/36(50%)]\tLoss: 0.203940\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.257182\n", + "Epoch : 111 [30/36(83%)]\tLoss: 0.851777\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.388479\n", + "Epoch : 112 [6/36(17%)]\tLoss: 0.308188\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.492092\n", + "Epoch : 112 [18/36(50%)]\tLoss: 0.217130\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.280653\n", + "Epoch : 112 [30/36(83%)]\tLoss: 0.668214\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.482447\n", + "Epoch : 113 [6/36(17%)]\tLoss: 0.333011\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.176142\n", + "Epoch : 113 [18/36(50%)]\tLoss: 0.045932\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.413409\n", + "Epoch : 113 [30/36(83%)]\tLoss: 0.297981\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.280241\n", + "Epoch : 114 [6/36(17%)]\tLoss: 0.229266\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.301661\n", + "Epoch : 114 [18/36(50%)]\tLoss: 0.446485\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.329687\n", + "Epoch : 114 [30/36(83%)]\tLoss: 0.094709\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.031486\n", + "Epoch : 115 [6/36(17%)]\tLoss: 0.317227\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.455375\n", + "Epoch : 115 [18/36(50%)]\tLoss: 0.414501\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.224678\n", + "Epoch : 115 [30/36(83%)]\tLoss: 0.486120\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.161660\n", + "Epoch : 116 [6/36(17%)]\tLoss: 1.004998\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.152528\n", + "Epoch : 116 [18/36(50%)]\tLoss: 0.212228\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.379116\n", + "Epoch : 116 [30/36(83%)]\tLoss: 0.534506\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.180984\n", + "Epoch : 117 [6/36(17%)]\tLoss: 0.103981\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.370068\n", + "Epoch : 117 [18/36(50%)]\tLoss: 0.567247\n", + "Epoch : 117 [24/36(67%)]\tLoss: 1.124778\n", + "Epoch : 117 [30/36(83%)]\tLoss: 0.561308\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.120053\n", + "Epoch : 118 [6/36(17%)]\tLoss: 0.598653\n", + "Epoch : 118 [12/36(33%)]\tLoss: 1.739669\n", + "Epoch : 118 [18/36(50%)]\tLoss: 0.555993\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.637830\n", + "Epoch : 118 [30/36(83%)]\tLoss: 0.020834\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.305821\n", + "Epoch : 119 [6/36(17%)]\tLoss: 0.673685\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.296793\n", + "Epoch : 119 [18/36(50%)]\tLoss: 0.233580\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.484544\n", + "Epoch : 119 [30/36(83%)]\tLoss: 0.061962\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.305475\n", + "Epoch : 120 [6/36(17%)]\tLoss: 0.134704\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.416606\n", + "Epoch : 120 [18/36(50%)]\tLoss: 0.228075\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.169965\n", + "Epoch : 120 [30/36(83%)]\tLoss: 0.630702\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.332198\n", + "Epoch : 121 [6/36(17%)]\tLoss: 0.107081\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.127258\n", + "Epoch : 121 [18/36(50%)]\tLoss: 0.359841\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.634461\n", + "Epoch : 121 [30/36(83%)]\tLoss: 0.508330\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.062544\n", + "Epoch : 122 [6/36(17%)]\tLoss: 0.273998\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.097716\n", + "Epoch : 122 [18/36(50%)]\tLoss: 0.901789\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.143984\n", + "Epoch : 122 [30/36(83%)]\tLoss: 0.073887\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.042699\n", + "Epoch : 123 [6/36(17%)]\tLoss: 0.146398\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.222837\n", + "Epoch : 123 [18/36(50%)]\tLoss: 0.393082\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.346885\n", + "Epoch : 123 [30/36(83%)]\tLoss: 0.268056\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.905391\n", + "Epoch : 124 [6/36(17%)]\tLoss: 0.121307\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.040119\n", + "Epoch : 124 [18/36(50%)]\tLoss: 0.172065\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.315500\n", + "Epoch : 124 [30/36(83%)]\tLoss: 0.097435\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.250758\n", + "Epoch : 125 [6/36(17%)]\tLoss: 0.256416\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.250554\n", + "Epoch : 125 [18/36(50%)]\tLoss: 0.100205\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.087611\n", + "Epoch : 125 [30/36(83%)]\tLoss: 0.161016\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.282307\n", + "Epoch : 126 [6/36(17%)]\tLoss: 0.154004\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.225542\n", + "Epoch : 126 [18/36(50%)]\tLoss: 0.228492\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.199005\n", + "Epoch : 126 [30/36(83%)]\tLoss: 0.573347\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.184047\n", + "Epoch : 127 [6/36(17%)]\tLoss: 0.533389\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.136216\n", + "Epoch : 127 [18/36(50%)]\tLoss: 0.155977\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.203296\n", + "Epoch : 127 [30/36(83%)]\tLoss: 0.076823\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.160394\n", + "Epoch : 128 [6/36(17%)]\tLoss: 0.143347\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.100680\n", + "Epoch : 128 [18/36(50%)]\tLoss: 0.390453\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.556090\n", + "Epoch : 128 [30/36(83%)]\tLoss: 0.160806\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.068652\n", + "Epoch : 129 [6/36(17%)]\tLoss: 0.037016\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.406947\n", + "Epoch : 129 [18/36(50%)]\tLoss: 0.173053\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.145891\n", + "Epoch : 129 [30/36(83%)]\tLoss: 0.064658\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.137604\n", + "Epoch : 130 [6/36(17%)]\tLoss: 0.097402\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.347042\n", + "Epoch : 130 [18/36(50%)]\tLoss: 0.396370\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.327322\n", + "Epoch : 130 [30/36(83%)]\tLoss: 0.171765\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.205987\n", + "Epoch : 131 [6/36(17%)]\tLoss: 0.183313\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.357054\n", + "Epoch : 131 [18/36(50%)]\tLoss: 0.154294\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.167469\n", + "Epoch : 131 [30/36(83%)]\tLoss: 0.203061\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.255157\n", + "Epoch : 132 [6/36(17%)]\tLoss: 0.590170\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.096415\n", + "Epoch : 132 [18/36(50%)]\tLoss: 0.167447\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.038869\n", + "Epoch : 132 [30/36(83%)]\tLoss: 0.257650\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.038131\n", + "Epoch : 133 [6/36(17%)]\tLoss: 0.502948\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.077615\n", + "Epoch : 133 [18/36(50%)]\tLoss: 0.076996\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.156482\n", + "Epoch : 133 [30/36(83%)]\tLoss: 0.122088\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.150348\n", + "Epoch : 134 [6/36(17%)]\tLoss: 0.092598\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.087490\n", + "Epoch : 134 [18/36(50%)]\tLoss: 0.184290\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.264997\n", + "Epoch : 134 [30/36(83%)]\tLoss: 0.163786\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.107566\n", + "Epoch : 135 [6/36(17%)]\tLoss: 0.165457\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.143220\n", + "Epoch : 135 [18/36(50%)]\tLoss: 0.248723\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.198404\n", + "Epoch : 135 [30/36(83%)]\tLoss: 0.111380\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.276253\n", + "Epoch : 136 [6/36(17%)]\tLoss: 0.191580\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.100368\n", + "Epoch : 136 [18/36(50%)]\tLoss: 0.249330\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.065596\n", + "Epoch : 136 [30/36(83%)]\tLoss: 0.035257\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.235662\n", + "Epoch : 137 [6/36(17%)]\tLoss: 0.079488\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.242094\n", + "Epoch : 137 [18/36(50%)]\tLoss: 0.056343\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.335655\n", + "Epoch : 137 [30/36(83%)]\tLoss: 0.203913\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.477217\n", + "Epoch : 138 [6/36(17%)]\tLoss: 0.406925\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.160829\n", + "Epoch : 138 [18/36(50%)]\tLoss: 0.322207\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.231394\n", + "Epoch : 138 [30/36(83%)]\tLoss: 0.191874\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.209485\n", + "Epoch : 139 [6/36(17%)]\tLoss: 0.423043\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.137814\n", + "Epoch : 139 [18/36(50%)]\tLoss: 0.059172\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.231291\n", + "Epoch : 139 [30/36(83%)]\tLoss: 0.223540\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.035230\n", + "Epoch : 140 [6/36(17%)]\tLoss: 0.202554\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.367503\n", + "Epoch : 140 [18/36(50%)]\tLoss: 0.110519\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.062457\n", + "Epoch : 140 [30/36(83%)]\tLoss: 0.255300\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.060109\n", + "Epoch : 141 [6/36(17%)]\tLoss: 0.247374\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.166629\n", + "Epoch : 141 [18/36(50%)]\tLoss: 0.028404\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.154051\n", + "Epoch : 141 [30/36(83%)]\tLoss: 0.074198\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.126086\n", + "Epoch : 142 [6/36(17%)]\tLoss: 0.089637\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.090726\n", + "Epoch : 142 [18/36(50%)]\tLoss: 0.249536\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.010888\n", + "Epoch : 142 [30/36(83%)]\tLoss: 0.061140\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.027110\n", + "Epoch : 143 [6/36(17%)]\tLoss: 0.068008\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.073924\n", + "Epoch : 143 [18/36(50%)]\tLoss: 0.319090\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.146223\n", + "Epoch : 143 [30/36(83%)]\tLoss: 0.233669\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.111634\n", + "Epoch : 144 [6/36(17%)]\tLoss: 0.192101\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.336205\n", + "Epoch : 144 [18/36(50%)]\tLoss: 0.038750\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.190386\n", + "Epoch : 144 [30/36(83%)]\tLoss: 0.130916\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.254708\n", + "Epoch : 145 [6/36(17%)]\tLoss: 0.261197\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.177435\n", + "Epoch : 145 [18/36(50%)]\tLoss: 0.221773\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.130429\n", + "Epoch : 145 [30/36(83%)]\tLoss: 0.276838\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.059615\n", + "Epoch : 146 [6/36(17%)]\tLoss: 0.135495\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.047317\n", + "Epoch : 146 [18/36(50%)]\tLoss: 0.073729\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.337944\n", + "Epoch : 146 [30/36(83%)]\tLoss: 0.177780\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.102647\n", + "Epoch : 147 [6/36(17%)]\tLoss: 0.160022\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.098630\n", + "Epoch : 147 [18/36(50%)]\tLoss: 0.097179\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.032602\n", + "Epoch : 147 [30/36(83%)]\tLoss: 0.042407\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.172346\n", + "Epoch : 148 [6/36(17%)]\tLoss: 0.220893\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.089434\n", + "Epoch : 148 [18/36(50%)]\tLoss: 0.177285\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.114671\n", + "Epoch : 148 [30/36(83%)]\tLoss: 0.143870\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.129623\n", + "Epoch : 149 [6/36(17%)]\tLoss: 0.060536\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.112131\n", + "Epoch : 149 [18/36(50%)]\tLoss: 0.107453\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.079244\n", + "Epoch : 149 [30/36(83%)]\tLoss: 0.120104\n", + "--- 0.06330831448237101 minutes ---\n" ] } ], @@ -2121,12 +1765,12 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADQjUlEQVR4nOzdd3hT5d8G8Dtt6aKT1cEoe5Qty7JBEEGRKYgDBH7iqMhw8qqAiKKiokgVRQRRUUQEQQVkiYqMyhJkCSK77La0hRba8/7x8OQkaZLmpGlOkt6f6+p10pP05EmaNrnP9xkGRVEUEBEREREREZFb+endACIiIiIiIqLSiIGciIiIiIiISAcM5EREREREREQ6YCAnIiIiIiIi0gEDOREREREREZEOGMiJiIiIiIiIdMBATkRERERERKQDBnIiIiIiIiIiHTCQExEREREREemAgZyIiIiIyAt17twZnTt3dvi2jRo1KtkG3VS9enU89NBDbrkvIm/HQE5UisyfPx8GgwEGgwG///57oesVRUHVqlVhMBhw1113GfdnZWVh0qRJaNSoEcqWLYvy5cujWbNmGDNmDE6fPm283eTJk43Ht/aVlpbmlsdJRETkKPne+Oeff+rdlGI7ffo0Jk+ejF27dundFJepXr06DAYDunXrZvX6OXPmGD9nWP4Of//9d/Ts2ROVK1dGcHAwqlWrht69e2PhwoVmt7P32eXRRx8tscdGBAABejeAiNwvODgYCxcuRPv27c32b9y4ESdPnkRQUJBx3/Xr19GxY0ccOHAAw4YNw+jRo5GVlYW///4bCxcuRL9+/RAfH292nA8//BBhYWGF7jcqKqpEHg8REVFp9PPPP5t9f/r0abz88suoXr06mjVrpk+jABw8eBB+fq6r+wUHB2PDhg1IS0tDbGys2XVffvklgoODce3aNbP9ixcvxuDBg40FhOjoaBw9ehS//vor5syZg/vuu8/s9t27d8fQoUML3XfdunVd9jiIrGEgJyqFevXqhcWLF2PmzJkICFD/DSxcuBAtWrTAhQsXjPuWLVuGnTt34ssvvyz05nXt2jXk5eUVOv7AgQNRoUKFknsAREREpVhOTg5CQ0MRGBiod1OsMj2x7wrt2rVDamoqFi1ahDFjxhj3nzx5Er/99hv69euHJUuWmP3M5MmTkZiYiC1bthR6ns6dO1foPurWrYsHHnjApe0mcgS7rBOVQkOGDMHFixexZs0a4768vDx8++23hUL3kSNHAIg3Q0vBwcGIiIgo2cYSERF5gJ07d6Jnz56IiIhAWFgYbrvtNmzZsqXQ7f766y906tQJISEhqFKlCqZOnYp58+bBYDDgv//+M97u+++/x5133on4+HgEBQWhVq1aeOWVV5Cfn292PDn2e/v27ejYsSNCQ0Pxf//3f8br5BjyX375Ba1atQIADB8+3Njlev78+WbH27dvH7p06YLQ0FBUrlwZb775ptn1v/zyCwwGA7755hu8/PLLqFy5MsLDwzFw4EBkZGQgNzcXY8eORaVKlRAWFobhw4cjNzfX7BjWxpCnp6dj3LhxqF69OoKCglClShUMHTrUrAhgS3BwMPr371+oq/lXX32F6Oho9OjRo9DPHDlyBK1atbJ60qJSpUpF3ieRu7BCTlQKVa9eHUlJSfjqq6/Qs2dPAMDKlSuRkZGBe++9FzNnzjTeNiEhAQCwYMECvPjiizAYDEUe/9KlS4X2BQQEsMs6ERF5pb///hsdOnRAREQEnn32WZQpUwYfffQROnfujI0bN6JNmzYAgFOnTqFLly4wGAyYMGECypYti08++cRqxXj+/PkICwvD+PHjERYWhvXr12PixInIzMzE9OnTzW578eJF9OzZE/feey8eeOABxMTEFDpegwYNMGXKFEycOBGjRo1Chw4dAABt27Y13uby5cu444470L9/fwwaNAjffvstnnvuOTRu3Nj4eUCaNm0aQkJC8Pzzz+Pw4cN4//33UaZMGfj5+eHy5cuYPHkytmzZgvnz56NGjRqYOHGizecvKysLHTp0wP79+zFixAjccsstuHDhApYvX46TJ0861Kvuvvvuw+23344jR46gVq1aAETPvoEDB6JMmTKFbp+QkIB169bh5MmTqFKlSpHHv3btmtWTAxERER7bE4F8hEJEpca8efMUAEpqaqoya9YsJTw8XMnJyVEURVHuuecepUuXLoqiKEpCQoJy5513KoqiKDk5OUq9evUUAEpCQoLy0EMPKXPnzlXOnj1b6PiTJk1SAFj9qlevnvseKBERkYNM3xtt6du3rxIYGKgcOXLEuO/06dNKeHi40rFjR+O+0aNHKwaDQdm5c6dx38WLF5Vy5copAJSjR48a98v3X1OPPPKIEhoaqly7ds24r1OnTgoAZfbs2YVu36lTJ6VTp07G71NTUxUAyrx586zeFoCyYMEC477c3FwlNjZWGTBggHHfhg0bFABKo0aNlLy8POP+IUOGKAaDQenZs6fZcZOSkpSEhASzfQkJCcqwYcOM30+cOFEBoHz33XeF2lVQUFBon+Wx7rzzTuXGjRtKbGys8sorryiKoij79u1TACgbN260+jucO3euAkAJDAxUunTporz00kvKb7/9puTn5xe6D1ufXQAoX331ld32ERUXu6wTlVKDBg3C1atX8cMPP+DKlSv44YcfCnVXB4CQkBBs3boVzzzzDABxRn/kyJGIi4vD6NGjC3VTA4AlS5ZgzZo1Zl/z5s0r8cdERETkavn5+fj555/Rt29f1KxZ07g/Li4O9913H37//XdkZmYCAFatWoWkpCSzCdXKlSuH+++/v9BxQ0JCjJevXLmCCxcuoEOHDsjJycGBAwfMbhsUFIThw4cX+7GEhYWZjZMODAxE69at8e+//xa67dChQ80qz23atIGiKBgxYoTZ7dq0aYMTJ07gxo0bNu93yZIlaNq0Kfr161foOkd63gGAv78/Bg0ahK+++gqAmMytatWqxp4AlkaMGIFVq1ahc+fO+P333/HKK6+gQ4cOqFOnDv74449Ct+/Tp0+hzy5r1qxBly5dHGofkbPYZZ2olKpYsSK6deuGhQsXIicnB/n5+Rg4cKDV20ZGRuLNN9/Em2++iWPHjmHdunV46623MGvWLERGRmLq1Klmt+/YsSMndSMiIp9w/vx55OTkoF69eoWua9CgAQoKCnDixAk0bNgQx44dQ1JSUqHb1a5du9C+v//+Gy+++CLWr19vDPRSRkaG2feVK1d2SbfpKlWqFArA0dHR+Ouvvwrdtlq1ambfR0ZGAgCqVq1aaH9BQQEyMjJQvnx5q/d75MgRDBgwoDhNByC6rc+cORO7d+/GwoULce+999oN9D169ECPHj2Qk5OD7du3Y9GiRZg9ezbuuusuHDhwwGwseZUqVWwurUZUklghJyrF7rvvPqxcuRKzZ89Gz549HRrjnZCQgBEjRmDTpk2IiorCl19+WfINJSIi8iHp6eno1KkTdu/ejSlTpmDFihVYs2YN3njjDQBAQUGB2e1Nq+nF4e/vb3W/oigO31bLMVytTZs2qFWrFsaOHYujR49a7dlnTWhoKDp06IBZs2bhxRdfxOXLl7Fy5coSbi2RY1ghJyrF+vXrh0ceeQRbtmzBokWLNP1sdHQ0atWqhb1795ZQ64iIiPRXsWJFhIaG4uDBg4WuO3DgAPz8/IxV44SEBBw+fLjQ7Sz3/fLLL7h48SK+++47dOzY0bj/6NGjxWqro92/3c2VnxeGDBmCqVOnokGDBk6ttd6yZUsAwJkzZ1zSHqLiYoWcqBQLCwvDhx9+iMmTJ6N3795Wb7N7926rs44eO3YM+/bts9qFj4iIyFf4+/vj9ttvx/fff2+2bNnZs2excOFCtG/f3rgEaI8ePbB582bs2rXLeLtLly4V6k0mq8ymVeW8vDx88MEHxWpr2bJlAYgKvCcZMGAAdu/ejaVLlxa6Tmtl/X//+x8mTZqEt99+2+7t1q1bZ3X/Tz/9BAD8/EIegxVyolJu2LBhdq9fs2YNJk2ahLvvvhu33norwsLC8O+//+LTTz9Fbm4uJk+eXOhnvv32W4SFhRXa3717d6tLtRAREent008/xapVqwrtHzNmDKZOnYo1a9agffv2ePzxxxEQEICPPvoIubm5Zut4P/vss/jiiy/QvXt3jB492rjsWbVq1XDp0iVjBbtt27aIjo7GsGHD8OSTT8JgMODzzz8vdrfvWrVqISoqCrNnz0Z4eDjKli2LNm3aoEaNGsU6bnE988wz+Pbbb3HPPfdgxIgRaNGiBS5duoTly5dj9uzZaNq0qcPHSkhIsPrZw1KfPn1Qo0YN9O7dG7Vq1UJ2djbWrl2LFStWoFWrVoUKEYcOHcIXX3xR6DgxMTHo3r27w+0j0oqBnIjsGjBgAK5cuYKff/4Z69evx6VLlxAdHY3WrVvjqaeesjr76GOPPWb1WBs2bGAgJyIij/Thhx9a3f/QQw+hYcOG+O233zBhwgRMmzYNBQUFaNOmDb744gvjGuSAmPBsw4YNePLJJ/Haa6+hYsWKSE5ORtmyZfHkk08iODgYAFC+fHn88MMPeOqpp/Diiy8iOjoaDzzwAG677Tb06NHD6cdQpkwZfPbZZ5gwYQIeffRR3LhxA/PmzdM9kIeFheG3337DpEmTsHTpUnz22WeoVKkSbrvtNofWCHfGJ598gu+//x7ffPMNTp8+DUVRULNmTbzwwgt47rnnEBBgHoPkrOqWOnXqxEBOJcqguGMGBiIiIiKiUmrs2LH46KOPkJWVZXNSNCIqnTiGnIiIiIjIRa5evWr2/cWLF/H555+jffv2DONEVAi7rBMRERERuUhSUhI6d+6MBg0a4OzZs5g7dy4yMzPx0ksv6d00IvJArJATERGRrk6cOIHOnTsjMTERTZo0weLFi/VuEpHTevXqhZ9++gnjxo3DG2+8gWrVqmHlypVmy5sREUkcQ05ERES6OnPmDM6ePYtmzZohLS0NLVq0wKFDh4xLOBEREfkqdlknIiIiXcXFxSEuLg4AEBsbiwoVKuDSpUsM5ERE5PPYZZ2IiIiK5ddff0Xv3r0RHx8Pg8GAZcuWFbpNSkoKqlevjuDgYLRp0wbbtm2zeqzt27cjPz8fVatWLeFWExER6c/nK+QFBQU4ffo0wsPDYTAY9G4OERERFEXBlStXEB8fDz8/7z83np2djaZNm2LEiBHo379/oesXLVqE8ePHY/bs2WjTpg3effdd9OjRAwcPHkSlSpWMt7t06RKGDh2KOXPmaLp/vtcTEZGncfS93ufHkJ88eZJn2YmIyCOdOHECVapU0bsZLmUwGLB06VL07dvXuK9NmzZo1aoVZs2aBUAE6KpVq2L06NF4/vnnAQC5ubno3r07Hn74YTz44IN27yM3Nxe5ubnG70+dOoXExETXPxgiIqJiKuq93ucr5OHh4QDEExEREaFza4iIiIDMzExUrVrV+B7ly/Ly8rB9+3ZMmDDBuM/Pzw/dunXD5s2bAYgqwkMPPYSuXbsWGcYBYNq0aXj55ZcL7ed7PREReQpH3+t9PpDLrmsRERF8kyYiIo9SGrpXX7hwAfn5+YiJiTHbHxMTgwMHDgAANm3ahEWLFqFJkybG8eeff/45GjdubPWYEyZMwPjx443fyw89fK8nIiJPU9R7vc8HciIiIvJs7du3R0FBgcO3DwoKQlBQUAm2iIiIyD28fyYZIiIi8lgVKlSAv78/zp49a7b/7NmziI2N1alVREREnoGBnIiIiEpMYGAgWrRogXXr1hn3FRQUYN26dUhKStKxZURERPpjl3UiopsURcGNGzeQn5+vd1PIy/n7+yMgIKBUjBEHgKysLBw+fNj4/dGjR7Fr1y6UK1cO1apVw/jx4zFs2DC0bNkSrVu3xrvvvovs7GwMHz68WPebkpKClJQU/s0SkcP4Xk+u4qr3ep9f9iwzMxORkZHIyMjgRC9EZFNeXh7OnDmDnJwcvZtCPiI0NBRxcXEIDAwsdJ2vvTf98ssv6NKlS6H9w4YNw/z58wEAs2bNwvTp05GWloZmzZph5syZaNOmjUvu39eeTyIqGXyvJ1dzxXs9AzkRlXoFBQX4559/4O/vj4oVKyIwMLDUVDbJ9RRFQV5eHs6fP4/8/HzUqVMHfn7mI8T43uRafD6JqCh8rydXcuV7PbusE1Gpl5eXh4KCAlStWhWhoaF6N4d8QEhICMqUKYNjx44hLy8PwcHBejeJiKhU43s9uZqr3us5qRsR0U2WZzaJioOvJyIiz8P/zeRKrng98RVJREREXiklJQWJiYlo1aqV3k0hIiJyiq6BvHr16jAYDIW+kpOTAQDXrl1DcnIyypcvj7CwMAwYMKDQOqZERERUOiUnJ2Pfvn1ITU3VuylERERO0TWQp6am4syZM8avNWvWAADuueceAMC4ceOwYsUKLF68GBs3bsTp06fRv39/PZtMROTTqlevjnfffdfh2//yyy8wGAxIT08vsTYBwPz58xEVFVWi90FERFRa8P3ec+g6qVvFihXNvn/99ddRq1YtdOrUCRkZGZg7dy4WLlyIrl27AgDmzZuHBg0aYMuWLbj11lv1aDIRkUcoambYSZMmYfLkyZqPm5qairJlyzp8+7Zt2+LMmTOIjIzUfF9ERERkH9/vfZ/HzLKel5eHL774AuPHj4fBYMD27dtx/fp1dOvWzXib+vXro1q1ati8ebPNQJ6bm4vc3Fzj95mZmSXediIidztz5ozx8qJFizBx4kQcPHjQuC8sLMx4WVEU5OfnIyCg6H/5lidKixIYGIjY2FhNP0NERESO4fu97/OYSd2WLVuG9PR0PPTQQwCAtLQ0BAYGFuqyEBMTg7S0NJvHmTZtGiIjI41fVatWdVkbO3QAGjcGjh512SGJyAMpCpCdrc+XojjWxtjYWONXZGQkDAaD8fsDBw4gPDwcK1euRIsWLRAUFITff/8dR44cQZ8+fRATE4OwsDC0atUKa9euNTuuZRc2g8GATz75BP369UNoaCjq1KmD5cuXG6+37MImu5qtXr0aDRo0QFhYGO644w6zDxQ3btzAk08+iaioKJQvXx7PPfcchg0bhr59+2r6PX344YeoVasWAgMDUa9ePXz++ecmv0MFkydPRrVq1RAUFIT4+Hg8+eSTxus/+OAD1KlTB8HBwYiJicHAgQM13Tf5rueeE+/1Cxfq3RIiKml6vd87+l4P8P0e8P33e48J5HPnzkXPnj0RHx9frONMmDABGRkZxq8TJ064qIXAvn3A3r3AtWsuOyQReaCcHCAsTJ+vnBzXPY7nn38er7/+Ovbv348mTZogKysLvXr1wrp167Bz507ccccd6N27N44fP273OC+//DIGDRqEv/76C7169cL999+PS5cu2Xn+cvDWW2/h888/x6+//orjx4/j6aefNl7/xhtv4Msvv8S8efOwadMmZGZmYtmyZZoe29KlSzFmzBg89dRT2Lt3Lx555BEMHz4cGzZsAAAsWbIEM2bMwEcffYR//vkHy5YtQ+PGjQEAf/75J5588klMmTIFBw8exKpVq9CxY0dN90+eoSRmWT9xQrzXnzvnskMSkYfS6/3ele/1AN/vvf79XvEA//33n+Ln56csW7bMuG/dunUKAOXy5ctmt61WrZryzjvvOHzsjIwMBYCSkZFR7HZWqKAogKLs3VvsQxGRB7l69aqyb98+5erVq4qiKEpWlvhb1+MrK0t7++fNm6dERkYav9+wYYMCwOx/qi0NGzZU3n//feP3CQkJyowZM4zfA1BefPFF4/dZWVkKAGXlypVm9yX/V8+bN08BoBw+fNj4MykpKUpMTIzx+5iYGGX69OnG72/cuKFUq1ZN6dOnj8OPsW3btsrDDz9sdpt77rlH6dWrl6IoivL2228rdevWVfLy8goda8mSJUpERISSmZlp8/5cwfJ1ZcqV703k2udz6FDxt/jmmy5oGBF5DGv/k/V6v3fmvV5R+H4vedL7vSve6z2iQj5v3jxUqlQJd955p3FfixYtUKZMGaxbt8647+DBgzh+/DiSkpL0aCbkuu8FBbrcPRG5SWgokJWlz1doqOseR8uWLc2+z8rKwtNPP40GDRogKioKYWFh2L9/f5FnzJs0aWK8XLZsWUREROCcnfJhaGgoatWqZfw+Li7OePuMjAycPXsWrVu3Nl7v7++PFi1aaHps+/fvR7t27cz2tWvXDvv37wcgVuu4evUqatasiYcffhhLly7FjRs3AADdu3dHQkICatasiQcffBBffvklclxdriCvVaaM2F6/rm87iKjk6fV+78r3eoDv997+fq97IC8oKMC8efMwbNgwswkIIiMjMXLkSIwfPx4bNmzA9u3bMXz4cCQlJek2wzoDOVHpYDAAZcvq81XEZKqaWM6e+vTTT2Pp0qV47bXX8Ntvv2HXrl1o3Lgx8vLy7B6njEwoxufHgAI7/wit3V7RMmDOBapWrYqDBw/igw8+QEhICB5//HF07NgR169fR3h4OHbs2IGvvvoKcXFxmDhxIpo2bVriS7mQd2AgJyo99Hq/d+V7PcD3e29/v9c9kK9duxbHjx/HiBEjCl03Y8YM3HXXXRgwYAA6duyI2NhYfPfddzq0UmAgJyJvtmnTJjz00EPo168fGjdujNjYWPz3339ubUNkZCRiYmKQmppq3Jefn48dO3ZoOk6DBg2wadMms32bNm1CYmKi8fuQkBD07t0bM2fOxC+//ILNmzdjz549AICAgAB069YNb775Jv766y/8999/WL9+fTEeGfkKBnIi8nZ8v/eu93vdlz27/fbbbZ5JCQ4ORkpKClJSUtzcKusYyInIm9WpUwffffcdevfuDYPBgJdeesnume+SMnr0aEybNg21a9dG/fr18f777+Py5ctFrrVq6plnnsGgQYPQvHlzdOvWDStWrMB3331nnEV2/vz5yM/PR5s2bRAaGoovvvgCISEhSEhIwA8//IB///0XHTt2RHR0NH766ScUFBSgXr16JfWQyYswkBORt+P7vXe93+seyL0JAzkRebN33nkHI0aMQNu2bVGhQgU899xzyMzMdHs7nnvuOaSlpWHo0KHw9/fHqFGj0KNHD/j7+zt8jL59++K9997DW2+9hTFjxqBGjRqYN28eOnfuDACIiorC66+/jvHjxyM/Px+NGzfGihUrUL58eURFReG7777D5MmTce3aNdSpUwdfffUVGjZsWEKPmLwJAzkReTu+33vX+71BcXdHfzfLzMxEZGQkMjIyEBERUaxj1agB/PcfsGUL0KaNa9pHRPq7du0ajh49iho1aiA4OFjv5pQ6BQUFaNCgAQYNGoRXXnlF7+a4jL3XlSvfm0oz2YsuPz8fhw4dcsnz+dJLwNSpwBNPAO+/76KGEpHu+F6vP198v3fFez0r5BqwQk5EVHzHjh3Dzz//jE6dOiE3NxezZs3C0aNHcd999+ndNPIyycnJSE5ONn7ocQVWyImIXIPv947RfVI3b8JATkRUfH5+fpg/fz5atWqFdu3aYc+ePVi7di0aNGigd9OIjIG8iMmIiYioCHy/dwwr5BowkBMRFV/VqlULzZhK5CkCA8WWFXIiouLh+71jWCHXgIGciIjIt7HLOhERuRMDuQYM5ERERL6NgZyIiNyJgVwDBnIiIiLfxkBORETuxECuAQM5ERGRb2MgJyIid2Ig14CBnIiIyHOkpKQgMTERrVq1ctkxGciJiMidGMg1YCAnIiLyHMnJydi3bx9SU1NddkwGciIicicGcg0YyInI13Tu3Bljx441fl+9enW8++67dn/GYDBg2bJlxb5vVx3HnsmTJ6NZs2Yleh/kWxjIicgX8f3eczGQa8BATkSeonfv3rjjjjusXvfbb7/BYDDgr7/+0nzc1NRUjBo1qrjNM2PrTfLMmTPo2bOnS++LqLgYyInIk/D93vcxkGvAQE5EnmLkyJFYs2YNTp48Wei6efPmoWXLlmjSpInm41asWBGhoaGuaGKRYmNjERQU5Jb7InIUAzkReRK+3/s+BnINGMiJSglFAbKz9flSFIeaeNddd6FixYqYP3++2f6srCwsXrwYI0eOxMWLFzFkyBBUrlwZoaGhaNy4Mb766iu7x7XswvbPP/+gY8eOCA4ORmJiItasWVPoZ5577jnUrVsXoaGhqFmzJl566SVcv5lm5s+fj5dffhm7d++GwWCAwWAwttmyC9uePXvQtWtXhISEoHz58hg1ahSysrKM1z/00EPo27cv3nrrLcTFxaF8+fJITk423pcjCgoKMGXKFFSpUgVBQUFo1qwZVq1aZbw+Ly8PTzzxBOLi4hAcHIyEhARMmzYNAKAoCiZPnoxq1aohKCgI8fHxePLJJx2+b/IOMpDn5enbDiJyA73e7x18rwf4fl8a3u8DSuzIPoiBnKiUyMkBwsL0ue+sLKBs2SJvFhAQgKFDh2L+/Pl44YUXYDAYAACLFy9Gfn4+hgwZgqysLLRo0QLPPfccIiIi8OOPP+LBBx9ErVq10Lp16yLvo6CgAP3790dMTAy2bt2KjIwMs/FnUnh4OObPn4/4+Hjs2bMHDz/8MMLDw/Hss89i8ODB2Lt3L1atWoW1a9cCACIjIwsdIzs7Gz169EBSUhJSU1Nx7tw5/O9//8MTTzxh9iFkw4YNiIuLw4YNG3D48GEMHjwYzZo1w8MPP1zk4wGA9957D2+//TY++ugjNG/eHJ9++inuvvtu/P3336hTpw5mzpyJ5cuX45tvvkG1atVw4sQJnDhxAgCwZMkSzJgxA19//TUaNmyItLQ07N6926H7Je8RGCi2rJATlQJ6vd87+F4P8P2+VLzfKz4uIyNDAaBkZGQU+1gdOyoKoCjffOOChhGRx7h69aqyb98+5erVq2JHVpb4Y9fjKyvL4Xbv379fAaBs2LDBuK9Dhw7KAw88YPNn7rzzTuWpp54yft+pUydlzJgxxu8TEhKUGTNmKIqiKKtXr1YCAgKUU6dOGa9fuXKlAkBZunSpzfuYPn260qJFC+P3kyZNUpo2bVrodqbH+fjjj5Xo6Ggly+Tx//jjj4qfn5+SlpamKIqiDBs2TElISFBu3LhhvM0999yjDB482GZbLO87Pj5eefXVV81u06pVK+Xxxx9XFEVRRo8erXTt2lUpKCgodKy3335bqVu3rpKXl2fz/kwVel2ZcOV7E7n2+dy6VfwpJiQUv11E5Dms/k/W6/1ew3u9ovD9XlE89/3eFe/17LKuASvkRKVEaKg4e63Hl4bxXPXr10fbtm3x6aefAgAOHz6M3377DSNHjgQA5Ofn45VXXkHjxo1Rrlw5hIWFYfXq1Th+/LhDx9+/fz+qVq2K+Ph4476kpKRCt1u0aBHatWuH2NhYhIWF4cUXX3T4Pkzvq2nTpihrUjFo164dCgoKcPDgQeO+hg0bwt/f3/h9XFwczp0759B9ZGZm4vTp02jXrp3Z/nbt2mH//v0ARDe5Xbt2oV69enjyySfx888/G293zz334OrVq6hZsyYefvhhLF26FDdu3ND0OMnzcQw5USmi1/u9xrHbfL/37fd7BnINGMiJSgmDQXQl0+PrZlc0R40cORJLlizBlStXMG/ePNSqVQudOnUCAEyfPh3vvfcennvuOWzYsAG7du1Cjx49kOfCwbGbN2/G/fffj169euGHH37Azp078cILL7j0PkyVkWnpJoPBgAIX/lO+5ZZbcPToUbzyyiu4evUqBg0ahIEDBwIAqlatioMHD+KDDz5ASEgIHn/8cXTs2FHTmDbyfAzkRKWIXu/3Gt/rAb7f+/L7PQO5BgzkRORpBg0aBD8/PyxcuBALFizAiBEjjOPLNm3ahD59+uCBBx5A06ZNUbNmTRw6dMjhYzdo0AAnTpzAmTNnjPu2bNlidps//vgDCQkJeOGFF9CyZUvUqVMHx44dM7tNYGAg8vPzi7yv3bt3Izs727hv06ZN8PPzQ7169Rxusz0RERGIj4/Hpk2bzPZv2rQJiYmJZrcbPHgw5syZg0WLFmHJkiW4dOkSACAkJAS9e/fGzJkz8csvv2Dz5s3Ys2ePS9pH2qWkpCAxMRGtWrVy2TEZyInIE/H93nHe9n7PSd00YCAnIk8TFhaGwYMHY8KECcjMzMRDDz1kvK5OnTr49ttv8ccffyA6OhrvvPMOzp49a/ZmZE+3bt1Qt25dDBs2DNOnT0dmZiZeeOEFs9vUqVMHx48fx9dff41WrVrhxx9/xNKlS81uU716dRw9ehS7du1ClSpVEB4eXmj5k/vvvx+TJk3CsGHDMHnyZJw/fx6jR4/Ggw8+iJiYGOeeHCueeeYZTJo0CbVq1UKzZs0wb9487Nq1C19++SUA4J133kFcXByaN28OPz8/LF68GLGxsYiKisL8+fORn5+PNm3aIDQ0FF988QVCQkKQkJDgsvaRNsnJyUhOTkZmZqbVyYOcwUBORJ6I7/faeNP7PSvkGjCQE5EnGjlyJC5fvowePXqYjf968cUXccstt6BHjx7o3LkzYmNj0bdvX4eP6+fnh6VLl+Lq1ato3bo1/ve//+HVV181u83dd9+NcePG4YknnkCzZs3wxx9/4KWXXjK7zYABA3DHHXegS5cuqFixotWlWEJDQ7F69WpcunQJrVq1wsCBA3Hbbbdh1qxZ2p6MIjz55JMYP348nnrqKTRu3BirVq3C8uXLUadOHQBiBtk333wTLVu2RKtWrfDff//hp59+gp+fH6KiojBnzhy0a9cOTZo0wdq1a7FixQqUL1/epW0kfTGQE5Gn4vu947zp/d6gKBoWwvNC8qx5RkYGIiIiinWsO+8EfvoJ+PRTYPhwFzWQiHR37do1HD16FDVq1EBwcLDezSEfYe915cr3JnLt85mWBsTFiSGePAFP5Dv4Xk8lwRXv9ayQa8AKORERkW+TFXJFAYoYCklERFRsDOQaMJATERH5NtOJfdltnYiIShoDuQYM5ERERL7NNJCX0Go+RERERgzkGjCQExER+TZWyImIyJ0YyDVgICfybT4+xyW5GV9P3snfX0zoBjCQE/ki/m8mV3LF64mBXAMGciLfVOZmSSwnJ0fnlpAvka+nMqYlV/J4BgOXPiPyRXyvp5Lgivf6AFc1pjRgICfyTf7+/oiKisK5c+cAiDUyDbJERqSRoijIycnBuXPnEBUVBX9/f72bRBqVKSPGjzOQE/kOvteTK7nyvZ6BXAMGciLfFRsbCwDGN2qi4oqKijK+rsi7sEJO5Jv4Xk+u5or3egZyDRjIiXyXwWBAXFwcKlWqhOv8FE7FVKZMGVbGvRgDOZFv4ns9uZKr3usZyDVgICfyff7+/gxSRF4iJSUFKSkpyM/Pd+lxGciJfBvf68mTcFI3DRjIiYiIPEdycjL27duH1NRUlx6XgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPfJQJ6Xp287iIjI9zGQa8BATkRE5PtYISciIndhINeAgZyIiMj3BQaKLQM5ERGVNN0D+alTp/DAAw+gfPnyCAkJQePGjfHnn38ar1cUBRMnTkRcXBxCQkLQrVs3/PPPP7q0lYGciIjI97FCTkRE7qJrIL98+TLatWuHMmXKYOXKldi3bx/efvttREdHG2/z5ptvYubMmZg9eza2bt2KsmXLokePHrh27Zrb28tATkRE5PsYyImIyF0C9LzzN954A1WrVsW8efOM+2rUqGG8rCgK3n33Xbz44ovo06cPAGDBggWIiYnBsmXLcO+997q1vQzkREREvo+BnIiI3EXXCvny5cvRsmVL3HPPPahUqRKaN2+OOXPmGK8/evQo0tLS0K1bN+O+yMhItGnTBps3b7Z6zNzcXGRmZpp9uQoDORERke9jICciInfRNZD/+++/+PDDD1GnTh2sXr0ajz32GJ588kl89tlnAIC0tDQAQExMjNnPxcTEGK+zNG3aNERGRhq/qlat6rL2MpATERH5PgZyIiJyF10DeUFBAW655Ra89tpraN68OUaNGoWHH34Ys2fPdvqYEyZMQEZGhvHrxIkTLmsvAzkREZHvYyAnIiJ30TWQx8XFITEx0WxfgwYNcPz4cQBAbGwsAODs2bNmtzl79qzxOktBQUGIiIgw+3IVBnIiIiLfx0BORETuomsgb9euHQ4ePGi279ChQ0hISAAgJniLjY3FunXrjNdnZmZi69atSEpKcmtbAQZyIiKi0oCBnIiI3EXXWdbHjRuHtm3b4rXXXsOgQYOwbds2fPzxx/j4448BAAaDAWPHjsXUqVNRp04d1KhRAy+99BLi4+PRt29ft7eXgZyIiMj3yUCel6dvO4iIyPfpGshbtWqFpUuXYsKECZgyZQpq1KiBd999F/fff7/xNs8++yyys7MxatQopKeno3379li1ahWCg4Pd3l4GciIiIt/HCjkREbmLroEcAO666y7cddddNq83GAyYMmUKpkyZ4sZWWcdATkRE5PsCA8WWgZyIiEqarmPIvQ0DORERkedISUlBYmIiWrVq5dLjskJORETuwkCuAQM5ERGR50hOTsa+ffuQmprq0uMykBMRkbswkGvAQE5EROT7GMiJiMhdGMg1YCAnIiLyfQzkRETkLgzkGjCQExER+T4GciIichcGcg0YyImIiHwfAzkREbkLA7kGDORERES+j4GciIjchYFcAwZyIiIi38dATkRE7sJArgEDORERke+TgTwvT992EBGR72Mg14CBnIiIyPexQk5ERO7CQK4BAzkREZHvYyAnIiJ3YSDXgIGciIjI9wUGii0DORERlTQGcg0YyImIiHwfK+REROQuDOQaMJATERH5PgZyIiJyFwZyDRjIiYiIfB8DORERuQsDuQYM5ERERL6PgZyIiNyFgVwDBnIiIiLfx0BORETuwkCuAQM5ERGR72MgJyIid2Eg14CBnIiIyPcxkBMRkbswkGvAQE5EROT7ZCDPy9O3HURE5PsYyDVgICciIvJ9rJATEZG7MJBrwEBORETk+xjIiYjIXRjINWAgJyIi8n2BgWLLQE5ERCWNgVwDBnIiIiLfJyvkBQV8zyciopLFQK4BAzkREZHvk4EcYJWciIhKFgO5BgzkREREvo+BnIiI3IWBXAMGciIiopLRr18/REdHY+DAgXo3hYGciIjchoFcAwZyIiKikjFmzBgsWLBA72YAAAIC1MsM5EREVJIYyDVgICciIioZnTt3Rnh4uN7NAAAYDGooZyAnIqKSxECuAQM5ERFRYb/++it69+6N+Ph4GAwGLFu2rNBtUlJSUL16dQQHB6NNmzbYtm2b+xuqAdciJyIid2Ag14CBnIiIqLDs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXPnzjl1f7m5ucjMzDT7cjUZyPPyXH5oIiIiIwZyDRjIiYiICuvZsyemTp2Kfv36Wb3+nXfewcMPP4zhw4cjMTERs2fPRmhoKD799FOn7m/atGmIjIw0flWtWrU4zbeKFXIiInIHBnINGMiJiIi0ycvLw/bt29GtWzfjPj8/P3Tr1g2bN2926pgTJkxARkaG8evEiROuaq4RAzkREblDQNE3IYmBnIiISJsLFy4gPz8fMTExZvtjYmJw4MAB4/fdunXD7t27kZ2djSpVqmDx4sVISkqyesygoCAEBQWVaLsDA8WWgZyIiEoSA7kGDOREREQlY+3atXo3wQwr5ERE5A7ssq4BAzkREZE2FSpUgL+/P86ePWu2/+zZs4iNjdWpVUVjICciIndgINeAgZyIiEibwMBAtGjRAuvWrTPuKygowLp162x2SXdUSkoKEhMT0apVq+I2sxAGciIicgd2WdeAgZyIiKiwrKwsHD582Pj90aNHsWvXLpQrVw7VqlXD+PHjMWzYMLRs2RKtW7fGu+++i+zsbAwfPrxY95ucnIzk5GRkZmYiMjKyuA/DDAM5ERG5AwO5BgzkREREhf3555/o0qWL8fvx48cDAIYNG4b58+dj8ODBOH/+PCZOnIi0tDQ0a9YMq1atKjTRmydhICciInfQtcv65MmTYTAYzL7q169vvP7atWtITk5G+fLlERYWhgEDBhQag+ZODORERESFde7cGYqiFPqaP3++8TZPPPEEjh07htzcXGzduhVt2rTRr8EOYCAnIiJ30H0MecOGDXHmzBnj1++//268bty4cVixYgUWL16MjRs34vTp0+jfv79ubWUgJyIiKh0YyImIyB1077IeEBBgdZbVjIwMzJ07FwsXLkTXrl0BAPPmzUODBg2wZcsW3Hrrre5uKgM5ERGRB0lJSUFKSgry8/NdfmwZyPPyXH5oIiIiI90r5P/88w/i4+NRs2ZN3H///Th+/DgAYPv27bh+/Tq6detmvG39+vVRrVo1bN682ebxcnNzkZmZafblKgzkREREniM5ORn79u1Damqqy4/NCjkREbmDroG8TZs2mD9/PlatWoUPP/wQR48eRYcOHXDlyhWkpaUhMDAQUVFRZj8TExODtLQ0m8ecNm0aIiMjjV9Vq1Z1WXsZyImIiEoHBnIiInIHXbus9+zZ03i5SZMmaNOmDRISEvDNN98gJCTEqWNOmDDBOLsrAGRmZroslDOQExERlQ6BgWLLQE5ERCVJ9y7rpqKiolC3bl0cPnwYsbGxyMvLQ3p6utltzp49a3XMuRQUFISIiAizL1dhICciIiodWCEnIiJ38KhAnpWVhSNHjiAuLg4tWrRAmTJlsG7dOuP1Bw8exPHjx5GUlKRL+xjIiYiISgcGciIicgddu6w//fTT6N27NxISEnD69GlMmjQJ/v7+GDJkCCIjIzFy5EiMHz8e5cqVQ0REBEaPHo2kpCRdZlgHGMiJiIg8iTtmWWcgJyKikqRrID958iSGDBmCixcvomLFimjfvj22bNmCihUrAgBmzJgBPz8/DBgwALm5uejRowc++OAD3drLQE5EROQ5kpOTkZycjMzMTERGRrr02AzkRETkDroG8q+//tru9cHBwcaz356AgZyIiKh0YCAnIiJ38Kgx5J6OgZyIiKh0YCAnIiJ3YCDXgIGciIiodGAgJyIid2Ag18DP5NlSFP3aQURERCVLBvK8PH3bQUREvo2BXAPTQM4qORERke9ihZyIiNyBgVwDBnIiIiLPkZKSgsTERLRq1crlx2YgJyIid2Ag14CBnIiIyHMkJydj3759SE1NdfmxGciJiMgdGMg1YCAnIiIqHQIDxZaBnIiIShIDuQYM5ERERKUDK+REROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BowkBMREZUODOREROQODOQaMJATERGVDgzkRETkDgzkGjCQExERlQ4M5ERE5A4M5BoYDOplBnIiIiJ9paSkIDExEa1atXL5sWUgz8tz+aGJiIiMGMg1klVyBnIiIiJ9JScnY9++fUhNTXX5sVkhJyIid2Ag14iBnIiIvMGOHTuwZ88e4/fff/89+vbti//7v/9DHsu+RWIgJyIid2Ag14iBnIiIvMEjjzyCQ4cOAQD+/fdf3HvvvQgNDcXixYvx7LPP6tw6z8dATkRE7sBArhEDOREReYNDhw6hWbNmAIDFixejY8eOWLhwIebPn48lS5bo2zgvEBgotgzkRERUkhjINWIgJyIib6AoCgpuvlmtXbsWvXr1AgBUrVoVFy5c0LNpXoEVciIicgcGco0YyImIyBu0bNkSU6dOxeeff46NGzfizjvvBAAcPXoUMTExOrfO8zGQExGROzCQa8RATkRE3uDdd9/Fjh078MQTT+CFF15A7dq1AQDffvst2rZtq3PrPB8DORERuUOA3g3wNgzkRETkDZo0aWI2y7o0ffp0+Pv769Ai78JATkRE7sAKuUYM5ERE5A1OnDiBkydPGr/ftm0bxo4diwULFqCMTJtkEwM5ERG5AwO5RgzkRETkDe677z5s2LABAJCWlobu3btj27ZteOGFFzBlyhSdW+caKSkpSExMRKtWrVx+bBnIb9wAFMXlhyciIgLAQK4ZAzkREXmDvXv3onXr1gCAb775Bo0aNcIff/yBL7/8EvPnz9e3cS6SnJyMffv2ITU11eXHDg1VL+fkuPzwREREABjINWMgJyIib3D9+nUEBQUBEMue3X333QCA+vXr48yZM3o2zSuULQvIofbp6bo2hYiIfBgDuUYM5ERE5A0aNmyI2bNn47fffsOaNWtwxx13AABOnz6N8uXL69w6z2cwAFFR4nJGhq5NISIiH8ZArhEDOREReYM33ngDH330ETp37owhQ4agadOmAIDly5cbu7KTfTKQs0JOREQlhcueacRATkRE3qBz5864cOECMjMzER0dbdw/atQohJoOkCabGMiJiKikMZBrxEBORETewt/fHzdu3MDvv/8OAKhXrx6qV6+ub6O8CAM5ERGVNHZZ14iBnIiIvEF2djZGjBiBuLg4dOzYER07dkR8fDxGjhyJHE4b7hAGciIiKmkM5BoxkBMRkTcYP348Nm7ciBUrViA9PR3p6en4/vvvsXHjRjz11FN6N88rMJATEVFJY5d1jRjIiYjIGyxZsgTffvstOnfubNzXq1cvhISEYNCgQfjwww/1a5yXYCAnIqKSxgq5RgzkRETkDXJychATE1Nof6VKldhl3UEM5EREVNIYyDViICciIm+QlJSESZMm4dq1a8Z9V69excsvv4ykpCQdW+Y9IiPFloGciIhKCrusa8RATkRE3uC9995Djx49UKVKFeMa5Lt370ZwcDBWr16tc+tcIyUlBSkpKcjPzy+R47NCTkREJY2BXCMGciIi8gaNGjXCP//8gy+//BIHDhwAAAwZMgT3338/QkJCdG6dayQnJyM5ORmZmZmIlOVsF2IgJyKiksZArhEDOREReYvQ0FA8/PDDejfDazGQExFRSWMg14iBnIiIPNXy5csdvu3dd99dgi3xDQzkRERU0jwmkL/++uuYMGECxowZg3fffRcAcO3aNTz11FP4+uuvkZubix49euCDDz6wOmusuzCQExGRp+rbt69DtzMYDCU27tqXmAZyRQEMBj1bQ0REvsgjZllPTU3FRx99hCZNmpjtHzduHFasWIHFixdj48aNOH36NPr3769TKwUGciIi8lQFBQUOfTGMO0YG8uvXgatXdW0KERH5KN0DeVZWFu6//37MmTMH0dHRxv0ZGRmYO3cu3nnnHXTt2hUtWrTAvHnz8Mcff2DLli26tZeBnIiIqHQICxPv++VwEfn/9xJw7JjeTSIiIh+jeyBPTk7GnXfeiW7dupnt3759O65fv262v379+qhWrRo2b95s83i5ubnIzMw0+3IlBnIiIqLSwWAQVfK38DTC35sK3BxSR0RE5Cq6jiH/+uuvsWPHDqSmpha6Li0tDYGBgYiS/cVuiomJQVpams1jTps2DS+//LKrm2rEQE5ERFR61Ai/gCGXvhLfZGTo2xgiIvI5ulXIT5w4gTFjxuDLL79EcHCwy447YcIEZGRkGL9OnDjhsmMDDORERESlydDrcxGMXPFNbq6+jSEiIp+jWyDfvn07zp07h1tuuQUBAQEICAjAxo0bMXPmTAQEBCAmJgZ5eXlIt1hr5OzZs4iNjbV53KCgIERERJh9uRIDORERUSmRn4/BFz9Qv8/L068tRETkk3Trsn7bbbdhz549ZvuGDx+O+vXr47nnnkPVqlVRpkwZrFu3DgMGDAAAHDx4EMePH0dSUpIeTQbAQE5ERN7hp59+gr+/P3r06GG2f/Xq1SgoKEDPnj11apkX+eEHxOQeV79nhZyIiFxMt0AeHh6ORo0ame0rW7Ysypcvb9w/cuRIjB8/HuXKlUNERARGjx6NpKQk3HrrrXo0GQADOREReYfnn38er7/+eqH9iqLg+eefZyB3xKxZAIBjqIYEHGcgJyIil9N9lnV7ZsyYgbvuugsDBgxAx44dERsbi++++07XNjGQExGRN/jnn3+QmJhYaH/9+vVx+PBhHVrkZdLTgbVrAQCz8ITYxy7rRETkYrrOsm7pl19+Mfs+ODgYKSkpSElJ0adBVjCQExGRN4iMjMS///6L6tWrm+0/fPgwypYtq0+jvMn58wCA3KBw/JNbR+xjhZyIiFzMoyvknoiBnIiIvEGfPn0wduxYHDlyxLjv8OHDeOqpp3D33Xfr2DIvcfkyACA3NBq5CBL7WCEnIiIXYyDXiIGciIi8wZtvvomyZcuifv36qFGjBmrUqIEGDRqgfPnyeOutt/Runue7GchvhEcjD4FiHyvkRETkYh7VZd0bMJATEZE3iIyMxB9//IE1a9Zg9+7dCAkJQZMmTdCxY0e9m+YdbgbygogotULOQE5ERC7GQK4RAzkREXkLg8GA22+/HbfffrveTfE+NwM5okwq5OyyTkRELsZArhEDOREReaqZM2di1KhRCA4OxsyZM+3e9sknn3RTq0qOnPg1Pz/f9Qe/Gcj9ykezQk5ERCWGgVwjBnIiIvJUM2bMwP3334/g4GDMmDHD5u0MBoNPBPLk5GQkJycjMzMTkZGRrj34zUAeUFEN5EpeHgyuvRciIirlGMg1YiAnIiJPdfToUauXyQk3A3lgLCd1IyKiksNZ1jViICciIioFZCCPicZ1A7usExFRyXCqQn7ixAkYDAZUqVIFALBt2zYsXLgQiYmJGDVqlEsb6GkYyImIyBsoioJvv/0WGzZswLlz51Bg8cb13Xff6dQyLyHHkJeLRnBEIJABGG7cEB8A/FjPICIi13DqHeW+++7Dhg0bAABpaWno3r07tm3bhhdeeAFTpkxxaQM9DQM5ERF5g7Fjx+LBBx/E0aNHERYWhsjISLMvKoKcZT06GiFRQep+zrROREQu5FSFfO/evWjdujUA4JtvvkGjRo2wadMm/Pzzz3j00UcxceJElzbSkzCQExGRN/j888/x3XffoVevXno3xTtZBvJjN/fn5QHBwbo1i4iIfItTFfLr168jKEicLV67di3uvvtuAED9+vVx5swZ17XOAzGQExGRN4iMjETNmjX1bob3MgnkYdFl1P0cR05ERC7kVCBv2LAhZs+ejd9++w1r1qzBHXfcAQA4ffo0ypcv79IGehoGciIi8gaTJ0/Gyy+/jKtXr+rdFO+Tnw9kZorL0dGIjPZDHm6GcgZyIiJyIae6rL/xxhvo168fpk+fjmHDhqFp06YAgOXLlxu7svsqBnIiIvIGgwYNwldffYVKlSqhevXqKFOmjNn1O3bs0KllXiA9Xb0cHY2oKCAPgQjEdY4hJyIil3IqkHfu3BkXLlxAZmYmoqOjjftHjRqF0NBQlzXOEzGQExGRNxg2bBi2b9+OBx54ADExMTAYDHo3yXvI7uplywJlyiAyEshFEMKQzQo5ERG5lFOB/OrVq1AUxRjGjx07hqVLl6JBgwbo0aOHSxvoaRjIiYjIG/z4449YvXo12rdvr3dTvI/J+HEAiIoSgRwAK+RERORSTo0h79OnDxYsWAAASE9PR5s2bfD222+jb9+++PDDD13aQE/DQE5ERN6gatWqiIiI0LsZ3skikJcvL7qsA2CFnIiIXMqpQL5jxw506NABAPDtt98iJiYGx44dw4IFCzBz5kyXNtDTMJATEZE3ePvtt/Hss8/iv//+07sp3sdKIDdWyBnIiYjIhZzqsp6Tk4Pw8HAAwM8//4z+/fvDz88Pt956K44dO1bET3s3BnIiIvIGDzzwAHJyclCrVi2EhoYWmtTt0qVLOrXMC9irkLPLOhERuZBTgbx27dpYtmwZ+vXrh9WrV2PcuHEAgHPnzvl89zgZyBVF33YQERHZ8+677+rdBO/FCjkREbmJU4F84sSJuO+++zBu3Dh07doVSUlJAES1vHnz5i5toKdhhZyIiLzBsGHD9G6C95LLnpkE8lM3A7lyLRecr56IiFzFqUA+cOBAtG/fHmfOnDGuQQ4At912G/r16+eyxnkiBnIiIvIWBQUFOHz4MM6dO4cCizeujh076tQqL2ClQn70Zpf13Ct5CNarXURE5HOcCuQAEBsbi9jYWJw8eRIAUKVKFbRu3dplDfNUDOREROQNtmzZgvvuuw/Hjh2DYjHOymAwID8/X6eWeQGLQB4WBuQZggAFyL6Uy0BOREQu49Qs6wUFBZgyZQoiIyORkJCAhIQEREVF4ZVXXil0Bt7XMJATEZE3ePTRR9GyZUvs3bsXly5dwuXLl41fnNCtCBaB3GAAECgq5NmXOakbERG5jlMV8hdeeAFz587F66+/jnbt2gEAfv/9d0yePBnXrl3Dq6++6tJGehIGciIi8gb//PMPvv32W9SuXVvvpngfi0AOAAgKAnKBnMuc1I2IiFzHqUD+2Wef4ZNPPsHdd99t3NekSRNUrlwZjz/+OAM5ERGRztq0aYPDhw8zkDvDSiA3BAcBmcDVDAZyIiJyHacC+aVLl1C/fv1C++vXr+/z3eAYyImIyFP99ddfxsujR4/GU089hbS0NDRu3LjQOuRNmjRxd/O8h5VA7h8suqxfy2SXdSIich2nAnnTpk0xa9YszJw502z/rFmzfP4NnoGciIg8VbNmzWAwGMwmcRsxYoTxsryOk7rZUVAAZGSIy6aBPFQse5aXyQo5ERG5jlOB/M0338Sdd96JtWvXGtcg37x5M06cOIGffvrJpQ30NAzkRETkqY4ePap3E7xfRgYgT2iYBPIyZW8ue5bFCjlRsZw6BeTlATVq6N0SIo/g1CzrnTp1wqFDh9CvXz+kp6cjPT0d/fv3x99//43PP//c1W30KAzkRETkqeTKJwkJCTh27BgqV65sti8hIQGVK1fGsWPH9G5qIT/88APq1auHOnXq4JNPPtGvIbK7emiocWZ1ACgTJirkN7JYISdymqIArVsDzZoBV67o3Roij+D0OuTx8fGFJm/bvXs35s6di48//rjYDfNUDOREROQNunTpgjNnzqBSpUpm+zMyMtClSxeP6rJ+48YNjB8/Hhs2bEBkZCRatGiBfv36oXz58u5vjLUZ1gEEholwfiOHgZzIaRkZwOnT4vK+fUCbNvq2h8gDOFUhL80YyImIyBvIseKWLl68iLJly+rQItu2bduGhg0bonLlyggLC0PPnj3x888/69MYG4E8KEJUyPNz2GWdyGkXLqiXDxzQrx1EHsTpCnlpxUBORESerH///gDEBG4PPfQQgoKCjNfl5+fjr7/+Qtu2bV16n7/++iumT5+O7du348yZM1i6dCn69u1rdpuUlBRMnz4daWlpaNq0Kd5//320bt0aAHD69GlUrlzZeNvKlSvj1KlTLm2jw2wE8uBI8TwWXGOFnMhpDOREhbBCrhEDORERebLIyEhERkZCURSEh4cbv4+MjERsbCxGjRqFL774wqX3mZ2djaZNmyIlJcXq9YsWLcL48eMxadIk7NixA02bNkWPHj1w7tw5l7bDJWwE8pAo0WVducYKOZHTTAP5/v36tYPIg2iqkMuz7rakp6cXpy1egYGciIg82bx58wAA1atXx9NPP+2W7uk9e/ZEz549bV7/zjvv4OGHH8bw4cMBALNnz8aPP/6ITz/9FM8//zzi4+PNKuKnTp0yVs+tyc3NRW6uWqnOzMx0waO4yUYgLxstKuSG67m4cQMIYB9DIu1YIScqRFOF3PQsu7WvhIQEDB06tKTa6hEYyImIyBtMmjTJI8aK5+XlYfv27ejWrZtxn5+fH7p164bNmzcDAFq3bo29e/fi1KlTyMrKwsqVK9GjRw+bx5w2bZrZ54+qVau6rsE2AnnozQp5EHKNNyEijUwD+ZEjwPXr2n5+716gVy9g61bXtotIR5rO78qz7qUZAzkREXmqW265BevWrUN0dDSaN29udVI3aceOHW5p04ULF5Cfn4+YmBiz/TExMThws0IWEBCAt99+G126dEFBQQGeffZZuzOsT5gwAePHjzd+n5mZ6bpQbiOQ+4eKCnkg8nDxIlCxomvujqhUMQ3kN26IUF6/vuM/P28esHIlcOiQCOfBwa5vI5GbscOVRgzkRETkqfr06WOcxM1yUjVPd/fdd+Puu+926LZBQUFmk9W5lI1Ajpv3F4RcXLxYMndN5PNMAzkgxpFrCeTnz4vtkSPAjBnAhAmuaxuRThjINWIgJyIiTzVp0iQAYjb1Ll26oEmTJoiKitK1TRUqVIC/vz/Onj1rtv/s2bOIjY3VqVV2jBgh1kbu0MF8f6Dosh6IPJxnICdyjgzkfn7iw7TWceQykAPA1KnAgw8CVaq4rn2OUBSge3fgyhVg0yZOKEHFxlnWNWIgJyIiT+fv74/bb78dlz1gsHNgYCBatGiBdevWGfcVFBRg3bp1SEpK0rFlNtxxB/DUU0CzZub7WSEnKj4ZyJs2FVutgVz+fFgYkJMDPPus69rmqN27gXXrgG3bgBMn3H//5HN0DeQffvghmjRpgoiICERERCApKQkrV640Xn/t2jUkJyejfPnyCAsLw4ABAwqdYXc3BnIiIvIGjRo1wr///uuW+8rKysKuXbuwa9cuAMDRo0exa9cuHD9+HAAwfvx4zJkzB5999hn279+Pxx57DNnZ2cZZ152VkpKCxMREtGrVqrgPoWiB6qRuDOTkUooC/PwzoPNnXLeQgbp9e7HVuvSZrJC/8QZgMABffQWcOeO69jli1Sr1Mv8ZkAvoGsirVKmC119/Hdu3b8eff/6Jrl27ok+fPvj7778BAOPGjcOKFSuwePFibNy4EadPny5y6bWSxkBORETeYOrUqXj66afxww8/4MyZM8jMzDT7cqU///wTzZs3R/PmzQGIAN68eXNMnDgRADB48GC89dZbmDhxIpo1a4Zdu3Zh1apVhSZ60yo5ORn79u1DampqsR9DkYLMJ3UjcpkNG4AePYD//U/vlpQ8GcjlkJADB8QJCa0/f/vt6syKpt3Y3cGkeIhLl9x73+STdB300Lt3b7PvX331VXz44YfYsmULqlSpgrlz52LhwoXo2rUrADHLe4MGDbBlyxbceuutejSZgZyIiLxCr169AIjJ0kxnW1cUBQaDAfn5+S67r86dO0Mp4kP1E088gSeeeMJl9+l27LJOJWX3bvOtVhkZwLlzQJ06rmtTScjPVwNsmzaAv78Yh33mDBAfX/TPX70KZGeLyxUqAOHh4nFnZZVcmy1lZAB//KF+z38G5AIeMwtBfn4+Fi9ejOzsbCQlJWH79u24fv262bql9evXR7Vq1bB582abgTw3Nxe5ubnG711dBWAgJyIib7Bhwwa9m+BbTCZ142dwcqmjR8X25EkgN9d48sdhffsCGzcC//wD1Krl8ua5zOXLajU8Lg6oWVO0+cABxwK5rI4HBACRkWIcOeDeQL5unViuTeI/A3IB3QP5nj17kJSUhGvXriEsLAxLly5FYmIidu3ahcDAwEKzw8bExCAtLc3m8aZNm4aXX365xNrLQE5ERN6gU6dOejfBt7BCTiVFBnJFAY4dA+rWdfxn8/LETN+KIsZje3Igl4E6KgooU0Ysd/bPP6LdN3vDOvTzFSqI8eN6BHLT8eMAu6wXRVGAH34Qr8vERL1b47F0n2W9Xr162LVrF7Zu3YrHHnsMw4YNw759+5w+3oQJE5CRkWH8OuHi2Q8ZyImIyJvk5OTgwIED+Ouvv8y+fAEndSOfIAM5AGidiPHgQeD6dXHZco1vT2MaqAGgQQOxdXRiN/nzcuy4uwO5oqiBXK7CwH8GtikK8MwzwN13A3fdpW2ugFJG9wp5YGAgateuDQBo0aIFUlNT8d5772Hw4MHIy8tDenq6WZW8qHVLg4KCEKS1q48GDOREROQNzp8/j+HDh5utXmLKlWPI9ZKcnIzk5GRkZmYiMjKyZO+Mk7pRSVCU4gVy03Hn7p7cTCvLQF6jhtiePOnYz8vHJ3/e3YF83z6xzFlwMNC/P7BrFwO5LYoCjBsHvPee+P7oUfFVs6a+7fJQulfILRUUFCA3NxctWrRAmTJlzNYtPXjwII4fP67ruqUM5ERE5A3Gjh2L9PR0bN26FSEhIVi1ahU+++wz1KlTB8uXL9e7ed7nZiAPQD7SL+az2EOucf68WE9b0hrITXu7eFuFPDpabNPTnft5GcivXHFJ84okq+OdOwNVqojLvtplPT8fmDwZWL/euZ9/9VU1jJcvL7a//uqSpvkiXSvkEyZMQM+ePVGtWjVcuXIFCxcuxC+//ILVq1cjMjISI0eOxPjx41GuXDlERERg9OjRSEpK0m2GdYCBnIiIvMP69evx/fffo2XLlvDz80NCQgK6d++OiIgITJs2DXfeeafeTfQuN7usAwDycpGTE4qyZfVrDvkI0+q4te+L4s2BXPaAdTSQywq5Xl3Wd+0S244dgXLlxGVfrZCvXQu8/DLQqBGwZ4/2n//8c7GdMQM4exZ4/XURyB96yKXN9BW6BvJz585h6NChOHPmDCIjI9GkSROsXr0a3bt3BwDMmDEDfn5+GDBgAHJzc9GjRw988MEHejaZgZyIiLxCdnY2KlWqBACIjo7G+fPnUbduXTRu3Bg7duzQuXVeyGQ4nOi2zkBOLiADuJ+f+HBZnC7rvh7IbVXI3RXI5e+qVi216uurgVy+ro4f1/6zeXnAkSPi8qBB4lgykJNVugbyuXPn2r0+ODgYKSkpSElJcVOLisZATkRE3qBevXo4ePAgqlevjqZNm+Kjjz5C9erVMXv2bMTFxendPO9TpozxYhByceYMUK2aju0h3yBD3i23AH/+KQK5oohZxIty7hxguvKQt40h99ZAXqOGet++2mVdVsUzM8WQitBQx3/28GHR5T08XCxvV7asCFBHjgCnTgGVK5dMm72Yx40h93QM5ERE5A3GjBmDM2fOAAAmTZqElStXolq1apg5cyZee+01nVvnGm6dZd1gMFuLXGvPYiKr/vtPbOWyX5mZjoc8y67EzlTIr10Dpk0TE5aVNFuBPDPTsQ/Wruiyfu2aqOBqlZsLnD4tLteooXZZT08X4dPX7N2rXraz3LRVBw6Ibf364v9mZKQ6K/1vv7mkeb6GgVwjBnIiIvIGDzzwAB66OV6vRYsWOHbsGFJTU3HixAkMHjxY38a5SHJyMvbt24fU1FT33KHJWuQM5OQS8oXUoAEQHy8uO9ptXY4fl8uHORPIFy4E/u//gGef1f6zWlkGcrkygqKIUK7158PDxdbRQH7jhhgT3bChuKzFsWNiW7as6K4uA7miAJcvazuWp7txw3wpupsndh1mGsiljh3Flt3WrWIg14iBnIiIvFFoaChuueUWVJAfZkk7k7XIGci90E8/Ad99p3crzJl2g5ZLQjkayOU439tuE9vLl7UHzW3bxPaff7T9nDMsA3VwsPgCHOu2XtwK+blzotv04cPA33879jOS6e/JYBBDWCIixD6t3davXgUWLHBfV3utDh8WPQIkBvISp/s65N6GgZyIiLzB+PHjre43GAwIDg5G7dq10adPH5STlR4qmsla5LKnMXmJnByxdnRuruieLavKesrPVyuvMpD//rv2CnmnTkBKiqjWXrwIxMQ43obt28X22DHx4davBGt1loEcEN3W09KKDuQFBeoEas6OITftQbB1K9C0qWM/B6hDC6pXV/eVKycq+1ondhs3DvjoI2DLFsBVk1WPHQvs3AmsXKltvLc1pt3VAdcE8vbtxfbvv8XvgSeGzbBCrhEDOREReYOdO3di7ty5+Pjjj7Fx40Zs3LgRc+bMwdy5c7Fu3TqMHz8etWvXxj53jB31FayQe54zZ4AWLYDZs+3fbt8+teo3b17Jt8sRp08D16+Lamvlytoq5DduqFXeW25R1/TW0m39+nU11OfmiuWpSsr160BGhrhsGciBogN5RoY6VttVgVwL0wq55MxM6ydOAJ9+Ki4vXCiq5cW1YYNY8/vXX4E//ij+8SznJtASyBXFeiCvWBFITBSXf/+9eO3zQQzkGjGQExGRN+jTpw+6deuG06dPY/v27di+fTtOnjyJ7t27Y8iQITh16hQ6duyIcePG6d1U72FSIT92zDfncvI6y5cDO3YAn3xi/3amIWPBAhEQS8r58+Zdfm2RIa9aNcDfX1sgP3RITE4WFiaqtjKkagnk+/aZT3BWkt0+ZGg1GNQQDjgeyGV39fBwdQnC4gRy2VXfUfYCuZYu69Onq6+9jAzx+i2OggLz8f8HDxbveIBaIb+5bKamQH7mDHDling916plfl27dmJb3Dk/CgrEcA0f+gfMQK4RAzkREXmD6dOn45VXXkGEHOcIIDIyEpMnT8abb76J0NBQTJw4Edtll1Uq2s0gEOqXi+vX1UmXSUeyh0dR1V3TbrhnzwKrVpVMe06eBKpUAe68s+jbWoY8LYFcjh9v0kR8OJXjqrUEcsu//ZIM5LJd5cqJsCY5GsitdXeXgfzKFW1tAETvAkd/DlB/V5Zd1gHHK+RpacCcOeKyHFP92WeOt8Gab74Ry+VJrgjk8uRV9+5iq2WWdVkdr1lTPXEiNW4stlrH71t69FExa3uvXo5NBugFGMg1YiAnIiJvkJGRgXPnzhXaf/78eWTe/BATFRWFPGeWAPIQbl32DDB2Wa9SUVQ/2W3dA8jZoM+dE91lbZEhIy5ObGW3YVfbsUNUnTdsALKz7d/WMuTJQH78eNEV/MOHxbZePbGVQVXLWuQ7dph/744KueXYYa2BXJ54AMwr5PZ+95bHAMTtTYNsUeRzU5wu62+/LZZdu/VWNZivXq19jLaUmwtMmCAuyzkRDh1y7ljS1avqa0sGci3ts9ZdXZJd1osTyFesUJ+7n38WY9NPnnT+eB6CgVwjBnIiIvIGffr0wYgRI7B06VKcPHkSJ0+exNKlSzFy5Ej07dsXALBt2zbUrVtX34YWg17LnlWpJE5iMJB7AFkhz8uzH+pkhfyVV8T2hx9EiC/KihXa1k6Wk7QVFBQOvJYsK+SxsWLW8YICEcrtOXFCbBMSxNaZLuuyfbVri607KuTOBnJ5osFahTw/37EhApbPjaPd1rOy1Ps3rZBr6bKelQV8+KG4/NJLQN26QFKS+F0vXOhYOyx9+aX4ncXHAzNmiH3FrZDv2ydOVlSooE5650wgtzZpYsOGYnvkiHNj58+fB/73P3F58GDx97JnjzjBUdyqu+TIiZ0SwECuEQM5ERF5g48++gi33XYb7r33XiQkJCAhIQH33nsvbrvtNsy+OQFW/fr18UlRY29JdbNCXrkCK+QeITMTOHVK/d5Wt/WLF9VQMWgQ0KqVmBTtiy/sH//vv4G77wbuuKPoardkGqSLCnyWgdxgUKvkR444dj9Vq4qt1kCenw/s2iUuDxggtp4cyK39fNmy6mVHxpHLY1SuLLaOTuwmn5eoKPPx71q6rP/5p3gNVakC9Owp9g0dKraffeZcEJQV/gcfBJo3F5ePHSveRHHyxFXjxmpvkvPnHV9Oz16FPCZGPGemE79p8dhj4iRaw4bA/PlilvrERPE/oGNH7fMCWLNhg+iF8eCDxT+WBgzkGjGQExGRNwgLC8OcOXNw8eJF7Ny5Ezt37sTFixfx8ccfo+zND7LNmjVDs2bN9G2oN7lZIY8txwq5R5Dd1SVbgVyGjOrVxaRgQ4aI7zdutH/8r78W25wcYP16x9okK+RA0QHBWjdoWfGWFXBb5PXVqomt1jHkBw6I4BYWpnZN9uRAbrkGOQAEBKjrmGsJ5L16ia3WQG76ewK0dVmXvXjatBEnXgBR5Q0MFFVeZyrbsnt6/frieYmKEmFXdjl3hhza0aiROKa/vzimozPw2wvkBoNaJdda0f73X2DJEtGeBQvE7z0hQcws37q16KXQtWvxZ3CXy7K5eWw6A7lGDORERORNwsLCUK5cOZQrVw5hsosnOedmII+JYoXcI1gu2VdUIJeTSslx1/a6hSuKGsgB4McfHWuToxXyggK1al+lirpfViXtTaSlKMWvkMvu6s2aqVV5uRZ5SZDtkiFWKk6FHNA207o8xu23i2B3+rR5DwtbrE3oBmjrsi4Duel8F9HRQNu24vKvvxZ9DEsykNetK8KuHH5UnHHkpn8rfn7qmvaOdFvPylJPFMm/MUvOBnLZY6RePbHMn1S+PLBuHXDbbaIHwujRxet2LtvVqJHzx3ACA7lGDOREROQNCgoKMGXKFERGRhq7rEdFReGVV15BAd/EnHOzy3rFSAZyj2BZIbcVYk2rfoBahTatZlvascO80vjjj4590Dc95n//2R6nfvGi6AZsMKihBxDjYgH7ASgjQw2gloHc0UndZCBv0UKcEPDzc24t8uvXHevO7KpJ3Sx/PjxcbLUE8oQE9bXgSJXc2pJngLYu6zKQt2xpvl/Otq41kOfkqOFXBnEZgoszjlxWuOUEbI6cIJLkiYBKldTnxpKzgVw+Vvl6NxUWBixaJE6Y7tqlfY15U/KEhGynmzCQa8RATkRE3uCFF17ArFmz8Prrrxu7rL/22mt4//338dJLL+ndPO90s0JeIVx0WT916uYyzrm5xesmSs6RFfKQELF1tEIuu3lfvmx76atFi8T2rrvE8U+eVIP9338DmzYV/pncXDW4yDWcbU04KAN3hQpAmTLqfhmA7AVyGU7KlwdCQ8VlrV3WZSC/5RZx/7JKr6XbuqKI5yc2tugqsbzeMqgVp8s64FyFvEIF0XUccCy8FbfL+oUL6jFatDC/rkMHsdUycSCg/r8pV049SVHcQH7jhjpjuew14cgJIkner63qOFAygRwQv4vBg8VlOXmeVoqitouB3LMxkBMRkTf47LPP8Mknn+Cxxx5DkyZN0KRJEzz++OOYM2cO5s+fr3fzvNPNCnlYmVyEhpr0HP7f/4A6dVwzqRAJGRlizGh+vu3byAp5u3Ziay2QK4oayGVVNDxcdBcGrFfJCwrUQD58uBibCgA//SSqgK1bA507F64ayjATEiImggNsvyZkwJEBXHIkkMvu6vLEAqCty7qiADt3istyMjDZHVtLIP/zT7H01MWLRS8hJkOrXl3Wc3LUyc4qVBAznAOOBeGiuqxnZ9uf5V0+N3Xrmk8KB4h2BASI36m9HhuWZPg1XSVDXnY2kJ88Kf7egoLUXhuOvB4l2X7LExemZNA9elT8Thxl7TVv6bHHxHbRIseXojN15ox4Hfr52T+pUAIYyDViICciIm9w6dIl1LcysU79+vVxyZExj17A7euQ36yQG67nGT+bHz0KtcomK6hk24IFwGuvFX27MWOAgQOBzz+3fn1OjhqUOncWW2uB/ORJEe4DAsw/ZMtu69bGkW/ZIvaHh4sZse+8U+z//nsx+3JOjqgmWo5hl4GkWjW1AlsSgdxatVAG1ZycooPOqVOiZ4C/v/qcOBPI5XrQjvyc3hVyGdACA8XPdOokvk9NdXy9eMugGRmpBgN7/1OtjR+XypZVx0RrqZKbjh+XTCvkzoyjlr/DatXUx6UlkDsSmitVEq9VRSk85MSeoirkgPiba95cnBxx5qSzPHFXp446WaCbMJBrxEBORETeoGnTppg1a1ah/bNmzUJTub6sl9NrHXLk5ho/mx89UqAGMS1rQJdGBQXAI48AL7wgZk22JT8fWL5cXP7rL+u3kaGjfHm1K7q1QC4/ZNerZ+zhAMD+OPJvvhHbPn1EtVsG8i1bzAO25dJkpoGkdWtxeds26+HIkUBuK1RZCz7h4WrX96JehzII1a6tPidaA3lWFvDVV+r3RU2oUFQgz8y0/eE6N1cdWmCrQm5r6IFkOqmcwSAeb9Wq4sTKH3/Y/rn0dHFCByhcIffzU3ta2KvI2gvkgHPjyK0F8jp1xGNLT3fuf5H83Zs+TlcHcsC5buuOBHKDQa2Sz56tPazp1F0dYCDXjIGciIi8wZtvvolPP/0UiYmJGDlyJEaOHInExETMnz8f06dP17t53kmGF5NAfuHvszcHksPxCbVKq7NngWvXxGV7M5xv2ybGd9u7nQyVDRqo3WstA3lBAbBmjbhsOWuyDA3WArnsYiyXx6pWzfzna9USW8tALo+VkAA0aSJeL5cuWT/5IAOOHKMryQCUm6sGQUvWwonB4Pg4cjlxV4MG6j6tgXzRIvOqtL1AXlBgO5BHRoqtotheako+Hj+/wl2+Ha2QW3Z5NxjUnhX2lr+Tv9MKFczXPZeKGkeuKLYndJOcGUcuA7lpr4+QEPV17Uy3dU8N5KarChR17PvuAyIixBj7LVscO77EQO49GMiJiMgbdOrUCYcOHUK/fv2Qnp6O9PR09O/fHwcPHkQH+QGQtJEV8rw8YyDP2W8S6Fght880XNtbbmrVKvWyrXG1srt4YqJ5IJdVZbk+8YwZ4nvL17y9LusyQNepo+4bMEBsBw0CnnjC/HaSaWgIDFTHZ1ubOMxWhTw4WA2dtkKQ5ZJnkqPjyE1PZkhaA/knn4jtrbcW/XOm1W/LQB4crHYPttVtXc5UX7Gi+kFccjaQA2q3dXuBXM4LYKsyKx+PrS7rp06JuQb8/dXXg6X27cX2wAHbs/KbUhTrY8hNv3dVINcyqVtJBfLLl9VhGKZLBFpTtqz6e92+3bHjS5ZzTbgRA7lGDOREROQt4uPj8eqrr2LJkiVYsmQJpk6dioKCAowaNUrvpnknkwp57dri4rUD/6nXM5DbJyu7gOOBXEuFXFaVT54EevQQH8jDw4EpU4BHHzX/eVtd1nNy1PAhZ5oGgAkTxNJnn3/uWIUcULsoyxnNTdkK5EDRIUg+j5bBR2sgN51jQoYwR9Yi37tXVB8DAoDJk8U+exVyGVZDQ62PzS1qHLkMqabLw0muCOTbtqkTvlmSgdxWECyqQi6r4w0bqjPiWypXTg2Bv/9u/TamLl5Ue5DIf0SSrJg7sxa5vQp5Wpr9cekZGWqPDnvdygHtgVy+3itUUFdUsEcOydq927HjA+KxyZN8rJB7PgZyIiLyZhcvXsTcuXP1boZ3MqmQy0ma/U+ZBDp2WbfPkUB+/rz5UmHnzlkPS6YV8pAQ0U0VEFXyzZtF1/h69URofuklUaE0ZSuQy1ASGamODwbE775XL3FSxjSQm4YUywqhrIhqDeT2ugkXFNiu2jq6Frm1Luta1iL/9luxvesudfK6c+dsT45mq7u65Gggl0vJmSpOIK9VC4iPF0NObHVvdmS5LcB2IJfDH4qaeFLLOHIZtqtWLRzyi7P0mb0K+fXr9ieuk89TuXLq78QWefLhv/8c6xFg6wSULc4E8hMnxDwEAQHmPWPchIFcIwZyIiKiUspkUreKFUWeqY7/1OtNK5NpaUBKiu1xsZ7iwgV1DHxJcySQr1kjQm6TJuqYXdOfA0R7//lHXE5MFFvTbuu7donLHToUnpVbkh/uT582f/yyG3rNmmKcsTVyvEJGhhpSCgrUQC7Dvpw9e+dO8+CuKM4H8rNnRTjy8xNh0pQjY8jT09Xl2kwr5KZrkRc1QZsMmV27ijAtx4Hb6rZe3EAuTxC4ukJuOo78l1+s/1xRFfKiuqzLbtO2xo9LMpA7Mo7c2vhxqUkTsf3jD21hxXQNctNAHhSkPkatS/HZUr68eoJCTqBoj60hGrbIQL5nj3hcjrA1+aObMJBrxEBORERUSpl0WQfEZ+gE2KiQT5smxhp/9JEbG6jRjh0i/D35pOM/U1Aglv8qKrRZ40ggl93Ve/a0Pc778GExE3t4OFC5sthnGshlZaxZM9ttqVRJdJ9WFPO2mAZyW0JC1PuV3dbPnxevC4NBvS4xUbxm0tPNw2pmplr11xrI5XMYHy+qeaYc6bIuu6tXqSKeP1P2xtWbkiGzRQuxlScobAVyW2uQS3pVyIGix5EXt8u6XCXA3msRUOc42LXL9mR+krUZ1qWkJNFbxLKnSVHkGuSBgbYnGnRVIAeA++8X2y+/LPq2jsywbqpWLXEyLzfX8a77Ok7oBjCQa8ZATkREVEqZdFkHRCA3q5BfuWIM6zh82Hyrlx9+AFautH7dsmWigrR0qePrFs+fD/TtK8LA//6nLZibBnIZdEwVFKiB/I47bM+ELrurN2igVrGtVcjtLe9nMFg/vgzkslu6LTKwy0AuA0l8vHriJjBQ7Z5r2m1dBpuICOvjiu0FIHvBR0sgN62OSzLwWPZIMHXmjKiw+/mpz69xDUAbr4WSrJDLkwrFDeRbtqgrAJgqKpDbGyZw/rz6OyxqorD4ePGaKyiwvwwbYHtCN0D0dLj9dnH5xx/tH8eUPJmSkFB44jwZ0E+ftv3zWgP54MHifrZsKTwXgyWtXdb9/NSlEB3tts5A7l0YyImIyJP179/f7te4ceP0bqL3sqiQd2ivmFfIAbVSJj+8Wgue7nL6tFhL+847xbhqS3LfuXP2Q5ipTZvE9sYNYO5cUfmzNRO6JdPK65kzoiJnas8eEWLCwoC2bW1XbK3NEi7D2r59asVbdt+1xV4gt1chBwpP7CaPYRkaTLutS/a6q5vul13LTdmrFjoyhtza+HFJtt1ehVxWx+vXV4cUyC7OzgZyOVZfjwp53britZObW3isv6IUHcjlsAFrJ0/27BHbWrWKHlcNOL78mb0KOSD+3gHnArnlWuuAejLBXru0VrFjY4HbbhOXTdezt0Zrl3VA+zhyHWdYBxjINWMgJyIiTxYZGWn3KyEhAUOHDtW7mS6RkpKCxMREtCpqwiRXsaiQVw25gLIQy/FcD4sS18kwJEOhvdnELf34o5goy5GJjqTkZBFUrIWotWvFBxZFAUaOVKv3gAjDpstxOdq9VYaM//s/EeoyM4v+QA2I58w0YObnF36csvIn1/C2FRBNJ3STZBVv9WqxrVlTnejNFmsTu8mArTWQW44fl6xN7OZoINdaIZcnJexVMq2dzJAcqZBbdlcHiu6y7qpJ3Vw9hhwQPSXkY5E9K6SMDHWiOjkMwZIM5NaecxkGizoxJDkysVtBgTp/grUx5IAY7gGI15wjy5UB9gN5795iu2KF7QCktUIOiDXDAdFt3V4PHa1hH9AWyK9eVSvkOgXygKJvQqYYyImIyJPNmzdP7ya4TXJyMpKTk5GZmYlIObFUSTKZ1A2AMcidRhz8Q8ohJitdfPDPzVWDuZYK+bPPirA5f764XJRz58QY9fx8Ma579Gjz69euVS/v3w+8+qpYAgwQ93Plinp9aqq61rYt+flqJWnYMPEB+bHHRNf3558X+8+fF5X3Xr3MxzifPi0+dMtJos6cEScrTEOprLDKgFdUl3XTQC7DmqxwFzVmFyhcgVeUkquQawnk9pY9sxdOZMX033/FCRBrk1PZ67LuSIVcPg5rgdxWhby4Y8hll3V7FXLT17IlRbEdyAFx0uSnn8x7MQDq3265craXLJOBPC1N/H2YzuYvx487GshlhTw1VYREa0t8nTol/r8EBNgOvzExQOvWYjm3n34SJ+OKYi+Qd+ggTm6dOyeOKdeeN+VMIO/fX/z/OHBAPPfyb8VUQYF6UlPLsbUE8t9+E8MVKlfWZYZ1gBVyzRjIiYiISimLLuvyQ+wxJOB0nkl3YdMgdfGiOoHX0aNA+/bm62xLR4+qQdPaMlnWfPWV2u3bcv1iRVED+eOPi+20aeoHVNldXY7BdqRC/u+/alCoVUt0hzcYRKVdfmgeMkTsf+wx86qXDJJVqqjdfy17D1gGcmtd1vPz1Uq6tS7rkr3x45Jl4E9LEx/M/fyK/vDvaIW8SRNxvLNn1deFoxXyjIzCS77ZCz7x8WJMdX6+9XG5166pz3FxK+Sm4akkx5ArSvG7rGdlqTPpWwvk8uSNZYXc1vJypipVEr9faz0+tAbyWrXE7z4vTwRfa+RzXK1a4Un9TNnqtv7dd+I+Zsww//u0F8gDA9Wq+/Llha/Pz1efKy2hOSJCrb5PnVp4CAtgvqqArb8Xa+QY8jNnil4GUPaquf122ysrlDAGco0YyImIiEopiy7rMsj9h+r494rJklOW3Vdl8PzsMzEG+7XXCh/b9IOzDD1FWbBAvfz77+YfsPfvFx9Gg4OBt98W1agbN4AXXxTXy0AuP7j/+WfRH25kwGjYUFQC4+LUatn334sJmtatE99/8ok4ASCZVnZl91/LQG5ZnZYf7k+cUNt29Kg4IRIcbB4eLAO5lgq5DOTy/qtVE5Nj2SMD+enTwOXLavd/GU6l0FC1Gi1PtBQVyCMjxeMzva1kr0JuMKj3JceKm/rnH/E8RkVZ7/4tn+8LF6yv/X72rPidGQxqV3xAfR7T062H6uIE8vR0EcgA5wO5rI6HhFivdMvXiuUyWaYnkWwJCLA+VODGDbUbtKOB3GAoehy5DORF9eCQf9c//2w+VGX+fHHiafx4MSmj/F9mL5ADwN13i621QJ6WJh6v/J+gxdix4jlcuhR49NHC/4NMJ0u0dwLCUni4+jdaVJX855/FtkcPx4/vYgzkGslAriiOT0hKREREPsBGhfxCaALOFZjMcG0ZNGX1SI793Lq18IzOpoH88GHrSx/duKF+YN27VwS8MmXE1+nT5mN4ZXW8QwcR7mQ4/vFHcXwZyP/3PxFUMjOLXiLIWsWvb1+xXbZMvQ/ZdfqFF9RljawFcsvu/JYV8sqVxQevvDy127Lscl2vnnn3YGcq5KYVeC3d1QERLuUwieeeE8G5alWxNrcly27rRQVyg8H6OPLsbPV5sFWJlIFcPk+mTMePW6sERkXZXvvdtP316plPUhYWpq6Bbm0ceXECuaw6R0SoJylMyXZcv26+nrwpe93VAfH7Dg8Xf9emJzKKmtBNsjaO/J9/xPHKlnXs9SQVNY7c8m/ElubNxdCH7Gz1WIoiTppJn34KdO8unndra5Cb6tlT/L39/Xfh3hcyNFepYv436Yi2bYGFC8Xf+SefAJaTjmqdYd2UI93WT50S/0sNBqBbN+334SIM5BqZrgTAQE5ERFSK2BhDHlC7Oi7ApMu6rUAul0Cz7JKanQ1s2CAuy3GjluNZ8/OBzp3Fh//Vq4HPPxf777xTHc9r2m1dBnL5IbNuXTGuW1GAl19Wu323b69WO4vqti4ndJPdQQGgXz+xXb9eVM8MBrF9+mmx/7HHxMkH05mSrVXI8/PVSrUMGwEB6m3lddbGjwPmgTwqyrEP8FWqiPbm5org5+iSZ4D4OXm7OXPE9qWX1NeIKfn8yt9pUYHc9DrTifD27BG/v7g42+HSWoX8+nXRO+OFF8xvY+0xmfZKsGRtQjfJXrd1GcidGUNub0I3QD2BANiukhcVyE2XcDPttl6cQC5PXjVuXHgZMXtkIP/jD/NqveRoIPfzE0sHAmqvlf/+E/+fypQRJ9AiIkRY79zZ9hrkUnS02rYVK8yvc2b8uKl77gHk3CczZ5qfjHBmQjfJkUAuq+OtWtl+fboBA7lGpn9T7LZORERUilh2Wb9ZDQxtkIDzMOmyXlSFHDDvkrp+vQiFCQnqh2jLceRLl4ru7mfPimD9wQdi/9ChIlQDaiC/fh345Rdx2bTqM2aM2H7xhdjWrSs+hMpZ6lNTRaV8yBAxEZQM4JK1CnmdOqILuxz/OWCAqKC+8YYIMleuiEBgWumyFshPnxbtDggwD0CW48htBfLQUHVN6qZNHRsLWqaM2pbt27VVyC1vV7Mm8NBD1m+ntUJuep1phVwGenvd8S0DeW4u0K6daNvhwyL8Dhtm++dl8LE2sZtsv7XJt2wtfaYoxauQ25vQDRAhUvZccTaQA4VPmgDFC+RaZ1iXGjYU4Tc72/pcEvI1WlQgB9TeGjKQy+p48+Zinoe1a8XfjGyrtTXITclu60uXmlclixvIAfF/bMQIcXnu3MLHdiaQy7+T33+3Pj4dMB8/riMGco0YyImIiEop0y7rimKs2lZsZVEhlx/M5XjVU6dEKLl8WT2WaRVIdlc3rXabjiNXFGD6dHG5dm3xASQrS3xw79WrcCBPTRVBuFw58/DWvbv5ZF5JSWIrA/mWLcC99wJffy26szZpIo5/5oy4PxkGTCvkgFolB4AJE8TWz0/9AP/990WPIZfHTkgw7/ZqOfO3vWW7ZBXVke7qlm1/8UW1B4Ojgdy0kj5pku1x582bi8d07BiwZo06HEFrIJfVW0cDuaKIEz+pqaJr9xtviOexUyfbP1/cCrlll/XMTDUMyfXGLclAnplZ+MN1URVyoOhx5I4EcmsTu7miQq41kPv5qZVo01USJEcr5IAayHfsEP97ZCCX8z60aiVmYZf/p2x1V5fuvluc6Pr1V2DUKPXEpCsCOSCGzwDA4sXitQCo/xecCeRdu4rX1tGj4n+Qpfx88fcI6Dp+HGAg14yBnIiIqJQyrZCnpxs/NFbvWM1YIVdMK+QtW4rtyZNqdVyGzU2bRJdURSk6kP/2m+jiHhwsfi4lRYSQ8eNFm9q2Fbfbt0/M6i6Pd9tt5h9cDAa1Sg4UDuSpqcDKlaLbfJ8+4mdXrhSztP/9t2hrbKw6XlgaOlR0HR4yxLx6ajoRlGmly9os67aChunEa4qiBnLLCjmgBn3TCceK8tJLokq4c6foJgw4HshlG+rXB+6/3/btIiPVpacefVRsg4PVMejWWFv6TIZFe4+vdm3xGrtyRfysrI727y+W0pO9CGyxVSE/c0bss5zQTZK/NxmgJFkdDwmxvowXoD4PiqIGMamoCjngmkBuWiGX1V89AjmghkNZvZVyc9X7cOQ1Wrmy6K1SUABs3KgG8jZt1Nu0by/+Phs2tN3DQ6pZE3j3XXW8d/fu4vftqkB+663ib+nqVWDRIvG7+OGHwm12VFgYkJwsLr/xhvp73bIF+PhjMdP8pUui674zx3chBnKNGMiJiIhKKdMKuawEVqyI2k3LIiNAfNjPP6sG8n8rtha3OXlSrb62bSuqNtnZ4gPnli3i+pAQoEsXNdAeOqSurfzWW2I7bJgIJo8/Lqqscsb0ihXVyuiLL4oPnwBw112FH8ODD4pgYjColdLatc3D4eefizGmqaki3C1bJk4CANYDRp064kSAHNcude4sAuDZs2owM62QX7miBjBbs0ebVshPnhShKyBAtNnSlCliLfZBgwpfZ0vFisD//Z/5PkcD+b33Am++KQJNUZNZTZokfscysMbF2e9Wb1khv3FDDXn2KuSBgWrl/sCBwnMJFMVWhVyOtW3RQgQYS7JXwsaN4rUtFTV+HBAnlWRYt+y2bm/JM0meZLAVyGWotxfIExPF6+ryZfHYMzPV16bWQC6PARTuTeIIGcj/+MP8BIU8KVW2rP3HYkpWyU3XWbdcR/y228TEZvfdV/TxnnxSjCEPDxeV8tq11RMHzlSxTRkM6omrTz4R/+cKCoDBg50PzKNHi9fXtm2ivR99JE5EPvII8Mwz4ja33Vb0qgoljIFcIwZyIiKiUkpWyBVFHV+dkIDAQCCipviA7HdJDeTPLTEJ5LJCXq+eurTR2rVqxXTAABFKKlUSAUBRREV0/37xAdhgEBVxyXKsp+y2Pnu26Io5dCjwwAOFH0NoqBhfvmaNGuL9/MSHUkAsyTZggLh8yy3Aww+LyzJs2woYQUGFQ2lQkLp+MSAqVpGRYitDnayS2xoba1ohl8tI1alj/QN0x45iUihrS1vZM2aMGiYiI213rbYUGCg+1NepU/Rt4+PFEk9SUctDWQbyQ4fE5HhhYUVPOid/r5s2qT0t5O+3KLYq5DJ02era26aNOJGRlSXWupYuXhRbW+PHJVvjyIvbZf3qVbW7sr1wHBQkqsSA+LuTr8uoKPMZ5a2xDOTyxEnVqurj0qJmTfGaunFDzC8hmfYicXS9bPl7//xzMUdDxYqOdXe3p1cvcSKxRw/xf0pOcllUl3dHPPig+D+ybZu4j7AwsWyjs2JigOHDxeXhw9X/t+3bixOgnTsDzz9f7GYXFwO5RgzkREREpZTpDNrvviu23bsDAOKb3AzkN64b13DeBhHIlbNn1cnIatdWx4hOmSI+vFeoYP6hU3ZbX79e7Qrdp4+6nJg17dqpl/v0ERMj2ZqgqWHDwgFt7lxREZdjwKXJk80DidYuuH36qJerVlWDhOU4cltd1mXF9q+/1Iq/te7qxRESoq4N7+iEcM549lk1mBYVyGXI++8/MURCVjebNi161m4ZyD/+WASmxET1eEWRgfzECbWLb0FB0WNtDQZxEggQM7pLRU3oJskKuOnEh4C2LuuyR4mphQtFl/Vq1YDeve23QfY82LnTsTXIJfncnjsnQq+9ye8cJSd3NO22rmX8uNS5s9jKZRZvvdU1r+/ERGDVKrFawzPPiJUbXPF3GRNj3rPn5ZfV/xXOeuop8Tcjn7+xY0W1fP16sbpF69bFO74LMJBrxEBORERUSsku64D40B4YKLpEAqjXLARZUJdguohyOIGqyEUgDHJyLUBUvmQglx+SZ882Dxzyg/zkyeJ+KlUSXaPt6dVLfHDt3VtMyhYQoO2xRUWpY95NxcSIIClp7YLbq5faFtMxprYCuWV38Ro1RNVaUUTlPzra/izhzrr/fjFe3jRMulpUFPDqq+KyHL9vS2KiGEeekSG6xDsyoZskA7kcA61lfWUZyLOz1UkId+4UoTY8vHB3Z1MykK9frwZaRwO57Fq9cqX5fq0VckVRTyQoihgnDIi/06L+JuQ48vXrzdfWLkqFCmqPjbQ0+5PfOUqe+Fi1Sn08WmZYl8qXN3/N2Pv9OaNuXfG/aeJE153IklXsJk2M/1+LpXZttTv+E08A77xTcifdnMRArhEDORERkWdISUlBYmIiWslJyUpaQID5B7kHHjBWOhs3hjrTOoDTiEf1Gn44hZvBU64nXbu2+OAv10++9161i7hk+kG+XDnRtb2obtGVKokQtHy5mDDMlcaPFwGxVi21W6+joqLUseqmY0xNA/m1a2p3X8uwERoqKvdr1oiAefFi0ZVOZxgMoirpim639jz6qHjM48bZv12ZMuoyUB995NiEbpLlOuOOdlcHRG8BOT5ZhmpZpe3a1f5Y2xo1xMkmRVGHODgyhhwQExoCIpCbfsDWOqnbuHHitp98Iv5u/v5b/K3JGbztuf128Tf+66/q/AyOBHI/P7XHw+nTrgnknTuLE37//af2GnCmQg6Y//51nrzMIXfcIYZbrF/vurHdH38sei7MnOlxYRzQOZBPmzYNrVq1Qnh4OCpVqoS+ffvi4MGDZre5du0akpOTUb58eYSFhWHAgAE4K/84dcBATkRE5BmSk5Oxb98+pKamuucODQbzKvnTTxsvNmoEdS1yAKdQGY89BuRWtPhAX6uW+JD58svAXXdBeX8Wvv1WnfMNgPjQHBoqKsNr1jhelS6pD5ply4oPswcPmj9+Rz39tKhwmp54MA3kcoK8sDDrwa1OHVHlrVzZIz9MaxYfX3S3c0CESINBBEs5A7yWCjkgxuPaW+bMGsul5ooaP25K9l747DMRzB0dQ96+vfj9p6Wp3fOvXVMnNXOkQr5lC/Dee6Ka//DDwMCBYv+IEY6N5W7QAPjiC/Gcy6zhSCAH1G7rBw+KL6B4gbxsWXWuiVWrxNZWL5KiyN4HBoO6ooKna9u26JM4WoSEiJNZHvr/Q9dAvnHjRiQnJ2PLli1Ys2YNrl+/jttvvx3ZJrMzjhs3DitWrMDixYuxceNGnD59Gv3799etzaa/RwZyIiKiUkaOI+/d22wt7OrVgct+aoX8FCqjRw+gSht1/GN6aDwKQm5Wxp96ClixAkt/LY977hFZ58aNmzesUEGMmT5woHjjUF3J2qRtjrrjDhG05LhYQK2Wb95svv63h35g1kWNGqJqCwA5OeL5d6SHQnS0GmBbt7a/vJo1puPIMzPVkwGOBPKBA0X4OXRITMzlaJf1oCC1a/1PP4nt+fNiGxho/zHIQP7tt2Jbv76odGdmFl7qryiDB4tqqqQ1kK9cKU5EVK5s/ySCI0y7rQPOV8i7dhWTK44da32GfNKdroF81apVeOihh9CwYUM0bdoU8+fPx/Hjx7H9ZlePjIwMzJ07F++88w66du2KFi1aYN68efjjjz+wRa6lpwN5UpOBnIiIqJSRH7xNx1VDfDa4Ea0G8sywymjcGAivr36g35VTB48+av75QX72//df4KuvTA5Yq5a6FrUv6t1bXf9bTiRX3NmffdEjj6iXExMdH44gq+Raxo9LphXyDRvEmaJatRyrzEZEiDXPAVEldzSQA2q39R9/FFvT7ur2TtRYzoK+aJE40dOli1hurqhZ6S39739iksOePc0nJbTHNJADxauOS/L5WL1anBSRz6XWv5PgYHGS4513it8mKhEeNYY8IyMDAFDu5h/t9u3bcf36dXQz+WdSv359VKtWDZs3b7Z6jNzcXGRmZpp9uRoDORERUSn17beiC7FcZsxEQKzaZb1co3iRIUwqbEdQG3PmiPmPALGSl1zeGRATfZeazxaVK6sTbu3dK7YM5IXddZc6PtmR7urSs8+KHglygiwtZIX899+Bl14Slx2pjkuy2/rXX6vLtjnS/Vgukbdtm6iOO7IGOWAeyPv1E5OBtWwpxiBPmuR4u02NGCFCrKPrfctAfjPLuCSQJyaKkxsFBcBDD4l9FSoUvQwbeR2PCeQFBQUYO3Ys2rVrh0aNGgEA0tLSEBgYiCiLcR8xMTFIk5OjWJg2bRoiIyONX1WLu0i9FQzkREREpZS1JcNuCk1QP7zXaH+zq7pJIG92j5iY7Y03xFxT8+eL3q233iqGuB44YL6Es88bMcK8G7vWsbGlQZkyam8MR6u1gJjdfuVKx5c7MyUr5Js2AXv2iBfn4487/vNdu4oTLpcvqxOcOVIhr1xZLOumKKKbtiMTugHmAVWe7XI3y+fZVUNNpk0TQxXkxG48aeWTPCaQJycnY+/evfj666+LdZwJEyYgIyPD+HVCzhDpQgzkREREZKlcHTWQN+lZOJC3GFwbffqIHsCPPw7Mmyf2jx6tru7z2mvqKkc+z2AA5sxRxwfXq6dvezzV2LEi3FrOxl9SatdWLw8cCOzfr212fX9/4MEHzfc5EsgBtZv255+rs7wXNRa7aVOxve8+bb0IXMkykLuiQg6IZcVMhy3wpJVP8ohA/sQTT+CHH37Ahg0bUMXkjSs2NhZ5eXlIT083u/3Zs2cRa2NcVVBQECIiIsy+XI2BnIiIiCzVulXtsh6VePMDuumkUHXq4L33xJxXv/4quqxHRYletmPGiImVd+4UE6uXGlWqiH7706c7N965tHBklnBXueUW4IMPxFjuxYudm8vAcq14R2fMHjhQnKhZswaYMkXsK6pCnpQkZuovyTXki2IayOPi1GEGrjBxotoLgBVyn6RrIFcUBU888QSWLl2K9evXo4bFi6xFixYoU6YM1q1bZ9x38OBBHD9+HElJSe5urhEDOREREVkKqnyzQh4QoIaI2FjxVa4cUKcOEhLUYbmAWMo8JETklaFDxb5vvlGv37lTTLS9Y4d7HoMuWrcWS6M5shQYlTyDAXjsMdHt3Vn164vfqxQd7djPNW8OLF0q/iDy88U+R2YrT0gQf3d6MQ3krqqOSzExwNtvi/HjWoYtkNfQ9T9fcnIyvvjiCyxcuBDh4eFIS0tDWloarl69CgCIjIzEyJEjMX78eGzYsAHbt2/H8OHDkZSUhFtvvVW3djOQExERUSH16oklmpo3Vz8s+PuLNL17t0jeECueNW4sbmraG1VOTr18uZpF/u//RLHwmWfc+DjIK1y44OHDG2SVPCTE+Np3SJ8+Yux6z57ij6Rt25JpnytFRakz4Ls6kAPAqFFiojsd8w+VHF0D+YcffoiMjAx07twZcXFxxq9FixYZbzNjxgzcddddGDBgADp27IjY2Fh8p/OMJwzkREREVEilSmLypbVrzffHxZl1XQ8MFBNYHzwI3JzHFgDQqZMYTn3+PLBli5igWs7Cvn69mPSNCBArYVWsCLz8st4tseO++8SZp0GDtP9sXJyY5TwzU3RJ93QGgzo7fcuW+raFvI6OfTtEl/WiBAcHIyUlBSkpKW5okWMYyImIiMgqOUN1ESIixJepMmXEKldffgksWyZ6qpp+1pg9G3j3XZe1lLyYPFHz++/6tsOuqCjgr7+Kd4ygIJc0xS3eeEOcOdOyRBwRPGRSN2/DQE5EREQloW9fsV22DFiwQFyWXdnnzweysx0/1vXrojj58MMe3rWZNJNLt588qW87yES/fsD774sza0QaMJA7gYGciIiISkKPHqJL++HDYhhtUJBYGaxWLSAjA/jqK8ePNXeumCT7k0/EjO7kO/7+W2xPnuTJFiJvx0DuBAZyIiIiKgnh4earf919t5ig/bHHxPcpKY4FsOxs8/HFmza5tp1U8r74Avjll8L7L18GTp0Sl7OzAYvVgYnIyzCQO4GBnIiIiEqK7LYOqBNVP/SQmMR51y7g+++LPsZ77wFpaer3DOSOW7AASEwU8/Pp5dAh4MEHxZJ3f/5pfp2sjkvstk7k3RjIncBATkRERCWlTx8xH1bt2iKQAWJZ5vHjxeUxY+yPJb94UcwvBajjzz168i8P89VXwP79wA8/6NcGOaP+9evA4MFiuIIkx49LDOSqhQuBe+4Rk7MTeQsGcicwkBMREVFJqVQJ2LcP2LrVfH6oF14Qk7gfPw689hpw7hwwYgTQrp3YJ73yiggkTZuKOaYAEeLYtdkxV66I7YkT+rXh33/NLz/yiDpUwTKQ69lOT6IowLPPAt9+K4I5kbdgIHcCAzkREZH+UlJSkJiYiFatWundFJeLixNjx02Fhoqu6AAwfTpQvz4wbx7wxx/A8OHic8nWrWoIf/NNID4eqFlThJUtW9z7GLyVJwTyI0fEtls3ICAAWLRIfAFqIJfL5rFCLhw9qo6tX71a37YQacFA7gQGciIiIv0lJydj3759SE1N1bspbtOnD9Crl+jKfPmyqIKHhorlj999Fxg5Unw+keOPAaB9e7HlOHLHeEIglxXye+4BJkwQl+WEfjKQy8n/WCEXfv1Vvbx+vfgbIfIGDOROYCAnIiIiPRgMwOzZwMCBwIwZYsKvN98U1z31lJjwq2JFcZ3Urp3YMpA7JitLbD0hkNesKbqr+/mJeQA2bxZzBBgM6gkXX6iQT5oEtGxZvOd840b1cmYmsG1b8dtF5A4M5E5gICciIiK9VK0q1hcfO1Z0Z37sMaBrV/X6WbPEJHCSDORbt6pVQ65dbZuskJ85o0+VtaBAdL8GRCCvXFmthj/3nNjWrg3UqSMue3sgVxQxFGP7dtHDw9nXpqyQx8aK7c8/u6Z9RCWNgdwJDORERETkKfz8gE8/FUt1Pfyw6OZsqkEDMWt7Tg7w6qtAo0Zicrg9e3Rprke7cQO4dk1cVhTg9Gn3t+HMGSA3F/D3FydfAGDoULGVs+U3agRUqSIunzjh3SdYjh9XZ5Ffswb45BPbt1UU4L//Cj/ekydFrwI/P/WkhRxHvnWrmPzQdBlAIk/CQO4EBnIiIiLyJAkJorv6xx+L7sym/PyAtm3F5ZdfFrc7eVJUXeXyWiTI7uqSHt3WZXf1atXUWfb79QPCw9XbmAby7GzzZdFcYeVKsfSbO+zaJbb+/mL71FPAsWPWbztrFlCjhjq5oSSr482bi+EcAJCaCuzcKeZcmDfPftAn0hMDuRMYyImIiMib3Hmn2EZFAZMni+By7pzo6n74sJ4t8yyyu7qkZyCvWVPdFxpq3vOhUSOxT87E78pu69u2iRAr17Avabt3i+2QIWJ4xZUrwPjxhW+Xnw+89Za4bBmuZSDv1EmcqEhMFJ/Tu3QBLl0S15XECYbDh0Wbly93/bGp9GAgdwIDOREREXmTRx8VoeXoUTGB1s8/A40bi+7R7dpxAizJUwM5AAwbpl5u2FBsZZd2V7bzxx/F9sABMYFcSZOB/JZbgHfeEZfXrSvcLf2nn0T3dkD08jh4UL1OBvKOHcVWTniXkaH2GCmJ3iCLF4tlB2fPdv2xqfRgIHcCAzkRERF5Ez8/oEMHUSEHgAoVxHjdZs1EpbxzZ+Dzz8UY5R9/FEG9NPKkLuu1apnvb99eLHvXo4dYgx5Qu627skK+Zo16WXYnL0nyPpo2Fa/HgAARpC2fe8vQ+913YnvunFr9lkv89eghtn5+ops7IAK5qz+7y94l3j6xHumLgdwJDORERETk7WJiRGWxVy/g6lUxcViHDsBddwG33aZ36/ThyRVyPz9g2TJg1Sp1vLWrA3lGhnlviZ07XXNcWzIz1cfbtCkQGCgmIQSAv/5Sb3f0qBjXDgDPPCO2MpAvWya2jRurqwvcfjvw0kvA11+LiQ4DAsSkhqdOubb9MpBzLXgqDgZyJzCQExERkS8IDwe+/15MpBUfL5bT8vMTFcfSGDI8OZBb4+ou6xs2iLHa0o4drjmuLTJ0V6mihukmTcyvA8RkhYoiJiJ8+mnxGv3zTzFx24QJ4jYPPqje3s8PmDJFjLsvU0a8rgHXd1uXgTw9vXDvCiJHMZA7gYGciIiIfEVAgJgs69Qp4J9/xIRvALBpk77t0oMM5JUqia27A3lOjro8lyOB3NUV8rVrxVYG2JKukMvx402bqvssA3leHjB3rrj82GPid9Ohg/i+Z08xaVuzZsDYsbbvR3bxNx13XlzZ2ebL4rHbOjmLgdwJDORERETkq+QSaX/8oW879CCrnImJYnv+vLouuTscPSq2UVFAdHTRt3d1IJfjx59+WmwPHhTBs6TIQN6smbrPMpBv2iR+DxUrAr17i30DBojtxYvic/knn6hLxFkjA7krK+SyJ4NUGnuUkGswkDuBgZyIiIh8Vbt2YmstkO/cKdbH/vRT97bJXWSFvFo1sawY4N7Kp5bu6oB5l3XLWcm1On4cOHRIjE+/914gLk4cU4bmkmA6oZskA/nBg+JkyKpV4vuePc3XZZfGjwdatLB/P/Xqia0rA/mRI+bfM5CTsxjIncBATkRERL5KVsh37SpcHf3oIxE8nnpKTMjla2QgDw8vmSXFiqI1kMsKeVZW8X8fsjreujUQGakOXSipbus3bgB79ojLphXyuDgxnrygANi3Tw3kd9yh3qZKFeD558Va6S+/XPR9lUSFXI4flxjIyVkM5E5gICciIiJfVbWqCDz5+YXXJ5ehLT0dSEkRl8+dA+67D/jqK7c2s0TILuveEshDQ4Fy5cTl4rZT/m67dxfbW24RW1cH8hs3xHwFO3aICnjZsuZLvBkMapV81SrRdd1gUNslTZsGLFmi9mSwR1bIT50qPHGfs2QgDwoSW44hJ2cxkDuBgZyIiIh8mbVx5EeOmI+bfftt4MIFsTb2V18B//d/RR/38mUR4D2Vt1XIATVsFnfM/969YpuUJLayQu7KmdYLCkTQr1IFaNNG7GvcWP1sLclAPnOm2LZqBVSo4Pz9RkeLZf4A0S3fFWQgv/VWsWWFnJzFQO4EBnIiIiLyZdbGkcsKatu2YhbuixdFaNuyRez/7z9RObeloEAct0EDEcw9kbVAfvy4++5fztpdubLjP3P33WIr1+V21oULYhsbK7ayQr53r5jp3BUOHFC7qQOi8j1oUOHbyUB+9qzYmnZXd5arx5HLQN6li9gykJOzGMidwEBOREREvkxWyDdvVj/vyEDesyfwwgvi8smTYtm0iAjxvena0ZZSU8X65pcuAdu3l0y7i0t2WQ8L06dCLnsPyGquI/r3F9t16+yfELGnoEAN5BUrim1CgqgsX78OzJol1vVevty540tyKb3OnUXIz8oCxo0rfDsZyKWePYt3v4Brx5Hn5qonajp3Flt2WSdnMZA7gYGciIiIfFnTpkBIiKhkHzggxv2uXy+u694duP9+oE4d8f2HH6qhRM6abc2KFeple8FdT3p2WVcUsbwXoIZiR9StCzRsKH5HP/zg3H2np4s5AwC1a7jBoHZbf+opYNIk4J57xFrpzvr9d7Ft107MmG5r/Hdiovp5OzpadFkvLlcG8v/+E7+vsDB1hvfMTN+c6JBKHgO5ExjIiYiIyJeVKSNm2waApUuBP/8UoS0qCmjZUlz/yy/A1q3A//6nBjd7gdw0LDKQW7/v3FxxWUsgB9QquaPd1kePBnr0ECEeUKvj4eHqJGUAMHKkaMsttwCBgaKqXZwu/LJCLodE2BIaqp7wuf12sRRbcbmyy7rsrl67tgjlcs14T+q2vmoVMGSI5w4PIRUDuRMYyImIiMjXyZD34otqt+LbblPDUXy8GtrlslW2ZuQ+ftx8PWtPD+RhYepY6owM142htkd2Vy9bVnxpIX9Xq1YVXqrOUkGB6NXw889iCAFguzJ/332iXdu3q4H22DFtbZPOnhUTAxoM6sRx9nTtKrbWxpg7Q1bI//lH7Q3giNzcwp/5ZSCXs8PL5ec8KZBPnQp8/TWwcKHeLaGiMJA7gYGciIiIfN3o0eILUCdus1x6SpKB/O+/rYfXH38U22rV1NvJ6qx04wYwYYKoyOvFdNmzqCj1M9/FiyV/3850V5eaNgVq1ACuXgVWr7Z/24wMNZCmpTl+3wkJYutsIJfV8UaNxHNblOnTxQzv8mRDcSUkiJNJubnq4y7KlStA9eqFX/emFXJA7U3hSePI//lHbP/8U992UNEYyJ3AQE5ERES+zmAA3nsPGD9e3WcrkCckAJGRYgIwWXU1JburP/qoqP7m5RVefur774HXXxfdpLVUMF3JtMu6nx9Qvrz4XnbpLkmyQl6pkvafNRjU4PrNN/Zva/pYZDCV++wtLSZPpjjbZd10/LgjypZVh0K4gr+/6NUBOF7J3rtXPEfr16szvgO2A7mnVMivXFFfTwzkno+B3AkM5ERERFQaGAzAW28Bs2cDH31ke31sg0GtkluOI8/OFjOAA2LN8saNxWXLbuvffy+2ly/b7vpekvLz1QnLwsPFVgZUTw/kAHDvvWK7aJH6fFtj+ljOnBFbd1bIHQ3kJUFrcDateMv2A54fyOV69gCwb1/RwxhIXwzkTmAgJyIiotLCYAAeeQQYNcr+7WwF8nXrRDfhGjXEGuRySSvTQH7jhtqtXf6Mu5mGlrAwsZUVcnd2WXc2kLdsKXogAMBDD9mezMtahbykA3lOjuh+DgDt22v/eVcpTiCXFf6sLDHLOqAGcjmG3FO6rB85ol4uKLA/2aKrKIqYVFC+lshxDOROYCAnIiJyrX79+iE6OhoDBw7UuynkJFuBfP58sb3rLhHurQXyTZvE+uTS2rUl1Eg7ZHf1gAB1pvGSrJAfOKCu7Q6oFXJnxpBLb70lQuLJk8ATT1i/TXG7rDsTyFNTxUmX+Hg12OvBFYF89WrxWGrXBipXdu64JU1W8CV3dFtfsQIYMADo27fk78vXMJA7gYGciIjItcaMGYMFCxbo3QwqBtNAriji8v796iRtjz0mttYCueyuLmdt//134Nq1kmxtYabjxw0GcbkkA3nv3mJJLxmeittlHRDjrr/4QoyXXrjQek+D4nZZP3Wq8IR8RTHtri6fWz0UJ5Dv2CF6UcjX6t13q4/F9Ljyta8nWSGX67y7I5DLv+c//hBf5DgGcicwkBMREblW586dES4H7pJXSkwU65Onp6sTf735ptj27Su6qwPqGPITJ0S3akVRQ85zzwFxcSKMu/tDvZxhXXZXB0oukGdlqUH877/Ftrhd1qU2bdSlwuTs+Kac7bIeGyt+v/n5wOnT2toke03IEy56KU4gz88XJxbk0Io+fdTrZKU8O1u8/vUmA3nv3mLrjkAuu/EDwNtvl/z9+RIGcicwkBMRUWny66+/onfv3oiPj4fBYMCyZcsK3SYlJQXVq1dHcHAw2rRpg23btrm/oaSrwEARygFgzhzRtfmLL8T3zz+v3i4qSu3+vGePCKT//iu6id9+u1jrHHD/OHLTCrlUUrOsm3YpPnpUbF3RZV2Sa4bLY5uyViF3pMu6n58aaLV2Wz9wQGzl60Mvzgby6tXF9o03xNCK8uWBtm3V24WGqq8Va8+5u8nX1+DBYnvwIJCZWbL3afq4ly41H8dO9jGQO4GBnIiISpPs7Gw0bdoUKSkpVq9ftGgRxo8fj0mTJmHHjh1o2rQpevTogXMyYQBo1qwZGjVqVOjrtNZSG4Dc3FxkZmaafZFnkAHg1VdFNfTGDaBLF1G1NSW7rf/xhzrGvFs3UZ32pEAuA6qrJ3WTa0QD6ozYruiyLtWoIbamVUvJNJBnZIi1yx1dA112W9ey9Fl+vrrEXf36jv9cSZCBPC1NLL1nT0GB2hNAzmC/fr3Y3nWXmGvA1C23iO1zz+mbEfLy1BMOt94qTn4pimtWLjh/3vZQEvlai40V9/fuu8W/v9KCgdwJDORERFSa9OzZE1OnTkW/fv2sXv/OO+/g4YcfxvDhw5GYmIjZs2cjNDQUn376qfE2u3btwt69ewt9xcuFgTWYNm0aIiMjjV9V5ads0t3zzwMpKaJaLgOmaXVckoF8wgS1e6vsAiwDeWqqe7v/ykDuji7rlhXyggL1PlwRyGVFt6gKOSBOCMjl3hwN5Foq5MeOiVn2g4L0ndANEI8vMFAExqLOBZ47J04o+fkBlnNNmnZXl2bOFJXytWuBd94Rv9OFC8Xkeu6YpV/67z9x36GhIhy3bCn2O9ttPTUV6NVLDCWpVEmsDX/9uvlt8vPVkzTTpontp5+aT9ToyT77DHjxRf3G/zOQO4GBnIiISMjLy8P27dvRrVs34z4/Pz9069YNmzdvLpH7nDBhAjIyMoxfJzxlamOCwQA8/rgYu9y2LfDAA0D37oVv16OHejk+XgSeIUPE91WrAnXris9ZGze6p92AOobcWoXc1YHcskKenq5OlOaKLuuyQn78uAhLpiwfy969YlumjPljt8aZmdZld/W6dcVkc3ry81OXKCvq34bsrh4XJyYsjIgQ3wcFWX9N168PvPeeuPx//ydOOt1/vzhB9c03Lmm+Q2RX8Vq1xN+jDOS//CJ6pGzcqG1SvldfBVauVOcbOHAAWLLE/DZyor8yZYAHHxRDE3Jy9FktQauCAiA5WTxOV/QicIaugbyoMWmKomDixImIi4tDSEgIunXrhn9M/4PphIGciIhIuHDhAvLz8xETE2O2PyYmBmnyE5wDunXrhnvuuQc//fQTqlSpYjfMBwUFISIiwuyLPEvz5mICrM8/tz6rdseOIhBduCA+zC9ebF6Z7txZbN05sZu9LuslGciPHgXOnhWXIyNFBbe44uNFOLpxo/Da2PKxyD+bPXvEtmLFomdAd6ZCLgO5nNRPb46OI5fPW5Uq4kRCUpL4Xg6tsGbkSLH01/Xr6mR9psdyB9n7olYtsZWB/IcfxCz3nTsDn3zi+PHk7zolRfRoAURvAFOyu3q1auK5atVKfO8Bsa1IZ86IyfgAYPt2fdqgayAvakzam2++iZkzZ2L27NnYunUrypYtix49euCau9fBsMBATkRE5Fpr167F+fPnkZOTg5MnTyJJfvoln1WlijoRliUZInbscF977E3qlpUlul27imlQuXpVrVK7ors6IEKRDM+m3dbz88XM9gDQqJHYmgbyojgzhnz/frHVe/y4pDWQyxnUH3lEnKAZN872zxgMYkLDBx4QVfKnnxb7nZgqw2mmFXJA9FRp0EBU9uVr2/RkQVHk89ChAzBmjDjRs3mz6MouyUAue2bUqSO2cu4AT2Y6fMSd/29M6RrI7Y1JUxQF7777Ll588UX06dMHTZo0wYIFC3D69Gmrs7u6EwM5ERGRUKFCBfj7++OsLPHddPbsWcTGxurUKvJ2LVqI7fbt7hvXaW3Zs8hItZu1q8YBZ2aqFfHoaLHdulVsXRXIAXUcuenEbnKZOQBo2FBsZSC3N8O6ZNpl3dHfi6yQe2sgl13c+/UTk5rJOQ5siY4WPUNefVU96aFHIK9dW2zLlhUB/OpVYMoUsc/R1/LVq2qPiipVgJgYdYK7999XbydP+sjXXN26YusNFXLTQF4qK+T2HD16FGlpaWZj0iIjI9GmTRu73djcMfMqAzkREZEQGBiIFi1aYJ3JlNgFBQVYt25diVe5U1JSkJiYiFayfyT5jIYNRSXu8mXrM4WXBGsVcj8/1y99JgNAhQrq5HYlEchltdK0Qi4fQ1SUGkzl9Y5UyOXP5OQ4Hup8JZA7Q85ZqWeFHBCVe4NB+xCMU6fEtmxZ8ZoBgCefFNuvv1bHlcu/URnIZYXc2wL5X38VnrDOHTw2kMtxZ1rHpLlj5lUGciIiKk2ysrKwa9cu7Nq1C4A4ab5r1y4cv9lvdfz48ZgzZw4+++wz7N+/H4899hiys7MxfPjwEm1XcnIy9u3bh1TTvpPkE4KCgMaNxWV3Va2sBXLA9ePIZQCoUweoWVNclo/RFRO6SfYCeYUKYgZuU47cd3Cw+nOOjCO/cEG9T1k11Zs7A3lcnNi6K5AXFKjL6JkGcknra1k+R1WqqPMLtGwpusFfvw7MnSv2WXZZl9X5CxfUIRKeyjSQ5+YC+/a5vw0eG8id5Y6ZVxnIiYioNPnzzz/RvHlzNG/eHIAI4M2bN8fEiRMBAIMHD8Zbb72FiRMnolmzZti1axdWrVpV6KQ6kRam3dbdwVqXdUCtkLuqy7qsGtapowaYq1fF1l0V8goV1LAoOXoyQHZbd2Qc+cGDYpuQIKqsnkCPCvmlS7bX73alU6dEqAwIUH9PprT29rD1HIwYIbbLl4utZZf1sDD1sXt6lVwG8jJlxFaPceQeG8jluDOtY9LcMfMqAzkREZUmnTt3hqIohb7mz59vvM0TTzyBY8eOITc3F1u3bkWbNm30azD5BHcHcndVyE0DuayQSyU9htxehdyRMeSAtpnWPW1CN0AN5BcuqCdCLCmK2l27OIE8Olr09gDU7t3FlZtre4JB2V29enURyi05WyG37HDcs6fYpqaKxyWDuzwJBHjHxG6Kogby228XWz3GkXtsIK9RowZiY2PNxqRlZmZi69atus+8ykBOREREVLJkIN+xwz0Tu+kRyE0DDFAyXdZl1RRwTYVcSyD3tPHjgAjJoaHisq3lyEwr2rLS6wyDwbXjyK9eFRPFNWli/WSCnD29Xj3rPy9fy1evinkApPPnrf+N2aqQx8eLNigK8OmnYvb+oCAx6ZvkDRO7nT8vesYYDGK5OqAUVsjtjUkzGAwYO3Yspk6diuXLl2PPnj0YOnQo4uPj0bdvXz2bzUBORETkATipm29r3Fh0I714UdsyW86SXdZ9pUJeqZIInoqiPn+mgdzyvhwN5HJ8sAzb9nhiIDcYiu62LoNopUpqhdtZrgzk338vKrqHDgHfflv4+t27xbZpU+s/HxamrnMvh2CsWyce50svFb69rQo5ANxxh9h+/LHYJiSoGQnwjondZHW8WjUxLh4Adu0SJxjcSddAXtSYtGeffRajR4/GqFGj0KpVK2RlZWHVqlUIDg7Ws9kM5ERERB6Ak7r5tqAgddkoy26k778v1oXOy3Pd/ckKueUYclcG8owMUZUDRGCJiQFCQtTrXRnIDQa127oc42sayMuUMe+m7miXdfk7kWun2yMDeYMGjh3bXRwN5HIN8uJwZSA3GSWEDz8sfL0M5HL2fkvWZlqXi1dt2lT49vbG0ctu67KnhGVvD1kh9+Qu6zKQ164t/h7DwkTvAUdONrmSroG8qDFpBoMBU6ZMQVpaGq5du4a1a9eirgdM0chATkRERFTybrlFbE0D+cmTwNixojK3dKnr7stWl3VXTuomA0BMjLgfg8E8yLgykAOFJ3YzDeSAebd1RyvkMpCfPGl/Bu1r19T79aQKOeB4IC/O+HHJVYH85Eng55/FZX9/EaRlAAdEVVeeJLFVIQcKT+wm22XtubD3PLRta37ySp78kUwr5O4YcuIM00Du5wfcrBG7vdu6x44h92QM5EREREQlz9rEbnPmqJ/BTCuGxVFQ4J4u67L7ruz2Daih2WBQw5KrWE7sZhnI5cRuBgNQrpxjx4yMVGfwtlcl37BBPK/lyrn+RENxyUBuq3rrykAuT3qcOVO843z+uQi2HTsC/fuLfbNnq9cfOSLGhYeEqGHYGsvXswzkJ0+aB+erV9XbWOuyHhgIdOumfm8ZyGvWFK+rzEzg3LkiH54uZCCXS8RZOwHoDgzkTmAgJyIiIip5MpD/+aeYmOz6dRHIpZ9/dk1XYNMJrkqyy7qsaJp2+JTjyMuXF5VPV3K0Qh4dbX1WbluK6rauKMCrr4rLw4apa1h7ik6dxHb5cuvLkXlahVxR1JNPDz0EPPaYuPzFF2rPDvnaatTI/uvI8vUsZ5PPzTV/jcv9oaFAVJT1Y8lx5EDhLuvBweoEgJ46jty0Qg6ogZwVci/AQE5ERERU8po2FQHi4kXg2WeBFStEpbFSJaBNG/FZ7Isvin8/MtT4+ZmP6QZcG8jlus3du6v7ZJApiSpyUYFcVsi1zu7euLHY7tlj/fpffxVjkgMDgaef1nZsd+jUSYwPz8gAfvqp8PWeNoZ882ZRzQ8NBQYOBDp3FjOpZ2Wpr/+iJnSTbFXIAfNu66YTutk6oWIayC0r5IDnT+xmGcjbtxev13Hj3NsOBnInMJATERHpj7Os+76gIGDePHF55kwxdhwARo4EHn5YXJ4/X1QQly4VH6azs7Xfj+n4ccvwIbuRZ2eLampyMtCnj/YJ5Q4dAvbtE5Op9eql7pdVOVtLVRWHDOT//ivam5EhvreskGsN5JYVckURJxtkKJw6VWxHjizesmElxd8fuP9+cdnaCR05UZms8BaHKwL5ggViO3Cg+hp95BGx79NPxbaoCd0k0zkR8vPN10c3DeSO9BJISAAGDRJjr63dryevRX7pkjoHguylUrMmMH060K+fe9vCQO4EBnIiIiL9cZb10uGuu4BnnhGXT5wQYWTUKOCee0Q1e/9+UXHu3x94+21RRddKjh+37K4OiDHTsgvw6tXABx+I8Llhg7b7+P57se3SRRxT6tgR+OUX8674rlK3LlC2rKiGfved2Ofnp3ZBvvVW8f2tt2o7rmmFXFGAJUvESYpmzUT1du1a0QX+2Wdd9EBKwAMPiO2PP4pwJhUUlEwgT083HxrhqBs31CXOZJvl5YAAMZzj77+dq5CfO2eeZ2xVyO1ZtEh08bbsWQJ49lrksjoeHy/+RvTEQO4EBnIiIiIi93n1VSApSVzu1Ut0j42IUCe3WrdOve2//9o/1o0bwLJl5rOmy2qg5YRugPlSUS+/rO5fuVLLIxD3CQB9+xY+fqdOrp/QDfj/9u47zKky3wP4N2WS6b0x9Kb0IgMjomuBVRA7grKIY2WRIoqgXl0s17aoq6w6F6/eXXVXVhQFQVxUBERRGJr0uoq0YWZo01smee8fP8+cZCZTmZmTxO/nefKc5OSc5H1PTvLmd94mgcbEiXL/v/9blrGx+gWGCy+UwOzFFxv3uj16yGvk5UlfY60VAwCsXSvL227z3ozZV/TtK7W6FRWec3rn5Mg6s7l5+pBHRkpTc6BpA7utWSPnany8XMzRJCTIxSoAmDdPD6DrqyF3D8ir19pr3wP3++dyDLQa8sWLZZyCvn0bNl1ea/jpJ1m6D7BoFAbkTcCAnIiIiKj1BAVJk/Q5c4A33tDXT58u/ZR79ADGjJF1Wu1mbd58U5qkXnABsGOHNKe95x55ThtErjotiPnxR32dt77HtcnO1ud7vu66hu/XHKZOleXevbKsPt94TEzjB12z2/Xaz9WrpeUAILXN994rFxjcL174Kq3GecECfZ12/rRtK+fduTKZ9FrypgTkixbJ8qabag68l54uS63ZeseOtQ/ApnEPyLWB2zTeasjPJSC/8EIZp0ApuXiza5eeH6NVH2HdSAzIm4ABOREREVHrSkqSWl73Wte0NAlydu0CRo+WdfUF5FrwdeQIMGyY1DqePCn9YDMyvO/jHsT27i2B0cGDei1bfT77TIKSIUOaZ6CwxujTR5qRa6oH5E2lNVt/+mnpizx4sLReeOstaYKvTY3my8aPl4D522/1GuHmbK6u0frqN7YfucOhdzUYN67m81dfLZ+nFpPU11wd8F5DrsU23vqQ19dkvS6xsfI9y8rSB0qr7aLEihXSf7u15izXpgKsPjq8ERiQNwEDciIiIiLfoDXB1gIo94D8+HHg+ef1wZsOHwY2bJAgbNgw6TuelSU17F9+6dm32517c/LZs2U0ZqDhzdZra67eWqZP1+83d0CudRFw79/sL9q105t4a1NdaYFacza3b+rAblpz9YQEfao2dzabPjgd0LCAXDuX3WvItUH6mrvJOiCtDNq0kQtZgPdj4HJJPh5+GFi37tzer6Fa4nNuKgbkTcCAnIiIiMi3uAfkWi3bs88Cjz8OTJkij7XmspdeKk2tH3oIuPJKYOXKukca14LYuDjglluAUaPksbdm6/n5UrOpOXJEBjkDjAvIr7tOD6yaKyDXgjhALojcckvzvG5r0wLFPXtk2RI15E0NyD/6SJZjxtQ+T7zWbB2ov/84oH/+5eV6s+20NFkeOybxTWmpPi3audSQu6vrGOzapV8027Ched6vPi3xOTcVA/ImYEBORERkPE57Ru60+ZLdg4kdO2S5cKHUgGoBzrhxUrv48stSM15fLeDAgbJ84AEgOFgPyNeskfcD5H/hX/4igf2FF+pTqc2YIYOEXXKJ1MQbwWoFHntM7jd2RPXaaDXkgFzUSEpqntdtbT17ylLrY+8rAbnDIeMmAN6bq2sGDABGjJCxAH73u/pfNyxMxgAA9O9Haqp8dxwOGXldqzkPDa2/T3pD1XUMvvtOv5+Z6X3/gwf17/W5crn05vkMyP0UA3IiIiLjcdozcmez6X11tVpyLcgCZOC2TZvkf5w2OntD3XOPTPH1+OPyuE8fCeLLymQgs61bpQ/7rFkS1GzdKk1wP/1UblYrMH9+4wdPa0733SfB1l13Nc/rde6sjx7uj83VNb16ybI1asgbM6hbZqZMx5aQUHegbTLJOXj8OJCYWP/rus8asH+/LDt21L87R4/q05RpF7mag3YMcnM9W5AAtQfkDgfw3nsy9sJ558lxaI4+5tnZcpHMYmn9MR28YUDeBAzIiYiIiHyPe7P13FxpBmsyST9WbYT0yy5rfG2u1SpBuBacmEx6LfnYsTI6+xdfSO35Y4/J8rPP9JrNWbP0ptFGSkhovgDLbAZeeEGmVWvsBQ5f4l5D7nL5Th9yrU97Wpo+TV1tbDbv84DXRgvInU49fVrT9GPH9C4WF13U8NesT1ycfA+VkqnlNEp5BuTHjunHado04I475EIaIJ+R+0W2ptI+47Zta+8K0JoYkDcBA3IiIiIi3+MekGt/3Dt3BiZN0repq/lvY7jXCsfHA7//vQQOzz2nT0PlcEhgN2dO87ynr7n/fuAf/5ALEP6qWzcJyoqLge3bZQk07yjxWu3z8eMNr+Hdtk2WWneJ5lR9zvuUFL3bxtGj+jR2V13VfO9pNnsfbf6XX+Sx1arPW75xo3T5+Mc/5PGTT8ogjACwatW5p0VrBeELA7oBDMibhAE5ERERke9xD8j37ZP7PXsCf/oTEBkJhIc3X23u734nNX1nz8q0aV99pQ90Nn681B7HxABvv6037SbfExSkz6n+xReyTEpq3osMHTtK/FBYKM2lG0Jr0dESAbn7wH42m8xUoNWQb9gA7N4tLSlGjGje9/XWUkCrHU9N1UeSz8wEli+XLiHdu0tAfs018lxzBuS+0H8cYEDeJAzIiYiIiHyPtxrynj2B5GRpArx5c92jqTdWYmLtg149+qj0AW7uoIaan9ZsXZvGrrlrToOD9aB/5876t6+okKAYaPmAPCVFgm8tINfmPR88uGZN+rmqKyC/+GJ9tPfMTM8BGE0mYPhwefzNN0Bl5bmlgwF5AGBATkREROR7vAXk2sjmXbsC559vTLrIt2kDu/3wgyxbIlDTRqXXRjavy+7d0t0hJqZl0uIekGuDmmlN1svLZTlyZPO/b10B+SWXyOBtgDRZ1y6OaF1MLrgAiIqSaQW11gNNpfUhZ0DuxxiQExEREfme2mrIieqiBeTaIGctGZDXVkOem6vX/GoB54ABLTMyf/UacqDmfOPN2X+8+ntp06qdPKmP9D5smAx8GBYm/fjLy+VimnbcLBYZkBE492br7EMeABiQExERGY/zkFN1WiB19qyM1gwYN/c3+Y/qF21aIiDv10+W3gLyTz6RAc+mTJHH2oBuAwY0fzoAz6bo3gLyqCi9tro5Va8hX7dOlr17S5osFpmxQKM1V9dozdbPJSBXik3WAwIDciIiIuNxHnKqLjxcBqjSJCZ6Piby5rzz9P/3QMvUnGo1vXv2ePaBPnFCZgFwuYB33pFgtSUHdAO815AnJ+vHYMSIlpkOrHpAvn69LLUR1AG9HzlQc0YELSBft04GfGuK06eBkhK5X71VgFEYkDcBA3IiIiIi3+Re68Xm6tQQISFAly7645aoOe3USZpjl5cDBw/KOqWAe++Vwf8ACdTffLNlpzwDvAfkVqt+vyWaq7u/lxaQb9woS/cg/JJLZNm3r9Scu9MGaCwr04P5xtL6jycn+850fQzIm4ABOREREZFvYkBOTeF+rrREQG4269PiaQO7/f3vwOefy9Rj2lz1r7wCFBVJsNhS3S28DeoGADNmAFdcAYwd2zLvqwXkZ85IP/HNm+Wxe/P4a64B3n0X+PjjmvubTJI+AFizxvt77Ngh85fXNt+7r/UfBxiQNwkDciIiIiLf5B5Msf84NZQ2sFtMDBAR0TLv4d6PvKgImDVLHj/7LPCnP0k/8uJiWde3b8s0Gwe815ADkp5Vq2qfyu9cRUfrtdJr1khew8I8L4aYTEB6uj5NXHVaDXptNeR/+IPsX1vA7mv9xwEG5E2iBeTnOgceERERETUv1pBTU2gBeUvWnLqPtP7ee0BeHtCtGzBzptSS//GP+rYt1VwdAEJDpVa6Sxegc+eWe5/qTCb9AsCnn8oyNVUGc2uooUNlmZmpj4qvOXNGn7/9m2+878+APEBoTTsOHDA2HURERETkiQE5NcUNNwA33yw11S1FC8i3bQP++le5P2OGHpBOmqTXirfUCOuaH34A9u2TCwGtSQvIly2TZWNHc9emRiss1Kc21GhN4AF9TvnqGJAHiEGD5Itz/Dhw9KjRqSEiIiIijVbjFx4OtGtnbFrIf0RGAosWATfd1HLvoQXkR47IwG7R0cAdd+jPt2kDzJ4tweK117ZcOgCJZYKCWvY9vNEC8pMnZdnYWSutVj2Ir95sXRskDpAadG+tmbVB3diH3M+FhQH9+8v9DRuMTQsRERER6QYMAB56CHjjDc85jImMFhfn2Wf73nvlwpG755+XoDFQLya55x9o2nznWrP16nGYe0BeVOR9znfWkAeQCy+UJQNyIiIiIt9hMgEvvywDOxH5Gq2W3GIBpk0zNi1GcA/IExOBDh0a/xpaHOZeQ66UHpAnJMiyerP1ggLptw8wIA8I3k4EIiIiaj0ZGRno1asXBje2zSMRkUFSU2U5ZkzTglF/5x6QDxnStFYsWhy2dy9w9qzcP3oUyMmRJu333CPrqgfk+/bJMimpZssEIzEgbyKtqUTCpn+jcs7TQEWFsQkiIiL6jZk6dSr27NmDTZs2GZ0UIqIGmTUL+MtfgPnzjU6JMaoH5E2RkCCj0wN6rbi27NcPGD5c7n//ved+2gjs2nzwvoIBeRN1DcvGp7axWFo5GtZnnwI++cToJBERERERkQ+LjpZpzmJjjU6JMdwD8nNp3KRVjmqtlbWAfMgQuZnN0l/8+HF9Hy0g79276e/bEhiQN8XBgzD17oXrKz7W11W/BENERERERERV2raVZuUWy7kF5NXH83IPyCMi9AG43ZutMyAPJK+8Apw9i9ykPngGv05WWNtkd0RERERERITwcGDBAmDhQhl1vqncR1r/+Wd9DnKtGfxFF8mSAXkgKiqSswjAsVl/xVuYJOt37ACKiw1MGBERERERkW8bNw64+eZze42+fWXe9vx84PzzJQwLDwd69JDntYB83TpZFhTIwG8AA3L/99FHQGEh0LUrut1zGY6b2uMo2gFOJ8BBZYiIiIiIiFqU1Qp89RVw2WVAZaWsGzRImsIDwKWXynLLFuDMGWDPHnmckiL9+H0JA/LGevttWd5zDyKjzejTB1iPX9tMsNk6ERERERFRi+vTB1i9GvjsM2D0aOCxx/Tn2raVmnClgFWrfLe5OsCAvHF27ZKOClYrcMcdAIApU/SAvGwNJyUnOic7dwKnTxudCiIiIiLyAyYTcM01wPLlwJVXej6nPf7qKwnjAAbk/k+rHb/2WiA5GQBw771Afi/ppFDx3Qa5DENEjfc//yOTR3brBvzzn43/Lq1fDzz1FPDBB/Kr63K1SDLr5HIB27dLtxYiIiIiMowWkH/5JWvIA0NZmQQJgEThv7JYgPvfGYgy2BFZfgrfvfMfgxJIAef0aeCPf5QhKGfPltEoGkopacMzdizwwANy/jZFa11gWrYMmD5d7uflAbffDlx/vXT6aYjPPwcuvxx4+mngD3+QkT5GjGh6vhtr2zbg/vuB9u2BAQOAgQNl8stAlJMDLFoko6g0lsslpeLcucCsWcCkScC77wJnzzZ7MomIiOi37Xe/A+x2Gczt229lnS8G5CalfL9KNyMjAy+99BKys7PRv39/vP766xiijWlfj4KCAkRFRSE/Px+RkZFNT0RBAfDqq8DXXwPffKOPGPCrQynD0PnED7g36F1E3Z+O2bOBpCRIQGGxAFFRTX/v34qyMiAoqMaxrSEvTwLFmBjvzyslTZ8XLJCa0vHjJUgzm2tut2OHbLd0KRAaKoHcBRcAt95a1QrCQ2UlcOCAXGY7eBBo106279RJ0nXmDNCxY83P2+mUoPOzz2QoyKuukgkSTaaa7+FwAO+8Ix1h3JtvJycDzz8PTJwo3Sa8qaiQeSReeUVqajUXXggsWeI9T9WPyebNsu2SJZLHsWMlLX371r2v+2ucOQP88ot04KnvPdevB4YPB0pLgbvvBrp0kZpuhwPo1UsCuHbtat9/yRLglltk+7Q0+Zy3bgXKy+VYvfee9+OscbmAjAzg2WdllI/rr5e2T6mpck7UZf9+YM4cCVCr69BBLop07Vr7/vn5MvznunXyWv/5j9Su9+olrQUGDpRJOjt1qjsP7kpK5Dz75hv5DI4cATp3Bu66S1r3BAU17HXcOZ3S3uv//k/O48pKGRUlIwO44Yb69y8ulguar74q35/qgoLkOzFuHHDddY37vczOBj75RC6AZGfLTBiRkfIa2i02Vo5B165yTlb/LaiP0yljhHz6qVyQ1YZwPQfNVjYRAB5PIiLy7ve/l/BNk5fXemFZQ8smnw/IP/zwQ9x+++148803kZaWhnnz5mHRokXYv38/EhMT692/tQrpihmzYXvtZbyPCXgFM9HPuhd/DH8faflfQVmsOD1mEqL+exbKftyLyvcXAqdOoeiy0ai4ZgzCXQWI2v4tgk8cgrlrZwnYwsJQfqoQZSfOIiz3EKxHfpY/5P37y81mkwCmsBA4eRI4dUoSEhwsy6ws4NgxuSzUq5e8JiB/1rOz5c//Tz/J8/HxcouLk1tWlgRzhw/LfoMGybwCxcWyv9ksf6CDgyWACQ8H9u2T/vUHDkiwaLPJa3XuLH+ACwokneXlsn1EhLxmhw6y/r33gH//G0hIAO68U2pI27cHQkKAvXslKFuzRtJ19Kik4fe/l+26dZMgMCtLtlm5UtLjbsgQCbLWr5eAs6hILgDUdvpbrcCNNwJXXy1/5isrpXPK0qX119pqwcXVV0uQmJMjQfLPP3tul5AgczIMGyYBV0yM5PXllyWIAiQInjxZApn//Nr6oksX4JFHgEsukddwOOS4rF8v3SpOnJDtQkPlwsLixfLr064dMG2a7NemjR6slZTIaxw4IAHH8ePe8zVypARM118vaXU6pWbz8GHg0CE5rhs2SFq02lOTSYLt8eOB884DEhPlFhUl2zz9NPDGG3J8R42SYM9qldcYPVrS0r69XDTp3VveVwtMt22T47JggaTlllsk6AsKkl/ekSNl/QsvAPfdJ8egslLOTYtFHufkAM88I+dNdRaLjBaSmipB8cCBcr4HB8uxfvddCVJdLknT2LFyPvbsKXk5cECC1kcfleOWkCDn7q5dwNq18p5btzasaX1srKQjNVXOic6d5bsTGyvf4VOnJM///rd8hrU1mY+Pl3x0767fOnaUdO3eDeTmSv5CQ+W7FxoqvyPvvqufk4Ach7w8uX/55fKaXbrI5xoUJMfYZpPv17Jlcv5raYqKks+2TRv5rD//XO/YBch+vXtLHtu3l9+LsDD5PUlOljwUF8u5t3SpXAxxOOo/hpqYGPkOXHKJHMP4eHl9h0POj8pKuZ+fLxek9u2Tz1n7jX32WeDxxxv+frVgANm8eDyJiMibl14CHn5Y7rdrp0991hoCJiBPS0vD4MGD8cYbbwAAXC4X2rdvj+nTp+PRRx+td/9WK6QXLwbGjGm516dGUTYbMPoauaDwxuswFRV539Bul0B9/HgJDnbuBFasqHPE/FJrOE4m9EZFx+5IKDmMiJ9+hLm4SPaPjKw9YI+JAW67DTh0CGrNGpjqmLfeEZeM3LsfBaZMRWikFUf/Uw68/jq6Ln4RYcUn68z7SVsK3o+9HzvSJqH7kBj0th3E5fOuQ+TxfXXup6kMCcfZC0cBN9wIe4/OcL78CqK//himRv5UqMREmHJzvT8XFARltsBcLk3KT118PTbd/z7OOsKrpq4IOnEEv3/5SsSf2l+1n8NihzMoGCaLBfZi/Thvv+BOfDjibVQ4LYiIkI+h//f/gys+mdqgtDpsodjxh7kI7ZSIdluXIixzNcw52Q3a9/Sw63ByxrNw9e6L0lKJFfP2ZeOiJ0YgPkc6LCmzGcpmh7mstMb+zi7dYL7sUpgG9JeLS2FhEhxv2yYB+/btdQecNhuUw+Hx+bg6dkLl9TejsntPOJPbwrruG9j+9Q4sJ3MalCevYmOlxcE990B16QrHE88gaN6LMDmdDdq9tF035N4yHQU33QlrTARsNvn62WxA8M97ELx8EYIWfwjT3r2NT9uFFwJDh0rAHh4uFwALCiSozs+XYPrnn+UiVGOCdzeu6Bi4Rl0Dyz13wnTF5U16DXcMIJtHRkYGMjIy4HQ6ceDAAR5PIiLysH279CYEpL7siy9a770DIiCvqKhAaGgoPv74Y9zg1iwyPT0deXl5WLp0aY19ysvLUV5eXvW4oKAA7du3b/lCOj9fatEOH4aKi0N5TDIO9rgW/465Dblbj2HMzidxUeV3yEUCloeMw5mw9hhR8AkGVGxCOWzYiCHYi57ohF9wPvbDhgoUIgL5iMJhdMTP6AIrKjEA29AHu2CCQilCUIRwnEI8TiEeTlgQjDKY4UIWUnAcbRGGYvTGbnTFT6iEFSUIxVnEYD/Ox0F0hwVOxOMU4nD611c5hTOIxTYMwGF0RA/swyBsQTTyUIwwlCIEJihYUYlQlCAK+YhCPg6jI9ZjKHagHxRMsKMcSchBF/yMFGQhD9HIRSIqYEMYihGJAqQgCx1wBGa4sAhjsQATcB4O4F68jRH4GlbIH/1SBGMtLsVXuBIbMQS70AfxOIWJ+CduwmJEoBAKJhQiAt/hEqzCcKzGFchHNAAgCdl4BHPRBiewxXYRdoYPRbYzAQXlduRWRKPMFFLj4+yntuNO19/QHQcQg7MIQSnW4lJ8gjH4DpfABb1ZvQkuRJmLUGyOgMlsQi+1G2Nci5CmNqAAkTiFeGzDACzABBSpMCgF2FCOC7AVw/A90pCJJOQgBmfhQBDewiS8iztQjuAa6QpBCSbhLdyNv6EdjiEGeXDCjAM4D9vRH8txDT7CODhg89gvAgW4E+/gUqzFxVhX9Zn9gk4oRAQcCMJpxOHfuBqrMLzGe3fDQdyKhbgZH6M/dng8dwLJOIyO2I7+yEQaNiMV/0E3VFhC0QU/4xbnAlyFL5GEHCQiF1HQ+8LvRi88iFexEtWGxfxVHE7hLUzCxViHRHheiKiEBR9hHF7Fg9iMwV73n4cZmIHXAABlsMOBIATBgSA4kIdonEYcdqM3ZuMl/IRubnsqtMVxpJk24ULLJqRiM3q6diHEVYwQlCILKfgnJuI9pFfbz/OY34W/Yzw+QBo2AgAqEIT/oBu+xzB8g8uwFpfiONohKEiCU4tFGn9oSwCwVJajh2Mn+js2Y0DlZnR1HUBH1y9IwXFYoNeub0c/fIUrsRTX43sMA+DZxN0KB4ZgI87DAXTHwapbRxxGFlKwG71xFO1hRzmigkoQ7CqFzVkCB4LwCcbg6/Ab4QwKhsMhDV0cDuB87MNwrEJX/ITOOIQwFCMIDthQUXXbgX74G+7GWlxaI001KZyHg+ht3Y+ull/QFsdhdxYj1FmEOJxGiukEYnEaxaZw5CMKB8w98LZlMrZiECwWuSZmtcLjvvYYACyqEr3Kf8SQ0m/Qr3Qj4py5iHaeQqirGA7Tr2eGsqLMGYRihOEndMVBdEcm0vAtfodKBDVXBTkD8mbG40lERN64XNJgMScHeOghaYjaWgIiIM/KykLbtm3xww8/YOjQoVXrH374YaxduxaZmZk19nnqqafw9NNP11jfKoW0dii99PVULoVTu3MQ2SUe9jC3/r8nTwIREagwB6OoSGrXCgul1ig+Xlp2FxVJV+IzZ2R59qxUosXESKvSoiLZR1uWlMgfUItFTsKyMvkDHRyst0INDZUAIC9PWrCfOSPJd7n0pXarrJSWv+636uu8PdZatptMevfq0lI92NBuVqveKrW0VLYryHMhWJUixFWMQlMkyk3BHq3LKyslT+XlrTfuWM+ecmWtUydpPX7ggLRoPXy4eQf0DgmRz9bhkGPhdEpr3W7dpAts166SBgAoLXCgpMiFgnI7Skpkuy5dpIZ49265KpibK+dE1a1YybLUhNJqFbZhYdKCubxcWiqXl8t52K2b9DyIiQGSLKdQmOdE9ukgnCwJQ6XFXtVt/MSJ+sfnCrOUoU3QKcTbCnAk+DxY7FYEB0tL5shIvYuz1SrjMLRpI+duZXE5zCdzkJ9bjrzcCuQiEc7YBEREyPckPFz2LSzUx7+z2xRizXmITApBTJtgmEz6d8hike9ZebmkOytLv1U/Lt4kJEjre4dD3rOiQj67kBBJd7t2kqcjR4CS/UdRWViKX8xdUAkrlJLzVusF0hRmOBGOIkSiAGUIxikk1L+PWc6RhAQ5Vvn5cqy087e0VI5HQ9ntctydTnkN7fvvcMgSkO9/TIy0cnc65TiVl8tSu/kqs1nOLadTfl8BYN48YMaMc39tBpDNi8eTiIhq8+CDUn6vWCE9GltLQ8umWkaG8l//9V//hZkzZ1Y91mrIW0Udgy6ZzCYk9PUyuFWC/Im2QVqExsbW3EQbl6hLl2ZKp18wAwj79VY7pVBVY+ftj71S8rGYTHrgVFwswUhoqARkdY2VpV00sNlqHwCivFxaxGpBlvtN299kqnnf2zqrVR8GAJAgp7xcgjzvah+g6+qra3tGz7B2waakRNIQG6sfD6UkQKs5rll8re8JyMWSkhI9gNGaJdtsctzN5mAAdQzSVis7gA6N3McEoJbB/2qhlKS/vFy/mFVWJvkKC9PHC2vc2Gi1/waVlMhFgooKPajVlu7niPuFLLlvgdkcBbM5qsZFrprb6udZfXnPz5eLdEFB+kW/wkK5qOZ06p9lbKycG7W9pnbRzG6vfQxC7T0dDs8AXQvatfez22W7sjJ5zlvetIuH2k27MKjdvKWz+nfRZJILDJGRcgsL0/dzueT70Njx4IiIiMhYc+cCU6bI0Dm+yKcD8vj4eFgsFuTkePZ7zMnJQXItIzfb7XbY7fbWSB75AJNJDxAaIimp+dNgt0vtcUswm+sKxpvn9bUWE9WZTPUPMu6N1pXeXyupTCYJxMLqvhbUbGo7/kYwmaQmOzrac31IiLQGaAytuXhD3rMx32GjmM2td04QERFR87HZfDcYB3x8HnKbzYZBgwZh1apVVetcLhdWrVrl0YSdiIiIiIiIyN/4dA05AMycORPp6elITU3FkCFDMG/ePBQXF+POO+80OmlERERERERETebzAfktt9yCkydP4oknnkB2djYGDBiAL774Akkt0faYiIiIiIiIqJX4fEAOANOmTcO0adOMTgYRERERERFRs/HpPuREREREREREgYoBOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBGJATERERERERGYABOREREREREZEBrEYnoKUppQAABQUFBqeEiIhIaGWSVkZR02RkZCAjIwOVlZUAWNYTEZHvaGhZb1IB/m/g2LFjaN++vdHJICIiquHo0aNo166d0cnweyzriYjIV9VX1gd8QO5yuZCVlYWIiAiYTKZzeq2CggK0b98eR48eRWRkZDOl0DiBlJ9AygsQWPkJpLwAzI8v86e8KKVQWFiIlJQUmM3sPXauWNbXjvnxXYGUFyCw8hNIeQECKz/+lJeGlvUB32TdbDY3e+1DZGSkz58AjRFI+QmkvACBlZ9AygvA/Pgyf8lLVFSU0UkIGCzr68f8+K5AygsQWPkJpLwAgZUff8lLQ8p6XpYnIiIiIiIiMgADciIiIiIiIiIDMCBvBLvdjieffBJ2u93opDSLQMpPIOUFCKz8BFJeAObHlwVSXsg4gXYeMT++K5DyAgRWfgIpL0Bg5SeQ8qIJ+EHdiIiIiIiIiHwRa8iJiIiIiIiIDMCAnIiIiIiIiMgADMiJiIiIiIiIDMCAnIiIiIiIiMgADMgbISMjA506dUJwcDDS0tKwceNGo5NUrxdeeAGDBw9GREQEEhMTccMNN2D//v0e25SVlWHq1KmIi4tDeHg4xowZg5ycHINS3HB//vOfYTKZ8MADD1St87e8HD9+HLfddhvi4uIQEhKCvn37YvPmzVXPK6XwxBNPoE2bNggJCcGIESNw8OBBA1NcO6fTiTlz5qBz584ICQlB165d8cwzz8B93Ehfzc+3336La6+9FikpKTCZTPj00089nm9Ius+cOYMJEyYgMjIS0dHRuPvuu1FUVNSKudDVlR+Hw4FHHnkEffv2RVhYGFJSUnD77bcjKyvL4zX8JT/VTZ48GSaTCfPmzfNY70v5Id/Gst63sKz3Lf5c1gOBVd6zrA+csp4BeQN9+OGHmDlzJp588kls3boV/fv3x1VXXYXc3Fyjk1antWvXYurUqdiwYQNWrlwJh8OBK6+8EsXFxVXbPPjgg/jss8+waNEirF27FllZWbjpppsMTHX9Nm3ahP/93/9Fv379PNb7U17Onj2LYcOGISgoCCtWrMCePXvwl7/8BTExMVXbvPjii3jttdfw5ptvIjMzE2FhYbjqqqtQVlZmYMq9mzt3LubPn4833ngDe/fuxdy5c/Hiiy/i9ddfr9rGV/NTXFyM/v37IyMjw+vzDUn3hAkTsHv3bqxcuRLLly/Ht99+i0mTJrVWFjzUlZ+SkhJs3boVc+bMwdatW7F48WLs378f1113ncd2/pIfd0uWLMGGDRuQkpJS4zlfyg/5Lpb1voVlPcv65hZI5T3L+gAq6xU1yJAhQ9TUqVOrHjudTpWSkqJeeOEFA1PVeLm5uQqAWrt2rVJKqby8PBUUFKQWLVpUtc3evXsVALV+/XqjklmnwsJC1b17d7Vy5Up16aWXqhkzZiil/C8vjzzyiLr44otrfd7lcqnk5GT10ksvVa3Ly8tTdrtdffDBB62RxEYZPXq0uuuuuzzW3XTTTWrChAlKKf/JDwC1ZMmSqscNSfeePXsUALVp06aqbVasWKFMJpM6fvx4q6Xdm+r58Wbjxo0KgDp8+LBSyj/zc+zYMdW2bVu1a9cu1bFjR/Xqq69WPefL+SHfwrLed7Cs962yURMoZb1SgVXes6z37fzUhzXkDVBRUYEtW7ZgxIgRVevMZjNGjBiB9evXG5iyxsvPzwcAxMbGAgC2bNkCh8PhkbcePXqgQ4cOPpu3qVOnYvTo0R5pBvwvL8uWLUNqairGjh2LxMREDBw4EG+//XbV84cOHUJ2drZHfqKiopCWluaT+bnooouwatUqHDhwAACwfft2rFu3DqNGjQLgf/nRNCTd69evR3R0NFJTU6u2GTFiBMxmMzIzM1s9zY2Vn58Pk8mE6OhoAP6XH5fLhYkTJ2L27Nno3bt3jef9LT9kDJb1voVlvW+WjYFa1gOBX96zrPddVqMT4A9OnToFp9OJpKQkj/VJSUnYt2+fQalqPJfLhQceeADDhg1Dnz59AADZ2dmw2WxVX05NUlISsrOzDUhl3RYuXIitW7di06ZNNZ7zt7z8/PPPmD9/PmbOnInHHnsMmzZtwv333w+bzYb09PSqNHs773wxP48++igKCgrQo0cPWCwWOJ1OPPfcc5gwYQIA+F1+NA1Jd3Z2NhITEz2et1qtiI2N9em8AdIX85FHHsH48eMRGRkJwP/yM3fuXFitVtx///1en/e3/JAxWNb7Dpb1vpufQC3rgcAu71nW+15+3DEg/w2ZOnUqdu3ahXXr1hmdlCY5evQoZsyYgZUrVyI4ONjo5Jwzl8uF1NRUPP/88wCAgQMHYteuXXjzzTeRnp5ucOoa76OPPsKCBQvwr3/9C71798a2bdvwwAMPICUlxS/z81vgcDgwbtw4KKUwf/58o5PTJFu2bMFf//pXbN26FSaTyejkEBmOZb1vYVlPRmNZ7/vYZL0B4uPjYbFYaozgmZOTg+TkZINS1TjTpk3D8uXLsWbNGrRr165qfXJyMioqKpCXl+exvS/mbcuWLcjNzcUFF1wAq9UKq9WKtWvX4rXXXoPVakVSUpLf5AUA2rRpg169enms69mzJ44cOQIAVWn2l/Nu9uzZePTRR3Hrrbeib9++mDhxIh588EG88MILAPwvP5qGpDs5ObnGoE+VlZU4c+aMz+ZNK6APHz6MlStXVl0xB/wrP9999x1yc3PRoUOHqt+Fw4cP46GHHkKnTp0A+Fd+yDgs630Dy3pUPfbF/ARqWQ8EZnnPst4381MdA/IGsNlsGDRoEFatWlW1zuVyYdWqVRg6dKiBKaufUgrTpk3DkiVLsHr1anTu3Nnj+UGDBiEoKMgjb/v378eRI0d8Lm/Dhw/Hzp07sW3btqpbamoqJkyYUHXfX/ICAMOGDasxLc2BAwfQsWNHAEDnzp2RnJzskZ+CggJkZmb6ZH5KSkpgNnv+pFgsFrhcLgD+lx9NQ9I9dOhQ5OXlYcuWLVXbrF69Gi6XC2lpaa2e5vpoBfTBgwfx9ddfIy4uzuN5f8rPxIkTsWPHDo/fhZSUFMyePRtffvklAP/KDxmHZb1vYFnv22VjoJb1QOCV9yzrfTc/NRg7ppz/WLhwobLb7erdd99Ve/bsUZMmTVLR0dEqOzvb6KTV6b777lNRUVHqm2++USdOnKi6lZSUVG0zefJk1aFDB7V69Wq1efNmNXToUDV06FADU91w7iOvKuVfedm4caOyWq3queeeUwcPHlQLFixQoaGh6v3336/a5s9//rOKjo5WS5cuVTt27FDXX3+96ty5syotLTUw5d6lp6ertm3bquXLl6tDhw6pxYsXq/j4ePXwww9XbeOr+SksLFQ//vij+vHHHxUA9corr6gff/yxaiTShqR75MiRauDAgSozM1OtW7dOde/eXY0fP97n8lNRUaGuu+461a5dO7Vt2zaP34Xy8nK/y4831UdeVcq38kO+i2W9b2JZ7zv8uaxXKrDKe5b1gVPWMyBvhNdff1116NBB2Ww2NWTIELVhwwajk1QvAF5v77zzTtU2paWlasqUKSomJkaFhoaqG2+8UZ04ccK4RDdC9ULa3/Ly2WefqT59+ii73a569Oih3nrrLY/nXS6XmjNnjkpKSlJ2u10NHz5c7d+/36DU1q2goEDNmDFDdejQQQUHB6suXbqoxx9/3OOH31fzs2bNGq/fk/T0dKVUw9J9+vRpNX78eBUeHq4iIyPVnXfeqQoLCw3ITd35OXToUK2/C2vWrPG7/HjjrZD2pfyQb2NZ73tY1vsOfy7rlQqs8p5lfeCU9SallGqeunYiIiIiIiIiaij2ISciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICciIiIiIiIyAANyIiIiIiIiIgMwICeiFmUymfDpp58anQwiIiJqQSzviZqGATlRALvjjjtgMplq3EaOHGl00oiIiKiZsLwn8l9WoxNARC1r5MiReOeddzzW2e12g1JDRERELYHlPZF/Yg05UYCz2+1ITk72uMXExACQ5mXz58/HqFGjEBISgi5duuDjjz/22H/nzp244oorEBISgri4OEyaNAlFRUUe2/z9739H7969Ybfb0aZNG0ybNs3j+VOnTuHGG29EaGgounfvjmXLlrVspomIiH5jWN4T+ScG5ES/cXPmzMGYMWOwfft2TJgwAbfeeiv27t0LACguLsZVV12FmJgYbNq0CYsWLcLXX3/tUQDPnz8fU6dOxaRJk7Bz504sW7YM3bp183iPp59+GuPGjcOOHTtw9dVXY8KECThz5kyr5pOIiOi3jOU9kY9SRBSw0tPTlcViUWFhYR635557TimlFAA1efJkj33S0tLUfffdp5RS6q233lIxMTGqqKio6vnPP/9cmc1mlZ2drZRSKiUlRT3++OO1pgGA+tOf/lT1uKioSAFQK1asaLZ8EhER/ZaxvCfyX+xDThTgLr/8csyfP99jXWxsbNX9oUOHejw3dOhQbNu2DQCwd+9e9O/fH2FhYVXPDxs2DC6XC/v374fJZEJWVhaGDx9eZxr69etXdT8sLAyRkZHIzc1tapaIiIioGpb3RP6JATlRgAsLC6vRpKy5hISENGi7oKAgj8cmkwkul6slkkRERPSbxPKeyD+xDznRb9yGDRtqPO7ZsycAoGfPnti+fTuKi4urnv/+++9hNptx/vnnIyIiAp06dcKqVataNc1ERETUOCzviXwTa8iJAlx5eTmys7M91lmtVsTHxwMAFi1ahNTUVFx88cVYsGABNm7ciL/97W8AgAkTJuDJJ59Eeno6nnrqKZw8eRLTp0/HxIkTkZSUBAB46qmnMHnyZCQmJmLUqFEoLCzE999/j+nTp7duRomIiH7DWN4T+ScG5EQB7osvvkCbNm081p1//vnYt28fABkRdeHChZgyZQratGmDDz74AL169QIAhIaG4ssvv8SMGTMwePBghIaGYsyYMXjllVeqXis9PR1lZWV49dVXMWvWLMTHx+Pmm29uvQwSERERy3siP2VSSimjE0FExjCZTFiyZAluuOEGo5NCRERELYTlPZHvYh9yIiIiIiIiIgMwICciIiIiIiIyAJusExERERERERmANeREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGQABuREREREREREBmBATkRERERERGSA/wdsbXCwTPuk2QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC390lEQVR4nOzdd3wT5R8H8E/a0kUXs6WMMmS0bKFAmUWKZchGhiAICPqjgFgHIgqoKC5EkTJUBAcIMhWRLbIRKJRVQEZllbJpaQtdud8fTy+XdNFrk16Tft6vV16X3F0uT9LA5XPf557TSZIkgYiIiIiIiIiKlJ3WDSAiIiIiIiIqiRjIiYiIiIiIiDTAQE5ERERERESkAQZyIiIiIiIiIg0wkBMRERERERFpgIGciIiIiIiISAMM5EREREREREQaYCAnIiIiIiIi0gADOREREREREZEGGMiJiIiIiKxQcHAwgoOD871ugwYNLNugTNWrV8cLL7xQJK9FZO0YyIlKkCVLlkCn00Gn02HPnj3ZlkuShKpVq0Kn0+GZZ54xzE9MTMS0adPQoEEDlC5dGuXKlUOTJk3wyiuvIDY21rDe9OnTDdvP6RYXF1ck75OIiCi/5H3j4cOHtW5KocXGxmL69OmIiorSuilmU716deh0OoSEhOS4/NtvvzX8zsj6N9yzZw+6du2KypUrw9nZGdWqVUOPHj2wbNkyk/Xy+u3y8ssvW+y9EQGAg9YNIKKi5+zsjGXLlqFt27Ym83fu3ImrV6/CycnJMC8tLQ3t27fHmTNnMHz4cIwfPx6JiYk4deoUli1bhj59+sDX19dkO/Pnz4ebm1u21/Xy8rLI+yEiIiqJtmzZYvI4NjYW7733HqpXr44mTZpo0ygAZ8+ehZ2d+ep+zs7O2LFjB+Li4uDj42OybOnSpXB2dsajR49M5q9cuRIDBw40FBDKlCmDmJgY7Nq1C99++y2ee+45k/U7d+6MYcOGZXvtOnXqmO19EOWEgZyoBOrWrRtWrlyJOXPmwMFB+W9g2bJlaNasGW7fvm2Yt27dOhw9ehRLly7NtvN69OgRUlNTs22/f//+KF++vOXeABERUQmWnJwMV1dXODo6at2UHBkf2DeHNm3a4NChQ1ixYgVeeeUVw/yrV69i9+7d6NOnD1avXm3ynOnTpyMgIAAHDhzI9jndvHkz22vUqVMHQ4cONWu7ifKDXdaJSqDBgwfjzp072Lp1q2FeamoqVq1alS10X7hwAYDYGWbl7OwMDw8PyzaWiIioGDh69Ci6du0KDw8PuLm5oVOnTjhw4EC29Y4fP44OHTrAxcUFVapUwYwZM7B48WLodDr8999/hvV+++03dO/eHb6+vnByckKtWrXwwQcfICMjw2R78rnfkZGRaN++PVxdXfH2228blsnnkP/9998IDAwEAIwYMcLQ5XrJkiUm24uOjkbHjh3h6uqKypUr49NPPzVZ/vfff0On0+HXX3/Fe++9h8qVK8Pd3R39+/dHfHw8UlJSMHHiRFSsWBFubm4YMWIEUlJSTLaR0znk9+/fx6uvvorq1avDyckJVapUwbBhw0yKALlxdnZG3759s3U1/+WXX1CmTBmEhoZme86FCxcQGBiY40GLihUrPvY1iYoKK+REJVD16tURFBSEX375BV27dgUAbNy4EfHx8Rg0aBDmzJljWNfPzw8A8OOPP+Kdd96BTqd77Pbv3r2bbZ6DgwO7rBMRkVU6deoU2rVrBw8PD7z55psoVaoUFi5ciODgYOzcuRMtW7YEAFy7dg0dO3aETqfD5MmTUbp0aXz33Xc5VoyXLFkCNzc3hIeHw83NDX/99RemTp2KhIQEfPbZZybr3rlzB127dsWgQYMwdOhQeHt7Z9uev78/3n//fUydOhVjxoxBu3btAACtW7c2rHPv3j106dIFffv2xYABA7Bq1SpMmjQJDRs2NPwekM2cORMuLi546623cP78eXz99dcoVaoU7OzscO/ePUyfPh0HDhzAkiVLUKNGDUydOjXXzy8xMRHt2rXD6dOnMXLkSDz55JO4ffs2fv/9d1y9ejVfveqee+45PP3007hw4QJq1aoFQPTs69+/P0qVKpVtfT8/P2zfvh1Xr15FlSpVHrv9R48e5XhwwMPDo9j2RCAbIRFRibF48WIJgHTo0CFp7ty5kru7u5ScnCxJkiQ9++yzUseOHSVJkiQ/Pz+pe/fukiRJUnJyslS3bl0JgOTn5ye98MIL0qJFi6QbN25k2/60adMkADne6tatW3RvlIiIKJ+M94256d27t+To6ChduHDBMC82NlZyd3eX2rdvb5g3fvx4SafTSUePHjXMu3PnjlS2bFkJgBQTE2OYL+9/jb300kuSq6ur9OjRI8O8Dh06SACkBQsWZFu/Q4cOUocOHQyPDx06JAGQFi9enOO6AKQff/zRMC8lJUXy8fGR+vXrZ5i3Y8cOCYDUoEEDKTU11TB/8ODBkk6nk7p27Wqy3aCgIMnPz89knp+fnzR8+HDD46lTp0oApDVr1mRrl16vzzYv67a6d+8upaenSz4+PtIHH3wgSZIkRUdHSwCknTt35vg3XLRokQRAcnR0lDp27Ci9++670u7du6WMjIxsr5HbbxcA0i+//JJn+4gKi13WiUqoAQMG4OHDh/jjjz/w4MED/PHHH9m6qwOAi4sL/vnnH7zxxhsAxBH9UaNGoVKlShg/fny2bmoAsHr1amzdutXktnjxYou/JyIiInPLyMjAli1b0Lt3b9SsWdMwv1KlSnjuueewZ88eJCQkAAA2bdqEoKAgkwHVypYtiyFDhmTbrouLi+H+gwcPcPv2bbRr1w7Jyck4c+aMybpOTk4YMWJEod+Lm5ubyXnSjo6OaNGiBS5evJht3WHDhplUnlu2bAlJkjBy5EiT9Vq2bIkrV64gPT0919ddvXo1GjdujD59+mRblp+edwBgb2+PAQMG4JdffgEgBnOrWrWqoSdAViNHjsSmTZsQHByMPXv24IMPPkC7du1Qu3Zt7Nu3L9v6vXr1yvbbZevWrejYsWO+2kdUUOyyTlRCVahQASEhIVi2bBmSk5ORkZGB/v3757iup6cnPv30U3z66ae4dOkStm/fjs8//xxz586Fp6cnZsyYYbJ++/btOagbERHZhFu3biE5ORl169bNtszf3x96vR5XrlxB/fr1cenSJQQFBWVb74knnsg279SpU3jnnXfw119/GQK9LD4+3uRx5cqVzdJtukqVKtkCcJkyZXD8+PFs61arVs3ksaenJwCgatWq2ebr9XrEx8ejXLlyOb7uhQsX0K9fv8I0HYDotj5nzhwcO3YMy5Ytw6BBg/IM9KGhoQgNDUVycjIiIyOxYsUKLFiwAM888wzOnDljci55lSpVcr20GpElsUJOVII999xz2LhxIxYsWICuXbvm6xxvPz8/jBw5Env37oWXlxeWLl1q+YYSERHZkPv376NDhw44duwY3n//faxfvx5bt27FJ598AgDQ6/Um6xtX0wvD3t4+x/mSJOV7XTXbMLeWLVuiVq1amDhxImJiYnLs2ZcTV1dXtGvXDnPnzsU777yDe/fuYePGjRZuLVH+sEJOVIL16dMHL730Eg4cOIAVK1aoem6ZMmVQq1YtnDx50kKtIyIi0l6FChXg6uqKs2fPZlt25swZ2NnZGarGfn5+OH/+fLb1ss77+++/cefOHaxZswbt27c3zI+JiSlUW/Pb/buomfP3wuDBgzFjxgz4+/sX6FrrzZs3BwBcv37dLO0hKixWyIlKMDc3N8yfPx/Tp09Hjx49clzn2LFjOY46eunSJURHR+fYhY+IiMhW2Nvb4+mnn8Zvv/1mctmyGzduYNmyZWjbtq3hEqChoaHYv38/oqKiDOvdvXs3W28yucpsXFVOTU3FvHnzCtXW0qVLAxAV+OKkX79+OHbsGNauXZttmdrK+osvvohp06Zh1qxZea63ffv2HOf/+eefAMDfL1RssEJOVMINHz48z+Vbt27FtGnT0LNnT7Rq1Qpubm64ePEivv/+e6SkpGD69OnZnrNq1Sq4ubllm9+5c+ccL9VCRESkte+//x6bNm3KNv+VV17BjBkzsHXrVrRt2xZjx46Fg4MDFi5ciJSUFJPreL/55pv4+eef0blzZ4wfP95w2bNq1arh7t27hgp269atUaZMGQwfPhwTJkyATqfDTz/9VOhu37Vq1YKXlxcWLFgAd3d3lC5dGi1btkSNGjUKtd3CeuONN7Bq1So8++yzGDlyJJo1a4a7d+/i999/x4IFC9C4ceN8b8vPzy/H3x5Z9erVCzVq1ECPHj1Qq1YtJCUlYdu2bVi/fj0CAwOzFSL+/fdf/Pzzz9m24+3tjc6dO+e7fURqMZATUZ769euHBw8eYMuWLfjrr79w9+5dlClTBi1atMBrr72W4+ij//vf/3Lc1o4dOxjIiYioWJo/f36O81944QXUr18fu3fvxuTJkzFz5kzo9Xq0bNkSP//8s+Ea5IAY8GzHjh2YMGECPvroI1SoUAFhYWEoXbo0JkyYAGdnZwBAuXLl8Mcff+C1117DO++8gzJlymDo0KHo1KkTQkNDC/weSpUqhR9++AGTJ0/Gyy+/jPT0dCxevFjzQO7m5obdu3dj2rRpWLt2LX744QdUrFgRnTp1ytc1wgviu+++w2+//YZff/0VsbGxkCQJNWvWxJQpUzBp0iQ4OJjGIHlU9aw6dOjAQE4WpZOKYgQGIiIiIqISauLEiVi4cCESExNzHRSNiEomnkNORERERGQmDx8+NHl8584d/PTTT2jbti3DOBFlwy7rRERERERmEhQUhODgYPj7++PGjRtYtGgREhIS8O6772rdNCIqhhjIiYiIiIjMpFu3bli1ahW++eYb6HQ6PPnkk1i0aJHJ5c2IiGQ8h5yIiIiIiIhIAzyHnIiIiIiIiEgDDOREREREREREGrD5c8j1ej1iY2Ph7u4OnU6ndXOIiIggSRIePHgAX19f2Nnx2HhhcV9PRETFTX739TYfyGNjY1G1alWtm0FERJTNlStXUKVKFa2bYfW4ryciouLqcft6mw/k7u7uAMQH4eHhoXFriIiIgISEBFStWtWwj6KCiYiIQEREBNLT0wFwX09ERMVHfvf1Nj/KekJCAjw9PREfH8+dNBERFQvcN5kXP08iIipu8rtv4olrRERERERERBpgICciIiIiIiLSAAM5ERERWaWIiAgEBAQgMDBQ66YQEREVCM8hJyLKJEkS0tPTkZGRoXVTyMrZ29vDwcEh10twcd9kXvw8iSi/uK8nczHXvt7mR1knIsqP1NRUXL9+HcnJyVo3hWyEq6srKlWqBEdHR62bQkRE4L6ezM8c+3oGciIq8fR6PWJiYmBvbw9fX184OjrmerST6HEkSUJqaipu3bqFmJgY1K5dG3Z2PEOMiEhL3NeTOZlzX89ATkQlXmpqKvR6PapWrQpXV1etm0M2wMXFBaVKlcKlS5eQmpoKZ2dnrZtERFSicV9P5maufT0P2RMRZWIVk8yJ3yfL46BuRKQW/28mczLH94nfSCIiIrJKYWFhiI6OxqFDh7RuChERUYEwkBMRERERERFpgIGciIgMqlevji+//DLf6//999/Q6XS4f/++xdoEAEuWLIGXl5dFX4OIiKik4P6++GAgJyKyQjqdLs/b9OnTC7TdQ4cOYcyYMflev3Xr1rh+/To8PT0L9HpERESUO+7vbR9HWSciskLXr1833F+xYgWmTp2Ks2fPGua5ubkZ7kuShIyMDDg4PP6//AoVKqhqh6OjI3x8fFQ9h8hcIiIiEBERgYyMDK2bQkRkEdzf2z5WyFVo1w5o2BCIidG6JURkSZIEJCVpc5Ok/LXRx8fHcPP09IROpzM8PnPmDNzd3bFx40Y0a9YMTk5O2LNnDy5cuIBevXrB29sbbm5uCAwMxLZt20y2m7ULm06nw3fffYc+ffrA1dUVtWvXxu+//25YnrULm9zVbPPmzfD394ebmxu6dOli8oMiPT0dEyZMgJeXF8qVK4dJkyZh+PDh6N27t6q/0/z581GrVi04Ojqibt26+Omnn4z+hhKmT5+OatWqwcnJCb6+vpgwYYJh+bx581C7dm04OzvD29sb/fv3V/XaVDxYYlC3N98U+/ply8y2SSIqprTa3+d3Xw9wfw/Y/v6egVyF6Gjg5Eng0SOtW0JElpScDLi5aXNLTjbf+3jrrbfw8ccf4/Tp02jUqBESExPRrVs3bN++HUePHkWXLl3Qo0cPXL58Oc/tvPfeexgwYACOHz+Obt26YciQIbh7924en18yPv/8c/z000/YtWsXLl++jNdff92w/JNPPsHSpUuxePFi7N27FwkJCVi3bp2q97Z27Vq88soreO2113Dy5Em89NJLGDFiBHbs2AEAWL16NWbPno2FCxfi3LlzWLduHRo2bAgAOHz4MCZMmID3338fZ8+exaZNm9C+fXtVr0+269o1sa+/cUPrlhCRpWm1vzfnvh7g/t7q9/eSjYuPj5cASPHx8YXeVvnykgRI0smTZmgYERUbDx8+lKKjo6WHDx9KkiRJiYni37oWt8RE9e1fvHix5OnpaXi8Y8cOCYC0bt26xz63fv360tdff2147OfnJ82ePdvwGID0zjvvGB4nJiZKAKSNGzeavNa9e/cMbQEgnT9/3vCciIgIydvb2/DY29tb+uyzzwyP09PTpWrVqkm9evXK93ts3bq1NHr0aJN1nn32Walbt26SJEnSrFmzpDp16kipqanZtrV69WrJw8NDSkhIyPX1zCHr98qYOfdNZN7Pc+RI8W/xo4/M0DAiKjZy+j9Zq/19Qfb1ksT9vaw47e/Nsa9nhVwF+brvPFWNyLa5ugKJidrcXF3N9z6aN29u8jgxMRGvv/46/P394eXlBTc3N5w+ffqxR8wbNWpkuF+6dGl4eHjg5s2bua7v6uqKWrVqGR5XqlTJsH58fDxu3LiBFi1aGJbb29ujWbNmqt7b6dOn0aZNG5N5bdq0wenTpwEAzz77LB4+fIiaNWti9OjRWLt2LdLT0wEAnTt3hp+fH2rWrInnn38eS5cuRbK5yxVktVxcxPThQ23bQUSWp9X+3pz7eoD7e2vf3zOQq2BvL6Z6vbbtICLL0umA0qW1uel05nsfpUuXNnn8+uuvY+3atfjoo4+we/duREVFoWHDhkhNTc1zO6VKlcry+eigz+M/wpzWl9ScMGcGVatWxdmzZzFv3jy4uLhg7NixaN++PdLS0uDu7o4jR47gl19+QaVKlTB16lQ0btzY4pdyIevg7CymPD2NyPZptb83574e4P7e2vf3DOQqyBVyBnIiskZ79+7FCy+8gD59+qBhw4bw8fHBf//9V6Rt8PT0hLe3t8kgXBkZGThy5Iiq7fj7+2Pv3r0m8/bu3YuAgADDYxcXF/To0QNz5szB33//jf379+PEiRMAAAcHB4SEhODTTz/F8ePH8d9//+Gvv/4qxDsjLURERCAgIACBgYFm2yYr5ERk7bi/t679PS97pgIDORFZs9q1a2PNmjXo0aMHdDod3n333TyPfFvK+PHjMXPmTDzxxBOoV68evv76a9y7dw86FSWDN954AwMGDEDTpk0REhKC9evXY82aNYZRZJcsWYKMjAy0bNkSrq6u+Pnnn+Hi4gI/Pz/88ccfuHjxItq3b48yZcrgzz//hF6vR926dS31lslCwsLCEBYWhoSEBLNdG5cVciKydtzfW9f+noFcBQZyIrJmX3zxBUaOHInWrVujfPnymDRpEhISEoq8HZMmTUJcXByGDRsGe3t7jBkzBqGhobCXzwvKh969e+Orr77C559/jldeeQU1atTA4sWLERwcDADw8vLCxx9/jPDwcGRkZKBhw4ZYv349ypUrBy8vL6xZswbTp0/Ho0ePULt2bfzyyy+oX7++hd4xWRMGciKydtzfW9f+XicVdUf/IiYfNY+Pj4eHh0ehtlWzprgG+f79QKtWZmogEWnu0aNHiImJQY0aNeAs/xqnIqPX6+Hv748BAwbggw8+0Lo5ZpPX98qc+yYy7+c5bx4QFgb06wesWmWmBhKR5riv154t7u/Nsa9nhVwFVsiJiArv0qVL2LJlCzp06ICUlBTMnTsXMTExeO6557RuGhEr5EREZsL9ff5wUDcVGMiJiArPzs4OS5YsQWBgINq0aYMTJ05g27Zt8Pf317ppRBzUjYjITLi/zx9WyFVgICciKryqVatmGzGVqLhghZyIyDy4v88fVshVYCAnIiKybQzkRERUlBjIVZADeUaGtu0gIiIiXoeciIisHwO5CvII/ayQExERaS8sLAzR0dE4dOiQ2bbJCjkRERUlBnIV2GWdiIjItrFCTkRERYmBXAUGciIiItvGCjkRERUlBnIVGMiJiIhsGwM5EREVJQZyFRjIicjWBAcHY+LEiYbH1atXx5dffpnnc3Q6HdatW1fo1zbXdvIyffp0NGnSxKKvQbZF7rL+6BEgSdq2hYjIXLi/L74YyFVgICei4qJHjx7o0qVLjst2794NnU6H48ePq97uoUOHMGbMmMI2z0RuO8nr16+ja9euZn0tosKSK+QAkJKiXTuIiADu70sCBnIVGMiJqLgYNWoUtm7diqtXr2ZbtnjxYjRv3hyNGjVSvd0KFSrA1dXVHE18LB8fHzg5ORXJaxHll1whBziwGxFpj/t728dArgIDOVEJIUlAUpI2t3z2kX3mmWdQoUIFLFmyxGR+YmIiVq5ciVGjRuHOnTsYPHgwKleuDFdXVzRs2BC//PJLntvN2oXt3LlzaN++PZydnREQEICtW7dme86kSZNQp04duLq6ombNmnj33XeRlpYGAFiyZAnee+89HDt2DDqdDjqdztDmrF3YTpw4gaeeegouLi4oV64cxowZg8TERMPyF154Ab1798bnn3+OSpUqoVy5cggLCzO8Vn7o9Xq8//77qFKlCpycnNCkSRNs2rTJsDw1NRXjxo1DpUqV4OzsDD8/P8ycORMAIEkSpk+fjmrVqsHJyQm+vr6YMGFCvl+brIODg7K/53nkRDZOq/29ivNhuL+3/f29g8W2bIMYyIlKiORkwM1Nm9dOTARKl37sag4ODhg2bBiWLFmCKVOmQKfTAQBWrlyJjIwMDB48GImJiWjWrBkmTZoEDw8PbNiwAc8//zxq1aqFFi1aPPY19Ho9+vbtC29vb/zzzz+Ij483Of9M5u7ujiVLlsDX1xcnTpzA6NGj4e7ujjfffBMDBw7EyZMnsWnTJmzbtg0A4OnpmW0bSUlJCA0NRVBQEA4dOoSbN2/ixRdfxLhx40x+hOzYsQOVKlXCjh07cP78eQwcOBBNmjTB6NGjH/t+AOCrr77CrFmzsHDhQjRt2hTff/89evbsiVOnTqF27dqYM2cOfv/9d/z666+oVq0arly5gitXrgAAVq9ejdmzZ2P58uWoX78+4uLicOzYsXy9LlkPnU50W09OZiAnsnla7e/zua8HuL8vEft7ycbFx8dLAKT4+PhCb6tjR0kCJOmXX8zQMCIqNh4+fChFR0dLDx8+FDMSE8U/di1uiYn5bvfp06clANKOHTsM89q1aycNHTo01+d0795deu211wyPO3ToIL3yyiuGx35+ftLs2bMlSZKkzZs3Sw4ODtK1a9cMyzdu3CgBkNauXZvra3z22WdSs2bNDI+nTZsmNW7cONt6xtv55ptvpDJlykiJRu9/w4YNkp2dnRQXFydJkiQNHz5c8vPzk9LT0w3rPPvss9LAgQNzbUvW1/b19ZU+/PBDk3UCAwOlsWPHSpIkSePHj5eeeuopSa/XZ9vWrFmzpDp16kipqam5vp6xbN8rI+bcN5Vkc+fOlfz9/aU6deqY9fMsV078czx1yiybI6JiIMf/k7Xa36vY10sS9/eSVHz39+bY17PLugqskBOVEK6u4ui1FjcV53PVq1cPrVu3xvfffw8AOH/+PHbv3o1Ro0YBADIyMvDBBx+gYcOGKFu2LNzc3LB582Zcvnw5X9s/ffo0qlatCl9fX8O8oKCgbOutWLECbdq0gY+PD9zc3PDOO+/k+zWMX6tx48YobVQxaNOmDfR6Pc6ePWuYV79+fdjb2xseV6pUCTdv3szXayQkJCA2NhZt2rQxmd+mTRucPn0agOgmFxUVhbp162LChAnYsmWLYb1nn30WDx8+RM2aNTF69GisXbsW6enpqt4nmVdYWBiio6Nx6NAhs26Xlz4jKiG02t+rPHeb+3vb3t8zkKvAQE5UQuh0oiuZFrfMrmj5NWrUKKxevRoPHjzA4sWLUatWLXTo0AEA8Nlnn+Grr77CpEmTsGPHDkRFRSE0NBSpqalm+6j279+PIUOGoFu3bvjjjz9w9OhRTJkyxayvYaxUqVImj3U6HfRm/E/5ySefRExMDD744AM8fPgQAwYMQP/+/QEAVatWxdmzZzFv3jy4uLhg7NixaN++vapz2sg6yAO7cVA3Ihun1f5e5b4e4P7elvf3DOQqMJATUXEzYMAA2NnZYdmyZfjxxx8xcuRIw/lle/fuRa9evTB06FA0btwYNWvWxL///pvvbfv7++PKlSu4fv26Yd6BAwdM1tm3bx/8/PwwZcoUNG/eHLVr18alS5dM1nF0dERGRsZjX+vYsWNISkoyzNu7dy/s7OxQt27dfLc5Lx4eHvD19cXevXtN5u/duxcBAQEm6w0cOBDffvstVqxYgdWrV+Pu3bsAABcXF/To0QNz5szB33//jf379+PEiRNmaR8VH6yQE1Fxw/19/lnb/p6DuqnAQE5ExY2bmxsGDhyIyZMnIyEhAS+88IJhWe3atbFq1Srs27cPZcqUwRdffIEbN26Y7IzyEhISgjp16mD48OH47LPPkJCQgClTppisU7t2bVy+fBnLly9HYGAgNmzYgLVr15qsU716dcTExCAqKgpVqlSBu7t7tsufDBkyBNOmTcPw4cMxffp03Lp1C+PHj8fzzz8Pb2/vgn04OXjjjTcwbdo01KpVC02aNMHixYsRFRWFpUuXAgC++OILVKpUCU2bNoWdnR1WrlwJHx8feHl5YcmSJcjIyEDLli3h6uqKn3/+GS4uLvDz8zNb+6h4YCAnouKG+3t1rGl/zwq5CgzkRFQcjRo1Cvfu3UNoaKjJ+V/vvPMOnnzySYSGhiI4OBg+Pj7o3bt3vrdrZ2eHtWvX4uHDh2jRogVefPFFfPjhhybr9OzZE6+++irGjRuHJk2aYN++fXj33XdN1unXrx+6dOmCjh07okKFCjleisXV1RWbN2/G3bt3ERgYiP79+6NTp06YO3euug/jMSZMmIDw8HC89tpraNiwITZt2oTff/8dtWvXBiBGkP3000/RvHlzBAYG4r///sOff/4JOzs7eHl54dtvv0WbNm3QqFEjbNu2DevXr0e5cuXM2kbSHrusE1FxxP19/lnT/l4nSSouhGeFEhIS4Onpifj4eHh4eBRqWz17AuvXA99+C7z4opkaSESae/ToEWJiYlCjRg04y6UxokLK63tlzn0Tmf/zfPppYOtW4KefgKFDzdBAItIc9/VkCebY17NCrgIr5ERERLaPFXIiIioqDOQqMJATERHZPp5DTkRERYWBXAU5kD9m8EAiIiKyYgzkRERUVBjIVZCvTc8KORERke1il3UiIioqDOQqsMs6kW2z8TEuqYjx+2S9WCEnsl38v5nMyRzfJwZyFRjIiWxTqVKlAADJyckat4Rsifx9kr9fZD3kCjkDOZHt4L6eLMEc+3oHczWmJGAgJ7JN9vb28PLyws2bNwGIa2TqdDqNW0XWSpIkJCcn4+bNm/Dy8oK9fL4TWQ25Qs4u60S2g/t6Midz7us1DeTTp0/He++9ZzKvbt26OHPmDABxXbfXXnsNy5cvR0pKCkJDQzFv3jx4e3tr0VwGciIb5uPjAwCGHTVRYXl5eRm+V2QZERERiIiIQIaZR1tll3Ui28R9PZmbOfb1mlfI69evj23bthkeOzgoTXr11VexYcMGrFy5Ep6enhg3bhz69u2LvXv3atFUBnIiG6bT6VCpUiVUrFgRaWlpWjeHrFypUqVYGS8CYWFhCAsLQ0JCAjw9Pc2z0Xnz0GvVfmzH83j48GnzbJOIigXu68mczLWv1zyQOzg45HhUIT4+HosWLcKyZcvw1FNPAQAWL14Mf39/HDhwAK1atSrqpjKQE5UA9vb2DFJEJdnu3ah3eDn80RyXHjGQE9ki7uupONF8ULdz587B19cXNWvWxJAhQ3D58mUAQGRkJNLS0hASEmJYt169eqhWrRr279+f6/ZSUlKQkJBgcjMXBnIiIiIblzkwTymkscs6ERFZnKaBvGXLlliyZAk2bdqE+fPnIyYmBu3atcODBw8QFxcHR0dHeHl5mTzH29sbcXFxuW5z5syZ8PT0NNyqVq1qtvYykBMREdk4o0DOQd2IiMjSNO2y3rVrV8P9Ro0aoWXLlvDz88Ovv/4KF/maIypNnjwZ4eHhhscJCQlmC+VyzxYzjx1DRERExQUr5EREVIQ077JuzMvLC3Xq1MH58+fh4+OD1NRU3L9/32SdGzdu5DmSnZOTEzw8PExu5sIKORERkY1zdBQTpLJCTkREFlesAnliYiIuXLiASpUqoVmzZihVqhS2b99uWH727FlcvnwZQUFBmrSPgZyIiMjGsUJORERFSNMu66+//jp69OgBPz8/xMbGYtq0abC3t8fgwYPh6emJUaNGITw8HGXLloWHhwfGjx+PoKAgTUZYBxjIiYiIbB4DORERFSFNA/nVq1cxePBg3LlzBxUqVEDbtm1x4MABVKhQAQAwe/Zs2NnZoV+/fkhJSUFoaCjmzZunWXsZyImIiGwcB3UjIqIipGkgX758eZ7LnZ2dERERgYiIiCJqUd4YyImIiGyc0TnkrJATEZGlFatzyIs7BnIiIiIbxwo5EREVIQZyFRjIiYiIbJxRIM/IANLTNW4PERHZNAZyFRjIiYiIbJxRIAfAbutERGRRDOQqMJATERHZuCyBnN3WiYjIkhjIVbC3F9OMDG3bQURERBaSOaibsy4VACvkRERkWQzkKrBCTkREZOMyK+RO9qyQExGR5TGQq8BATkREZOPkQG7Hc8iJiMjyGMhVYCAnIiKyjD59+qBMmTLo37+/tg2RA7mOgZyIiCyPgVwFBnIiIiLLeOWVV/Djjz9q3QxDIHfUscs6ERFZHgO5CgzkRERElhEcHAx3d3etm2EY1M2Rg7oREVERYCBXgYGciIgou127dqFHjx7w9fWFTqfDunXrsq0TERGB6tWrw9nZGS1btsTBgweLvqH5wQo5EREVIQZyFRjIiYiIsktKSkLjxo0RERGR4/IVK1YgPDwc06ZNw5EjR9C4cWOEhobi5s2bRdzSfMhyHXJWyImIyJIctG6ANWEgJyIiyq5r167o2rVrrsu/+OILjB49GiNGjAAALFiwABs2bMD333+Pt956S/XrpaSkICUlxfA4ISFBfaNzw0BORERFiBVyFeztxZSBnIiIKH9SU1MRGRmJkJAQwzw7OzuEhIRg//79BdrmzJkz4enpabhVrVrVXM1VArnELutERGR5DOQqyBXyjAxt20FERGQtbt++jYyMDHh7e5vM9/b2RlxcnOFxSEgInn32Wfz555+oUqVKnmF98uTJiI+PN9yuXLlivgZnDurmIHFQNyIisjx2WVeBXdaJiIgsY9u2bfle18nJCU5OTpZpSGaF3IEVciIiKgKskKvAQE5ERKRO+fLlYW9vjxs3bpjMv3HjBnx8fDRqVR6yBHJWyImIyJIYyFVgICciIlLH0dERzZo1w/bt2w3z9Ho9tm/fjqCgoEJtOyIiAgEBAQgMDCxsMxWZgdxez0BORESWxy7rKjCQExERZZeYmIjz588bHsfExCAqKgply5ZFtWrVEB4ejuHDh6N58+Zo0aIFvvzySyQlJRlGXS+osLAwhIWFISEhAZ6enoV9G0KWQM4u60REZEkM5CowkBMREWV3+PBhdOzY0fA4PDwcADB8+HAsWbIEAwcOxK1btzB16lTExcWhSZMm2LRpU7aB3oqFzEHd7PXpACQ8eqTTtj1ERGTTGMhVYCAnIiLKLjg4GJIk5bnOuHHjMG7cuCJqUSFkVsgBcS3yhw8dNWwMERHZOp5DrgIDORERUfFhyXPIARHIeQ45ERFZEgO5CgzkRERExUdYWBiio6Nx6NAh822UgZyIiIoQA7kK9vZimpGhbTuIiIjIQrJ1WdewLUREZPMYyFVghZyIiMjG6XSAgxhixxGprJATEZFFMZCrwEBORERUfFjkHHLAUCVnl3UiIrI0BnIVGMiJiIiKD4ucQw6YBHJ2WSciIktiIFeBgZyIiKgEYIWciIiKCAO5CgzkREREJQAr5EREVEQYyFVgICciIioBHB3FhIO6ERGRhTGQq8BATkREVAKwyzoRERURBnIVGMiJiIiKj6IaZZ37fSIishQGchXs7cWUO2YiIiLtWXqUdWe7NADAjRvm3TwREZGMgVwFuUKekaFtO4iIiMiCMs8h9yknAvmlS1o2hoiIbBkDuQrssk5ERFQCZFbIfcunAgAuX9ayMUREZMsYyFVgICciIioBMgO5XCFnICciIkthIFeBgZyIiKgEyAzk3mUZyImIyLIYyFVgICciIio+LD3KesUyPIeciIgsi4FcBQZyIiKi4sNio6xnDupW3jN7hfzff4Fdu8z7ckREVHI5aN0Aa8JATkREVAJkVsjLe2Qf1K1LF+C//4ArV4DKlTVoGxER2RRWyFVgICciIioBMgN5WXdRIb97F0hMBOLigJgYQJKAmze1bCAREdkKVshVYCAnIiIqATIDubN9Gry8gPv3RZXcuFL+6JEmLSMiIhvDCrkK9vZiykBORERkwzIDOdLSUK2auHv5MnDsmLJKSkrRN4uIiGwPA7kKcoU8I0PbdhAREZEFZQ7qllcgZ4WciIjMgYFcBXZZJyIiKgHkCnlqKivkRERkUQzkKjCQExERFR+Wvg450tLg5yfunj0rbjJWyImIyBwYyFVgICciIio+LHYd8hzOId+61fSUNVbIiYjIHBjIVWAgJyIiKgFyCOTx8aarsEJORETmwECuAgM5ERFRCZDDoG5ZsUJORETmwECuAgM5ERFRCWA0qFulSoCDg7JIzuqskBMRkTkwkKvAQE5ERFQCGHVZt7cHqlRRFjVtKqaskBMRkTkUm0D+8ccfQ6fTYeLEiYZ5jx49QlhYGMqVKwc3Nzf069cPN27c0KyN9vZiykBORERkw4wCOQBDt/VSpYAmTcR9VsiJiMgcikUgP3ToEBYuXIhGjRqZzH/11Vexfv16rFy5Ejt37kRsbCz69u2rUStZISciIioRsgRy+dJn/v6Ah4e4z0BORETmoHkgT0xMxJAhQ/Dtt9+iTJkyhvnx8fFYtGgRvvjiCzz11FNo1qwZFi9ejH379uHAgQOatFUO5MaXPSEiIiIbYzSoGwDUqCEeNmkCODmJ++yyTkRE5qB5IA8LC0P37t0REhJiMj8yMhJpaWkm8+vVq4dq1aph//79uW4vJSUFCQkJJjdzYYWciIioBDAa1A0ARo8GwsKAyZMBZ2exiBVyIiIyB4fHr2I5y5cvx5EjR3Do0KFsy+Li4uDo6AgvLy+T+d7e3oiLi8t1mzNnzsR7771n7qYCUAK5JImbTmeRlyEiIqJ8iIiIQEREBDLM3XUtS5f1KlWAuXPFLFbIiYjInDSrkF+5cgWvvPIKli5dCmf5cLMZTJ48GfHx8YbblStXzLZtO6NPS5LMtlkiIiIqgLCwMERHR+d4YL9QsgRyY6yQExGROWkWyCMjI3Hz5k08+eSTcHBwgIODA3bu3Ik5c+bAwcEB3t7eSE1Nxf37902ed+PGDfj4+OS6XScnJ3h4eJjczMU4kLPbOhERkY3KI5CzQk5EROakWSDv1KkTTpw4gaioKMOtefPmGDJkiOF+qVKlsH37dsNzzp49i8uXLyMoKEiTNjOQExERlQBZBnXDsWNA69bA33+zQk5ERGal2Tnk7u7uaNCggcm80qVLo1y5cob5o0aNQnh4OMqWLQsPDw+MHz8eQUFBaNWqlRZNZiAnIiIqCbIM6obVq4H9+4FffoFTp2AArJATEZF5aDqo2+PMnj0bdnZ26NevH1JSUhAaGop58+Zp1h4GciIiohIga5f1xEQxTUlhhZyIiMyqWAXyv//+2+Sxs7OzYQTV4sDeXrnPQE5ERGSjsgbypCQxTU3lOeRERGRWml+H3JoYV8jNfYUVIiIiKiZYIScioiLCQK4Cu6wTERGVAFkHdZMr5CkprJATEZFZMZCrwEBORERUAmQd1M2oyzor5EREZE4M5CowkBMREZUAuZ1Dzgo5ERGZGQO5Cjqdcp+BnIiIyEblMagbK+RERGRODOQqyVVyBnIiIiIbxXPIiYioiDCQq8RATkREZOOMK+SSlOMo6xkZQHq6Ns0jIiLbwUCuEgM5ERFR8RAREYGAgAAEBgaad8NyIAdE6s7hOuQAq+RERFR4DOQq2duLKQM5ERGRtsLCwhAdHY1Dhw6Zd8PGgTwtLccu6wDPIyciosJjIFeJFXIiIiIbZxzIHzwQ3dYBIDUVDg7KwXlWyImIqLAYyFWSA3lGhrbtICIiIgsxDuT37in3MxM4R1onIiJzYSBXiRVyIiIiG2dnp5TBcwjkHGmdiIjMhYFcJQZyIiKyBkeOHMGJEycMj3/77Tf07t0bb7/9NlJTUzVsmZWQq+T37yvzMj83VsiJiMhcGMhVYiAnIiJr8NJLL+Hff/8FAFy8eBGDBg2Cq6srVq5ciTfffFPj1lmBnAJ5RgaQkcEKORERmQ0DuUoM5EREZA3+/fdfNGnSBACwcuVKtG/fHsuWLcOSJUuwevVqbRtnDXIK5ACQmsoKORERmQ0DuUoM5EREZA0kSYI+c2e1bds2dOvWDQBQtWpV3L59W8umWQdHRzHNGsiNLn3GCjkRERUWA7lKDORERGQNmjdvjhkzZuCnn37Czp070b17dwBATEwMvL29NW6dFZAr5MaDugFASgor5EREZDYM5CoxkBMRkTX48ssvceTIEYwbNw5TpkzBE088AQBYtWoVWrdurXHrrEBugTw1lRVyIiIyGwetG2Bt5KugMJATEVFx1qhRI5NR1mWfffYZ7OWdGeUut3PIWSEnIiIzYoVcJVbIiYjIGly5cgVXr141PD548CAmTpyIH3/8EaXksEm5y2NQN1bIiYjIXBjIVZIDeUaGtu0gIiLKy3PPPYcdO3YAAOLi4tC5c2ccPHgQU6ZMwfvvv69x66xAHoO6sUJORETmwkCuEivkRERkDU6ePIkWLVoAAH799Vc0aNAA+/btw9KlS7FkyRJtG2cN8hjUjRVyIiIyFwZylRjIiYjIGqSlpcEpMzlu27YNPXv2BADUq1cP169f17Jp1iEfg7qxQk5ERIXFQK4SAzkREVmD+vXrY8GCBdi9eze2bt2KLl26AABiY2NRrlw5jVtnBfIxqFtaclqRNomIiGwPA7lKDORERGQNPvnkEyxcuBDBwcEYPHgwGjduDAD4/fffDV3ZKQ9yIM+6w8+skNfFGbz9eRng7beLvm1ERGQzGMhVYiAnIiJrEBwcjNu3b+P27dv4/vvvDfPHjBmDBQsWaNiynP3xxx+oW7cuateuje+++07r5iiDumWVWSFvhkg4pSUBW7cWbbuIiMim8DrkKjGQExGRtbC3t0d6ejr27NkDAKhbty6qV6+ubaNykJ6ejvDwcOzYsQOenp5o1qwZ+vTpo23X+twuDZc5qJsLHorHt28XXZuIiMjmsEKukr29mDKQExFRcZaUlISRI0eiUqVKaN++Pdq3bw9fX1+MGjUKycnJWjfPxMGDB1G/fn1UrlwZbm5u6Nq1K7Zs2aJto7IGcofMGkZqKpydAVdkfoZ37hRtu4iIyKYwkKvECjkREVmD8PBw7Ny5E+vXr8f9+/dx//59/Pbbb9i5cydee+01s77Wrl270KNHD/j6+kKn02HdunXZ1omIiED16tXh7OyMli1b4uDBg4ZlsbGxqFy5suFx5cqVce3aNbO2UbWsgbxMGTHNWiF/8ABITS3athERkc1gIFeJgZyIiKzB6tWrsWjRInTt2hUeHh7w8PBAt27d8O2332LVqlVmfa2kpCQ0btwYEREROS5fsWIFwsPDMW3aNBw5cgSNGzdGaGgobt68adZ2mFXWQF62rJhmVsgNgRxglZyIiAqMgVwlOZBnZGjbDiIiorwkJyfD29s72/yKFSuavct6165dMWPGDPTp0yfH5V988QVGjx6NESNGICAgAAsWLICrq6thsDlfX1+Tivi1a9fg6+ub6+ulpKQgISHB5GZ2WQd1kwN51go5wPPIiYiowBjIVWKFnIiIrEFQUBCmTZuGR48eGeY9fPgQ7733HoKCgoqsHampqYiMjERISIhhnp2dHUJCQrB//34AQIsWLXDy5Elcu3YNiYmJ2LhxI0JDQ3Pd5syZM+Hp6Wm4Va1a1fwNZ4WciIiKAEdZV4mBnIiIrMFXX32F0NBQVKlSxXAN8mPHjsHZ2RmbN28usnbcvn0bGRkZ2ar13t7eOHPmDADAwcEBs2bNQseOHaHX6/Hmm2/mOcL65MmTER4ebnickJBg/lCeWyBnhZyIiMyIgVwlBnIiIrIGDRo0wLlz57B06VJD8B08eDCGDBkCFxcXjVuXXc+ePdGzZ898revk5AQnJyfLNihrIPfyEtPM65CzQk5ERObAQK4SAzkREVkLV1dXjB49WtM2lC9fHvb29rhx44bJ/Bs3bsDHx6dQ246IiEBERAQyLDGwi3Egd3YG5IMYqamskBMRkdkwkKvEQE5ERMXV77//nu9181uNLixHR0c0a9YM27dvR+/evQEAer0e27dvx7hx4wq17bCwMISFhSEhIQGenp5maK0R40HdSpcG5Ip8ZoXccB1ygIGciIgKjIFcJQZyIiIqruTA+zg6nc6sVeXExEScP3/e8DgmJgZRUVEoW7YsqlWrhvDwcAwfPhzNmzdHixYt8OWXXyIpKQkjRowwWxvMzrhC7uamBPScKuTssk5ERAXEQK6Svb2YMpATEVFxo9do53T48GF07NjR8FgecG348OFYsmQJBg4ciFu3bmHq1KmIi4tDkyZNsGnTphwvy1ZsGAfyHCrkaeyyTkREZsBArhIr5ERERKaCg4MhSVKe64wbN67QXdSzKrJzyEuXVirkmaOsp7NCTkREZsDrkKskB3JL7PuJiIgo/8LCwhAdHY1Dhw6Zf+O5nUOe03XIWSEnIqICYoVcJVbIiYiISoA8uqw7OQESK+RERGQGrJCrxEBORERUAuTWZT2nCnl8PJCWVrTtIyIim8BArhIDORERUQmQdZT1LBVyk0AOsEpOREQFwkCuEgM5ERFZgz///BObN2/ONn/z5s3YuHGjBi0yv4iICAQEBCAwMND8G89jUDcHewmumYFc0unEfAZyIiIqAAZylRjIiYjIGrz11ls5jj4uSRLeeustDVpkfloN6qZLeWRYlFHBR9zhwG5ERFQADOQqMZATEZE1OHfuHAICArLNr1evHs6fP69Bi6xMHoO64aHSXT3Nu4q4wwo5EREVAAO5Svb2YspATkRExZmnpycuXryYbf758+dRunRpDVpkZfIY1E0O5GlwQGoZVsiJiKjgGMhVYoWciIisQa9evTBx4kRcuHDBMO/8+fN47bXX0LNnTw1bZiXyUSF/CBekeJQX81khJyKiAmAgV4mBnIiIrMGnn36K0qVLo169eqhRowZq1KgBf39/lCtXDp9//rnWzTOLIhvUzc3NZFA3k0DulhnIWSEnIqICcNC6AdZGDuQ5jJNDRERUbHh6emLfvn3YunUrjh07BhcXFzRq1Ajt27fXumlmExYWhrCwMCQkJMDT09O8G89jUDfjQJ7qWg4AcGbPbTyRDjjwlxUREanA3YZKrJATEZG10Ol0ePrpp/H0009r3RTrk98u666iQn7+4B2c3wQ880xRN5SIiKyZpoF8/vz5mD9/Pv777z8AQP369TF16lR07doVAPDo0SO89tprWL58OVJSUhAaGop58+bB29tbszYzkBMRUXE1Z84cjBkzBs7OzpgzZ06e606YMKGIWmWl8hrULTkZgAjkyc6iQl4etxF5qagbSURE1k7TQF6lShV8/PHHqF27NiRJwg8//IBevXrh6NGjqF+/Pl599VVs2LABK1euhKenJ8aNG4e+ffti7969mrWZgZyIiIqr2bNnY8iQIXB2dsbs2bNzXU+n0zGQP05uFXK9HkhMBAAkwxUxCeXRFkA53MGNG0XfTCIism6aBvIePXqYPP7www8xf/58HDhwAFWqVMGiRYuwbNkyPPXUUwCAxYsXw9/fHwcOHECrVq20aDIDORERFVsxMTE53qcCyK1CDgD37wMQFfLDMeXwPESF/ObNIm0hERHZgGIzynpGRgaWL1+OpKQkBAUFITIyEmlpaQgJCTGsU69ePVSrVg379+/PdTspKSlISEgwuZkTAzkREVEJkNugboBJIN97VpxDXgb3cet6ehE2kIiIbEGBKuRXrlyBTqdDlSpVAAAHDx7EsmXLEBAQgDFjxqja1okTJxAUFIRHjx7Bzc0Na9euRUBAAKKiouDo6AgvLy+T9b29vREXF5fr9mbOnIn33ntP9XvKLwZyIiKyBpIkYdWqVdixYwdu3rwJfZYd15o1azRqmflEREQgIiICGZa49EnWy54ZD58eHw9ABPKoy2Wghw52kPAo9i6AiuZvCxER2awCVcife+457NixAwAQFxeHzp074+DBg5gyZQref/99VduqW7cuoqKi8M8//+B///sfhg8fjujo6II0CwAwefJkxMfHG25Xrlwp8LZyYm8vpgzkRERUnE2cOBHPP/88YmJi4ObmBk9PT5ObLQgLC0N0dDQOHTpk/o17egLu7kDFioCrK6DTKVVyowp5BhxwH14AgPQbd8zfDiIismkFqpCfPHkSLVq0AAD8+uuvaNCgAfbu3YstW7bg5ZdfxtSpU/O9LUdHRzzxxBMAgGbNmuHQoUP46quvMHDgQKSmpuL+/fsmVfIbN27Ax8cn1+05OTnBybhbmZmxQk5ERNbgp59+wpo1a9CtWzetm2KdnJ2BgwdFpVze+Ts5icueGVXIAeA2yqMs7gG3b+e8rUePgPR0UWknIiIyUqAKeVpamiH0btu2DT179gQgzvG+fv16oRqk1+uRkpKCZs2aoVSpUti+fbth2dmzZ3H58mUEBQUV6jUKg4GciIisgaenJ2rWrKl1M6xbvXpArVrKY/m88nv3ACiB/A7Epc9cH96Wr4im0OuBJ58EGjVC9oUl2MOHwIwZwKlTWreEiEhTBQrk9evXx4IFC7B7925s3boVXbp0AQDExsaiXLly+d7O5MmTsWvXLvz33384ceIEJk+ejL///htDhgyBp6cnRo0ahfDwcOzYsQORkZEYMWIEgoKCNBthHVACuSVOVyMiIjKX6dOn47333sPDhw+1bortyKHLOgCkuouB3crhTvaR1u/eBU6fBmJigG3biqihVuDnn4F33wXeekvrlhARaapAXdY/+eQT9OnTB5999hmGDx+Oxo0bAwB+//13Q1f2/Lh58yaGDRuG69evw9PTE40aNcLmzZvRuXNnAOJ6qnZ2dujXrx9SUlIQGhqKefPmFaTJZsMKORERWYMBAwbgl19+QcWKFVG9enWUMh6kDMCRI0c0apkVkyvkmV3Wk+EqHpcvBzwQlz67cQOoXt3oOcbd2NevBzJ7FZZ4kZFieuaM6fwHD8Q5+/KgPURENq5AgTw4OBi3b99GQkICypQpY5g/ZswYuLq65ns7ixYtynO5s7OzYQTV4oKBnIiIrMHw4cMRGRmJoUOHwtvbGzqdTusmWb9cKuROlcsDMblUyG/dUu6vXy9+QNgVm6vOWtb+/YCHB1C/fvZlUVFi+t9/4vx6Bwfg2jWgbl2gUyfgt9+KsqVERJopUCB/+PAhJEkyhPFLly5h7dq18Pf3R2hoqFkbWNwwkBMRkTXYsGEDNm/ejLZt22rdFIux6GXPciIH8iyDunnUKA/sUSrkJowD+Y0bwOHDgIrehFbr2DGgbVtxDfeLF4Hy5ZVlGRnA8ePifno6cOUKUKMGsG8fkJQEbN8OSJIY2d7WpKcDGzcCISGAi4vWrSFrI0nA5MkikHz4oW3+GymBCnSItlevXvjxxx8BAPfv30fLli0xa9Ys9O7dG/PnzzdrA4sbBnIiIrIGVatWhYeHh9bNsCiLXvYsJ3KX9QcPACiBvHxdMX5OOdzJHsizjrz++++WbGHx8cEH4sfSgwfA55+bLjt/XgzqJrtwQUzl7utJScj+QdqI+fPFaQvjxxf9a6emiu/fo0dF/9pkHjExwCefADNnApcva90aMpMCBfIjR46gXbt2AIBVq1bB29sbly5dwo8//og5c+aYtYHFDQM5ERFZg1mzZuHNN9/Ef//9p3VTbEeWy6o+hAtcXIBy9UT1tzxu595lXb72+/r1Fm5kMXDyJLB6tfL4669h8sHI3dVlFy+KqfH55OfPF64Ns2cDn36a+6XotPLXX2K6dKlhtP4iM2sW0KuX+FzIOv3zj3K/qA5EksUVKJAnJyfD3d0dALBlyxb07dsXdnZ2aNWqFS5dumTWBhY38hgjDORERFScDR06FDt27ECtWrXg7u6OsmXLmtyoAOQKeaaHcEFAAGBfQVTI8+yy/uyz4qj+8eOAjf9WwowZYtqvHxAYKC739tlnyvKsgTxrhRwoXCA/fhwIDwcmTQKqVgXGjCk+l5yTQ9SjR0Bmb9Mis3evmO7fX7SvS6YePAC++kpcgUEtBvLCS0kB0tK0boWJAp1D/sQTT2DdunXo06cPNm/ejFdffRWAGDXd1rvHsUJORETW4Msvv9S6CbYnS4W89VMuaBgOw/nReXZZr1sXaNMG2L1bVMnHjbN8e7Vw+jTw66/i/rvvArGxQLduQEQE8NprgI+POL8cEJ/J2bMikOv15gvk//4rpnZ2Ivh++y1Qrpzo5qul2FgxcJ1s4UJgwoSiOw/45EkxtcZrv9+9Kwb+s4WcMWWK6DVy7hwwd6665x48mPN9W3X+PLB5M/DSS+LvX1jJyUCDBkCZMmI8j2JyDn6BKuRTp07F66+/jurVq6NFixYICgoCIKrlTZs2NWsDixsGciIisgbDhw/P80YFkCWQv/WeC7p3hyGQl8E93L6RZYA5uUJeoQLwzDPi/pYtFm6ohmbOFANP9e4NNG4MdOkCtGwpzhmfNUusI1fI+/UT0wsXRFA1rmIbB/L0dLHN/JIr7oMGiQMBALBuXQHejJnJFc2aNcWl3U6fBvbsKZrXTkhQemZcuWIYmLDYSUsD3ngD+PNPZd6DB0BAANC6dfH+AX77trhqgLFvvwWeeEI5CJWWBixfLu5v3qysFx0NVKqU90Gj1FTA+HKVhw+LARJt2eDB4uDlggXm2V5kpDgP/8iR7H8rDRUokPfv3x+XL1/G4cOHsdnoy9SpUyfMnj3bbI0rjhjIiYjIWuj1evz777/Ys2cPdu3aZXKjAsjSZR3ypV4zTwGwg4SUOHFe8IoVYnbif5kV8vLlgczxd/DPP+oCpqVkZAB//AFcv26e7cXGKmHj7bfFVKcDpk4V9xcuFNXr69fF/N69xfwLF0Q4NSYH8pQUoFEjoFmz/P/4ks9Jr1ULGDJEVNbOnCn8eemFJVc0O3YUQQMQn0lRyFoVj44umtdVa9UqMQig8aB3R46IQf5OnVJ6PxQXkgSsXSsG6qtUCahdW/k7P3woRkS/cAGYNk3M275dOUh3/rwyMNs33wBxcWLk9NwOlhw/Lv49lCkjrl6QmCh6mNgS43/jJ06Igw4AsGSJebYfGancNz64obECXwjTx8cHTZs2RWxsLK5evQoAaNGiBerVq2e2xhVHciC39QNSRERk3Q4cOIAnnngC/v7+aN++PYKDgw23jh07at0865SlQm64bJWDA/SeXgAAu3u3kZ4uBtO+dw9Iu25UIW/aFChVSgxwZsnqzI4dwKhR4gd+btLSgGHDgB49xNRYQQ8WzJ8vttu2rTh3XNa1q+gm+uAB8L//iXm1a4t5gJgvn99cp46Ynj8v2hEZKcL60aP5P3BgHMg9PYEOHcTjnAbU27cPmDev8AdIzp8Hfvop73PV5Qp5YCDw8svi/sqV2c+pt4QTJ0wfywE9Ph548UVAzUG65GRx/vudO+Zrn2zTJjG9eBG4f1/cl6vLgPh7WUpiojiFYOvW/D9n1iygb1/x3UpPF7f33hPLli1TPqPffxffkWXLTJ8vX+Lvt9/E46Sk3McWkM8fb9lSHKAC1Hdb/+MPoF49ZXDB4mTQIKBaNeX/RuMQHhmpnHIhScDffwPffQdMnw78/HP+//3aUiDX6/V4//334enpCT8/P/j5+cHLywsffPAB9DZeOmaFnIiIrMHLL7+M5s2b4+TJk7h79y7u3btnuN0tyGBClL1CbnQdaV155dJn167Jv50llE42CuTOziKUA8CBA5Zp448/Ak8/DXz/vai25SQlBRgwQAkHO3Yo4efOHaB6daBPn7xf5+pV4KOPxHnhDx6IaqDcrXTiRNN1dTrgzTfFfTkING4sPr/KlcVjuYtyt25i/fh40RbjABYT85g3n0kO5DVrimmPHmKa0yXnhg8HwsLyF0j1emDbNlHdHjFCGRhKksTpCMOGAf7+osq7d6/oet2rl6iQSpJpIG/eHAgOFt2QO3QQAcOYJImALx+oKCw5zMjkQL5gAbBokfL3eRy9XgSn4cOVXhCA+Pu/8ooImAWl15t245aDeG6BXJJyH5zr4UMRlD/5JP+vP3u2OLf7pZfyF/BiYpTeH2PHiu+wnZ2YRkYC8pWnXF3F9mbOFNV0QPSSAMTndeKE6QG63A4QGQdy+YCXmoHdkpLEezt7VhyEKU6Xv7t1S4w9ce2aGJAxLU0EbQDw9RXTH34Q07Fjxec3erQ4+PH886InTH7eTzEN5JAK4K233pIqVKggzZs3Tzp27Jh07NgxKSIiQqpQoYL09ttvF2STFhMfHy8BkOLj482yvVmzJAmQpCFDzLI5IiIqgcy9b8qJq6urdO7cOYttvzgpis9TkiRJGjtW/AiQb3FxyrKWLSUJkHpinTR3rljsikRl3YQEsd748eLxhAm5v05GhiS9/74kLVigrn0ffWTaPi8vSUpKyr7tHj3EcicnSSpfXtxfuVIsnzdPef7du9lf4/Zt8Xw7O2W9wEBJ+vhjcd/PT5LS0rI/LzVVkqpWVZ7z4Ydifvv2pm1eskSSqlQR9/fvl6Q+fZRlP/74+M8gNVWS7O3F+levinkXLojH9vam7+nBA2Xbn32W+zZv3RLLn3jCtK3Ll4vlu3aZzs9669JFkv79V/nMU1PF8+7fl6QOHcR8R0dJWr1aec3PPxfzvb0lSa9//Pt+nOBgsb127cS0c2cxv1Mn5fUfPXr8dmbMUN6Xn58yf8ECMa9mzbzbq9eLv2mHDtm/m0ePmn5us2eL+c2bK/P8/ZXttG0rSb6+knTxYvbXWbtW+ZvL34O8JCdLUoUKyuscP573+nq9JIWGinU7dlTe89ChYl6dOpn/CbhK0qpVpu+renVJ2rZN3PfxEf/WAfE3cnMT97dvF/9W//xTfHckSZLq1hXLNmyQpBUrxP3mzU3bFR0tSYMHi9fM6oMPTNsh/xt8nPR0Sbp8WbQnv2JjJWnLlvyvv3SpadvCwpTPR/78fHzE/1OAJOl0ktS1q/i8HRzEvNatJenmzdxfIyFBPE9+jQoVzPNvKw/53TcVKJBXqlRJ+u2337LNX7duneTr61uQTVqMuXfSs2eLv+HgwWbZHBERlUBFESA7duwobdy40WLbLw7mzp0r+fv7S3Xq1CmaQD5xoumPRuPX69ZNkgBpBBYZso8fYpQQJv/wk394tmiR++usW6e8xubN+WvbL78oz3n9dUmqUUPc/+EH0/U+/VTMd3YWoUB+TyNHiuVy4+Uf/lnJP5QBEabLlTP9TD7/PPc2fvFF9m2/8ILp8w8cUNrw44+SVLGismz69Md/DnL4dnIyDRD164v5y5Yp8w4eVLadU6UlI0OSxo0TYVVez8ND/O3kACBJkjR8uLKNqVPFa3t6StKgQZJUqpRYNmKEmLZqZfoaDx8qBx3s7ESw3brV9IDH9euPf9950euVv1NEhJhWqiRCqJOT8jr79uW9nc2bTQMNIEkxMWJZ377KvBMnct/GkSPKeu+9Z7ps5kzTbQ8fLg7uODubzr9zx/RvFxgoSSkpptt6/XVl+bRpYl5qqvis+/ZVDorIFi40fY0PPsj7s5D/vTk5SdLZs8r806dNP6OXXhKff+PGyry33hJ/d/l9eXuL6XffSdL//qf822rdWtx3c5OkjRuV59+6JT53QHy/Hj0Sr/Htt5Lk4qIcCLhyRWlXXJwS9vv3F9PSpbMfrJg0SZIaNjR97rhxYv2KFUUA2rnT9DmrV4t/2/K/t9RUSQoIEM8xPjBw4IAI0NHR2T/P558X63t5mf4d3nhD/G3lA4fyv6dJk5Tnbtsm/r3J/yZzOiAoScqBs4oVsx+0sxCLBnInJyfprPGXL9OZM2ckZ2fngmzSYsz9o+err8Tfb+BAs2yOiIhKIEsFcrnX2rFjx6Q1a9ZIAQEB0uLFi6XDhw+bLDt27JhZX1drRVYhnzTJ9Mei8Y/6YcMkCZDewCeGLNUcIjToK1dW1pMDY24VSb1ekpo1U16jWjXT4J+T69clqWxZsb7cU1GuZLZtq6x38KBSTfrmGzFv82bx2NdXbMc4CE6ZYvo6CQmS5O4ulq1fL+ZFRysVbTc3UfXNzYMH4sewq6sk3bgh5mWt2t27J0kvvijuy9VG44D2OFu3inXr1TOd/9ZbYv6gQcq8JUuUbQcEZN/Wd98py5s1E48TE0X1Tw4GO3aI92McaNPSlO/GhAmm7yGnnhHp6ZI0erSyjrw9+fbXX49/33m5fl1sR6cTwUzerlxllW+zZuW+jaQkJRSNHi1JQUHi/vffi/crByJAfPckSfwtmzQxrWK9+66ynouLJF26pCyTD8R07iymjRuLgCuHR7mHwoYNkvTKK6ZtnzjRtL2tWinLfH3F30Pu5gqIqrQsI0OpaD/5ZOY/3iyVZ2MnTigHOIy3IxswQHmdU6fEPOPvmlx9l3snGP9tTpwwfV/yTf53WauWeK5er/w9Fi9Wer0AStAfOlRpkxz0AwPF+5XDvvE68fHKwafRo8W8ixeV8CrfSpVSDkKcPq0snztXzJszR1lXPgCVkaGE9AoVTA/aZGQoB97WrTM9CCd/fsZ/76ZNsx+AOXVKHCwDsh/okclV1V69xEEHQJJ+/z3ndc3EooG8RYsW0vjx47PNHzdunNQiryO+GjD3Tvrrr8Xf79lnzbI5IiIqgSwVIHU6nWRnZyfpdLocb/IyOzs7s76u1ooskE+dqvwotLc3XRYeLkmA9AneMKzSBX9KEiClN2yirKfXK11j9+/P/hpyJczVVXRtlX8c79ghgurLL0vSf/+Zbq9nT+WHqhwEr11TfihHR4uunLVqKT9i5Ir9w4dKAHzpJSUcAKIrrrH588X8unVNu3peuiSqjt9///jP8NIl0wrZsmXKZ+rjI+bJ3d+zBtP27XPe5s2byvuWK53du5uus2+fmO/pqaz75pumgSc5WVn/3j3l7/TJJ9lf87nnxDK5ulmvXs7dX2/eVA5iAJL00085vwe93jSsNm+uBFM56EiSJEVFiQMrasgHKWrXFo/lUwfkUCYfXMjrx+3y5WIdPz/xnXn7bfH4+eeVz1a+yVnAuOJ96JCY16CBeCyHJ/kASUKC0o7t28XUwUH0kpCDndybYtIk5XOXg6Yc5iRJ/B3lbclV4blzTf8OpUpJknxg8rfflO/GuXPK9z+n6unJk8r3IjAw54Nqcjg0rt49eiT+nY4apcwzPsVE7m0hSeK7C4hK9tmzpqd1PPecsl5mrxzDzcFBfFf/+UeZt3+/ON1CDvRydfvwYeV9yuFa/hvL27pwQTlQFBIiniuf8tCtm2lbAXGAZf9+SSpTxrRd+/dnP/hToYJyYOLwYeVvlZKiHLwwPpgYFaUcbMipwi5JkvTzz8r/zTn19pAP8L3/vtKrJT+9bgrBooH877//lkqXLi35+/tLI0eOlEaOHCn5+/tLbm5u0q5duwrUYEsx905aPrWqXz+zbI6IiEogSwXI//77L983W1Jkgdz4/Fk3N9NlH34oSYD0HUYa8sYY5x8kCZAetO5suq5czZLPkZXp9UpICg8XIdz4R6x8c3UVYWfVKqVyVKpU9vNejYN66dJKoLp3z3Q9+Ue1/ANd7l7t6qp0/9TrlarSl18W6mM0YRwegoPFvKzn3LZpI6ZVqmR//vbtIjyMGCEey70YshaO0tOVoCAHWuMwAYi2yOSu/P7+2bs3S5IIGcbPzesc9MzvhgRI0pkzeX8eixeLivKVK8p7CQsTyx4+FKHRwUGSzp/PezvG5FMF+vYVj7t0MW27HLpy+nxl8ndJ7oEhh/yqVUWokQOUvM2YGNEtXn48YoQIu3Jg+usv5fu2apUSiuVz0OUeH3Jbx4wRvToApVtzuXLib/Paa+JxQIB47s6d4nGlSpI0ebLpd7tFC1Ehlf9dfPyx0sPjrbfEe5Or//Pnm34GZ88q1dsnn8x5jAXZo0ePP+fa+LtvfNAnOVk5FUCSxMEK+f+FxYuV+cbfq759TYOqHDjlf/fywQtjcqCXu38PHKj8fQBxjrx8YGPPHrHOmTNKL5tXX1XCu3wah1xhb9hQ6Ybev79SHZ84UekBVKGCODdd/n+1Vy+lbTt3Kr1oZH/++fiDUfKBsho1svcsqldPLNuwQeny3LNn3tsrJIsGckmSpGvXrklvv/221LdvX6lv377SlClTpEuXLkmj5S4OxYS5d9LymBV9+phlc0REVAIVRYDcuXOnlJbDuXRpaWnSzqznAFq5Igvkn32m/LitWNF0WWZldh16GgpIn3iLLrLXO2YZeEb+IZ31/Dc5gDs5iW7RkqR0efbwEMEp6yBo8i2nAZrWrzddp0kTUWnKSh6FTr5dvKiEnsOHxTq7dytVsKyBvjBu31Ze9+WXxTy5Gibf5GqITmdakczIUM7NdXUVgVU+PzbrwQ5JkqRnnjFdJp9nL1drFy4U80+dUkJJbgNT6fWiQioHEuMB/rJKShIV7+BgdQNjyZVCuaeCcSV63DhlvcuXRTuNK/TTp4seFmvXivEBANHDQ5KUACvfLlxQ3q/xucOyO3eUYCZ3IU5KUuZVqyam33xjGNzQEM7lCrWzs3LaQKdOYhtjxihtkM99HjtWLHvqKfFYruxGRGTvzi1/X+7dU7ppHzqk/Pt69lnRm0QO4zqdWH79evYqbuXKyr85uYdGly6mn4PcFb1pU/GZFFZ6uugV4uCgDNyWm0ePxEEg4+9PUpLohn/gQPb1r11Twrijozi4kLUHx+rVYrmPjzidRO5BIHcHlm/y30tmfH6+HLKvXDE9/3vbNnGA0Hg9T0/xt7p7V/l326KFEuazHgApiPv3xUFHQJxGJDMe0C0uTvn/LKeDUGlppr1lCsHigTwnUVFRxa4bnLl30vLBOeODOERERGoURYC0s7OTbmStMEiSdPv27WK3ry6sIgvkclUFMB1hWpIMVd3daCMBooC9rLoIINGds5w3LHfJNd7G3r1KRVGuiEqS+AF+6JDyA1GvFwO1NWokfsgOGSJ+yKanZ29veroIESEhoiqU24jC8nntgAhUkiRGMAbE+aCSJKq2gOg2b056vXL+sVx5Nx79HBBBSe6+bhxcso7MvHGjcg5wDoMPG4JWv37iXPCsPQLkgNe7t3jcu3febZdHfDbuRmxO8sBlcld+40HxXF1FsLl5U+m+PXq0CBPG69nZKdXmX38V2/n+e2V5o0ZiXtOm4rE82r4x+TSAxo1N5xtXxAFR1c060v8nnyjblsO13AX/wQMRwI2ruPI5vZmngBhue/aIfwvywRNAhCqZ/P0cN06p/MrfJ7m6b1w0XLVKHPhq00aSFi1SroIgSaLSLAdZeX58vBL65YNU5nD69OMH0yuoX38Vn0VuVeWUFKX7vXy6iq+v6ZUYgOyDuMXHK9+5smWVngLLl4t/U8anPhifJ2/cPfzixewHRXIaLb8gdu9Wvmu//CLmyQO6yeN5GAd0eT+ZliZ6INSqpQwEWEgM5JnMvZOWx/d45hmzbI6IiEqgogiQOp1OupnDJWDOnj0rubu7W+x1tVBkgVzuJgdkHzTs778lCZBOo64EiHz99xOjJAmQdnbOMmJzfLzyY/DFF0XlUK421q+fd7XVUuRBreRR0uXB1gYNEgcE5ApqZKT5X1s+L9X4h7+Pj5hXo4Z4LI+SvmmTeJySIro3A0plbtw45X5OI33LVTFvb+W81fLllRGzW7US1Wb5x7xcDc7L8ePZL99lLgkJyvft7l3TwcLkoz7Go5sDStUeMB0cEBDhT5JMRygPDxfz5HOx5cfG5EuzZT2X3vic9zp1xLxTp5R57u6iYvntt6btyHpu9v37IqR/8olSAf7pJ9PnyP+25UuN+fmZVovlwQnLllUO8MjBOS5O/NvNb9VTrxfn2wPKuAg/iNNPso2fYO2yVrvlHgrHj4sDJT165Py81avF55x1TITLl01P8diwQWxXro4b27RJ+X+wbl0zvaFM8nfT01P8ZyyPF2HcRV2+jNwXX4j/9+QxNgAxgGBOBzlVYiDPZO6dtHxQUR7LgIiISC1LBsg+ffpIffr0kezs7KRu3boZHvfp00fq2bOnVL16dSk0NNTsr6ulIgvkixcrP9iaNjVdltmd9ibKS87OIi+eqt1LkgBpeXAOXTHl86KNb/37i6qhFrZuFaFMfn25iu/rq/xwHTDAMq994YKoWBoHHbn6Ko8CLXc3l7u1yt3sfXyUSrnx6Mw5heSHD5VzXKdNE9MOHZSRvF1dxcjygHI+u9bkAdj27lW6hsvnB8sVWwcHUZk2voTZhAni85QrzR4eyngAxj0Q5EsjyoOnGQ8uJkkiYMmhyXhEdElSviPywRBJEq8pBxs53CclKSE5v4M/G3dPlw/KSJJy2baZM03XT08X1U/5OaVL5375q/z45BOxnZo1RcCUDwTkNoK3tZK/+/Jt2zZl2YMHhfsMJUl8H5YuNR2fwZj8OZv7c01LMx1pX74Zv47cq8L4Vr68uDRkYqJZmpHffZMDSBU7OzHV67VtBxERUU48PT0BAJIkwd3dHS4uLoZljo6OaNWqFUaPHq1V86ybo6Ny3+hzBQCULw8AKKe7i6+/zICjoz3KpN8CAFx+WCH7tv78E9iyBYiMBM6cAUJCgLFjAZ3OUq3PW0iIuMlatADs7YHYWPG4UiVg/nzLvHbNmuJmrG1bYM8eoEcPZR0AiIkRP8JmzhSPp04FevYUf5ubN8U8Hx/A1TX76zg7A4GBwN69wKJFYl5AAFC7tlg/ORmYPVvMf/ll877HgvL3B65cAbZvBy5fFj9EZ80S353r18U606YBkycD7doBI0cCHTuK96HTAZ9/Lj7LChUAh8yf/W5uwP/+B1y4AAQHi3lBQWIaGQkkJorv986dwJdfiqjSrh1QrZpp24KCxOeemgo8/bSYp9MBX30FLFsm2gSIz3bcOODDD4Hhw/P3vuvWBZycgJQUoFEjZf7LLwMdOoi/mzF7e2DYMOV70aqV8n4LIixMfM4XLwKffQZs2ybmDx5c8G0WR/XqAa1bA/v2AWXKAO3bK8vc3Aq/fZ0OeO653Je/+SYwdKj4N2tODg7Azz8DoaHA3buAhwdQtar4jsj69gV++QUoW1Z8BiEhwKhR5nnfapurZuW+ffvmufz+/fuFaYtVYCAnIqLibPHixQCA6tWr4/XXX0fp0qU1bpENcXJS7mcN5OXKAQDsJD1e7H8fQDm4PxKB/OKDHAK5hwfQv7+4FUdubkDjxsCRI+Lx4sXih2tRmTZNhB85jNWoIaYXLwIHDgDXronPcORI8XcJDhYhFcge7o21bSsC+dWr4nFAgAhzjRqJ7SYni/Dap4/F3poqAQHifS1ZIh43aCC+axMmiMDbogXw1ltiWdu2wL//mj5fp8v5vcybZ/q4Vi1xUOn2bcDdPfv6Y8dmn+fiAnzyCXD0qAg+su7dxc3Y++8DAwYADRvm+XYNSpUS6x4+LL6HMjs7oH79nJ8zfLgSyNu0yd/r5KZ0afG5hocDU6aIeYGB4uCNrZk4UQTyoUPF517UfH0ts91atYDz53Nf3r8/8OCBOGAkBzyNqHp1T0/PPG9+fn4YZnzkwQYxkBMRkTWYNm0aw7i55VUhL1VKBEQAuHMHAOCcdBsAcO5e+aJonfnJIWv8eNPAVRScnU0ro3Igj4kB1qwR9595RjlIYhwAHxfIjcmV1qZNlXmjRpn+rbXk7y+mFy+KaatWYvrGG8Dy5cDGjYWrBMt0OiBrz5myZYEXXwR27AAGDcr5eRMnAj/88PjPy85O/D3V9AAZNUqEtQED8rd+3bpAp07iNbp1y//r5Obll03D4pAhhd9mcfTss+JAzuefa92SoufmpnkYB1RWyOWj7iUZAzkRERVXTz75JLZv344yZcqgadOm0OXx4/eIXPmk/MurQg6ICmNCgqgy1qgBh4R7AIBTNytAry8Wv/vUefddEWxat9a6JUrIvnhRdEEFRJdTWffuwCuvmK6bk6zvRQ7kTZqIqU4HjBlT6OaaTdau2XIgt7cHBg4072t99JGoZCcliZ4C5ctrUzGVvfyy+lMHVq8WXfvzW4nPi4sL8Pbboru9nV3+DwxYI1us/FsRnkOukr29mDKQExFRcdOrVy84ZYbG3r17a9sYW2QcyHM6R7lcOREY79wxVMn10OFmRlncvg1UrAikp4vfElqdKq6Ki0v2irJW5Ar5vXvi5uwMdOmiLK9VS1RIz54Fnngi9+2ULStCbnS0OGfW21vM79IF8PISIV9+reJArpDL5EBuKQ4OgKenuFkjT0/zhHHZiy+KLvl164pxFIgsgIFcJVbIiYiouJo2bRoAICMjAx07dkSjRo3g5eWlbaNsSV5d1gHDwG64fVvcANzTlYVeskdsLHDyJNC5M/Dxx6LHMang5qac4wyIAJ31lIwFC4BVq0QX3Ly0bSsCeUCAcmSkWjWl8l6clCsnjuTcvCnCZt26WreoZHFyAr77TutWkI2zts5TmmMgJyKi4s7e3h5PP/007t27p3VTLCoiIgIBAQEIDAwsmhd8XJf1zIHdcOcOcEsM6JbgKAZ0u3ZNjKOl14tTNdPSLN1YG2TcFT2ngYaDg4G5c0X1PC/PPSd+0GXtRaLTFc+uC3KVvGVLKzzvgYgeh/+qVWIgJyIia9CgQQNclAeCslFhYWGIjo7GoUOHiuYFC1AhTy4t5l24IMbfAkSxU75PKshdyR0cxIBuBdWhA/DwIfDaa+Zpl6W1aCGmHTtq2w4isggGcpXkQJ6RoW07iIiI8jJjxgy8/vrr+OOPP3D9+nUkJCSY3KgA8jOoGyDCeGaFPNVDVMgXLxbjZMk4Tm4B1Kolpp06ifO/C8PRsXhWw3Pyzjviut7h4Vq3hIgsgOeQq8QKORERWYNumZf96dmzp8lo65IkQafTIYNHltV7XIU8hy7r+nIVgP+AqCixqHNnYOtW4I8/RKW8YkWLtti2vPyyGDRv8mStW1K0PDzENdmJyCYxkKvEQE5ERNZgx44dWjfB9uS3Qn7qlLiuLwB7b9NrkL/zjhgk/PBhUfScOFFZdu8eEB8PVK+e88vr9aKHnpZXotJU1arAL79o3QoiIrNiIFeJgZyIiKxBhw4dtG6C7cnPZc8A4Nw5MfXwQFJIL+BP8bBCBaBNG2DECBHI588XVfLjx8XtyhWxXsuWwKuvAk8/LQL4tWvAjz8CP/0kwviOHUCdOpZ7m0REVHQYyFViICciImuSnJyMy5cvIzU11WR+o0aNNGqRFXtcl/Vq1ZT7gwYBX3wBt5vKtYt79RLXIB80SATuf/8FZs403YS9PfDPP2Kd3ISGAvv28bLIRES2gIFcJQZyIiKyBrdu3cKIESOwMZfhvHkOeQE8rst6rVriOtgVKgDt2wMAfI1+afXpI6ZlywKffQasWSOuaNWokbg1aAA8eiQq53L1HBDHAbp1E1frevtt4Px5cRnuL78EUlNFN/dr14Dr18WVwXr3Bnx8LPIJEBGRmTGQq2RvL6YM5EREVJxNnDgR9+/fxz///IPg4GCsXbsWN27cwIwZMzBr1iytm2ed7O3FyNySlHMgB4B+/Uweli8PtG0LPHggBgeXTZggbll5egLTpwNTp4ru6vb2ppeebtYMaN1adHF/6qmcmzB2rOj23qwZEBAgLs8dEKDqnRIRURFhIFeJFXIiIrIGf/31F3777Tc0b94cdnZ28PPzQ+fOneHh4YGZM2eie/fuWjfR+uh0okr+6FHugTyHp+zeLTK8mqts2dmZBnFZzZrA5s3A+PFiMHcnJ8DNDfD1FSO2HzwourwfOCBuchteeAGYMUOsR0RExQcDuUoM5EREZA2SkpJQMfOaWmXKlMGtW7dQp04dNGzYEEeOHNG4dVZMZSCXmfOS140bA7t25b786lXgr7+A6GjgyBFxmbXFi4EVK4CPPhKVeWu5BDcRka3L4dgr5YWBnIiIrEHdunVx9uxZAEDjxo2xcOFCXLt2DQsWLEAljgZWcFWqiB8DxbjUXKUKMGwY8PHHwJYtwP79QFAQkJwsLrPWrZsI9NOnAx06AD/8oHWLiYhKLlbIVZIDOcfCISKi4uyVV17B9evXAQDTpk1Dly5dsHTpUjg6OmLJkiXaNs6abdggRluzooMarVoBe/eKgeJeew3YtEncZIcPi0usWdFbIiKyGQzkKrFCTkRE1mDo0KGG+82aNcOlS5dw5swZVKtWDeXLl9ewZVbOz0/crIxOJwZ769ABGDlSdGfv3Bm4cEEMEDd9OrBwodatJCIqedhlXSUGciIiskaurq548sknGcZLuPr1xaBvCQnismvz5on5330HnD6tbduIiEoiVshVYiAnIiJrEB4enuN8nU4HZ2dnPPHEE+jVqxfKli1bxC2j4kAe1K1NG3F99LVrgTffBH79VfV4dUREVAgM5CoxkBMRkTU4evQojhw5goyMDNStWxcA8O+//8Le3h716tXDvHnz8Nprr2HPnj0I4EWqS7SZM4Hffwf++ANwdRUDyQ8dKqrmRERkWeyyrpK9vZgykBMRUXHWq1cvhISEIDY2FpGRkYiMjMTVq1fRuXNnDB48GNeuXUP79u3x6quvat1U0ljdusCUKYBDZpkmJQVYtEgM9kZERJbFQK4SK+RERGQNPvvsM3zwwQfw8PAwzPP09MT06dPx6aefwtXVFVOnTkVkZKSGraTi4r33RBCPjwcGDRLzPvtM2zYREZUEDOQqMZATEZE1iI+Px82bN7PNv3XrFhISEgAAXl5eSE1NLeqm5ahPnz4oU6YM+vfvr3VTSiw7O8DDA5g8WTxetQq4eFHbNhER2ToGcpUYyImIyBr06tULI0eOxNq1a3H16lVcvXoVa9euxahRo9C7d28AwMGDB1GnTh1tG5rplVdewY8//qh1MwhAo0ZAly7it84XX2jdGiIi28ZArhIDORERWYOFCxeiU6dOGDRoEPz8/ODn54dBgwahU6dOWLBgAQCgXr16+K6YjNwVHBwMd3d3rZtBmd58U0y//x64dUvbthAR2TIGcpXkQJ6RoW07iIiI8uLm5oZvv/0Wd+7cwdGjR3H06FHcuXMH33zzDUqXLg0AaNKkCZo0afLYbe3atQs9evSAr68vdDod1q1bl22diIgIVK9eHc7OzmjZsiUOHjxo5ndERSk4GGjeHHj4EBg/noUIIiJLYSBXiRVyIiKyJm5ubihbtizKli0LNze3Am0jKSkJjRs3RkRERI7LV6xYgfDwcEybNg1HjhxB48aNERoaanIOe5MmTdCgQYNst9jYWNXtSUlJQUJCgsmNzEunAz7/XIy8vmKFGIWdiIjMj4FcJQZyIiKyBnq9Hu+//z48PT0NXda9vLzwwQcfQK9yJ9a1a1fMmDEDffr0yXH5F198gdGjR2PEiBEICAjAggUL4Orqiu+//96wTlRUFE6ePJnt5uvrq/q9zZw5E56enoZb1apVVW+DHq9DB+Va5B9/DGSe6UBERGbEQK4SAzkREVmDKVOmYO7cufj4448NXdY/+ugjfP3113j33XfN9jqpqamIjIxESEiIYZ6dnR1CQkKwf/9+s72OscmTJyM+Pt5wu3LlikVeh4Dhw8Ul0QBg3Djg0CFt20NEZGsctG6AtWEgJyIia/DDDz/gu+++Q8+ePQ3zGjVqhMqVK2Ps2LH48MMPzfI6t2/fRkZGBry9vU3me3t748yZM/neTkhICI4dO4akpCRUqVIFK1euRFBQUI7rOjk5wcnJqVDtpvx7913g5Elg5Upg2DDgyBExf8IE4PRpYM0aoGJFbdtIRGStNK2Qz5w5E4GBgXB3d0fFihXRu3dvnD171mSdR48eISwsDOXKlYObmxv69euHGzduaNRiwN5eTBnIiYioOLt79y7q1auXbX69evVw9+5dDVqUt23btuHWrVtITk7G1atXcw3jVPR0OmD+fKBSJeDMGRHEQ0NFd/a9e4GPPtK6hURE1kvTQL5z506EhYXhwIED2Lp1K9LS0vD0008jKSnJsM6rr76K9evXY+XKldi5cydiY2PRt29fzdrMCjkREVmDxo0bY+7cudnmz507F40bNzbb65QvXx729vbZDpbfuHEDPj4+ZnudnERERCAgIACBgYEWfR0CypUDFi0S97/7Dti9G3BxEY/nzwcKc9bArl3A9OlAenqhm0lEZHV0kiRJWjdCduvWLVSsWBE7d+5E+/btER8fjwoVKmDZsmXo378/AODMmTPw9/fH/v370apVq8duMyEhAZ6enoiPj4eHh4cZ2qh0y9LrxVFjIiIiNcy9b8rJzp070b17d1SrVs1Qbd6/fz+uXLmCP//8E+3atSvQdnU6HdauXYvevXsb5rVs2RItWrTA119/DUAMKFetWjWMGzcOb731VqHfy+MUxedJwssvAwsXApUrAxs3ikui7dwJvPRSwQd9q1kTiIkBfv0VePZZ87aXiEgr+d03FatB3eLj4wEAZcuWBQBERkYiLS3NZKCYevXqoVq1arkOFGPpS6HYGX1ixedQBhERkakOHTrg33//RZ8+fXD//n3cv38fffv2xdmzZ1WH8cTERERFRSEqKgoAEBMTg6ioKFy+fBkAEB4ejm+//RY//PADTp8+jf/9739ISkrCiBEjzP22SGNffy2Cc2Qk0LAh8MEHYv6iRcDFi+q3d/GiCOOAqJQTEZU0xWZQN71ej4kTJ6JNmzZo0KABACAuLg6Ojo7w8vIyWdfb2xtxcXE5bmfmzJl4Tx4O1AKMA3lGhuljIiKi4sTX1zfb4G1Xr17FmDFj8M033+R7O4cPH0bHjh0Nj8PDwwEAw4cPx5IlSzBw4EDcunULU6dORVxcHJo0aYJNmzZlG+iNrF+pUqZV7HbtxPnkmzeLwd+WLs3+HL0eOHwYaNZMGYtHtn27cn/PHsu0mYioOCs2cTIsLAwnT57E8uXLC7UdS18KxTiA8zxyIiKyNnfu3MEi+WTgfAoODoYkSdluS5YsMawzbtw4XLp0CSkpKfjnn3/QsmVLM7c8O55DXjzMmCFO4Vu2DFi3Lvvy6dOBli2BnAb237ZNuX/8OJDZWZKIqMQoFoF83Lhx+OOPP7Bjxw5UqVLFMN/Hxwepqam4f/++yfp5DRTj5OQEDw8Pk5s5MZATEREVD2FhYYiOjsYhXhxbU82bA2+8Ie6PHg0Yd2JMSAC++krcj4gAUlOVZXo98Ndf4n6pUuKxhS5dT0RUbGkayCVJwrhx47B27Vr89ddfqFGjhsnyZs2aoVSpUthu1J/p7NmzuHz5smaXQ2EgJyIiIjL1/vtA48bA7dvAiy8q4+x8840I5QBw8yawfr3ynOPHxfpubkDm2L3stk5EJY6mgTwsLAw///wzli1bBnd3d8TFxSEuLg4PHz4EAHh6emLUqFEIDw/Hjh07EBkZiREjRiAoKChfI6xbAgM5ERERkSknJ+DnnwFHR2DDBuCdd0Q1/MsvxfK6dcXUeOgCud7Svj3w1FPi/u7dRdZkIqJiQdNB3ebPnw9AnJtmbPHixXjhhRcAALNnz4adnR369euHlJQUhIaGYt68eUXcUoXxYCQM5EREVNz07ds3z+VZTwMjMpcGDUT39P/9D/joIxGur10DKlUC1q4FAgKALVvEqOo1aijnj4eEAG3bivsHDwIpKSLgExGVBJoG8vxcAt3Z2RkRERGIiIgoghY9HivkRERUnHl6ej52+bBhw4qoNZYl/z7IyMjQuimU6eWXgUePgFdfVardEyYA/v4ieG/bJi6RNnWqcpmzTp1EBb18edGFPTISaN1au/dARFSUdFJ+UrEVy+8F2fOlUSNId+6gVuxuxKAmbt8GypUzTzuJiKjkMOu+ifh5FkNz5gCvvAJ4eACXLgFeXsDKlcCAAYCLC+DjIyrlFSsC16+LgkefPmKU9o8/Bvr1E/PbthUjuBMRWZv87puKxSjrViM2FrrYWLhAnOPOCjkRERFRdhMmADt3Anv3ijAOAL16AdWqAQ8fijAOiBAu9z6Uu62//TZQu7Y4tzzz7EYiIpvFQK6GoyMAwAnimh0M5EREREQ5a99enFcuc3QEDh0Sg7nt2iXuz52rLH/6aVEN1+uVqvisWYB8RsLZs2I0djVXuduzR3SJP3as8O+HiMgSND2H3OrIgdwuDdArOwgiIiIieryKFZUR1bNq2BA4cECMzh4QIKrkFy8Cf/wB9OgBPP+8COP37ysDwj3OG2+IbY4ZI6bs/k5ExQ0r5GrIgVzHCjkREZHWIiIiEBAQgMDAQK2bQmbSooXoul62LPDSS2Lel18CixcrlfEdO4Bbtx6/rZMnRQgHxOjta9dapMlERIXCQK5GZiB3tmMgJyIi0lpYWBiio6NxSE0fZrIaY8cCDg7A33+LUdsBoFQp8ftrzZrHP/+778TUxUVM334bSE+3SFOJiAqMgVwNVsiJiIiIikSVKsCzz4r7Dx6IS6dNmyYe//pr3s999Aj46Sdxf/FicVWcs2eBJUss1lwiogJhIFejVCkADORERERERWHiROX+3LnAc8+J+3//Ddy4kfvz1q0D7t4Vob5/f2DKFDF/+nRxjjoRUXHBQK4Gu6wTERERFZkWLUQQX7BADAZXowYQGPj4butyd/WRIwF7e9H9vVIl4No1YP36omk7EVF+MJCrkRnIHXVpABjIiYiIiCwtLEwZ4A0ABgwQ059/BvbtAzZsECOvy/7+W1xaTacDRowQ85ycgOHDxf3Fi4ui1URE+cNArgbPISciIio2OMp6ySSfV75vH9CmDfDMM+J651FRwIULQL9+YvmwYUD16srz5HC+cSMQG1uULSYiyh0DuRqGCjkDORERkdY4ynrJ5Ocnwnbp0qILu4+P6Ireti3w9NPi3PHAQGD+fNPn1akjArxerwz4RkSkNQZyNeQKORjIiYiIiLTyww9AYiJw8SJw+jTQqROQlCQeV64M/PabcrkzY3KV/PvvAUkq2jYTEeWEgVyNLKOsZ2Ro2RgiIiIi8vIS3dAnTBBd13//XQzglpMBAwBXV+Dff4H9+4u0mUREOWIgV0Puss4KOREREVGxUaoU8NVXwIkTwJNP5r6eu7syKByvSU5ExQEDuRocZZ2IiIjIqg0dKqZr1wLp6dq2hYiIgVwNVsiJiIiIrFqHDkDZssDt28Du3Vq3hohKOgZyNXjZMyIiIiKr5uAA9Ool7q9Zo21biIgYyNVghZyIiKjY4HXIqaDka5WvWcPfc0SkLQZyNRjIiYiIig1eh5wKKiREDPAWGwv884/WrSGikoyBXI3My54xkBMRERFZLycn4JlnxH12WyciLTGQq5FZIS8FjrJOREREZM3kbuurVwOSpG1biKjkYiBXwxDIWSEnIiIismZdugAuLkBMDNC0KTB/PpCYqHWriKikYSBXQz6HXBKBPCNDy8YQERERUUGVLg18+qnovn7sGDB2LBAYCFy9qnXLiKgkYSBXgxVyIiIiIpsxbpwY2G32bMDXFzhzBmjbFjh/XuuWEVFJwUCuRpYKOQM5ERERkXUrWxaYOBHYtw944gng0iWgXTvg2jWtW0ZEJQEDuRqZo6yzQk5ERERkW/z8gN27gXr1gLg4YNkyrVtERCUBA7kaHGWdiIiIyGb5+ABDh4r7x45p2xYiKhkYyNWQAzm7rBMREWkuIiICAQEBCAwM1LopZEOaNBHTqCgtW0FEJQUDuRoM5ERERMVGWFgYoqOjcejQIa2bQjakcWMxPXMGePRI27YQke1jIFeDgZyIiIjIplWuDJQrJy5ve+qU1q0hIlvHQK4GAzkRERGRTdPp2G2diIoOA7ka8ijrehHIMzK0bAwRERERWQIDOREVFQZyNTIr5A4SR1knIiIislXyeeQcaZ2ILI2BXA1DIGeXdSIiIiJbJVfIjx0DJEnTphCRjWMgV4PnkBMRERHZvHr1xM++hATgv/+0bg0R2TIGcjXkCrmegZyIiIjIVpUqBdSvL+7zPHIisiQGcjUYyImIiIhKBA7sRkRFgYFcjcxAbg897JDBQE5ERERko+RAfvAg8M8/wJ9/AsnJmjaJiGwQA7kamZc9A4BSSGMgJyIiIrJRciDftAlo1Qro3h1o3hw4dapoXn/XLuDMmaJ5LXN69KjoPiMiW8BArkZmhRwAHJHKQE5ERERko5o1AypVEvd9fYFy5YDTp4EWLYCff7bsa0dGAsHBQKdOQEaGZV/L3F56CWjQANi5U+uWEFkHBnI1jCrkDOREREREtqt0aSAmBrh3D7h2DYiOBkJCRLf1558Htm+33GvPnSsutxYbK8K5NTlxQky3bdO2HUTWgoFcDXt7cYMI5NZ2xJKIiMiWREREICAgAIGBgVo3hWyUkxPg5SXuV6wouq+/8IJ4/OKLQGKisq4kAX/9BfTvD0yZYrpMjTt3gOXLlcebNinbHzoU6Nu3eFfNb94UU2s7kECkFQZytTK7rbNCTkREpK2wsDBER0fj0KFDWjeFSgh7e2DOHMDPT1yf/K23gNRU4NdfgaAg0cV89Wrgo48Af39gzRr1r7FkiTgPO7MGZAjke/cCS5cCa9cCR4+a6x2ZlySZBnJJ0rY9RNaAgVwtBnIiIiKiEsvdHfjuO3E/IgKoXBkYOFCMxO7sDIwcCVSvDly9CvTrB6xbl/9t6/XA/Pni/pQpYvrPP6Lb/KJFynq7d5vjnZhffDyQlibu37wpuvoTUd4YyNXKPI+co6wTERERlUwhIcCYMeL+7dti8Ld33xVV80WLxCjjgweL5cbdzx9nyxbgwgXA0xOYNAkICBAhfc0aUYWX7dpltrdiVnJ1XHb4sDbtILImDORqsUJOREREVOLNng188omogF++DLz/PuDtLZa5ugJjx4r727cj378Zv/9eTEeMENvo0kU8njRJDCZXurR4vHt38ewOnjWQ8zxyosdjIFeLgZyIiIioxHN1Bd58E+jVC3BwyL68ZUvAzU1U0I8dy9825et3d+smpnIgv3NHTCdPBlxcxOPTpwvXfktgICdSj4FcLQZyIiIiInqMUqWADh3E/fxcAkySgEuXxH0/PzFt104EcECE/hdfBFq1Eo/zOo/8/HlRwU9JKVjbC0oO5PL12zmwG9HjMZCrxUBORERERPnQubOY5ieQ37sHJCWJ+9WqiamzM9Cxo7j/zDOiS3y7duJxXoF80iQgPBz47LOCtbug5EDeqZMYJf7mTTG4HRHljoFcLQZyIiIiIsqHkBAx3bVLXMosL3J13NtbBHHZu++KYD9jhngsB/K8BnY7eVJMv/lG/TXLb9wAatUCXnpJ3fMA4NYtMfXzA+rXF/fZbZ0ob5oG8l27dqFHjx7w9fWFTqfDuizXhZAkCVOnTkWlSpXg4uKCkJAQnDt3TpvGyjIDOUdZJyIiIqK8BAQAPj4ijO/bl/e6ly+LqVwdl7VqJUZflwNuq1ai+nzlihLijaWnAzEx4v6VK8p1zPPrhx+AixfF9dTVkivkFSsCzZuL+wzkRHnTNJAnJSWhcePGiIiIyHH5p59+ijlz5mDBggX4559/ULp0aYSGhuLR4w4xWlLmZc8ckar6iCMRERERlRw6nVIlX7tWVLvr1FGuT258jnfW88dz4+YGNGsm7udUJb98WbkWOAAsXKiuzUuXiumdO6bbyQ/jQC63kYGcKG85jAlZdLp27YquXbvmuEySJHz55Zd455130KtXLwDAjz/+CG9vb6xbtw6DBg0qyqYq2GWdiIiIiPKpc2fg55+BuXOVeefOiWuLV60KnDghrjsuB/KsFfKctGsHHDwI/PUX8PzzpsvOnxfTsmWBu3eBDRtEpbxq1cdv9+RJ4Phx5fGtW4Cv7+OfJzMO5DVqiPvywG46Xf63Q1SSFNtzyGNiYhAXF4cQ+bAiAE9PT7Rs2RL79+/P9XkpKSlISEgwuZkVAzkRERER5VNIiOhiDgC1awOLFwOvvw64u4ugLHdll7usP65CDgDdu4vpqlVAYqLpMvnsznbtgOBgcQ30777LX1vl6rjsxo38PU8mB/IKFYBGjTiwG1F+FNtAHhcXBwDw9vY2me/t7W1YlpOZM2fC09PTcKuan8OBajCQExEREVE++foCv/0G/PSTuM74Cy+I0c/la43LFen8dlkHRNCuXVuE8eXLTZfJFfLatYGXXxb3Fy3CY3+36vXAsmWm8/L4yZ1NerpyvfSKFcXl2jiwG9HjFdtAXlCTJ09GfHy84XblyhXzvgADORERERGp0L07MHSoYSgiAKKCDCiBPLdB3XKi0wFjxoj733xjukyukD/xBNC7t6jEX7sGHDmS9zb37RNtcHcH2rcX89RUyO/cUbqmlysn5nFgN6LHK7aB3MfHBwBwI8v/BDdu3DAsy4mTkxM8PDxMbmbFUdaJiIiIqJDkQH7ihBiFXf7Jm58KOQAMHy4C/qFDwNGjynzjCrmTk3It9A0blHWmTgVGjjStmsvd1fv1U9qgJpDL3dXLlQMcMkep4sBuRI9XbAN5jRo14OPjg+3btxvmJSQk4J9//kFQUJB2DTMaZZ2BnIiIiIgKQg7kp08DFy6I+6VLA2XK5O/5FSoAffuK+3KVPD1dXLIMEBVyQDnfXA7kZ84AH3wgzmWPjla2t3u3mPbtK66FDhQskFesqMyTA/nhw6J6XlCRkeJzIrJFmgbyxMREREVFISoqCoAYyC0qKgqXL1+GTqfDxIkTMWPGDPz+++84ceIEhg0bBl9fX/Tu3Vu7RrPLOhEREREVUtWqYnT19HRg82Yxz89P3WjkL70kpkuXivPJr1wRlypzcgKqVBHL5AsaHTokAva33yrPNx5sTT7L84knChbIb90SU+NALg/sdutWwQd2u3wZaN0aaNlSCf1EtkTTQH748GE0bdoUTZs2BQCEh4ejadOmmDp1KgDgzTffxPjx4zFmzBgEBgYiMTERmzZtgrOzs3aNZiAnIiIyqytXriA4OBgBAQFo1KgRVq5cqXWTiCxOp1Oq5OvXi2l+zh83FhwsAvSDB+I65/L547VqAXaZv/IrVQKefFLc/+034IcflOfLITwhQdwAEeTls0MLWyF3cQEaNBD3IyNFF/kePYC2bYH4+Pxtd8UKIDVVvMePP85/e4ishaaBPDg4GJIkZbstWbIEAKDT6fD+++8jLi4Ojx49wrZt21CnTh0tm8xATkREZGYODg748ssvER0djS1btmDixIlISkrSullEFicHcrm7eH7PH5fpdMp1yH/+WQnktWubrid3W3/7bWUkdECpWstTT08xqJu5uqwDpueR//Yb8McfwN69wOjR+evGvmKFcn/ePNHWtDTgzTeznwdPZI2K7TnkxZZRIM/I0LgtRERENqBSpUpo0qQJADGoa/ny5XH37l1tG0VUBORALv+mVBvIAeC558R02zZgzx5xXz5/XCYHcjmMy+epyxVyOZDLVwuWA7may549LpAfPmxa4V65UgTsvJw/L4K8vb3YTkqKOKjQu7e4dFzW8+CJrBEDuVocZZ2IiEqYXbt2oUePHvD19YVOp8O6deuyrRMREYHq1avD2dkZLVu2xMGDBwv0WpGRkcjIyEBVORkQ2TA5kMvUdlkHRPhu1UpUin/9VczLWiFv3hwoX17ct7MDXn1V3JeDuBzM5fPO5UB+5444xz0/HhfIt20DDh4EnJ1FqAaA8PC8R2CX389TTwFffSXu//QT8OefyjrmvsIxUVFjIFeLo6wTEVEJk5SUhMaNGyMiIiLH5StWrEB4eDimTZuGI0eOoHHjxggNDcVNoxGYmjRpggYNGmS7xcbGGta5e/cuhg0bhm+yXliZyEbJ51fLClIhB4AhQ8RU/m2atUJub68M7talixgkDcjeZV0+Dla+vAjukqQM1vY48j/3ChVM58sDu8nBftQoYMYMUeVOTQXeeSf3bcrd1QcOBNq0Abp1E4/LlAHq1jVtO5G1ctC6AVaH55ATEVEJ07VrV3SVf83n4IsvvsDo0aMxYsQIAMCCBQuwYcMGfP/993jrrbcAwHBFldykpKSgd+/eeOutt9BaTgt5rJuSkmJ4nCCPRkVkZdzcgJo1lUuVFaRCDgADBgATJypd37NWyAFg+nQRsN95RxnJ/coVMS9rhdzeXgTrGzfErVKlx7chtwq5PLDbsWNiu6+/Ll7/44+BdetE5fzuXaBsWdPnnTkDHD8urmnep4+Yt2iR6Ob+3HPAl18CZ88ykJP1Y4VcLQZyIiIig9TUVERGRiIkJMQwz87ODiEhIdi/f3++tiFJEl544QU89dRTeF4eoSoPM2fOhKenp+HG7u1kzeRu6/b2gK9vwbZRsSLw9NPivvElz4zVrCm6e9etqyxPTBSjq2etkAPqB3bLLZAD4pJlADBoEFC9urhfty7QsKGonP/2W/bnLF8upk8/rYR1Hx/g/feBevWU92DcZT0+HnjMsT+zOHcOOHnS8q9T1CQp/6cokPkwkKvFQE5ERGRw+/ZtZGRkwFv+9Z7J29sbcfkcEWrv3r1YsWIF1q1bhyZNmqBJkyY4ceJErutPnjwZ8fHxhtsVnkRKVkwO5FWqiGpwQQ0dKqb+/solz3Lj6qqE3CtXslfIAXWB/NEjcVkyIOdAPnWqCNJz5pjOf/ZZMc16pcPYWGD2bHFfHrQuK/nggXGFfOhQoGlTMYBcQdy7J0Zwz4teLy7b1rKlWN+WvPCC6BnB/1KLFrusq8VATkREZFZt27aFXsVO1cnJCU5OThZsEVHRkavH/v6F286gQWIQtlat8rd+lSqiq/jVq4WvkMvnmZcqJS6dllXlysC772af/+yzIqxv2ybCrTz6+8SJonIfGCjeV27tB0wD+T//iOn+/WIgOzWiooAWLcQBgMwrMOfo/n2lN8DRo2LAOVuQni4OjDx8CGzYALz8stYtKjlYIVeLo6wTEREZlC9fHvb29riR5Vf7jRs34OPjo1GriKxH166ie/aCBYXbjp0dMH68CLH5IYfvU6dE+AVyrpDnp6OLcXd1+fz0/KhXT5xfnpYG/P67mLdhgwiG9vbAN9+IaU6yBvL4eOXAwJkz+W+D7JdfRDuWLjW9VntWxoPcFUX3+KJy+rQI44A4oEFFh4FcLVbIiYiIDBwdHdGsWTNs377dME+v12P79u0ICgqy6GtHREQgICAAgflNIETFkE4nRhEv6AjrBSUH2gMHxNTLSwwyJ1NTIZdDe07d1R+nf38xXb5chPGxY8XjV18FmjTJ/Xly+x88EGH83DllWUEC+aZNYpqeDqxalft6thrIjS8/x0BetBjI1TK67Jk8kiUREZEtS0xMRFRUlGGk9JiYGERFReHy5csAgPDwcHz77bf44YcfcPr0afzvf/9DUlKSYdR1SwkLC0N0dDQOHTpk0dchskVyoJXDV9aB4OQOLvkJ5Lt2iWlAgPp2yOeRb9oEPPMMcPmyODgxfXrezytdWunifvVq4QJ5bKwY0V22bFnu6xpdzRFHj6p7neLM+Lz7c+eA27e1a0tJw0CuFivkRERUwhw+fBhNmzZF06ZNAYgA3rRpU0ydOhUAMHDgQHz++eeYOnUqmjRpgqioKGzatCnbQG9EVHzIXdavXTN9LFNTIV+/XkyfeUZ9OwIClG72FSsCr7wC7NwpAvfjGHdbNw7ksbFKN/z82LxZTGvWFNNdu3If2My4Qn76tBjQLjexseJSbdYwcnnWgfDknhNkeQzkajGQExFRCRMcHAxJkrLdlhiNfDRu3DhcunQJKSkp+Oeff9BSHqmKiIqlrBXxrI/zG8gvXBDB1N4e6NKlYG3ZsAHYu1cE6y+/zH/3ffkgwpUrpoEcENcoz82//wLvvQfExIjHcnf1oUOB9u3F/RUrcn6ucSDPyBDn4Odm3DjgxRfzHiSuOEhLE9eJB8QI8gC7rRclBnK1GMiJiIiKBZ5DTlRwWSviuVXIb99Gnqdp/vGHmLZrJ85DL4gKFYDWrQ1nhuZbThVyeVC5nLqtP3gATJokBpKbPl0MqBcfD2zZIpZ36QIMHizu//yzGGhu5Ejghx+UbRgHciD388j1emDHDnF/715176uoRUeLSr+Hh3L5PAbyosNArhZHWSciIioWeA45UcE9rkJevrwIt3q9CKGLF4tqb1gY8M47Spduubt6jx6Wb3NWOQXy1q3F1DiQS5IYPb1uXeDTT0VF2MlJVNFDQ8WlzMqUEZc9699fXA/+2DGgVy/xvsePF9sAlEDu4iKmuQXy6GixXaDg10UvKvKAbs2aKZ/fwYN5H4ixBocPZz+AUhwxkKvFCjkRERERWTlXV6BsWeVx1kDu4CBCOQBMniwqxYsWAfPmAR9+CAQHAxcvivO9AW0CuVzVP35cXFMdUM5jlwP5pUuiej90KHD9OlCrljiIsHGjOOAgX7v86adFt/vy5YF+/cQ8eWA7eSR3QBnUTe7antvAbnv2KPejo4GkpMK9V0uSDxg0aybO6Xd3F+09eVLbdhXGyZNibIK+fbVuyeMxkKtlNMo6AzkRERERWSvjEJ61yzqgBFL5HOgXXwSmTgWqVxdhPChIDFhWty5Qu7alW5ud3H65wlu5MvDkk+K+HMjDwkSXcVdXcSDh5EkR2jt2BN5+W9mW8fnv338vKt9XrwLlyol58vXO5Ypr585ieuwYcswEu3cr9/X64n2JNDmQN28uDkrIQ4BYc7f1I0fEdP9+5frqWcm9HrTGQK4WK+RERETFAs8hJyoc4xCetUIOKOeRA8Do0cA334jB0DZsEOcby9Xigoyubg5ym+Xf5LVrA/Xqifvnzonq+MaN4vGBAyKAOzsrz582TXRZr1LFtMLv6go0bizCqXG3eEAJ5O3aiW7viYni4ERWcoVcDvQ5dVv/4gugWzcxsvyCBcCdO+revzmkpiqXfGvWTEyDgsTUmgP5hQtimpGR88GQrVvF93vNmiJtVo4YyNViICciIioWeA45UeHIYdPLC3Bzy768enUxDQ4G5s5VBkwLCABWrhSBFQB69rRwQ3OR9SBC7dpinqurOE982jQR1tu1Axo2zP78UqVEYL98WQnOub3G1auioioH8kqVlG1mDXyXL4ubvT0wapSYlzWQx8YCr78uXn/OHOB//xO3onbqFJCSAnh6iu78ANCqlZgW93Pf8yIHciDn9/Hbb+JvuXp10bUpNwzkajGQExEREZENkMNmTtVxQHRP/+orYN06w09gg6efFpXyiAgReLXg5mY6snvt2oCdnehCDwA//iimcijOiU6nHGjIiXEgv39fuaZ4hQpAkybiftZALo+q3rSpOJgBZA+Fy5aJgF+/PjBihJinxbW/ly4V02bNlM9B/vxiYopPt261jAN5TsdsL18W05x6NxQ1BnK1jEZZv31b47YQERERERWQHLzkaVZVqwITJojqaU5CQ4GxY/MOtJZm3O1ePo9d7rYuSWKAsv79C75940AuV8fd3ETX98aNxWP5Gt4yubt627ZKN/CzZ4GEBGWdn38W0/Hjgdmzxf0rV4B79wreVrXWrgVmzRL3x45V5lerJg5sPHz4+OvQF1f5DeTG62mFgVytzEBuDz3On81glZyIiIiIrFLv3uIa23IgtEbG1f2sgRwABg0CSpcu/PaNA3nFimLaoIGYnjpl+hzjQF6xogi4kqSMyH7ihAjxjo7As8+KAx7y6QEnThS8rWqcPQsMHy7uT5yojCwPiK788vsuDhVktR48ML3cWdaDIYAYXwAQ6z14UHRtywkDuVqZo6wDQPrDVMMAD0RERERE1qRUKWDYsJxHWLcWcnDU6ZRzoP39leUjR5pn+8aBvEIFMa1fX0xjYpTLmt2/r4TqNm3EtHlzMZW7rcvV8e7dlUvPNWokpvIAa+b06aem50pLEjB4sAii7duL5VnVqCGmMTHmb4+lyVXv8uWVgyHyqOuACOfyNeIB7Q86MJCrZXQCjSNScfashm0hIiIqwTjKOhHJBxOqVlVGUG/VCnBxEVP5El4FlVcgr1BBuVb76dNieuCACIC1aimXjTMO5Hq9ct720KHK61gqkJ87B0yaJA5MyOeD372rVOuXLzepNxrYQiCvVSv7wRBAnBqQ0/paYSBXy+gby0BORESkHY6yTkQ1a4ppQIAyr2pV4Px5YMuWwp/fXrmymMbHK8FNDuSAUiWPjhbTgwfFVB6pHFBC4R9/AE89BVy7Jgaj695dWUcO5FnPRy+s2FgxTUgArl8X98+fF9PKlcVo8TmRP1drD+Ty8Vrj3YTcXT3r+lphIFfLzg5wcADAQE5EREREpKW+fYEZM4DPPjOd7+srBnQrLHd3ZVA7uaqcUyCXzyOXg1+LFso6LVqI7SQmAjt3inmDBonrmMvkQH7ypLh2trkYD0L9779iKgfyJ57I/Xm2ViE3DuTygG4yrbusO2j78lbK0RFIT0cppBkCuSQB33wD1KkDdOyobfOIiIiIiEoCFxdgyhTLvkaVKqJCLgdyeVA3wDSQS5JSITcO5J6eYvnRo6Lbe0oK8Nxzpq/xxBOiy31ysgiI8gB1hWU8uNm5c+IybOfOicd5vYY1B3I5YNesqYxyHxMD3LkjrjcvB3IPD9FzgBVya2R0LXI5kO/ZA7z8MvDCC9o1i4iIiIiIzEs+jzzrOeSAaSC/cgW4eVN0ppWvUS6rWhXo2VNcE33sWNPrpwOAvb0yars5zyM3rpDLQVxNhfzyZSAtzXztKQrGFfIyZZT3KZ9HLndZb9/edH2tMJAXhFEgv3xZHMnavFksunIFSE/XsG1ERERERGQ2xpdWA0wDuXzu+n//ATt2iPuNGikDzKlhiYHdslbIgfwFch8f0aVer88+CFpxlpamVMDlUffl3gr//COm8nK5V/OlS9rmNwbygsgc2K2CRyoA8eXeulUskiRxZIyIiIgsi6OsE1FRyCuQV6igPP7xRzE17q6uhiUCeU4V8vx0WbezU66Nbk3d1i9dEufgu7goA9bJA+zt36+sI893chLrZz2vvCgxkBdEZoX8iWoikB84YDqUvjyCIREREVkOR1knoqKQVyAHlG7rf/0lpgU9RmjpQH7hgjiP+u5d8ViuIOfGGs8jl7uf16ypjLAfFCSmBw4AqalilHtAHHCQR5PXcmA3BvKCyAzkNauIQL5ggejOIWMgJyIiIiKyDfkN5LLCVsgvXgQePCjYNrIy7rL+6BHw99/ifqVKQOnSeT/XGi99Znz+uKxxY1Exv39fnFag14sOzz4+ynvU8jxyBvKCyAzk1SuLEQ6iokwXM5ATEREREdmGqlWV+6VLA66upsuNr4FeujTg71+w1ylXTrnu+U8/FWwbWckVcrla/OefYprX+eMyuUKu9WXB1MgpkJcqpfRaWLFCTKtWFd3y5fUYyK1NZiD3q5RqMtvXV0wZyImIiIiIbINxhTxrdRwwrZA3ayZGTC+o/v3FNCwMeOklUdUuKElSKuRyGzduFNP8XFbNuMu6JAEffSQu81yc5RTIAaXb+po1Ylqtmul67LJubTIDeRVvJZA7OAADBoj7cXFaNIqIiIiIiMzNwwNwcxP3HxfIC9pdXTZrFjB9uqhof/MNMGRIzutt3iwunbZ4ce7bSk5WAr0cSOXCoZoKeUyMeJ0pU8RlnuVB0YobSQJOnhT3cwvk8fFi6udnuh4r5NYmc5T1SmVTYZf5CbZqpRxpYoWciIiIiMg26HRKlbxixezLy5dX5hf2og/29sC0acD69eLx+vVASorpOhkZwMSJIlwuXJj7tuTquJMT0LSp6TI1gfzmTeC118R9SVLXnX7XrqILu8ePi9dycgJatzZdJgdymVwhNz6HXJIs38acMJAXRGaFvJSUaviidu6sDK3PQE5EREREZDvkQJ5ThRwQIbp3b6B7d/O8XrduQNmy4rrap06ZLlu+HDhzRtw/dEip+mYlnz9evnz2Lur56bJepgzg6Snu37+v9BL44Yf8hdcTJ4DgYKBnz8evu2SJqL4nJT1+3dzI54d36yZ6NRirWNG0ai4H8ho1xAGXBw9MR6QvSgzkBZEZyJGaiiFDAG9v0Z2EgZyIiKjo8DrkRFRUHhfIx44F1q59/Mjl+aXTAU8+Ke4fOaLMT08H3ntPeazXKyOnZyUHzAoVsgfwx13yTCYXH+3txYBwbm7A+fPAvn2Pf+7mzSK4R0cD9+7lvp4kiQr8woUilBekUi1JSiAfODDndYyr5HKXdWdn5T0af85FiYG8IORAnpaG995JQ9zZeNSqpQTyuDjtujwQERGVFLwOOREVlWHDRHd0ecyoopBTIF+6FDh3TozI/vzzYt727Tk/X+6yXr68GFXcyUk89vYG3N3z1wb5Umyvvgq0awc8+6x4vGTJ45+7c6dyP69rq9+6pVwb/eefgW+/zV/bjEVGioHZXF2BZ57JeR3jQC5XyAGgbVsx3b1b/euaAwN5QRhVyDF+vDjsdOoUfHyU2fKXioiIiIiIrFvHjsDBg0Dz5kX3mvJ533Ig1+uBDz4Q99988//t3Xl4VNXdB/DvnSWThewhGxASFNlkk0Aag68LVKC+VRSl8KY0tQsvGhBFUdAi+PS1iLa4Ilbb0qctFUsfsYgPWAyIgpCEAAEMBixhzUYIyWTPZO55/zjemUw2kpDkzgzfz/PMc2fuvTNzfncmc/K759xzZBd5oP2EvHkLefMpvjpz/bjm5ZeBf/wDWL1aPk5Lk8sPPpCDxrXHbpfXj2s6Ssjz8+VSm5pt0SL5fi+8ALzyisytrkZrHf/v/26/l0LzhLz5VHa33SaXzcvbl0z6vK2H0xLyhgY5dr7NBvz737CMGoWwMJmMFxXJM1dERERERERdpbWQ5+bKruqZmXLwseBgOS1aQ4NMYvPyZO6h9dbVNG8hB4CbbpL7dub6cU1UlLNVHJDJa0KCHHl9y5b2R4HPzQWsVtfH7dES8u9/X3Yh37oVePZZ53aDwTmoXFuEkCcNgPa7qwPA2LGyV0FEhOtc8v/1X3KZlSWPqdaToK+whbw7vhtlHWfOOL/peXkAeB05ERERERFduxtvlNds19fLQdy0ObS1VuCwMGfS3lYrefMWcgBISZHLliOOd4XB4EzCt25tfz/tunY/P7nsKCHXBqgbMUIOGPeLXwBz5gAzZsj1b78tW9zbk5kJnDsnj5X2nPbK/pe/AGvXuq4fOlQO+tbQIAfJ62tMyLtDayHPzHSu+274QybkRERERER0rQwGZ7f1nBzZIg0ADzzg3GfKFLlsKyFv2UK+ZAlw8iTwy19eW7m09/zyy/bHzdKuH//xj+Xy+HFnUn3hgrxptBbyYcPk3OrvvQe8/z7wz3/Kx6dPA9u3t1+eXbvkcsYM5wmArlAUZ7d1Pa4jZ0LeHVpCfuSIc93XXwNCMCEnIiIiIqIeobWAb9ggu4n7+gLTpjm3T50qlzt2AMuXy+vK//Uvua5lC7nBIFuDtWu1uyspSXYYLiqSyTIAXL4MzJ0rW/GbXz/+s5/J7uH19XIwuspKYNw4GZd2DbrWQj5smOv7+PsDP/+5vP/mm+2XR0vJrmXCDa3bOhNyT9FslHUHqxUoLHQZaZ2IiIiIiKi7tIRca3GePt110LKUFJmaFBcDL70kk/GlS+W25vOQ9yQ/P2fyqyXeb78t50d/6CFg1SrnvOWJicDo0XKf3Fxg82aZvF+6BOzfLwdsKyiQ24cPb/1ejz4qTyD8+9/OlvSWtO7wY8d2PyathXzfvo67x/cGJuTdoSXkGu00U7OR1tlCTkRERERE10JLyDX33+/62N9fJsCTJjlbk0+dkgmv1mW9vbnTr0XLFmVtUDVVBf7v/+T9yZMBk8k5ddrRo/Iabs3nn8tB6ux2mby3HJQOAIYMcU5jtm5d6+01NTJe4NoS8jFjgKAg2cba0YjwvYEJeXe0TMjvuksuv/6aXdaJiIiIiKhHDB8uu6kDMrlta47t5cvl0FZ/+IMcGA0A9u51TsPc0y3kgOtUYXl58hpxsxm47z7nPnfcIZdaorx1q2uX8M8/d+2u3l5X+oUL5fK994ATJ1y3HT8ur2OPipK37jIagVtvlff7uts6E/LuaJ6QJyQ4P728vO8ScoGqC5V6lIyIiOi6sW7dOowcORITr+XCQSIiN2YyORPaO+6QI6t3REtLtm1zDrjWG1Mxp6TIBPo//wHeeEOuu/tu2VL+4IOytXnWLLleK//x43KpdU3PzAQOH3Zd15bvf1++dn29HOG9+bzk2vXj19I6rtHrOnIm5N2hTXsGyKEPR46U979rIX8Kv8Wh0yHAX/+qS/GIiIiuB+np6cjLy0O2HvPUEBH1kXvukctf/OLq+zZPyAEgNFQm9T0tONiZBL/3nlw+9JBst9y8WbbO33ijXK9dQ6559llg4EA5HJfWhb3lgG7NKYoc1C48XCbwK1Y4t2nXj48bd80h4bbbZG8EQx9nyEzIu6N5C/kttwCjRsn7X3+NmPBGPIXfAgDUJU/KCxGIiIiIiIi6Yfly4MwZ4Ec/uvq+WkJeWiqXvdFdXaO1KKtq6+7qRqPzfnAwEB8v7wcEyGnbtO7sZ8/KZUcJOQDExsou+QDwyivOweR6YkA3TXKyHAX+gw+u/bW6ggl5dzRPyMePB266SX7rrFYE/vVtREH+BRjKLgG/+Y1OhSQiIiIiIk9nMgGDB3du35tucu3W3hsDumm068gBORVbSEj7+2oDuz34oEzKtYRc01GXdc3MmXIaNSGAX/9angjQBmDriYTcaGw9VFhfYELeHS0TcovF2SfjhRcAAHuRAgBQ176K0xkFfV1CIiIiIiK6zhgMsqVX05st5M0T8tmzO9532TLZgr5ypXzcPCFXFDk/emesWCFj/Owz2S2/ulqmYldrYXdnHpGQr1u3DvHx8fD19UVSUhKysrL0LZCWkEdFOcfn17qtV1RAhYJUbMRX/lNgsDUi9/tP4vW1dsfACg4VFcCrr8qJ+44dk6d5vJ3NBpw+LSdTPHYMqKpy3d7UJP/C3nhD7qexWoHdu4ErV669DFarPPZ1de51zKuq5DCVdXV9/96NjfKYkOey2+VoKdqQqkRERHRd0rqtA73bQh4VBcyZI9snZ87seN/kZOCjj+R42ICczmzgQHk/Lk7Obd4Z8fHOrvGLF8vlqFG9c518X3H7on/wwQdYsmQJ3nnnHSQlJeG1117DtGnTkJ+fj8jISH0KFRcnl3fe6Vw3ahTw4YcAgNzo6ThXPBgLatfiCMbhfrEF+5+cjMU7NsD/luHIygK+V/wRnit8FAGVzvnRRGgokJIC5bbb5LfVYJCnjOrrZZJWXg4UFgIlJXLSwfBwIDBQJrFNTfJFjEbXW0ODTLSa3xRFvn58vDy50Ngo36Plfg0Nst/LmDFyv5Mn5YUeQ4bIyQ6HDJFJ5JUrwMWLwLlzQHGxfL3GRnkxSWCgfO758zLBPn9eJg7NhYfLsgwYABw44Lzo5Ykn5F+cv788tnV1cqSF2bPl+2dnywtHhg8H5s6VQzBWVMhjpN2uXJGf19Chcp6EDRvkHAsaX1850sTYsfI2bpwc/WLXLnkzm4HbbweSkuT7FxfL468t6+rkSYbGRucyJET2KwoLc8ZdWyt/aSwWeRLAZpPHJTpavl92NrBvn1yvKPL5sbFyUsbAQOdSVWVM1dWyvHffLT+Ho0dlMubjI08ShYbKz6aiQvbr8feX711bK59rt8t1igLs3Al88om8aGbSJDnBpckkj+3Fi/L4fO97skxCyDJoy8pKGV9BAVBWJr+jdrt8zvjx8vgcPSq/G4MHy7k4AgLkZ1NaKss5aJA8zidPAt9+K2OIjJTfCx8fue3cOTmKR0GB/IymTJHH89NPga++kr/oKSmyp8qZM7JMBoP8DMLD5XvExcnjcfCgPPGhfe8CA+VEnZcvy+9DeLgcGtRul5/HpUvy/cvK5N/NyJHADTfIGi40VMZx9qz8Tlit8rhbra3v+/nJMkRGyvhPn5avr333CwtluSor5bGbOFEev2PH5PdowAD5vsHBcn1jo/wMAwPlcz/7TB5/g0F+jimylw7q6uTfd329fL/wcFkGPz+5raZGfpeLiuQ+MTHyvbRbYKAs66lT8jOPjpavcfmyfE51tfytMZnk8ejfX752WZk8Nmaz3D8gQD6npETuP3CgfK2KCvk6tbXyvYKCnDftJIN2wjIqSq4/c0Z+X1RV/m3feKP8vSork8dc+45aLPJvJyCg4+X580BGhvz9iY+XvyVJSfJY2mzO31ibTX4uWr87IiIiN6T9CwD0bgs5ALz/fveepyiylfxvf+tcd/XmHnsM2LJF/jsA9MyAbnpShGjVbutWkpKSMHHiRLz11lsAAFVVMWjQICxatAjLli276vOtViuCg4NRWVmJoKCgnimUEMChQ/IfQe01N22SSSGA3Ys/wn1/ug8PPgi8OOrvCPvVI7DUW9EAHxQiFj5oxAAUAgC+VYai0GcwbmnYj36o6ZnyuTm7jy8aowbBVHkZZmvr1jxbcDjqBg9H0NF9LuubgkJhsvZAC7k7CwiQCRJRd2hJNvWeV14Bnnrqml+mV+qm6xiPJxGRU22t87z2b38LPPmk3iVqW0aGbFt6+23gf/+3888TQrZLHTsmH7/+ukzS3U1n6ya3biFvbGxETk4Oli9f7lhnMBgwdepU7N+/v83nNDQ0oKGhwfHY2hujnCsKMGGC67qkJNlCNGgQ7vztPbC+pm34H2D2bbgyez5CD+xAAs4AAFSDEe+GPI0nylegvsEPRjRhHI7gNnyJydiLCJTBABUKBOrhizr4oRLBuIgBKEEU/FCHCJShH6phgxl2yKEMjbC73OrhiwqEuNzMsCEBBYjHGRigohE+aICl1X5NMGEETmAMjsIMG/IxDOcQh2HIRxIyEYMiVCIYlQhGIWJxFoNRhBjUwxc2mGFCEwJRBV/U4wIGogAJOI0hKGmMgjgvr5YIhBXxOIN4nEEczuFb3IiMyiloOmrGCORhPt6FAoG/43+QZZ2E7+EAfoE/YAAuIhsTkYuxuBVfYQ42IRZFsMOAYkSjELEoRCysCMJgnMVNOIkKhGAjUvEX/ARFiIEFDYhBEcYiF2ORi3E4grHIRSRKsQ8p+BTTYIYNt2MPxuMwKhCCYkSjGNEoQTQuGaJQZwhAk8EHdoMZNsUHTTAhXJRhoHoOYeIyLhoGocBwA6qVQPiiHr6ohx1G2GCGH+rQX5QgQr2Eb43DsNtnGgoMNyDcpwxD7d8gXJShn6hCgKhGgKhGP1QBUFChhMKm+GCSbR/+q3EnwsRlfGschjyTHM0iSi1EiLiCKiUIVUow7IoR/qIGvqIedYo/qpVA2BUj/EQtfEU9jponYIfvTFw0x2Nq/ceYUv8JGmFBns84FBkHYqTtCG5pPIBw+yWoigECCgQMEIqCGqUfzpuH4IIpAZdNUag0hMKo2DGiIRfDG3PRoPgi32cMLpgTMKDpDG5oPAEf0YAS4wCUm/ojxF6OqKYLsIh6nDUPRYHPTTAIFRH2EoTYL8MkbDDBhnJjf5ywjMcFUzzGNGTh1toM+Ih6HPCfgkz/OxBtu4AJdXsR1XQRF83xOG8eArtiRIi9HGH2S4huOo9Y21nUK/447puIk5bRCFQrMMB2Bv5qDcqN/VFhDIdF1CPEfhkBahXsiglNigkVxnAUmeJgNYZioO00hjZ8jeim8whruoRgtRzlxv64aI5HqSkW1YZg1BgCUW0IclnWGALhJ2oQYzuPMHspykwxuGBOgE3xQaztLGKazuOSKRr/8RmJWkM/jKrPwaiGHNQpATjpOxqF5nj0txUizvYf+Kk1qDf4oQlm+Io6BKhW1Cv+2B8wFcf8JqF/UxFSqj/F0IbjaFQsaFB80WDwRYPiBxUGhNgvI7ypBD6iAXUGf9Qr/ig39kepKRYNii8imwoR1XQR0U0XENl0Ef1UKy6YE3DGfBOaDGb0bypCiP0yKo3h38UcBKNih1nYEGwvR6j9EvzUWpSbIlFu7A8jmhBsL4e/Wo1KYzguGyNhQhOibecR3lQCqzEUZaZo1Br6IUCtQoBqRT+7FQGqFQao+I/PSJzyHY0GxRfhTSUIUitQaB6MMz43QYUB8Y0nMdB2Gg2KH64YI1BjDIIdRggo8BEN8Fer4afWwF+tlvdFTYt1NagxBCIz4C4c8p+M+MaTSK7eiYTGb6DCiCbF9N13wQy7YoJakIC7er5WISIi6jH+/rKz3cGDsnOZu5oyRXY+6+o0Y4oiE/Bf/lI+7okB3fTk1i3khYWFGDBgAL766iskNxud4Omnn8aePXuQmZnZ6jmrVq3CC98NrNZcn5w1P3RIdtccNKj1NiHkaZzaWtkNNzYWIioaBw/KTbGxsqdzWZns0amdU1CUqy+1+6rq7FWpLZv3Lm5+v+U6u731cztadmXf9pZms+whbDS2fn9Vlb1XtV7aWu9f7ZJv7VurLQ3CjmB7OcrUMDTajbDbna+pHZ/mx83HR/Zmbf7e2rLJJmBXFcdVAO5MgQozbGiERe+iEF0XXn4ZWLr02l+HLbo9i8eTiMjV55/LDrxr1sir3bxNba3s6l5bK6+sc8effq9oIe+O5cuXY8mSJY7HVqsVg9pKkHvDLbe0v01RWl13qEBejthcv37OefqoK4wAemrUCmcGr53kaJW0t1jX8rL4lqe5eu+xAYClz95PCOeto8e96Xp4/c7u0/xkU3uutk9nXqNlmdq633JdZ1+3M3rytbqqZXw33KBfWYiIiDrrjjtaTy3mTfz9gZwc+T+4OybjXeHWCXlERASMRiNKSkpc1peUlCA6OrrN51gsFlgsbC2knmEw6DMfIRERERERta83R5DvS2497ZmPjw8mTJiAjIwMxzpVVZGRkeHShZ2IiIiIiIjI07h1CzkALFmyBGlpaUhMTMSkSZPw2muvoaamBg8//LDeRSMiIiIiIiLqNrdPyH/0ox/h0qVLeP7551FcXIxx48Zhx44diHLnIQOJiIio161btw7r1q2DveVAHkRERB7CrUdZ7wkceZWIiNwN66aexeNJRETuprN1k1tfQ05ERERERETkrZiQExEREREREemACTkRERERERGRDpiQExEREREREemACTkRERERERGRDpiQExEREREREemACTkRERERERGRDpiQExEREREREemACTkRERERERGRDpiQExEREREREenApHcBepsQAgBgtVp1LgkREZGk1UlaHUXXhnU9ERG5m87W9V6fkFdVVQEABg0apHNJiIiIXFVVVSE4OFjvYng81vVEROSurlbXK8LLT8+rqorCwkIEBgZCUZRrei2r1YpBgwbh/PnzCAoK6qES6seb4vGmWADvisebYgEYjzvzpFiEEKiqqkJsbCwMBl49dq1Y17eP8bgvb4oF8K54vCkWwLvi8aRYOlvXe30LucFgwMCBA3v0NYOCgtz+C9AV3hSPN8UCeFc83hQLwHjcmafEwpbxnsO6/uoYj/vyplgA74rHm2IBvCseT4mlM3U9T8sTERERERER6YAJOREREREREZEOmJB3gcViwcqVK2GxWPQuSo/wpni8KRbAu+LxplgAxuPOvCkW0o+3fY8Yj/vyplgA74rHm2IBvCseb4pF4/WDuhERERERERG5I7aQExEREREREemACTkRERERERGRDpiQExEREREREemACTkRERERERGRDpiQd8G6desQHx8PX19fJCUlISsrS+8iXdXq1asxceJEBAYGIjIyEjNnzkR+fr7LPvX19UhPT0d4eDj69euHWbNmoaSkRKcSd95LL70ERVHw+OOPO9Z5WiwXL17Ej3/8Y4SHh8PPzw+jR4/GwYMHHduFEHj++ecRExMDPz8/TJ06FadOndKxxO2z2+1YsWIFEhIS4OfnhxtuuAG//vWv0XzcSHeN54svvsAPf/hDxMbGQlEUfPTRRy7bO1Pu8vJypKamIigoCCEhIfj5z3+O6urqPozCqaN4bDYbnnnmGYwePRoBAQGIjY3FT37yExQWFrq8hqfE09KCBQugKApee+01l/XuFA+5N9b17oV1vXvx5Loe8K76nnW999T1TMg76YMPPsCSJUuwcuVKHDp0CGPHjsW0adNQWlqqd9E6tGfPHqSnp+PAgQPYuXMnbDYb7r77btTU1Dj2eeKJJ/Dxxx9j8+bN2LNnDwoLC/HAAw/oWOqry87Oxu9//3uMGTPGZb0nxXLlyhWkpKTAbDZj+/btyMvLw+9+9zuEhoY69nn55Zfxxhtv4J133kFmZiYCAgIwbdo01NfX61jytq1Zswbr16/HW2+9hRMnTmDNmjV4+eWX8eabbzr2cdd4ampqMHbsWKxbt67N7Z0pd2pqKr7++mvs3LkT27ZtwxdffIH58+f3VQguOoqntrYWhw4dwooVK3Do0CF8+OGHyM/Px7333uuyn6fE09yWLVtw4MABxMbGttrmTvGQ+2Jd715Y17Ou72neVN+zrveiul5Qp0yaNEmkp6c7HtvtdhEbGytWr16tY6m6rrS0VAAQe/bsEUIIUVFRIcxms9i8ebNjnxMnTggAYv/+/XoVs0NVVVVi6NChYufOneL2228XixcvFkJ4XizPPPOMmDx5crvbVVUV0dHR4pVXXnGsq6ioEBaLRbz//vt9UcQuueeee8TPfvYzl3UPPPCASE1NFUJ4TjwAxJYtWxyPO1PuvLw8AUBkZ2c79tm+fbtQFEVcvHixz8relpbxtCUrK0sAEGfPnhVCeGY8Fy5cEAMGDBDHjx8XgwcPFq+++qpjmzvHQ+6Fdb37YF3vXnWjxlvqeiG8q75nXe/e8VwNW8g7obGxETk5OZg6dapjncFgwNSpU7F//34dS9Z1lZWVAICwsDAAQE5ODmw2m0tsw4cPR1xcnNvGlp6ejnvuucelzIDnxbJ161YkJibioYceQmRkJMaPH4/33nvPsb2goADFxcUu8QQHByMpKckt47n11luRkZGBkydPAgByc3Oxd+9ezJgxA4DnxaPpTLn379+PkJAQJCYmOvaZOnUqDAYDMjMz+7zMXVVZWQlFURASEgLA8+JRVRXz5s3D0qVLMWrUqFbbPS0e0gfrevfCut4960ZvresB76/vWde7L5PeBfAEZWVlsNvtiIqKclkfFRWFb775RqdSdZ2qqnj88ceRkpKCm2++GQBQXFwMHx8fxx+nJioqCsXFxTqUsmObNm3CoUOHkJ2d3Wqbp8Vy+vRprF+/HkuWLMGzzz6L7OxsPPbYY/Dx8UFaWpqjzG1979wxnmXLlsFqtWL48OEwGo2w2+148cUXkZqaCgAeF4+mM+UuLi5GZGSky3aTyYSwsDC3jg2Q12I+88wzmDt3LoKCggB4Xjxr1qyByWTCY4891uZ2T4uH9MG63n2wrnffeLy1rge8u75nXe9+8TTHhPw6kp6ejuPHj2Pv3r16F6Vbzp8/j8WLF2Pnzp3w9fXVuzjXTFVVJCYm4je/+Q0AYPz48Th+/DjeeecdpKWl6Vy6rvvHP/6BjRs34u9//ztGjRqFI0eO4PHHH0dsbKxHxnM9sNlsmD17NoQQWL9+vd7F6ZacnBy8/vrrOHToEBRF0bs4RLpjXe9eWNeT3ljXuz92We+EiIgIGI3GViN4lpSUIDo6WqdSdc3ChQuxbds27N69GwMHDnSsj46ORmNjIyoqKlz2d8fYcnJyUFpailtuuQUmkwkmkwl79uzBG2+8AZPJhKioKI+JBQBiYmIwcuRIl3UjRozAuXPnAMBRZk/53i1duhTLli3DnDlzMHr0aMybNw9PPPEEVq9eDcDz4tF0ptzR0dGtBn1qampCeXm528amVdBnz57Fzp07HWfMAc+K58svv0RpaSni4uIcvwtnz57Fk08+ifj4eACeFQ/ph3W9e2BdD8djd4zHW+t6wDvre9b17hlPS0zIO8HHxwcTJkxARkaGY52qqsjIyEBycrKOJbs6IQQWLlyILVu2YNeuXUhISHDZPmHCBJjNZpfY8vPzce7cObeLbcqUKTh27BiOHDniuCUmJiI1NdVx31NiAYCUlJRW09KcPHkSgwcPBgAkJCQgOjraJR6r1YrMzEy3jKe2thYGg+tPitFohKqqADwvHk1nyp2cnIyKigrk5OQ49tm1axdUVUVSUlKfl/lqtAr61KlT+OyzzxAeHu6y3ZPimTdvHo4ePeryuxAbG4ulS5fi008/BeBZ8ZB+WNe7B9b17l03emtdD3hffc+63n3jaUXfMeU8x6ZNm4TFYhF//vOfRV5enpg/f74ICQkRxcXFehetQ4888ogIDg4Wn3/+uSgqKnLcamtrHfssWLBAxMXFiV27domDBw+K5ORkkZycrGOpO6/5yKtCeFYsWVlZwmQyiRdffFGcOnVKbNy4Ufj7+4u//e1vjn1eeuklERISIv71r3+Jo0ePivvuu08kJCSIuro6HUvetrS0NDFgwACxbds2UVBQID788EMREREhnn76acc+7hpPVVWVOHz4sDh8+LAAINauXSsOHz7sGIm0M+WePn26GD9+vMjMzBR79+4VQ4cOFXPnznW7eBobG8W9994rBg4cKI4cOeLyu9DQ0OBx8bSl5cirQrhXPOS+WNe7J9b17sOT63ohvKu+Z13vPXU9E/IuePPNN0VcXJzw8fERkyZNEgcOHNC7SFcFoM3bhg0bHPvU1dWJRx99VISGhgp/f39x//33i6KiIv0K3QUtK2lPi+Xjjz8WN998s7BYLGL48OHi3XffddmuqqpYsWKFiIqKEhaLRUyZMkXk5+frVNqOWa1WsXjxYhEXFyd8fX3FkCFDxHPPPefyw++u8ezevbvNv5O0tDQhROfKffnyZTF37lzRr18/ERQUJB5++GFRVVWlQzQdx1NQUNDu78Lu3bs9Lp62tFVJu1M85N5Y17sf1vXuw5PreiG8q75nXe89db0ihBA909ZORERERERERJ3Fa8iJiIiIiIiIdMCEnIiIiIiIiEgHTMiJiIiIiIiIdMCEnIiIiIiIiEgHTMiJiIiIiIiIdMCEnIiIiIiIiEgHTMiJiIiIiIiIdMCEnIiIiIiIiEgHTMiJqFcpioKPPvpI72IQERFRL2J9T9Q9TMiJvNhPf/pTKIrS6jZ9+nS9i0ZEREQ9hPU9kecy6V0AIupd06dPx4YNG1zWWSwWnUpDREREvYH1PZFnYgs5kZezWCyIjo52uYWGhgKQ3cvWr1+PGTNmwM/PD0OGDME///lPl+cfO3YMd911F/z8/BAeHo758+ejurraZZ8//elPGDVqFCwWC2JiYrBw4UKX7WVlZbj//vvh7++PoUOHYuvWrb0bNBER0XWG9T2RZ2JCTnSdW7FiBWbNmoXc3FykpqZizpw5OHHiBACgpqYG06ZNQ2hoKLKzs7F582Z89tlnLhXw+vXrkZ6ejvnz5+PYsWPYunUrbrzxRpf3eOGFFzB79mwcPXoUP/jBD5Camory8vI+jZOIiOh6xvqeyE0JIvJaaWlpwmg0ioCAAJfbiy++KIQQAoBYsGCBy3OSkpLEI488IoQQ4t133xWhoaGiurrasf2TTz4RBoNBFBcXCyGEiI2NFc8991y7ZQAgfvWrXzkeV1dXCwBi+/btPRYnERHR9Yz1PZHn4jXkRF7uzjvvxPr1613WhYWFOe4nJye7bEtOTsaRI0cAACdOnMDYsWMREBDg2J6SkgJVVZGfnw9FUVBYWIgpU6Z0WIYxY8Y47gcEBCAoKAilpaXdDYmIiIhaYH1P5JmYkBN5uYCAgFZdynqKn59fp/Yzm80ujxVFgaqqvVEkIiKi6xLreyLPxGvIia5zBw4caPV4xIgRAIARI0YgNzcXNTU1ju379u2DwWDAsGHDEBgYiPj4eGRkZPRpmYmIiKhrWN8TuSe2kBN5uYaGBhQXF7usM5lMiIiIAABs3rwZiYmJmDx5MjZu3IisrCz88Y9/BACkpqZi5cqVSEtLw6pVq3Dp0iUsWrQI8+bNQ1RUFABg1apVWLBgASIjIzFjxgxUVVVh3759WLRoUd8GSkREdB1jfU/kmZiQE3m5HTt2ICYmxmXdsGHD8M033wCQI6Ju2rQJjz76KGJiYvD+++9j5MiRAAB/f398+umnWLx4MSZOnAh/f3/MmjULa9eudbxWWloa6uvr8eqrr+Kpp55CREQEHnzwwb4LkIiIiFjfE3koRQgh9C4EEelDURRs2bIFM2fO1LsoRERE1EtY3xO5L15DTkRERERERKQDJuREREREREREOmCXdSIiIiIiIiIdsIWciIiIiIiISAdMyImIiIiIiIh0wISciIiIiIiISAdMyImIiIiIiIh0wISciIiIiIiISAdMyImIiIiIiIh0wISciIiIiIiISAdMyImIiIiIiIh08P/sM2bRJMA6ewAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2160,7 +1804,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -2186,9 +1830,63 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "

Run history:


testing_loss▁█
train_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss▂▂▁▃▃▅▄▅█▂▆▅▆▂▂▅▃▂▄▆▄▂▂▆▃▁▂▃▃▃▆▆▁▂▄▆▅▆▆▅

Run summary:


testing_loss1.50811
train_loss0.01481
validation_loss2.09366

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run royal-plant-7 at: https://wandb.ai/ai4s2s-demo/test-LSTM/runs/dvvpfnpa
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230705_105106-dvvpfnpa/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -2221,21 +1919,21 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.436\n" + "The MSE loss is 0.191\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABObklEQVR4nO3deVxU5f4H8M8wyj4Mos4AikjuhPuWUoo3QtRUqqtZlqLeNAOTzET9ZWpaqGmpLVh5A0utvFcxssIQBXfcIjWNlBC9ymIuM4qCOnN+f0yMjgw46AxnhvN5v17zsvOcZ57znZMwX5/tyARBEEBEREQkEU5iB0BERERUm5j8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikpR6Ygdgj/R6Pc6dOweFQgGZTCZ2OERERGQBQRBw5coV+Pv7w8mp6v4dJj9mnDt3DgEBAWKHQURERPfhzJkzaNq0aZXnmfyYoVAoABhunpeXl8jREBERkSW0Wi0CAgKM3+NVYfJjRsVQl5eXF5MfIiIiB3OvKSuc8ExERESSwuSHiIiIJIXJDxEREUkK5/wQETkAnU6Hmzdvih0Gkajq168PuVz+wO0w+SEismOCIKCoqAiXL18WOxQiu+Dt7Q1fX98H2oePyQ8RkR2rSHxUKhXc3d258SpJliAIuHbtGkpKSgAAfn5+990Wkx8iIjul0+mMiU/Dhg3FDodIdG5ubgCAkpISqFSq+x4C44RnIiI7VTHHx93dXeRIiOxHxc/Dg8yBY/JDRGTnONRFdJs1fh447FVb9DqgYDdwtRjwVAOBvQGnB5+xTkRERDUjas9PQkICunfvDoVCAZVKhaioKOTm5prUCQsLg0wmM3m9/PLL1bYrCALeeust+Pn5wc3NDeHh4Thx4oQtP0r1jqUCS0OAVU8C68cZ/lwaYignIiKiWiVq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWmpS76WXXkJhYaHxtWjRomrbXbRoEZYvX44VK1YgOzsbHh4e6N+/P8rKymz5ccw7lgqsGwVoz5mWawsN5UyAiIjuW3R0NKKioozHYWFhiIuLe6A2rdEG2TdRh73S0tJMjpOTk6FSqXDw4EH06dPHWO7u7g5fX1+L2hQEAUuXLsWbb76JoUOHAgC+/PJLqNVqbNy4ESNGjLDeB7gXvQ5IiwcgmIsUgAxImw60HcQhMCKyGZ1ewL78iyi5UgaVwhU9gnwgd7LtPKLo6GisWrUKgGFjumbNmmHUqFGYOXMm6tWz3VfPhg0bUL9+fYvqZmZmol+/frh06RK8vb3vqw1yTHY150ej0QAAfHx8TMrXrFmD1atXw9fXF4MHD8asWbOqXP2Qn5+PoqIihIeHG8uUSiV69uyJPXv2mE1+ysvLUV5ebjzWarXW+DiGOT539/iYEADtWUO9oMesc00iojukHS3E3O+PoVBzu+fbT+mK2YODERly//ukWCIyMhJJSUkoLy/Hjz/+iJiYGNSvXx8zZswwqXfjxg04Oztb5Zp3f3+I1QbZN7tZ7aXX6xEXF4fQ0FCEhIQYy59//nmsXr0a27Ztw4wZM/DVV1/hhRdeqLKdoqIiAIBarTYpV6vVxnN3S0hIgFKpNL4CAgKs8IlgmNxszXpERDWQdrQQE1cfMkl8AKBIU4aJqw8h7WihTa/v4uICX19fBAYGYuLEiQgPD0dqaqpxqOqdd96Bv78/2rRpAwA4c+YMhg8fDm9vb/j4+GDo0KE4deqUsT2dTocpU6bA29sbDRs2xLRp0yAIpj3rdw9ZlZeXIz4+HgEBAXBxcUHLli3x73//G6dOnUK/fv0AAA0aNIBMJkN0dLTZNi5duoRRo0ahQYMGcHd3x4ABA0zmkSYnJ8Pb2xubN29Gu3bt4OnpicjISBQW3r6/mZmZ6NGjBzw8PODt7Y3Q0FAUFBRY6U5TTdlN8hMTE4OjR4/im2++MSkfP348+vfvj/bt22PkyJH48ssvkZKSgry8PKtde8aMGdBoNMbXmTNnrNOwp/redWpSj4jIQjq9gLnfH6ty0B0A5n5/DDq9uRq24ebmhhs3bgAAMjIykJubi/T0dGzatAk3b95E//79oVAosGPHDuzatcuYRFS8Z8mSJUhOTsYXX3yBnTt34uLFi0hJSan2mqNGjcLXX3+N5cuX4/jx4/j000/h6emJgIAArF+/HgCQm5uLwsJCLFu2zGwb0dHROHDgAFJTU7Fnzx4IgoCBAwea7DNz7do1LF68GF999RW2b9+O06dPY+rUqQCAW7duISoqCn379sXhw4exZ88ejB8/nlsYiMguhr1iY2OxadMmbN++HU2bNq22bs+ePQEAJ0+eRIsWLSqdr5gbVFxcbLL1dXFxMTp16mS2TRcXF7i4uNxn9NUI7A14+RsmN5v9FSQznA/sbf1rE5Gk7cu/WKnH504CgEJNGfblX0SvFrbdPVoQBGRkZGDz5s2YNGkSzp8/Dw8PD6xcudI43LV69Wro9XqsXLnSmBQkJSXB29sbmZmZiIiIwNKlSzFjxgw8/fTTAIAVK1Zg8+bNVV73jz/+wLp165Cenm6cCvHQQw8Zz1cMb6lUKpM5P3c6ceIEUlNTsWvXLvTubfhdvWbNGgQEBGDjxo0YNmwYAMOGeytWrDB+L8XGxuLtt98GYJhKodFo8OSTTxrPt2vXruY3kqxG1J4fQRAQGxuLlJQUbN26FUFBQfd8T05ODoCqn+kRFBQEX19fZGRkGMu0Wi2ys7PRq1cvq8RtMSc5ELnw74O7M/y/jyMXcLIzEVldyRXLVrdaWu9+bNq0CZ6ennB1dcWAAQPw7LPPYs6cOQCA9u3bm8zz+fXXX3Hy5EkoFAp4enrC09MTPj4+KCsrQ15eHjQaDQoLC43/AAaAevXqoVu3blVePycnB3K5HH379r3vz3D8+HHUq1fP5LoNGzZEmzZtcPz4cWOZu7u7yT/I/fz8jM+g8vHxQXR0NPr374/Bgwdj2bJlJkNiVPtETX5iYmKwevVqrF27FgqFAkVFRSgqKsL169cBAHl5eZg3bx4OHjyIU6dOITU1FaNGjUKfPn3QoUMHYztt27Y1dn3KZDLExcVh/vz5SE1NxZEjRzBq1Cj4+/ubLIesNcFDgOFfAl53JWte/oby4CG1HxMR1XkqhatV692Pfv36IScnBydOnMD169exatUqeHh4AIDxzwpXr15F165dkZOTY/L6448/8Pzzz9/X9SueA1Ub7l4dJpPJTOYjJSUlYc+ePejduze+/fZbtG7dGnv37q21+MiUqMNeiYmJAAyTy+6UlJSE6OhoODs7Y8uWLVi6dClKS0sREBCAZ555Bm+++aZJ/dzcXONKMQCYNm0aSktLMX78eFy+fBmPPvoo0tLS4Opqux/yagUPMSxn5w7PRFRLegT5wE/piiJNWVWD7vBVGpa924qHhwdatmxpUd0uXbrg22+/hUqlgpeXl9k6fn5+yM7ONm6FcuvWLRw8eBBdunQxW799+/bQ6/XIysoyWQFcoaLnSafTVRlXu3btcOvWLWRnZxuHvS5cuIDc3FwEBwdb9NkqdO7cGZ07d8aMGTPQq1cvrF27Fo888kiN2iDrEDX5uXuW/t0CAgKQlZVV43ZkMhnefvtt43irXXCSczk7EdUauZMMswcHY+LqQ5DBdNZhxSD87MHBNt/vx1IjR47Ee++9h6FDh+Ltt99G06ZNUVBQgA0bNmDatGlo2rQpJk+ejAULFqBVq1Zo27Yt3n//fVy+fLnKNps3b47Ro0dj7NixWL58OTp27IiCggKUlJRg+PDhCAwMhEwmw6ZNmzBw4EC4ubnB09PTpI1WrVph6NCheOmll/Dpp59CoVBg+vTpaNKkiXEvuXvJz8/HZ599hiFDhsDf3x+5ubk4ceIERo0a9SC3jB6A3az2IiIi64oM8UPiC13gqzTt9fZVuiLxhS423+enJtzd3bF9+3Y0a9YMTz/9NNq1a4dx48ahrKzM2BP0+uuv48UXX8To0aPRq1cvKBQKPPXUU9W2m5iYiH/+85945ZVX0LZtW7z00kvGpwg0adIEc+fOxfTp06FWqxEbG2u2jaSkJHTt2hVPPvkkevXqBUEQ8OOPP1q8EaK7uzt+//13PPPMM2jdujXGjx+PmJgYTJgwoQZ3iKxJJtyr+0WCtFotlEolNBpNld2vRES2VlZWhvz8fAQFBT3QsL0YOzwT2Up1PxeWfn/bxVJ3IiKyHbmTzObL2YkcCYe9iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9ERER/mzNnDjp16iR2GAgLC0NcXJzYYdRZTH6IiMjqioqKMHnyZLRs2RKurq5Qq9UIDQ1FYmIirl27JnZ49y0zMxMymazaZ4qJ2R5Zhjs8ExHVdXodULAbuFoMeKqBwN6Ghy3byJ9//onQ0FB4e3vj3XffRfv27eHi4oIjR47gs88+Q5MmTTBkyBCz771586bFz8yyZzdu3DA+NZ7sD3t+iIjqsmOpwNIQYNWTwPpxhj+XhhjKbeSVV15BvXr1cODAAQwfPhzt2rXDQw89hKFDh+KHH37A4MGDjXVlMhkSExMxZMgQeHh44J133gFgeCBpixYt4OzsjDZt2uCrr74yvufUqVOQyWTIyckxll2+fBkymQyZmZkAbveoZGRkoFu3bnB3d0fv3r2Rm5trEuuCBQugVquhUCiMD1KtyqlTp9CvXz8AQIMGDSCTyRAdHQ3AMEwVGxuLuLg4NGrUCP37979nnNW1BwB6vR7Tpk2Dj48PfH19MWfOHEv/F9A9MPkhIqqrjqUC60YB2nOm5dpCQ7kNEqALFy7g559/RkxMDDw8PMzWkclMH6o6Z84cPPXUUzhy5AjGjh2LlJQUTJ48Ga+//jqOHj2KCRMmYMyYMdi2bVuN4/m///s/LFmyBAcOHEC9evUwduxY47l169Zhzpw5ePfdd3HgwAH4+fnhk08+qbKtgIAArF+/HgCQm5uLwsJCLFu2zHh+1apVcHZ2xq5du7BixYp7xmZJex4eHsjOzsaiRYvw9ttvIz09vcb3gCrjsBcRUV2k1wFp8QAEMycFADIgbTrQdpBVh8BOnjwJQRDQpk0bk/JGjRoZe1ViYmKwcOFC47nnn38eY8aMMR4/99xziI6OxiuvvAIAmDJlCvbu3YvFixcbe0os9c4776Bv374AgOnTp2PQoEEoKyuDq6srli5dinHjxmHcuHEAgPnz52PLli1V9v7I5XL4+PgAAFQqFby9vU3Ot2rVCosWLTIenzp1qtrY7tVehw4dMHv2bGPbH330ETIyMvDEE09Y9Nmpauz5ISKqiwp2V+7xMSEA2rOGerVg3759yMnJwcMPP4zy8nKTc926dTM5Pn78OEJDQ03KQkNDcfz48Rpft0OHDsb/9vPzAwCUlJQYr9OzZ0+T+r169arxNSp07dr1vt9rzp2xA4b4K2KnB8OeHyKiuuhqsXXrWahly5aQyWSV5tY89NBDAAA3N7dK76lqeKwqTk6Gf7cLwu1erZs3b5qte+fk6YrhNr1eX6PrWeruz1GTOM25e+K3TCazWexSw54fIqK6yFNt3XoWatiwIZ544gl89NFHKC0tva822rVrh127dpmU7dq1C8HBwQCAxo0bAwAKCwuN5++cVFyT62RnZ5uU7d27t9r3VKzg0ul092zfkjhr0h5ZD3t+iIjqosDegJe/YXKz2Xk/MsP5wN5Wv/Qnn3yC0NBQdOvWDXPmzEGHDh3g5OSE/fv34/fff7/n8NAbb7yB4cOHo3PnzggPD8f333+PDRs2YMuWLQAMvUePPPIIFixYgKCgIJSUlODNN9+scZyTJ09GdHQ0unXrhtDQUKxZswa//fabsZfKnMDAQMhkMmzatAkDBw6Em5sbPD09zda1JM6atEfWw54fIqK6yEkORFZMKpbddfLv48gFNtnvp0WLFvjll18QHh6OGTNmoGPHjujWrRs+/PBDTJ06FfPmzav2/VFRUVi2bBkWL16Mhx9+GJ9++imSkpIQFhZmrPPFF1/g1q1b6Nq1K+Li4jB//vwax/nss89i1qxZmDZtGrp27YqCggJMnDix2vc0adIEc+fOxfTp06FWqxEbG1tt/XvFWdP2yDpkwp2DkQQA0Gq1UCqV0Gg08PLyEjscIpKosrIy5OfnIygoCK6urvfXyLFUw6qvOyc/ezUxJD7B5jcaJLJn1f1cWPr9zWEvIqK6LHiIYTl7Le7wTGTvmPwQEdV1TnIg6DGxoyCyG5zzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqQlFREZ544gl4eHjA29tb7HCsJjMzEzKZDJcvXxY1jjlz5qBTp061fl0mP0REZFXR0dGQyWR4+eWXK52LiYmBTCZDdHR07Qd2Hz744AMUFhYiJycHf/zxh9jh1CqZTIaNGzfabXsPgskPEVEdp9PrsL9oP37880fsL9oPnV5n82sGBATgm2++wfXr141lZWVlWLt2LZo1a2bz61tLXl4eunbtilatWkGlUlmt3Rs3blitLTE56udg8kNEVIdtKdiC/uv7Y+zmsYjfEY+xm8ei//r+2FKwxabX7dKlCwICArBhwwZj2YYNG9CsWTN07tzZpK5er0dCQgKCgoLg5uaGjh074r///a/xvE6nw7hx44zn27Rpg2XLlpm0ER0djaioKCxevBh+fn5o2LAhYmJicPPmzWrjTExMRIsWLeDs7Iw2bdrgq6++Mp5r3rw51q9fjy+//LLa3qpbt27h1Vdfhbe3Nxo2bIj4+HiMHj0aUVFRxjphYWGIjY1FXFwcGjVqhP79+wMAsrKy0KNHD7i4uMDPzw/Tp0/HrVu3TGJYunSpyfU6deqEOXPmGI9lMhlWrlyJp556Cu7u7mjVqhVSU1NN3vPjjz+idevWcHNzQ79+/XDq1Klq70vz5s0BAE899RRkMpnxuGKYauXKlSYPFr1XnFW1V+Grr75C8+bNoVQqMWLECFy5cqXa+B4Ukx8iojpqS8EWTMmcguJrxSblJddKMCVzis0ToLFjxyIpKcl4/MUXX2DMmDGV6iUkJODLL7/EihUr8Ntvv+G1117DCy+8gKysLACG5Khp06b4z3/+g2PHjuGtt97CzJkzsW7dOpN2tm3bhry8PGzbtg2rVq1CcnIykpOTq4wvJSUFkydPxuuvv46jR49iwoQJGDNmDLZt2wYA2L9/PyIjIzF8+HAUFhZWSrgqLFy4EGvWrEFSUhJ27doFrVZrdnhn1apVcHZ2xq5du7BixQqcPXsWAwcORPfu3fHrr78iMTER//73vzF//vx73dpK5s6di+HDh+Pw4cMYOHAgRo4ciYsXLwIAzpw5g6effhqDBw9GTk4O/vWvf2H69OnVtrd//34AQFJSEgoLC43HAHDy5EmsX78eGzZsQE5OjkXxVddeXl4eNm7ciE2bNmHTpk3IysrCggULavLxa06gSjQajQBA0Gg0YodCRBJ2/fp14dixY8L169dr/N5bulvC4+seF0KSQ8y+2ie3F8LXhQu3dLesHvfo0aOFoUOHCiUlJYKLi4tw6tQp4dSpU4Krq6tw/vx5YejQocLo0aMFQRCEsrIywd3dXdi9e7dJG+PGjROee+65Kq8RExMjPPPMMybXDAwMFG7duv15hg0bJjz77LNVttG7d2/hpZdeMikbNmyYMHDgQOPxnbFWRa1WC++9957x+NatW0KzZs2EoUOHGsv69u0rdO7c2eR9M2fOFNq0aSPo9Xpj2ccffyx4enoKOp1OEARBCAwMFD744AOT93Xs2FGYPXu28RiA8OabbxqPr169KgAQfvrpJ0EQBGHGjBlCcHCwSRvx8fECAOHSpUtVfi4AQkpKiknZ7Nmzhfr16wslJSUm5ZbGaa49d3d3QavVGsveeOMNoWfPnlXGVd3PhaXf33yqOxFRHXSo5FClHp87CRBQdK0Ih0oOobtvd5vE0LhxYwwaNAjJyckQBAGDBg1Co0aNTOqcPHkS165dwxNPPGFSfuPGDZPhsY8//hhffPEFTp8+jevXr+PGjRuVVgk9/PDDkMvlxmM/Pz8cOXKkyviOHz+O8ePHm5SFhoZW2cNjjkajQXFxMXr06GEsk8vl6Nq1K/R6vUndrl27Vrp+r169IJPJTK5/9epV/O9//6vR3KgOHToY/9vDwwNeXl4oKSkxXqdnz54m9Xv16mVx23cLDAxE48aN7/v9d2vevDkUCoXx2M/Pzxi7rTD5ISKqg85fO2/Vevdr7NixiI2NBWBIYO529epVAMAPP/yAJk2amJxzcXEBAHzzzTeYOnUqlixZgl69ekGhUOC9995Ddna2Sf369eubHMtkskoJiJg8PDxq/B4nJycYOk1uMzePqTY/u7nPYWmc5ojx/41zfoiI6qDG7pb9y9zSevcrMjISN27cwM2bN42TfO8UHBwMFxcXnD59Gi1btjR5BQQEAAB27dqF3r1745VXXkHnzp3RsmVL5OXlPXBs7dq1w65du0zKdu3aheDgYIvbUCqVUKvVJnNYdDodDh06ZNH19+zZY5I07Nq1CwqFAk2bNgVg6D0rLCw0ntdqtcjPz7c4vorr7Nu3z6Rs796993xf/fr1odNZtjLQkjhr0p6tMfmh2/Q6IH8HcOS/hj9rYTksEdlGF1UXqN3VkEFm9rwMMvi6+6KLqotN45DL5Th+/DiOHTtmMiRVQaFQYOrUqXjttdewatUq5OXl4dChQ/jwww+xatUqAECrVq1w4MABbN68GX/88QdmzZplkmzcrzfeeAPJyclITEzEiRMn8P7772PDhg2YOnVqjdqZNGkSEhIS8N133yE3NxeTJ0/GpUuXTIazzHnllVdw5swZTJo0Cb///ju+++47zJ49G1OmTIGTk+Hr+R//+Ae++uor7NixA0eOHMHo0aPN3sfqvPzyyzhx4gTeeOMN5ObmYu3atdVOBK/QvHlzZGRkoKioCJcuXaq2riVx1qQ9W2PyQwbHUoGlIcCqJ4H14wx/Lg0xlBORw5E7yTG9h2FFz90JUMVxfI94yJ1q9kV6P7y8vODl5VXl+Xnz5mHWrFlISEhAu3btEBkZiR9++AFBQUEAgAkTJuDpp5/Gs88+i549e+LChQt45ZVXHjiuqKgoLFu2DIsXL8bDDz+MTz/9FElJSQgLC6tRO/Hx8XjuuecwatQo9OrVC56enujfv79xGXhVmjRpgh9//BH79u1Dx44d8fLLL2PcuHF48803jXVmzJiBvn374sknn8SgQYMQFRWFFi1a1Ci+Zs2aYf369di4cSM6duyIFStW4N13373n+5YsWYL09HQEBARU2p7gbpbEWZP2bE0m3D1IR9BqtVAqldBoNNX+wNYZx1KBdaMA3P1X4e9fmMO/BIKH1HZURJJXVlaG/Px8k/1UampLwRYs2LfAZPKzr7sv4nvEIzww3Fqh0h30ej3atWuH4cOHY968eWKHU+dU93Nh6fc3JzxLnV4HpMWjcuKDv8tkQNp0oO0goBb+hUhE1hUeGI5+Af1wqOQQzl87j8bujdFF1aVWenykoqCgAD///DP69u2L8vJyfPTRR8jPz8fzzz8vdmhUBSY/UlewG9Ceq6aCAGjPGuoFPVZrYRGR9cid5DZbzk6GlU7JycmYOnUqBEFASEgItmzZgnbt2okdGlVB1Dk/CQkJ6N69OxQKBVQqFaKiopCbm2u2riAIGDBggEUPRqt4qN6dr8jISBt8gjrgatX7gNxXPSIiiQkICMCuXbug0Wig1Wqxe/du9OnTR+ywqBqiJj9ZWVmIiYnB3r17kZ6ejps3byIiIgKlpaWV6i5duvSeM+fvFBkZicLCQuPr66+/tmbodYen2rr1iIiI7Jyow15paWkmx8nJyVCpVDh48KBJ1pyTk4MlS5bgwIED8PPzs6htFxcX+Pr6WlS3vLwc5eXlxmOtVmvR++qEwN6Alz+gLYT5eT8yw/nA3rUdGRH9jetSiG6zxs+DXS1112g0AAAfHx9j2bVr1/D888/j448/tjiZAYDMzEyoVCq0adMGEydOxIULF6qsm5CQAKVSaXxVbKwlCU5yIHLh3wd396z9fRy5gJOdiURQsfPttWvXRI6EyH5U/DzcvTN0TdjNUne9Xo8hQ4bg8uXL2Llzp7F8woQJ0Ol0WLlyJQDDttcpKSmIioqqsq1vvvkG7u7uCAoKQl5eHmbOnAlPT0/s2bPH7OZQ5np+AgICpLPUHTAsd0+LN5387NXEkPhwmTuRaAoLC3H58mWoVCq4u7vXaPifyO4IAnDzGqC7CcjrA/XdAQv/TguCgGvXrqGkpATe3t5mR4Icbql7TEwMjh49apL4pKamYuvWrfjll19q1NaIESOM/92+fXt06NABLVq0QGZmJh5//PFK9V1cXIzPkJGs4CGG5ewFuw2Tmz3VhqEu9vgQiaqix9vWD3oksrmb14DrlwH9rdtlTvUAN29DEmQhb2/vGo0EmWMXyU9sbCw2bdqE7du3G59nAgBbt25FXl4evL29Teo/88wzeOyxx5CZmWlR+w899BAaNWqEkydPmk1+6G9Oci5nJ7IzMpkMfn5+UKlUFj8oksjunNwK/GxuT7mK6RULgZb/uGcz9evXr/HjPcwRNfkRBAGTJk1CSkoKMjMzjVuZV5g+fTr+9a9/mZS1b98eH3zwAQYPHmzxdf73v//hwoULFk+WJiKyN3K53Cq/9IlqnV4H/Pw6cLWqPeVkwM9TgeAjtTbaIOqE55iYGKxevRpr166FQqFAUVERioqKcP36dQCG7t6QkBCTF2B4TsmdiVLbtm2RkpICALh69SreeOMN7N27F6dOnUJGRgaGDh2Kli1bmn2iMBEREdlQTTbTrSWiJj+JiYnQaDQICwuDn5+f8fXtt9/WqJ3c3FzjSjG5XI7Dhw9jyJAhaN26NcaNG4euXbtix44dnNdDRERU2+xwM13Rh72s8Z47y9zc3LB58+YHiouIiIisxA4307WrfX6IiIiojqnYTLfSXnIVZIatVWpxM10mP0RERGQ7driZLpMfIiIisq3gIcDwLwGvu1Zde/kbymt5M1272OeHiIiI6jg72kyXyQ8RERHVDjvZTJfDXkRERCQpTH6IiIhIUpj8EBERkaRwzg8R0f3S6+xi8iYR1QyTHyKi+3EsFUiLN31mkZe/YT+TWl62S0Q1w2EvIqKaOpYKrBtV+WGN2kJD+bFUceIiIosw+SEiqgm9ztDjA3PPJvy7LG26oR4R2SUmP0RENVGwu3KPjwkB0J411CMiu8Tkh4ioJq4WW7ceEdU6Jj9ERDXhqbZuPSKqdUx+iIhqIrC3YVVXpadTV5ABXk0M9YjILjH5ISKqCSe5YTk7gMoJ0N/HkQu43w+RHWPyQ0RUU8FDgOFfAl5+puVe/oZy7vNDZNe4ySER0f0IHgK0HcQdnokcEJMfIqL75SQHgh4TOwoiqiEOexEREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFJETX4SEhLQvXt3KBQKqFQqREVFITc312xdQRAwYMAAyGQybNy4sdp2BUHAW2+9BT8/P7i5uSE8PBwnTpywwScgIiIiRyNq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWlqp7tKlSyGTySxqd9GiRVi+fDlWrFiB7OxseHh4oH///igrK7P2RyAiIiIHIxMEQRA7iArnz5+HSqVCVlYW+vTpYyzPycnBk08+iQMHDsDPzw8pKSmIiooy24YgCPD398frr7+OqVOnAgA0Gg3UajWSk5MxYsSISu8pLy9HeXm58Vir1SIgIAAajQZeXl7W/ZBERERkE1qtFkql8p7f33Y150ej0QAAfHx8jGXXrl3D888/j48//hi+vr73bCM/Px9FRUUIDw83limVSvTs2RN79uwx+56EhAQolUrjKyAg4AE/CREREdkru0l+9Ho94uLiEBoaipCQEGP5a6+9ht69e2Po0KEWtVNUVAQAUKvVJuVqtdp47m4zZsyARqMxvs6cOXOfn4KIiIjsXT2xA6gQExODo0ePYufOncay1NRUbN26Fb/88otNr+3i4gIXFxebXoOIiIjsg130/MTGxmLTpk3Ytm0bmjZtaizfunUr8vLy4O3tjXr16qFePUOu9swzzyAsLMxsWxVDY8XFxSblxcXFFg2bERERUd0mavIjCAJiY2ORkpKCrVu3IigoyOT89OnTcfjwYeTk5BhfAPDBBx8gKSnJbJtBQUHw9fVFRkaGsUyr1SI7Oxu9evWy2WchIiIixyDqsFdMTAzWrl2L7777DgqFwjgnR6lUws3NDb6+vmZ7a5o1a2aSKLVt2xYJCQl46qmnIJPJEBcXh/nz56NVq1YICgrCrFmz4O/vX+UKMSIiIpIOUZOfxMREAKg0hJWUlITo6GiL28nNzTWuFAOAadOmobS0FOPHj8fly5fx6KOPIi0tDa6urtYIm4iIiByYXe3zYy8s3SeAiIiI7IdD7vNDREREZGtMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCn1xA6AiIgkTq8DCnYDV4sBTzUQ2BtwkosdFdVhTH6IiEg8x1KBtHhAe+52mZc/ELkQCB4iXlxUp3HYi4iIxHEsFVg3yjTxAQBtoaH8WKo4cTkqvQ7I3wEc+a/hT71O7IjsFnt+iIio9ul1hh4fCGZOCgBkQNp0oO0gDoFZgj1oNcKeHyIiqn0Fuyv3+JgQAO1ZQz2qHnvQaozJDxER1b6rxdatJ1X37EGDoQeNQ2AmmPwQEVHt81Rbt55UsQftvnDOTy3R6XU4VHII56+dR2P3xuii6gK5nY1jO0SMt27g0JGvcF57Go29mqFL+xchr+csdlgmHOI+MkarYIwPILC3YU6KthA6CDjk6oLzcjka63ToUlYOOWSG84G9xY4UgB3fxzt6xnSAmftYuZ6Y7OU+MvmpBVsKtmDBvgUovnb7L5/aXY3pPaYjPDBcxMhuc4gYdyZgwR9rUCyXGcvUv3yA6a1HIvzRGSJGdptD3EfGaBWM8QE5yYHIhdiyaQIWNPRGcb3bX0fqW7cw/cJlhEcusIvJznZ9H//uGdvi7oYFDRuYuY+XEH7tul30oNnTfZQJgmBuoFDStFotlEolNBoNvLy8HqitLQVbMCVzCoS7xmNlMHyBvx/2vug/PA4R484ETDm5xhCh7HbyI/v7r+/7LcVPgBziPjJGq2CM1mGI8TUIglD551omw/thH9hJjHZ8H/U6bPmkPaZ4OlX9+/GqHuGvHBE1kayt+2jp9/cDzfkpKyvDqlWr8Mknn+DEiRMP0lSdpNPrsGDfgkr/swEYyxbuWwidiBPRHCLGWzew4I/KiQ8ACH8fL/xjDXS3btR+cH9ziPvIGK2CMVrH7RhRxc+1zI5itOP7CGCBT4Pqfz829IGY053t8T5anPxMmTIFkyZNMh7fuHEDvXr1wksvvYSZM2eic+fO2LNnT40unpCQgO7du0OhUEClUiEqKgq5ubkmdSZMmIAWLVrAzc0NjRs3xtChQ/H7779X2250dDRkMpnJKzIyskaxWcOhkkMm3Xt3EyCg6FoRDpUcqsWoTDlEjEe+Mgx13fWDXUGQyVAkl+HQka9qObLbHOI+MkarYIzWwRit41DJIRTf1Fb/+/GGRvwY7ew+Wpz8/Pzzz3jiiSeMx2vWrEFBQQFOnDiBS5cuYdiwYZg/f36NLp6VlYWYmBjs3bsX6enpuHnzJiIiIlBaWmqs07VrVyQlJeH48ePYvHkzBEFAREQEdLrqM8TIyEgUFhYaX19//XWNYrOG89fOW7WeLThEjNrTVq1nCw5xHxmjVTBG62CM1sEY74/FE55Pnz6N4OBg4/HPP/+Mf/7znwgMDAQATJ48GQMHDqzRxdPS0kyOk5OToVKpcPDgQfTp0wcAMH78eOP55s2bY/78+ejYsSNOnTqFFi1aVNm2i4sLfH19axSPtTV2b2zVerbgEDF6NbNqPVtwiPvIGK2CMVoHY7QOxnh/LO75cXJywp1zo/fu3YtHHnnEeOzt7Y1Lly49UDAajQYA4OPjY/Z8aWkpkpKSEBQUhICAgGrbyszMhEqlQps2bTBx4kRcuHChyrrl5eXQarUmL2voouoCtbvaOKHrbjLI4Ovuiy6qLla53v1wiBjbvwi1TjBO3rubTBDgqxPQpf2LtRzZbQ5xHxmjVTBG62CM1sEY74/FyU+7du3w/fffAwB+++03nD59Gv369TOeLygogFp9/0vp9Ho94uLiEBoaipCQEJNzn3zyCTw9PeHp6YmffvoJ6enpcHauem+XyMhIfPnll8jIyMDChQuRlZWFAQMGVDlUlpCQAKVSaXzdK7GylNxJjuk9pgNApf/pFcfxPeJF3SvCIWKs54zprUcaYrorAao4jm89UtT9fhziPjJGq2CM1sEYrYMx3h+Ll7qnpKRgxIgRePTRR/Hbb7+he/fuxmQIAOLj45Gfn49169bdVyATJ07ETz/9hJ07d6Jp06Ym5zQaDUpKSlBYWIjFixfj7Nmz2LVrF1xdXS1q+88//0SLFi2wZcsWPP7445XOl5eXo7y83His1WoREBBglaXugPm9DXzdfRHfI170ZZwVHCJGM/v8+OoExNv5Pj92dx8Zo1UwRutgjNbBGA0sXepeo31+MjIysGnTJvj6+mLSpElwd3c3nps7dy769u2LsLCwGgcbGxuL7777Dtu3b0dQUFC1dW/cuIEGDRpg5cqVeO655yy+RuPGjTF//nxMmDDhnnWtuc9PBXvZ1bI6DhEjd3i2CsZoHYzROhijdTBGGyQ/b7/9NqZOnWqS8DwoQRAwadIkpKSkIDMzE61atbrne8rLy9GgQQN88skniI6Otug6//vf/9CsWTNs3LgRQ4YMuWd9WyQ/REREZFtW3+Rw7ty5uHr1qlWCqxATE4PVq1dj7dq1UCgUKCoqQlFREa5fvw7AMFyVkJCAgwcP4vTp09i9ezeGDRsGNzc3k5Vlbdu2RUpKCgDg6tWreOONN7B3716cOnUKGRkZGDp0KFq2bIn+/ftbNX4iIiJyPBYnP7Z4CkZiYiI0Gg3CwsLg5+dnfH377bcAAFdXV+zYsQMDBw5Ey5Yt8eyzz0KhUGD37t1QqVTGdnJzc40rxeRyOQ4fPowhQ4agdevWGDduHLp27YodO3bAxcXF6p+BiIiIHIvFw15OTk4oLi5G48bi7RVQWzjsRUREJvQ6oGC34enonmrD0+btbD4NWf79XaOnurdu3RqyKrbQrnDx4sWaNElERGTfjqUCafGA9tztMi9/IHIhEHzveaRkf2qU/MydOxdKpdJWsRAREdmXY6nAulHA3Q/l1BYayod/yQTIAdUo+RkxYoTJXBsiIqI6S68z9PiYeRq5oUwGpE0H2g7iEJiDsXjC872Gu4iIiOqUgt2mQ12VCID2rKEeORRRV3sRERHZravF965Tk3pkNywe9tLr9baMg4iIyL54Wvi8Skvrkd2wuOeHiIhIUgJ7G1Z1VfE0ckAGeDUx1COHwuSHiIjIHCe5YTk7gMoJ0N/HkQs42dkBMfkhIiKqSvAQw3J2Lz/Tci9/LnN3YDVa6k5ERCQ5wUMMy9m5w3OdweSHiIjoXpzkQNBjYkdBVsJhLyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUUZOfhIQEdO/eHQqFAiqVClFRUcjNzTWpM2HCBLRo0QJubm5o3Lgxhg4dit9//73adgVBwFtvvQU/Pz+4ubkhPDwcJ06csOVHISIiIgchavKTlZWFmJgY7N27F+np6bh58yYiIiJQWlpqrNO1a1ckJSXh+PHj2Lx5MwRBQEREBHQ6XZXtLlq0CMuXL8eKFSuQnZ0NDw8P9O/fH2VlZbXxsYiIiMiOyQRBEMQOosL58+ehUqmQlZWFPn36mK1z+PBhdOzYESdPnkSLFi0qnRcEAf7+/nj99dcxdepUAIBGo4FarUZycjJGjBhxzzi0Wi2USiU0Gg28vLwe7EMRERFRrbD0+9uu5vxoNBoAgI+Pj9nzpaWlSEpKQlBQEAICAszWyc/PR1FREcLDw41lSqUSPXv2xJ49e8y+p7y8HFqt1uRFREREdZPdJD96vR5xcXEIDQ1FSEiIyblPPvkEnp6e8PT0xE8//YT09HQ4OzubbaeoqAgAoFarTcrVarXx3N0SEhKgVCqNr6oSKyIiInJ8dpP8xMTE4OjRo/jmm28qnRs5ciR++eUXZGVloXXr1hg+fLhV5+/MmDEDGo3G+Dpz5ozV2iYiIiL7Uk/sAAAgNjYWmzZtwvbt29G0adNK5yt6ZFq1aoVHHnkEDRo0QEpKCp577rlKdX19fQEAxcXF8PPzM5YXFxejU6dOZq/v4uICFxcX63wYIiIismui9vwIgoDY2FikpKRg69atCAoKsug9giCgvLzc7PmgoCD4+voiIyPDWKbVapGdnY1evXpZLXYiIiJyTKImPzExMVi9ejXWrl0LhUKBoqIiFBUV4fr16wCAP//8EwkJCTh48CBOnz6N3bt3Y9iwYXBzc8PAgQON7bRt2xYpKSkAAJlMhri4OMyfPx+pqak4cuQIRo0aBX9/f0RFRYnxMYmIiMiOiDrslZiYCAAICwszKU9KSkJ0dDRcXV2xY8cOLF26FJcuXYJarUafPn2we/duqFQqY/3c3FzjSjEAmDZtGkpLSzF+/HhcvnwZjz76KNLS0uDq6lorn4uIiIjsl13t82MvuM8PERGR43HIfX6IiIiIbI3JDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhS7GKHZyIiIqr7dHoB+/IvouRKGVQKV/QI8oHcSVbrcTD5ISIiIptLO1qIud8fQ6Hm9rM5/ZSumD04GJEhftW80/o47EVERFQH6PQC9uRdwHc5Z7En7wJ0evvZxi/taCEmrj5kkvgAQJGmDBNXH0La0cJajYc9P0RERA7OnnpV7qbTC5j7/TGYS8UEADIAc78/hieCfWttCIw9P0RERA7M3npV7rYv/2Kl2O4kACjUlGFf/sVai4nJD5EE2XP3OBFZ7l69KoChV0XMn/GSK1UnPvdTzxo47EVkbXodULAbuFoMeKqBwN6Ak1zsqIzsuXuciGqmJr0qvVo0rL3A7qBSWPZQcUvrWQOTHyJrOpYKpMUD2nO3y7z8gciFQPAQ8eL6W0X3+N3/BqzoHk98oQsTICIHYo+9KnfrEeQDP6UrijRlZnuoZAB8lYZl77WFw15E1nIsFVg3yjTxAQBtoaH8WKo4cf3NEbrHiahm7LFX5W5yJxlmDw4GYEh07lRxPHtwcK3u98Pkh8ga9DpDj091qUXadEM9kdjjpEMiejAVvSpVpQ0yGIa1a7NXxZzIED8kvtAFvkrTJMxX6SpKjzOHvYisoWB35R4fEwKgPWuoF/RYrYV1J0foHieimqnoVZm4+hBkMP3nl1i9KlWJDPHDE8G+3OGZqM64WmzdejbgCN3jRFRzFb0qdy9k8LXDhQxyJ5loE6/vxOSHyBo81datZwP2OOmQCLCf5z05MnvqVXEETH6IrCGwt2FVl7YQ5uf9yAznA3vXdmRGjtQ9TtLBrResx156VRwBJzwTWYOT3LCcHUCV6xkiF4i+34+9TTokabP3nYmp7pIJgsB1rXfRarVQKpXQaDTw8vISOxxyJGb3+WliSHzsYJ+fChxmILHp9AIeXbi1yhWIFcOwO+P/wb+bZDFLv7857EVkTcFDgLaD7HqHZ4Dd4yQ+R9iZmOouJj9E1uYkF205O5Gj4NYLJCbO+SEiolrHrRdITOz5ISL7ZOcPiKUHw60XSExMfojI/tj5A2LpwXHrBRITh72IyL7Y+QNiyXq49QKJhUvdzeBSdyKR6HXA0pBqnpP292aRcUc4BFaHcOsFshYudScix+MAD4gl6+PWC1TbOOxFRPbDAR4QS0SOjz0/RFbGLvwH4AAPiCUix8fkh8iK+JDGB+QAD4glIsfHYS8iK+FDGq3AQR4QS0SOjckPkRXo9ALmfn/MbF9FRdnc749Bp+fiynsKHgIM/xLwuqunzMvfUG5H+/zo9AL25F3AdzlnsSfvAv//EjkIDnsRWQEf0mhlDvCAWA5xEjkuJj9EVsCHNNqAHT8gtmKI8+5+noohTm7QR2TfOOxFZAV8SKN0cIiTyPEx+SGygoqHNFa1oF0Gw5AIH9Lo+GoyxElE9onJD5EVVDykEahyjRIf0lhHcIhTmji5vW7hnB9yKPa8gWDFQxrvngTry0mwdQqHOKWHk9vrHiY/5DAc4RdQZIgfngj2tdsEjR5cxRBnkaasqm0Y4cshzjqDk9vrJg57kUNwpA0EKx7SOLRTE/Rq0ZCJTx3DIU7p4OT2uovJD9k9/gKyAb0OyN8BHPmv4U+9TuyIHErFEKev0nRoy1fpyp6AOoST2+suDnuR3eMGglZ2LBVIiwe0526XefkbHithR7sn2zsOcdZ9nNxed4na85OQkIDu3btDoVBApVIhKioKubm5xvMXL17EpEmT0KZNG7i5uaFZs2Z49dVXodFoqm03OjoaMpnM5BUZGWnrj0M2wl9AVnQsFVg3yjTxAQwPEl03ynCeLOYIQ5xcpXT/OLm97hK15ycrKwsxMTHo3r07bt26hZkzZyIiIgLHjh2Dh4cHzp07h3PnzmHx4sUIDg5GQUEBXn75ZZw7dw7//e9/q207MjISSUlJxmMXFxdbfxyyEf4CshK9ztDjU+UAogxIm254rIQdPUaC7p8jLBKwZ5zcXneJmvykpaWZHCcnJ0OlUuHgwYPo06cPQkJCsH79euP5Fi1a4J133sELL7yAW7duoV69qsN3cXGBr6+vzWKn2sNfQFZSsLtyj48JAdCeNdSz08dKkOW4SunBVUxun7j6EGQw/WcDJ7c7Nrua8FwxnOXjU/WXmEajgZeXV7WJDwBkZmZCpVKhTZs2mDhxIi5cuFBl3fLycmi1WpMX2Q+urrGSq8XWrUd2i4sErIeT2+smu5nwrNfrERcXh9DQUISEhJit89dff2HevHkYP358tW1FRkbi6aefRlBQEPLy8jBz5kwMGDAAe/bsgVxeuTs/ISEBc+fOtcrnINvgBoJW4Km2bj2yW1wkYF2c3F73yARBsIvUf+LEifjpp5+wc+dONG3atNJ5rVaLJ554Aj4+PkhNTUX9+vUtbvvPP/9EixYtsGXLFjz++OOVzpeXl6O8vNzkWgEBAcZeJrIf9rzDs93T64ClIYbJzVUNIHr5A3FHOOfHwX2XcxaTv8m5Z71lIzphaKcmtg+IqJZotVoolcp7fn/bRc9PbGwsNm3ahO3bt5tNfK5cuYLIyEgoFAqkpKTUKPEBgIceegiNGjXCyZMnzSY/Li4unBDtICpW19B9cJIblrOvGwVUNYMhcgETnzqAiwSIqifqnB9BEBAbG4uUlBRs3boVQUFBlepotVpERETA2dkZqampcHWt+Q/r//73P1y4cAF+fhwaIYkLHgIM/xLwuutnwcvfUM59fuqEikUCVfWJymBY9cVFAiRVog57vfLKK1i7di2+++47tGnTxliuVCrh5uZmTHyuXbuGlJQUeHh4GOs0btzYOH+nbdu2SEhIwFNPPYWrV69i7ty5eOaZZ+Dr64u8vDxMmzYNV65cwZEjRyzq4bG026yu4ZCShOh1hlVdV4sNc3wCe7PHp46pWO0FmF+lxMm6VBdZ+v0tavIjk5n/Yk1KSkJ0dDQyMzPRr18/s3Xy8/PRvHlzYzsV77l+/TqioqLwyy+/4PLly/D390dERATmzZsHtdqyiZxSTH64HwhR3cOfa5Iah0h+7JXUkp+q9gPhvxCJHB97dElKHGrCM4nnXvuByGDYD+SJYF/+wiRyQFwkQFSZXW1ySLWPTy0mIiKpYfIjcXxoKBERSQ2TH4njfiBERCQ1TH4kjvuBEBGR1DD5kTg+NJSIiKSGyQ/xqcVERCQpXOpOAPjUYiIikg4mP2TE/UCIiEgKmPwQkV3izsREZCtMfojI7vCZVERkS5zwTER2peJZc3fvPF6kKcPE1YeQdrRQpMiIqK5g8kNEduNez5oDDM+a0+n5PGYiun9MfmqJTi9gT94FfJdzFnvyLvCXN5EZfNYcEdUGzvmpBZy/QGQZPmuOiGoDe35sjPMXiCzHZ80RUW1g8mNDnL9AVDN81hwR1QYmPzbE+QtENcNnzRFRbWDyY0Ocv0BUc3zWHBHZGic82xDnLxDdHz5rjohsicmPDVXMXyjSlJmd9yOD4V+znL9AVBmfNUdEtsJhLxvi/AUiIiL7w+THxjh/gYiIyL5w2KsWcP4CERGR/WDyU0s4f4GIiMg+cNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj8JCQno3r07FAoFVCoVoqKikJubazx/8eJFTJo0CW3atIGbmxuaNWuGV199FRqNptp2BUHAW2+9BT8/P7i5uSE8PBwnTpyw9cchIiIiByBq8pOVlYWYmBjs3bsX6enpuHnzJiIiIlBaWgoAOHfuHM6dO4fFixfj6NGjSE5ORlpaGsaNG1dtu4sWLcLy5cuxYsUKZGdnw8PDA/3790dZWVltfCwiIiKyYzJBEASxg6hw/vx5qFQqZGVloU+fPmbr/Oc//8ELL7yA0tJS1KtXr9J5QRDg7++P119/HVOnTgUAaDQaqNVqJCcnY8SIEZXeU15ejvLycuOxVqtFQEAANBoNvLy8rPTpiIiIyJa0Wi2USuU9v7/tas5PxXCWj49PtXW8vLzMJj4AkJ+fj6KiIoSHhxvLlEolevbsiT179ph9T0JCApRKpfEVEBDwAJ+CiMiO6HVA/g7gyH8Nf+p1YkdEJDrzGYQI9Ho94uLiEBoaipCQELN1/vrrL8ybNw/jx4+vsp2ioiIAgFqtNilXq9XGc3ebMWMGpkyZYjyu6PkhInJox1KBtHhAe+52mZc/ELkQCB4iXlxEIrOb5CcmJgZHjx7Fzp07zZ7XarUYNGgQgoODMWfOHKte28XFBS4uLlZtk4hIVMdSgXWjANw1s0FbaCgf/iUTIJIsuxj2io2NxaZNm7Bt2zY0bdq00vkrV64gMjISCoUCKSkpqF+/fpVt+fr6AgCKi4tNyouLi43niIjqNL3O0ONzd+ID3C5Lm84hMJIsUZMfQRAQGxuLlJQUbN26FUFBQZXqaLVaREREwNnZGampqXB1da22zaCgIPj6+iIjI8OkjezsbPTq1cvqn4GIyO4U7DYd6qpEALRnDfWIJEjU5CcmJgarV6/G2rVroVAoUFRUhKKiIly/fh3A7cSntLQU//73v6HVao11dLrb/2Jp27YtUlJSAAAymQxxcXGYP38+UlNTceTIEYwaNQr+/v6IiooS42MSEdWuq8X3rlOTekR1jKhzfhITEwEAYWFhJuVJSUmIjo7GoUOHkJ2dDQBo2bKlSZ38/Hw0b94cAJCbm2uy8eG0adNQWlqK8ePH4/Lly3j00UeRlpZ2z14jIqI6wVN97zo1qUdUx9jVPj/2wtJ9AoiI7JJeBywNMUxuNjvvR2ZY9RV3BHCS13Z0RDbjkPv8EBGRFTjJDcvZAQCyu07+fRy5gIkPSRaTHyKiuih4iGE5u5efabmXP5e5k+TZzT4/RERkZcFDgLaDDKu6rhYb5vgE9maPD0kekx8iorrMSQ4EPSZ2FER2hcNeREREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCnc4dmMigfda7VakSMhIiIiS1V8b1d8j1eFyY8ZV65cAQAEBASIHAkRERHV1JUrV6BUKqs8LxPulR5JkF6vx7lz56BQKCCTyazWrlarRUBAAM6cOQMvLy+rtSs1vI/WwftoHbyP1sH7aB1Sv4+CIODKlSvw9/eHk1PVM3vY82OGk5MTmjZtarP2vby8JPmX0tp4H62D99E6eB+tg/fROqR8H6vr8anACc9EREQkKUx+iIiISFKY/NQiFxcXzJ49Gy4uLmKH4tB4H62D99E6eB+tg/fROngfLcMJz0RERCQp7PkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTn1r08ccfo3nz5nB1dUXPnj2xb98+sUNyKAkJCejevTsUCgVUKhWioqKQm5srdlgOb8GCBZDJZIiLixM7FIdz9uxZvPDCC2jYsCHc3NzQvn17HDhwQOywHIpOp8OsWbMQFBQENzc3tGjRAvPmzbvns5mkbvv27Rg8eDD8/f0hk8mwceNGk/OCIOCtt96Cn58f3NzcEB4ejhMnTogTrB1i8lNLvv32W0yZMgWzZ8/GoUOH0LFjR/Tv3x8lJSVih+YwsrKyEBMTg7179yI9PR03b95EREQESktLxQ7NYe3fvx+ffvopOnToIHYoDufSpUsIDQ1F/fr18dNPP+HYsWNYsmQJGjRoIHZoDmXhwoVITEzERx99hOPHj2PhwoVYtGgRPvzwQ7FDs2ulpaXo2LEjPv74Y7PnFy1ahOXLl2PFihXIzs6Gh4cH+vfvj7KyslqO1E4JVCt69OghxMTEGI91Op3g7+8vJCQkiBiVYyspKREACFlZWWKH4pCuXLkitGrVSkhPTxf69u0rTJ48WeyQHEp8fLzw6KOPih2Gwxs0aJAwduxYk7Knn35aGDlypEgROR4AQkpKivFYr9cLvr6+wnvvvWcsu3z5suDi4iJ8/fXXIkRof9jzUwtu3LiBgwcPIjw83Fjm5OSE8PBw7NmzR8TIHJtGowEA+Pj4iByJY4qJicGgQYNM/l6S5VJTU9GtWzcMGzYMKpUKnTt3xueffy52WA6nd+/eyMjIwB9//AEA+PXXX7Fz504MGDBA5MgcV35+PoqKikx+tpVKJXr27MnvnL/xwaa14K+//oJOp4NarTYpV6vV+P3330WKyrHp9XrExcUhNDQUISEhYofjcL755hscOnQI+/fvFzsUh/Xnn38iMTERU6ZMwcyZM7F//368+uqrcHZ2xujRo8UOz2FMnz4dWq0Wbdu2hVwuh06nwzvvvIORI0eKHZrDKioqAgCz3zkV56SOyQ85pJiYGBw9ehQ7d+4UOxSHc+bMGUyePBnp6elwdXUVOxyHpdfr0a1bN7z77rsAgM6dO+Po0aNYsWIFk58aWLduHdasWYO1a9fi4YcfRk5ODuLi4uDv78/7SDbDYa9a0KhRI8jlchQXF5uUFxcXw9fXV6SoHFdsbCw2bdqEbdu2oWnTpmKH43AOHjyIkpISdOnSBfXq1UO9evWQlZWF5cuXo169etDpdGKH6BD8/PwQHBxsUtauXTucPn1apIgc0xtvvIHp06djxIgRaN++PV588UW89tprSEhIEDs0h1XxvcLvnKox+akFzs7O6Nq1KzIyMoxler0eGRkZ6NWrl4iRORZBEBAbG4uUlBRs3boVQUFBYofkkB5//HEcOXIEOTk5xle3bt0wcuRI5OTkQC6Xix2iQwgNDa201cIff/yBwMBAkSJyTNeuXYOTk+lXkVwuh16vFykixxcUFARfX1+T7xytVovs7Gx+5/yNw161ZMqUKRg9ejS6deuGHj16YOnSpSgtLcWYMWPEDs1hxMTEYO3atfjuu++gUCiMY9dKpRJubm4iR+c4FApFpXlSHh4eaNiwIedP1cBrr72G3r17491338Xw4cOxb98+fPbZZ/jss8/EDs2hDB48GO+88w6aNWuGhx9+GL/88gvef/99jB07VuzQ7NrVq1dx8uRJ43F+fj5ycnLg4+ODZs2aIS4uDvPnz0erVq0QFBSEWbNmwd/fH1FRUeIFbU/EXm4mJR9++KHQrFkzwdnZWejRo4ewd+9esUNyKADMvpKSksQOzeFxqfv9+f7774WQkBDBxcVFaNu2rfDZZ5+JHZLD0Wq1wuTJk4VmzZoJrq6uwkMPPST83//9n1BeXi52aHZt27ZtZn8fjh49WhAEw3L3WbNmCWq1WnBxcREef/xxITc3V9yg7YhMELiNJhEREUkH5/wQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQkeRER0dzm38iCWPyQ0Q2ER0dDZlMVukVGRkpdmhYtmwZkpOTxQ4DACCTybBx40axwyCSFD7YlIhsJjIyEklJSSZlLi4uIkUD6HQ6yGQyKJVK0WIgIvGx54eIbMbFxQW+vr4mrwYNGiAzMxPOzs7YsWOHse6iRYugUqlQXFwMAAgLC0NsbCxiY2OhVCrRqFEjzJo1C3c+jrC8vBxTp05FkyZN4OHhgZ49eyIzM9N4Pjk5Gd7e3khNTUVwcDBcXFxw+vTpSsNeYWFhmDRpEuLi4tCgQQOo1Wp8/vnnKC0txZgxY6BQKNCyZUv89NNPJp/v6NGjGDBgADw9PaFWq/Hiiy/ir7/+Mmn31VdfxbRp0+Dj4wNfX1/MmTPHeL558+YAgKeeegoymcx4TES2xeSHiGpdWFgY4uLi8OKLL0Kj0eCXX37BrFmzsHLlSqjVamO9VatWoV69eti3bx+WLVuG999/HytXrjSej42NxZ49e/DNN9/g8OHDGDZsGCIjI3HixAljnWvXrmHhwoVYuXIlfvvtN6hUKrMxrVq1Co0aNcK+ffswadIkTJw4EcOGDUPv3r1x6NAhRERE4MUXX8S1a9cAAJcvX8Y//vEPdO7cGQcOHEBaWhqKi4sxfPjwSu16eHggOzsbixYtwttvv4309HQAwP79+wEASUlJKCwsNB4TkY2J/FR5IqqjRo8eLcjlcsHDw8Pk9c477wiCIAjl5eVCp06dhOHDhwvBwcHCSy+9ZPL+vn37Cu3atRP0er2xLD4+XmjXrp0gCIJQUFAgyOVy4ezZsybve/zxx4UZM2YIgiAISUlJAgAhJyenUmxDhw41udajjz5qPL5165bg4eEhvPjii8aywsJCAYCwZ88eQRAEYd68eUJERIRJu2fOnBEACLm5uWbbFQRB6N69uxAfH288BiCkpKRUcReJyBY454eIbKZfv35ITEw0KfPx8QEAODs7Y82aNejQoQMCAwPxwQcfVHr/I488AplMZjzu1asXlixZAp1OhyNHjkCn06F169Ym7ykvL0fDhg2Nx87OzujQocM9Y72zjlwuR8OGDdG+fXtjWUWPVElJCQDg119/xbZt2+Dp6Vmprby8PGNcd1/bz8/P2AYRiYPJDxHZjIeHB1q2bFnl+d27dwMALl68iIsXL8LDw8Pitq9evQq5XI6DBw9CLpebnLszIXFzczNJoKpSv359k2OZTGZSVtGGXq83Xn/w4MFYuHBhpbb8/PyqbbeiDSISB5MfIhJFXl4eXnvtNXz++ef49ttvMXr0aGzZsgVOTrenImZnZ5u8Z+/evWjVqhXkcjk6d+4MnU6HkpISPPbYY7UdPrp06YL169ejefPmqFfv/n+V1q9fHzqdzoqREdG9cMIzEdlMeXk5ioqKTF5//fUXdDodXnjhBfTv3x9jxoxBUlISDh8+jCVLlpi8//Tp05gyZQpyc3Px9ddf48MPP8TkyZMBAK1bt8bIkSMxatQobNiwAfn5+di3bx8SEhLwww8/2PyzxcTE4OLFi3juueewf/9+5OXlYfPmzRgzZkyNkpnmzZsjIyMDRUVFuHTpkg0jJqIK7PkhIptJS0szGQICgDZt2uD5559HQUEBNm3aBMAwTPTZZ5/hueeeQ0REBDp27AgAGDVqFK5fv44ePXpALpdj8uTJGD9+vLGtpKQkzJ8/H6+//jrOnj2LRo0a4ZFHHsGTTz5p88/m7++PXbt2IT4+HhERESgvL0dgYCAiIyNNeq/uZcmSJZgyZQo+//xzNGnSBKdOnbJd0EQEAJAJwh2bZhAR2YmwsDB06tQJS5cuFTsUIqpjOOxFREREksLkh4iIiCSFw15EREQkKez5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpPw/PrlIRqXe7ggAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmTUlEQVR4nOzdd3iUVfrG8e+k995JAgmQUELvoICKgK4KihX4uahrBVfXjh0b6uouuirsWkAFFBVQYRUVpAuhN4EQIEACCWmkkzrz+yNlibQMJHknyf25rrl2M/POO/dgyjzvOec5JovFYkFEREREREREbJ6d0QFEREREREREpG5UxIuIiIiIiIg0ESriRURERERERJoIFfEiIiIiIiIiTYSKeBEREREREZEmQkW8iIiIiIiISBOhIl5ERERERESkiVARLyIiIiIiItJEOBgdwBaZzWaOHTuGp6cnJpPJ6DgiIiIiIiLSzFksFvLz8wkLC8PO7uzj7Sriz+DYsWNEREQYHUNERERERERamOTkZMLDw8/6uIr4M/D09AQq//G8vLwMTiMiIiIiIiLNXV5eHhERETX16NmoiD+D6in0Xl5eKuJFRERERESk0ZxvSbca24mIiIiIiIg0ESriRURERERERJoIFfEiIiIiIiIiTYTWxIuIiIiIiFwki8VCeXk5FRUVRkcRG2Vvb4+Dg8NFb2OuIl5EREREROQilJaWkpqaSlFRkdFRxMa5ubkRGhqKk5PTBZ9DRbyIiIiIiMgFMpvNJCUlYW9vT1hYGE5OThc90irNj8ViobS0lIyMDJKSkmjfvj12dhe2ul1FvIiIiIiIyAUqLS3FbDYTERGBm5ub0XHEhrm6uuLo6Mjhw4cpLS3FxcXlgs6jxnYiIiIiIiIX6UJHVaVlqY/vE32niYiIiIiIiDQRKuJFREREREREmghDi/ipU6fSp08fPD09CQoKYvTo0SQkJNQ6ZujQoZhMplq3++6775zntVgsPP/884SGhuLq6sqwYcNITExsyLciIiIiIiIijeTFF1+ke/fuRsdg6NChPPzww436moYW8StXrmTixImsX7+eX375hbKyMoYPH05hYWGt4+6++25SU1Nrbm+++eY5z/vmm2/y7rvvMmPGDOLj43F3d2fEiBEUFxc35NsRERERERFpUtLS0njooYdo164dLi4uBAcHM2jQIKZPn96kt8xbsWIFJpOJnJwcmzzfxTC0O/2SJUtqfT1r1iyCgoLYvHkzgwcPrrnfzc2NkJCQOp3TYrEwbdo0nn32WUaNGgXAZ599RnBwMN9++y233npr/b0BgxWXVWBnMuHkoFURIiIiIiJinYMHDzJo0CB8fHx47bXX6NKlC87OzuzcuZP//Oc/tGrViuuuu+6Mzy0rK8PR0bGRE9e/0tLSi9qz3Qg2Vf3l5uYC4OfnV+v+OXPmEBAQQFxcHJMnTz7nFaGkpCTS0tIYNmxYzX3e3t7069ePdevWnfE5JSUl5OXl1bo1BS8v3s0N09eyP73A6CgiIiIiIlLFYrFQVFpuyM1isdQ55wMPPICDgwObNm3i5ptvpmPHjkRHRzNq1Cj++9//cu2119YcazKZmD59Otdddx3u7u68+uqrAEyfPp22bdvi5OREbGwsn3/+ec1zDh06hMlkYtu2bTX35eTkYDKZWLFiBfC/Ee5ly5bRu3dv3NzcGDhw4GnLrF9//XWCg4Px9PTkrrvuOucs60OHDnHZZZcB4Ovri8lkYsKECUDl9PdJkybx8MMPExAQwIgRI86b81znAzCbzTzxxBP4+fkREhLCiy++WNf/BBfEZvaJN5vNPPzwwwwaNIi4uLia+8eOHUvr1q0JCwtjx44dPPnkkyQkJLBgwYIznictLQ2A4ODgWvcHBwfXPPZHU6dOZcqUKfX0ThpHVkEJP+xM5URRGdf8azXPXdOJsX0jMZlMRkcTEREREWnRTpZV0On5nwx57d0vjcDN6fxlXlZWFj///DOvvfYa7u7uZzzmj7XFiy++yOuvv860adNwcHBg4cKFPPTQQ0ybNo1hw4axePFi7rjjDsLDw2uK3rp65plnePvttwkMDOS+++7jzjvvZO3atQB89dVXvPjii7z//vtccsklfP7557z77rtER0ef8VwRERHMnz+fMWPGkJCQgJeXF66urjWPf/rpp9x///015z+fupzvkUceIT4+nnXr1jFhwgQGDRrElVdeadW/QV3ZTBE/ceJEdu3axZo1a2rdf88999T8/y5duhAaGsoVV1zBgQMHaNu2bb289uTJk3nkkUdqvs7LyyMiIqJezt1Q/D2cWfLwYB77ejurEzN5ZuEulu/N4I0xXfD3cDY6noiIiIiI2LD9+/djsViIjY2tdX9AQEDNKPfEiRN54403ah4bO3Ysd9xxR83Xt912GxMmTOCBBx4A4JFHHmH9+vW89dZbVhfxr776KkOGDAHgqaee4k9/+hPFxcW4uLgwbdo07rrrLu666y4AXnnlFZYuXXrW0Xh7e/ua2d1BQUH4+PjUerx9+/a1+qwdOnTonNnOd76uXbvywgsv1Jz7vffeY9myZc27iJ80aRKLFy9m1apVhIeHn/PYfv36AZXfdGcq4qvXzh8/fpzQ0NCa+48fP37W7oXOzs44Oze9wjfYy4VP7+jLJ2uTeHNJAkv3HGfkOzm8fVM3BscEGh1PRERERKRFcnW0Z/dLIwx77YuxYcMGzGYz48aNo6SkpNZjvXv3rvX1nj17ag26AgwaNIh33nnH6tft2rVrzf+vruPS09OJjIxkz549p+1QNmDAAJYvX2716wD06tXrgp53Nqdmh8r86enp9foapzK0iLdYLDz44IMsXLiQFStWEBUVdd7nVK9TOLVAP1VUVBQhISEsW7aspmjPy8sjPj6e+++/v76i2ww7OxN/uTSagW0DeOjLrSSmF3D7Jxu4c1AUT4yMxeUif4hFRERERMQ6JpOpTlPajdSuXTtMJtNpa8+rp6ifOl282tmm3Z+NnV1lC7ZT1+mXlZWd8dhTm+RVT+M3m81WvV5d/fF9WJPzTP7Y4M9kMjVYdjC4sd3EiROZPXs2c+fOxdPTk7S0NNLS0jh58iQABw4c4OWXX2bz5s0cOnSI77//nttvv53BgwfXutrRoUMHFi5cCFT+gz388MO88sorfP/99+zcuZPbb7+dsLAwRo8ebcTbbBSdwrxY9OAl/HlAawA+WZvE6PfXkpCWb3AyERERERGxNf7+/lx55ZW89957p23xXVcdO3Y8bV352rVr6dSpEwCBgZWzg1NTU2seP7V5nDWvEx8fX+u+9evXn/M51R3nKyoqznv+uuS05nwNzdDLQ9OnTwcqOwSeaubMmUyYMAEnJyeWLl3KtGnTKCwsJCIigjFjxvDss8/WOj4hIaGmsz3AE088QWFhIffccw85OTlccsklLFmyBBcXlwZ/T0ZycbRnyqg4hsQG8sQ3O9ibls+1763h6as68OeBbdT0TkREREREanzwwQcMGjSI3r178+KLL9K1a1fs7OzYuHEje/fuPe+088cff5ybb76ZHj16MGzYMBYtWsSCBQtYunQpUDma379/f15//XWioqJIT08/rZari4ceeogJEybQu3dvBg0axJw5c/j999/P2tgOoHXr1phMJhYvXszVV1+Nq6srHh4eZzy2LjmtOV9DM3Qk3mKxnPFW3a4/IiKClStXkpWVRXFxMYmJibz55pt4eXmddp5TW/ybTCZeeukl0tLSKC4uZunSpcTExDTiOzPW5R2C+fGhwQyNDaS03MyLi3Zzx6yNZOSXnP/JIiIiIiLSIrRt25atW7cybNgwJk+eTLdu3ejduzf/+te/eOyxx3j55ZfP+fzRo0fzzjvv8NZbb9G5c2f+/e9/M3PmzFqDtJ988gnl5eX06tWrZsa0tW655Raee+45nnjiCXr16sXhw4fPu1S6VatWTJkyhaeeeorg4GAmTZp0zuPPl9Pa8zUkk8WajQRbiLy8PLy9vcnNzT3tgkFTYrFY+GzdYV79YQ+l5Wb83Z34+01dubxD8PmfLCIiIiIi51VcXExSUhJRUVHNfuavXLxzfb/UtQ41dCReGpbJZOLPA9uwaNIldAjxJKuwlDtnbeL573ZRXGb8Wg4RERERERGxjor4FiA2xJNvJw7irksqu/9/tu4w1/xrDb8fyz3PM0VERERERMSWqIhvIVwc7Xnumk58emdfAj2d2Z9ewPXv/8ZHqw9iNmtFhYiIiIiISFOgIr6FGRITyJKHLmVYx2BKK8y88t893P7JBo7nFRsdTURERERERM5DRXwL5O/hzIe39+LV6+NwcbRjzf5MRkxbxZJdaUZHExERERERkXNQEd9CmUwmxvVrzeIHL6VzmBc5RWXcN3szkxfsoKi03Oh4IiIiIiIicgYq4lu4dkEeLHxgEPcOicZkgi82JHPNu2vYkZJjdDQRERERERH5AxXxgpODHZOv6sicu/oR4uXCwcxCbvjgNz5YsZ8KNb0TERERERGxGSripcbAdgEsefhSrooLodxs4c0lCYz9cD3Hck4aHU1ERERERJqoCRMmMHr06Jqvhw4dysMPP3xR56yPczRVKuKlFh83Jz4Y15M3b+yKm5M98UnZjJy2isU7jhkdTURERERE6tGECRMwmUyYTCacnJxo164dL730EuXlDdsja8GCBbz88st1OnbFihWYTCZycnIu+BzNjYp4OY3JZOLm3hH88NdL6RbhQ15xOZPmbuXRr7ZTUKKmdyIiIiIizcXIkSNJTU0lMTGRRx99lBdffJG///3vpx1XWlpab6/p5+eHp6en4edoqlTEy1m1CXDnm/sG8ODl7bAzwfwtKVz9zmq2HDlhdDQRERERkWanwmxh3YEsvtt2lHUHshqlP5WzszMhISG0bt2a+++/n2HDhvH999/XTIF/9dVXCQsLIzY2FoDk5GRuvvlmfHx88PPzY9SoURw6dOh/76GigkceeQQfHx/8/f154oknsFhqv48/ToUvKSnhySefJCIiAmdnZ9q1a8fHH3/MoUOHuOyyywDw9fXFZDIxYcKEM57jxIkT3H777fj6+uLm5sZVV11FYmJizeOzZs3Cx8eHn376iY4dO+Lh4VFzAaPaihUr6Nu3L+7u7vj4+DBo0CAOHz5cT//S9UdFvJyTo70djw6P5ct7BtDKx5Uj2UXcNGMd7yxNpLzCbHQ8EREREZFmYcmuVC5541du+3A9D325jds+XM8lb/zKkl2p539yPXJ1da0ZdV+2bBkJCQn88ssvLF68mLKyMkaMGIGnpyerV69m7dq1NcVw9XPefvttZs2axSeffMKaNWvIzs5m4cKF53zN22+/nS+++IJ3332XPXv28O9//xsPDw8iIiKYP38+AAkJCaSmpvLOO++c8RwTJkxg06ZNfP/996xbtw6LxcLVV19NWVlZzTFFRUW89dZbfP7556xatYojR47w2GOPAVBeXs7o0aMZMmQIO3bsYN26ddxzzz2YTKaL/jetbw5GB5CmoW+UHz88dCnPfbuL77cf459L97EqMYNpt3Qnws/N6HgiIiIiIk3Wkl2p3D97C38cd0/LLeb+2VuYPr4nI+NCGzSDxWJh2bJl/PTTTzz44INkZGTg7u7ORx99hJOTEwCzZ8/GbDbz0Ucf1RS3M2fOxMfHhxUrVjB8+HCmTZvG5MmTueGGGwCYMWMGP/3001lfd9++fXz11Vf88ssvDBs2DIDo6Oiax/38/AAICgrCx8fnjOdITEzk+++/Z+3atQwcOBCAOXPmEBERwbfffstNN90EQFlZGTNmzKBt27YATJo0iZdeegmAvLw8cnNzueaaa2oe79ixo/X/kI1AI/FSZ96ujrx7Ww+m3dIdD2cHNh8+wVXvrGbh1hSjo4mIiIiINEkVZgtTFu0+rYAHau6bsmh3g02tX7x4MR4eHri4uHDVVVdxyy238OKLLwLQpUuXmgIeYPv27ezfvx9PT088PDzw8PDAz8+P4uJiDhw4QG5uLqmpqfTr16/mOQ4ODvTu3fusr79t2zbs7e0ZMmTIBb+HPXv24ODgUOt1/f39iY2NZc+ePTX3ubm51RToAKGhoaSnpwOVFwsmTJjAiBEjuPbaa3nnnXdqTbW3JSrixWqje7Tix4cupVdrXwpKyvnbvO089OVWck+Wnf/JIiIiIiJSY0NSNqm5xWd93AKk5hazISm7QV7/sssuY9u2bSQmJnLy5Ek+/fRT3N3dAWr+t1pBQQG9evVi27ZttW779u1j7NixF/T6rq6uF/0e6srR0bHW1yaTqdZ6/ZkzZ7Ju3ToGDhzIvHnziImJYf369Y2Wr65UxMsFifBzY949/Xnkyhjs7Ux8t+0YV7+zusF+uYiIiIiINEfp+Wcv4C/kOGu5u7vTrl07IiMjcXA492rrnj17kpiYSFBQEO3atat18/b2xtvbm9DQUOLj42ueU15ezubNm896zi5dumA2m1m5cuUZH6+eCVBRUXHWc3Ts2JHy8vJar5uVlUVCQgKdOnU653v6ox49ejB58mR+++034uLimDt3rlXPbwwq4uWCOdjb8dcr2vP1fQOI9HPjaM5Jbv3POt7+OYEyNb0TERERETmvIE+Xej2uIY0bN46AgABGjRrF6tWrSUpKYsWKFfz1r38lJaVyie1DDz3E66+/zrfffsvevXt54IEHTtvj/VRt2rThz3/+M3feeSfffvttzTm/+uorAFq3bo3JZGLx4sVkZGRQUFBw2jnat2/PqFGjuPvuu1mzZg3bt29n/PjxtGrVilGjRtXpvSUlJTF58mTWrVvH4cOH+fnnn0lMTLTJdfEq4uWi9Yz05YeHLmVMz3DMFvjXr/u5ccY6DmUWGh1NRERERMSm9Y3yI9TbhbP1QDcBod4u9I3ya8xYZ+Tm5saqVauIjIzkhhtuoGPHjtx1110UFxfj5eUFwKOPPsr//d//8ec//5kBAwbg6enJ9ddff87zTp8+nRtvvJEHHniADh06cPfdd1NYWFlLtGrViilTpvDUU08RHBzMpEmTzniOmTNn0qtXL6655hoGDBiAxWLhhx9+OG0K/bne2969exkzZgwxMTHcc889TJw4kXvvvdeKf6HGYbL8cdM+IS8vD29vb3Jzc2u+GaVuFm0/xjMLd5JXXI6bkz0vXteZm3qF2+TWDCIiIiIiF6u4uJikpCSioqJwcbmw0fLq7vRArQZ31Z+gG6M7vTSOc32/1LUO1Ui81Ktru4Xx48OD6RflR1FpBU98s4OJc7eQU1RqdDQREREREZs0Mi6U6eN7EuJdu6gL8XZRAS+n0T7xUu9a+bgy9+7+/HvVAf7x8z5+2JnGlsM5/OOWbgxsG2B0PBERERERmzMyLpQrO4WwISmb9Pxigjwrp9Db22lGq9SmIl4ahL2diQeGtuOSdgE89OU2kjILGfdRPPcMjubRK2NxctAkEBERERGRU9nbmRjQ1t/oGGLjVElJg+oa7sN//3oJt/WNwGKBf688yA3T17I//fSukiIiIiIiInJuKuKlwbk5OTD1hq7MGN8LHzdHdh3N45p/rWZO/GHUV1FERERERKTuVMRLoxkZF8JPDw/mknYBFJeZeWbhLu7+bDNZBSVGRxMRERERuSganJK6qI/vExXx0qiCvVz47M6+PPunjjjZ27F0z3FGvrOaVfsyjI4mIiIiImK16n3Ii4qKDE4iTUH190ld968/EzW2k0ZnZ2fiL5dGM6CtPw99uY396QXc/skG7hwUxRMjY3FxtDc6ooiIiIhIndjb2+Pj40N6ejoAbm5umEzqKC+1WSwWioqKSE9Px8fHB3v7C695TBbN+zhNXl4e3t7e5Obm4uXlZXScZu1kaQVTf9zDZ+sOA9AhxJN3bu1BbIinwclEREREROrGYrGQlpZGTk6O0VHExvn4+BASEnLGCz11rUNVxJ+BivjGt2zPcZ74ZgdZhaU4Odjx9FUd+PPANrqKKSIiIiJNRkVFBWVlZUbHEBvl6Oh4zhF4FfEXQUW8MdLzi3n86x2srFofPzQ2kL/f2I1AT2eDk4mIiIiIiDSsutahamwnNiPI04VZd/ThxWs74eRgx4qEDEZOW8Wve48bHU1ERERERMQmqIgXm2IymZgwKIpFky6hQ4gnWYWl3DlrE89/t4visgqj44mIiIiIiBhKRbzYpNgQT76dOIg7B0UB8Nm6w1zzrzX8fizX4GQiIiIiIiLGUREvNsvF0Z7nr+3Ep3f2JdDTmf3pBVz//m98tPogZrNaOYiIiIiISMujIl5s3pCYQJY8dCnDOgZTWmHmlf/u4fZPNnA8r9joaCIiIiIiIo1KRbw0Cf4eznx4ey9evT4OF0c71uzPZMS0VSzZlWZ0NBERERERkUajIl6aDJPJxLh+rVn84KV0DvMip6iM+2ZvZvKCHRSVlhsdT0REREREpMGpiJcmp12QBwsfGMS9Q6IxmeCLDclc8+4adqTkGB1NRERERESkQamIlybJycGOyVd1ZM5d/QjxcuFgZiE3fPAbH6zYT4Wa3omIiIiISDOlIl6atIHtAvjxoUu5Ki6EcrOFN5ckMPbD9RzLOWl0NBERERERkXqnIl6aPF93Jz4Y15M3x3TFzcme+KRsRk5bxeIdx4yOJiIiIiIiUq9UxEuzYDKZuLlPBP/966V0C/cmr7icSXO38uhX2ykoUdM7ERERERFpHlTES7MSFeDON/cPZNJl7TCZYP6WFK5+ZzVbjpwwOpqIiIiIiMhFUxEvzY6jvR2PjYjly7v708rHlSPZRdw0Yx3vLE2kvMJsdDwREREREZELpiJemq1+0f788NClXNstjAqzhX8u3cct/1lPcnaR0dFEREREREQuiKFF/NSpU+nTpw+enp4EBQUxevRoEhISznisxWLhqquuwmQy8e23357zvBMmTMBkMtW6jRw5sgHegdg6b1dH3r21O/+8pRsezg5sPnyC695bQ1pusdHRRERERERErGZoEb9y5UomTpzI+vXr+eWXXygrK2P48OEUFhaeduy0adMwmUx1PvfIkSNJTU2tuX3xxRf1GV2aEJPJxPU9wvnxoUuJDfbkRFEZTy/cicWi/eRFRERERKRpcTDyxZcsWVLr61mzZhEUFMTmzZsZPHhwzf3btm3j7bffZtOmTYSGhtbp3M7OzoSEhNRrXmnaIvzcePe2Hlz7rzX8ujed+VuOcmOvcKNjiYiIiIiI1JlNrYnPzc0FwM/Pr+a+oqIixo4dy/vvv29VUb5ixQqCgoKIjY3l/vvvJysr66zHlpSUkJeXV+smzVNsiCcPDWsPwJRFv2tavYiIiIiINCk2U8SbzWYefvhhBg0aRFxcXM39f/vb3xg4cCCjRo2q87lGjhzJZ599xrJly3jjjTdYuXIlV111FRUVFWc8furUqXh7e9fcIiIiLvr9iO26d3A03cK9yS8uZ/KCHZpWLyIiIiIiTYbJYiMVzP3338+PP/7ImjVrCA+vnOL8/fff8+ijj7J161Y8PDyAyvXNCxcuZPTo0XU+98GDB2nbti1Lly7liiuuOO3xkpISSkpKar7Oy8sjIiKC3NxcvLy8Lu6NiU1KPJ7Pn95dQ2mFmTdv7MrNvXXhRkREREREjJOXl4e3t/d561CbGImfNGkSixcvZvny5TUFPMCvv/7KgQMH8PHxwcHBAQeHyiX8Y8aMYejQoXU+f3R0NAEBAezfv/+Mjzs7O+Pl5VXrJs1b+2BPHr6yclr9y4t2k5p70uBEIiIiIiIi52doEW+xWJg0aRILFy7k119/JSoqqtbjTz31FDt27GDbtm01N4B//vOfzJw5s86vk5KSQlZWVp2b4knLcM+l0XSL8CG/pJyn5qtbvYiIiIhIc2Q2N6/P+YYW8RMnTmT27NnMnTsXT09P0tLSSEtL4+TJylHRkJAQ4uLiat0AIiMjaxX8HTp0YOHChQAUFBTw+OOPs379eg4dOsSyZcsYNWoU7dq1Y8SIEY3/JsVmOdjb8daNXXGyt2Plvgy+3pRidCQREREREalHabnFDJ+2iuV7042OUm8MLeKnT59Obm4uQ4cOJTQ0tOY2b948q86TkJBQ09ne3t6eHTt2cN111xETE8Ndd91Fr169WL16Nc7Ozg3xNqQJax/syd+ujAHg5cW7OZajafUiIiIiIs1BeYWZv36xlf3pBbz9SwIVzWRE3tB94i9k+vKZnnPqfa6urvz0008XlUtalrsvjWLJ72lsT87hqQU7+fSOPphMJqNjiYiIiIjIRXj7l31sOJSNh7MD793WE3u75vEZ3yYa24kYycHejrdv6oqTgx2r9mXw1aZkoyOJiIiIiMhFWL43nekrDgDw5o1daRPgbnCi+qMiXgRoF+TJo1XT6l9ZvEfT6kVEREREmqhjOSf521fbAPjzgNZc3aV5NThXES9S5S+XRtMjsrJb/ZPzd6hbvYiIiIhIE1NWYebBL7aSU1RGl1bePP2njkZHqncq4kWq2NuZ+PuN3XBysGN1YiZfbtS0ehERERGRpuStnxLYfPgEni4OvD+2J84O9kZHqncq4kVO0S7Ig8eGV06rf/W/eziqafUiIiIiIk3Csj3H+feqgwD8/cZuRPq7GZyoYaiIF/mDuy6JpmekDwUl5TylafUiIiIiIjYv5UQRj3y1HYA7BrVhZFyIwYkajop4kT+wtzPx95u64Vw1rf6LDZpWLyIiIiJiq0rLzUyau5Xck2V0i/Bh8lXNbx38qVTEi5xB20APHhseC8Cr/91NyokigxOJiIiIiMiZvLFkL9uSc/ByceC923rg5NC8y9zm/e5ELsKdl0TRq7UvhaUVPDV/p6bVi4iIiIjYmJ9+T+PjNUkAvH1zdyL8muc6+FOpiBc5i8pu9V1xdrBjzf5M5m44YnQkERERERGpkpxdxGNfV66Dv/vSKK7sFGxwosahIl7kHKIDPXh8ROW0+tf+u4fkbE2rFxERERExWkl5BRPnbiG/uJyekT48MbKD0ZEajYp4kfO4Y1AUvaum1T85fwdms6bVi4iIiIgYaeoPe9mRkouPmyP/GtsTR/uWU9q2nHcqcoGqu9W7ONrx24Es5mhavYiIiIiIYX7Ymcqs3w4B8I+bu9HKx9XYQI1MRbxIHUQFuPP4iMopOlN/0LR6EZGm5oMV++n58i8kpOUbHUVERC7C4axCnvxmBwD3Donm8g4tYx38qVTEi9TRHQPb0KeNL0WlFTzxjabVi4g0FQUl5bz/636yC0v5alOy0XFEROQCFZdVrYMvKad3a9+aLaFbGhXxInVkZ2fi7zdWTqtfdzCLOfGHjY4kIiJ18P22YxSWVgCwcl+GwWlERORCvfrfPew6moefuxP/GtujRa2DP1XLfNciF6hNgDtPVE+r/3GvptWLiNg4i8VS66Lr/vQCUk7od7eISFOzaPsxPl9f+fv8Hzd3I9S7Za2DP5WKeBErTRjYhr5t/CgqreDxb7ZrWr2IiA3blpzD78fycHKwo0OIJwArEjQaLyLSlCRlFjJ5wU4AJl7WlqGxQQYnMpaKeBEr2dmZePPGrrg62rP+YDazNa1eRMRmzYmv3FHkmq6hXNM1FNCUehGRpqS4rIIH5myhoKScflF+/G1YjNGRDKciXuQCtAlw58mRlY00pv6wlyNZmpopImJrcovKWLT9GADj+rWuGbn5bX8mpeVmI6OJiEgdTVm0mz2pefi7O/HubT1waKHr4E+lfwGRC3T7gDb0i/LjZJmm1YuI2KL5W1IoKTfTIcSTnpE+dAr1IsDDicLSCjYdzjY6noiInMd3247yxYYjmEzwzq09CPZyMTqSTVARL3KBqrvVuzraE5+UzWfrDhkdSUREqpza0G5c/9aYTCbs7EwMjgkEYKXWxYuI2LT96QU16+AfvLw9l7QPMDiR7VARL3IRIv3deOqqym71byxJ4HBWocGJREQEID4pmwMZhbg52TO6e1jN/UOqi3itixcRsVknSyuYOGcLRaUVDIj256Er2hsdyaaoiBe5SP/XvzX9o6un1e/QtHoRERtQ3dBuVPdWeLo41tw/uH0gJhPsTcsnNfekUfFEROQcXvz+dxKO5xPg4cw7t3XH3s5kdCSboiJe5CLZ2Zl4c0w33Jzs2ZCUzaeaVi8iYqjMghKW7EoFYFy/yFqP+bo70S3cB4BVGo0XEbE5C7akMG9TMnYmePfW7gR5ah38H6mIF6kHtafV7+VQpqbVi4gY5etNKZRVWOgW4UNcK+/THh8aWzmlXvvFi4jYlsTj+TyzcBcAD10Rw8B2Wgd/JiriRerJ+H6tGRDtT3GZmSc0rV5ExBBms4W5G6oa2v1hFL5a9br4NYmZlFVoqzkREVtQVFrOA3O2cLKsgkvaBTDp8nZGR7JZKuJF6omdnYk3b+xaOa3+UDazfjtkdCQRkRZn9f5MkrNP4uXiwLVdw854TNdwH3zdHMkvKWfrkZzGDSgiImf03Le/k5heQJCnM9Nu1Tr4c1ERL1KPIvzcmHx1RwDe/GkvSZpWLyLSqOasrxyFH9MrHFcn+zMeY3/KVnMrEtIbLZuIiJzZV5uSmb8lpXId/G09CPBwNjqSTXOoy0E7duyw+sSdOnXCwaFOpxdpVsb1jeTHnan8diCLx7/ezrx7B+hKoohII0jNPcmyvZVF+dmm0lcbEhPId9uOsXJfBk+M7NAY8URE5AwS0vJ5/rvKdfCPDo+lf7S/wYlsX52q7O7du2MymbBY6rbG187Ojn379hEdHX1R4USaIjs7E2+M6crIaavYdPgEM9cm8ZdL9bMgItLQ5m1MpsJsoV+UH+2CPM95bPVI/O/H8kjPL1b3YxERAxSWlPPAnM0Ul5kZEhPI/UPaGh2pSajzUHl8fDyBgYHnPc5isRAXF3dRoUSauupp9c9+u4u//5TA5R2CiA70MDqWiEizVV5h5ssNyQCM69/6vMcHeDjTpZU3O4/msmpfJjf2Cm/oiCIicgqLxcIzC3dyIKOQEC8X/nFzN+w0e7VO6lTEDxkyhHbt2uHj41Onkw4ePBhXV9eLySXS5I3rF8mPu1JZuz+Lx7/ZwVeaVi8i0mB+3ZtOWl4x/u5OjOgcXKfnDI0NZOfRXFYkpKuIFxFpZF9uTObbbcewtzPxr7E98Nc6+DqrU2O75cuX17mAB/jhhx8IDQ290EwizYLJVDmt3t3Jns1V0+pFRKRhzIk/AsBNvSNwdjhzQ7s/qt5qbnViJhXaFlREpNHsPpbHC9//DsBjw2Pp08bP4ERNi1Xd6fPy8jCbT99PtaKigry8vHoLJdJchPu68fSfKrvV//2nBA5kFBicSESk+TmSVcSqxAwAxvY9d0O7U3WP8MHLxYHck2VsS85poHQiInKqgpJyJs3dQmm5mctiA7l3sHpHWavORfzChQvp3bs3xcXFpz1WXFxMnz59WLRoUb2GE2kOxvaN5JJ2AZSUm3n86+0a7RERqWdfbDyCxVLZrC7S363Oz3Owt+PS9pWj8Sv3ZTRUPBERqWKxWJi8YCcHMwsJ83bhHzd31zr4C1DnIn769Ok88cQTuLmd/sfR3d2dJ598kvfee69ew4k0ByaTiTdu7IqHswNbjuTwyRpNqxcRqS8l5RV8tbGqod15tpU7kyGxVUW89osXEWlwc+KPsGj7MRzsTPxrbE983Z2MjtQk1bmI37VrF0OHDj3r44MHD2bnzp31kUmk2Wnl48ozVdPq3/pZ0+pFROrLT78fJ6uwlGAvZ67oEGT186vXxe84mktWQUl9xxMRkSq7juby0uLdADw5sgO9WvsanKjpqnMRf+LECcrLy8/6eFlZGSdOnKiXUCLN0a19Iri0feW0+sc0rV5EpF7MWX8YgFv7ROJgb1WrHwCCvVzoGOqFxVLZ4E5EROpfXnEZE6vWwQ/rGMxfLo0yOlKTVue/dm3atGHTpk1nfXzTpk20bn3+fVlFWiqTycTrYyqn1W89ksNHqw8aHUlEpEnbn55PfFI2dia4tW/EBZ9naNWU+hWaUi8iUu8sFgtPzd/B4awiWvm48vZN3TCZtA7+YtS5iL/hhht45plnOH78+GmPpaWl8eyzzzJmzJh6DSfS3LTyceXZqmn1b/+yj/3p+QYnEhFpuqq3lbuiYzCh3q4XfJ7qKfWrEjMxa5aUiEi9+mzdYX7YmYajvYn3x/XE283R6EhNXp2L+KeeegpPT0/at2/PAw88wDvvvMM777zD/fffT0xMDB4eHjz11FMNmVWkWbilTwSDYwIpLTfz2Nc7NK1eROQCnCytYP7mFODCGtqdqldrXzycHcguLGXn0dz6iCciIsCOlBxe+W/lOvjJV3Wke4SPsYGaiToX8Z6enqxdu5bx48czb948/va3v/G3v/2NefPmMX78eNasWYOnp2dDZhVpFkwmE6/f0AVPZwe2JefwoabVi4hYbfGOY+QVlxPu68rgqm3iLpSjvR2D2vkD2mpORKS+5J6sXAdfVmFhROdg7hjUxuhIzYZVHWC8vb354IMPyMzM5Pjx46SlpZGVlcUHH3yAr6+6C4rUVZiPK89d0wmAf2havYiI1aqn0o/tF1kvewwPja3sbK918SIiF89isfDEN9tJzj5JhJ8rb96odfD1yfo2rlSOJAYGBhIUFKT/GCIX6Kbe4QyNrZxW/+jXOyivMBsdSUSkSdh1NJdtyTk42pu4qdeFN7Q7VfW6+G3JOeQUldbLOUVEWqqZaw/x0+/HcbK34/2xPfF21Tr4+nRBRbyIXDyTycTUG7rg6eLA9uQcPlydZHQkEZEmYe6GylH4EZ1DCPR0rpdzhvm4EhPsgVlbzYmIXJRtyTlM/XEPAM/8qSNdw32MDdQMGVrET506lT59+uDp6UlQUBCjR48mISHhjMdaLBauuuoqTCYT33777TnPa7FYeP755wkNDcXV1ZVhw4aRmJjYAO9A5OKEev9vWv0/f9lH4nFNqxcROZeCknK+23oUgPH963dr2+rReK2LFxG5MDlFpUycU7kO/k9dQrl9gLYgbwiGFvErV65k4sSJrF+/nl9++YWysjKGDx9OYWHhacdOmzatzlP333zzTd59911mzJhBfHw87u7ujBgxguLi4vp+CyIX7aZe4VwWG0hphZnHvt6uafUiIufw7dajFJZW0DbQnX5RfvV67up18Sv3ZWirORERK1ksFh77egdHc07S2t+NqWO6aOl1A7moIv5ii+IlS5YwYcIEOnfuTLdu3Zg1axZHjhxh8+bNtY7btm0bb7/9Np988sl5z2mxWJg2bRrPPvsso0aNomvXrnz22WccO3bsvCP4IkaonFbftXJafUou/16lbvUiImdisVhqGtqN69e63j8c9m7ji5uTPRn5JexJy6vXc4uINHcfrU5i6Z7jODlUroP3ctE6+IZidRFvNpt5+eWXadWqFR4eHhw8WFlwPPfcc3z88ccXFSY3t3JvVj+//11ZLyoqYuzYsbz//vuEhISc9xxJSUmkpaUxbNiwmvu8vb3p168f69atO+NzSkpKyMvLq3UTaUwh3i48XzWt/p2liSSkaVq9iMgfbU3OYU9qHs4OdozpGV7v53d2sGdg28qt5lYkaEq9iEhdbT58gjeW7AXg+Ws6EdfK2+BEzZvVRfwrr7zCrFmzePPNN3Fycqq5Py4ujo8++uiCg5jNZh5++GEGDRpEXFxczf1/+9vfGDhwIKNGjarTedLS0gAIDg6udX9wcHDNY380depUvL29a24REfXT6VbEGjf2CufyDkGUVph5/BtNqxcR+aM56ytH4a/tFoa3W8OM8AypnlKvIl5EpE5OFJby4NwtlJstXNstjHH9Io2O1OxZXcR/9tln/Oc//2HcuHHY29vX3N+tWzf27t17wUEmTpzIrl27+PLLL2vu+/777/n111+ZNm3aBZ+3LiZPnkxubm7NLTk5uUFfT+RMTCYTr11f2a1+h6bVi4jUklNUyuIdxwAa9APi0KrmdpuPnCCvuKzBXkdEpDkwmy088tU2juUWExXgztQbtA6+MVhdxB89epR27dqddr/ZbKas7ML+2E2aNInFixezfPlywsP/Nz3u119/5cCBA/j4+ODg4ICDgwMAY8aMYejQoWc8V/WU++PHj9e6//jx42edju/s7IyXl1etm4gRQrxdePHazgBMW7pP0+pFRKrM33KUknIznUK96B7h02CvE+HnRnSgOxVmC2u11ZyIyDn9e9VBlidk4Fy1Dt7D2cHoSC2C1UV8p06dWL169Wn3f/PNN/To0cOqc1ksFiZNmsTChQv59ddfiYqKqvX4U089xY4dO9i2bVvNDeCf//wnM2fOPOM5o6KiCAkJYdmyZTX35eXlER8fz4ABA6zKJ2KEG3q24ooOQZRVWHjs6+2UaVq9iLRwlQ3tDgMwrn9kg4/yaKs5EZHz23gom7d+rtwe/MXrOtMpTAOhjcXqSyXPP/88f/7znzl69Chms5kFCxaQkJDAZ599xuLFi60618SJE5k7dy7fffcdnp6eNWvWvb29cXV1JSQk5Iyj55GRkbUK/g4dOjB16lSuv/56TCYTDz/8MK+88grt27cnKiqK5557jrCwMEaPHm3t2xVpdCaTiddu6MKV/1jJzqO5/HvlASZd3t7oWCIihll/MJuDGYW4O9kzqnurBn+9obFBzFx7iBUJGVgsFk0NFRH5g6yCEh6cu5UKs4XR3cO4tY96ijUmq0fiR40axaJFi1i6dCnu7u48//zz7Nmzh0WLFnHllVdada7p06eTm5vL0KFDCQ0NrbnNmzfPqvMkJCTUdLYHeOKJJ3jwwQe555576NOnDwUFBSxZsgQXFxerzitilGAvF168rnJa/TvLEtmrrY5EpAWbXTUKP7pHq0aZqtkvyg9nBzvS8orZd7ygwV9PRKQpMZst/O2r7aTlFdM20J1Xr9c6+MZmslgsFqND2Jq8vDy8vb3Jzc3V+ngxjMVi4e7PNrF0TzpxrbxY+MAgHO2tvu4mItKkZeSXMGDqMsrNFn7466WNNl1zwswNrEjIYPJVHbh3SNtGeU0Rkabg/eX7+ftPCbg42vHdxEuIDfE0OlKzUdc69IIqgpycHD766COefvppsrOzAdiyZQtHjx69sLQicprqbvXero7sOprH9BUHjI4kItLovtqUTLnZQo9In0Zdb6l18SIip1t/MIu3q9bBvzQqTgW8Qawu4nfs2EFMTAxvvPEGf//738nJyQFgwYIFTJ48ub7zibRoQV4uvHhdJwD+9Wsie1I1rV5EWo4Ks4UvNlTuDT+uX+tGfe2hVfvFbzyUTUFJeaO+toiILcrIL+GvX2zFbIExPcO5ubfWwRvF6iL+kUceYcKECSQmJtZaY3711VezatWqeg0nIjC6eyuGdQxWt3oRaXFWJWaQcuIkXi4OXNM1tFFfOyrAndb+bpRVWPhtv7aaE5GWrcJs4W/ztpGeX0L7IA9eHt3Z6EgtmtVF/MaNG7n33ntPu79Vq1Y13eVFpP5UdquPw8fNkd+P5fHBck2rF5GWYc76ylH4G3tF4OJo3+ivryn1IiKV3vt1P2v2Z+LqaM8H43ri5qT94I1kdRHv7OxMXt7pU3r37dtHYGBgvYQSkdqCPF2YUtWt/l+/JrL7mKbVi0jzdiznJL/uPQ7A2H6RhmQYGlv5uaZ6qzkRkZbot/2ZTFu2D4BXRsfRPljr4I1mdRF/3XXX8dJLL1FWVgZUjhIeOXKEJ598kjFjxtR7QBGpdF23MIZ3CqbcrGn1ItL8fbkxGbMF+kf70S7Iw5AM/aP9cbK342jOSQ5kFBqSQUTESOn5xfz1y21YLHBz73DG9Ao3OpJwAUX822+/TUFBAUFBQZw8eZIhQ4bQrl07PD09efXVVxsio4hQecHslesrp9XvTs3j/eX7jY4kItIgyirMfGlQQ7tTuTk50C/aD4AVCemG5RARMUKF2cJDX2wjs6CE2GBPplwXZ3QkqWJ1Ee/t7c0vv/zC4sWLeffdd5k0aRI//PADK1euxN3dvSEyikiVU6fVv/frfn4/lmtwIhGR+rdsTzrp+SUEeDgxonOIoVm0Ll5EWqp3liWy7mAWbk72vD+uJ65Ojd+bRM7Mqo4EZWVluLq6sm3bNgYNGsSgQYMaKpeInMV13cL4YWcqP/1+nMe+3sF3Ewfh5GD19TgREZs1J/4wADf3jjD899vQ2EBe+e8e4pOyOVlaoQ+xItIirE7M4F+/JgIw9YYuhi1rkjOz6i+jo6MjkZGRVFRUNFQeETkPk8nEK6O74OvmyJ7UPN7TtHoRaUYOZxWyOjETkwlu62tMQ7tTtQ30oJWPK6XlZtYfzDI6johIgzueV8zDVevgb+sbyajurYyOJH9g9eXtZ555hqeffprs7OyGyCMidRDo6cyUUZXrkj5Yvp9dRzWtXkSah7lVa+GHxAQS4edmcJrKC6dDarrUa128iDRv5RVmHvxiK1mFpXQM9eKFazsZHUnOwOoi/r333mPVqlWEhYURGxtLz549a91EpHFc2zWUkZ1DarrVl5arW72ING0l5RV8vSkFMLah3R9pXbyItBT/XLqPDUnZeDg78MG4nrg4agmRLbJqTTzA6NGjGyCGiFirulv9hkPZ7E3L571fE3lkeKzRsURELtiSXWlkF5YS6u3CZVWj37ZgULsAHO1NHMoq4lBmIW0C1MhXRJqfFQnpvL/8AACvj+lClH7X2Syri/gXXnihIXKIyAUI8HDmpVGdmTR3K++vOMDwziHEtfI2OpaIyAWZE185lf7WPpE42NtOw04PZwd6t/Zj3cEsViSkMyEgyuhIIiL1KjX3JH+btw2A/+vfmmu6hhkbSM7Jdv5CisgFuaZrGFd3CaFC0+pFpAlLPJ7PhqRs7O1M3NInwug4p6leF68p9SLS3JRVmHlw7lZOFJUR18qLZ/7U0ehIch5WF/G+vr74+fmddvP396dVq1YMGTKEmTNnNkRWETmLl0bF4efuxN60/JrtQEREmpLqUfhhHYMI8XYxOM3phlYV8esOZlFcpl16RKT5eOvnBDYdPoGnswPvj9U6+KbA6iL++eefx87Ojj/96U9MmTKFKVOm8Kc//Qk7OzsmTpxITEwM999/Px9++GFD5BWRMwjwcObl6m71Kw6wM0Xd6kWk6ThZWsH8LbbX0O5UscGehHi5UFxmZkOSdugRkeZh2Z7j/HvlQQDevLErrf21Dr4psHpN/Jo1a3jllVe47777at3/73//m59//pn58+fTtWtX3n33Xe6+++56Cyoi5/anrqH8sDOU/+5M5bGvt/P9g4NwdtCVVBGxfYu2HyO/uJxIPzcuaRdgdJwzMplMDIkJZN6mZFYkZDA4xnYa74mIXIijOSd59OvtAEwY2IaruoQanEjqyuqR+J9++olhw4addv8VV1zBTz/9BMDVV1/NwYMHLz6diFjlpVGd8Xd3IuF4Pu8u07R6EWka5sQfBmBsv0js7EwGpzm7/62L137xItK0Va6D30JOURndwr2ZfHUHoyOJFawu4v38/Fi0aNFp9y9atAg/Pz8ACgsL8fT0vPh0ImIVfw9nXh5dOa1+xsqD7EjJMTaQiMh57EzJZXtKLo72Jm7qFW50nHMa1C4AezsTBzIKSc4uMjqOiMgFe3PJXrYcycHLxYH3xvbU7M0mxurp9M899xz3338/y5cvp2/fvgBs3LiRH374gRkzZgDwyy+/MGTIkPpNKiJ1cnWXUP7UNZT/7qicVr/owUv0i1lEbNbcDZWj8FfFheLv4WxwmnPzdnWkZ6QPGw+dYOW+DMb3t831+yIi5/LL7uN8uDoJgL/f1I0IPzeDE4m1rB6Jv/vuu1m5ciXu7u4sWLCABQsW4ObmxsqVK7nrrrsAePTRR5k3b169hxWRunl5VBwBHk7sO17AO0s1rV5EbFNecRnfbTsGwLh+kQanqZuhsUEArEjQVnMi0vQkZxfx6FfbALjrkihGdA4xNpBcEKtH4gEGDRrEoEGD6juLiNQTP3cnXhkdx32ztzBj5QFGdA6hW4SP0bFERGr5butRikoraBfkQd8oP6Pj1MmQmED+/lMCvx3IpLTcjJOD1eMhIiKGKC03M+mLreQVl9M9wocnR2odfFN1QX95Dhw4wLPPPsvYsWNJT69s7vLjjz/y+++/12s4EblwI+NCubZbGGYLPPb1du1rLCI2xWKx1OwNP65fJCaT7Ta0O1WnUC8CPJwpKq1g0yFtNSciTcfUH/ewPTkHb1dH3hvbQxchmzCr/8utXLmSLl26EB8fz/z58ykoKABg+/btvPDCC/UeUEQu3JTrOhPg4URiegHvqFu9iNiQLUdOsDctHxdHO27oYdsN7U5lZ1e51RzAin2aUi8iTcOSXanMXHsIgLdv6ka4r9bBN2VWF/FPPfUUr7zyCr/88gtOTk41919++eWsX7++XsOJyMWpnFbfBYB/rzzAtuQcYwOJiFSZs75yFP7armF4uzkanMY6NVvNaV28iDQBR7KKePybHQDcMziaYZ2CDU4kF8vqIn7nzp1cf/31p90fFBREZmZmvYQSkfozMi6E6zStXkRsyInCUhbvTAVgXBPs8H5puwDsTJBwPJ9jOSeNjiMiclYl5RVMnLuF/OJyerX25fERsUZHknpgdRHv4+NDamrqafdv3bqVVq1a1UsoEalfldPqndmfXsA/l+4zOo6ItHDzt6RQWm4mrpUX3cK9jY5jNV93p5pmoas0pV5EbNhr/93DzqO5+Lo58q/beuBor3XwzYHV/xVvvfVWnnzySdLS0jCZTJjNZtauXctjjz3G7bff3hAZReQi+bo78er1cQB8uOogW46cMDiRiLRUtRvatW4yDe3+aGiMtpoTEdv23x2pfLruMAD/uKU7YT6uBieS+mJ1Ef/aa6/RoUMHIiIiKCgooFOnTgwePJiBAwfy7LPPNkRGEakHIzqHMLp75bT6xzWtXkQMsu5AFkmZhXg4O3BdtzCj41yw6nXxa/dnUlZhNjiNiEhthzILeXJ+5Tr4+4e25bLYIIMTSX2yuoh3cnLiww8/5MCBAyxevJjZs2ezd+9ePv/8c+zt7Rsio4jUkxev60ygpzMHMgr55y+aVi8ija96FP76Hq1wd3YwOM2F69rKGz93J/JLytlyWLObRMR2FJdV8MCcLRSUlNO3jR+PXhljdCSpZxe8KCIyMpKrr76am2++mfbt29dnJhFpID5uTrx2fWW3+g9Xa1q9iDSu9Pxifvo9DYCx/SINTnNx7OxMXNo+AICVWhcvIjbk5cW72Z2ah7+7E+/e1gMHrYNvdup0CfyRRx6p8wn/8Y9/XHAYEWl4V3YK5voerVi49SiPfb2dH/56KS6OmkUjIg3v600plJst9GrtS8dQL6PjXLShsYF8t+0YKxIyeGJkB6PjiIjw3bajzIk/gskE/7ylOyHeLkZHkgZQpyJ+69attb7esmUL5eXlxMZWblGwb98+7O3t6dWrV/0nFJF698K1nVizP5ODGYX845d9PH11R6MjiUgzV2G2MLemoV3THoWvNrh9ICYT7E7NIz2vmCAvfVgWEeMcyCjg6QU7AZh0WTsGxwQanEgaSp3mVixfvrzmdu211zJkyBBSUlLYsmULW7ZsITk5mcsuu4w//elPDZ1XROqBj5sTU0+ZVr9Z6zlFpIGt2pfB0ZyT+Lg5cnWXUKPj1At/D2e6tKrcIk9T6kXESMVlFUycs4XC0gr6R/vx8DCtg2/OrF4g8fbbbzN16lR8fX1r7vP19eWVV17h7bffrtdwItJwhnUK5oYerbCoW72INII58ZXbHN3YM7xZLeEZWjXStUJFvIgY6MXvf2dvWj4BHk68e2sP7O2a5vadUjdWF/F5eXlkZJz+hyojI4P8/Px6CSUijeOFazsT5OnMwcxC3vopweg4ItJMHc05ya970wG4rZlMpa9WvdXcmsRMyrXVnIgYYOHWFL7cmIzJBO/c2kNLe1oAq4v466+/njvuuIMFCxaQkpJCSkoK8+fP56677uKGG25oiIwi0kC83RyZekPltPqP1yax6VC2wYlEpDn6csMRzBYY2NaftoEeRsepV93CffB2dST3ZBnbU3KMjiMiLcz+9HyeXrALgL9e3p5B7QIMTiSNweoifsaMGVx11VWMHTuW1q1b07p1a8aOHcvIkSP54IMPGiKjiDSgKzoGM6ZneOW0+m92cLJU0+pFpP6UVZj5cmMyAOP6tTY4Tf1zsLfjkuqt5hI0pV5EGs/J0gomztnKybIKBrXz569XaNvvlsLqIt7NzY0PPviArKwstm7dytatW8nOzuaDDz7A3d29ITKKSAN7/tpOBHs5k5RZyFs/a1q9iNSfpbuPk5FfQoCHM1d2CjY6ToPQuniplnKiiC1HTlCmpRXSCJ7/bhcJx/MJ9HRm2i1aB9+S1GmLuTNxd3ena9eu9ZlFRAzi7erI6zd05Y5ZG/lkbRIj40Lo08bP6Fgi0gzMqdpW7pY+4Tg5WD120CQMqSrid6TkkllQecFCWp7CknKue28t2YWleDo7MKhdAENiAxkSE0iYj6vR8aSZ+WZzCl9vTsHOBO/e2oNAT/3eaUnq9Nf0hhtuIC8vr84nHTduHOnp6RccSkQa32UdgrixV3hNt3pNqxeRi5WUWcia/ZmYTHBrn+bV0O5UQV4udAr1AmB1okbjW6pvtx0lu7AUgPyScpb8nsbkBTsZ+PqvDP/nSl79727W7s+kpFx/X+Xi7Duez7PfVu4H/7dhMQxo629wImlsdRqJ/+67787Ykf5MLBYLixYt4uWXXyYoKOiiwolI43rumk6sSczkUFYRf/8pgeev7WR0JBFpwr7YUDkKPzQmkAg/N4PTNKyhsYHsTs1jZUIG1/cINzqONDKLxcLs9ZXf75Ov6kD/aH9WJGSwcl8625Jz2He8gH3HC/hwdRKujvYMbOvP0NhAhsQEEenfvH82pH5YLBaOZBex/mAW/155kOIyM5e2D2DiZe2MjiYGqFMRb7FYiImJaegsImIwb1dHpo7pwh0zNzLzt8pp9X2jNK1eRKxXXFbB15uab0O7PxoSE8gHKw6wKjETs9mCndamtihbjuSwJzUPJwc7bu4dga+7E90ifHhoWHtyikpZnZjJyn0ZrNyXQUZ+Ccv2prNsbzrwO1EB7gyJCWRIbCADov1xcbQ3+u2IDbBYLBzKqiza4w9msf5gNml5xTWPB3s5889buut3TQtVpyJ++fLlVp+4VatWVj9HRIx3WWwQN/UK5+vNKTzxzXZ+eOhS3JwuuH2GiLRQS3alcaKojDBvFy7r0Pxn5vVs7YunswPZhaXsPJpLtwgfoyNJI5qz/jAA13QNxdfdqdZjPm5OXNstjGu7hWGxWCpnbOzLYGVCBpsPnyAps5CkzEJm/XYIZwc7+kX7MyQmkKGxgUQHuGMyqUhrCSwWCwczC6uK9mzWH8wiPb+k1jFO9nZ0j/ChX7Qft/SJUP+NFqxOn8yHDBnS0DlExIY8e00nVldNq39zSQIvXtfZ6Egi0sTMia8sam7tG9kiOiY72tsxqF0AS35PY0VChor4FuREYSmLd6YCML7/uWedmEwmOod50znMmweGtiOvuIzf9mdVFfXpHMstZtW+DFbty+DlxRDu61pV0AcxoK0/Hs66qN5cWCwW9qcXsD4pu6Zwzyz4Q9HuYEePCB/6RfvTP9qPnpG+mqkhwEV0pxeR5svb1ZHXx3RhwsyNzPrtEFfFhdAvWk1TRKRuEtLy2XjoBPZ2Jm7tE2F0nEYzNDawsojfl85Dw7Rfc0vxzeYUSsvNdAr1ooeVF2+8XBwZGRfCyLiQmqJu5b4MViRksCEpm5QTJ5kTf4Q58UdwtDfRu7Vf5Vr62EBigz01St+EmM0WEtMLiE/KYv3BLDYkZZNZUFrrGGcHO3pG+tIv2o/+0f50j/BR0V4PKswWNiRlk55fTJCnC32j/Jr8xWVDi/ipU6eyYMEC9u7di6urKwMHDuSNN94gNja25ph7772XpUuXcuzYMTw8PGqO6dChw1nPO2HCBD799NNa940YMYIlS5Y02HsRaW6GxgZxS+8I5m1K5pGvtrPwgYEEebkYHUtEmoC5VaPwwzsFt6jfG0NiK7ea256cw4nC0tOmVUvzYzZbamadjO/f+qKKapPJRPtgT9oHe/KXS6MpKi1n/cEsViRUFvVHsotYdzCLdQezmPrjXkK8XGrW0g9qF4C3q2N9vS2pB2azhYTj+TXr2Tccyq7ZvaCai6MdvVr70i/Kn/7R/nSL8MbZQUV7fVqyK5Upi3aTmvu/fgKh3i68cG0nRsaFGpjs4hhaxK9cuZKJEyfSp08fysvLefrppxk+fDi7d+/G3d0dgF69ejFu3DgiIyPJzs7mxRdfZPjw4SQlJWFvf/Zv8pEjRzJz5syar52dtWZExFrPXNOR+KQsDmUV8eeZG5l3b3+8XPQhQUTOrqi0nAVbjgIto6HdqUK9XYkN9iTheD6r92dyXbcwoyNJA1t7oHLpmYezA6O61+9/bzcnBy7vEMzlHYIBOJRZyIqEdFbuy2DdwSzS8oqZtymZeZuSsbcz0TPSp7Kojwmic5iXGp41MrPZwp60vJr17BsOZZNTVFbrGFdHe3q38aVfVOVIe9dwH5wc6rTjt1yAJbtSuX/2Fix/uD8tt5j7Z29h+vieTbaQN1kslj++L8NkZGQQFBTEypUrGTx48BmP2bFjB926dWP//v20bdv2jMdMmDCBnJwcvv322wvKkZeXh7e3N7m5uXh5eV3QOUSaiyNZRdww/TcyC0roH+3HrDv6amqXiJzVvI1HeHL+Ttr4u/Hro0NbXCHx2g97+M+qg4zpGc7bN3czOo40sHs/38RPvx/n9gGteWlUXKO9bnFZBRuSsms63u9PL6j1eICHE4PbV47SX9o+ED/NCql3FWYLe1LzWF810r7xUDa5J2sX7W5O9vRu41dTtHdp5a2ivZFUmC1c8savtUbgT2UCQrxdWPPk5TY1tb6udegFjcSXl5ezYsUKDhw4wNixY/H09OTYsWN4eXnh4eFxwaFzc3MB8PM785ZWhYWFzJw5k6ioKCIizr3GbsWKFQQFBeHr68vll1/OK6+8gr//mdf0lpSUUFLyv0YSeXl5F/gORJqfSH83Zt3Rh1v/s571B7N55Ktt/Ou2njb1C09EbMec+Mq9ssf2i2xxBTzA0JhA/rPqICv3ZWiruWYuLbeYpXvSgfM3tKtvLo72DI4JZHBMIM8BydlFrEqs7Hi/dn8mmQWlLNh6lAVbj2IyQddwn5qO993CffQ3/AKUV5jZnVp7pD2/uLzWMe5O9vSJ8quaHu9HXCtvHO1VtBthQ1L2WQt4AAuQmlvMhqRsBrRten2frC7iDx8+zMiRIzly5AglJSVceeWVeHp68sYbb1BSUsKMGTMuKIjZbObhhx9m0KBBxMXVvpL5wQcf8MQTT1BYWEhsbCy//PILTk5nv6I4cuRIbrjhBqKiojhw4ABPP/00V111FevWrTvjFPypU6cyZcqUC8ot0hLEtfLmP//XiwkzN/LDzjQCPH5nynWd1VBHRGrZkZLDjpRcnOztuLFXy2lod6pebXxxc7Ins6CE3al5xLXyNjqSNJAvNhyhwmyhbxs/YoI9Dc0S4efGuH6tGdevNaXlZjYfPlHVIC+dvWn5bE/OYXtyDu8uS8Tb1ZFL2wcwNDaIwTEBBHm2nL4V1iivMLPrWF7VmvYsNh06QX5J7aLd09mhqmivHGnvHOaFg4p2m5Cef/YC/kKOszVWT6cfPXo0np6efPzxx/j7+7N9+3aio6NZsWIFd999N4mJiRcU5P777+fHH39kzZo1hIeH13osNzeX9PR0UlNTeeuttzh69Chr167FxaVuv3QOHjxI27ZtWbp0KVdcccVpj59pJD4iIkLT6UX+YPGOYzz4xVYsFnj0yhgevELdl0Xkf56av4MvNyYzunsY027tYXQcw/zl000s3XOcx0fEMvGydkbHkQZQVmHmkjd+5XheCe/c2p1R3VsZHemsjucV1+xLvzoxg7w/jB53CvWq7HgfE0jP1r4tduS4rMLMzqO5NSPtmw5lU1haUesYTxcH+tWMtPvTKcxLsxps1LoDWdz24frzHvfF3f1taiS+wabTr169mt9+++20kfA2bdpw9OhR65MCkyZNYvHixaxateq0Ah7A29sbb29v2rdvT//+/fH19WXhwoXcdtttdTp/dHQ0AQEB7N+//4xFvLOzsxrfidTBNV3DyMwv4cVFu3n7l30Eejpza99Io2OJiA3IKy7ju23HABjXyFOLbc3Q2ECW7jnOyoQMFfHN1LI9xzmeV4K/uxMj40IA293GKtjLhZt7R3Bz7wjKK8xsT8lhRULlWvodKbnsTs1jd2oeH6w4gKezA4PaBTCkqqgP83E1On6DKS03s/NoDuurivbNh09Q9Iei3dvVkb6njLR3DFXR3lT0jfIj1NuFtNzi0xrbwf/WxPeNOvMybltndRFvNpupqKg47f6UlBQ8Pa2bSmSxWHjwwQdZuHAhK1asICoqqk7PsVgstUbOzyclJYWsrCxCQ5tm90ERWzJhUBQZBSW8v/wATy/cib+HM1d2CjY6logY7NutRzlZVkFMsAe9W/saHcdQQ2Iqt5rbfOQEuSfLtPVXMzR7fWXvh5v7RODsYN9ktrFysLejV2s/erX249HhsWQWlLC6ai39qsRMsgtLWfJ7Gkt+TwMgJtijai19EL3b+Dbp7c9KyivYkZJbs+Xb5sMnOFlWu6bxcXOsNdLeIcRTfS2aKHs7Ey9c24n7Z2/BBLUK+er/oi9c26nJXpSxejr9Lbfcgre3N//5z3/w9PRkx44dBAYGMmrUKCIjI2tt63Y+DzzwAHPnzuW7776rtTe8t7c3rq6uHDx4kHnz5jF8+HACAwNJSUnh9ddfZ+3atezZs4egoCAAOnTowNSpU7n++uspKChgypQpjBkzhpCQEA4cOMATTzxBfn4+O3furNOIu7rTi5ybxWLhyfk7+GpTCs4Odsz5Sz96t2maVzJF5OJZLBZGTltNwvF8plzXmT8PbGN0pFqMGCG94u0VHMgoZPq4nlzVxXaKOLl4SZmFXPbWCkwmWPX4Zfx+LPeM21hVf4c1lW2szGYLO4/m1nS833rkBOZT3pSroz0D2/pXTb0PItLf7aJfsyF/NkvKK9h2JIf4pMqR9i1HTlBcZq51jJ+7U1XR7kf/tv7EBKlob26aygW2anWtQ60u4pOTkxk5ciQWi4XExER69+5NYmIiAQEBrFq1qqawrouzNcWaOXMmEyZM4NixY/zlL39h8+bNnDhxguDgYAYPHszzzz9fq+g3mUw1zzl58iSjR49m69at5OTkEBYWxvDhw3n55ZcJDq7baKGKeJHzK68wc+/nm1m2Nx0vFwe+uX+g4Y19bIGtTqcUaUgbD2Vz04x1uDraE//MFXi52M7Is1Ef4F5atJtP1iZxS+8I3rixa4O9jjS+Vxbv5qM1SQyNDeTjP/dpkttY1UVOUSlr9meysmrqfXp+7VmwUQHulfvSxwbSP8ofVyfrRunr+2ezuKyCrUdyWH8wi/ikLLYcyaG0vHbR7u/uRP9of/pFV06PbxfooaK9BWhKn80arIiHyi3m5s2bx/bt2ykoKKBnz56MGzcOV9fmsW5GRbxI3ZwsrWDcR+vZciSHUG8X5t8/sFmvnzufpna1V6S+PPzlVr7ddszmCtYlu1INGyFdtS+D2z/ZQIiXC+smX67dPJqJ4rIK+r22jNyTZXx0e2/cnR2aZPMsa1ksFvak5td0vN98+ATlpwzTOzvY0S/av7KojwmkbaD7Ob/n6+Nns7isgi2HT7C+aqR9W/LpRXuAhzP9o/3oF+3PgGg/2gZ66GdRbFqDFPFlZWV06NCBxYsX07Fjx3oJaotUxIvUXU5RKTfOWMf+9ALaBXnwzX0D8HE7+xaQzZWRxYKIkbILS+n/2jJKK8x8P2kQXcN9jI4EVI68GDlCWlxWQfeXfqa4zMyShy+lQ4g+TzQH32xO4bGvt9PKx5VVT1zG4h3HeOjLbed9nq13sLdWfnEZvx3IqmyQl5DOsT/8nIX7utYU9APbBeDh/L82XBf6s1lUWs6WwznEJ1Vu+bY9OZfSitpFe5Cnc62R9uiAc19MELE1DdKd3tHRkeLiprmXnog0DB83Jz67sy83fPAb+9MLuHPWRub8pb/V0+qasgqzhSmLdp+x+6mFyg8kUxbt5spOITY7fUvkQn2zOZnSCjNdWnnbTAEPsCEp+6xFAlT+bKbmFrMhKbtBRkhdHO0ZEO3P8oQMViRkqIhvJmavPwzAbX0jsLcz1XmP9ea2F7uniyMjOocwonMIFouFAxkFNR3v4w9mk3LiJHPijzAn/giO9iZ6t/ZjSGwgQ2MDyS4ordPP5qp9GdjbmaqK9mx2pORQVlH7L22Il0vNSHv/aH/a+LupaJcWweru9BMnTuSNN97go48+wsHB6qeLSDMU5uPKZ3f15cbpv7HlSA6T5m7h3//XC4cWstes0cWCiFHMZgtz4yu7dI/rZ1vbTabn123Qoa7HXYghMYEsT6js/H3fkLYN9jrSOHYdzWVbcg4OdiZu7hMBNP9trOrCZDLRLsiTdkGe/OXSaIpKy1l/MIuVCRms2JfB4awi1h3MYt3BLF7/cW+dd2u469ONtRrrAYR5u9QaaY/0U9EuLZPVVfjGjRtZtmwZP//8M126dMHd3b3W4wsWLKi3cCLSdMQEe/LJhD6M+yieZXvTeXrhTt4Y07VF/HG1hWJBxAi/HcjiUFYRns4OXNstzOg4tdjCCOnQ2CBYtJtNh7MpKCmvNaVYmp45VResRsSF1HzfNPdtrC6Em5MDl3cI5vIOlQ2lD2UW1qylX3cwi9yTZXU6j9kCrXxca4r2AdH+hPu6tojPFSLnY/VfEx8fH8aMGdMQWUSkievdxo/3xvbk3s838dWmFAI9nXl8RAejYzU4WygWRIwwJ75yavH1PVvhbmMFqi2MkLYJcKe1vxuHs4r4bX8mwzuHNNhrScPKLy7ju21HARjfr3Wtx0bGhTJ9fM/TGpuGqLEpUPlz0CbAnT8PbENxWQXxB7N4YM4WCksrzvocb1dHvp80iNb+7mc9RqQls/ovrjX7wItIy3Nlp2Beu74LTy3YyfvLDxDo4cyEQVFGx2pQtlAsiDS243nF/Lz7OADj/lDU2AJbGSEdGhPIp+sOs2Jfhor4Jmzh1qMUlVbQLsiD/tGn/y4fGRfKlZ1Cmsw2VkZxcbRnSGwQb9/c7ZzNYN8Y00UFvMg5tIwFqyLSqG7tG8mjV8YAMGXxbhbvOGZwooZVXSzA/z6AVGup0yml+ftqYzIVZgt92vgSG+JpdJwzqh4hDfGuPQsmxNul0XaMGBobBMDKhAwuYFdfsQEWi6Wmod24fpFnnc5tb2diQFt/RnVvxYC2/vqdfw7VP5uhBv5sijRlVo/ER0VFnXMtysGDBy8qkIg0D5Mub0dGQQmfrTvMI/O24+fmxMB2AUbHajCaTiktSYXZwhcbqhva2d4o/KmMHiHtH+2Pk4MdR3NOciCjgHZBtnnBQ85u46ET7DtegKujPTf0DDc6TrNh9M+mSFNmdRH/8MMP1/q6rKyMrVu3smTJEh5//PH6yiUiTZzJZOKFazuTWVDCDzvTuOfzzXx5T3/iWnkbHa3B6AOJtBQrqvaF9nVzZGSc7U8Rrx4hNYKrkz39ovxYnZjJioQMFfFNUPUo/HXdwurcWV3qxsifTZGmzOoi/qGHHjrj/e+//z6bNm266EAi0nzY25n4x83dyS7cwPqD2UyYuZEF9w8k0t/N6GgNRh9IpCWo7tJ9U+8IXBztDU5j+4bEBLI6MZOV+zL4y6XRRscRK2QWlPDjrlQAxve37VknItJy1Nua+Kuuuor58+fX1+lEpJlwcbTnP7f3pmOoF5kFJdz+STyZBSVGxxKRC5RyoojlCekA3NbXtvaGt1XV6+LjD2ZTVFpucBqxxlebkimrsNAt3Jsu4c13JpmINC31VsR/8803+Pmp87KInM7LxZFP7+hDuK8rh7KKuGPmRgpK9EFWpCn6ckMyFgtc0i6AqAB1j66LtoHutPJxpbTCzPqDWUbHkTqqMFuYWzXrZJxG4UXEhlg9nb5Hjx61GttZLBbS0tLIyMjggw8+qNdwItJ8BHm58Nmdfblxxjp2Hs3lvs8388mEPjg5aJMMkaairMLMlxuTgcou3VI3JpOJobGBzIk/woqEDC7vEGx0JKmDVfsySDlxEi8XB67tGmZ0HBGRGlYX8aNGjapVxNvZ2REYGMjQoUPp0KFDvYYTkeYlOtCDmRP6cNuH61mzP5PHvt7OtFu6Y6fGbyJNwi+7j5NZUEKgpzPDOqkQtcaQmMoifuW+DKOjSB1VN7S7sVcErk7q/SAitsPqIv7FF19sgBgi0lJ0i/Bh+vhe3DVrI99vP0aAhzPPXdPxnFtXiohtmBNfWdTc2icCR3vNorHGwHYBONqbOJxVRFJmoZYi2LiUE0X8WtX7YaxmnYiIjbH6L7C9vT3p6emn3Z+VlYW9va5Sisj5DYkJ5K2bugHwydok/r3qoMGJROR8DmYUsHZ/FnYmuFUN7azm4exAnzaVvYNWJpz+OUpsyxcbjmCxwIBof9oFeRgdR6RGhdnCugNZfLftKOsOZFFhthgdSQxg9Ui8xXLmb5SSkhKcnJwuOpCItAyje7QiI7+EV3/Yw+s/7iXQw5kxvcKNjiUiZ/HFhsoGX5fFBtHKx9XgNE3TkJhAfjuQxYp9GUwYFGV0HDmL0nIz86p6P2hbObElS3alMmXRblJzi2vuC/V24YVrOzEyLtTAZNLY6lzEv/vuu0Blc5aPPvoID4//XZWsqKhg1apVWhMvIla5e3A0GQUl/GfVQZ6YvwM/dycu6xBkdCwR+YPisgq+3pwCwLj+GoW/UENjg5j6417WH8yiuKwCF0fNYLRFP/2eRmZBKYGezgzvrN4PYhuW7Erl/tlb+ONwalpuMffP3sL08T1VyLcgdS7i//nPfwKVI/EzZsyoNXXeycmJNm3aMGPGjPpPKGdUYbawISmb9Pxigjxd6Bvlh72ag0kT9NTIDmTkl7Bw61EemLOFuXf3o0ekr9GxROQUP+xMJaeojFY+rgyJ0YW2CxUT7EGIlwtpecXEJ2UzJCbQ6EhyBur9ILamwmxhyqLdpxXwABbABExZtJsrO4WoHmgh6lzEJyUlAXDZZZexYMECfH31IdsomkojzYmdnYk3b+xKVmEpq/ZlcOesjXx930CtQRSxIXOq9sq+rW+EPiBehOqt5r7cmMyKhHQV8TZof3o+6w9mY2eC29T7QWzEhqTsWp/7/8gCpOYWsyEpmwFt/RsvmBjG6suLy5cvVwFvoOqpNH/8Qa6eSrNkV6pByUQunKO9HdPH9aRbuDcnisr48ycbSDvHHysRaTx7UvPYfPgEDnYmbu4dYXScJq+6cNdWc7Zp9vrKC1aXdwgmTL0fxEak59ftM1Fdj5Omz+rGdgApKSl8//33HDlyhNLS0lqP/eMf/6iXYHI6TaWR5szd2YFPJvThxhnrSMos5M+fbOCr+wbg7epodDQRm9LYy6nmVo3CD+8cTJCXS4O9TksxqH0A9nYmDmYUkpxdRISfm9GRpEpRaTnzt1T2fhiv3g9iQ4I86/a7t67HSdNndRG/bNkyrrvuOqKjo9m7dy9xcXEcOnQIi8VCz549GyKjVNFUGmnu/D2c+ezOvtww/TcSjudz96eb+Oyuvmr+JFKlsZdTFZaUs3DrUQDG9VOX7vrg5eJIr0hfNhzKZsW+DP5P3c9txqLtx8gvLifSz43B7bXUQWxH3yg/Qr1dSMstPuNgngkI8a68qCstg9XT6SdPnsxjjz3Gzp07cXFxYf78+SQnJzNkyBBuuummhsgoVTSVRlqCCD83Pr2jL57ODmw4lM1DX27VHqgiGLOc6vvtxygoKScqwJ0B0bo4XF+GxFZNqdd+8Taleir92H6R2GlGo9gQezsTL1zbCags2E9V/fUL13bSTNwWxOoifs+ePdx+++0AODg4cPLkSTw8PHjppZd444036j2g/I+m0khL0SnMi//c3hsnezt++v04z323C4tFhby0XOdbTgWVy6nq84KXxWJh9vrKLt1j+6qoqU/V6+J/O5BFSXmFwWkEYHtyDjuP5uJkb8dNvcKNjiNympFxoUwf35MQ79qf80O8XbS9XAtk9XR6d3f3mnXwoaGhHDhwgM6dOwOQmZlZv+mkFk2lkZZkQFt/pt3anYlztzA3/ghBns48PCzG6FgihjBiOdWOlFx+P5aHk4MdN6qoqVedw7wI9HQmI7+ETYdOMKhdgNGRWrzqC1ZXdwnB38PZ4DQiZzYyLpQrO4Vom2mxfiS+f//+rFmzBoCrr76aRx99lFdffZU777yT/v3713tA+R9NpZGW5uouobw0Kg6AaUsTaz5kibQ0Riynqt4r+5ouofi6O9XbeaVyqzl1qbcduUVlLNpxDIDx6lEgNs7ezsSAtv6M6t6KAW399bm/hbK6iP/HP/5Bv379AJgyZQpXXHEF8+bNo02bNnz88cf1HlBq01QaaWn+r39r/np5OwCe/24XS3alGZxIpPE19nKq3JNlfL+9sqgZpy7dDaK6iF+hdfGG+2ZLCsVlZjqEeNKrtbZRFhHbZ9V0+oqKClJSUujatStQObV+xowZDRJMzk5TaaSl+duVMWQUlPDFhmT++uVWPr+zL/3UZEtakMZeTrXwlKKmZ6SKmoZwafsA7Eyw73gBx3JOak9yg1gslppZJ+P6t8Zk0mcpEbF9Vo3E29vbM3z4cE6cONFQeaSONJVGWhKTycTLo+K4slMwpeVm/vLZJvam5RkdS6TRNOZyqsqiprJL97h+kSpqGoiPmxPdI3wATak30roDWRzMKMTdyZ7re7QyOo6ISJ1YPZ0+Li6OgwcPNkQWEZGzcrC341+39aBPG1/yi8v58ycbSDlRZHQskUbTWMupNh46QWJ6AW5O9oxWUdOghsYGAZpSb6TZVaPwo3q0wsPZ6n7PIiKGsPq31SuvvMJjjz3Gyy+/TK9evXB3d6/1uJeXV72FExE5lYujPR/d3oeb/v0b+44XcPsnG/jmvoH4qemWtBCNsZyqemrxqO5heLo41tt55XRDYgL5xy/7WLs/i7IKM472Vo+tyEVIzyvm59+PAzC+nxraiUjTYXURf/XVVwNw3XXX1ZpiZ7FYMJlMVFRov1MRaTjebo58emdfxnzwGwczCrlj1ka+uLsfbk4aQZGWoXo5VUPIKijhx52VzSPH9lVR09C6tPLGz92J7MJSNh8+QX/1+mhUX25MptxsoWekD53CNAglIk2H1Z96ly9f3hA5RETqLNTblc/u6suNM9axPTmHB+Zs4cPbe2sUS+QifbM5hdIKM93CvekS7m10nGbPzs7E4PYBfLvtGCv3ZaiIb0TlFWa+2FDZ+0HbyolIU2N1ET9kyJCGyCEiYpV2QZ58/Oc+jPtoPSsSMnhy/g7evqmbmnCJXCCz2cLcDdUN7VTUNJahsUF8u+1Y5e+xkR2MjtNiLE/IIDW3GF83R67uou15RaRpuaBhq9WrVzN+/HgGDhzI0aNHAfj8889Zs2ZNvYYTETmXXq19eX9sT+ztTCzYcpTXl+w1OpJIk7X2QCaHs4rwdHHgmm4qahrLpe0DMJlgT2oex/OKjY7TYsxeX9n74abeEbg42hucRkTEOlYX8fPnz2fEiBG4urqyZcsWSkpKAMjNzeW1116r94AiIudyRcdgpt7QBYB/rzzIx2uSDE4k0jRVFzVjeoarx0Qj8vdwpmuryqUL2mqucRzJKmJVYuW/9di+kQanERGxntVF/CuvvMKMGTP48MMPcXT8X9faQYMGsWXLlnoNJyJSFzf3juDxEbEAvLx4N99tO2pwIpGmJS23mKV7Krc5G9tPRU1jG1K11ZyK+MYxZ8NhLJbKWRBtAtzP/wQRERtjdRGfkJDA4MGDT7vf29ubnJyc+sgkImK1B4a2ZcLANgA89vV2Vifqw7BIXc3bmEyF2ULfNn7EBHsaHafFGRITCMDqfRmUV5gNTtO8lZRX8PWmFEAN7USk6bK6iA8JCWH//v2n3b9mzRqio6PrJZSIiLVMJhPPX9OJa7qGUlZh4b7PN7MzJdfoWCI2r7zCzJcbqxra9dcovBG6R/jg7epIXnE521NyjI7TrP24M43swlJCvV24okOQ0XFERC6I1UX83XffzUMPPUR8fDwmk4ljx44xZ84cHnvsMe6///6GyCgiUid2dibevrkbg9r5U1hawYSZG0jKLDQ6lohNq+7S7efuxMi4EKPjtEj2diYubR8AwIoEzSJqSNW9H27tE4mDtiUVkSbK6t9eTz31FGPHjuWKK66goKCAwYMH85e//IV7772XBx98sCEyiojUmbODPTPG96JzmBdZhaXc/kk86fnq+CxyNnPiq7p09wrH2UFduo0ytGpdvIr4hrM3LY9Nh09gb2fi1r4RRscREblgVhfxJpOJZ555huzsbHbt2sX69evJyMjg5Zdfboh8IiJW83RxZNYdfYn0cyM5+yQTPtlIfnGZ0bFEbE5ydlFNM7Xb1KXbUINjKkfidx7NJbOgxOA0zVP1KPzwTsEEe7kYnEZE5MJd8DwiJycnPD09CQ0NxcPDoz4ziYhctEBPZz67sy8BHk7sTs3j3s83U1JeYXQsEZvyxYYj6tJtI4I8Xegc5gXAKnWpr3cFJeUs3FK5c4ka2olIU2d1EV9eXs5zzz2Ht7c3bdq0oU2bNnh7e/Pss89SVqaRLhGxHW0C3Jk5oS/uTvb8diCLR77ajtlsMTqWiE0oLTfz1aZkAMb1U1FjC6q71Gurufr37dajFJZWEB3gzsC2/kbHERG5KFYX8Q8++CD/+c9/ePPNN9m6dStbt27lzTff5OOPP+avf/1rQ2QUEblgXcK9+ff/9cbR3sR/d6Ty0uLdWCwq5EV+3p1GZkEpwV7OXNFRXbptQfW6+FX7MqjQBcd6Y7FYaqbSj+0XiclkMjiRiMjFsbqInzt3LrNmzeLee++la9eudO3alXvvvZePP/6YuXPnWnWuqVOn0qdPHzw9PQkKCmL06NEkJCTUOubee++lbdu2uLq6EhgYyKhRo9i7d+85z2uxWHj++ecJDQ3F1dWVYcOGkZiYaO1bFZFm4pL2Abx9c3cAZv12iA9WHDA2kIgNmLO+clu5W/pE4qgu3TahZ6QPni4OnCgqY+dRbZFZX7YcOcHetHycHey4sVe40XFERC6a1X+1nZ2dadOmzWn3R0VF4eTkZNW5Vq5cycSJE1m/fj2//PILZWVlDB8+nMLC/20J1atXL2bOnMmePXv46aefsFgsDB8+nIqKs69tffPNN3n33XeZMWMG8fHxuLu7M2LECIqL1aFapKW6rlsYz1/TCYC//5TAVxuTDU4kYpz96QWsO5iFnQlu7aMu3bbCwd6OS9pVbzWXbnCa5mN21QWra7qG4eNm3WdVERFbZLJYOa/0pZdeYu/evcycORNnZ2cASkpKuOuuu2jfvj0vvPDCBYfJyMggKCiIlStXMnjw4DMes2PHDrp168b+/ftp27btaY9bLBbCwsJ49NFHeeyxxwDIzc0lODiYWbNmceutt543R15eHt7e3uTm5uLl5XXB70dEbM/rP+5lxsoD2NuZ+M//9eKKjsFGRxJpdC8v3s3Ha5IY1jGYj/7c2+g4cop5G4/w5Pyd9Ij0YeEDg4yO0+RlF5bS/7VllFaYWfjAQHpE+hodSUTkrOpahzpYe+KtW7eybNkywsPD6datGwDbt2+ntLSUK664ghtuuKHm2AULFlh17tzcyqljfn5+Z3y8sLCQmTNnEhUVRUTEmUcOkpKSSEtLY9iwYTX3eXt7069fP9atW3fGIr6kpISSkv9t55KXl2dVbhFpOp4cGUtGfgnzt6Qwce4W5vylH71an/l3jkhzVFxWwTebUwAY11/bytmawVXN7bYl53CisBRfd40cX4xvNidTWmGmc5gX3SN8jI4jIlIvrC7ifXx8GDNmTK37zlZQW8NsNvPwww8zaNAg4uLiaj32wQcf8MQTT1BYWEhsbCy//PLLWafup6WlARAcXHt0LTg4uOaxP5o6dSpTpky56PcgIrbPZDLx+pguZBeWsDwhgztnbeKb+wbQPtjT6GgijeK/O1LJPVlGuK8rg9sHGh1H/iDU25UOIZ7sTctn9f5MrusWZnSkJststjAnvnIq/fj+rdXQTkSaDauL+JkzZzZEDiZOnMiuXbtYs2bNaY+NGzeOK6+8ktTUVN566y1uvvlm1q5di4uLS7289uTJk3nkkUdqvs7Ly6uXCxMiYpsc7e14f1xPxn4Yz7bkHG7/ZAMLHhhIqLer0dFEGtyc+Mou3bf1jcTeTkWNLRoSE8jetHxWJKSriL8Ia/ZncjirCE9nB0Z117+jiDQfNtGOdtKkSSxevJjly5cTHn5611Bvb2/at2/P4MGD+eabb9i7dy8LFy4847lCQkIAOH78eK37jx8/XvPYHzk7O+Pl5VXrJiLNm5uTA59M6EN0oDupucXc/vEGcopKjY4l0qB2H8tjy5EcHOxM3NxbF6tt1ZDYyhkSq/ZlYNZWcxeselu5G3q2ws3J6nErERGbZXURn5WVxcSJE+nUqRMBAQH4+fnVulnDYrEwadIkFi5cyK+//kpUVFSdnmOxWGqtYT9VVFQUISEhLFu2rOa+vLw84uPjGTBggFX5RKR583N34rM7+xLs5UxiegF/+XQTxWVn3/lCpKmbu6GyqBkRF0Kgp7PBaeRserf2w93JnsyCUnanqk/PhUjNPcnSPZUDOuP6tzY4jYhI/bL6suT//d//sX//fu666y6Cg4Mvan3RxIkTmTt3Lt999x2enp41a9a9vb1xdXXl4MGDzJs3j+HDhxMYGEhKSgqvv/46rq6uXH311TXn6dChA1OnTuX666/HZDLx8MMP88orr9C+fXuioqJ47rnnCAsLY/To0RecVUSap3BfNz69sy83zVjHpsMnmDR3KzPG98RB+2ZLM1NQUs7CLUcBGNdPDe1smZODHQPbBfDL7uOsSEgnrpW30ZGanC82JGO2QN8oP2LU80REmhmri/jVq1ezZs2ams70F2P69OkADB06tNb9M2fOZMKECbi4uLB69WqmTZvGiRMnCA4OZvDgwfz2228EBQXVHJ+QkFDT2R6oaYJ3zz33kJOTwyWXXMKSJUvqbQ29iDQvHUK8+Oj23vzfJxtYuuc4z367i6k3dFETJGlWvtt2lMLSCqID3BkQ7W90HDmPobGB/LL7OCv3ZTDp8vZGx2lSyirMfLnhfw3tRESaG6uL+A4dOnDy5Ml6efHzbVEfFhbGDz/8YPV5TCYTL730Ei+99NJF5RORlqNftD//uq0H98/ezJcbkwn0dObR4bFGxxKpFxaLhdnrK4uasf0idYGqCRhStdXcliM55J4sw9vV0eBETcfS3cdJzy8hwMOJkZ3P3A9JRKQps3q+6AcffMAzzzzDypUrycrKIi8vr9ZNRKSpGtE5hFdGdwHgX7/u5/N1h4wNJFJPtiXnsCc1DycHO27sdXoDWbE94b5utAvyoMJsYe3+TKPjNCmzq3ZguLl3BE4OWholIs2P1b/ZfHx8yMvL4/LLLycoKAhfX198fX3x8fHB19e3ITKKiDSasf0ieXhY5dTV57//nR92phqcSOTiVe+VfU3XUHzcnAxOI3VVPRq/IiHd4CRNx8GMAtbuz8JkqtxGUUSkObJ6Ov24ceNwdHRk7ty5F93YTkRsW4XZwoakbNLziwnydKFvlF+L2Ff6oSvak5Ffwpz4Izz85TZ83BwZ2DbA6FgiFyS3qIxF248BMK6f1gc3JUNjA/l4TRIr92VgsVj0masOqi9YXRYbRISfm8FpREQahtVF/K5du9i6dSuxsVorKtKcLdmVypRFu0nNLa65L9TbhReu7cTIuFADkzU8k8nES6PiyCooZcnvadz72Wbm3TuATmFeRkcTsdr8LSmUlJvpEOJJz0gfo+OIFfq08cPV0Z7jeSXsTcunY6h+B51LcVkF32xOAWB8f43Ci0jzZfV0+t69e5OcnNwQWUTERizZlcr9s7fUKuAB0nKLuX/2Fpbsav5TzO3tTEy7tTt9o/zILynnzzM3kJxdZHQsEatYLBbmVK0PHte/tUZymxgXR3sGtK3cSWBFQobBaWzfou3HyD1ZRisfV4bEBJ3/CSIiTZTVRfyDDz7IQw89xKxZs9i8eTM7duyodRORpq3CbGHKot2cae+I6vumLNpNhfncu0s0By6O9nx4e286hHiSkV/C7Z9sIKugxOhYzU6F2cK6A1l8t+0o6w5ktYjvrcYSn5TNgYxC3JzsGd09zOg4cgGq18Wv3Kd18eczO/5/OzC0hKVfItJyWT2d/pZbbgHgzjvvrLnPZDLVrNWqqKiov3Qi0ug2JGWfNgJ/KguQmlvMhqTsmhGi5szb1ZFP7+zLDR/8RlJmIXfO2sjcu/vj7mz1r085g5a8bKMxVK8PHt2jFZ4u2qKsKRoaW1nEbzp0gvziMv13PItdR3PZnpyDo72Jm3tHGB1HRKRBWT0Sn5SUdNrt4MGDNf8rIk1bev7ZC/gLOa45CPZy4bO7+uLr5sj2lFzum72Z0nKz0bGaPC3baFiZBSU1/4Zj1aW7yWrt704bfzfKzRZ+O5BldBybVb1sZETnEAI9nQ1OIyLSsKwu4lu3bn3Om4g0bUGeLvV6XHPRNtCDTyb0wdXRntWJmTzxzXbMmvZ9wbRso+F9vSmFsgoL3SN8iGvlbXQcuQhDYyvXd2td/JnlFZfx7dbKHRjG99dnURFp/qwu4gE+//xzBg0aRFhYGIcPV175nDZtGt999129hhORxtc3yo9QbxfOtprQROV0575Rfo0Zyyb0iPTlg/E9cbAz8e22Y0z9cY/RkZosa5ZtiPXMZgtzN1Q1tOunUfimbkjVlPpVVVvNSW0LtxzlZFkF7YM86NcC/zaJSMtjdRE/ffp0HnnkEa6++mpycnJq1sD7+Pgwbdq0+s4nIo3M3s7EC9d2AjitkK/++oVrO7XYpkGXxQbxxpiuAHy4Oon/rDpgcKKmScs2Gtbq/ZkkZ5/Ey8WBa7qqoV1T1z/KHycHO47mnGR/eoHRcWyKxWJh9vr/XbDSDgwi0hJYXcT/61//4sMPP+SZZ57B3t6+5v7evXuzc+fOeg0nIsYYGRfK9PE9CfGuPWU+xNuF6eN7tviGY2N6hTP5qg4AvPbDXhZsSTE4UdOjZRsNa05VUTOmVziuTvbnOVpsnauTPf2jKxuJrtynKfWn2pCUTWJ6Aa6O9tzQK9zoOCIijcLq9spJSUn06NHjtPudnZ0pLCysl1AiYryRcaFc2SmEDUnZpOcXE+RZOYW+pY7A/9E9g6NJzy/h4zVJPPHNDvzcnWrWrcr5VS/bSMstPuO6eBOVF41a4rKNi5Wae5Jleyu3I9NU+uZjSEwgq/ZlsCIhg79cGm10HJtRva3cqO5heKlzv4i0EFaPxEdFRbFt27bT7l+yZAkdO3asj0wiYiPs7UwMaOvPqO6tGNDWXwX8KUwmE89c3ZFR3cMoN1t4YM4WtiXnGB2rydCyjYYzb2MyFWYL/aL8aBfkaXQcqSfVW81tSMqmqLTc4DS2ISP/fzswqKGdiLQkdS7iX3rpJYqKinjkkUeYOHEi8+bNw2KxsGHDBl599VUmT57ME0880ZBZRURsip2dib/f2I1L2wdQVFrBnbM2cjBD61XrSss26l95hZkvNyQDME5FTbMSHeBOuK8rpRVm1mmrOQC+2pRMWYWFbtqBQURaGJOljm1O7e3tSU1NJSgoiDlz5vDiiy9y4EBlQ6ewsDCmTJnCXXfd1aBhG0teXh7e3t7k5ubi5eVldBwRsXEFJeXc9p/17DyaS7ivKwvuH0iQl9Zy11WF2aJlG/Xk59/TuOfzzfi7O/Hb5MtxdtB6+Obk2W93Mnv9Ef6vf2teHh1ndBxDVZgtDH5zOUdzTvL3G7tyU+8IoyOJiFy0utahdR6JP7XWHzduHImJiRQUFJCWlkZKSkqzKeBFRKzl4ezAzDv60MbfjZQTJ7n9kw3kFZcZHavJ0LKN+jOnan3wTb0jVMA3Q0NiqvaL35fe4reaW7kvnaM5J/F2deTabtqBQURaFqvWxP9x2w43NzeCgtTISUQkwMOZz+7sR4CHM3vT8hn+j1W8szSR43naIk0ax5GsIlYlVnYuH9tXDe2ao4Ft/XG0N5GcfZKkzJbdTHj2+soLVjf2CsfFUResRKRlsaqIj4mJwc/P75w3EZGWKtLfjU/v7EOQpzNpecX8c+k+Br7+K/d9vpk1iZmYzS175Ewa1twNR7BYYHBMIJH+bkbHkQbg7uxAnzaVn7Va8lZzydlFLE/QDgwi0nJZtcXclClT8PZW4xARkbPpHObN6icvY8muNGavP8zGQydY8nsaS35PIyrAnbF9I7mxVzi+7k5GR5VmpKS8gq83VTW0U1HTrA2NDeS3A1msSMjgjkFRRscxxBdVF6wGtfMnOtDD6DgiIo3OqiL+1ltv1fR5EZHzcHawZ1T3Vozq3oq9aXnMjT/Cgi1HScos5NUf9vD3nxO4pkso4/q3pmekz2lLlUSs9dPvx8kqLCXYy5krOujvdHM2NDaI137Yy/qDWRSXVbS4qeSl5Wa+qrpgNb6fdmAQkZapztPp9SFTRMR6HUK8eGlUHPFPX8Fr13ehU6gXpeVmFmw9ypjpv3H1u2uYvf4wBSXa91ku3Jz1hwG4tU8kDvZWrZSTJqZ9kAeh3i6UlJtZf7DlbTW35Pc0MgtKCfJ0ZlinYKPjiIgY4oK604uIiHXcnR0Y2y+S//71EhY+MJAbe4Xj7GDHntQ8nv12F/1eXcozC3eyJzXP6KjSxOxPzyc+KRs7E9zaV9tsNXcmk4mhsYFAy1wX/78LVhE46oKViLRQdf7tZzabNZVeROQimUwmekT68tZN3Yh/+gqe/VNHogPcKSytYE78Ea56ZzVjpv/Gwq0pFJdVGB1XmoDqbeWu6BhMqLerwWmkMQyJqSriE1pWEZ94/NQLVur9ICItl1Vr4kVEpP74uDnxl0ujueuSKNYdyGJO/BF++j2NzYdPsPnwCV5atJubekcwtm8kbQLcjY4rNuhkaQXzN6cAML6/1ge3FAPbBeBgZ+JgZiFHsopazG4Ep16wCvPRBSsRabk0D0lExGAmk4mB7QJ4f1xPfnvqch69MoYwbxdOFJXxn1UHGfrWCv7v43iW7EqjvMJsdFyxIYt3HCOvuJwIP1cubRdgdBxpJF4ujvRs7QvAyn3pBqdpHEWl5bpgJSJSRUW8iIgNCfJy4cEr2rP6ycv56PbeDI0NxGSC1YmZ3Dd7M4Pe+JV//rKPtNxio6OKDagemRzbtzV2dmpA25JUr4tf0UKm1H+/7Rj5JeW09nfTBSsRafFUxIuI2CB7OxPDOgUz646+rHr8Mu4f2hZ/dyeO55XwzrJEBr3xK/d8tolV+zIwm9V4tCXadTSXbck5ONqbuKl3uNFxpJFVr4v/7UAWJeXNu3+GxWJhdnxlQ7uxfSN1wUpEWjwV8SIiNi7Cz40nR3bgt8mX8+5tPegb5UeF2cLPu49z+ycbuOztFfx75QGyC0uNjiqNaO6GylH4kXGhBHg4G5xGGlunUC+CPJ05WVbBxqQTRsdpUNtTctl1NA8nBztu6q0dGEREVMSLiDQRzg72XNctjK/uHcDPfxvMhIFt8HR24HBWEVN/3Ev/15bx8Jdb2XQoW9uCNnMFJeV8t/UoAOP6qUt3S2Qymf7Xpb6Zr4ufXbWt3J+6hOLn7mRwGhER46mIFxFpgmKCPXnxus7EP3MFb4zpQpdW3pRWmPl22zFunLGOq95ZzefrDpFfXGZ0VKknhSXlrEnM5J+/7GP8R/EUllbQNtCdflF+RkcTgwxpAevic4pKWbT9GADj++uClYgIaIs5EZEmzc3JgVv6RHJLn0i2J+cwJ/4w328/xt60fJ777nem/riXUd1bMb5/JJ3DvI2OK1bIKihh46ETbDyUzaZD2ew6lkfFH/of3H1pNCaT1ge3VJe2C8TOBInpBRzNOUmrZrjt2jebUygpN9MhxJOekb5GxxERsQkq4kVEmoluET50i/Dhmas7MX9LCnPiD3Mgo5AvNhzhiw1H6BHpw/h+rflT11BcHO2NjiunsFgspJw4yYakbDYeqrwdyCg87bhWPq70aeNL7zZ+9I/2o12QpwFpxVZ4uznSI9KXzYdPsDIhg7HNbGmFxWJhbtUODOP7t9YFKxGRKiriRUSaGW83R+68JIo7BrVh/cFs5sQf5qff09h6JIetR3J4+b+7ubFnOGP7RRId6GF03BbJbLaQcDyfjYey2ZCUzaZDJ0jLO33bwJhgD/q08aNvlB+92/g1y5FWuThDYwIri/h96c2uiP/tQBYHMwtxd7JndI9WRscREbEZKuJFRJopk8nEgLb+DGjrT0Z+CV9tSmZu/BGO5pzkozVJfLQmiUHt/BnfrzXDOgXjaK82KQ2lpLyCnSm5bDiUzcakbDYdPkF+cXmtYxzsTHQJ96ZvGz/6tPGjdxtffNzUxEvObUhsIG//so+1+7MoLTfj5NB8fo6rG9pd37MVHs76yCoiUk2/EUVEWoBAT2cmXtaO+4a0ZeW+dGavP8LyhHTW7s9i7f4sgjydubVPBLf2jSRMo70XLa+4jM2HT7DpUDYbk06wLSWH0nJzrWPcnezp2dqXPlVFe/cIH1ydtMxBrBMX5o2/uxNZhaVsOXKC/tH+RkeqF8fzivl593Ggciq9iIj8j4p4EZEWxN7OxOUdgrm8QzApJ4r4YsMR5m1MJj2/hHd/3c97y/dzeYdgxvePZHD7QOzstAa1LtLzitlwqHJa/IakbPam5fGHHnQEeDjRu7UffaL86NvGj46hnjho9oNcJDs7E4NjAlm49SgrEjKaTRH/5YZkKswWerf2pUOIl9FxRERsiop4EZEWKtzXjcdHdOChK2L4eXcas9cfZv3BbJbuOc7SPceJ8HNlbN/W3Nw7HH8PZ6Pj2gyLxUJSZmFVA7rK7vGHs4pOO661v1vVKHvlaHtUgLsac0mDGBpbXcSn89RVHYyOc9HKK8x8saGyod04bSsnInIaFfEiIi2ck4Md13QN45quYexPz2dO/BG+2ZxCcvZJ3liyl3/+so+RcSGM79+aPm18W1whWl5hZk9qftVIe2XhnllQUusYkwk6hnhVNaCrLNqDvVwMSiwtzaXtAzGZYG9aPsfzipv8996ve9NJyyvG182Rq+JCjY4jImJzVMSLiEiNdkGevHBtZ54Y0YFFO44xZ/1htqfk8v32Y3y//RgxwR6M69ea63u2wsvF0ei4DaK4rIKtR3JqtnrbcvgEhaUVtY5xcrCje7gPfaIqC/aerX2b7b+H2D4/dye6hvuwPTmHlQkZ3NwnwuhIF2V21bZyN/eO0HaYIiJnoCJeRERO4+pkz829I7i5dwQ7U3KZE3+Y77YdY9/xAl74/nde/3Evo7qHMb5/a+JaeRsd96LkFJWyqWpa/IZD2ew6mktZRe0F7Z4uDvRu7Vuznr1LuDfODiouxHYMjQmsLOL3Ne0i/nBWIav2ZQA0uy3zRETqi4p4ERE5py7h3rwe3pXJV3dk4ZYU5sQfITG9gC83JvPlxmS6Rfgwrl8k13YNaxLd1Y/mnGRT1f7sGw9ls+94wWnHBHs51+zP3qeNH7HBnmryJzZtSGwg7yxLZHViBuUV5ibbNHFu1Sj84JhAWvu7G5xGRMQ2qYiXFqPCbGFDUjbp+cUEebrQN8oPe30oF6kzb1dHJgyK4s8D27AhKZs58Uf4cVcq25Nz2J6cwyuLd3NjrwjG9oukXZCH0XEBMJst7M8oqJwan1S5nv1ozsnTjmsb6F6z1VvfKD/CfV1b3Np/adq6hfvg4+ZITlEZ25Jz6N3Gz+hIVisuq+CrTckAjNcovIjIWamIlxZhya5UpizaTWpucc19od4uvHBtJ0aqaY6IVUwmE/2i/ekX7U9mQSe+2pTM3PgjpJw4ySdrk/hkbRIDov0Z3781V3YKxsmh8UYES8vN7DqWWzXSfoJNh7PJKSqrdYy9nYm4MC/6tPGjd1X3eHXfl6bO3s7Epe0DWbT9GCsSMppkEf/jrlROFJUR6u3C5R2CjI4jImKzTBaLxXL+w1qWvLw8vL29yc3NxctLe5M2dUt2pXL/7C388Ru9eoxt+vieKuRFLpLZbGFlYgZz1h/m173pNXukB3g4c2ufCG7rF0krH9d6f93CknK2HDlRudVbUjZbk09QXGaudYyroz09In1qRtm7R/jg7qxr2NL8zN+cwqNfb6dLK28WPXiJ0XGsNmb6b2w+fIJHrozhr1e0NzqOiEijq2sdqk8x0qxVmC1MWbT7tAIewEJlIT9l0W6u7BSiqfUiF8HOzsRlsUFcFhvE0ZyTfLnhCF9uTCYjv4T3lu/ngxX7uSw2iPH9WzM4JvCCf94yC0pqjbL/fiyPCnPtn3BfN0d6t6lsQNcnyo/OYV44NtH1wSLWGBwTCMDOo7lk5JcQ6Nl0ZpjsSc1j8+ETONiZuLUJN+YTEWkMKuKlWduQlF1rCv0fWYDU3GI2JGUzoK1/4wUTacZa+bjy6PBY/npFe37ZfZzZ6w/z24Eslu1NZ9nedMJ9XbmtbyQ39444Z5FhsVhIzj7Jhpr17NkczCw84+tVN6DrG+VLdICHmtBJixTo6UxcKy92Hc1jdWIGN/QMNzpSnc1efxiA4Z2DCWri+9yLiDQ0Q4v4qVOnsmDBAvbu3YurqysDBw7kjTfeIDY2FoDs7GxeeOEFfv75Z44cOUJgYCCjR4/m5Zdfxtv77FsaTZgwgU8//bTWfSNGjGDJkiUN+n7E9qTnn72Av5DjRKTuHO3tuLpLKFd3CeVARgFz44/wzeYUUk6c5O8/JTBt6T5GdA5hfP/W9Ivyw2yBhLT8mq3eNh3K5nheSa1zmkwQG+xJ7za+NY3owhpgmr5IUzUkJpBdR/NYkdB0iviCknK+3XoUgPH9WhucRkTE9hlaxK9cuZKJEyfSp08fysvLefrppxk+fDi7d+/G3d2dY8eOcezYMd566y06derE4cOHue+++zh27BjffPPNOc89cuRIZs6cWfO1s3PTmVIm9SfIs25X8+t6nIhcmLaBHjx3TSceHxHL4h2pzF5/mG3JOSzekcriHalE+rlxoqiU/OLyWs9ztDfRNdyH3m186dvGj96t/fB2czToXYjYvqGxQby//ACrEjOoMFuaxFKxhVuPUlhaQXSgu2bFiYjUgaFF/B9HxmfNmkVQUBCbN29m8ODBxMXFMX/+/JrH27Zty6uvvsr48eMpLy/HweHs8Z2dnQkJCWmw7NI09I3yI9TbhbTc4jOuizcBId6V282JSMNzcbTnxl7h3NgrnF1Hc5kTf4Tvth3lSHYRAB7ODvRs7UvfNr70/v/27jy+6urO//j7Jjc7NxcCJCEkgSgQlogsRcigBBUJSjEqtpZCBaXSKhSZqdIy0ymo9UG1+LA6Y5kNQxVcoB1+A4wFGSARWSKL7BgWg4AQQgJZyEZIzu+PkKvXJBDgrsnr+XjcP/L9nu85nyPHPO4n53zP6V6/CV1okO+fPQ/4ioEJ7WULtaq4okZ7TxVrYGIHb4d0VcYYLb2ylH7i0G4c7QgALeBT78SXlJRIkqKimk+oGnbqu1oCL0lZWVmKjo5Whw4ddM899+h3v/udOnZs+q+71dXVqq7+ZslmaWnpDUQPXxQYYNHccX319JJdskhOiXzD14S54/r6xUwF0NqkdLVr/iO3ac4DvbX1WJG6tg9T71ibrGxCB9wwa2CA7urZSR/ty1dW7jmfT+J3fnVBX+SXKTQoQI/6yfJ/APA2n/mmVFdXp1mzZmn48OFKSUlpskxhYaFeeuklTZs27ap1jRkzRu+8847Wr1+vV155RdnZ2br//vtVW1vbZPn58+fLbrc7PgkJ7IramoxJ6aKFkwYp1u68ZD7WHsrxcoAPiAwNUnq/WKV0tZPAAy4wslf9GevZh895OZJra9jQblz/OF6VAYAW8plz4p9++mn97W9/06effqr4+MZ/iS0tLdV9992nqKgorVy5UkFBLf9F/+WXX+rWW2/V//3f/+nee+9tdL+pmfiEhATOiW9lauuMPss7r4KyKkXb6pfQMwMPAGht8kuqNGz+elks0s7f3KeoiGBvh9SkoovVSp2/QZdq6/Q/04fr9oT23g4JALyqpefE+8SUx4wZM7R69Wpt3LixyQS+rKxMY8aMkc1m04oVK64rgZekW265RZ06ddLRo0ebvB8SEqLIyEinD1qfwACLUm/tqIwBXZV6a0cSeABAqxRrD1XvWJuMkTYd8d3Z+L/sPKVLtXVK6Rqp/vHNnzoEAHDm1STeGKMZM2ZoxYoV2rBhg5KSkhqVKS0t1ejRoxUcHKyVK1cqNPT6dxE/deqUioqK1KULy6YBAEDrl5bcWZKUneubSXxdndF7n52QVH+sHBvaAUDLeTWJnz59upYsWaL33ntPNptN+fn5ys/PV2VlpaRvEvjy8nItWrRIpaWljjLffr+9d+/eWrFihSTp4sWLev7557Vt2zYdP35c69evV0ZGhnr06KH09HSv9BMAAMCTGt6L/+TIOdXV+cSbk042HS3UV0UVsoVa9eCAOG+HAwB+xau70y9cuFCSNHLkSKfrmZmZmjJlinbt2qWcnBxJUo8ePZzK5OXlqXv37pKk3Nxcx872gYGB2rt3r/785z+ruLhYcXFxGj16tF566SXOigcAAG3C4G4dFBEcqMKLl3TgdKlu87Hl6g0b2o0fFK/wYJ86LAkAfJ5Xf2tea0+9kSNHXrPMd+sJCwvT2rVrbzo2AAAAfxVsDdDwHp308cGzysot8Kkk/nRxpdYfOitJmjg00cvRAID/8YmN7QAAAOBajvfifeyouQ8+O6E6Iw1NilLPGJu3wwEAv0MSDwAA0AqNTK5/L37XiQsqqajxcjT1amrr9MH2k5KkScO6eTkaAPBPJPEAAACtUNf2YeoZ3U51Rvr0aOF1PVtbZ7T1WJH+Z/fX2nqsSLUu2hxv3cGzKiirVqd2IUrvF+uSOgGgrWEnEQAAgFYqrVdnHSm4qKzcAo3t37KjdtfsP6MXVh3UmZIqx7Uu9lDNHddXY1Ju7rjehg3tHhsSr2Arc0kAcCP47QkAANBKNSypzz58rkWbBa/Zf0ZPL9nllMBLUn5JlZ5esktr9p+54ViOnbuoLceKZLFIE+5gQzsAuFEk8QAAAK3UkKQOCgsKVEFZtQ6dKbtq2do6oxdWHVRTqX7DtRdWHbzhpfVLt52QJN2THK34DuE3VAcAgCQeAACg1QqxBurvbu0o6dq71H+Wd77RDPy3GUlnSqr0Wd75646j8lKt/rKTDe0AwBVI4gEAAFqxhqPmsnILrlquoKz5BP5Gyn3bqr2nVVp1WfEdwjSiV+frfh4A8A2SeAAAgFZsZK/69+J3fnVBZVXNHzUXbQttUX0tLfdtS69saPfjoYkKDLBc9/MAgG+QxAMAALRiiR3DldQpQpfrjDYfLWq23B1JUepiD1VzKbZF9bvU35EUdV3t7ztVoj2nShQUaNEPv5dwXc8CABojiQcAAGjl0q4sYc8+3PyS+sAAi+aO6ytJjRL5hp/njut73TPpS3PqZ+HvT+miTu1CrutZAEBjJPEAAACtXMN78dm5Vz9qbkxKFy2cNEixducl87H2UC2cNOi6z4kvrarR/+w+LUmaOJRj5QDAFazeDgAAAADulXpLR4VYA3S6pEpHCi6qV4yt2bJjUrrovr6x+izvvArKqhRtq19CfyPvsv/3zlOqrKlVr5h2170MHwDQNJJ4AACAVi40KFDDbumo7MPnlJ177qpJvFS/tD71ytF0N8oYoyU59WfDTxzaTRYLG9oBgCuwnB4AAKANaHgvPusq78W7Uk7eeR0tuKiwoEA9PKirR9oEgLaAJB4AAKANGHnlvfjteRdUXn3Z7e0tuXKs3EMD4xQZGuT29gCgrSCJBwAAaAOSOkUoISpMl2rrtPVY80fNucK5smqtPZAvqX4pPQDAdUjiAQAA2gCLxaKRvaIlSdmHz7m1rWU7Tqqm1mhAQnuldLW7tS0AaGtI4gEAANqIb78Xf7Wj5m5GbZ3Re1c2tJs0jFl4AHA1kngAAIA2IvXWjgoODNDJ85XKKyx3SxtZuQX6urhS9rAgfb//9Z0rDwC4NpJ4AACANiIixKohSR0kSVm57llS37Ch3Q8Gxys0KNAtbQBAW0YSDwAA0IY0vBef5Yb34k+er3DUO5Gl9ADgFiTxAAAAbUjDUXM5XxapqqbWpXW/99kJGSPd2aOTkjpFuLRuAEA9kngAAIA2pEd0O8XZQ1V9uU5bv3TdUXPVl2u1bPtJSdKkYYkuqxcA4IwkHgAAoA2xWCxKS75y1JwL34tfsz9fReWXFBMZolF9YlxWLwDAGUk8AABAG9Nw1Jwrz4tfuq3+WLkfDUmUNZCvmADgLvyGBQAAaGOG9+goa4BFeYXl+qro5o+aO3y2TJ8dP6/AAIsm3MFSegBwJ5J4AACANsYWGqTB3eqPmnPFbPzSK8fK3ds7WrH20JuuDwDQPJJ4AACANmiki96LL6++rP/e9bUkaRLHygGA25HEAwAAtEEN78VvOXZzR82t3HNaZdWX1a1juO7s0clV4QEAmkESDwAA0Ab16WJTtC1ElTW12nH8wg3VYYzRkitL6ScOTVRAgMWVIQIAmkASDwAA0AZZLBbHbHxWbsEN1bH7ZLEOnC5VsDVAPxic4MrwAADNIIkHAABooxrei8+6wc3tllw5Vu77t3VRh4hgl8UFAGgeSTwAAEAbdWfPTgoMsOhowUWdulBxXc8WV1zS6r2nJUkT2dAOADyGJB4AAKCNsocFaWBCe0nXf9TcX3aeUvXlOvXpEqlBie1dHxwAoEkk8QAAAG3YyOT69+Kv56i5ujqjpTn1S+knDUuUxcKGdgDgKSTxAAAAbVhar/r34jcfLdSly3UtembLsSLlFZarXYhVDw3o6s7wAADfQRIPAADQhvWLi1SndsEqv1SrnV+17Ki5hmPlHh7YVREhVneGBwD4DpJ4AACANiwgwKIRPa8cNXf42kfN5ZdUad2hs5KkSWxoBwAeRxIPAADQxqVdx3vxH2w/odo6oyHdOyg51ubu0AAA30ESDwAA0Mbd1bOzLBbpi/wy5ZdUNVvucm2dPvjspCRm4QHAW0jiAQAA2rioiGDdHt9ekvTJVY6aW/9FgfJLq9QxIlhjUmI9FB0A4NtI4gEAAOA4au5q78U3bGj3g+8lKMQa6JG4AADOSOIBAACgtF71SfymI4W6XNv4qLnjheXadKRQFov04zsSPR0eAOAKkngAAACof3x7dQgPUlnVZX1+srjR/fc+OyFJGtGzsxI7hns4OgBAA5J4AAAAKDDAorsajprLdV5SX1VTq+U72NAOAHyBV5P4+fPna8iQIbLZbIqOjtZDDz2k3Nxcx/3z58/rF7/4hZKTkxUWFqbExETNnDlTJSUlV63XGKPf/va36tKli8LCwjRq1CgdOXLE3d0BAADwaw3vxWd/Z3O7j/ad0YWKGsXZQ3VP72hvhAYAuMKrSXx2dramT5+ubdu2ad26daqpqdHo0aNVXl4uSTp9+rROnz6tBQsWaP/+/Vq8eLHWrFmjqVOnXrXeV199VW+++ab+7d/+TTk5OYqIiFB6erqqqpo/MgUAAKCta5iJ3/91qQrKvvne1LCh3YQ7EhUYYPFKbACAehZjjPF2EA3OnTun6OhoZWdna8SIEU2WWb58uSZNmqTy8nJZrdZG940xiouL0y9/+Us999xzkqSSkhLFxMRo8eLF+tGPfnTNOEpLS2W321VSUqLIyMib6xQAAIAfGfcvn2rf1yV67Qe3a/zgeB08XaoH3twka4BFW+bco2hbqLdDBIBWqaV5qE+9E9+wTD4qKuqqZSIjI5tM4CUpLy9P+fn5GjVqlOOa3W7X0KFDtXXr1iafqa6uVmlpqdMHAACgLWrYpT7rypL6JTn1s/Dp/WJJ4AHAB/hMEl9XV6dZs2Zp+PDhSklJabJMYWGhXnrpJU2bNq3ZevLz8yVJMTExTtdjYmIc975r/vz5stvtjk9CQsIN9gIAAMC/NbwXv+nIOZVU1uj/ff61JGniMI6VAwBf4DNJ/PTp07V//3598MEHTd4vLS3V2LFj1bdvX82bN8+lbc+ZM0clJSWOz8mTJ11aPwAAgL8YkNBekaFWFVfU6IVVB1RxqVa3do5Q6i0dvR0aAEA+ksTPmDFDq1ev1saNGxUfH9/ofllZmcaMGSObzaYVK1YoKCio2bpiY2MlSWfPnnW6fvbsWce97woJCVFkZKTTBwAAoC2yBgY4Nrj7711XZuGHdpPFwoZ2AOALvJrEG2M0Y8YMrVixQhs2bFBSUlKjMqWlpRo9erSCg4O1cuVKhYZe/V2spKQkxcbGav369U515OTkKDU11eV9AAAAaG3Sriypl6TQoACNH9x4kgUA4B1eTeKnT5+uJUuW6L333pPNZlN+fr7y8/NVWVkp6ZsEvry8XIsWLVJpaamjTG1traOe3r17a8WKFZIki8WiWbNm6Xe/+51Wrlypffv26fHHH1dcXJweeughb3QTAADArzRsbidJD94eJ3tY86sgAQCe1fQW7x6ycOFCSdLIkSOdrmdmZmrKlCnatWuXcnJyJEk9evRwKpOXl6fu3btLknJzcx0720vS7NmzVV5ermnTpqm4uFh33nmn1qxZc81ZfAAAAEgxkaEamhSlz08Ua/Lfdfd2OACAb/Gpc+J9BefEAwCAtq6sqkbFFTVKiAr3digA0Ca0NA/16kw8AAAAfJMtNEi2UJbRA4Cv8Ynd6QEAAAAAwLWRxAMAAAAA4CdI4gEAAAAA8BMk8QAAAAAA+AmSeAAAAAAA/ARJPAAAAAAAfoIkHgAAAAAAP0ESDwAAAACAnyCJBwAAAADAT5DEAwAAAADgJ0jiAQAAAADwEyTxAAAAAAD4CZJ4AAAAAAD8BEk8AAAAAAB+wurtAHyRMUaSVFpa6uVIAAAAAABtQUP+2ZCPNockvgllZWWSpISEBC9HAgAAAABoS8rKymS325u9bzHXSvPboLq6Op0+fVo2m00Wi8Xb4TSrtLRUCQkJOnnypCIjI70dDlopxhk8gXEGd2OMwRMYZ/AExlnrZYxRWVmZ4uLiFBDQ/JvvzMQ3ISAgQPHx8d4Oo8UiIyP5HxhuxziDJzDO4G6MMXgC4wyewDhrna42A9+Aje0AAAAAAPATJPEAAAAAAPgJkng/FhISorlz5yokJMTboaAVY5zBExhncDfGGDyBcQZPYJyBje0AAAAAAPATzMQDAAAAAOAnSOIBAAAAAPATJPEAAAAAAPgJkngAAAAAAPwESbyXzZ8/X0OGDJHNZlN0dLQeeugh5ebmOpWpqqrS9OnT1bFjR7Vr107jx4/X2bNnncrMnDlTgwcPVkhIiAYMGNBkW3v37tVdd92l0NBQJSQk6NVXX3VXt+BDPDXGsrKylJGRoS5duigiIkIDBgzQ0qVL3dk1+BBP/i5rcPToUdlsNrVv397FvYGv8uQ4M8ZowYIF6tWrl0JCQtS1a1e9/PLL7uoafIQnx9jatWs1bNgw2Ww2de7cWePHj9fx48fd1DP4EleMsz179mjChAlKSEhQWFiY+vTpozfeeKNRW1lZWRo0aJBCQkLUo0cPLV682N3dgweQxHtZdna2pk+frm3btmndunWqqanR6NGjVV5e7ijz93//91q1apWWL1+u7OxsnT59Wo888kijup588kk99thjTbZTWlqq0aNHq1u3btq5c6f+8Ic/aN68efqP//gPt/UNvsFTY2zLli3q37+//vrXv2rv3r164okn9Pjjj2v16tVu6xt8h6fGWYOamhpNmDBBd911l8v7At/lyXH27LPP6r/+67+0YMECffHFF1q5cqXuuOMOt/QLvsNTYywvL08ZGRm65557tHv3bq1du1aFhYVN1oPWxxXjbOfOnYqOjtaSJUt04MAB/dM//ZPmzJmjf/3Xf3WUycvL09ixY3X33Xdr9+7dmjVrln76059q7dq1Hu0v3MDApxQUFBhJJjs72xhjTHFxsQkKCjLLly93lDl06JCRZLZu3dro+blz55rbb7+90fU//elPpkOHDqa6utpx7Ve/+pVJTk52fSfg09w1xprywAMPmCeeeMIlccO/uHuczZ4920yaNMlkZmYau93u6vDhJ9w1zg4ePGisVqv54osv3BY7/IO7xtjy5cuN1Wo1tbW1jmsrV640FovFXLp0yfUdgU+72XHW4JlnnjF333234+fZs2ebfv36OZV57LHHTHp6uot7AE9jJt7HlJSUSJKioqIk1f+VraamRqNGjXKU6d27txITE7V169YW17t161aNGDFCwcHBjmvp6enKzc3VhQsXXBQ9/IG7xlhzbTW0g7bFneNsw4YNWr58ud566y3XBQy/5K5xtmrVKt1yyy1avXq1kpKS1L17d/30pz/V+fPnXdsB+Dx3jbHBgwcrICBAmZmZqq2tVUlJid59912NGjVKQUFBru0EfJ6rxtl3v3dt3brVqQ6p/vv/zX6/g/eRxPuQuro6zZo1S8OHD1dKSookKT8/X8HBwY3e+YyJiVF+fn6L687Pz1dMTEyjOhruoW1w5xj7rmXLlmn79u164oknbiZk+CF3jrOioiJNmTJFixcvVmRkpCvDhp9x5zj78ssv9dVXX2n58uV65513tHjxYu3cuVOPPvqoK7sAH+fOMZaUlKSPP/5Y//iP/6iQkBC1b99ep06d0rJly1zZBfgBV42zLVu26MMPP9S0adMc15r7/l9aWqrKykrXdgQeZfV2APjG9OnTtX//fn366afeDgWtlKfG2MaNG/XEE0/oP//zP9WvXz+3tgXf485x9tRTT+nHP/6xRowY4fK64V/cOc7q6upUXV2td955R7169ZIkLVq0SIMHD1Zubq6Sk5Nd3iZ8jzvHWH5+vp566ilNnjxZEyZMUFlZmX7729/q0Ucf1bp162SxWFzeJnyTK8bZ/v37lZGRoblz52r06NEujA6+ipl4HzFjxgytXr1aGzduVHx8vON6bGysLl26pOLiYqfyZ8+eVWxsbIvrj42NbbRzasPP11MP/Je7x1iD7OxsjRs3Tq+//roef/zxmw0bfsbd42zDhg1asGCBrFarrFarpk6dqpKSElmtVr399tuu6gZ8nLvHWZcuXWS1Wh0JvCT16dNHknTixImbCx5+wd1j7K233pLdbterr76qgQMHasSIEVqyZInWr1+vnJwcV3UDPs4V4+zgwYO69957NW3aNP3mN79xutfc9//IyEiFhYW5tjPwKJJ4LzPGaMaMGVqxYoU2bNigpKQkp/uDBw9WUFCQ1q9f77iWm5urEydOKDU1tcXtpKam6pNPPlFNTY3j2rp165ScnKwOHTrcfEfgszw1xqT6Y0zGjh2rV155xWk5F1o/T42zrVu3avfu3Y7Piy++KJvNpt27d+vhhx92WX/gmzw1zoYPH67Lly/r2LFjjmuHDx+WJHXr1u0mewFf5qkxVlFRoYAA56/hgYGBkupXgqB1c9U4O3DggO6++25Nnjy5ySMwU1NTneqQ6r//X+/3O/ggb+6qB2OefvppY7fbTVZWljlz5ozjU1FR4Sjz85//3CQmJpoNGzaYHTt2mNTUVJOamupUz5EjR8znn39ufvazn5levXqZzz//3Hz++eeO3eiLi4tNTEyM+clPfmL2799vPvjgAxMeHm7+/d//3aP9hed5aoxt2LDBhIeHmzlz5ji1U1RU5NH+wjs8Nc6+i93p2xZPjbPa2lozaNAgM2LECLNr1y6zY8cOM3ToUHPfffd5tL/wPE+NsfXr1xuLxWJeeOEFc/jwYbNz506Tnp5uunXr5tQWWidXjLN9+/aZzp07m0mTJjnVUVBQ4Cjz5ZdfmvDwcPP888+bQ4cOmbfeessEBgaaNWvWeLS/cD2SeC+T1OQnMzPTUaaystI888wzpkOHDiY8PNw8/PDD5syZM071pKWlNVlPXl6eo8yePXvMnXfeaUJCQkzXrl3N73//ew/1Et7kqTE2efLkJu+npaV5rrPwGk/+Lvs2kvi2xZPj7OuvvzaPPPKIadeunYmJiTFTpkzhj5JtgCfH2Pvvv28GDhxoIiIiTOfOnc2DDz5oDh065KGewptcMc7mzp3bZB3dunVzamvjxo1mwIABJjg42Nxyyy1ObcB/WYwx5iYm8gEAAAAAgIfwTjwAAAAAAH6CJB4AAAAAAD9BEg8AAAAAgJ8giQcAAAAAwE+QxAMAAAAA4CdI4gEAAAAA8BMk8QAAAAAA+AmSeAAAAAAA/ARJPAAAPqyoqEjR0dE6fvy4R9tdvHix2rdv75a616xZowEDBqiurs4t9QMA0JqRxAMA4MNefvllZWRkqHv37o3upaenKzAwUNu3b/d8YDdhzJgxCgoK0tKlS5stM3XqVN122226dOmS0/WPPvpIwcHB2rVrl7vDBADAJ5HEAwDgoyoqKrRo0SJNnTq10b0TJ05oy5YtmjFjht5++20vRHdjampqJElTpkzRm2++2Wy5119/XWVlZZo7d67jWnFxsZ566in98z//swYNGuS22AAA8GUk8QAA+KiPPvpIISEhGjZsWKN7mZmZ+v73v6+nn35a77//viorK53ujxw5UjNnztTs2bMVFRWl2NhYzZs3z6lMcXGxfvaznykmJkahoaFKSUnR6tWrncqsXbtWffr0Ubt27TRmzBidOXPGca+urk4vvvii4uPjFRISogEDBmjNmjWO+8ePH5fFYtGHH36otLQ0hYaGOmbfx40bpx07dujYsWNN9j0yMlKZmZl67bXXlJOTI0maNWuWunbtqjlz5ujkyZP64Q9/qPbt2ysqKkoZGRlOrxxs375d9913nzp16iS73a60tLRGs/cWi0ULFy7Ugw8+qIiICL388svN/EsAAOA7SOIBAPBRmzZt0uDBgxtdN8YoMzNTkyZNUu/evdWjRw/95S9/aVTuz3/+syIiIpSTk6NXX31VL774otatWyepPgG///77tXnzZi1ZskQHDx7U73//ewUGBjqer6io0IIFC/Tuu+/qk08+0YkTJ/Tcc8857r/xxht67bXXtGDBAu3du1fp6el68MEHdeTIEac4fv3rX+vZZ5/VoUOHlJ6eLklKTExUTEyMNm3a1Gz/7777bj3zzDOaPHmyli9frmXLlumdd96RMUbp6emy2WzatGmTNm/e7PgjQ8Py+7KyMk2ePFmffvqptm3bpp49e+qBBx5QWVmZUxvz5s3Tww8/rH379unJJ5+81j8JAADeZwAAgE/KyMgwTz75ZKPrH3/8sencubOpqakxxhjz+uuvm7S0NKcyaWlp5s4773S6NmTIEPOrX/3KGGPM2rVrTUBAgMnNzW2y7czMTCPJHD161HHtrbfeMjExMY6f4+LizMsvv9yojWeeecYYY0xeXp6RZP74xz822cbAgQPNvHnzmrzXoKKiwiQnJ5uAgADz+uuvG2OMeffdd01ycrKpq6tzlKuurjZhYWFm7dq1TdZTW1trbDabWbVqleOaJDNr1qyrtg8AgK9hJh4AAB9VWVmp0NDQRtfffvttPfbYY7JarZKkCRMmaPPmzY2Wpvfv39/p5y5duqigoECStHv3bsXHx6tXr17Nth8eHq5bb721yedLS0t1+vRpDR8+3OmZ4cOH69ChQ07Xvve97zVZf1hYmCoqKpptv6HMc889p/DwcD377LOSpD179ujo0aOy2Wxq166d2rVrp6ioKFVVVTn+G5w9e1ZPPfWUevbsKbvdrsjISF28eFEnTpxoUWwAAPgqq7cDAAAATevUqZMuXLjgdO38+fNasWKFampqtHDhQsf12tpavf32207vdQcFBTk9a7FYHMe6hYWFXbP9pp43xlx3PyIiIpq8fv78eXXu3Pmaz1utVgUGBspisUiSLl68qMGDBze5u31DfZMnT1ZRUZHeeOMNdevWTSEhIUpNTW20231zsQEA4KuYiQcAwEcNHDhQBw8edLq2dOlSxcfHa8+ePdq9e7fj89prr2nx4sWqra1tUd39+/fXqVOndPjw4RuKLTIyUnFxcdq8ebPT9c2bN6tv377XfL5h1nzgwIHX3fagQYN05MgRRUdHq0ePHk4fu93uiGPmzJl64IEH1K9fP4WEhKiwsPC62wIAwNeQxAMA4KPS09N14MABp9n4RYsW6dFHH1VKSorTZ+rUqSosLHTaHf5q0tLSNGLECI0fP17r1q1TXl6e/va3v7X4eUl6/vnn9corr+jDDz9Ubm6ufv3rX2v37t2OZe9Xs23bNsfs+PWaOHGiOnXqpIyMDG3atEl5eXnKysrSzJkzderUKUlSz5499e677+rQoUPKycnRxIkTW7T6AAAAX0cSDwCAj7rttts0aNAgLVu2TJK0c+dO7dmzR+PHj29U1m63695779WiRYtaXP9f//pXDRkyRBMmTFDfvn01e/bsFs/kS9LMmTP1D//wD/rlL3+p2267TWvWrNHKlSvVs2fPaz77/vvva+LEiQoPD29xew3Cw8P1ySefKDExUY888oj69OmjqVOnqqqqSpGRkZLq/9hx4cIFDRo0SD/5yU80c+ZMRUdHX3dbAAD4Gou5kZfbAACAR/zv//6vnn/+ee3fv18BAa3jb++FhYVKTk7Wjh07lJSU5O1wAADwK2xsBwCADxs7dqyOHDmir7/+WgkJCd4OxyWOHz+uP/3pTyTwAADcAGbiAQAAAADwE61jXR4AAAAAAG0ASTwAAAAAAH6CJB4AAAAAAD9BEg8AAAAAgJ8giQcAAAAAwE+QxAMAAAAA4CdI4gEAAAAA8BMk8QAAAAAA+AmSeAAAAAAA/MT/B0nT8YzctReJAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2245,16 +1943,33 @@ "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", - "fig = plt.figure()\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "\n", "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, test_y_torch.squeeze().numpy(), label=\"Ground truth\")\n", - "plt.scatter(instances, [test_y_torch.squeeze().numpy().mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Ground truth\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "ground_truth = target_series_sel[:,-1][-test_samples:]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index 4c950e3..cccba03 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -96,15 +96,19 @@ "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", + " anchor='07-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] @@ -168,7 +172,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj0UlEQVR4nO3dd1gUV9sG8HsWlqWDIoIFIyoWrKjYYrAkltijURM1xmjsyms0ryXmtStBI9HYW4TYW4zGJJZYMHYFewt2FBBFpErZ3fP9wcfEFVQWFnaB+3ddXmFnZ+Y8c05md56dOedIQggBIiIiIiIiI1MYOwAiIiIiIiKAyQkREREREZkIJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEsyNHUBhodVqERERATs7O0iSZOxwiIiIqAgTQiAhIQFly5aFQsHfkqn4YHKSQxEREXBzczN2GERERFSMhIeHo3z58sYOg6jAMDnJITs7OwAZHxL29vZGjoaIiIiKsvj4eLi5ucnXH0TFBZOTHMp8lMve3p7JCRERERUIPkpOxQ0fYiQiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgksEM8ERFRHgkhkJqaarD9qVSqXHWENlQcuSnfFOrAkDEYuw1SUlLyvA+iwojJCRERUR6lpqaiZ8+eBtvftm3bYGlpabQ4clO+KdSBIWMwdhukp6fneR9EhRGTEyIiIgMJfZSQ533UL5f3eS0uPsn9hW1dZ2WeyjaFOsjL8QN5rwMAQPiZvG3v6pX3GIgKISYnREREBtR0hB/MzC303k6jTsPJpZMMFkeLCSugUKpyvL42PRXB/kMNUrYp1IG+xw8Ytg4AYP0QL6iU+nXvTU3Xot/K8waLgaiwYXJCRERkQGbmFjCz0O+iOD8olCqYW+T8sSS1Acs2hTrQ9/gBw9YBAKiUClgqzQy8V6KijaN1ERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUkwN3YARERERdFhvyF4EfcUkqSA0soGDfpPQomK1XF11yrc/Xs3EqLuw2fsIpSr3yJfytekpeDInEF4/uAmzFVWsCrhgma+AbBzrYCn/5zHyaUToElLgSYtFR5t+8Cz21CDx/C6OkiJi8HJ5ZOR+DgcZkoLeA/8H5yr1Td4+QCwd1J3vIh9/P8x2KLJyLlwqlwbL54/wdG5w5EQeRcKpQWa+QagVFWvfImh7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r42G7g75EgNRYWHUOyd+fn7w9vaGnZ0dSpcujW7duuHmzZs66wghMG3aNJQtWxZWVlZo2bIlrl69Kr//7NkzjB49GtWqVYO1tTUqVKgAX19fxMXF6exn9uzZaNasGaytreHo6FgQh0dERMXYu77fo8N3v+BDv+2o3qE/Tq+aAgBwqdkYLf67FKWrN8j3GKp1+Bw91pxFt2V/w61xWxxfOAYAcGzBf1C39xh0W3oUnQL24sr2xXj+4Oabd5YLr6uDC1sWoFSVOugc8DsaD5mJE0smQqtRG7x8AGg1eS0+Wn4c3Zb9jVofj8KxgFEAgHNrpsO5RkN8vDYE741bgmD/IfkWw9YRDXBpZgtcmOGDce0rYeCaiwCAidtuoEllR4T5t8bagXXRd+V5qDXafImBqLAwanISHByMkSNH4tSpUzhw4ADUajXatm2LpKQkeZ25c+ciICAAixcvxtmzZ+Hq6oo2bdogISEBABAREYGIiAh8//33uHz5MgIDA7F3714MGjRIp6y0tDT07NkTw4cPL9BjJCKi4snCxl7+Oy05EZIkAQBKVakDOxe3fC/fzMISbo3ayuWWruGNhMh78vupifEAgPSUJCiUFlDZlTB4DK+rg/BT++DR5hMAgFPlWrB0cMKTm+cNXj4AqGz/vRORlhQPSBmXPneP/ooanb8EADhXqw8rx9KIvnYmX2JwtFbKf8clp0OhyKiHrWcjMLJ1RQCAdyVHuNhb4MSt2HyJgaiwMOpjXXv37tV5vXbtWpQuXRohISHw8fGBEAILFizA5MmT0b17dwBAUFAQXFxcsHHjRgwdOhS1atXCjh075H1UrlwZs2fPRr9+/aBWq2FunnGI06dPBwAEBgYWzMEREVGxd3LZN/IFb8sJy40ay9VfV6BCk/YAgPfGLcFf0/ogNGgWUuJi8O5/foBVidL5Uu6rdZCa8BxCCFjal5TXsXEui+SYSKBKnXyJIXjuMERd/BsA0Hb2dqTEP4MQWlg5lpLXsXWpgKQnD/OlfADov+o8Dl+PAQDsHdcYMYlp0AoBZ3uVvE7FUtYIf5aSbzEQFQYm1eck81GskiUzPrDu3r2LqKgotG3bVl5HpVKhRYsWOHHiBIYOzf752Li4ONjb28uJSW6kpqYiNTVVfh0fH5/rfRERUfHUdPgcAMCdo7twfuN8tBy/zChxXNw0H/ERd/CubwAA4PK2H+H95QxUavER4iPv4c//dkKJSrXypexX66DpcD/g/++gyITIl7IztRifkRiGHdiEs6unwGf8Ckh4JQbkbww/D87ozxJ0LBz/3XIN64Z4ZYkhn6uBqFAwmdG6hBAYO3Ysmjdvjlq1Mj4go6KiAAAuLi4667q4uMjvvSomJgYzZ858beKSU35+fnBwcJD/ubnl/y14IiIqmir5dEX0tbNITXhe4GVf3rYI947vQdtZ22BuaY2UuBjcP/E7KrX4CABgX6YinKs3xJMb5/I1jsw6yJQS/0z+O+lpJKydyuRr+QDg0eZTRF48Jr9+8fyp/Hfi43DYOJfP9xg+b+6Gwzdi5NdP4v/9IfR+TDLcSlrmewxEpsxkkpNRo0bh0qVL2LRpU5b3JOnVXxZElmVAxt2Njh07wtPTE1OnTs1TPJMmTUJcXJz8Lzw8PE/7IyKi4iM9ORHJsdHy6/CzB2Fh6wAL24IdienKjiW4c2QH2vvtlPteWNg6wkypQuSl4wCAlLgYPLl+Fo4Vqhu07DfVQYVGbRB2YDMAIOb2FaTEPYVzNcOPlJWWFJ/xuNj/u3d8D1T2JaGyK4GKPl1x/bfVAIAnN0PxIvYxSns2MngM8S/SERH776NaO0Mi4WRrgZI2SvT0LoMlh+4BAM7eeY6ouFQ0q2L4vj9EhYlJPNY1evRo7N69G0ePHkX58v/+auHq6gog4w5KmTL//qISHR2d5W5KQkIC2rdvD1tbW+zcuRNKpRJ5oVKpoFKp3r4iERHRK9JeJOLYgq+gSUuBpFBAZVcCLb5eAkmScHXXaoQd2ITUhFicWvEtzJQWaD9nG5SWNgaNIelpBM6s/BZ2ZSriz/GdAQAKpQpdfvwLrSavxZkVk6HVqCE0atT6eDRKVa1n0PLfVAd1P/0Kp5Z+g9/GdoTCXImmw+dAYWYOjUZj2BiS4nFo5ufQpL0AJAUsHUqhzYzNkCQJ3oOmIXjuMGz/ogEU5hbwGb8CCjPDXxbFJavRY8k5vEjTQqEAnO1U2DPGG5Ikwb9nDXy26jw8JhyChbkC6wZ7wdzMZH43JjIKoyYnQgiMHj0aO3fuxJEjR+Du7q7zvru7O1xdXXHgwAF4eWX8opKWlobg4GD4+/vL68XHx6Ndu3ZQqVTYvXs3LC15S5SIiIzHxskV7WZmfRIAAGp2/RI1u36ZZbkmLTWbtfMQQ6myGLgv+5GfytVviXL1j+gsU6cZtiP2m+rAyqEUWk1aadDysmNbujy6LDqYfQwlSqO93y86ywxdBwDg5mSFM1Pey/Y9FwcV9n/dRGdZSrphEzSiwsaoycnIkSOxceNG7Nq1C3Z2dnI/EgcHB1hZWUGSJIwZMwZz5syBh4cHPDw8MGfOHFhbW6NPnz4AMu6YtG3bFsnJyVi/fj3i4+PlzuvOzs4wMzMDADx48ADPnj3DgwcPoNFocOHCBQBAlSpVYGtrW/AHT0REREREOoyanCxbljFqScuWLXWWr127FgMGDAAAjB8/Hi9evMCIESMQGxuLxo0bY//+/bCzswMAhISE4PTp0wAyEo2X3b17FxUrVgQATJkyBUFBQfJ7mXdiDh8+nKV8IiIiIiIqeEZ/rOttJEnCtGnTMG3atGzfb9myZY72ExgYyDlOiIiIiIhMGHtdERERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQRzYwdARERUlGjUaQW63eto01Oh1nN9QzGFOtD3+DO3MaTUdG2BbENUlDA5ISIiMqCTSycZOwQAQLD/UKOVbQp1YMzjz9Rv5Xljh0BU6DA5ISIiMpD65eyMHQIAoK6z0mhlm0IdGPP4ZW6N8rZ9erph4iAqZCQhhDB2EIVBfHw8HBwcEBcXB3t7e2OHQ0REJkQIgdRUwz0SpFKpIEmS0eLITfmmUAeGjMHYbRAfHw8XFxded1CxwzsnREREeSRJEiwtLY0dhlHjMIU6KEoxpKUZtg8SUWHB0bqIiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpOgV3KiVqsRFBSEqKio/IqHiIiIiIiKKb2SE3NzcwwfPhypqan5FQ8RERERERVTej/W1bhxY1y4cCEfQiEiIiIiouLMXN8NRowYgbFjxyI8PBwNGjSAjY2Nzvt16tQxWHBEZJqEEAa9g6pSqSBJktHiMHb5jCHvMRARUdEgCSGEPhsoFFlvtkiSBCEEJEmCRqMxWHCmJD4+Hg4ODoiLi4O9vb2xwyEyqpSUFPTs2dNg+9u2bRssLS2NFoexy2cMeY+BqKjhdQcVV3rfObl7925+xEFEhVDoo4Q876N+Obs87+Pik/Rcb1vXWZnn8vNaD8auA8Aw9YDwM3nb3q1R3mMgIqJCTe/k5J133smPOIiokGo6wg9m5hZ6b6dRp+Hk0kkGi6PFhBVQKFU5Xl+bnopg/6EGKz839WDsOgAMXw/rh3hBpdSvO2Nquhb9Vp43WAxERFR46Z2cZLp27RoePHiAtLQ0neVdunTJc1BEVHiYmVvAzEK/C+L8oFCqYG6R88eB1AYu3xTqQd86AAxfDyqlApZKMwPvlYiIigu9k5M7d+7go48+wuXLl+W+JgDkDoxFtc8JERERERHlL72HEv7Pf/4Dd3d3PH78GNbW1rh69SqOHj2Khg0b4siRI/kQIhERERERFQd63zk5efIkDh06BGdnZygUCigUCjRv3hx+fn7w9fXF+fN8bpiIiIiIiPSn950TjUYDW1tbAECpUqUQEREBIKOj/M2bNw0bHRERERERFRt63zmpVasWLl26hEqVKqFx48aYO3cuLCwssHLlSlSqVCk/YiQiIiIiomJA7+Tk22+/RVJSEgBg1qxZ6NSpE9577z04OTlhy5YtBg+QiIiIiIiKB72Tk3bt2sl/V6pUCdeuXcOzZ89QokQJecQuIiIiIiIifend5yTTrVu3sG/fPrx48QIlS5Y0ZExERERERFQM6Z2cxMTE4P3330fVqlXRoUMHREZGAgC+/PJLjBs3zuABEhERERFR8aD3Y11fffUVlEolHjx4gBo1asjLe/fuja+++grz5883aIBERERElD2NRoP09HRjh0H0RhYWFlAocnZPRO/kZP/+/di3bx/Kly+vs9zDwwP379/Xd3dEREREpCchBKKiovD8+XNjh0L0VgqFAu7u7rCwsHjrunonJ0lJSbC2ts6y/OnTp1CpVPrujoiIiIj0lJmYlC5dGtbW1hyUiEyWVqtFREQEIiMjUaFChbf+v6p3cuLj44Off/4ZM2fOBABIkgStVot58+ahVatWuYuaiIiIiHJEo9HIiYmTk5OxwyF6K2dnZ0RERECtVkOpVL5xXb2Tk3nz5qFly5Y4d+4c0tLSMH78eFy9ehXPnj3D8ePHcx00EREREb1dZh+T7J5kITJFmY9zaTSatyYneo/W5enpiUuXLqFRo0Zo06YNkpKS0L17d5w/fx6VK1fOXcREREREpBc+ykWFhT7/r+p95wQAXF1dMX369NxsSkRERERElC2975xUrFgRM2bMQHh4eH7EQ0RERERExZTed07GjRuHwMBAzJgxA61atcKgQYPw0UcfcaQuIiIiImObX8CPeo0TBVuekUmShJ07d6Jbt27GDiXXWrZsiXr16mHBggXGDiVbet85GT16NEJCQhASEgJPT0/4+vqiTJkyGDVqFEJDQ/MjRiIiIiIq5CRJeuO/AQMGGC22ihUr5uhiPTIyEh9++GGO9xsYGAhHR8fcB1YM6Z2cZKpbty4WLlyIR48eYerUqVi9ejW8vb1Rt25d/PTTTxCieGXSRERERPR6kZGR8r8FCxbA3t5eZ9nChQv12l9aWlo+Rfp6rq6uRnlaSKPRQKvVFni5xpDr5CQ9PR1bt25Fly5dMG7cODRs2BCrV69Gr169MHnyZPTt29eQcRIRERFRIebq6ir/c3BwgCRJ8mulUolhw4ahfPnysLa2Ru3atbFp0yad7Vu2bIlRo0Zh7NixKFWqFNq0aQMA2L17Nzw8PGBlZYVWrVohKCgIkiTh+fPn8rYnTpyAj48PrKys4ObmBl9fXyQlJcn7vX//Pr766iv5Ls7rSJKEX3/9FQBw7949SJKEX375Ba1atYK1tTXq1q2LkydPAgCOHDmCL774AnFxcfJ+p02bBgDydBzlypWDjY0NGjdujCNHjsjlZN5x2bNnDzw9PaFSqbBq1SpYWlrqHBcA+Pr6okWLFgCAmJgYfPrpp2+sR1Ond3ISGhqK0aNHo0yZMhg9ejRq1qyJK1eu4NixY/jiiy8wefJk7N69Gzt37syPeImIiIioiElJSUGDBg2wZ88eXLlyBUOGDMFnn32G06dP66wXFBQEc3NzHD9+HCtWrMC9e/fw8ccfo1u3brhw4QKGDh2KyZMn62xz+fJltGvXDt27d8elS5ewZcsWHDt2DKNGjQIA/PLLLyhfvjxmzJgh38XRx+TJk/H111/jwoULqFq1Kj799FOo1Wo0a9Ysyx2ir7/+GgDwxRdf4Pjx49i8eTMuXbqEnj17on379ggLC5P3m5ycDD8/P6xevRpXr15Fv3794OjoiB07dsjraDQabN26Vb4pkNN6NGV6d4j39vZGmzZtsGzZMnTr1i3biVQ8PT3xySefGCRAIiIiIiraypUrJ1+4Axl9nPfu3Ytt27ahcePG8vIqVapg7ty58uuJEyeiWrVqmDdvHgCgWrVquHLlCmbPni2vM2/ePPTp0wdjxowBAHh4eODHH39EixYtsGzZMpQsWRJmZmaws7ODq6ur3rF//fXX6NixIwBg+vTpqFmzJm7duoXq1avr3CHKdPv2bWzatAkPHz5E2bJl5X3s3bsXa9euxZw5cwBkPKW0dOlS1K1bV962d+/e2LhxIwYNGgQAOHjwIGJjY9GzZ0+96tGU6Z2c3LlzB++8884b17GxscHatWtzHRQRERERFR8ajQbfffcdtmzZgkePHiE1NRWpqamwsbHRWa9hw4Y6r2/evAlvb2+dZY0aNdJ5HRISglu3bmHDhg3yMiEEtFot7t69ixo1auQp9jp16sh/lylTBgAQHR2N6tWrZ7t+aGgohBCoWrWqzvLU1FQ4OTnJry0sLHT2DQB9+/ZF06ZNERERgbJly2LDhg3o0KEDSpQoASDn9WjK9E5O3paYEBERERHpY/78+fjhhx+wYMEC1K5dGzY2NhgzZkyWTu+vXmQLIbL0EXl1UCatVouhQ4fC19c3S7kVKlTIc+wvP0WUGcubOq9rtVqYmZkhJCQEZmZmOu/Z2trKf1tZWWU5tkaNGqFy5crYvHkzhg8fjp07d+rcEMhpPZqyXM0QT0RERERkKH///Te6du2Kfv36Aci4gA8LC3vrXY3q1avjjz/+0Fl27tw5ndf169fH1atXUaVKldfux8LCAhqNJpfRv152+/Xy8oJGo0F0dDTee+89vffZp08fbNiwAeXLl4dCoZAfKQNyX4+mJNejdRERERERGUKVKlVw4MABnDhxAtevX8fQoUMRFRX11u2GDh2KGzduYMKECfjnn3+wdetWBAYGAvj3LsaECRNw8uRJjBw5EhcuXEBYWBh2796N0aNHy/upWLEijh49ikePHuHp06cGO66KFSsiMTERBw8exNOnT5GcnIyqVauib9++6N+/P3755RfcvXsXZ8+ehb+/f5ZEKzt9+/ZFaGgoZs+ejY8//hiWlpbye7mtR1PCOydERERERUUhnbH9f//7H+7evYt27drB2toaQ4YMQbdu3RAXF/fG7dzd3bF9+3aMGzcOCxcuRNOmTTF58mQMHz5cno+kTp06CA4OxuTJk/Hee+9BCIHKlSujd+/e8n5mzJiBoUOHonLlykhNTTXYfH3NmjXDsGHD0Lt3b8TExGDq1KmYNm0a1q5di1mzZmHcuHF49OgRnJyc0LRpU3To0OGt+/Tw8IC3tzfOnj2bZeLI3NajKdErOUlPT0e1atXkMZeJiIiIiPQ1YMAAnRnhS5YsKc8f8jovzwPysi5duqBLly7y69mzZ6N8+fI6dxS8vb2xf//+1+67SZMmuHjx4lvjfjlpqVixYpYkxtHRMcuyZcuWYdmyZTrLlEolpk+fjunTp2dbzqv186ozZ85kuzwv9Wgq9EpOlEolUlNT3zg5jT78/Pzwyy+/4MaNG7CyskKzZs3g7++PatWqyesIITB9+nSsXLkSsbGxaNy4MZYsWYKaNWsCAJ49e4apU6di//79CA8PR6lSpdCtWzfMnDkTDg4O8n5iY2Ph6+uL3bt3A8j4H3nRokVwdHQ0yLEQFXeH/YbgRdxTSJICSisbNOg/CSUqVsfVXatw9+/dSIi6D5+xi1Cufot8KV+TloIjcwbh+YObMFdZwaqEC5r5BsDOtQKe3AzF6eWTkP4iEZKkQKOhs1Has9Hbd5oLr6uHlLgYnFw+GYmPw2GmtID3wP+hpHvNfIlh76TueBH7+P9jsEWTkXPhVLk2Xjx/gqNzhyMh8i4USgs08w1AqapeBi+/7fenEBWXCoUkwc7SHIv61US9Cg6Ijk9F/1UXcDs6CSqlGZb3r43mVUsavHwiKl6WLl0Kb29vODk54fjx45g3b548hwkVPno/1jV69Gj4+/tj9erVMDfP21NhwcHBGDlyJLy9vaFWqzF58mS0bdsW165dk0djmDt3LgICAhAYGIiqVati1qxZaNOmDW7evAk7OztEREQgIiIC33//PTw9PXH//n0MGzYMERER2L59u1xWnz598PDhQ+zduxcA5ElpfvvttzwdAxFleNf3e1jY2AMAHp47iNOrpqD97K1wqdkYFZq0x5lVU/I9hmodPkd57zaQJAnXdq3E8YVj0G7ODhyc8Rla/Hc5ytR7D88f/IN9kz5C1+XH8iWG19XDhS0LUKpKHbSasBwxt6/g2MKx6OCfP5PVtpq8FirbjB9n7p/4HccCRqHrkmCcWzMdzjUaot2c7XhyMxSHZn2Oj1aeNHj5W0c0gKN1xug1v4ZGYeCaiwid7oOJ226gSWVH7B3XGGfvPMfHS0Nw27+VwcsnouIlLCwMs2bNwrNnz1ChQgWMGzcOkyZNMnZYlEt6ZxenT5/GwYMHsX//fnmIspf98ssvOd5XZqKQae3atShdujRCQkLg4+MDIQQWLFiAyZMno3v37gAyZgZ1cXHBxo0bMXToUNSqVUtnpszKlStj9uzZ6NevH9RqNczNzXH9+nXs3bsXp06dkiegWbVqFZo2bYqbN2/q3KkhotzJvCAHgLTkRPkOa6kqdV63iUGZWVjCrVFb+XXpGt64unM5UuOfITUhFmXqZYyI4lihKixsHfAo5FC+xPG6egg/tQ+dF2R85jlVrgVLByc8DbuQLzFkJiYAkJYUD0gZY5/cPforegZllOlcrT6sHEsj+lr2jwbkRWZiAgBxyelQKDLqYOvZCNyd2xoA4F3JES72FjgW9gxNKpcweAxEVHz88MMP+OGHH4wdBhmI3smJo6MjevTokR+xyJ11SpbMuM1/9+5dREVFoW3bfy84VCoVWrRogRMnTmDo0KGv3Y+9vb18Z+fkyZNwcHDQmRmzSZMmcHBwwIkTJ7JNTjInrckUHx+f9wMkKuJOLvtGvthtOWG5UWO5+usKVGjSHpYOTrBydMa9v3ej4ntdEH3jHOIe3UZSdHi+lf1qPaQmPIcQApb2/z7CZONcFskx+TeCSvDcYYi6+DcAoO3s7UiJfwYhtLByLCWvY+tSAUlPHuZL+f1Xncfh6zEAgL3jGiMmMQ1aIeBsr5LXqVjKGg9iUtCkcr6EQEREhZDeyUl+zfwuhMDYsWPRvHlz1KpVCwDkoc9cXFx01nVxccH9+/ez3U9MTAxmzpypk7hERUWhdOnSWdYtXbr0a4dX8/Pze20nJSLKXtPhcwAAd47uwvmN89Fy/LK3bJE/Lm6aj/iIO3jXNwAA8MG0DTi7Zhoubp6PEhU94VKzCSQz5Vv2knuv1kPT4X7Aq331DDQSzOu0GJ+RHIYd2ISzq6fAZ/wKSHi1v2D+xfDz4Iy+LEHHwvHfLdewbohXlvLzuQqIiKgQyvU8J0+ePMGxY8dw/PhxPHnyJM+BjBo1CpcuXcKmTZuyvJfdzJ/ZdcqPj49Hx44d4enpialTp75xH2/aDwBMmjQJcXFx8r/w8Pz7lZWoqKnk0xXR184iNeF5gZd9edsi3Du+B21nbYO5pTUAoGSlWmg3ezu6LgmGz3+XITkmCo4VquZ7LJn1kCkl/pn8d9LTSFg7ueZ7DB5tPkXkxX/717x4/u/4/YmPw2HjXD5fy/+8uRsO34iRXz+J//eO9P2YZFRwssxuMyIiKqb0Tk6SkpIwcOBAlClTBj4+PnjvvfdQtmxZDBo0CMnJybkKYvTo0di9ezcOHz6M8uX//aJ0dc344n717kZ0dHSWuykJCQlo3749bG1tsXPnTiiVSp39PH78OEu5T548ybKfTCqVCvb29jr/iCh76cmJSI6Nll+Hnz0IC1sHWLzU96EgXNmxBHeO7EB7v506/S6Sn/17/t/8IwjmltZwrdPc4OW/qR4qNGqDsAObAQAxt68gJe4pSnnUM3gMaUnxSI6JlF/fO74HKvuSUNmVQEWfrrj+22oAwJOboXgR+9jgo5bFv0hHRGyK/HpnSCScbC1Q0kaJnt5lsOTQPQDA2TvPERWXiuYeHK2LiIj+pfdjXWPHjkVwcDB+++03vPvuuwCAY8eOwdfXF+PGjcsyjvObCCEwevRo7Ny5E0eOHIG7u7vO++7u7nB1dcWBAwfg5ZXxiEBaWhqCg4Ph7+8vrxcfH4927dpBpVJh9+7dOuNaA0DTpk0RFxeHM2fOoFGjjC/i06dPIy4uDs2aNdO3CojoFWkvEnFswVfQpKVAUiigsiuBFl8vgSRJuLprNcIObEJqQixOrfgWZkoLtJ+zDUpLm7fvWA9JTyNwZuW3sCtTEX+O7wwAUChV6PLjX7j5RyBuH9oGCAGHClXx/pR1BhsS/WVvqoe6n36FU0u/wW9jO0JhrkTT4XOgMDP8PLhpSfE4NPNzaNJeAJIClg6l0GbGZkiSBO9B0xA8dxi2f9EACnML+IxfYfAY4l6o0XfFebxI00KhAJztVNgzxhuSJMG/Zw18tuo8PCYcgoW5AusGe8HcTAG1VmPQGIiIqPDS+1tpx44d2L59O1q2bCkv69ChA6ysrNCrVy+9kpORI0di48aN2LVrF+zs7OQ7JA4ODrCysoIkSRgzZgzmzJkDDw8PeHh4YM6cObC2tkafPn0AZNwxadu2LZKTk7F+/XrEx8fLndednZ1hZmaGGjVqoH379hg8eDBWrFgBIGMo4U6dOnGkLiIDsHFyRbuZWR/JBICaXb9Eza5fZlmuSUvNZu08xFCqLAbui832Pa9+E+DVb4LOMnVaSrbr5imGN9SDlUMptJq0UmeZoesAAGxLl0eXRQezj6FEabT30x1R0dD14FbSCmemvJftey4OKuz/uolByyMiKgoGDBiA58+fv3UCRVMWGBiIMWPG4Pnz53naj97JSXJycraPQpUuXVrvx7oyE5mXEx0go9N95qyY48ePx4sXLzBixAh5Esb9+/fDzs4OABASEoLTp08DAKpUqaKzn7t376JixYoAgA0bNsDX11ce+atLly5YvHixXvESERERmbJS044WaHlPp/notf6AAQMQFBQEADA3N4ebmxu6d++O6dOnZ5meojhZuHBhlpnl30aSJOzcuRPdunXLn6CMRO/kpGnTppg6dSp+/vln+fGpFy9eYPr06WjatKle+8pJI0iShGnTpmHatGnZvt+yZcsc7adkyZJYv369XvERERERkWG1b98ea9euRXp6Ov7++298+eWXSEpKyvbpm/T0dJ1+xAUpP8pOS0uDhYVFluUODgXbR/Nlxqzj7OjdIX7hwoU4ceIEypcvj/fffx8ffPAB3NzccOLECSxcuDA/YiQiIiKiIkKlUsHV1RVubm7o06cP+vbtKz/ONG3aNNSrVw8//fQTKlWqBJVKBSEE4uLiMGTIEJQuXRr29vZo3bo1Ll68qLPf3bt3o2HDhrC0tESpUqXkCbyBjB+7X31kytHREYGBgQCAe/fuQZIkbN26FS1btoSlpSXWr1+P+/fvo3PnzihRogRsbGxQs2ZN/PHHH/I+goOD0ahRI6hUKpQpUwYTJ06EWq2W32/ZsiVGjRqFsWPHolSpUmjTpk22dTJgwACdOyAtW7aEr68vxo8fj5IlS8LV1VXnh/rMJ4M++ugjSJIkvwaA3377DQ0aNIClpSUqVaqE6dOn68QkSRKWL1+Orl27wsbGBjNmzED58uWxfLnu/GShoaGQJAl37twBAAQEBMgTsLu5uWHEiBFITEzM9njyQu/kpFatWggLC4Ofnx/q1auHOnXq4LvvvkNYWBhq1qxp8ACJiIiIqOiysrJCenq6/PrWrVvYunUrduzYgQsXLgAAOnbsiKioKPzxxx8ICQlB/fr18f777+PZs4wh2n///Xd0794dHTt2xPnz53Hw4EE0bNhQ71gmTJgAX19fXL9+He3atcPIkSORmpqKo0eP4vLly/D394etrS0A4NGjR+jQoQO8vb1x8eJFLFu2DGvWrMGsWbN09hkUFARzc3McP35c7vucE0FBQbCxscHp06cxd+5czJgxAwcOHAAAnD2bMUz92rVrERkZKb/et28f+vXrB19fX1y7dg0rVqxAYGAgZs+erbPvqVOnomvXrrh8+TK+/PJLfPLJJ9iwYYPOOhs3bkTTpk1RqVIlAIBCocCPP/6IK1euICgoCIcOHcL48eP1qN2cydUwLVZWVhg8eLChYyEiIiKiYuTMmTPYuHEj3n//fXlZWloa1q1bB2dnZwDAoUOHcPnyZURHR0OlUgEAvv/+e/z666/Yvn07hgwZgtmzZ+OTTz7RmUC7bt26esczZswYnTsuDx48QI8ePVC7dm0AkC/UAWDp0qVwc3PD4sWLIUkSqlevjoiICEyYMAFTpkyBQpFxD6BKlSqYO3eu3rHUqVNHnrfPw8MDixcvxsGDB9GmTRu5bhwdHeWpNwBg9uzZmDhxIj7//HM53pkzZ2L8+PE6cwD26dMHAwcOlF/37dsXAQEBuH//Pt555x1otVps3rwZ33zzjU7dZHJ3d8fMmTMxfPhwLF26VO9je5NcJSf//PMPjhw5gujoaGi1Wp33pkyZYpDAiIiIiKjo2bNnD2xtbaFWq5Geno6uXbti0aJF8vvvvPOOfPENZAx+lJiYCCcnJ539vHjxArdv3wYAXLhwwSA/nL96t8XX1xfDhw/H/v378cEHH6BHjx6oU6cOAOD69eto2rSpztD07777LhITE/Hw4UNUqFAh233mVGY5mcqUKYPo6OjXrJ0hJCQEZ8+e1blTotFokJKSguTkZFhbW2cbk5eXF6pXr45NmzZh4sSJCA4ORnR0NHr16iWvc/jwYcyZMwfXrl1DfHw81Go1UlJSkJSUZNDBDPROTlatWoXhw4ejVKlScHV11WkQSZKYnBARERHRa7Vq1QrLli2DUqlE2bJls3TGfvVCV6vVokyZMjhy5EiWfTk6OgLIeKrnTSRJyjKA0suPkr2u7C+//BLt2rXD77//jv3798PPzw/z58/H6NGjIYTIMmdWZhkvL8/thfur9SJJUpabAq/SarWYPn26zt2fTC/PA5hdTH379sXGjRsxceJEbNy4Ee3atUOpUqUAAPfv30eHDh0wbNgwzJw5EyVLlsSxY8cwaNCgbOsxL/ROTmbNmoXZs2djwoQJb1+ZiIiIiOglNjY2WaZ/eJP69esjKioK5ubmOh2/X1anTh0cPHgQX3zxRbbvOzs7IzIyUn4dFhaW4ykw3NzcMGzYMAwbNgyTJk3CqlWrMHr0aHh6emLHjh06ScqJEydgZ2eHcuXK5fj4ckupVEKj0Z3Etn79+rh586Ze9ZupT58++PbbbxESEoLt27frjJ527tw5qNVqzJ8/X35cbevWrXk7gNfQu0N8bGwsevbsmR+xEBERERHp+OCDD9C0aVN069YN+/btw71793DixAl8++23OHfuHICMDt6bNm3C1KlTcf36dVy+fFmnn0fr1q2xePFihIaG4ty5cxg2bFiOhs8dM2YM9u3bh7t37yI0NBSHDh1CjRo1AAAjRoxAeHg4Ro8ejRs3bmDXrl2YOnUqxo4dK1/A56eKFSvi4MGDiIqKQmxsxiTEU6ZMwc8//4xp06bh6tWruH79OrZs2YJvv/32rftzd3dHs2bNMGjQIKjVanTt2lV+r3LlylCr1Vi0aBHu3LmDdevWZRndy1D0rrmePXti//79+RELEREREZEOSZLwxx9/wMfHBwMHDkTVqlXxySef4N69e/LE4C1btsS2bduwe/du1KtXD61bt5Yn6QaA+fPnw83NDT4+PujTpw++/vpruf/Fm2g0GowcORI1atRA+/btUa1aNbkDeLly5fDHH3/gzJkzqFu3LoYNG4ZBgwblKBEwhPnz5+PAgQNwc3ODl5cXAKBdu3bYs2cPDhw4AG9vbzRp0gQBAQF45513crTPvn374uLFi+jevbvOo3L16tVDQEAA/P39UatWLWzYsAF+fn75clySyMEMhj/++KP8d1JSEgICAtCxY0fUrl07S9bp6+tr+ChNQHx8PBwcHBAXFwd7e3tjh0NkVCkpKejZsydCHyWgue98mFmo9N6HJi0Vx34ch/rl7LBt2zadZ2H1jePik3S0+jYQ5hY534c6LQWHZw1AXWdlnsvPbT0Yuw4Aw9YDws9g28gGsFSa6bd9ugY9l4QAbo1yHQNRUfOm646UlBTcvXsX7u7uPF+oUNDn/9kc9Tn54YcfdF7b2toiODgYwcHBOsslSSqyyQkREREREeWvHCUnd+/eze84iIiIiIiomMv/3jpEREREREQ5oHdy8vHHH+O7777LsnzevHkcxYuIiIiIiHJN7+QkODgYHTt2zLK8ffv2OHr0qEGCIiIiIqI3y8GYRkQmQZ//V/VOThITE2FhYZFluVKpRHx8vL67IyIiIiI9ZI6UmtNJBImMLS0tDQBgZvb20Rz1niG+Vq1a2LJlC6ZMmaKzfPPmzfD09NR3d0RERESkBzMzMzg6OiI6OhoAYG1tLc9QTmRqtFotnjx5Amtra5ibvz310Ds5+d///ocePXrg9u3baN26NQDg4MGD2LRpE7Zt26Z/xERERESkF1dXVwCQExQiU6ZQKFChQoUcJdF6JyddunTBr7/+ijlz5mD79u2wsrJCnTp18Ndff6FFixa5CpiIiIiIck6SJJQpUwalS5dGenq6scMheiMLCwsoFDnrTaJ3cgIAHTt2zLZTPBEREREVHDMzsxw9x09UWOQqOQEyOrZER0dDq9XqLK9QoUKegyIiIiIiouJH7+QkLCwMAwcOxIkTJ3SWCyEgSRI0Go3BgiMiIiIiouJD7+RkwIABMDc3x549e1CmTBmODkFERERERAahd3Jy4cIFhISEoHr16vkRDxERERERFVN6T8Lo6emJp0+f5kcsRERERERUjOmdnPj7+2P8+PE4cuQIYmJiEB8fr/OPiIiIiIgoN/R+rOuDDz4AALz//vs6y9khnoiIiIiI8kLv5OTw4cP5EQcRERERERVzeicnb5oF/sKFC3mJhYgKIY06rUC3ex1teirUeq5vSLk5HmPXQeY2hpSarn37SgbYhoiIiqZcT8KYKS4uDhs2bMDq1atx8eJFPtZFVMycXDrJ2CEAAIL9hxq1fFOoB2PXAQD0W3ne2CEQEVEhluvk5NChQ/jpp5/wyy+/4J133kGPHj2wZs0aQ8ZGRCaufjk7Y4cAAKjrrDRq+aZQD8auAwCAWyNjR0BERIWcJIQQOV354cOHCAwMxE8//YSkpCT06tULy5cvx8WLF+Hp6ZmfcRpdfHw8HBwcEBcXB3t7e2OHQ2RUQgikphrucSCVSpWrCV0NFYexy2cMeY+BqKjhdQcVVzm+c9KhQwccO3YMnTp1wqJFi9C+fXuYmZlh+fLl+RkfEZkgSZJgaWlp7DCMHoexy2cMRERU1OQ4Odm/fz98fX0xfPhweHh45GdMRERERERUDOV4Esa///4bCQkJaNiwIRo3bozFixfjyZMn+RkbEREREREVIzlOTpo2bYpVq1YhMjISQ4cOxebNm1GuXDlotVocOHAACQkJ+RknEREREREVcXp1iH/VzZs3sWbNGqxbtw7Pnz9HmzZtsHv3bkPGZzLYMY2IiIgKCq87qLjK8Z2T7FSrVg1z587Fw4cPsWnTJkPFRERERERExVCe7pwUJ/wFg4iIiAoKrzuouMrTnRMiIiIiIiJDYXJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBLMjR1AYZOSkgILC4s870elUkGSJL22EUIgNTXVKGUbsnzGkPcYiIiIiIoiJid66t+/P5RKZZ73s23bNlhaWuq1TWpqKnr27GmUsg1ZPmPIewxERERERRGTEz1djEyEwixv1Va/nF3eYniSnutt6zrnPbEKfZSQp+3zevxA3uoAMEw9IPxM3rZ3a5T3GIiIiIiKECYnudB0hB/MzPV/tEujTsPJpZMMEkOLCSugUKpyvL42PRXB/kMNUjaQuzow5PED+tcBYPh6WD/ECyqlfl23UtO16LfyvMFiICIiIioqmJzkgpm5Bcws9LsoNjSFUgVzi5w/DqQ2cPmFsQ4Aw9eDSqmApdLMwHslIiIiKp44WhcREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBHNjFu7n54dffvkFN27cgJWVFZo1awZ/f39Uq1ZNXkcIgenTp2PlypWIjY1F48aNsWTJEtSsWVNeZ+XKldi4cSNCQ0ORkJCA2NhYODo66pQVGhqKCRMm4OzZszAzM0OPHj0QEBAAW1vbXMd/2G8IXsQ9hSQpoLSyQYP+k1CiYnVc3bUKd//ejYSo+/AZuwjl6rfIdRlvok5LwZE5g/D8wU2Yq6xgVcIFzXwDYOdaAU//OY+TSydAk5YCTVoqKr/fK19ieF0dpMTF4OTyyUh8HA4zpQW8B/4PJd1rvn2HubB3Une8iH38/zHYosnIuXCqXBsvnj/B0bnDkRB5FwqlBZr5BqBUVS+Dl9/2+1OIikuFQpJgZ2mORf1qol4FB0THp6L/qgu4HZ0EldIMy/vXRvOqJQ1ePhEREVFRYdQ7J8HBwRg5ciROnTqFAwcOQK1Wo23btkhKSpLXmTt3LgICArB48WKcPXsWrq6uaNOmDRISEuR1kpOT0b59e3zzzTfZlhMREYEPPvgAVapUwenTp7F3715cvXoVAwYMyFP87/p+jw7f/YIP/bajeof+OL1qCgDApWZjtPjvUpSu3iBP+8+Jah0+R481Z9Ft2d9wa9wWxxeOAQAcW/Af1O09Bt2WHkWngL24tnMZ0pMTDV7+6+rgwpYFKFWlDjoH/I7GQ2bixJKJ0GrUBi8fAFpNXouPlh9Ht2V/o9bHo3AsYBQA4Nya6XCu0RAfrw3Be+OWINh/SL7EsHVEA1ya2QIXZvhgXPtKGLjmIgBg4rYbaFLZEWH+rbF2YF30XXkeao3W4OUTERERFRVGvXOyd+9enddr165F6dKlERISAh8fHwghsGDBAkyePBndu3cHAAQFBcHFxQUbN27E0KFDAQBjxowBABw5ciTbcvbs2QOlUoklS5ZAocjIx5YsWQIvLy/cunULVapUyVX8Fjb28t9pyYmQJAkAUKpKnVztT1/mFpZwa9RWfl26hjeu7lwuv05NjAcApKckQWFuAYW50uAxvK4Owk/tQ+cFGe3rVLkWLB2c8DTsgsHLBwCVrcO/MSTFA1JGG989+it6BmWU6VytPqwcSyP62hmDl+9o/W+9xiWnQ6HIqIOtZyNwd25rAIB3JUe42FvgWNgzNKlcwuAxEBERERUFRk1OXhUXFwcAKFky49GXu3fvIioqCm3b/nsBrlKp0KJFC5w4cUJOTt4mNTUVFhYWcmICAFZWVgCAY8eOZZucpKamIjU1VX4dHx+f7b5PLvtGvuBtOWF5tusUlKu/rkCFJu0BAO+NW4K/pvVBaNAspMTFoMnIuXhw4vd8KffVOkhNeA4hBCzt/32Eyca5LJJjovKlfAAInjsMURf/BgC0nb0dKfHPIIQWVo6l5HVsXSog6cnDfCm//6rzOHw9BgCwd1xjxCSmQSsEnO1V8joVS1njQUwKmlTOlxCIiIiICj2T6RAvhMDYsWPRvHlz1KpVCwAQFZVxMevi4qKzrouLi/xeTrRu3RpRUVGYN28e0tLSEBsbKz8CFhkZme02fn5+cHBwkP+5ubllu17T4XPQddFfqN1zNM5vnJ/jmAzt4qb5iI+4gwYDvgUAXN72I7y/nIHe66/go5UncX7dd0h/kfSWveROtnXw/3dQZELkS9mZWoxfjt4brqL+gG9xdnXGo2USXokB+RfDz4O9EB7wAWZ1r4b/brmWbfn5XAVEREREhZ7JJCejRo3CpUuXsGnTpizvSdKrF3kiy7I3qVmzJoKCgjB//nxYW1vD1dUVlSpVgouLC8zMzLLdZtKkSYiLi5P/hYeHv7GMSj5dEX3tLFITnuc4LkO5vG0R7h3fg7aztsHc0hopcTG4f+J3VGrxEQDAvkxFOFerj9TE/I0tsw4ypcQ/k/9OehoJayfXfC0fADzafIrIi8fk1y+eP5X/TnwcDhvn8vla/ufN3XD4Roz8+kn8v3ff7scko4KTZb6WT0RERFSYmURyMnr0aOzevRuHDx9G+fL/Xjy6umZczL56lyQ6OjrL3ZS36dOnD6KiovDo0SPExMRg2rRpePLkCdzd3bNdX6VSwd7eXuffy9KTE5EcGy2/Dj97EBa2DrB4qf9DQbiyYwnuHNmB9n475b4XFraOMFOqEHnpOAAgJS4GT26GQmmV+5HJsvOmOqjQqA3CDmwGAMTcvoKUuKco5VHPoOUDGX1MkmP+vft17/geqOxLQmVXAhV9uuL6b6sBAE9uhuJF7GOU9mxk0PLjX6QjIjZFfr0zJBJOthYoaaNET+8yWHLoHgDg7J3niIpLRXMPjtZFRERE9DpG7XMihMDo0aOxc+dOHDlyJEui4O7uDldXVxw4cABeXhlDwKalpSE4OBj+/v65KjMzqfnpp59gaWmJNm3a5Go/aS8ScWzBV9CkpUBSKKCyK4EWXy+BJEm4ums1wg5sQmpCLE6t+BZmSgu0n7MNSkubXJX1OklPHuHMym9hV6Yi/hzfGQCgUKrQ5ce/0GryWpxZMRlajRpCo0bNj4Yh6v+TFUN5Ux3U/fQrnFr6DX4b2xEKcyWaDp8DhZnh/3dLS4rHoZmfQ5P2ApAUsHQohTYzNkOSJHgPmobgucOw/YsGUJhbwGf8CoPHEPdCjb4rzuNFmhYKBeBsp8KeMd6QJAn+PWvgs1Xn4THhECzMFVg32AvmZgqotRqDxkBERERUVBg1ORk5ciQ2btyIXbt2wc7OTr5D4uDgACsrK0iShDFjxmDOnDnw8PCAh4cH5syZA2tra/Tp00feT1RUFKKionDr1i0AwOXLl2FnZ4cKFSrInesXL16MZs2awdbWFgcOHMB///tffPfdd1nmQ8kpGydXtJuZ9RE0AKjZ9UvU7PplluWatNRs1s49G+dyGLgvNtv3ytVviXL1j8iv1WkpBk9O3lQHVg6l0GrSSp1lhj5+ALAtXR5dFh3MPoYSpdHe7xedZeq0lGzXzS23klY4M+W9bN9zcVBh/9dNDFoeERERUVFm1ORk2bJlAICWLVvqLF+7dq08B8n48ePx4sULjBgxQp6Ecf/+/bCzs5PXX758OaZPny6/9vHxybKfM2fOYOrUqUhMTET16tWxYsUKfPbZZ/l3cEREREREpBejP9b1NpIkYdq0aZg2bdpr13nb+wDw888/6xkdEREREREVJJPoEE9ERERERMTkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOSEiIiIiIpPA5ISIiIiIiEwCkxMiIiIiIjIJTE6IiIiIiMgkMDkhIiIiIiKTwOSEiIiIiIhMApMTIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMgnmxg6gMNKo0wp0u+xo01Oh1nN9Q8rNsRjy+AH96yBzG0NKTdcWyDZERERExQGTk1w4uXSSsUNAsP9Qo5bPOsjQb+V5Y4dAREREVGQwOdFT3TK2UCqVxo3B2bjl1y9nZ9TyAePXAQDArZGxIyAiIiIqUiQhhDB2EIVBfHw8HBwc8PjxY9jb2+d5fyqVCpIk6bWNEAKpqXl/LCk3ZRuyfMaQ9xiIiKhoy7zuiIuLM8h1B1FhwTsnerK0tISlpaVRypYkyWhlm0L5jIGIiIioaONoXUREREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSOFpXDmWOuBwfH2/kSIiIiKioy7ze4IwPVNwwOcmhhIQEAICbm5uRIyEiIqLiIiEhAQ4ODsYOg6jAcBLGHNJqtYiIiICdnR0nzXuN+Ph4uLm5ITw8nBNGFQJsr8KDbVW4sL0KF1NtLyEEEhISULZsWSgUfAqfig/eOckhhUKB8uXLGzuMQsHe3t6kPuDpzdhehQfbqnBhexUupthevGNCxRFTcSIiIiIiMglMToiIiIiIyCQwOSGDUalUmDp1KlQqlbFDoRxgexUebKvChe1VuLC9iEwLO8QTEREREZFJ4J0TIiIiIiIyCUxOiIiIiIjIJDA5ISIiIiIik8DkhIiIiIiITAKTEyIiIiIiMglMToiIiIiIyCQwOaEci46OhkajMXYYREVOYmKisUOgHOLnIBFR/mJyQm8khEBaWhqGDBmCdu3a4eTJk8YOid7g8ePH+P3338HpiwqHyMhI9O3bF59++ikGDRqE0NBQY4dE2eDnYOETFRWFGTNmYOnSpfjjjz+MHQ4R6YHJCb2RJEmIjo7G7t278eTJExw6dAhxcXEAwAtgE7N48WKULVsWnTt3xtWrV40dDr3F+vXrUatWLaSlpeHDDz/EoUOH4O/vj6ioKGOHRq/g52DhMnPmTFSpUgVnzpxBYGAgPvroI2zcuBEA24uoMGByQm+Vnp6OTp064bPPPsP69etx6tQpABlf2GR8Qgj88ccf+PXXXzF37lx4eXlh+vTp0Gq1xg6NXkOj0eDnn3/G2LFjsW3bNowYMQL+/v4IDg6GlZWVscOjbPBz0PRpNBr4+/vjjz/+wNatW7Fnzx4cPHgQY8eOxaRJkwCwvYgKAyYn9FYPHz7EpUuX4OfnBxsbG2zatEn+1ZCMT5IkuLi44LPPPsPQoUPxww8/YMeOHdi3b5+xQ6PXuHz5Mu7cuYOyZcvKy5KTk9GjRw+eWyaKn4Omz8zMDGlpaWjdujXat28PALCzs0OLFi1gbm6O27dvGzlCIsoJJicEAEhLS8OLFy+yfe/hw4fw9PQEAEycOBFHjx7Fpk2bMGTIEERGRhZkmAQgISEBR48exa1bt+RlDRo0wOeffw5bW1v4+PigZ8+emDx5MhISEowYKQG651bm3SxPT084OTlhzZo1WLlyJXr16oWBAwfi/PnzqFOnDsaMGYPo6Ghjhl0sxcfH49SpU3j06FGW9/g5aHqSkpIQFhaG+Ph4ednXX3+N2bNnQ6FQyI9wPXv2DJaWlqhcubKxQiUiPTA5Ifj7+6N27do4evSozvLMC6n4+Hg8f/4cANC7d2+Ym5vD19cX586dgyRJfIa3AM2cOROVK1fG2LFjUadOHQQEBOh8MWe2mZ+fH27cuIHAwEAjRUpA1nNLoVBArVbDwsICCxcuRK9evbBr1y7cvn0bZ86cwd69e7FgwQKcOXMGS5cuNXL0xYufnx/c3NwwePBgeHp6YuHChTpJCj8HTcvMmTNRu3Zt9OrVC/Xq1ZM7vWc+FqnVauVHuE6ePAkvLy8AGY/nEZFpY3JSjD179gzDhw/Hxo0bERUVhZUrV+Lp06fy+wpFxv8eDx48QLt27fDXX3+hfPnyePHiBezs7NC3b1+UKlWKz/AWgDt37qBt27bYtm0b1q1bh927d2PixIn47rvvdO6OZLZZpUqVMG7cOMyePRsPHz4EkPHYUFJSklHiL27edG6ZmZkBAJo0aQJfX1+kpqZi4MCBaNiwIezt7TFgwADY2dnh8ePHvJAqIH/++SfWrVuHoKAg7N69GxMmTMCqVaswZcoUeZ179+7xc9AE3L9/H127dsWWLVuwePFizJ8/Hz4+Pvjyyy/x+PFjeT2FQiGfP6dPn0aDBg0AAEqlEgA7xhOZMiYnxVhcXBzs7e3h5+eH33//HTt37sRff/0l//qe+V8zMzOMHDkS3bt3x5AhQxAeHo5+/fohKCgIx44dM+YhFBuPHj1Cs2bNsHPnTrRr1w5ly5bFl19+CXt7+9duM3HiRFhaWmLevHlYt24d2rVrxyE1C8ibzq2XL2Lv37+PW7duoXHjxvKy5ORkxMfHo0KFCvKFFOWvvXv3wtLSEt26dYO7uzu++eYbDBs2DMePH8fy5cvl9fg5aHynTp3C8+fPsX37dnTo0AGtW7dGYGAgkpKScObMGZ11lUolwsPDce/ePXTv3h1ARlv36dMH9+/fN0b4RJQTgoottVot7t+/L7/u1auXqFOnjrh7967Oert37xb+/v7in3/+kZdFR0eLGjVqiODg4IIKt1hLS0sT4eHhOq8/+ugj0bx5czFz5kzxzz//CI1GI4QQ8n+FEGLq1KlCkiRhYWEhJk2aVOBxF1c5PbeEEMLLy0u0aNFCrFu3ToSGhopOnTqJmjVriosXLxZgxMWXRqMRw4cPF5988olISUmRl0dERIihQ4eKunXriuTkZPHXX3+JOXPm8HPQSLRarRBCiGfPnolt27bpvBcVFSWqVasm9u/fn2W79evXi/fff1+Eh4eLDz/8UJibm4tx48YVSMxElDtMTkj+0I+JiRFKpVL4+fnpfEmr1Wqd9TNfp6amFlyQJLt+/bqwtrYW3t7eYsqUKaJevXqiadOmYs2aNfI6iYmJYuTIkUKSJDFo0CARGxtrvICLsTedW5nn0c2bN0WDBg1EtWrVRKVKlUSvXr3Es2fPjBZzcZLZPn5+fsLNzS3bH2a8vLxEYGCgzvpC8HPQGF6ufyH+/SHm2rVrwsnJSSdxzFy3f//+QpIkoVQqRceOHcXTp08LLmAiyhU+1lVMiZeet5UkCWq1GiVLlsTkyZMREBCA69evy+9n9mPI3CbzmXkLC4sCjLj4Eq88G+3m5oZ9+/bh1KlTmD59Ok6fPg1HR0ecOXMGaWlpAICnT5/Czs4Of//9N1avXg1HR0cjRF60paSkZLs8p+eWmZkZ1Go1qlatir/++gu///47Dh48iC1btqBEiRIFcgzFXeajq2PGjEFcXBw2bNig837Lli2hVCrl0bhefiSPn4P5Jzo6Wq8+IUePHoW7uzs8PDyybGdubo5atWrhzJkz2LNnD5ycnAwdLhEZGJOTIioyMhI9e/bE1q1bAWRMTpVJrVbLX7KZyzNfT506FRYWFli2bBliY2Nx4MABrF+/XmcdMqzw8HBs374doaGhcgfOzC/Yl9tKrVYDAKytrdG8eXMoFApotVpYWFggMTERUVFR8oXSO++8Az8/P7z77rtGOKKi7e7du6hbty7mzJmT5T19z63MWasdHR1RuXJlVKxYsWAOopiIjIzEyZMnce/evSzvqdVqOcGwtLTElClT4O/vj3Pnzsnr2NnZIS0tDeHh4QUVcrF29+5ddOnSBRMmTMC1a9d03nvTufX333/Dx8dHXnb58mVcuXIFALBw4UJcunQJ9erVK6CjIKK8YnJSRK1ZswY7duzADz/8gOTkZJiZmcm/Epqbm0MIgQkTJmDz5s3QarUwMzOTP/AXLVqENWvWoEWLFmjXrh3nyshHkyZNQtWqVTF//nw0a9YMw4cPx507dyBJErRarU5bbdmyJUuHaoVCgTNnzkCSJAwePNiIR1L0CSEwbNgwVK1aFVWrVoWvr2+WdfQ9txITEwv6MIqNMWPGoHbt2vjPf/6DmjVrYunSpTqTJr7cVuvXr8e4ceNQtWpVTJw4UR44IjQ0FEIIdOvWzUhHUfRl/hDz888/o0GDBrCyssLIkSNRqlQpnfezO7eAjMEnQkJC0K5dO0RGRqJXr16oW7cuHjx4AACwtbU1wlERUV4wOSmiTpw4gd69e8PCwgL+/v467wUFBaFUqVLYv38/6tSpIz+2ZWZmhkePHuHUqVPQarWoWbMmHjx4gBEjRhjjEIq806dPY9euXdi+fTsOHz6MVatWISwsDJ999hmAjMQjKCgITk5OWdrq+vXruHz5MqZMmYIOHTrA09MTrVq1MubhFGm3bt2Ck5MTjh07hjNnzmDbtm3yxdPLeG4Z34MHD9ClSxecOXMGu3fvxtatWzFixAgsW7ZMZzSnl9uqZs2aAIB169bB3t4eH330Edq1a4f33nsPNWrU4B3IfJT5Q8ymTZvwv//9D1u2bEHDhg1hZ2cnvw8AgYGBWc4tSZIQFhaG58+fY+fOnahcuTLi4uJw7949dOzY0ZiHRUR5YG7sAChvhBA6v6Sr1WqYm5ujTJky6Ny5s3wh9cknn6BGjRpISEjAw4cPMWvWLAwZMkR+rAHImMn6+++/x88//4xDhw6hZcuWRjii4uPXX3+FRqORv0Q/++wzVKlSBW3btkVAQADGjh2Le/fuYc6cORg8eLBOW504cQJLliyBubk5tm7ditatWxvrMIqsl88tpVKJsmXLonnz5vDy8sKJEyewY8cOODk5oX79+mjevDlsbW1x9+5dzJ49O0t78dwqOFeuXIG1tTUWLVokz20xb948rF+/HrGxsQCAxMREhIeH67SVEAI1atRAYGAgTp8+jX/++QdTpkxhYpIPXv3eOnLkCG7fvo3Ro0fjxIkT8Pf3R2pqKqpUqYJ+/fqhSZMmuH//frbfW6dOncLjx48RGhqKXbt2oU2bNsY4JCIyIEno0+uMTMqLFy+gUCigUqkA6H7g16lTB5s3b0ZycjLGjx+P2rVrY968eQgLC0P16tV1Ptxf9vjxY7i4uBTYMRQXmW2j1WrlX9N/+OEHBAYG4uTJk7C2tpbXmzFjBhYuXIjIyEi5bV/dT1paGi5cuIBGjRoV+LEUB6+eW1qtFr/++is+/vhjtG3bFjdu3EDDhg1x69YtPHnyBG3atEFgYOAb98lzK39knhOZP8xERETg3r17aNasGYCMttNoNGjatCnGjh2LPn36yMszz0UqOK+eW0DGXeSOHTti9erVmD17Nj744ANYWlri0KFDuHz5Mq5duwZXV1ed/WS2e0JCAnbs2IEBAwYU8JEQUX7hJ3MhNWnSJDRv3hydOnXCjz/+iPj4ePni99GjR7CxsUHFihXRsGFDdO7cGRs3boSlpSUOHjyo0zn+Vbx4MryAgAC58/TLF0MODg5QKpU4ePCgvEySJHz++eewsbFBQEAAgH9HFMp8H8gYIYiJSf7I7txSKBRo1aoVPvvsMyQmJmL37t3YsGEDLly4gGnTpuHUqVNYtmwZAN32ehnPLcN7+dzK7JNQtmxZncREoVAgMjISN2/eRK1ateRtmZgUvOzOLSAj0ahXrx7mzJmDevXqYfbs2Zg6dSr27NmDcuXK4ZtvvgGgO7CLJEkQQsDOzo6JCVERw0/nQiYtLQ09e/bE7t27MX78eJQtWxYrVqyQfw1UKBSws7ODUqmEJEnYuXMnZs2ahfT0dNSpUwe+vr6wsLDQa5hGyp2zZ8+iVatW+Prrr/HLL7/g5MmTACCPyPXxxx8jNTUVe/fuRXR0tLxdmTJl8MEHHyAsLAwajYYXUQXkdefWp59+CgAoUaIEJk2ahAULFqB27dry7O09evSAh4cHLly4wPYqIK87t179XMtsixMnTsDd3V0nOcnEz8L897pz65NPPgGQcaff3t4e586dQ6NGjaBQKKDRaGBnZ4evvvoK+/fvR2JiYpY7/hxBkqho4rdoIXP79m1cvHgRCxYsQO/evREUFISVK1fi0KFDmDdvHgDg3LlzuHXrFho1aoSBAwfim2++wdy5cyFJEpYuXQqAX8gFYd++fShVqhR++ukn+b9ARv+F9PR02NvbY9iwYfjrr7+wa9cueTuVSoWwsDAoFIrXPn5Hhve6c+vw4cPyuVW9enU0bNgQkiRBoVBACIGSJUvixo0bbK8C9LpzK7NNXhUSEoKmTZvKycrhw4fx22+/AeAFbkF43bl15MgRfPfdd7C2tsbgwYNRsmRJbNu2DcC/88iEhYXBw8PjtW1LREVQfs7wSIYXEhIiJEkSMTExQgjdGY4dHR3FnTt3RHp6uvD09BRDhgyRZzyOiIgQvXr1Ej4+Pjqzv5PhZbbJ/fv3xYkTJ4QQGe3TuHFjsXXrViGEEOnp6fL6ffr0EfXq1RMrVqwQsbGxIiQkRNSvX19s3ry54IMvxt50bpUoUUJn9umX/fnnn8Lb21scP368wGItrnJybmXOGp5JrVYLLy8vsWXLFnHnzh3RunVrYWFhIbZs2VKwwRdjbzq3HBwcxO3bt4UQQkybNk04OTmJ//3vf+Kff/4RN27cEC1atBAzZswwWuxEVPCYnBQy58+fFzVr1hSLFi0SQvz7IZ+WliYqVqwoxowZI4QQ4vHjx/J7ma5evcrExEhu374tunXrJrp16yaePXsmhBAiNTVVfm/KlCnCzMxMNGjQQFhZWYlBgwaJtLQ0Y4Zc7Lzp3HJ3dxfjxo0TQmRc/F6+fFkcOnRIDB06VDg4OIiJEycKtVpttNiLs+zOrZcTlIsXLwo7Ozvx4YcfCnNzc9G7d28RHx9vrHCLpbedW5nfW1FRUWLlypXC0dFR1KpVS9jZ2YkvvviC31tExQwf6zIx4i23rd955x14eHjg2LFjiIyMlEepUSqVGD16tDxRX+nSpeXHFTL36enpmWX0J8q9t7XVy+tVqlQJnTt3RmRkpDyqU+Zs7pUqVcL06dNx8eJFTJ8+HaGhoVi9erXcp4EMIy/n1qhRo7Bp0ya5g3VoaChmzpyJf/75B8HBwfDz8+MjXQaU13Pr5X4/YWFhSExMRGpqKs6ePYvNmzfLc2hQwXjbuZX5veXi4oLBgwfj6tWrWL16NUJDQ/HTTz/xe4uomGFyYkKePHmC5ORk+fXLo/6o1WoAGZ1yO3fujBs3bmDr1q0AMkapATJGfypZsiTCw8N19stnqg0vJ22VKXOEmY8//hienp7Ys2cPwsLCAGTMQJ25fc2aNdGxY0dUr149v8MvdqKjo5GQkCC/zs25VaJECdy/fx9ARif4VatW4dChQ6hbt25BHUaxkJO2yvSmc+vcuXMAgMaNG+PgwYM4ePAg6tWrl8/RFz+Z7ZPdKJD6fm9lJqVly5ZF48aNUaVKlYI4BCIyMUxOTEB6ejqGDBmCd999F507d8YXX3yB2NhYnV//zM3NkZKSgs2bN2PgwIGoV68etmzZgsOHD8vrPHz4EM7OznjnnXeMcRjFQk7bKj09HUFBQfJrrVYLe3t79OzZE1qtFtOnT8f777+Phg0bZtmeDEetVmPQoEFo1KgRPvjgA/Tt2xcxMTG5Prfc3d0BADY2NqhcuXKBH09RltO2yum51ahRI8TExKB8+fJo1aqVsQ6ryEpPT8eIESMwdOhQALp3qzITFn2/t/hDGhEBTE6MLjY2Fh06dMCtW7ewdu1afPrpp7h48SI6deqEmzdvyuv9+OOPKFeuHDZv3gwAGDt2LCpVqoT27dvLXxDz589H7969AXA0rvygT1u5urrit99+k2ekzvzirlmzJsLDw7Fx40aULl0akZGRKFGihFGOp6hTq9UYMGAArl27hqCgIHz66ae4dOkSunXrhuvXr8vr8dwyPn3aSp9zy8nJySjHU9SdPn0aH3zwAbZv346goCAcP34ckiTJd08y24TnFhHlipH6utD/27t3r6hVq5a4ceOGvOzatWtCoVAIX19fERsbK9auXSsqVKggNmzYoNPRU6vVijlz5ojBgweLDh06cLSgfKZvW706IMHBgweFra2tqFevnjh37lxBh1/sPHjwQHh4eIh169bJyyIjI0W5cuXE6NGjxbNnz3humQh924rnlnEtWLBADBo0SPzxxx+ie/fuonHjxlnWWbp0qXB3d+e5RUR6Y3JiZEFBQcLR0VFn2fHjx0XJkiWFh4eH+P3334VWqxWJiYk667z65Uz5L7dtlenp06di48aNBREqiYwRgqysrERYWJgQQsgj/ixevFh4eHiI3377TWi1WpGUlKSzHc+tgpfbtsrEc6tgZJ4b4eHh4urVq0KIjB9tnJ2dxerVq4UQ/45CmJ6ezu8tIsoVPtZVgP744w8Aureu3dzc4OTkBH9/f3nZ6tWrMWjQIGi1WuzatQuSJMHKykpnX3w2N38Zsq0y9+Pk5CTPNk6GtXLlSqxatQpHjx6Vl3l4eMDV1RXr168H8O+jJiNHjoSDgwN27NiB1NRUWFtb6+yL51b+MmRbATy38ltmewUHB8vnRrly5eDp6QkAaNiwIT755BNMnz4dGo0GFhYW0Gq1MDc3h42Njc6+eG4RUY4YNzcqHvbs2SPKlSsnJEmSb2Fnzonw7NkzMW/ePCFJkmjWrJmwtbUVtWrVEunp6WLRokWiXLlyxgy92GFbFS4bN24UpUuXFk2bNhX16tUTzs7OYtasWUIIIeLi4sSECROEh4eHePz4sRBCiBcvXgghhFi3bp1wcHCQX1P+Y1sVLm9qr1fn9Dl9+rTw8PAQX3/9tRAi60SYRET6YHKSz/7++2/Rvn17MWrUKPHhhx+Khg0bZrtecHCwWLRokdi/f7+87LvvvhPNmzcXz58/L6hwizW2VeGyYcMGUbduXbF8+XIhhBCPHj0SixYtEjY2NiIuLk4IIcSBAweEt7e3GDFihBDi38dKDh8+LEqXLi0uXrxonOCLGbZV4fKm9spuAsukpCQxb9484eDgIO7fvy+EyGi3zLYlItIHH+vKJ+L/HwdycXFB27ZtMXbsWMycORPXrl3DmjVrAOiO3+/j44NRo0ahTZs2AIC0tDScOnUKXl5ecHBwKPgDKEbYVoVLZnulp6ejcePG6N+/P4CMuRG8vLxQrlw5XLt2DQDQvHlz9OnTB0FBQdi5cyfS09MBAMePH4enpydq165tnIMoJthWhUtO2uvl0dMyWVtbo2vXrvDy8kLPnj3RsGFD9OjRA8+ePSvQ+ImoiDBqalQEhYSEZPn1PPMWeHp6uhg3bpxwdnaWO3y+6saNG+Kff/4R/fv3F+7u7uLkyZP5HnNxxbYqXEJCQkRsbKz8+vnz51keL7lw4YJwdXUVz549k5fFx8eL8ePHCzs7O9GiRQvRs2dPYWVlJZYsWSKEYCfd/MC2Klxy214vu3z5sqhTp46QJEmMGDFC7hhPRKQv3jkxkB07dsDNzQ29evVCnTp1MHXqVERFRQHI6NwphIC5uTlGjhwJS0tLTJ48GUDWcd1///13fPjhh7h37x727duHJk2aFPixFHVsq8Ll5faqW7cupkyZgsePH8PBwQFmZmY6d7UOHTqEypUro0SJEkhLSwMA2NnZwd/fHz/99BNatmwJJycnhIaGYsSIEQDYSdeQ2FaFS17bK9OxY8fQqVMnWFtbIywsDEuWLIGFhUVBHw4RFRXGzY2KhrNnz4rq1auLBQsWiIsXL4qlS5cKZ2dnMXz4cBETEyOE+PcXea1WK5YuXSrMzc3FnTt3hBAZQy9mPscbEREhQkJCjHMgxQDbqnDJSXtpNBqRnp4uhBDio48+EiNHjjRmyMUW26pwMWR7RURE8M4xERkMk5M8yHzEYNmyZaJ8+fI6nf8WL14smjRpImbOnJllu5iYGNGsWTPRtWtXERISItq2bSvWrVvHEU7yEduqcNG3vTQajdBqtaJy5cpiz549Qgghbt68KT755BPx4MGDgg2+mGFbFS5sLyIydXysKw8yHzG4e/cuqlatCnNzc/m9AQMGoEGDBvjzzz9x9epVAIBGowEAlCxZEoMHD8bu3bvh7e0NCwsL9OjRQx7bnwyPbVW46NteCoUCZ8+ehbW1NerXr48xY8agTp06iImJQenSpY1yDMUF26pwYXsRkanjFZYeDhw4AF9fXyxcuBBnzpyRl7/77rs4ceKE3G9Bo9HAxsYGXbt2hSRJ2L9/PwDAzMwMaWlpWLp0KQYNGgQfHx9cunQJv/32W7YT91Husa0Kl7y2F5AxceaVK1dQrVo1HDhwAMePH8f+/fuhUqkK/HiKMrZV4cL2IqLChslJDkRGRqJz587o168fnj17hjVr1qBt27byB33btm1RsWJFeebwzF+m2rRpA4VCgVu3bsn7io2NxT///IO1a9fiyJEjqFmzZsEfUBHGtipcDNleSqUSpUqVQmBgIK5evYoGDRoU/AEVYWyrwoXtRUSFlrGfKzN1SUlJ4vPPPxe9e/eWO0ULIYS3t7cYMGCAECKjA/XPP/8sFAqFPKt4pr59+4pWrVoVaMzFFduqcDFEe7Vs2VJ+HR0dXTCBF0Nsq8KF7UVEhRnvnLyFtbU1VCoVBgwYAHd3d6jVagBAp06d5MmozMzM0KtXL3Tt2hVffvklgoODIYRAVFQUwsLC0LdvX2MeQrHBtipcDNFe/fr1k/fn7OxslOMoDthWhQvbi4gKM0mIVyZvoCzS09OhVCoBZMx1IUkSPvvsM1hZWWHlypXyspSUFHz44Ye4du0a6tWrhytXrqBChQrYunUr3NzcjHwUxQPbqnBhexUebKvChe1FRIUVk5Nc8vHxwcCBAzFgwAAIIaDVamFmZobHjx/j0qVLOHv2LCpWrIg+ffoYO9Rij21VuLC9Cg+2VeHC9iKiwoDJSS7cuXMHzZo1w++//y53DExLS+OMuCaIbVW4sL0KD7ZV4cL2IqLCgn1O9JCZxx07dgy2trbyB/z06dPxn//8B9HR0cYMj17Ctipc2F6FB9uqcGF7EVFhY/72VShT5lCLZ86cQY8ePXDgwAEMGTIEycnJWLduHSekMiFsq8KF7VV4sK0KF7YXERU2fKxLTykpKahduzZu374NCwsLTJ8+HRMmTDB2WJQNtlXhwvYqPNhWhQvbi4gKEyYnudCmTRt4eHggICAAlpaWxg6H3oBtVbiwvQoPtlXhwvYiosKCyUkuaDQamJmZGTsMygG2VeHC9io82FaFC9uLiAoLJidERERERGQSOFoXERERERGZBCYnRERERERkEpicEBERERGRSWByQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJElAMDBgyAJEmQJAlKpRIuLi5o06YNfvrpJ2i12hzvJzAwEI6OjvkXKBERUSHG5ISIKIfat2+PyMhI3Lt3D3/++SdatWqF//znP+jUqRPUarWxwyMiIir0mJwQEeWQSqWCq6srypUrh/r16+Obb77Brl278OeffyIwMBAAEBAQgNq1a8PGxgZubm4YMWIEEhMTAQBHjhzBF198gbi4OPkuzLRp0wAAaWlpGD9+PMqVKwcbGxs0btwYR44cMc6BEhERGQmTEyKiPGjdujXq1q2LX375BQCgUCjw448/4sqVKwgKCsKhQ4cwfvx4AECzZs2wYMEC2NvbIzIyEpGRkfj6668BAF988QWOHz+OzZs349KlS+jZsyfat2+PsLAwox0bERFRQZOEEMLYQRARmboBAwbg+fPn+PXXX7O898knn+DSpUu4du1alve2bduG4cOH4+nTpwAy+pyMGTMGz58/l9e5ffs2PDw88PDhQ5QtW1Ze/sEHH6BRo0aYM2eOwY+HiIjIFJkbOwAiosJOCAFJkgAAhw8fxpw5c3Dt2jXEx8dDrVYjJSUFSUlJsLGxyXb70NBQCCFQtWpVneWpqalwcnLK9/iJiIhMBZMTIqI8un79Otzd3XH//n106NABw4YNw8yZM1GyZEkcO3YMgwYNQnp6+mu312q1MDMzQ0hICMzMzHTes7W1ze/wiYiITAaTEyKiPDh06BAuX76Mr776CufOnYNarcb8+fOhUGR06du6davO+hYWFtBoNDrLvLy8oNFoEB0djffee6/AYiciIjI1TE6IiHIoNTUVUVFR0Gg0ePz4Mfbu3Qs/Pz906tQJ/fv3x+XLl6FWq7Fo0SJ07twZx48fx/Lly3X2UbFiRSQmJuLgwYOoW7curK2tUbVqVfTt2xf9+/fH/Pnz4eXlhadPn+LQoUOoXbs2OnToYKQjJiIiKlgcrYuIKIf27t2LMmXKoGLFimjfvj0OHz6MH3/8Ebt27YKZmRnq1auHgIAA+Pv7o1atWtiwYQP8/Px09tGsWTMMGzYMvXv3hrOzM+bOnQsAWLt2Lfr3749x48ahWrVq6NKlC06fPg03NzdjHCoREZFRcLQuIiIiIiIyCbxzQkREREREJoHJCRERERERmQQmJ0REREREZBKYnBARERERkUlgckJERERERCaByQkREREREZkEJidERERERGQSmJwQEREREZFJYHJCREREREQmgckJERERERGZBCYnRERERERkEv4P4rb/DT/9ttoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3dd1gUV9sG8HuW3lFEsGCwYG8o2GJQEwuxR2OJGmM09kiM5rPERCUWgkajsbcIsfdojLHEgr2BvQU7Cogi0mFh93x/8LK6gsrCwg5w/67LS3ZmzjnP2cOw8+yUIwkhBIiIiIiIiAxMYegAiIiIiIiIACYnREREREQkE0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHY0AEUFmq1GuHh4bCxsYEkSYYOh4iIiIowIQTi4+NRtmxZKBT8LpmKDyYnORQeHg4XFxdDh0FERETFSFhYGMqXL2/oMIgKDJOTHLKxsQGQ8UfC1tbWwNEQERFRURYXFwcXFxfN8QdRccHkJIcyL+WytbVlckJEREQFgpeSU3HDixiJiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywBviiYiIsiGEQGpqql7Km5mZ6XxjsyHLF+a29VWHvtrPrZSUlDyVJyqsmJwQERFlIzU1FT169Mh1eZVKheDgYACAh4eHzhPpGbJ8YW5bX3UAwJYtW2Bubq5zubz+7gBAWlpansoTFVZMToiIiN4i5HF8rsoJtRqxKekwLeOGy89UkCSVjuVViFMKKEqUxcXwBEDXsxd5aL8wt53X9jPVczTRuUwWYWdzX9bZPe/tExVCTE6IiIjeoekIPxgZm+pURpkcj38mdAcAfDBuKUzMdPsGPi0xFjuGfQAAaDxsps7l89J+YW47r+2r01IR5D9U5zbfZO0Qd5iZ5PzMTWqaGv2WX9Bb+0SFDZMTIiKidzAyNoWRqZluZdJe3nNgZGIKY1PdDrJVypf3HBR0+4W57by2n65za29nZqKAuYmRnmslKrr4tC4iIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZMDZ0AERERIXBYb8hSI59BklSwMTCCg37T0QJ1+pIiY3GqaWTkPAkDEYmpvAc+CMcqzXIUn7vxG5Ijnnyv/LWaDJyFhwq18GlDXMQ+u9GxD2+g9ZT16NCE2+dY7i2cwXuHduF+MgH8BqzAOUatNAqp1Km4N+fB+PFw1swNrOARQknNPOZCxvnCnj23wWcWjweKmUKVMpUuLXtg2rtv9BLu+/qe/KLpzg6azjiI+5BYWKKZj5zUcK1ht76nZv2S1V1f+P7n1ttfzmNyNhUKCQJNubGWNCvFupXsENUXCr6r7iIO1GJMDMxwtL+deBR0U7v7RMVJgZNTvz8/LB9+3bcvHkTFhYWaNasGfz9/VGtWjXNNkII+Pr6Yvny5YiJiUHjxo2xaNEi1KpVCwDw/PlzTJkyBfv370dYWBhKlSqFrl27Ytq0abCze7mDz5gxA3///TcuXrwIU1NTvHjxoqC7S0REhdj7Pr/A1MoWAPDo/EGcWTEZ3jM24+KmeShVpS5ajV+K6DtXcXz+GHT6dU+W8q0mrYaZdcbn0oOTf+P43K/RZVEQyri3QMUW3XD811G5jsGpVmNUaOKNsysmv7FstfZfoLxnG0iShOs7l+PE/NHw9tuO4/O+QYPPJ6BC0/ZIjYvBtq8awblOM721+7a+n1/lC8caHmg3cyue3grBoelfoPPCw3rtt67tf7L81Fvryo3NIxrC3tIEAPBnSCQGrrqEEF8vTNhyE00q22Pv2MY4d/cFPl0cjGvTvfTePlFhYtDLuoKCgjBy5EicPn0aBw4cQHp6Otq2bYvExETNNrNmzcLcuXOxcOFCnDt3Ds7OzmjTpg3i4+MBAOHh4QgPD8cvv/yCK1euICAgAHv37sWgQYO02lIqlejRoweGDx9eoH0kIqKiIfPgGACUSQmQJAkAEHZ6H9za9AYAOFSuDXM7Bzy9dSFL+cyDYwBQJsYBUsZHcOnqHrAtWzFPMZSqUhc2Ti5vLGdkag6XRm0125eu4Yn4iPua9akJcQCAtJREKExMYWptr5d2M72p7/eO/okanb4CADhWawAL+9J4euO83vqdm/ajrp99Z326ykxMACA2KQ0KRUb8m8+FY+SHrgAAz0r2cLI1xcnbMXpvn6gwMeiZk71792q9Xr16NUqXLo3g4GB4eXlBCIF58+Zh0qRJ6NatGwAgMDAQTk5OWL9+PYYOHYratWtj27ZtmjoqV66MGTNmoF+/fkhPT4excUYXfX19AQABAQEF0zkiIipyTi35XnPw2nL8UqTGv4AQAua2JTXbWDmWRVJ0BEq8Vy1L+aBZwxB56RgAoO2MrXqJITeu/blMc/nYB2MX4d+pfRASOB0psdF4/5tfYVHCUe/tvt73lLjnEEINC/tSmm2snSog8dnjbMsXWPtPH+lcd070X3EBh29EAwD2jm2M6AQl1ELA0dZMs41rKUuEPU/Jl/aJCgtZ3XMSGxsLAChZMuOP/L179xAZGYm2bdtqtjEzM0OLFi1w8uRJDB069I312NraahKT3EhNTUVqaqrmdVxcXK7rIiKioqHp8JkAgLtHd+LC+jloOtwP+N+3+BpCvLF8i3EZB9WhBzbg3MrJaDt9S55jaDluiU7lL22Yg7jwu3jfZy4A4MqW3+D51U+o1OITxEXcxz//1xF2Lm56b/f1vnuNWwYJr713ePN7Z+j28+qPwRn3sgQeD8P/bbqONUPcs7T/ll8domJDNk/rEkJgzJgxaN68OWrXrg0AiIyMBAA4OTlpbevk5KRZ97ro6GhMmzbtjYlLTvn5+cHOzk7zz8Xl3aeNiYioeKjk1QVR189pXqfEPdf8nPgsApYOZd5a3q3NZ4i4dFyrXG5jSI1/keMyV7YswP0Tu9F2+hYYm1siJTYaD07+jUotPgEA2JZxhWN1Dzy9FaLXdl+V2fdMyS+eaX5OeBIGq1Ll3lo+39t3LJ+renPqi+YuOHwzWvP6adzLL0IfRCfBpaR5vrZPJHeySU6+/vprXL58GRs2bMiyTpJe/2ZBZFkGZJzd6NChA2rWrIkpU6bkKZ6JEyciNjZW8y8sLCxP9RERUeGVlpyApJgozeuwcwdham0HU2s7VGjUBqEHNgIAou9cRUrsMzhW037ikzIpHknREZrX90/shpltSZjZlMh5DElvjiEnrm5bhLtHtsHbb4fmHgxTa3sYmZgh4vIJAEBKbDSe3jgH+wpVc9T3nHhb3129uuDGXysBAE9vhSA55gkca3jotd+6tl+6ZqMc1ZtTcclpCI95eanWjuAIOFiboqSVCXp4lsGiQ/cBAOfuvkBkbCqaVcn57wRRUSSLy7pGjRqFXbt24ejRoyhf/uU3Fs7OzgAyzqCUKfPyW6ioqKgsZ1Pi4+Ph7e0Na2tr7NixAyYmJsgLMzMzmJmZvXtDIiIq8tKSEnBy8QSolCmQFAqY2ZRAi+8WQZIk1PvsW5xe/D3+GtMBCmMTNB0+Ewoj7Y/XtMQ4HJs1DCplMiApYG5XCm1+2ghJknBp41zc+GsVUmKf4dickTAyNUeXRUFQvHZpsjI5AcfnfZttDNd2rkTogQ1IjY/B6WU/wMjEFB/98LumbOKzcJxd/gNsyrjin3GdAAAKEzN0/u1ftJq0GmeXTYJalQ6hSkftT0fBoUq9l7EnJ+L00ok5btd75hat/r+t756DpiJo1jBs/bIhFMam8Bq3LMt7p2u/9d1+XsUmp6PvsgtIVqqhUACONmbYPdoTkiTBv0cNfL7iAtzGH4KpsQJrBrvD2Eg23xsTGYRBkxMhBEaNGoUdO3bgyJEjqFhR+2klFStWhLOzMw4cOAB394xvoZRKJYKCguDv76/ZLi4uDu3atYOZmRl27doFc3OeEiUiIv2xdHBGu2lZz+wDgIVdKbSauPyt5a0cy6HzgoPZrqvXewzq9R6TZXlqwgvtOt4SQ60uX6FWl6+0likTX94raVWqLAbuy/4pUOUatES5Bkfe2LZlSSed2s3S9lv6blGiNLz9tr+xbUD3fue1/XSlfm9IdylpgbOTP8h2nZOdGfZ/10RrWUqaSq/tExU2Bk1ORo4cifXr12Pnzp2wsbHR3EdiZ2cHCwsLSJKE0aNHY+bMmXBzc4ObmxtmzpwJS0tL9OnTB0DGGZO2bdsiKSkJa9euRVxcnObmdUdHRxgZGQEAHj58iOfPn+Phw4dQqVS4ePEiAKBKlSqwtrYu+M4TEREREZEWgyYnS5ZkPGmjZcuWWstXr16NAQMGAADGjRuH5ORkjBgxQjMJ4/79+2FjYwMACA4OxpkzZwBkJBqvunfvHlxdXQEAkydPRmBgoGZd5pmYw4cPZ2mfiIiIiIgKnsEv63oXSZIwdepUTJ06Ndv1LVu2zFE9AQEBnOOEiIiIiEjGeNcVERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC8aGDoCIiEjuVOnKPJVRpSmRrtDt+0B1WqpWXQqlbuXz0n5hbluf7etDapo6X7cnKmqYnBAREb3DqcUTdS4j1C8PMo/NGgZJ0rW8SvPzmaXfQ9cK8tJ+YW47r+3rW7/lFwzXOFEhxOSEiIjoLRqUs8lVOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dIo92XT0vQXB1EhIgkhhKGDKAzi4uJgZ2eH2NhY2NraGjocIiLKZ0IIpKbm/hKfV8ubmZlB0vXsgwHLF+a29VWHvtrPrbi4ODg5OfG4g4odnjkhIiLKhiRJMDc3z1MdFhYWhbZ8YW5bX3Xklj5+d5RK3e9zIioK+LQuIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAs6JSfp6ekIDAxEZGRkfsVDRERERETFlE7JibGxMYYPH47U1NT8ioeIiIiIiIopnS/raty4MS5evJgPoRARERERUXFmrGuBESNGYMyYMQgLC0PDhg1hZWWltb5u3bp6C46IDE8Ikeuzpa+WNTMzgyRJBVo+r3UYOn5Dl39VXtvPi7zGTkREhYckhBC6FFAosp5skSQJQghIkgSVSqW34OQkLi4OdnZ2iI2Nha2traHDISowKSkp6NGjR67KqlQqBAcHAwA8PDyy/fuRn+XzWoeh4zd0+Vdt2bIF5ubmOpXJy+9OXtsmKux43EHFlc5nTu7du5cfcRCRzIU8jte5jFCrEZuSDtMybrj8TAVJ0u3LC6FWIU4poChRFhfDE4DcnDnJQwx5bd/Q/c9r+5nqOZrkqpxG2Nncl3VplLe2iYioUNE5OXnvvffyIw4iKgSajvCDkbFpjrdXJsfjnwndAQAfjFsKEzPdvv1OS4zFjmEfAAAaD5upc/m8xpDX9g3d/7y2r05LRZD/UJ3KvMnaIe4wM8n5mZvUNDX6Lb+gl7aJiKjw0Dk5yXT9+nU8fPgQSqVSa3nnzp3zHBQRyZORsSmMTM1yvn3ay/sNjExMYWyq28GxSpmS67b1EUNe2zd0//PafrpOW7+dmYkC5iZGeqyRiIiKIp2Tk7t37+KTTz7BlStXNPeaANDcrFhU7zkhIiIiIqL8pfPdkd988w0qVqyIJ0+ewNLSEteuXcPRo0fh4eGBI0eO5EOIRERERERUHOh85uTUqVM4dOgQHB0doVAooFAo0Lx5c/j5+cHHxwcXLvAaYSIiIiIi0p3OZ05UKhWsra0BAKVKlUJ4eDiAjBvlb926pd/oiIiIiIio2ND5zEnt2rVx+fJlVKpUCY0bN8asWbNgamqK5cuXo1KlSvkRIxERERERFQM6Jyc//PADEhMTAQDTp09Hx44d8cEHH8DBwQGbNm3Se4BERERERFQ86JyctGvXTvNzpUqVcP36dTx//hwlSpTQPLGLiIiIiIhIVzrfc5Lp9u3b2LdvH5KTk1GyZEl9xkRERERERMWQzslJdHQ0PvroI1StWhXt27dHREQEAOCrr77C2LFj9R4gEREREREVDzpf1vXtt9/CxMQEDx8+RI0aNTTLe/XqhW+//RZz5szRa4BERERElD2VSoW0tDRDh0H0VqamplAocnZOROfkZP/+/di3bx/Kly+vtdzNzQ0PHjzQtToiIiIi0pEQApGRkXjx4oWhQyF6J4VCgYoVK8LU1PSd2+qcnCQmJsLS0jLL8mfPnsHMzEzX6oiIiIhIR5mJSenSpWFpacmHEpFsqdVqhIeHIyIiAhUqVHjn76rOyYmXlxf++OMPTJs2DQAgSRLUajVmz56NVq1a5S5qIiIiIsoRlUqlSUwcHBwMHQ7ROzk6OiI8PBzp6ekwMTF567Y6JyezZ89Gy5Ytcf78eSiVSowbNw7Xrl3D8+fPceLEiVwHTURERETvlnmPSXZXshDJUeblXCqV6p3Jic5P66pZsyYuX76MRo0aoU2bNkhMTES3bt1w4cIFVK5cOXcRExEREZFOeCkXFRa6/K7qfOYEAJydneHr65ubokRERERERNnS+cyJq6srfvrpJ4SFheVHPEREREREVEzpfOZk7NixCAgIwE8//YRWrVph0KBB+OSTT/ikLiIiIiJDm1PAl3qNFQXbnoFJkoQdO3aga9euhg4l11q2bIn69etj3rx5hg4lWzqfORk1ahSCg4MRHByMmjVrwsfHB2XKlMHXX3+NkJCQ/IiRiIiIiAo5SZLe+m/AgAEGi83V1TVHB+sRERH4+OOPc1xvQEAA7O3tcx9YMaRzcpKpXr16mD9/Ph4/fowpU6Zg5cqV8PT0RL169fD7779DiOKVSRMRERHRm0VERGj+zZs3D7a2tlrL5s+fr1N9SqUynyJ9M2dnZ4NcLaRSqaBWqwu8XUPIdXKSlpaGzZs3o3Pnzhg7diw8PDywcuVK9OzZE5MmTULfvn31GScRERERFWLOzs6af3Z2dpAkSfPaxMQEw4YNQ/ny5WFpaYk6depgw4YNWuVbtmyJr7/+GmPGjEGpUqXQpk0bAMCuXbvg5uYGCwsLtGrVCoGBgZAkCS9evNCUPXnyJLy8vGBhYQEXFxf4+PggMTFRU++DBw/w7bffas7ivIkkSfjzzz8BAPfv34ckSdi+fTtatWoFS0tL1KtXD6dOnQIAHDlyBF9++SViY2M19U6dOhUANNNxlCtXDlZWVmjcuDGOHDmiaSfzjMvu3btRs2ZNmJmZYcWKFTA3N9fqFwD4+PigRYsWAIDo6Gh89tlnb30f5U7n5CQkJASjRo1CmTJlMGrUKNSqVQtXr17F8ePH8eWXX2LSpEnYtWsXduzYkR/xEhEREVERk5KSgoYNG2L37t24evUqhgwZgs8//xxnzpzR2i4wMBDGxsY4ceIEli1bhvv37+PTTz9F165dcfHiRQwdOhSTJk3SKnPlyhW0a9cO3bp1w+XLl7Fp0yYcP34cX3/9NQBg+/btKF++PH766SfNWRxdTJo0Cd999x0uXryIqlWr4rPPPkN6ejqaNWuW5QzRd999BwD48ssvceLECWzcuBGXL19Gjx494O3tjdDQUE29SUlJ8PPzw8qVK3Ht2jX069cP9vb22LZtm2YblUqFzZs3a04K5PR9lDOdb4j39PREmzZtsGTJEnTt2jXbiVRq1qyJ3r176yVAIiIiIiraypUrpzlwBzLucd67dy+2bNmCxo0ba5ZXqVIFs2bN0ryeMGECqlWrhtmzZwMAqlWrhqtXr2LGjBmabWbPno0+ffpg9OjRAAA3Nzf89ttvaNGiBZYsWYKSJUvCyMgINjY2cHZ21jn27777Dh06dAAA+Pr6olatWrh9+zaqV6+udYYo0507d7BhwwY8evQIZcuW1dSxd+9erF69GjNnzgSQcZXS4sWLUa9ePU3ZXr16Yf369Rg0aBAA4ODBg4iJiUGPHj10eh/lTOfk5O7du3jvvffeuo2VlRVWr16d66CIiIiIqPhQqVT4+eefsWnTJjx+/BipqalITU2FlZWV1nYeHh5ar2/dugVPT0+tZY0aNdJ6HRwcjNu3b2PdunWaZUIIqNVq3Lt3DzVq1MhT7HXr1tX8XKZMGQBAVFQUqlevnu32ISEhEEKgatWqWstTU1Ph4OCgeW1qaqpVNwD07dsXTZs2RXh4OMqWLYt169ahffv2KFGiBICcv49ypnNy8q7EhIiIiIhIF3PmzMGvv/6KefPmoU6dOrCyssLo0aOz3PT++kG2ECLLPSKvP5RJrVZj6NCh8PHxydJuhQoV8hz7q1cRZcbytpvX1Wo1jIyMEBwcDCMjI6111tbWmp8tLCyy9K1Ro0aoXLkyNm7ciOHDh2PHjh1aJwRy+j7KWa5miCciIiIi0pdjx46hS5cu6NevH4CMA/jQ0NB3ntWoXr069uzZo7Xs/PnzWq8bNGiAa9euoUqVKm+sx9TUFCqVKpfRv1l29bq7u0OlUiEqKgoffPCBznX26dMH69atQ/ny5aFQKDSXlAG5fx/lJNdP6yIiIiIi0ocqVargwIEDOHnyJG7cuIGhQ4ciMjLyneWGDh2KmzdvYvz48fjvv/+wefNmBAQEAHh5FmP8+PE4deoURo4ciYsXLyI0NBS7du3CqFGjNPW4urri6NGjePz4MZ49e6a3frm6uiIhIQEHDx7Es2fPkJSUhKpVq6Jv377o378/tm/fjnv37uHcuXPw9/fPkmhlp2/fvggJCcGMGTPw6aefwtzcXLMut++jnPDMCREREVFRUUhnbP/xxx9x7949tGvXDpaWlhgyZAi6du2K2NjYt5arWLEitm7dirFjx2L+/Plo2rQpJk2ahOHDh2vmI6lbty6CgoIwadIkfPDBBxBCoHLlyujVq5emnp9++glDhw5F5cqVkZqaqrf5+po1a4Zhw4ahV69eiI6OxpQpUzB16lSsXr0a06dPx9ixY/H48WM4ODigadOmaN++/TvrdHNzg6enJ86dO5dl4sjcvo9yolNykpaWhmrVqmmeuUxEREREpKsBAwZozQhfsmRJzfwhb/LqPCCv6ty5Mzp37qx5PWPGDJQvX17rjIKnpyf279//xrqbNGmCS5cuvTPuV5MWV1fXLEmMvb19lmVLlizBkiVLtJaZmJjA19cXvr6+2bbz+vvzurNnz2a7PC/vo1zolJyYmJggNTX1rZPT6MLPzw/bt2/HzZs3YWFhgWbNmsHf3x/VqlXTbCOEgK+vL5YvX46YmBg0btwYixYtQq1atQAAz58/x5QpU7B//36EhYWhVKlS6Nq1K6ZNmwY7OztNPTExMfDx8cGuXbsAZPwiL1iwAPb29nrpC1FxcdhvCJJjn0GSFDCxsELD/hNRwrU6UmKjcWrpJCQ8CYORiSk8B/4Iu/JZr+/dO7EbkmOe/K+8NZqMnAWHynVwacMchP67EXGP76D11PWo0MRbp/av7VyBe8d2IT7yAbzGLEC5Bi2ylFUpU/Dvz4Px4uEtGJtZwKKEE5r5zIWNcwU8vRWCM0snIi05AZKkQKOhM+BQpa5e239b/5NfPMXRWcMRH3EPChNTNPOZixKuWa8Rzkv7urTtXLtptvHnRdtfTiMyNhUKSYKNuTEW9KuF+hXsEBWXiv4rLuJOVCLMTIywtH8deFS0e3eFREQAFi9eDE9PTzg4OODEiROYPXu2Zg4TKnx0vqxr1KhR8Pf3x8qVK2FsnLerwoKCgjBy5Eh4enoiPT0dkyZNQtu2bXH9+nXN0xhmzZqFuXPnIiAgAFWrVsX06dPRpk0b3Lp1CzY2NggPD0d4eDh++eUX1KxZEw8ePMCwYcMQHh6OrVu3atrq06cPHj16hL179wKAZlKav/76K099ICpu3vf5BaZWtgCAR+cP4syKyfCesRkXN81DqSp10Wr8UkTfuYrj88eg3fSNWcq3mrQaZtYZB54PTv6N43O/RpdFQSjj3gIVW3TD8V9HZSmTk/adajVGhSbeOLti8lvLV2v/Bcp7toEkSbi+czlOzB+NdjO34eBPn6PF/y1Fmfof4MXD/7Bv4ifo+NtBvbf/pv6fX+ULxxoeaDdzK57eCsGh6V+g88LDem1fl7Z7BFx4az9yY/OIhrC3zHiqzZ8hkRi46hJCfL0wYctNNKlsj71jG+Pc3Rf4dHEwrk330nv7RFQ0hYaGYvr06Xj+/DkqVKiAsWPHYuLEiYYOi3JJ5+zizJkzOHjwIPbv3695RNmrtm/fnuO6MhOFTKtXr0bp0qURHBwMLy8vCCEwb948TJo0Cd26dQOQMTOok5MT1q9fj6FDh6J27dpaM2VWrlwZM2bMQL9+/ZCeng5jY2PcuHEDe/fuxenTpzUT0KxYsQJNmzbFrVu3tM7UENHbZR4YA4AyKUFzJjXs9D50mpexTztUrg1zOwdE376cpXzmwTEAKBPjACnjuRylq3tk2VaX9ktlc5bjdUam5nBp1FbzunQNT1zbsRSpcc+RGh+DMvUznppiX6EqTK3tEH7hiF7bB97c/3tH/0SPwIsAAMdqDWBhXxpPb5zPUj4v7evS9pOrp+FYI2djklOZiQkAxCalQaHIiH3zuXDcm/UhAMCzkj2cbE1x8naMXtsmoqLr119/xa+//mroMEhPdE5O7O3t0b179/yIRXOzTsmSJQEA9+7dQ2RkJNq2fXkwYWZmhhYtWuDkyZMYOnToG+uxtbXVnNk5deoU7OzstGbGbNKkCezs7HDy5Mlsk5PMSWsyxcXF5b2DREXEqSXfI+p6xvWuLccvRWr8CwghYG5bUrONlWNZJD1/km35oFnDEHnpGACg7Yyt2W6jS/u5de3PZajQxBvmdg6wsHfE/WO74PpBZ0TdPI/Yx3eQGPUoX9p/vf8pcc8hhBoW9qU021g7VUDis8d6bz+nbSdEPdJ7cgIA/VdcwOEb0QCAvWMbIzpBCbUQcLQ102zjWsoSYc9T9N42ERHJn87JSX7N/C6EwJgxY9C8eXPUrl0bADSPPnNyctLa1snJCQ8ePMi2nujoaEybNk0rcYmMjETp0qWzbFu6dOk3Pl7Nz8/vjTcpERV3TYfPBADcPboTF9bPQdPhfsDr96K95UknLcZlHFCHHtiAcysno+30LXlqv+W4Je8okdWlDXMQF34X7/vMBQC0nroO51ZNxaWNc1DCtSacajWB4g2Xrua1/df77zVuGSS8fi/fm9+/vLSf17bz6o/B7gCAwONh+L9N17FmiHuW9vX0kBwiIiqEcj3PydOnT3H8+HGcOHECT58+zXMgX3/9NS5fvowNGzZkWZfdzJ/Z3ZQfFxeHDh06oGbNmpgyZcpb63hbPQAwceJExMbGav6FhYXp0h2iYqGSVxdEXT+neZ0S91zzc+KzCFiWdMqumIZbm88Qcem4VrnctJ8a/0Kncle2LMD9E7vRdvoWGJtbAgBKVqqNdjO2osuiIHj93xIkRUfCrrxbvrSfKbP/mZJfvHy2fsKTMFiVKpdv7b+rbevS5XWuUxdfNHfB4ZvRmtdP416eqX4QnQSXkubZFSMioiJO5+QkMTERAwcORJkyZeDl5YUPPvgAZcuWxaBBg5CUlJSrIEaNGoVdu3bh8OHDKF/+5Qeis7MzAGQ5uxEVFZXlbEp8fDy8vb1hbW2NHTt2wMTERKueJ0+yXl7y9OnTLPVkMjMzg62trdY/ouIuLTkBSTFRmtdh5w7C1NoOptZ2qNCoDUIPZNwAH33nKlJin2V52pUyMQ5J0RGa1/dP7IaZbUmY2ZTIWftJb24/p65uW4S7R7bB22+H1j0Yr16CdmtPIIzNLeFUp5le239b/129uuDGXysBAE9vhSA55kmWy6ry0r4yKV6ntp1qN8lRn3IqLjkN4TEvL9XaERwBB2tTlLQyQQ/PMlh06D4A4NzdF4iMTUWzKjn7nSAioqJF58u6xowZg6CgIPz11194//33AQDHjx+Hj48Pxo4dm+U5zm8jhMCoUaOwY8cOHDlyBBUrVtRaX7FiRTg7O+PAgQNwd8+4FECpVCIoKAj+/v6a7eLi4tCuXTuYmZlh165dWs+1BoCmTZsiNjYWZ8+eRaNGjQBk3NgfGxuLZs20Dz6I6M3SkhJwcvEEqJQpkBQKmNmUQIvvFkGSJNT77FucXvw9/hrTAQpjEzQdPhMKI+0/McrEOBya9gVUymRAUsDcrhTa/LQRkiTh0sa5uPHXKqTEPsOxOSNhZGqOj2ft0i6fnIDj877Ntv1rO1ci9MAGpMbH4PSyH2BkYgrvmVu0Ykh8Fo6zy3+ATRlX/DOuEwBAYWKGzr/9i1t7AnDn0BZACNhVqIqPJq/JcmZV1/Y/+uH3HPffc9BUBM0ahq1fNoTC2BRe45Zlff/y0H5aYhyOzRqmU9tqVXruf1leE5ucjr7LLiBZqYZCATjamGH3aE9IkgT/HjXw+YoLcBt/CKbGCqwZ7A5jo1yf2CciokJM5+Rk27Zt2Lp1K1q2bKlZ1r59e1hYWKBnz546JScjR47E+vXrsXPnTtjY2GjOkNjZ2cHCwgKSJGH06NGYOXMm3Nzc4ObmhpkzZ8LS0hJ9+vQBkHHGpG3btkhKSsLatWsRFxenuXnd0dERRkZGqFGjBry9vTF48GAsW7YMQMajhDt27MgndRHpwNLBGe2mZb30EgAs7Eqh1cTlWsuUidoPkrAuXR6dF2R9PC8A1Os9BvV6j9FalprwQuu11Vvar9XlK9Tq8lWW5a/GYFWqLAbuy/4pUO79xsO933i9tq9L/y1KlIa3n/bTDvXZvpVjOZ3a1jeXkhY4O/mDbNc52Zlh/3faZ2pS0lT5Gg8RkZwMGDAAL168eOcEinIWEBCA0aNH48WLF3mqR+fkJCkpKdtLoUqXLq3zZV2ZicyriQ6QcdN95qyY48aNQ3JyMkaMGKGZhHH//v2wsbEBAAQHB+PMmTMAgCpVtCd8u3fvHlxdXQEA69atg4+Pj+bJX507d8bChQt1ipeIiIhIzkpNPVqg7T2bqtucRAMGDEBgYCAAwNjYGC4uLujWrRt8fX2zTE9RnMyfPz/LzPLvIkkSduzYga5du+ZPUAaic3LStGlTTJkyBX/88Yfm8qnk5GT4+vqiaVPdZhTOySBIkoSpU6di6tSp2a5v2bJljuopWbIk1q5dq1N8RERERKRf3t7eWL16NdLS0nDs2DF89dVXSExMzPbqm7S0NK37iAtSfrStVCphamqaZbmdXc7vndQ3Q77H2dH5ot758+fj5MmTKF++PD766CO0bt0aLi4uOHnyJObPn58fMRIRERFREWFmZgZnZ2e4uLigT58+6Nu3r+ZypqlTp6J+/fr4/fffUalSJZiZmUEIgdjYWAwZMgSlS5eGra0tPvzwQ1y6dEmr3l27dsHDwwPm5uYoVaqUZgJvIOPL7tcvmbK3t0dAQAAA4P79+5AkCZs3b0bLli1hbm6OtWvX4sGDB+jUqRNKlCgBKysr1KpVC3v27NHUERQUhEaNGsHMzAxlypTBhAkTkJ7+8n69li1b4uuvv8aYMWNQqlQptGnTJtv3ZMCAAVpnQFq2bAkfHx+MGzcOJUuWhLOzs9YX9ZlXBn3yySeQJEnzGgD++usvNGzYEObm5qhUqRJ8fX21YpIkCUuXLkWXLl1gZWWFn376CeXLl8fSpdrzZoWEhECSJNy9excAMHfuXM0E7C4uLhgxYgQSEhKy7U9e6Jyc1K5dG6GhofDz80P9+vVRt25d/PzzzwgNDUWtWrX0HiARERERFV0WFhZIS0vTvL59+zY2b96Mbdu24eLFiwCADh06IDIyEnv27EFwcDAaNGiAjz76CM+fZzyK/u+//0a3bt3QoUMHXLhwAQcPHoSHh+4TyY4fPx4+Pj64ceMG2rVrh5EjRyI1NRVHjx7FlStX4O/vD2trawDA48eP0b59e3h6euLSpUtYsmQJVq1ahenTp2vVGRgYCGNjY5w4cUJz73NOBAYGwsrKCmfOnMGsWbPw008/4cCBAwCAc+cyHuO/evVqREREaF7v27cP/fr1g4+PD65fv45ly5YhICAAM2bM0Kp7ypQp6NKlC65cuYKvvvoKvXv3xrp167S2Wb9+PZo2bYpKlSoBABQKBX777TdcvXoVgYGBOHToEMaNG6fDu5szOl/WBWT8Eg0ePFjfsRARERFRMXL27FmsX78eH330kWaZUqnEmjVr4OjoCAA4dOgQrly5gqioKJiZmQEAfvnlF/z555/YunUrhgwZghkzZqB3795aE2jXq1dP53hGjx6tdcbl4cOH6N69O+rUqQMAmgN1AFi8eDFcXFywcOFCSJKE6tWrIzw8HOPHj8fkyZOhUGScA6hSpQpmzZqlcyx169bVzNvn5uaGhQsX4uDBg2jTpo3mvbG3t9dMvQEAM2bMwIQJE/DFF19o4p02bRrGjRunNQdgnz59MHDgQM3rvn37Yu7cuXjw4AHee+89qNVqbNy4Ed9//73We5OpYsWKmDZtGoYPH47Fixfr3Le3yVVy8t9//+HIkSOIioqCWq3WWjd58mS9BEZERERERc/u3bthbW2N9PR0pKWloUuXLliwYIFm/Xvvvac5+AYyHn6UkJAABwcHrXqSk5Nx584dAMDFixf18sX562dbfHx8MHz4cOzfvx+tW7dG9+7dUbduxhxeN27cQNOmTbUeO//+++8jISEBjx49QoUKFbKtM6cy28lUpkwZREVFvWHrDMHBwTh37pzWmRKVSoWUlBQkJSXB0tIy25jc3d1RvXp1bNiwARMmTEBQUBCioqLQs2dPzTaHDx/GzJkzcf36dcTFxSE9PR0pKSlITEzU68MMdE5OVqxYgeHDh6NUqVJwdnbWGhBJkpicEBEREdEbtWrVCkuWLIGJiQnKli2b5Wbs1w901Wo1ypQpgyNHjmSpy97eHkDGVT1vI0lSlgcovXop2Zva/uqrr9CuXTv8/fff2L9/P/z8/DBnzhyMGjUKQogs82FltvHq8tweuL/+vkiSlOWkwOvUajV8fX21zv5kenUewOxi6tu3L9avX48JEyZg/fr1aNeuHUqVKgUAePDgAdq3b49hw4Zh2rRpKFmyJI4fP45BgwZl+z7mhc7JyfTp0zFjxgyMHz/+3RsTEREREb3Cysoqy/QPb9OgQQNERkbC2NhY68bvV9WtWxcHDx7El19+me16R0dHREREaF6HhobmeAoMFxcXDBs2DMOGDcPEiROxYsUKjBo1CjVr1sS2bdu0kpSTJ0/CxsYG5cqVy3H/csvExAQqlfacUA0aNMCtW7d0en8z9enTBz/88AOCg4OxdetWraennT9/Hunp6ZgzZ47mcrXNmzfnrQNvoPMN8TExMejRo0d+xEJEREREpKV169Zo2rQpunbtin379uH+/fs4efIkfvjhB5w/fx5Axg3eGzZswJQpU3Djxg1cuXJF6z6PDz/8EAsXLkRISAjOnz+PYcOG5ejxuaNHj8a+fftw7949hISE4NChQ6hRowYAYMSIEQgLC8OoUaNw8+ZN7Ny5E1OmTMGYMWM0B/D5ydXVFQcPHkRkZCRiYjImGJ48eTL++OMPTJ06FdeuXcONGzewadMm/PDDD++sr2LFimjWrBkGDRqE9PR0dOnSRbOucuXKSE9Px4IFC3D37l2sWbMmy9O99EXnd65Hjx7Yv39/fsRCRERERKRFkiTs2bMHXl5eGDhwIKpWrYrevXvj/v37monBW7ZsiS1btmDXrl2oX78+PvzwQ80k3QAwZ84cuLi4wMvLC3369MF3332nuf/ibVQqFUaOHIkaNWrA29sb1apV09wAXq5cOezZswdnz55FvXr1MGzYMAwaNChHiYA+zJkzBwcOHICLiwvc3d0BAO3atcPu3btx4MABeHp6okmTJpg7dy7ee++9HNXZt29fXLp0Cd26ddO6VK5+/fqYO3cu/P39Ubt2baxbtw5+fn750q8cXdb122+/aX6uUqUKfvzxR5w+fRp16tTJknX6+PjoN0IiIiIiyhFdZ2wvaJnzirzJmybetrGxwW+//aZ1TPq6bt26ZXuvBQCULVsW+/bt01r24sULzc+urq7ZTur96o362WnRogXOnj37xvXZ3SeTndffl+zKvT5PS6dOndCpU6cs27Vr1w7t2rV7Y1tvm7x8xIgRGDFiRLbrvv32W3z77bdayz7//HPNzwMGDMCAAQPeWHdO5Sg5+fXXX7VeW1tbIygoCEFBQVrLJUlickJERERERLmSo+Tk3r17+R0HEREREREVc/l/tw4REREREVEO6JycfPrpp/j555+zLJ89ezaf4kVERERERLmmc3ISFBSEDh06ZFnu7e2No0eP6iUoIiIiInq7t93YTCQnuvyu6pycJCQkwNTUNMtyExMTxMXF6VodEREREekg80mpOZ1EkMjQlEolAMDIyOid2+o8Q3zt2rWxadMmTJ48WWv5xo0bUbNmTV2rIyIiIiIdGBkZwd7eHlFRUQAAS0tLzQzlRHKjVqvx9OlTWFpawtj43amHzsnJjz/+iO7du+POnTv48MMPAQAHDx7Ehg0bsGXLFt0jJiIiIiKdODs7A4AmQSGSM4VCgQoVKuQoidY5OencuTP+/PNPzJw5E1u3boWFhQXq1q2Lf//9Fy1atMhVwERERESUc5IkoUyZMihdujTS0tIMHQ7RW5mamkKhyNndJDonJwDQoUOHbG+KJyIiIqKCY2RklKPr+IkKi1wlJ0DGjS1RUVFQq9VayytUqJDnoIiIiIiIqPjROTkJDQ3FwIEDcfLkSa3lQghIkgSVSqW34IiIiIiIqPjQOTkZMGAAjI2NsXv3bpQpU4ZPhyAiIiIiIr3QOTm5ePEigoODUb169fyIh4iIiIiIiimdJ2GsWbMmnj17lh+xEBERERFRMaZzcuLv749x48bhyJEjiI6ORlxcnNY/IiIiIiKi3ND5sq7WrVsDAD766COt5bwhnoiIiIiI8kLn5OTw4cP5EQcRERERERVzOicnb5sF/uLFi3mJhYhkTpWuzPX2qjQl0nM4O2wmdVqqVl0Kpc5XouYphry2b+j+67P9vEpNU797ozxsT0RERUOuJ2HMFBsbi3Xr1mHlypW4dOkSL+siKsJOLZ6o0/bilUlaj80aBl2fPC7UL/+enFn6PXSuII8x5LV9Q/c/r+3rU7/lFwzXOBERFRq5Tk4OHTqE33//Hdu3b8d7772H7t27Y9WqVfqMjYhkpEE5G53LqFQqBEcYAzH3ULeyBxQ6fnOvUikQ/EACEiNQv0Y5ncvnNYa8tm/o/ue1fb1xaWSYdomIqNDRKTl59OgRAgIC8PvvvyMxMRE9e/ZEWloatm3bhpo1a+ZXjERkQGZmZtiyZUuuygohkJqaqqlH10lb81o+r3UYOn5Dl3+VmZlZrsrk9ncnr20TEVHhlOPkpH379jh+/Dg6duyIBQsWwNvbG0ZGRli6dGl+xkdEBiZJEszNzXNd3sLCIk/t57V8XuswdPyGLp8Xef3dISKi4ifHycn+/fvh4+OD4cOHw83NLT9jIiIiIiKiYijHFyAfO3YM8fHx8PDwQOPGjbFw4UI8ffo0P2MjIiIiIqJiJMfJSdOmTbFixQpERERg6NCh2LhxI8qVKwe1Wo0DBw4gPj4+P+MkIiIiIqIiThJCiNwWvnXrFlatWoU1a9bgxYsXaNOmDXbt2qXP+GQjLi4OdnZ2iI2Nha2traHDISIioiKMxx1UXOXpuZLVqlXDrFmz8OjRI2zYsEFfMRERERERUTGUpzMnxQm/wSAiIqKCwuMOKq4MNCMXERERERGRNiYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyYKxoQMobFJSUmBqaqpzOSEEUlNTAQBmZmaQJKnQlC/MbeurDn21nxd5iZ2IiIioMGByoqP+/fvDxMRE53IqlQrBwcEAAA8PDygUup20MmT5wty2vuoAgC1btsDc3FzncqmpqejRo0eu2tRH+0RERESFBZMTHV2KSIDCSPe3TajViE1Jh2kZN1x+poIkqXQsr0KcUkBRoiwuhicAup69yEP7hbntvLafqZ6j7glpFmFnc1/WpVHe2yciIiKSOSYnudB0hB+MjHW7tEuZHI9/JnQHAHwwbilMzHT7BjwtMRY7hn0AAGg8bKbO5fPSfmFuO6/tq9NSEeQ/VOc232TtEHeYmeT8zE1qmhr9ll/QW/tEREREcsbkJBeMjE1hZGqmW5m0l/ccGJmYwthUt4NslTLFYO0X5rbz2n66zq29nZmJAuYmRnqulYiIiKho4NO6iIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHYkI37+flh+/btuHnzJiwsLNCsWTP4+/ujWrVqmm2EEPD19cXy5csRExODxo0bY9GiRahVq5Zmm+XLl2P9+vUICQlBfHw8YmJiYG9vr9VWSEgIxo8fj3PnzsHIyAjdu3fH3LlzYW1tnavYD/sNQXLsM0iSAiYWVmjYfyJKuFZHSmw0Ti2dhIQnYTAyMYXnwB/hWK1BlvJ7J3ZDcsyT/5W3RpORs+BQuQ4ubZiD0H83Iu7xHbSeuh4VmnjrHMO1nStw79guxEc+gNeYBSjXoIVWOZUyBf/+PBgvHt6CsZkFLEo4oZnPXNg4V8Cz/y7g1OLxUClToFKmwq1tH1Rr/4Ve2n1X35NfPMXRWcMRH3EPChNTNPOZixKuNfTW79y0X6qq+xvf/9xq+8tpRMamQiFJsDE3xoJ+tVC/gh2i4lLRf8VF3IlKhJmJEZb2rwOPinZ6b5+IiIhIrgyanAQFBWHkyJHw9PREeno6Jk2ahLZt2+L69euwsrICAMyaNQtz585FQEAAqlatiunTp6NNmza4desWbGxsAABJSUnw9vaGt7c3Jk6cmKWd8PBwtG7dGr169cLChQsRFxeH0aNHY8CAAdi6dWuuYn/f5xeYWtkCAB6dP4gzKybDe8ZmXNw0D6Wq1EWr8UsRfecqjs8fg06/7slSvtWk1TCzzjjwfHDybxyf+zW6LApCGfcWqNiiG47/OirXMTjVaowKTbxxdsXkN5at1v4LlPdsA0mScH3ncpyYPxrefttxfN43aPD5BFRo2h6pcTHY9lUjONdpprd239b386t84VjDA+1mbsXTWyE4NP0LdF54WK/91rX9T5afemtdubF5REPYW5oAAP4MicTAVZcQ4uuFCVtuoklle+wd2xjn7r7Ap4uDcW26l97bJyIiIpIrgyYne/fu1Xq9evVqlC5dGsHBwfDy8oIQAvPmzcOkSZPQrVs3AEBgYCCcnJywfv16DB06FAAwevRoAMCRI0eybWf37t0wMTHBokWLoFBkXMm2aNEiuLu74/bt26hSpYrOsWceHAOAMikBkiQBAMJO70OneRn9cqhcG+Z2Dnh66wJKvFdNq3zmwTEAKBPjACkjrtLVPfIcQ6kqdd9azsjUHC6N2mpel67hiWs7lmpepybEAQDSUhKhMDGFqbW9XtrN9Ka+3zv6J3oEXgQAOFZrAAv70nh643yW8gXZftT1szmqUxeZiQkAxCalQaHIiH/zuXDcm/UhAMCzkj2cbE1x8naM3tsnIiIikiuDJievi42NBQCULFkSAHDv3j1ERkaibduXB9JmZmZo0aIFTp48qUlO3iU1NRWmpqaaxAQALCwsAADHjx/PNjlJTU1Famqq5nVcXFyWbU4t+V5z8Npy/FKkxr+AEALmtiU121g5lkVSdESW5AQAgmYNQ+SlYwCAtjNydwbn9Rhy49qfyzSXj30wdhH+ndoHIYHTkRIbjfe/+RUWJRz13u7rfU+Jew4h1LCwL6XZxtqpAhKfPc62fIG1//SRznXnRP8VF3D4RjQAYO/YxohOUEItBBxtzTTbuJayRNjzlHxpn4iIiEiOZHNDvBACY8aMQfPmzVG7dm0AQGRkJADAyclJa1snJyfNupz48MMPERkZidmzZ0OpVCImJgbff/89ACAiIiLbMn5+frCzs9P8c3FxybJN0+Ez0WXBv6jTYxQurJ+TsfB/3+K/0rE3xtVi3FL0WncNDQb8gHMr334p0ptkG4MOLm2Yg7jwu2g44AcAwJUtv8Hzq5/Qa+1VfLL8FIIDpiPu8R29t5td3yW89t7hze+dodvPqz8GuyNsbmtM71YN/7fperbtv+VXh4iIiKhIkk1y8vXXX+Py5cvYsGFDlnWS9PpBm8iy7G1q1aqFwMBAzJkzB5aWlnB2dkalSpXg5OQEIyOjbMtMnDgRsbGxmn9hYWFvrL+SVxdEXT+neZ0S91zzc+KzCFg6lHlrfG5tPkPEpeNa5XSVGUNq/Iscl7myZQHun9iNttO3wNjcEimx0Xhw8m9UavEJAMC2jCscq3vg6a0Qvbb7qsy+Z0p+8Uzzc8KTMFiVKvfW8vnevmP5XNWbU180d8Hhm9Ga10/jXp6texCdBJeS5vnaPhEREZGcyCI5GTVqFHbt2oXDhw+jfPmXB4POzs4AkOUsSVRUVJazKe/Sp08fREZG4vHjx4iOjsbUqVPx9OlTVKxYMdvtzczMYGtrq/UvU1pyApJiojSvw84dhKm1HUyt7VChURuEHtgIAIi+cxUpsc/gWE37iU/KpHgkRb88Y3P/xG6Y2ZaEmU2JHPcnLenNMeTE1W2LcPfINnj77dDcg2FqbQ8jEzNEXD4BAEiJjcbTG+dgX6FqjvqeE2/ru6tXF9z4ayUA4OmtECTHPIFjDe17cPLab13bL12zUY7qzam45DSEx7y8VGtHcAQcrE1R0soEPTzLYNGh+wCAc3dfIDI2Fc2q5Px3goiIiKiwM+g9J0IIjBo1Cjt27MCRI0eyJAoVK1aEs7MzDhw4AHf3jAN8pVKJoKAg+Pv756rNzKTm999/h7m5Odq0aaNzHWlJCTi5eAJUyhRICgXMbEqgxXeLIEkS6n32LU4v/h5/jekAhbEJmg6fCYWR9tuclhiHY7OGQaVMBiQFzO1Koc1PGyFJEi5tnIsbf61CSuwzHJszEkam5uiyKAgKY+06lMkJOD7v22xjuLZzJUIPbEBqfAxOL/sBRiam+OiH3zVlE5+F4+zyH2BTxhX/jOsEAFCYmKHzb/+i1aTVOLtsEtSqdAhVOmp/OgoOVeq9jD05EaeXTsxxu94zt2j1/2199xw0FUGzhmHrlw2hMDaF17hlWd47Xfut7/bzKjY5HX2XXUCyUg2FAnC0McPu0Z6QJAn+PWrg8xUX4Db+EEyNFVgz2B3GRrL4/oCIiIioQBg0ORk5ciTWr1+PnTt3wsbGRnOGxM7ODhYWFpAkCaNHj8bMmTPh5uYGNzc3zJw5E5aWlujTp4+mnsjISERGRuL27dsAgCtXrsDGxgYVKlTQ3Fy/cOFCNGvWDNbW1jhw4AD+7//+Dz///HOW+VBywtLBGe2mZb38DAAs7Eqh1cTlby1v5VgOnRcczHZdvd5jUK/3mCzLUxNeaNfxlhhqdfkKtbp8pbVMmfjyhn6rUmUxcF/2T4Eq16AlyjU48sa2LUs66dRulrbf0neLEqXh7bf9jW0Duvc7r+2nK/V7Q7pLSQucnfxBtuuc7Myw/7smWstS0lR6bZ+IiIhIzgyanCxZsgQA0LJlS63lq1evxoABAwAA48aNQ3JyMkaMGKGZhHH//v2aOU4AYOnSpfD19dW89vLyylLP2bNnMWXKFCQkJKB69epYtmwZPv/88/zrHBERERER6cTgl3W9iyRJmDp1KqZOnfrGbd61HgD++OMPHaMjIiIiIqKCxAvaiYiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWTA2dACFkSpdmacyqjQl0hW65YXqtFStuhRK3crnpf3C3LY+29eH1DR1vm5PREREVJgxOcmFU4sn6lxGqF8eZB6bNQySpGt5lebnM0u/h64V5KX9wtx2XtvXt37LLxiucSIiIiKZY3Kio3plrGFiYqJzOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dLIMO0SERERFRKSEEIYOojCIC4uDnZ2dnjy5AlsbW11Li+EQGpqxiVCZmZmkHQ9+2DA8oW5bX3Voa/28yIvsRMRUeGSedwRGxubq+MOosKKZ050ZG5uDnNz81yVtbCwyFPbhixfmNvWVx25JUlSrn9niIiIiIoTPq2LiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFvi0rhzKfOJyXFycgSMhIiKioi7zeIMzPlBxw+Qkh+Lj4wEALi4uBo6EiIiIiov4+HjY2dkZOgyiAsNJGHNIrVYjPDwcNjY2nAhPz+Li4uDi4oKwsDBONCVDHB/54xjJG8dH/uQ4RkIIxMfHo2zZslAoeBU+FR88c5JDCoUC5cuXN3QYRZqtra1sPhQoK46P/HGM5I3jI39yGyOeMaHiiKk4ERERERHJApMTIiIiIiKSBSYnZHBmZmaYMmUKzMzMDB0KZYPjI38cI3nj+Mgfx4hIPnhDPBERERERyQLPnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJieUr6KioqBSqQwdBlGhlZCQYOgQ6B34d46ISH+YnJDeCSGgVCoxZMgQtGvXDqdOnTJ0SJSNJ0+e4O+//wanOpKniIgI9O3bF5999hkGDRqEkJAQQ4dEr+DfOfmLjIzETz/9hMWLF2PPnj2GDoeIcojJCemdJEmIiorCrl278PTpUxw6dAixsbEAwANhmVi4cCHKli2LTp064dq1a4YOh16zdu1a1K5dG0qlEh9//DEOHToEf39/REZGGjo0+h/+nZO3adOmoUqVKjh79iwCAgLwySefYP369QA4PkRyx+SE8kVaWho6duyIzz//HGvXrsXp06cBZHygk+EIIbBnzx78+eefmDVrFtzd3eHr6wu1Wm3o0Oh/VCoV/vjjD4wZMwZbtmzBiBEj4O/vj6CgIFhYWBg6PHoF/87Jj0qlgr+/P/bs2YPNmzdj9+7dOHjwIMaMGYOJEycC4PgQyR2TE8oXjx49wuXLl+Hn5wcrKyts2LBB860iGY4kSXBycsLnn3+OoUOH4tdff8W2bduwb98+Q4dG/3PlyhXcvXsXZcuW1SxLSkpC9+7duQ/JDP/OyY+RkRGUSiU+/PBDeHt7AwBsbGzQokULGBsb486dOwaOkIjehckJ5ZpSqURycnK26x49eoSaNWsCACZMmICjR49iw4YNGDJkCCIiIgoyzGItPj4eR48exe3btzXLGjZsiC+++ALW1tbw8vJCjx49MGnSJMTHxxsw0uLp1X0o8+xVzZo14eDggFWrVmH58uXo2bMnBg4ciAsXLqBu3boYPXo0oqKiDBl2sRIXF4fTp0/j8ePHWdbx75zhJSYmIjQ0FHFxcZpl3333HWbMmAGFQqG5hOv58+cwNzdH5cqVDRUqEeUQkxPKFX9/f9SpUwdHjx7VWp55gBUXF4cXL14AAHr16gVjY2P4+Pjg/PnzkCSJ1/wWgGnTpqFy5coYM2YM6tati7lz52p9gGeOlZ+fH27evImAgAADRVo8vb4PKRQKpKenw9TUFPPnz0fPnj2xc+dO3LlzB2fPnsXevXsxb948nD17FosXLzZw9MWDn58fXFxcMHjwYNSsWRPz58/XSlL4d86wpk2bhjp16qBnz56oX7++5qb3zMsf1Wq15hKuU6dOwd3dHUDG5XhEJF9MTkgnz58/x/Dhw7F+/XpERkZi+fLlePbsmWa9QpHxK/Xw4UO0a9cO//77L8qXL4/k5GTY2Nigb9++KFWqFK/5zUd3795F27ZtsWXLFqxZswa7du3ChAkT8PPPP2udHckcq0qVKmHs2LGYMWMGHj16BCDjMqLExESDxF/UvW0fMjIyAgA0adIEPj4+SE1NxcCBA+Hh4QFbW1sMGDAANjY2ePLkCQ+w8tk///yDNWvWIDAwELt27cL48eOxYsUKTJ48WbPN/fv3+XfOAB48eIAuXbpg06ZNWLhwIebMmQMvLy989dVXePLkiWY7hUKh2U/OnDmDhg0bAgBMTEwA8MZ4IrlickI6iY2Nha2tLfz8/PD3339jx44d+PfffzXfwmf+b2RkhJEjR6Jbt24YMmQIwsLC0K9fPwQGBuL48eOG7EKR9/jxYzRr1gw7duxAu3btULZsWXz11VewtbV9Y5kJEybA3Nwcs2fPxpo1a9CuXTs+ejOfvG0fevVg9sGDB7h9+zYaN26sWZaUlIS4uDhUqFBBc4BF+WPv3r0wNzdH165dUbFiRXz//fcYNmwYTpw4gaVLl2q249+5gnf69Gm8ePECW7duRfv27fHhhx8iICAAiYmJOHv2rNa2JiYmCAsLw/3799GtWzcAGWPbp08fPHjwwBDhE9G7CCIdpKeniwcPHmhe9+zZU9StW1fcu3dPa7tdu3YJf39/8d9//2mWRUVFiRo1aoigoKCCCrdYUiqVIiwsTOv1J598Ipo3by6mTZsm/vvvP6FSqYQQQvO/EEJMmTJFSJIkTE1NxcSJEws87uIip/uQEEK4u7uLFi1aiDVr1oiQkBDRsWNHUatWLXHp0qUCjLj4UalUYvjw4aJ3794iJSVFszw8PFwMHTpU1KtXTyQlJYl///1XzJw5k3/nCoharRZCCPH8+XOxZcsWrXWRkZGiWrVqYv/+/VnKrV27Vnz00UciLCxMfPzxx8LY2FiMHTu2QGImIt0xOaFcyfyQiI6OFiYmJsLPz0/rQzw9PV1r+8zXqampBRckiRs3bghLS0vh6ekpJk+eLOrXry+aNm0qVq1apdkmISFBjBw5UkiSJAYNGiRiYmIMF3Ax8rZ9KHN/uXXrlmjYsKGoVq2aqFSpkujZs6d4/vy5wWIuDjLHxc/PT7i4uGT7xYu7u7sICAjQ2l4I/p0rCK++30K8/ILl+vXrwsHBQStRzNy2f//+QpIkYWJiIjp06CCePXtWcAETkc54WRflmHjl+lxJkpCeno6SJUti0qRJmDt3Lm7cuKFZn3k/Q2aZzGvpTU1NCzDi4ke8dg21i4sL9u3bh9OnT8PX1xdnzpyBvb09zp49C6VSCQB49uwZbGxscOzYMaxcuRL29vYGiLxoSUlJyXZ5TvchIyMjpKeno2rVqvj333/x999/4+DBg9i0aRNKlChRIH0orjIvTR09ejRiY2Oxbt06rfUtW7aEiYmJ5mlcr16Kx79z+hMVFaXTPSFHjx5FxYoV4ebmlqWcsbExateujbNnz2L37t1wcHDQd7hEpEdMTkgjIiICPXr0wObNmwFkTGaVKT09XfMhnLk88/WUKVNgamqKJUuWICYmBgcOHMDatWu1tiH9CAsLw9atWxESEqK50TPzg/jVMUpPTwcAWFpaonnz5lAoFFCr1TA1NUVCQgIiIyM1B1Dvvfce/Pz88P777xugR0XLvXv3UK9ePcycOTPLOl33oczZrO3t7VG5cmW4uroWTCeKuIiICJw6dQr379/Psi49PV2TYJibm2Py5Mnw9/fH+fPnNdvY2NhAqVQiLCysoEIuVu7du4fOnTtj/PjxuH79uta6t+1Dx44dg5eXl2bZlStXcPXqVQDA/PnzcfnyZdSvX7+AekFEecHkhDRWrVqFbdu24ddff0VSUhKMjIw03yIaGxtDCIHx48dj48aNUKvVMDIy0nxALFiwAKtWrUKLFi3Qrl07zpmRDyZOnIiqVatizpw5aNasGYYPH467d+9CkiSo1WqtMdq0aVOWG6wVCgXOnj0LSZIwePBgA/ak6BFCYNiwYahatSqqVq0KHx+fLNvoug8lJCQUdDeKvNGjR6NOnTr45ptvUKtWLSxevFhr0sRXx2jt2rUYO3YsqlatigkTJmgeEBESEgIhBLp27WqgXhQ9mV+w/PHHH2jYsCEsLCwwcuRIlCpVSmt9dvsQkPGQieDgYLRr1w4RERHo2bMn6tWrh4cPHwIArK2tDdArIsotJiekcfLkSfTq1Qumpqbw9/fXWhcYGIhSpUph//79qFu3ruayLSMjIzx+/BinT5+GWq1GrVq18PDhQ4wYMcIQXSiyzpw5g507d2Lr1q04fPgwVqxYgdDQUHz++ecAMhKPwMBAODg4ZBmjGzdu4MqVK5g8eTLat2+PmjVrolWrVobsTpFy+/ZtODg44Pjx4zh79iy2bNmiOah6Ffchw3n48CE6d+6Ms2fPYteuXdi8eTNGjBiBJUuWaD3d6dUxqlWrFgBgzZo1sLW1xSeffIJ27drhgw8+QI0aNXimUY8yv2DZsGEDfvzxR2zatAkeHh6wsbHRrAeAgICALPuQJEkIDQ3FixcvsGPHDlSuXBmxsbG4f/8+OnToYMhuEVEuGRs6ACp4Qgitb9TT09NhbGyMMmXKoFOnTpoDrN69e6NGjRqIj4/Ho0ePMH36dAwZMkRz2QOQMcP1L7/8gj/++AOHDh1Cy5YtDdCjou/PP/+ESqXSfNh+/vnnqFKlCtq2bYu5c+dizJgxuH//PmbOnInBgwdrjdHJkyexaNEiGBsbY/Pmzfjwww8N1Y0i49V9yMTEBGXLlkXz5s3h7u6OkydPYtu2bXBwcECDBg3QvHlzWFtb4969e5gxY0aW8eE+lP+uXr0KS0tLLFiwQDPXxezZs7F27VrExMQAABISEhAWFqY1RkII1KhRAwEBAThz5gz+++8/TJ48mYmJHrz+OXTkyBHcuXMHo0aNwsmTJ+Hv74/U1FRUqVIF/fr1Q5MmTfDgwYNsP4dOnz6NJ0+eICQkBDt37kSbNm0M0SUi0hNJ6HLHGRV6ycnJUCgUMDMzA6D9AVG3bl1s3LgRSUlJGDduHOrUqYPZs2cjNDQU1atX1/oweNWTJ0/g5ORUYH0o6jLHRK1Wa75d//XXXxEQEIBTp07B0tJSs91PP/2E+fPnIyIiQjOmr9ejVCpx8eJFNGrUqMD7UhS9vg+p1Wr8+eef+PTTT9G2bVvcvHkTHh4euH37Np4+fYo2bdogICDgrXVyH9KvzN/9zC9ewsPDcf/+fTRr1gxAxpipVCo0bdoUY8aMQZ8+fTTLM/c5yj+v70NAxtnhDh06YOXKlZgxYwZat24Nc3NzHDp0CFeuXMH169fh7OysVU/mOMfHx2Pbtm0YMGBAAfeEiPID/woXIxMnTkTz5s3RsWNH/Pbbb4iLi9McBD9+/BhWVlZwdXWFh4cHOnXqhPXr18Pc3BwHDx7Uujn+dTyo0p+5c+dqbqZ+9SDJzs4OJiYmOHjwoGaZJEn44osvYGVlhblz5wJ4+aShzPVAxpODmJjoR3b7kEKhQKtWrfD5558jISEBu3btwrp163Dx4kVMnToVp0+fxpIlSwBoj8+ruA/pz6v7UOY9CmXLltVKTBQKBSIiInDr1i3Url1bU5aJSf7Lbh8CMhKN+vXrY+bMmahfvz5mzJiBKVOmYPfu3ShXrhy+//57ANoPapEkCUII2NjYMDEhKkL4l7gYUCqV6NGjB3bt2oVx48ahbNmyWLZsmebbQoVCARsbG5iYmECSJOzYsQPTp09HWloa6tatCx8fH5iamur0WEfSzblz59CqVSt899132L59O06dOgUAmidyffrpp0hNTcXevXsRFRWlKVemTBm0bt0aoaGhUKlUPLjKJ2/ahz777DMAQIkSJTBx4kTMmzcPderU0cze3r17d7i5ueHixYscn3z2pn3o9b9bmWNw8uRJVKxYUSs5ycS/dfr3pn2od+/eADLO3Nva2uL8+fNo1KgRFAoFVCoVbGxs8O2332L//v1ISEjIcgafT4QkKnr4SVkM3LlzB5cuXcK8efPQq1cvBAYGYvny5Th06BBmz54NADh//jxu376NRo0aYeDAgfj+++8xa9YsSJKExYsXA+AHdn7at28fSpUqhd9//13zP5BxP0NaWhpsbW0xbNgw/Pvvv9i5c6emnJmZGUJDQ6FQKN542R3l3Zv2ocOHD2v2oerVq8PDwwOSJEGhUEAIgZIlS+LmzZscnwLwpn0ocyxeFxwcjKZNm2qSlcOHD+Ovv/4CwAPe/PCmfejIkSP4+eefYWlpicGDB6NkyZLYsmULgJfzxoSGhsLNze2NY0lERUx+zvBI8hAcHCwkSRLR0dFCCO0ZkO3t7cXdu3dFWlqaqFmzphgyZIhmRuTw8HDRs2dP4eXlpTX7O+lP5lg8ePBAnDx5UgiRMS6NGzcWmzdvFkIIkZaWptm+T58+on79+mLZsmUiJiZGBAcHiwYNGoiNGzcWfPDFyNv2oRIlSmjNSv2qf/75R3h6eooTJ04UWKzFTU72ocxZxDOlp6cLd3d3sWnTJnH37l3x4YcfClNTU7Fp06aCDb4Yeds+ZGdnJ+7cuSOEEGLq1KnCwcFB/Pjjj+K///4TN2/eFC1atBA//fSTwWInooLF5KQYuHDhgqhVq5ZYsGCBEOLlh4JSqRSurq5i9OjRQgghnjx5olmX6dq1a0xMCtidO3dE165dRdeuXcXz58+FEEKkpqZq1k2ePFkYGRmJhg0bCgsLCzFo0CChVCoNGXKR97Z9qGLFimLs2LFCiIyD4CtXrohDhw6JoUOHCjs7OzFhwgSRnp5usNiLo+z2oVcTlEuXLgkbGxvx8ccfC2NjY9GrVy8RFxdnqHCLhXftQ5mfQ5GRkWL58uXC3t5e1K5dW9jY2Igvv/ySn0NExQgv6yoCxDtOc7/33ntwc3PD8ePHERERoXmKjYmJCUaNGqWZsK906dKayxky66xZs2aWp0CR7t41Rq9uV6lSJXTq1AkRERGapzxlzuZeqVIl+Pr64tKlS/D19UVISAhWrlypuceBcicv+9DXX3+NDRs2aG60DgkJwbRp0/Dff/8hKCgIfn5+vKRLD/K6D716v09oaCgSEhKQmpqKc+fOYePGjZo5NSh/vGsfyvwccnJywuDBg3Ht2jWsXLkSISEh+P333/k5RFSMMDkp5J4+fYqkpCTN61efBpSeng4g42bdTp064ebNm9i8eTOAjKfYABlPgSpZsiTCwsK06uU11/qTkzHKlPkkmk8//RQ1a9bE7t27ERoaCiBjZurM8rVq1UKHDh1QvXr1/A6/yIuKikJ8fLzmdW72oRIlSuDBgwcAMm6CX7FiBQ4dOoR69eoVVDeKtJyMUaa37UPnz58HADRu3BgHDx7EwYMHUb9+/XyOvujLHI/snuqo6+dQZhJatmxZNG7cGFWqVCmILhCRjDA5KaTS0tIwZMgQvP/+++jUqRO+/PJLxMTEaH07aGxsjJSUFGzcuBEDBw5E/fr1sWnTJhw+fFizzaNHj+Do6Ij33nvPEN0o0nI6RmlpaQgMDNS8VqvVsLW1RY8ePaBWq+Hr64uPPvoIHh4eWcpT7qWnp2PQoEFo1KgRWrdujb59+yI6OjrX+1DFihUBAFZWVqhcuXKB96coyukY5XQfatSoEaKjo1G+fHm0atXKUN0qMtLS0jBixAgMHToUgPbZqcyERdfPIX4xRkQ8yimEYmJi0L59e9y+fRurV6/GZ599hkuXLqFjx464deuWZrvffvsN5cqVw8aNGwEAY8aMQaVKleDt7a35QJkzZw569eoFgE/j0iddxsjZ2Rl//fWXZqbqzA/4WrVqISwsDOvXr0fp0qURERGBEiVKGKQ/RU16ejoGDBiA69evIzAwEJ999hkuX76Mrl274saNG5rtuA8Zji5jpMs+5ODgYJD+FDVnzpxB69atsXXrVgQGBuLEiROQJElz9iRzDLgPEZHODHSvC+XB3r17Re3atcXNmzc1y65fvy4UCoXw8fERMTExYvXq1aJChQpi3bp1WjeCqtVqMXPmTDF48GDRvn17PkUon+g6Rq8/iODgwYPC2tpa1K9fX5w/f76gwy/yHj58KNzc3MSaNWs0yyIiIkS5cuXEqFGjxPPnz7kPGZiuY8R9qGDNmzdPDBo0SOzZs0d069ZNNG7cOMs2ixcvFhUrVuQ+REQ6YXJSCAUGBgp7e3utZSdOnBAlS5YUbm5u4u+//xZqtVokJCRobfP6hzfln9yOUaZnz56J9evXF0SoxdKFCxeEhYWFCA0NFUIIzZOAFi5cKNzc3MRff/0l1Gq1SExM1CrHfajg5HaMMnEfyh+Z+0BYWJi4du2aECLjyxhHR0excuVKIcTLpwumpaXxc4iIdMbLumRuz549ALRPdbu4uMDBwQH+/v6aZStXrsSgQYOgVquxc+dOSJIECwsLrbp4LW/+0OcYZdbj4OCgmX2c8mb58uVYsWIFjh49qlnm5uYGZ2dnrF27FsDLS1BGjhwJOzs7bNu2DampqbC0tNSqi/tQ/tDnGAHch/Qtc3yCgoI0+0C5cuVQs2ZNAICHhwd69+4NX19fqFQqmJqaQq1Ww9jYGFZWVlp1cR8ioncybG5Eb7J7925Rrlw5IUmS5pR35lwJz58/F7NnzxaSJIlmzZoJa2trUbt2bZGWliYWLFggypUrZ8jQiw2OkbytX79elC5dWjRt2lTUr19fODo6iunTpwshhIiNjRXjx48Xbm5u4smTJ0IIIZKTk4UQQqxZs0bY2dlpXlP+4RjJ29vG5/W5e86cOSPc3NzEd999J4TIOvElEVFOMTmRoWPHjglvb2/x9ddfi48//lh4eHhku11QUJBYsGCB2L9/v2bZzz//LJo3by5evHhRUOEWSxwjeVu3bp2oV6+eWLp0qRBCiMePH4sFCxYIKysrERsbK4QQ4sCBA8LT01OMGDFCCPHycpPDhw+L0qVLi0uXLhkm+GKCYyRvbxuf7CasTExMFLNnzxZ2dnbiwYMHQoiMccocSyKinOJlXTIi/ndZkJOTE9q2bYsxY8Zg2rRpuH79OlatWgVA+/n+Xl5e+Prrr9GmTRsAgFKpxOnTp+Hu7g47O7uC70AxwDGSt8zxSUtLQ+PGjdG/f38AGXMmuLu7o1y5crh+/ToAoHnz5ujTpw8CAwOxY8cOpKWlAQBOnDiBmjVrok6dOobpRBHHMZK3nIzPq09Ly2RpaYkuXbrA3d0dPXr0gIeHB7p3747nz58XaPxEVAQYNDUiIYQQwcHBWb5FzzxlnpaWJsaOHSscHR01N4S+7ubNm+K///4T/fv3FxUrVhSnTp3K95iLG46RvAUHB4uYmBjN6xcvXmS57OTixYvC2dlZPH/+XLMsLi5OjBs3TtjY2IgWLVqIHj16CAsLC7Fo0SIhBG/e1SeOkbzldnxedeXKFVG3bl0hSZIYMWKE5sZ4IiJd8MyJAW3btg0uLi7o2bMn6tatiylTpiAyMhJAxs2fQggYGxtj5MiRMDc3x6RJkwBkfQ7833//jY8//hj379/Hvn370KRJkwLvS1HFMZK3V8enXr16mDx5Mp48eQI7OzsYGRlpncU6dOgQKleujBIlSkCpVAIAbGxs4O/vj99//x0tW7aEg4MDQkJCMGLECAC8eVcfOEbyltfxyXT8+HF07NgRlpaWCA0NxaJFi2BqalrQ3SGiosCwuVHxde7cOVG9enUxb948cenSJbF48WLh6Ogohg8fLqKjo4UQL7+ZV6vVYvHixcLY2FjcvXtXCJHxqMbM637Dw8NFcHCwYTpShHGM5C0n46NSqURaWpoQQohPPvlEjBw50pAhFzscI3nT5/iEh4fzjDAR6QWTkwKWeQnCkiVLRPny5bVuFly4cKFo0qSJmDZtWpZy0dHRolmzZqJLly4iODhYtG3bVqxZs4ZPRMkHHCN503V8VCqVUKvVonLlymL37t1CCCFu3bolevfuLR4+fFiwwRcTHCN54/gQkZzxsq4ClnkJwr1791C1alUYGxtr1g0YMAANGzbEP//8g2vXrgEAVCoVAKBkyZIYPHgwdu3aBU9PT5iamqJ79+6aZ/+T/nCM5E3X8VEoFDh37hwsLS3RoEEDjB49GnXr1kV0dDRKly5tkD4UdRwjeeP4EJGc8agpnx04cAA+Pj6YP38+zp49q1n+/vvv4+TJk5r7F1QqFaysrNClSxdIkoT9+/cDAIyMjKBUKrF48WIMGjQIXl5euHz5Mv76669sJ/Aj3XGM5C2v4wNkTJR59epVVKtWDQcOHMCJEyewf/9+mJmZFXh/iiKOkbxxfIioMGFykk8iIiLQqVMn9OvXD8+fP8eqVavQtm1bzQdD27Zt4erqqplBPPObrDZt2kChUOD27duaumJiYvDff/9h9erVOHLkCGrVqlXwHSqCOEbyps/xMTExQalSpRAQEIBr166hYcOGBd+hIohjJG8cHyIqlAx9XVlRlJiYKL744gvRq1cvzc3RQgjh6ekpBgwYIITIuJH6jz/+EAqFQjO7eKa+ffuKVq1aFWjMxQ3HSN70MT4tW7bUvI6KiiqYwIsRjpG8cXyIqLDimZN8YGlpCTMzMwwYMAAVK1ZEeno6AKBjx46ayauMjIzQs2dPdOnSBV999RWCgoIghEBkZCRCQ0PRt29fQ3ahyOMYyZs+xqdfv36a+hwdHQ3Sj6KMYyRvHB8iKqwkIV6bkIH0Ii0tDSYmJgAy5ryQJAmff/45LCwssHz5cs2ylJQUfPzxx7h+/Trq16+Pq1evokKFCti8eTNcXFwM3IuijWMkbxwf+eMYyRvHh4gKIyYnBcjLywsDBw7EgAEDIISAWq2GkZERnjx5gsuXL+PcuXNwdXVFnz59DB1qscUxkjeOj/xxjOSN40NEcsfkpIDcvXsXzZo1w99//625kVCpVHIGXRnhGMkbx0f+OEbyxvEhosKA95zks8zc7/jx47C2ttZ8IPj6+uKbb75BVFSUIcMjcIzkjuMjfxwjeeP4EFFhYvzuTSgvMh/NePbsWXTv3h0HDhzAkCFDkJSUhDVr1nACKxngGMkbx0f+OEbyxvEhosKEl3UVgJSUFNSpUwd37tyBqakpfH19MX78eEOHRa/gGMkbx0f+OEbyxvEhosKCyUkBadOmDdzc3DB37lyYm5sbOhzKBsdI3jg+8scxkjeODxEVBkxOCohKpYKRkZGhw6C34BjJG8dH/jhG8sbxIaLCgMkJERERERHJAp/WRUREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiyoEBAwZAkiRIkgQTExM4OTmhTZs2+P3336FWq3NcT0BAAOzt7fMvUCIiokKMyQkRUQ55e3sjIiIC9+/fxz///INWrVrhm2++QceOHZGenm7o8IiIiAo9JidERDlkZmYGZ2dnlCtXDg0aNMD333+PnTt34p9//kFAQAAAYO7cuahTpw6srKzg4uKCESNGICEhAQBw5MgRfPnll4iNjdWchZk6dSoAQKlUYty4cShXrhysrKzQuHFjHDlyxDAdJSIiMhAmJ0REefDhhx+iXr162L59OwBAoVDgt99+w9WrVxEYGIhDhw5h3LhxAIBmzZph3rx5sLW1RUREBCIiIvDdd98BAL788kucOHECGzduxOXLl9GjRw94e3sjNDTUYH0jIiIqaJIQQhg6CCIiuRswYABevHiBP//8M8u63r174/Lly7h+/XqWdVu2bMHw4cPx7NkzABn3nIwePRovXrzQbHPnzh24ubnh0aNHKFu2rGZ569at0ahRI8ycOVPv/SEiIpIjY0MHQERU2AkhIEkSAODw4cOYOXMmrl+/jri4OKSnpyMlJQWJiYmwsrLKtnxISAiEEKhatarW8tTUVDg4OOR7/ERERHLB5ISIKI9u3LiBihUr4sGDB2jfvj2GDRuGadOmoWTJkjh+/DgGDRqEtLS0N5ZXq9UwMjJCcHAwjIyMtNZZW1vnd/hERESyweSEiCgPDh06hCtXruDbb7/F+fPnkZ6ejjlz5kChyLilb/PmzVrbm5qaQqVSaS1zd3eHSqVCVFQUPvjggwKLnYiISG6YnBAR5VBqaioiIyOhUqnw5MkT7N27F35+fujYsSP69++PK1euID09HQsWLECnTp1w4sQJLF26VKsOV1dXJCQk4ODBg6hXrx4sLS1RtWpV9O3bF/3798ecOXPg7u6OZ8+e4dChQ6hTpw7at29voB4TEREVLD6ti4goh/bu3YsyZcrA1dUV3t7eOHz4MH777Tfs3LkTRkZGqF+/PubOnQt/f3/Url0b69atg5+fn1YdzZo1w7Bhw9CrVy84Ojpi1qxZAIDVq1ejf//+GDt2LKpVq4bOnTvjzJkzcHFxMURXiYiIDIJP6yIiIiIiIlngmRMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFv4fsX39WEf9RfQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -219,6 +223,10 @@ " \n", " \n", " i_interval\n", + " -8\n", + " -7\n", + " -6\n", + " -5\n", " -4\n", " -3\n", " -2\n", @@ -232,30 +240,46 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " 2021\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", @@ -264,17 +288,29 @@ "" ], "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -429,8 +465,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Hyper-parameter tuning with W&B\n", - "System info and syncronize training information with W&B server." + "Print system info:" ] }, { @@ -462,14 +497,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " + "#### Hyper-parameter tuning with W&B\n", + "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
\n", + "\n", + "You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + } + ], "source": [ "hyperparameters = dict(\n", " epoch = 150,\n", @@ -500,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -525,7 +572,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -616,7 +663,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -644,764 +691,764 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 541.216675\n", - "Epoch : 0 [8/36(22%)]\tLoss: 372.463257\n", - "Epoch : 0 [16/36(44%)]\tLoss: 311.742798\n", - "Epoch : 0 [24/36(67%)]\tLoss: 269.896881\n", - "Epoch : 0 [32/36(89%)]\tLoss: 218.248810\n", - "Epoch : 1 [0/36(0%)]\tLoss: 179.946609\n", - "Epoch : 1 [8/36(22%)]\tLoss: 150.188629\n", - "Epoch : 1 [16/36(44%)]\tLoss: 118.381966\n", - "Epoch : 1 [24/36(67%)]\tLoss: 83.189682\n", - "Epoch : 1 [32/36(89%)]\tLoss: 50.084595\n", - "Epoch : 2 [0/36(0%)]\tLoss: 32.328728\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.110308\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.016559\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.474893\n", - "Epoch : 2 [32/36(89%)]\tLoss: 2.393358\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.284974\n", - "Epoch : 3 [8/36(22%)]\tLoss: 5.560195\n", - "Epoch : 3 [16/36(44%)]\tLoss: 8.409901\n", - "Epoch : 3 [24/36(67%)]\tLoss: 10.086982\n", - "Epoch : 3 [32/36(89%)]\tLoss: 8.864871\n", - "Epoch : 4 [0/36(0%)]\tLoss: 7.792433\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.915362\n", - "Epoch : 4 [16/36(44%)]\tLoss: 0.917453\n", - "Epoch : 4 [24/36(67%)]\tLoss: 3.928596\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.894675\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.691974\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.857225\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.241071\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.330382\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.884715\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.636225\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.723160\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.826412\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.093073\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.707489\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.269681\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.491391\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.295755\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.733817\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.789469\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.386416\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.341573\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.138120\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.249920\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.827636\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.664209\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.447931\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.145177\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.095599\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.822225\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.427189\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.491902\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.933871\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.138529\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.872352\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.460773\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.520807\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.784851\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.113303\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.644507\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.435244\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.416872\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.948044\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.132804\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.596077\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.358088\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.381118\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.931934\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.082265\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.482515\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.629727\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.306449\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.905534\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.272481\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.684866\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.457737\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.445701\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.903659\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.270124\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.781919\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.469775\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.356240\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.916117\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.339794\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.519456\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.622190\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.493773\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.791172\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.283159\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.623535\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.365303\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.208351\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.787075\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.932445\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.716154\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.416628\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.417500\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.953316\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.872090\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.492597\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.515885\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.302691\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.967424\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.027460\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.765638\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.541161\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.248560\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.935115\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.987096\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.433187\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.447987\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.472928\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.717649\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.716006\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.427337\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.504845\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.298365\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.886021\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.884795\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.619280\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.411408\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.296022\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.970702\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.653332\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.311742\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.388399\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.336000\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.883631\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.755074\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.516615\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.323514\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.297856\n", - "Epoch : 26 [16/36(44%)]\tLoss: 1.210429\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.293790\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.219159\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.540436\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.390810\n", - "Epoch : 27 [16/36(44%)]\tLoss: 1.090009\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.509291\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.338627\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.390286\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.478726\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.887393\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.365262\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.115665\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.458086\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.312295\n", - "Epoch : 29 [16/36(44%)]\tLoss: 1.142823\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.457661\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.974813\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.470369\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.335175\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.738867\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.294043\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.905344\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.392974\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.490405\n", - "Epoch : 31 [16/36(44%)]\tLoss: 1.111357\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.377593\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.719874\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.357076\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.297911\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.477689\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.484403\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.841330\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.339447\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.265898\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.677046\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.445825\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.770480\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.388840\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.511289\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.911979\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.348144\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.875994\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.371368\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.359988\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.799647\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.558390\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.578227\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.276555\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.339674\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.695427\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.391352\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.653624\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.292756\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.172401\n", - "Epoch : 37 [16/36(44%)]\tLoss: 1.018906\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.297300\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.590415\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.356787\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.326823\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.436051\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.506713\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.816568\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.437991\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.403067\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.356810\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.557380\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.487023\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.210397\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.278202\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.472461\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.375055\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.396197\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.291317\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.352984\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.588180\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.251341\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.367773\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.499722\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.236385\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.340980\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.516522\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.129800\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.237869\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.073700\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.109997\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.402983\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.227278\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.333813\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.168749\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.197237\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.385935\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.144716\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.233937\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.173382\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.334855\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.139161\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.093227\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.225221\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.462397\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.012123\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.268755\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.093079\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.135769\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.130330\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.048600\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.302103\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.179291\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.203552\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.270936\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.052788\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.262503\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.008751\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.102244\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.109133\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.145420\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.262328\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.079507\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.047305\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.040127\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.256827\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.159077\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.087569\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.207496\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.165961\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.293109\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.111410\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.052562\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.047893\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.127481\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.086027\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.111488\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.190006\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.213329\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.152304\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.195969\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.252908\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.133211\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.212453\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.285137\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.038173\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.458509\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.368229\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.158178\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.645823\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.306397\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.289743\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.112454\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.633461\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.107223\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.380145\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.108391\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.196207\n", - "Epoch : 57 [0/36(0%)]\tLoss: 1.101857\n", - "Epoch : 57 [8/36(22%)]\tLoss: 1.049977\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.399197\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.781938\n", - "Epoch : 57 [32/36(89%)]\tLoss: 1.348178\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.278211\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.430482\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.570131\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.321804\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.595418\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.316053\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.239389\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.254973\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.264362\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.452063\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.290053\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.176844\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.320263\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.235300\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.339196\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.115637\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.249379\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.281833\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.241623\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.315301\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.194464\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.218149\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.150943\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.169594\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.475779\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.138744\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.241365\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.236964\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.226969\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.358091\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.081558\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.219290\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.133819\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.144687\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.173827\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.073536\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.170127\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.201148\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.244045\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.097265\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.147697\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.280904\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.090755\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.149697\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.098561\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.049476\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.311009\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.015644\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.046731\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.239608\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.106274\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.160677\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.033371\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.168071\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.212426\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.079138\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.246454\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.067158\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.233357\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.217183\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.069212\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.146886\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.087745\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.053598\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.125170\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.093005\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.139315\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.141534\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.040081\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.179946\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.098925\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.092422\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.185684\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.147706\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.119041\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.056176\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.176125\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.106780\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.103024\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.034529\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.153144\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.129176\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.118329\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.044209\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.076424\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.073848\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.125681\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.039618\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.029977\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.207782\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.023384\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.136556\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.193569\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.032104\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.066320\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.073674\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.219207\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.099452\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.140827\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.025776\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.046584\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.152300\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.049067\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.098103\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.211856\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.035970\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.142106\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.191532\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.088300\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.050837\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.206382\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.073510\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.080327\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.041483\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.100533\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.026807\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.194391\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.101643\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.010090\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.395808\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.063395\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.147265\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.206970\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.082032\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.249874\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.068278\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.262697\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.041307\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.247910\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.084219\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.057175\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.254035\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.062086\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.101665\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.143167\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.152569\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.116719\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.200850\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.140120\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.056359\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.072830\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.052341\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.130750\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.025637\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.117669\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.081578\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.218741\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.142211\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.042854\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.328880\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.089676\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.184939\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.096419\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.039460\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.016206\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.031430\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.072926\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.043438\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.055044\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.084085\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.051438\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.163799\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.096610\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.021141\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.051110\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.249322\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.076720\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.045858\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.052160\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.046225\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.015984\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.089279\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.068036\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.024702\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.049682\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.008792\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.034245\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.105702\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.009552\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.070001\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.037535\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.041684\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.010694\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.084721\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.009930\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.036149\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.065707\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.061920\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.082191\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.030147\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.017542\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.061619\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.033791\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.080878\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.018274\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.040446\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.025190\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.102350\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.024543\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.036418\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.029245\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.050001\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.049536\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.025373\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.042934\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.029761\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.044818\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.032136\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.069991\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.019095\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.051803\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.037791\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.063464\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.064291\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.125718\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.012501\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.047244\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.023361\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.019202\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.062802\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.054783\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.095024\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.016610\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.037319\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.014645\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.002118\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.095011\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.032820\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.032570\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.035309\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.056849\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.067593\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.100215\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.013066\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.024940\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.083619\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.031679\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.028986\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.024054\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.013077\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.049917\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.089619\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.030046\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.073138\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.021436\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.016525\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.082073\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.005117\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.013319\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.031002\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.007939\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.183094\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.054382\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.004845\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.157076\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.078293\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.065076\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.128163\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.036073\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.067588\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.035304\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.214726\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.035644\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.154826\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.053674\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.021976\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.339147\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.035353\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.186452\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.123911\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.075428\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.053511\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.215588\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.040826\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.038436\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.151798\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.181479\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.038506\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.103296\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.143493\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.045379\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.311960\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.054292\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.098189\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.210574\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.042058\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.119325\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.070137\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.070119\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.093155\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.051780\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.117982\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.024356\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.068099\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.078059\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.059857\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.072933\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.094853\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.011835\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.011542\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.107981\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.025622\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.040330\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.015960\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.022070\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.005884\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.038325\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.006309\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.058548\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.076782\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.007531\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.128264\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.012115\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.037781\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.101377\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.031116\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.056723\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.104950\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.021562\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.075588\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.060054\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.024013\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.073479\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.078773\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.019911\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.043748\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.249664\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.026390\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.163119\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.060042\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.068596\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.194896\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.122795\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.127159\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.045278\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.167913\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.053188\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.057347\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.045813\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.036833\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.111922\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.119135\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.105036\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.043624\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.051447\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.044073\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.115727\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.046751\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.067133\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.233611\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.062298\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.136207\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.095411\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.048249\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.108854\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.122710\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.068460\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.079570\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.080867\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.020799\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.006218\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.302558\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.009904\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.059585\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.068753\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.127319\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.066899\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.181372\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.031047\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.061843\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.215610\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.060278\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.076904\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.092089\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.072276\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.045909\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.188941\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.011950\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.089004\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.112781\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.010586\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.132176\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.032573\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.013117\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.034493\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.035670\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.041419\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.011501\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.046226\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.012849\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.004978\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.042741\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.029500\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.014241\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.003887\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.049683\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.010458\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.009967\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.022414\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.028405\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.010606\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.075091\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.057027\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.017411\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.086091\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.027665\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.060709\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.023060\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.012547\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.010077\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.019467\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.109039\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.005581\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.055565\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.017230\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.042831\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.093298\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.016111\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.041922\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.022894\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.086113\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.035045\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.032294\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.034180\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.015215\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.043998\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.094201\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.063414\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.036211\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.008663\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.005006\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.100268\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.038128\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.031280\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.099242\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.020143\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.107985\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.114500\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.023308\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.054647\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.008002\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.037215\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.040919\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.021440\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.009456\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.021814\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.076972\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.026827\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.030531\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.050185\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.015440\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.078629\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.011867\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.073098\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.022489\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.093717\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.007622\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.033272\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.131271\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.077427\n", - "--- 0.5099315802256267 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 514.437378\n", + "Epoch : 0 [8/36(22%)]\tLoss: 375.684021\n", + "Epoch : 0 [16/36(44%)]\tLoss: 318.399841\n", + "Epoch : 0 [24/36(67%)]\tLoss: 266.961975\n", + "Epoch : 0 [32/36(89%)]\tLoss: 212.988541\n", + "Epoch : 1 [0/36(0%)]\tLoss: 175.764191\n", + "Epoch : 1 [8/36(22%)]\tLoss: 146.588135\n", + "Epoch : 1 [16/36(44%)]\tLoss: 114.187950\n", + "Epoch : 1 [24/36(67%)]\tLoss: 79.877907\n", + "Epoch : 1 [32/36(89%)]\tLoss: 48.396385\n", + "Epoch : 2 [0/36(0%)]\tLoss: 29.274242\n", + "Epoch : 2 [8/36(22%)]\tLoss: 16.765369\n", + "Epoch : 2 [16/36(44%)]\tLoss: 7.300838\n", + "Epoch : 2 [24/36(67%)]\tLoss: 1.983531\n", + "Epoch : 2 [32/36(89%)]\tLoss: 2.387123\n", + "Epoch : 3 [0/36(0%)]\tLoss: 3.642135\n", + "Epoch : 3 [8/36(22%)]\tLoss: 6.103943\n", + "Epoch : 3 [16/36(44%)]\tLoss: 8.462330\n", + "Epoch : 3 [24/36(67%)]\tLoss: 9.279305\n", + "Epoch : 3 [32/36(89%)]\tLoss: 8.575045\n", + "Epoch : 4 [0/36(0%)]\tLoss: 8.518817\n", + "Epoch : 4 [8/36(22%)]\tLoss: 2.147379\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.127624\n", + "Epoch : 4 [24/36(67%)]\tLoss: 3.334240\n", + "Epoch : 4 [32/36(89%)]\tLoss: 4.015734\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.049594\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.823512\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.329201\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.075026\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.124053\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.524255\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.639819\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.794622\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.283961\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.497378\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.304819\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.474653\n", + "Epoch : 7 [16/36(44%)]\tLoss: 1.036261\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.231016\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.588301\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.690593\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.495018\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.916479\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.186782\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.808410\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.474882\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.375557\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.983432\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.409792\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.496427\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.509779\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.350649\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.824795\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.013486\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.401335\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.599967\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.338193\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.899213\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.905831\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.874011\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.497932\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.504683\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.902570\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.134630\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.762683\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.539519\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.495911\n", + "Epoch : 13 [16/36(44%)]\tLoss: 1.008218\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.136078\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.763705\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.505408\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.413303\n", + "Epoch : 14 [16/36(44%)]\tLoss: 1.104364\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.058275\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.685012\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.560002\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.467756\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.884805\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.251468\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.632854\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.559977\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.257856\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.849734\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.081720\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.686437\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.432838\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.346396\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.972296\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.205850\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.678127\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.537941\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.322077\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.901096\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.062842\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.799565\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.392852\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.337810\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.805276\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.048679\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.464470\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.374221\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.236468\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.741717\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.818448\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.608754\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.411896\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.166169\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.488726\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.748074\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.862644\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.324127\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.252545\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.656252\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.555409\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.686527\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.310256\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.107556\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.322675\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.529058\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.649894\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.297704\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.171072\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.311688\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.559308\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.606895\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.246760\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.117772\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.201617\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.316967\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.155962\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.267464\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.135850\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.236323\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.279993\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.190046\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.331800\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.333400\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.160242\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.398214\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.081727\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.241611\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.121249\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.092252\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.385232\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.033094\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.059202\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.060187\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.112066\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.597843\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.581785\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.136051\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.146119\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.169072\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.351052\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.590799\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.123152\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.244016\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.093977\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.209676\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.852299\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.124500\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.378352\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.089596\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.349932\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.896103\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.213795\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.303742\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.049382\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.447083\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.192694\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.135401\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.230151\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.105734\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.267054\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.118984\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.047945\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.035842\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.270281\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.198836\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.252338\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.188360\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.077852\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.240916\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.037699\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.612133\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.105808\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.166828\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.099770\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.126585\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.214757\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.263386\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.172619\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.072529\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.230374\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.077121\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.115890\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.117666\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.119129\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.120206\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.192730\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.176002\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.022130\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.054143\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.114031\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.339215\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.129036\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.204617\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.332611\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.077807\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.294713\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.206713\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.334132\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.128042\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.732693\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.261070\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.185920\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.260637\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.757831\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.047429\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.106248\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.189053\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.573498\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.030074\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.207933\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.740034\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.151548\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.381480\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.717083\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.120032\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.413474\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.163210\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.400531\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.005520\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.368599\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.165023\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.146586\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.066411\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.249929\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.085033\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.045400\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.123406\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.044274\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.163924\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.166012\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.216308\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.221402\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.096446\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.029001\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.017532\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.055913\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.227114\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.014982\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.143062\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.080539\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.030935\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.089658\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.070311\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.097336\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.065883\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.201987\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.185915\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.020920\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.202106\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.032036\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.079324\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.184950\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.219528\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.058527\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.152226\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.115843\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.159627\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.214999\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.235784\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.054283\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.015826\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.214441\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.128432\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.047323\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.060561\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.174639\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.069594\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.033724\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.084726\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.021183\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.044817\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.076839\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.067538\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.038858\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.035327\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.050041\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.109387\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.074027\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.027005\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.088480\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.075876\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.058575\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.038082\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.062887\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.012688\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.081912\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.062713\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.096080\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.044261\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.114602\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.112627\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.063373\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.097990\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.046468\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.032693\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.075588\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.071309\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.125698\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.002292\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.075083\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.102778\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.048613\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.168001\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.079160\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.053053\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.126557\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.030664\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.042080\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.018240\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.073554\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.070441\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.039434\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.111094\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.047350\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.087590\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.134977\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.008399\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.040510\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.065892\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.023389\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.096326\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.035127\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.050750\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.005815\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.096832\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.028660\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.013667\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.066689\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.144794\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.041776\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.101892\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.079536\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.066336\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.005323\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.106997\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.049348\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.039076\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.038384\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.023154\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.020087\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.013893\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.026647\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.022396\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.054321\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.064513\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.031176\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.025410\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.064524\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.004100\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.042487\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.023342\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.061617\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.038582\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.041921\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.080462\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.016379\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.031694\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.008629\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.013319\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.083177\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.129392\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.053499\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.156223\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.072531\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.010297\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.161855\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.212589\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.084232\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.072992\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.220007\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.041549\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.038015\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.403215\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.252773\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.184093\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.177321\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.230740\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.039442\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.159902\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.095395\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.030489\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.049801\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.190097\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.041335\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.141271\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.189959\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.093093\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.212161\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.110990\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.011921\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.063242\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.139313\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.150425\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.030326\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.180329\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.106598\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.013302\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.186197\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.095620\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.097506\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.115727\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.079941\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.021741\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.093421\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.016336\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.016271\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.052345\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.019158\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.040573\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.201075\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.034703\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.120417\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.052702\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.163426\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.034308\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.135418\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.054163\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.071873\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.031675\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.126040\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.045445\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.034826\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.083226\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.105401\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.011612\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.050441\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.103642\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.003381\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.024275\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.048983\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.025116\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.000817\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.008059\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.061793\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.037757\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.015442\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.015820\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.040623\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.028511\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.058206\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.069903\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.030731\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.032324\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.052843\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.044056\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.020962\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.027669\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.049006\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.010556\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.075244\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.179237\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.009455\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.089707\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.099237\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.010571\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.102227\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.118911\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.027706\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.015728\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.069486\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.033423\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.052068\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.088878\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.031618\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.050735\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.085569\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.105242\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.036209\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.035340\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.029517\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.026000\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.037569\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.013939\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.007873\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.053814\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.062882\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.027766\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.049057\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.062297\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.007611\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.060371\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.147420\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.001421\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.072720\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.127969\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.055091\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.132798\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.084941\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.065006\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.139994\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.145022\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.058935\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.138425\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.154950\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.006099\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.145529\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.154258\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.017581\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.061118\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.053789\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.020542\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.005108\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.056044\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.137653\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.160164\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.138647\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.048923\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.143061\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.110562\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.041212\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.070575\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.119593\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.091945\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.016250\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.181615\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.080410\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.027602\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.107519\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.068908\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.007867\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.052782\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.072092\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.025465\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.075800\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.033416\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.031448\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.005640\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.029088\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.075466\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.022153\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.025939\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.069203\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.026993\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.049566\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.080428\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.004512\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.024746\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.106317\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.040117\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.031570\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.035941\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.034237\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.002889\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.010870\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.003598\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.039507\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.026642\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.047073\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.004244\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.027823\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.009383\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.026696\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.035586\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.029432\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.006542\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.019565\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.020858\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.017279\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.030823\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.037315\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.022061\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.028436\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.014958\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.076081\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.043267\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.019944\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.004190\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.035887\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.018970\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.047434\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.044825\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.009361\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.130856\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.046081\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.031010\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.073290\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.107917\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.048058\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.258765\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.071561\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.006313\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.091923\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.215134\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.023991\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.209055\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.095710\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.019699\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.194352\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.227011\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.056032\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.064141\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.100221\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.039073\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.039507\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.085001\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.048267\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.061848\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.269555\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.057180\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.130319\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.289040\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.089275\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.126170\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.326562\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.081059\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.195458\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.075240\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.208173\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.025387\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.205401\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.102719\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.052689\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.363950\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.230284\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.012882\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.211407\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.184314\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.009351\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.099087\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.072933\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.015933\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.087864\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.151738\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.087916\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.143155\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.334517\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.080014\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.078399\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.266660\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.072636\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.204044\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.130476\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.105096\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.024337\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.092079\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.046595\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.077407\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.098976\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.294237\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.049023\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.102599\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.170975\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.050078\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.072080\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.140509\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.049051\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.016062\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.221694\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.055641\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.167766\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.172182\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.154141\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.075900\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.340397\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.044872\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.021391\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.209852\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.308240\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.023293\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.278928\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.170267\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.016910\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.225029\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.191147\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.059983\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.070429\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.130211\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.085684\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.058574\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.077035\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.075306\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.009486\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.154442\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.118206\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.012183\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.159153\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.110243\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.117495\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.045200\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.270703\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.040023\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.013446\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.294309\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.081936\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.041542\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.143380\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.127716\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.028515\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.098222\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.097906\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.062815\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.035383\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.221146\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.036429\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.059922\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.114672\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.059445\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.015241\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.264171\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.021292\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.019468\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.077557\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.094346\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.001411\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.199775\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.039388\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.054849\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.103791\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.067863\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.042163\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.065442\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.079390\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.007815\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.021817\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.045244\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.025506\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.005459\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.016256\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.080651\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.022197\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.025738\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.059026\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.005416\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.035268\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.016857\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.020582\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.029339\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.027580\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.011147\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.000812\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.047086\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.021133\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.012117\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.007227\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.019907\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.011892\n", + "--- 0.04361063241958618 minutes ---\n" ] } ], @@ -1465,12 +1512,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmPUlEQVR4nOzdd3hT1R8G8Dfp3pQCLaOUvfeUDYJMZYMIKEvQnwxZioiyFUWWiLJEQGTJHspeMgXZe++92tI9cn5/nN6MLpo26U3T9/M8eW5yc5OcpIXbN98zNEIIASIiIiIiIiLKVFq1G0BERERERESUHTGQExEREREREamAgZyIiIiIiIhIBQzkRERERERERCpgICciIiIiIiJSAQM5ERERERERkQoYyImIiIiIiIhUwEBOREREREREpAIGciIiIiIiIiIVMJATEREREWVBDRs2RMOGDdN8bLly5azboASFChVCz549M+W1iLI6BnKibGTRokXQaDTQaDQ4cOBAkvuFEAgMDIRGo8Hbb7+t3x8WFoYxY8agXLly8PDwgJ+fHypVqoRPP/0UDx480B83duxY/fMnd3n06FGmvE8iIqK0Us6N//33n9pNybAHDx5g7NixOHXqlNpNsZhChQpBo9GgSZMmyd4/f/58/d8ZiX+GBw4cQIsWLZA/f364urqiYMGCeOedd7Bs2TKT41L72+Xjjz+22nsjAgBHtRtARJnP1dUVy5YtQ926dU3279u3D/fu3YOLi4t+X2xsLOrXr49Lly6hR48eGDhwIMLCwnD+/HksW7YM7dq1Q758+UyeZ/bs2fD09Ezyujly5LDK+yEiIsqOtm/fbnL7wYMHGDduHAoVKoRKlSqp0ygAly9fhlZrubqfq6sr9uzZg0ePHiEgIMDkvqVLl8LV1RVRUVEm+1etWoV3331XX0Dw9fXFzZs38c8//2D+/Pno2rWryfFvvfUWPvjggySvXaJECYu9D6LkMJATZUMtW7bEqlWrMHPmTDg6Gv4bWLZsGapWrYpnz57p961fvx4nT57E0qVLk5y8oqKiEBMTk+T5O3bsiFy5clnvDRAREWVjERERcHd3h7Ozs9pNSZbxF/uWUKdOHRw7dgwrV67Ep59+qt9/79497N+/H+3atcOaNWtMHjN27FiUKVMGR44cSfI5PXnyJMlrlChRAt27d7dou4nSgl3WibKh9957D8+fP8eOHTv0+2JiYrB69eokofv69esA5MkwMVdXV3h7e1u3sURERDbg5MmTaNGiBby9veHp6YnGjRvjyJEjSY47c+YMGjRoADc3NxQoUAATJ07EwoULodFocOvWLf1xGzZsQKtWrZAvXz64uLigaNGimDBhAuLj402eTxn7ffz4cdSvXx/u7u748ssv9fcpY8j37t2L6tWrAwB69eql73K9aNEik+e7cOECGjVqBHd3d+TPnx+TJ082uX/v3r3QaDT4888/MW7cOOTPnx9eXl7o2LEjQkJCEB0djcGDByNPnjzw9PREr169EB0dbfIcyY0hDw4OxpAhQ1CoUCG4uLigQIEC+OCDD0yKAClxdXVF+/btk3Q1X758OXx9fdGsWbMkj7l+/TqqV6+e7JcWefLkee1rEmUWVsiJsqFChQqhVq1aWL58OVq0aAEA2LJlC0JCQtClSxfMnDlTf2xQUBAA4Pfff8dXX30FjUbz2ud/8eJFkn2Ojo7ssk5ERFnS+fPnUa9ePXh7e+Pzzz+Hk5MT5s6di4YNG2Lfvn2oWbMmAOD+/fto1KgRNBoNRo4cCQ8PD/z666/JVowXLVoET09PDB06FJ6enti9ezdGjx6N0NBQ/PDDDybHPn/+HC1atECXLl3QvXt3+Pv7J3m+0qVLY/z48Rg9ejT69euHevXqAQBq166tP+bly5do3rw52rdvj86dO2P16tUYMWIEypcvr/97QDFp0iS4ubnhiy++wLVr1/DTTz/ByckJWq0WL1++xNixY3HkyBEsWrQIhQsXxujRo1P8/MLCwlCvXj1cvHgRvXv3RpUqVfDs2TNs3LgR9+7dS1Ovuq5du6Jp06a4fv06ihYtCkD27OvYsSOcnJySHB8UFIRdu3bh3r17KFCgwGufPyoqKtkvB7y9vW22JwLZCUFE2cbChQsFAHHs2DExa9Ys4eXlJSIiIoQQQnTq1Ek0atRICCFEUFCQaNWqlRBCiIiICFGyZEkBQAQFBYmePXuKBQsWiMePHyd5/jFjxggAyV5KliyZeW+UiIgojYzPjSlp27atcHZ2FtevX9fve/DggfDy8hL169fX7xs4cKDQaDTi5MmT+n3Pnz8XOXPmFADEzZs39fuV86+xjz76SLi7u4uoqCj9vgYNGggAYs6cOUmOb9CggWjQoIH+9rFjxwQAsXDhwmSPBSB+//13/b7o6GgREBAgOnTooN+3Z88eAUCUK1dOxMTE6Pe/9957QqPRiBYtWpg8b61atURQUJDJvqCgINGjRw/97dGjRwsAYu3atUnapdPpkuxL/FytWrUScXFxIiAgQEyYMEEIIcSFCxcEALFv375kf4YLFiwQAISzs7No1KiR+Prrr8X+/ftFfHx8ktdI6W8XAGL58uWpto8oo9hlnSib6ty5MyIjI7F582a8evUKmzdvTtJdHQDc3Nzw77//4rPPPgMgv9Hv06cP8ubNi4EDBybppgYAa9aswY4dO0wuCxcutPp7IiIisrT4+Hhs374dbdu2RZEiRfT78+bNi65du+LAgQMIDQ0FAGzduhW1atUymVAtZ86c6NatW5LndXNz019/9eoVnj17hnr16iEiIgKXLl0yOdbFxQW9evXK8Hvx9PQ0GSft7OyMGjVq4MaNG0mO/eCDD0wqzzVr1oQQAr179zY5rmbNmrh79y7i4uJSfN01a9agYsWKaNeuXZL70tLzDgAcHBzQuXNnLF++HICczC0wMFDfEyCx3r17Y+vWrWjYsCEOHDiACRMmoF69eihevDgOHTqU5Pg2bdok+dtlx44daNSoUZraR5Re7LJOlE3lzp0bTZo0wbJlyxAREYH4+Hh07Ngx2WN9fHwwefJkTJ48Gbdv38auXbswZcoUzJo1Cz4+Ppg4caLJ8fXr1+ekbkREZBeePn2KiIgIlCxZMsl9pUuXhk6nw927d1G2bFncvn0btWrVSnJcsWLFkuw7f/48vvrqK+zevVsf6BUhISEmt/Pnz2+RbtMFChRIEoB9fX1x5syZJMcWLFjQ5LaPjw8AIDAwMMl+nU6HkJAQ+Pn5Jfu6169fR4cOHTLSdACy2/rMmTNx+vRpLFu2DF26dEk10Ddr1gzNmjVDREQEjh8/jpUrV2LOnDl4++23cenSJZOx5AUKFEhxaTUia2KFnCgb69q1K7Zs2YI5c+agRYsWaRrjHRQUhN69e+PgwYPIkSMHli5dav2GEhER2ZHg4GA0aNAAp0+fxvjx47Fp0ybs2LED33//PQBAp9OZHG9cTc8IBweHZPcLIdJ8rDnPYWk1a9ZE0aJFMXjwYNy8eTPZnn3JcXd3R7169TBr1ix89dVXePnyJbZs2WLl1hKlDSvkRNlYu3bt8NFHH+HIkSNYuXKlWY/19fVF0aJFce7cOSu1joiISH25c+eGu7s7Ll++nOS+S5cuQavV6qvGQUFBuHbtWpLjEu/bu3cvnj9/jrVr16J+/fr6/Tdv3sxQW9Pa/TuzWfLvhffeew8TJ05E6dKl07XWerVq1QAADx8+tEh7iDKKFXKibMzT0xOzZ8/G2LFj8c477yR7zOnTp5OddfT27du4cOFCsl34iIiI7IWDgwOaNm2KDRs2mCxb9vjxYyxbtgx169bVLwHarFkzHD58GKdOndIf9+LFiyS9yZQqs3FVOSYmBr/88kuG2urh4QFAVuBtSYcOHXD69GmsW7cuyX3mVtY//PBDjBkzBlOnTk31uF27diW7/++//wYA/v1CNoMVcqJsrkePHqnev2PHDowZMwatW7fGG2+8AU9PT9y4cQO//fYboqOjMXbs2CSPWb16NTw9PZPsf+utt5JdqoWIiEhtv/32G7Zu3Zpk/6effoqJEydix44dqFu3Lj755BM4Ojpi7ty5iI6ONlnH+/PPP8cff/yBt956CwMHDtQve1awYEG8ePFCX8GuXbs2fH190aNHDwwaNAgajQZLlizJcLfvokWLIkeOHJgzZw68vLzg4eGBmjVronDhwhl63oz67LPPsHr1anTq1Am9e/dG1apV8eLFC2zcuBFz5sxBxYoV0/xcQUFByf7tkVibNm1QuHBhvPPOOyhatCjCw8Oxc+dObNq0CdWrV09SiLhy5Qr++OOPJM/j7++Pt956K83tIzIXAzkRpapDhw549eoVtm/fjt27d+PFixfw9fVFjRo1MGzYsGRnH/3f//6X7HPt2bOHgZyIiGzS7Nmzk93fs2dPlC1bFvv378fIkSMxadIk6HQ61KxZE3/88Yd+DXJATni2Z88eDBo0CN9++y1y586N/v37w8PDA4MGDYKrqysAwM/PD5s3b8awYcPw1VdfwdfXF927d0fjxo3RrFmzdL8HJycnLF68GCNHjsTHH3+MuLg4LFy4UPVA7unpif3792PMmDFYt24dFi9ejDx58qBx48ZpWiM8PX799Vds2LABf/75Jx48eAAhBIoUKYJRo0ZhxIgRcHQ0jUHKrOqJNWjQgIGcrEojMmMGBiIiIiKibGrw4MGYO3cuwsLCUpwUjYiyJ44hJyIiIiKykMjISJPbz58/x5IlS1C3bl2GcSJKgl3WiYiIiIgspFatWmjYsCFKly6Nx48fY8GCBQgNDcXXX3+tdtOIyAYxkBMRERERWUjLli2xevVqzJs3DxqNBlWqVMGCBQtMljcjIlJwDDkRERERERGRCjiGnIiIiIiIiEgFDOREREREREREKrD7MeQ6nQ4PHjyAl5cXNBqN2s0hIiKCEAKvXr1Cvnz5oNXyu/GM4rmeiIhsTVrP9XYfyB88eIDAwEC1m0FERJTE3bt3UaBAAbWbkeXxXE9ERLbqded6uw/kXl5eAOQH4e3trXJriIiIgNDQUAQGBurPUZQxPNcTEZGtSeu53u4DudJ1zdvbmydpIiKyKexebRk81xMRka163bmeA9eIiIiIiIiIVMBATkRERERERKQCBnIiIiIiIiIiFdj9GHIiorQSQiAuLg7x8fFqN4WyOAcHBzg6OnKMOBGRjeG5nizFUud6BnIiIgAxMTF4+PAhIiIi1G4K2Ql3d3fkzZsXzs7OajeFiIjAcz1ZniXO9QzkRJTt6XQ63Lx5Ew4ODsiXLx+cnZ1Z2aR0E0IgJiYGT58+xc2bN1G8eHFotRwhRkSkJp7ryZIsea5nICeibC8mJgY6nQ6BgYFwd3dXuzlkB9zc3ODk5ITbt28jJiYGrq6uajeJiChb47meLM1S53p+ZU9ElIBVTLIk/j4REdke/t9MlmSJ3yf+RhIRERERERGpgIGciIiIiIiISAUM5EREpFeoUCHMmDEjzcfv3bsXGo0GwcHBVmsTACxatAg5cuSw6msQERFlFzzf2w4GciKiLEij0aR6GTt2bLqe99ixY+jXr1+aj69duzYePnwIHx+fdL0eERERpYzne/vHWdaJiLKghw8f6q+vXLkSo0ePxuXLl/X7PD099deFEIiPj4ej4+v/y8+dO7dZ7XB2dkZAQIBZjyEiIqK04fne/rFCboZ69YBy5YCbN9VuCRFZkxBAeLg6FyHS1saAgAD9xcfHBxqNRn/70qVL8PLywpYtW1C1alW4uLjgwIEDuH79Otq0aQN/f394enqievXq2Llzp8nzJu7CptFo8Ouvv6Jdu3Zwd3dH8eLFsXHjRv39ibuwKV3Ntm3bhtKlS8PT0xPNmzc3+YMiLi4OgwYNQo4cOeDn54cRI0agR48eaNu2rVk/p9mzZ6No0aJwdnZGyZIlsWTJEqOfocDYsWNRsGBBuLi4IF++fBg0aJD+/l9++QXFixeHq6sr/P390bFjR7Nem+zX558DZcsCK1ao3RIisja1zvdpPdcDPN8D9n++ZyA3w4ULwPnzQGSk2i0hImuKiAA8PdW5RERY7n188cUX+O6773Dx4kVUqFABYWFhaNmyJXbt2oWTJ0+iefPmeOedd3Dnzp1Un2fcuHHo3Lkzzpw5g5YtW6Jbt2548eJFKp9fBKZMmYIlS5bgn3/+wZ07dzB8+HD9/d9//z2WLl2KhQsX4uDBgwgNDcX69evNem/r1q3Dp59+imHDhuHcuXP46KOP0KtXL+zZswcAsGbNGkyfPh1z587F1atXsX79epQvXx4A8N9//2HQoEEYP348Ll++jK1bt6J+/fpmvT7ZrwcP5Pn+3j21W0JE1qbW+d6S53qA5/ssf74Xdi4kJEQAECEhIRl+rty5hQCEOHPGAg0jIpsRGRkpLly4ICIjI4UQQoSFyX/ralzCwsxv/8KFC4WPj4/+9p49ewQAsX79+tc+tmzZsuKnn37S3w4KChLTp0/X3wYgvvrqK/3tsLAwAUBs2bLF5LVevnypbwsAce3aNf1jfv75Z+Hv76+/7e/vL3744Qf97bi4OFGwYEHRpk2bNL/H2rVri759+5oc06lTJ9GyZUshhBBTp04VJUqUEDExMUmea82aNcLb21uEhoam+HqWkPj3ypglz01k2c9z4ED5b/HLLy3QMCKyGcn9n6zW+T4953oheL5X2NL53hLnelbIzeDgILfx8eq2g4isy90dCAtT5+Lubrn3Ua1aNZPbYWFhGD58OEqXLo0cOXLA09MTFy9efO035hUqVNBf9/DwgLe3N548eZLi8e7u7ihatKj+dt68efXHh4SE4PHjx6hRo4b+fgcHB1StWtWs93bx4kXUqVPHZF+dOnVw8eJFAECnTp0QGRmJIkWKoG/fvli3bh3i4uIAAG+99RaCgoJQpEgRvP/++1i6dCkiLF2uoCzL11duX75Utx1EZH1qne8tea4HeL7P6ud7BnIzaBM+LZ1O3XYQkXVpNICHhzoXjcZy78PDw8Pk9vDhw7Fu3Tp8++232L9/P06dOoXy5csjJiYm1edxcnJK9PlooEvlP8LkjhfmDJizgMDAQFy+fBm//PIL3Nzc8Mknn6B+/fqIjY2Fl5cXTpw4geXLlyNv3rwYPXo0KlasaPWlXChrYCAnyj7UOt9b8lwP8Hyf1c/3DORmYIWciLKygwcPomfPnmjXrh3Kly+PgIAA3Lp1K1Pb4OPjA39/fxw7dky/Lz4+HidOnDDreUqXLo2DBw+a7Dt48CDKlCmjv+3m5oZ33nkHM2fOxN69e3H48GGcPXsWAODo6IgmTZpg8uTJOHPmDG7duoXdu3dn4J2RvWAgJ6Ksjuf7rHW+57JnZmAgJ6KsrHjx4li7di3eeecdaDQafP3116l+820tAwcOxKRJk1CsWDGUKlUKP/30E16+fAmNGSWDzz77DJ07d0blypXRpEkTbNq0CWvXrtXPIrto0SLEx8ejZs2acHd3xx9//AE3NzcEBQVh8+bNuHHjBurXrw9fX1/8/fff0Ol0KFmypLXeMmUhSiBPZR4jIiKbxvN91jrfM5CbgYGciLKyadOmoXfv3qhduzZy5cqFESNGIDQ0NNPbMWLECDx69AgffPABHBwc0K9fPzRr1gwOyn+yadC2bVv8+OOPmDJlCj799FMULlwYCxcuRMOGDQEAOXLkwHfffYehQ4ciPj4e5cuXx6ZNm+Dn54ccOXJg7dq1GDt2LKKiolC8eHEsX74cZcuWtdI7pqyEFXIiyup4vs9a53uNyOyO/pksNDQUPj4+CAkJgbe3d4aeq2RJ4MoVYN8+wBZnzCei9ImKisLNmzdRuHBhuLq6qt2cbEen06F06dLo3LkzJkyYoHZzLCa13ytLnpvIsp/n+fNAuXKAnx/w7JmFGkhEquO5Xn32eL63xLmeFXIzsEJORJRxt2/fxvbt29GgQQNER0dj1qxZuHnzJrp27ap204j0FfLgYLlAkaUnXyIiyi54vk8bVSd1i4+Px9dff43ChQvDzc0NRYsWxYQJE0xm5xNCYPTo0cibNy/c3NzQpEkTXL16VZX2MpATEWWcVqvFokWLUL16ddSpUwdnz57Fzp07Ubp0abWbRqQP5PHxwKtX6raFiCgr4/k+bVStkH///feYPXs2Fi9ejLJly+K///5Dr1694OPjg0GDBgEAJk+ejJkzZ2Lx4sUoXLgwvv76azRr1gwXLlzI9O4mDORERBkXGBiYZMZUIlvh5ga4uADR0XIcOUcUEBGlD8/3aaNqhfzQoUNo06YNWrVqhUKFCqFjx45o2rQpjh49CkBWx2fMmIGvvvoKbdq0QYUKFfD777/jwYMHWL9+faa3VwnkXIeciIjIfnGmdSIiyiyqBvLatWtj165duHLlCgDg9OnTOHDgAFq0aAEAuHnzJh49eoQmTZroH+Pj44OaNWvi8OHDyT5ndHQ0QkNDTS6Wok34tFghJyIiso7vvvsOGo0GgwcPVq0NnGmdiIgyi6pd1r/44guEhoaiVKlScHBwQHx8PL755ht069YNAPDo0SMAgL+/v8nj/P399fclNmnSJIwbN84q7WWXdSIiIus5duwY5s6diwoVKqjajpw55ZaBnIiIrE3VCvmff/6JpUuXYtmyZThx4gQWL16MKVOmYPHixel+zpEjRyIkJER/uXv3rsXay0BORERkHWFhYejWrRvmz58PX6VEnQJr9oYDWCEnIqLMo2og/+yzz/DFF1+gS5cuKF++PN5//30MGTIEkyZNAgAEBAQAAB4/fmzyuMePH+vvS8zFxQXe3t4mF0thICciIrKO/v37o1WrVibD1FIyadIk+Pj46C+BgYEWbQsDORERZRZVA3lERAS0WtMmODg4QJcwa1rhwoUREBCAXbt26e8PDQ3Fv//+i1q1amVqW2Xb5JaBnIiIyHJWrFiBEydO6L+Qfx1r9obDhg149+oEVMMxTupGRERWp2ogf+edd/DNN9/gr7/+wq1bt7Bu3TpMmzYN7dq1AwD9pC4TJ07Exo0bcfbsWXzwwQfIly8f2rZtm+ntZSAnInvTsGFDk8mzChUqhBkzZqT6GI1GY5GVLiz1PKkZO3YsKlWqZNXXoIy5e/cuPv30UyxdujTNy5laszccli9HqyOjUQuHWSEnIrvB873tUnVSt59++glff/01PvnkEzx58gT58uXDRx99hNGjR+uP+fzzzxEeHo5+/fohODgYdevWxdatWzN9DXKAgZyIbMc777yD2NhYbN26Ncl9+/fvR/369XH69GmzJ8c6duwYPDw8LNVMAPIkuX79epw6dcpk/8OHD187Vpjs3/Hjx/HkyRNUqVJFvy8+Ph7//PMPZs2ahejoaDgoJ+DMkPD774kwXGcgJyKV8Xxv/1QN5F5eXpgxY0aq385oNBqMHz8e48ePz7yGpYDrkBORrejTpw86dOiAe/fuoUCBAib3LVy4ENWqVUvXTNW5c+e2VBNfK6W5QCh7ady4Mc6ePWuyr1evXihVqhRGjBiRuWEc0AdyD4SzQk5EquP53v6p2mU9q+E65ETZhBBAeLg6FyHS1MS3334buXPnxqJFi0z2h4WFYdWqVejTpw+eP3+O9957D/nz54e7uzvKly+P5cuXp/q8ibuwXb16FfXr14erqyvKlCmDHTt2JHnMiBEjUKJECbi7u6NIkSL4+uuvERsbCwBYtGgRxo0bh9OnT0Oj0UCj0ejbnLgL29mzZ/Hmm2/Czc0Nfn5+6NevH8LCwvT39+zZE23btsWUKVOQN29e+Pn5oX///vrXSgudTofx48ejQIECcHFxQaVKlUyqDjExMRgwYADy5s0LV1dXBAUF6cc1CyEwduxYFCxYEC4uLsiXLx8GDRqU5tem5Hl5eaFcuXImFw8PD/j5+aFcuXKZ3yBPTwAM5ETZglrn+zSe6wGe77PD+V7VCnlWwy7rRNlERIT+j/JMFxamr9ClxtHRER988AEWLVqEUaNGQaPRAABWrVqF+Ph4vPfeewgLC0PVqlUxYsQIeHt746+//sL777+PokWLokaNGq99DZ1Oh/bt28Pf3x///vsvQkJCTMafKby8vLBo0SLky5cPZ8+eRd++feHl5YXPP/8c7777Ls6dO4etW7di586dAAAfH58kzxEeHo5mzZqhVq1aOHbsGJ48eYIPP/wQAwYMMPkjZM+ePcibNy/27NmDa9eu4d1330WlSpXQt2/f174fAPjxxx8xdepUzJ07F5UrV8Zvv/2G1q1b4/z58yhevDhmzpyJjRs34s8//0TBggVx9+5d/YRha9aswfTp07FixQqULVsWjx49wunTp9P0upSFGHVZZyAnsnNqne/TeK4HeL7PFud7YedCQkIEABESEpLh52rXTghAiF9+sUDDiMhmREZGigsXLojIyEi5IyxM/mNX4xIWluZ2X7x4UQAQe/bs0e+rV6+e6N69e4qPadWqlRg2bJj+doMGDcSnn36qvx0UFCSmT58uhBBi27ZtwtHRUdy/f19//5YtWwQAsW7duhRf44cffhBVq1bV3x4zZoyoWLFikuOMn2fevHnC19dXhBm9/7/++ktotVrx6NEjIYQQPXr0EEFBQSIuLk5/TKdOncS7776bYlsSv3a+fPnEN998Y3JM9erVxSeffCKEEGLgwIHizTffFDqdLslzTZ06VZQoUULExMSk+HrGkvxeGbHkuYks/HlOny4EIJahi/D1zfjTEZFtSPb/ZLXO92ac64Xg+V4I2z3fW+Jczy7rZmCFnCibcHeX316rcXF3T3MzS5Uqhdq1a+O3334DAFy7dg379+9Hnz59AMiJsSZMmIDy5csjZ86c8PT0xLZt23Dnzp00Pf/FixcRGBiIfPny6fclt+TkypUrUadOHQQEBMDT0xNfffVVml/D+LUqVqxoMsFMnTp1oNPpcPnyZf2+smXLmowpzps3L548eZKm1wgNDcWDBw9Qp04dk/116tTBxYsXAchucqdOnULJkiUxaNAgbN++XX9cp06dEBkZiSJFiqBv375Yt24d4uLizHqflAUYdVkPDua8MUR2Ta3zvRnneoDne8C+z/cM5GZgICfKJjQa2ZVMjUtCV7S06tOnD9asWYNXr15h4cKFKFq0KBo0aAAA+OGHH/Djjz9ixIgR2LNnD06dOoVmzZohJibGYh/V4cOH0a1bN7Rs2RKbN2/GyZMnMWrUKIu+hjEnJyeT2xqNBjoLJqYqVarg5s2bmDBhAiIjI9G5c2d07NgRABAYGIjLly/jl19+gZubGz755BPUr1/frDFtlAUYdVkXAggNVbk9RGQ9ap3vzTzXAzzf2/P5noHcDAzkRGRrOnfuDK1Wi2XLluH3339H79699ePLDh48iDZt2qB79+6oWLEiihQpgitXrqT5uUuXLo27d+/i4cOH+n1HjhwxOebQoUMICgrCqFGjUK1aNRQvXhy3b982OcbZ2Rnxr/mPs3Tp0jh9+jTCw8P1+w4ePAitVouSJUumuc2p8fb2Rr58+XDw4EGT/QcPHkSZMmVMjnv33Xcxf/58rFy5EmvWrMGLFy8AAG5ubnjnnXcwc+ZM7N27F4cPH04yQzhlcQmB3Esjfxc5jpyIbAHP92mX1c73nNTNDAzkRGRrPD098e6772LkyJEIDQ1Fz5499fcVL14cq1evxqFDh+Dr64tp06bh8ePHJiej1DRp0gQlSpRAjx498MMPPyA0NBSjRo0yOaZ48eK4c+cOVqxYgerVq+Ovv/7CunXrTI4pVKgQbt68iVOnTqFAgQLw8vKCi4uLyTHdunXDmDFj0KNHD4wdOxZPnz7FwIED8f7778Pf3z99H04yPvvsM4wZMwZFixZFpUqVsHDhQpw6dQpLly4FAEybNg158+ZF5cqVodVqsWrVKgQEBCBHjhxYtGgR4uPjUbNmTbi7u+OPP/6Am5sbgoKCLNY+sgFKIHcIB+JkIC9cWOU2EVG2x/O9ebLS+Z4VcjNwHXIiskV9+vTBy5cv0axZM5PxX1999RWqVKmCZs2aoWHDhggICEDbtm3T/LxarRbr1q1DZGQkatSogQ8//BDffPONyTGtW7fGkCFDMGDAAFSqVAmHDh3C119/bXJMhw4d0Lx5czRq1Ai5c+dOdikWd3d3bNu2DS9evED16tXRsWNHNG7cGLNmzTLvw3iNQYMGYejQoRg2bBjKly+PrVu3YuPGjShevDgAOYPs5MmTUa1aNVSvXh23bt3C33//Da1Wixw5cmD+/PmoU6cOKlSogJ07d2LTpk3w8/OzaBtJZQljyL00cgkeVsiJyFbwfJ92Wel8rxHCjIXwsqDQ0FD4+PggJCQE3t7eGXquDz8EFiwAvvkG+PJLCzWQiFQXFRWFmzdvonDhwnB1dVW7OWQnUvu9suS5iSz8eZ47B5Qvj2DHXPCNe4o//wQ6dbJMO4lIPTzXkzVY4lzPCrkZtAmfFrusExER2amELutuOo4hJyIi62MgNwPHkBMREdm5hC7rLrpIaBHPQE5ERFbFQG4GBnIiIiI7Z7Q2rjsiGMiJiMiqGMjNwEBORERk59zc9GsEeyCcgZyIiKyKgdwMDORE9s3O57ikTMbfpyxKo9FXyT0QjoQlaYnITvD/ZrIkS/w+MZCbgYGcyD45OTkBACIiIlRuCdkT5fdJ+f2iLCQhkHsijBVyIjvBcz1ZgyXO9Y6Wakx2wEBOZJ8cHByQI0cOPHnyBIBcI1OT0GWVyFxCCERERODJkyfIkSMHHJSTB2UdRhVyBnIi+8BzPVmSJc/1DORmUD5nnU7ddhCR5QUEBACA/kRNlFE5cuTQ/15RFpMw07oHwvGIgZzIbvBcT5ZmiXM9A7kZuA45kf3SaDTImzcv8uTJg9jYWLWbQ1mck5MTK+NZGbusE9klnuvJkix1rmcgNwO7rBPZPwcHBwYpouzOqMt6SIjsGaflrDtEdoPnerIlPL2YgYGciIgoGzDqsi4EEB2tcnuIiMhuMZCbgYGciIgoGzDqsg4AUVFqNoaIiOwZA7kZGMiJiIiyASWQa8IBMJATEZH1MJCbgYGciIgoG0josu7jwEBORETWxUBuBgZyIiKibCChQu7NQE5ERFbGQG4GrkNORESUDSiBXMsx5EREZF0M5GZghZyIiCgbUMaQa1khJyIi62IgN4OyBikDORERkR1LGEPOSd2IiMjaGMjNwAo5ERFRNsBlz4iIKJMwkJuBgZyIiCgbSAjk7oIVciIisi4GcjMwkBMREWUDCV3WlUAeHa1mY4iIyJ4xkJuBgZyIiCgbUCrkOnZZJyIi62IgNwMDORERUTaQEMhd49llnYiIrIuB3Axch5yIiCgbSOiyzkBORETWxkBuBlbIiYiIsoGECrmjLhZOiGEgJyIiq2EgNwPXISciIsoGEgI5AHggnIGciIishoHcDKyQExERZQPOzoCTEwAGciIisi4GcjMwkBMREWUTCVVyBnIiIrImBnIzMJATERFlEwmB3BNhDORERGQ1DORmYCAnIiLKJhJmWmeFnIiIrImB3AwM5ERERNkEu6wTEVEmYCA3A9chJyIiyibYZZ2IiDIBA7kZWCEnIiLKJowq5NHRKreFiIjsFgO5GRjIiYiIsgmOISciokzAQG4GbcKnxUBORERk59hlnYiIMgEDuRlYISciIsomOKkbERFlAgZyMzCQExERZRPssk5ERJmAgdwMDORERETZBLusExFRJmAgNwMDORERUTbBLutERJQJGMjNwEBORESUTbDLOhERZQIGcjMogVynU7cdREREZGWskBMRUSZgIDcDK+RERETZRKIx5EKo3B4iIrJLDORmYCAnIiLKJoy6rANATIyajSEiInvFQG4GbcKnxUBORERk54y6rANgt3UiIrIKBnIzsEJORESUTRh1WQeA6Gg1G0NERPaKgdwMDORERETZRKIu66yQExGRNTCQm0EJ5ABnWiciIrJrJl3WBQM5ERFZBQO5GYwDOavkREREdszNDQCghYATYhnIiYjIKhjIzcAKORERUTbh7Ky/6oJoBnIiIrIKBnIzsEJORESUTRgFcmfEMJATEZFVMJCbgYGciIgom3Bw0J/4GciJiMhaGMjNoDX6tBjIiYiI7FxClZxd1omIyFoYyM3ACjkREVE2khDIWSEnIiJrYSA3AwM5ERFRNsJATkREVsZAbgaNRl4ABnIiIiK75+ICgIGciIish4HcTEqVnIGciIjIMiZNmoTq1avDy8sLefLkQdu2bXH58mW1m2Uyhjw6WuW2EBGRXWIgN5MSyLkOORERkWXs27cP/fv3x5EjR7Bjxw7ExsaiadOmCA8PV7dh7LJORERW5qh2A7IaVsiJiIgsa+vWrSa3Fy1ahDx58uD48eOoX7++Sq0Cu6wTEZHVMZCbiYGciIjIukJCQgAAOXPmTPb+6OhoRBv1IQ8NDbVOQ7jsGRERWRm7rJuJgZyIiMh6dDodBg8ejDp16qBcuXLJHjNp0iT4+PjoL4GBgdZpDLusExGRlTGQm0mb8IkxkBMREVle//79ce7cOaxYsSLFY0aOHImQkBD95e7du9ZpDAM5ERFZGbusm4kVciIiIusYMGAANm/ejH/++QcFChRI8TgXFxe4JIzvtiqOISciIitjIDcTAzkREZFlCSEwcOBArFu3Dnv37kXhwoXVbpJkNIY8goGciIisgIHcTAzkREREltW/f38sW7YMGzZsgJeXFx49egQA8PHxgZubm3oNM+qy/oKBnIiIrIBjyM3EdciJiIgsa/bs2QgJCUHDhg2RN29e/WXlypXqNoxd1omIyMpUD+T3799H9+7d4efnBzc3N5QvXx7//fef/n4hBEaPHo28efPCzc0NTZo0wdWrV1VrLyvkREREliWESPbSs2dPdRvGZc+IiMjKVA3kL1++RJ06deDk5IQtW7bgwoULmDp1Knx9ffXHTJ48GTNnzsScOXPw77//wsPDA82aNUOUSmdGBnIiIqJsgrOsExGRlak6hvz7779HYGAgFi5cqN9nPJGLEAIzZszAV199hTZt2gAAfv/9d/j7+2P9+vXo0qVLkueMjo5GdHS0/nZoaKhF28xATkRElE0YBXKjPy2IiIgsRtUK+caNG1GtWjV06tQJefLkQeXKlTF//nz9/Tdv3sSjR4/QpEkT/T4fHx/UrFkThw8fTvY5J02aBB8fH/0lMDDQom3mOuRERETZBMeQExGRlakayG/cuIHZs2ejePHi2LZtG/73v/9h0KBBWLx4MQDoZ1n19/c3eZy/v7/+vsRGjhyJkJAQ/eXu3bsWbTMr5ERERNkEx5ATEZGVqdplXafToVq1avj2228BAJUrV8a5c+cwZ84c9OjRI13P6eLiApeEb7StgYGciIgom+AYciIisjJVK+R58+ZFmTJlTPaVLl0ad+7cAQAEBAQAAB4/fmxyzOPHj/X3ZTYGciIiomyCXdaJiMjKVA3kderUweXLl032XblyBUFBQQDkBG8BAQHYtWuX/v7Q0FD8+++/qFWrVqa2VcFATkRElE2wyzoREVmZql3WhwwZgtq1a+Pbb79F586dcfToUcybNw/z5s0DAGg0GgwePBgTJ05E8eLFUbhwYXz99dfIly8f2rZtq0qblUCu06ny8kRERJRZ2GWdiIisTNVAXr16daxbtw4jR47E+PHjUbhwYcyYMQPdunXTH/P5558jPDwc/fr1Q3BwMOrWrYutW7fC1dVVlTazQk5ERJRNGAXy+HggLg5wVPUvJyIisjeqn1befvttvP322yner9FoMH78eIwfPz4TW5UyBnIiIqJswmgMOQBERQGenmo2iIiI7I2qY8izIgZyIiKibMJoDDkAdlsnIiKLYyA3kzbhE2MgJyIisnNKINcYKuRERESWxEBuJlbIiYiIsomELuuuDORERGQlDORmYiAnIiLKJhIq5K4a2WU9OlrNxhARkT1iIDcTAzkREVE2wS7rRERkZQzkZuI65ERERNmEsuwZAzkREVkJA7mZWCEnIiLKJpJZ9oyIiMiSGMjNxEBORESUTSgVcsFlz4iIyDoYyM3EQE5ERJRNKIGcFXIiIrISBnIzcR1yIiKibCKhy7qTjoGciIisg4HcTKyQExERZRMJFXIndlknIiIrYSA3EwM5ERFRNpEQyB1EPLSIZyAnIiKLYyA3EwM5ERFRNpEQyAHACbEM5EREZHEM5GbiOuRERETZRMIYckBO7MZATkRElsZAbiZWyImIiLIJJyf9VRdEM5ATEZHFMZCbiYGciIgom9BqAUdHALJCHh2tcnuIiMjuMJCbiYGciIjs1YkTJ3D27Fn97Q0bNqBt27b48ssvERMTo2LLVJTQbd0ZMYiMVLktRERkdxjIzcRATkRE9uqjjz7ClStXAAA3btxAly5d4O7ujlWrVuHzzz9XuXUqSZjYzQXRuH1b5bYQEZHdYSA3kzbhE2MgJyIie3PlyhVUqlQJALBq1SrUr18fy5Ytw6JFi7BmzRp1G6eWhEDujBicPKlyW4iIyO4wkJuJFXIiIrJXQgjoEpYR2blzJ1q2bAkACAwMxLNnz9RsmnqMAvm9e0B2/RiIiMg6GMjNxEBORET2qlq1apg4cSKWLFmCffv2oVWrVgCAmzdvwt/fX+XWqSRhDHnh/HIM/enTajaGiIjsDQO5mbgOORER2asZM2bgxIkTGDBgAEaNGoVixYoBAFavXo3atWur3DqVJFTIyxSRU6yfOqViW4iIyO44qt2ArIYVciIislcVKlQwmWVd8cMPP8BBOQFmNwmBvGThGGA/AzkREVkWK+RmYiAnIiJ7dffuXdy7d09/++jRoxg8eDB+//13ODk5qdgyFSV0WS8WJLusc2I3IiKyJAZyMzGQExGRveratSv27NkDAHj06BHeeustHD16FKNGjcL48eNVbp1KEirkRfPLLuuXLoHrkRMRkcUwkJuJgZyIiOzVuXPnUKNGDQDAn3/+iXLlyuHQoUNYunQpFi1apG7j1JIQyHN6xiBXLnn+P39e5TYREZHdYCA3E9chJyIiexUbGwuXhC7aO3fuROvWrQEApUqVwsOHD9VsmnoSArkmNgYJS7RzHDkREVkMA7k55s1DtQPTkQMvGciJiMjulC1bFnPmzMH+/fuxY8cONG/eHADw4MED+Pn5qdw6lSR8QYEYBnIiIrI8BnJzjByJhhuGwh+PGciJiMjufP/995g7dy4aNmyI9957DxUrVgQAbNy4Ud+VPdtJqJAjOlofyDmxGxERWQqXPTOHo/y4HBHHdciJiMjuNGzYEM+ePUNoaCh8fX31+/v16wd3d3cVW6YiJZAbVchPnwZ0OsMwNiIiovRiIDdHwoxujohjhZyIiOySg4MD4uLicODAAQBAyZIlUahQIXUbpSajLuslSwKurkB4OHDzJlC0qLpNIyKirI/f7ZrDqELOQE5ERPYmPDwcvXv3Rt68eVG/fn3Ur18f+fLlQ58+fRAREaF289Rh1GXd0REoWFDeNFqunYiIKN0YyM2REMgdEM9ATkREdmfo0KHYt28fNm3ahODgYAQHB2PDhg3Yt28fhg0bpnbz1GHUZR0AAgLkzUePVGoPERHZFXZZNwcr5EREZMfWrFmD1atXo2HDhvp9LVu2hJubGzp37ozZs2er1zi1MJATEZEVsUJuDgZyIiKyYxEREfD390+yP0+ePNm3y7rRGHKAgZyIiCyLgdwcDORERGTHatWqhTFjxiAqKkq/LzIyEuPGjUOtWrVUbJmKjMaQAwzkRERkWeyybg6jWdajGciJiMjO/Pjjj2jWrBkKFCigX4P89OnTcHV1xbZt21RunUrYZZ2IiKyIgdwcnNSNiIjsWLly5XD16lUsXboUly5dAgC899576NatG9zc3FRunUrYZZ2IiKyIgdwcRl3WdTqV20JERGQF7u7u6Nu3r9rNsB2JuqznzStvPnyoUnuIiMiuMJCbg2PIiYjIzmzcuDHNx7Zu3dqKLbFRKXRZf/oUiI/Xj2YjIiJKFwZyczCQExGRnWnbtm2ajtNoNIjPjie/RIE8975VGKO5gHG60Xj6VKMP6EREROnBWdbNYTSpW3b8m4SIiOyPTqdL0yVbhnEgyRhyh0EDMFaMRVmc5zhyIiLKMAZyc3BSNyIiouzFeAx5fLzsqw4gP+4zkBMRUYYxkJuDXdaJiIiyF+Mu6y9fAkIAAPzxmIGciIgyjIHcHAzkRERE2Ytxl/Xnz/W7A/CIM60TEVGGMZCbg4GciIgoezHusp4okLNCTkREGcVAbg6jSd24DjkREVE2YNxl3SiQs8s6ERFZAgO5OTipGxER2bG///4b27ZtS7J/27Zt2LJliwotsgEpBHJWyImIyBIYyM3BLutERGTHvvjii2SXNxNC4IsvvlChRTbAeAz5s2f63QzkRERkCQzk5mAgJyIiO3b16lWUKVMmyf5SpUrh2rVrKrTIBqQwhpxd1omIyBIYyM3BQE5ERHbMx8cHN27cSLL/2rVr8PDwUKFFNiCFLuu58ByRoTGIiFCpXUREZBcYyM1hNKkbAzkREdmbNm3aYPDgwbh+/bp+37Vr1zBs2DC0bt3a6q//888/o1ChQnB1dUXNmjVx9OhRq7/ma6Ww7BkA5METVsmJiChDGMjNwUndiIjIjk2ePBkeHh4oVaoUChcujMKFC6N06dLw8/PDlClTrPraK1euxNChQzFmzBicOHECFStWRLNmzfDkyROrvu5rKRVynQ5I1BZ2WyciooxyVLsBWQq7rBMRkR3z8fHBoUOHsGPHDpw+fRpubm6oUKEC6tevb/XXnjZtGvr27YtevXoBAObMmYO//voLv/32m7oTyimBHAAePDC5ixO7ERFRRjGQm8MokHMdciIiskcajQZNmzZF06ZNM+01Y2JicPz4cYwcOVK/T6vVokmTJjh8+HCS46OjoxEdHa2/HRoaar3GGQfyhw/lNm9e4OFDVsiJiCjDGMjNwQo5ERHZmZkzZ6Jfv35wdXXFzJkzUz120KBBVmnDs2fPEB8fD39/f5P9/v7+uHTpUpLjJ02ahHHjxlmlLUk4ORmuR0bKbdmywMOHrJATEVGGMZCbg5O6ERGRnZk+fTq6desGV1dXTJ8+PcXjNBqN1QK5uUaOHImhQ4fqb4eGhiIwMNA6L6bRyCp5TIxhX5kywM6dCMAjnH1onZclIqLsgYHcHKyQExGRnbl582ay1zNTrly54ODggMePH5vsf/z4MQICApIc7+LiAhdl9vPMYBzIXVyAIkUAyEndtjOQExFRBnCWdXNwlnUiIiKLc3Z2RtWqVbFr1y79Pp1Oh127dqFWrVoqtiyBcfj385NjyCEndUu0EhoREZFZ0lUhv3v3LjQaDQoUKAAAOHr0KJYtW4YyZcqgX79+Fm2gTTGqkANyBRQtv9IgIiI7IYTA6tWrsWfPHjx58gS6RDOYrl271mqvPXToUPTo0QPVqlVDjRo1MGPGDISHh+tnXVeV8cRufn5Awlj3ADxCcLA6TSIiIvuQrkDetWtX9OvXD++//z4ePXqEt956C2XLlsXSpUvx6NEjjB492tLttA2JAnl8PAM5ERHZj8GDB2Pu3Llo1KgR/P39odFoMu213333XTx9+hSjR4/Go0ePUKlSJWzdujXJRG+qSBzIE7rR++MxXr5UqU1ERGQX0hXIz507hxo1agAA/vzzT5QrVw4HDx7E9u3b8fHHH9tvIDea1A2Qgdx48lUiIqKsbMmSJVi7di1atmypyusPGDAAAwYMUOW1U2UcyHPl0gfyHAhB1MtIAG7qtIuIiLK8dNV3Y2Nj9ZOp7Ny5E61btwYAlCpVCg8f2vHsJsl0WSciIrIXPj4+KJIwYRkZSTyG3NsbImFfjpjH+tXQiIiIzJWuQF62bFnMmTMH+/fvx44dO9C8eXMAwIMHD+Dn52fRBtoUo0ndAHBiNyIisitjx47FuHHjEMmEaSpxl3WNxqTbOseRExFReqWry/r333+Pdu3a4YcffkCPHj1QsWJFAMDGjRv1XdntUjJjyImIiOxF586dsXz5cuTJkweFChWCU6JxWSdOnFCpZSpLHMgBaAICgNu39RO7JUy8TkREZJZ0BfKGDRvi2bNnCA0Nha+vr35/v3794O7ubrHG2RwGciIismM9evTA8ePH0b1790yf1M2mJe6yDpjMtM6J3YiIKL3SFcgjIyMhhNCH8du3b2PdunUoXbo0mjVrZtEG2pRkJnUjIiKyF3/99Re2bduGunXrqt0U25JMhZxd1omIyBLSNYa8TZs2+P333wEAwcHBqFmzJqZOnYq2bdti9uzZFm2gTWGFnIiI7FhgYCC8vb3VbobtSSWQs0JOREQZka5AfuLECdSrVw8AsHr1avj7++P27dv4/fffMXPmTIs20KYogVzDSd2IiMj+TJ06FZ9//jlu3bqldlNsy2sCOSvkRESUXunqsh4REQEvLy8AwPbt29G+fXtotVq88cYbuH37tkUbaFMSArkTK+RERGSHunfvjoiICBQtWhTu7u5JJnV78eKFSi1TWXJjyBMCeV48xMXgzG8SERHZh3QF8mLFimH9+vVo164dtm3bhiFDhgAAnjx5Yt9d3fQV8jhAMJATEZF9mTFjhtpNsE1KhVyrBXLkkNcTplXPi4fssk5EROmWrkA+evRodO3aFUOGDMGbb76JWrVqAZDV8sqVK1u0gTYl0aRuOp2ajSEiIrKsHj16qN0E26QEcl9f/d8CyJdPbvAAwS8FAM5IT0RE5ktXIO/YsSPq1q2Lhw8f6tcgB4DGjRujXbt2FmuczWGXdSIisnM6nQ7Xrl3DkydPoEv0zXP9+vVVapXKlC7rSnd1QN9l3RmxiHv8HECuzG8XERFleema1A0AAgICULlyZTx48AD37t0DANSoUQOlSpVK1/N999130Gg0GDx4sH5fVFQU+vfvDz8/P3h6eqJDhw54/PhxepuccQmB3IGTuhERkR06cuQIihUrhtKlS6N+/fpo2LCh/tKoUSO1m6cepUJuHMidnRHlnRsA4PT0gQqNIiIie5CuQK7T6TB+/Hj4+PggKCgIQUFByJEjByZMmJDk2/S0OHbsGObOnYsKFSqY7B8yZAg2bdqEVatWYd++fXjw4AHat2+fniZbBpc9IyIiO/bxxx+jWrVqOHfuHF68eIGXL1/qL9l2Qjcg+UAOIMZPdlt3efEws1tERER2Il1d1keNGoUFCxbgu+++Q506dQAABw4cwNixYxEVFYVvvvkmzc8VFhaGbt26Yf78+Zg4caJ+f0hICBYsWIBly5bhzTffBAAsXLgQpUuXxpEjR/DGG2+kp+kZw0BORER27OrVq1i9ejWKFSumdlNsSwqBPD4gH3DzNNyDWSEnIqL0SVeFfPHixfj111/xv//9DxUqVECFChXwySefYP78+Vi0aJFZz9W/f3+0atUKTZo0Mdl//PhxxMbGmuwvVaoUChYsiMOHD6f4fNHR0QgNDTW5WEyiSd0YyImIyJ7UrFkT165dU7sZtqdpUyAwEGjb1mS3JmFiN+8wBnIiIkqfdFXIX7x4kexY8VKlSpnVpW3FihU4ceIEjh07luS+R48ewdnZGTmU5UUS+Pv749GjRyk+56RJkzBu3Lg0t8EsrJATEZGdOXPmjP76wIEDMWzYMDx69Ajly5dPsg554qFl2UbdusCdO0l2OwbKpc9yRj2ATidXRSMiIjJHugJ5xYoVMWvWLMycOdNk/6xZs9J8sr579y4+/fRT7NixA66urulpRrJGjhyJoUOH6m+HhoYiMDDQMk+uTOoGTupGRET2oVKlStBoNBBC6Pf17t1bf125T6PRIJ4nPhMuhWWFPC8e4NUrwMdH5QaRbVm5Evj6a7m152WBiShD0hXIJ0+ejFatWmHnzp36NcgPHz6Mu3fv4u+//07Tcxw/fhxPnjxBlSpV9Pvi4+Pxzz//YNasWdi2bRtiYmIQHBxsUiV//PgxAhKWGkmOi4sLXJTlSSwtUYWc65ATEVFWd/PmTbWbkGU5BRmtRR7MQE6JLF4MXL0KrF3LQE5EKUpX56oGDRrgypUraNeuHYKDgxEcHIz27dvj/PnzWLJkSZqeo3Hjxjh79ixOnTqlv1SrVg3dunXTX3dycsKuXbv0j7l8+TLu3Lmj/xIg0ykVcsEu60REZB+U1VKCgoJw+/Zt5M+f32RfUFAQ8ufPj9u3b6vdVNuTzxDIX75UuS1ke65ckVvOy0BEqUhXhRwA8uXLl2Q29dOnT2PBggWYN2/eax/v5eWFcuXKmezz8PCAn5+ffn+fPn0wdOhQ5MyZE97e3hg4cCBq1aqlzgzrACd1IyIiu9aoUSM8fPgQefLkMdkfEhKCRo0asct6YvmULusPcf2FDumsc5A9iokBlN4nV6+q2xYismnpDuSZYfr06dBqtejQoQOio6PRrFkz/PLLL+o1iBVyIiKyY8pY8cSeP38ODw8PFVpk4/z9oYMGjohHxO2nAPzVbhHZihs3DGMbr14FhACS+bdFRGRTgXzv3r0mt11dXfHzzz/j559/VqdBiXFSNyIiskPt27cHICdw69mzp8lcLPHx8Thz5gxq166tVvNsl6Mjgl38kTP6EWJvPwADOekp3dUBIDQUePYMyJ1bvfYQkc1i3ypzsEJORER2yMfHBz4+PhBCwMvLS3/bx8cHAQEB6NevH/744w+1m2mTQtzl0me6+w9VbglZ1dy5MlB7egJ+fkCzZkBsrOF+nQ6IjDTcNg7kALutE1GKzKqQK9+gpyQ4ODgjbbF9+gq5DhroEB/P7zOIiCjrW7hwIQCgUKFCGD58OLunmyHMOx/w8iQ0jx6o3RRKjU4HTJkiQ/OXXwJOTml/7JQpwGefGW6HhwPbtwNnzgBVq8p9H30ELF8OnDgBlCiRNJBfuwZYqpdJfDywYwfw119At26AWnMrEZFFmJUojb8xT+4SFBSEDz74wFptVV/CpG6A7LbOCjkREdmTMWPGMIybKcpXTuzm/JSB3GbFxwN9+gAjRgBjxwLvvgtER7/+cVFRwFdfGcL4F18A168DNWrI25cvG47duFEG9XXrTO9T1sKzRIVcpwOmTQMKFwZatABmzQIaNZKvTURZllkVcuUb9GzL0fBxOSIOOp0Z364SERHZoCpVqmDXrl3w9fVF5cqVk53UTXHixIlMbFnWEJtbBnKXFwzkNikuDujRA1i2TBZWHBxkaG7XDvjwQ+DRI7mveXMgKEg+5vZtefyPPwKPH8t9EycCo0bJ6xUrAkePApcuydvPnwNPnsjr+/bJ4K9UyJs1A/78M+NLn4WEAB98YAjfOXPKYH78ONC+PTB/PtCrV8Zeg4hUYVOTutk8o0DOCjkREdmDNm3a6Cdxa9u2rbqNyYLiA2Qg9wxlIM9UV64ADx4ADRumftykSTJcOzrKLuU5cgCtWwNbtsiLsfLlgeBg4O5dw76CBYHx42WoV5QsKbdKFfziRcN9Bw4AL1/KoA8ALVvKQJ6RCvmlS0DbtvL1XFyA6dNl+HZ0BPr2BRYtAnr3BiIigP790/866XHhgvwy4nU/ByJKEQO5ORJVyBnIiYgoqxszZgwAOZt6o0aNUKFCBeTIkUPdRmUh2vwykPuEM5BnqlatZPfxq1eBokWTP0YIYPFief3nn4GOHeX17duBkSNlV/aAADkD+sGDwNmz8n4HB9kt/X//A7p0STrevFQpuVUq5MaB/NUrYNUqeT1PHqBaNXk9vUuf/f038N57cqb2AgVkdV95TgD47Tc5ydzUqcCAAXJfekP5gQPyM+jTB3B2Tv3Y+Hjgu++AMWPk9SVLgO7d0/e6RNkcA7k5jMaQM5ATEZE9cXBwQNOmTXHx4kUGcjM4BclAnjOKgTzThIQYuoCfOpVyID97VoZ2V1ega1fD/rp1gf37TY999gzYvVt2BX/jDTmbekqUCvmVK3Jc94ULpvf/+qvcligh26bRmL/0mRDADz/IcetCyDavWSNDvjGNRh7n6Ah8/70M5aGhwOefG/5ujYuTxxn9HWvi/n1g+HBgxQp5+6+/gNWr5eeWnHv35Odp/Bl+9BFQqRJQrlza3h8gK+uXLgHVqwNubml/HGUNOh2g5QTYacFPyRxarf6bTQZyIiKyN+XKlcONGzfUbkaW4lJYLnvmF/dYBh+yPuPJ1BLPZm5szRq5bdYs9YANALlyAZ07A02avP7YQoVkBTkqCrhzx1AhL1FCbo8dk9uSJWWoDQyUt9PabT0yEnj/fTkWXQigXz9g166kYVyh0ciu+SNGyNtffgnUqwds2wYMGiTfW+nSsheAsZgYYPJk2c4VK+TfuS4uMpC/846cpC6xXbuAypVlGPf0BBYuBN56S3aX79hR9hBITUiI/NKgYEHA3x9o0MDw+LS4fVsOIUjLZykEcP68rOT36GHo0ZCasDD5OEo/nU4OqQgIAHbuVLs15lu/Pu2/jxbCQG6uhG7rDORERGRvJk6ciOHDh2Pz5s14+PAhQkNDTS6UlFeRPIiHFg7QQTx+gjlzsubfoFmKcSA3vp6YEsg7dLDs6zs6AsWLy+uXLhkq5B9/bHqcEtCLFZPbtEzsdv8+UL8+sHSprGj//DMwZ87ru5AroXzePMDLCzh8WE5U99NPMgRfvSqfd/hw+dw//SQnpxsxQgbvWrWA//6TId7DQ/4S169v6MYfGiq7pzdtKiv9lSvL3gk9e8rny59f/izefz/lL6Z27ZLj9H/+WY7T12jkcICDB4FOnUzXdU/OqVOy98KYMXK5ufXrkz9OCNm1v2xZWbEfORL4/Xe57FzinhHG5s6VPSRatzbvy7W4OODhQ+DkSTkvwcKFstdCaq+V2PPnwNq1wM2baX+MsZUrgaFD5c/d0l8oxMWZzqvwOuPGyXkNnj4F2rQBDh1K2+NiY+W/p4cP07YKgrEHD+TyhP/9Z97jEps7V074+Pbb5rchI4SdCwkJEQBESEiIZZ7QzU0IQBTELTF/vmWekoiIsheLn5ssRKPR6C9arVZ/UW7bKjU/z+fPhbiHfEIA4u/xxwQghLu73E9W8uWXQsjYIcQbbyR/zKVL8n5HRyFevLB8G9q3l88/YYKhLY8fC+HhYbi9bp089qOP5O2vvkr9OQ8fFiIgQB7r5yfE7t3pa9udO0K0bCmEg4MQbdsKsWmTED17GtplfMmTR4hFi4SIjzc8/tAhIXx9DZ/fe+8JkSOH4TG9ewsREWH6mocOCeHsLO/v00cInc70/qlTDY8vWlSIzZuFCA0VYv9+IVxd5f7u3ZM+TrFrlxBeXvI45XjlMUOGyMvIkUJMnChEw4aG+11chGjRQohq1Qy3E79fnU6IceNMP5cRIwz3h4cLceyYEH/8IcQPPwixbZts+9mz8rMwbk/iS9OmQvz3X8o/qyNHhOjSxfDZOTvL35Pw8LT9rIUQYu9eIbRaw2uWKiXEjz8KERaW9udIycWLQlSoIJ93+fLXH//nn4Z2lC4ttz4+Qpw4kfrjzp0TonBhw2M1GtOfQUqePRPis89MfwadOglx+XLKj4mJkb+v33wjf3+WLJH7fvvN8BzDh6f8u2iGtJ6bGMjNlfCfQRFcE3PmWOYpiYgoe7HVQL53795UL7ZKzc8zLk6Io5B/7PfyXav/e+677zK9KdlHhw6GP5x9fZP/w/mbb+T9zZpZpw3KlwJVq8qtv7/c/9ZbhradPy/3/fCDvN2lS8rPt2iRIZSVKyfEjRsZb2N0tOntdeuEaNxYiCZN5BcKX38txMuXyT/2wQMZ5o3DZalSqYeytWsNwdA40CxdaniOjz8W4tUr08dt3iy/PADksYkdOyaDNCDD9tOnQgwenHIIVkL7V18JofyfEB5u+n6KFZM/lzFjhHjzTcN+42NmzxZi6FDTL1mUi9Je5aLVyi9TKlWSXwC0ayeEk5Ph/p9/Nn1PL18K0a+f6XPkz2+4XqiQEGfOpPxZK548ESKf/EJQlC8vvw1UnsPPT4jRo+UXBzqd/H3Yvl2I77+XX4QYfykhhDxm2zb5b+enn+R/YsbPFxQkRFRUym3ZudNw/NCh8jOvW9fw7+POneQft3WrEN7ehi9MjL9c2LQp6fE6nfyyqmtXw++F8vup0cjrTk5CrF6d9LEHDwoRGJj055k/v+GxgwZZJIwLwUCuZ/GTdMI3hiVwSfzyi2WekoiIshdbDeRZldqf5+9OvYQAxCSM0P8tmS9f0jxEFlK2rOkf00+eJD2mShV537x51mnD4sWmbWjUSO6fONFQ4VPCy/r1hvCenN27TQNhaKh12mwunU6IVauE6NxZiDVrkga45CxYYHgv5coJMXasIZgOGZLy45SeBoUKmYa+p0+FKFhQ3teihRCRkYb7tmyRVdQvvpDbTz+V1fkhQ4S4dSvpa8TFyUq4cbXfuCL700/yuGHDkt6fO7cQ9esL0bGjbKMSwjt2FOLAAfnciV2/LsS77xqeY+5c+Z/CvHmGnhCAEB98IMTx4/LzXrPG8H5z5ky9uh4fLz8TJYyGhckvIH75RYgiRUzbHxhoCL3KJW9e2XNi0iT5hUHFisl/udG4sTwWEGLWrKTt0OmEmDHD8CVF8+ZCxMbK+4KD5RcFgPyyInHVftYsQwCvX19WvOPjDT+DfPlMe7jcuye/ZDNuX5UqQvz1l2zHmTOGL8UcHIRYtszQxpkzZY8P5bNt315W1/39Tb8wslAYF4KBXM/iJ+lcuYQARBmc0/+7JSIiMofaAfJ1wsPDxcWLF8Xp06dNLrZK7c9zSM5FQgDiMGqKyZMNf7v+8YcqzbFvcXGGSrLSTXX/ftNj7t41BKbHj63Tjn//NQ0Fn3xiur9sWcOx587Jfd7eyf+x37GjvL9797SFXlv3yy9Jq8qdO6f+3sLDDZXeadPkvrg4Wc1XKtopVfPN9eqVDKBNmgjRo4fs3m1cjY6NNbxuvXpC/P130p/bvXtp+93S6WS1OLkqeMmSQuzbl/QxL14IUaOG4Xfm0KHkn3v2bMO/g8TV9NhYIVaskIHduDu3v78Qb78tu5EnF749PGRPjg4dZHf7adPkz+Hnn+X9AQGm3eljYuSXIMrj33/f9EsTIeSXI7lzy/vbt5ehOzZWiAEDDI/r1cv0G8yICCFKlJD3de0qv7T68UfDlymurnIoyNGjSX82cXGGIRoajRA1a8oArrxWp06mX3pFRsru6j//bPF/fwzkCSx+kk74RqsCTokZMyzzlERElL2oHSBT8uTJE9GqVSuT8ePGF1ul9ufZovRNIQARCwcR9eyVvrd0lSoWLbaQEEJcu2b4g7xxY3l9wQLTY9askfsrV7ZeO4KDTYOMceVw0yZDd3UhZMVXCUVnz5o+z5MnhgryqVPWa29me/lSdo0uUkSId95JGtKSM3++oXq5a5cQrVrJ2+7uaeu+bUmxsULcvGmZ59LphBg40PC7EhAgxPTpqX8mISHyywAlRCfuNfHqlRz/D4jXBpLwcNlV/fBhQ+CMjpZfNIwbJ78IatRIXk9p8ovoaNllHRDi22/lewoJkaFd+fJrypSU/8M7cMDwRZoS/JXA/P33yT/u4EFDN3LjS/Xqcmx7auLjkw4JcHWVXzBk4n/KDOQJLH6SLlBACEBUxnExdaplnpKIiLIXtQNkSrp27Srq1Kkjjh07Jjw8PMT27dvFkiVLRMmSJcXmzZvVbl6K1P48O3US4iaC5B9927aJZ8/0c8CKPXtUaZL9+usv+cGWL2+osH3+uekxo0bJ/X36WLctxt2Od+1K/di335bHTZxoun/aNLk/pe7s2UlsrGEiMOWi1aZtMjFbp9PJCuwvvySdEC8l4eGyZwAgx7obUyahK1ZMVqkzg/GkZ0WKCFG8uOELk+TGeie2erWhu7/yuLVrU3/MhAnyC5qSJeVY/8mTDd3hX0enk8MaVqwQ4uRJ8ybKs5C0npu47Jm5uOwZERHZqd27d2PatGmoVq0atFotgoKC0L17d0yePBmTJk1Su3k2a/ZswL15A3lj7174+cnVoABg9Gj516eCS5VnkLKWdKlScv1sIOnSZydPym3lytZtS6lShutlyqR+bOvWcrthg2GfEMCCBfJ6nz6WbVtW5OgolwsD5JJv778PnDkDdOmibrssQaMBPvkE+N//ADe3tD3G3V0uZQfIJb0ePpTXnzwxfE7ffCOXjssM778v13N3cgJu3JBL6eXJA+zbJ5cJe50OHeSybmFh8t/o3btyibHUfPWVXBLu0iW5bN5nn+mz2GtpNHLpv3ffBSpVkp+njWIgNxcDORER2anw8HDkyZMHAODr64unT58CAMqXL48TJ06o2TSb5ucH5OncUN7Ytw8A8OWXgKurXIr4r7/kXX/8Afj6AsOGmYb09NLpgOnTgd695TLR2YISyEuWVD+QK6+fIwfg75/k7qVLgcKFgePHAbzzjtx57JhcM1m5fv68/EV57z3rtjWraNVKfmA3bsi1w8uWVbtF6urQAahZU64VP24c8OqVXFc9LAyoVg3o2DHz2uLoKNcXf/EC2LgRGDsW+Pdf2Q5zeHjIgJwzpxUamTUxkJvLwQEAAzkREdmfkiVL4nJCuKlYsSLmzp2L+/fvY86cOcibN6/KrbNxDRIq5MeOAeHhKFAA+PRTueuLL4C9e2VwDgsDpk0DJk5M+1PfvZs0wD97BrRsCQwdCixcCMyYYYk3kQUo4du4Qn79uqHrwaNHspKo0QAVK1q3LUqFvHRp+XqJLFgA3LoFbN4MICBABisA2LTJcAAgQ1eOHNZta1ZSpQpQsKDarbANGo2hGj5vngyxv/0mb3//PaBVIcp5esovmMaMAQoVyvzXt0MM5OZihZyIiOzUp59+iocJ3SLHjBmDLVu2oGDBgpg5cya+/fZblVtn4woXBgoUAGJjgcOHAQAjRsiK+PnzQNOm8i6l4Dd6tPz7+nW+/lpmk2bNZM4UAli/XhZ/t20z/D0+c6Ysotk94y7rBQrI7r+xsbIrLGCojpcsKStx1tSxo/wiZujQJHcJASidSu7fT9jZpo3cbtwov6FRghW7q1Nq6tWTXbuFkF88FS0qu7C/+abaLSMLYSA3V0Igd0A8AzkREdmV7t27o2fC4OeqVavi9u3bOHbsGO7evYt3331X3cbZOo0GaNhQXk/otu7rK7uuAzIzVq0KHD0KjBol9330kfxbe/ly4MgRmdO2boX+74tDh+QQUQDYsUMWfBs0kH+b37sHlCghe/cWKSKHWSr5DrBMl3ib8/KlHD8LyDev1cotAFy5IreZ1V0dkF8I7N2bbLfh69eBkBB5Xemhrh9HvmuXrIrHxcnxrcrvDVFKFi8G1qyRXfmvXZPjXshuMJCby6hCrtOp3BYiIiIrcnd3R5UqVZArVy61m5I1KN3Wt27Vd6EeMAAoVw4oVkwGbnd3YMIEYPhwOQruwAGga1egVi1ZQG3RAnjrLRnoevSQwbp1axnGnz6VY9JdXGSoP35cDsX87DP5slOmyK7sPXrIwnGhQrIyP2uWnQR0pbt6/vyAl5e8rgRy5T4lkFepkrltS8R4ygV9hbxMGVndjI6W43Br1JDjDZLp7k5kwssLaN9e9sQhu5PGaepIj13WiYjITg1NpustAGg0Gri6uqJYsWJo06YNcnIynuQ1bSr/TvjvP1kBXb4cru7uOHNGTsCWMA2NfljokCHAr78CS5bI/J47N3DhArBnj+xxHR8vi7CLF8t5v775RhaIv/wSCAoyvGyPHnI455078u/1sDC5//ZtedmxQ/bonjIlC2W/48fljHWRkfKDiIszlJqNZzdPPLGbkoQzo0KeiuPHDdf1FXKNRn7rMm2a/MGuX5/2GbeJyG4xkJuLgZyIiOzUyZMnceLECcTHx6NkQtC5cuUKHBwcUKpUKfzyyy8YNmwYDhw4gDKvW+YpOypYEPjzTzlj9saNQOPGQPfu0OTKBYcnT+TY8kuXgEaNgKFDkS9/foweLceTAwCEwOUz0ejQzRXnz8tdCxYY5vuaMCH5l3VzkxPIjRolw3ixYsCcOTLE79olw/q0afJLgWnTDKH86lW5WlHPnnLiZpsRGir75d+9m/z91asbrpcuLbfbtsl+/DduyNs2FMifPAFiYgBnZ8gP2tkZ6NUL4ESJRAQGcvNxlnUiIrJTSvV74cKF8Pb2BgCEhITgww8/RN26ddG3b1907doVQ4YMwbZt21RurY1q1w7YuVPOQnzkiLwkdvKk7Ef+9ttyoLlWK9PxyZMo+eoVTjdqgg2lPoC2Qnk0dXoObAqT/c9LlJD91ZMxYABw+jQQGChXR1LmM6tTR07w/dFHcib2gAA52Rwgvwi4ckUG9u7d5WPTJT5eLsb+xhvmL4GUnOHDZRgvXNiw7rCDg9x6eMh+/Yq335ZfhNy+LZfMAmT3ARV7cRhP6KZ4+DChV0OuXIa1pYmIAGiEsItRRSkKDQ2Fj48PQkJC9H9cZEjjxsDu3XgPyxAw+D1Mn57xpyQiouzF4ucmC8mfPz927NiRpPp9/vx5NG3aFPfv38eJEyfQtGlTPHv2TKVWJmWTn+fly8DPP8v+yk+fyqWC3nhDBuv58+VgcHM5OMgxyGXKmF5KlpSD01MxaxYwcKA87PJlOSN76dKGseUffywzdbr8/LP8RiBPHlmhzsjs5tu3yynlATlhmjIuPzUHDsjjlMl92rYF1q1Lfxsy6OZNOdGek5PM3w8fygn6atVSrUlEpIK0nptYITcXZ1knIiI7FRISgidPniQJ5E+fPkVoaCgAIEeOHIiJiVGjeVlLyZJyLbLkvP++TGiHD8u+zLGxsjxdpYrsf758uby8fAn4+cl9yrTdV67Iy/r1hufTaGQ12TiklysnZ3xL6NnXvz+wYgVw8KCskDs7yzBesqQM6AsWyPXSjcemp0lEhGFR9SdPgB9/NEwtb66QEODDD+X1AQPSFsYBoG5duT7cuHHyto1M6Fa+vOzQ8PCh0cRuRESJMJCbi2PIiYjITrVp0wa9e/fG1KlTUT1hnO6xY8cwfPhwtG3bFgBw9OhRlFBmtqb0q11bXpIzZoy8GBNCJrsLF5Jenj+XlekbN4DNmw2PyZlTTjRXrhw0QmBFNRfUO9gJy5YV0k8wt2iRHHu+e7fsST1njpnvY/Zs4NEjOWA9KgqYPFmW23PmlG1zd5e9Al5HCNmv/u5dWV7+7jvz2vHVV7Kivm+fnKZeRcr48apV5XcqAAM5EaWMgdxcDORERGSn5s6diyFDhqBLly6IS1i2y9HRET169MD0hDFapUqVwq+//qpmM7MnjQbIl09emjQxve/p06Qh/fhxubTWihX6wwoAuOQwBqPjx2Ba/FA0buyEN94Axo6VgXzBAlnddXcHunSRuTpVr14ZgvOsWbJHwJkzslodHw/MnSv/bhowQA5Y9/VN+bl++w1YuVJW9JcuNb/bu6Oj7O5+967s1q8iJZBXqSLn8AOMZlonIkqEY8jN1b49sG4dPsZs6Pp+jHnzMv6URESUvdjkmGcjYWFhuJEwW3WRIkXg6empcotSZ+ufpyri4oB//5Vroj98KAP9+fOymzyA58gJz1yucHFzALp2xdsnJ+Cv7U76hzs5AY8fp5Ch4+KAU6eAX36R62gXLy6/BNi6VU5mlxw/P2DtWqB+/aT3Xbwoy8mRkTLgK7POZUFCyKH0z54BR4/KJexGjAC6dQP++EPt1hFRZuIYcmsxqpBHskJORER2yNPTU7/WuK2HcUqBo6OcYr1OHcM+IYDff0fckOHwe/kMUObl+/57bKh1EEdW/YmXrnnx2Weysrt2LdCnT8Lj/vhDBu6LF+WdkZGG5x03Tr5eq1ZyPPeBA3JG+HnzZDf2IUPk4957Dzh71nQG9Jcv5ZrtkZGyq/lnn2XGp2M1d+/KMO7oKMeQX7ki97NCTkQp0ardgCyHk7oREZGd0ul0GD9+PHx8fBAUFISgoCDkyJEDEyZMgE6ZwZqyLo0G6NEDjndvyb7pJ07IoO3tDYfDB1Dnw9J4+/t6WO3SFUMwDTt+uyvL5G+/DXzwAbBsmVyyLTJSLo7esqXs596li+H5N26UM5yfPi0nZWvWDPjvPzl73IMHcnY5RUyMDOMXLwL58wO//y6XgMvClGXQixSRw+rz55e3OYaciFLCCrm5OIaciIjs1KhRo7BgwQJ89913qJNQWT1w4ADGjh2LqKgofPPNNyq3kCzCwwOoXFler1wZqFFDBuOzZ4EDB1AWwDQsBw4Ng66IB7QR4XK68GHD5LGlSwPFiiUfnn195bJjxtzdgSVL5LpfK1bIoF61qpyRfc8ewMsL+PtvuUh6Fvf8udzmyiW3+fLJ7f37sqOBRqNOu4jIdjGQm4uBnIiI7NTixYvx66+/onXr1vp9FSpUQP78+fHJJ58wkNur4sXlTGT//QfcuQPcvImTk7agYuh+aCPCEV+uAkbkX4o7V8vhjzFyyTSzVa8uJ3sbOxb43/8M+x0cgFWrgAoVLPVuVPXihdz6+cmtUiEPD5dz4HGKAyJKjIHcXAnrhDCQExGRvXnx4gVKlSqVZH+pUqXwQkkaZJ+cnGQFu1YtAMAhry/QasADdCh8Amfcm+Cfba4A5Eptgwen8zW+/BI4cgT45x85jjxPHrn4ebNmlnkPNkCpkCvD5D08AB8fucT6/fsM5ESUVNYeqKMGVsiJiMhOVaxYEbNmzUqyf9asWahYsaIKLSK1dOoEPHHIh1k338Y/R13hlDAB+7hxhtAZFyeDZpo5OQFbtshy8d27sirfqZPF266mxBVywNBtnRO7EVFyGMjNxUndiIjITk2ePBm//fYbypQpgz59+qBPnz4oU6YMFi1ahB9++EHt5lEmypPHsNy5n59cLa1CBSA4WIbyAwfkPG0BAXION5ISV8gBTuxGRKljIDeXUYWcE84SEZE9adCgAa5cuYJ27dohODgYwcHBaN++PS5fvox69eqp3TzKZN99JydX37tXzsE2fbrc//PPcjnxGzfkqmadOskJ2MkQyJOrkDOQE1FyOIbcXOyyTkREdixfvnxJJm+7d+8e+vXrh3nz5qnUKlJDpUrA4sWG22++CbRpA2zYIG/36AHodHIC9e7d5Wpoffqo0lSbkVyXdaVCzi7rRJQcBnJzcVI3IiLKZp4/f44FCxYwkBNmz5bd1Fu0kOFcp5MTl82ZA3z4IRARAQwcqHYr1cMu60RkLnZZNxcr5ERERBZz69Yt9OnTB4ULF4abmxuKFi2KMWPGICYmRu2mUTLy5pXhu00beVurBX75BRg6VN4eNAj4/vuUHx8TA0RHW7+dakltUjcGciJKDivk5jKa1C0uTuW2EBERZXGXLl2CTqfD3LlzUaxYMZw7dw59+/ZFeHg4pkyZonbzKA00GmDKFFkpnzBBrmRWuDDQubPpcRERclW1p0+B06eB3LnVaa+1CJF6hZxd1okoOayQm8uoQh4bq3JbiIiIsrjmzZtj4cKFaNq0KYoUKYLWrVtj+PDhWLt2rdpNIzNoNMD48cBnn8nbX36JJH8njRoFnDkDPHwITJ2a+W20trAww3tObgz5w4dg70oiSoIVcnMZBXL2piMiInvQvn37VO8PDg7OnIYkCAkJQU7jEmMi0dHRiDbq9xwaGpoZzaI0GD1aTgR3/TqwYAHw8cdy/4EDwI8/Go6bNQsYPhzIlUuddlqD0l3dxQVwdzfsDwgAXF3ljPQ3bwLFiqnTPiKyTayQm8toUjcGciIisgc+Pj6pXoKCgvDBBx9kSluuXbuGn376CR999FGKx0yaNMmkfYGBgZnSNno9T0/gq6/k9fHjZTf18HCgd2/ZpbtnT6ByZblv2jRVm2pxxt3VNRrDfgcHoFQpef3ChcxvFxHZNlbIzcUKORER2ZmFCxda/Dm/+OILfJ/a7F4ALl68iFJKUgFw//59NG/eHJ06dULfvn1TfNzIkSMxVJlFDLJCzlBuO/r1k2H71i2gaVMZQl++lJObTZ8u1zVv1w746Sdg2DDT7t1ZWXITuinKlAFOnZKfRevWmdosIrJxDOTmMprUjYGciIgoecOGDUPPnj1TPaZIkSL66w8ePECjRo1Qu3bt1y6v5uLiAhcXF0s0k6zAxQUYN06uU37woNyXLx+wfDmQI4ecob1iRTmx2/TpwMSJqjbXYpKb0E1RpozcskJORIkxkJuLFXIiIqLXyp07N3KncRrt+/fvo1GjRqhatSoWLlwIrZYj6rK6bt1k4A4LA959F2jQQD/qDxqNHGveoQMwc6askvv6qtteS1ACeUoVcoCBnIiSYiA3FwM5ERGRxdy/fx8NGzZEUFAQpkyZgqdPn+rvCwgIULFllBEODqnPpN62LVC+PHD2LDBjhqyoZ3Wv67IOABcvAjqdXL+diAjgpG7m46RuREREFrNjxw5cu3YNu3btQoECBZA3b179heyXViur5ICcfT2TJ/K3itS6rBctCjg7y0nu7tzJ3HYRkW1jIDcXK+REREQW07NnTwghkr2QfWvfHihXDggJMV0SLatKrcu6oyNQsqS8zm7rRGSMgdxcnNSNiIiIKMO0WuDrr+X1qVOB7t2B//1PzkJeuDDg4wNs365uG82hdFlPrkIOcBw5ESWPY8jNlahCLoTpWpNERERElDYdOsgq+blzwNKlSe/v1Qs4f17Ozm7rUquQAwzkRJQ8BnJzGQVyAIiLA5yc1GwQERERUdbk4ABs3Qps2SK7roeGArlzA2XLAh99BFy9Cnz2GTB/vtotfb3UJnUDGMiJKHkM5OYymtQNAGJiGMiJiIiI0it/fuDDD5PuX7AAqF8f+PVXuXRakyaZ3zZzpDapG2AayNnDkogUHENurkQV8uhoNRtDREREZJ/q1QMGDJDXP/pILhdmq3Q64OVLeT2lCnmxYvLPyFevgPv3M69tRGTbGMjNZTSpGwBO7EZERERkJZMmAV5ewI0bwKlTarcmZSEhhi8MUqqQOzsDxYvL6+y2TkQKBnJzJQRyJ42hyzoRERERWZ6nJ9Cwoby+a5eqTUmV0l3dwwNwcUn5OI4jJ6LEGMjNxUBORERElGkaN5bbnTsN+95/X67rfemSOm1K7HVLninKlpXbQ4es2x4iyjoYyM2VMKmbExjIiYiIiKxNmcxt/345d8/Fi8AffwBXrgBvvilnYlfb65Y8U7RpI7fr1wNPn1q1SUSURTCQm0uZ1I0VciIiIiKrK1MGCAgAIiOBI0eA334z3PfwoQzlN26o1z4g7YG8ShWgenUgNhZYtMjqzSKiLICB3Fz6WdY5qRsRERGRtWk0MnQDcr3y33+X1+fNA0qXBu7dAz79VL32AWnvsg7IGeMBYO5c2545nogyBwO5uRIte8ZATkRERGRdSrf1n34CnjwB/P2Bnj2BxYvl/sOH5dremenmTaBCBdmmtFbIAaBLF8DbG7h+Hdi927ptJCLbx0BuLgZyIiIiokylTOwWESG3H3wAODkB5cvL6X2eP8/8tb1XrgTOnpXV+b/+kvvSUiH38JCT0gHAnDnWax8RZQ0M5OZKmNTNgYGciIiIKFMULGhYwxsAevWSW1dX2W0dAE6fztw2nTkjt0IAx4/L62mpkAOGbusbNgCPH1u+bUSUdTCQm4sVciIiIqJMp1TJa9UyhHAAqFhRbk+dytz2KF8AuLsb9qU1kJcvD1SrBsTFGarrRJQ9MZCbKyGQawUndSMiIiLKLMOHA61aAdOnm+6vVEluM7NCHhUFXL4sr69aBbi4yOv+/ml/jrffllvjQC4EJ3ojym4YyM3FCjkRERFRpitaFNi8GahZ03S/UiHPzEB+4QIQHy/HjLdoIbueDxtmqOKnRatWcrt9u1xfHQA++wzw8pJrrRNR9sBAbq6EQO4gGMiJiIiI1KYE8qtXgfDwzHlNJfxXrCiXZWvWDJgyRU40l1ZVqsiKelgYsH+/XL7txx/lxHUbN1qn3URkexjIzaVM6ibiAQj9N5pERERElPny5AHy5pXdvc+ezZzXNA7k6aXVGqrkf/0FzJolx5QDwMmTGWsfEWUdDOTmSqiQA4AD4lkhJyIiIlJZZk/spgTyChUy9jxKIF+/Hpg717CfgZwo+2AgNxcDOREREZFNycxx5EIYljzLSIUcAN56S3Zzv3ULCA4G8uWT+69elV3Zicj+MZCbyyiQOyKOgZyIiIhIZZk50/r9+8CLF3IUY5kyGXsuLy+gfn3D7VGjDN3vM3tddSJSBwO5uRjIiYiIiGyKUqk+c0ZO7LZpk2FZMktTgnKpUoCra8afT1n+zNcX6NEDqFxZ3ma3daLsQdVAPmnSJFSvXh1eXl7IkycP2rZti8uJ/veMiopC//794efnB09PT3To0AGPHz9WqcXQT+oGMJATERER2YLixWU4Dg8HAgKA1q3lEmTx8YZjbt0Crl3L+Gsp3dUzOn5c0asX0LkzMG8e4OHBQE6U3agayPft24f+/fvjyJEj2LFjB2JjY9G0aVOEG61ZMWTIEGzatAmrVq3Cvn378ODBA7Rv3169RmsNHxkDOREREZH6HB0NVXJl7PX9+8ChQ4Z91asD1aoBISEZey1LzLBuzMcHWLkS6NhR3mYgJ8peHF9/iPVs3brV5PaiRYuQJ08eHD9+HPXr10dISAgWLFiAZcuW4c033wQALFy4EKVLl8aRI0fwxhtvZH6jNRr5v35cHAM5ERERkY2YMUMG25YtgYULgeXL5Xre9eoBGzYAz57J4w4fBpo3T//rWDqQJ6YE8nPngJgYwNnZOq9DRLbBpsaQhyR8ZZkzZ04AwPHjxxEbG4smTZrojylVqhQKFiyIw4cPJ/sc0dHRCA0NNblYXMI4cs6yTkRERGQb3ngDmD5dzlzerp3ct2GDnCBt6VLDcUrVPD3Cw4ErV+R1awXywoVl1Tw2FrhwwTqvQUS2w2YCuU6nw+DBg1GnTh2UK1cOAPDo0SM4OzsjR44cJsf6+/vj0aNHyT7PpEmT4OPjo78EBgZavrEJgZwVciIiIiLb07y5rCxfvQrs3w9s32647+DB9D/vqVOATieXJ8ubN8PNTJZGY5g1nt3WieyfzQTy/v3749y5c1ixYkWGnmfkyJEICQnRX+7evWuhFhpJmNiNgZyIiIjI9nh5AY0ayesffignd8uTR97+918gLi59z/vff3JbrVrG25gajiMnyj5sIpAPGDAAmzdvxp49e1CgQAH9/oCAAMTExCA4ONjk+MePHyMgICDZ53JxcYG3t7fJxeJYISciIiKyaW3ayO3Vq3I7YoTsCh4ebpgp3VxKIK9aNePtSw0DOVH2oWogF0JgwIABWLduHXbv3o3ChQub3F+1alU4OTlh165d+n2XL1/GnTt3UKtWrcxurgEDOREREZFNa93acF2rBd57D1D+fEzvOPLjx+XW2hXyKlXk9sQJIDrauq9FROpSNZD3798ff/zxB5YtWwYvLy88evQIjx49QmRkJADAx8cHffr0wdChQ7Fnzx4cP34cvXr1Qq1atdSZYV3BSd2IiIiIbFr+/Ibg/Oabcsx37drydnoC+atXwKVL8rq1K+RlygD+/kBERMYmoaOsQwi1W0BqUTWQz549GyEhIWjYsCHy5s2rv6xcuVJ/zPTp0/H222+jQ4cOqF+/PgICArB27VoVWw2TCjm/tSQiIiKyTcOGATlyyO7qAFCnjtymZ2K3kydlaCpQQIZla9JqgaZN5fVEqwSTHbpwAcidG5g8We2WkBpU77Ke3KVnz576Y1xdXfHzzz/jxYsXCA8Px9q1a1McP55pOKkbERERkc3r0gV4+RJQVtCtUUP+GXfnDnDvnnnPlVnd1RXKWunbtmXO65F6tmwBnj+Xy/RR9mMTk7plORxDTkRERJTleHoa1g83tyt4Zs2wrnjrLbkE2unTwMOHmfOapA5l4sEUVnUmO8dAnh4M5ERERERZkjKOfP1688btZtYM64rcuQ2vZbyOOtkf40DOseTZDwN5enBSNyIiIqIsqUMHuV2+HJg6NW2PCQ0FrlyR1zMrkANAs2ZyazyOnIHN/ii/WxERQFiYum2hzMdAnh6skBMRERFlSQ0bAlOmyOuffQYsXfr6x5w4IbdBQbJynVmUceQ7dgA7dwKlSwPly8tx8WQfIiJM5zNgt/Xsh4E8PTipGxEREVGWNWwYMGSIvP7++3K89ooVSPbvushIYP58eT0zq+MAULMm4O0tJ/x66y257Nr58/KLBLIP16+b3mYgz34YyNODFXIiIiKiLG3KFKBfP9kFfOdO4L33gDZtTLuE//efDOHLlsnb776buW10cjLMEA8AnTrJid4WLJBttjfBwXKMv9KDITtQuqsrOIFf9sNAnh4M5ERERERZmlYLzJ0L3LgBfP014OYmx2qvWCHvP3ECqFsXuHgRCAgANm0COnfO/HaOHg107w7s3Qv8+SfQv7/c37cvEB6e+e1Jj2fPgFmzXj8+eu9e4PBhYObMTGmWTVAmdFOwQp79MJCnByd1IyIiIrILhQsD48cDo0bJ28OHA/fvy/AdHS0r1OfOAW+/rU77KlYEliwBGjSQt7/9FihYELh1S4Z1W7NqFfDOO8DTp4Z9o0YBAwfKoQKpuX1bbu/elUMFsgMGcmIgTw9WyImIiIjsyrBhQNGiwIMHQKVKcmxvUBCwciXg56d26wy8vIA5c+T1mTPluHJbIYQc3755s+xWr+zbskVeX7w49cB5547heuKx1fZK6bJerpzcMpBnPwzk6ZFoUjcuP0FERESUtbm6Aj/+KK8/eybrLytXAjlzqtuu5LRoIavQcXFycjohgKgo2S181CjZBf+nn2SFPzOdPWuocv/1l9xeuSIr3oBsT2rd0Y0DeeLKsb1S3mf9+nLLQJ79MJCnh1GFXAggPl7l9hARERFRhrVqBbRtK6//8IOc5dxWTZ0qJ33bulWG3DfekN3Cv/0WmDgRGDRIrrWemTZuNFw/dEguz7Zjh7ydI4fc/vKLXNc9OdktkIeGAo8fy+v16smtcSCPiwMOHgS+/BLo2pUTvtkrBvL0MArkQPJLZBARERFR1rN8uaz0Dh6sdktSV7y4oY2DBwOnT8s10gcOBKpXl/tPncrcNm3aZLiu0wHbtxsC+WefAaVKASEhwLx5yT8+uwVy5T3myQOULCmvK4H85UugWDE5seCkSfL38tdf1WknWRcDeXoYTeoGZH53ICIiIiKyDldXw3heW/fVV3IGeAB4800ZymfOlMu5AcCFC5nXlocPgaNH5fXu3eV2wwZgzx55vWlTw/rpU6YAx46ZPj4qyrQ6nJ0CefHihp/j48ey9+3+/bL7v7u7/CIDyD7j6rMbBvL0YIWciIiIiFTm7Q0cOACsXy+r0Xnzyv1lysjtxYuZ15bNm+W2Rg2gTx95feVK4NUrOQ6/cmWgWzegRAkZOmvVkuPdlcLWvXumz5edAnmJErJ3g0YjexY8ewacOSPva98eGDNGXr9xQ512knUxkKdHQiB3dWAgJyIiIiL1FC0KtGmjn3MYAFC6tNzeu5d0vPbz50DLlnLMuSV7eSrjx1u3BurUkV8W6HRyX+PGsn0uLnJMdJcusgr87beGsKl0V/f3l9sHD7LOOuvppcywXry4jBe5c8vbjx4ZAnmFCnJpPgC4eTPz20jWx0CeHgn/47kwkBMRERGRjfH1NXSBNl4W7fZtOSZ5yxbg33+Bkyct83rh4cDOnfJ669ZysrmmTQ33v/WW4XquXHI89PTp8rayJJoSyCtWNMxsf+2aZdpnq4y7rAOGn5lxIK9YEShSRF6/f1927Sf7wkCeHgkVcgZyIiIiIrJFSpVc6bZ+7ZrsJm4c0M+ft8xr7d0rg2KhQobx9y1bGu43DuSKDh0MbYiKMiyXFhRkCKj23m3duMs6YAjkN24Y7qtQQX6J4ekpl7dTPieyHwzk6ZEQyJ0d5KRuDOREREREZEsSB/LvvpMTr5UpA3TuLPedO2eZ1/r3X7lt2FCOgwbkOun+/nJfoUJJH1OggAya8fFyVnulQl6wYPYI5M+fAy9eyOvFismtMgfA7t2yu3/u3PIz1GgMVfKsNo780SMgLEztVtg2BvL0YIWciIiIiGyYMrHbhQuysrp1q7w9bZqhYp3WCrkQcqz3Rx8Bly8nvV+ZMV1Zbg2QYfvWLTnZXHI0GqBKFXn9xInsF8iV95Y/v5xJHTBUyJXu/xUqGL7gyIxAHhVluvRcYuHh5o3rv3xZznHQqJFhPgFKioE8PZQKuZaBnIiIiIhsj3GF/Px5Of7Y1RWoX9/QrTytgfzaNWD8eLl+eJkyQM+ecp1sQIb1//6T16tVM32cq6scT54SBnJDd3XAEMiDg+W2QgXDfUogt9bEblevyuXVihY1LFVnLDxc/lyqVgUiI9P2nNOnAxER8vfjr78s2157wkCeHgmTujGQExEREZEtUgL5jRtyWTRAVird3AzV8wcPDME6Nfv3y627u6x0Ll5sWFP89m25TJeTk5yAzBxKIP/vP0Mgzy5jyI1nWFcogVxhHMiVmdatUSE/cwaoV0/+LOPigP/9L2m+OXlSDnm4fBn49dfXP+fz58DvvxtuT55s2TbbEwby9GCFnIiIiIhsWEAAkCOHDNCzZ8t9zZvLrbc3EBgor6elSq4E8k8/BVatktc3bJDjv5XqePnyclkzcyiB/ORJ2V1ao5FduJWQ+vhx0mXb7EXiGdaB1AO5tbqs37wJNGggP+uKFeWY9cuXgalTTY87fdpw/bvvXj/b+7x5spJeooT8subAAeDQIcu23V4wkKdHQiB34qRuRERERGSDNBpDlfzBA7lVAjlgXrd1JZDXqyfXPPfxkVXxo0eTHz+eVkWKyOcSQt7Omxdwdpb7lDW57XXps9S6rAOAVmvoyQCYBnLl87KENWtkF/kKFeRs+VOmyP0TJsg5ABTKMmyA/H1auDDl54yNBWbNktdHjQLef19e/+EHy7XbnjCQp4dSIdewQk5EREREtkkJ5IAMdMbV2LJl5fZ1gfzBA+D6dRnwa9eW1c4WLeR9mzenPH48LYwndgPk+HGFPXdbF+L1XdZLlpRj8BXKTPWvXsnu4JZy757cNmsme1R06yZnxo+MBD7/3HCcUiFv0EBuJ00CoqMN9z9+LNeg79wZ6NNH/t4EBADvvgsMHy6P2bAh+UkBszsG8vRQKuTssk5ERERENsq4wtq8uWHGbiDtgVypjleqJCvXAPD223K7cSNw/Li8np4KOWAayIOCDNftOZA/fiyXAtNqDZVvQH6+Srd/4+7qgAzn+fPL65bstn7/vtwWKCC3Go2hu/qmTTJ0K0vTAcCMGbInw927wKJFhueZMkUev2oVsGSJ3PfJJ/L9lC4tv8QRwjCfARkwkKeHMqkbK+REREREZKOMK+TG3dUBQyB/3Vrkxt3VjZ9Lq5WPDQmRYVF5PnNlxwq58p6CgkzH3Ws0hrXIEwdywDozrSuBXAn7AFC5shxLHhUFHD4se0hERMifc/nywIgR8rjJk+UkcFFRhi7sH38MfPAB0L27nHNAobyfhw8t13Z7wUCeHkqFPCGQG3fXICIiIiKyBco61m5ucoZ1Y0r1/MkTOR68f385k3fisJdcIPfzk93XFZUr6/88Nlt2DOTJdVdXKPtq1kx6nzVmWle6rCsVckD+zrz5pry+e7ehu3q5crIu+eGH8nfgxg05Bn31atmNPjBQjh1fvFhWyb29Dc/p7y+3jx5Zru32goE8PRL+x3HUcFI3IiIiIrJNBQrIsLR5M+DpaXqfh4ch4H3yCfDLL3ISr++/NxwTHGzoqmwcyAFDt3Ug/d3VATmpmdK27BLIk5vQTfHrr8DatYZAbMzSM63Hxxsq1sYVcgBo3Fhud+82TOimLGvn4QEMHCivf/edYRb/fv30HYmTUMbHP35smbbbEwby9EhUIWcgJyIiyrjo6GhUqlQJGo0Gp06dUrs5RHahffvkwx1g6GauLGUGyOrmkyfy+sGDctxv8eKGCqfCOJCnZ0I3hVYL9Owpq6vGVfdixeT22TP5xYAxnQ6YM0eGQUvOOJ5ZklvyTFGwINCunel4f4WlA/mTJ7LLuVabdMk15Xfm33/l7wFgus78gAFyXfpTp+RyZg4OcjK3lCi/PwzkSTGQpwcDORERkcV9/vnnyJcvn9rNIMo2jMd9d+kiK91RUbJaDshZsYGk1XFAdnmvWFGOK1Zm3k6vn34Cbt8GcuUy7PPyMoRE4yp5cLAMrP/7HzBypAyEWU1qXdZTY+lArowfDwhIOuSgcGF5iYsD9uyR+4wDuZ+frIgr2rY1jH9PDrusp4yBPD0S+mI4goGciIjIErZs2YLt27djirIILhFZXa1acluunOwqPWyYvP3zz8DEicD8+fJ2u3ZJH6vRADt3yondjLuap1dyFeHE3dZv3QKqVpWzuyv++Sfjr50Zjh8HLl6U1X1lbfXkuqynRgnkd+8a1pbPCGX8eOLu6orEPSsSTzQ3dKghyH/8ceqvpXy58vIls1NiDOTpoYwhZyAnIiLKsMePH6Nv375YsmQJ3N3dX3t8dHQ0QkNDTS5EZL7WrYGtW+XEbR4eQIcOcubvZ8+Ar7+Wx0ycaNo93ViuXEDRotZrX+JAPnmyrA4XKiTXywYMk87ZsufPgTp15OR3v/8ueyE4Opou85YWAQFAjRpy7Hffvhnvrp94ybPEjAN5UJBcp9xYYCCwciXw44+GMecp8fU1hHdlSARJDOTpkfDb5MBJ3YiIiDJECIGePXvi448/RrU0DkSdNGkSfHx89JfAwEArt5LIPmk0QLNmhqDl6AgMGWK4/8svgVGjVGkagKSBfO9euZ0+3VCR3b/f9seRnz8vV2WKjgZ69ZL7ihQxf2Z6jQb47TfA2Rn4+2/DUmPpZU6F3Li7urH27YFBg5Lv4WBMqwXy5JHX2W3dFAN5erBCTkRElKovvvgCGo0m1culS5fw008/4dWrVxg5cmSan3vkyJEICQnRX+7evWvFd0KUvfTtC7z7LvDNN7I6riYlkF+7JquqFy/K2/XqyfHuLi5yv63PxH75ctJ95nZXV5Qta/i5DB4M3LmT7ma9tkIeEGBYHi+lQG4OzrSevHSuGJjNuboCAFziIgAwkBMRESU2bNgw9OzZM9VjihQpgt27d+Pw4cNwcXExua9atWro1q0bFi9enORxLi4uSY4nIstwdwdWrFC7FZJxhXzfPnm9fHk5oRggu2/v3y8v6Q24mUEJ5B9+CFy6BBw4ILuvp9fQocD69XJ281Gj5Jrf6fG6CjkgQ/+ECfJLmoziTOvJYyBPj4R+Pa4xIQAYyImIiBLLnTs3cufO/drjZs6ciYlGZbgHDx6gWbNmWLlyJWrWrGnNJhKRjVOWPnvxAli3Tl43ntG9Xj1DIE9tya30iI0FnJws81zKrOqVKwMzZshx+02bpv/5HBxkt/2aNeWSdT/+COTMaf7zvK5CDsgeE337pq+diXGm9eSxy3p6JARyt6hgAAzkRERE6VWwYEGUK1dOfymRUOYqWrQoCqT2VyIR2T13d0P1du1auU0cyAHLT+z2xRfyz/2zZy3zfEqFvGRJw+R5Xl4Ze87q1WU38uho4I8/zH+8EIZAnlqF3JJYIU8eA3l6JARyl8iXABjIiYiIiIisQem2Hh0tt/XrG+6rXVtOFnbjhiFcZpQQsgt4RARw+HDGny821rBueMmSGX8+hUZjWAd83jzzJ7YLCQHCw+X1zArkWWEMufJ7lpkYyNMjIZA7x4TDEbEM5ERERBZSqFAhCCFQqVIltZtCRDZACeSAnGBMmakbALy9AeW/CktVyW/cMKzx/fRpxp/v5k0gLk5W+/Ply/jzGevWDXBzk7O4Hzli3mOVLzB8fWXbMkNmd1m/fx8IDk778Zcvyy8NBg/O3Jn7GcjTw8fHcBUhDORERERERFZgHMiNu6srlG7r//xjmdczDvaWWC9b6a5eooSs5luSj49hsrX58817bFomdLO0zOyy/s8/QOHCQK5cslfF1Kmvr37/+qsM8DduvH4ZN0tiIE8PR0f9wI8cCFalawMRERERkb17XSBv0kRu//xTdjPPKONgb4kKufH4cWtQJlxbsUJ2Q0+rtEzoZmmZ1WU9IgLo3VsOF4iPl1+yDB+e+uoB0dHAokXyuqUmsUsrBvL0Sui2ngPBrJATEREREVnB6wJ5ixayEvr8efqX/zJmXCG3RCBXZli3ViCvVQsoWhSIjAQOHkz749SskL98ad2x2qNGAdevyy8bzpwB3npL7lfec3LWrweePZOfR4sW1mtbchjI0yshkPviJQM5EREREZEVlC4N9OwJfPaZocJqzMEB+PRTeX3aNECnS3pMWivnDx8C164ZbluyQm6tddI1GuCNN+T148fT/jg1KuS+vrKjMWCZ4QDJOXRILgMHyG785csb1nx//jzlx82bJ7d9+hjamFkYyNOLFXIiIiIiIqvSaoGFC4HJk1M+pndvOZ76yhXg779N75s+HfD0BLZsef1rKdVxNze5zQpd1gGgalW5NSeQq1Eh12ozPrHb8eNAy5bAhQvJ3//553JCtp49gebN5T4/P7lNKZBfuwbs3i2/3OjdO33tyggG8vTy9QXAQE5EREREpCYvL8MSYNOmmd63c6cMaMo65qlRxo8rQe7pU/Nn2759GwgKksEuJMQwXtpaFXIAqFZNbm29Qg5kfGK3Tz+VX65MmJD0vvh4w2fw5ZeG/Tlzyu2LF8k/56+/ym3z5vJnl9kYyNOLFXIiIiIiIpswcKDsvr5nD3DunGH/nTtym5Y1xZUKefv2chsba95EaQDwzTfyNRcuBEaOlPsCAuQSbdZSubKs7t67l7agGx8P3L0rr2dmhRzIWCA/fdowTv6vv5KOQ795E4iKAlxdgSJFDPtTq5DHxRkmc1O+1MlsDOTpxUBORERERGQTAgMNk74pVVIhZMUakF2cUwvXL18CZ8/K62+9BXh4yOvmdFu/f98Q7gBg9my5tWZ3dUB2yVdeI3GVPD5efjEwdiwQFibH2H/4oawWu7vLCfEykzIPQHq6rP/8s+H6q1eym7mx8+fltlQp+eWMIrUK+e7d8ssBPz+gVSvz22QJDOTpxUndiIiIiIhsRrFicnvjhtyGhMjgBshw/u+/KT/28GF5TIkSsoqbO7fcn1wgf/DAMHu6sSlTZFW9bl259rXC2oEcSHkc+datwHffAePGAeXKAZ07yy8NHByA33/Xr+ScadJbIX/5EvjjD3m9ShW5TTwMQQnkZcua7k+tQr58udx27gw4OZnXJkthIE8vVsiJiIiIiGyG0k355k25VbqrK5Ru61FRcgZu47CthDkl7OXJI7eJA/mLF0ClSjJkN2oEbNokQ/jTp4aZur/6Cli82BB2MyOQK+PI//vPdP/vv8utg4PsLbBmjezevmQJ0KGD9duVWHoD+aJFcmm38uXlFwwAsGGD7AGgeF0gf/HCdBb+qChDqH/vPfPaY0kM5OnFSd2IiIiIiGyG0v1aqZAr3dUVR47I7ddfy/HCo0cb7rt0SW5LlZLblCrk339v2Ld3L9C6tQze1arJ5dWqVgWaNgUKFQJWrwY6dgS6d7fEu0tdchXy4GAZWpW2DhsmJ3FbvFi9AJqeLus6HfDLL/J6//5Aw4ayNvr0qVzmTKHMvJ44kCtd1nU6IDTUsP/vv+XtwECgTh1z3oVlMZCnFyvkREREREQ2QwnkiSvkyszZR47ILuzz58vbR48aHqsE8tKl5Ta5QH7/PjBzprw+d65cG93PT04uprzWqFGyAg3IYL5qlaHabk3KxG737xvC7urVsm1ly8rAOWWKnMzt/fet356UpKdCfuCAXJrM2xvo1k12LX/nHXmfUuGOjzf8DBMHchcXw5wAxt3Wly2T2/fek0uyqYWBPL04hpyIiIiIyGYoXdYfPJDdkZWQ3KqVXFs8OFh2J1cmdzt/Xs6yLQRw8aLcl7hC/uSJ4fknTJDPW6cO0LevXBv96VMZFleskOG7bVtrv8vkJTex25IlcvvBB4YvCdSWnkC+YoXctm8v36dyHQDWrZM/vxs35M/GzU32Tkgs8cRuISHA5s3yuprd1QEG8vQzqpDrdKbjF4iIiIiIKHPlzGkYt33rlqHLetGiQPXq8vpPPxmOj46WYfrpUzlpmEYDFC8u70tcIb961bBe9aRJhoCr0cjnf/dd2T1dzeBrvB75rVtyXXWNBujaVb02JaZ0WQ8OlrO+v05cnKz0A0CXLob9TZvKWeJv35Y9H1KaYV2ReGK3DRvkz790aaBixXS9FYthIE8vo0AOgFVyIiIiIiIVaTSmE7spFfKCBYE33pDXhZBV1jJl5O0zZwzV8cKFZYUVSBrIZ8+WBbgWLYB69az/XtJDGUf+3XeGNjZuLMeN2wpfX/nzAGRX9NfZs0f+DHLlAt5807Df3V1+AQLINd9TmtBNkTiQK70IWrVSv/cAA3l6JUzq5oYouCAqycL0RERERESUuYwndjMeQ16rluGYnj2B2rXl9bNnk07oBiQN5CdOyK1xldbWtGwpewhERgL37sl9vXur26bENBqgSRN5fefO1x+/cqXcduiQdFmyXr3kdsUKw+zyKQXyxF3W796V2+S6t2c2R7UbkGV5eUFoNNAIAR+EICbGVe0WERERERFla0ogv3xZjiUHZEW2YEE5cZdOBwwYAGzfLu87c8awVrkyoRtguuyZEPI4QC67ZatKlJBjs69flz0EhDBMfmZLmjQBfvsN2LUr9eNiYuQybUDyX4TUry9/3jdvGmaTT2uFXAnkgYHmtd0aGMjTS6uFxscHCA5OmNjNX+0WERERERFla0qX9f37ZSB1cZHVbq1WVls1Gjn52cOH8rgzZ6Dv6ZpShfzBAznG3MHBNLTbIjc3oFw5ebFVStfzU6fk56t81olt3y7HmufNm/wwAa1W9nYYM0b+rIHXV8htMZCzy3pGcOkzIiIiIiKboVTIT5+WW6UyDsgxxx06yOtKpfvWLcN44uQCeXQ0cPCgvF6iBODKTrEZ5u9v+Pz37En5uD//lNtOnZKfqA0AevQwjAFPaYZ1wFAhf/FC/kyVWd5tYXw9A3lGJIwjZyAnIiIiIlKfUiFXKqbKBGKJ+fkB+fLJ68+eya1x9dvDwzDB2+7dcmvL3dWzmteNIxfCMKygXbuUnycoyFBxL1065fXEjbusK0MZXF3lZHFqYyDPCFbIiYiIiIhsRuIKaUqBHAAqVDBcz5XLENoUSpVcCeTGx1PGvC6QX7woq9hubqYT8iVnyBBZJW/ePOVjjCd1U7qrFyig/gzrAAN5xjCQExERERHZDDc3w1rXgKygpsQ4YCc3NlwJ5Fevyi0r5JZTvz7g6CgnZLtxI+n9ypcgdevKeQBS06qVnBNg3LiUjzGukNvS+HGAgTxjEgK5nNRN3aYQEREREZGh2zqQeoXcOGAbjx9XKDOtK1ghtxxPT8Pa8MnNtq7sM157PDX+/jLgp8R4UjcGcnvCCjkRERERkU1RJnYD0t5lPbUKOSDX906t2k7ma9xYbv/5x3R/fDywd6+8ntZA/jpKhTwkRE7kB9jGhG4AA3nGcFI3IiIiIiKbktYKealShqpqchVy40BevrxtjDe2J1WqyO3Zs6b7T52Sy515exuOyaiE2AbAsKY8K+T2wKhCHhWlblOIiIiIiMi0Qp5a6HJ2lsug5c9v6D5tLHEgJ8tSPtOLF4HYWMN+Zfx4gwapd0M3h6Mj4OMjrzOQ2xOjMeQ//WRYXoGIiIiIiNRRtKjcBgS8ft3wFSuA27dNK6gKBnLrCgqSY8ljYgwT5wGGQK50abcUpdt6eLjcMpDbg4RAnlMTjJ07gTlz1G0OEREREVF2V7s28OGHwLffpu14B4fk9xsHck7oZnlaLVCunLx+7pzcxsQYxpRbavy4QpnYTcEx5PYg4au0ormCAQDDhwPXr6vYHiIiIiKibM7REZg/H+jVK2PPYxzIleBIlqX0PFDGkR89CkREyM++bFnLvpbxOvPu7sn3ilADA3lGGI0hb9RI/vL07s2u60REREREWV3JknJ29WrVbCe82Rvliw4lkG/fLrdvvikr6JZkHMgDA21nkj4G8oxICOSa4GD8tkDA3V12sVi2TN1mERERERFRxvj6AjdvAvv3q90S+5W4Qr5tm9w2a2b51zLusm4r48cBBvKMSQjkiI1FIc1tXPF7AwvQG58P1+HVK1VbRkREREREGeTn9/qJ4Sj9lEB+4wZw5w5w7Ji83bSp5V/LuEJuK+PHAQbyjPHwMMwC0b078t/9F72xED0fTcLEieo2jYiIiIiIyJblyiVnwweAH3+UQ3/LlZNL0VkaK+T2SKMxDCg5eFA/0GECvsbZqdtx/ryKbSMiIiIiIrJxSpV8/ny5tUZ3dSDpGHJbkSUC+c8//4xChQrB1dUVNWvWxNGjR9VukoHSbR0Axo8H+vaFFgJL4t/DZ43+w7VrqrWMiIiIiIjIpikTuylDfrNbIHdUuwGvs3LlSgwdOhRz5sxBzZo1MWPGDDRr1gyXL19Gnjx51G6eIZDXqAGMGAHExSH22En4nfoPfz+tjjUVuyN64RfQFSuBkAgneHrK7hI5c8oe77Yyu59dEAK4dQv491/A2xuoVSvplJhCAM+fA1evAteuAQ8eAGFhQHg44OQkfyhubvJYnU4en9o2IkI+PipKPkajAYoVAxo3lms1/PefnOkvPl7+b1OgALBrF7BuHRAaCrz9NtCpE1C1quF1FTqdbOvz50BkpHyNqCjT6yld4uLkgCd3d8PFzc1w3dERiI2Vx2m1cuiFo6PcOjjI9sbEANHRhq1WK5/Tzc2w1WoN9yd3cXKS05N6ehq2bm5yv4ODPCYy0nBR2h4fLz8DV9eUL4D8uYWHy59DeLhsi6Oj6cXBwbr/0Kz93Ikvjo7y/bu4mG6dnOT98fHyjBYSIi+hoYafc+KLg0Py+43vB+RzKj+XuDjDJT5evm7OnPLfmvK7Ex8vf3/j4+XPNCLCcAkPl8+Z0s/VxUU+NjbWcImJMVzX6eTvkbe3PDZxe4xvJ0erTfo7Api+nvI6jo7y/cXEGNpfogRQuLD1fuZERETZjFIhB+SfAnXrWud1jLus29IYco0Qtr1IV82aNVG9enXMmjULAKDT6RAYGIiBAwfiiy++eO3jQ0ND4ePjg5CQEHh7e1u+gbNnAwsXAn/8If9QA4AnTxD5yTC4rflDf1g8tLiLQETAHfFwQBwcodM4QOPgAB208m9XoYFGo4FGC/1W/rEv/+AXRluh0ehvA/L66/Ynt0+j1ci/yR200DhqoXXQIk5oERPngNh4LbROWjg6aaFx0EJotNBpHODorIWzqxYOjoAmNhaauFg4Ig5Omlg4IRZaXRwcdHKrjY+FVsQj3tkdsa6eEE4u0Gg1+myhLGcQp3FEHBwhHByhcXSExkELRxELRxELB51hq42PhSZebrVx8rpDfIw85tkjOD55qP/MhUaD2MIlIXLmhNbDDQ6vQqC5fhWakBDL/x5YQKyXL3Q5/KCNjYYmOhIOoS+hUYIpUVq4uMgvOch6pk4Fhg7N8NNY/dyUzfDzJCLKuv77D6heXV5v1gzYutU6r3P9uqybAUBwMODjY53XUaT13GTTFfKYmBgcP34cI0eO1O/TarVo0qQJDh8+nOxjoqOjEW30B2loaKh1G/m//8mLsTx54LZ6CZ5t/RTX3xuFcsEH4IEIFMJt0+MEgMRFHAFAZ8X22rlYOOIkKsMHISgprsD5xiXgRtLj7qIArqI47iIQofBGJNzhiDh4acLghkjoNFoIaKCDFkjYCmj0+0XC7QiNO8LhiSi4Ii5eAwcRi6o4jkbYAz+8wD3kx140RATcUR5nURg3cRQ1sA7t8AI50R5r8Q42ISdewunVS+DVyyRtfQFfRMAdUXBFFFwRCTdEwRXRcEW0xnCJSrgdpXFFPBzgiii4iwi4IwKuiIS7iIAbIuAuIuCEWMRqnBAPR2g1OjggXl6E/LooHo6I0TgjFs6I1rggFs7QQMBVRMIFUXAVkXAVUdAiHjEaF0TDBTEaF8TABTEaZ8TABdEaFziJWHiIMHiKV/qtC6LgJGLhgDjEaFwQBTdEatwQpXFDFNwQq3FK+NwBF0TDVUTBBVFwEVFwM3p9AIjQeCBS64EojTsitB6I1Tjr34OjiIMD4uAgkq+UJlvXNrfY/ZqvM5O9W6TtPg0EIAQ0QgAQ0GrkxRFxcBbRcBFRcEGM6eON/u+LggvCtN4I0/ogTuOU8FuccBE6aBGvv258n0bIrYOIhwY6aCD0XyDGQX5xFq9xTPiNcYQTYpBD9wKeIsykKQnPjmiNKyI17ojUuCMqYSuggTMS3kPiS8J7ioET4jROiNU4I07jpL8IaOGmC4OXLgTOIgaxCe3RwQFxGqVtjojXOBh9OWmgFTo4IA5aEQ/HhN8PDYR8fjghNuF1dNDCUcTBEbGIhTMiEn7Pnp7NiYap/9iJiIjIDGXKyEKdENbrrg7IbuolSsiJ5Kwdxs1h04H82bNniI+Ph7+/v8l+f39/XLp0KdnHTJo0CePGjcuM5r1WrubVkOvlNgidAB4/kt2p/9/evQdHVd5/HP+czW6WJBISkuYmRNAychEpEmFSnOm0MAXq1ButlUlpajvDAImCtBRbi9jpUIRO1WqdWB1r/yiVlo5YoINODBSLwyUmXAUj8yuDFAgRMeQCue15fn+su7BJCAkGztnD+zVzZnfPOdl8P5vNfvPsnuektVWmI6TW5g411ofUVN8hn2WUmGgUSDDhIy3bP7/sMAq1R/5Cv+gyslx0O/LHu7HD6yO3u91f4T/yjR3+Pm1tRh2tttrbjNpbbQV8IQ1ItJXot9Xeaqv1vC27w5Zlhw9DjazraDdSICDjD6hNAbV2+NVqBxTyBRSy/OqwwtdtYynQcV6B1iYldLQqZFuyjWSHIuXYSvSFFPCF5DMdUnv40NM2E1CrCajNDqj186XNBNSuC5etdkDn2gNqbgvoTEeq9iWMV2tCsnw+KUt1Ghvao4SWZgXtczqnZB3WCP2fblGLOh0eHmE6XV4hS7Yy9KlOK1M+n6WcnPBR6XfcIY0cKc2/JXxE7fbt92reDqOGY2eVUHtcvrOf6Zw9QI0dSTodStfJji/pfEfg0t/IfPFaHXXFj3fk+WxJ18tBBN38rC3ZSlSbBqgl/OaFWnReSTqrQWpTMPzmXn+9wXeZn5Ff7bJkFFJC9I2sS9XdE0v25wNpqxdfay7s14sae3S5r/38ebZqtBiQAwDQj5KTw4epV1VJ99579b5PYqL0wQcXjtB1C1cPyK/Ez3/+cy266HDChoYGDXV41r7ls6Tc3PCi8J+pAz5fvuRkYZ6XJSn8TwwjU6EvNyU8chlx8YSOzpM7Ot8OBC4sfr9PgcCXFAj0/EtfWCiFnxFpny/di0yNjUz7vvgyclR7d7Veqv5I1s5Lf02H7o/7ubiurj8jK3rb7mbA2d1EnEs9Fj09Vt09Jldy2+frfjr45dYHAuGj0P3+8FTs5uZw3gvTvH3y+cKvJpEp25HH5OJp3JeamNTT+s71Ra5HLrs+VoFu1sXuG7ne3brIzzMU8nWbobPw11mXvL8rud6b/fLzu9YCAAC+mA0bwqfAudpzu/0uHP26sKQLMjMzlZCQoFOnTsWsP3XqlHIi/7Cuk2AwqGAweC3KQxwJBsNLvIqcay2eMwAAAADdGTTIXYeRX0su+8A+VmJioiZMmKCKioroOtu2VVFRocLwR4sAAAAAAMQlV39CLkmLFi1ScXGxCgoKNHHiRD333HNqbm7Www8/7HRpAAAAAABcMdcPyL/3ve/pk08+0ZNPPqna2lp95Stf0VtvvdXlRG8AAAAAAMQT1w/IJam0tFSlpaVOlwEAAAAAQL9x9RxyAAAAAAC8igE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADvA7XcDVZoyRJDU0NDhcCQAAYZGeFOlR+GLo9QAAt+ltr/f8gLyxsVGSNHToUIcrAQAgVmNjowYNGuR0GXGPXg8AcKvL9XrLePztedu2deLECQ0cOFCWZX2h+2poaNDQoUN17Ngxpaam9lOFzvFSHi9lkbyVx0tZJPK4WTxlMcaosbFReXl58vmYPfZF0esvjTzu5aUskrfyeCmL5K088ZSlt73e85+Q+3w+DRkypF/vMzU11fVPgL7wUh4vZZG8lcdLWSTyuFm8ZOGT8f5Dr7888riXl7JI3srjpSySt/LES5be9HrelgcAAAAAwAEMyAEAAAAAcAAD8j4IBoNatmyZgsGg06X0Cy/l8VIWyVt5vJRFIo+beSkLnOO15xF53MtLWSRv5fFSFslbebyUJcLzJ3UDAAAAAMCN+IQcAAAAAAAHMCAHAAAAAMABDMgBAAAAAHAAA3IAAAAAABzAgLwPXnzxRQ0bNkwDBgzQpEmTtGvXLqdLuqwVK1bozjvv1MCBA5WVlaX77rtPNTU1Mfu0tLSopKREGRkZuuGGGzRz5kydOnXKoYp77+mnn5ZlWVq4cGF0XbxlOX78uL7//e8rIyNDSUlJGjt2rN5///3odmOMnnzySeXm5iopKUlTp07V4cOHHaz40kKhkJYuXarhw4crKSlJt9xyi37961/r4vNGujXPu+++q29/+9vKy8uTZVl68803Y7b3pu4zZ86oqKhIqampSktL049//GM1NTVdwxQX9JSnvb1dS5Ys0dixY5WSkqK8vDz94Ac/0IkTJ2LuI17ydDZ37lxZlqXnnnsuZr2b8sDd6PXuQq93l3ju9ZK3+j293ju9ngF5L/3tb3/TokWLtGzZMlVXV2vcuHGaNm2a6urqnC6tR1u3blVJSYl27Nih8vJytbe365vf/Kaam5uj+zz22GPasGGD1q5dq61bt+rEiRN64IEHHKz68iorK/XHP/5Rt99+e8z6eMry2WefafLkyQoEAtq0aZMOHjyo3/3ud0pPT4/us2rVKj3//PN66aWXtHPnTqWkpGjatGlqaWlxsPLurVy5UmVlZfrDH/6gQ4cOaeXKlVq1apVeeOGF6D5uzdPc3Kxx48bpxRdf7HZ7b+ouKirSBx98oPLycm3cuFHvvvuu5syZc60ixOgpz7lz51RdXa2lS5equrpab7zxhmpqanTPPffE7BcveS62bt067dixQ3l5eV22uSkP3Ite7y70enp9f/NSv6fXe6jXG/TKxIkTTUlJSfR2KBQyeXl5ZsWKFQ5W1Xd1dXVGktm6dasxxpj6+noTCATM2rVro/scOnTISDLbt293qsweNTY2mhEjRpjy8nLzta99zSxYsMAYE39ZlixZYu66665Lbrdt2+Tk5Jjf/va30XX19fUmGAya119//VqU2Cd33323+dGPfhSz7oEHHjBFRUXGmPjJI8msW7cuers3dR88eNBIMpWVldF9Nm3aZCzLMsePH79mtXenc57u7Nq1y0gyR48eNcbEZ57//e9/5sYbbzQHDhwwN910k3n22Wej29ycB+5Cr3cPer27emOEV3q9Md7q9/R6d+e5HD4h74W2tjZVVVVp6tSp0XU+n09Tp07V9u3bHays786ePStJGjx4sCSpqqpK7e3tMdlGjhyp/Px812YrKSnR3XffHVOzFH9Z1q9fr4KCAn33u99VVlaWxo8fr1deeSW6/ciRI6qtrY3JM2jQIE2aNMmVeb761a+qoqJCH330kSRp79692rZtm2bMmCEp/vJE9Kbu7du3Ky0tTQUFBdF9pk6dKp/Pp507d17zmvvq7NmzsixLaWlpkuIvj23bmj17thYvXqwxY8Z02R5veeAMer270Ovd2Ru92usl7/d7er17+Z0uIB6cPn1aoVBI2dnZMeuzs7P14YcfOlRV39m2rYULF2ry5Mm67bbbJEm1tbVKTEyM/nJGZGdnq7a21oEqe7ZmzRpVV1ersrKyy7Z4y/Lf//5XZWVlWrRokX7xi1+osrJSjz76qBITE1VcXBytubvnnRvzPP7442poaNDIkSOVkJCgUCik5cuXq6ioSJLiLk9Eb+qura1VVlZWzHa/36/Bgwe7OpsUnou5ZMkSzZo1S6mpqZLiL8/KlSvl9/v16KOPdrs93vLAGfR696DXuzePV3u95O1+T693X56LMSC/jpSUlOjAgQPatm2b06VckWPHjmnBggUqLy/XgAEDnC7nC7NtWwUFBfrNb34jSRo/frwOHDigl156ScXFxQ5X13d///vftXr1av31r3/VmDFjtGfPHi1cuFB5eXlxmed60N7ergcffFDGGJWVlTldzhWpqqrS73//e1VXV8uyLKfLARxHr3cXej2cRq93Pw5Z74XMzEwlJCR0OYPnqVOnlJOT41BVfVNaWqqNGzdqy5YtGjJkSHR9Tk6O2traVF9fH7O/G7NVVVWprq5Od9xxh/x+v/x+v7Zu3arnn39efr9f2dnZcZNFknJzczV69OiYdaNGjdLHH38sSdGa4+V5t3jxYj3++ON66KGHNHbsWM2ePVuPPfaYVqxYISn+8kT0pu6cnJwuJ33q6OjQmTNnXJst0qCPHj2q8vLy6DvmUnzl+c9//qO6ujrl5+dHXxeOHj2qn/zkJxo2bJik+MoD59Dr3YFer+htN+bxaq+XvNnv6fXuzNMZA/JeSExM1IQJE1RRURFdZ9u2KioqVFhY6GBll2eMUWlpqdatW6fNmzdr+PDhMdsnTJigQCAQk62mpkYff/yx67JNmTJF+/fv1549e6JLQUGBioqKotfjJYskTZ48ucu/pfnoo4900003SZKGDx+unJycmDwNDQ3auXOnK/OcO3dOPl/sS0pCQoJs25YUf3kielN3YWGh6uvrVVVVFd1n8+bNsm1bkyZNuuY1X06kQR8+fFjvvPOOMjIyYrbHU57Zs2dr3759Ma8LeXl5Wrx4sd5++21J8ZUHzqHXuwO93t290au9XvJev6fXuzdPF86eUy5+rFmzxgSDQfPnP//ZHDx40MyZM8ekpaWZ2tpap0vr0bx588ygQYPMv//9b3Py5Mnocu7cueg+c+fONfn5+Wbz5s3m/fffN4WFhaawsNDBqnvv4jOvGhNfWXbt2mX8fr9Zvny5OXz4sFm9erVJTk42f/nLX6L7PP300yYtLc3885//NPv27TP33nuvGT58uDl//ryDlXevuLjY3HjjjWbjxo3myJEj5o033jCZmZnmZz/7WXQft+ZpbGw0u3fvNrt37zaSzDPPPGN2794dPRNpb+qePn26GT9+vNm5c6fZtm2bGTFihJk1a5br8rS1tZl77rnHDBkyxOzZsyfmdaG1tTXu8nSn85lXjXFXHrgXvd6d6PXuEc+93hhv9Xt6vXd6PQPyPnjhhRdMfn6+SUxMNBMnTjQ7duxwuqTLktTt8tprr0X3OX/+vJk/f75JT083ycnJ5v777zcnT550rug+6Nyk4y3Lhg0bzG233WaCwaAZOXKkefnll2O227Ztli5darKzs00wGDRTpkwxNTU1DlXbs4aGBrNgwQKTn59vBgwYYG6++WbzxBNPxLzwuzXPli1buv09KS4uNsb0ru5PP/3UzJo1y9xwww0mNTXVPPzww6axsdGBND3nOXLkyCVfF7Zs2RJ3ebrTXZN2Ux64G73efej17hHPvd4Yb/V7er13er1ljDH981k7AAAAAADoLeaQAwAAAADgAAbkAAAAAAA4gAE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAO4qizL0ptvvul0GQAA4Cqi3wNXhgE54GE//OEPZVlWl2X69OlOlwYAAPoJ/R6IX36nCwBwdU2fPl2vvfZazLpgMOhQNQAA4Gqg3wPxiU/IAY8LBoPKycmJWdLT0yWFDy8rKyvTjBkzlJSUpJtvvln/+Mc/Yr5+//79+sY3vqGkpCRlZGRozpw5ampqitnnT3/6k8aMGaNgMKjc3FyVlpbGbD99+rTuv/9+JScna8SIEVq/fv3VDQ0AwHWGfg/EJwbkwHVu6dKlmjlzpvbu3auioiI99NBDOnTokCSpublZ06ZNU3p6uiorK7V27Vq98847MQ24rKxMJSUlmjNnjvbv36/169fry1/+csz3+NWvfqUHH3xQ+/bt07e+9S0VFRXpzJkz1zQnAADXM/o94FIGgGcVFxebhIQEk5KSErMsX77cGGOMJDN37tyYr5k0aZKZN2+eMcaYl19+2aSnp5umpqbo9n/961/G5/OZ2tpaY4wxeXl55oknnrhkDZLML3/5y+jtpqYmI8ls2rSp33ICAHA9o98D8Ys55IDHff3rX1dZWVnMusGDB0evFxYWxmwrLCzUnj17JEmHDh3SuHHjlJKSEt0+efJk2batmpoaWZalEydOaMqUKT3WcPvtt0evp6SkKDU1VXV1dVcaCQAAdEK/B+ITA3LA41JSUrocUtZfkpKSerVfIBCIuW1ZlmzbvholAQBwXaLfA/GJOeTAdW7Hjh1dbo8aNUqSNGrUKO3du1fNzc3R7e+99558Pp9uvfVWDRw4UMOGDVNFRcU1rRkAAPQN/R5wJz4hBzyutbVVtbW1Mev8fr8yMzMlSWvXrlVBQYHuuusurV69Wrt27dKrr74qSSoqKtKyZctUXFysp556Sp988okeeeQRzZ49W9nZ2ZKkp556SnPnzlVWVpZmzJihxsZGvffee3rkkUeubVAAAK5j9HsgPjEgBzzurbfeUm5ubsy6W2+9VR9++KGk8BlR16xZo/nz5ys3N1evv/66Ro8eLUlKTk7W22+/rQULFujOO+9UcnKyZs6cqWeeeSZ6X8XFxWppadGzzz6rn/70p8rMzNR3vvOdaxcQAADQ74E4ZRljjNNFAHCGZVlat26d7rvvPqdLAQAAVwn9HnAv5pADAAAAAOAABuQAAAAAADiAQ9YBAAAAAHAAn5ADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADmBADgAAAACAA/4f5vRQbrowtTkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACm8UlEQVR4nOzdd3QU1d8G8GfSe4AASYCQ0CGUUEVAKSJVBESkI4hYfoCCoiDyUkQERVFEFBVpIiBNFBtNiiIgvfdeQgglJKSXve8fN7Ozm77JbibZPJ9z9szs7OzszSaw+8z3zr2KEEKAiIiIiIiIiAqdg94NICIiIiIiIiqpGMqJiIiIiIiIdMJQTkRERERERKQThnIiIiIiIiIinTCUExEREREREemEoZyIiIiIiIhIJwzlRERERERERDphKCciIiIiIiLSCUM5ERERERERkU4YyolKkCVLlkBRFCiKgh07dmR6XAiB6tWrQ1EUtG3b1rj93r17mDBhAkJDQ+Hp6QlfX1/Url0bgwcPxrFjx7I8fla3rF6TiIhIT+pn14EDB/RuisWGDh2KkJAQs20zZszAzz//nGnfwvw5p06dCkVRrHKs/H53Afj9hYoPJ70bQESFz9vbGwsXLsz04bVz505cvHgR3t7exm2xsbF49NFHERsbi7fffhthYWFISEjAuXPn8NNPP+HIkSNo0KCB2XEWL16M2rVrZ3rd0NBQm/w8REREJdGkSZMwevRos20zZsxA79690bNnT30aBWD48OHo3LmzVY9pyXcXgN9fqHhhKCcqgfr27Yvly5fjyy+/hI+Pj3H7woUL0aJFC8TExBi3rVmzBhcuXMC2bdvQrl07s+O8+eabMBgMmY5fr149NG3a1HY/ABERUQkWHx8PDw8PVKtWTe+mZKlSpUqoVKmSVY9pyXcXgN9fqHhh93WiEqh///4AgJUrVxq3RUdHY926dRg2bJjZvvfu3QMABAYGZnksBwf+N0JERPZv165daN++Pby9veHh4YGWLVvi999/z3K/Fi1awM3NDRUrVsSkSZPw3XffQVEUXLlyxbjfqlWr0LFjRwQGBsLd3R116tTBO++8g7i4OLPjDR06FF5eXjh+/Dg6duwIb29vtG/f3viYafd1RVEQFxeHpUuXGrteZ6wsP3z4EP/73/9QtmxZ+Pn5oVevXggPDzfbJyQkBN26dcNvv/2GRo0aGdv322+/AZDdvevUqQNPT0888sgjmbrEZ9d9fcWKFWjRogW8vLzg5eWFhg0bYuHChbm+94Bl310Afn+h4oV/jUQlkI+PD3r37o1FixYZt61cuRIODg7o27ev2b4tWrQAADz//PP4+eefjR9yOUlLS0NqaqrZLS0tzbo/BBERUSHZuXMnnnjiCURHR2PhwoVYuXIlvL298fTTT2PVqlXG/Y4dO4YOHTogPj4eS5cuxddff41Dhw7hgw8+yHTM8+fPo2vXrli4cCE2btyIMWPGYPXq1Xj66acz7ZucnIzu3bvjiSeewC+//IL33nsvy3bu2bMH7u7u6Nq1K/bs2YM9e/bgq6++Mttn+PDhcHZ2xooVKzBr1izs2LEDgwYNynSso0ePYsKECRg/fjx++ukn+Pr6olevXpgyZQq+++47zJgxA8uXL0d0dDS6deuGhISEHN/DyZMnY+DAgahQoQKWLFmC9evXY8iQIbh69WqOz1NZ8t0F4PcXKmYEEZUYixcvFgDE/v37xfbt2wUAceLECSGEEM2aNRNDhw4VQghRt25d0aZNG+Pzpk2bJlxcXAQAAUBUqVJFvPrqq+Lo0aNZHj+rm6OjY6H9nERERHll+tmYnUcffVSUL19ePHz40LgtNTVV1KtXT1SqVEkYDAYhhBDPPfec8PT0FHfu3DHul5aWJkJDQwUAcfny5SyPbzAYREpKiti5c6cAYPb5OmTIEAFALFq0KNPzhgwZIoKDg822eXp6iiFDhmT7c44YMcJs+6xZswQAcevWLeO24OBg4e7uLm7cuGHcduTIEQFABAYGiri4OOP2n3/+WQAQGzZsMG6bMmWKMI0Zly5dEo6OjmLgwIFZ/vw5ye93FyH4/YWKD1bKiUqoNm3aoFq1ali0aBGOHz+O/fv3Z9n9C5ADyVy7dg2LFi3CK6+8Ai8vL3z99ddo0qSJWTcy1ffff4/9+/eb3f777z9b/0hERERWFxcXh//++w+9e/eGl5eXcbujoyMGDx6MGzdu4OzZswC0inrZsmWN+zk4OKBPnz6Zjnvp0iUMGDAAAQEBcHR0hLOzM9q0aQMAOH36dKb9n332Wav8PN27dze7rw52lrFi3bBhQ1SsWNF4v06dOgCAtm3bwsPDI9P2nCreW7ZsQVpaGkaOHFmgtlvy3QXg9xcqPjjQG1EJpSgKXnjhBcydOxeJiYmoWbMmHn/88Wz39/f3xwsvvIAXXngBAPD333+jS5cuGD16tPE6L1WdOnU4UAoREdmFqKgoCCGyvDa5QoUKALTrl+/duwd/f/9M+2XcFhsbi8cffxxubm6YPn06atasCQ8PD1y/fh29evXK1BXcw8PDbHCzgvDz8zO77+rqCgCZXrNMmTJm911cXHLcnpiYmO1r3rlzBwAKPPibpd9dAH5/oeKBlXKiEmzo0KG4e/cuvv76a+OHVV61bt0aHTt2xJ07dxAZGWmjFhIREemrdOnScHBwwK1btzI9pg6QplbG/fz8cPv27Uz7RUREmN3ftm0bwsPDsWjRIgwfPhytW7dG06ZNM03rpbLWnN96KVeuHADgxo0bBT5WQb67APz+QkUTQzlRCVaxYkW8/fbbePrppzFkyJAs97l9+3aW04akpaXh/Pnz8PDwQKlSpWzcUiIiIn14enqiefPm+Omnn8yqyQaDAT/88AMqVaqEmjVrApDdq7dt24a7d++a7bdmzRqzY6ohW61Sq7755psCt9fV1TXXQdcKW8eOHeHo6Ij58+cX+Fh5+e4C8PsLFS/svk5Uwn344Yc5Pr5s2TJ88803GDBgAJo1awZfX1/cuHED3333HU6ePInJkycbu66pTpw4gdTU1EzHqlatmvFsORERUVGybds2synLVF27dsXMmTPRoUMHtGvXDm+99RZcXFzw1Vdf4cSJE1i5cqUxZE+cOBG//vor2rdvj4kTJ8Ld3R1ff/21cZozdRquli1bonTp0nj11VcxZcoUODs7Y/ny5Th69GiBf4769etjx44d+PXXXxEYGAhvb2/UqlWrwMctiJCQELz77rt4//33kZCQgP79+8PX1xenTp3C3bt3sx1NPju5fXcB+P2FiheGciLK0VNPPYWIiAj88ccfmD9/PqKiouDt7Y0GDRpg2bJlWU6jkl13sgULFmD48OG2bjIREZHFxo8fn+X2y5cvGyvgU6ZMwdChQ2EwGBAWFoYNGzagW7duxn3DwsKwZcsWvPXWW3j++edRunRpDB48GG3atMH48ePh6+sLQHZz//333zF27FgMGjQInp6e6NGjB1atWoXGjRsX6Of4/PPPMXLkSPTr1w/x8fFo06YNduzYUaBjWsO0adNQo0YNfPHFFxg4cCCcnJxQo0YNvP766zZ5PX5/oeJEEUIIvRtBRERERGSvOnbsiCtXruDcuXN6N4WIiiBWyomIiIiIrOTNN99Eo0aNEBQUhPv372P58uXYsmULFi5cqHfTiKiIYignIiIiIrKStLQ0TJ48GREREVAUBaGhodl2lyYiAth9nYiIiIiIiEg3nBKNiIiIiIiISCcM5UREREREREQ6YSgnIiIiIiIi0ondD/RmMBgQHh4Ob29vKIqid3OIiIgghMDDhw9RoUIFODjw/HhB8bOeiIiKGks+6+0+lIeHhyMoKEjvZhAREWVy/fp1VKpUSe9mFHv8rCcioqIqL5/1dh/Kvb29Acg3w8fHR+fWEBERATExMQgKCjJ+RlHB8LOeiIiKGks+6+0+lKvd2Hx8fPhBTURERQq7WlsHP+uJiKioystnPS9kIyIiIiIiItIJQzkRERERERGRThjKiYiIiIiIiHRi99eUExHllRACqampSEtL07spVMw5OjrCycmJ14wTERUx/Kwna7HmZz1DORERgOTkZNy6dQvx8fF6N4XshIeHBwIDA+Hi4qJ3U4iICPysJ+uz1mc9QzkRlXgGgwGXL1+Go6MjKlSoABcXF1Y4Kd+EEEhOTsadO3dw+fJl1KhRAw4OvFqMiEhP/Kwna7L2Zz1DORGVeMnJyTAYDAgKCoKHh4fezSE74O7uDmdnZ1y9ehXJyclwc3PTu0lERCUaP+vJ2qz5Wc9T90RE6VjNJGvi3xMRUdHD/5vJmqz198S/SiIiIiIiIiKdMJQTERERERER6YShnIiIjNq2bYsxY8bkef8rV65AURQcOXLEZm0CgB07dkBRFDx48MCmr0NERFQS8PO+aOFAb0RExVBuI8YOGTIES5Yssfi4P/30E5ydnfO8f1BQEG7duoWyZcta/FpERESUM37elwwM5URExdCtW7eM66tWrcLkyZNx9uxZ4zZ3d3ez/VNSUvL04VumTBmL2uHo6IiAgACLnkNERER5w8/7koHd1y3Qrx9Qrx6wa5feLSEiWxICiIvT5yZE3toYEBBgvPn6+kJRFOP9xMRElCpVCqtXr0bbtm3h5uaGH374Affu3UP//v1RqVIleHh4oH79+li5cqXZcTN2ZwsJCcGMGTMwbNgweHt7o3Llyvj222+Nj2fszqZ2O/vrr7/QtGlTeHh4oGXLlmZfIABg+vTpKF++PLy9vTF8+HC88847aNiwoUW/p3Xr1qFu3bpwdXVFSEgIZs+ebfb4V199hRo1asDNzQ3+/v7o3bu38bG1a9eifv36cHd3h5+fH5588knExcVZ9Ppkn+bMAerXBzL8ORGRHeLn/RjjfX7e64uh3AIXLgAnTwIxMXq3hIhsKT4e8PLS5xYfb72fY/z48Xj99ddx+vRpdOrUCYmJiWjSpAl+++03nDhxAi+//DIGDx6M//77L8fjzJ49G02bNsXhw4cxYsQI/O9//8OZM2dyfM7EiRMxe/ZsHDhwAE5OThg2bJjxseXLl+ODDz7ARx99hIMHD6Jy5cqYP3++RT/bwYMH0adPH/Tr1w/Hjx/H1KlTMWnSJGMXvgMHDuD111/HtGnTcPbsWWzcuBGtW7cGIKsO/fv3x7Bhw3D69Gns2LEDvXr1gsjrNySya/fuASdOAJcv690SIrI1ft6b4+e9joSdi46OFgBEdHR0gY/1yCNCAEJs2GCFhhFRkZGQkCBOnTolEhIShBBCxMbKf+t63GJjLW//4sWLha+vr/H+5cuXBQAxZ86cXJ/btWtXMXbsWOP9Nm3aiNGjRxvvBwcHi0GDBhnvGwwGUb58eTF//nyz1zp8+LAQQojt27cLAGLr1q3G5/z+++8CgPH9bd68uRg5cqRZO1q1aiXCwsKybad63KioKCGEEAMGDBAdOnQw2+ftt98WoaGhQggh1q1bJ3x8fERMTEymYx08eFAAEFeuXMn29awh49+VKWt+NpF138/Zs+W/xQEDrNAwIioysvo/mZ/3o433+XmfP9b6rGel3ALq3PAGg77tICLb8vAAYmP1uXl4WO/naNq0qdn9tLQ0fPDBB2jQoAH8/Pzg5eWFzZs349q1azkep0GDBsZ1tdtcZGRknp8TGBgIAMbnnD17Fo888ojZ/hnv5+b06dNo1aqV2bZWrVrh/PnzSEtLQ4cOHRAcHIyqVati8ODBWL58OeLTyxJhYWFo37496tevj+eeew4LFixAVFSURa9P9ku9zPL+fX3bQUS2x897c/y81w9DuQUcHeUyLU3fdhCRbSkK4Ompzy2XQVYt4unpaXZ/9uzZ+OyzzzBu3Dhs27YNR44cQadOnZCcnJzjcTIOGKMoCgy5nJ00fY46cqzpczKOJiss7EomhMjxGN7e3jh06BBWrlyJwMBATJ48GWFhYXjw4AEcHR2xZcsW/PnnnwgNDcUXX3yBWrVq4TL7KxOA0qXlsoh+byMiK+LnvTl+3uuHodwCDOVEVJz9888/6NGjBwYNGoSwsDBUrVoV58+fL/R21KpVC/v27TPbduDAAYuOERoail0ZRt3cvXs3atasCcf0/6ydnJzw5JNPYtasWTh27BiuXLmCbdu2AZBfElq1aoX33nsPhw8fhouLC9avX1+An4rsBSvlRFTc8fO++H3e6xrKU1NT8X//93+oUqUK3N3dUbVqVUybNs3s7IoQAlOnTkWFChXg7u6Otm3b4uTJk7q0l6GciIqz6tWrY8uWLdi9ezdOnz6NV155BREREYXejtdeew0LFy7E0qVLcf78eUyfPh3Hjh3LdS5WU2PHjsVff/2F999/H+fOncPSpUsxb948vPXWWwCA3377DXPnzsWRI0dw9epVfP/99zAYDKhVqxb+++8/zJgxAwcOHMC1a9fw008/4c6dO6hTp46tfmQqRlgpJ6Lijp/3xe/zXtd5yj/66CN8/fXXWLp0KerWrYsDBw7ghRdegK+vL0aPHg0AmDVrFj799FMsWbIENWvWxPTp09GhQwecPXsW3t7ehdpehnIiKs4mTZqEy5cvo1OnTvDw8MDLL7+Mnj17Ijo6ulDbMXDgQFy6dAlvvfUWEhMT0adPHwwdOjTT2fScNG7cGKtXr8bkyZPx/vvvIzAwENOmTcPQoUMBAKVKlcJPP/2EqVOnIjExETVq1MDKlStRt25dnD59Gn///TfmzJmDmJgYBAcHY/bs2ejSpYuNfmIqTtRKeVSUHI7Jml1MiYgKAz/vi9/nvSIs7dhvRd26dYO/vz8WLlxo3Pbss8/Cw8MDy5YtgxACFSpUwJgxYzB+/HgAQFJSEvz9/fHRRx/hlVdeyfU1YmJi4Ovri+joaPj4+BSovZ07A5s2AUuXAs8/X6BDEVERkpiYiMuXL6NKlSpwc3PTuzklUocOHRAQEIBly5bp3RSryenvypqfTWTd9zMhQRuAKToa4K+HyD7ws75osLfPe2t91uvaff2xxx7DX3/9hXPnzgEAjh49il27dqFr164AgMuXLyMiIgIdO3Y0PsfV1RVt2rTB7t27szxmUlISYmJizG7WolbKOfo6EVH+xcfH49NPP8XJkydx5swZTJkyBVu3bsWQIUP0bhoR3N0B9XsVrysnIso/ft7nna7d18ePH4/o6GjUrl0bjo6OxuH7+/fvDwDGax/8/f3Nnufv74+rV69mecyZM2fivffes0l71SnR2H2diCj/FEXBH3/8genTpyMpKQm1atXCunXr8OSTT+rdNCIA8rryW7dkF/aQEL1bQ0RUPPHzPu90DeWrVq3CDz/8gBUrVqBu3bo4cuQIxowZgwoVKpidQclqGPzsBgiYMGEC3nzzTeP9mJgYBAUFWaW9vKaciKjg3N3dsXXrVr2bQZStMmVkKGelnIgo//h5n3e6dl9/++238c4776Bfv36oX78+Bg8ejDfeeAMzZ84EAAQEBABAptECIyMjM1XPVa6urvDx8TG7WQtDORERkW3NnDkTiqJgzJgxurWBI7ATEVFh0jWUx8fHw8HBvAmOjo7GKdGqVKmCgIAAbNmyxfh4cnIydu7ciZYtWxZqW2Xb5JKhnIiIyPr279+Pb7/9Fg0aNNC1HZyrnIiICpOu3deffvppfPDBB6hcuTLq1q2Lw4cP49NPP8WwYcMAwHimfMaMGahRowZq1KiBGTNmwMPDAwMGDCj09jKUExER2UZsbCwGDhyIBQsWYPr06Tnum5SUhKSkJON9aw7qCrBSTkREhUvXSvkXX3yB3r17Y8SIEahTpw7eeustvPLKK3j//feN+4wbNw5jxozBiBEj0LRpU9y8eRObN28u9DnKAYZyIiIiWxk5ciSeeuqpPA0ANHPmTPj6+hpv1ho7RsVKORERFSZdK+Xe3t6YM2cO5syZk+0+iqJg6tSpmDp1aqG1KzucEo2IiMj6fvzxRxw6dAj79+/P0/62HNQVYKWciIgKl66hvLjhlGhERETWdf36dYwePRqbN2+GmzpBeC5cXV3h6upqmwYtXoznf1yDq+iF+/eH2+Y1iIiITOjafb24Yfd1IrI3bdu2NRvlOiQkJMfeS4DswfTzzz8X+LWtdZycTJ06FQ0bNrTpa1DBHDx4EJGRkWjSpAmcnJzg5OSEnTt3Yu7cuXByckJaYX/oXriA4FN/oh5OsFJORHaDn/dFG0O5BRjKiaioePrpp7O99nbPnj1QFAWHDh2y+Lj79+/Hyy+/XNDmmcnug/LWrVvo0qWLVV+Lip/27dvj+PHjOHLkiPHWtGlTDBw4EEeOHIGj+uFbWDw9AQBeiOU15USkO37elwzsvm4BhnIiKipefPFF9OrVC1evXkVwcLDZY4sWLULDhg3RuHFji49brlw5azUxVwEBAYX2WlR0eXt7o169embbPD094efnl2l7ofDykm1AHCvlRKQ7ft6XDKyUW4ChnKiEEAKIi9PnJkSemtitWzeUL18eS5YsMdseHx+PVatW4cUXX8S9e/fQv39/VKpUCR4eHqhfvz5WrlyZ43Ezdmc7f/48WrduDTc3N4SGhmLLli2ZnjN+/HjUrFkTHh4eqFq1KiZNmoSUlBQAwJIlS/Dee+/h6NGjUBQFiqIY25yxO9vx48fxxBNPwN3dHX5+fnj55ZcRGxtrfHzo0KHo2bMnPvnkEwQGBsLPzw8jR440vlZeGAwGTJs2DZUqVYKrqysaNmyIjRs3Gh9PTk7GqFGjEBgYCDc3N4SEhGDmzJnGx6dOnYrKlSvD1dUVFSpUwOuvv57n16ZigpVyopKDn/fG+/y81/fznpVyCzCUE5UQ8fHGalmhi401hoKcODk54fnnn8eSJUswefJkKIoCAFizZg2Sk5MxcOBAxMfHo0mTJhg/fjx8fHzw+++/Y/DgwahatSqaN2+e62sYDAb06tULZcuWxd69exETE2N2PZrK29sbS5YsQYUKFXD8+HG89NJL8Pb2xrhx49C3b1+cOHECGzduxNatWwEAvr6+mY4RHx+Pzp0749FHH8X+/fsRGRmJ4cOHY9SoUWZfRLZv347AwEBs374dFy5cQN++fdGwYUO89NJLuf48APD5559j9uzZ+Oabb9CoUSMsWrQI3bt3x8mTJ1GjRg3MnTsXGzZswOrVq1G5cmVcv34d169fBwCsXbsWn332GX788UfUrVsXEREROHr0aJ5elyyzY8cO/V7cpFL+8CGQkgI4O+vXHCKyIX7eA+DnfZH4vBd2Ljo6WgAQ0dHRBT7WG28IAQgxfrwVGkZERUZCQoI4deqUSEhIkBtiY+U/dj1usbF5bvfp06cFALFt2zbjttatW4v+/ftn+5yuXbuKsWPHGu+3adNGjB492ng/ODhYfPbZZ0IIITZt2iQcHR3F9evXjY//+eefAoBYv359tq8xa9Ys0aRJE+P9KVOmiLCwsEz7mR7n22+/FaVLlxaxJj//77//LhwcHERERIQQQoghQ4aI4OBgkZqaatznueeeE3379s22LRlfu0KFCuKDDz4w26dZs2ZixIgRQgghXnvtNfHEE08Ig8GQ6VizZ88WNWvWFMnJydm+nqlMf1cmrPnZRFZ+P3/9VQhA/IdmAhAiMrLghyQi/WX5fzI/74UQ/LzPyJLPe2t91rNSbgFWyolKCA8PeQZbr9fOo9q1a6Nly5ZYtGgR2rVrh4sXL+Kff/7B5s2bAQBpaWn48MMPsWrVKty8eRNJSUlISkqCZx7OzAPA6dOnUblyZVSqVMm4rUWLFpn2W7t2LebMmYMLFy4gNjYWqamp8PHxyfPPob5WWFiYWdtatWoFg8GAs2fPwt/fHwBQt25ds4G/AgMDcfz48Ty9RkxMDMLDw9GqVSuz7a1atTKeAR86dCg6dOiAWrVqoXPnzujWrRs6duwIAHjuuecwZ84cVK1aFZ07d0bXrl3x9NNPw8mJH6V2Jb1q5u0QBxjkXOWFeOklERUmft4D4Od9Ufi85zXlFmAoJyohFEV2KdPjlt4tLa9efPFFrFu3DjExMVi8eDGCg4PRvn17AMDs2bPx2WefYdy4cdi2bRuOHDmCTp06ITk5OU/HFllc76ZkaN/evXvRr18/dOnSBb/99hsOHz6MiRMn5vk1TF8r47Gzek3nDP2IFUWBwWCw6LUyvo7pazdu3BiXL1/G+++/j4SEBPTp0we9e/cGAAQFBeHs2bP48ssv4e7ujhEjRqB169YWXeNGxUD6F0VvRX5R53XlRHaMn/cA+HlfFD7vGcotwFBOREVNnz594OjoiBUrVmDp0qV44YUXjB84//zzD3r06IFBgwYhLCwMVatWxfnz5/N87NDQUFy7dg3h4eHGbXv27DHb599//0VwcDAmTpyIpk2bokaNGrh69arZPi4uLrnONR0aGoojR44gLi7O7NgODg6oWbNmntucEx8fH1SoUAG7du0y2757927UqVPHbL++fftiwYIFWLVqFdatW4f76cnM3d0d3bt3x9y5c7Fjxw7s2bMnz2fuqZgwuaYcAEdgJ6IigZ/3eVccP+/Z584CDOVEVNR4eXmhb9++ePfddxEdHY2hQ4caH6tevTrWrVuH3bt3o3Tp0vj0008RERFh9oGUkyeffBK1atXC888/j9mzZyMmJgYTJ04026d69eq4du0afvzxRzRr1gy///471q9fb7ZPSEgILl++jCNHjqBSpUrw9vaGq6ur2T4DBw7ElClTMGTIEEydOhV37tzBa6+9hsGDBxu7slnD22+/jSlTpqBatWpo2LAhFi9ejCNHjmD58uUAgM8++wyBgYFo2LAhHBwcsGbNGgQEBKBUqVJYsmQJ0tLS0Lx5c3h4eGDZsmVwd3fPNEUNFXPplXJPwUo5ERUd/Ly3THH7vGel3AIM5URUFL344ouIiorCk08+icqVKxu3T5o0CY0bN0anTp3Qtm1bBAQEoGfPnnk+roODA9avX4+kpCQ88sgjGD58OD744AOzfXr06IE33ngDo0aNQsOGDbF7925MmjTJbJ9nn30WnTt3Rrt27VCuXLksp2nx8PDApk2bcP/+fTRr1gy9e/dG+/btMW/ePMvejFy8/vrrGDt2LMaOHYv69etj48aN2LBhA2rUqAFAfun56KOP0LRpUzRr1gxXrlzBH3/8AQcHB5QqVQoLFixAq1at0KBBA/z111/49ddf4efnZ9U2ks7SK+UuhiQ4IpWVciIqMvh5n3fF7fNeEVldRGBHYmJi4Ovri+joaIsHIsho+nRg0iTg5ZeBb76xUgOJSHeJiYm4fPkyqlSpAjc3N72bQ3Yip78ra342kZXfz6QkIP335YsHGPueLyZPtkIjiUhX/KwnW7DWZz0r5RZwSH+3WCknIiKyUy4uQPoIu56IY6WciIhsjqHcAuy+TkREZOfU0ZgBeCGW15QTEZHNMZRbgKGciIioBDAZgZ2VciIisjWGcgswlBMREZUArJQTEVEhYii3AEM5kX2z83EvqZDx76kYY6WcyG7x/2ayJmv9PTGUW4ChnMg+OTs7AwDi4+N1bgnZE/XvSf37omKElXIiu8PPerIFa33WO1mjMSWFOvq6waBvO4jIuhwdHVGqVClERkYCkHNoKoqic6uouBJCID4+HpGRkShVqhQc1TO6VHxkqJQLIcd/I6Lii5/1ZE3W/qxnKLcAK+VE9isgIAAAjB/WRAVVqlQp498VFTMmlfKkJCAhAfDw0LlNRFRg/Kwna7PWZz1DuQUYyonsl6IoCAwMRPny5ZGSkqJ3c6iYc3Z2ZoW8OEsP5d5KHCCAqCiGciJ7wM96siZrftYzlFuAoZzI/jk6OjJMEZV06d3Xy7jEAklAbKzO7SEiq+JnPRU1HOjNAgzlREREJUB6pdzHMQ4AkJioZ2OIiMjeMZRbgKGciIioBEivlPs4yBI5QzkREdkSQ7kF1FDO0deJiIjsmDrQmwMr5UREZHsM5RZQp0RjpZyIiMiOpVfKvcFKORER2R5DuQXYfZ2IiKgESK+UeyqslBMRke0xlFuAoZyIiKgESK+UewpWyomIyPYYyi3AUE5ERFQCpFfKPQyslBMRke0xlFuAoZyIiKgESK+UuxtYKSciIttjKLcAQzkREVEJkF4pd09jpZyIiGyPodwC6ujrnBKNiIjIjqVXyt3SWCknIiLbYyi3ACvlREREJUB6pdw1NR4KDAzlRERkUwzlFmAoJyIiKgHSK+UA4IF4hnIiIrIphnILMJQTERGVAO7ugKIAALwQy1BOREQ2xVBuAYZyIiKiEkBRjF3YPRHHUE5ERDbFUG4BhnIiIqISIj2Us1JORES2xlBuATWUc/R1IiIiO5d+XTkr5UREZGsM5RZQp0RjpZyIiMjOsVJORESFhKHcAuy+TkREVEKwUk5ERIWEodwCDOVEREQlBCvlRERUSBjKLcBQTkREVEKwUk5ERIWEodwCDOVEREQlBCvlRERUSBjKLcBQTkREVEKwUk5ERIWEodwC6ujrnBKNiIjIzrFSTkREhYSh3AKslBMREZUQrJQTEVEhYSi3AEM5ERFRCcFKORERFRKGcguoodxgAITQty1ERERkQ6yUExFRIWEot4AaygFeV05ERGTXMlTKeTKeiIhshaHcAqahnF3YiYiI7JhJpRwAkpP1bAwREdkzhnILsFJORERUQphUygGwCzsREdkMQ7kFHEzeLVbKiYiI7FiGSjlDORER2QpDuQXYfZ2IiKiEYKWciIgKCUO5BRjKiYiISghWyomIqJAwlFuAoZyIiKiEMKuUC4ZyIiKyGYZyC/CaciIiohIivVLuAAE3JDKUExGRzTCUW0itljOUExER2TEPD+OqOlc5ERGRLTCUW0gN5ZwSjYiIyI45OgLu7gDkdeUM5UREZCsM5RZSu7CzUk5ERGTn3Nzkgt3XiYjIhhjKLcTu60RERCWEqysAhnIiIrIthnILMZQTERGVEOmh3BVJDOVERGQzDOUWYignIiIqIRjKiYioEDCUW4ihnIiIqIRgKCciokLAUG4hhnIiIiLrmjlzJpo1awZvb2+UL18ePXv2xNmzZ/VuFkM5EREVCoZyC6mjr3NKNCIiIuvYuXMnRo4cib1792LLli1ITU1Fx44dERcXp2/DGMqJiKgQOOndgOKGlXIiIiLr2rhxo9n9xYsXo3z58jh48CBat26tU6vAUE5ERIWCodxCDOVERES2FR0dDQAoU6ZMlo8nJSUhKSnJeD8mJsY2DUmfp5yhnIiIbInd1y3EUE5ERGQ7Qgi8+eabeOyxx1CvXr0s95k5cyZ8fX2Nt6CgINs0hpVyIiIqBAzlFmIoJyIisp1Ro0bh2LFjWLlyZbb7TJgwAdHR0cbb9evXbdMYhnIiIioE7L5uIYZyIiIi23jttdewYcMG/P3336hUqVK2+7m6usI1PTDbFEM5EREVAoZyC6mhnKOvExERWYcQAq+99hrWr1+PHTt2oEqVKno3SWIoJyKiQsBQbiF1SjRWyomIiKxj5MiRWLFiBX755Rd4e3sjIiICAODr6wt3d3f9GsZQTkREhYDXlFuI3deJiIisa/78+YiOjkbbtm0RGBhovK1atUrfhjGUExFRIdA9lN+8eRODBg2Cn58fPDw80LBhQxw8eND4uBACU6dORYUKFeDu7o62bdvi5MmTurWXoZyIiMi6hBBZ3oYOHapvwxjKiYioEOgayqOiotCqVSs4Ozvjzz//xKlTpzB79myUKlXKuM+sWbPw6aefYt68edi/fz8CAgLQoUMHPHz4UJc2M5QTERGVEAzlRERUCHS9pvyjjz5CUFAQFi9ebNwWEhJiXBdCYM6cOZg4cSJ69eoFAFi6dCn8/f2xYsUKvPLKK4XdZIZyIiKikoKhnIiICoGulfINGzagadOmeO6551C+fHk0atQICxYsMD5++fJlREREoGPHjsZtrq6uaNOmDXbv3p3lMZOSkhATE2N2syaGciIiohIiPZS7IZGhnIiIbEbXUH7p0iXMnz8fNWrUwKZNm/Dqq6/i9ddfx/fffw8AxtFX/f39zZ7n7+9vfCyjmTNnwtfX13gLCgqyapvV0dc5JRoREZGdY6WciIgKga6h3GAwoHHjxpgxYwYaNWqEV155BS+99BLmz59vtp+iKGb3hRCZtqkmTJiA6Oho4+369etWbTMr5URERCUEQzkRERUCXUN5YGAgQkNDzbbVqVMH165dAwAEBAQAQKaqeGRkZKbqucrV1RU+Pj5mN2tiKCciIiohGMqJiKgQ6BrKW7VqhbNnz5ptO3fuHIKDgwEAVapUQUBAALZs2WJ8PDk5GTt37kTLli0Lta0qhnIiIqISIkMoF0Ln9hARkV3SdfT1N954Ay1btsSMGTPQp08f7Nu3D99++y2+/fZbALLb+pgxYzBjxgzUqFEDNWrUwIwZM+Dh4YEBAwbo0maGciIiohLCzQ2ADOUAkJxszOlERERWo2sob9asGdavX48JEyZg2rRpqFKlCubMmYOBAwca9xk3bhwSEhIwYsQIREVFoXnz5ti8eTO8vb11aTNDORERUQlhUikHgMREhnIiIrI+XUM5AHTr1g3dunXL9nFFUTB16lRMnTq18BqVAzWUc/R1IiIiO5dFKPf11bNBRERkj3S9prw4UqdEY6WciIjIzqnzlCtaKCciIrI2hnILsfs6ERFRCZFFpZyIiMjaGMotxFBORERUQjCUExFRIWAotxBDORERUQnBUE5ERIWAodxCDOVEREQlRHoodxEM5UREZDsM5RZiKCciIioh0kO5E9LggDSGciIisgmGcgupo69zSjQiIiI7ZzIpuSuSGMqJiMgmGMotxEo5ERFRCcFQTkREhYCh3EIM5URERCWEkxOgKAAYyomIyHYYyi3EUE5ERFRCKIqxWu6GRIZyIiKyCYZyCzGUExERlSAm06IxlBMRkS0wlFuIoZyIiKgEYSgnIiIbYyi3kBrKOfo6ERFRCeDmBoChnIiIbIeh3ELqlGislBMREZUArJQTEZGNMZRbiN3XiYiIShCGciIisjGGcgsxlBMREZUgDOVERGRjDOUWYignIiIqQRjKiYjIxhjKLcRQTkREVIIwlBMRkY0xlFuIoZyIiKgEYSgnIiIbYyi3kDr6OqdEIyIiKgFMQnl4uM5tISIiu8RQbiFWyomIyF4dOnQIx48fN97/5Zdf0LNnT7z77rtITk7WsWU6MgnlBw4A9+7p3B4iIrI7DOUWYignIiJ79corr+DcuXMAgEuXLqFfv37w8PDAmjVrMG7cOJ1bp5P0UB4ckASDAdi8Wef2EBGR3WEotxBDORER2atz586hYcOGAIA1a9agdevWWLFiBZYsWYJ169bp2zi9pIfyetWTAAB//qlnY4iIyB4xlFuIoZyIiOyVEAKG9EFTtm7diq5duwIAgoKCcPfuXT2bpp/0UF67igzlGzdyXBkiIrIuhnILMZQTEZG9atq0KaZPn45ly5Zh586deOqppwAAly9fhr+/v86t00l6KA8qnwRvb+DOHeDQIZ3bREREdoWh3EIM5UREZK/mzJmDQ4cOYdSoUZg4cSKqV68OAFi7di1atmypc+t0kh7KHVMS8eSTctMff+jYHiIisjtOejeguOGUaEREZK8aNGhgNvq66uOPP4ajela6pEkP5UhKQpcuwPr18rryyZP1bRYREdkPVsotxEo5ERHZq+vXr+PGjRvG+/v27cOYMWPw/fffw9nZWceW6cjNTS7TQzkA/Pcfp0YjIiLrYSi3EEM5ERHZqwEDBmD79u0AgIiICHTo0AH79u3Du+++i2nTpuncOp2YVMorVQJCQwEhgD179G0WERHZD4ZyCzGUExGRvTpx4gQeeeQRAMDq1atRr1497N692zgtWolkEsoBoFo1eTc8XKf2EBGR3WEotxBDORER2auUlBS4pofQrVu3onv37gCA2rVr49atW3o2TT8ZQnlgoLxbUt8OIiKyPoZyCzGUExGRvapbty6+/vpr/PPPP9iyZQs6d+4MAAgPD4efn5/OrdMJQzkREdkYQ7mF1FDO0deJiMjefPTRR/jmm2/Qtm1b9O/fH2FhYQCADRs2GLu1lzgM5UREZGOcEs1C6pRorJQTEZG9adu2Le7evYuYmBiULl3auP3ll1+Gh4eHji3TUYZQHhAg7zKUExGRtTCUW6JHD3TYewyPYykS01rr3RoiIiKrc3R0RGpqKnbt2gVFUVCzZk2EhITo3Sz9sFJOREQ2xu7rlggPh0fkFXghlpVyIiKyO3FxcRg2bBgCAwPRunVrPP7446hQoQJefPFFxMfH6908fWQTyiMieCkbERFZB0O5JdIvKHdCKkM5ERHZnTfffBM7d+7Er7/+igcPHuDBgwf45ZdfsHPnTowdO1bv5ukjQyj3901ECC4jNRW4f1/HdhERkd1gKLeEk+zt74g0hnIiIrI769atw8KFC9GlSxf4+PjAx8cHXbt2xYIFC7B27Vq9m6ePDKHc5cXBuIyqqI9j7MJORERWwVBuifRQzko5ERHZo/j4ePj7+2faXr58eXZfTw/lOHwYANAQRxjKiYjIKhjKLWESynkdGRER2ZsWLVpgypQpSExMNG5LSEjAe++9hxYtWujYMh1lDOWRkQCAAEQwlBMRkVVw9HVLsFJORER27PPPP0fnzp1RqVIlhIWFQVEUHDlyBG5ubti0aZPezdOHaShPSAAePgQABOIWQzkREVkFQ7klONAbERHZsXr16uH8+fP44YcfcObMGQgh0K9fPwwcOBDu7u56N08faihPSZFDrqcLxC3sYSgnIiIrYCi3BCvlRERk59zd3fHSSy/p3Yyiw81NW79+3bjK7utERGQtDOWW4OjrRERkZzZs2JDnfbt3727DlhRRaqUcAK5dM66y+zoREVkLQ7klWCknIiI707NnzzztpygK0krih5+zs7ZuUikPxC3T3uxERET5xlBuCY6+TkREdsbAD7ScKYqsliclmVXKffAQ0eFxADz1axsREdkFTolmCVbKiYiISh61C7tJpRwAvOMj1MHYiYiI8o2h3BIcfZ2IiKjkUUO5SaUc4HXlRERkHQzlluBAb0RERCVPNpVyhnIiIrIGhnJLsPs6ERGRzXz11VeoUqUK3Nzc0KRJE/zzzz96N0lSQ/mDB3Lp6wuA06IREZF1MJRbgqGciIjIJlatWoUxY8Zg4sSJOHz4MB5//HF06dIF1zJ0GdeF6bRoABAWBoCVciIisg6GckswlBMRkR37448/sGnTpkzbN23ahD///NOmr/3pp5/ixRdfxPDhw1GnTh3MmTMHQUFBmD9/vk1fN08YyomIyIYYyi1hMtAbZ5AhIiJ7884772Q5F7kQAu+8847NXjc5ORkHDx5Ex44dzbZ37NgRu3fvzrR/UlISYmJizG42ZRrKFQWoXx+A7L7OucqJiKigGMotkWGeciF0bg8REZEVnT9/HqGhoZm2165dGxcuXLDZ6969exdpaWnw9/c32+7v74+ILFLvzJkz4evra7wFBQXZrG0AzEO5nx9QqRIAVsqJiMg6GMotYTL6OgBWy4mIyK74+vri0qVLmbZfuHABnp6eNn99RVHM7gshMm0DgAkTJiA6Otp4u55hVHSrMw3l5csDgYEAGMqJiMg6GMotYVIpB8DryomIyK50794dY8aMwcWLF43bLly4gLFjx6J79+42e92yZcvC0dExU1U8MjIyU/UcAFxdXeHj42N2synTUO7vDwQEAADK4Q7uR6ba9rWJiMjuMZRbgqGciIjs2McffwxPT0/Url0bVapUQZUqVVCnTh34+fnhk08+sdnruri4oEmTJtiyZYvZ9i1btqBly5Y2e908y1gpL1cOwsEBDhBwjork5WxERFQgTno3oFgxGegNYCgnIiL74uvri927d2PLli04evQo3N3d0aBBA7Ru3drmr/3mm29i8ODBaNq0KVq0aIFvv/0W165dw6uvvmrz185Vxkq5oyNEeX8oEbdQNvUW4uIqwMtLv+YREVHxxlBuiQyVcl5TTkRE9kZRFHTs2DHTSOi21rdvX9y7dw/Tpk3DrVu3UK9ePfzxxx8IDg4u1HZkyc1NWy9fHgCgBAYAEbcQgAhERYGhnIiI8o2h3BIZBnpjpZyIiIq7uXPn4uWXX4abmxvmzp2b476vv/66TdsyYsQIjBgxwqavkS8ZK+UAlMBA4PBhBOIW7t8HbD0APBER2S+GckvwmnIiIrIzn332GQYOHAg3Nzd89tln2e6nKIrNQ3mRlfGacsBsBPaoKB3aREREdoOh3BIM5UREZGcuX76c5TqZyKJSro7ArlbKiYiI8oujr1siPZQ7M5QTERGVHDlUytVryomIiPIrX5Xy69evQ1EUVKpUCQCwb98+rFixAqGhoXj55Zet2sAiJX30dWclFRAM5UREZF+EEFi7di22b9+OyMhIGDKMaPrTTz/p1DKd5dJ9/SIr5UREVAD5qpQPGDAA27dvBwBERESgQ4cO2LdvH959911MmzbNqg0sUtTu6wor5UREZH9Gjx6NwYMH4/Lly/Dy8oKvr6/ZrcRSQ7mnp7wBZt3XWSknIqKCyFel/MSJE3jkkUcAAKtXr0a9evXw77//YvPmzXj11VcxefJkqzayyDBeUy7TOKdEIyIie/LDDz/gp59+QteuXfVuStGihnL1enKT9fKIxP17AoBS+O0iIiK7kK9KeUpKClzTP6C2bt2K7t27AwBq166NW7duWa91RQ0r5UREZMd8fX1RtWpVvZtR9KihXO26DhhDuQcSEB8Zq0OjiIjIXuQrlNetWxdff/01/vnnH2zZsgWdO3cGAISHh8PPz8+qDSxSONAbERHZsalTp+K9995DQkKC3k0pWkJD5bJpU22blxdSXTwAAErkbR0aRURE9iJf3dc/+ugjPPPMM/j4448xZMgQhIWFAQA2bNhg7NZul9IHemOlnIiI7NFzzz2HlStXonz58ggJCYGzs7PZ44cOHdKpZTpr2RK4ccN4HbkqubQ/nG5fhuPd2wCq69M2IiIq9vIVytu2bYu7d+8iJiYGpUuXNm5/+eWX4eHhYbXGFTmslBMRkR0bOnQoDh48iEGDBsHf3x+KwuukjSpWzLQpraw/cPsyXB+wUk5ERPmXr1CekJAAIYQxkF+9ehXr169HnTp10KlTJ6s2sEhJD+WO6QO9MZQTEZE9+f3337Fp0yY89thjejeleAjwB04C7jEM5URElH/5uqa8R48e+P777wEADx48QPPmzTF79mz07NkT8+fPt2oDi5QMA71x9HUiIrInQUFB8PHx0bsZxYZTBTnYm3diJE/UExFRvuUrlB86dAiPP/44AGDt2rXw9/fH1atX8f3332Pu3LlWbWCRooZywe7rRERkf2bPno1x48bhypUrejelWHCpJEdj98dtPHigb1uIiKj4ylf39fj4eHh7ewMANm/ejF69esHBwQGPPvoorl69atUGFinGecoZyomIyP4MGjQI8fHxqFatGjw8PDIN9Hb//n2dWlY0OaZXyv1xG1FRgD1PQENERLaTr1BevXp1/Pzzz3jmmWewadMmvPHGGwCAyMhI++72lj76uiNDORER2aE5c+bo3YTixV8L5TxfQUR2SwiAA3/aVL5C+eTJkzFgwAC88cYbeOKJJ9CiRQsAsmreqFGjfDVk5syZePfddzF69GjjlwIhBN577z18++23iIqKQvPmzfHll1+ibt26+XqNAmOlnIiI7NiQIUP0bkLxYhLKL0Xp3BYiImsTApg2Dfj4Y2DpUuDZZ/P2vLNngd9+A159FfD0tG0b7US+Qnnv3r3x2GOP4datW8Y5ygGgffv2eOaZZyw+3v79+/Htt9+iQYMGZttnzZqFTz/9FEuWLEHNmjUxffp0dOjQAWfPnjV2ny9UHH2diIjsnMFgwIULFxAZGQlDhhFNW7durVOriiiTUH6AlXIisiepqcCIEcCCBfL+rFl5C+UbNgADBwKxsUBKCvDOO9nve/ky0K0b8OKLwJtvWqfdxVS+BnoDgICAADRq1Ajh4eG4efMmAOCRRx5B7dq1LTpObGwsBg4ciAULFpjNeS6EwJw5czBx4kT06tUL9erVw9KlSxEfH48VK1bkt9kFw4HeiIjIju3duxfVq1dHnTp10Lp1a7Rt29Z4a9eund7NK3rSQ7kPHiLmdoLOjSEishIhgP79ZSB3cJC3ffuAM2dyft7MmUDPnjKQA8D69Tnv//XXwKlTwHvvAQkl+//QfIVyg8GAadOmwdfXF8HBwahcuTJKlSqF999/P9NZ9dyMHDkSTz31FJ588kmz7ZcvX0ZERAQ6duxo3Obq6oo2bdpg9+7d2R4vKSkJMTExZjerMVbKOSUaERHZn1dffRVNmzbFiRMncP/+fURFRRlvHOQtC76+SHFwAQAk34jUuTGEkydld9m7d/VuCVHxduAAsHYt4OIil126yO3pU2JnaeNG4N13ZaAfMkReg75vH5BevM1ECGD1arkeE5N7gLdz+QrlEydOxLx58/Dhhx/i8OHDOHToEGbMmIEvvvgCkyZNyvNxfvzxRxw6dAgzZ87M9FhERAQAwD/9LLTK39/f+FhWZs6cCV9fX+MtKCgoz+3JlTrQGyvlRERkh86fP48ZM2agTp06KFWqlNnnqa+vr97NK3oUBbGe8ntKWvhtnRtDmDIF+OYb4LPPCnacxETgyBEZGohKou3b5bJzZ+CZZ2TIBoBly7IPQB9/LJcjRgBLlgCPPirvb9iQ9f4HDgCm028uWVLARhdv+QrlS5cuxXfffYf//e9/aNCgAcLCwjBixAgsWLAAS/L4hl6/fh2jR4/GDz/8ADc3t2z3UzKM9CeEyLTN1IQJExAdHW28Xb9+PU/tyRMO9EZERHasefPmuHDhgt7NKFYSfeRc5YhkKNfd/v1yuXdv/p4fFQXMmAGEhACNGgGffpr7c65c0brqEtmLHTvkUr1s6emngVKlgBs3tMBu6vBhYNs2WcAcP15u69lTLn/+OevXUKvk6QOGY+tW4Nq1gre9mMpXKL9//36W147Xrl07z93bDh48iMjISDRp0gROTk5wcnLCzp07MXfuXDg5ORkr5Bmr4pGRkZmq56ZcXV3h4+NjdrOa9FDuIDjQGxER2Ydjx44Zb6+99hrGjh2LJUuW4ODBg2aPHTt2TO+mFkkppeV3Eqe7DOUW++cfIDzcOse6c0f7Qr9vn+Vf0u7fBxo0ACZOBG6n/y7nzJGDXWUlIQEYORKoUgXo1KlkVdVTU4FffgFy6LlKRVRkJDB3bs6/u5QU+W8TANq2lUs3N6BfP7meVRf22bPlsk8foHJlud6jh1xu3w5ER5vvb9p1/a235OsIISvxJVS+QnlYWBjmzZuXafu8efMyjaCenfbt2+P48eM4cuSI8da0aVMMHDgQR44cQdWqVREQEIAtW7YYn5OcnIydO3eiZcuW+Wl2wanXlLP7OhER2YmGDRuiUaNGaNiwIZ599lmcPn0aw4YNQ7Nmzcwey++Up/YurawM5a4PGMotsmoV0Lo10Ly5DNQFdfCgth4bKwePssSyZbIKWLGi7Ebr5yfv//ln5n1PnwaaNQO++kre370bMPm+atcSE4HevWUVtHlz651UKco++UQOYFbcT7zs2iV7gIweDQwYkP1+Bw/Kf0NlysgTVSq1C/u6ddqJKwC4fh348Ue5Pnastr1WLaB2bRnyM/472rdPnkTz9JTXqw8dKrcvWZL9+xwRoT0vKSkvP3Gxkq8p0WbNmoWnnnoKW7duRYsWLaAoCnbv3o3r16/jjz/+yNMxvL29Ua9ePbNtnp6e8PPzM24fM2YMZsyYgRo1aqBGjRqYMWMGPDw8MCCnPyRbMg70ZoACA9LS8j14PRERUZFw+fJlvZtQrCkBMpS7P+RAb3l29y4wapRcv3FDTp/055/GsXvMCAG88IKcOunXX4HsekCahnJAdmGvXz9v7RECWLhQrr/7rgwfx4/L6t8338iuu6b79uolR6H29wcaNgQ2bQI++ggwGZy42IiLk9fgN2smK/45iYmR1U+1a/O1azJQ/f03kNuYEwYDcPGirKK6ulql6di1S/7eR4wAnJ2tc8yM9u0D3n5brjdvDjzxhG1eJzd37gCffy5PgsTFAV5e8qRWu3ZaZTonn38uA7NaUdy+XV7T3bRp5n3V32+bNnLUdVXz5kDjxsChQ/I9X7tWDub28cfyuO3aAU2amB+rZ0/gww9lF3a10g5oVfLu3QF3d3miZ9Qo4MIF4Msvtf8fVPfvy3/P6iCOzs7yUpO33sr9Zy8uRD7dvHlTvPvuu6JXr17imWeeERMnThRXr14VL7zwQn4PKdq0aSNGjx5tvG8wGMSUKVNEQECAcHV1Fa1btxbHjx+36JjR0dECgIiOjs53u4yiooSQ/x0LJySLFSsKfkgiIip5rPrZZEU7d+4UKSkpmbanpKSInTt36tCivNHz/bw29jMhAPGzW99Cf+0i5eZNIe7fz9u+AwfK71M1agjh4SHXJ03Ket9Vq4zfvcQbb2R/zJ495T6lS8tlTt9H79wRYvZsIQ4flvcPHJDPcXXVfoazZ+U2RRHiyhXtuTt2yO1eXkJERAhx9aoQjo5y2/79efv54+OFMBhy3+/GDXmzxPnzQly8mLd9w8OFaNJEtt3BQYglS3Le/4kn5L7e3kIsWyZEQIC8/8QTQiQlZf2cxEQhFi4UolYtuW9AgBAzZ8rv1AWxaZMQzs7ymDNmFOxYOenXT/v7a906b783IYT44Qchli8XIjW14G1IShKieXOtHRlvL7+cc7t+/VXbd8AAIXr3lut9+mS9f8eO8vHPP8/82OHDQjg5ycdXrhTi44+1Y//xR+b99+6Vj3l4CHHypNx29aoQZcvK7evXa/u++652rLFjzd+7t96S293ctN87IMS6dTm/d0ePCnHpUs772JAln035DuVZOXLkiHBwcLDmIQvMqh/UMTHGPwI3xIsffij4IYmIqOQpqqHcwcFB3L59O9P2u3fvFrnPd1N6vp+Rn68QAhA7HNoW+msXGTdvyqBWp44QWZzUMfPbb1oI3LdPhhf1C/Zbb5mHtbg4IYKCtMcdHYU4dizr46r7qV/e69TJvE9cnAxwPj5yH19fIc6dE2LECHm/f3/z/dUQ+n//p20bPFhue+klbdugQXLbc89l/3M/fCjE4sXymIoixNChOQepO3fkCQYPDyHyekLsjz+0wBQWJsT77wtx/XrW+x49qr1nLi7aCYjvvst6/0OHtH0PHtS2eXnJ7ePHZ37O7dtC1K6ddZAsX16Gs4ySkuTvcObM7P+W9uzRTuYAQri7C3H5cm7vjuWuXdNOuKjv67ZtuT9v2zatbQ0aCLF5c8775xb0R42SxypVSv79zp0r3+9HH5X/jgAhJk/O+rnh4VoAfv11+VpHj2r/BjOewElK0t7b7P6tTZ2qBWT15zT9N2IqLU2Ixx+X+4SECHHhghD162vvTWKi+fvw/vvaMZ99Vj5+7Zo8YQYI8fvv8pijR8v7np7Zt3PuXPk37eIixKefyudlJTVViDlz5AmYr76S/59ZCUO5Cat+UMfHG/9QvBAjli4t+CGJiKjkKaqhXFEUERkZmWn72bNnhbe3tw4tyhs938+Hv/wlBCBOoo6Ijy/0ly8avvlG+yL988/Z7xcRIURgoBaeVW+8oT3fz0+ITz6RFespU+S2ypWF6NZNrj/+eOYQc/u29vyLF7X1jNXYDh20x9RAUaeODDuAEFu2mO+/erVW3Y2OlsdTn/fff9p+x45pIeeTT4Q4fty8jZGRsldAxmD69dfZv1cTJ2r7eXoKsWtX9vsKIdtjGlTVm5OTEH37ymCfmirbNX++9nPUqiWr62rwA+TjGb3+etbV1Z9+0gK96cmDhw+FaNpUC+AffyzE3btCfP+9ENWqye2DBpkfy2AQ4sUXzSvT4eHm+/z1lxBlysjHO3YUok0bud6jR87vT1qarBg/+aSsOh86lPP+Qgjx9tvy2O3aaSdu2rTJ/XmdOmX+PbRuLcSff5r/Xdy4IUSXLjI0z5ghTxpl9P332jF++y3z4wsWaI8vXpz5Z37ySflYo0bmAbhzZ7l95Ejz5/z7r/bvMLsQm5wsRMOG2utOm5bz+xEZKUTVquYngAICZNjOyooVWgjv3FnrWWPaUyElRTtpFhwse9SoJ3EMBiEmTMj8O+jcWfaKMf0dXLum/Q2Z3lq2NH+/8omh3IRVP6iTk42/LF9EiUWLCn5IIiIqeYpaKH/mmWfEM888IxwcHETXrl2N95955hnRvXt3ERISIjp16qR3M7Ol5/tpOH5CCEDcRRlrFliKl2ee0b7MduyY9T6pqUK0by/3CQ01DyAGg6yA1aljXv1Uv8CvXi2rqmro/P5782P/8YcWMIXQQt+mTdo+585p1fZly2Q1rGJF7fUqV84cQpKS5HZAnhSYO1eu16uX+cRA9+7mX+rDwmRYj48XokULuS0wUIjp07XA7eoqxJEjmd+r+/dlzwNAC/Pe3rLL/cmTmV/77FmtGtqxoxC3bsku461bm7epbFnzbtCdOglx7572OzA9OTJ3rvn74Ocnt2fVRXnYMC0cPXggT2Cooa9sWfnem1IvFwDkuurTT7WTG2oFPiBAiHfekYF0+HDtec2by+B/8qRWxd6wIXPbhJDvccaKvYuLEJ99ln2V+uFD2ZMCkGH+2jXt73Hr1qyfI4TWo8DBQV7OMHq0eXfr2rVl1+x587STC+otMFCI//1PVr3Hj5f/TtTHsqtEC6F1+3ZykidUDAYZKF99VW738BDizBnz5/z1l/bvzLSSP2mS3P7ss9m/nhDyfW/bVv4ceXHmjHZpibu77CWTky1b5H6m78+ePeb73L2rhX1AiEqV5Ikg9W8VkJX3r74yr+pXqSIvd2nWTJ7wUk98vfGG7H0AyKUVMJSbsOoHdVqa8RfqhztiwYKCH5KIiEqeohbKhw4dKoYOHSoURRF9+/Y13h86dKh4+eWXxYwZM8SdO3f0bma2dH0/IyON3w1OHE4u/NfXW3KyFiDV2/nzmfdTu7yaXluaUUqKrPyp3VvVyqQanGbO1MJfssl7rXZ5HTBA3lcra++9p+3zwQeZTxrs26dV5KZMybpN//2n7aOGsjlzMu8XGyurwR07agHA1VULwaVLC3H6tNw3LU2r/NeoIbuqZ/Ve1asnj9uunfn7W7u2EKdOyX1v3ZLdggF5fXhMjPmxDh+WoVntDQDIkDh7duaTEAaDEOPGaft98oncvm6dFhqz6lIeEyODDmAefjw8zHsUmFJ/R+3aab93tSv2p5/KEw316mWuYAKyumv6c44fL7eXKyefZ+r+ffn3AsjLFt56S1bV1WP175/1dd/qCYKaNbX36X//00LlF19kXUlWr0E3vRTi+nUZ+NQAaHpr3FgGW/X9y3hzcpK9B3K6Nj0tTbusApCXUZhWsrOqIhoMWrdyQIjnn9euJQdkkLW2f/+Vr5HViZ2s/P23dnKmZ8+s97lzR/7bLV/e/H1zdRVmQe3ECfm+ZAz6gAznpieObt7UxpsoIJuFctMz51nd2rVrZ9+hXAjjfxj+uJVjryMiIqLsFLVQrpo6daqIjY3VuxkW0/X9TEsTKZDXne79qQSWytWBz8qW1aqjY8dqjycmyq65iiIfy1jlzorBIMQ//8gv26bdD+LjhfD3l8cx7aqrDvI2e7a8/8UX8n6XLto+YWFyW8Zrpn//XYghQ3IepG75cvMK6927Obf/9m0hnnrKPATv2GG+z9272jXdwcFaCIiO1gL0qlXaz/3ZZ+aBv2xZIbZvl92SAdk7ICIi+zYlJ8trnT/+WF5TnB2Dwbzr/P/9n3YCIavrxlW7dmkVa0D+bBs3Zr//lSvayQ7THgvDh2snYeLi5OBzL7wgT1488ogMahnFxmrvQ1CQdq26waD1YKha1bxXwJdfahVs09cUQl6frobBb7/Vtt+/b34JRIcO5tfsX7yonVjIKtTdvy8HRxs6VP49TpyoDZCXlCR7cEyaJMP/sGFyvIW8DohnMMiTKKa/g7Jls+7yrnr40PyyBUD2JHnxxewH7itshw/Lv7uc/raFECIhQV468/PPsmdExpNTqthYIdaulf9HrF8vezZYYzC+bNgslJueOc/pVpRY/YM6/R9wRVwXX35pnUMSEVHJUlRDeXGl9/t5x1mOQr39s0Pi3j35va/EeOcd+WV+4EBtELfSpWWFdNEi82upX3ml4K83a5ZWYVa/TFeqJLep1zTv36+1IyFBG0nd0TH3QJ0dtYvwkCF5299gkBXQ+vVl9/usnDolRPXqWvW1a1ftZ6ldO+uwcOeOdq22eitfXg6gZS0Gg+xmn7GiqFbns3PxoryePrtAlJF6zTYguxx/8IF5DwhL3L6tjfBevbrsAv7KK1rVVB2cztTq1VqIfuMNWXFOS5PdsgFZSc5YDU9Lk4FOrbiWKiXD9PLlWnVaz0t9du+WPQyefjrz9fjZ2blTXurwyit5H7mf8sSSzyZFCCEKZ/I1fcTExMDX1xfR0dHwyW5uS0t4eAAJCQjBZbz1RUimafSIiIhyY/XPpgJo3Lgx/vrrL5QuXRqNGjWCoijZ7nvo0KFCbFne6f1+XvRpiGoPj2KQ359Ycb8zgoOB06cBN7dCb0rha9gQOHoU+OEHOQ9x9erAlSvm+wQEyLmMBw6U8xoXxMOHQEiInLd45UogMBBo21YeNzoa8PYGUlLk3M0REXK+44AA4P/+T87DvXFj/l5XCDk/c5068rugtURFAQMGmLfLwUHOAf3MM1k/x3S+cE9PYOfOzPNDW8P8+cDIkfJnb95czv1uTbGxwMSJQHAw8PLLcu7tgrh+HXjsMTl/uqmvvwZeeSXr5yxeDAwbJtdr1wYefRRYskT+jo8dA6pVy/p5Z88CgwcD+/ebb3d3l7+XRx4pyE9CdsKSzyanQmqT/XCSb5kj0pCWpnNbiIiICqhHjx5wdXUFAPTs2VPfxhRT8d7+wEPA8d5tCMhM+vPPMqPatfBwGcgVBejYEXB0lOF3+HDAzw8IDQXatAHefhuw1skSb29gzBhg8mTg1VdlEAeAxx+XjwGAs7MMW126APPmAWXKyO3PPZf/11UU2wTf0qWB334DfvwRePAAqFsXqF9fvn/Z8fEB/vgDWLBA/tyNGlm/XQDwv/8BZcsC778PTJ1q/eN7eQGff2694wUFAbt3y9/9jRvypEzTpjLwZ+eFFwCDAXjrLeDMGXkDgFmzsg/kAFCrFvDvv8CMGcD06UD58jL4Dx8OVKhgvZ+JSgxWyi1VpgwQFYVaOINXZtfCm28W/JBERFSy6F3ZzUpaWhp27dqFBg0aoHTp0no3xyJ6v59RvYah9PrFONJpPBbW+BDz5hWsKFtsLFkiQ02zZsC+fdr25GTAxcV2r/vggayuxsTIsDxsGDBzJlCunPl+b78NfPKJXHdykiEtp7BLJVdMjKyof/21rHKvWCF7LOTFgwfyBIMTa51kzpLPpjz+tZFR+j84J6SyUk5ERHbD0dERnTp1woMHD/RuSrFTuk9HAEDDi+swZrSsdWzeLIt1dm39erns3Nl8uy0DOQCUKiWroQMGyC7V332XOZADwAcfyBMGANC+PQM5Zc/HBxg3Drh0SfZayGsgB+TfIwM5FRBDuaUcHQEwlBMRkf2pX78+Ll26pHczip9u3eQF5BcuoNrDI2jdWl6Gu2yZfPjECdlD2a76Ju7bB2zYICvVffoU/uv36gUsX57ztbsuLsBPP8nrymfPLry2ERFZiKHcUqyUExGRnfrggw/w1ltv4bfffsOtW7cQExNjdqNseHkBTz0l11evxtChcnXxYnnZb+PGwNNPA88+K8f1yqu0NJk7O3aUY24ZDFZvef4IIauKgBzsql49fduTk0qVgC++kNdqExEVUbym3FJVqgBXruAR/Idu7z2CyZMLfkgiIipZ9L4GOjsOJl02TUdhF0JAURSkFdGz0UXi/VyzRlaMq1TBwyMXERCoID4+824hIcC6dTKoqwwGICFBLuPj5VhTR4/KIK6OOwUATz4JLFokx7PS1e+/y94Brq7AuXNypHMiIjLD0ddtyaRSXmTOWBMREVnB9u3b9W5C8dW1q5xG6fJleJ87iOeea4qlS+VD06fLane/fvKS1W7dZJf2MmXkSO1dupiHb1OlSwO9e8sZx7ZulQNz79ghZyLLSC2zFHTWsRylpADjx8v10aMZyImIrICh3FLsvk5ERHaqTZs2ejeh+PL0lGl79Wpg9WpMmtQUsbFycHK1Z/uhQ3Ia5DNngBEjZPf2Z5/NHMirVJG9rR9/XM765eMjZ2waOBA4cEB2hd+3T07RDchBxefNkwNHV6smp63O0xzpt2/LacKqVZNdvHObJ/q//+T0UidPyrMF77xj8dtERESZMZRbiqGciIjsXHx8PK5du4bk5GSz7Q0aNNCpRcVEnz4ylC9ejGqBgVj7eR+gYkXjw76+wPffAy1aAKtWARcuyKBetqycXrlSJfk1w9k586Fr1gS2bJHPPXMG6N4dmDhRDhS9fr2chQwA7t2TU0p/+GEubRUCeOkl4J9/5O3gQeCXX+QZAdN9jh6VKX/7djmwmxCyxL90qQzmRERUYBzozVIcfZ2IiOzUnTt30K1bN3h7e6Nu3bpo1KiR2Y1y0aULULUqcPcu8Oab8uLvzp2Bn38GUlMByBm6/u//5O4HD8qZl378EahRA3B3zzqQq0qVkqO4+/nJivkzz8hwn5wsK/ATJ8r9Pv4Y2L8/l7YuWQL8+qscodzfHzh+HGjaFJg0CTh2TAb0Rx8FGjUCxoyR94UAhgyRZwW6dSvYe0VEREaslFuKlXIiIrJTY8aMQVRUFPbu3Yt27dph/fr1uH37NqZPn47ZnFIqdx4esl/5jz8CK1cC//4LbNokb66uMnW7umKKqyuGuboiOskV5QJdETDZFZjuIvfJ5VbNzQ3/9XfD3AVuiHMvh7qdKqH9AH80CFMAIXDzXDksWeOJF16Qod/VFTJMnzghK+Lu7rLCPXq0bPP778t+8c88I5P89OnypnJzA9q1A1q3Bjp1kiGdiIisiqHcUumh3BFpDOVERGRXtm3bhl9++QXNmjWDg4MDgoOD0aFDB/j4+GDmzJl4Sr04mrLn5weMHClvFy/KOdEWLQLu3AGSkgAACgDj8Gg3028WqAbgcwBIArAq/ZZukYMD3nasiwMnG+JM0zSEVX4AHDkChIdnPlCrVsDYsbIX4D//yGHhV68G/vxThvERI2SV3N/fsgYSEZFFGMotxdHXiYjITsXFxaF8+fIAgDJlyuDOnTuoWbMm6tevj0OHDuncumKoWjV5cff77wM3bshQnpwsl5bcTJ+TmChv8fFAZKQ87p07xpdUEhMRiuMIxXHgBOQNkBXyxx+XQ7PfuCG/z3z/vfGyPLi6AgMGyFtCgtzu4lLobxkRUUnEUG4pdl8nIiI7VatWLZw9exYhISFo2LAhvvnmG4SEhODrr79GoDrUN1nO2dl8ADVbCg8H9u/HyoknsP+kO7yDSmPSgspIe7QVdux1Q9OmspifI3f3QmkqERFJDOWW4kBvRERkp8aMGYNbt24BAKZMmYJOnTph+fLlcHFxwZIlS/RtHOVNhQpAjx5o36IHXgsF7l0H/vsMOHxYFtYrVADWrpWjuBMRUdHAUG4pVsqJiMhODRw40LjeqFEjXLlyBWfOnEHlypVRtmxZHVtGlipfXk49PmCAHGcOkHWF8HCgTRtg7lw5BzoREemPU6JZigO9ERFRCeHh4YHGjRszkBdT/foBb78tZ2pbvVpeet67N5CSAvzvf8CyZXq3kIiIAFbKLWdSKU9lKCciIjvy5ptvZrldURS4ubmhevXq6NGjB8qUKVPILaP8UBRg1izzbatXAxMmAB99BIwaJWc6Cw7Wp31ERCQxlFvKJJQnMZQTEZEdOXz4MA4dOoS0tDTUqlULQgicP38ejo6OqF27Nr766iuMHTsWu3btQmhoqN7NpXxQFDkN+T//ALt3A0OGANu2AQ7sO0lEpBv+F2wpTolGRER2qkePHnjyyScRHh6OgwcP4tChQ7h58yY6dOiA/v374+bNm2jdujXeeOMNvZtKBaDOhubpCezcmbmaTkREhYuh3FIcfZ2IiOzUxx9/jPfffx8+Pj7GbT4+Ppg6dSpmzZoFDw8PTJ48GQcPHtSxlWQN1aoBn30m1ydMAN55Byw2EBHphKHcUhx9nYiI7FR0dDQiIyMzbb9z5w5iYmIAAKVKlUJycnJhN41sYPhw4N135fpHHwHPPAPEx+vbJiKikoih3FIcfZ2IiOxUjx49MGzYMKxfvx43btzAzZs3sX79erz44ovo2bMnAGDfvn2oWbOmvg0lq1AU4IMPgB9+AFxdgQ0btOo5EREVHoZyS7FSTkREduqbb75B+/bt0a9fPwQHB6Ny5cro168f2rdvj6+//hoAULt2bXz33Xc6t5SsaeBA4Msv5fr33wNC6NseIqKShqOvW4qhnIiI7JSXlxcWLFiAzz77DJcuXYIQAtWqVYOXl5dxn4YNG+rXQLKZPn2A114Dzp0DDhwAmjXTu0VERCUHK+WWMhnojQOiEBGRPfLy8kKZMmVQtmxZs0BO9svbW15TDgDLlunbFiKikoah3FKslBMRkZ0yGAyYNm0afH19jd3XS5Uqhffffx8GG52JvnLlCl588UVUqVIF7u7uqFatGqZMmcLB5HQwaJBc/vgjkJIiR2M/eBCIi9O3XURE9o7d1y3Fgd6IiMhOTZw4EQsXLsSHH36IVq1aQQiBf//9F1OnTkViYiI++OADq7/mmTNnYDAY8M0336B69eo4ceIEXnrpJcTFxeGTTz6x+utR9jp0AMqXByIjZTBfuRL48085n/mzzwIjRgDNm+vdSiIi+8NQbilWyomIyE4tXboU3333Hbp3727cFhYWhooVK2LEiBE2CeWdO3dG586djferVq2Ks2fPYv78+QzlhczJCejfH/j8c+D557XtcXFyALiVK+X15g0a6NdGIiJ7xO7rlmIoJyIiO3X//n3Url070/batWvj/v37hdaO6OholClTJtvHk5KSEBMTY3Yj61C7sANA9erAkSPAv/8CrVrJLu1ffKFb04iI7BZDuaUYyomIyE6FhYVh3rx5mbbPmzcPYWFhhdKGixcv4osvvsCrr76a7T4zZ86Er6+v8RYUFFQobSsJmjQB3nwTePVVeT15WBjQsiUwc6Z8fPlyICpK3zYSEdkbhnJLmYy+zlBORET2ZNasWVi0aBFCQ0Px4osvYvjw4QgNDcWSJUvw8ccfW3SsqVOnQlGUHG8HDhwwe054eDg6d+6M5557DsOHD8/22BMmTEB0dLTxdv369Xz9vJSZogCzZwPz5wM+Ptr2xx4D6tcHEhKApUv1ax8RkT3iNeWWMqmUc0o0IiKyJ23atMG5c+fw5Zdf4syZMxBCoFevXhgxYgQqVKhg0bFGjRqFfv365bhPSEiIcT08PBzt2rVDixYt8O233+b4PFdXV7i6ulrUHioYRQFGjpQV9K++Al5/HXBgaYeIyCoYyi3F0deJiMiOVahQIdOAbtevX8ewYcOwaNGiPB+nbNmyKFu2bJ72vXnzJtq1a4cmTZpg8eLFcGDaK5IGDgTGjQPOnwe2bgU6dtS7RURE9oGfepbiNeVERFTC3L9/H0tt1Gc5PDwcbdu2RVBQED755BPcuXMHERERiIiIsMnrUf55eQFDhsj1b77Rty25MRjkwHRERMUBK+WWYignIiKyms2bN+PChQu4cOECKlWqZPaYEEKnVlF2Bg6UI7D//TcghOzWXtSkpQENG8r1gwcBFxddm0NElCtWyi3Fgd6IiIisZujQoRBCZHmjoqdhQ8DZGbh7F7hyRe/WZO36deDECXn7+2+9W0NElDuGckuxUk5EREQllKsr0KCBXN+/X9+2ZOfqVW3911/1awcRUV6x+7qlTAZ64+jrRERkD3r16pXj4w8ePCichlCx8Mgjslv4/v1Anz56tyYz0wr+hg3AnDlFs5s9EZGKlXJLmVTKOYAIERHZA19f3xxvwcHBeP755/VuJhURzZrJZW6V8sOHgX//tX17fvwRMJ3y3rRSfuWK7MZORFSUsVJuKZNQnpysc1uIiIisYPHixXo3gYoRNZQfPCgHVUsfbsfM7dvAY4/Jx8PDgTJlbNOWPXuA/v2BKlWAS5fktozXum/YANSvb5vXJyKyBlbKLWUy0BtDOREREZU0deoAnp5AbCxw5kzW+3z5JRAfDyQlAadP264tmzfL5eXLQEyMXFcr5Y8/Lpe8rpyIijqGckuxUk5EREQlmKMj0KSJXM+qC3t8vAzlqnPnbNeWv/7S1s+elUs1lI8cKZf//Qdw2nsiKsoYyi3FUE5EREQlXE7XlS9eDNy/r90/f942bYiLA/bu1e6fOQMYDMC1a/J+ixZyUDoA+O0327SBiMgaGMotZTL6enIywGlUiYiIqKTJLpSnpQGffirX69SRS1uF8n//hdmgu2fOALduyW2OjkCFCsBTT8nHduywTRuIiKyBodxSJpVyIYDUVJ3bQ0RERFTI1FB+9CjMeg6uWycHXCtTBnjvPbnNVt3Xt22TSxcXuTxzRhvkLShIfmWrV0/ev3DBNm0gIrIGhnJLmYRyAOzCTkRERCVOlSqAn5/8HqRORxYeDowaJddHjQIaNpTrFy7Ypmehej25Olf6mTPa9eTBwXJZvbrWBiKiooqh3FImo68DDOVERERU8igK0KaNXO/TR1bM+/UD7twBwsKAd94BQkLk16b4eBnYrSkqCjh0SK6PGCGX588DFy/KdTWUV60ql/fuyecQERVFDOWWYqWciIiICHPnAqGhwM2bcjT2f/4BvL2BNWsAd3fA2VkLxdbuwv7333JQt1q1gObNAQ8PeS359u3y8ZAQufTyAgIC5Loa2ImIihqGcksZQ3kaAIZyIiIiKpkqVpRBvEULOcAbACxaBNSooe2jruc02NvChbKyffJk3l9b7br+xBOAg4MM5wCwa5dcqpVygF3YiajoYyi3lBrKFVbKiYiIqGQrUwbYuhUYNw749lugd2/zx9VQnlOlfPFiOY3ZDz/k/XXV0dTbtZPL2rXlUh2NPatQzko5ERVVTno3oNhJD+XO6d3Xk5L0bAwRERGRvjw8gI8+yvqxmjXlMrtKuRDA6dNy/b//8vZ6Dx4AJ07I9dat5VIN5Sq1+zrASjkRFX2slFtKHeiNlXIiIiKiHOXWff3uXeD+fbm+f7/WDT4ne/bIMF+9OuDvL7eZhnJFkVOiqRjKiaioYyi3FAd6IyIiIsoTNZRfvJh14Far5AAQGyunNcuNet34Y49p20xDeWCgNnc5wFBOREUfQ7mlGMqJiIiI8iQoCHB1ld+Xrl3L/HjGEJ6XLuxZhfIaNWSFHDDvug4A1arJZUSEDP5EREUNQ7ml0kO5g+Do60REREQ5cXTUQnFWXdjVSrlD+jfS3EJ5cjKwb59cb9VK2+7uroVx00HeAKBUKcDPT65zsDciKooYyi3FSjkRERFRnuU0ArtaKe/YUS7VwJ2dQ4eAxEQZstVp0FRqF/aMlXKAXdiJqGhjKLdUeih3FBx9nYiIiCg36gjsa9cCO3cCqanaY2qlfMgQuTx+HIiPz/5Ypl3X1e7qqn79gHLlgKeeyvw8hnIiKsoYyi2VPvq6IwxQYGClnIiIiCgHTZrI5c6dQNu2QGgocPu2DN9Xr8rHnnxSDtCWlgYcPJj9sf79Vy5NrydXPf+8PK5pt3YVQzkRFWUM5ZZy0qZ2d0QaQzkRERFRDvr0AX75RVbDfX3lteWLFwNnz8rHy5aVt+bN5f3surALoVXKswreQObquYqhnIiKMoZySzGUExEREeWZogDduwNLlgCffCK3LV+uXU+uXguuhvJ//gEOHwY2b5bXj6vOnZPzmru5AY0bW9YGNZRzoDciKooYyi1lEsqdkMpQTkRERJRHvXvLOcRPnABWr5bb6tSRy0cekctffpGhu1Mn4OOPtefu3SuXzZrJadYsoYby69eBhIT8t5+IyBYYyi3FUE5ERESUL6VKaQOx/fyzXJpWygMD5bqbm1z+/bf23KNH5dLSKjkgR2v39ZXrly5Z/nwiIltiKLdU+kBvgAzlHH2diIiIKO8GDjS/r1bKPT3lNd+3b2th/OhReS25ug4AYWGWv6aiAFWqyPUrVyx/PhGRLTGUW8rBwTiKCCvlRERERJZ56imtag1olXIA8PAAypcH6tWTX7nu3AEiImQwV0N5gwb5e93gYLlUR3wnIn1cuZL9gI4lFUN5fqR3YWcoJyIiIrKMmxvw7LPaeuXKmfdxd9fmNz96FLh1C7h3Twb10ND8vW5IiFyyUk4kZzL48kutJ0ph6tgRaNECuHmz8F+7qGIoz4/0UM7R14mIiIgsN2yY7Hj46KNmVwaaUbupHz0KHDsm12vVkoE9P1gpJ9IMHw6MGiVnOyhM0dFyWkSDQZsWkRjK84eVciIiIqJ8a9VKdl/98cfs9zEN5QXtug5ooZyV8vxZtQqYPl2fyipZn1ql3r69cF/XNIizUq7RNZTPnDkTzZo1g7e3N8qXL4+ePXvibIZTJkIITJ06FRUqVIC7uzvatm2LkydP6tTidOmndBnKiYiIiPKnaVPA3z/7x7OqlOdnkDeV2n2dlXLLJScDL7wATJqkzS9PxVdyMhAbK9d37izc12Yoz5quoXznzp0YOXIk9u7diy1btiA1NRUdO3ZEXFyccZ9Zs2bh008/xbx587B//34EBASgQ4cOePjwoX4NN6mUc/R1IiIiIutTA/jZs9qgUNaolN++zbnKLXX0qPaeXb+ub1uo4O7d09b37IFNi4wzZgBffKHdNw3l4eG2e93iRtdQvnHjRgwdOhR169ZFWFgYFi9ejGvXruHgwYMAZJV8zpw5mDhxInr16oV69eph6dKliI+Px4oVK/RrOLuvExEREdlUhQpyfvG0NDlVGlCwUF6mDODlJdevXSt4+0qSvXu1dVY3iz/TUJ6YCOzfn7fnvf460KsXkJKSt/3Dw4GJE+Xz7t+X21gpz1qRuqY8OjoaAFCmTBkAwOXLlxEREYGOHTsa93F1dUWbNm2we/fuLI+RlJSEmJgYs5vVcaA3IiIiIptSFPPu6qVLA5UqFex4HOwtfxjK7YtpKAeAv//O/TkJCbLivX593geHu3hRWz9wQC4ZyrNWZEK5EAJvvvkmHnvsMdSrVw8AEBERAQDwz3DBkb+/v/GxjGbOnAlfX1/jLSgoyPqNZaWciIiIyOZMQ3mDBjJYFwSnRcufPXu0dXY5Lv4yhvK8XFdu2rtk06a8vc7ly9r6vn1yxPXz57VtDOWaIhPKR40ahWPHjmHlypWZHlMy/A8shMi0TTVhwgRER0cbb9dtceELQzkRERGRzZmG8oIM8qZipdxyt2+bhysGqeJPDeWVK8vlv/8Cqak5P8f0RNbGjXl7nYyh/No12V1edeuWvDyFikgof+2117BhwwZs374dlUz6JQUEBABApqp4ZGRkpuq5ytXVFT4+PmY3q+Po60REREQ2l7FSXlCslFvOtOs6YB7K9+0Dpk3L+zXGVDSoobxNG6BUKTkS++HDOT/H9ETWsWMyUOcmYyhXu67XqgU4OMhAHhlpUdPtlq6hXAiBUaNG4aeffsK2bdtQpUoVs8erVKmCgIAAbNmyxbgtOTkZO3fuRMuWLQu7uRqOvk5ERERkc3XqAM7Ocp2Vcn2oobxRI7k07b4+ejQwZQrw22+F3y7KPzWUlysHPP64XN++HUhKksF55ky5feJE7TkZ/81s3pz765iG8tu3ga1b5XpoKJBee+XlEOl0DeUjR47EDz/8gBUrVsDb2xsRERGIiIhAQvqcC4qiYMyYMZgxYwbWr1+PEydOYOjQofDw8MCAAQP0azgHeiMiIiKyOVdXYM4c4M03gSZNCn68jJXyuDhtACrKmno9ee/ecnn7tuzqLARw6pTcpi6peFBDuZ8f0Lq1XB8/HnBzA2rXBt59F9i1S4ZzdSo89d+Mr69c5uW6cjWUu7rKpTp5Vq1acnYFgJdDqHQN5fPnz0d0dDTatm2LwMBA423VqlXGfcaNG4cxY8ZgxIgRaNq0KW7evInNmzfD29tbv4bzmnIiIiKiQjFiBDB7dsEHeQO0Snl4uJybuX9/oFkzYMeOgh/bHqWmatNlde8ur+A0GGQwv3MHUCc5Mh1Rm4qG1FTg0qWsHzMN5c88o00VCMiY06mT3CYEcO6c3K5Wyp9/Xi43b875evDkZODGDbnepYtcqlXxWrWAihXlOkO5pHv39axuQ4cONe6jKAqmTp2KW7duITExETt37jSOzq4bhnIiIiKiYqd8eVkNFEJ2pf31V7k9t+tpTS1YAPTrB6TP5GvXTpwA4uNldTQ0FAgMlNtv3jQfRVsNboA8wdG+PbBqlXyfSR+ffgpUqwZkMYa2WSivVk2eYLl3D3jwQF5fvnGjNobD6dNyqVbK+/YFfHzk/ocOZf/6167J37+7O9Ctm/ljDOWZFYmB3oodDvRGREREVOyYzlU+fry2PS+DVgEyvLz2mgycH35o/fYVNWrX9ebN5cBcpkHKNJSfPasF8DlzgG3b5ImLrl2zr9aSbW3fLpc//ZT5MdNQDsgTVWXKyJMvalfz0FC5PHVKVr3VKnf16vKkC5BzF3a163pIiPz7McVQnhlDeX6wUk5ERERULKmh/MQJbVteB5v66isYB/n9/PO8h/ni6uRJuVQHeVOvAw4PNw/lDx4Ad+/KddNeBxs3ykDG0dkL34ULcvnvv5l7LKihvGzZ7J9fp45cnj4tu6ELIcN7+fKyezsAmIzFnYkayqtUkcfy9NRes0wZhvKMGMrzg6OvExERERVL6mBvpvISyhMTgS+/lOulS8sBsN5/36pNK3IuXpTL6tXl0jRImXZZB2S1/N492W0ZkNeiK4oM6/fvF057C8uRI8CPP+rdiuylpGjdzW/dMp8CUAjt96FWyrNiWilXnx8cLH+nTzwh7+/dqw0El5FpKHd0BJo2lfdr1ZJL0xM8xFCePxx9nYiIiKhYUivlgDaieF6CwQ8/yO7rQUHAmjVy24IFWnC1R2rX82rV5FIN5aaVcnXKunPntCp59eoyhPn4yPv2dv39gAFykMCcrqnW07VrcqA31b//auvR0doAbTmFcrVSfv689jeu/tupXl3+LSQnA7t3Z/1801AOAI8+Kpd168olK+XmGMrzg93XiYiIiIoltVLu7Q28845czy2UCyEHzgLk3Nzt28sRpVNTgfr1ZeW8Zk3gzBmbNbvQpaVpwUoN5Wp188YNrXt027ZyaRrK1e7u6vRZDx7YurWFx2DQfnZ1ZPqiJuOJItNQrnZd9/TUrh/PSlAQ4OEhq+5//SW3qf92FAVo106uq9euZ5QxlI8bJ/+9qXOfq6H8wQM5mGBJx1CeHwzlRERERMVSt27AU08Bc+fKIA0ADx/KW3Y2b5bX1np7A8OHy20ffiivsU1IkMHi/Hngjz9s3vxCc+OGDGTOzlqAUpeHDsk53h0cgM6d5bazZ7XKccZQbk+V8rt3tWvkjx7Vty3ZUU8aeHjIZVahPKcqOSB/t2q1fPNmuTTtZaJ2Yd+2LevnZwzlZcrIec8rV5b3fXy068xZLWcozx+Ovk5ERERULPn4AL/9BgwdKkO2OkdzToO2LVkil0OHakGzQQMZXM+eBQYPltvUwGMP1Gqrek0woFXKo6LkMiQEUGcqzqlSbk+hXJ17GwCOHdOvHTlRQ/kzz8jliRNabwV1QL7cQjmghXL1920aytVK+f79cho1U7Gx8lIPQAvlGSmKZV3YjxwpupcLWANDeX6YVMpTU2U3FiIiIiIqfnIbcOrhQ+CXX+S6Gr5Vfn6y2l61qrxvTwOaZbyeHNBClKpGDa23wfnz2uBvaigvVUou7an7ummAPHasaOYANZS3aiV/f0LIQdmAvFfKAW2wN5XpIIkhIfKWmgrs2mW+nzowXKlS2t9AVkxDeVRU5uMA8v19/32gcWPg8ccznwCwFwzl+WEy0BsAVsuJiIiIiqncQvn69bKLeo0a2gjSGZUpI5f2WClXTzgAspeB2rMAkIG8cmV5bXJKigx/FSoA/v7y8eJaKT96FBg0yLwqrjIN5Q8fmo9sXlSoobx6dRnMAa0LuyWhXK2Uq0wr5UD215Vn7LqeHfXf3p49QJMmMnSbzn0eHQ306AFMniz/tuLjza+Xv3UL2Lcv95+jOGAozw+TSjnAUE5ERERUXKnBILvu68uXy+WgQbLLbVbUgGOPody0Ug5o7xcgT1Q4OMilSq2SA8U3lE+bJn/vM2ZkfixjUC9qXdgNBq2XQ0FDuWml3NkZCAw0f7ygoVytlH/5pfYc06nm3nlHXmri6qrNqa7+bIAM7I8+Ksd7KO4YyvODoZyIiIjILuRUKY+IALZulesDBmR/DHsM5Vl1XwfMu7CrYVydexqQ3YxVuXVfj4gwn7qrqFCrr7/8krl7esbrn9XB3qKj5d+KELZvX05u3gSSkmSIDgrSQvl//8neDJaE8qpVARcXuR4UpI0toFJD+cGDwOuvAy+9JE9ezZ8vt+c1lANab5Nff5V/E0lJWkBft07OeABof5cpKXIMAyGy7vZe3DCU50f6X6SLwlBOREREVJzlFMpXrZKhrHlzWXXMjj2G8qy6rwNZh3L1unIg75XyEyfksZ5/vuBttabwcK0aHh4OHDhg/rgayhs2lEs1lPftC3TooP8I/GrX9ZAQWUesU0eeHImPl221JJQ7OWm/44xd1wGgUiV5QsZgAL74AvjuO9nDQJ0aMCws5+Orj1evLgdxK1NGtm/3buDPP+XJnIoV5Qj/6t+hWlG/ckU7oaMOMFicOendgGIpvVLu6pQKpDCUExERERVX2YXymzeBb7+V64MG5XwMewvl9+9r1e2MoVx9v5yctKCWn1C+Y4cMc9nNc62XjHOP//wz8Mgj2n01lHftKkcEP3pUnmBQr4U+dEhOuacX0+vJAXl5QcuW8mTBv/9aFsoB2YX95EnzQd5Mff89sHq17GLu7i5vHh5AQADw9NM5H7t1a3k9eWioHK+gWzd5vF9+Aa5fl/v06yfroerfoVopVwcVBBjKSy41lDuwUk5ERERUnGUM5ampwOzZcsTnuDg5bVqfPjkfQw04CQny5u5e8Hb99JNc9upV8GNZSg0+gYHaXNcqtVJerZrxKzHq1pVLPz/zimpO3ddPnZLLiAj5eE6jdBcmtet6uXJyWq+ffza/tlytonftKrdfumT+uFrJ1UvGUA7ILuz5DeUdOwJr1gBt2mT9+COPmJ+0sISiyGvCVT16yFC+Zo02pZp62UjGUH7+vPa8Y8eAtLTM3euLE3Zfz4/0/4FcHOXo60lJejaGiIiIiPJLHbwqPFxenzprlhxgKi5OVhj//hsoXz7nY/j4aAHVGtXymzeB3r1ll2g9BknLrus6IEfJBrRrlQE5Kv3HH8tAZToYXk6V8pMntfWiNFCXGsrffltel336tJyLHpDTccXEyPUGDbQTFCtXas83HYhMD9mFciB/oXz4cNlzYsgQ67UxO506AW5uskqemCi7xqs9L0y7rxsM5pXy+Hjz+8URQ3l+qKGclXIiIiKiYk0N5fHxMnCtWSPvT5smB5BSrx3OiaJoA1Xlda7yb76R3XezCvEbN8oTBKmp+lResxt5HZAB7+JFbTAvQP78b70lq8emsgvlQpiHcvUa5IISomADrRkMWvf1J5/UBjJT56lXu657e8tbgwbacz095VLvSrn6uzMN5c2ayfhier18XkM5AJQubb325cTTU16XrxowQDvJU6mS/BmSk+XPkTGEHzpUOG20FYby/DBWyhnKiYiIiIozT08tPB45Im8A8Mor2U+BlhVLryufNQv45x9gw4bMj23cqK3rMQ92diOvq0xH5c6J+r5m7L5+5475+2StSvkXX8h51A8ezN/zz5+XJxDc3IB69YCePeX2n3+WSzXQVqokl6YDmb3zjrZPSkr+Xr+ghNAq5aa/Ow8PbVR89aSFJaG8MPXooa2bznjg5ARUrizXL13SQrn6c6nXld+7B6xfr/8o+JZiKM8PdfR1VsqJiIisJikpCQ0bNoSiKDiiJiOiQqBeV75smVw2bJh7l/WM1Ep5XkJ5TIwWfNVrq1WpqcCWLdp9PUJ5Tt3XLaFeJx4TYx6STKvkgHVCuRDA55/LHg9//pm/Y6hV8saNZdf17t3l/T175IkEtVKudltXe1GUKQO8+aYM8wYDcO1avn+MAomIkJddODhkHpjN9HIDR0fthElR06uX7Lber1/mGQ/Uv8eTJ7WB4Pr2lUs1lD/7rDzG2rWF015rYSjPD3ZfJyIisrpx48ahgpqOiAqR+me3erVcduxo+TEsqZQfP66tZwzle/aYd/c2DeUREVol35Zy6r5uCTX4paXJsKhSf2a1W7Q1uq+fPaud6FADm6XU68nVgcsqVtQGsdu5M3Mo79kTGDlSXkvv4aEFYb26sH//vVzWri1HQzdlGsrLlLGsF0hhKl1a/j2YXqevUkP55s3avk8+KdcPH5bXzO/cKe/v2WP7tloTQ3l+pIdyZwc50BtDORERUcH8+eef2Lx5Mz755BO9m0IlkBrKHz6US1uHcnVuayBzKFervM7Ocmkayp96Sg60ZsvBxB4+1LppFzSUe3hoI2KbnmhQK+VqV+VLl+TAXgXx++/autp+QF5//NZb2omGnGQM5YB2XfmOHdpx1VDu6grMm6dNgValilzqEcofPAA++kiujx+f+XHTUF5Uu67nRg3lf/0llzVrypMmTk5AVBTw+uvavseOFX77CoKhPD/USrkiK+UcfZ2IiCj/bt++jZdeegnLli2DR8b5l7KQlJSEmJgYsxtRQZh20HBzMw8weZXfUH7linkVWQ3lzz6rPQ7IbtmHD8vu0baal1kIeS29ELLqW65cwY6nKFlPi6aG8ieekNV0g8F8iqv8yC6Uf/WVnOLus89yfn5ysva+ZhXKt2/XKuXqNeUZ6RnKP/5YBtO6dYGBAzM/HhCghdqyZQu3bdaitl89eVazpjwxovZmMB3s7ejR4nVdOUN5fhgr5ey+TkREVBBCCAwdOhSvvvoqmjZtmqfnzJw5E76+vsZbUFCQjVtJ9s40lLdpI4O5pfIbygGt+/atW+YDzQFaKD99WgsZean65sfXX8tuw46O8vp6a3RxzmoEdrV3QN26QJ06cr0g15VHR8tB81Sm3dfVsJ/bdd6HDsnv9GXKmF9L36aNfB9OndJCu1opz0ivUB4RAcyZI9c/+CD7+brVk03FvVKuqllTLtVp0wCgSxd5Tf3du8Dt24XXtoJiKM+P9L90Z4WhnIiIKCtTp06Foig53g4cOIAvvvgCMTExmDBhQp6PPWHCBERHRxtv1/N7ASlROnVaNMB8SiZL5DWUp6Vp15Srr6uG1E2b5LJpUzmNFSADZ1SU+eBotgjlBw4AY8bI9Y8+Ah57zDrHzRjKIyNlYFIUee2zGsoLcl351q1ygDw1LEdFab0P1IAcHp7zMdTrlNu1Mz8Z4eenTX2mBvuiFso//FD2pHj0UW1wuqyoj5mOGl+c5CWUT50K1Kgh14tTF3aG8vxQK+UM5URERFkaNWoUTp8+neOtXr162LZtG/bu3QtXV1c4OTmhevpwu02bNsWQIUOyPLarqyt8fHzMbkQFYVopz8/15IAWynObp/ziRRmg3N2Bp5+W29QqsdoFu0sXOVWbOgL8lSvAiRPmx7C2jz+W32l79pQjiVtLxu7r6gmIKlXkNefWqJSr71ufPnL+cEDrwq5ef59bKFdPiHTqlPmxtm3N7xe1UL59u1y+9VbOvRuefVa+H1OmFE67rK10ae3vCdBCeadOcoq+nj3lpQfqSZTiFMqd9G5AsaSGcjCUExERZaVs2bIom4cLF+fOnYvp06cb74eHh6NTp05YtWoVmjdvbssmEhnVri3DXFCQnJ86P/JaKVe7rterB9SvL9dPnZJjFKnzk6thPSREVpavXMlbpfyPP+R14GqV3RLqvM/Dh1t3ZO6MlXL151CvA65dWy7zG8oNBvlzA0DXrvI9PH1ahvLAQO33cfu2rKY7ZZF+HjwA/vtPrmd1UqZdOzndGiCfn910eWooj4yUlXpPz/z9TJZSOwvVqpXzfoqitbG4qlJFu4xAnTKtVi3Zhd/LS95v0ABYs4ah3P6l/2t24ujrREREBVK5cmWz+17p36qqVauGStmNpkRkZX5+shLt4ZH/QGppKA8LA0JD5fqpU7LaGRsrq/ZNmsjtISFyRPCMofzaNfn908VF23bkiBwFvHRpGUDV0dvzSq3uZpzfuqCyC+Xqz65Wys+elV37s7seOjvHjsmf18sLePxxOQibGspNzwsaDDIsZzXr4rZt8rVr1QKCgzM/3rq1/LsQQj7fIZu+xqVLy583Olr+ztQTD7YUFye76wPZD0BnT6pWlaG8YkUthAPa9HpA8ayUs/t6fqihHBx9nYiIiMgeVK5csFGpy5SRy/v3ZQA0NXGi7DocHW0eytVAevGiNkf6009roU8NyMePA1evynVnZ3l806nSAG2O6qgoYO9ey9r+4IEWmm0VyjN2X1cDa5UqcgTtxMTcB2PLitproF49eRx13Mfr1zN3I8+uC3tOXdcBGfjU65az67quKuwu7Go3fS8v7b22Z+p15WrX9ayoofzUKSAlxfZtsgaG8vxQB3pj93UiIiKrCgkJgRACDRs21LspRBZRK+UGg/lI44cPAzNmAD/9BPTurXW9DQuT01SVKiWfs3y53K7O3Q1oAU+dJi0gQOvubdqFPS1Njpqu2rLFsrarAbJ8eet3uVavAVbfE7Wbulopd3TUApZpb4C8UoO2GpbVavGNG5mD8a1bmZ8vhBbKcxpPQJ0aLbdqtF6hPCjIupcdFFWtW8tlxuv8TQUHy8tRUlJkD4zigKE8PzJUyhnKiYiIiEo2V1ct0Jp2YZ85U1vfulWb67pBAxmi1HCanCyrnU88oe2vVq0jIuSybl3tOlrTUL5tm7YPoI0knle26roOmHdfj46WXcgB80rno4/KpXpiwhJqKFe7pZtWytVB3jLua+r8edkLwcUl56D35pvAc8/JwdRyUtihXL2evCR0XQeAbt3k5QqTJmW/j6IUvy7sDOX5kR7KHRnKiYiIiChdxuvKz50D1q6V6x99pHVLr1JFC6tqKAdk92lXV+1+xpBcrx5QrZpcNw3lP/wgl+oAcfv3a9cZ54XaFd4Wg4CZdl9X5wwPCNBGSQeAESPkcu1a7aRFXmUM5VlVytV557MK5WqV/LHHcu4lUKGCvMTgkUdybo/6HmY8IWArppXykqJ8+dx7BTCUlwTGUM6B3oiIiIhIyhjKZ82S3aO7dQPGjQO++kqGCdNu0qah3LTrOpB50LG6dbVQfuGCXMbFya7xADBhguzebjBo02TlhRpebRHKTbuvq6FcnUda1bCh7JacmirfI0vkpVKujkafVSjfulUu8zsVXkaslBcNDOUlAbuvExEREVEGpnOV37ihDb727rty+corMkTNm6c9Rx3szdFRTullyt0d8PfX7puGcrVSvmGDHLW9alXZDbxDB7ndki7shdV9XZ12LatBukaPlstvvgESEvJ+fLWynrFSHhWlvUetWsllVqH8zBm5zM80cllRByK7eFGeZLC1klgpzwuG8pJArZQLjr5ORERERJJppfyrr+RAU23aAC1aaPtUrGg+V3br1nKfN9/Unm/KtHptek35pUuyIr5okbw/aJCswquh3JLB3gqj+3pOlXJA9hIIDpbvnSXXlmcc6M3XV+san5wsLxlQr1nPGMqF0CrNGWZnzLeaNeVo7XFxcjo7W1Pbz1BuTh3d/+ZNICZG37bkBUN5fqSPvq6GclbKiYiIiEgN1XfvaqOhq9dLZ8fDA9ixQ3Z1z4pava5USQbOoCAZ6pOSgI0bZfdrBwfghRfkfm3byscvXTK/7jw7QhRO9/UHD3KulDs6Aq+9JtdNexLkJC5OG9XddP5x067clSpp72HGUH7/vlaVt1b3b0dHoH17uW7pKPj5oVbK2X3dnK+v1sukOIzAzlCeHxkq5QzlRERERKSG8t9/l9VnLy95PXlBqIFSrfw5OWnbxoyRy+ee07Z5e2uV+byEwjt3gPh4WWW3VrXYlFopf/hQC0dZVcoB4Pnn5fLoUbl/btQpzjw8AB8fbbtpQK1SRQvskZHm81arVeZy5bTB4KxBvT7d1qE8Lk4b0I+V8sxq1ZJLhnJ7xVBORERERBmooVydi7xnTxkYC6JbNzna9IAB2jb1unK1O/jYsebPadNGLg8cyP34atf1ChXMR363FjWUA1o3YrX9GZUrpwXovMxZbjrIm+lo3KYBtWpV+Xtxdpb3TaeOs1XXb/USgr17tUr+6tXyenlrUqvk3t7mJyVIYii3d+mh3EFw9HUiIiIiksqUMb/fv3/Bj9mqlQySahUZ0K4rB4DHH888SJk6yNWJE7kf35Zd1wEZ9E3DfuXKcgC77NSrJ5d5aXvGkddVGSvlDg5AYKD5cwDbhfKQEPk7SkuTlyYcPw706we8+qp2wsYaeD15zhjK7V16/xan5HgADOVEREREZD5Qm5+fVjEtqIxzMptWmjNWyQEt2J48KQeDy4mtQzmgXVcOZN91XWVJKFdHXlcHeVOZhlT151KDe2GEcsC8C/v48fLafUBWzK2FI6/nrHZtuWQot1elSwMAXOPlRRwcfZ2IiIiITEN5795al2lrUyvhtWoBTz+d+fHq1QEXFzlV2rVrOR9L7b5ui+nQVKZd2LMa5M2UtSvl6hRlhR3K1RMy338P/Pmntn3NGi2gL1oE9O0LJCbm7zU4R3nO1Er5+fO5n5zSG0N5fqSHcqekeLggiZVyIiIiIjIL5dboup6dJ54AfvxRjr7ukMW3eWdnrUp4/HjOxyqMSrlpKLdmpTy7UF4UKuXt2smR2NUB64YNk932L16UXdivXJHd2VevBrZvz99rsPt6zkJC5L+FhATtvSqqGMrzw9fX2I+oNKIYyomIiIgIlSsDoaFy9PPHH7fd6yiKrLDmVN2uX18ucwu3hd19PbdKeWioXN6+LUeGz0l2oVwd3C0kBAgIMN+nsEK5ry/QvLlc9/YGPvwQeOopeX/1amDqVG0k+Lt38/canA4tZ05O2vgLRb0LO0N5fjg4GP93YSgnIiIiIkB2GT9xAti1K+sKdmHKS8XZYACuXpXrhdV9PbdKuaen1uU8txMK2YVyd3fgzBngyBHtevyModxgsP012QMHyuW0aXJk+T595P1Fi2S3dlV+Qzkr5bkrLoO9MZTnV3oXdoZyIiIiIlIpiv6BHMhbKL91Sw5Y7Oho22qrGsodHfNWkc9LlV+I7EM5AJQta34yIGMoV+csV5Ssn28N//ufHDlfnU++a1c5Rd6dO9p15QAr5bakhvIzZ/RtR26KwH8ZxRRDOREREREVUWooP31a6yad0alTclm5snHGX5tQu69XqZK3we/yckIhJgaIlxMh5SlUZwzlapU5IMB2A/IpCuDvr9339JTzzgPyxE2/fnI9P6E8NhZ48ECus1KePVbK7V16KC+D+xx9nYiIiIiKlOBgwMtLBvLz57PeZ80auWzXzrZtUSvWuV1PrspLKFenQytVSlafc6OG8vv35cxJek0n9uqrMqyPGqWNO3DvnuXHUdvv6yuvWaesMZTbuzJlALBSTkRERERFj6LkHG6TkoC1a+W6eu2zrbRvL7uTP/dc3vY3bbdpN29TOXVdz0qpUoCbm1y/dk2/67HbtZMnBubMke8JkL9KOadDyxs1lN+4AcTF6duWnDCU5xe7rxMRERFREaaG26ymRdu4EYiKkqG2TRvbtqNlS3kN99Chedu/Zk3ZnT4mRqsICwGcPAksXSpHZrc0lCsK0KSJXN+4Ud9B0kqVku1Rp9DLTyjfuFEu1dBJWfPz097nc+f0bUtOGMrzi6GciIiIiIqwnCrly5fLZb9+cgA2W1NHQc8LFxctbH78MTBgABAYKH+eoUOBJ58ELlyQj1sySFvv3nK5Zk3RGLk8v5Xy2Fhg4UK5Pny4ddtkj4pDF3YbDulg50yuKU9OlmfvLPnPhoiIiIjIltRRzA8dAn74QQbZjh1luP31V/mYrbuu51e9erIy/sUX2jZ3d1lBP3FCu06+YsW8H7NXL+CNN+SUdeq0a0UhlN+7Z1mWWLYMiI6W08t16mS79tmL2rWB3bu1gQ2LIlbK88vkmnIhgLQ0ndtDRERERGRCrZRfuwYMHgy89x7QqhXQti2QmCgriI0a6drEbA0eLOf2btkSmDQJ2LFDdrf/5Rc5crk60LIllfLKlYHmzWUAvnhRbtMzlKvdqlNTZVf9vBBCO1Hx2mtFY/q9ou6RR+Ry+3Z925ET/hrzy6T7OgCOwE5ERERERUr58nJubC8vGcZ79pTV2MOH5eMDBxbdnp5PPSWvQ//3X2DaNHndu6urHCht2jRtP0vnGM842JyeodzNTU6TBuS9C/tff8lp7ry8gCFDbNc2e6L2JtizR5tGrqhhKM+vDKGc15UTERERUVHz+++yCrtrF7B+PXDwIPDEE3IwtWHD9G5d/kyYAPTtKyvpLVpY9txnn9XWnZzkPOV6svS68rlz5fKFFwAfH9u0yd6EhMgu7GlpwNatercmawzl+WVyTTnAUE5ERERERZNpNbxRI1ltPXvWsuuxixIHB2DlSuDWLTkAnCVCQoCmTeV6hQqFM8hdTkyvK89NcjKwaZNcf+UV27XJHnXpIpd//qlvO7LDUJ5fJteUAwzlRERERESFRVHyH6jVUdiDg63XnvyyZFq0kydl5ihdGggNtW277E3nznK5caO8Lh8Ajh2TAx6uWgXs3Klf2wCOvp5/6ZVyNyTBDQlITnbXuUFERERERJSbESPk4Hd9+ujdEsu6rx88KJeNGxfdsQCKqtat5ej94eFy9P6NG4Fx48z3OXBAm8u+sLFSnl/e3sbTc5yrnIiIiIioePD2Br78Ug4epzdLQvmhQ3LZuLHt2mOv3NzkIIEA8M47wPjxcr1RI2MHaJw4oU/bAIby/FMUoFQpAPK6co6+TkRERERElrDkmnKG8oJRryv/4w/Zhf2ll2Tvgx495PYbN/RrG0N5QZhcV85KORERERERWSKv15SnpgJHj8p1vbpYF3fqdeWAnCJw3jxZZ61USW7TM5TzmvKCMJkWjaGciIiIiIgskdfu66dPA4mJsut9tWq2b5c9ql4d6NkTuHQJWLsWcHGR2xnKizuGciIiIiIiyqe8hnLTQd4c2Nc539avz7ytKIRy/koLwmSucoZyIiIiIiKyRF5DOa8nt52gILlkKC+ueE05ERERERHlk3pN+b172vzZWWEotx21Un73rrxEQA8M5QVh0n2do68TEREREZEl1FCelgZER5s/lpwMpKTIxw4flts4yJv1lSoFeHjI9Zs39WkDQ3lB8JpyIiIiIiLKJzc3wMtLrqtd2O/fB6ZMAcqXl12rJ00C4uMBT0+gZk392mqvisII7BzorSBMrim/zVBOREREREQWKlsWiI2VofzcOaBvX3kfkNXzmTPlesOGgKOjbs20a5Uqyfder1DOSnlB8JpyIiIiIiIqANPrysePl4G8QQNg9Wo5l3a5cvLxVq30a6O9Y6W8ODPpvv7ggb5NISIiIiKi4kcdgX3HDuDECcDZGdi5U17rDADPPw9s2wa0b69XC+2f3qGclfKCMOm+/t57wF9/6dweIiIiIiIqVtRQvnChXHbpogVyAPD2Bnr00K49J+tjKC/O1FCuRCEhQaBbN2DTJp3bRERERERExYbafT0qSi779dOvLSUVQ3lxln5NuZNIxXNd4pCYCPTqpd9Q+kREREREVLyolXJATs3Vvbt+bSmpGMqLMw8PedEHgB++iELfhmcRGH8B776rc7uIiIiIiKhYMA3lTz8tpz6jwqWG8tu3ocsA3gzlBaEoxi7sLnv/xopTYTiKMOz//hQOHNC5bUREREREVOSZhvL+/fVrR0lWtizg4gIIAdy6Vfivz1BeUOmhHP/7HxySk+CJeKxCX4x/PQFC6Ns0IiIiIiIq2gIC5NLXF+jcWd+2lFSKom8Xdobygkq/rhwPHwJlyyKtbHnUxwk8t+cNLF+ub9OIiIiIiKhoa9UKGDcOWLoUcHXVuzUlF0N5Lr766itUqVIFbm5uaNKkCf755x+9m6RRK+UAsGABHJcvAwC8im9wbOin+PN3g04NIyIiIiKios7BAfjoIzntGelHz1DuVPgvaZlVq1ZhzJgx+Oqrr9CqVSt888036NKlC06dOoXKlSvr3TwgJEQuhw4FevYEABjGT4DDRzMxK20s/n56AzZ9Oh8V2tWCAQ4oXVp2UXFxkU9Tu7grSmE33IaEABIS5F/0uXPAlSuyP06FCnLOh7Q0IDVVuyUlyTkgTG8PH8pThZ6eclJGT095c3WVg+ulpQF378qbiwtQrpx2K1sWcHeXozRERwN79wK7dgExMUDTpsCjjwKVK8tJHx0cgGvXgKtX5b7JybJNXl6Ajw+QmAhcvgxcvw7Ex8vHnZzk84OD5et5e8ttN27IY0VFyZ8/OVk+XrGidqGKs7O2dHCQ+yUmymVCApCSIgcQ9PLSbp6e8g/EYADi4uQIFHfuyPfa3R1wc5M303UXF7lvbKy8PXwo7yuKbKuTk2yDuu7kJB9T2xEfL5dJSfJ4np6yXervQb0JId+b69eBBw/kayUmyvfE11dOsunrK99LBwf5M6SmasdXb8nJ2nvj4yPfL/WEl/r3kpam3VJT5bHS0uRSXU9NlT9rTAzg6GjeBl9f7b1UFO19j4/X2uPgoL2HGW8uLvLni46Wf3c3bgAREfJ9CQyUv2s3N/k3qi5dXLR2RUfL/e/cke+bs7N2U/8m1L+LpCTZPoNB/m4cHbWlomj/dh4+lMdVf7eKIp+vKHJfd3fz35e7uzx2bKz29xEXp62npcn/oCpUkO+/+jOkpsrf0bVrwIEDwLFjwL178n0GgBo1gFq15N+6n5/8/cfHy+NGRMjn3bgh93/4UL4/desC9evL1/Pxka+l/jyXLgGnTsmpLIKC5PErVsz67y8yUr6nKSnaz+3hYX5zczP//8n0lpdtpvdDQ4GWLW37fygREREVOj1DuSJE0b7yuXnz5mjcuDHmz59v3FanTh307NkTM2fOzPX5MTEx8PX1RXR0NHx8fKzfwMhIYPNm4LnntP4mBgPSvvgKKWPHwy0tHgCQCkfchj8S4A4B+eVZCAUGKBBQoCgK4KAtoSgwCHkT6Ut136zIY8jv4w4OAAQgoH6PVCAgD+vgKB93dAAUR/kc4xHTV5xFMtzS4uCaFg84OEA4OUM4OkE4yRCnQEBJS4ViSIODIX0p5LqjIQXO8dFwSE2x/ntNRKS3ESOAL78s8GFs/tlUwvD9JCKigvriC+D114HevYE1awp+PEs+m4p0pTw5ORkHDx7EO++8Y7a9Y8eO2L17d5bPSUpKQlJSkvF+jFrJsZXy5YFBg8y3OTjAcfQopHXqiuNPjkDdm5vhhDRURLi2T8ZTIQJAmm2bWthi4YnzqIHLqAIfxKACwlEKD5AKJ7NbMlzwAKUQhdLG20N4wxVJ8EQcvBALT8TBE3FwQTKckQIBBXdRFvfgBxckoyzuohzuGG8uSEYSXJEINxxFGP7B47iPMngE+9AM+1EOd+CDGDghFdcRhKsIxj34IQmuSIMjvBCLUko00hxccNM5BBEulRHn4I0UxQUuhkRUSLuGoNQr8DFEwUs8hLNIRoRDRVx3DMZ9xQ8J8EAqnOBniEQFww2UElFwQQqclRQ4IwUuSIYDDEhS3JGkuCExfZmqOMNNxMPDEAcPEQsPQyw8RBwAeeIlSXHDXUd/3HMsDwEFriIRriIRboYE47qrSICLSEa8gyfiFS/EOngjXvFCvCLn13BEKpxEaqalAwxIVNyNtwQHD6TABa4iER4iTrZLxMHDEAd3EQcPEQdFCIQ7BeGWYxCiHMsiTvFCiuICT/EQ3oZoeBui4WN4AG+D/HcoFAVpcMr0OqlwhiNS4SqS4GWIQRnDHfimRcGgOCANjjDAEWmKE9IUR6SlrxvgkL7dEQIO6fs6Id7BC3EO3lBggE/aA3iLaPikPYCXIRpuIiH91JZAkuKGpPTXT1LckejgDgUCrgb5PrqIRLga0pciES4iCXGKF2IcSuGBUga3HCvithIINxGP8mkRKG24C7f0/VyQBDckwgXJSIUT0hQnxCueuOMUKH93igOckQJnkQInkQInyKWzSIajSEOS4oZkxRVpcIAj0uAoUuEo0uCIVChCIEVxRhocEad4I8bBF/GQv1sFBihC/nwOSIO78W8pLv13mIBExQ3xiifi4YlYxQvx8ESc4oU4eMIAB/gbbiFQ3IS3iIGrSIIzkiH/ap1xVymHww5NcERpjFtKBUQLHziJFNQQ51BTnEV5cRtlxD144SHi4YmH8MJ9+OEqgnFNBOEBSiEG3vDGQ9THcdTFSfjhHnwQA1ckIQY+eAhv3FCCcNE1FHfdghAkrqFK6nmUNUTCQ8TBHfHGn0eBwF2H8rjnUB4pigsUCDiKVLghAe4i3nhzEwnp/yuln9hUtHWhKHJdUaCk/41mfMy4v6Ig8UZ9dCm0/0WJiIiosLD7ejbu3r2LtLQ0+Pv7m2339/dHREREls+ZOXMm3nvvvcJoXq5caldF/RsbZdfPyEjg1i2IxCTERAvEPhRwchRwcRYwpAkkJQokJQkkJwokJ8ltjo4CTg5yPydHAQdFZN3NPb2zQ1oakJgEpCRrvVgdHYSxN2tKinw8KRFITBBISpLPMe2haTAAKcIJcfBErMEDyYkGpCSkIjUhBWlJqUhNTIFBOEA4OMLg4AThIANScpoj4pOdEJfsjLspvriTUgr3Ej2RkKggMVG2xbS3rpOT7N0aFSV76eZG7Zmr3jJuy3jf2Vn2bnVzk71yHzyQP9sv5f6HcuVMei/HCyQmKcaezCmmBX71REkagDy0sdDktRNCYZ3ksbOTSbkqyM+barVW6CeLn/8Y6lh8mH1onv2D4v/bu/egqOr/j+OvhcUVGCR0R2HDEKcLqWUG5c+kLCtHy5zKLE2RpqYixSDLtLSRnCkzJ+1i0tiY/2RD46QOZTcss7QxDSTJTJvJvDN0FdRUcD+/P/yyuYK6FHIuPh8zZ4TP+ez6fsG6bz979pzV8X9zhyXp/1p832fTuFSxKAcAwIVYlJ+B56SVqDGmyVijp556ShMnTgx9X1tbq65du57V+s7I6z1+jmYgII+kxP9tOK7hfwuV5hbYrcmY5u4zfODYsX9O52083btxa7x9cy8CnGncmOZPjY4kY6Q/h9a8r9b2X0+SOfH2rfX1meY1ngpy4mkhJ56yfaqxxp9x46nuZ9pOfuw0/mmHMStqkI6fvt54mv/pfmctHZOO/8xPPoXcmKbjzc0LBv9p2AAAwF0yMqTS0uOXs2lrtl6U+/1+RUdHNzkqXlNT0+ToeSOfzycfnyXgKN42ehRGsiA98RpRAAAAAM4NCQnSbbdZ83fb+iPR2rVrp8zMTJWVlYWNl5WV6RqufgsAAAAAcDhbHymXpIkTJyonJ0dZWVnq16+fFixYoJ07dyovL8/q0gAAAAAA+E9svyi/55579Pvvv2vGjBnat2+fevXqpQ8//FBpaWlWlwYAAAAAwH9i+0W5JI0bN07jxo2zugwAAAAAAFqVrc8pBwAAAADAzViUAwAAy61YsUJ9+/ZVbGys/H6/7rzzTqtLAgCgTTji7esAAMC93nvvPT344IN6/vnnNXDgQBljVFVVZXVZAAC0CRblAADAMg0NDSooKNDs2bP1wAMPhMYvueQSC6sCAKDt8PZ1AABgmYqKCu3Zs0dRUVHq06ePUlJSNGTIEG3evPmUtzly5Ihqa2vDNgAAnIpFOQAAsMzPP/8sSSoqKtK0adP0wQcfKCkpSQMGDNAff/zR7G1mzpypxMTE0Na1a9e2LBkAgFbFohwAALS6oqIieTye027ffvutgsGgJGnq1KkaPny4MjMztWjRInk8Hi1ZsqTZ+37qqae0f//+0LZr1662jAYAQKvinHIAANDq8vPzNXLkyNPO6datm+rq6iRJPXr0CI37fD51795dO3fubPZ2Pp9PPp+v9YoFAMBCLMoBAECr8/v98vv9Z5yXmZkpn8+nrVu3Kjs7W5JUX1+vX375RWlpaWe7TAAALMeiHAAAWKZDhw7Ky8vT9OnT1bVrV6WlpWn27NmSpBEjRlhcHQAAZ5/rF+XGGEniyqwAANto7EmNPepcN3v2bHm9XuXk5Ojvv/9W37599fnnnyspKSmi29PrAQB205Je7zEu/x/B7t27uSorAMCWdu3apdTUVKvLcDx6PQDAriLp9a5flAeDQe3du1cJCQnyeDz/6b5qa2vVtWtX7dq1Sx06dGilCq3jpjxuyiKRx87clEVyVx4nZTHGqK6uToFAQFFRfBDKf9WavV5y1mPpTNyURXJXHjdlkdyVx01ZJPJYpSW93vVvX4+Kimr1oxAdOnSw9QOgpdyUx01ZJPLYmZuySO7K45QsiYmJVpfgGmej10vOeSxFwk1ZJHflcVMWyV153JRFIo8VIu31vDwPAAAAAIBFWJQDAAAAAGARFuUt4PP5NH36dPl8PqtLaRVuyuOmLBJ57MxNWSR35XFTFljLTY8lN2WR3JXHTVkkd+VxUxaJPE7g+gu9AQAAAABgVxwpBwAAAADAIizKAQAAAACwCItyAAAAAAAswqIcAAAAAACLsChvgfnz5ys9PV3t27dXZmamvvrqK6tLOqOZM2fqqquuUkJCgjp37qzbb79dW7duDZtjjFFRUZECgYBiY2N1/fXXa/PmzRZVHLmZM2fK4/GosLAwNOa0LHv27NGYMWPUqVMnxcXF6YorrlB5eXlov5PyNDQ0aNq0aUpPT1dsbKy6d++uGTNmKBgMhubYNc+XX36p2267TYFAQB6PR8uXLw/bH0ndR44c0YQJE+T3+xUfH69hw4Zp9+7dbZjiH6fLU19fr8mTJ+uyyy5TfHy8AoGAxo4dq71794bdh1PynOzhhx+Wx+PRyy+/HDZupzywN3q9vdDr7cXJvV5yV7+n17ur17Moj9C7776rwsJCTZ06VRs3btS1116rIUOGaOfOnVaXdlqrV6/W+PHjtW7dOpWVlamhoUGDBg3SwYMHQ3NefPFFzZkzR/PmzdOGDRuUnJysm2++WXV1dRZWfnobNmzQggULdPnll4eNOynLn3/+qf79+ysmJkYfffSRfvjhB7300ks677zzQnOclGfWrFl64403NG/ePG3ZskUvvviiZs+erddeey00x655Dh48qN69e2vevHnN7o+k7sLCQi1btkwlJSVas2aNDhw4oKFDh+rYsWNtFSPkdHkOHTqkiooKPfPMM6qoqNDSpUu1bds2DRs2LGyeU/KcaPny5frmm28UCASa7LNTHtgXvd5e6PX2y+PkXi+5q9/T613W6w0icvXVV5u8vLywsYyMDDNlyhSLKvp3ampqjCSzevVqY4wxwWDQJCcnmxdeeCE05/DhwyYxMdG88cYbVpV5WnV1deaiiy4yZWVlZsCAAaagoMAY47wskydPNtnZ2afc77Q8t956q7n//vvDxu68804zZswYY4xz8kgyy5YtC30fSd1//fWXiYmJMSUlJaE5e/bsMVFRUebjjz9us9qbc3Ke5qxfv95IMjt27DDGODPP7t27zfnnn2++//57k5aWZubOnRvaZ+c8sBd6vX3Q6+2Zxy293hh39Xt6vb3zRIIj5RE4evSoysvLNWjQoLDxQYMG6euvv7aoqn9n//79kqSOHTtKkrZv367q6uqwbD6fTwMGDLBttvHjx+vWW2/VTTfdFDbutCylpaXKysrSiBEj1LlzZ/Xp00dvvvlmaL/T8mRnZ+uzzz7Ttm3bJEnfffed1qxZo1tuuUWS8/I0iqTu8vJy1dfXh80JBALq1auXrbM12r9/vzweT+jIjdPyBINB5eTkaNKkSerZs2eT/U7LA2vQ6+2FXm/PPG7t9ZL7+z293t68VhfgBL/99puOHTumLl26hI136dJF1dXVFlXVcsYYTZw4UdnZ2erVq5ckhepvLtuOHTvavMYzKSkpUUVFhTZs2NBkn9Oy/PzzzyouLtbEiRP19NNPa/369Xr00Ufl8/k0duxYx+WZPHmy9u/fr4yMDEVHR+vYsWN67rnnNGrUKEnO+/00iqTu6upqtWvXTklJSU3m2P054vDhw5oyZYruvfdedejQQZLz8syaNUter1ePPvpos/udlgfWoNfbB73evnnc2usld/d7er398pyMRXkLeDyesO+NMU3G7Cw/P1+bNm3SmjVrmuxzQrZdu3apoKBAn376qdq3b3/KeU7IIh1/xS8rK0vPP/+8JKlPnz7avHmziouLNXbs2NA8p+R599139fbbb+udd95Rz549VVlZqcLCQgUCAeXm5obmOSXPyf5N3XbPVl9fr5EjRyoYDGr+/PlnnG/HPOXl5XrllVdUUVHR4trsmAfWc+pzVCN6vb3Q64+za57muK3f0+vtl6c5vH09An6/X9HR0U1eZampqWnyappdTZgwQaWlpVq1apVSU1ND48nJyZLkiGzl5eWqqalRZmamvF6vvF6vVq9erVdffVVerzdUrxOySFJKSop69OgRNnbppZeGLijkpN+NJE2aNElTpkzRyJEjddlllyknJ0ePPfaYZs6cKcl5eRpFUndycrKOHj2qP//885Rz7Ka+vl533323tm/frrKystAr55Kz8nz11VeqqanRBRdcEHpe2LFjhx5//HF169ZNkrPywDr0enug1x9n1zxu7fWSO/s9vd6eeZrDojwC7dq1U2ZmpsrKysLGy8rKdM0111hUVWSMMcrPz9fSpUv1+eefKz09PWx/enq6kpOTw7IdPXpUq1evtl22G2+8UVVVVaqsrAxtWVlZGj16tCorK9W9e3fHZJGk/v37N/nImm3btiktLU2Ss3430vErfUZFhT+lREdHhz4mxWl5GkVSd2ZmpmJiYsLm7Nu3T99//70tszU26Z9++kkrV65Up06dwvY7KU9OTo42bdoU9rwQCAQ0adIkffLJJ5KclQfWodfbA73e3nnc2usl9/V7er198zSrLa8q52QlJSUmJibGLFy40Pzwww+msLDQxMfHm19++cXq0k7rkUceMYmJieaLL74w+/btC22HDh0KzXnhhRdMYmKiWbp0qamqqjKjRo0yKSkppra21sLKI3PiFVmNcVaW9evXG6/Xa5577jnz008/mcWLF5u4uDjz9ttvh+Y4KU9ubq45//zzzQcffGC2b99uli5davx+v3nyySdDc+yap66uzmzcuNFs3LjRSDJz5swxGzduDF2hNJK68/LyTGpqqlm5cqWpqKgwAwcONL179zYNDQ22ylNfX2+GDRtmUlNTTWVlZdjzwpEjRxyXpzknX5HVGHvlgX3R6+2JXm8fTu71xrir39Pr3dXrWZS3wOuvv27S0tJMu3btzJVXXhn6qBE7k9TstmjRotCcYDBopk+fbpKTk43P5zPXXXedqaqqsq7oFji5UTsty/vvv2969eplfD6fycjIMAsWLAjb76Q8tbW1pqCgwFxwwQWmffv2pnv37mbq1KlhT/52zbNq1apm/53k5uYaYyKr+++//zb5+fmmY8eOJjY21gwdOtTs3LnTgjSnz7N9+/ZTPi+sWrXKcXma01yjtlMe2Bu93n7o9fbh5F5vjLv6Pb3eXb3eY4wxrXPMHQAAAAAAtATnlAMAAAAAYBEW5QAAAAAAWIRFOQAAAAAAFmFRDgAAAACARViUAwAAAABgERblAAAAAABYhEU5AAAAAAAWYVEOAAAAAIBFWJQDOOs8Ho+WL19udRkAAOAsodcD/x6LcsDl7rvvPnk8nibb4MGDrS4NAAC0Ano94GxeqwsAcPYNHjxYixYtChvz+XwWVQMAAFobvR5wLo6UA+cAn8+n5OTksC0pKUnS8bebFRcXa8iQIYqNjVV6erqWLFkSdvuqqioNHDhQsbGx6tSpkx566CEdOHAgbM5bb72lnj17yufzKSUlRfn5+WH7f/vtN91xxx2Ki4vTRRddpNLS0rMbGgCAcwi9HnAuFuUA9Mwzz2j48OH67rvvNGbMGI0aNUpbtmyRJB06dEiDBw9WUlKSNmzYoCVLlmjlypVhjbi4uFjjx4/XQw89pKqqKpWWlurCCy8M+zueffZZ3X333dq0aZNuueUWjR49Wn/88Ueb5gQA4FxFrwdszABwtdzcXBMdHW3i4+PDthkzZhhjjJFk8vLywm7Tt29f88gjjxhjjFmwYIFJSkoyBw4cCO1fsWKFiYqKMtXV1cYYYwKBgJk6deopa5Bkpk2bFvr+wIEDxuPxmI8++qjVcgIAcK6i1wPOxjnlwDnghhtuUHFxcdhYx44dQ1/369cvbF+/fv1UWVkpSdqyZYt69+6t+Pj40P7+/fsrGAxq69at8ng82rt3r2688cbT1nD55ZeHvo6Pj1dCQoJqamr+bSQAAHACej3gXCzKgXNAfHx8k7eYnYnH45EkGWNCXzc3JzY2NqL7i4mJaXLbYDDYopoAAEDz6PWAc3FOOQCtW7euyfcZGRmSpB49eqiyslIHDx4M7V+7dq2ioqJ08cUXKyEhQd26ddNnn33WpjUDAIDI0esB++JIOXAOOHLkiKqrq8PGvF6v/H6/JGnJkiXKyspSdna2Fi9erPXr12vhwoWSpNGjR2v69OnKzc1VUVGRfv31V02YMEE5OTnq0qWLJKmoqEh5eXnq3LmzhgwZorq6Oq1du1YTJkxo26AAAJyj6PWAc7EoB84BH3/8sVJSUsLGLrnkEv3444+Sjl8ttaSkROPGjVNycrIWL16sHj16SJLi4uL0ySefqKCgQFdddZXi4uI0fPhwzZkzJ3Rfubm5Onz4sObOnasnnnhCfr9fd911V9sFBADgHEevB5zLY4wxVhcBwDoej0fLli3T7bffbnUpAADgLKDXA/bGOeUAAAAAAFiERTkAAAAAABbh7esAAAAAAFiEI+UAAAAAAFiERTkAAAAAABZhUQ4AAAAAgEVYlAMAAAAAYBEW5QAAAAAAWIRFOQAAAAAAFmFRDgAAAACARViUAwAAAABgkf8HtIPECR/cfJEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1504,9 +1551,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "RuntimeError", + "evalue": "Parent directory ../models does not exist.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[22], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# save the checkpoint model training\u001b[39;00m\n\u001b[1;32m 2\u001b[0m output_path \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m../models/\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m----> 4\u001b[0m torch\u001b[39m.\u001b[39;49msave({\n\u001b[1;32m 5\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39mepoch\u001b[39;49m\u001b[39m'\u001b[39;49m: epoch,\n\u001b[1;32m 6\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39mmodel_state_dict\u001b[39;49m\u001b[39m'\u001b[39;49m: model\u001b[39m.\u001b[39;49mstate_dict(),\n\u001b[1;32m 7\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39moptimizer_state_dict\u001b[39;49m\u001b[39m'\u001b[39;49m: optimizer\u001b[39m.\u001b[39;49mstate_dict(),\n\u001b[1;32m 8\u001b[0m \u001b[39m'\u001b[39;49m\u001b[39mloss\u001b[39;49m\u001b[39m'\u001b[39;49m: loss\u001b[39m.\u001b[39;49mitem()\n\u001b[1;32m 9\u001b[0m }, Path(output_path,\u001b[39m'\u001b[39;49m\u001b[39mautoencoder_train_checkpoint.pt\u001b[39;49m\u001b[39m'\u001b[39;49m))\n", + "File \u001b[0;32m~/miniconda3/envs/s2spy/lib/python3.9/site-packages/torch/serialization.py:440\u001b[0m, in \u001b[0;36msave\u001b[0;34m(obj, f, pickle_module, pickle_protocol, _use_new_zipfile_serialization)\u001b[0m\n\u001b[1;32m 437\u001b[0m _check_save_filelike(f)\n\u001b[1;32m 439\u001b[0m \u001b[39mif\u001b[39;00m _use_new_zipfile_serialization:\n\u001b[0;32m--> 440\u001b[0m \u001b[39mwith\u001b[39;00m _open_zipfile_writer(f) \u001b[39mas\u001b[39;00m opened_zipfile:\n\u001b[1;32m 441\u001b[0m _save(obj, opened_zipfile, pickle_module, pickle_protocol)\n\u001b[1;32m 442\u001b[0m \u001b[39mreturn\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/s2spy/lib/python3.9/site-packages/torch/serialization.py:315\u001b[0m, in \u001b[0;36m_open_zipfile_writer\u001b[0;34m(name_or_buffer)\u001b[0m\n\u001b[1;32m 313\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 314\u001b[0m container \u001b[39m=\u001b[39m _open_zipfile_writer_buffer\n\u001b[0;32m--> 315\u001b[0m \u001b[39mreturn\u001b[39;00m container(name_or_buffer)\n", + "File \u001b[0;32m~/miniconda3/envs/s2spy/lib/python3.9/site-packages/torch/serialization.py:288\u001b[0m, in \u001b[0;36m_open_zipfile_writer_file.__init__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\u001b[39mself\u001b[39m, name) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 288\u001b[0m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m\u001b[39m__init__\u001b[39m(torch\u001b[39m.\u001b[39;49m_C\u001b[39m.\u001b[39;49mPyTorchFileWriter(\u001b[39mstr\u001b[39;49m(name)))\n", + "\u001b[0;31mRuntimeError\u001b[0m: Parent directory ../models does not exist." + ] + } + ], "source": [ "# save the checkpoint model training\n", "output_path = \"../models/\"\n", @@ -1625,25 +1687,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.303\n" + "ename": "NameError", + "evalue": "name 'hist_test' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[42], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThe MSE loss is \u001b[39m\u001b[39m{\u001b[39;00mhist_test[\u001b[39m0\u001b[39m]\u001b[39m:\u001b[39;00m\u001b[39m.3f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m fig, ax \u001b[39m=\u001b[39m plt\u001b[39m.\u001b[39msubplots(figsize\u001b[39m=\u001b[39m(\u001b[39m12\u001b[39m, \u001b[39m5\u001b[39m))\n\u001b[1;32m 5\u001b[0m instances \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marange(\u001b[39mlen\u001b[39m(np\u001b[39m.\u001b[39mconcatenate(predictions)))\n", + "\u001b[0;31mNameError\u001b[0m: name 'hist_test' is not defined" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFmUlEQVR4nO3de1yUdd7/8fcwKiCHUXSHg6IhmkrYQU1TW7M7Qzp4aNu8O5hR/XJvA5OsTHdvM8uW8q57re4Nt9rFWrPDfbe46G60ZkJ5wtJMyWLV8LAJWpozikE2c/3+ICZHQEEHZobr9Xw85mFzXd+55nNN4ry5vofLYhiGIQAAAJMI8XcBAAAArYnwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATKWdvwsIRG63W/v371dUVJQsFou/ywEAAE1gGIaOHj2qhIQEhYQ0fn2H8NOA/fv3KzEx0d9lAACAs7Bv3z5179690f2EnwZERUVJqv3woqOj/VwNAABoCqfTqcTERM/3eGMIPw2o6+qKjo4m/AAAEGTONGSFAc8AAMBUCD8AAMBUCD8AAMBUGPMDAAgYLpdLJ06c8HcZCFDt27eX1Wo95+MQfgAAfmcYhiorK3XkyBF/l4IA16lTJ8XFxZ3TOnyEHwCA39UFH7vdro4dO7LALOoxDEPHjx/XwYMHJUnx8fFnfSzCDwDAr1wulyf4dOnSxd/lIICFh4dLkg4ePCi73X7WXWAMeAYA+FXdGJ+OHTv6uRIEg7q/J+cyNozwAwAICHR1oSl88feEbi8AOEsut6GN5Yd18Gi17FFhGpIUI2sIX+BAoCP8AMBZKCyt0Lzl21XhqPZsi7eFae7YFKWnnv1ATAAtj24vAGimwtIKTV2y2Sv4SFKlo1pTl2xWYWmFnypDW5WRkaEJEyZ4no8aNUrZ2dnndExfHCNYEX4AoBlcbkPzlm+X0cC+um3zlm+Xy91QC7Q0l9vQ+l2H9NctX2n9rkMt/v8hIyNDFotFFotFHTp0UO/evfXYY4/phx9+aNH3/ctf/qLHH3+8SW2LiopksVjqraHUnGO0NXR7AUAzbCw/XO+Kz8kMSRWOam0sP6xhyUzbbk3+6opMT09XXl6eampq9Pe//12ZmZlq3769Zs+e7dXu+++/V4cOHXzynjExMQFxjGDFlR8AaIaDRxsPPmfTDr7hz67I0NBQxcXFqWfPnpo6dapGjx6tgoICT1fVE088oYSEBPXt21eStG/fPk2cOFGdOnVSTEyMxo8fr927d3uO53K5NGPGDHXq1EldunTRzJkzZRjeV7BO7bKqqanRww8/rMTERIWGhqp379764x//qN27d+vKK6+UJHXu3FkWi0UZGRkNHuPbb7/V5MmT1blzZ3Xs2FHXXHONduzY4dm/ePFiderUSe+++6769++vyMhIpaenq6Lip8+2qKhIQ4YMUUREhDp16qQRI0Zoz549PvqkfYfwAwDNYI8K82k7nLtA64oMDw/X999/L0latWqVysrKtHLlSq1YsUInTpzQmDFjFBUVpQ8//FBr1671hIi61zzzzDNavHix/vSnP2nNmjU6fPiw8vPzT/uekydP1uuvv67nnntOn3/+uf7whz8oMjJSiYmJevvttyVJZWVlqqio0LPPPtvgMTIyMvTxxx+roKBA69evl2EYuvbaa73W0zl+/Liefvpp/fnPf9YHH3ygvXv36sEHH5Qk/fDDD5owYYKuuOIKbd26VevXr9eUKVMCcgkDur0AoBmGJMUo3hamSkd1g1+2Fklxttpp72gdgdIVaRiGVq1apXfffVfTpk3T119/rYiICL388sue7q4lS5bI7Xbr5Zdf9oSCvLw8derUSUVFRUpLS9PChQs1e/Zs/eIXv5AkLVq0SO+++26j7/vPf/5Tb731llauXKnRo0dLknr16uXZX9e9Zbfb1alTpwaPsWPHDhUUFGjt2rUaPny4JOm1115TYmKili1bpptuuklS7cKCixYtUnJysiQpKytLjz32mCTJ6XTK4XDo+uuv9+zv379/8z/IVsCVHwBoBmuIRXPHpkiqDTonq3s+d2wK6/20In93Ra5YsUKRkZEKCwvTNddco3//93/Xo48+KkkaMGCA1zifTz/9VDt37lRUVJQiIyMVGRmpmJgYVVdXa9euXXI4HKqoqNDQoUM9r2nXrp0GDx7c6Ptv2bJFVqtVV1xxxVmfw+eff6527dp5vW+XLl3Ut29fff75555tHTt29AQbqfb+WnX32oqJiVFGRobGjBmjsWPH6tlnn/XqEgskhB8AaKb01HjlThqoOJt311acLUy5kwayzk8r83dX5JVXXqktW7Zox44d+u677/TKK68oIiJCkjx/1jl27JgGDRqkLVu2eD3++c9/6tZbbz2r96+731VraN++vddzi8XiNR4pLy9P69ev1/Dhw/Xmm2/q/PPP14YNG1qtvqai2wsAzkJ6aryuToljhecA4O+uyIiICPXu3btJbQcOHKg333xTdrtd0dHRDbaJj49XSUmJRo4cKal2LM2mTZs0cODABtsPGDBAbrdbxcXFnm6vk9VdeXK5XI3W1b9/f/3www8qKSnxdHsdOnRIZWVlSklJadK51bnkkkt0ySWXaPbs2Ro2bJiWLl2qyy67rFnHaGlc+QGAs2QNsWhYcheNv7ibhiV3Ifj4STB1Rd52223q2rWrxo8frw8//FDl5eUqKirSfffdp3/961+SpOnTp+vJJ5/UsmXL9MUXX+jee++tt0bPyc477zzdcccduuuuu7Rs2TLPMd966y1JUs+ePWWxWLRixQp9/fXXOnbsWL1j9OnTR+PHj9c999yjNWvW6NNPP9WkSZPUrVs3jR8/vknnVl5ertmzZ2v9+vXas2eP/vGPf2jHjh0BOe6H8AMACHrB0hXZsWNHffDBB+rRo4d+8YtfqH///rr77rtVXV3tuRL0wAMP6Pbbb9cdd9yhYcOGKSoqSjfccMNpj5ubm6tf/vKXuvfee9WvXz/dc889qqqqkiR169ZN8+bN06xZsxQbG6usrKwGj5GXl6dBgwbp+uuv17Bhw2QYhv7+97/X6+o63bl98cUXuvHGG3X++edrypQpyszM1K9+9atmfEKtw2KcungA5HQ6ZbPZ5HA4Gr0sCQDwjerqapWXlyspKUlhYec2LoebzbZ9p/v70tTvb8b8AADajLquSOB06PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAMCEHn30UV188cX+LkOjRo1SdnZ2q74n4QcAgHNQWVmp6dOnq3fv3goLC1NsbKxGjBih3NxcHT9+3N/lnbWioiJZLJbT3lfMn8c7F6zwDABoO9wuac866dgBKTJW6jlcCrG22Nt9+eWXGjFihDp16qTf/va3GjBggEJDQ7Vt2za9+OKL6tatm8aNG9fga0+cONHk+2YFsu+//95z5/hgwZWf1uJ2SeUfStv+r/ZPt8vfFQFA27K9QFqYKr1yvfT23bV/Lkyt3d5C7r33XrVr104ff/yxJk6cqP79+6tXr14aP368/va3v2ns2LGethaLRbm5uRo3bpwiIiL0xBNPSKq9KWlycrI6dOigvn376s9//rPnNbt375bFYtGWLVs8244cOSKLxaKioiJJP11RWbVqlQYPHqyOHTtq+PDhKisr86r1ySefVGxsrKKiojw3U23M7t27deWVV0qSOnfuLIvFooyMDEm13VRZWVnKzs5W165dNWbMmDPWebrjSZLb7dbMmTMVExOjuLg4Pfroo039X3BW/Bp+cnJydOmllyoqKkp2u10TJkyo9z9r1KhRslgsXo//+I//OO1xDcPQI488ovj4eIWHh2v06NHasWNHS57K6fnhBxIATGV7gfTWZMm533u7s6J2ewv8e3vo0CH94x//UGZmpiIiIhpsY7F431T10Ucf1Q033KBt27bprrvuUn5+vqZPn64HHnhApaWl+tWvfqU777xTq1evbnY9v/nNb/TMM8/o448/Vrt27XTXXXd59r311lt69NFH9dvf/lYff/yx4uPj9cILLzR6rMTERL399tuSpLKyMlVUVOjZZ5/17H/llVfUoUMHrV27VosWLTpjbU05XkREhEpKSrRgwQI99thjWrlyZbM/g6bya/gpLi5WZmamNmzYoJUrV+rEiRNKS0tTVVWVV7t77rlHFRUVnseCBQtOe9wFCxboueee06JFi1RSUqKIiAiNGTPmtCm3xfjhBxIATMXtkgoflmQ0sPPHbYWzfH7FfefOnTIMQ3379vXa3rVrV0VGRioyMlIPP/yw175bb71Vd955p3r16qUePXro6aefVkZGhu69916df/75mjFjhn7xi1/o6aefbnY9TzzxhK644gqlpKRo1qxZWrduned7b+HChbr77rt19913q2/fvpo/f75SUlIaPZbValVMTIwkyW63Ky4uTjabzbO/T58+WrBggfr27Vvv/M/meBdeeKHmzp2rPn36aPLkyRo8eLBWrVrV7M+gqfwafgoLC5WRkaELLrhAF110kRYvXqy9e/dq06ZNXu06duyouLg4z+N0t6k3DEMLFy7Uf/7nf2r8+PG68MIL9eqrr2r//v1atmxZC5/RKfz0AwkAprJnXf1fML0YkvOr2natYOPGjdqyZYsuuOAC1dTUeO0bPHiw1/PPP/9cI0aM8No2YsQIff75581+3wsvvNDz3/Hx8ZKkgwcPet5n6NChXu2HDRvW7PeoM2jQoLN+bUNOrl2qrb+u9pYQUGN+HA6HJHnSYZ3XXntNXbt2VWpqqmbPnn3a0fPl5eWqrKzU6NGjPdtsNpuGDh2q9evXN/iampoaOZ1Or4dPBNgPJAC0SccO+LZdE/Xu3VsWi6XecI1evXqpd+/eCg8Pr/eaxrrHGhMSUvs1bRg//RJ94sSJBtuePHi6rrvN7XY36/2a6tTzaE6dDTl14LfFYmmx2qUACj9ut1vZ2dkaMWKEUlNTPdtvvfVWLVmyRKtXr9bs2bP15z//WZMmTWr0OJWVlZKk2NhYr+2xsbGefafKycmRzWbzPBITE31wRvLbDyQAmEpk7JnbNKddE3Xp0kVXX321/ud//qfecI2m6t+/v9auXeu1be3atZ4uqZ/97GeSpIqKCs/+kwcVN+d9SkpKvLZt2LDhtK+pm8Hlcp25d6IpdTbneC0tYKa6Z2ZmqrS0VGvWrPHaPmXKFM9/DxgwQPHx8brqqqu0a9cuJScn++S9Z8+erRkzZnieO51O3wQgP/1AAoCp9BwuRSfUjqVscJiBpXZ/z+E+f+sXXnhBI0aM0ODBg/Xoo4/qwgsvVEhIiD766CN98cUXZ+weeuihhzRx4kRdcsklGj16tJYvX66//OUveu+99yRJ4eHhuuyyy/Tkk08qKSlJBw8e1H/+5382u87p06crIyNDgwcP1ogRI/Taa6/ps88+U69evRp9Tc+ePWWxWLRixQpde+21Cg8PV2RkZINtm1Jnc47X0gLiyk9WVpZWrFih1atXq3v37qdtW9dnuXPnzgb3x8XFSZIOHPC+mnLgwAHPvlOFhoYqOjra6+ETdT+QsjTSwCJFd2uRH0gAMI0Qq5T+1I9PTv339sfn6U+2yHo/ycnJ+uSTTzR69GjNnj1bF110kQYPHqznn39eDz74oB5//PHTvn7ChAl69tln9fTTT+uCCy7QH/7wB+Xl5WnUqFGeNn/605/0ww8/aNCgQcrOztb8+fObXee///u/a86cOZo5c6YGDRqkPXv2aOrUqad9Tbdu3TRv3jzNmjVLsbGxysrKOm37M9XZ3OO1JItxcgddKzMMQ9OmTVN+fr6KiorUp0+fM75m7dq1uvzyy/Xpp5/WGyBVd8yEhAQ9+OCDeuCBByTVXsmx2+1avHixbr755jO+h9PplM1mk8PhOPcgVDfbq7a6k3b8+AM58VUppeEFsADADKqrq1VeXq6kpCSFhYWd/YG2F9ROMjl5rGV0t9rgw7+zbcbp/r409fvbr91emZmZWrp0qf76178qKirKMybHZrMpPDxcu3bt0tKlS3XttdeqS5cu2rp1q+6//36NHDnSK/j069dPOTk5uuGGG2SxWDyJs0+fPkpKStKcOXOUkJCgCRMmtP5JpoyrDTj1fiAT+IEEAF9KGSf1u65VV3hGcPJr+MnNzZUkr8t7kpSXl6eMjAx16NBB7733nhYuXKiqqiolJibqxhtvrNePWFZW5pkpJkkzZ85UVVWVpkyZoiNHjujyyy9XYWHhuf1GcS74gQSA1hFilZJ+7u8qEOD82u0VqHza7QUAOC2fdXvBFHzR7RUQA54BAABaC+EHABAQ6IhAU/ji7wnhBwDgV3Wr+55u9X6gTt3fk1NXhW6OgFnkEABgTlarVZ06dfLcy6ljx4717oYOGIah48eP6+DBg+rUqZOs1rOfNET4AQD4Xd0itC15M0u0DZ06dWp00eKmIvwAAPzOYrEoPj5edru9WTfEhLm0b9/+nK741CH8AAAChtVq9cmXG3A6DHgGAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACm0s7fBQDN4XIb2lh+WAePVsseFaYhSTGyhlj8XRYAIIgQfhA0CksrNG/5dlU4qj3b4m1hmjs2Remp8X6sDAAQTOj2QlAoLK3Q1CWbvYKPJFU6qjV1yWYVllb4qTIAQLAh/CDgudyG5i3fLqOBfXXb5i3fLpe7oRYAAHgj/CDgbSw/XO+Kz8kMSRWOam0sP9x6RQEAghbhBwHv4NHGg8/ZtAMAmBvhBwHPHhXm03YAAHMj/CDgDUmKUbwtTI1NaLeodtbXkKSY1iwLABCkCD8IeNYQi+aOTZGkegGo7vncsSms9wMAaBLCD4JCemq8cicNVJzNu2srzham3EkDWecHANBkLHKIoJGeGq+rU+JY4RkAcE4IPwgq1hCLhiV38XcZAIAgRrcXAAAwFa784Cdul7RnnXTsgBQZK/UcLoVY/V0VAAA+RfhBre0FUuHDknP/T9uiE6T0p6SUcf6rCwAAH6PbC7XB563J3sFHkpwVtdu3F/inLgAAWgDhx+zcrtorPqe7bWjhrNp2AAC0AX4NPzk5Obr00ksVFRUlu92uCRMmqKysrMG2hmHommuukcVi0bJly0573IyMDFksFq9Henp6C5xBG7BnXf0rPl4MyflVbTsAANoAv4af4uJiZWZmasOGDVq5cqVOnDihtLQ0VVVV1Wu7cOFCWSxNX88lPT1dFRUVnsfrr7/uy9LbjmMHfNsOAIAA59cBz4WFhV7PFy9eLLvdrk2bNmnkyJGe7Vu2bNEzzzyjjz/+WPHxTVvJNzQ0VHFxcT6tt02KjPVtOwAAAlxAjflxOBySpJiYn25Qefz4cd166636/e9/36wwU1RUJLvdrr59+2rq1Kk6dOhQo21ramrkdDq9HqbRc3jtrK7T3TY0ulttOwAA2oCACT9ut1vZ2dkaMWKEUlNTPdvvv/9+DR8+XOPHj2/ysdLT0/Xqq69q1apVeuqpp1RcXKxrrrlGLlfDg3ZzcnJks9k8j8TExHM+n6ARYq2dzi6p0duGpj/Jej8AgHPndknlH0rb/q/2Tz9NprEYhtHQNJ9WN3XqVL3zzjtas2aNunfvLkkqKCjQAw88oE8++USRkZGSJIvFovz8fE2YMKHJx/7yyy+VnJys9957T1dddVW9/TU1NaqpqfE8dzqdSkxMlMPhUHR09LmdWLBocJ2fbrXBh3V+AADnqhXWk3M6nbLZbGf8/g6IRQ6zsrK0YsUKffDBB57gI0nvv/++du3apU6dOnm1v/HGG/Xzn/9cRUVFTTp+r1691LVrV+3cubPB8BMaGqrQ0NBzOYXglzJO6ncdKzwDAHyvbj25U5dVqVtPbuKrrfqLtl/Dj2EYmjZtmvLz81VUVKSkpCSv/bNmzdL/+3//z2vbgAED9Lvf/U5jx45t8vv861//0qFDh5o8WNq0QqxS0s/9XQUAoC0543pyltr15Ppd12q/cPt1zE9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nSYqLi1NqaqrXQ5J69OjhFZT69eun/Px8SdKxY8f00EMPacOGDdq9e7dWrVql8ePHq3fv3hozZkzrnyQAAGYWgOvJ+TX85ObmyuFwaNSoUYqPj/c83nzzzWYdp6yszDNTzGq1auvWrRo3bpzOP/983X333Ro0aJA+/PBDurYAAGhtAbienN+7vXzxmpO3hYeH69133z2nugAAgI8E4HpyATPVHQAAtEEBuJ4c4QcAALScAFxPjvADAABaVsq42uns0afMuo5OaPVp7lKArPMDAADauABaT47wAwAAWkeArCdHtxcAADAVwg8AADAVur0A4Gy5XQExfgFA8xB+AOBstMIdqgG0DLq9AKC56u5Qfer9iuruUL29wD91AWgSwg88XG5D63cd0l+3fKX1uw7J5W7+7UeANu+Md6hW7R2q3a7WrApAM9DtBUlSYWmF5i3frgpHtWdbvC1Mc8emKD01/jSvBEymOXeoDoApvQDq48oPVFhaoalLNnsFH0mqdFRr6pLNKiyt8FNlQAAKwDtUA2gewo/JudyG5i3ffroL+Jq3fDtdYECdALxDNYDmIfyY3Mbyw/Wu+JzMkFThqNbG8sOtVxQQyALwDtUAmofwY3IHjzYefM6mHdDmBeAdqgE0D+HH5OxRYT5tB5hCgN2hGkDzMNvL5IYkxSjeFqZKR3WD434skuJsYRqSFNPapQGBLYDuUA2gebjyY3LWEIvmjk2R1OgFfM0dmyJrSGPjGwATq7tD9YBf1v5J8AGCAuEHSk+NV+6kgYqzeXdtxdnClDtpIOv8AADaFLq9IKk2AF2dEqeN5Yd18Gi17FG1XV1c8QEAtDWEH3hYQywaltzF32UAANCi6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwiKHANCGudwGK7cDpyD8AEAbVVhaoXnLt6vCUe3ZFm8L09yxKdyzD6ZGtxcAtEGFpRWaumSzV/CRpEpHtaYu2azC0go/VQb4H+EHANoYl9vQvOXbZTSwr27bvOXb5XI31AJo+wg/ANDGbCw/XO+Kz8kMSRWOam0sP9x6RQEBhPADAG3MwaONB5+zaQe0NYQfAGhj7FFhPm0HtDWEHwBoY4YkxSjeFqbGJrRbVDvra0hSTGuWBQQMwg8AtDHWEIvmjk2RpHoBqO753LEprPcD0yL8AEAblJ4ar9xJAxVn8+7airOFKXfSQNb5gamxyCEAtFHpqfG6OiWOFZ6BU/j1yk9OTo4uvfRSRUVFyW63a8KECSorK2uwrWEYuuaaa2SxWLRs2bLTHtcwDD3yyCOKj49XeHi4Ro8erR07drTAGQBAYLOGWDQsuYvGX9xNw5K7EHwA+Tn8FBcXKzMzUxs2bNDKlSt14sQJpaWlqaqqql7bhQsXymJp2g/tggUL9Nxzz2nRokUqKSlRRESExowZo+pqpnUCAGB2FsMwAmaJz6+//lp2u13FxcUaOXKkZ/uWLVt0/fXX6+OPP1Z8fLzy8/M1YcKEBo9hGIYSEhL0wAMP6MEHH5QkORwOxcbGavHixbr55pvrvaampkY1NTWe506nU4mJiXI4HIqOjvbtSQIAgBbhdDpls9nO+P0dUAOeHQ6HJCkm5qfpl8ePH9ett96q3//+94qLizvjMcrLy1VZWanRo0d7ttlsNg0dOlTr169v8DU5OTmy2WyeR2Ji4jmeCQAACFQBE37cbreys7M1YsQIpaamerbff//9Gj58uMaPH9+k41RWVkqSYmNjvbbHxsZ69p1q9uzZcjgcnse+ffvO8iwAAECgC5jZXpmZmSotLdWaNWs82woKCvT+++/rk08+adH3Dg0NVWhoaIu+BwAACAwBceUnKytLK1as0OrVq9W9e3fP9vfff1+7du1Sp06d1K5dO7VrV5vVbrzxRo0aNarBY9V1jR04cMBr+4EDB5rUbQYAANo2v4YfwzCUlZWl/Px8vf/++0pKSvLaP2vWLG3dulVbtmzxPCTpd7/7nfLy8ho8ZlJSkuLi4rRq1SrPNqfTqZKSEg0bNqzFzgUAAAQHv3Z7ZWZmaunSpfrrX/+qqKgoz5gcm82m8PBwxcXFNXi1pkePHl5BqV+/fsrJydENN9wgi8Wi7OxszZ8/X3369FFSUpLmzJmjhISERmeIAQAA8/Br+MnNzZWkel1YeXl5ysjIaPJxysrKPDPFJGnmzJmqqqrSlClTdOTIEV1++eUqLCxUWBh3MAYAwOwCap2fQNHUdQIAAEDgCMp1fgAAAFoa4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJhKO38XAAAwN5fb0Mbywzp4tFr2qDANSYqRNcTi77LQhhF+AAB+U1haoXnLt6vCUe3ZFm8L09yxKUpPjfdjZWjL6PYCAPhFYWmFpi7Z7BV8JKnSUa2pSzarsLTCT5WhrSP8AABancttaN7y7TIa2Fe3bd7y7XK5G2oBnBvCDwCg1W0sP1zvis/JDEkVjmptLD/cekXBNAg/AIBWd/Bo48HnbNoBzUH4AQC0OntUmE/bAc1B+AEAtLohSTGKt4WpsQntFtXO+hqSFNOaZcEkCD8AgFZnDbFo7tgUSaoXgOqezx2bwno/aBGEHwCAX6Snxit30kDF2by7tuJsYcqdNJB1ftBiWOQQAOA36anxujoljhWe0arOKfxUV1frzTffVFVVla6++mr16dPHV3UBAEzCGmLRsOQu/i4DJtLk8DNjxgydOHFCzz//vCTp+++/17Bhw/TZZ5+pY8eOmjlzplauXKlhw4a1WLEAAADnqsljfv7xj3/o6quv9jx/7bXXtGfPHu3YsUPffvutbrrpJs2fP79FigQAAPCVJoefvXv3KiUlxfP8H//4h375y1+qZ8+eslgsmj59uj755JMWKRIA0Ia5XVL5h9K2/6v90+3yd0Vo45rc7RUSEiLD+OkeKxs2bNCcOXM8zzt16qRvv/3Wt9UBANq27QVS4cOSc/9P26ITpPSnpJRx/qsLbVqTr/z0799fy5cvlyR99tln2rt3r6688krP/j179ig2Ntb3FQIA2qbtBdJbk72DjyQ5K2q3by/wT11o85p85WfmzJm6+eab9be//U2fffaZrr32WiUlJXn2//3vf9eQIUNapEgAQBvjdtVe8Wn0vu4WqXCW1O86KcTaysUFKbdL2rNOOnZAioyVeg4PuM/O5TYCYlmDJoefG264QX//+9+1YsUKpaWladq0aV77O3bsqHvvvdfnBQIA2qA96+pf8fFiSM6vatsl/bzVygpaQdB9WFhaoXnLt6vC8dPNauNtYZo7NqXVF7S0GCcP5DmNxx57TA8++KA6duzY0jX5ndPplM1mk8PhUHR0tL/LAYC2Z9v/SW/ffeZ2N/5RGvDLlq8nmNV1H9a7ivbjFZWJr/o9ABWWVmjqks2NVeizFb2b+v3d5DE/8+bN07Fjx865MAAAFNnEMaJNbWdWZ+w+VG33oR9n0LnchuYt3366CjVv+Xa53E26FuMTTQ4/TbxABLQspsQCbUPP4bXdMqe7r3t0t9p2aFxzug/9ZGP5Ya+urlMZkioc1dpYfrjVamrW7S0sFu61Aj8Kgj5tAE0UYq392X1rsmoD0Mm/YP/4XZP+ZMAN2A04xw74tl0LOHi08eBzNu18oVnh5/zzzz9jADp8uPWSG0yksT7tuimxAdCnDaCZUsbV/uw2+EvNk/xMN0UQdB/ao8J82s4XmhV+5s2bJ5vN1lK1AA1jSizQdqWMq/3ZDfAp2gGrrvvQWaGG/4201O73Y/fhkKQYxdvCVOmobqxCxdlqp723lmaFn5tvvll2u91nb56Tk6O//OUv+uKLLxQeHq7hw4frqaeeUt++fT1tfvWrX+m9997T/v37FRkZ6WnTr1+/Ro+bkZGhV155xWvbmDFjVFhY6LPa0YqYEgu0bSFWfnbPVhB0H1pDLJo7NkVTl2xurELNHZvSquv9NHnAc0uM9ykuLlZmZqY2bNiglStX6sSJE0pLS1NVVZWnzaBBg5SXl6fPP/9c7777rgzDUFpamlyu0w90TU9PV0VFhefx+uuv+7x+tJIg6NMGAL+p6z6MPmWqeHRCwAwJSE+NV+6kgYqzeXdtxdnCfDbNvTmavM5PSEiIKisrfXrl51Rff/217Ha7iouLNXLkyAbbbN26VRdddJF27typ5OTkBttkZGToyJEjWrZsWZPet6amRjU1NZ7nTqdTiYmJrPMTKMo/lF65/szt7ljBb48AzIsVnpu8zk+Tu73cbrdPCjsdh8MhSYqJabjfr6qqSnl5eUpKSlJiYuJpj1VUVCS73a7OnTvr3/7t3zR//nx16dKlwbY5OTmaN2/euRWPlhMEfdoA4HdB0H1oDbFoWHLD38WtqclXflqa2+3WuHHjdOTIEa1Zs8Zr3wsvvKCZM2eqqqpKffv21d/+9rdGr/pI0htvvKGOHTsqKSlJu3bt0q9//WtFRkZq/fr1slrrp2Cu/AQBz2wvqcEe4wC5tAsA8J+mXvkJmPAzdepUvfPOO1qzZo26d+/utc/hcOjgwYOqqKjQ008/ra+++kpr165VWFjTpsV9+eWXSk5O1nvvvaerrrrqjO25vUWAanCdn25MiQUASGqBbq+WlJWVpRUrVuiDDz6oF3wkyWazyWazqU+fPrrsssvUuXNn5efn65ZbbmnS8Xv16qWuXbtq586dTQo/CFBMiQUA+IBfw49hGJo2bZry8/NVVFSkpKSkJr3GMAyvbqoz+de//qVDhw4pPr51R5OjBQRBnzYAILA1eap7S8jMzNSSJUu0dOlSRUVFqbKyUpWVlfruu+8k1XZX5eTkaNOmTdq7d6/WrVunm266SeHh4br22ms9x+nXr5/y8/MlSceOHdNDDz2kDRs2aPfu3Vq1apXGjx+v3r17a8yYMX45TwBAcHO5Da3fdUh/3fKV1u861Ko34YTv+fXKT25uriRp1KhRXtvz8vKUkZGhsLAwffjhh1q4cKG+/fZbxcbGauTIkVq3bp3XlPuysjLPTDGr1aqtW7fqlVde0ZEjR5SQkKC0tDQ9/vjjCg0NbbVzAwC0DYWlFXq8YJsSj30qu47ooDppX+RFmjNuQKuvTwPfCJgBz4GEAc8AAKk2+CxbukiPtH9VCZaf7l2534jRYycma8Kt/0EACiBN/f72a7cXAACByuU2VLTsT3qh/ULFyfum3XE6rBfaL1TRsj/RBRaECD8AADRg466vdd+JlyVJpy5CXPf8vhN/1MZdX7dyZThXhB8AABrg2r1WCZbD9YJPnRCLlGA5JNfuta1bGM4Z4QcAgAbYLUd82g6Bg/ADAEADkns1fhuls2mHwEH4AQCgAdbzRui78Dg1Np7ZbUjfhcfJet6I1i0M54zwA5gQC7YBTRBiVfjY/5LFYpH7lF1uSRaLReFj/4tb7AShgLi3F4DWU1haoXnLt6vCUe3ZFm8L09yxKaxXApwqZZwsE1+td1NlS3Q3WbipctBikcMGsMgh2qrC0gpNXbJZp/7Q101myZ00kAAENMTt4qbKQSCo7uoOoOW53IbmLd9eL/hIkqHaADRv+XZdnRIna2NzewGz4qbKbQpjfgCT2Fh+2Kur61SGpApHtTaWH260DQC0BYQfwCQOHm08+JxNOwAIVoQfwCTsUWE+bQcAwYrwA5jEkKQYxdvC1NhoHotqZ30NSYppzbIAoNURfgCTsIZYNHdsiiTVC0B1z+eOTWGwM4A2j/ADmEh6arxyJw1UnM27ayvOFsY0dwCmwVR3wGTSU+N1dUqcNpYf1sGj1bJH1XZ1ccUHgFkQfgATsoZYNCy5i7/LAAC/oNsLAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCoscAghILrfBKtQAWgThB0DAKSyt0Lzl21XhqPZsi7eFae7YFO4/BuCc0e0FIKAUllZo6pLNXsFHkiod1Zq6ZLMKSyv8VBmAtoLwAyBguNyG5i3fLqOBfXXb5i3fLpe7oRYA0DSEHwABY2P54XpXfE5mSKpwVGtj+eHWKwpAm0P4ARAwDh5tPPicTTsAaAjhB0DAsEeF+bQdADSE8AMgYAxJilG8LUyNTWi3qHbW15CkmNYsC0AbQ/gBEDCsIRbNHZsiSfUCUN3zuWNTWO8HwDkh/AAIKOmp8cqdNFBxNu+urThbmHInDWSdHwDnjEUOAR9jZeJzl54ar6tT4vgcAbQIwg/gQ6xM7DvWEIuGJXfxdxkA2iC6vQAfYWViAAgOhB/AB1iZGACCh1/DT05Oji699FJFRUXJbrdrwoQJKisr82rzq1/9SsnJyQoPD9fPfvYzjR8/Xl988cVpj2sYhh555BHFx8crPDxco0eP1o4dO1ryVGByrEwMAMHDr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVnjaDBg1SXl6ePv/8c7377rsyDENpaWlyuVyNHnfBggV67rnntGjRIpWUlCgiIkJjxoxRdTWrwqJlsDIxAAQPi2EYAXMd/uuvv5bdbldxcbFGjhzZYJutW7fqoosu0s6dO5WcnFxvv2EYSkhI0AMPPKAHH3xQkuRwOBQbG6vFixfr5ptvrveampoa1dTUeJ47nU4lJibK4XAoOjraR2eHtmz9rkO65aUNZ2z3+j2XMYgXQItgpmnt97fNZjvj93dAzfZyOBySpJiYhldvraqqUl5enpKSkpSYmNhgm/LyclVWVmr06NGebTabTUOHDtX69esbDD85OTmaN2+eD84AZlW3MnGlo7rBcT8W1a5Tw8rEAFoCM02bJ2AGPLvdbmVnZ2vEiBFKTU312vfCCy8oMjJSkZGReuedd7Ry5Up16NChweNUVlZKkmJjY722x8bGevadavbs2XI4HJ7Hvn37fHBGMBNWJgbgL8w0bb6ACT+ZmZkqLS3VG2+8UW/fbbfdpk8++UTFxcU6//zzNXHiRJ+O3wkNDVV0dLTXA2guViYG0NqYaXp2AqLbKysrSytWrNAHH3yg7t2719tvs9lks9nUp08fXXbZZercubPy8/N1yy231GsbFxcnSTpw4IDi43/6sjlw4IAuvvjiFjsHQGJlYgCtqzkzTRlv+BO/XvkxDENZWVnKz8/X+++/r6SkpCa9xjAMrwHKJ0tKSlJcXJxWrVrl2eZ0OlVSUqJhw4b5rHagMXUrE4+/uJuGJXch+ABoMcw0PTt+DT+ZmZlasmSJli5dqqioKFVWVqqyslLfffedJOnLL79UTk6ONm3apL1792rdunW66aabFB4ermuvvdZznH79+ik/P1+SZLFYlJ2drfnz56ugoEDbtm3T5MmTlZCQoAkTJvjjNAEAaBH2qLAzN2pGO7Pwa7dXbm6uJGnUqFFe2/Py8pSRkaGwsDB9+OGHWrhwob799lvFxsZq5MiRWrdunex2u6d9WVmZZ6aYJM2cOVNVVVWaMmWKjhw5ossvv1yFhYUKC+N/PgCg7WCm6dkJqHV+AkVT1wkAAMDf6mZ7SfIKQHUd7maacNHU7++Ame0FAACaj5mmzRcQs70AAMDZY6Zp8xB+AABoA+pmmuLM6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwlR3wNfcLmnPOunYASkyVuo5XAqx+rsqAMCPCD+AL20vkAoflpz7f9oWnSClPyWljPNfXQAAD7q9AF/ZXiC9Ndk7+EiSs6J2+/YC/9QFAPBC+AF8we2qveLT4H2Vf9xWOKu2HQDArwg/gC/sWVf/io8XQ3J+VdsOAOBXhB/AF44d8G07AECLIfwAvhAZ69t2AIAWQ/gBfKHn8NpZXbI00sAiRXerbQcA8CvCD+ALIdba6eyS6gegH5+nP8l6PwAQAAg/gK+kjJMmvipFx3tvj06o3c46PwAQEFjkEPCllHFSv+tY4RkAAhjhB/C1EKuU9HN/VwEAaAThB0Bg4h5pAFoI4QdA4OEeaQBaEAOeAQQW7pEGoIURfgAEDu6RBqAVEH4ABA7ukQagFRB+AAQO7pEGoBUw4LmVuNyGNpYf1sGj1bJHhWlIUoysIY3dCgEwKe6RBqAVEH5aQWFpheYt364KR7VnW7wtTHPHpig9Nf40rwRMpu4eac4KNTzux1K7n3ukATgHdHu1sMLSCk1dstkr+EhSpaNaU5dsVmFphZ8qAwIQ90gD0AoIPy3I5TY0b/n2081b0bzl2+VyN9QCMCnukQaghdHt1YI2lh+ud8XnZIakCke1NpYf1rDkLq1XGBDouEcagBZE+GlBB482HnzOph1gKtwjDUALodurBdmjwnzaDgAAnDvCTwsakhSjeFtYvWGbdSyqnfU1JCmmNcsCAMDUCD8tyBpi0dyxKZIanbeiuWNTWO8HAIBWRPhpYemp8cqdNFBxNu+urThbmHInDWSdHwAAWhkDnltBemq8rk6JY4VnBA63i5lUAEyL8NNKrCEWprMjMGwvqL1z+sk3EI1OqF1ckDV0AJgA3V6AmWwvkN6aXP/O6c6K2u3bC/xTFwC0Ir+Gn5ycHF166aWKioqS3W7XhAkTVFZW5tl/+PBhTZs2TX379lV4eLh69Oih++67Tw6H47THzcjIkMVi8Xqkp6e39OkAgc3tqr3ic7o1xwtn1bYDgDbMr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVkqT9+/dr//79evrpp1VaWqrFixersLBQd9999xmPnZ6eroqKCs/j9ddfb+nTAQLbnnX1r/h4MSTnV7XtAKAN8+uYn8LCQq/nixcvlt1u16ZNmzRy5Eilpqbq7bff9uxPTk7WE088oUmTJumHH35Qu3aNlx8aGqq4uLgm1VFTU6OamhrPc6fT2cwzAYLAsQO+bQcAQSqgxvzUdWfFxDS+6J/D4VB0dPRpg48kFRUVyW63q2/fvpo6daoOHTrUaNucnBzZbDbPIzEx8exOAAhkkbG+bQcAQcpiGEZA3FLc7XZr3LhxOnLkiNasWdNgm2+++UaDBg3SpEmT9MQTTzR6rDfeeEMdO3ZUUlKSdu3apV//+teKjIzU+vXrZbXWn87b0JWfxMRET9AC2gS3S1qYWju4ucFxP5baWV/Z25j2DiAoOZ1O2Wy2M35/B0z4mTp1qt555x2tWbNG3bt3r7ff6XTq6quvVkxMjAoKCtS+ffsmH/vLL79UcnKy3nvvPV111VVnbN/UDw8IOnWzvSR5B6Af15ya+CrT3QEEraZ+fwdEt1dWVpZWrFih1atXNxh8jh49qvT0dEVFRSk/P79ZwUeSevXqpa5du2rnzp2+KhkITinjagNO9Ckri0cnEHwAmIZfBzwbhqFp06YpPz9fRUVFSkpKqtfG6XRqzJgxCg0NVUFBgcLCmn8H9H/96186dOiQ4uO5lQSglHFSv+tY4RmAafn1yk9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nqTb41E19/+Mf/yin0+lp43L9tBZJv379lJ+fL0k6duyYHnroIW3YsEG7d+/WqlWrNH78ePXu3Vtjxozxy3kCASfEKiX9XBrwy9o/CT4ATMSvV35yc3MlSaNGjfLanpeXp4yMDG3evFklJSWSpN69e3u1KS8v13nnnSdJKisr88wUs1qt2rp1q1555RUdOXJECQkJSktL0+OPP67Q0NCWPSEAABDwAmbAcyBhwDMAAMEnqAY8AwAAtBbCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBW/hp+cnBxdeumlioqKkt1u14QJE1RWVubZf/jwYU2bNk19+/ZVeHi4evToofvuu08Oh+O0xzUMQ4888oji4+MVHh6u0aNHa8eOHS19OgAAIAj4NfwUFxcrMzNTGzZs0MqVK3XixAmlpaWpqqpKkrR//37t379fTz/9tEpLS7V48WIVFhbq7rvvPu1xFyxYoOeee06LFi1SSUmJIiIiNGbMGFVXV7fGaQEAgABmMQzD8HcRdb7++mvZ7XYVFxdr5MiRDbb53//9X02aNElVVVVq165dvf2GYSghIUEPPPCAHnzwQUmSw+FQbGysFi9erJtvvvmMdTidTtlsNjkcDkVHR5/bSQEAgFbR1O/vgBrzU9edFRMTc9o20dHRDQYfSSovL1dlZaVGjx7t2Waz2TR06FCtX7++wdfU1NTI6XR6PQCgTXC7pPIPpW3/V/un2+XvigC/azhB+IHb7VZ2drZGjBih1NTUBtt88803evzxxzVlypRGj1NZWSlJio2N9doeGxvr2XeqnJwczZs37ywrB4AAtb1AKnxYcu7/aVt0gpT+lJQyzn91AX4WMFd+MjMzVVpaqjfeeKPB/U6nU9ddd51SUlL06KOP+vS9Z8+eLYfD4Xns27fPp8cHgFa3vUB6a7J38JEkZ0Xt9u0F/qkLCAABEX6ysrK0YsUKrV69Wt27d6+3/+jRo0pPT1dUVJTy8/PVvn37Ro8VFxcnSTpw4IDX9gMHDnj2nSo0NFTR0dFeDwAIWm5X7RUfNTSk88dthbPoAoNp+TX8GIahrKws5efn6/3331dSUlK9Nk6nU2lpaerQoYMKCgoUFhZ22mMmJSUpLi5Oq1at8jpGSUmJhg0b5vNzAICAs2dd/Ss+XgzJ+VVtO8CE/Bp+MjMztWTJEi1dulRRUVGqrKxUZWWlvvvuO0k/BZ+qqir98Y9/lNPp9LRxuX76jaVfv37Kz8+XJFksFmVnZ2v+/PkqKCjQtm3bNHnyZCUkJGjChAn+OE0AaF3HDpy5TXPaAW2MXwc85+bmSpJGjRrltT0vL08ZGRnavHmzSkpKJEm9e/f2alNeXq7zzjtPklRWVua18OHMmTNVVVWlKVOm6MiRI7r88stVWFh4xqtGANAmRMaeuU1z2gFtTECt8xMoWOcHQFBzu6SFqbWDmxsc92OpnfWVvU0KsbZ2dUCLCcp1fgAAPhBirZ3OLkmynLLzx+fpTxJ8YFqEHwBoi1LGSRNflaLjvbdHJ9RuZ50fmFjALHIIAPCxlHFSv+tqZ3UdO1A7xqfncK74wPQIPwDQloVYpaSf+7sKIKDQ7QUAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyFFZ4bUHeje6fT6edKAABAU9V9b9d9jzeG8NOAo0ePSpISExP9XAkAAGiuo0ePymazNbrfYpwpHpmQ2+3W/v37FRUVJYvF4rPjOp1OJSYmat++fYqOjvbZcc2Gz9E3+Bx9g8/RN/gcfcPsn6NhGDp69KgSEhIUEtL4yB6u/DQgJCRE3bt3b7HjR0dHm/Ivpa/xOfoGn6Nv8Dn6Bp+jb5j5czzdFZ86DHgGAACmQvgBAACmQvhpRaGhoZo7d65CQ0P9XUpQ43P0DT5H3+Bz9A0+R9/gc2waBjwDAABT4coPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcJPK/r973+v8847T2FhYRo6dKg2btzo75KCSk5Oji699FJFRUXJbrdrwoQJKisr83dZQe/JJ5+UxWJRdna2v0sJOl999ZUmTZqkLl26KDw8XAMGDNDHH3/s77KCisvl0pw5c5SUlKTw8HAlJyfr8ccfP+O9mczugw8+0NixY5WQkCCLxaJly5Z57TcMQ4888oji4+MVHh6u0aNHa8eOHf4pNgARflrJm2++qRkzZmju3LnavHmzLrroIo0ZM0YHDx70d2lBo7i4WJmZmdqwYYNWrlypEydOKC0tTVVVVf4uLWh99NFH+sMf/qALL7zQ36UEnW+//VYjRoxQ+/bt9c4772j79u165pln1LlzZ3+XFlSeeuop5ebm6n/+53/0+eef66mnntKCBQv0/PPP+7u0gFZVVaWLLrpIv//97xvcv2DBAj333HNatGiRSkpKFBERoTFjxqi6urqVKw1QBlrFkCFDjMzMTM9zl8tlJCQkGDk5OX6sKrgdPHjQkGQUFxf7u5SgdPToUaNPnz7GypUrjSuuuMKYPn26v0sKKg8//LBx+eWX+7uMoHfdddcZd911l9e2X/ziF8Ztt93mp4qCjyQjPz/f89ztdhtxcXHGf/3Xf3m2HTlyxAgNDTVef/11P1QYeLjy0wq+//57bdq0SaNHj/ZsCwkJ0ejRo7V+/Xo/VhbcHA6HJCkmJsbPlQSnzMxMXXfddV5/L9F0BQUFGjx4sG666SbZ7XZdcskleumll/xdVtAZPny4Vq1apX/+85+SpE8//VRr1qzRNddc4+fKgld5ebkqKyu9frZtNpuGDh3Kd86PuLFpK/jmm2/kcrkUGxvrtT02NlZffPGFn6oKbm63W9nZ2RoxYoRSU1P9XU7QeeONN7R582Z99NFH/i4laH355ZfKzc3VjBkz9Otf/1offfSR7rvvPnXo0EF33HGHv8sLGrNmzZLT6VS/fv1ktVrlcrn0xBNP6LbbbvN3aUGrsrJSkhr8zqnbZ3aEHwSlzMxMlZaWas2aNf4uJejs27dP06dP18qVKxUWFubvcoKW2+3W4MGD9dvf/laSdMkll6i0tFSLFi0i/DTDW2+9pddee01Lly7VBRdcoC1btig7O1sJCQl8jmgxdHu1gq5du8pqterAgQNe2w8cOKC4uDg/VRW8srKytGLFCq1evVrdu3f3dzlBZ9OmTTp48KAGDhyodu3aqV27diouLtZzzz2ndu3ayeVy+bvEoBAfH6+UlBSvbf3799fevXv9VFFweuihhzRr1izdfPPNGjBggG6//Xbdf//9ysnJ8XdpQavue4XvnMYRflpBhw4dNGjQIK1atcqzze12a9WqVRo2bJgfKwsuhmEoKytL+fn5ev/995WUlOTvkoLSVVddpW3btmnLli2ex+DBg3Xbbbdpy5Ytslqt/i4xKIwYMaLeUgv//Oc/1bNnTz9VFJyOHz+ukBDvryKr1Sq32+2nioJfUlKS4uLivL5znE6nSkpK+M75Ed1erWTGjBm64447NHjwYA0ZMkQLFy5UVVWV7rzzTn+XFjQyMzO1dOlS/fWvf1VUVJSn79pmsyk8PNzP1QWPqKioeuOkIiIi1KVLF8ZPNcP999+v4cOH67e//a0mTpyojRs36sUXX9SLL77o79KCytixY/XEE0+oR48euuCCC/TJJ5/ov//7v3XXXXf5u7SAduzYMe3cudPzvLy8XFu2bFFMTIx69Oih7OxszZ8/X3369FFSUpLmzJmjhIQETZgwwX9FBxJ/Tzczk+eff97o0aOH0aFDB2PIkCHGhg0b/F1SUJHU4CMvL8/fpQU9prqfneXLlxupqalGaGio0a9fP+PFF1/0d0lBx+l0GtOnTzd69OhhhIWFGb169TJ+85vfGDU1Nf4uLaCtXr26wX8P77jjDsMwaqe7z5kzx4iNjTVCQ0ONq666yigrK/Nv0QHEYhgsowkAAMyDMT8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8ATCcjI4Nl/gETI/wAaBEZGRmyWCz1Hunp6f4uTc8++6wWL17s7zIkSRaLRcuWLfN3GYCpcGNTAC0mPT1deXl5XttCQ0P9VI3kcrlksVhks9n8VgMA/+PKD4AWExoaqri4OK9H586dVVRUpA4dOujDDz/0tF2wYIHsdrsOHDggSRo1apSysrKUlZUlm82mrl27as6cOTr5doQ1NTV68MEH1a1bN0VERGjo0KEqKiry7F+8eLE6deqkgoICpaSkKDQ0VHv37q3X7TVq1ChNmzZN2dnZ6ty5s2JjY/XSSy+pqqpKd955p6KiotS7d2+98847XudXWlqqa665RpGRkYqNjdXtt9+ub775xuu49913n2bOnKmYmBjFxcXp0Ucf9ew/77zzJEk33HCDLBaL5zmAlkX4AdDqRo0apezsbN1+++1yOBz65JNPNGfOHL388suKjY31tHvllVfUrl07bdy4Uc8++6z++7//Wy+//LJnf1ZWltavX6833nhDW7du1U033aT09HTt2LHD0+b48eN66qmn9PLLL+uzzz6T3W5vsKZXXnlFXbt21caNGzVt2jRNnTpVN910k4YPH67NmzcrLS1Nt99+u44fPy5JOnLkiP7t3/5Nl1xyiT7++GMVFhbqwIEDmjhxYr3jRkREqKSkRAsWLNBjjz2mlStXSpI++ugjSVJeXp4qKio8zwG0MD/fVR5AG3XHHXcYVqvViIiI8Ho88cQThmEYRk1NjXHxxRcbEydONFJSUox77rnH6/VXXHGF0b9/f8Ptdnu2Pfzww0b//v0NwzCMPXv2GFar1fjqq6+8XnfVVVcZs2fPNgzDMPLy8gxJxpYtW+rVNn78eK/3uvzyyz3Pf/jhByMiIsK4/fbbPdsqKioMScb69esNwzCMxx9/3EhLS/M67r59+wxJRllZWYPHNQzDuPTSS42HH37Y81ySkZ+f38inCKAlMOYHQIu58sorlZub67UtJiZGktShQwe99tpruvDCC9WzZ0/97ne/q/f6yy67TBaLxfN82LBheuaZZ+RyubRt2za5XC6df/75Xq+pqalRly5dPM87dOigCy+88Iy1ntzGarWqS5cuGjBggGdb3RWpgwcPSpI+/fRTrV69WpGRkfWOtWvXLk9dp753fHy85xgA/IPwA6DFREREqHfv3o3uX7dunSTp8OHDOnz4sCIiIpp87GPHjslqtWrTpk2yWq1e+04OJOHh4V4BqjHt27f3em6xWLy21R3D7XZ73n/s2LF66qmn6h0rPj7+tMetOwYA/yD8APCLXbt26f7779dLL72kN998U3fccYfee+89hYT8NBSxpKTE6zUbNmxQnz59ZLVadckll8jlcungwYP6+c9/3trla+DAgXr77bd13nnnqV27s/+ntH379nK5XD6sDMCZMOAZQIupqalRZWWl1+Obb76Ry+XSpEmTNGbMGN15553Ky8vT1q1b9cwzz3i9fu/evZoxY4bKysr0+uuv6/nnn9f06dMlSeeff75uu+02TZ48WX/5y19UXl6ujRs3KicnR3/7299a/NwyMzN1+PBh3XLLLfroo4+0a9cuvfvuu7rzzjubFWbOO+88rVq1SpWVlfr2229bsGIAdbjyA6DFFBYWenUBSVLfvn116623as+ePVqxYoWk2m6iF198UbfccovS0tJ00UUXSZImT56s7777TkOGDJHVatX06dM1ZcoUz7Hy8vI0f/58PfDAA/rqq6/UtWtXXXbZZbr++utb/NwSEhK0du1aPfzww0pLS1NNTY169uyp9PR0r6tXZ/LMM89oxowZeumll9StWzft3r275YoGIEmyGMZJi2YAQIAYNWqULr74Yi1cuNDfpQBoY+j2AgAApkL4AQAApkK3FwAAMBWu/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFP5/8WsQxoSnpCUAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -1658,6 +1714,26 @@ "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "\n", + "instances = np.arange(len(np.concatenate(predictions)))\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Ground truth\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", + "plt.legend()\n", + "plt.show()" + ] } ], "metadata": { From 4cfed3d0afc530663888ce1ccf02550f6b2f0361 Mon Sep 17 00:00:00 2001 From: jannesvaningen <82503135+jannesvaningen@users.noreply.github.com> Date: Wed, 5 Jul 2023 12:22:45 +0100 Subject: [PATCH 07/12] loop for multiple lags in ridge ipynb --- workflow/pred_temperature_ridge.ipynb | 984 +++----------------------- 1 file changed, 87 insertions(+), 897 deletions(-) diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 31a03eb..7c3728c 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -73,41 +73,15 @@ "# add target periods\n", "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", - "periods_of_interest = 8\n", + "periods_of_interest = 4\n", "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='07-01',\n", - " allow_overlap=True,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d')\n", - " ]\n", - ")" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check calendar\n", "calendar" @@ -124,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -155,20 +129,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3dd1gUV9sG8HuW3lFEsGCwYG8o2GJQEwuxR2OJGmM09kiM5rPERCUWgkajsbcIsfdojLHEgr2BvQU7Cogi0mFh93x/8LK6gsrCwg5w/67LS3ZmzjnP2cOw8+yUIwkhBIiIiIiIiAxMYegAiIiIiIiIACYnREREREQkE0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHY0AEUFmq1GuHh4bCxsYEkSYYOh4iIiIowIQTi4+NRtmxZKBT8LpmKDyYnORQeHg4XFxdDh0FERETFSFhYGMqXL2/oMIgKDJOTHLKxsQGQ8UfC1tbWwNEQERFRURYXFwcXFxfN8QdRccHkJIcyL+WytbVlckJEREQFgpeSU3HDixiJiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywBviiYiIsiGEQGpqql7Km5mZ6XxjsyHLF+a29VWHvtrPrZSUlDyVJyqsmJwQERFlIzU1FT169Mh1eZVKheDgYACAh4eHzhPpGbJ8YW5bX3UAwJYtW2Bubq5zubz+7gBAWlpansoTFVZMToiIiN4i5HF8rsoJtRqxKekwLeOGy89UkCSVjuVViFMKKEqUxcXwBEDXsxd5aL8wt53X9jPVczTRuUwWYWdzX9bZPe/tExVCTE6IiIjeoekIPxgZm+pURpkcj38mdAcAfDBuKUzMdPsGPi0xFjuGfQAAaDxsps7l89J+YW47r+2r01IR5D9U5zbfZO0Qd5iZ5PzMTWqaGv2WX9Bb+0SFDZMTIiKidzAyNoWRqZluZdJe3nNgZGIKY1PdDrJVypf3HBR0+4W57by2n65za29nZqKAuYmRnmslKrr4tC4iIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZMDZ0AERERIXBYb8hSI59BklSwMTCCg37T0QJ1+pIiY3GqaWTkPAkDEYmpvAc+CMcqzXIUn7vxG5Ijnnyv/LWaDJyFhwq18GlDXMQ+u9GxD2+g9ZT16NCE2+dY7i2cwXuHduF+MgH8BqzAOUatNAqp1Km4N+fB+PFw1swNrOARQknNPOZCxvnCnj23wWcWjweKmUKVMpUuLXtg2rtv9BLu+/qe/KLpzg6azjiI+5BYWKKZj5zUcK1ht76nZv2S1V1f+P7n1ttfzmNyNhUKCQJNubGWNCvFupXsENUXCr6r7iIO1GJMDMxwtL+deBR0U7v7RMVJgZNTvz8/LB9+3bcvHkTFhYWaNasGfz9/VGtWjXNNkII+Pr6Yvny5YiJiUHjxo2xaNEi1KpVCwDw/PlzTJkyBfv370dYWBhKlSqFrl27Ytq0abCze7mDz5gxA3///TcuXrwIU1NTvHjxoqC7S0REhdj7Pr/A1MoWAPDo/EGcWTEZ3jM24+KmeShVpS5ajV+K6DtXcXz+GHT6dU+W8q0mrYaZdcbn0oOTf+P43K/RZVEQyri3QMUW3XD811G5jsGpVmNUaOKNsysmv7FstfZfoLxnG0iShOs7l+PE/NHw9tuO4/O+QYPPJ6BC0/ZIjYvBtq8awblOM721+7a+n1/lC8caHmg3cyue3grBoelfoPPCw3rtt67tf7L81Fvryo3NIxrC3tIEAPBnSCQGrrqEEF8vTNhyE00q22Pv2MY4d/cFPl0cjGvTvfTePlFhYtDLuoKCgjBy5EicPn0aBw4cQHp6Otq2bYvExETNNrNmzcLcuXOxcOFCnDt3Ds7OzmjTpg3i4+MBAOHh4QgPD8cvv/yCK1euICAgAHv37sWgQYO02lIqlejRoweGDx9eoH0kIqKiIfPgGACUSQmQJAkAEHZ6H9za9AYAOFSuDXM7Bzy9dSFL+cyDYwBQJsYBUsZHcOnqHrAtWzFPMZSqUhc2Ti5vLGdkag6XRm0125eu4Yn4iPua9akJcQCAtJREKExMYWptr5d2M72p7/eO/okanb4CADhWawAL+9J4euO83vqdm/ajrp99Z326ykxMACA2KQ0KRUb8m8+FY+SHrgAAz0r2cLI1xcnbMXpvn6gwMeiZk71792q9Xr16NUqXLo3g4GB4eXlBCIF58+Zh0qRJ6NatGwAgMDAQTk5OWL9+PYYOHYratWtj27ZtmjoqV66MGTNmoF+/fkhPT4excUYXfX19AQABAQEF0zkiIipyTi35XnPw2nL8UqTGv4AQAua2JTXbWDmWRVJ0BEq8Vy1L+aBZwxB56RgAoO2MrXqJITeu/blMc/nYB2MX4d+pfRASOB0psdF4/5tfYVHCUe/tvt73lLjnEEINC/tSmm2snSog8dnjbMsXWPtPH+lcd070X3EBh29EAwD2jm2M6AQl1ELA0dZMs41rKUuEPU/Jl/aJCgtZ3XMSGxsLAChZMuOP/L179xAZGYm2bdtqtjEzM0OLFi1w8uRJDB069I312NraahKT3EhNTUVqaqrmdVxcXK7rIiKioqHp8JkAgLtHd+LC+jloOtwP+N+3+BpCvLF8i3EZB9WhBzbg3MrJaDt9S55jaDluiU7lL22Yg7jwu3jfZy4A4MqW3+D51U+o1OITxEXcxz//1xF2Lm56b/f1vnuNWwYJr713ePN7Z+j28+qPwRn3sgQeD8P/bbqONUPcs7T/ll8domJDNk/rEkJgzJgxaN68OWrXrg0AiIyMBAA4OTlpbevk5KRZ97ro6GhMmzbtjYlLTvn5+cHOzk7zz8Xl3aeNiYioeKjk1QVR189pXqfEPdf8nPgsApYOZd5a3q3NZ4i4dFyrXG5jSI1/keMyV7YswP0Tu9F2+hYYm1siJTYaD07+jUotPgEA2JZxhWN1Dzy9FaLXdl+V2fdMyS+eaX5OeBIGq1Ll3lo+39t3LJ+renPqi+YuOHwzWvP6adzLL0IfRCfBpaR5vrZPJHeySU6+/vprXL58GRs2bMiyTpJe/2ZBZFkGZJzd6NChA2rWrIkpU6bkKZ6JEyciNjZW8y8sLCxP9RERUeGVlpyApJgozeuwcwdham0HU2s7VGjUBqEHNgIAou9cRUrsMzhW037ikzIpHknREZrX90/shpltSZjZlMh5DElvjiEnrm5bhLtHtsHbb4fmHgxTa3sYmZgh4vIJAEBKbDSe3jgH+wpVc9T3nHhb3129uuDGXysBAE9vhSA55gkca3jotd+6tl+6ZqMc1ZtTcclpCI95eanWjuAIOFiboqSVCXp4lsGiQ/cBAOfuvkBkbCqaVcn57wRRUSSLy7pGjRqFXbt24ejRoyhf/uU3Fs7OzgAyzqCUKfPyW6ioqKgsZ1Pi4+Ph7e0Na2tr7NixAyYmJsgLMzMzmJmZvXtDIiIq8tKSEnBy8QSolCmQFAqY2ZRAi+8WQZIk1PvsW5xe/D3+GtMBCmMTNB0+Ewoj7Y/XtMQ4HJs1DCplMiApYG5XCm1+2ghJknBp41zc+GsVUmKf4dickTAyNUeXRUFQvHZpsjI5AcfnfZttDNd2rkTogQ1IjY/B6WU/wMjEFB/98LumbOKzcJxd/gNsyrjin3GdAAAKEzN0/u1ftJq0GmeXTYJalQ6hSkftT0fBoUq9l7EnJ+L00ok5btd75hat/r+t756DpiJo1jBs/bIhFMam8Bq3LMt7p2u/9d1+XsUmp6PvsgtIVqqhUACONmbYPdoTkiTBv0cNfL7iAtzGH4KpsQJrBrvD2Eg23xsTGYRBkxMhBEaNGoUdO3bgyJEjqFhR+2klFStWhLOzMw4cOAB394xvoZRKJYKCguDv76/ZLi4uDu3atYOZmRl27doFc3OeEiUiIv2xdHBGu2lZz+wDgIVdKbSauPyt5a0cy6HzgoPZrqvXewzq9R6TZXlqwgvtOt4SQ60uX6FWl6+0likTX94raVWqLAbuy/4pUOUatES5Bkfe2LZlSSed2s3S9lv6blGiNLz9tr+xbUD3fue1/XSlfm9IdylpgbOTP8h2nZOdGfZ/10RrWUqaSq/tExU2Bk1ORo4cifXr12Pnzp2wsbHR3EdiZ2cHCwsLSJKE0aNHY+bMmXBzc4ObmxtmzpwJS0tL9OnTB0DGGZO2bdsiKSkJa9euRVxcnObmdUdHRxgZGQEAHj58iOfPn+Phw4dQqVS4ePEiAKBKlSqwtrYu+M4TEREREZEWgyYnS5ZkPGmjZcuWWstXr16NAQMGAADGjRuH5ORkjBgxQjMJ4/79+2FjYwMACA4OxpkzZwBkJBqvunfvHlxdXQEAkydPRmBgoGZd5pmYw4cPZ2mfiIiIiIgKnsEv63oXSZIwdepUTJ06Ndv1LVu2zFE9AQEBnOOEiIiIiEjGeNcVERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC8aGDoCIiEjuVOnKPJVRpSmRrtDt+0B1WqpWXQqlbuXz0n5hbluf7etDapo6X7cnKmqYnBAREb3DqcUTdS4j1C8PMo/NGgZJ0rW8SvPzmaXfQ9cK8tJ+YW47r+3rW7/lFwzXOFEhxOSEiIjoLRqUs8lVOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dIo92XT0vQXB1EhIgkhhKGDKAzi4uJgZ2eH2NhY2NraGjocIiLKZ0IIpKbm/hKfV8ubmZlB0vXsgwHLF+a29VWHvtrPrbi4ODg5OfG4g4odnjkhIiLKhiRJMDc3z1MdFhYWhbZ8YW5bX3Xklj5+d5RK3e9zIioK+LQuIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAs6JSfp6ekIDAxEZGRkfsVDRERERETFlE7JibGxMYYPH47U1NT8ioeIiIiIiIopnS/raty4MS5evJgPoRARERERUXFmrGuBESNGYMyYMQgLC0PDhg1hZWWltb5u3bp6C46IDE8Ikeuzpa+WNTMzgyRJBVo+r3UYOn5Dl39VXtvPi7zGTkREhYckhBC6FFAosp5skSQJQghIkgSVSqW34OQkLi4OdnZ2iI2Nha2traHDISowKSkp6NGjR67KqlQqBAcHAwA8PDyy/fuRn+XzWoeh4zd0+Vdt2bIF5ubmOpXJy+9OXtsmKux43EHFlc5nTu7du5cfcRCRzIU8jte5jFCrEZuSDtMybrj8TAVJ0u3LC6FWIU4poChRFhfDE4DcnDnJQwx5bd/Q/c9r+5nqOZrkqpxG2Nncl3VplLe2iYioUNE5OXnvvffyIw4iKgSajvCDkbFpjrdXJsfjnwndAQAfjFsKEzPdvv1OS4zFjmEfAAAaD5upc/m8xpDX9g3d/7y2r05LRZD/UJ3KvMnaIe4wM8n5mZvUNDX6Lb+gl7aJiKjw0Dk5yXT9+nU8fPgQSqVSa3nnzp3zHBQRyZORsSmMTM1yvn3ay/sNjExMYWyq28GxSpmS67b1EUNe2zd0//PafrpOW7+dmYkC5iZGeqyRiIiKIp2Tk7t37+KTTz7BlStXNPeaANDcrFhU7zkhIiIiIqL8pfPdkd988w0qVqyIJ0+ewNLSEteuXcPRo0fh4eGBI0eO5EOIRERERERUHOh85uTUqVM4dOgQHB0doVAooFAo0Lx5c/j5+cHHxwcXLvAaYSIiIiIi0p3OZ05UKhWsra0BAKVKlUJ4eDiAjBvlb926pd/oiIiIiIio2ND5zEnt2rVx+fJlVKpUCY0bN8asWbNgamqK5cuXo1KlSvkRIxERERERFQM6Jyc//PADEhMTAQDTp09Hx44d8cEHH8DBwQGbNm3Se4BERERERFQ86JyctGvXTvNzpUqVcP36dTx//hwlSpTQPLGLiIiIiIhIVzrfc5Lp9u3b2LdvH5KTk1GyZEl9xkRERERERMWQzslJdHQ0PvroI1StWhXt27dHREQEAOCrr77C2LFj9R4gEREREREVDzpf1vXtt9/CxMQEDx8+RI0aNTTLe/XqhW+//RZz5szRa4BERERElD2VSoW0tDRDh0H0VqamplAocnZOROfkZP/+/di3bx/Kly+vtdzNzQ0PHjzQtToiIiIi0pEQApGRkXjx4oWhQyF6J4VCgYoVK8LU1PSd2+qcnCQmJsLS0jLL8mfPnsHMzEzX6oiIiIhIR5mJSenSpWFpacmHEpFsqdVqhIeHIyIiAhUqVHjn76rOyYmXlxf++OMPTJs2DQAgSRLUajVmz56NVq1a5S5qIiIiIsoRlUqlSUwcHBwMHQ7ROzk6OiI8PBzp6ekwMTF567Y6JyezZ89Gy5Ytcf78eSiVSowbNw7Xrl3D8+fPceLEiVwHTURERETvlnmPSXZXshDJUeblXCqV6p3Jic5P66pZsyYuX76MRo0aoU2bNkhMTES3bt1w4cIFVK5cOXcRExEREZFOeCkXFRa6/K7qfOYEAJydneHr65ubokRERERERNnS+cyJq6srfvrpJ4SFheVHPEREREREVEzpfOZk7NixCAgIwE8//YRWrVph0KBB+OSTT/ikLiIiIiJDm1PAl3qNFQXbnoFJkoQdO3aga9euhg4l11q2bIn69etj3rx5hg4lWzqfORk1ahSCg4MRHByMmjVrwsfHB2XKlMHXX3+NkJCQ/IiRiIiIiAo5SZLe+m/AgAEGi83V1TVHB+sRERH4+OOPc1xvQEAA7O3tcx9YMaRzcpKpXr16mD9/Ph4/fowpU6Zg5cqV8PT0RL169fD7779DiOKVSRMRERHRm0VERGj+zZs3D7a2tlrL5s+fr1N9SqUynyJ9M2dnZ4NcLaRSqaBWqwu8XUPIdXKSlpaGzZs3o3Pnzhg7diw8PDywcuVK9OzZE5MmTULfvn31GScRERERFWLOzs6af3Z2dpAkSfPaxMQEw4YNQ/ny5WFpaYk6depgw4YNWuVbtmyJr7/+GmPGjEGpUqXQpk0bAMCuXbvg5uYGCwsLtGrVCoGBgZAkCS9evNCUPXnyJLy8vGBhYQEXFxf4+PggMTFRU++DBw/w7bffas7ivIkkSfjzzz8BAPfv34ckSdi+fTtatWoFS0tL1KtXD6dOnQIAHDlyBF9++SViY2M19U6dOhUANNNxlCtXDlZWVmjcuDGOHDmiaSfzjMvu3btRs2ZNmJmZYcWKFTA3N9fqFwD4+PigRYsWAIDo6Gh89tlnb30f5U7n5CQkJASjRo1CmTJlMGrUKNSqVQtXr17F8ePH8eWXX2LSpEnYtWsXduzYkR/xEhEREVERk5KSgoYNG2L37t24evUqhgwZgs8//xxnzpzR2i4wMBDGxsY4ceIEli1bhvv37+PTTz9F165dcfHiRQwdOhSTJk3SKnPlyhW0a9cO3bp1w+XLl7Fp0yYcP34cX3/9NQBg+/btKF++PH766SfNWRxdTJo0Cd999x0uXryIqlWr4rPPPkN6ejqaNWuW5QzRd999BwD48ssvceLECWzcuBGXL19Gjx494O3tjdDQUE29SUlJ8PPzw8qVK3Ht2jX069cP9vb22LZtm2YblUqFzZs3a04K5PR9lDOdb4j39PREmzZtsGTJEnTt2jXbiVRq1qyJ3r176yVAIiIiIiraypUrpzlwBzLucd67dy+2bNmCxo0ba5ZXqVIFs2bN0ryeMGECqlWrhtmzZwMAqlWrhqtXr2LGjBmabWbPno0+ffpg9OjRAAA3Nzf89ttvaNGiBZYsWYKSJUvCyMgINjY2cHZ21jn27777Dh06dAAA+Pr6olatWrh9+zaqV6+udYYo0507d7BhwwY8evQIZcuW1dSxd+9erF69GjNnzgSQcZXS4sWLUa9ePU3ZXr16Yf369Rg0aBAA4ODBg4iJiUGPHj10eh/lTOfk5O7du3jvvffeuo2VlRVWr16d66CIiIiIqPhQqVT4+eefsWnTJjx+/BipqalITU2FlZWV1nYeHh5ar2/dugVPT0+tZY0aNdJ6HRwcjNu3b2PdunWaZUIIqNVq3Lt3DzVq1MhT7HXr1tX8XKZMGQBAVFQUqlevnu32ISEhEEKgatWqWstTU1Ph4OCgeW1qaqpVNwD07dsXTZs2RXh4OMqWLYt169ahffv2KFGiBICcv49ypnNy8q7EhIiIiIhIF3PmzMGvv/6KefPmoU6dOrCyssLo0aOz3PT++kG2ECLLPSKvP5RJrVZj6NCh8PHxydJuhQoV8hz7q1cRZcbytpvX1Wo1jIyMEBwcDCMjI6111tbWmp8tLCyy9K1Ro0aoXLkyNm7ciOHDh2PHjh1aJwRy+j7KWa5miCciIiIi0pdjx46hS5cu6NevH4CMA/jQ0NB3ntWoXr069uzZo7Xs/PnzWq8bNGiAa9euoUqVKm+sx9TUFCqVKpfRv1l29bq7u0OlUiEqKgoffPCBznX26dMH69atQ/ny5aFQKDSXlAG5fx/lJNdP6yIiIiIi0ocqVargwIEDOHnyJG7cuIGhQ4ciMjLyneWGDh2KmzdvYvz48fjvv/+wefNmBAQEAHh5FmP8+PE4deoURo4ciYsXLyI0NBS7du3CqFGjNPW4urri6NGjePz4MZ49e6a3frm6uiIhIQEHDx7Es2fPkJSUhKpVq6Jv377o378/tm/fjnv37uHcuXPw9/fPkmhlp2/fvggJCcGMGTPw6aefwtzcXLMut++jnPDMCREREVFRUUhnbP/xxx9x7949tGvXDpaWlhgyZAi6du2K2NjYt5arWLEitm7dirFjx2L+/Plo2rQpJk2ahOHDh2vmI6lbty6CgoIwadIkfPDBBxBCoHLlyujVq5emnp9++glDhw5F5cqVkZqaqrf5+po1a4Zhw4ahV69eiI6OxpQpUzB16lSsXr0a06dPx9ixY/H48WM4ODigadOmaN++/TvrdHNzg6enJ86dO5dl4sjcvo9yolNykpaWhmrVqmmeuUxEREREpKsBAwZozQhfsmRJzfwhb/LqPCCv6ty5Mzp37qx5PWPGDJQvX17rjIKnpyf279//xrqbNGmCS5cuvTPuV5MWV1fXLEmMvb19lmVLlizBkiVLtJaZmJjA19cXvr6+2bbz+vvzurNnz2a7PC/vo1zolJyYmJggNTX1rZPT6MLPzw/bt2/HzZs3YWFhgWbNmsHf3x/VqlXTbCOEgK+vL5YvX46YmBg0btwYixYtQq1atQAAz58/x5QpU7B//36EhYWhVKlS6Nq1K6ZNmwY7OztNPTExMfDx8cGuXbsAZPwiL1iwAPb29nrpC1FxcdhvCJJjn0GSFDCxsELD/hNRwrU6UmKjcWrpJCQ8CYORiSk8B/4Iu/JZr+/dO7EbkmOe/K+8NZqMnAWHynVwacMchP67EXGP76D11PWo0MRbp/av7VyBe8d2IT7yAbzGLEC5Bi2ylFUpU/Dvz4Px4uEtGJtZwKKEE5r5zIWNcwU8vRWCM0snIi05AZKkQKOhM+BQpa5e239b/5NfPMXRWcMRH3EPChNTNPOZixKuWa8Rzkv7urTtXLtptvHnRdtfTiMyNhUKSYKNuTEW9KuF+hXsEBWXiv4rLuJOVCLMTIywtH8deFS0e3eFREQAFi9eDE9PTzg4OODEiROYPXu2Zg4TKnx0vqxr1KhR8Pf3x8qVK2FsnLerwoKCgjBy5Eh4enoiPT0dkyZNQtu2bXH9+nXN0xhmzZqFuXPnIiAgAFWrVsX06dPRpk0b3Lp1CzY2NggPD0d4eDh++eUX1KxZEw8ePMCwYcMQHh6OrVu3atrq06cPHj16hL179wKAZlKav/76K099ICpu3vf5BaZWtgCAR+cP4syKyfCesRkXN81DqSp10Wr8UkTfuYrj88eg3fSNWcq3mrQaZtYZB54PTv6N43O/RpdFQSjj3gIVW3TD8V9HZSmTk/adajVGhSbeOLti8lvLV2v/Bcp7toEkSbi+czlOzB+NdjO34eBPn6PF/y1Fmfof4MXD/7Bv4ifo+NtBvbf/pv6fX+ULxxoeaDdzK57eCsGh6V+g88LDem1fl7Z7BFx4az9yY/OIhrC3zHiqzZ8hkRi46hJCfL0wYctNNKlsj71jG+Pc3Rf4dHEwrk330nv7RFQ0hYaGYvr06Xj+/DkqVKiAsWPHYuLEiYYOi3JJ5+zizJkzOHjwIPbv3695RNmrtm/fnuO6MhOFTKtXr0bp0qURHBwMLy8vCCEwb948TJo0Cd26dQOQMTOok5MT1q9fj6FDh6J27dpaM2VWrlwZM2bMQL9+/ZCeng5jY2PcuHEDe/fuxenTpzUT0KxYsQJNmzbFrVu3tM7UENHbZR4YA4AyKUFzJjXs9D50mpexTztUrg1zOwdE376cpXzmwTEAKBPjACnjuRylq3tk2VaX9ktlc5bjdUam5nBp1FbzunQNT1zbsRSpcc+RGh+DMvUznppiX6EqTK3tEH7hiF7bB97c/3tH/0SPwIsAAMdqDWBhXxpPb5zPUj4v7evS9pOrp+FYI2djklOZiQkAxCalQaHIiH3zuXDcm/UhAMCzkj2cbE1x8naMXtsmoqLr119/xa+//mroMEhPdE5O7O3t0b179/yIRXOzTsmSJQEA9+7dQ2RkJNq2fXkwYWZmhhYtWuDkyZMYOnToG+uxtbXVnNk5deoU7OzstGbGbNKkCezs7HDy5Mlsk5PMSWsyxcXF5b2DREXEqSXfI+p6xvWuLccvRWr8CwghYG5bUrONlWNZJD1/km35oFnDEHnpGACg7Yyt2W6jS/u5de3PZajQxBvmdg6wsHfE/WO74PpBZ0TdPI/Yx3eQGPUoX9p/vf8pcc8hhBoW9qU021g7VUDis8d6bz+nbSdEPdJ7cgIA/VdcwOEb0QCAvWMbIzpBCbUQcLQ102zjWsoSYc9T9N42ERHJn87JSX7N/C6EwJgxY9C8eXPUrl0bADSPPnNyctLa1snJCQ8ePMi2nujoaEybNk0rcYmMjETp0qWzbFu6dOk3Pl7Nz8/vjTcpERV3TYfPBADcPboTF9bPQdPhfsDr96K95UknLcZlHFCHHtiAcysno+30LXlqv+W4Je8okdWlDXMQF34X7/vMBQC0nroO51ZNxaWNc1DCtSacajWB4g2Xrua1/df77zVuGSS8fi/fm9+/vLSf17bz6o/B7gCAwONh+L9N17FmiHuW9vX0kBwiIiqEcj3PydOnT3H8+HGcOHECT58+zXMgX3/9NS5fvowNGzZkWZfdzJ/Z3ZQfFxeHDh06oGbNmpgyZcpb63hbPQAwceJExMbGav6FhYXp0h2iYqGSVxdEXT+neZ0S91zzc+KzCFiWdMqumIZbm88Qcem4VrnctJ8a/0Kncle2LMD9E7vRdvoWGJtbAgBKVqqNdjO2osuiIHj93xIkRUfCrrxbvrSfKbP/mZJfvHy2fsKTMFiVKpdv7b+rbevS5XWuUxdfNHfB4ZvRmtdP416eqX4QnQSXkubZFSMioiJO5+QkMTERAwcORJkyZeDl5YUPPvgAZcuWxaBBg5CUlJSrIEaNGoVdu3bh8OHDKF/+5Qeis7MzAGQ5uxEVFZXlbEp8fDy8vb1hbW2NHTt2wMTERKueJ0+yXl7y9OnTLPVkMjMzg62trdY/ouIuLTkBSTFRmtdh5w7C1NoOptZ2qNCoDUIPZNwAH33nKlJin2V52pUyMQ5J0RGa1/dP7IaZbUmY2ZTIWftJb24/p65uW4S7R7bB22+H1j0Yr16CdmtPIIzNLeFUp5le239b/129uuDGXysBAE9vhSA55kmWy6ry0r4yKV6ntp1qN8lRn3IqLjkN4TEvL9XaERwBB2tTlLQyQQ/PMlh06D4A4NzdF4iMTUWzKjn7nSAioqJF58u6xowZg6CgIPz11194//33AQDHjx+Hj48Pxo4dm+U5zm8jhMCoUaOwY8cOHDlyBBUrVtRaX7FiRTg7O+PAgQNwd8+4FECpVCIoKAj+/v6a7eLi4tCuXTuYmZlh165dWs+1BoCmTZsiNjYWZ8+eRaNGjQBk3NgfGxuLZs20Dz6I6M3SkhJwcvEEqJQpkBQKmNmUQIvvFkGSJNT77FucXvw9/hrTAQpjEzQdPhMKI+0/McrEOBya9gVUymRAUsDcrhTa/LQRkiTh0sa5uPHXKqTEPsOxOSNhZGqOj2ft0i6fnIDj877Ntv1rO1ci9MAGpMbH4PSyH2BkYgrvmVu0Ykh8Fo6zy3+ATRlX/DOuEwBAYWKGzr/9i1t7AnDn0BZACNhVqIqPJq/JcmZV1/Y/+uH3HPffc9BUBM0ahq1fNoTC2BRe45Zlff/y0H5aYhyOzRqmU9tqVXruf1leE5ucjr7LLiBZqYZCATjamGH3aE9IkgT/HjXw+YoLcBt/CKbGCqwZ7A5jo1yf2CciokJM5+Rk27Zt2Lp1K1q2bKlZ1r59e1hYWKBnz546JScjR47E+vXrsXPnTtjY2GjOkNjZ2cHCwgKSJGH06NGYOXMm3Nzc4ObmhpkzZ8LS0hJ9+vQBkHHGpG3btkhKSsLatWsRFxenuXnd0dERRkZGqFGjBry9vTF48GAsW7YMQMajhDt27MgndRHpwNLBGe2mZb30EgAs7Eqh1cTlWsuUidoPkrAuXR6dF2R9PC8A1Os9BvV6j9FalprwQuu11Vvar9XlK9Tq8lWW5a/GYFWqLAbuy/4pUO79xsO933i9tq9L/y1KlIa3n/bTDvXZvpVjOZ3a1jeXkhY4O/mDbNc52Zlh/3faZ2pS0lT5Gg8RkZwMGDAAL168eOcEinIWEBCA0aNH48WLF3mqR+fkJCkpKdtLoUqXLq3zZV2ZicyriQ6QcdN95qyY48aNQ3JyMkaMGKGZhHH//v2wsbEBAAQHB+PMmTMAgCpVtCd8u3fvHlxdXQEA69atg4+Pj+bJX507d8bChQt1ipeIiIhIzkpNPVqg7T2bqtucRAMGDEBgYCAAwNjYGC4uLujWrRt8fX2zTE9RnMyfPz/LzPLvIkkSduzYga5du+ZPUAaic3LStGlTTJkyBX/88Yfm8qnk5GT4+vqiaVPdZhTOySBIkoSpU6di6tSp2a5v2bJljuopWbIk1q5dq1N8RERERKRf3t7eWL16NdLS0nDs2DF89dVXSExMzPbqm7S0NK37iAtSfrStVCphamqaZbmdXc7vndQ3Q77H2dH5ot758+fj5MmTKF++PD766CO0bt0aLi4uOHnyJObPn58fMRIRERFREWFmZgZnZ2e4uLigT58+6Nu3r+ZypqlTp6J+/fr4/fffUalSJZiZmUEIgdjYWAwZMgSlS5eGra0tPvzwQ1y6dEmr3l27dsHDwwPm5uYoVaqUZgJvIOPL7tcvmbK3t0dAQAAA4P79+5AkCZs3b0bLli1hbm6OtWvX4sGDB+jUqRNKlCgBKysr1KpVC3v27NHUERQUhEaNGsHMzAxlypTBhAkTkJ7+8n69li1b4uuvv8aYMWNQqlQptGnTJtv3ZMCAAVpnQFq2bAkfHx+MGzcOJUuWhLOzs9YX9ZlXBn3yySeQJEnzGgD++usvNGzYEObm5qhUqRJ8fX21YpIkCUuXLkWXLl1gZWWFn376CeXLl8fSpdrzZoWEhECSJNy9excAMHfuXM0E7C4uLhgxYgQSEhKy7U9e6Jyc1K5dG6GhofDz80P9+vVRt25d/PzzzwgNDUWtWrX0HiARERERFV0WFhZIS0vTvL59+zY2b96Mbdu24eLFiwCADh06IDIyEnv27EFwcDAaNGiAjz76CM+fZzyK/u+//0a3bt3QoUMHXLhwAQcPHoSHh+4TyY4fPx4+Pj64ceMG2rVrh5EjRyI1NRVHjx7FlStX4O/vD2trawDA48eP0b59e3h6euLSpUtYsmQJVq1ahenTp2vVGRgYCGNjY5w4cUJz73NOBAYGwsrKCmfOnMGsWbPw008/4cCBAwCAc+cyHuO/evVqREREaF7v27cP/fr1g4+PD65fv45ly5YhICAAM2bM0Kp7ypQp6NKlC65cuYKvvvoKvXv3xrp167S2Wb9+PZo2bYpKlSoBABQKBX777TdcvXoVgYGBOHToEMaNG6fDu5szOl/WBWT8Eg0ePFjfsRARERFRMXL27FmsX78eH330kWaZUqnEmjVr4OjoCAA4dOgQrly5gqioKJiZmQEAfvnlF/z555/YunUrhgwZghkzZqB3795aE2jXq1dP53hGjx6tdcbl4cOH6N69O+rUqQMAmgN1AFi8eDFcXFywcOFCSJKE6tWrIzw8HOPHj8fkyZOhUGScA6hSpQpmzZqlcyx169bVzNvn5uaGhQsX4uDBg2jTpo3mvbG3t9dMvQEAM2bMwIQJE/DFF19o4p02bRrGjRunNQdgnz59MHDgQM3rvn37Yu7cuXjw4AHee+89qNVqbNy4Ed9//73We5OpYsWKmDZtGoYPH47Fixfr3Le3yVVy8t9//+HIkSOIioqCWq3WWjd58mS9BEZERERERc/u3bthbW2N9PR0pKWloUuXLliwYIFm/Xvvvac5+AYyHn6UkJAABwcHrXqSk5Nx584dAMDFixf18sX562dbfHx8MHz4cOzfvx+tW7dG9+7dUbduxhxeN27cQNOmTbUeO//+++8jISEBjx49QoUKFbKtM6cy28lUpkwZREVFvWHrDMHBwTh37pzWmRKVSoWUlBQkJSXB0tIy25jc3d1RvXp1bNiwARMmTEBQUBCioqLQs2dPzTaHDx/GzJkzcf36dcTFxSE9PR0pKSlITEzU68MMdE5OVqxYgeHDh6NUqVJwdnbWGhBJkpicEBEREdEbtWrVCkuWLIGJiQnKli2b5Wbs1w901Wo1ypQpgyNHjmSpy97eHkDGVT1vI0lSlgcovXop2Zva/uqrr9CuXTv8/fff2L9/P/z8/DBnzhyMGjUKQogs82FltvHq8tweuL/+vkiSlOWkwOvUajV8fX21zv5kenUewOxi6tu3L9avX48JEyZg/fr1aNeuHUqVKgUAePDgAdq3b49hw4Zh2rRpKFmyJI4fP45BgwZl+z7mhc7JyfTp0zFjxgyMHz/+3RsTEREREb3Cysoqy/QPb9OgQQNERkbC2NhY68bvV9WtWxcHDx7El19+me16R0dHREREaF6HhobmeAoMFxcXDBs2DMOGDcPEiROxYsUKjBo1CjVr1sS2bdu0kpSTJ0/CxsYG5cqVy3H/csvExAQqlfacUA0aNMCtW7d0en8z9enTBz/88AOCg4OxdetWraennT9/Hunp6ZgzZ47mcrXNmzfnrQNvoPMN8TExMejRo0d+xEJEREREpKV169Zo2rQpunbtin379uH+/fs4efIkfvjhB5w/fx5Axg3eGzZswJQpU3Djxg1cuXJF6z6PDz/8EAsXLkRISAjOnz+PYcOG5ejxuaNHj8a+fftw7949hISE4NChQ6hRowYAYMSIEQgLC8OoUaNw8+ZN7Ny5E1OmTMGYMWM0B/D5ydXVFQcPHkRkZCRiYjImGJ48eTL++OMPTJ06FdeuXcONGzewadMm/PDDD++sr2LFimjWrBkGDRqE9PR0dOnSRbOucuXKSE9Px4IFC3D37l2sWbMmy9O99EXnd65Hjx7Yv39/fsRCRERERKRFkiTs2bMHXl5eGDhwIKpWrYrevXvj/v37monBW7ZsiS1btmDXrl2oX78+PvzwQ80k3QAwZ84cuLi4wMvLC3369MF3332nuf/ibVQqFUaOHIkaNWrA29sb1apV09wAXq5cOezZswdnz55FvXr1MGzYMAwaNChHiYA+zJkzBwcOHICLiwvc3d0BAO3atcPu3btx4MABeHp6okmTJpg7dy7ee++9HNXZt29fXLp0Cd26ddO6VK5+/fqYO3cu/P39Ubt2baxbtw5+fn750q8cXdb122+/aX6uUqUKfvzxR5w+fRp16tTJknX6+PjoN0IiIiIiyhFdZ2wvaJnzirzJmybetrGxwW+//aZ1TPq6bt26ZXuvBQCULVsW+/bt01r24sULzc+urq7ZTur96o362WnRogXOnj37xvXZ3SeTndffl+zKvT5PS6dOndCpU6cs27Vr1w7t2rV7Y1tvm7x8xIgRGDFiRLbrvv32W3z77bdayz7//HPNzwMGDMCAAQPeWHdO5Sg5+fXXX7VeW1tbIygoCEFBQVrLJUlickJERERERLmSo+Tk3r17+R0HEREREREVc/l/tw4REREREVEO6JycfPrpp/j555+zLJ89ezaf4kVERERERLmmc3ISFBSEDh06ZFnu7e2No0eP6iUoIiIiInq7t93YTCQnuvyu6pycJCQkwNTUNMtyExMTxMXF6VodEREREekg80mpOZ1EkMjQlEolAMDIyOid2+o8Q3zt2rWxadMmTJ48WWv5xo0bUbNmTV2rIyIiIiIdGBkZwd7eHlFRUQAAS0tLzQzlRHKjVqvx9OlTWFpawtj43amHzsnJjz/+iO7du+POnTv48MMPAQAHDx7Ehg0bsGXLFt0jJiIiIiKdODs7A4AmQSGSM4VCgQoVKuQoidY5OencuTP+/PNPzJw5E1u3boWFhQXq1q2Lf//9Fy1atMhVwERERESUc5IkoUyZMihdujTS0tIMHQ7RW5mamkKhyNndJDonJwDQoUOHbG+KJyIiIqKCY2RklKPr+IkKi1wlJ0DGjS1RUVFQq9VayytUqJDnoIiIiIiIqPjROTkJDQ3FwIEDcfLkSa3lQghIkgSVSqW34IiIiIiIqPjQOTkZMGAAjI2NsXv3bpQpU4ZPhyAiIiIiIr3QOTm5ePEigoODUb169fyIh4iIiIiIiimdJ2GsWbMmnj17lh+xEBERERFRMaZzcuLv749x48bhyJEjiI6ORlxcnNY/IiIiIiKi3ND5sq7WrVsDAD766COt5bwhnoiIiIiI8kLn5OTw4cP5EQcRERERERVzOicnb5sF/uLFi3mJhYhkTpWuzPX2qjQl0nM4O2wmdVqqVl0Kpc5XouYphry2b+j+67P9vEpNU797ozxsT0RERUOuJ2HMFBsbi3Xr1mHlypW4dOkSL+siKsJOLZ6o0/bilUlaj80aBl2fPC7UL/+enFn6PXSuII8x5LV9Q/c/r+3rU7/lFwzXOBERFRq5Tk4OHTqE33//Hdu3b8d7772H7t27Y9WqVfqMjYhkpEE5G53LqFQqBEcYAzH3ULeyBxQ6fnOvUikQ/EACEiNQv0Y5ncvnNYa8tm/o/ue1fb1xaWSYdomIqNDRKTl59OgRAgIC8PvvvyMxMRE9e/ZEWloatm3bhpo1a+ZXjERkQGZmZtiyZUuuygohkJqaqqlH10lb81o+r3UYOn5Dl3+VmZlZrsrk9ncnr20TEVHhlOPkpH379jh+/Dg6duyIBQsWwNvbG0ZGRli6dGl+xkdEBiZJEszNzXNd3sLCIk/t57V8XuswdPyGLp8Xef3dISKi4ifHycn+/fvh4+OD4cOHw83NLT9jIiIiIiKiYijHFyAfO3YM8fHx8PDwQOPGjbFw4UI8ffo0P2MjIiIiIqJiJMfJSdOmTbFixQpERERg6NCh2LhxI8qVKwe1Wo0DBw4gPj4+P+MkIiIiIqIiThJCiNwWvnXrFlatWoU1a9bgxYsXaNOmDXbt2qXP+GQjLi4OdnZ2iI2Nha2traHDISIioiKMxx1UXOXpuZLVqlXDrFmz8OjRI2zYsEFfMRERERERUTGUpzMnxQm/wSAiIqKCwuMOKq4MNCMXERERERGRNiYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyYKxoQMobFJSUmBqaqpzOSEEUlNTAQBmZmaQJKnQlC/MbeurDn21nxd5iZ2IiIioMGByoqP+/fvDxMRE53IqlQrBwcEAAA8PDygUup20MmT5wty2vuoAgC1btsDc3FzncqmpqejRo0eu2tRH+0RERESFBZMTHV2KSIDCSPe3TajViE1Jh2kZN1x+poIkqXQsr0KcUkBRoiwuhicAup69yEP7hbntvLafqZ6j7glpFmFnc1/WpVHe2yciIiKSOSYnudB0hB+MjHW7tEuZHI9/JnQHAHwwbilMzHT7BjwtMRY7hn0AAGg8bKbO5fPSfmFuO6/tq9NSEeQ/VOc232TtEHeYmeT8zE1qmhr9ll/QW/tEREREcsbkJBeMjE1hZGqmW5m0l/ccGJmYwthUt4NslTLFYO0X5rbz2n66zq29nZmJAuYmRnqulYiIiKho4NO6iIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHYkI37+flh+/btuHnzJiwsLNCsWTP4+/ujWrVqmm2EEPD19cXy5csRExODxo0bY9GiRahVq5Zmm+XLl2P9+vUICQlBfHw8YmJiYG9vr9VWSEgIxo8fj3PnzsHIyAjdu3fH3LlzYW1tnavYD/sNQXLsM0iSAiYWVmjYfyJKuFZHSmw0Ti2dhIQnYTAyMYXnwB/hWK1BlvJ7J3ZDcsyT/5W3RpORs+BQuQ4ubZiD0H83Iu7xHbSeuh4VmnjrHMO1nStw79guxEc+gNeYBSjXoIVWOZUyBf/+PBgvHt6CsZkFLEo4oZnPXNg4V8Cz/y7g1OLxUClToFKmwq1tH1Rr/4Ve2n1X35NfPMXRWcMRH3EPChNTNPOZixKuNfTW79y0X6qq+xvf/9xq+8tpRMamQiFJsDE3xoJ+tVC/gh2i4lLRf8VF3IlKhJmJEZb2rwOPinZ6b5+IiIhIrgyanAQFBWHkyJHw9PREeno6Jk2ahLZt2+L69euwsrICAMyaNQtz585FQEAAqlatiunTp6NNmza4desWbGxsAABJSUnw9vaGt7c3Jk6cmKWd8PBwtG7dGr169cLChQsRFxeH0aNHY8CAAdi6dWuuYn/f5xeYWtkCAB6dP4gzKybDe8ZmXNw0D6Wq1EWr8UsRfecqjs8fg06/7slSvtWk1TCzzjjwfHDybxyf+zW6LApCGfcWqNiiG47/OirXMTjVaowKTbxxdsXkN5at1v4LlPdsA0mScH3ncpyYPxrefttxfN43aPD5BFRo2h6pcTHY9lUjONdpprd239b386t84VjDA+1mbsXTWyE4NP0LdF54WK/91rX9T5afemtdubF5REPYW5oAAP4MicTAVZcQ4uuFCVtuoklle+wd2xjn7r7Ap4uDcW26l97bJyIiIpIrgyYne/fu1Xq9evVqlC5dGsHBwfDy8oIQAvPmzcOkSZPQrVs3AEBgYCCcnJywfv16DB06FAAwevRoAMCRI0eybWf37t0wMTHBokWLoFBkXMm2aNEiuLu74/bt26hSpYrOsWceHAOAMikBkiQBAMJO70OneRn9cqhcG+Z2Dnh66wJKvFdNq3zmwTEAKBPjACkjrtLVPfIcQ6kqdd9azsjUHC6N2mpel67hiWs7lmpepybEAQDSUhKhMDGFqbW9XtrN9Ka+3zv6J3oEXgQAOFZrAAv70nh643yW8gXZftT1szmqUxeZiQkAxCalQaHIiH/zuXDcm/UhAMCzkj2cbE1x8naM3tsnIiIikiuDJievi42NBQCULFkSAHDv3j1ERkaibduXB9JmZmZo0aIFTp48qUlO3iU1NRWmpqaaxAQALCwsAADHjx/PNjlJTU1Famqq5nVcXFyWbU4t+V5z8Npy/FKkxr+AEALmtiU121g5lkVSdESW5AQAgmYNQ+SlYwCAtjNydwbn9Rhy49qfyzSXj30wdhH+ndoHIYHTkRIbjfe/+RUWJRz13u7rfU+Jew4h1LCwL6XZxtqpAhKfPc62fIG1//SRznXnRP8VF3D4RjQAYO/YxohOUEItBBxtzTTbuJayRNjzlHxpn4iIiEiOZHNDvBACY8aMQfPmzVG7dm0AQGRkJADAyclJa1snJyfNupz48MMPERkZidmzZ0OpVCImJgbff/89ACAiIiLbMn5+frCzs9P8c3FxybJN0+Ez0WXBv6jTYxQurJ+TsfB/3+K/0rE3xtVi3FL0WncNDQb8gHMr334p0ptkG4MOLm2Yg7jwu2g44AcAwJUtv8Hzq5/Qa+1VfLL8FIIDpiPu8R29t5td3yW89t7hze+dodvPqz8GuyNsbmtM71YN/7fperbtv+VXh4iIiKhIkk1y8vXXX+Py5cvYsGFDlnWS9PpBm8iy7G1q1aqFwMBAzJkzB5aWlnB2dkalSpXg5OQEIyOjbMtMnDgRsbGxmn9hYWFvrL+SVxdEXT+neZ0S91zzc+KzCFg6lHlrfG5tPkPEpeNa5XSVGUNq/Iscl7myZQHun9iNttO3wNjcEimx0Xhw8m9UavEJAMC2jCscq3vg6a0Qvbb7qsy+Z0p+8Uzzc8KTMFiVKvfW8vnevmP5XNWbU180d8Hhm9Ga10/jXp6texCdBJeS5vnaPhEREZGcyCI5GTVqFHbt2oXDhw+jfPmXB4POzs4AkOUsSVRUVJazKe/Sp08fREZG4vHjx4iOjsbUqVPx9OlTVKxYMdvtzczMYGtrq/UvU1pyApJiojSvw84dhKm1HUyt7VChURuEHtgIAIi+cxUpsc/gWE37iU/KpHgkRb88Y3P/xG6Y2ZaEmU2JHPcnLenNMeTE1W2LcPfINnj77dDcg2FqbQ8jEzNEXD4BAEiJjcbTG+dgX6FqjvqeE2/ru6tXF9z4ayUA4OmtECTHPIFjDe17cPLab13bL12zUY7qzam45DSEx7y8VGtHcAQcrE1R0soEPTzLYNGh+wCAc3dfIDI2Fc2q5Px3goiIiKiwM+g9J0IIjBo1Cjt27MCRI0eyJAoVK1aEs7MzDhw4AHf3jAN8pVKJoKAg+Pv756rNzKTm999/h7m5Odq0aaNzHWlJCTi5eAJUyhRICgXMbEqgxXeLIEkS6n32LU4v/h5/jekAhbEJmg6fCYWR9tuclhiHY7OGQaVMBiQFzO1Koc1PGyFJEi5tnIsbf61CSuwzHJszEkam5uiyKAgKY+06lMkJOD7v22xjuLZzJUIPbEBqfAxOL/sBRiam+OiH3zVlE5+F4+zyH2BTxhX/jOsEAFCYmKHzb/+i1aTVOLtsEtSqdAhVOmp/OgoOVeq9jD05EaeXTsxxu94zt2j1/2199xw0FUGzhmHrlw2hMDaF17hlWd47Xfut7/bzKjY5HX2XXUCyUg2FAnC0McPu0Z6QJAn+PWrg8xUX4Db+EEyNFVgz2B3GRrL4/oCIiIioQBg0ORk5ciTWr1+PnTt3wsbGRnOGxM7ODhYWFpAkCaNHj8bMmTPh5uYGNzc3zJw5E5aWlujTp4+mnsjISERGRuL27dsAgCtXrsDGxgYVKlTQ3Fy/cOFCNGvWDNbW1jhw4AD+7//+Dz///HOW+VBywtLBGe2mZb38DAAs7Eqh1cTlby1v5VgOnRcczHZdvd5jUK/3mCzLUxNeaNfxlhhqdfkKtbp8pbVMmfjyhn6rUmUxcF/2T4Eq16AlyjU48sa2LUs66dRulrbf0neLEqXh7bf9jW0Duvc7r+2nK/V7Q7pLSQucnfxBtuuc7Myw/7smWstS0lR6bZ+IiIhIzgyanCxZsgQA0LJlS63lq1evxoABAwAA48aNQ3JyMkaMGKGZhHH//v2aOU4AYOnSpfD19dW89vLyylLP2bNnMWXKFCQkJKB69epYtmwZPv/88/zrHBERERER6cTgl3W9iyRJmDp1KqZOnfrGbd61HgD++OMPHaMjIiIiIqKCxAvaiYiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWTA2dACFkSpdmacyqjQl0hW65YXqtFStuhRK3crnpf3C3LY+29eH1DR1vm5PREREVJgxOcmFU4sn6lxGqF8eZB6bNQySpGt5lebnM0u/h64V5KX9wtx2XtvXt37LLxiucSIiIiKZY3Kio3plrGFiYqJzOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dLIMO0SERERFRKSEEIYOojCIC4uDnZ2dnjy5AlsbW11Li+EQGpqxiVCZmZmkHQ9+2DA8oW5bX3Voa/28yIvsRMRUeGSedwRGxubq+MOosKKZ050ZG5uDnNz81yVtbCwyFPbhixfmNvWVx25JUlSrn9niIiIiIoTPq2LiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFvi0rhzKfOJyXFycgSMhIiKioi7zeIMzPlBxw+Qkh+Lj4wEALi4uBo6EiIiIiov4+HjY2dkZOgyiAsNJGHNIrVYjPDwcNjY2nAhPz+Li4uDi4oKwsDBONCVDHB/54xjJG8dH/uQ4RkIIxMfHo2zZslAoeBU+FR88c5JDCoUC5cuXN3QYRZqtra1sPhQoK46P/HGM5I3jI39yGyOeMaHiiKk4ERERERHJApMTIiIiIiKSBSYnZHBmZmaYMmUKzMzMDB0KZYPjI38cI3nj+Mgfx4hIPnhDPBERERERyQLPnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJieUr6KioqBSqQwdBlGhlZCQYOgQ6B34d46ISH+YnJDeCSGgVCoxZMgQtGvXDqdOnTJ0SJSNJ0+e4O+//wanOpKniIgI9O3bF5999hkGDRqEkJAQQ4dEr+DfOfmLjIzETz/9hMWLF2PPnj2GDoeIcojJCemdJEmIiorCrl278PTpUxw6dAixsbEAwANhmVi4cCHKli2LTp064dq1a4YOh16zdu1a1K5dG0qlEh9//DEOHToEf39/REZGGjo0+h/+nZO3adOmoUqVKjh79iwCAgLwySefYP369QA4PkRyx+SE8kVaWho6duyIzz//HGvXrsXp06cBZHygk+EIIbBnzx78+eefmDVrFtzd3eHr6wu1Wm3o0Oh/VCoV/vjjD4wZMwZbtmzBiBEj4O/vj6CgIFhYWBg6PHoF/87Jj0qlgr+/P/bs2YPNmzdj9+7dOHjwIMaMGYOJEycC4PgQyR2TE8oXjx49wuXLl+Hn5wcrKyts2LBB860iGY4kSXBycsLnn3+OoUOH4tdff8W2bduwb98+Q4dG/3PlyhXcvXsXZcuW1SxLSkpC9+7duQ/JDP/OyY+RkRGUSiU+/PBDeHt7AwBsbGzQokULGBsb486dOwaOkIjehckJ5ZpSqURycnK26x49eoSaNWsCACZMmICjR49iw4YNGDJkCCIiIgoyzGItPj4eR48exe3btzXLGjZsiC+++ALW1tbw8vJCjx49MGnSJMTHxxsw0uLp1X0o8+xVzZo14eDggFWrVmH58uXo2bMnBg4ciAsXLqBu3boYPXo0oqKiDBl2sRIXF4fTp0/j8ePHWdbx75zhJSYmIjQ0FHFxcZpl3333HWbMmAGFQqG5hOv58+cwNzdH5cqVDRUqEeUQkxPKFX9/f9SpUwdHjx7VWp55gBUXF4cXL14AAHr16gVjY2P4+Pjg/PnzkCSJ1/wWgGnTpqFy5coYM2YM6tati7lz52p9gGeOlZ+fH27evImAgAADRVo8vb4PKRQKpKenw9TUFPPnz0fPnj2xc+dO3LlzB2fPnsXevXsxb948nD17FosXLzZw9MWDn58fXFxcMHjwYNSsWRPz58/XSlL4d86wpk2bhjp16qBnz56oX7++5qb3zMsf1Wq15hKuU6dOwd3dHUDG5XhEJF9MTkgnz58/x/Dhw7F+/XpERkZi+fLlePbsmWa9QpHxK/Xw4UO0a9cO//77L8qXL4/k5GTY2Nigb9++KFWqFK/5zUd3795F27ZtsWXLFqxZswa7du3ChAkT8PPPP2udHckcq0qVKmHs2LGYMWMGHj16BCDjMqLExESDxF/UvW0fMjIyAgA0adIEPj4+SE1NxcCBA+Hh4QFbW1sMGDAANjY2ePLkCQ+w8tk///yDNWvWIDAwELt27cL48eOxYsUKTJ48WbPN/fv3+XfOAB48eIAuXbpg06ZNWLhwIebMmQMvLy989dVXePLkiWY7hUKh2U/OnDmDhg0bAgBMTEwA8MZ4IrlickI6iY2Nha2tLfz8/PD3339jx44d+PfffzXfwmf+b2RkhJEjR6Jbt24YMmQIwsLC0K9fPwQGBuL48eOG7EKR9/jxYzRr1gw7duxAu3btULZsWXz11VewtbV9Y5kJEybA3Nwcs2fPxpo1a9CuXTs+ejOfvG0fevVg9sGDB7h9+zYaN26sWZaUlIS4uDhUqFBBc4BF+WPv3r0wNzdH165dUbFiRXz//fcYNmwYTpw4gaVLl2q249+5gnf69Gm8ePECW7duRfv27fHhhx8iICAAiYmJOHv2rNa2JiYmCAsLw/3799GtWzcAGWPbp08fPHjwwBDhE9G7CCIdpKeniwcPHmhe9+zZU9StW1fcu3dPa7tdu3YJf39/8d9//2mWRUVFiRo1aoigoKCCCrdYUiqVIiwsTOv1J598Ipo3by6mTZsm/vvvP6FSqYQQQvO/EEJMmTJFSJIkTE1NxcSJEws87uIip/uQEEK4u7uLFi1aiDVr1oiQkBDRsWNHUatWLXHp0qUCjLj4UalUYvjw4aJ3794iJSVFszw8PFwMHTpU1KtXTyQlJYl///1XzJw5k3/nCoharRZCCPH8+XOxZcsWrXWRkZGiWrVqYv/+/VnKrV27Vnz00UciLCxMfPzxx8LY2FiMHTu2QGImIt0xOaFcyfyQiI6OFiYmJsLPz0/rQzw9PV1r+8zXqampBRckiRs3bghLS0vh6ekpJk+eLOrXry+aNm0qVq1apdkmISFBjBw5UkiSJAYNGiRiYmIMF3Ax8rZ9KHN/uXXrlmjYsKGoVq2aqFSpkujZs6d4/vy5wWIuDjLHxc/PT7i4uGT7xYu7u7sICAjQ2l4I/p0rCK++30K8/ILl+vXrwsHBQStRzNy2f//+QpIkYWJiIjp06CCePXtWcAETkc54WRflmHjl+lxJkpCeno6SJUti0qRJmDt3Lm7cuKFZn3k/Q2aZzGvpTU1NCzDi4ke8dg21i4sL9u3bh9OnT8PX1xdnzpyBvb09zp49C6VSCQB49uwZbGxscOzYMaxcuRL29vYGiLxoSUlJyXZ5TvchIyMjpKeno2rVqvj333/x999/4+DBg9i0aRNKlChRIH0orjIvTR09ejRiY2Oxbt06rfUtW7aEiYmJ5mlcr16Kx79z+hMVFaXTPSFHjx5FxYoV4ebmlqWcsbExateujbNnz2L37t1wcHDQd7hEpEdMTkgjIiICPXr0wObNmwFkTGaVKT09XfMhnLk88/WUKVNgamqKJUuWICYmBgcOHMDatWu1tiH9CAsLw9atWxESEqK50TPzg/jVMUpPTwcAWFpaonnz5lAoFFCr1TA1NUVCQgIiIyM1B1Dvvfce/Pz88P777xugR0XLvXv3UK9ePcycOTPLOl33oczZrO3t7VG5cmW4uroWTCeKuIiICJw6dQr379/Psi49PV2TYJibm2Py5Mnw9/fH+fPnNdvY2NhAqVQiLCysoEIuVu7du4fOnTtj/PjxuH79uta6t+1Dx44dg5eXl2bZlStXcPXqVQDA/PnzcfnyZdSvX7+AekFEecHkhDRWrVqFbdu24ddff0VSUhKMjIw03yIaGxtDCIHx48dj48aNUKvVMDIy0nxALFiwAKtWrUKLFi3Qrl07zpmRDyZOnIiqVatizpw5aNasGYYPH467d+9CkiSo1WqtMdq0aVOWG6wVCgXOnj0LSZIwePBgA/ak6BFCYNiwYahatSqqVq0KHx+fLNvoug8lJCQUdDeKvNGjR6NOnTr45ptvUKtWLSxevFhr0sRXx2jt2rUYO3YsqlatigkTJmgeEBESEgIhBLp27WqgXhQ9mV+w/PHHH2jYsCEsLCwwcuRIlCpVSmt9dvsQkPGQieDgYLRr1w4RERHo2bMn6tWrh4cPHwIArK2tDdArIsotJiekcfLkSfTq1Qumpqbw9/fXWhcYGIhSpUph//79qFu3ruayLSMjIzx+/BinT5+GWq1GrVq18PDhQ4wYMcIQXSiyzpw5g507d2Lr1q04fPgwVqxYgdDQUHz++ecAMhKPwMBAODg4ZBmjGzdu4MqVK5g8eTLat2+PmjVrolWrVobsTpFy+/ZtODg44Pjx4zh79iy2bNmiOah6Ffchw3n48CE6d+6Ms2fPYteuXdi8eTNGjBiBJUuWaD3d6dUxqlWrFgBgzZo1sLW1xSeffIJ27drhgw8+QI0aNXimUY8yv2DZsGEDfvzxR2zatAkeHh6wsbHRrAeAgICALPuQJEkIDQ3FixcvsGPHDlSuXBmxsbG4f/8+OnToYMhuEVEuGRs6ACp4Qgitb9TT09NhbGyMMmXKoFOnTpoDrN69e6NGjRqIj4/Ho0ePMH36dAwZMkRz2QOQMcP1L7/8gj/++AOHDh1Cy5YtDdCjou/PP/+ESqXSfNh+/vnnqFKlCtq2bYu5c+dizJgxuH//PmbOnInBgwdrjdHJkyexaNEiGBsbY/Pmzfjwww8N1Y0i49V9yMTEBGXLlkXz5s3h7u6OkydPYtu2bXBwcECDBg3QvHlzWFtb4969e5gxY0aW8eE+lP+uXr0KS0tLLFiwQDPXxezZs7F27VrExMQAABISEhAWFqY1RkII1KhRAwEBAThz5gz+++8/TJ48mYmJHrz+OXTkyBHcuXMHo0aNwsmTJ+Hv74/U1FRUqVIF/fr1Q5MmTfDgwYNsP4dOnz6NJ0+eICQkBDt37kSbNm0M0SUi0hNJ6HLHGRV6ycnJUCgUMDMzA6D9AVG3bl1s3LgRSUlJGDduHOrUqYPZs2cjNDQU1atX1/oweNWTJ0/g5ORUYH0o6jLHRK1Wa75d//XXXxEQEIBTp07B0tJSs91PP/2E+fPnIyIiQjOmr9ejVCpx8eJFNGrUqMD7UhS9vg+p1Wr8+eef+PTTT9G2bVvcvHkTHh4euH37Np4+fYo2bdogICDgrXVyH9KvzN/9zC9ewsPDcf/+fTRr1gxAxpipVCo0bdoUY8aMQZ8+fTTLM/c5yj+v70NAxtnhDh06YOXKlZgxYwZat24Nc3NzHDp0CFeuXMH169fh7OysVU/mOMfHx2Pbtm0YMGBAAfeEiPID/woXIxMnTkTz5s3RsWNH/Pbbb4iLi9McBD9+/BhWVlZwdXWFh4cHOnXqhPXr18Pc3BwHDx7Uujn+dTyo0p+5c+dqbqZ+9SDJzs4OJiYmOHjwoGaZJEn44osvYGVlhblz5wJ4+aShzPVAxpODmJjoR3b7kEKhQKtWrfD5558jISEBu3btwrp163Dx4kVMnToVp0+fxpIlSwBoj8+ruA/pz6v7UOY9CmXLltVKTBQKBSIiInDr1i3Url1bU5aJSf7Lbh8CMhKN+vXrY+bMmahfvz5mzJiBKVOmYPfu3ShXrhy+//57ANoPapEkCUII2NjYMDEhKkL4l7gYUCqV6NGjB3bt2oVx48ahbNmyWLZsmebbQoVCARsbG5iYmECSJOzYsQPTp09HWloa6tatCx8fH5iamur0WEfSzblz59CqVSt899132L59O06dOgUAmidyffrpp0hNTcXevXsRFRWlKVemTBm0bt0aoaGhUKlUPLjKJ2/ahz777DMAQIkSJTBx4kTMmzcPderU0cze3r17d7i5ueHixYscn3z2pn3o9b9bmWNw8uRJVKxYUSs5ycS/dfr3pn2od+/eADLO3Nva2uL8+fNo1KgRFAoFVCoVbGxs8O2332L//v1ISEjIcgafT4QkKnr4SVkM3LlzB5cuXcK8efPQq1cvBAYGYvny5Th06BBmz54NADh//jxu376NRo0aYeDAgfj+++8xa9YsSJKExYsXA+AHdn7at28fSpUqhd9//13zP5BxP0NaWhpsbW0xbNgw/Pvvv9i5c6emnJmZGUJDQ6FQKN542R3l3Zv2ocOHD2v2oerVq8PDwwOSJEGhUEAIgZIlS+LmzZscnwLwpn0ocyxeFxwcjKZNm2qSlcOHD+Ovv/4CwAPe/PCmfejIkSP4+eefYWlpicGDB6NkyZLYsmULgJfzxoSGhsLNze2NY0lERUx+zvBI8hAcHCwkSRLR0dFCCO0ZkO3t7cXdu3dFWlqaqFmzphgyZIhmRuTw8HDRs2dP4eXlpTX7O+lP5lg8ePBAnDx5UgiRMS6NGzcWmzdvFkIIkZaWptm+T58+on79+mLZsmUiJiZGBAcHiwYNGoiNGzcWfPDFyNv2oRIlSmjNSv2qf/75R3h6eooTJ04UWKzFTU72ocxZxDOlp6cLd3d3sWnTJnH37l3x4YcfClNTU7Fp06aCDb4Yeds+ZGdnJ+7cuSOEEGLq1KnCwcFB/Pjjj+K///4TN2/eFC1atBA//fSTwWInooLF5KQYuHDhgqhVq5ZYsGCBEOLlh4JSqRSurq5i9OjRQgghnjx5olmX6dq1a0xMCtidO3dE165dRdeuXcXz58+FEEKkpqZq1k2ePFkYGRmJhg0bCgsLCzFo0CChVCoNGXKR97Z9qGLFimLs2LFCiIyD4CtXrohDhw6JoUOHCjs7OzFhwgSRnp5usNiLo+z2oVcTlEuXLgkbGxvx8ccfC2NjY9GrVy8RFxdnqHCLhXftQ5mfQ5GRkWL58uXC3t5e1K5dW9jY2Igvv/ySn0NExQgv6yoCxDtOc7/33ntwc3PD8ePHERERoXmKjYmJCUaNGqWZsK906dKayxky66xZs2aWp0CR7t41Rq9uV6lSJXTq1AkRERGapzxlzuZeqVIl+Pr64tKlS/D19UVISAhWrlypuceBcicv+9DXX3+NDRs2aG60DgkJwbRp0/Dff/8hKCgIfn5+vKRLD/K6D716v09oaCgSEhKQmpqKc+fOYePGjZo5NSh/vGsfyvwccnJywuDBg3Ht2jWsXLkSISEh+P333/k5RFSMMDkp5J4+fYqkpCTN61efBpSeng4g42bdTp064ebNm9i8eTOAjKfYABlPgSpZsiTCwsK06uU11/qTkzHKlPkkmk8//RQ1a9bE7t27ERoaCiBjZurM8rVq1UKHDh1QvXr1/A6/yIuKikJ8fLzmdW72oRIlSuDBgwcAMm6CX7FiBQ4dOoR69eoVVDeKtJyMUaa37UPnz58HADRu3BgHDx7EwYMHUb9+/XyOvujLHI/snuqo6+dQZhJatmxZNG7cGFWqVCmILhCRjDA5KaTS0tIwZMgQvP/+++jUqRO+/PJLxMTEaH07aGxsjJSUFGzcuBEDBw5E/fr1sWnTJhw+fFizzaNHj+Do6Ij33nvPEN0o0nI6RmlpaQgMDNS8VqvVsLW1RY8ePaBWq+Hr64uPPvoIHh4eWcpT7qWnp2PQoEFo1KgRWrdujb59+yI6OjrX+1DFihUBAFZWVqhcuXKB96coyukY5XQfatSoEaKjo1G+fHm0atXKUN0qMtLS0jBixAgMHToUgPbZqcyERdfPIX4xRkQ8yimEYmJi0L59e9y+fRurV6/GZ599hkuXLqFjx464deuWZrvffvsN5cqVw8aNGwEAY8aMQaVKleDt7a35QJkzZw569eoFgE/j0iddxsjZ2Rl//fWXZqbqzA/4WrVqISwsDOvXr0fp0qURERGBEiVKGKQ/RU16ejoGDBiA69evIzAwEJ999hkuX76Mrl274saNG5rtuA8Zji5jpMs+5ODgYJD+FDVnzpxB69atsXXrVgQGBuLEiROQJElz9iRzDLgPEZHODHSvC+XB3r17Re3atcXNmzc1y65fvy4UCoXw8fERMTExYvXq1aJChQpi3bp1WjeCqtVqMXPmTDF48GDRvn17PkUon+g6Rq8/iODgwYPC2tpa1K9fX5w/f76gwy/yHj58KNzc3MSaNWs0yyIiIkS5cuXEqFGjxPPnz7kPGZiuY8R9qGDNmzdPDBo0SOzZs0d069ZNNG7cOMs2ixcvFhUrVuQ+REQ6YXJSCAUGBgp7e3utZSdOnBAlS5YUbm5u4u+//xZqtVokJCRobfP6hzfln9yOUaZnz56J9evXF0SoxdKFCxeEhYWFCA0NFUIIzZOAFi5cKNzc3MRff/0l1Gq1SExM1CrHfajg5HaMMnEfyh+Z+0BYWJi4du2aECLjyxhHR0excuVKIcTLpwumpaXxc4iIdMbLumRuz549ALRPdbu4uMDBwQH+/v6aZStXrsSgQYOgVquxc+dOSJIECwsLrbp4LW/+0OcYZdbj4OCgmX2c8mb58uVYsWIFjh49qlnm5uYGZ2dnrF27FsDLS1BGjhwJOzs7bNu2DampqbC0tNSqi/tQ/tDnGAHch/Qtc3yCgoI0+0C5cuVQs2ZNAICHhwd69+4NX19fqFQqmJqaQq1Ww9jYGFZWVlp1cR8ioncybG5Eb7J7925Rrlw5IUmS5pR35lwJz58/F7NnzxaSJIlmzZoJa2trUbt2bZGWliYWLFggypUrZ8jQiw2OkbytX79elC5dWjRt2lTUr19fODo6iunTpwshhIiNjRXjx48Xbm5u4smTJ0IIIZKTk4UQQqxZs0bY2dlpXlP+4RjJ29vG5/W5e86cOSPc3NzEd999J4TIOvElEVFOMTmRoWPHjglvb2/x9ddfi48//lh4eHhku11QUJBYsGCB2L9/v2bZzz//LJo3by5evHhRUOEWSxwjeVu3bp2oV6+eWLp0qRBCiMePH4sFCxYIKysrERsbK4QQ4sCBA8LT01OMGDFCCPHycpPDhw+L0qVLi0uXLhkm+GKCYyRvbxuf7CasTExMFLNnzxZ2dnbiwYMHQoiMccocSyKinOJlXTIi/ndZkJOTE9q2bYsxY8Zg2rRpuH79OlatWgVA+/n+Xl5e+Prrr9GmTRsAgFKpxOnTp+Hu7g47O7uC70AxwDGSt8zxSUtLQ+PGjdG/f38AGXMmuLu7o1y5crh+/ToAoHnz5ujTpw8CAwOxY8cOpKWlAQBOnDiBmjVrok6dOobpRBHHMZK3nIzPq09Ly2RpaYkuXbrA3d0dPXr0gIeHB7p3747nz58XaPxEVAQYNDUiIYQQwcHBWb5FzzxlnpaWJsaOHSscHR01N4S+7ubNm+K///4T/fv3FxUrVhSnTp3K95iLG46RvAUHB4uYmBjN6xcvXmS57OTixYvC2dlZPH/+XLMsLi5OjBs3TtjY2IgWLVqIHj16CAsLC7Fo0SIhBG/e1SeOkbzldnxedeXKFVG3bl0hSZIYMWKE5sZ4IiJd8MyJAW3btg0uLi7o2bMn6tatiylTpiAyMhJAxs2fQggYGxtj5MiRMDc3x6RJkwBkfQ7833//jY8//hj379/Hvn370KRJkwLvS1HFMZK3V8enXr16mDx5Mp48eQI7OzsYGRlpncU6dOgQKleujBIlSkCpVAIAbGxs4O/vj99//x0tW7aEg4MDQkJCMGLECAC8eVcfOEbyltfxyXT8+HF07NgRlpaWCA0NxaJFi2BqalrQ3SGiosCwuVHxde7cOVG9enUxb948cenSJbF48WLh6Ogohg8fLqKjo4UQL7+ZV6vVYvHixcLY2FjcvXtXCJHxqMbM637Dw8NFcHCwYTpShHGM5C0n46NSqURaWpoQQohPPvlEjBw50pAhFzscI3nT5/iEh4fzjDAR6QWTkwKWeQnCkiVLRPny5bVuFly4cKFo0qSJmDZtWpZy0dHRolmzZqJLly4iODhYtG3bVqxZs4ZPRMkHHCN503V8VCqVUKvVonLlymL37t1CCCFu3bolevfuLR4+fFiwwRcTHCN54/gQkZzxsq4ClnkJwr1791C1alUYGxtr1g0YMAANGzbEP//8g2vXrgEAVCoVAKBkyZIYPHgwdu3aBU9PT5iamqJ79+6aZ/+T/nCM5E3X8VEoFDh37hwsLS3RoEEDjB49GnXr1kV0dDRKly5tkD4UdRwjeeP4EJGc8agpnx04cAA+Pj6YP38+zp49q1n+/vvv4+TJk5r7F1QqFaysrNClSxdIkoT9+/cDAIyMjKBUKrF48WIMGjQIXl5euHz5Mv76669sJ/Aj3XGM5C2v4wNkTJR59epVVKtWDQcOHMCJEyewf/9+mJmZFXh/iiKOkbxxfIioMGFykk8iIiLQqVMn9OvXD8+fP8eqVavQtm1bzQdD27Zt4erqqplBPPObrDZt2kChUOD27duaumJiYvDff/9h9erVOHLkCGrVqlXwHSqCOEbyps/xMTExQalSpRAQEIBr166hYcOGBd+hIohjJG8cHyIqlAx9XVlRlJiYKL744gvRq1cvzc3RQgjh6ekpBgwYIITIuJH6jz/+EAqFQjO7eKa+ffuKVq1aFWjMxQ3HSN70MT4tW7bUvI6KiiqYwIsRjpG8cXyIqLDimZN8YGlpCTMzMwwYMAAVK1ZEeno6AKBjx46ayauMjIzQs2dPdOnSBV999RWCgoIghEBkZCRCQ0PRt29fQ3ahyOMYyZs+xqdfv36a+hwdHQ3Sj6KMYyRvHB8iKqwkIV6bkIH0Ii0tDSYmJgAy5ryQJAmff/45LCwssHz5cs2ylJQUfPzxx7h+/Trq16+Pq1evokKFCti8eTNcXFwM3IuijWMkbxwf+eMYyRvHh4gKIyYnBcjLywsDBw7EgAEDIISAWq2GkZERnjx5gsuXL+PcuXNwdXVFnz59DB1qscUxkjeOj/xxjOSN40NEcsfkpIDcvXsXzZo1w99//625kVCpVHIGXRnhGMkbx0f+OEbyxvEhosKA95zks8zc7/jx47C2ttZ8IPj6+uKbb75BVFSUIcMjcIzkjuMjfxwjeeP4EFFhYvzuTSgvMh/NePbsWXTv3h0HDhzAkCFDkJSUhDVr1nACKxngGMkbx0f+OEbyxvEhosKEl3UVgJSUFNSpUwd37tyBqakpfH19MX78eEOHRa/gGMkbx0f+OEbyxvEhosKCyUkBadOmDdzc3DB37lyYm5sbOhzKBsdI3jg+8scxkjeODxEVBkxOCohKpYKRkZGhw6C34BjJG8dH/jhG8sbxIaLCgMkJERERERHJAp/WRUREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiyoEBAwZAkiRIkgQTExM4OTmhTZs2+P3336FWq3NcT0BAAOzt7fMvUCIiokKMyQkRUQ55e3sjIiIC9+/fxz///INWrVrhm2++QceOHZGenm7o8IiIiAo9JidERDlkZmYGZ2dnlCtXDg0aNMD333+PnTt34p9//kFAQAAAYO7cuahTpw6srKzg4uKCESNGICEhAQBw5MgRfPnll4iNjdWchZk6dSoAQKlUYty4cShXrhysrKzQuHFjHDlyxDAdJSIiMhAmJ0REefDhhx+iXr162L59OwBAoVDgt99+w9WrVxEYGIhDhw5h3LhxAIBmzZph3rx5sLW1RUREBCIiIvDdd98BAL788kucOHECGzduxOXLl9GjRw94e3sjNDTUYH0jIiIqaJIQQhg6CCIiuRswYABevHiBP//8M8u63r174/Lly7h+/XqWdVu2bMHw4cPx7NkzABn3nIwePRovXrzQbHPnzh24ubnh0aNHKFu2rGZ569at0ahRI8ycOVPv/SEiIpIjY0MHQERU2AkhIEkSAODw4cOYOXMmrl+/jri4OKSnpyMlJQWJiYmwsrLKtnxISAiEEKhatarW8tTUVDg4OOR7/ERERHLB5ISIKI9u3LiBihUr4sGDB2jfvj2GDRuGadOmoWTJkjh+/DgGDRqEtLS0N5ZXq9UwMjJCcHAwjIyMtNZZW1vnd/hERESyweSEiCgPDh06hCtXruDbb7/F+fPnkZ6ejjlz5kChyLilb/PmzVrbm5qaQqVSaS1zd3eHSqVCVFQUPvjggwKLnYiISG6YnBAR5VBqaioiIyOhUqnw5MkT7N27F35+fujYsSP69++PK1euID09HQsWLECnTp1w4sQJLF26VKsOV1dXJCQk4ODBg6hXrx4sLS1RtWpV9O3bF/3798ecOXPg7u6OZ8+e4dChQ6hTpw7at29voB4TEREVLD6ti4goh/bu3YsyZcrA1dUV3t7eOHz4MH777Tfs3LkTRkZGqF+/PubOnQt/f3/Url0b69atg5+fn1YdzZo1w7Bhw9CrVy84Ojpi1qxZAIDVq1ejf//+GDt2LKpVq4bOnTvjzJkzcHFxMURXiYiIDIJP6yIiIiIiIlngmRMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFv4fsX39WEf9RfQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -187,165 +150,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
2018[2017-11-01, 2017-12-01)[2017-12-01, 2018-01-01)[2018-01-01, 2018-02-01)[2018-02-01, 2018-03-01)[2018-03-01, 2018-04-01)[2018-04-01, 2018-05-01)[2018-05-01, 2018-06-01)[2018-06-01, 2018-07-01)[2018-08-01, 2018-08-31)
2017[2016-11-01, 2016-12-01)[2016-12-01, 2017-01-01)[2017-01-01, 2017-02-01)[2017-02-01, 2017-03-01)[2017-03-01, 2017-04-01)[2017-04-01, 2017-05-01)[2017-05-01, 2017-06-01)[2017-06-01, 2017-07-01)[2017-08-01, 2017-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -8 -7 \\\n", - "anchor_year \n", - "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", - "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", - "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", - "2018 [2017-11-01, 2017-12-01) [2017-12-01, 2018-01-01) \n", - "2017 [2016-11-01, 2016-12-01) [2016-12-01, 2017-01-01) \n", - "\n", - "i_interval -6 -5 \\\n", - "anchor_year \n", - "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", - "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", - "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", - "2018 [2018-01-01, 2018-02-01) [2018-02-01, 2018-03-01) \n", - "2017 [2017-01-01, 2017-02-01) [2017-02-01, 2017-03-01) \n", - "\n", - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", - "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", - "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", - "2018 [2018-03-01, 2018-04-01) [2018-04-01, 2018-05-01) \n", - "2017 [2017-03-01, 2017-04-01) [2017-04-01, 2017-05-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", - "2018 [2018-05-01, 2018-06-01) [2018-06-01, 2018-07-01) \n", - "2017 [2017-05-01, 2017-06-01) [2017-06-01, 2017-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) \n", - "2018 [2018-08-01, 2018-08-31) \n", - "2017 [2017-08-01, 2017-08-31) " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# show first 5 anchor years in the calendar\n", "calendar.show()[:5]" @@ -362,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -385,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -406,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -458,32 +265,14 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n" - ] - } - ], + "outputs": [], "source": [ + "# suppress numpy warning\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", "# cross-validation with Kfold\n", "k_fold_splits = 5\n", "kfold = KFold(n_splits=k_fold_splits)\n", @@ -498,661 +287,80 @@ "\n", "# prepare operator for dimensionality reduction\n", "target_intervals = 1\n", - "lag = 2\n", - "rgdr = RGDR(\n", - " target_intervals=target_intervals,\n", - " lag=lag,\n", - " eps_km=600,\n", - " alpha=0.05,\n", - " min_area_km2=0\n", - ")\n", + "lags = list(np.arange(1, periods_of_interest + 1))\n", "\n", "# cross validation based dimensionality reduction and model training\n", - "for x_train, x_test, y_train, y_test in cv.split(precursor_field_sel, y=target_series_sel):\n", - " # log train/test splits with anchor years\n", - " train_test_splits.append({\n", - " \"train\": x_train.anchor_year.values,\n", - " \"test\": x_test.anchor_year.values,\n", - " })\n", - " # fit dimensionality reduction operator RGDR\n", - " rgdr.fit(x_train, y_train)\n", - " # transform to train and test data\n", - " clusters_train = rgdr.transform(x_train)\n", - " clusters_test = rgdr.transform(x_test)\n", + "for split, (x_train, x_test, y_train, y_test) in enumerate(cv.split(precursor_field_sel, y=target_series_sel)):\n", + " clusters_train_lags = []\n", + " clusters_test_lags = []\n", + " for lag in lags:\n", + " # log train/test splits with anchor years\n", + " train_test_splits.append({\n", + " \"train\": x_train.anchor_year.values,\n", + " \"test\": x_test.anchor_year.values,\n", + " })\n", + " # RGDR\n", + " rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + " )\n", + " # fit dimensionality reduction operator RGDR and transform\n", + " clusters_train_lag_xr = rgdr.fit_transform(x_train, y_train)\n", + " clusters_test_lag_xr = rgdr.transform(x_test)\n", + " # convert to numpy array, reshape and append\n", + " clusters_train_lag = clusters_train_lag_xr.to_numpy()\n", + " clusters_train_lag = clusters_train_lag.reshape(len(clusters_train_lag_xr.anchor_year),-1)\n", + " clusters_train_lags.append(clusters_train_lag)\n", + " clusters_test_lag = clusters_test_lag_xr.to_numpy()\n", + " clusters_test_lag = clusters_test_lag.reshape(len(clusters_test_lag_xr.anchor_year),-1)\n", + " clusters_test_lags.append(clusters_test_lag)\n", + " # concatenate lags\n", + " clusters_train = np.concatenate(clusters_train_lags, axis=1)\n", + " clusters_test = np.concatenate(clusters_test_lags, axis=1)\n", " # train model\n", " ridge = RidgeCV(alphas=[0.1, 10, 25, 50])\n", - " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", + " model = ridge.fit(clusters_train, y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", - " prediction = model.predict(clusters_test.isel(i_interval=0))\n", + " prediction = model.predict(clusters_test)\n", " predictions.append(prediction)\n", " # calculate and save rmse\n", " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", - " model.predict(clusters_train.isel(i_interval=0))))\n", + " model.predict(clusters_train)))\n", " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", " prediction))" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Plot the predictions" + ] + }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'sst' (anchor_year: 50, i_interval: 1, cluster_labels: 2)>\n",
-       "array([[[-0.97626738,  0.44366444]],\n",
-       "\n",
-       "       [[-0.35536136, -0.16670312]],\n",
-       "\n",
-       "       [[ 0.49199139, -0.06453097]],\n",
-       "\n",
-       "       [[ 0.53587579, -0.0327614 ]],\n",
-       "\n",
-       "       [[ 0.45312712,  0.12878606]],\n",
-       "\n",
-       "       [[ 0.88973063, -0.53432375]],\n",
-       "\n",
-       "       [[ 0.4807509 , -0.28606691]],\n",
-       "\n",
-       "       [[ 0.51968035, -0.65672427]],\n",
-       "\n",
-       "       [[ 0.50233281,  0.11060942]],\n",
-       "\n",
-       "       [[-0.68087629,  0.50536389]],\n",
-       "\n",
-       "...\n",
-       "\n",
-       "       [[-0.66575862,  2.31406735]],\n",
-       "\n",
-       "       [[-0.39876976,  1.31702337]],\n",
-       "\n",
-       "       [[ 0.77408958, -0.87420737]],\n",
-       "\n",
-       "       [[-0.36998757,  0.12183744]],\n",
-       "\n",
-       "       [[ 0.28319172, -1.22992618]],\n",
-       "\n",
-       "       [[ 0.50763789,  0.8780428 ]],\n",
-       "\n",
-       "       [[-0.33881888,  0.89358637]],\n",
-       "\n",
-       "       [[-0.27616542,  0.6507888 ]],\n",
-       "\n",
-       "       [[ 0.31922811,  0.98354972]],\n",
-       "\n",
-       "       [[ 1.04343428,  0.15593146]]])\n",
-       "Coordinates:\n",
-       "  * anchor_year     (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n",
-       "  * i_interval      (i_interval) int64 -2\n",
-       "    left_bound      (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n",
-       "    right_bound     (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n",
-       "    is_target       (i_interval) bool False\n",
-       "  * cluster_labels  (cluster_labels) int16 -1 1\n",
-       "    latitude        (cluster_labels) float64 42.59 27.5\n",
-       "    longitude       (cluster_labels) float64 208.0 190.0\n",
-       "Attributes:\n",
-       "    data:         Clustered data with Response Guided Dimensionality Reduction.\n",
-       "    coordinates:  Latitudes and longitudes are geographical centers associate...
" - ], - "text/plain": [ - "\n", - "array([[[-0.97626738, 0.44366444]],\n", - "\n", - " [[-0.35536136, -0.16670312]],\n", - "\n", - " [[ 0.49199139, -0.06453097]],\n", - "\n", - " [[ 0.53587579, -0.0327614 ]],\n", - "\n", - " [[ 0.45312712, 0.12878606]],\n", - "\n", - " [[ 0.88973063, -0.53432375]],\n", - "\n", - " [[ 0.4807509 , -0.28606691]],\n", - "\n", - " [[ 0.51968035, -0.65672427]],\n", - "\n", - " [[ 0.50233281, 0.11060942]],\n", - "\n", - " [[-0.68087629, 0.50536389]],\n", - "\n", - "...\n", - "\n", - " [[-0.66575862, 2.31406735]],\n", - "\n", - " [[-0.39876976, 1.31702337]],\n", - "\n", - " [[ 0.77408958, -0.87420737]],\n", - "\n", - " [[-0.36998757, 0.12183744]],\n", - "\n", - " [[ 0.28319172, -1.22992618]],\n", - "\n", - " [[ 0.50763789, 0.8780428 ]],\n", - "\n", - " [[-0.33881888, 0.89358637]],\n", - "\n", - " [[-0.27616542, 0.6507888 ]],\n", - "\n", - " [[ 0.31922811, 0.98354972]],\n", - "\n", - " [[ 1.04343428, 0.15593146]]])\n", - "Coordinates:\n", - " * anchor_year (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n", - " * i_interval (i_interval) int64 -2\n", - " left_bound (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n", - " right_bound (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n", - " is_target (i_interval) bool False\n", - " * cluster_labels (cluster_labels) int16 -1 1\n", - " latitude (cluster_labels) float64 42.59 27.5\n", - " longitude (cluster_labels) float64 208.0 190.0\n", - "Attributes:\n", - " data: Clustered data with Response Guided Dimensionality Reduction.\n", - " coordinates: Latitudes and longitudes are geographical centers associate..." - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "clusters_train" + "import matplotlib.pyplot as plt\n", + "fig = plt.figure()\n", + "# y_train\n", + "plt.plot(y_train.anchor_year, y_train.sel(i_interval=1), \"b\", label = \"y_train\")\n", + "plt.plot(y_train.anchor_year, model.predict(clusters_train), \"b--\", label = \"training\")\n", + "# y_test\n", + "plt.plot(y_test.anchor_year, y_test.sel(i_interval=1), \"r\", label = \"y_test\")\n", + "plt.plot(y_test.anchor_year, prediction, \"r--\", label = \"prediction\")\n", + "plt.xlabel(\"years\")\n", + "plt.ylabel(\"deg C\")\n", + "plt.legend()\n", + "plt.show()" ] }, { @@ -1160,44 +368,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Plot the RMSE for both training and testing for each experiment (split)" + "#### Plot the RMSE for both training and testing for each fold" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOw0lEQVR4nO3deViUVf8G8HvYBQQEkUVR3BXXFDM0t3LFTKzUcsWtLFwQl7J6W3x985dprmmpiWtquaCVmqYpprmLmpgriAsuuLCpKPD8/jjNDMgiIDNn5pn7c11z+czMw8xXULg5zznnq1EURQERERGRSljJLoCIiIioNDHcEBERkaow3BAREZGqMNwQERGRqjDcEBERkaow3BAREZGqMNwQERGRqtjILsDYsrOzce3aNZQtWxYajUZ2OURERFQEiqIgNTUVvr6+sLIqfGzG4sLNtWvX4OfnJ7sMIiIiKoHLly+jUqVKhZ5jceGmbNmyAMQnx8XFRXI1REREVBQpKSnw8/PT/RwvjMWFG+2lKBcXF4YbIiIiM1OUKSWcUExERESqwnBDREREqsJwQ0RERKpicXNuiiorKwuPHz+WXQYVk62tLaytrWWXQUREEjHcPEFRFFy/fh337t2TXQqVkJubG7y9vbmPERGRhWK4eYI22FSoUAGOjo78AWlGFEXB/fv3cfPmTQCAj4+P5IqIiEgGhpscsrKydMHGw8NDdjlUAmXKlAEA3Lx5ExUqVOAlKiIiC8QJxTlo59g4OjpKroSehfbrxzlTRESWieEmH7wUZd749SMismwMN0RERKQqDDdERESkKgw3lC9/f3/MnDlT+msQEREVF1dLqUTbtm3RuHHjUgsThw4dgpOTU6m8FhERWZA//gCCggAHB2klSB25iY6ORrdu3eDr6wuNRoOoqKinfkxGRgY++ugjVKlSBfb29qhevToWL15s+GJVQFEUZGZmFulcT09PrhojIqLiuXQJ6NABqFoVSEqSVobUcJOeno5GjRph7ty5Rf6YXr16YceOHfj+++9x5swZrFq1CnXq1DFglUJ6esG3hw+Lfu6DB0U7tzhCQ0Oxe/duzJo1CxqNBhqNBvHx8di1axc0Gg1+++03BAYGwt7eHnv27MGFCxfQvXt3eHl5wdnZGc2aNcPvv/+e6zWfvKSk0WiwaNEi9OjRA46OjqhZsyY2bdpUrDoTEhLQvXt3ODs7w8XFBb169cKNGzd0zx8/fhzt2rVD2bJl4eLigqZNm+Lw4cMAgEuXLqFbt24oV64cnJycUK9ePWzevLl4nygiIjKsmTOBrCygXj2gfHlpZUi9LNWlSxd06dKlyOdv3boVu3fvxsWLF+Hu7g5A/BA2Bmfngp8LDgZ+/VV/v0IF4P79/M9t0wbYtUt/398//3CrKEWvbdasWTh79izq16+PSZMmARAjL/Hx8QCACRMmYNq0aahWrRrc3Nxw5coVBAcHY/LkyXBwcMDSpUvRrVs3nDlzBpUrVy7wfT7//HNMnToVX331FebMmYO+ffvi0qVLuq9FYRRFQUhICJycnLB7925kZmbivffeQ+/evbHr309I37598dxzz2H+/PmwtrZGTEwMbG1tAQBhYWF49OgRoqOj4eTkhNjYWDgX9kUhIiLjunsXWLhQHE+YILUUs5pzs2nTJgQGBmLq1KlYvnw5nJyc8Oqrr+K///2vbmfaJ2VkZCAjI0N3PyUlxVjlGo2rqyvs7Ozg6OgIb2/vPM9PmjQJHTp00N338PBAo0aNdPcnT56MDRs2YNOmTRgxYkSB7xMaGoq33noLAPDFF19gzpw5OHjwIDp37vzUGn///XecOHECcXFx8PPzAwAsX74c9erVw6FDh9CsWTMkJCRg/PjxupG4mjVr6j4+ISEBr7/+Oho0aAAAqFat2lPfk4iIjGj+fHHpoVEjcWlKIrMKNxcvXsSff/4JBwcHbNiwAUlJSXjvvfdw586dAufdTJkyBZ9//vkzv3daWsHPPbnD/7+tjfJl9cSFwH8HVwwqMDAw1/309HR8/vnn+OWXX3Dt2jVkZmbiwYMHSEhIKPR1GjZsqDt2cnJC2bJldX2cnub06dPw8/PTBRsACAgIgJubG06fPo1mzZohIiICQ4cOxfLly9G+fXv07NkT1atXBwCMGjUK7777LrZt24b27dvj9ddfz1UPERFJ9PAhMGuWOB4/HpC8mapZLQXPzs6GRqPBypUr8fzzzyM4OBhff/01lixZggdPTmb518SJE5GcnKy7Xb58uUTv7eRU8O3JCeGFnfvkAFNB55WmJ1c9jR8/HuvWrcP//vc/7NmzBzExMWjQoAEePXpU6OtoLxFpaTQaZGdnF6kGRVHy3Tk45+OfffYZTp06ha5du2Lnzp0ICAjAhg0bAABDhw7FxYsX0b9/f5w8eRKBgYGYM2dOkd6biIgMbNky8Zt95cpAr16yqzGvcOPj44OKFSvC1dVV91jdunWhKAquXLmS78fY29vDxcUl102N7OzskJWVVaRz9+zZg9DQUPTo0QMNGjSAt7e3bn6OoQQEBCAhISFXuIyNjUVycjLq1q2re6xWrVoYM2YMtm3bhtdeew2RkZG65/z8/DB8+HCsX78eY8eOxULttV0iIpInKwuYNk0cR0QAT/wiLINZhZuWLVvi2rVrSMtxjejs2bOwsrJCpUqVJFYmn7+/Pw4cOID4+HgkJSUVOqJSo0YNrF+/HjExMTh+/Dj69OlT5BGYkmrfvj0aNmyIvn374ujRozh48CAGDBiANm3aIDAwEA8ePMCIESOwa9cuXLp0CXv37sWhQ4d0wSc8PBy//fYb4uLicPToUezcuTNXKCIiIkk2bQLOnQPKlQOGDJFdDQDJ4SYtLQ0xMTGIiYkBAMTFxSEmJkY392PixIkYMGCA7vw+ffrAw8MDgwYNQmxsLKKjozF+/HgMHjy4wAnFlmLcuHGwtrZGQEAAPD09C50/M2PGDJQrVw4tWrRAt27d0KlTJzRp0sSg9Wn3MSpXrhxat26N9u3bo1q1alizZg0AwNraGrdv38aAAQNQq1Yt9OrVC126dNHNl8rKykJYWBjq1q2Lzp07o3bt2pg3b55BayYioqdQFODLL8Xxe+8VvrTYiDSKUpxFx6Vr165daNeuXZ7HBw4ciCVLliA0NFS3X4vWP//8g5EjR2Lv3r3w8PBAr169MHny5CKHm5SUFLi6uiI5OTnPJaqHDx8iLi4OVatWhYPEnRXp2fDrSERkJHv2AK1bA/b2YgM/Ly+DvVVhP7+fJHW1VNu2bVFYtlqyZEmex+rUqYPt27cbsCoiIiIqkqlTxZ+hoQYNNsVlVnNuiIiIyETExgK//CKWfY8dK7uaXBhuiIiIqPi0K6Reew3IsemqKWC4ISIiouK5ehVYsUIcjx8vt5Z8MNwQERFR8cyaBTx+LCYTN28uu5o8GG6IiIio6JKTgW+/FceSG2QWhOGGiIiIiu6774DUVKBePaBLF9nV5IvhhoiIiIomIyN3g8wnu0GbCNOsisxK27ZtER4eLrsMIiIytB9+AK5dAypWBN56S3Y1BWK4UQlDBIzQ0FCEhISU6msSEZGZys4GvvpKHIeHA3Z2UsspDMMNERERPd2vvwKnTwMuLsDbb8uuplAMNyoQGhqK3bt3Y9asWdBoNNBoNIiPjwcAxMbGIjg4GM7OzvDy8kL//v2RlJSk+9i1a9eiQYMGKFOmDDw8PNC+fXukp6fjs88+w9KlS7Fx40bda+bs8VWYu3fvYsCAAShXrhwcHR3RpUsXnDt3Tvf8pUuX0K1bN5QrVw5OTk6oV68eNm/erPvYvn37wtPTE2XKlEHNmjURGRlZap8rIiIqIW2rhXffFQHHhEntLWUWFAW4f1/Oezs6im2tn2LWrFk4e/Ys6tevj0mTJgEAPD09kZiYiDZt2mDYsGH4+uuv8eDBA7z//vvo1asXdu7cicTERLz11luYOnUqevTogdTUVOzZsweKomDcuHE4ffo0UlJSdOHC3d29SGWHhobi3Llz2LRpE1xcXPD+++8jODgYsbGxsLW1RVhYGB49eoTo6Gg4OTkhNjYWzv92kv3Pf/6D2NhYbNmyBeXLl8f58+fx4MGDEn4CiYioVPz1F/Dnn4CtLTBqlOxqnorh5mnu35fXwj0tDXByeupprq6usLOzg6OjI7y9vXWPz58/H02aNMEXX3yhe2zx4sXw8/PD2bNnkZaWhszMTLz22muoUqUKAKBBgwa6c8uUKYOMjIxcr/k02lCzd+9etGjRAgCwcuVK+Pn5ISoqCj179kRCQgJef/113XtVq1ZN9/EJCQl47rnnEBgYCADw9/cv8nsTEZGBaOfa9O8P+PrKraUIeFlKxY4cOYI//vgDzs7OuludOnUAABcuXECjRo3w8ssvo0GDBujZsycWLlyIu3fvPtN7nj59GjY2NmieY8dKDw8P1K5dG6dPnwYAjBo1CpMnT0bLli3x6aef4sSJE7pz3333XaxevRqNGzfGhAkTsG/fvmeqh4iIntGZM0BUlDgeN05qKUXFcPM0jo5iBEXGzdHxmUrPzs5Gt27dEBMTk+t27tw5tG7dGtbW1ti+fTu2bNmCgIAAzJkzB7Vr10ZcXFyJ31NRlAIf1/x7iW3o0KG4ePEi+vfvj5MnTyIwMBBz5swBAHTp0gWXLl1CeHg4rl27hpdffhnjzOQ/ExGRKk2fLqZovPoqULeu7GqKhOHmaTQacWlIxq0I82207OzskJWVleuxJk2a4NSpU/D390eNGjVy3Zz+vdyl0WjQsmVLfP755zh27Bjs7OywYcOGAl/zaQICApCZmYkDBw7oHrt9+zbOnj2Lujn+U/j5+WH48OFYv349xo4di4ULF+qe8/T0RGhoKFasWIGZM2diwYIFxaqBiIhKyfXrwNKl4thEWy3kh+FGJfz9/XHgwAHEx8cjKSkJ2dnZCAsLw507d/DWW2/h4MGDuHjxIrZt24bBgwcjKysLBw4cwBdffIHDhw8jISEB69evx61bt3QhxN/fHydOnMCZM2eQlJSEx48fP7WOmjVronv37hg2bBj+/PNPHD9+HP369UPFihXRvXt3AEB4eDh+++03xMXF4ejRo9i5c6fuPT/55BNs3LgR58+fx6lTp/DLL7/kCkVERGREc+YAjx4BQUFAy5ayqykyhhuVGDduHKytrREQEABPT08kJCTA19cXe/fuRVZWFjp16oT69etj9OjRcHV1hZWVFVxcXBAdHY3g4GDUqlULH3/8MaZPn44u//YKGTZsGGrXro3AwEB4enpi7969RaolMjISTZs2xSuvvIKgoCAoioLNmzfD1tYWAJCVlYWwsDDUrVsXnTt3Ru3atTFv3jwAYrRo4sSJaNiwoe7S2erVqw3zSSMiooKlpgL/fm82p1EbANAoBU2SUKmUlBS4uroiOTkZLk+s03/48CHi4uJQtWpVODg4SKqQnhW/jkREpWDGDCAiAqhVS2zeJ7mPVGE/v5/EkRsiIiLK7fFj4OuvxbEJN8gsiHlVS0RERIa3ejVw5Qrg7Q306ye7mmJjuCEiIiI9RdFv2jdqFGCGl/cZboiIiEjvt9+AkyfF7vzDh8uupkQYbvJhYXOsVYdfPyKiZ6BtkPn220C5cnJrKSGGmxy0S5Xvy2qUSaVC+/XTfj2JiKiIDh0C/vgDsLEBwsNlV1NibJyZg7W1Ndzc3HDz5k0AgKOjo65lAJk+RVFw//593Lx5E25ubrC2tpZdEhGRedHOtenTB/Dzk1vLM2C4eYK2A7Y24JD5cXNzK1YncyIiAnDhArBunTg2855+DDdP0Gg08PHxQYUKFYrUboBMi62tLUdsiIhK4uuvgexsoEsXoEED2dU8E4abAlhbW/OHJBERWYZbt4DFi8WxmbVayA8nFBMREVm6uXOBhw+BZs2ANm1kV/PMGG6IiIgsWXq6CDeAGLVRwUIahhsiIiJLFhkJ3LkDVK8O9Oghu5pSwXBDRERkqTIzgenTxfHYsYBK5poy3BAREVmqtWuB+HjA0xMIDZVdTalhuCEiIrJEiqJvtTByJFCmjNx6ShHDDRERkSXasQM4dgxwdATee092NaWK4YaIiMgSaVstDBkCeHjIraWUMdwQERFZmpgYYNs2MYE4IkJ2NaWO4YaIiMjSaEdtevUC/P2llmIIDDdERESWJD4eWLNGHI8fL7UUQ2G4ISIisiQzZgBZWUCHDsBzz8muxiAYboiIiCzF7dvAokXiWKWjNgDDDRERkeWYPx+4fx9o3Bho3152NQbDcENERGQJHjwAZs8WxyppkFkQhhsiIiJLsHQpcOsWUKUK0LOn7GoMiuGGiIhI7bKycjfItLGRW4+BMdwQERGpXVQUcP484O4ODB4suxqDY7ghIiJSM0UBvvxSHIeFAU5OcusxAoYbIiIiNYuOBg4dAhwcgBEjZFdjFAw3REREajZ1qvhz0CCgQgW5tRgJww0REZFa/f03sHkzYGWlygaZBWG4ISIiUqtp08Sfr70G1KghtxYjYrghIiJSoytXgJUrxfGECXJrMTKGGyIiIjWaORPIzATatgWaNZNdjVEx3BAREanNvXvAd9+JYwsbtQEYboiIiNTnu++AtDSgfn2gc2fZ1Rgdww0REZGaZGSIS1IAMH68qhtkFoThhoiISE1WrACuXwcqVQLefFN2NVIw3BAREalFdjbw1VfieMwYwM5Obj2SMNwQERGpxc8/A2fOAK6uwLBhsquRhuGGiIhILbSjNu++C5QtK7cWiRhuiIiI1GDvXnGzswNGjZJdjVQMN0RERGqgHbUZMADw8ZFbi2QMN0RERObun3+AjRvFsu9x42RXIx3DDRERkbnTNsjs3h2oXVtuLSaA4YaIiMicJSYCy5eL4/Hj5dZiIhhuiIiIzNns2cCjR0DLlkCLFrKrMQkMN0REROYqJQWYP18cW2CDzIIw3BAREZmrhQuB5GSgTh3glVdkV2MyGG6IiIjM0aNHwIwZ4nj8eMCKP9K1pH4moqOj0a1bN/j6+kKj0SAqKqrIH7t3717Y2NigcePGBquPiIjIZK1eDVy9Kva06dtXdjUmRWq4SU9PR6NGjTB37txifVxycjIGDBiAl19+2UCVERERmTBFAaZOFcejRwP29nLrMTE2Mt+8S5cu6NKlS7E/7p133kGfPn1gbW1drNEeIiIiVdiyBTh1SvSPeucd2dWYHLO7QBcZGYkLFy7g008/LdL5GRkZSElJyXUjIiIya9pRm3feAdzcpJZiiswq3Jw7dw4ffPABVq5cCRubog06TZkyBa6urrqbn5+fgaskIiIyoIMHgd27AVtbcUmK8jCbcJOVlYU+ffrg888/R61atYr8cRMnTkRycrLudvnyZQNWSUREZGDaBpl9+gCVKsmtxURJnXNTHKmpqTh8+DCOHTuGESNGAACys7OhKApsbGywbds2vPTSS3k+zt7eHvacaEVERGpw/jywbp04ZoPMAplNuHFxccHJkydzPTZv3jzs3LkTa9euRdWqVSVVRkREZCTTp4uVUl27AvXry67GZEkNN2lpaTh//rzuflxcHGJiYuDu7o7KlStj4sSJuHr1KpYtWwYrKyvUf+ILWaFCBTg4OOR5nIiISHVu3AAiI8UxWy0USmq4OXz4MNq1a6e7HxERAQAYOHAglixZgsTERCQkJMgqj4iIyHTMnQtkZADNmwOtWsmuxqRpFEVRZBdhTCkpKXB1dUVycjJcXFxkl0NERPR0aWlA5crA3bvA2rXA66/LrsjoivPz22xWSxEREVmsxYtFsKlRAwgJkV2NyWO4ISIiMmWPH4uJxIBYIWVtLbceM8BwQ0REZMp++glISAAqVAAGDJBdjVlguCEiIjJVORtkjhoFlCkjtx4zwXBDRERkqn7/HTh+HHByAt59V3Y1ZoPhhoiIyFRpR22GDgXc3eXWYkYYboiIiEzR0aNi5MbaGhgzRnY1ZoXhhoiIyBRpG2S++SZQpYrcWswMww0REZGpiYsDfvxRHI8fL7cWM8RwQ0REZGpmzACys4GOHYFGjWRXY3YYboiIiExJUhKwaJE4ZoPMEmG4ISIiMiXz5gEPHgBNmgAvvSS7GrPEcENERGQq7t8H5swRxxMmABqN3HrMFMMNERGRqViyRFyWqlrVIjt/lxaGGyIiIlOQlaVvkBkRAdjYyK3HjDHcEBERmYL164GLFwEPD2DQINnVmDWGGyIiItkUBfjyS3E8YoToJUUlxnBDREQk265dwJEjout3WJjsasweww0REZFs2gaZgwcDnp5ya1EBhhsiIiKZTpwAtm4FrKzERGJ6Zgw3REREMk2bJv584w2gWjW5tagEww0REZEsCQnAqlXimA0ySw3DDRERkSwzZwKZmaLNQmCg7GpUg+GGiIhIhrt3gQULxDFHbUoVww0REZEM334LpKcDDRoAnTrJrkZVGG6IiIiM7eFDYNYsccwGmaWO4YaIiMjYli8HbtwA/PyA3r1lV6M6DDdERETGlJWlX/4dEQHY2sqtR4UYboiIiIxp0ybg7FnAzQ0YOlR2NarEcENERGQsiqJvtfDee4Czs9x6VIrhhoiIyFj27gX27wfs7YGRI2VXo1oMN0RERMaiHbUZOBDw9pZbi4ox3BARERlDbCzw889i2ffYsbKrUTWGGyIiImPQrpAKCQFq1ZJaitox3BARERnatWvAihXieMIEubVYAIYbIiIiQ5s1C3j8GGjVCnjhBdnVqB7DDRERkSElJ4s+UgBHbYyE4YaIiMiQFiwAUlKAgAAgOFh2NRaB4YaIiMhQHj0CZs4Ux+PGAVb8sWsM/CwTEREZyg8/iMnEvr5Anz6yq7EYDDdERESGkJ0NfPWVOA4PF7sSk1Ew3BARERnC5s1i4z4XF+Dtt2VXY1EYboiIiAxB22ph+HDA1VVuLRaG4YaIiKi07d8P7NkD2NoCo0fLrsbiMNwQERGVNu1cm379xGRiMiqGGyIiotJ09iywYYM4HjdObi0WiuGGiIioNE2fDigK0K2b2LiPjI7hhoiIqLRcvw4sXSqO2WpBGoYbIiKi0jJnDpCRIZpjtmwpuxqLxXBDRERUGtLSgHnzxPGECYBGI7ceC8ZwQ0REVBoWLQLu3QNq1QJefVV2NRaN4YaIiOhZPX4MfP21OB43DrC2lluPhWO4ISIielZr1gCXLwNeXkD//rKrsXgMN0RERM9CUfStFkaNAhwc5NZDDDdERETPZNs24ORJwMkJePdd2dUQGG6ISA3u3gVWrAB69gTq1QN++UV2RWRJtKM2b78NlCsntxYCANjILoCIqEQSEoCNG8Vt1y4gK0v/XPfuwOzZQFiYtPLIQhw+DOzcCdjYAOHhsquhfzHcEJF5UBQx9B8VJQLN0aO5n69fHwgJAa5cAZYsAUaMAC5eFA0MrThITQaibZD51ltA5cpyayEdhhsiMl2ZmcDevfpAExenf87KSuwAGxIiRmqqVxePKwpQuzYwcaJYmhsfDyxfDjg6SvgLkKpdvAisXSuO2SDTpDDcEJFpuX9fTNCMihJzZ27f1j/n4AB07CgCzSuvAJ6eeT9eowE++ADw9wcGDgTWrweuXgU2bQIqVDDSX4IswtdfA9nZQOfOQMOGsquhHBhuiEi+W7dEkImKArZvBx480D/n7i66K4eEAB06iBUpRfHmm0DFiuLjDhwQvX42bwbq1DHAX4Aszq1bwOLF4pgNMk1OscLNwYMH0bRpU1j/u/OioijQ5OidkZGRgY0bN6JXr16lWyURqc+FC+JSU1SUuPSUna1/zt9fhJKQEHHpyaaEv4e1agXs2wcEB4tLCC1aiPdr3fqZyycL9803IoQHBgJt28quhp6gURRFKerJ1tbWSExMRIV/h3ZdXFwQExODatWqAQBu3LgBX19fZOVctWBiUlJS4OrqiuTkZLi4uMguh8hyKIqYBBwVJW5//537+eee0weaBg1Kt+ngrVui18/+/YCdHRAZCfTpU3qvT5YlPR2oUkVcMv3xR7EFARlccX5+F+vXoSdzUH65qBhZiYjU7vFjYPdu/YTgK1f0z1lbA23aiDDz6qvih4WheHqK5boDBogJoH37isnJH37Izs1UfJGRIthUqwa89prsaigfpT7nRsNvFESWLTUV2LpVBJpffwWSk/XPOTmJyZchIeJSkbu78eoqU0b0//ngA7F89+OPxaWqb78FbG2NVweZt8xMfYPMsWPZINNEcUIxET2769fFaqSoKGDHDuDRI/1zFSqIkZmQEODll+X23bGyErvJ+vsDI0eKCaEJCWI0x9VVXl1kPtatE6N+5csDoaGyq6ECFDvcxMbG4vr16wDEJah//vkHaWlpAICkpKTSrY6ITNc//+gnBB84IObUaNWsqZ8/07y56f12+9574jJY797A778DL74oRpm4CRsVJmeDzJEjuXeSCSvWhGIrKytoNJp859VoH9doNJxQTKRG2dnAwYP6CcFnzuR+/vnn9YGmTh3zmMty9KjYLycxEfDxEcvRmzSRXRWZqh07gPbtxSXOhAQxekNGY7AJxXE5dwclIvXLyBATcaOixGWnf0dtAYh5Ki+9pJ8Q7Osrq8qSa9JEjDoFB4vVW61bi3k5XbvKroxMkXbUZsgQBhsTV6yRGzXgyA3RU9y7Jza7i4oCtmwB/r3sDABwcRFBICRETAxWyzyV5GSxnHf7djEvZ84ccemKSOv4caBxY/Hv4/x5oGpV2RVZHION3Ny5cwf3799HpUqVdI+dOnUK06ZNQ3p6OkJCQtCHe0cQmZ/Ll/UTgnftEitCtHx9Re+mkBCxWZmdnZwaDcnVVcy5GT5cTDIOCxOTRr/8kk03SdA2yOzVi8HGDBTrf21YWBi+1i6BA3Dz5k20atUKhw4dQkZGBkJDQ7F8+fIiv150dDS6desGX19faDQaREVFFXr++vXr0aFDB3h6esLFxQVBQUH47bffivNXICJA32F78mSxw2rlyqKL9u+/i2ATECD2gDl4UASfefNETyc1BhstW1tg0SLxOQGAadPED7KcrSDIMl26BKxeLY7Hj5dbCxVJscLN/v378eqrr+ruL1u2DO7u7oiJicHGjRvxxRdf4Jtvviny66Wnp6NRo0aYO3dukc6Pjo5Ghw4dsHnzZhw5cgTt2rVDt27dcOzYseL8NYgsU1YWEB0t9uaoUUM0+vvPf4AjR8Tk35YtxW+nZ88Cp04B//sf0KyZZY1caDTARx8BK1eKILdunZhXdOuW7MpIphkzxP+fl1/mhHMzUaw5N2XKlME///yDKv/uJBocHIx69erhq3+H686ePYugoCDcztnFt6iFaDTYsGEDQkJCivVx9erVQ+/evfHJJ58U6XzOuSGLcv++GI2JigJ+/hnIuV2Dvb1oRKntsO3lJatK0xQdLT43d++KnWi3bAFq1ZJdFRnbnTuAn5/4v/Tbb2IEk6Qw2JwbFxcX3Lt3TxduDh48iCFDhuie12g0yMjIKEHJJZOdnY3U1FS4F7LLaUZGRq6aUlJSjFEakTxJSWJJ88aN4ptxzssq5cqJIBMSIr5JOztLK9PktW4N/PUX0KWL2Mk4KEiExFatZFdGxjR/vgg2jRqJXwbILBRrvPn555/H7NmzkZ2djbVr1yI1NRUvvfSS7vmzZ8/Cz8+v1IssyPTp05Genl5oF/IpU6bA1dVVdzNmfURGExcHzJwpJvx6eQGDBokfxA8eiPk0o0aJJd03bgDLlol+OAw2T1e7tmi22by5+A2+fXtg1SrZVZGxPHgAzJ4tjidMMI+9mwhAMUdu/vvf/6J9+/ZYsWIFMjMz8eGHH6JcuXK651evXo02bdqUepH5WbVqFT777DNs3LhR16U8PxMnTkRERITufkpKCgMOmT9FAY4d0+8QfOJE7ucbNdJvqNeoEb8pP4sKFUQw7NcP2LBBdBOPjxc9qvh5Vbdly4CbN8Vu1uz8bVaKFW4aN26M06dPY9++ffD29kbz5s1zPf/mm28iICCgVAvMz5o1azBkyBD89NNPaN++faHn2tvbw97e3uA1ERnc48diHog20Fy+rH/OykpcRgkJEcu2/f0lFalSjo7ATz+J396//lqsJLt4UawiY9NNdcrKEivmAGDMGH6dzUyxe0t5enqie/fu+T7X1Qi7eq5atQqDBw/GqlWrjPJ+RFKlpYkO2xs3ink09+7pn3N0BDp1EoGma1fAw0NWlZbB2hqYPl1MLh41SiwbT0gQoYeLE9QnKkps1leunNiRmMxKscLNsmXLinTegAEDinReWloazp8/r7sfFxeHmJgYuLu7o3Llypg4cSKuXr2qe99Vq1ZhwIABmDVrFl544QVdA88yZcrAVS07pRLduCE21Nu4Uax0yjlJv3x5fYdtbY8bMq6wMH3TzW3b9E03eblbPXI2yAwL4/w0M1TsxpnOzs6wsbHJt3kmIFZM3blzp0ivt2vXLrRr1y7P4wMHDsSSJUsQGhqK+Ph47Nq1CwDQtm1b7N69u8Dzi4JLwckknT0rflPcuFGs0Mn5/6t6df38maAg0+uwbamOHBErz65fF7s4//qr2J6fzF90NNCmjdguISFBzLsi6Yrz87tY4aZevXq4ceMG+vXrh8GDB6Nhw4bPXKyxMdyQScjOBg4d0gea06dzPx8YqA80AQGcuGqqLl0SlwRPnRK/3f/4o1g6TubtlVf07Tjmz5ddDf3LYOEGAA4cOIDFixdjzZo1qFGjBoYMGYK+ffuaTVBguCFpMjKAP/7Qd9hOTNQ/Z2MDtGun77Cdo38bmbh794A33gB27BCjat98A7zzjuyqqKROnQLq1xe/UJw5A9SsKbsi+pdBw43WgwcP8NNPPyEyMhIHDx5ESEgIFi9ebPIrkxhuyKiSk3N32E5N1T/n7KzvsN2lC+DmJqlIemaPHolAo708PmECMGWKZbWuUItBg8TX8fXXgbVrZVdDORgl3GhFR0fj008/RXR0NJKSknLte2OKGG7I4K5cyd1h+/Fj/XPe3voO2+3aiWv6pA6KIppualvB9OwJLF3KSd/m5MoVsRru8WP95o1kMgzWfkHr6tWrWLp0KSIjI5Geno5+/fph/vz5Jh9siAxCUYDYWBFmoqKAw4dzP1+njn7+jKU1orQkGo1oRFq1KjB4sFgifvWqmFNVvrzs6qgoZs0SwaZNGwYbM1escPPjjz8iMjISu3fvRqdOnTB9+nR07doV1ly9QZYmK0usatIGmgsX9M9pNMALL+g31KtdW1KRJEW/fmLOVI8ewL59YoXb5s2cu2Hq7t0DvvtOHE+YILUUenbFXgpeuXJl9O3bF16FdBAeNWpUqRRnCLwsRSX24EHuDtu3bumfs7MT+86EhADduonLT2TZTp8Wc6ri48UGixs3Ai1byq6KCvLll6KlRr16wMmTXKFoggw258bf3x+ap3zBNRoNLl68WNSXNDqGGyqW27fFktCoKNFh+/59/XNubmIZcEiI2Cm4bFlJRZLJunFDrH47eFDMr1q6VGz+R6YlI0NcTkxMFJOJBw6UXRHlw2BzbuLj4596ztWrV4vzkkSmJz5e379pzx5xCUqrUiX9/JnWrdlvhgrn5SWW//ftK/49vfmm+PfFDtOmZeVKEWwqVgTeekt2NVQKSjShOD/Xr1/HF198gYULF+LBgwel9bJEpePxY+DOHXEpKSlJ3PI7vnIl74Z6DRroA81zz/GHEhWPo6NYUjxuHDBzprj0cfGi2A/HptS+BVNJZWcDX30ljseMEZeYyewV63/WvXv3EBYWhm3btsHW1hYffPABRowYgc8++wzTpk1DvXr1sHjxYkPVSiQoCpCS8vSgkvN+zoaTT2NlJfoFaScEV6tmqL8JWQpra2DGDHHpIzwcWLBAbOv/44+8nCnbL78A//wDuLoCw4bJroZKSbHCzYcffojo6GgMHDgQW7duxZgxY7B161Y8fPgQW7ZsQZs2bQxVJ6nZw4d5w0hhQSUpCcjMLP77aDSAu7tYllu+PODpmf/x889z6S4ZxqhRgL+/uPSxdSvQqpX44codqeXRNsgcPpzd3VWkWBOKq1Spgu+//x7t27fHxYsXUaNGDYwaNQozZ840YImlixOKDSw7W1z+KU5QSUsr2Xs5OT09qOS8X64cLwOQaTh8WPQvunFDzPP49VegUSPZVVmeffvECjY7OyAuTjRAJZNlsAnF165dQ0BAAACgWrVqcHBwwNChQ0teKZk2RQHS04sXVO7cEQGnuKytnx5Ungwt3PmVzFVgoNgBNzhYzPF68UWx6V/nzrIrsyzauTb9+zPYqEyxwk12djZsc6wOsba2hpOTU6kXRQby+LFY2lzUoJKUJC4ZlYSra/GCipsbJ+qSZfH3FyMHr70mVlS98gowbx7w9tuyK7MM//wjVkUCYrI3qUqxwo2iKAgNDdU1x3z48CGGDx+eJ+CsX7++9Cqk/CmKaMpYnKBSnEm1OdnbF3ypJ79jd3euOCAqCjc3Mfdm2DBg2TLRfDMuDvjf/9imw9CmTxffR7t3Fy1SSFWKFW4GPrGxUb9+/Uq1GIumnVRbWDh58rlnmVRblBEV7bGTE0dViAzFzk5sHFetGvDZZ8D//Z8IOEuWAA4OkotTqcREESYBYPx4ubWQQRQr3ERGRhqqDnXJygLu3i16ULl1S8xtKQln56KPqGgn1bIXGJFp0WiATz8Vl6qGDQPWrBF7LkVFceWeIcyZAzx6BLRowZYYKsWlI6UlIUFswX/rlphUW/RFaHo2NsULKh4enFRLpCYDBwJ+fmIezt694ofv5s1AjRqyK1OP1FQxtwlgg0wVY7gpLU5OYoJaTm5uhS9NfvLY1ZWXf4gs3UsviYnGwcHAuXOiw/ymTSLo0LNbuFDMV6xdWzS5JVViuCkt5cqJFQ/aoOLhwb5DRFQyAQFiqXi3bmJPnJdeApYvB3r2lF2ZeXv0SOwUDYi5Npy0rVr8ypYWKyugbVugfn3A25vBhoiejbc3sGuX6CqekQH06iX2ZSnJJW8SVq8Wc5m8vQEuiFE1hhsiIlPl5ASsXy/aNgBijsh775VspaSlUxT9pn2jR4stLki1GG6IiEyZtTUwa5boKK7RAN9+K0ZzUlNlV2Zetm4F/v5brDAdPlx2NWRgDDdEROZg9GgxilOmDLBlC9C6NXD1quyqzIe2QeY774jFHqRqDDdEROYiJETMw6lQAYiJESupTpyQXJQZOHhQfN5sbIDwcNnVkBEw3BARmZPnnxcrqerUEZNjX3wR2LZNdlWmTTvXpk8foFIlubWQUTDcEBGZm6pVxV44bduKuTfBwcCiRbKrMk3nz4vLeQAbZFoQhhsiInNUrpyYJNuvn2j5MmwY8NFHQHa27MpMy9dfi89JcDDQoIHsashIGG6IiMyVvb1oAPnJJ+L+F1+IsJORIbcuU3HzJqDtichWCxaF4YaIyJxpNMDnn4sf4jY2wKpVQIcOwO3bsiuTb+5c4OFDMU+pdWvZ1ZARMdwQEalBaKi4TOXiAuzZI3pRXbgguyp50tOBb74Rx+PHs2+fhWG4ISJSi5dfFt3EK1cGzp4VS8X/+kt2VXIsXgzcuQNUrw706CG7GjIyhhsiIjWpX18sFW/SBEhKEk03162TXZVxZWYC06eL43HjxC7PZFEYboiI1MbHB9i9G3jlFTHnpGdP8cPeUppu/vQTcOkS4OkJDBwouxqSgOGGiEiNnJ2BqCggLEyEmnHjgBEj1N90U1H0rRZGjhTtKsjiMNwQEamVtTUwZ47Y60WjAebNEy0c0tJkV2Y4v/8uWlM4OooO6mSRGG6IiNRMowHGjAHWrgUcHIBffxXLoq9dk12ZYWhbLQwdCnh4yK2FpGG4ISKyBK+9JppHenoCx46JlVQnT8quqnQdOwZs3y5GrMaMkV0NScRwQ0RkKZo3FyupatcGLl8WTTd//112VaVHO2rTuzfg7y+1FJKL4YaIyJJUqyaabrZuDaSkAF26iD1hzF1cHPDjj+J4/Hi5tZB0DDdERJbG3R3Ytg3o00esnhoyBPjPf8x7qfiMGaKBaIcOQOPGsqshyRhuiIgskb09sGIF8PHH4v7kyebbdPP2beD778UxG2QSGG6IiCyXRgP8978iGNjYAD/8AHTsKNoWmJN584D794HnnhMtKMjiMdwQEVm6wYOBzZtF083oaNF08+JF2VUVzYMHwOzZ4njCBDbIJAAMN0REBIi5Kn/+Cfj5AWfOiKXiBw7IrurpliwRPbT8/YE33pBdDZkIhhsiIhIaNBBLxZ97Drh1C2jbFli/XnZVBcvK0jfIjIgQl9aIwHBDREQ5+fqKS1Ndu4qmm2+8IVYimeJKqg0bgAsXxOqvwYNlV0MmhOGGiIhy0zbdfPddEWoiIoBRo8RIianI2SBzxAjAyUluPWRSGG6IiCgvGxvgm2+AadPE/blzgR49gPR0uXVp7d4NHDok+mWNGCG7GjIxDDdERJQ/jQYYOxb46ScRIn7+GWjTBkhMlF2ZftRm0CDRL4soB4YbIiIq3BtvADt3AuXLA0eOiJVUp07Jq+fkSWDLFsDKSlwyI3oCww0RET1dUJBYSVWrFpCQIPbC2bFDTi3aS2Wvvw7UqCGnBjJpDDdERFQ01auLppsvviiabnbuLPaZMabLl8VOygAbZFKBGG6IiKjoPDyA7duBN98UTTcHDQI+/dR4S8VnzhTv264d0KyZcd6TzA7DDRERFY+DA7ByJfDhh+L+pEnAwIHAo0eGfd+7d4EFC8QxR22oEAw3RERUfFZWwP/+ByxcCFhbA8uXA506iQBiKN9+C6SlAfXri0tiRAVguCEiopIbOhT49VegbFlg1y4x0TgurvTf5+FDNsikImO4ISKiZ9Opk2i6WakS8M8/Yqn4wYOl+x4rVgDXr4vGnm++WbqvTarDcENERM+uYUOxVLxxY+DmTdF0MyqqdF47Oxv46itxPGYMYGtbOq9LqsVwQ0REpaNiRdF0s0sX4MED4LXXgFmznv11N20Czp4FXF3FZTCip2C4ISKi0lO2rAgj77wjloeHhwOjRz9b001tq4X33hOvT/QUDDdERFS6bGyA+fP1oWT2bDGKU5Kmm3v3An/9BdjZic7kREXAcENERKVPoxF70fz4I2BvL0Zz2rYVk4KLQxuQBg4EvL1LvUxSJ4YbIiIynJ49RdNNDw/g8GGxkio2tmgfe/q0CEXa7uRERcRwQ0REhtWihVhJVaMGcOmSuL9z59M/Ttsgs3t3oHZtw9ZIqsJwQ0REhlejhpg707IlkJwsdhhetqzg869dE7seA2LTPqJiYLghIiLjKF8e+P13oHdv4PFjMY/m88/zb7o5e7Y458UXgaAg49dKZo3hhoiIjMfBAfjhB+CDD8T9zz4DQkNzN91MSRGrrQCO2lCJMNwQEZFxWVkBU6YA330nmm4uWyYuU927J55fsEAEnLp1ga5dpZZK5onhhoiI5Hj7beCXXwBnZ+CPP8R8nLNngRkzxPPjxokgRFRMUv/VREdHo1u3bvD19YVGo0FUEfqQ7N69G02bNoWDgwOqVauGb7/91vCFEhGRYXTuLJpuVqwolog3bCgmE/v4AH37yq6OzJTUcJOeno5GjRph7ty5RTo/Li4OwcHBaNWqFY4dO4YPP/wQo0aNwrp16wxcKRERGUyjRmKpeMOGQEaGeCw8XGz+R1QCGkXJb5q68Wk0GmzYsAEhISEFnvP+++9j06ZNOH36tO6x4cOH4/jx4/jrr7+K9D4pKSlwdXVFcnIyXFxcnrVsIiIqLSkpon/U9evA+vUAv0dTDsX5+W1jpJpKxV9//YWOHTvmeqxTp074/vvv8fjxY9ja2ub5mIyMDGRofxOA+OQQEZEJcnEBVqyQXQWpgFnN1Lp+/Tq8vLxyPebl5YXMzEwkJSXl+zFTpkyBq6ur7ubn52eMUomIiEgSswo3gLh8lZP2qtqTj2tNnDgRycnJutvly5cNXiMRERHJY1aXpby9vXH9iY6yN2/ehI2NDTw8PPL9GHt7e9hzUhoREZHFMKuRm6CgIGzfvj3XY9u2bUNgYGC+822IiIjI8kgNN2lpaYiJiUFMTAwAsdQ7JiYGCQkJAMQlpQEDBujOHz58OC5duoSIiAicPn0aixcvxvfff49x48bJKJ+IiIhMkNTLUocPH0a7du109yMiIgAAAwcOxJIlS5CYmKgLOgBQtWpVbN68GWPGjME333wDX19fzJ49G6+//rrRayciIiLTZDL73BgL97khIiIyP8X5+W1Wc26IiIiInobhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGmlB0+DNy7J7sKIiIiy2UjuwA1efgQaN4cyM4GfH2BevXy3lxcZFdJRESkbgw3pejaNaBiReDyZXF87Rqwfbv++X79gOXLxXFmpjiuVw8ICACcneXUTEREpDYMN6WoWjUgIQFITgZiY4FTp3Lf6tfXn3v+PDB4sP6+v3/uEZ6WLYHq1Y3+VyAiIjJ7GkVRFNlFGFNKSgpcXV2RnJwMFyNfI8rOBqz+neV0/DgQESFCz40bec/97DPg00/FcWIiMGeOPvjUqQM4OBitbCIiIumK8/ObIzdGZJVj+najRsCOHeL49m0Rcv7+Wz/KExioP/foUWDKlNyvU726Puz07Clej4iIiDhyI7ucIjl6FFi4UB987tzJ/fyKFUDfvuJ4/35g2rTcl7hq1QJsbY1fNxERUWnhyI3KNGkCzJ8vjhVFXMbKOcrTrJn+3AMHgHXrxE3L1lYEnHr1gIkTgcaNjVo+ERGRUXHkRmX+/hvYti33ROa0NP3zf/0FvPCCOF68GJg5U4Se+vX1Iz3VqgHW1lLKJyIiyhdHbixY/fq5V2Upiliarp3TU6+e/rljx4CTJ8UtJwcHMWl51SrxJwDcvy8et+K2j0RkAGlp4ubtLbsSUgOO3Fiwq1dFwMk5mfn0abEZIQDcugWULy+Ox40Tl8bq1s27MWHlygw9RJRXZiaQmgqUK6d/bNo04NIl4Pp1cUtMFH+mp4tNUPfv1587erT4paplS6BFC/33I7JMHLmhIqlYUdxeeUX/WFYWEBcHnDmT+xvJP/+I0ZsjR8QtJ2dn4OJFwNNT3D9/HrC3BypVAjQaw/89iMh4FEX8AlSmjP6x+fOB+Hh9YNGGlqQkMSfwwAH9ufPmie8x+UlO1h8/fiwWUjx4oH+sTh3gxRdF2GnVinuBUcE4ckNFkpkJXLiQd2PCM2cAR0fg7l19kAkJATZuFK0m8mtB4ePD0ENkarKycs+1W7o0/xGW69eBhg1zB5bq1cUvOPnx988dZv73P/GLkre3uPn46I9z7tT+8CGwZg2wdy/w559iVDmn4GDg11/1948cARo0AOzsSvwpIBNXnJ/fDDf0TB4/Fpe3/P31j3XtKiY1Z2bmPd/RUQxTay9jbd0qVnPVqwd4eTH0EBnS2rUisOQMKtrgUr06cPCg/twaNcQvNPnx8xO7sWt98on4f60NKTlDi4dH6SxQuH0b2LdPhJ29e8UvUWPHiueuXBE1OTiIS1stW4oRnqAgwM3t2d+bTAPDTSEYbozj0SPg7Nm8Iz1ubrmvqTdoIOb7AIC7e+5VWw0biqFnIirYr7+KoPHk6Mr16+LS8L59+nNr1hSXjfNTqZJYfKD1/vtiRDbnyIr25uUlflExFXv2AD16iACUk0Yjvpd89BHw5ptyaqPSw3BTCIYbuXK2oFAU8Q3n6FHxG+KT/xLr1dMHHwCYOjX3pS53d+PVTWRMO3eKoJHfJSEfH+CPP/TnFhZYKlYUoxpa4eFiocCTgSXnKIu5UhRxmfzPP/WXsrSfl1Wr9OHm0CHgq6/0c3caNQJsOPvULDDcFILhxjQ9eCAmLedcuVW9utiHBxChqGxZca1ey8dHH3RefBF44w0ppRMVyYEDuQNLztDi6Sku0WrVqgWcO5f/6/j6ikvBWu++K17jyfkr2vt+fob9e5myGzdE0GnVSr/g4csvgQ8+0J/j5CT2/tJeymrZ0rRGpUiP4aYQDDfm6f590UhUe3kr5/V+AOjeHYiKEseKArz2GlC1qj78BASIUR+i0nTyZMGBxd1dTKzXql1bXKrNj48PcO2a/v6QIWLEJb9Jtz4+4rWoZE6cAH7+WYSefftyr9ACxGXz5s3F8aVLYr5QpUrGr5PyYrgpBMONOqSmArGx+rDTsCEwcKB47urV/L8Z+fmJOT2vvy5+eBDl5/x58W8ov0m3rq7Ajz/qz61TR1wKyY+3t/gYrX79xHLp/C4H+fiINitkXNnZ4vuH9lLWkSPA8eP6FVfDhwPffSf28tKO6rRsKb6PcBd342O4KQTDjfrduydWheTsv5Xzh8zYsWIjMUC/D4e2BUVAgLj8ZWUlbrVri0sEgAhUf/0lHtdo9Odoj/38gCpVxLkPH4r3z/l8zo9xd9fvxJqZKX5DLOhcR0fxQxUQo1L37uV/rkYj5g5w/kBe166JW36Tbp2cgGXL9OfWrSsukebHy0t8jNYbb4gl0AUFlhdfNOzfiwzrzTeBn34SISgnFxexqWBUlNjTi4yD4aYQDDeW6c4d/UhPo0b6/lq7dwNt2xb8cf/9L/Dxx+L4+PHCm45+8AEwZYo4Pn9eTPQsyMiRwOzZ4vjaNTHxsyBDhgCLFonj5OTCl7a++aaYPAmIfUtsbEToyS8IvfKK+Mat5e0tlvbnF95at9a/LgA0bSpqeTLgaTTic7Rihf7c4GAxiTW/c2vUACIj9ecOHixGTfKrwddX30AWEJ/v+Pi8r5uZKQLLggX6cwMC8u6TolWhgpibofXqq2I0Jr/5Kz4+QMeOBX/+SX1SU8V8Ke0k5f37RZuIGjVyz4sKDxf//rSjO2wjUfq4QzHRE9zdxW/RT/4m3bQpsGuXfiLzmTNi1CU7W4yS5AwdDg7i8pei6J/PztYf59zR2dpajOQUdG7OzcoAcf/Jc7THOVtbPO1XkZz7BGl/21QU/evl9OhR7vu3b+e/NxEgRrhyunAh71wFrSe/58TE5B45yyk1Nff9PXsKXvlTo0bu+1u3isCZH0/P3OHGzw9IScl/WbOvb+6P3bQp/9cky1S2LNC+vbgB4v/IiRO5l51nZgLffy9Cz4wZ4rHq1fWXslq35jwpY+PIDZEZURTxjfTJ0KT908ZGv9JDUcSISUHnlikjRi20zpzJG660fzo75x6JOnhQ1JHfuS4uQGCg/twdO8RquPzCm6sr0KGD/tyNG0UIye9cFxegd2/9uatW5f77ac+1shKXj/r2zf154waRZCiPHolRUO3ozt9/5/5FpEMHsbGp1qFDYo8vBwfj12rOeFmqEAw3RERkSPfuictX2onKXboAEyaI527cECOGdnbilwDt6A4bgz4dw00hGG6IiEiW/ftF64ic87y06tQBPvwQ6N/f6GWZheL8/LYq9FkiIiIqNS+8IOagnTsHLFkCDBsmVugBeVfpHTsm9uyaPl1Man5ynhwVTHq4mTdvHqpWrQoHBwc0bdoUe/bsKfT8lStXolGjRnB0dISPjw8GDRqE2082FCEiIjJR2pWCAweKie+xsWLS/qZNQKdO+vN27gQ2bADGjROhyNVVrO786CNg82YxgZnyJ/Wy1Jo1a9C/f3/MmzcPLVu2xHfffYdFixYhNjYWlStXznP+n3/+iTZt2mDGjBno1q0brl69iuHDh6NmzZrYsGFDkd6Tl6WIiMgcxMYCv/yi74T+5O/x0dH65sLx8eLPKlXUO3nebObcNG/eHE2aNMH8HJtX1K1bFyEhIZii3TAkh2nTpmH+/Pm4cOGC7rE5c+Zg6tSpuJyznW0OGRkZyMjI0N1PSUmBn58fww0REZmNJxuDHjggdlQuU0Y8P2IE8M03YmuDnH2y1NQY1Czm3Dx69AhHjhxBxyd2xOrYsSP27duX78e0aNECV65cwebNm6EoCm7cuIG1a9eia9euBb7PlClT4Orqqrv5WXIXOSIiMksajZhwPHSo2PgyNlYfbACxZ5SNjdgU9KefgNGjxWosNzexR0/OpsOWQFq4SUpKQlZWFry8vHI97uXlhes59zfPoUWLFli5ciV69+4NOzs7eHt7w83NDXPmzCnwfSZOnIjk5GTdraARHiIiInO1dKnYWPOPP4DJk8Xyc1dXID1dbIyZs9P5mDFil/Q1a0SDVjWSPlileeLioKIoeR7Tio2NxahRo/DJJ5+gU6dOSExMxPjx4zF8+HB8//33+X6Mvb097Nn8g4iIVM7RUUw41raU0TYGzbnsPDtbrNK6dw+YO1c8VqWK/lJW69ai1565kxZuypcvD2tr6zyjNDdv3swzmqM1ZcoUtGzZEuPHjwcANGzYEE5OTmjVqhUmT54MHx8fg9dNRERkDqysxE7IDRroH8vKEp3OtXN3YmJE495Ll4AffhDB6I8/9Ofv3y/azuQc+TEH0sKNnZ0dmjZtiu3bt6NHjx66x7dv347u3bvn+zH379+HzRMzo6z/7TtvYXsREhERFZutLdCrl7gBeRuDvvSS/tw7d4CgIDGXp0kT/STlli1FixNTZhJLwb/99lsEBQVhwYIFWLhwIU6dOoUqVapg4sSJuHr1KpYtWwYAWLJkCYYNG4bZs2frLkuFh4fDysoKBw4cKNJ7cik4ERHR0x09Crz6KnD1at7natQAJk4EBg82Xj1m0xW8d+/euH37NiZNmoTExETUr18fmzdvRpUqVQAAiYmJSEhI0J0fGhqK1NRUzJ07F2PHjoWbmxteeuklfPnll7L+CkRERKrUpAlw+TKQkKC/jLV3L3DypJiknNPJk6J1hHZ0JygI+PfCihTsLUVERERFpm0M2rixaAIKAHPmAKNGieOyZYG7d0s/3JjNyA0RERGZFzc3oHPn3I916gR8/bUY4SlTRu6oDcCRG9nlEBERURGYxQ7FRERERIbAcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCcENERESqYiO7AGNTFAWAaJ1ORERE5kH7c1v7c7wwFhduUlNTAQB+fn6SKyEiIqLiSk1Nhaura6HnaJSiRCAVyc7OxrVr11C2bFloNJpSfe2UlBT4+fnh8uXLcHFxKdXXJuPg19C88etn/vg1NH+G+hoqioLU1FT4+vrCyqrwWTUWN3JjZWWFSpUqGfQ9XFxc+J/SzPFraN749TN//BqaP0N8DZ82YqPFCcVERESkKgw3REREpCoMN6XI3t4en376Kezt7WWXQiXEr6F549fP/PFraP5M4WtocROKiYiISN04ckNERESqwnBDREREqsJwQ0RERKrCcENERESqwnBTSubNm4eqVavCwcEBTZs2xZ49e2SXRMUQHR2Nbt26wdfXFxqNBlFRUbJLomKYMmUKmjVrhrJly6JChQoICQnBmTNnZJdFxTB//nw0bNhQt/FbUFAQtmzZIrssKqEpU6ZAo9EgPDxcyvsz3JSCNWvWIDw8HB999BGOHTuGVq1aoUuXLkhISJBdGhVReno6GjVqhLlz58ouhUpg9+7dCAsLw/79+7F9+3ZkZmaiY8eOSE9Pl10aFVGlSpXwf//3fzh8+DAOHz6Ml156Cd27d8epU6dkl0bFdOjQISxYsAANGzaUVgOXgpeC5s2bo0mTJpg/f77usbp16yIkJARTpkyRWBmVhEajwYYNGxASEiK7FCqhW7duoUKFCti9ezdat24tuxwqIXd3d3z11VcYMmSI7FKoiNLS0tCkSRPMmzcPkydPRuPGjTFz5kyj18GRm2f06NEjHDlyBB07dsz1eMeOHbFv3z5JVRFZtuTkZADihyOZn6ysLKxevRrp6ekICgqSXQ4VQ1hYGLp27Yr27dtLrcPiGmeWtqSkJGRlZcHLyyvX415eXrh+/bqkqogsl6IoiIiIwIsvvoj69evLLoeK4eTJkwgKCsLDhw/h7OyMDRs2ICAgQHZZVESrV6/G0aNHcejQIdmlMNyUFo1Gk+u+oih5HiMiwxsxYgROnDiBP//8U3YpVEy1a9dGTEwM7t27h3Xr1mHgwIHYvXs3A44ZuHz5MkaPHo1t27bBwcFBdjkMN8+qfPnysLa2zjNKc/PmzTyjOURkWCNHjsSmTZsQHR2NSpUqyS6HisnOzg41atQAAAQGBuLQoUOYNWsWvvvuO8mV0dMcOXIEN2/eRNOmTXWPZWVlITo6GnPnzkVGRgasra2NVg/n3DwjOzs7NG3aFNu3b8/1+Pbt29GiRQtJVRFZFkVRMGLECKxfvx47d+5E1apVZZdEpUBRFGRkZMgug4rg5ZdfxsmTJxETE6O7BQYGom/fvoiJiTFqsAE4clMqIiIi0L9/fwQGBiIoKAgLFixAQkIChg8fLrs0KqK0tDScP39edz8uLg4xMTFwd3dH5cqVJVZGRREWFoYffvgBGzduRNmyZXUjqa6urihTpozk6qgoPvzwQ3Tp0gV+fn5ITU3F6tWrsWvXLmzdulV2aVQEZcuWzTPHzcnJCR4eHlLmvjHclILevXvj9u3bmDRpEhITE1G/fn1s3rwZVapUkV0aFdHhw4fRrl073f2IiAgAwMCBA7FkyRJJVVFRabdhaNu2ba7HIyMjERoaavyCqNhu3LiB/v37IzExEa6urmjYsCG2bt2KDh06yC6NzBD3uSEiIiJV4ZwbIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiUp3Q0FCEhITILoOIJGG4IaISCQ0NhUajyXPr3Lmz7NIwa9Ysk2mbodFoEBUVJbsMIovC3lJEVGKdO3dGZGRkrsfs7e0lVQNkZWVBo9HA1dVVWg1EJB9HboioxOzt7eHt7Z3rVq5cOezatQt2dnbYs2eP7tzp06ejfPnySExMBCCaXI4YMQIjRoyAm5sbPDw88PHHHyNnu7tHjx5hwoQJqFixIpycnNC8eXPs2rVL9/ySJUvg5uaGX375BQEBAbC3t8elS5fyXJZq27YtRo4cifDwcJQrVw5eXl5YsGAB0tPTMWjQIJQtWxbVq1fHli1bcv39YmNjERwcDGdnZ3h5eaF///5ISkrK9bqjRo3ChAkT4O7uDm9vb3z22We65/39/QEAPXr0gEaj0d0nIsNiuCGiUte2bVuEh4ejf//+SE5OxvHjx/HRRx9h4cKF8PHx0Z23dOlS2NjY4MCBA5g9ezZmzJiBRYsW6Z4fNGgQ9u7di9WrV+PEiRPo2bMnOnfujHPnzunOuX//PqZMmYJFixbh1KlTqFChQr41LV26FOXLl8fBgwcxcuRIvPvuu+jZsydatGiBo0ePolOnTujfvz/u378PAEhMTESbNm3QuHFjHD58GFu3bsWNGzfQq1evPK/r5OSEAwcOYOrUqZg0aRK2b98OADh06BAA0Z08MTFRd5+IDEwhIiqBgQMHKtbW1oqTk1Ou26RJkxRFUZSMjAzlueeeU3r16qXUq1dPGTp0aK6Pb9OmjVK3bl0lOztb99j777+v1K1bV1EURTl//ryi0WiUq1ev5vq4l19+WZk4caKiKIoSGRmpAFBiYmLy1Na9e/dc7/Xiiy/q7mdmZipOTk5K//79dY8lJiYqAJS//vpLURRF+c9//qN07Ngx1+tevnxZAaCcOXMm39dVFEVp1qyZ8v777+vuA1A2bNhQwGeRiAyBc26IqMTatWuH+fPn53rM3d0dAGBnZ4cVK1agYcOGqFKlCmbOnJnn41944QVoNBrd/aCgIEyfPh1ZWVk4evQoFEVBrVq1cn1MRkYGPDw8dPft7OzQsGHDp9aa8xxra2t4eHigQYMGuse8vLwAADdv3gQAHDlyBH/88QecnZ3zvNaFCxd0dT353j4+PrrXICI5GG6IqMScnJxQo0aNAp/ft28fAODOnTu4c+cOnJycivza2dnZsLa2xpEjR2BtbZ3ruZyBo0yZMrkCUkFsbW1z3ddoNLke075Gdna27s9u3brhyy+/zPNaOS+t5fe62tcgIjkYbojIIC5cuIAxY8Zg4cKF+PHHHzFgwADs2LEDVlb6qX779+/P9TH79+9HzZo1YW1tjeeeew5ZWVm4efMmWrVqZezy0aRJE6xbtw7+/v6wsSn5t0pbW1tkZWWVYmVE9DScUExEJZaRkYHr16/nuiUlJSErKwv9+/dHx44dMWjQIERGRuLvv//G9OnTc3385cuXERERgTNnzmDVqlWYM2cORo8eDQCoVasW+vbtiwEDBmD9+vWIi4vDoUOH8OWXX2Lz5s0G/7uFhYXhzp07eOutt3Dw4EFcvHgR27Ztw+DBg4sVVvz9/bFjxw5cv34dd+/eNWDFRKTFkRsiKrGtW7fmukQDALVr10afPn0QHx+Pn3/+GQDg7e2NRYsWoVevXujQoQMaN24MABgwYAAePHiA559/HtbW1hg5ciTefvtt3WtFRkZi8uTJGDt2LK5evQoPDw8EBQUhODjY4H83X19f7N27F++//z46deqEjIwMVKlSBZ07d841+vQ006dPR0REBBYuXIiKFSsiPj7ecEUTEQBAoyg5NpUgIjKStm3bonHjxvlONCYieha8LEVERESqwnBDREREqsLLUkRERKQqHLkhIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlX5fwmGSovDOsy5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", - "plt.plot(range(k_fold_splits), rmse_train, \"b--\", label = \"train loss\")\n", - "plt.plot(range(k_fold_splits), rmse_test, \"r\", label = \"test loss\")\n", + "xrange = np.arange(1, k_fold_splits + 1)\n", + "plt.plot(xrange, rmse_train, \"b--\", label = \"train loss\")\n", + "plt.plot(xrange, rmse_test, \"r\", label = \"test loss\")\n", "ax = fig.gca()\n", - "ax.set_xticks(range(k_fold_splits))\n", - "plt.xlabel(\"Experiment\")\n", + "ax.set_xticks(xrange)\n", + "plt.xlabel(\"Fold\")\n", "plt.ylabel(\"RMSE\")\n", "plt.legend()\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -1216,7 +406,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.10.0" } }, "nbformat": 4, From dd92bd392e9e27083449b39b82171b8491a84b7b Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 12:37:25 +0100 Subject: [PATCH 08/12] fixed all timeseries plots with year as x-axis and added clim --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1753 +------------------ workflow/pred_temperature_LSTM.ipynb | 60 +- workflow/pred_temperature_autoencoder.ipynb | 1158 +++++++++++- workflow/pred_temperature_transformer.ipynb | 934 +++++++++- 4 files changed, 2161 insertions(+), 1744 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 856fa05..1d5ba33 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -34,23 +34,13 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import time as tt\n", "import wandb\n", "import xarray as xr\n", @@ -87,7 +77,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -102,35 +92,9 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='07-01',\n", - " allow_overlap=True,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d')\n", - " ]\n", - ")" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# check calendar\n", "calendar" @@ -147,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -160,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -180,20 +144,9 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -212,131 +165,9 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -8 -7 \\\n", - "anchor_year \n", - "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", - "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", - "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", - "\n", - "i_interval -6 -5 \\\n", - "anchor_year \n", - "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", - "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", - "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", - "\n", - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", - "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", - "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) " - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "calendar.show()[:3]" ] @@ -351,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -375,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -396,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -414,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -452,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -480,7 +311,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -511,7 +342,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -565,19 +396,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pytorch version 2.0.1\n", - "Is CUDA available? False\n", - "Device to be used for computation: cpu\n" - ] - } - ], + "outputs": [], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -597,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -636,7 +457,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -657,45 +478,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model details:\n", - " LSTM(\n", - " (lstm): LSTM(65, 130, num_layers=2, batch_first=True)\n", - " (linear): Linear(in_features=130, out_features=1, bias=True)\n", - ")\n", - "Optimizer details:\n", - " Adam (\n", - "Parameter Group 0\n", - " amsgrad: False\n", - " betas: (0.9, 0.999)\n", - " capturable: False\n", - " differentiable: False\n", - " eps: 1e-08\n", - " foreach: None\n", - " fused: None\n", - " lr: 0.02\n", - " maximize: False\n", - " weight_decay: 0\n", - ")\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Initialize model\n", "model = LSTM(input_dim = config[\"input_dim\"],\n", @@ -724,1367 +509,9 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 503.178345\n", - "Epoch : 0 [4/36(11%)]\tLoss: 457.924194\n", - "Epoch : 0 [8/36(22%)]\tLoss: 360.173706\n", - "Epoch : 0 [12/36(33%)]\tLoss: 267.052551\n", - "Epoch : 0 [16/36(44%)]\tLoss: 312.387878\n", - "Epoch : 0 [20/36(56%)]\tLoss: 174.208801\n", - "Epoch : 0 [24/36(67%)]\tLoss: 117.404907\n", - "Epoch : 0 [28/36(78%)]\tLoss: 76.204758\n", - "Epoch : 0 [32/36(89%)]\tLoss: 47.436565\n", - "Epoch : 1 [0/36(0%)]\tLoss: 17.978914\n", - "Epoch : 1 [4/36(11%)]\tLoss: 5.041893\n", - "Epoch : 1 [8/36(22%)]\tLoss: 0.822194\n", - "Epoch : 1 [12/36(33%)]\tLoss: 2.056358\n", - "Epoch : 1 [16/36(44%)]\tLoss: 5.545856\n", - "Epoch : 1 [20/36(56%)]\tLoss: 10.134520\n", - "Epoch : 1 [24/36(67%)]\tLoss: 17.314133\n", - "Epoch : 1 [28/36(78%)]\tLoss: 23.840561\n", - "Epoch : 1 [32/36(89%)]\tLoss: 24.329853\n", - "Epoch : 2 [0/36(0%)]\tLoss: 27.401665\n", - "Epoch : 2 [4/36(11%)]\tLoss: 25.906647\n", - "Epoch : 2 [8/36(22%)]\tLoss: 17.193579\n", - "Epoch : 2 [12/36(33%)]\tLoss: 15.565414\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.191076\n", - "Epoch : 2 [20/36(56%)]\tLoss: 4.808751\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.932098\n", - "Epoch : 2 [28/36(78%)]\tLoss: 2.422240\n", - "Epoch : 2 [32/36(89%)]\tLoss: 1.781340\n", - "Epoch : 3 [0/36(0%)]\tLoss: 0.230404\n", - "Epoch : 3 [4/36(11%)]\tLoss: 0.962230\n", - "Epoch : 3 [8/36(22%)]\tLoss: 2.848607\n", - "Epoch : 3 [12/36(33%)]\tLoss: 2.919164\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.528171\n", - "Epoch : 3 [20/36(56%)]\tLoss: 9.339956\n", - "Epoch : 3 [24/36(67%)]\tLoss: 7.123151\n", - "Epoch : 3 [28/36(78%)]\tLoss: 4.986446\n", - "Epoch : 3 [32/36(89%)]\tLoss: 5.238743\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.415620\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.202363\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.225445\n", - "Epoch : 4 [12/36(33%)]\tLoss: 0.408883\n", - "Epoch : 4 [16/36(44%)]\tLoss: 0.977273\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.771851\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.200103\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.004102\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.420876\n", - "Epoch : 5 [0/36(0%)]\tLoss: 2.370485\n", - "Epoch : 5 [4/36(11%)]\tLoss: 3.113795\n", - "Epoch : 5 [8/36(22%)]\tLoss: 1.371114\n", - "Epoch : 5 [12/36(33%)]\tLoss: 1.877741\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.076646\n", - "Epoch : 5 [20/36(56%)]\tLoss: 1.543281\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.147942\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.468159\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.725366\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.366017\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.737038\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.581998\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.399940\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.485980\n", - "Epoch : 6 [20/36(56%)]\tLoss: 2.856046\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.685582\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.491078\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.966711\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.243580\n", - "Epoch : 7 [4/36(11%)]\tLoss: 0.734068\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.394242\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.441483\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.758439\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.633475\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.077462\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.427599\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.761415\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.734514\n", - "Epoch : 8 [4/36(11%)]\tLoss: 1.214020\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.380743\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.559149\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.747551\n", - "Epoch : 8 [20/36(56%)]\tLoss: 1.705707\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.118988\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.319830\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.774456\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.302211\n", - "Epoch : 9 [4/36(11%)]\tLoss: 0.724784\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.390431\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.395785\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.856209\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.863278\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.071814\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.319270\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.741389\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.415760\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.918707\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.336921\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.518177\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.718241\n", - "Epoch : 10 [20/36(56%)]\tLoss: 1.580044\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.937096\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.326185\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.732777\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.416417\n", - "Epoch : 11 [4/36(11%)]\tLoss: 0.861934\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.329564\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.462502\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.748910\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.674610\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.966996\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.321697\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.762546\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.349526\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.806388\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.322133\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.486105\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.714322\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.548378\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.889888\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.319382\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.748087\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.393181\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.852129\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.311861\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.509217\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.693244\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.519646\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.867711\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.320597\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.759588\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.351083\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.813959\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.310924\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.513126\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.666297\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.463923\n", - "Epoch : 14 [24/36(67%)]\tLoss: 0.823535\n", - "Epoch : 14 [28/36(78%)]\tLoss: 1.313078\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.752797\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.367629\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.826174\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.316144\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.551270\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.604624\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.386365\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.744200\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.276119\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.747335\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.203675\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.700023\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.429016\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.481342\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.619850\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.367613\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.673022\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.273382\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.689480\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.647690\n", - "Epoch : 17 [4/36(11%)]\tLoss: 1.303180\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.399097\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.867957\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.406226\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.090443\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.709065\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.275817\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.830320\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.268906\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.728838\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.435796\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.461821\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.435040\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.087052\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.569893\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.319282\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.733701\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.430666\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.904162\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.330532\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.470367\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.339455\n", - "Epoch : 19 [20/36(56%)]\tLoss: 0.977162\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.533471\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.336241\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.800457\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.271176\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.692506\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.418219\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.473269\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.364341\n", - "Epoch : 20 [20/36(56%)]\tLoss: 0.873214\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.423143\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.313610\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.715056\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.391481\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.814590\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.202729\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.468928\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.240356\n", - "Epoch : 21 [20/36(56%)]\tLoss: 0.771711\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.340132\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.420958\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.960288\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.233866\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.694798\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.347781\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.388731\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.321078\n", - "Epoch : 22 [20/36(56%)]\tLoss: 0.678515\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.370469\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.320091\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.737368\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.379971\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.805473\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.233908\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.557117\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.155161\n", - "Epoch : 23 [20/36(56%)]\tLoss: 0.582319\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.307136\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.586828\n", - "Epoch : 23 [32/36(89%)]\tLoss: 2.167473\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.232640\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.674496\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.282630\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.353972\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.199448\n", - "Epoch : 24 [20/36(56%)]\tLoss: 0.606161\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.394137\n", - "Epoch : 24 [28/36(78%)]\tLoss: 0.939639\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.726236\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.584586\n", - "Epoch : 25 [4/36(11%)]\tLoss: 1.019323\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.279715\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.496717\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.186185\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.643835\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.331512\n", - "Epoch : 25 [28/36(78%)]\tLoss: 2.531025\n", - "Epoch : 25 [32/36(89%)]\tLoss: 2.052746\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.228698\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.611918\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.234595\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.490427\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.193442\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.522645\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.444204\n", - "Epoch : 26 [28/36(78%)]\tLoss: 1.320444\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.824135\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.263970\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.650282\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.294387\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.389462\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.137373\n", - "Epoch : 27 [20/36(56%)]\tLoss: 0.509940\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.292775\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.376208\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.916585\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.244145\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.709825\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.176946\n", - "Epoch : 28 [12/36(33%)]\tLoss: 145.015121\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.100105\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.609050\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.305911\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.461711\n", - "Epoch : 28 [32/36(89%)]\tLoss: 2.020985\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.229414\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.614445\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.127927\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.373865\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.157635\n", - "Epoch : 29 [20/36(56%)]\tLoss: 0.439078\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.334122\n", - "Epoch : 29 [28/36(78%)]\tLoss: 1.338353\n", - "Epoch : 29 [32/36(89%)]\tLoss: 1.751005\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.267305\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.905187\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.283059\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.558009\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.159822\n", - "Epoch : 30 [20/36(56%)]\tLoss: 0.317310\n", - "Epoch : 30 [24/36(67%)]\tLoss: 1.087021\n", - "Epoch : 30 [28/36(78%)]\tLoss: 1.941854\n", - "Epoch : 30 [32/36(89%)]\tLoss: 2.437685\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.236174\n", - "Epoch : 31 [4/36(11%)]\tLoss: 1.044965\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.378517\n", - "Epoch : 31 [12/36(33%)]\tLoss: 1.405712\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.520493\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.323836\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.248294\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.151715\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.937806\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.225004\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.646947\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.485586\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.360529\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.243632\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.251156\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.234266\n", - "Epoch : 32 [28/36(78%)]\tLoss: 1.217214\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.908403\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.249206\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.695857\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.300963\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.540238\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.176402\n", - "Epoch : 33 [20/36(56%)]\tLoss: 0.424893\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.233285\n", - "Epoch : 33 [28/36(78%)]\tLoss: 1.205938\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.980837\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.225400\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.594547\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.306091\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.373396\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.407281\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.257345\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.201874\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.123373\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.957004\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.233791\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.700010\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.361034\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.313492\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.576694\n", - "Epoch : 35 [20/36(56%)]\tLoss: 1.114911\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.620049\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.273666\n", - "Epoch : 35 [32/36(89%)]\tLoss: 1.708840\n", - "Epoch : 36 [0/36(0%)]\tLoss: 1.229454\n", - "Epoch : 36 [4/36(11%)]\tLoss: 1.290738\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.463947\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.538113\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.876014\n", - "Epoch : 36 [20/36(56%)]\tLoss: 2.363982\n", - "Epoch : 36 [24/36(67%)]\tLoss: 1.280424\n", - "Epoch : 36 [28/36(78%)]\tLoss: 1.437995\n", - "Epoch : 36 [32/36(89%)]\tLoss: 1.820354\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.316190\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.807350\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.189287\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.535133\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.680069\n", - "Epoch : 37 [20/36(56%)]\tLoss: 1.723880\n", - "Epoch : 37 [24/36(67%)]\tLoss: 1.069982\n", - "Epoch : 37 [28/36(78%)]\tLoss: 1.322038\n", - "Epoch : 37 [32/36(89%)]\tLoss: 1.614946\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.422661\n", - "Epoch : 38 [4/36(11%)]\tLoss: 1.009917\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.212094\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.353738\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.793585\n", - "Epoch : 38 [20/36(56%)]\tLoss: 1.362756\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.606379\n", - "Epoch : 38 [28/36(78%)]\tLoss: 1.390654\n", - "Epoch : 38 [32/36(89%)]\tLoss: 1.361518\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.273852\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.717453\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.273761\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.493903\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.545373\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.914425\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.271769\n", - "Epoch : 39 [28/36(78%)]\tLoss: 1.354388\n", - "Epoch : 39 [32/36(89%)]\tLoss: 1.166714\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.292110\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.749744\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.173272\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.643247\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.620165\n", - "Epoch : 40 [20/36(56%)]\tLoss: 1.107056\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.341826\n", - "Epoch : 40 [28/36(78%)]\tLoss: 1.316162\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.012212\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.239238\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.701892\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.224737\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.669942\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.251357\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.609222\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.260417\n", - "Epoch : 41 [28/36(78%)]\tLoss: 1.367832\n", - "Epoch : 41 [32/36(89%)]\tLoss: 1.687828\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.224218\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.435441\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.264067\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.570626\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.579580\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.419082\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.446059\n", - "Epoch : 42 [28/36(78%)]\tLoss: 1.212990\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.981847\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.242047\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.428969\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.382768\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.214054\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.294550\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.250901\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.257606\n", - "Epoch : 43 [28/36(78%)]\tLoss: 1.241180\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.853346\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.244013\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.343569\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.179504\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.288435\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.274510\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.670702\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.240100\n", - "Epoch : 44 [28/36(78%)]\tLoss: 1.044821\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.740691\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.195253\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.461094\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.217756\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.535302\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.296258\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.311963\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.159988\n", - "Epoch : 45 [28/36(78%)]\tLoss: 1.186778\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.820004\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.239005\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.460044\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.221026\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.199157\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.241614\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.120257\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.134094\n", - "Epoch : 46 [28/36(78%)]\tLoss: 1.437921\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.741662\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.227553\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.512453\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.125251\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.388277\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.218701\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.226003\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.336060\n", - "Epoch : 47 [28/36(78%)]\tLoss: 1.278245\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.786286\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.279427\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.485421\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.270122\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.229801\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.231037\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.213490\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.484043\n", - "Epoch : 48 [28/36(78%)]\tLoss: 1.140589\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.418549\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.239889\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.442337\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.204896\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.378016\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.279093\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.224107\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.080197\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.909222\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.312700\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.239270\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.441070\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.125483\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.636142\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.312729\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.026864\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.165640\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.935623\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.578310\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.551905\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.344370\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.102759\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.465916\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.338024\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.063835\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.603642\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.562386\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.509238\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.471082\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.329474\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.204140\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.229005\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.396720\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.047237\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.441175\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.997307\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.330256\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.313362\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.283678\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.191889\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.182189\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.233585\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.054125\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.172834\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.835944\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.303751\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.190035\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.380003\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.145438\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.024641\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.252931\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.182542\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.128258\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.899256\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.275700\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.182236\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.370744\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.110807\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.161528\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.389434\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.027345\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.218906\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.870497\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.151483\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.184581\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.285398\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.245891\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.026604\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.330179\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.034387\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.232804\n", - "Epoch : 56 [28/36(78%)]\tLoss: 0.512839\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.046992\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.147107\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.261400\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.195394\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.162001\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.195808\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.019405\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.201627\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.595176\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.108039\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.165265\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.257418\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.165311\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.170014\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.110672\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.096310\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.103812\n", - "Epoch : 58 [28/36(78%)]\tLoss: 0.560958\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.042310\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.101775\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.296771\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.053257\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.041769\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.101384\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.052617\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.107140\n", - "Epoch : 59 [28/36(78%)]\tLoss: 0.525252\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.042948\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.106764\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.221106\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.073584\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.050138\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.056112\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.046304\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.212153\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.620759\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.057369\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.088309\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.200086\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.137862\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.182453\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.144738\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.045997\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.153667\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.612423\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.088354\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.120547\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.250232\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.091194\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.094404\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.141051\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.099035\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.143107\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.516202\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.040306\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.120427\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.263418\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.017005\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.024935\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.052078\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.087749\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.093480\n", - "Epoch : 63 [28/36(78%)]\tLoss: 0.459202\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.034149\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.110469\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.251491\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.017651\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.078758\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.071442\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.116787\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.053752\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.320198\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.058729\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.102869\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.191737\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.100408\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.131954\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.028141\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.130830\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.047525\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.232110\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.236489\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.230697\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.203834\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.070551\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.564120\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.094035\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.058618\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.067648\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.229017\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.230216\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.277089\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.249396\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.123751\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.004391\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.087248\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.178111\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.252284\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.490447\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.027011\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.124999\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.201652\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.426717\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.312224\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.149630\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.195675\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.311867\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.817156\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.123012\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.104120\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.177279\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.131101\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.211594\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.289513\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.225336\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.094179\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.443788\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.160347\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.251355\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.303139\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.234794\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.012494\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.108769\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.470565\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.232539\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.722723\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.129887\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.132576\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.633786\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.147029\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.452759\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.143295\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.016448\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.150644\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.974577\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.518207\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.412108\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.315837\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.091829\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.226914\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.350459\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.291452\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.198820\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.893304\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.063850\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.447456\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.555277\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.217952\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.127995\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.023428\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.065326\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.287312\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.705237\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.115809\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.041775\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.496800\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.391117\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.296389\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.034597\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.115208\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.126644\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.586886\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.102113\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.033605\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.484420\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.161815\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.165903\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.090231\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.028259\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.048657\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.453014\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.057995\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.044505\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.382405\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.039811\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.089067\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.102414\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.068165\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.101849\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.468232\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.117198\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.024324\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.239014\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.127863\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.064564\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.082732\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.038194\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.036165\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.460943\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.022184\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.032318\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.161347\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.053221\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.014750\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.052786\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.013113\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.033532\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.594814\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.032485\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.097318\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.275161\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.083925\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.011849\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.044999\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.006125\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.100468\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.501644\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.011094\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.077271\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.133353\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.065654\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.014418\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.020564\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.034509\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.020265\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.344038\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.010591\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.032579\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.153787\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.062211\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.026991\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.039985\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.053290\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.023552\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.239686\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.023532\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.026329\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.235256\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.016865\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.015905\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.053099\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.021916\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.010988\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.204743\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.011291\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.020749\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.139108\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.036798\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.032654\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.043080\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.024879\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.027339\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.454378\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.020734\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.018680\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.128275\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.040437\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.064291\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.070596\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.042206\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.003816\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.284550\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.049931\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.100442\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.138152\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.030553\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.133993\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.046445\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.036057\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.017925\n", - "Epoch : 85 [28/36(78%)]\tLoss: 0.302239\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.028228\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.016384\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.140373\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.021901\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.024603\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.058770\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.031765\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.006684\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.163186\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.040923\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.007179\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.162918\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.017663\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.029812\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.044094\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.055710\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.002356\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.180908\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.039728\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.025067\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.139175\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.022675\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.024480\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.039568\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.016457\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.029376\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.244765\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.019179\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.021523\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.109931\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.028939\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.017397\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.030944\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.023687\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.011119\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.207417\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.012758\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.087568\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.117876\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.016464\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.011482\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.020931\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.029594\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.031208\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.141839\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.029830\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.010242\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.119751\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.020603\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.011215\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.055416\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.012234\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.009746\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.239964\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.063593\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.003935\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.169979\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.019174\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.006296\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.069233\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.019702\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.003036\n", - "Epoch : 92 [28/36(78%)]\tLoss: 0.343634\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.061155\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.038265\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.228213\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.075801\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.046396\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.033194\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.015084\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.065155\n", - "Epoch : 93 [28/36(78%)]\tLoss: 0.353255\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.043230\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.015026\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.121735\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.046515\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.101432\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.090944\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.071311\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.006578\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.324356\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.114163\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.142309\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.102048\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.009287\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.041881\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.134287\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.093013\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.000116\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.296137\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.010974\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.007859\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.152626\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.032190\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.019116\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.038347\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.103540\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.034633\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.268095\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.156101\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.035093\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.196963\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.189158\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.278087\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.184788\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.036564\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.071729\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.312853\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.163874\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.057978\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.192524\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.027074\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.054705\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.253052\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.028499\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.013431\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.211210\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.108856\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.042065\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.240247\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.165172\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.025447\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.066070\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.036935\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.133403\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.435766\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.026751\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.004907\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.215268\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.299957\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.137765\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.050819\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.022497\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.064850\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.468282\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.252081\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.041759\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.154451\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.070899\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.208340\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.065484\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.053085\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.011135\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.279662\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.106936\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.076599\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.169017\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.062297\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.078071\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.063212\n", - "Epoch : 102 [20/36(56%)]\tLoss: 0.223816\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.015072\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.294487\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.023091\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.136737\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.129450\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.028825\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.035214\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.067138\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.062083\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.015474\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.272009\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.019668\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.014475\n", - "Epoch : 104 [4/36(11%)]\tLoss: 0.134410\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.020068\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.062479\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.017078\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.048808\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.000608\n", - "Epoch : 104 [28/36(78%)]\tLoss: 0.228868\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.014226\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.065258\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.143710\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.027483\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.011561\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.028689\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.060611\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.028119\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.335211\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.065576\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.028896\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.119552\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.022030\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.026103\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.088798\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.028337\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.036825\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.149138\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.110833\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.021898\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.130819\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.017771\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.023368\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.115815\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.050631\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.000479\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.169841\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.085578\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.186990\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.143928\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.018801\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.031663\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.134477\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.031736\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.007679\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.170105\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.068340\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.030620\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.195154\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.030833\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.013435\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.065152\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.005027\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.017383\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.256841\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.021440\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.022482\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.167479\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.044958\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.072255\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.014452\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.020203\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.011073\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.457233\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.013430\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.037443\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.142633\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.039317\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.065895\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.027505\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.044275\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.044781\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.189712\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.020125\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.011625\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.117130\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.069379\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.010729\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.019206\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.016791\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.032728\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.254117\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.067671\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.035955\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.117537\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.026061\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.013356\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.052902\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.033630\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.000485\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.181283\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.048052\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.018790\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.152216\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.031689\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.012718\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.064522\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.022529\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.049934\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.362005\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.026577\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.071428\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.173358\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.043168\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.108363\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.013408\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.029815\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.032562\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.305786\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.254842\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.020899\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.179398\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.050830\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.047090\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.011188\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.027738\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.020067\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.323177\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.044193\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.009663\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.127132\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.027926\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.042515\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.015308\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.055785\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.000929\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.324059\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.036442\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.051456\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.122848\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.111864\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.059237\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.011248\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.062339\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.181747\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.137391\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.075956\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.060288\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.130628\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.108127\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.026640\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.060414\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.009358\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.049313\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.274916\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.181477\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.111186\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.148061\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.065392\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.087524\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.212177\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.093112\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.034176\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.164706\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.282813\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.024223\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.212002\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.031036\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.104365\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.033590\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.042313\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.025873\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.304567\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.159777\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.146732\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.310799\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.151920\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.017637\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.079121\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.125782\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.073754\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.325736\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.033178\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.238237\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.227425\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.052256\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.020045\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.117079\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.044384\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.060985\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.323698\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.036308\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.061263\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.311642\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.195866\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.118993\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.010432\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.001197\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.035190\n", - "Epoch : 124 [28/36(78%)]\tLoss: 0.335447\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.156186\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.196833\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.174737\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.125885\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.109811\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.064658\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.053605\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.042991\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.545270\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.062709\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.088962\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.145869\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.108022\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.121428\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.025515\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.084098\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.000495\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.279945\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.163778\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.140329\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.121367\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.012044\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.031375\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.017761\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.128774\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.029009\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.195271\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.051530\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.075845\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.166814\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.060886\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.018845\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.020374\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.044682\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.134486\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.196333\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.207644\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.015231\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.162790\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.234627\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.143064\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.194302\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.030634\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.115640\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.469535\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.383690\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.029778\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.126775\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.156875\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.209336\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.306612\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.089005\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.062917\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.259386\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.471272\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.300310\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.170941\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.042751\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.111729\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.296071\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.369457\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.054395\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.491294\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.099348\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.148014\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.266024\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.029238\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.048622\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.115927\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.259786\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.044733\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.280872\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.067169\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.208407\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.219595\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.039789\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.032128\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.112294\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.108873\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.142538\n", - "Epoch : 133 [28/36(78%)]\tLoss: 0.299966\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.067290\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.077977\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.602418\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.285343\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.301284\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.118943\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.037711\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.351414\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.690217\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.122347\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.179407\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.368611\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.447390\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.573371\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.142610\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.076752\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.091456\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.501237\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.425766\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.344495\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.425801\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.304393\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.643385\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.260239\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.108308\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.052601\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.417574\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.538874\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.337470\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.225723\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.181831\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.227077\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.252939\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.154232\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.056429\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.203698\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.085032\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.280657\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.348434\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.077367\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.353557\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.242745\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.377659\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.326760\n", - "Epoch : 138 [28/36(78%)]\tLoss: 0.261116\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.039732\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.172420\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.551046\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.468180\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.208500\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.070513\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.273778\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.665008\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.504763\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.100592\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.161505\n", - "Epoch : 140 [4/36(11%)]\tLoss: 0.490944\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.118742\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.150294\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.024130\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.041191\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.144893\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.174645\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.190375\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.184361\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.175660\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.052373\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.126840\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.048932\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.004078\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.208174\n", - "Epoch : 141 [28/36(78%)]\tLoss: 0.438563\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.315590\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.212502\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.388865\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.554425\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.385303\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.237346\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.005521\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.285374\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.547101\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.718612\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.158075\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.095546\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.277150\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.452845\n", - "Epoch : 143 [16/36(44%)]\tLoss: 1.107589\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.765814\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.479638\n", - "Epoch : 143 [28/36(78%)]\tLoss: 1.295234\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.830299\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.668582\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.479996\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.340356\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.417905\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.773232\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.701948\n", - "Epoch : 144 [24/36(67%)]\tLoss: 1.850685\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.557239\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.229089\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.755722\n", - "Epoch : 145 [4/36(11%)]\tLoss: 1.502325\n", - "Epoch : 145 [8/36(22%)]\tLoss: 1.834995\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.601102\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.430494\n", - "Epoch : 145 [20/36(56%)]\tLoss: 1.055566\n", - "Epoch : 145 [24/36(67%)]\tLoss: 2.952103\n", - "Epoch : 145 [28/36(78%)]\tLoss: 1.551479\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.474689\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.386815\n", - "Epoch : 146 [4/36(11%)]\tLoss: 1.568366\n", - "Epoch : 146 [8/36(22%)]\tLoss: 3.858020\n", - "Epoch : 146 [12/36(33%)]\tLoss: 1.904857\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.398824\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.066750\n", - "Epoch : 146 [24/36(67%)]\tLoss: 1.324936\n", - "Epoch : 146 [28/36(78%)]\tLoss: 2.532109\n", - "Epoch : 146 [32/36(89%)]\tLoss: 4.765606\n", - "Epoch : 147 [0/36(0%)]\tLoss: 1.457372\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.556567\n", - "Epoch : 147 [8/36(22%)]\tLoss: 2.292585\n", - "Epoch : 147 [12/36(33%)]\tLoss: 4.161591\n", - "Epoch : 147 [16/36(44%)]\tLoss: 5.659739\n", - "Epoch : 147 [20/36(56%)]\tLoss: 1.782422\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.591082\n", - "Epoch : 147 [28/36(78%)]\tLoss: 3.539562\n", - "Epoch : 147 [32/36(89%)]\tLoss: 7.365869\n", - "Epoch : 148 [0/36(0%)]\tLoss: 3.606438\n", - "Epoch : 148 [4/36(11%)]\tLoss: 1.306701\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.880968\n", - "Epoch : 148 [12/36(33%)]\tLoss: 2.374666\n", - "Epoch : 148 [16/36(44%)]\tLoss: 6.808629\n", - "Epoch : 148 [20/36(56%)]\tLoss: 4.629188\n", - "Epoch : 148 [24/36(67%)]\tLoss: 1.138486\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.973117\n", - "Epoch : 148 [32/36(89%)]\tLoss: 5.704468\n", - "Epoch : 149 [0/36(0%)]\tLoss: 6.284386\n", - "Epoch : 149 [4/36(11%)]\tLoss: 3.748318\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.304721\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.828287\n", - "Epoch : 149 [16/36(44%)]\tLoss: 4.537404\n", - "Epoch : 149 [20/36(56%)]\tLoss: 6.042223\n", - "Epoch : 149 [24/36(67%)]\tLoss: 2.609040\n", - "Epoch : 149 [28/36(78%)]\tLoss: 0.530469\n", - "Epoch : 149 [32/36(89%)]\tLoss: 2.557973\n", - "--- 0.08562923272450765 minutes ---\n" - ] - } - ], + "outputs": [], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -2145,20 +572,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGI0lEQVR4nOzdd3hT5fsG8DstnXSyWsooyC57gwiUoYiKLBcuUARHWYKK/FBAUFEcIFJFEcGFXycoDhAQ2Qiy99CyKbstLbSl7fn98fTNSdp0pE16kvb+XFevk5ykJ29L6Ml9nneYNE3TQEREREREREQlysPoBhARERERERGVRQzkRERERERERAZgICciIiIiIiIyAAM5ERERERERkQEYyImIiIiIiIgMwEBOREREREREZAAGciIiIiIiIiIDMJATERERERERGYCBnIiIiIiIiMgADORERERERG4oOjoa0dHRhX5ukyZNnNugbLVq1cKQIUNK5LWI3B0DOVEZsnDhQphMJphMJqxfvz7X45qmoUaNGjCZTLjrrrvM+5OTkzF58mQ0adIE5cuXR8WKFdGiRQuMHj0aZ86cMT9vypQp5uPb+oqPjy+Rn5OIiKiw1Lnxn3/+MbopxXbmzBlMmTIFO3fuNLopDlOrVi2YTCb07NnT5uPz5s0zf87I+W+4fv169O7dG9WqVYOvry9q1qyJPn36YNGiRVbPy++zy1NPPeW0n40IAMoZ3QAiKnm+vr5YtGgRbrnlFqv9a9aswalTp+Dj42Ped+PGDXTp0gUHDx7E4MGDMXLkSCQnJ2Pfvn1YtGgR+vfvj4iICKvjfPjhhwgICMj1uiEhIU75eYiIiMqiP/74w+r+mTNn8Morr6BWrVpo0aKFMY0CcOjQIXh4OK7u5+vri9WrVyM+Ph7h4eFWj3311Vfw9fVFamqq1f7vvvsO999/v7mAEBoairi4OKxduxbz5s3Dgw8+aPX8W2+9FY8++miu165fv77Dfg4iWxjIicqgO+64A9999x1mz56NcuX0PwOLFi1C69atcfHiRfO+JUuWYMeOHfjqq69ynbxSU1ORnp6e6/j33HMPKlWq5LwfgIiIqAy7du0a/P394e3tbXRTbLK8sO8InTp1wtatW/HNN99g9OjR5v2nTp3CunXr0L9/f/zwww9W3zNlyhRERUVh8+bNuX5P58+fz/Ua9evXx8MPP+zQdhMVBrusE5VBgwYNwqVLl7BixQrzvvT0dHz//fe5Qve///4LQE6GOfn6+iIoKMi5jSUiInIBO3bsQO/evREUFISAgAD06NEDmzdvzvW83bt3o2vXrvDz80P16tXx6quvYsGCBTCZTDh27Jj5eT/99BPuvPNOREREwMfHB3Xq1MG0adOQmZlpdTw19nvbtm3o0qUL/P398X//93/mx9QY8r/++gtt27YFADz22GPmLtcLFy60Ot7+/fvRrVs3+Pv7o1q1apgxY4bV43/99RdMJhO+/fZbvPLKK6hWrRoCAwNxzz33IDExEWlpaRgzZgyqVKmCgIAAPPbYY0hLS7M6hq0x5AkJCXj22WdRq1Yt+Pj4oHr16nj00UetigB58fX1xYABA3J1Nf/6668RGhqKXr165fqef//9F23btrV50aJKlSoFviZRSWGFnKgMqlWrFjp27Iivv/4avXv3BgD8/vvvSExMxAMPPIDZs2ebnxsZGQkA+Pzzz/HSSy/BZDIVePzLly/n2leuXDl2WSciIre0b98+dO7cGUFBQXjhhRfg5eWFjz76CNHR0VizZg3at28PADh9+jS6desGk8mECRMmoHz58vjkk09sVowXLlyIgIAAjB07FgEBAfjzzz8xadIkJCUl4a233rJ67qVLl9C7d2888MADePjhhxEWFpbreI0aNcLUqVMxadIkDB8+HJ07dwYA3HzzzebnXLlyBbfffjsGDBiA++67D99//z3Gjx+Ppk2bmj8PKNOnT4efnx9efPFFHD16FO+//z68vLzg4eGBK1euYMqUKdi8eTMWLlyI2rVrY9KkSXn+/pKTk9G5c2ccOHAAjz/+OFq1aoWLFy/i559/xqlTpwrVq+7BBx/Ebbfdhn///Rd16tQBID377rnnHnh5eeV6fmRkJFatWoVTp06hevXqBR4/NTXV5sWBoKAgl+2JQKWERkRlxoIFCzQA2tatW7U5c+ZogYGB2rVr1zRN07R7771X69atm6ZpmhYZGandeeedmqZp2rVr17QGDRpoALTIyEhtyJAh2vz587Vz587lOv7kyZM1ADa/GjRoUHI/KBERUSFZnhvz0q9fP83b21v7999/zfvOnDmjBQYGal26dDHvGzlypGYymbQdO3aY9126dEmrUKGCBkCLi4sz71fnX0tPPvmk5u/vr6Wmppr3de3aVQOgzZ07N9fzu3btqnXt2tV8f+vWrRoAbcGCBTafC0D7/PPPzfvS0tK08PBwbeDAgeZ9q1ev1gBoTZo00dLT0837Bw0apJlMJq13795Wx+3YsaMWGRlptS8yMlIbPHiw+f6kSZM0ANqPP/6Yq11ZWVm59uU81p133qllZGRo4eHh2rRp0zRN07T9+/drALQ1a9bY/DecP3++BkDz9vbWunXrpr388svaunXrtMzMzFyvkddnFwDa119/nW/7iIqLXdaJyqj77rsP169fxy+//IKrV6/il19+ydVdHQD8/Pzw999/4/nnnwcgV/SHDh2KqlWrYuTIkbm6qQHADz/8gBUrVlh9LViwwOk/ExERkaNlZmbijz/+QL9+/XDTTTeZ91etWhUPPvgg1q9fj6SkJADAsmXL0LFjR6sJ1SpUqICHHnoo13H9/PzMt69evYqLFy+ic+fOuHbtGg4ePGj1XB8fHzz22GPF/lkCAgKsxkl7e3ujXbt2+O+//3I999FHH7WqPLdv3x6apuHxxx+3el779u1x8uRJZGRk5Pm6P/zwA5o3b47+/fvneqwwPe8AwNPTE/fddx++/vprADKZW40aNcw9AXJ6/PHHsWzZMkRHR2P9+vWYNm0aOnfujHr16mHjxo25nt+3b99cn11WrFiBbt26Fap9REXFLutEZVTlypXRs2dPLFq0CNeuXUNmZibuuecem88NDg7GjBkzMGPGDBw/fhyrVq3C22+/jTlz5iA4OBivvvqq1fO7dOnCSd2IiKhUuHDhAq5du4YGDRrkeqxRo0bIysrCyZMn0bhxYxw/fhwdO3bM9by6devm2rdv3z689NJL+PPPP82BXklMTLS6X61aNYd0m65evXquABwaGordu3fnem7NmjWt7gcHBwMAatSokWt/VlYWEhMTUbFiRZuv+++//2LgwIHFaToA6bY+e/Zs7Nq1C4sWLcIDDzyQb6Dv1asXevXqhWvXrmHbtm345ptvMHfuXNx11104ePCg1Vjy6tWr57m0GpEzsUJOVIY9+OCD+P333zF37lz07t27UGO8IyMj8fjjj2PDhg0ICQnBV1995fyGEhERlSIJCQno2rUrdu3ahalTp2Lp0qVYsWIF3nzzTQBAVlaW1fMtq+nF4enpaXO/pmmFfq49x3C09u3bo06dOhgzZgzi4uJs9uyzxd/fH507d8acOXPw0ksv4cqVK/j999+d3FqiwmGFnKgM69+/P5588kls3rwZ33zzjV3fGxoaijp16mDv3r1Oah0REZHxKleuDH9/fxw6dCjXYwcPHoSHh4e5ahwZGYmjR4/mel7OfX/99RcuXbqEH3/8EV26dDHvj4uLK1ZbC9v9u6Q58vPCoEGD8Oqrr6JRo0ZFWmu9TZs2AICzZ886pD1ExcUKOVEZFhAQgA8//BBTpkxBnz59bD5n165dNmcdPX78OPbv32+zCx8REVFp4enpidtuuw0//fST1bJl586dw6JFi3DLLbeYlwDt1asXNm3ahJ07d5qfd/ny5Vy9yVSV2bKqnJ6ejg8++KBYbS1fvjwAqcC7koEDB2LXrl1YvHhxrsfsraw/8cQTmDx5Mt555518n7dq1Sqb+3/77TcA4OcXchmskBOVcYMHD8738RUrVmDy5Mm4++670aFDBwQEBOC///7Dp59+irS0NEyZMiXX93z//fcICAjItf/WW2+1uVQLERGR0T799FMsW7Ys1/7Ro0fj1VdfxYoVK3DLLbfgmWeeQbly5fDRRx8hLS3Nah3vF154AV9++SVuvfVWjBw50rzsWc2aNXH58mVzBfvmm29GaGgoBg8ejFGjRsFkMuGLL74odrfvOnXqICQkBHPnzkVgYCDKly+P9u3bo3bt2sU6bnE9//zz+P7773Hvvffi8ccfR+vWrXH58mX8/PPPmDt3Lpo3b17oY0VGRtr87JFT3759Ubt2bfTp0wd16tRBSkoKVq5ciaVLl6Jt27a5ChGHDx/Gl19+mes4YWFhuPXWWwvdPiJ7MZATUb4GDhyIq1ev4o8//sCff/6Jy5cvIzQ0FO3atcO4ceNszj769NNP2zzW6tWrGciJiMglffjhhzb3DxkyBI0bN8a6deswYcIETJ8+HVlZWWjfvj2+/PJL8xrkgEx4tnr1aowaNQqvv/46KleujJiYGJQvXx6jRo2Cr68vAKBixYr45ZdfMG7cOLz00ksIDQ3Fww8/jB49eqBXr15F/hm8vLzw2WefYcKECXjqqaeQkZGBBQsWGB7IAwICsG7dOkyePBmLFy/GZ599hipVqqBHjx6FWiO8KD755BP89NNP+Pbbb3HmzBlomoabbroJEydOxPjx41GunHUMUrOq59S1a1cGcnIqk1YSMzAQEREREZVRY8aMwUcffYTk5OQ8J0UjorKJY8iJiIiIiBzk+vXrVvcvXbqEL774ArfccgvDOBHlwi7rREREREQO0rFjR0RHR6NRo0Y4d+4c5s+fj6SkJLz88stGN42IXBADORERERGRg9xxxx34/vvv8fHHH8NkMqFVq1aYP3++1fJmREQKx5ATERERERERGYBjyImIiIiIiIgMwEBOREREREREZIBSP4Y8KysLZ86cQWBgIEwmk9HNISIigqZpuHr1KiIiIuDhwWvjxcVzPRERuZrCnutLfSA/c+YMatSoYXQziIiIcjl58iSqV69udDPcHs/1RETkqgo615f6QB4YGAhAfhFBQUEGt4aIiAhISkpCjRo1zOcoKh6e64mIyNUU9lxf6gO56roWFBTEkzQREbkUdq92DJ7riYjIVRV0rufANSIiInJLsbGxiIqKQtu2bY1uChERUZEwkBMREZFbiomJwf79+7F161ajm0JERFQkDOREREREREREBij1Y8iJiApL0zRkZGQgMzPT6KaQm/P09ES5cuU4RpyIyMXwXE+O4qhzPQM5ERGA9PR0nD17FteuXTO6KVRK+Pv7o2rVqvD29ja6KUREBJ7ryfEcca5nICeiMi8rKwtxcXHw9PREREQEvL29WdmkItM0Denp6bhw4QLi4uJQr149eHhwhJgzxMbGIjY2lpUuIioQz/XkSI481zOQE1GZl56ejqysLNSoUQP+/v5GN4dKAT8/P3h5eeH48eNIT0+Hr6+v0U0qlWJiYhATE4OkpCQEBwcb3RwicmE815OjOepcz0v2RETZWMUkR+L7iYjI9fBvMzmSI95PfEcSERERERERGYCBnIiIiIiIiMgADORERGRWq1YtzJo1q9DP/+uvv2AymZCQkOC0NgHAwoULERIS4tTXICIiKit4vncdDORERG7IZDLl+zVlypQiHXfr1q0YPnx4oZ9/88034+zZs5xQiwwRGxuLqKgotG3b1uimEBE5Bc/3pR9nWScickNnz5413/7mm28wadIkHDp0yLwvICDAfFvTNGRmZqJcuYL/5FeuXNmudnh7eyM8PNyu7yFyFM6yTkSlHc/3pR8r5Hbo3Blo2hSIizO6JUTkTJoGpKQY86VphWtjeHi4+Ss4OBgmk8l8/+DBgwgMDMTvv/+O1q1bw8fHB+vXr8e///6Lvn37IiwsDAEBAWjbti1WrlxpddycXdhMJhM++eQT9O/fH/7+/qhXrx5+/vln8+M5u7CprmbLly9Ho0aNEBAQgNtvv93qA0VGRgZGjRqFkJAQVKxYEePHj8fgwYPRr18/u/6dPvzwQ9SpUwfe3t5o0KABvvjiC4t/Qw1TpkxBzZo14ePjg4iICIwaNcr8+AcffIB69erB19cXYWFhuOeee+x6bSq9xo+Xc/2iRUa3hIiczajzfWHP9QDP90DpP98zkNth/35g714gNdXolhCRM127BgQEGPN17Zrjfo4XX3wRb7zxBg4cOIBmzZohOTkZd9xxB1atWoUdO3bg9ttvR58+fXDixIl8j/PKK6/gvvvuw+7du3HHHXfgoYcewuXLl/P5/V3D22+/jS+++AJr167FiRMn8Nxzz5kff/PNN/HVV19hwYIF2LBhA5KSkrBkyRK7frbFixdj9OjRGDduHPbu3Ysnn3wSjz32GFavXg0A+OGHHzBz5kx89NFHOHLkCJYsWYKmTZsCAP755x+MGjUKU6dOxaFDh7Bs2TJ06dLFrten0uvkSTnXnz9vdEuIyNmMOt878lwP8Hzv9ud7rZRLTEzUAGiJiYnFPlalSpoGaNrevQ5oGBG5jOvXr2v79+/Xrl+/rmmapiUny/91I76Sk+1v/4IFC7Tg4GDz/dWrV2sAtCVLlhT4vY0bN9bef/998/3IyEht5syZ5vsAtJdeesl8Pzk5WQOg/f7771avdeXKFXNbAGhHjx41f09sbKwWFhZmvh8WFqa99dZb5vsZGRlazZo1tb59+xb6Z7z55pu1YcOGWT3n3nvv1e644w5N0zTtnXfe0erXr6+lp6fnOtYPP/ygBQUFaUlJSXm+niPkfF9ZcuS5iRz7+3z0Ufm/OGOGAxpGRC7D1t9ko873RTnXaxrP94orne8dca5nhdwOat33rCxj20FEzuXvDyQnG/Pl7++4n6NNmzZW95OTk/Hcc8+hUaNGCAkJQUBAAA4cOFDgFfNmzZqZb5cvXx5BQUE4n0/50N/fH3Xq1DHfr1q1qvn5iYmJOHfuHNq1a2d+3NPTE61bt7brZztw4AA6depkta9Tp044cOAAAODee+/F9evXcdNNN2HYsGFYvHgxMjIyAAC33norIiMjcdNNN+GRRx7BV199hWuOLleQ2/Lyku2NG8a2g4icz6jzvSPP9QDP9+5+vmcgtwMDOVHZYDIB5csb82UyOe7nKF++vNX95557DosXL8brr7+OdevWYefOnWjatCnS09PzPY6XSijm348JWfn8IbT1fM2eAXMOUKNGDRw6dAgffPAB/Pz88Mwzz6BLly64ceMGAgMDsX37dnz99deoWrUqJk2ahObNmzt9KRdyPGfMsu7tLdsC/lsQUSlg1Pneked6gOd7dz/fM5DbgYGciNzZhg0bMGTIEPTv3x9NmzZFeHg4jh07VqJtCA4ORlhYGLZu3Wrel5mZie3bt9t1nEaNGmHDhg1W+zZs2ICoqCjzfT8/P/Tp0wezZ8/GX3/9hU2bNmHPnj0AgHLlyqFnz56YMWMGdu/ejWPHjuHPP/8sxk9GRoiJicH+/fut3k/FxQo5Ebk7nu/d63zPZc/swEBORO6sXr16+PHHH9GnTx+YTCa8/PLL+V75dpaRI0di+vTpqFu3Lho2bIj3338fV65cgcmOksHzzz+P++67Dy1btkTPnj2xdOlS/Pjjj+ZZZBcuXIjMzEy0b98e/v7++PLLL+Hn54fIyEj88ssv+O+//9ClSxeEhobit99+Q1ZWFho0aOCsH5ncCAM5Ebk7nu/d63zPQG4HBnIicmfvvvsuHn/8cdx8882oVKkSxo8fj6SkpBJvx/jx4xEfH49HH30Unp6eGD58OHr16gVPT89CH6Nfv35477338Pbbb2P06NGoXbs2FixYgOjoaABASEgI3njjDYwdOxaZmZlo2rQpli5diooVKyIkJAQ//vgjpkyZgtTUVNSrVw9ff/01Gjdu7KSfmNwJAzkRuTue793rfG/SSrqjfwlLSkpCcHAwEhMTERQUVKxj1a4NHDsGbN4MtG/vmPYRkfFSU1MRFxeH2rVrw9fX1+jmlDlZWVlo1KgR7rvvPkybNs3o5jhMfu8rR56byLG/z0mTgGnTgJgYYM4cBzWQiAzHc73xSuP53hHnelbI7cAKORFR8R0/fhx//PEHunbtirS0NMyZMwdxcXF48MEHjW4aESd1IyJyEJ7vC4eTutmBgZyIqPg8PDywcOFCtG3bFp06dcKePXuwcuVKNGrUyOimEbHLOhGRg/B8XziskNuBgZyIqPhq1KiRa8ZUIlfBQE5E5Bg83xcOK+R2YCAnIiJyHc5Yh5yBnIiIShIDuR0YyImIiFyHM9Yh5xhyIiIqSQzkdmAgJyIiKt1YISciopLEQG4HBnIiIqLSjYGciIhKEgO5HRjIiYiISjcGciIiKkkM5HZgICciIirdOIaciIhKEgO5HRjIiai0iY6OxpgxY8z3a9WqhVmzZuX7PSaTCUuWLCn2azvqOPmZMmUKWrRo4dTXoNKFFXIiKo14vnddDOR2YCAnIlfRp08f3H777TYfW7duHUwmE3bv3m33cbdu3Yrhw4cXt3lW8jpJnj17Fr1793boaxEVFwM5EbkSnu9LPwZyOzCQE5GrGDp0KFasWIFTp07lemzBggVo06YNmjVrZvdxK1euDH9/f0c0sUDh4eHw8fEpkdciKiwGciJyJTzfl36GB/LTp0/j4YcfRsWKFeHn54emTZvin3/+MT+uaRomTZqEqlWrws/PDz179sSRI0cMaSsDOVEZoWlASooxX5pWqCbeddddqFy5MhYuXGi1Pzk5Gd999x2GDh2KS5cuYdCgQahWrRr8/f3RtGlTfP311/keN2cXtiNHjqBLly7w9fVFVFQUVqxYket7xo8fj/r168Pf3x833XQTXn75ZdzITjMLFy7EK6+8gl27dsFkMsFkMpnbnLML2549e9C9e3f4+fmhYsWKGD58OJKTk82PDxkyBP369cPbb7+NqlWromLFioiJiTG/VmFkZWVh6tSpqF69Onx8fNCiRQssW7bM/Hh6ejpGjBiBqlWrwtfXF5GRkZg+fToAOR9NmTIFNWvWhI+PDyIiIjBq1KhCvzY5XmxsLKKiotC2bVuHHZOBnKgMMep8X8hzPcDzfVk435dz2pEL4cqVK+jUqRO6deuG33//HZUrV8aRI0cQGhpqfs6MGTMwe/ZsfPbZZ6hduzZefvll9OrVC/v374evr2+JtpeBnKiMuHYNCAgw5rWTk4Hy5Qt8Wrly5fDoo49i4cKFmDhxIkwmEwDgu+++Q2ZmJgYNGoTk5GS0bt0a48ePR1BQEH799Vc88sgjqFOnDtq1a1fga2RlZWHAgAEICwvD33//jcTERKvxZ0pgYCAWLlyIiIgI7NmzB8OGDUNgYCBeeOEF3H///di7dy+WLVuGlStXAgCCg4NzHSMlJQW9evVCx44dsXXrVpw/fx5PPPEERowYYfUhZPXq1ahatSpWr16No0eP4v7770eLFi0wbNiwAn8eAHjvvffwzjvv4KOPPkLLli3x6aef4u6778a+fftQr149zJ49Gz///DO+/fZb1KxZEydPnsTJkycBAD/88ANmzpyJ//3vf2jcuDHi4+Oxa9euQr0uOUdMTAxiYmKQlJRk831VFJzUjagMMep8X8hzPcDzfZk432sGGj9+vHbLLbfk+XhWVpYWHh6uvfXWW+Z9CQkJmo+Pj/b1118X6jUSExM1AFpiYmKx29uli6YBmvbtt8U+FBG5kOvXr2v79+/Xrl+/LjuSk+U/uxFfycmFbveBAwc0ANrq1avN+zp37qw9/PDDeX7PnXfeqY0bN858v2vXrtro0aPN9yMjI7WZM2dqmqZpy5cv18qVK6edPn3a/Pjvv/+uAdAWL16c52u89dZbWuvWrc33J0+erDVv3jzX8yyP8/HHH2uhoaFassXP/+uvv2oeHh5afHy8pmmaNnjwYC0yMlLLyMgwP+fee+/V7r///jzbkvO1IyIitNdee83qOW3bttWeeeYZTdM0beTIkVr37t21rKysXMd65513tPr162vp6el5vp6lXO8rC448N5Fjf5///CP/FatXd0DDiMhl2PybbNT53o5zvabxfK9prnu+d8S53tAu6z///DPatGmDe++9F1WqVEHLli0xb9488+NxcXGIj49Hz549zfuCg4PRvn17bNq0yeYx09LSkJSUZPXlKKyQE5UR/v5y9dqILzvGczVs2BA333wzPv30UwDA0aNHsW7dOgwdOhQAkJmZiWnTpqFp06aoUKECAgICsHz5cpw4caJQxz9w4ABq1KiBiIgI876OHTvmet4333yDTp06ITw8HAEBAXjppZcK/RqWr9W8eXOUt6gYdOrUCVlZWTh06JB5X+PGjeHp6Wm+X7VqVZw/f75Qr5GUlIQzZ86gU6dOVvs7deqEAwcOAJBucjt37kSDBg0watQo/PHHH+bn3Xvvvbh+/TpuuukmDBs2DIsXL0ZGRoZdPye5PnZZJypDjDrf2zl2m+f70n2+NzSQ//fff/jwww9Rr149LF++HE8//TRGjRqFzz77DAAQHx8PAAgLC7P6vrCwMPNjOU2fPh3BwcHmrxo1ajisvQzkRGWEySRdyYz4yu6KVlhDhw7FDz/8gKtXr2LBggWoU6cOunbtCgB466238N5772H8+PFYvXo1du7ciV69eiHdgX1xN23ahIceegh33HEHfvnlF+zYsQMTJ0506GtY8lJpKZvJZEKWA/8ot2rVCnFxcZg2bRquX7+O++67D/fccw8AoEaNGjh06BA++OAD+Pn54ZlnnkGXLl3sGtNGro+BnKgMMep8b+e5HuD5vjSf7w0N5FlZWWjVqhVef/11tGzZEsOHD8ewYcMwd+7cIh9zwoQJSExMNH+psQCOwEBORK7mvvvug4eHBxYtWoTPP/8cjz/+uHl82YYNG9C3b188/PDDaN68OW666SYcPny40Mdu1KgRTp48ibNnz5r3bd682eo5GzduRGRkJCZOnIg2bdqgXr16OH78uNVzvL29kZmZWeBr7dq1CykpKeZ9GzZsgIeHBxo0aFDoNucnKCgIERER2LBhg9X+DRs2ICoqyup5999/P+bNm4dvvvkGP/zwAy5fvgwA8PPzQ58+fTB79mz89ddf2LRpE/bs2eOQ9pFr4BhyInJFPN8Xnrud7w2d1K1q1apWvxRA/pF++OEHADJFPgCcO3cOVatWNT/n3LlzeS787uPj47Rp9RnIicjVBAQE4P7778eECROQlJSEIUOGmB+rV68evv/+e2zcuBGhoaF49913ce7cuVx/d/PSs2dP1K9fH4MHD8Zbb72FpKQkTJw40eo59erVw4kTJ/C///0Pbdu2xa+//orFixdbPadWrVqIi4vDzp07Ub16dQQGBub6O/3QQw9h8uTJGDx4MKZMmYILFy5g5MiReOSRR3L1kiqO559/HpMnT0adOnXQokULLFiwADt37sRXX30FAHj33XdRtWpVtGzZEh4eHvjuu+8QHh6OkJAQLFy4EJmZmWjfvj38/f3x5Zdfws/PD5GRkQ5rHxmPFXIickU839vHnc73hlbIO3XqZDVWAAAOHz5s/mFr166N8PBwrFq1yvx4UlIS/v77b5vjGpxNBXI7ViogInK6oUOH4sqVK+jVq5fV+K+XXnoJrVq1Qq9evRAdHY3w8HD069ev0Mf18PDA4sWLcf36dbRr1w5PPPEEXnvtNavn3H333Xj22WcxYsQItGjRAhs3bsTLL79s9ZyBAwfi9ttvR7du3VC5cmWbS7H4+/tj+fLluHz5Mtq2bYt77rkHPXr0wJw5c+z7ZRRg1KhRGDt2LMaNG4emTZti2bJl+Pnnn1GvXj0AMoPsjBkz0KZNG7Rt2xbHjh3Db7/9Bg8PD4SEhGDevHno1KkTmjVrhpUrV2Lp0qWoWLGiQ9tIxmIgJyJXxfN94bnT+d6kacbFy61bt+Lmm2/GK6+8gvvuuw9btmzBsGHD8PHHH+Ohhx4CALz55pt44403rJY92717d6GXPVNLoSQmJiIoKKhY7b3zTuC334AFCwCLi1JE5OZSU1MRFxeH2rVrl/hyilR65fe+cuS5iRz7+7x4EahcWW5nZuoX44nIvfFcT87giHO9oV3W27Zti8WLF2PChAmYOnUqateujVmzZpnDOAC88MILSElJwfDhw5GQkIBbbrkFy5YtM+Q/kpp/gV3WiYiISic1hhyQKrmTRsEREREBMDiQA8Bdd92Fu+66K8/HTSYTpk6diqlTp5Zgq2zjGHIiIqLSzXJi3/R0BnIiInIudsSyAwM5ERFR6WYZyDmOnIiInI2B3A4M5ERERK4jNjYWUVFRaNu2rcOO6emp32YgJyIiZ2MgtwMDOVHpZuAcl1QK8f3kfDExMdi/fz+2bt3qsGOaTJxpnag0499mciRHvJ8YyO3AQE5UOnllf/q+du2awS2h0kS9n7ws+0CTW1ATu6WnG9sOInIcnuvJGRxxrjd8Ujd3wkBOVDp5enoiJCQE58+fByBrZJrUsgpEdtI0DdeuXcP58+cREhICT8s+0OQWWCEnKn14ridHcuS5noHcDgzkRKVXeHg4AJhP1ETFFRISYn5fkXthICcqnXiuJ0dzxLmegdwODOREpZfJZELVqlVRpUoV3OCncComLy8vVsbdGAM5UenEcz05kqPO9QzkdmAgJyr9PD09GaSIyjg1hpyf14lKJ57ryZVwUjc7MJATERGVfqpCzkndiIjI2RjI7cBATkREVPqxyzoREZUUBnI7MJATERGVfgzkRERUUhjI7cBATkREVPoxkBMRUUlhILcDAzkREVHppyZ14xhyIiJyNgZyOzCQExERlX6skBMRUUlhILcDAzkREVHpx0BOREQlhYHcDgzkREREpR8DORERlRQGcjswkBMREZV+HENOREQlhYHcDgzkREREriM2NhZRUVFo27atQ4/LCjkREZUUBnI7MJATERG5jpiYGOzfvx9bt2516HEZyImIqKQwkNuBgZyIiKj0YyAnIqKSwkBuBwZyIiKi0k+NIWcgJyIiZ2MgtwMDORERUemnKuSc1I2IiJyNgdwODORERESlH7usExFRSWEgtwMDORERUenHQE5ERCWFgdwODORERESlHwM5ERGVFAZyOzCQExERlX5qUjeOISciImdjILcDAzkREVHpxwo5ERGVFAZyOzCQExERlX4M5EREVFIYyO3AQE5ERFT6MZATEVFJYSC3AwM5ERFR6afGkDOQExGRszGQ24GBnIiIqPRTFXJO6kZERM7GQG4HBnIiIqLSj13WiYiopDCQ24GBnIiIqPRjICciopLCQG4HBnIiIqLSj2PIiYiopDCQ24GBnIiIqPTjGHIiIiopDOR2YCAnIiIq/dhlnYiISgoDuR0YyImIiEo/BnIiIiopDOR2YCAnIiIq/RjIiYiopDCQ24GBnIiIqPTjpG5ERFRSGMjtoAK5phnbDiIiInIeTupGREQlhYHcDqyQExEROUf//v0RGhqKe+65x+imsMs6ERGVGAZyOzCQExEROcfo0aPx+eefG90MAAzkRERUchjI7cBATkRE5BzR0dEIDAw0uhkAOIaciIhKjqGBfMqUKTCZTFZfDRs2ND+empqKmJgYVKxYEQEBARg4cCDOnTtnWHsZyImIiHJbu3Yt+vTpg4iICJhMJixZsiTXc2JjY1GrVi34+vqiffv22LJlS8k3tJA4hpyIiEqK4RXyxo0b4+zZs+av9evXmx979tlnsXTpUnz33XdYs2YNzpw5gwEDBhjWVgZyIiKi3FJSUtC8eXPExsbafPybb77B2LFjMXnyZGzfvh3NmzdHr169cP78+RJuaeGwyzoREZWUcoY3oFw5hIeH59qfmJiI+fPnY9GiRejevTsAYMGCBWjUqBE2b96MDh06lHRTGciJiIhs6N27N3r37p3n4++++y6GDRuGxx57DAAwd+5c/Prrr/j000/x4osv2v16aWlpSEtLM99PSkqyv9H5YCAnIqKSYniF/MiRI4iIiMBNN92Ehx56CCdOnAAAbNu2DTdu3EDPnj3Nz23YsCFq1qyJTZs25Xm8tLQ0JCUlWX05CgM5ERGRfdLT07Ft2zar87mHhwd69uyZ7/k8P9OnT0dwcLD5q0aNGo5qLgA9kGdl8ZxPRETOZWggb9++PRYuXIhly5bhww8/RFxcHDp37oyrV68iPj4e3t7eCAkJsfqesLAwxMfH53lMZ56kTSbZ8uRMRERUOBcvXkRmZibCwsKs9uc8n/fs2RP33nsvfvvtN1SvXj3fsD5hwgQkJiaav06ePOnQNqtJ3QBWyYmIyLkM7bJu2b2tWbNmaN++PSIjI/Htt9/Cz8+vSMecMGECxo4da76flJTksFDOCjkREZFzrFy5stDP9fHxgY+Pj9PaoirkgEzs5sSXIiKiMs7wLuuWQkJCUL9+fRw9ehTh4eFIT09HQkKC1XPOnTtnc8y54uPjg6CgIKsvR2EgJyIisk+lSpXg6emZa5WUgs7nRrIM5KyQExGRM7lUIE9OTsa///6LqlWronXr1vDy8sKqVavMjx86dAgnTpxAx44dDWkfAzkREZF9vL290bp1a6vzeVZWFlatWlXs83lsbCyioqLQtm3b4jbTiqenfpuBnIiInMnQLuvPPfcc+vTpg8jISJw5cwaTJ0+Gp6cnBg0ahODgYAwdOhRjx45FhQoVEBQUhJEjR6Jjx46GzLAOMJATERHZkpycjKNHj5rvx8XFYefOnahQoQJq1qyJsWPHYvDgwWjTpg3atWuHWbNmISUlxTzrelHFxMQgJiYGSUlJCA4OLu6PYWYyyTjy9HQGciIici5DA/mpU6cwaNAgXLp0CZUrV8Ytt9yCzZs3o3LlygCAmTNnwsPDAwMHDkRaWhp69eqFDz74wLD2MpATERHl9s8//6Bbt27m+2oul8GDB2PhwoW4//77ceHCBUyaNAnx8fFo0aIFli1blmuiN1fi5SWBPD3d6JYQEVFpZtI0TTO6Ec6krponJiYWezz58uXA7bcDLVoAO3Y4pn1ERFT2OPLcRM75fYaGAgkJwMGDQIMGDjkkERGVIYU9N7nUGHJXxwo5ERFR2aAmdmOXdSIiciYGcjswkBMREbkOZ03qBuhrkTOQExGRMzGQ24GBnIiIyHXExMRg//792Lp1q8OPrSrkHENORETOxEBuBwZyIiKisoFd1omIqCQwkNuBgZyIiKiU++47YOxYtMrYAoCBnIiInIuB3A4M5ERERKXcd98BM2eiddpGAAzkRETkXAzkdmAgJyIich1OmdStdm0AQI2MOAAM5ERE5FwM5HZgICciInIdTpnULTuQV7/xHwBO6kZERM7FQG4HBnIiIqJSLjuQV0tjhZyIiJyPgdwODORERESl3E03AQDCU+MAaAzkRETkVAzkdmAgJyIiKuVq1gRMJvhlXUMVnGcgJyIip2IgtwMDORERUSnn4wNUqwYAqI04jiEnIiKnYiC3AwM5ERFRGZA9jrw24lghJyIip2IgtwMDORERketwyrJngHkcOQM5ERE5GwO5HRjIiYiIXIdTlj0DzBXym/AfAzkRETkVA7kdGMiJiIjKAHZZJyKiEsJAbgcGciIiojLAIpBzUjciInImBnI7MJATERGVAdljyGviBDLTMgxuDBERlWYM5HZgICciIioDqlbFDU8flEMm/C+dNLo1RERUijGQ24GBnIiIqAzw8EBCcCQAIOhynMGNISKi0oyB3A4M5ERERK7DacueAUgIlXHkwZcYyImIyHkYyO3AQE5EROQ6nLbsGYDEijKOPDSBgZyIiJyHgdwODORERERlw9WKUiGvmPifwS0hIqLSjIHcDgzkREREZUNKlexAfpUVciIich4Gcjt4WPy2NM24dhAREZFzqUBeOZmBnIiInIeB3A6WgZxVciIiotIrtUpNAEBI6jkgg2uRExGRczCQ24GBnIiIqGwwlffX76SmGtcQF3PtGjB3LnD6tNEtISIqHRjI7cAu60RERGWDh5+PfictzbiGuJj//Q94+mlg2jSjW0JEVDowkNuBFXIiIqKywcuvHG6gnNxhhdzs0iXrLRERFQ8DuR0YyImIiFxHbGwsoqKi0LZtW4cf28sLSIWv3GEgN7txQ7YcVk9E5BgM5HZgICciInIdMTEx2L9/P7Zu3erwYzOQ26YCudoSEVHxMJDbgYGciIiobPDyAtKQPY6cY8jNGMiJiByLgdwODORERERlg7c3K+S2MJATETkWA7kdGMiJiIjKBnZZt42BnIjIsRjI7cBATkREVDYwkNvGQE5E5FgM5HYwmfTbDORERESlF8eQ26ZmV+cs60REjsFAbidVJWcgJyIiV7Z9+3bs2bPHfP+nn35Cv3798H//939IT083sGXugWPIbWOFnIjIsRjI7cRATkRE7uDJJ5/E4cOHAQD//fcfHnjgAfj7++O7777DCy+8YHDrXB+7rNvGQE5E5FgM5HZiICciIndw+PBhtGjRAgDw3XffoUuXLli0aBEWLlyIH374wdjGuQEGctsYyImIHIuB3E4M5ERE5A40TUNW9slq5cqVuOOOOwAANWrUwMWLF41smluwGkPOQG7GQE5E5FgM5HZiICciInfQpk0bvPrqq/jiiy+wZs0a3HnnnQCAuLg4hIWFGdw612dZIT+4Kw1HjhjcIBfBQE5E5FgM5HZiICciIncwa9YsbN++HSNGjMDEiRNRt25dAMD333+Pm2++2eDWOUZsbCyioqLQtm1bhx+7fHkgLTuQ/++zVNSvD8TGOvxl3I4K4pxlnYjIMcoZ3QB3o5Y+YyAnIiJX1qxZM6tZ1pW33noLnp6eBrTI8WJiYhATE4OkpCQEBwc79NhBQcAtPX2BlUCVoFQgCfj7byAmxqEv43ZYIScicixWyO3ECjkREbmDkydP4tSpU+b7W7ZswZgxY/D555/Dy8vLwJa5j6ZtZAx557YyhjwhwcDGuAgGciIix3KZQP7GG2/AZDJhzJgx5n2pqamIiYlBxYoVERAQgIEDB+LcuXPGNRIM5ERE5B4efPBBrF69GgAQHx+PW2+9FVu2bMHEiRMxdepUg1vnJnyly7q/RxoA4MoVIxvjGhjIiYgcyyUC+datW/HRRx+hWbNmVvufffZZLF26FN999x3WrFmDM2fOYMCAAQa1UjCQExGRO9i7dy/atWsHAPj222/RpEkTbNy4EV999RUWLlxobOPcRXYg9/NghVxhICcicizDA3lycjIeeughzJs3D6Ghoeb9iYmJmD9/Pt599110794drVu3xoIFC7Bx40Zs3rzZsPYykBMRkTu4ceMGfHyky/XKlStx9913AwAaNmyIs2fPGtk095EdyH01CeSskOtBPCuLn4WIiBzB8EAeExODO++8Ez179rTav23bNty4ccNqf8OGDVGzZk1s2rQpz+OlpaUhKSnJ6suRGMiJiMgdNG7cGHPnzsW6deuwYsUK3H777QCAM2fOoGLFiga3zk1kX9Dw0VghVywr45xpnYio+AwN5P/73/+wfft2TJ8+Pddj8fHx8Pb2RkhIiNX+sLAwxMfH53nM6dOnIzg42PxVo0YNh7aZgZyIiNzBm2++iY8++gjR0dEYNGgQmjdvDgD4+eefzV3ZqQDZFXIvTcaQp6Swq7blz1/WfxdERI5g2LJnJ0+exOjRo7FixQr4Zp/wHGHChAkYO3as+X5SUpJDQzkDORERuYPo6GhcvHgRSUlJVkPChg8fDn9/fwNb5kZUIM9INe9KSAAqVzaoPS6AgZyIyLEMC+Tbtm3D+fPn0apVK/O+zMxMrF27FnPmzMHy5cuRnp6OhIQEqyr5uXPnEB4enudxfXx8zGPmnIGBnIiI3IWnpycyMjKwfv16AECDBg1Qq1YtYxvlTrIDuSktFUFBQFKSjCNnIM99m4iIisawLus9evTAnj17sHPnTvNXmzZt8NBDD5lve3l5YdWqVebvOXToEE6cOIGOHTsa1WwGciIicgspKSl4/PHHUbVqVXTp0gVdunRBREQEhg4dimvXrhndPPegevClpkJ1Mijr48gZyImIHMuwCnlgYCCaNGlita98+fKoWLGief/QoUMxduxYVKhQAUFBQRg5ciQ6duyIDh06GNFkAAzkRETkHsaOHYs1a9Zg6dKl6NSpEwBg/fr1GDVqFMaNG4cPP/zQ4Ba6AdXjLi0NISHA8eOcad1yIjdO6kZEVHyGBfLCmDlzJjw8PDBw4ECkpaWhV69e+OCDDwxtEwM5ERG5gx9++AHff/89oqOjzfvuuOMO+Pn54b777mMgLwzLCnkVuVnWAzkr5EREjuVSgfyvv/6yuu/r64vY2FjExsYa0yAbGMiJiMgdXLt2DWFhYbn2V6lShV3WC8sikKvpbNhl3fZtIiIqGsPXIXc3DOREROQOOnbsiMmTJyM1VZ8h/Pr163jllVcMnYvFrdgYQ84Kue3bRERUNC5VIXcHDOREROQO3nvvPfTq1QvVq1c3r0G+a9cu+Pr6Yvny5Qa3zk3kGEMOlO0KuaYxkBMRORoDuZ0YyImIyB00adIER44cwVdffYWDBw8CAAYNGoSHHnoIfn5+BrfOTbBCbiUz0/o+J3UjIio+BnI7MZATEZG78Pf3x7Bhw4xuhtOoeWYycyZFR1GBPDMToYEZAMqV6Qp5zoo4K+RERMXHQG4nBnIiInJVP//8c6Gfe/fddzuxJSUjJiYGMTExSEpKQnBwsONfQAVyAJUCUgEElOkKOQM5EZHjMZDbiYGciIhcVb9+/Qr1PJPJ5LyqcmmixpADCPVPAxDACnk+94mIyH4M5HZiICciIleVxZOTY3l6AuXKARkZqOAvs9WzQp73fSIish+XPbMTAzkREVEZkt1tPdhHAjkr5HnfJyIi+zGQ24mBnIiIqAzJDuQhvnog1zQD22OgnAGcs6wTERUfA7mdGMiJiIjKkOxx5EHeEsgzM4HkZCMbZBxWyImIHI+B3E4M5ERERGVIdoXcB2nw9pZdZXUcOQM5EZHjMZDbiYGciIioDMkO5Ka0VISGyq6yOo6cgZyIyPEYyO3EQE5ERO7gt99+w/Lly3PtX758OX7//XcDWuSm1FrkqakICZGbrJDbvk9ERPZjILcTAzkREbmDF1980eZa45qm4cUXXzSgRW7KIpCzQm59n5O6EREVHwO5nVQgL6szrBIRkXs4cuQIoqKicu1v2LAhjh49akCL3FT2pG5IS0NICNAK2xC4crGhTTIKK+RE5DY0DfjsM2D3bqNbUiAGcjuxQk5ERO4gODgY//33X679R48eRfny5Q1okZvKUSH/Fveh+5wBwIkTxrbLADkr4gzkROSy1q0DhgwBHnvM6JYUiIHcTgzkRETkDvr27YsxY8bg33//Ne87evQoxo0bh7vvvtvAlrkZyzHkwRpqIjuInz9vXJsMwgo5EbmN9etl6wY9whjI7cRATkRE7mDGjBkoX748GjZsiNq1a6N27dpo1KgRKlasiLffftvo5rkPi0BeJeAavJBdJr5+3bg2GYSBnIjcxtatsk1Kki8XVs7oBrgbBnIiInIHwcHB2LhxI1asWIFdu3bBz88PzZo1Q5cuXYxumnuxGEMe5m0xvfq1a8a0x0AM5ETkNrZs0W+fPg0EBRnXlgIwkNuJgZyIiNyFyWTCbbfdhttuu83oprgvywq5d4K+nxVyzrJORK7p9GngzBnr+40aGdeeAjCQ24mBnIiIXNXs2bMxfPhw+Pr6Yvbs2fk+d9SoUSXUKjdnEcgrlreokDOQs0JORK7JsjoOAKdOGdOOQmIgtxMDORERuaqZM2fioYcegq+vL2bOnJnn80wmEwN5YVnOsh6QoO9nl3UGciJyTWr8uMJAXrowkBMRkauKi4uzeZuKwWIMeVAmK+T53ScicgmqQh4RIV3XXTyQc5Z1OzGQExERlSEWFfLAzAR9PwM5AzkRuZ6sLL1C3r+/bE+fNq49hVCkCvnJkydhMplQvXp1AMCWLVuwaNEiREVFYfjw4Q5toKthICciInegaRq+//57rF69GufPn0dWjhPXjz/+aFDL3IxFIPdP1yvkmVevwdOgJhmFgZyIXN7hw7LMmZ8f0KsXEBtbOivkDz74IFavXg0AiI+Px6233ootW7Zg4sSJmDp1qkMb6GoYyImIyB2MGTMGjzzyCOLi4hAQEIDg4GCrLyoki0Due10P5KlXWCHnLOtE5HJUdbxVKyAyUm67eCAvUoV87969aNeuHQDg22+/RZMmTbBhwwb88ccfeOqppzBp0iSHNtKVMJATEZE7+OKLL/Djjz/ijjvuMLophfLLL79g3LhxyMrKwvjx4/HEE08Y3SRhMYbcIzHBvDs98TrKG9Miw7BCTkQuT40fb9cOyO7NjYsXgdRU/QKriylShfzGjRvwyT5BrVy5EnfffTcAoGHDhjh79qzjWueCGMiJiMgdBAcH46abbjK6GYWSkZGBsWPH4s8//8SOHTvw1ltv4dKlS0Y3S1hUyHFFr5BnJJXdWdZNJuv7REQu459/ZNu2LRAaKl3XAet1yV1MkQJ548aNMXfuXKxbtw4rVqzA7bffDgA4c+YMKlas6NAGuhoGciIicgdTpkzBK6+8gutuMPnYli1b0LhxY1SrVg0BAQHo3bs3/vjjD6ObJSwDeUKCeXdmsuv/Xh1NBXB/f+v7REQuQ3VPr1dPrh6qKrkLd1svUiB/88038dFHHyE6OhqDBg1C8+bNAQA///yzuSt7acVATkRE7uC+++7DlStXUKVKFTRt2hStWrWy+nKktWvXok+fPoiIiIDJZMKSJUtyPSc2Nha1atWCr68v2rdvjy2qWyHkgn61atXM96tVq4bTrjIrbh4V8qwUBnIGciJyKZoGXLggtytXlq06t7hwIC/SGPLo6GhcvHgRSUlJCA0NNe8fPnw4/NVf6VKKgZyIiNzB4MGDsW3bNjz88MMICwuDSfUzdoKUlBQ0b94cjz/+OAYMGJDr8W+++QZjx47F3Llz0b59e8yaNQu9evXCoUOHUKVKFbtfLy0tDWlpaeb7SUlJxWp/vizGkOPqVfNuLaXsdllXH/U4qRsRuZTkZPlbDQCVKslWVchd5SKvDUUK5NevX4emaeYwfvz4cSxevBiNGjVCr169HNpAV8NATkRE7uDXX3/F8uXLccsttzj9tXr37o3evXvn+fi7776LYcOG4bHHHgMAzJ07F7/++is+/fRTvPjii4iIiLCqiJ8+fTrfHnfTp0/HK6+84rgfID95VMjL8jrkrJATkUu6eFG2fn5A+expN0trl/W+ffvi888/BwAkJCSgffv2eOedd9CvXz98+OGHDm2gq2EgJyIid1CjRg0EBQUZ3Qykp6dj27Zt6Nmzp3mfh4cHevbsiU2bNgEA2rVrh7179+L06dNITk7G77//nu8F/gkTJiAxMdH8dfLkSef9ACqQJyfLVzbT9bJbIVdzJDGQE5FLUd3VVXUccIsu60UK5Nu3b0fnzp0BAN9//z3CwsJw/PhxfP7555g9e7ZDG+hqGMiJiMgdvPPOO3jhhRdw7NgxQ9tx8eJFZGZmIiwszGp/WFgY4uPjAQDlypXDO++8g27duqFFixYYN25cvpPE+vj4ICgoyOrLaVQgVx/0snmklb0Kueqizgo5EbkkVSFX48cBt6iQF6nL+rVr1xAYGAgA+OOPPzBgwAB4eHigQ4cOOH78uEMb6GoYyImIyB08/PDDuHbtGurUqQN/f394eXlZPX758mWDWmbb3XffbV5G1aWoQK5pVrs90steIGeXdSJyabYq5KV1DHndunWxZMkS9O/fH8uXL8ezzz4LADh//rxLdI9zJgZyIiJyB7NmzTK6CQCASpUqwdPTE+fOnbPaf+7cOYSHhxvUKjuoSd1y8LpRdrusM5ATkUuyVSFXXdbPnpVuPuWKFH+dqkgtmjRpEh588EE8++yz6N69Ozp27AhAquUtW7Z0aANdjZqkloGciIhc2eDBg41uAgDA29sbrVu3xqpVq9CvXz8AQFZWFlatWoURI0YU69ixsbGIjY1FZmamA1qaB1Uhz5ZRzgflMtLglcEKOWdZJyKXYqtCXqWKhPCMDCA+Xq+Yu5AiBfJ77rkHt9xyC86ePWtegxwAevTogf79+zusca6IFXIiInIXWVlZOHr0KM6fP4+sHCeuLl26OOx1kpOTcfToUfP9uLg47Ny5ExUqVEDNmjUxduxYDB48GG3atEG7du0wa9YspKSkmGddL6qYmBjExMQgKSkJwcHBxf0xbMsRyFMrRCDgfBy8GchZISci12KrQu7pCUREACdOyDjy0hLIASA8PBzh4eE4lT1Avnr16vkuUVJaMJATEZE72Lx5Mx588EEcP34cWo7xzyaTyaFV5X/++QfdunUz3x87diwAqdIvXLgQ999/Py5cuIBJkyYhPj4eLVq0wLJly3JN9OaScnRZT68UAZyPg7eWBmRmyoe9MoKzrBORS7NVIQckhJ844bLjyIs0y3pWVhamTp2K4OBgREZGIjIyEiEhIZg2bVquK/ClDQM5ERG5g6eeegpt2rTB3r17cfnyZVy5csX85egJ3aKjo6FpWq6vhQsXmp8zYsQIHD9+HGlpafj777/Rvn17h7bBaTw9rcYcZoVF6I+lphrQIOOwQu7mzpwBXnrJpWebJioWWxVyAKhaVbbZK3u4miJVyCdOnIj58+fjjTfeQKdOnQAA69evx5QpU5CamorXXnvNoY10JQzkRETkDo4cOYLvv/8edevWNbop7s/XV1+DXH2wA4Dr14Hy5Y1pkwEYyN3cBx8Ar70GJCYC779vdGuIHE9VyHMG8uzVwcx/x11MkQL5Z599hk8++cRqeZJmzZqhWrVqeOaZZxjIiYiIDNa+fXscPXq0VAfyEpnUDbAK5OWqVEAqfOCLNOBa2ZppnZO6ubkzZ2S7bZux7SBylry6rAcEyNYikCclAZ99BiQkSK7LzNS/6tYFnniiZJoMFDGQX758GQ0bNsy1v2HDhi63rqmjMZATEZGr2r17t/n2yJEjMW7cOMTHx6Np06a51iFv1qxZSTfP4UpkUjfAamI377BQXIcffJGG9MTr8Hbeq7ocVsjd3KVLst21q8zNf0BlwI0bkq6B3BVyG4F8zhxg4kTbh+rZ0w0CefPmzTFnzhzMnj3bav+cOXPsOsF/+OGH+PDDD3Hs2DEAQOPGjTFp0iT07t0bAJCamopx48bhf//7H9LS0tCrVy988MEHhk4Cw0BORESuqkWLFjCZTFaTuD3++OPm2+oxR0/qVupZTOzmExaCK/BHKBJw7VLZDOSc1M1NqfG1164BR44ANoprRG5LXXAymYDQUOvHbATyfftke/PNQLNmcn3Kw0O2DRqUQHstFCmQz5gxA3feeSdWrlxpXoN806ZNOHnyJH777bdCH6d69ep44403UK9ePWiahs8++wx9+/bFjh070LhxYzz77LP49ddf8d133yE4OBgjRozAgAEDsGHDhqI02yEYyImIyFXFxcUZ3YTSyaJC7lkpFKkmP0ADrl+6hhDjWlXicgbyzExA0+TzL7kBFVgAYOdOBnIqXdQFp4oVc/f+sBHI1elyzBjg3nud37z8FGmW9a5du+Lw4cPo378/EhISkJCQgAEDBmDfvn344osvCn2cPn364I477kC9evVQv359vPbaawgICMDmzZuRmJiI+fPn491330X37t3RunVrLFiwABs3bsTmzZuL0myHYCAnIiJXpVY+iYyMxPHjx1GtWjWrfZGRkahWrRqOHz9udFPdi+Va5KGhSPeURHr9ctlaizxnl3XLfeQGLAP5jh3GtYNKJ00D/vgDMGr4cl7jxwF98s2UFPMuFchr14Z0dTdw9YEir0MeERGRa/K2Xbt2Yf78+fj444/tPl5mZia+++47pKSkoGPHjti2bRtu3LiBnj17mp/TsGFD1KxZE5s2bUKHDh1sHictLQ1paWnm+0lJSXa3JT8M5ERE5A66deuGs2fPokqVKlb7ExMT0a1bt1LRZb1EJ3VTQkKQ7ukPZDCQq33eZanfvrvKyrIOSgzk5Gh//AHcfjvQuzdgR49ph8lryTMgV4X8+nV9BbRatQB06QIcPSprldsK9E5WpAq5I+3ZswcBAQHw8fHBU089hcWLFyMqKgrx8fHw9vZGSEiI1fPDwsIQn88actOnT0dwcLD5q0aNGg5tLwM5ERG5AzVWPKdLly6hfClZqismJgb79+/H1q1bnftCFmPIERqKDC+pkKcllO1Z1gHOtO421FTSys6dUtEkcpQDB2S7bBlw+nTJv35+FfIcgVx1EgsIACp6JgB79khKN+hCVZEr5I7SoEED7Ny5E4mJifj+++8xePBgrFmzpsjHmzBhAsaOHWu+n5SU5NBQzkBORESubMCAAQBkArchQ4bAxyJMZmZmYvfu3bj55puNap57ylEhz/CWQJ6eUDYr5GoMueU+cnGqeujnB6SnS3g5cwaoVs3YdpFxNm0Crl4FbrvNMcc7f162mgZ88w1gkcdKhB0Vcsvu6qaDB/TnHT4M3HqrExtpm+GB3Nvb27xGauvWrbF161a89957uP/++5Geno6EhASrKvm5c+cQHh6e5/F8fHysPnw4GgM5ERG5MrX8l6ZpCAwMhJ9FevL29kaHDh0wbNgwo5rnnlQg9/IC/P2R5SMl4htJZTOQ+/jI56GsLAZyt6HGj4eHSxeHffukGshAXjZlZAC9eklV+Pz53LOSF4UK5ADw1VclH8jtqJBbjR/fv19/3qFDzmtfPuwK5Oqqe14S1NpvxZCVlYW0tDS0bt0aXl5eWLVqFQYOHAgAOHToEE6cOGGe2d0IDOREROTKFixYAACoVasWnnvuuVLTPd1QKpCHhAAmE7J85SJHRlLZ6rKuuqd7eQHlykmhlYHcTahAXrGizK6+b590W7/rLkObRQY5dUqq44D0lHB0IN++HTh4sGRn8i9ihdzc1R5wj0Currrn9/ijjz5a6ONNmDABvXv3Rs2aNXH16lUsWrQIf/31F5YvX47g4GAMHToUY8eORYUKFRAUFISRI0eiY8eOeU7oVhIYyImIyB1MnjzZ6CaUHqrnnfrQmt3rIDO5bFbIvbzki4HcQIcPA4MHAy+8APTvX/DzLZeEatkS+PJLTuxWlv33n35bvTeKS1Woy5eX2cy/+gqYNs0xx7bn9Qsxy7pVIP/DzQK5uuruKOfPn8ejjz6Ks2fPIjg4GM2aNcPy5ctxa3bf/ZkzZ8LDwwMDBw5EWloaevXqhQ8++MChbbAXAzkREbmqVq1aYdWqVQgNDUXLli1tTuqmbN++vQRb5hwlPst69hA6U/asZlnXynYgBzipm2GWLgU2bwamTy9cIFcV8kqVgBYt5DYDedmlEinguECuKuSPPQbMmQMsWgRMnQrkcx5yKBXI86uQp6cD6emIi5OlIXJ1WT9xQrrxW06UUQIMHUM+f/78fB/39fU1n2xdBQM5ERG5qr59+5rnUenXr5+xjSkBMTExiImJQVJSUoG9+IpFBfLsCrnJP/vDWkrZ6bKuadZd1lUgd8sK+fXrwMyZwAMPADfdZHRrikYtYfbPPxKoClqqybJCrgJ5XJzMvp5jRSMqA5xRIVeBfOhQYMECeY3ly2UptJKgfo78KuQAkJKCY8ckkN8UlqJPue7rC6SmAkeOAM2aObmx1gyf1M3dMJATEZGrUt3UMzMz0a1bNzRr1izX8qFUBDkq5J4B2YH8etmpkFtWwt0+kM+aBUycKJWxL780ujVFc+WKbDUNWLECGDQo/+dbjiGvUAGoUkUC1LFjekCnssPRgfz6dfP4bNSuDTz+OPD++8ATTwC7dsn7zpk0Lf8Kube3fKWn4+rZZFy+LBdXa6cfku+tVAmoW1d6nRw6VOKB3PB1yN0NAzkREbk6T09P3HbbbbiiPrRT8agPeNnLqHoGZi/EnVp2Arll8FaTuuXc7zZWrpTt4cPGtqM4LP9vL19e8PMtu6wD+uzqRqwXTcZzdJd1FYa9vYGgIBlKUb++vL+GD3f+mvdXr+p/jPLqLZLdbf30IblwULEiUP5E9vjxRo2ABg3ktgHjyBnI7cRATkRE7qBJkyb4z7IKQkX3xBPAvHnA+PEAAK8gqZB7ppadLus5A7nbVshTU4ENG+S26qrqjnIG8oICj2WXdUAP5GfOOL5t5PocXSFX3dUrV5Yx4+XLyxhyLy/gxx+BAoYpF5u6IODvL1+2ZAfy+KMSyK1mWGcgdy8qkDv7Qg8REVFxvPrqq3juuefwyy+/4OzZs0hKSrL6IjsEBkooz668eIXIBz7P9LJbIXfbQL5pE5CWJrfPn3ffYQeWgTw+Hti9O//n56yQR0TIlhXysic5WQ+wgGMDeZUq+r7WrYFXX5Xbkyc7Nzzlt+SZkh3IL8RZBHI1oVtUFAO5O2GFnIiI3MEdd9yBXbt24e6770b16tURGhqK0NBQhISEINQRa86WYT7B2RXyG24a5opABW8PD/ly21nW//zT+v6JE8a0o7gSEmRboYJsC+q2zgp52WQrBFt2Vwcc22XdMpADwKhR0o39zJncr+tI+S15pmRP7Hb5pCx9lm+FvIQrr5zUzU4M5ERE5A5Wr15tdBNKLd9QCeTeGTa6rH/5JVCrFnDLLSXbKCdTgVyNHXfbCnnOQH78uP5B3J2oCvk99wAffwwsWyZrktuiadaTugGskJcFU6cC774LrFol1WpFBWNPTyAz03kVckAmxGzdWnqmbNjgvFUN8pvQTcmukCeelgp5nRrpwNGj8lhUlHyvhweQlAScOweEhzunrTYwkNuJgZyIiNxB165djW6C05XYOuQ5+FWULuvemdehaRbL7P7zD/DII0D16sDJkyXaJmezXIPccutWgTw5GdiyRW5HRUl3VXccR65peiB/4AEJ5OvXy8+n1lu2dPWq3pWBFfKy45tvgMRECeY//aTvV+PHmzYFdu50/BjynDp1kkC+fr38fXSG7dtlW7du3s/J/r+Rck4CeZT3Ufl/ERgo/x9MJrmY+t9/UiUvwUDOLut2YiAnIiJ3cu3aNRw8eBC7d++2+ioNYmJisH//fmzdurVEX9evglTI/XAdKSkWD6heCadOyeRhjjZxIvDYY477EHLjBvD228CePYV6KqAH8TxnWZ85U/qC/v23Y9roSOvXywfw2rUBdcHKHQN5SooesNu1A2rWlH8IFUpyUoHLz0+f8Ko4FfIjR4BbbwXGjgW2bePESq7oxg19FYGlS61XFFAV8nbtZJucXPy/V3lVyAEJ5IA+maIzrFkj2/wuRGcH8usXJZDflJbdXb1hQ/2qav36si3hFRgYyO3EQE5ERO7gwoULuOuuuxAYGIjGjRujZcuWVl9UdD4hEsj9cQ1W8+OtXavfdnRX4Ph44PXXgYULgYMHHXPMn34Cnn9eglUBClUh//df4MUXZW3rBx+UyqwrUd3Vu3cHIiPltjsGclUd9/KSgF27ttw/e9b283NO6AboFfILF4D0dPte/913Zem4mTOBNm2Ajh2tJ5kj4x09ql+00TT5t1JUhbxFC+m2DujvkaLKaww5ANx8s2z37XPO++TiRf2iYpcueT8vO5B7pyfDZAKqXM7+O9qokf4cgyZ2YyC3EwM5ERG5gzFjxiAhIQF///03/Pz8sGzZMnz22WeoV68efv75Z6Ob59ZM5aXK6IfreiDPzATWrdOf5OhAbjn22VETke3bJ9tCTLaUVyC3mtTt+ef1cPfff8CzzzqmnY5iK5AfO2ZYc4pMhZrQUKnsqa618fG2n59z/Li67e0tt/MK8nlZsUK2N98sY4T//lt6b5DrULOHBwXJduFCPTSr/+916ugXaYrbbT2/CnmVKkC9enJ706bivY4t6u9uVJTt11eyA3kAklGzJlDuQvb7vkYN/TkM5O6BgZyIiNzBn3/+iXfffRdt2rSBh4cHIiMj8fDDD2PGjBmYPn260c1zb37WFfIDB4CvJ+6V8ZrKqVOOfc2VK/XbRRmfvmmTVEWXLNH3qW6ZZ84U2O24wAr5n38CixdLxe2DDyQozp8PxMQA0dHSrfrVV437AHX5st6lOzq6dFTI1WoJBQXynDOsA/Lvo7qt2zOOPC5OekJ4egK//y5fADB3rj4+v6SlpgL/9395d9kvi1Qg79dPJlVLTQU+/FD+n6tAXru24wN5XpOqObPbemG6qwPmWdbLI0Vyt/qZLXuOREXJOHTVg6SEMJDbiYGciIjcQUpKCqpkVwtCQ0NxIbs60rRpU2znB9fi8dPHkCclanjkEWDjm2utn+PIQK5p1oHcskJ+8CDw9dcFj+P94gsJXgsW6PtUIL9+3fpiwubNuarm+QbyjAxgzBjZ8fTT8vXcc3L/gw/kA/PJk8DLLwN33VX87rFFsXKl/I6aNJEgqgL56dNuNjMd9EAeEiJbFcjt6bIOFG0c+apVsm3fXqqv0dEyUZemAU89Zd1NuqQsWABMny49NEioQN64sf5/cdYsYMcO4No1uSATGemYQK5p+VfIAecG8r/+km10dP7Ps6iQN2gA2zOzd+0qcyTMnevoVuaLgdxODOREROQOGjRogEPZ3e6aN2+Ojz76CKdPn8bcuXNRtWpVg1vn5rInxvKAhsN707FtG9AF2YE8O6xbBfLXXpOx1UUNKUePWlfFLQP544/LeG0VlPKiPqCrsZaaZj1xkaqSnjghH56bNZNgni3fSd2WL5fjhoYCU6bIA9OmAY8+CvTtC8TGypevr1RUO3cu+RD8xx+yve022YaHS5ftrCz3W/rLERVyoGgzravu6rfequ97+225OLBjh0yQFRIiM1c/9ZS+zrMzqQkE9+51/msV1dWrUn3t3FmGt+Tns89k8karGSPtpP6/R0XJ0nitW8v7pn9/2V+9urz/VSBX4bQokpOBtDS5XVCFfMsW++csyM/ly4CapDS/8eOAVSBv2BC2K+QGYSC3EwM5ERG5g9GjR+NsdsVs8uTJ+P3331GzZk3Mnj0br7/+usGtc3MqdAP45dtrADQ9kPftK1sVyC9fBl56CXjzTb2SYy8VttVMwCqQaxqwa5fcXrs29/dZshwvnpwsFS3LGelUKNu3Tz7kJCcDvXoB2TPY37gBVMMp9E/+Ahg/HjWuHzbvN4e0++7TQ5+PjwSLJUuAZ56Rr82b5WLGgQMlO0ZT03IHcg8P6UYP5O62vn+/XFBwxkz5jpAzkKsLbAWNIS9uhTwrS38v9uyp769SRd7fgHRnT0yUMPnRRxIIH3hA3k/OorrKnz9vTO+Lwpg7V97369dbDxuxpGkyFn/IEBnz/cMPRXutjAz9/1dUlFw9+/pr6bKt/nao9cAdUSFX1fHy5c3dwnNp2FD+Nly/LhduHGXdOvm9NWhQ8DJlOSvk6mfOb+3yEsJAbicGciIicgcPP/wwhgwZAgBo3bo1jh8/jq1bt+LkyZO4//77jW2cu/PyQqZJZifeufk66uEIwnAeqfBBVt/sCpQK5JbBMza2aK+nuqurqqT6UH3mjHQ/BfJfZuz8eesP3Pv25Q7EKpRZhtOkJKBHD6BRI0TfWwmnUAOvnXwUmDEDj+8YCSA7kKuQ1qNH/j9H8+ayzi+Qd3h0hkOHpIeBj49UKJW8xpFPnAhMmgTMnl1ybbSHvRVyW5O6AfZXyHftkmMFBEiXdUvDhknvh19/lffXX39JNdZkkvWwb7nFcZMRWkpMtF51oCQq8vZKTZWZ6ZU338zdWyYjQ3q7WF4s3bixaK8XFycVaz8//T1erx4wZ47+HDUzvyMDeX4TqplM+mzrFj1vik2NHy+ouzqADF+LQF5f03sFsELufhjIiYjIHfn7+6NVq1ao5AIfPhwlNjYWUVFRaNu2bYm/dno5faZ1VR3/G+0R51lXnqACuWVYWLIk99jykyeBVq2AceOsP6SvWyfV6cxMfX3zxx7TvycrS8Y6Klu25N0lXlXHlT17cq+zq0KZmnV8yBD5AH31KnDwILyTLiETHjhYvhUAoFH8nwjBFXhfOad3Fe7WzfbrWyooPDrD8uWy7dxZX4cbyDuQq9/BTz85vWlFklcgv3DBdnfovLqs21shVz0hoqP1sQuKyQTcfjtwxx1Sle3aFfjxRwmVYWES5tu1y/1eLK6c66C7YiD/7DN5v0dEyLCNrVtz95aZPFmq4p6egLpgWtRArrqrN2yoL2sGAIMHy/AWAFB/Mx0ZyAuqNKvlxdSya46gfo8FTegG4OxVCeRBHsmoFnRVHzbjAufEckY3wN0wkBMRkTsYm8fa0iaTCb6+vqhbty769u2LChUqlHDLHCcmJgYxMTFISkpCcHBwib52hpcfcOMq/HENt/msBdKAteiC+vHVUQeQD+A3blhXojMzgY8/BqZO1feNHy9dOHfskA8X77wj1dnXXpPH27aVbu+BgdId3sNDjnv+vHUgT0iQ+/XrS0C5cUNf1ipnCNq7V39MUYFchdMmTaSb7V9/AV5e+GNHZQx8rhZatgrE2oRmKLdnD+7Gz6h+JPs4LVoU7oOtCo/nzun7Pv1UZmj/4gt9orLCSEqSmaO/+goYPhwYMcL281R39V69rPfnFcjV5GibNsnvOb/KnxFyBvJKleR9kZUloTxn1928uqzbWyFXPTUsu6sXpEMHuVh0990SyocOlaDp4aCaYPaQCjNXC+QZGcCMGXJ7/Hj5e/DBB7JPXcBau1YmpQOAzz+XZfm++Ub+nyYl6UuXFZbl+HFLJpMcf/RouQgIOCaQ57cGuSU1RKSoPSUOHwaCg+UCDyD/9jt2yM9ViAr5sYsBqAEg1CsZpovZbfb3t75IZxBWyO3EQE5ERO5gx44dmD9/Pj7++GOsWbMGa9aswbx58zB//nysWrUKY8eORd26dbFffXgju2R66TOtd/L9BwCwCR2x4VAlCbuaJsFOBXI14dDHH+uTGm3ZImM71djwWbNkMjUVxj099cARHS1dUFVV88QJ60AO6N3WZ8yQ56p1t1UgV99rWSFv2FC2OQN5ZKR08e7VC+jeHZcimiIZgVIYHTAAADAQPyDyaCG7qyu2KuQzZgC//CK/i8L66iv5gP/ii/LzTJmSY1H0bGlpehVNjR9XbAXyjAy94qdp0q7C+OknuSighhA4U85A7umphyFbM607okKenq6v92w5oVth1Kwp3dkDA+U9ajnTf3Gp8eP168u2oED+/vvyVVL+9z+pCFeqBDzxhPSE8fAAli0Dvv9eLkypWeqHDJEKdni4dCnXtPyHouQlr0AOyHulXTt9VsaS6rIO6P/fihLIL1yQIS9NmkgPIU0DXnhBHnv4YX0ehXz8Gy/j2wNNKS41fhxgILcbAzkREbmDvn37omfPnjhz5gy2bduGbdu24dSpU7j11lsxaNAgnD59Gl26dMGzzz5rdFPdUqavVFVCkICqVyXc7kYzbN3moVceT53Su6yPHy8B6Nw5fT1g1Yth8GB9fOe+fdIdeOFCCdyPPy4zIo+UMdtWVSYVyAMDZbtliwTQt96SDyrz5unHBPSusJaBXFWWcnZZV2O9s1nNsj5wIADgNvyBekez16EuaiDXNL0bv+paXpDMTJnBOzFRusGGhEgV2NbEdhs2SEgOCwOaNrV+zFYgP3/eugt0Ybutv/CC/L4/+6xwzy+OnIEcyH8oQF5jyFUgT06WoQn5OXxYxkIHBeldj+1Rtao+A/+LL0qvD0dQgfzRR2WbXyA/dQoYNUq+1GSIgFz0+vZbxy/V9uefwJNPyu3Ro6USe9NNwL33yr5775V/txMnZL/lnAVqvHVe3dazsiSsx8bmniFd/Q5sBfKcSjKQ5zWJYmHs2yfvv4sX5e/Yzz/LhTYfH5mAsRAOnZYu6/5ZyS41fhxgILcbAzkREbmDt956C9OmTUOQRXfH4OBgTJkyBTNmzIC/vz8mTZqEbdu2GdhK96X5SIW8lWkHPLIykRkYjNOohp07gaxq1eVJcXEy6zQglZ2nnpLbY8ZIZXrDBvmQ/uqrQEyMhPKOHWWs7uDBUiWbP18qQqoqWaOGbE+c0EN1dkDG338DS5fqAez336WyqQL5PfdINf7CBb1yr7rNnjkjYV5VWFVYzWYVyJs0wYXQevBFGoKTz0i1zXKytPzkDI5qRm5AAkxhlkM7cEBCZECALHmkfn5bs1Jbzq6ueiIolhU79cFO/fxq7O2KFQVXvdPSZGm6vNrgaPYE8mvX9Nnic4aPgAC9O3RBVXJVdW3UKPfvsbBGjpR1sS9elDXD1VJZRXX2rIRsDw+pkgIS9vKa0V2Fd0AuigHyu7z1Vj3k2ePCBXnPzp9vPQQDAH77TcbTX7sm771x4/THYmPlQpuq6pYrJz0+1IU1IP9APmmSfG+HDjJMQ4V+QN7H9gRyVSG+eLHoFyQKO4ZcBfJLl+xf0k1dKARkKMl998ntkSNz/a3Ky95jEsi9bzCQuz0GciIicgeJiYk4rz4oWbhw4QKSspe7CgkJQboj14QtQzwDJJDfXlG6q3s0a4LgYBNSU4HEgOxAvm6dBEw/P6lyjx8vlVR/fz1MP/+8XlGPiZEP4PlNUKQ+1B47pof9hx6S7c6dMj5VSUwEvvtOqpEeHkDLlkCdOvJYVpZUl9Rs2WfP6pUrP79cH1StArnJhP0NB+oPduhgXlKoQDmDo+Ukd1evFm4GZtWNv3VrCTPZXeixeHHuD2iq276tcc/Vq8vvJS1ND1QqkDdvLh/0r1/Xx07n5cgR/XX/+sv5S2/ZCuR5LX2m/gZ4e9v+NyrsOHJ7Ql5evLz07uKffirvheHDiz7uW70PGjeWfysVCPNaUs8ykH/5pYzPnjlT/p8AsjxhQWuEAxJcb79dKsI9ekhX9F699Asfa9YA/frJ+6pvXwn6FkslomJFCfGnT8s48X375P+QJcsZyS3f0wcPSkX4/Hk9wP/0k/5/98QJuQjg7a0vbZYf9f88La3o654Xdgx5SIh+AejkSfteQ/18DRrINj1d3v//93+FPsTu/+T9b9I0vds8u6y7JwZyIiJyB3379sXjjz+OxYsX49SpUzh16hQWL16MoUOHol+/fgCALVu2oL4ae0l2CYmQLuu3+EgoMDVpgtat5bGTWnYgV8uBNWggHyC8vWXJo7g4CedPPCGB3B4qkG/cKB+ivbyk23mlSpKa1Yzsqiv6G2/I9qabJBRYdtuuV0+6LZtM8r2qt0RkZK4qqArkaujpoSYWgbyw3dWB/AM5ULhu6yqIqZmie/SQD/pnz1oH+oQE/Wfq3j33cby89ECqPvCrYBoRIRORAQV3W7echyEz07mzs2uafRVyFXxq1LBd2S7sOHIVmovSXd1St27SNbtaNfn3mTdP5k144YX8u83v2aNfgFJUwFbvA9W2vAK+ZSBPSZF2zJol9z09JRz/738F/wyHDunv0zp1ZKKxXbuA556T99E998h/mIED5YKYj4/t45hMcjHB1t/gJk1kTe+kJOv31+LFsu3eXaraPXpIKFEV/2XLZNuggf6fNT/+/jLzO1D0buuF7bIOFH1iN1Uhf+QRPYS/9pr1/4F8XLoEnLxsMXmbOh4r5O6JgZyIiNzBRx99hB49euCBBx5AZGQkIiMj8cADD6BHjx6YO3cuAKBhw4b45JNPDG6pezL5S8Wr3OnsINe4Mdq0kZsHk7MDuerGrKo6SpUqEpTnzZMP3fZQH2i3b5dtnTrywbtdO/05XbtKt3hAX5KscWPZNmmiP69+fQml6oO06h6bY/w4kKNCDuBCzdY4guwl3u64o/DtV8Hx4kU5qAqMqot4UQK5jw/Qp4/ctuwyvnatfGCrX1+q4bao9ZjVUkyqQl61qh7If/kl/w9+KgCqn0G14auvpI2OnDjx2jX9H6MwgVxdaFDvm5zsrZAXN5AD0s34+HHpvXDXXTKR3ltvyQWiCRNyV7hPnJDfY7t2ElAVFbDVe19V720F8sxM4B/pzYKhQ2X78styEaB5c318+6RJ1sMmNE1m8racLE/1mOjRQ/6PqxAfGytDNy5elFnMv/gi9/JwhVWunN57xbLbugrk998vF/jUygKffCIXLF58Ue4PGVK41zGZCh5Hvm4dMGiQ7cfT0vSLavYEcnvHkVvObfHaa3IR4OmnC/3thw4BGjyQYipvfTxWyN0TAzkREbmDgIAAzJs3D5cuXcKOHTuwY8cOXLp0CR9//DHKZ4fAFi1aoEWLFsY21F1ZdkEFgCZNzIH8n/gc4U/NZO4I6gOtGu9Zr55s1Yd3QAJHz5565QvQA7llhVxV5lSVdNMm2doYk5kzkJfzMqE3fsdbPZdbXwwoSMWKenA9f978YV67407Zt21b/pW6tDR9Qi7L9ectx5Gr343qrp7f+uiqC7+qvloG8i5dpIJ4/nz+62erAPjII7JduVKC0+DBEgJV9RKQyuzcuUVfh11Vxz09rbugq0Cec5Z1VYnMa5xtYSrkmZl6SHZEIAek/d26yZwHS5dKD45z5+RCVcOG+gzagCzVlZYmQy8WLpR9CQn6+1W9/1Tb1AWQ1av1Cy2HDkn4Ll9eeqlY/v995RW5gFWlijz/ySflYsqHH0r1vlUroFMnfRZ/tR67GgZx++16e0+elJC3eHHuvxH2yjmO/NQpuRhlMklXeEAuRNWsKSXgzp2l+33btjJxXWEVFMhHj5aLDtkXcq1MmCD/LhUr6n+L8lPUmdZzTjZpZ5BWc2umeQVYH48VcvfEQE5ERO4kICAAFSpUQIUKFRBQ2HG+VLCca9c2aWLOh+uP5QjkOSvkxaEmdVPUh2A1BjUwUMJp+fLW46YLE8h37pRtIQK5lxfwL+piZ5Xbcj03Xx4e+jrC8fHmQP7airZIb9hUwnR+Y7Z375bGVKxoXcnv1Uv+TY4f1yvoKpDb6q6u5BfIvb0liAH60mm2qEA+cKCEyfR0ua3GI6sAB8gSb08/LeEp50RghWHZXd2yC3pxK+T5jemNi5NA7Otrs/dEsd11l/wOv/9ebgPAO+9I9VnTrGeuf/99+RD+9tsyeVvjxlLhBqy7rL/5pvy7d+sm7xdVTW/dWt47gwbJ/VatpCdEQAAwcaLsW7BAJol75hm9h0lcnPw7ZmTow0Isl3979VW5HxwsP0dev297qEC+bJlcgFiyRN+v/g95eko7AXnvennJ+PzCdFdX8gvkcXHSQwDQL4Aov/0mY/ABec3C9PYpSpf1jAy9Cl/ICdxyUteTMn2z26je76yQuycGciIicgdZWVmYOnUqgoODzV3WQ0JCMG3aNGTxJFZ8ltWvKlWAypURGSmf9Y9lOjGQV6hgfTFABfKePaXS9/XX+uOqyzWgB/K6dfUxrep7VSBXAbIQXdbVtjCToudiI5AfSa2B/dV7yf6c3dZTU/WZzi3HDVsGUn9/oH9/uf3qqzLR1J49cl+Np7clv0AO6NV1FcJyylk9VpV6TQPatJEPjocO6QHg++9le/SoXERISMi7bbbYGj8O5B3IC6qQN2sm2w0b8v5wqy44NGig925wNG9v+d0tXSpDIFTo3rhRflfly0vYPXpUAroa+z1tmv7hXHVZP3RI77p94oT0msjZvf211+TCyBdf6O+jmBjgvfdkBvSuXeW5M2fKfUCq81u2SKW9QgWZJFHx8pL37Zkz0rPCEbp1k/fnuXPSzV91V1fvc+WJJ/TeMC+9ZD0spTDyC+Q//qjftpxg7uxZ6QECSDXe8m9NforSZf3MGQnlXl6FWm/cFjV6yNyrRP2tY4XcPTGQExGRO5g4cSLmzJmDN954w9xl/fXXX8f777+Pl19+2ejmuT/LQJ79Adhkkgx2DmHI8rAILo6cOM9ksq6+qVDt4SHjX++8U3/srrsk6AQF6RcFypWTD+39+und3FUgVwpZIQf0Xrx2UeHx3DloJyWQn0J1rPLuLfu//lqfnG3HDvl5mzSRwJBz/LilSZMkMC5dKqEckB4B+Y1tVTNRFxTI16yx/eFPVY99fORCxqBB0oaaNaUdqp0rVsjM+vv3y79BWJh0vVdjqAtLBfi8AvnVq9azZRdUIe/YUXpVXLigz0uQkyPHjxfG+PGyXbhQxpYDEtafeEJuDx8uP2ObNvI+ViIirJcOU+2dNUsP5Oo9Hx4uKxJYzhrv6Snhcv586RHx99/SlV1VoH/6SSZpA2T8uEeOGGUy5e45Uxy+vnLBwMNDZoVXPT5yBvKKFeUixf/9n34hwh4qlJ48CSxaJGPh1XvSMpBfvqyvDvHWW/L/sUUL6fVRWEXpsq66l9esWeQLQmpEhkdgjl5irJC7JwZyIiJyB5999hk++eQTPP3002jWrBmaNWuGZ555BvPmzcNCNQ7TzcXGxiIqKgptbYUzZ7P84G1RkWrTBsiCJ674ZYfc6tULvyRYYdkK5LZUrSpB8s8/rceTv/SSVNtUqi5GIC9ShdyimmsZyL86HS1jYtVyUb/+Kt2AL1yQ4Dt6dP6BvH59PbTNni3b/LqrA3qF/OxZ6QKtKszqd9K6tVRnL1+W7vI5qbDasKGEhcaNpTK/c6f8nKpb84oVepfj7t1lffSgIKlMW3ZpL4iqkIeEWO8PDNTfk6orvOXyTnlVyL289KENv/9u+zlqTHZxljyzR+fOcqEgLU2fsX7IEJnAzMNDD4uvvmrdS8Jk0t8XI0dKrwZvbwnWarZ9e+Y7UFq1kn/XtDRgzhzZZ9ld3Zk6drQO2c2b217O7L77pOrv7W3/a6hA/u67soTiiBESss+c0cevq4uKmzbJ+0pV6ydNynsWeVvU365Tpwq3xBygX1QqYnd1QJ+z0DMkx99iVsjdEwM5ERG5g8uXL6OhjcnEGjZsiMuXLxvQIseLiYnB/v37sVWFtJJkWSFX3cEB88Rup9TSZ46c0E1RH2p9ffOePVzp0AHm9djyosYRA3l2C801qVs56/12UYH88GF4JMus2adRDXv2eSD100VSdTt/XqrHly5JEPTwkOqdCod5XYSZPNn6YklBgbxCBekKDUjYz8iQYKe61Xt5SUAEbI8jV+2xrB43aqRXsFVwW7lSrzb27y9dxR98UO4vXap/7/LlUvV94AG5uKCWsVLy6rJuMuWe2O3yZb1annPuAUu9s3sm5HwtpaQr5CaTXiUHJIh17So9ENRkZp07A7fZmL9g4UL5fc6aJf+G6ncMyP38fg/5tUd1z1YXA2yta+8skyfr3ePvucfxx7ccoqJ6k0yZIkNgALkooHoibNwoF6aOHZO/gb162fdaVavKhasbNwo/sWHOCd3slJWl/5fwrmARyE2mQi+b5mwM5HZiICciInfQvHlzzFHVHAtz5sxBczUJEhVdPhVyADh8PTsoO3L8uKICeZ06ubvNFoVlhbxmTZvHdEqFPHsZqisIQQoCkJEB7IkLkECl2tS8uSy79Nxz+vdXr64fI6eqVfUl3zw8Ch7PazLpVfL162VbqZL1clX5jSMvKKx26CA9JC5elEotoI+3VUu1/fKLVB0zM4Fhw6Qq/M030nX6zjulp4CSVyAHco8jV9XxsDDrHhI5qVC1ebN+fEXTSj6QA/K7Ua/3yCP6e3LmTOCpp2QSMVvrqteoIRdy1PNHj9Yfa9fO9vcUxsMP68esU0dfLq8keHvLBGqxscC4cY4//qBBcmw1Br5fP/mP/fHH8vjAgRLKAamQq54et91mfxf9cuX0i4iF7bZezEB+8aJ+HcW3okUgt1zxwWAM5HZiICciIncwY8YMfPrpp4iKisLQoUMxdOhQREVFYeHChXhLjcukosujQl6tmuSf37TeyPL2Ae68Eykp0hvaYdREXCr9F5dlIM+jW6hTAnl20DsFvcq/bRvkA/uaNTJT9sqVUsV+5RX94kZBQxReeEEq42PG5O7abUvOQJ6zh4DlOPKc3WwLCqve3taTynXooP++u3WT99HJkzKe/I8/5HZoqEwu1q+ffOB84AG9u7w9gbyg8eNKzZrSCyErK3f3+TNnZFy6p2fhlrVyFNUj4rnnrJdAi4yU5cjq1i3ccVq00H//KlQWRdWqekW+pLqrWwoPl7HsxV1KzRZvbzn2bbfJv/NHH1l35R4wQP/d7dsnS8IB1uP37WHvTOvqfVzEQK66q1epAngEWswE7yLd1QEGcrupC2sM5ERE5Mq6du2Kw4cPo3///khISEBCQgIGDBiAQ4cOobPqgktFpz4Y16ihd3mGPrHbQjyGD2ckI7lzbzRtKkMwi7r0dC59+ki19r33HHO8ypX1SlEeH3qdEsizP0ydRA3zMHs11Bd160oQUx+afX2laty7t3W13JbgYGDVKlk6qzBUIFfLOuUM5C1byhjtxER9DXTAunqc3/hqywBnOSGXn5/+2NKlwLx5cvuRR2RysW+/lQsLyclS9Y2PL1qFvDBjby27rScny3jiH37Q11+vW7do45OLo0ULmTzMcqK2ovj8c5mNfeTI4h1n1iwZy/5//1e847i6KlX06ninTtIbICxMH7t+5IhcMFFL1NnL3pnWVYW8iGPIVSCPiID1fB4uMqEbANixSB0BrJATEZH7iIiIwGuvvWa179SpUxg+fDg+Vh+4qGhUtdbGklpt2kgv4607yiFxtsxHBkjv2W++ccBre3jkv5RXUY5XtapMtJTHh17V5dOhs6xnO4Xq6NNHJlfP7sVuW/Pm0nXX0VTQuHpVtjkDebly0vX9118l6LdqJftPny5c9TivQA7IxZWff5bZtNUbZdgw2Xp5yTJpHTvKUl5jxwJJMubeoRVyALj9drmAsWSJ3nUZ0HsYlGR3dUerUUMmMiyuBg1kjfKyoH9/mZzQsvfMzTcD//0ntzt3LnqF2Z6Z1rOy9OcVs0KeK5CzQu6+GMiJiMidXbp0CfPnzze6Ge6vXTtZKktVNS2oHtVr1livCPTtt5K9XJKa2K0kK+TZTqG6efnuvXtl2fESpSrkSs5Z5wG9gvzll1IZB/TqeJ06+VePGzaUibleey13cFfL1B05Ilc3OnSwXkc6NFSuVJhMslXLd9kK5OpCQlEq5J07y3jgK1ckwURGSmVaLbPmzoGciqZJExkuolh2+VeT6xWFPV3Wz56VPzLlytn+f1kI7lAhZyC3EwM5ERERAZDKqo0lf9Sk5seOSS/npk2B55+Xfc88I/tczgsvyIdsNdFYDg6dZT0w0Gos7ClUR9euMsdSRoYU5kpUzkBuY5Z5PPigdJvfvVtfeu3bb2WrZsDOi8kks1bb6upctar1mHi1bJulli2BRx+V2xcuyDa/Crnq4mtPhdzHB3j6aQlg06YBBw/KBacxY2TOgvvvL/gYVLoZEcjVe7l6df2Pjp1YIS+FGMiJiIgoP+Hh1quRTZsmc5LVqSO9nBs1kiHCX38tk0aPHy9zlxXFgQPWRdsiGzBAuivnsQyQQyvklkt0AbjkWx0VK+pz1JnHkZeU6tWtZ1W3FchDQ/Ulpz75RMLEZ5/J/VGjivf66iJIQEDewffVV61nSrf179SunXxQ3btXwrQ9FXIAePttWWbupZfktSpXljforl0yXIDKtubN5YrixIm210IvLPV+PH684D9cxZxhHWCFvFRiICciIqKCqHDZrp2scuXnJ8OEK1WSXpjvvy9F17FjpVv7rbcCw4frw5gLE7Bv3JCe1I884vyu8A4N5IB1t/Xq1WEy6T0L8h1H7gyentbLWNkK5IBevf76a+Dll+WH795dxtYWx9Ch8oZ57TXrwGCpenXrJa9sBfIqVYAePeT2woXAuXNyuzAVcqKCeHjI8mivvlq840RGyhCPhASZWCO/UFXMGdYBPZBXqwaXrZBzUjc7MZATEZErGzBgQL6PJ6gxoeRUo0dLsfG99/QVWjp2lAr5ihXS2/nff+VDooeHTPY2bx7w448Sdi9ckIr6M8/IxM4WE7mbffed/nn122+L14vU0i+/SLsse2Kr4K16jRZrUjfAKpD71pXuBCqQ//WXvJ5l0drp6tQBDh+W23kF8i5dZLr8w4dl5m7AMZOFRUTo3eDzM3488L//ySD7vNr44IPyBouNlfvly1uPAyYyWvny8ofx6aflyuSlSzJZnq15GIo5wzqQo0J+hcuelQoM5ERE5MqCg4Pz/YqMjMSjajwqOU10NLB2be7hxd7eMo/XZ5/JstfffCMF1z//lM+cly7JnFyZmZL7xoyR4uiwYcDGjXrlXNNkRShl6VLHTIZ26JBU9Pv0sa7S51chz8iQgvGqVXa8UHYgT0QQwuoFAZBluStWlAsVb7xRzB/EXpZdcPMKuyaT9RjvTp0cO9t9QQIDgZ07ZQI4G3MXAJDZsX189OXRatbUrwgRuYqnnpL1zMuVk/XmW7aUbj45uwbt2CFbyx4sdsjI0DuKuHKXdVbI7cRATkRErmxBWVmWp5SJjpYln7dtA4KCZLWpZcuA2bNlnPgnn8hXy5ZSJD1+XLKZv788Pz5eCqN5zMlWaLt2yWfi06eBkyf13s75Teq2bJn0Yn33XZmQrVDDS7MD+SlUN3/WDg3Vu/JPmwb06ycT4pUINbFbaKj1WO2cHn1UJmfLyJDqeEmH3by6tCvBwcAddwCLF8v9YlQWiZzqwQel98ZDDwH790sXn549gZ9+kj9su3bJ+JVy5WRZviI4f14ym6dndv6+5Jpd1lkhtxMDORERETlD+fLSK7pFCxky+dRTEtL/+gsYPFg+o+7YIZNyP/usfM/QocB998ntH34ofhsOHtRvq+IUkH+FfO9euX3tGvDYY4X8jJS9zNoJ1LQqfj3wgATxGzekq36Rx6jbq3592VrOxmdLWJiMD/jgA6BXL+e3qygefFC/zfHj5Mpuv126xLz4olwIW7lSruwBwEcfybZ/f/l/VwSqu3p4uIRyV62QM5DbiYGciIiISorJBHTtKnN0/fuv9JJOSpKg7ukpk8KpNbx/+glITy/e6x06pN/evl2/nV8gtwzxa9dKlbtAAwZgoe9TmIaXreZrMpmADz+UQvX27fpQbae77TYZH/DmmwU/t39/Gf/qql3B77xTurcDrJCT6wsJAaZPBz79VO7PmAHExcnyEQDw5JNFPrTV+HFAhqPUqiUTVvj7F/m4jsZAbicGciIiIjJCeLiMNX/mGbn/xBPy2bJTJykgJSTI45om1eqiKEqF/MABua0KxhMmAP/9l//rJHuF4rHUD7EJN+eaQDk8XC40AM6fPd7My0uW+Ordu4Re0In8/GTKfkCu5hC5g/vvl6B89ap0Xb96FahbVyaXKKJcgdzbW/7Ibd5c/PY6EAO5nRjIiYiIyCje3jKB9tmz0msakEq5mlz/scek4BQYKBPG2UPT7K+QZ2bqgfztt4HOnYHr12WiuvyoyZNDQuQrpzvukO2qVcWv+pdJb74pA2g7dTK6JUSF4+Eh1XFAv6I3fLgevoogVyAHZNLDcq41jZqhgXz69Olo27YtAgMDUaVKFfTr1w+HLM8EAFJTUxETE4OKFSsiICAAAwcOxDk1XZ4B1HuiMOuDEhERkfPExsYiKioKbdu2NbopJS483Ppz6v33yzY+Xrq0Z2VJBV2t5JUXy88zp08DKSkS8E0muX/hgjyWVyAHpJDl6SnDsO+5R/atW5f/66pAntfkyS1aSNU/JQXYsCH/Y5EN5lmsiNxI9+56LxVvb5lIohhsBnIXZGggX7NmDWJiYrB582asWLECN27cwG233YaUlBTzc5599lksXboU3333HdasWYMzZ84UuMaqM1me/BjKiYiIjBMTE4P9+/dja2HWcC7lunaVSd0+/1wmJ46OBpKTJair5dByfm7Zvl2C/aRJcl/VROrUkZ6igN5tPa9Z1pU6deTzc5cucn/jRqme50UdV82llpOHh94FftmyvI9DRKXMO+9Igh4zptgXlRjIC2HZsmUYMmQIGjdujObNm2PhwoU4ceIEtm3bBgBITEzE/Pnz8e6776J79+5o3bo1FixYgI0bN2JzHn3/09LSkJSUZPXlSJaBnN3WiYiIyFUMGAA88gjQrJks8VupkiyN1ratjDVXw6QB+Qzz1FPSq/mDDyQ8q/HjDRoArVrJbdVtPb8KOQA0aiTbpk1lGbarV+XCQF5WrpRtfsND1UpHDOREZUijRtI9pzATLBaAgbwIEhMTAQAVKlQAAGzbtg03btxAz549zc9p2LAhatasiU2bNtk8xvTp0xEcHGz+qlGjhkPbyEBOREREri4iAvjiC7m9d6+sW56ZCTz3HLB6NbBgAaA6Fly6JMFbVcgbNpT1zoG8K+Q5A3nDhrL19NSHLa9da7ttKSmA+hjXo0feP8Ott0rX+d279Q/WRESFxUBup6ysLIwZMwadOnVCkyZNAADx8fHw9vZGSI7ZPsLCwhAfH2/zOBMmTEBiYqL56+TJkw5tJwM5ERERuYPbb5fq8kcfSTh+9FH57PLAAzITOqCvjrVsme0KeV6BXI0zV1SFHJCJ3YC8x5GvWyfHi4yUru55qVRJqvsAsHw58Pvvskb5okUcNkhE+UtP1+fAcPVA7jJTzMXExGDv3r1Yv359sY7j4+MDHx8fB7UqNwZyIiIichdqHDYgKwrt3CkVZ0BCdEwMMGKEBF5Vw2jYUEI5ABw5IpPEZWTIfcvKuJeXPgN6XoFc03Iv1626q/fsWfBS3rffDmzZIpX9y5dl308/yVj5Dz/Me1I4IirbVO3WywuoWNHYthTEJSrkI0aMwC+//ILVq1ejevXq5v3h4eFIT09HQkKC1fPPnTuH8PDwEm6lYCAnIiIid+TvD3z/vYzxBoDZs4G77pLbmzcDJ07I7QYNpDqtPpJt25a7Qg5YT+ymuqwDUtX28ZHqlK1Z3i0DeUHUOPLLl+Uz2IABcuzly6WKz67sRGTLvn2yrVq14At/RjM0kGuahhEjRmDx4sX4888/UTvHZc7WrVvDy8sLq1atMu87dOgQTpw4gY4dO5Z0cwEwkBMREZH7qldPwvfq1RKIIyMlTKsZ0StWlDAO6N3Wu3fXH89ZIQeAatX0kA9IYG7XTm6vWyev9fjjUp2/cEGf7K1794Lb266ddFOPjgb+/ltmkt+9G4iKAhISgPnz7f8dEFHplpYGjBsnt9VFPVdmaJf1mJgYLFq0CD/99BMCAwPN48KDg4Ph5+eH4OBgDB06FGPHjkWFChUQFBSEkSNHomPHjujQoYMhbWYgJyIiInfWqJF1F/NevazHjyuPPy5jz1VHxapVActpfVQgt6yOK507Sxh/+WW96+jixTKzOyAzwVepUnBbPT3l+yzVrw/83/8BDz8MfPKJ3Pb0LPhYRFQ2vP46cOCA/I2ZPt3o1hTM0Ar5hx9+iMTERERHR6Nq1armr2+++cb8nJkzZ+Kuu+7CwIED0aVLF4SHh+PHH380rM0M5ERERFSaWFaQLMN1377SVTwhQbp/Hjxou0JuGe4VtR65CuM1a8px3nhD7hemu3p+Bg4EQkOlm/2KFcU7FhGVHnv2SCAHgDlzgOzFu1ya4V3WbX0NGTLE/BxfX1/Exsbi8uXLSElJwY8//mjY+HGAgZyIiIhKly5dpJs5YF0hB2TsZXCwdBG37JYO5B/Ib7lFusPXqydd1nfv1mdMB4ofyH19ZdZ4APj44+Idi4hKj+efl0ko+/UD7rnH6NYUjktM6uZOLCcFYCAnIiIid+fvL9VwQJ8hvTACAmSbvVqtlfLlgaNHZW3z6GgJ9cuXy/GbNgW6di12szFsmGx//hk4e7b4xyMi9/fPP7J9+WXXn8xNYSC3k8mk/+MykBMREVFpMH++dEu3Z87cmTOBqVOlGm5LuXLWH4hDQ4E1a2RSN3//4rUXABo3Bm6+WSacW7iw+McjIvd29Spw6ZLcrlvX2LbYg4G8CFS3dQZyIiIiKg0CAqRbuj1uu02qUB52fJq0LGw4gqqSf/ml445JRO7p2DHZVqiQe4iNK2MgLwIGciIiIiLj9e0rM6zv3w/895/RrSEiI8XFyTbHStouj4G8CBjIiYiIiIwXGqqPe//lF2PbQkTGUhXyWrWMbIX9GMiLgIGciIiIyDXcdZdsly41th1EZCxWyMsQBnIiIiIi19Cnj2zXrAGSkoxtCxEZR1XIGcjLAAZyIiIiItdQv7583bghS6sRUdmkKuTssl4GMJATERERuQ5VJWe3daKyixXyMoSBnIiIiMh1qED+22+yLrmSkcHZ14nKgitXgMREuR0ZaWxb7MVAXgQM5ERERESuo1MnmXH90iVg7Fj5cL5xI9C6NVCnDvDmm/pzMzOB1auB69eNay8ROZbqrh4WBvj7G9sWezGQFwEDORERkWP1798foaGhuOeee4xuCrmhcuWAmBi5PXu2VMg6dQJ275Z9kyYBBw4AmgY8/TTQvTtw221SQSci9+euS54BDORFwkBORETkWKNHj8bnn39udDPIjU2dKmuRN2kCXL0q+x57TIJ3ejrwxBPAnDnAvHny2Pr1wBtvGNdeInIcd13yDGAgLxIGciIiIseKjo5GYGCg0c0gN2YyAXfeCezcCfz4I/D338Cnn0oADwiQLuyjRslz77hDtlOmyPOIyL2564RuAAN5kTCQExFRWbJ27Vr06dMHERERMJlMWLJkSa7nxMbGolatWvD19UX79u2xZcuWkm8oEQBPT6B/f6BdO7lfs6Z1Jfzhh6WSPmiQjCd/6CHg2jVj2kpEjuGuS54BDORFwkBORERlSUpKCpo3b47Y2Fibj3/zzTcYO3YsJk+ejO3bt6N58+bo1asXzp8/b35OixYt0KRJk1xfZ86cKakfg8qwp58GhgwB7rkH+PhjqaZ/8AFQrRrw77/ATz8Z3UIiKg53rpCXM7oB7oiBnIiIypLevXujd+/eeT7+7rvvYtiwYXjssccAAHPnzsWvv/6KTz/9FC+++CIAYOfOnQ5rT1paGtLS0sz3k5KSHHZsKp08PIAFC6z3hYQAjz4KTJ8OLFkiFXNLN24A69YBQUEyW7vJVFKtJSJ7aBor5GUOAzkREZFIT0/Htm3b0LNnT/M+Dw8P9OzZE5s2bXLKa06fPh3BwcHmrxo1ajjldaj069dPtr/9BqhrPBcuAM8+C1SvDvToAbRtK93fv/rKeo1zInINFy/KsBOTSYaouBsG8iJgICciIhIXL15EZmYmwsLCrPaHhYUhPj6+0Mfp2bMn7r33Xvz222+oXr16vmF+woQJSExMNH+dPHmyyO2nsq1NGyAiAkhOBv78Uypt/foBs2YB588DlSoBPj7AP//I2PO33za6xUSUk6qOR0TI/1d3w0BeBAzkREREjrVy5UpcuHAB165dw6lTp9CxY8c8n+vj44OgoCCrL6Ki8PAA+vaV20uWAL/+KrOx+/kBP/8MnDkDnDwJPP64PGfVKsOaSkR5cOclzwAG8iJhICciIhKVKlWCp6cnzp07Z7X/3LlzCA8PN6hVRIWnuq3/9BPw0ktye+RIoE8fwMsLqFwZiImR/Vu28PMfkas5fVq27jp6iYG8CBjIiYiIhLe3N1q3bo1VFqXDrKwsrFq1Kt8qtyPExsYiKioKbdu2derrUOkWHQ0EBwPnzgG7dskkbuPHWz+naVPA1xdITAQOHzakmcW2ezdw++1yUYGoNLlwQbaVKxvbjqJiIC8CBnIiIipLkpOTsXPnTvNM6XFxcdi5cydOnDgBABg7dizmzZuHzz77DAcOHMDTTz+NlJQU86zrzhITE4P9+/dj69atTn0dKt28vYE779TvP/88UKGC9XO8vGSmdcB9A+3bbwPLlwOPPAKkpxvdGiJrr70myxLeuGH/9zKQl0EM5EREVJb8888/aNmyJVq2bAlAAnjLli0xadIkAMD999+Pt99+G5MmTUKLFi2wc+dOLFu2LNdEb0Suqn9/2VauDIwebfs57dvL9u+/S6ZNjqRpwF9/ye3Dh2UNdiJXsXy5DBf54Qdg8+bcj2dlyTCS99+3/f3uHsi5DnkRqHUoGciJiKgsiI6OhqZp+T5nxIgRGDFiRAm1iMixBgyQmdU7dgQCA20/x50DeVycTE6nvPKKzBpfqZJxbSICZIWDJ5/U7586lfs5mzcDc+YA5csDI0boWUxRgbxKFee105lYIS8CVsiJiIiISg8PD6mMt2uX93PUY7t2Adevl0y7HEVVxzt0AFq0ABISgOwOLkSGmjQJOH5cv68maLO0fr1sU1IkwOfk7hVyBvIiYCAnIiIyHid1o5IUGSkVuIwMYMcOo1tjHxXIe/SQngAA8NFHwN69RrWISCrf770nt9UcDfkFckAmX8yJgbwMYiAnIiIyHid1o5JkMund1t1pYjfL8ePR0UDXrsDAgfI59tln5XGiknbxInD//fI+fOghmWwQyN1lPSsL2LBBv58zkKeny+oHAAN5mcJATkRERFT2uPI48owM4MUXgRUrrPer8eNeXjJGHgDeektml1+5Eli6tOTbSmVbZqbMYXDiBFC3LhAbC1SvLo/lrJAfPAhcvqzfzxnIL16UracnEBLitCY7FQN5ETCQExEREZU9rhzIV6wA3nxTZqO2pKrj7drJpFgAULs2MHas3B43DkhLK7FmEuHVV2VmdT8/mVk9OBioVk0ey1khX7fO+n7OQK66q1eqpGc0d+OmzTYWAzkRERFR2dOmjWzj4qS7d0KCoc2xcviwbI8cAVJT9f2W3dUt/d//AeHhwNGjMoM1UUm4fl3WHAeAuXOBZs3ktqqQnz0rFXTFcvw4kDuQnz8vW3ftrg4wkBcJAzkRERFR2RMSoq9TPmsWUL++TJR2yy0yLtvWDNAl5ehR2WZlSTdfIPf4cUuBgVKpBIB33gFu3CiJVlJZFx8v7zVfX33cOCAXhzw8ZOiFCtmAHsg7dJBtXhVyBvIyRgVyToJBRERkHM6yTkaYNUu62zZsKGHgzz9l0qkff5Tut0b591/99r59sj1+XMaPlyunjx+39PDDMnP82bPAkiUl0kwq4yzXDLdcT7xcOQnlgD6O/NQp4NgxyV79+sk+BnICwAo5ERGRK+As62SU224Ddu8GfvoJWLQIuPde2W85G3RJswzkajkzNda9RQt9/LglHx9g2DC5HRvr1OYRAci/i7kaR64Cufr/1LIlUKeO9fcrDORlFAM5ERERUdnm5QXcfTcwaJDe9TbneNeSkpkp49oVVSFXy7OpyehsefJJmaF6zRquS07OpwJ1lSq5H1PjyNXEbur/0y23AGFhcpsVcgLAQE5EREREuptvlu2BA/oyTCXp5EnrMeAqkKsKebt2eX9vjRpA375y+4MPnNM+IiW/AJ1XhfzmmxnIKQcGciIiIiJSKlYEoqLk9saNJf/6qru6CiX//QckJgLbtsn9/CrkABATI9vPP5fvI3KWwlbIr12TYSGATOimAvnVqzJTu8JAXkYxkBMRERGRpVtuka0R3dZVIG/bVg8m334ry58FBwP16uX//d26yYzxKSnAypXObSuVbZaTuuVkWSHfvl2GYlStKr04goJkzgPAukrOQF5GMZATEREZj7OskysxMpCrJc/q1gWaNJHbn34q23bt9M+ueTGZ9G73HEdOzpTfpG6WFXI13KJ9e3l/mky2u60zkJdRDORERETG4yzr5EpUIP/nH+sutSVBVcjr1AEaN5bbmzfLtqDu6krTprLds8exbSOylF+XdcsKuWUgV3IG8owM4PJluc1AXsYwkBMRERGRpVq1pHvtjRtASV8jshXIlfwmdLOkKuuskJMzFWZSt5QUYNUquZ1fIL90SbYmk8zj4K4YyIuAgZyIiIiILJlMepV83bqSe11N0wO5ZZd1pbAVcvV9R47I2HOiotqzB3j//dxZSdPyr5D7+wOhoXL78mX5P9Wmjf64+h4VyFW4r1BBlu5zVwzkRcBATkREREQ5qUD+8cfAU08B77wjs0U70/nzQHKyhJdatawr5LVq2Q4+tlStKmEoKws4eNAZLaWyIDUV6N0bGDUK+P1368euXgXS0+V2Xl3M1ThyQN7LgYH6/ZwV8tIwfhwwOJCvXbsWffr0QUREBEwmE5YsWWL1uKZpmDRpEqpWrQo/Pz/07NkTR44cMaaxFhjIiYiIiCinW2+VYHziBPDRR8BzzwGTJjn3NVV1vEYNmYU6NFTCNVD47uqAtJvd1qm45s3T1xHP+T5S1fHy5aUabovqtg7k7t3BQO4EKSkpaN68OWJjY20+PmPGDMyePRtz587F33//jfLly6NXr15INbgfDQM5EREREeXUqJFM6jZvHjBihOyLjQXOnHHea1p2V1eaNZNthw72HYsTu1FxXLsGvP66fj9nHTW/7uqKZYW8rATycka+eO/evdG7d2+bj2mahlmzZuGll15C3759AQCff/45wsLCsGTJEjzwwAMl2VQrDORERETGi42NRWxsLDIzM41uCpFZq1bypWnAjh3Ahg3Aq68CH3zguNfIyABWrABat9aXPKtTR398+nTp7jt8uH3HZYWc7PXvv/LVpQswdy4QH68/ljOQFyZAs0LuQuLi4hAfH4+ePXua9wUHB6N9+/bYtGlTnt+XlpaGpKQkqy9HYyAnIiIyHpc9I1dmMunVwnnzgP/+c9yxv/oKuOMOCeFffin7LAN5y5Yyfr18efuOy0BO9rr9dqBXLwnLU6bIvqeeku3hw9bPtadCXr587hUDcgby/NY0dycuG8jjsy+vhKnffLawsDDzY7ZMnz4dwcHB5q8aNWo4vG0M5ERERERUkC5dgNtuk4r2K6/k/bzMTKmoF9aWLbJNTtaDvmWX9aJSAejECcAJNS0qZa5f13toJCXJpG116kiPEECq5Vev6s9XFe38AnmLFrLt0SP3zOkqFiYkAGlprJC7rAkTJiAxMdH8dfLkSYe/BgM5ERERERXGa6/J9ssvZSmnnHbuBIKC7Otevm+fbB99FLjpJiAgwP7x4rZUqABERMhtVsmpIKpG6uMDrF0rExj++KOsCa5Ct2W39cJUtNu0kTkMVM8PS6GhQLly+rEYyJ0sPDwcAHBO9UnIdu7cOfNjtvj4+CAoKMjqy9EYyImIiIioMNq0AaKi5HPj6tW5H586VSbD+uQT4LffCndMFchHjZLAc+6c9djb4lATuzGQU0HOnpVt1apA587SC0RNKFivnmxtBfKCluJr0sR6uTPFw0P/XgbyElC7dm2Eh4dj1apV5n1JSUn4+++/0bFjRwNbxkBORERERIV3662yXbHCev+hQ4Dlqr/PPAOkpOR/rPPngYsXZYx6o0byuTSvJaSKguPIqbDU6gGqV4UlFcgtx5E7IkCrbuvx8RxD7hDJycnYuXMndu7cCUAmctu5cydOnDgBk8mEMWPG4NVXX8XPP/+MPXv24NFHH0VERAT69etnZLMZyImIiIio0NQcxStXWu9/+20ZO37bbUDNmsDx41Ixz4+qjteu7dggrqhAvnu344/tLo4dAxYu5Gf9glhWyHOqX1+2RamQ50cF8iFD5MJUXq/vTgwN5P/88w9atmyJli1bAgDGjh2Lli1bYtKkSQCAF154ASNHjsTw4cPRtm1bJCcnY9myZfD19TWy2QzkRERERFRoXbvK2Nd//wXi4mTf2bPA55/L7cmTZb1yQGZHP3Ag72OpQJ5zBmpHadtWtmvWAN9845zXcAUnTuT9Wf6JJ4DHHrPuvUC55RfI86uQOyKQX7woM7G//37xjucKDA3k0dHR0DQt19fChQsBACaTCVOnTkV8fDxSU1OxcuVK1FeXWwzEQE5EREREhRUYqE+6pqrk770HpKcDnToBN98M3HWXLB+VmQn89FPex9q/X7bOCuSNGwPjxsntIUOA0riq4LffApGRsl57TtevA+vWye1du0q2Xe7Gngp5VpZjuqxHR8twjXvvBQ4eBEaMKPqxXIXLjiF3ZQzkRERERGQPy3HkBw4As2fL/Rde0J/Tu7ds167N+zjOrpADwJtvAnfeCaSmAn376sGrtPj7b9mq4G1pyxa5UALkXkebrOU3hlwtw3f5MnDpkixVlpEh+4oTyIcMkXkWvv1WX7Pc3TGQFwEDORERkfFiY2MRFRWFtqqPLZELU+PIV60CBg2SSuxttwF9+ujP6dJFths2SKU8J00rmUDu6QksWiSvcfYs8NFHznstI5w+LVu1hrYly4shZTWQZ2UBn34K7NiR//Pyq5D7++sz/x85olfHg4JkmbTi8PMr3ve7GgbyImAgJyIiMl5MTAz279+PraWxTy2VOu3aSdf1y5elK3SlSjJxmMmkP6dZMwksSUm2J1U7f16qjSYT0LChc9sbFASMHCm3//rLua9V0lQgP3YMuHHD+rE1a/Tbhw/LRZCy5pNPgKFDgYcfzv95+QVywLrbuiMmdCutGMiLgIGciIiIiOxRrhzQrZt+f8GC3EHG01PGlAO2u1Or6vhNN5VMlTA6WrabN0v39dJCBfLMTH2SPUC6qm/cqN9PTpY13suSlBSZZBCQ+QoSEmw/Lz294FnOLSd2c8SEbqUVA3kRMJATERERkb0efFC2zz4rk7jZorqt2xpHXhLd1S3Vry+zWqelydjq0kDT9EAOWHdb375dhhJUrAjUqiX7SnO3dVvV/5kzZY1v5Z9/bH+vek65cvL7ssVWhdzd1wx3BgbyImAgJyIiIiJ73XefBJl33sn7OZ07y3bt2tyBqaQDuckkS7YB1l253dnFi/qkbYD1OtnqZ+zSRR8SUBoDuabJnAZNm8rwCOXCBWDGDLmtlhfL60KMZXd1jzwSpaqQr1mjrxzACnluDORFwEBORERERPYymSToWI4bz6lNG8DXV8JRzjBY0oEcKH2B3LI6DlhXyFWvhC5dbK+jXVocPy6TC+7bJ8vvKVOnAlevAq1bA889J/vymqKjoPHjgLyX/fzkItSyZbKPFfLcGMgLKz0dGDUK6NED3pnXATCQExEREZFj+fgA7dvLbctu6xkZxgbyjRutK8vuKmcgVxXyzExg/Xq53aWL3t3a3QP5jRsyVGLKFH2fZch++22ZaHDtWiA2Vva9+ab+HixOII+IAA4dkqB/002yr3v3Iv0YpRoDeWF5ecn6D3/+ibArBwEwkBMRERGR46lx5JYTu82dC1y5AlSoADRqVHJtiYqSGeGvX897PLE7UYE8JES2KpDv2iXdt4OCgObNrcc/u7MNG4CvvwamTdMnaLPshp6UBEyaBDz6qHRlHzoU6NEDaNVKegWfPq2vN25J7csvkANAjRrAyy9LT4Tr1+XYZI2BvLBMJqBJEwBA+MW9ABjIiYiIiMjx1DjyX38F/v1XljqbNEn2TZtW/HWc7WE5jjzn8mf//AN8/33JtcURVCBXFz2OHZPK//Ll+n5PTz2QHz1qe014d7F5s2yzsvQeFyqQ9+8v29hY6cZeu7ZM6gYA5cvLxRjAdpVcVcgjIgrXDpNJhmJQbgzk9mjaFAAQfmEPAAZyIiIiInK8rl3lY+fly1JRfOYZqY43bQoMH25MewDrceRJSTIx2L33yvJY7kIF8jZtAH9/+Tx/7Jhc/ACAO++UbY0acuEjPR04ccKQpjqECuQAsHq1XFzYtk3uT50KtG0rtz08gC++AAID9eerx/IL5AVVyKlgDOT2yK6Qh11ghZyIiIiInMPbWyq29epJ5fLbb2X/7NmyzFRJU4F8wwa5MAAAH38MJCbKbTW23R2oQF69OlC3rtzevBnYtEluq0Du6QnUqSO33XUcuaZZB/I//wQOHJC1xgMCZOjDrFkyJOH114FOnay/n4G8ZDCQ2yM7kFdhICciIjJcbGwsoqKi0FZ9aiQqRapWlZmwIyPl/j33ANHRxrSlSROZSC4lBZg4UarGqmszIN3q3cWpU7KtVk0P5O+/L5/rmzWTyrji7hO7HTsGnDsnFxcAYPdu4Lff5HabNrL/5ptlRv/x43N/f7t2st26NfcSfAzkjsNAbo/sQB6ceBLBSGAgJyIiMlBMTAz279+PrXlNA0zk5mrUkKr0++8D8+cb1w4PD2DOHLk9dy4wbpz1RF+WS4e5OlUhr1ZNX9pMTVZ3113Wz3XFQD5rlvSUKAxVHW/VSp+ZXy1zVpjrmE2bSm+NK1esL7pkZEjQBwo/hpzyxkBuj+Bg82WzxtjHQE5ERERETlWtGjBihMz+baToaOChh6RSqsJ5y5aydZcK+fXrepd7y0CuqO7qigrkmzcD77wDPPusrKltlDNnpA2jR+uBOD8qkHfsqC83pi6kqOp3fry9gRYt5Lbldc/z5+V94OHBdcUdgYHcXtlV8ibYy0BORERERGXG22/rFwaCgoDp0+W2u1TIVXXc31/qbKrLOgBUrKivva1YVtCfe06q02+9VSJNtWnnTv32nj0FP18F8g4dgG7drB8rTCAHgNatZbtjh75PdVcPC9O7w1PRMZDbK3umdQZyIiIiIipLwsOlUgwAzz8vXaEBGZd9/bpx7Sosy+7qJpN1hbx379zhsk0bGVdepYoeTC3Xhi9plqG4oECemqo/v0MHmZjPZJL7VapYj5XPj6qQW14M4Phxx2Igt1d2hbwp9jCQExEREVGZ8sQTMgnYxIkyO7eqmMfFGduuwrAM5IAESn9/uZ1z/Dggj+3aJd3D1XrrO3YA1645v6222FMh374duHFDqti1agEVKgDNm8tj7drp4bwgloFcTeymur1z/LhjMJDby7LLeqZWwJOJiIiIiEqXSpUk0JlM+tJg7jCOPGcgN5mAF1+UMN6nT/7fGxkp35eRAWzZ4tx25sWyQr57d/7PteyursJ3//6y7dWr8K/ZpImMFb9wQR8/r2aqZ4XcMRjI7dWoEbJMHqiESwi8VojZFIiIiIiISik1DtsVxpFPnAj4+UlFuEsXYOFC68ct1yBXXn4ZWLpUr5TnxWTS1+nesMFRLS68pCTrix779gGZmXk/f+VK2XbooO/7v/+T9dafeabwr+vvDzRoILdVhV79/M2aFf44lDcGcnv5+iKhsgw4qX6lELMpEBERERGVUiqQG10hz8oCPvxQxk4fPy5jvR97DPjiC/05OSvk9jIykKuKeESEXHRITc37d758OfD771LZtqz8lysnAd3DzgRo2W09NVX/+Xv0sO84ZBsDeRFcjpBu69UT9hrcEiIiIiIi46gu60ZXyHfvliXNAgKA9ev1KvDQocCff8pt1dW6uIF840aU+FxSqrt669b6muK2uq1fv67/7KNG6c8tDjX2fNcu+dnT0qS7esOGxT82MZAXyZXsQF4jkYGciIiIiMquonZZ37tXujx/+61j2vHXX7Lt3FmC8/vvA/ffLxObDRgAzJwJHDsmzylqIG/eHChfHkhMlC7jxXXwoHQhLwzVXbxFC/OiTzYndnv9deC//+RnnDq1+G1Ur6naoC5udO9e+InhKH8M5EVwJUIuNUUkHTC4Ja7l33+B2Fi5akZEREREpZ+qkB8/LuHXlqws4MQJ631vvCGBcsECx7RDBfLoaNl6eMgY8v9v787jmyrz/YF/TpImXehK6QYtICA7FCl0Kgg/FkVccUN4VajLHS5aEOy44DgIzgyXYRwV0Q6K9zreGVEZGEDEC4iFAUHWIosWWcta2lK6723O8/vj8SQNXSjdTpJ+3q9XXknOOT15vmmap9/zbCNHygQ6Kck+KVlTE3KTyb5WeXO7rVutMqkdPVq+dzeitZAPGWIfu319Qn72LLBkiXz87ruAr2/zyqjREvKTJ+V4e4Dd1VsSE/ImKOnUDQDQqbQRfz3tyIsvArNmAf/6l94lISIiIqK2EBEBeHrK2cevT7o1774rZylPTpbPi4qAtWvlY63VujlUFdi5Uz4ePdq+3dNTjqdetsze3bxHD7meelONHCnvbyYhr64GJk8GEhPt244elet5V1Xd+FyVlfYW+Zot5Nd3WV+7Vp5v1CjZK6ClhIbK90wI+2uOHdty52/vmJA3gZaQB5ZfYXNwDSdPOt4TERERkXszGIBbbpGP65tk7Msv5f3vfy/X8P7Xv+RYZ0Am5KKZKwkfO2YfP37bbY77vL2B2bPluPKsLNnt2mRq+mvVN7HbqVNyIrW67N8PrF4N/PWv9vXatQsI2v6G/PyzTMr9/eUM8lpCfvYsUFJiP07rTv7ggy3fnVxrJQfkRY2uXVv2/O0ZE/ImqPQLRim8YIAALl7UuzhOQQj7VdH6ro4SERERkftpaBy51QocPCgfZ2cDH33kOPN5ebnc3hxad/WRIwEPj/qPCwmRSXtzaOt6p6fLBF8zdSpwzz1ydvfr7dhhf7x5s7y/mYRc664eHS1fOyREtloLYW85r6y0n7M1upNrE7u11vnbMybkTWAwKjiHbvJJYwZ9tAP5+UBxsXzMhJyIiIio/dDGkdfVQp6W5tiKu2gRsH27fKyNcW5ut3Ut4dXGj7cmPz+gl1wB2dZ9u6zMnjRv3Fj7Z7QLBoBMyIVwTMgPHap//D3gOKGb5vqJ3Q4ckO9zcLB9X0uq+dpMyFsWE/ImMBiA8/ilnwYTcgCOSTgTciIiIqL2Q2shT0urvW/fPnk/YgTQpQtw9apMSEePlhOUAc1LyFXVnpDXHD/emrRJ1Y4ckfc//WRfBm3LFsdjrx8jnpIiE/mcHDnG3d9fjoCta8Z0jbZPe92aj7X3NyVF3o8Zc/PrjDdGzYS8LS58tCdMyJvAYIC9hbwlZqJwAzWvS1y40PyxQERERDeSnJyMfv36YdiwYXoXhahd+9Wv5P3mzY7dswF7wnjHHcDLL9u3T58ux0MDzft3+scfgdxcuRzZ0KFNP8/N0JJhrYW85uRqR47YZ3MHgNRU2XIdFCS7mZeUyKXJACAuDhg+XD5uqNu61i295prid98t7z/9VL6elpC3Vut1797AggXA0qWyyzy1HCbkTVCzhXzdu+cxcaL8ImjParaKV1TIq59EREStKTExEWlpaThw4IDeRSFq1267Dfj1r+XjZ55x7KKuJeSxscB//Ifs7h0RATz6aMsk5I0dP96SGkrIAeCbb+yPtQsUo0bZk2ht7fXRo2+ckOfm2hP8fv3s28ePlxdCyspkoqytZ95aCbmiAAsXAnPmtM752zMm5E3Qvz9wydgNABBUeA6bNwOff65vmfR2fTd1dlsnIiIiaj/+8hcgMlKOI3/tNbmtuNjeuhsbC3h5ybHWJ07IsdgtkZC35fhxjTbBWVqa7JKuJeRRUfK+Zrd17YLB6NH2hFwzatSNE3Lt/YuKclxXXFGAN96Qj1eskOWIjLSP5yfXwYS8CQYPBt7bIFvIB/jKvtraMgPtFRNyIiIiovbLz0/OoA7Idb+/+05211ZVOXY8PFzu8/Gxz3Te3IRcj/HjgFzyy9dXJsE//2wfSz53rrzfulWWrbpaLrcGyAsGd91lH9/t4SEvUmgjbtLS5Prs19PG5dfsrq65807g9tvtz8eNa/nlzqj1MSFvosAh3QAAQaWXYEQ1tm+3T+bQHmkJuKen43MiIiIiah8mTJBd1oUAnn7a3jocG1v38TUT8qbMP/TTT8C1a3Kt8ZiYJhS4iRTF3m1982bZrdxolF3yO3SQQzcPH5a9AYqLgYAAOfN5UJD9vRg2TJY7PFy2bAshL2Bcr67x4zXLobWSA5z93FUxIW+q0FDAbIZitaK3z2Xk5dmvjrVH2qRu2pcME3IiIiKi9uett4DOneWa5IsWyW31JeRdusgW46auRa61jrfl+HGNlpB/+qm8791btpqPGSOfr1gB/PWv8vEdd8iEHZDrlQPApEn2czXUbb2hhByQSfjkyXKm+3vuaVIopDMm5E1lMMj+KgAeGHQOgH12w/amshK4ckU+vuMOec+EnIiIiKj98feXyShgX1u7voTcw0Mm5UDTuq1rLfB6LMN1/cRu2vMJE+T9hx8Cn3wiH2tJOgDMmiVbz5OS7Nu0hPyNN4DHHgO+/tq+T0vIa07oVpOiAKtWAadOyRZ4cj1MyJvjl4R8dLf2PY788mXZzcZisS83wYSciIiIqH265x7gySflY4NBzsJen6aOIxdCn/Hjmpprgtd8/thjsjX7llvkJG6vvCK7smsURc5HpbWYaz/TsydQWgqsWQPcd5/sCn/tGpCVJY+pLyEn12fSuwAu7ZeEPDrgHABg5055JbCtu8zoTUu+o6JsbwkTciIiIqJ27O235ZDG6Gj7JG516dZN/g99swl5WhqQk9P248c1Awc6PtcS8pAQuTb6zejeHTh5Ejh0SLaSf/UVsHy5jA2Q/1839B6Sa2MLeXP8ckkvtPw8woIqsahkDs7P/299y6SDmgm5ttxDVpYcD0RE5HS++w6Ij5ez7RARUasIDJS9R99+u+HjtMac6xPyTZvkutelpXX/nNZdfcQIwGxuRkGbyNdXtoJrtKXQmkpRZE/TJUvk86+/tg+HrW/8OLkHJuTN8cs3iHL+HP4Y9SHmYBm6/+U5ebmuHamZkAcF2a/mXbyoX5mIiGoRAnjvPWDsWOCzz4D775f9AYmISDfXd1k/fVp22b7nHtlaXF9Cr+f4cY3WKh4YKCeyawl9+wJxcYDVao+dCbl7Y0LeHNo3yIkTmHpWTiNptFYBf/+7fmXSgTbDelSUvLqntZKz2zoROQ1VlYP4nn9eLgzr7S0nwHj66aattUNERC2iZkL+7beyK3jNSc3WrKn9M4WF9tZjPcaPa7SEfNCgll3/+5ln5H1xsbxnQu7emJA3h9bH5vJleBdmoRpydoaSdz9qV//gaYm39nYwIXdBQgAlJXqXgqj1LFwIfPyxnF3orbeAXbtkH8cNG4D339e7dERE7ZaWkJ85I5cCKy+Xs5Lv3i0nPjtyRM4gXtMf/wjk5QG33lr/DO5tYfp0OWHd7Nkte97JkwEfH/tzJuTujQl5c0REACb7vHhr71iKEnjD58LPqPz39zoWrG3V7LJe854JuYsoKJA1X0CAnBL1+HG9S0R6O3HCflm+JZw7Jxdj/eYboKio5c7bWOvWAX/4g3z8ySdyrZkhQ4C//EVue/FF4OBBALIH+8yZQGQkcGt4EWYFrsRjHbchIlwgIsK+piwREbUMbS3yqirZNjB+vBw/fvvtco1twLGV/NQpYOlS+fiddxz+FW9zPXoAqanAI4+07Hl9fWVSrunTp2XPT87FJRLy5ORkdOvWDZ6enoiNjcX+/fv1LpJkMtkXT+zbFxPWP4sNXo8DAI4nfQRA/u9ZnF8t/1r//nfg7FnHc7RES/q1a3LWjOtnw7Ba5e1GKiuB7GzHbbm5wJ49QEWF4/aKCodzCtGIhDwvT043+c03wMaNwP79QHq67Ot+5oy8ZWa2bAJwM6xWmYQuXw48+qisAZYvrx27KyguBhIS5CKgI0YA8+fLKTvrk5Mjx9Pu2CG78f7v/8rLsFOm1P6s3kh1tVyM88svZV+zrVuBAwfkZALl5bLLcFv3HLFaXWNOh6qqxr03QjT/PSwuBlavlp/xLVvkYL2iInneAwfkGi19+sjbrl3Ney0A+Ne/5Ew3iYlycdaAANmkMWYMMG0akJwsLwC0xmcjP18m49Ony+dz58rX1MyaJZtjKishHnkUn713DX36AGs+zMGMS/OxN7Mr3s9/Aqtzx2F9ZiyGXvkKJcXtp/cTEVFbMJvt/07HxABr18qldAH5bxkgqy3Nb34jq82JE+U4c3c1Y4bsBj9oEGdYd3eKEM7dt3rVqlWYPn06PvjgA8TGxmLp0qVYvXo1Tpw4gZCQkBv+fGFhIfz9/VFQUAA/P7+WL+CUKcCqVcD69cCDD2Lr7/fgzgW3oxRe+Gvga+iftwsjsBt+kK1CqmJA0fiH4TF+FJRvvoFldwqEhxnVnbtCDe8Mg7cnDJ5mGMpKoGRnQcnPA7y8AD8/KAaDvHRYVib78Fgs8h/OM2dkWRRFfjvddx+wYwfE//0foKpQYmPltI2FhTJLrqqSix1GRclWoa1b5T/kt94K3HmnTOy/+UYeFx4ux1yGhwMrV8oBO6oqvxk8PaFaVRTkqTBAhZ+PFYqHB3ICemDLud7oEVyAX5l/ADIyGv9+Dhgg+/088ACufbYFpf9YA1N5CYwD+iIgrg/MoUGyD4/RKN+HsjLA01MmoJWVMvlMTZUXKSor5T/5UVFAr16yyatjR1n206eBY8dkApmWVveU8BERwH/+J3DXXUDv3vL3/N//LeO59VaZsPTuLe979pTrXPj5ydfU3usdO+RaHuXl8jJq167yfS0ulhd0evaUU3QWFckLFNeuybGtPj7yfFFR8j4vT140KS+X6+qZzfLm4WH7fODaNfl5TEurHcvEicDvfgcMGyZ/Ji9PXn5etEge36kTsGwZ8M9/ygQGkMfNnAmMGiXLGBRU+7zp6cD27TLOgwfrnwq1JkWRl8KNRln2Dh1kvDXv69p2/X1lJXDpEnDliryUHBYmt+fmymn+Dx6U/d0KCuTv67775CKeJSXyfQwMBEJD5WcoNVV+Hry85OckIAC4elW+5x4e8nfQsaMsu3ZhQVVlPJ06yZlcTCa5Zsnp0/I1VFUe7+cnP5+A/D1rt+Ji+RqXLsmLBj4+8rVDQ+W5tM94QYH8Oy8okJ8rf39g+HD5uwwPl+evrpYXUM6dk69ttcqfDw+3zzKTlyfLtnlz3Z93s1m+pzUZjcBvfysv0lit8hg/P/ndk5EhP7NCyBlo+vSRr33hgvydFBTIC13/+Ic8V//+8vORnl7356JrV+Dxx4GpU+WxJlPDA/KEAH76SX73pqTIsgYEyPusLFmGU6fsif6YMfJ7rUZTSlERsHVNAeKej0F48WlsxgTsxgi8YngTHVT5nV3RuTs8rmXCUF4GACh96jl4f5xcf7kaqdXrpnaG7yeRa/vkE3mNeNkyWa1qcnJk9W61yips3z65SIbJJKttd2853rVLVuPdu+tdEmqKxtZNTp+Qx8bGYtiwYXj/lzF+qqoiMjISs2fPxrx58274861eSRcWyhbAXwZ3CFXggt8AdC1xTIoK4IfT6ImhaKC1shkuGqIQqbZsH/FSYwd4W1um1fqa0hHZpgioJjOCxVUEVF0FAKiKCYpQYbaWwgD9PopVZm/k9IhFZt+xqLZ4o9+Wd+CTe+mmzyNMHoBqhaIlazoQ4eFQkz+Aci0HypbNwLq1UGr0alADAqEUFdq2VYVE4ERyCgoj+sBoBHzTj6LLey/D7/stN//ivr6ydhRCJnd5ebL3Q1VVS4VHLaFHD5lEnz0rE+QymWzCYACeeEI2P7z5JvDppy3zei+/LAf8eXjIidROn5YJ/ZkzcprcXbtq9UgRBgNUsyeExdN2b/D2hNFiksl+bi4MxTfu/l4e1QtX+o3Ht//vjzidG4T8fHk9IjNTvnRlJTAQR7EXv4I3yuw/OGQI8NprsgX92jU57jw5WV7IuuOOZr8lTCBbFt9PIvd1551ysrfoaODwYbktKUl+LRM5M7dIyCsrK+Ht7Y01a9Zg0qRJtu0JCQnIz8/Hl19+WetnKioqUFHjH7vCwkJERka2aSVd/PlXqHpxHqp79oX33aNQfNsobM8ZiO++N6Lo+2MY99O7iKg6j53GMdjtdw+qFDNCys6jY+UVGKyVMKMSZfBCFkKRh0B4ohy+KIIJ1SiBD0rhDQNUWFCBClhwCLchH4HoiVN4FssxDAewGyOwHpNQjA64Hd9jEI7iGjriAqJghRG9cArdcA4ncSu+xr04jZ4Yg+0Yi23IQTD+ick4gx54HKswC+/DC2VYjcfwBaYgD4HwQyG8UAYVBlhhxLDhBqz8wgiUliJnzym8+euTKIE3fsAQHMUgFMP3Bu+aQBByMR1/x2y8h1uQjuPog11dpiLXtyu8zh1H57JT8EMhOqAYRlhRCm+UwxOeKIcfCqFA4DCikYqhuIhIVMIMI6zohnPohVOIQAY64hr8UIhz6IZjGIhjGIijGISzuAWixggOMyowFZ/jPmzEWGxDEPJwHH3wIf4TexCHnjiNPvjZduuOdHSA46RoReiAPYjDdoxBHgLRA2cQiYuogAVF8IUXytALp9Ad6SiAPy4gCtkIgRfK4IsihCILUbiATshBHgKQhVCUwQseqIIZlbZ7b5TCD4UwQsW3GIcn8CmyEGYrRw+cxqtYjHishCfsfxvHMABf4X4kIxEZqL1Wx534BtPwD/TAGfTAGfjCnvwIyJbLXARhJ0ZhO8bge4zAGVNvGD0MtgZekwnwMKoINBbCbLTCw6jCqMgeFUZRDU9RBm+1GN6iGN5qCbzVYniJEvioxfBSS37Z7rhPe25VjLhiikSOMQzeohidqjPhrRYj39gRecZgnDH3xQHPO3DR1B2/Kt2G0SX/hyBrNkrQARWwwF/NRSdrFlQYcMQwBEcM0TCq1YhQL8Ff5CPfoxPyzSHwUKoRrGYjUL0G8UvsKgwQMEARKoLVbISpl2ERFThr6oWzxltRYAiECgMMsMJXLYSvKICAghKlA0oUXxT/ciswBOKyIRLZhjD4qfnorF5EkJoDI6wwimqUK14oVPxRZPBHgRKAQvghTM3AbdX7MaD6BwSqufAVhRBQcMHYHReM3VEIP1QrJphFJULVKwhTZQ+VfCUQ1wydsN08AUcN0fbWZyHgjVIEqTkoV7yQY5A9j4QqMKXy75hS8b8ABFQY4YFK+IpCeIlSZBnCcdHQFQoE+lh/Qg/rSRQpfsgwROKKIQKFSgAKFX9sMt2PnR7jGvzr9xKlGFWyCY9Wy7+5mp/ThpTDgm9wF77C/SiBDwKQD7NSjWyEIAuh+FH0QzZCGzzHrbcCDz0E/IfXSvT4/XQo3bvLniOPPSYvUNRUUGDv7dBMTCBbFt9PIvf14Yeyw57mhRfkWt0eHvqViagx3CIhz8jIQOfOnfH9998jLi7Otv3ll1/Gjh07sG/fvlo/s3DhQrzxxhu1tjtTJa2qslXG07PufeXlsgdqzZ6x19+07dXVshtPdbVshKyulvv8/WXvzepq2ev26lX7ObWb1Wp/XF0tG6jKy2US5e0t7/Py5M9aLLJBrUcP2X0oPV1uF0L+z/rgg7JXs2bdOnlM795yu9Uqe7NeuyZ7kmZlyZ8zm+W5tZvZDFhMVnQUORh8Zwj8/GXSIITsiVxYKM+Tny/PkZ0ty16TEPK9KC2t/1aTlpfUyE9sw++tVkBUW+FflolMQwSsqoK6Gr+rq4HKgjJYinJQWuWBfASgHJ628zXmVh8FqsPFgroJeKIc5fCqc6/BAPh4qfAqy0WwmoUi+OIiouDlJX/X3t7yvdc+S9qtruc6Nv5TO+BjrkInr2L4GMvhYyyHt0He1NJyVBSUw4QqFMAfeQhErlcXKD7eMJvld1VZWe3zhYTIkQBRUfZRK9pIidGj5fearWd8drYcmtEGMwQxgWxZfD+J3NfVq/b/MT/+WF4vJXIFja2bdJyXsHW8+uqrSEpKsj3XWsidicFQdzKu7fP2btnXCwu78TE3a+TIhvc/9FBzzm4ErmvVUhT5j3THjs05b3PKU7sFuTYvAM37rNWdqBsakdArEMKrzn2ennJ4sqIYIEQwKiqCYbXKpOT6BsDG0C7m1JWw15fE13yuDa1uS0ajfdi6wXDjx0LYL1BdfwHi+rI3JpaWOqatX68ty202y3GDPj4eAALrPMZqleO+LRb5ua55TiHksPyCAvl7VBQ5TUB937V1asS8JERE1LY6dZJThnh68mua3JNTJ+TBwcEwGo3Iyspy2J6VlYWwerJMi8UCizY1I5GLUZTWTVYV5SYTlDpoiSu7ilFb0+Ztq4uiyCkMfG80OoaIiFyOtoIPkTty6mXPzGYzhg4dipSUFNs2VVWRkpLi0IWdiIiIiIiIyNU4dQs5ACQlJSEhIQExMTEYPnw4li5dipKSEjz11FN6F42IiIiIiIioyZw+IX/88cdx9epVvP7668jMzER0dDQ2b96M0NCGZ84lIiIi13Dx4kVMmzYN2dnZMJlMmD9/Ph7jzE1ERNQOOPUs6y2BM68SEZGzYd3k6MqVK8jKykJ0dDQyMzMxdOhQnDx5Ej4+Po36eb6fRETkbNrtLOtERETkWsLDwxEeHg4ACAsLQ3BwMHJzcxudkBMREbkqp57UjYiIiPS3c+dO3H///YiIiICiKFi/fn2tY5KTk9GtWzd4enoiNjYW+/fvb9Jrpaamwmq1Ot2SpURERK2BCTkRERE1qKSkBIMHD0ZycnKd+1etWoWkpCQsWLAAhw4dwuDBgzFhwgRkZ2fbjomOjsaAAQNq3TIyMmzH5ObmYvr06VixYkWrx0REROQMOIaciIiojbly3aQoCtatW4dJkybZtsXGxmLYsGF4//33AcglSiMjIzF79mzMmzevUeetqKjAnXfeiV//+teYNm3aDY+tqKiwPS8sLERkZKRLvp9EROSeGlvXs4WciIiImqyyshKpqakYP368bZvBYMD48eOxZ8+eRp1DCIEnn3wSY8eOvWEyDgCLFy+Gv7+/7cbu7URE5KqYkBMREVGT5eTkwGq11lqONDQ0FJmZmY06x+7du7Fq1SqsX78e0dHRiI6OxrFjx+o9/tVXX0VBQYHtdvHixWbFQEREpBfOsk5ERES6GjlyJFRVbfTxFosFFoulFUtERETUNthCTkRERE0WHBwMo9GIrKwsh+1ZWVkICwvTqVRERESugQk5ERERNZnZbMbQoUORkpJi26aqKlJSUhAXF9eqr52cnIx+/fph2LBhrfo6RERErYVd1omIiKhBxcXFOH36tO15eno6Dh8+jKCgIERFRSEpKQkJCQmIiYnB8OHDsXTpUpSUlOCpp55q1XIlJiYiMTHRNpMtERGRq3H7hFxb1a2wsFDnkhAREUlaneQqK48ePHgQY8aMsT1PSkoCACQkJOCTTz7B448/jqtXr+L1119HZmYmoqOjsXnz5loTvbUW1vVERORsGlvXu/065JcuXeJyKERE5JQuXryILl266F0Ml8e6noiInNWN6nq3T8hVVUVGRgZ8fX2hKEqzzlVYWIjIyEhcvHixwcXdXYU7xeNOsQDuFY87xQIwHmfmSrEIIVBUVISIiAgYDJzOpblY19eP8Tgvd4oFcK943CkWwL3icaVYGlvXu32XdYPB0OKtD35+fk7/AbgZ7hSPO8UCuFc87hQLwHicmavEwjHPLYd1/Y0xHuflTrEA7hWPO8UCuFc8rhJLY+p6XpYnIiIiIiIi0gETciIiIiIiIiIdMCG/CRaLBQsWLIDFYtG7KC3CneJxp1gA94rHnWIBGI8zc6dYSD/u9jliPM7LnWIB3Csed4oFcK943CkWjdtP6kZERERERETkjNhCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCfhOSk5PRrVs3eHp6IjY2Fvv379e7SDe0ePFiDBs2DL6+vggJCcGkSZNw4sQJh2PKy8uRmJiIjh07okOHDnjkkUeQlZWlU4kb709/+hMURcHcuXNt21wtlsuXL+OJJ55Ax44d4eXlhYEDB+LgwYO2/UIIvP766wgPD4eXlxfGjx+PU6dO6Vji+lmtVsyfPx/du3eHl5cXevTogT/84Q+oOW+ks8azc+dO3H///YiIiICiKFi/fr3D/saUOzc3F/Hx8fDz80NAQACeeeYZFBcXt2EUdg3FU1VVhVdeeQUDBw6Ej48PIiIiMH36dGRkZDicw1Xiud7MmTOhKAqWLl3qsN2Z4iHnxrreubCudy6uXNcD7lXfs653n7qeCXkjrVq1CklJSViwYAEOHTqEwYMHY8KECcjOzta7aA3asWMHEhMTsXfvXmzduhVVVVW46667UFJSYjvmhRdewFdffYXVq1djx44dyMjIwMMPP6xjqW/swIED+PDDDzFo0CCH7a4US15eHkaMGAEPDw9s2rQJaWlpeOuttxAYGGg75s9//jOWLVuGDz74APv27YOPjw8mTJiA8vJyHUtetyVLlmD58uV4//33cfz4cSxZsgR//vOf8d5779mOcdZ4SkpKMHjwYCQnJ9e5vzHljo+Px08//YStW7di48aN2LlzJ2bMmNFWIThoKJ7S0lIcOnQI8+fPx6FDh7B27VqcOHECDzzwgMNxrhJPTevWrcPevXsRERFRa58zxUPOi3W9c2Fdz7q+pblTfc+63o3qekGNMnz4cJGYmGh7brVaRUREhFi8eLGOpbp52dnZAoDYsWOHEEKI/Px84eHhIVavXm075vjx4wKA2LNnj17FbFBRUZHo1auX2Lp1qxg9erSYM2eOEML1YnnllVfEyJEj692vqqoICwsTb775pm1bfn6+sFgs4vPPP2+LIt6Ue++9Vzz99NMO2x5++GERHx8vhHCdeACIdevW2Z43ptxpaWkCgDhw4IDtmE2bNglFUcTly5fbrOx1uT6euuzfv18AEOfPnxdCuGY8ly5dEp07dxY//vij6Nq1q3jnnXds+5w5HnIurOudB+t656obNe5S1wvhXvU963rnjudG2ELeCJWVlUhNTcX48eNt2wwGA8aPH489e/boWLKbV1BQAAAICgoCAKSmpqKqqsohtj59+iAqKsppY0tMTMS9997rUGbA9WLZsGEDYmJi8NhjjyEkJARDhgzBRx99ZNufnp6OzMxMh3j8/f0RGxvrlPHcfvvtSElJwcmTJwEAR44cwa5duzBx4kQArhePpjHl3rNnDwICAhATE2M7Zvz48TAYDNi3b1+bl/lmFRQUQFEUBAQEAHC9eFRVxbRp0/DSSy+hf//+tfa7WjykD9b1zoV1vXPWje5a1wPuX9+zrndeJr0L4ApycnJgtVoRGhrqsD00NBQ///yzTqW6eaqqYu7cuRgxYgQGDBgAAMjMzITZbLb9cWpCQ0ORmZmpQykb9sUXX+DQoUM4cOBArX2uFsvZs2exfPlyJCUl4be//S0OHDiA559/HmazGQkJCbYy1/W5c8Z45s2bh8LCQvTp0wdGoxFWqxWLFi1CfHw8ALhcPJrGlDszMxMhISEO+00mE4KCgpw6NkCOxXzllVcwdepU+Pn5AXC9eJYsWQKTyYTnn3++zv2uFg/pg3W982Bd77zxuGtdD7h3fc+63vniqYkJeTuSmJiIH3/8Ebt27dK7KE1y8eJFzJkzB1u3boWnp6fexWk2VVURExOD//qv/wIADBkyBD/++CM++OADJCQk6Fy6m/fPf/4TK1euxGeffYb+/fvj8OHDmDt3LiIiIlwynvagqqoKkydPhhACy5cv17s4TZKamop3330Xhw4dgqIoeheHSHes650L63rSG+t658cu640QHBwMo9FYawbPrKwshIWF6VSqmzNr1ixs3LgR27dvR5cuXWzbw8LCUFlZifz8fIfjnTG21NRUZGdn47bbboPJZILJZMKOHTuwbNkymEwmhIaGukwsABAeHo5+/fo5bOvbty8uXLgAALYyu8rn7qWXXsK8efMwZcoUDBw4ENOmTcMLL7yAxYsXA3C9eDSNKXdYWFitSZ+qq6uRm5vrtLFpFfT58+exdetW2xVzwLXi+e6775CdnY2oqCjb98L58+fxm9/8Bt26dQPgWvGQfljXOwfW9bA9d8Z43LWuB9yzvmdd75zxXI8JeSOYzWYMHToUKSkptm2qqiIlJQVxcXE6luzGhBCYNWsW1q1bh23btqF79+4O+4cOHQoPDw+H2E6cOIELFy44XWzjxo3DsWPHcPjwYdstJiYG8fHxtseuEgsAjBgxotayNCdPnkTXrl0BAN27d0dYWJhDPIWFhdi3b59TxlNaWgqDwfErxWg0QlVVAK4Xj6Yx5Y6Li0N+fj5SU1Ntx2zbtg2qqiI2NrbNy3wjWgV96tQpfPvtt+jYsaPDfleKZ9q0aTh69KjD90JERAReeuklbNmyBYBrxUP6YV3vHFjXO3fd6K51PeB+9T3reueNpxZ955RzHV988YWwWCzik08+EWlpaWLGjBkiICBAZGZm6l20Bj377LPC399f/Pvf/xZXrlyx3UpLS23HzJw5U0RFRYlt27aJgwcPiri4OBEXF6djqRuv5syrQrhWLPv37xcmk0ksWrRInDp1SqxcuVJ4e3uLTz/91HbMn/70JxEQECC+/PJLcfToUfHggw+K7t27i7KyMh1LXreEhATRuXNnsXHjRpGeni7Wrl0rgoODxcsvv2w7xlnjKSoqEj/88IP44YcfBADx9ttvix9++ME2E2ljyn333XeLIUOGiH379oldu3aJXr16ialTpzpdPJWVleKBBx4QXbp0EYcPH3b4XqioqHC5eOpy/cyrQjhXPOS8WNc7J9b1zsOV63oh3Ku+Z13vPnU9E/Kb8N5774moqChhNpvF8OHDxd69e/Uu0g0BqPP2t7/9zXZMWVmZeO6550RgYKDw9vYWDz30kLhy5Yp+hb4J11fSrhbLV199JQYMGCAsFovo06ePWLFihcN+VVXF/PnzRWhoqLBYLGLcuHHixIkTOpW2YYWFhWLOnDkiKipKeHp6iltuuUW89tprDl/8zhrP9u3b6/w7SUhIEEI0rtzXrl0TU6dOFR06dBB+fn7iqaeeEkVFRTpE03A86enp9X4vbN++3eXiqUtdlbQzxUPOjXW982Fd7zxcua4Xwr3qe9b17lPXK0II0TJt7URERERERETUWBxDTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkRERERERKQDJuREREREREREOmBCTkStSlEUrF+/Xu9iEBERUStifU/UNEzIidzYk08+CUVRat3uvvtuvYtGRERELYT1PZHrMuldACJqXXfffTf+9re/OWyzWCw6lYaIiIhaA+t7ItfEFnIiN2exWBAWFuZwCwwMBCC7ly1fvhwTJ06El5cXbrnlFqxZs8bh548dO4axY8fCy8sLHTt2xIwZM1BcXOxwzMcff4z+/fvDYrEgPDwcs2bNctifk5ODhx56CN7e3ujVqxc2bNjQukETERG1M6zviVwTE3Kidm7+/Pl45JFHcOTIEcTHx2PKlCk4fvw4AKCkpAQTJkxAYGAgDhw4gNWrV+Pbb791qICXL1+OxMREzJgxA8eOHcOGDRvQs2dPh9d44403MHnyZBw9ehT33HMP4uPjkZub26ZxEhERtWes74mclCAit5WQkCCMRqPw8fFxuC1atEgIIQQAMXPmTIefiY2NFc8++6wQQogVK1aIwMBAUVxcbNv/9ddfC4PBIDIzM4UQQkRERIjXXnut3jIAEL/73e9sz4uLiwUAsWnTphaLk4iIqD1jfU/kujiGnMjNjRkzBsuXL3fYFhQUZHscFxfnsC8uLg6HDx8GABw/fhyDBw+Gj4+Pbf+IESOgqipOnDgBRVGQkZGBcePGNViGQYMG2R77+PjAz88P2dnZTQ2JiIiIrsP6nsg1MSEncnM+Pj61upS1FC8vr0Yd5+Hh4fBcURSoqtoaRSIiImqXWN8TuSaOISdq5/bu3Vvred++fQEAffv2xZEjR1BSUmLbv3v3bhgMBvTu3Ru+vr7o1q0bUlJS2rTMREREdHNY3xM5J7aQE7m5iooKZGZmOmwzmUwIDg4GAKxevRoxMTEYOXIkVq5cif379+N//ud/AADx8fFYsGABEhISsHDhQly9ehWzZ8/GtGnTEBoaCgBYuHAhZs6ciZCQEEycOBFFRUXYvXs3Zs+e3baBEhERtWOs74lcExNyIje3efNmhIeHO2zr3bs3fv75ZwByRtQvvvgCzz33HMLDw/H555+jX79+AABvb29s2bIFc+bMwbBhw+Dt7Y1HHnkEb7/9tu1cCQkJKC8vxzvvvIMXX3wRwcHBePTRR9suQCIiImJ9T+SiFCGE0LsQRKQPRVGwbt06TJo0Se+iEBERUSthfU/kvDiGnIiIiIiIiEgHTMiJiIiIiIiIdMAu60REREREREQ6YAs5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHp4P8DquZ1KNVi7c0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -2193,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2223,44 +639,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Plot the predictions versus ground truth." + "Plot the predictions versus observations and climatology." ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.435\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNZ0lEQVR4nO3deVxU9f4/8NdhlH0YRIUBRSRxI9TcU7pJV0LKVKqr7Up50xRMMhPtm6lpoZZlK7bcQFMr768wshuGKOQGmmZqGinhkrKYy4yAIM58fn9MjI4sgg5zZjyv5+MxjzrnfOYz7zkOzIvP+ZxzJCGEABEREZFCOMldABEREZEtMfwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGitJC7AHtkNBpx8uRJqNVqSJIkdzlERETUCEIInD9/HgEBAXByqn98h+GnDidPnkRgYKDcZRAREdF1OH78ONq3b1/vdoafOqjVagCmnefl5SVzNURERNQYer0egYGB5u/x+jD81KHmUJeXlxfDDxERkYO51pQVTngmIiIiRWH4ISIiIkVh+CEiIiJFYfghIiIiRWH4ISIiIkVh+CEiIiJFYfghIiIiRWH4ISIiIkVh+CEiIiJF4RWebcVoAI5uA8pKAE8/IGgw4KSSuyoiIiLFkXXkJykpCf3794darYavry9iYmKQn59v0SYiIgKSJFk8nnnmmQb7FULg5Zdfhr+/P9zc3BAZGYlDhw4151tp2IF0YGkYsPw+4Kvxpv8uDTOtJyIiIpuSNfzk5OQgLi4Oubm5yMzMRHV1NaKiolBeXm7R7umnn0ZRUZH5sXjx4gb7Xbx4Md555x0sW7YMeXl58PDwwLBhw1BZWdmcb6duB9KBNWMB/UnL9foi03oGICIiIpuS9bBXRkaGxXJqaip8fX2xa9cu3Hnnneb17u7u0Gq1jepTCIGlS5fipZdewqhRowAAK1asgJ+fH9auXYuHH37Yem/gWowGICMRgKirUgASkDET6Dach8CIiIhsxK4mPOt0OgCAj4+PxfpVq1ahTZs2CAsLw6xZs1BRUVFvH4WFhSguLkZkZKR5nUajwcCBA7F9+/Y6n1NVVQW9Xm/xsIqj22qP+FgQgP6EqR0RERHZhN1MeDYajUhISEB4eDjCwsLM6x999FEEBQUhICAAe/fuRWJiIvLz8/H111/X2U9xcTEAwM/Pz2K9n5+fedvVkpKSMG/ePCu9kyuUlVi3HREREd0wuwk/cXFx2L9/P7Zs2WKxfsKECeb/79GjB/z9/TF06FAUFBSgU6dOVnntWbNmYdq0aeZlvV6PwMDAG+/Y0+/abZrSjoiIiG6YXRz2io+Px7p167Bp0ya0b9++wbYDBw4EABw+fLjO7TVzg0pKLEdTSkpK6p035OLiAi8vL4uHVQQNBrwCAEj1NJAAr3amdkRERGQTsoYfIQTi4+ORlpaGjRs3Ijg4+JrP2bNnDwDA39+/zu3BwcHQarXIysoyr9Pr9cjLy8OgQYOsUnejOamA6EV/L1wdgP5ejl7Iyc5EREQ2JGv4iYuLw8qVK7F69Wqo1WoUFxejuLgYFy5cAAAUFBRg/vz52LVrF44cOYL09HSMHTsWd955J3r27Gnup1u3bkhLSwMASJKEhIQELFiwAOnp6di3bx/Gjh2LgIAAxMTE2P5Nho4ExqwAvK4Ka14BpvWhI21fExERkYLJOucnOTkZgOlChldKSUlBbGwsnJ2dsWHDBixduhTl5eUIDAzEgw8+iJdeesmifX5+vvlMMQCYMWMGysvLMWHCBJw7dw533HEHMjIy4Orq2uzvqU6hI02ns/MKz0RERLKThBB1XYRG0fR6PTQaDXQ6nfXm/xAREVGzauz3t11MeCYiIiKyFYYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlIUhh8iIiJSFIYfIiIiUhSGHyIiIlKUFnIXoBQGo8COwjMoPV8JX7UrBgT7QOUkyV2WBdZI1DSO8Hl0hBqJbI3hxwYy9hdh3rcHUKSrNK/z17hizohQRIf5y1jZZRn7izA/fR8Cy36BL86hFN447tkLs0f2sKsa7X0/AvyysRZ734+O8Hl0hBqJ5CAJIYTcRdgbvV4PjUYDnU4HLy+vG+orY38RJq3cjat3cs2v8OTH+8j+SyhjfxHWrl6Gl1uuQIB0xrz+pPDBK9VjEfPoM3ZRo73vR4BfNtZi7/vRET6PjlAjkbU19vubc36akcEoMO/bA7V++QAwr5v37QEYjPLlT4NRIHvtp/ig5VJoccZimxZn8EHLpche+6nsNdr7fgQuf9lc+YUNAMW6SkxauRsZ+4tkqsyx2Pt+dITPoyPUSCQnhp9mtKPwTK1f4FcSAIp0ldhReKbeNs1tR8EpPFv9CQDg6iMKNcvPVv8HOwpO2biyyxxhP/LLxjocYT86wufREWokkhPDTzMqPV//L5/radccDEe2IkA6Uyv41HCSgADpNAxHttq2sCs4wn7kl411OMJ+dITPoyPUSCQnWcNPUlIS+vfvD7VaDV9fX8TExCA/P7/OtkII3HPPPZAkCWvXrm2w39jYWEiSZPGIjo5uhnfQMF+1q1XbNQdf6ZxV2zUHR9iP/LKxDkfYj47weXSEGq9kMApsLziNb/acwPaC0xwhvU7cj40n69leOTk5iIuLQ//+/XHp0iW8+OKLiIqKwoEDB+Dh4WHRdunSpZCkxp/pER0djZSUFPOyi4uL1epurAHBPvDXuKJYV1nnML4EQKsxncUil063dAK2NLKdTBxhPzral429coT96AifR0eosYa9T253FNyPTSPryE9GRgZiY2Nx6623olevXkhNTcWxY8ewa9cui3Z79uzBkiVL8Omnnza6bxcXF2i1WvOjVatW9batqqqCXq+3eFiDyknCnBGhAC6fYVGjZnnOiFBZT99VdQzHBTct6vsDwSiAC25aqDqG27awKzjCfqz5sqmvAgmmX0T28GVjzxxhPzrC59ERagTsf3K7o+B+bDq7mvOj0+kAAD4+l3+xVVRU4NFHH8X7778PrVbb6L6ys7Ph6+uLrl27YtKkSTh9+nS9bZOSkqDRaMyPwMDA638TV4kO80fy432g1Vj+parVuNrHqaZOKriNeB2SJMF41SYjAEmS4DbidcBJJUd1Zva+Hx3ly8beOcp+tPfPI2D/NTrC5HZHwP14fezmOj9GoxEjR47EuXPnsGXL5eMwEydOhMFgwCefmM5IkiQJaWlpiImJqbevL774Au7u7ggODkZBQQFefPFFeHp6Yvv27VCpan+JV1VVoaqqyrys1+sRGBholev81LD3C7bhQDpERiIk/UnzKuHVDlL0QiB0pIyFWbL3/cihZ+twlP1o759HwH5r3F5wGo98nHvNdp8/fTsGdWptg4oaxv1oJUYDcHQbUFYCePoBQYOt+sd1Y6/zYzdXeI6Li8P+/fstgk96ejo2btyIn3/+uUl9Pfzww+b/79GjB3r27IlOnTohOzsbQ4cOrdXexcWl2ecEqZwk+/jg1Sd0JKRuwy0+lJKVP5TWYO/7MTrMH3eHau3yl6QjcZT9aO+fR8B+a3SEye017DmMO9J+xIF0ICMRuOKPbHgFANGLbP5Htl2En/j4eKxbtw4//vgj2rdvb16/ceNGFBQUwNvb26L9gw8+iH/84x/Izs5uVP+33HIL2rRpg8OHD9cZfuhvTiog+B9yV+Hw7PXL5kr2+lfslRxhP9L1c4TJ7UD9V8qumU8j9yFER9mPOJAOrBkLXL0n9UWm9WNW2DQAyRp+hBCYMmUK0tLSkJ2djeDgYIvtM2fOxL///W+LdT169MBbb72FESNGNPp1/vzzT5w+fRr+/vYzXE4kF3v+K5aUwxHOSLvWfBoJpvk0d4dqZfvjwRH2I4wG04hPQ3syYybQbbjNjjbIOuE5Li4OK1euxOrVq6FWq1FcXIzi4mJcuHABAKDVahEWFmbxAIAOHTpYBKVu3bohLS0NAFBWVoYXXngBubm5OHLkCLKysjBq1CiEhIRg2LBhtn+TRHaEZ4WQvXCEye2OcNFNR9iPOLrN8lBXLQLQnzC1sxFZw09ycjJ0Oh0iIiLg7+9vfnz55ZdN6ic/P998pphKpcLevXsxcuRIdOnSBePHj0ffvn2xefNmWa71Q2QveFYI2Rt7PyPNUebT2Pt+RFmJddtZgeyHvazxnCvXubm5Yf369TdUF9HNqCl/xXKuDdmKPU9ud5j5NLDv/QhPP+u2swK7mPBMRM3PUf6KJeWx18ntDjGf5gr2uh8NgYPwF1qjrThd530kjQIolVqjbeAg2Or8Yru6yCERNR9H+iuWyB44xHwaB7DjqA4vX3wCAGrdTaBmec7FJ7DjqM5mNTH8ECmEI9w6gsje2P18GgdQer4S640DMKk6AcWw/P1SjNaYVJ2A9cYBNh115mEvIoWo+St20srdkGB50in/iiWqn13Pp3EANaPJ640DkFnVDwOcfoMvzqEU3thh7Abj3+Mwthx1ZvghUpCav2Kvvs6Pltf5IWqQvc6ncQRXzp0ywgm5xlCL7XLMnWL4IVIY/hVLRLZkj6POdnNjU3vS2BujERERUePY4uryDndjUyIiIrp52dOoM8MPEdH1MhpMl+QvKzFdoC1osM3uTUTkiOxl7hTDDxHR9TiQbrpZ45X3LPIKAKIX2fTu1ETUdLzODxFRUx1IB9aMrX2zRn2Raf2BdHnqIqJGYfghImoKo8E04tPQLWIzZpraEZFdYvghImqKo9tqj/hYEID+hKkdEdklhh8ioqYoK7FuOyKyOYYfIqKm8PSzbjsisjmGHyKipggabDqrq6FbxHq1M7UjIrvE8ENE1BROKtPp7ABqB6C/l6MX8no/RHaM4YeIqKlCRwJjVgBeV12S3yvAtJ7X+SGya7zIIRHR9QgdCXQbzis8Ezkghh8iouvlpAKC/yF3FUTURDzsRURERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREiiJr+ElKSkL//v2hVqvh6+uLmJgY5Ofn19lWCIF77rkHkiRh7dq1DfYrhMDLL78Mf39/uLm5ITIyEocOHWqGd0BERESORtbwk5OTg7i4OOTm5iIzMxPV1dWIiopCeXl5rbZLly6FJEmN6nfx4sV45513sGzZMuTl5cHDwwPDhg1DZWWltd8CERERORhJCCHkLqLGqVOn4Ovri5ycHNx5553m9Xv27MF9992Hn376Cf7+/khLS0NMTEydfQghEBAQgOeffx7Tp08HAOh0Ovj5+SE1NRUPP/xwredUVVWhqqrKvKzX6xEYGAidTgcvLy/rvkkiIiJqFnq9HhqN5prf33Y150en0wEAfHx8zOsqKirw6KOP4v3334dWq71mH4WFhSguLkZkZKR5nUajwcCBA7F9+/Y6n5OUlASNRmN+BAYG3uA7ISIiIntlN+HHaDQiISEB4eHhCAsLM69/7rnnMHjwYIwaNapR/RQXFwMA/Pz8LNb7+fmZt11t1qxZ0Ol05sfx48ev810QERGRvWshdwE14uLisH//fmzZssW8Lj09HRs3bsTPP//crK/t4uICFxeXZn0NIiIisg92MfITHx+PdevWYdOmTWjfvr15/caNG1FQUABvb2+0aNECLVqYstqDDz6IiIiIOvuqOTRWUlJisb6kpKRRh82IiIjo5iZr+BFCID4+Hmlpadi4cSOCg4Mtts+cORN79+7Fnj17zA8AeOutt5CSklJnn8HBwdBqtcjKyjKv0+v1yMvLw6BBg5rtvRAREZFjkPWwV1xcHFavXo1vvvkGarXaPCdHo9HAzc0NWq22ztGaDh06WASlbt26ISkpCffffz8kSUJCQgIWLFiAzp07Izg4GLNnz0ZAQEC9Z4gRERGRcsgafpKTkwGg1iGslJQUxMbGNrqf/Px885liADBjxgyUl5djwoQJOHfuHO644w5kZGTA1dXVGmUTERGRA7Or6/zYi8ZeJ4CIiIjsh0Ne54eIiIiouTH8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGitJC7ACIiUjijATi6DSgrATz9gKDBgJNK7qroJsbwQ0RE8jmQDmQkAvqTl9d5BQDRi4DQkfLVRTc1HvYiIiJ5HEgH1oy1DD4AoC8yrT+QLk9djspoAAo3A/v+n+m/RoPcFdktjvwQEZHtGQ2mER+IOjYKABKQMRPoNpyHwBqDI2hNwpEfIiKyvaPbao/4WBCA/oSpHTWMI2hNxvBDRES2V1Zi3XZKdc0RNJhG0HgIzALDDxER2Z6nn3XbKRVH0K4L5/zYiMFowO7S3ThVcQpt3duij28fqOzsOLZD1HjpInbv+wyn9MfQ1qsD+vR4AqoWznKXZcEh9iNrtArWeAOCBpvmpOiLYIDAblcXnFKp0NZgQJ/KKqggmbYHDZa7UgB2vB+vGBkzAHXsx9rt5GQv+5HhxwY2HN2AhTsWoqTi8ofPz90PMwfMRGRQpIyVXeYQNW5JwsLfV6FEJZnX+f38FmZ2eQyRd8ySsbLLHGI/skarYI03yEkFRC/ChnUTsbC1N0paXP468rt0CTNPn0Nk9EK7mOxs1/vx75GxDe5uWNi6VR378SwiKy7YxQiaPe1HSQhR14FCRdPr9dBoNNDpdPDy8rqhvjYc3YBp2dMgrjoeK8H0Bf5mxJuy//A4RI1bkjDt8CpThdLl8CP9/fF9M0T+AOQQ+5E1WgVrtA5Tjc9BCFH751qS8GbEW3ZSox3vR6MBGz7ogWmeTvX/fiwzInLyPlmDpK32Y2O/v29ozk9lZSWWL1+ODz74AIcOHbqRrm5KBqMBC3csrPWPDcC8btGORTDIOBHNIWq8dBELf68dfABA/L286PdVMFy6aPvi/uYQ+5E1WgVrtI7LNaKen2vJjmq04/0IYKFPq4Z/P7b2gZzTne1xPzY6/EybNg1TpkwxL1+8eBGDBg3C008/jRdffBG9e/fG9u3bm/TiSUlJ6N+/P9RqNXx9fRETE4P8/HyLNhMnTkSnTp3g5uaGtm3bYtSoUfjtt98a7Dc2NhaSJFk8oqOjm1SbNewu3W0xvHc1AYHiimLsLt1tw6osOUSN+z4zHeq66ge7hpAkFKsk7N73mY0ru8wh9iNrtArWaB2s0Tp2l+5GSbW+4d+PF3Xy12hn+7HR4eeHH37A3XffbV5etWoVjh49ikOHDuHs2bMYPXo0FixY0KQXz8nJQVxcHHJzc5GZmYnq6mpERUWhvLzc3KZv375ISUnBwYMHsX79egghEBUVBYOh4YQYHR2NoqIi8+Pzzz9vUm3WcKrilFXbNQeHqFF/zKrtmoND7EfWaBWs0TpYo3WwxuvT6AnPx44dQ2hoqHn5hx9+wL/+9S8EBQUBAKZOnYp77723SS+ekZFhsZyamgpfX1/s2rULd955JwBgwoQJ5u0dO3bEggUL0KtXLxw5cgSdOnWqt28XFxdotdom1WNtbd3bWrVdc3CIGr06WLVdc3CI/cgarYI1WgdrtA7WeH0aPfLj5OSEK+dG5+bm4vbbbzcve3t74+zZszdUjE6nAwD4+PjUub28vBwpKSkIDg5GYGBgg31lZ2fD19cXXbt2xaRJk3D69Ol621ZVVUGv11s8rKGPbx/4ufuZJ3RdTYIErbsWfXz7WOX1rodD1NjjCfgZhHny3tUkIaA1CPTp8YSNK7vMIfYja7QK1mgdrNE6WOP1aXT46d69O7799lsAwK+//opjx47hrrvuMm8/evQo/Pyu/1Q6o9GIhIQEhIeHIywszGLbBx98AE9PT3h6euL7779HZmYmnJ3rv7ZLdHQ0VqxYgaysLCxatAg5OTm455576j1UlpSUBI1GY35cK1g1lspJhZkDZgJArX/0muXEAYmyXivCIWps4YyZXR4z1XRVAKpZTuzymKzX+3GI/cgarYI1WgdrtA7WeH0afap7WloaHn74Ydxxxx349ddf0b9/f3MYAoDExEQUFhZizZo111XIpEmT8P3332PLli1o3769xTadTofS0lIUFRXhjTfewIkTJ7B161a4uro2qu8//vgDnTp1woYNGzB06NBa26uqqlBVVWVe1uv1CAwMtMqp7kDd1zbQumuROCBR9tM4azhEjXVc50drEEi08+v82N1+ZI1WwRqtgzVaB2s0aeyp7k26zk9WVhbWrVsHrVaLKVOmwN3d3bxt3rx5GDJkCCIiIppcbHx8PL755hv8+OOPCA4ObrDtxYsX0apVK3zyySd45JFHGv0abdu2xYIFCzBx4sRrtrXmdX5q2MtVLRviEDXyCs9WwRqtgzVaB2u0DtbYDOHnlVdewfTp0y0Cz40SQmDKlClIS0tDdnY2OnfufM3nVFVVoVWrVvjggw8QGxvbqNf5888/0aFDB6xduxYjR468ZvvmCD9ERETUvKx+kcN58+ahrKzMKsXViIuLw8qVK7F69Wqo1WoUFxejuLgYFy5cAGA6XJWUlIRdu3bh2LFj2LZtG0aPHg03NzeLM8u6deuGtLQ0AEBZWRleeOEF5Obm4siRI8jKysKoUaMQEhKCYcOGWbV+IiIicjyNDj/NcReM5ORk6HQ6REREwN/f3/z48ssvAQCurq7YvHkz7r33XoSEhOChhx6CWq3Gtm3b4Ovra+4nPz/ffKaYSqXC3r17MXLkSHTp0gXjx49H3759sXnzZri4uFj9PRAREZFjafRhLycnJ5SUlKBtW/muFWArPOxFREQWjAbg6DbT3dE9/Ux3m7ez+TTU+O/vJt3VvUuXLpDquYR2jTNnzjSlSyIiIvt2IB3ISAT0Jy+v8woAohcBodeeR0r2p0nhZ968edBoNM1VCxERkX05kA6sGQtcfVNOfZFp/ZgVDEAOqEnh5+GHH7aYa0NERHTTMhpMIz513I3ctE4CMmYC3YbzEJiDafSE52sd7iIiIrqpHN1meairFgHoT5jakUOR9WwvIiIiu1VWcu02TWlHdqPRh72MRmNz1kFERGRfPBt5v8rGtiO70eiRHyIiIkUJGmw6q6ueu5EDEuDVztSOHArDDxERUV2cVKbT2QHUDkB/L0cv5GRnB8TwQ0REVJ/QkabT2b38Ldd7BfA0dwfWpFPdiYiIFCd0pOl0dl7h+abB8ENERHQtTiog+B9yV0FWwsNeREREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKAw/REREpCgMP0RERKQoDD9ERESkKLKGn6SkJPTv3x9qtRq+vr6IiYlBfn6+RZuJEyeiU6dOcHNzQ9u2bTFq1Cj89ttvDfYrhMDLL78Mf39/uLm5ITIyEocOHWrOt0JEREQOQtbwk5OTg7i4OOTm5iIzMxPV1dWIiopCeXm5uU3fvn2RkpKCgwcPYv369RBCICoqCgaDod5+Fy9ejHfeeQfLli1DXl4ePDw8MGzYMFRWVtribREREZEdk4QQQu4iapw6dQq+vr7IycnBnXfeWWebvXv3olevXjh8+DA6depUa7sQAgEBAXj++ecxffp0AIBOp4Ofnx9SU1Px8MMPX7MOvV4PjUYDnU4HLy+vG3tTREREZBON/f62qzk/Op0OAODj41Pn9vLycqSkpCA4OBiBgYF1tiksLERxcTEiIyPN6zQaDQYOHIjt27fX+Zyqqiro9XqLBxEREd2c7Cb8GI1GJCQkIDw8HGFhYRbbPvjgA3h6esLT0xPff/89MjMz4ezsXGc/xcXFAAA/Pz+L9X5+fuZtV0tKSoJGozE/6gtWRERE5PjsJvzExcVh//79+OKLL2pte+yxx/Dzzz8jJycHXbp0wZgxY6w6f2fWrFnQ6XTmx/Hjx63WNxEREdmXFnIXAADx8fFYt24dfvzxR7Rv377W9poRmc6dO+P2229Hq1atkJaWhkceeaRWW61WCwAoKSmBv7+/eX1JSQluu+22Ol/fxcUFLi4u1nkzREREZNdkHfkRQiA+Ph5paWnYuHEjgoODG/UcIQSqqqrq3B4cHAytVousrCzzOr1ej7y8PAwaNMhqtRMREZFjkjX8xMXFYeXKlVi9ejXUajWKi4tRXFyMCxcuAAD++OMPJCUlYdeuXTh27Bi2bduG0aNHw83NDffee6+5n27duiEtLQ0AIEkSEhISsGDBAqSnp2Pfvn0YO3YsAgICEBMTI8fbJCIiIjsi62Gv5ORkAEBERITF+pSUFMTGxsLV1RWbN2/G0qVLcfbsWfj5+eHOO+/Etm3b4Ovra26fn59vPlMMAGbMmIHy8nJMmDAB586dwx133IGMjAy4urra5H0RERGR/bKr6/zYC17nh4iIyPE45HV+iIiIiJobww8REREpCsMPERERKQrDDxERESkKww8REREpCsMPERERKQrDDxERESkKww8REREpCsMPERERKQrDDxERESkKww8REREpiqw3NiW6KRkNwNFtQFkJ4OkHBA0GnFRyV0VERH9j+CGypgPpQEYioD95eZ1XABC9CAgdKV9dRERkxsNeRNZyIB1YM9Yy+ACAvsi0/kC6PHUREZEFhh8iazAaTCM+EHVs/HtdxkxTOyIikhXDD5E1HN1We8THggD0J0ztiIhIVgw/RNZQVmLddkRE1GwYfoiswdPPuu2IiKjZMPwQWUPQYNNZXZDqaSABXu1M7YiISFYMP0TW4KQync4OoHYA+ns5eiGv90NEZAcYfoisJXQkMGYF4OVvud4rwLSe1/khIrILvMghkTWFjgS6DecVnomI7BjDD5G1OamA4H/IXQUREdWDh72IiIhIUTjyQ0T2iTeIJaJmwvBDRPaHN4glombEw15EZF94g1giamYMP0RkP3iDWCKyAYYfIrIfvEEsEdkAww8R2Q/eIJaIbIDhh4jsB28QS0Q2wPBDRPaDN4glIhtg+CEi+8EbxBKRDTD8EJF94Q1iiaiZ8SKHRGR/eINYImpGDD9EZJ94g1giaiY87EVERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrCU92JlMho4DV0iEixGH6IlOZAOpCRCOhPXl7nFWC6rQSvnkxECiDrYa+kpCT0798farUavr6+iImJQX5+vnn7mTNnMGXKFHTt2hVubm7o0KEDnn32Weh0ugb7jY2NhSRJFo/o6OjmfjtE9u9AOrBmrGXwAQB9kWn9gXR56iIisiFZw09OTg7i4uKQm5uLzMxMVFdXIyoqCuXl5QCAkydP4uTJk3jjjTewf/9+pKamIiMjA+PHj79m39HR0SgqKjI/Pv/88+Z+O0T2zWgwjfhA1LHx73UZM03tiIhuYrIe9srIyLBYTk1Nha+vL3bt2oU777wTYWFh+Oqrr8zbO3XqhFdffRWPP/44Ll26hBYt6i/fxcUFWq222WoncjhHt9Ue8bEgAP0JUzveVoKIbmJ2dbZXzeEsHx+fBtt4eXk1GHwAIDs7G76+vujatSsmTZqE06dP19u2qqoKer3e4kF00ykrsW47IiIHZTfhx2g0IiEhAeHh4QgLC6uzzV9//YX58+djwoQJDfYVHR2NFStWICsrC4sWLUJOTg7uueceGAx1D+cnJSVBo9GYH4GBgTf8fojsjqefddsRETkoSQhR1wQAm5s0aRK+//57bNmyBe3bt6+1Xa/X4+6774aPjw/S09PRsmXLRvf9xx9/oFOnTtiwYQOGDh1aa3tVVRWqqqosXiswMNA8ykR0UzAagKVhpsnNdc77kUxnfSXs42nvROSQ9Ho9NBrNNb+/7eJU9/j4eKxbtw4//vhjncHn/PnziI6OhlqtRlpaWpOCDwDccsstaNOmDQ4fPlxn+HFxcYGLi0uT6zYYDKiurm7y84hkE7Xk70nPgGUAkv7evgi4WA2g8Z/rli1bQqViWCIixyFr+BFCYMqUKUhLS0N2djaCg4NrtdHr9Rg2bBhcXFyQnp4OV1fXJr/On3/+idOnT8Pf398aZUMIgeLiYpw7d84q/RHZjCoYiEoFLpwDjJcur3dqAbh5Ayp3oLCwyd16e3tDq9VCkiRrVUpE1GxkDT9xcXFYvXo1vvnmG6jVahQXFwMANBoN3NzcoNfrERUVhYqKCqxcudJiMnLbtm3Nf21269YNSUlJuP/++1FWVoZ58+bhwQcfhFarRUFBAWbMmIGQkBAMGzbMKnXXBB9fX1+4u7vzFz45HiGA6grAUA2oWgIt3YHr+BwLIVBRUYHS0lIAsNofGEREzUnW8JOcnAwAiIiIsFifkpKC2NhY7N69G3l5eQCAkJAQizaFhYXo2LEjACA/P998pphKpcLevXuxfPlynDt3DgEBAYiKisL8+fOv69DW1QwGgzn4tG7d+ob7I5KNm5uVujH1U1paCl9fXx4CIyK7J/thr4ZERERcs83V/bi5uWH9+vU3XFt9aub4uLu7N9trEDmamp+H6upqhh8isnt2c6q7o+GhLqLL+PNARI6E4YeIiIgUheGHrC42NhYxMTHm5YiICCQkJNxQn9bog4iICGD4UZQr73bv7OyMkJAQvPLKK7h06dK1n3wDvv76a8yfP79RbbOzsyFJUq3LCDSlDyIioobYxUUOlchgFNhReAal5yvhq3bFgGAfqJyaf95EdHQ0UlJSUFVVhf/973+Ii4tDy5YtMWvWLIt2Fy9ehLOzs1Ves6F7tdmyDyIiIoAjP7LI2F+EOxZtxCMf52LqF3vwyMe5uGPRRmTsL2r21665231QUBAmTZqEyMhIpKenmw9VvfrqqwgICEDXrl0BAMePH8eYMWPg7e0NHx8fjBo1CkeOHDH3ZzAYMG3aNHh7e6N169aYMWNGrTP0rj5kVVVVhcTERAQGBsLFxQUhISH4z3/+gyNHjuCuu+4CALRq1QqSJCE2NrbOPs6ePYuxY8eiVatWcHd3xz333INDhw6Zt6empsLb2xvr169H9+7d4enpiejoaBQVXd7H2dnZGDBgADw8PODt7Y3w8HAcPXrUSnuaiIjsFcOPjWXsL8KklbtRpKu0WF+sq8SklbttEoCu5ObmhosXLwIAsrKykJ+fj8zMTKxbtw7V1dUYNmwY1Go1Nm/ejK1bt5pDRM1zlixZgtTUVHz66afYsmULzpw5g7S0tAZfc+zYsfj888/xzjvv4ODBg/jwww/h6emJwMBAfPXVVwBM124qKirC22+/XWcfsbGx+Omnn5Ceno7t27dDCIF7773X4nYjFRUVeOONN/DZZ5/hxx9/xLFjxzB9+nQAwKVLlxATE4MhQ4Zg79692L59OyZMmMCzloiIFICHvWzIYBSY9+2BOm8pKWC6u9K8bw/g7lBtsx8CE0IgKysL69evx5QpU3Dq1Cl4eHjgk08+MR/uWrlyJYxGIz755BNzKEhJSYG3tzeys7MRFRWFpUuXYtasWXjggQcAAMuWLWvwOku///471qxZg8zMTERGRgIw3XutRs3hLV9fX3h7e9fZx6FDh5Ceno6tW7di8ODBAIBVq1YhMDAQa9euxejRowGYrjmzbNkydOrUCYDpHnKvvPIKANNtU3Q6He677z7z9u7duzd9RxIRkcPhyI8N7Sg8U2vE50oCQJGuEjsKzzRbDevWrYOnpydcXV1xzz334KGHHsLcuXMBAD169LCY5/PLL7/g8OHDUKvV8PT0hKenJ3x8fFBZWYmCggLodDoUFRVh4MCB5ue0aNEC/fr1q/f19+zZA5VKhSFDhlz3ezh48CBatGhh8bqtW7dG165dcfDgQfM6d3d3c7ABTLdeqLkNg4+PD2JjYzFs2DCMGDECb7/9tsUhMSIiunlx5MeGSs/XH3yup931uOuuu5CcnAxnZ2cEBASgRYvLHwEPDw+LtmVlZejbty9WrVpVq5+2bdte1+u7WemWCo3RsmVLi2VJkizmI6WkpODZZ59FRkYGvvzyS7z00kvIzMzE7bffbrMaiYjI9jjyY0O+6sbdkb6x7a6Hh4cHQkJC0KFDB4vgU5c+ffrg0KFD8PX1RUhIiMVDo9FAo9HA39/ffP81wDSXZteuXfX22aNHDxiNRuTk5NS5vWbkyWAw1NtH9+7dcenSJYvXPX36NPLz8xEaGtrge7pa7969MWvWLGzbtg1hYWFYvXp1k55PRESOh+HHhgYE+8Bf44r6ZvNIAPw1ptPe7cFjjz2GNm3aYNSoUdi8eTMKCwuRnZ2NZ599Fn/++ScAYOrUqVi4cCHWrl2L3377DZMnT651jZ4rdezYEePGjcNTTz2FtWvXmvtcs2YNACAoKAiSJGHdunU4deoUysrKavXRuXNnjBo1Ck8//TS2bNmCX375BY8//jjatWuHUaNGNeq9FRYWYtasWdi+fTuOHj2KH374AYcOHeK8HyIiBWD4sSGVk4Q5I0wjE1cHoJrlOSNCbXK9n8Zwd3fHjz/+iA4dOuCBBx5A9+7dMX78eFRWVsLLywsA8Pzzz+OJJ57AuHHjMGjQIKjVatx///0N9pucnIx//etfmDx5Mrp164ann34a5eXlAIB27dph3rx5mDlzJvz8/BAfH19nHykpKejbty/uu+8+DBo0CEII/O9//6t1qKuh9/bbb7/hwQcfRJcuXTBhwgTExcVh4sSJTdhDRETkiCTRmNumK4xer4dGo4FOpzN/ydeorKxEYWEhgoOD4ep6fYenMvYXYd63BywmP/trXDFnRCiiw/xvqHYiOVjj54KI6EY19P19JU54lkF0mD/uDtXKcoVnIiIipWP4kYnKScKgTq3lLoOIiEhxOOeHiIiIFIXhh4iIiBSF4YeIiIgUheGHiIiIFIXhh4iIiBSF4YeIiIgUheGHiIiIFIXhh+ze3Llzcdttt8ldBiIiIpCQkCB3GUREdIMYfhSkuLgYU6dORUhICFxdXeHn54fw8HAkJyejoqJC7vKuW3Z2NiRJavCGqnL2R0RE9oVXeJaL0QAc3QaUlQCefkDQYMBJ1Wwv98cffyA8PBze3t547bXX0KNHD7i4uGDfvn346KOP0K5dO4wcObLO51ZXVzf6hqH27OLFi3B2dpa7DCIikhlHfuRwIB1YGgYsvw/4arzpv0vDTOubyeTJk9GiRQv89NNPGDNmDLp3745bbrkFo0aNwnfffYcRI0aY20qShOTkZIwcORIeHh549dVXAZjuxt6pUyc4Ozuja9eu+Oyzz8zPOXLkCCRJwp49e8zrzp07B0mSkJ2dDeDyiEpWVhb69esHd3d3DB48GPn5+Ra1Lly4EH5+flCr1ea7yNfnyJEjuOuuuwAArVq1giRJiI2NBWA6TBUfH4+EhAS0adMGw4YNu2adDfUHAEajETNmzICPjw+0Wi3mzp3b2H8CIiKyEww/tnYgHVgzFtCftFyvLzKtb4YAdPr0afzwww+Ii4uDh4dHnW0kyfKmqnPnzsX999+Pffv24amnnkJaWhqmTp2K559/Hvv378fEiRPx5JNPYtOmTU2u5//+7/+wZMkS/PTTT2jRogWeeuop87Y1a9Zg7ty5eO211/DTTz/B398fH3zwQb19BQYG4quvvgIA5Ofno6ioCG+//bZ5+/Lly+Hs7IytW7di2bJl16ytMf15eHggLy8PixcvxiuvvILMzMwm7wMiIpIPD3vZktEAZCQCEHVsFAAkIGMm0G24VQ+BHT58GEIIdO3a1WJ9mzZtzKMqcXFxWLRokXnbo48+iieffNK8/MgjjyA2NhaTJ08GAEybNg25ubl44403zCMljfXqq69iyJAhAICZM2di+PDhqKyshKurK5YuXYrx48dj/PjxAIAFCxZgw4YN9Y7+qFQq+Pj4AAB8fX3h7e1tsb1z585YvHixefnIkSMN1nat/nr27Ik5c+aY+37vvfeQlZWFu+++u1HvnYiI5MeRH1s6uq32iI8FAehPmNrZwI4dO7Bnzx7ceuutqKqqstjWr18/i+WDBw8iPDzcYl14eDgOHjzY5Nft2bOn+f/9/f0BAKWlpebXGThwoEX7QYMGNfk1avTt2/e6n1uXK2sHTPXX1E5ERI6BIz+2VFZi3XaNFBISAkmSas2tueWWWwAAbm5utZ5T3+Gx+jg5mXK0EJdHtaqrq+tse+Xk6ZrDbUajsUmv11hXv4+m1FmXqyd+S5LUbLUTEVHz4MiPLXn6WbddI7Vu3Rp333033nvvPZSXl19XH927d8fWrVst1m3duhWhoaEAgLZt2wIAioqKzNuvnFTclNfJy8uzWJebm9vgc2rO4DIYDNfsvzF1NqU/IiJyPBz5saWgwYBXgGlyc53zfiTT9qDBVn/pDz74AOHh4ejXrx/mzp2Lnj17wsnJCTt37sRvv/12zcNDL7zwAsaMGYPevXsjMjIS3377Lb7++mts2LABgGn06Pbbb8fChQsRHByM0tJSvPTSS02uc+rUqYiNjUW/fv0QHh6OVatW4ddffzWPUtUlKCgIkiRh3bp1uPfee+Hm5gZPT8862zamzqb0R0REjocjP7bkpAKiayYVS1dt/Hs5emGzXO+nU6dO+PnnnxEZGYlZs2ahV69e6NevH959911Mnz4d8+fPb/D5MTExePvtt/HGG2/g1ltvxYcffoiUlBRERESY23z66ae4dOkS+vbti4SEBCxYsKDJdT700EOYPXs2ZsyYgb59++Lo0aOYNGlSg89p164d5s2bh5kzZ8LPzw/x8fENtr9WnU3tj4iIHIskrpz8QAAAvV4PjUYDnU4HLy8vi22VlZUoLCxEcHAwXF1dr+8FDqSbzvq6cvKzVztT8Amt+0KDRPbMKj8XREQ3qKHv7yvxsJccQkeaTme34RWeiYiIyIThRy5OKiD4H3JXQUREpDic80NERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDDqe4uBh33303PDw84O3tLXc5VpOdnQ1JknDu3DlZ65g7dy5uu+02WWsgImpOsoafpKQk9O/fH2q1Gr6+voiJiUF+fr55+5kzZzBlyhR07doVbm5u6NChA5599lnodLoG+xVC4OWXX4a/vz/c3NwQGRmJQ4cONffbsWuxsbGQJAnPPPNMrW1xcXGQJAmxsbG2L+w6vPXWWygqKsKePXvw+++/y12OTUmShLVr19ptf0REjkDW8JOTk4O4uDjk5uYiMzMT1dXViIqKQnl5OQDg5MmTOHnyJN544w3s378fqampyMjIwPjx4xvsd/HixXjnnXewbNky5OXlwcPDA8OGDUNlZaUt3lajGIwG7Czeif/98T/sLN4Jg9HQ7K8ZGBiIL774AhcuXDCvq6ysxOrVq9GhQ4dmf31rKSgoQN++fdG5c2f4+vpard+LFy9arS853Szvg4io2Qg7UlpaKgCInJycetusWbNGODs7i+rq6jq3G41GodVqxeuvv25ed+7cOeHi4iI+//zzOp9TWVkpdDqd+XH8+HEBQOh0ulptL1y4IA4cOCAuXLjQxHd3WeaRTDF0zVARlhpmfgxdM1RkHsm87j6vZdy4cWLUqFEiLCxMrFy50rx+1apVomfPnmLUqFFi3Lhx5vUGg0G89tpromPHjsLV1VX07NlT/Pe//zVvv3TpknjqqafM27t06SKWLl1a52u+/vrrQqvVCh8fHzF58mRx8eLFBmv94IMPxC233CJatmwpunTpIlasWGHeFhQUJACYH1fWfKXq6moxZcoUodFohI+Pj5gxY4YYO3asGDVqlLnNkCFDRFxcnJg6dapo3bq1iIiIEEIIkZ2dLfr37y+cnZ2FVqsViYmJFp+3oKAg8dZbb1m8Xq9evcScOXPMywDExx9/LGJiYoSbm5sICQkR33zzjcVzvvvuO9G5c2fh6uoqIiIiREpKigAgzp49W+d7uvq9BwUFCSGEmDNnjujVq5f4+OOPRceOHYUkSY2q81r9rVixQgQFBQkvLy/x0EMPCb1eX2ddQljn54KI6EbpdLp6v7+vZFdzfmoOZ/n4+DTYxsvLCy1a1H1bssLCQhQXFyMyMtK8TqPRYODAgdi+fXudz0lKSoJGozE/AgMDb+BdNGzD0Q2Ylj0NJRUlFutLK0oxLXsaNhzd0GyvDQBPPfUUUlJSzMuffvopnnzyyVrtkpKSsGLFCixbtgy//vornnvuOTz++OPIyckBABiNRrRv3x7//e9/ceDAAbz88st48cUXsWbNGot+Nm3ahIKCAmzatAnLly9HamoqUlNT660vLS0NU6dOxfPPP4/9+/dj4sSJePLJJ7Fp0yYAwM6dOxEdHY0xY8agqKgIb7/9dp39LFq0CKtWrUJKSgq2bt0KvV5f5+Gd5cuXw9nZGVu3bsWyZctw4sQJ3Hvvvejfvz9++eUXJCcn4z//+Q8WLFhwrV1by7x58zBmzBjs3bsX9957Lx577DGcOXMGAHD8+HE88MADGDFiBPbs2YN///vfmDlzZoP97dy5EwCQkpKCoqIi8zIAHD58GF999RW+/vpr7Nmzp1H1NdRfQUEB1q5di3Xr1mHdunXIycnBwoULm/L2yV4YDUDhZmDf/zP91wajzER2z0Zh7JoMBoMYPny4CA8Pr7fNqVOnRIcOHcSLL75Yb5utW7cKAOLkyZMW60ePHi3GjBlT53NsNfJzyXCp1ojPlY8eqT1E5JpIcclwqcl9X0vNKExpaalwcXERR44cEUeOHBGurq7i1KlTFiM/lZWVwt3dXWzbts2ij/Hjx4tHHnmk3teIi4sTDz74oMVrBgUFiUuXLr+f0aNHi4ceeqjePgYPHiyefvppi3WjR48W9957r3n56lGquvj5+VmM/l26dEl06NCh1shP7969LZ734osviq5duwqj0Whe9/777wtPT09hMBiEEI0f+XnppZfMy2VlZQKA+P7774UQQsyaNUuEhoZa9JGYmNjgyE9Nv2lpaRbr5syZI1q2bClKS0st1je2zrr6c3d3txjpeeGFF8TAgQPrrYsjP3bq12+EWNJNiDlelx9LupnWE92EGjvyYzd3dY+Li8P+/fuxZcuWOrfr9XoMHz4coaGhmDt3rlVf28XFBS4uLlbtsy67S3fXGvG5koBAcUUxdpfuRn9t/2apoW3bthg+fDhSU1MhhMDw4cPRpk0bizaHDx9GRUUF7r77bov1Fy9eRO/evc3L77//Pj799FMcO3YMFy5cwMWLF2udJXTrrbdCpVKZl/39/bFv37566zt48CAmTJhgsS48PLzeEZ666HQ6lJSUYMCAAeZ1KpUKffv2hdFotGjbt2/fWq8/aNAgSJJk8fplZWX4888/mzQ3qmfPnub/9/DwgJeXF0pLS82vM3DgQIv2gwYNanTfVwsKCkLbtm2v+/lX69ixI9RqtXnZ39/fXDs5iAPpwJqxMB3VvIK+yLR+zAogdKQspRHJzS7CT3x8PNatW4cff/wR7du3r7X9/PnziI6OhlqtRlpaGlq2bFlvX1qtFgBQUlICf39/8/qSkhLZT989VXHKqu2u11NPPYX4+HgApgBztbKyMgDAd999h3bt2llsqwmJX3zxBaZPn44lS5Zg0KBBUKvVeP3115GXl2fR/up/K0mSagUQOXl4eDT5OU5OThDC8gulurq6Vjtbvve63kdj66yLvf+70TUYDUBGImoFH+DvdRKQMRPoNhxwUtXRhujmJuucHyEE4uPjkZaWho0bNyI4OLhWG71ej6ioKDg7OyM9PR2urq4N9hkcHAytVousrCyLPvLy8m7oL2traOveuL/MG9vuekVHR+PixYuorq7GsGHDam0PDQ2Fi4sLjh07hpCQEItHzXyorVu3YvDgwZg8eTJ69+6NkJAQFBQU3HBt3bt3x9atWy3Wbd26FaGhoY3uQ6PRwM/Pz2IOi8FgwO7duxv1+tu3b7cIDVu3boVarTYH87Zt26KoqMi8Xa/Xo7CwsNH11bzOjh07LNbl5uZe83ktW7aEwdC4ORuNqbMp/ZEDOboN0J9soIEA9CdM7YgUSNbwExcXh5UrV2L16tVQq9UoLi5GcXGx+VTsmuBTXl6O//znP9Dr9eY2V/7C7tatG9LS0gCY/kJNSEjAggULkJ6ejn379mHs2LEICAhATEyMHG/TrI9vH/i5+0GCVOd2CRK07lr08e3TrHWoVCocPHgQBw4csDgkVUOtVmP69Ol47rnnsHz5chQUFGD37t149913sXz5cgBA586d8dNPP2H9+vX4/fffMXv2bIuwcb1eeOEFpKamIjk5GYcOHcKbb76Jr7/+GtOnT29SP1OmTEFSUhK++eYb5OfnY+rUqTh79qzF4ay6TJ48GcePH8eUKVPw22+/4ZtvvsGcOXMwbdo0ODmZflz++c9/4rPPPsPmzZuxb98+jBs3rs792JBnnnkGhw4dwgsvvID8/HysXr26wYngNTp27IisrCwUFxfj7NmzDbZtTJ1N6Y8cSFn9h9evqx3RTUbW8JOcnAydToeIiAj4+/ubH19++SUAYPfu3cjLy8O+ffsQEhJi0eb48ePmfvLz8y0ufDhjxgxMmTIFEyZMQP/+/VFWVoaMjIxrjho1N5WTCjMHmM7ouToA1SwnDkiEygbD0F5eXvDy8qp3+/z58zF79mwkJSWhe/fuiI6OxnfffWcenZs4cSIeeOABPPTQQxg4cCBOnz6NyZMn33BdMTExePvtt/HGG2/g1ltvxYcffoiUlBREREQ0qZ/ExEQ88sgjGDt2LAYNGgRPT08MGzbsmp+Bdu3a4X//+x927NiBXr164ZlnnsH48ePx0ksvmdvMmjULQ4YMwX333Yfhw4cjJiYGnTp1alJ9HTp0wFdffYW1a9eiV69eWLZsGV577bVrPm/JkiXIzMxEYGCgxfyrujSmzqb0Rw7E08+67YhuMpK4elIAQa/XQ6PRmE+rv1JlZSUKCwsRHBx83WFqw9ENWLhjocXkZ627FokDEhEZFNnAM+l6GY1GdO/eHWPGjMH8+fPlLuemY42fC7IiowFYGmaa3FznvB8J8AoAEvZxzg/dVBr6/r6SXUx4VprIoEjcFXgXdpfuxqmKU2jr3hZ9fPvYZMRHKY4ePYoffvgBQ4YMQVVVFd577z0UFhbi0Ucflbs0oubnpAKiF/19tpcEywD096hz9EIGH1Ishh+ZqJxUzXY6O5nOdEpNTcX06dMhhEBYWBg2bNiA7t27y10akW2EjjSdzp6RaDn52SvAFHx4mjspGMMP3ZQCAwNrnTVGpDihI02nsx/dZprc7OkHBA3miA8pHsMPEdHNzEkFBP9D7iqI7Ipd3dvLkXCeONFl/HkgIkfC8NNENVe+raiokLkSIvtR8/PQ0NXXiYjsBQ97NZFKpYK3t7f5Pkfu7u7XvHAe0c1KCIGKigqUlpbC29u7yRd7JCKSA8PPdai5fxhv9Ehk4u3tbf65ICKydww/10GSJPj7+8PX17fRN4okulm1bNmSIz5E5FAYfm6ASqXiL30iIiIHwwnPREREpCgMP0RERKQoDD9ERESkKJzzU4eaC7bp9XqZKyEiIqLGqvnevtaFVxl+6nD+/HkApvtDERERkWM5f/48NBpNvdslwevS12I0GnHy5Emo1WqrXsBQr9cjMDAQx48fh5eXl9X6VRruR+vgfrQO7kfr4H60DqXvRyEEzp8/j4CAADg51T+zhyM/dXByckL79u2brX8vLy9FfiitjfvROrgfrYP70Tq4H61DyfuxoRGfGpzwTERERIrC8ENERESKwvBjQy4uLpgzZw5cXFzkLsWhcT9aB/ejdXA/Wgf3o3VwPzYOJzwTERGRonDkh4iIiBSF4YeIiIgUheGHiIiIFIXhh4iIiBSF4ceG3n//fXTs2BGurq4YOHAgduzYIXdJDiUpKQn9+/eHWq2Gr68vYmJikJ+fL3dZDm/hwoWQJAkJCQlyl+JwTpw4gccffxytW7eGm5sbevTogZ9++knushyKwWDA7NmzERwcDDc3N3Tq1Anz58+/5r2ZlO7HH3/EiBEjEBAQAEmSsHbtWovtQgi8/PLL8Pf3h5ubGyIjI3Ho0CF5irVDDD828uWXX2LatGmYM2cOdu/ejV69emHYsGEoLS2VuzSHkZOTg7i4OOTm5iIzMxPV1dWIiopCeXm53KU5rJ07d+LDDz9Ez5495S7F4Zw9exbh4eFo2bIlvv/+exw4cABLlixBq1at5C7NoSxatAjJycl47733cPDgQSxatAiLFy/Gu+++K3dpdq28vBy9evXC+++/X+f2xYsX45133sGyZcuQl5cHDw8PDBs2DJWVlTau1E4JsokBAwaIuLg487LBYBABAQEiKSlJxqocW2lpqQAgcnJy5C7FIZ0/f1507txZZGZmiiFDhoipU6fKXZJDSUxMFHfccYfcZTi84cOHi6eeespi3QMPPCAee+wxmSpyPABEWlqaedloNAqtVitef/1187pz584JFxcX8fnnn8tQof3hyI8NXLx4Ebt27UJkZKR5nZOTEyIjI7F9+3YZK3NsOp0OAODj4yNzJY4pLi4Ow4cPt/hcUuOlp6ejX79+GD16NHx9fdG7d298/PHHcpflcAYPHoysrCz8/vvvAIBffvkFW7ZswT333CNzZY6rsLAQxcXFFj/bGo0GAwcO5HfO33hjUxv466+/YDAY4OfnZ7Hez88Pv/32m0xVOTaj0YiEhASEh4cjLCxM7nIczhdffIHdu3dj586dcpfisP744w8kJydj2rRpePHFF7Fz5048++yzcHZ2xrhx4+Quz2HMnDkTer0e3bp1g0qlgsFgwKuvvorHHntM7tIcVnFxMQDU+Z1Ts03pGH7IIcXFxWH//v3YsmWL3KU4nOPHj2Pq1KnIzMyEq6ur3OU4LKPRiH79+uG1114DAPTu3Rv79+/HsmXLGH6aYM2aNVi1ahVWr16NW2+9FXv27EFCQgICAgK4H6nZ8LCXDbRp0wYqlQolJSUW60tKSqDVamWqynHFx8dj3bp12LRpE9q3by93OQ5n165dKC0tRZ8+fdCiRQu0aNECOTk5eOedd9CiRQsYDAa5S3QI/v7+CA0NtVjXvXt3HDt2TKaKHNMLL7yAmTNn4uGHH0aPHj3wxBNP4LnnnkNSUpLcpTmsmu8VfufUj+HHBpydndG3b19kZWWZ1xmNRmRlZWHQoEEyVuZYhBCIj49HWloaNm7ciODgYLlLckhDhw7Fvn37sGfPHvOjX79+eOyxx7Bnzx6oVCq5S3QI4eHhtS618PvvvyMoKEimihxTRUUFnJwsv4pUKhWMRqNMFTm+4OBgaLVai+8cvV6PvLw8fuf8jYe9bGTatGkYN24c+vXrhwEDBmDp0qUoLy/Hk08+KXdpDiMuLg6rV6/GN998A7VabT52rdFo4ObmJnN1jkOtVteaJ+Xh4YHWrVtz/lQTPPfccxg8eDBee+01jBkzBjt27MBHH32Ejz76SO7SHMqIESPw6quvokOHDrj11lvx888/480338RTTz0ld2l2raysDIcPHzYvFxYWYs+ePfDx8UGHDh2QkJCABQsWoHPnzggODsbs2bMREBCAmJgY+Yq2J3KfbqYk7777rujQoYNwdnYWAwYMELm5uXKX5FAA1PlISUmRuzSHx1Pdr8+3334rwsLChIuLi+jWrZv46KOP5C7J4ej1ejF16lTRoUMH4erqKm655Rbxf//3f6Kqqkru0uzapk2b6vx9OG7cOCGE6XT32bNnCz8/P+Hi4iKGDh0q8vPz5S3ajkhC8DKaREREpByc80NERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0RERIrC8ENERESKwvBDREREisLwQ0SKExsby8v8EykYww8RNYvY2FhIklTrER0dLXdpePvtt5Gamip3GQAASZKwdu1aucsgUhTe2JSImk10dDRSUlIs1rm4uMhUDWAwGCBJEjQajWw1EJH8OPJDRM3GxcUFWq3W4tGqVStkZ2fD2dkZmzdvNrddvHgxfH19UVJSAgCIiIhAfHw84uPjodFo0KZNG8yePRtX3o6wqqoK06dPR7t27eDh4YGBAwciOzvbvD01NRXe3t5IT09HaGgoXFxccOzYsVqHvSIiIjBlyhQkJCSgVatW8PPzw8cff4zy8nI8+eSTUKvVCAkJwffff2/x/vbv34977rkHnp6e8PPzwxNPPIG//vrLot9nn30WM2bMgI+PD7RaLebOnWve3rFjRwDA/fffD0mSzMtE1LwYfojI5iIiIpCQkIAnnngCOp0OP//8M2bPno1PPvkEfn5+5nbLly9HixYtsGPHDrz99tt488038cknn5i3x8fHY/v27fjiiy+wd+9ejB49GtHR0Th06JC5TUVFBRYtWoRPPvkEv/76K3x9feusafny5WjTpg127NiBKVOmYNKkSRg9ejQGDx6M3bt3IyoqCk888QQqKioAAOfOncM///lP9O7dGz/99BMyMjJQUlKCMWPG1OrXw8MDeXl5WLx4MV555RVkZmYCAHbu3AkASElJQVFRkXmZiJqZzHeVJ6Kb1Lhx44RKpRIeHh4Wj1dffVUIIURVVZW47bbbxJgxY0RoaKh4+umnLZ4/ZMgQ0b17d2E0Gs3rEhMTRffu3YUQQhw9elSoVCpx4sQJi+cNHTpUzJo1SwghREpKigAg9uzZU6u2UaNGWbzWHXfcYV6+dOmS8PDwEE888YR5XVFRkQAgtm/fLoQQYv78+SIqKsqi3+PHjwsAIj8/v85+hRCif//+IjEx0bwMQKSlpdWzF4moOXDODxE1m7vuugvJyckW63x8fAAAzs7OWLVqFXr27ImgoCC89dZbtZ5/++23Q5Ik8/KgQYOwZMkSGAwG7Nu3DwaDAV26dLF4TlVVFVq3bm1ednZ2Rs+ePa9Z65VtVCoVWrdujR49epjX1YxIlZaWAgB++eUXbNq0CZ6enrX6KigoMNd19Wv7+/ub+yAieTD8EFGz8fDwQEhISL3bt23bBgA4c+YMzpw5Aw8Pj0b3XVZWBpVKhV27dkGlUllsuzKQuLm5WQSo+rRs2dJiWZIki3U1fRiNRvPrjxgxAosWLarVl7+/f4P91vRBRPJg+CEiWRQUFOC5557Dxx9/jC+//BLjxo3Dhg0b4OR0eSpiXl6exXNyc3PRuXNnqFQq9O7dGwaDAaWlpfjHP/5h6/LRp08ffPXVV+jYsSNatLj+X6UtW7aEwWCwYmVEdC2c8ExEzaaqqgrFxcUWj7/++gsGgwGPP/44hg0bhieffBIpKSnYu3cvlixZYvH8Y8eOYdq0acjPz8fnn3+Od999F1OnTgUAdOnSBY899hjGjh2Lr7/+GoWFhdixYweSkpLw3XffNft7i4uLw5kzZ/DII49g586dKCgowPr16/Hkk082Kcx07NgRWVlZKC4uxtmzZ5uxYiKqwZEfImo2GRkZFoeAAKBr16549NFHcfToUaxbtw6A6TDRRx99hEceeQRRUVHo1asXAGDs2LG4cOECBgwYAJVKhalTp2LChAnmvlJSUrBgwQI8//zzOHHiBNq0aYPbb78d9913X7O/t4CAAGzduhWJiYmIiopCVVUVgoKCEB0dbTF6dS1LlizBtGnT8PHHH6Ndu3Y4cuRI8xVNRAAASYgrLppBRGQnIiIicNttt2Hp0qVyl0JENxke9iIiIiJFYfghIiIiReFhLyIiIlIUjvwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaIw/BAREZGiMPwQERGRojD8EBERkaL8f0rW5gZTbFW7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "ground_truth = test_y_torch.squeeze().numpy()\n", + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", - "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "\n", + "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] @@ -2287,12 +707,12 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "from s2spy import RGDR\n", - "from sklearn.linear_model import Ridge\n", + "from sklearn.linear_model import RidgeCV\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import KFold\n", "\n", @@ -2323,7 +743,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -2353,7 +773,7 @@ " clusters_train = rgdr.transform(x_train)\n", " clusters_test = rgdr.transform(x_test)\n", " # train model\n", - " ridge = Ridge(alpha=1.0)\n", + " ridge = RidgeCV(alphas=[0.1, 10, 25, 50])\n", " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", @@ -2368,12 +788,12 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 38, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6ElEQVR4nO3de3zO9f/H8ce1sWFszueJcgg5k9Svg5JDJaovHeQUikYOyaFyiggp53NIKZWcihxyjOQ8OeY0Joch2WxjbPv8/ni3E8PGts91XXveb7fr1uf6XJ/r2mtbruu599FhWZaFiIiIiJvwsLsAERERkbSkcCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStZLG7gIwWGxvLqVOnyJUrFw6Hw+5yREREJAUsy+LSpUsULVoUD49bt81kunBz6tQp/P397S5DRERE7sCJEycoXrz4La/JdOEmV65cgPnh+Pr62lyNiIiIpERYWBj+/v7xn+O3kunCTVxXlK+vr8KNiIiIi0nJkBINKBYRERG3onAjIiIibkXhRkRERNxKphtzk1IxMTFcu3bN7jIklbJmzYqnp6fdZYiIiI0Ubq5jWRZnzpzh4sWLdpcidyh37twULlxY6xiJiGRSCjfXiQs2BQsWJEeOHPqAdCGWZREZGcnZs2cBKFKkiM0ViYiIHRRuEomJiYkPNvny5bO7HLkD2bNnB+Ds2bMULFhQXVQiIpmQBhQnEjfGJkeOHDZXIncj7venMVMiIpmTwk0y1BXl2vT7ExHJ3BRuRERExK0o3IiIiIhbUbiRZJUsWZLRo0fb/hoiIiKppdlSbuKJJ56gatWqaRYmtm7dio+PT5q8loiIZCKrV8NDD4GNk3PUcpOJWJZFdHR0iq4tUKCAZo2JiEjqHDoEzzwDlSrB6dO2laFwk0IRETe/XbmS8msvX07ZtanRpk0b1q1bx5gxY3A4HDgcDo4dO8batWtxOBz88ssv1KhRA29vbzZs2MCRI0do0qQJhQoVImfOnNSqVYtff/01yWte36XkcDiYPn06L7zwAjly5KBMmTIsXrw4VXUGBwfTpEkTcubMia+vL82bNyckJCT+8V27dlG3bl1y5cqFr68vNWrUYNu2bQAcP36cxo0bkydPHnx8fKhYsSJLly5N3Q9KRETST2wsdOgAUVFQujQULmxbKQo3KZQz581vL72U9NqCBW9+baNGSa8tWTL561JjzJgx1KlThw4dOnD69GlOnz6Nv79//ON9+vThk08+Yf/+/VSuXJnw8HCeeeYZVq1axc6dO2nYsCGNGzcmODj4ll9n0KBBNG/enD///JNnnnmGFi1acOHChRTVGBsbS5MmTbhw4QLr1q1j5cqVHD16lJdffjn+mhYtWlC8eHG2bt3K9u3b6dOnD1mzZgUgICCAqKgo1q9fz+7duxk+fDg5U/uDEhGR9PPFF7BunemOmjwZbFyWQ2Nu3ICfnx9eXl7kyJGDwskk5Y8++oinn346/n7evHmpUqVK/P3BgwezYMECFi9eTOfOnW/6ddq0acOrr74KwNChQxk7dixbtmyhYcOGt61x1apV7N69m6CgoPjgNXv2bCpWrMjWrVupVasWwcHBvPfee9x///0AlClTJv75wcHBvPTSS1SqVAmAe++997ZfU0REMsipU/Dee+Z4yBAoVcrWchRuUig8/OaPXb/C/39bGyXL47q2smPH7rikFKtZs2aS++Hh4QwcOJAlS5Zw+vRpoqOjuXz58m1bbipXrhx/7OPjg6+vb/w+Trezf/9+/P39k7QoVahQgdy5c7N//35q1apFjx49aN++PV999RX16tWjWbNm3HfffQC88847dOrUiRUrVlCvXj1eeumlJPWIiIiNunSB0FCoVQveecfuatQtlVI+Pje/ZcuW8mv/2/rottembe1JX7Bnz54sWLCAoUOH8ttvvxEYGEilSpW4evXqLV8nrosojsPhIDY2Ns3qHDhwIHv37uXZZ59l9erVVKhQgQULFgDQvn17jh49SsuWLdm9ezc1a9Zk3Lhxafa1RUTkDs2fb25ZssD06Tf+xW8DhRs34eXlRUxMTIqu3bhxI23atOGFF16gUqVKFC5cmGPp3IRUvnx5Tpw4wYkTJ+LP7du3j4sXL1KhQoX4c2XLlqV79+6sWLGCF198kZkzZ8Y/5u/vT8eOHZk/fz7vvvsu06ZNS9eaRUTkNi5ehLjhDL17g5O0qCvcuImSJUuyefNmjh07xvnz52/ZolKmTBnmz59PYGAgu3bt4rXXXkvTFpjk1KtXj0qVKtGiRQt27NjBli1baNWqFY8//jg1a9bk8uXLdO7cmbVr13L8+HE2btzI1q1bKV++PADdunVj+fLlBAUFsWPHDtasWRP/mIiI2KRXLzPlu2xZ+PBDu6uJp3DjJnr27ImnpycVKlSgQIECtxw/89lnn5EnTx4efvhhGjduTIMGDahevXq61udwOFi0aBF58uThscceo169etx777189913AHh6evLPP//QqlUrypYtS/PmzWnUqBGDBg0CICYmhoCAAMqXL0/Dhg0pW7YsEydOTNeaRUTkFtauhbgW9GnTbhyjYSOHZVmW3UVkpLCwMPz8/AgNDcXX1zfJY1euXCEoKIhSpUqRzYl+SZI6+j2KiKSzy5ehShWzaN9bb5mp3+nsVp/f11PLjYiIiKTO4MEm2BQtCsOH213NDRRuREREJOV27YIRI8zxxIng52dvPclQuBEREZGUiY6Gdu0gJgb+9z9o0sTuipKlcCMiIiIpM2YMbN8OuXODE681pnAjIiIit3f0KPTrZ44//dTWjTFvR+FGREREbs2yzKyoy5ehbl144w27K7olhRsRERG5tdmz4ddfzVo2U6fauuN3SijciIiIyM2FhED37uZ40CAoXdreelJA4Ubu2hNPPEG3bt3sLkNERNJD167w779QrRr06GF3NSmicOMm0iNgtGnThqZNm6bpa4qIiAv56Sf47juz0/f06WbnbxegcCMiIiI3CguDt982xz16QDrvQZiWFG7cQJs2bVi3bh1jxozB4XDgcDg4duwYAHv27KFRo0bkzJmTQoUK0bJlS86fPx//3Hnz5lGpUiWyZ89Ovnz5qFevHhEREQwcOJAvv/ySRYsWxb/m2rVrU1TPv//+S6tWrciTJw85cuSgUaNGHDp0KP7x48eP07hxY/LkyYOPjw8VK1Zk6dKl8c9t0aIFBQoUIHv27JQpU4aZM2em2c9KRERS6P334e+/4b77YOBAu6tJFddoX7KTZUFkpD1fO0eOFI1IHzNmDAcPHuSBBx7go48+AqBAgQJcvHiRJ598kvbt2/P5559z+fJlevfuTfPmzVm9ejWnT5/m1VdfZcSIEbzwwgtcunSJ3377Dcuy6NmzJ/v37ycsLCw+XOTNmzdFZbdp04ZDhw6xePFifH196d27N8888wz79u0ja9asBAQEcPXqVdavX4+Pjw/79u0jZ86cAPTr1499+/bxyy+/kD9/fg4fPszly5fv8AcoIiJ3ZONGs7UCmNlROXLYW08qKdzcTmQk/PfBm+HCw8HH57aX+fn54eXlRY4cOSicaFGl8ePHU61aNYYOHRp/bsaMGfj7+3Pw4EHCw8OJjo7mxRdf5J577gGgUqVK8ddmz56dqKioJK95O3GhZuPGjTz88MMAzJkzB39/fxYuXEizZs0IDg7mpZdeiv9a9957b/zzg4ODqVatGjVr1gSgZMmSKf7aIiKSBqKioEMH88f9G2/Ak0/aXVGqqVvKje3atYs1a9aQM2fO+Nv9998PwJEjR6hSpQpPPfUUlSpVolmzZkybNo1///33rr7m/v37yZIlC7Vr144/ly9fPsqVK8f+/fsBeOeddxgyZAiPPPIIAwYM4M8//4y/tlOnTsydO5eqVavSq1cvfv/997uqR0REUmnoUNi/HwoVgpEj7a7mjijc3E6OHKYFxY7bXTYDhoeH07hxYwIDA5PcDh06xGOPPYanpycrV67kl19+oUKFCowbN45y5coRFBSURj+85LVv356jR4/SsmVLdu/eTc2aNRn33x4ljRo14vjx43Tv3p1Tp07x1FNP0bNnz3StR0RE/rNnDwwbZo7HjYMUDkdwNgo3t+NwmK4hO26pWAHSy8uLmJiYJOeqV6/O3r17KVmyJKVLl05y8/mvu8vhcPDII48waNAgdu7ciZeXFwsWLLjpa95O+fLliY6OZvPmzfHn/vnnH/766y8qVKgQf87f35+OHTsyf/583n33XaZNmxb/WIECBWjdujVff/01o0ePZurUqamqQURE7kBMDLRvD9euwfPPm12/XZTCjZsoWbIkmzdv5tixY5w/f57Y2FgCAgK4cOECr776Klu3buXIkSMsX76ctm3bEhMTw+bNmxk6dCjbtm0jODiY+fPnc+7cOcqXLx//mn/++Sd//fUX58+f59q1a7eto0yZMjRp0oQOHTqwYcMGdu3axeuvv06xYsVo0qQJAN26dWP58uUEBQWxY8cO1qxZE/81+/fvz6JFizh8+DB79+7l559/jn9MRETS0cSJsHkz+PqaYyffYuFWFG7cRM+ePfH09KRChQoUKFCA4OBgihYtysaNG4mJiaF+/fpUqlSJbt26kTt3bjw8PPD19WX9+vU888wzlC1blg8//JBRo0bRqFEjADp06EC5cuWoWbMmBQoUYOPGjSmqZebMmdSoUYPnnnuOOnXqYFkWS5cuJWvWrADExMQQEBBA+fLladiwIWXLlmXif6Pyvby86Nu3L5UrV47vOps7d276/NBERMQ4fhz69jXHw4dDsWL21nOXHJZlWXYXkZHCwsLw8/MjNDQUX1/fJI9duXKFoKAgSpUqRbZs2WyqUO6Wfo8iIqlgWfDss/DLL/B//wfr1oGH87V93Orz+3rOV72IiIhknG+/NcHGywumTXPKYJNatn4H69evp3HjxhQtWhSHw8HChQtv+5yoqCg++OAD7rnnHry9vSlZsiQzZsxI/2JFRETczfnzZmNMgH794L/lQlydrYv4RUREUKVKFd544w1efPHFFD2nefPmhISE8MUXX1C6dGlOnz5NbGxsOlcqIiLihnr0MAGnUiXo1cvuatKMreGmUaNG8YNXU2LZsmWsW7eOo0ePxm8FoBVsRURE7sCyZfDVV2ZW1PTpplvKTbhUx9rixYupWbMmI0aMoFixYpQtW5aePXvecu+hqKgowsLCktxuJ5ONsXY7+v2JiNxGeDh07GiOu3aFBx+0t5405lJ7Sx09epQNGzaQLVs2FixYwPnz53n77bf5559/brpz9LBhwxg0aFCKXj9uqnJkZCTZs2dPs7olY0X+t9Fp3O9TRESu06+fmf59zz0weLDd1aQ5p5kK7nA4WLBgAU2bNr3pNfXr1+e3337jzJkz+Pn5ATB//nz+97//ERERkWwgiYqKIioqKv5+WFgY/v7+N51Kdvr0aS5evEjBggXJkSMHDhdexCizsSyLyMhIzp49S+7cuSlSpIjdJYmIOJ/Nm6FOHTMF/JdfoGFDuytKkdRMBXeplpsiRYpQrFix+GADZrl/y7L4+++/KVOmzA3P8fb2xtvbO8VfI24H7LNnz959wWKL3Llzp2oncxGRTOPq1YQdv19/3WWCTWq5VLh55JFH+OGHHwgPDydnzpwAHDx4EA8PD4oXL54mX8PhcFCkSBEKFiyYou0GxLlkzZoVT09Pu8sQEXFOI0fC7t2QPz98/rnd1aQbW8NNeHg4hw8fjr8fFBREYGAgefPmpUSJEvTt25eTJ08ye/ZsAF577TUGDx5M27ZtGTRoEOfPn+e9997jjTfeSPMxMp6envqQFBER93HgAHz0kTkeM8YEHDdl62ypbdu2Ua1aNapVqwZAjx49qFatGv379wfM+Jfg4OD463PmzMnKlSu5ePEiNWvWpEWLFjRu3JixY8faUr+IiIhLiI013VFXr0KjRvDqq3ZXlK6cZkBxRknNgCQRERG3MHkydOoEPj6wd6+ZJeVitLeUiIiIGCdPJqw+PHSoSwab1FK4ERERcVeWBW+/DZcuwUMPQUCA3RVlCIUbERERdzVvHixeDFmzmi0WMslEGYUbERERd3ThAnTubI779oWKFe2tJwMp3IiIiLij996Ds2fh/vvh/fftriZDKdyIiIi4m1WrYMaMhB2/U7FSvztQuBEREXEnkZHw1lvm+O234ZFH7K3HBgo3IiIi7mTgQDhyBIoXN1O/MyGFGxEREXexYweMGmWOJ02CTLpYrcKNiIiIO7h2Ddq1M1stvPwyPPec3RXZRuFGRETEHXz+OQQGQp48ZmPMTEzhRkRExNUdPgwDBpjjzz+HQoXsrcdmCjciIiKuzLLgzTfhyhWoVw9atbK7Itsp3IiIiLiyGTNgzRrInh2mTDFr22RyCjciIiKu6vRp6NnTHA8eDPfea289TkLhRkRExFW98w5cvAg1akDXrnZX4zQUbkRERFzRwoVm129PT7PFQpYsdlfkNBRuREREXE1oKAQEmONevaBqVVvLcTYKNyIiIq6md284dQrKlIF+/eyuxuko3IiIiLiS9evNrCiAadPMLClJQuFGRETEVVy5Ah06mOMOHeDxx+2tx0kp3IiIiLiKIUPg4EEoUgRGjLC7GqelcCMiIuIK/vwThg83xxMmQO7ctpbjzBRuREREnF1MDLRvD9HR8OKL8MILdlfk1BRuREREnN3YsbB1K/j5wbhxdlfj9BRuREREnFlQEHz4oTkeORKKFrW3HhegcCMiIuKsLAs6doTISDMzql07uytyCQo3IiIizurrr2HFCvD2NmvaeOhjOyX0UxIREXFGZ89Ct27meOBAsxqxpIjCjYiIiDPq1g0uXIAqVeDdd+2uxqUo3IiIiDibJUvg229NN9T06ZA1q90VuRSFGxEREWdy6RJ06mSOu3eHmjXtrccFKdyIiIg4kw8+gBMn4N574aOP7K7GJSnciIiIOItNm2D8eHM8ZQrkyGFvPS5K4UZERMQZREWZLRYsC9q0gXr17K7IZSnciIiIOINPPoF9+6BgQfj0U7urcWkKNyIiInbbtw8+/tgcjx0L+fLZW4+LU7gRERGxU2ys6Y66dg2eew6aN7e7IpencCMiImKnSZPMQOJcucyxw2F3RS5P4UZERMQuwcHQp485/uQTKF7c3nrchMKNiIiIHSzLLNYXHg4PP2x2/5Y0oXAjIiJih+++g6VLwctLO36nMf0kRUREMto//8A775jjDz6AChXsrcfNKNyIiIhktHffhXPnoGLFhDE3kmYUbkRERDLSihXw5ZdmVtT06aZbStKUwo2IiEhGiYiAt94yx126wEMP2VuPm1K4ERERySj9+8OxY1CiBAwZYnc1bkvhRkREJCNs3QqjR5vjyZPNon2SLhRuRERE0tu1a2aLhdhYaNECGjWyuyK3pnAjIiKS3j79FP7802yI+fnndlfj9mwNN+vXr6dx48YULVoUh8PBwoULU/zcjRs3kiVLFqpWrZpu9YmIiNy1v/6CQYPM8ejRUKCAreVkBraGm4iICKpUqcKECRNS9byLFy/SqlUrnnrqqXSqTEREJA3ExsKbb0JUFDRoYLqkJN1lsfOLN2rUiEZ30O/YsWNHXnvtNTw9PVPV2iMiIpKhpk+H9evBx8cMItaO3xnC5cbczJw5k6NHjzJgwIAUXR8VFUVYWFiSm4iISLo7dQree88cf/wxlCxpazmZiUuFm0OHDtGnTx++/vprsmRJWaPTsGHD8PPzi7/5+/unc5UiIiJA584QFgYPPmiOJcO4TLiJiYnhtddeY9CgQZQtWzbFz+vbty+hoaHxtxMnTqRjlSIiIsCPP8KCBZAli+ma8vS0u6JMxdYxN6lx6dIltm3bxs6dO+n8XwKOjY3FsiyyZMnCihUrePLJJ294nre3N97e3hldroiIZFb//pvQUtOnD1SqZG89mZDLhBtfX192796d5NzEiRNZvXo18+bNo1SpUjZVJiIikkivXnDmDJQrBx98YHc1mZKt4SY8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezYeHh488MADSZ5fsGBBsmXLdsN5ERERW6xZY7qhAKZNg2zZ7K0nk7I13Gzbto26devG3+/RowcArVu3ZtasWZw+fZrg4GC7yhMREUm5y5fNmjYAnTrBo4/aW08m5rAsy7K7iIwUFhaGn58foaGh+Pr62l2OiIi4iz59YPhwKFYM9u4FPz+7K3Irqfn8dpnZUiIiIk5r506zfxTAxIkKNjZTuBEREbkb0dFmx++YGGjWDJ5/3u6KMj2FGxERkbsxejTs2AF58sDYsXZXIyjciIiI3LkjR6B/f3M8ahQULmxvPQIo3IiIiNwZy4K33jKzpJ58Etq0sbsi+Y/CjYiIyJ2YNQtWrTJr2Uydqh2/nYjCjYiISGqdOQPvvmuOP/oI7rvP3nokCYUbERGR1Ora1ewhVb06dO9udzVyHYUbERGR1Fi8GL7/3uz0PX262flbnIrCjYiISEqFhcHbb5vjnj2hWjV765FkKdyIiIikVJ8+cPKkGWMzYIDd1chNKNyIiIikxIYNMGmSOZ42DbJnt7ceuSmFGxERkdu5cgU6dDDH7dpB3br21iO3pHAjIiJyO0OHwoEDZgXikSPtrkZuQ+FGRETkVnbvhmHDzPH48WYPKXFqCjciIiI3ExNjuqOio6FpU3jxRbsrkhRQuBEREbmZ8eNh82bw9TXH2mLBJSjciIiIJOfYMfjgA3M8YgQUK2ZrOZJyCjciIiLXsyzo2BEiIuCxxxJmSolLULgRERG53jffwPLl4O1tdvz20MelK9FvS0REJLFz58zGmAD9+0O5cvbWI6mmcCMiIpJY9+7wzz9QqRK8957d1cgdULgRERGJ88svMGeO6YaaPh2yZrW7IrkDCjciIiIA4eFmEDGYbqkHH7S3HrljCjciIiIAH34IwcFQsiQMHmx3NXIXFG5EREQ2b4axY83xlCng42NvPXJXFG5ERCRzu3oV2rc3a9u0agX169tdkdwlhRsREcnchg+HPXugQAH47DO7q5E0oHAjIiKZ1/79MGSIOR4zBvLls7ceSRMKNyIikjnFxpptFa5ehWefhVdesbsiSSMKNyIikjlNmQIbN0LOnDBxonb8diMKNyIikvn8/Tf07m2Ohw2DEiXsrUfSlMKNiIhkLpYFnTrBpUtQp445FreicCMiIpnLDz/Azz+brRWmTQNPT7srkjSmcCMiIpnHhQvQpYs5fv99qFjR3nokXSjciIhI5tGzJ5w9CxUqQN++dlcj6UThRkREModff4WZM82sqOnTwdvb7ooknSjciIiI+4uMhLfeMscBAWYgsbgthRsREXF/AwbA0aNQvDgMHWp3NZLOFG5ERMS9bd+esGfU5MmQK5e99Ui6U7gRERH3de2a2fE7NhZefdVssyBuT+FGRETc12efQWAg5M0Lo0fbXY1kEIUbERFxT4cOwcCB5vjzz6FgQVvLkYyjcCMiIu4nbsfvK1fg6aehZUu7K5IMpHAjIiLuZ8YMWLcOcuQwu39rx+9MReFGRETcy+nTZiVigCFDoFQpe+uRDKdwIyIi7qVLFwgNhVq14J137K5GbKBwIyIi7mPBAvjxR8iSRTt+Z2IKNyIi4h4uXjRbKwD06gVVqthajthH4UZERNxD795mvE3ZstCvn93ViI1SFW7Onj17y8ejo6PZsmVLil9v/fr1NG7cmKJFi+JwOFi4cOEtr58/fz5PP/00BQoUwNfXlzp16rB8+fIUfz0REXFT69bB1KnmeNo0yJbN3nrEVqkKN0WKFEkScCpVqsSJEyfi7//zzz/UScVOqxEREVSpUoUJEyak6Pr169fz9NNPs3TpUrZv307dunVp3LgxO3fuTPk3ISIi7uXKFbOmDZidvx97zN56xHZZUnOxZVlJ7h87doxr167d8ppbadSoEY0aNUrx9aOvWzp76NChLFq0iJ9++olq1aql+HVERMSNDB5sViMuUgSGD7e7GnECqQo3KeHIwIWSYmNjuXTpEnnz5r3pNVFRUURFRcXfDwsLy4jSREQkI+zaBSNGmOOJE8HPz956xCm49IDiTz/9lPDwcJo3b37Ta4YNG4afn1/8zd/fPwMrFBGRdBMdbXb8jo6Gl16Cpk3trkicRKrCjcPh4NKlS4SFhREaGorD4SA8PJywsLD4W0b55ptvGDRoEN9//z0Fb7EZWt++fQkNDY2/JR4jJCIiLmzsWNi2DXLnhnHj7K5GnEiqx9yULVs2yf3EY10sy8qQbqm5c+fSvn17fvjhB+rVq3fLa729vfH29k73mkREJAMdPQoffmiOP/3UjLcR+U+qws2aNWvSq44U+/bbb3njjTeYO3cuzz77rN3liIhIRrMs6NgRLl+GunXhjTfsrkicTKrCzeOPP56mXzw8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezZguqJat27NmDFjqF27NmfOnAEge/bs+GkQmYhI5jB7Nqxcaday0Y7fkoxUjbmJjo5OMvMIICQkhEGDBtGrVy82bNiQqi++bds2qlWrFt+11aNHD6pVq0b//v0BOH36NMHBwfHXT506lejoaAICAihSpEj8rWvXrqn6uiIi4qJCQqB7d3M8cCCUKWNrOeKcHFYqFqZp27YtXl5eTJkyBYBLly5RsWJFrly5QpEiRdi3bx+LFi3imWeeSbeC71ZYWBh+fn6Ehobi6+trdzkiIpIar74Kc+dC1aqwZQtkzWp3RZJBUvP5naqWm40bN/LSSy/F3589ezYxMTEcOnSIXbt20aNHD0aOHHlnVYuIiNzKzz+bYOPpCV98oWAjN5WqcHPy5EnKJGoCXLVqFS+99FL8eJfWrVuzd+/etK1QRETk0iXo1Mkc9+gB1avbW484tVSFm2zZsnH58uX4+3/88Qe1a9dO8nh4eHjaVSciIgLQty/8/Tfce68ZayNyC6kKN1WrVuWrr74C4LfffiMkJIQnn3wy/vEjR45QtGjRtK1QREQyt40bzdYKYHb+zpHD3nrE6aVqKnj//v1p1KgR33//PadPn6ZNmzYUSbRw0oIFC3jkkUfSvEgREcmkoqLMjt+WBW3bwlNP2V2RuIBUr3Ozfft2VqxYQeHChWnWrFmSx6tWrcqDDz6YpgWKiEgmNmwY7N8PhQqZlYhFUiBVU8HdgaaCi4i4iL17oVo1uHYNvv8ervuDWjKX1Hx+p6rlZv369Sm67rHHHkvNy4qIiCQVE2N2/L52DZ5/Hv73P7srEheSqnDzxBNPxG+MebMGH4fDQUxMzN1XJiIimdfEifDHH5ArF0yYoC0WJFVSFW7y5MlDrly5aNOmDS1btiR//vzpVZeIiGRWwcFm6jfA8OFQvLi99YjLSdVU8NOnTzN8+HA2bdpEpUqVaNeuHb///ju+vr74+fnF30RERO6IZZnF+iIi4P/+D956y+6KxAWlKtx4eXnx8ssvs3z5cg4cOEDlypXp3Lkz/v7+fPDBB0RHR6dXnSIikhl89RUsXQpeXjBtGnik6mNKBEhluEmsRIkS9O/fn19//ZWyZcvyySefEBYWlpa1iYhIZhAdDQsWwBNPQOvW5ly/fnD//baWJa7rjsJNVFQU33zzDfXq1eOBBx4gf/78LFmyhLx586Z1fSIi4q4uXICRI6F0aXjxRVi3zmyK2bYt9Opld3XiwlI1oHjLli3MnDmTuXPnUrJkSdq2bcv333+vUCMiIim3dy+MGwezZ0PcfoX58pnxNZ06aQCx3LVULeLn4eFBiRIlaN26NTVq1Ljpdc8//3yaFJcetIifiIgNYmLMWJoxY2DVqoTzVapA167wyiuQPbt99YnTS83nd6rDze04+zo3CjciIhno4kWYORPGj4ejR805Dw944QV45x149FGtYSMpkm4rFMfGxt72msjIyNS8pIiIuKMDB0ygmTXLTOsGyJPHbIL59ttwzz22lifuLc3m2EVFRfHZZ59x7733ptVLioiIK4mNhV9+gYYNoXx5s7JwRARUrAhTp8Lff5tF+RRsJJ2lKtxERUXRt29fatasycMPP8zChQsBmDFjBqVKleLzzz+ne/fu6VGniIg4q0uXzADh+++HZ56B5ctNV1OTJmZ8ze7dpsUmRw67K5VMIlXdUv3792fKlCnUq1eP33//nWbNmtG2bVv++OMPPvvsM5o1a4anp2d61SoiIs7k8GHT9TRjhgk4AH5+0K4dBASAWvLFJqkKNz/88AOzZ8/m+eefZ8+ePVSuXJno6Gh27doVv6GmiIi4McuCX381s56WLjX3wbTavPMOtGwJOXPaW6NkeqkKN3///Xf8FPAHHngAb29vunfvrmAjIuLuwsPN1gjjxsH+/Qnnn33WhJp69bRVgjiNVIWbmJgYvLy8Ep6cJQs5ldBFRNxXUJAZGDx9OoSGmnO5cplVhDt3hjJl7K1PJBmpCjeWZdGmTRu8vb0BuHLlCh07dsTHxyfJdfPnz0+7CkVEJGNZFqxda7qeFi9O6HoqXRq6dIE2bUDrhIkTS1W4aR23odl/Xn/99TQtRkREbBQZCXPmwNixsGdPwvkGDUzXU8OG6noSl5CqcDNz5sz0qkNEROwSHAwTJ8K0aWYzSwAfH7NDd5cu2p1bXE6qwo2IiLgJy4ING0zX04IFZgE+gFKlTKBp2xZy57a1RJE7pXAjIpKZXLkC335rup4CAxPOP/WU6Xp69lnQemXi4hRuREQyg5MnYdIkmDIFzp8357JnN+vSdOkCDzxgb30iaUjhRkTEXVkWbNpkWml+/BGio835EiXMNO527SBvXntrFEkHCjciIu4mKgq+/96Emm3bEs4//rjpenr+eciit39xX/q/W0TEXZw5A5Mnm1tIiDnn7Q0tWpiup6pVbS1PJKMo3IiIuLqtW82sp++/h2vXzLlixeDtt+HNNyF/fnvrE8lgCjciIq7o6lUzjmbsWPjjj4TzDz8MXbvCCy9A1qz21SdiI4UbERFXcvYsTJ1qFt07fdqc8/KCV14xXU81a9pbn4gTULgREXEFO3earqdvvzWtNgCFC0OnTvDWW1CokL31iTgRhRsREWcVHW1WDx471qwmHOfBB03X0//+Z1ptRCQJhRsREWdz/jxMnw4TJsDff5tzWbJA8+ZmKnft2vbWJ+LkFG5ERJzFn3+aVpo5c8w2CQAFCkDHjuZWtKi99Ym4CIUbERE7xcTA4sUm1Kxdm3C+enXT9dS8OWTLZlt5Iq5I4UZExA7//gtffAHjx8Px4+acpye89JLpenr4YXA47K1RxEUp3IiIZKR9+0wrzVdfQWSkOZcvn1ls7+23oXhxe+sTcQMKNyIi6S0mBpYuNaHm118TzleubLqeXn3V7NAtImlC4UZEJL2EhsLMmTBuHBw9as55eEDTpqbr6bHH1PUkkg4UbkRE0tpff5lAM2sWRESYc7lzQ4cOpuupZEkbixNxfwo3IiJpITYWli83XU/LliWcr1jRtNK0aAE+PvbVJ5KJKNyIiNyNS5fgyy9NS83Bg+acwwGNG5tQ8+ST6noSyWAKNyIid+LwYTONe8YME3AAfH2hXTsICID77rO3PpFMTOFGRCSlLMvMdho7FpYsMfcBypUzO3K3bg05c9pbo4go3IiI3FZEhFmXZuxY2L8/4fwzz5iup6efNrOgRMQp2Pqvcf369TRu3JiiRYvicDhYuHDhbZ+zdu1aqlevjre3N6VLl2bWrFnpXqeIZFLHjkHPnmZhvU6dTLDJmdO00vz1l2m9adBAwUbEydj6LzIiIoIqVaowYcKEFF0fFBTEs88+S926dQkMDKRbt260b9+e5cuXp3OlIpJpWBasWQMvvGDGzYwaBRcvQunSMGYMnDxpWnDKlrW7UhG5CVu7pRo1akSjRo1SfP3kyZMpVaoUo0aNAqB8+fJs2LCBzz//nAYNGiT7nKioKKKiouLvh4WF3V3RIuKeIiPhm29McNm9O+F8/fqm66lRI7XQiLgIl/qXumnTJurVq5fkXIMGDdi0adNNnzNs2DD8/Pzib/7+/uldpoi4khMnoE8f8Pc3i+zt3g05cphuqL17zdo1zz6rYCPiQlzqX+uZM2coVKhQknOFChUiLCyMy5cvJ/ucvn37EhoaGn87ceJERpQqIs7MsuC336BZMyhVCoYPhwsXzMrBo0bB33/DxIlQoYLdlYrIHXD72VLe3t54e3vbXYaIOIMrV2DuXNP1tHNnwvknnzRdT889B56e9tUnImnCpcJN4cKFCQkJSXIuJCQEX19fsmtHXRG5mZMnYdIkmDIFzp8357Jlg5YtzcynSpXsrU9E0pRLhZs6deqwdOnSJOdWrlxJnTp1bKpIRJyWZcEff5hWmnnzIDranPf3NysIt28P+fLZW6OIpAtbw014eDiHDx+Ovx8UFERgYCB58+alRIkS9O3bl5MnTzJ79mwAOnbsyPjx4+nVqxdvvPEGq1ev5vvvv2fJkiV2fQsi4myiouCHH0yo2bo14fyjj0LXrtCkCWRxqb/rRCSVbP0Xvm3bNurWrRt/v0ePHgC0bt2aWbNmcfr0aYKDg+MfL1WqFEuWLKF79+6MGTOG4sWLM3369JtOAxeRTObHH02rTFz3tbc3vPaa6XqqVs3e2kQkwzgsK25zlMwhLCwMPz8/QkND8fX1tbscEUkr33xjxtDExkLRoibkdOgABQrYXZmIpIHUfH6rbVZEXN/XX5tNK2Nj4Y03YPJkyJrV7qpExCYutc6NiMgNZs+GVq1MsGnfHqZNU7ARyeQUbkTEdX35JbRpY2ZGvfmmmeqtlYRFMj29C4iIa5oxA9q2NcGmUyezjo2CjYigcCMirmj6dGjXzgSbgACYMEHBRkTi6d1ARFzL1KlmFhSYKd7jxoHDYW9NIuJUFG5ExHVMngxvvWWOu3aFMWMUbETkBgo3IuIaJk40Y2sAuneHzz9XsBGRZCnciIjzGz/ejK0B6NkTRo1SsBGRm1K4ERHnNmaMGVsD0KsXjBihYCMit6RwIyLO6/PPoVs3c9y3L3zyiYKNiNyWwo2IOKdRo+C/zXT54AP4+GMFGxFJEYUbEXE+I0easTUA/fvD4MEKNiKSYgo3IuJcPvnEjK0BGDgQBg1SsBGRVFG4ERHnMXSoGVsDJtQMGGBvPSLikhRuRMQ5DB5sxtYADBliuqNERO6Awo2I2G/QoIQwM3RoQsgREbkDWewuQEQyMcsy42o++sjcHz48YbyNiMgdUrgREXtYlmmtGTLE3E88Q0pE5C4o3IhIxrMs+PBD0wUFSde0ERG5Swo3IpKxLMvMiBo+3NxPvAqxiEgaULgRkYxjWdC7t+mCAhg7NmHfKBGRNKJwIyIZw7LMmJrPPjP3E+/0LSKShhRuRCT9WZYZUzN6tLk/cSJ06mRrSSLivhRuRCR9WZYZUzN2rLk/eTK89ZatJYmIe1O4EZH0Y1nwzjumCwpg6lTo0MHemkTE7SnciEj6iI2Fzp1h0iSz8eX06fDGG3ZXJSKZgMKNiKS92Fh4+22YMsUEmxkzoE0bu6sSkUxC4UZE0lZsLHTsCNOmmWAzaxa0amV3VSKSiSjciEjaiY2FN9+EL74ADw/48kt4/XW7qxKRTEbhRkTSRkyMGSw8c6YJNl99Ba+9ZndVIpIJKdyIyN2LiYF27UxLjYcHzJkDr7xid1Uikkkp3IjI3YmJgbZtTUuNpyd88w00b253VSKSiSnciMidi46G1q1NoPH0hLlz4X//s7sqEcnkFG5EgGvX4ORJOHUKfHygUCHInx+y6F/IzUVHm1lQ335rflDffQcvvmh3VSIiCjfi/iwL/v0XgoMTbk2bQvHi5vEJE8zG1JaV9HkOhwk4M2fCs8+ac3v2wM8/Q+HCJgDF3QoWhKxZM/Tbsld0tJkF9d13Jtj88IP5oYqIOAGFG3F5UVHw998mYOTKZc4tX242nz5xwoSZiIikz7nnnoRwky+fCTZeXlCsmLn2/Hkzq/ncOciePeF5v/8OffsmX0fevGY87XPPmfu7d8NPPyUNQXE3b++0/RlkqGvXoEULE2iyZjX/bdLE7qpEROIp3IjLOHgQli41YSUutAQHw5kz5vHFi6FxY3N88SKsWJH0+QULQokS5pY7d8L5556D06fN4x4e5lxMjAk4ISFw770J1953n+mJCQlJuJ09a66/cAFy5Ei4dtMm+OCD5L8XPz/4+uuEIPTnn6b+5IJQ4nBlu2vX4NVX4ccfTRqcNy/hhy4i4iQUbsRWUVFw/HjSsJL4NmYMNGxort2xA7p3T/51smc3gSZOnTpmxf+4MFO8+M1DQs6c5paYp2dCuEjsqafMLbHYWBNsQkJMi1Cc0qXNjgPXB6Fr1yA01IztibNpE/Trl3x9uXKZ8bpxQSgwEBYtSj4IXf99pKmrV8307gULTLCZPz+hv05ExIko3Ei6iY01H+bXB5YWLaBWLXPNggWmIeBmjhxJOK5QAZo1SwgsiW/58pkxMnFKlDCzkzOCh4cZm5M/f9LzTz5pbonFjf8JCTE1xilTxiwTkzgIhYSY8HfpUkJ3G5ggNHBg8rXkyGGGwcQFoZ07YeHC5INQrlxJf2a3dPWqmd69aJHpU1uwABo1SuGTRUQylsKN3LHw8IQWl/vvT2i1WL3aLFR74oRppbhemTIJ4aZECdOCUaKEef71oaVixYTnVa4M33+f/t9XenI4zNicvHmTnr9ZEAoLMyEnbnwQmJ91hw43BqHLlyEy8sYg9NFHydeSLZsZLhMXhHbsMI0xNwSh3FHkfrMZjp9+MsFm0SJo0ODufxgiIulE4UaSFRNjJsTEDXw9cADGj09ofTlxwnTFxBk/HgICzHG2bHD0qDn28ICiRZMGlmrVEp5Xp45pmUhxC0Im4nCYsTl+fknP161rbtcLDzchp0iRhHMVKpg9LK8PQuHhcOUK+PomXPvHH/Dxx0lf04sofuQlnmMJMV7Z8Fy8COrXZ9s2M+wmuRahvHkTxi6JiNhB4SYTu3jRzP65foBucLCZfTR6dEJguXDBTJm+np+fCSyJx7NUrgzr15vzRYveeoq0Qk3aSW7s0BNPmNv1IiNNyClcOOFcxYrm9x0XgP49fYVRx16kfvQvRJKdI58splL9egBs3gyffJJ8HVmymF6ruBahLVtuHoTy5TPjm0RE0pLCjRu6ds0sRpdcaGnZEl5+2Vy3b9+tx4MGBycclyljpkAnboHx97+xVQHMB+yjj6bt9yRpK0cOKFUq6bnHHzc3wDTrNG0Kh5djZc/OpS9+pnTThH6zBx4wawNd3yL077+mxS9PnoTX3bwZRoxIvg4PD9PLFReENm82XWXJBaECBbSoooikjN4qXIxlmRaXxIGlWjV4+GHz+Nat8NBDZjBvcipWTAg3JUtC1arJD9AtUSLpX/UFCsDQoen4jYnzuHzZrFuzciXkyIFjyRIKXdf8kyQIJXL1qhlEnnhwdZUq0K3bjUEobi2hxEFoyxYYNSr5shwOM10+Lgj98YcZg3V9CCpa1PxXrYIimZfCjZO5etVsA+Dtbd6kwYxfefvthJaY8PCkz+nVKyHcFCliPjCyZjUtK9cHlriBvGBef+fOjPm+xEVERppg8+uvZqT30qXw2GMpfrqXV9LBz2CentxLXLtmFknMly/hXLVq8O67Nwahc+fM/9eJB2Jv2QKff558HQUKwOzZCcsIXL1q/k0o8IhkDgo3NrlwwSzilniAbnCwWUzOskxgGT7cXOvlZVbcTaxAgYTAUqFCwvmiRU2XVKFCGtQpqRQZaRbkW73a9C0uXZqu/YtZsyYE+Dj/93/mdr24RRUTL75YvTq8917SEHTmjGk5Oncuacvj9Onw/vsmPFWrZp5bvTqUK6cxPyLuSOEmDUWHRhB01ifZsS7BwaY7aNAgc21kJHTtmvzrZMtm1jeJU6SIeXOOmyrt73/zBek8PJLOlhFJkYgI09+zdq0JNsuWwSOP2F1VvLhFFRO7WRC6fNnsAZZ4GYGdO83CiWvXmluc7NlNt9lXX5lFF0XEPTgs6/rtAt1bWFgYfn5+hIaG4pt4Huzdio7mWsWqzD9YkfcZylHuu+GSV14xGyiD+Uv01VeT7zrKn1/N55KBwsPNyPL1680iOcuWJfRzuolr12D/frOWT9wtMDBhz7HQ0IRp8X36mK074lp3qlc3MwATb60hIhkvNZ/fCjdpZd06rLp1cVgWV8nKkhKdWP9YP/KWzR8fWkqXNmFGxGlcumSCzW+/mU/35cvNiPRMICYGDh82oSfxhuZPPAHr1iW91sPDLJ5YvTpMnepk+32JZBKp+fx2ilEZEyZMoGTJkmTLlo3atWuzZcuWW14/evRoypUrR/bs2fH396d79+5cuXIlg6q9iccfxxEYiNWwIV5c44XgsXy++D76ZRlG6+aXqVtXwUaczKVLZguF334zc/pXrsw0wQZMV1e5ckmDDZid3X/80Wx62qiR6Q6LjTVLJ6xYYbqN47z9ttmV4pNPzGPnzmXotyAiN2PZbO7cuZaXl5c1Y8YMa+/evVaHDh2s3LlzWyEhIcleP2fOHMvb29uaM2eOFRQUZC1fvtwqUqSI1b179xR9vdDQUAuwQkND0/LbSGrlSsuqVs2yzNhgyype3LJmzrSs6Oj0+5oiqREaalkPP2z+/8yd27K2bLG7Iqd26pRl/fyzZX39ddLzxYol/DOPu/n7W9bzz1vWiBH21CrirlLz+W17t1Tt2rWpVasW48ePByA2NhZ/f3+6dOlCnz59bri+c+fO7N+/n1WrVsWfe/fdd9m8eTMbNmy44fqoqCiiEo3ODQsLw9/fP+27pa4XG2sG2Lz/fsJqeJUqmdXMGjTQoBqxT2iomSP9xx9mkZmVK6FGDburcjmWBatWJR3Hc+hQwuOPPAKJ35I6dDCzHOPG8ZQqpbcBkdRITbeUrbOlrl69yvbt2+nbt2/8OQ8PD+rVq8emTZuSfc7DDz/M119/zZYtW3jwwQc5evQoS5cupWXLlsleP2zYMAbFTVHKSB4eZvvrl14y+xYMGQK7d5t27qeeMiGnevWMr0syt4sXTbjessUEm19/1f+Hd8jhgHr1zC1OWBjs2mWCTuL1eyIi4IsvTCCK4+dnfvTVqpm3hGeeybjaRdydrS03p06dolixYvz+++/UqVMn/nyvXr1Yt24dmzdvTvZ5Y8eOpWfPnliWRXR0NB07dmTSpEnJXmtby831LlwwS/yOG2dWFAMTfoYMMUsFi6S3ixehfn2zjHXevCbYJN7FVNJNeDjMmZPQwvPnnwlvAwCtWpmxPmC2r3j3XTNFvXp1s46Vl5c9dYs4E5dpubkTa9euZejQoUycOJHatWtz+PBhunbtyuDBg+nXr98N13t7e+Mdt7W1nfLmhU8/hc6d4cMPzTvdnDlmI5133jHdV4nXoRdJS//+C08/Ddu3myaFVavMp6dkiJw54a23Eu5fu2YGKO/YYdbgSbyC84EDMHZswn0vL9OjHdedVbeuGQgtIjdna8vN1atXyZEjB/PmzaNpoikLrVu35uLFiyxatOiG5zz66KM89NBDjBw5Mv7c119/zZtvvkl4eDget1mWN92mgqfW9u1mGeLVq839PHnM9IyAgKTTMUTu1oULJtjs2GEWUVq1yizcIk4pKAgmTkxo5bl4MenjH30EcX/HhYSYoX3Vq5t94ux8SxNJby4zFdzLy4saNWokGRwcGxvLqlWrknRTJRYZGXlDgPH8b/10m8dGp06NGqZb4JdfzJ9l//4LPXuaxTTmzLn5zpciqfHPP2ZAx44dZjTrmjUKNk6uVCkYOdJk0AsXzN5y8+aZxt1GjZKur7hpE3TvbjYx9fODsmXNSujDh5tx4qGh9n0fIrZKx1lbKTJ37lzL29vbmjVrlrVv3z7rzTfftHLnzm2dOXPGsizLatmypdWnT5/46wcMGGDlypXL+vbbb62jR49aK1assO677z6refPmKfp6GTIVPLWioy1rxoyk80qrVbOsX3+1uzJxZefOWVaVKub/p4IFLWvPHrsrkjS2Zo1lNWlipp9fPyUdLOubbxKuPXLEsn76ybJOnrSs2Fi7Kha5c6n5/LZ9zM3LL7/MuXPn6N+/P2fOnKFq1aosW7aMQv9tJBMcHJykpebDDz/E4XDw4YcfcvLkSQoUKEDjxo35+OOP7foW7p6nJ7Rta/7kGjMGhg0zHfH16pkpu8OH669tSZ1z50yLze7dZhW61auT7rAqbuGJJ8wNzMaiO3cmnZqeeCLc/Plmo1GAggWTbi9RvbqZ16Cp6eIubF/nJqM5zZibWzl3zsyimjjRTJ1wOKB1axg8GIoXt7s6cXZnz5pgs2eP2Rp7zRrT3SmZ2qRJZlWK/fuT7/XesgVq1TLHhw+bt54yZbRrujgP7S11Cy4RbuIcPmwGGX//vbmfLRt062Z29vPzs7U0cVIhIfDkk2YqTpEiJthoao0kEhlpGvQSt/AcOGCGZ8XNZejYEaZMAR8fM1C5WrWEFp4KFSBrVlu/BcmkFG5uwaXCTZzNm0178m+/mfv58kH//uYdSAtgSJwzZ0yw2b8fihUzwaZMGburEhcQHQ1ZEg1S6NABvvnGBKHreXubxuVcucz9v/82b0naTFTSm8LNLbhkuAEzPvCnn6B3b/NnFsC995rxOc2aqbM8szt92gSbAwdM1+WaNWYbepE7FBMDBw8mtO7EjefJk8dMV49Trx6sXWtadBK38FStmhCARNKCws0tuGy4iRMdDTNmwIAB5i91gAcfNHNHE68EJpnHqVNmZbeDB83W82vWwH332V2VuCHLMq02BQsmnCtfPuHvrcQcDqhd20xXjxMZCTlypH+d4p5cZp0buQNZssCbb5od+gYNMp3iW7aYhS6ef96MtZDM4+RJM13m4EEoUcL8Ca1gI+nE4UgabMC85fz9NyxeDAMHQpMmJmNbllmZObGKFc2srBdfNPMjliwxjY4iaU0tN64uJMSEnKlTTTuyhwe0a2fOFSlid3WSnv7+27TYHD4M99xjgo32KRMnce6cWV05btjXxYtmF5rkPnEKF4bXXoNRoxLOxcaatzOROGq5yUwKFTJTxvfsgaZNzTvCtGlmvMWAAXDpkt0VSnoIDjatdYcPm0Czbp2CjTiVAgWSjmfPndssxL52LXz2Gbz+umnJ8fAwPeyJBy9HRJhWnypVzPJfAwbA3LkQGJj8IGeR66nlxt1s2GBmVv3xh7lfsKBpK27fXvM33cXx46bFJijIDCpfs8Z0SYm4oMhIs0t6rlwm7IAZvJx4AcLEHA6za3rc9oJXr5pxPfffb97uNLfCfWlA8S24fbgB0+47f75ZD+fwYXOubFn45BPTuqN//a7r2DETbI4dM2Nr1qwxAxxE3EhMjPlf/MCBpLf9+816PCNGJKy2vGeP2Z4PzEyu++83t/LlzX9r1ICiRW37ViQNKdzcQqYIN3GuXTNjcQYNMh3gYHbdGzky6e574hqCgkywOX7cdDuuWaMVqyXTOX/edGXlzWvub9hgFnAPCkp+PM/HH5tNR8EMU5syJSEAlSt346BncV4KN7eQqcJNnLAwE2hGjYLLl825l16CoUNNi444v6NHTbAJDja/s9WrzUJ9IgKYt7ZDhxJaeOJaez76CBo3NtcsXmxmcyXm75/Q0vP66wlbUIjzUbi5hUwZbuKcPGnG38yYYQYeZ8kCb71lVju+fn6nOI8jR8x077//Nn9qrl6tdnaRO7B1K0yfnhB8zp5N+vjcuWYAM8CqVabFJ657K+6/996r4Yt2Ubi5hUwdbuLs3WvG4/z8s7mfM6dZ+bh7d7NujjiPQ4dMi83Jk+addfVqTfEXSSMXLiQd0/PWWwnLRH32mRm4fL2sWU2v8KRJZsIimMZxgMz6kZJRFG5uQeEmkTVrzKi87dvN/SJFTBtumzZJN5oRexw8aILNqVNmbfvVq83UfxFJdydOmG39ru/mipuKvm2bGawMMG4cvPOO6Sm+fkDz/febhlbN47h7Cje3oHBzndhYs+v4++8nbBhTsSIMHw7PPKN/kXb56y8TbE6fNr+PVasUbERsFhtreocPHIBHH03YLLRXr4Sp6cnZuDFhDseOHWYm2P33mxYg7X2ccgo3t6BwcxNRUaaddfBg01YLZpzHiBEaYZfR9u83m2CeOWPmuP76q8ZEiTi5ixdvnLp+4IBZjePs2YTZXd27w+jR5tjT03SDJW7pefFFdW/djMLNLSjc3MbFi2Y9nNGjTeABeOUVM5/y3nvtrCxz2LfPBJuQEKhc2QSbAgXsrkpE7tDVq0lbZz791DSW798P4eE3Xh8SkvC3zNSpZlXmuO6t++83qz9k1m0pFG5uQeEmhYKDoV8/+Oors3hE1qwQEAAffgj58tldnXvasweeesr8mVe1KqxcCfnz212ViKQDyzLD6RKP6TlxAhYuTBgN0LhxwryPODlyJASdadMSdlm3LPcfRaBwcwsKN6kUGGhmUq1YYe77+UHfvmb0XFyHs9y93btNsDl3DqpVM8FGIVIkU1u8OOmg5kOHIDraPJYrF4SGJgSaZs1ubOWJ6+qK6xJzdQo3t6Bwc4dWrDCj5nbtMveLF4chQ8yqV56e9tbm6v780wSb8+fN9IsVK9zn3UhE0sy1a2bex/79ZhPSNm0SHqtQwZxPzj33mOfFBaHAQLORaYkSrtXFpXBzCwo3dyE2FubMgQ8+MO2nYMaFjBgBDRrYW5urCgyEevXMhjk1a5pgkyeP3VWJiIs5ffrGfbjiurqqVDFvNXGqVDF/U2XPbtYFTdzaU6FCwl5dzkbh5hYUbtLAlSswdqzZviE01Jx7+mkTcqpWtbU0l7Jzpwk2Fy6YGWkrVpg/p0RE0kh4uOntLlXK3LcsqF3bNMJfvXrj9RUqmHVe43z2mekCi+vmsnMYoMLNLSjcpKF//jGzqMaPN+2lDofppho82LSDys1t324C4b//mnea5cvNeCYRkQwQHZ105/W4lp7774cvvjDXWJaZlp54Vle+fAlB55FHknaNpTeFm1tQuEkHQUGmq+rbb819b28z4LhvX3WxJGfbNhNsLl6EOnVg2TItbCEiTufyZbO+a1z4OX486eONG5tBz2CC0KOPmtWYK1SAAQPSfvaWws0tKNyko23bzHYOa9ea+3nymKnjAQEm8IjZue/pp0133sMPwy+/KNiIiEuIjDS7wsS18pQtCy1amMdCQqBwYXNcsmTCgvdpSeHmFhRu0pllmQ/sXr0SOm5LljTjc15+2bWG5qe1zZuhfn2zy97//R8sXWo6s0VEXFxkpPm79sAB8zbfrVvafw2Fm1tQuMkgMTEwaxb0729WqgIzzXnkSLNnUmazaZOZUXbpkmm7XbrU7MYuIiIpkprP70z8Z7SkK09PaNfOtGEOGWJaKLZvN1sLPPusWY03s/j994Rg8/jjCjYiIulM4UbSl4+PGWx8+DB07gxZspgP9ypVTPg5edLuCtPXhg0JwaZuXViyRMFGRCSdKdxIxihYEMaNMxtD/u9/ZkHAGTOgTBkTfsLC7K4w7a1fDw0bmnmUTz1lNonx8bG7KhERt6dwIxmrTBn44QfTVfPII2au4dChcN99Zr2c5FaVckXr1kGjRhARYWZH/fRTwg53IiKSrhRuxB516sBvv5ktcMuVM/sqdekCFSvCvHlm1pWrWrMGnnnGTB+oXx8WLdImoyIiGUjhRuzjcECTJmZw8eTJUKiQGZvTrJkJPxs22F1h6q1aZQZMR0aaLikFGxGRDKdwI/bLkgXeegsOHTLLWubIYdaEefRRaNrULJzgCn79FZ57znS1PfMMLFgA2bLZXZWISKajcCPOI1cuGDjQtN689ZaZTr5oETzwAHTqBGfO2F3hza1YYdYiv3LFBJz58xVsRERsonAjzqdIEdNNtXu36baKiTH3S5eGQYOS7uLmDJYtg+efN8Hm+efNmCFtNyEiYhuFG3Fe5cubAcfr15udsyMiTMtO6dIwZYrZ1tZuS5eaABYVZbrQfvhBwUZExGYKN+L8Hn3UbF/w/fdmynhICHTsCJUqmW4ru2ZW/fwzvPCCmb7+4oumPi8ve2oREZF4CjfiGhwOM4tq3z4YOxby5zcDjZs2hccegz/+yNh6fvrJBJqrV+Gll2DuXMiaNWNrEBGRZCnciGvx8jLr4Rw+DO+/bwbtbthgpo43a2ZmXKW3RYtMoLl2zXzNb79VsBERcSIKN+Ka/Pzg449NmHnjDdOyM28eVKgA77wD586lz9ddsMBsH3HtGrzyCnzzjYKNiIiTUbgR11a8OHzxBezaZbY7iI42e1jdd5/Z1iEyMu2+1o8/QvPm5mu89hp89ZVZo0dERJyKwo24h0qVzMylX3+F6tXNLtwffGD2spoxw0wnvxs//AAvv2yCzeuvw+zZCjYiIk5K4Ubcy1NPwdatMGcO3HMPnDoF7dpB1aom/NzJzKrvvoNXXzUBqWVLmDXLLDAoIiJOSeFG3I+Hh+k2+usvGDUK8uQx+1c9+6wJP9u3p/y1vv3WvFZMDLRpAzNnKtiIiDg5hRtxX97e0KMHHDkC771n7q9ZAzVrQosWEBR06+fPmWO6oGJjzaDlL75QsBERcQEKN+L+8uSBESNMS87rr5tz33wD998P774LFy7c+JyvvoJWrUywad8epk0zLUIiIuL09G4tmcc995jQsmOH6Z66ehU++8zMrBo50uwNBfDll9C6tQk2b75ptnpQsBERcRl6x5bMp1o1WLnSbHhZuTJcvAi9ekG5ctC9O7RtawYed+wIkyYp2IiIuBi9a0vm5HBAgwamFWfWLLNeTnAwjB5tgs3bb8PEiQo2IiIuyCneuSdMmEDJkiXJli0btWvXZsuWLbe8/uLFiwQEBFCkSBG8vb0pW7YsS5cuzaBqxa14epouqIMH4ZNPoEQJ6N0bxo83AUhERFyO7auQfffdd/To0YPJkydTu3ZtRo8eTYMGDfjrr78oWLDgDddfvXqVp59+moIFCzJv3jyKFSvG8ePHyZ07d8YXL+4je3YTanr3trsSERG5Sw7LupNVzdJO7dq1qVWrFuPHjwcgNjYWf39/unTpQp8+fW64fvLkyYwcOZIDBw6Q9Q729AkLC8PPz4/Q0FB8fX3vun4RERFJf6n5/La1W+rq1ats376devXqxZ/z8PCgXr16bNq0KdnnLF68mDp16hAQEEChQoV44IEHGDp0KDE3WV4/KiqKsLCwJDcRERFxX7aGm/PnzxMTE0OhQoWSnC9UqBBnzpxJ9jlHjx5l3rx5xMTEsHTpUvr168eoUaMYMmRIstcPGzYMPz+/+Ju/v3+afx8iIiLiPJxiQHFqxMbGUrBgQaZOnUqNGjV4+eWX+eCDD5g8eXKy1/ft25fQ0ND424kTJzK4YhEREclItg4ozp8/P56enoSEhCQ5HxISQuHChZN9TpEiRciaNSueiZbBL1++PGfOnOHq1at4eXklud7b2xtvb++0L15ERESckq0tN15eXtSoUYNVq1bFn4uNjWXVqlXUqVMn2ec88sgjHD58mNjY2PhzBw8epEiRIjcEGxEREcl8bO+W6tGjB9OmTePLL79k//79dOrUiYiICNq2bQtAq1at6Nu3b/z1nTp14sKFC3Tt2pWDBw+yZMkShg4dSkBAgF3fgoiIiDgR29e5efnllzl37hz9+/fnzJkzVK1alWXLlsUPMg4ODsYj0Sqx/v7+LF++nO7du1O5cmWKFStG165d6a31SURERAQnWOcmo2mdGxEREdfjMuvciIiIiKQ1hRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW7F9KnhGi5scpg00RUREXEfc53ZKJnlnunBz6dIlAG2gKSIi4oIuXbqEn5/fLa/JdOvcxMbGcurUKXLlyoXD4UjT1w4LC8Pf358TJ05oDR0Xpd+ha9Pvz/Xpd+j60ut3aFkWly5domjRokkW901Opmu58fDwoHjx4un6NXx9ffWP0sXpd+ja9Ptzffodur70+B3ersUmjgYUi4iIiFtRuBERERG3onCThry9vRkwYADe3t52lyJ3SL9D16bfn+vT79D1OcPvMNMNKBYRERH3ppYbERERcSsKNyIiIuJWFG5ERETErSjciIiIiFtRuEkjEyZMoGTJkmTLlo3atWuzZcsWu0uSVFi/fj2NGzemaNGiOBwOFi5caHdJkgrDhg2jVq1a5MqVi4IFC9K0aVP++usvu8uSVJg0aRKVK1eOX/itTp06/PLLL3aXJXfok08+weFw0K1bN1u+vsJNGvjuu+/o0aMHAwYMYMeOHVSpUoUGDRpw9uxZu0uTFIqIiKBKlSpMmDDB7lLkDqxbt46AgAD++OMPVq5cybVr16hfvz4RERF2lyYpVLx4cT755BO2b9/Otm3bePLJJ2nSpAl79+61uzRJpa1btzJlyhQqV65sWw2aCp4GateuTa1atRg/fjxg9q/y9/enS5cu9OnTx+bqJLUcDgcLFiygadOmdpcid+jcuXMULFiQdevW8dhjj9ldjtyhvHnzMnLkSNq1a2d3KZJC4eHhVK9enYkTJzJkyBCqVq3K6NGjM7wOtdzcpatXr7J9+3bq1asXf87Dw4N69eqxadMmGysTybxCQ0MB8+EoricmJoa5c+cSERFBnTp17C5HUiEgIIBnn302yWeiHTLdxplp7fz588TExFCoUKEk5wsVKsSBAwdsqkok84qNjaVbt2488sgjPPDAA3aXI6mwe/du6tSpw5UrV8iZMycLFiygQoUKdpclKTR37lx27NjB1q1b7S5F4UZE3EtAQAB79uxhw4YNdpciqVSuXDkCAwMJDQ1l3rx5tG7dmnXr1inguIATJ07QtWtXVq5cSbZs2ewuR+HmbuXPnx9PT09CQkKSnA8JCaFw4cI2VSWSOXXu3Jmff/6Z9evXU7x4cbvLkVTy8vKidOnSANSoUYOtW7cyZswYpkyZYnNlcjvbt2/n7NmzVK9ePf5cTEwM69evZ/z48URFReHp6Zlh9WjMzV3y8vKiRo0arFq1Kv5cbGwsq1atUl+xSAaxLIvOnTuzYMECVq9eTalSpewuSdJAbGwsUVFRdpchKfDUU0+xe/duAgMD4281a9akRYsWBAYGZmiwAbXcpIkePXrQunVratasyYMPPsjo0aOJiIigbdu2dpcmKRQeHs7hw4fj7wcFBREYGEjevHkpUaKEjZVJSgQEBPDNN9+waNEicuXKxZkzZwDw8/Mje/bsNlcnKdG3b18aNWpEiRIluHTpEt988w1r165l+fLldpcmKZArV64bxrj5+PiQL18+W8a+KdykgZdffplz587Rv39/zpw5Q9WqVVm2bNkNg4zFeW3bto26devG3+/RowcArVu3ZtasWTZVJSk1adIkAJ544okk52fOnEmbNm0yviBJtbNnz9KqVStOnz6Nn58flStXZvny5Tz99NN2lyYuSOvciIiIiFvRmBsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRcTtt2rShadOmdpchIjZRuBGRO9KmTRscDscNt4YNG9pdGmPGjHGabTMcDgcLFy60uwyRTEV7S4nIHWvYsCEzZ85Mcs7b29umaiAmJgaHw4Gfn59tNYiI/dRyIyJ3zNvbm8KFCye55cmTh7Vr1+Ll5cVvv/0Wf+2IESMoWLAgISEhgNnksnPnznTu3Bk/Pz/y589Pv379SLzdXVRUFD179qRYsWL4+PhQu3Zt1q5dG//4rFmzyJ07N4sXL6ZChQp4e3sTHBx8Q7fUE088QZcuXejWrRt58uShUKFCTJs2jYiICNq2bUuuXLkoXbo0v/zyS5Lvb8+ePTRq1IicOXNSqFAhWrZsyfnz55O87jvvvEOvXr3ImzcvhQsXZuDAgfGPlyxZEoAXXngBh8MRf19E0pfCjYikuSeeeIJu3brRsmVLQkND2blzJ/369WP69OkUKlQo/rovv/ySLFmysGXLFsaMGcNnn33G9OnT4x/v3LkzmzZtYu7cufz55580a9aMhg0bcujQofhrIiMjGT58ONOnT2fv3r0ULFgw2Zq+/PJL8ufPz5YtW+jSpQudOnWiWbNmPPzww+zYsYP69evTsmVLIiMjAbh48SJPPvkk1apVY9u2bSxbtoyQkBCaN29+w+v6+PiwefNmRowYwUcffcTKlSsB2Lp1K2B2Jz99+nT8fRFJZ5aIyB1o3bq15enpafn4+CS5ffzxx5ZlWVZUVJRVtWpVq3nz5laFChWsDh06JHn+448/bpUvX96KjY2NP9e7d2+rfPnylmVZ1vHjxy1PT0/r5MmTSZ731FNPWX379rUsy7JmzpxpAVZgYOANtTVp0iTJ1/q///u/+PvR0dGWj4+P1bJly/hzp0+ftgBr06ZNlmVZ1uDBg6369esned0TJ05YgPXXX38l+7qWZVm1atWyevfuHX8fsBYsWHCTn6KIpAeNuRGRO1a3bl0mTZqU5FzevHkB8PLyYs6cOVSuXJl77rmHzz///IbnP/TQQzgcjvj7derUYdSoUcTExLB7925iYmIoW7ZskudERUWRL1+++PteXl5Urlz5trUmvsbT05N8+fJRqVKl+HNxLUpnz54FYNeuXaxZs4acOXPe8FpHjhyJr+v6r12kSJH41xAReyjciMgd8/HxoXTp0jd9/PfffwfgwoULXLhwAR8fnxS/dnh4OJ6enmzfvh1PT88kjyUOHNmzZ08SkG4ma9asSe47HI4k5+JeIzY2Nv7rN27cmOHDh9/wWkWKFLnl68a9hojYQ+FGRNLFkSNH6N69O9OmTeO7776jdevW/Prrr3h4JAz127x5c5Ln/PHHH5QpUwZPT0+qVatGTEwMZ8+e5dFHH83o8qlevTo//vgjJUuWJEuWO3+rzJo1KzExMWlYmYjcjgYUi8gdi4qK4syZM0lu58+fJyYmhtdff50GDRrQtm1bZs6cyZ9//smoUaOSPD84OJgePXrw119/8e233zJu3Di6du0KQNmyZWnRogWtWrVi/vz5BAUFsWXLFoYNG8aSJUvS/XsLCAjgwoULvPrqq2zdupUjR46wfPly2rZtm6qwUrJkSVatWsWZM2f4999/07FiEYmjlhsRuWPLli1L0kUDUK5cOV577TWOHz/Ozz//DJhunKlTp/Lqq69Sv359qlSpAkCrVq24fPkyDz74IJ6ennTt2pU333wz/rVmzpzJkCFDePfddzl58iT58+fnoYce4rnnnkv3761o0aJs3LiR3r17U79+faKiorjnnnto2LBhktan2xk1ahQ9evRg2rRpFCtWjGPHjqVf0SICgMOyEi0qISKSQZ544gmqVq3K6NGj7S5FRNyMuqVERETErSjciIiIiFtRt5SIiIi4FbXciIiIiFtRuBERERG3onAjIiIibkXhRkRERNyKwo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErfw/Ib37BekjVmgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRIklEQVR4nO3de3zO9f/H8cdlbGxsznOaplDIKafkWxFhatEBP8qGVOS8FCsR+SZ8cyikyKEDKjn0LSVfOeSQY4uQQ44xhJgNY9v1++PddW1jm41tn13X9bzfbtfN5/pc7+u6XttwPfd5n2x2u92OiIiIiJvIZ3UBIiIiItlJ4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbyW91AbktKSmJ48ePU6RIEWw2m9XliIiISCbY7XYuXLhAuXLlyJcv42szHhdujh8/TlBQkNVliIiIyE04evQoFSpUyLCNx4WbIkWKAOab4+/vb3E1IiIikhkxMTEEBQU5P8cz4nHhxtEV5e/vr3AjIiLiYjIzpEQDikVERMStWBpu1qxZQ2hoKOXKlcNms7F48eIbPuezzz6jdu3a+Pr6UrZsWbp3786ZM2dyvlgRERFxCZaGm7i4OGrXrs2UKVMy1X7dunWEhYXx7LPPsnPnTr788ks2bdrEc889l8OVioiIiKuwdMxNSEgIISEhmW6/YcMGgoOD6devHwCVKlXihRdeYMyYMdleW2JiIlevXs3215WcVaBAAby8vKwuQ0RELORSA4obN27Mq6++ytKlSwkJCeHUqVMsWLCANm3apPuc+Ph44uPjnfdjYmIyfA+73c6JEyc4d+5cdpUtuaxo0aKUKVNG6xiJiHgolwo3TZo04bPPPqNjx45cvnyZhIQEQkNDM+zWGj16NCNGjMj0eziCTenSpfH19dUHpAux2+1cvHiRU6dOAVC2bFmLKxIRESvY7Ha73eoiwEztWrRoEe3atUu3za5du2jRogUDBw6kVatWREdH8/LLL9OgQQM++uijNJ+T1pWboKAgzp8/f91U8MTERPbu3Uvp0qUpUaJEtnxdkvvOnDnDqVOnqFq1qrqoRETcRExMDAEBAWl+fl/Lpa7cjB49miZNmvDyyy8DUKtWLfz8/Lj//vsZNWpUmr+p+/j44OPjk6nXd4yx8fX1zb6iJdc5fn5Xr15VuBER8UAutc7NxYsXr9tPwvHhlZ0XoNQV5dr08xMR8WyWhpvY2FiioqKIiooC4ODBg0RFRXHkyBEAIiMjCQsLc7YPDQ1l4cKFvP/++xw4cIB169bRr18/GjZsSLly5az4EkRERCSPsbRbasuWLTRr1sx5PyIiAoDw8HBmz55NdHS0M+gAdO3alQsXLjB58mReeuklihYtykMPPZQjU8FFRETENeWZAcW5JaMBSZcvX+bgwYNUqlSJggULWlRh3hAcHMyAAQMYMGCApa9xM/RzFBFxP247oFjS17RpU+rUqcPEiROz5fU2b96Mn59ftryWiIh4kJUroWFDsPAzxKUGFMutsdvtJCQkZKptqVKlNGtMRESy5vffoU0bqF0boqMtK0PhJpPi4tK/Xb6c+baXLmWubVZ07dqV1atXM2nSJGw2GzabjUOHDrFq1SpsNhvfffcd9erVw8fHh7Vr1/LHH3/Qtm1bAgMDKVy4MA0aNOB///tfqtcMDg5OdRXIZrMxY8YMHn/8cXx9falSpQpff/11luo8cuQIbdu2pXDhwvj7+9OhQwdOnjzpfPzXX3+lWbNmFClSBH9/f+rVq8eWLVsAOHz4MKGhoRQrVgw/Pz9q1KjB0qVLs/aNEhGRnJOQAOHh5kPxjjugTBnLSlG4yaTChdO/Pflk6ralS6ff9tqttIKD026XFZMmTaJx48Y899xzREdHEx0dTVBQkPPxIUOG8Pbbb7N7925q1apFbGwsbdq0YcWKFfzyyy+0bt2a0NDQVIO30zJixAg6dOjA9u3badOmDU8//TRnz57NVI1JSUm0bduWs2fPsnr1apYvX86BAwfo2LGjs83TTz9NhQoV2Lx5M1u3bmXIkCEUKFAAgN69exMfH8+aNWvYsWMHY8aMoXBWv1EiIpJzxoyBTZsgIAA++ggsXJZDY27cQEBAAN7e3vj6+lImjaQ8cuRIHn74Yef94sWLU7t2bef9N998k0WLFvH111/Tp0+fdN+na9eudOrUCYC33nqLd999l02bNtG6desb1rhixQp27NjBwYMHncHr448/pkaNGmzevJkGDRpw5MgRXn75Ze666y4AqlSp4nz+kSNHePLJJ6lZsyYAt99++w3fU0REcklUFDi2Opo8GSpUsLQchZtMio1N/7FrF8H9Z2ujNF2zBiGHDt10SZlWv379VPdjY2N54403+Pbbb4mOjiYhIYFLly7d8MpNrVq1nMd+fn74+/s793G6kd27dxMUFJTqilL16tUpWrQou3fvpkGDBkRERNCjRw8++eQTWrRoQfv27bnjjjsA6NevH7169eKHH36gRYsWPPnkk6nqERERi8THQ1gYXL0Kjz8OTz9tdUXqlsosP7/0b9fONs6obaFCmWubvbWnfsFBgwaxaNEi3nrrLX766SeioqKoWbMmV65cyfB1HF1EDjabjaSkpGyr84033mDnzp088sgj/Pjjj1SvXp1FixYB0KNHDw4cOECXLl3YsWMH9evX57333su29xYRkZs0YgTs2AGlSsG0aZZ2Rzko3LgJb29vEhMTM9V23bp1dO3alccff5yaNWtSpkwZDuXwJaRq1apx9OhRjh496jy3a9cuzp07R/Xq1Z3nqlatysCBA/nhhx944oknmDVrlvOxoKAgevbsycKFC3nppZeYPn16jtYsIiI38PPPZqwNmGBTurS19fxD4cZNBAcHs3HjRg4dOsTp06czvKJSpUoVFi5cSFRUFL/++iudO3fO1iswaWnRogU1a9bk6aefZtu2bWzatImwsDAefPBB6tevz6VLl+jTpw+rVq3i8OHDrFu3js2bN1OtWjUABgwYwLJlyzh48CDbtm1j5cqVzsdERMQCFy+a2VFJSfDMM/DEE1ZX5KRw4yYGDRqEl5cX1atXp1SpUhmOnxk/fjzFihXjvvvuIzQ0lFatWnHPPffkaH02m40lS5ZQrFgxHnjgAVq0aMHtt9/O559/DpgNUM+cOUNYWBhVq1alQ4cOhISEMOKfAWqJiYn07t2batWq0bp1a6pWrcrUqVNztGYREclAZCTs3Qvly8O771pdTSrafiEFLdvvHvRzFBHJYStXwkMPmePvv4dWrXL8LbOy/YKu3IiIiEjmxcRAt27m+IUXciXYZJXCjYiIiGReRAQcPgyVKsG4cVZXkyaFGxEREcmcb79NXn149mwoUsTqitKkcCMiIiI3duYM9OhhjgcOhAcesLaeDCjciIiIyI316QMnTkC1ajBqlNXVZEjhRkRERDL2xRcwf77Zb2jOnOuX289jFG5EREQkfSdOwIsvmuNXX4UGDaytJxMUbkRERCRtdjs895wZb1O3LgwdanVFmaJwI7esadOmDBgwwOoyREQku82eDd98A97epjvK29vqijJF4cZN5ETA6Nq1K+3atcvW1xQRERdx+DD072+OR46EmjWtrScLFG5EREQktaQk6N4dLlyAxo1h0CCrK8oShRs30LVrV1avXs2kSZOw2WzYbDYOHToEwG+//UZISAiFCxcmMDCQLl26cPr0aedzFyxYQM2aNSlUqBAlSpSgRYsWxMXF8cYbbzBnzhyWLFnifM1Vq1Zlqp6///6bsLAwihUrhq+vLyEhIezbt8/5+OHDhwkNDaVYsWL4+flRo0YNli5d6nzu008/TalSpShUqBBVqlRh1qxZ2fa9EhGRTJg6FX780cyKmjPHzJJyIfmtLiDPs9vNtu5W8PU1q0DewKRJk9i7dy933303I0eOBKBUqVKcO3eOhx56iB49ejBhwgQuXbrE4MGD6dChAz/++CPR0dF06tSJsWPH8vjjj3PhwgV++ukn7HY7gwYNYvfu3cTExDjDRfHixTNVdteuXdm3bx9ff/01/v7+DB48mDZt2rBr1y4KFChA7969uXLlCmvWrMHPz49du3ZRuHBhAF5//XV27drFd999R8mSJdm/fz+XLl26yW+giIhk2b598Mor5njsWKhSxdp6boLCzY1cvAj/fPDmuthY8PO7YbOAgAC8vb3x9fWlTJkyzvOTJ0+mbt26vPXWW85zM2fOJCgoiL179xIbG0tCQgJPPPEEt912GwA1U/SpFipUiPj4+FSveSOOULNu3Truu+8+AD777DOCgoJYvHgx7du358iRIzz55JPO97r99tudzz9y5Ah169alfv36AAQHB2f6vUVE5BYlJkJ4OFy6BM2bJ08BdzHqlnJjv/76KytXrqRw4cLO21133QXAH3/8Qe3atWnevDk1a9akffv2TJ8+nb///vuW3nP37t3kz5+fRo0aOc+VKFGCO++8k927dwPQr18/Ro0aRZMmTRg+fDjbt293tu3Vqxfz58+nTp06vPLKK6xfv/6W6hERkSz4z39gwwazZ9TMmZDPNWOCa1adm3x9zRUUK26+vrdUemxsLKGhoURFRaW67du3jwceeAAvLy+WL1/Od999R/Xq1Xnvvfe48847OXjwYDZ989LWo0cPDhw4QJcuXdixYwf169fnvffeAyAkJITDhw8zcOBAjh8/TvPmzRnkYgPZRERc0o4dMGyYOZ40CSpWtLaeW6BwcyM2m+kasuKWifE2Dt7e3iQmJqY6d88997Bz506Cg4OpXLlyqpvfP91dNpuNJk2aMGLECH755Re8vb1ZtGhRuq95I9WqVSMhIYGNGzc6z505c4Y9e/ZQvXp157mgoCB69uzJwoULeemll5g+fbrzsVKlShEeHs6nn37KxIkT+fDDD7NUg4iIZNGVK6Y76soVCA2Frl2truiWKNy4ieDgYDZu3MihQ4c4ffo0SUlJ9O7dm7Nnz9KpUyc2b97MH3/8wbJly+jWrRuJiYls3LiRt956iy1btnDkyBEWLlzIX3/9RbVq1ZyvuX37dvbs2cPp06e5evXqDeuoUqUKbdu25bnnnmPt2rX8+uuvPPPMM5QvX562bdsCMGDAAJYtW8bBgwfZtm0bK1eudL7nsGHDWLJkCfv372fnzp188803zsdERCSHjBoFv/wCxYvDhx9m6ZfrvEjhxk0MGjQILy8vqlevTqlSpThy5AjlypVj3bp1JCYm0rJlS2rWrMmAAQMoWrQo+fLlw9/fnzVr1tCmTRuqVq3K0KFDeeeddwgJCQHgueee484776R+/fqUKlWKdevWZaqWWbNmUa9ePR599FEaN26M3W5n6dKlFChQAIDExER69+5NtWrVaN26NVWrVmXq1KmAuVoUGRlJrVq1nF1n8+fPz5lvmoiIwObN4Jh48v77kIVJJHmVzW63260uIjfFxMQQEBDA+fPn8ff3T/XY5cuXOXjwIJUqVaJgwYIWVSi3Sj9HEZFMunQJ6tWD3bvh//4P5s2zuqJ0ZfT5fS1duREREfFUQ4eaYFOmDEyebHU12UbhRkRExBOtWQMTJpjjGTOgRAlr68lGCjciIiKe5sIFMyPKbodnn4VHHrG6omylcCMiIuJpXn4ZDh6E226D8eOtribbKdykwcPGWLsd/fxERDKwbBl88IE5njULbjA41xUp3KTgmKp80aqNMiVbOH5+jp+niIj84++/oXt3c9yvHzRrZm09OUQbZ6bg5eVF0aJFOXXqFAC+vr7YXHwhI09it9u5ePEip06domjRonh5eVldkohI3tKvHxw/DlWrwujRVleTYxRuruHYAdsRcMT1FC1aNEs7mYuIeISFC+HTT81mmHPm3PL+hXmZws01bDYbZcuWpXTp0pnabkDylgIFCuiKjYjItU6dgp49zfHgwXDvvdbWk8MUbtLh5eWlD0kREXF9dju88AL89RfUqgXDh1tdUY7TgGIRERF39tlnsHgxFCgAH38MPj5WV5TjFG5ERETc1Z9/Qp8+5nj4cKhd29p6conCjYiIiDtyrD58/jw0bGjG2ngIhRsRERF39OGH8MMPULCgmR2V33OG2SrciIiIuJs//oCXXjLHo0fDXXdZW08uU7gRERFxJ4mJ0K0bxMXBgw+ahfs8jKXhZs2aNYSGhlKuXDlsNhuLFy++4XPi4+N57bXXuO222/Dx8SE4OJiZM2fmfLEiIiKuYOJE+OknKFzY7B2Vz/OuY1jaARcXF0ft2rXp3r07TzzxRKae06FDB06ePMlHH31E5cqViY6OJikpKYcrFRERcQG7dsFrr5nj8eOhUiVr67GIpeEmJCSEkJCQTLf//vvvWb16NQcOHKB48eIABAcHZ/ic+Ph44uPjnfdjYmJuqlYREZE87epVCA+H+HgICYEePayuyDIuda3q66+/pn79+owdO5by5ctTtWpVBg0axKVLl9J9zujRowkICHDegoKCcrFiERGRXDJ6NGzZAsWKwYwZ4MEbP7vUvLADBw6wdu1aChYsyKJFizh9+jQvvvgiZ86cYdasWWk+JzIykoiICOf9mJgYBRwREXEv27bBm2+a48mToVw5a+uxmEuFm6SkJGw2G5999hkBAQEAjB8/nqeeeoqpU6dSqFCh657j4+ODjwcsNS0iIh4qPh7CwiAhAZ56Cjp1sroiy7lUt1TZsmUpX768M9gAVKtWDbvdzp9//mlhZSIiIhYZNgx27oTSpWHqVI/ujnJwqXDTpEkTjh8/TmxsrPPc3r17yZcvHxUqVLCwMhEREQusXw/jxpnjDz+EUqWsrSePsDTcxMbGEhUVRVRUFAAHDx4kKiqKI0eOAGa8TFhYmLN9586dKVGiBN26dWPXrl2sWbOGl19+me7du6fZJSUiIuK24uLM7Ci73fzZtq3VFeUZloabLVu2ULduXerWrQtAREQEdevWZdiwYQBER0c7gw5A4cKFWb58OefOnaN+/fo8/fTThIaG8u6771pSv4iIiGUGD4b9+6FCBbNwnzjZ7Ha73eoiclNMTAwBAQGcP38ef39/q8sRERHJuv/9Dx5+2Bz/8EPysRvLyue3S425ERER8Xjnz0P37ub4xRc9IthklcKNiIiIKxkwAI4ehTvugLFjra4mT1K4ERERcRVffw2zZ5vp3nPmgJ+f1RXlSQo3IiIiruD0aXj+eXM8aBA0aWJtPXmYwo2IiEheZ7dDr15w8iTUqAEjR1pdUZ6mcCMiIpLXff45LFgA+fOb7qiCBa2uKE9TuBEREcnLjh83s6IAhg6FevWsrccFKNyIiIjkVXY7PPcc/P23CTWvvmp1RS5B4UZERCSvmjkTli4FHx/THVWggNUVuQSFGxERkbzo0CGzpg3AqFFmILFkisKNiIhIXpOUBN26QWws/OtfMHCg1RW5FIUbERGRvGbyZFi1Cnx9zaJ9Xl5WV+RSFG5ERETykj17zI7fAP/5j9lmQbJE4UZERCSvSEiA8HC4fNlsiNmzp9UVuSSFGxERkbxi7FjYuBECAuCjj8weUpJlCjciIiJ5wa+/whtvmON334WgIEvLcWUKNyIiIla7cgXCwuDqVWjXDrp0sboil6ZwIyIiYrURI2D7dihZEqZNU3fULVK4ERERsdLGjfD22+Z42jQIDLS2HjegcCMiImKVixdNd1RSEjz9NDz5pNUVuQWFGxEREau8+irs3QvlysF771ldjdtQuBEREbHCypUwaZI5njEDihWzth43onAjIiKS2y5cMHtHATz/PISEWFuPm1G4ERERyW0REXD4MAQHmy0WJFsp3IiIiOSmpUtNN5TNZjbFLFLE6orcjsKNiIhIbjl7Fnr0MMcDBsCDD1pajrtSuBEREcktffpAdDTceSf8+99WV+O2FG5ERERyw5dfwrx54OUFH38MhQpZXZHbUrgRERHJaSdOQK9e5jgyEho2tLYeN6dwIyIikpPsdnjhBThzBurUgddft7oit6dwIyIikpM+/hi+/hoKFDDH3t5WV+T2FG5ERERyypEj0K+fOR45EmrWtLYeD6FwIyIikhOSkuDZZyEmBu69FwYNsroij6FwIyIikhOmTYP//c/MipozB/Lnt7oij6FwIyIikt3274eXXzbHY8ZA1arW1uNhFG5ERESyU2IihIfDxYvQrBn07m11RR5H4UZERCQ7jR8P69ebPaNmzYJ8+qjNbfqOi4iIZJfffoOhQ83xxIlw222WluOpFG5ERESyw9WrEBYGV67AI49At25WV+SxFG5ERESyw7//Db/8AsWLw/TpYLNZXZHHUrgRERG5VVu2wKhR5njqVChb1tp6PJzCjYiIyK24fNl0RyUmQocO0LGj1RV5PIUbERGRWzF0KOzeDYGB5qqNWE7hRkRE5Gb99JOZ+g0wYwaUKGFtPQIo3IiIiNyc2Fjo2hXsdujeHR591OqK5B8KNyIiIjfj5ZfhwAGoWBEmTLC6GknB0nCzZs0aQkNDKVeuHDabjcWLF2f6uevWrSN//vzUqVMnx+oTERFJ07JlZmNMMKsQ+/tbW4+kYmm4iYuLo3bt2kyZMiVLzzt37hxhYWE0b948hyoTERFJx7lz8Oyz5rhvX3joIUvLketZuv96SEgIISEhWX5ez5496dy5M15eXlm62iMiInLL+vWDY8egShV4+22rq5E0uNyYm1mzZnHgwAGGDx+eqfbx8fHExMSkuomIiNyURYvgk0/MZphz5oCvr9UVSRpcKtzs27ePIUOG8Omnn5I/f+YuOo0ePZqAgADnLSgoKIerFBERt/TXX/DCC+b4lVegcWNr65F0uUy4SUxMpHPnzowYMYKqVatm+nmRkZGcP3/eeTt69GgOVikiIm7JboeePU3AuftueOMNqyuSDFg65iYrLly4wJYtW/jll1/o06cPAElJSdjtdvLnz88PP/zAQ2kM6vLx8cHHxye3yxUREXcydy4sXAj588PHH4M+V/I0lwk3/v7+7NixI9W5qVOn8uOPP7JgwQIqVapkUWUiIuLWjh2Df36pZvhwqFvX2nrkhiwNN7Gxsezfv995/+DBg0RFRVG8eHEqVqxIZGQkx44d4+OPPyZfvnzcfffdqZ5funRpChYseN15ERGRbGG3Q48eZvp3gwYwZIjVFUkmWBputmzZQrNmzZz3IyIiAAgPD2f27NlER0dz5MgRq8oTERFPN306fP+96YaaM8d0S0meZ7Pb7Xari8hNMTExBAQEcP78efy1oqSIiKTnwAGoVQvi4szmmAMHWl2RR8vK57fLzJYSERHJNUlJZlPMuDh44AHo39/qiiQLFG5ERESuNWkS/PQT+PnB7Nlm0T5xGfppiYiIpLR7N0RGmuPx40GzcV2Owo2IiIhDQgKEhUF8PLRuDc89Z3VFchMUbkRERBzefhu2bIGiRWHGDLDZrK5IboLCjYiICMAvv8CIEeZ48mQoX97aeuSmKdyIiIjEx5vuqIQEeOIJ6NzZ6orkFijciIiIvPEG/PYblCoF06apO8rFKdyIiIhnW78exo41xx9+aAKOuDSFGxER8VxxcRAebhbt69IF2rWzuiLJBgo3IiLiuSIjYf9+M3j43XetrkayicKNiIh4phUr4L33zPHMmWb6t7gFhRsREfE8589D9+7muGdPaNnS2nokWynciIiI5xk4EI4cgdtvh3HjrK5GspnCjYiIeJb//hdmzTLTvWfPhsKFra5IspnCjYiIeI4zZ5L3i3rpJbj/fmvrkRyhcCMiIp7jxRfh5EmoVg3efNPqaiSHKNyIiIhn+Pxz+OIL8PKCjz+GggWtrkhyiMKNiIi4v+hoc9UGYOhQqF/f2nokRynciIiIe7PbzTibs2ehbl147TWrK5IcpnAjIiLubdYs+PZb8PY23VEFClhdkeQwhRsREXFfhw/DgAHmeNQouPtuS8uR3KFwIyIi7ikpCbp1gwsX4L77ICLC6ooklyjciIiIe5oyBVauBF9fmDPHzJISj6BwIyIi7mfvXhg82ByPGweVK1tbj+QqhRsREXEvCQkQHg6XLkGLFmZjTPEoCjciIuJe/vMf+Pln8PeHmTMhnz7qPI1+4iIi4j62b4dhw8zxu+9CUJC19YglFG5ERMQ9XLkCYWFw9So89pg5Fo+kcCMiIu7hzTfh11+hRAn48EOw2ayuSCyicCMiIq5v0yYYPdocT5sGgYHW1iOWUrgRERHXdumS6YJKTIROneCpp6yuSCymcCMiIq7ttddgzx4oWxYmT7a6GskDFG5ERMR1rV4NEyea4xkzoHhxS8uRvEHhRkREXNOFC9C1K9jt0KMHtGljdUWSRyjciIiIaxo0CA4dguBgGD/e6mokD1G4ERER1/Pdd2a6N8CsWVCkiLX1SJ6icCMiIq7l7Fl49llz3L8/NG1qaTmS9yjciIiIa+nXD6Kj4c47k9e2EUkhS+Hm1KlTGT6ekJDApk2bbqkgERGRdH31FXz2mdkMc84cKFTI6ookD8pSuClbtmyqgFOzZk2OHj3qvH/mzBkaN26cfdWJiIg4nDwJPXua4yFDoFEja+uRPCtL4cZut6e6f+jQIa5evZphGxERkVtmt8MLL8Dp01CrFgwfbnVFkodl+5gbmzYqExGR7PbJJ7BkCRQoYI69va2uSPIwDSgWEZG87ehRM4gYYMQIc+VGJAP5s9LYZrNx4cIFChYsiN1ux2azERsbS0xMDIDzTxERkWxht5tp3+fPmzE2L79sdUXiArIUbux2O1WrVk11v27duqnuq1tKRESyzbRpsHy5mRU1Zw7kz9LHlnioLP0tWblyZU7VISIiktoff5gtFgDeftusayOSCVkKNw8++GC2vvmaNWsYN24cW7duJTo6mkWLFtGuXbt02y9cuJD333+fqKgo4uPjqVGjBm+88QatWrXK1rpERMRiiYkQHg4XL5oViPv0sboicSFZGlCckJBAfHx8qnMnT55kxIgRvPLKK6xduzZLbx4XF0ft2rWZMmVKptqvWbOGhx9+mKVLl7J161aaNWtGaGgov/zyS5beV0RE8rgJE2DdOrNn1KxZZtE+kUyy2bOwME23bt3w9vbmgw8+AODChQvUqFGDy5cvU7ZsWXbt2sWSJUtocxPbzttsthteuUlLjRo16NixI8OGDUvz8fj4+FSBLCYmhqCgIM6fP4+/v3+W6xSRPMxuhyNHICkJvLzM+IyM/tQHZt60cyfccw9cuQIzZiTvIyUeLSYmhoCAgEx9fmepW2rdunVMnjzZef/jjz8mMTGRffv2ERAQwODBgxk3btxNhZubkZSUxIULFyhevHi6bUaPHs2IESNypR4RsVhEBEycmPn2NlvmQtC1f97Mc1z1Nb28zPcpt1y9CmFhJti0aQPdu+fee4vbyFK4OXbsGFWqVHHeX7FiBU8++SQBAQEAhIeHM2vWrOytMAP/+c9/iI2NpUOHDum2iYyMJCIiwnnfceVGRNzM6tXJwcbX14zZSEgwf6bHbjdtEhJypUSXlS9fzoawlK994gRs2wbFisH06bkbrMRtZCncFCxYkEuXLjnv//zzz4wbNy7V47GxsdlXXQbmzp3LiBEjWLJkCaVLl063nY+PDz4+PrlSk4hY5OLF5K6L55+Hf7rOARNgkpJSh52Ux9n1Z068Zm7Wm5SU/vc3KclcSclNU6dCuXK5+57iNrIUburUqcMnn3zC6NGj+emnnzh58iQPPfSQ8/E//viDcrnwl3H+/Pn06NGDL7/8khYtWuT4+4lIHvf662bacIUKMHZs6sccXU9eXlqyPyN2e/YFqVt9jdtvh6eesvo7Ii4sS+Fm2LBhhISE8MUXXxAdHU3Xrl0pW7as8/FFixbRpEmTbC8ypXnz5tG9e3fmz5/PI488kqPvJSIu4Oefk7ujPvgA/ukmlyyy2Uz3UP78oKvd4uKyvM7N1q1b+eGHHyhTpgzt27dP9XidOnVo2LBhpl8vNjaW/fv3O+8fPHiQqKgoihcvTsWKFYmMjOTYsWN8/PHHgOmKCg8PZ9KkSTRq1IgTJ04AUKhQIee4HxHxIPHxZsBpUhJ06WIGoIqIx8vSVPDstmrVKpo1a3bd+fDwcGbPnk3Xrl05dOgQq1atAqBp06asXr063faZkZWpZCKSxw0dCv/+NwQGwq5dkMHMSRFxbVn5/M5SuFmzZk2m2j3wwAOZfclcp3Aj4iZ++QUaNDDjNL76Cp54wuqKRCQH5dg6N02bNnVujJleJrLZbCRmNPVSRORWXb1quqMSE83AUwUbEUkhS+GmWLFiFClShK5du9KlSxdKliyZU3WJiKRv7FiIijLdUCkWFhURgSzuLRUdHc2YMWPYsGEDNWvW5Nlnn2X9+vX4+/sTEBDgvImI5JidO2HkSHP87rtmvI2ISApZCjfe3t507NiRZcuW8fvvv1OrVi369OlDUFAQr732Ggla5VNEclJioumOunIFHn0UOne2uiIRyYNuebbUwYMHefbZZ1m9ejV//fVXhvs85QUaUCziwt55BwYNAn9/MzuqfHmrKxKRXJKVz++b2hI3Pj6euXPn0qJFC+6++25KlizJt99+m+eDjYi4sH37zNRvMCFHwUZE0pGlAcWbNm1i1qxZzJ8/n+DgYLp168YXX3yhUCMiOSspCXr0gMuXoXnz5H2kRETSkKVwc++991KxYkX69etHvXr1AFi7du117R577LHsqU5EBGDaNFizBvz8tFO0iNxQlsbc5Mt3416svL7OjcbciLiYw4fh7rshNtbMjurb1+qKRMQCObaIX1JS0g3bXLx4MSsvKSKSPrsdnn/eBJsmTaB3b6srEhEXcFMDitMSHx/P+PHjuf3227PrJUXE082eDT/8AAULwsyZkImrxyIiWfqfIj4+nsjISOrXr899993H4sWLAZg5cyaVKlViwoQJDBw4MCfqFBFPc/w4OP4/GTkSqla1th4RcRlZ6pYaNmwYH3zwAS1atGD9+vW0b9+ebt268fPPPzN+/Hjat2+Pl5dXTtUqIp7CbodeveD8eahfPznkiIhkQpbCzZdffsnHH3/MY489xm+//UatWrVISEjg119/dW6oKSJyyz7/HL7+GgoUMN1R+bP0X5WIeLgsdUv9+eefzingd999Nz4+PgwcOFDBRkSyz19/Jc+IGjoUata0th4RcTlZCjeJiYl4e3s77+fPn5/ChQtne1Ei4sH69oXTp6FWLRgyxOpqRMQFZelar91up2vXrvj4+ABw+fJlevbsiZ+fX6p2CxcuzL4KRcRzLF5suqS8vEx3VIpfpkREMitL4SY8PDzV/WeeeSZbixERD/b332YQMcDLL8M/XeAiIlmVpXAza9asnKpDRDxdRAScOAF33gnDh1tdjYi4MK2IJSLW+/57s2CfzWa6owoWtLoiEXFhCjciYq2YGLPFAkD//nDffdbWIyIuT+FGRKw1ZAgcPQq33w6jRlldjYi4AYUbEbHOqlXw/vvmePp0uGbmpYjIzVC4ERFrxMXBs8+a4xdegIcesrYeEXEbCjciYo3XX4cDB6BCBRg71upqRMSNKNyISO77+WeYONEcf/gh+PtbWo6IuBeFGxHJXZcvQ/fuZufvsDAICbG6IhFxMwo3IpK73nwTdu+GwECYMMHqakTEDSnciEju2bYNxowxx++/D8WLW1uPiLglhRsRyR1Xr5ruqMREaN8eHn/c6opExE0p3IhI7hgzBn79FUqUgPfes7oaEXFjCjcikvN27oSRI83xu++a8TYiIjlE4UZEclZioumOunoVQkOhUyerKxIRN6dwIyI5a+JE2LTJrGXz/vtm528RkRykcCMiOWffPhg61ByPHw/ly1tbj4h4BIUbEckZSUlm76jLl6FFC9M1JSKSCxRuRCRnvP8+/PST2el7+nR1R4lIrlG4EZHsd+gQDB5sjt9+G4KDraxGRDyMwo2IZC+7HZ5/HuLi4F//ghdftLoiEfEwCjcikr1mzYLly6FgQfjoI8in/2ZEJHfpfx0RyT7HjkFEhDl+802oWtXaekTEIynciEj2sNuhVy84fx4aNIABA6yuSEQ8lMKNiGSP+fPhv/+FAgVg5kzIn9/qikTEQynciMitO3UK+vY1x6+/DnffbW09IuLRFG5E5Nb17QtnzkDt2jBkiNXViIiHU7gRkVuzaBF88QV4eZnuqAIFrK5IRDycpeFmzZo1hIaGUq5cOWw2G4sXL77hc1atWsU999yDj48PlStXZvbs2Tlep4ik4+zZ5HVsXnkF7rnH2npERLA43MTFxVG7dm2mTJmSqfYHDx7kkUceoVmzZkRFRTFgwAB69OjBsmXLcrhSEUlTRAScOAF33QXDhlldjYgIAJZOZwgJCSEkJCTT7adNm0alSpV45513AKhWrRpr165lwoQJtGrVKqfKFJG0fPcdzJlj9oyaOdMs2icikge41JibDRs20KJFi1TnWrVqxYYNG9J9Tnx8PDExMaluInKLYmLMFgtg1rNp3NjSckREUnKpcHPixAkCAwNTnQsMDCQmJoZLly6l+ZzRo0cTEBDgvAUFBeVGqSLubfBg+PNPuP12GDXK6mpERFJxqXBzMyIjIzl//rzzdvToUatLEnFtK1fCtGnmeMYM8PW1th4RkWu41BKiZcqU4eTJk6nOnTx5En9/fwoVKpTmc3x8fPDx8cmN8kTcX1wc9Ohhjnv2hGbNrK1HRCQNLnXlpnHjxqxYsSLVueXLl9NY/f0iuWPoUDhwAIKCYMwYq6sREUmTpeEmNjaWqKgooqKiADPVOyoqiiNHjgCmSyksLMzZvmfPnhw4cIBXXnmF33//nalTp/LFF18wcOBAK8oX8SwbNsCkSeb4ww/B39/aekRE0mFpuNmyZQt169albt26AERERFC3bl2G/bNeRnR0tDPoAFSqVIlvv/2W5cuXU7t2bd555x1mzJihaeAiOe3yZeje3ez8HR4OrVtbXZGISLpsdrvdbnURuSkmJoaAgADOnz+Pv37zFMmcV1+F0aOhTBnYuROKF7e6IhHxMFn5/HapMTciYoFt22DsWHP8/vsKNiKS5ynciEj6rlyBbt0gMRE6dIB27ayuSETkhhRuRCR9Y8bA9u1QogS8957V1YiIZIrCjYik7bff4M03zfF770Hp0tbWIyKSSQo3InK9hAQzO+rqVXjsMfi//7O6IhGRTFO4EZHrTZwImzdDQIAZRGyzWV2RiEimKdyISGp798Lrr5vj8eOhXDlr6xERySKFGxFJlpQEzz5rFu17+GEzU0pExMUo3IhIsqlTYe1aKFwYpk9Xd5SIuCSFGxExDh2CIUPM8dtvw223WVqOiMjNUrgREbNn1HPPQVwc3H8/9OpldUUiIjdN4UZEYOZM+N//oGBB+OgjyKf/GkTEdel/MBFPd+wYRESY41GjoEoVa+sREblFCjcinsxuh549ISYGGjaEAQOsrkhE5JYp3Ih4snnz4JtvoEAB0zXl5WV1RSIit0zhRsRTnTwJffua42HDoEYNa+sREckmCjcinqpvXzh7FurUgcGDra5GRCTbKNyIeKKFC+HLL0031MyZpltKRMRNKNyIeJqzZ+HFF83x4MFQt6619YiIZDOFGxFPM3CgGW9TrVryBpkiIm5E4UbEkyxdCh9/bPaMmjnTLNonIuJmFG5EPEVMDLzwgjkeOBDuvdfaekREcojCjYineOUV+PNPuOMOePNNq6sREckxCjcinuDHH+GDD8zxjBng62ttPSIiOUjhRsTdxcVBjx7muFcvaNrU0nJERHKawo2Iu3vtNTh4ECpWhDFjrK5GRCTHKdyIuLP16+Hdd83xhx9CkSLW1iMikgsUbkTc1eXL0L272fm7a1do1crqikREcoXCjYi7GjEC9uyBMmVg/HirqxERyTUKNyLuaOtWGDfOHE+bBsWKWVuPiEguUrgRcTdXrpjuqMRE6NgR2ra1uiIRkVylcCPibt5+G7Zvh5Il4b33rK5GRCTXKdyIuJMdO2DUKHP83ntQqpS19YiIWEDhRsRdJCSY7qirV01XVMeOVlckImIJhRsRdzFhAmzZAgEBMHWq2flbRMQDKdyIuIM9e+D1183xhAlQrpy19YiIWEjhRsTVJSXBs89CfDy0bGkW7BMR8WAKNyKubsoUWLcOChc2WyyoO0pEPJzCjYgrO3gQIiPN8dixcNtt1tYjIpIHKNyIuCq7HZ57DuLi4IEH4IUXrK5IRCRPULgRcVUffQQrVkChQuY4n/45i4iAwo2Ia/rzT3jpJXM8ahRUrmxtPSIieYjCjYirsduhVy+IiYFGjaB/f6srEhHJUxRuRFzN3LnwzTfg7Q0zZ4KXl9UViYjkKQo3Iq7k5Eno188cDxsG1atbW4+ISB6kcCPiSvr0gbNnoU4deOUVq6sREcmTFG5EXMVXX8GCBZA/P8yaBQUKWF2RiEielCfCzZQpUwgODqZgwYI0atSITZs2Zdh+4sSJ3HnnnRQqVIigoCAGDhzI5cuXc6laEQucOQO9e5vjwYPNlRsREUmT5eHm888/JyIiguHDh7Nt2zZq165Nq1atOHXqVJrt586dy5AhQxg+fDi7d+/mo48+4vPPP+fVV1/N5cpFctHAgWa8TbVqyRtkiohImmx2u91uZQGNGjWiQYMGTJ48GYCkpCSCgoLo27cvQ4YMua59nz592L17NytWrHCee+mll9i4cSNr1669rn18fDzx8fHO+zExMQQFBXH+/Hn8/f1z4CvyLHa72bfRbje9JQ4XL0JCgnns2pvNBoGByW2PH4dLl9Jve/fdyW1374Zz59Jua7dDixbJbTdvhujotNsmJcH//V/yunerV8P+/cnv6eWVfMuXD554Anx8TNvt2+HIkdSPpzxu0CC57bFj5qJLynYp/yxXLrl36eJFs/flta+X/4eleD32iLmzfr2Z/i0i4mFiYmIICAjI1Od3/gwfzWFXrlxh69atRDr2xgHy5ctHixYt2LBhQ5rPue+++/j000/ZtGkTDRs25MCBAyxdupQuXbqk2X706NGMGDEiR+q/1uXL8NprqT9sU36Y1q8PPXqYtomJZvPma9ukbJvyYlRoKFy5knbbevVg4sTkts2awfnzabetXRs+/zy5bcOGJlxcGxKSksxEnJ9+Sm5bqxbs2ZO6rcMdd5hw4NCkCURFpf19KlPGhA6HDh3Mvo9p8fc3X4tD//6wfHnabb28TKByeOstWLw47bYATz1lZlMDTJ8On32WftvTp5MDy5QpZn/K9Bw5AkFB5vidd2DChPTb7t4Nd92VXO+//536cX/O8xsvEASc6DyQMv8Em//8B9544/rA5DheuDA5A33yiXnt9NpOnAj33mvafvedqffaNo7jl15Kft2NG+GDD64Pgo7jzp3N302A33+HefPSbuflBc2bQ82apu3x46aOtGr18jJ/D6tUMW3PnYNNm1I/nj8/+PqaW2AgBASk//0XEfdkabg5ffo0iYmJBKb8NR4IDAzk999/T/M5nTt35vTp0/zrX//CbreTkJBAz5490+2WioyMJCIiwnnfceUmJ1y5AuPHp//4uXPJ4Qbg00/Tb3v1aur7y5eb3+rT4viAdvj1V/j777TbFi2a+n50tLm6kJaUoQLM13flStptr73+l97G1PnyXb9LgJ8fFCmS/FjKW5EiqduWLQu3355222uXe7nzTvOhbbNd3/ba+u65x3y9Npv5WhITTXhz/OkINmD2pqxfP/XjiYnJxynH+RYubD5g02ub8mpXyrDoMJZXCOJP9lGZiy+OpMw/5+PjzZZS6UkZ8k6fNuEiPTExycdHj6YfHgE6dUo+3r/fjGtOzz33pA43I0em3/aDD5LDzc6dqf+dXGv8eNNLB7BrF7RqlX7bESPMjHlH28aNzd83X1/zZ8rjDh3g6adN27//NiE2rXZ+flCxormB+bldvWr+HWpDdpG8wdJwczNWrVrFW2+9xdSpU2nUqBH79++nf//+vPnmm7yexlgEHx8ffFJ+MuUgHx8z1jOtD9N8+aBGjeS2+fLBuHFpt8uX7/rNnT/6yHzoptW2dOnUbb/4wnx4ptX22it5335rPgjTaluwYOq2P/6Y/uteGyzWr7/++5Def/zLlmX+ezxnTubbvv125ttGRJhbZrz6auqrahkZOTLjD/WURo0ybR3hx/bjCgqFmktEpRbPoHADX2fb3r1N0Lg2LDmOq1ZNft0OHUzIcDx2bduUY5ObNTOhO612iYnmyp9DnTrmitC1QdDRNuUSPMHBZlHltNomJSVfiQEoWRIefTTtry0pCSpUSG5bqJCpKWXbhATTxRcXlzocx8aaIJcyzKWU8ms7cSLjoU0DBiRfkTt+3Fyp8/JKDkAp/2zfPnmnjIsXYciQ9APWHXck12G3m102HI/5+Cg8iWSWpWNurly5gq+vLwsWLKBdu3bO8+Hh4Zw7d44lS5Zc95z777+fe++9l3HjxjnPffrppzz//PPExsaS7wabB2alz07EMnFx5lLGwYPw4ovmMoLcksuXTZehI/jExaU+rlvXjJcCcwXrzTfTbnfxormy5FhmaM+e5K7FtPTrB5MmmePoaDPOKj3duplFp8GEsZThLF++1IGobdvkK8VJSaYb8Npw5TiuUiX1eLRt20wwTNmuYEGFJ8nbXGbMjbe3N/Xq1WPFihXOcJOUlMSKFSvo06dPms+5ePHidQHG65/LBhaPjRbJPq+9ZoJNxYpZuwQl6SpYMPUVrYwEBWU8riqlKlVMl3NaISguzly1SlnDa69d38bxZ8qQdOmS6epydAUnJZnAExtr7p85k9z28uXUY+mu9fjjyeHGbjch7tpuUJvNhJ2QEPjyy+Tzjz5qnpNW91zlysldeWCu7qZ3BatQIW1cL7nH8m6piIgIwsPDqV+/Pg0bNmTixInExcXRrVs3AMLCwihfvjyjR48GIDQ0lPHjx1O3bl1nt9Trr79OaGioM+SIuLR16+Ddd83x9OnXDzySPCVfPjNoOTMDl4sVM92PmVGqlBlblZCQdhAqViy5rZeXuTqUXsByDBgHMz6oXLnkxxxj+ex2c//a8X4//HD9OYeHHkodbtq3Nwtop6VBAzP426FlSxMK0wpC5ctDZKTCkNw8y8NNx44d+euvvxg2bBgnTpygTp06fP/9985BxkeOHEl1pWbo0KHYbDaGDh3KsWPHKFWqFKGhofz72mkmIq7o0iXo3t180nTrZj4BxKPlz3/j8OTjk7zl2I14e5tuN4eEBPPXzhGGUg6It9vNbLv0rjRdeyXsrrtMuEkZsBzrq/r6pm77yy9msHtaatY0V7gc/vtfsyREpUqZ+xpFLF/nJrdpzI3kaUOGwJgxZlrYzp2pfz0XcUFJScnrXqWcrblmjRncnVZoqlwZHKt7XLpk/hnEx5vzLVuaW7Nm10+QEPeWlc9vhRuRvGLLFtN/kJgIS5bAY49ZXZGI5Q4dgrAw2LAh9RIHXl7mn4tj5qC4v6x8fqtHUyQvuHLFdEclJpqlkxVsRAAzIHvNGjOAeskSE2aqVDH/VNatM1PxHU6eNAPBDx2yqlrJKywfcyMiwOjRsGOHWeTFMZhYRJz8/U3md+T+gwfNgpMpp7h//z288II5rlIFHn5YXVieSlduRKy2fXvyFJrJk800GRHJUKVK8PzzZsVyh4AA+Ne/TJfVvn0wdSq0awfFi8P995thbOIZFG5ErJSQYLqjEhLM/8IdOlhdkYjLatfO7Id39mzaXVgpV3NfvNistKAuLPekbikRK40fD1u3mmkkU6dqiViRbJBWF9aWLakvik6aBKtWmeMqVZJnYTVtqi4sd6BwI2KVPXuSd3WcMMFM/xaRbFep0vVr5LRqZRYn/Pln04W1b5/Z5SR/fjNW59tv9buGK1O3lIgVEhNNd1R8vPlfNjzc6opEPMqQIbB2rZmFtXix2cKtcmXTQ+zllTrY9O1rurAOH7asXMkirXMjYoV334X+/aFwYTPKsWJFqysSEeDAAbOY4N13m/uHD6feH6xqVdN99fDDZhaWdkfJPVrnxiphYaYjNzra6kokLzt40GycAzBunIKNSB5y++3JwQbM1hYjRkCTJuaKzt69ZlJj27ZmFtbYsdbVKulTuMkuO3eaTVgGDIAKFcziCzNnmp3hRBzsdujRw/xq+OCDZi6riORZZcqYoXGOLqxFi6BXL7jjDtOFlXIq+tatZsLjjBnqwrKauqWyy9mz8NlnMHeuGaHm4O0NbdpA587w6KNQqFD2vae4nunTTaApVMisb1O5stUVichN+uMPCAw0vcsAI0fC8OHJjzu6sByzsNSFdWu0t1QGcmXMzYEDMH++CTu7diWfL1wYHn/cBJ3mzVNvvyvu788/oXp1uHDBTAEfONDqikQkG23fbq7s/PADbNxo5g045M8P27aZHc/l5ijcZCBXBxTb7WZJ/XnzzC3ldcqSJc31y06d4L77IJ96CN2a3W6u3C1danb7W7vWdOCLiFs6dw5WrjRB54cf4PRp062V/58FWCIjze/BjsHJGnp3Ywo3GbBstpTdbra1nTsXvvgC/vor+bGKFc1miZ07Q61aWlzBHX36KXTpYropo6KgWjWrKxKRXHTqVOoVku+4w4QbhzvvTN2F5ejqkmQKNxnIE1PBExJgxQpzNWfhQtNN4VCtmgk5nTqZv/3i+k6cMN1Rf/8N//43vPqq1RWJiIUcv+s6rups3AhJScmPV6uWekSD3a7feUHhJkN5ItykdOmSWQpz3jzzZ3x88mMNG5qg06GDVq91ZU89BV99BXXrmv/FNNZKRFJI2YW1bBmEhJjVksGsoly1qvk48PQuLIWbDOS5cJPS+fNmNNrcuebKjiPK58tnVovq1AmeeAKKFbO2Tsm8BQugfXvT0b55M9SpY3VFIpLHxceb9XXAbAT6wAOpH7/rruQurAcf9JwuLIWbDOTpcJPSyZNmbE56U8s7dTIDVH19ratRMnbmjOmOOnUKhg6FN9+0uiIRcTFXr8KmTbB8edpdWKNGwWuvJbf18nLf+SkKNxlwmXCTkmNq+dy5ZrFAh8KFoV0703XVooW6O/KaLl3MQOLq1c0cUMevYiIiN+nvv1N3YX3xBTRoYB774guzR1aLFsldWEFB1tabnRRuMuCS4SYlx9TyuXOvn1revr0JOppabr1vvzVX1vLlg/XroVEjqysSETfj+PR2DDbu1QumTUvdJmUXVvPmULBg7taYnRRuMuDy4cbBbjfdVXPnwuefp55aHhRkuq06dYLatTXMPredPw81asCxYzBokNk/SkQkhzm6sByzsDZtSt2FdfSo2R0IzLo7xYu71u/BCjcZcJtwk1JCAvz4owk6aU0tdwQdLfWfO55/3myzULky/PqrxkWJiCX+/tt8NCxfbi70f/dd8mNt2pjw8/DD5tayZXLwyasUbjLgluEmpUuXzCq4c+emPbW8Uyfo2FFTy3PK//5n/qcAWL36+mkOIiIWS0w0QebEidTnq1UzIadNG/NnXqNwkwG3DzcpOaaWz5tnPnRTTi1v2tSMz9HU8uwTG2s2jjl0CHr3hsmTra5IRCRNV6+amVeOLqzNm5M/Ipo3Nx8ZDr/9ZuZFWN2FpXCTAY8KNyk5ppbPm2eWxnTw9jYrRjl2LVcXys3r3x/efRduu80M/NYWwCLiIhxdWD/8YC7yP/usOX/ihLnQX7Jk6llYVnRhKdxkwGPDTUoHDyZPLf/tt+Tzmlp+89auNV1QdruZn5kXr+mKiGTRypXQtm3qoZxgruS0bAnh4bm3NqnCTQYUbq6RctfyQ4eSz5cokbxreZMm1l+PzMsuXTL/uvfuhe7d4aOPrK5IRCTbZNSF9ckn8Mwz5jg62lzpqV07Zz4yFG4yoHCTjpRTy7/4wqyq6xAUlLxruaaWX2/wYBg71ly73bULiha1uiIRkRxz9mxyF9bIkVCmjDk/bhy88goEBpoOgkKFsvd9FW4yoHCTCY6p5Y5dy2Nikh/T1PLUNm+Ge+81v8YsWQKPPWZ1RSIilnjjDXjnHfMxsWlT9r++wk0GFG6y6PLl5Knl33yTemp5gwbmao6nTi2/cgXq1TPjljp1Mt8jEREPdvWq6Z7KiZ3LFW4yoHBzC86fh8WLzYd4yqnlNpvZtdzTppa/8QaMGAGlSpnuqJIlra5IRMRtKdxkQOEmm5w8CV9+abqu1q9PPl+gQPKu5aGh7ju1fPt2c9UmIcFsf9Ghg9UViYi4NYWbDCjc5IBDh5Knlu/YkXzezy95avnDD7vP1PKEBDPOZutWePxx+OorDbIWEclhCjcZULjJYb/9lrxr+bVTyx27lrv61PIxY2DIENP9tnOnZ443EhHJZQo3GVC4ySV2u1kYwbFreVpTyzt1MuvDuNJVj99/NzXHx8Ps2WYFKxERyXEKNxlQuLFAQoJZ5tKxa3nKqeV33WWu5rjC1PLERLMK8fr10Lq1mUXmSsFMRMSFKdxkQOHGYo6p5fPmwX//e/3Ucseu5eXKWVdjet591+wfVaSI6X7LibmOIiKSJoWbDCjc5CExMal3LU9MNOcdU8s7dYInn8wbU8sPHDA7fl+8CNOmwQsvWF2RiIhHUbjJgMJNHnXqlJlaPnfu9VPLHbuWWzW13G6H5s1N11rTprBihWsPiBYRcUEKNxlQuHEBjqnl8+aZ9WQcHFPLO3Uy29Hm1tTyDz80V2oKFTJT3e+4I3feV0REnBRuMqBw42IcU8vnzTM7sTk4ppZ36gT/+lfOXUk5ehRq1IALF2DCBBgwIGfeR0REMqRwkwGFGxflmFo+b56ZWn7yZPJjFSok71qenVPL7XZ49FEzALpxY/jpJ/Dyyp7XFhGRLFG4yYDCjRtISIBVq8z4nK++un5quWPX8ipVbu19PvkEwsLA2xuiosxWtyIiYgmFmwwo3LiZy5fhu++Sdy2/fDn5sfr1k3ctz+rU8hMnoHp1+PtveOstiIzM3rpFRCRLFG4yoHDjxmJizK7l8+bB8uWpp5Y3bWqCTmanlj/5pFlw8J574Oef3WdfLBERF5WVz+88MZ91ypQpBAcHU7BgQRo1asSmTZsybH/u3Dl69+5N2bJl8fHxoWrVqixdujSXqpU8y9/fdCN99x0cPw5Tpph9rOx2M437uecgMBDatjWzseLi0n6dBQtMsMmfH2bOVLAREXExloebzz//nIiICIYPH862bduoXbs2rVq14lTKvYhSuHLlCg8//DCHDh1iwYIF7Nmzh+nTp1O+fPlcrlzytNKl4cUXYe1aM7X87behVi24ehW+/tqMyQkMhGeegW+/NecBTp+G3r3NcWQk1K5t2ZcgIiI3x/JuqUaNGtGgQQMmT54MQFJSEkFBQfTt25chQ4Zc137atGmMGzeO33//nQI38Ru1uqU83M6dyVPLDxxIPl+iBDz1FBw7Zsbu1KgBW7eCj491tYqIiJPLjLm5cuUKvr6+LFiwgHbt2jnPh4eHc+7cOZYsWXLdc9q0aUPx4sXx9fVlyZIllCpVis6dOzN48GC80pimGx8fT3yK/YtiYmIICgpSuPF0djts2pS8a3nKqeX58sGGDdCwoXX1iYhIKi4z5ub06dMkJiYSGBiY6nxgYCAnTpxI8zkHDhxgwYIFJCYmsnTpUl5//XXeeecdRo0alWb70aNHExAQ4LwFBQVl+9chLshmg0aNYNIk+PNPMwC5e3coX97MjlKwERFxWfmtLiCrkpKSKF26NB9++CFeXl7Uq1ePY8eOMW7cOIYPH35d+8jISCIiIpz3HVduRJzy54cWLcxNRERcnqXhpmTJknh5eXEyZZcAcPLkScqUKZPmc8qWLUuBAgVSdUFVq1aNEydOcOXKFby9vVO19/HxwUfjJkRERDyGpd1S3t7e1KtXjxUrVjjPJSUlsWLFCho3bpzmc5o0acL+/ftJSkpyntu7dy9ly5a9LtiIiIiI57F8KnhERATTp09nzpw57N69m169ehEXF0e3bt0ACAsLIzLF6rC9evXi7Nmz9O/fn7179/Ltt9/y1ltv0dsxfVdEREQ8muVjbjp27Mhff/3FsGHDOHHiBHXq1OH77793DjI+cuQI+VLs+BwUFMSyZcsYOHAgtWrVonz58vTv35/Bgwdb9SWIiIhIHmL5Oje5TevciIiIuB6XmQouIiIikt0UbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYs334htzkWZI6JibG4EhEREcksx+d2ZjZW8Lhwc+HCBcDsUSUiIiKu5cKFCwQEBGTYxuP2lkpKSuL48eMUKVIEm82Wra8dExNDUFAQR48e1b5VLko/Q9emn5/r08/Q9eXUz9But3PhwgXKlSuXakPttHjclZt8+fJRoUKFHH0Pf39//aN0cfoZujb9/FyffoauLyd+hje6YuOgAcUiIiLiVhRuRERExK0o3GQjHx8fhg8fjo+Pj9WlyE3Sz9C16efn+vQzdH154WfocQOKRURExL3pyo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErSjcZJMpU6YQHBxMwYIFadSoEZs2bbK6JMmCNWvWEBoaSrly5bDZbCxevNjqkiQLRo8eTYMGDShSpAilS5emXbt27Nmzx+qyJAvef/99atWq5Vz4rXHjxnz33XdWlyU36e2338ZmszFgwABL3l/hJht8/vnnREREMHz4cLZt20bt2rVp1aoVp06dsro0yaS4uDhq167NlClTrC5FbsLq1avp3bs3P//8M8uXL+fq1au0bNmSuLg4q0uTTKpQoQJvv/02W7duZcuWLTz00EO0bduWnTt3Wl2aZNHmzZv54IMPqFWrlmU1aCp4NmjUqBENGjRg8uTJgNm/KigoiL59+zJkyBCLq5OsstlsLFq0iHbt2llditykv/76i9KlS7N69WoeeOABq8uRm1S8eHHGjRvHs88+a3UpkkmxsbHcc889TJ06lVGjRlGnTh0mTpyY63Xoys0tunLlClu3bqVFixbOc/ny5aNFixZs2LDBwspEPNf58+cB8+EoricxMZH58+cTFxdH48aNrS5HsqB379488sgjqT4TreBxG2dmt9OnT5OYmEhgYGCq84GBgfz+++8WVSXiuZKSkhgwYABNmjTh7rvvtrocyYIdO3bQuHFjLl++TOHChVm0aBHVq1e3uizJpPnz57Nt2zY2b95sdSkKNyLiXnr37s1vv/3G2rVrrS5FsujOO+8kKiqK8+fPs2DBAsLDw1m9erUCjgs4evQo/fv3Z/ny5RQsWNDqchRublXJkiXx8vLi5MmTqc6fPHmSMmXKWFSViGfq06cP33zzDWvWrKFChQpWlyNZ5O3tTeXKlQGoV68emzdvZtKkSXzwwQcWVyY3snXrVk6dOsU999zjPJeYmMiaNWuYPHky8fHxeHl55Vo9GnNzi7y9valXrx4rVqxwnktKSmLFihXqKxbJJXa7nT59+rBo0SJ+/PFHKlWqZHVJkg2SkpKIj4+3ugzJhObNm7Njxw6ioqKct/r16/P0008TFRWVq8EGdOUmW0RERBAeHk79+vVp2LAhEydOJC4ujm7dulldmmRSbGws+/fvd94/ePAgUVFRFC9enIoVK1pYmWRG7969mTt3LkuWLKFIkSKcOHECgICAAAoVKmRxdZIZkZGRhISEULFiRS5cuMDcuXNZtWoVy5Yts7o0yYQiRYpcN8bNz8+PEiVKWDL2TeEmG3Ts2JG//vqLYcOGceLECerUqcP3339/3SBjybu2bNlCs2bNnPcjIiIACA8PZ/bs2RZVJZn1/vvvA9C0adNU52fNmkXXrl1zvyDJslOnThEWFkZ0dDQBAQHUqlWLZcuW8fDDD1tdmrggrXMjIiIibkVjbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkTE7XTt2pV27dpZXYaIWEThRkRuSteuXbHZbNfdWrdubXVpTJo0Kc9sm2Gz2Vi8eLHVZYh4FO0tJSI3rXXr1syaNSvVOR8fH4uqgcTERGw2GwEBAZbVICLW05UbEblpPj4+lClTJtWtWLFirFq1Cm9vb3766Sdn27Fjx1K6dGlOnjwJmE0u+/TpQ58+fQgICKBkyZK8/vrrpNzuLj4+nkGDBlG+fHn8/Pxo1KgRq1atcj4+e/ZsihYtytdff0316tXx8fHhyJEj13VLNW3alL59+zJgwACKFStGYGAg06dPJy4ujm7dulGkSBEqV67Md999l+rr++233wgJCaFw4cIEBgbSpUsXTp8+nep1+/XrxyuvvELx4sUpU6YMb7zxhvPx4OBgAB5//HFsNpvzvojkLIUbEcl2TZs2ZcCAAXTp0oXz58/zyy+/8PrrrzNjxgwCAwOd7ebMmUP+/PnZtGkTkyZNYvz48cyYMcP5eJ8+fdiwYQPz589n+/bttG/fntatW7Nv3z5nm4sXLzJmzBhmzJjBzp07KV26dJo1zZkzh5IlS7Jp0yb69u1Lr169aN++Pffddx/btm2jZcuWdOnShYsXLwJw7tw5HnroIerWrcuWLVv4/vvvOXnyJB06dLjudf38/Ni4cSNjx45l5MiRLF++HIDNmzcDZnfy6Oho530RyWF2EZGbEB4ebvfy8rL7+fmluv373/+22+12e3x8vL1OnTr2Dh062KtXr25/7rnnUj3/wQcftFerVs2elJTkPDd48GB7tWrV7Ha73X748GG7l5eX/dixY6me17x5c3tkZKTdbrfbZ82aZQfsUVFR19XWtm3bVO/1r3/9y3k/ISHB7ufnZ+/SpYvzXHR0tB2wb9iwwW632+1vvvmmvWXLlqle9+jRo3bAvmfPnjRf12632xs0aGAfPHiw8z5gX7RoUTrfRRHJCRpzIyI3rVmzZrz//vupzhUvXhwAb29vPvvsM2rVqsVtt93GhAkTrnv+vffei81mc95v3Lgx77zzDomJiezYsYPExESqVq2a6jnx8fGUKFHCed/b25tatWrdsNaUbby8vChRogQ1a9Z0nnNcUTp16hQAv/76KytXrqRw4cLXvdYff/zhrOva9y5btqzzNUTEGgo3InLT/Pz8qFy5crqPr1+/HoCzZ89y9uxZ/Pz8Mv3asbGxeHl5sXXrVry8vFI9ljJwFCpUKFVASk+BAgVS3bfZbKnOOV4jKSnJ+f6hoaGMGTPmutcqW7Zshq/reA0RsYbCjYjkiD/++IOBAwcyffp0Pv/8c8LDw/nf//5HvnzJQ/02btyY6jk///wzVapUwcvLi7p165KYmMipU6e4//77c7t87rnnHr766iuCg4PJn//m/6ssUKAAiYmJ2ViZiNyIBhSLyE2Lj4/nxIkTqW6nT58mMTGRZ555hlatWtGtWzdmzZrF9u3beeedd1I9/8iRI0RERLBnzx7mzZvHe++9R//+/QGoWrUqTz/9NGFhYSxcuJCDBw+yadMmRo8ezbfffpvjX1vv3r05e/YsnTp1YvPmzfzxxx8sW7aMbt26ZSmsBAcHs2LFCk6cOMHff/+dgxWLiIOu3IjITfv+++9TddEA3HnnnXTu3JnDhw/zzTffAKYb58MPP6RTp060bNmS2rVrAxAWFsalS5do2LAhXl5e9O/fn+eff975WrNmzWLUqFG89NJLHDt2jJIlS3Lvvffy6KOP5vjXVq5cOdatW8fgwYNp2bIl8fHx3HbbbbRu3TrV1acbeeedd4iIiGD69OmUL1+eQ4cO5VzRIgKAzW5PsaiEiEguadq0KXXq1GHixIlWlyIibkbdUiIiIuJWFG5ERETErahbSkRERNyKrtyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMSt/D98LYBSL8YFYQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2405,7 +825,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -2425,23 +845,23 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 1.740\n", - "The MSE of baseline ridge forecasts is 1.795\n", - "The MSE of mean of training data is 97.538\n" + "The MSE of LSTM forecasts is 1.164\n", + "The MSE of baseline ridge forecasts is 2.519\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABieElEQVR4nO3deVxUVf8H8M9lkB0GUZkBRSRRFFFTUUNK8ZEAMwPryXYh/aWPgkpmKpaluaBmpW1Y+QRWWvqUKFmhuEDuO6mpqIQ7oLnMKAjCzP39gUwOm6DD3Bnn83695mX33DNnvvcG3O/cc+45giiKIoiIiIgsiJXUARAREREZGxMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOJYSx2AKdJqtbhw4QKcnZ0hCILU4RAREVE9iKKI69evw9PTE1ZWdd/jYQJUgwsXLsDLy0vqMIiIiOgenD17Fq1ataqzDhOgGjg7OwOoOIEuLi4SR0NERET1oVar4eXlpbuO14UJUA0qu71cXFyYABEREZmZ+gxf4SBoIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4nAnamLQa4PR24EYh4KQAvPsAVjKpoyIiIrI4kt4BSkxMRM+ePeHs7Ax3d3dERUUhJydHr05ISAgEQdB7/ec//6mzXVEU8c4778DDwwP29vYIDQ3FiRMnGvNQ7u5IGrAwAFj6JPDTiIp/FwZUlBMREZFRSZoAZWVlITY2Fjt37kRGRgbKysoQFhaGoqIivXqvvfYa8vPzda/58+fX2e78+fPx8ccfY/Hixdi1axccHR0RHh6OkpKSxjyc2h1JA1YOA9QX9MvV+RXlTIKIiIiMStIusPT0dL3tlJQUuLu7Y9++fejbt6+u3MHBAUqlsl5tiqKIhQsX4u2330ZkZCQA4JtvvoFCocDq1avx/PPPG+4A6kOrAdInAxBr2CkCEID0KUCHQewOIyIiMhKTGgStUqkAAG5ubnrly5YtQ/PmzREQEICEhAQUFxfX2kZeXh4KCgoQGhqqK5PL5ejduzd27NhR43tKS0uhVqv1XgZzenv1Oz96REB9vqIeERERGYXJDILWarWIj49HcHAwAgICdOUvvvgivL294enpiYMHD2Ly5MnIycnBqlWramynoKAAAKBQKPTKFQqFbl9ViYmJmDFjhoGOpIobhYatR0RERPfNZBKg2NhYHD58GFu3btUrHzlypO6/O3fuDA8PDwwYMAC5ublo27atQT47ISEBEyZM0G2r1Wp4eXkZpG04Ke5epyH1iIiI6L6ZRBdYXFwc1q5di82bN6NVq1Z11u3duzcA4OTJkzXurxwrVFiof0elsLCw1nFEtra2cHFx0XsZjHcfwMUTgFBLBQFwaVlRj4iIiIxC0gRIFEXExcUhNTUVmzZtgo+Pz13fk52dDQDw8PCocb+Pjw+USiU2btyoK1Or1di1axeCgoIMEneDWMmAiHm3N6omQbe3I+ZyADQREZERSZoAxcbG4rvvvsPy5cvh7OyMgoICFBQU4ObNmwCA3NxczJw5E/v27cOpU6eQlpaGYcOGoW/fvujSpYuunQ4dOiA1NRUAIAgC4uPjMWvWLKSlpeHQoUMYNmwYPD09ERUVJcVhAv5PAUO/AVyqJG0unhXl/k9JExcREZGFknQMUFJSEoCKyQ7vlJycjJiYGNjY2GDDhg1YuHAhioqK4OXlhWeeeQZvv/22Xv2cnBzdE2QAMGnSJBQVFWHkyJG4du0aHn30UaSnp8POzq7Rj6lW/k9VPOrOmaCJiIgkJ4iiWNMENRZNrVZDLpdDpVIZdjwQERERNZqGXL9NYhA0ERERkTExASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIotjLXUAlkSjFbE77wouXi+Bu7Mdevm4QWYlSB2WHsZI1DDm8PNoDjESGRsTICNJP5yPGT8fQb6qRFfmIbfDu4P9ERHgIWFk/0g/nI+ZaYfgdeMPuOMaLsIVZ526YtpTnU0qRlM/jwAvOIZi6ufRHH4ezSFGIikIoiiKUgdhatRqNeRyOVQqFVxcXO67vfTD+Rj93X5UPdGVf8aTXu4u+R+i9MP5WL18Md5p8g08hSu68guiG94rG4aoF/9jEjGa+nkEeMExFFM/j+bw82gOMRIZUkOu3xwD1Mg0WhEzfj5S7Q8QAF3ZjJ+PQKOVLg/VaEVkrv4anzdZCCWu6O1T4go+b7IQmau/ljxGUz+PwD8XnDsv2gBQoCrB6O/2I/1wvkSRmRdTP4/m8PNoDjESSYkJUCPbnXel2h/xO4kA8lUl2J13pdY6jW137iWMK1sCAKjau1C5Pa7sv9ide8nIkf3DHM4jLziGYQ7n0Rx+Hs0hRiIpSZoAJSYmomfPnnB2doa7uzuioqKQk5NTY11RFDFw4EAIgoDVq1fX2W5MTAwEQdB7RURENMIR3N3F67X/AbqXeo1Bc2obPIUr1ZKfSlYC4ClchubUNuMGdgdzOI+84BiGOZxHc/h5NIcY76TRitiRexlrss9jR+5lflG4BzyHDSPpIOisrCzExsaiZ8+eKC8vx9SpUxEWFoYjR47A0dFRr+7ChQshCPUf/BgREYHk5GTdtq2trcHibgh3ZzuD1msM7sI1g9ZrDOZwHs3tgmOqzOE8msPPoznEWMnUx3uZA57DhpM0AUpPT9fbTklJgbu7O/bt24e+ffvqyrOzs/HBBx9g79698PCo3/9IW1tbKJVKg8Z7L3r5uMFDbocCVUmNt/QFAEp5xdMtUmn7UFtgaz3rScQczqM5XXBMmTmcR3P4eTSHGIHaB2pXjvfiQO274zm8NyY1BkilUgEA3Nz++YUsLi7Giy++iM8++6xBCU1mZibc3d3h5+eH0aNH4/Lly7XWLS0thVqt1nsZisxKwLuD/QH88+RFpcrtdwf7S/por6xNMG7aK1Hb3VKtCNy0V0LWJti4gd3BHM5j5QWntggEVHwjk/qCY+rM4Tyaw8+jOcRoDuO9Kplq95I5nUMAgFYD5G0BDv1Y8a9WI1koJpMAabVaxMfHIzg4GAEBAbry119/HX369EFkZGS924qIiMA333yDjRs3Yt68ecjKysLAgQOh0dR8ohMTEyGXy3UvLy+v+z4evXgCPJD0cnco5frfWJVyO9PIzK1ksB/8PgRBgLbKLi0AQRBgP/h9wEomRXQ6pn4ezeGCYw7M5Tya+s8jYPoxmsN4L6DiDsuj8zbhha92YvwP2Xjhq514dN4myZ9GBMznHAIAjqQBCwOApU8CP42o+HdhQEW5BExmHqDRo0fjt99+w9atW9GqVSsAQFpaGt544w0cOHAATk5OACouxqmpqYiKiqp323/99Rfatm2LDRs2YMCAAdX2l5aWorS0VLetVqvh5eVlsHmAKpn6pG44kgYxfTIE9QVdkejSEkLEXMD/KQkD02fq59Fc+uJ5Hg3D1M8jYLoxrsk+j/E/ZN+13qLnH0bkwy0bP6AamPpcSuZwDgFUJDkrhwG1ncmh3xjkOtOQeYBMYibouLg4rF27Fr///rsu+QGATZs2ITc3F66urnr1n3nmGTz22GPIzMysV/sPPfQQmjdvjpMnT9aYANna2hplkLTMSkBQ22aN/jn3zP8pCB0GAae3AzcKAScFBO8+kt/5qcrUz2NEgAce91ea5AWnkjkkF+ZwHgHT/3kETDdGUx/vdbfuJQEV3UuP+ysl+7k09XMIoKKbK30yqic/gO5Mpk8BOgwy6vVG0gRIFEWMHTsWqampyMzMhI+Pj97+KVOm4P/+7//0yjp37oyPPvoIgwcPrvfnnDt3DpcvX673AGqLZiUDfB6TOgqzZ6oXHMC8Bkya8nmk+2fqA7Ub0r0k1c+pqZ9DABVfqu/oWahOBNTnK+oZ8foj6Rig2NhYfPfdd1i+fDmcnZ1RUFCAgoIC3Lx5EwCgVCoREBCg9wKA1q1b6yVLHTp0QGpqKgDgxo0bePPNN7Fz506cOnUKGzduRGRkJHx9fREeHm78gyQyIWY3YJIeaKY+3sscpmQw9XMIoKJHwZD1DETSBCgpKQkqlQohISHw8PDQvVasWNGgdnJycnRPkMlkMhw8eBBPPfUU2rdvjxEjRqBHjx7YsmWLZHMBEZkKsxowSRbBlAdqm0X3Ekz7HAKAxtHdoPUMRfIuMEO8584ye3t7rFu37r7iInpQmcM3WrI8pjreyyy6l24z1XMIALs1HeAtukGJmlcc0IpAAZrhtKYDgowYl0kMgiYi4zCXb7RkeUxxvFdl99Lo7/ZDgP4QXpPpXrqDKZ5DALhYVIaUsmFIarIQWlF/zcnK3vYZZa/giaIyo8ZlMvMAEVHjM4dJBolMial3L5kDd2c7rNP2wuiyeBRA/29LAZphdFk81ml7Gf2LF+8AEVkQc/tGS2QKTLl7yRxUfvFar+qFjNJA9LI6Bndcw0W4Yre2A0RYSfLFy2QmQjQlDZlIicgcmcM8QET04KicfgOo+YuXoe6mNeT6zQSoBkyAyBKY6uzAZker0Zs8FCY4eSiRKTDGFy8mQPeJCRAR1cuRtIoZbu+c5M3FE4iYZ1LLxxCZisb+4mV2S2EQEZmd2tY2UudXlBtobSOiB4kpPanGp8CIiBrqrmsboWJtI63GmFERUQMwASIiaqiGrG1ERCaJCRARUUOZ6NpGRFR/TICIiBrKSWHYekRkdEyAiIgayrtPxdNedc2p7dKyoh4RmSQmQEREDWUlq3jUHUD1JOj2dsRczgdEZMKYABER3Qv/pyoedXepMoGbiycfgScyA5wHiIjoXvk/BXQYxJmgicwQEyAiovthJQN8HpM6CiJqIHaBERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBZH0gQoMTERPXv2hLOzM9zd3REVFYWcnJwa64qiiIEDB0IQBKxevbrOdkVRxDvvvAMPDw/Y29sjNDQUJ06caIQjICIiInMkaQKUlZWF2NhY7Ny5ExkZGSgrK0NYWBiKioqq1V24cCEEQahXu/Pnz8fHH3+MxYsXY9euXXB0dER4eDhKSkoMfQhERERkhgRRFEWpg6h06dIluLu7IysrC3379tWVZ2dn48knn8TevXvh4eGB1NRUREVF1diGKIrw9PTEG2+8gYkTJwIAVCoVFAoFUlJS8Pzzz981DrVaDblcDpVKBRcXF4McGxERETWuhly/TWoMkEqlAgC4ubnpyoqLi/Hiiy/is88+g1KpvGsbeXl5KCgoQGhoqK5MLpejd+/e2LFjR43vKS0thVqt1nsRERHRg8tkEiCtVov4+HgEBwcjICBAV/7666+jT58+iIyMrFc7BQUFAACFQqFXrlAodPuqSkxMhFwu1728vLzu8SiIiIjIHFhLHUCl2NhYHD58GFu3btWVpaWlYdOmTThw4ECjfnZCQgImTJig21ar1UyCiIiIHmAmcQcoLi4Oa9euxebNm9GqVStd+aZNm5CbmwtXV1dYW1vD2roiX3vmmWcQEhJSY1uV3WSFhYV65YWFhbV2odna2sLFxUXvRURERA8uSRMgURQRFxeH1NRUbNq0CT4+Pnr7p0yZgoMHDyI7O1v3AoCPPvoIycnJNbbp4+MDpVKJjRs36srUajV27dqFoKCgRjsWIiIiMh+SdoHFxsZi+fLlWLNmDZydnXVjdORyOezt7aFUKmu8a9O6dWu9ZKlDhw5ITEzEkCFDIAgC4uPjMWvWLLRr1w4+Pj6YNm0aPD09a31yjIiIiCyLpAlQUlISAFTrzkpOTkZMTEy928nJydE9QQYAkyZNQlFREUaOHIlr167h0UcfRXp6Ouzs7AwRNhEREZk5k5oHyFRwHiAiIiLzY7bzABEREREZAxMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsjrXUARAREUGrAU5vB24UAk4KwLsPYCWTOip6gDEBIiIiaR1JA9InA+oL/5S5eAIR8wD/p6SLix5o7AIjIiLpHEkDVg7TT34AQJ1fUX4kTZq46IHHBIiIiKSh1VTc+YFYw87bZelTKurR3Wk1QN4W4NCPFf/yvNWJXWBERCSN09ur3/nRIwLq8xX1fB4zWlhmid2IDcY7QEREJI0bhYatZ6nYjXhPeAfIiDRaDfZf3I9LxZfQwqEFurt3h8zEnnIwixjLb2H/oW9xSX0GLVxao3vnVyCztpE6LD1mcR4Zo0EwxvvgpND9pwbAfjtbXJLJ0EKjQfeSUshqqCcVkz2Hd3Qj1nwOhYpuxA6DTOKpOlM6j0yAjGTD6Q2Yu3suCov/+SajcFBgSq8pCPUOlTCyf5hFjFsTMff4MhTKBF2Z4sBHmNL+JYQ+miBhZP8wi/PIGA2CMd4n7z6Aiyc2lF/D3GauKLT+55KkKC/HlMvXEGrdtKKehEz6HN7uRtzgYI+5zZrWcA6vItREuhFN7TwKoijWNPrMoqnVasjlcqhUKri4uNx3extOb8CEzAkQqwz0E1BxEf8w5EPJf4nMIsatiZhwcllFhMI/CZBw+0f4Q1/pkyCzOI+M0SAYo2GY+u+1yZ/DQz9iw29xmODevPZzePFvhA78FOj8b2lihPHOY0Ou3xwD1Mg0Wg3m7p5b7X86AF3ZvN3zoJFwtL5ZxFh+C3OPV/8jCQDi7e15x5dBU37L+MHdZhbnkTEaBGM0DI1Wg7n5Gyt+h2v6vRYEzMvfJFmMZnEOHVtgbrOmdf9tbNYUGscWxg/uNlM9j5ImQImJiejZsyecnZ3h7u6OqKgo5OTk6NUZNWoU2rZtC3t7e7Ro0QKRkZE4duxYne3GxMRAEAS9V0RERGMeSq32X9yvd7uvKhEiCooLsP/ifiNGpc8sYjz0bUW3V5Vf8EqiIKBAJmD/oW+NHNk/zOI8MkaDYIyGcfcYIWmMZnEO7Wwrur3q+ttobY39drZGjuwfpnoeJU2AsrKyEBsbi507dyIjIwNlZWUICwtDUVGRrk6PHj2QnJyMo0ePYt26dRBFEWFhYdBo6s4UIyIikJ+fr3t9//33jX04NbpUfMmg9RqDWcSoPmPQeo3BLM4jYzQIxmgYph6jqccHAJdKrhi0XmMw1fMo6SDo9PR0ve2UlBS4u7tj37596Nu3LwBg5MiRuv1t2rTBrFmz0LVrV5w6dQpt27attW1bW1solcp6xVFaWorS0lLdtlqtbshh1KmFQ/1uO9a3XmMwixhdWhu0XmMwi/PIGA2CMRqGqcdo6vE15LMZY3UmNQZIpVIBANzc3GrcX1RUhOTkZPj4+MDLy6vOtjIzM+Hu7g4/Pz+MHj0aly9frrVuYmIi5HK57nW3thuiu3t3KBwUuoFeVQkQoHRQort7d4N9ZkOZRYydX4FCI+oG9VUliCKUGhHdO79i5Mj+YRbnkTEaxJ0xCloR/qe1CP5TC//TWgha0eRirAljvDtTjw9gjPfDZBIgrVaL+Ph4BAcHIyAgQG/f559/DicnJzg5OeG3335DRkYGbGxqn/clIiIC33zzDTZu3Ih58+YhKysLAwcOrLXbLCEhASqVSvc6e/aswY5LZiXDlF5TAKDa//zK7cm9Jks6n4RZxGhtgyntX6qIqUoSVLk9uf1Lks4HZBbnkTEaRGWMvXK0+OxzDaYv12J8mhbTl1ds98rRmkyMgOmfxztjqmQKMZp6fABjvB8m8xj86NGj8dtvv2Hr1q1o1aqV3j6VSoWLFy8iPz8fCxYswPnz57Ft2zbY2dnVq+2//voLbdu2xYYNGzBgwIC71jf0Y/BAzfMfKB2UmNxrsuSPoVYyixhrmAdIqREx2cTnATK588gY75t6/XqcGzceAPT+pFf+QW318SK4hIUZPa6qTP08AqYfo6nHBzDGSg25fptEAhQXF4c1a9bg999/h4+PT511b926haZNm2LJkiV44YUX6v0ZLVq0wKxZszBq1Ki71m2MBAgwrRkwa2MWMXImaINgjPdO1GhwckAoygsKaq4gCLBWKOC7cQMEmfTxmup5vJOpx2jq8QGMEWjY9VvSQdCiKGLs2LFITU1FZmbmXZOfyveIoqg3aPluzp07h8uXL8PDw+N+wr1vViLgf1pE+SUR1i1EWEk3Jq1WMisZeip7Sh1GnWTWNujZbYTUYdTJLM4jY7xnxXv31Z78AIAoorygAMV798Gxdy/jBVYLUz2PdzL1GE09PoAxNpSkCVBsbCyWL1+ONWvWwNnZGQW3/6DI5XLY29vjr7/+wooVKxAWFoYWLVrg3LlzmDt3Luzt7fHEE0/o2unQoQMSExMxZMgQ3LhxAzNmzMAzzzwDpVKJ3NxcTJo0Cb6+vggPD5fqUKFevx6FcxL1/mhaK5VQTE0widvkRFR/5Zfq97hufeuRGdBqKpaTuFFYsTaZdx+TWFuL7p2kCVBSUhIAICQkRK88OTkZMTExsLOzw5YtW7Bw4UJcvXoVCoUCffv2xfbt2+Hu7q6rn5OTo3uCTCaT4eDBg1i6dCmuXbsGT09PhIWFYebMmbC1lWYiKPX69Tg/Ph6o0ttYXlhYUb5oIZMgIjNi3aJ+t2/rW49M3JG0igVH71xt3cUTiJgH+D8lXVx0X0xiDJCpMeQYIHMbK0BEd6f7vS4srPbFBgB/rx8kR9KAlcOAass43B76PvQbJkEmhGuBmZCGjBUgIvMgyGRQTL391GHVJQhubyumJjD5MXdaTcWdnxrWsNKVpU+pqEdmhwlQI+NYAaIHk0tYGFouWghrhUKv3FqhQEt2az8YTm/X7/aqRgTU5yvqkdmRdAyQJeBYAaIHl0tYGJwHDKi403vpEqxbtIBDYA/e+XlQ3Kh9Ac97qkcmhQlQI3MI7AFrpfKuYwUcAnsYPzgium+CTGYSj7pTI3BS3L1OQ+qRSWEXWCPjWAEiIjPl3afiaa9a1rACBMClZUU9MjtMgIyAYwWIiMyQlaziUXcA1ZOg29sRczkfkJniY/A1aKylMESNhmMFiIjMTY3zALWsSH74CLxJMbu1wExNYyVARERkpjgTtFkwm7XAiIiIzIKVDPB5TOooyIA4BoiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLc18TIZaUlGDFihUoKirC448/jnbt2hkqLiIiIqJGU+8EaMKECSgrK8Mnn3wCALh16xaCgoLw559/wsHBAZMmTUJGRgaCgoIaLVgiIiIiQ6h3F9j69evx+OOP67aXLVuG06dP48SJE7h69SqeffZZzJo1q1GCJCIiIjKkeidAZ86cgb+/v257/fr1+Pe//w1vb28IgoDx48fjwIEDjRIkERERkSHVOwGysrLCnQvH79y5E4888ohu29XVFVevXjVsdERERESNoN4JUMeOHfHzzz8DAP7880+cOXMG/fv31+0/ffo0FAqF4SMkIiIiMrB6D4KeNGkSnn/+efzyyy/4888/8cQTT8DHx0e3/9dff0WvXr0aJUgiIiIiQ6r3HaAhQ4bg119/RZcuXfD6669jxYoVevsdHBwwZswYgwdIREREZGiCeOfAnjq89957mDhxIhwcHBo7Jsmp1WrI5XKoVCq4uLhIHQ4RERHVQ0Ou3/W+AzRjxgzcuHHjvoMjIiIiklq9E6B63igiIiIiMnkNWgtMEITGioOIiIjIaBq0Flj79u3vmgRduXLlvgIiIiIiamwNSoBmzJgBuVzeWLEQERERGUWDEqDnn38e7u7ujRULERERkVHUewwQx/8QERHRg4JPgREREZHFqXcCpNVqDd79lZiYiJ49e8LZ2Rnu7u6IiopCTk6OXp1Ro0ahbdu2sLe3R4sWLRAZGYljx47V2a4oinjnnXfg4eEBe3t7hIaG4sSJEwaNnYiIiMxXgx6DN7SsrCzExsZi586dyMjIQFlZGcLCwlBUVKSr06NHDyQnJ+Po0aNYt24dRFFEWFgYNBpNre3Onz8fH3/8MRYvXoxdu3bB0dER4eHhKCkpMcZhERERkYmr91IYxnDp0iW4u7sjKysLffv2rbHOwYMH0bVrV5w8eRJt27attl8URXh6euKNN97AxIkTAQAqlQoKhQIpKSl4/vnn7xoHl8IwbaJGg+K9+1B+6RKsW7SAQ2APCDKZ1GEREZHEGnL9btBTYI1NpVIBANzc3GrcX1RUhOTkZPj4+MDLy6vGOnl5eSgoKEBoaKiuTC6Xo3fv3tixY0eNCVBpaSlKS0t122q1+n4OgxqRev16FM5JRHlBga7MWqmEYmoCXMLCJIyMyHTxSwNRdZJ2gd1Jq9UiPj4ewcHBCAgI0Nv3+eefw8nJCU5OTvjtt9+QkZEBGxubGtspuH1hVCgUeuUKhUK3r6rExETI5XLdq7bkiqSlXr8e58fH6yU/AFBeWIjz4+OhXr9eosiITJd6/XqcHBCKM9HRuDBxIs5ER+PkgFD+vpDFM5kEKDY2FocPH8YPP/xQbd9LL72EAwcOICsrC+3bt8fQoUMNOp4nISEBKpVK9zp79qzB2ibDEDUaFM5JBGrqsb1dVjgnEWIdY8OILA2/NBDVziQSoLi4OKxduxabN29Gq1atqu2Xy+Vo164d+vbtix9//BHHjh1DampqjW0plUoAQGFhoV55YWGhbl9Vtra2cHFx0XuRaSneu6/aH3E9oojyggIU791nvKCITBi/NBDVTdIESBRFxMXFITU1FZs2bYKPj0+93iOKot6YnTv5+PhAqVRi48aNujK1Wo1du3YhKCjIYLGTcZVfumTQekQPOn5pIKqbpAlQbGwsvvvuOyxfvhzOzs4oKChAQUEBbt68CQD466+/kJiYiH379uHMmTPYvn07nn32Wdjb2+OJJ57QtdOhQwfdHSFBEBAfH49Zs2YhLS0Nhw4dwrBhw+Dp6YmoqCgpDpMMwLpFC4PWI3rQ8UsDUd0kfQosKSkJABASEqJXnpycjJiYGNjZ2WHLli1YuHAhrl69CoVCgb59+2L79u16kzLm5OToniADgEmTJqGoqAgjR47EtWvX8OijjyI9PR12dnZGOS4yPIfAHrBWKlFeWFjzLX1BgLVCAYfAHsYPjsgE8UsDUd1Mah4gU8F5gExT5YBOAPpJ0O116louWshH4YluEzUanBwQetcvDb4bN/CReHpgNOT6bRKDoInqwyUsDC0XLYR1lSkOrBUKJj9EVQgyGRRTE25vVFnM+va2YmoCkx+yWLwDVAPeATJtnNSNqP44eShZkoZcv5kA1YAJEBE9SPilgSyF2S6FQUREhifIZHDs3UvqMIhMCscAERERkcVhAkREREQWhwkQERERWRyOASJqDFoNcHo7cKMQcFIA3n0AKw46JSIyFUyASA+fFjGAI2lA+mRAfeGfMhdPIGIe4P+UdHEREZEOEyDS4XwhBnAkDVg5DECV2SXU+RXlQ79hEkREZAI4BogA/LPMRNXVo8sLC3F+fDzU69dLFJkZ0Woq7vxUTX6Af8rSp1TUIyIiSTEBIogaDQrnJNa8XtDtssI5iRA1vHDX6fR2/W6vakRAfb6iHhERSYoJEFWM+aly50ePKKK8oADFe/cZLyhzdKPQsPWIiKjRMAEilF+6ZNB6FstJcfc6DalHRESNhgkQwbpFC4PWs1jefSqe9oJQSwUBcGlZUY+IiCTFBIjgENgD1kolINRy4RYEWCuVcAjsYdzAzI2VrOJRdwDVk6Db2xFzOR8QEZEJYAJEEGQyKKYm3N6ocuG+va2YmsD5gOrD/6mKR91dPPTLXTz5CDwRkQkRRLGmR38sm1qthlwuh0qlgouLi9ThGA3nATIgzgRNRGR0Dbl+MwGqgaUmQABngiYTw0SSiBqgIddvzgRNegSZDI69e0kdBhGXFCGiRsUxQERkeiqXFKk6sWTlkiJH0qSJi4geGEyAiMi0cEkRIjICJkBEZFq4pAgRGQETICIyLVxShIiMgAkQEZkWLilCREbABIiITAuXFCEiI2ACRESmhUuKEJERMAEiItPDJUWIqJFxIkQiMk3+TwEdBnEmaCJqFEyAiMh0WckAn8ekjoKIHkDsAiMiIiKLwwSIiIiILA67wIgslRmstC5qNCjeuw/lly7BukULOAT2gCAzrRiJyDwxASKyRGaw0rp6/XoUzklEeUGBrsxaqYRiagJcwsIkjIwsEZPxB48gimJNKw5aNLVaDblcDpVKBRcXF6nDITKsypXWqy02enuOHRN4zFy9fj3Oj48Hqv55EipibLloIZMgMhom4+ajIddvSccAJSYmomfPnnB2doa7uzuioqKQk5Oj23/lyhWMHTsWfn5+sLe3R+vWrTFu3DioVKo6242JiYEgCHqviIiIxj4cItNnBiutixoNCuckVk9+AF1Z4ZxEiBquBk+NrzIZvzP5AYDywkKcHx8P9fr1EkVG90vSBCgrKwuxsbHYuXMnMjIyUFZWhrCwMBQVFQEALly4gAsXLmDBggU4fPgwUlJSkJ6ejhEjRty17YiICOTn5+te33//fWMfDpHpM4OV1ov37qt2sdEjiigvKEDx3n3GC4osEpPxB5ukY4DS09P1tlNSUuDu7o59+/ahb9++CAgIwE8//aTb37ZtW8yePRsvv/wyysvLYW1de/i2trZQKpX1iqO0tBSlpaW6bbVa3cAjITITZrDSevmlSwatR3SvGpKMO/buZbzAyCBM6jH4yq4tNze3Ouu4uLjUmfwAQGZmJtzd3eHn54fRo0fj8uXLtdZNTEyEXC7Xvby8vO7tAIhMnRmstG7dooVB6xHdKybjDzaTSYC0Wi3i4+MRHByMgICAGuv8/fffmDlzJkaOHFlnWxEREfjmm2+wceNGzJs3D1lZWRg4cCA0tdymTEhIgEql0r3Onj1738dDZJLMYKV1h8AesFYqdQOeqxEEWCuVcAjsYdzAyOIwGX+wmcxTYKNHj8Zvv/2GrVu3olWrVtX2q9VqPP7443Bzc0NaWhqaNGlS77b/+usvtG3bFhs2bMCAAQPuWp9PgdEDTfcUGKA/GNoEnwID9Mdf8CkwMiJRo8HJAaEoLyyseRyQIMBaoYDvxg18JN5EmM1TYJXi4uKwdu1abN68ucbk5/r164iIiICzszNSU1MblPwAwEMPPYTmzZvj5MmThgqZyHyZwUrrLmFhaLloIawV+l1x1goFkx8yGkEmg2Jqwu2NKnckb28rpiYw+TFTkg6CFkURY8eORWpqKjIzM+Hj41OtjlqtRnh4OGxtbZGWlgY7O7sGf865c+dw+fJleHh43L0ykSUwg5XWXcLC4DxgACefI0m5hIUBixZWnwdIoeA8QGZO0i6wMWPGYPny5VizZg38/Px05XK5HPb29lCr1QgLC0NxcTFSU1Ph6Oioq9OiRQvIbv8h7NChAxITEzFkyBDcuHEDM2bMwDPPPAOlUonc3FxMmjQJ169fx6FDh2Bra3vXuNgFRkREd+JM0OahIddvSe8AJSUlAQBCQkL0ypOTkxETE4P9+/dj165dAABfX1+9Onl5eWjTpg0AICcnR/cEmUwmw8GDB7F06VJcu3YNnp6eCAsLw8yZM+uV/BARkfGZeoIhyGR81P0BYzKDoE0J7wARERkPl5ogQzG7QdBERGSZuNQESYUJEBERSYJLTZCUmAAREZEkuO4bSYkJEBERSYJLTZCUmAAREZEkuNQESYkJEBERSYLrvpGUmAAREZEkuNQESYkJEBERSYbrvpFUJJ0JmoiIiOu+kRSYABERkeS41AQZG7vAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjicCJHIQokaDWfeJSKLxQSIqBGYenKhXr8ehXMSUV5QoCuzViqhmJrAtZeIyCIwASIyMFNPLtTr1+P8+HhAFPXKywsLK8q5ACURWQCOASIyoMrk4s7kB/gnuVCvXy9RZBVEjQaFcxKrJT8VOyvKCuckQtRojBwZEZFx8Q7QfdBoNCgrK5M6DDIRokaDC0uWQKtU1lxBEHBhyRI0CQ6WrDus+I+DuCUIgIdHrXVuAbi6dx8cunapV5tNmjSBzIS694iI6kMQxZq+Clo2tVoNuVwOlUoFFxeXavtFUURBQQGuXbtm/ODIZGlLS6G5fPmu9WTNmsHK1tYIEVWnvXkTmqtX71pP1rQprOzt692uq6srlEolBEG4n/CIiO7L3a7fd+IdoHtQmfy4u7vDwcGBf/QJAFCuVqPc6u69ytZKJazv8ovZWDRFxSizvvuvfZOWrSBzdLhrPVEUUVxcjIsXLwIAPOq4s0REZEqYADWQRqPRJT/NmjWTOhwyIZpyDW7VIwGycXCEzM7OCBFVJ9raovTvSxDr6LoVmjSBrVvTeif29rfvFF28eBHu7u7sDiMis8BB0A1UOebHweHu347Jslg5OkBo0qTOOkKTJrCqx52VxiIIAprUNkbptib30JVV+fvAMXFEZC6YAN0jdntRVY2VXBiaTC6HjZdXtWRNaNIENl5ekMnlDW5T6mMiImoodoERGZBMLocNgLKCAr1uJqFJEzRRKu8puWgMMrkcVi4u0BYVQywvg2BdcWeKiQwRWQomQGRwMTExuHbtGlavXg0ACAkJwcMPP4yFCxfec5uGaMNYzCW5EAQBMidHqcMgIpIEu8AsSExMDARBgCAIsLGxga+vL9577z2Ul5c36ueuWrUKM2fOrFfdzMxMCIJQbYqBhrTRWKZPn46HH3641v15eXl48cUX4enpCXt7e3h38MMz0dE4ce4sli5dqjv3tb1OnTqF6dOnQxAEREREVGv//fffhyAICAkJabyDJCKyELwDJBGNVsTuvCu4eL0E7s526OXjBplV498hiIiIQHJyMkpLS/Hrr78iNjYWTZo0QUJCgl69W7duwcbGxiCf6ebmZhJtNKaysjI8/vjj8PPzw6pVq+Dh4YFz587ht99+w7Vr1/Dcc8/pJTVPP/00AgIC8N577+nKWrRoAaDiUfLNmzfj3LlzaNWqlW7/119/jdatWxvvoIiIHmC8AySB9MP5eHTeJrzw1U6M/yEbL3y1E4/O24T0w/mN/tm2trZQKpXw9vbG6NGjERoairS0NMTExCAqKgqzZ8+Gp6cn/Pz8AABnz57F0KFD4erqCjc3N0RGRuLUqVO69jQaDSZMmABXV1c0a9YMkyZNQtW5NUNCQhAfH6/bLi0txeTJk+Hl5QVbW1v4+vriv//9L06dOoX+/fsDAJo2rXgMOyYmpsY2rl69imHDhqFp06ZwcHDAwIEDceLECd3+lJQUuLq6Yt26dejYsSOcnJwQERGB/Px/znFmZiZ69eoFR0dHuLq6Ijg4GKdPn76n8/rnn38iNzcXn3/+OR555BF4e3sjODgYs2bNwiOPPAJ7e3solUrdy8bGBg4ODnpllY+Pu7u7IywsDEuXLtW1v337dvz9998YNGjQPcVHRGQKRI0GRbt2Q7X2FxTt2i3psjtMgIws/XA+Rn+3H/mqEr3yAlUJRn+33yhJ0J3s7e1x69YtAMDGjRuRk5ODjIwMrF27FmVlZQgPD4ezszO2bNmCbdu26RKJyvd88MEHSElJwddff42tW7fiypUrSE1NrfMzhw0bhu+//x4ff/wxjh49ii+++AJOTk7w8vLCTz/9BADIyclBfn4+Fi1aVGMbMTEx2Lt3L9LS0rBjxw6IoognnnhC7zHs4uJiLFiwAN9++y1+//13nDlzBhMnTgQAlJeXIyoqCv369cPBgwexY8cOjBw58p7H6bRo0QJWVlb48ccfoTHAL/Tw4cORkpKi2/7666/x0ksvGeyuHBGRsanXr8fJAaE4Ex2NCxMn4kx0NE4OCJVsjURJE6DExET07NkTzs7OcHd3R1RUFHJycnT7r1y5grFjx8LPzw/29vZo3bo1xo0bB5VKVWe7oijinXfegYeHB+zt7REaGqp3d0AqGq2IGT8fQU1rj1SWzfj5CDTaxl+dRBRFbNiwAevWrcO//vUvAICjoyOWLFmCTp06oVOnTlixYgW0Wi2WLFmCzp07o2PHjkhOTsaZM2eQmZkJAFi4cCESEhLw9NNPo2PHjli8eDHkdTzpdPz4caxcuRJff/01hgwZgoceeggDBgzAc889B5lMpuvqcnd3h1KprLGtEydOIC0tDUuWLMFjjz2Grl27YtmyZTh//rxu4DVQ0S21ePFiBAYGonv37oiLi8PGjRsBVEyXrlKp8OSTT6Jt27bo2LEjoqOj77mLqWXLlvj444/xzjvvoGnTpvjXv/6FmTNn4q+//rqn9p588kmo1Wr8/vvvKCoqwsqVKzF8+PB7aouISGqmuFC0pAlQVlYWYmNjsXPnTmRkZKCsrAxhYWEoKioCAFy4cAEXLlzAggULcPjwYaSkpCA9PR0jRoyos9358+fj448/xuLFi7Fr1y44OjoiPDwcJSUldb6vse3Ou1Ltzs+dRAD5qhLszrvSaDGsXbsWTk5OsLOzw8CBA/Hcc89h+vTpAIDOnTvr3WH4448/cPLkSTg7O8PJyQlOTk5wc3NDSUkJcnNzoVKpkJ+fj969e+veY21tjcDAwFo/Pzs7GzKZDP369bvnYzh69Cisra31PrdZs2bw8/PD0aNHdWUODg5o27atbtvDw0O3ZIObmxtiYmIQHh6OwYMHY9GiRbrusTNnzuiO18nJCXPmzKlXXLGxsSgoKMCyZcsQFBSE//3vf+jUqRMyMjIafIxNmjTByy+/jOTkZPzvf/9D+/bt0aVL/RYnJSIyJaJGg8I5iUBNS4/eLiuck2j07jBJB0Gnp6frbaekpMDd3R379u1D3759ERAQoOsSAYC2bdti9uzZePnll1FeXg7rGtY0EkURCxcuxNtvv43IyEgAwDfffAOFQoHVq1fj+eefb9yDqsPF6/VLwOpb7170798fSUlJsLGxgaenp945dHTUfyT6xo0b6NGjB5YtW1atncoBuw1l34AFNu9Xk6oT/QmC3vik5ORkjBs3Dunp6VixYgXefvttZGRkIDAwENnZ2bp6DRmA7ezsjMGDB2Pw4MGYNWsWwsPDMWvWLDz++OMNjn/48OHo3bs3Dh8+zLs/RGS2ivfuq3bnR48oorygAMV798Gxdy+jxWVSY4Aqu7bquuBUrvBaU/IDVDyKXFBQgNDQUF2ZXC5H7969sWPHjhrfU1paCrVarfdqDO7O9Vv/qb717oWjoyN8fX3RunXrWs9hpe7du+PEiRNwd3eHr6+v3ksul0Mul8PDwwO7du3Svae8vBz79u2rtc3OnTtDq9UiKyurxv2Vd6DqGkfTsWNHlJeX633u5cuXkZOTA39//zqPqapu3bohISEB27dvR0BAAJYvXw5ra2u9Y73XJ9AEQUCHDh10dzQbqrIr8vDhw3jxxRfvqQ0iAIBWA+RtAQ79WPGvVrqBp2R5yi9dMmg9QzGZBEir1SI+Ph7BwcEICAiosc7ff/+NmTNnYuTIkbW2U3A7y1QoFHrlCoVCt6+qxMRE3QVdLpfDy8vrHo+ibr183OAht0Ntw2wFAB7yikfiTcFLL72E5s2bIzIyElu2bEFeXh4yMzMxbtw4nDt3DgAwfvx4zJ07F6tXr8axY8cwZsyYanP43KlNmzaIjo7G8OHDsXr1al2bK1euBAB4e3tDEASsXbsWly5dwo0bN6q10a5dO0RGRuK1117D1q1b8ccff+Dll19Gy5YtdXf97iYvLw8JCQnYsWMHTp8+jfXr1+PEiRPo2LFjne+7efMmsrOz9V65ubnIzs5GZGQkfvzxRxw5cgQnT57Ef//7X3z99df1jqkmmzZtQn5+PlxdXe+5DbJwR9KAhQHA0ieBn0ZU/LswoKKcyAis69ljUN96hmIyCVBsbCwOHz6MH374ocb9arUagwYNgr+/v27MiqEkJCRApVLpXmfPnjVo+5VkVgLeHVxxh6JqElS5/e5gf6PMB1QfDg4O+P3339G6dWvdIOcRI0agpKQELi4uAIA33ngDr7zyCqKjoxEUFARnZ2cMGTKkznaTkpLw73//G2PGjEGHDh3w2muv6e6StGzZEjNmzMCUKVOgUCgQFxdXYxvJycno0aMHnnzySQQFBUEURfz666/Vur3qOrZjx47hmWeeQfv27TFy5EjExsZi1KhRdb7v+PHj6Natm95r1KhRaNWqFdq0aYMZM2agd+/e6N69OxYtWoQZM2bgrbfeqldMNal8RJ/onhxJA1YOA9QX9MvV+RXlTILICBwCe8BaqQRqe8pWEGCtVMIhsIdR4xLEqpO2SCAuLg5r1qzB77//Dh8fn2r7r1+/jvDwcDg4OGDt2rWws6u9i+ivv/5C27ZtceDAAb1Ze/v164eHH3641seq76RWqyGXy3XdbXcqKSlBXl4efHx86oyjLumH8zHj5yN6A6I95HZ4d7A/IgI87qlNIikZ4veCDEyrqbjTUzX50REAF08g/hBgJTNqaGR5Kp8CA6A/GPp2UtRy0UK4hIXd/+fUcf2uStJB0KIoYuzYsUhNTUVmZmaNyY9arUZ4eDhsbW2RlpZ21z+uPj4+UCqV2Lhxoy4BUqvV2LVrF0aPHt0Yh9FgEQEeeNxfKclM0ERkIU5vryP5AQARUJ+vqOfzmNHCIsvkEhYGLFqIwjmJegOirRUKKKYmGCT5aShJE6DY2FgsX74ca9asgbOzs26Mjlwuh729PdRqNcLCwlBcXIzvvvtOb4ByixYtdDPndujQAYmJiRgyZAgEQUB8fDxmzZqFdu3awcfHB9OmTYOnpyeioqKkOtRqZFYCgto2kzoMInpQ3Sg0bD2i++QSFgbnAQMqngq7dAnWLVrAIbAHBJk0dyAlTYCSkpIAoNrijsnJyYiJicH+/ft1T/r4+vrq1cnLy0ObNm0AVMwafOfkiJMmTUJRURFGjhyJa9eu4dFHH0V6ejpvzROR5XBS3L1OQ+oRGYAgkxn1Ufe6mMQYIFPT2GOAiB40/L0wQboxQPlAjfPPcwwQPXgaMgbIZJ4CIyIiA7KSARHzbm/U8txpxFwmP2SxmAARET2o/J8Chn4DuFR5utTFs6Lc/ylp4iIyAZKOASIiokbm/xTQYVDF0143CivG/Hj34Z0fsnhMgIiIHnRWMj7qTlQFu8CIiIjI4jABIpM3ffp0vVm9pRISEoL4+HipwyAiIgNgAmRBCgoKMH78ePj6+sLOzg4KhQLBwcFISkpCcXGx1OHds8zMTAiCUOcirFK2R0REpodjgKSi1Rh1UOJff/2F4OBguLq6Ys6cOejcuTNsbW1x6NAhfPnll2jZsiWeeqrmJ0LKysrqvcioKbt16xZsbGykDoOIiEwA7wBJ4UhaxQRlS58EfhpR8e/CgEZdmXnMmDGwtrbG3r17MXToUHTs2BEPPfQQIiMj8csvv2Dw4MG6uoIgICkpCU899RQcHR0xe/ZsABUzd7dt2xY2Njbw8/PDt99+q3vPqVOnIAgCsrOzdWXXrl2DIAjIzMwE8M+dlY0bNyIwMBAODg7o06cPcnJy9GKdO3cuFAoFnJ2ddavP1+bUqVPo378/AKBp06YQBAExMTEAKrqs4uLiEB8fj+bNmyM8PPyucdbVHgBotVpMmjQJbm5uUCqVmD59en3/FxARkQlhAmRsR9KAlcOqL1Kozq8ob4Qk6PLly1i/fj1iY2Ph6OhYYx1B0J8obfr06RgyZAgOHTqE4cOHIzU1FePHj8cbb7yBw4cPY9SoUXj11VexefPmBsfz1ltv4YMPPsDevXthbW2N4cOH6/atXLkS06dPx5w5c7B37154eHjg888/r7UtLy8v/PTTTwAqlkTJz8/HokWLdPuXLl0KGxsbbNu2DYsXL75rbPVpz9HREbt27cL8+fPx3nvvISMjo8HngIiIpMUuMGPSaoD0yah5WnoRgACkT6mYs8OA3WEnT56EKIrw8/PTK2/evLnu7kpsbCzmzZun2/fiiy/i1Vdf1W2/8MILiImJwZgxYwAAEyZMwM6dO7FgwQLdHZP6mj17Nvr16wcAmDJlCgYNGoSSkhLY2dlh4cKFGDFiBEaMGAEAmDVrFjZs2FDrXSCZTAY3NzcAgLu7O1xdXfX2t2vXDvPnz9dtnzp1qs7Y7tZely5d8O677+ra/vTTT7Fx40Y8/vjj9Tp2IiIyDbwDZEynt1e/86NHBNTnK+oZwe7du5GdnY1OnTqhtLRUb19gYKDe9tGjRxEcHKxXFhwcjKNHjzb4c7t06aL7bw+PihlqL168qPuc3r1769UPCgpq8GdU6tGjxz2/tyZ3xg5UxF8ZOxERmQ/eATKmG4WGrVdPvr6+EASh2libhx56CABgb29f7T21dZXVxsqqIpe+c23dsrKyGuveOaC6sutNq9U26PPqq+pxNCTOmlQdDC4IQqPFTkREjYd3gIzJSWHYevXUrFkzPP744/j0009RVFR0T2107NgR27Zt0yvbtm0b/P39AQAtWrQAAOTn5+v23znQuCGfs2vXLr2ynTt31vmeyie7NBrNXduvT5wNaY+IiMwT7wAZk3efikUI1fmoeRyQULHfu4/BP/rzzz9HcHAwAgMDMX36dHTp0gVWVlbYs2cPjh07dteuojfffBNDhw5Ft27dEBoaip9//hmrVq3Chg0bAFTcRXrkkUcwd+5c+Pj44OLFi3j77bcbHOf48eMRExODwMBABAcHY9myZfjzzz91d6tq4u3tDUEQsHbtWjzxxBOwt7eHk5NTjXXrE2dD2iMiIvPEO0DGZCUDIioHGgtVdt7ejpjbKPMBtW3bFgcOHEBoaCgSEhLQtWtXBAYG4pNPPsHEiRMxc+bMOt8fFRWFRYsWYcGCBejUqRO++OILJCcnIyQkRFfn66+/Rnl5OXr06IH4+HjMmjWrwXE+99xzmDZtGiZNmoQePXrg9OnTGD16dJ3vadmyJWbMmIEpU6ZAoVAgLi6uzvp3i7Oh7RERkfkRxDsHQxAAQK1WQy6XQ6VSwcXFRW9fSUkJ8vLy4OPjAzs7u3v7gCNpFU+D3Tkg2qVlRfLjX/NkhESmzCC/F0RE96mu63dV7AKTgv9TFY+6G3EmaCIiIvoHEyCpWMkAn8ekjoKIiMgicQwQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEZqegoACPP/44HB0d4erqKnU4BpOZmQlBEHDt2jVJ45g+fToefvhhSWMgImpsTIAsRExMDARBwH/+859q+2JjYyEIAmJiYowf2D346KOPkJ+fj+zsbBw/flzqcIxKEASsXr3aZNsjIjIXTIAkotFqsKdgD37961fsKdgDjVbT6J/p5eWFH374ATdv3tSVlZSUYPny5WjdunWjf76h5ObmokePHmjXrh3c3d0N1u6tW7cM1paUHpTjICJqTEyAJLDh9AaE/xSO4euGY/KWyRi+bjjCfwrHhtMbGvVzu3fvDi8vL6xatUpXtmrVKrRu3RrdunXTq6vVapGYmAgfHx/Y29uja9eu+PHHH3X7NRoNRowYodvv5+eHRYsW6bURExODqKgoLFiwAB4eHmjWrBliY2NRVlZWZ5xJSUlo27YtbGxs4Ofnh2+//Va3r02bNvjpp5/wzTff1HnXqry8HOPGjYOrqyuaNWuGyZMnIzo6GlFRUbo6ISEhiIuLQ3x8PJo3b47w8HAAQFZWFnr16gVbW1t4eHhgypQpKC8v14th4cKFep/38MMPY/r06bptQRCwZMkSDBkyBA4ODmjXrh3S0tL03vPrr7+iffv2sLe3R//+/XHq1Kk6z0ubNm0AAEOGDIEgCLrtyi6rJUuW6C1Gerc4a2uv0rfffos2bdpALpfj+eefx/Xr1+uMj4jInDABMrINpzdgQuYEFBYX6pVfLL6ICZkTGj0JGj58OJKTk3XbX3/9NV599dVq9RITE/HNN99g8eLF+PPPP/H666/j5ZdfRlZWFoCKBKlVq1b43//+hyNHjuCdd97B1KlTsXLlSr12Nm/ejNzcXGzevBlLly5FSkoKUlJSao0vNTUV48ePxxtvvIHDhw9j1KhRePXVV7F582YAwJ49exAREYGhQ4ciPz+/WtJVad68eVi2bBmSk5Oxbds2qNXqGrt6li5dChsbG2zbtg2LFy/G+fPn8cQTT6Bnz574448/kJSUhP/+97+YNWvW3U5tNTNmzMDQoUNx8OBBPPHEE3jppZdw5coVAMDZs2fx9NNPY/DgwcjOzsb//d//YcqUKXW2t2fPHgBAcnIy8vPzddsAcPLkSfz0009YtWoVsrOz6xVfXe3l5uZi9erVWLt2LdauXYusrCzMnTu3IYdPRGTaRKpGpVKJAESVSlVt382bN8UjR46IN2/ebHC75ZpyccDKAWJASkCNr84pncXQlaFiuabcEIehJzo6WoyMjBQvXrwo2traiqdOnRJPnTol2tnZiZcuXRIjIyPF6OhoURRFsaSkRHRwcBC3b9+u18aIESPEF154odbPiI2NFZ955hm9z/T29hbLy/85nmeffVZ87rnnam2jT58+4muvvaZX9uyzz4pPPPGEbvvOWGujUCjE999/X7ddXl4utm7dWoyMjNSV9evXT+zWrZve+6ZOnSr6+fmJWq1WV/bZZ5+JTk5OokajEUVRFL29vcWPPvpI731du3YV3333Xd02APHtt9/Wbd+4cUMEIP7222+iKIpiQkKC6O/vr9fG5MmTRQDi1atXaz0uAGJqaqpe2bvvvis2adJEvHjxol55feOsqT0HBwdRrVbryt58802xd+/etcZ1P78XRESGUtf1uyquBm9E+y/ur3bn504iRBQUF2D/xf3oqezZKDG0aNECgwYNQkpKCkRRxKBBg9C8eXO9OidPnkRxcTEef/xxvfJbt27pdZV99tln+Prrr3HmzBncvHkTt27dqvb0UKdOnSCTyXTbHh4eOHToUK3xHT16FCNHjtQrCw4OrvVOT01UKhUKCwvRq1cvXZlMJkOPHj2g1Wr16vbo0aPa5wcFBUEQBL3Pv3HjBs6dO9egsVJdunTR/bejoyNcXFxw8eJF3ef07t1br35QUFC9267K29sbLVq0uOf3V9WmTRs4Ozvrtj08PHSxExE9CJgAGdGl4ksGrXevhg8fjri4OAAVSUxVN27cAAD88ssvaNmypd4+W1tbAMAPP/yAiRMn4oMPPkBQUBCcnZ3x/vvvY9euXXr1mzRporctCEK1JERKjo6ODX6PlZUVRFHUK6tpXJMxj72m46hvnDUx9f9vRET3i2OAjKiFQ/2+ode33r2KiIjArVu3UFZWphv4eyd/f3/Y2trizJkz8PX11Xt5eXkBALZt24Y+ffpgzJgx6NatG3x9fZGbm3vfsXXs2BHbtm3TK9u2bRv8/f3r3YZcLodCodAb06LRaLB///56ff6OHTv0Eodt27bB2dkZrVq1AlBxFy0/P1+3X61WIy8vr97xVX7O7t279cp27tx51/c1adIEGk39nhisT5wNaY+I6EEiaQKUmJiInj17wtnZGe7u7oiKikJOTo5enS+//BIhISFwcXGp9yRx06dPhyAIeq8OHTo00lHUX3f37lA4KCBAqHG/AAFKByW6u3dv1DhkMhmOHj2KI0eO6HVPVXJ2dsbEiRPx+uuvY+nSpcjNzcX+/fvxySefYOnSpQCAdu3aYe/evVi3bh2OHz+OadOm6SUc9+rNN99ESkoKkpKScOLECXz44YdYtWoVJk6c2KB2xo4di8TERKxZswY5OTkYP348rl69qte1VZMxY8bg7NmzGDt2LI4dO4Y1a9bg3XffxYQJE2BlVfHr8q9//QvffvsttmzZgkOHDiE6OrrG81iX//znPzhx4gTefPNN5OTkYPny5XUODq/Upk0bbNy4EQUFBbh69WqddesTZ0PaIyJ6kEiaAGVlZSE2NhY7d+5ERkYGysrKEBYWhqKiIl2d4uJiREREYOrUqQ1qu1OnTsjPz9e9tm7daujwG0xmJcOUXhVP+lRNgiq3J/eaDJlVwy6m98LFxQUuLi617p85cyamTZuGxMREdOzYEREREfjll1/g4+MDABg1ahSefvppPPfcc+jduzcuX76MMWPG3HdcUVFRWLRoERYsWIBOnTrhiy++QHJyMkJCQhrUzuTJk/HCCy9g2LBhCAoKgpOTE8LDw3WPiNemZcuW+PXXX7F792507doV//nPfzBixAi8/fbbujoJCQno168fnnzySQwaNAhRUVFo27Ztg+Jr3bo1fvrpJ6xevRpdu3bF4sWLMWfOnLu+74MPPkBGRga8vLyqTV1QVX3ibEh7REQPEkGsOkhAQpcuXYK7uzuysrLQt29fvX2ZmZno378/rl69etflD6ZPn47Vq1fX+3Hg0tJSlJaW6rbVajW8vLygUqmqJQklJSXIy8vTm2+loTac3oC5u+fqDYhWOigxuddkhHqH3lObVDetVouOHTti6NChmDlzptThPHAM8XtBRHS/1Go15HJ5jdfvqkxqELRKpQIAuLm53XdbJ06cgKenJ+zs7BAUFITExMRan+BJTEzEjBkz7vsz6yvUOxT9vfpj/8X9uFR8CS0cWqC7e3ej3PmxFKdPn8b69evRr18/lJaW4tNPP0VeXh5efPFFqUMjIiITYDKDoLVaLeLj4xEcHIyAgID7aqt3795ISUlBeno6kpKSkJeXh8cee6zWmWwTEhKgUql0r7Nnz97X59eHzEqGnsqeeOKhJ9BT2ZPJj4FZWVkhJSUFPXv2RHBwMA4dOoQNGzagY8eOUodGREQmwGTuAMXGxuLw4cMGGaszcOBA3X936dIFvXv3hre3N1auXIkRI0ZUq29ra6t7vJseDF5eXtWeJiMiIqpkEglQXFwc1q5di99//133qLEhubq6on379jh58qTB2yYiIiLzI2kXmCiKiIuLQ2pqKjZt2qR7wsjQbty4gdzcXHh4eDRK+0RERGReJE2AYmNj8d1332H58uVwdnZGQUEBCgoKcPPmTV2dgoICZGdn6+7eHDp0CNnZ2bpFJQFgwIAB+PTTT3XbEydORFZWFk6dOoXt27djyJAhkMlkeOGFF4x3cERERGSyJE2AkpKSoFKpEBISAg8PD91rxYoVujqLFy9Gt27d8NprrwEA+vbti27duiEtLU1XJzc3F3///bdu+9y5c3jhhRfg5+eHoUOHolmzZti5c6dB10oiIiIi82VS8wCZirrmEeB8J0TV8feCiExBQ+YBMpnH4ImIiIiMhQkQGVxMTAyioqJ02yEhIYiPj7+vNg3RhrEIgoDVq1fXuv/UqVMQBKHeM5UTEZHhMQGyIDExMbrFYW1sbODr64v33nsP5eXljfq5q1atqvfyE5mZmTUuetuQNhrLnYvsymQyeHl5YeTIkXoD8gEgPz9fby4qIiIyPSYxD5AlEjUaFO/dh/JLl2DdogUcAntAaOCK4vciIiICycnJKC0txa+//orY2Fg0adIECQkJevVu3boFGxsbg3ymIZY2MUQbhtCpUyds2LABGo0GR48exfDhw6FSqfQG7iuVSgkjJCKi+uAdIAmo16/HyQGhOBMdjQsTJ+JMdDRODgiFev36Rv9sW1tbKJVKeHt7Y/To0QgNDUVaWpqu22r27Nnw9PSEn58fAODs2bMYOnQoXF1d4ebmhsjISJw6dUrXnkajwYQJE+Dq6opmzZph0qRJqDquvmr3VWlpKSZPngwvLy/Y2trC19cX//3vf3Hq1Cn0798fANC0aVMIgoCYmJga27h69SqGDRuGpk2bwsHBAQMHDsSJEyd0+1NSUuDq6op169ahY8eOcHJyQkREBPLz83V1MjMz0atXLzg6OsLV1RXBwcE4ffp0nefP2toaSqUSLVu2RGhoKJ599llkZGTo1anaBbZ7925069YNdnZ2CAwMxIEDB6q1m5aWhnbt2sHOzg79+/fH0qVLq90J27p1Kx577DHY29vDy8sL48aNQ1FRUZ3xEhFRzZgAGZl6/XqcHx+P8oICvfLywkKcHx9vlCToTvb29rh16xYAYOPGjcjJyUFGRgbWrl2LsrIyhIeHw9nZGVu2bMG2bdt0iUTlez744AOkpKTg66+/xtatW3HlyhWkpqbW+ZnDhg3D999/j48//hhHjx7FF198AScnJ3h5eeGnn34CAOTk5CA/Px+LFi2qsY2YmBjs3bsXaWlp2LFjB0RRxBNPPIGysjJdneLiYixYsADffvstfv/9d5w5cwYTJ04EAJSXlyMqKgr9+vXDwYMHsWPHDowcORKCINT73J06dQrr1q2r807ZjRs38OSTT8Lf3x/79u3D9OnTdTFUysvLw7///W9ERUXhjz/+wKhRo/DWW2/p1cnNzUVERASeeeYZHDx4ECtWrMDWrVsRFxdX73iJ6MEmajQo2rUbqrW/oGjXbogajdQhmTaRqlGpVCIAUaVSVdt38+ZN8ciRI+LNmzcb3K62vFw83i9EPOLXoeZXh47i8X4hora83BCHUU10dLQYGRlZEYtWK2ZkZIi2trbixIkTxejoaFGhUIilpaW6+t9++63o5+cnarVaXVlpaalob28vrlu3ThRFUfTw8BDnz5+v219WVia2atVK9zmiKIr9+vUTx48fL4qiKObk5IgAxIyMjBpj3Lx5swhAvHr1ql75nW0cP35cBCBu27ZNt//vv/8W7e3txZUrV4qiKIrJyckiAPHkyZO6Op999pmoUChEURTFy5cviwDEzMzMepy5Cu+++65oZWUlOjo6inZ2diIAEYD44Ycf6tUDIKampoqiKIpffPGF2KxZM72fl6SkJBGAeODAAVEURXHy5MliQECAXhtvvfWW3nkYMWKEOHLkSL06W7ZsEa2srO7pZ9HQ7uf3gojun2rdumrXl+P9QkTV7b/VlqKu63dVvANkRMV791W786NHFFFeUIDivfsaLYa1a9fCyckJdnZ2GDhwIJ577jlMnz4dANC5c2e9uxl//PEHTp48CWdnZzg5OcHJyQlubm4oKSlBbm4uVCoV8vPz0bt3b917rK2tERgYWOvnZ2dnQyaToV+/fvd8DEePHoW1tbXe5zZr1gx+fn44evSorszBwQFt27bVbXt4eODixYsAKsYUxcTEIDw8HIMHD8aiRYt03WNnzpzRHa+TkxPmzJmja8PPzw/Z2dnYs2cPJk+ejPDwcIwdO7bOWLt06aI3N05QUJBenZycHPTs2VOvrFevXnrbf/zxB1JSUvTiCg8Ph1arRV5e3l3PGRE9uEytZ8FccBC0EZVfumTQeveif//+SEpKgo2NDTw9PWFt/c+PgKOjo17dGzduoEePHli2bFm1du51Vm17e/t7et+9aNKkid62IAh645OSk5Mxbtw4pKenY8WKFXj77beRkZGBwMBAvUfU7xyAXfn0HADMnTsXgwYNwowZMxr9CbUbN25g1KhRGDduXLV9rVu3btTPJiLTJWo0KJyTCNQ0p7EoAoKAwjmJcB4wwCgP2pgT3gEyIut6Jg31rXcvHB0d4evri9atW+slPzXp3r07Tpw4AXd3d/j6+uq95HI55HI5PDw8sGvXLt17ysvLsW9f7XewOnfuDK1Wi6ysrBr3V96B0tTRd92xY0eUl5frfe7ly5eRk5MDf3//Oo+pqm7duiEhIQHbt29HQEAAli9fDmtra71jresJtLfffhsLFizAhQsXao314MGDKCkp0ZXt3LlTr46fnx/27t2rV7Znzx697e7du+PIkSPV/j/4+voa7Gk9IjI/ptCzYK6YABmRQ2APWCuVQG0DbQUB1kolHAJ7GDewWrz00kto3rw5IiMjsWXLFuTl5SEzMxPjxo3DuXPnAADjx4/H3LlzsXr1ahw7dgxjxoypNofPndq0aYPo6GgMHz4cq1ev1rW5cuVKAIC3tzcEQcDatWtx6dIl3Lhxo1ob7dq1Q2RkJF577TVs3boVf/zxB15++WW0bNkSkZGR9Tq2vLw8JCQkYMeOHTh9+jTWr1+PEydOoGPHjg06R0FBQejSpYteN9mdXnzxRQiCgNdeew1HjhzBr7/+igULFujVGTVqFI4dO4bJkyfj+PHjWLlyJVJSUgBANyh78uTJ2L59O+Li4pCdnY0TJ05gzZo1HARNZOFMoWfBXDEBMiJBJoNi6u35dqomQbe3FVMTTOY2pYODA37//Xe0bt0aTz/9NDp27IgRI0agpKREt8bKG2+8gVdeeQXR0dEICgqCs7MzhgwZUme7SUlJ+Pe//40xY8agQ4cOeO2113SPc7ds2RIzZszAlClToFAoar3AJycno0ePHnjyyScRFBQEURTx66+/Vuv2quvYjh07hmeeeQbt27fHyJEjERsbi1GjRjXgDFV4/fXXsWTJEpw9e7baPicnJ/z88884dOgQunXrhrfeegvz5s3Tq+Pj44Mff/wRq1atQpcuXZCUlKR7CszW1hYA0KVLF2RlZeH48eN47LHH0K1bN7zzzjvw9PRscLxE9OAwhZ4Fc8XFUGvQ2IuhqtevR+GcRL3bltZKJRRTE+ASFnZfsdODYfbs2Vi8eHGNSZUp4mKoRNIQNRqcHBCK8sLCmscBCQKsFQr4btxgMl+uG1NDFkPlIGgJuISFwXnAAElmgibT9Pnnn6Nnz55o1qwZtm3bhvfff5/dW0R0V5U9C+fHx1f0JNyZBJlgz4IpYQIkEUEmg2PvXnevSBbhxIkTmDVrFq5cuYLWrVvjjTfeqLY8CRFRTVzCwoBFC6v3LCgU7FmoA7vAatDYXWBEDxr+XhBJT6o1Jk0Ju8CIiIgsDHsWGoZPgd0j3jgj+gd/H4jI3DABaqDKx6yLi4sljoTIdFT+PtR3GgIiIqmxC6yBZDIZXF1ddWtKOTg4NGgFcaIHiSiKKC4uxsWLF+Hq6gqZhY03ICLzxQToHiiVSgDQJUFEls7V1VX3e0FEZA6YAN0DQRDg4eEBd3d3lJWVSR0OkaSaNGnCOz9EZHaYAN0HmUzGP/xERERmiIOgiYiIyOIwASIiIiKLwwSIiIiILA7HANWgclI3tVotcSRERERUX5XX7fpMzsoEqAbXr18HAHh5eUkcCRERETXU9evXIZfL66zDxVBroNVqceHCBTg7Oxt8kkO1Wg0vLy+cPXv2rgu1Ue14Hg2D59EweB4Ng+fx/ln6ORRFEdevX4enpyesrOoe5cM7QDWwsrJCq1atGvUzXFxcLPKH09B4Hg2D59EweB4Ng+fx/lnyObzbnZ9KHARNREREFocJEBEREVkcJkBGZmtri3fffRe2trZSh2LWeB4Ng+fRMHgeDYPn8f7xHNYfB0ETERGRxeEdICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgI/rss8/Qpk0b2NnZoXfv3ti9e7fUIZmVxMRE9OzZE87OznB3d0dUVBRycnKkDsvszZ07F4IgID4+XupQzM758+fx8ssvo1mzZrC3t0fnzp2xd+9eqcMyKxqNBtOmTYOPjw/s7e3Rtm1bzJw5s15rOVmy33//HYMHD4anpycEQcDq1av19ouiiHfeeQceHh6wt7dHaGgoTpw4IU2wJooJkJGsWLECEyZMwLvvvov9+/eja9euCA8Px8WLF6UOzWxkZWUhNjYWO3fuREZGBsrKyhAWFoaioiKpQzNbe/bswRdffIEuXbpIHYrZuXr1KoKDg9GkSRP89ttvOHLkCD744AM0bdpU6tDMyrx585CUlIRPP/0UR48exbx58zB//nx88sknUodm0oqKitC1a1d89tlnNe6fP38+Pv74YyxevBi7du2Co6MjwsPDUVJSYuRITZhIRtGrVy8xNjZWt63RaERPT08xMTFRwqjM28WLF0UAYlZWltShmKXr16+L7dq1EzMyMsR+/fqJ48ePlzokszJ58mTx0UcflToMszdo0CBx+PDhemVPP/20+NJLL0kUkfkBIKampuq2tVqtqFQqxffff19Xdu3aNdHW1lb8/vvvJYjQNPEOkBHcunUL+/btQ2hoqK7MysoKoaGh2LFjh4SRmTeVSgUAcHNzkzgS8xQbG4tBgwbp/VxS/aWlpSEwMBDPPvss3N3d0a1bN3z11VdSh2V2+vTpg40bN+L48eMAgD/++ANbt27FwIEDJY7MfOXl5aGgoEDvd1sul6N379685tyBi6Eawd9//w2NRgOFQqFXrlAocOzYMYmiMm9arRbx8fEIDg5GQECA1OGYnR9++AH79+/Hnj17pA7FbP31119ISkrChAkTMHXqVOzZswfjxo2DjY0NoqOjpQ7PbEyZMgVqtRodOnSATCaDRqPB7Nmz8dJLL0kdmtkqKCgAgBqvOZX7iAkQmanY2FgcPnwYW7dulToUs3P27FmMHz8eGRkZsLOzkzocs6XVahEYGIg5c+YAALp164bDhw9j8eLFTIAaYOXKlVi2bBmWL1+OTp06ITs7G/Hx8fD09OR5pEbFLjAjaN68OWQyGQoLC/XKCwsLoVQqJYrKfMXFxWHt2rXYvHkzWrVqJXU4Zmffvn24ePEiunfvDmtra1hbWyMrKwsff/wxrK2todFopA7RLHh4eMDf31+vrGPHjjhz5oxEEZmnN998E1OmTMHzzz+Pzp0745VXXsHrr7+OxMREqUMzW5XXFV5z6sYEyAhsbGzQo0cPbNy4UVem1WqxceNGBAUFSRiZeRFFEXFxcUhNTcWmTZvg4+MjdUhmacCAATh06BCys7N1r8DAQLz00kvIzs6GTCaTOkSzEBwcXG0ahuPHj8Pb21uiiMxTcXExrKz0L0UymQxarVaiiMyfj48PlEql3jVHrVZj165dvObcgV1gRjJhwgRER0cjMDAQvXr1wsKFC1FUVIRXX31V6tDMRmxsLJYvX441a9bA2dlZ15ctl8thb28vcXTmw9nZudq4KUdHRzRr1ozjqRrg9ddfR58+fTBnzhwMHToUu3fvxpdffokvv/xS6tDMyuDBgzF79my0bt0anTp1woEDB/Dhhx9i+PDhUodm0m7cuIGTJ0/qtvPy8pCdnQ03Nze0bt0a8fHxmDVrFtq1awcfHx9MmzYNnp6eiIqKki5oUyP1Y2iW5JNPPhFbt24t2tjYiL169RJ37twpdUhmBUCNr+TkZKlDM3t8DP7e/Pzzz2JAQIBoa2srdujQQfzyyy+lDsnsqNVqcfz48WLr1q1FOzs78aGHHhLfeustsbS0VOrQTNrmzZtr/HsYHR0timLFo/DTpk0TFQqFaGtrKw4YMEDMycmRNmgTI4gip9skIiIiy8IxQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBEZHFiYmK4JACRhWMCRESNIiYmBoIgVHtFRERIHRoWLVqElJQUqcMAAAiCgNWrV0sdBpHF4WKoRNRoIiIikJycrFdma2srUTSARqOBIAiQy+WSxUBEpoF3gIio0dja2kKpVOq9mjZtiszMTNjY2GDLli26uvPnz4e7uzsKCwsBACEhIYiLi0NcXBzkcjmaN2+OadOm4c7lC0tLSzFx4kS0bNkSjo6O6N27NzIzM3X7U1JS4OrqirS0NPj7+8PW1hZnzpyp1gUWEhKCsWPHIj4+Hk2bNoVCocBXX32FoqIivPrqq3B2doavry9+++03veM7fPgwBg4cCCcnJygUCrzyyiv4+++/9dodN24cJk2aBDc3NyiVSkyfPl23v02bNgCAIUOGQBAE3TYRNT4mQERkdCEhIYiPj8crr7wClUqFAwcOYNq0aViyZAkUCoWu3tKlS2FtbY3du3dj0aJF+PDDD7FkyRLd/ri4OOzYsQM//PADDh48iGeffRYRERE4ceKErk5xcTHmzZuHJUuW4M8//4S7u3uNMS1duhTNmzfH7t27MXbsWIwePRrPPvss+vTpg/379yMsLAyvvPIKiouLAQDXrl3Dv/71L3Tr1g179+5Feno6CgsLMXTo0GrtOjo6YteuXZg/fz7ee+89ZGRkAAD27NkDAEhOTkZ+fr5um4iMQOLV6InoARUdHS3KZDLR0dFR7zV79mxRFEWxtLRUfPjhh8WhQ4eK/v7+4muvvab3/n79+okdO3YUtVqtrmzy5Mlix44dRVEUxdOnT4symUw8f/683vsGDBggJiQkiKIoisnJySIAMTs7u1pskZGRep/16KOP6rbLy8tFR0dH8ZVXXtGV5efniwDEHTt2iKIoijNnzhTDwsL02j179qwIQMzJyamxXVEUxZ49e4qTJ0/WbQMQU1NTazmLRNRYOAaIiBpN//79kZSUpFfm5uYGALCxscGyZcvQpUsXeHt746OPPqr2/kceeQSCIOi2g4KC8MEHH0Cj0eDQoUPQaDRo37693ntKS0vRrFkz3baNjQ26dOly11jvrCOTydCsWTN07txZV1Z5Z+rixYsAgD/++AObN2+Gk5NTtbZyc3N1cVX9bA8PD10bRCQdJkBE1GgcHR3h6+tb6/7t27cDAK5cuYIrV67A0dGx3m3fuHEDMpkM+/btg0wm09t3Z1Jib2+vl0TVpkmTJnrbgiDolVW2odVqdZ8/ePBgzJs3r1pbHh4edbZb2QYRSYcJEBFJIjc3F6+//jq++uorrFixAtHR0diwYQOsrP4Zmrhr1y699+zcuRPt2rWDTCZDt27doNFocPHiRTz22GPGDh/du3fHTz/9hDZt2sDa+t7/lDZp0gQajcaAkRFRfXAQNBE1mtLSUhQUFOi9/v77b2g0Grz88ssIDw/Hq6++iuTkZBw8eBAffPCB3vvPnDmDCRMmICcnB99//z0++eQTjB8/HgDQvn17vPTSSxg2bBhWrVqFvLw87N69G4mJifjll18a/dhiY2Nx5coVvPDCC9izZw9yc3Oxbt06vPrqqw1KaNq0aYONGzeioKAAV69ebcSIiehOvANERI0mPT1drzsIAPz8/PDiiy/i9OnTWLt2LYCKLqMvv/wSL7zwAsLCwtC1a1cAwLBhw3Dz5k306tULMpkM48ePx8iRI3VtJScnY9asWXjjjTdw/vx5NG/eHI888giefPLJRj82T09PbNu2DZMnT0ZYWBhKS0vh7e2NiIgIvbtYd/PBBx9gwoQJ+Oqrr9CyZUucOnWq8YImIh1BFO+YVIOIyESEhITg4YcfxsKFC6UOhYgeQOwCIyIiIovDBIiIiIgsDrvAiIiIyOLwDhARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQW5/8BM56lVEAUR18AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7GElEQVR4nOzdd3hTZRsG8DtNd5ume09mKaVsEMoGmbLEgYKIIChDRUVxI4oiTvBTwAkioqiAFhSUvaFQRlsKBdrS0r2b7pGc74+0ldICTZv0JOn9u65cXJycnDx5KU2ePO/7vBJBEAQQERERERERkUEwETsAIiIiIiIiImo8JvJEREREREREBoSJPBEREREREZEBYSJPREREREREZECYyBMREREREREZECbyRERERERERAaEiTwRERERERGRAWEiT0RERERERGRATMUOQB+pVCqkpqZCJpNBIpGIHQ4REREREREZOUEQUFhYCE9PT5iY3LnmzkS+AampqfDx8RE7DCIiIiIiImplbty4AW9v7zuew0S+ATKZDIB6AO3s7ESOhoiIiIiIiIydQqGAj49PbT56J0zkG1Aznd7Ozo6JPBEREREREbWYxizvZrM7IiIiIiIiIgPCRJ6IiIiIiIjIgDCRJyIiIiIiIjIgTOSJiIiIiIiIDAgTeSIiIiIiIiIDwkSeiIiIiIiIyIAwkSciIiIiIiIyIEzkiYiIiIiIiAwIE3kiIiIiIiIiA8JEnoiIiIiIiMiAiJrIr1ixAr1794ZMJoOrqysmTZqE2NjYOucMGTIEEomkzu3pp5++43UFQcBbb70FDw8PWFlZYcSIEbh69aouXwoRERERERFRixA1kT906BAWLFiAkydPYs+ePaisrMTIkSNRXFxc57w5c+YgLS2t9vbhhx/e8boffvghPv/8c6xbtw6nTp2CjY0NRo0ahbKyMl2+HCIiIiIiIiKdMxXzyXfv3l3n7xs2bICrqysiIiIwaNCg2uPW1tZwd3dv1DUFQcCqVavwxhtvYOLEiQCAjRs3ws3NDX/88QemTp2qvRcgsvIqJSSQwNyUKySIiIiIiIhaC73KAAsKCgAAjo6OdY7/9NNPcHZ2RnBwMF599VWUlJTc9hoJCQlIT0/HiBEjao/J5XL07dsXJ06caPAx5eXlUCgUdW6GYN3BeIxedRgHLmeKHQoRERERERG1EFEr8jdTqVRYtGgRQkNDERwcXHv80UcfhZ+fHzw9PREZGYklS5YgNjYW27Zta/A66enpAAA3N7c6x93c3Grvu9WKFSuwbNkyLb2SllGpVOH3szdwI7cUT2w4jaEdXfDmfUFo42IrdmhERERERESkQxJBEASxgwCAefPmYdeuXTh69Ci8vb1ve97+/fsxfPhwXLt2DW3btq13//HjxxEaGorU1FR4eHjUHn/ooYcgkUiwZcuWeo8pLy9HeXl57d8VCgV8fHxQUFAAOzu7Zr4y3Sksq8T/9l/D+mMJqFQKMJNK8ERoAJ4Z1g4ySzOxwyMiIiIiIqJGUigUkMvljcpD9WJq/cKFC7Fz504cOHDgjkk8APTt2xcAcO3atQbvr1lLn5GRUed4RkbGbdfZW1hYwM7Ors7NEMgszfDa2E74Z9EgDO3ogkqlgK8Px2Poxwfx6+kbUKn04jsaIiIiIiIi0iJRE3lBELBw4UJs374d+/fvR0BAwF0fc/78eQCoU22/WUBAANzd3bFv377aYwqFAqdOnUK/fv20Ere+aeNii/VP9MH6mb3RxtkG2UUVeHlrJCatOYaIxDyxwyMiIiIiIiItEjWRX7BgATZt2oTNmzdDJpMhPT0d6enpKC0tBQDExcXh3XffRUREBK5fv46wsDDMmDEDgwYNQkhISO11AgMDsX37dgCARCLBokWLsHz5coSFhSEqKgozZsyAp6cnJk2aJMbLbDFDA12xe9EgvD62E2wtTBGZXIApa4/j+S3nkaHg1ntERERERETGQNQ18hKJpMHj69evx8yZM3Hjxg1Mnz4d0dHRKC4uho+PDyZPnow33nijzvR3iURS+xhAXelfunQpvv76a+Tn52PAgAFYs2YNOnTo0Ki4NFmboK+yCsvx0T+X8VtEMgQBsDaXYsHQdpg9IACWZlKxwyMiIiIiIqKbaJKH6k2zO31iDIl8jcjkfLwddhFnk/IBAL6O1nh9XCeMDHK77RcpRERERERE1LKYyDeTMSXygHqGwh/nU/DBrsvIUKi78w9s74y37gtCezeZyNERERERERERE/lmMrZEvkZxeRXWHLyGbw4noEKpgtREgsfu8cPzIzpAbs3t6oiIiIiIiMTCRL6ZjDWRr5GUU4Llf8Xg3xj1Fn0O1mZYPKojpvb2hdSE0+2JiIiIiIhaGhP5ZjL2RL7G0avZWLbjIq5mFgEAOnnY4e3xQejbxknkyIiIiIiIiFoXJvLN1FoSeQCoUqqw6WQiPt1zBYqyKgDAuBAPvDa2E7zsrUSOjoiIiIiIqHVgIt9MrSmRr5FbXIFP/o3Fz+FJUAmApZkJnh7cFk8Nagsrc25XR0REREREpEtM5JupNSbyNS6mFmDZjhiEJ+QCALzsrfDq2ECM6+LB7eqIiIiIiIh0hIl8M7XmRB5Qb1f3V1Qa3v/rElILygAAfQMcsXR8ZwR5tr7xICIiIiIi0jUm8s3U2hP5GqUVSnx1OA5rD8ahvEoFEwnwSB9fvDiyIxxtzMUOj4iIiIiIyGgwkW8mJvJ1peSX4v2/L+GvyDQAgJ2lKV64twOm3eMHM6mJyNEREREREREZPibyzcREvmEn43OwbEcMLqUpAADtXW2xdHxnDGjvLHJkREREREREho2JfDMxkb89pUrAz+FJ+OTfWOSVVAIARga54Y1xQfB1shY5OiIiIiIiIsPERL6ZmMjfXUFJJT7bewU/nkyEUiXA3NQEcwYGYP6QdrCxMBU7PCIiIiIiIoPCRL6ZmMg33pWMQryzIwZHr2UDANzsLPDKmEBM6ubF7eqIiIiIiIgaiYl8MzGR14wgCPg3JgPL/4rBjdxSAEAPX3u8PaEzQrztxQ2OiIiIiIjIADCRbyYm8k1TVqnEd0cT8OWBayipUEIiAR7s6Y2XRgXCRWYhdnhERERERER6i4l8MzGRb570gjKs3H0Z28+lAABkFqZ4dnh7PN7fH+am3K6OiIiIiIjoVkzkm4mJvHZEJOZh2Y6LiEwuAAC0cbbBm/cFYWigq8iRERERERER6Rcm8s3ERF57VCoBv0ck48N/LiO7qAIAMLSjC968LwhtXGxFjo6IiIiIiEg/MJFvJiby2qcoq8T/9l3F+mPXUaUSYCaV4InQADwzrB1klmZih0dERERERCQqJvLNxERed+KyirB8ZwwOxGYBAJxtzfHyqEA80NMbJibcro6IiIiIiFonJvLNxERe9w5czsS7O2MQn10MAAjxlmPp+M7o6ecgcmREREREREQtj4l8MzGRbxkVVSpsOJ6Az/ddQ1F5FQBgcncvvDImEG52liJHR0RERERE1HKYyDcTE/mWlVlYho//icVvEckQBMDaXIoFQ9th9oAAWJpJxQ6PiIiIiIhI55jINxMTeXFEJufj7bCLOJuUDwDwdbTG6+M6YWSQGyQSrp8nIiIiIiLjxUS+mZjIi0cQBPxxPgUf7LqMDEU5AGBge2e8dV8Q2rvJRI6OiIiIiIhIN5jINxMTefEVl1fhywPX8O2RBFQoVZCaSPDYPX54fkQHyK25XR0RERERERkXJvLNxERefyTmFOO9vy7h35gMAICDtRkWj+qIqb19IeV2dUREREREZCSYyDcTE3n9c/RqNpbtuIirmUUAgE4ednh7fBD6tnESOTIiIiIiIqLmYyLfTEzk9VOlUoVNJxPx2Z4rUJSpt6sbF+KB18Z2gpe9lcjRERERERERNR0T+WZiIq/fcorK8emeK/g5PAkqAbA0M8HTg9viqUFtYWXO7eqIiIiIiMjwMJFvJibyhuFiagGW7YhBeEIuAMDL3gqvje2EsV3cuV0dEREREREZFCbyzcRE3nAIgoC/otLw/l+XkFpQBgDoG+CIpeM7I8iT/3ZERERERGQYmMg3ExN5w1NaocS6Q3FYdygO5VUqmEiAR/r44sWRHeFoYy52eERERERERHfERL6ZmMgbrpT8Urz/9yX8FZkGALCzNMUL93bA9Hv8YCo1ETk6IiIiIiKihjGRbyYm8obvZHwOlu2IwaU0BQCgg5st3rqvMwa0dxY5MiIiIiIiovo0yUNFLVGuWLECvXv3hkwmg6urKyZNmoTY2NgGzxUEAWPGjIFEIsEff/xxx+vOnDkTEomkzm306NE6eAWkr+5p44SdzwzA8knBcLA2w5WMIkz/7hTmbjyDpJwSscMjIiIiIiJqMlET+UOHDmHBggU4efIk9uzZg8rKSowcORLFxcX1zl21apVGnchHjx6NtLS02tvPP/+szdDJAEhNJJh+jx8OLB6Cmf39ITWR4N+YDIxadRiRyflih0dERERERNQkpmI++e7du+v8fcOGDXB1dUVERAQGDRpUe/z8+fP45JNPcObMGXh4eDTq2hYWFnB3d9dqvGSY7K3N8faEzni0ry9e3RaFiMQ8zN0YgbCFoXC1sxQ7PCIiIiIiIo3oVfevgoICAICjo2PtsZKSEjz66KP48ssvNUrMDx48CFdXV3Ts2BHz5s1DTk7Obc8tLy+HQqGocyPj08FNhg1P9EY7V1ukK8rw1KYIlFUqxQ6LiIiIiIhII3qTyKtUKixatAihoaEIDg6uPf7888+jf//+mDhxYqOvNXr0aGzcuBH79u3DypUrcejQIYwZMwZKZcNJ24oVKyCXy2tvPj4+zX49pJ9klmb4dkYvyK3McC4pH2/8EQ32eyQiIiIiIkOiN13r582bh127duHo0aPw9vYGAISFheHFF1/EuXPnYGtrCwCQSCTYvn07Jk2a1Ohrx8fHo23btti7dy+GDx9e7/7y8nKUl5fX/l2hUMDHx4dd643YkatZePz7cKgE4M37gjB7QIDYIRERERERUStmMF3rayxcuBA7d+7EgQMHapN4ANi/fz/i4uJgb28PU1NTmJqql/RPmTIFQ4YMafT127RpA2dnZ1y7dq3B+y0sLGBnZ1fnRsZtYHsXvD4uCADw3l8xOHwlS+SIiIiIiIiIGkfURF4QBCxcuBDbt2/H/v37ERBQtyr6yiuvIDIyEufPn6+9AcBnn32G9evXN/p5kpOTkZOT0+hGedQ6zAr1x4M9vaESgIWbzyIhu/5uCUREREREZNj+jkpDQWml2GFolaiJ/IIFC7Bp0yZs3rwZMpkM6enpSE9PR2lpKQDA3d0dwcHBdW4A4OvrWyfpDwwMxPbt2wEARUVFeOmll3Dy5Elcv34d+/btw8SJE9GuXTuMGjWq5V8k6S2JRILlk4PRw9ceirIqzNl4Booy4/oPTkRERETUmv15PgXzfzqLh786gUIj+qwvaiK/du1aFBQUYMiQIfDw8Ki9bdmyRaPrxMbG1na8l0qliIyMxIQJE9ChQwfMnj0bPXv2xJEjR2BhYaGLl0EGzMJUinWP9YS7nSWuZRZh0S/noVTpRdsIIiIiIiJqhgOxmXjx1wsAgHvaOMHWQtTd17VKb5rd6RNNmgyQcYhMzseD606gvEqFeUPaYsnoQLFDIiIiIiKiJopIzMW0b0+hrFKFid088dlD3WBiIhE7rDsyuGZ3RGIL8bbHhw+EAADWHozDn+dTRI6IiIiIiIia4nK6Ak+sP42yShWGdHTBxw921fskXlNM5ImqTezmhacHtwUAvPx7JCKT88UNiIiIiIiINJKUU4IZ34VDUVaFXn4OWDutJ8ykxpf2Gt8rImqGl0Z1xLBAV5RXqTB3YwQyC8vEDomIiIiIiBohs7AMj31/CpmF5Qh0l+G7x3vDylwqdlg6wUSe6CZSEwlWTe2Gti42SFeU4ekfI1BepRQ7LCIiIiIiuoOC0ko8/v1pJOaUwMfRChtn9YHc2kzssHSGiTzRLewszfDt471hZ2mKs0n5eGN7NNgTkoiIiIhIP5VWKPHkD6dxKU0BZ1sLbJrdF652lmKHpVNM5IkaEOBsgy8e7QETCfBbRDLWH7sudkhERERERHSLSqUKCzefxenreZBZmmLjrD7wc7IROyydYyJPdBuDOrjgtbGdAADv/X0JR69mixwRERERERHVUKkELPk9EvsuZ8LC1ATfz+yNIM/WsX04E3miO5g9IABTenhDqRKwYPNZXM8uFjskIiIiIqJWTxAELP/rEradS4HURIK103ugt7+j2GG1GCbyRHcgkUjw3uRgdPOxR0FpJZ7ceAaFZZVih0VERERE1KqtORiH748lAAA+fjAEwwLdRI6oZTGRJ7oLSzMpvn6sJ9zsLHAtswjPbzkPlYrN74iIDElZpRK7o9NQqVSJHQoRETXTT6cS8dE/sQCApeODMLm7t8gRtTwm8kSN4Gpnia8f6wVzUxPsvZSJT/bEih0SERFp4LVtUXh601msORAndihERNQMf0Wm4Y0/ogEAzw5rhydCA0SOSBxM5IkaqauPPT6cEgIA+PJAHMIupIocERERNUZcVhH+OJ8CANh2LplbihIRGagjV7OwaMs5CAIwra8vnr+3g9ghiYaJPJEGJnX3wlOD2wAAXv79AqJTCkSOiIiI7uaL/ddQsyIqMacEkcn83U1EZGjOJeXhqR8jUKkUMC7EA+9MDIZEIhE7LNEwkSfS0MujAjG0owvKKlWYs/EMsgrLxQ6JiIhuIz6rCH9WV+ODPNRbEu3gjCoiIoNyNaMQT2w4jZIKJQa2d8ZnD3WD1KT1JvEAE3kijUlNJFj9SHe0cbFBWkEZnt4UgfIqpdhhERFRA2qq8cMDXbFoRHsAwM7INDYtJSIyEMl5JXjsu3Dkl1Sim4891k3vCXNTprEcAaImsLM0w7czekFmaYqIxDy89cdFrrkkItIzCdnFtWvjnxvRHoM7ukBmaYp0RRnCr+eKHB0REd1NdlE5ZnwXjnRFGdq72mL9zN6wsTAVOyy9wESeqInauNjii0d7wEQCbDlzAz8cvy52SEREdJOaavywQFeEeNvDwlSK0Z3dAYANS4mI9FxhWSVmrg9HfHYxvOyt8OPsvnCwMRc7LL3BRJ6oGQZ3cMGrYzoBAN796xKOXcsWOSIiIgKA6zdX44e3rz0+oZsnAGBXFPeUJyLSV2WVSszZeAbRKQo42Zjjx9l94C63FDssvcJEnqiZnhwYgPu7e0GpEjD/p7NIzCkWOyQiolbviwPXoFQJGNLRBV197GuP92vjBGdbc+SVVOIov3wlItI7VUoVnv35HE7G58LWwhQ/zOqDNi62Yoeld5jIEzWTRCLB+/d3QVcfexSUVmLOxjMoKq8SOywiolYrMacY28/Vr8YDgKnUBGO7eAAAdpzn9HoiIn0iCAJe3RaFf2MyYG5qgm9m9EKwl1zssPQSE3kiLbA0k+Lrx3rCVWaBKxlFWPTLeXZEJiISyZfV1fjBHVzQ3deh3v0Tuqqn1/9zMR1lldx1hIhIX3yw6zJ+i0iGiQT44pHu6NfWSeyQ9BYTeSItcbOzxNczesHc1AR7L2Xg0z1XxA6JiKjVScopwdaz/3Wqb0gPXwd42VuhuEKJA5czWzI8IiK6jXWH4vDV4XgAwAdTQjCyujkpNYyJPJEWdfOxxwf3dwGgXp+5M5LTNomIWlJNNX5ge2f0aKAaDwAmJhLc11U9vZ7d64mIxPdLeBI+2HUZAPD62E54qJePyBHpPybyRFp2fw9vzB3UBgCw+LcLiE4pEDkiIqLW4UZuCbaeTQYALLpNNb7G+BD19Pp9lzNRWFap89iIiKhhu6PT8Nr2KADAvCFtMaf6czTdGRN5Ih1YMjoQgzu4oKxShbkbzyCrsFzskIiIjN6ag9dQVV2N7+nneMdzO3vaoY2LDSqqVPj3YkYLRUhERDc7HpeNZ38+D5UATO3tg5dHdRQ7JIPBRJ5IB6QmEnz+SHe0cbZBakEZ5m2KQEUV9ysmItKVG7kl+O2Muhp/a6f6hkgkktqmdzu4DIqIqMVFJudjzg9nUKFUYXRnd7w3uQskEonYYRkMJvJEOiK3MsM3j/eCzNIUZxLzsDQsGoLATvZERLqw5mAcqlQCBrRzRi//O1fja4yvTuSPXs1GbnGFLsMjIqKbxGUVYeb60yiuUCK0nRNWP9INUhMm8ZpgIk+kQ21dbPH5I90hkQA/h9/AjycTxQ6JiMjopOSX4veIGwBu36m+IW1dbNHZ0w5VKgF/R6XpKjwiIrpJan4pHvv2FHKLKxDiLcdXj/WChalU7LAMDhN5Ih0b2tEVr4wOBAAs2xGD49eyRY6IiMi4rDlwDZVKAf3bOqF3I6vxNWqn17N7PRGRzuUWV+Cx704htaAMbVxssOGJPrC1MBU7LIPERJ6oBcwd1AaTu3tBqRIwf/NZJOWUiB0SEZFRSMkvxa9nqqvxjVgbf6v7qhP58Ou5SC8o02psRET0n6LyKjyxPhxxWcXwkFvix9l94WhjLnZYBouJPFELkEgkWHF/F3T1liO/pBJzNp5BUXmV2GERERm8tQfV1fh+bZzQt42Txo/3srdCb38HCAKwk03viIh0orxKiad/jMCF5AI4WJvhx9l94GVvJXZYBo2JPFELsTST4qvHesFVZoHYjEI8v+U8VCo2vyMiaqrU/FL8erq6U70Ga+NvVdP0LozT64mItE6pEvD8lvM4ei0b1uZSbHiiD9q5ysQOy+AxkSdqQe5yS3z1WE+Ym5pgT0wGVu29InZIREQGa+3BOFQoVegb4Ih7mlCNrzG2iwekJhJEJhfgenaxFiMkImrdBEHAG39E4++odJhLTfD1Y73Q1cde7LCMAhN5ohbW3dcBKyZ3AQB8vv8a/opkp2QiIk2lFZRiy2nNO9U3xNnWAv3bqr8IYNM7IiLt+fjfWPwcngQTCbB6ajcMaO8sdkhGg4k8kQim9PTGkwMCAACLf7uAi6kFIkdERGRY1lVX4/sEOKJfM6rxNSbcNL1eELjsiYioub49Eo8vD8QBAN6b3AVjuniIHJFxYSJPJJJXxgRiUAcXlFYqMXdjBLKLysUOiYjIIKQXlOHn6mr8ouHtIZFImn3NkZ3dYS41wdXMIlxOL2z29YiIWrPfI5Kx/K9LAICXR3fEI318RY7I+IiayK9YsQK9e/eGTCaDq6srJk2ahNjY2AbPFQQBY8aMgUQiwR9//HHH6wqCgLfeegseHh6wsrLCiBEjcPXqVR28AqKmM5Wa4H9TuyPA2QYp+aWYv+ksKqpUYodFRKT31h2KQ0WVCr39HdCvbfOr8QAgtzLDkI4uADi9noioOfbEZGDJ1kgAwJyBAZg3uK3IERknURP5Q4cOYcGCBTh58iT27NmDyspKjBw5EsXF9RvNrFq1qtHfuH/44Yf4/PPPsW7dOpw6dQo2NjYYNWoUysq4PyzpF7m1Gb6Z0QsyC1OEX8/F0rCLnNJJRHQHGYoybA5PAgAsGtFBK9X4GhO6qafX74jk9HoioqY4GZ+DBZvPQqkS8EBPb7w2tpNWf0/Tf0RN5Hfv3o2ZM2eic+fO6Nq1KzZs2ICkpCRERETUOe/8+fP45JNP8P3339/1moIgYNWqVXjjjTcwceJEhISEYOPGjUhNTb1rJZ9IDO1cbfH5I90hkQA/hydh08lEsUMiItJbNdX4Xn4OtQ3qtGV4oBuszaW4kVuKczfytXptIiJjF51SgDk/nEFFlQojOrnhg/u7MInXIb1aI19QoG745ejoWHuspKQEjz76KL788ku4u7vf9RoJCQlIT0/HiBEjao/J5XL07dsXJ06caPAx5eXlUCgUdW5ELWlooCuWjA4EACzbEYMTcTkiR0REpH8yFWXYfEpdjX9uhHbWxt/MylyKe4PcAABh5zm9noiosRKyizFzfTgKy6vQN8ARXzzaHaZSvUo1jY5pY06KjIzU+MJBQUEwNW3U5QEAKpUKixYtQmhoKIKDg2uPP//88+jfvz8mTpzYqOukp6cDANzc3Oocd3Nzq73vVitWrMCyZcsaHSuRLjw1qA0upynwx/lUzP8pAmELB8DH0VrssIiI9Ma6Q/Eor1Khh689BrTTzRZGE7p64s/zqfgrKg1v3hcEqQmrSUREd5JeUIbp355CdlEFOnva4ZvHe8HSTCp2WEavUZl2t27dIJFIGr1ezMTEBFeuXEGbNm0aHciCBQsQHR2No0eP1h4LCwvD/v37ce7cuUZfpyleffVVvPDCC7V/VygU8PHx0elzEt1KIpHggykhiM8uRmRyAeZsPIOt8/rDxqLxX4gRERmrzMIy/HRKvfRI22vjbzawvQvkVmbIKizHqfgc9NfRFwZERMYgv6QCM74/hZT8UgQ42+CHWX1gZ2kmdlitQqPnO5w6dQoJCQl3vcXHx8PS0lKjIBYuXIidO3fiwIED8Pb2rj2+f/9+xMXFwd7eHqamprUV/ilTpmDIkCENXqtm+n1GRkad4xkZGbedmm9hYQE7O7s6NyIxWJpJ8dVjPeEis8Dl9EK88Ot5qFRsuERE9HV1Nb67rz0Gttddcm1uaoIxwerPC2HsXk9EdFslFVWYteE0rmQUwc3OAhtn9YGzrYXYYbUajUrkBw8ejHbt2sHPz++uN39/fwwaNAhWVlZ3va4gCFi4cCG2b9+O/fv3IyAgoM79r7zyCiIjI3H+/PnaGwB89tlnWL9+fYPXDAgIgLu7O/bt21d7TKFQ4NSpU+jXr19jXi6RqDzkVvjqsZ4wl5rgn4sZWL2PWycSUeuWVViOTdXV+Oe0tG/8nUzoqu5evys6nduCEhE1oKJKhXmbzuJsUj7kVmb4cXZfLgltYY1K5A8cOAB7e/tGX/Tvv/+Gh4fHXc9bsGABNm3ahM2bN0MmkyE9PR3p6ekoLS0FoK6uBwcH17kBgK+vb52kPzAwENu3bwegnp68aNEiLF++HGFhYYiKisKMGTPg6emJSZMmNfo1EImph68D3pus/nlfve8qdkWliRwREZF4vj4ch7JKFbr62GNwBxedP1/fNk5wlVmgoLQSR65m6fz5iIgMiUol4MXfLuDQlSxYmUmx/one6OAmEzusVkejVoIKhQIqVf1vppVKZZM6va9duxYFBQUYMmQIPDw8am9btmzR6DqxsbG1He8B4OWXX8YzzzyDuXPnonfv3igqKsLu3bs1nvJPJKYHe/lg9gD1F1Yv/HoBMancTYGIWp/sonL8eLJmbbzuq/EAIDWRYFyIuiDB6fVERP8RBAFv77iIHRdSYSaVYN1jPdHD10HssFqlRify27dvR69evVBWVlbvvrKyMvTu3Rs7duzQ6MkFQWjwNnPmzDs+5tbK+q2PkUgkeOedd5Ceno6ysjLs3bsXHTp00Cg2In3w6phADGzvjNJKJeZsPIOconKxQyIialHfHI5XV+O95RjSAtX4GuOrp9fviclAaYWyxZ6XiEifrdp7FRtPJEIiAT59qFuLzJKihjU6kV+7di1efvllWFvXX/tgY2ODJUuW4IsvvtBqcEStnanUBF880gP+TtZIyS/FvJ/Ocr0mEbUa2UXl2Hiiem18C1Xja3T3sYePoxVKKpTYdznj7g8gIjJyG44l1PZuemdicO0XniSORify0dHRt+0UDwCDBg1CVFSUNmIiopvIrc3w7eO9YGthivCEXCzbcVHskIiIWsQ3R+JRWqlEiLccQzu6tuhzSyQSjA9Rf0gNO8/p9UTUuv1xLgVv74gBALxwbwc8do+fyBFRoxP5vLw8VFVV3fb+yspK5OXlaSUoIqqrnasMnz/SDRIJ8NOpJGyqXi9KRGSscosr8OOJlutU35AJ3dSJ/MHYLBSUVrb48xMR6YMDlzOx+LcLAICZ/f3xzLB2IkdEgAaJvL+/P86cOXPb+8+cOQM/P34zQ6QrwwLd8NKojgCAt8Mu4mR8jsgRERHpzjdH4lFSoUQXLzmGBbZsNb5GRzcZ2rvaokKpwj8X00WJgYhITGeu52LeTxGoUgmY1M0Tb90XJMoXq1RfoxP5+++/H6+//joyMuqvE0tPT8cbb7yBKVOmaDU4Iqpr3uC2mNDVE1UqAfN/OosbuSVih0REpHW5xRX44fh1AMCzIlXjAfX0+po95Xewez0RtTKX0hSYteE0yipVGBboio8e7AoTEybx+qLRifwrr7wCmUyG9u3bY/78+Vi9ejVWr16NefPmoUOHDrC1tcUrr7yiy1iJWj2JRIKVU0LQxUuO3OIKzNl4BsXlt1/yQkRkiL6trsZ39rTDiE7iVONr1DRzOh6Xg2zuHEJErURSTglmfB8ORVkVevk54MtHe8BMqtHO5aRjjf7XkMlkOHbsGKZPn44tW7bg+eefx/PPP48tW7Zg+vTpOHr0KGQymS5jJSIAVuZSfD2jJ5xtLXA5vRCLf7sAlUoQOywiIq3Iu6kaL9ba+Jv5O9ugq7ccSpWAv6PSRI2FiKglZBaWYfp3p5BVWI5Adxm+m9kbVuZSscOiW2j0tYpcLseaNWuQnZ2NjIwMpKenIycnB2vWrIGDg4OuYiSiW3jIrfDVYz1gLjXBruh0fL7/qtghERFpxbdH41FcoUSQhx3uDXITOxwA/1Xl2b2eiIxdQWklZnwXjqTcEvg6WmPjrD6QW5mJHRY1oEnzIyQSCVxcXODq6ir6N+VErVVPP0csnxQMAFi19yp2R7NSRESGLb+kAj8cV3eqF3Nt/K3uC/GERAKcScxDSn6p2OEQEelEaYUST/5wGpfTC+Eis8Cm2X3hamcpdlh0G1zoQGTAHurtgydC/QEAL/x6AZfSFOIGRETUDN8dTUBReRU6edhhpJ5U4wHAXW6JPv6OAICdbHpHREaoUqnCgs1ncfp6HmSWptg4qw98nazFDovugIk8kYF7fWwnDGjnjJIKJeZsPIPc4gqxQyIi0lh+SQU2HLsOAHhueDu964xcO72eiTwRGRmVSsDLv0di/+VMWJqZ4PuZvdHJw07ssOgumMgTGThTqQm+eLQ7/JyskZxXivk/RaBSqRI7LCIijXx/NAGF5VUIdJdhZJC72OHUM7aLB0xNJLiYqkBcVpHY4RARaYUgCHj3rxhsP5cCUxMJ1k7rid7VM5BIvzUrkS8rK9NWHETUDPbW5vh2Ri/YWpjiZHwu3tkRI3ZIRESNVlBSifXV1fhnh7fXu2o8ADjamGNAe2cA3FOeiIzHlweu1f7+/fjBrhgaKO6Wn9R4GifyKpUK7777Lry8vGBra4v4+HgAwJtvvonvvvtO6wESUeO0d5Nh1cPdIJEAP55MxE+nEsUOiYioUb4/pq7Gd3STYXRn/avG15hw0/R6QeC2n0Rk2DadTMTH/14BACwdH4RJ3b1Ejog0oXEiv3z5cmzYsAEffvghzM3Na48HBwfj22+/1WpwRKSZEUFuWDyyIwBg6Z8XcSo+R+SIiIjurKC0Et8fSwCgv9X4GvcGucHC1ATxWcW4mMrmokRkuHZGpuLNP6MBqH/3PhEaIHJEpCmNE/mNGzfi66+/xrRp0yCVSmuPd+3aFZcvX9ZqcESkuflD2uK+EA9UqQTM++kskvNKxA6JiOi21h9LQGFZFTq42WJMsP5W4wFAZmmGYdXTTjm9nogM1eErWXh+y3kIAvDYPX54fkR7sUOiJtA4kU9JSUG7du3qHVepVKisrNRKUETUdBKJBB890BXBXnbILa7AnI0RKKmoEjssIqJ6FGWV+P6oYVTja9RMr98ZmQaVitPriciwnE3Kw1M/RqBSKWB8V08sm9AZEon+/+6l+jRO5IOCgnDkyJF6x3///Xd0795dK0ERUfNYmUvx9WO94GxrjktpCiz+7QLXcxKR3tlw7DoUZVVo72qLscEeYofTKEMDXWFrYYqU/FKcTcoTOxwioka7klGIWRtOo7RSiUEdXPDJg10N4gtUapippg9466238PjjjyMlJQUqlQrbtm1DbGwsNm7ciJ07d+oiRiJqAk97K6yb3hOPfHMSf0el43/7r+HZ4Zw6RUT6QVFWie+qq/HPGEg1HgAszaQYGeSGbedSEHYhFb24TRMRGYAbuSV47LtTyC+pRHdfe6yb3gPmptyJ3JBp/K83ceJE7NixA3v37oWNjQ3eeustXLp0CTt27MC9996rixiJqIl6+Tti+aRgAMCne65gd3S6yBEREan9cOw6Ckor0dbFBuO6GEY1vsb4burp9X9HpaFKqRI5GiKiO8suKseM78ORoShHBzdbrJ/ZG9bmGtdzSc806V9w4MCB2LNnj7ZjISIdeLi3Ly6lFWLD8et44dfz8Hfuj0B3O7HDIqJWrLCsEt/etDZeaiDV+BoD2jnDwdoM2UUVOBGfg4HtXcQOiYioQYVllXj8+3AkZBfDy94KG2f1hb21+d0fSHqvSfMp8vPz8e233+K1115Dbm4uAODs2bNISUnRanBEpB1vjOuE0HZOKKlQYs7GM8gtrhA7JCJqxTaeSKytxt8X4il2OBozk5pgbPUsgrDz7F5PRPqprFKJJ384g4upCjjZmGPTk33hLrcUOyzSEo0T+cjISHTo0AErV67ERx99hPz8fADAtm3b8Oqrr2o7PiLSAlOpCb54pAd8Ha1xI7cUC346i0pOByUiERSVV+GbI/EAgGeGGV41vsb46u71uy+mo7xKKXI0RER1VSlVeObncziVkAuZhSl+mNUHAc42YodFWqRxIv/CCy9g5syZuHr1Kiwt//tGZ+zYsTh8+LBWgyMi7XGwMce3j/eCjbkUJ+Jz8O7OGLFDIqJW6Ifj15FfUok2zja1ybAh6uPvCHc7SxSWVeFQbJbY4RAR1RIEAa9si8KemAyYm5rgm8d7IdhLLnZYpGUaJ/KnT5/GU089Ve+4l5cX0tPZSItIn3Vwk2HV1O6QSNRTW38OTxI7JCJqRYrLq/BtTTV+eDuDrcYDgImJBPeFVE+vv8Dp9USkHwRBwPt/X8LvEcmQmkjw5aM9cE8bJ7HDIh3QOJG3sLCAQqGod/zKlStwcWGzFyJ9d2+QG168twMA4K0/o3H6eq7IERFRa7HxRCLySioR4GyD8Qa4Nv5WE6q71++9lIHi8iqRoyEiAtYdisc3R9TNRFdOCcG9QW4iR0S6onEiP2HCBLzzzjuorKwEAEgkEiQlJWHJkiWYMmWK1gMkIu1bMLQdxoV4oFIp4OkfI5CSXyp2SERk5IrLq/D14TgAwMKh7WAqNfz9i7t4yeHnZI2yShX2XsoQOxwiauV+Dk/Cyt2XAagbHT/Q01vkiEiXNH4X/eSTT1BUVARXV1eUlpZi8ODBaNeuHWQyGd577z1dxEhEWiaRSPDRAyEI8rBDTnEF5vxwBiUVrCYRke78eFJdjfd3ssbEboZfjQfUv0snVK/z38Hp9UQkol1RaXh9exQAYP6QtnhyYBuRIyJd0ziRl8vl2LNnD3bu3InPP/8cCxcuxN9//41Dhw7BxoadEIkMhbW5Kb55vBecbMwRk6bAS79FQhAEscMiIiNUUlGFbw6r18YvHNbeKKrxNWoS+UNXspBfwq09iajlHbuWjed+OQ+VADzSxwcvjeoodkjUAkw1ObmyshJWVlY4f/48QkNDERoaqqu4iKgFeNlbYd1jPfHoNyfxV1QaOh2QYeGw9mKHRURGZtPJROQUV8DPyRqTjKQaX6O9mwyB7jJcTi/E7uh0TO3jK3ZIRNSKRCbnY+7GM6hQqjAm2B3LJ3WBRGK4jUSp8TT6StzMzAy+vr5QKrlfKpGx6O3viHcmBgMAPv73Cv69yN0niEh7Siqq8NUhdTV+gZGsjb9VzTZ67F5PRC3pWmYRZq4/jeIKJULbOWHV1G4GvRsIaUbjd9PXX38dr732GnJz2emayFg80scXj/fzAwA8v+U8YtMLRY6IiIzFTyeTkFNcAV9Ha0zu7iV2ODpRM73+RHwOMhVlIkdDYnrjjyj0eW8vnvzhNNYejMPp67koq2QBjLQvNb8UM747hdziCnT1luOrx3rBwlQqdljUgjSaWg8AX3zxBa5duwZPT0/4+fnVWxd/9uxZrQVHRC3njfuCcCWjCCficzBn4xn8uSAUDjbmYodFrYBSJSA8IReZhWVwlVmiT4AjKwpGorRCia9u6lRvZoTVeADwcbRGd197nEvKx19RaXgiNEDskEgEF27kY9PJJADA3kuZ2HspEwBgLjVBsJcdevk7opefA3r6OcDJ1kLMUMnA5RZX4LHvTiG1oAxtXWyw/ok+sLXQOK0jA6fxv/ikSZN0EAYRic1MaoI103pgwpdHkZRbggWbz+KHWX2M9oM36Yfd0WlYtiMGaQX/VTE95JZYOj4Io4M9RIyMtOGnU4nILqqAj6MVJvcwzmp8jfEhnjiXlI+wC6lM5FupVXuvAADuDXJD3wBHnLmehzOJecguKsfZpHycTcrH19XntnG2QU8/B/Tyd0BPP0e0dbHhuma6LUEQcCO3FJEp+YhKLsCemAzEZxfDU26JH2f3hSMLL62SRGCb6noUCgXkcjkKCgpgZ2cndjhELSo2vRD3rzmG4golZvb3x9sTOosdEhmp3dFpmLfpLG59E6r5KLt2eg8m8wastEKJgR8eQHZROT64v4vRN4HLVJThnhX7oBKAIy8PhY+jtdghUQs6fyMfk748BqmJBPteGAx/Z/WMVUEQkJRbUp3U5+LM9TxczSyq93gHazP09HNEL38H9PJzQLCXHJZmnCbdGgmCgJT8UkQlFyAypQDRKQWITC5AQWllnfMcbczx61P90M7VVqRISRc0yUM5B4OI6ujoLsNnD3fD3B8jsOH4dXTykOHh3sb9AZxanlIlYNmOmHpJPAAIUCfzy3bE4N4gd06zN1Cbw5OQXVQObwcr3N/DW+xwdM7VzhL3tHHC8bgc7IhMxfwh7cQOiVpQTTV+cnev2iQeACQSCfycbODnZIMpPdX/D/JLKnA2Ka+2Yn/hRj7ySiqx91IG9l7KAKCejt/FW147Fb+XvyOrrkZIEARkKMoRmZyPqOqEPSqlALnF9beyNJeaoJOHDMFecoR4yzE00BWuMksRoiZ9oXEi7+Dg0ODUH4lEAktLS7Rr1w4zZ87EE088cddrrVixAtu2bcPly5dhZWWF/v37Y+XKlejY8b+9D5966ins3bsXqampsLW1rT0nMDDwttedOXMmfvjhhzrHRo0ahd27d2vwSolar5Gd3fHCvR3w6Z4reOOPaLR1sUUvf0exwyIjEp6QW2c6/a0EAGkFZQhPyEW/tk4tFxhpRVmlEusOqdfGLxjaDuamrWOJzoSunjgel4Ow80zkW5NzSXk4GJsFqYkEC4fe/d/d3tocwwLdMCzQDQBQUaVCdGoBIqqr9hGJecguqkBEYh4iEvNqH9fGxQa9/BzQy88RPf0d0MaZ0/ENTWZhGaKqk/WaintWYXm980xNJOjoLkOItxxdvOwR4i1HBzdZq/ldSo2jcSL/1ltv4b333sOYMWPQp08fAEB4eDh2796NBQsWICEhAfPmzUNVVRXmzJlzx2sdOnQICxYsQO/evVFVVYXXXnsNI0eORExMTG0TvZ49e2LatGnw9fVFbm4u3n77bYwcORIJCQmQSm8/5Wj06NFYv3597d8tLNhUhEgTzwxrh8vpCvwdlY65P0bghyf6oIu3XOywyEhkFjaus3djzyP9svlUErIKy+Flb4UpraAaX2N0sDve/DMal9MLcTWjEO3dZGKHRC1g9b6rAOpX4xvL3NQEPXwd0MPXAXPQBoIgIDGnBGcS8xCRmIvT1/NwLbMI8VnFiM8qxq9nkgGop1b38HVAb3/1WvtgLzm7luuRnKLyOgl7VHIB0hvY1cJEAnRwk6FLdaW9i7c9At1lXFpBd6VxIn/06FEsX74cTz/9dJ3jX331Ff79919s3boVISEh+Pzzz++ayN9aId+wYQNcXV0RERGBQYMGAQDmzp1be7+/vz+WL1+Orl274vr162jbtu1tr21hYQF3d3dNXx4RVZNIJPj4wa5IzitFZHIBpn59Ause64mB7V3EDo2MQGOnA3LaoOFprdV4QF1pHdTeBfsuZ2LHhVS8MLLj3R9EBu3sTdX4Z4ZpZxaGRCKBv7MN/J1t8ED1dPy84urp+Il5iLieh/PJ+cgtrqg7Hd/UBCFecvT0r67a+zlwOn4LKSipVE+Nr25GF5lcgJT80nrnSSRAOxdbdPGWI8RLji7ecgR5yGFlzqSdNKdxIv/PP/9g5cqV9Y4PHz4cL774IgBg7NixeOWVVzQOpqCgAADg6NjwFN7i4mKsX78eAQEB8PHxueO1Dh48CFdXVzg4OGDYsGFYvnw5nJwanp5ZXl6O8vL/prUoFAqNYycyRtbmpvjpyb54elMEjl3LwawNp/HJQ91q90wmaqo+AY7wkFsivaCswXXyEgDucvVWdGRYfglPQmZ1Nb4mCWlNJnTzxL7LmQi7kIrn7+3Aqc9GbvVedTX+/u5e8HPSvBrfWA425hjeyQ3DO6mn45dXKRGdokBEdQO9iMQ85BRX4EyiOtn/CvEAgLYuNrVT8Xv5OSCA0/GbTVFWiehbKu1JuSUNntvG2QZdvOXV1XZ7dPa0gw23iSMt0fgnydHRETt27MDzzz9f5/iOHTtqE/Di4mLIZJpNJ1OpVFi0aBFCQ0MRHBxc5741a9bg5ZdfRnFxMTp27Ig9e/bA3Pz23zCOHj0a999/PwICAhAXF4fXXnsNY8aMwYkTJxqcjr9ixQosW7ZMo3iJWguZpRm+n9kbL/x6AX9FpuHZn88hu7AcswZweyVqOqmJBEvHB2HeprOQAHWS+ZqPmEvHB7HRnYEpq1RibXU1ft6Qtq2qGl9jRCc3WJqZ4HpOCaJSChDibS92SKQjZ5PycOhK9dp4LVXjG8vCVIqe1Y3w5g5SN027nlOC09dza9fax2UV1962nLkBAHCyMUcPP/V0/J5+jgj2suN0/DsoLq/CxVRFbTO6qOQCxGcXN3iun5M1unipk/Yu3nIEe8lhZ2nWwhFTa6Lx9nPffPMN5s2bh7Fjx9aukT99+jT+/vtvrFu3DrNnz8Ynn3yC8PBwbNmypdHXnTdvHnbt2oWjR4/C27vuN/gFBQXIzMxEWloaPv74Y6SkpODYsWOwtGzclMv4+Hi0bdsWe/fuxfDhw+vd31BF3sfHh9vPEd1EpRLwzs4YbDh+HYD6Q/rLozrym31qFu4jb1x+OH4dS8MuwkNuiYMvDWm1CcKCzWfxV2QanhwQgDfuCxI7HNKRGd+H4/CVLDzUyxsfPtBV7HDqyStWN8yrWWt/IbkAFVWqOueYm5qgq7dcvfVd9RcDDq10On5phRIxadWd46ur7XFZRWgoU/Kyt6pezy5HiJc9gr3sYG/dOseNtEuT7eeatI/8sWPH8MUXXyA2NhYA0LFjRzzzzDPo379/kwJeuHAh/vzzTxw+fBgBAXeu8lVUVMDBwQHffvstHnnkkUY/h4uLC5YvX46nnnrqrudyH3mihgmCgDUH4/DRP+r/+w/09MaK+7vATNr6qm6kPUqVgPCEXGQWlsFVpp5Oz0q84SmvUmLwhweRrijDu5OC8dg9fmKHJJp/LqbjqR8j4G5nieOvDIMJf56NTkRiHqasPQ6piQQHXhwCXydrsUO6K/V0/ILabe8iEvMa3OasnattnW3v/J2sje5L+7JKJS6nFyIqOb92y7crGYVQNZAVecgt61Tau3jJ4WQrXhNtvmcaN53vIx8aGorQ0NAmBXczQRDwzDPPYPv27Th48OBdk/iaxwiCUKeCfjfJycnIycmBhwerO0TNIZFIsGBoO7jYWuDV7VH4PSIZucUV+PLRHmzUQk0mNZFwizkj8OvpG0hXlMFDbomHerW+tfE3G9LRBTJLU6QrynD6ei76tuHPt7Gp6VQ/pYeXQSTxQM10fEf09HPEU1B/pk7ILlavq7+eizOJeYjPKsa1zCJcyyzCL6fV0/GdbdXd8Xv5qxP7YE+5QS2bqahSITa9sLYRXVRKAWLTC1HVQNbubGuBrjWV9urp8frUdJWz2OhmTarIx8XFYf369YiPj8eqVavg6uqKXbt2wdfXF507d270debPn4/Nmzfjzz//rLN3vFwuh5WVFeLj47FlyxaMHDkSLi4uSE5OxgcffIBjx47h0qVLcHV1BQAEBgZixYoVmDx5MoqKirBs2TJMmTIF7u7uiIuLw8svv4zCwkJERUU1ahs6VuSJ7m5vTAYWbD6L8ioVuvva4/vHe7fa6XhErV15lRJDPjqItIIyvDOxM2b08xc7JNG99NsF/BaRjGl9ffHe5C5ih0NaVFONNzWRYL+BVOMbK7d2Or56rX1kcgEqlHWn41uYmqCrt31tA72efg56M628UqnC1YwiRKX8V2m/nFZY7zUA6u37ard8q25G52ZnobezD3ZHp2HeprP1GsTWRLt2eg8m80ZAp1PrDx06hDFjxiA0NBSHDx/GpUuX0KZNG3zwwQc4c+YMfv/990Zf63b/UdavX4+ZM2ciNTUVTz75JCIiIpCXlwc3NzcMGjQIb731Vp3EXyKR1D6mtLQUkyZNwrlz55Cfnw9PT0+MHDkS7777Ltzc3BoVFxN5osaJSMzFrA1nUFBaibYuNtg4uy+87K3EDouIWtiPJxPx5h/RcLOzwKGXhnL/YwCHr2RhxvfhcLA2Q/jrI7gEyYg89t0pHLmajYd7+WDlAyFih6NTZZXV0/ET86q74+cir6Sy3nntXW3Rq7qBXi8/B/i1wHR8pUrAtcyi/xrRpRQgJlWB8qr6SbvcyuymhF1dafeyt9LbpP1WSpWAASv316nE36xmp5ejS4Zxmr2B02ki369fPzz44IN44YUXIJPJcOHCBbRp0wbh4eG4//77kZyc3Kzg9QETeaLGu5pRiBnfhyOtoAzudpb4YVYfdHTXbNcKIjJc5VVKDP3oIFILyrBsQmc83t9f7JD0QpVShXtW7EN2UQU2PNEbQzq6ih0SaUFEYi6mrD0BUxMJDiweAh9H46nGN4YgCIjPLkbE9Tx1h/zEvAa7uDvbWqCnnz16+Tmil78DOjdzOr5KpX7e2kp7cgEupipQWqmsd67MwhTBNZX26mZ0Po6Gk7Q35ERcDh755uRdz/t5zj1cqmbgdLpGPioqCps3b6533NXVFdnZ2ZpejogMXHs3GbbO64/Hvw/H1cwiPLjuOL6b2Ru9/bn/N1Fr8HtEMlILyuBmZ4GHe/uIHY7eMJWaYGwXD2w8kYiwC6lM5I3Equp94x/o6d3qknhAPQu2rYst2rrY4qHq/+85ReWIqG6edyYxD1HJBcguKsc/FzPwz8UMANXT8X3s0ctPvda+p68j5NYNb82mUglIzC1BZHI+olPUXeQvpipQVF5V71xrc6k6ab+pEZ2/k43RNZjMLGy4Et/U88g4aJzI29vbIy0trV5junPnzsHLy0trgRGR+BrbGdXT3gq/Pd0Ps384g4jEPEz/9hS+eLQH7g1q3HIWIjJMFVUqrDmg3jf+6cFtOaX+FuO7emLjiUT8ezEDZZVKjo+BO3M9F0euZsPURN34ldScbC0wsrM7RnZ2B6Cejh9V3R0/IlFdtc8rqUR4Qi7CE3JrH1czHb+XnyMszaR1mtEVltVP2i3NTNDZ87/p8SHecgQ427aKqeSNbbinT435SPc0TuSnTp2KJUuW4LfffoNEIoFKpcKxY8ewePFizJgxQxcxEpEINO2Mam9tjk2z+2Lh5rPYdzkTT/14Bu9P7oKpfXxbMmwiakG/RyQjJb8UrjILPML/6/X09HWAp9wSqQVlOHA5E2O6sBGVIaupxj/Yq3VW4xvL0kyK3v6O1TPz2kIQBMRlFSMiMbd267uE7GJczSzC1cwi/Bx+o941zE1N0MnDrrbSHuItRzsXW5i20l4TfQIc4SG3RHpBWb1md8B/a+T7BHA2ZGui8Rr5iooKLFiwABs2bIBSqYSpqSmUSiUeffRRbNiwAVKp4X/bzDXy1No1pzNqlVKFV7dF4bcIdb+MF+/tgIXD2hn02jQiqq+iSoWhHx9ESn4p3rovCLMG3H0L2dZoxd+X8NXheIzt4o4103qKHQ410enruXhwXetdG69t2TdNx49IzEOlUlVninwHNxkbRN6i5rMZgDqfz9i13rjotNldjaSkJERHR6OoqAjdu3dH+/btmxSsPmIiT62ZNjqjCoKAj/6JxZqD6im3M/r5Yen4zq1i+htRa/FLeBJe2RYFF5kFjrzMTvW3E51SgPv+dxQWpiY488YIyCwbXhdM+m36t6dw9Fo2HunjgxX3G3enetJf3Efe+Om02V0NX19f+PpyGh2RsQlPyL1tEg+ovwVOKyhDeELubTujSiQSvDw6EC4yC7yzMwYbTyQiu6gcnz3cDRam/LBPZOgqlSp8ceAaAOCpQW2YxN9BZ087tHG2QXx2MfbEZOD+Ht5ih0QaOn09F0evcW08iW90sAfuDXJvVP8iMn6NSuRfeOGFRl/w008/bXIwRCQ+bXZGfSI0AM62Fnjh1/P4OyodecWn8dWMnrBjRYrIoG07m4zkvFI421pgWl8/scPRaxKJBOO7emL1vqsIu5DKRN4Ardp7BQDwYC8feDtwSj2JS2oi4RZzBKCRify5c+fq/P3s2bOoqqpCx44dAQBXrlyBVCpFz55c+0Vk6LTdGXV8V084WJvjqR/P4ER8DqZ+dRIbZvVmZ1UiA3VzNf7pwW1gZc5q/N1M6KZO5I9ezUZucQUcbczFDokaKTwhF8eu5cBMKsGCoW3FDoeIqFajukgcOHCg9jZ+/HgMHjwYycnJOHv2LM6ePYsbN25g6NChGDdunK7jJSIdq+mMertJWhKo12Np0hl1QHtnbHmqH5xtzRGTpsCUtceRkF2slXiJqGVtP5eCG7mlcLY1ZzW+kdq62KKzpx2qVAJ2RaeJHQ5pgNV4ItJXGreD/OSTT7BixQo4ODjUHnNwcMDy5cvxySefaDU4Imp5UhMJlo4PAoB6yXzN35eOD9J4PVawlxxb5/WHr6M1buSW4oG1xxGZnN/seImo5VQqVfhiv7oaP3cQq/GaGN/VEwAQdj5V5EiosU7F5+B4nLoaP38Iq/FEpF80TuQVCgWysrLqHc/KykJhYaFWgiIicY0O9sDa6T3gLq87/d1dbtms7U38nGywdV5/dPa0Q05xBaZ+fRJHrtb/fUJE+umPcylIyi2Bk405pt/DarwmahL58Ou5SL9DQ1HSH6v31ewbz2o8EekfjbvWT548GU888QQ++eQT9OnTBwBw6tQpvPTSS7j//vu1HiARiUNXnVFdZBb4Ze49eHpTBI5dy8GsDafx8YNdMbGbl5YiJzJ+SpXQ4l2Lq25aGz93UBtYmzd545tWycveCr38HHAmMQ87I1Px5MA2YodEd3BzNZ6d6olIH2n8Lrxu3TosXrwYjz76KCorK9UXMTXF7Nmz8dFHH2k9QCISj646o8oszfD9zN544dcL+CsyDc/9ch45RRWYNSBA689FZGzE2kf4j/OpSMwpgaONOR7rx2p8U0zo5okziXnYcYGJvL5btVddjX+olw+87K1EjoaIqD6Np9ZbW1tjzZo1yMnJwblz53Du3Dnk5uZizZo1sLGx0UWMRGSELEyl+N/U7pjZ3x8A8M7OGKzcfRmCIIgbGJEe2x2dhnmbztZJ4gEgvaAM8zadxW4dNVKrUqrwxX51YsNqfNONCfaAiQS4kFyA62z4qbdOxufgRHz12nhW44lIT2mcyNewsbFBSEgIQkJCmMATUZOYVDfWe2mUeivLtQfj8NLvkahUqkSOjEj/KFUClu2IQUNfddUcW7YjBkqV9r8MC7uQius11XiujW8yF5kFQts5AwB2RrLpnb6q6VT/cG9W44lIfzUqkb///vuhUCgafdFp06YhMzOzyUERUeshkajXH344JQRSEwl+j0jGUz9GoLRCKXZoRHolPCG3XiX+ZgKAtIIyhCfkavV5q27qVP/kwADYWLAa3xy13esvMJHXRyficnAyPre6Uz2r8UTGQKkScCIuB3+eT8GJuBydfOEthka9G//5558NdqpviCAI2LFjB9599124uro2Kzgiaj0e6u0DRxtzLNh8FvsvZ+LRb0/i+8d7w8HGXOzQNCJGEzJqHTILG9fpvLHnNdaOyFTEZxfD3toMM/r5a/XardGozu54Y3s0rmQU4XK6AoHudmKHRDdZve+/arwnq/FEBk+svjItoVGJvCAI6NChg65jIaJWbkSQGzbP6YtZG87gXFI+Hlh3HBtn9zWYqY3G/GZB4nOVWd79JA3OawylSsD/qqvxcwa2gS2r8c0mtzLD4I4u2BOTgbDzqQgczUReX9RU482lJqzGExmBmr4yt9bfa/rKNGdLZX3QqHfkAwcOaHxhLy9uJUVEmuvp54jfn+6HGd+HIy6rGFPWHMcPs/qgo7tM7NDuyNjfLEh8fQIc4SG3RHpBWYPr5CUA3OXqWSDasjMyFfFZ6mr849WNKan5JnT1xJ6YDOyITMVLozpCIuGsHX1w89p4VuOJDNvd+spIoO4rc2+Qu8HOnGxUIj948GBdx0GaUimBxONAUQZg6wb49QdMpGJHRaQV7d1k2DqvPx7/PhxXM4vw4Lrj+G5mb/T2116Cok2t4c2CxCetbg45b9NZSIA6P281P1VLxwdp7WdMqRLw+T51p/onBwSwGq9Fwzu5wtpcihu5pTh/Ix/dfR3EDqnVOx6XjVMJ1dX4oW2bdA0urSLSH5r0ldHFVsstocld60lEMWHAqmDgh/uArbPVf64KVh8nMhKe9lb47el+6OnnAEVZFaZ/ewp7YjLEDqtBYjUho9ZndLAH1k7vAXd53enz7nJLrc/62BmZirisYsitWI3XNmtzU4zo5AaATe/0gSAItfvGT+3jAw+55tX43dFpGLByPx755iSe++U8HvnmJAas3K+zLSGJ6M7E6ivTkpjIG5qYMODXGYDiljd+RZr6OJN5MiL21ubYNLsvhge6orxKhad+PINfwpPEDque1vBmQfpjdLAHji4Zhp/n3IPVU7vh5zn34OiSYVpN4m9eG//kgADILM20dm1Sm1DdvX5nZJrRdFA2VCficxBeXY2fN0TzanzN0qpbv9CtWVrFZJ6o5YnRV6alMZE3JColsHsJcKddhHe/oj6PyEhYmUvx1WM98VAvb6gE4JVtUfjfvqsQBP354Nsa3ixIv0hNJOjX1gkTu3mhX1snrU/f/TsqDdcyi2BnaYrHQ/21em1SG9TBBXIrM2QVluNUQo7Y4bRagiBg1R51Nf6RJlTj77a0ClAvreKXNUQtq6avzO3eHSVQNyTWZl+ZlsZE3pAkHq9fia9DABQp6vOIjIip1AQrp4RgQfW6xU/2XMHSsIt688GoNbxZUOuhumlt/OwBbWDHarxOmJuaYEywOwBgB6fXi+ZEXA7Cr9dU4zXvVM+lVUT6qaavDIB6n8900VdGDE1K5KuqqrB371589dVXKCwsBACkpqaiqKhIq8HRLYoauT64secRGRCJRIKXRgXi7fFBkEiAjScS8czPZ1FeJf4MlNbwZkGtx9/RabhaXY2fyWq8To2vnl7/d1Q6KqpUIkfT+ty8Nv6RPj71ek80BpdWEemvluwrIwaNW9AmJiZi9OjRSEpKQnl5Oe69917IZDKsXLkS5eXlWLdunS7iJEDdnV6b5xEZoJmhAXCWWeD5Lefxd1Q68opP46sZPUWvGta8Wdy6j7w795EnA3JzNX7WgADIrViN16V72jjBRWaBrMJyHLmaheGd+P7dko7XVONNm1aNB7i0ikjfjQ72wL1B7ka5o4TGifxzzz2HXr164cKFC3By+q9V/+TJkzFnzhytBke38OsP2HmqG9vdbhdhO0/1eURG7L4QTzhYm+OpHyNwIj4HU786iQ2zeov+QcmY3yyoddh9MR1XMoogszTFE6EBYodj9KQmEozr4oENx69jx4VUJvItSF2NV+8b/2gf3yZV44H/llalF5Td7pMZ3Lm0ikhUNX1ljI3GU+uPHDmCN954A+bm5nWO+/v7IyUlRWuBUQNMpMDoldV/uc0E3tEfcD95ahVC2znjl7n3wNnWHDFpCkxZexwJ2cVih6XzJmREuqJSCVhdPc34iVBW41vKhG7q6fX/xmSgtEL8pUKtxfG4HJy+nlddjW/avvEAl1YRkXg0TuRVKhWUyvpvNMnJyZDJZFoJiu4gaALw0EbA7pZpunae6uNBE8SJi0gEwV5ybJ3XH35O1riRW4oH1h5HZHK+2GERGaR/LqYjNqMQMgtTzGY1vsV097GHt4MVSiqU2HeZPW5agiAI+GzPf9V4N7vmzeYy9nW4RKSfNJ5aP3LkSKxatQpff/01AHUDqqKiIixduhRjx47VeoDUgKAJQOA4dXf6ogz1mni//qzEU6vk52SD35/uj5nrw3ExVYGpX5/EV4/1xMD2LmKHRmQwVCoBq/fVVOP9IbdmNb6lSCQSjO/qibUH47DjQiruC/EUOySjd+xaDs4kNr8afzMurSKilqZxRf7jjz/GsWPHEBQUhLKyMjz66KO10+pXrlx59wuQdphIgYCBQJcH1H8yiadWzEVmgV/m3oPQdk4oqVBi1obT+PM8l/oQNda/MRm4nF4IWwtTzBrAanxLm1Ddvf5AbBYUZZUiR2Pcbl0b39xq/M24tIqIWpLGibyPjw8uXLiA119/Hc8//zy6d++ODz74AOfOnYOrq6suYiQiuiuZpRm+n9kb40I8UKkU8Nwv5/Hd0QSxwyLSezdX42f294e9tfldHkHaFuguQ3tXW1RUqfBPdLrY4Ri1o9eycSYxDxamJpivpWo8EZEYNJpaX1lZicDAQOzcuRPTpk3DtGnTdBUXEZHGLEyl+N/U7nCxtcCG49fx7s4YZBWWY8nojpBIWBkhasieSxm4lKaArYUpZrMaL4qa6fWf7rmCsAupeLCXj9ghGaWb941/tK8vXLVYjSciamkaJfJmZmYoKyu7+4mkc0qlEkeOHEFaWho8PDwwcOBASKWcXn8nHDPNGeKYmVR3EHaRWeCjf2Kx7lAcsgrL8cGULjCTajwJSWOGOGZi45hpTltjJgj/dap/vL8fHGyMsxpvCD9jE6oT+eNxOcguKoezrYWo8RjCmGnq6LVsRFRX4+cN1n413hjHTNc4ZprjmGnOaMdM0NB7770nPP7440JlZaWmDzUYBQUFAgChoKBA7FAatHXrVsHb21uAejN5AYDg7e0tbN26VezQ9BbHTHPGMGZbwpOENq/+Jfgt2SnM/P6UUFyu299bxjBmLY1jpjltjtk/0WmC35KdQtCbu4TconIdRCu+rVu3Cr4+XsJgP6kwNdhUGOwnFXx9vPTyZ2z8/44Ifkt2ChuPJ4gahzH+v1SpVMLkL48Kfkt2CsvCLmr9+sY4ZrrGMdMcx0xzhjZmmuShGifykyZNEmQymeDh4SGMHDlSmDx5cp2bMdDnRH7r1q2CRCKp88MIQJBIJIJEItHbH0oxccw0Z0xjtudiutDh9b8FvyU7hYlfHNVZsmJMY9ZSOGaa0+aYqVQqYezqw4Lfkp3Cyl2XdBi1eLZu3Src38lMSFpkKwhL7WpvSYtshfs7mendz9g3h+MEvyU7hQfWHhMthq1btwpo4GcMgAAD/n95KDZT8FuyU+jw+t9CRkGpVq/N32Wa45hpjmOmOUMcM03yUIkgCIImFfwnnnjijvevX7++0ddasWIFtm3bhsuXL8PKygr9+/fHypUr0bFjx9pznnrqKezduxepqamwtbWtPScwMPC21xUEAUuXLsU333yD/Px8hIaGYu3atWjfvn2j4lIoFJDL5SgoKICdnV2jX4+uKZVK+Pv7Izk5ucH7JRIJvL29kZCQYBzTRbSAY6Y5YxyziMRczNpwBgWllWjrYoONs/vCy95Ka9c3xjHTNY6Z5rQ9ZntjMvDkxjOwNpfi6JJhcDSyafVKpRJPD/bCV8NLAAAmN/XJUFV/9Hl6vw3WHkzWm5+xtIJS9P9gPwQBOPbKMK3+nmoMpVIJdy8fZGek3fYcF3dPpCUn6c2YNYYgCLh/7XGcS8rHrNAAvDU+SGvX5u8yzXHMNMcx05yhjpkmeajGC0bXr19/x5smDh06hAULFuDkyZPYs2cPKisrMXLkSBQXF9ee07NnT6xfvx6XLl3CP//8A0EQMHLkSCiVytte98MPP8Tnn3+OdevW4dSpU7CxscGoUaMMfn3/kSNHbvvDCKjfqG7cuIEjR460YFT6jWOmOWMcs55+jvj96X7wkFsiLqsY9685htj0Qq1d3xjHTNc4ZprT5pgJwn+d6mf08ze6JB4Ajhw+iLd6qz9PmNzS7LLm72/0KsKRwwdbOrTb8pBbobe/IwDgr8jUFn/+g4cO3zGJB4Cs9FQcPHS4hSLSjsNXs3EuKR8WpiZ4ekgbrV6bv8s0xzHTHMdMc61hzHTf+ekOdu/ejZkzZ6Jz587o2rUrNmzYgKSkJERERNSeM3fuXAwaNAj+/v7o0aMHli9fjhs3buD69esNXlMQBKxatQpvvPEGJk6ciJCQEGzcuBGpqan4448/WuaF6Uha2p3fXDU9rzXgmGnOWMesvZsMW+f1R3tXW2QoyvHguuMIT8jVyrWNdcx0iWOmOW2O2f7LmYhKKYCVmRRzBhpnp3pl/BH4yE3qJfE1TCQS+MpNoIzXrw9xNXvKh11o+UT+aORVrZ6nD4Sb9o2ffo8fXGXa7VTP32Wa45hpjmOmudYwZhon8gEBAWjTps1tb81RUFAAAHB0dGzw/uLiYqxfvx4BAQHw8Wl4a5aEhASkp6djxIgRtcfkcjn69u2LEydONPiY8vJyKBSKOjd95OHhodXzWgOOmeaMecw87a3w29P90NPPAYqyKjz23Sn8e7H5ezYb85jpCsdMc9oaszrV+P5+cBK5O7queNg27iNOY89rKWOC3SE1kSA6RYH4rKIWfW6prYNWz9MHh65k4VxSPizNTPDUYO1W4wH+LmsKjpnmOGaaaw1jpvG716JFi/Dcc8/V3ubPn49+/fqhoKAAc+fObXIgKpUKixYtQmhoKIKDg+vct2bNGtja2sLW1ha7du3Cnj17YG7e8DTA9HT1h3I3N7c6x93c3Grvu9WKFSsgl8trb7f7kkBsAwcOhLe39233w5ZIJPDx8cHAgQNbODL9xTHTnLGPmb21OTbN7ovhga4or1Lh6U0R+Dk8qVnXNPYx0wWOmea0NWYHY7MQmayuxs8dqP3ERl907DVYq+e1FCdbCwxo5wyg5avyQwYNhlTmfMdzpDJnDBmkX2N2O8JN+8ZP76v9ajzA32VNwTHTHMdMc61hzDRO5G9O4p977jksXrwYP/30E9555x3ExsY2OZAFCxYgOjoav/zyS737pk2bhnPnzuHQoUPo0KEDHnroIa2ud3/11VdRUFBQe7tx44bWrq1NUqkUq1evBoB6P5Q1f1+1apVeNWwQG8dMc61hzKzMpfjqsZ54qJc3VALw6rYofL7vKjTs/VmrNYyZtnHMNKeNMRMEAauqq/GP9TPeajwASAMGoMTMobax3a1UgoASM0dIAwa0cGR3VzO9fseF1Cb/XmqKfu1c0Hb8gjue03b8AvRr59JCETXPoStZOH+jphqv/X3jAf4uawqOmeY4ZpprFWOmrVb5cXFxgkwma9JjFyxYIHh7ewvx8fF3Pbe8vFywtrYWNm/efNs4AAjnzp2rc3zQoEHCs88+26h49Hn7OUFoeD9EHx8fvdxCQV9wzDTXGsZMpVIJH+6+JPgt2Sn4LdkpvLE9SqhSqpp8vdYwZtrGMdNcc8Zs/+UMwW/JTqHjG38LmYqyFohWZBf/FFRL7QTlW3Z1tp9TvmUnqJbaCcLFP8WOsEGK0gqhffW2mdEp+S363LuiUgWXSa8JUplznZ8xqcxZcJn0mrArKrVF42kqlUolTPhCvW/88p3a3zf+VvxdpjmOmeY4ZpoztDHT6fZzt/Phhx9izZo1t21C1xBBEPDMM89g+/btOHjwYKO2hysvL4eDgwPWrFmDmTNnNnhNT09PLF68GC+++CIAdRt/V1dXbNiwAVOnTr3rc+jr9nM3UyqVOHLkCNLS0uDh4YGBAwca9jdKLYBjprnWMmYbjiVg2c4YCAIwtos7Pn2oGyzNmvY6W8uYaRPHTHNNGTNBEDB5zXGcv5GPOQMD8Po47W3Bpa92R6fhj83r8JbpRnia/NfcMlXliHeqZmDSo09jdLB+ro98+scI7L6YjqcGt8GrYzq16HPvjk7D239G4frFCCiL8iC1dYB/5554e2IXvR2vWx2IzcQT60/D0swER14eBheZ7mef8HeZ5jhmmuOYac6QxkyTPFTjRL579+51picIgoD09HRkZWVhzZo1Gq2Tnz9/PjZv3ow///yzzt7xcrkcVlZWiI+Px5YtWzBy5Ei4uLggOTkZH3zwAY4dO4ZLly7B1dUVABAYGIgVK1Zg8uTJAICVK1figw8+wA8//ICAgAC8+eabiIyMRExMDCwt774+yhASeSLSrp2RqXh+y3lUKgXc08YRX8/oBTtLM7HDItKaQ1ey8Pj34S2a2IhJqRIwYOV+pBWUwQQq9DG5DFfkIxP2CFcFQoAJ3OWWOLpkGKQmDa+hFNPfUWmY/9NZeNlb4cjLQ2HSwjEqVQLCE3KRWVgGV5kl+gQ46uU4NUQQBExacxwXWtGXVkRkHDTJQ001vfjEiRPrJPImJiZwcXHBkCFDEBgYqNG11q5dCwAYMmRInePr16/HzJkzYWlpiSNHjmDVqlXIy8uDm5sbBg0ahOPHj9cm8QAQGxtb2/EeAF5++WUUFxdj7ty5yM/Px4ABA7B79+5GJfFkvAz5Q4loVEog8ThQlAHYugF+/QET/fwGs7nuC/GEg7U5nvoxAifjczH1q5PYMKu3TpojEbU0QRCwunoLrml9/Yw+iQeA8IRcpBWo++moYIKTqvrJXFpBGcITctGvrVNLh3dXwwJdYWthipT8Upy7kYeefg3v6KMrUhOJXo5LYxyMzcIFHa+NJyISm9am1hsTVuSNz+7oNCzbEVP7oQ4APOSWWDo+yGCmCba4mDBg9xJAcVPXZDtPYPRKIGiCeHHpWHRKAWauD0d2UQV8HK2wcVZfBDjbiB0WUbMcvpKFGd+Hw8LUBEeWDG0VX1D9eT4Fz/1y/q7nrZ7aDRO7eek+oCZ4Yct5bDuXgsf7+WHZxOC7P4DU1fgvj+FCcgHmDmqD18a27LIEIqLm0CQP1bhrvVQqRWZmZr3jOTk5ervWgFq33dFpmLfpbJ0kHgDSC8owb9NZ7I5OEykyPRYTBvw6o24SDwCKNPXxmDBx4moBwV5ybJ3XH35O1riRW4oH1h5HZHK+2GERNZlw077x03S0BZc+auzr1OfxGF/dvf6vqDRUKVUiR2MYDsZm4ULN9oqDjHd7RSIijRP52xXwy8vLb7u3O5FYlCoBy3bEoKGf2ppjy3bEQKnixJRaKqW6En+nUdv9ivo8I+XnZIPfn+6PYC875BRXYOrXJ3HkapbYYRE1ybFrOYhIzIOFqQmeHtx6Eps+AY7wkFvidguoJFDPzOoT0LJT1jUxoL0zHKzNkF1UgZPxuXd/gDaplEDCESDqd/WfBvA7XxAEfFa9hGRGPz84G/H2ikREjV4j//nnnwNQ77v37bffwtbWtvY+pVKJw4cPa7xGnkjXbl4j2RAB+r1GUhSJx+tX4usQAEWK+ryAgS0WVktzkVngl7n98NSPZ3DsWg5mbTiNjx/sqrdTcIkaIggCVlUnNo/08YWrnf5Wn7VNaiLB0vFBmLfpLCSo+9VkTXK/dHyQXvdKMZOaYEwXD2w+lYSwCykY0N65ZZ7YQJdWHYjNRGR1NX4Oq/FEZOQanch/9tlnANQfCtatW1dnGr25uTn8/f2xbt067UdIDWLjtsbJLLx9Et+U81qFogztnmfAbC1M8f3M3njx1wvYGZmG5345j+yiCsweECB2aESNcjwuB2cS82BuaoJ5Q1pf06/RwR5YO71HvR4p7gbUI2VCV09sPpWEXdHpeHdSMCxMdbyMsWZp1a2zsmqWVj20US+TefWXVuolJKzGE1Fr0OhEPiEhAQAwdOhQbNu2DQ4ODjoLiu6MjdsazxjWSLY4WzftnmfgLEyl+HxqdzjbWmDD8et4d2cMsgrLsWR0xzo7eBDpG3WnenVi82gfX7i1omr8zUYHe+DeIHeD/fK7t78j3OwskKEox6HYLIzs7K67J7vr0iqJemlV4Di928Fk/+X/qvFcG284WJgiajqNt587cOCALuKgRqpp3HbrW2xN47a103swmb9JzRrJ9IKyBj+WSKCuzOjzGskW59dfPYVSkYaGP8xJ1Pf79W/pyERjUj1F19XOAh/ujsW6Q3HIKizHB1O6wEyqcasRohZxIj4H4ddzYS41wdOtfAsuQ95KTWoiwX0hnvjuaAJ2RKbpNpE30KVVdarx/f3gxGq8QWBhiqh5NE7kASA5ORlhYWFISkpCRUVFnfs+/fRTrQRG9d2tcZsE6sZt9wa589vMasawRrLFmUjV6yB/nQHcbtRGf6B31Rhdk0gkmD+kHZxtLfDqtihsPZuM3OJyfDmtB6zNm/SrlEinahKbqX184C5vndV4YzGhqzqR3xuTgZKKKt39zjHQpVX7LmUiKqUA1uZSzB3IarwhYGGKqPk0LiXt27cPHTt2xNq1a/HJJ5/gwIEDWL9+Pb7//nucP39eByFSDU0at9F/atZI3vpB1l1uyTeK2wmaoF4HaXfL2Nh56u36yJbyUC8ffP1YT1iameBAbBYe/eYU8oor7v5AohZ0Ii4H4QnqanxrXBtvbEK85fBzskZppRJ7YnSYRBvg0ipBELBqX02nen9W4w0AdxQi0g6Nv9J99dVXsXjxYixbtgwymQxbt26Fq6srpk2bhtGjR+siRqrGxm1NZ+hrJEURNEG9DjLxuLr6Yuumnk7fyirxDRneyQ0/PXkPZm04jfM38vHAuuPYOLsvvOytxA6NCACwujqxebi3Dzzk/Lk0dBKJBONDPPHFgWvYcSFVd7tnGODSqn2XMhGdooC1uRRzBrIRqSHgjkJE2qFxRf7SpUuYMWMGAMDU1BSlpaWwtbXFO++8g5UrV2o9QPoPG7c1T80ayYndvNCvrROT+MYwkarXQXZ5QP0nk/haPf0c8PvT/eAht0RcVjHuX3MMsemFYodFhJPxOTgZnwszqYTVeCMyoZsnAODQlSwUlFTq5klqllYB+G8BGur+XY+WVrEab5hYmCLSDo0TeRsbm9p18R4eHoiLi6u9Lzs7W3uRUT01jdtul35KoG4SwsZtRC2jvZsMW+f1R3tXW2QoyvHguuNc2kKiq+lU/1AvH3hylojR6OAmQ6C7DJVKAbsvpunuiQxoadXem6rx7FRvOFiYItIOjRP5e+65B0ePHgUAjB07Fi+++CLee+89zJo1C/fcc4/WA6T/1DRuA277PTkbtxG1ME97K/z2dD/09HOAoqwKj313Cv9eTBc7LGqlwhNycSI+B2ZSCeYPbSd2OKRl47uqq/JhF+7UWV4LgiYAi6KBx3cCU75T/7koSq+SeHWnenU1/vH+/nC0MRc5ImosFqaItEPjRP7TTz9F3759AQDLli3D8OHDsWXLFvj7++O7777TeoBUFxu3Eekfe2tzbJrdF8MDXVFepcLTmyKweu9VpOaXih0atTI1a+Mf7OXDng1GaHyIOpE/EZej+2nHer60ak9MBi6mKmBjLsUcdqo3KCxMEWmHRBCERreEVCqVOHbsGEJCQmBvb6/DsMSlUCggl8tRUFAAOzs7scNpkFIlsHEbkZ6pUqrw2vYo/HomufZYD197jAvxxNgu7mw6Rjp1+nouHlx3AmZSCQ4sHgJvB2uxQyIdmPTlMZy/kY+3xwdhZmjrbO4mCALGfX4UMWkKzB/SFi+PDhQ7JGoC7iNPVJ8meahGiTwAWFpa4tKlSwgIMN43D0NI5IlIPwmCgF/P3MDvEck4k5iHm3/D9vRzwLguHhjbxYP7epPWTf/2FI5ey8YjfXyx4v4uYodDOvL90QS8szMGPXztsW1+qNjhiOLfi+mY+2MEbMylOLpkGBw4rd5gsTBFVJcmeajG288FBwcjPj7eqBN5IqKmkkgkeLi3Lx7u7Yv0gjLsik7DX5FpOJOYh4jq2zs7Y9DLzwFjmdSTlkQk5uLotWyYmkgwn53qjdq4EA+8+1cMzibl40ZuCXwcW9fMC/XaeHVDx5mh/kziDVzNjkJEpDmNE/nly5dj8eLFePfdd9GzZ0/Y2NjUuZ8VbNJbKiX3RKcW5S63xBOhAXgiNABpBaXYFZWOv6PUSX3NrSapHxfigTHBTOqpaWoSmwd6ere6xK61cbOzxD0BTjgRn4MdkamYP6R1NTX8NyYDMWnqtfFPDuDaeCJqvTSeWm9i8l9/PInkv6kvgiBAIpFAqVRqLzqRcGq9EYoJA3YvARQ3dfq181Tvl6tHXXipdahJ6v+KSkNEYl7tcYkE6qS+iwfGdPGAmx2Terq7iMQ8TFl7HKYm6rXxTOSN38/hSXh1WxQ6edhh13MDxQ6nxdy8Nn7B0LZ4aRTXxhORcdHp1PoDBw40OTAiUcSEAb/OAHDLd1aKNPVxPdsXl4yfh9wKswYEYNaAAKTml2JXdDr+ikzF2aR8nL6eh9PX87BsZwx6+zlibBd3JvV0R6v3qavxU3qwGt9ajAl2x5t/RONSmgLXMgvRzlUmdkgt4p+L6mq8rYUpq/FE1OppXJFvDViRNyIqJbAquG4lvg6JujK/KIrT7El0qfml+DsqDX9HpeFsUn7tcYkE6O3nWD393h2uTOqp2rmkPExecxxSEwkOvDgEvk5M5FuLWRtOY//lTDw7rB1eGNlR7HB0TqUSMO5/R3EpTYGFQ9th8Sjjf81E1PpokodqvI88ABw5cgTTp09H//79kZKSAgD48ccfcfTo0aZcjkh3Eo/fIYkHAAFQpKjPIxKZp70VnhzYBtvmh+L4K8PwxrhO6O5rD0EAwq/nYmnYRfRdsQ8PfXUCG09c1/0+0qT3aqrx93f3YhLfykzoqt5TfkdkGlpDTebfmHRcqqnGD2TDZSIijRP5rVu3YtSoUbCyssLZs2dRXl4OACgoKMD777+v9QCJmqUoQ7vnEbWQmqR++/xQHLs1qU/IxVt/XkTf9/fhYSb1rdb5G/k4GJsFqYkEC4e1roZnBNwb5AZLMxMkZBcjOkUhdjg6pVL916n+iVB/2FuzUz0RkcaJ/PLly7Fu3Tp88803MDMzqz0eGhqKs2fPajU4omazddPueUQi8Gogqe/mo07qT92S1P/IpL7VWL33CgBgcncv+DnZ3OVsMjY2FqYY3kn93hV2IUXkaHTr35h0XE4vhK2FKWYPYDWeiAhoQrO72NhYDBo0qN5xuVyO/Px8bcREpD1+/dVr4BVpqNfsDkDtGnm//i0dGVGT1CT1Tw5sg+S8EuyKSsfOqDRcuJGPUwm5OJWgnoLfJ8AR40I8MbqzO1xkFmKHTVpQXF6FS2kKXExV4EJyPg7UVOOHshrfWo0P8cRfkWnYGZmGV8d0gomJ5O4PMjCsxhMRNUzjRN7d3R3Xrl2Dv79/neNHjx5FmzbsIEp6xkSq3mLu1xkAJKibzFd/4Bn9ARvdkUHydrDGnEFtMGdQG9zILcGu6DT8FZWOCzfycTI+Fyfjc7H0z2j0DXDC2BAPJvUGJL+kAhdTFbiYWoDoFAWiUwuQkF2MW5dCT+3tA39nVuNbqyEdXSCzMEVaQRnOJOahT4Cj2CFp3T8X1dV4GavxRER1aJzIz5kzB8899xy+//57SCQSpKam4sSJE1i8eDHefPNNXcRI1DxBE9RbzDW4j/wH3HqOjIKPozXmDmqLuYPa/pfUR6bhQnIBTsTn4ER8Tm1SPy7EA6OD3eFsy6ReH2QqyhCdWoCL1Qn7xVQFkvNKGzzX3c4SnT3t0NlLjhAvOYYFurZwtKRPLM2kGBXsjt8jkhF2IcXoEnmVSqht6MhqPBFRXRpvPycIAt5//32sWLECJSUlAAALCwssXrwY7777rk6CbGncfs5IqZTq7vRFGeo18X79WYkno3cjt6R2S7sLyQW1x00kwD1tnDC2C5P6liIIApLzSutU2S+mKpBVWN7g+b6O1gj2skNnT7k6efeUc0YF1XP4ShZmfB8ORxtznHptOMykTdqQSC/9HZWG+T+dhczCFEeXDIPc2uzuDyIiMmCa5KFN3ke+oqIC165dQ1FREYKCgmBra9ukYPURE3kiMkY1Sf1fUWmIbCCpH1c9/d6JSX2zKVUCErKLq5N2dcIenVIARVlVvXNNJEBbF1sEe/2XsAd52kFuxaSF7q5KqULf9/chp7gCG57ojSEdjWOWhkolYMzqI4jNKMSzw9vjhXs7iB0SEZHOtUgiDwA3btwAAPj4+DT1EnqJiTwRGbuknBL8XT39PiqlblLfr60TxnXxxKjObkzqG6GiSoWrmYW4mFK9pj1VgZhUBUorlfXONZNK0NFdhuCaKruXHJ3c7WBlztlB1HRv/hGNH08mYkoPb3zyUFexw9EKVuOJqDXSaSJfVVWFZcuW4fPPP0dRUREAwNbWFs888wyWLl1aZ0s6Q8VEnohak6ScEvxVPf3+5qReaiJBv+rp90zq1UorlLiUrsDFmip7agGupBehQqmqd66VmRRBnnbo7GmnTty97NDeVQZzU+OZ+kz64fT1XDy47gRkFqY4/cYIWJoZ9hdDrMYTUWulSR6qcbO7Z555Btu2bcOHH36Ifv36AQBOnDiBt99+Gzk5OVi7dm3ToiYiIlH4Ollj3pC2mDekbW1S/1dUKqJTFDh6LRtHr2XjzT+j0a96+v2ozu5wtDH+plMFpZWIqe4cXzM1Pi6rCKoGvv62szRFZ085gr3saqfIBzjbQmqE24GR/unp6wAPuSXSCspwMDYTo4M9xA6pWXZFpyM2oxAyS3aqJyK6HY0r8nK5HL/88gvGjBlT5/jff/+NRx55BAUFBbd5pOFgRZ6ICEjMKa6t1EenKGqPS00k6N/WCeO6qJN6ByNI6rOLymvXstc0o0vKLWnwXGdbC3XCXp24d/aUw9vBChIJk3YSz/t/X8LXh+Mxtos71kzrKXY4TaZSCRi9+jCuZBThueHt8Tyr8UTUiui0Im9hYVFvD3kACAgIgLm54X+YIyIiNT8nG8wf0g7zh7TD9ezi2jX1F1MVOHI1G0euZuP1P6INKqkXBAGpBWW4mKJey14zRT5dUdbg+V72VrVJe+fqP13tLFs4aqK7m9DVE18fjse+S5koKq+CrYXGH/H0wt/RabiSUQSZpSlmsRpPRHRbGlfk33nnHVy+fBnr16+HhYV6vWR5eTlmz56N9u3bY+nSpToJtCWxIk9EdHvXs9WV+r8i0xCTVr9Sf1+IB0YGiZ/Uq1QCrucU165lj6meHp9XUlnvXIkECHC2qW1CVzM9nvtWk6EQBAHDPzmE+OxifPZwV0zu7i12SBpTqQSMWnUYVzOLsGhEeywawWo8EbUuOm12N3nyZOzbtw8WFhbo2lXdGfXChQuoqKjA8OHD65y7bds2DUPXD0zkiYgaJyG7WL2l3S1JvamJBP3bOeO+Lh4Y2dlN5wlxlVKFa1lF6v3ZU9RJe0yaAkXl9bd7MzWRoL2brLoJnTpp7+RhBxsDrWAS1fh0zxV8vu8qhnZ0wfon+ogdjsZ2RqZi4eZzkFlWd6rnFoxE1MroNJF/4oknGn3u+vXrNbm03mAiT0SkuZqkfmdkGi7dktSHtnPGOC0l9WWVSsSmFyK6ugndxZQCXEovREVV/c7xFqYm6ORhV1tlD/aUo72brcF39SZqyLXMIoz49BBMTSQ4/foI0WfFaEKpEjC6uhr//IgOeG5Ee7FDIiJqcS22j3xzrVixAtu2bcPly5dhZWWF/v37Y+XKlejYsSMAIDc3F0uXLsW///6LpKQkuLi4YNKkSXj33Xchl8tve92ZM2fihx9+qHNs1KhR2L17d6PiYiJPRNQ88VlF6kp9VHrDSX2IB0YFud91b+ii8qraKfE1jeiuZhZB2UDreJmFKTp51m1C19bFBqZSbvdGrcfY1UcQk6bA+5O74NG+vmKH02g7LqTimZ/Pwc7SFEdYjSeiVkqnze606dChQ1iwYAF69+6NqqoqvPbaaxg5ciRiYmJgY2OD1NRUpKam4uOPP0ZQUBASExPx9NNPIzU1Fb///vsdrz169Og6MwJq1vMTEZHutXGxxcJh7bFwWPvapH5nZBoupxfi0JUsHLqShddMojCgvbN6n/ogdygFoc5WbxdTFUjILm7w+o425nXWsgd7yuHraA0TbvdGrdyEbp6ISVMg7EKKwSTySpWA1fuuAgBmD2jDJJ6IqBE0rsjn5OTgrbfewoEDB5CZmQmVqu5Uxtzc3CYHk5WVBVdXVxw6dAiDBg1q8JzffvsN06dPR3FxMUxNG/4eYubMmcjPz8cff/zRpDhYkSci0o24rCL8HZmGv6LUSX0NEwka3J8dADzklrV7tNf86W5nye3eiBqQnFeCASsPQCIBTrwyHO5y/d9lIexCKp6trsYffWUY7CyZyBNR66TTivxjjz2Ga9euYfbs2XBzc9PqB6maPegdHR3veI6dnd1tk/gaBw8ehKurKxwcHDBs2DAsX74cTk5ODZ5bXl6O8vLy2r8rFIoGzyMiouZp62KLZ4a3xzPD2zeY1Ps7WaPzTVX2zp52cLLljCqixvJ2sEZPPwdEJObhr6g0zNbzLdyUKgGfV1fjnxzYhkk8EVEjaVyRl8lkOHr0aG3Hem1RqVSYMGEC8vPzcfTo0QbPyc7ORs+ePTF9+nS89957t73WL7/8AmtrawQEBCAuLg6vvfYabG1tceLECUil9Rscvf3221i2bFm946zIExG1jLSCUthYmPJDPJEW/HD8OpaGXURXH3v8uSBU7HDu6M/zKXjul/OsxhMRQcfN7nr37o3//e9/uOeee5oV5K3mzZuHXbt24ejRo/D2rr/3qUKhwL333gtHR0eEhYXBzKzxv+jj4+PRtm1b7N27t94WeUDDFXkfHx8m8kRERGRwsgrL0ff9vVAJwKGXhsDPyUbskBqkVAkY+dkhxGUV48V7O+CZ4exUT0StmyaJvMatfNesWYPXX38dhw4dQk5ODhQKRZ1bUyxcuBA7d+7EgQMHGkziCwsLMXr0aMhkMmzfvl2jJB4A2rRpA2dnZ1y7dq3B+y0sLGBnZ1fnRkRERGSIXGQW6N/WGYC6G7y+2hmZirisYsitzPB4qL/Y4RARGRSNE3l7e3soFAoMGzasdg26g4MD7O3t4eDgoNG1BEHAwoULsX37duzfvx8BAfXXcSkUCowcORLm5uYICwuDpaXmTVuSk5ORk5MDDw8PjR9LREREZGgmdPUEAOy4kCZyJA2rszZ+QACn1BMRaUjjZnfTpk2DmZkZNm/e3OxmdwsWLMDmzZvx559/QiaTIT09HQAgl8thZWVVm8SXlJRg06ZNdar+Li4utevdAwMDsWLFCkyePBlFRUVYtmwZpkyZAnd3d8TFxeHll19Gu3btMGrUqCbHSkRERGQoRgW7440/ohGbUYjY9EJ0dJeJHVIdN1fjZ7IaT0SkMY0T+ejoaJw7dw4dO3Zs9pOvXbsWADBkyJA6x9evX4+ZM2fi7NmzOHXqFACgXbt2dc5JSEiAv78/ACA2Nra2471UKkVkZCR++OEH5Ofnw9PTEyNHjsS7777LveSJiIioVZBbmWFwRxfsiclA2IUUvOQeKHZItW7eN37OwADIWI0nItKYxol8r169cOPGDa0k8nfrszdkyJC7nnPrdaysrPDPP/80OzYiIiIiQza+qyf2xGRgx4U0LB7ZUatbBjfHjgupiM8qhr21GR7v7y92OEREBknjRP6ZZ57Bc889h5deegldunSp13guJCREa8ERERERUdOM6OQKKzMpknJLcCG5AN187MUOqc7a+DkD27AaT0TURBon8g8//DAAYNasWbXHJBIJBEGARCKBUqnUXnRERERE1CTW5qa4N8gNYRdSEXY+VS8S+R0XUhGfra7Gz+jnJ3Y4REQGS+NEPiEhQRdxEBEREZGWje/qibALqdgZmYrXx3WC1ES86fVVSpVxV+NVSiDxOFCUAdi6AX79AROp2FERkZHSOJH38+O3p0RERESGYFAHZ9hZmiKzsBynEnJq95cXw47I/6rxRrc2PiYM2L0EUKT+d8zOExi9EgiaIF5cRGS0NN5HHgB+/PFHhIaGwtPTE4mJiQCAVatW4c8//9RqcERERETUdBamUowJ9gAg7p7y6mr8NQDqarythca1JP0VEwb8OqNuEg8AijT18ZgwceIiIqOmcSK/du1avPDCCxg7dizy8/Nr18Tb29tj1apV2o6PiIiIiJphQjdPAMCu6DRUVKlEiSHsQioSsovhYGzVeJVSXYlHQ7ssVR/b/Yr6PCIiLdI4kf/f//6Hb775Bq+//jqk0v/W/fTq1QtRUVFaDY6IiIiImueeNk5wtrVAfkkljl7LavHnr1Kq8L/91dX4QUZWjU88Xr8SX4cAKFLU5xERaZHGiXxCQgK6d+9e77iFhQWKi4u1EhQRERERaYfURIL7QsSbXv/n+f+q8TP6+bf48+tUUYZ2zyMiaiSNE/mAgACcP3++3vHdu3ejU6dO2oiJiIiIiLRofFf19Pp/L6ajtKLlpnmrq/HqTvVzB7U1rmo8oO5Or83ziIgaqdGJ/DvvvIOSkhK88MILWLBgAbZs2QJBEBAeHo733nsPr776Kl5++WVdxkpERERETdDD1x5e9lYorlBi/+XMFnveP8+n4npOSXU13gh3PvLrr+5Oj9tt6ycB7LzU5xERaVGjE/lly5ahqKgITz75JFauXIk33ngDJSUlePTRR7F27VqsXr0aU6dO1WWsRERERNQEEomktiofdiGlRZ7z1mq8jbFV4wH1PvGjV1b/5dZkvvrvoz/gfvJEpHWNTuQF4b9unNOmTcPVq1dRVFSE9PR0JCcnY/bs2ToJkIiIiIiab0J1In8gNguKskqdP98f1dV4Rxtz46zG1wiaADy0EbDzqHvczlN9nPvIE5EOaPTVqERS95tGa2trWFtbazUgIiIiItK+Th4ytHO1xbXMIvx7MQMP9PTW2XPVrca3Mc5q/M2CJgCB49Td6Ysy1Gvi/fqzEk9EOqPRb9UOHTrUS+ZvlZub26yAiIiIiEj7JBIJJnT1xKd7riDsQqpOE/nt51KQWF2Nf+weI67G38xECgQMFDsKImolNErkly1bBrlcrqtYiIiIiEiHxlcn8seuZSOnqBxOthZaf44qpQpfHFDvG/9Ua6jGExGJQKPfrFOnToWrq6uuYiEiIiIiHQpwtkEXLzmiUgrwd3S6Tqrldarxxrw2nohIRI1udne3KfVEREREpP9qmt7tOJ+q9WtXKlX43/7/qvHW5qzGExHpQpO61hMRERGRYbqvq7q7evj1XKTml2r12tvPpSAptwROrMYTEelUoxN5lUrFafVEREREBs5DboU+/o4AgJ2R2qvKVypV+KKmGj+Y1XgiIl1qdCJPRERERMZhfLfq6fUX0rR2ze1n1dV4Z1tzTG8tneqJiETCRJ6IiIiolRkb7A6piQRRKQVIyC5u9vUqlSr874B63/inBrVlNZ6ISMeYyBMRERG1Mk62Fght5wwACNNC07ttZ5NxI7cUzrbmmHaPb7OvR0REd8ZEnoiIiKgVquleH3YhpVlNjet2qmc1noioJTCRJyIiMjQqJZBwBIj6Xf2nSil2RGSARnV2g7mpCeKyinEprbDJ19l2NhnJeaVcG09E1IL4lSkREZEhiQkDdi8BFDdNh7bzBEavBIImiBcXGRyZpRmGdXTF7ovpCLuQiiBPO42vUVH1XzX+6cFtYWUu1XaYRETUAFbkiYiIDEVMGPDrjLpJPAAo0tTHY8LEiYsM1viuNd3rU5s0vf6/arwFpvVlNZ40xNlFRE3GijwREZEhUCnVlXg0lGwJACTA7leAwHGACaui1DjDO7nCxlyKlPxSnE3KR08/h0Y/tqJKhS8O1FTj27AaT5rh7CKiZmFFnoiIyBAkHq9fia9DABQp6vOIGsnSTIqRnd0BqKvymtjKajw1FWcXETUbE3kiIiJDUJSh3fOIqtV0r98ZmYYqpapRj6moUuGL6rXx84ZwbTxp4K6zi6CeXcRp9kR3xESeiIjIENi6afc8omqh7Zxhb22G7KJynIzPbdRjtp5NRkp+KVxkFpjWl/vGkwY4u4hIK7hGvhmUSiUqKyvFDoOoHjMzM0ilrI4QGRW//ur1o4o0NFzJkqjv9+vf0pGRgTM3NcGYYA/8HJ6EHRdSMaC98x3Pv7ka//TgtrA04/sNaYCzi4i0gol8EwiCgPT0dOTn54sdCtFt2dvbw93dHRKJROxQiEgbTKTqJlC/zgAgQd1kvvr/+egP2OiOmmRCV0/8HJ6EXdFpeGdSZ1iY3v7n6PcIVuOpGTi7iEgrmMg3QU0S7+rqCmtrayZKpFcEQUBJSQkyMzMBAB4eHiJHRERaEzQBeGjjbTo9f8BOz9RkfQIc4WZngQxFOQ5fyca9QQ0nURVVKnxZ3al+Hqvx1BScXUSkFUzkNaRUKmuTeCcnJ7HDIWqQlZUVACAzMxOurq6cZk9kTIImqLeYSzyunnpq66b+wMtKPDWD1ESCcV088f2xBIRdSL1tIv9bxA2k5JfCVWaBR1mNp6bg7CIirWCzOw3VrIm3trYWORKiO6v5GWUfByIjZCIFAgYCXR5Q/8kPvKQFE7qpu9fvjclASUVVvfsrqlT48qZO9azGU5PVzC6yu2XWoJ2n+jhnFxHdFSvyTcTp9KTv+DNKRESa6Ooth5+TNRJzSrD3UmbttnQ1fou4gdSCMrjKLPBIH1bjqZk4u4ioWUStyK9YsQK9e/eGTCaDq6srJk2ahNjY2Nr7c3Nz8cwzz6Bjx46wsrKCr68vnn32WRQUFNzxuoIg4K233oKHhwesrKwwYsQIXL16Vdcvh4iIiMhgSSQSjA9RJ+9h5+tuD1ZepWQ1nrSPs4uImkzURP7QoUNYsGABTp48iT179qCyshIjR45EcXExACA1NRWpqan4+OOPER0djQ0bNmD37t2YPXv2Ha/74Ycf4vPPP8e6detw6tQp2NjYYNSoUSgrK2uJl2Xw/P39sWrVKrHD0JqDBw9CIpFwlwEiIqK7GF9dhT90JRMFJf8tzfrtTDKr8UREekTURH737t2YOXMmOnfujK5du2LDhg1ISkpCREQEACA4OBhbt27F+PHj0bZtWwwbNgzvvfceduzYgaqq+mu3AHU1ftWqVXjjjTcwceJEhISEYOPGjUhNTcUff/zRgq9OP924cQOzZs2Cp6cnzM3N4efnh+eeew45OTlih6YVQ4YMwaJFi+oc69+/P9LS0iCXy8UJioiIyEB0dJeho5sMlUoB/1xMB1Bdja/uVD+f1XgiIr2gV83uaqbMOzo63vEcOzs7mJo2vLw/ISEB6enpGDFiRO0xuVyOvn374sSJEw0+pry8HAqFos7NGMXHx6NXr164evUqfv75Z1y7dg3r1q3Dvn370K9fP+Tm5ooSl1KphEql0tn1zc3NuZ86ERFRI9U0vQu7oJ5e/+uZZKQVlMHNzgJTWY0nItILepPIq1QqLFq0CKGhoQgODm7wnOzsbLz77ruYO3fuba+Tnq7+9tjNre62KW5ubrX33WrFihWQy+W1Nx8fnya+Cv22YMECmJub499//8XgwYPh6+uLMWPGYO/evUhJScHrr79ee25hYSEeeeQR2NjYwMvLC19++WXtfYIg4O2334avry8sLCzg6emJZ599tvb+8vJyLF68GF5eXrCxsUHfvn1x8ODB2vs3bNgAe3t7hIWFISgoCBYWFvj2229haWlZb/r7c889h2HDhgEAcnJy8Mgjj8DLywvW1tbo0qULfv7559pzZ86ciUOHDmH16tWQSCSQSCS4fv16g1Prt27dis6dO8PCwgL+/v745JNP6jyvv78/3n//fcyaNQsymQy+vr74+uuva++vqKjAwoUL4eHhAUtLS/j5+WHFihVN+nchavVUSiDhCBD1u/pPlVLsiIhatftC1J3Ej8dlIyW/FGtqq/HtWI0nItITepPIL1iwANHR0fjll18avF+hUGDcuHEICgrC22+/rdXnfvXVV1FQUFB7u3HjhkaPFwQBJRVVLX4TBOHuwVXLzc3FP//8g/nz59fuMV7D3d0d06ZNw5YtW2qv+dFHH6Fr1644d+4cXnnlFTz33HPYs2cPAHUS/Nlnn+Grr77C1atX8ccff6BLly6111u4cCFOnDiBX375BZGRkXjwwQcxevToOg0HS0pKsHLlSnz77be4ePEipk2bBnt7e2zdurX2HKVSiS1btmDatGkAgLKyMvTs2RN//fUXoqOjMXfuXDz22GMIDw8HAKxevRr9+vXDnDlzkJaWhrS0tAa/lImIiMBDDz2EqVOnIioqCm+//TbefPNNbNiwoc55n3zyCXr16oVz585h/vz5mDdvXm0zxs8//xxhYWH49ddfERsbi59++gn+/v6N/vcgomoxYcCqYOCH+4Cts9V/rgpWHyciUfg52aCrjz1UAvD0jxFIKyiDu50lHu5tnIUOIiJDpBfbzy1cuBA7d+7E4cOH4e3tXe/+wsJCjB49GjKZDNu3b4eZmdltr+Xu7g4AyMjIgIfHf3tTZmRkoFu3bg0+xsLCAhYWFk2Ov7RSiaC3/mny45sq5p1RsDZv3D/h1atXIQgCOnXq1OD9nTp1Ql5eHrKysgAAoaGheOWVVwAAHTp0wLFjx/DZZ5/h3nvvRVJSEtzd3TFixAiYmZnB19cXffr0AQAkJSVh/fr1SEpKgqenemre4sWLsXv3bqxfvx7vv/8+APXe5mvWrEHXrl1rY5g6dSo2b95c28xw3759yM/Px5QpUwAAXl5eWLx4ce35zzzzDP755x/8+uuv6NOnD+RyOczNzWFtbV37c9CQTz/9FMOHD8ebb75Z+/piYmLw0UcfYebMmbXnjR07FvPnzwcALFmyBJ999hkOHDiAjh07IikpCe3bt8eAAQMgkUjg5+fXqH8HIrpJTBjw6wwAt3wpqUhTH+dewkSimdDVExdu5CMqRb3scf5Qro0nItInolbkBUHAwoULsX37duzfvx8BAQH1zlEoFBg5ciTMzc0RFhYGS0vLO14zICAA7u7u2LdvX51rnDp1Cv369dP6azA0ja3i3zpW/fr1w6VLlwAADz74IEpLS9GmTRvMmTMH27dvr20+GBUVBaVSiQ4dOsDW1rb2dujQIcTFxdVez9zcHCEhIXWeY9q0aTh48CBSU9Vr8n766SeMGzcO9vb2ANQV+nfffRddunSBo6MjbG1t8c8//yApKUmjMbh06RJCQ0PrHAsNDcXVq1ehVP43pffm+CQSCdzd3ZGZmQlAPY3//Pnz6NixI5599ln8+++/GsVA1OqplMDuJaiXxAP/Hdv9CqfZE4nkvhAP1LSWcbezxEO9WI0nItInolbkFyxYgM2bN+PPP/+ETCarXcMul8thZWVVm8SXlJRg06ZNdRrRubi4QCpVfzMcGBiIFStWYPLkyZBIJFi0aBGWL1+O9u3bIyAgAG+++SY8PT0xadIknbwOKzMpYt4ZpZNr3+15G6tdu3aQSCS4dOkSJk+eXO/+S5cuwcHBAS4uLne9lo+PD2JjY7F3717s2bMH8+fPx0cffYRDhw6hqKgIUqkUERERtf8+NWxtbf+L3cqqXvO53r17o23btvjll18wb948bN++vc50948++girV6/GqlWr0KVLF9jY2GDRokWoqKho9Dho4taZHxKJpLYpX48ePZCQkIBdu3Zh7969eOihhzBixAj8/vvvOomFyOgkHgcUqXc4QQAUKerzAga2WFhEpOZmZ4kB7Zxx5Go2Fgzj2ngiIn0jaiK/du1aAOotw262fv16zJw5E2fPnsWpU6cAqBPRmyUkJNSuSY6Nja3teA8AL7/8MoqLizF37lzk5+djwIAB2L17912r+U0lkUgaPcVdLE5OTrj33nuxZs0aPP/883XWyaenp+Onn37CjBkzapPrkydP1nn8yZMn60zLt7Kywvjx4zF+/HgsWLAAgYGBiIqKQvfu3aFUKpGZmYmBAzX/8D1t2jT89NNP8Pb2homJCcaNG1d737FjxzBx4kRMnz4dgLpB4pUrVxAUFFR7jrm5eZ2qekM6deqEY8eO1Tl27NgxdOjQod6XD3diZ2eHhx9+GA8//DAeeOABjB49Grm5uXfcdYGIqhVlaPc8ItK6zx7uhqjkAgzpePcv+YmIqGWJmn3ebZr3kCFDGjUV/NZzJBIJ3nnnHbzzzjvNis/YfPHFF+jfvz9GjRqF5cuXIyAgABcvXsRLL70ELy8vvPfee7XnHjt2DB9++CEmTZqEPXv24LfffsNff/0FQN11XqlUom/fvrC2tsamTZtgZWUFPz8/ODk5Ydq0aZgxYwY++eQTdO/eHVlZWdi3bx9CQkLqJOYNmTZtGt5++2289957eOCBB+r0Lmjfvj1+//13HD9+HA4ODvj000+RkZFRJ5H39/fHqVOncP36ddja2jaYVL/44ovo3bs33n33XTz88MM4ceIEvvjiC6xZs6bRY/npp5/Cw8MD3bt3h4mJCX777Te4u7vXLgMgoruwdbv7OZqcR0Ra52xrgaGBrmKHQUREDdCbrvWke+3bt8eZM2fQpk0bPPTQQ2jbti3mzp2LoUOH4sSJE3WS3hdffBFnzpxB9+7dsXz5cnz66acYNUq9fMDe3h7ffPMNQkP/3969x+V8938Af307n7tE55OsJNKtclhrpHvIOafN7TA1hhExDN1zT7q5Z5M5/GbZblxtDptsuNNttYZIYpjCJHGXRGZOHbRIfX9/dPe9d6lIruvqung9H4/rwffz/Xw/h8snV+/r8/l+voHw8fHBjz/+iD179qB169YAaldUTJgwAXPnzoWnpyeGDRuG48ePw8Xlyc+edXd3R/fu3XH69Glpt/o6ixYtgp+fH0JCQtC7d2/Y2dnVu11i3rx50NXVRceOHWFtbd3g/fN+fn5ISEjAN998A29vb3zwwQeIiYlR2OjuSczNzfHxxx+ja9eu6NatGwoKCrB3717o6PBHiqhJXF8BLBwACI1kEAALx9p8RERERKRAEJ/mGWYviNLSUlhaWqKkpAQWFhYK5yorK5Gfnw83NzeVLdUnUgaOVdJ40q71gOKmd/8N7rlrPREREb1AHheHPorTh0RE1DI6Dq0N1i3sFdMtHBjEExERET2GZu/QRkREz7eOQ4EOg2p3py//tfaeeNdXAB3ukE1ERETUGAbyRETUsnR0+Yg5IiIioqfApfVEREREREREWoSBPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgTwRERERERGRFmEgT0oXHh6OYcOGSce9e/fG7Nmzn6lMZZRBRERERET0PGAg/wIJDw+HIAgQBAEGBgZwd3dHTEwMHj58qNJ6d+7cib///e9NypuWlgZBEHD37t1ml6Eq0dHR6NKlS6Pn8/PzMXbsWDg4OMDIyAhOTk4IDQ3F+fPnER8fL733jb0KCgoQHR0NQRDQv3//euWvWLECgiCgd+/equskERERERFpPL2WbsCLqrpGxE/5t3GjrBI25kbo7mYFXR1B5fX2798fcrkc9+/fx969exEREQF9fX1ERUUp5Hvw4AEMDAyUUqeVlZVGlKFKVVVV6Nu3Lzw9PbFz507Y29ujqKgI33//Pe7evYvRo0crBOcjRoyAt7c3YmJipDRra2sAgL29PQ4cOICioiI4OTlJ5zdt2gQXFxf1dYqIiIiIiDQSZ+RbQPLZYrz60X6M+edRzPomC2P+eRSvfrQfyWeLVV63oaEh7Ozs4OrqimnTpqFPnz5ITEyUlsMvW7YMDg4O8PT0BABcuXIFb7zxBmQyGaysrBAaGoqCggKpvOrqasyZMwcymQytW7fG/PnzIYqiQp2PLou/f/8+FixYAGdnZxgaGsLd3R0bN25EQUEBgoODAQCtWrWCIAgIDw9vsIw7d+5gwoQJaNWqFUxMTDBgwADk5eVJ5+Pj4yGTyZCSkgIvLy+YmZmhf//+KC7+33uclpaG7t27w9TUFDKZDIGBgbh8+XKz3tdffvkFly5dwmeffYaXX34Zrq6uCAwMxNKlS/Hyyy/D2NgYdnZ20svAwAAmJiYKabq6ugAAGxsb9OvXD19++aVU/pEjR3Dz5k0MGjSoWe0jIiIiIqLnBwN5NUs+W4xpW35GcUmlQvr1kkpM2/KzWoL5PzI2NsaDBw8AAPv27UNubi5SU1ORlJSEqqoqhISEwNzcHOnp6cjIyJAC4rprVq5cifj4eGzatAmHDx/G7du3sWvXrsfWOWHCBHz99ddYu3YtcnJy8Pnnn8PMzAzOzs747rvvAAC5ubkoLi7GmjVrGiwjPDwcJ06cQGJiIjIzMyGKIgYOHIiqqiopT0VFBWJjY7F582YcOnQIhYWFmDdvHgDg4cOHGDZsGIKCgnD69GlkZmZiypQpEITmrYqwtraGjo4Ovv32W1RXVzerjD+aOHEi4uPjpeNNmzZh3LhxSlslQURERERE2otL69WoukbEkj3nIDZwTgQgAFiy5xz6drRT+TJ7URSxb98+pKSkYObMmfjtt99gamqKDRs2SMHili1bUFNTgw0bNkgBrlwuh0wmQ1paGvr164fVq1cjKioKI0aMAACsX78eKSkpjdZ74cIFJCQkIDU1FX369AEAtGvXTjpft4TexsYGMpmswTLy8vKQmJiIjIwMvPLKKwCArVu3wtnZGbt378brr78OoHa5+/r16/HSSy8BAGbMmCEtZS8tLUVJSQkGDx4snffy8nr6N/K/HB0dsXbtWsyfPx9LlixB165dERwcjHHjxin0r6kGDx6Md955B4cOHYK/vz8SEhJw+PBhbNq0qdltJCIiIiKi5wNn5NXop/zb9Wbi/0gEUFxSiZ/yb6usDUlJSTAzM4ORkREGDBiA0aNHIzo6GgDQuXNnhRnf7OxsXLx4Eebm5jAzM4OZmRmsrKxQWVmJS5cuoaSkBMXFxejRo4d0jZ6eHrp27dpo/VlZWdDV1UVQUFCz+5CTkwM9PT2Felu3bg1PT0/k5ORIaSYmJlKQDtTee37jxg0AtV8YhIeHIyQkBEOGDMGaNWukZfeFhYVSf83MzPCPf/yjSe2KiIjA9evXsXXrVgQEBGDHjh3o1KkTUlNTn7qP+vr6GD9+PORyOXbs2IH27dvDx8fnqcshIiIiIqLnD2fk1ehGWeNBfHPyNUdwcDDi4uJgYGAABwcH6On9bwiYmpoq5C0vL4e/vz+2bt1ar5y6jdmelrGxcbOuaw59fX2FY0EQFO7fl8vliIyMRHJyMrZv345FixYhNTUVXbt2RVZWlpTvaTbaMzc3x5AhQzBkyBAsXboUISEhWLp0Kfr27fvU7Z84cSJ69OiBs2fPYuLEiU99PRERERERPZ84I69GNuZGSs3XHKampnB3d4eLi4tCEN8QPz8/5OXlwcbGBu7u7govS0tLWFpawt7eHseOHZOuefjwIU6ePNlomZ07d0ZNTQ0OHjzY4Pm6FQGPu8/cy8sLDx8+VKj31q1byM3NRceOHR/bp0f5+voiKioKR44cgbe3N7Zt2wY9PT2FvjZ3x3xBENChQwfcu3evWdd36tQJnTp1wtmzZzF27NhmlUFERERERM8fBvJq1N3NCvaWRmjs7ncBgL1l7aPoNMG4cePQpk0bhIaGIj09Hfn5+UhLS0NkZCSKiooAALNmzcLy5cuxe/dunD9/HtOnT6/3DPg/atu2LcLCwjBx4kTs3r1bKjMhIQEA4OrqCkEQkJSUhN9++w3l5eX1yvDw8EBoaCgmT56Mw4cPIzs7G+PHj4ejoyNCQ0Ob1Lf8/HxERUUhMzMTly9fxg8//IC8vLwn3if/+++/IysrS+F16dIlZGVlITQ0FN9++y3OnTuHixcvYuPGjdi0aVOT29SQ/fv3o7i4uNH9AoiIiIiI6MXDQF6NdHUELB5SO2P8aDBfd7x4SEe1PE++KUxMTHDo0CG4uLhgxIgR8PLywqRJk1BZWQkLCwsAwNy5c/Hmm28iLCwMAQEBMDc3x/Dhwx9bblxcHEaNGoXp06ejQ4cOmDx5sjRr7ejoiCVLlmDhwoWwtbXFjBkzGixDLpfD398fgwcPRkBAAERRxN69e+stp39c386fP4+RI0eiffv2mDJlCiIiIjB16tTHXnfhwgX4+voqvKZOnQonJye0bdsWS5YsQY8ePeDn54c1a9ZgyZIleP/995vUpobUPRqPiIiIiIiojiA++tBvQmlpKSwtLVFSUiIFrHUqKyuRn58PNzc3GBk1bwl88tliLNlzTmHjO3tLIywe0hH9ve2fqe1EdZQxVomIiIiISD0eF4c+ipvdtYD+3vbo29EOP+Xfxo2yStiY1y6n15SZeCIiIiIiItJcDORbiK6OgICXWrd0M4iIiIiIiEjL8B55IiIiIiIiIi3CQJ6IiIiIiIhIizCQJyIiIiIiItIiDOSJiIiIiIiItAgDeSIiIiIiIiItwkCeiIiIiIiISIswkCciIiIiIiLSIgzkSYEgCNi9ezcAoKCgAIIgICsrq0Xb1BhNbx8REREREZEqMJB/wVy/fh0zZ85Eu3btYGhoCGdnZwwZMgT79u2rl9fZ2RnFxcXw9vZWaZsYkBMRERERETWdXks34EVVXV2N9PR0FBcXw97eHj179oSurq5K6ywoKEBgYCBkMhlWrFiBzp07o6qqCikpKYiIiMD58+cV8uvq6sLOzk6lbSIiIiIiIqKnwxn5FrBz5060bdsWwcHBGDt2LIKDg9G2bVvs3LlTpfVOnz4dgiDgp59+wsiRI9G+fXt06tQJc+bMwdGjR+vlf3SmPC0tDYIgICUlBb6+vjA2Nsaf//xn3LhxA99//z28vLxgYWGBsWPHoqKiQionOTkZr776KmQyGVq3bo3Bgwfj0qVL0nk3NzcAgK+vLwRBQO/evQEANTU1iImJgZOTEwwNDdGlSxckJyc/to8HDx5E9+7dYWhoCHt7eyxcuBAPHz6UzpeVlWHcuHEwNTWFvb09Vq1ahd69e2P27NkAgJiYmAZXIHTp0gV/+9vfmvQ+ExERERERqVKLBvIffvghunXrBnNzc9jY2GDYsGHIzc1VyPPFF1+gd+/esLCwgCAIuHv37hPLjY6OhiAICq8OHTqoqBdPZ+fOnRg1ahSKiooU0q9evYpRo0apLJi/ffs2kpOTERERAVNT03rnZTJZk8uKjo7Gp59+iiNHjuDKlSt44403sHr1amzbtg3//ve/8cMPP+D//u//pPz37t3DnDlzcOLECezbtw86OjoYPnw4ampqAAA//fQTAODHH39EcXGx9B6sWbMGK1euRGxsLE6fPo2QkBAMHToUeXl5Dbbr6tWrGDhwILp164bs7GzExcVh48aNWLp0qZRnzpw5yMjIQGJiIlJTU5Geno6ff/5ZOj9x4kTk5OTg+PHjUtqpU6dw+vRpvPXWW01+j4iIiIiIiFSlRQP5gwcPIiIiAkePHkVqaiqqqqrQr18/3Lt3T8pTUVGB/v37469//etTld2pUycUFxdLr8OHDyu7+U+turoas2bNgiiK9c7Vpc2ePRvV1dVKr/vixYsQRVEpX2gsXboUgYGB8PX1xaRJk3Dw4EHExcXB19cXPXv2xKhRo3DgwAEp/8iRIzFixAi4u7ujS5cu2LRpE86cOYNz584BAKytrQEArVu3hp2dHaysrAAAsbGxWLBgAf7yl7/A09MTH330Ebp06YLVq1c32K7PPvsMzs7O+PTTT9GhQwcMGzYMS5YswcqVK1FTU4OysjJ8+eWXiI2NxWuvvQZvb2/I5XKF99vJyQkhISGQy+VSmlwuR1BQENq1a/fM7x0REREREdGzatF75B9dJh0fHw8bGxucPHkSvXr1AgBpyXNaWtpTla2np6dx93enp6fXm4n/I1EUceXKFaSnp0vLy5WloS8PmsvHx0f6u62tLUxMTBSCXFtbW2mWHQDy8vLwwQcf4NixY7h586Y0E19YWNjoRnqlpaW4du0aAgMDFdIDAwORnZ3d4DU5OTkICAiAIAgK+cvLy1FUVIQ7d+6gqqoK3bt3l85bWlrC09NToZzJkydj4sSJ+OSTT6Cjo4Nt27Zh1apVT3pbiIiIiIiI1EKjNrsrKSkBAGlG9lnk5eXBwcEBRkZGCAgIwIcffggXF5cG896/fx/379+XjktLS5+5/oYUFxcrNd/T8PDwgCAI9Ta0aw59fX3p74IgKBzXpdUF6wAwZMgQuLq64p///CccHBxQU1MDb29vPHjw4JnbogpDhgyBoaEhdu3aBQMDA1RVVWHUqFEt3SwiIiIiIiIAGrTZXU1NDWbPno3AwMBnftxZjx49EB8fj+TkZMTFxSE/Px89e/ZEWVlZg/k//PBDWFpaSi9nZ+dnqr8x9vb2Ss33NKysrBASEoJ169Yp3LpQpyl7DzTHrVu3kJubi0WLFuG1116Dl5cX7ty5o5DHwMAAABSWuFtYWMDBwQEZGRkKeTMyMtCxY8cG6/Ly8kJmZqbC6oOMjAyYm5vDyckJ7dq1g76+vsL97yUlJbhw4YJCOXp6eggLC4NcLodcLsdf/vIXGBsbN+8NICIiIiIiUjKNmZGPiIjA2bNnlXIv+4ABA6S/+/j4oEePHnB1dUVCQgImTZpUL39UVBTmzJkjHZeWlqokmO/ZsyecnJxw9erVBpe6C4IAJycn9OzZU+l1A8C6desQGBiI7t27IyYmBj4+Pnj48CFSU1MRFxeHnJwcpdfZqlUrtG7dGl988QXs7e1RWFiIhQsXKuSxsbGBsbExkpOT4eTkBCMjI1haWuK9997D4sWL8dJLL6FLly6Qy+XIysrC1q1bG6xr+vTpWL16NWbOnIkZM2YgNzcXixcvxpw5c6CjowNzc3OEhYXhvffeg5WVFWxsbLB48WLo6OgoLMcHgLfffhteXl4AUO/LBCIiIiIiopakETPyM2bMQFJSEg4cOAAnJyelly+TydC+fXtcvHixwfOGhoawsLBQeKmCrq4u1qxZAwD1Ase649WrV6vsefLt2rXDzz//jODgYMydOxfe3t7o27cv9u3bh7i4OJXUqaOjg2+++QYnT56Et7c33n33XaxYsUIhj56eHtauXYvPP/8cDg4OCA0NBQBERkZizpw5mDt3Ljp37ozk5GQkJibCw8OjwbocHR2xd+9e/PTTT/jTn/6Ed955B5MmTcKiRYukPJ988gkCAgIwePBg9OnTB4GBgfDy8oKRkZFCWR4eHnjllVfQoUMH9OjRQ8nvChERERERUfMJojJ3QXtKoihi5syZ2LVrF9LS0hoN0IDaze6Cg4Nx586dp3pUGgCUl5fDxcUF0dHRiIyMfGL+0tJSWFpaoqSkpF5QX1lZifz8fLi5udUL/ppq586dmDVrlsLGd87Ozli9ejVGjBjRrDKpee7duwdHR0esXLlSYbWGKIrw8PDA9OnTFVZraBNljFUiIiIi0iA11cDlI0D5r4CZLeD6CqCjmklAUr/HxaGPatGl9REREdi2bRv+9a9/wdzcHNevXwdQu5N43T3J169fx/Xr16XZ9DNnzsDc3BwuLi7SpnivvfYahg8fjhkzZgAA5s2bJ22wdu3aNSxevBi6uroYM2ZMC/SyvhEjRiA0NBTp6ekoLi6Gvb09evbsqbKZePqfU6dO4fz58+jevTtKSkoQExMDANIqAAD47bff8M033+D69et8djwRERERaYZziUDyAqD02v/SLByA/h8BHYe2XLuoRbRoIF+3nPvRR63J5XKEh4cDANavX48lS5ZI5+oeS/fHPJcuXcLNmzelPEVFRRgzZgxu3boFa2trvPrqqzh69Kj0vHJNoKurq/RHzFHTxMbGIjc3FwYGBvD390d6ejratGkjnbexsUGbNm3wxRdfoFWrVi3YUiIiIiIi1AbxCRMAPLKYurS4Nv2NrxjMv2BadGm9plL10noideBYJSIiInoO1FQDq70VZ+IVCLUz87PPcJm9lnuapfUasdkdERERERERNeDykccE8QAgAqVXa/PRC4OBPBERERERkaYq/1W5+ei5wECeiIiIiIhIU5nZKjcfPRcYyBMREREREWkq11dq74GH0EgGAbBwrM1HLwwG8kRERERERJpKR7f2EXMA6gfz/z3uv5wb3b1gGMgTERERERFpso5Dax8xZ2GvmG7hwEfPvaAYyJPShYeHY9iwYdJx7969MXv27GcqUxllqIsgCNi9e3ej5wsKCiAIArKystTWJiIiIiLSch2HArPPAmFJwMiNtX/OPsMg/gXFQP4FEh4eDkEQIAgCDAwM4O7ujpiYGDx8+FCl9e7cuRN///vfm5Q3LS0NgiDg7t27zS5DVaKjo6X3T1dXF87OzpgyZQpu376tkK+4uBgDBgxooVYSERER0XNLRxdw6wl0HlX7J5fTv7D0WroBL6ya6tpnPZb/WrvDpOsravlB7N+/P+RyOe7fv4+9e/ciIiIC+vr6iIqKUsj34MEDGBgYKKVOKysrjShDGTp16oQff/wR1dXVyMnJwcSJE1FSUoLt27dLeezs7FqwhUREREREJGmhuEvVOCPfEs4lAqu9gS8HA99Nqv1ztXdtuooZGhrCzs4Orq6umDZtGvr06YPExERpOfyyZcvg4OAAT09PAMCVK1fwxhtvQCaTwcrKCqGhoSgoKJDKq66uxpw5cyCTydC6dWvMnz8foigq1Pnosvj79+9jwYIFcHZ2hqGhIdzd3bFx40YUFBQgODgYANCqVSsIgoDw8PAGy7hz5w4mTJiAVq1awcTEBAMGDEBeXp50Pj4+HjKZDCkpKfDy8oKZmRn69++P4uJiKU9aWhq6d+8OU1NTyGQyBAYG4vLly499//T09GBnZwdHR0f06dMHr7/+OlJTUxXyPLq0/qeffoKvry+MjIzQtWtXnDp1ql65iYmJ8PDwgJGREYKDg/Hll1/WW5lw+PBh9OzZE8bGxnB2dkZkZCTu3bv32PZSC6ipBvLTgTPf1v5ZU93SLSIiIiJ6MbVg3KVqDOTV7VwikDABKL2mmF5aXJuu5kFlbGyMBw8eAAD27duH3NxcpKamIikpCVVVVQgJCYG5uTnS09ORkZEhBcR116xcuRLx8fHYtGkTDh8+jNu3b2PXrl2PrXPChAn4+uuvsXbtWuTk5ODzzz+HmZkZnJ2d8d133wEAcnNzUVxcjDVr1jRYRnh4OE6cOIHExERkZmZCFEUMHDgQVVVVUp6KigrExsZi8+bNOHToEAoLCzFv3jwAwMOHDzFs2DAEBQXh9OnTyMzMxJQpUyAIjT3Wo76CggKkpKQ8duVCeXk5Bg8ejI4dO+LkyZOIjo6W2lAnPz8fo0aNwrBhw5CdnY2pU6fi/fffV8hz6dIl9O/fHyNHjsTp06exfft2HD58GDNmzGhye0kNnuMPCyIiIiKtomFxl7Jxab061VQDyQsAiA2cFAEIQPJCoMMglS/3EEUR+/btQ0pKCmbOnInffvsNpqam2LBhgxSYbtmyBTU1NdiwYYMU4MrlcshkMqSlpaFfv35YvXo1oqKiMGLECADA+vXrkZKS0mi9Fy5cQEJCAlJTU9GnTx8AQLt27aTzdUvobWxsIJPJGiwjLy8PiYmJyMjIwCuv1D4vc+vWrXB2dsbu3bvx+uuvAwCqqqqwfv16vPTSSwCAGTNmICYmBgBQWlqKkpISDB48WDrv5eX1xPftzJkzMDMzQ3V1NSorKwEAn3zySaP5t23bhpqaGmzcuBFGRkbo1KkTioqKMG3aNCnP559/Dk9PT6xYsQIA4OnpibNnz2LZsmVSng8//BDjxo2TViV4eHhg7dq1CAoKQlxcHIyMjJ7YdlKxug+LR3++6z4suKMsERERkXpoUNylKpyRV6fLR+p/I6RABEqv1uZTkaSkJJiZmcHIyAgDBgzA6NGjER0dDQDo3LmzwuxydnY2Ll68CHNzc5iZmcHMzAxWVlaorKzEpUuXUFJSguLiYvTo0UO6Rk9PD127dm20/qysLOjq6iIoKKjZfcjJyYGenp5Cva1bt4anpydycnKkNBMTEylIBwB7e3vcuHEDQO0XBuHh4QgJCcGQIUOwZs0aadl9YWGh1F8zMzP84x//kMrw9PREVlYWjh8/jgULFiAkJAQzZ858bFt9fHwUAu2AgACFPLm5uejWrZtCWvfu3RWOs7OzER8fr9CukJAQ1NTUID8//4nvGanYEz8sUPthwWX2RERERKqnAXGXqnFGXp3Kf1VuvmYIDg5GXFwcDAwM4ODgAD29/w0BU1NTxWaUl8Pf3x9bt26tV461tXWz6jc2Nm7Wdc2hr6+vcCwIgsL9+3K5HJGRkUhOTsb27duxaNEipKamomvXrgqPhvvjRnt1u/0DwPLlyzFo0CAsWbJE5Tvql5eXY+rUqYiMjKx3zsXFRaV1UxM8zYeFW0+1NYuIiIjohaQBcZeqcUZencxslZuvGUxNTeHu7g4XFxeFIL4hfn5+yMvLg42NDdzd3RVelpaWsLS0hL29PY4dOyZd8/DhQ5w8ebLRMjt37oyamhocPHiwwfN1KwKqqxufufTy8sLDhw8V6r116xZyc3PRsWPHx/bpUb6+voiKisKRI0fg7e2Nbdu2QU9PT6Gvj9sxf9GiRYiNjcW1aw0HcV5eXjh9+rS0DB8Ajh49qpDH09MTJ06cUEg7fvy4wrGfnx/OnTtX79/B3d1daU8XoGfwAnxYEBEREWkNDYi7VI2BvDq5vgJYOABobEM1AbBwrM2nAcaNG4c2bdogNDQU6enpyM/PR1paGiIjI1FUVAQAmDVrFpYvX47du3fj/PnzmD59er1nwP9R27ZtERYWhokTJ2L37t1SmQkJCQAAV1dXCIKApKQk/PbbbygvL69XhoeHB0JDQzF58mQcPnwY2dnZGD9+PBwdHREaGtqkvuXn5yMqKgqZmZm4fPkyfvjhB+Tl5TXpPvk/CggIgI+Pj8Ly+z8aO3YsBEHA5MmTce7cOezduxexsbEKeaZOnYrz589jwYIF0h4C8fHxACDtTbBgwQIcOXIEM2bMQFZWFvLy8vCvf/2Lm91pihfgw4KIiIhIa2hZ3NUcDOTVSUcX6P/Rfw8eHVT/Pe6/XGM2XDAxMcGhQ4fg4uKCESNGwMvLC5MmTUJlZSUsLCwAAHPnzsWbb76JsLAwBAQEwNzcHMOHD39suXFxcRg1ahSmT5+ODh06YPLkydJj1BwdHbFkyRIsXLgQtra2jQaqcrkc/v7+GDx4MAICAiCKIvbu3VtvOf3j+nb+/HmMHDkS7du3x5QpUxAREYGpU6c+xTtU691338WGDRtw5cqVeufMzMywZ88enDlzBr6+vnj//ffx0UcfKeRxc3PDt99+i507d8LHxwdxcXHSrvWGhoYAAB8fHxw8eBAXLlxAz5494evriw8++AAODg5P3V5SgRfgw4KIiIhIa2hZ3NUcgvjoQ78JpaWlsLS0RElJiRSw1qmsrER+fj7c3Nyav1P4ucTajbH+eE+thWPtYOKu1gRg2bJlWL9+fYNfDjSVUsYqNZ20az2guOndfz8suGs9ERERkXppWdz1uDj0UdzsriV0HFr7qIPLR2rvmTWzrZ2p0+JvhOjZfPbZZ+jWrRtat26NjIwMrFixgsvmtU3HobXBer0PCweN/bAgIiIieq49x3EXA/mWoqPL3atJkpeXh6VLl+L27dtwcXHB3LlzERUV1dLNoqf1HH9YEBEREWml5zTuYiBPpAFWrVqFVatWtXQzSBme0w8LIiIiItIc3OyOiIiIiIiISIswkG8m7hFImo5jlIiIiIjo+cRA/inVPd6soqKihVtC9Hh1Y7Spj+QjIiIiIiLtwHvkn5Kuri5kMhlu3LgBoPZ55ILQ2LOjidRPFEVUVFTgxo0bkMlk0NXlRmtERERERM8TBvLNYGdnBwBSME+kiWQymTRWiYiIiIjo+cFAvhkEQYC9vT1sbGxQVVXV0s0hqkdfX58z8UREREREzykG8s9AV1eXwRIRERERERGpFTe7IyIiIiIiItIiDOSJiIiIiIiItAgDeSIiIiIiIiItwnvkGyCKIgCgtLS0hVtCREREREREL4K6+LMuHn0cBvINKCsrAwA4Ozu3cEuIiIiIiIjoRVJWVgZLS8vH5hHEpoT7L5iamhpcu3YN5ubmEAShpZvTqNLSUjg7O+PKlSuwsLBo6ebQc4rjjNSB44xUjWOM1IHjjNSB4+z5JYoiysrK4ODgAB2dx98Fzxn5Bujo6MDJyamlm9FkFhYW/CEmleM4I3XgOCNV4xgjdeA4I3XgOHs+PWkmvg43uyMiIiIiIiLSIgzkiYiIiIiIiLQIA3ktZmhoiMWLF8PQ0LClm0LPMY4zUgeOM1I1jjFSB44zUgeOMwK42R0RERERERGRVuGMPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgXwL+/DDD9GtWzeYm5vDxsYGw4YNQ25urkKeyspKREREoHXr1jAzM8PIkSPx66+/KuSJjIyEv78/DA0N0aVLlwbrOn36NHr27AkjIyM4Ozvj448/VlW3SIOoa4ylpaUhNDQU9vb2MDU1RZcuXbB161ZVdo00iDr/L6tz8eJFmJubQyaTKbk3pKnUOc5EUURsbCzat28PQ0NDODo6YtmyZarqGmkQdY6zlJQUvPzyyzA3N4e1tTVGjhyJgoICFfWMNIUyxlh2djbGjBkDZ2dnGBsbw8vLC2vWrKlXV1paGvz8/GBoaAh3d3fEx8erunukJgzkW9jBgwcRERGBo0ePIjU1FVVVVejXrx/u3bsn5Xn33XexZ88e7NixAwcPHsS1a9cwYsSIemVNnDgRo0ePbrCe0tJS9OvXD66urjh58iRWrFiB6OhofPHFFyrrG2kGdY2xI0eOwMfHB9999x1Onz6Nt956CxMmTEBSUpLK+kaaQ13jrE5VVRXGjBmDnj17Kr0vpLnUOc5mzZqFDRs2IDY2FufPn0diYiK6d++ukn6RZlHXOMvPz0doaCj+/Oc/IysrCykpKbh582aD5dDzRRlj7OTJk7CxscGWLVvwyy+/4P3330dUVBQ+/fRTKU9+fj4GDRqE4OBgZGVlYfbs2Xj77beRkpKi1v6SioikUW7cuCECEA8ePCiKoijevXtX1NfXF3fs2CHlycnJEQGImZmZ9a5fvHix+Kc//ale+meffSa2atVKvH//vpS2YMEC0dPTU/mdII2mqjHWkIEDB4pvvfWWUtpN2kXV42z+/Pni+PHjRblcLlpaWiq7+aQlVDXOzp07J+rp6Ynnz59XWdtJe6hqnO3YsUPU09MTq6urpbTExERREATxwYMHyu8IaaxnHWN1pk+fLgYHB0vH8+fPFzt16qSQZ/To0WJISIiSe0AtgTPyGqakpAQAYGVlBaD227aqqir06dNHytOhQwe4uLggMzOzyeVmZmaiV69eMDAwkNJCQkKQm5uLO3fuKKn1pA1UNcYaq6uuHnqxqHKc7d+/Hzt27MC6deuU12DSSqoaZ3v27EG7du2QlJQENzc3tG3bFm+//TZu376t3A6QVlDVOPP394eOjg7kcjmqq6tRUlKCzZs3o0+fPtDX11duJ0ijKWuMPfp7V2ZmpkIZQO3v/8/6+x1pBgbyGqSmpgazZ89GYGAgvL29AQDXr1+HgYFBvXtAbW1tcf369SaXff36ddja2tYro+4cvRhUOcYelZCQgOPHj+Ott956liaTFlLlOLt16xbCw8MRHx8PCwsLZTabtIwqx9l//vMfXL58GTt27MBXX32F+Ph4nDx5EqNGjVJmF0gLqHKcubm54YcffsBf//pXGBoaQiaToaioCAkJCcrsAmk4ZY2xI0eOYPv27ZgyZYqU1tjv/6Wlpfj999+V2xFSO72WbgD9T0REBM6ePYvDhw+3dFPoOaWuMXbgwAG89dZb+Oc//4lOnTqptC7SPKocZ5MnT8bYsWPRq1cvpZdN2kWV46ympgb379/HV199hfbt2wMANm7cCH9/f+Tm5sLT01PpdZJmUuU4u379OiZPnoywsDCMGTMGZWVl+OCDDzBq1CikpqZCEASl10maRxlj7OzZswgNDcXixYvRr18/JbaONBln5DXEjBkzkJSUhAMHDsDJyUlKt7Ozw4MHD3D37l2F/L/++ivs7OyaXL6dnV293VTrjp+mHNJeqh5jdQ4ePIghQ4Zg1apVmDBhwrM2m7SMqsfZ/v37ERsbCz09Pejp6WHSpEkoKSmBnp4eNm3apKxukIZT9Tizt7eHnp6eFMQDgJeXFwCgsLDw2RpPWkPV42zdunWwtLTExx9/DF9fX/Tq1QtbtmzBvn37cOzYMWV1gzSYMsbYuXPn8Nprr2HKlClYtGiRwrnGfv+3sLCAsbGxcjtDasdAvoWJoogZM2Zg165d2L9/P9zc3BTO+/v7Q19fH/v27ZPScnNzUVhYiICAgCbXExAQgEOHDqGqqkpKS01NhaenJ1q1avXsHSGNpa4xBtQ+4mTQoEH46KOPFJZ20fNPXeMsMzMTWVlZ0ismJgbm5ubIysrC8OHDldYf0kzqGmeBgYF4+PAhLl26JKVduHABAODq6vqMvSBNp65xVlFRAR0dxV/FdXV1AdSuCqHnl7LG2C+//ILg4GCEhYU1+HjMgIAAhTKA2t//n/b3O9JQLbnTHonitGnTREtLSzEtLU0sLi6WXhUVFVKed955R3RxcRH3798vnjhxQgwICBADAgIUysnLyxNPnTolTp06VWzfvr146tQp8dSpU9Iu9Xfv3hVtbW3FN998Uzx79qz4zTffiCYmJuLnn3+u1v6S+qlrjO3fv180MTERo6KiFOq5deuWWvtLLUNd4+xR3LX+xaKucVZdXS36+fmJvXr1En/++WfxxIkTYo8ePcS+ffuqtb/UMtQ1zvbt2ycKgiAuWbJEvHDhgnjy5EkxJCREdHV1VaiLnj/KGGNnzpwRra2txfHjxyuUcePGDSnPf/7zH9HExER87733xJycHHHdunWirq6umJycrNb+kmowkG9hABp8yeVyKc/vv/8uTp8+XWzVqpVoYmIiDh8+XCwuLlYoJygoqMFy8vPzpTzZ2dniq6++KhoaGoqOjo7i8uXL1dRLaknqGmNhYWENng8KClJfZ6nFqPP/sj9iIP9iUec4u3r1qjhixAjRzMxMtLW1FcPDw/nF5AtCnePs66+/Fn19fUVTU1PR2tpaHDp0qJiTk6OmnlJLUcYYW7x4cYNluLq6KtR14MABsUuXLqKBgYHYrl07hTpIuwmiKIrPMKFPRERERERERGrEe+SJiIiIiIiItAgDeSIiIiIiIiItwkCeiIiIiIiISIswkCciIiIiIiLSIgzkiYiIiIiIiLQIA3kiIiIiIiIiLcJAnoiIiIiIiEiLMJAnIiIiIiIi0iIM5ImIiDTYrVu3YGNjg4KCArXWGx8fD5lMppKyk5OT0aVLF9TU1KikfCIioucdA3kiIiINtmzZMoSGhqJt27b1zoWEhEBXVxfHjx9Xf8OeQf/+/aGvr4+tW7c2mmfSpEno3LkzHjx4oJC+d+9eGBgY4Oeff1Z1M4mIiDQWA3kiIiINVVFRgY0bN2LSpEn1zhUWFuLIkSOYMWMGNm3a1AKta56qqioAQHh4ONauXdtovlWrVqGsrAyLFy+W0u7evYvJkyfjb3/7G/z8/FTWNiIiIk3HQJ6IiEhD7d27F4aGhnj55ZfrnZPL5Rg8eDCmTZuGr7/+Gr///rvC+d69eyMyMhLz58+HlZUV7OzsEB0drZDn7t27mDp1KmxtbWFkZARvb28kJSUp5ElJSYGXlxfMzMzQv39/FBcXS+dqamoQExMDJycnGBoaokuXLkhOTpbOFxQUQBAEbN++HUFBQTAyMpJm4YcMGYITJ07g0qVLDfbdwsICcrkcK1euxLFjxwAAs2fPhqOjI6KionDlyhW88cYbkMlksLKyQmhoqMLtB8ePH0ffvn3Rpk0bWFpaIigoqN4sviAIiIuLw9ChQ2Fqaoply5Y18i9BRESkWRjIExERaaj09HT4+/vXSxdFEXK5HOPHj0eHDh3g7u6Ob7/9tl6+L7/8Eqampjh27Bg+/vhjxMTEIDU1FUBtED5gwABkZGRgy5YtOHfuHJYvXw5dXV3p+oqKCsTGxmLz5s04dOgQCgsLMW/ePOn8mjVrsHLlSsTGxuL06dMICQnB0KFDkZeXp9COhQsXYtasWcjJyUFISAgAwMXFBba2tkhPT2+0/8HBwZg+fTrCwsKwY8cOJCQk4KuvvoIoiggJCYG5uTnS09ORkZEhfdFQtxS/rKwMYWFhOHz4MI4ePQoPDw8MHDgQZWVlCnVER0dj+PDhOHPmDCZOnPikfxIiIiLNIBIREZFGCg0NFSdOnFgv/YcffhCtra3FqqoqURRFcdWqVWJQUJBCnqCgIPHVV19VSOvWrZu4YMECURRFMSUlRdTR0RFzc3MbrFsul4sAxIsXL0pp69atE21tbaVjBwcHcdmyZfXqmD59uiiKopifny8CEFevXt1gHb6+vmJ0dHSD5+pUVFSInp6eoo6Ojrhq1SpRFEVx8+bNoqenp1hTUyPlu3//vmhsbCympKQ0WE51dbVobm4u7tmzR0oDIM6ePfux9RMREWkizsgTERFpqN9//x1GRkb10jdt2oTRo0dDT08PADBmzBhkZGTUW6bu4+OjcGxvb48bN24AALKysuDk5IT27ds3Wr+JiQleeumlBq8vLS3FtWvXEBgYqHBNYGAgcnJyFNK6du3aYPnGxsaoqKhotP66PPPmzYOJiQlmzZoFAMjOzsbFixdhbm4OMzMzmJmZwcrKCpWVldJ78Ouvv2Ly5Mnw8PCApaUlLCwsUF5ejsLCwia1jYiISJPptXQDiIiIqGFt2rTBnTt3FNJu376NXbt2oaqqCnFxcVJ6dXU1Nm3apHCft76+vsK1giBIj3wzNjZ+Yv0NXS+K4lP3w9TUtMH027dvw9ra+onX6+npQVdXF4IgAADKy8vh7+/f4K73deWFhYXh1q1bWLNmDVxdXWFoaIiAgIB6u+A31jYiIiJNxhl5IiIiDeXr64tz584ppG3duhVOTk7Izs5GVlaW9Fq5ciXi4+NRXV3dpLJ9fHxQVFSECxcuNKttFhYWcHBwQEZGhkJ6RkYGOnbs+MTr62bPfX19n7puPz8/5OXlwcbGBu7u7govS0tLqR2RkZEYOHAgOnXqBENDQ9y8efOp6yIiItJEDOSJiIg0VEhICH755ReFWfmNGzdi1KhR8Pb2VnhNmjQJN2/eVNg1/nGCgoLQq1cvjBw5EqmpqcjPz8f333/f5OsB4L333sNHH32E7du3Izc3FwsXLkRWVpa0BP5xjh49Ks2SP61x48ahTZs2CA0NRXp6OvLz85GWlobIyEgUFRUBADw8PLB582bk5OTg2LFjGDduXJNWIRAREWkDBvJEREQaqnPnzvDz80NCQgIA4OTJk8jOzsbIkSPr5bW0tMRrr72GjRs3Nrn87777Dt26dcOYMWPQsWNHzJ8/v8kz+gAQGRmJOXPmYO7cuejcuTOSk5ORmJgIDw+PJ1779ddfY9y4cTAxMWlyfXVMTExw6NAhuLi4YMSIEfDy8sKkSZNQWVkJCwsLALVfeNy5cwd+fn548803ERkZCRsbm6eui4iISBMJYnNudiMiIiK1+Pe//4333nsPZ8+ehY7O8/H9+82bN+Hp6YkTJ07Azc2tpZtDRESkdbjZHRERkQYbNGgQ8vLycPXqVTg7O7d0c5SioKAAn332GYN4IiKiZuKMPBEREREREZEWeT7W6BERERERERG9IBjIExEREREREWkRBvJEREREREREWoSBPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgTwRERERERGRFmEgT0RERERERKRF/h/lfAWhf7rE3AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2456,16 +876,19 @@ " f\"The MSE of baseline ridge forecasts is {mean_squared_error(ground_truth, predictions_baseline):.3f}\"\n", ")\n", "print(\n", - " f\"The MSE of mean of training data is {mean_squared_error(ground_truth, [target_series_sel[:-test_samples].mean()] * len(instances)):.3f}\"\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", ")\n", "\n", - "fig = plt.figure()\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", - "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", - "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.scatter(ground_truth.anchor_year, predictions_baseline, label=\"Predictions-Ridge\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index 71a7910..a5f48a2 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -48,6 +48,7 @@ "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import time as tt\n", "import wandb\n", "import sys\n", @@ -241,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +252,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ @@ -667,27 +668,76 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Plot the predictions versus ground truth." + "Plot the predictions versus observations and climatology." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 128, "metadata": {}, "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.257\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACza0lEQVR4nOzdd3gU5frG8e+m956QQhJCS+i9S1MExAKKooIF9VixcEDFdlQQxYaiPwWO5WBBEBVQQAUR6VV6DwECBEhISEhCerK7vz8C0UjLQpJJuT/Xtdc5zE5m731Zwz4z7zyvyWq1WhERERERERGRKs/O6AAiIiIiIiIiUjYq4kVERERERESqCRXxIiIiIiIiItWEingRERERERGRakJFvIiIiIiIiEg1oSJeREREREREpJpQES8iIiIiIiJSTaiIFxEREREREakmHIwOUBVZLBaOHz+Op6cnJpPJ6DgiIiIiIiJSw1mtVk6fPk1oaCh2dhe+3q4i/jyOHz9OeHi40TFERERERESklklISKBu3boXfF5F/Hl4enoCxYPn5eVlcBoRERERERGp6TIzMwkPDy+pRy9ERfx5nJ1C7+XlpSJeREREREREKs2lbulWYzsRERERERGRakJFvIiIiIiIiEg1oSJeREREREREpJrQPfEiIiIiIiKXyWq1UlRUhNlsNjqKVHH29vY4ODhc8TLmKuJFREREREQuQ0FBAYmJieTk5BgdRaoJNzc3QkJCcHJyuuxjqIgXERERERGxkcViIT4+Hnt7e0JDQ3FycrriK6xSc1mtVgoKCkhJSSE+Pp5GjRphZ3d5d7eriBcREREREbFRQUEBFouF8PBw3NzcjI4j1YCrqyuOjo4cPnyYgoICXFxcLus4amwnIiIiIiJymS73aqrUTuXxedEnTkRERERERKSaUBEvIiIiIiIiUk0YWsRPmDCBDh064OnpSVBQEIMGDSI2NrbUPr169cJkMpV6PPLIIxc9rtVq5eWXXyYkJARXV1f69OlDXFxcRb4VERERERGRGqVevXpMmjTJ6BjlZtmyZZhMJtLT042OckUMLeKXL1/OiBEjWLduHYsXL6awsJC+ffuSnZ1dar8HH3yQxMTEksfbb7990eO+/fbbfPjhh0ydOpX169fj7u5Ov379yMvLq8i3IyIiIiIiUi0kJCRw//33l3TWj4yM5KmnniI1NdXoaOWiV69ejBw5stS2rl27kpiYiLe3tzGhyomh3ekXLlxY6s9ffPEFQUFBbNq0iR49epRsd3NzIzg4uEzHtFqtTJo0iZdeeomBAwcC8NVXX1GnTh1+/PFH7rjjjvJ7AwbLKzRjZzLh5KC7IkREREREpGwOHjxIly5daNy4MTNnziQqKopdu3bxzDPP8Ouvv7Ju3Tr8/PwqPZfZbMZkMlVYs0AnJ6cy15VVWZWq/jIyMgDO+cB88803BAQE0Lx5c55//nlycnIueIz4+HiSkpLo06dPyTZvb286derE2rVrz/sz+fn5ZGZmlnpUB+MW7OaWKavZn3za6CgiIiIiIrWe1Wolp6DIkIfVai1zzhEjRuDk5MRvv/1Gz549iYiI4LrrruP333/n2LFjvPjiiyX7nj59mjvvvBN3d3fCwsL4+OOPS73fV199lYiICJydnQkNDeXJJ58seT4/P5+nn36asLAw3N3d6dSpE8uWLSt5/osvvsDHx4d58+bRtGlTnJ2d+eyzz3BxcTlnyvtTTz3F1VdfDUBqaip33nknYWFhuLm50aJFC2bOnFmy7/Dhw1m+fDkffPBByS3Zhw4dOu90+tmzZ9OsWTOcnZ2pV68eEydOLPW69erV44033uD+++/H09OTiIgIPvnkk5LnCwoKePzxxwkJCcHFxYXIyEgmTJhQ5r+Ly1Fl1om3WCyMHDmSbt260bx585LtQ4cOJTIyktDQULZv386YMWOIjY1lzpw55z1OUlISAHXq1Cm1vU6dOiXP/dOECRMYO3ZsOb2TypGalc+vOxI5lVPI9R+u4vnrYrinSz3s7ExGRxMRERERqZVyC800fXmRIa+9e1w/3JwuXd6lpaWxaNEiXn/9dVxdXUs9FxwczLBhw5g1axaTJ08G4J133uGFF15g7NixLFq0iKeeeorGjRtz7bXXMnv2bN5//32+/fZbmjVrRlJSEtu2bSs53uOPP87u3bv59ttvCQ0NZe7cufTv358dO3bQqFEjAHJycnjrrbf47LPP8Pf3p27durz88svMnj2bBx54ACi+Qj9r1ixef/11APLy8mjXrh1jxozBy8uLn3/+mbvvvpsGDRrQsWNHPvjgA/bt20fz5s0ZN24cAIGBgRw6dKjU+920aRNDhgzh1Vdf5fbbb2fNmjU89thj+Pv7M3z48JL9Jk6cyGuvvcYLL7zADz/8wKOPPkrPnj2Jjo7mww8/ZN68eXz33XdERESQkJBAQkKCbX95NqoyRfyIESPYuXMnq1atKrX9oYceKvn/LVq0ICQkhGuuuYYDBw7QoEGDcnnt559/nlGjRpX8OTMzk/Dw8HI5dkXx93Bm4cgePPPDdlbsS+HV+btZsjeZd29rRR0vF6PjiYiIiIhIFRQXF4fVaqVJkybnfb5JkyacOnWKlJQUALp168Zzzz0HQOPGjVm9ejXvv/8+1157LUeOHCE4OJg+ffrg6OhIREQEHTt2BODIkSNMmzaNI0eOEBoaCsDTTz/NwoULmTZtGm+88QYAhYWFTJ48mVatWpVkuOOOO5gxY0ZJEb9kyRLS09MZPHgwAGFhYTz99NMl+z/xxBMsWrSI7777jo4dO+Lt7Y2Tk9Mlb8t+7733uOaaa/jPf/5T8v52797NO++8U6qIHzBgAI899hgAY8aM4f3332fp0qVER0dz5MgRGjVqxFVXXYXJZCIyMrKMfxOXr0oU8Y8//jgLFixgxYoV1K1b96L7durUCYD9+/eft4g/+5d04sQJQkJCSrafOHGC1q1bn/eYzs7OODs7X2Z649TxcuHL+zrw9brDvP7zHlbGnaTfpBW8cXMLBrQIufQBRERERESk3Lg62rN7XD/DXtsWZZ1+36VLl3P+fLZj/W233cakSZOoX78+/fv3Z8CAAdx44404ODiwY8cOzGYzjRs3LvXz+fn5+Pv7l/zZycmJli1bltpn2LBhdO7cmePHjxMaGso333zD9ddfj4+PD1B8Zf6NN97gu+++49ixYxQUFJCfn4+bm5tNY7Bnz56SPmpndevWjUmTJmE2m7G3Lx7Tv+czmUwEBweTnJwMFE/dv/baa4mOjqZ///7ccMMN9O3b16YctjL0nnir1crjjz/O3Llz+eOPP4iKirrkz2zduhWgVIH+d1FRUQQHB7NkyZKSbZmZmaxfv/6cD2BNYDKZuKdLPX5+sjstwrxJzynksW82M2rWVjLzCo2OJyIiIiJSa5hMJtycHAx5mExlu622YcOGmEwm9uzZc97n9+zZg6+vL4GBgZc8Vnh4OLGxsUyePBlXV1cee+wxevToQWFhIVlZWdjb27Np0ya2bt1a8tizZw8ffPBByTFcXV3Pyd6hQwcaNGjAt99+S25uLnPnzmXYsGElz7/zzjt88MEHjBkzhqVLl7J161b69etHQUFBmcbAVo6OjqX+bDKZsFgsALRt25b4+Hhee+01cnNzGTJkCLfeemuF5DjL0CJ+xIgRTJ8+nRkzZuDp6UlSUhJJSUnk5uYCcODAAV577TU2bdrEoUOHmDdvHvfccw89evQodTYkJiaGuXPnAsUDOnLkSMaPH8+8efPYsWMH99xzD6GhoQwaNMiIt1kpGgZ5MOexrjxxdUPsTDBnyzGum7SS9QdrxhIRIiIiIiJy5fz9/bn22muZPHlySd11VlJSEt988w233357SWG9bt26UvusW7eu1FR8V1dXbrzxRj788EOWLVvG2rVr2bFjB23atMFsNpOcnEzDhg1LPcrSIX7YsGF88803zJ8/Hzs7O66//vqS51avXs3AgQO56667aNWqFfXr12ffvn2lft7JyQmz2XzR12jSpAmrV68utW316tU0bty45Cp8WXh5eXH77bfz6aefMmvWLGbPnk1aWlqZf95Whk6nnzJlClC8ht/fTZs2jeHDh+Pk5MTvv//OpEmTyM7OJjw8nMGDB/PSSy+V2j82Nraksz3As88+S3Z2Ng899BDp6elcddVVLFy4EBeXmn2vuKO9HaP7RtMrOpB/z9rGkbQc7vh0HQ91r8+ovo1xdrBtio2IiIiIiNQ8H330EV27dqVfv36MHz++1BJzYWFhJQ3koLioffvttxk0aBCLFy/m+++/5+effwaKu8ubzWY6deqEm5sb06dPx9XVlcjISPz9/Rk2bBj33HMPEydOpE2bNqSkpLBkyRJatmxZqig/n2HDhvHqq6/y+uuvc+utt5a6/blRo0b88MMPrFmzBl9fX9577z1OnDhB06ZNS/apV68e69ev59ChQ3h4eJx3ybzRo0fToUMHXnvtNW6//XbWrl3LRx99VNLUryzee+89QkJCaNOmDXZ2dnz//fcEBweXTP2vCIYW8Ze6DyM8PJzly5fbfByTycS4ceNKOhHWNu0i/fjlqe68Nn83szYm8N8VB1kRd5JJt7cmOtjT6HgiIiIiImKgRo0asXHjRl555RWGDBlCWloawcHBDBo0iFdeeaVUwTt69Gg2btzI2LFj8fLy4r333qNfv+L7/n18fHjzzTcZNWoUZrOZFi1aMH/+/JJ73qdNm8b48eMZPXo0x44dIyAggM6dO3PDDTdcMmPDhg3p2LEjGzZsKLkH/6yXXnqJgwcP0q9fP9zc3HjooYcYNGhQqQu7Tz/9NPfeey9NmzYlNzeX+Pj4c16jbdu2fPfdd7z88su89tprhISEMG7cuFJN7S7F09OTt99+m7i4OOzt7enQoQO//PJLha11D2Cy2rKgYC2RmZmJt7c3GRkZeHl5GR3niizalcTzc3aQll2Ak4Mdz/aL5v5uUVqKTkRERETkCuTl5REfH09UVFSNn/Er5edin5uy1qGG3hMvFa9fs2AWjezB1TFBFBRZGP/zHu76fD3H03Mv/cMiIiIiIiJSpaiIrwUCPZ35/N72vH5zc1wd7VlzIJX+k1bw09ZjRkcTERERERERG6iIryVMJhPDOkXy85NX0Srch8y8Ip76ditPztxCRo6WohMREREREakOVMTXMvUDPfjhkS6M7NMIezsT87Ydp/8HK1iz/6TR0UREREREROQSVMTXQo72dozs05gfHulCVIA7iRl5DP1sPa8t2E1e4cXXUhQRERERERHjqIivxdpE+PLzk1cxtFMEAJ+vimfgR6vZfTzT4GQiIiIiIiJyPiriazk3JwfeuLkF/xvengAPJ2JPnGbQx6v57/IDmC1afVBERERERKQqUREvAFwdU4dFI3twbdM6FJgtTPh1L3d+uo6jp3KMjiYiIiIiIiJnqIiXEv4eznxydzveGtwCNyd7NsSncd2klczZfBSrVVflRURERESk7IYPH86gQYNK/tyrVy9Gjhx5Rccsj2NUdyripRSTycTtHSL49anutI3w4XR+EaO+28bjM7aQnlNgdDwREREREblCw4cPx2QyYTKZcHJyomHDhowbN46ioqIKfd05c+bw2muvlWnfZcuWYTKZSE9Pv+xj1FQq4uW8Iv3d+e7hLjzdtzEOdiZ+3pFIv0krWBmXYnQ0ERERERG5Qv379ycxMZG4uDhGjx7Nq6++yjvvvHPOfgUF5Xchz8/PD09PT8OPUd2piJcLcrC34/GrGzHnsa7UD3TnRGY+d3++gVfn7dJSdCIiIiIi5cRssbL2QCo/bT3G2gOpldJg2tnZmeDgYCIjI3n00Ufp06cP8+bNK5kC//rrrxMaGkp0dDQACQkJDBkyBB8fH/z8/Bg4cCCHDh366z2YzYwaNQofHx/8/f159tlnz7kl959T4fPz8xkzZgzh4eE4OzvTsGFDPv/8cw4dOkTv3r0B8PX1xWQyMXz48PMe49SpU9xzzz34+vri5ubGddddR1xcXMnzX3zxBT4+PixatIgmTZrg4eFRcgLjrGXLltGxY0fc3d3x8fGhW7duHD58uJxGuvypiJdLalnXh5+f6M49XSIB+GLNIW74v1XsPJZhcDIRERERkept4c5ErnrrD+78dB1PfbuVOz9dx1Vv/cHCnYmX/uFy5OrqWnLVfcmSJcTGxrJ48WIWLFhAYWEh/fr1w9PTk5UrV7J69eqSYvjsz0ycOJEvvviC//3vf6xatYq0tDTmzp170de85557mDlzJh9++CF79uzhv//9Lx4eHoSHhzN79mwAYmNjSUxM5IMPPjjvMYYPH87GjRuZN28ea9euxWq1MmDAAAoLC0v2ycnJ4d133+Xrr79mxYoVHDlyhKeffhqAoqIiBg0aRM+ePdm+fTtr167loYcewmQyXfGYVhQHowNI9eDqZM+4gc25OiaIZ3/Yzv7kLAZ9vJp/X9uYR3o2wN6u6n7IRURERESqooU7E3l0+mb+ed09KSOPR6dvZspdbenfPKRCM1itVpYsWcKiRYt44oknSElJwd3dnc8++wwnJycApk+fjsVi4bPPPispbqdNm4aPjw/Lli2jb9++TJo0ieeff55bbrkFgKlTp7Jo0aILvu6+ffv47rvvWLx4MX369AGgfv36Jc/7+fkBEBQUhI+Pz3mPERcXx7x581i9ejVdu3YF4JtvviE8PJwff/yR2267DYDCwkKmTp1KgwYNAHj88ccZN24cAJmZmWRkZHDDDTeUPN+kSRPbB7IS6Uq82KRXdBCLRvbguubBFFmsvLMoltv/u5aENC1FJyIiIiJSVmaLlbHzd59TwAMl28bO311hU+sXLFiAh4cHLi4uXHfdddx+++28+uqrALRo0aKkgAfYtm0b+/fvx9PTEw8PDzw8PPDz8yMvL48DBw6QkZFBYmIinTp1KvkZBwcH2rdvf8HX37p1K/b29vTs2fOy38OePXtwcHAo9br+/v5ER0ezZ8+ekm1ubm4lBTpASEgIycnJQPHJguHDh9OvXz9uvPFGPvjgg1JT7asiFfFiM193JyYPa8u7t7XCw9mBjYdP0X/SCr7bmKCl6EREREREymBDfBqJGXkXfN4KJGbksSE+rUJev3fv3mzdupW4uDhyc3P58ssvcXd3Byj537OysrJo164dW7duLfXYt28fQ4cOvazXd3V1veL3UFaOjo6l/mwymUrVLdOmTWPt2rV07dqVWbNm0bhxY9atW1dp+WylIl4ui8lk4tZ2dfn1qe50qOdLdoGZZ3/YziPTN5GWraXoREREREQuJvn0hQv4y9nPVu7u7jRs2JCIiAgcHC5+l3Xbtm2Ji4sjKCiIhg0blnp4e3vj7e1NSEgI69evL/mZoqIiNm3adMFjtmjRAovFwvLly8/7/NmZAGbzhRtqN2nShKKiolKvm5qaSmxsLE2bNr3oe/qnNm3a8Pzzz7NmzRqaN2/OjBkzbPr5yqQiXq5IuJ8b3z7UhTH9Y3C0N7Fo1wn6vr+CpXuTjY4mIiIiIlJlBXm6lOt+FWnYsGEEBAQwcOBAVq5cSXx8PMuWLePJJ5/k6NGjADz11FO8+eab/Pjjj+zdu5fHHnvsnDXe/65evXrce++93H///fz4448lx/zuu+8AiIyMxGQysWDBAlJSUsjKyjrnGI0aNWLgwIE8+OCDrFq1im3btnHXXXcRFhbGwIEDy/Te4uPjef7551m7di2HDx/mt99+Iy4urkrfF68iXq6YvZ2JR3s1YO5j3WgU5MHJrHzu++JPXvpxBzkFRUbHExERERGpcjpG+RHi7cKF2kObgBBvFzpG+VVmrPNyc3NjxYoVREREcMstt9CkSRMeeOAB8vLy8PLyAmD06NHcfffd3HvvvXTp0gVPT09uvvnmix53ypQp3HrrrTz22GPExMTw4IMPkp2dDUBYWBhjx47lueeeo06dOjz++OPnPca0adNo164dN9xwA126dMFqtfLLL7+cM4X+Yu9t7969DB48mMaNG/PQQw8xYsQIHn74YRtGqHKZrLqJ+RyZmZl4e3uTkZFR8qGUsskrNPP2wlj+tzoegPoB7rx/e2tahfsYG0xEREREpBzl5eURHx9PVFQULi6Xd7X8bHd6oFSDu7OFfWV0p5fKdbHPTVnrUF2Jl3Ll4mjPyzc2ZfoDnQj2cuHgyWxumbKGD36Po8hsMTqeiIiIiEiV0b95CFPuakuwd+liLtjbRQW8XJCuxJ+HrsSXj/ScAl76cScLthcv0dAmwof3h7SmXoD7JX5SRERERKRqK48r8WeZLVY2xKeRfDqPIM/iKfT2dheaaC/Vma7ES5Xm4+bE/93Zhg/uaI2niwNbjqQz4MOVzNxwREvRiYiIiIicYW9noksDfwa2DqNLA38V8HJRKuKlQplMJga2DmPhyB50ru9HToGZ5+fs4MGvNnIyK9/oeCIiIiIiItWKinipFGE+rsz4V2deHNAEJ3s7ft+TTL/3V/D77hNGRxMREREREak2VMRLpbGzM/Fgj/r89Hg3YoI9Sc0u4F9fbeT5OdvJztdSdCIiIiIiIpeiIl4qXZMQL34c0Y2HetTHZIKZGxK4/sOVbD5yyuhoIiIiIiIiVZqKeDGEi6M9Lwxowox/dSbU24VDqTncOmUN7/0WS6GWohMRERERETkvFfFiqC4N/Pl1ZA8GtQ7FYoUP/9jPrVPWcCAly+hoIiIiIiIiVY6KeDGct6sjk+5ow//d2QYvFwe2Hc3g+g9X8vW6w1qKTkRERETEACaTiR9//BGAQ4cOYTKZ2Lp1q6GZLqSq5ytvKuKlyrixVSiL/t2Dbg39ySu08J8fd3LfF3+SfDrP6GgiIiIiIjVKUlISTzzxBPXr18fZ2Znw8HBuvPFGlixZcs6+4eHhJCYm0rx58wrNVNuK8culIl6qlBBvV76+vxMv39AUJwc7lsWm0O/9FSzcmWR0NBERERGRCmE2m1m2bBkzZ85k2bJlmM3mCn29Q4cO0a5dO/744w/eeecdduzYwcKFC+nduzcjRow4Z397e3uCg4NxcHCo0FxSNiripcqxszNx/1VRLHjiKpqGeHEqp5BHpm/ime+3kaWl6ERERESkBpkzZw716tWjd+/eDB06lN69e1OvXj3mzJlTYa/52GOPYTKZ2LBhA4MHD6Zx48Y0a9aMUaNGsW7dunP2/+cV8mXLlmEymVi0aBFt2rTB1dWVq6++muTkZH799VeaNGmCl5cXQ4cOJScnp+Q4Cxcu5KqrrsLHxwd/f39uuOEGDhw4UPJ8VFQUAG3atMFkMtGrVy8ALBYL48aNo27dujg7O9O6dWsWLlx40fe4fPlyOnbsiLOzMyEhITz33HMUFf1VS5w+fZphw4bh7u5OSEgI77//Pr169WLkyJEAjBs37rwzD1q3bs1//vOfMo1zRVERL1VW4zqe/DiiG4/2aoDJBN9vOsp1H6zgz0NpRkcTEREREblic+bM4dZbb+Xo0aOlth87doxbb721Qgr5tLQ0Fi5cyIgRI3B3dz/neR8fnzIf69VXX+Wjjz5izZo1JCQkMGTIECZNmsSMGTP4+eef+e233/i///u/kv2zs7MZNWoUGzduZMmSJdjZ2XHzzTdjsRSvTrVhwwYAfv/9dxITE0ve/wcffMDEiRN599132b59O/369eOmm24iLi7uvLmOHTvGgAED6NChA9u2bWPKlCl8/vnnjB8/vmSfUaNGsXr1aubNm8fixYtZuXIlmzdvLnn+/vvvZ8+ePfz5558l27Zs2cL27du57777yjxGFUFFvFRpTg52jOkfw6yHuhDm40pCWi63/3ctby/cS0GRlqITERERkerJbDbz1FNPnbeR89ltI0eOLPep9fv378dqtRITE3PFxxo/fjzdunWjTZs2PPDAAyxfvpwpU6bQpk0bunfvzq233srSpUtL9h88eDC33HILDRs2pHXr1vzvf/9jx44d7N69G4DAwEAA/P39CQ4Oxs/PD4B3332XMWPGcMcddxAdHc1bb71F69atmTRp0nlzTZ48mfDwcD766CNiYmIYNGgQY8eOZeLEiVgsFk6fPs2XX37Ju+++yzXXXEPz5s2ZNm1aqbGuW7cu/fr1Y9q0aSXbpk2bRs+ePalfv/4Vj92VUBEv1ULHKD8WjuzO4LZ1sVhh8rID3Dx5NXEnThsdTURERETEZitXrjznCvzfWa1WEhISWLlyZbm+bnmu/tSyZcuS/1+nTh3c3NxKFbh16tQhOTm55M9xcXHceeed1K9fHy8vL+rVqwfAkSNHLvgamZmZHD9+nG7dupXa3q1bN/bs2XPen9mzZw9dunTBZDKV2j8rK4ujR49y8OBBCgsL6dixY8nz3t7eREdHlzrOgw8+yMyZM8nLy6OgoIAZM2Zw//33X2REKoeKeKk2PF0cmTikFVOGtcXHzZFdxzO54f9WMW11PBaLlqITERERkeojMTGxXPcrq0aNGmEymdi7d+8VH8vR0bHk/5tMplJ/Prvt7FR5gBtvvJG0tDQ+/fRT1q9fz/r16wEoKCi44iwV4cYbb8TZ2Zm5c+cyf/58CgsLufXWW42OpSJeqp/rWoTw28ge9GwcSH6RhbHzd3PvtA0kZWgpOhERERGpHkJCQsp1v7Ly8/OjX79+fPzxx2RnZ5/zfHp6erm+3lmpqanExsby0ksvcc0119CkSRNOnTpVah8nJyeAUtPavby8CA0NZfXq1aX2Xb16NU2bNj3vazVp0oS1a9eWmnWwevVqPD09qVu3LvXr18fR0bHU/e4ZGRns27ev1HEcHBy49957mTZtGtOmTeOOO+7A1dX18gagHKmIl2opyMuFL+7rwLiBzXB2sGNl3En6TVrBz9vL90yliIiIiEhF6N69O3Xr1i015fvvTCYT4eHhdO/evdxf++OPP8ZsNtOxY0dmz55NXFwce/bs4cMPP6RLly7l/noAvr6++Pv788knn7B//37++OMPRo0aVWqfoKAgXF1dWbhwISdOnCAjIwOAZ555hrfeeotZs2YRGxvLc889x9atW3nqqafO+1qPPfYYCQkJPPHEE+zdu5effvqJV155hVGjRmFnZ4enpyf33nsvzzzzDEuXLmXXrl088MAD2NnZnfP38a9//Ys//viDhQsXVomp9KAiXqoxk8nEPV3q8fOT3WkR5k1GbiEjZmzm37O2kplXaHQ8EREREZELsre354MPPgA4p3A8++dJkyZhb29f7q9dv359Nm/eTO/evRk9ejTNmzfn2muvZcmSJUyZMqXcXw/Azs6Ob7/9lk2bNtG8eXP+/e9/884775Tax8HBgQ8//JD//ve/hIaGMnDgQACefPJJRo0axejRo2nRogULFy5k3rx5NGrU6LyvFRYWxi+//MKGDRto1aoVjzzyCA888AAvvfRSyT7vvfceXbp04YYbbqBPnz5069aNJk2a4OLiUupYjRo1omvXrsTExNCpU6dyHpXLY7KWZ2eDGiIzMxNvb28yMjLw8vIyOo6UQaHZwodL4vh46X4sVgjzcWXikFZ0ru9vdDQRERERqYHy8vKIj48nKirqnMLPFnPmzOGpp54q1eQuPDycSZMmccstt5RHVCmD7OxswsLCmDhxIg888EDJdqvVSqNGjXjsscfOmTlwOS72uSlrHepwxSlEqgBHeztG942mV3Qg/561jSNpOdz56Toe6l6fUX0b4+xQ/mcwRURERESu1C233MLAgQNZuXIliYmJhISE0L179wq5Ai9/2bJlC3v37qVjx45kZGQwbtw4gJKr/wApKSl8++23JCUlGb42/N+piJcapV2kH7881Z3xC3bz7Z8J/HfFQZbvS2HSHa2JCdasChERERGpeuzt7enVq5fRMWqdd999l9jYWJycnGjXrh0rV64kICCg5PmgoCACAgL45JNP8PX1NTBpaSripcbxcHbgzcEtuTomiOfm7GBv0mlu+r/VPNs/mvu7RWFnd/7mISIiIiIiUju0adOGTZs2XXSfqnrnuRrbSY3Vt1kwi0b24OqYIArMFsb/vIe7Pl/P8fRco6OJiIiIiIhcFkOL+AkTJtChQwc8PT0JCgpi0KBBxMbGnndfq9XKddddh8lk4scff7zocYcPH47JZCr16N+/fwW8A6nqAj2d+fze9rx+c3NcHe1ZcyCVG/9vFcmZWlNeRERERESqH0OL+OXLlzNixAjWrVvH4sWLKSwspG/fvmRnZ5+z76RJky64huL59O/fn8TExJLHzJkzyzO6VCMmk4lhnSL55anuNAryIDW7gOfm7Kiy02NEREREpPrQd0qxRXl8Xgy9J37hwoWl/vzFF18QFBTEpk2b6NGjR8n2rVu3MnHiRDZu3EhISEiZju3s7ExwcHC55pXqLSrAnY+GtuXG/1vFH3uT+X7jUYZ0CDc6loiIiIhUQ46OjgDk5OTg6upqcBqpLnJycoC/Pj+Xo0o1tsvIyADAz8+vZFtOTg5Dhw7l448/tqkoX7ZsGUFBQfj6+nL11Vczfvx4/P3Pv2Z4fn4++fn5JX/OzMy8zHcgVV10sCej+zZmwq97GbdgN10b+lPX183oWCIiIiJSzdjb2+Pj40NycjIAbm5uNs0cltrFarWSk5NDcnIyPj4+V7SEoMlaReZ/WCwWbrrpJtLT01m1alXJ9ocffhiz2cxnn30GFE+Nnjt3LoMGDbrgsb799lvc3NyIioriwIEDvPDCC3h4eLB27drzDtarr77K2LFjz9mekZGBl5eWJatpzBYrQ/67lk2HT9G1gT/TH+ikjvUiIiIiYjOr1UpSUhLp6elGR5FqwsfHh+Dg4POe8MnMzMTb2/uSdWiVKeIfffRRfv31V1atWkXdunUBmDdvHqNHj2bLli14eHgAZSvi/+ngwYM0aNCA33//nWuuueac5893JT48PFxFfA126GQ2132wktxCM6/e2JTh3aKMjiQiIiIi1ZTZbKawsNDoGFLFOTo6XvQKfFmL+Coxnf7xxx9nwYIFrFixoqSAB/jjjz84cOAAPj4+pfYfPHgw3bt3Z9myZWU6fv369QkICGD//v3nLeKdnZ1xdna+krcg1Uy9AHeeHxDDyz/t4s2Fe+nROJD6gR5GxxIRERGRasje3v6KpkeL2MLQ7vRWq5XHH3+cuXPn8scffxAVVfpq6HPPPcf27dvZunVryQPg/fffZ9q0aWV+naNHj5KamlrmpnhSO9zVKZKrGgaQV2hh9PfbMFuqxKQUEREREREpR6fzatYsCUOL+BEjRjB9+nRmzJiBp6cnSUlJJCUlkZubC0BwcDDNmzcv9QCIiIgoVfDHxMQwd+5cALKysnjmmWdYt24dhw4dYsmSJQwcOJCGDRvSr1+/yn+TUmXZ2Zl469aWeDo7sOVIOp+sOGh0JBERERERKUf7TpzmqreW8vW6wzVmOUBDi/gpU6aQkZFBr169CAkJKXnMmjXLpuPExsaWdLa3t7dn+/bt3HTTTTRu3JgHHniAdu3asXLlSk2Zl3OE+bjy8o1NAXh/8T72JmllAhERERGRmiArv4hHpm8iI7eQRTuTqCE1fNVpbFeVlLWhgNQMVquVB7/ayO97kmka4sWPI7rh5GDo+S0REREREbkCVquVJ2ZuYcH2RIK9XPj5yavw96jaF3XLWoeqUpFaz2Qy8cYtLfB1c2R3YiYf/RFndCQREREREbkCX609zILtiTjYmfh4WJsqX8DbQkW8CBDk6cL4QS0A+HjZAbYlpBsbSERERERELsuWI6cY//NuAJ4f0IR2kX4GJypfKuJFzri+ZQg3tgrFbLEy+vtt5BWajY4kIiIiIiI2SMsuYMQ3myk0WxnQIpj7u9UzOlK5UxEv8jfjbmpGoKcz+5OzeHdRrNFxRERERESkjCwWKyNnbeV4Rh71A9x5a3BLTCaT0bHKnYp4kb/xdXfircHF0+o/Xx3P+oOpBicSEREREZGy+L8/9rNiXwoujnZMvqstni6ORkeqECriRf7h6pg63N4+HKsVnv5hG9n5RUZHEhERERGRi1gZl8KkJfsAeH1QC2KCa+4qYyriRc7jpRuaEObjSkJaLm/8ssfoOCIiIiIicgHH03N56tutWK1wZ8dwBrera3SkCqUiXuQ8PF0ceee2lgB8s/4Iy/elGJxIRERERET+qaDIwuMzNpOWXUCzUC9eubGZ0ZEqnIp4kQvo2iCA4V3rATDmh+1k5BQaG0hEREREREp589e9bD6SjpeLA1OGtcPF0d7oSBVORbzIRYzpH0NUgDtJmXmMnb/L6DgiIiIiInLGz9sT+d/qeAAmDmlNhL+bwYkqh4p4kYtwdbLn3dtaYWeCOVuOsXBnktGRRERERERqvQMpWTz7wzYAHunZgGub1jE4UeVRES9yCe0ifXm4ZwMAXpy7g5NZ+QYnEhERERGpvXIKinhs+mayC8x0ivLj6b6NjY5UqVTEi5TByD6NiAn2JDW7gJfm7sRqtRodSUREbJByOp+ftyfq97eISDVntVp5ae5OYk+cJtDTmf8b2gYH+9pV1taudytymZwd7Jk4pBUOdiYW7krip63HjY4kIiI2eGLmZkbM2MzcLceMjiIiIldg5oYE5mw5hr2dif+7sw1Bni5GR6p0KuJFyqhZqDdPXdMIgJd/2klSRp7BiUREpCz2JmWy7mAaAL/tOmFwGhERuVw7jmbw6rziZtPP9Iumc31/gxMZQ0W8iA0e7dWAVnW9ycwrYszs7ZqWKSJSDUxfd7jk/6/af5KCIouBaURE5HJk5BTy2IxNFJgt9GlSh4d71Dc6kmFUxIvYwMHejolDWuPsYMfyfSnM3JBgdCQREbmI03mFzN1cPIXe0d5EVn4RGw+nGZxKRERsYbFYGf39VhLScgn3c2XikFaYTCajYxlGRbyIjRoGefBMv2gAxv+8myOpOQYnEhGRC/lxyzGyC8w0CHTnxpahACyPTTE4lYiI2OK/Kw7y+55knBzsmDKsHd6ujkZHMpSKeJHLcH+3KDpG+ZFTYObpH7ZhsWhavYhIVWO1Wvn6zFT6uztH0jsmCIClsclGxhIRERusPZDKO4v2AjD2pmY0D/M2OJHxVMSLXAY7OxPv3toKNyd7NsSn8b/V8UZHEhGRf9gQn8a+E1m4OtpzS7u69GgUiJ0J9p3I4ugpzaISEanqkjPzeGLmFixWGNy2Lnd0CDc6UpWgIl7kMkX4u/HS9U0BeHtRLPuTTxucSERE/u7sVfhBbcLwcnHE282RdpG+ACzTlHoRkSqtyGzh8ZlbOJmVT0ywJ+MHNa/V98H/nYp4kStwZ8dwejQOpKDIwujvtlFkVsdjEZGqIPl0Hot2JQFwV+eIku29ooun1C/TlHoRkSrtnd9i2RCfhoezA5OHtcXVyd7oSFWGiniRK2AymXh7cEu8XBzYdjSDqcsPGB1JRESA7/5MoNBspV2kL81C/7p/sveZIn71/lTyCs1GxRMRkYv4bVcS/11+EIC3b21J/UAPgxNVLSriRa5QsLcLYwc2A+CDJXHsOp5hcCIRkdqtyGxhxvojQHFDu79rEuJJHS9ncgvNbIjXUnMiIlXN4dRsRn+/DShuJj2gRYjBiaoeFfEi5WBQ6zD6Nwum0Gxl9HfbyC/S1R0REaP8sTeZ4xl5+Lk7cV2L4FLPmUymkqvx6lIvIlK15BWaeXT6Zk7nFdEu0pfnB8QYHalKUhEvUg5MJhPjb26Ov7sTe5NO88HvcUZHEhGptc42tBvSPhxnh3PvoewVHQiouZ2ISFXz6rxd7E7MxM/diY+GtsHRXuXq+WhURMpJgIczr9/cHICpyw+w+cgpgxOJiNQ+8SezWRl3EpMJhnWKOO8+3RoG4GBnIv5kNodOZldyQhEROZ/vNybw7Z8JmEzw4R1tCPF2NTpSlaUiXqQc9W8ews1twrBY4envtpFboGn1IiKV6ZszV+F7RwcR7ud23n08XRzpUM8PUJd6EZGqYE9iJi/9uBOAf/dpzFWNAgxOVLWpiBcpZ6/e2IxgLxcOnszmrYV7jY4jIlJr5BaY+X7TUeDchnb/1DumeEr9Uk2pFxExVGZeIY9O30R+kYVe0YE83ruh0ZGqPBXxIuXM282Rt25tCcAXaw6x5sBJgxOJiNQO87cfJyO3kHA/V3o0Drzovmeb2609mKpZUyIiBrFarYz5YTuHUnMI9Xbh/SGtsbMzGR2rynMoy07bt2+3+cBNmzbFwaFMhxepcXo2DmRopwhmrD/CM99vZ+HI7ni6OBodS0SkRpt+Zir9sE6R2F/iS2DDIA/CfFw5lp7L2oMnuTqmTmVEFBGRv/l8VTy/7kzC0d7E5Lva4evuZHSkaqFMVXbr1q0xmUxYrdYyHdTOzo59+/ZRv379KwonUp29MKAJK+NSSEjLZfyCPSVX50VEpPxtS0hn+9EMnBzsGNI+/JL7m0wmescEMn3dEZbuTVERLyJSyTYeSuPNX4tvPf3PDU1pHe5jbKBqpMyXytevX09g4MWnpkHxlIjmzZtfUSiRmsDD2YF3b23FHZ+uY9bGBPo1r6MviSIiFeTssnI3tAjBr4xXcnpHBxUX8bHJWK1WTCZN4RQRqQwns/IZMWMzRRYrN7YKvWQfEymtTEV8z549adiwIT4+PmU6aI8ePXB11ZIAIp3q+/NAtyg+WxXPmNk7+G2kr6YJiYiUs1PZBczfdhyAu7qU/Ytglwb+ONnbcfRULgdSsmgY5FlREUVE5AyzxcpT327hRGY+DYM8ePOWFjqJaqMyNbZbunRpmQt4gF9++YWQkJDLzSRSozzdL5oGge6knM7nlXm7jI4jIlLj/LDpKPlFFpqFetHGhumYbk4OdKp/dqk5dakXEakMk37fx+r9qbg62jNlWFvcndVHzVY2dafPzMzEYrGcs91sNpOZmVluoURqEhdHe94b0hp7OxPzth3n5+2JRkcSEakxLBYr09cXT6W/u3OkzVdzznapX6r14kVEKtzS2GT+74/9ALw5uAWN6mgG1OUocxE/d+5c2rdvT15e3jnP5eXl0aFDB+bPn1+u4URqilbhPozo1QCAl37cQfLpc/87EhER263cf5LDqTl4ujhwU+tQm3++d0xxEb8hPo2s/KLyjiciImccPZXDv2dtBYpPug5sHWZsoGqszEX8lClTePbZZ3FzczvnOXd3d8aMGcNHH31UruFEapLHr25E0xAvTuUU8sKcnWVe7UFERC7s67XFV+FvbVcXNyfbp2RGBbhTz9+NQrOV1ftPlnc8EREB8ovMjPhmM+k5hbSq681LNzQxOlK1VuYifufOnfTq1euCz/fo0YMdO3aURyaRGsnJwY73bm+Fo72J3/ecYPbmY0ZHEhGp1o6eyuGPvScAuOsKOhv3OjOlfpmm1IuIVIjXf97DtqMZeLs68vGwtjg72BsdqVorcxF/6tQpioouPM2ssLCQU6dOlUsokZoqJtiLf1/bGICx83ZxPD3X4EQiItXXzA1HsFihW0N/GgR6XPZxzk6pX7o3RbOkRETK2U9bj/HVmVlTk25vTV3fc2d2i23KXMTXq1ePjRs3XvD5jRs3Ehmp9f1ELuXhHg1oE+HD6fwinv1hOxaLvjCKiNgqv8jMrD8TAK54feFOUX64ONqRlJnH3qTT5RFPRESAuBOneX5O8WztJ65uWHLSVK5MmYv4W265hRdffJETJ06c81xSUhIvvfQSgwcPLtdwIjWRvZ2Jibe1wsXRjlX7T/LNma7KIiJSdgt3JnEyq4A6Xs70aVLnio7l4mhP1wYBgLrUi4iUl+z8Ih79ZjM5BWa6NvBnZJ/GRkeqMcpcxD/33HN4enrSqFEjHnvsMT744AM++OADHn30URo3boyHhwfPPfdcRWYVqTHqB3rwXP8YAN74ZS+HTmYbnEhEpHqZvq74BOjQjpE42Nu0Yu559Y4OBLRevIhIebBarTw3Zwf7k7Oo4+XMh3e2wd7OtiVA5cLK3MbV09OT1atX8/zzzzNr1qyS+999fHy46667eP311/H01Dp/ImV1T5d6LNp1grUHU3n6+23MeriLfrmJiJTBnsRM/jx0Cgc7E3d0DC+XYxY3t9vFpsOnyMgtxNvVsVyOKyJSG01fd5j5245jb2fi46FtCfBwNjpSjWLTqWtvb28mT57MyZMnOXHiBElJSaSmpjJ58mR8fX0rKqNIjWRnZ+Kd21ri4ezAxsOn+GzlQaMjiYhUC2evwvdrFkwdL5dyOWa4nxsNgzwwW6ysitNScyIil2trQjrjFuwG4PnrYmhfz8/gRDXPZc0/M5lMBAYGEhQUhMl0+VcOJ0yYQIcOHfD09CQoKIhBgwYRGxt73n2tVivXXXcdJpOJH3/88aLHtVqtvPzyy4SEhODq6kqfPn2Ii4u77JwiFaWurxsv39AUgIm/7WPfCTVUEhG5mNN5hczdUrxE55UsK3c+Z6fU6754EZHLcyq7gBHfbKbQbKV/s2AeuCrK6Eg10pXfRHYFli9fzogRI1i3bh2LFy+msLCQvn37kp197v3BkyZNKvMJg7fffpsPP/yQqVOnsn79etzd3enXrx95eXnl/RZErtht7etydUwQBWYLo77bSqHZYnQkEZEq68ctx8gpMNMwyIPO9cv36k7vkvXiU7RyiIiIjSwWK//+bivH0nOp5+/G27e1vKILvnJhhhbxCxcuZPjw4TRr1oxWrVrxxRdfcOTIETZt2lRqv61btzJx4kT+97//XfKYVquVSZMm8dJLLzFw4EBatmzJV199xfHjxy95BV/ECCaTiTdvaYG3qyM7j2Xy8dL9RkcSEamSrFYrX5+ZSn9358hy/3LYvp4f7k72nMzKZ9fxzHI9tohITffx0v0si03B2cGOycPa4eWi3iIVxdAi/p8yMjIA8PP768x6Tk4OQ4cO5eOPPyY4OPiSx4iPjycpKYk+ffqUbPP29qZTp06sXbv2vD+Tn59PZmZmqYdIZQrycuG1Qc0B+OiP/ew4mmFwIhGRqmdDfBr7TmTh6mjPzW3Dyv34Tg52XNVIS82JiNhqVdxJ3vt9HwDjBzWnaaiXwYlqtisq4stzerrFYmHkyJF069aN5s2bl2z/97//TdeuXRk4cGCZjpOUlARAnTql14ytU6dOyXP/NGHCBLy9vUse4eHl0+lWxBY3tQrl+pYhFFmsjPpuK3mFZqMjiYhUKWevwg9qE1ZhV3h6nZlSryJeRKRsEjNyefLbLVitcHv7cG5rr1qqotlcxFssFl577TXCwsLw8PDg4MHijtr/+c9/+Pzzzy87yIgRI9i5cyfffvttybZ58+bxxx9/MGnSpMs+blk8//zzZGRklDwSEhIq9PVELuS1gc0J8HAmLjmL9xfvMzqOiEiVkXw6j4U7i0/G39U5osJep9eZ5nZbE9JJyy6osNcREakJCs0WHp+xhbTsApqGeDF2YDOjI9UKNhfx48eP54svvuDtt9/GycmpZHvz5s357LPPLivE448/zoIFC1i6dCl169Yt2f7HH39w4MABfHx8cHBwwMGheFn7wYMH06tXr/Me6+yU+xMnTpTafuLEiQtOx3d2dsbLy6vUQ8QIfu5OTLilBQCfrDzIxkNpBicSEakaZm1IoMhipV2kL81CvSvsdUK8XYkJ9sRqhZVxKRX2OiIiNcGbv+5l0+FTeLo4MOWutrg42hsdqVawuYj/6quv+OSTTxg2bBj29n/9JbVq1Yq9e/fadCyr1crjjz/O3Llz+eOPP4iKKr0EwXPPPcf27dvZunVryQPg/fffZ9q0aec9ZlRUFMHBwSxZsqRkW2ZmJuvXr6dLly425RMxwrVN63Bru7pYrTD6+21k5xcZHUlExFBFZgszNhwBihvaVbTeMWem1O/VlHoRkQv5dUcin6+KB2Diba2I9Hc3OFHtYXMRf+zYMRo2bHjOdovFQmFhoU3HGjFiBNOnT2fGjBl4enqSlJREUlISubm5QPFV9ebNm5d6AERERJQq+GNiYpg7dy5Q3Ol75MiRjB8/nnnz5rFjxw7uueceQkNDGTRokK1vV8QQL9/YlFBvFw6n5vDmr7adHBMRqWmW7E0mMSMPP3cnrmtx6Sa3V+rsUnPL96Vg1lJzIiLnOJiSxTM/bAfg4R716dus4n83y19sLuKbNm3KypUrz9n+ww8/0KZNG5uONWXKFDIyMujVqxchISElj1mzZtl0nNjY2JLO9gDPPvssTzzxBA899BAdOnQgKyuLhQsX4uLiYtNxRYzi5eLI27e2AoobOWlKp4jUZtPPNLS7vUM4zg4VP1WzbYQPni4OnMopZNvR9Ap/PRGR6iS3wMxj32wmK7+IjvX8eKZftNGRah0HW3/g5Zdf5t577+XYsWNYLBbmzJlDbGwsX331FQsWLLDpWFar7We3z/cz/9xmMpkYN24c48aNs/n4IlXFVY0CuKdLJF+tPcyzP2xn0b97aL1NEal1DqZksTLuJCYTDO1YcQ3t/s7B3o4ejQP5eXsiy/Ym0zbCt1JeV0SkqrNarbz04072Jp0mwMOZj4a2wcG+Sq1aXivYPOIDBw5k/vz5/P7777i7u/Pyyy+zZ88e5s+fz7XXXlsRGUVqreeui6GevxuJGXmMnbfb6DgiIpXum/XF98JfHR1EuJ9bpb1u75Kl5jQTSkTkrFl/JjB781HsTPB/d7YhyEsznY1g85V4gO7du7N48eLyziIi/+Dm5MDEIa24bepaZm8+Sr9mdXTPkYjUGrkFZr7fWLzs611dKr6h3d/1bFy81NyOYxkkn84jyFNfVEWkdtt5LIOX5+0C4Ol+0XRp4G9wotrrsuY+pKen89lnn/HCCy+Qlla8BNbmzZs5duxYuYYTEWgX6ceDPeoD8MLcHVq3WERqjfnbjpOZV0S4nys9GwVW6msHejrTIqx4KbsV+05W6muLiFQ1GbmFPPbNZgqKLFwTE8QjPRoYHalWs7mI3759O40bN+att97inXfeIT09HYA5c+bw/PPPl3c+EQH+3acxjet4cDKrgJd+3HFZ/SRERKoTq9XKV+sOAXBXp0js7EyVnqF3dPGJg6WxWmpORGovq9XK6O+2cSQth7q+rrw3pLUhv5PlLzYX8aNGjWL48OHExcWV6vY+YMAAVqxYUa7hRKSYi6M97w1pjYOdiV92JDFv23GjI4mIVKhtRzPYeSwTJwc7bmsfbkiGXmfWi1+xL4Uis8WQDCIiRvvvioP8vucETvZ2TBnWDm83NVo2ms1F/J9//snDDz98zvawsDCSkpLKJZSInKt5mDdPXN0IgJd/2sWJzDyDE4mIVJyv1xYvK3dDyxD83J0MydCqrg++bo6cziti85F0QzKIiBhp3cFU3lkUC8ArNzWlRV1vgxMJXEYR7+zsTGZm5jnb9+3bR2Bg5d6vJlLbPNa7AS3CvMnILeS52ds1rV5EaqRT2QXM31484+juzpXb0O7v7O1MJQ3uNKVeRGqb5Mw8npi5BbPFyi1twiptmU+5NJuL+Jtuuolx48ZRWFgIFK/JfuTIEcaMGcPgwYPLPaCI/MXR3o6JQ1rh5GDH0tgUvjvTtVlEpCb5flMCBUUWmod50Trcx9Asvc9MqV+6V0W8iNQeRWYLT8zcQsrpfBrX8WD8zc0xmXQffFVhcxE/ceJEsrKyCAoKIjc3l549e9KwYUM8PT15/fXXKyKjiPxN4zqePN23MQDj5u8mIS3H4EQiIuXHYrEyfV3x2vB3d440/Etjj0aBmEywN+k0iRm5hmYREaksExfvY318Gu5O9ky5qx1uTpe1MrlUEJuLeG9vbxYvXsyCBQv48MMPefzxx/nll19Yvnw57u7uFZFRRP7hgavq06GeL9kFZp75YRsWi6bVi0jNsCIuhSNpOXi6OHBTqzCj4+Dr7lQyG2BZbIqxYUREKsHi3SeYsuwAAG/d2pIGgR4GJ5J/sqmILywsxMHBgZ07d9KtWzcee+wxnn32Wfr06VNR+UTkPOztTLx7WytcHe1ZdzCNL9ceMjqSiEi5mL6uuKHdbe3CcXWyNzhNsd7RxVPql+m+eBGp4Y6k5jD6u60ADO9ajxtahhobSM7LpiLe0dGRiIgIzGZzReURkTKK9HfnheubAPDmr3s5kJJlcCIRkSuTkJbDkjP3ng/rXHUaKJ0t4lfFnaSgSEvNiUjNlFdo5rEZm8jMK6JNhA8vDGhidCS5AJun07/44ou88MILpKWlVUQeEbHBXZ0i6N4ogPwiC6O/26Z1jEWkWpu54QhWK1zVMKBKTd9sFupFgIcz2QVmNh7S9x8RqZnGzt/NzmOZ+Lk78fHQtjg52FwqSiWx+W/mo48+YsWKFYSGhhIdHU3btm1LPUSk8phMJt4a3BJPFwe2JqTz3xUHjY4kInJZ8ovMzPqzeMWNuwxcVu587OxM9IrWUnMiUnPN3nSUmRuOYDLBpNtbE+rjanQkuQib2wwOGjSoAmKIyOUK9XHl1RubMfr7bUz6fR9XxwTRJMTL6FgiIjZZuDOJ1OwCgr1c6NMkyOg45+gdHcQPm46yNDaFF683Oo2ISPnZm5TJiz/uAOCpaxrRo3GgwYnkUmwu4l955ZWKyCEiV+CWtmEs3JXE4t0nGPXdNn4a0U1ToESkWjnb0G5opwgc7Kve76+rGgVgb2dif3IWCWk5hPu5GR1JROSKnc4r5NHpm8krtNC9UQBPXN3I6EhSBlXvX0kRsZnJZOKNm1vg5+7EnsRM/u+POKMjiYiU2Z7ETP48dAoHOxN3dAg3Os55ebs60i7SF1CXehGpGaxWK2Nmbyf+ZDYh3i58cEcb7O1MRseSMrC5iPf19cXPz++ch7+/P2FhYfTs2ZNp06ZVRFYRuYhAT2fGD2oOwORlB9iakG5sIBGRMjp7Fb5fs2CCvFwMTnNhf90Xr/XiRaT6m7b6EL/sSMLR3sTHw9ri5+5kdCQpI5uL+Jdffhk7Ozuuv/56xo4dy9ixY7n++uuxs7NjxIgRNG7cmEcffZRPP/20IvKKyEUMaBHCwNahmC1WRn23lbxCLQcpIlXb6bxC5m45BlS9hnb/dHapuTUHTur3q4hUa5sOp/HGL3sAeHFAE9pG+BqcSGxh8z3xq1atYvz48TzyyCOltv/3v//lt99+Y/bs2bRs2ZIPP/yQBx98sNyCikjZjL2pGWsPpHIwJZt3FsXynxuaGh1JROSC5m45Rk6BmYZBHnSu72d0nIuKCfYk2MuFpMw81sen0VPNn0SkGkrNymfEN1sosli5vmUI93atZ3QksZHNV+IXLVpEnz59ztl+zTXXsGjRIgAGDBjAwYNa6krECD5uTrw1uCUA/1sdz7qDqQYnEhE5P6vVytdri6fS3905EpOpat+LaTKZ6B1zZkr9Xt0XLyLVj9li5alvt5KUmUf9QHfeGtyyyv/ulXPZXMT7+fkxf/78c7bPnz8fP7/iM+jZ2dl4enpeeToRuSy9Y4K4s2M4Vis8/f02svKLjI4kInKO9fFpxCVn4eZkz81tw4yOUya9zkypV3M7EamOPlgSx6r9J3F1tGfqXe3wcLZ5YrZUATb/rf3nP//h0UcfZenSpXTs2BGAP//8k19++YWpU6cCsHjxYnr27Fm+SUXEJi9e35SVcSc5eiqX13/ew4RbWhgdSUSklK/PNLQb1CYMLxdHg9OUTbeGATjamziUmkP8yWyiAtyNjiQiUibLYpNLVjB645bmNK6ji67Vlc1X4h988EGWL1+Ou7s7c+bMYc6cObi5ubF8+XIeeOABAEaPHs2sWbPKPayIlJ2HswPv3NoKgJkbjuiqkYhUKcmZeSzamQTAXZ2qdkO7v/NwdqBjVPHMQ02pF5Hq4lh6LiNnbcVqhWGdIri5TV2jI8kVuKz5E926daNbt27lnUVEylmXBv7c160e01YfYszs7fw2sifebtXjapeI1Gzf/plAkcVK+0hfmoZ6GR3HJr2jg1i9P5Wlscncf1WU0XFERC6qoMjCY99sJj2nkBZh3mp6XAPYfCUe4MCBA7z00ksMHTqU5OTis9C//voru3btKtdwInLlxvSPoX6gOycy83ll3k6j44iIUGS2MGP9EQDu7lJ9rsKfdXa9+PUH08gpUM8REanaXv95N9sS0vF2dWTysLa4ONobHUmukM1F/PLly2nRogXr169n9uzZZGVlAbBt2zZeeeWVcg8oIlfGxdGeibe1ws4EP249zq87Eo2OJCK13O97kknKzMPf3Yn+zYONjmOzBoEe1PV1pcBsYe0BrQAiIlXXvG3H+fLMKiDvDWlFuJ+bwYmkPNhcxD/33HOMHz+exYsX4+TkVLL96quvZt26deUaTkTKR5sIXx7t1QCAF3/cycmsfIMTiUhtNv1MQ7vbO4Tj7FD9rgiZTCZ6n+lSv1T9RkSkitqffJrnZm8H4LFeDbimSR2DE0l5sbmI37FjBzfffPM524OCgjh58mS5hBKR8vfkNY2ICfYkLbuAF+bswGq1Gh1JRGqhAylZrNp/EpMJhnaKMDrOZftrvfgU/T4VkSonO7+IR6ZvJqfATJf6/oy6trHRkaQc2VzE+/j4kJh47nTcLVu2EBZWPdZ4FamNnB3seW9IaxztTfy2+wRztxwzOpKI1ELfrCu+F/6amCDq+lbfaZ1d6gfg5GDHsfRc9idnGR1HRKSE1Wrlxbk72J+cRZCnMx/e2QYH+8tqhSZVlM1/m3fccQdjxowhKSkJk8mExWJh9erVPP3009xzzz0VkVFEyknTUC9G9ik+E/vKvF0kZuQanEhEapOcgiK+35QAwF2dq19Du79zdbKnS31/QFPqRaRqmb7+CD9uPY69nYmPhrYl0NPZ6EhSzmwu4t944w1iYmIIDw8nKyuLpk2b0qNHD7p27cpLL71UERlFpBw93KM+rcJ9OJ1XxLM/bNc0UBGpNPO3Hed0XhERfm70aBRodJwr1jv6ryn1IiJVwbaEdF6bvxuAMf2j6RjlZ3AiqQg2F/FOTk58+umnHDhwgAULFjB9+nT27t3L119/jb199WtOI1LbONjbMfG2Vjg72LEy7iQzNhwxOpKI1AJWq5WvznRIvqtzBHZ2JoMTXbleZ5rb/XkojdN5hQanEZHa7lR2AY99s5kCs4W+TevwYPf6RkeSCnLZN0dEREQwYMAAhgwZQqNGjcozk4hUsIZBHozpHwPA6z/v4XBqtsGJRKSm25qQzq7jmTg52HFbu3Cj45SLegHuRAW4U2Sxsnq/mvuKiHEsFiujvtvKsfRcIv3deOe2VphM1f9kqZyfQ1l2GjVqVJkP+N577112GBGpPMO71mPRriTWx6fxzPfbmflQZ+xrwJUxEamavj6zrNyNLUPxdXe6xN7VR6/oQOJPZrMsNoX+zUOMjiMitdTkZftZGpuCs4Mdk4e1xdvV0ehIUoHKVMRv2bKl1J83b95MUVER0dHRAOzbtw97e3vatWtX/glFpELY2Zl497ZW9J+0gg2H0pi2Op5/adqViFSAtOwCFmwvXtnm7i7Vu6HdP/WODmLa6kMsjU3GarXqypeIVLrV+0/y3uJ9ALw2sDnNQr0NTiQVrUxF/NKlS0v+/3vvvYenpydffvklvr6+AJw6dYr77ruP7t27V0xKEakQ4X5uvHRDU56fs4O3F8XSKzqQhkGeRscSkRrm+40JFBRZaBHmTau6NevLZccoP1wd7TmRmc+exNM0DfUyOpKI1CJJGXk89e0WLFa4rV1dhnSoGbcrycXZfE/8xIkTmTBhQkkBD+Dr68v48eOZOHFiuYYTkYp3R4dwekUHUlBkYdR32yg0W4yOJCI1iMViZfr64qn0d3eOrHFXql0c7enWUEvNiUjlKzRbeHzGZk5mFRAT7Mlrg5obHUkqic1FfGZmJikp5y6lkpKSwunTp8sllIhUHpPJxFuDW+Lt6sj2oxlMWXbA6EgiUoMsj0shIS0XLxcHbmwVanScCnG2S/0yFfG13qnsAuJPZmv5VqkUby/cy8bDp/B0dmDKXe1wcdRKYbWFzUX8zTffzH333cecOXM4evQoR48eZfbs2TzwwAPccsstFZFRRCpYHS8Xxg1sBsCHS+LYeSzD4EQiUlN8c6ah3W3tw3F1qplfMHudWS9+0+FTZORoqbnaKq/QzPUfrqT3u8vo9uYfjPlhOz9vT9RnQirEwp2JfLoyHoB3bmtJVIC7wYmkMpXpnvi/mzp1Kk8//TRDhw6lsLD4l5KDgwMPPPAA77zzTrkHFJHKcVOrUBbuTOLXnUmM/m4b857ohrNDzfzCLSKVIyEthyV7i69OD+sUYXCailPX143GdTzYdyKLFXEpNXbGgVzc/G3HOZ6RB8DxjDxmbUxg1sYE7EzQKtyHHo0C6RkdSKu6PloNRq5I/Mlsnvl+OwAPdo/Syhi1kM1FvJubG5MnT+add97hwIHiabcNGjTA3V1nf0SqM5PJxPhBzfnzUBqxJ07z/uI4nrsuxuhYIlKNzdxwBKsVrmoYQP1AD6PjVKhe0UHsO5HF0thkFfG11PQzs06evKYRbSN8WLHvJCviUtifnMWWI+lsOZLOB0vi8HZ15KqGAfRoHECPxoGEeLsanFyqi2PpuWyIT2XKsgOczi+iQz1fnu2v72q1kc1F/Fnu7u60bNmyPLOIiMH8PZx5/eYWPPz1Jj5ZcYBrmwbRLtLP6FgiUg3lF5mZ9WcCAHd1rlnLyp1Pr+hAPllxkBX7UrBYrNjpSmutsi0hnW1HM3Cyt+PeLpH4eziX9Eo4np7Lin0prIhLYVXcSTJyC/l5RyI/7yhedrFRkAc9GgfSo3EgnaL8dF+zAGC1WjmcmsP6+FTWx6ex/mAax9JzS54P8HDio6FtcbS3+e5oqQHKVMTfcsstfPHFF3h5lW3ZlGHDhvH+++8TFBR0ReFEpPL1axbMLW3DmLP5GKO/28YvT3XHzemyz/eJSC21cGcSqdkFBHu50KdJzf8+0D7SDw9nB05mFbDzeAYt6/oYHUkq0Vdri6/CX98yBH8P51LPhfq4ckfHCO7oGEGR2cK2oxklRf22hHTikrOIS87i81XxODvY0THKj55nivpGQR41bkUHOT+r1UpcctaZgj2VDfFpJJ/OL7WPvZ2J5mHedIry486OEdTxcjEorRitTN/Mf/rpp/N2pD8fq9XK/Pnzee2111TEi1RTr9zYjLUHUjmUmsPbC2N59aZmRkcSkWrm6zNFzdBOETjUgitFTg52XNUwgIW7kli6N0VFfC2Sll3A/O3HAbi7y8VnnTjY29Eu0pd2kb78+9rGpOcUsHp/aklRn5iRx8q4k6yMOwk/7yHE24XujYqn3V/VMAAfN6fKeEtSCcwWK3sSM1kfn8aG+FT+PHSKtOyCUvs42dvRKtybTlH+dIzyo12kL+7OurAiZSzirVYrjRs3rugsIlJFeLs68tbgltzzvw18seYQ1zatQ7eGAUbHEpFqYvfxTDYePoWDnYk7OoQbHafS9I4JLC7iY5N5qk8jo+NIJfluYwIFRRaah3nRJtzHpp/1cXPi+pYhXN8yBKvVyv7kLJbvS2H5vhQ2xKeRmJHHdxuP8t3Go9iZoGVdH3o0DqRn4wBa1fWpFSfIaopCs4UdxzLYcOZK+8ZDpzidX1RqHxfH4pM8Hev506m+H63DfXR7hZxXmYr4pUuX2nzgsLCwS+4zYcIE5syZw969e3F1daVr16689dZbREdHl+zz8MMP8/vvv3P8+HE8PDxK9omJuXATh+HDh/Pll1+W2tavXz8WLlxo8/sQqa16NA7krs4RTF93hH/P2srsR7sS7udmdCwRqQamry++Ct+veTBBtWi659l7oLcdTSc1K/+cadVS85gt1pKGdvd0rndFU99NJhON6njSqI4n/+pen7xCM+vj04qv0u9LIS45i60J6WxNSOfDJXF4uTjQrWFAyf30YT5qkFeV5BWa2ZqQzob4NDbEp7Hp8ClyC82l9vF0dqB9PV86nrnS3iLMGycHnZiRSytTEd+zZ88KefHly5czYsQIOnToQFFRES+88AJ9+/Zl9+7dJd3u27Vrx7Bhw4iIiCAtLY1XX32Vvn37Eh8fj739hc9M9e/fn2nTppX82dlZ/5CK2Or565qwIT6NfSeyuOd/G/j+kS4E6EupiFxEZl4hP245BsDdtaCh3d/V8XKhaYgXuxMzWRGXws1t6hodSSrYsthkjp7KxdvVsdxXJXBxtKdn40B6Ng4EihvkrYxLYcW+k6zaX9wg79czS8MCNAzyoEejQHo0DqBTlD+uTrqCW5my84vYfOTUmSvtaWxNSKfAbCm1j4+bIx3r+dGpvj+dovxoEuKl5QblspisVqvV6BBnpaSkEBQUxPLly+nRo8d599m+fTutWrVi//79NGjQ4Lz7DB8+nPT0dH788cfLypGZmYm3tzcZGRllbuYnUlMlZeQxeMoajqXn0jzMi5kPdsbTxdHoWCJSRX255hCvzNtFoyAPfvt3j1rXlOudRXv5eOkBbmoVyod3tjE6jlSw4dM2sCw2hX9dFcVLNzSttNc1W6xsO5pecpV+a0I6lr99o3dysKNTlN+Zoj6QxnXUIK+8ZeQWsvFQ8VX29fFp7DyWQZGldFkV6OlMpyg/OkX50THKn0ZBHlq5Qi6qrHVoleqMkJGRAYCf3/mXtMrOzmbatGlERUURHn7xe+yWLVtGUFAQvr6+XH311YwfPx5/f//z7pufn09+/l/dHzMzMy/zHYjUPMHeLnz9QEdum7qWnccyefCrjXxxX0fdoyUi57BarXx9Zmrx3V0ia2XR0Cs6iI+XHmBFXApmi1VX2Wqww6nZLN9X3Pi5spdRtLcz0TbCl7YRvozs05iMnEJWHzhZUtQf/1uDvNd/2UOwV+kGeb7uapBnq9SsfP48lMa6g8WF+56kTP55KTTMx7W4aK9fXLTX83erlb8HpeJVmSvxFouFm266ifT0dFatWlXqucmTJ/Pss8+SnZ1NdHQ0P//88wWvwgN8++23uLm5ERUVxYEDB3jhhRfw8PBg7dq1552C/+qrrzJ27NhztutKvMhfdh7L4I5P1pGVX0TfpnWYPKytGuqISClrD6Ry56frcHOyZ/0L19TKWTtFZgttX1tMZl4Rsx/tSrtIX6MjSQV5/efdfLoynp6NA/ny/o5GxylhtVo5kJLF8n3FRf26g6nkF/01rdt0pkFezzNFfetwNcg7n6SMPNbHp5Zcad+fnHXOPvUD3OkY5VfyqOur3kFyZcp6Jb7KFPGPPvoov/76K6tWraJu3dL3kGVkZJCcnExiYiLvvvsux44dY/Xq1bi4lK1ZzsGDB2nQoAG///4711xzzTnPn+9KfHh4uIp4kX9YeyCVe6dtoKDIwu3tw3lzcAudYRaREiO+2czPOxIZ1imC129uYXQcwzw+YzMLtifyxNUNGd03+tI/INVOboGZzhOWkJFbyOf3tueaJnWMjnRBeYVmNpxtkBeXwr4TpYtRTxcHujU42yAvoFYWolarlaOncv9ao/1QGodTc87ZL7qOJx3PXmmv51erGndK5ajQ6fRFRUUsW7aMAwcOMHToUDw9PTl+/DheXl54eHjYfLzHH3+cBQsWsGLFinMKeABvb2+8vb1p1KgRnTt3xtfXl7lz53LnnXeW6fj169cnICCA/fv3n7eId3Z2VuM7kTLo0sCf/7uzDY9O38SsjQn4ujvx3HUXXilCRGqPE5l5LNpV3GCrsqcWVzW9o4NYsD2RpbHJKuJrqPnbjpORW0hdX9eSVQmqKhdH+5IO9gCJGbms3HeS5XEprIorbpC3cFcSC8/891s/0J0ejYob6nWuXzMb5BXPVsg+0zk+lfVnlvP7OzsTNA31KlmjvWM9P92GIFWGzUX84cOH6d+/P0eOHCE/P59rr70WT09P3nrrLfLz85k6dWqZj2W1WnniiSeYO3cuy5YtIyoqqkw/Y7VaS105v5SjR4+SmppKSEhImX9GRM6vX7Ng3rylJc/O3s7U5QfwdXPk4Z4Xvr1FRGqHbzckUGSx0qGeL01Cavcstp7RxcXSzmOZJGfm6WpdDWO1Wvlq3SGg+IRVdet7EOLtypAO4QzpEI7ZYmX70XRW7DvJirgUthw5xcGUbA6mZPPFmkM42dvRIcqXnmdOAkTX8ayWM/AsFiuxJ06XXGXfEJ/GyayCUvs42JloWdebjlHFa7S3i/TFqxbeEiTVg81F/FNPPUX79u3Ztm1bqUZxN998Mw8++KBNxxoxYgQzZszgp59+wtPTk6Sk4jOA3t7euLq6cvDgQWbNmkXfvn0JDAzk6NGjvPnmm7i6ujJgwICS48TExDBhwgRuvvlmsrKyGDt2LIMHDyY4OJgDBw7w7LPP0rBhQ/r162fr2xWR8xjSIZxTOQVM+HUvE37di6+7E0PaX7zZpIjUXIVmCzM2FDe0q+1X4QECPJxpVdebbUczWLYvRb8fa5gtCensPJaJk4Ndtf+7tbcz0SbClzYRvjzVpxEZuYWs2V9c0K/Yd5Jj6bms3p/K6v2pvPHLXup4OdP9TMf77lW4QV6R2cKu45ln7mdP5c9Dp8jILSy1j7ODHW0ifIqL9ig/2kT44OZUpXp+i1yQzZ/UlStXsmbNGpycSv9HW69ePY4dO2bTsaZMmQJAr169Sm2fNm0aw4cPx8XFhZUrVzJp0iROnTpFnTp16NGjB2vWrCEo6K+pS7GxsSWd7e3t7dm+fTtffvkl6enphIaG0rdvX1577TVNmRcpRw/3bEBadgH/XXGQ52Zvx9vVkX7Ngo2OJSIGWLLnBCcy8wnwcKJ/c/0egOIu9duOZrAsNrnaF3pS2vS1xSesbmgZgl8VLWIvl7erI9e1COG6FiElU87P3ku/7mAqJzLz+WHTUX7YdLS4QV6Yd8lU/TYGNsjLLzKz42hG8T3t8WlsOpRGdoG51D5uTva0i/Slc/3i6fEt63rj7FDzbhWQ2sHmIt5isWA2m8/ZfvToUTw9PW061qV66oWGhvLLL7/YdBxXV1cWLVpkUw4RuTzPXRfDqZwCvtt4lCdmbuHL+zrSpcH5l3IUkZrr7LJyt3cI15fiM3rHBPHBkjhW7jtJodmCo7p/1wipWfks2J4IwD1d6hkbpoKZTCYaBnnQMMiD+6+KIq/QzJ+HzjTI23eS2BOn2XY0g21HM/i/P/bj6exA14b+xUV9o0DC/SquQV5ugZktR06dKdpT2XIkvVQHfgAvF4e/dY73p3mol7rwS41hcxHft29fJk2axCeffAIU/weelZXFK6+8UmqKu4jUfCaTiTdubkF6TiG/7T7Bg19t5NuHOtM8zNvoaCJSSfYnZ7F6fyp2JrizY4TRcaqMlmHe+Lk7kZZdwKbDp+hcXyc4a4JZGxMoMFtoWdeb1uE+RsepVC6O9nRvFEj3RoG8eH3xEmzF0+5TWLX/JOk5hSzadYJFu04Axcuvne1437m+/xVNVT+dV8jGw6fONKJLY/vRdArNpS8G+rs7FXeOP1O0Rwd7Vrt+BSJlZfMScwkJCfTv3x+r1UpcXBzt27cnLi6OgIAAVqxYUWqae3VV1tb+IlIsr9DMvf/bwPr4NPzdnfjh0a5EBbgbHUtEKsHY+buYtvoQfZrU4bN72xsdp0r596ytzN1yjEd6NtBKHjWA2WKlx9tLOZaeyzu3tuQ23SZRwmyxsuNYxpmr9ClsSUjHbPmrxHCyt6N9PV96NC7ueh8TfPEGeaeyC/jzTAO69fFp7DqegeUfFUuwl0vxUm9RfnSK8qdBoHu1bLon8ncVuk58UVERs2bNYtu2bWRlZdG2bVuGDRuGq6vrFYWuKlTEi9judF4hd366jp3HMgnzcWX2o10J9lZHZpGaLKegiE5vLOF0XhFf3t+RnmeWsJJiP209xlPfbiUm2JOFI3sYHUeu0OIzM8583BxZ9/w1uDjq1pELycgtZO2Bkyzfd5IV+1I4lp5b6vkgz7MN8gLo3iiQIoul5Cr7hvg09iadPueYEX5uZ66yFxft4X6uKtqlxqmQIr6wsJCYmBgWLFhAkyZNyiVoVaQiXuTynMzK57apa4k/mU3jOh5893AXfNxqVtMfEfnLtxuO8NycHUT6u7F0dC/sNHW1lFPZBbQbvxiLFdY8dzWhPjXjYkdtdffn61kZd5KHe9Tn+QE193twebNarRw8mV1ylX7dwTRyC8/tr/VPDYM8/jY93o8Qb/33IzVfWetQm25OcXR0JC8v74rDiUjNFODhzFf3d+TWqWvYdyKL+774k2/+1UlLtojUQFarla/OdOm+q1OkCvjz8HV3ok2EL5sOn2JZbApDO6lnQHV1MCWLlXEnMZlgWCcto2gLk8lEg0APGgR6cF+3KPKLzGw8dIrlZ4r6vUmnMZkgJtiLTmeK9g5RfgR4aFUpkQux+Zv1iBEjeOutt/jss89wcNAXcxEpLdzPja8f6MRtU9ey5Ug6j07fzKf3tMfJQR1hRWqSLQnp7E7MxNnBjlvb1TU6TpXVOzqQTYdPsTQ2WUV8NfbN+iMA9GocSIR/xXVdrw2cHezp1jCAbg0DeGFAE1Kz8nGwt8Pb1dHoaCLVhs1V+J9//smSJUv47bffaNGiBe7upZtXzZkzp9zCiUj11LiOJ/8b3oG7PlvP8n0pPP39Nibd3lpX6kRqkOlnlpW7sVUovjVsrezy1Cs6iHd/28fq/SfJLzJrCb5qKLfAzPcbE4Cav6ycEfx1xV3EZjYX8T4+PgwePLgisohIDdIu0pcpd7XlX19uZN624/i6OfLqTc3UhEakBkjLLihZK/uuzppafDHNQr0I8nQm+XQ+f8af4qpGAUZHEhv9tPUYmXlFRPi5qXmjiFQJNhfx06ZNq4gcIlID9YoOYuKQVoyctZUv1x7G192JkX0aGx1LRK7Q9xsTKCiy0CLMm1Z1vY2OU6WZTCZ6Ng7k+01HWRqbrCK+minV+6FzhGaUiUiVoJtURaRCDWwdxribmgEw6fc4vlp7yNhAInJFLBYr09cXFzV3d47U7Joy6B0TBMCy2GSDk4itNh85VdL7YYjWhReRKsLmK/FRUVEX/Qf74MGDVxRIRGqeu7vUIzW7gEm/x/HKvF14uzoysHWY0bFE5DIsj0shIS0XLxcHbmwVanScauGqRgHY25k4kJLNkdQcNUarRs5ehb+pVaiWTBWRKsPmIn7kyJGl/lxYWMiWLVtYuHAhzzzzTHnlEpEa5qlrGnEqu4Av1x5m9Hfb8HZ1pFd0kNGxRMRG088UNbe1D8fVSU3aysLLxZH2kb6sj09j2b5kNUerJlJO5/PLjuLeD/o7E5GqxOYi/qmnnjrv9o8//piNGzdecSARqZlMJhOv3NiMUzmFzNt2nEenb2b6vzrRLtLX6GgiUkYJaTn8cWZK+DAtl2aT3jFBrI9PY+leFfHVxXcbEyg0W2kV7kML9X4QkSqk3O6Jv+6665g9e3Z5HU5EaiA7OxPv3taKno0DyS00c/8Xf7LvxGmjY4lIGc3YcASrFbo3CqB+oIfRcaqV3mdmHq05kEpeodngNHIpRWYL35xZRvEercAgIlVMuRXxP/zwA35+fuV1OBGpoZwc7JhyV1vaRviQkVvI3Z+vJyEtx+hYInIJ+UVmZv1ZvFa2lpWzXeM6HoR6u5BfZGHtwVSj48glLNmbzPGMPPzcnbi+ZYjRcURESrF5On2bNm1KNbazWq0kJSWRkpLC5MmTyzWciNRMbk4O/G94B4b8dy37TmRx9+fr+eHRrgR4OBsdTUQu4NcdSaRlFxDi7cI1MepnYSuTyUSvmCBmrD/Csr3JJVfmpWr6+kzvhyHtw3FxVO8HEalabC7iBw4cWKqIt7OzIzAwkF69ehETE1Ou4USk5vJxc+Kr+zsxeMoaDqXmcO//NvDtQ53xdHE0OpqInMfXZ6YWD+0YgYO9Vqi9HL0aBzJj/RGWxqbwqtWq5fmqqAMpWazafxKTSb0fRKRqsrmIf/XVVysghojURsHeLkz/VydunbKGXccz+deXG/ny/o666iFSxew6nsGmw6dwsDNxe0etlX25ujUMwNHexJG0HOJPZquvQBV19ir8NTFBhPtpOUARqXpsPpVub29PcnLyOdtTU1Oxt9cXbxGxTVSAO1/e3xFPZwfWx6fx5MwtFJktRscSkb+Zvu4IAP2bBxPk6WJwmurL3dmBTlH+ACyNTTE4jZxPdn4RszcdBeBurSIgIlWUzUW81Wo97/b8/HycnJyuOJCI1D7Nw7z59N72ODnY8dvuEzw/Z8cFf9eISOXKzCvkxy3HALhbDe2uWK/oQACWxZ57QUSM99PW45zOL6KevxvdGwYYHUdE5LzKPJ3+ww8/BIobs3z22Wd4ePw1BcxsNrNixQrdEy8il61zfX8+urMNj0zfxPebjuLn7sTzA5oYHUuk1puz6Si5hWYa1/GgY5RWoblSvWOCGP/zHtYfTCM7vwh3Z5vvbJQKYrVa+WrtIaB4BQY7O/UsEJGqqcz/crz//vtA8S+4qVOnlpo67+TkRL169Zg6dWr5JxSRWqNvs2DeHNySZ3/Yzn9XHMTX3YlHejYwOpZIrWW1Wksa2t3dOVKN2MpB/QB3IvzcOJKWw5oDqVzbtI7RkeSMjYdPsTfpNC6OdtzWTr0fRKTqKnMRHx8fD0Dv3r2ZM2cOvr6+FRZKRGqvIe3DSc8p4I1f9vLmr3vxc3NiSAd9mRIxwtqDqRxIycbdyZ5BbcKMjlMjmEwmekcH8uXawyyNTVYRX4V8daah3cBWYXi7aaUUEam6bL4nfunSpSrgRaRCPdSjAQ/3rA/Ac3O2s2hXksGJRGqn6Weuwt/cNkzLP5ajXjHFa8Qv25us/h9VRPLpPBbuTATg7i7q/SAiVdtl3Yh19OhR5s2bx5EjRygoKCj13HvvvVcuwUSkdnuufwzp2YXM2pjAEzO38OV9HenSwN/oWCK1xonMPBbtOgEU3x8s5adLfX+cHew4npHHvhNZRAd7Gh2p1vt2QwKFZittI3xoHuZtdBwRkYuyuYhfsmQJN910E/Xr12fv3r00b96cQ4cOYbVaadu2bUVkFJFayGQy8frNzUnPLWDRrhM8+NVGvn2os75ciVSSmRuOYLZY6VjPj5hgL6Pj1CgujvZ0aeDPstgUlsUmq4g3WJHZwoz1xcso3qNl5USkGrB5Ov3zzz/P008/zY4dO3BxcWH27NkkJCTQs2dPbrvttorIKCK1lIO9HR/c0YYu9f3Jyi/i3v9t4GBKltGxRGq8QrOFmRuKi5q7NLW4QvSOLp5Sv1RLzRnu9z0nSMrMw9/dietaBBsdR0Tkkmwu4vfs2cM999wDgIODA7m5uXh4eDBu3Djeeuutcg8oIrWbi6M9n9zTjuZhXqRmF3D35xtIysgzOpZIjfb77hOcyMwnwMOJ/s1U1FSEs0X8xkOnyMwrNDhN7Xa2od3tHcJxdrC/xN4iIsazuYh3d3cvuQ8+JCSEAwcOlDx38uTJ8ksmInKGp4sjX9zXkfoB7hxLz+Xuz9eTnlNw6R8Ukctydlm5OzpE4ORg81cFKYMIfzfqB7pTZLGyOk7fn4yyP/k0aw6kYmeCYer9ICLVhM3/Mnfu3JlVq1YBMGDAAEaPHs3rr7/O/fffT+fOncs9oIgIQICHM1890JFgLxfikrO474s/ySkoMjqWSI3z96Lmzk4RRsep0TSl3nhfn7kKf02TOoT5uBqcRkSkbGwu4t977z06deoEwNixY7nmmmuYNWsW9erV4/PPPy/3gCIiZ9X1deOrBzri7erIliPpPDJ9MwVFFqNjidQo09cV3wuvoqbi/VXEp2ipOQNk5Rcxe/MxAO5R7wcRqUZsKuLNZjNHjx4lIqL4zLy7uztTp05l+/btzJ49m8hI/QIUkYrVuI4n0+7rgKujPSv2pTD6+21YLPryK1IecgqKmL35KKBl5SpDhyhf3JzsSTmdz67jmUbHqXXmbjlGVn4R9QPc6dYgwOg4IiJlZlMRb29vT9++fTl16lRF5RERuaS2Eb5MvbsdjvYm5m87zqvzd+kqlkg5mLf1OKfzioj0d6N7QxU1Fc3ZwZ6uZ4rHZZpSX6msVitfrz0EFJ+wsrMzGRtIRMQGNk+nb968OQcPHqyILCIiZdazcSDvDWmNyVTcWXjS73FGRxKp1qxWa0mX7rs6qaipLL1jAgFYFpticJLaZUN8GvtOZOHqaM/gdnWNjiMiYhObi/jx48fz9NNPs2DBAhITE8nMzCz1EBGpLDe2CmXcwOYAfLAkji9WxxucSKT62pKQzu7ETJwd7LhVRU2l6XXmvvjNR05p1Y1K9NWZFRgGtQnF29XR4DQiIrZxsPUHBgwYAMBNN92EyfTXWXqr1YrJZMJsNpdfOhGRS7i7cyRpWQW8//s+Xp2/G193Jwa2DjM6lki1M/3MVfgbW4Xi6+5kcJraI8zHleg6nsSeOM2KuJPc1CrU6Eg1XnJmHot2JgFwd+d6xoYREbkMNhfxS5curYgcIiKX7clrGnIqp4Av1hxi9Hfb8HJ1LOn6LCKXlpZdwILtiUDxiTGpXL1iAok9cZple5NVxFeCGRuOUGSx0j7Sl6ahXkbHERGxmc1FfM+ePSsih4jIZTOZTLx8Q1NO5RTw09bjPDp9E9/8qxPtIv2MjiZSLXy3MYECs4WWdb1pFe5jdJxap3d0EP9dfpBl+1KwWKzqR1CBCs0WZqwvXkbxbi0rJyLVlM33xAOsXLmSu+66i65du3LsWPH6ml9//TWrVq0q13AiImVlZ2finVtb0Ss6kLxCC/dN+5PYpNNGxxKp8swWK9+sP9PQTlfhDdEu0hdPZwfSsgvYfizD6Dg12m+7TpB8Op8AD2euax5idBwRkcticxE/e/Zs+vXrh6urK5s3byY/Px+AjIwM3njjjXIPKCJSVk4Odkwe1pa2ET5k5hVx9+frSUjLMTqWSJW2Yl8KCWm5eLs6cmNLTeU2gqO9Hd0bFy81t3SvlpqrSF+dWVbuzo7hODlc1rUsERHDXVZ3+qlTp/Lpp5/i6PhXN89u3bqxefPmcg0nImIrNycH/je8A9F1PEk+nc/dn68n5XS+0bFEqqyvz3Tpvq1dXVyd7A1OU3v1alzcx0PrxVecfSdOsz4+DTsT3Nkxwug4IiKXzeZ74mNjY+nRo8c52729vUlPTy+PTFIGZrOZlStXkpiYSEhICN27d8feXl++LkZjZrvqOmY+bk589UBHBk9Zw6HUHIZP28DMhzrj5VLxywhV1zEzksbMNuU5XglpOSw9UzQOq8FT6avDZ6xndPF68duPZXAyq3i6t5Gqw5jZ6uszKzBc27QOoT6u5X78mjhmFU1jZjuNme1q5JhZbRQVFWVdvHix1Wq1Wj08PKwHDhywWq1W65dffmlt0qSJrYerkjIyMqyANSMjw+go5zV79mxr3bp1rUDJo27dutbZs2cbHa3K0pjZriaMWXxKlrXda79ZI8cssN42dY01t6CoQl+vJoxZZdOY2aa8x2vCL3uskWMWWO/6bF05J606qtNnbMAHK6yRYxZYZ29KMDRHdRqzssrMLbA2/c+v1sgxC6yr4lLK/fg1ccwqmsbMdhoz21W3MStrHWpzEf/GG29YmzZtal23bp3V09PTunLlSuv06dOtgYGB1g8//PCyA1clVbmInz17ttVkMpX6IAJWk8lkNZlMVfYDaSSNme1q0pjtOJpubf7yQmvkmAXWB77401pYZK6Q16lJY1ZZNGa2Ke/xyi0osrYZV3ySa9HOxApKbazq9hl7Z+Fea+SYBdbHZ2w2LEN1G7Oy+nJNvDVyzALr1e8utVoslnI9dk0ds4qkMbOdxsx21XHMylqHmqxWq7Xs1+3BarXyxhtvMGHCBHJyihtGOTs78/TTT/Paa6/ZcqgqKzMzE29vbzIyMvDyqjrrh5rNZurVq8fRo0fP+7zJZKJu3brEx8dX/yki5URjZruaOGbrDqZyz/82UFBk4dZ2dXnn1paYTOW3hFNNHLOKpjGzTUWM19wtR/n3rG2Eeruw4tneONjXrCZf1fEztulwGoOnrMXb1ZFNL/Wp9L+T6jhmZWG1Wrn2/RXsT87i1RubMrxbVLkdu6aOWUXSmNlOY2a76jpmZa1Dbf7XwWQy8eKLL5KWlsbOnTtZt24dKSkpl1XAT5gwgQ4dOuDp6UlQUBCDBg0iNja21D4PP/wwDRo0wNXVlcDAQAYOHMjevXsvelyr1crLL79MSEgIrq6u9OnTh7i4OJvzVTUrV6684AcRit93QkICK1eurMRUVZvGzHY1ccw61/fn46Ftsbcz8cOmo0z49eK/Q2xVE8esomnMbFMR43X2/uChnSJqXAEP1fMz1jrcFx83RzJyC9makF7pr18dx6ws1h5MZX9yFm5O9tzSrm65HrumjllF0pjZTmNmu5o+Zpf9r7aTkxOenp6EhITg4eFxWcdYvnw5I0aMYN26dSxevJjCwkL69u1LdnZ2yT7t2rVj2rRp7Nmzh0WLFmG1Wunbty9ms/mCx3377bf58MMPmTp1KuvXr8fd3Z1+/fqRl5d3WTmrisTExHLdrzbQmNmupo7ZtU3r8OYtLQD4ZMVBpi4/UG7HrqljVpE0ZrYp7/HaeSyDzUfScbQ3MaRD+JVEq7Kq42fM3s5Ej0bFDe6WGtClvjqOWVmcPWF1c5uwcm9wWlPHrCJpzGynMbNdTR8zm4v4oqIi/vOf/+Dt7U29evWoV68e3t7evPTSSxQWFtp0rIULFzJ8+HCaNWtGq1at+OKLLzhy5AibNm0q2eehhx6iR48e1KtXj7Zt2zJ+/HgSEhI4dOjQeY9ptVqZNGkSL730EgMHDqRly5Z89dVXHD9+nB9//NHWt1ulhISElOt+tYHGzHY1ecxuax/OiwOaAPDmr3uZ9eeRcjluTR6ziqIxs015j9c364uLmv7NQwjydLnsXFVZdf2M9Y45U8TvTan0166uY3YxSRl5/Lb7BAB3dyn/FRhq4phVNI2Z7TRmtqvpY2ZzEf/EE0/wySef8Pbbb7Nlyxa2bNnC22+/zeeff86TTz55RWEyMjIA8PPzO+/z2dnZTJs2jaioKMLDz3/lID4+nqSkJPr06VOyzdvbm06dOrF27drz/kx+fj6ZmZmlHlVR9+7dqVu37gXv5TWZTISHh9O9e/dKTlZ1acxsV9PH7MEe9Xm0VwMAnp+zg4U7k674mDV9zCqCxsw25TleGbmF/LjlOAB31+Bl5arrZ6xHo0BMJtidmMmJzMqdQVhdx+xiZmw4gtlipWM9P2KCy7/PUU0cs4qmMbOdxsx2NX3MbC7iZ8yYwRdffMHDDz9My5YtadmyJQ8//DCff/45M2bMuOwgFouFkSNH0q1bN5o3b17qucmTJ+Ph4YGHhwe//vorixcvxsnJ6bzHSUoq/kJep06dUtvr1KlT8tw/TZgwAW9v75LHhU4QGM3e3p4PPvgA4JwP5Nk/T5o0qUo1ZzCaxsx2tWHMnu0XzR0dwrFY4cmZW1hz4OQVHa82jFl505jZpjzHa87mo+QWmomu40mHer7lH7aKqK6fMX8PZ1rW9QFgeWzlXo2vrmN2IQVFFmZuKJ5xVRFX4aHmjVll0JjZTmNmuxo/Zra2vQ8MDLTu3r37nO27d++2BgQE2Hq4Eo888og1MjLSmpBw7tqo6enp1n379lmXL19uvfHGG61t27a15ubmnvc4q1evtgLW48ePl9p+2223WYcMGXLen8nLy7NmZGSUPBISEqrsEnNW6/nXOwwPD6+SyyRUFRoz29X0MSssMlsf/mqjNXLMAmvT//xq3Z6QfsXHrOljVhE0Zra50vGyWCzW3u8utUaOWWD9au2hCk5bNVTHz9j7i2OtkWMWWB/5eqMhr18dx+x85m09Zo0cs8Dafvxia35hxSwvelZNGbPKpDGzncbMdtVtzCpsiblx48axd+9epk2bhrOzM1A8Hf2BBx6gUaNGvPLKK7adRQAef/xxfvrpJ1asWEFU1MWX/SgoKMDX15fPPvuMO++885znDx48SIMGDdiyZQutW7cu2d6zZ09at25dckbmYqrqEnN/ZzabWblyJYmJiYSEhNC9e/fqeyapkmjMbFfTxyyv0Mx90/5k7cFU/Nyd+P6RLjQIvLxGnWfV9DGrCBoz21zJeK3Zf5Khn63H3cme9S/2wcPZoYLTVg3V7TO2LSGdgR+vxsPZgS0vX4ujAasHVLcxO58hU9ey4VAaT17TiFHXNq7w16sJY1bZNGa205jZrjqNWVnrUJuL+JtvvpklS5bg7OxMq1atANi2bRsFBQVcc801pfadM2fORY9ltVp54oknmDt3LsuWLaNRo0aXfP38/Hx8fX2ZPHkyw4cPP+8xQ0NDefrppxk9ejRQPBhBQUF88cUX3HHHHZd8jepQxItI+TidV8jQT9ez41gGYT6u/PBoF0K8XY2OJVIhHp2+iV93JnF350heG9T80j8ghrBYrHR4/XdSswuY+WBnujTwNzpStbM3KZP+k1Zib2di9ZirCfaumQ0cRaRmKWsdavMpeB8fHwYPHlxq2+XeQz5ixAhmzJjBTz/9hKenZ8k9697e3ri6unLw4EFmzZpF3759CQwM5OjRo7z55pu4uroyYMCAkuPExMQwYcIEbr75ZkwmEyNHjmT8+PE0atSIqKgo/vOf/xAaGsqgQYMuK6eI1FyeLo58cV8Hbpu6loMns7nn8w1893AXfN3P33dDpLr6e5fuu2pwQ7uawM7ORM/oQOZsPsay2GQV8ZfhqzPLyvVrVkcFvIjUODYX8dOmTSu3F58yZQoAvXr1Ouc1hg8fjouLCytXrmTSpEmcOnWKOnXq0KNHD9asWUNQUFDJ/rGxsSWd7QGeffZZsrOzeeihh0hPT+eqq65i4cKFuLjol7iInMvfw5mvHujIrVPWEpecxX1f/Mk3/+qEey2Zamw0s8XKhvg0kk/nEeTpQscoP+ztzt9NVi7fzLNduqP8iA72NDqOXELv6CDmbD7G0thknj+zNKaUTWZeIT9uOQbohJWI1Ew2T6evDTSdXqRYbSuu4k6c5rb/riU9p5DujQL4/N4OODlU/r2otcnCnYmMnb+bxIy/ltIK8XbhlRub0r959Vy7tSoqNFvo9uYfJJ/O58M723BTq1CjI8klZOQU0ua137BYYdWY3tT1dTM6UrXxxep4Xp2/m0ZBHvz27x4XXGJKRKSqKWsdavO309TUVEaMGEHTpk0JCAjAz8+v1ENEaoaFOxO56q0/uPPTdTz17Vbu/HQdV731Bwt3JhodrcI0quPJtOEdcHOyZ2XcSUZ9txWzRec5K8rCnYk8On1zqQIeiqd9Pzp9c43+rFW233efIPl0PgEeTvRvFmx0HCkDbzdH2kYULwG4rJKXmqvOrFYrX68rnkp/d5dIFfAiUiPZPFf07rvvZv/+/TzwwAPUqVNHvxxFaqCzxdU/y9ezxdWUu9rW2KukbSJ8mXpXOx748k8WbE/Ex82R1wY21++6cma2WBk7f/c5nzEoXv/FBIydv5trmwbX6NkfleVsUXNHhwjNLqlGescEsfHwKZbFJmtaeBmtOZDKgZRs3J3sublNmNFxREQqhM1F/MqVK1m1alVJZ3oRqVlUXEGPxoG8f3trnpi5henrjuDn7lwpyxPVJhvi0865Av93ViAxI48N8Wlq6nWF9iefZs2BVOxMcGenCKPjiA16RQfyzqJYVu9PJb/IjLND1VwSqSr5au0hAG5pWxdPF0djw4iIVBCbT8fHxMSQm5tbEVlEpAqwpbiqyW5oGcq4gcVLcH24JI5pq+MNTlSzJJ++8GfscvaTC5u+7ggA1zSpQ5iPlk+sTpqGeBHk6UxuobnG/84tD8fTc1l8ZgWGu7to5oKI1Fw2F/GTJ0/mxRdfZPny5aSmppKZmVnqISLVm4qrv9zdObLkCvzY+btLuh3LlQvyLNtqIWXdT84vp6CI2ZuOAsWfZ6leTCYTvaOLV+NZulf3xV/KjPVHsFihc30/GtfRCgwiUnPZXMT7+PiQmZnJ1VdfTVBQEL6+vvj6+uLj44Ovr29FZBSRSqTiqrQnrm7I8K71AHj6+20sjU02NlAN0THKjxBvFy50Q4aJ4i71HaPUMPVK/LT1OKfzi6jn78ZVDQOMjiOXoXdMIADL9LvnogqKLHz7Z/Gsk7s71zM2jIhIBbP5nvhhw4bh6OjIjBkz1NhOpAY6W1wlZeSd9754ExBci4ork8nEyzc0JT2ngB+3HufR6Zv45l+daBdZO95/RbG3M/HKjU15dPpmTFDqs3b2X5VXbmxaY/suVAar1crXa4sb2t3VORI7jWW11K1hAA52Jg6ezObQyWzqBbgbHalK+nVnIiezCqjj5UzfZnWMjiMiUqFsLuJ37tzJli1biI6Orog8Uka1bf1uqTwqrs5lZ2findtakZ5byLLYFO6b9iffPdKFmOALr98pl9a/eQhT7mp7zjrxwVonvlxsPpLO7sRMnB3suLVdXaPjyGXydHGkQz0/1h5MZVlsMsMDooyOVCWdPWF1Z8cIHO21AoOI1Gw2F/Ht27cnISFBRbyBFu5MPOdLb4i+9Eo5UnF1Lkd7O6YMa8fdn69n4+FT3PP5BmY/2pVwPzejo1Vr/ZuHcG3TYJ2UrADTzywrd1OrUHzcnAxOI1eiV3Qgaw+msjQ2heHdVMT/0+7jmWw8fAoHOxNDO2oFBhGp+Wwu4p944gmeeuopnnnmGVq0aIGjY+nlO1q2bFlu4eRctXn9bqlcKq7O5epkz+f3duD2T9ayN+k0d32+nh8e6Uqgp7PR0ao1ezuTlpErZ6lZ+fy8PRFQl+6aoHdMEBN+3cvag6nkFphxddJSc3/39bpDAPRrHkyQV+3o1yIitZvNRfztt98OwP3331+yzWQyYbVaMZlMmM3m8ksnpWj9bqlsKq7O5e3myJf3d+TWqWs4nJrDPf/bwKyHO+Ol9YilCvlu41EKzBZa1fWmZV0fo+PIFWoU5EGYjyvH0nNZdzCV3jFBRkeqMjJyC/lxy3EA7tEKDCJSS9h801B8fPw5j4MHD5b8r1Qcrd8tUjXU8XLh6/s7EeDhzJ7ETP715UbyCnUCU6oGs8XKN+v/amgn1Z/JZKJXdHGXeq2QUdoPm46SW2gmuo5nrWm4KiJicxEfGRl50YdUHK3fLVJ11Atw58v7O+Dp7MCG+DQen7GFIrPF6FgiLN+XzNFTuXi7OnJjq1Cj40g5Obte/B97k7Fazzcnr/axWKwlvR/u6hKpFZNEpNa4rPadX3/9Nd26dSM0NJTDh4t/eU6aNImffvqpXMNJaVq/W6RqaRbqzWf3tsfZwY7f95xgzOwdWCz6ci3GOtule0j7urg46t7pmqJrQ3+c7O04eiqXAynZRsepElYfOEn8yWw8nB24uU2Y0XFEKoXZYmXtgVR+2nqMtQdSMet7R61kcxE/ZcoURo0axYABA0hPTy+5B97Hx4dJkyaVdz75m7Prd1/oPLOJ4i71mk4mUnk61ffno6FtsbczMXvzUd74ZY+ukolhjqTmsGxfCgDDOml2XE3i5uRAp/rF/74v05R6AL46c8JqcNswPJxtbvMkUu0s3JnIVW/9wZ2fruOpb7dy56fruOqtP1i4M9HoaFLJbC7i/+///o9PP/2UF198EXv7v87wt2/fnh07dpRrOCnt7PrdwDmFfG1dv1ukKri2aR3eGly8Msdnq+KZsvyAwYmktvpmw2GsVujROJB6Ae5Gx5FydnZKve6Lh2PpuSzZcwLQCgxSO5xdoeqf/bHOrlClQr52uazGdm3atDlnu7OzM9nZmt5V0c6u3x3sXXrKfLC3i5aXEzHQre3q8tL1TQB4e2Esby/cS3Km+lNI5ckrNPPdnwkA3K2GdjXS2eZ2G+LTyMovMjiNsb5ZdxiLFbo28KdhkKfRcUQq1KVWqILiFao0tb72sHnuUVRUFFu3bj2nid3ChQtp0qRJuQWTC9P63SJV07+61yctu4DJyw4wedkBPllxkD5N6jC0UwRXNQzATv+NSgX6ZUcip3IKCfNx5WotQVYjRQW4E+nvxuHUHFbvP0m/ZsFGRzJEfpGZWWdOWN2jq/BSC9iyQpWWBq4dylzEjxs3jqeffppRo0YxYsQI8vLysFqtbNiwgZkzZzJhwgQ+++yziswqf6P1u0Wqpmf6RRMd7MlXaw+z6fApFu5KYuGuJCL83LijYzi3tQsn0NPZ6JhSA319pkv30E4ROqlbQ5lMJnpHB/HFmkMsi02ptUX8LzsSSc0uINjLhT5N6hgdR6TCaYUq+acyF/Fjx47lkUce4V//+heurq689NJL5OTkMHToUEJDQ/nggw+44447KjKriEiVZzKZGNg6jIGtw9iblMnM9UeYs+UYR9JyeHthLO/9to++zeowtGMkXRv46+q8lIudxzLYciQdR3sTQ9qHGx1HKlCv6MAzRXzxUnO1cVm1syswDO0UgYP9ZS20JFKtaIUq+acyF/F/77Y8bNgwhg0bRk5ODllZWQQFadqeiMg/xQR7MXZgc567rgnztx9n5oYjbDmSzi87kvhlRxKR/m7c0SGC29rXJcBDV+fl8p1dK/u65iGa6VHDda7vj4ujHYkZecSeOE1MsJfRkSrVzmMZbD5zwuqOjjphJbXD2RWqkjLyzntfvIni/lhaoar2sOn05T/P9rq5uamAFxG5BFcne4a0D2fuY9345cnu3N05Ek9nBw6n5vDWwr10mbCEETM2s2b/Sa0zLzbLyC3kx63HAHXprg1cHO3p2iAAgKV7UwxOU/nOXoXv3zxEVx2l1tAKVfJPNhXxjRs3xs/P76IPERG5sKahXrw2qDnrX7yGtwe3pFW4D4VmKz9vT2ToZ+u5euIy/rv8AKlZ+UZHlWpi9qaj5BVaiAn2pH2kr9FxpBL0PtOlvrYtNZeRU8hP24pPWKmhndQ2WqFK/s6m7vRjx47F29u7orKIiNQabk4ODOkQzpAO4ew6nsHMDUf4cctxDqXmMOHXvUz8bR/9mgdzZ8dwutT3r5X3vcqlWa1Wpq8vvjI5rHOkPie1RK/oIGAXmw6fIiO3EG9XR6MjVYrvNyXohJXUalqhSs6yqYi/4447NH1eRKScNQv1ZvygFjx/XRPmbyu+d37b0QzmbzvO/G3HqR/gzp0dIxjcri5+7k5Gx5UqZO2BVA6mZOPuZM/NbcKMjiOVJNzPjQaB7hxIyWZV3Emub1nzr8BZLNaSFRju6VJPJ6yk1tIKVQI2TKfXL0sRkYrl7uzAHR0j+Onxq1jwxFUM7RSBu5M9B09m8/ove+j8xhKenLmFdQdTSzUbldrrbFFzS9u6eDjbdF5eqrne0cUXVWrLlPoVcSkcTs3B09mBQW1CjY4jImKoMhfx+sIoIlJ5mod588bNLVj/Yh/euLkFzcO8KDBbmLftOHd8so4+7y3ns5UHOZVdYHRUMUhSRh6/7T4BwF2ddX9wbdM7priIX74vpVY0xDy7AsPgdnVxc9IJKxGp3cr8W9BisVRkDhEROQ8PZweGdopgaKcIdhzNYMaGw/y09Tj/3969x0Vd5v3jf81wBmcGkPMZRVFERfBEmmgHsUwx617TPJXVbult3rvlru1uaG1rdduvu31s6+69t+l6TM1s1VrMnwcyQxQQFVE8BI7IWWBmBEGYub5/jMw2AYY453k9H495POLzueb6vC+70HnPdbpS24Q/fHke7+8vweOJIZgzJhqjYvw4a8qJbDuhhFYnMDrWH/EhMmuHY9O0OuFwa0hHxvjBx90FtZpWFFeqkRjuuHsWXatvxsEL+hkHPIGBiOge18QTEZH1DI1QYHXEMLzx+GDsOV2BrblKnKtQ44vCCnxRWIG4oD76tfPJ4fD15tp5R6XVCXx3pQ7rj5UCAJ4dE2XliGxbVlElVu0tRqWqxXAtVOGJzGkJdr2bs4erC8bFBeDr4mocvlDj0En8llwlhADGxwWgf2Afa4dDRGR1EsF58p2o1WooFAqoVCrI5XJrh0NE1CUhBM6Uq7A1V4k9pytwq00LAPBwlWLq0FDMGROFlGiOzjuSHSeV+OO/LqCxuc1wLUTugZXTh9h1QmouWUWVeHlzAX78QafjN8Lej2XadkKJFZ+fRXKULz5/ZZy1wzGLljYtUlcfRENzG/42LwXpQ0KsHRIRkdn0NA9lEt8FJvFEZG80LW34olA/On++Um24PjBYPzo/c0QEFN7OcQyVoxBC4EptE/LK6pF3tQHZF2tRq2ntVM5RElJT0+oExr93yGgE/ock0J+v/O2vH7LbqfWVqltIXX0IEgmQ/7tHHfL0il355fjVztMIU3jim+WT4OrS4+2ciIjsTk/zUE6nJyIyIWutvZV5umHe2GjMHROF0+UqbM29ir2nK3Gx+iZW7S3Gu/+6gCeGhWHOmCgkR/lydN4GtbZrUXRdhbyyBpwsa0D+1Xo0/GDEvTsC+oR01d5iPJoQYrcJqamdKK3vNoEH9H9ulaoWnCitt9vjmkIVXhgUIsOFKg2OXqpFRpLjHTO48c6Gds+OjWYCT0R0B5N4IiITsYW1txKJBEmRvkiK9MXvnkjAF6euY2uuEheqNNhVUI5dBeUYFCLD7NFRmDEiHAovjs5bi6q5DfnKen3CXtaAwvJG3G433kTWw1WK4ZG+CFN44ovCim7rcoSE1NRqNN0n8L0pZ6smxgfhQpUGhy/UOFwSf6a8EaevNcLNRYJZoyKtHQ6ZgSNuOkm2xxH7GZN4IiIT6G7tbZWqBS9vLrDKVGe5pxvmp8Zg3thonLrWiK25Suw7U4ELVRpk7jmH1f86bxidHxHJ0XlzEkKgvOEW8q7qk/a8snpcrL7ZqZy/jztGRvthZIwfRsb4IzFMAXdXKf5ZeP2uSXwHe09ITSlI5mnScrZqUnwg/pp9BdkXa6HVCbv/YPpDm3L0o/CPDw1FQB8PK0dDpmYLX3yT43PUfsYknojoPml1Aqv2FndK4AHbmOoskUiQHOWH5Cg//P6JBOwuKMfWE0pcrL6Jz/LL8Vm+fnT+2TFRyBgRDrknR+fvV7tWhwtVGpwsq0deWQPyrtajWt15PXu/AB+kRPthVIw/UmL80C/Ap8svU5wlITWl0bH+CFV4okrV0uXvZsea+NGx/pYOzaSSo/0g83RFQ3MbzpQ3YkSUn7VDMomGptvYc1r/xdV8HivncGzxi29yPI7cz5jEExHdJ3tae6vwcsPCcbFY8EAMCpQN2JKrxJdnKnGhSoPf//Mc/vjVBUwbHoo5Y6IxPELB0fkeamptxyllI/Ku6pP2U8oGNN3WGpVxlUqQGK7AqBg/pET7Y2SMX49HF50lITUlF6kEmdMS8PLmAkgAoz+3jl6dOS3B7keu3VykmDAgEF+ercThklqHSeJ35l9Da7sOCaFyJDtIm0jP1r/4Jsfg6P2MSTwR0X2yx7W3EokEKdH+SIn2R+YTQ/D5qXJszVXiUs1N7Mgrx468ciSEyjFnTBQyksIg4+i8kWp1y50N6OqRf7UBxZVqaHXGHxVkHq5IjvbDqDtT44dH+MLL3aVXz3OWhNTUpiSGYu3c5E5TKUMcYCrlD02M1yfxR0pq8MtHB5qkTmuuIdXpBDYfVwLQj8Lzy0THYk9ffJP9cvR+xiSeiOg+2ftUZ4W3G54bF4uFD8Qg72oDtuUqse9sJYor1fjdF0X441fnMX24fu38sAhfa4drcTqdwOXam/pp8WX1OHm1Htfqb3UqF+7rZVjLPjLaDwODZSZNepwlITW1KYmheDQhxOE2NfqhtPhAAMCZchVqNa0IlN3f+nFrryHNvlgLZX0z5J6uDrdZH9nnF99kfxy9nzGJJyK6T44y1VkikWBUjD9GxfjjzWkJ2FVwHVtzr+JKbRM+PXkNn568hsRwOWaPjkJGUjj6eDjmPyEtbVqcva4yrGfPv9oA1S3jo94kEmBwiNwoaQ/z9TJ7bM6QkJqDi1RilyMtPRUk88TQcAXOXlch+2Itnk6J6HVdtrCGdGNOGQDgP0ZG9nr2Ctkue//im+yDo/czx/wERkRkQY441dnX2x2Lxsfi+XExOFFaj20nlPiqqApF19X47e4i/PHL85ieFI5nx0QhMVxh7XDvS33TbeRfbTCsZz9brsJtrfFRb15uLkiK9DVMjR8R5Wu1JQaOnpBS70yKD8TZ6yocLqnpdRJvC2tIlTeaceRiLQBg7lhuaOeIHOWLb7Jtjt7PmMQTEZmAo051lkgkGNOvL8b064vMptvYdWdn++9rm7DthBLbTigxLEKB2aOjMH14GHxsfHReCAFlfbPhmLe8qw24XNP5qLeAPh53NqDT7xyfECaHm4vUChET9UxafBD+dOgyvrlYi3atDq696K+2sIZ0S+5VCAE8OCAAsQE+ZnkGWZcjfvFNtsfR+5ltf9oiIrIjjj7V2c/HHS882A+Lxscit7QeW3OVyCqqwplyFc6Un8U7X55HRlIYZo+2ndH5Nq0OxRVq5F29s569rAF1Nzsf9RYX1OfO+ez6qfHRfb25mRbZlaRIX/h6u6GxuQ0FysZejS5Zew1pS5sW2/OuAQDmp8aY5RlkGxz1i2+yLY7cz5jEExGZkDNMdZZIJBjbry/G9uuL+qbb2JVfjm0nlPi+rglbcpXYkqvE8AgF5oyJwrThYfB2t9w/NZqWNv1Rb3cS9sJrjbjVZnzUm7uLFEMjFPr17NH+SIn2g7+Pu8ViJDIHF6kEaQMD8c/CChwpqelVEm/tNaR7T1egsbkN4b5eeGhQkFmeQbbD0b/4JtvgqP2MSTwREfWav487XpzQDy88GIuc729ga64S+89V4XS5CqfLz+LtfecxY0QY5oyORkKY3OTPr1TdwsmyBuTfSdovVKnxo5PeoPByQ0q0H0bG6KfGDw1XwNONm2WR45kUH4R/FlbgcEktlk8ZdM/vt/Ya0k3HrwIAnh0bZfcfsKlnnOGLb7I+R+xnTOKJiOi+SSQSPNA/AA/0D8CNm6347M7ofNmNZmw+rsTm40okRfrqR+eHhfVqx2mtTuBitcYwNT6vrAHXGzsf9Rbp74VR0f76qfExfogL7AMpEwJyAhMGBkIiAc5XqlGlakGI4t5GzK25hrTwWiPOlKvg7iLFrJGRJq+fiMiRSIQQXX3ZahGrV6/G559/jgsXLsDLywsPPPAA3nvvPcTHxwMA6uvrkZmZia+//hpKpRKBgYGYMWMG3n77bSgU3a+3XLhwIf7xj38YXUtPT0dWVlaP4lKr1VAoFFCpVJDLTT9yRETkDHQ6YTQ6335niFzm6YonR4RjzpgoDArp/u/YW7e1OF3eaNiALv9qAzQt7UZlpBJgSJjCsAHdyBg/BMvt87gYIlN48i/HcErZiHdnDsUzo6N6VYc1zon/5Y5CfF5wHTNHhOP/m5VklmcQEdm6nuahVh2Jz87OxuLFizFq1Ci0t7fjjTfewOTJk1FcXAwfHx9UVFSgoqICa9asQUJCAq5evYpf/OIXqKiowGeffXbXuqdMmYL169cbfvbw8DB3c4iI6AekUgnGxQVgXFwAajX/Hp1X1jdjY85VbMy5iuQoX8weHYUnhoWh+Xa70QZ05ypUaNMaf8/s4+6CEVH/nhqfFOlr8zviE1nSpPggnFI24nBJTa+TeEuvIa1vuo19ZyoBAPNSeawcEdFPsepI/I/V1tYiKCgI2dnZmDBhQpdldu7ciblz56KpqQmurl1/cFu4cCEaGxvxxRdf9CoOjsQTEZmHTifw3ZUb2HriKr4+V20YnfdwlaK1XdepfLDcAyNj/DHqzs7xg0JkvTo6i8hZnC1XYdqfv4WPuwtOvTkZ7q62//vy1+wrePdfF5AYLsfeJeN5MgQROS27GIn/MZVKBQDw9+9+w5SOBnWXwHc4cuQIgoKC4Ofnh4ceegh/+MMf0LevY21oQERkb6RSCcYPCMD4AQGo0bRgZ145Pj2pxLV6/dr2+GAZUmL8MOrOzvERfl78QE90D4aEyRHQxx11N28jr6weD8QFWDuku9LqBDbf2dBu/tgY/r4TEfWAzSTxOp0Oy5Ytw7hx45CYmNhlmbq6Orz99tt46aWX7lrXlClTMHPmTMTGxuLKlSt444038NhjjyEnJwcuLp03U2ptbUVr67/PDVar1ffXGCIi+klBMk8snhSHl9P642KNBqFyLyi83awdFpFdk0olSBsYhF0F5ThcUmPzSfyRkhqUN9yCwssN04aHWTscIiK7YDNJ/OLFi1FUVIRvv/22y/tqtRpTp05FQkICVq5cede6nnnmGcN/Dx06FMOGDUP//v1x5MgRPPzww53Kr169GqtWrbqv+ImIqHekUsldN7gjonszaVAgdhWU40hJLX471drR3N3GHP0o/M9GRvTq1AoiImdkEwullixZgn379uHw4cOIiIjodF+j0WDKlCmQyWTYvXs33NzubaSmX79+CAgIwOXLl7u8v2LFCqhUKsPr2rVrvWoHERERkbU9GBcIF6kEl2pu4lp9s7XD6VZZXROyL9ZCIgHmjuWGdkREPWXVJF4IgSVLlmD37t04dOgQYmNjO5VRq9WYPHky3N3dsWfPHnh63vvRQeXl5bhx4wZCQ7s+FsXDwwNyudzoRURERGSPFN5uSInyAwAcuVhr5Wi617EWPm1gIKL7+lg5GiIi+2HVJH7x4sXYvHkztm7dCplMhqqqKlRVVeHWLf0GRx0JfFNTE9atWwe1Wm0oo9VqDfUMGjQIu3fvBgDcvHkTr7/+Oo4fP46ysjIcPHgQGRkZiIuLQ3p6ulXaSURERGRJEwcFAgCOXKixciRdu3Vbix15+pmP83msHBHRPbFqEr927VqoVCpMnDgRoaGhhtf27dsBAAUFBcjNzcXZs2cRFxdnVOaHU95LSkoMO9u7uLjgzJkzmD59OgYOHIhFixYhJSUFR48e5VnxRERE5BQmxQcBAI5dqUNLm/YnSlve3tMVULe0I8LPC2kDg6wdDhGRXbHqxnY/dUT9xIkTf7LMj+vx8vLC/v377zs2IiIiIns1KESGELknqtQtyC2tR9rAQGuHZCCEwMbjZQD0a+FdpDxWjojoXtjExnZEREREZDoSiQQT4/WJ+2Ebm1J/6lojiq6r4e4qxc9GRlo7HCIiu8MknpyGVieQc+UG/ll4HTlXbkCr++lZHkRERPZq4p0p9UdKbCuJ33TnWLlpw8Lg7+Nu5WiIiOyPzZwTT2ROWUWVWLW3GJWqFsO1UIUnMqclYEpi16cWEBER2bNxcX3h5iJB2Y1mlNY1ITbA+jvA191sxZdnKgFwQzsiot7iSDw5vKyiSry8ucAogQeAKlULXt5cgKyiSitFRkREZD4yTzeMivEHYDuj8dtPXsNtrQ7DIxQYHulr7XCIiOwSk3hyaFqdwKq9xehq4nzHtVV7izm1noiIHFLHLvWHS6x/XrxWJ7A1VwkAmJcaY91giIjsGJN4cmgnSus7jcD/kABQqWrBidJ6ywVFRERkIZPunBd//PsbaL7dbtVYDl2owfXGW/D1dsMTw7iUjYiot5jEk0Or0XSfwPemHBERkT3pH9gHEX5euN2uQ86VG1aNZWNOGQBg1shIeLq5WDUWIiJ7xiSeHFqQzNOk5YiIiOyJRCL5wZR6662L/772Jo5eqoNEoj8bnoiIeo9JPDm00bH+CFV4QtLNfQn0u9SPjvW3ZFhEREQW8+/z4mshhHX2gNl8XL8WflJ8ECL9va0SAxGRo2ASTw7NRSpB5rQEAOiUyHf8nDktAS7S7tJ8IiIi+5bavy/cXaW43ngLl2tuWvz5zbfbsTP/GgBgHo+VIyK6b0ziyeFNSQzF2rnJCFEYT5kPUXhi7dxknhNPREQOzdvdFWP79QUAHLHCLvX/LKyApqUd0X29kTYg0OLPJyJyNK7WDoDIEqYkhuLRhBCcKK1HjaYFQTL9FHqOwBMRkTOYFB+Iby7W4nBJDV6c0M9izxVCYGPOVQDA3DHRkPLfXSKi+8aReHIaLlIJUvv3RUZSOFL792UCT0RETqNjc7uTZfXQtLRZ7LkFygacr1TDw1WK/xgZYbHnEhE5MibxRERERA4uJsAHsQE+aNMKHLtsuaPmOkbhpw8Pg6+3u8WeS0TkyJjEExERETmBjl3qj1joqLlaTSu+OlsJAJifGmORZxIROQMm8URERERO4IfnxVviqLntJ5Vo0wokRfpiaITC7M8jInIWTOKJiIiInMDoWH94ubmgWt2K85Uasz6rXavDllz92fDzeawcEZFJMYknIiIicgKebi54oL/+qLnDZp5S//+fr0GlqgX+Pu54fCiPciUiMiUm8UREREROYuIg/ZT6bDOfF7/peBkAYNaoSHi6uZj1WUREzoZJPBEREZGTmDhQv7ldvrIBqmbzHDV3ueYmjl2+AYkEmDM6yizPICJyZkziiYiIiJxEpL83BgT1gVYncPSyeUbjNx/XHyv38KAgRPp7m+UZRETOjEk8ERERkROZdGdK/eELpk/im1rbsSu/HAAwj8fKERGZBZN4IiIiIifScV589sUa6HSmPWrui8Lr0LS2I6avNx6MCzBp3UREpMcknoiIiMiJjIz2Rx8PV9TdvI2iCpXJ6hVCYFOOfir93LHRkEolJqubiIj+jUk8ERERkRNxd5Vi/J1RclNOqT9Z1oALVRp4uknxHymRJquXiIiMMYknIiIicjIdU+pNeV78xpwyAEDG8HAovN1MVi8RERljEk9ERETkZCbG6ze3O13eiPqm2/ddX42mBVlFVQCAeanR910fERF1j0k8ERERkZMJUXhicKgcQgDfXLz/KfWfnriGdp1AcpQvEsMVJoiQiIi6wySeiIiIyAlNMtGU+natDltzlQCA+TxWjojI7JjEExERETmhjvPisy/WQnsfR80dKK5GlboFfX3c8djQEFOFR0RE3WAST0REROSERkT6Qu7pisbmNhRea+x1PRvvHCv3zOhIeLi6mCg6IiLqDpN4IiIiIifk6iLFhIH6KfVHejml/lK1Bjnf34BUAswZww3tiIgsgUk8ERERkZOadGeX+t6ui990XD8K//DgYIT7epksLiIi6h6TeCIiIiIn1TESX3RdjRpNyz2992ZrOz4vuA4AmM9j5YiILIZJPBEREZGTCpR5YFiE/ki47JJ7O2pu96nruNnajn4BPhjXP8Ac4RERUReYxBMRERE5sYl3ptQfuYckXgiBTTllAIC5Y6MhlUrMERoREXWBSTwRERGRE+s4L/6bS7Vo0+p69J7c0npcrL4JLzcXPJUSYc7wiIjoR5jEExERETmxYRG+8Pdxh6alHQVXG3r0nk13jpWbMSIcCi83c4ZHREQ/wiSeiIiIyIm5SCVIu7PB3eEeTKmvVrdg/7kqAMC8sdzQjojI0pjEExERETm5ifE9Py9+a64S7TqBkdF+SAiTmzs0IiL6ESbxRERERE5uwoBASCXAhSoNKhpvdVuuTavDthNKAMA8HitHRGQVTOKJiIiInJyfjzuSIn0B3H2X+q/PVaNG04qAPh54LDHUQtEREdEPMYknIiIiIkwyHDXX/ZT6jXeOlZs9OhLurvwYSURkDfzbl4iIiIgwaZA+iT92uQ6t7dpO90uqNMgtrYeLVII5Y6IsHR4REd3BJJ6IiIiIkBAqR6DMA023tcgr63zU3KbjZQCARwcHI1ThZeHoiIioA5N4IiIiIoJUKsHEjqPmLhhPqde0tGF3wXUAwHxuaEdEZFVWTeJXr16NUaNGQSaTISgoCDNmzEBJSYnhfn19Pf7zP/8T8fHx8PLyQlRUFJYuXQqVSnXXeoUQePPNNxEaGgovLy888sgjuHTpkrmbQ0RERGTXOqbUH/7RuvjPC66j6bYW/QN9kNq/rzVCIyKiO6yaxGdnZ2Px4sU4fvw4Dhw4gLa2NkyePBlNTU0AgIqKClRUVGDNmjUoKirChg0bkJWVhUWLFt213vfffx9/+tOf8Ne//hW5ubnw8fFBeno6WlpaLNEsIiIiIrs0fkAAXKQSXKltgvJGMwD94Mim41cBAPPGRkMikVgzRCIipycRQghrB9GhtrYWQUFByM7OxoQJE7oss3PnTsydOxdNTU1wdXXtdF8IgbCwMPzqV7/Ca6+9BgBQqVQIDg7Ghg0b8Mwzz/xkHGq1GgqFAiqVCnK5/P4aRURERGRHZv0tB7ml9XgrYwjmp8bguyt1mPP3XHi7u+D4Gw9D7ulm7RCJiBxST/NQm1oT3zFN3t/f/65l5HJ5lwk8AJSWlqKqqgqPPPKI4ZpCocCYMWOQk5PT5XtaW1uhVquNXkRERETOaOKdo+Y61sVvytGPwj85IpwJPBGRDbCZJF6n02HZsmUYN24cEhMTuyxTV1eHt99+Gy+99FK39VRVVQEAgoODja4HBwcb7v3Y6tWroVAoDK/IyMhetoKIiIjIvk0apN/cLuf7Gyira8LXxdUAgPmpMVaMioiIOthMEr948WIUFRXh008/7fK+Wq3G1KlTkZCQgJUrV5r02StWrIBKpTK8rl27ZtL6iYiIiOxFfLAMoQpPtLTp8MsdhdDqBEbH+iM+RGbt0IiICDaSxC9ZsgT79u3D4cOHERER0em+RqPBlClTIJPJsHv3bri5dT+VKyQkBABQXV1tdL26utpw78c8PDwgl8uNXkRERETOSCKRGKbUFygbAfBYOSIiW2LVJF4IgSVLlmD37t04dOgQYmNjO5VRq9WYPHky3N3dsWfPHnh6et61ztjYWISEhODgwYNGdeTm5iI1NdXkbSAiIiJyNJPiAw3/HSjzwOSErgdCiIjI8qyaxC9evBibN2/G1q1bIZPJUFVVhaqqKty6dQvAvxP4pqYmrFu3Dmq12lBGq9Ua6hk0aBB2794NQP/t8bJly/CHP/wBe/bswdmzZzF//nyEhYVhxowZ1mgmERERkV0ZFxcANxf9UXKzR0fB3dUmJm8SERGArrd4t5C1a9cCACZOnGh0ff369Vi4cCEKCgqQm5sLAIiLizMqU1paipiYGABASUmJYWd7AFi+fDmamprw0ksvobGxEePHj0dWVtZPjuITEREREeDj4YrnxsXi6KU6zBvLqfRERLbEps6JtxU8J56IiIiI7oVWJ3CitB41mhYEyTwxOtYfLlKJtcMiIjvS0zzUqiPxRERERET2LquoEqv2FqNS1WK4FqrwROa0BExJDLViZETkiLjAiYiIiIiol7KKKvHy5gKjBB4AqlQteHlzAbKKKq0UGRE5KibxRERERES9oNUJrNpbjK7WpnZcW7W3GFodV68SkekwiSciIiIi6oUTpfWdRuB/SACoVLXgRGm95YIiIofHJJ6IiIiIqBdqNN0n8L0pR0TUE0ziiYiIiIh6IUjWs+OLe1qOiKgnmMQTEREREfXC6Fh/hCo80d1BchLod6kfHetvybCIyMExiSciIiIi6gUXqQSZ0xIAoFMi3/Fz5rQEnhdPRCbFJJ6IiIiIqJemJIZi7dxkhCiMp8yHKDyxdm4yz4knIpNztXYARERERET2bEpiKB5NCMGJ0nrUaFoQJNNPoecIPBGZA5N4IiIiIqL75CKVILV/X2uHQUROgNPpiYiIiIiIiOwEk3giIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKJiIiIiIiI7ASTeCIiIiIiIiI74WrtAGyREAIAoFarrRwJEREREREROYOO/LMjH+0Ok/guaDQaAEBkZKSVIyEiIiIiIiJnotFooFAour0vET+V5jshnU6HiooKyGQySCQSa4fTLbVajcjISFy7dg1yudza4ZCDYj8jS2A/I3NjHyNLYD8jS2A/c1xCCGg0GoSFhUEq7X7lO0fiuyCVShEREWHtMHpMLpfzF5jMjv2MLIH9jMyNfYwsgf2MLIH9zDHdbQS+Aze2IyIiIiIiIrITTOKJiIiIiIiI7ASTeDvm4eGBzMxMeHh4WDsUcmDsZ2QJ7GdkbuxjZAnsZ2QJ7GfEje2IiIiIiIiI7ARH4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKtbPXq1Rg1ahRkMhmCgoIwY8YMlJSUGJVpaWnB4sWL0bdvX/Tp0wdPPfUUqqurjcosXboUKSkp8PDwQFJSUpfPOnPmDB588EF4enoiMjIS77//vrmaRTbEUn3syJEjyMjIQGhoKHx8fJCUlIQtW7aYs2lkQyz5d1mHy5cvQyaTwdfX18StIVtlyX4mhMCaNWswcOBAeHh4IDw8HO+88465mkY2wpJ9bP/+/Rg7dixkMhkCAwPx1FNPoayszEwtI1tiin52+vRpzJ49G5GRkfDy8sLgwYPx0UcfdXrWkSNHkJycDA8PD8TFxWHDhg3mbh5ZAJN4K8vOzsbixYtx/PhxHDhwAG1tbZg8eTKampoMZf7rv/4Le/fuxc6dO5GdnY2KigrMnDmzU13PP/88Zs2a1eVz1Go1Jk+ejOjoaOTn5+O///u/sXLlSvzv//6v2dpGtsFSfey7777DsGHDsGvXLpw5cwbPPfcc5s+fj3379pmtbWQ7LNXPOrS1tWH27Nl48MEHTd4Wsl2W7Gevvvoq/u///g9r1qzBhQsXsGfPHowePdos7SLbYak+VlpaioyMDDz00EMoLCzE/v37UVdX12U95HhM0c/y8/MRFBSEzZs349y5c/jtb3+LFStW4M9//rOhTGlpKaZOnYpJkyahsLAQy5YtwwsvvID9+/dbtL1kBoJsSk1NjQAgsrOzhRBCNDY2Cjc3N7Fz505DmfPnzwsAIicnp9P7MzMzxfDhwztd/8tf/iL8/PxEa2ur4dqvf/1rER8fb/pGkE0zVx/ryuOPPy6ee+45k8RN9sXc/Wz58uVi7ty5Yv369UKhUJg6fLIT5upnxcXFwtXVVVy4cMFssZN9MFcf27lzp3B1dRVardZwbc+ePUIikYjbt2+bviFk0+63n3V45ZVXxKRJkww/L1++XAwZMsSozKxZs0R6erqJW0CWxpF4G6NSqQAA/v7+APTfsrW1teGRRx4xlBk0aBCioqKQk5PT43pzcnIwYcIEuLu7G66lp6ejpKQEDQ0NJoqe7IG5+lh3z+p4DjkXc/azQ4cOYefOnfj4449NFzDZJXP1s71796Jfv37Yt28fYmNjERMTgxdeeAH19fWmbQDZPHP1sZSUFEilUqxfvx5arRYqlQqbNm3CI488Ajc3N9M2gmyeqfrZjz935eTkGNUB6D//3+/nO7I+JvE2RKfTYdmyZRg3bhwSExMBAFVVVXB3d++05jM4OBhVVVU9rruqqgrBwcGd6ui4R87BnH3sx3bs2IGTJ0/iueeeu5+QyQ6Zs5/duHEDCxcuxIYNGyCXy00ZNtkZc/az77//HlevXsXOnTuxceNGbNiwAfn5+Xj66adN2QSycebsY7Gxsfj666/xxhtvwMPDA76+vigvL8eOHTtM2QSyA6bqZ9999x22b9+Ol156yXCtu8//arUat27dMm1DyKJcrR0A/dvixYtRVFSEb7/91tqhkIOyVB87fPgwnnvuOfz973/HkCFDzPossj3m7Gcvvvgi5syZgwkTJpi8brIv5uxnOp0Ora2t2LhxIwYOHAgAWLduHVJSUlBSUoL4+HiTP5Nsjzn7WFVVFV588UUsWLAAs2fPhkajwZtvvomnn34aBw4cgEQiMfkzyTaZop8VFRUhIyMDmZmZmDx5sgmjI1vFkXgbsWTJEuzbtw+HDx9GRESE4XpISAhu376NxsZGo/LV1dUICQnpcf0hISGddk7t+Ple6iH7Ze4+1iE7OxvTpk3Dhx9+iPnz599v2GRnzN3PDh06hDVr1sDV1RWurq5YtGgRVCoVXF1d8cknn5iqGWTjzN3PQkND4erqakjgAWDw4MEAAKVSeX/Bk10wdx/7+OOPoVAo8P7772PEiBGYMGECNm/ejIMHDyI3N9dUzSAbZ4p+VlxcjIcffhgvvfQSfve73xnd6+7zv1wuh5eXl2kbQxbFJN7KhBBYsmQJdu/ejUOHDiE2NtbofkpKCtzc3HDw4EHDtZKSEiiVSqSmpvb4Oampqfjmm2/Q1tZmuHbgwAHEx8fDz8/v/htCNstSfQzQH2MydepUvPfee0bTucjxWaqf5eTkoLCw0PB66623IJPJUFhYiCeffNJk7SHbZKl+Nm7cOLS3t+PKlSuGaxcvXgQAREdH32cryJZZqo81NzdDKjX+GO7i4gJAPxOEHJup+tm5c+cwadIkLFiwoMsjMFNTU43qAPSf/+/18x3ZIGvuqkdCvPzyy0KhUIgjR46IyspKw6u5udlQ5he/+IWIiooShw4dEnl5eSI1NVWkpqYa1XPp0iVx6tQp8fOf/1wMHDhQnDp1Spw6dcqwG31jY6MIDg4W8+bNE0VFReLTTz8V3t7e4m9/+5tF20uWZ6k+dujQIeHt7S1WrFhh9JwbN25YtL1kHZbqZz/G3emdi6X6mVarFcnJyWLChAmioKBA5OXliTFjxohHH33Uou0ly7NUHzt48KCQSCRi1apV4uLFiyI/P1+kp6eL6Ohoo2eRYzJFPzt79qwIDAwUc+fONaqjpqbGUOb7778X3t7e4vXXXxfnz58XH3/8sXBxcRFZWVkWbS+ZHpN4KwPQ5Wv9+vWGMrdu3RKvvPKK8PPzE97e3uLJJ58UlZWVRvWkpaV1WU9paamhzOnTp8X48eOFh4eHCA8PF++++66FWknWZKk+tmDBgi7vp6WlWa6xZDWW/Lvsh5jEOxdL9rPr16+LmTNnij59+ojg4GCxcOFCfinpBCzZx7Zt2yZGjBghfHx8RGBgoJg+fbo4f/68hVpK1mSKfpaZmdllHdHR0UbPOnz4sEhKShLu7u6iX79+Rs8g+yURQoj7GMgnIiIiIiIiIgvhmngiIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKJiIiIiIiI7ASTeCIiIht248YNBAUFoayszKLP3bBhA3x9fc1Sd1ZWFpKSkqDT6cxSPxERkSNjEk9ERGTD3nnnHWRkZCAmJqbTvfT0dLi4uODkyZOWD+w+TJkyBW5ubtiyZUu3ZRYtWoShQ4fi9u3bRte/+uoruLu7o6CgwNxhEhER2SQm8URERDaqubkZ69atw6JFizrdUyqV+O6777BkyRJ88sknVoiud9ra2gAACxcuxJ/+9Kduy3344YfQaDTIzMw0XGtsbMSLL76I3//+90hOTjZbbERERLaMSTwREZGN+uqrr+Dh4YGxY8d2urd+/Xo88cQTePnll7Ft2zbcunXL6P7EiROxdOlSLF++HP7+/ggJCcHKlSuNyjQ2NuLnP/85goOD4enpicTEROzbt8+ozP79+zF48GD06dMHU6ZMQWVlpeGeTqfDW2+9hYiICHh4eCApKQlZWVmG+2VlZZBIJNi+fTvS0tLg6elpGH2fNm0a8vLycOXKlS7bLpfLsX79enzwwQfIzc0FACxbtgzh4eFYsWIFrl27hp/97Gfw9fWFv78/MjIyjJYcnDx5Eo8++igCAgKgUCiQlpbWafReIpFg7dq1mD59Onx8fPDOO+9083+CiIjIdjCJJyIislFHjx5FSkpKp+tCCKxfvx5z587FoEGDEBcXh88++6xTuX/84x/w8fFBbm4u3n//fbz11ls4cOAAAH0C/thjj+HYsWPYvHkziouL8e6778LFxcXw/ubmZqxZswabNm3CN998A6VSiddee81w/6OPPsIHH3yANWvW4MyZM0hPT8f06dNx6dIlozh+85vf4NVXX8X58+eRnp4OAIiKikJwcDCOHj3abfsnTZqEV155BQsWLMDOnTuxY8cObNy4EUIIpKenQyaT4ejRozh27JjhS4aO6fcajQYLFizAt99+i+PHj2PAgAF4/PHHodFojJ6xcuVKPPnkkzh79iyef/75n/pfQkREZH2CiIiIbFJGRoZ4/vnnO13/+uuvRWBgoGhraxNCCPHhhx+KtLQ0ozJpaWli/PjxRtdGjRolfv3rXwshhNi/f7+QSqWipKSky2evX79eABCXL182XPv4449FcHCw4eewsDDxzjvvdHrGK6+8IoQQorS0VAAQ//M//9PlM0aMGCFWrlzZ5b0Ozc3NIj4+XkilUvHhhx8KIYTYtGmTiI+PFzqdzlCutbVVeHl5if3793dZj1arFTKZTOzdu9dwDYBYtmzZXZ9PRERkazgST0REZKNu3boFT0/PTtc/+eQTzJo1C66urgCA2bNn49ixY52mpg8bNszo59DQUNTU1AAACgsLERERgYEDB3b7fG9vb/Tv37/L96vValRUVGDcuHFG7xk3bhzOnz9vdG3kyJFd1u/l5YXm5uZun99R5rXXXoO3tzdeffVVAMDp06dx+fJlyGQy9OnTB3369IG/vz9aWloMfwbV1dV48cUXMWDAACgUCsjlcty8eRNKpbJHsREREdkqV2sHQERERF0LCAhAQ0OD0bX6+nrs3r0bbW1tWLt2reG6VqvFJ598YrSu283Nzei9EonEcKybl5fXTz6/q/cLIe65HT4+Pl1er6+vR2Bg4E++39XVFS4uLpBIJACAmzdvIiUlpcvd7TvqW7BgAW7cuIGPPvoI0dHR8PDwQGpqaqfd7ruLjYiIyFZxJJ6IiMhGjRgxAsXFxUbXtmzZgoiICJw+fRqFhYWG1wcffIANGzZAq9X2qO5hw4ahvLwcFy9e7FVscrkcYWFhOHbsmNH1Y8eOISEh4Sff3zFqPmLEiHt+dnJyMi5duoSgoCDExcUZvRQKhSGOpUuX4vHHH8eQIUPg4eGBurq6e34WERGRrWEST0REZKPS09Nx7tw5o9H4devW4emnn0ZiYqLRa9GiRairqzPaHf5u0tLSMGHCBDz11FM4cOAASktL8a9//avH7weA119/He+99x62b9+OkpIS/OY3v0FhYaFh2vvdHD9+3DA6fq+effZZBAQEICMjA0ePHkVpaSmOHDmCpUuXory8HAAwYMAAbNq0CefPn0dubi6effbZHs0+ICIisnVM4omIiGzU0KFDkZycjB07dgAA8vPzcfr0aTz11FOdyioUCjz88MNYt25dj+vftWsXRo0ahdmzZyMhIQHLly/v8Ug+ACxduhS//OUv8atf/QpDhw5FVlYW9uzZgwEDBvzke7dt24Znn30W3t7ePX5eB29vb3zzzTeIiorCzJkzMXjwYCxatAgtLS2Qy+UA9F92NDQ0IDk5GfPmzcPSpUsRFBR0z88iIiKyNRLRm8VtREREZBFffvklXn/9dRQVFUEqdYzv3uvq6hAfH4+8vDzExsZaOxwiIiK7wo3tiIiIbNjUqVNx6dIlXL9+HZGRkdYOxyTKysrwl7/8hQk8ERFRL3AknoiIiIiIiMhOOMa8PCIiIiIiIiInwCSeiIiIiIiIyE4wiSciIiIiIiKyE0ziiYiIiIiIiOwEk3giIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvx/wB+VKRGAvgTKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", + "\n", + "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", "fig, ax = plt.subplots(figsize=(12, 5))\n", - "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Ground truth\")\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", "plt.xlabel(\"(Anchor) Year\")\n", "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index 0b65112..619226d 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -42,12 +42,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import sys\n", "import time as tt\n", "import wandb\n", @@ -74,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -89,9 +90,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='07-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", + " ]\n", + ")" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# check calendar\n", "calendar" @@ -108,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -141,9 +168,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3dd1gUV9sG8HuW3lFEsGCwYG8o2GJQEwuxR2OJGmM09kiM5rPERCUWgkajsbcIsfdojLHEgr2BvQU7Cogi0mFh93x/8LK6gsrCwg5w/67LS3ZmzjnP2cOw8+yUIwkhBIiIiIiIiAxMYegAiIiIiIiIACYnREREREQkE0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHY0AEUFmq1GuHh4bCxsYEkSYYOh4iIiIowIQTi4+NRtmxZKBT8LpmKDyYnORQeHg4XFxdDh0FERETFSFhYGMqXL2/oMIgKDJOTHLKxsQGQ8UfC1tbWwNEQERFRURYXFwcXFxfN8QdRccHkJIcyL+WytbVlckJEREQFgpeSU3HDixiJiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywBviiYiIsiGEQGpqql7Km5mZ6XxjsyHLF+a29VWHvtrPrZSUlDyVJyqsmJwQERFlIzU1FT169Mh1eZVKheDgYACAh4eHzhPpGbJ8YW5bX3UAwJYtW2Bubq5zubz+7gBAWlpansoTFVZMToiIiN4i5HF8rsoJtRqxKekwLeOGy89UkCSVjuVViFMKKEqUxcXwBEDXsxd5aL8wt53X9jPVczTRuUwWYWdzX9bZPe/tExVCTE6IiIjeoekIPxgZm+pURpkcj38mdAcAfDBuKUzMdPsGPi0xFjuGfQAAaDxsps7l89J+YW47r+2r01IR5D9U5zbfZO0Qd5iZ5PzMTWqaGv2WX9Bb+0SFDZMTIiKidzAyNoWRqZluZdJe3nNgZGIKY1PdDrJVypf3HBR0+4W57by2n65za29nZqKAuYmRnmslKrr4tC4iIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZMDZ0AERERIXBYb8hSI59BklSwMTCCg37T0QJ1+pIiY3GqaWTkPAkDEYmpvAc+CMcqzXIUn7vxG5Ijnnyv/LWaDJyFhwq18GlDXMQ+u9GxD2+g9ZT16NCE2+dY7i2cwXuHduF+MgH8BqzAOUatNAqp1Km4N+fB+PFw1swNrOARQknNPOZCxvnCnj23wWcWjweKmUKVMpUuLXtg2rtv9BLu+/qe/KLpzg6azjiI+5BYWKKZj5zUcK1ht76nZv2S1V1f+P7n1ttfzmNyNhUKCQJNubGWNCvFupXsENUXCr6r7iIO1GJMDMxwtL+deBR0U7v7RMVJgZNTvz8/LB9+3bcvHkTFhYWaNasGfz9/VGtWjXNNkII+Pr6Yvny5YiJiUHjxo2xaNEi1KpVCwDw/PlzTJkyBfv370dYWBhKlSqFrl27Ytq0abCze7mDz5gxA3///TcuXrwIU1NTvHjxoqC7S0REhdj7Pr/A1MoWAPDo/EGcWTEZ3jM24+KmeShVpS5ajV+K6DtXcXz+GHT6dU+W8q0mrYaZdcbn0oOTf+P43K/RZVEQyri3QMUW3XD811G5jsGpVmNUaOKNsysmv7FstfZfoLxnG0iShOs7l+PE/NHw9tuO4/O+QYPPJ6BC0/ZIjYvBtq8awblOM721+7a+n1/lC8caHmg3cyue3grBoelfoPPCw3rtt67tf7L81Fvryo3NIxrC3tIEAPBnSCQGrrqEEF8vTNhyE00q22Pv2MY4d/cFPl0cjGvTvfTePlFhYtDLuoKCgjBy5EicPn0aBw4cQHp6Otq2bYvExETNNrNmzcLcuXOxcOFCnDt3Ds7OzmjTpg3i4+MBAOHh4QgPD8cvv/yCK1euICAgAHv37sWgQYO02lIqlejRoweGDx9eoH0kIqKiIfPgGACUSQmQJAkAEHZ6H9za9AYAOFSuDXM7Bzy9dSFL+cyDYwBQJsYBUsZHcOnqHrAtWzFPMZSqUhc2Ti5vLGdkag6XRm0125eu4Yn4iPua9akJcQCAtJREKExMYWptr5d2M72p7/eO/okanb4CADhWawAL+9J4euO83vqdm/ajrp99Z326ykxMACA2KQ0KRUb8m8+FY+SHrgAAz0r2cLI1xcnbMXpvn6gwMeiZk71792q9Xr16NUqXLo3g4GB4eXlBCIF58+Zh0qRJ6NatGwAgMDAQTk5OWL9+PYYOHYratWtj27ZtmjoqV66MGTNmoF+/fkhPT4excUYXfX19AQABAQEF0zkiIipyTi35XnPw2nL8UqTGv4AQAua2JTXbWDmWRVJ0BEq8Vy1L+aBZwxB56RgAoO2MrXqJITeu/blMc/nYB2MX4d+pfRASOB0psdF4/5tfYVHCUe/tvt73lLjnEEINC/tSmm2snSog8dnjbMsXWPtPH+lcd070X3EBh29EAwD2jm2M6AQl1ELA0dZMs41rKUuEPU/Jl/aJCgtZ3XMSGxsLAChZMuOP/L179xAZGYm2bdtqtjEzM0OLFi1w8uRJDB069I312NraahKT3EhNTUVqaqrmdVxcXK7rIiKioqHp8JkAgLtHd+LC+jloOtwP+N+3+BpCvLF8i3EZB9WhBzbg3MrJaDt9S55jaDluiU7lL22Yg7jwu3jfZy4A4MqW3+D51U+o1OITxEXcxz//1xF2Lm56b/f1vnuNWwYJr713ePN7Z+j28+qPwRn3sgQeD8P/bbqONUPcs7T/ll8domJDNk/rEkJgzJgxaN68OWrXrg0AiIyMBAA4OTlpbevk5KRZ97ro6GhMmzbtjYlLTvn5+cHOzk7zz8Xl3aeNiYioeKjk1QVR189pXqfEPdf8nPgsApYOZd5a3q3NZ4i4dFyrXG5jSI1/keMyV7YswP0Tu9F2+hYYm1siJTYaD07+jUotPgEA2JZxhWN1Dzy9FaLXdl+V2fdMyS+eaX5OeBIGq1Ll3lo+39t3LJ+renPqi+YuOHwzWvP6adzLL0IfRCfBpaR5vrZPJHeySU6+/vprXL58GRs2bMiyTpJe/2ZBZFkGZJzd6NChA2rWrIkpU6bkKZ6JEyciNjZW8y8sLCxP9RERUeGVlpyApJgozeuwcwdham0HU2s7VGjUBqEHNgIAou9cRUrsMzhW037ikzIpHknREZrX90/shpltSZjZlMh5DElvjiEnrm5bhLtHtsHbb4fmHgxTa3sYmZgh4vIJAEBKbDSe3jgH+wpVc9T3nHhb3129uuDGXysBAE9vhSA55gkca3jotd+6tl+6ZqMc1ZtTcclpCI95eanWjuAIOFiboqSVCXp4lsGiQ/cBAOfuvkBkbCqaVcn57wRRUSSLy7pGjRqFXbt24ejRoyhf/uU3Fs7OzgAyzqCUKfPyW6ioqKgsZ1Pi4+Ph7e0Na2tr7NixAyYmJsgLMzMzmJmZvXtDIiIq8tKSEnBy8QSolCmQFAqY2ZRAi+8WQZIk1PvsW5xe/D3+GtMBCmMTNB0+Ewoj7Y/XtMQ4HJs1DCplMiApYG5XCm1+2ghJknBp41zc+GsVUmKf4dickTAyNUeXRUFQvHZpsjI5AcfnfZttDNd2rkTogQ1IjY/B6WU/wMjEFB/98LumbOKzcJxd/gNsyrjin3GdAAAKEzN0/u1ftJq0GmeXTYJalQ6hSkftT0fBoUq9l7EnJ+L00ok5btd75hat/r+t756DpiJo1jBs/bIhFMam8Bq3LMt7p2u/9d1+XsUmp6PvsgtIVqqhUACONmbYPdoTkiTBv0cNfL7iAtzGH4KpsQJrBrvD2Eg23xsTGYRBkxMhBEaNGoUdO3bgyJEjqFhR+2klFStWhLOzMw4cOAB394xvoZRKJYKCguDv76/ZLi4uDu3atYOZmRl27doFc3OeEiUiIv2xdHBGu2lZz+wDgIVdKbSauPyt5a0cy6HzgoPZrqvXewzq9R6TZXlqwgvtOt4SQ60uX6FWl6+0likTX94raVWqLAbuy/4pUOUatES5Bkfe2LZlSSed2s3S9lv6blGiNLz9tr+xbUD3fue1/XSlfm9IdylpgbOTP8h2nZOdGfZ/10RrWUqaSq/tExU2Bk1ORo4cifXr12Pnzp2wsbHR3EdiZ2cHCwsLSJKE0aNHY+bMmXBzc4ObmxtmzpwJS0tL9OnTB0DGGZO2bdsiKSkJa9euRVxcnObmdUdHRxgZGQEAHj58iOfPn+Phw4dQqVS4ePEiAKBKlSqwtrYu+M4TEREREZEWgyYnS5ZkPGmjZcuWWstXr16NAQMGAADGjRuH5ORkjBgxQjMJ4/79+2FjYwMACA4OxpkzZwBkJBqvunfvHlxdXQEAkydPRmBgoGZd5pmYw4cPZ2mfiIiIiIgKnsEv63oXSZIwdepUTJ06Ndv1LVu2zFE9AQEBnOOEiIiIiEjGeNcVERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC8aGDoCIiEjuVOnKPJVRpSmRrtDt+0B1WqpWXQqlbuXz0n5hbluf7etDapo6X7cnKmqYnBAREb3DqcUTdS4j1C8PMo/NGgZJ0rW8SvPzmaXfQ9cK8tJ+YW47r+3rW7/lFwzXOFEhxOSEiIjoLRqUs8lVOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dIo92XT0vQXB1EhIgkhhKGDKAzi4uJgZ2eH2NhY2NraGjocIiLKZ0IIpKbm/hKfV8ubmZlB0vXsgwHLF+a29VWHvtrPrbi4ODg5OfG4g4odnjkhIiLKhiRJMDc3z1MdFhYWhbZ8YW5bX3Xklj5+d5RK3e9zIioK+LQuIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAs6JSfp6ekIDAxEZGRkfsVDRERERETFlE7JibGxMYYPH47U1NT8ioeIiIiIiIopnS/raty4MS5evJgPoRARERERUXFmrGuBESNGYMyYMQgLC0PDhg1hZWWltb5u3bp6C46IDE8Ikeuzpa+WNTMzgyRJBVo+r3UYOn5Dl39VXtvPi7zGTkREhYckhBC6FFAosp5skSQJQghIkgSVSqW34OQkLi4OdnZ2iI2Nha2traHDISowKSkp6NGjR67KqlQqBAcHAwA8PDyy/fuRn+XzWoeh4zd0+Vdt2bIF5ubmOpXJy+9OXtsmKux43EHFlc5nTu7du5cfcRCRzIU8jte5jFCrEZuSDtMybrj8TAVJ0u3LC6FWIU4poChRFhfDE4DcnDnJQwx5bd/Q/c9r+5nqOZrkqpxG2Nncl3VplLe2iYioUNE5OXnvvffyIw4iKgSajvCDkbFpjrdXJsfjnwndAQAfjFsKEzPdvv1OS4zFjmEfAAAaD5upc/m8xpDX9g3d/7y2r05LRZD/UJ3KvMnaIe4wM8n5mZvUNDX6Lb+gl7aJiKjw0Dk5yXT9+nU8fPgQSqVSa3nnzp3zHBQRyZORsSmMTM1yvn3ay/sNjExMYWyq28GxSpmS67b1EUNe2zd0//PafrpOW7+dmYkC5iZGeqyRiIiKIp2Tk7t37+KTTz7BlStXNPeaANDcrFhU7zkhIiIiIqL8pfPdkd988w0qVqyIJ0+ewNLSEteuXcPRo0fh4eGBI0eO5EOIRERERERUHOh85uTUqVM4dOgQHB0doVAooFAo0Lx5c/j5+cHHxwcXLvAaYSIiIiIi0p3OZ05UKhWsra0BAKVKlUJ4eDiAjBvlb926pd/oiIiIiIio2ND5zEnt2rVx+fJlVKpUCY0bN8asWbNgamqK5cuXo1KlSvkRIxERERERFQM6Jyc//PADEhMTAQDTp09Hx44d8cEHH8DBwQGbNm3Se4BERERERFQ86JyctGvXTvNzpUqVcP36dTx//hwlSpTQPLGLiIiIiIhIVzrfc5Lp9u3b2LdvH5KTk1GyZEl9xkRERERERMWQzslJdHQ0PvroI1StWhXt27dHREQEAOCrr77C2LFj9R4gEREREREVDzpf1vXtt9/CxMQEDx8+RI0aNTTLe/XqhW+//RZz5szRa4BERERElD2VSoW0tDRDh0H0VqamplAocnZOROfkZP/+/di3bx/Kly+vtdzNzQ0PHjzQtToiIiIi0pEQApGRkXjx4oWhQyF6J4VCgYoVK8LU1PSd2+qcnCQmJsLS0jLL8mfPnsHMzEzX6oiIiIhIR5mJSenSpWFpacmHEpFsqdVqhIeHIyIiAhUqVHjn76rOyYmXlxf++OMPTJs2DQAgSRLUajVmz56NVq1a5S5qIiIiIsoRlUqlSUwcHBwMHQ7ROzk6OiI8PBzp6ekwMTF567Y6JyezZ89Gy5Ytcf78eSiVSowbNw7Xrl3D8+fPceLEiVwHTURERETvlnmPSXZXshDJUeblXCqV6p3Jic5P66pZsyYuX76MRo0aoU2bNkhMTES3bt1w4cIFVK5cOXcRExEREZFOeCkXFRa6/K7qfOYEAJydneHr65ubokRERERERNnS+cyJq6srfvrpJ4SFheVHPEREREREVEzpfOZk7NixCAgIwE8//YRWrVph0KBB+OSTT/ikLiIiIiJDm1PAl3qNFQXbnoFJkoQdO3aga9euhg4l11q2bIn69etj3rx5hg4lWzqfORk1ahSCg4MRHByMmjVrwsfHB2XKlMHXX3+NkJCQ/IiRiIiIiAo5SZLe+m/AgAEGi83V1TVHB+sRERH4+OOPc1xvQEAA7O3tcx9YMaRzcpKpXr16mD9/Ph4/fowpU6Zg5cqV8PT0RL169fD7779DiOKVSRMRERHRm0VERGj+zZs3D7a2tlrL5s+fr1N9SqUynyJ9M2dnZ4NcLaRSqaBWqwu8XUPIdXKSlpaGzZs3o3Pnzhg7diw8PDywcuVK9OzZE5MmTULfvn31GScRERERFWLOzs6af3Z2dpAkSfPaxMQEw4YNQ/ny5WFpaYk6depgw4YNWuVbtmyJr7/+GmPGjEGpUqXQpk0bAMCuXbvg5uYGCwsLtGrVCoGBgZAkCS9evNCUPXnyJLy8vGBhYQEXFxf4+PggMTFRU++DBw/w7bffas7ivIkkSfjzzz8BAPfv34ckSdi+fTtatWoFS0tL1KtXD6dOnQIAHDlyBF9++SViY2M19U6dOhUANNNxlCtXDlZWVmjcuDGOHDmiaSfzjMvu3btRs2ZNmJmZYcWKFTA3N9fqFwD4+PigRYsWAIDo6Gh89tlnb30f5U7n5CQkJASjRo1CmTJlMGrUKNSqVQtXr17F8ePH8eWXX2LSpEnYtWsXduzYkR/xEhEREVERk5KSgoYNG2L37t24evUqhgwZgs8//xxnzpzR2i4wMBDGxsY4ceIEli1bhvv37+PTTz9F165dcfHiRQwdOhSTJk3SKnPlyhW0a9cO3bp1w+XLl7Fp0yYcP34cX3/9NQBg+/btKF++PH766SfNWRxdTJo0Cd999x0uXryIqlWr4rPPPkN6ejqaNWuW5QzRd999BwD48ssvceLECWzcuBGXL19Gjx494O3tjdDQUE29SUlJ8PPzw8qVK3Ht2jX069cP9vb22LZtm2YblUqFzZs3a04K5PR9lDOdb4j39PREmzZtsGTJEnTt2jXbiVRq1qyJ3r176yVAIiIiIiraypUrpzlwBzLucd67dy+2bNmCxo0ba5ZXqVIFs2bN0ryeMGECqlWrhtmzZwMAqlWrhqtXr2LGjBmabWbPno0+ffpg9OjRAAA3Nzf89ttvaNGiBZYsWYKSJUvCyMgINjY2cHZ21jn27777Dh06dAAA+Pr6olatWrh9+zaqV6+udYYo0507d7BhwwY8evQIZcuW1dSxd+9erF69GjNnzgSQcZXS4sWLUa9ePU3ZXr16Yf369Rg0aBAA4ODBg4iJiUGPHj10eh/lTOfk5O7du3jvvffeuo2VlRVWr16d66CIiIiIqPhQqVT4+eefsWnTJjx+/BipqalITU2FlZWV1nYeHh5ar2/dugVPT0+tZY0aNdJ6HRwcjNu3b2PdunWaZUIIqNVq3Lt3DzVq1MhT7HXr1tX8XKZMGQBAVFQUqlevnu32ISEhEEKgatWqWstTU1Ph4OCgeW1qaqpVNwD07dsXTZs2RXh4OMqWLYt169ahffv2KFGiBICcv49ypnNy8q7EhIiIiIhIF3PmzMGvv/6KefPmoU6dOrCyssLo0aOz3PT++kG2ECLLPSKvP5RJrVZj6NCh8PHxydJuhQoV8hz7q1cRZcbytpvX1Wo1jIyMEBwcDCMjI6111tbWmp8tLCyy9K1Ro0aoXLkyNm7ciOHDh2PHjh1aJwRy+j7KWa5miCciIiIi0pdjx46hS5cu6NevH4CMA/jQ0NB3ntWoXr069uzZo7Xs/PnzWq8bNGiAa9euoUqVKm+sx9TUFCqVKpfRv1l29bq7u0OlUiEqKgoffPCBznX26dMH69atQ/ny5aFQKDSXlAG5fx/lJNdP6yIiIiIi0ocqVargwIEDOHnyJG7cuIGhQ4ciMjLyneWGDh2KmzdvYvz48fjvv/+wefNmBAQEAHh5FmP8+PE4deoURo4ciYsXLyI0NBS7du3CqFGjNPW4urri6NGjePz4MZ49e6a3frm6uiIhIQEHDx7Es2fPkJSUhKpVq6Jv377o378/tm/fjnv37uHcuXPw9/fPkmhlp2/fvggJCcGMGTPw6aefwtzcXLMut++jnPDMCREREVFRUUhnbP/xxx9x7949tGvXDpaWlhgyZAi6du2K2NjYt5arWLEitm7dirFjx2L+/Plo2rQpJk2ahOHDh2vmI6lbty6CgoIwadIkfPDBBxBCoHLlyujVq5emnp9++glDhw5F5cqVkZqaqrf5+po1a4Zhw4ahV69eiI6OxpQpUzB16lSsXr0a06dPx9ixY/H48WM4ODigadOmaN++/TvrdHNzg6enJ86dO5dl4sjcvo9yolNykpaWhmrVqmmeuUxEREREpKsBAwZozQhfsmRJzfwhb/LqPCCv6ty5Mzp37qx5PWPGDJQvX17rjIKnpyf279//xrqbNGmCS5cuvTPuV5MWV1fXLEmMvb19lmVLlizBkiVLtJaZmJjA19cXvr6+2bbz+vvzurNnz2a7PC/vo1zolJyYmJggNTX1rZPT6MLPzw/bt2/HzZs3YWFhgWbNmsHf3x/VqlXTbCOEgK+vL5YvX46YmBg0btwYixYtQq1atQAAz58/x5QpU7B//36EhYWhVKlS6Nq1K6ZNmwY7OztNPTExMfDx8cGuXbsAZPwiL1iwAPb29nrpC1FxcdhvCJJjn0GSFDCxsELD/hNRwrU6UmKjcWrpJCQ8CYORiSk8B/4Iu/JZr+/dO7EbkmOe/K+8NZqMnAWHynVwacMchP67EXGP76D11PWo0MRbp/av7VyBe8d2IT7yAbzGLEC5Bi2ylFUpU/Dvz4Px4uEtGJtZwKKEE5r5zIWNcwU8vRWCM0snIi05AZKkQKOhM+BQpa5e239b/5NfPMXRWcMRH3EPChNTNPOZixKuWa8Rzkv7urTtXLtptvHnRdtfTiMyNhUKSYKNuTEW9KuF+hXsEBWXiv4rLuJOVCLMTIywtH8deFS0e3eFREQAFi9eDE9PTzg4OODEiROYPXu2Zg4TKnx0vqxr1KhR8Pf3x8qVK2FsnLerwoKCgjBy5Eh4enoiPT0dkyZNQtu2bXH9+nXN0xhmzZqFuXPnIiAgAFWrVsX06dPRpk0b3Lp1CzY2NggPD0d4eDh++eUX1KxZEw8ePMCwYcMQHh6OrVu3atrq06cPHj16hL179wKAZlKav/76K099ICpu3vf5BaZWtgCAR+cP4syKyfCesRkXN81DqSp10Wr8UkTfuYrj88eg3fSNWcq3mrQaZtYZB54PTv6N43O/RpdFQSjj3gIVW3TD8V9HZSmTk/adajVGhSbeOLti8lvLV2v/Bcp7toEkSbi+czlOzB+NdjO34eBPn6PF/y1Fmfof4MXD/7Bv4ifo+NtBvbf/pv6fX+ULxxoeaDdzK57eCsGh6V+g88LDem1fl7Z7BFx4az9yY/OIhrC3zHiqzZ8hkRi46hJCfL0wYctNNKlsj71jG+Pc3Rf4dHEwrk330nv7RFQ0hYaGYvr06Xj+/DkqVKiAsWPHYuLEiYYOi3JJ5+zizJkzOHjwIPbv3695RNmrtm/fnuO6MhOFTKtXr0bp0qURHBwMLy8vCCEwb948TJo0Cd26dQOQMTOok5MT1q9fj6FDh6J27dpaM2VWrlwZM2bMQL9+/ZCeng5jY2PcuHEDe/fuxenTpzUT0KxYsQJNmzbFrVu3tM7UENHbZR4YA4AyKUFzJjXs9D50mpexTztUrg1zOwdE376cpXzmwTEAKBPjACnjuRylq3tk2VaX9ktlc5bjdUam5nBp1FbzunQNT1zbsRSpcc+RGh+DMvUznppiX6EqTK3tEH7hiF7bB97c/3tH/0SPwIsAAMdqDWBhXxpPb5zPUj4v7evS9pOrp+FYI2djklOZiQkAxCalQaHIiH3zuXDcm/UhAMCzkj2cbE1x8naMXtsmoqLr119/xa+//mroMEhPdE5O7O3t0b179/yIRXOzTsmSJQEA9+7dQ2RkJNq2fXkwYWZmhhYtWuDkyZMYOnToG+uxtbXVnNk5deoU7OzstGbGbNKkCezs7HDy5Mlsk5PMSWsyxcXF5b2DREXEqSXfI+p6xvWuLccvRWr8CwghYG5bUrONlWNZJD1/km35oFnDEHnpGACg7Yyt2W6jS/u5de3PZajQxBvmdg6wsHfE/WO74PpBZ0TdPI/Yx3eQGPUoX9p/vf8pcc8hhBoW9qU021g7VUDis8d6bz+nbSdEPdJ7cgIA/VdcwOEb0QCAvWMbIzpBCbUQcLQ102zjWsoSYc9T9N42ERHJn87JSX7N/C6EwJgxY9C8eXPUrl0bADSPPnNyctLa1snJCQ8ePMi2nujoaEybNk0rcYmMjETp0qWzbFu6dOk3Pl7Nz8/vjTcpERV3TYfPBADcPboTF9bPQdPhfsDr96K95UknLcZlHFCHHtiAcysno+30LXlqv+W4Je8okdWlDXMQF34X7/vMBQC0nroO51ZNxaWNc1DCtSacajWB4g2Xrua1/df77zVuGSS8fi/fm9+/vLSf17bz6o/B7gCAwONh+L9N17FmiHuW9vX0kBwiIiqEcj3PydOnT3H8+HGcOHECT58+zXMgX3/9NS5fvowNGzZkWZfdzJ/Z3ZQfFxeHDh06oGbNmpgyZcpb63hbPQAwceJExMbGav6FhYXp0h2iYqGSVxdEXT+neZ0S91zzc+KzCFiWdMqumIZbm88Qcem4VrnctJ8a/0Kncle2LMD9E7vRdvoWGJtbAgBKVqqNdjO2osuiIHj93xIkRUfCrrxbvrSfKbP/mZJfvHy2fsKTMFiVKpdv7b+rbevS5XWuUxdfNHfB4ZvRmtdP416eqX4QnQSXkubZFSMioiJO5+QkMTERAwcORJkyZeDl5YUPPvgAZcuWxaBBg5CUlJSrIEaNGoVdu3bh8OHDKF/+5Qeis7MzAGQ5uxEVFZXlbEp8fDy8vb1hbW2NHTt2wMTERKueJ0+yXl7y9OnTLPVkMjMzg62trdY/ouIuLTkBSTFRmtdh5w7C1NoOptZ2qNCoDUIPZNwAH33nKlJin2V52pUyMQ5J0RGa1/dP7IaZbUmY2ZTIWftJb24/p65uW4S7R7bB22+H1j0Yr16CdmtPIIzNLeFUp5le239b/129uuDGXysBAE9vhSA55kmWy6ry0r4yKV6ntp1qN8lRn3IqLjkN4TEvL9XaERwBB2tTlLQyQQ/PMlh06D4A4NzdF4iMTUWzKjn7nSAioqJF58u6xowZg6CgIPz11194//33AQDHjx+Hj48Pxo4dm+U5zm8jhMCoUaOwY8cOHDlyBBUrVtRaX7FiRTg7O+PAgQNwd8+4FECpVCIoKAj+/v6a7eLi4tCuXTuYmZlh165dWs+1BoCmTZsiNjYWZ8+eRaNGjQBk3NgfGxuLZs20Dz6I6M3SkhJwcvEEqJQpkBQKmNmUQIvvFkGSJNT77FucXvw9/hrTAQpjEzQdPhMKI+0/McrEOBya9gVUymRAUsDcrhTa/LQRkiTh0sa5uPHXKqTEPsOxOSNhZGqOj2ft0i6fnIDj877Ntv1rO1ci9MAGpMbH4PSyH2BkYgrvmVu0Ykh8Fo6zy3+ATRlX/DOuEwBAYWKGzr/9i1t7AnDn0BZACNhVqIqPJq/JcmZV1/Y/+uH3HPffc9BUBM0ahq1fNoTC2BRe45Zlff/y0H5aYhyOzRqmU9tqVXruf1leE5ucjr7LLiBZqYZCATjamGH3aE9IkgT/HjXw+YoLcBt/CKbGCqwZ7A5jo1yf2CciokJM5+Rk27Zt2Lp1K1q2bKlZ1r59e1hYWKBnz546JScjR47E+vXrsXPnTtjY2GjOkNjZ2cHCwgKSJGH06NGYOXMm3Nzc4ObmhpkzZ8LS0hJ9+vQBkHHGpG3btkhKSsLatWsRFxenuXnd0dERRkZGqFGjBry9vTF48GAsW7YMQMajhDt27MgndRHpwNLBGe2mZb30EgAs7Eqh1cTlWsuUidoPkrAuXR6dF2R9PC8A1Os9BvV6j9FalprwQuu11Vvar9XlK9Tq8lWW5a/GYFWqLAbuy/4pUO79xsO933i9tq9L/y1KlIa3n/bTDvXZvpVjOZ3a1jeXkhY4O/mDbNc52Zlh/3faZ2pS0lT5Gg8RkZwMGDAAL168eOcEinIWEBCA0aNH48WLF3mqR+fkJCkpKdtLoUqXLq3zZV2ZicyriQ6QcdN95qyY48aNQ3JyMkaMGKGZhHH//v2wsbEBAAQHB+PMmTMAgCpVtCd8u3fvHlxdXQEA69atg4+Pj+bJX507d8bChQt1ipeIiIhIzkpNPVqg7T2bqtucRAMGDEBgYCAAwNjYGC4uLujWrRt8fX2zTE9RnMyfPz/LzPLvIkkSduzYga5du+ZPUAaic3LStGlTTJkyBX/88Yfm8qnk5GT4+vqiaVPdZhTOySBIkoSpU6di6tSp2a5v2bJljuopWbIk1q5dq1N8RERERKRf3t7eWL16NdLS0nDs2DF89dVXSExMzPbqm7S0NK37iAtSfrStVCphamqaZbmdXc7vndQ3Q77H2dH5ot758+fj5MmTKF++PD766CO0bt0aLi4uOHnyJObPn58fMRIRERFREWFmZgZnZ2e4uLigT58+6Nu3r+ZypqlTp6J+/fr4/fffUalSJZiZmUEIgdjYWAwZMgSlS5eGra0tPvzwQ1y6dEmr3l27dsHDwwPm5uYoVaqUZgJvIOPL7tcvmbK3t0dAQAAA4P79+5AkCZs3b0bLli1hbm6OtWvX4sGDB+jUqRNKlCgBKysr1KpVC3v27NHUERQUhEaNGsHMzAxlypTBhAkTkJ7+8n69li1b4uuvv8aYMWNQqlQptGnTJtv3ZMCAAVpnQFq2bAkfHx+MGzcOJUuWhLOzs9YX9ZlXBn3yySeQJEnzGgD++usvNGzYEObm5qhUqRJ8fX21YpIkCUuXLkWXLl1gZWWFn376CeXLl8fSpdrzZoWEhECSJNy9excAMHfuXM0E7C4uLhgxYgQSEhKy7U9e6Jyc1K5dG6GhofDz80P9+vVRt25d/PzzzwgNDUWtWrX0HiARERERFV0WFhZIS0vTvL59+zY2b96Mbdu24eLFiwCADh06IDIyEnv27EFwcDAaNGiAjz76CM+fZzyK/u+//0a3bt3QoUMHXLhwAQcPHoSHh+4TyY4fPx4+Pj64ceMG2rVrh5EjRyI1NRVHjx7FlStX4O/vD2trawDA48eP0b59e3h6euLSpUtYsmQJVq1ahenTp2vVGRgYCGNjY5w4cUJz73NOBAYGwsrKCmfOnMGsWbPw008/4cCBAwCAc+cyHuO/evVqREREaF7v27cP/fr1g4+PD65fv45ly5YhICAAM2bM0Kp7ypQp6NKlC65cuYKvvvoKvXv3xrp167S2Wb9+PZo2bYpKlSoBABQKBX777TdcvXoVgYGBOHToEMaNG6fDu5szOl/WBWT8Eg0ePFjfsRARERFRMXL27FmsX78eH330kWaZUqnEmjVr4OjoCAA4dOgQrly5gqioKJiZmQEAfvnlF/z555/YunUrhgwZghkzZqB3795aE2jXq1dP53hGjx6tdcbl4cOH6N69O+rUqQMAmgN1AFi8eDFcXFywcOFCSJKE6tWrIzw8HOPHj8fkyZOhUGScA6hSpQpmzZqlcyx169bVzNvn5uaGhQsX4uDBg2jTpo3mvbG3t9dMvQEAM2bMwIQJE/DFF19o4p02bRrGjRunNQdgnz59MHDgQM3rvn37Yu7cuXjw4AHee+89qNVqbNy4Ed9//73We5OpYsWKmDZtGoYPH47Fixfr3Le3yVVy8t9//+HIkSOIioqCWq3WWjd58mS9BEZERERERc/u3bthbW2N9PR0pKWloUuXLliwYIFm/Xvvvac5+AYyHn6UkJAABwcHrXqSk5Nx584dAMDFixf18sX562dbfHx8MHz4cOzfvx+tW7dG9+7dUbduxhxeN27cQNOmTbUeO//+++8jISEBjx49QoUKFbKtM6cy28lUpkwZREVFvWHrDMHBwTh37pzWmRKVSoWUlBQkJSXB0tIy25jc3d1RvXp1bNiwARMmTEBQUBCioqLQs2dPzTaHDx/GzJkzcf36dcTFxSE9PR0pKSlITEzU68MMdE5OVqxYgeHDh6NUqVJwdnbWGhBJkpicEBEREdEbtWrVCkuWLIGJiQnKli2b5Wbs1w901Wo1ypQpgyNHjmSpy97eHkDGVT1vI0lSlgcovXop2Zva/uqrr9CuXTv8/fff2L9/P/z8/DBnzhyMGjUKQogs82FltvHq8tweuL/+vkiSlOWkwOvUajV8fX21zv5kenUewOxi6tu3L9avX48JEyZg/fr1aNeuHUqVKgUAePDgAdq3b49hw4Zh2rRpKFmyJI4fP45BgwZl+z7mhc7JyfTp0zFjxgyMHz/+3RsTEREREb3Cysoqy/QPb9OgQQNERkbC2NhY68bvV9WtWxcHDx7El19+me16R0dHREREaF6HhobmeAoMFxcXDBs2DMOGDcPEiROxYsUKjBo1CjVr1sS2bdu0kpSTJ0/CxsYG5cqVy3H/csvExAQqlfacUA0aNMCtW7d0en8z9enTBz/88AOCg4OxdetWraennT9/Hunp6ZgzZ47mcrXNmzfnrQNvoPMN8TExMejRo0d+xEJEREREpKV169Zo2rQpunbtin379uH+/fs4efIkfvjhB5w/fx5Axg3eGzZswJQpU3Djxg1cuXJF6z6PDz/8EAsXLkRISAjOnz+PYcOG5ejxuaNHj8a+fftw7949hISE4NChQ6hRowYAYMSIEQgLC8OoUaNw8+ZN7Ny5E1OmTMGYMWM0B/D5ydXVFQcPHkRkZCRiYjImGJ48eTL++OMPTJ06FdeuXcONGzewadMm/PDDD++sr2LFimjWrBkGDRqE9PR0dOnSRbOucuXKSE9Px4IFC3D37l2sWbMmy9O99EXnd65Hjx7Yv39/fsRCRERERKRFkiTs2bMHXl5eGDhwIKpWrYrevXvj/v37monBW7ZsiS1btmDXrl2oX78+PvzwQ80k3QAwZ84cuLi4wMvLC3369MF3332nuf/ibVQqFUaOHIkaNWrA29sb1apV09wAXq5cOezZswdnz55FvXr1MGzYMAwaNChHiYA+zJkzBwcOHICLiwvc3d0BAO3atcPu3btx4MABeHp6okmTJpg7dy7ee++9HNXZt29fXLp0Cd26ddO6VK5+/fqYO3cu/P39Ubt2baxbtw5+fn750q8cXdb122+/aX6uUqUKfvzxR5w+fRp16tTJknX6+PjoN0IiIiIiyhFdZ2wvaJnzirzJmybetrGxwW+//aZ1TPq6bt26ZXuvBQCULVsW+/bt01r24sULzc+urq7ZTur96o362WnRogXOnj37xvXZ3SeTndffl+zKvT5PS6dOndCpU6cs27Vr1w7t2rV7Y1tvm7x8xIgRGDFiRLbrvv32W3z77bdayz7//HPNzwMGDMCAAQPeWHdO5Sg5+fXXX7VeW1tbIygoCEFBQVrLJUlickJERERERLmSo+Tk3r17+R0HEREREREVc/l/tw4REREREVEO6JycfPrpp/j555+zLJ89ezaf4kVERERERLmmc3ISFBSEDh06ZFnu7e2No0eP6iUoIiIiInq7t93YTCQnuvyu6pycJCQkwNTUNMtyExMTxMXF6VodEREREekg80mpOZ1EkMjQlEolAMDIyOid2+o8Q3zt2rWxadMmTJ48WWv5xo0bUbNmTV2rIyIiIiIdGBkZwd7eHlFRUQAAS0tLzQzlRHKjVqvx9OlTWFpawtj43amHzsnJjz/+iO7du+POnTv48MMPAQAHDx7Ehg0bsGXLFt0jJiIiIiKdODs7A4AmQSGSM4VCgQoVKuQoidY5OencuTP+/PNPzJw5E1u3boWFhQXq1q2Lf//9Fy1atMhVwERERESUc5IkoUyZMihdujTS0tIMHQ7RW5mamkKhyNndJDonJwDQoUOHbG+KJyIiIqKCY2RklKPr+IkKi1wlJ0DGjS1RUVFQq9VayytUqJDnoIiIiIiIqPjROTkJDQ3FwIEDcfLkSa3lQghIkgSVSqW34IiIiIiIqPjQOTkZMGAAjI2NsXv3bpQpU4ZPhyAiIiIiIr3QOTm5ePEigoODUb169fyIh4iIiIiIiimdJ2GsWbMmnj17lh+xEBERERFRMaZzcuLv749x48bhyJEjiI6ORlxcnNY/IiIiIiKi3ND5sq7WrVsDAD766COt5bwhnoiIiIiI8kLn5OTw4cP5EQcRERERERVzOicnb5sF/uLFi3mJhYhkTpWuzPX2qjQl0nM4O2wmdVqqVl0Kpc5XouYphry2b+j+67P9vEpNU797ozxsT0RERUOuJ2HMFBsbi3Xr1mHlypW4dOkSL+siKsJOLZ6o0/bilUlaj80aBl2fPC7UL/+enFn6PXSuII8x5LV9Q/c/r+3rU7/lFwzXOBERFRq5Tk4OHTqE33//Hdu3b8d7772H7t27Y9WqVfqMjYhkpEE5G53LqFQqBEcYAzH3ULeyBxQ6fnOvUikQ/EACEiNQv0Y5ncvnNYa8tm/o/ue1fb1xaWSYdomIqNDRKTl59OgRAgIC8PvvvyMxMRE9e/ZEWloatm3bhpo1a+ZXjERkQGZmZtiyZUuuygohkJqaqqlH10lb81o+r3UYOn5Dl3+VmZlZrsrk9ncnr20TEVHhlOPkpH379jh+/Dg6duyIBQsWwNvbG0ZGRli6dGl+xkdEBiZJEszNzXNd3sLCIk/t57V8XuswdPyGLp8Xef3dISKi4ifHycn+/fvh4+OD4cOHw83NLT9jIiIiIiKiYijHFyAfO3YM8fHx8PDwQOPGjbFw4UI8ffo0P2MjIiIiIqJiJMfJSdOmTbFixQpERERg6NCh2LhxI8qVKwe1Wo0DBw4gPj4+P+MkIiIiIqIiThJCiNwWvnXrFlatWoU1a9bgxYsXaNOmDXbt2qXP+GQjLi4OdnZ2iI2Nha2traHDISIioiKMxx1UXOXpuZLVqlXDrFmz8OjRI2zYsEFfMRERERERUTGUpzMnxQm/wSAiIqKCwuMOKq4MNCMXERERERGRNiYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyYKxoQMobFJSUmBqaqpzOSEEUlNTAQBmZmaQJKnQlC/MbeurDn21nxd5iZ2IiIioMGByoqP+/fvDxMRE53IqlQrBwcEAAA8PDygUup20MmT5wty2vuoAgC1btsDc3FzncqmpqejRo0eu2tRH+0RERESFBZMTHV2KSIDCSPe3TajViE1Jh2kZN1x+poIkqXQsr0KcUkBRoiwuhicAup69yEP7hbntvLafqZ6j7glpFmFnc1/WpVHe2yciIiKSOSYnudB0hB+MjHW7tEuZHI9/JnQHAHwwbilMzHT7BjwtMRY7hn0AAGg8bKbO5fPSfmFuO6/tq9NSEeQ/VOc232TtEHeYmeT8zE1qmhr9ll/QW/tEREREcsbkJBeMjE1hZGqmW5m0l/ccGJmYwthUt4NslTLFYO0X5rbz2n66zq29nZmJAuYmRnqulYiIiKho4NO6iIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHYkI37+flh+/btuHnzJiwsLNCsWTP4+/ujWrVqmm2EEPD19cXy5csRExODxo0bY9GiRahVq5Zmm+XLl2P9+vUICQlBfHw8YmJiYG9vr9VWSEgIxo8fj3PnzsHIyAjdu3fH3LlzYW1tnavYD/sNQXLsM0iSAiYWVmjYfyJKuFZHSmw0Ti2dhIQnYTAyMYXnwB/hWK1BlvJ7J3ZDcsyT/5W3RpORs+BQuQ4ubZiD0H83Iu7xHbSeuh4VmnjrHMO1nStw79guxEc+gNeYBSjXoIVWOZUyBf/+PBgvHt6CsZkFLEo4oZnPXNg4V8Cz/y7g1OLxUClToFKmwq1tH1Rr/4Ve2n1X35NfPMXRWcMRH3EPChNTNPOZixKuNfTW79y0X6qq+xvf/9xq+8tpRMamQiFJsDE3xoJ+tVC/gh2i4lLRf8VF3IlKhJmJEZb2rwOPinZ6b5+IiIhIrgyanAQFBWHkyJHw9PREeno6Jk2ahLZt2+L69euwsrICAMyaNQtz585FQEAAqlatiunTp6NNmza4desWbGxsAABJSUnw9vaGt7c3Jk6cmKWd8PBwtG7dGr169cLChQsRFxeH0aNHY8CAAdi6dWuuYn/f5xeYWtkCAB6dP4gzKybDe8ZmXNw0D6Wq1EWr8UsRfecqjs8fg06/7slSvtWk1TCzzjjwfHDybxyf+zW6LApCGfcWqNiiG47/OirXMTjVaowKTbxxdsXkN5at1v4LlPdsA0mScH3ncpyYPxrefttxfN43aPD5BFRo2h6pcTHY9lUjONdpprd239b386t84VjDA+1mbsXTWyE4NP0LdF54WK/91rX9T5afemtdubF5REPYW5oAAP4MicTAVZcQ4uuFCVtuoklle+wd2xjn7r7Ap4uDcW26l97bJyIiIpIrgyYne/fu1Xq9evVqlC5dGsHBwfDy8oIQAvPmzcOkSZPQrVs3AEBgYCCcnJywfv16DB06FAAwevRoAMCRI0eybWf37t0wMTHBokWLoFBkXMm2aNEiuLu74/bt26hSpYrOsWceHAOAMikBkiQBAMJO70OneRn9cqhcG+Z2Dnh66wJKvFdNq3zmwTEAKBPjACkjrtLVPfIcQ6kqdd9azsjUHC6N2mpel67hiWs7lmpepybEAQDSUhKhMDGFqbW9XtrN9Ka+3zv6J3oEXgQAOFZrAAv70nh643yW8gXZftT1szmqUxeZiQkAxCalQaHIiH/zuXDcm/UhAMCzkj2cbE1x8naM3tsnIiIikiuDJievi42NBQCULFkSAHDv3j1ERkaibduXB9JmZmZo0aIFTp48qUlO3iU1NRWmpqaaxAQALCwsAADHjx/PNjlJTU1Famqq5nVcXFyWbU4t+V5z8Npy/FKkxr+AEALmtiU121g5lkVSdESW5AQAgmYNQ+SlYwCAtjNydwbn9Rhy49qfyzSXj30wdhH+ndoHIYHTkRIbjfe/+RUWJRz13u7rfU+Jew4h1LCwL6XZxtqpAhKfPc62fIG1//SRznXnRP8VF3D4RjQAYO/YxohOUEItBBxtzTTbuJayRNjzlHxpn4iIiEiOZHNDvBACY8aMQfPmzVG7dm0AQGRkJADAyclJa1snJyfNupz48MMPERkZidmzZ0OpVCImJgbff/89ACAiIiLbMn5+frCzs9P8c3FxybJN0+Ez0WXBv6jTYxQurJ+TsfB/3+K/0rE3xtVi3FL0WncNDQb8gHMr334p0ptkG4MOLm2Yg7jwu2g44AcAwJUtv8Hzq5/Qa+1VfLL8FIIDpiPu8R29t5td3yW89t7hze+dodvPqz8GuyNsbmtM71YN/7fperbtv+VXh4iIiKhIkk1y8vXXX+Py5cvYsGFDlnWS9PpBm8iy7G1q1aqFwMBAzJkzB5aWlnB2dkalSpXg5OQEIyOjbMtMnDgRsbGxmn9hYWFvrL+SVxdEXT+neZ0S91zzc+KzCFg6lHlrfG5tPkPEpeNa5XSVGUNq/Iscl7myZQHun9iNttO3wNjcEimx0Xhw8m9UavEJAMC2jCscq3vg6a0Qvbb7qsy+Z0p+8Uzzc8KTMFiVKvfW8vnevmP5XNWbU180d8Hhm9Ga10/jXp6texCdBJeS5vnaPhEREZGcyCI5GTVqFHbt2oXDhw+jfPmXB4POzs4AkOUsSVRUVJazKe/Sp08fREZG4vHjx4iOjsbUqVPx9OlTVKxYMdvtzczMYGtrq/UvU1pyApJiojSvw84dhKm1HUyt7VChURuEHtgIAIi+cxUpsc/gWE37iU/KpHgkRb88Y3P/xG6Y2ZaEmU2JHPcnLenNMeTE1W2LcPfINnj77dDcg2FqbQ8jEzNEXD4BAEiJjcbTG+dgX6FqjvqeE2/ru6tXF9z4ayUA4OmtECTHPIFjDe17cPLab13bL12zUY7qzam45DSEx7y8VGtHcAQcrE1R0soEPTzLYNGh+wCAc3dfIDI2Fc2q5Px3goiIiKiwM+g9J0IIjBo1Cjt27MCRI0eyJAoVK1aEs7MzDhw4AHf3jAN8pVKJoKAg+Pv756rNzKTm999/h7m5Odq0aaNzHWlJCTi5eAJUyhRICgXMbEqgxXeLIEkS6n32LU4v/h5/jekAhbEJmg6fCYWR9tuclhiHY7OGQaVMBiQFzO1Koc1PGyFJEi5tnIsbf61CSuwzHJszEkam5uiyKAgKY+06lMkJOD7v22xjuLZzJUIPbEBqfAxOL/sBRiam+OiH3zVlE5+F4+zyH2BTxhX/jOsEAFCYmKHzb/+i1aTVOLtsEtSqdAhVOmp/OgoOVeq9jD05EaeXTsxxu94zt2j1/2199xw0FUGzhmHrlw2hMDaF17hlWd47Xfut7/bzKjY5HX2XXUCyUg2FAnC0McPu0Z6QJAn+PWrg8xUX4Db+EEyNFVgz2B3GRrL4/oCIiIioQBg0ORk5ciTWr1+PnTt3wsbGRnOGxM7ODhYWFpAkCaNHj8bMmTPh5uYGNzc3zJw5E5aWlujTp4+mnsjISERGRuL27dsAgCtXrsDGxgYVKlTQ3Fy/cOFCNGvWDNbW1jhw4AD+7//+Dz///HOW+VBywtLBGe2mZb38DAAs7Eqh1cTlby1v5VgOnRcczHZdvd5jUK/3mCzLUxNeaNfxlhhqdfkKtbp8pbVMmfjyhn6rUmUxcF/2T4Eq16AlyjU48sa2LUs66dRulrbf0neLEqXh7bf9jW0Duvc7r+2nK/V7Q7pLSQucnfxBtuuc7Myw/7smWstS0lR6bZ+IiIhIzgyanCxZsgQA0LJlS63lq1evxoABAwAA48aNQ3JyMkaMGKGZhHH//v2aOU4AYOnSpfD19dW89vLyylLP2bNnMWXKFCQkJKB69epYtmwZPv/88/zrHBERERER6cTgl3W9iyRJmDp1KqZOnfrGbd61HgD++OMPHaMjIiIiIqKCxAvaiYiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWTA2dACFkSpdmacyqjQl0hW65YXqtFStuhRK3crnpf3C3LY+29eH1DR1vm5PREREVJgxOcmFU4sn6lxGqF8eZB6bNQySpGt5lebnM0u/h64V5KX9wtx2XtvXt37LLxiucSIiIiKZY3Kio3plrGFiYqJzOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dLIMO0SERERFRKSEEIYOojCIC4uDnZ2dnjy5AlsbW11Li+EQGpqxiVCZmZmkHQ9+2DA8oW5bX3Voa/28yIvsRMRUeGSedwRGxubq+MOosKKZ050ZG5uDnNz81yVtbCwyFPbhixfmNvWVx25JUlSrn9niIiIiIoTPq2LiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFvi0rhzKfOJyXFycgSMhIiKioi7zeIMzPlBxw+Qkh+Lj4wEALi4uBo6EiIiIiov4+HjY2dkZOgyiAsNJGHNIrVYjPDwcNjY2nAhPz+Li4uDi4oKwsDBONCVDHB/54xjJG8dH/uQ4RkIIxMfHo2zZslAoeBU+FR88c5JDCoUC5cuXN3QYRZqtra1sPhQoK46P/HGM5I3jI39yGyOeMaHiiKk4ERERERHJApMTIiIiIiKSBSYnZHBmZmaYMmUKzMzMDB0KZYPjI38cI3nj+Mgfx4hIPnhDPBERERERyQLPnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJieUr6KioqBSqQwdBlGhlZCQYOgQ6B34d46ISH+YnJDeCSGgVCoxZMgQtGvXDqdOnTJ0SJSNJ0+e4O+//wanOpKniIgI9O3bF5999hkGDRqEkJAQQ4dEr+DfOfmLjIzETz/9hMWLF2PPnj2GDoeIcojJCemdJEmIiorCrl278PTpUxw6dAixsbEAwANhmVi4cCHKli2LTp064dq1a4YOh16zdu1a1K5dG0qlEh9//DEOHToEf39/REZGGjo0+h/+nZO3adOmoUqVKjh79iwCAgLwySefYP369QA4PkRyx+SE8kVaWho6duyIzz//HGvXrsXp06cBZHygk+EIIbBnzx78+eefmDVrFtzd3eHr6wu1Wm3o0Oh/VCoV/vjjD4wZMwZbtmzBiBEj4O/vj6CgIFhYWBg6PHoF/87Jj0qlgr+/P/bs2YPNmzdj9+7dOHjwIMaMGYOJEycC4PgQyR2TE8oXjx49wuXLl+Hn5wcrKyts2LBB860iGY4kSXBycsLnn3+OoUOH4tdff8W2bduwb98+Q4dG/3PlyhXcvXsXZcuW1SxLSkpC9+7duQ/JDP/OyY+RkRGUSiU+/PBDeHt7AwBsbGzQokULGBsb486dOwaOkIjehckJ5ZpSqURycnK26x49eoSaNWsCACZMmICjR49iw4YNGDJkCCIiIgoyzGItPj4eR48exe3btzXLGjZsiC+++ALW1tbw8vJCjx49MGnSJMTHxxsw0uLp1X0o8+xVzZo14eDggFWrVmH58uXo2bMnBg4ciAsXLqBu3boYPXo0oqKiDBl2sRIXF4fTp0/j8ePHWdbx75zhJSYmIjQ0FHFxcZpl3333HWbMmAGFQqG5hOv58+cwNzdH5cqVDRUqEeUQkxPKFX9/f9SpUwdHjx7VWp55gBUXF4cXL14AAHr16gVjY2P4+Pjg/PnzkCSJ1/wWgGnTpqFy5coYM2YM6tati7lz52p9gGeOlZ+fH27evImAgAADRVo8vb4PKRQKpKenw9TUFPPnz0fPnj2xc+dO3LlzB2fPnsXevXsxb948nD17FosXLzZw9MWDn58fXFxcMHjwYNSsWRPz58/XSlL4d86wpk2bhjp16qBnz56oX7++5qb3zMsf1Wq15hKuU6dOwd3dHUDG5XhEJF9MTkgnz58/x/Dhw7F+/XpERkZi+fLlePbsmWa9QpHxK/Xw4UO0a9cO//77L8qXL4/k5GTY2Nigb9++KFWqFK/5zUd3795F27ZtsWXLFqxZswa7du3ChAkT8PPPP2udHckcq0qVKmHs2LGYMWMGHj16BCDjMqLExESDxF/UvW0fMjIyAgA0adIEPj4+SE1NxcCBA+Hh4QFbW1sMGDAANjY2ePLkCQ+w8tk///yDNWvWIDAwELt27cL48eOxYsUKTJ48WbPN/fv3+XfOAB48eIAuXbpg06ZNWLhwIebMmQMvLy989dVXePLkiWY7hUKh2U/OnDmDhg0bAgBMTEwA8MZ4IrlickI6iY2Nha2tLfz8/PD3339jx44d+PfffzXfwmf+b2RkhJEjR6Jbt24YMmQIwsLC0K9fPwQGBuL48eOG7EKR9/jxYzRr1gw7duxAu3btULZsWXz11VewtbV9Y5kJEybA3Nwcs2fPxpo1a9CuXTs+ejOfvG0fevVg9sGDB7h9+zYaN26sWZaUlIS4uDhUqFBBc4BF+WPv3r0wNzdH165dUbFiRXz//fcYNmwYTpw4gaVLl2q249+5gnf69Gm8ePECW7duRfv27fHhhx8iICAAiYmJOHv2rNa2JiYmCAsLw/3799GtWzcAGWPbp08fPHjwwBDhE9G7CCIdpKeniwcPHmhe9+zZU9StW1fcu3dPa7tdu3YJf39/8d9//2mWRUVFiRo1aoigoKCCCrdYUiqVIiwsTOv1J598Ipo3by6mTZsm/vvvP6FSqYQQQvO/EEJMmTJFSJIkTE1NxcSJEws87uIip/uQEEK4u7uLFi1aiDVr1oiQkBDRsWNHUatWLXHp0qUCjLj4UalUYvjw4aJ3794iJSVFszw8PFwMHTpU1KtXTyQlJYl///1XzJw5k3/nCoharRZCCPH8+XOxZcsWrXWRkZGiWrVqYv/+/VnKrV27Vnz00UciLCxMfPzxx8LY2FiMHTu2QGImIt0xOaFcyfyQiI6OFiYmJsLPz0/rQzw9PV1r+8zXqampBRckiRs3bghLS0vh6ekpJk+eLOrXry+aNm0qVq1apdkmISFBjBw5UkiSJAYNGiRiYmIMF3Ax8rZ9KHN/uXXrlmjYsKGoVq2aqFSpkujZs6d4/vy5wWIuDjLHxc/PT7i4uGT7xYu7u7sICAjQ2l4I/p0rCK++30K8/ILl+vXrwsHBQStRzNy2f//+QpIkYWJiIjp06CCePXtWcAETkc54WRflmHjl+lxJkpCeno6SJUti0qRJmDt3Lm7cuKFZn3k/Q2aZzGvpTU1NCzDi4ke8dg21i4sL9u3bh9OnT8PX1xdnzpyBvb09zp49C6VSCQB49uwZbGxscOzYMaxcuRL29vYGiLxoSUlJyXZ5TvchIyMjpKeno2rVqvj333/x999/4+DBg9i0aRNKlChRIH0orjIvTR09ejRiY2Oxbt06rfUtW7aEiYmJ5mlcr16Kx79z+hMVFaXTPSFHjx5FxYoV4ebmlqWcsbExateujbNnz2L37t1wcHDQd7hEpEdMTkgjIiICPXr0wObNmwFkTGaVKT09XfMhnLk88/WUKVNgamqKJUuWICYmBgcOHMDatWu1tiH9CAsLw9atWxESEqK50TPzg/jVMUpPTwcAWFpaonnz5lAoFFCr1TA1NUVCQgIiIyM1B1Dvvfce/Pz88P777xugR0XLvXv3UK9ePcycOTPLOl33oczZrO3t7VG5cmW4uroWTCeKuIiICJw6dQr379/Psi49PV2TYJibm2Py5Mnw9/fH+fPnNdvY2NhAqVQiLCysoEIuVu7du4fOnTtj/PjxuH79uta6t+1Dx44dg5eXl2bZlStXcPXqVQDA/PnzcfnyZdSvX7+AekFEecHkhDRWrVqFbdu24ddff0VSUhKMjIw03yIaGxtDCIHx48dj48aNUKvVMDIy0nxALFiwAKtWrUKLFi3Qrl07zpmRDyZOnIiqVatizpw5aNasGYYPH467d+9CkiSo1WqtMdq0aVOWG6wVCgXOnj0LSZIwePBgA/ak6BFCYNiwYahatSqqVq0KHx+fLNvoug8lJCQUdDeKvNGjR6NOnTr45ptvUKtWLSxevFhr0sRXx2jt2rUYO3YsqlatigkTJmgeEBESEgIhBLp27WqgXhQ9mV+w/PHHH2jYsCEsLCwwcuRIlCpVSmt9dvsQkPGQieDgYLRr1w4RERHo2bMn6tWrh4cPHwIArK2tDdArIsotJiekcfLkSfTq1Qumpqbw9/fXWhcYGIhSpUph//79qFu3ruayLSMjIzx+/BinT5+GWq1GrVq18PDhQ4wYMcIQXSiyzpw5g507d2Lr1q04fPgwVqxYgdDQUHz++ecAMhKPwMBAODg4ZBmjGzdu4MqVK5g8eTLat2+PmjVrolWrVobsTpFy+/ZtODg44Pjx4zh79iy2bNmiOah6Ffchw3n48CE6d+6Ms2fPYteuXdi8eTNGjBiBJUuWaD3d6dUxqlWrFgBgzZo1sLW1xSeffIJ27drhgw8+QI0aNXimUY8yv2DZsGEDfvzxR2zatAkeHh6wsbHRrAeAgICALPuQJEkIDQ3FixcvsGPHDlSuXBmxsbG4f/8+OnToYMhuEVEuGRs6ACp4Qgitb9TT09NhbGyMMmXKoFOnTpoDrN69e6NGjRqIj4/Ho0ePMH36dAwZMkRz2QOQMcP1L7/8gj/++AOHDh1Cy5YtDdCjou/PP/+ESqXSfNh+/vnnqFKlCtq2bYu5c+dizJgxuH//PmbOnInBgwdrjdHJkyexaNEiGBsbY/Pmzfjwww8N1Y0i49V9yMTEBGXLlkXz5s3h7u6OkydPYtu2bXBwcECDBg3QvHlzWFtb4969e5gxY0aW8eE+lP+uXr0KS0tLLFiwQDPXxezZs7F27VrExMQAABISEhAWFqY1RkII1KhRAwEBAThz5gz+++8/TJ48mYmJHrz+OXTkyBHcuXMHo0aNwsmTJ+Hv74/U1FRUqVIF/fr1Q5MmTfDgwYNsP4dOnz6NJ0+eICQkBDt37kSbNm0M0SUi0hNJ6HLHGRV6ycnJUCgUMDMzA6D9AVG3bl1s3LgRSUlJGDduHOrUqYPZs2cjNDQU1atX1/oweNWTJ0/g5ORUYH0o6jLHRK1Wa75d//XXXxEQEIBTp07B0tJSs91PP/2E+fPnIyIiQjOmr9ejVCpx8eJFNGrUqMD7UhS9vg+p1Wr8+eef+PTTT9G2bVvcvHkTHh4euH37Np4+fYo2bdogICDgrXVyH9KvzN/9zC9ewsPDcf/+fTRr1gxAxpipVCo0bdoUY8aMQZ8+fTTLM/c5yj+v70NAxtnhDh06YOXKlZgxYwZat24Nc3NzHDp0CFeuXMH169fh7OysVU/mOMfHx2Pbtm0YMGBAAfeEiPID/woXIxMnTkTz5s3RsWNH/Pbbb4iLi9McBD9+/BhWVlZwdXWFh4cHOnXqhPXr18Pc3BwHDx7Uujn+dTyo0p+5c+dqbqZ+9SDJzs4OJiYmOHjwoGaZJEn44osvYGVlhblz5wJ4+aShzPVAxpODmJjoR3b7kEKhQKtWrfD5558jISEBu3btwrp163Dx4kVMnToVp0+fxpIlSwBoj8+ruA/pz6v7UOY9CmXLltVKTBQKBSIiInDr1i3Url1bU5aJSf7Lbh8CMhKN+vXrY+bMmahfvz5mzJiBKVOmYPfu3ShXrhy+//57ANoPapEkCUII2NjYMDEhKkL4l7gYUCqV6NGjB3bt2oVx48ahbNmyWLZsmebbQoVCARsbG5iYmECSJOzYsQPTp09HWloa6tatCx8fH5iamur0WEfSzblz59CqVSt899132L59O06dOgUAmidyffrpp0hNTcXevXsRFRWlKVemTBm0bt0aoaGhUKlUPLjKJ2/ahz777DMAQIkSJTBx4kTMmzcPderU0cze3r17d7i5ueHixYscn3z2pn3o9b9bmWNw8uRJVKxYUSs5ycS/dfr3pn2od+/eADLO3Nva2uL8+fNo1KgRFAoFVCoVbGxs8O2332L//v1ISEjIcgafT4QkKnr4SVkM3LlzB5cuXcK8efPQq1cvBAYGYvny5Th06BBmz54NADh//jxu376NRo0aYeDAgfj+++8xa9YsSJKExYsXA+AHdn7at28fSpUqhd9//13zP5BxP0NaWhpsbW0xbNgw/Pvvv9i5c6emnJmZGUJDQ6FQKN542R3l3Zv2ocOHD2v2oerVq8PDwwOSJEGhUEAIgZIlS+LmzZscnwLwpn0ocyxeFxwcjKZNm2qSlcOHD+Ovv/4CwAPe/PCmfejIkSP4+eefYWlpicGDB6NkyZLYsmULgJfzxoSGhsLNze2NY0lERUx+zvBI8hAcHCwkSRLR0dFCCO0ZkO3t7cXdu3dFWlqaqFmzphgyZIhmRuTw8HDRs2dP4eXlpTX7O+lP5lg8ePBAnDx5UgiRMS6NGzcWmzdvFkIIkZaWptm+T58+on79+mLZsmUiJiZGBAcHiwYNGoiNGzcWfPDFyNv2oRIlSmjNSv2qf/75R3h6eooTJ04UWKzFTU72ocxZxDOlp6cLd3d3sWnTJnH37l3x4YcfClNTU7Fp06aCDb4Yeds+ZGdnJ+7cuSOEEGLq1KnCwcFB/Pjjj+K///4TN2/eFC1atBA//fSTwWInooLF5KQYuHDhgqhVq5ZYsGCBEOLlh4JSqRSurq5i9OjRQgghnjx5olmX6dq1a0xMCtidO3dE165dRdeuXcXz58+FEEKkpqZq1k2ePFkYGRmJhg0bCgsLCzFo0CChVCoNGXKR97Z9qGLFimLs2LFCiIyD4CtXrohDhw6JoUOHCjs7OzFhwgSRnp5usNiLo+z2oVcTlEuXLgkbGxvx8ccfC2NjY9GrVy8RFxdnqHCLhXftQ5mfQ5GRkWL58uXC3t5e1K5dW9jY2Igvv/ySn0NExQgv6yoCxDtOc7/33ntwc3PD8ePHERERoXmKjYmJCUaNGqWZsK906dKayxky66xZs2aWp0CR7t41Rq9uV6lSJXTq1AkRERGapzxlzuZeqVIl+Pr64tKlS/D19UVISAhWrlypuceBcicv+9DXX3+NDRs2aG60DgkJwbRp0/Dff/8hKCgIfn5+vKRLD/K6D716v09oaCgSEhKQmpqKc+fOYePGjZo5NSh/vGsfyvwccnJywuDBg3Ht2jWsXLkSISEh+P333/k5RFSMMDkp5J4+fYqkpCTN61efBpSeng4g42bdTp064ebNm9i8eTOAjKfYABlPgSpZsiTCwsK06uU11/qTkzHKlPkkmk8//RQ1a9bE7t27ERoaCiBjZurM8rVq1UKHDh1QvXr1/A6/yIuKikJ8fLzmdW72oRIlSuDBgwcAMm6CX7FiBQ4dOoR69eoVVDeKtJyMUaa37UPnz58HADRu3BgHDx7EwYMHUb9+/XyOvujLHI/snuqo6+dQZhJatmxZNG7cGFWqVCmILhCRjDA5KaTS0tIwZMgQvP/+++jUqRO+/PJLxMTEaH07aGxsjJSUFGzcuBEDBw5E/fr1sWnTJhw+fFizzaNHj+Do6Ij33nvPEN0o0nI6RmlpaQgMDNS8VqvVsLW1RY8ePaBWq+Hr64uPPvoIHh4eWcpT7qWnp2PQoEFo1KgRWrdujb59+yI6OjrX+1DFihUBAFZWVqhcuXKB96coyukY5XQfatSoEaKjo1G+fHm0atXKUN0qMtLS0jBixAgMHToUgPbZqcyERdfPIX4xRkQ8yimEYmJi0L59e9y+fRurV6/GZ599hkuXLqFjx464deuWZrvffvsN5cqVw8aNGwEAY8aMQaVKleDt7a35QJkzZw569eoFgE/j0iddxsjZ2Rl//fWXZqbqzA/4WrVqISwsDOvXr0fp0qURERGBEiVKGKQ/RU16ejoGDBiA69evIzAwEJ999hkuX76Mrl274saNG5rtuA8Zji5jpMs+5ODgYJD+FDVnzpxB69atsXXrVgQGBuLEiROQJElz9iRzDLgPEZHODHSvC+XB3r17Re3atcXNmzc1y65fvy4UCoXw8fERMTExYvXq1aJChQpi3bp1WjeCqtVqMXPmTDF48GDRvn17PkUon+g6Rq8/iODgwYPC2tpa1K9fX5w/f76gwy/yHj58KNzc3MSaNWs0yyIiIkS5cuXEqFGjxPPnz7kPGZiuY8R9qGDNmzdPDBo0SOzZs0d069ZNNG7cOMs2ixcvFhUrVuQ+REQ6YXJSCAUGBgp7e3utZSdOnBAlS5YUbm5u4u+//xZqtVokJCRobfP6hzfln9yOUaZnz56J9evXF0SoxdKFCxeEhYWFCA0NFUIIzZOAFi5cKNzc3MRff/0l1Gq1SExM1CrHfajg5HaMMnEfyh+Z+0BYWJi4du2aECLjyxhHR0excuVKIcTLpwumpaXxc4iIdMbLumRuz549ALRPdbu4uMDBwQH+/v6aZStXrsSgQYOgVquxc+dOSJIECwsLrbp4LW/+0OcYZdbj4OCgmX2c8mb58uVYsWIFjh49qlnm5uYGZ2dnrF27FsDLS1BGjhwJOzs7bNu2DampqbC0tNSqi/tQ/tDnGAHch/Qtc3yCgoI0+0C5cuVQs2ZNAICHhwd69+4NX19fqFQqmJqaQq1Ww9jYGFZWVlp1cR8ioncybG5Eb7J7925Rrlw5IUmS5pR35lwJz58/F7NnzxaSJIlmzZoJa2trUbt2bZGWliYWLFggypUrZ8jQiw2OkbytX79elC5dWjRt2lTUr19fODo6iunTpwshhIiNjRXjx48Xbm5u4smTJ0IIIZKTk4UQQqxZs0bY2dlpXlP+4RjJ29vG5/W5e86cOSPc3NzEd999J4TIOvElEVFOMTmRoWPHjglvb2/x9ddfi48//lh4eHhku11QUJBYsGCB2L9/v2bZzz//LJo3by5evHhRUOEWSxwjeVu3bp2oV6+eWLp0qRBCiMePH4sFCxYIKysrERsbK4QQ4sCBA8LT01OMGDFCCPHycpPDhw+L0qVLi0uXLhkm+GKCYyRvbxuf7CasTExMFLNnzxZ2dnbiwYMHQoiMccocSyKinOJlXTIi/ndZkJOTE9q2bYsxY8Zg2rRpuH79OlatWgVA+/n+Xl5e+Prrr9GmTRsAgFKpxOnTp+Hu7g47O7uC70AxwDGSt8zxSUtLQ+PGjdG/f38AGXMmuLu7o1y5crh+/ToAoHnz5ujTpw8CAwOxY8cOpKWlAQBOnDiBmjVrok6dOobpRBHHMZK3nIzPq09Ly2RpaYkuXbrA3d0dPXr0gIeHB7p3747nz58XaPxEVAQYNDUiIYQQwcHBWb5FzzxlnpaWJsaOHSscHR01N4S+7ubNm+K///4T/fv3FxUrVhSnTp3K95iLG46RvAUHB4uYmBjN6xcvXmS57OTixYvC2dlZPH/+XLMsLi5OjBs3TtjY2IgWLVqIHj16CAsLC7Fo0SIhBG/e1SeOkbzldnxedeXKFVG3bl0hSZIYMWKE5sZ4IiJd8MyJAW3btg0uLi7o2bMn6tatiylTpiAyMhJAxs2fQggYGxtj5MiRMDc3x6RJkwBkfQ7833//jY8//hj379/Hvn370KRJkwLvS1HFMZK3V8enXr16mDx5Mp48eQI7OzsYGRlpncU6dOgQKleujBIlSkCpVAIAbGxs4O/vj99//x0tW7aEg4MDQkJCMGLECAC8eVcfOEbyltfxyXT8+HF07NgRlpaWCA0NxaJFi2BqalrQ3SGiosCwuVHxde7cOVG9enUxb948cenSJbF48WLh6Ogohg8fLqKjo4UQL7+ZV6vVYvHixcLY2FjcvXtXCJHxqMbM637Dw8NFcHCwYTpShHGM5C0n46NSqURaWpoQQohPPvlEjBw50pAhFzscI3nT5/iEh4fzjDAR6QWTkwKWeQnCkiVLRPny5bVuFly4cKFo0qSJmDZtWpZy0dHRolmzZqJLly4iODhYtG3bVqxZs4ZPRMkHHCN503V8VCqVUKvVonLlymL37t1CCCFu3bolevfuLR4+fFiwwRcTHCN54/gQkZzxsq4ClnkJwr1791C1alUYGxtr1g0YMAANGzbEP//8g2vXrgEAVCoVAKBkyZIYPHgwdu3aBU9PT5iamqJ79+6aZ/+T/nCM5E3X8VEoFDh37hwsLS3RoEEDjB49GnXr1kV0dDRKly5tkD4UdRwjeeP4EJGc8agpnx04cAA+Pj6YP38+zp49q1n+/vvv4+TJk5r7F1QqFaysrNClSxdIkoT9+/cDAIyMjKBUKrF48WIMGjQIXl5euHz5Mv76669sJ/Aj3XGM5C2v4wNkTJR59epVVKtWDQcOHMCJEyewf/9+mJmZFXh/iiKOkbxxfIioMGFykk8iIiLQqVMn9OvXD8+fP8eqVavQtm1bzQdD27Zt4erqqplBPPObrDZt2kChUOD27duaumJiYvDff/9h9erVOHLkCGrVqlXwHSqCOEbyps/xMTExQalSpRAQEIBr166hYcOGBd+hIohjJG8cHyIqlAx9XVlRlJiYKL744gvRq1cvzc3RQgjh6ekpBgwYIITIuJH6jz/+EAqFQjO7eKa+ffuKVq1aFWjMxQ3HSN70MT4tW7bUvI6KiiqYwIsRjpG8cXyIqLDimZN8YGlpCTMzMwwYMAAVK1ZEeno6AKBjx46ayauMjIzQs2dPdOnSBV999RWCgoIghEBkZCRCQ0PRt29fQ3ahyOMYyZs+xqdfv36a+hwdHQ3Sj6KMYyRvHB8iKqwkIV6bkIH0Ii0tDSYmJgAy5ryQJAmff/45LCwssHz5cs2ylJQUfPzxx7h+/Trq16+Pq1evokKFCti8eTNcXFwM3IuijWMkbxwf+eMYyRvHh4gKIyYnBcjLywsDBw7EgAEDIISAWq2GkZERnjx5gsuXL+PcuXNwdXVFnz59DB1qscUxkjeOj/xxjOSN40NEcsfkpIDcvXsXzZo1w99//625kVCpVHIGXRnhGMkbx0f+OEbyxvEhosKA95zks8zc7/jx47C2ttZ8IPj6+uKbb75BVFSUIcMjcIzkjuMjfxwjeeP4EFFhYvzuTSgvMh/NePbsWXTv3h0HDhzAkCFDkJSUhDVr1nACKxngGMkbx0f+OEbyxvEhosKEl3UVgJSUFNSpUwd37tyBqakpfH19MX78eEOHRa/gGMkbx0f+OEbyxvEhosKCyUkBadOmDdzc3DB37lyYm5sbOhzKBsdI3jg+8scxkjeODxEVBkxOCohKpYKRkZGhw6C34BjJG8dH/jhG8sbxIaLCgMkJERERERHJAp/WRUREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiyoEBAwZAkiRIkgQTExM4OTmhTZs2+P3336FWq3NcT0BAAOzt7fMvUCIiokKMyQkRUQ55e3sjIiIC9+/fxz///INWrVrhm2++QceOHZGenm7o8IiIiAo9JidERDlkZmYGZ2dnlCtXDg0aNMD333+PnTt34p9//kFAQAAAYO7cuahTpw6srKzg4uKCESNGICEhAQBw5MgRfPnll4iNjdWchZk6dSoAQKlUYty4cShXrhysrKzQuHFjHDlyxDAdJSIiMhAmJ0REefDhhx+iXr162L59OwBAoVDgt99+w9WrVxEYGIhDhw5h3LhxAIBmzZph3rx5sLW1RUREBCIiIvDdd98BAL788kucOHECGzduxOXLl9GjRw94e3sjNDTUYH0jIiIqaJIQQhg6CCIiuRswYABevHiBP//8M8u63r174/Lly7h+/XqWdVu2bMHw4cPx7NkzABn3nIwePRovXrzQbHPnzh24ubnh0aNHKFu2rGZ569at0ahRI8ycOVPv/SEiIpIjY0MHQERU2AkhIEkSAODw4cOYOXMmrl+/jri4OKSnpyMlJQWJiYmwsrLKtnxISAiEEKhatarW8tTUVDg4OOR7/ERERHLB5ISIKI9u3LiBihUr4sGDB2jfvj2GDRuGadOmoWTJkjh+/DgGDRqEtLS0N5ZXq9UwMjJCcHAwjIyMtNZZW1vnd/hERESyweSEiCgPDh06hCtXruDbb7/F+fPnkZ6ejjlz5kChyLilb/PmzVrbm5qaQqVSaS1zd3eHSqVCVFQUPvjggwKLnYiISG6YnBAR5VBqaioiIyOhUqnw5MkT7N27F35+fujYsSP69++PK1euID09HQsWLECnTp1w4sQJLF26VKsOV1dXJCQk4ODBg6hXrx4sLS1RtWpV9O3bF/3798ecOXPg7u6OZ8+e4dChQ6hTpw7at29voB4TEREVLD6ti4goh/bu3YsyZcrA1dUV3t7eOHz4MH777Tfs3LkTRkZGqF+/PubOnQt/f3/Url0b69atg5+fn1YdzZo1w7Bhw9CrVy84Ojpi1qxZAIDVq1ejf//+GDt2LKpVq4bOnTvjzJkzcHFxMURXiYiIDIJP6yIiIiIiIlngmRMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFv4fsX39WEf9RfQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -162,9 +200,131 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", + "
" + ], + "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "calendar.show()[:3]" ] @@ -179,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +361,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -222,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -240,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -250,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +421,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -281,7 +441,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -312,9 +472,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -334,9 +504,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + } + ], "source": [ "hyperparameters = dict(\n", " epoch = 150,\n", @@ -367,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -392,9 +571,77 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " Transformer(\n", + " (encoder): TransformerEncoder(\n", + " (layers): ModuleList(\n", + " (0): TransformerEncoderLayer(\n", + " (attention): Residual(\n", + " (sublayer): MultiHeadAttention(\n", + " (heads): ModuleList(\n", + " (0-1): 2 x AttentionHead(\n", + " (q): Linear(in_features=65, out_features=32, bias=True)\n", + " (k): Linear(in_features=65, out_features=32, bias=True)\n", + " (v): Linear(in_features=65, out_features=32, bias=True)\n", + " )\n", + " )\n", + " (linear): Linear(in_features=64, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " (feed_forward): Residual(\n", + " (sublayer): Sequential(\n", + " (0): Linear(in_features=65, out_features=12, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=12, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (decoder): TransformerDecoder(\n", + " (layer): TransformerDecoderLayer(\n", + " (linear): Linear(in_features=65, out_features=1, bias=True)\n", + " )\n", + " )\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.01\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Initialize model\n", "model = Transformer(num_encoder_layers = config[\"num_encoder_layers\"],\n", @@ -415,9 +662,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18860\n" + ] + } + ], "source": [ "# display the total number of parameters\n", "utils.total_num_param(model)\n", @@ -435,9 +690,767 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/36(0%)]\tLoss: 493.525574\n", + "Epoch : 0 [8/36(22%)]\tLoss: 382.602081\n", + "Epoch : 0 [16/36(44%)]\tLoss: 321.423676\n", + "Epoch : 0 [24/36(67%)]\tLoss: 273.223145\n", + "Epoch : 0 [32/36(89%)]\tLoss: 220.791931\n", + "Epoch : 1 [0/36(0%)]\tLoss: 183.159088\n", + "Epoch : 1 [8/36(22%)]\tLoss: 153.673859\n", + "Epoch : 1 [16/36(44%)]\tLoss: 120.948517\n", + "Epoch : 1 [24/36(67%)]\tLoss: 85.598503\n", + "Epoch : 1 [32/36(89%)]\tLoss: 52.946121\n", + "Epoch : 2 [0/36(0%)]\tLoss: 34.072151\n", + "Epoch : 2 [8/36(22%)]\tLoss: 20.349691\n", + "Epoch : 2 [16/36(44%)]\tLoss: 9.432866\n", + "Epoch : 2 [24/36(67%)]\tLoss: 2.634890\n", + "Epoch : 2 [32/36(89%)]\tLoss: 1.952641\n", + "Epoch : 3 [0/36(0%)]\tLoss: 2.816437\n", + "Epoch : 3 [8/36(22%)]\tLoss: 5.471875\n", + "Epoch : 3 [16/36(44%)]\tLoss: 7.488375\n", + "Epoch : 3 [24/36(67%)]\tLoss: 9.616779\n", + "Epoch : 3 [32/36(89%)]\tLoss: 9.741524\n", + "Epoch : 4 [0/36(0%)]\tLoss: 9.224695\n", + "Epoch : 4 [8/36(22%)]\tLoss: 2.242518\n", + "Epoch : 4 [16/36(44%)]\tLoss: 0.950282\n", + "Epoch : 4 [24/36(67%)]\tLoss: 2.527443\n", + "Epoch : 4 [32/36(89%)]\tLoss: 3.715257\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.762929\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.501935\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.580740\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.118856\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.875216\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.269370\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.992763\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.907247\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.111603\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.902731\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.509021\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.402668\n", + "Epoch : 7 [16/36(44%)]\tLoss: 1.224802\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.538826\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.866921\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.278116\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.707006\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.002028\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.129255\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.768322\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.663944\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.371774\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.006437\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.180451\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.495700\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.342474\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.404965\n", + "Epoch : 10 [16/36(44%)]\tLoss: 1.026099\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.326495\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.868489\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.557525\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.417641\n", + "Epoch : 11 [16/36(44%)]\tLoss: 1.020399\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.966204\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.708186\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.374710\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.377552\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.686280\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.330648\n", + "Epoch : 12 [32/36(89%)]\tLoss: 2.033116\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.205198\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.476041\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.905903\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.980035\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.961620\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.413596\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.392897\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.980641\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.040467\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.921771\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.460903\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.364643\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.849014\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.272399\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.787441\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.467014\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.361642\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.861584\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.327746\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.869249\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.570852\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.311107\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.929859\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.321666\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.856128\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.626819\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.433318\n", + "Epoch : 18 [16/36(44%)]\tLoss: 1.097950\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.187994\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.850399\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.567910\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.294777\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.917443\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.305569\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.507412\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.490743\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.464146\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.779372\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.125775\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.891230\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.457613\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.497404\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.747831\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.244645\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.770057\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.473264\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.382030\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.841822\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.858099\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.569666\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.550062\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.352637\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.885477\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.908079\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.566973\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.550274\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.417173\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.910960\n", + "Epoch : 24 [24/36(67%)]\tLoss: 1.042699\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.705968\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.427456\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.264411\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.978601\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.075932\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.747557\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.422142\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.411199\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.935790\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.660957\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.565394\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.485171\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.456637\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.924406\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.987173\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.529413\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.522048\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.438892\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.892894\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.685807\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.458937\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.488998\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.367674\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.879758\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.666241\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.420261\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.600447\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.477000\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.865064\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.661336\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.344324\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.596371\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.500845\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.652965\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.474178\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.166756\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.627191\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.503304\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.532703\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.487657\n", + "Epoch : 32 [32/36(89%)]\tLoss: 1.005448\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.737480\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.486592\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.450243\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.380009\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.803783\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.728582\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.314549\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.465686\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.412858\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.730310\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.769498\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.455436\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.290085\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.354332\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.717146\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.648586\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.463123\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.330810\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.367811\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.540188\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.723126\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.498738\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.359102\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.253648\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.619413\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.650733\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.295204\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.324452\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.149687\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.391894\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.358371\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.278645\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.186750\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.265579\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.271604\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.413969\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.222489\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.248822\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.060141\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.284769\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.411528\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.142155\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.236907\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.106526\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.378542\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.304994\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.130791\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.348970\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.491316\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.102871\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.241138\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.652632\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.198638\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.266615\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.613319\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.365885\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.535188\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.620292\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.731895\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.669606\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.979399\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.445933\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.323799\n", + "Epoch : 45 [24/36(67%)]\tLoss: 1.088354\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.377988\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.292281\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.411117\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.417429\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.197411\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.355626\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.708459\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.237798\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.167009\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.669161\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.270577\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.321017\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.281160\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.425471\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.180371\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.160065\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.356004\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.270991\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.128476\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.083296\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.172019\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.227950\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.230251\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.200828\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.185268\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.170370\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.194182\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.418203\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.086107\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.010100\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.375894\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.336874\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.131084\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.175038\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.420965\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.016249\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.158318\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.188998\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.077656\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.097728\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.059690\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.133745\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.096144\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.042766\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.138212\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.119585\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.158246\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.215055\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.042189\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.008591\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.077085\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.215271\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.061048\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.123765\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.135825\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.045565\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.071595\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.115362\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.073267\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.043858\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.090286\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.262434\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.026790\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.129490\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.132520\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.048991\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.127197\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.353266\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.026281\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.067265\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.188076\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.233469\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.125423\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.116194\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.335926\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.037920\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.291208\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.052470\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.038724\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.090335\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.113156\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.057097\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.006524\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.101056\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.066998\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.014445\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.132838\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.102177\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.004754\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.090686\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.063959\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.019439\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.179464\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.025924\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.023790\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.096271\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.090671\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.051246\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.072286\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.207494\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.047461\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.093148\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.079813\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.022277\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.093641\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.053406\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.164670\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.012585\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.112919\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.132723\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.010350\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.157667\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.160658\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.036549\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.032579\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.122457\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.052636\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.138538\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.034422\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.053753\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.051249\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.071848\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.024393\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.033058\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.084126\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.021748\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.112402\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.025652\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.059996\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.031534\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.013414\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.102153\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.035015\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.034649\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.105123\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.003933\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.054024\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.199460\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.030936\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.017862\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.058050\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.246919\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.090069\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.215889\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.324069\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.103718\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.290504\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.102174\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.089504\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.285144\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.128792\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.143594\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.230471\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.209722\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.207821\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.362696\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.277591\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.153433\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.173360\n", + "Epoch : 77 [24/36(67%)]\tLoss: 1.048610\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.089329\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.078351\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.626610\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.566896\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.096817\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.365543\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.481995\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.086830\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.209606\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.755844\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.126565\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.054658\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.146881\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.249361\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.079469\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.072774\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.209942\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.246723\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.042439\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.535967\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.260788\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.102125\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.236821\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.381014\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.070117\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.230736\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.298236\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.048351\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.034867\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.311981\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.140017\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.054667\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.084455\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.083959\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.024887\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.044902\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.160097\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.149174\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.028745\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.105789\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.119759\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.030416\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.235008\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.230711\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.048905\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.140387\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.153362\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.027566\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.065128\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.165080\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.076642\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.056471\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.045013\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.033590\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.058066\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.018821\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.096186\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.079794\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.007683\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.063224\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.040023\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.013514\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.044282\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.018484\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.008796\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.024796\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.100544\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.034481\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.012031\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.024262\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.000916\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.042594\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.010243\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.019070\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.033103\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.015054\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.045660\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.028796\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.012160\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.014146\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.002766\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.026178\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.015247\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.010463\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.004776\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.007329\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.080672\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.049966\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.015745\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.029925\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.021196\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.012961\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.059013\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.018997\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.005517\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.017149\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.099675\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.007961\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.050863\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.073949\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.029212\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.027574\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.051932\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.033772\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.012879\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.083703\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.056479\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.024130\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.061374\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.192257\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.008055\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.096570\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.124923\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.001897\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.128047\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.048742\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.041367\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.174891\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.133183\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.013069\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.064818\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.126453\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.041394\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.048592\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.208826\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.021638\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.143039\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.212216\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.010702\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.223430\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.088693\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.053144\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.063888\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.109221\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.036915\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.031434\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.096697\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.059613\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.015003\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.233051\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.019391\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.039241\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.159849\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.135015\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.038317\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.049571\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.186892\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.058373\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.013264\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.061878\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.092630\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.035858\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.032028\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.008051\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.031950\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.027511\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.053195\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.016005\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.053923\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.037853\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.009935\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.025843\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.040075\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.066285\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.013519\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.025961\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.032016\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.016416\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.063112\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.073107\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.009313\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.054211\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.027763\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.024548\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.015899\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.038507\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.010965\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.045107\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.016966\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.067800\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.030926\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.040053\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.039306\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.001137\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.086852\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.031787\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.021832\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.110750\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.044651\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.038018\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.044389\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.083714\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.026087\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.129231\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.074909\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.018113\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.036183\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.096271\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.011404\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.186796\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.150487\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.029407\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.079026\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.083122\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.008444\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.045994\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.132059\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.081510\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.033989\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.240761\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.047633\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.044269\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.239534\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.134844\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.035412\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.210887\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.145909\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.089197\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.102213\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.176013\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.076407\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.141649\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.088107\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.010202\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.224881\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.045157\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.044478\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.135596\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.091095\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.024242\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.069462\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.140045\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.021389\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.094303\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.268776\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.027137\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.048203\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.227890\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.044201\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.038344\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.181065\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.105894\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.090249\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.274409\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.049438\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.089047\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.140666\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.103804\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.161850\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.232294\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.083329\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.071042\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.320921\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.089600\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.091873\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.218218\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.271217\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.042958\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.328822\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.314525\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.007256\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.178838\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.622055\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.068946\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.347655\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.462773\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.231065\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.287770\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.672472\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.123781\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.266082\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.436849\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.042651\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.055347\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.705547\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.059963\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.171174\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.201063\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.080018\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.078790\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.294495\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.126144\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.013263\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.079361\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.323393\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.038616\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.110918\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.423175\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.108680\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.171464\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.267605\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.262477\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.109723\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.323735\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.112725\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.021795\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.120917\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.096575\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.011824\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.087257\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.193963\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.112419\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.041119\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.161790\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.032271\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.061907\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.147163\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.090891\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.022415\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.214977\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.079233\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.025680\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.274241\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.105321\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.032160\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.084360\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.135694\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.014177\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.055224\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.104160\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.029996\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.076455\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.094274\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.119953\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.044814\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.182618\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.039392\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.005327\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.137184\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.080225\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.014656\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.069800\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.199991\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.019922\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.104428\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.107707\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.072625\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.094490\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.169863\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.006993\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.022896\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.079906\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.015851\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.013373\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.031219\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.034684\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.035095\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.036473\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.055520\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.032833\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.018468\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.045368\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.006117\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.031043\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.070046\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.006003\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.041241\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.111910\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.012024\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.006319\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.010307\n", + "--- 0.042106783390045165 minutes ---\n" + ] + } + ], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -498,9 +1511,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkmklEQVR4nOzdd3hT1R8G8DfduwUKbaHQsvcGFZAlU1BAHCwRVFQEFcT1Q2SIAooyVGQ4GCogKKCIKEOGIIjIlL0KlFFaVkt3m5zfH6c3N2nT0rRJb5q8n+fJc5Obm5uTNJC893vOuTohhAARERERERERlTg3rRtARERERERE5KoYyomIiIiIiIg0wlBOREREREREpBGGciIiIiIiIiKNMJQTERERERERaYShnIiIiIiIiEgjDOVEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRhjKiVzI4sWLodPpoNPpsG3btjz3CyFQo0YN6HQ6dOjQwbj+xo0bGDt2LOrVqwd/f38EBwejTp06GDx4MA4fPmxx/5Yulp6TiIhIS8p317///qt1U6w2dOhQREdHm62bOnUqfvrppzzbluTrnDRpEnQ6nU32VdTfLgB/v1Dp4aF1A4io5AUGBuLrr7/O8+W1fft2nD17FoGBgcZ1ycnJuO+++5CcnIw33ngDjRs3RlpaGk6dOoXVq1fj4MGDaNSokdl+Fi1ahDp16uR53nr16tnl9RAREbmi8ePHY9SoUWbrpk6disceewx9+vTRplEAhg0bhu7du9t0n9b8dgH4+4VKF4ZyIhfUr18/LF26FJ9//jmCgoKM67/++mu0atUKSUlJxnU//PADzpw5gy1btqBjx45m+xkzZgwMBkOe/Tdo0AAtWrSw3wsgIiJyYampqfDz80P16tW1bopFkZGRiIyMtOk+rfntAvD3C5Uu7L5O5IIGDBgAAFi+fLlxXWJiIlatWoVnnnnGbNsbN24AACIiIizuy82N/40QEZHz27lzJzp16oTAwED4+fmhdevW+PXXXy1u16pVK/j4+KBSpUoYP348vvrqK+h0Opw/f9643YoVK9C1a1dERETA19cXdevWxf/+9z+kpKSY7W/o0KEICAjAf//9h65duyIwMBCdOnUy3mfafV2n0yElJQVLliwxdr3OXVm+c+cOXnzxRYSGhqJcuXLo27cvrly5YrZNdHQ0HnroIaxbtw5NmzY1tm/dunUAZHfvunXrwt/fH/fcc0+eLvH5dV9ftmwZWrVqhYCAAAQEBKBJkyb4+uuv7/reA9b9dgH4+4VKF34aiVxQUFAQHnvsMSxcuNC4bvny5XBzc0O/fv3Mtm3VqhUA4KmnnsJPP/1k/JIriF6vR3Z2ttlFr9fb9kUQERGVkO3bt+OBBx5AYmIivv76ayxfvhyBgYF4+OGHsWLFCuN2hw8fRpcuXZCamoolS5Zg/vz52L9/P6ZMmZJnn6dPn0aPHj3w9ddf4/fff8fo0aOxcuVKPPzww3m2zczMRK9evfDAAw/g559/xrvvvmuxnbt374avry969OiB3bt3Y/fu3Zg7d67ZNsOGDYOnpyeWLVuG6dOnY9u2bXjyySfz7OvQoUMYO3Ys3nrrLaxevRrBwcHo27cvJk6ciK+++gpTp07F0qVLkZiYiIceeghpaWkFvocTJkzAoEGDULFiRSxevBhr1qzBkCFDcOHChQIfp7DmtwvA3y9UyggichmLFi0SAMTevXvF1q1bBQBx5MgRIYQQLVu2FEOHDhVCCFG/fn3Rvn174+MmT54svLy8BAABQFStWlUMHz5cHDp0yOL+LV3c3d1L7HUSEREVlul3Y37uu+8+UaFCBXHnzh3juuzsbNGgQQMRGRkpDAaDEEKIxx9/XPj7+4uEhATjdnq9XtSrV08AEDExMRb3bzAYRFZWlti+fbsAYPb9OmTIEAFALFy4MM/jhgwZIqKioszW+fv7iyFDhuT7OkeMGGG2fvr06QKAuHr1qnFdVFSU8PX1FZcuXTKuO3jwoAAgIiIiREpKinH9Tz/9JACItWvXGtdNnDhRmMaMc+fOCXd3dzFo0CCLr78gRf3tIgR/v1DpwUo5kYtq3749qlevjoULF+K///7D3r17LXb/AuREMhcvXsTChQvxwgsvICAgAPPnz0fz5s3NupEpvvnmG+zdu9fssmfPHnu/JCIiIptLSUnBnj178NhjjyEgIMC43t3dHYMHD8alS5dw8uRJAGpFPTQ01Lidm5sbnnjiiTz7PXfuHAYOHIjw8HC4u7vD09MT7du3BwAcP348z/aPPvqoTV5Pr169zG4rk53lrlg3adIElSpVMt6uW7cuAKBDhw7w8/PLs76givemTZug1+sxcuTIYrXdmt8uAH+/UOnBid6IXJROp8PTTz+NTz/9FOnp6ahVqxbatm2b7/ZhYWF4+umn8fTTTwMA/vzzTzz44IMYNWqUcZyXom7dupwohYiInMKtW7cghLA4NrlixYoA1PHLN27cQFhYWJ7tcq9LTk5G27Zt4ePjg/fffx+1atWCn58fYmNj0bdv3zxdwf38/MwmNyuOcuXKmd329vYGgDzPWbZsWbPbXl5eBa5PT0/P9zkTEhIAoNiTv1n72wXg7xcqHVgpJ3JhQ4cOxfXr1zF//nzjl1VhtWvXDl27dkVCQgLi4+Pt1EIiIiJtlSlTBm5ubrh69Wqe+5QJ0pTKeLly5XDt2rU828XFxZnd3rJlC65cuYKFCxdi2LBhaNeuHVq0aJHntF4KW53zWyvly5cHAFy6dKnY+yrObxeAv1/IMTGUE7mwSpUq4Y033sDDDz+MIUOGWNzm2rVrFk8botfrcfr0afj5+SEkJMTOLSUiItKGv78/7r33XqxevdqsmmwwGPDdd98hMjIStWrVAiC7V2/ZsgXXr1832+6HH34w26cSspUqtWLBggXFbq+3t/ddJ10raV27doW7uzvmzZtX7H0V5rcLwN8vVLqw+zqRi/vggw8KvP/bb7/FggULMHDgQLRs2RLBwcG4dOkSvvrqKxw9ehQTJkwwdl1THDlyBNnZ2Xn2Vb16dePRciIiIkeyZcsWs1OWKXr06IFp06ahS5cu6NixI15//XV4eXlh7ty5OHLkCJYvX24M2ePGjcMvv/yCTp06Ydy4cfD19cX8+fONpzlTTsPVunVrlClTBsOHD8fEiRPh6emJpUuX4tChQ8V+HQ0bNsS2bdvwyy+/ICIiAoGBgahdu3ax91sc0dHRePvtt/Hee+8hLS0NAwYMQHBwMI4dO4br16/nO5t8fu722wXg7xcqXRjKiahAPXv2RFxcHNavX4958+bh1q1bCAwMRKNGjfDtt99aPI1Kft3JvvzySwwbNszeTSYiIrLaW2+9ZXF9TEyMsQI+ceJEDB06FAaDAY0bN8batWvx0EMPGbdt3LgxNm3ahNdffx1PPfUUypQpg8GDB6N9+/Z46623EBwcDEB2c//111/x2muv4cknn4S/vz969+6NFStWoFmzZsV6HZ988glGjhyJ/v37IzU1Fe3bt8e2bduKtU9bmDx5MmrWrInPPvsMgwYNgoeHB2rWrIlXXnnFLs/H3y9UmuiEEELrRhAREREROauuXbvi/PnzOHXqlNZNISIHxEo5EREREZGNjBkzBk2bNkXlypVx8+ZNLF26FJs2bcLXX3+tddOIyEExlBMRERER2Yher8eECRMQFxcHnU6HevXq5dtdmogIYPd1IiIiIiIiIs3wlGhEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRpx+ojeDwYArV64gMDAQOp1O6+YQERFBCIE7d+6gYsWKcHPj8fHi4nc9ERE5Gmu+650+lF+5cgWVK1fWuhlERER5xMbGIjIyUutmlHr8riciIkdVmO96pw/lgYGBAOSbERQUpHFriIiIgKSkJFSuXNn4HUXFw+96IiJyNNZ81zt9KFe6sQUFBfGLmoiIHAq7WtsGv+uJiMhRFea7ngPZiIiIiIiIiDTCUE5ERERERESkEYZyIiIiIiIiIo04/ZhyIqLCEkIgOzsber1e66ZQKefu7g4PDw+OGScicjD8ridbseV3PUM5ERGAzMxMXL16FampqVo3hZyEn58fIiIi4OXlpXVTiIgI/K4n27PVdz1DORG5PIPBgJiYGLi7u6NixYrw8vJihZOKTAiBzMxMJCQkICYmBjVr1oSbG0eLERFpid/1ZEu2/q5nKCcil5eZmQmDwYDKlSvDz89P6+aQE/D19YWnpycuXLiAzMxM+Pj4aN0kIiKXxu96sjVbftfz0D0RUQ5WM8mW+HkiInI8/L+ZbMlWnyd+KomIiIiIiIg0wlBOREREREREpBGGciIiMurQoQNGjx5d6O3Pnz8PnU6HgwcP2q1NALBt2zbodDrcvn3brs9DRETkCvh971g40RsRUSl0txljhwwZgsWLF1u939WrV8PT07PQ21euXBlXr15FaGio1c9FREREBeP3vWtgKCciKoWuXr1qvL5ixQpMmDABJ0+eNK7z9fU12z4rK6tQX75ly5a1qh3u7u4IDw+36jFERERUOPy+dw3svm6Ffv2ABg2AnTu1bgkR2ZMQQEqKNhchCtfG8PBw4yU4OBg6nc54Oz09HSEhIVi5ciU6dOgAHx8ffPfdd7hx4wYGDBiAyMhI+Pn5oWHDhli+fLnZfnN3Z4uOjsbUqVPxzDPPIDAwEFWqVMEXX3xhvD93dzal29kff/yBFi1awM/PD61btzb7AQEA77//PipUqIDAwEAMGzYM//vf/9CkSROr/k6rVq1C/fr14e3tjejoaMyYMcPs/rlz56JmzZrw8fFBWFgYHnvsMeN9P/74Ixo2bAhfX1+UK1cOnTt3RkpKilXPT85p1iygYUMg18eJiJwQv+9HG2/z+15bDOVWOHMGOHoUSErSuiVEZE+pqUBAgDaX1FTbvY633noLr7zyCo4fP45u3bohPT0dzZs3x7p163DkyBE8//zzGDx4MPbs2VPgfmbMmIEWLVrgwIEDGDFiBF588UWcOHGiwMeMGzcOM2bMwL///gsPDw8888wzxvuWLl2KKVOm4MMPP8S+fftQpUoVzJs3z6rXtm/fPjzxxBPo378//vvvP0yaNAnjx483duH7999/8corr2Dy5Mk4efIkfv/9d7Rr1w6ArDoMGDAAzzzzDI4fP45t27ahb9++EIX9hURO7eZN4MgRICZG65YQkb3x+94cv+81JJxcYmKiACASExOLva+WLYUAhFi71gYNIyKHkZaWJo4dOybS0tKEEEIkJ8t/61pckpOtb/+iRYtEcHCw8XZMTIwAIGbPnn3Xx/bo0UO89tprxtvt27cXo0aNMt6OiooSTz75pPG2wWAQFSpUEPPmzTN7rgMHDgghhNi6dasAIDZv3mx8zK+//ioAGN/fe++9V4wcOdKsHW3atBGNGzfOt53Kfm/duiWEEGLgwIGiS5cuZtu88cYbol69ekIIIVatWiWCgoJEUlJSnn3t27dPABDnz5/P9/lsIffnypQtv5vItu/nzJny3+KAATZoGBE5DEv/J/P7fpTxNr/vi8ZW3/WslFvB3V0u9Xpt20FE9uXnByQna3Px87Pd62jRooXZbb1ejylTpqBRo0YoV64cAgICsHHjRly8eLHA/TRq1Mh4Xek2Fx8fX+jHREREAIDxMSdPnsQ999xjtn3u23dz/PhxtGnTxmxdmzZtcPr0aej1enTp0gVRUVGoVq0aBg8ejKVLlyI1pyzRuHFjdOrUCQ0bNsTjjz+OL7/8Erdu3bLq+cl5KcMsb97Uth1EZH/8vjfH73vtMJRbgaGcyDXodIC/vzaXu0yyahV/f3+z2zNmzMCsWbPw5ptvYsuWLTh48CC6deuGzMzMAveTe8IYnU4Hg8FQ6McoM8eaPib3bLLCyq5kQogC9xEYGIj9+/dj+fLliIiIwIQJE9C4cWPcvn0b7u7u2LRpE3777TfUq1cPn332GWrXro0Y9lcmMJQTuRJ+35vj9712GMqtwFBORKXZjh070Lt3bzz55JNo3LgxqlWrhtOnT5d4O2rXro1//vnHbN2///5r1T7q1auHnblm3dy1axdq1aoF95z/rD08PNC5c2dMnz4dhw8fxvnz57FlyxYA8kdCmzZt8O677+LAgQPw8vLCmjVrivGqyFkwlBNRacfv+9L3fc9TolnBLecQxl0OGBEROaQaNWpg1apV2LVrF8qUKYOZM2ciLi4OdevWLdF2vPzyy3juuefQokULtG7dGitWrMDhw4dRrVq1Qu/jtddeQ8uWLfHee++hX79+2L17N+bMmYO5c+cCANatW4dz586hXbt2KFOmDNavXw+DwYDatWtjz549+OOPP9C1a1dUqFABe/bsQUJCQom/D+SYGMqJqLTj933p+75nKLcCK+VEVJqNHz8eMTEx6NatG/z8/PD888+jT58+SExMLNF2DBo0COfOncPrr7+O9PR0PPHEExg6dGieo+kFadasGVauXIkJEybgvffeQ0REBCZPnoyhQ4cCAEJCQrB69WpMmjQJ6enpqFmzJpYvX4769evj+PHj+PPPPzF79mwkJSUhKioKM2bMwIMPPminV0yliRLKb9+W3/fKdz8RUWnB7/vS932vE9Z27C9lkpKSEBwcjMTERAQFBRVrX926ARs3AkuWAE89ZaMGEpHm0tPTERMTg6pVq8LHx0fr5rikLl26IDw8HN9++63WTbGZgj5XtvxuItu+n5mZgLe3vH7jhhrSiah043e9Y3C273tbfddrOqY8Ozsb77zzDqpWrQpfX19Uq1YNkydPNpscQAiBSZMmoWLFivD19UWHDh1w9OhRTdrLSjkRUfGlpqZi5syZOHr0KE6cOIGJEydi8+bNGDJkiNZNI4KXFxAYKK+zCzsRUdHx+77wNA3lH374IebPn485c+bg+PHjmD59Oj766CN89tlnxm2mT5+OmTNnYs6cOdi7dy/Cw8PRpUsX3Llzp8Tby1BORFR8Op0O69evR9u2bdG8eXP88ssvWLVqFTp37qx104gAcFw5EZEt8Pu+8DQdU75792707t0bPXv2BABER0dj+fLlxln5hBCYPXs2xo0bh759+wIAlixZgrCwMCxbtgwvvPBCibaXoZyIqPh8fX2xefNmrZtBlK+yZYELF2T3dSIiKhp+3xeeppXy+++/H3/88QdOnToFADh06BB27tyJHj16AABiYmIQFxeHrl27Gh/j7e2N9u3bY9euXRb3mZGRgaSkJLOLrTCUExER2de0adOg0+kwevRozdrASjkREZUkTSvlb731FhITE1GnTh24u7tDr9djypQpGDBgAAAgLi4OABAWFmb2uLCwMFy4cMHiPqdNm4Z3333XLu1lKCciIrKfvXv34osvvkCjRo00bQdDORERlSRNK+UrVqzAd999h2XLlmH//v1YsmQJPv74YyxZssRsO51OZ3ZbCJFnnWLs2LFITEw0XmJjY23WXoZyIiIi+0hOTsagQYPw5ZdfokyZMpq2haGciIhKkqaV8jfeeAP/+9//0L9/fwBAw4YNceHCBUybNg1DhgxBeHg4AFkxj4iIMD4uPj4+T/Vc4e3tDW/lXCY2xlBORERkHyNHjkTPnj3RuXNnvP/++wVum5GRgYyMDONtWw5VAxjKiYioZGlaKU9NTYWbm3kT3N3djadEq1q1KsLDw7Fp0ybj/ZmZmdi+fTtat25dom2VbZNLhnIiIiLb+f7777F//35MmzatUNtPmzYNwcHBxkvlypVt15hffsGjO0ahD9YwlBMRUYnQNJQ//PDDmDJlCn799VecP38ea9aswcyZM/HII48AgHGil6lTp2LNmjU4cuQIhg4dCj8/PwwcOLDE28tQTkREZFuxsbEYNWoUvvvuO/j4+BTqMfYcqoZdu9B856dohz8ZyomIqERoGso/++wzPPbYYxgxYgTq1q2L119/HS+88ALee+894zZvvvkmRo8ejREjRqBFixa4fPkyNm7ciMDAwBJvL0M5ETmbDh06mM1yHR0djdmzZxf4GJ1Oh59++qnYz22r/RRk0qRJaNKkiV2fg4pn3759iI+PR/PmzeHh4QEPDw9s374dn376KTw8PKC38KXr7e2NoKAgs4vNBATIBZIZyonIafD73rFpOqY8MDAQs2fPLvADodPpMGnSJEyaNKnE2pUfJZTn9K4nItLMww8/jLS0NIvn/9y9ezdat26Nffv2oVmzZlbtd+/evfD397dVMwHIL8qffvoJBw8eNFt/9epVzSf0Iu116tQJ//33n9m6p59+GnXq1MFbb70Fd+XLt6TkfP4ZyonIEfD73jVoGspLG2X4OyvlRKS1Z599Fn379sWFCxcQFRVldt/ChQvRpEkTq7+gAaB8+fK2auJdKZN5kmsLDAxEgwYNzNb5+/ujXLlyedaXCFbKiciB8PveNWjafb20Yfd1IhchBJCSos1FiEI18aGHHkKFChWwePFis/WpqalYsWIFnn32Wdy4cQMDBgxAZGQk/Pz80LBhQyxfvrzA/ebuznb69Gm0a9cOPj4+qFevntnEm4q33noLtWrVgp+fH6pVq4bx48cjKysLALB48WK8++67OHToEHQ6HXQ6nbHNubuz/ffff3jggQfg6+uLcuXK4fnnn0dycrLx/qFDh6JPnz74+OOPERERgXLlymHkyJHG5yoMg8GAyZMnIzIyEt7e3mjSpAl+//134/2ZmZl46aWXEBERAR8fH0RHR5tNPjZp0iRUqVIF3t7eqFixIl555ZVCPzeVErlCOXvHETkxft8bb/P7Xtvve1bKrcBQTuQiUlONP8xLXHKysftsQTw8PPDUU09h8eLFmDBhAnQ6HQDghx9+QGZmJgYNGoTU1FQ0b94cb731FoKCgvDrr79i8ODBqFatGu699967PofBYEDfvn0RGhqKv//+G0lJSWbj0RSBgYFYvHgxKlasiP/++w/PPfccAgMD8eabb6Jfv344cuQIfv/9d2PXu+Dg4Dz7SE1NRffu3XHfffdh7969iI+Px7Bhw/DSSy+Z/RDZunUrIiIisHXrVpw5cwb9+vVDkyZN8Nxzz9319QDAJ598ghkzZmDBggVo2rQpFi5ciF69euHo0aOoWbMmPv30U6xduxYrV65ElSpVEBsba5xE7Mcff8SsWbPw/fffo379+oiLi8OhQ4cK9bxknW3btmn35Dn/9v2RAoMBuHMHsPCRJSJnwO97APy+d4jve+HkEhMTBQCRmJhY7H2NGSMEIMQbb9igYUTkMNLS0sSxY8dEWlqaXJGcLP+xa3FJTi50u48fPy4AiC1bthjXtWvXTgwYMCDfx/To0UO89tprxtvt27cXo0aNMt6OiooSs2bNEkIIsWHDBuHu7i5iY2ON9//2228CgFizZk2+zzF9+nTRvHlz4+2JEyeKxo0b59nOdD9ffPGFKFOmjEg2ef2//vqrcHNzE3FxcUIIIYYMGSKioqJEdna2cZvHH39c9OvXL9+25H7uihUriilTppht07JlSzFixAghhBAvv/yyeOCBB4TBYMizrxkzZohatWqJzMzMfJ/PVJ7PlQlbfjeRjd/PrVuFAMQxXV0BCHH2bPF3SUTas/h/Mr/vhRD8vs/Nmu97W33Xs1JuBVbKiVyEn588gq3VcxdSnTp10Lp1ayxcuBAdO3bE2bNnsWPHDmzcuBEAoNfr8cEHH2DFihW4fPkyMjIykJGRUeiJXY4fP44qVaogMjLSuK5Vq1Z5tvvxxx8xe/ZsnDlzBsnJycjOzrZ6Nuzjx4+jcePGZm1r06YNDAYDTp48ibCwMABA/fr1zSb+ioiIyDNJWH6SkpJw5coVtGnTxmx9mzZtjEfAhw4dii5duqB27dro3r07HnroIXTt2hUA8Pjjj2P27NmoVq0aunfvjh49euDhhx+Ghwe/Sp1KTtUsyC0Z0AM3bwLVqmncJiKyD37fA+D3vSN833NMuRUYyolchE4nu5RpccnpllZYzz77LFatWoWkpCQsWrQIUVFR6NSpEwBgxowZmDVrFt58801s2bIFBw8eRLdu3ZCZmVmofQsL4910udr3999/o3///njwwQexbt06HDhwAOPGjSv0c5g+V+59W3pOT0/PPPcZrBz0m/t5TJ+7WbNmiImJwXvvvYe0tDQ88cQTeOyxxwAAlStXxsmTJ/H555/D19cXI0aMQLt27awa40algMmYcgCc7I3ImfH7HgC/7x3h+56h3AoM5UTkaJ544gm4u7tj2bJlWLJkCZ5++mnjF86OHTvQu3dvPPnkk2jcuDGqVauG06dPF3rf9erVw8WLF3HlyhXjut27d5tt89dffyEqKgrjxo1DixYtULNmTVy4cMFsGy8vL4vnms79XAcPHkRKSorZvt3c3FCrVq1Ct7kgQUFBqFixInbu3Gm2fteuXahbt67Zdv369cOXX36JFStWYNWqVbiZk8x8fX3Rq1cvfPrpp9i2bRt2795d6CP3VErkhHI/A0M5ETkOft8XXmn8vmefOyswlBORowkICEC/fv3w9ttvIzExEUOHDjXeV6NGDaxatQq7du1CmTJlMHPmTMTFxZl9IRWkc+fOqF27Np566inMmDEDSUlJGDdunNk2NWrUwMWLF/H999+jZcuW+PXXX7FmzRqzbaKjoxETE4ODBw8iMjISgYGB8Pb2Nttm0KBBmDhxIoYMGYJJkyYhISEBL7/8MgYPHmzsymYLb7zxBiZOnIjq1aujSZMmWLRoEQ4ePIilS5cCAGbNmoWIiAg0adIEbm5u+OGHHxAeHo6QkBAsXrwYer0e9957L/z8/PDtt9/C19c3zylqqJTLCeWeIgueyMTNm14aN4iIiN/31ipt3/eslFuBoZyIHNGzzz6LW7duoXPnzqhSpYpx/fjx49GsWTN069YNHTp0QHh4OPr06VPo/bq5uWHNmjXIyMjAPffcg2HDhmHKlClm2/Tu3RuvvvoqXnrpJTRp0gS7du3C+PHjzbZ59NFH0b17d3Ts2BHly5e3eJoWPz8/bNiwATdv3kTLli3x2GOPoVOnTpgzZ451b8ZdvPLKK3jttdfw2muvoWHDhvj999+xdu1a1KxZE4D80fPhhx+iRYsWaNmyJc6fP4/169fDzc0NISEh+PLLL9GmTRs0atQIf/zxB3755ReUK1fOpm0kjZmMc+S5yonIkfD7vvBK2/e9TlgaROBEkpKSEBwcjMTERKsnIshtyhTgnXeAZ58FvvrKRg0kIs2lp6cjJiYGVatWhY+Pj9bNISdR0OfKlt9NZIf308cHyMhAFVzAY69WwcyZxd8lEWmL3/VkD7b6rmel3AqslBMREbkAk8neWCknIiJ7Yyi3AkM5ERGRC2AoJyKiEsRQbgUllFs5Gz8RERGVJgzlRERUghjKrcBKORERkQtgKCciohLEUG4Ft5x3i6GcyDk5+byXVML4eSrFGMqJnBb/byZbstXniaHcCqyUEzknT09PAEBqaqrGLSFnonyelM8XlSI5p0VTQjl/wxOVfvyuJ3uw1Xe9hy0a4yoYyomck7u7O0JCQhAfHw9AnkNTp9Np3CoqrYQQSE1NRXx8PEJCQuCufHlQ6WFSKc/KApKTgcBAjdtERMXC73qyJVt/1zOUW4GhnMh5hYeHA4Dxy5qouEJCQoyfKyplckJ5kHsKoAdu3mQoJ3IG/K4nW7PVdz1DuRUYyomcl06nQ0REBCpUqICsrCytm0OlnKenJyvkpVlOKC/rmQzoAfZ2JXIO/K4nW7Lldz1DuRUYyomcn7u7O8MUkatTKuVuyQCAtDQtG0NEtsbvenI0nOjNCgzlRERELiBXKE9P17IxRETk7BjKrcBQTkRE5AJyQnmgjqGciIjsj6HcCgzlRERELkCZfZ2hnIiISgBDuRUYyomIiFyAEsoFx5QTEZH9MZRbQQnlBoO27SAiIiI7ygnlfoKVciIisj+GciuwUk5EROQClFBuYCgnIiL7Yyi3AkM5ERGRC8gJ5b56dl8nIiL7Yyi3glvOu8VQTkRE5MSUUJ7NSjkREdkfQ7kVWCknIiJyATmh3FufCjfoGcqJiMiuGMqtwFBORETkAnJCOQD4IZXd14mIyK4Yyq3AUE5EROQCfHyMY9YCkMxKORER2RVDuRUYyomIiFyATgf4+wNgKCciIvtjKLcCQzkREZGLyOnC7o8Udl8nIiK7Yii3AkM5ERGRi8gJ5ayUExGRvTGUW4GhnIiIyEUwlBMRUQlhKLcCQzkREZGLMAnl7L5ORET2xFBuBYZyIiIiF8FKORERlRCGcisoodxg0LYdREREZGcM5UREVEIYyq3ASjkREZGLYPd1IiIqIQzlVmAoJyIichGslBMRUQlhKLcCQzkREZGLYCgnIqISwlBuBbecd4uhnIiIyMkxlBMRUQlhKLcCK+VEREQugmPKiYiohDCUW4GhnIiIyEWwUk5ERCWEodwKSigHeFo0IiIip2YSyjMz+b1PRET2w1BuBdNQzmo5ERGREzMJ5QBYLSciIrthKLcCQzkREZGLyAnl/kgBwFBORET2w1BuBYZyIiIiF+HvD4CVciIisj+GciswlBMREbmIXN3XOQM7ERHZC0O5FRjKiYiIXIRZKBeslBMRkd0wlFuBs68TERG5iJxQ7olseCGToZyIiOyGodwKbibvFivlRERETixnTDkgq+Xsvk5ERPbCUG4FnU4N5gzlRERETszDA/DxAQAE4g4r5UREZDcM5VZSurAzlBMRETm5nFDujQyGciIishuGciuxUk5EROQivLzkApnsvk5ERHbDUG4lVsqJiIhchEkoZ6WciIjshaHcSgzlRERELsLbGwBDORER2RdDuZUYyomIiFwEu68TEVEJYCi3EkM5ERGRi2D3dSIiKgEM5VZiKCciInIRDOVERFQCGMqtxFBORETkIhjKiYioBDCUW4mhnIiIyEVwTDkREZUAhnIrMZQTERG5CFbKiYioBDCUW0kJ5QaDtu0gIiJyFtOmTUPLli0RGBiIChUqoE+fPjh58qTWzWIoJyKiEsFQbiVWyomIiGxr+/btGDlyJP7++29s2rQJ2dnZ6Nq1K1JSUrRtWE4o90YGu68TEZHdeGjdgNKGoZyIiMi2fv/9d7PbixYtQoUKFbBv3z60a9cuz/YZGRnIyMgw3k5KSrJPw1gpJyKiEsBKuZUYyomIiOwrMTERAFC2bFmL90+bNg3BwcHGS+XKle3TEIZyIiIqAQzlVmIoJyIish8hBMaMGYP7778fDRo0sLjN2LFjkZiYaLzExsbapzGcfZ2IiEoAu69byS3nMAZDORERke299NJLOHz4MHbu3JnvNt7e3vD29rZ/Y1gpJyKiEsBQbiVWyomIiOzj5Zdfxtq1a/Hnn38iMjJS6+YwlBMRUYlgKLcSQzkREZFtCSHw8ssvY82aNdi2bRuqVq2qdZMkdl8nIqISwFBuJYZyIiIi2xo5ciSWLVuGn3/+GYGBgYiLiwMABAcHw9fXV7uG5XSRZ6WciIjsiRO9WYmhnIiIyLbmzZuHxMREdOjQAREREcbLihUrtG0Yu68TEVEJYKXcSgzlREREtiWE0LoJlrH7OhERlQDNK+WXL1/Gk08+iXLlysHPzw9NmjTBvn37jPcLITBp0iRUrFgRvr6+6NChA44ePapZexnKiYiIXAQr5UREVAI0DeW3bt1CmzZt4Onpid9++w3Hjh3DjBkzEBISYtxm+vTpmDlzJubMmYO9e/ciPDwcXbp0wZ07dzRpM0M5ERGRizAJ5dnZQHa2xu0hIiKnpGn39Q8//BCVK1fGokWLjOuio6ON14UQmD17NsaNG4e+ffsCAJYsWYKwsDAsW7YML7zwQkk32RjKDYYSf2oiIiIqSSahHADS04GAAC0bREREzkjTSvnatWvRokULPP7446hQoQKaNm2KL7/80nh/TEwM4uLi0LVrV+M6b29vtG/fHrt27bK4z4yMDCQlJZldbImVciIiIhdhIZQTERHZmqah/Ny5c5g3bx5q1qyJDRs2YPjw4XjllVfwzTffAIDxlChhYWFmjwsLCzPel9u0adMQHBxsvFSuXNmmbWYoJyIichE5odxbx1BORET2o2koNxgMaNasGaZOnYqmTZvihRdewHPPPYd58+aZbafT6cxuCyHyrFOMHTsWiYmJxktsbKxN28xQTkRE5CJyQrmvWwYAhnIiIrIPTUN5REQE6tWrZ7aubt26uHjxIgAgPDwcAPJUxePj4/NUzxXe3t4ICgoyu9gSQzkREZGLyFUp52nRiIjIHjQN5W3atMHJkyfN1p06dQpRUVEAgKpVqyI8PBybNm0y3p+ZmYnt27ejdevWJdpWhVvOO8ZQTkRE5ORyQrkPu68TEZEdaTr7+quvvorWrVtj6tSpeOKJJ/DPP//giy++wBdffAFAdlsfPXo0pk6dipo1a6JmzZqYOnUq/Pz8MHDgQE3azEo5ERGRi1AmemMoJyIiO9I0lLds2RJr1qzB2LFjMXnyZFStWhWzZ8/GoEGDjNu8+eabSEtLw4gRI3Dr1i3ce++92LhxIwIDAzVpM0M5ERGRi8g1+zq7rxMRkT1oGsoB4KGHHsJDDz2U7/06nQ6TJk3CpEmTSq5RBWAoJyIichE8JRoREZUATceUl0YM5URERC4iJ5R7CoZyIiKyH4ZyKzGUExERuYhcoZzd14mIyB4Yyq3EUE5EROQivL0BsFJORET2xVBuJYZyIiIiF5FTKfcwMJQTEZH9MJRbSQnlBoO27SAiIiI7U0K5yIYOBnZfJyIiu2AotxIr5URERC4iJ5QDgCeyWCknIiK7YCi3EkM5ERGRizAJ5V7IZCgnIiK7YCi3EkM5ERGRi/D0NF71Qia7rxMRkV0wlFuJoZyIiMhFuLsbv/hZKSciInthKLcSQzkREZELyenCzlBORET2wlBuJbecd4yhnIiIyAXkhHJvZLD7OhER2QVDuZVYKSciInIhJpVyhnIiIrIHhnIrMZQTERG5EJNQHhencVuIiMgpMZRbiaGciIjIhZiE8hMnACE0bg8RETkdhnIrMZQTERG5kJxQ7uueieRk4PJljdtDREROh6HcSgzlRERELiQnlFetmAkAOHFCy8YQEZEzYii3khLKDQZt20FEREQlQAnllRjKiYjIPhjKrcRKOREROav9+/fjv//+M97++eef0adPH7z99tvIzMzUsGUa8vYGAETnVMqPH9eyMURE5IwYyq3EUE5ERM7qhRdewKlTpwAA586dQ//+/eHn54cffvgBb775psat00hOpbxyOCvlRERkHwzlVmIoJyIiZ3Xq1Ck0adIEAPDDDz+gXbt2WLZsGRYvXoxVq1Zp2zit5ITyyPIM5UREZB8M5VZiKCciImclhIAhZ9KUzZs3o0ePHgCAypUr4/r161o2TTs5obxiqAzlV64ASUlaNoiIiJwNQ7mVGMqJiMhZtWjRAu+//z6+/fZbbN++HT179gQAxMTEICwsTOPWaSQnlPt5ZCIiQq5itZyIiGyJodxKDOVEROSsZs+ejf379+Oll17CuHHjUKNGDQDAjz/+iNatW2vcOo3khHJkZqJOHXmVoZyIiGzJQ+sGlDYM5URE5KwaNWpkNvu64qOPPoK78gXoanKF8q1bGcqJiMi2WCm3xowZaP7NKNTBcYZyIiJyOrGxsbh06ZLx9j///IPRo0fjm2++gaenp4Yt05BJKK9bV15lKCciIltiKLfGsmWo9funiMZ5hnIiInI6AwcOxNatWwEAcXFx6NKlC/755x+8/fbbmDx5ssat04gSyjMyjN3Xea5yIiKyJYZya3jI3v7u0DOUExGR0zly5AjuueceAMDKlSvRoEED7Nq1y3haNJdkYUz5mTNAVpZ2TSIiIufCUG6NnFDugWyGciIicjpZWVnw9vYGIE+J1qtXLwBAnTp1cPXqVS2bph2TUB4ZCfj7A9nZwLlz2jaLiIicB0O5NRjKiYjIidWvXx/z58/Hjh07sGnTJnTv3h0AcOXKFZQrV07j1mnEJJTrdECtWvLm6dPaNYmIiJwLQ7k1cmae9UA2DAaN20JERGRjH374IRYsWIAOHTpgwIABaNy4MQBg7dq1xm7tLscklANApUryZlycRu0hIiKnw1OiWYOVciIicmIdOnTA9evXkZSUhDJlyhjXP//88/Dz89OwZRrKFcrDw+VNhnIiIrIVhnJrcKI3IiJycu7u7sjOzsbOnTuh0+lQq1YtREdHa90s7eSulJfPRGXEIS6uioaNIiIiZ8Lu69ZgpZyIiJxYSkoKnnnmGURERKBdu3Zo27YtKlasiGeffRapqalaN08buUL5wA1P4SKi4HnyiIaNIiIiZ8JQbg2GciIicmJjxozB9u3b8csvv+D27du4ffs2fv75Z2zfvh2vvfaa1s3TRs5s9EooD4v/DwAQcuGQVi0iIiInw+7r1jCZ6I2hnIiInM2qVavw448/okOHDsZ1PXr0gK+vL5544gnMmzdPu8ZpJVel3CcjEQDgfjNBqxYREZGTYaXcGhxTTkRETiw1NRVhYWF51leoUIHd13NCuWeqDOXeSQzlRERkGwzl1mD3dSIicmKtWrXCxIkTkZ6eblyXlpaGd999F61atdKwZRoyDeXZ2XBLSQYABGclIDlZw3YREZHTYPd1azCUExGRE/vkk0/QvXt3REZGonHjxtDpdDh48CB8fHywYcMGrZunDdNQnpRkXF0eCbh2DQgI0KhdRETkNBjKrcEx5URE5MQaNGiA06dP47vvvsOJEycghED//v0xaNAg+Pr6at08bZiG8sRE4+pQXEdcHFC9ukbtIiIip8FQbg1WyomIyMn5+vriueee07oZjiOfUF4eCTgap1GbiIjIqTCUW4MTvRERkZNZu3Ztobft1auXHVvioJRQnpGRJ5THMZQTEZENMJRbg5VyIiJyMn369CnUdjqdDnpX/PLLp1JeDjcRfyUb/ClFRETFxW8Sa5iEcoNB47YQERHZgIFfaAXLJ5QDwJ3zNwDkPYUcERGRNXhKNGtwojciIiLXUkAoz7jEc5UTEVHxMZRbg2PKiYiIXEsBodxwjaGciIiKj6HcGhxTTkRE5FoKCOW4fr3k20NERE6HodwaucaUC6Fxe4iIiMi+lFCelQXcvm12l8etBP4WICKiYmMot4bJmHIAnOyNiIjI2SmhHMhTGS9rSMCtWyXcHiIicjoM5dYwqZQDYBd2IiJyKuvXr8eGDRvyrN+wYQN+++03uz//3LlzUbVqVfj4+KB58+bYsWOH3Z/zrry91esJOWPIIyMB8FzlRERkGwzl1jCZ6A1gKCciIufyv//9z+K5yIUQ+N///mfX516xYgVGjx6NcePG4cCBA2jbti0efPBBXLx40a7Pe1emlfL4eLmsUQMAQzkREdkGQ7k1WCknIiIndvr0adSrVy/P+jp16uDMmTN2fe6ZM2fi2WefxbBhw1C3bl3Mnj0blStXxrx58+z6vHfl7g645fxcUirl1asDYCgnIiLbYCi3Rq4x5QzlRETkTIKDg3Hu3Lk868+cOQN/f3+7PW9mZib27duHrl27mq3v2rUrdu3alWf7jIwMJCUlmV3sSqmWKwPITSrl167Z96mJiMj5MZRbg5VyIiJyYr169cLo0aNx9uxZ47ozZ87gtddeQ69evez2vNevX4der0dYWJjZ+rCwMMRZKEVPmzYNwcHBxkvlypXt1jYA5l3YAXZfJyIim2IotwbHlBMRkRP76KOP4O/vjzp16qBq1aqoWrUq6tati3LlyuHjjz+2+/PrdDqz20KIPOsAYOzYsUhMTDReYmNj7duwfEJ5KK4j7irPiUZERMXjoXUDShVWyomIyIkFBwdj165d2LRpEw4dOgRfX180atQI7dq1s+vzhoaGwt3dPU9VPD4+Pk/1HAC8vb3hbTorur3lDuU5Y8o9oEfypdsAypRcW4iIyOkwlFsjJ5R78jzlRETkpHQ6Hbp27ZpnfLc9eXl5oXnz5ti0aRMeeeQR4/pNmzahd+/eJdaOfJmGcl9fIDAQ2X6B8Ei9g6wrCWAoJyKi4mAot4Yy0ZsuGxCslBMRUen36aef4vnnn4ePjw8+/fTTArd95ZVX7NaOMWPGYPDgwWjRogVatWqFL774AhcvXsTw4cPt9pyFZhrKg4MBAPqy5eGRegciPgFALW3aRUREToGh3BpKpZyhnIiInMSsWbMwaNAg+Pj4YNasWflup9Pp7BrK+/Xrhxs3bmDy5Mm4evUqGjRogPXr1yMqKspuz1loFkK5LjQUuHQOXokJEAKwMPSdiIioUBjKrWEcU86J3oiIyDnExMRYvK6FESNGYMSIEZq2wSILodw9ojxwEChrSEBiIhASoknLiIjICXD2dWsooVzHid6IiIhchqVQHlYegDwtWkKCFo0iIiJnUaRKeWxsLHQ6HSIjIwEA//zzD5YtW4Z69erh+eeft2kDHYoyppyzrxMRkRMSQuDHH3/E1q1bER8fD0OuGU1Xr16tUcs0ZiGUo7wM5aG4juvXgZo1NWgXERE5hSJVygcOHIitW7cCAOLi4tClSxf8888/ePvttzF58mSbNtCh5Jp9naGciIicyahRozB48GDExMQgICAAwcHBZheXVUAoL48EXL+uQZuItKLXA59/Dpw5o3VLiJxGkSrlR44cwT333AMAWLlyJRo0aIC//voLGzduxPDhwzFhwgSbNtJh5IRydx3HlBMRkfP57rvvsHr1avTo0UPrpjiWu4TyK+y+Tq5k6VLgpZeAxo2BAwdK5yyHKSnADz8A7doB1app3RqiolXKs7Ky4O3tDQDYvHkzevXqBQCoU6cOrl69arvWORrjRG+slBMRkfMJDg5GNf5AzYuVcnIF168DmzcDuYat5LF5s1weOgT8/bf922VLQgCrVwN16wJPPw20aAHs2qV1q2S7/vsPuH27cNunpQFHjwLr1gG//AJs3AicPm2ftq1bJ9+v114DnDnnaaxIobx+/fqYP38+duzYgU2bNqF79+4AgCtXrqBcuXI2baBDYSgnIiInNmnSJLz77rtIS0vTuimOJacQASBPKK+AeE70RqWbELL6Xbs20KULMH58wdtu26benj/f7s2zifR0YNkyWRl/9FEgNlb+rr91C+jcGfj1V23adeYM8OqrQFQU0KgR0KCB7H2Qn+vXgZ49AT8/ue3DDwO9egHdugG1atn+73HlCvDUU8CJE8DMmUDVqsDbb8vPAdlUkUL5hx9+iAULFqBDhw4YMGAAGjduDABYu3atsVu7U1ImehMM5URE5Hwef/xx3Lp1CxUqVEDDhg3RrFkzs4vLslQpr1ABQE6lPIE/UKmUSkwEevcGnnwSuHlTrvvgA2DvXsvbx8TIQKtYsQK4ccP+7SyszExZyZ88GXjwQdnFvlYt+e910CBg507573n8eFn17dFDVp1797ZtoN2y5e69CI4eBe67D5g9W31PL18G2raV1e/cjhwB7rkHWL9e3g4KApo2levq1JHrRo6Ule2C3L5duFAtBDBsmDxw0bAh0Lo1kJEBTJsGfP99wY9dv14e7Mjvc0R5FCmUd+jQAdevX8f169excOFC4/rnn38e80vLEbOiUMaU8zzlRETkhIYOHYp9+/bhySefxKOPPorevXubXVxWAaHcBxlIjUvSoFFU6hkMQGqq/fafkVHw/fHxQIcOMgB6eQHvvw/07y/bNWSIrC7nplTJW7cGmjSRz7FkiY0bXgQpKTLcVq8uq/0TJwK//w4cPiy7dd+5A1SpIsP6uXNyGRoK/PSTfK16PfDii8Do0cX/gb9uHdCpE9CqlTzYER+fd5szZ2RovXEDaNZMtuPqVbkuJUUeJJg1Sw3Pq1fL/cXEyDHwBw/KcL1/P7BnD3DsmOyObzAA/foB//6b9znv3AGefx4oU0aG7K++kgck8vP118Bvv8meQt9/Lw9oKL0o3nxTtjM/48cDf/wh/xaW2kJ5iSJITU0VKSkpxtvnz58Xs2bNEr///ntRdmdXiYmJAoBITEws/s4OHRICENfcwwUgxPbtxd8lERG5Hpt+N9mQn5+f2LFjh9bNsJrd388XXxRC/jwW4o8/jKszfQKEAMRjjU/Z53nJOWVnC7F0qRA1awrh6yvErl223f/p00L06iU/r1FRQgwZIsSyZUKkpZlvU6uW3KZCBSH27ZPrb9wQIjxcrn/99bz7HjxY3jdunBALFsjrNWsKYTDY9jUUxvz5QjRrJkRkpBBeXuq/0QoVhBg4UIg5c4TYsEGIHTuEOHhQvu+WGAxCvPee+vhevYRIT1fvP39evn8ffijEG28IceJE/m26dk0+v7IvQIiQECHeeUeIixeFuHNH/u2jouR9DRrI91yRmSnECy+ojx0+XIhXX1Vvd+woxPXrlp87M1OILl3kdmFhQsTEqPf9+acQVauat0vZ7pdf8u7r3DkhAuT/b2LGDHV9aqoQ0dFy/fjxlttx/nze1698vlyMNd9NRQrlXbp0EfPmzRNCCHHr1i0RFhYmIiMjhY+Pj5g7d25Rdmk3Nv2iPnpUCEDccA8VgBBbtxZ/l0RE5HocNZTXrl1bHDp0SOtmWM3u7+eoUeoPzH//Na5OrVhNCEA8UbH0HchwallZQrRrJy9ZWVq3xtwff8ggZhpamjbNPzAKIUPj33/LUFdQ+M3MlGHZNKCaXsqWlYGvTRt1XVSUEKdyHVRau1a9f80a83ZUrizXb9okRFKSEIGB8vYPP+Tfdnv8DebNy/v6qlWTQd304IM1Vq4UwsdH7qtHD7mfOXOE8PY2f56qVYW4eTPv4w0GIXr3VsP2jh3yoIHyODc3eRBGuV2zphBXr1rez4wZQuh05s/7xhvyb1yQxEQhGjWS29etKwP/hx/K51b+3uvWCfHxx0JUqWIe/pWCq14vRPv2cn3btnk/mz/+KO/z8ZGvMTbW/CDGrFny/nvuUT9rZcoIsX9/4f4Ohw4J8dpr8kBIYaSlWXdQKCXF8t/PDuweysuVKyeOHDkihBDiyy+/FI0aNRJ6vV6sXLlS1KlTpyi7tBubflGfOCEEIBLdQgQgxObNxd8lERG5HkcN5evWrRPdunUTMaYVllLA7u/nG2+oP15PnzauTm3SSghADPJdZZ/npaL54w/172WpCmiN9HQhMjKsf9z580J8/rmsUr/9tqyODhhgXj2cOFGI4GB5+4svLO8nK0utTgNChIYK8fjjMgiZunFDiAceULfr1k1WJzdsEOKtt9QwrVx0OiE6dcq7H4VyICogQIj//pPrzp6V6zw9hUhOluvefluuK1dOiMuXzfdx86YQ9evL+4ODhahRQ4hhw2Sb8guXW7YIcf/9sr3VqgnRooXc3tSPP6qBdcwYIf75R1aF9XrL+7TG5s1qcI6IMD9wMmiQGmQffjjv8331lbzPy0tW5oWQf7+VK83/NtWry8r5tWsFt+Xnn4Xw95fvnenBkbuJjRWiUiX1QIzyvE89JUO7Ii3NvApfu7Y86Dh7trzt7y//5rkZDLJib/p5Cg4WIicbinbt5LrZs+WBm1at1LYo74sle/bIgwCmBzH+/DP/7W/cEKJzZ/UzGRYmxNSpBb83mzbJniBubvI1fP65ELdvm2+TnW3ee6EY7B7KfX19xYULF4QQQjz++ONi0qRJQgghLl68KHx9fYuyS7ux6Rf1mTNCACLZLUAAef+PICIiKgxHDeUhISHCy8tLuLm5iYCAAFGmTBmzi6Oy+/s5bpz6QzE+3rg648HeQgBiOOYWKbeRnYwYof69+vYt+n6SkoSoV08G08mT1SCa261bQixfLoc5dOmidu+1dHFzE+Kll9RKnVJVDA2V+zGVni7EI4+oj/PwUPdTrpwQ69fL/fz0kwx6SpBauTJv5TA7Wx6geOEF+ZyXLhX82rOyZGhXKsOXLwvx9dfydps25m1s0kSu79pVDap6vaw25/c+VKokq/+Ks2eF6NPH8rbe3kL89pt8TQsWqD0BXnjBPt3m//hDDeaenjJcKs+zb59aOf/wQ/UxZ87I9x4QYvp0y/s9e1aIw4eta/P163lDY2EcOqT2YvDykj0I8nvejRvVAxAeHurrmz8///0fPy7/7qGhQri7y+3btxciLk49YJKTFUViohD33ad+bo8ezbu/uDi5L0DuTxlaERVl+fVfvCh7Alj692WpIp+ZKcTYsXl7HwAyzC9dKivoc+fKf0uPPXa3d7hQ7B7KGzZsKD755BNx8eJFERQUJHbljIX5999/RVhYWFF2aTc2/aLOGSORpvMVgPy/kIiIyFqOGsoXL15c4MVR2f39fPdd9QecSfo2PPe8EICYgEniyhX7PDVZSa83r3B6egqRkFC0fQ0fbv7jPTxciCVL1HBz9KgQDz5oHpaVi7u7rPqNHy/E888L0bq1DKkmwx+EEDIsKOHi/vtlVXvqVCGefVYeEFBC6dq1srK5c6es2ppWvJXr0dEy9NnK9euyWq20QakSjxtnvt2xY2q37zfekAFe+Tfj4yOrncePy2D9wgtClC+v3rdypexKrYRgd3chRo6UgX3XLvWghLe3WnEFZGgqqMt/cf31lxBPP5337yWEOpbezU1WWrOy5N8XkFVie7bLGjt3yur+nj133/b6dXkAS3l/u3Yt/MGD8+fVv1+3bnLZooX5Nrdvy+7sSi8DU6bd/hs1kgeMkpLUz96gQebbnzsn5xFQDu78+688APDYY3Jdq1bmvRgyM9XPESD/PR49KsRHH6nhHzAfWlC+vGxDMdk9lP/www/C09NTuLm5ic6dOxvXT506VXTv3r0ou7Qbm35RX7okBCAydZ4CKH6PKCIick2OGspLK7u/n9OmqSHC1DvvCAGIz/GiKIVD8Z3Tzp3ybxUUJETjxmo3Wmtt3qz+QJ84UQ0IgKyGT5xoPna7bl05DnbRIhlCrRmzunFj/hVlf/+84yXT0mRwVbapXVveNunFYTMnTghx773mbdq0Ke92n39uuf2WDubduSNEz555t+3YMW8VNSPDvILu6ysr/VoGX4PB/IBN8+ZyGRgoA2ppZTAI8c03QjzzjOWx7gUxnSgPEGLKlLzb5AwDFm5u5j01Fi1SD6CZ/ke6a5dahf/+e3W98nmoU0etxgshu+0rvRUWLZLrsrKEeOIJtcfAihXmbUpPF+L999WDStHRQnz2Wf69Yqxk91AuhBBXr14V+/fvF3qTIxF79uwRx48fL9L+pk6dKgCIUaNGGdcZDAYxceJEERERIXx8fET79u2NY9kLy6Zf1HFxQgBCD50AZG8hIiIiazlyKNfr9eLkyZNix44dYvv27WYXR2X393PGDLVSauqzz4QAxA941HRSdtKSMkZ20CA5SRcgw3l+vvtOhkHT4JuUpM6OPWKEXJeRIQ/OKD/elcuDD8oqcHFt2iS7Q7/yihxDPmGC7BKfe5y2qQsXrA9PRWEwyAMNjz4qRP/+lseDGwxy8jWlmzIgg2t+srLUAwshIbJrfH6V2YwMua++fc3mdNCUwSB7NJh+FpYs0bpV2klLU4dQAPn/m1DGjL//vrx94YI8gAbIf1+5TZwo76tQQR7o2rVLDfbHjuXd/sMP5f2hobIi3qGDGvjXrcu//efPy54cNp6UsERCuSI2NlZcutu4lLv4559/RHR0tGjUqJFZKP/ggw9EYGCgWLVqlfjvv/9Ev379REREhEiyojuBTb+oExKMHzYd9GIV53UhIqIicNRQvnv3blG1alXh5uYmdDqd2cXNzU3r5uXL7u9nTvgWtWubr1+xQghA/In7zQo5pBGDQQ3Tq1fLyZqUaralcaaXLgnh56cGidGj5QEYpWtsdLSs6po6dUpOLhUWZt6VnVSXL8uDHHerZhsMsmt1UYcXOIJVq2RgtNf49tJk/Xr576ZZs/y3WbJEblO1qvx8KBPgtW5t+fOSnq4O73juOXUSuWeesbz/jAxZQTc9WOLhYd1EeTZkzXeTW1HObW4wGDB58mQEBwcjKioKVapUQUhICN577z0YDAar9pWcnIxBgwbhyy+/RJkyZYzrhRCYPXs2xo0bh759+6JBgwZYsmQJUlNTsWzZsqI0u/g8PIxX3aGHXq9NM4iIiOxh+PDhaNGiBY4cOYKbN2/i1q1bxsvNmze1bp52vLzkMjjYfH1YGACgAuJx/XoJt4ny2rcPuHAB8PMDunUDypYF+vSR982bl3f7d94BUlOB8uXl7dmzgddeAy5dAsLDgWXLgIAA88fUrAls2gRcvQo89RSg09nzFZVOFSsCnToB7u4Fb6fTAffcA4SGlky77KFvXyAuDpg/n5+FBx+U/wZ//TX/bR57TP4/GhMD9OsHbNki/70uWWL58+LtLd9bAPjyS+DPP+W6SZMs79/LC1i7Vt7/7rvA1KnArl3q/wMOrEihfNy4cZgzZw4++OADHDhwAPv378fUqVPx2WefYfz48Vbta+TIkejZsyc6d+5stj4mJgZxcXHo2rWrcZ23tzfat2+PXbt25bu/jIwMJCUlmV1sxiSUeyCboZyIiJzK6dOnMXXqVNStWxchISEIDg42u7gsf3+5LFfOfH2FCnKBeCQklHCbKK8ff5TLHj3kD30AeOkluVy0CDh7Vt32wAEZBAD5I379eiAyEqhbF/jqK+D8eaBVq/yfy9UDGKn4WVA1ayYPaOXHzw8YNEheX7VKLj/6CKhRI//HtGsHPPusevull4DKlfPfvmZNYOJEYMIEYOxYoGXLwrdfQx533ySvJUuW4KuvvkKvXr2M6xo3boxKlSphxIgRmDJlSqH28/3332P//v3Yu3dvnvvi4uIAAGE5R6EVYWFhuHDhQr77nDZtGt59991CPb/VGMqJiMiJ3XvvvThz5gxqFPQDyRX17AkMH67+mFTk/EYpg9u4fS0DgHfJt40kg0FWtgHgiSfU9W3byqr5hg2yevbtt7JT62uvyeWAAcB998ltL15kwCKyt2HDgLlz5fUuXYAXX7z7Y6ZPBzZuBLKzZdB2QkUK5Tdv3kSdOnXyrK9Tp06hu7fFxsZi1KhR2LhxI3x8fPLdTpfrP0chRJ51psaOHYsxY8YYbyclJaFyQUdTrGHSrYKhnIiInMHhw4eN119++WW89tpriIuLQ8OGDeHp6Wm2baNGjUq6eY4hJMRy9+eQEOjdPOBuyEbm5QQAkSXdMlJs3w7ExsqusQ8/bH7flCkylC9dCowaJbvBbt0qu8FOm6Zux0BOZH9Nm8ru5IcOAQsXFu7fXdmywNGj8kBaUJDdm6iFIoXyxo0bY86cOfj000/N1s+ZM6fQX9j79u1DfHw8mjdvblyn1+vx559/Ys6cOTh58iQAWTGPiIgwbhMfH5+nem7K29sb3t52OlLNUE5ERE6mSZMm0Ol0EEIY1z3zzDPG68p9Op0Oen7xmXNzQ0ZwBfjdugLD1WtgKLeh69eBOXOAjAwZnqtXlxVw5TdeRgaQlKSOB//mG7l84gkgd7GneXM5lvXHH4HWrYGsLBkEPv4YiIoquddERNKaNTJgW3MgLDDQfu1xAEUK5dOnT0fPnj2xefNmtGrVCjqdDrt27UJsbCzWr19fqH106tQJ//33n9m6p59+GnXq1MFbb72FatWqITw8HJs2bULTpk0BAJmZmdi+fTs+/PDDojS7+Nzc5MVg4ERvRETkFGJiYrRuQqmWXbYCcOsK3K7Ha90U5zJ9uhxramrcOODVV4EzZ4Dly4E7d2TQ7tJFHU8+eLDl/U2eDKxeLQN5aKismpvMW0REJYw9U8wUKZS3b98ep06dwueff44TJ05ACIG+ffvi+eefx6RJk9C2bdu77iMwMBANGjQwW+fv749y5coZ148ePRpTp05FzZo1UbNmTUydOhV+fn4YOHBgUZptGx4eQGYmPJANKyeaJyIicjhRJpXCP//8E61bt4aHh/nPg+zsbOzatctsW5JEhTDgLOB165rWTXEuW7bIZe/ecuKoX36R3dNNhigCAJ58EnjlFSA5GahaFWjTxvL+6taVQxD27JEBvVIl+7afiMgKRQrlAFCxYsU8E7odOnQIS5YswcKFC4vdMAB48803kZaWhhEjRuDWrVu49957sXHjRgRq2X3BJJSzUk5ERM6kY8eOuHr1KirkzCquSExMRMeOHdl93QKPCPle+d6Jt7o3JuUjKUnOjg7ILuyRkfJ0ZV99BXz3nQzfQ4fKavqWLfK0R4AM6G4FnFjo+eflhYjIwRQ5lNvDtm3bzG7rdDpMmjQJk/I7F50WcsaVM5QTEZGzyW8y1Rs3bsBfOS0YmfGqLOe5CTVcw507TjsHUcnatUvOpl6tmgzkgBwn/tJL6inOAKBFC3me63Pn5O38uq4TETk4hwrlpUJOlz6OKSciImfRt29fAPJg+NChQ80mTNXr9Th8+DBat26tVfMcmmcl83OVM5TbwJ9/ymX79gVvV64c8PPPQOfOwP33y/MTExGVQgzl1soJ5ayUExGRswgODgYgK+WBgYHw9fU13ufl5YX77rsPzz33nFbNc2w5Z4QJwzVcvy4nCadi2r5dLtu1u/u2DRoAly+bnSGHiKi0sSqUK0fS83P79u3itKV0YCgnIiIns2jRIgBAdHQ0Xn/9dXZVt0YFtVJ+KUHjtjiD1FRg7155vTChHGAgJ6JSz6pQrhxJL+j+p556qlgNcngcU05ERE5q4sSJWjeh9DGplO+5rHFbnMGePfK0ZZUqyQndiIhcgFWhXDmS7tJYKSciIifSrFkz/PHHHyhTpgyaNm1qcaI3xf79+0uwZaVETqW8PBLw8kgD9u93w4QJPONWkSnjydu141T2ROQyOKbcWpzojYiInEjv3r2NE7v16dNH28aURuXLAwA8oEeg/ha++KIc1q0DTp4EAgI0bltpZM14ciIiJ8FQbi1WyomIyIkoXdb1ej06dOiARo0aoUyZMhq3qhTx8gLKlAFu3cLGb66h7zvlcPEisHix+dm7qBDS0oDdu+V1hnIiciFuWjeg1OGYciIickLu7u7o1q2ba0zaams548qbV47H//4nV82eDf5OsNasWUB6OhAVBdStq3VriIhKDEO5tVgpJyIiJ9WwYUOcO3dO62aUPjnjynHtGp56CihbFjh7FvjlF22bVapcuwZMmyavT5nC8eRE5FIYyq1lMqbcYNC4LURERDY0ZcoUvP7661i3bh2uXr2KpKQkswvlI6dSjitX4O8PDB8ub86cqV2TSp0JE4DkZKBlS2DAAK1bQ0RUohjKrcVKOREROanu3bvj0KFD6NWrFyIjI1GmTBmUKVMGISEhHGdekIYN5XLnTgDAyJGApyewY4d6ym3FtWtAdnYJt89RCQHExQFr1wJffSXXzZwJuPHnKRG5Fk70Zi2GciIiclJbt27VugmlU9eustL7xx9AdjYqVvRA//7At9/Kntg//SQ327pVbnr//cDvvwM5k95bRYhS3LM7ORl49llg1Sr5QgCYdTt87DH55hARuRiGcmtxojciInJS7du317oJpVOLFnIg+c2bwJ49QJs2GDsWWLoU+PlnWUC/7z7g5ZdllXzbNuDpp4Hvvit8UTg1FRg4EPj7b2D6dGDwYBnOs7OBpCT59A7t2jWgZ09g3z7z9W5uQJUqstv6p59q0zYiIo0xlFuLlXIiInJyqampuHjxIjIzM83WN2rUSKMWOTh3d6BLF2DFCmDDBqBNG9StCwwbBnzxBfDGG8CgQcDRo0BwMJCSAixfDkRGAkOGyLOqeXrKpb+/3MZUairQq5csxAPyMatWAZUqAT/+CCQkAJ07A2+/DXToYF5J37dPHivo0qXE3o28LlwAOnYEYmKA0FBg5UqgTh1ZLS9XrmhdBoiInAgH7VjLZKI3hnIiInImCQkJeOihhxAYGIj69eujadOmZhcqQLducrlhg3HVpEmAn5+sbo8ZI9dNmwZ8+aW8/tFHQIMGQK1aQNWqMmSHhAAPPCBz67lzwLp1ssD8xx9AQAAwapQM8GvXAvPmyUAOAJs3y8e1ayeL9Xq9fP6WLWWXedMi9O3bwJEjdn4/FGlpQN++MpBXry7PQ96xIxARAVSsyEBORARWyq3HSjkRETmp0aNH49atW/j777/RsWNHrFmzBteuXcP777+PGTNmaN08x9a1q1zu3QvcuAEEBiLiwGbM6+OO95dVxfmsaDRs6IXnnpM/JRIT5ZxmqalAVhaQmSmX2dly7Hnu4f2BgXIceuvWwDPPAFOnyqr6E0/IrDt7tpwrTekqX7MmcPq0+vhRo2QXd71eHiC4eVMG9ZdflvcnJMju9ocOycBeowawaBHg41OM90QIOevd/v2yQr51K1C5cjF2SETknBjKrcUx5URE5KS2bNmCn3/+GS1btoSbmxuioqLQpUsXBAUFYdq0aejZs6fWTXRclSrJsveRI3Ig+fLlwObNeArAUwASEIqrT3wND49eAGRIHjUq724uXpTh+quvZLavU0dO7v7aa4DSWaFRI+D7780fN2cOMHYs8M47wJIlMpD7+QHz58su7J98Isehmxo1Snahr1RJFrMvX1bv+/dfICMD+OEH408f66SlAZ9/LpO9m5tsMAM5EZFFDOXWMqmUpzGUExGRE0lJSUGFChUAAGXLlkVCQgJq1aqFhg0bYv/+/Rq3rhTo1k2G8hdekCVvf38gOhqGczEon3Yd5cf3Bm6/Brz7rrzPgipVgMmT5SYGg3WBuFIlmYFfeUV2f3/qKaBuXTme/cYNObGcj4/c99mzcrz7wIHyeTIzZTf6gQPlMO/XXwfWrAFefFGOYd+3T3afHzxYdp+3yGAA1q8HFiyQ/e3T0uT6KVOATp2sey+JiFwIQ7m1OKaciIicVO3atXHy5ElER0ejSZMmWLBgAaKjozF//nxERERo3TzH160bMGOGDOTBwbK/+X33wS0zE3jrLdnHfMYMeQkNBcqXB9LTZR92Dw8gKEgmX09P6Dw84O7hIdebXtzd867z8JBpO+fS1McHTSN8gB0+wF4fuPn4YHFfHzwf7YMaDXwQUdUH2Z19gFM++H2bN1Lgj44PB+Lrb70QFCxniatYEXj8cTn+XRkDD8gg//33QHS0yetOSAB++QWYNct8sHqVKrKv/ZtvlsS7T0RUajGUW4tjyomIyEmNHj0aV69eBQBMnDgR3bp1w9KlS+Hl5YXFixdr27jSoG1b2R88I0MG8mbN5HovLxlY27cHRowArl4Frl+XF1Om/cdtzB1AW5PbHgAWmG7wC4BQDzl4PTAQfQMCcDUqEIdjApHiUw7uYaE4EheKS3tC8X69snh1UDzqe5+RJfQ9e9TzjgcGAsOHA08+Kfvdl9qTqhMRlRyGcmsxlBMRkZMaNGiQ8XrTpk1x/vx5nDhxAlWqVEFoaKiGLSslfHyA48fl9YCAvPf36QP07i1nebt4UYZyX185+FuvlyccT0qSlXa9Xi5NL/mty8yUBwLS0y1fCrovLU3eD8j93bolLwAqAOgMAOkALgAPKa8jDcBXuV5bkyZy1rkXX5RTyBMRUaExlFuLE70REZGL8PPzQzOl2kuFYymMm9LpZGh1pOCanS1Pnn7nDpCcLJfK9aQkOSA9p7JviL+O4ztv4Gh8KM67VUf30XXQaExnOaCdiIiKhKHcWiaVcoNB47YQERHZ0BjlZNq56HQ6+Pj4oEaNGujduzfKli1bwi0ju/LwkGPgg4PvuqkbgNrZwKQBwI8/Am9/AlRfB1SrJieUe/JJ+zeXiMjZMJRbixO9ERGRkzpw4AD2798PvV6P2rVrQwiB06dPw93dHXXq1MHcuXPx2muvYefOnahXr57WzSWNeHgAy5bJov8PPwCnTsnLH38AXboAYWFat5CIqHRx07oBpQ7HlBMRkZPq3bs3OnfujCtXrmDfvn3Yv38/Ll++jC5dumDAgAG4fPky2rVrh1dffVXrppLGPD3ladcuXJBhvHFjICsLWLhQ65YREZU+DOXW4phyIiJyUh999BHee+89BAUFGdcFBQVh0qRJmD59Ovz8/DBhwgTs27dPw1aSI6lSBXjgAWD0aHl7wQLw9xERkZUYyq3FSjkRETmpxMRExMfH51mfkJCApKQkAEBISAgyMzNLumnk4Pr1A8qUkZXz33/XujVERKULQ7m1OKaciIicVO/evfHMM89gzZo1uHTpEi5fvow1a9bg2WefRZ8+fQAA//zzD2rVqqVtQ8nh+PoCQ4fK6/PmadoUIqJSh6HcWqyUExGRk1qwYAE6deqE/v37IyoqClWqVEH//v3RqVMnzJ8/HwBQp04dfPVV7pNUEwHDh8vl+vXAmDHylOxjxoBnqyEiugvOvm4thnIiInJSAQEB+PLLLzFr1iycO3cOQghUr14dASbn3m7SpIl2DSSHVqsW0LkzsHkzMGuWur5jR+Dhh7VrFxGRo2Ol3Fqc6I2IiJxcQEAAypYti9DQULNATnQ3M2cCTzwBvPQS0KuXXPfhh9q2iYjI0TGUW4uVciIiclIGgwGTJ09GcHCwsft6SEgI3nvvPRjYB5kKoWFDYMUK4LPPgPnzAS8v4K+/gJ07tW4ZEZHjYii3Fid6IyIiJzVu3DjMmTMHH3zwAQ4cOID9+/dj6tSp+OyzzzB+/Hitm0elTESEOvmbVtXy06eBLl2AHTu0eX4iosLgmHJrsVJOREROasmSJfjqq6/QS+l3DKBx48aoVKkSRowYgSlTpmjYOiqNXn8d+PJLYN06YOVKoEIFoFIloGbNknn+Dz6QY9yDg4G2bUvmOYmIrMVKubU4ppyIiJzUzZs3UadOnTzr69Spg5s3b2rQIirtatYEHntMXu/XT076VquWnJU9I8O+z52dDfz8s7x+9qx9n4uIqDgYyq1lUinn8DoiInImjRs3xpw5c/KsnzNnDho3bmyX5zx//jyeffZZVK1aFb6+vqhevTomTpyIzMxMuzwflbz33wfuuQeoUweoXVuumzULaN3avmF5xw7gxg15/cwZQAj7PRcRUXGw+7q1OKaciIic1PTp09GzZ09s3rwZrVq1gk6nw65duxAbG4v169fb5TlPnDgBg8GABQsWoEaNGjhy5Aiee+45pKSk4OOPP7bLc1LJqlUL2LNHvb12LfD008D+/cDjj8ulPaxerV5PTgYSEmT3eSIiR8NKubU4ppyIiJxU+/btcerUKTzyyCO4ffs2bt68ib59++LkyZNoa6cBud27d8eiRYvQtWtXVKtWDb169cLrr7+O1aaJipxKr17AgQNyZvYDB4D//rP9cxgMwJo15uvOnLH98xAR2QIr5dYyCeVZWRq3hYiIyMYqVqyYZ0K32NhYPPPMM1i4cGGJtCExMRFly5bN9/6MjAxkmAxITkpKKolmkQ1VqQL06AH89BOwfLk8lZot7d0LXL4MBAQAjRoBu3bJrvKtW9v2eYiIbIGVcmuZTPTGUE5ERK7g5s2bWLJkSYk819mzZ/HZZ59h+PDh+W4zbdo0BAcHGy+VK1cukbaRbQ0YIJfLl9t+vLfS0aJnT6B+fXmdlXIiclQM5dYyqZRzDhoiIiLLJk2aBJ1OV+Dl33//NXvMlStX0L17dzz++OMYNmxYvvseO3YsEhMTjZfY2Fh7vxyyg4cekpXs8+eBv/+23X5v3wZ++EFe79sXqF5dXucM7ETkqNh93VomE70xlBMREVn20ksvoX///gVuEx0dbbx+5coVdOzYEa1atcIXX3xR4OO8vb3h7e1ti2aShvz8gD59gO++A5YtA1q1Kv4+9+wB+veXQT8kBHjwQWDjRnkfK+VE5KgYyq3FSjkREdFdhYaGIjQ0tFDbXr58GR07dkTz5s2xaNEiuLmxI5+rGDBAhvKVK+Vp0jyK8cv0119lyM/OBqpVA77/HggMZKWciBwfQ7m1TMaUM5QTEZEz6Nu3b4H33759227PfeXKFXTo0AFVqlTBxx9/jISEBON94eHhdntecgxdugDlygHx8cCECfLi41O0fc2fLwP5ww8D334LBAfL9Uoov34dSExU1xMROQoeiraWSaXcYABPi0ZERKWe6aRpli5RUVF46qmn7PLcGzduxJkzZ7BlyxZERkYiIiLCeCHn5+kJjBwpr0+bBtSrB2zaVLR9HTsml6++ah68AwPV85OzWk5EjoiVcmuZjCkHgMxMwNdXywYREREVz6JFizR77qFDh2Lo0KGaPT9pb9IkoHZt4M03gZgYoHdvIDZWVtALKzVVPhZQZ1s3Vb26rMafOSOfa+JEeUq2Bx6wyUsgIioWVsqtZVIpB8Au7ERERETFoNMBAwcCJ07Ic4qnpQHWnoHvxAl5WrVy5YDy5fPeX6OGXJ49C8ycCcyYAbzxRvHbTkRkCwzl1mIoJyIiIrK5gABgxAh5/YsvrDt3+dGjclm/vgz5uSnjyg8fBj75RF4/cQIwGIreXiIiW2Eot5bJRG8AQzkRERGRrQwcKMP5yZPA9u2Ff5wyntxS13VArZSvXAncuCGvp6YCV64Uva1ERLbCUG6tnEq5p46hnIiIiMiWAgOBQYPk9fnzC/84pVJer57l+5VKee7K+KlT1rWPiCzLygKeew5YulTrlpRODOXWyjXRW1aWlo0hIiIici4vvCCXq1fLydkK426VciWUA0B4uDwVG8BQTmQrO3cCX30FvPIKh4UUBUO5tVgpJyIiIrKbpk2Bli1l4eObb+6+fWoqcO6cvJ5fpTw0FAgKktdffVVOKAfIbvJEVHzKUJCbN9WDZFR4DOXW4phyIiIiIrtSurBv2XL3bU+eVGdeV85HnptOB4wfD/TtKyeTq1VLrmelnMg2rl1Tr//5p3btKK0Yyq3F2deJiIiI7Kp1a7ncs0edhT0xEXjmGeCPP8y3vdvM64rXXwdWrZITyTGUE9lWXJx6naHcegzl1so1ppyhnIiIiMi2GjcGvL1lV9gzZ+S6L74AFi0CXn7ZfFulq2x+XdctUUJ5TAx/yxXWc88B1arJHgcXLgC7dwPjxgGjR/M9pLyh3JpTGhJDufWUUC5YKSciIiKyBy8voHlzef3vv+Vy0ya5PH4cOH1a3da0Ul5YERGyYq7Xq+PRKX+ZmcDChfIgxvvvA9HRsjfD1KnyvO+//qp1C0lrpqH86lXg7Fnt2lIaMZRbi2PKiYiIiOzuvvvk8u+/gbQ08y6xa9eq1+92OjRLdDp2YbfGuXNyRm1fX6BjR7kuOBgoX15ev3pVu7aRY1BCuaenXLILu3UYyq2ljClnpZyIiIjIbkxD+Y4dQEaGet/PP8tlWppa6bamUg4wlFtDeY/q1pWT7924ASQkAI88ItcnJKjbxscDX38NpKSUfDtJO0oo79ZNLhnKrcNQbq2cUA4AOhgYyomIiIjs4N575fLQITWEP/CAXP71F3D9OrBx491nXs8PQ3nhKe+R8p6VLSsrosp7bno++ffeA4YNA778smTbSNrJzpb/HgHgiSfkcvt27dpTGjGUW8sklHsgm6GciIiIyA4qV5Zjv/V6OZ4ZkJONNW4su1J//7066dvTTxc887olSsDkucrvTgnlNWuar1dCuWmlXBlLfPiw/dtFjiEhQR4cc3MDHn5YLs+fBy5e1LplpQdDubUYyomIiIjsTqdTu7Cnp8vbnTsDvXvLdWPGALGxQNWqwKRJ1u+/dm25ZKX87nJXyhXKmHLTSrnSjVmZNZ+cn/I3r1ABCAkBmjWTt9et06xJpQ5DubVyJnoDGMqJiIiI7EkJ5QDQtCkQGqqG8qwsufziC8Df3/p9K1XfuDggKal47XR2+YVyS5VyJaCZzpBPzk35m4eHy2X//nI5dqw8fR7dHUO5tVgpJyIiIioRpqG8a1e5bNpUdm0HZLf1zp2Ltu/gYCAsTF5ngMxfcrI6u3ru7uu5K+V6vXo9Lk4+lpxf7lA+apT8t5uUBAwZIj8XVDCGcmuZVMrdoWcoJyIiIrKT5s3Vn15KKNfpgHnzgBdeAGbOLN7+lcrvsWPm6w2G4u3XmSgHLMqXB8qUMb9PqZTfuCGDl7JUsAu7a8gdyj08gO++kz1Ytm8v/r9TV8BQbi2dzuxc5QzlRERERPbh7w9Mnw68+CLQrp26vmdPYP58OX61OJSxr//+q65btgwIDATmzCnevp1Ffl3XATnrPSAn+bpxQw1nCvZAcA3XrsmlEsoBoHp14JNP5PXx44Fbt0q+XaUJQ3lRMJQTERERlYgxY4C5c806K9rMPffI5Z496rolS4DUVDmz+/Lltn/O0qagUO7hoQbz+Pi8oZyVcteQu1KueOYZoH59ICMDWLUq7+OSk2X39t9/t38bHR1DeVHkjCtnKCciIiIqvZRzoR84AGRmyvMt79ql3j9kCLBpkzZtcxQFhXLAfLI3Vspdk/J3V+ZoUOh0wKBB8vrSpXkft3Qp8M03wDvv2Ld9pQFDeVHkhHKOKSciIiIqvapVA8qWlYH80CHg4EFZvQsOBvr1kzO8P/YYcPu21i3VjhKs8wvlppO9KeHM11cuWSl3DflVygFg4EC53L4duHTJ/L79++Xy+HHO48BQXhSslBMRERGVejqd2oX9n3+AHTvk9fvvl93Ya9eWM0j/8ot2bdSSEMDJk/J67pnXFZYq5cqs+ayUu4aCQnlUFNC2rfws5R4OooTy1FTg/Hm7NtHhMZQXhUkoV86RSURERESlj9KFfc8e4M8/5fV27QBvb/V8yz/+qE3btHbjhtpLoEYNy9tYqpTff79cxsUBd+7YtYmksfR0IDFRXrcUygHLXdizsoDDh9XbR4/ap32lBUN5UXCiNyIiIiKnYDrZ286d8nrbtnL56KNyuWGDa4ZLZTx5lSpql/TcTCvlyvnM69ZVJ4A7e9a+bSRtKTOve3vLYR+WPP444Okph4gcOSLXHTsGsxzFUE7WY/d1IiIiIqeghPJTp4Dr12X4bN5crmvQQI6lzsgAfv1VuzZqRalk5jeeHLBcKQ8PV7u7swu7czP9m+t0lrcpWxZ48EF5fdkyuVS6risYysl6nOiNiIiIyCmEhsoJ3xT33Qd4ecnrOp2c6A1wrS7sMTFy5vmRI+XtunXz39bSmPLwcLW7O0O5c8tv5vXclAnfVqyQ48uVUF69ulweO2af9pUWDOVFwUo5ERERkdNQxpUDcjy5KSWUr18PpKSUXJu0kpIix4R/842cEfuRR4D//S//7ZVK+cWL6vhz00o5Z2B3bgVN8mbqoYdkL5Rz52QgP3BArh88WC5dfQZ2TUP5tGnT0LJlSwQGBqJChQro06cPTipTPOYQQmDSpEmoWLEifH190aFDBxzVun8Dx5QTEREROQ2lCzugjidXNGkiK+lpacBvv5VoszTx77/AlSsybO/dC6xeDVSsmP/2SqX8wgW59PICQkLYfd1VFDaU+/vLYA7IWdgPHpTXH30U8PGR/75iYuzWTIenaSjfvn07Ro4cib///hubNm1CdnY2unbtihSTw5DTp0/HzJkzMWfOHOzduxfh4eHo0qUL7mg52wYr5UREREROQwnlHh7q6bwUOp064dvatSXbLi38+69ctm0LtGhx9+2VUK5QxhYr3ddZKXc+qanAO+/IeRaUid7uFsoB4Ikn5HLBAtkjw89PDo2oU0eu17ruqiUPLZ/8999/N7u9aNEiVKhQAfv27UO7du0ghMDs2bMxbtw49O3bFwCwZMkShIWFYdmyZXjhhRe0aLbZmPIMhnIiIiKiUu2++4BXX5XjW/39897fti3w0Ufmp3ByVkooL0wgB+QkXm5uatdjJZwplfK4OHlqNWU2dir9ZswApkyR15VZ+QsTynv0kP++kpPl7SZNZAfkevVk5fzoUaBXL3u02PE51JjyxJyT3JUtWxYAEBMTg7i4OHTt2tW4jbe3N9q3b49du3ZZ3EdGRgaSkpLMLjbHSjkRERGR03BzA2bOVCc2y02Z6OzkSUCvL95zOfq4WWtDuZubnCxPoYSzkBCgfn15/Y8/bNY80pgQ6gzqgOx2DhQulPv5AQ8/rN5u1kwulc+JK1fKHSaUCyEwZswY3H///WjQoAEAIC5nkEJYrun8wsLCjPflNm3aNAQHBxsvlStXtn1jGcqJiIiIXEbVqvI8zOnp6tjpojh8WAaTd96xXdts6dYttbt5YUM5oE72BpiHs27d5HLDhuK3jRzDoUPAiRNyHPju3UCnTnLOgdzDPvKjdGEHgKZN5ZKh3IFC+UsvvYTDhw9j+fLlee7T5TrpnRAizzrF2LFjkZiYaLzExsbavrGc6I2IiIjIZbi7q+fqPn686Pv5/nt5znNHPb3avn1yWb06UKZM4R9nOq7cNJQrnV03bpQVVir9lKjWs6cM4ps3A5cuARERhXt89+5AUJC8rpz1QAnlJ04UvydKaeUQofzll1/G2rVrsXXrVkRGRhrXh+f8q85dFY+Pj89TPVd4e3sjKCjI7GJzrJQTERERuRSlC3txQvmOHXJ5+rTa7deRWNt1XZFfpbxtW9nD4NIlGbiodDMY5IElABgwQF2fT63UIl9feXrB779Xw3jVqrLynp7uujOwaxrKhRB46aWXsHr1amzZsgVVq1Y1u79q1aoIDw/Hpk2bjOsyMzOxfft2tG7duqSbqzKZ6I2hnIiIiMj5FRTK//kHeP552f07P+npcjtAhhtHDKlFDeWmlXLTiqmfn3red3ZhL/127ZLnow8MlJO2FVWbNkC/fuptd3f139d//xWvjaWVpqF85MiR+O6777Bs2TIEBgYiLi4OcXFxSMs5dKjT6TB69GhMnToVa9aswZEjRzB06FD4+flh4MCB2jWclXIiIiIil5JfKE9PBx5/HPjyS2Dx4vwf/88/MPvd6IjhwxahPPeEX6Zd2HM7dUqeGotKB6Xr+iOPqLOu24rymfv7b9vut7TQNJTPmzcPiYmJ6NChAyIiIoyXFStWGLd58803MXr0aIwYMQItWrTA5cuXsXHjRgQGBmrXcI4pJyIiInIppqHcdHz055/L6iFQcPX7zz/Nbx85Ytv2FVdCgjqJnTIrdmHl130dUCd727ZNHsBQHDokz0/9yCNWN5U0YDCocyGYdl23lVat5HL3bsv3Hz6sHjRyRpp3X7d0GTp0qHEbnU6HSZMm4erVq0hPT8f27duNs7NrhpVyIiIiIpdSq5Y8/dft28C1a3LdrVvq+ZoBecq0/CjjyRs2lEtHq5Qrk7zVrq1OxFVYppXy3NM+NWggu7SnpQF//aWu37tXHtzYtEl9brKP+Hh5vvjiOHRI7icgQM64bmtKKP/3XyAry/y+rCw5DKJlS2D4cPU8587EISZ6K3U4ppyIiIjIpfj4yAmpALUL+7RpMpiHhMjb+YXy7Gw5HhcAXnxRLh2tUl7UruuAWikPDs7brVmns9yF3fQESZ9+av1zUuH8+y9QowbQqJF5TwVrbdkil+3aAZ6etmmbqVq15Iz/aWnyAICpK1eAxER5fcECoHHjgg+AlUYM5UXBSjkRERGRyzHtwn7xohom582Ty7g4ICkp7+MOHpTVvZAQoH9/ue7SpYInhitpBw/KpbVd1wF5vumaNeXYekuU+ZlNz0OtdPkH5EzcSu8Dsp1jx+QpyO7ckcMTTp0q+r7++EMu7VElB2QvFOVc57m7sF++LJdlygBVqgDnzgHvv2+fdmiFobwoTEK5weC659MjIiIiciWmoXzCBHnO8Q4d5EzSylhqSxU8ZTz5/ffLYFG5srxtGlK1dvasXNaubf1jAwLk6/7yS8v3Kz0MTE93pVTK3d3lBHhffGH982rJYNC6BQW7eFH2ULhxQ113t1CenAz88guwcqWc1O3MGbk+M1P9DNsrlANqF3alV4ni0iW5rF8fmDlTXlc+r86CobwoTCZ6A/KOeyAiIiIi56OE8l9/Bb75Rl6fPl120VbCrKVQrownb9tWLh1tXLkQsvoIANWqFW0fBZ2rOjpaLs+fVyfJUyrlzz4rl/PmodT0QB06VB5YuXlT65bkb/p0WWGuVw/o2VOuu1uX75dfBnr1kgeZBg6UlevERDn+PyUFCA1VP7v2oPSoyF0pV0J5pUrqAS3TnhbOgKG8KEwq5UDp+Q+EiIiIiIpOCeUxMTJc9usnJ58C5JhYwHLwUSp/SihX5ix2lHHlt26p3e6VAG1LVarI0J6aKrtRC6FWyl99VU4Ed/UqsH697Z/b1oSQs5BfueLYs4ErVfHXX1cr0HcL5coQhsaN5eR9N24As2apXdc7dpTdzO3lnnvk/i9ckJ8HhdJ9PTJSfpYAeX92tv3aUtIYyovCZKI3gKGciIiIyBUooRyQk12ZzryeX6X89m05azWghvHCVMrj4oo/Y3ZhKVXyiAjbn38aALy9gYoV5fWYGBn2lEnHqlaV456BvBN8OaL4ePXc6kpYdERKJTkqSv1s3q37uvKY776Tp/oDZHfxNWvkdXt2XQeAwED134hptVyplEdGyoMFnp5y+MCVK/ZtT0liKC+KnFDu5cZKOREREZGrCA6WwRWQp2aqXl29L7/gowTeChVk6ADMK+Wm5zxXZGbKWdCbNZOzUdtbcbuuF4Yyrvz8eTX8hYXJwF6njrxdGmbUNh3LrIRFRyOE5VB+8qTlzxsgx5Mr3fGrVAH69pUV8zt31Ar6Aw/YtdkALJ+vXDn4UamSrKQ7Yxd2hvKiyBlT7s1QTkRERORS3nkHeOghYOJE8/Wmodx0EjAlxJkG+Dp15M/JW7csV/tOnZJB5OpVNRDdTWysDPLDhhX6pRiVZCiPiVG7rivhqqDx+I5Gea8Ax62UX7+uHsyJjJSnRNPpZK+NhATLj1H+JkFB8uLmBrz3nnp/5cpyP/ZmabI300q50hbA/LR6pR1DeVHkVMq93RnKiYiIiFzJiBFyhupy5czXV60qu9WmpZlXUJVQbhp4fXzkKcQAYNWqvM9x4oR6fc+eu7fp+nU50/a+fcCSJdbPDF4SoVwZqx4To1Y4lfHBhankOorSUClX3t/wcNkTwddXfa+VAx8zZgCPPirPIACoAVfZDpAHn+65R17v1Kngyfxs5d575fLAAfk5Nu2mXqmSXLJSTlJOKPd055hyIiIiIpI/D5VquGnF11KlHACef14uX389b/A+fly9/s8/BT/vnTtAjx5qkM/Otv7858qpypRqtj2Ydl/PXSmvXl2+fykpjlt9VpiGctO2fvednK38/PkSb1IeuQ96AOY9OZKTgbffBlavBrZuzf8xOh2wcCHQvz8wdqz92w3IaryXlzy4df68rOxnZcm2KENHlDayUu7qlEo5u68TERERUQ5L3bCVKnTuUD56NPDIIzJwPPqoOhkcYF0of/NNecqqcuUAPz+5ztoJ4kq6Up67KuvpqT63I3Rh/+sveaDD0sRo+XVfnzNHHlyZO9f+7bubgkL5yZNyNnUlvyjvt6XHAPLc4MuXq2cXsDcPD3WOgaNH1fc4PFx+ToDCV8odvdeFKYbyouBEb0RERESUi6VQnl+lXKcDFi+Wj7l82XwsuGn39bNn5Wzl+dm8WS6//loNVNeuFb7N2dnyFFRAyYwpv3BBrSYr4QpQ3zvT166VefOA334Dvvwy732mlfKEBLX79+nTcrl6tfZh0HSSN4XpKft+/VVdf7dQroX69eXy6FHzc5QrClMpT0+XEyr26mWfNtoaQ3lR5Ez05slQTkREREQ5cp+rPDNTDQ65QzkgJ9RauVJeX79edis2GNRg6u8vl3v3Wn6+5GQ1JLZuLauJgHWhPDYW0Ovl2GOle7A9REbKn9CZmerkdZZCuSNUypW/2b595utTUtReCMr5uq9ckbOWKzOXnz1b8KnuSoJykCW/Svm6dep65bPmqKHc9BzlitwTvd2+LXs2fP21us2xY/Lyyy9AUpLdm1xsDOVFoVTKdQzlRERERCTlDpbnz8uQ7ecnT/9lSaNGMmTo9bL788WLcjytp6da5ctvsrf//pNV2YgIoHx59Tms6b6ujCePjlaDpj14eKhhSjlHuWkAdKTToinV2f37zaveynsVEqJW/i9dAs6cMX+8cl5vrdyt+/rVq+r63JVy0wMlWilspfzGDSA1FfjhB9mz4cMP1W2UAxOA+XAQR8VQXhTKRG9unOiNiIiIiKR69eTy4kU5Rtx05vWCZq5u21Yud+5UK5c1a8rqN5D/uPJDh+SycWO5VEK5NZXykhhPrjCdSM7Dw/xAhaNUyg0GNQgmJpp3VzcdiqCExMuX1a7rykGN1atLpq2Kn38GBgxQK8KWQnlkpJyFXaGcc/zKFfk6ldfsSJXy48fV12JaKQ8OBgID5fXYWGD7dnn9wgX1zAOmofzYMfu21xYYyovCGMpZKSciIiIiqWxZoEkTeX3Tpvwnecvt/vvlcudOtapXt656Oqp//pEV2+xsOdu6IncoL0r39ZIM5cpkb4DanV2hhPILF2T1UyvXr5v/tjftwm56kEUJiZcuqaG8d2/5mg4fzls9t6f33gO+/x745hvZC0H5+5uOKXdzU0/DBwCDBqmflx075Nh4nc68Iq2VatXkcIr0dNk2wDyUA+rBg4sX1VCemamePs10FnxWyp2VMqac3deJiIiIyES3bnK5YUP+k7zlpoTy3bvV8ch168qw7ekpg+Kvv8qJqypWVKua+VXKrem+rlWlPHc36dBQeVADUEOuFnKfe9w0lJseZDGtlCsB/N57gQ4d5PWS7MKujLveulVtv5+f+n4qlAMfgByDrQwZ2LRJLitWVGc415K7u9o2peKd+2CB8vnZscP8b6YMMWCl3BUolXKGciIiIiIyoYTyjRvVsHa3UF6/vuySm5IC/PSTXFenjqwWKpX3hx+WXbuTk+UYWoNBDfC26L5uz3OUKwoK5TqdY3RhLyiUW+q+blopr1kT6NtXXi+pUJ6Vpf69t21TK8RVquQdMqFMRNiypaySK+/3xo3qYxyF0oVdkV+lfOlS8/UM5a7EGMo5ppyIiIiIVG3ayFnTr12T54MG7l6FdnOTjwOAW7fksm5duVS6sANqd+PVq2X4SE6WwV0JW0Xpvq6EmJLuvm4pADrCadGUGb2VAwimk71Z6r5uOqa8Zk2gTx95ffdutSu1PV27prbv5k31dGeW3t8hQ2QgnzRJ3laq0cr77cihPL9Kuel54wHLofz8eXnAy5ExlBdFTij3YKWciIiIiEx4eQEdO8rrytjou1XKAbULu0IJqIMGyQAydqwMegDw119qdbN+feNPU7NKuTLhVUGSkmTXeED7SjngGDOwK5Xybt3kAY/bt2Xw0+vVKrRppfzoUfVASvXqsgv4fffJ20qvB3vKHfyVyrGlgF2zppyfoEcPeVt5vxWOMPO6wjSUlykju+Obyv36WrWSS+VglXKKuoAAedBC6wkE74ahvCiUMeVgKCciIrKVjIwMNGnSBDqdDgeVExkTlUJdu6rX3dzMJ9zKj2kor1JFPUd5q1ZyMqupU2Wl+Z57ZMiYNk3er3RdB4AKFeRSr1dDSUGUoBIaKs+Zbm8REfKgBVBwpdwRQnnVqvJ0dYDswn7pkuwq7ukpq+RKpVyZ8bxSJTU4Kl3YS2IWdmU8uSIhQS4L85kzHWMOOG6l3NLkc6YHEHQ64Mkn5fWYGLVKHhICNG0qrzt6F3aG8qJgpZyIiMjm3nzzTVSsWFHrZhAVmzKuHJBBRwmiBWnZUt1O6bpuiRL4lG7WpqHcy0ud3OtuXdiFAMaPl9eVKqO9ubnJ1+nurgZeU6bdqQtT6bcHJZRHRgLNm8vr+/apXdejo2X7w8PNz+tuOrP5I4/I5bZt8lza9qRUynNXuQsTsKtUAXx8rHtMSalaVW1b7vHkgHlbGzdWw3dMjNqjITpaPU2ho8/AzlBeFEooZ6WciIjIJn777Tds3LgRH3/8sdZNISq2mjXV8dOF6boOyADSooW8XlAoVwKfwjSUA4WfgX35cjlDvLc3UJL/7Navl2OwLQXAGjVke1JS8o4VLilKKK9cWQ3lmzYBM2fK68rf08NDHcMPmIfyGjXkQQe9Hli3zr7tVSrlDz2knrsbKFzAdnc3b7cjhXJ3d/XfgaVQbrquXTt1aMSlS+oEi1FRaihnpdwZGUO5nOgtK0vLxhAREZVu165dw3PPPYdvv/0WfrkHDlqQkZGBpKQkswuRI9HpgO7d5XXT0HM3L7wgZ2F//PH8t6lVS54aTZG74lyYGdhv3ABGj5bX33lHnSiuJAQF5T9+3cMDaNhQXtdiBIsQlivlBw6oE6gpf1fAvFt17r+zcvDE3l3YlUp5lSoynCoKG7BNx5U7UigH1M+2pa743t7qZ71dO3nd11f+DZVzmzOUO7ucUO7OSjkREVGxCCEwdOhQDB8+HC2UMuFdTJs2DcHBwcZLZUeanYgox8SJwCuvAG+9VfjHPPWUnFisdeuCt1O6sEdG5j0XdWFmYH/7bTn2uH594M03C9++kqBU/pVzsJekGzeA9HR5vWJF+f5ERclu6o89BuzZA4wapW5fUChX/kYbNsiJx+xFqZRXrKhOMKjTWa4uW6KEckvnNdfa228Dr74KPPus5fvHjwf69ZMT1+l0au+U7dvl0jSUnzkDZGTYvclFxlBeFDkTvXkIhnIiIiJLJk2aBJ1OV+Dl33//xWeffYakpCSMHTu20PseO3YsEhMTjZdYZXAtkQMJDwc++cT8NGC28swzshv1sGF57ytM93VlVvBZswo33r0kKaFci0q5UiWvUEFWYr285CnRLl+W54Y3PT0dYB58a9Qwv69hQ/k3ysgAfvvNfm1WKuWVKsm5DJTzvRf276pM9la5ct7zmmutVi05bCAiwvL9I0cC338vK+SA2gNDOaNAVJR8bFCQnKPg1Cn7t7moPLRuQKnESjkREVGBXnrpJfTv37/AbaKjo/H+++/j77//hre3t9l9LVq0wKBBg7BkyZI8j/P29s6zPZEriYpSx83mdrfu69euAfHxMoAp50Z3JE2ayKUWlXLTruuKgqrHppXy3HMH6HTAww8Ds2cDf/5Z8JCE4jCtlNetC2zdaj7W/W4efFD2zBgwwD7tK0m5h0VERcm/Q716wN9/y8nelOERjoahvCiMoVyOKWcoJyIiMhcaGorQ0NC7bvfpp5/i/fffN96+cuUKunXrhhUrVuDee++1ZxOJnNLduq8fPiyXNWvmPfezI1DGEcfGytO6lWSXatNJ3gpDCe+VK6vVWlNKALTXKd5SUoDERHldOUDQvr11+yhbVp733hnkDuVKLxUllDvyuHKG8qJQQjm7rxMRERVLlVwzCwUEBAAAqlevjsjCDookIqO7dV9XQrmlU5I5guBgGa5iYmS1XBknXRKUkTCF/a+ndWt5YKNnT8v3m57izR6Uruv+/uYzr7sq01Du5weUKyevKxMZnj5d8m0qLI4pL4qcMeXuBoZyIiIiInIcd+u+7uihHNBuXLml7usFqVZNTg43d67l+5Xx2rGx9pnszXQ8uaONB9eCaShXuq4D6nj//IZ8OAKG8qLIqZS7sVJORERkU9HR0RBCoIkysJSIrKJ0X4+Pl5Nb5VaaQnlJjyu3NpQD8vzy+QXicuWA8uXldVtNMqbXA2lp8rrpeHLKG8oVSig/e7Zk22MNhvKiyJnO0EMv59VnKCciIiIiR1Chglzq9bKKayorSx1X68ihXDkmp1TKDQb5euzN2jHlhaF0YbfFuPITJ+T46MqV5QzjppVyAkJC5AUwD+XKJHw3bgC3bpV0qwqHobwogoMBAF5pcmYFhnIiIiIicgSenurkaLm7sJ86JX+3BgaahxZHo1TKjx2TY8ubNpVh1J7nmRbC+jHlhaF0YS/uuPING4D77pN/wxs35GntWCnPS6mWm56KMCBAHdbhqNVyhvKiUEJ5ehJ0MDCUExEREZHDyG8GdqXresOGgJsDp4DoaHlu6awsoGVL2e5Tp+w3izkgK6hKt3BbVp5tMdnb9u1Ajx5ypvWgILnup59YKbekVSu5zH1OeUcfV+7A/xwdWE4o1wmBACQzlBMRERGRw8hvBvbSMJ4ckGO0lWq5aRf8mBj7Pee5c3IZGirHiduKLUL5zz/LLvwPPijPQw4AmzerBylYKVd98omshj/wgPl6Rx9XzlBeFD4+sm8QgGAkMpQTERERkcPIbwb20hLKAbXSWaeOeu5te4bynTvNn9dWlFB+6pTlifcKQ+lW37277Mpfo4bsyq9MhMdKucrDQ86Knxsr5c5IpzNWyxnKiYiIiMiRKOPF//jDfH1pCuVjxwLz5smwfO+9cp09Q/m2bXLZoYNt9xsdLeeITk8HLl4s2j5MZ4XX6YA+fczvZ6X87pTJ3hjKnQ1DORERERE5oGeekWPG168H/vlHrrt5Uw13DRpo17bCKlcOGD5cLpXJu+wVyg0G4M8/5XVbh3J3d6BmTXm9qF3YlUq5Mit87lAeEVG0/boSdl93VgzlREREROSAatUCnnxSXp80SS6Vrs7R0cafsaWGEsqVcd+2dviwnOgtMFB2D7e14owrz84Grl6V15VQft996qnvQkMBb+/it9HZKaH86lUgJUXbtljCUF5UDOVERERE5KDGj5dV2t9+k93AhwyR61u00LZdRWFaKRfC9vtXuq63bSvHJNtacc5VfvWqrOR7eqpB3N0d6NVLXmfX9cIpU0ZeAMesljOUFxVDORERERE5qBo1gMGD5fURI2QX6Fq1gA8+0LZdRREVJcdSp6YCCQm237+9xpMrrKmUX74sD6JkZcnbypCDSpXMT2P39NMynLdta9u2OjNHnuyNobyoGMqJiIiIyIGNH69Wfnv3luPLlQmvShNvb7UibOtx5fYcT66wJpS/8YY8iPL11/K2Mp48MtJ8u9atZWCfOdN27XR2jjyunKG8qExCuXIki4iIiIjIUVSrBvz+O7BsGbB6dekbS27KXpO92Xs8OSB7KADyvPEbNxa87Z49cnnggFwqlXJlPLmp8HA5szsVjiNXyu0wasJFsFJORERERA6uUyetW2Ab1arJ06PZIpTfuQOMHg0EBABJSXKdvcaTA0BQkJwx/aefgB49gPnzgWHD8m6XlKROZnfsmFzmVykn6znyadEYyouKoZyIiIiIqETYslK+bBmwcKH5Ont1XVd8/70M4t99Bzz3HHDhAjB5shwrr/jvP/X60aNyUruCKuVknfy6r6emAjduaPses/t6UZmEcr0e0Os1bg8RERERkZOyZSjft08uGzcG6tWT++7Xr/j7LYi3N/DNN8DEifL2++/Lar3BoG6jnLYOkF3q4+NZKbclJZRfvAikp8vrej3Qtav8DPz+u3ZtYygvKpNQDoDjyomIiIiI7MSWoXz/frl85x1ZkT53DqhSpfj7vRudTp43fu5cefvTT2X1XDnN28GD5tsfO8ZKuS1VqACEhcn3e8YMue6rr4C//pLh/JlnZMVcCwzlRZUrlLMLOxERERGRfSih/MIF63qo7tkjK6RKFTQrS+0m3qyZbdtYWC++KKvm7u7AokXA+vVyvVIpVyZvO3xYnqccYKXcFnQ64KOP5PV33wU2bQLGjpW3/fzkez1ypDZtYygvqpxQHoLbABjKiYiIiIjspWJFwNMTyM5Wq8eFsXKlHEP88cfy9rFj8nd7cLAa9LUweLA89RkA/PCDPNCgHCzo0UMu//hDdm/39JRVXiq+J58EHnlEHpzp3l0OE2jSBNiyRR4kWbECWL685NvFUF5UrJQTEREREZUId3cgKkpet6YLe3y8XO7cKSf0UrquN21qPsmaFh57TC7XrgWOHwfS0gBfX3lOeUAGRQCoVAlwY2qzCZ0OWLAAKF9eHc8/bx5w773A+PHy9ogRJd+NnX/eosoJ5UFIgg4GhnIiIiIiIjuqVk0urQnl167JZUYGsGOHGsq16rpuqk0bWQG/dQuYPVuua9hQXgAgJUUuOZ7ctsqXl7Pve3rKyfbuu0+uf/ttOenb3LlAuXIl2yaeEq2ockK5GwQCkIzMzCCNG0RERERE5LyKMtmbEsoBYONGxwrl7u6yK/WCBcDixXJd48ZAnTrm23E8ue099BCQmAj4+KjrPD3l3ANa9KBgpbyofH0BD3lMg+cqJyIiIiKyLyWUr1kDnDlTuMco3dcB4Lff1BnOHSGUA8Cjj8qlMnld48aAvz8QHa1uw0q5ffj65g3gWg1pYCgvKp3ObFw5QzkRERERkf307QsEBABHjsjwqpxaLD8GA5CQoN4+flyOK/fzA2rVsm9bC6tDB6BMGfV2kyZyWbeuuo6VcufHUF4cISEAGMqJiIiIiOytZk15mrCOHWW4HjkS+PPP/Le/ccO8Aq1o0kR2HXcEnp7qxG4A0KiRXNarp65jpdz5MZQXByvlREREREQlpmpVYPNm4Ikn5O3Vq/PfVum6XrYs0LOnur5pU/u1ryiU11KnDhAYKK+bhnJWyp0fQ3lxMJQTEREREZUoNzdgwAB5/ZdfACEsb6dM8hYWBnTpoq53lPHkiu7dgSVLgKVL1XWslLsWzr5eHAzlREREREQlrnNnwNsbOHdOjhU3DbEKJZRXqAC0bi2r0HfuAPfcU7JtvRudDnjqKfN1DRrIqOHvL0/hRc6NlfLiYCgnIiIiIipxAQFybDkArFtneRul+3pYGODlBfz0kzz1WIMGJdHC4gkIAA4dAv79V/YMIOfGP3FxMJQTEREREWni4Yfl8pdfLN9v2n0dAB54ABgyxP7tspWoKCAiQutWUElgKC8OhnIiIiIiIk0ok7ft2iVnWs9NqZRXqFBybSIqCoby4jAJ5VlZGreFiIiIiMiFREXJU4gZDMBvv+W9P3elnMhRMZQXByvlRERERESaUbqwWzo1GkM5lRYM5cVhEsrT0zVuCxERERGRi+nbVy7XrAG++cb8PnZfp9KCobw4TEL5ihX5nyORiIiIiIhsr1kz4O235fXnngN27pTXhWClnEoPhvLiyAnlIbpE7N6d/+kYiIiIiIjIPt57D3j0USAzE3jkEeDSJXk+cqUnKyvl5OgYyosjJ5RX8LoNQB6l0+s1bA8RERERkYtxcwOWLAEaNwauXwcWLlS7rvv7ywuRI2MoL46cUO6TmYQywQYcOQIsX65xm4iIiIiIXIy/v+y+Dsgu7Oy6TqUJQ3lx5IRynRAYNyoZgMDE8QZkZGjbLCIiIiIiV9O2rVzu3g1cviyvM5RTacBQXhy+voCHBwDgxd5XcNq9Ltacb4LPP0rVuGFERERERK6lfn1ZM0tOBjZtkus4npxKA4by4tDpjNVyv08/QA39STTCf8iePBVxcRq3jYiIiIjIhbi7A23ayOs//SSXrJRTacBQXlw5odz0xIijsj7CJy+d1qhBRERERESuSenCfv26XLJSTqUBQ3lxKaFcCKBaNdxu2QXeyETbVaPwzx6euJyIiIiIqKTcf7/5bVbKqTTw0LoBhTF37lx89NFHuHr1KurXr4/Zs2ejrXIYTGtKKAeAd95BSJs2yK7bAD0Mv+GNB+Yh8/cXcX9bnXbtI1V2NnDsGHDoEFCuHNCwIRAZKYch5Ld9Vhbg46NuI4QcqHTlCoxjFPz85JSffn7yAsgTY6alyWV6ujxxZnb23S9ZWfJxqanyeaOjgSpVAC8v+dxKG4SQJ+C8dQtISZH9tTw95RwHuS/Z2XJb00t6ujx/SO6Lu7tcpqUBt2+bX4QAKlYEKlWSy4oV5TedMrfCrl3Azz8DBw4AtWoBLVoA9eoBERFAeLh8b7y85Gu8dg1ISJDnEPTwkM+rtNfPDwgKAgICgIwM+fpSUuR7kpqqvg+enkCZMvICyPuU964wy6wseVHe96wsed+dO/J5g4OBsmXlZ6VsWfPr3t7qe5mVJV+Hm5u6jXIJCJCv88oV9XLtmvo6lYuvL2AwyM9Jaqp8TEKC/KxlZMjnCAyUr7VsWbkMCZHrk5Pl+5N7mZozt4VOJ58jLEyWC5Sln59sf1KSeklPl+sDAuTF39/8ekYGEBtrfklMlO3395d/62rVgMqV5Wt0c5PtrlJFtvnQIfk5SUhQ36vQULkMCwPq1JF/e+VzfvOm/HcWFyefJz1dvuayZeXnLyJCvhYPD7l9QoKc2Uf5zGZlydfv4SG3jYyUjwXk+52cLPd7+7ZcJiXJv6W7e/6XyEj5+SYiIofUsqX8mlYmXmYop9LA4UP5ihUrMHr0aMydOxdt2rTBggUL8OCDD+LYsWOoUqWK1s1TQ3nVqsCTTwKensgc/SY8Zk7BR6kj8VuHX7FkwucIvy8aXl7mv/MDAszzYHa2/M2XX0Z0GULIH8wGg7yeni7D5/XrwJEjMvRduCC3Vd4snc78uo+PDC1+fsDFi8CpUzKQp6ebP5cSGCIjZchLTZU/zJXQbTCooSY7G5xav5CuXAG2bdO6FVQaVawow/y1azJU341OJ4N9UlLJ/Pt88UVg7lz7Pw8RERWJtzdwzz3Ajh3yNruvU2ng8KF85syZePbZZzFs2DAAwOzZs7FhwwbMmzcP06ZN07h1AO67D1i7FvjgAxnqAPh9OAmZQX7QTX4XDxrWA5OqIhFBuIRIZMAbidAjGXp4Ihue7noI6JBtcINeuMEAeRE6eYHODbAQ0nW5ruggLN+f54a6be595H0OUeA2OpPtoFNzsQ45+dh0Xc7FTejhKTLhYTC56DPhJrLhZsiGm9DDzaC33CAbyPQNws3KjeF15yaCr52E+507wNGj8pIfIWTl0XRVUBBEhXDAzQ26tFQgLRVISYEuLU1u4O0tq4c+PvLi5ZV/JTv3RamcJicD588Dly7J6p1COfigVE4DAuT9uSvuynV3d7mtcgkKkm0yPfhhetHr1YMaphe9Hrh6VVYir1yBuHwFSEiASE8HMjKgr1YTaV17I63Z/XA7dwYeh/fB5/I5eN24AveEa3K7zCwId3cYyodBV7483Lw9odPn6i2QmiqrlsnJsh1KTwSlN4JbzqibjAx5sObmTbnO11d97ywtc6/z8pLvt+nfxc9Pvkc+PrJ6evOmvNy4Yb7MyJDvY2Cg3I+bm2y7so1ySU6WgTF37wIh1Mq/UtV2c1M/N6GhQPny8jm8vWXbkpLk61Uut2/LtptWtE2Xvr5yn0rvjvh4GXSVZWqq3H9wsFwqz5WWZl51N73u4SGr4MpFqTwrj7l8GTh3Ti5zPk/6G7eA2Fi4376J9KhaSG/aGobKUfBMuQXPxBtwv30DbrdvwO3KJeiuXpUHdEz/rZUrJ3tahIRA5+Mj23D9uvwsKgfOEhLUfxsVKsg2BQfL1yOE7IFw5YpsV+5/S8p7EBIil+7ucpv8LpUqWfNfDhERaeD++9VQzko5lQY6IYS4+2bayMzMhJ+fH3744Qc88sgjxvWjRo3CwYMHsX379jyPycjIQIZJtSQpKQmVK1dGYmIigpRukbakdLEsVy7PXfojx3HpoeGIuvCn7Z/XxaTDG7dQBidRGwfQFKdQC4acKRHkwQNhdt0H6QjBbQTiDi4hEqdRE8dRF2dQAyLncV7IQDWcQyVcRiQuwR16pMAfKfDHVUTgMiohBf7wRwr8kIoseCID3khGAFLhb7Gd7jqD7OXq6Wbs7Zq7h3jujgAGg/r43AcxTFlz25aPNc34plnfmv85PD3zL3p6eMgM7O0t861OJ7OPcnxAeZ+U99LS0vR9BszbZul6cdbld7/BIF9jZqaar708DPIAm8j/b216Pb9Lftso+8x9fMXSZ6yg2zqd5fdTWSrHfEyzqfJYSxfT+5TX7I5s6O9yHDgYt1FXdxJZwh1xCEc8KiALXsbX7+VlfvF00yMkKwHlsuJwyxCMWEMlZAgviyMzdDrAHXr461IBnQ46HZDuJg/yFOb9VtYNHAhMmFDgyyiUpKQkBAcH2++7ycXw/SQiU7/9BvToIa/fvKmOdCMqSdZ8Nzl0pfz69evQ6/UIy3WIKywsDHH5nHNs2rRpePfdd0uieZJOZzGQA4B7g7qIOr9dVpliY2XFMzsbws0dGdnuSEqRF50OCPAzwMfLAEO2AfpsgexMA/RZBugz9YBOZ/yBCxSwzKldmw09Vhojcq9Xk1eB2+d6buN2uZ5bb9CZ/WDP/QNeCXJ6gw4Z8JYX4YVMeCHD4IlMg4fxkqH3QGa2G7L0bsjM0iFdeCPF4GsxHOYeFpx7qderQwbKBwFVTIrXPj7eMBjq4urVuvjrktze21sGkdRUIPMOkH4HuJNV+B94euEGfTaA7EI/xKkoQ8OV4nNamjokGpD/XDw9ZXBVZGerBVnnw7k0AfnvKjTUAwaD/DxkZpp/LhSJCMHf4l6L+xBCPsa8h7o7LiIcQHghW+IOIND6F2Di2rViPZyIiEpAmzayA1RAgFwSOTqHDuUKXa7SnRAizzrF2LFjMWbMGONtpVKuKX9/OYFRnToAZPdun5wLh7k4vowMGRh1OvPqoVL1Vg5AWFpa6hmuVO2UpWnVE0CegyDKusLetvVjlYBt2ss79zpPT/V9yf34lBR5lDogQO0drISztDT1ogQ1IG8lHDCvnJtez720VPXPryeANdcLc78ySkHpMa0cfLBU4Vben9wXa9abfpaKet204m7p/TQYzCvoppV047CUXJ9l09v+/rKXv6X/sg0G8xEXysXTUx448/SU9ynvpeklIyPvPIFKu3L3BtDr86/kF+Z9Nl0XEZH3dRARkWMJCpLTEHl6cq4mKh0cOpSHhobC3d09T1U8Pj4+T/Vc4e3tDW9v75JoHrkIb295IevpdOrk3aaUIeC+vtq0ixyDm5vaFT0/3t4y2BMREVmDU4BQaeLQfSu9vLzQvHlzbNq0yWz9pk2b0Lp1a41aRURERERERGQbDl0pB4AxY8Zg8ODBaNGiBVq1aoUvvvgCFy9exPDhw7VuGhEREREREVGxOHwo79evH27cuIHJkyfj6tWraNCgAdavX4+oqCitm0ZERERERERULA4fygFgxIgRGDFihNbNICIiIiIiIrIphx5TTkREREREROTMGMqJiIiIiIiINMJQTkRERERERKQRhnIiIiIiIiIijTCUExEREREREWmEoZyIiIiIiIhIIwzlRERERERERBphKCciIiLN/frrr7j33nvh6+uL0NBQ9O3bV+smERER/b+9e4+puv7/AP48cPAIDBA408MR5bJMAq+BOZOyr5bzlrNMpyHSaikmCFmmSx3oUlQSu5iYzfxHG86FjmpqeInUZjAuipfETbzLyGlw8ILgef3+cH5+HSE9lPK58HxsZ+N8Pu9zfD0Hnufe5xwO7cKs9gBERETUsX3//fd49913sXz5cgwfPhwigsrKSrXHIiIiahfclBMREZFqmpubkZaWhuzsbLzzzjvK8d69e6s4FRERUfsx/KZcRAAA9fX1Kk9CRER0z/1Out9RHVlZWRkuXboEDw8PDBw4EDU1NRgwYAA+/fRTxMTEtHqbxsZGNDY2Ktfr6uoAsOuJiEg72tL1ht+UOxwOAECPHj1UnoSIiMiVw+FAQECA2mOo6syZMwCAzMxM5OTkIDw8HKtXr8awYcNQVVWFoKCgFrfJysrCkiVLWhxn1xMRkda40/UmMfjT9E6nE5cvX4afnx9MJtN/uq/6+nr06NEDFy5cgL+//2OaUD1GymOkLADzaJmRsgDGyqOnLCICh8MBu90ODw9jfuZqZmZmqxvnvyspKUFVVRUSEhLw9ddfY8aMGQDuvRIeGhqKTz75BDNnzmxxuwdfKXc6nbh27RqCg4P/c9cD+vpZehQjZQGMlcdIWQBj5TFSFoB51NKWrjf8K+UeHh4IDQ19rPfp7++v6R+AtjJSHiNlAZhHy4yUBTBWHr1kMfor5CkpKZgyZcpD14SHhyvvaIuOjlaOWywWREZG4vz5863ezmKxwGKxuBzr0qXLfxu4FXr5WXKHkbIAxspjpCyAsfIYKQvAPGpwt+sNvyknIiKi9me1WmG1Wh+5LjY2FhaLBadOnUJ8fDwAoKmpCWfPnkVYWNiTHpOIiEh13JQTERGRavz9/ZGcnIyMjAz06NEDYWFhyM7OBgBMmjRJ5emIiIiePG7K28BisSAjI6PFW+b0ykh5jJQFYB4tM1IWwFh5jJSlo8nOzobZbEZiYiJu3bqFwYMHY9++fQgMDFRlHiP9LBkpC2CsPEbKAhgrj5GyAMyjB4b/oDciIiIiIiIirTLmR74SERERERER6QA35UREREREREQq4aaciIiIiIiISCXclBMRERERERGphJvyNli3bh0iIiLQuXNnxMbG4sCBA2qP9EhZWVkYNGgQ/Pz80LVrV0yYMAGnTp1yWSMiyMzMhN1uh7e3N1566SUcP35cpYndl5WVBZPJhPT0dOWY3rJcunQJ06ZNQ3BwMHx8fDBgwACUlpYq5/WUp7m5GYsWLUJERAS8vb0RGRmJpUuXwul0Kmu0mufXX3/Fq6++CrvdDpPJhB07dricd2fuxsZGpKamwmq1wtfXF+PHj8fFixfbMcX/e1iepqYmzJ8/H3379oWvry/sdjumT5+Oy5cvu9yHXvI8aObMmTCZTPjss89cjmspD2kbu15b2PXaoueuB4zV9+x6Y3U9N+Vu2rp1K9LT07Fw4UKUl5fjhRdewOjRo3H+/Hm1R3uooqIizJ49G4cPH0ZhYSGam5sxcuRI3LhxQ1mzatUq5OTkYO3atSgpKYHNZsMrr7wCh8Oh4uQPV1JSgg0bNqBfv34ux/WU5fr16xg6dCi8vLywc+dOnDhxAqtXr0aXLl2UNXrKs3LlSqxfvx5r167FyZMnsWrVKmRnZ+PLL79U1mg1z40bN9C/f3+sXbu21fPuzJ2eno7t27cjLy8PBw8eRENDA8aNG4e7d++2VwzFw/LcvHkTZWVlWLx4McrKypCfn4+qqiqMHz/eZZ1e8vzdjh078Pvvv8Nut7c4p6U8pF3sem1h12svj567HjBW37PrDdb1Qm557rnnJDk52eVYVFSULFiwQKWJ/p3a2loBIEVFRSIi4nQ6xWazyYoVK5Q1t2/floCAAFm/fr1aYz6Uw+GQXr16SWFhoQwbNkzS0tJERH9Z5s+fL/Hx8f94Xm95xo4dK2+//bbLsddff12mTZsmIvrJA0C2b9+uXHdn7r/++ku8vLwkLy9PWXPp0iXx8PCQXbt2tdvsrXkwT2uKi4sFgJw7d05E9Jnn4sWL0r17dzl27JiEhYXJmjVrlHNazkPawq7XDna9NvMYpetFjNX37Hpt53EHXyl3w507d1BaWoqRI0e6HB85ciR+++03lab6d+rq6gAAQUFBAIDq6mrU1NS4ZLNYLBg2bJhms82ePRtjx47Fyy+/7HJcb1kKCgoQFxeHSZMmoWvXrhg4cCC++eYb5bze8sTHx2Pv3r2oqqoCABw5cgQHDx7EmDFjAOgvz33uzF1aWoqmpiaXNXa7HX369NF0tvvq6upgMpmUV270lsfpdCIxMRHz5s1DTExMi/N6y0PqYNdrC7tem3mM2vWA8fueXa9tZrUH0IOrV6/i7t276Natm8vxbt26oaamRqWp2k5EMHfuXMTHx6NPnz4AoMzfWrZz5861+4yPkpeXh7KyMpSUlLQ4p7csZ86cQW5uLubOnYuPP/4YxcXFmDNnDiwWC6ZPn667PPPnz0ddXR2ioqLg6emJu3fvYtmyZZg6dSoA/X1/7nNn7pqaGnTq1AmBgYEt1mj9MeL27dtYsGAB3nzzTfj7+wPQX56VK1fCbDZjzpw5rZ7XWx5SB7teO9j12s1j1K4HjN337Hrt5XkQN+VtYDKZXK6LSItjWpaSkoKjR4/i4MGDLc7pIduFCxeQlpaGn3/+GZ07d/7HdXrIAtx7xi8uLg7Lly8HAAwcOBDHjx9Hbm4upk+frqzTS56tW7di8+bN+O677xATE4OKigqkp6fDbrcjKSlJWaeXPA/6N3NrPVtTUxOmTJkCp9OJdevWPXK9FvOUlpbi888/R1lZWZtn02IeUp9eH6PuY9drC7v+Hq3maY3R+p5dr708reHb191gtVrh6enZ4lmW2traFs+maVVqaioKCgqwf/9+hIaGKsdtNhsA6CJbaWkpamtrERsbC7PZDLPZjKKiInzxxRcwm83KvHrIAgAhISGIjo52OfbMM88oHyikp+8NAMybNw8LFizAlClT0LdvXyQmJuL9999HVlYWAP3luc+duW02G+7cuYPr16//4xqtaWpqwuTJk1FdXY3CwkLlmXNAX3kOHDiA2tpa9OzZU3lcOHfuHD744AOEh4cD0FceUg+7XhvY9fdoNY9Rux4wZt+z67WZpzXclLuhU6dOiI2NRWFhocvxwsJCPP/88ypN5R4RQUpKCvLz87Fv3z5ERES4nI+IiIDNZnPJdufOHRQVFWku24gRI1BZWYmKigrlEhcXh4SEBFRUVCAyMlI3WQBg6NChLf5kTVVVFcLCwgDo63sD3PukTw8P14cUT09P5c+k6C3Pfe7MHRsbCy8vL5c1V65cwbFjxzSZ7X5Jnz59Gnv27EFwcLDLeT3lSUxMxNGjR10eF+x2O+bNm4fdu3cD0FceUg+7XhvY9drOY9SuB4zX9+x67eZpVXt+qpye5eXliZeXl2zcuFFOnDgh6enp4uvrK2fPnlV7tIeaNWuWBAQEyC+//CJXrlxRLjdv3lTWrFixQgICAiQ/P18qKytl6tSpEhISIvX19SpO7p6/fyKriL6yFBcXi9lslmXLlsnp06dly5Yt4uPjI5s3b1bW6ClPUlKSdO/eXX788Ueprq6W/Px8sVqt8tFHHylrtJrH4XBIeXm5lJeXCwDJycmR8vJy5RNK3Zk7OTlZQkNDZc+ePVJWVibDhw+X/v37S3Nzs6byNDU1yfjx4yU0NFQqKipcHhcaGxt1l6c1D34iq4i28pB2seu1iV2vHXruehFj9T273lhdz015G3z11VcSFhYmnTp1kmeffVb5UyNaBqDVy6ZNm5Q1TqdTMjIyxGazicVikRdffFEqKyvVG7oNHixqvWX54YcfpE+fPmKxWCQqKko2bNjgcl5Peerr6yUtLU169uwpnTt3lsjISFm4cKHLg79W8+zfv7/V/ydJSUki4t7ct27dkpSUFAkKChJvb28ZN26cnD9/XoU0D89TXV39j48L+/fv112e1rRW1FrKQ9rGrtcedr126LnrRYzV9+x6Y3W9SUTk8bzmTkRERERERERtwd8pJyIiIiIiIlIJN+VEREREREREKuGmnIiIiIiIiEgl3JQTERERERERqYSbciIiIiIiIiKVcFNOREREREREpBJuyomIiIiIiIhUwk05ERERERERkUq4KSeiJ85kMmHHjh1qj0FERERPCLue6N/jppzI4N566y2YTKYWl1GjRqk9GhERET0G7HoifTOrPQARPXmjRo3Cpk2bXI5ZLBaVpiEiIqLHjV1PpF98pZyoA7BYLLDZbC6XwMBAAPfebpabm4vRo0fD29sbERER2LZtm8vtKysrMXz4cHh7eyM4OBgzZsxAQ0ODy5pvv/0WMTExsFgsCAkJQUpKisv5q1ev4rXXXoOPjw969eqFgoKCJxuaiIioA2HXE+kXN+VEhMWLF2PixIk4cuQIpk2bhqlTp+LkyZMAgJs3b2LUqFEIDAxESUkJtm3bhj179rgUcW5uLmbPno0ZM2agsrISBQUFeOqpp1z+jSVLlmDy5Mk4evQoxowZg4SEBFy7dq1dcxIREXVU7HoiDRMiMrSkpCTx9PQUX19fl8vSpUtFRASAJCcnu9xm8ODBMmvWLBER2bBhgwQGBkpDQ4Ny/qeffhIPDw+pqakRERG73S4LFy78xxkAyKJFi5TrDQ0NYjKZZOfOnY8tJxERUUfFrifSN/5OOVEH8L///Q+5ubkux4KCgpSvhwwZ4nJuyJAhqKioAACcPHkS/fv3h6+vr3J+6NChcDqdOHXqFEwmEy5fvowRI0Y8dIZ+/fopX/v6+sLPzw+1tbX/NhIRERH9DbueSL+4KSfqAHx9fVu8xexRTCYTAEBElK9bW+Pt7e3W/Xl5ebW4rdPpbNNMRERE1Dp2PZF+8XfKiQiHDx9ucT0qKgoAEB0djYqKCty4cUM5f+jQIXh4eODpp5+Gn58fwsPDsXfv3nadmYiIiNzHrifSLr5STtQBNDY2oqamxuWY2WyG1WoFAGzbtg1xcXGIj4/Hli1bUFxcjI0bNwIAEhISkJGRgaSkJGRmZuLPP/9EamoqEhMT0a1bNwBAZmYmkpOT0bVrV4wePRoOhwOHDh1Campq+wYlIiLqoNj1RPrFTTlRB7Br1y6EhIS4HOvduzf++OMPAPc+LTUvLw/vvfcebDYbtmzZgujoaACAj48Pdu/ejbS0NAwaNAg+Pj6YOHEicnJylPtKSkrC7du3sWbNGnz44YewWq1444032i8gERFRB8euJ9Ivk4iI2kMQkXpMJhO2b9+OCRMmqD0KERERPQHseiJt4++UExEREREREamEm3IiIiIiIiIilfDt60REREREREQq4SvlRERERERERCrhppyIiIiIiIhIJdyUExEREREREamEm3IiIiIiIiIilXBTTkRERERERKQSbsqJiIiIiIiIVMJNOREREREREZFKuCknIiIiIiIiUsn/AUpCVDCz8j6kAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -526,7 +1550,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -552,7 +1576,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -577,23 +1601,79 @@ "wandb.finish()" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus observations and climatology." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.409\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACut0lEQVR4nOzdeVhUZfsH8O/MsG/Dvu+CCoIKioq7qbnlUpm7prb9UttstbdSKzPbXDItLTEtl8ottTSXXMEFFDcQRdlEdmTfZ87vD2SKQGVw4MzA93Ndc70vZw5n7nmcgPs8z3PfEkEQBBARERERERGRTpCKHQARERERERERNRwTeSIiIiIiIiIdwkSeiIiIiIiISIcwkSciIiIiIiLSIUzkiYiIiIiIiHQIE3kiIiIiIiIiHcJEnoiIiIiIiEiHMJEnIiIiIiIi0iF6YgegjZRKJW7fvg1zc3NIJBKxwyEiIiIiIqIWThAEFBYWwtnZGVLp/efcmcjX4/bt23BzcxM7DCIiIiIiImplUlJS4Orqet9zmMjXw9zcHED1AFpYWIgcDREREREREbV0BQUFcHNzU+Wj98NEvh41y+ktLCyYyBMREREREVGzacj2bha7IyIiIiIiItIhTOSJiIiIiIiIdAgTeSIiIiIiIiIdwj3yRERERERED0GhUKCyslLsMEgH6OvrQyaTPfR1mMgTERERERE1UlFREW7dugVBEMQOhXSARCKBq6srzMzMHuo6TOSJiIiIiIgaQaFQ4NatWzAxMYGdnV2Dqo1T6yUIArKysnDr1i34+vo+1Mw8E3kiIiIiIqJGqKyshCAIsLOzg7GxsdjhkA6ws7NDYmIiKisrHyqRZ7E7IiIiIiKih8CZeGooTX1WmMgTERERERER6RAuradWQ6EUcCYhF5mFZbA3N0I3L2vIpLx7SkREREREuoWJPLUK+y6nYeHuGKTll6mOOcmNMH+kP4YGOIkYGRERERGR9vL09MSrr76KV199VexQNOLIkSMYMGAA7ty5A0tLS7HDaTQuracWb9/lNLz407laSTwApOeX4cWfzmHf5TSRIiMiIiIiEk9KSgqeeeYZODs7w8DAAB4eHnjllVeQk5Mjdmga0b9//zo3IHr27Im0tDTI5XJxgtIQJvLUoimUAhbujkF9XT1rji3cHQOFkn0/iYiIiKj1uHnzJrp27Ypr165h8+bNiI+Px7fffotDhw4hNDQUubm5osSlUCigVCqb7PoGBgZwdHTU+QKFoibyixcvRkhICMzNzWFvb48xY8YgLi6u1jnTp0+HRCKp9ejRo8cDr71t2zb4+/vD0NAQ/v7+2LFjR1O9DdJiZxJy68zE/5sAIC2/DGcSxPlBRUREREQthyAIKKmoEuUhCOpNTM2ePRsGBgb466+/0K9fP7i7u2PYsGE4ePAgUlNT8b///U91bmFhISZNmgQzMzM4Ozvj66+/rnWtBQsWwN3dHYaGhnB2dsbLL7+seq6iogJvvfUWXFxcYGpqiu7du+PIkSOq59evXw9LS0vs2bNHlb+tXbsWRkZGyMvLq/U6L7/8Mvr16wcAyMnJwcSJE+Hq6goTExMEBgZi8+bNqnOnT5+Oo0ePYvny5ao8MjExEUeOHIFEIql17W3btqFDhw4wNDSEp6cnvvzyy1qv6+npiU8++QQzZ86Eubk53N3dsWbNmlrvcc6cOXBycoKRkRE8PT2xePFitf491CXqHvmjR49i9uzZCAkJQVVVFf73v//h0UcfRUxMDExNTVXnDR06FGFhYaqvDQwM7nvdiIgIjB8/Hh999BEef/xx7NixA+PGjcOJEyfQvXv3Jns/pH0yC++dxDfmPCIiIiKieymtVMD/g/2ivHbMh0NgYtCw9C43Nxf79+/HokWLYGxsXOs5R0dHTJ48GVu3bsWqVasAAJ9//jneffddLFiwAPv378drr72G9u3bY/Dgwfjtt9+wdOlSbNmyBR06dEB6ejouXLigut6MGTOQmJiILVu2wNnZGTt27MDQoUNx6dIl+Pr6AgBKSkqwePFifP/997CxsYGrqyvmz5+Pbdu24ZlnngFQPVP/yy+/4MMPPwQAlJWVoUuXLnj77bdhYWGBvXv3YurUqfD29kb37t2xfPlyXLt2DQEBAarvqenh/m9RUVEYN24cFixYgPHjxyM8PByzZs2CjY0Npk+frjrvyy+/xEcffYR3330Xv/32G1588UX07dsX7du3x4oVK/D777/jl19+gbu7O1JSUpCSktLwf7xGEDWR37dvX62vw8LCYG9vj6ioKPTt21d13NDQEI6Ojg2+7rJlyzB48GDMmzcPADBv3jwcPXoUy5Ytq3WXpiVIzSuFi6Xxg09spezNjTR6HhERERGRrrt+/ToEQYCfn1+9z/v5+eHOnTvIysoCAPTq1QvvvPMOAKBt27Y4efIkli5disGDByM5ORmOjo4YNGgQ9PX14e7ujm7dugEAbty4gc2bN+PWrVtwdnYGALzxxhvYt28fwsLC8MknnwAAKisrsWrVKnTq1EkVw/jx47Fp0yZVIn/o0CHcuXMHTz31FADAxcUFb7zxhur8l156Cfv27cOvv/6K7t27Qy6Xw8DAACYmJvfNJb/66isMHDgQ77//vur9xcTE4PPPP6+VyA8fPhyzZs0CALz99ttYunQpjhw5gvbt2yM5ORm+vr7o3bs3JBIJPDw8Gvgv0XhaVbU+Pz8fAGBtbV3r+JEjR2Bvbw9LS0v069cPixYtgr29/T2vExERgddee63WsSFDhmDZsmX1nl9eXo7y8nLV1wUFBY18B83r8NUMPL8hCrMH+GD2AB8Y6LHkwX9187KGk9wI6fll9e6TlwBwlFe3oiMiIiIiehjG+jLEfDhEtNfWlJpl+jX7yENDQ2s9HxoaqsqtnnrqKSxbtgze3t4YOnQohg8fjpEjR0JPTw/nzp2DIAho27Ztre8vLy+HjY2N6msDAwN07Nix1jmTJ09GaGgobt++DWdnZ/z8888YPnw4rKysAFTP0H/66afYunUrUlNTVTndv1d2N0RsbCxGjx5d61ivXr2wbNkyKBQKyGTV4/rv+CQSCRwdHZGZmQmgehn/4MGD0a5dOwwdOhSPPfYYHn30UbXiUJfWZH6CIGDu3Lno3bs3AgICVMeHDRuGn3/+GYcPH8aXX36Js2fP4pFHHqmVeP9Xeno6HBwcah1zcHBAenp6vecvXrwYcrlc9XBzc9PMm2piR+KyUKUUsPzQdYz+5iSu3M4XOyStI5NKMH+kP4DqpP3far6eP9Kf/eSJiIiI6KFJJBKYGOiJ8lCneJuPjw8kEgliYmLqff7q1auwsrKCra3tfd8rALi5uSEuLg7ffPMNjI2NMWvWLPTt2xeVlZVQKpWQyWSIiopCdHS06hEbG4vly5errmVsbFwn/m7duqFNmzbYsmULSktLsWPHDkyZMkX1/JdffomlS5firbfewuHDhxEdHY0hQ4agoqKiweMAVOeh/33t+uoN6Ovr13n/NUX5goODkZCQgI8++gilpaUYN24cxo4dq1Yc6tKaRH7OnDm4ePFinaXv48ePx4gRIxAQEICRI0fizz//xLVr17B37977Xq++f4x7fbjnzZuH/Px81aOp9zNoysJRHfD1xCBYmegjNq0Ao1eexFcHrqGiqumqPOqioQFOWD0lGI7y2svnHeVGWD0lmH3kiYiIiKhVsbGxweDBg7Fq1SqUlpbWei49PR0///wzxo8fr8qfTp06VeucU6dOoX379qqvjY2NMWrUKKxYsQJHjhxBREQELl26hKCgICgUCmRmZsLHx6fWoyFbpydNmoSff/4Zu3fvhlQqxYgRI1TPHT9+HKNHj8aUKVPQqVMneHt74/r167W+38DAAAqF4r6v4e/vjxMnTtQ6Fh4ejrZt26pm4xvCwsIC48ePx9q1a7F161Zs27atSSv/a8XS+pdeegm///47jh07BldX1/ue6+TkBA8Pjzr/SP/m6OhYZ/Y9MzOzzix9DUNDQxgaGqofuMgkEglGdnJGaBsbvL/zMv68nI4Vh67jQEwGvniqIzo463ZvRE0aGuCEwf6OOJOQi8zCMtibVy+n50w8EREREbVGK1euRM+ePTFkyBB8/PHH8PLywpUrV/Dmm2/CxcUFixYtUp178uRJfPbZZxgzZgwOHDiAX3/9VTWxun79eigUCnTv3h0mJibYuHEjjI2N4eHhARsbG0yePBnTpk3Dl19+iaCgIGRnZ+Pw4cMIDAzE8OHD7xvj5MmTsXDhQixatAhjx46FkdE/E3M+Pj7Ytm0bwsPDYWVlha+++grp6em19v17enri9OnTSExMhJmZWZ0t3ADw+uuvIyQkBB999BHGjx+PiIgIrFy5UlXoryGWLl0KJycndO7cGVKpFL/++iscHR1haWnZ4GuoS9QZeUEQMGfOHGzfvh2HDx+Gl5fXA78nJycHKSkpcHK69yxqaGgoDhw4UOvYX3/9hZ49ez50zNrI1swQqyYHc3b+AWRSCULb2GB0ZxeEtrFhEk9ERERErZavry8iIyPRpk0bjB8/Hm3atMHzzz+PAQMGICIiolbS+/rrryMqKgpBQUH46KOP8OWXX2LIkOpaAJaWlli7di169eqFjh074tChQ9i9e7dqD3xYWBimTZuG119/He3atcOoUaNw+vTpBm1n9vX1RUhICC5evIjJkyfXeu79999HcHAwhgwZgv79+8PR0RFjxoypdc4bb7wBmUwGf39/2NnZITk5uc5rBAcH45dffsGWLVsQEBCADz74AB9++GGtQncPYmZmhiVLlqBr164ICQlBYmIi/vjjD0ilTZduSwR1Gw5q0KxZs7Bp0ybs2rUL7dq1Ux2Xy+UwNjZGUVERFixYgCeffBJOTk5ITEzEu+++i+TkZMTGxsLc3BwAMG3aNLi4uKh69YWHh6Nv375YtGgRRo8ejV27duG9995rcPu5goICyOVy5Ofnw8LComnefBPJLipXzc4DQHtHc3zxVCcEuHB2noiIiIhIk8rKypCQkAAvL69as8VE93K/z4w6eaioM/KrV69Gfn4++vfvDycnJ9Vj69atAACZTIZLly5h9OjRaNu2LZ5++mm0bdsWERERqiQeAJKTk5GWlqb6umfPntiyZQvCwsLQsWNHrF+/Hlu3bm0VPeRrZudXTgqCtakBrqYXYsw3nJ0nIiIiIiJqKUSdkddWujwj/2+cnSciIiIiajqckSd1tYgZeWpatmaGWD2lS63Z+dHfnMRXf8Vxdp6IiIiIiEhHMZFvBR7r6Iy/XuuL4YGOUCgFrDgcj1ErT+ByKvvOExERERER6Rom8q1E9d75LvhmUjBn54mIiIiIiHQYE/lWZkRHJ87OExERERER6TAm8q3QvWbnv+TsPBERERERkdZjIt+KjejohAOv9cWIQCcolAK+vjs7f+kWZ+eJiIiIiIi0FRP5Vs7GzBDfTA6uNTs/ZlX17Hx5lULs8IiIiIiISEctWLAAnTt3Vn09ffp0jBkz5qGuqYlrtARM5AnAv2bnO/5rdv7rk5ydJyIiIiJqYaZPnw6JRAKJRAJ9fX14e3vjjTfeQHFxcZO+7vLly7F+/foGnZuYmAiJRILo6OhGX6MlYyJPKjZmhvhmUjBWTQ6GjakB4jKqZ+e/2M/ZeSIiIiKilmTo0KFIS0vDzZs38fHHH2PVqlV444036pxXWVmpsdeUy+WwtLQU/RotARN5qmN4YHVl+5rZ+ZV/c3aeiIiIiKipKJQCIm7kYFd0KiJu5EChFJr8NQ0NDeHo6Ag3NzdMmjQJkydPxs6dO1XL4detWwdvb28YGhpCEATk5+fj+eefh729PSwsLPDII4/gwoULta756aefwsHBAebm5njmmWdQVlZW6/n/LotXKpVYsmQJfHx8YGhoCHd3dyxatAgA4OXlBQAICgqCRCJB//79671GeXk5Xn75Zdjb28PIyAi9e/fG2bNnVc8fOXIEEokEhw4dQteuXWFiYoKePXsiLi5Odc6FCxcwYMAAmJubw8LCAl26dEFkZKQmhrnJMJGnenF2noiIiIio6e27nIbeSw5j4tpTeGVLNCauPYXeSw5j3+W0Zo3D2NhYNfseHx+PX375Bdu2bVMtbR8xYgTS09Pxxx9/ICoqCsHBwRg4cCByc3MBAL/88gvmz5+PRYsWITIyEk5OTli1atV9X3PevHlYsmQJ3n//fcTExGDTpk1wcHAAAJw5cwYAcPDgQaSlpWH79u31XuOtt97Ctm3b8OOPP+LcuXPw8fHBkCFDVHHV+N///ocvv/wSkZGR0NPTw8yZM1XPTZ48Ga6urjh79iyioqLwzjvvQF9fX/1BbEZ6YgdA2m14oBO6e1njg9+vYO/FNKz8Ox4HYjLw+VMd0dHVUuzwiIiIiIh01r7LaXjxp3P47/x7en4ZXvzpHFZPCcbQAKcmj+PMmTPYtGkTBg4cCACoqKjAxo0bYWdnBwA4fPgwLl26hMzMTBgaGgIAvvjiC+zcuRO//fYbnn/+eSxbtgwzZ87Es88+CwD4+OOPcfDgwTqz8jUKCwuxfPlyrFy5Ek8//TQAoE2bNujduzcAqF7bxsYGjo6O9V6juLgYq1evxvr16zFs2DAAwNq1a3HgwAH88MMPePPNN1XnLlq0CP369QMAvPPOOxgxYgTKyspgZGSE5ORkvPnmm2jfvj0AwNfXt5Ej2Xw4I08PVN/s/OOrwvH5/qucnSciIiIiagSFUsDC3TF1kngAqmMLd8c02TL7PXv2wMzMDEZGRggNDUXfvn3x9ddfAwA8PDxUiTQAREVFoaioCDY2NjAzM1M9EhIScOPGDQBAbGwsQkNDa73Gf7/+t9jYWJSXl6tuHjTGjRs3UFlZiV69eqmO6evro1u3boiNja11bseOHVX/38mp+uZIZmYmAGDu3Ll49tlnMWjQIHz66aeq96TNmMhTg9XsnX/s7t75b/6+gVFfn8TFW3lih0ZEREREpFPOJOQiLb/+2WqgOplPyy/DmYTce57zMAYMGIDo6GjExcWhrKwM27dvh729PQDA1NS01rlKpRJOTk6Ijo6u9YiLi6s1660OY2Pjh34PglB9k0MikdQ5/t9j/14qX/OcUqkEUN0m78qVKxgxYgQOHz4Mf39/7Nix46Hja0pM5EktNmaGWDkpGKs5O09ERERE1GiZhfdO4htznrpMTU3h4+MDDw+PB+4HDw4ORnp6OvT09ODj41PrYWtrCwDw8/PDqVOnan3ff7/+N19fXxgbG+PQoUP1Pm9gYAAAUCjunWP4+PjAwMAAJ06cUB2rrKxEZGQk/Pz87vue/qtt27Z47bXX8Ndff+GJJ55AWFiYWt/f3JjIU6MMC3TCgbn9as3Oj/z6BGfniYiIiIgawN7cSKPnNaVBgwYhNDQUY8aMwf79+5GYmIjw8HC89957qurur7zyCtatW4d169bh2rVrmD9/Pq5cuXLPaxoZGeHtt9/GW2+9hQ0bNuDGjRs4deoUfvjhBwCAvb09jI2NsW/fPmRkZCA/v24HLVNTU7z44ot48803sW/fPsTExOC5555DSUkJnnnmmQa9t9LSUsyZMwdHjhxBUlISTp48ibNnz6p9I6C5MZGnRrM2NVDNztuaGeBaRhFn54mIiIiIGqCblzWc5EaQ3ON5CQAnuRG6eVk3Z1j1xyKR4I8//kDfvn0xc+ZMtG3bFhMmTEBiYqKqyvz48ePxwQcf4O2330aXLl2QlJSEF1988b7Xff/99/H666/jgw8+gJ+fH8aPH6/at66np4cVK1bgu+++g7OzM0aPHl3vNT799FM8+eSTmDp1KoKDgxEfH4/9+/fDysqqQe9NJpMhJycH06ZNQ9u2bTFu3DgMGzYMCxcuVGOEmp9EqNlYQCoFBQWQy+XIz8+HhYWF2OHohNziCsz//Qp2X7gNAGjrYIYvnurEyvZERERE1GKVlZUhISEBXl5eMDJSf+a8pmo9gFpF72qS++aqWk/N536fGXXyUM7Ik0ZYmxrg64lB+HZK7dn5z/Zxdp6IiIiIqD5DA5ywekowHOW1EzpHuRGTeLov9pEnjRoa4IRuXjaq2flVR27gQEwGvniqEzq5WYodHhERERGRVhka4ITB/o44k5CLzMIy2JtXL6eXSe+16J6IM/LUBP47O389swhPrObsPBERERFRfWRSCULb2GB0ZxeEtrFhEk8PxESemszQACf89Vo/jOzkDIVSwKojN/DYihO4kJIndmhEREREREQ6i4k8Nan6ZucfX3USSzg7T0RERERE1ChM5HWYQikg4kYOdkWnIuJGDhRK7W1AUDM7P6qTM5QCsPru7Hw0Z+eJiIiIiIjUwmJ3Omrf5TQs3B2DtPwy1TEnuRHmj/TX2uqW1qYGWDExCMMDnfDezkvVe+dXncQL/drglYG+MNKXiR0iERERERGR1uOMvA6q6Tf57yQeANLzy/DiT+ew73KaSJE1zNAARxz4z+z8yK85O09ERERERNQQTOR1jEIpYOHuGNS3iL7m2MLdMVq9zB4ArO7Ozn87pQtszQxVs/Of/nkVZZXcO09ERERERHQvTOR1zJmE3Doz8f8mAEjLL8OZhNzmC+ohVM/O98XoztWz898evYHHODtPRERERCQ6iUSCnTt3AgASExMhkUgQHR0takz3ou3xaRoTeR2TWXjvJL4x52kDK1MDLJ8QhO+mVs/Ox3N2noiIiIioyaWnp+Oll16Ct7c3DA0N4ebmhpEjR+LQoUN1znVzc0NaWhoCAgKaNKbWlpA3Fovd6Rh7cyONnqdNhnRwRDdPayzYfQW7om/j26M3cDA2A5+P7YggdyuxwyMiIiIiahIKhQLHjx9HWloanJyc0KdPH8hkTVsIOjExEb169YKlpSU+++wzdOzYEZWVldi/fz9mz56Nq1ev1jpfJpPB0dGxSWOihuOMvI7p5mUNJ7kRJPd4XoLq6vXdvKybMyyNqW92/snV4Vj8Zyxn54mIiIioxdm+fTs8PT0xYMAATJo0CQMGDICnpye2b9/epK87a9YsSCQSnDlzBmPHjkXbtm3RoUMHzJ07F6dOnapz/n9nyo8cOQKJRIL9+/cjKCgIxsbGeOSRR5CZmYk///wTfn5+sLCwwMSJE1FSUqK6zr59+9C7d29YWlrCxsYGjz32GG7cuKF63svLCwAQFBQEiUSC/v37AwCUSiU+/PBDuLq6wtDQEJ07d8a+ffvu+x6PHj2Kbt26wdDQEE5OTnjnnXdQVVWler6wsBCTJ0+GqakpnJycsHTpUvTv3x+vvvoqAODDDz9EYGBgnet26dIFH3zwQYPGuakwkdcxMqkE80f6A0CdZL7m6/kj/SGT3ivV1w1DOtTeO//d0Zt47OsTOJ98R+zQiIiIiIg0Yvv27Rg7dixu3bpV63hqairGjh3bZMl8bm4u9u3bh9mzZ8PU1LTO85aWlg2+1oIFC7By5UqEh4cjJSUF48aNw7Jly7Bp0ybs3bsXBw4cwNdff606v7i4GHPnzsXZs2dx6NAhSKVSPP7441AqlQCAM2fOAAAOHjyItLQ01RgsX74cX375Jb744gtcvHgRQ4YMwahRo3D9+vV640pNTcXw4cMREhKCCxcuYPXq1fjhhx/w8ccfq86ZO3cuTp48id9//x0HDhzA8ePHce7cOdXzM2fORExMDM6ePas6dvHiRZw/fx7Tp09v8Bg1BSbyOmhogBNWTwmGo7z28nlHuRFWTwnW2j7y6uLsPBERERG1VAqFAq+88goEoW63qZpjr776KhQKzf/dGx8fD0EQ0L59+4e+1scff4xevXohKCgIzzzzDI4ePYrVq1cjKCgIffr0wdixY/H333+rzn/yySfxxBNPwNfXF507d8YPP/yAS5cuISYmBgBgZ2cHALCxsYGjoyOsratXGn/xxRd4++23MWHCBLRr1w5LlixB586dsWzZsnrjWrVqFdzc3LBy5Uq0b98eY8aMwcKFC/Hll19CqVSisLAQP/74I7744gsMHDgQAQEBCAsLqzXerq6uGDJkCMLCwlTHwsLC0K9fP3h7ez/02D0MJvI6amiAE068/Qg2P9cDyyd0xubneuDE24+0mCT+34Z0cMTBuX0x5l+z8yNWHOfsPBERERHprOPHj9eZif83QRCQkpKC48ePa/y1a24USCQPv4q3Y8eOqv/v4OAAExOTWkmug4MDMjMzVV/fuHEDkyZNgre3NywsLFRL6ZOTk+/5GgUFBbh9+zZ69epV63ivXr0QGxtb7/fExsYiNDS01nvs1asXioqKcOvWLdy8eROVlZXo1q2b6nm5XI527drVus5zzz2HzZs3o6ysDJWVlfj5558xc+bM+w1Js2CxOx0mk0oQ2sZG7DCahaWJAZZNCMLwQCe8u+MybmQV48nV4XiurzdeG9QWRvpNWwyEiIiIiEiT0tLSNHqeOnx9fSGRSBAbG4sxY8Y81LX09fVV/18ikdT6uuZYzbJ5ABg5ciTc3Nywdu1aODs7Q6lUIiAgABUVFQ98rf/eeBAE4Z43I+p77t83MO51M+O/KyRGjhwJQ0ND7NixA4aGhigvL8eTTz75wFibGmfkSac8end2/vEgl1qz8+c4O09EREREOsTJqWEraRt6njqsra0xZMgQfPPNNyguLq7zfF5ensZfEwBycnIQGxuL9957DwMHDoSfnx/u3Kn9d7yBgQEA1FribmFhAWdnZ5w4caLWueHh4fDz86v3tfz9/REeHl4rMQ8PD4e5uTlcXFzQpk0b6Ovrq/bkA9Uz///dc6+np4enn34aYWFhCAsLw4QJE2BiYtK4AdAgJvKkcyxNDLB0fGesndYVduaGuJFVjLGrw7H4D+6dJyIiIiLd0KdPH7i6ut5zRlkikcDNzQ19+vRpktdftWoVFAoFunXrhm3btuH69euIjY3FihUrEBoa2iSvaWVlBRsbG6xZswbx8fE4fPgw5s6dW+sce3t7GBsbY9++fcjIyEB+fj4A4M0338SSJUuwdetWxMXF4Z133kF0dDReeeWVel9r1qxZSElJwUsvvYSrV69i165dmD9/PubOnQupVApzc3M8/fTTePPNN/H333/jypUrmDlzJqRSaZ1/k2effRaHDx/Gn3/+qRXL6gEm8qTDBvs74MBr/5qdP8bZeSIiIiLSDTKZDMuXLwdQd3l3zdfLli1rsn7yXl5eOHfuHAYMGIDXX38dAQEBGDx4MA4dOoTVq1c3yWtKpVJs2bIFUVFRCAgIwGuvvYbPP/+81jl6enpYsWIFvvvuOzg7O2P06NEAgJdffhmvv/46Xn/9dQQGBmLfvn34/fff4evrW+9rubi44I8//sCZM2fQqVMn/N///R+eeeYZvPfee6pzvvrqK4SGhuKxxx7DoEGD0KtXL/j5+cHIqHZRcV9fX/Ts2RPt2rVD9+7dNTwqjSMR6iuT2MoVFBRALpcjPz8fFhYWYodDDXAgJgPv7riErMJySCXAc3288dpg7p0nIiIioqZTVlaGhIQEeHl51Un+Gmr79u145ZVXahW+c3Nzw7Jly/DEE09oKlRqgOLiYri4uODLL7/EM888ozpeU+H/hRdeqLOCQF33+8yok4ey2B21CIP9HRDiaYWFu2Ow43wqvjt2EwdiM/DFU50Q7G4ldnhERERERPV64oknMHr0aBw/fhxpaWlwcnJCnz59mmwmnv5x/vx5XL16Fd26dUN+fj4+/PBDAFCtAgCAzMxMbNy4EampqZgxY4ZYodbBRJ5ajJq989WV7S/h5t2988/28cZczs4TERERkZaSyWTo37+/2GG0Sl988QXi4uJgYGCALl264Pjx47C1tVU97+DgAFtbW6xZswZWVtozQchEnlqcmtn5D3fHYPv5VKw5dhMHYzPw+dhO6OKhPf/x6QKFUsCZhFxkFpbB3twI3bysIZM+fL9RIiIiIiKxBQUFISoq6r7naOtOdCby1CJZmhjgq7uz8/Puzs4/9S1n59Wx73IaFu6OQVp+meqYk9wI80f6Y2iA5tugEBERERFRw4hatX7x4sUICQmBubk57O3tMWbMGMTFxd3z/BdeeAESiQTLli2773XXr18PiURS51FWVnbf76OWZ9DdyvZP3K1sv+bYTQxfcRxJOXX7ZdI/9l1Ow4s/nauVxANAen4ZXvzpHPZdThMpMiIiIiIiEjWRP3r0KGbPno1Tp07hwIEDqKqqwqOPPori4rpJ1s6dO3H69Gk4Ozs36NoWFhZIS0ur9WhsJUnSbTWz89/f7Tt/M6sYczadR0WVUuzQtJJCKWDh7hjUt4io5tjC3TFQKLVzmRERERFRc9PW5dekfTT1WRF1af2+fftqfR0WFgZ7e3tERUWhb9++quOpqamYM2cO9u/fjxEjRjTo2hKJBI6OjhqNl3TbIH8HdHCxwLDlx3EpNR9fHojDvGF+Yoeldc4k5NaZif83AUBafhnOJOQitI1N8wVGREREpGVqKstXVFTA2NhY5GhIF1RUVADAQ3cl0Ko98vn5+QAAa2tr1TGlUompU6fizTffRIcOHRp8raKiInh4eEChUKBz58746KOPEBQUVO+55eXlKC8vV31dUFDQyHdA2s5JboxPn+iI//spCmuO3UQ/Xzv09LF98De2IpmFDduC0tDziIiIiFoqPT09mJiYICsrC/r6+pBKRV3wTFpOqVQiKysLJiYm0NN7uFRcaxJ5QRAwd+5c9O7dGwEBAarjS5YsgZ6eHl5++eUGX6t9+/ZYv349AgMDUVBQgOXLl6NXr164cOECfH1965y/ePFiLFy4UCPvg7Tf0ABHTOzmhs1nUjD3lwv485U+sDI1EDssrWFv3rAtKA09j4iIiKilkkgkcHJyQkJCApKSksQOh3SAVCqFu7s7JJKH6wQlEbRkQ8fs2bOxd+9enDhxAq6urgCAqKgojBgxAufOnVPtjff09MSrr76KV199tcHXViqVCA4ORt++fbFixYo6z9c3I+/m5ob8/HxYWFg83BsjrVRSUYXHVpzAzexiDO3giNVTgh/6P6aWQqEU0HvJYaTnl9W7T14CwFFuhBNvP8JWdERERESozjdqlkwT3Y+BgcE9V24UFBRALpc3KA/Vihn5l156Cb///juOHTumSuIB4Pjx48jMzIS7u7vqmEKhwOuvv45ly5YhMTGxQdeXSqUICQnB9evX633e0NAQhoaGD/UeSLeYGOhh+YQgPLH6JPZdSccvkSkYH+L+4G9sBWRSCeaP9MeLP52DBKiVzNek7fNH+jOJJyIiIrpLKpWysDY1K1E3cQiCgDlz5mD79u04fPgwvLy8aj0/depUXLx4EdHR0aqHs7Mz3nzzTezfv1+t14mOjoaTE3tf0z8CXeV4/dF2AIAFv8fgZlaRyBFpj6EBTlg9JRiO8tq/kBzlRlg9JZh95ImIiIhIZ5RWKFpcZwFRZ+Rnz56NTZs2YdeuXTA3N0d6ejoAQC6Xw9jYGDY2NrCxqV0VW19fH46OjmjXrp3q2LRp0+Di4oLFixcDABYuXIgePXrA19cXBQUFWLFiBaKjo/HNN98035sjnfB8H28cjctCxM0cvLIlGtte7AkDPRYpAaqT+cH+jjiTkIvMwjLYmxuhm5c1Z+KJiIiISGcolAJe/DkKJgYyfD62E0wNtWJR+kMT9V2sXr0aANC/f/9ax8PCwjB9+vQGXyc5ObnWPoO8vDw8//zzSE9Ph1wuR1BQEI4dO4Zu3bppImxqQaRSCb4a3wlDl1W3pPvqwDW8M6y92GFpDZlUwhZzRERERKSzvjoQhyNxWTDSlyI5twR+Ti2jBprWFLvTJuoUGaCW4c9LaXjx53OQSICfn+2Onm3Yko6IiIiISJftvZiG2ZvOAQCWT+iM0Z1dRI7o/tTJQ7mGmAjAsEAnjO/qBkEA5m69gLwSVh0lIiIiItJVsWkFeOPXCwCA5/t6a30Sry4m8kR3fTDSH162pkgvKMO87ZdaXEEMIiIiIqLWIK+kAs9vjERppQJ9fG3x1pB2D/4mHcNEnuguU0M9LJ/QGXpSCf68nI5fI2+JHRIREREREamhSqHES5vPIyW3FO7WJvh6YhD0ZC0v7W1574joIXR0tfynJd3uK0jILhY5IiIiIiIiaqjP98fh+PVsGOvLsGZaF1iaGIgdUpNgIk/0H8/39UYPb2uUVCjwypbzqKhSih0SERERERE9wK7oVHx37CYA4MtxndDeseUWLmciT/QfMqkES8d3htxYHxdv5WPZwWtih0RERERERPdxOTUfb2+7CACY1b8Nhgc6iRxR02IiT1QPJ7kxPn0iEACw+ugNRNzIETkiIiIiIiKqT05ROV7YGIWySiX6t7NTbZVtyZjIE93DsEAnjOvqWt2S7pdotqQjIiIiItIylQol5mw6j9S8UnjZmmL5hCDIpBKxw2pyTOSJ7mP+yA7wsjVFWn4Z3t3BlnRERERERNrkkz9iEXEzB6YGMqyZ2gVyY32xQ2oWTOSJ7sPUUA/Lxle3pPvjUjp+jWJLOiIiIiIibfBb1C2EnUwEAHw1vjN8HczFDagZMZEneoBObpZ4bXBbAMCC39mSjoiIiIhIbBdS8vDujksAgFcG+mJIB0eRI2peTOSJGuD/+rVBd6/qlnSvbjmPSgVb0hER6ZqySgW3SBERtQBZhdXF7SqqlBjk54BXBvqKHVKzYyJP1AA1LeksjPRwgS3piIh0zoWUPHRa+BcW7o4ROxQiInoIFVVKzPo5CukFZWhjZ4ql4ztB2gqK2/0XE3miBnK2NMbiJzoCAFYduYFTN9mSjohIV3zzdzzKq5T4LeoWyqsUYodDRESN9OGeKzibeAfmhnpYO60rzI1aR3G7/2IiT6SGER2d8FSX6pZ0r22NRn5JpdghERHRA6TkluBAbAYAoKi8Cqdv5oocERERNcbmM8n46VQyJBJg+cTO8LYzEzsk0TCRJ1LTglEd4GljwpZ0REQ64sfwRPz7R/Whu0k9ERHpjqikXHyw6zIA4I1H2+GR9g4iRyQuJvJEajI11MPyCUHQk0qw91IafmNLOiIirVVcXoWtkSkAgCk93AEAB2MzeROWiEiHZBSU4f9+OodKhYDhgY6Y1b+N2CGJjok8USP8uyXd/N+vIJEt6YiItNK2c7dQWFYFb1tTvDvcD4Z6UqTmleJqeqHYoRERUQOUVynwwsYoZBWWo52DOT4f2wkSSesrbvdfTOSJGunfLele2RrNlnRERFpGqRSw/mQiAGB6L0+YGOihj68tAC6vJyLSBYIg4P2dlxGdkge5sT7WTOsCU0M9scPSCkzkiRqpVku6lDwsP3hd7JCIiOhfjl7Pws3sYpgb6eHJYFcAwEC/6j2VB2IzxQyNiIga4KdTSfgl8hakEuDriUHwsDEVOyStwUSe6CE4WxrjkycCAQDfHInHabakIyLSGmF3Z+PHd3VTzeAMbG8PoLqvfGZhmVihERHRA5y+mYOFu2MAAG8PbY++be1Ejki7MJEnekiPdXTG2H+3pCtlSzoiIrHFZxbh2LUsSCXA0z09VcftLYzQyVUOADjMWXkiIq10O68Us34+hyqlgJGdnPF8X2+xQ9I6TOSJNGDBqA7wsDHB7fwy/I8t6YiIRLc+PAEAMMjPAW7WJrWeG3R3ef1BJvJERFqnrLK6uF1OcQX8nSzw2ZMdWdyuHkzkiTTAzFAPy8Z3hkwqwZ6Ladh2LlXskIiIWq38kkpsi6r+OTyjl1ed52v2yZ+Iz0JZpaJZYyMionsTBAHvbr+ES6n5sDLRx3dTu8DYQCZ2WFqJiTyRhgS5W+G1Qb4AgPm7LrMlHRGRSLacTUZppQLtHc3Rw9u6zvN+TuZwlhuhrFKJk/HZIkRIRET1CTuZiO3nUyGTSvDNpOA6K6roH0zkiTToxf4+6OZpjeIKBV5lSzoiomZXpVBiQ0QSAGBmL696l2NKJBIM8q9ZXs82dERE2iA8PhuL/ogFAPxvuB96+tiKHJF2YyJPpEEyqQRLJ3SGuZEeolPysOIQW9IRETWnAzEZSM0rhbWpAUZ1dr7neTXL6w/FZkKpZF0TIiIxpeSWYPamc1AoBTwR7IIZvTzFDknrMZEn0jAXS2N88vjdlnR/x+NMQq7IERERtR41Lecmd3eHkf6991X28LaGqYEMmYXluJSa30zRERHRf5VWKPD8xijcKalER1c5Pnk8kMXtGoCJPFETGNnJGU8Gu0LJlnRERM3mcmo+ziTmQk8qwZQeHvc911BPpupJfIjL64mIRCEIAt7adhGxaQWwNTPAt1O63PcmLP2DiTxRE1k4ugPcrU2QmleK93ZeZks6IqImVjMbP6KjExwsjB54PtvQERGJa82xm9h94Tb0pBKsmtwFzpbGYoekM/QactLvv/+u9oUHDx4MY2P+Q1DrZWaoh+UTOmPstxHYfeE2+re1w5NdXMUOi4ioRcoqLMfuC7cB1N9yrj4D2ttDKgFi0gqQmlcKF/4BSUTUbI5ey8KSfVcBAPNHdUA3r7pdRujeGpTIjxkzRq2LSiQSXL9+Hd7e3o2JiajFCHK3wqsDffHlgWv4YNdldPW0goeNqdhhERG1OJtOJ6NCoUSQuyU6u1k26HusTQ3QxcMKZxPv4HBsBqaGejZpjEREVC0xuxgvbToHpQBMCHHDlO7uYoekcxq8tD49PR1KpbJBDxMT9vsjqjFrgA9CPK3Yko6IqIlUVCnx0+nqlnMNnY2vUVO9/gCX1xMRNYvi8io8vzESBWVVCHK3xMLRHVjcrhEalMg//fTTai2TnzJlCiwsLBodFFFLIpNKsHR8dUu688l5+Jot6YiINGrvpdvIKiyHo4URhgU4qvW9NfvkT93IQVF5VVOER0REdwmCgNd/uYBrGUWwNzfEt1O6wFCPxe0ao0GJfFhYGMzNzRt80dWrV8PW1rbRQRG1NK5WJlh0tyXdyr/jcTaRLemIiDRBEASsO5EIAJga6gF9mXp1fNvYmcLTxgQVCiWOX8tqggiJiKjGN3/HY9+VdBjIpPh2apcGFSal+jX4t51CocDFixdRWlpa57mSkhJcvHgRSiWXDBPdy6hOzngi2AVKAXh1C1vSERFpQlTSHVxKzYehnhQTu6m/x1IikaiW17N6PRFR0zkUm4EvD1wDAHw4ugOC3a1Ejki3NTiR37hxI2bOnAkDA4M6zxkaGmLmzJnYtGmTRoMjamkWjvqnJd37bElHRPTQalrOjensAmvTun+jNETN8vq/4zKhUPLnMhGRpt3IKsKrW6IhCMCUHu6Y0Igbr1RbgxP5H374AW+88QZksrp7GGQyGd566y2sWbNGo8ERtTTmRvpYNqEzZFIJfr9wGzujU8UOiYhIZ93OK8W+K+kAgBm9PRt9na6eVrAw0kNucQXOJ9/RUHRERAQABWWVeG5DJArLqxDiaYUPHusgdkgtQoMT+bi4OPTo0eOez4eEhCA2NlYjQRG1ZMHuVnhloC8A4P2dV5CcUyJyREREumlDRBIUSgE929igvWPji+zqy6QY0N4eAHAgNkNT4RERtXpKpYC5W6NxM6sYjhZGWDW5Cwz01KtlQvVr8CgWFxejoKDgns8XFhaipIQJCVFDzOrfBl09rFBUXoVXt55HFVvSERGppbRCgc1nkgGo33KuPjX75A9xnzwRkcYsO3QdB2MzYaAnxXdTu8DO3FDskFqMBifyvr6+CA8Pv+fzJ06cgK+vr0aCImrp9GTS6pZ0hno4l5yHFYfjxQ6JiEin7DifivzSSrhbm+CRu7PpD6NfWzvoSSWIzyxCYnaxBiLUfQqlgIgbOdgVnYqIGzmsH0BEatl3OR0r7rZdXvx4IDq5WYobUAvT4ER+0qRJeO+993Dx4sU6z124cAEffPABJk2apNHgiFoyN2sTfPx4AABg5eHriGRLOiKiBhEEAevDEwAAT/f0hEwqeehryo310c3LGgBwkMvrse9yGnovOYyJa0/hlS3RmLj2FHovOYx9l9PEDo2IdMC1jEK8/ks0AGBGL0882cVV3IBaoAYn8q+99hoCAwPRpUsXDBs2DK+99hrmzp2LYcOGoWvXrggICMBrr73WlLEStTijO7vgiaDqlnSvbIlGQRlb0hERPcjJ+BxcyyiCqYEMT3XV3B+Hg7i8HkB1Ev/iT+eQll9W63h6fhle/Okck3kiuq/8kko8vyESxRUKhHrb4N3hfmKH1CI1OJHX19fHX3/9hUWLFiEtLQ1r1qzBt99+i7S0NCxatAh//fUX9PX11XrxxYsXIyQkBObm5rC3t8eYMWMQFxd3z/NfeOEFSCQSLFu27IHX3rZtG/z9/WFoaAh/f3/s2LFDrdiImsvC0R3gZm2saklHRET3F3ayejb+qa5usDBS72+P+6lJ5M8k5iK/pHXeWFUoBSzcHYP6FtHXHFu4O4bL7ImoXgqlgJe3nEdiTglcLI2xclIQ9GUsbtcU1BpVfX19vPXWW4iOjkZxcTFKSkoQHR2Nt956q97+8g9y9OhRzJ49G6dOncKBAwdQVVWFRx99FMXFdfem7dy5E6dPn4azs/MDrxsREYHx48dj6tSpuHDhAqZOnYpx48bh9OnTasdI1NTMjfSxbHwQZFIJdkXfxs7zbElHRHQvCdnFOHQ1ExJJ9bJ6TXK3MUFbBzMolAKOXGuds/JnEnLrzMT/mwAgLb8MZxK4HYyI6vrirzgcvZYFI/3q4nY2Zixu11REvT2yb98+TJ8+HR06dECnTp0QFhaG5ORkREVF1TovNTUVc+bMwc8//9ygWf9ly5Zh8ODBmDdvHtq3b4958+Zh4MCBDZrJJxJDFw8rvPxIdbHI93ZeRkouO0AQEdXnx/BEAMCAdvbwsjXV+PVrqtcfbKXL6zML753EN+Y8Imo99ly8jdVHbgAAljzZEQEucpEjatm0ap1Dfn4+AMDa2lp1TKlUYurUqXjzzTfRoUOHBl0nIiICjz76aK1jQ4YMuWfV/fLychQUFNR6EDW32QP+aUn3yha2pCMi+q+Cskr8GpkCoLp4UlOoWV5/JC4Tla3w57C9uZFGzyOi1iE2rQBv/lpdFP2Fvt4Y3dlF5IhaPq1J5AVBwNy5c9G7d28EBASoji9ZsgR6enp4+eWXG3yt9PR0ODg41Drm4OCA9PT0es9fvHgx5HK56uHm5ta4N0H0EP7bkm7l32xJR0T0b79G3kJxhQK+9mbo7WPbJK/R2c0SNqYGKCyrwtlWuHy8m5c1nORGuFcfAAkAJ7mRqsI/EdGd4go8vzESpZUK9PG1xVtD24sdUqugNYn8nDlzcPHiRWzevFl1LCoqCsuXL8f69eshkajXWua/5wuCcM9rzJs3D/n5+apHSkqK+m+ASAP+3ZJuxaHriEpqfX9EEhHVR6EUVMvqp/fyVPvvgoaSSSUYcLcvfWtcXi+TSjB/pD8A1Enma76eP9JfIy3/iEj3VSmUeGnzeaTklsLd2gRfTwziz4dm0uhEvqKiAnFxcaiqqnroIF566SX8/vvv+Pvvv+Hq+k8bmePHjyMzMxPu7u7Q09ODnp4ekpKS8Prrr8PT0/Oe13N0dKwz+56ZmVlnlr6GoaEhLCwsaj2IxDK6swvGdHZmSzoion85fDUTybklkBvr44mgpu1HPEi1Tz4DgtD6qrMPDXDC6inBcJTXXj7vKDfC6inBGBrgJFJkRKRtluy7ihPx2TAxkGHNtC6wNFG/ADo1jp6631BSUoKXXnoJP/74IwDg2rVr8Pb2xssvvwxnZ2e88847Db6WIAh46aWXsGPHDhw5cgReXl61np86dSoGDRpU69iQIUMwdepUzJgx457XDQ0NxYEDB2r1tf/rr7/Qs2fPBsdGJKYPxwQgMukObt0pxfxdV7B0fGexQyIiElVNy7mJ3dxhbCBr0tfq42sLA5kUybkliM8sgq+DeZO+njYaGuCEwf6OOJOQi8zCMtibVy+n50wbEdXYeT4Va49X/2z+8qlOaO/IydDmpPaM/Lx583DhwgUcOXIERkb/3KkdNGgQtm7dqta1Zs+ejZ9++gmbNm2Cubk50tPTkZ6ejtLSUgCAjY0NAgICaj309fXh6OiIdu3aqa4zbdo0zJs3T/X1K6+8gr/++gtLlizB1atXsWTJEhw8eBCvvvqqum+XSBQWRvpYPqEzpBJgx/lU7IpmSzoiar2uphcg/EYOZFIJpoV6NPnrmRrqoaePDQDgQGxGk7+etpJJJQhtY4PRnV0Q2saGSTwRqVxOzcfb26qL280e0AbDArlSp7mpncjv3LkTK1euRO/evWvtT/P398eNGzfUutbq1auRn5+P/v37w8nJSfVQ94ZAcnIy0tLSVF/37NkTW7ZsQVhYGDp27Ij169dj69at6N69u1rXJRJTFw9rvFTTkm4HW9IRUeu1/mQiAGBoB0c4Wxo3y2vWtKE71Ar3yRMR3U92UTme3xCJ8iolBrSzw9zB7R78TaRxai+tz8rKgr29fZ3jxcXFaheeacy+s8TExDrHjhw5UufY2LFjMXbsWLWvT6RNXnrEByfisxGVdAevbo3G1ud7QE+mNTUqiYiaXG5xBXacr16V1FQt5+ozyM8e7+8EziXfQU5ROWzMDJvttYmItFWlQonZP5/D7fwyeNmaYtkEFrcTi9oZQUhICPbu3av6uiZ5X7t2LUJDQzUXGRFBTybFsrst6aKS7uCbv9Vb9UJEpOs2n0lGeZUSgS5ydPGwarbXdZIbo4OzBQShutAeEREBi/bG4nRCLswM9bB2WhfIjfXFDqnVUntGfvHixRg6dChiYmJQVVWF5cuX48qVK4iIiMDRo0ebIkaiVs3N2gQfjQnAq1ujseLwdfT2tW3WP2aJiMRSqVBiY0QSgOrZ+KZqOXcvg/wccOV2AQ7FZuKprm7N+tpERNrml8gUrL/bBvSrcZ3gY9/6CoFqE7Vn5Hv27ImTJ0+ipKQEbdq0wV9//QUHBwdERESgS5cuTREjUas3JsgFozs7Q6EU8OrW8yhkSzoiagX+vJyO9IIy2JoZYkTH5i+kVNOG7tj1LJRVKpr99YmItMX55Dt4b8dlAMCrg3zxaAdHkSMitWfkASAwMFDVfo6ImsdHYwIQlXQHKbnVLem+Yks6ImrhalrOTenhDkO9pm05V58AFws4WBgio6Acp27moH+7ujWCiIhauszCMvzfT1GoUCgx2N8BL98txkzialTVrBs3buC9997DpEmTkJlZvW9s3759uHLlikaDI6J/WBjpY9n46pZ029mSjohauOiUPJxPzoOBTIrJ3Zu+5Vx9JBKJqnr9wVbcho6IWq+KKiVe/OkcMgrK4WNvhq/GdYKUxe20gtqJ/NGjRxEYGIjTp09j27ZtKCoqAgBcvHgR8+fP13iARPSPrp7WmMOWdETUCtTMxj/WyQl25uJVjB/kVz0Lfyg2s1HddoiIdNmC3VcQlXQH5kZ6WDO1C8yNWNxOW6idyL/zzjv4+OOPceDAARgYGKiODxgwABERERoNjojqevkRHwS7W6KwvAqvbY1GlUIpdkhERBqVUVCGvRfTAAAze3mJGkvPNrYw1pchLb8MV24XiBoLEVFz+vl0EjadToZEAqyYEARvOzOxQ6J/UTuRv3TpEh5//PE6x+3s7JCTk6ORoIjo3qpb0gXBzFAPkUl3sOoIW9IRUcvy06kkVCkFdPO0RoCLXNRYjPRl6O1rC6B6Vp6IqDWITMzFgt+rt02/8Wg7DGjPGiHaRu1E3tLSEmlpaXWOnz9/Hi4uLhoJiojuz93GBB+O7gAAWH7oOqKS7ogcERGRZpRVKrDpdDKA6pZz2mAw98kTUSuSnl+G//vpHCoVAoYHOmJW/zZih0T1UDuRnzRpEt5++22kp6dDIpFAqVTi5MmTeOONNzBt2rSmiJGI6vF4kAtGdWJLOiJqWX6/cBs5xRVwsTTGYH8HscMBAAxobw+JBLiUmo+MgjKxwyEiajJllQq88FMUsovK0d7RHJ+P7QSJhMXttJHaifyiRYvg7u4OFxcXFBUVwd/fH3379kXPnj3x3nvvNUWMRFQPiUSCj8YEwMXSuLol3e/sGkFEuk0QBISdTAQATAv1gJ6sUc11NM7O3BCd3SwBcHk9EbVcgiDgvZ2XcSElD3JjfayZ2hWmho3qVk7NQK3fkIIg4Pbt21i7di2uX7+OX375BT/99BOuXr2KjRs3QiZr/h6vRK2Z3FgfyybcbUl3LhW/X7gtdkhERI126mYuYtMKYKwvw4QQd7HDqWUQl9cTUQu3ISIJv0XdglQCrJwUBHcbE7FDovtQO5H39fVFamoqvL29MXbsWIwbNw6+vr5NFR8RPUCIpzXmDPABAPxvxyXcusOWdESkm2pazj0R7AK5iXa1OKpJ5E/GZ6OkokrkaIiINOvUzRx8uCcGADBvmB/6+NqJHBE9iFqJvFQqha+vL6vTE2mZlwf6IsjdEoVl1S3pFEr2OiYi3ZKSW4IDd2e7taXI3b+1dTCDq5UxyquUOHE9W+xwiIg0JjWvFLN/PgeFUsDozs54to+4bT+pYdTefPbZZ5/hzTffxOXLl5siHiJqBD2ZFMvHB8HUQIaziXew6u94sUMiIlLLj+GJEASgj68tfOzNxQ6nDolEopqV5z55ImopyioVeGFjJHKKK+DvZIFPn+jI4nY6Qu1EfsqUKThz5gw6deoEY2NjWFtb13oQkTiqW9IFAACWHbqOc8lsSUdEuqG4vApbI1MAADN7ae9MkCqRv5oJJVc+EZGOEwQB87ZfwuXUAlibGmDNtC4wNmDNM12hdhnCZcuWNUEYRKQJTwS74Mi1LOy+cBuvbonGH6/0gRmrjRKRltt27hYKy6rgbWuKfm21d19mNy9rmBvqIbuoHBdu5SHI3UrskIiIGu2HEwnYcT4VMqkEKycFwdWKxe10idp/4T/99NNNEQcRaYBEIsHHYwJwLukOknNLMH/XFXw5rpPYYRER3ZNSKWD93ZZzT/f0hFSqvUs6DfSk6NvODnsvpuFgbAYTeSLSWSeuZ+OTP2IBAO+N8EPPNrYiR0TqUntpfUFBQb2PwsJCVFRUNEWMRKQGubE+lo6vbkm37dwt7GZLOiLSYkevZ+FmdjHMjfQwtour2OE80CA/ewDcJ09EuisltwRzNp+DUgCeDHbF9J6eYodEjaB2Im9paQkrK6s6D0tLSxgbG8PDwwPz58+HUqlsiniJqAG6eVlj9t2WdO/uuITUvFKRIyIiql/Y3dn48V3dYKoDW4EGtLOHTCrB1fRCpOSy3ScR6ZaSiio8tyESeSWV6OQqx6LHA1jcTkepncivX78ezs7OePfdd7Fz507s2LED7777LlxcXLB69Wo8//zzWLFiBT799NOmiJeIGujlgb7o7Ha3Jd0WtqQjIu0Tn1mEY9eyIJVUL6vXBZYmBujiUb2k/tDddnlERLpAEAS8+dtFXE0vhK2ZAb6d2gVG+ixup6vUvvX9448/4ssvv8S4ceNUx0aNGoXAwEB89913OHToENzd3bFo0SK8++67Gg2WiBpOXybF8gmdMXz5cZxJzMXqI/GY84iv2GEREamsD08AUF0N3s1ad4osDfZzwJmEXByMzcR0La6yT0T0b98evYm9F9OgJ5Vg9ZQucJIbix0SPQS1Z+QjIiIQFBRU53hQUBAiIiIAAL1790ZycvLDR0dED8XDxhQL77akW3rwOqJT8sQNiIjorvySSmyLSgUAzNCxZHjg3X3ypxNyUFhWKXI0REQPdiQuE5/tvwoAWDCqA0I82TZc16mdyLu6uuKHH36oc/yHH36Am5sbACAnJwdWVqzkSqQNngx2wWMdnaBQCnhly3kUlVeJHRIREbacTUZppQLtHc3Rw1u3/qD0tjODt50pKhUCjl3LFjscIqL7Ssguxsubz0MQgInd3DC5u7vYIZEGqL20/osvvsBTTz2FP//8EyEhIZBIJDh79iyuXr2K3377DQBw9uxZjB8/XuPBEpH6JBIJFo0JxLmkO0jKKcGC36/gi6fYko6IxFOlUGJDRBIAYGYvL50stDTIzwFrsm7iYGwGRnR0EjscIqJ6FZVX4fkNkSgoq0KwuyUWjOqgkz9zqS61Z+RHjRqFuLg4DBs2DLm5ucjOzsawYcNw9epVPPbYYwCAF198EV999ZXGgyWixpGb/NOS7reoW9hzkS3piEg8B2IykJpXCmtTA4zq7Cx2OI0yyM8BAPB3XCaqFOzUQ0TaR6kUMHdrNK5nFsHe3BDfTukCQz0Wt2spGtXnxdPTk1XpiXRMd28bzOrvg5V/x+Pd7ZcQ5G4FF0sWOSGi5lfTcm5SN3edrZgc7G4JSxN95JVUIirpDrp724gdEhFRLSv/jsdfMRkwkEnx7dQusLcwEjsk0iC1Z+QB4Pjx45gyZQp69uyJ1NTqQjUbN27EiRMnNBocEWnWK4N80cnNEgVlVXhtK1vSEVHzu5yajzOJudCTSjA11EPscBpNTybFI+2qi94dupopcjRERLUdiMnAVweuAQA+HhOAYHfWL2tp1E7kt23bhiFDhsDY2Bjnzp1DeXk5AKCwsBCffPKJxgMkIs3Rl0mxfHxnmBrIcCYhF98evSF2SETUytTMxg8PdIKDjs8ODby7vP5gDPvJE5H2iM8swmtbowEAU3t4YFyIm7gBUZNQO5H/+OOP8e2332Lt2rXQ19dXHe/ZsyfOnTun0eCISPM8bU2xYFQHAMDSA9fYko6Imk1WYTl2X6iu0TGzt261nKtP37a20JdJcDO7GDeyisQOh4gIBWWVeH5DJIrKq9DN0xrvP+YvdkjURNRO5OPi4tC3b986xy0sLJCXl6eJmIioiY3t4ooRHZ1QpRTw6pbzKGZLOiJqBptOJ6NCoUSQuyU6u1mKHc5DMzfSR4+7e+MPxXJWnojEpVQKeHVLNG5mF8NJboRvJgfDQK9RO6lJB6j9L+vk5IT4+Pg6x0+cOAFvb2+NBEVETUsikeCTMYFwlhsh8W5LOiKiplRRpcRPp6tbzs3opfuz8TUGtq/eJ38wlvvkiUhcSw9ew+GrmTDQk+K7qV1gZ24odkjUhNRO5F944QW88sorOH36NCQSCW7fvo2ff/4Zb7zxBmbNmtUUMRJRE5Cb6OOr8Z0hkQC/Rt3C3otpYodERC3Y3ku3kVVYDkcLIwwLcBQ7HI2p2ScfmZiLO8UVIkdDRK3Vn5fS8PXh6snWxY8HoqOrpbgBUZNTO5F/6623MGbMGAwYMABFRUXo27cvnn32WbzwwguYM2dOU8RIRE2kh7cNZvVvAwCYt/0ibueVihwREbVEgiBg3YlEAMDUUA/oy1rOUk83axO0dzSHUgCOXOOsPBE1v7j0Qrz+6wUAwMxeXniyi6vIEVFzaNRv0kWLFiE7OxtnzpzBqVOnkJWVhY8++kjTsRFRM3h1UFt0cpWzJR0RNZmopDu4lJoPQz0pJnZzFzscjRtUU72ey+uJqJnll1Ti+Y2RKKlQoGcbG7w7vL3YIVEzafQtcRMTE3Tt2hXdunWDmZmZJmMiomakL5Ni+YQgmBjIcDohF98dY0s6ItKsmpZzYzq7wNrUQNxgmsBAv+p98kfjslBRpRQ5GiJqLRRKAS9tOY+knBK4WBpj5aRg6LWgFU90f3oNOemJJ55o8AW3b9/e6GCISBw1Lene+u0ivvrrGnq1sUWnFlBRmojEdzuvFPuupAMAZvT2FDeYJtLJ1RK2ZobILirHmYRc9Pa1FTskEsmlW/n47tgN+DlZoJePLQJd5JBJJWKHRS3U5/vjcOxaFoz0pVgzrUuLvFFK99agWzZyuVz1sLCwwKFDhxAZGal6PioqCocOHYJcLm+yQImoaT3VxRXDAx2rW9JtjWZLOiLSiA0RSVAoBYR626C9o4XY4TQJqVTyr+r1bEPXWgmCgP/tvIQ9F9Pw+f44jPnmJII+/AsvbIzEhohE3MgqgiBw+xppxu4Lt/Ht0epVlJ+N7YQOzszDWpsGzciHhYWp/v/bb7+NcePG4dtvv4VMJgMAKBQKzJo1CxYWLfMXNFFrIJFIsPjxjjifnIeE7GIs3H0Fn43tJHZYRKTDSisU2HwmGQAwo5enuME0sUH+DtgamYKDsRmYP9IfEglnYVubqKQ7uHgrHwZ6UvRva4eImzkoKKvC/isZ2H+l+gaPk9wIvXxs0dvHFj19bGBvbiRy1KSLolPy8OZv1cXtXujnjVGdnEWOiMQgEdS8NWhnZ4cTJ06gXbt2tY7HxcWhZ8+eyMnJ0WiAYigoKIBcLkd+fj5vTlCrc+pmDiauPQVBAFZNDsbwQCexQyIiHbXpdDLe3XEJbtbGOPLGgBa9xLi0QoHOH/6F8iol9r3ap8WuPqB7m/VzFP64lI7xXd2wZGxHKJQCLqXm42R8Nk7GZyMy8Q4qFLVrKLR1MFMl9t29bWBm2KA5NmpFFEoBcemFiEzKRWTiHUQm5uJ2fhkAoI+vLdbP6Naif7a2NurkoWr/tKiqqkJsbGydRD42NhZKJQu8EOm6Ht42eLFfG6w6cgPztl9CZzdLOFsaix0WEekYQRCwPjwBADC9p1eL/0PT2ECGXj62OHw1E4diM5nItzK37pRg3+XatSBkUgk6u1mis5slZg/wQWmFApFJuTgZn4OT8dm4fDsf1zKKcC2jCGEnE1Xn1yT2nd0sYaDHwmWtTUlFFaKT8xCZdAdnE3MRnZyHwv9sd5RJJejZxgZfTwxq8T9b6d7UTuRnzJiBmTNnIj4+Hj169AAAnDp1Cp9++ilmzJih8QCJqPm9OqgtTsRn4+KtfMz9JRo/P9uDvyiISC0n43NwLaMIpgYyPNW1dfQ0HuTngMNXM3EgJgOzB/iIHQ41ow0RSVAKQC+fe9eCMDaQoY+vHfr42gEA7hRXIOJmDk7EZyM8PhuJOSWISrqDqKQ7WHHoOkwMZOjmZY3ePrbo5WOLdg7mkPJ3cYuTWVCGyKQ71bPtSbm4crugTitgUwMZgj2s0NXDGl09rdDZzRKmXL3R6qn9Cfjiiy/g6OiIpUuXIi0tDQDg5OSEt956C6+//rrGAySi5megV92SbsSK4zh1Mxdrjt3Ei/3biB0WEemQsJPVs/FPdXWDhZG+yNE0j4F+9sAO4MKtPGQWlnH/cytRXF6lqgUxs5dXg7/PytQAwwOdVFvYUnJLEH4jGyficxAen42c4gocicvCkbgsAICtmQFC29iit48NevnYwtXKRPNvhpqUUingRlYRzt5N2iMT7yA5t6TOeU5yI3T1tEZXDyt08bBCe0dztpWjOtTeI/9vBQUFANDofeSLFy/G9u3bcfXqVRgbG6Nnz55YsmRJrWX7CxYswJYtW5CSkgIDAwN06dIFixYtQvfu3e953fXr19e7OqC0tBRGRg/+pco98kTVfjmbgre2XYSeVIINM7uhpw9bKhHRgyVkF2PAF0cgkQCHX+8PL1tTsUNqNqNWnsDFW/lY8mQgxoe4ix0ONYMNEYn4YNcVeNma4tDcfhqZNVcqBcRlFOJkfDZOxGfjTEIuSioUtc7xtDFBz7vL8EO9bWDF1mNap6xSgUup+TibmIuoxDuITLqD/NLKWudIJEA7B3OEeFbPtnf1tIYLtzS2Wk26R/7fHjbJPXr0KGbPno2QkBBUVVXhf//7Hx599FHExMTA1LT6l37btm2xcuVKeHt7o7S0FEuXLsWjjz6K+Ph42NnZ3Te2uLi4WscaksQT0T+e6uqKY9ezsOdiGp75MRIbn+mGrp7WYodFRFrux/BEAMCAdvatKokHgIHtHXDxVj4OxmYykW8FlEoBYScTAVR3ZtDU0nepVAI/Jwv4OVng2T7eqKhSIjolDyfuFs6LTslDYk4JEnOSsel0MiQSIMBZjl4+tujlY4MQT2sY6cs0Egs1XG5xBaKSqgvSRSbdwaVb+XUKHBrpS9HZzRIhntbo4mGFYA+rVrNqiTSrQTPywcHBOHToEKysrBp00d69e2Pr1q1wcXFRK5isrCzY29vj6NGj6Nu3b73n1NylOHjwIAYOHFjvOevXr8err76KvLw8tV7/v6/BGXmi6rvJz22IxPHr2TAz1MPPz3ZHJzdLscMiIi1VUFaJ0E8OobhCgY3PdFPtB24trtzOx4gVJ2CkL0X0B48ymWrhDl/NwMz1kTA30sOpeQObbd9yYVklziTkqhL7axlFtZ430JOiq4fV3cTeFoEucta60TBBEJCYU1KdtN9dKn8jq7jOebZmhujqYaWabe/gbAF9LpOne9D4jHx0dDQuXLgAa+uGzcRFR0ejvLy8Qef+W35+PgDc83UqKiqwZs0ayOVydOp0//7WRUVF8PDwgEKhQOfOnfHRRx8hKCio3nPLy8trxVuzZYCIACN9GdZM7YrpYWdwOiEX09adwebnesDfmTe5iKiuXyNvobhCAV97M/Ruhdtx/J0s4Cw3wu38MoTfyMYj7R3EDoma0LoTiQCAid3cm7X4mLmRPgb6OWCgX/XnK7OgDOE3clSJfVp+9dfhN3Lw+f44WBjpIbSNjapwnpetKSQSJvbqqKhS4srtfETdrSYflXQH2UUVdc7zsTdDiKcVunhU73H3sDHhWFOTaNCMvFQqhUQiQUO300skEly/fh3e3t4NDkQQBIwePRp37tzB8ePHaz23Z88eTJgwASUlJXBycsLOnTsREhJyz2udOnUK8fHxCAwMREFBAZYvX44//vgDFy5cgK+vb53zFyxYgIULF9Y5zhl5on8UlVdh2g+ncS45D9amBtj6fA/4OpiLHRYRaRGFUsCAL44gObcEix4PwOTuHmKHJIr3d17GxlNJmNTdHZ88Hih2ONRE4tILMWTZMUglwLG3BmhN8TlBEHAzuxjhd/fXh9/IQWFZ7fZlTnIjVZu7nj42LMxYj/zSSpxLvoOoxOrE/cKtPJRV1l4mbyCToqOrvFZhOtYqoIehzox8gxL5pKQktYNwdXWFTNbw5WSzZ8/G3r17ceLECbi61m5TU1xcjLS0NGRnZ2Pt2rU4fPgwTp8+DXt7+wZdW6lUIjg4GH379sWKFSvqPF/fjLybmxsTeaL/yC+txOTvT+FyagHszA3xywuhrW7/KxHd24GYDDy3IRJyY32cmjcQxgatc1n5kbhMTA87CwcLQ5yaN5CzcS3UO9suYsvZFAwPdMSqyV3EDueeFEoBl1LzcfLubH1k4p06+7bbOpipEvvu3jYwa2WtzQRBwK07pbVm2+MyCvHfLMnSRP/uMvnqxD3ARc7tM6RRGk/km9pLL72EnTt34tixY/DyenDbDl9fX8ycORPz5s1r8Gs899xzuHXrFv78888Hnss98kT3dqe4AhPXnsLV9EI4y42w9YVQuFlrxywEEYlr0tpTCL+Rgxf6eWPeMD+xwxFNeZUCwR8eQHGFArvn9Eagq1zskEjDcorKEfrpYVRUKfHb/4XqVCHY0goFIpNycTI+Byfjs3H5dn6thFVPKkEnN0tVYt/ZzRIGei1rT3eVQomr6YWITMzF2aTqWff0grI653namKCLhzVCPKv3uHvbmmmsoCFRfZqtav3DEgQBL730Enbs2IEjR440KImv+T519uALgoDo6GgEBnJ5G9HDsjI1wMZnumPCmgjcyCrG5O9P45cXQuEo57I8otbsanoBwm/kQCaVYFqop9jhiMpQT4Y+vnbYdyUdB2IzmMi3QJvPJKOiSomOrnJ08WhYMWhtYWxQ/fmsKUR5p7gCETer99eHx2cjMacEUUl3EJV0BysOXYeJgQzdvaxVhfPaOZjrXDJbXF6F88l5qt7t55PvoPg/7fz0pBJ0cJEj5G5hui4e1rAzNxQpYqIHEzWRnz17NjZt2oRdu3bB3Nwc6enpAAC5XA5jY2MUFxdj0aJFGDVqFJycnJCTk4NVq1bh1q1beOqpp1TXmTZtGlxcXLB48WIAwMKFC9GjRw/4+vqioKAAK1asQHR0NL755htR3idRS2Nnboifn+2Bcd9FIDm3BJO+P4Wtz4fyFx5RK7b+bguuoR0c2QMZwCB/B+y7ko5DsRmYO7it2OGQBlVUKbEhonrb6cxeXjq/dcLK1ADDA50wPNAJAJCSW4LwG9k4EZ+D8Phs5BRX4O+4LPwdlwUAsDUzQM821W3uevnYak1tgH9Lzy9TJe2RSbmITSuEQll7EbK5oR6CPaxUhek6u1m22u1ApJtETeRXr14NAOjfv3+t42FhYZg+fTpkMhmuXr2KH3/8EdnZ2bCxsUFISAiOHz+ODh06qM5PTk6GVPrPkp+8vDw8//zzSE9Ph1wuR1BQEI4dO4Zu3bo1y/siag0c5UbY9Fx3jP/uFG5mFWPK96ex+fkesGaRF6JWJ7e4AjvOpwKo7qVNwIB2dpBIgCu3C3A7rxTOvLnRYvxxKQ2ZheWwNzdUJb8tiZu1CcZbu2N8iDuUSgFxGYU4ebdw3umbucguqsDvF27j9wu3AVQvP69Zhh/axgaWJs37d4BSKeB6ZpFqb/vZxFzculNa5zwXS2NVC7iuHlZo62DOlnyk07Rij7y24R55ooZLzC7GuO8ikFlYjg7OFtj0XA/IjfXFDouImtE3f8fj8/1xCHSR4/c5vXR+hlJTnlwdjqikO/hoTACm9midFfxbGkEQMPqbk7h4Kx9vPNoWcx6p2w2pJauoUiI6JU/V5i46Ja/WTLdEAgQ4y1WJfVdPK40XgyurVCA6JQ9RSXcQeTd5L/hPVX6pBPBzsvinMJ2nFZzkvJlG2q/Ji93l5eXht99+w40bN/Dmm2/C2toa586dg4ODA1xcXBoduLZgIk+knvjMQoz/7hRyiisQ5G6Jjc90b3UVb4laq0qFEn2W/I30gjJ8Na4Tngh2ffA3tRKrj9zAkn1X0a+tHX6cyVWBLUFkYi7GfhsBQz0pwt95BDZmrXtLWWFZJc4k5KoS+2sZRbWeN9CToquHlSqxD3CRqz0Lnl1UjsjEO4hKysXZxDu4cjsflYra6YuJgQxB7pbo6lGdtAe5W/HvENJJTZrIX7x4EYMGDYJcLkdiYiLi4uLg7e2N999/H0lJSdiwYcNDBa8NmMgTqS82rQAT155CXkklunlZ48cZ3bjXjKgV+P3Cbby8+TxszQxx8p0BMNTjf/c1rmcUYvDSYzCQSXH+g8EwZWKh82b9HIU/LqVjQogbPn2yo9jhaJ3MgjKE38hRJfZp+bUrwVsY6SG0jQ163y2c52VrWmsFjyAIuJldjMjEmv3td5CQXVzndezNDRFyd6a9q4c1/JzMoSdrWZX1qXVq0qr1c+fOxfTp0/HZZ5/B3NxcdXzYsGGYNGmS+tESUYvg52SBjTO7Y9LaUziTkIvnNkTi+6e7sr8qUQsXdjIBADClhzuT+P/wsTeDh40JknJKcPx6FoYGtLz91K3JrTsl2He5ujDzjF4N67TU2thbGGFMkAvGBLmokvLwu/vrw2/koKCsCvuvZGD/lQwAgJPcSJXQ1yyXzy2uqHPddg7m6OJZXZiuq4c1XK2MuYWHWj21E/mzZ8/iu+++q3PcxcVFVXWeiFqnQFc51s8MwdQfzuBEfDZm/XwO307p0uL6zxJRteiUPJxPzoOBTIrJ3bkH/L8kEgkGtnfAupMJOBibyURex22ISIJSAHr72KKdo/mDv6GVk0gkaGNnhjZ2Zpga6gmFUsCl1HycvDtbH5l4B2n5Zfgt6lat7zPUk6KTmyW6elghxNMawe5WkJuw9g7Rf6mdyBsZGaGgoKDO8bi4ONjZ2WkkKCLSXV08rPHD0yGYHnYGh69m4pUt5/H1xCAueSNqgWpm4x/r5MT2k/cwyN8e604m4O+rmVAoBVbJ1lHF5VXYfCYZADCzt6e4wegomVSCzm6W6OxmidkDfFBaoUBkUi5OxucgNa8UgS4W6OppjQBnOScAiBpA7f9KRo8ejQ8//BCVlZUAqu+2JScn45133sGTTz6p8QCJSPeEtrHB2mldYSCT4s/L6Xj91wt1+rcSkW7LKCjD3otpAKp7aVP9QjytYW6kh5ziCkSn3BE7HGqkbeduobCsCl62pujf1l7scFoEYwMZ+vja4Z1h7fH1xCA837cNgt2tmMQTNZDa/6V88cUXyMrKgr29PUpLS9GvXz/4+PjA3NwcixYtaooYiUgH9W1rh1WTg6EnlWBX9G3M234RSibzRC3GT6eSUKUUEOJphQAXudjhaC19mRQD2lUnfgdjM0WOhhpDqRQQdjIRADCjlyekXFVBRFpA7aX1FhYWOHHiBA4fPoxz585BqVQiODgYgwYNaor4iEiHDfJ3wPIJQXhp8zn8EnkLhnoyfDi6AwvUEOm4skoFNp2uXmbMol8PNtDPHr9fuI2DMRl4e2h7scMhNR25lomE7GKYG+nhSbZXJCItoVYiX1VVBSMjI0RHR+ORRx7BI4880lRxEVELMaKjEyoUnTD3lwvYeCoJRvpSvDvcj8k8kQ77/cJt5BRXwMXSGI/6O4gdjtbr39YeelIJrmcWISmnGB42pmKHRGpYdyIRADCxmztbCBKR1lBrab2enh48PDygUCiaKh4iaoEeD3LF4scDAQBrjyfgqwPXRI6IiBpLEP5ZZjwt1IOFLBtAbqKPEE9rAFxer2vi0gtxIj4bUkn1552ISFuo/dv3vffew7x585Cbm9sU8RBRCzWhmzsWjuoAAPj6cDy++Tte5IiIqDFOJ+QiNq0AxvoyTAhxFzscnTHQr3qf/KHYDJEjIXXUdGYYGuAIVysTkaMhIvqH2uuDVqxYgfj4eDg7O8PDwwOmprWXh507d05jwRFRy/J0T0+UVSqw+M+r+Hx/HAz1pHi2j7fYYRGRGtadqE5sngh2YW9nNQz2d8DHe2NxJiEX+aWVkBtz7LRdTlE5tp9PBcDODESkfdRO5MeMGdMEYRBRa/FCvzYoq1Ri6cFr+HhvLAz1ZZjag8sViXRBSm4JDtydUZ7Ry1PcYHSMh40pfOzNEJ9ZhKPXsjCqk7PYIdEDbD6TjIoqJTq6ytHFw0rscIiIalE7kZ8/f35TxEFErcjLA31QVqXA6iM38P7OyzDUk2JcVzexwyKiB/gxPBGCAPTxtYWPvbnY4eicQX4OiM8swsGYDCbyWq6iSokNEUkAqmfjWaCViLQNK9QQUbOTSCR4a0g71Yze29suYld0qrhBEdF9FZdXYWtkCgAuM26sQXf3yR+Jy0SlQilyNHQ/f1xKQ2ZhOezNDTE80EnscIiI6lA7kZdKpZDJZPd8EBE1hEQiwQeP+WNSd3cIAjD3lwvYdzlN7LCI6B62nbuFwrIqeNuaol9bO7HD0UlB7lawNjVAQVkVziayaLC2EgQBP9ytBTEt1AMGepz3IiLto/bS+h07dtT6urKyEufPn8ePP/6IhQsXaiwwImr5JBIJPh4dgPJKJbadu4WXNp/HmqkyDGhvL3ZoRPQvSqWA9Xdbzj3d0xNSKZcZN4ZMKsGAdvbYdu4WDsVmomcbW7FDonpEJt3BpdR8GOpJMbEbOzMQkXZSO5EfPXp0nWNjx45Fhw4dsHXrVjzzzDMaCYyIWgepVILPxnZEeZUCey6m4YWforDu6RD09uUfuETa4uj1LNzMLoa5oR6e7OIqdjg6bbB/dSJ/MDYD743w495rLVTTmeHxIBfYmBmKHA0RUf00tlaoe/fuOHjwoKYuR0StiEwqwdLxnTHY3wEVVUo8u+EsziRw2SmRtgi7Oxs/LsQNZoZqzwHQv/TxtYOBTIqknBLcyCoSOxz6j5TcEuy/kg4AmNmbtSCISHtpJJEvLS3F119/DVdX3qUnosbRl0mxclIQ+rW1Q1mlEjPCzuB88h2xwyJq9eIzi3DsWhYkEuDpUE+xw9F5poZ6CG1jAwA4GJspcjT0XxsiEqG825mhrQM7MxCR9lI7kbeysoK1tbXqYWVlBXNzc6xbtw6ff/55U8RIRK2EoZ4M303tglBvGxRXKPD0ujO4nJovdlhErdr68OplxoP9HOBuYyJyNC1DTfX6gzEZIkdC/1ZUXoUtZ9mZgYh0g9rr45YuXVprP5dUKoWdnR26d+8OKysrjQZHRK2Pkb4M3z/dFU+vO4PIpDuY+sNpbHk+FO0cOTNC1NzySyqxLaq6NeQMJjYa84ifA97fdQXnku8gp6ic+7C1xLYodmYgIt2hdiL/yCOPwM3Nrd7iLMnJyXB3Z3VPIno4poZ6WDcjBFO+P42Lt/Ix+fvT+OWFHvC2MxM7NKJWZcvZZJRWKtDe0Rw9vK3FDqfFcLE0hr+TBWLSCvB3XBbGsoCg6JRKAWEnq1efzOjFzgxEpP3UXlrv5eWFrKysOsdzcnLg5cW79USkGRZG+tgwsxv8nCyQXVSOSWtPIzmnROywiFqNKoUSGyKSAFQvM2Z1dc2qWV5/KJbL67XB33GZSMwpgYWRHp4I5o0VItJ+aifygiDUe7yoqAhGRkYPHRARUQ1LEwP89Ew3+NibIb2gDJO+P4XbeaVih0XUKhyIyUBqXimsTQ0wqrOz2OG0OIP8HQAAx65lobxKIXI0tO7ubPzEbu4wZWcGItIBDf5JNXfuXACARCLBBx98ABOTfwreKBQKnD59Gp07d9Z4gETUutmYGWLTs90x7rsIJOaUYNLaU/jlhVDYW/DGIVFTqmk5N6mbO4z0ZeIG0wIFOMthb26IzMJynLqZyz3ZIrqaXoCT8TmQSSWY1tNT7HCIiBqkwTPy58+fx/nz5yEIAi5duqT6+vz587h69So6deqE9evXN2GoRNRa2VsY4efnesDF0hiJOSWY/P1p5BSVix0WUYt1OTUfZxJzoSeVYGqoh9jhaIRCKSDiRg52Raci4kYOFMr6Vxg2F6lUgoF+1bPyrF4vrrATiQCAoR0c4WJpLG4wREQN1OAZ+b///hsAMGPGDCxfvhwWFhZNFhQR0X+5WBpj83M9MO67CFzPLMKUH85g83PdYWliIHZoRC1OzWz88EAnOLSA1S/7Lqdh4e4YpOWXqY45yY0wf6Q/hgY4iRbXID97bD6TjEOxGfhwdAfWIRBBTlE5dkRXd2aY2dtT3GCIiNSg9h75sLAwJvFEJAp3GxP8/Fx32JoZIjatAE+vO4OCskqxwyJqUbIKy7H7wm0A1dW7dd2+y2l48adztZJ4AEjPL8OLP53DvstpIkUG9PKxhZG+FLfzyxCbVihaHK3ZptPJqKhSopOrHMHubKNMRLqjUdU8zp49i19//RXJycmoqKio9dz27ds1EhgRUX3a2Jnh52e7Y8KaCFy4lY+ZYWfx48xuLE5EpCGbTiejQqFEZzdLBOl4YqNQCli4Owb1LaIXAEgALNwdg8H+jpCJ0G7MSF+G3j52OBibgYOxGfB35kRJc6qoUmLDqbudGXqzMwMR6Ra1Z+S3bNmCXr16ISYmBjt27EBlZSViYmJw+PBhyOXypoiRiKiWdo7m2PhMd5gb6SEy6Q6e/TESZZWs+kz0sCqqlPjpdHVi0xJm488k5NaZif83AUBafhnOJOQ2X1D/MdifbejEsvfSbWQVlsPBwhDDRNxiQUTUGGon8p988gmWLl2KPXv2wMDAAMuXL0dsbCzGjRsHd3f3poiRiKiOABd59Uy8gQwRN3PwwsYotnAiekj/TmyGB+p+YpNZeO8kvjHnNYUB7asT+Qu38pFRIF4crY0gCPjhRHXLuWmhnjDQU/tPYiIiUan9U+vGjRsYMWIEAMDQ0BDFxcWQSCR47bXXsGbNGo0HSER0L8HuVlg3PQRG+lIcvZaFOZvOo1KhFDssIp0kCALW3a3ePS3UE/oy3U9s7M0bVqivoec1BXtzI3R2swQAHL6aKVocrU1k0h1cTi2AoZ4UE7txIoqIdI/av6Wtra1RWFhdkMXFxQWXL18GAOTl5aGkpESz0RERPUB3bxt8Py0EBnpSHIjJwGtbo0VvK0Wki6KS7uBSan6LSmy6eVnDSW6Ee+18lqC6en03L+vmDKuOQX7Vs/JsQ9d81t2djX8i2AXWpux+QkS6R+1Evk+fPjhw4AAAYNy4cXjllVfw3HPPYeLEiRg4cKDGAyQiepDevrb4dkow9GUS7LmYhjd/uwAlk3kitdS0nBvTueUkNjKpBPNH+gNAnWS+5uv5I/1FKXT3bzX95E/EZ6O0gluEmlpKbgn2X0kHAMzo5SVyNEREjaN2Ir9y5UpMmDABADBv3jy88cYbyMjIwBNPPIEffvhB4wESETXEI+0d8PXEIMikEmw/l4r3dl2GIDCZJ2qI23ml2FeT2LSwXtpDA5ywekowHOW1l887yo2wekqwqH3ka7R3NIeLpTHKq5Q4EZ8tdjgt3oaIRCgFoI+vLdo6mIsdDhFRo6jVr6mqqgq7d+/GkCFDAABSqRRvvfUW3nrrrSYJjohIHUMDnPDVOCVe3RqNTaeTYaQnw/uP+bGlENEDbIhIgkIpINTbBu0dW14LtKEBThjs74gzCbnILCyDvXn1cnqxZ+JrSCQSDPKzx48RSTgUm4HB/g5ih9RiFZVXYcvZFADATM7GE5EOU2tGXk9PDy+++CLKy8ubKh4ioocyurMLljzZEQCw7mQCPt8fx5l5ovsorVBg85lkAC2j5dy9yKQShLaxwejOLghtY6M1SXyNQXeT94Oxmdwa1IS2Rd1CYVkVvG1N0a+tndjhEBE1mtpL67t3747z5883RSxERBoxrqsbPhrdAQCw6sgNfH04XuSIiLTXjvOpyC+thJu1sWqvNjW/7l42MDPUQ3ZROS6m5osdToukVAoIO1ld5G5GL09ItexmDhGROtRaWg8As2bNwuuvv45bt26hS5cuMDU1rfV8x44dNRYc3Z9CocDx48eRlpYGJycn9OnTBzKZTOywtBbHS326PGZTQz1RXqXEx3tj8dWBazDSl+L5vm2a/HV1eczEwjFTn6bGTBAErA+vTmyeDvXUullqTdL2z5mBnhT92tph76U0HIrNULWkE5O2j5m6/o7LRGJOCSyM9PBEsKvGr9/Sxqs5cMzUxzFTX4sdM0FNEomkzkMqlar+tyXIz88XAAj5+flih3JP27ZtE1xdXQUAqoerq6uwbds2sUPTShwv9bWUMfv60DXB4+09gsfbe4T1JxOa9LVaypg1J46Z+jQ5ZsevZQkeb+8R/N//U8gvrWiCaLWDrnzOtkWlCB5v7xGGLD0qdig6M2bqmLQ2QvB4e4/wyd4YjV+7JY5XU+OYqY9jpj5dGzN18lC1E/nExMT7PloCbU/kt23bJkgkklofSACqGyva+sEUC8dLfS1tzD7fd1WVzG8+ndQkr9HSxqw5cMzUt23bNgH1jBkAAY0Ys5lhZwSPt/cIH+y81EQRi0+XPme5ReWC1zvVP6tScotFi0OXxqyhYtPyBY+39wje8/YKt+6UaPTaLXG8mhrHTH0cM/Xp4pg1aSKvSZ988onQtWtXwczMTLCzsxNGjx4tXL16tdY58+fPF9q1ayeYmJgIlpaWwsCBA4VTp0498Nq//fab4OfnJxgYGAh+fn7C9u3bGxyXNifyVVVVde4q/feD6ebmJlRVVYkdqlbgeKmvJY6ZUqkUPtp9RfB4e4/g+c4eYfu5FI1evyWOWVPjmKmvqqpKsHVwuueYARDsHJ0bPGY3s4pUN7huZhU1cfTi0MXP2VOrw5tlBdG96OKYNcRbv14QPN7eI8z6KUqj122p49WUOGbq45ipT1fHTJ08VO1idwCwceNG9OrVC87OzkhKSgIALFu2DLt27VLrOkePHsXs2bNx6tQpHDhwAFVVVXj00UdRXFysOqdt27ZYuXIlLl26hBMnTsDT0xOPPvoosrKy7nndiIgIjB8/HlOnTsWFCxcwdepUjBs3DqdPn27M29Uqx48fx61bt+75vCAISElJwfHjx5sxKu3F8VJfSxwziUSC/43ww9QeHhAE4PVfLuCPS2kau35LHLOmxjFT35Gjx5Cdcf/PbVb6bRw5eqxB1/sxPBEA8Eh7e3jZmt7/ZB2li5+zQf72AICDsRmivL4ujtmD5BSVY0d0KgBgZm9PjV67JY5XU+OYqY9jpr7WMGZqJ/KrV6/G3LlzMXz4cOTl5UGhUAAALC0tsWzZMrWutW/fPkyfPh0dOnRAp06dEBYWhuTkZERFRanOmTRpEgYNGgRvb2906NABX331FQoKCnDx4sV7XnfZsmUYPHgw5s2bh/bt22PevHkYOHCg2vFpo7S0hiUfDT2vpeN4qa+ljplEIsHCUR0wrqsrlALw8ubzOBijmT+UW+qYNSWOmfpOXLyusfMKyirxa2R1L+2W3HJOFz9nNZ0DTt3MQWFZZbO/vi6O2YNsOp2MiiolOrnKEexupdFrt8TxamocM/VxzNTXGsZM7UT+66+/xtq1a/G///2vVrW/rl274tKlSw8VTH5+dbsVa2vrep+vqKjAmjVrIJfL0alTp3teJyIiAo8++mitY0OGDEF4ePhDxacNnJycNHpeS8fxUl9LHjOpVILFT3TE6M7OqFIKmPXzORy7du/VPQ3VksesqXDM1Ccza1gC0pDzfo28heIKBXztzdDbx/ZhQ9Nauvg5a2NnBi9bU1QqBBy/nt3sr6+LY3Y/FVVKbDhVvXp0Zm8vSCSa7czQ0sarOXDM1McxU19rGDO1E/mEhAQEBQXVOW5oaFhrSby6BEHA3Llz0bt3bwQEBNR6bs+ePTAzM4ORkRGWLl2KAwcOwNb23n94pKenw8Ghdi9cBwcHpKen13t+eXk5CgoKaj20VZ8+feDq6nrPX0QSiQRubm7o06dPM0emnThe6mvpYyaTSvDlU50wtIMjKhRKPL8xEqdu5jzUNVv6mDUFjpn6+vftB5n5/ZNumbkt+vftd99zFEpBtax+ei9PjSc22kRXP2eD/O4ur9fQqiF16OqY3cuei7eRVVgOBwtDDAvQ/B/sLW28mgPHTH0cM/W1hjFTO5H38vJCdHR0neN//vkn/P39Gx3InDlzcPHiRWzevLnOcwMGDEB0dDTCw8MxdOhQjBs3DpmZmfe93n//0QRBuOc/5OLFiyGXy1UPNze3Rr+PpiaTybB8+XIAdd9jzdfLli1rGb0RNYDjpb7WMGZ6MilWTAzCI+3tUVapxMz1ZxGVdKfR12sNY6ZpHDP1hfrYoc3I2fc9p83I2Qj1sbvvOYevZiI5twRyY308EaT5XtraRFc/ZzXL6/+Oy0SVQtmsr62rY1YfQRDww4kEAMC0UE8Y6DWqNNR9taTxai4cM/VxzNTXKsZM3Up669atE1xcXIQtW7YIpqamwubNm4WPP/5Y9f8bY86cOYKrq6tw8+bNBp3v4+MjfPLJJ/d83s3NTfjqq69qHfvqq68Ed3f3es8vKysT8vPzVY+UlBStrVpfo76eiG5ublrZRkEbcLzU1xrGrLSiSpi89pTg8fYeIeCDfcLFlLyHul5rGDNN45ip589LtwW7Me8KMnPbWmMmM7cV7Ma8K/x56fYDrzFxzd1e2n9ovpe2ttK1z1lllULouGC/4PH2HuH0zRxRYtC1MavP6Zs5gsfbe4S2//tDyC0qb9LXagnj1dw4ZurjmKlP18ZMnar1EkEQBHWT/7Vr1+Ljjz9GSkp1oRwXFxcsWLAAzzzzjFrXEQQBL730Enbs2IEjR47A19e3Qd/n4+ODKVOmYMGCBfU+P378eBQWFuKPP/5QHRs2bBgsLS3rnfH/r4KCAsjlcuTn58PCwqJBMYlBoVDg+PHjSEtLg5OTE/r06aPbd5WaGMdLfa1hzEoqqjB93VmcScyFpYk+Nj/XA35Ojf/vvjWMmaZxzNSz73IaFuy6hMQrUVAU3YHMzAqeHbpgwehADH3A0uGr6QUYuuw4ZFIJjr01AC6Wxs0Utfh07XP26pbz2Bl9Gy/09ca84X6ixKBrY/Zf/7cxCvuupGNiN3csfiKwyV9P18dLDBwz9XHM1KdLY6ZOHtqoRL5GdnY2lEol7O3tG/X9s2bNwqZNm7Br1y60a9dOdVwul8PY2BjFxcVYtGgRRo0aBScnJ+Tk5GDVqlX46aefEBUVhQ4dOgAApk2bBhcXFyxevBgAEB4ejr59+2LRokUYPXo0du3ahffeew8nTpxA9+7dHxiXriTyRKQZReVVmPL9aUSn5MHG1ABbXwiFj71Zo66lUAo4k5CLzMIy2JsboZuXNWTSlrsHmcTR2M/ZO9suYsvZFAwPdMSqyV2aIVJqrD0Xb2POpvPwtjPF4df7ix2OzknJLUG/z/+GUgAOvNYXvg7mYodERPRA6uSheo19kczMTMTFxUEikUAikcDO7v578uqzevVqAED//v1rHQ8LC8P06dMhk8lw9epV/Pjjj8jOzoaNjQ1CQkJw/PhxVRIPAMnJyZBK/9n31LNnT2zZsgXvvfce3n//fbRp0wZbt25tUBJPRK2PmaEefpzZDZPWnsKV2wWY/P0p/PJCKDxs1Outve9yGhbujkFafpnqmJPcCPNH+j9wppRIHTKpBKFtbNT6ntziCuw4X91Le0Yvr6YIizSob1s76EkluJlVjITsYnjZqvfzqLX7MTwRSgHo42vLJJ6IWiS1Z+QLCgowe/ZsbN68GUpldQEWmUyG8ePH45tvvoFcLm+SQJsTZ+SJWqfc4gpMXHMKcRmFcLE0xtYXesDVyqRB37vvchpe/Okc/vsDtWaOdPWUYCbzJKpv/o7H5/vjEOBigd1zerfoavUtxZTvT+NEfDbeG+GHZ/t4ix2Ozigqr0LoJ4dQWF6FsBkhGNCucStHiYiamzp5qNrlO5999lmcPn0ae/fuRV5eHvLz87Fnzx5ERkbiueeea3TQRERiszY1wE/Pdoe3rSlS80ox+fvTSP/X7Pq9KJQCFu6OqZPEA1AdW7g7Bgplo3cyET2USoUSGyPu9tLupfle2tQ0Bt5tQ3dAhDZ0uuy3yBQUllfB284U/XzVXzFKRKQL1E7k9+7di3Xr1mHIkCGwsLCAubk5hgwZgrVr12Lv3r1NESMRUbOxMzfEz891h5u1MZJySjD5+1PILiq/7/ecScittZz+vwQAafllOJOQq+FoiRrmz8vpSC8og62ZIUZ05MoQXTHobhu6yKQ7yCupEDka3aBUCggLTwRQvYVEyholRNRCqZ3I29jY1Lt8Xi6Xw8rKSiNBERGJyUlujE3P9oCz3Ag3soox5fvTuFN87z+iMwsfPGuvznlEmhZ2srqX9pQe7jDU085KvVSXm7UJ2jmYQ6EUcCQuS+xwdMLhq5lIyimBhZEengx2ETscIqImo3Yi/95772Hu3LlIS0tTHUtPT8ebb76J999/X6PBERGJxc3aBD8/1wP25oa4ml6IaevOIL+0st5z7c2NGnTNhp5HpEnRKXk4n5wHA5kUk7t7iB0Oqalmef3BWC6vb4h1d29aTezuDhODRtd0JiLSemon8qtXr8apU6fg4eEBHx8f+Pj4wN3dHeHh4fjuu+8QHBysehAR6TIvW1P8/Gx3WJsa4FJqPmaEnUFReVWd87p5WcNJboR7LeCUoLp6fTcv6yaNl6g+NbPxj3Vygp25ocjRkLoG+Vcvrz8al4WKKqXI0Wi32LQChN/IgUwqwbRQT7HDISJqUmrfqhwzZkwThEFEpJ18Hczx0zPdMWFNBM4l5+GZ9WexfkY3GBv8szxZJpVg/kh/vPjTOUiAWkXvapL7+SP92U+eml1GQRn2XqxeQTeTLed0UmdXS9iaGSC7qAJnE3PRy8dW7JC0Vs1Nq6EBjnCxNBY5GiKipqV2Ij9//vymiIOISGv5O1tg4zPdMfn70zidkIvnN0Zi7bSuMNL/J5kfGuCE1VOC6/SRd2QfeRLRT6eSUKUUEOJphQAX3W8P2xpJpRI80t4ev0TewoGYDCby95BdVI6d0bcB8KYVEbUOD7V5qKioSNVLvgb7rhNRS9TJzRJhM0Iw7YczOH49G3M2ncOqyV1goPfPDqWhAU4Y7O+IMwm5yCwsg7159XJ6zsSTGMoqFdh0OhlAdfVu0l0D/RzwS+QtHLqagfkj/dk+sB6bTiejokqJTm6WCHa3FDscIqImp/Ye+YSEBIwYMQKmpqaqSvVWVlawtLRk1XoiatFCPK3xw9NdYagnxcHYTLy69TyqFLVvZsqkEoS2scHozi4IbWPDJJ5E8/uF28gproCLpTEevbvPmnRTH19bGOhJkZJbimsZRWKHo3XKqxTYeCoJADCzlydvdBBRq6D2jPzkyZMBAOvWrYODgwN/WBJRq9LTxxbfTe2C5zZE4o9L6TDUu4gvnurEhJ20iiAICDuZCACYGuoBPZna9+1Ji5gY6KFXGxv8HZeFg7EZaOdoLnZIWmXvxTRkFZbDwcIQwwO5jYmIWge1E/mLFy8iKioK7dq1a4p4iIi0Xv929lg5KRizfj6HHedTYagnxSePB0LKZJ60xOmEXMSmFcBIX4oJIW5ih0MaMMjfAX/HZeFQbAZmD/AROxytIQgCfjhRXeRuWqgn9HnTiohaCbV/2oWEhCAlJaUpYiEi0hlDOjhi2fjOkEqALWdTsHD3FQiC8OBvJGoG6+4mNk8Gu8LSxEDkaEgTBrav3h5xPiUP2UXlIkejPc4m3sGV2wUw1JNiUjd3scMhImo2as/If//99/i///s/pKamIiAgAPr6+rWe79ixo8aCIyLSZiM7OaO8Sok3fr2AHyOSYKQvwzvD2nPLEYkqJbcEB2IzAAAzenmKGwxpjKPcCIEuclxKzcfhq5kY15UrLYB/blo9EewKK1PetCKi1kPtRD4rKws3btzAjBkzVMckEgkEQYBEIoFCodBogERE2mxsF1eUVynwvx2X8d2xmzDUl2Hu4LZih0Wt2I/hiRCE6gJpPvbcS92SDPSzx6XUfByMyWAij+qbVn/FpAOoLnJHRNSaqJ3Iz5w5E0FBQdi8eTOL3RERAZjc3QPllUp8uCcGKw5dh5G+FLP6cw8rNb/i8ipsjaze/sZe2i3PID8HLDt4HcevZ6OsUgEjfZnYIYnqx/BEKO/etPJ14E0rImpd1E7kk5KS8Pvvv8PHh3+kEhHVmNnbC2VVCny2Lw6f7YuDTCLBM729WC2cmtW2c7dQWFYFb1tT9GtrJ3Y4pGEdnC3gJDdCWn4ZIm7kYEB7e7FDEk1ReRW2nr1706o3b1oRUeuj9l+YjzzyCC5cuNAUsRAR6bRZ/X3w8kBfAMDiP6+i15LD+GzfVSRkF4scGbUGSqWA9Xdbzj3d05NdFFogiUSCR+4m7wfv1kForX6LTEFheRW87UzRz5c3rYio9VF7Rn7kyJF47bXXcOnSJQQGBtYpdjdq1CiNBUdEpGteG+QLUwMZvj16AxkF5Vh15AZWHbmBbp7WeKqrK4YHOsHUUO0fvUQPdPR6Fm5mF8PcUA9PdnEVOxxqIoP8HfDz6WQcis3Ex2OEVrnFUakUEBaeCACY0cuLN62IqFWSCGr2S5JK7z2J31KK3RUUFEAulyM/Px8WFhZih0NEOqi8SoHDsZn4JTIFR69lQXn3J62pgQyPdXTGuBBXBLtbtco/wqlpTFt3BseuZeGZ3l54/zF/scOhJlJWqUDwRwdQUqHAnpd6I8BFLnZIze5gTAae3RAJCyM9nHp3IEwMeHOUiFoGdfJQtX/yKZXKRgdGRNRaGOrJMCzQCcMCnZCeX4Zt527h18gUJOaUYGtkCrZGpsDbzhTjurrhiWAX2JsbiR0y6bD4zCIcu5YFiQR4OtRT7HCoCRnpy9DH1xb7r2TgQExGq0zk152sbjk3sbs7k3giarUeqgpTWVmZpuIgImqxHOVGmD3AB3+/0R9bn++BsV1cYawvw82sYnz651WELj6MZ388i/1X0lGp4M1SUt/68OrEZpCfA9xtTESOhpraQD8HAMChq61vn3xsWgHCb+RAJpVgGm9aEVErpnYir1Ao8NFHH8HFxQVmZma4efMmAOD999/HDz/8oPEAiYhaColEgu7eNvjiqU44+94gLHkyEF08rKBQCjgYm4kXNkYhdPEhLNobg+sZhWKHSzoiv6QS26JSAQAz2Eu7VXikvT0kEuByagHS8kvFDqdZhd2djR8a4AgXS2ORoyEiEo/aifyiRYuwfv16fPbZZzAwMFAdDwwMxPfff6/R4IiIWiozQz2MD3HHthd74uDcfnihnzdszQyRXVSBtccTMHjpMYz55iQ2nU5GQVml2OGSFttyNhmllQq0dzRHqLeN2OFQM7A1M0SQmyUA4FBsprjBNKPsonLsjL4NAJjZiy3niKh1UzuR37BhA9asWYPJkydDJpOpjnfs2BFXr17VaHBERK2Bj70Z5g3zQ8S8R/D9tK541N8BelIJolPy8O6OS+i26CDmbo1GxI0cKJVq1SelFq5KocSGiCQA1YkNiye2HoP87y6vb0Vt6DadTkZFlRKd3SzRxcNK7HCIiESldoWQ1NRU+Pj41DmuVCpRWclZIyKixtKXSTHI3wGD/B2QVViOnedTsTUyBfGZRdh+PhXbz6fC3doET3VxxZNdXOHMZaWt3oGYDKTmlcLa1ACjOjuLHQ41o0F+DvhsXxxO3shBSUVViy/6Vl6l+OemVW/OxhMRqT0j36FDBxw/frzO8V9//RVBQUEaCYqIqLWzMzfEc329ceC1vtgxqycmdnOHmaEeknNL8OWBa+i15DCmrTuDPRdvo7xK99t+UuOEnUwEAEzq5g4jfdn9T6YWxdfeDO7WJqioUuL49Wyxw2lyey6kIbuoHI4WRhgW4Ch2OEREomvw7duZM2di+fLlmD9/PqZOnYrU1FQolUps374dcXFx2LBhA/bs2dOUsRIRtToSiQRB7lYIcrfC+4/5Yd/ldPwSmYJTN3Nx7FoWjl3LgqWJPsZ0dsFTXV3Rwbn1taJqrS6n5uNMYi70pBJMDfUQOxxqZhKJBAP97BF2MhEHYzIwpEPLTW4FQVC1nJvW0wP6sodqukRE1CI0+Cfhjz/+iNLSUowcORJbt27FH3/8AYlEgg8++ACxsbHYvXs3Bg8e3JSxEhG1aiYGengi2BVbng/F0Tf746VHfOAkN0JeSSXWhydixIoTGLHiOH4MT0ReSYXY4VITq5mNHx7oBAcLI3GDIVEMutuG7vDVTChacP2MMwm5uHK7AEb6UkwMcRc7HCIirSARBKFBP/mlUinS09Nhb2/f1DGJrqCgAHK5HPn5+bCwsBA7HCKie1IoBZyIz8YvkSk4cCUDFXf70BvIpHi0gwPGdXVDLx9byKQsgqbrcosrcD75Ds4l38G5pDycScyFQilgx6yeCHJn4a/WqFKhRPBHB1BYVoVtL/ZssQXgXtgYif1XMjCpuzs+eTxQ7HCIiJqMOnmoWpVRWA2XiEi7yKQS9Gtrh35t7XCnuAK7olOxNfIWYtMKsOdiGvZcTIOz3Ahju7hibBc3uNuYiB0yNYBCKSAuvbA6aU++g/PJeUjILq5zXr+2dkziWzF9mRT92tphz8U0HIrNaJGJfHJOCf6Kqa7MP6Onp7jBEBFpEbVm5OVy+QOT+dzcXI0EJibOyBORrrucmo9fI1OwM/o28kv/6SgS6m2DcSGuGNrBCcYGLI6mLf47237hVh5KKuoWMfS2M0WwuxWC3a0Q5G6Jdg7mkHK1Rau2KzoVr2yJRlsHM/z1Wj+xw9G4j/bE4IcTCejb1g4bZnYTOxwioibVZDPyCxcuhFzOQkpERNouwEWOABc55g33w4GYDPwSmYIT8dmIuJmDiJs5+MDwCkZ2dsa4rm7o5Prgm7SkOVUKJeIyCnE+Oe++s+1mhnro5CZXJe6d3SxhZWogQsSkzfq3tYdMKsG1jCIk55S0qFU3hWWV2Ho2BQAws5enuMEQEWkZtRL5CRMmtIo98kRELYWRvgwjOzljZCdnpOaVYlvULfwSmYJbd0qx6XQyNp1ORlsHM4zr6oYxQS6wNTMUO+QWpzGz7cEelvC1N2dtA3oguYk+QjytcOpmLg7GZrSoHuu/Rd1CUXkV2tiZoq+vndjhEBFplQYn8pytISLSbS6Wxnh5oC/mDPDBqYQc/Bp5C39cSsO1jCJ8vDcWn/55FQP97DGuqxv6tbWDHls8qU2d2fbObpYIdv//9u48Purq3v/4e7KQBZIJASYJJEDKjqAEWWQpREWMCuIFxSKCir29KohetWqv9kba+kD92Wq1dektBNdWqLQCIjQIsghhC0F2WRICJJBAIAmErHN+f2BGYxJIILPm9Xw85o+cOXPO5/vgMDOfOed7TsR3xwtGKCKU2XZcnlG9opR2qEBf7vWdRL7KbjRvfZYk6YFh8dxCAgA/0uBEvoG30gMAPJyfn0VDu7TV0C5t9cLtV2nJNzmav+Woth85o+W7Tmj5rhNqFxakCf1jddeAWHVp18rdIXssZtvhCW7sFaXffb5HGw8VqKi0QuHBge4O6Yqt3Junw6dKZA0J1Pj+HdwdDgB4nAYn8na73ZlxAADcwBoSqMmDO2ny4E7ad7xYC7Yc0cJtx5RfXKZ3Vh/UO6sPakCn1po4IE63Xh2jVkGNuiPLpzDbDk8V37alurRrqYP557R6X77GXtPe3SFdsbnrMiVJkwZ1VGiL5vu+AwD1afCu9c0Ju9YDaM7KK+1auTdPC7Yc0ap9ebJ/9ykR2sJft/WN0cSBcRrQqbXP33LFbDu8yewv9ujd1Yd0R7/2ev1nCe4O54rszinSrW+slb+fRWufvl7tI0LcHRIAuITTdq0HAPi+FgF+SuoTraQ+0TpRVKqF6ce0YMsRHTp5Tgu2HtWCrUcV37al7hoQqwn9YxUVHuzukK/YZc22d2qthDhm2+EZRvWK0rurD2nVvnxVVtm9eo+LlK8vzMbf0ieaJB4A6sGMfB2YkQeAmowx2nr4tOZvOaIl3+Q6Zqb9LFJiD5smDojVDT2j1CLAO5IHZtvha6rsRgN+l6rTJRX6+y+u03U/aePukC7LybNlGjp7pcqr7Fr4yFD179ja3SEBgMswIw8AaFIWi0UDOkdqQOdIJY+9Sp/vyNWCLUe0Oeu0Vu7N08q9eYps2UL/kdBBEwfEqUd0mLtDdqiebU/PPqNth09r2xFm2+F7/P0sur6nTQvTj2nF7hNem8h/lJat8ir7d/8XSeIBoD7MyNeBGXkAaJiD+Wf1j61H9enWo8orLnOUXxNr1V0D4jT2mvayhrh2B+2GzrZ3+W62PYHZdviIpTty9chH6ercJlSrnkr0un0syiqrNOylVTp5tkxvTErQ7T6waR8ANAYz8gAAl+jSrpWeSeqpJ2/qrjX78zV/81Gt2HNC248WavvRQv12yW7d0idaEwfE6bqftGnys6CZbQe+N6J7O7Xw91PWqRIdzD+nrjbvOjpyyfZcnTxbpujwYN3SJ9rd4QCARyORBwBcsQB/P93QM0o39IzSybNl+te2Y5q/5Yi+PXFW/8rI0b8ychTbOkR3XRunCdd2UGzr0Mvqp7Gz7f07Xbi/vautFbPt8HmtggI0+CeRWrv/pL7cc8KrEnljjOZ+t8nd1KGdFOjFm/UBgCu4dWn97NmztXDhQu3du1chISEaOnSoXn75ZfXo0UOSVFFRoeeff15Lly7VoUOHZLVaNWrUKL300ktq377+5Vbz5s3TAw88UKv8/PnzCg6+9O7KLK0HgCtnjNE3Rws1f8sRLcrIUXFZpSTJYpGGd22ruwbEaXTvKAUH+tf5embbgcZ7f0OW/vezXRrYubUWPDTU3eE02MZDp3T3X9IUHOinDc/eqNYt+T8MoPnxmqX1q1ev1vTp0zVw4EBVVlbqueee0+jRo7V79261bNlSJSUlSk9P169//Wtdc801On36tB5//HHdfvvt2rJly0XbDg8P1759+2qUNSSJBwA0DYvFomviInRNXISev623lu86rvlbjmj9wVNau/+k1u4/qfDgAN3x3QZ57SNCmG0HrtANPW363892aevh0zp9rtxrEuLq2fjx/WO9JmYAcCeP2uwuPz9fNptNq1ev1ogRI+qss3nzZg0aNEiHDx9Wx44d66wzb948Pf744zpz5sxlxcGMPAA4z5GCEi3YelT/2HJEOYWlF60bFhSgfh0jlBDHbDvQULf8ca325BbpDxOv0fj+se4O55KyT5Vo5KurZIyU+t8j1C3Kc069AABX8poZ+R8rLCyUJEVGRl60jsViUURExEXbOnv2rDp16qSqqir169dPv/3tb5WQkFBn3bKyMpWVfb/bclFRUeODBwA0SFxkqJ64qbseu7Gb1h88qflbjmr5ruMqr7Qz2w40gVG9bNqTW6QVe054RSL/3oYsGXNhsz6SeABoGI9J5I0xeuKJJzR8+HD16dOnzjqlpaV69tlndc8991z0F4qePXtq3rx56tu3r4qKivTHP/5Rw4YN0/bt29WtW7da9WfPnq1Zs2Y12bUAAC7N38+in3Zrp592a6dzZZWqtBuXH1UH+KJRvaL05soDWvPtSZVVVikooO59KDxBcWmFPtl8RJI0bVhn9wYDAF7EY5bWT58+XZ9//rnWrVun2Njavx5XVFTorrvuUnZ2tr766qtGLXm32+3q37+/RowYoTfeeKPW83XNyMfFxbG0HgAAeB273Wjw7C+VX1ym96cN0oju7dwdUr1Svs7UrMW71aVdS6X+98gmP6ISALxJY5bWe8TZHo8++qgWLVqkVatW1ZvET5w4UZmZmUpNTW10cu3n56eBAwdq//79dT4fFBSk8PDwGg8AAABv5Odn0aheNknSl3tOuDma+lXZjeatz5IkPTAsniQeABrBrYm8MUYzZszQwoULtXLlSsXHx9eqU53E79+/XytWrFCbNm0uq5+MjAzFxMQ0RdgAAAAe7caeUZKkFXvy5CGLL2tZuTdPh0+VyBoSqPH9O7g7HADwKm69R3769On6+OOP9dlnnyksLEzHjx+XJFmtVoWEhKiyslJ33nmn0tPTtWTJElVVVTnqREZGqkWLCzsXT506VR06dNDs2bMlSbNmzdJ1112nbt26qaioSG+88YYyMjL05z//2T0XCgAA4ELDurZVUICfjp05r73Hi9UrxvNWG85dd+HIuUmDOiq0hcds2wQXqrIbbcosUF5xqWxhwRoUH8kGp0ADufVd8+2335YkJSYm1ihPSUnR/fffr6NHj2rRokWSpH79+tWos2rVKsfrsrOz5ef3/eKCM2fO6Be/+IWOHz8uq9WqhIQErVmzRoMGDXLatQAAAHiKkBb++mm3tlqxJ08rdp/wuER+d06RNhw6JX8/i+4b2snd4cANlu3M1azFu5X7g2NIY6zBSh7bW0l9WEULXIrHbHbnSThHHgAAeLu/bcrWrxbu0DVxEfps+jB3h1PDLxds14KtRzX2mvZ6c1LdxwPDdy3bmauHP0zXj5OQ6rn4t+/tTzKPZsnrNrsDAABA07qx54UN77YfOaO8otJL1Had/OIyfZaRI4kj55qjKrvRrMW7ayXxkhxlsxbvVpWduUbgYkjkAQAAfJAtPFjXxFolXdhYzlN8tPGwyqvsSugYoYSOrd0dTpOpshttOHhKn2Uc04aDp0hE67Eps6DGcvofM5JyC0u1KbPAdUEBXoidRQAAAHzUqF5R2n60UCv2nNDPBnV0dzgqq6zSh2mHJUnThtU+rchbcb93w+UVN2x1SEPrAc0VM/IAAAA+6sZeF46hW3fgpEorqtwcjbR4e65Oni1XjDVYSX2i3R1Ok6i+3/vHs8zHC0v18IfpWrYz102ReSZbWHCT1gOaKxJ5AAAAH9UrJkwdIkJUWmHX1wdOujUWY4zjyLmpQzor0N/7v4Zyv3fjDYqPVIw1WPUdMmfRhdUMg+IjXRkW4HW8/x0UAAAAdbJYLLqx14VN71bsOeHWWDZmFmh3bpGCA/00aVCcW2NpKtzv3Xj+fhYlj+0tSbWS+eq/k8f25jx54BJI5AEAAHzYqO+W13+5J092N84MV8/GT+gfq4jQFm6Loylxv/flSeoTo7fv7a9oa83l89HWYI6eAxqIze4AAAB82OCfRKplC3/lFZdpx7FCXRMX4fIYsk+VKPW7FQEP+NCRc9zvffmS+sTopt7R2pRZoLziUtnCLiynZyYeaBhm5AEAAHxYUIC/RnRvJ0n60k3L6+etz5Ix0sju7dTVFuaWGJyB+72vjL+fRUO6tNG4fh00pEsbknigEUjkAQAAfFz18vrUPa4/T764tELztxyRJE0b7jtHzknc7w3AfUjkAQAAfNz1PW3ys0h7cot07Mx5l/a9YMtRnS2rVFdbK43o1talfbsC93sDcAfukQcAAPBxkS1b6NpOrbU567S+3HNCU4d0dkm/VXajeeuzJF24N95i8c2Zae73BuBqzMgDAAA0Azd+t7x+hQuX13+554SyC0pkDQnU+IRYl/XrDtzvDcCVSOQBAACager75NMOntLZskqX9Dn36wtHzt0zuKNCWvi7pE8AaA5I5AEAAJqBLu1aqnObUJVX2bX223yn97crp1Bphwrk72fR1CGdnN4fADQnJPIAAADNgMVicczKu2J5fcrXWZKkW/vGKMYa4vT+AKA5IZEHAABoJqrvk1+1L09VduO0fvKLy7QoI0eSNG1YZ6f1AwDNFYk8AABAMzGgc2tZQwJVcK5c27JPO62fjzYeVnmVXQkdI5TQsbXT+gGA5opEHgAAoJkI9PdTYo92kqTUPSec0kdZZZU+TDssSZo2LN4pfQBAc0ciDwAA0IxU3yf/pZPuk1+8PVcnz5YrxhqspD7RTukDAJo7EnkAAIBmZGSPdgrws+hA3lllnTzXpG0bYzR33YUj56YO6axAf75qAoAz8O4KAADQjIQHB2pQfKQkaUUTL6/fmFmg3blFCg7006RBcU3aNgDgeyTyAAAAzcz3x9A1bSJfPRs/oX+sIkJbNGnbAIDvkcgDAAA0M9WJ/Oas0yosqWiSNrNPlTg20HuAI+cAwKlI5AEAAJqZjm1C1T2qlarsRl992zSb3s1bnyVjpJHd26mrLaxJ2gQA1I1EHgAAoBm60bG8/soT+eLSCs3fckSSNG04R84BgLORyAMAADRD1cvrv9qXp4oq+xW1tWDLUZ0tq1RXWyuN6Na2KcIDAFwEiTwAAEAz1C8uQm1atlBxaaU2ZxZcdjtVdqN567MkSdOGxctisTRRhACA+pDIAwAANEP+fhbd0NMm6cqW13+554SyC0oUERqo/0jo0FThAQAugkQeAACgmbrxB8fQGWMuq425X184cu6eQR0V0sK/yWIDANSPRB4AAKCZ+mm3tmoR4KfsghIdyDvb6NfvyilU2qECBfhZNGVIJydECACoC4k8AABAM9UyKEBDu7SRJMcZ8I0xd12WJOnWvjGKsYY0ZWgAgIsgkQcAAGjGqpfXf9nI++Tziku1eHuOJI6cAwBXI5EHAABoxkb1urDhXXr2aZ08W9bg132Ulq3yKrv6d4xQv7gIJ0UHAKgLiTwAAEAzFmMN0VXtw2WMtGpvw2blSyuq9NHGw5KYjQcAdyCRBwAAaOZG/WD3+oZYvD1HJ8+Wq701WElXRTszNABAHUjkAQAAmrnqRH7t/pMqrai6aF1jjOZ+nSVJmjq0swL8+ToJAK7GOy8AAEAz16dDuKLCg1RSXqUNh05dtG7aoQLtyS1SSKC/fjYwzkURAgB+iEQeAACgmbNYLD/Yvf7iy+vnfp0pSZpwbQdFhLZwemwAgNpI5AEAAKCbfnAMnTGmzjqHT51z3Ed//1A2uQMAdyGRBwAAgIZ0aaOQQH/lFpZqV05RnXXmrc+SMVJij3bqamvl4ggBANVI5AEAAKDgQH/9tFtbSRdm5X+suLRCC7YclSRNG8ZsPAC4E4k8AAAAJF38GLr5W47qbFmlutpaORJ+AIB7uDWRnz17tgYOHKiwsDDZbDbdcccd2rdvn+P5iooKPfPMM+rbt69atmyp9u3ba+rUqcrJyblk259++ql69+6toKAg9e7dW//85z+deSkAAABe7/qeNlks0o5jhTpeWOoor7IbzVt/YZO7acPiZbFY3BUiAEBuTuRXr16t6dOnKy0tTampqaqsrNTo0aN17tw5SVJJSYnS09P161//Wunp6Vq4cKG+/fZb3X777Rdtd8OGDbr77rs1ZcoUbd++XVOmTNHEiRO1ceNGV1wWAACAV2oXFqR+cRGSpC/3fj8rv2LPCR0pOK+I0ED9R0IHN0UHAKhmMfVtS+oG+fn5stlsWr16tUaMGFFnnc2bN2vQoEE6fPiwOnbsWGedu+++W0VFRfriiy8cZUlJSWrdurX+9re/XTKOoqIiWa1WFRYWKjw8/PIuBgAAwAv9edUB/b/l+3RDT5vm3j9QknT3uxu0MbNAjyR20dNJPd0cIQD4psbkoR51j3xhYaEkKTIy8qJ1LBaLIiIi6q2zYcMGjR49ukbZzTffrPXr19dZv6ysTEVFRTUeAAAAzVH1ffLrDpxUSXmldh4r1MbMAgX4WTRlSCc3RwcAkDwokTfG6IknntDw4cPVp0+fOuuUlpbq2Wef1T333HPRXyiOHz+uqKioGmVRUVE6fvx4nfVnz54tq9XqeMTFxV3+hQAAAHix7lGtFNs6ROWVdq3bf1IpX2dJkm7tG6MYa4h7gwMASPKgRH7GjBn65ptv6l36XlFRoZ/97Gey2+166623LtnejzdhMcbUuzHLr371KxUWFjoeR44cafwFAAAA+ACLxeKYlf/75iNavP3CJsPThnPkHAB4Co9I5B999FEtWrRIq1atUmxsbK3nKyoqNHHiRGVmZio1NfWS9wtER0fXmn3Py8urNUtfLSgoSOHh4TUeAAAAzVV1Ir9yb57Kq+zq3zHCsQkeAMD93JrIG2M0Y8YMLVy4UCtXrlR8fO1fequT+P3792vFihVq06bNJdsdMmSIUlNTa5T9+9//1tChQ5ssdgAAAF81KD5SYUEBjr+ZjQcAzxJw6SrOM336dH388cf67LPPFBYW5phFt1qtCgkJUWVlpe68806lp6dryZIlqqqqctSJjIxUixYtJElTp05Vhw4dNHv2bEnSY489phEjRujll1/WuHHj9Nlnn2nFihVat26dey4UAADAi7QI8NOIHu30+Te5am8NVtJV0e4OCQAuS5XdaFNmgfKKS2ULC9ag+Ej5+9V9y7U3cevxc/Xds56SkqL7779fWVlZdc7SS9KqVauUmJgoSUpMTFTnzp01b948x/P/+Mc/9Pzzz+vQoUPq0qWLXnzxRY0fP75BcXH8HAAAaO62Hi7Qwx+m67nbemlcP86OB+B9lu3M1azFu5VbWOooi7EGK3lsbyX1iXFjZHVrTB7qUefIewoSeQAAAADwXst25urhD9P142S3eir57Xv7e1wy77XnyAMAAAAAcCWq7EazFu+ulcRLcpTNWrxbVXbvndMmkQcAAAAA+IxNmQU1ltP/mJGUW1iqTZkFrguqiZHIAwAAAAB8Rl5x/Un85dTzRCTyAAAAAACfYQsLbtJ6nohEHgAAAADgMwbFRyrGGqz6Dpmz6MLu9YPiI10ZVpMikQcAAAAA+Ax/P4uSx/aWpFrJfPXfyWN7e/V58iTyAAAAAACfktQnRm/f21/R1prL56OtwR559FxjBbg7AAAAAAAAmlpSnxjd1DtamzILlFdcKlvYheX03jwTX41EHgAAAADgk/z9LBrSpY27w2hyLK0HAAAAAMCLkMgDAAAAAOBFSOQBAAAAAPAi3CMPAHCrKrvxyU1oAABoanxmohqJPADAbZbtzNWsxbuVW1jqKIuxBit5bG+vPxYGAICmxGcmfoil9QAAt1i2M1cPf5he4wuJJB0vLNXDH6Zr2c5cN0UGAIBn4TMTP0YiDwBwuSq70azFu2XqeK66bNbi3aqy11UDAIDmg89M1IVEHgDgcpsyC2rNKvyQkZRbWKpNmQWuCwoAAA/EZybqQiIPAHC5vOL6v5BcTj0AAHwVn5moC4k8AMDlbGHBTVoPAABfxWcm6kIiDwBwuUHxkYqxBqu+A3MsurAT76D4SFeGBQCAx+EzE3UhkQcAuJy/n0XJY3tLUq0vJtV/J4/tzdm4AIBmj89M1IVEHgDgFkl9YvT2vf0Vba25FDDaGqy37+3PmbgAAHyHz0z8mMUYwzkFP1JUVCSr1arCwkKFh4e7OxwA8GlVdqNNmQXKKy6VLezC0kBmFQAAqI3PTN/WmDw0wEUxAQBQJ38/i4Z0aePuMAAA8Hh8ZqIaS+sBAAAAAPAiJPIAAAAAAHgREnkAAAAAALwIiTwAAAAAAF6ERB4AAAAAAC9CIg8AAAAAgBchkQcAAAAAwIuQyAMAAAAA4EVI5AEAAAAA8CIk8gAAAAAAeJEAdwfgiYwxkqSioiI3RwIAAAAAaA6q88/qfPRiSOTrUFxcLEmKi4tzcyQAAAAAgOakuLhYVqv1onUspiHpfjNjt9uVk5OjsLAwWSwWd4dzUUVFRYqLi9ORI0cUHh7u7nDggxhjcAXGGVyBcQZnY4zBFRhnvssYo+LiYrVv315+fhe/C54Z+Tr4+fkpNjbW3WE0Snh4OP+R4VSMMbgC4wyuwDiDszHG4AqMM990qZn4amx2BwAAAACAFyGRBwAAAADAi5DIe7mgoCAlJycrKCjI3aHARzHG4AqMM7gC4wzOxhiDKzDOILHZHQAAAAAAXoUZeQAAAAAAvAiJPAAAAAAAXoREHgAAAAAAL0IiDwAAAACAFyGRd7PZs2dr4MCBCgsLk81m0x133KF9+/bVqGOM0QsvvKD27dsrJCREiYmJ2rVrV406f/nLX5SYmKjw8HBZLBadOXOmVl+nT5/WlClTZLVaZbVaNWXKlDrrwfe4apxlZWXpwQcfVHx8vEJCQtSlSxclJyervLzc2ZcIN3Ple1m1srIy9evXTxaLRRkZGU64KngaV4+zzz//XIMHD1ZISIjatm2r8ePHO+vS4EFcOc6+/fZbjRs3Tm3btlV4eLiGDRumVatWOfPy4AGaYowVFBTo0UcfVY8ePRQaGqqOHTtq5syZKiwsrNEO3/99F4m8m61evVrTp09XWlqaUlNTVVlZqdGjR+vcuXOOOq+88or+8Ic/6E9/+pM2b96s6Oho3XTTTSouLnbUKSkpUVJSkv7nf/6n3r7uueceZWRkaNmyZVq2bJkyMjI0ZcoUp14fPIOrxtnevXtlt9v17rvvateuXXrttdf0zjvvXHRcwje48r2s2tNPP6327ds75XrgmVw5zj799FNNmTJFDzzwgLZv366vv/5a99xzj1OvD57BlePstttuU2VlpVauXKmtW7eqX79+GjNmjI4fP+7Ua4R7NcUYy8nJUU5Ojl599VXt2LFD8+bN07Jly/Tggw/W6Ivv/z7MwKPk5eUZSWb16tXGGGPsdruJjo42L730kqNOaWmpsVqt5p133qn1+lWrVhlJ5vTp0zXKd+/ebSSZtLQ0R9mGDRuMJLN3717nXAw8lrPGWV1eeeUVEx8f32Sxwzs4e4wtXbrU9OzZ0+zatctIMtu2bXPGZcDDOWucVVRUmA4dOpi//vWvTo0f3sFZ4yw/P99IMmvWrHGUFRUVGUlmxYoVzrkYeKQrHWPV5s+fb1q0aGEqKiqMMXz/93XMyHuY6uUwkZGRkqTMzEwdP35co0ePdtQJCgrSyJEjtX79+ga3u2HDBlmtVg0ePNhRdt1118lqtTaqHfgGZ42z+vqq7gfNhzPH2IkTJ/Sf//mf+uCDDxQaGtp0QcPrOGucpaen69ixY/Lz81NCQoJiYmJ0yy231Fo6jebBWeOsTZs26tWrl95//32dO3dOlZWVevfddxUVFaVrr722aS8CHq2pxlhhYaHCw8MVEBAgie//vo5E3oMYY/TEE09o+PDh6tOnjyQ5llZFRUXVqBsVFdWoZVfHjx+XzWarVW6z2Vi+1cw4c5z92MGDB/Xmm2/qoYceuvyA4XWcOcaMMbr//vv10EMPacCAAU0XNLyOM8fZoUOHJEkvvPCCnn/+eS1ZskStW7fWyJEjVVBQ0ERXAG/gzHFmsViUmpqqbdu2KSwsTMHBwXrttde0bNkyRURENNk1wLM11Rg7deqUfvvb3+q//uu/HGV8//dtAe4OAN+bMWOGvvnmG61bt67WcxaLpcbfxphaZZdSV/3LaQfezdnjrFpOTo6SkpJ011136ec///lltQHv5Mwx9uabb6qoqEi/+tWvrjhOeDdnjjO73S5Jeu655zRhwgRJUkpKimJjY7VgwYIaX5Th25w5zowxeuSRR2Sz2bR27VqFhITor3/9q8aMGaPNmzcrJibmiuOH52uKMVZUVKTbbrtNvXv3VnJy8kXbuFg78C7MyHuIRx99VIsWLdKqVasUGxvrKI+OjpakWr+a5eXl1fqV7mKio6N14sSJWuX5+fmNagfezdnjrFpOTo6uv/56DRkyRH/5y1+uLGh4FWePsZUrVyotLU1BQUEKCAhQ165dJUkDBgzQfffd1wRXAG/g7HFWnUD17t3bURYUFKSf/OQnys7OvpLQ4UVc8X62ZMkS/f3vf9ewYcPUv39/vfXWWwoJCdF7773XNBcBj9YUY6y4uFhJSUlq1aqV/vnPfyowMLBGO3z/910k8m5mjNGMGTO0cOFCrVy5UvHx8TWej4+PV3R0tFJTUx1l5eXlWr16tYYOHdrgfoYMGaLCwkJt2rTJUbZx40YVFhY2qh14J1eNM0k6duyYEhMT1b9/f6WkpMjPj7eZ5sBVY+yNN97Q9u3blZGRoYyMDC1dulSS9Mknn+jFF19smouBx3LVOLv22msVFBRU4zioiooKZWVlqVOnTld+IfBorhpnJSUlklTrc9LPz8+xKgS+qanGWFFRkUaPHq0WLVpo0aJFCg4OrtEO3/99nCt31kNtDz/8sLFarearr74yubm5jkdJSYmjzksvvWSsVqtZuHCh2bFjh5k0aZKJiYkxRUVFjjq5ublm27Zt5v/+7/8cO6Bu27bNnDp1ylEnKSnJXH311WbDhg1mw4YNpm/fvmbMmDEuvV64h6vG2bFjx0zXrl3NDTfcYI4ePVqjL/g2V76X/VBmZia71jcjrhxnjz32mOnQoYNZvny52bt3r3nwwQeNzWYzBQUFLr1muJ6rxll+fr5p06aNGT9+vMnIyDD79u0zTz31lAkMDDQZGRkuv264TlOMsaKiIjN48GDTt29fc+DAgRrtVFZWOtrh+7/vIpF3M0l1PlJSUhx17Ha7SU5ONtHR0SYoKMiMGDHC7Nixo0Y7ycnJl2zn1KlTZvLkySYsLMyEhYWZyZMnN+j4MHg/V42zlJSUevuCb3Ple9kPkcg3L64cZ+Xl5ebJJ580NpvNhIWFmVGjRpmdO3e66ErhTq4cZ5s3bzajR482kZGRJiwszFx33XVm6dKlLrpSuEtTjLHqYw3remRmZjrq8f3fd1mMMabx8/gAAAAAAMAduHkVAAAAAAAvQiIPAAAAAIAXIZEHAAAAAMCLkMgDAAAAAOBFSOQBAAAAAPAiJPIAAAAAAHgREnkAAAAAALwIiTwAAAAAAF6ERB4AAA936tQp2Ww2ZWVlubTfefPmKSIiwiltL1myRAkJCbLb7U5pHwAAX0YiDwCAh5s9e7bGjh2rzp0713pu9OjR8vf3V1pamusDuwJjxoyRxWLRxx9/XG+dBx98UH379lV5eXmN8qVLlyowMFBbtmxxdpgAAHgkEnkAADzY+fPnNWfOHP385z+v9Vx2drY2bNigGTNmaM6cOW6I7vJUVFRIkh544AG9+eab9dZ7/fXXVVxcrOTkZEfZmTNn9Itf/ELPPfecBgwY4LTYAADwZCTyAAB4sC+++EIBAQEaMmRIredSUlI0ZswYPfzww/rkk0907ty5Gs8nJiZq5syZevrppxUZGano6Gi98MILNepUJ8ZRUVEKDg5Wnz59tGTJkhp1li9frl69eqlVq1ZKSkpSbm6u4zm73a7f/OY3io2NVVBQkPr166dly5Y5ns/KypLFYtH8+fOVmJio4OBgffjhh5Kk22+/XZs2bdKhQ4fqvPawsDDNmzdPv//977Vx40ZJ0uOPP66YmBg9//zzOnbsmO6++261bt1abdq00bhx42rcfrB582bddNNNatu2raxWq0aOHKn09PQafVgsFr3zzjsaN26cWrZsqd/97nf1/EsAAOA5SOQBAPBga9asqXPm2RijlJQU3XvvverZs6e6d++u+fPn16r33nvvqWXLltq4caNeeeUV/eY3v1FqaqqkC0n4LbfcovXr1+vDDz/U7t279dJLL8nf39/x+pKSEr366qv64IMPtGbNGmVnZ+upp55yPP/HP/5Rv//97/Xqq6/qm2++0c0336zbb79d+/fvrxHHM888o5kzZ2rPnj26+eabJUmdOnWSzWbT2rVr673+xMREPfLII7rvvvu0YMECzZ8/X++//77Ky8t1/fXXq1WrVlqzZo3WrVvn+KGheil+cXGx7rvvPq1du1ZpaWnq1q2bbr31VhUXF9foIzk5WePGjdOOHTs0bdq0S/2TAADgfgYAAHiscePGmWnTptUq//e//23atWtnKioqjDHGvPbaa2bYsGE16owcOdIMHz68RtnAgQPNM888Y4wxZvny5cbPz8/s27evzr5TUlKMJHPgwAFH2Z///GcTFRXl+Lt9+/bmxRdfrNXHI488YowxJjMz00gyr7/+ep19JCQkmBdeeKHO56qVlJSYnj17Gj8/P/Paa68ZY4yZM2eO6dGjh7Hb7Y56ZWVlJiQkxCxfvrzOdiorK01YWJhZvHixo0ySefzxxy/aPwAAnoYZeQAAPNj58+cVHBxcq3zOnDm6++67FRAQIEmaNGmSNm7cqH379tWod/XVV9f4OyYmRnl5eZKkjIwMxcbGqnv37vX2Hxoaqi5dutT5+qKiIuXk5GjYsGE1XjNs2DDt2bOnRll997OHhISopKSk3v6r6zz55JMKDQ3VY489JknaunWrDhw4oLCwMLVq1UqtWrVSZGSkSktLdfDgQUlSXl6eHnroIXXv3l1Wq1VWq1Vnz55VdnZ2g2IDAMBTBbg7AAAAUL+2bdvq9OnTNcoKCgr0r3/9SxUVFXr77bcd5VVVVZo7d65efvllR1lgYGCN11osFseRbyEhIZfsv67XG2Nqlf2QMaZWWcuWLetsv6CgQO3atbtkHAEBAfL393e0a7fbde211+qjjz6qVbe6vfvvv1/5+fl6/fXX1alTJwUFBWnIkCG1dsGvLzYAADwVM/IAAHiwhIQE7d69u0bZRx99pNjYWG3fvl0ZGRmOx+uvv6733ntPlZWVDWr76quv1tGjR/Xtt99eVmzh4eFq37691q1bV6N8/fr16tWr1yVfXz17npCQ0Oi++/fvr/3798tms6lr1641HlarVZK0du1azZw5U7feequuuuoqBQUF6eTJk43uCwAAT0MiDwCAB7v55pu1a9euGrPyc+bM0Z133qk+ffrUeEybNk1nzpzR559/3qC2R44cqREjRmjChAlKTU1VZmamvvjiixq7zl/KL3/5S7388sv65JNPtG/fPj377LPKyMhwLIG/mLS0NMcseWNNnjxZbdu21bhx47R27VplZmZq9erVeuyxx3T06FFJUteuXfXBBx9oz5492rhxoyZPntygVQgAAHg6EnkAADxY3759NWDAAMeO9Fu3btX27ds1YcKEWnXDwsI0evToRp0p/+mnn2rgwIGaNGmSevfuraefflpVVVUNfv3MmTP15JNP6sknn1Tfvn21bNkyLVq0SN26dbvka//2t79p8uTJCg0NbXB/1UJDQ7VmzRp17NhR48ePV69evTRt2jSdP39e4eHhkqS5c+fq9OnTSkhI0JQpUzRz5kzZbLZG9wUAgKexmB/f6AYAADzK0qVL9dRTT2nnzp3y8/ON3+Dz8/PVs2dPbdmyRfHx8e4OBwAAr8JmdwAAeLhbb71V+/fv17FjxxQXF+fucJpEZmam3nrrLZJ4AAAuAzPyAAAAAAB4Ed9YnwcAAAAAQDNBIg8AAAAAgBchkQcAAAAAwIuQyAMAAAAA4EVI5AEAAAAA8CIk8gAAAAAAeBESeQAAAAAAvAiJPAAAAAAAXoREHgAAAAAAL/L/AVQBsCLxw+f5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, test_y_torch.numpy(), label=\"Ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index 15a7abe..17de0b0 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -42,12 +42,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import sys\n", "import time as tt\n", "import wandb\n", @@ -74,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -89,9 +90,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='08-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='30d', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M')\n", + " ]\n", + ")" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# check calendar\n", "calendar" @@ -108,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -141,9 +164,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -162,9 +196,99 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-4-3-2-11
anchor_year
2021[2020-12-01, 2021-01-01)[2021-02-01, 2021-03-01)[2021-04-01, 2021-05-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-12-01, 2020-01-01)[2020-02-01, 2020-03-01)[2020-04-01, 2020-05-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-12-01, 2019-01-01)[2019-02-01, 2019-03-01)[2019-04-01, 2019-05-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", + "
" + ], + "text/plain": [ + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", + "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", + "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "calendar.show()[:3]" ] @@ -179,7 +303,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -222,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -240,7 +364,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -250,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +385,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -313,9 +437,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -335,9 +469,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + } + ], "source": [ "hyperparameters = dict(\n", " epoch = 100,\n", @@ -368,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -393,9 +536,116 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " Transformer(\n", + " (encoder): TransformerEncoder(\n", + " (layers): ModuleList(\n", + " (0): TransformerEncoderLayer(\n", + " (attention): Residual(\n", + " (sublayer): MultiHeadAttention(\n", + " (heads): ModuleList(\n", + " (0-1): 2 x AttentionHead(\n", + " (q): Linear(in_features=65, out_features=32, bias=True)\n", + " (k): Linear(in_features=65, out_features=32, bias=True)\n", + " (v): Linear(in_features=65, out_features=32, bias=True)\n", + " )\n", + " )\n", + " (linear): Linear(in_features=64, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " (feed_forward): Residual(\n", + " (sublayer): Sequential(\n", + " (0): Linear(in_features=65, out_features=12, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=12, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (decoder): TransformerDecoder(\n", + " (layers): ModuleList(\n", + " (0): TransformerDecoderLayer(\n", + " (attention_1): Residual(\n", + " (sublayer): MultiHeadAttention(\n", + " (heads): ModuleList(\n", + " (0-1): 2 x AttentionHead(\n", + " (q): Linear(in_features=65, out_features=32, bias=True)\n", + " (k): Linear(in_features=65, out_features=32, bias=True)\n", + " (v): Linear(in_features=65, out_features=32, bias=True)\n", + " )\n", + " )\n", + " (linear): Linear(in_features=64, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " (attention_2): Residual(\n", + " (sublayer): MultiHeadAttention(\n", + " (heads): ModuleList(\n", + " (0-1): 2 x AttentionHead(\n", + " (q): Linear(in_features=65, out_features=32, bias=True)\n", + " (k): Linear(in_features=65, out_features=32, bias=True)\n", + " (v): Linear(in_features=65, out_features=32, bias=True)\n", + " )\n", + " )\n", + " (linear): Linear(in_features=64, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " (feed_forward): Residual(\n", + " (sublayer): Sequential(\n", + " (0): Linear(in_features=65, out_features=12, bias=True)\n", + " (1): ReLU()\n", + " (2): Linear(in_features=12, out_features=65, bias=True)\n", + " )\n", + " (norm): LayerNorm((65,), eps=1e-05, elementwise_affine=True)\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " )\n", + " )\n", + " )\n", + " (linear): Linear(in_features=65, out_features=65, bias=True)\n", + " )\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.01\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Initialize model\n", "model = Transformer(num_encoder_layers = config[\"num_encoder_layers\"],\n", @@ -416,9 +666,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "58905\n" + ] + } + ], "source": [ "# display the total number of parameters\n", "utils.total_num_param(model)\n", @@ -436,9 +694,517 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/36(0%)]\tLoss: 506.021881\n", + "Epoch : 0 [8/36(22%)]\tLoss: 475.474731\n", + "Epoch : 0 [16/36(44%)]\tLoss: 435.696686\n", + "Epoch : 0 [24/36(67%)]\tLoss: 386.927979\n", + "Epoch : 0 [32/36(89%)]\tLoss: 330.176575\n", + "Epoch : 1 [0/36(0%)]\tLoss: 286.846436\n", + "Epoch : 1 [8/36(22%)]\tLoss: 252.374252\n", + "Epoch : 1 [16/36(44%)]\tLoss: 211.516083\n", + "Epoch : 1 [24/36(67%)]\tLoss: 163.846466\n", + "Epoch : 1 [32/36(89%)]\tLoss: 118.904327\n", + "Epoch : 2 [0/36(0%)]\tLoss: 88.401131\n", + "Epoch : 2 [8/36(22%)]\tLoss: 63.586720\n", + "Epoch : 2 [16/36(44%)]\tLoss: 41.322487\n", + "Epoch : 2 [24/36(67%)]\tLoss: 20.409021\n", + "Epoch : 2 [32/36(89%)]\tLoss: 7.286934\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.401527\n", + "Epoch : 3 [8/36(22%)]\tLoss: 0.695382\n", + "Epoch : 3 [16/36(44%)]\tLoss: 2.689346\n", + "Epoch : 3 [24/36(67%)]\tLoss: 4.242138\n", + "Epoch : 3 [32/36(89%)]\tLoss: 7.152884\n", + "Epoch : 4 [0/36(0%)]\tLoss: 11.273768\n", + "Epoch : 4 [8/36(22%)]\tLoss: 7.817347\n", + "Epoch : 4 [16/36(44%)]\tLoss: 4.682924\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.896466\n", + "Epoch : 4 [32/36(89%)]\tLoss: 3.010625\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.647707\n", + "Epoch : 5 [8/36(22%)]\tLoss: 3.335974\n", + "Epoch : 5 [16/36(44%)]\tLoss: 1.973992\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.744300\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.265757\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.068870\n", + "Epoch : 6 [8/36(22%)]\tLoss: 1.011943\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.585855\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.351650\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.554650\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.866305\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.528709\n", + "Epoch : 7 [16/36(44%)]\tLoss: 1.472912\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.822380\n", + "Epoch : 7 [32/36(89%)]\tLoss: 2.337819\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.359279\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.445358\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.932218\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.804963\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.417920\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.498121\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.144468\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.367464\n", + "Epoch : 9 [24/36(67%)]\tLoss: 0.871716\n", + "Epoch : 9 [32/36(89%)]\tLoss: 2.485669\n", + "Epoch : 10 [0/36(0%)]\tLoss: 1.024639\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.661250\n", + "Epoch : 10 [16/36(44%)]\tLoss: 1.002649\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.327927\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.849390\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.495480\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.235851\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.701189\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.084021\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.564712\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.608021\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.602414\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.798770\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.108851\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.724937\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.729018\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.395918\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.823908\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.100993\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.283623\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.276163\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.598967\n", + "Epoch : 14 [16/36(44%)]\tLoss: 1.525860\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.436774\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.662022\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.264542\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.299752\n", + "Epoch : 15 [16/36(44%)]\tLoss: 1.181460\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.513182\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.853196\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.978928\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.514400\n", + "Epoch : 16 [16/36(44%)]\tLoss: 1.632375\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.486952\n", + "Epoch : 16 [32/36(89%)]\tLoss: 2.108686\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.672361\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.865039\n", + "Epoch : 17 [16/36(44%)]\tLoss: 1.494351\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.903042\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.086330\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.629433\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.354262\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.979544\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.969461\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.923103\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.418376\n", + "Epoch : 19 [8/36(22%)]\tLoss: 1.096712\n", + "Epoch : 19 [16/36(44%)]\tLoss: 1.058504\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.294863\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.496873\n", + "Epoch : 20 [0/36(0%)]\tLoss: 1.124646\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.513211\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.815666\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.296755\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.227790\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.633028\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.551762\n", + "Epoch : 21 [16/36(44%)]\tLoss: 1.107615\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.218125\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.850292\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.577310\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.372966\n", + "Epoch : 22 [16/36(44%)]\tLoss: 1.033291\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.992006\n", + "Epoch : 22 [32/36(89%)]\tLoss: 2.169535\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.350665\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.366637\n", + "Epoch : 23 [16/36(44%)]\tLoss: 1.417031\n", + "Epoch : 23 [24/36(67%)]\tLoss: 1.036691\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.609438\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.535583\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.394133\n", + "Epoch : 24 [16/36(44%)]\tLoss: 1.001556\n", + "Epoch : 24 [24/36(67%)]\tLoss: 1.073266\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.408681\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.650553\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.830442\n", + "Epoch : 25 [16/36(44%)]\tLoss: 1.217813\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.338362\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.349689\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.413797\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.703265\n", + "Epoch : 26 [16/36(44%)]\tLoss: 2.056289\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.983090\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.424505\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.663729\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.577409\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.834680\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.472446\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.775065\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.182383\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.487294\n", + "Epoch : 28 [16/36(44%)]\tLoss: 1.379942\n", + "Epoch : 28 [24/36(67%)]\tLoss: 1.088887\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.717813\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.612552\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.530694\n", + "Epoch : 29 [16/36(44%)]\tLoss: 1.135115\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.849216\n", + "Epoch : 29 [32/36(89%)]\tLoss: 2.290936\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.791819\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.841939\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.751247\n", + "Epoch : 30 [24/36(67%)]\tLoss: 2.223854\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.836979\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.304145\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.524288\n", + "Epoch : 31 [16/36(44%)]\tLoss: 1.183633\n", + "Epoch : 31 [24/36(67%)]\tLoss: 1.030156\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.845652\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.863263\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.447181\n", + "Epoch : 32 [16/36(44%)]\tLoss: 1.003948\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.914014\n", + "Epoch : 32 [32/36(89%)]\tLoss: 1.793885\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.492325\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.329485\n", + "Epoch : 33 [16/36(44%)]\tLoss: 1.021262\n", + "Epoch : 33 [24/36(67%)]\tLoss: 1.269948\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.097205\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.426955\n", + "Epoch : 34 [8/36(22%)]\tLoss: 1.008496\n", + "Epoch : 34 [16/36(44%)]\tLoss: 1.999888\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.745757\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.771835\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.874700\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.601034\n", + "Epoch : 35 [16/36(44%)]\tLoss: 1.394963\n", + "Epoch : 35 [24/36(67%)]\tLoss: 1.032311\n", + "Epoch : 35 [32/36(89%)]\tLoss: 1.405863\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.563602\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.429498\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.632501\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.455407\n", + "Epoch : 36 [32/36(89%)]\tLoss: 2.779716\n", + "Epoch : 37 [0/36(0%)]\tLoss: 1.226939\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.474218\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.838628\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.994023\n", + "Epoch : 37 [32/36(89%)]\tLoss: 1.786874\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.230907\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.416016\n", + "Epoch : 38 [16/36(44%)]\tLoss: 1.268639\n", + "Epoch : 38 [24/36(67%)]\tLoss: 1.375652\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.140448\n", + "Epoch : 39 [0/36(0%)]\tLoss: 1.025646\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.247747\n", + "Epoch : 39 [16/36(44%)]\tLoss: 1.232084\n", + "Epoch : 39 [24/36(67%)]\tLoss: 1.465505\n", + "Epoch : 39 [32/36(89%)]\tLoss: 1.560549\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.540635\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.711518\n", + "Epoch : 40 [16/36(44%)]\tLoss: 1.141637\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.644401\n", + "Epoch : 40 [32/36(89%)]\tLoss: 1.815609\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.538926\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.680074\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.702654\n", + "Epoch : 41 [24/36(67%)]\tLoss: 1.581463\n", + "Epoch : 41 [32/36(89%)]\tLoss: 1.927015\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.550825\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.608175\n", + "Epoch : 42 [16/36(44%)]\tLoss: 1.031083\n", + "Epoch : 42 [24/36(67%)]\tLoss: 1.069013\n", + "Epoch : 42 [32/36(89%)]\tLoss: 1.169417\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.995818\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.262753\n", + "Epoch : 43 [16/36(44%)]\tLoss: 1.131341\n", + "Epoch : 43 [24/36(67%)]\tLoss: 1.117310\n", + "Epoch : 43 [32/36(89%)]\tLoss: 1.751396\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.623241\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.476600\n", + "Epoch : 44 [16/36(44%)]\tLoss: 1.335697\n", + "Epoch : 44 [24/36(67%)]\tLoss: 1.097010\n", + "Epoch : 44 [32/36(89%)]\tLoss: 1.425824\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.679613\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.466341\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.735276\n", + "Epoch : 45 [24/36(67%)]\tLoss: 1.096575\n", + "Epoch : 45 [32/36(89%)]\tLoss: 1.164259\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.418960\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.325926\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.814923\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.773771\n", + "Epoch : 46 [32/36(89%)]\tLoss: 1.256443\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.572979\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.219952\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.903094\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.982292\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.557837\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.637207\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.391097\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.460705\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.789681\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.619922\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.340572\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.798931\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.646301\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.333447\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.503696\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.268273\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.394185\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.850764\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.941594\n", + "Epoch : 50 [32/36(89%)]\tLoss: 1.595979\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.553680\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.289719\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.917769\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.777148\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.539263\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.374052\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.713892\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.495203\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.723595\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.758440\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.527610\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.630611\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.400905\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.275668\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.593037\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.470072\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.276536\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.323487\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.208045\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.685639\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.573179\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.249735\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.239142\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.832784\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.267916\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.532594\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.516174\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.544291\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.878976\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.534233\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.250885\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.285077\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.264440\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.176701\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.121559\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.515723\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.190928\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.639301\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.176653\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.277030\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.233501\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.163751\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.151359\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.394216\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.318477\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.303578\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.246072\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.099112\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.138564\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.457102\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.131319\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.322398\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.175111\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.513825\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.193890\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.484985\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.253278\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.197306\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.437422\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.307774\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.178874\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.297232\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.167193\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.254593\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.172817\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.339134\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.135795\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.220097\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.146241\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.210194\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.268196\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.277594\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.207721\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.510624\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.245466\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.446702\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.378260\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.155661\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.212217\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.123901\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.175088\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.305720\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.077772\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.171850\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.107977\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.210955\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.133773\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.149824\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.084108\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.187185\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.236024\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.257472\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.155600\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.349844\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.206877\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.385539\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.521477\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.214908\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.414929\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.535444\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.114708\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.166098\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.557436\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.180808\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.140647\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.295184\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.322688\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.383092\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.239466\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.284149\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.380352\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.307335\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.166690\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.204713\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.608392\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.414359\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.296766\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.084090\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.166445\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.511570\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.150807\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.831381\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.138934\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.471820\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.170241\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.221684\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.271798\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.213655\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.125129\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.460172\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.380046\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.151156\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.302748\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.179922\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.326994\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.181516\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.271843\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.203029\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.232907\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.421540\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.390221\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.229783\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.039740\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.091887\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.183308\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.346911\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.609162\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.440015\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.102866\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.252971\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.285334\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.148115\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.088814\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.077130\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.234805\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.101126\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.448321\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.124789\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.047329\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.220118\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.366338\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.364387\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.474662\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.133313\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.119812\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.380383\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.210763\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.077336\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.421480\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.247005\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.283482\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.075739\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.434730\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.048596\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.151163\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.412210\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.156183\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.084887\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.150484\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.074536\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.080429\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.536628\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.246809\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.051964\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.250650\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.343138\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.222209\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.332153\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.178502\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.196364\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.227474\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.217989\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.101445\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.126245\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.290258\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.159147\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.126862\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.294369\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.284267\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.283187\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.241446\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.237238\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.149894\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.053586\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.462691\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.369333\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.099263\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.155456\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.265495\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.481865\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.262901\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.217376\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.100864\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.615846\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.229443\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.223720\n", + "Epoch : 94 [8/36(22%)]\tLoss: 1.121755\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.758085\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.292731\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.687600\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.717782\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.265387\n", + "Epoch : 95 [16/36(44%)]\tLoss: 1.056168\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.459116\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.351233\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.224290\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.801395\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.397276\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.226678\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.455763\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.739205\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.408344\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.243132\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.521203\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.186958\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.409274\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.408222\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.400289\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.097000\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.251255\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.096195\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.286169\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.326130\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.180438\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.123520\n", + "--- 0.06335703134536744 minutes ---\n" + ] + } + ], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -500,9 +1266,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrHUlEQVR4nOzdd3hT1RsH8G+6d8sobYFS9pC9ZRWQvfdGpqA/2UOG7CUCKogooCI4QFCWiLKX7L13mWWU3ZbuNrm/P05uRpu2aZs0afr9PE+eJPfe3HuSBm7e+77nHIUkSRKIiIiIiIiIyOrYWboBRERERERERGQYg3YiIiIiIiIiK8WgnYiIiIiIiMhKMWgnIiIiIiIislIM2omIiIiIiIisFIN2IiIiIiIiIivFoJ2IiIiIiIjISjFoJyIiIiIiIrJSDNqJiIiIiIiIrBSDdiIiIiIiG9WoUSM0atTI6G0rVKhg3gapFS1aFAMGDMiWYxHldAzaiUjPmjVroFAooFAocOTIkRTrJUlCYGAgFAoF2rZtq1keFRWFGTNmoEKFCnB3d0e+fPlQpUoVjBo1Ck+ePNFsN3PmTM3+Dd3CwsKy5X0SEREZSz43njlzxtJNybInT55g5syZuHDhgqWbYjJFixaFQqFA06ZNDa7/4YcfNL8zkv8Njxw5glatWqFQoUJwcXFBkSJF0K5dO6xbt05vu7R+u3z00Udme29EAOBg6QYQkXVycXHBunXrUL9+fb3lhw4dwqNHj+Ds7KxZlpiYiODgYNy4cQP9+/fHiBEjEBUVhatXr2LdunXo1KkTChYsqLef5cuXw8PDI8VxfXx8zPJ+iIiIcqPdu3frPX/y5AlmzZqFokWLokqVKpZpFICbN2/Czs50+UMXFxccOHAAYWFh8Pf311u3du1auLi4IC4uTm/5n3/+iR49emiSDHny5MG9e/fw33//4YcffkDv3r31tm/WrBn69euX4tilS5c22fsgMoRBOxEZ1Lp1a/z5559YunQpHBy0/1WsW7cO1atXx8uXLzXLtm7divPnz2Pt2rUpTnBxcXFISEhIsf+uXbsif/785nsDREREuVhMTAzc3Nzg5ORk6aYYpHvx3xTq1auH06dPY8OGDRg1apRm+aNHj3D48GF06tQJmzZt0nvNzJkz8c477+DEiRMpPqfnz5+nOEbp0qXRt29fk7abyBgsjycig3r16oVXr15hz549mmUJCQnYuHFjisD8zp07AMQJMzkXFxd4eXmZt7FERERW4Pz582jVqhW8vLzg4eGBJk2a4MSJEym2u3TpEho2bAhXV1cULlwYc+fOxerVq6FQKHD//n3Ndn/99RfatGmDggULwtnZGSVKlMCcOXOgVCr19if3RT979iyCg4Ph5uaGTz/9VLNO7tN+8OBB1KxZEwAwcOBATXn3mjVr9PZ37do1NG7cGG5ubihUqBAWLlyot/7gwYNQKBT4448/MGvWLBQqVAienp7o2rUrIiIiEB8fj9GjR6NAgQLw8PDAwIEDER8fr7cPQ33aw8PDMWbMGBQtWhTOzs4oXLgw+vXrp5coSI2Liws6d+6coqz9999/R548edCiRYsUr7lz5w5q1qxp8MJGgQIF0j0mUXZhpp2IDCpatCjq1KmD33//Ha1atQIA7NixAxEREejZsyeWLl2q2TYoKAgA8Msvv2Dq1KlQKBTp7v/169cpljk4OLA8noiIcqSrV6+iQYMG8PLywoQJE+Do6IiVK1eiUaNGOHToEGrXrg0AePz4MRo3bgyFQoHJkyfD3d0dP/74o8HM85o1a+Dh4YGxY8fCw8MD+/fvx/Tp0xEZGYlFixbpbfvq1Su0atUKPXv2RN++feHn55dif+XKlcPs2bMxffp0DB06FA0aNAAA1K1bV7PNmzdv0LJlS3Tu3Bndu3fHxo0bMXHiRFSsWFHze0A2f/58uLq6YtKkSQgJCcE333wDR0dH2NnZ4c2bN5g5cyZOnDiBNWvWoFixYpg+fXqqn19UVBQaNGiA69evY9CgQahWrRpevnyJbdu24dGjR0ZV5/Xu3RvNmzfHnTt3UKJECQCiQrBr165wdHRMsX1QUBD27duHR48eoXDhwunuPy4uzuAFBC8vL6utaCAbIRER6Vi9erUEQDp9+rS0bNkyydPTU4qJiZEkSZK6desmNW7cWJIkSQoKCpLatGkjSZIkxcTESGXKlJEASEFBQdKAAQOkVatWSc+ePUux/xkzZkgADN7KlCmTfW+UiIjISLrnxtR07NhRcnJyku7cuaNZ9uTJE8nT01MKDg7WLBsxYoSkUCik8+fPa5a9evVKyps3rwRAunfvnma5fP7V9eGHH0pubm5SXFycZlnDhg0lANKKFStSbN+wYUOpYcOGmuenT5+WAEirV682uC0A6ZdfftEsi4+Pl/z9/aUuXbpolh04cEACIFWoUEFKSEjQLO/Vq5ekUCikVq1a6e23Tp06UlBQkN6yoKAgqX///prn06dPlwBImzdvTtEulUqVYlnyfbVp00ZKSkqS/P39pTlz5kiSJEnXrl2TAEiHDh0y+DdctWqVBEBycnKSGjduLE2bNk06fPiwpFQqUxwjtd8uAKTff/89zfYRZRXL44koVd27d0dsbCy2b9+Ot2/fYvv27SlK4wHA1dUVJ0+exCeffAJAZAYGDx6MgIAAjBgxIkVJHABs2rQJe/bs0butXr3a7O+JiIjI1JRKJXbv3o2OHTuiePHimuUBAQHo3bs3jhw5gsjISADAzp07UadOHb1B4PLmzYs+ffqk2K+rq6vm8du3b/Hy5Us0aNAAMTExuHHjht62zs7OGDhwYJbfi4eHh16/bScnJ9SqVQt3795NsW2/fv30Mti1a9eGJEkYNGiQ3na1a9dGaGgokpKSUj3upk2bULlyZXTq1CnFOmMq+ADA3t4e3bt3x++//w5ADEAXGBioqShIbtCgQdi5cycaNWqEI0eOYM6cOWjQoAFKlSqFY8eOpdi+Q4cOKX677NmzB40bNzaqfUSZxfJ4IkqVr68vmjZtinXr1iEmJgZKpRJdu3Y1uK23tzcWLlyIhQsX4sGDB9i3bx+++OILLFu2DN7e3pg7d67e9sHBwRyIjoiIbMKLFy8QExODMmXKpFhXrlw5qFQqhIaGonz58njw4AHq1KmTYruSJUumWHb16lVMnToV+/fv1wT9soiICL3nhQoVMkmJduHChVMEyXny5MGlS5dSbFukSBG9597e3gCAwMDAFMtVKhUiIiKQL18+g8e9c+cOunTpkpWmAxAl8kuXLsXFixexbt069OzZM82gv0WLFmjRogViYmJw9uxZbNiwAStWrEDbtm1x48YNvb7thQsXTnVaOSJzYqadiNLUu3dv7NixAytWrECrVq2M6nMeFBSEQYMG4ejRo/Dx8cHatWvN31AiIiIbEh4ejoYNG+LixYuYPXs2/v77b+zZswcLFiwAAKhUKr3tdbPyWWFvb29wuSRJRm+bkX2YWu3atVGiRAmMHj0a9+7dM1ghaIibmxsaNGiAZcuWYerUqXjz5g127Nhh5tYSGYeZdiJKU6dOnfDhhx/ixIkT2LBhQ4ZemydPHpQoUQJXrlwxU+uIiIgsz9fXF25ubrh582aKdTdu3ICdnZ0m+xwUFISQkJAU2yVfdvDgQbx69QqbN29GcHCwZvm9e/ey1FZjS82zmyl/L/Tq1Qtz585FuXLlMjUXfY0aNQAAT58+NUl7iLKKmXYiSpOHhweWL1+OmTNnol27dga3uXjxosHRVB88eIBr164ZLBckIiKyFfb29mjevDn++usvvSnbnj17hnXr1qF+/fqa6U9btGiB48eP48KFC5rtXr9+naIqTc5W62anExIS8N1332Wpre7u7gBEJt+adOnSBRcvXsSWLVtSrMtohv6DDz7AjBkz8OWXX6a53b59+wwu//fffwGAv1/IajDTTkTp6t+/f5rr9+zZgxkzZqB9+/Z499134eHhgbt37+Knn35CfHw8Zs6cmeI1GzduhIeHR4rlzZo1MzhNDRERkaX99NNP2LlzZ4rlo0aNwty5c7Fnzx7Ur18fH3/8MRwcHLBy5UrEx8frzXM+YcIE/Pbbb2jWrBlGjBihmfKtSJEieP36tSYTXrduXeTJkwf9+/fHyJEjoVAo8Ouvv2a5xLxEiRLw8fHBihUr4OnpCXd3d9SuXRvFihXL0n6z6pNPPsHGjRvRrVs3DBo0CNWrV8fr16+xbds2rFixApUrVzZ6X0FBQQZ/eyTXoUMHFCtWDO3atUOJEiUQHR2NvXv34u+//0bNmjVTJCtu3bqF3377LcV+/Pz80KxZM6PbR5RRDNqJKMu6dOmCt2/fYvfu3di/fz9ev36NPHnyoFatWhg3bpzBUVX/97//GdzXgQMHGLQTEZFVWr58ucHlAwYMQPny5XH48GFMnjwZ8+fPh0qlQu3atfHbb79p5mgHxCBtBw4cwMiRI/HZZ5/B19cXw4YNg7u7O0aOHAkXFxcAQL58+bB9+3aMGzcOU6dORZ48edC3b180adIELVq0yPR7cHR0xM8//4zJkyfjo48+QlJSElavXm3xoN3DwwOHDx/GjBkzsGXLFvz8888oUKAAmjRpYtQc6pnx448/4q+//sIff/yBJ0+eQJIkFC9eHFOmTMHEiRPh4KAfKsmjxSfXsGFDBu1kVgopO0aEICIiIiKiVI0ePRorV65EVFRUqgO5EVHuxD7tRERERETZKDY2Vu/5q1ev8Ouvv6J+/foM2IkoBZbHExERERFlozp16qBRo0YoV64cnj17hlWrViEyMhLTpk2zdNOIyAoxaCciIiIiykatW7fGxo0b8f3330OhUKBatWpYtWqV3tRuREQy9mknIiIiIiIislLs005ERERERERkpRi0ExERkdWbOXMmFAqF3q1s2bKWbhYREZHZsU87AJVKhSdPnsDT0xMKhcLSzSEiolxOkiS8ffsWBQsWhJ0dr6/Lypcvj71792qeJ59DOS081xMRkbUx9nzPoB3AkydPEBgYaOlmEBER6QkNDUXhwoUt3Qyr4eDgAH9//0y9lud6IiKyVumd7xm0A/D09AQgPiwvLy8Lt4aIiHK7yMhIBAYGas5PJNy+fRsFCxaEi4sL6tSpg/nz56NIkSIGt42Pj0d8fLzmuTzuLs/1RERkLYw93zNoBzRlcl5eXjyRExGR1WAZt1bt2rWxZs0alClTBk+fPsWsWbPQoEEDXLlyxeCPnfnz52PWrFkplvNcT0RE1ia98z2nfIO4wuHt7Y2IiAieyImIyOJ4XkpfeHg4goKC8NVXX2Hw4MEp1ifPtMvZDH6mRERkLYw93zPTTkRERDmOj48PSpcujZCQEIPrnZ2d4ezsnM2tIiIiMj0OSUtEREQ5TlRUFO7cuYOAgABLN4WIiMismGknIsoApVKJxMRESzeDbICjoyPs7e0t3YwcY/z48WjXrh2CgoLw5MkTzJgxA/b29ujVq5elm0ZENkaSJCQlJUGpVFq6KZTD2dvbw8HBIctj1DBoJyIyUlRUFB49egQOBUKmoFAoULhwYXh4eFi6KTnCo0eP0KtXL7x69Qq+vr6oX78+Tpw4AV9fX0s3jYhsSEJCAp4+fYqYmBhLN4VshJubGwICAuDk5JTpfTBoJyIyglKpxKNHj+Dm5gZfX1+O6k1ZIkkSXrx4gUePHqFUqVLMuBth/fr1lm4CEdk4lUqFe/fuwd7eHgULFoSTkxPP95RpkiQhISEBL168wL1791CqVCnY2WWudzqDdiIiIyQmJkKSJPj6+sLV1dXSzSEb4Ovri/v37yMxMZFBOxGRFUhISIBKpUJgYCDc3Nws3RyyAa6urnB0dMSDBw+QkJAAFxeXTO2HA9EREWUAr7iTqfC7RERknTKbDSUyxBTfJ34jiYiIiIiIiKwUg3YiIiIiIiIiK8WgnYiIMqRo0aJYsmSJ0dsfPHgQCoUC4eHhZmsTAKxZswY+Pj5mPQYREVFuwHO9dWHQTkRkoxQKRZq3mTNnZmq/p0+fxtChQ43evm7dunj69Cm8vb0zdTwiIiIyjOf63IGjxxMR2ainT59qHm/YsAHTp0/HzZs3Nct05weXJAlKpRIODumfFjI6L7aTkxP8/f0z9BoiIiJKH8/1uQMz7SZ08yZQuTLQuLGlW0JE5iZJQHS0ZW6SZFwb/f39NTdvb28oFArN8xs3bsDT0xM7duxA9erV4ezsjCNHjuDOnTvo0KED/Pz84OHhgZo1a2Lv3r16+01eMqdQKPDjjz+iU6dOcHNzQ6lSpbBt2zbN+uQlc3Jp265du1CuXDl4eHigZcuWej88kpKSMHLkSPj4+CBfvnyYOHEi+vfvj44dO2bo77R8+XKUKFECTk5OKFOmDH799Vedv6GEmTNnokiRInB2dkbBggUxcuRIzfrvvvsOpUqVgouLC/z8/NC1a9cMHZtskyQBTZoAxYoBjx9bujVEZE481y/RPOe53rIYtJtQYiJw6RJw9aqlW0JE5hYTA3h4WOYWE2O69zFp0iR8/vnnuH79OipVqoSoqCi0bt0a+/btw/nz59GyZUu0a9cODx8+THM/s2bNQvfu3XHp0iW0bt0affr0wevXr9P4/GLwxRdf4Ndff8V///2Hhw8fYvz48Zr1CxYswNq1a7F69WocPXoUkZGR2Lp1a4be25YtWzBq1CiMGzcOV65cwYcffoiBAwfiwIEDAIBNmzZh8eLFWLlyJW7fvo2tW7eiYsWKAIAzZ85g5MiRmD17Nm7evImdO3ciODg4Q8cn26RQACEhwP37QDr/LIgoh+O5Xh/P9RYkkRQRESEBkCIiIrK0n5s3JQmQJG9v07SLiKxHbGysdO3aNSk2NlaSJEmKihL/3i1xi4rKePtXr14teev853TgwAEJgLR169Z0X1u+fHnpm2++0TwPCgqSFi9erHkOQJo6darmeVRUlARA2rFjh96x3rx5o2kLACkkJETzmm+//Vby8/PTPPfz85MWLVqkeZ6UlCQVKVJE6tChg9HvsW7dutKQIUP0tunWrZvUunVrSZIk6csvv5RKly4tJSQkpNjXpk2bJC8vLykyMjLV42VV8u+ULlOdl0jLlJ9p/fri3+L69SZoGBFZDZ7rea43B1Oc75lpNyFHR3GfmGjZdhCR+bm5AVFRlrm5uZnufdSoUUPveVRUFMaPH49y5crBx8cHHh4euH79erpX3ytVqqR57O7uDi8vLzx//jzV7d3c3FCiRAnN84CAAM32ERERePbsGWrVqqVZb29vj+rVq2fovV2/fh316tXTW1avXj1cv34dANCtWzfExsaiePHiGDJkCLZs2YKkpCQAQLNmzRAUFITixYvj/fffx9q1axFjyrQH5WhFioh7ZtqJbBvP9fp4rrccBu0m5OQk7hMSLNsOIjI/hQJwd7fMTaEw3ftwd3fXez5+/Hhs2bIFn332GQ4fPowLFy6gYsWKSEjnPzZH+aql5vNRQKVSZWh7ydgOfCYSGBiImzdv4rvvvoOrqys+/vhjBAcHIzExEZ6enjh37hx+//13BAQEYPr06ahcubLZp7KhnIFBO1HuwHO9Pp7rLYdBuwnJ38ukJOMHjyAisiZHjx7FgAED0KlTJ1SsWBH+/v64f/9+trbB29sbfn5+OH36tGaZUqnEuXPnMrSfcuXK4ejRo3rLjh49infeeUfz3NXVFe3atcPSpUtx8OBBHD9+HJcvXwYAODg4oGnTpli4cCEuXbqE+/fvY//+/Vl4Z2QrgoLEPYN2IsqJeK7Peed6TvlmQnKmHRAl8rrPiYhyglKlSmHz5s1o164dFAoFpk2bluZVdHMZMWIE5s+fj5IlS6Js2bL45ptv8ObNGygykHr45JNP0L17d1StWhVNmzbF33//jc2bN2tGyF2zZg2USiVq164NNzc3/Pbbb3B1dUVQUBC2b9+Ou3fvIjg4GHny5MG///4LlUqFMmXKmOstUw7CTDsR5WQ81+e8cz2DdhPSrQBh0E5EOdFXX32FQYMGoW7dusifPz8mTpyIyMjIbG/HxIkTERYWhn79+sHe3h5Dhw5FixYtYG9vb/Q+OnbsiK+//hpffPEFRo0ahWLFimH16tVo1KgRAMDHxweff/45xo4dC6VSiYoVK+Lvv/9Gvnz54OPjg82bN2PmzJmIi4tDqVKl8Pvvv6N8+fJmeseUkzBoJ6KcjOf6nHeuV0jZ3bHACkVGRsLb2xsRERHw8vLK9H50A/XXr4E8eUzUQCKyuLi4ONy7dw/FihWDi4uLpZuT66hUKpQrVw7du3fHnDlzLN0ck0jrO2Wq8xJpmfIzjYwEvL3F47dvxfRMRJTz8VxvWbZ4rgdMc75npt2EHHQ+TY4gT0SUeQ8ePMDu3bvRsGFDxMfHY9myZbh37x569+5t6aYRwctLBO0REUBoKFCunKVbRESU8/BcbzwORGdCCoW2RJ4jyBMRZZ6dnR3WrFmDmjVrol69erh8+TL27t2LcoyOyEqwRJ6IKGt4rjceM+0m5ugosuzMtBMRZV5gYGCK0WCJrEmRIsDlywzaiYgyi+d64zHTbmKcq52IiMjGPXiAeq5n4YR4Bu1ERGR2DNpNTC6PZ6adiIjIRlWujMkba6Ao7jNoJyIis2PQbmJypp1BOxERkY3Kn1/c4SWDdiIiMjsG7SbGgeiIiIhsHIN2IiLKRgzaTYyZdiIiIhuXLx8AEbSHhgIqlYXbQ0RENs2iQft///2Hdu3aoWDBglAoFNi6daveekmSMH36dAQEBMDV1RVNmzbF7du39bZ5/fo1+vTpAy8vL/j4+GDw4MGIiorKxnehj5l2IiIiG6fOtPsqXiIxEXj2zMLtISIim2bRoD06OhqVK1fGt99+a3D9woULsXTpUqxYsQInT56Eu7s7WrRogbi4OM02ffr0wdWrV7Fnzx5s374d//33H4YOHZpdbyEFZtqJyNY0atQIo0eP1jwvWrQolixZkuZrDF2IzQxT7SctM2fORJUqVcx6DLIx6qC9qMcrAJz2jYhyPp7rrZtFg/ZWrVph7ty56NSpU4p1kiRhyZIlmDp1Kjp06IBKlSrhl19+wZMnTzR/1OvXr2Pnzp348ccfUbt2bdSvXx/ffPMN1q9fjydPnmTzuxGYaScia9GuXTu0bNnS4LrDhw9DoVDg0qVLGd7v6dOnTX5xNLWT6dOnT9GqVSuTHosoy9RBe6DrSwAM2onIcniuzx2stk/7vXv3EBYWhqZNm2qWeXt7o3bt2jh+/DgA4Pjx4/Dx8UGNGjU02zRt2hR2dnY4efJkqvuOj49HZGSk3s1UmGknImsxePBg7NmzB48ePUqxbvXq1ahRowYqVaqU4f36+vrCzc3NFE1Ml7+/P5ydnbPlWERGUwft/o4M2onIsniuzx2sNmgPCwsDAPj5+ekt9/Pz06wLCwtDgQIF9NY7ODggb968mm0MmT9/Pry9vTW3wMBAk7WbmXaiXEKSgOhoy9wkyagmtm3bFr6+vlizZo3e8qioKPz5558YPHgwXr16hV69eqFQoUJwc3NDxYoV8fvvv6e53+Qlc7dv30ZwcDBcXFzwzjvvYM+ePSleM3HiRJQuXRpubm4oXrw4pk2bhkT11c01a9Zg1qxZuHjxIhQKBRQKhabNyUvmLl++jPfeew+urq7Ily8fhg4dqjeOyYABA9CxY0d88cUXCAgIQL58+TBs2DDNsYyhUqkwe/ZsFC5cGM7OzqhSpQp27typWZ+QkIDhw4cjICAALi4uCAoKwvz58wGIKrGZM2eiSJEicHZ2RsGCBTFy5Eijj005hM5AdACDdiKbxXO95jnP9ZY91zuYde9WavLkyRg7dqzmeWRkpMkCd2baiXKJmBjAw8Myx46KAtzd093MwcEB/fr1w5o1azBlyhQoFAoAwJ9//gmlUolevXohKioK1atXx8SJE+Hl5YV//vkH77//PkqUKIFatWqlewyVSoXOnTvDz88PJ0+eREREhF6fOJmnpyfWrFmDggUL4vLlyxgyZAg8PT0xYcIE9OjRA1euXMHOnTuxd+9eAKKyKrno6Gi0aNECderUwenTp/H8+XN88MEHGD58uN6PlQMHDiAgIAAHDhxASEgIevTogSpVqmDIkCHpvh8A+Prrr/Hll19i5cqVqFq1Kn766Se0b98eV69eRalSpbB06VJs27YNf/zxB4oUKYLQ0FCEhoYCADZt2oTFixdj/fr1KF++PMLCwnDx4kWjjks5iDrT7p3IoJ3IpvFcD4Dneqs410tWAoC0ZcsWzfM7d+5IAKTz58/rbRccHCyNHDlSkiRJWrVqleTj46O3PjExUbK3t5c2b95s9LEjIiIkAFJERESm2y9r21aSAEn68ccs74qIrEhsbKx07do1KTY2ViyIihL/2C1xi4oyut3Xr1+XAEgHDhzQLGvQoIHUt2/fVF/Tpk0bady4cZrnDRs2lEaNGqV5HhQUJC1evFiSJEnatWuX5ODgID1+/FizfseOHSn+T09u0aJFUvXq1TXPZ8yYIVWuXDnFdrr7+f7776U8efJIUTrv/59//pHs7OyksLAwSZIkqX///lJQUJCUlJSk2aZbt25Sjx49Um1L8mMXLFhQmjdvnt42NWvWlD7++GNJkiRpxIgR0nvvvSepVKoU+/ryyy+l0qVLSwkJCakeT5biO6XDlOclEkz6mV69KkmAFO+ZVwIkqVq1rO+SiCyP5/pRmuc815vmXC9JpjnfW215fLFixeDv7499+/ZplkVGRuLkyZOoU6cOAKBOnToIDw/H2bNnNdvs378fKpUKtWvXzvY2A8y0E+Uabm7iKrglbhnoY1a2bFnUrVsXP/30EwAgJCQEhw8fxuDBgwEASqUSc+bMQcWKFZE3b154eHhg165deGhk6vD69esIDAxEwYIFNcvk/6N1bdiwAfXq1YO/vz88PDwwdepUo4+he6zKlSvDXSfzUK9ePahUKty8eVOzrHz58rC3t9c8DwgIwPPnz406RmRkJJ48eYJ69erpLa9Xrx6uX78OQJTlXbhwAWXKlMHIkSOxe/duzXbdunVDbGwsihcvjiFDhmDLli1ISkrK0PukHECdaXeMegN7JOHBAwu3h4jMg+d6ADzXW8O53qJBe1RUFC5cuIALFy4AEIPPXbhwAQ8fPoRCocDo0aMxd+5cbNu2DZcvX0a/fv1QsGBBdOzYEQBQrlw5tGzZEkOGDMGpU6dw9OhRDB8+HD179tT7UmUn9mknyiUUClG2ZombuvTNWIMHD8amTZvw9u1brF69GiVKlEDDhg0BAIsWLcLXX3+NiRMn4sCBA7hw4QJatGiBBBP+J3b8+HH06dMHrVu3xvbt23H+/HlMmTLFpMfQ5Sj/R6ymUCigUqlMtv9q1arh3r17mDNnDmJjY9G9e3d07doVABAYGIibN2/iu+++g6urKz7++GMEBwdnqJ8d5QB58wIAFJKEPHiDV69EF1QisjE81xuN53rznustGrSfOXMGVatWRdWqVQEAY8eORdWqVTF9+nQAwIQJEzBixAgMHToUNWvWRFRUFHbu3AkXFxfNPtauXYuyZcuiSZMmaN26NerXr4/vv//eIu8HYKadiKxP9+7dYWdnh3Xr1uGXX37BoEGDNH3ejh49ig4dOqBv376oXLkyihcvjlu3bhm973LlyiE0NBRPnz7VLDtx4oTeNseOHUNQUBCmTJmCGjVqoFSpUniQLDXp5OQEpVKZ7rEuXryIaJ3o6OjRo7Czs0OZMmWMbnNavLy8ULBgQRw9elRv+dGjR/HOO+/obdejRw/88MMP2LBhAzZt2oTXr18DAFxdXdGuXTssXboUBw8exPHjx3H58mWTtI+shIMD4OMDACjqLvq1q7s6EhFZBM/1xsuJ53qLDkTXqFEjSGmMjKhQKDB79mzMnj071W3y5s2LdevWmaN5mcJMOxFZGw8PD/To0QOTJ09GZGQkBgwYoFlXqlQpbNy4EceOHUOePHnw1Vdf4dmzZ3onrbQ0bdoUpUuXRv/+/bFo0SJERkZiypQpetuUKlUKDx8+xPr161GzZk38888/2LJli942RYsW1VRbFS5cGJ6enimmf+nTpw9mzJiB/v37Y+bMmXjx4gVGjBiB999/P8VMI1nxySefYMaMGShRogSqVKmC1atX48KFC1i7di0A4KuvvkJAQACqVq0KOzs7/Pnnn/D394ePjw/WrFkDpVKJ2rVrw83NDb/99htcXV0RFBRksvYR8Pnnn2Py5MkYNWqU3ujG2Sp/fiA8HO8UeIkz98RgdGXLWqYpREQ812dMTjvXW22f9pyKmXYiskaDBw/Gmzdv0KJFC73uQ1OnTkW1atXQokULNGrUCP7+/pouSMaws7PDli1bEBsbi1q1auGDDz7AvHnz9LZp3749xowZg+HDh6NKlSo4duwYpk2bprdNly5d0LJlSzRu3Bi+vr4Gp6Jxc3PDrl278Pr1a9SsWRNdu3ZFkyZNsGzZsox9GOkYOXIkxo4di3HjxqFixYrYuXMntm3bhlKlSgEQo+MuXLgQNWrUQM2aNXH//n38+++/sLOzg4+PD3744QfUq1cPlSpVwt69e/H3338jn3qKMMq606dPY+XKlZmad9ik1P3aS+Z5BYAjyBOR5fFcb7ycdq5XSGmlunOJyMhIeHt7IyIiAl5eXlna18iRwDffAFOmAHPnmqiBRGRxcXFxuHfvHooVK6bXRYcos9L6TpnyvGRLoqKiUK1aNXz33XeYO3cuqlSpYnSm3eSfabt2wPbt+K3hD3j/0AeYNg1IozCQiHIAnuvJHExxvmem3cSYaSciIjKPYcOGoU2bNmjatGm628bHxyMyMlLvZlLqTHshF87VTkRE5mXRPu22iH3aiYiITG/9+vU4d+4cTp8+bdT28+fPx6xZs8zXIHXQ7mfPoJ2IiMyLmXYTY6adiIjItEJDQzFq1CisXbvW6JLVyZMnIyIiQnMLNfXw7uq+i/lUDNqJiMi8mGk3MWbaiYiITOvs2bN4/vw5qlWrplmmVCrx33//YdmyZYiPj4e9vb3ea5ydnVOMSmxS6ky7V6IYiC40FFCpADumQ4iIyMQYtJsYM+1Eto1jd5Kp8LtkvCZNmqSY/3bgwIEoW7YsJk6cmCJgzxbqoN05SmTaExKAN280CXgiysH4/zOZkim+TwzaTYyZdiLbJAcFCQkJcHV1tXBryBYkqE8UFgk4cxhPT09UqFBBb5m7uzvy5cuXYnm2UQftdq9ews0NiIkBIiMZtBPlZI7qH/IxMTE815PJxMTEANB+vzKDQbuJMdNOZJscHBzg5uaGFy9ewNHREXasgaUsUKlUePHiBdzc3ODgwFNxjqQO2vHyJby8tEE7EeVc9vb28PHxwfPnzwGIOcMVCoWFW0U5lSRJiImJwfPnz+Hj45Oli/T8pWBizLQT2SaFQoGAgADcu3cPDx48sHRzyAbY2dmhSJEi/EGYSQcPHrRsA+SUeng48pZKRFiYI4N2Ihvg7+8PAJrAnSirfHx8NN+rzGLQbmJy0M5MO5HtcXJyQqlSpTRlzURZ4eTkxIqNnCxPHkChACQJhd1e4xr88PatpRtFRFklX6QvUKAAEvmDnrLI0dHRJN3gGLSbmFwez9/0RLbJzs7O6CmniMiGOTiIwP31axRyeQXAj5l2Ihtib2/PMUfIavASv4kx005ERJRLqPu1BziKEeQZtBMRkTkwaDcxZtqJiIhyCXXQ7mfPoJ2IiMyHQbuJMdNORESUS6gHo/NVMGgnIiLzYdBuYsy0ExER5RLqTHteiUE7ERGZD4N2E2OmnYiIKJdQB+15lK8AMGgnIiLzYNBuYsy0ExER5RLqoN0rkZl2IiIyHwbtJsZMOxERUS6hDto94xi0ExGR+TBoNzFm2omIiHIJ9UB0bjEM2omIyHwYtJsYM+1ERES5hDrT7hItgva3by3ZGCIislUM2k2MmXYiIqJcQh20O0ZyIDoiIjIfBu0mxkw7ERFRLqEO2h2iIuCARAbtRERkFgzaTYyZdiIiolzCxwewEz+l8uEV3r4FVCrLNomIiGwPg3YTkzPtKhWgVFq2LURERGRG9vZA3rwAgPx4CUkCoqMt3CYiIrI5DNpNTM60AyyRJyIisnnqEeT97DiCPBERmQeDdhOTM+0Ag3YiIiKbp+7XHujGweiIiMg8GLSbmG6mnf3aiYiIbJw6aC/ozEw7ERGZB4N2E7O3BxQK8ZiZdiIiIhunDtoDHBi0ExGReTBoNwOOIE9ERJRLqIN2P3sRtL99a8nGEBGRLWLQbgacq52IiCiXUA9Elx/MtBMRkXkwaDcDZtqJiIhyCXWmPa+KQTsREZkHg3YzYKadiIgol1AH7d5Kjh5PRETmwaDdDJhpJyIiyiXUQbtXAjPtRERkHgzazYCZdiIiolxCHbR7xDFoJyIi82DQbgZypp1BOxERkY1TD0TnHP8WTohn0E5ERCbHoN0M5Ew7y+OJiIhsnLe35qEHohi0ExGRyTFoNwNm2omIiHIJe3txA+DMTDsREZkBg3YzYKadiIgoF1FfrWfQTkRE5sCg3QyYaSciIspFnJ0BAE5IwNu3Fm4LERHZHAbtZsBMOxERUS6iDtqZaSciInNg0G4GzLQTERHlIiyPJyIiM2LQbgbMtBMREeUiOpn2hAQgPt7C7SEiIpvCoN0MmGknIiLKRXT6tANgtp2IiEyKQbsZMNNORESUi6iDdh8XkWJn0E5ERKbEoN0MmGknIiIyreXLl6NSpUrw8vKCl5cX6tSpgx07dli6WYL6xO/jyqCdiIhMj0G7GTDTTkREZFqFCxfG559/jrNnz+LMmTN477330KFDB1y9etXSTdNm2hm0ExGRGThYugG2iJl2IiIi02rXrp3e83nz5mH58uU4ceIEypcvb6FWqamDdk9n9mknIiLTY9BuBsy0ExERmY9SqcSff/6J6Oho1KlTx+A28fHxiNcZxj3SnJG0Omj3cmamnYiITI/l8WbATDsREZHpXb58GR4eHnB2dsZHH32ELVu24J133jG47fz58+Ht7a25BQYGmq9h6hO/pzpof/vWfIciIqLch0G7GTDTTkREZHplypTBhQsXcPLkSfzvf/9D//79ce3aNYPbTp48GREREZpbaGio+RqmzrR7OLI8noiITI/l8WbATDsREZHpOTk5oWTJkgCA6tWr4/Tp0/j666+xcuXKFNs6OzvDWR1Mm50maGd5PBERmR4z7WbATDsREZH5qVQqvX7rFqMO2t0dGLQTEZHpMdNuBsy0ExERmdbkyZPRqlUrFClSBG/fvsW6detw8OBB7Nq1y9JN05z43Ri0ExGRGTBoNwNm2omIiEzr+fPn6NevH54+fQpvb29UqlQJu3btQrNmzSzdNE2m3dWefdqJiMj0rLo8XqlUYtq0aShWrBhcXV1RokQJzJkzB5IkabaRJAnTp09HQEAAXF1d0bRpU9y+fduCrWamnYiIyNRWrVqF+/fvIz4+Hs+fP8fevXutI2AHtEG7gpl2IiIyPasO2hcsWIDly5dj2bJluH79OhYsWICFCxfim2++0WyzcOFCLF26FCtWrMDJkyfh7u6OFi1aIC4uzmLtZqadiIgoF1FfrXdh0E5ERGZg1eXxx44dQ4cOHdCmTRsAQNGiRfH777/j1KlTAESWfcmSJZg6dSo6dOgAAPjll1/g5+eHrVu3omfPntnb4Dt3gI8/RtM33gD+YKadiIgoN1Bn2p0ZtBMRkRlYdaa9bt262LdvH27dugUAuHjxIo4cOYJWrVoBAO7du4ewsDA0bdpU8xpvb2/Url0bx48fT3W/8fHxiIyM1LuZRGwssHs3/G8eBMBMOxERUa4gB+0QJ/63by3ZGCIisjVWnWmfNGkSIiMjUbZsWdjb20OpVGLevHno06cPACAsLAwA4Ofnp/c6Pz8/zTpD5s+fj1mzZpm+weryODulSLEz005ERJQLqIN2R4mZdiIiMj2rzrT/8ccfWLt2LdatW4dz587h559/xhdffIGff/45S/udPHkyIiIiNLfQ0FDTNFjdmd0uSVxpZ6adiIgoF1BftHdUiaA9KgpQKi3ZICIisiVWnWn/5JNPMGnSJE3f9IoVK+LBgweYP38++vfvD39/fwDAs2fPEBAQoHnds2fPUKVKlVT36+zsDGf1VXGTkjPt6qCdmXYiIqJcQM60q7RX66OiAG9vSzWIiIhsiVVn2mNiYmBnp99Ee3t7qFQqAECxYsXg7++Pffv2adZHRkbi5MmTqFOnTra2FYA2065MAiAx005ERJQbqIN2u8R4zbSvLJEnIiJTsepMe7t27TBv3jwUKVIE5cuXx/nz5/HVV19h0KBBAACFQoHRo0dj7ty5KFWqFIoVK4Zp06ahYMGC6NixY/Y3WD5TA3BEIhITndLYmIiIiGyCXL0XHw8vL+DlSwbtRERkOlYdtH/zzTeYNm0aPv74Yzx//hwFCxbEhx9+iOnTp2u2mTBhAqKjozF06FCEh4ejfv362LlzJ1xcXLK/wcmC9oQEBu1EREQ2Tz7/x8fD05NBOxERmZZVB+2enp5YsmQJlixZkuo2CoUCs2fPxuzZs7OvYalRl8cDgBMSkJjobsHGEBERUbaQM+0JCfDyEg8ZtBMRkalYdZ/2HMdBew3ECQns005ERJQbJCuPBxi0ExGR6TBoNyWFQpNtF33aLdweIiIiMj+d8ngG7UREZGoM2k1NfeJmpp2IiCiXMJBpf/vWcs0hIiLbwqDd1NRBOzPtREREuQT7tBMRkRkxaDc1dXm8nGmXJAu3h4iIiMyLfdqJiMiMGLSbmk55PAAolZZsDBEREZmdbp92T3G1nkE7ERGZCoN2U9MpjwfAfu1ERES2Ts60A/B2TwLAoJ2IiEyHQbup6ZTHA2C/diIiIlunE7T7uMYDYNBORESmw6Dd1JhpJyIiyl0YtBMRkRkxaDc1dabd1Y6ZdiIiolzB3h6wEz+pvF0YtBMRkWkxaDc1dabdzUEE7cy0ExER5QLqbLunszjxM2gnIiJTYdBuauqg3cVepNiZaSciIsoF1EG7lzMz7UREZFoM2k1NLo+3Z6adiIgo11AH7R6OImh/+xaQJEs2iIiIbAWDdlNjpp2IiCj3UZ//3R1E0J6UBMTHW7JBRERkKxi0mxoz7URERLmPOtMun/8BkW0nIiLKKgbtpiZn2jl6PBERUe6hDtrtk+Lh5iYWMWgnIiJTYNBuasnK45lpJyIiygXU53/Ex8PTUzxk0E5ERKbAoN3U1OXxzLQTERHlIupMOxISNEE7R5AnIiJTYNBuauor7c52zLQTERHlGnLQzkw7ERGZGIN2U1Nn2p0VzLQTERHlGgzaiYjITBi0m5om086gnYiIKNdgn3YiIjITBu2mpj5pOylYHk9ERJRrGOjTzqCdiIhMgUG7qbE8noiIKPfRKY/38hIPGbQTEZEpMGg3Nbk8HiJoZ6adiIgoF2CfdiIiMhMG7aamzrQ7qsvjmWknIiLKmvnz56NmzZrw9PREgQIF0LFjR9y8edPSzdLHPu1ERGQmDNpNTe7TLjHTTkREZAqHDh3CsGHDcOLECezZsweJiYlo3rw5oqOjLd00LfZpJyIiM3GwdANsjjpoZ6adiIjINHbu3Kn3fM2aNShQoADOnj2L4OBgC7UqGZbHExGRmTBoNzV1eTwz7UREROYREREBAMibN2+q28THxyM+Pl7zPDIy0ryNYtBORERmwvJ4U5Mz7RJHjyciItty7tw5XL58WfP8r7/+QseOHfHpp58iIZuuUqtUKowePRr16tVDhQoVUt1u/vz58Pb21twCAwPN2zC5TzvL44mIyMQYtJuaOtPuAM7TTkREtuXDDz/ErVu3AAB3795Fz5494ebmhj///BMTJkzIljYMGzYMV65cwfr169PcbvLkyYiIiNDcQkNDzdswZtqJiMhMGLSbGjPtRERko27duoUqVaoAAP78808EBwdj3bp1WLNmDTZt2mT24w8fPhzbt2/HgQMHULhw4TS3dXZ2hpeXl97NrBi0ExGRmTBoNzV10O6gYqadiIhsiyRJUKlUAIC9e/eidevWAIDAwEC8fPnSrMcdPnw4tmzZgv3796NYsWJmO1amcco3IiIyEw5EZ2pyeTwz7UREZGNq1KiBuXPnomnTpjh06BCWL18OALh37x78/PzMdtxhw4Zh3bp1+Ouvv+Dp6YmwsDAAgLe3N1xdXc123AwxMOVbVBSgUgF2TJEQEVEW8DRiappMO0ePJyIi27JkyRKcO3cOw4cPx5QpU1CyZEkAwMaNG1G3bl2zHXf58uWIiIhAo0aNEBAQoLlt2LDBbMfMMAPl8QBgTVPJExFRzsRMu6mpM+32Ks7TTkREtqVSpUp6o8fLFi1aBHt7e7MdV5Iks+3bZHSCdldXkV1XqYDISOgF8URERBnFTLupMdNOREQ2KjQ0FI8ePdI8P3XqFEaPHo1ffvkFjuqL1rmWTp92hQLs105ERCbDoN3U1CdteyUz7UREZFt69+6NAwcOAADCwsLQrFkznDp1ClOmTMHs2bMt3DoL0+nTDjBoJyIi02HQbmpyebySmXYiIrItV65cQa1atQAAf/zxBypUqIBjx45h7dq1WLNmjWUbZ2k65fEAIM8wx6CdiIiyikG7qakz7XZKjh5PRES2JTExEc7q4HTv3r1o3749AKBs2bJ4+vSpJZtmecmCdmbaiYjIVBi0m5omaOc87UREZFvKly+PFStW4PDhw9izZw9atmwJAHjy5Any5ctn4dZZmNynneXxRERkYgzaTS1ZeTwz7UREZCsWLFiAlStXolGjRujVqxcqV64MANi2bZumbD7XYqadiIjMhFO+mZr6SrsiiZl2IiKyLY0aNcLLly8RGRmJPHnyaJYPHToUbm5uFmyZFWDQTkREZsKg3dTUmXY7lRJ2UCIx0Xzz1hIREWU3e3t7JCUl4ciRIwCAMmXKoGjRopZtlDVg0E5ERGbC8nhTk/u0AXBEIjPtRERkM6KjozFo0CAEBAQgODgYwcHBKFiwIAYPHoyYmBhLN8+ydPu0SxKDdiIiMhkG7aaWLGhnn3YiIrIVY8eOxaFDh/D3338jPDwc4eHh+Ouvv3Do0CGMGzfO0s2zLDnTLklAUhKDdiIiMhmWx5uaujweAJyQwEw7ERHZjE2bNmHjxo1o1KiRZlnr1q3h6uqK7t27Y/ny5ZZrnKXJQTsAxMfD01P8HmDQTkREWcVMu6nZ2wN24mNlpp2IiGxJTEwM/Pz8UiwvUKAAy+N1Ku1E0C4eMmgnIqKsYtBuDupsOzPtRERkS+rUqYMZM2YgLi5Osyw2NhazZs1CnTp1LNgyK+DgoLloj4QEBu1ERGQyLI83BycnID4eTkhAJDPtRERkI77++mu0aNEChQsX1szRfvHiRbi4uGDXrl0Wbp0VcHYGYmOZaSciIpNi0G4O6hI5jh5PRES2pEKFCrh9+zbWrl2LGzduAAB69eqFPn36wNXV1cKtswIM2omIyAwYtJuDTnk8+7QTEZEtcXNzw5AhQyzdDOukM+0bg3YiIjIVBu3moJNpT0oSs78oFBZuExERUSZs27bN6G3bt29vxpbkAPII8vHx8CogHkZGWq45RERkGxi0m4NOph0AEhP1B5UlIiLKKTp27GjUdgqFAkql0ryNsXY6QbucaU9IEDf+DiAiosxi0G4O6jOzHLTzZE1ERDmVSqWydBNyDgNBOyBK5PPls0yTiIgo5+OUb+agUx4PgP3aiYiIcgOdPu0ODoCLi3jKfu1ERJQVVh+0P378GH379kW+fPng6uqKihUr4syZM5r1kiRh+vTpCAgIgKurK5o2bYrbt29bsMVIUR7PEeSJiIhyAZ1MOwAORkdERCZh1UH7mzdvUK9ePTg6OmLHjh24du0avvzyS+TJk0ezzcKFC7F06VKsWLECJ0+ehLu7O1q0aIG4uDjLNVx9pd3NXtunnYiIiGwcg3YiIjIDq+7TvmDBAgQGBmL16tWaZcWKFdM8liQJS5YswdSpU9GhQwcAwC+//AI/Pz9s3boVPXv2zPY2A9Bk2l0dEgElM+1ERES5AoN2IiIyA6vOtG/btg01atRAt27dUKBAAVStWhU//PCDZv29e/cQFhaGpk2bapZ5e3ujdu3aOH78eKr7jY+PR2RkpN7NpNSZdldm2omIiHIPnT7tAIN2IiIyDasO2u/evYvly5ejVKlS2LVrF/73v/9h5MiR+PnnnwEAYWFhAAA/Pz+91/n5+WnWGTJ//nx4e3trboGBgaZtuPqk7WIvonVm2omIyBb8+++/2LVrV4rlu3btwo4dOyzQIivDTDsREZmBVQftKpUK1apVw2effYaqVati6NChGDJkCFasWJGl/U6ePBkRERGaW2hoqIlarKYuj3dhpp2IiGzIpEmTDM7FLkkSJk2aZIEWWRkG7UREZAZWHbQHBATgnXfe0VtWrlw5PHz4EADg7+8PAHj27JneNs+ePdOsM8TZ2RleXl56N5OSy+PtOHo8ERHZjtu3b6c4LwNA2bJlERISYoEWWRmWxxMRkRlYddBer1493Lx5U2/ZrVu3EBQUBEAMSufv7499+/Zp1kdGRuLkyZOoU6dOtrZVjzrT7mzPedqJiMh2eHt74+7duymWh4SEwN3d3QItsjLMtBMRkRlYddA+ZswYnDhxAp999hlCQkKwbt06fP/99xg2bBgAQKFQYPTo0Zg7dy62bduGy5cvo1+/fihYsCA6duxouYYz005ERDaoQ4cOGD16NO7cuaNZFhISgnHjxqF9+/YWbJmVYNBORERmYNVTvtWsWRNbtmzB5MmTMXv2bBQrVgxLlixBnz59NNtMmDAB0dHRGDp0KMLDw1G/fn3s3LkTLi4ulmu4Omh3smOmnYiIbMfChQvRsmVLlC1bFoULFwYAPHr0CA0aNMAXX3xh4dZZAQbtRERkBlYdtANA27Zt0bZt21TXKxQKzJ49G7Nnz87GVqVDHohOwUw7ERHZDm9vbxw7dgx79uzBxYsX4erqikqVKiE4ONjSTbMO7NNORERmYPVBe46kPmk7Kzh6PBER2RaFQoHmzZujefPmlm6K9UmWaZfHuWXQTkREWcGg3RzkgejsOE87ERHlbEuXLsXQoUPh4uKCpUuXprntyJEjs6lVVorl8UREZAYM2s1B7tMOZtqJiChnW7x4Mfr06QMXFxcsXrw41e0UCgWD9lSC9shIC7WHiIhsAoN2c5CDdgUz7URElLPdu3fP4GMygH3aiYjIDKx6yrccS10ez0w7ERGRafz3339o164dChYsCIVCga1bt1q6SSmxPJ6IiMwgU5n20NBQKBQKzXQvp06dwrp16/DOO+9g6NChJm1gjqTJtDNoJyIi2yFJEjZu3IgDBw7g+fPnUKlUeus3b95stmNHR0ejcuXKGDRoEDp37my242RJKkF7VBQgSYBCYaF2ERFRjpapoL13794YOnQo3n//fYSFhaFZs2YoX7481q5di7CwMEyfPt3U7cxZ1Jl2R7A8noiIbMfo0aOxcuVKNG7cGH5+flBkYxTaqlUrtGrVKtuOlymplMerVEBMDODubqF2ERFRjpapoP3KlSuoVasWAOCPP/5AhQoVcPToUezevRsfffQRg3Y50y4x005ERLbj119/xebNm9G6dWtLNyVd8fHxiFdnvAEgMjtGg0uWaXd3F9l1SRIl8gzaiYgoMzLVpz0xMRHO6hPT3r170b59ewBA2bJl8fTpU9O1LqdSB+0OzLQTEZEN8fb2RvHixS3dDKPMnz8f3t7emltgYKD5D5osaFcoAA8PsYj92omIKLMyFbSXL18eK1aswOHDh7Fnzx60bNkSAPDkyRPky5fPpA3MkeSB6JhpJyIiGzJz5kzMmjULsbGxlm5KuiZPnoyIiAjNLTQ01PwHTRa0AxyMjoiIsi5T5fELFixAp06dsGjRIvTv3x+VK1cGAGzbtk1TNp+ryZl2ddDOTDsREdmC7t274/fff0eBAgVQtGhROKovUsvOnTtnoZal5OzsrKkKzDbJ+rQDDNqJiCjrMhW0N2rUCC9fvkRkZCTy5MmjWT506FC4ubmZrHE5liZoFyl2ZtqJiMgW9O/fH2fPnkXfvn2zfSC6HIGZdiIiMoNMBe2xsbGQJEkTsD948ABbtmxBuXLl0KJFC5M2MEdSZx4cVMy0ExGR7fjnn3+wa9cu1K9fP9uPHRUVhZCQEM3ze/fu4cKFC8ibNy+KFCmS7e0xiEE7ERGZQab6tHfo0AG//PILACA8PBy1a9fGl19+iY4dO2L58uUmbWCOxEw7ERHZoMDAQHh5eVnk2GfOnEHVqlVRtWpVAMDYsWNRtWpV65qxhkE7ERGZQaaC9nPnzqFBgwYAgI0bN8LPzw8PHjzAL7/8gqVLl5q0gTmSnGlXMtNORES248svv8SECRNw//79bD92o0aNIElSituaNWuyvS2pMtCnXb7GwaCdiIgyK1Pl8TExMfBUXzrevXs3OnfuDDs7O7z77rt48OCBSRuYI6lP2vYqjh5PRES2o2/fvoiJiUGJEiXg5uaWYiC6169fW6hlVkI30y5JgELBTDsREWVZpoL2kiVLYuvWrejUqRN27dqFMWPGAACeP39usbI5q6IJ2jlPOxER2Y4lS5ZYugnWTQ7aJQlISgIcHRm0ExFRlmUqaJ8+fTp69+6NMWPG4L333kOdOnUAiKy73NcsV1NnHuyVzLQTEZHt6N+/v6WbYN10p5hLSGDQTkREJpGpoL1r166oX78+nj59qpmjHQCaNGmCTp06maxxOZY6026nZKadiIhsi0qlQkhICJ4/fw6VSqW3Ljg42EKtshJyn3ZAlMi7uzNoJyKiLMtU0A4A/v7+8Pf3x6NHjwAAhQsXRq1atUzWsByNmXYiIrJBJ06cQO/evfHgwQNIkqS3TqFQQKlUWqhlVsLBAbCzA1QqzQjyXq6JWIqxCL/dFEAHy7aPiIhypEyNHq9SqTB79mx4e3sjKCgIQUFB8PHxwZw5c1Jcdc+V5Ex7EkePJyIi2/HRRx+hRo0auHLlCl6/fo03b95obrl+EDpZsmnfSjzYjxFYhj7Xp1qwUURElJNlKtM+ZcoUrFq1Cp9//jnq1asHADhy5AhmzpyJuLg4zJs3z6SNzHH0yuMlJCYqLNseIiIiE7h9+zY2btyIkiVLWrop1svJCYiN1VyxzxdxFwDgkfDKkq0iIqIcLFNB+88//4wff/wR7du31yyrVKkSChUqhI8//phBu7o8XiFJsIcS8fGZ7oVARERkNWrXro2QkBAG7WlJlmkPSBBT4bonRSA2FnB1tVTDiIgop8pUNPn69WuULVs2xfKyZcuyPA7QG4jGCQkM2omIKMe6dOmS5vGIESMwbtw4hIWFoWLFiinmaa9UqVJ2N8/6JAva80TeBwC4IwYHjySiUTPHVF5IRERkWKaiycqVK2PZsmVYunSp3vJly5bxhA1oMu0A4IhE+bxNRESU41SpUgUKhUJv4LlBgwZpHsvrOBCdWrKgXXH/vmbVyd0RaNQsvwUaRUREOVmmgvaFCxeiTZs22Lt3r2aO9uPHjyM0NBT//vuvSRuYI+kE7U5IQFycBdtCRESUBffu3bN0E3IWudpOHoX2wQPNqguHIgAwaCcioozJ1OjxDRs2xK1bt9CpUyeEh4cjPDwcnTt3xtWrV/Hrr7+auo05j52dmPYFzLQTEVHOJs8SExQUhAcPHqBQoUJ6y4KCglCoUCE80AlOczXdTHtsLBAWpll1/0I4L+QTEVGGZbqzdcGCBVMMOHfx4kWsWrUK33//fZYbluM5OgJJSXBCAqJ4giYiIhvQuHFjPH36FAUKFNBbHhERgcaNG7M8HtAP2h8+1FvlmhiBEyeARo2yv1lERJRzZSrTTkZQl8eJgegs3BYiIiITkPuuJ/fq1Su4u7tboEVWSA7aExIAnf7sAOCDcBw8mO0tIiKiHI7DmpuLul+7IxKRkABIEmDgdw4REZHV69y5MwAx6NyAAQPgLAemAJRKJS5duoS6detaqnnWRe7THh+v158dALwRwaCdiIgyjEG7uehk2gFx7nZxsWSDiIiIMsfb2xuAyLR7enrCVWeycScnJ7z77rsYMmSIpZpnXXTL45Nl2r0hyuPj4vibgIiIjJehoF2+0p6a8PDwrLTFtqiDdkckAmDQTkREOdfq1asBAEWLFsX48eNZCp+WNIL2wu7hiI8GTp4EGjbM/qYREVHOlKGgXb7Sntb6fv36ZalBNkNdHi9n2uPigHQ+PiIiIqs2Y8YMSzfB+un2aZfL40uUAO7cwTuFIoBbwMGDDNqJiMh4GQra5SvtZAR1pt3DMQFIBAejIyKiHKlatWrYt28f8uTJg6pVqxociE527ty5bGyZldLt0y5n2qtUAe7cQYl84QBE0M7rH0REZCz2aTcXdabdzTERSATnZSUiohypQ4cOmoHnOnbsaNnG5ARypj0yEnjyRDyuXBnYtAkFPSIAAMePs187EREZj0G7uaivtLs7ageiIyIiymnkknilUonGjRujUqVK8PHxsWyjrJkctIeEiHs3N1EeD8BDGQE/P+DZM+DUKSA42EJtJCKiHIXztJuLOmh3ddAOREdERJRT2dvbo3nz5njz5o2lm2Ld5PL4W7fEfdGigPoihyI8HI0aicWc+o2IiIzFoN1c1OXxcqad5fFERJTTVahQAXfv3rV0M6ybnGmXg/agIO1ItBERaNBAPDx5MvubRkREORODdnORM+32LI8nIiLbMHfuXIwfPx7bt2/H06dPERkZqXcjaIP2mBhxr5NpR3g4goLEw2fPsrthRESUU7FPu7moM+1yeTwz7URElNO1bt0aANC+fXu9UeQlSYJCoYBSqbRU06yHHLTLihbVy7T75pcAKPDiRXY3jIiIcioG7ebCTDsREdmYAwcOWLoJ1k/u0y4LCtJm2pOSUMAjBoA7g3YiIjIag3ZzUZ+0Xew5EB0REdmGhg0bWroJ1s9Qpt3dHbC3B5RK+DpFAHBHbCwQHS1WERERpYVBu7nI5fH2HIiOiIhsS0xMDB4+fIiEhAS95ZUqVbJQi6xI8qA9KAhQKAAvL+DNG7gnRcDZuSDi44EXLxi0ExFR+hi0m4ucabdjeTwREdmGFy9eYODAgdixY4fB9ezTDv2g3cUF8PMTj318gDdvoIgIh68v8OiRCNqLFrVEI4mIKCfh6PHmog7ane04EB0REdmG0aNHIzw8HCdPnoSrqyt27tyJn3/+GaVKlcK2bdss3TzroNunXc6yA/qD0fmKh+zXTkRExmCm3VzU5fHOzLQTEZGN2L9/P/766y/UqFEDdnZ2CAoKQrNmzeDl5YX58+ejTZs2lm6i5elm2uX53QC9ad8YtBMRUUYw024ucqZdwYHoiIjINkRHR6NAgQIAgDx58uCFOuqsWLEizp07Z8mmWQ/doF239p2ZdiIiyiQG7eYiZ9oVHIiOiIhsQ5kyZXDz5k0AQOXKlbFy5Uo8fvwYK1asQEBAgIVbZyVSC9rlTDuDdiIiyiCWx5uLOtPuBJbHExGRbRg1ahSePn0KAJgxYwZatmyJtWvXwsnJCWvWrLFs46xF8j7tMjnTzvJ4IiLKIGbazUUO2hUciI6IiGxD3759MWDAAABA9erV8eDBA5w+fRqhoaHo0aOH2Y//7bffomjRonBxcUHt2rVx6tQpsx8zw1geT0REJsag3VzU5fGOzLQTEZGNcnNzQ7Vq1ZA/f36zH2vDhg0YO3YsZsyYgXPnzqFy5cpo0aIFnj9/bvZjZ0h65fHMtBMRUQaxPN5c5Ey7xD7tRERkG8aOHWtwuUKhgIuLC0qWLIkOHTogb968Jj/2V199hSFDhmDgwIEAgBUrVuCff/7BTz/9hEmTJpn8eJnm5ibunZ0Bf3/tcmbaiYgokxi0m4s60+4Ajh5PRES24fz58zh37hyUSiXKlCkDALh16xbs7e1RtmxZfPfddxg3bhyOHDmCd955x2THTUhIwNmzZzF58mTNMjs7OzRt2hTHjx83+Jr4+HjE65x8IyMjTdaeNBUrBowYAZQsCdjpFDRyIDoiIsoklsebizrT7iixPJ6IiGxDhw4d0LRpUzx58gRnz57F2bNn8ejRIzRr1gy9evXC48ePERwcjDFjxpj0uC9fvoRSqYSfn5/ecj8/P4SFhRl8zfz58+Ht7a25BQYGmrRNqVIogKVLgZEj9ZcbGIju7Vv+PiAiovQxaDcXddDuIHEgOiIisg2LFi3CnDlz4OXlpVnm7e2NmTNnYuHChXBzc8P06dNx9uxZC7ZSmDx5MiIiIjS30NBQyzZIJ9Pu4wM4qGsdmW0nIqL05Kig/fPPP4dCocDo0aM1y+Li4jBs2DDky5cPHh4e6NKlC549e2a5Rsrk8ngVM+1ERGQbIiIiDA789uLFC035uY+PDxISEkx63Pz588Pe3j7F+f3Zs2fw1+03rsPZ2RleXl56N4vSybQrFIA8dh+DdiIiSk+OCdpPnz6NlStXolKlSnrLx4wZg7///ht//vknDh06hCdPnqBz584WaqUOOdOu4kB0RERkGzp06IBBgwZhy5YtePToER49eoQtW7Zg8ODB6NixIwDg1KlTKF26tEmP6+TkhOrVq2Pfvn2aZSqVCvv27UOdOnVMeiyzkYP2t28BpZL92omIyGg5YiC6qKgo9OnTBz/88APmzp2rWR4REYFVq1Zh3bp1eO+99wAAq1evRrly5XDixAm8++67lmqyJtNur+JAdEREZBtWrlyJMWPGoGfPnkhKSgIAODg4oH///li8eDEAoGzZsvjxxx9NfuyxY8eif//+qFGjBmrVqoUlS5YgOjpaM5q81ZODdgCIjISvbx4ADNqJiCh9OSJoHzZsGNq0aYOmTZvqBe1nz55FYmIimjZtqllWtmxZFClSBMePH081aM+WEWXVmXZ7JcvjiYjINnh4eOCHH37A4sWLcffuXQBA8eLF4eHhodmmSpUqZjl2jx498OLFC0yfPh1hYWGoUqUKdu7cmWJwOqvl7Ay4uIjSu4gIBu1ERGQ0qw/a169fj3PnzuH06dMp1oWFhcHJyQk+8uAuammNJguIEWVnzZpl6qbqk4N2FQeiIyIi2+Lh4aGZi103YDe34cOHY/jw4dl2PJPz8QHCwjjtGxERZYhV92kPDQ3FqFGjsHbtWri4uJhsv9kyoqy6PN4uiZl2IiKyDSqVCrNnz4a3tzeCgoIQFBQEHx8fzJkzByqVytLNs34Gpn1j0E5EROmx6kz72bNn8fz5c1SrVk2zTKlU4r///sOyZcuwa9cuJCQkIDw8XC/bntZosoAYUdbZ2dmcTddk2uWgnZl2IiLK6aZMmYJVq1bh888/R7169QAAR44cwcyZMxEXF4d58+ZZuIVWTmfaNwbtRERkLKsO2ps0aYLLly/rLRs4cCDKli2LiRMnIjAwEI6Ojti3bx+6dOkCALh58yYePnxo+dFk5Uy7kgPRERGRbfj555/x448/on379ppllSpVQqFChfDxxx8zaE8PM+1ERJQJVh20e3p6okKFCnrL3N3dkS9fPs3ywYMHY+zYscibNy+8vLwwYsQI1KlTx7IjxwOaTLsikeXxRERkG16/fo2yZcumWF62bFm8fv3aAi3KYeSgPSICvkHiIYN2IiJKj1X3aTfG4sWL0bZtW3Tp0gXBwcHw9/fH5s2bLd0sbdCeJDLtSiWgnh2HiIgoR6pcuTKWLVuWYvmyZctQuXJlC7Qoh2F5PBERZYJVZ9oNOXjwoN5zFxcXfPvtt/j2228t06DUqMvj5Uw7ILLtDjnuEyciIhIWLlyINm3aYO/evZpuaMePH0doaCj+/fdfC7cuBzBQHv/mDZCYqPnZQERElEKOz7RbLXWmHQnaoJ2D0RERUU7WsGFD3Lp1C506dUJ4eDjCw8PRuXNn3Lx5Ew0aNLB086yfTqY9b15AoRBPX72yWIuIiCgHYN7XXORMe1IS7O0kKFUK9msnIqIcr2DBgikGnHv06BGGDh2K77//3kKtyiF0Mu329kC+fMDLl6JEPo1Jb4iIKJdjpt1c5Ew7AA9njiBPRES269WrV1i1apWlm2H9dAaiA8B+7UREZBQG7eaiE7R7uoigneXxREREuZhOeTzAoJ2IiIzDoN1cdEaU8XDitG9ERES5nk55PMCgnYiIjMOg3Vx0hon3dBZBOzPtREREuViyTHuBAuIpg3YiIkoLB6IzF4VCZNsTE+HmyD7tRESUc3Xu3DnN9eHqzDGlg5l2IiLKBAbt5uTkBCQmwt2RmXYiIsq5vOVgM431/fr1y6bW5GBypj0+HoiPh6+vMwAG7URElDYG7ebk5ARER8PdiZl2IiLKuVavXm3pJtgGT09RiSdJQEQEfH1FfTyDdiIiSgv7tJuTejA6OdPOoJ2IiCgXs7MTgTsAhIezPJ6IiIzCoN2c1NO+ubE8noiIiAC9wegYtBMRkTEYtJuTOtPu5sDyeCIiIoLeYHRy0P7qFaBSWa5JRERk3Ri0m5M60+5qz0w7ERERQS/Tni+feKhSAa9fW6xFRERk5Ri0m5MctDPTTkRERIBept3REciTRzxliTwREaWGQbs5qcvj5Uw7g3YiIqJcTifTDnCudiIiSh+DdnNieTwRERHpkjPtDNqJiMhIDNrNSR20u9izPJ6IiIigVx4PMGgnIqL0MWg3J3V5vIsdM+1EREQElscTEVGGMWg3JznTbsc+7URERARtpv3NGwBAgQLi6bVrFmoPERFZPQbt5qTOtDvbsTyeiIiIAAQFifuQEABAu3bi6YYNwOnTFmoTERFZNQbt5qTOtDsrWB5PREREAMqXF/e3bwPx8ahdG3j/fUCSgOHDxZztREREuhi0m5M6aHdSMNNOREREAAoVAry8gKQk4NYtAMCCBYCnJ3DqFLBmjWWbR0SU40yfDhQrBjx4YOmWmA2DdnOSy+OZaSciIiIAUCiAChXE46tXAQABAcCMGWLRpEmageWJiCg9kZHAokXA/fvA779bujVmw6DdnORMOzgQHREREanJJfLqoB0ARo4EypUTo8jLATwREaVj0yZtZnTfPsu2xYwYtJuTOtPuCFEez0w7ERERaYL2K1c0ixwdgaVLxeNvvwUuX7ZAu4iIcppff9U+PnwYiI21XFvMiEG7OTHTTkRERMkZyLQDQNOmQOfOgFIJTJhggXYREZlLZCQQFWXafYaGAgcPisc+PiLYOnYs5XYxMakH8/HxwNChwPr1pm2biTFoNyd10O4ADkRHREREanKf9jt3UvyQXLAAcHAAdu4E9u+3QNuIiEwtIgIoUwYoUQK4eNF0+127Vky90bAh0L69WLZ3r/428fFA1aqi/1FMTMp9bNkC/PADMHq02JeVYtBuTnJ5vMSB6IiIiEjNzw/Im1fM73bjht6qkiWBDz8UjydOtOrfkERExvnpJyAsDHj+HGjcGDhzJuv7lCRtafz77wNNmojHyYP2LVvETB0PHojy+eTkfvDPnonMvZVi0G5OcqZdxfJ4IiIiUlMoUi2RB8TsRR4e4nftxo3Z3DYisl3XrmX/tGhKJfDNN+Jx/vzAmzciwDZUxp4RFy6I9+PsDHTpog3az54FXr/WbvfDD9rHe/ak3I9uSdOpU1lrkxkxaDcndabdQeJAdERERJk1b9481K1bF25ubvDx8bF0c0wj2bRvugoUAMaPF48//RRITMzGdhGRbbp8GahSBXj33cwFJW/eAN9/L7Lb//wDHD8OPH6c/uu2bwfu3QPy5BGDbwYHi/7tzZsDhw5lvB0yOcvevr3oz16okCiBlyRtP/eQEP2gPHnQfv8+cPeu9vnJk5lvj5kxaDcnOdOuZKadiIgosxISEtCtWzf873//s3RTTMfACPK6xo4VwXtIiH6iiIgowyRJ/KeSmCjK1P/6K+Ov79NH9N3p1w9o2xaoWxcoXDj9adaWLBH3Q4eKrkE7dohRN6OjgQ4dROCcUUlJwLp14vH772uXN20q7uUS+R9/FPe1a4sKp0uXxPuXyQG9QiHumWnPpdRBu73EgeiIiIgya9asWRgzZgwqVqxo6aaYThrl8QDg6SnK5AFg1izTD7pMZFXevBFTJphykDLS+ucf/b7eq1dn7PWbNolg28lJBMbVq4urigDwxRepv+7SJZH1trcHhg0Ty9zcgL//Fhn/iAigd++MlxPt3Sv6oOfLB7RsqV2uG7QnJGjf54QJYjA6eZ1MvuDQqZO4P3NGXBCwQgzazUldHm+vk2nngDJERETmFx8fj8jISL2bVZGD9nv3RMbJgCFDxGDLz58DP/+cjW0jym4TJgCLFgFTp1q6JdZt9WoxWmVGMsIJCcC4ceJx9+7ifvdu4wddi4wERo0SjydNEiXmZ86I8niFQkx1ERJi+LVffy3uu3QBAgO1y11cgN9/B7y9xX5mzDD+/SiVYpoNAOjZUxNvARCjyNvbA7dvA99+K/7z9PMD2rUDmjUT28gl8pKkzbR//LG4UhoTA1y/bnxbshGDdnOSM+3qoB0Q/26IiIjIvObPnw9vb2/NLVD3B6M18PXVZqpS+ZHo5KRNTq1dm03tIspuN26I0cUBqw2YrMKLFyJ4vnMnY9OTLV8uRk/39RV9bYKDxWt/+cW410+bBjx5Ii4WTJ6sXV68ONCqlfYYhtor/8clB/26ihbV9v35/POUo76nZt48kb13c0u5X29voFYt8XjKFHE/cKAI7Js3F8/37BHv//p1USrv4gLUqwfUqCHWW2m/dgbt5qS+8mOn1JZ8cDA6IiIiYNKkSVAoFGnebiSbDi0jJk+ejIiICM0t1Bqn8kmnXzsgEkl2diIZpTtekiV89ZXoxsoKZjKpadPE9IeAqDxhf1LDZs8G3r4Vj48fF+Xq6Xn9WvSvAYA5cwAvL2DQIPF89Wr9wD82VmTGt23TZhnPngWWLROPv/tOBLi65KuKP/2Ucg70lSvF37JGDaBOHcPt69ZN9HWXJNE3/fnztN/PgQPAzJni8fLlQKlSKbeRR5GPjRX3H3wg7uvVA1xdgadPRbckOctev754X7Vri+dW2q+dQbs5qTPtdkna9Dr/HyIiIgLGjRuH69evp3krXrx4pvfv7OwMLy8vvZvVSadfOwAEBGh/g1oy2/7ihRjJ/vhxoEED45Nixjp6VPx2v33btPslK3f6tJjXUKEQv5tVKpFJthVv34ogWS5Pz6xbt4AVK8TjRo3E/dSp6WfbZ80S4wVUqAAMHiyWde0q5pS8c0c7b7lSCfTqJTL4HToA/v5i0LkPPhB/k169tOXlulq2FBn38HBR7i67e1c7AN3o0dqB3gxZvFj8XxgWJo796pXh7Z49E/3fJUlkz/v1M7yd3K8dEP95lighHjs7iyoDQGTb5f7s770n7uUMffKg/epV8d4NzfGejRi0m5M6aFckJsoPGbQTEREB8PX1RdmyZdO8OcknT1uVxrRvuvr0Efdr11pubJzly8VvGIVCxCGtWgG//Zb1/SYmikRrcLColM1qbEM5jFxu3a8fIA80eeuW5dpjSk+fii/26tWiTCUr1T6TJ4sB0lq3Bv78UwTd588DW7ak/ppr10R2HBDHd3AQj93dtX3b5Wz7yJFiRHlnZ3GlUJ7e7cIFUXL+1VeGj2FnB8izenz7rdjXixcimH/1Skwx161b2u/NzQ3YsEEc58QJkZVPfuFGqQT69hWBffny2uy/Ie++K/YJiIFBdMkXHnbu1E4LJ18VlYP2K1f0xxkZM0ZcpfzwQ21FiAUwaDcn+cdGXJymmoTl8URERBnz8OFDXLhwAQ8fPoRSqcSFCxdw4cIFROX0IdWNKI8HxMDGrq7AzZvAuXP66yIixG9kc4qLE7/HAfEbv0cPET+8/z6wcGHm9xsSIipT587V/hbeuVMk7SgX2LtXZDudnETJc5kyYvnNmxZtlklcvy6CxwsXtMsy21f66FFg82YRIC9cCOTPL7LXgJhiQqlM+RpJAkaMEP9Q27dPmSWXS+T//FMMAvfdd+KK3G+/iYsL+/aJbUqWFMG7v3/q7Rs0SJSXnz8vSs7btRMlM0FBYtR6Yy6+li8PHDsmXnP7tvjsTpwQ08F99hlQqZL4vri5AX/8oQ3KDXF2FlcAJ04UA+Dpkvu1794t/qPx9gaqVRPLChUCChYUn6f8H+3589qB665fF10HLEUiKSIiQgIgRUREmHbHBw5IEiBJ5cpJvr7i4eXLpj0EERHZHrOdl3Ko/v37SwBS3A4cOGD0PqzyM339Wvw4ACQpnXb16CE2Gz1au+zBA0kqVEiSvL0l6ckT8zXzxx/FsQMDJSkhQZKUSkkaN07b9BMnMr7PHTskyd1dvN7HR5LWr5ek8uXF8zVrTP8eUhMTI0nffCNJdetK0rx54rk1e/BAkjZsEH+DHE2lkqTq1cUffNQosWzmTPF84EDTHisiQpJq1pSkzp3Fcc3t8GFJypNHvJdSpSSpTRvxePz4jO9LpZKkOnXE6z/4QLv8zRvxDweQpHXrUr7ujz/EOmdnSbp71/B+S5fW/iMGJGnJkoy3TzZwoNiHi4u4z5NHkq5dy/h+nj7Vfi8cHPTb5+Ii/qPICpVKkvz9tfts315/fadOYvkXX4jnPXuK5/J/VjVrmvw7ZOy5iZl2c/LwEPdRUXB2Fg+ZaSciIsqYNWvWQJKkFLdGct/OnCpPHlGKCohS1jTIJfLr14vkWWQk0LYt8PixyLbL3V1NTZK0lbEjR4oxdu3sxNTMcptSq1Tdt08kCZPbvl10XY2OFjM0Xboksvdyxe6GDaZ/H8m9fStmGCtWTCQkjx0Tg02XKQOsW2e6KlilUowfZoquBIDoWtyjh2h7jvbff2KQMw8PMVgCYL5M++efi77zmzebv/ReqRTl4G/eiGzxsWOiDzmQuUz7li1iIAk3N/FFkvn4AOPHi8czZujPcx4dre1nMmmS+JInp1AAAwZon48da3iEd2PJA9LFxYms+99/A+XKZXw//v7AoUMiW5+UJNrZpAmwapUoje/RI/NtBMT+kvd516Xbr/3uXZHVB4CtW0W50+nT2r7w2c2klwpyKLNdfb9+XXO1qWRJ8fDIEdMegoiIbI9VZoVzOKv9TJs1Ez8Qfvghzc3i4yUpXz6x6b//SlKrVtpEGiBJvr6SFBtr+ubt3Cn27+EhSeHh+utOnRLrnJwk6dkz/XWHDmmTWZ06SdK9e2L55s2S5OgolnfpIt6XTP7Z5OAgSa9eZb7N169LUv36ktSihSSFhKRc//vv2s8SkKQiRSTp009FJYG8rFo1SXr/fUkaNEiSPvxQkqZOlaSoqIy35YcfxP7s7CTp7NnMvydJkqRbt7Ttc3OTpPv3s7Y/i/r6a/FGOnbULjt3TizLn990x7l3T/uPBJCkRYtMt29Djh7Vlo9ER4tl166JZa6uolQlI+Qs+5QpKddFRorPCpCkypUl6fRpsXzKFLGsaNG0S0eeP5ekKlXEF9wUpRtNmoh/vJs3Z31fSUmStHu3JD16lPV9JffLL9rvQ/IS6H37xPKgIEkaNkw8btFCrBs5Ujxv3NikzTH23MSgXTLjifzhQ83ZTC752rvXtIcgIiLbY7UBZg5mtZ/p6NHiB8JHH6W76f/+p40H5Bjg2DFJKlxYPF+9OmOHPnNGXDNYtSr1bZo3T1mWr6tWLbH+s8+0y3QrenUrWwcOlCR7e/G8Z09JSkxMub9KlcT6H3/M2HuRrVkjAlr5uO7ukrRihWjT69faaldAkkqWlKSfftJeOIiJESXyHh76bZdv8+dnrC3h4ZKmeyQgSbVrZy02kqvHU6vszVE+/li8iUmTtMvevtW+uaxctdEl9ytxdRX3DRsa97rQUMNf0PRMnSqO06OHdplSKfqwAOLChLHOnBGvcXQUZeOG/POPJOXNq70yNGSIuIoGSNKWLRlvf1bExJi3n46pPHsm/hN9552Upe4REZKkUOhfEd2/X6x7+FBbsn/8uMmaw6A9A8x2Itfpq1a7arwEiH9bREREabHaADMHs9rP9N9/xW8Fb+90U7lyEk++bdokln/+uXhepYrx3S1DQvQDylGjUsYoly9rYwFD3WIlSZJ+/lmbrZZfv3WrNhu8Z49ITOm2+/33U4+H5s0T2zRvbtz7kL19K0n9+2uP0aSJJDVqpP+8UCHx2N5ekqZPTz3p+fSpJH33nUjKfvaZJPXpI15XqVLG2iT3+y9RQpI8PcXj77/P2D5kKpXoHg1I0uTJ2thh69bM7c/i3ntPvIHkAxjIf6Rjx7J+jGPHxL4UCpH9lf/4r1+n/To5ExsYKL4AL14Yf8xq1Qy/L7miZvly4/c1YIB4Te/eaW/37Jn2SyrfWrTInv77OdWTJ6l/D955R/s5Ju/DPmiQya+YMWjPALOdyOPjNX/0FrVeS4BpKkaIiMi2WW2AmYNZ7WealCRJxYoZlV7WHTtqwQLt8levtInEgwfTP+SLF9oAUM7SA6LkPjxcVKTOmCFJAQFiedeuqe8rNlZbobtli3g78m/eTz/VtvuPP0QF7+jRYpvU3L6tja2eP0//vUiS6Hoofy52dpI0Z444hlIpSYsX61dHly4tSSdPGrdf2evX2pL+q1dTrjcUG928qX3Nv/+KMb4AMT5XWu8rMVF0O0iekT95UpswjowUCWr5YklUlGjD7t2S1KGDJHXrZv0D6kkFC4o3kHwUw9SC+YxSKkVpAyBJgweLZfIX09DAbbqvK1NGPwB2dhbBWnrB/tOn2teEhemvkzPw/fsb1/4XL7RfXGOzujt2iJL4vHkl6cYN415DKckXSwBJ2rhRf92NG9pM/KVLJjkcg/YMMOuJXF2i0r3Ow3T/nyAiIpIkKw4wczCr/kwXLhQ/AqtWTTc7FhIifpsn3+zDD8UuOnVK+1AxMdrS9SJFRMLpzz+1QX9AgLaEHRCxVXqDQE+cKLZt2lSU6MvB6Zs36b5zg+Rk5YoVaW8XFSUqBOTf0AULGr5ocfWqJLVtKzLfcjfjjGrfXhxj6lT95SqVuNjh6ysGnJbHFWjbVmzfurV4npgoLloAIv4z5M0bbcw6YID+Ork7bc+e4nl0tIjPAElq106SKlTQjzPlONUqRURoG5r8SyL3AZk8OWvHWLtW2z9CLtmWv6hpZa537BDbeHqKAQnkkcyTl7wbIn/5q1dPuW77drGubFnj2j9/vnZfGcmYK5WZ/5KTsGKF+OxLlTJ8hbFbt4xdgEkHg/YMMOuJXD3lw9AG1yQg4/3NiIgo97HqADOHsurPVDerlpn50yQRmKZXyp6UpJ3RyMdHPxg/c0ab/AQkKThYzK6kO1Bcau7d0wbOcsl9Vsb7ksv933vP8Hu4fFkUJRQvrm3voEGZv0hgjHXrtKXuujGU3BVAvgUFaWNDBwf9hKdu94ZDh/T3f/++dso7+fbXX2JdYqIkFSgglv39t/Y1f/+tv727uyT17av9W5j8N2d4uCT991/Wy67lEQz9/VOuk0sSOnfO/P7DwrRl9nPnapcfPqy9opRa/4yWLcU28jR0KpUk7dql/VCPHk39uN27i22mTUu57vlz7R8qvYx9YqK4osbAwTJiY8XVuQsXDK8/f178jTPSbSINDNozwKwncvVQpOManpaAjHVlISKi3MmqA8wcyuo/0379xI/0fv0yvQt50LixYw2vlxNITk4pg0ZJEgnJxYsl6cqVjB+7XTttTFKoUNbKs+/e1V6AWLlSkmbNEkF5vXr6g8zJ1QK7dmX+WMaKitIe+9QpsUyp1GbPW7XSxonybcyYlPuRu8QqFKLP/YoVYsBqeeroggUlqVcvbUz78qV2BP98+VL2wx8+XFR9L1qkvWgxe7a2lF63gjc6WnTTvH07kx+CPKjbwoWZ3IGa3Ge8UaOU6+QxHsqXz9y+Y2K0ZfGlS+t/EZOStIO2GfoHcOOG9o+TfNqBDz4Q62rWNDyaYGKidoTI1Prjy1eZ0vvCbtmi/YObY0oIsioM2jPArCfycuUkCZBmNT4gAeICIhERUVqsPsDMgaz+M5U7LTs7ZzqDI8c7np6S9Pix/rqoKG1guHhx1pub3K5d2mA1ndnrjFKzpn4ArHvz8BCDgE+fLvp3Zxd55Hk5GN+4UTz38hLjCkRHi3HLPD1F6bqhzP/Ll9qLK8lvFSuKAapjYzU/H6VevcTAfYCoHDeGUinGIZPj1suXJWnCBE3xp1S6dCaS5W/eaEcld3HJQuQvicEOAMMzJty5o/13kNbgB4aoVNoLC3nyiIEFkuvbV6wfPz7lOnmKr3btUq4LC9OOJvjLLynXy1n8vHlTb3fv3mKb2bPTfh9yHwndkfXJZhl7brIz/0zwuZyHBwDAUxEFAIiPt2RjiIiIyCrVrAlUry5+KPz0U6Z20aIFUKsW8PYtMGKE/rolS4CwMKBYMeDjj7Pe3OSaNgV69QK6dAEGDMj6/mbPBqpVE/sdPFg8/+034No1ICICOHgQmDUL8PTM+rGM1auXuN+wAUhKAmbMEM9Hjwby5gXc3IDJk4EXL4CrVwEfn5T7yJcP2LULuH8fWLAAqFJFLG/eHDh8GAgMBFxcgJ9/Buztgd9/FzcA6NPHuHba2YnPqnBh4NYtoGJFYOFC4M0bsf7WLeDKlQy++b/+AhISxOO4OODDD8W1hsy4cUPcly2bcl1QEODsLP4dPHyYsf3OnCn+OA4OwKZNQOnSKbdp107cb9+uvzw8HFizRjweNSrl6/z8gE8/FY8nTwaio/XX//uvuG/RQvzhDKldW9yfOJH6e7h8Gdi/X/wRP/oo9e0o12HQbm7u7gC0QXtcnCUbQ0RERFZJodBG0ytWAEplhndhZwf88IOIWTZvBrZsEctfvBABIgDMmwc4OZmozcmOvW4dsHGjOD7+/Rd45x0RxISFZXh/LVsCZ88Ce/YAP/4ITJsmgtZy5cSxzEqlAh49ShGUtmghAvEnT8RFkatXAW9vYMwY/Zc7O4sAPi1BQcCECcD588CzZ8DOnWJfspo1gUmTxOOkJKBoUaBuXePfQv78wJ9/Ao6O4nnTpiLubt1aPP/7b+P3BUAEwwDQvz/g6ioCSznIzai0gnZ7e6BkSfH45k3j97l2rbiyAwArVwKNGxvernlz8QW9cQMICdEuX71aBOLlywPvvWf4taNHiz/E48fAokX663bsEPetWqXeRjloP3nS8AWP6GjtlZmOHcWXhEiNQbu5qTPt7hBX5JhpJyIiIoN69gTy5AHu3QPatAHmzwcOHABevxbpc/n29Clw6pTIJi5ZIgKO8HAAQKVKIhgEgGHDxOJ588TLqlYFevQw83t49kykpNu0Aa5fB3bvFhUEaWUXrYEkiWBq7FigSBGR8u7aVXz2as7OopIAENdVAGDcOMMZ9YwoUEBcs0lu2jSRJQdELGdom7S8+664sHDrlrj40b490KGDWLdtWwZ29OqV2AEgssxycDxuXMYvyCQlaYPlMmUMbyNnyI0N2v/5R1veMWECMGhQ6tv6+AANGojHmzeLKzDXrwPLlollI0em/kG7uGiD9YULRaAuSWIfFy6I17Vokfqxq1QRV8xevQLu3tVfJ0mi3Zcvi6z+0qVpv2fKdRws3QCbpw7a3SRm2omIiCgNbm4i2z5vnqih3rXL+Nf+739Ap07AgAGY3qUwlKtOo/DTMwgrfg7dwxWoh4KoVbQQ7Bb4iTrp+/eBBw9EwFG0qKhFr1YNqFBBZPkjI8UtLk6bOnZ1FY/loEahEOtfvhS3R49E8BMeLtLhH38M7NsngqKGDYFvvwU++EC8VqkEYmLEPh3S+DkaGyva+eCBaE+ZMuLm7JzJD1nHq1fiosi+fSLVff++/vrNm8XFkbVrgeBgAMAHda4iaNV6BCIUx9yaYdSAtgC8U+xaQ5JEkOrtLaLzDHB2FgUL69eLP69mf0lJ2hR6OkqV0n/etq24P3VKXF/x8zNiJ5s3i2NWqSI++xIlRM3+uXOilFzOwhvj/n1RZu/iIi6OGCIH87dupb+//fvFlZSkJHGxaP789F/Trp34u0+cKG6yvHmBvn3Tfm2XLuK7fOiQKFuoXl3bx6FGjbT/xs7O4srZyZPiIlaJEtp1ixYBf/wh/i1s3AgUKpT++6BchUG7ucmZdhX7tBMREVE65swRkdWxY+KH/fHjIhjWZWcHBASIbHBgoAiKr1wR0d369XAG8Lm87Rud121R35J79Ag4csR076FqVVGnX726SPEPGCACvyFDRJAUE6OfxXBzA7y8xE2SRECflCQC9hcvUu7f3l5Eo0WKiAAwLk7cJElcBJAvMNjbi1J3pVLcJyaK7ePjgagoUSKtW6bs7i7S0T16AL6+ot23b4tS6/ffB86exbtXruBd9eYDYn4GSjiK2vPWrUVavFw58dqwMBHs//yz+Ns4Oor9TZoEFC9u9EdZuDAwfjzE57hiLfDddyKYnTBB9LF2ccnQn6ZgQRFbnjkjEtRpJaU11q8X9z17insHB9FnoWZNEWiOHAnUq2dcA+TS+DJlUu/nIAft6WXajx8Xf6/4eFFC8PPPxvWd6NZN/Dt780Zs7+UlMvBTp6bfr0GhEN/luXNFucXZs+IGaPsepKV2bRG0nzypLYXfvVtUMADAN98A9eunvx/KdRi0m5u6T7srg3YiIiJKj0Ih6prffVe7LDZWfxtHR/3stCSJztFr1ohAMT4eqFYNe8JrYvXl6oiHMxaPf4IiDk9Eab2Pj8iuFy0qUq0hISJreu6cCJRcXEQg4+kpgt/4eBFox8Zqf8jIwa6Tk+hALd9q1hQjx8nt8/QUmcPPPwemTNErN9eIiRG31EqtPTxEW93dRdAXESHu5QAwK8qXB5o0EbemTfWDtnPnROf1NWtEQAgAjo54Xr0VrqnKIjjyb9jduC7KpOU+zYDI2IaHiwsFgPgsEhPFhYyffgJ69xaZe4VC3JRKMehaSIi4SPDokcjYFi0q+jUnJIjM9tu32mPMmSOWffcd0KxZht5y+/YiaN+2zYigPSxMjPoHAN27a5dXrSouZKxZA/zyC6Iq18PUqaJ4YeXKNGLftPqzy4wpj79wQfQfj44Wf7f1642uPkDhwuLfQUKC+G5ltN9B3rzAV1+JQPvrr0WgHR8vLgak5913Ren7jz+KQQYkCXj+XHxXPvhADPBHZIBCkjI79KPtiIyMhLe3NyIiIuDl5WXanU+dCsybh3P1R6D6kaXo2xf49VfTHoKIiGyLWc9LuVSu+UzlGcTs7BAeLsYNq14dmD7d0g2DCJRevxaBkoeHuCAQGyuC8IgIEZTa2YkMuYODKCcuXFj085cDK0kSA4FdvSrqu11ctDdA7E++wKBSif3JN0dHsU8nJ3FfoYKoWEjPH3+I8QNatBBdEPLk0a67fl1kXk+cEEPb37unvaBRt674A3TvLto7b55+cJ9RpUuLLge+vsAnn4iuDYAo2R44UASvRnQbuHBBxNxubiLITjNZv2yZuHBRu3bKcQn27weaNEGSVx5U83+Ky7fEsUePBhYvTmV/H3wArFolht6fOdPwNq9eiQtAgKiIUCfANJ49E1/qx49Fhn/XrpTbZKeoKHHz909/26dPRVl88gtxwcEi426Kbh+Uoxh7brLqTPv8+fOxefNm3LhxA66urqhbty4WLFiAMjoDV8TFxWHcuHFYv3494uPj0aJFC3z33XfwM6qTTjZQl8e7JDHTTkRERGYmZ28hEup//WXZ5ugJCEgZJLu5iXnQjKVQiEC+cGHTti0t3bvrZ5l1lSsnKghksbGifN3bW2TKZfXqiQ7qZ8+Kvv0vX2ovsADi/ZQsKcr+CxcW3QLkcQciI8Vo4k2aaMu/27YVI9UtWyYuKGzaJKoaWrcWfbYbNjT8Gb19i8peL9HM7y1inkXi0hcxqPW/6qn/DeT+6gZGMJSCGyLGpyDcw5+geOQOPM3fES9fiuRzp06aYQD0GZNpz5dP3F69EpUHcp9xQHSb6NFDBOxlyogaf0sG7ID2IpQxAgLEIHQPH4rvsp2duEBVsWI2TItAOZlVB+2HDh3CsGHDULNmTSQlJeHTTz9F8+bNce3aNbir/4GOGTMG//zzD/788094e3tj+PDh6Ny5M44ePWrh1qvJQXsiB6IjIiIismmurkDlyqmvr15dlMhnlZeXiI4HDhSZ6y1bRCC7YYM20C5aVIyU7uYmSs1v3gSePoUCwG55P9MAfOYqKgLGjNGUpksS8Oh4KAKPHIGkUEBh4KLFJ5Ps4R/eC+PxJcb5rcUPlzti8mTRnIEDgYsXDcSyxgTtgAjIjx0TbdYN2idOFIPAeXiI96w7T15O4e9vXFaeSEeOKo9/8eIFChQogEOHDiE4OBgRERHw9fXFunXr0LVrVwDAjRs3UK5cORw/fhzv6vYHS4NZS+ZWrwYGDcLjSq1Q+NK/aN48Y4PBEhFR7pNrSrmzET9TsmkqFXD6tAhk9+0T/fHlPvXJuboi3sULD954wcleiaJKMf2YpFAgtEIrPI1wh33YIxROuAt/PMPdwg1QPPQ/vV1cviyuTVSWzuM8qkFydobi2TNEKrxRoQIQGioq+b/9VudFL1+K0n5A9EVPa9C3gQNFf/l33xWD97VuLbohyIPhbdyonX+PKAezifL45CIiIgAAefPmBQCcPXsWiYmJaNq0qWabsmXLokiRImkG7fHx8YjXqVOPjIw0X6PVlxidEphpJyIiIiIzsLMT/c5r1xbP374Vo6sfOSKCd3mqvDJlAG9vSHFAtfxAdLSEY/P/g8+PX6Dcne0ocvlf6E7EpoIC0558jGk39JPjn34qsvElu1QBrpWDQt2332vgQPz0kxgb77vvgM6dRVU/AG2WPSgo/VHaW7QQQfuJE6JrgK+vCPQBMXI+A3bKZXJM5wmVSoXRo0ejXr16qFChAgAgLCwMTk5O8PHx0dvWz88PYamNQArRV97b21tzCwwMNF/D1UG7Y6L4j4Z92omIiIjIrDw9gebNgdmzxfRk778P1KqlKSd3cRFxMaBA3ckN8c6dv1EW17E4/1zsaL4Yl6ZvRMyBk+jb9BnWqXpi9Ght9/vDh4Ht28V4gfM+U2inLlu7FoAYD0+eV75bNzHe3PPn0I4GrzM2Vap69hRT5Y0fL2Y4ePFCDDD43ntiQD+iXCbHBO3Dhg3DlStXsF6eKzILJk+ejIiICM0tNDTUBC1MhRy0x3EgOiIiIiKyDp07ax/XqQMs2FoWo55NQatdo1FpVhe4NaqFWd/5wtFRdO3cvl0E7hMnitd88IG6C3zv3mLB/v2aEe0XLhTl82/eALNmAUWKADu/NrI/u6x8eWDRIlFr//ff4gLExo360x0S5RI54ls/fPhwbN++Hf/99x8K64yE6e/vj4SEBISHh+tl2589ewb/NAZ4cHZ2hnN2TamgDtod4lkeT0RERETWoXdvUTlfvLgY3N6QUqWAsWOBBQvEVG6xsaLq3tVVZxrBYsXEDo4eFfOljx0LDw/RxX7TJjGl+enTQOLlDAbtMkdHMVp+27aZfatEOZ5VZ9olScLw4cOxZcsW7N+/H8WKFdNbX716dTg6OmLfvn2aZTdv3sTDhw9Rp06d7G6uYepR7u1jmWknIiIiIuugUIiq+dQCdtmUKdqZyvr2FctGjwYKFtTZSC6R/+03zSJHR1HlfvKkKKkvCxG0v8yfwaCdiKw7aB82bBh+++03rFu3Dp6enggLC0NYWBhiY2MBAN7e3hg8eDDGjh2LAwcO4OzZsxg4cCDq1Klj9MjxZqfOtNvHRQOQmGknIiIiohzD01OUuwNAYiKQN68YC05Pt26ibP38eeDUKb1VCgVQv2Y8ikOMUn8uhkE7WdaWLWKMxpzEqoP25cuXIyIiAo0aNUJAQIDmtkGefxLA4sWL0bZtW3Tp0gXBwcHw9/fH5s2bLdjqZNRBu0KphDPimWknIiIiohylTx9tRn7qVCDZGNBA/vzaNPzkydpR62Q7d8IeKoTDG0fvcI5yspyrV8V4Dm3aiItQOYVV92k3Zgp5FxcXfPvtt/hWbyJIK6IujwcAD0QhLt7Fgo0hIiIiIsoYhUKMBXfsmJgy3aCZM4F168SAdHv3innfADHq++jRAICV+BBnziqyo8lEBv3zj7iPjAQuXgRq1LBse4xl1Zl2m2BvL+bVgDpoZ3k8EREREeUwefKI7KQitZg7KAj4+GPxePJkMcodAHz2GXD/PuL9AjEb03H2bMpEPFF22bFD+/joUcu1I6MYtGcHdYm8O6KhVAJJSRZuDxERERGRqX36qfjde/asGDr+5k1th/glXyPe3h3PngGPH1u2mZQ7RUbq92U/dsxybckoBu3ZQR20e4AjyBMRERGRjfL1BcaPF4+nTBGZ98REoHVrOPfoiHfeEavOnrVcEyn32rtXJE8dHcXzo0dzTtUHg/bswKCdiIiIiHKDsWNF8H77tujf7uICfPMNoFBo+g+fOZP+bh490lbYE5mCXBrfv7/owfz4MRAaatk2GYtBe3ZQD0bnpWDQTkREREQ2zNNTDDEv+/RToHhxADA6aP/2WyAwEFi+3ExtpFxHkrRBe9euQNWq4nFOKZFn0J4d1Jl2HwcRtHMwOiIiIiKyWR9+CDRoAAQHA598ollcvbq4T2swuvh4YO5c8XjbNjO3k3KNK1dEZt3VFWjYEKhbVyzPKYPRMWjPDnLQ7hgNgJl2IiIiIrJhzs7Af/8Bhw5pZlECgEqVAAcH4MWL1MuS160DwsLE41Onck6fY7Ju//4r7hs3Fl/JevXEc2baSUsdtHvbM9NORERERLmTqytQvrx4bKhEXpKAL7/UPg8PB0JCsqVpZOPk0vhWrcS9nGm/eBGIirJMmzKCQXt2kPu027NPOxERUUbcv38fgwcPRrFixeDq6ooSJUpgxowZSEhIsHTTiCgT5H7thkaQ37ULuHpV5LsqVBDLTp3KvraRbYqM1JbBy0F74cJi3ASlMmd8xxi0Zwd1pl0eiI6ZdiIiIuPcuHEDKpUKK1euxNWrV7F48WKsWLECn376qaWbRkSZkNZgdHKW/YMPgCZNxOOcEFCRdZOneitdGihRQrs8J5XIO1i6AbmCOmj3tGOfdiIiooxo2bIlWrZsqXlevHhx3Lx5E8uXL8cXX3xhwZYRUWYkH4xOoRDPL1wQwZW9PTBqlDaQMhS0JyYCb98CefNmS5Mph5P7s8tZdlndusD69TkjaGemPTtwnnYiIiKTiYiIQN50fq3Hx8cjMjJS70ZEllepEuDoCLx6BTx4oF3+1VfivmtXoGhRoFYt8fz8eSB5b5gPPwT8/Iyb751yN5UK2LlTPDYUtAPA8eNiO2vGoD07JAvaWR5PRESUOSEhIfjmm2/w4Ycfprnd/Pnz4e3trbkFBgZmUwuJKC3Oztr+6mfOiGz7/v3A77+LZePHi/sSJYA8eUSy6/Jl7evfvAF++02UO//8c/a2nXKew4fFVG+enmKqN12VKwNubmLAw+vXLdI8ozFozw7qgejcmWknIiICAEyaNAkKhSLN240bN/Re8/jxY7Rs2RLdunXDkCFD0tz/5MmTERERobmFpja/FBFlO7lf++LFQNmyov96UpIIquR1CoU2265bIr91qyiPB4C//spZU8IlJAC9ewOLFlm6JbnHmjXivkcPvdkHAYjpB2vXFo+tvUSeQXt2UGfa3VSiTzsz7URElNuNGzcO169fT/NWvHhxzfZPnjxB48aNUbduXXz//ffp7t/Z2RleXl56NyKyDnJgfuwYcOuW+Kn8wQeif7EuQ0H7hg3ax6Ghonw+pzhwQFQUzJhh/eXYtiAqCvjzT/F4wADD28gl8vLo8taKA9FlB03Qzkw7ERERAPj6+sLX19eobR8/fozGjRujevXqWL16NezsmHMgysnatweWLAF8fESw3r275ueynuRB+4sXYrA6AKhSRQxe99dfQLVq5m+zKRw/Lu5jY8UFh6Agy7bH1m3aBERHAyVLaoPz5Bo0EPe//QZUrAiMHasdHNGa8KyXHdT/C7kqGbQTERFlxOPHj9GoUSMUKVIEX3zxBV68eIGwsDCEhYVZumlElEn+/sC1ayLTPmiQ4YAdAGrWFPfXr4u5tjdvFvNqV60KjB4t1v31V7Y02SROnNA+Ttb7h8xAHvOgf//UA/FmzYB+/cT3avx4oGdPkaG3Ngzas4O6T7uLkgPRERERZcSePXsQEhKCffv2oXDhwggICNDciMi2+fmJbLQkiSni5NL4nj2BNm0AOzvg4kXg/n2LNtMoKhWD9ux0/77ojqBQiKA8NXZ2ot/7N9+IPu5//CH6ud+9m10tNQ6D9uygvnzokshMOxERUUYMGDAAkiQZvBGR7ZNL5LdtAw4dEo+7dwfy59eWNm/bZpm2ZcSNG0BEhPb5zZuGt4uOFllfyppffhH3770HFCmS9rYKBTB8OHDwIBAQIKpAPvrI7E3MEAbt2UEdtDsmxUABFTPtRERERERGkIP2774T2eratcU87gDQoYO437rVEi3LGLk/u8xQpv3wYTE1WbFiwLRpwJ072dM2W6NSaUeNT20AOkPq1QP27ROP9+8X0wtaCwbt2UEdtNtBgitimWknIiIiIjKCHLQnJIj7nj216+Sg/b//gNevs7ddGSUH7Y0bi3tDQfuWLaIrQGgoMHeuGECtUaPUs/Jk2JEjwL174gJIp04Ze225csA774hqhx07zNO+zGDQnh1cXTUPPRDFoJ2IiIiIyAjVqol+x4AoY+7WTbuueHEx4rdSCfz7r2XaZyy5P7uc+X36VAyup+vMGXE/eDDQooV4v4cOcV73jJKz7N27a4YWy5D27cW9NXW7YNCeHezsNN8YD0SxPJ6IiIiIyAgeHiLzCQD16wOFCumvl7Pt1jyKfESE6CcNAC1bitHzAf0MulKpnXN+zBhg507tHONHjmRfW3M6SQL+/ls8fv/9zO1D/k7t2KGt8LA0Bu3ZRV0i745oZtqJiIiIiIzUqpW4HzIk5TrdAMtaE2MnT4pgsnhxoEABoGxZsVy3RP7WLTHVmJubdn2jRuL+5k0xRz2l78UL4OVLUaUgTxmYUbVqiZkLIiO1gx9aGoP27KIO2j0QhfBwyzaFiIiIiCinmDMHuHTJcOa0enUgMFCMuv7bb9nfNmPI/dnr1BH3ZcqIe91M+9mz4r5KFcDeXjzOl0/0sQbEnPaUvuvXxX3RouICSGbY2QHt2onH1lIiz6A9u+iUx1vbvH9ERERERNbK2Vn0XTdEoQDGjROPZ8+2zqmV5aD93XfFvaFMuxy016ih/9r69cX90aPma58tkYN2+WJHZun2a7eGGUYZtGcXnUz7vXucf5GIiIiIyBQ+/FD0dQ8NBX74IfXt4uJEEDZ8OLB9e/a0TaUS5fGANtNuKGiXB6GrXl3/9fXqiXv2azeOPHZAVoP2pk3FWOIPHwIXL2a9XVnFoD27qIN2b7soJCQAjx9buD1ERERERDbAxUXMaw4A8+YBMTH66/ftA/r0Ef3JO3QAvv0WGDhQBNTmdvMmEB4uAsBKlcQyuTz+9m2RyNMdhC61TPuZM0BsrPnbm9PJmXZ58MLMcnUFmjcXj62hRJ5Be3ZRB+1F8kUDAEvkiYiIiIhMZOBAoFgxICwM+O47sUylAqZOFVnTdeuAt29FRt7FRQxWdvlyyv3ExQE//ihuW7aIgchCQjLfLrk0vmZNwNFRPC5SRLQhIQG4f18E9tHRojetHNDLihcXg6IlJmqz8ebw+rWYjm7fPvMdIzuYqjwe0JbIW8PMBAzas4u6T3tgnigAwJ07lmwMEREREZHtcHICZswQjz//HHj2DOjRQ2TeATH3+dGjoty5cWOxzFCAunixGKV+yBCgc2cxgnupUiKIz4zkg9ABYqC50qXF4xs3DA9CJ1MoUu/Xvn8/MH68uBiRVV99Bfz8M/Dpp1nfl6VERGirmU0RtLdtKz7/c+eAR4+yvr+sYNCeXdSZ9oJeDNqJiIiIiEytTx+RqX71SvQb37hRZLdXrxZBd926YmTwJk3E9oaC9k2bxH316iLQDgoSzxcsyFw5vaGgHdAfQV7OoCcvjZcZ6tceHQ307Al8+SUwdmzG26VLqQTWrBGPL10CkpKytj9LkccICAgAfHyyvr8CBbR/N0uXyDNozy7qoL2AG4N2IiIiIiJTc3AAZs4Uj8PDxZRpe/eKsm9dctD+33+i7Fz26JHIeisUwD//iGnWrl4FvL1FifyOHRlrz40b2oHR5JHjZbqD0cmZ9uSD0MnkTPuxY9oLB99+q527/ccfgd27M9Y2XXv2aDPUcXH6U9Gl5tUrYNUqYPp00TWhaVOgWzfL9rs3ZWm8TC6R37nTdPvMDAbt2UUdtOdzEX3aGbQTEREREZlW9+7i1qiRGLU9ODjlNpUqiYA+Kgo4fVq7/O+/xf2774p+5IDo4frBB+Lx118b3w5JAkaMEPdt22r3J5OD9qtXtYPQpRa0V6ki5hx/80YEplFRwKJFYp08Fd4HHwCRkca3T9fq1frP5fak5f33xTHnzBFZ+n37RGVDRi9smJJ8gSSrg9DpatpU3B86ZNkKBAbt2UUdtPs4MtNORERERGQOdnbAhg3AgQNAiRKpb2OoX7s84FiHDvrbDx8uXrNnjzYwTM/GjSLL7+xsONiXy+NPnBCj3RsahE7m6AjUri0eHz0KLFsmBtIrVQo4fFgMVhcaCnzyiXFt0/XqFbB1q3jcoIG4P3cu7dfcuSOCc4UCGDoUmDtXXCQBjAv4zcUcmfYqVYA8ecQFEXMOBJgeBu3ZRT0QnadCBO3h4WKURiIiIiIiyl7J+7VHRoqB3YCUQXvRotpl33yT/r6jooAxY8TjSZNEUJ2cHKDL5e5Vq6YchE6X3K99505tln3aNFG6/9NP4vn334sLBRmxbp0Yxb5qVVHmDqQfeH//vbhv0QJYuRKYMgXo0sW415qTOYJ2e/u0By7MLgzas4s60+4QGwV/f7GI2XYiIiIiouwnB+3Hj4tM965don97qVKGM94jR4r7X34RZeppmTNH9BEvVgyYONHwNh4eQOHC2uepDUInk/u1b9kiEn+lSwO9eollDRsCw4aJxx98IAapM5Yc8A8aJAJ3ALhwQZT1G5KQoC2n//BD7XL5tZYK2mNjtVNqm7I8Hkh74MLswqA9u6iDdkRHa0p1OFc7EREREVH2K1lSBM0JCaLkXLc0XqFIuX3DhqIvfEyMGIBNpRJl5XXrAnnzigHLli8Xme6vvhKvWboUcHVNvQ1yv3Yg9f7ssnff1W/X9Oli4D3Z55+Lke4fPNBmwtNz/rwI0J2cgN69RbDr6Cgqgu/fN/yaLVvEAHgFC4q++rLKlUX7njwBnj9P/9iSlLnR+FNz65bYZ548YtR3U5KD9mPHLDfQHoP27CIH7VFRmqCdmXYiIiIiouynUGiDsV27xGjxQMrSeN3t5Wz7V18BFSoAnTqJTP2bN2IQu48/Bpo1EwOWtWunH9QaopvRTy9o9/YWFw0AEez37Km/3sMDmDpVPP7iCyA+Pu39Adose6dO4sKDk5N4X0DqGfOVK8X9Bx/oXzTw8BBVCmm9Vvb6tehy4OYmStnbtgVGjQIuX06/zanRLY03dNElK0qXBgoVEp/p0aOm3bexGLRnF3WfdgbtRERERESWJwftK1eK7HL+/CnnU9fVu7cYdf7pUxEkensDn34q5k+fN08M5GZvL+YIX7Ik/ePLmXYPDxEYpqd3bxEoL1pkuP97v36ieuDJE+2864ZIkphmbt068XzQIO26tMrcb94UA/zZ2WlH1NdlbIn81q3Aw4ciCL5xQ1wwWbpUDGqXWeYYOV6mUADvvSceW6pEnkF7dmGmnYiIiIjIasiBWJQYJxpt26Y9GJyrq8iyV6sGLFggStHnzRODxH36qZj3/fVrUVpuaPC55IKDxfFatkz7uLIJE4C3b1PP4Ds5AePHi8cLFqScouz+fWD2bJGNrlFDtDUoSHvxAhDvDTAceMtl961bA4GBKdcbG7TLU+uNGiW6E8gD650/b3hatchI4LvvgEuXUt+nOQah02Xpfu0M2rMLg3YiIiIiIqtRqJB+iXpqpfG6+vUTWeoJE0SmPTkvL8PLDalUCbh9O+U86WlxcUl7/ZAhgK8vcO8esH69dvnWrSKgnTFDZMxdXIAePYB//9W/YJBa4B0Xp83ef/SR4WMbE7THxYmp8wDxWTZpAowdK0Kl+HjRtuTmzRMD7VWuLEZy37oVUCr1t5GDdnNk2gFt0H72rKjKyG4M2rOLHLTHxaFEUfEte/xYfHGJiIiIiCj7ycGYi4voj57dihXThgmm4OamnW5u/nwx2NvKlWJKtrg4Uf6/Zg3w7JkI6pMHuZUqaQeUe/ZMu3zjRpGZL1JEVAYYIgftt2+LigBDDh4Uo9sXLKjd3s5OBOSAGBgvuSNH9F/fqZO42CLPJ5+UJAaiA8yXaS9cWHRhUKmAQ4fMc4y0MGjPLnKfdgD5XaPh4SH6k9y7Z8E2ERERERHlYl27ivsuXfR+rudoH38ssv3XrolR7T/6SASbH3wgSvj79xcVAYbo9q+XM+ZJScBnn4nHQ4akXsrv6yuqFwDg4kXD22zfLu7bttUfMK5KFXGfPGhPStK2Y/duMYVenjyiYrllS3GB4M4dMV2fm5vhsn1TsWSJPIP27OLiIi4jAVBEs0SeiIiIiMjSGjcWpdXGTpOWE3h7A8OHi8fyqPjTpon3qDvie2qSl7n//LP4jPLlA0aMyNhrdUmSftCuK7Wg/epVMc2al5cImj//XCQ9q1UTU881b64NosuV04RbZsGgPTdQKAz2a+dc7UREREREllO2rMjS2pLRo0XwrlCIQdxmzzZ+KjTdwDs2VvSDB4ApU9Lvr59W0H7lihi8z8VFf/A7QD9olyTt8tOnxX316tqA3Nsb2LEDKFlSDK4nX0gwV2m8rHFj8RleuyZmEMhODNqzkxy0R0cz005ERERERGaRP7/o8339OvC//2XstbqB9zffiHG4ihQxbj9pBe1ylr1Jk5QXScqXF2X3L1+K/vSyU6fEfa1a+tsXKCDK5f39Rek/YP6gPW9e7fvbv9+8x0qOQXt24lztRERERESUDYoX1x8d31hyYBoSou3LPmdO+iPX67726lUgIUF/nTzVW7t2KV/n6qqdt163RF7OtNesmfI1xYoBu3Zps//ysc1JrhA4ccL8x9LFoD07cdo3IiIiIiKyYvnzawd0i4gAKlYE+vQx7rVBQWKguMREEbjLXrzQBrpt2hh+bfJ+7bGxwOXL4rGhoB0Qo90fPw78+CPQooVxbcyKjz8WbVq61PzH0sWgPTsZCNrv3dOWdBAREREREVmabtZ6/vzUR4xPTqHQBt+6JfL//iv6qlepIqZPMyR50H7hgpiPvUCBtEeFL1cOGDzYvIPQyYoWBSpUMH58AFNh0J6ddPq0BwaK0Rvj40U/ESIiIiIiImtQu7a4Dw4GWrfO2GsN9WuX+7MbKo2XJQ/adUvjsztItjZGDPpPJqOTaXdwEFdqQkJEibw55xQkIiIiIiIy1ogRgJMT0LdvxgNm3aD95k1Rup7aVG+6KlcW9yEhwNu3afdnz20YtGcnnYHoAKBy4GvUCdmOh1c6Ao28LNcuIiIiIiIiNU9PYPz4zL1WDtqPHdMOLgeIrH2NGqm/ztcXKFRIVCFfusSgXRfL47OTTqYdd+7g23Pv4hf0R+nx7bH6hyQkJlq2eURERERERFlRpgzg5SX6sNvZiZL4v/4C9u1Lv9+5XCJ/6JDI0gMM2gEG7dlLDtqPHQPefRd+EbcBAO/GH8KjobNQujTw/fdAUpIF20hERERERJRJDg7Ali3AkiXAw4fAtm1A+/ZieXrkoP2nn8R90aIiA5/bMWjPTnLQfuAA8PIlUL064heJ+QKmYB5K3d+NDz8U0xU8f27BdhIREVmR9u3bo0iRInBxcUFAQADef/99PHnyxNLNIiKiVLz3HjBqlCh3zwg5aJenxWaWXbCZoP3bb79F0aJF4eLigtq1a+PUqVOWblJKcp92QIzCcPAgnMePAD76CHaQsNW9D0q6Psb+/UC1atq5DImIiHKzxo0b448//sDNmzexadMm3LlzB127drV0s4iIyMR0p5oDGLTLbCJo37BhA8aOHYsZM2bg3LlzqFy5Mlq0aIHn1paubtQI8PcXl522bNFm3hcvBqpUgVv0S1x4pxeaFQvB08dKBAcDCxeKPh3nzwN37wKvXoF934nItsTHAwkJovObqahUoqLp+nXg1i0gOtrwdmkdV5KAmBjTtosyZcyYMXj33XcRFBSEunXrYtKkSThx4gQSeUIkIrIpxYqJQfBkDNoFhSTl/F8jtWvXRs2aNbFs2TIAgEqlQmBgIEaMGIFJkyal+/rIyEh4e3sjIiICXl5mHsVdkgzPm3D7NlC9upjfAEC8nQuuqsrhNkohAt6IggfewhNxcIEEBeztFXB2UcDFBXBx/X979x4cVXn+Afz7nrP33DYQcpOE+wAqKIJixN90WjIj6LTV0otMaqNlyoBgoUxVLEVlOhQ6nbHTlg4dnUo7UypTOkAprTo2WFoshEsBQS5qoYBAEiCG7CbZ2znP74+TPclKkGQT2RPy/cyc2ew57zn7nGc3efLu+55dBb8fCPgFmgaYhiCRAAwD0HQFj1fB49Pg9mlwu8RadIGuW9fPJxJALK7sfYyEWLcmoGvWMZSuoCnAFAUR6zQSCSASBaIRIBKx1um6tbh0gdsD+LyA1wt4PQIxTRhRA4mYASNmQpQG0V3tiw7TaH/85GICpmH97w0F+HwKgQDg91vHswNpZwogUBBRECiYprWv0X6Mzvc1LXUxpeOxTFMgpgCGad1CoCsTurJulQJMzQVT6TCVDs2lwe814fcJfF4TmrLyGU8oROMaBApKAUpTUJqCkRDEY4JEzEQiIdB1Bd2jweXR4HJrVjuVfJmIFZchME3rdF2u9sWtIACirSaibdZimoDu0aF7detYugZTFAxRMEWDpiu43Aq6y7qFiJVG08qj12vl1++3foZSMKFZi1iv22Rb3YzDFw/BFw/BG22GMhKI6T7ElRdR5UNM9yPmzkLMnYWoKwvi9UHzeaD5PNB9bujKhEvi0Iw43EYEeS3nkdt8Ftkfn4X38nlo4RBUaxiqJQwkEoiXDkNs6Ci0lY5EvHAoPAEdXr8Gn0/BpQvirXEYEWuReBxuicOFhP0YKh6zOmjxONDWZnXGWlutF29WFpCfDwwaBOTlWS/iJMOw2oXD1hKJdLxwdN16Mnw+K2k+n/X9KLre0aatDWhs7Fja2qwYkkswCLOwGPGCEsTzC+EKeODxApqC9YJsb2dEYjBbo0A4DBUOQbVYubFy1GJ1Sk3TejMwufh8HTHqunWs5Hm3tlr7JM+rtbUjD/n5Vh4Mw+pQR6PWvim/NGbHMVparNwmKWW9gPLygGCwI6exWMfxmpuBpiZriUY79vX5Opbki9Hvt/Lqdlu3LlfqL3UiYeU1ErFum5utDrtppv6dDQYhQ4dCoIDGRqiPG6Ha2iBuD+IFxYjlFyOSWwhPaxO8jefhvngeWjQCycqGWVYOs2wYUFgELR6B1hKCCoWsc+qc8+xs6+N2R43qcXno7IbWpX6msbER8+fPx7lz57Bz585rtotGo4h2em01NzejrKyMOSUicrj/+z9g507r34krV1I78Teb7tb7fv+Vb7FYDPv378dzzz1nr9M0DZWVldi1a1eX+3RVyG+Ya33R4ZgxwKZNwNKlwJEj8EYjuAsHcBcOdN3eANDSvhANAK7TJ+HH28i71vYbGk3f0gB425dr0duXz1Q4DNTX993x6up6vk+k/V3APtKk5cMlcWRLGGhqgmpqwif/Cqt4DJ4LZ+C5cAbZXRxDtYShHz8K/fjRbj3m8fvnYFzv+uzUhWeffRZr1qxBa2sr7r33XmxLfunvNaxatQorVqy4QdEREVFfufNOq9M+btzN3WHvif78fy4A4NKlSzAMA0VFRSnri4qKcPz48S73cWwhr6wE9u2zRrdOngTeew/43/+sf6RDISAchtkaQTwmiMcF8aggFhPEoh0DWAJlDYS5VMeoe1xgxEwk4iYMQ8EwFQwTMEwFXQN0XeDSrVtNV9A0a1+lKUj7qLNpijUcrSkoWO89aJo18OVyA24XoDRATGuEXAxBwlDWIGFCIZ4AlK5Bc+vQ3dbotBIzObQPZSSgNCselRzMa38MpQEwBbE4kBwsTSTQ8QZI+601vm4tUMnR7fZY23/WFKCUAO2nY40yA9CU3cYa5bZGxdt3gAkN0j7aLACUaUAzDSjTgGmYiCc0RBMaYnEFiDXTwKWbcGsmoKz4Bdat0hU0lwbdZY18m6bATJgwEyYkYQDJuABAkiP07bdIzkCwRt6ViDWq7tHgdlvtzLhhHStuTR1QysqJJiZEBGJ0ek7bZwEkc5gwrOcqkQDMREc+NZhQMDu96aSQUC60aDkIIwdhZCOh3PBpUfhUFH5E4EMbfEYLAkYYPqMFLjMK3YhBN+PQjRhEaUjAjYRyI6Y8aNBKcFaG4mS8DKfit6AJQYSRjRZkQ9OAUfr/MEb7L0bhvxhi1kMME6ZpxSZQiMONONxItN/G7PsuxOBpX2fdtsGPVgTQigAi8CEbYeTjY+TjYwTRZL2G2glUexxZCCMbEfigINBhQIMJN+Lwow0+ROBHGzyI2dt1GGhFAB8jH40YhI+Rj1YE7DgM6AiiCSW4gGLUoRAN0GGk/FmIwWO3j8KLMLLtmTfJmJLxmdCQhRbkIIQchOBFFDoMa8YBEojDbZ93KwL2vmFkow1+ZKHFzkMeriABF6LwIgov4nDbr4VkjC3IspcYPNaskvbc+dGGPFxBHq4giCZoMO1jReFFCDloQhBNCOIK8qAg9tZkLpOLDxF47GfUmkFhzwCBBgO63ToCH0LIwUUMwSUUIGG6AQA5aMZQfISh+AgCZT8fYT2IIf4whnkuoMxdh2KtAZeNIP4XK8WpSAk+igxGEepRjjMYhtMoRIOduxByEIcbAbTamcxBCI8MKeu7unATW7p0KX7yk598aptjx45hXPuX/D799NOYM2cOTp8+jRUrVuBb3/oWtm3bBnWNN8Ofe+45LFmyxL6fHGknIiJnmzEDWLPG+qo4svT76fHnz5/HLbfcgn//+9+oqKiw1z/zzDPYsWMHamtrr9qHU+aInO1aV5F8UnKGdjzefhmGt2NmeyKROrPbMGBfAgJ0vPGUvBSh8+MlEtabQ8nZ9C6X9QaV220dv3Pb5CUXyUtNTPPqYyb/yia/rzQ5s17Xr74kIRpNnbHu9XbMFPd4Uo+XnL0eiVi3iUTHcZNxdr4sJLkk73eVh+Q6oNOlGC5rXefZ7Z1nyyevBki2Td7vLJnT5P7Jc+jqsbrKcTye+pwkZ8p3fk6Sx0xeSpJcdB0IBGBfXpO8isHtvv73xSaP1TmPyTiS55O80iEZ24QJqZ87mo6BMD3+4sWLuHz58qe2GTlyJDzJF34nH330EcrKyq6q/Z9mIOSUiOhm8eGHQHl5x/8+N6sBMz2+oKAAuq6j/hNTOuvr61FcXNzlPl6vF17vp01EJaJM6k6HHbA6XNldzWdGRwewt52nGy3Zged3kjpDslPf+WMOAoHMxHKzGTJkCIak+UI32z+voPMb8EREdPMYPTrTEThLv//0eI/Hg8mTJ6OmpsZeZ5omampquv3uOxERETlTbW0t1qxZg4MHD+L06dPYvn07Zs+ejVGjRrHOExHRgNDvO+0AsGTJErzyyiv43e9+h2PHjmH+/PloaWnBE088kenQiIiIqBcCgQA2bdqE6dOnY+zYsZgzZw4mTpyIHTt2cNYcERENCP1+ejwAfOMb38DFixfx/PPPo66uDnfeeSfeeOONqz6cjoiIiPqXCRMmYPv27ZkOg4iIKGNuik47ACxcuBALFy7MdBhEREREREREfeammB5PREREREREdDNip52IiIiIiIjIodhpJyIiIiIiInIodtqJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHbaiYiIiIiIiByKnXYiIiIiIiIih2KnnYiIiIiIiMihXJkOwAlEBADQ3Nyc4UiIiIg66lGyPlHvsdYTEZHTdLfes9MOIBQKAQDKysoyHAkREVGHUCiEvLy8TIdxU2CtJyIip7pevVfCt/FhmibOnz+PnJwcKKV6dazm5maUlZXh7NmzyM3N7aMIb37MW88xZ+lh3nqOOUtPb/ImIgiFQigtLYWm8Uq2vsBan3nMW88xZ+lh3tLDvPVcb3PW3XrPkXYAmqZh6NChfXrM3NxcvtjTwLz1HHOWHuat55iz9KSbN46w9y3Weudg3nqOOUsP85Ye5q3nepOz7tR7vn1PRERERERE5FDstBMRERERERE5FDvtfczr9eKFF16A1+vNdCj9CvPWc8xZepi3nmPO0sO83bz43KaHees55iw9zFt6mLeeu1E54wfRERERERERETkUR9qJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHba+9CvfvUrDB8+HD6fD1OnTsWePXsyHZKjrFq1CnfffTdycnJQWFiIhx9+GCdOnEhpE4lEsGDBAgwePBjZ2dmYNWsW6uvrMxSx86xevRpKKSxevNhex5x17dy5c/jmN7+JwYMHw+/3Y8KECdi3b5+9XUTw/PPPo6SkBH6/H5WVlfjggw8yGHHmGYaB5cuXY8SIEfD7/Rg1ahR+9KMfofPnlQ70vP3zn//EF7/4RZSWlkIphS1btqRs705+GhsbUVVVhdzcXASDQcyZMwfhcPgGngX1Fuv9tbHW9x5rffex1vcca333OK7eC/WJDRs2iMfjkVdffVXee+89+c53viPBYFDq6+szHZpjPPDAA7Ju3To5cuSIHDx4UB588EEpLy+XcDhst5k3b56UlZVJTU2N7Nu3T+6991657777Mhi1c+zZs0eGDx8uEydOlEWLFtnrmbOrNTY2yrBhw+Txxx+X2tpaOXnypLz55pvy4Ycf2m1Wr14teXl5smXLFjl06JB86UtfkhEjRkhbW1sGI8+slStXyuDBg2Xbtm1y6tQp2bhxo2RnZ8vPf/5zu81Az9vf/vY3WbZsmWzatEkAyObNm1O2dyc/M2bMkDvuuEN2794t//rXv2T06NEye/bsG3wmlC7W+0/HWt87rPXdx1qfHtb67nFavWenvY/cc889smDBAvu+YRhSWloqq1atymBUztbQ0CAAZMeOHSIi0tTUJG63WzZu3Gi3OXbsmACQXbt2ZSpMRwiFQjJmzBh566235HOf+5xdyJmzrj377LNy//33X3O7aZpSXFwsP/3pT+11TU1N4vV65bXXXrsRITrSQw89JN/+9rdT1n3lK1+RqqoqEWHePumTRbw7+Tl69KgAkL1799ptXn/9dVFKyblz525Y7JQ+1vueYa3vPtb6nmGtTw9rfc85od5zenwfiMVi2L9/PyorK+11mqahsrISu3btymBkznblyhUAwKBBgwAA+/fvRzweT8njuHHjUF5ePuDzuGDBAjz00EMpuQGYs2vZunUrpkyZgq997WsoLCzEpEmT8Morr9jbT506hbq6upS85eXlYerUqQM6b/fddx9qamrw/vvvAwAOHTqEnTt3YubMmQCYt+vpTn527dqFYDCIKVOm2G0qKyuhaRpqa2tveMzUM6z3Pcda332s9T3DWp8e1vrey0S9d/U+bLp06RIMw0BRUVHK+qKiIhw/fjxDUTmbaZpYvHgxpk2bhttvvx0AUFdXB4/Hg2AwmNK2qKgIdXV1GYjSGTZs2ID//Oc/2Lt371XbmLOunTx5EmvXrsWSJUvwgx/8AHv37sV3v/tdeDweVFdX27np6nd2IOdt6dKlaG5uxrhx46DrOgzDwMqVK1FVVQUAzNt1dCc/dXV1KCwsTNnucrkwaNAg5rAfYL3vGdb67mOt7znW+vSw1vdeJuo9O+2UEQsWLMCRI0ewc+fOTIfiaGfPnsWiRYvw1ltvwefzZTqcfsM0TUyZMgU//vGPAQCTJk3CkSNH8Otf/xrV1dUZjs65/vjHP2L9+vX4wx/+gNtuuw0HDx7E4sWLUVpayrwRUY+x1ncPa316WOvTw1rfP3F6fB8oKCiArutXfYpnfX09iouLMxSVcy1cuBDbtm3D22+/jaFDh9rri4uLEYvF0NTUlNJ+IOdx//79aGhowF133QWXywWXy4UdO3bgF7/4BVwuF4qKipizLpSUlODWW29NWTd+/HicOXMGAOzc8Hc21dNPP42lS5fi0UcfxYQJE/DYY4/he9/7HlatWgWAebue7uSnuLgYDQ0NKdsTiQQaGxuZw36A9b77WOu7j7U+Paz16WGt771M1Ht22vuAx+PB5MmTUVNTY68zTRM1NTWoqKjIYGTOIiJYuHAhNm/ejO3bt2PEiBEp2ydPngy3252SxxMnTuDMmTMDNo/Tp0/H4cOHcfDgQXuZMmUKqqqq7J+Zs6tNmzbtqq8Yev/99zFs2DAAwIgRI1BcXJySt+bmZtTW1g7ovLW2tkLTUsuCruswTRMA83Y93clPRUUFmpqasH//frvN9u3bYZompk6desNjpp5hvb8+1vqeY61PD2t9eljrey8j9T7dT9GjVBs2bBCv1yu//e1v5ejRozJ37lwJBoNSV1eX6dAcY/78+ZKXlyf/+Mc/5MKFC/bS2tpqt5k3b56Ul5fL9u3bZd++fVJRUSEVFRUZjNp5On+irAhz1pU9e/aIy+WSlStXygcffCDr16+XQCAgv//97+02q1evlmAwKH/+85/l3XfflS9/+csD7utMPqm6ulpuueUW+2tgNm3aJAUFBfLMM8/YbQZ63kKhkBw4cEAOHDggAOSll16SAwcOyOnTp0Wke/mZMWOGTJo0SWpra2Xnzp0yZswYfuVbP8J6/+lY6/sGa/31sdanh7W+e5xW79lp70O//OUvpby8XDwej9xzzz2ye/fuTIfkKAC6XNatW2e3aWtrkyeffFLy8/MlEAjII488IhcuXMhc0A70yULOnHXtL3/5i9x+++3i9Xpl3Lhx8vLLL6dsN01Tli9fLkVFReL1emX69Oly4sSJDEXrDM3NzbJo0SIpLy8Xn88nI0eOlGXLlkk0GrXbDPS8vf32213+HauurhaR7uXn8uXLMnv2bMnOzpbc3Fx54oknJBQKZeBsKF2s99fGWt83WOu7h7W+51jru8dp9V6JiPR8fJ6IiIiIiIiIPmu8pp2IiIiIiIjIodhpJyIiIiIiInIodtqJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHbaiYiIiIiIiByKnXYiIiIiIiIih2KnnYgyTimFLVu2ZDoMIiIi+oyw1hOlj512ogHu8ccfh1LqqmXGjBmZDo2IiIj6AGs9Uf/mynQARJR5M2bMwLp161LWeb3eDEVDREREfY21nqj/4kg7EcHr9aK4uDhlyc/PB2BNZ1u7di1mzpwJv9+PkSNH4k9/+lPK/ocPH8YXvvAF+P1+DB48GHPnzkU4HE5p8+qrr+K2226D1+tFSUkJFi5cmLL90qVLeOSRRxAIBDBmzBhs3br1sz1pIiKiAYS1nqj/YqediK5r+fLlmDVrFg4dOoSqqio8+uijOHbsGACgpaUFDzzwAPLz87F3715s3LgRf//731MK9dq1a7FgwQLMnTsXhw8fxtatWzF69OiUx1ixYgW+/vWv491338WDDz6IqqoqNDY23tDzJCIiGqhY64kcTIhoQKuurhZd1yUrKytlWblypYiIAJB58+al7DN16lSZP3++iIi8/PLLkp+fL+Fw2N7+17/+VTRNk7q6OhERKS0tlWXLll0zBgDywx/+0L4fDocFgLz++ut9dp5EREQDFWs9Uf/Ga9qJCJ///Oexdu3alHWDBg2yf66oqEjZVlFRgYMHDwIAjh07hjvuuANZWVn29mnTpsE0TZw4cQJKKZw/fx7Tp0//1BgmTpxo/5yVlYXc3Fw0NDSke0pERETUCWs9Uf/FTjsRISsr66opbH3F7/d3q53b7U65r5SCaZqfRUhEREQDDms9Uf/Fa9qJ6Lp279591f3x48cDAMaPH49Dhw6hpaXF3v7OO+9A0zSMHTsWOTk5GD58OGpqam5ozERERNR9rPVEzsWRdiJCNBpFXV1dyjqXy4WCggIAwMaNGzFlyhTcf//9WL9+Pfbs2YPf/OY3AICqqiq88MILqK6uxosvvoiLFy/iqaeewmOPPYaioiIAwIsvvoh58+ahsLAQM2fORCgUwjvvvIOnnnrqxp4oERHRAMVaT9R/sdNORHjjjTdQUlKSsm7s2LE4fvw4AOvTXjds2IAnn3wSJSUleO2113DrrbcCAAKBAN58800sWrQId999NwKBAGbNmoWXXnrJPlZ1dTUikQh+9rOf4fvf/z4KCgrw1a9+9cadIBER0QDHWk/UfykRkUwHQUTOpZTC5s2b8fDDD2c6FCIiIvoMsNYTORuvaSciIiIiIiJyKHbaiYiIiIiIiByK0+OJiIiIiIiIHIoj7UREREREREQOxU47ERERERERkUOx005ERERERETkUOy0ExERERERETkUO+1EREREREREDsVOOxEREREREZFDsdNORERERERE5FDstBMRERERERE51P8DRh8t0k9CpMEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -528,7 +1305,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -554,7 +1331,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -581,9 +1358,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.137\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABENUlEQVR4nO3deXxU5aH/8e9kgCRkmRBwskCACAik4MYmhCL+xBAXFmvlumLUn3gxUVK0LN4iItgI1RZpK1S9DVrE5f5sbOTWUGSJIiQoSCVFU8SAVJJQWWYgmIgz5/fHmNEhCSQ4yczkfN6v17zwPOeZM8+Mgfnm2Y7FMAxDAAAAJhEW6AYAAAC0JcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwlQ6BbkAwcrvdOnjwoGJiYmSxWALdHAAA0AyGYej48eNKTk5WWFjT/TuEn0YcPHhQKSkpgW4GAAA4BwcOHFCPHj2aPE/4aURMTIwkz4cXGxsb4NYAAIDmcDqdSklJ8X6PN4Xw04j6oa7Y2FjCDwAAIeZsU1aY8AwAAEyF8AMAAEyF8AMAAEyFOT8AgKDhcrl06tSpQDcDQapjx46yWq0/+DqEHwBAwBmGoaqqKh07dizQTUGQi4uLU2Ji4g/ah4/wAwAIuPrgY7fb1blzZzaYRQOGYejkyZM6dOiQJCkpKemcr0X4AQAElMvl8gafrl27Bro5CGKRkZGSpEOHDslut5/zEBgTngEAAVU/x6dz584BbglCQf3PyQ+ZG0b4AQAEBYa60Bz++Dlh2KutuF3S/i3SiWopOkHqNUoK++Ez1gEAQMsEtOcnLy9Pw4YNU0xMjOx2uyZPnqzy8nKfOmPHjpXFYvF5/Od//ucZr2sYhh555BElJSUpMjJS48aN0549e1rzrZzZ7kJp6SDpheuk1+/2/Ll0kKccAAC0qYCGn+LiYmVnZ6ukpETr1q3TqVOnlJGRoZqaGp9699xzjyorK72PJUuWnPG6S5Ys0bJly7RixQqVlpYqKipK48ePV21tbWu+ncbtLpRemyo5D/qWOys95QQgAMBZZGVlafLkyd7jsWPHKjc39wdd0x/XCFUBHfYqKiryOV65cqXsdru2b9+uMWPGeMs7d+6sxMTEZl3TMAwtXbpUv/jFLzRp0iRJ0osvvqiEhAS98cYbuummm/z3Bs7G7ZKKZksyGmupJItUNEcacC1DYADgBy63oW0VR3ToeK3sMREanhova1jrzSXKysrSCy+8IMmzAV/Pnj01depUPfzww+rQofW+Yv/85z+rY8eOzaq7adMmXXHFFTp69Kji4uLO6RrtTVDN+XE4HJKk+Ph4n/KXXnpJq1atUmJioiZMmKB58+Y1uSqgoqJCVVVVGjdunLfMZrNpxIgR2rp1a6Php66uTnV1dd5jp9Ppj7fjmeNzeo+PD0NyfuGpl/pj/7wmAJhUUVmlFry5W5WO73r5k2wRmj8hTZmDzn1PmLPJzMxUfn6+6urq9Ne//lXZ2dnq2LGj5s6d61Pv66+/VqdOnfzymqd/TwbqGqEqaFZ7ud1u5ebmKj09XYMGDfKW33LLLVq1apU2btyouXPn6k9/+pNuu+22Jq9TVVUlSUpISPApT0hI8J47XV5enmw2m/eRkpLih3ckz+Rmf9YDADSqqKxS01ft8Ak+klTlqNX0VTtUVFbZaq8dHh6uxMRE9erVS9OnT9e4ceNUWFjoHap6/PHHlZycrP79+0uSDhw4oClTpiguLk7x8fGaNGmS9u3b572ey+XSzJkzFRcXp65du2rWrFkyDN8RhNOHrOrq6jR79mylpKQoPDxcffv21X//939r3759uuKKKyRJXbp0kcViUVZWVqPXOHr0qKZOnaouXbqoc+fOuvrqq33my65cuVJxcXFau3atBg4cqOjoaGVmZqqy8rvPdtOmTRo+fLiioqIUFxen9PR07d+/30+ftP8ETfjJzs5WWVmZXnnlFZ/yadOmafz48Ro8eLBuvfVWvfjiiyooKNDevXv99tpz586Vw+HwPg4cOOCfC0cnnL1OS+oBABpwuQ0teHN3kxMMJGnBm7vlcjdWw/8iIyP19ddfS5LWr1+v8vJyrVu3TmvWrNGpU6c0fvx4xcTE6N1339V7773nDRH1z3nqqae0cuVK/fGPf9TmzZt15MgRFRQUnPE1p06dqpdfflnLli3Txx9/rD/84Q+Kjo5WSkqKXn/9dUlSeXm5Kisr9fTTTzd6jaysLH3wwQcqLCzU1q1bZRiGrrnmGp/9dE6ePKknn3xSf/rTn/TOO+/o888/10MPPSRJ+uabbzR58mRdfvnl+uijj7R161ZNmzYtKLcwCIphr5ycHK1Zs0bvvPOOevTocca6I0aMkCR9+umn6tOnT4Pz9XODqqurfba+rq6u1sUXX9zoNcPDwxUeHn6OrT+DXqOk2GTP5OZG/1paPOd7jfL/awOASWyrONKgx+f7DEmVjlptqziikX1abwdpwzC0fv16rV27Vvfff7/+/e9/KyoqSs8//7x3uGvVqlVyu916/vnnvaEgPz9fcXFx2rRpkzIyMrR06VLNnTtXP/nJTyRJK1as0Nq1a5t83X/+85967bXXtG7dOu+Uj/PPP997vn54y263+8z5+b49e/aosLBQ7733nkaN8nwnvfTSS0pJSdEbb7yhG2+8UZJnY8EVK1Z4v39zcnL02GOPSfJMGXE4HLruuuu85wcOHNjyD7INBLTnxzAM5eTkqKCgQBs2bFBqaupZn7Nz505JTd/TIzU1VYmJiVq/fr23zOl0qrS0VCNHjvRLu5stzCplLv724PTk++1x5hNMdgaAH+DQ8eat5G1uvZZas2aNoqOjFRERoauvvlr/8R//oUcffVSSNHjwYJ95Pn//+9/16aefKiYmRtHR0YqOjlZ8fLxqa2u1d+9eORwOVVZWen/Rl6QOHTpo6NChTb7+zp07ZbVadfnll5/ze/j444/VoUMHn9ft2rWr+vfvr48//thb1rlzZ5+Oh6SkJO+9tuLj45WVlaXx48drwoQJevrpp32GxIJJQMNPdna2Vq1apdWrVysmJkZVVVWqqqrSV199JUnau3evFi5cqO3bt2vfvn0qLCzU1KlTNWbMGF144YXe6wwYMMDbJWixWJSbm6tFixapsLBQu3bt0tSpU5WcnOyzTLDNpE2UprwoxZ4W1mKTPeVpE9u+TQDQjthjIvxar6WuuOIK7dy5U3v27NFXX32lF154QVFRUZLk/bPeiRMnNGTIEO3cudPn8c9//lO33HLLOb1+/f2u2sLpq8MsFovPfKT8/Hxt3bpVo0aN0quvvqoLLrhAJSUlbda+5grosNfy5csleSZdfV9+fr6ysrLUqVMnvf3221q6dKlqamqUkpKiG264Qb/4xS986peXl3tXiknSrFmzVFNTo2nTpunYsWMaPXq0ioqKFBHROj/4Z5U20bOcnR2eAcDvhqfGK8kWoSpHbVMTDJRo8yx7bw1RUVHq27dvs+peeumlevXVV2W32xUbG9tonaSkJJWWlnq3fPnmm2+0fft2XXrppY3WHzx4sNxut4qLi31WOter73lyuVxNtmvgwIH65ptvVFpa6h32Onz4sMrLy5WWltas91bvkksu0SWXXKK5c+dq5MiRWr16tS677LIWXaO1BTT8nD57/XQpKSkqLi5u8XUsFosee+wx7zhkUAizspwdAFqBNcyi+RPSNH3VDlnkO8OyfsLB/AlprbrfT3Pdeuut+tWvfqVJkybpscceU48ePbR//379+c9/1qxZs9SjRw/NmDFDTzzxhPr166cBAwbo17/+tY4dO9bkNXv37q077rhDd911l5YtW6aLLrpI+/fv16FDhzRlyhT16tVLFotFa9as0TXXXKPIyEhFR0f7XKNfv36aNGmS7rnnHv3hD39QTEyM5syZo+7du3v3zDubiooKPfvss5o4caKSk5NVXl6uPXv2aOrUqT/kI2sVQbPaCwCAc5U5KEnLb7tUiTbfHv5EW4SW33Zpq+7z0xKdO3fWO++8o549e+onP/mJBg4cqLvvvlu1tbXenqAHH3xQt99+u+644w6NHDlSMTExuv7668943eXLl+unP/2p7rvvPg0YMED33HOP924J3bt314IFCzRnzhwlJCQoJyen0Wvk5+dryJAhuu666zRy5EgZhqG//vWvzd4IsXPnzvrkk090ww036IILLtC0adOUnZ2te++9twWfUNuwGGfrfjEhp9Mpm80mh8PRZLckAMA/amtrVVFRodTU1B88PaGtd3hG2zvTz0tzv7+DYqk7AAD+YA2ztOpydrQPDHsBAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAGBCjz76qC6++OJAN0Njx45Vbm5um74m4QcAgB+gqqpKM2bMUN++fRUREaGEhASlp6dr+fLlOnnyZKCbd842bdoki8VyxvuKBfJ6PwQ7PAMA2g+3S9q/RTpRLUUnSL1GeW4s3Uo+++wzpaenKy4uTr/85S81ePBghYeHa9euXXr22WfVvXt3TZw4sdHnnjp1qtn3zQpmX3/9tffO8aGCnh8AQPuwu1BaOkh64Trp9bs9fy4d5ClvJffdd586dOigDz74QFOmTNHAgQN1/vnna9KkSfrf//1fTZgwwVvXYrFo+fLlmjhxoqKiovT4449L8tyUtE+fPurUqZP69++vP/3pT97n7Nu3TxaLRTt37vSWHTt2TBaLRZs2bZL0XY/K+vXrNXToUHXu3FmjRo1SeXm5T1ufeOIJJSQkKCYmxnsz1abs27dPV1xxhSSpS5cuslgsysrKkuQZpsrJyVFubq66deum8ePHn7WdZ7qeJLndbs2aNUvx8fFKTEzUo48+2tz/BeeE8AMACH27C6XXpkrOg77lzkpPeSsEoMOHD+tvf/ubsrOzFRUV1Wgdi8X3pqqPPvqorr/+eu3atUt33XWXCgoKNGPGDD344IMqKyvTvffeqzvvvFMbN25scXv+67/+S0899ZQ++OADdejQQXfddZf33GuvvaZHH31Uv/zlL/XBBx8oKSlJzzzzTJPXSklJ0euvvy5JKi8vV2VlpZ5++mnv+RdeeEGdOnXSe++9pxUrVpy1bc25XlRUlEpLS7VkyRI99thjWrduXYs/g+Zi2AsAENrcLqlotiSjkZOGJItUNEcacK1fh8A+/fRTGYah/v37+5R369bN26uSnZ2txYsXe8/dcsstuvPOO73HN998s7KysnTfffdJkmbOnKmSkhI9+eST3p6S5nr88cd1+eWXS5LmzJmja6+9VrW1tYqIiNDSpUt199136+6775YkLVq0SG+//XaTvT9Wq1Xx8fGSJLvdrri4OJ/z/fr105IlS7zH+/btO2Pbzna9Cy+8UPPnz/de+3e/+53Wr1+vq666qlnvvaXo+QEAhLb9Wxr2+PgwJOcXnnptYNu2bdq5c6d+9KMfqa6uzufc0KFDfY4//vhjpaen+5Slp6fr448/bvHrXnjhhd7/TkpKkiQdOnTI+zojRozwqT9y5MgWv0a9IUOGnPNzG/P9tkue9te3vTXQ8wMACG0nqv1br5n69u0ri8XSYG7N+eefL0mKjIxs8JymhseaEhbm6aMwjO96tU6dOtVo3e9Pnq4fbnO73S16veY6/X20pJ2NOX3it8ViabW2S/T8AABCXXSCf+s1U9euXXXVVVfpd7/7nWpqas7pGgMHDtR7773nU/bee+8pLS1NknTeeedJkiorK73nvz+puCWvU1pa6lNWUlJyxufUr+ByuVxnvX5z2tmS67U2en4AAKGt1ygpNtkzubnReT8Wz/leo/z+0s8884zS09M1dOhQPfroo7rwwgsVFham999/X5988slZh4d+/vOfa8qUKbrkkks0btw4vfnmm/rzn/+st99+W5Kn9+iyyy7TE088odTUVB06dEi/+MUvWtzOGTNmKCsrS0OHDlV6erpeeukl/eMf//D2UjWmV69eslgsWrNmja655hpFRkYqOjq60brNaWdLrtfa6PkBAIS2MKuUWT+p2HLayW+PM59olf1++vTpow8//FDjxo3T3LlzddFFF2no0KH67W9/q4ceekgLFy484/MnT56sp59+Wk8++aR+9KMf6Q9/+IPy8/M1duxYb50//vGP+uabbzRkyBDl5uZq0aJFLW7nf/zHf2jevHmaNWuWhgwZov3792v69OlnfE737t21YMECzZkzRwkJCcrJyTlj/bO1s6XXa00W4/sDdJAkOZ1O2Ww2ORwOxcbGBro5ANCu1dbWqqKiQqmpqYqIiDj3C+0u9Kz6+v7k59junuCT1vhGgwg9Z/p5ae73N8NeAID2IW2iZzl7G+7wjNBE+AEAtB9hVin1x4FuBYIcc34AAICpEH4AAICpEH4AAEGB9TdoDn/8nBB+AAABVb+778mTJwPcEoSC+p+T03eFbgkmPAMAAspqtSouLs57L6fOnTs3uBs6YBiGTp48qUOHDikuLk5W67mv4iP8AAACLjExUZJa9WaWaB/i4uK8Py/nivADAAg4i8WipKQk2e32Ft0QE+bSsWPHH9TjU4/wAwAIGlar1S9fbsCZMOEZAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCpsc4jtul7R/i3SiWopOkHqNksLYbAwA0L4QfuCxu1Aqmi05D35XFpssZS6W0iYGrl0AAPgZw17wBJ/XpvoGH0lyVnrKdxcGpl0AALQCwo/ZuV2eHh8ZjZz8tqxojqceAADtAOHH7PZvadjj48OQnF946gEA0A4ENPzk5eVp2LBhiomJkd1u1+TJk1VeXt5oXcMwdPXVV8tiseiNN94443WzsrJksVh8HpmZma3wDtqBE9X+rQcAQJALaPgpLi5Wdna2SkpKtG7dOp06dUoZGRmqqalpUHfp0qWyWCzNvnZmZqYqKyu9j5dfftmfTW8/ohP8Ww8AgCAX0NVeRUVFPscrV66U3W7X9u3bNWbMGG/5zp079dRTT+mDDz5QUlJSs64dHh6uxMTEZtWtq6tTXV2d99jpdDbree1Cr1GeVV3OSjU+78fiOd9rVFu3DACAVhFUc34cDockKT4+3lt28uRJ3XLLLfr973/f7DAjSZs2bZLdblf//v01ffp0HT58uMm6eXl5stls3kdKSsq5v4lQE2b1LGeXJJ3es/btceYT7PcDAGg3LIZhNPbrfptzu92aOHGijh07ps2bN3vL7733XrlcLj3//POSJIvFooKCAk2ePLnJa73yyivq3LmzUlNTtXfvXj388MOKjo7W1q1bZbU2/BJvrOcnJSVFDodDsbGx/nuTwazRfX66e4IP+/wAAPyhlTfTdTqdstlsZ/3+DppNDrOzs1VWVuYTfAoLC7VhwwZ9+OGHLbrWTTfd5P3vwYMH68ILL1SfPn20adMmXXnllQ3qh4eHKzw8/Nwb3x6kTZQGXMsOzwCA1hFEm+kGxbBXTk6O1qxZo40bN6pHjx7e8g0bNmjv3r2Ki4tThw4d1KGDJ6vdcMMNGjt2bLOvf/7556tbt2769NNP/d309iXMKqX+WBr8U8+fBB8AgD8E2Wa6Ae35MQxD999/vwoKCrRp0yalpqb6nJ8zZ47+7//9vz5lgwcP1m9+8xtNmDCh2a/zr3/9S4cPH272ZGkAAOAnZ91M1+LZTHfAtW32S3dAe36ys7O1atUqrV69WjExMaqqqlJVVZW++uorSVJiYqIGDRrk85Cknj17+gSlAQMGqKCgQJJ04sQJ/fznP1dJSYn27dun9evXa9KkSerbt6/Gjx/f9m8SAAAzC8LNdAMafpYvXy6Hw6GxY8cqKSnJ+3j11VdbdJ3y8nLvSjGr1aqPPvpIEydO1AUXXKC7775bQ4YM0bvvvsu8HgAA2loQbqYb8GEvfzzn+2WRkZFau3btD2oXAADwkyDcTDcoJjwDAIB2qn4z3QZ7ydWzeLZWacPNdAk/AACg9QThZrqEHwAA0LrSJkpTXpRiT1t1HZvsKW/jfX6CZpNDAADQjgXRZrqEHwAA0DbqN9MNdDMC3QAAAIC2RPgBAACmQvgBAACmwpwfADhXbldQTN4E0DKEHwA4F7sLPTdr/P49i2KTPfuZtPGyXQAtw7AXALTU7kLptakNb9borPSU7y4MTLsANAvhBwBawu3y9PiosXsTfltWNMdTD0BQIvwAQEvs39Kwx8eHITm/8NQDEJQIPwDQEieq/VsPQJsj/ABAS0Qn+LcegDZH+AGAlug1yrOqq8HdqetZpNjunnoAghLhBwBaIszqWc4uqWEA+vY48wn2+wGCGOEHAFoqbaI05UUpNsm3PDbZU84+P0BQY5NDADgXaROlAdeywzMQggg/AHCuwqxS6o8D3QoALcSwFwAAMBV6ftqIy21oW8URHTpeK3tMhIanxssa1tRqEQAA0FoIP22gqKxSC97crUpHrbcsyRah+RPSlDko6QzPBAAA/sawVysrKqvU9FU7fIKPJFU5ajV91Q4VlVUGqGUAAJgT4acVudyGFry5+0y3P9SCN3fL5W6sBgAAaA2En1a0reJIgx6f7zMkVTpqta3iSNs1CgAAkyP8tKJDx5sOPudSDwAA/HBMeG5F9pgIv9ZrbaxIAwCYAeGnFQ1PjVeSLUJVjtpG5/1YJCXaPCEj0FiRBgAwC4a9WpE1zKL5E9IkNXn7Q82fkBbw3hVWpAEAzITw08oyByVp+W2XKtHmO7SVaIvQ8tsuDXivCivSAABmw7BXG8gclKSr0hKDcj5NS1akjezTte0aBgBAKyH8tBFrmCUowwMr0gAAZsOwl8mF2oo0AAB+KMKPydWvSGtqAM4iz6qvYFiRBgCAPxB+TC5UVqQBAOAvhB8E/Yo0AAD8iQnPkBTcK9IAAPAnwg+8gnVFGgAA/sSwFwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJWAhp+8vDwNGzZMMTExstvtmjx5ssrLyxutaxiGrr76alksFr3xxhtnvK5hGHrkkUeUlJSkyMhIjRs3Tnv27GmFdwAAAEJNQMNPcXGxsrOzVVJSonXr1unUqVPKyMhQTU1Ng7pLly6VxdK8PWeWLFmiZcuWacWKFSotLVVUVJTGjx+v2lpuzgkAgNlZDMMwAt2Iev/+979lt9tVXFysMWPGeMt37typ6667Th988IGSkpJUUFCgyZMnN3oNwzCUnJysBx98UA899JAkyeFwKCEhQStXrtRNN93U4Dl1dXWqq6vzHjudTqWkpMjhcCg2Nta/bxIAALQKp9Mpm8121u/voJrz43A4JEnx8d/dRPPkyZO65ZZb9Pvf/16JiYlnvUZFRYWqqqo0btw4b5nNZtOIESO0devWRp+Tl5cnm83mfaSkpPzAdwIAAIJV0IQft9ut3Nxcpaena9CgQd7yn/3sZxo1apQmTZrUrOtUVVVJkhISEnzKExISvOdON3fuXDkcDu/jwIED5/guAABAsAua21tkZ2errKxMmzdv9pYVFhZqw4YN+vDDD1v1tcPDwxUeHt6qrwEAAIJDUPT85OTkaM2aNdq4caN69OjhLd+wYYP27t2ruLg4dejQQR06eLLaDTfcoLFjxzZ6rfqhserqap/y6urqZg2bAQCA9i2g4ccwDOXk5KigoEAbNmxQamqqz/k5c+boo48+0s6dO70PSfrNb36j/Pz8Rq+ZmpqqxMRErV+/3lvmdDpVWlqqkSNHttp7AQAAoSGgw17Z2dlavXq1/vKXvygmJsY7J8dmsykyMlKJiYmN9tb07NnTJygNGDBAeXl5uv7662WxWJSbm6tFixapX79+Sk1N1bx585ScnNzkCjEAAGAeAQ0/y5cvl6QGQ1j5+fnKyspq9nXKy8u9K8UkadasWaqpqdG0adN07NgxjR49WkVFRYqIiPBHswEAQAgLqn1+gkVz9wkAAADBIyT3+QEAAGhthB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqHQLdAKAlXG5D2yqO6NDxWtljIjQ8NV7WMEugmwUACCGEH4SMorJKLXhztyodtd6yJFuE5k9IU+agpAC2DAAQShj2QkgoKqvU9FU7fIKPJFU5ajV91Q4VlVUGqGUAgFBD+EHQc7kNLXhzt4xGztWXLXhzt1zuxmoAAOCL8IOgt63iSIMen+8zJFU6arWt4kjbNQoAELIIPwh6h443HXzOpR4AwNwIPwh69pgIv9YDAJgb4QdBb3hqvJJsEWpqQbtFnlVfw1Pj27JZAIAQRfhB0LOGWTR/QpokNQhA9cfzJ6Sx3w8AoFkIPwgJmYOStPy2S5Vo8x3aSrRFaPltl7LPDwCg2djkECEjc1CSrkpLZIdnAMAPQvhBSLGGWTSyT9dANwMAEMIY9gIAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKbCai8AQGC5XdL+LdKJaik6Qeo1SgqzBrpVaMcIPwCAwNldKBXNlpwHvyuLTZYyF0tpEwPXLrRrDHsBAAJjd6H02lTf4CNJzkpP+e7CwLQrVLldUsW70q7/5/nT7Qp0i4IWPT8AgLbndnl6fGQ0ctKQZJGK5kgDrmUIrDnoQWsRen4AAG1v/5aGPT4+DMn5hacezowetBYj/AAA2t6Jav/WM6uz9qDJ04PGEJgPwg8AoO1FJ/i3nlnRg3ZOmPOD0MKSWKB96DXKMyfFWanGey0snvO9RrV1y0ILPWjnhPCD0MGEPqD9CLN6/u6+NlWSRb4ByOL5I/MJfrk5G3rQzgnDXggNTOgD2p+0idKUF6XYJN/y2GRPOb/UnJUrZaSq1VXuxjrPJLkNqUpd5UoZ2bYNC3I/qOentrZWr776qmpqanTVVVepX79+/moX8B2WxALtV9pEuS64Rp+UrtVXR79QZJfuGjBivKwdGJhojm37HVr59e1a3nGp3IYUZvnuXH0gmv/17cra79DIPl0D08gg1Oyen5kzZ+r+++/3Hn/99dcaOXKk7rnnHj388MO65JJLtHXr1ha9eF5enoYNG6aYmBjZ7XZNnjxZ5eXlPnXuvfde9enTR5GRkTrvvPM0adIkffLJJ2e8blZWliwWi88jMzOzRW1DEGFCH9BuFZVVavSvinXtm9JPN3fXtW9Ko39VrKKyykA3LSQcOl6rte7hmn4qV1WK9zlXpa6afipXa93Ddeh4bYBaGJyaHX7+9re/6aqrrvIev/TSS9q/f7/27Nmjo0eP6sYbb9SiRYta9OLFxcXKzs5WSUmJ1q1bp1OnTikjI0M1NTXeOkOGDFF+fr4+/vhjrV27VoZhKCMjQy7XmZftZWZmqrKy0vt4+eWXW9Q2BBEm9AHtUlFZpaav2qFKh+8Xc5WjVtNX7SAANYM9JkKStNY9XKPrlummr3+hB77O0U1f/0Kj657WWvdwn3rwaHa/4ueff660tDTv8d/+9jf99Kc/Va9evSRJM2bM0DXXXNOiFy8qKvI5Xrlypex2u7Zv364xY8ZIkqZNm+Y937t3by1atEgXXXSR9u3bpz59+jR57fDwcCUmJraoPQhSTOgD2h2X29CCN3efaTBbC97cravSEmX9/lgOfAxPjVeSLUJVjlq5FaYSd5rPeYukRFuEhqfGN34Bk2p2z09YWJgM47sf05KSEl122WXe47i4OB09evQHNcbhcEiS4uMb/59UU1Oj/Px8paamKiUl5YzX2rRpk+x2u/r376/p06fr8OHDTdatq6uT0+n0eSCI1C+JVVP/AFqk2O4siQVCyLaKIw16fL7PkFTpqNW2iiNt16gQZA2zaP4ET+A5/V/I+uP5E9IIkKdpdvgZOHCg3nzzTUnSP/7xD33++ee64oorvOf379+vhIRz/83b7XYrNzdX6enpGjRokM+5Z555RtHR0YqOjtZbb72ldevWqVOnTk1eKzMzUy+++KLWr1+vxYsXq7i4WFdffXWTQ2V5eXmy2Wzex9mCFdpY/ZJYSU3+9WZJLBBSmjsHhbkqZ5c5KEnLb7tUiTbfoa1EW4SW33apMgclNfFM87IY3+/OOYOCggLddNNNGj16tP7xj39o2LBh3jAkSbNnz1ZFRYVee+21c2rI9OnT9dZbb2nz5s3q0aOHzzmHw6FDhw6psrJSTz75pL744gu99957ioho3hjmZ599pj59+ujtt9/WlVde2eB8XV2d6urqvMdOp1MpKSlyOByKjY09p/eDVtDoPj/dPcGHJbFASNm697Bufq7krPVevucyVik1k8ttaFvFER06Xit7jGeoy2w9Pk6nUzab7azf382e83P99dfrr3/9q9asWaOMjAyflV+S1LlzZ913333n1NicnBytWbNG77zzToPgI8nbI9OvXz9ddtll6tKliwoKCnTzzTc36/rnn3++unXrpk8//bTR8BMeHq7w8PBzajvaUNpEz3J2dngGQt7356o0sb8zc1VayBpmISg2U7PDz2OPPaaHHnqo0fAgSfPnz2/xixuGofvvv18FBQXatGmTUlNTm/UcwzB8emrO5l//+pcOHz6spCS6/kJemFVK/XGgWwHgB6qfqzJ91Y6m9ndmrgpaTbPn/CxYsEAnTpzw64tnZ2dr1apVWr16tWJiYlRVVaWqqip99dVXkjzDVXl5edq+fbs+//xzbdmyRTfeeKMiIyN9VpYNGDBABQUFkqQTJ07o5z//uUpKSrRv3z6tX79ekyZNUt++fTV+/Hi/th8AcO6Yq4JAaXbPTzOnBrXI8uXLJUljx471Kc/Pz1dWVpYiIiL07rvvaunSpTp69KgSEhI0ZswYbdmyRXa73Vu/vLzcu1LMarXqo48+0gsvvKBjx44pOTlZGRkZWrhwIUNbABBkMgcl6aq0xKCfq8J8mval2ROew8LCVF1drfPOO6+12xRwzZ0wBQBo/4rKKrWwcJdSTvxddh3TIcXpQPRFmjdxML1TQcbvE54l6YILLpDFcuake+QIezLA3PgNEWg/isoq9cbqFfqfji8qudN3328H6+L12Oqp0i3/SQAKQS0KPwsWLJDNZmuttgAhr6isUgve3O2zeVuSLULzJ6TxDyQQYlxuQ5ve+KOe6bi0wblEHdEzHZfq4Tc66aq0h/kFJ8S0aNirqqrKZ65Ne8WwF85F/X2KTv8LVf9PIhM4gdCydc8h9Vo1Qok6osayjdvw3Dx0/20lGtmv/X83hoLmfn83e7XX2Ya7ADM7232KJM99ilxu/y8caK9cbkNb9x7WX3Z+oa17D/PZoc259r2nZEvjwUeSwixSsuWwXPvea9uG4QcL6GovoL1oyX2K2ITs7Bg+RDCwW475tR6CZ05ks8OP2+1uzXYAIY37FPlPU8OHVY5aTV+1g+FDtJk+5/eRNjezHs4qmH6pafawF4Cm2WOad5+55tYzK4YPEUysvdP1VWSimvpxcxvSV5GJsvZOb9uGhaD6X2pO7yGv/6WmqKyyTdtD+AH8oP4+RU113lrk+Q2H+xSdWUuGD4FWF2ZV5IRfyWKx6PSxD7c8c2EjJ/yK+wueRTD+UkP4Afyg/j5FkhoEIO5T1HwMHyLopE2UZcqLssQm+xRbYrvLMuVFzw2XcUbB+EtNi/b5AdC0+vsUnT6mnchE3WZj+BBBKW2iLAOulfZvkU5US9EJsvQaRY9PMwXjLzWEH8CPQuU+RcGqfviwylHbaBe5RZ4wyfAh2lyYVUr9caBbEZKC8Zcahr0AP7OGWTSyT1dNuri7RvbpSvBpAYYPgfYnGOdEEn4ABJX64cNEm+9vgYm2CJa5nwM2i0SgBeMvNc2+vYWZcHsLIPCCZTO0UBZM+6oAbfHz2Nzvb8JPIwg/AEId95pDMGrtX2qa+/3NhGcAaGfOtq+KRZ59Va5KS6Q3DW2qfk5koDHnBwDamWDcVwUIJoQfAGhngnFfFSCYMOwFmBCTidu3YNxXBQgmhB/AZFgB1P6xWSRwZgx7ASYSbHdWRusIxn1VgGBC+AFMIhjvrIzWw2aRQNMY9gJMoiUrgIJhKSp+OO41BzSO8AOYBCuAzClY9lUBggnDXoBJsAIIADwIP4BJBOOdlQEgEAg/gEmwAggAPAg/gImwAsi/XG5DW/ce1l92fqGtew+zUg4IEUx4BkyGFUD+wWaRQOiyGIbBryqncTqdstlscjgcio2NDXRzAASZ+s0iT//Hsz4+0osGBEZzv78Z9gKAFmCzSCD0EX4AoAVaslkkgOBE+AGAFmCzSCD0EX4AoAXYLBIIfYQfAGgBNosEQh/hBwBagM0igdBH+AGAFmKzSCC0sckhAJwDNosEQhfhBwDOkTXMopF9uga6GQBaiGEvAABgKoQfAABgKoQfAABgKoQfAABgKoQfAABgKgENP3l5eRo2bJhiYmJkt9s1efJklZeX+9S599571adPH0VGRuq8887TpEmT9Mknn5zxuoZh6JFHHlFSUpIiIyM1btw47dmzpzXfCgAACBEBDT/FxcXKzs5WSUmJ1q1bp1OnTikjI0M1NTXeOkOGDFF+fr4+/vhjrV27VoZhKCMjQy6Xq8nrLlmyRMuWLdOKFStUWlqqqKgojR8/XrW13GgQAACzsxiGYQS6EfX+/e9/y263q7i4WGPGjGm0zkcffaSLLrpIn376qfr06dPgvGEYSk5O1oMPPqiHHnpIkuRwOJSQkKCVK1fqpptuOms7nE6nbDabHA6HYmNjf9ibAgAAbaK5399BNefH4XBIkuLjG78hYE1NjfLz85WamqqUlJRG61RUVKiqqkrjxo3zltlsNo0YMUJbt25t9Dl1dXVyOp0+DwAA0D4FTfhxu93Kzc1Venq6Bg0a5HPumWeeUXR0tKKjo/XWW29p3bp16tSpU6PXqaqqkiQlJCT4lCckJHjPnS4vL082m837aCpYAQCA0Bc04Sc7O1tlZWV65ZVXGpy79dZb9eGHH6q4uFgXXHCBpkyZ4tf5O3PnzpXD4fA+Dhw44LdrAwCA4BIU9/bKycnRmjVr9M4776hHjx4Nztf3yPTr10+XXXaZunTpooKCAt18880N6iYmJkqSqqurlZT03Z2Vq6urdfHFFzf6+uHh4QoPD/fPmwEAAEEtoD0/hmEoJydHBQUF2rBhg1JTU5v1HMMwVFdX1+j51NRUJSYmav369d4yp9Op0tJSjRw50m9tBwAAoSmg4Sc7O1urVq3S6tWrFRMTo6qqKlVVVemrr76SJH322WfKy8vT9u3b9fnnn2vLli268cYbFRkZqWuuucZ7nQEDBqigoECSZLFYlJubq0WLFqmwsFC7du3S1KlTlZycrMmTJwfibQIAgCAS0GGv5cuXS5LGjh3rU56fn6+srCxFRETo3Xff1dKlS3X06FElJCRozJgx2rJli+x2u7d+eXm5d6WYJM2aNUs1NTWaNm2ajh07ptGjR6uoqEgRERFt8r4AAEDwCqp9foIF+/wAABB6QnKfHwAAgNZG+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKYS0BubAu2S2yXt3yKdqJaiE6Reo6Qwa6BbBQD4FuEH8KfdhVLRbMl58Luy2GQpc7GUNjFw7QIAeDHsBfjL7kLptam+wUeSnJWe8t2FgWkXAMAH4QfwB7fL0+Mjo5GT35YVzfHUAwAEFOEH8If9Wxr2+PgwJOcXnnoAgIAi/AD+cKLav/UAAK2G8AP4Q3SCf+sBAFoN4Qfwh16jPKu6ZGmigkWK7e6pBwAIKMIP4A9hVs9ydkkNA9C3x5lPsN8PAAQBwg/gL2kTpSkvSrFJvuWxyZ5y9vkBgKDAJoeAP6VNlAZcyw7PABDECD+Av4VZpdQfB7oVAIAmMOwFAABMhZ4fAMGJG8QCaCWEHwDBhxvEAmhFDHsBCC7cIBZAKyP8AAge3CAWQBsg/AAIHtwgFkAbIPwACB7cIBZAGyD8AAge3CAWQBsg/AAIHtwgFkAbIPwACB7cIBZAGyD8AAgu3CAWQCtjk0MAwYcbxAJoRYQfAMGJG8QCaCUMewEAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFNhqTtgRm4Xe+gAMC3CD2A2uwulotmS8+B3ZbHJnttKsHsyABMI6LBXXl6ehg0bppiYGNntdk2ePFnl5eXe80eOHNH999+v/v37KzIyUj179tQDDzwgh8NxxutmZWXJYrH4PDIzM1v77QDBb3eh9NpU3+AjSc5KT/nuwsC0CwDaUEDDT3FxsbKzs1VSUqJ169bp1KlTysjIUE1NjSTp4MGDOnjwoJ588kmVlZVp5cqVKioq0t13333Wa2dmZqqystL7ePnll1v77QDBze3y9PjIaOTkt2VFczz1AKAdC+iwV1FRkc/xypUrZbfbtX37do0ZM0aDBg3S66+/7j3fp08fPf7447rtttv0zTffqEOHppsfHh6uxMTEVms7EHL2b2nY4+PDkJxfeOpxWwkA7VhQrfaqH86Kj48/Y53Y2NgzBh9J2rRpk+x2u/r376/p06fr8OHDTdatq6uT0+n0eQDtzolq/9YDgBAVNOHH7XYrNzdX6enpGjRoUKN1vvzySy1cuFDTpk0747UyMzP14osvav369Vq8eLGKi4t19dVXy+VqvDs/Ly9PNpvN+0hJSfnB7wcIOtEJ/q0HACHKYhhGYxMA2tz06dP11ltvafPmzerRo0eD806nU1dddZXi4+NVWFiojh07Nvvan332mfr06aO3335bV155ZYPzdXV1qqur83mtlJQUby8T0C64XdLSQZ7JzY3O+7F4Vn3l7mLZO4CQ5HQ6ZbPZzvr9HRQ9Pzk5OVqzZo02btzYaPA5fvy4MjMzFRMTo4KCghYFH0k6//zz1a1bN3366aeNng8PD1dsbKzPA2h3wqye5eySJMtpJ789znyC4AOg3Qto+DEMQzk5OSooKNCGDRuUmpraoI7T6VRGRoY6deqkwsJCRUREtPh1/vWvf+nw4cNKSkryR7OB0JU2UZryohR72t+F2GRPOfv8ADCBgA573XfffVq9erX+8pe/qH///t5ym82myMhIb/A5efKkCgoKFBUV5a1z3nnnyWr1/IY6YMAA5eXl6frrr9eJEye0YMEC3XDDDUpMTNTevXs1a9YsHT9+XLt27VJ4ePhZ29XcbjMgZLHDM4B2qLnf3wFd6r58+XJJ0tixY33K8/PzlZWVpR07dqi0tFSS1LdvX586FRUV6t27tySpvLzcu1LMarXqo48+0gsvvKBjx44pOTlZGRkZWrhwYbOCD2AKYVaWswMwraCZ8BxM6PkBACD0hNSEZwAAgLZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKYS0PCTl5enYcOGKSYmRna7XZMnT1Z5ebn3/JEjR3T//ferf//+ioyMVM+ePfXAAw/I4XCc8bqGYeiRRx5RUlKSIiMjNW7cOO3Zs6e13w4AAAgBAQ0/xcXFys7OVklJidatW6dTp04pIyNDNTU1kqSDBw/q4MGDevLJJ1VWVqaVK1eqqKhId9999xmvu2TJEi1btkwrVqxQaWmpoqKiNH78eNXW1rbF2wIAAEHMYhiGEehG1Pv3v/8tu92u4uJijRkzptE6//M//6PbbrtNNTU16tChQ4PzhmEoOTlZDz74oB566CFJksPhUEJCglauXKmbbrqpwXPq6upUV1fnPXY6nUpJSZHD4VBsbKyf3h0AAGhNTqdTNpvtrN/fQTXnp344Kz4+/ox1YmNjGw0+klRRUaGqqiqNGzfOW2az2TRixAht3bq10efk5eXJZrN5HykpKT/gXQBAEHG7pIp3pV3/z/On2xXoFgEB13iCCAC3263c3Fylp6dr0KBBjdb58ssvtXDhQk2bNq3J61RVVUmSEhISfMoTEhK85043d+5czZw503tc3/MDACFtd6FUNFtyHvyuLDZZylwspU0MXLuAAAua8JOdna2ysjJt3ry50fNOp1PXXnut0tLS9Oijj/r1tcPDwxUeHu7XawJAQO0ulF6bKum0mQ3OSk/5lBcJQDCtoBj2ysnJ0Zo1a7Rx40b16NGjwfnjx48rMzNTMTExKigoUMeOHZu8VmJioiSpurrap7y6utp7DgDaNbfL0+NzevCRvisrmsMQGEwroOHHMAzl5OSooKBAGzZsUGpqaoM6TqdTGRkZ6tSpkwoLCxUREXHGa6ampioxMVHr16/3uUZpaalGjhzp9/cAAEFn/xbfoa4GDMn5haceYEIBDT/Z2dlatWqVVq9erZiYGFVVVamqqkpfffWVpO+CT01Njf77v/9bTqfTW8fl+u43lgEDBqigoECSZLFYlJubq0WLFqmwsFC7du3S1KlTlZycrMmTJwfibQJA2zpRffY6LakHtDMBnfOzfPlySdLYsWN9yvPz85WVlaUdO3aotLRUktS3b1+fOhUVFerdu7ckqby83Gfjw1mzZqmmpkbTpk3TsWPHNHr0aBUVFZ211wgA2oXohLPXaUk9oJ0Jqn1+gkVz9wkAgKDkdklLB3kmNzc678fiWfWVu0sKs7Z164BWE5L7/AAA/CDM6lnOLkmynHby2+PMJwg+MC3CDwC0R2kTPcvZY5N8y2OTWeYO0wuafX4AAH6WNlEacK1nVdeJas8cn16j6PGB6RF+AKA9C7NKqT8OdCuAoMKwFwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBV2eG5E/Y3unU5ngFsCAACaq/57u/57vCmEn0YcP35ckpSSkhLglgAAgJY6fvy4bDZbk+ctxtnikQm53W4dPHhQMTExslgsfruu0+lUSkqKDhw4oNjYWL9d12z4HP2Dz9E/+Bz9g8/RP8z+ORqGoePHjys5OVlhYU3P7KHnpxFhYWHq0aNHq10/NjbWlD+U/sbn6B98jv7B5+gffI7+YebP8Uw9PvWY8AwAAEyF8AMAAEyF8NOGwsPDNX/+fIWHhwe6KSGNz9E/+Bz9g8/RP/gc/YPPsXmY8AwAAEyFnh8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhJ829Pvf/169e/dWRESERowYoW3btgW6SSElLy9Pw4YNU0xMjOx2uyZPnqzy8vJANyvkPfHEE7JYLMrNzQ10U0LOF198odtuu01du3ZVZGSkBg8erA8++CDQzQopLpdL8+bNU2pqqiIjI9WnTx8tXLjwrPdmMrt33nlHEyZMUHJysiwWi9544w2f84Zh6JFHHlFSUpIiIyM1btw47dmzJzCNDUKEnzby6quvaubMmZo/f7527Nihiy66SOPHj9ehQ4cC3bSQUVxcrOzsbJWUlGjdunU6deqUMjIyVFNTE+imhaz3339ff/jDH3ThhRcGuikh5+jRo0pPT1fHjh311ltvaffu3XrqqafUpUuXQDctpCxevFjLly/X7373O3388cdavHixlixZot/+9reBblpQq6mp0UUXXaTf//73jZ5fsmSJli1bphUrVqi0tFRRUVEaP368amtr27ilQcpAmxg+fLiRnZ3tPXa5XEZycrKRl5cXwFaFtkOHDhmSjOLi4kA3JSQdP37c6Nevn7Fu3Trj8ssvN2bMmBHoJoWU2bNnG6NHjw50M0Letddea9x1110+ZT/5yU+MW2+9NUAtCj2SjIKCAu+x2+02EhMTjV/96lfesmPHjhnh4eHGyy+/HIAWBh96ftrA119/re3bt2vcuHHesrCwMI0bN05bt24NYMtCm8PhkCTFx8cHuCWhKTs7W9dee63PzyWar7CwUEOHDtWNN94ou92uSy65RM8991ygmxVyRo0apfXr1+uf//ynJOnvf/+7Nm/erKuvvjrALQtdFRUVqqqq8vm7bbPZNGLECL5zvsWNTdvAl19+KZfLpYSEBJ/yhIQEffLJJwFqVWhzu93Kzc1Venq6Bg0aFOjmhJxXXnlFO3bs0Pvvvx/opoSszz77TMuXL9fMmTP18MMP6/3339cDDzygTp066Y477gh080LGnDlz5HQ6NWDAAFmtVrlcLj3++OO69dZbA920kFVVVSVJjX7n1J8zO8IPQlJ2drbKysq0efPmQDcl5Bw4cEAzZszQunXrFBEREejmhCy3262hQ4fql7/8pSTpkksuUVlZmVasWEH4aYHXXntNL730klavXq0f/ehH2rlzp3Jzc5WcnMzniFbDsFcb6Natm6xWq6qrq33Kq6urlZiYGKBWha6cnBytWbNGGzduVI8ePQLdnJCzfft2HTp0SJdeeqk6dOigDh06qLi4WMuWLVOHDh3kcrkC3cSQkJSUpLS0NJ+ygQMH6vPPPw9Qi0LTz3/+c82ZM0c33XSTBg8erNtvv10/+9nPlJeXF+imhaz67xW+c5pG+GkDnTp10pAhQ7R+/Xpvmdvt1vr16zVy5MgAtiy0GIahnJwcFRQUaMOGDUpNTQ10k0LSlVdeqV27dmnnzp3ex9ChQ3Xrrbdq586dslqtgW5iSEhPT2+w1cI///lP9erVK0AtCk0nT55UWJjvV5HVapXb7Q5Qi0JfamqqEhMTfb5znE6nSktL+c75FsNebWTmzJm64447NHToUA0fPlxLly5VTU2N7rzzzkA3LWRkZ2dr9erV+stf/qKYmBjv2LXNZlNkZGSAWxc6YmJiGsyTioqKUteuXZk/1QI/+9nPNGrUKP3yl7/UlClTtG3bNj377LN69tlnA920kDJhwgQ9/vjj6tmzp370ox/pww8/1K9//WvdddddgW5aUDtx4oQ+/fRT73FFRYV27typ+Ph49ezZU7m5uVq0aJH69eun1NRUzZs3T8nJyZo8eXLgGh1MAr3czEx++9vfGj179jQ6depkDB8+3CgpKQl0k0KKpEYf+fn5gW5ayGOp+7l58803jUGDBhnh4eHGgAEDjGeffTbQTQo5TqfTmDFjhtGzZ08jIiLCOP/8843/+q//Murq6gLdtKC2cePGRv89vOOOOwzD8Cx3nzdvnpGQkGCEh4cbV155pVFeXh7YRgcRi2GwjSYAADAP5vwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAMJ2srCy2+QdMjPADoFVkZWXJYrE0eGRmZga6aXr66ae1cuXKQDdDkmSxWPTGG28EuhmAqXBjUwCtJjMzU/n5+T5l4eHhAWqN5HK5ZLFYZLPZAtYGAIFHzw+AVhMeHq7ExESfR5cuXbRp0yZ16tRJ7777rrfukiVLZLfbVV1dLUkaO3ascnJylJOTI5vNpm7dumnevHn6/u0I6+rq9NBDD6l79+6KiorSiBEjtGnTJu/5lStXKi4uToWFhUpLS1N4eLg+//zzBsNeY8eO1f3336/c3Fx16dJFCQkJeu6551RTU6M777xTMTEx6tu3r9566y2f91dWVqarr75a0dHRSkhI0O23364vv/zS57oPPPCAZs2apfj4eCUmJurRRx/1nu/du7ck6frrr5fFYvEeA2hdhB8AbW7s2LHKzc3V7bffLofDoQ8//FDz5s3T888/r4SEBG+9F154QR06dNC2bdv09NNP69e//rWef/557/mcnBxt3bpVr7zyij766CPdeOONyszM1J49e7x1Tp48qcWLF+v555/XP/7xD9nt9kbb9MILL6hbt27atm2b7r//fk2fPl033nijRo0apR07digjI0O33367Tp48KUk6duyY/s//+T+65JJL9MEHH6ioqEjV1dWaMmVKg+tGRUWptLRUS5Ys0WOPPaZ169ZJkt5//31JUn5+viorK73HAFpZgO8qD6CduuOOOwyr1WpERUX5PB5//HHDMAyjrq7OuPjii40pU6YYaWlpxj333OPz/Msvv9wYOHCg4Xa7vWWzZ882Bg4caBiGYezfv9+wWq3GF1984fO8K6+80pg7d65hGIaRn59vSDJ27tzZoG2TJk3yea3Ro0d7j7/55hsjKirKuP32271llZWVhiRj69athmEYxsKFC42MjAyf6x44cMCQZJSXlzd6XcMwjGHDhhmzZ8/2HksyCgoKmvgUAbQG5vwAaDVXXHGFli9f7lMWHx8vSerUqZNeeuklXXjhherVq5d+85vfNHj+ZZddJovF4j0eOXKknnrqKblcLu3atUsul0sXXHCBz3Pq6urUtWtX73GnTp104YUXnrWt369jtVrVtWtXDR482FtW3yN16NAhSdLf//53bdy4UdHR0Q2utXfvXm+7Tn/tpKQk7zUABAbhB0CriYqKUt++fZs8v2XLFknSkSNHdOTIEUVFRTX72idOnJDVatX27dtltVp9zn0/kERGRvoEqKZ07NjR59hisfiU1V/D7XZ7X3/ChAlavHhxg2slJSWd8br11wAQGIQfAAGxd+9e/exnP9Nzzz2nV199VXfccYfefvtthYV9NxWxtLTU5zklJSXq16+frFarLrnkErlcLh06dEg//vGP27r5uvTSS/X666+rd+/e6tDh3P8p7dixo1wulx9bBuBsmPAMoNXU1dWpqqrK5/Hll1/K5XLptttu0/jx43XnnXcqPz9fH330kZ566imf53/++eeaOXOmysvL9fLLL+u3v/2tZsyYIUm64IILdOutt2rq1Kn685//rIqKCm3btk15eXn63//931Z/b9nZ2Tpy5Ihuvvlmvf/++9q7d6/Wrl2rO++8s0Vhpnfv3lq/fr2qqqp09OjRVmwxgHr0/ABoNUVFRT5DQJLUv39/3XLLLdq/f7/WrFkjyTNM9Oyzz+rmm29WRkaGLrroIknS1KlT9dVXX2n48OGyWq2aMWOGpk2b5r1Wfn6+Fi1apAcffFBffPGFunXrpssuu0zXXXddq7+35ORkvffee5o9e7YyMjJUV1enXr16KTMz06f36myeeuopzZw5U88995y6d++uffv2tV6jAUiSLIbxvU0zACBIjB07VhdffLGWLl0a6KYAaGcY9gIAAKZC+AEAAKbCsBcAADAVen4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICp/H/Bsc1FqdKJqwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", @@ -597,6 +1392,75 @@ "plt.show()" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus observations and climatology." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.137\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyz0lEQVR4nOzdd3hTZfsH8G+a7r33oKW0BcqGsimyRRAEVNYPcYuAIKCIIgKiuFBABV4XqEyVjVhktZTRFihlSOmGDlq66N7J+f0RWqkUaErSk6Tfz3Xlet8mJyd3HmKb+zz3cz8SQRAEEBEREREREZHG0xM7ACIiIiIiIiJqHCbxRERERERERFqCSTwRERERERGRlmAST0RERERERKQlmMQTERERERERaQkm8URERERERERagkk8ERERERERkZZgEk9ERERERESkJfTFDkATyeVy3Lx5ExYWFpBIJGKHQ0RERERERDpOEAQUFxfD1dUVenr3n29nEt+AmzdvwsPDQ+wwiIiIiIiIqIVJS0uDu7v7fR9nEt8ACwsLAIrBs7S0FDkaIiIiIiIi0nVFRUXw8PCoy0fvh0l8A2pL6C0tLZnEExERERERUbN52JJuNrYjIiIiIiIi0hJM4omIiIiIiIi0BJN4IiIiIiIiIi3BNfFERERERERNJAgCampqIJPJxA6FNJxUKoW+vv4jb2POJJ6IiIiIiKgJqqqqkJmZibKyMrFDIS1hamoKFxcXGBoaNvkcTOKJiIiIiIiUJJfLkZKSAqlUCldXVxgaGj7yDCvpLkEQUFVVhZycHKSkpKBNmzbQ02va6nYm8UREREREREqqqqqCXC6Hh4cHTE1NxQ6HtICJiQkMDAxw48YNVFVVwdjYuEnnYWM7IiIiIiKiJmrqbCq1TKr4vPATR0RERERERKQlmMQTERERERERaQlRk/iVK1eiR48esLCwgKOjI8aOHYu4uLh6xwwcOBASiaTe7bXXXnvgeQVBwJIlS+Di4gITExMMGTIECQkJ6nwrREREREREOqVVq1ZYvXq12GGoTGhoKCQSCQoKCsQO5ZGImsSHhYVh5syZiIiIwOHDh1FdXY1hw4ahtLS03nEvv/wyMjMz626fffbZA8/72WefYe3atdiwYQMiIyNhZmaG4cOHo6KiQp1vh4iIiIiISCukpaXhhRdeqOus7+XlhTlz5iAvL0/s0FRi4MCBmDt3br37+vTpg8zMTFhZWYkTlIqI2p0+JCSk3s+bNm2Co6Mjzp8/jwEDBtTdb2pqCmdn50adUxAErF69GosXL8aYMWMAAL/88gucnJywZ88eTJw4UXVvQGQV1TLoSSQw1OeqCCIiIiIiapzk5GT07t0bfn5+2LZtG7y9vfHPP//grbfewl9//YWIiAjY2to2e1wymQwSiURtzQINDQ0bnVdqMo3K/goLCwHgng/Mli1bYG9vj8DAQCxatAhlZWX3PUdKSgqysrIwZMiQuvusrKzQs2dPnDlzpsHnVFZWoqioqN5NG3x44CrGrT+FxOwSsUMhIiIiImrxBEFAWVWNKDdBEBod58yZM2FoaIi///4bwcHB8PT0xOOPP44jR44gIyMD7733Xt2xxcXFmDRpEszMzODm5oZvv/223vtdunQpPD09YWRkBFdXV7zxxht1j1dWVmLBggVwc3ODmZkZevbsidDQ0LrHN23aBGtra+zbtw/t2rWDkZERfvjhBxgbG99T8j5nzhwMGjQIAJCXl4dJkybBzc0Npqam6NChA7Zt21Z37PTp0xEWFoY1a9bULcm+fv16g+X0O3fuRPv27WFkZIRWrVph1apV9V63VatW+Pjjj/HCCy/AwsICnp6e+O677+oer6qqwqxZs+Di4gJjY2N4eXlh5cqVjf63aAqN2SdeLpdj7ty56Nu3LwIDA+vunzx5Mry8vODq6opLly5h4cKFiIuLw65duxo8T1ZWFgDAycmp3v1OTk51j/3XypUrsWzZMhW9k+aRV1KJg5czcbusGqO+Dsf7o9phcpAnJBKJ2KEREREREbVI5dUytFtySJTXvrp8OEwNH57e5efn49ChQ/joo49gYmJS7zFnZ2dMmTIFO3bswLp16wAAn3/+Od59910sW7YMhw4dwpw5c+Dn54ehQ4di586d+Oqrr7B9+3a0b98eWVlZuHjxYt35Zs2ahatXr2L79u1wdXXF7t27MWLECFy+fBlt2rQBAJSVleHTTz/FDz/8ADs7O7i7u2PJkiXYuXMnXnzxRQCKGfodO3bgo48+AgBUVFSgW7duWLhwISwtLfHnn3/i//7v/9C6dWsEBQVhzZo1iI+PR2BgIJYvXw4AcHBwwPXr1+u93/Pnz+OZZ57B0qVL8eyzz+L06dN4/fXXYWdnh+nTp9cdt2rVKnz44Yd499138ccff2DGjBkIDg6Gv78/1q5di3379uG3336Dp6cn0tLSkJaWptw/npI0JomfOXMmrly5gpMnT9a7/5VXXqn7/x06dICLiwsGDx6MpKQktG7dWiWvvWjRIsybN6/u56KiInh4eKjk3OpiZ26EkLkDsOD3iwhPyMV7u6/g+LUcfDq+A+zMjcQOj4iIiIiINFBCQgIEQUDbtm0bfLxt27a4ffs2cnJyAAB9+/bFO++8AwDw8/PDqVOn8NVXX2Ho0KFITU2Fs7MzhgwZAgMDA3h6eiIoKAgAkJqaio0bNyI1NRWurq4AgAULFiAkJAQbN27Exx9/DACorq7GunXr0KlTp7oYJk6ciK1bt9Yl8UePHkVBQQHGjx8PAHBzc8OCBQvqjp89ezYOHTqE3377DUFBQbCysoKhoeFDl2V/+eWXGDx4MN5///2693f16lV8/vnn9ZL4kSNH4vXXXwcALFy4EF999RWOHz8Of39/pKamok2bNujXrx8kEgm8vLwa+S/RdBqRxM+aNQsHDhzAiRMn4O7u/sBje/bsCQBITExsMImv/Ue6desWXFxc6u6/desWOnfu3OA5jYyMYGSkfYmvk6Uxfn4+CD+dSsFnIXE4EnsLI9YUYNXTnTDAz0Hs8IiIiIiIWhQTAymuLh8u2msro7Hl9717977n59qO9U8//TRWr14NHx8fjBgxAiNHjsTo0aOhr6+Py5cvQyaTwc/Pr97zKysrYWdnV/ezoaEhOnbsWO+YKVOmoFevXrh58yZcXV2xZcsWPPHEE7C2tgagmJn/+OOP8dtvvyEjIwNVVVWorKyEqampUmMQGxtb10etVt++fbF69WrIZDJIpYoxvTs+iUQCZ2dnZGdnA1CU7g8dOhT+/v4YMWIERo0ahWHDhikVh7JEXRMvCAJmzZqF3bt349ixY/D29n7oc2JiYgCgXoJ+N29vbzg7O+Po0aN19xUVFSEyMvKeD6Au0NOT4KX+Ptgzsy/aOJojp7gS036KwvL9V1FRLRM7PCIiIiKiFkMikcDUUF+UW2OX1fr6+kIikSA2NrbBx2NjY2FjYwMHh4dPCnp4eCAuLg7r1q2DiYkJXn/9dQwYMADV1dUoKSmBVCrF+fPnERMTU3eLjY3FmjVr6s5hYmJyT+w9evRA69atsX37dpSXl2P37t2YMmVK3eOff/451qxZg4ULF+L48eOIiYnB8OHDUVVV1agxUJaBgUG9nyUSCeRyOQCga9euSElJwYcffojy8nI888wzmDBhglriqCVqEj9z5kxs3rwZW7duhYWFBbKyspCVlYXy8nIAQFJSEj788EOcP38e169fx759+zBt2jQMGDCg3tWQgIAA7N69G4BiQOfOnYsVK1Zg3759uHz5MqZNmwZXV1eMHTtWjLfZLNq5WmL/7H54rreifOOnUykY++0pxGUVixwZERERERFpCjs7OwwdOhTr1q2ry7tqZWVlYcuWLXj22WfrEuuIiIh6x0RERNQrxTcxMcHo0aOxdu1ahIaG4syZM7h8+TK6dOkCmUyG7Oxs+Pr61rs1pkP8lClTsGXLFuzfvx96enp44okn6h47deoUxowZg6lTp6JTp07w8fFBfHx8vecbGhpCJnvwpGbbtm1x6tSpevedOnUKfn5+dbPwjWFpaYlnn30W33//PXbs2IGdO3ciPz+/0c9XlqhJ/Pr161FYWIiBAwfCxcWl7rZjxw4AioE/cuQIhg0bhoCAAMyfPx/jx4/H/v37650nLi6urrM9ALz99tuYPXs2XnnlFfTo0QMlJSUICQmBsbFxs76/5mZsIMWyMYH4aXp32Jsb4lpWMUZ/cxKbTqUo1a2SiIiIiIh01zfffIPKykoMHz4cJ06cQFpaGkJCQjB06FC4ubnVNZADFEntZ599hvj4eHz77bf4/fffMWfOHACK7vI//vgjrly5guTkZGzevBkmJibw8vKCn58fpkyZgmnTpmHXrl1ISUlBVFQUVq5ciT///POhMU6ZMgXR0dH46KOPMGHChHrLn9u0aYPDhw/j9OnTiI2Nxauvvopbt27Ve36rVq0QGRmJ69evIzc3t27m/G7z58/H0aNH8eGHHyI+Ph4///wzvvnmm3rr7R/myy+/xLZt23Dt2jXEx8fj999/h7Ozc13pvzqIuib+YYmlh4cHwsLClD6PRCLB8uXL6zoRtjSDApzw15wBeOuPiwiNy8HS/VcRGp+Dzyd0goOF9q39JyIiIiIi1WnTpg3OnTuHDz74AM888wzy8/Ph7OyMsWPH4oMPPqi35ff8+fNx7tw5LFu2DJaWlvjyyy8xfLhi3b+1tTU++eQTzJs3DzKZDB06dMD+/fvr1rxv3LgRK1aswPz585GRkQF7e3v06tULo0aNemiMvr6+CAoKQlRUVN0a/FqLFy9GcnIyhg8fDlNTU7zyyisYO3ZsvYndBQsW4LnnnkO7du1QXl6OlJSUe16ja9eu+O2337BkyRJ8+OGHcHFxwfLly+s1tXsYCwsLfPbZZ0hISIBUKkWPHj1w8OBBte11DwASgVO09ygqKoKVlRUKCwthaWkpdjhNJggCfjlzAx8djEVVjRx2Zob4/OmOGBTg9PAnExERERHRfVVUVCAlJQXe3t46X/FLqvOgz01j81BRy+lJvSQSCZ7r0wr7Z/VDgLMF8kqr8MKmc1iy9wqb3hEREREREWkhJvEtgL+zBfbM7IsX+ym6//9y5gZGfX0S/9wsfMgziYiIiIiISJMwiW8hjA2keH9UO/z8QhAcLIyQmF2Cp749jR/CkyGXc0UFERERERGRNmAS38IE+zkgZE5/DGnrhCqZHCv+jMW0n6Jwq6hC7NCIiIiIiIjoIZjEt0B25kb4flo3fPRUIIwN9HAyMRfDV59AyJUssUMjIiIiIiKiB2AS30JJJBJM6emFA7P7o72rJQrKqvHa5vNYtOsSyqpqxA6PiIiIiIiIGsAkvoXzdTTH7tf74tVgH0gkwLaoNIxaexKX0gvEDo2IiIiIiIj+g0k8wVBfD4seb4stL/aEs6UxknNLMW7daawLTYSMTe+IiIiIiIg0BpN4qtPH1x4hc/vj8UBn1MgFfBYSh8nfR+BmQbnYoRERERERkZaZPn06xo4dW/fzwIEDMXfu3Ec6pyrOoe2YxFM91qaGWDelKz6b0BGmhlJEpuRjxOoTOHDpptihERERERGRCkyfPh0SiQQSiQSGhobw9fXF8uXLUVOj3t5Yu3btwocfftioY0NDQyGRSFBQUNDkc+gqJvF0D4lEgme6e+DgG/3RycMaRRU1mLX1Aub/dhEllWx6R0RERESk7UaMGIHMzEwkJCRg/vz5WLp0KT7//PN7jquqqlLZa9ra2sLCwkL0c2g7JvF0X63szfDHa70xe5Av9CTAzuh0jFwTjujU22KHRkRERESkM2RyAWeS8rA3JgNnkvKapS+VkZERnJ2d4eXlhRkzZmDIkCHYt29fXQn8Rx99BFdXV/j7+wMA0tLS8Mwzz8Da2hq2trYYM2YMrl+//u97kMkwb948WFtbw87ODm+//TYEof77+G8pfGVlJRYuXAgPDw8YGRnB19cXP/74I65fv47HHnsMAGBjYwOJRILp06c3eI7bt29j2rRpsLGxgampKR5//HEkJCTUPb5p0yZYW1vj0KFDaNu2LczNzesuYNQKDQ1FUFAQzMzMYG1tjb59++LGjRsqGmnVYxJPD2Qg1cP8Yf7Y/kpvuFmbIDW/DE9vOIM1RxJQI5OLHR4RERERkVYLuZKJfp8ew6TvIzBnewwmfR+Bfp8eQ8iVzIc/WYVMTEzqZt2PHj2KuLg4HD58GAcOHEB1dTWGDx8OCwsLhIeH49SpU3XJcO1zVq1ahU2bNuGnn37CyZMnkZ+fj927dz/wNadNm4Zt27Zh7dq1iI2Nxf/+9z+Ym5vDw8MDO3fuBADExcUhMzMTa9asafAc06dPx7lz57Bv3z6cOXMGgiBg5MiRqK6urjumrKwMX3zxBX799VecOHECqampWLBgAQCgpqYGY8eORXBwMC5duoQzZ87glVdegUQieeQxVRd9sQMg7RDkbYuDc/rj/T1XsO/iTXx1JB4nEnKw+tnO8LA1FTs8IiIiIiKtE3IlEzM2R+O/8+5ZhRWYsTka66d2xYhAF7XGIAgCjh49ikOHDmH27NnIycmBmZkZfvjhBxgaGgIANm/eDLlcjh9++KEuud24cSOsra0RGhqKYcOGYfXq1Vi0aBHGjRsHANiwYQMOHTp039eNj4/Hb7/9hsOHD2PIkCEAAB8fn7rHbW1tAQCOjo6wtrZu8BwJCQnYt28fTp06hT59+gAAtmzZAg8PD+zZswdPP/00AKC6uhobNmxA69atAQCzZs3C8uXLAQBFRUUoLCzEqFGj6h5v27at8gPZjDgTT41mZWKAtZO6YPWznWFupI/zN27j8TXh2H0hXezQiIiIiIi0ikwuYNn+q/ck8ADq7lu2/6raSusPHDgAc3NzGBsb4/HHH8ezzz6LpUuXAgA6dOhQl8ADwMWLF5GYmAgLCwuYm5vD3Nwctra2qKioQFJSEgoLC5GZmYmePXvWPUdfXx/du3e/7+vHxMRAKpUiODi4ye8hNjYW+vr69V7Xzs4O/v7+iI2NrbvP1NS0LkEHABcXF2RnZwNQXCyYPn06hg8fjtGjR2PNmjX1Su01EZN4UtrYLm74a05/dPOyQUllDd7ccRFztl9AYXn1w59MRERERESISslHZmHFfR8XAGQWViAqJV8tr//YY48hJiYGCQkJKC8vx88//wwzMzMAqPvfWiUlJejWrRtiYmLq3eLj4zF58uQmvb6Jickjv4fGMjAwqPezRCKpt15/48aNOHPmDPr06YMdO3bAz88PERERzRafspjEU5N42Jpixyu9MG+oH6R6EuyNuYmRa8LV9kuGiIiIiEiXZBffP4FvynHKMjMzg6+vLzw9PaGv/+BV1l27dkVCQgIcHR3h6+tb72ZlZQUrKyu4uLggMjKy7jk1NTU4f/78fc/ZoUMHyOVyhIWFNfh4bSWATCa77znatm2Lmpqaeq+bl5eHuLg4tGvX7oHv6b+6dOmCRYsW4fTp0wgMDMTWrVuVen5zYhJPTaYv1cMbg9vg99d6w9PWFBkF5Zj43Rms+jsO1Wx6R0RERER0X44Wxio9Tp2mTJkCe3t7jBkzBuHh4UhJSUFoaCjeeOMNpKcrltbOmTMHn3zyCfbs2YNr167h9ddfv2eP97u1atUKzz33HF544QXs2bOn7py//fYbAMDLywsSiQQHDhxATk4OSkpK7jlHmzZtMGbMGLz88ss4efIkLl68iKlTp8LNzQ1jxoxp1HtLSUnBokWLcObMGdy4cQN///03EhISNHpdPJN4emRdPW1wcE5/jO/qDrkAfH0sERM2nMH13FKxQyMiIiIi0khB3rZwsTLG/XqgSwC4WBkjyNu2OcNqkKmpKU6cOAFPT0+MGzcObdu2xYsvvoiKigpYWloCAObPn4//+7//w3PPPYfevXvDwsICTz311APPu379ekyYMAGvv/46AgIC8PLLL6O0VJFDuLm5YdmyZXjnnXfg5OSEWbNmNXiOjRs3olu3bhg1ahR69+4NQRBw8ODBe0roH/Terl27hvHjx8PPzw+vvPIKZs6ciVdffVWJEWpeEuG/m/cRioqKYGVlhcLCwroPJTXO/os38d7uyyiqqIGpoRRLn2yPp7u5a/QWDUREREREyqqoqEBKSgq8vb1hbNy02fLa7vQA6jW4q/3m3Bzd6al5Pehz09g8lDPxpFKjO7nir7kD0NPbFmVVMrz9xyXM3BqNgrIqsUMjIiIiItIoIwJdsH5qVzhb1U/mnK2MmcDTfXGfeFI5N2sTbH25F/53Iglf/h2Pg5ezEH2jAF8+2wl9WtuLHR4RERERkcYYEeiCoe2cEZWSj+ziCjhaKEropXqsZKWGMYkntZDqSfD6QF/087XHnO0xSMktxZQfIvHKAB/MH+oPQ30WgRARERERAYrvzr1b24kdBmkJZlKkVh3drfHnG/0wKcgDggD8LywZ49afQmL2vd0liYiIiIiI6MGYxJPamRrqY+W4jtgwtRusTQ1wJaMIo74Ox5bIG2BfRSIiIiIiosZjEk/NZkSgMw7NHYB+vvaoqJbjvd1X8PIv55FXUil2aERERERERFqBSTw1KydLY/zyQhAWP9EWhlI9HIm9hRFrwnEiPkfs0IiIiIiIiDQek3hqdnp6ErzU3we7Z/aBr6M5coorMe2nKCzffxUV1TKxwyMiIiIiItJYTOJJNO1drbB/Vj9M6+0FAPjpVArGfnsKcVnFIkdGRERERESkmZjEk6hMDKVYPiYQPz7XHXZmhriWVYzR35zEplMpbHpHRERERCQSiUSCPXv2AACuX78OiUSCmJgYUWO6H02PT9WYxJNGGNzWCX/N7Y9gPwdU1cixdP9VPL/pLHKK2fSOiIiIiEjVsrKyMHv2bPj4+MDIyAgeHh4YPXo0jh49es+xHh4eyMzMRGBgoFpjamnJeFMxiSeN4WhhjE3P98DS0e1gqK+H0LgcjFh9Aseu3RI7NCIiIiIitZHJZAgNDcW2bdsQGhoKmUy9faKuX7+Obt264dixY/j8889x+fJlhISE4LHHHsPMmTPvOV4qlcLZ2Rn6+vpqjYsah0k8aRSJRILpfb2xf1Y/BDhbIK+0Ci9sOocle6+w6R0RERER6Zxdu3ahVatWeOyxxzB58mQ89thjaNWqFXbt2qW213z99dchkUgQFRWF8ePHw8/PD+3bt8e8efMQERFxz/H/nSEPDQ2FRCLBoUOH0KVLF5iYmGDQoEHIzs7GX3/9hbZt28LS0hKTJ09GWVlZ3XlCQkLQr18/WFtbw87ODqNGjUJSUlLd497e3gCALl26QCKRYODAgQAAuVyO5cuXw93dHUZGRujcuTNCQkIe+B7DwsIQFBQEIyMjuLi44J133kFNTU3d48XFxZgyZQrMzMzg4uKCr776CgMHDsTcuXMBAMuXL2+w8qBz5854//33GzXO6sIknjSSv7MF9szsixf6Kv5D/uXMDYz6+iT+uVkocmRERERERKqxa9cuTJgwAenp6fXuz8jIwIQJE9SSyOfn5yMkJAQzZ86EmZnZPY9bW1s3+lxLly7FN998g9OnTyMtLQ3PPPMMVq9eja1bt+LPP//E33//ja+//rru+NLSUsybNw/nzp3D0aNHoaenh6eeegpyuRwAEBUVBQA4cuQIMjMz697/mjVrsGrVKnzxxRe4dOkShg8fjieffBIJCQkNxpWRkYGRI0eiR48euHjxItavX48ff/wRK1asqDtm3rx5OHXqFPbt24fDhw8jPDwc0dHRdY+/8MILiI2NxdmzZ+vuu3DhAi5duoTnn3++0WOkDkziSWMZG0ixZHQ7/PxCEBwsjJCYXYKnvj2NH8KTIZez6R0RERERaS+ZTIY5c+Y02My59r65c+eqvLQ+MTERgiAgICDgkc+1YsUK9O3bF126dMGLL76IsLAwrF+/Hl26dEH//v0xYcIEHD9+vO748ePHY9y4cfD19UXnzp3x008/4fLly7h69SoAwMHBAQBgZ2cHZ2dn2NraAgC++OILLFy4EBMnToS/vz8+/fRTdO7cGatXr24wrnXr1sHDwwPffPMNAgICMHbsWCxbtgyrVq2CXC5HcXExfv75Z3zxxRcYPHgwAgMDsXHjxnpj7e7ujuHDh2Pjxo11923cuBHBwcHw8fF55LF7FEziSeMF+zkgZE5/DGnrhCqZHCv+jMW0n6Jwq6hC7NCIiIiIiJokPDz8nhn4uwmCgLS0NISHh6v0dVW5A1THjh3r/r+TkxNMTU3rJbhOTk7Izs6u+zkhIQGTJk2Cj48PLC0t0apVKwBAamrqfV+jqKgIN2/eRN++fevd37dvX8TGxjb4nNjYWPTu3RsSiaTe8SUlJUhPT0dycjKqq6sRFBRU97iVlRX8/f3rnefll1/Gtm3bUFFRgaqqKmzduhUvvPDCA0akeTCJJ61gZ26E76d1w0dPBcLYQA8nE3MxfPUJhFzJEjs0IiIiIiKlZWZmqvS4xmrTpg0kEgmuXbv2yOcyMDCo+/8SiaTez7X31ZbKA8Do0aORn5+P77//HpGRkYiMjAQAVFVVPXIs6jB69GgYGRlh9+7d2L9/P6qrqzFhwgSxw2IST9pDIpFgSk8vHJjdH+1dLVFQVo3XNp/Hol2XUFZV8/ATEBERERFpCBcXF5Ue11i2trYYPnw4vv32W5SWlt7zeEFBgUpfr1ZeXh7i4uKwePFiDB48GG3btsXt27frHWNoaAgA9craLS0t4erqilOnTtU79tSpU2jXrl2Dr9W2bVucOXOmXtXBqVOnYGFhAXd3d/j4+MDAwKDeevfCwkLEx8fXO4++vj6ee+45bNy4ERs3bsTEiRNhYmLStAFQISbxpHV8Hc2x+/W+eDXYBxIJsC0qDaPWnsSl9AKxQyMiIiIiapT+/fvD3d29Xsn33SQSCTw8PNC/f3+Vv/a3334LmUyGoKAg7Ny5EwkJCYiNjcXatWvRu3dvlb8eANjY2MDOzg7fffcdEhMTcezYMcybN6/eMY6OjjAxMUFISAhu3bqFwkJFU+u33noLn376KXbs2IG4uDi88847iImJwZw5cxp8rddffx1paWmYPXs2rl27hr179+KDDz7AvHnzoKenBwsLCzz33HN46623cPz4cfzzzz948cUXoaend8+/x0svvYRjx44hJCREI0rpASbxpKUM9fWw6PG22PJiTzhbGiM5txTj1p3GutBEyNj0joiIiIg0nFQqxZo1awDgnsSx9ufVq1dDKpWq/LV9fHwQHR2Nxx57DPPnz0dgYCCGDh2Ko0ePYv369Sp/PQDQ09PD9u3bcf78eQQGBuLNN9/E559/Xu8YfX19rF27Fv/73//g6uqKMWPGAADeeOMNzJs3D/Pnz0eHDh0QEhKCffv2oU2bNg2+lpubGw4ePIioqCh06tQJr732Gl588UUsXry47pgvv/wSvXv3xqhRozBkyBD07dsXbdu2hbGxcb1ztWnTBn369EFAQAB69uyp4lFpGomgys4GOqKoqAhWVlYoLCyEpaWl2OHQQ9wurcK7uy/jrzvr43t62+KrZzvD1Vr8UhciIiIi0k0VFRVISUmBt7f3PYmfMnbt2oU5c+bUa3Ln4eGB1atXY9y4caoIlRqhtLQUbm5uWLVqFV588cW6+wVBQJs2bfD666/fUznQFA/63DQ2D9V/5CiIRGZjZoh1U7ri93PpWLr/H0Sm5GPE6hP4eFwHjOroKnZ4RERERET3NW7cOIwZMwbh4eHIzMyEi4sL+vfvr5YZePrXhQsXcO3aNQQFBaGwsBDLly8HgLrZfwDIycnB9u3bkZWVJfre8HdjEk86QSKR4JkeHujhbYu52y/gYnohZm29gOPXcrBsTHuYG/GjTkRERESaSSqVYuDAgWKH0eJ88cUXiIuLg6GhIbp164bw8HDY29vXPe7o6Ah7e3t89913sLGxETHS+pjZkE7xtjfDHzP6YM2RBHwbmoid0ek4ez0fqyd2RldPzfkPj4iIiIiIxNOlSxecP3/+gcdo6spzNrYjnWMg1cOC4f7Y/nIvuFmbIDW/DE9vOIM1RxJQI5M//AREREREREQaikk86ayePnY4OKc/RndyhUwu4Ksj8Xj2uwik5ZeJHRoREREREVGTiJrEr1y5Ej169ICFhQUcHR0xduxYxMXFNXisIAh4/PHHIZFIsGfPngeed/r06ZBIJPVuI0aMUMM7IE1nZWKAtRM746tnO8HcSB/nb9zGk9+cRFZhhdihEREREZEO0NSSa9JMqvi8iJrEh4WFYebMmYiIiMDhw4dRXV2NYcOGobS09J5jV69efc/+iQ8yYsQIZGZm1t22bdumytBJi0gkEjzVxR1/zekPfycL3C6rxru7L/MXLhERERE1mYGBAQCgrIxVntR4tZ+X2s9PU4ja2C4kJKTez5s2bYKjoyPOnz+PAQMG1N0fExODVatW4dy5c3BxcWnUuY2MjODs7KzSeEm7ediaYu2kLhj99Ukcu5aNndEZmNDNXeywiIiIiEgLSaVSWFtbIzs7GwBgamqq1KQjtSyCIKCsrAzZ2dmwtrZ+pC0ENao7fWFhIQDA1ta27r6ysjJMnjwZ3377rVJJeWhoKBwdHWFjY4NBgwZhxYoVsLOza/DYyspKVFZW1v1cVFTUxHdAms7f2QJzhrTB54fisGz/P+jnaw9nK2OxwyIiIiIiLVSbn9Qm8kQPY21t/ciTzRJBQ2qK5XI5nnzySRQUFODkyZN197/66quQyWT44YcfAChKo3fv3o2xY8fe91zbt2+HqakpvL29kZSUhHfffRfm5uY4c+ZMg1c8li5dimXLlt1zf2FhISwtLR/9zZFGqZHJMX79aVxML8Rj/g74aXoPXjUlIiIioiaTyWSorq4WOwzScAYGBg+cgS8qKoKVldVD81CNSeJnzJiBv/76CydPnoS7u6LEed++fZg/fz4uXLgAc3NzAI1L4v8rOTkZrVu3xpEjRzB48OB7Hm9oJt7Dw4NJvA5LuFWMJ9aeRJVMjs8mdMQz3T3EDomIiIiIiFqwxibxGrHF3KxZs3DgwAEcP368LoEHgGPHjiEpKQnW1tbQ19eHvr6i+n/8+PEYOHBgo8/v4+MDe3t7JCYmNvi4kZERLC0t691It7VxssDcoW0AAB/uv4rMwnKRIyIiIiIiIno4UZN4QRAwa9Ys7N69G8eOHYO3t3e9x9955x1cunQJMTExdTcA+Oqrr7Bx48ZGv056ejry8vIa3RSPWoZX+vugk4c1iitr8M5OdqsnIiIiItJFcrlufc8XNYmfOXMmNm/ejK1bt8LCwgJZWVnIyspCebliVtTZ2RmBgYH1bgDg6elZL+EPCAjA7t27AQAlJSV46623EBERgevXr+Po0aMYM2YMfH19MXz48OZ/k6Sx9KV6+GJCRxhK9RAWn4Pfz6WLHRIREREREalQVmEFhq0+gePXdKf5oKhJ/Pr161FYWIiBAwfCxcWl7rZjxw6lzhMXF1fX2V4qleLSpUt48skn4efnhxdffBHdunVDeHg4jIyM1PE2SIu1cbLAm0P9AAAfHriKmwUsqyciIiIi0gU1Mjne2HYBidklWHU4DjIdmZEXdYu5ppQvN/Scu+8zMTHBoUOHHikualle7u+NkH+ycDGtAO/suoyfn2e3eiIiIiIibbfqcDyirufD3Egf30zqCqmebnzH14jGdkRi0pfqYdXTHWGor4cT8Tn47Vya2CEREREREdEjOH4tG+tDkwAAn03oiFb2ZiJHpDpM4okA+DpaYP6dsvoVB2JZVk9EREREpKVuFpTjzd9iAADP9fbCyA661eCcSTzRHS/190EXT0W3+oU7L7FbPRERERGRlqmWyTF72wUUlFWjg5sV3n2irdghqRyTeKI7pHoSfD6hEwz19RCekIvtZ1lWT0RERESkTb44FIfzN27Dwlgf307uCiN9qdghqRyTeKK7+DqaY8EwRVn9R3/GIoNl9UREREREWuFo7C3870QyAODzCZ3gaWcqckTqwSSe6D9e7OeDrp7WKKmswTssqyciIiIi0njpt8sw77eLAIDn+7bCiEBnkSNSHybxRP8h1ZPg86c7wehOWf22KJbVExERERFpqqoaOWZtvYDC8mp08rDGosd1bx383ZjEEzWgtYM5FgzzBwB89OdVpN8uEzkiIiIiIiJqyKch1xCTVgBLY318M6kLDPV1O83V7XdH9Ahe6OeNbl42KK2S4Z2dl1lWT0RERESkYQ79k4UfT6YAAFY90xketrq5Dv5uTOKJ7kPRrb4jjPT1cDIxF1ujUsUOiYiIiIiI7kjLL8OC3xXr4F/u742h7ZxEjqh5MIknegAfB3O8NVxRVv/xn7FIy2dZPRERERGR2CprZJi5NRrFFTXo6mmNt0cEiB1Ss2EST/QQz/f1Rvc7ZfULd16CXM6yeiIiIiIiMa08eA2X0gthbWqAryd3hYG05aS2LeedEjVRbbd6YwM9nE7KwxaW1RMRERERiebg5UxsOn0dAPDlM53gZm0ibkDNjEk8USN425vhreGKEp2VB1lWT0SkbdaFJqLrh4cRl1UsdihERPQIbuSVYuEflwAArwb7YFBAy1gHfzcm8USN9HyfVujRygZlVTK8/QfL6omItEVJZQ2+PZaI/NIq/HYuTexwiIioiSqq76yDr6xBdy+bui2hWxom8USNpKcnwecTFGX1Z5LzsCXyhtghERFRI+yLuYnSKhkAICw+R+RoiIioqT76MxZXMopga2aIryd3aVHr4O/WMt81URO1sjfD27Vl9X9dY1k9EZGGEwSh3kXXxOwSpN/m724iIm2z/+JN/Bqh+H3+5TOd4GLVstbB341JPJGSpvdphaBWtiirkuGtPy6yrJ6ISIPFpBXgn5tFMNTXQ4CzBQAgNI6z8URE2iQltxSLdl0GAMx8rDUG+juKHJG4mMQTKUlPT4LPJnSEiYEUEcn52MyyeiIijbUlUrGjyKiOLhjV0QUAS+qJiLRJRbUMr2+JRkllDXp62+LNIX5ihyQ6JvFETdDK3gwLRygaaaw8eA2peSzNJCLSNIVl1dh/8SYAYEpPr7qZm9OJuaiqkYsZGhERNdKy/VcRm1kEOzNDrJ3UBfotdB383TgCRE00rXcr9PS2RXk1y+qJiDTRzuh0VNbIEeBsga6e1mjnYgl7c0OUVslw7ka+2OEREdFD7I3JwLaoVEgkwJqJXeBkaSx2SBqBSTxRE9V2qzcxkCIyJR+/nLkudkhERHTH3Q3tpvTygkQigZ6eBAP8HAAAYVwXT0Sk0RKzS+rWwc8e1Ab92tiLHJHmYBJP9Ag87UzxzuOKbvWfhsThRl6pyBEREREARKbkIymnFKaGUozt7Fp3f3BtEs918UREGqu8SoaZW6JRViVDbx87zBncRuyQNAqTeC0lkws4k5SHvTEZOJOUBxlLuUXzf7280Muntqz+EsvqiYg0QG1DuzGd3WBhbFB3/4A2DpBIgGtZxcgsLBcrPCIieoCl+/5B3K1i2JsbYc2kzpDqScQOSaMwiddCIVcy0e/TY5j0fQTmbI/BpO8j0O/TYwi5kil2aC2Snp4En43vBFNDKaJS8vEzy+qJiESVW1JZ9zdxSk/Peo/ZmBmik7s1AOAEZ+OJiDTOruh07DiXBj0JsHZiZzhacB38fzGJ1zIhVzIxY3M0Mgsr6t2fVViBGZujmciLpH5Z/TVcz2VZPRGRWH4/l45qmYBOHtYIdLO65/GB/oqSeu4XT0SkWRJuFeO93VcAAHMG+6GPL9fBN4RJvBaRyQUs238VDRVr1963bP9VltaLZGpPL/T2sUNFtRxvs6yeiEgUcrmArVF3Gtr9Zxa+Vu26+JMJuaiWcas5IiJNUFZVg9e3RKO8WoZ+vvaYNchX7JA0FpN4LRKVkn/PDPzdBACZhRWISuG2OWLQ05PgswkdFWX11/Ox6fR1sUMiImpxwhNzkZZfDktjfYzu6NrgMR3drWFjaoDiyhpcSC1o3gCJiKhB7+/5BwnZJXC0MMLqiVwH/yBM4rVIdvH9E/imHEeq52FrikUj2wIAPjt0DSksqycialZbIhSz8OO7ucPEUNrgMdK7tpoLjctuttiIiKhhv51Lw87odMU6+EldYG9uJHZIGk2/MQddunRJ6RO3a9cO+vqNOj01UmObOrD5Q8NkcgFRKfnILq6Ao4Uxgrxt1XKFb0qQJ/66nInTSXl46/eL2PFqb15JJCJqBpmF5Th6TZGU36+UvlawnwP2xtxEWHwO3h4R0BzhERFRA+KyirFkr2Id/Pxh/ujlYydyRJqvUVl2586dIZFIIAiNW+Orp6eH+Ph4+Pj4PFJwVF+Qty1crIyRVVjR4Lp4CQBnK0VySvWFXMnEsv1X6y1HcLEyxgej22FEoItKX0tPT4JPx3fEiNUncO7GbWw8lYKX+vO/BSIiddtxNg0yuYCe3rbwdbR44LG1M/H/3Cyqu7hLRETNq7SyBq9vOY+KajmC/RwwI7i12CFphUaX00dGRiIlJeWht+TkZBgb8w+hOkj1JPhgdDsAioT9brU/fzC6HWd9/0OMjv53l9V/figOyTklKn8NIiL6V41Mju1RaQCAKb28Hnq8vbkROtzpXH8iPletsRER0b0EQcB7uy8jKacUzpbG+PKZTtBjHtMojUrig4OD4evrCy8vr4feWrVqhQEDBsDExETdsbdIIwJdsH5qVzhb1b9Q4mxljPVTu6p8VlnbidnRf0pPT/T1tUNljRxv/XGJuwYQEanRsWvZyCqqgJ2ZIYa3d2rUc/7dao7r4omImtv2s2nYE3MTUj0Jvp7cBXZcB99ojSqnP378uFInPXjwYJOCocYZEeiCoe2cm2V9t7ZTpqN/79aqXX8jkSjK6od/dQLnWVZPRKRWWyJTAQBPd/eAkX7DDe3+K9jPAV8fS0R4Qi5kcoF/R4mImsnVm0X4YN8/AIAFw/zRoxWXAytDqe70RUVFkMvv3U9VJpOhqKhIZUHRw0n1JOjd2g5jOruhd2s7fvG4D7E7+rvbmOLdJ/4tq09iWT0Rkcql5pXhREIOAGBy0IMb2t2ts4c1LI31UVhejZi0AjVFR0REdyuprMGsrdGoqpHjMX8HvDqAk1zKanQSv3v3bnTv3h0VFfcmOxUVFejRowf279+v0uCIHpUmdPSfHOSJfr72irL63y+yrJ6ISMW2nU2FICia1XnamTb6efpSPfRvoyipD4vPUVd4RER0hyAIWLTrMpJzS+FqZYwvn+nMdfBN0Ogkfv369Xj77bdhanrvH0czMzMsXLgQ33zzjUqDI3pUtR397/erQQJFl3p1dvSXSCT4dEJHmBvpIzq1AD+dTFHbaxERtTSVNTL8dvZOQ7uHbCvXkOA76+LDuC6eiEjttkSmYv/Fm9DXk+DryV1hY2YodkhaqdFJ/JUrVzBw4MD7Pj5gwABcvnxZFTERqYymdPR3szbBe3fK6r/4m2X1RESqcuifW8grrYKTpREGBzgq/fzgO1vNXcooRF5JparDIyKiO65kFGL5gasAgIUjAtDNy0bkiLRXo5P427dvo6am5r6PV1dX4/bt2yoJikiVNKWj/8QeHujfRlFWv4Bl9UREKrEl4gYAYGIPT+hLlWr1AwBwsjRGWxdLCAIQnsCt5oiI1KGoohoz76yDH9LWCS/19xY7JK3WqO70ANCqVSucO3cOAQEBDT5+7tw5eHk9fF9WIjFoQkd/iUSCT+50q7+QWoAfwpPxanDrZnt9IiJdk5hdjMiUfOhJgIlBHk0+z0B/B8RmFiE0Lhtju7ipMEIiIhIEAe/svIQbeWVwszbBqqc7QSLhOvhH0ehL1uPGjcN7772HW7du3fNYVlYWFi9ejPHjx6s0OCJV0oSO/m7WJlh8p6x+1eF4JGYXN3sMRES6onZbucFtneBiZdLk89SW1J9IyIWcVVJERCr1y5kbOHg5CwZSCb6d0hVWpgZih6T1Gp3Ev/POO7CwsECbNm3w+uuvY82aNVizZg1mzJgBPz8/mJub45133lFnrEQ64dkeHhjg54CqGjkW/H6JZfVERE1QXiXDzvPpAJrW0O5u3bxsYG6kj/zSKlzOKFRFeEREBOBSegFW/KlYB7/o8bbo7GEtbkA6otFJvIWFBU6dOoWpU6dix44dePPNN/Hmm29ix44dmDp1Kk6ePAkLCwt1xkqkEyQSCT4Z1wEWRvqISSvA9+HJYodERKR1Dly6iaKKGrjbmGDAnW3imspAqoe+vnYAuNUcEZGqFJYr1sFXywQMb++E5/u2EjsknaFUBxgrKyusW7cOubm5uHXrFrKyspCXl4d169bBxobdBYkay9XaBO+PUnTN/5Jl9URESqstpZ/c01MlewwP9Fd0tg/lVnNERI9MEAS8/cdFpOWXw8PWBJ9N4Dp4VVK+jSsUM4kODg5wdHTkPwZREz3d3R0D/RVl9fN/v4QamVzskIiItMKVjELEpBXAQCrB092a3tDubrXr4mPSClBQVqWScxIRtVQbT13HoX9uwVCqh28nd4WVCdfBq1KTkngienQSiQQrx3WAhbE+LqYV4PvwFLFDIiLSClujFLPww9s7w8HCSCXndLU2gZ+TOeTcao6I6JHEpBVg5V+xAID3nmiLju7W4gakg0RN4leuXIkePXrAwsICjo6OGDt2LOLi4ho8VhAEPP7445BIJNizZ88DzysIApYsWQIXFxeYmJhgyJAhSEhIUMM7IHo0Llb/ltV/dTgeCbdYVk9E9CAllTXYeyEDADC1l2q3tq2djee6eCKipikoq8LMLYp18E90cMG03tyCXB1ETeLDwsIwc+ZMRERE4PDhw6iursawYcNQWlp6z7GrV69udOn+Z599hrVr12LDhg2IjIyEmZkZhg8fjoqKClW/BaJH9nQ3dzzm74AqmRwLfr/IsnoiogfYcyEDpVUytHYwQ09vW5Weu3ZdfFh8DreaIyJSkiAIWPD7JWQUlMPLzhQrx3fg0ms1eaQk/lGT4pCQEEyfPh3t27dHp06dsGnTJqSmpuL8+fP1jouJicGqVavw008/PfScgiBg9erVWLx4McaMGYOOHTvil19+wc2bNx86g08kBkVZfUdFWX16If53gt3qiYgaIghCXUO7KT29VP7lsHsrG5gaSpFTXInYrCKVnpuISNf9EJ6CI7G3YKivWAdvacx18OqidBIvl8vx4Ycfws3NDebm5khOViQc77//Pn788cdHCqawULE3q63tv1fWy8rKMHnyZHz77bdwdnZ+6DlSUlKQlZWFIUOG1N1nZWWFnj174syZMw0+p7KyEkVFRfVuRM3J2coYS+6U1a85koC4LJbVExH914W0AsRmFsFIXw/ju7qr/PxG+lL0aa3Yai40jiX1RESNdf7GbXwacg0AsGRUOwS6WYkckW5TOolfsWIFNm3ahM8++wyGhoZ19wcGBuKHH35ociByuRxz585F3759ERgYWHf/m2++iT59+mDMmDGNOk9WVhYAwMnJqd79Tk5OdY/918qVK2FlZVV38/BQTadbImVM6OaOQQGOqJLJ8dYfLKsnIvqvLRGKWfjRnVxhZaqeGZ7g2pJ6JvFERI1yu7QKs7dGo0YuYHQnV0zp6Sl2SDpP6ST+l19+wXfffYcpU6ZAKpXW3d+pUydcu3atyYHMnDkTV65cwfbt2+vu27dvH44dO4bVq1c3+byNsWjRIhQWFtbd0tLS1Pp6RA2RSCT4+ClFt/pLLKsnIqqnoKwKBy7dBAC1fkEceKe53fnU2yiqqFbb6xAR6QK5XMC832Jws7AC3vZmWDmO6+Cbg9JJfEZGBnx9fe+5Xy6Xo7q6aX/sZs2ahQMHDuD48eNwd/+3PO7YsWNISkqCtbU19PX1oa+vDwAYP348Bg4c2OC5akvub926Ve/+W7du3bcc38jICJaWlvVuRGJwtjLG0tHtAQCrj8SzrJ6I6I6d0RmorJGjnYslOntYq+11PGxN4eNgBplcwCluNUdE9ED/O5GM43E5MLqzDt7cSF/skFoEpZP4du3aITw8/J77//jjD3Tp0kWpcwmCgFmzZmH37t04duwYvL296z3+zjvv4NKlS4iJiam7AcBXX32FjRs3NnhOb29vODs74+jRo3X3FRUVITIyEr1791YqPiIxjOvqhsEBjqiWCVjw+0VUs6yeiFo4RUO7GwCAKb081T7Lw63miIge7uz1fHzxt2J78KVPtkc7V06ENhelL5UsWbIEzz33HDIyMiCXy7Fr1y7ExcXhl19+wYEDB5Q618yZM7F161bs3bsXFhYWdWvWraysYGJiAmdn5wZnzz09Pesl/AEBAVi5ciWeeuopSCQSzJ07FytWrECbNm3g7e2N999/H66urhg7dqyyb5eo2UkkEnw8rgOGfhmGyxmF+F9YEmYNaiN2WEREoolIzkdyTinMDKUY09lN7a830N8RG09dR2hcDgRBYGkoEdF/5JVUYvbWC5DJBYzt7IqJPdhTrDkpPRM/ZswY7N+/H0eOHIGZmRmWLFmC2NhY7N+/H0OHDlXqXOvXr0dhYSEGDhwIFxeXutuOHTuUOk9cXFxdZ3sAePvttzF79my88sor6NGjB0pKShASEgJjY2OlzkskFidLYyx9UlFWv+ZoAq5xqyMiasE235mFH9vFrVlKNXt628JIXw9ZRRWIv1Wi9tcjItImcrmAN3+7iKyiCrR2MMNHT3EdfHOTCIIgiB2EpikqKoKVlRUKCwu5Pp5EIwgCXv7lHI7EZiPQzRK7X+8LA6nS192IiLRaTnEleq88ihq5gINv9G+2cs3pG6MQGpeDRY8H4NXg1s3ymkRE2uDb44n4/FAcjA30sHdmP/g7W4gdks5obB7apIygoKAAP/zwA959913k5+cDAKKjo5GRkdG0aInoHrXd6q1MDHAlowjrQ5PEDomIqNn9di4NNXIBXTytm3W9JdfFExHdKyI5D6vurINfPiaQCbxIlE7iL126BD8/P3z66af4/PPPUVBQAADYtWsXFi1apOr4iFo0R0tjLH2yHQDg62MJiM1kWT0RtRwyuYBtUYq94af09GrW1x54Z7/4s9fzUVJZ06yvTUSkiXKKK/HGtguQC8D4ru54pjvXwYtF6SR+3rx5mD59OhISEuqtMR85ciROnDih0uCICBjb2Q1D2jqxWz0RtTgnEnKQfrsclsb6GNXRpVlf29veDF52pqiWCTidyK3miKhlk8kFvLkjBtnFlWjjaI4Px7YXO6QWTekk/uzZs3j11Vfvud/Nza2uuzwRqY6iW30grE0N8M/NIqw7zrJ6ImoZtkQoZuEndPOAsYG02V+fJfVERArfHEvEycRcmBhIsW5KV5gacj94MSmdxBsZGaGo6N6S3vj4eDg4OKgkKCKqz9HCGMvudKv/+lgCrt5kWT0R6babBeU4du0WAGByT09RYhjor/heU7vVHBFRS3Q6MRerj8YDAFaMDUQbJ66DF5vSSfyTTz6J5cuXo7q6GoBiljA1NRULFy7E+PHjVR4gESk82ckVw9o5oUbOsnoi0n3bz6ZBLgC9fGzh62guSgy9fOxgKNVDRkE5knJKRYmBiEhM2cUVeGN7DAQBeKa7O8Z3cxc7JEITkvhVq1ahpKQEjo6OKC8vR3BwMHx9fWFhYYGPPvpIHTESERQXzFY8pSirv5pZhG+PJ4odEhGRWlTL5NguUkO7u5ka6qOnjy0AIDQuW7Q4iIjEIJMLmLMtBrkllfB3ssCyJwPFDonuUDqJt7KywuHDh3HgwAGsXbsWs2bNwsGDBxEWFgYzMzN1xEhEd9xdVv/NsUT8c7NQ5IiIiFTvaGw2sosrYW9uiOHtnUWNheviiailWnM0AWeS82BqKMW3U7rCxLD5e5NQw5TqSFBdXQ0TExPExMSgb9++6Nu3r7riIqL7eLKTKw5ezsShf25hwe+XsHdmXxjqK309johIY22JvAEAeKa7h+i/3wb6O2DFn7GITMlHeZWMX2KJqEUIT8jB18cSAAArx3UQbVkTNUypv4wGBgbw9PSETCZTVzxE9BASiQQrxnaAjakBYjOL8A3L6olIh9zIK0V4Qi4kEmBSkDgN7e7W2sEcbtYmqKqRIyI5T+xwiIjU7lZRBebeWQc/KcgTYzq7iR0S/YfSl7ffe+89vPvuu8jPz1dHPETUCA4WRlg2RrEuad3xRFzJYFk9EemGrXfWwgf7OcDD1lTkaBQXToPrutRzXTwR6bYamRyzt11AXmkV2rpY4oPR7cQOiRqgdBL/zTff4MSJE3B1dYW/vz+6du1a70ZEzWN0RxeMaO9c162+qobd6olIu1XWyPD7uXQA4ja0+y+uiyeiluKrI/GISsmHuZE+1k3pCmMDLiHSREqtiQeAsWPHqiEMIlJWbbf6qOv5uJZVjG+OJWDeMH+xwyIiarKQK1nIL62Ci5UxHrsz+60J+vraw0AqwfW8MlzPLUUrezbyJSLdExqXjW+PJwEAPhnfAd78XaexlE7iP/jgA3XEQURNYG9uhOVj2mPW1gv4NjQJw9o7I9DNSuywiIiaZEukopR+Yg9P6Es1p2GnuZE+unvZ4kxyHkLjsjHd3lvskIiIVCqzsBxv7ogBAPxfLy+M6ugqbkD0QJrzF5KImmRUR1eM7OAMGcvqiUiLJdwqRlRKPqR6Ejzbw0PscO5Ruy6eJfVEpGuqZXLM3noBt8uqEehmifeeaCt2SPQQSifxNjY2sLW1vedmZ2cHNzc3BAcHY+PGjeqIlYjuY/mYQNiaGeJaVnHddiBERNqkdhZ+SFtHOFsZixzNvQbeSeLPJOehopq79BCR7vji7zicu3EbFkb6+HYy18FrA6WT+CVLlkBPTw9PPPEEli1bhmXLluGJJ56Anp4eZs6cCT8/P8yYMQPff/+9OuIlogbYmxvhw9pu9aFJuJzObvVEpD3Kq2TYGa15De3u5u9kAWdLY1RUyxGVwh16iEg3HI29hf+FJQMAPpvQEV52XAevDZReE3/y5EmsWLECr732Wr37//e//+Hvv//Gzp070bFjR6xduxYvv/yyygIlogd7oqMLDl52wZ+XM7Hg94vYN7svjPR5JZWINN/+izdRXFEDT1tT9PO1FzucBkkkEgT7OWDHuTSExuVggJ/mNN4jImqKjIJyzP/9IgBgep9WeLyDi8gRUWMpPRN/6NAhDBky5J77Bw8ejEOHDgEARo4cieTk5EePjoiUsnxMe9iZGSLuVjHWHn30snqZXMCZpDzsjcnAmaQ8yOSCCqIkIqpvS+QNAMDknp7Q05OIHM39/bsunvvFE5F2U6yDj0ZBWTU6uVth0cgAsUMiJSidxNva2mL//v333L9//37Y2toCAEpLS2FhYfHo0RGRUuzMjfDhWEVZ/YawZFxKL2jyuUKuZKLfp8cw6fsIzNkeg0nfR6Dfp8cQciVTRdESEQGX0wtxMb0QBlIJnu7mLnY4D9TX1x5SPQmSckqRll8mdjhERE32Wcg1RKcWwNJYH99M7srqTS2jdDn9+++/jxkzZuD48eMICgoCAJw9exYHDx7Ehg0bAACHDx9GcHCwaiMlokYZ2cEFT3R0wZ+XFGX1+2f3U/oXc8iVTMzYHI3/zrtnFVZgxuZorJ/aFSMCWXJFRI9ua5RiFv7xQBfYmRuJHM2DWZkYoKunNc5ev42w+BxM7aWZ6/eJiB7k8NVb+D48BQDw+dOd4GFrKnJEpCylZ+JffvllhIWFwczMDLt27cKuXbtgamqKsLAwvPjiiwCA+fPnY8eOHSoPloga58MxgbA3N0T8rRKsOaJcWb1MLmDZ/qv3JPAA6u5btv8qS+uJ6JEVVVRjb8xNAMCUnp4iR9M4A/0dAQChcdxqjoi0T1p+Geb/FgMAeLGfN4a3dxY3IGoSpWfiAaBv377o27evqmMhIhWxNTPEirGBeG1zNDaEJWF4e2d08rBu1HOjUvKRWVhx38cFAJmFFYhKyUfv1naqCZiIWqS9FzJQViWDr6M5grxtxQ6nUYL9HPD5oTicTspFVY0chvpKz4cQEYmiqkaOWdsuoKiiBp09rLFwBNfBa6sm/eVJSkrC4sWLMXnyZGRnK5q7/PXXX/jnn39UGhwRNd2IQBeM7uQKuQAs+P1io/c1zi6+fwLflOOIiBoiCELd3vBTenpCItHchnZ3a+diCXtzI5RVyXDuOreaIyLtsfKvWFxMK4CViQG+mdyFFyG1mNL/cmFhYejQoQMiIyOxc+dOlJSUAAAuXryIDz74QOUBElHTLXuyPezNDZGQXYI1jexW72hhrNLjiIgaEp16G9eyimFsoIdxXTS7od3d9PQUW80BQGg8S+qJSDuEXMnExlPXAQCrnu4Edxuug9dmSifx77zzDlasWIHDhw/D0NCw7v5BgwYhIiJCpcER0aNRlNV3AAD8LywJMWkFD31OkLctXKyMcb85MQkAFytjrSl9JSLNtCVCMQs/uqMrrEwNRI5GOXVbzXFdPBFpgdS8Mrz1xyUAwCsDfDCknZPIEdGjUjqJv3z5Mp566ql77nd0dERubq5KgiIi1RkR6IwnlSirl+pJ8MHodgBwTyJf+/MHo9tBqsF7ORORZrtdWoUDlxXbVU7Rwg7v/X3toScB4m4V42ZBudjhEBHdV2WNDDO3RqO4ogbdvGzw1nB/sUMiFVA6ibe2tkZm5r37RF+4cAFubm4qCYqIVEtRVm+ExOwSfHUk/qHHjwh0wfqpXeFsVb9k3tnKmNvLEdEj2xmdjqoaOQLdLNHJ3UrscJRmY2ZY1yz0BEvqiUiDffxnLC5nFMLG1ABfT+oCAynXwesCpbvTT5w4EQsXLsTvv/8OiUQCuVyOU6dOYcGCBZg2bZo6YiSiR2RjZoiPngrEq7+ex/cnkjG8vTO6eto88DkjAl0wtJ0zolLykV1cAUcLRQk9Z+CJ6FHUb2jnpTUN7f5roJ8jLqQWIDQuBxODtGN7PCJqWf68lImfz9wAAHz5bGe4WpuIHBGpitKXYj7++GMEBATAw8MDJSUlaNeuHQYMGIA+ffpg8eLF6oiRiFRgeHtnjO2sKKt/q5Hd6qV6EvRubYcxnd3Qu7UdE3giemRnkvKQklsKcyN9PNnJVexwmqx2XfypxFxUy+QiR0NEVN/13FIs3KlYBz9jYGs85u8ockSkSkon8YaGhvj++++RlJSEAwcOYPPmzbh27Rp+/fVXSKVSdcRIRCqy9Mn2cLAwQlJOKb46/PCyeiIiVaudhX+qixvMjJQuCNQYHd2sYGtmiOLKGkTfuC12OEREdSqqZXh9SzRKKmsQ1MoW84f6iR0SqViTF0V4enpi5MiReOaZZ9CmTRtVxkREamJtaoiPn1J0q/8+PBnRqfziSUTNJ7u4Aof+yQIATO6p3SXoenoS9G9jDwAI47p4ItIgHx64iquZRbAzM8TaSV2gz3XwOqdRl8DnzZvX6BN++eWXTQ6GiNRvaDsnPNXFDbsvZGDB7xdx8I3+MDZgFQ0Rqd/v59JRIxfQzcsGbV0sxQ7nkQ30d8DemJsIjcvB2yMCxA6HiAh7YzKwJTIVEgnw1bOd72lSTLqhUUn8hQsX6v0cHR2Nmpoa+PsrtiiIj4+HVCpFt27dVB8hEancB6Pb4WRiLpJzSvHl4Xi8O7Kt2CERkY6TyQVsrWtop92z8LUGtHGARAJczSxCdlEFHC35ZZmIxJOUU4J3d10GAMx6zBcD/BxEjojUpVG1FcePH6+7jR49GsHBwUhPT0d0dDSio6ORlpaGxx57DE888YS64yUiFbA2NcTKu8rqz3M9JxGp2Yn4HGQUlMPa1AAjO+jGNpV25kbo4KbYIo8l9UQkpopqGWZuiUZplQy9fGwxdwjXwesypRdIrFq1CitXroSNzb/bU9nY2GDFihVYtWqVSoMjIvUZ0s4J47q4QVCiWz0RUVNtiVRsczShq7tOLeEZeGemK5RJPBGJaOm+f3Atqxj25oZYO7ELdxTScUon8UVFRcjJufcPVU5ODoqLi1USFBE1jw9Gt4ejhRGSc0vxxaE4scMhIh2VUVCOY9eyAQCTdKSUvlbtVnMnE3JRw63miEgEuy+kY/vZNEgkwJqJXbi0pwVQOol/6qmn8Pzzz2PXrl1IT09Heno6du7ciRdffBHjxo1TR4xEpCZWpgZYOU5RVv/jqRScu54vckREpIu2R6VCLgB9WtuhtYO52OGoVCd3a1iZGKCwvBoX0wvEDoeIWpjE7GK8u+sKAOCNQW3Q19de5IioOSidxG/YsAGPP/44Jk+eDC8vL3h5eWHy5MkYMWIE1q1bp44YiUiNBrd1wviu7oqy+j8uobyKZfVEpDrVMjm2n00DAEzp6SVyNKqnL9VDv9qt5uJYUk9Ezae8SoaZWy6gvFqGvr52eGMwt/1uKZRO4k1NTbFu3Trk5eXhwoULuHDhAvLz87Fu3TqYmZmpI0YiUrMlo9vBydIIKbml+OJvltUTkeocuXoLOcWVsDc3wtB2TmKHoxZcF0+10m+XITr1Nqq5tIKawZK9VxB3qxgOFkZY/SzXwbckjdpiriFmZmbo2LGjKmMhIpFYmRjgk3Ed8fyms/jpVApGBDqjRytbscMiIh2w5c62cs/2cIehvtJzB1oh+E4Sfym9ELkligsW1PKUVtbgyW9OIb+0ChZG+ujra49gfwcE+znA1dpE7PBIx/xxPh2/n0+HngRYO7ELHCz4e6cladRf03HjxqGoqKjRJ50yZQqys7ObHBQRNb/HAhwxoZt7Xbd6ltUT0aNKyS3FycRcSCTAxB661dDubo6WxmjnYgkACE/gbHxLtScmA/mlVQCA4soahPyThUW7LqPPJ8cw7KswfPTnVZxKzEVlDf++0qOJv1WMxXsU+8G/OcQPvVvbiRwRNbdGzcTv3bu3wY70DREEAfv378eHH34IR0fHRwqOiJrX+6Pa4WRCLq7nleHzQ3FYMrqd2CERkRbbFqWYhR/o5wAPW1ORo1Gvgf4OuJpZhLC4HDzVxV3scKiZCYKAzRGKz/uixwPQy8cOoXE5CIvPRkxaAeJvlSD+Vgm+D0+BiYEUfVrbYaC/A4L9HOFpp9v/bZBqCIKA1PwynE7Kw9qjCaiolqOjmxVeC24tdmgkgkYl8YIgwM/PT92xEJHIrEwMsHJ8Bzy/8Sw2nlaU1Qd5s6yeiJRXUS3D7+d0t6HdfwX7OWBdaBJOJORCLhegx7WpLUp0agFiM4tgqK+HZ7p7wMbMEJ08rDFnSBsUlFUhPCEXYfE5CIvPQU5xJY5ey8bRa9kA/oG3vRmC/RwQ7O+A3j52MDaQiv12SAMIgoDreWWISM5DZHIeIpLzkVVUUe+YSxmFGPD5cXwwuh1GBLqIFCmJoVFJ/PHjx5U+sZubm9LPISLxPebviKe7ueP38+l4+4+LODinP0wNm9w+g4haqJArWbhdVg1XK2M8FqD7lXldvWxgYaSP/NIqXM4oRCcPa7FDoma0JeIGAGBURxfYmBnWe8za1BCjO7lidCdXCIKgqNiIz0FYXA7O37iNlNxSpOSWYtPp6zDS10NPHzsE+zlgoL8DfOzNIJHwglBLIAgCknNL7yTt+YhIzkN2ceVDn5dVWIEZm6OxfmpXJvItSKO+mQcHB6s7DiLSIItHtUP4nbL6z0LisPTJ9mKHRERaZkukIqmZGOTZIjomG0j10NfXHiH/ZCE0LodJfAtyu7QKBy5nAgCm9npw1YlEIkF7Vyu0d7XC6wN9UVRRjdOJeXeS+mzcLKzAifgcnIjPwYcHAHcbkzsJvSN6t7aDuREvqusKQRCQmF2CiJT8usQ9t6R+0m6or4cuHtYI8rbFlsgbyC+tvvc8ACQAlu2/iqHtnFvE71t6hO70RKS7rEwM8Mn4Dpi+8Sw2nb6OxwOd0dOHTVOIqHHisopx9vptSPUkmNjDQ+xwms1AfwdFEh+fjTlDuF9zS/HH+XRU1cjRzsUSFVUy7I3JgKOFMYK8bR+aUFkaG2BEoDNGBDrXJXVh8TkIjctBVEo+0m+XY0tkKrZEpsJAKkF3L1vFWnp/B/g7WXCWXovI5QISsksQmZKHiOQ8RKXkI7ekqt4xRvp66Oppg54+tujlY4fOHtYwNpDiTFIevj6WeN9zCwAyCysQlZLPJncthKhJ/MqVK7Fr1y5cu3YNJiYm6NOnDz799FP4+/vXHfPqq6/iyJEjuHnzJszNzeuOCQgIuO95p0+fjp9//rnefcOHD0dISIja3guRrhno74hnu3tgx7k0zPvtIna/3geOlsZih0VEWmDrnVn4Ye2cWtTvjWB/xVZzF9MKcLu06p6yatI9crlQV3WSUVCGyT9E1j3mYmWs1FpliUSCNk4WaONkgZf6+6CsqgYRyXkIjVMk9an5ZTiTnIczyXlY+dc1OFsa162l7+trDysTA7W8R2oauVxA3K3iuvXsUdfz63YvqGVsoIduXjbo6W2HXj526ORhBSP9e3siZBdX3HNfQxp7HGk/UZP4sLAwzJw5Ez169EBNTQ3effddDBs2DFevXoWZmRkAoFu3bpgyZQo8PT2Rn5+PpUuXYtiwYUhJSYFUev/GHyNGjMDGjRvrfjYy4t6JRMp6b1RbRKbk4XpeGZ7beBY7Xu0FS2N+SSCi+yurqsGu6AwALaOh3d1crEzg72SBuFvFCE/MxZOdXMUOidTsVJJi6RkAFJbX1HvsUdcqmxrqY1CAEwYFOAEArueWIjQuG2HxOTiTnIesogrsOJeGHefSINWToKuntSKp93NEe1dLNldsZnK5gNisorr17FHX81FQVr/83cRAiu6tbNDTWzHT3tHdGob6D9/x29GicRdDG3scaT+JIAiC2EHUysnJgaOjI8LCwjBgwIAGj7l06RI6deqExMREtG7d8JYK06dPR0FBAfbs2dOkOIqKimBlZYXCwkJYWlo26RxEuiI1rwzj1p9GbkklevnYYtPzQeycS0T3teNsKhbuvIxWdqY4Nn9gi0skPj4Yi+9OJGN8V3eseqaT2OGQmr3yyzn8ffXWfR+XAHC2MsbJhYNUula5olqGqJT8uo73idkl9R63NzfEgDaKWfr+bRxgy6oQlZPJBcRmFiHizkz72ev5KCyvn7SbGkrRvZVtXdLewc2qUUl7Q6/V79NjyCqsQEOJm7o+Z9T8GpuHNmkmvqamBqGhoUhKSsLkyZNhYWGBmzdvwtLSEubm5k0OurCwEABga9vwllalpaXYuHEjvL294eHx4DV2oaGhcHR0hI2NDQYNGoQVK1bAzq7hNSKVlZWorPy3kURRUVET3wGR7vG0M8Wm53tg4ncRiEjOx7zfYvD1pK78I0FEDdoSqdgre3JPzxaXwAPAQD8HfHciGWHxOdxqTsdlFVbgSOz9E3hAfWuVjQ2kGODngAF+DngfQFp+GU4kKDren0rMRW5JFXZdyMCuCxmQSICO7tZ1He87uVvzb3gT1MjkuJpZf6a9uKJ+9YWZoRQ9vG3vlMfbItDNCgZS5ZP2/5LqSfDB6HaYsTkaEqBeIl/7L/nB6Hb8d21BlJ6Jv3HjBkaMGIHU1FRUVlYiPj4ePj4+mDNnDiorK7Fhw4YmBSKXy/Hkk0+ioKAAJ0+erPfYunXr8Pbbb6O0tBT+/v74888/7zsLDwDbt2+HqakpvL29kZSUhHfffRfm5uY4c+ZMgyX4S5cuxbJly+65nzPxRP86nZiL6RvPokomx7TeXlj2ZHs21CGiei6lF+DJb07BUKqHiHcHt8jZv8oaGbosP4yyKhkOzO6HQDcrsUMiNfnqcDzWHE1o1LFrJnbGmM7Ns/1yVY0c52/cvtMgLxvXsorrPW5lYoD+bewx0N8RA/zsWYJ9HzUyOa7cLLqzpj0P567fRnFl/aTdwkj/TtKumGlv72oJfRUk7fcTciUTy/ZfRWbhv2vfle29QJqtsTPxSifxY8eOhYWFBX788UfY2dnh4sWL8PHxQWhoKF5++WUkJDTul9l/zZgxA3/99RdOnjwJd3f3eo8VFhYiOzsbmZmZ+OKLL5CRkYFTp07B2Lhxv3SSk5PRunVrHDlyBIMHD77n8YZm4j08PJjEE/3HgUs3MXvbBQgCMH+oH2YPZvdlIvrXOzsvYfvZNIzt7IrVE7uIHY5oXvr5HI7E3sJbw/0x8zFfscMhNaiWydHv02O4VfTwfbwBYNvLvUTrGn6rqKJuX/rwhBwU/Wf2uJ2LpaLjvZ8DunrZqGTmWBtVy+S4nFFYN9N+7no+Sqtk9Y6xMNZHz7qZdju0c7Vs9tlvmVxAVEo+sosrGr0LAmkPtZXTh4eH4/Tp0zA0rH91vVWrVsjIyFA+UgCzZs3CgQMHcOLEiXsSeACwsrKClZUV2rRpg169esHGxga7d+/GpEmTGnV+Hx8f2NvbIzExscEk3sjIiI3viBphVEdX5BZXYun+q1h1OB4OFkaYGOQpdlhEpAGKKqqxN+YmAGDKQ/bK1nUD/R1wJPYWwuJymMTrqKOxt3CrqBK2ZoYwlEpwq6jygWuVg7wbXiraHJwsjfFMdw88090DNTI5LqYXIDROsZb+UnohrmYW4WpmEdaFJsHCSB99fe0RfCepd7U2ES1udauqkeNyRgEi7iTt52/cRtl/knYrEwME3TXT3tal+ZP2/5LqSbiNHCmfxMvlcshksnvuT09Ph4WFhVLnEgQBs2fPxu7duxEaGgpvb+9GPUcQhHoz5w+Tnp6OvLw8uLiwzIToUU3v642ckkp8ezwJ7+6+DDtzIwxt5yR2WEQksj0XMlBeLYOfkzm6e9mIHY6ogv0UW82dT72NwvJqbv2lgzZHKHo/PNvDA53crbRmrbK+VA/dvGzRzcsW84f5I7ekEuF31tKfSMhFfmkVQv7JQsg/WQAAPyfzO2vpHdG9lU2D259pi8oaGS6lF9Zt+Xb+xm2UV9fPaaxNDerNtAc4W7CvBWkkpZP4YcOGYfXq1fjuu+8AKPa0LCkpwQcffICRI0cqda6ZM2di69at2Lt3LywsLJCVpfiFYWVlBRMTEyQnJ2PHjh0YNmwYHBwckJ6ejk8++QQmJib1XisgIAArV67EU089hZKSEixbtgzjx4+Hs7MzkpKS8Pbbb8PX1xfDhw9X9u0SUQMWDPNHTnElfjuXjllbo7HlpZ7o3kq8WQYiEpcgCNhyJ6mZ0tOrxffL8LA1RWsHMyTllOJ0Yi4e78BJBF2SkluKk4m5kEiAyUGe8LA1xfqpXe9Zq+ysBWuV7c2N8FQXdzzVxR1yuYDLGYV1He8vpN5G/K0SxN8qwffhKTAxkKJPa7s7pfeO8LQzFTv8B6qskSEmtQCRKYqZ9ujU26ioltc7xtbM8E7Sbotere3g58iknbSD0mvi09LSMGLECAiCgISEBHTv3h0JCQmwt7fHiRMn4Ojo2PgXv88f+Y0bN2L69Om4efMmXnrpJZw/fx63b9+Gk5MTBgwYgCVLlsDf37/eeWqfU15ejrFjx+LChQsoKCiAq6srhg0bhg8//BBOTo2bLeQWc0QPVyOT49Vfz+PotWxYGuvjjxl94OekXDUOEemGs9fz8fSGMzAxkCLyvcGwNObM8/L9V/HTqRQ8290Dn07oKHY4pEIrDlzFDydTMNDfAZueD6q7X9fWKheUVeFkYi7C7pTeZxfXr4L1tjdT7Evv74Be3nYwMVR+ll6VY1ZRLcOF1AJEJOchMiUP0akFqKqpn7TbmRmil48devooyuN9HcyZtJNGUVtjO0CxxdyOHTtw8eJFlJSUoGvXrpgyZQpMTHRj3QyTeKLGKa+SYcoPEYhOLYCLlTF2zuij0+vniKhhc7dfwJ6Ym0xY73IiPgfTfoqCs6Uxziwa1OKrE3RFRbUMPT8+isLyavwwrTuGtJDlZIIgIDazuK7j/fkbt1Ej/zeFMNLXQ08fO0VS7+eA1g5mD/3MP2qn9YpqGaJv3EbEnZn2mLR7k3Z7cyP08rFFTx879PaxRWsHc/63SBpNLUl8dXU1AgICcODAAbRt21YlgWoiJvFEjVdQVoUJG84gMbsEvo7m+OO13rA2bXnbStXStZkYoofJL61Cr4+Pokomx75ZfdHR3VrskDRCRbUMnZf/jYpqOULm9keAM79P6II/zqdjwe8X4WZtghNvP9Zif78XV1TjdFKeokFeXDZu3pWIA4C7jUldQt/H1x7mRvVX8IZcycSMzdH3NAOsHc31U7vek8iXVdUg+kYBIlMUW75dTCtElax+0u5oYVRvpt3H/uEXE4g0iVq60xsYGKCiouLhBxJRi2FtaohfXgjCuHWnkZhdghc2ncWWl3o1qaxO23H/VmqJ/jifhiqZHB3crJjA38XYQIrePnY4HpeD0LgcJvE6YnPEDQDApCCPFpvAA4CFsQGGt3fG8PbOEAQBSTkldR3vI5PzkX67HFsiU7ElMhUGUgm6e9ki2N8BA/0d4OtgjmX7rzbYzV+AIpFftv8q+rS2R0xabdKej0vpBaiW1X+Ws6Vx3Ux7Lx87tLIzZdJOLYLS5fQff/wx4uPj8cMPP0BfX+m+eFqBM/FEyou/VYwJ60+jqKIGgwMc8b//6wb9FrTXbFNmFYi0nVwuYNCqUFzPK8Mn4zpwy8n/2HQqBUv3X0VvHztse6WX2OHQI7qSUYhRX5+Evp4EpxcNgqOFsdghaaSyqhpEJOchLC4HofE5uJFXVu9xG1MD3C6rfuh5pBIJZP9JU1ytjOvNtHvaMmkn3aK2feLPnj2Lo0eP4u+//0aHDh1gZmZW7/Fdu3YpHy0RaT0/Jwv8NL0HpvwQiaPXsvHu7sv4dHzHFvHHVSYXGjWrMLSdc4ueuSHdczopD9fzymBhpI/RnVzFDkfjDPR3BPZfxbkb+SiprLmnpJi0y5ZIxQ4MwwOdmcA/gKmhPgYFOGFQgKJfwPXc0rq19GeS8xqVwAOATBDgZm1Sl7T39rGDu41Ji/heQfQwSv81sba2xvjx49URCxFpue6tbPHN5K549ddz+O1cOhwsjPDW8ACxw1K7qJT8eiX0/yUAyCysQFRKPnq3tmu+wEgnaVLfhS2RitLip7q6wYwJ6j1a2ZvBy84UN/LKcDoxF8PaO4sdEjVRcUU19sZkAACm9vQSORrt0sreDK3szfBcn1aoqJbh59PXsfKvaw993tqJnfFkZ7dmiJBI+yj9F3fjxo3qiIOIdMTQdk74+KkOeGfXZXx7PAkO5kaY3tdb7LDUKru4cb1CGnsc0f1oUt+FW0UV+PvqLQCKveGpYQP9HPDzmRsIjc9hEq/Fdl/IQFmVDL6O5ujlYyt2OFrL2ECKl/r7YNPp68gqrGiwgk0CwNnKGE90ZHUPqYYmXfxWlZazYJWIms3EIE/MH+oHAFh24CoOXLopckTq1diySpZf0qOo7bvw36qPrMIKzNgcjZArmc0az29n0yCTC+jRygb+zhbN+traZKC/IwAgLC4HTdjVlzSAIAh1De2m9PRkOfcjkupJ8MHodgD+7RtTq/bnD0a30/okizRDyJVM9Pv0GCZ9H4E522Mw6fsI9Pv0WLP/zVQ1pZN4b29v+Pj43PdGRAQAswb5YlpvLwgCMG/HRZxOzBU7JLUJ8raFi5XxPV9GakmgmC0N8ubsDTXNw/ouAIq+CzJ58ySJMrmAbVGK9cGchX+wXj52MNTXQ0ZBOZJySsQOh5rg7PXbiL9VAhMDKcZ1dRc7HJ0wItAF66d2hbNV/YvbzlbGbARLKqNpF79VSely+rlz59b7ubq6GhcuXEBISAjeeustVcVFRFpOIpHgg9HtkVtSiYOXs/DKr+ex/ZVeCHSzEjs0laudVZixORoSoF6ixVkFUgVN67sQemdfaBtTA4wIZIn4g5gYStHT2xbhCbkIjcuBryOrFrRN7Sz8k51cYWViIHI0umNEoAuGtnPWuTJn0gy63nRY6SR+zpw5Dd7/7bff4ty5c48cEBHpDqmeBF8+0xn5pVGISM7H9I1nsWtGH3jamYodmsrVzir8d72yM/eJJxXQtL4LtV26n+7uAWMDabO8pjYL9nNAeEIuwuJz8FJ/Vi1qk9ySSvx1Z7Zuai9WnaiaVE/Chq+kFpp28VvVVLYm/vHHH8fOnTtVdToi0hHGBlJ8N6072rpYIrekEtN+ikRuSaXYYanFiEAXnFw4CNte7oU1Eztj28u9cHLhICbw9Mg0qe9C+u0yHI/LBgBM4r7wjVK7Lj4yOR9lVTUiR0PK+O1cGqplAjq5W6GDu+5VkhHpKk27+K1qKkvi//jjD9jacr0nEd3L0tgAPz/fA+42JrieV4bnN55FSaVufpGtnVUY09kNvVvbaWWJFmkeTeq7sD0qDYIA9PO1h7e9mdpfTxe0djCDm7UJqmRyRCTniR0ONZJMLmDrnaqTKZyFJ9IqmnTxWx2UTuK7dOmCrl271t26dOkCFxcXvPvuu3j33XfVESMR6QBHS2P88kIQbM0McTmjEK/9eh5VNXKxwyLSCprSzblaJsf2s2kAFF26qXEkEgkG+jsAAELjckSOhhrrRHwO0m+Xw9JYH6O53RmRVtGki9/qoPSa+DFjxtTbWkNPTw8ODg4YOHAgAgICVBocEekWHwdzbJzeA5O+j8DJxFws+P0iVj/bGXqcrSZ6KE3ou3D46i3kllTCwcIIQ9o5qf31dEmwnwO2RKYiLF47knhd3FdZWbUN7SZ084CJIXs/EGkTXW86rHQSv3TpUjWEQUQtRScPa6yf2g0vbjqLfRdvwt7cCO+Past9d4kaQexuzlsiFUnNxB4eMJCqbEVei9DH1x4GUglu5JUhJbdUo5cihFzJvOdikUsLa9KZfrsMx+70fpjMqhMiraQJF7/VRekkXiqVIjMzE46OjvXuz8vLg6OjI2QymcqCIyLdFOzngC+e7oS5O2Lw06kUOFoa4bXg1mKHRaQVxOrmnJxTglOJedCTABPZ0E5p5kb66NHKFqeT8hAWlw1ve2+xQ2pQ7b7K/92WqXZf5Zayh/e2qFQIAtDbxw6+juZih0NETST2xW91UfoyuiA0tNseUFlZCUNDw0cOiIhahrFd3PDeyLYAgE/+uoad59NFjoiIHmRblKLB12P+jnCzNhE5Gu0U7HdnXbyGltQ/bF9lQLGvskze8HdBXVFVI8eOO70fuK0ckfbTxabDjZ6JX7t2LQBFc5YffvgB5ub/XpWUyWQ4ceIE18QTkVJeHuCDnJJKfHciGW/vvARbM0M8FuD48CcSUbOqqJbh9zsX2qb04ix8Uw30d8TKv64hIjkPFdUyGBto1jprXd9XubEO/ZOF3JIqOFgYYVh79n4gIs3T6CT+q6++AqCYid+wYQOk0n//8BgaGqJVq1bYsGGD6iMkIp32zogA5BRXYveFDLy+JRpbX+6JLp42YodFRHc5eDkTBWXVcLM2QbAfL7Q1lZ+TOZwtjZFVVIHIlPy6mXlNoev7KjcWez8QkaZrdBKfkpICAHjsscewa9cu2NjwSzYRPTo9PQk+m9AReaVVOBGfgxc2ncXvr/XhGkQiDbLlzl7Zk4I8dKIMUSy1W81tP5uG0LhsjUvidX1f5cZIzC5GRHI+9CTAJPZ+ICINpfTlxePHjzOBJyKVMpDqYf2UrujkboXbZdV47qcoZD2gpJN0i0wu4ExSHvbGZOBMUp7Or7fVNrGZRTh/4zb09SR4pruH2OFovdrEXRO3mtP1fZUbY3OE4oLVoAAnuLL3AxFpKKW70wNAeno69u3bh9TUVFRVVdV77Msvv1RJYETUspgZ6eOn6T0wYcMZpOSW4rmfovDba71hZWIgdmikRtzKSvNtvTMLP6y9ExwtdXcGtrn0bWMPqZ4EyTmlSMsvg4etqdgh1dH1fZUfpqyqBjujFb0fprL3AxFpMKVn4o8ePQp/f3+sX78eq1atwvHjx7Fx40b89NNPiImJUUOIRNRS2Jkb4ZcXguBgYYS4W8V4+edzqKjmtpW6qnYrq/820qrdyirkSqZIkVGt0soa7L6QAQCY0pNdulXB0tgA3e70/dDELvW1+yo7W9W/YONsZazz28vtv3gTxRU18LQ1xYA2mrXUgYjobkon8YsWLcKCBQtw+fJlGBsbY+fOnUhLS0NwcDCefvppdcRIRC2Ih60pfn4+CBZG+oi6no852y+wvFoHcSsr7bDv4k2UVNbA294MvX10txt5cwv2v1NSH5ctciQNGxHogpMLB2Hby72wZmJnbHu5F04uHKTTCTzwbyn95J6e0NPRagMi0g1KJ/GxsbGYNm0aAEBfXx/l5eUwNzfH8uXL8emnn6o8QCJqedq5WuK7ad1hKNXDoX9u4f29VyAITOZ0iTJbWZE4BEHA5ghFl+7JQUxqVKl2XfzppDxU1mhmtZEu7qv8IBfTCnA5oxCGUj083c1d7HCIiB5I6STezMysbh28i4sLkpKS6h7Lzc1VXWRE1KL1bm2H1RM7QyJRrMldczRB7JBIhbiVlea7lF6If24WwVBfDxOY1KhUe1dLOFgYoaxKhnPXb4sdDgF1F6xGdnCGnbmRyNEQET2Y0kl8r169cPLkSQDAyJEjMX/+fHz00Ud44YUX0KtXL5UHSEQt18gOLlg+JhAAsPpIQt2XLNJ+3MpK89XulT2qgwtszAxFjka3SCQSje5S39IUllVj/6WbAICpvdj7gYg0n9JJ/JdffomePXsCAJYtW4bBgwdjx44daNWqFX788UeVB0hELdv/9fLCG4N8AQBL9l5ByJUskSMiVeBWVpqtsLwa+y4qkpop7NKtFrVJfKiGrotvSf6ITkdFtRwBzhbo5sVtlIlI8ymVxMtkMqSnp8PTU/EH3czMDBs2bMClS5ewc+dOeHnx6iURqd6bQ/0wKcgDcgF4Y/sFRCbniR0SPaLarawA3JPIt4StrDTd7ruSmq6eTGrUoX8be+hJgPhbJbhZUC52OC2WIAh1VSdTenlBIuHvHCLSfEol8VKpFMOGDcPt21y/RUTNRyKR4MMxgRjazglVNXK89Ms5XMsqEjssekQteSsrTaZIahRduqf09NSJpEYmF3AmKQ97YzJwJilPI3Y9sDY1RGcPawAsqRfTmaQ8JOeUwsxQiqe6uIkdDhFRo+gr+4TAwEAkJyfD29tbHfEQETVIX6qHryd1wf/9GImz12/juZ+isHNGH7jbmIodGj2CEYEuGNrOGVEp+cguroCjhaKEnjPw4jl7/TYSsktgaijFWB1IakKuZGLZ/qv1dkNwsTLGB6PbiX6haKC/I6JTCxAal41JQVy2IIbNd2bhx3Rxg7mR0l+LiYhEofSa+BUrVmDBggU4cOAAMjMzUVRUVO9GRKQuxgZS/DCtB/yczHGrqBLTfopCfmmV2GHRI2ppW1lputrS4jGdXWFhbCByNI8m5EomZmyOvmc7w6zCCszYHI2QK5kiRaZQuy7+VGIeqmVyUWNpibKLKvD3P7cAAFN7ckkoEWkPpZP4kSNH4uLFi3jyySfh7u4OGxsb2NjYwNraGjY2XDdHROplZWqAn18IgquVMZJzSvH8prMoq6oROywinZBXUom/LiuaR04O0u6kRiYXsGz/VTRUOF9737L9V0Utre/gZgVbM0OUVNbg/A0uVWxu28+moUYuoKunNdq5WoodDhFRoyldN3T8+HF1xEFE1GguVib45cUgTNhwBhfTCvD6lmh8P607DKRKX5ckorv8cT4dVTI5OrlboYO7ldjhPJKolPx7ZuDvJgDILKxAVEo+ere2a77A7qKnJ8GANvbYE3MTYfE56OUjThwtUY1Mjm1Rit4P3FaOiLSN0kl8cHCwOuIgIlKKr6MFfnyuB6b8EIHQuBws3HkJq57upBNNuIjEIJcL2BpV29BO+5Oa7OL7J/BNOU5dBvo7Yk/MTcXvsREBosbSkhyPy0FmYQVsTA0wsgObaBKRdmnStFV4eDimTp2KPn36ICMjAwDw66+/4uTJkyoNjojoQbp52eDbyV0h1ZNgV3QGPgm5JnZIRFrrVFIubuSVwcJYH6M6aX9S42hh/PCDlDhOXfq3sYdEAsRmFuFWkbgXFFqSzRGK3g9Pd/eAsYFU5GiIiJSjdBK/c+dODB8+HCYmJoiOjkZlZSUAoLCwEB9//LHKAyQiepDBbZ2wclwHAMD/wpLx48kUkSMi0k61Sc34ru4wNdT+Lt1B3rZwsTLG/WpzJFB0qQ/ytm3OsO5hZ26Ejm6KpQvcaq55pOaV4USCYqwnc1cAItJCTepOv2HDBnz//fcwMPi3a23fvn0RHR2t0uCIiBrjme4eeGu4PwDgwwNXsTcmQ+SIiLRLVmEFjsRmAwAm99SNpEaqJ8EHo9sBwD2JfO3PH4xupxG7IQT7OwJgEt9ctkTdgCAoqiBa2ZuJHQ4RkdKUTuLj4uIwYMCAe+63srJCQUGBKmIiIlLa6wNbY3qfVgCABb9fRHgCvwwTNdaOs2mQyQUEtbKFn5OF2OGozIhAF6yf2hXOVvVL5p2tjLF+alfR94mvVbvVXHh8Dmq41ZxaVdbI8Pu5dABsaEdE2kvpejlnZ2ckJiaiVatW9e4/efIkfHx8VBUXEZFSJBIJloxqh9ySShy4lInXfj2P7a/01voO20TqViOTY/vZOw3teunGLPzdRgS6YGg7Z0Sl5CO7uAKOFooSek2Yga/V2cMaViYGKCyvxsX0AnTzErfEX5f9dTkL+aVVcLEyxuAAR7HDISJqEqVn4l9++WXMmTMHkZGRkEgkuHnzJrZs2YIFCxZgxowZ6oiRiKhR9PQkWPVMJ/T1tUNplQzTN0YhJbdU7LCINFptl25bM0OMCHQWOxy1kOpJ0Lu1HcZ0dkPv1nYalcADivj6t7EHAITGsYpInWp7P0zs4Ql9bktKRFpK6d9e77zzDiZPnozBgwejpKQEAwYMwEsvvYRXX30Vs2fPVkeMRESNZqQvxYap3dDe1RJ5pVWY9lOk6FtIEWmyLZF3unR3c4eRPrt0i2XgnXXxTOLV51pWEc7duA2pngQTgzzEDoeIqMmULqeXSCR477338NZbbyExMRElJSVo164dzM3N1REf3YdMJkN4eDgyMzPh4uKC/v37Qyrll68H4ZgpT1vHzMLYAJueD8L49aeRml+G6T+dxY5Xe8HC2ODhT35E2jpmYuKYKUeV45WWX1bXTG2SDnfp1obP2AA/xUz85YxC5JZUwt7cSNR4tGHMlFU7Cz+snROcLFW/taAujpm6ccyUxzFTnk6OmfAIUlNThdTU1Ec5hUYqLCwUAAiFhYVih9KgnTt3Cu7u7gKAupu7u7uwc+dOsUPTWBwz5enCmKXklAjdPvxb8Fp4QJj03RmhorpGra+nC2PW3DhmylH1eH36V6zgtfCAMPWHCBVHqjm06TM2cs0JwWvhAWHn+TRR49CmMWus4opqod37fwleCw8IJxNyVH5+XRwzdeOYKY9jpjxtG7PG5qFKJ/HV1dXC4sWLBUtLS0FPT0/Q09MTLC0thffee0+oqqpqcsCaRJOT+J07dwoSiaTeBxGAIJFIBIlEorEfSDFxzJSnS2N2Ka2g7ovb61vOCzKZXC2vo0tj1lw4ZspR9XhVVsvqLnL9dTlTTVGLS9s+Y7UXVd7YFi1aDNo2Zo3165nrgtfCA8Jjnx8X5HLV/h3Q1TFTJ46Z8jhmytPGMWtsHioRBEFo/Lw9MGPGDOzatQvLly9H7969AQBnzpzB0qVLMXbsWKxfv16Z02mkoqIiWFlZobCwEJaWlmKHU0cmk6FVq1ZIT09v8HGJRAJ3d3ekpKRof4mIinDMlKeLY3YyIRfPb4pCtUzA9D6t8MHodpBIVNfYShfHTN04ZspRx3gduHQTs7ZegJOlEU4uHAQDHWvypY2fsaiUfDzzvzOwMTXAucVDm70BnzaOWWMIgoDH14TjWlYxFj/RFi/1V91uSro6ZurEMVMex0x52jpmjc1Dlf6LvXXrVmzatAmvvvoqOnbsiI4dO+LVV1/Fjz/+iK1btyp1rpUrV6JHjx6wsLCAo6Mjxo4di7i4uHrHvPrqq2jdujVMTEzg4OCAMWPG4Nq1aw88ryAIWLJkCVxcXGBiYoIhQ4YgISFB2beqccLDw+/7QQQU7zstLQ3h4eHNGJVm45gpTxfHrF8be6x6pjMAYNPp61gXmqTS8+vimKkbx0w56hivLRGKbeWe7eGpcwk8oJ2fsa6e1rAw1sftsmpczihs9tfXxjFrjOjU27iWVQwjfT1M6Oau0nPr6pipE8dMeRwz5en6mCn9V9vIyOiePeIBwNvbG4aGhkqdKywsDDNnzkRERAQOHz6M6upqDBs2DKWl/24J1a1bN2zcuBGxsbE4dOgQBEHAsGHDIJPJ7nvezz77DGvXrsWGDRsQGRkJMzMzDB8+HBUV2t2hOjMzU6XHtQQcM+Xp6pg92ckVS0a1AwB8figOv51NU9m5dXXM1IljphxVj1didgnOJOdBTwJM7KGbXbq18TOmL9VDP9/areaym/31tXHMGmPznQtWozq6wtpUue+qD6OrY6ZOHDPlccyUp+tjpnQSP2vWLHz44YeorKysu6+yshIfffQRZs2apdS5QkJCMH36dLRv3x6dOnXCpk2bkJqaivPnz9cd88orr2DAgAFo1aoVunbtihUrViAtLQ3Xr19v8JyCIGD16tVYvHgxxowZg44dO+KXX37BzZs3sWfPHmXfrkZxcXFR6XEtAcdMebo8Zi/088Zrwa0BAIt2X8bR2FsqOa8uj5m6cMyUo+rx2halSGoGBTjB1dqkyXFpMm39jA30dwCAul0DmpO2jtmD5JdW4c9Lii/pU3upfgcGXRwzdeOYKY9jpjxdHzOl18Q/9dRTOHr0KIyMjNCpUycAwMWLF1FVVYXBgwfXO3bXrl1KBZOYmIg2bdrg8uXLCAwMvOfx0tJSLF68GHv37sW1a9canPlPTk5G69atceHCBXTu3Lnu/uDgYHTu3Blr1qy55zmVlZX1LkoUFRXBw8NDY9fEZ2RkoKF/Nk1d2yEmjpnydH3MBEHAgt8vYWd0OowN9LDlpZ7o5mX7SOfU9TFTB46ZclQ5XhXVMvT8+CgKy6ux8fkeeOzO/uS6Rls/Y5mF5ei98hgkEiB68VDYmKl25vhBtHXMHuS7E0n4+OA1tHe1xIHZ/VTaDwXQzTFTN46Z8jhmytPWMVPbmnhra2uMHz8eo0aNgoeHBzw8PDBq1CiMGzcOVlZW9W7KkMvlmDt3Lvr27XtPAr9u3TqYm5vD3Nwcf/31Fw4fPnzf0v2srCwAgJOTU737nZyc6h77r5UrV9aL28NDM0sLpVJp3UWI//4Rqv159erVGvVBFBvHTHm6PmYSiQSfjO+Ax/wdUFEtxwubziHhVvEjnVPXx0wdOGbKUeV4/XkpE4Xl1XC3McGANg6qD1ZDaOtnzMXKBAHOFhAEIDwxt1lfW1vH7H7kcgFbIhVVJ1N7eak8gQd0b8yaA8dMeRwz5en8mKmmGf6je+211wQvLy8hLe3evVELCgqE+Ph4ISwsTBg9erTQtWtXoby8vMHznDp1SgAg3Lx5s979Tz/9tPDMM880+JyKigqhsLCw7paWlqaxW8wJQsP7HXp4eGjkNgmagmOmPF0fs9LKamHMNycFr4UHhF4fHxFuFpQ98jl1fczUgWOmHFWM11PfKj733xxLUGOkmkMbP2Mf/3lV8Fp4QHhzxwVRXl8bx6whYXHZgtfCA0LgkhChtLJara+lK2PWnDhmyuOYKU/bxkxtW8ypw6xZs7B3716cOHEC3t7eDzy2qqoKNjY2+OGHHzBp0qR7Hm9KOf1/aeoWc3eTyWQIDw9HZmYmXFxc0L9/f+29ktRMOGbK0/Uxyy+twoQNp5GcU4o2jub4/bXej9z0SNfHTB04Zsp5lPG6erMII9eGQ19PgjOLBsPBwkjN0WoGbfuMnU7KxeTvI2Fvboiod4dAr5m3mgO0b8wa8sov5/D31Vt4rrcXlo25d5mmqunCmDU3jpnyOGbK06Yxa2weqnQSn5eXhyVLluD48ePIzs6GXC6v93h+fn6jzyUIAmbPno3du3cjNDQUbdq0eehzKisrYWNjg3Xr1mH69OkNntPV1RULFizA/PnzASgGw9HREZs2bcLEiRMf+hrakMQTkWqk3y7D+PWncauoEt29bLD5pZ4wNtDMX+xEj2rxnsvYHJGKJzq64NvJXcUOh+6jqkaOLsv/RmmVDAdm90Ogm3JLFEnRW6DvJ8cgF4C/3xwAPycLsUMiInqoxuah+sqe+P/+7/+QmJiIF198EU5OTo+0vmjmzJnYunUr9u7dCwsLi7o161ZWVjAxMUFycjJ27NiBYcOGwcHBAenp6fjkk09gYmKCkSNH1p0nICAAK1euxFNPPQWJRIK5c+dixYoVaNOmDby9vfH+++/D1dUVY8eObXKsRKSb3G1M8fMLQXh6wxmcu3Ebs7ZewIapXaGvg/tmU8tWUlmD3dEZAIApPVXfpZtUx1BfD3187XH46i2ExmUziW+CbVFpkAtAkLctE3gi0jlKJ/Hh4eE4efJkXWf6R7F+/XoAwMCBA+vdv3HjRkyfPh3GxsYIDw/H6tWrcfv2bTg5OWHAgAE4ffo0HB3/7aYbFxeHwsLCup/ffvttlJaW4pVXXkFBQQH69euHkJAQGBsbP3LMRKR7Apwt8cO07vi/n6JwJPYWFu+5gpXjOqilCRKRWPbGZKC0SgYfezP09rETOxx6iIH+Djh89RbC4nMwa9DDKxXpX9UyObZH/dvQjohI1yidxAcEBKC8vFwlL/6wSn5XV1ccPHhQ6fNIJBIsX74cy5cvf6T4iKjl6Oljh68ndcGMzeex/WwaHCyMMH+Yv9hhEamEIAjYHKFIaib39OQFKi0Q7KfYOSA6tQCF5dWwMjEQOSLtceTqLWQXV8Le3BAj2juLHQ4RkcopXS+6bt06vPfeewgLC0NeXh6Kiorq3YiItNXw9s5YMbYDAODrY4n49cx1cQMiUpGYtALEZhbBUF8PE7q5ix0ONYK7jSl8Hc0hkws41cxbzWm7zZE3AADPdPeAoT6XRhGR7mnSPvFFRUUYNGgQHB0dYWNjAxsbG1hbW8PGxkYdMRIRNZvJPT0xd4iidHXJvn9w8HKmyBERPbravbJHdXR55B0YqPnUzsaHxmWLHIn2SM4pwanEPEgkwKQg9n4gIt2kdDn9lClTYGBggK1btz5yYzsiIk00Z3Ab5BRXYktkKuZuj4G1qQH6tLYXOyyiJiksq8b+izcBAFN6cn2wNhno74AfT6YgLD4HgiDwO1cj1F6weszfER62piJHQ0SkHkon8VeuXMGFCxfg78+1okSkmyQSCZaPCUReSRVC/snCq7+cx45Xe6OdK7ecJO2zMzodlTVyBDhboKuntdjhkBJ6tLKFiYEUt4oqcS2rGG1d+DvoQSqqZfjjfDoAYGovzsITke5Supy+e/fuSEtLU0csREQaQ6onweqJnRHkbYviyho8tzEKafllYodFpBRBELDlzvrgKb28OJOrZYwNpOjdWrGTQGhcjsjRaL79F2+isLwabtYmCPZzfPgTiIi0lNJJ/OzZszFnzhxs2rQJ58+fx6VLl+rdiIh0hbGBFN9P644AZwvkFFdi2k9RyCupFDssokaLTMlHUk4pTA2lGNvZVexwqAlq18WHxXNd/MNsjvx3BwapHi9YEZHuUrqc/tlnnwUAvPDCC3X3SSSSurVaMplMddEREYnMysQAP78QhHHrTiMltxQvbDqLrS/3gpmR0r8+iZpd7frgsV3cYGHMLcq00UB/RRJ/7vptFFdU89/xPq5kFOJiWgEMpBI8091D7HCIiNRK6W+hKSkp6oiDiEhjOVka45cXgzBh/WlcTC/Ea5vP48fnenDrItJouSWVCLmi2F1hMrt0ay0vOzO0sjPF9bwynE7Kw3Due96g2mUjw9s7w8HCSORoiIjUS+lvoF5eXg+8ERHpotYO5vhpeg+YGEgRnpCLt/+4CLlcEDssovv6/Vw6qmUCOntYI9DNSuxw6BEM9Fes7+a6+IYVVVRjzwXFDgxTe/G7KBHpviZNI/3666/o27cvXF1dceOG4srn6tWrsXfvXpUGR0SkSbp42mDd1K7Q15NgT8xNrPwrVuyQiBoklwvYGnWnoV1PzsJru+A7JfUn7mw1R/Xtjs5AebUMbRzN0dPbVuxwiIjUTukkfv369Zg3bx5GjhyJgoKCujXw1tbWWL16tarjIyLSKI/5O+LT8R0BAN+Hp+C7E0kiR0R0r/DEXKTll8PSWB+jOrKhnbbr5W0HQ309ZBSUIzG7ROxwNIogCNgc8e8FK+7AQEQtgdJJ/Ndff43vv/8e7733HqRSad393bt3x+XLl1UaHBGRJhrfzR2LHg8AAHx88Bp2RaeLHBFRfVvuJDXju7nDxFD6kKNJ05kYStHLR7HVXFg8S+rvFpWSj4TsEpgYSDGum7vY4RARNQulk/iUlBR06dLlnvuNjIxQWlqqkqCIiDTdKwN88GI/bwDA239cQmgct38izZBZWI6j1xSfR5bS647area4Lr6+2m3lxnR2hSU79xNRC6F0Eu/t7Y2YmJh77g8JCUHbtm1VERMRkcaTSCR4b2RbjOnsihq5gNe3RCMmrUDssIiw42waZHIBPb1t4etoIXY4pCK1W81FpeSjrKpG5Gg0Q07xvzswsKEdEbUkjU7ily9fjrKyMsybNw8zZ87Ejh07IAgCoqKi8NFHH2HRokV4++231RkrEZFG0dOT4PMJndC/jT3KqmR4YdNZJOdwvSqJp0Ymx/aoNADAFCY1OsXH3gzuNiaokslxJilP7HA0wm/n0lAtE9CJOzAQUQvT6CR+2bJlKCkpwUsvvYRPP/0UixcvRllZGSZPnoz169djzZo1mDhxojpjJSLSOIb6elg/tRs6uFkhv7QK036KQnZRhdhhUQt17Fo2sooqYGdmiOHtncQOh1RIIpHUzcazpB6QyQVsvVNKP5XLRoiohWl0En/3liZTpkxBQkICSkpKkJWVhfT0dLz44otqCZCISNOZG+lj4/M90MrOFOm3yzHtpygUVVSLHRa1QFvuJDVPd/eAkT4b2umaYL87+8XHZ7f4rebC4rORUVAOKxMDjO7EHRiIqGVRak38f7ftMDU1haOjo0oDIiLSRvbmRvjlhZ6wNzfCtaxiDPvyBNYcScAtzspTM0nNK8OJBMUM7eQgzkzqoj6t7WAglSAtvxwpuS27mfDmCMUFqwnd3GFswAtWRNSyKJXE+/n5wdbW9oE3IqKWytPOFD+/0AOOFkbIKqrAV0fi0eeTY3jt1/M4mZALubxlz5yRem2NSoUgAAP8HOBpZyp2OKQGZkb66NFK8V2rJW81l5ZfhuNx3IGBiFoufWUOXrZsGays2DiEiOh+2rtaIXzhYwi5koXNETdw9vpthPyThZB/suBtb4bJQZ6Y0M0dNmaGYodKOqSyRobfz91paMekRqcN9HfA6aQ8hMbl4Pm+3mKHI4ptdy5Y9fW1g4+DudjhEBE1O6WS+IkTJ7J8nojoIYz0pRjT2Q1jOrvhWlYRtkamYld0BlJyS/HRwVh8/nccRnVwwZReXujqaX3PUiUiZR365xbySqvgZGmEwQH8O63LBvo74uOD1xCRnIeKalmLKyWvqpHjtzsXrKb25A4MRNQyNbqcnl8yiYiUF+BsieVjAhH57mB8/FQHtHOxRFWNHLsuZGD8+tMYufYkNkfcQEkl932mptsScQMAMLGHJ/SlSq2UIy3TxtEcLlbGqKyRIyK55W01F/JPFnJLquBoYYQh7bgDAxG1TE3qTk9ERMoxM9LH5J6e+PONftj9eh9M6OYOI309xGYWYfGeK+j50RG8t/syYjOLxA6VtExidjEiU/KhJwEmBnmIHQ6p2d1bzbXEdfH/XrDygAEvWBFRC9Xo335yuZyl9EREj0gikaCLpw2+eLoTIt8djMVPtIWPvRlKq2TYEpmKx9eEY/z609h9IR0V1TKxwyUtULut3OC2TnCxMhE5GmoOwX53kvgWtl98wq27L1ix9wMRtVxKrYknIiLVsTY1xEv9ffBiP2+cScrDlshUHPonC+dv3Mb5G7exfP9VPN3dA5ODPNHK3kzscEkDlVfJsPN8OgBgai+uD24p+vjaQ19PguTcUqTmlbWY3QjuvmDlas0LVkTUcrEOiYhIZBKJBH187fHtlK44/c4gzB/qB1crY9wuq8Z3J5Ix8Iv/b+/O46Ms7/3/vyfbZN8gCyErW9hlC0tRAi4EtYpbtUgqKNWqcJBzqra2p8Wj9Uf14MOjv1rPUgQVXEDLKXIqSFkisgQIm2xhCyQhhJB1Qjay3N8/QqYdExAks2Vez8dj/sh9X3Ndnwsuwnzmuq/r2qSfLMrWmgPFampucXa4cCGr9xfJUt+khMgA3dSnu7PDgYOE+vtqRFKEJCnraImTo3GM2otNfGEFAJeQxAOAC4kO9dc/3dJXm39xs/70yChNTI2SySRtPlaqJ5fmaPyrG/TGuqMqrqp3dqhwAW0zkw+PTpKXFxvQepK2dfGbPOSR+lV7i1Td0KSkboF8YQXA45HEA4AL8vYy6daBMVry6Gh99dwkPTWxt7oF+emcpUFvrj+m8a9u0BPv79JXR8+rpYWNRz3RgTNV2ltQKV9vk340Kt7Z4cDB2tbFbz1Rpoamrr1/hmEYWprduqHdw6MT+cIKgMcjiQcAF5cQGahfTOmvrS/crLemDdfolEg1txj68tA5PfLuDk16fZP+K+uEymsuOjtUONCHO1pn4acM7qHuwWYnRwNHG9gjVNEhZtU1NmtnXoWzw7GrfYVVOnDGIj8fL/1oFCcwAABJPAC4CbOPt+6+IU7LfzZOX/7zBM38QbJCzD46XVarBV8c0dj/b73mfbxHu06VcyxoF3ehoUl/2XNGkjR9DLt0eyKTyfT3Xeq7+Lr4pZeOlbtzSA9FBvk5ORoAcD6SeABwQ/1iQvTi3YOU/etb9Or9QzSkZ5guNrfof/cW6YH/3Kbb39ysD7adUnV9o7NDRSepaWjS18dK9ca6o8r8U7ZqLjard1SQxqREOjs0OEm6B6yLr6y9qM/3FUmSMsfyhRUASBwxBwBuLdDPRw+lJeqhtETtK6jUsuzTWrWvSEeKq/WbvxzUgi+OaOqwnsocm6hBcWHODhfXoOxCg3aeqtDOU+XadapcB4osav7W/geP39RLJhPrgz3VTX2i5GWSjpVc0JnKOvXsgseufZpTqIamFvWPDdGIxAhnhwMALoEkHgC6iBsSwnVDQrh+fcdAfba7UMuyT+vE+Rp9tCNfH+3I1/DEcGWOSdKdQ3vI39fb2eHiHxiGocKKOu3IK9fOU62vE+dr2pXrGR6gtOQIjUqO1NhekeoTHeKEaOEqwgJ9NTwxQjmnK5SVe14Pd7GlFYZh6MNLJzBkjk3iCysAuIQkHgC6mLBAXz12Y4oeHZ+s7SfLtSz7tNYeLNae/Ertya/Uy/93SA+MiNfDYxLVKyrY2eF6pJYWQ7nnqrXzVLl25JVr16kKFVvaHxvYLyZYacmRGp0SqVHJkV1yphXXZ2K/qNYk/mhJl0vit54o08nSGgX5eeue4T2dHQ4AuAySeADookwmk8b17qZxvbvpfHWDlu8q0IfZ+TpTWac/fZ2nP32dp/F9uilzTJJuHRgjX2+2SbGXhqZmfVNYpR2nyrUzr1y7Tleour7JpoyPl0lD4sM0OjlSacmRGpUcofBANvHClaWnRun1dUe15XiZLja1yM+n6/w7btvQ7t4RPRVs5iMrALThNyIAeICoELNmT+qjJ9N7K+toiZZuz9fG3BJtOV6mLcfLFB1i1o/TEvTj0YmKY7b3ulnqG5VzukK7TpVrZ16F9hZW6mJTi02ZID9vjUiKUNqlpH1YQrgC/FjmgGszOC5M3YL8VFZzUbvzKzS2Vzdnh9Qpzlnq9eWhc5JaH6UHAPwdSTwAeBBvL5Nu7h+jm/vHqLCiVh/tyNcnOwtUUt2gtzYc1x82HtfN/WOUOTZRE/pGycuLNahXo8RSrx2nWh+L35FXriPFFn1rDzp1D/bTqKRIpaVEanRypAb0CJEPTz/gOnl5mTShX5RW7jmjTbnnu0wS//GOAjW3GBqVFKH+saHODgcAXApJPAB4qPiIQD2X0V/P3NJPXx4q1tLtp7X9ZLn+dvic/nb4nBIiA/Tw6CQ9OCpe3YLNzg7XZRiGobzSmksb0LXuHn+6rLZduaRugZdm2Vtn21O6B7ExF+xiYmpbEl+iX97e39nhXLem5hZ9tKN1Q7vpHCsHAO2QxAOAh/Pz8dIPh8bph0PjdLykWsuy8/VpTqEKyuv06pojemPdUU0ZHKvMsUlKS47wuES0qblFh89WX5ppb03cSy802JQxmaQBsaGXNqBrTdpjQv2dFDE8zU19o2QySUeKq3XOUu/2Y2/DkRIVW+oVEeir2wf3cHY4AOBySOIBAFZ9okM0/65Bej6jvz7fX6Rl209rX2GVVu0r0qp9ReoXE6zpY5J074ieCvX3dXa4dlHf2Kw9+ZXWo952n65QzcVmmzJ+Pl4aFh+utJTWhH1EUkSX/fOA64sM8tPQ+HDtK6hUVu55PZiW4OyQrsvSS8fKPTgqgeMwAaADJPEAgHYC/Lz14KgEPTgqQd8UVmlZ9mn9ZW+Rjp67oPmrDur3XxzR1GFxyhybpME9w5wd7nWprL2oXZcei99xqlwHzlSpsdl2QXuIv49GJUVY17MPiQ+T2YfkAq5jYr+o1iT+qHsn8afLavTV0fOS1OWOzAOAzkISDwC4oiHxYfp9/FC9cMcArdxdqGXZ+TpWckEf7yzQxzsLdENCuKaPSdRdQ+PcYnf1M5V12nXpfPadp8p19NyFdmViQs3W89nTkiOVGhPCJn9waempUXpz/TFtPnZeTc0tbrtp4oeXZuEn9ItSUrcgJ0cDAK6JJB4AcFXCAnw1c3yKZvwgWTvyyrUsO19fHDirfQWV2ldQqd+tPqQHRibo4TGJ6hMd7OxwJUktLYaOn7/Q+mh8Xut69jOVde3K9Y4Ksh71NjolUvERAR639h/u7Yb4cIUH+qqytlF7Cyo1KjnS2SFds/rGZi3fVSBJymQWHgAuiyQeAHBNTCaTxvTqpjG9uqn0wkAt31WgD7PzVVhRp3e35OndLXka16ubMscm6baBMfLzcdyM4MWmFh0oqro0016hXafLVVnbaFPG28ukwXGhSkuO1KhLu8ez+z7cnbeXSTf1jdLn+4q0Kfe8WybxXxw4q4raRvUI89fN/aOdHQ4AuCySeADA99Y92KynJ/bRkxN6K+vYeS3bflobjpRo28kybTtZpu7BZv04LUHTxiSqZ3hAp7df09Ck3fkVrUe95ZVrT0GF6htbbMoE+HpreGK4dZZ9WEK4gsz894euZ2K/1iQ+6+h5PZuR6uxwrtnS7a2P0k8bnei2ywEAwBH4FAMAuG5eXiZNSo3WpNRonams08c78vXxzgKdr27QHzYe1x83Hdek1Ghljk3ShH5R8v6e68tLLzTYzLIfLLKoucV2E7qIQF+NSm7dgC4tJVKD4kLlS0IADzChX5Qk6ZszVTpf3aCoEPd5wuTwWYtyTlfIx8ukH7vxxnwA4Agk8QCATtUzPEA/n5yqubf01bpD57R0+2ltPVGm9UdKtP5IieIjAjRtdKIeHJVwxSTDMAwVlNdph3U9e7lOltZ02F7bBnSjUyLUq3swm9DBI0WFmDW4Z6gOnLFo87Hzum9EvLNDumpLt5+WJE0eFKNoNz/nHgDszalJ/IIFC/TnP/9ZR44cUUBAgH7wgx/o1VdfVWpq6yNg5eXlmj9/vr788kvl5+crKipK99xzj15++WWFhV3+SKOZM2fqvffes7mWkZGhNWvW2LU/AIC/8/X20h1DeuiOIT104vwFfZidr09zClVYUad/X5ur//jbUWUMilXm2CSNSYlUiyHlFldbj3rbdapc5ywNNnWaTFJqTIhGJUdYN6KLs8Nj+oC7Su8XpQNnLNqU6z5J/IWGJv3vnjOSpMwxSU6OBgBcn1OT+KysLM2ePVtpaWlqamrSr371K02ePFmHDh1SUFCQioqKVFRUpIULF2rgwIE6ffq0nnzySRUVFenTTz+9Yt1TpkzR4sWLrT+bze7zSBkAdDW9o4L1mx8O1HMZqVq9/6yWbj+tvQWVWr3/rFbvP6vEyEBV1F5UdX2Tzft8vU0aGh+uUckRGp0cqVFJkQoL9HVSLwDXNzE1Wm9vPKGvjp1Xc4vxvZeuONLKPWdUc7FZvaKCNK53N2eHAwAuz6lJ/LdnxpcsWaLo6Gjl5ORowoQJGjx4sD777DPr/d69e+uVV15RZmammpqa5ONz+fDNZrNiY2PtFjsA4Nr5+3rrgZHxemBkvA6cqdKy7Hz9Ze8Z5ZfXSpKCzT4akRSh0ckRGpXcugmdv6/rnz0PuIrhCeEK8fdRZW2j9hdWanhihLNDuiLDMLTs0qP008ckcbQjAFwFl1oTX1VVJUmKjLz8sShVVVUKDQ29YgIvSZs2bVJ0dLQiIiJ0880363e/+526dev4292GhgY1NPz9kU2LxfI9ogcAXIvBPcO04L4heuGO/tp2okw9wwPUPzaEXamB6+Dj7aWb+nbXX78p1qbc8y6fxOecrtCR4mr5+3rpATd5/B8AnM1lPim1tLRo3rx5Gj9+vAYPHtxhmdLSUr388st64oknrljXlClT9P7772v9+vV69dVXlZWVpdtvv13Nzc0dll+wYIHCwsKsr4QEdkUFAEcJ9fdVxqBYDe4ZRgIPdIKJ/VrPWM86et7JkXy3tg3t7hoax1IZALhKJsMwjO8uZn9PPfWUvvjiC3399deKj2//TazFYtFtt92myMhIrVq1Sr6+V/+L/uTJk+rdu7f+9re/6ZZbbml3v6OZ+ISEBOusPwAAgLsorqrX2AXrZTJJOf96myKD/JwdUofKLjRo3IINutjcor/MHq8bEsKdHRIAOJXFYlFYWNh35qEuMeUxZ84crV69Whs3buwwga+urtaUKVMUEhKilStXXlMCL0m9evVS9+7ddfz48Q7vm81mhYaG2rwAAADcUWyYv/rHhsgwpM3HXHc2/tOcQl1sbtHgnqEaGn/5U4cAALacmsQbhqE5c+Zo5cqV2rBhg1JSUtqVsVgsmjx5svz8/LRq1Sr5+1/72aGFhYUqKytTjx49OiNsAAAAl5aeGiVJysp1zSS+pcXQhzvyJbUeK8eGdgBw9ZyaxM+ePVtLly7Vhx9+qJCQEBUXF6u4uFh1dXWS/p7A19TUaNGiRbJYLNYy/7i+vX///lq5cqUk6cKFC3ruuee0fft2nTp1SuvXr9fUqVPVp08fZWRkOKWfAAAAjtS2Lv6rY+fV0uISKydtbD5eqtNltQrx99Hdw+KcHQ4AuBWn7k7/zjvvSJImTpxoc33x4sWaOXOmdu/erezsbElSnz59bMrk5eUpOTlZkpSbm2vd2d7b21v79+/Xe++9p8rKSsXFxWny5Ml6+eWXOSseAAB4hJFJEQry81bphYs6WGTREBd7XL1tQ7v7R8Qr0M+lDksCAJfn1N+a37Wn3sSJE7+zzLfrCQgI0Nq1a687NgAAAHfl5+Ol8X2668tD57Qpt8SlkviiyjqtP3xOkjR9TKKTowEA9+MSG9sBAACgc1nXxbvYUXMf78hXiyGNSYlU35gQZ4cDAG6HJB4AAKALmpjaui5+d36FqmobnRxNq8bmFn28s0CSlDk2ycnRAIB7IokHAADognqGB6hvdLBaDOnr46XODkeStO7QOZVUN6h7sFkZg2KdHQ4AuCWSeAAAgC4qvV/rI/WbckucHEmrtg3tHkqLl58PH0MB4PvgtycAAEAX1fZIfdbR81e1WbA9nTh/QVtPlMlkkqaNZkM7APi+SOIBAAC6qLSUCAX4equkukGHz1Y7NZZl2/MlSTenRis+ItCpsQCAOyOJBwAA6KLMPt76Qe9ukpy7S33dxWZ9msOGdgDQGUjiAQAAurC2o+acuS7+8/1FstQ3KT4iQBMurdMHAHw/JPEAAABd2MR+revic05XqLreOUfNLbu0od3DYxLl7WVySgwA0FWQxAMAAHRhid0CldI9SE0thrYcL3N4+98UVmlfYZV8vU16cFSCw9sHgK6GJB4AAKCLaztqLuuo4x+pX5bdOgt/++Ae6h5sdnj7ANDVkMQDAAB0cW3r4rNyHXvUnKW+UX/ZWyRJmj6GY+UAoDOQxAMAAHRx43p1k9nHS0VV9TpWcsFh7f45p1B1jc3qFxOs0SmRDmsXALoykngAAIAuzt/XW2N7XTpqLtcxR80ZhqGl2a1nw08fkySTiQ3tAKAzkMQDAAB4gLZ18ZsctC4+O69cx0suKMDXW/eO6OmQNgHAE5DEAwAAeICJl9bF78yrUE1Dk93bW3rpWLl7hscp1N/X7u0BgKcgiQcAAPAAKd2DlBAZoIvNLdp2wr5HzZ2vbtDag8WSWh+lBwB0HpJ4AAAAD2AymTSxX7QkKeuofdfFL99VoMZmQ8MSwjW4Z5hd2wIAT0MSDwAA4CH+cV28vY6aa24x9OGlDe0yxzILDwCdjSQeAADAQ4zr3U1+3l4qKK9TXmmNXdrYlFuiM5V1Cgvw1Q+H9rBLGwDgyUjiAQAAPESQ2UdpKRGSpE12OmqubUO7H42Ml7+vt13aAABPRhIPAADgQdrWxW+yw7r4gvJaa73TeZQeAOyCJB4AAMCDtB01l32yTPWNzZ1a94c78mUY0o19uiule1Cn1g0AaEUSDwAA4EH6RAcrLsxfDU0t2nay846aa2hq1vKdBZKkzLGJnVYvAMAWSTwAAIAHMZlMSk+9dNRcJ66LX3OgWGU1FxUTatatA2I6rV4AgC2SeAAAAA/TdtRcZ54Xv2x767FyP05LlI83HzEBwF74DQsAAOBhxvfpJh8vk/JKa3S67PqPmjt6rlo7TpXL28ukaaN5lB4A7IkkHgAAwMOE+PtqZFLrUXOdMRu/7NKxcrf0j1ZsmP911wcAuDySeAAAAA80sZPWxdc0NOnPu89IkjI5Vg4A7I4kHgAAwAO1rYvfeuL6jppbta9I1Q1NSuoWqBv7dO+s8AAAl0ESDwAA4IEG9AhRdIhZdY3N2nWq4nvVYRiGll56lH76mER5eZk6M0QAQAdI4gEAADyQyWSyzsZvyi35XnXsLajUwSKL/Hy89KORCZ0ZHgDgMkjiAQAAPFTbuvhN33Nzu6WXjpX74ZAeigjy67S4AACXRxIPAADgoW7s213eXiYdL7mgworaa3pvZe1Frd5fJEmazoZ2AOAwJPEAAAAeKizAV8MTwiVd+1Fzn+YUqqGpRQN6hGpEYnjnBwcA6BBJPAAAgAebmNq6Lv5ajppraTG0LLv1UfrMsYkymdjQDgAchSQeAADAg6X3a10Xv+V4qS42tVzVe7aeKFNeaY2CzT66Z1hPe4YHAPgWkngAAAAPNiguVN2D/VRzsVk5p6/uqLm2Y+XuHd5TQWYfe4YHAPgWkngAAAAP5uVl0oS+l46aO/rdR80VV9Vr3eFzkqRMNrQDAIcjiQcAAPBw6dewLv7jnflqbjGUlhyh1NgQe4cGAPgWkngAAAAPd1PfKJlM0pHiahVX1V+2XFNziz7eUSCJWXgAcBaSeAAAAA8XGeSnG+LDJUlfXeGoufVHSlRsqVe3ID9NGRzroOgAAP+IJB4AAADWo+autC6+bUO7H41KkNnH2yFxAQBskcQDAABA6f1ak/jNx0rV1Nz+qLlTpTXafKxUJpP08OhER4cHALiEJB4AAAAaGh+uiEBfVdc3aU9BZbv7H+7IlyRN6BulxG6BDo4OANCGJB4AAADy9jLppraj5nJtH6mvb2zWil1saAcArsCpSfyCBQuUlpamkJAQRUdH65577lFubq71fnl5uf7pn/5JqampCggIUGJioubOnauqqqor1msYhn7729+qR48eCggI0K233qpjx47ZuzsAAABurW1dfNa3Nrf76zdnVVHbqLgwf93cP9oZoQEALnFqEp+VlaXZs2dr+/btWrdunRobGzV58mTV1NRIkoqKilRUVKSFCxfqwIEDWrJkidasWaNZs2Zdsd7XXntNb731lv7zP/9T2dnZCgoKUkZGhurrL39kCgAAgKdrm4k/cMaikuq/f25q29Bu2uhEeXuZnBIbAKCVyTAMw9lBtDl//ryio6OVlZWlCRMmdFhmxYoVyszMVE1NjXx8fNrdNwxDcXFx+vnPf65nn31WklRVVaWYmBgtWbJEP/7xj78zDovForCwMFVVVSk0NPT6OgUAAOBG7vr/v9Y3Z6r0+o9u0P0j43WoyKI73tosHy+Ttr5ws6JD/J0dIgB0SVebh7rUmvi2x+QjIyOvWCY0NLTDBF6S8vLyVFxcrFtvvdV6LSwsTGPGjNG2bds6fE9DQ4MsFovNCwAAwBO17VK/6dIj9UuzW2fhMwbFksADgAtwmSS+paVF8+bN0/jx4zV48OAOy5SWlurll1/WE088cdl6iouLJUkxMTE212NiYqz3vm3BggUKCwuzvhISEr5nLwAAANxb27r4zcfOq6quUf+754wkafpYjpUDAFfgMkn87NmzdeDAAX388ccd3rdYLLrzzjs1cOBAvfjii53a9gsvvKCqqirrq6CgoFPrBwAAcBfDEsIV6u+jytpG/dvnB1V7sVm9o4I0rlc3Z4cGAJCLJPFz5szR6tWrtXHjRsXHx7e7X11drSlTpigkJEQrV66Ur6/vZeuKjY2VJJ07d87m+rlz56z3vs1sNis0NNTmBQAA4Il8vL2sG9z9efelWfgxSTKZ2NAOAFyBU5N4wzA0Z84crVy5Uhs2bFBKSkq7MhaLRZMnT5afn59WrVolf/8rr8VKSUlRbGys1q9fb1NHdna2xo0b1+l9AAAA6GrSLz1SL0n+vl66f2T7SRYAgHM4NYmfPXu2li5dqg8//FAhISEqLi5WcXGx6urqJP09ga+pqdGiRYtksVisZZqbm6319O/fXytXrpQkmUwmzZs3T7/73e+0atUqffPNN3rkkUcUFxene+65xxndBAAAcCttm9tJ0t03xCks4PJPQQIAHKvjLd4d5J133pEkTZw40eb64sWLNXPmTO3evVvZ2dmSpD59+tiUycvLU3JysiQpNzfXurO9JD3//POqqanRE088ocrKSt14441as2bNd87iAwAAQIoJ9deYlEjtya/UjB8kOzscAMA/cKlz4l0F58QDAABPV13fqMraRiVEBjo7FADwCFebhzp1Jh4AAACuKcTfVyH+PEYPAK7GJXanBwAAAAAA340kHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATPs4OwBUZhiFJslgsTo4EAAAAAOAJ2vLPtnz0ckjiO1BdXS1JSkhIcHIkAAAAAABPUl1drbCwsMveNxnfleZ7oJaWFhUVFSkkJEQmk8nZ4VyWxWJRQkKCCgoKFBoa6uxw0EUxzuAIjDPYG2MMjsA4gyMwzrouwzBUXV2tuLg4eXldfuU7M/Ed8PLyUnx8vLPDuGqhoaH8A4bdMc7gCIwz2BtjDI7AOIMjMM66pivNwLdhYzsAAAAAANwESTwAAAAAAG6CJN6Nmc1mzZ8/X2az2dmhoAtjnMERGGewN8YYHIFxBkdgnIGN7QAAAAAAcBPMxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJvJMtWLBAaWlpCgkJUXR0tO655x7l5ubalKmvr9fs2bPVrVs3BQcH6/7779e5c+dsysydO1cjR46U2WzWsGHDOmxr//79uummm+Tv76+EhAS99tpr9uoWXIijxtimTZs0depU9ejRQ0FBQRo2bJiWLVtmz67BhTjyd1mb48ePKyQkROHh4Z3cG7gqR44zwzC0cOFC9evXT2azWT179tQrr7xir67BRThyjK1du1Zjx45VSEiIoqKidP/99+vUqVN26hlcSWeMs3379mnatGlKSEhQQECABgwYoDfffLNdW5s2bdKIESNkNpvVp08fLVmyxN7dgwOQxDtZVlaWZs+ere3bt2vdunVqbGzU5MmTVVNTYy3zz//8z/r888+1YsUKZWVlqaioSPfdd1+7uh577DE99NBDHbZjsVg0efJkJSUlKScnR//+7/+uF198Uf/93/9tt77BNThqjG3dulVDhw7VZ599pv379+vRRx/VI488otWrV9utb3AdjhpnbRobGzVt2jTddNNNnd4XuC5HjrNnnnlGf/rTn7Rw4UIdOXJEq1at0ujRo+3SL7gOR42xvLw8TZ06VTfffLP27t2rtWvXqrS0tMN60PV0xjjLyclRdHS0li5dqoMHD+rXv/61XnjhBf3hD3+wlsnLy9Odd96pSZMmae/evZo3b55++tOfau3atQ7tL+zAgEspKSkxJBlZWVmGYRhGZWWl4evra6xYscJa5vDhw4YkY9u2be3eP3/+fOOGG25od/2Pf/yjERERYTQ0NFiv/eIXvzBSU1M7vxNwafYaYx254447jEcffbRT4oZ7sfc4e/75543MzExj8eLFRlhYWGeHDzdhr3F26NAhw8fHxzhy5IjdYod7sNcYW7FiheHj42M0Nzdbr61atcowmUzGxYsXO78jcGnXO87aPP3008akSZOsPz///PPGoEGDbMo89NBDRkZGRif3AI7GTLyLqaqqkiRFRkZKav2WrbGxUbfeequ1TP/+/ZWYmKht27Zddb3btm3ThAkT5OfnZ72WkZGh3NxcVVRUdFL0cAf2GmOXa6utHXgWe46zDRs2aMWKFXr77bc7L2C4JXuNs88//1y9evXS6tWrlZKSouTkZP30pz9VeXl553YALs9eY2zkyJHy8vLS4sWL1dzcrKqqKn3wwQe69dZb5evr27mdgMvrrHH27c9d27Zts6lDav38f72f7+B8JPEupKWlRfPmzdP48eM1ePBgSVJxcbH8/PzarfmMiYlRcXHxVdddXFysmJiYdnW03YNnsOcY+7bly5dr586devTRR68nZLghe46zsrIyzZw5U0uWLFFoaGhnhg03Y89xdvLkSZ0+fVorVqzQ+++/ryVLlignJ0cPPPBAZ3YBLs6eYywlJUVffvmlfvWrX8lsNis8PFyFhYVavnx5Z3YBbqCzxtnWrVv1ySef6IknnrBeu9znf4vForq6us7tCBzKx9kB4O9mz56tAwcO6Ouvv3Z2KOiiHDXGNm7cqEcffVT/8z//o0GDBtm1Lbgee46zxx9/XA8//LAmTJjQ6XXDvdhznLW0tKihoUHvv/+++vXrJ0latGiRRo4cqdzcXKWmpnZ6m3A99hxjxcXFevzxxzVjxgxNmzZN1dXV+u1vf6sHHnhA69atk8lk6vQ24Zo6Y5wdOHBAU6dO1fz58zV58uROjA6uipl4FzFnzhytXr1aGzduVHx8vPV6bGysLl68qMrKSpvy586dU2xs7FXXHxsb227n1Lafr6UeuC97j7E2WVlZuuuuu/TGG2/okUceud6w4WbsPc42bNighQsXysfHRz4+Ppo1a5aqqqrk4+Ojd999t7O6ARdn73HWo0cP+fj4WBN4SRowYIAkKT8///qCh1uw9xh7++23FRYWptdee03Dhw/XhAkTtHTpUq1fv17Z2dmd1Q24uM4YZ4cOHdItt9yiJ554Qv/6r/9qc+9yn/9DQ0MVEBDQuZ2BQ5HEO5lhGJozZ45WrlypDRs2KCUlxeb+yJEj5evrq/Xr11uv5ebmKj8/X+PGjbvqdsaNG6evvvpKjY2N1mvr1q1TamqqIiIirr8jcFmOGmNS6zEmd955p1599VWbx7nQ9TlqnG3btk179+61vl566SWFhIRo7969uvfeezutP3BNjhpn48ePV1NTk06cOGG9dvToUUlSUlLSdfYCrsxRY6y2tlZeXrYfw729vSW1PgmCrq2zxtnBgwc1adIkzZgxo8MjMMeNG2dTh9T6+f9aP9/BBTlzVz0YxlNPPWWEhYUZmzZtMs6ePWt91dbWWss8+eSTRmJiorFhwwZj165dxrhx44xx48bZ1HPs2DFjz549xs9+9jOjX79+xp49e4w9e/ZYd6OvrKw0YmJijJ/85CfGgQMHjI8//tgIDAw0/uu//suh/YXjOWqMbdiwwQgMDDReeOEFm3bKysoc2l84h6PG2bexO71ncdQ4a25uNkaMGGFMmDDB2L17t7Fr1y5jzJgxxm233ebQ/sLxHDXG1q9fb5hMJuPf/u3fjKNHjxo5OTlGRkaGkZSUZNMWuqbOGGfffPONERUVZWRmZtrUUVJSYi1z8uRJIzAw0HjuueeMw4cPG2+//bbh7e1trFmzxqH9RecjiXcySR2+Fi9ebC1TV1dnPP3000ZERIQRGBho3HvvvcbZs2dt6klPT++wnry8PGuZffv2GTfeeKNhNpuNnj17Gr///e8d1Es4k6PG2IwZMzq8n56e7rjOwmkc+bvsH5HEexZHjrMzZ84Y9913nxEcHGzExMQYM2fO5EtJD+DIMfbRRx8Zw4cPN4KCgoyoqCjj7rvvNg4fPuygnsKZOmOczZ8/v8M6kpKSbNrauHGjMWzYMMPPz8/o1auXTRtwXybDMIzrmMgHAAAAAAAOwpp4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALgJkngAAFxYWVmZoqOjderUKYe2u2TJEoWHh9ul7jVr1mjYsGFqaWmxS/0AAHRlJPEAALiwV155RVOnTlVycnK7exkZGfL29tbOnTsdH9h1mDJlinx9fbVs2bLLlpk1a5aGDBmiixcv2lz/61//Kj8/P+3evdveYQIA4JJI4gEAcFG1tbVatGiRZs2a1e5efn6+tm7dqjlz5ujdd991QnTfT2NjoyRp5syZeuutty5b7o033lB1dbXmz59vvVZZWanHH39cv/nNbzRixAi7xQYAgCsjiQcAwEX99a9/ldls1tixY9vdW7x4sX74wx/qqaee0kcffaS6ujqb+xMnTtTcuXP1/PPPKzIyUrGxsXrxxRdtylRWVupnP/uZYmJi5O/vr8GDB2v16tU2ZdauXasBAwYoODhYU6ZM0dmzZ633Wlpa9NJLLyk+Pl5ms1nDhg3TmjVrrPdPnTolk8mkTz75ROnp6fL397fOvt91113atWuXTpw40WHfQ0NDtXjxYr3++uvKzs6WJM2bN089e/bUCy+8oIKCAj344IMKDw9XZGSkpk6darPkYOfOnbrtttvUvXt3hYWFKT09vd3svclk0jvvvKO7775bQUFBeuWVVy7zNwEAgOsgiQcAwEVt3rxZI0eObHfdMAwtXrxYmZmZ6t+/v/r06aNPP/20Xbn33ntPQUFBys7O1muvvaaXXnpJ69atk9SagN9+++3asmWLli5dqkOHDun3v/+9vL29re+vra3VwoUL9cEHH+irr75Sfn6+nn32Wev9N998U6+//roWLlyo/fv3KyMjQ3fffbeOHTtmE8cvf/lLPfPMMzp8+LAyMjIkSYmJiYqJidHmzZsv2/9Jkybp6aef1owZM7RixQotX75c77//vgzDUEZGhkJCQrR582Zt2bLF+iVD2+P31dXVmjFjhr7++mtt375dffv21R133KHq6mqbNl588UXde++9+uabb/TYY499118JAADOZwAAAJc0depU47HHHmt3/csvvzSioqKMxsZGwzAM44033jDS09NtyqSnpxs33nijzbW0tDTjF7/4hWEYhrF27VrDy8vLyM3N7bDtxYsXG5KM48ePW6+9/fbbRkxMjPXnuLg445VXXmnXxtNPP20YhmHk5eUZkoz/+I//6LCN4cOHGy+++GKH99rU1tYaqamphpeXl/HGG28YhmEYH3zwgZGammq0tLRYyzU0NBgBAQHG2rVrO6ynubnZCAkJMT7//HPrNUnGvHnzrtg+AACuhpl4AABcVF1dnfz9/dtdf/fdd/XQQw/Jx8dHkjRt2jRt2bKl3aPpQ4cOtfm5R48eKikpkSTt3btX8fHx6tev32XbDwwMVO/evTt8v8ViUVFRkcaPH2/znvHjx+vw4cM210aNGtVh/QEBAaqtrb1s+21lnn32WQUGBuqZZ56RJO3bt0/Hjx9XSEiIgoODFRwcrMjISNXX11v/DM6dO6fHH39cffv2VVhYmEJDQ3XhwgXl5+dfVWwAALgqH2cHAAAAOta9e3dVVFTYXCsvL9fKlSvV2Niod955x3q9ublZ7777rs26bl9fX5v3mkwm67FuAQEB39l+R+83DOOa+xEUFNTh9fLyckVFRX3n+318fOTt7S2TySRJunDhgkaOHNnh7vZt9c2YMUNlZWV68803lZSUJLPZrHHjxrXb7f5ysQEA4KqYiQcAwEUNHz5chw4dsrm2bNkyxcfHa9++fdq7d6/19frrr2vJkiVqbm6+qrqHDh2qwsJCHT169HvFFhoaqri4OG3ZssXm+pYtWzRw4MDvfH/brPnw4cOvue0RI0bo2LFjio6OVp8+fWxeYWFh1jjmzp2rO+64Q4MGDZLZbFZpaek1twUAgKshiQcAwEVlZGTo4MGDNrPxixYt0gMPPKDBgwfbvGbNmqXS0lKb3eGvJD09XRMmTND999+vdevWKS8vT1988cVVv1+SnnvuOb366qv65JNPlJubq1/+8pfau3ev9bH3K9m+fbt1dvxaTZ8+Xd27d9fUqVO1efNm5eXladOmTZo7d64KCwslSX379tUHH3ygw4cPKzs7W9OnT7+qpw8AAHB1JPEAALioIUOGaMSIEVq+fLkkKScnR/v27dP999/frmxYWJhuueUWLVq06Krr/+yzz5SWlqZp06Zp4MCBev755696Jl+S5s6dq3/5l3/Rz3/+cw0ZMkRr1qzRqlWr1Ldv3+9870cffaTp06crMDDwqttrExgYqK+++kqJiYm67777NGDAAM2aNUv19fUKDQ2V1PplR0VFhUaMGKGf/OQnmjt3rqKjo6+5LQAAXI3J+D6L2wAAgEP83//9n5577jkdOHBAXl5d47v30tJSpaamateuXUpJSXF2OAAAuBU2tgMAwIXdeeedOnbsmM6cOaOEhARnh9MpTp06pT/+8Y8k8AAAfA/MxAMAAAAA4Ca6xnN5AAAAAAB4AJJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALiJ/wdpcyQvwev8AgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "\n", + "\n", + "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", + "plt.legend()\n", + "plt.show()" + ] + }, { "cell_type": "code", "execution_count": null, @@ -621,7 +1485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.10.12" }, "orig_nbformat": 4 }, From 63d6e0cc5ab1a9ba4c07d32b18dea81a440ced5d Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Wed, 5 Jul 2023 12:45:44 +0100 Subject: [PATCH 09/12] minor changes --- workflow/comp_pred_ridge_and_LSTM.ipynb | 22 +- workflow/pred_temperature_ridge.ipynb | 654 +----------------------- 2 files changed, 18 insertions(+), 658 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 1d5ba33..133f246 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -707,7 +707,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -730,7 +730,7 @@ "\n", "# prepare operator for dimensionality reduction\n", "target_intervals = 1\n", - "lag = 2" + "lag = 1" ] }, { @@ -743,7 +743,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ @@ -773,7 +773,7 @@ " clusters_train = rgdr.transform(x_train)\n", " clusters_test = rgdr.transform(x_test)\n", " # train model\n", - " ridge = RidgeCV(alphas=[0.1, 10, 25, 50])\n", + " ridge = RidgeCV(alphas=[1E-3, 1E-2, 0.1, 10, 25, 50])\n", " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", @@ -788,12 +788,12 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 56, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRIklEQVR4nO3de3zO9f/H8cdlbGxsznOaplDIKafkWxFhatEBP8qGVOS8FCsR+SZ8cyikyKEDKjn0LSVfOeSQY4uQQ44xhJgNY9v1++PddW1jm41tn13X9bzfbtfN5/pc7+u6XttwPfd5n2x2u92OiIiIiJvIZ3UBIiIiItlJ4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbyW91AbktKSmJ48ePU6RIEWw2m9XliIiISCbY7XYuXLhAuXLlyJcv42szHhdujh8/TlBQkNVliIiIyE04evQoFSpUyLCNx4WbIkWKAOab4+/vb3E1IiIikhkxMTEEBQU5P8cz4nHhxtEV5e/vr3AjIiLiYjIzpEQDikVERMStWBpu1qxZQ2hoKOXKlcNms7F48eIbPuezzz6jdu3a+Pr6UrZsWbp3786ZM2dyvlgRERFxCZaGm7i4OGrXrs2UKVMy1X7dunWEhYXx7LPPsnPnTr788ks2bdrEc889l8OVioiIiKuwdMxNSEgIISEhmW6/YcMGgoOD6devHwCVKlXihRdeYMyYMdleW2JiIlevXs3215WcVaBAAby8vKwuQ0RELORSA4obN27Mq6++ytKlSwkJCeHUqVMsWLCANm3apPuc+Ph44uPjnfdjYmIyfA+73c6JEyc4d+5cdpUtuaxo0aKUKVNG6xiJiHgolwo3TZo04bPPPqNjx45cvnyZhIQEQkNDM+zWGj16NCNGjMj0eziCTenSpfH19dUHpAux2+1cvHiRU6dOAVC2bFmLKxIRESvY7Ha73eoiwEztWrRoEe3atUu3za5du2jRogUDBw6kVatWREdH8/LLL9OgQQM++uijNJ+T1pWboKAgzp8/f91U8MTERPbu3Uvp0qUpUaJEtnxdkvvOnDnDqVOnqFq1qrqoRETcRExMDAEBAWl+fl/Lpa7cjB49miZNmvDyyy8DUKtWLfz8/Lj//vsZNWpUmr+p+/j44OPjk6nXd4yx8fX1zb6iJdc5fn5Xr15VuBER8UAutc7NxYsXr9tPwvHhlZ0XoNQV5dr08xMR8WyWhpvY2FiioqKIiooC4ODBg0RFRXHkyBEAIiMjCQsLc7YPDQ1l4cKFvP/++xw4cIB169bRr18/GjZsSLly5az4EkRERCSPsbRbasuWLTRr1sx5PyIiAoDw8HBmz55NdHS0M+gAdO3alQsXLjB58mReeuklihYtykMPPZQjU8FFRETENeWZAcW5JaMBSZcvX+bgwYNUqlSJggULWlRh3hAcHMyAAQMYMGCApa9xM/RzFBFxP247oFjS17RpU+rUqcPEiROz5fU2b96Mn59ftryWiIh4kJUroWFDsPAzxKUGFMutsdvtJCQkZKptqVKlNGtMRESy5vffoU0bqF0boqMtK0PhJpPi4tK/Xb6c+baXLmWubVZ07dqV1atXM2nSJGw2GzabjUOHDrFq1SpsNhvfffcd9erVw8fHh7Vr1/LHH3/Qtm1bAgMDKVy4MA0aNOB///tfqtcMDg5OdRXIZrMxY8YMHn/8cXx9falSpQpff/11luo8cuQIbdu2pXDhwvj7+9OhQwdOnjzpfPzXX3+lWbNmFClSBH9/f+rVq8eWLVsAOHz4MKGhoRQrVgw/Pz9q1KjB0qVLs/aNEhGRnJOQAOHh5kPxjjugTBnLSlG4yaTChdO/Pflk6ralS6ff9tqttIKD026XFZMmTaJx48Y899xzREdHEx0dTVBQkPPxIUOG8Pbbb7N7925q1apFbGwsbdq0YcWKFfzyyy+0bt2a0NDQVIO30zJixAg6dOjA9u3badOmDU8//TRnz57NVI1JSUm0bduWs2fPsnr1apYvX86BAwfo2LGjs83TTz9NhQoV2Lx5M1u3bmXIkCEUKFAAgN69exMfH8+aNWvYsWMHY8aMoXBWv1EiIpJzxoyBTZsgIAA++ggsXJZDY27cQEBAAN7e3vj6+lImjaQ8cuRIHn74Yef94sWLU7t2bef9N998k0WLFvH111/Tp0+fdN+na9eudOrUCYC33nqLd999l02bNtG6desb1rhixQp27NjBwYMHncHr448/pkaNGmzevJkGDRpw5MgRXn75Ze666y4AqlSp4nz+kSNHePLJJ6lZsyYAt99++w3fU0REcklUFDi2Opo8GSpUsLQchZtMio1N/7FrF8H9Z2ujNF2zBiGHDt10SZlWv379VPdjY2N54403+Pbbb4mOjiYhIYFLly7d8MpNrVq1nMd+fn74+/s793G6kd27dxMUFJTqilL16tUpWrQou3fvpkGDBkRERNCjRw8++eQTWrRoQfv27bnjjjsA6NevH7169eKHH36gRYsWPPnkk6nqERERi8THQ1gYXL0Kjz8OTz9tdUXqlsosP7/0b9fONs6obaFCmWubvbWnfsFBgwaxaNEi3nrrLX766SeioqKoWbMmV65cyfB1HF1EDjabjaSkpGyr84033mDnzp088sgj/Pjjj1SvXp1FixYB0KNHDw4cOECXLl3YsWMH9evX57333su29xYRkZs0YgTs2AGlSsG0aZZ2Rzko3LgJb29vEhMTM9V23bp1dO3alccff5yaNWtSpkwZDuXwJaRq1apx9OhRjh496jy3a9cuzp07R/Xq1Z3nqlatysCBA/nhhx944oknmDVrlvOxoKAgevbsycKFC3nppZeYPn16jtYsIiI38PPPZqwNmGBTurS19fxD4cZNBAcHs3HjRg4dOsTp06czvKJSpUoVFi5cSFRUFL/++iudO3fO1iswaWnRogU1a9bk6aefZtu2bWzatImwsDAefPBB6tevz6VLl+jTpw+rVq3i8OHDrFu3js2bN1OtWjUABgwYwLJlyzh48CDbtm1j5cqVzsdERMQCFy+a2VFJSfDMM/DEE1ZX5KRw4yYGDRqEl5cX1atXp1SpUhmOnxk/fjzFihXjvvvuIzQ0lFatWnHPPffkaH02m40lS5ZQrFgxHnjgAVq0aMHtt9/O559/DpgNUM+cOUNYWBhVq1alQ4cOhISEMOKfAWqJiYn07t2batWq0bp1a6pWrcrUqVNztGYREclAZCTs3Qvly8O771pdTSrafiEFLdvvHvRzFBHJYStXwkMPmePvv4dWrXL8LbOy/YKu3IiIiEjmxcRAt27m+IUXciXYZJXCjYiIiGReRAQcPgyVKsG4cVZXkyaFGxEREcmcb79NXn149mwoUsTqitKkcCMiIiI3duYM9OhhjgcOhAcesLaeDCjciIiIyI316QMnTkC1ajBqlNXVZEjhRkRERDL2xRcwf77Zb2jOnOuX289jFG5EREQkfSdOwIsvmuNXX4UGDaytJxMUbkRERCRtdjs895wZb1O3LgwdanVFmaJwI7esadOmDBgwwOoyREQku82eDd98A97epjvK29vqijJF4cZN5ETA6Nq1K+3atcvW1xQRERdx+DD072+OR46EmjWtrScLFG5EREQktaQk6N4dLlyAxo1h0CCrK8oShRs30LVrV1avXs2kSZOw2WzYbDYOHToEwG+//UZISAiFCxcmMDCQLl26cPr0aedzFyxYQM2aNSlUqBAlSpSgRYsWxMXF8cYbbzBnzhyWLFnifM1Vq1Zlqp6///6bsLAwihUrhq+vLyEhIezbt8/5+OHDhwkNDaVYsWL4+flRo0YNli5d6nzu008/TalSpShUqBBVqlRh1qxZ2fa9EhGRTJg6FX780cyKmjPHzJJyIfmtLiDPs9vNtu5W8PU1q0DewKRJk9i7dy933303I0eOBKBUqVKcO3eOhx56iB49ejBhwgQuXbrE4MGD6dChAz/++CPR0dF06tSJsWPH8vjjj3PhwgV++ukn7HY7gwYNYvfu3cTExDjDRfHixTNVdteuXdm3bx9ff/01/v7+DB48mDZt2rBr1y4KFChA7969uXLlCmvWrMHPz49du3ZRuHBhAF5//XV27drFd999R8mSJdm/fz+XLl26yW+giIhk2b598Mor5njsWKhSxdp6boLCzY1cvAj/fPDmuthY8PO7YbOAgAC8vb3x9fWlTJkyzvOTJ0+mbt26vPXWW85zM2fOJCgoiL179xIbG0tCQgJPPPEEt912GwA1U/SpFipUiPj4+FSveSOOULNu3Truu+8+AD777DOCgoJYvHgx7du358iRIzz55JPO97r99tudzz9y5Ah169alfv36AAQHB2f6vUVE5BYlJkJ4OFy6BM2bJ08BdzHqlnJjv/76KytXrqRw4cLO21133QXAH3/8Qe3atWnevDk1a9akffv2TJ8+nb///vuW3nP37t3kz5+fRo0aOc+VKFGCO++8k927dwPQr18/Ro0aRZMmTRg+fDjbt293tu3Vqxfz58+nTp06vPLKK6xfv/6W6hERkSz4z39gwwazZ9TMmZDPNWOCa1adm3x9zRUUK26+vrdUemxsLKGhoURFRaW67du3jwceeAAvLy+WL1/Od999R/Xq1Xnvvfe48847OXjwYDZ989LWo0cPDhw4QJcuXdixYwf169fnvffeAyAkJITDhw8zcOBAjh8/TvPmzRnkYgPZRERc0o4dMGyYOZ40CSpWtLaeW6BwcyM2m+kasuKWifE2Dt7e3iQmJqY6d88997Bz506Cg4OpXLlyqpvfP91dNpuNJk2aMGLECH755Re8vb1ZtGhRuq95I9WqVSMhIYGNGzc6z505c4Y9e/ZQvXp157mgoCB69uzJwoULeemll5g+fbrzsVKlShEeHs6nn37KxIkT+fDDD7NUg4iIZNGVK6Y76soVCA2Frl2truiWKNy4ieDgYDZu3MihQ4c4ffo0SUlJ9O7dm7Nnz9KpUyc2b97MH3/8wbJly+jWrRuJiYls3LiRt956iy1btnDkyBEWLlzIX3/9RbVq1ZyvuX37dvbs2cPp06e5evXqDeuoUqUKbdu25bnnnmPt2rX8+uuvPPPMM5QvX562bdsCMGDAAJYtW8bBgwfZtm0bK1eudL7nsGHDWLJkCfv372fnzp188803zsdERCSHjBoFv/wCxYvDhx9m6ZfrvEjhxk0MGjQILy8vqlevTqlSpThy5AjlypVj3bp1JCYm0rJlS2rWrMmAAQMoWrQo+fLlw9/fnzVr1tCmTRuqVq3K0KFDeeeddwgJCQHgueee484776R+/fqUKlWKdevWZaqWWbNmUa9ePR599FEaN26M3W5n6dKlFChQAIDExER69+5NtWrVaN26NVWrVmXq1KmAuVoUGRlJrVq1nF1n8+fPz5lvmoiIwObN4Jh48v77kIVJJHmVzW63260uIjfFxMQQEBDA+fPn8ff3T/XY5cuXOXjwIJUqVaJgwYIWVSi3Sj9HEZFMunQJ6tWD3bvh//4P5s2zuqJ0ZfT5fS1duREREfFUQ4eaYFOmDEyebHU12UbhRkRExBOtWQMTJpjjGTOgRAlr68lGCjciIiKe5sIFMyPKbodnn4VHHrG6omylcCMiIuJpXn4ZDh6E226D8eOtribbKdykwcPGWLsd/fxERDKwbBl88IE5njULbjA41xUp3KTgmKp80aqNMiVbOH5+jp+niIj84++/oXt3c9yvHzRrZm09OUQbZ6bg5eVF0aJFOXXqFAC+vr7YXHwhI09it9u5ePEip06domjRonh5eVldkohI3tKvHxw/DlWrwujRVleTYxRuruHYAdsRcMT1FC1aNEs7mYuIeISFC+HTT81mmHPm3PL+hXmZws01bDYbZcuWpXTp0pnabkDylgIFCuiKjYjItU6dgp49zfHgwXDvvdbWk8MUbtLh5eWlD0kREXF9dju88AL89RfUqgXDh1tdUY7TgGIRERF39tlnsHgxFCgAH38MPj5WV5TjFG5ERETc1Z9/Qp8+5nj4cKhd29p6conCjYiIiDtyrD58/jw0bGjG2ngIhRsRERF39OGH8MMPULCgmR2V33OG2SrciIiIuJs//oCXXjLHo0fDXXdZW08uU7gRERFxJ4mJ0K0bxMXBgw+ahfs8jKXhZs2aNYSGhlKuXDlsNhuLFy++4XPi4+N57bXXuO222/Dx8SE4OJiZM2fmfLEiIiKuYOJE+OknKFzY7B2Vz/OuY1jaARcXF0ft2rXp3r07TzzxRKae06FDB06ePMlHH31E5cqViY6OJikpKYcrFRERcQG7dsFrr5nj8eOhUiVr67GIpeEmJCSEkJCQTLf//vvvWb16NQcOHKB48eIABAcHZ/ic+Ph44uPjnfdjYmJuqlYREZE87epVCA+H+HgICYEePayuyDIuda3q66+/pn79+owdO5by5ctTtWpVBg0axKVLl9J9zujRowkICHDegoKCcrFiERGRXDJ6NGzZAsWKwYwZ4MEbP7vUvLADBw6wdu1aChYsyKJFizh9+jQvvvgiZ86cYdasWWk+JzIykoiICOf9mJgYBRwREXEv27bBm2+a48mToVw5a+uxmEuFm6SkJGw2G5999hkBAQEAjB8/nqeeeoqpU6dSqFCh657j4+ODjwcsNS0iIh4qPh7CwiAhAZ56Cjp1sroiy7lUt1TZsmUpX768M9gAVKtWDbvdzp9//mlhZSIiIhYZNgx27oTSpWHqVI/ujnJwqXDTpEkTjh8/TmxsrPPc3r17yZcvHxUqVLCwMhEREQusXw/jxpnjDz+EUqWsrSePsDTcxMbGEhUVRVRUFAAHDx4kKiqKI0eOAGa8TFhYmLN9586dKVGiBN26dWPXrl2sWbOGl19+me7du6fZJSUiIuK24uLM7Ci73fzZtq3VFeUZloabLVu2ULduXerWrQtAREQEdevWZdiwYQBER0c7gw5A4cKFWb58OefOnaN+/fo8/fTThIaG8u6771pSv4iIiGUGD4b9+6FCBbNwnzjZ7Ha73eoiclNMTAwBAQGcP38ef39/q8sRERHJuv/9Dx5+2Bz/8EPysRvLyue3S425ERER8Xjnz0P37ub4xRc9IthklcKNiIiIKxkwAI4ehTvugLFjra4mT1K4ERERcRVffw2zZ5vp3nPmgJ+f1RXlSQo3IiIiruD0aXj+eXM8aBA0aWJtPXmYwo2IiEheZ7dDr15w8iTUqAEjR1pdUZ6mcCMiIpLXff45LFgA+fOb7qiCBa2uKE9TuBEREcnLjh83s6IAhg6FevWsrccFKNyIiIjkVXY7PPcc/P23CTWvvmp1RS5B4UZERCSvmjkTli4FHx/THVWggNUVuQSFGxERkbzo0CGzpg3AqFFmILFkisKNiIhIXpOUBN26QWws/OtfMHCg1RW5FIUbERGRvGbyZFi1Cnx9zaJ9Xl5WV+RSFG5ERETykj17zI7fAP/5j9lmQbJE4UZERCSvSEiA8HC4fNlsiNmzp9UVuSSFGxERkbxi7FjYuBECAuCjj8weUpJlCjciIiJ5wa+/whtvmON334WgIEvLcWUKNyIiIla7cgXCwuDqVWjXDrp0sboil6ZwIyIiYrURI2D7dihZEqZNU3fULVK4ERERsdLGjfD22+Z42jQIDLS2HjegcCMiImKVixdNd1RSEjz9NDz5pNUVuQWFGxEREau8+irs3QvlysF771ldjdtQuBEREbHCypUwaZI5njEDihWzth43onAjIiKS2y5cMHtHATz/PISEWFuPm1G4ERERyW0REXD4MAQHmy0WJFsp3IiIiOSmpUtNN5TNZjbFLFLE6orcjsKNiIhIbjl7Fnr0MMcDBsCDD1pajrtSuBEREcktffpAdDTceSf8+99WV+O2FG5ERERyw5dfwrx54OUFH38MhQpZXZHbUrgRERHJaSdOQK9e5jgyEho2tLYeN6dwIyIikpPsdnjhBThzBurUgddft7oit6dwIyIikpM+/hi+/hoKFDDH3t5WV+T2FG5ERERyypEj0K+fOR45EmrWtLYeD6FwIyIikhOSkuDZZyEmBu69FwYNsroij6FwIyIikhOmTYP//c/MipozB/Lnt7oij6FwIyIikt3274eXXzbHY8ZA1arW1uNhFG5ERESyU2IihIfDxYvQrBn07m11RR5H4UZERCQ7jR8P69ebPaNmzYJ8+qjNbfqOi4iIZJfffoOhQ83xxIlw222WluOpFG5ERESyw9WrEBYGV67AI49At25WV+SxFG5ERESyw7//Db/8AsWLw/TpYLNZXZHHUrgRERG5VVu2wKhR5njqVChb1tp6PJzCjYiIyK24fNl0RyUmQocO0LGj1RV5PIUbERGRWzF0KOzeDYGB5qqNWE7hRkRE5Gb99JOZ+g0wYwaUKGFtPQIo3IiIiNyc2Fjo2hXsdujeHR591OqK5B8KNyIiIjfj5ZfhwAGoWBEmTLC6GknB0nCzZs0aQkNDKVeuHDabjcWLF2f6uevWrSN//vzUqVMnx+oTERFJ07JlZmNMMKsQ+/tbW4+kYmm4iYuLo3bt2kyZMiVLzzt37hxhYWE0b948hyoTERFJx7lz8Oyz5rhvX3joIUvLketZuv96SEgIISEhWX5ez5496dy5M15eXlm62iMiInLL+vWDY8egShV4+22rq5E0uNyYm1mzZnHgwAGGDx+eqfbx8fHExMSkuomIiNyURYvgk0/MZphz5oCvr9UVSRpcKtzs27ePIUOG8Omnn5I/f+YuOo0ePZqAgADnLSgoKIerFBERt/TXX/DCC+b4lVegcWNr65F0uUy4SUxMpHPnzowYMYKqVatm+nmRkZGcP3/eeTt69GgOVikiIm7JboeePU3AuftueOMNqyuSDFg65iYrLly4wJYtW/jll1/o06cPAElJSdjtdvLnz88PP/zAQ2kM6vLx8cHHxye3yxUREXcydy4sXAj588PHH4M+V/I0lwk3/v7+7NixI9W5qVOn8uOPP7JgwQIqVapkUWUiIuLWjh2Df36pZvhwqFvX2nrkhiwNN7Gxsezfv995/+DBg0RFRVG8eHEqVqxIZGQkx44d4+OPPyZfvnzcfffdqZ5funRpChYseN15ERGRbGG3Q48eZvp3gwYwZIjVFUkmWBputmzZQrNmzZz3IyIiAAgPD2f27NlER0dz5MgRq8oTERFPN306fP+96YaaM8d0S0meZ7Pb7Xari8hNMTExBAQEcP78efy1oqSIiKTnwAGoVQvi4szmmAMHWl2RR8vK57fLzJYSERHJNUlJZlPMuDh44AHo39/qiiQLFG5ERESuNWkS/PQT+PnB7Nlm0T5xGfppiYiIpLR7N0RGmuPx40GzcV2Owo2IiIhDQgKEhUF8PLRuDc89Z3VFchMUbkRERBzefhu2bIGiRWHGDLDZrK5IboLCjYiICMAvv8CIEeZ48mQoX97aeuSmKdyIiIjEx5vuqIQEeOIJ6NzZ6orkFijciIiIvPEG/PYblCoF06apO8rFKdyIiIhnW78exo41xx9+aAKOuDSFGxER8VxxcRAebhbt69IF2rWzuiLJBgo3IiLiuSIjYf9+M3j43XetrkayicKNiIh4phUr4L33zPHMmWb6t7gFhRsREfE8589D9+7muGdPaNnS2nokWynciIiI5xk4EI4cgdtvh3HjrK5GspnCjYiIeJb//hdmzTLTvWfPhsKFra5IspnCjYiIeI4zZ5L3i3rpJbj/fmvrkRyhcCMiIp7jxRfh5EmoVg3efNPqaiSHKNyIiIhn+Pxz+OIL8PKCjz+GggWtrkhyiMKNiIi4v+hoc9UGYOhQqF/f2nokRynciIiIe7PbzTibs2ehbl147TWrK5IcpnAjIiLubdYs+PZb8PY23VEFClhdkeQwhRsREXFfhw/DgAHmeNQouPtuS8uR3KFwIyIi7ikpCbp1gwsX4L77ICLC6ooklyjciIiIe5oyBVauBF9fmDPHzJISj6BwIyIi7mfvXhg82ByPGweVK1tbj+QqhRsREXEvCQkQHg6XLkGLFmZjTPEoCjciIuJe/vMf+Pln8PeHmTMhnz7qPI1+4iIi4j62b4dhw8zxu+9CUJC19YglFG5ERMQ9XLkCYWFw9So89pg5Fo+kcCMiIu7hzTfh11+hRAn48EOw2ayuSCyicCMiIq5v0yYYPdocT5sGgYHW1iOWUrgRERHXdumS6YJKTIROneCpp6yuSCymcCMiIq7ttddgzx4oWxYmT7a6GskDFG5ERMR1rV4NEyea4xkzoHhxS8uRvEHhRkREXNOFC9C1K9jt0KMHtGljdUWSRyjciIiIaxo0CA4dguBgGD/e6mokD1G4ERER1/Pdd2a6N8CsWVCkiLX1SJ6icCMiIq7l7Fl49llz3L8/NG1qaTmS9yjciIiIa+nXD6Kj4c47k9e2EUkhS+Hm1KlTGT6ekJDApk2bbqkgERGRdH31FXz2mdkMc84cKFTI6ookD8pSuClbtmyqgFOzZk2OHj3qvH/mzBkaN26cfdWJiIg4nDwJPXua4yFDoFEja+uRPCtL4cZut6e6f+jQIa5evZphGxERkVtmt8MLL8Dp01CrFgwfbnVFkodl+5gbmzYqExGR7PbJJ7BkCRQoYI69va2uSPIwDSgWEZG87ehRM4gYYMQIc+VGJAP5s9LYZrNx4cIFChYsiN1ux2azERsbS0xMDIDzTxERkWxht5tp3+fPmzE2L79sdUXiArIUbux2O1WrVk11v27duqnuq1tKRESyzbRpsHy5mRU1Zw7kz9LHlnioLP0tWblyZU7VISIiktoff5gtFgDeftusayOSCVkKNw8++GC2vvmaNWsYN24cW7duJTo6mkWLFtGuXbt02y9cuJD333+fqKgo4uPjqVGjBm+88QatWrXK1rpERMRiiYkQHg4XL5oViPv0sboicSFZGlCckJBAfHx8qnMnT55kxIgRvPLKK6xduzZLbx4XF0ft2rWZMmVKptqvWbOGhx9+mKVLl7J161aaNWtGaGgov/zyS5beV0RE8rgJE2DdOrNn1KxZZtE+kUyy2bOwME23bt3w9vbmgw8+AODChQvUqFGDy5cvU7ZsWXbt2sWSJUtocxPbzttsthteuUlLjRo16NixI8OGDUvz8fj4+FSBLCYmhqCgIM6fP4+/v3+W6xSRPMxuhyNHICkJvLzM+IyM/tQHZt60cyfccw9cuQIzZiTvIyUeLSYmhoCAgEx9fmepW2rdunVMnjzZef/jjz8mMTGRffv2ERAQwODBgxk3btxNhZubkZSUxIULFyhevHi6bUaPHs2IESNypR4RsVhEBEycmPn2NlvmQtC1f97Mc1z1Nb28zPcpt1y9CmFhJti0aQPdu+fee4vbyFK4OXbsGFWqVHHeX7FiBU8++SQBAQEAhIeHM2vWrOytMAP/+c9/iI2NpUOHDum2iYyMJCIiwnnfceVGRNzM6tXJwcbX14zZSEgwf6bHbjdtEhJypUSXlS9fzoawlK994gRs2wbFisH06bkbrMRtZCncFCxYkEuXLjnv//zzz4wbNy7V47GxsdlXXQbmzp3LiBEjWLJkCaVLl063nY+PDz4+PrlSk4hY5OLF5K6L55+Hf7rOARNgkpJSh52Ux9n1Z068Zm7Wm5SU/vc3KclcSclNU6dCuXK5+57iNrIUburUqcMnn3zC6NGj+emnnzh58iQPPfSQ8/E//viDcrnwl3H+/Pn06NGDL7/8khYtWuT4+4lIHvf662bacIUKMHZs6sccXU9eXlqyPyN2e/YFqVt9jdtvh6eesvo7Ii4sS+Fm2LBhhISE8MUXXxAdHU3Xrl0pW7as8/FFixbRpEmTbC8ypXnz5tG9e3fmz5/PI488kqPvJSIu4Oefk7ujPvgA/ukmlyyy2Uz3UP78oKvd4uKyvM7N1q1b+eGHHyhTpgzt27dP9XidOnVo2LBhpl8vNjaW/fv3O+8fPHiQqKgoihcvTsWKFYmMjOTYsWN8/PHHgOmKCg8PZ9KkSTRq1IgTJ04AUKhQIee4HxHxIPHxZsBpUhJ06WIGoIqIx8vSVPDstmrVKpo1a3bd+fDwcGbPnk3Xrl05dOgQq1atAqBp06asXr063faZkZWpZCKSxw0dCv/+NwQGwq5dkMHMSRFxbVn5/M5SuFmzZk2m2j3wwAOZfclcp3Aj4iZ++QUaNDDjNL76Cp54wuqKRCQH5dg6N02bNnVujJleJrLZbCRmNPVSRORWXb1quqMSE83AUwUbEUkhS+GmWLFiFClShK5du9KlSxdKliyZU3WJiKRv7FiIijLdUCkWFhURgSzuLRUdHc2YMWPYsGEDNWvW5Nlnn2X9+vX4+/sTEBDgvImI5JidO2HkSHP87rtmvI2ISApZCjfe3t507NiRZcuW8fvvv1OrVi369OlDUFAQr732Ggla5VNEclJioumOunIFHn0UOne2uiIRyYNuebbUwYMHefbZZ1m9ejV//fVXhvs85QUaUCziwt55BwYNAn9/MzuqfHmrKxKRXJKVz++b2hI3Pj6euXPn0qJFC+6++25KlizJt99+m+eDjYi4sH37zNRvMCFHwUZE0pGlAcWbNm1i1qxZzJ8/n+DgYLp168YXX3yhUCMiOSspCXr0gMuXoXnz5H2kRETSkKVwc++991KxYkX69etHvXr1AFi7du117R577LHsqU5EBGDaNFizBvz8tFO0iNxQlsbc5Mt3416svL7OjcbciLiYw4fh7rshNtbMjurb1+qKRMQCObaIX1JS0g3bXLx4MSsvKSKSPrsdnn/eBJsmTaB3b6srEhEXcFMDitMSHx/P+PHjuf3227PrJUXE082eDT/8AAULwsyZkImrxyIiWfqfIj4+nsjISOrXr899993H4sWLAZg5cyaVKlViwoQJDBw4MCfqFBFPc/w4OP4/GTkSqla1th4RcRlZ6pYaNmwYH3zwAS1atGD9+vW0b9+ebt268fPPPzN+/Hjat2+Pl5dXTtUqIp7CbodeveD8eahfPznkiIhkQpbCzZdffsnHH3/MY489xm+//UatWrVISEjg119/dW6oKSJyyz7/HL7+GgoUMN1R+bP0X5WIeLgsdUv9+eefzingd999Nz4+PgwcOFDBRkSyz19/Jc+IGjoUata0th4RcTlZCjeJiYl4e3s77+fPn5/ChQtne1Ei4sH69oXTp6FWLRgyxOpqRMQFZelar91up2vXrvj4+ABw+fJlevbsiZ+fX6p2CxcuzL4KRcRzLF5suqS8vEx3VIpfpkREMitL4SY8PDzV/WeeeSZbixERD/b332YQMcDLL8M/XeAiIlmVpXAza9asnKpDRDxdRAScOAF33gnDh1tdjYi4MK2IJSLW+/57s2CfzWa6owoWtLoiEXFhCjciYq2YGLPFAkD//nDffdbWIyIuT+FGRKw1ZAgcPQq33w6jRlldjYi4AYUbEbHOqlXw/vvmePp0uGbmpYjIzVC4ERFrxMXBs8+a4xdegIcesrYeEXEbCjciYo3XX4cDB6BCBRg71upqRMSNKNyISO77+WeYONEcf/gh+PtbWo6IuBeFGxHJXZcvQ/fuZufvsDAICbG6IhFxMwo3IpK73nwTdu+GwECYMMHqakTEDSnciEju2bYNxowxx++/D8WLW1uPiLglhRsRyR1Xr5ruqMREaN8eHn/c6opExE0p3IhI7hgzBn79FUqUgPfes7oaEXFjCjcikvN27oSRI83xu++a8TYiIjlE4UZEclZioumOunoVQkOhUyerKxIRN6dwIyI5a+JE2LTJrGXz/vtm528RkRykcCMiOWffPhg61ByPHw/ly1tbj4h4BIUbEckZSUlm76jLl6FFC9M1JSKSCxRuRCRnvP8+/PST2el7+nR1R4lIrlG4EZHsd+gQDB5sjt9+G4KDraxGRDyMwo2IZC+7HZ5/HuLi4F//ghdftLoiEfEwCjcikr1mzYLly6FgQfjoI8in/2ZEJHfpfx0RyT7HjkFEhDl+802oWtXaekTEIynciEj2sNuhVy84fx4aNIABA6yuSEQ8lMKNiGSP+fPhv/+FAgVg5kzIn9/qikTEQynciMitO3UK+vY1x6+/DnffbW09IuLRFG5E5Nb17QtnzkDt2jBkiNXViIiHU7gRkVuzaBF88QV4eZnuqAIFrK5IRDycpeFmzZo1hIaGUq5cOWw2G4sXL77hc1atWsU999yDj48PlStXZvbs2Tlep4ik4+zZ5HVsXnkF7rnH2npERLA43MTFxVG7dm2mTJmSqfYHDx7kkUceoVmzZkRFRTFgwAB69OjBsmXLcrhSEUlTRAScOAF33QXDhlldjYgIAJZOZwgJCSEkJCTT7adNm0alSpV45513AKhWrRpr165lwoQJtGrVKqfKFJG0fPcdzJlj9oyaOdMs2icikge41JibDRs20KJFi1TnWrVqxYYNG9J9Tnx8PDExMaluInKLYmLMFgtg1rNp3NjSckREUnKpcHPixAkCAwNTnQsMDCQmJoZLly6l+ZzRo0cTEBDgvAUFBeVGqSLubfBg+PNPuP12GDXK6mpERFJxqXBzMyIjIzl//rzzdvToUatLEnFtK1fCtGnmeMYM8PW1th4RkWu41BKiZcqU4eTJk6nOnTx5En9/fwoVKpTmc3x8fPDx8cmN8kTcX1wc9Ohhjnv2hGbNrK1HRCQNLnXlpnHjxqxYsSLVueXLl9NY/f0iuWPoUDhwAIKCYMwYq6sREUmTpeEmNjaWqKgooqKiADPVOyoqiiNHjgCmSyksLMzZvmfPnhw4cIBXXnmF33//nalTp/LFF18wcOBAK8oX8SwbNsCkSeb4ww/B39/aekRE0mFpuNmyZQt169albt26AERERFC3bl2G/bNeRnR0tDPoAFSqVIlvv/2W5cuXU7t2bd555x1mzJihaeAiOe3yZeje3ez8HR4OrVtbXZGISLpsdrvdbnURuSkmJoaAgADOnz+Pv37zFMmcV1+F0aOhTBnYuROKF7e6IhHxMFn5/HapMTciYoFt22DsWHP8/vsKNiKS5ynciEj6rlyBbt0gMRE6dIB27ayuSETkhhRuRCR9Y8bA9u1QogS8957V1YiIZIrCjYik7bff4M03zfF770Hp0tbWIyKSSQo3InK9hAQzO+rqVXjsMfi//7O6IhGRTFO4EZHrTZwImzdDQIAZRGyzWV2RiEimKdyISGp798Lrr5vj8eOhXDlr6xERySKFGxFJlpQEzz5rFu17+GEzU0pExMUo3IhIsqlTYe1aKFwYpk9Xd5SIuCSFGxExDh2CIUPM8dtvw223WVqOiMjNUrgREbNn1HPPQVwc3H8/9OpldUUiIjdN4UZEYOZM+N//oGBB+OgjyKf/GkTEdel/MBFPd+wYRESY41GjoEoVa+sREblFCjcinsxuh549ISYGGjaEAQOsrkhE5JYp3Ih4snnz4JtvoEAB0zXl5WV1RSIit0zhRsRTnTwJffua42HDoEYNa+sREckmCjcinqpvXzh7FurUgcGDra5GRCTbKNyIeKKFC+HLL0031MyZpltKRMRNKNyIeJqzZ+HFF83x4MFQt6619YiIZDOFGxFPM3CgGW9TrVryBpkiIm5E4UbEkyxdCh9/bPaMmjnTLNonIuJmFG5EPEVMDLzwgjkeOBDuvdfaekREcojCjYineOUV+PNPuOMOePNNq6sREckxCjcinuDHH+GDD8zxjBng62ttPSIiOUjhRsTdxcVBjx7muFcvaNrU0nJERHKawo2Iu3vtNTh4ECpWhDFjrK5GRCTHKdyIuLP16+Hdd83xhx9CkSLW1iMikgsUbkTc1eXL0L272fm7a1do1crqikREcoXCjYi7GjEC9uyBMmVg/HirqxERyTUKNyLuaOtWGDfOHE+bBsWKWVuPiEguUrgRcTdXrpjuqMRE6NgR2ra1uiIRkVylcCPibt5+G7Zvh5Il4b33rK5GRCTXKdyIuJMdO2DUKHP83ntQqpS19YiIWEDhRsRdJCSY7qirV01XVMeOVlckImIJhRsRdzFhAmzZAgEBMHWq2flbRMQDKdyIuIM9e+D1183xhAlQrpy19YiIWEjhRsTVJSXBs89CfDy0bGkW7BMR8WAKNyKubsoUWLcOChc2WyyoO0pEPJzCjYgrO3gQIiPN8dixcNtt1tYjIpIHKNyIuCq7HZ57DuLi4IEH4IUXrK5IRCRPULgRcVUffQQrVkChQuY4n/45i4iAwo2Ia/rzT3jpJXM8ahRUrmxtPSIieYjCjYirsduhVy+IiYFGjaB/f6srEhHJUxRuRFzN3LnwzTfg7Q0zZ4KXl9UViYjkKQo3Iq7k5Eno188cDxsG1atbW4+ISB6kcCPiSvr0gbNnoU4deOUVq6sREcmTFG5EXMVXX8GCBZA/P8yaBQUKWF2RiEielCfCzZQpUwgODqZgwYI0atSITZs2Zdh+4sSJ3HnnnRQqVIigoCAGDhzI5cuXc6laEQucOQO9e5vjwYPNlRsREUmT5eHm888/JyIiguHDh7Nt2zZq165Nq1atOHXqVJrt586dy5AhQxg+fDi7d+/mo48+4vPPP+fVV1/N5cpFctHAgWa8TbVqyRtkiohImmx2u91uZQGNGjWiQYMGTJ48GYCkpCSCgoLo27cvQ4YMua59nz592L17NytWrHCee+mll9i4cSNr1669rn18fDzx8fHO+zExMQQFBXH+/Hn8/f1z4CvyLHa72bfRbje9JQ4XL0JCgnns2pvNBoGByW2PH4dLl9Jve/fdyW1374Zz59Jua7dDixbJbTdvhujotNsmJcH//V/yunerV8P+/cnv6eWVfMuXD554Anx8TNvt2+HIkdSPpzxu0CC57bFj5qJLynYp/yxXLrl36eJFs/flta+X/4eleD32iLmzfr2Z/i0i4mFiYmIICAjI1Od3/gwfzWFXrlxh69atRDr2xgHy5ctHixYt2LBhQ5rPue+++/j000/ZtGkTDRs25MCBAyxdupQuXbqk2X706NGMGDEiR+q/1uXL8NprqT9sU36Y1q8PPXqYtomJZvPma9ukbJvyYlRoKFy5knbbevVg4sTkts2awfnzabetXRs+/zy5bcOGJlxcGxKSksxEnJ9+Sm5bqxbs2ZO6rcMdd5hw4NCkCURFpf19KlPGhA6HDh3Mvo9p8fc3X4tD//6wfHnabb28TKByeOstWLw47bYATz1lZlMDTJ8On32WftvTp5MDy5QpZn/K9Bw5AkFB5vidd2DChPTb7t4Nd92VXO+//536cX/O8xsvEASc6DyQMv8Em//8B9544/rA5DheuDA5A33yiXnt9NpOnAj33mvafvedqffaNo7jl15Kft2NG+GDD64Pgo7jzp3N302A33+HefPSbuflBc2bQ82apu3x46aOtGr18jJ/D6tUMW3PnYNNm1I/nj8/+PqaW2AgBASk//0XEfdkabg5ffo0iYmJBKb8NR4IDAzk999/T/M5nTt35vTp0/zrX//CbreTkJBAz5490+2WioyMJCIiwnnfceUmJ1y5AuPHp//4uXPJ4Qbg00/Tb3v1aur7y5eb3+rT4viAdvj1V/j777TbFi2a+n50tLm6kJaUoQLM13flStptr73+l97G1PnyXb9LgJ8fFCmS/FjKW5EiqduWLQu3355222uXe7nzTvOhbbNd3/ba+u65x3y9Npv5WhITTXhz/OkINmD2pqxfP/XjiYnJxynH+RYubD5g02ub8mpXyrDoMJZXCOJP9lGZiy+OpMw/5+PjzZZS6UkZ8k6fNuEiPTExycdHj6YfHgE6dUo+3r/fjGtOzz33pA43I0em3/aDD5LDzc6dqf+dXGv8eNNLB7BrF7RqlX7bESPMjHlH28aNzd83X1/zZ8rjDh3g6adN27//NiE2rXZ+flCxormB+bldvWr+HWpDdpG8wdJwczNWrVrFW2+9xdSpU2nUqBH79++nf//+vPnmm7yexlgEHx8ffFJ+MuUgHx8z1jOtD9N8+aBGjeS2+fLBuHFpt8uX7/rNnT/6yHzoptW2dOnUbb/4wnx4ptX22it5335rPgjTaluwYOq2P/6Y/uteGyzWr7/++5Def/zLlmX+ezxnTubbvv125ttGRJhbZrz6auqrahkZOTLjD/WURo0ybR3hx/bjCgqFmktEpRbPoHADX2fb3r1N0Lg2LDmOq1ZNft0OHUzIcDx2bduUY5ObNTOhO612iYnmyp9DnTrmitC1QdDRNuUSPMHBZlHltNomJSVfiQEoWRIefTTtry0pCSpUSG5bqJCpKWXbhATTxRcXlzocx8aaIJcyzKWU8ms7cSLjoU0DBiRfkTt+3Fyp8/JKDkAp/2zfPnmnjIsXYciQ9APWHXck12G3m102HI/5+Cg8iWSWpWNurly5gq+vLwsWLKBdu3bO8+Hh4Zw7d44lS5Zc95z777+fe++9l3HjxjnPffrppzz//PPExsaS7wabB2alz07EMnFx5lLGwYPw4ovmMoLcksuXTZehI/jExaU+rlvXjJcCcwXrzTfTbnfxormy5FhmaM+e5K7FtPTrB5MmmePoaDPOKj3duplFp8GEsZThLF++1IGobdvkK8VJSaYb8Npw5TiuUiX1eLRt20wwTNmuYEGFJ8nbXGbMjbe3N/Xq1WPFihXOcJOUlMSKFSvo06dPms+5ePHidQHG65/LBhaPjRbJPq+9ZoJNxYpZuwQl6SpYMPUVrYwEBWU8riqlKlVMl3NaISguzly1SlnDa69d38bxZ8qQdOmS6epydAUnJZnAExtr7p85k9z28uXUY+mu9fjjyeHGbjch7tpuUJvNhJ2QEPjyy+Tzjz5qnpNW91zlysldeWCu7qZ3BatQIW1cL7nH8m6piIgIwsPDqV+/Pg0bNmTixInExcXRrVs3AMLCwihfvjyjR48GIDQ0lPHjx1O3bl1nt9Trr79OaGioM+SIuLR16+Ddd83x9OnXDzySPCVfPjNoOTMDl4sVM92PmVGqlBlblZCQdhAqViy5rZeXuTqUXsByDBgHMz6oXLnkxxxj+ex2c//a8X4//HD9OYeHHkodbtq3Nwtop6VBAzP426FlSxMK0wpC5ctDZKTCkNw8y8NNx44d+euvvxg2bBgnTpygTp06fP/9985BxkeOHEl1pWbo0KHYbDaGDh3KsWPHKFWqFKGhofz72mkmIq7o0iXo3t180nTrZj4BxKPlz3/j8OTjk7zl2I14e5tuN4eEBPPXzhGGUg6It9vNbLv0rjRdeyXsrrtMuEkZsBzrq/r6pm77yy9msHtaatY0V7gc/vtfsyREpUqZ+xpFLF/nJrdpzI3kaUOGwJgxZlrYzp2pfz0XcUFJScnrXqWcrblmjRncnVZoqlwZHKt7XLpk/hnEx5vzLVuaW7Nm10+QEPeWlc9vhRuRvGLLFtN/kJgIS5bAY49ZXZGI5Q4dgrAw2LAh9RIHXl7mn4tj5qC4v6x8fqtHUyQvuHLFdEclJpqlkxVsRAAzIHvNGjOAeskSE2aqVDH/VNatM1PxHU6eNAPBDx2yqlrJKywfcyMiwOjRsGOHWeTFMZhYRJz8/U3md+T+gwfNgpMpp7h//z288II5rlIFHn5YXVieSlduRKy2fXvyFJrJk800GRHJUKVK8PzzZsVyh4AA+Ne/TJfVvn0wdSq0awfFi8P995thbOIZFG5ErJSQYLqjEhLM/8IdOlhdkYjLatfO7Id39mzaXVgpV3NfvNistKAuLPekbikRK40fD1u3mmkkU6dqiViRbJBWF9aWLakvik6aBKtWmeMqVZJnYTVtqi4sd6BwI2KVPXuSd3WcMMFM/xaRbFep0vVr5LRqZRYn/Pln04W1b5/Z5SR/fjNW59tv9buGK1O3lIgVEhNNd1R8vPlfNjzc6opEPMqQIbB2rZmFtXix2cKtcmXTQ+zllTrY9O1rurAOH7asXMkirXMjYoV334X+/aFwYTPKsWJFqysSEeDAAbOY4N13m/uHD6feH6xqVdN99fDDZhaWdkfJPVrnxiphYaYjNzra6kokLzt40GycAzBunIKNSB5y++3JwQbM1hYjRkCTJuaKzt69ZlJj27ZmFtbYsdbVKulTuMkuO3eaTVgGDIAKFcziCzNnmp3hRBzsdujRw/xq+OCDZi6riORZZcqYoXGOLqxFi6BXL7jjDtOFlXIq+tatZsLjjBnqwrKauqWyy9mz8NlnMHeuGaHm4O0NbdpA587w6KNQqFD2vae4nunTTaApVMisb1O5stUVichN+uMPCAw0vcsAI0fC8OHJjzu6sByzsNSFdWu0t1QGcmXMzYEDMH++CTu7diWfL1wYHn/cBJ3mzVNvvyvu788/oXp1uHDBTAEfONDqikQkG23fbq7s/PADbNxo5g045M8P27aZHc/l5ijcZCBXBxTb7WZJ/XnzzC3ldcqSJc31y06d4L77IJ96CN2a3W6u3C1danb7W7vWdOCLiFs6dw5WrjRB54cf4PRp062V/58FWCIjze/BjsHJGnp3Ywo3GbBstpTdbra1nTsXvvgC/vor+bGKFc1miZ07Q61aWlzBHX36KXTpYropo6KgWjWrKxKRXHTqVOoVku+4w4QbhzvvTN2F5ejqkmQKNxnIE1PBExJgxQpzNWfhQtNN4VCtmgk5nTqZv/3i+k6cMN1Rf/8N//43vPqq1RWJiIUcv+s6rups3AhJScmPV6uWekSD3a7feUHhJkN5ItykdOmSWQpz3jzzZ3x88mMNG5qg06GDVq91ZU89BV99BXXrmv/FNNZKRFJI2YW1bBmEhJjVksGsoly1qvk48PQuLIWbDOS5cJPS+fNmNNrcuebKjiPK58tnVovq1AmeeAKKFbO2Tsm8BQugfXvT0b55M9SpY3VFIpLHxceb9XXAbAT6wAOpH7/rruQurAcf9JwuLIWbDOTpcJPSyZNmbE56U8s7dTIDVH19ratRMnbmjOmOOnUKhg6FN9+0uiIRcTFXr8KmTbB8edpdWKNGwWuvJbf18nLf+SkKNxlwmXCTkmNq+dy5ZrFAh8KFoV0703XVooW6O/KaLl3MQOLq1c0cUMevYiIiN+nvv1N3YX3xBTRoYB774guzR1aLFsldWEFB1tabnRRuMuCS4SYlx9TyuXOvn1revr0JOppabr1vvzVX1vLlg/XroVEjqysSETfj+PR2DDbu1QumTUvdJmUXVvPmULBg7taYnRRuMuDy4cbBbjfdVXPnwuefp55aHhRkuq06dYLatTXMPredPw81asCxYzBokNk/SkQkhzm6sByzsDZtSt2FdfSo2R0IzLo7xYu71u/BCjcZcJtwk1JCAvz4owk6aU0tdwQdLfWfO55/3myzULky/PqrxkWJiCX+/tt8NCxfbi70f/dd8mNt2pjw8/DD5tayZXLwyasUbjLgluEmpUuXzCq4c+emPbW8Uyfo2FFTy3PK//5n/qcAWL36+mkOIiIWS0w0QebEidTnq1UzIadNG/NnXqNwkwG3DzcpOaaWz5tnPnRTTi1v2tSMz9HU8uwTG2s2jjl0CHr3hsmTra5IRCRNV6+amVeOLqzNm5M/Ipo3Nx8ZDr/9ZuZFWN2FpXCTAY8KNyk5ppbPm2eWxnTw9jYrRjl2LVcXys3r3x/efRduu80M/NYWwCLiIhxdWD/8YC7yP/usOX/ihLnQX7Jk6llYVnRhKdxkwGPDTUoHDyZPLf/tt+Tzmlp+89auNV1QdruZn5kXr+mKiGTRypXQtm3qoZxgruS0bAnh4bm3NqnCTQYUbq6RctfyQ4eSz5cokbxreZMm1l+PzMsuXTL/uvfuhe7d4aOPrK5IRCTbZNSF9ckn8Mwz5jg62lzpqV07Zz4yFG4yoHCTjpRTy7/4wqyq6xAUlLxruaaWX2/wYBg71ly73bULiha1uiIRkRxz9mxyF9bIkVCmjDk/bhy88goEBpoOgkKFsvd9FW4yoHCTCY6p5Y5dy2Nikh/T1PLUNm+Ge+81v8YsWQKPPWZ1RSIilnjjDXjnHfMxsWlT9r++wk0GFG6y6PLl5Knl33yTemp5gwbmao6nTi2/cgXq1TPjljp1Mt8jEREPdvWq6Z7KiZ3LFW4yoHBzC86fh8WLzYd4yqnlNpvZtdzTppa/8QaMGAGlSpnuqJIlra5IRMRtKdxkQOEmm5w8CV9+abqu1q9PPl+gQPKu5aGh7ju1fPt2c9UmIcFsf9Ghg9UViYi4NYWbDCjc5IBDh5Knlu/YkXzezy95avnDD7vP1PKEBDPOZutWePxx+OorDbIWEclhCjcZULjJYb/9lrxr+bVTyx27lrv61PIxY2DIENP9tnOnZ443EhHJZQo3GVC4ySV2u1kYwbFreVpTyzt1MuvDuNJVj99/NzXHx8Ps2WYFKxERyXEKNxlQuLFAQoJZ5tKxa3nKqeV33WWu5rjC1PLERLMK8fr10Lq1mUXmSsFMRMSFKdxkQOHGYo6p5fPmwX//e/3Ucseu5eXKWVdjet591+wfVaSI6X7LibmOIiKSJoWbDCjc5CExMal3LU9MNOcdU8s7dYInn8wbU8sPHDA7fl+8CNOmwQsvWF2RiIhHUbjJgMJNHnXqlJlaPnfu9VPLHbuWWzW13G6H5s1N11rTprBihWsPiBYRcUEKNxlQuHEBjqnl8+aZ9WQcHFPLO3Uy29Hm1tTyDz80V2oKFTJT3e+4I3feV0REnBRuMqBw42IcU8vnzTM7sTk4ppZ36gT/+lfOXUk5ehRq1IALF2DCBBgwIGfeR0REMqRwkwGFGxflmFo+b56ZWn7yZPJjFSok71qenVPL7XZ49FEzALpxY/jpJ/Dyyp7XFhGRLFG4yYDCjRtISIBVq8z4nK++un5quWPX8ipVbu19PvkEwsLA2xuiosxWtyIiYgmFmwwo3LiZy5fhu++Sdy2/fDn5sfr1k3ctz+rU8hMnoHp1+PtveOstiIzM3rpFRCRLFG4yoHDjxmJizK7l8+bB8uWpp5Y3bWqCTmanlj/5pFlw8J574Oef3WdfLBERF5WVz+88MZ91ypQpBAcHU7BgQRo1asSmTZsybH/u3Dl69+5N2bJl8fHxoWrVqixdujSXqpU8y9/fdCN99x0cPw5Tpph9rOx2M437uecgMBDatjWzseLi0n6dBQtMsMmfH2bOVLAREXExloebzz//nIiICIYPH862bduoXbs2rVq14lTKvYhSuHLlCg8//DCHDh1iwYIF7Nmzh+nTp1O+fPlcrlzytNKl4cUXYe1aM7X87behVi24ehW+/tqMyQkMhGeegW+/NecBTp+G3r3NcWQk1K5t2ZcgIiI3x/JuqUaNGtGgQQMmT54MQFJSEkFBQfTt25chQ4Zc137atGmMGzeO33//nQI38Ru1uqU83M6dyVPLDxxIPl+iBDz1FBw7Zsbu1KgBW7eCj491tYqIiJPLjLm5cuUKvr6+LFiwgHbt2jnPh4eHc+7cOZYsWXLdc9q0aUPx4sXx9fVlyZIllCpVis6dOzN48GC80pimGx8fT3yK/YtiYmIICgpSuPF0djts2pS8a3nKqeX58sGGDdCwoXX1iYhIKi4z5ub06dMkJiYSGBiY6nxgYCAnTpxI8zkHDhxgwYIFJCYmsnTpUl5//XXeeecdRo0alWb70aNHExAQ4LwFBQVl+9chLshmg0aNYNIk+PNPMwC5e3coX97MjlKwERFxWfmtLiCrkpKSKF26NB9++CFeXl7Uq1ePY8eOMW7cOIYPH35d+8jISCIiIpz3HVduRJzy54cWLcxNRERcnqXhpmTJknh5eXEyZZcAcPLkScqUKZPmc8qWLUuBAgVSdUFVq1aNEydOcOXKFby9vVO19/HxwUfjJkRERDyGpd1S3t7e1KtXjxUrVjjPJSUlsWLFCho3bpzmc5o0acL+/ftJSkpyntu7dy9ly5a9LtiIiIiI57F8KnhERATTp09nzpw57N69m169ehEXF0e3bt0ACAsLIzLF6rC9evXi7Nmz9O/fn7179/Ltt9/y1ltv0dsxfVdEREQ8muVjbjp27Mhff/3FsGHDOHHiBHXq1OH77793DjI+cuQI+VLs+BwUFMSyZcsYOHAgtWrVonz58vTv35/Bgwdb9SWIiIhIHmL5Oje5TevciIiIuB6XmQouIiIikt0UbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYs334htzkWZI6JibG4EhEREcksx+d2ZjZW8Lhwc+HCBcDsUSUiIiKu5cKFCwQEBGTYxuP2lkpKSuL48eMUKVIEm82Wra8dExNDUFAQR48e1b5VLko/Q9emn5/r08/Q9eXUz9But3PhwgXKlSuXakPttHjclZt8+fJRoUKFHH0Pf39//aN0cfoZujb9/FyffoauLyd+hje6YuOgAcUiIiLiVhRuRERExK0o3GQjHx8fhg8fjo+Pj9WlyE3Sz9C16efn+vQzdH154WfocQOKRURExL3pyo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErSjcZJMpU6YQHBxMwYIFadSoEZs2bbK6JMmCNWvWEBoaSrly5bDZbCxevNjqkiQLRo8eTYMGDShSpAilS5emXbt27Nmzx+qyJAvef/99atWq5Vz4rXHjxnz33XdWlyU36e2338ZmszFgwABL3l/hJht8/vnnREREMHz4cLZt20bt2rVp1aoVp06dsro0yaS4uDhq167NlClTrC5FbsLq1avp3bs3P//8M8uXL+fq1au0bNmSuLg4q0uTTKpQoQJvv/02W7duZcuWLTz00EO0bduWnTt3Wl2aZNHmzZv54IMPqFWrlmU1aCp4NmjUqBENGjRg8uTJgNm/KigoiL59+zJkyBCLq5OsstlsLFq0iHbt2llditykv/76i9KlS7N69WoeeOABq8uRm1S8eHHGjRvHs88+a3UpkkmxsbHcc889TJ06lVGjRlGnTh0mTpyY63Xoys0tunLlClu3bqVFixbOc/ny5aNFixZs2LDBwspEPNf58+cB8+EoricxMZH58+cTFxdH48aNrS5HsqB379488sgjqT4TreBxG2dmt9OnT5OYmEhgYGCq84GBgfz+++8WVSXiuZKSkhgwYABNmjTh7rvvtrocyYIdO3bQuHFjLl++TOHChVm0aBHVq1e3uizJpPnz57Nt2zY2b95sdSkKNyLiXnr37s1vv/3G2rVrrS5FsujOO+8kKiqK8+fPs2DBAsLDw1m9erUCjgs4evQo/fv3Z/ny5RQsWNDqchRublXJkiXx8vLi5MmTqc6fPHmSMmXKWFSViGfq06cP33zzDWvWrKFChQpWlyNZ5O3tTeXKlQGoV68emzdvZtKkSXzwwQcWVyY3snXrVk6dOsU999zjPJeYmMiaNWuYPHky8fHxeHl55Vo9GnNzi7y9valXrx4rVqxwnktKSmLFihXqKxbJJXa7nT59+rBo0SJ+/PFHKlWqZHVJkg2SkpKIj4+3ugzJhObNm7Njxw6ioqKct/r16/P0008TFRWVq8EGdOUmW0RERBAeHk79+vVp2LAhEydOJC4ujm7dulldmmRSbGws+/fvd94/ePAgUVFRFC9enIoVK1pYmWRG7969mTt3LkuWLKFIkSKcOHECgICAAAoVKmRxdZIZkZGRhISEULFiRS5cuMDcuXNZtWoVy5Yts7o0yYQiRYpcN8bNz8+PEiVKWDL2TeEmG3Ts2JG//vqLYcOGceLECerUqcP3339/3SBjybu2bNlCs2bNnPcjIiIACA8PZ/bs2RZVJZn1/vvvA9C0adNU52fNmkXXrl1zvyDJslOnThEWFkZ0dDQBAQHUqlWLZcuW8fDDD1tdmrggrXMjIiIibkVjbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkTE7XTt2pV27dpZXYaIWEThRkRuSteuXbHZbNfdWrdubXVpTJo0Kc9sm2Gz2Vi8eLHVZYh4FO0tJSI3rXXr1syaNSvVOR8fH4uqgcTERGw2GwEBAZbVICLW05UbEblpPj4+lClTJtWtWLFirFq1Cm9vb3766Sdn27Fjx1K6dGlOnjwJmE0u+/TpQ58+fQgICKBkyZK8/vrrpNzuLj4+nkGDBlG+fHn8/Pxo1KgRq1atcj4+e/ZsihYtytdff0316tXx8fHhyJEj13VLNW3alL59+zJgwACKFStGYGAg06dPJy4ujm7dulGkSBEqV67Md999l+rr++233wgJCaFw4cIEBgbSpUsXTp8+nep1+/XrxyuvvELx4sUpU6YMb7zxhvPx4OBgAB5//HFsNpvzvojkLIUbEcl2TZs2ZcCAAXTp0oXz58/zyy+/8PrrrzNjxgwCAwOd7ebMmUP+/PnZtGkTkyZNYvz48cyYMcP5eJ8+fdiwYQPz589n+/bttG/fntatW7Nv3z5nm4sXLzJmzBhmzJjBzp07KV26dJo1zZkzh5IlS7Jp0yb69u1Lr169aN++Pffddx/btm2jZcuWdOnShYsXLwJw7tw5HnroIerWrcuWLVv4/vvvOXnyJB06dLjudf38/Ni4cSNjx45l5MiRLF++HIDNmzcDZnfy6Oho530RyWF2EZGbEB4ebvfy8rL7+fmluv373/+22+12e3x8vL1OnTr2Dh062KtXr25/7rnnUj3/wQcftFerVs2elJTkPDd48GB7tWrV7Ha73X748GG7l5eX/dixY6me17x5c3tkZKTdbrfbZ82aZQfsUVFR19XWtm3bVO/1r3/9y3k/ISHB7ufnZ+/SpYvzXHR0tB2wb9iwwW632+1vvvmmvWXLlqle9+jRo3bAvmfPnjRf12632xs0aGAfPHiw8z5gX7RoUTrfRRHJCRpzIyI3rVmzZrz//vupzhUvXhwAb29vPvvsM2rVqsVtt93GhAkTrnv+vffei81mc95v3Lgx77zzDomJiezYsYPExESqVq2a6jnx8fGUKFHCed/b25tatWrdsNaUbby8vChRogQ1a9Z0nnNcUTp16hQAv/76KytXrqRw4cLXvdYff/zhrOva9y5btqzzNUTEGgo3InLT/Pz8qFy5crqPr1+/HoCzZ89y9uxZ/Pz8Mv3asbGxeHl5sXXrVry8vFI9ljJwFCpUKFVASk+BAgVS3bfZbKnOOV4jKSnJ+f6hoaGMGTPmutcqW7Zshq/reA0RsYbCjYjkiD/++IOBAwcyffp0Pv/8c8LDw/nf//5HvnzJQ/02btyY6jk///wzVapUwcvLi7p165KYmMipU6e4//77c7t87rnnHr766iuCg4PJn//m/6ssUKAAiYmJ2ViZiNyIBhSLyE2Lj4/nxIkTqW6nT58mMTGRZ555hlatWtGtWzdmzZrF9u3beeedd1I9/8iRI0RERLBnzx7mzZvHe++9R//+/QGoWrUqTz/9NGFhYSxcuJCDBw+yadMmRo8ezbfffpvjX1vv3r05e/YsnTp1YvPmzfzxxx8sW7aMbt26ZSmsBAcHs2LFCk6cOMHff/+dgxWLiIOu3IjITfv+++9TddEA3HnnnXTu3JnDhw/zzTffAKYb58MPP6RTp060bNmS2rVrAxAWFsalS5do2LAhXl5e9O/fn+eff975WrNmzWLUqFG89NJLHDt2jJIlS3Lvvffy6KOP5vjXVq5cOdatW8fgwYNp2bIl8fHx3HbbbbRu3TrV1acbeeedd4iIiGD69OmUL1+eQ4cO5VzRIgKAzW5PsaiEiEguadq0KXXq1GHixIlWlyIibkbdUiIiIuJWFG5ERETErahbSkRERNyKrtyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMSt/D98LYBSL8YFYQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcKklEQVR4nO3deVhU5f/G8feAAoKCu6ahlFppuWtmVmqRW5m2qJW5lWtaKvnTKLVs0TZLv+VuLi2mZS6V5pK5a65hubS5YbmngqCiwvz+eBoQBQUFnpnhfl3XuThn5szMDSjzmec8i8PpdDoRERER8RI+tgOIiIiIZCUVNyIiIuJVVNyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXyWM7QE5LSkpi//79FChQAIfDYTuOiIiIZIDT6eTkyZOUKlUKH5/Lt83kuuJm//79hIaG2o4hIiIiV2Hfvn1cf/31lz0n1xU3BQoUAMwPJzg42HIaERERyYjY2FhCQ0OT38cvJ9cVN65LUcHBwSpuREREPExGupSoQ7GIiIh4FRU3IiIi4lWsFjcrVqygefPmlCpVCofDwZw5cy57/qpVq6hXrx5FihQhX7583HLLLXzwwQc5E1ZEREQ8gtU+N/Hx8VStWpWnn36aRx555IrnBwUF0atXL6pUqUJQUBCrVq2iW7duBAUF0bVr1xxILCIiIu7O4XQ6nbZDgOkgNHv2bFq2bJmpxz3yyCMEBQXx6aefZuj82NhYQkJCiImJUYdiERERD5GZ92+P7nPz888/s2bNGurXr5/uOQkJCcTGxqbaRERExHt5ZHFz/fXX4+/vT61atejZsyedO3dO99xhw4YREhKSvGkCPxEREe/mkcXNypUr2bhxI2PHjmXEiBF88cUX6Z4bGRlJTExM8rZv374cTCoiIiI5zSMn8bvhhhsAqFy5MocOHeLVV1/liSeeSPNcf39//P39czKeiIiIWOSRLTcXSkpKIiEhwXYMERERcRNWW27i4uL466+/ko93795NVFQUhQsXpkyZMkRGRvLPP//wySefADBq1CjKlCnDLbfcAph5ct577z2ef/55K/lFRETE/VgtbjZu3EjDhg2TjyMiIgDo0KEDU6ZM4cCBA0RHRyffn5SURGRkJLt37yZPnjyUK1eOt99+m27duuV4dhEREXFPbjPPTU7RPDciIiLZ6Mcf4Y47IDAwS58218xzIyIiIm7kzz+hWTOoXBkOHLAWQ8WNiIiIXLukJOjSBRISoHx5KFnSWhQVNyIiInLtPv4Yli83l6PGjgWHw1oUFTciIiJybfbvh//7P7P/xhvw33x0tqi4ERERkWvz3HMQEwO1a4MbTM+i4kZERESu3qxZZsuTByZMAF9f24lU3IiIiMhVOnECevUy+/37Q9WqVuO4qLgRERGRqzNggBnyfdNNMGiQ7TTJVNyIiIhI5i1fDuPHm/0JEyAgwG6eC6i4ERERkcw5c8bMaQPQrRvcc4/dPBdRcZPVEhNtJxAREcler71mZiO+7jp4+23baS6h4iar7NwJbdpAkya2k4iIiGSfLVvgnXfM/ujREBJiN08arK4K7lX8/eHrr03LzfbtUKmS7UQiIiJZ6/x56NzZvNc9+ii0bGk7UZrUcpNVrr8eWrQw+2PG2M0iIiKSHf73P9i40bTWfPih7TTpUnGTlXr0MF+nToW4OLtZREREstKuXTBwoNl/7z3T38ZNqbjJSvfea8b6nzwJ06bZTiMiIpI1nE7o3h1On4YGDeCZZ2wnuiwVN1nJxyel9WbUKPOPQURExNN9+iksXmzmshk/3uqK3xmh4iardegA+fLBL7/A2rW204iIiFybw4ehb1+z/+qrUKGC1TgZoeImqxUqBE88YfbVsVhERDxd795w7BhUqwYREbbTZIiKm+zw7LPm65dfwpEjdrOIiIhcre++g+nTTbeLiRMhb17biTJExU12qFkTateGs2dh0iTbaURERDLv5MmUfqQREea9zUOouMkurtabceO0JIOIiHiel16Cv/+GG2+EIUNsp8kUFTfZpU0b0/9m925YuNB2GhERkYxbs8aM+gXzIT0w0G6eTFJxk13y5YNOncz+6NF2s4iIiGRUQoJZYsHphI4dITzcdqJMU3GTnbp3N1/nz4c9e6xGERERyZC33oIdO6B4cRg+3Haaq6LiJjtVqACNGpnqd9w422lEREQub/t2ePNNs//hh1C4sN08V0nFTXZz9TSfONE09YmIiLijxERzOercOWjeHFq1sp3oqqm4yW4PPmhWDD96FL7+2nYaERGRtI0ZY2bWL1DA9BV18yUWLkfFTXbLkwe6dTP76lgsIiLuKDoaIiPN/ltvmQ/lHkzFTU7o3NkUOatXw5YtttOIiIikcDpNF4q4OLjzzpTBMB5MxU1OKFkSHnnE7Gu9KRERcSczZphRvX5+MGGCWWrBw3n+d+ApXDMWf/YZxMbazSIiIgLw77/w/PNm/+WXoVIlu3myiIqbnHLPPeYfTXw8fPqp7TQiIiLwwgtmgedbb4UXX7SdJsuouMkpDkfKsPDRo801ThEREVsWLYKpU83708SJ5rKUl1Bxk5PatYOgIDNJ0sqVttOIiEhuFR+fMpL3uefgjjvs5sliKm5yUkgItG1r9jUsXEREbBk82CwLVKYMvPGG7TRZzmpxs2LFCpo3b06pUqVwOBzMmTPnsufPmjWL+++/n2LFihEcHEzdunVZ6GkrbrsuTX39NRw8aDeLiIjkPhs2wIgRZn/sWDNpn5exWtzEx8dTtWpVRrmWVb+CFStWcP/99zN//nw2bdpEw4YNad68OT///HM2J81C1aqZeQTOn4ePP7adRkREcpNz58zca0lJ8OST0LSp7UTZwuF0ukfPVofDwezZs2nZsmWmHnfrrbfSpk0bBg8enOb9CQkJJFywplNsbCyhoaHExMQQHBx8LZGv3mefmf43oaGwa5eZ4E9ERCS7DRsGL70ERYqYlb+LFbOdKMNiY2MJCQnJ0Pu3R/e5SUpK4uTJkxS+zKqlw4YNIyQkJHkLDQ3NwYTpeOwxKFoU9u2DefNspxERkdzgjz9gyBCz/8EHHlXYZJZHFzfvvfcecXFxtG7dOt1zIiMjiYmJSd727duXgwnTERAAzzxj9jVjsYiIZLekJOjaFRISoHFjeOop24mylccWN9OmTWPIkCF8+eWXFC9ePN3z/P39CQ4OTrW5hW7dzNwCCxfCX3/ZTiMiIt5s4kRYvhwCA00nYg9e8TsjPLK4mT59Op07d+bLL78kPDzcdpyrc8MNKR25xo61m0VERLzX/v3wf/9n9t98E8LCrMbJCR5X3HzxxRd06tSJL774ggceeMB2nGvjWm9q8mQ4fdpuFhER8U69epk1DWvXNhP25QJWi5u4uDiioqKIiooCYPfu3URFRREdHQ2Y/jLt27dPPn/atGm0b9+e4cOHU6dOHQ4ePMjBgweJiYmxEf/aNWkCZcvCsWPw5Ze204iIiLeZNQtmzzajcidOBF9f24lyhNXiZuPGjVSvXp3q1asDEBERQfXq1ZOHdR84cCC50AEYP34858+fp2fPnlx33XXJW+/eva3kv2a+vtC9u9nXjMUiIpKVTpyAnj3N/oABUKWK1Tg5yW3muckpmRknnyMOHzbz3Zw9Cxs3Qs2athOJiIg36NoVJkyAm2+GqCgzUteD5Zp5brxC8eJm3hvQsHAREckay5aZwgbMVw8vbDJLxY07cHUsnjYNjh+3m0VERDzb6dOm1QZM14e777abxwIVN+7gzjvNtdDTp+GTT2ynERERT/baa/Dnn1CqFLz1lu00Vqi4cQcOR8pq4aNHQ+7qBiUiIlklKgrefdfsjx4NISFW49ii4sZdtG1rlp3/4w/48UfbaURExNOcP29W/E5MNH05W7SwncgaFTfuokABcM3po47FIiKSWSNHwqZNULAgfPih7TRWqbhxJ65LU3PmwD//WI0iIiIeZNcuGDTI7L/3HpQsaTePZSpu3Mmtt8I995gmRdcQPhERkctxOs1izKdPQ8OG8PTTthNZp+LG3biGhU+YAOfO2c0iIiLu75NP4IcfzFw248d7/YrfGaHixt08/DCUKGFWcf3mG9tpRETEnR06BH37mv0hQ6B8ebt53ISKG3fj52d6u4PWmxIRkcvr3dtM/lq9OkRE2E7jNlTcuKOuXcHHxwwJ/+0322lERMQdffstzJhhFmGeONGs/C2Aihv3VKYMPPig2R871m4WERFxP7GxKX00IyKgRg27edyMiht35fpHO2UKxMdbjSIiIm7mpZfg77/hxhvh1Vdtp3E7Km7c1f33Q7lyEBMD06fbTiMiIu5i9eqUPpnjx0NgoN08bkjFjbvy8TGruQKMGqX1pkREBBISoEsX857QqRPcd5/tRG5JxY0769QJ/P3h559h/XrbaURExLZhw2DHDjNlyHvv2U7jtlTcuLMiReDxx82+1psSEcndtm2DoUPN/ocfQuHCdvO4MRU37s613tT06fDvv3aziIiIHYmJ8MwzZub6hx4yq35LulTcuLvbbzdD/BISYPJk22lERMSG0aNh3TooUMD0w9QSC5el4sbdORwpw8LHjoWkJLt5REQkZ0VHQ2Sk2X/7bbj+ert5PICKG0/w+OMQEgI7d8LixbbTiIhITnE6TfeE+HioV8+s/i1XpOLGEwQFQceOZl/rTYmI5B7Tp8P8+WbdwQkTzDQhckX6KXkKV8fi774zTZQiIuLdjh6F5583+wMHQsWKdvN4EBU3nuLmm+Hee02fm/HjbacREZHs9sILpsC57TYYMMB2Go+i4saTuDoWT5gAZ8/azSIiItln4UL45BMzqGTiRHNZSjJMxY0neeghKFUKDh+G2bNtpxERkewQF5fScfj556FOHbt5PJCKG0+SN69ZUwTUsVhExFsNHgx790KZMvDGG7bTeCQVN56mSxfw9YUVK2DrVttpREQkK61fDyNHmv2xYyF/frt5PJSKG09TujS0bGn2x461GkVERLLQuXPQubMZONK2LTRtajuRx1Jx44lcw8I/+QROnrSbRUREssa778Kvv5pFkz/4wHYaj6bixhPde68ZGn7yJHz+ue00IiJyrX7/HV57zeyPGAHFilmN4+lU3HgihyOl9WbMGDM9t4iIeKakJOja1SyQ3KSJuSQl10TFjafq0AHy5YNffoE1a2ynERGRqzVhghkkEhRk+lJqxe9rpuLGUxUsCE8+afY1LFxExDP98w/072/233wTypa1m8dLWC1uVqxYQfPmzSlVqhQOh4M5c+Zc9vwDBw7w5JNPctNNN+Hj40OfPn1yJKfbcs1YPHOmmdhPREQ8h9MJPXtCbCzcfjv06mU7kdewWtzEx8dTtWpVRo0alaHzExISKFasGAMHDqRq1arZnM4D1Khh/kOcPQuTJtlOIyIimTFrFsydC3nymCUWfH1tJ/IaeWy+eNOmTWmaiXH8YWFhjPxvcqNJGXwzT0hIICEhIfk4NjY2cyHd3bPPmkmfxo6F//s//ecQEfEEx4+ntNS8+CJUrmw3j5fx+j43w4YNIyQkJHkLDQ21HSlrtW4NhQubqboXLLCdRkREMqJ/fzh40Ezr8fLLttN4Ha8vbiIjI4mJiUne9u3bZztS1sqXDzp1MvvqWCwi4v6WLjWXocB8DQiwm8cLeX1x4+/vT3BwcKrN63Tvbr5+/z3s3m03i4iIpO/0aTOnDZj5yu66y24eL+X1xU2uUL48NG5set6PG2c7jYiIpGfIEPjrL7NO4LBhttN4LRU33sI1Y/HHH8OZM3aziIjIpX7+Gd57z+yPHg0hIXbzeDGrxU1cXBxRUVFERUUBsHv3bqKiooiOjgZMf5n27duneozr/Li4OI4cOUJUVBTbt2/P6eju54EHIDQUjh41896IiIj7OH/erPidmAitWsFDD9lO5NUcTqe9hYmWLVtGw4YNL7m9Q4cOTJkyhY4dO7Jnzx6WLVuWfJ8jjWmpy5Yty549ezL0mrGxsYSEhBATE+N9/W/efBMGDoQ774TVq22nERERl/feM9N1FCwIO3ZAyZK2E3mczLx/Wy1ubPDq4ubgQdN6c/68af6sVs12IhER2bnTzGNz+rTpOvD007YTeaTMvH+rz403KVkSHn3U7I8ZYzeLiIiYgR7dupnC5t57U6bukGyl4sbbuNab+vxziImxm0VEJLebOhWWLDFz2YwfrxW/c4iKG29z991w660QHw+ffmo7jYhI7nXoEEREmP3XXoNy5ezmyUVU3HgbhyNlWPjo0aZJVEREct7zz5s1pKpXh759bafJVVTceKN27SAoyPTIX7HCdhoRkdznm2/gyy/NYsYTJ5qVvyXHqLjxRsHB8NRTZl/rTYmI5KzY2JT+jy+8ADVq2M2TC6m48VauS1OzZsGBA3aziIjkJpGR8M8/po/NK6/YTpMrqbjxVlWrQr16Zs6bjz+2nUZEJHdYvTqlxXz8eAgMtJsnl1Jx481crTfjxpkiR0REsk9CglliAcxEfffeazdPLqbixps99hgULQp//w3ffWc7jYiIdxs6FH77DUqUSFkgU6xQcePN/P1TPkVoxmIRkeyzdSsMG2b2P/oIChWymyeXU3Hj7bp1M3PfLFoEf/5pO42IiPdJTDQfJM+dgxYtUpbBEWtU3Hi7sDBo1szsjx1rNYqIiFcaNQrWrTPTcIwapSUW3ICKm9zANd/C5Mlm8TYREckae/fCSy+Z/bffhtKl7eYRQMVN7tC4sWnBOX4cZsywnUZExDs4nWZUanw83HUXdO1qO5H8R8VNbuDrC927m33NWCwikjW++AK+/x78/GDCBPDRW6q70G8it3j6afMfcMMG2LjRdhoREc929Cj07m32Bw2CW26xm0dSUXGTWxQrBq1amX0NCxcRuTZ9+5oCp3Jl6N/fdhq5iIqb3MTVsXjaNNP/RkREMm/BAvjsMzMqauJE0youbkXFTW5St65Zc+rMGZgyxXYaERHPExeX0oexd2+4/Xa7eSRNKm5yE4cjZb2pMWMgKcluHhERTzNokBn+XbYsvP667TSSDhU3uU3btlCggJmt+McfbacREfEc69bByJFmf+xYyJ/fbh5Jl4qb3CZ/fujQwexrWLiISMacPQtdupi5bZ56Cpo0sZ1ILkPFTW7kul78zTdmxXAREbm8d9+FX3+FokXhgw9sp5ErUHGTG916K9SvbxZ7mzDBdhoREff222/w2mtmf+RIU+CIW1Nxk1u5hoVPmGBWshURkUslJZnLUWfPQtOm8MQTthNJBqi4ya1atoQSJeDAAZg713YaERH3NH48rFoFQUFmlKlW/PYIKm5yKz8/82kE1LFYRCQt//yTMvvw0KFm+Ld4BBU3uVnXrmaht6VLYccO22lERNyH02ku3588CXXqQM+ethNJJqi4yc1CQ6F5c7M/dqzdLCIi7uTrr82I0jx5zBILvr62E0kmqLjJ7Vwdi6dMgfh4q1FERNzC8ePQq5fZj4yE226zm0cyTcVNbhceDuXLQ2ysWVBTRCS3+7//g0OH4JZb4OWXbaeRq6DiJrfz8UmZ1G/0aHOdWUQkt/rxR/j4Y7M/cSL4+9vNI1dFxY1Ax44QEABRUWbtFBGR3OjUKTPQAswl+3r17OaRq6biRqBIEXj8cbOvYeEiklsNGQI7d0Lp0jBsmO00cg2sFjcrVqygefPmlCpVCofDwZw5c674mGXLllGjRg38/f0pX748U6ZMyfacuUKPHubrl1/C0aN2s4iI5LTNm2H4cLM/ejQEB9vNI9fEanETHx9P1apVGTVqVIbO3717Nw888AANGzYkKiqKPn360LlzZxYuXJjNSXOB2rWhZk1ISIDJk22nERHJOefPQ+fOZr291q3hoYdsJ5Jr5HA63aMHqcPhYPbs2bRs2TLdcwYMGMC8efPYunVr8m2PP/44J06cYMGCBWk+JiEhgYSEhOTj2NhYQkNDiYmJIViVeWqTJsEzz8CNN8Kff5rOxiIi3u7dd81MxIUKmQlNS5SwnUjSEBsbS0hISIbevz3q3Wvt2rWEh4enuq1x48asXbs23ccMGzaMkJCQ5C00NDS7Y3quxx+HggVh1y5YtMh2GhGR7PfXXzB4sNkfPlyFjZfwqOLm4MGDlLjoH16JEiWIjY3l9OnTaT4mMjKSmJiY5G3fvn05EdUzBQaakVOgjsUi4v2cTujWDc6cgfvuS/n7Jx7Po4qbq+Hv709wcHCqTS7DNefNd9/B3r12s4iIZKcpU8y8NvnywbhxWvHbi3hUcVOyZEkOHTqU6rZDhw4RHBxMvnz5LKXyMjffbD7BOJ0wfrztNCIi2ePgQYiIMPuvvQblytnNI1nKo4qbunXrsmTJklS3LV68mLp161pK5KVc601NnGhGT4mIeJvnn4cTJ6BGDejTx3YayWJWi5u4uDiioqKIiooCzFDvqKgooqOjAdNfpn379snnd+/enV27dtG/f39+++03Ro8ezZdffknfvn1txPdeDz0EpUrB4cMwa5btNCIiWWvuXPjqK7PS98SJZuVv8SpWi5uNGzdSvXp1qlevDkBERATVq1dn8H891w8cOJBc6ADccMMNzJs3j8WLF1O1alWGDx/OxIkTady4sZX8XitPnpQpyMeMsZtFRCQrxcSktE736wf/vf+Id3GbeW5ySmbGyedq+/dDmTJmUqtffoHKlW0nEhG5ds8+az60lSsHv/5qOhOLR/DaeW4kB5UqBQ8/bPbVeiMi3mDVqpS/ZxMmqLDxYipuJH2u9aY+/RROnrSbRUTkWpw5A126mP1nnoGGDe3mkWyl4kbS17ChGRoeFweffWY7jYjI1XvzTfjtNyhZ0iy3IF5NxY2kz+FI6Xg3erSZ+0ZExNP8+iu89ZbZ/+gjs4aUeDUVN3J57dubZRm2boXVq22nERHJnMREs+L3+fPQsiU88ojtRJIDVNzI5RUsCE8+afa13pSIeJqPPoL16yE42OxriYVcQcWNXJmrY/HMmXDR8hciIm5rzx54+WWz/847ULq01TiSc1TcyJXVqAF16sC5czBpku00IiJX5nSahYDj4+Huu1NGSkmuoOJGMsbVsXjsWHMNW0TEnU2bBgsXgp+fmdPGR293uYl+25IxrVtD4cIQHQ3z59tOIyKSviNHoHdvsz94sJnSQnIVFTeSMQEB8PTTZl8zFouIO+vbF/791ywb07+/7TRigYobybju3c3XBQtg5067WURE0vL99/D55+Yy1MSJkDev7URigYobybhy5aBJE9NRb9w422lERFKLi0v5ENa7N9x+u908Yo2KG8kc17DwSZPMWi0iIu5i4EDTLzAsDF5/3XYasShTxc3hw4cve//58+dZv379NQUSN/fAA1CmjLme/dVXttOIiBjr1sH//mf2x46FoCC7ecSqTBU31113XaoCp3Llyuzbty/5+N9//6Vu3bpZl07cj68vdOtm9jVjsYi4g7NnzRILTie0aweNG9tOJJZlqrhxXrRw4p49ezh37txlzxEv9MwzppPeTz/Bzz/bTiMiud0775j174oWhffft51G3ECW97lxaN0O71eiBDz6qNnXsHARsem331L61/zvf6bAkVxPHYrl6rhmLP78c4iJsZtFRHKnpCSzrMLZs9CsGTz+uO1E4iYyVdw4HA5OnjxJbGwsMTExOBwO4uLiiI2NTd4kl7jrLrj1Vjh1Cj75xHYaEcmNxo2DVatM5+ExY7TityRzODPRScbHxyfVZSen05nmcaIbrz0UGxtLSEgIMTExBAcH247j2UaPhp494ZZbYPt2/WERkZzz999QqRKcPGkuRz33nO1Eks0y8/6dJzNPvHTp0msKJl7mqadgwABzzXvZMmjY0HYiEckNnE5zafzkSbjjjpTL5CL/yVRxU79+/ezKIZ4oONgUOGPHmiZhFTcikhNmzoRvvzWjNidONFNUiFwgU31uzp8/T0JCQqrbDh06xJAhQ+jfvz+rVq3K0nDiAVwzFs+eDfv3280iIt7v2DHo1cvsR0aavn8iF8lUcdOlSxeef/755OOTJ09Su3ZtRo0axcKFC2nYsCHz58/P8pDixqpUMZ2Lz583n6BERLLT//0fHD4MFSvCSy/ZTiNuKlPFzerVq3nUNb8J8Mknn5CYmMiff/7Jli1biIiI4N13383ykOLmXK0348ebIkdEJDssWWLWtXM4zIcpf3/bicRNZaq4+eeff6hQoULy8ZIlS3j00UcJCQkBoEOHDmzbti1rE4r7e/RRKFYM/vnHXAcXEclqp05B165m/9ln4c477eYRt5ap4iYgIIDTp08nH//000/UqVMn1f1xcXFZl048g7+/WdcFtN6UiGSPV1+FXbvg+uth6FDbacTNZaq4qVatGp9++ikAK1eu5NChQ9x7773J9+/cuZNSpUplbULxDF27mqbiH36AP/6wnUZEvMnmzTB8uNkfM8aM1BS5jEwVN4MHD2bkyJGUK1eOxo0b07FjR6677rrk+2fPnk29evWyPKR4gLAweOABsz92rNUoIuJFzp0zi/UmJUGbNvDgg7YTiQfI9Dw3mzZtYtGiRZQsWZJWrVqlur9atWrcfvvtWRpQPMizz8J338HkyfDGGxAYaDuRiHi6Dz6AqCgoVAhGjrSdRjxEppZf8AZafiEbJSVB+fKwe7cZ0dCpk+1EIuLJ/voLKleGM2fMh6aOHW0nEouybfmFFStWZOi8e+65JzNPK97Cxwe6dzdLMowereJGRK6e02n68p05A+Hh0KGD7UTiQa564cz0HqaFM3O5o0fNaIaEBFi/HmrXtp1IRDzRxx+bUZj58sHWrXDjjbYTiWWZef/OVIfiQoUKERoayqBBg/jzzz85fvz4JduxY8euKbx4uKJFwdUXa8wYu1lExDMdOAD9+pn9119XYSOZlqni5sCBA7z99tusXbuWypUr88wzz7BmzRqCg4MJCQlJ3jJr1KhRhIWFERAQQJ06dVi/fn265547d47XXnuNcuXKERAQQNWqVVmwYEGmX1OykWuF3i++MOvAiIhkxvPPw4kTULMm9O5tO414oKvuUBwdHc2UKVOYOnUqCQkJdOjQgSFDhpAnT6a68TBjxgzat2/P2LFjqVOnDiNGjOCrr77i999/p3jx4pecP2DAAD777DMmTJjALbfcwsKFC4mIiGDNmjVUr179iq+ny1I5wOmEGjXMCIfhwyEiwnYiEc/mdKbekpKu/vhaHpvVx2nd99tv8MILZqXvjRuhWjXbP31xE5l5/77m0VK7d+/mmWeeYfny5Rw5coTChQtn6vF16tShdu3afPTRRwAkJSURGhrKc889x4svvnjJ+aVKleLll1+mZ8+eybc9+uij5MuXj88+++yKr6fiJoeMHw/dukGFCuaPlU+mGglFrs7ixWbo8OnT7v8mnpnj3OjFF2HYMNspxI1k22gpl4SEBL7++msmTZrE2rVreeCBB5g3b16mC5uzZ8+yadMmIiMjk2/z8fEhPDyctWvXpvvaAQEBqW7Lly8fq1atSvf8hISE5OPY2NhMZZSr9OSTZvXeP/80i93df7/tROLtvvrK/LvT4q2X53CYzccnZT+7jzP72AoVYPBg2z8p8WCZKm7Wr1/P5MmTmT59OmFhYXTq1Ikvv/wy00WNy9GjR0lMTKREiRKpbi9RogS//fZbmo9p3Lgx77//Pvfccw/lypVjyZIlzJo1K90RWsOGDWPIkCFXlU+uQf78Zujmhx+aYeEqbiQ7ffKJmXogKQlat4ZHHsmaN1l3Or7W53JtIrlApoeClylThg4dOlCzZs10z3vooYcy9Hz79++ndOnSrFmzhrp16ybf3r9/f5YvX866desuecyRI0fo0qUL3377LQ6Hg3LlyhEeHs6kSZNSLerpklbLTWhoqC5L5YTt2+HWW80f2b17zRBxkaw2diz06GH2O3c2x76+djOJSJbL1stS0dHRvP766+nen5l5booWLYqvry+HDh1KdfuhQ4coWbJkmo8pVqwYc+bM4cyZM/z777+UKlWKF198kRvTGSro7++Pv79/hvJIFqtUCRo0gGXLTB+c116znUi8zfvvm86nAM89ByNGqH+XiGRuKHhSUtIVt5MnT2b4+fz8/KhZsyZLlixJ9RpLlixJ1ZKTloCAAEqXLs358+f5+uuvadGiRWa+FckprmHhEyaYBfBEsoLTadYvcxU2L75o1h1SYSMiZLK4uZyEhATef//9dFtQ0hMREcGECROYOnUqO3bsoEePHsTHx9Ppv6n727dvn6rD8bp165g1axa7du1i5cqVNGnShKSkJPr3759V34pkpZYtoWRJOHgQ5syxnUa8gdMJL70EgwaZ49dfh6FD1Z9ERJJlqrhJSEggMjKSWrVqceeddzLnvzerSZMmccMNN/DBBx/Qt2/fTAVo06YN7733HoMHD6ZatWpERUWxYMGC5E7G0dHRHDhwIPn8M2fOMHDgQCpVqsTDDz9M6dKlWbVqFQULFszU60oOyZsXunQx+6NH280ini8pCfr0gbfeMsfDh8PAgSpsRCSVTHUoHjBgAOPGjSM8PJw1a9Zw5MgROnXqxE8//cRLL71Eq1at8HXzjnya58aCv/+GsDBITIRt20xfHJHMSkw0C7NOnGiOR49O6UgsIl4v29aW+uqrr/jkk0+YOXMmixYtIjExkfPnz7NlyxYef/xxty9sxJLrr4fmzc3+2LF2s4hnOn8e2rc3hY2PD0yZosJGRNKVqeLm77//Th4Cftttt+Hv70/fvn2TVwoXSZerY/HUqRAXZzeLeJazZ6FNG5g2DfLkMWuWdehgO5WIuLFMFTeJiYn4+fklH+fJk4f8+fNneSjxQvfdZ2YdjY01b1IiGXH6tOmUPmsW+PmZr61b204lIm4uU/PcOJ1OOnbsmDxvzJkzZ+jevTtBQUGpzps1a1bWJRTv4ONj+ku88ILpK9GlizqByuXFxcFDD8HSpZAvH8ydq5muRSRDMtWh2DU8+0omT5581YGymzoUW3TsGJQuDWfOwJo1cIW5jCQXi4mBZs3Mv5P8+WHePLjnHtupRMSibJuh2J2LFvEAhQvDE0/A5Mmm9UbFjaTl33+hcWPYtAkKFoSFC+H2222nEhEPouk8JWe5Rrh8+SUcOWI3i7ifgwfNkh2bNkHRouaSlAobEckkFTeSs2rXhlq1zAgYtQTKhf7+G+rXh61b4brrYMUKqFbNdioR8UAqbiTnuYaFjx1rJmYT2bUL7r4b/vgDypQxhU3FirZTiYiHUnEjOa9NG9OXYvdu059CcrfffjOdhffsgfLlYeVK81VE5CqpuJGcFxgIrpF3Y8bYzSJ2/fKLuRT1zz9mWY4VK0zLjYjINVBxI3Z0726+zptnPrFL7rNxo+k8fPiw6VuzbJnpayMico1U3IgdN90E4eHgdMK4cbbTSE5bvdrMWn38ONSpAz/+CMWK2U4lIl5CxY3Y4+pY/PHHkJBgN4vknCVLoFEjsxRH/fqweDEUKmQ7lYh4ERU3Yk/z5mbG4iNH4OuvbaeRnDBvHjzwAJw6ZQqc+fOhQAHbqUTEy6i4EXvy5IGuXc3+6NF2s0j2+/prePhh00rXogV8843pXC4iksVU3IhdnTubImf1ajNyRrzTZ5+Z1bzPnYPHH4evvoL/FuAVEclqKm7ErlKlzKd50LBwbzV+PLRvD0lJZgqAzz6DvHltpxIRL6biRuxzrTf16aemk6l4j5EjoVs3MyquZ0+YOBF8fW2nEhEvp+JG7GvQAG65BeLjzad68Q5Dh0KfPma/f3/48EPw0Z8cEcl++ksj9jkcKcPCR482n/LFczmdMHAgvPyyOR4yBN56y/yeRURygIobcQ/t25uRM9u2mbWFxDM5nRARAW++aY7ffRcGD1ZhIyI5SsWNuIeQEGjb1uyrY7FnSkoy/adGjDDHo0ZBv35WI4lI7qTiRtyH69LU11/DwYN2s0jmnD8PHTuapTR8fGDSpJTfp4hIDlNxI+6jWjW44w4zF8rHH9tOIxl19iw88YQZ7ebrC59/nrLqu4iIBSpuxL24Pu2PGweJiXazyJWdOQOPPAIzZ4Kfn2l1e/xx26lEJJdTcSPupVUrKFIE9u0z6xCJ+4qPN+uDzZsHAQFmOYUWLWynEhFRcSNuJiAAnn7a7Gu9KfcVGwtNmsAPP0D+/LBgATRubDuViAig4kbcUbduZujwwoWwc6ftNHKxY8fgvvtg1SooWBAWL4b69W2nEhFJpuJG3E+5cqZVAGDsWLtZJLXDh6FhQ9i4EYoWhR9/NJ3ARUTciIobcU+u9aYmTYLTp+1mEeOff+Cee8zq7SVLwvLlUL267VQiIpdQcSPuqVkzKFPGXAL56ivbaWTPHlPY/P47hIbCihVQqZLtVCIiaVJxI+7J1xe6dzf76lhs1x9/wN13w65d5pLhypVQoYLtVCIi6VJxI+7rmWcgb15Ytw42b7adJnfautW02Pz9N1SsaFpsypa1nUpE5LJU3Ij7Kl4cHnvM7Gu9qZy3aZMZBXXoEFStavrYlCplO5WIyBW5RXEzatQowsLCCAgIoE6dOqxfv/6y548YMYKbb76ZfPnyERoaSt++fTlz5kwOpZUc5Zqx+PPP4cQJq1FylTVr4N57TZ+n22+HpUuhWDHbqUREMsR6cTNjxgwiIiJ45ZVX2Lx5M1WrVqVx48YcPnw4zfOnTZvGiy++yCuvvMKOHTv4+OOPmTFjBi+99FIOJ5ccUa8e3HabGTE1dartNLnDjz9Co0Zmor677zbz2BQqZDuViEiGWS9u3n//fbp06UKnTp2oVKkSY8eOJTAwkEmTJqV5/po1a6hXrx5PPvkkYWFhNGrUiCeeeOKKrT3ioRyOlNabMWPA6bSbx9t9/z088IBZWuH++83Mw8HBtlOJiGSK1eLm7NmzbNq0ifDw8OTbfHx8CA8PZ+3atWk+5s4772TTpk3JxcyuXbuYP38+zZo1S/P8hIQEYmNjU23iYZ56ykzx//vv5vKIZI9Zs8zaUGfOmDWjvvkGAgNtpxIRyTSrxc3Ro0dJTEykRIkSqW4vUaIEBw8eTPMxTz75JK+99hp33XUXefPmpVy5cjRo0CDdy1LDhg0jJCQkeQsNDc3y70OyWYEC0K6d2dew8OwxbRq0bg3nzpmvX39t1vkSEfFA1i9LZdayZcsYOnQoo0ePZvPmzcyaNYt58+bx+uuvp3l+ZGQkMTExydu+fftyOLFkCdeMxXPmwP79VqN4nYkTTetYYiJ06GAKnbx5bacSEblqeWy+eNGiRfH19eXQoUOpbj906BAlS5ZM8zGDBg2iXbt2dO7cGYDKlSsTHx9P165defnll/HxSV2v+fv74+/vnz3fgOScypVN59aVK2HCBHjlFduJvMP//ge9e5v9Hj3go4/Ax+M+84iIpGL1r5ifnx81a9ZkyZIlybclJSWxZMkS6tatm+ZjTp06dUkB4+vrC4BTnU29m6v1Zvx4c/lErs1bb6UUNi+8AKNGqbAREa9g/S9ZREQEEyZMYOrUqezYsYMePXoQHx9Pp06dAGjfvj2RkZHJ5zdv3pwxY8Ywffp0du/ezeLFixk0aBDNmzdPLnLESz3yiJnYb/9++PZb22k8l9MJgweD6//V4MHw7rtmZJqIiBewelkKoE2bNhw5coTBgwdz8OBBqlWrxoIFC5I7GUdHR6dqqRk4cCAOh4OBAwfyzz//UKxYMZo3b86bb75p61uQnOLvD507w9ChpmPxI4/YTuR5nE7o1w/ef98cv/UWDBhgN5OISBZzOHPZtZzY2FhCQkKIiYkhWPN3eJ69e+GGG8yb9G+/wc03207kOZKSoGdPGDvWHP/vf/Dcc3YziYhkUGbev61flhLJlLJl4cEHzb7rTVqu7Px5ePpp8zNzOMwIKRU2IuKlVNyI53HNWDx5splJVy7v3Dlo29YsX+HrC599ZlZcFxHxUipuxPM0agQ33ggxMTB9uu007u3MGXj0UfjySzN3zVdfwZNP2k4lIpKtVNyI5/Hxge7dzf7o0VpvKj2nTsFDD5mRZQEBMHcuPPyw7VQiItlOxY14pk6dzOipzZthwwbbadxPbCw0aWJW9A4KgvnzoWlT26lERHKEihvxTEWLmjWQQOtNXezYMbOi98qVEBJiCpyGDW2nEhHJMSpuxHO5OhbPmAH//ms3i7s4fBjuvRfWr4ciReDHHyGd2b5FRLyVihvxXHXqQPXqptPslCm209i3fz/Urw9btkCJErBsGdSoYTuViEiOU3EjnsvhSFlvaswYM0ldbrV3L9xzj5nY8PrrYcUKuO0226lERKxQcSOe7cknITgYdu6EH36wncaOP/80K6bv3GmGyK9cCTfdZDuViIg1Km7EswUFQceOZj83dizets202OzbB7fcYlpswsJspxIRsUrFjXg+15w3334L0dF2s+Skn382fWwOHoQqVWD5cihd2nYqERHrVNyI56tY0Qx1TkqCCRNsp8kZP/1kvud//4XatWHpUihe3HYqERG3oOJGvINrWPiECXD2rN0s2W35cjOPTUwM3HWX6WtUuLDtVCIibkPFjXiHFi3guuvg0CGYPdt2muyzcKGZeTguDsLDYcEC06FaRESSqbgR75A3L3TpYvbHjLGbJbvMnWvWijpzBh580PQxCgqynUpExO2ouBHv0aUL+PqayzbbttlOk7WmTzere589C61awddfm8UwRUTkEipuxHtcf71p2QDvar2ZPNnM55OYCO3awbRp4OdnO5WIiNtScSPexdWx+JNPTL8UTzdqFDz9NDid0K2bWWYiTx7bqURE3JqKG/Eu995rZuc9eRI+/9x2mmvz7rvQq5fZ79vXtEb56L+siMiV6C+leBcfn5RJ/UaPNi0ensbphCFDoH9/czxwIAwfbtbSEhGRK1JxI96nY0fIlw9++QXWrrWdJnOcThgwAF591RwPHQqvv67CRkQkE1TciPcpVAieeMLse9J6U0lJ8Nxz5nIUwIgREBlpNZKIiCdScSPeqUcP8/Wrr+DIEbtZMiIxETp3Nh2IHQ4YPx5697adSkTEI6m4Ee9Uq5ZZc+nsWZg0yXaayzt3Dp56ygz59vU1I71cExKKiEimqbgR7+UaFj52rGkZcUcJCWZSvunTzSzLM2aYQkdERK6aihvxXm3amP43e/aYNZjczalTZtLBuXPB3x/mzDGzEIuIyDVRcSPeK18+6NTJ7LvbjMUnT0LTprBoEQQGwrx50KyZ7VQiIl5BxY14N9ecN/Pnw+7ddrO4HD8O998PK1aYFb0XLYL77rOdSkTEa6i4Ee9WoYIpJJxOGDfOdhozcuvee2HdOihcGJYsgXr1bKcSEfEqKm7E+7k6Fn/8senAa8uBA9CgAURFQfHisGyZGdUlIiJZSsWNeL8HHzQrhh89CjNn2skQHQ333APbt0Pp0uaSVOXKdrKIiHg5FTfi/fLkga5dzb6NGYv/+gvuvtt8DQuDlSvh5ptzPoeISC6h4kZyh86dTZGzZg1s2ZJzr7t9u2mxiY42q5WvXAk33JBzry8ikgupuJHc4brr4JFHzH5ODQuPioL69U1fm9tuM5eirr8+Z15bRCQXc4viZtSoUYSFhREQEECdOnVYv359uuc2aNAAh8NxyfbAAw/kYGLxSK71pj77DGJisve11q2Dhg1NP5+aNU3n4RIlsvc1RUQEcIPiZsaMGURERPDKK6+wefNmqlatSuPGjTl8+HCa58+aNYsDBw4kb1u3bsXX15dWrVrlcHLxOPXrQ8WKEB8Pn36afa+zYgWEh8OJE3DnnWa4d5Ei2fd6IiKSivXi5v3336dLly506tSJSpUqMXbsWAIDA5mUzmKHhQsXpmTJksnb4sWLCQwMVHEjV+ZwpAwLHzPGzH2T1RYtgiZNIC7OzGezaBGEhGT964iISLqsFjdnz55l06ZNhIeHJ9/m4+NDeHg4a9euzdBzfPzxxzz++OMEBQWleX9CQgKxsbGpNsnF2rUzyx1s325aWLLSN99A8+Zw+rRZSuG77yCdf5ciIpJ9rBY3R48eJTExkRIX9UUoUaIEBw8evOLj169fz9atW+ncuXO65wwbNoyQkJDkLTQ09JpziwcLCUlZdTsrh4XPmGEWvTx71nydPdusbSUiIjnO+mWpa/Hxxx9TuXJlbr/99nTPiYyMJCYmJnnbt29fDiYUt+TqWDxrFmSgiL6iqVPhySfh/HlTOE2fDn5+1/68IiJyVawWN0WLFsXX15dDhw6luv3QoUOULFnyso+Nj49n+vTpPPPMM5c9z9/fn+Dg4FSb5HLVqkHduqYYmTjx2p5rzBjo2BGSkqBLF1Po5MmTFSlFROQqWS1u/Pz8qFmzJkuWLEm+LSkpiSVLllC3bt3LPvarr74iISGBp1yXGEQyw9WxeNw4U+RcjeHDU56nd2/zXD4e3RgqIuIVrP8ljoiIYMKECUydOpUdO3bQo0cP4uPj6dSpEwDt27cnMjLyksd9/PHHtGzZkiIaYitX47HHoGhR+PtvmDcvc491OuH116FfP3P80kvwwQdmNJaIiFhnvf28TZs2HDlyhMGDB3Pw4EGqVavGggULkjsZR0dH43PRp+Hff/+dVatWsWjRIhuRxRsEBMDTT8M775iOxS1aZOxxTidERsLbb5vjN96Al1/OvpwiIpJpDqczOyb7cF+xsbGEhIQQExOj/je53a5dUL48OJ04f/+DH/ZWYNQoOHUKBg+Gu+4yp23eDJ98AoEBSbRY2oc66z8EYE2rD9jZvA933ZWyXNTx4+ZpAwLMli9fyn5AgK5aiYhcrcy8f1tvuRGx5sYboWlTmD+fr8LH0Wbfe8l39eqVctr27fDhyETG0Y06fEwSDnowhvFfdYOvzGoOruJm+XJ4+OH0X3LcuJQFylevNn2Q0yuE2reHxo3Nufv2mQLLdc6F5+bLB7fcYhYcB0hIgEOHUp+XN2/W/dhERNydihvJtbZtgznHevAy8wnfN4ngvK/T6dl81KoFNWqknFepwjk2VepIte3TSHL4MLHeFGJKt6PFGTNf34VrYebJY47P/Hff6dNmIJWLv3/K/vHjsGNH+vnuvDOluNm5EwYOTP/ct96CAQPM/q+/Qu3aqe/39U0pdvr3h//7P3P73r2miEqrYAoIMKtIuJZti4uDL764tMByfS1ZEkqVMuc6nabI8vdXVyQRyXkqbiRXOnXKXHaKPdGUtpQljL3sHDqDov06pj4xIYEabz8B22dDnjz4TJtG11at6JrO8z74oNkudO5cSrGTP3/K7XXrmvU0T58297vOce27LosBFC8Ozzxz6TmufVdR4Xo9f39TXLgkJpolteLjzTyDLsePX36i5oCAlOLm4MGUVqe09OoFH5ordhw6ZBZidz3HxcVQq1bw6qvm/tOnLy2wLiy0qlRJyeB0wrffpv2cAQFQoIBWuxARFTeSixw/DoUKmf3AQOjbF7Zs8SVfme4wIpKiX42BC4ub06fhkUdgwQJTLcyceWnlkgF585qtQIHUtxcpYtbyzIhKlTI+JU/duqbgSUoyBc6FRdDp02aQmEvZsvDll+kXTQ0apJzr7w8PPZT6uS78euHAxTNnUu+fOWPWEXW5cGqr+Hjzo03PU0+lFDdnz16+73fLlmZyaJcaNUzhU6gQFC5svrq2W25JaRkDOHIEgoNTt66JiGdSh2LxejEx8N57ZrT2nDnmUguYVgCHAzh82FxLOncONmyAWrXMNZiHHoKlS00lNHduygPlipKSzI8wrYLp9GlzCatiRXNufDxMmZJ2wXTmDNxxh+mb5Dr3vvvSfs4zZ8zKF198Yc49c+byK2A8+KBpBXIJDDTPExh4aTFUp44ZJOcyZ45pKbrwnIIFNX+jSHZSh2IRzBvVqFEwbBgcO2Zumz49pUZJ7gtSvLi5TjJtmplxePhws/Dl2rWmuWX+/NTXiOSKfHxMK0hGPj8EBUHPnhl73qAg+Omn9O+/8KNanjzw44+mxe74cfNv4ML9mjVTznW1cIG5ZHnqFPzzT8r9iYmpX+fJJ82/r4sFB8P996duifq//zM/j4sLpsKFzT+9C/tsiUjWUHEjXuf8eZg8GYYMSXmDuuUWePPNy4xkevZZU9x88QX8/LPZChWChQsv7Z0rbuvCzst58kDDhhl7nL+/+XcTE5N2MXRhn6bERNOadOE5J0+a+2JjU/d1AlNgp1UIAdSrB6tWpT4+dy51AeTaL1cu9b/fgwdN7R0YqE7bIhdTcSNep0UL09gCEBpqipx27a5wyeDOO6FyZTPU6OefoVgx+OEH05tVcgVX64qrX1Z6fH1Ni9CFzp0zfYqOHzf3uyQlmctZ6bUeuTpdu2zenLq/0oXq1Utd3NSoAQcOmP5cF7cIVakCQ4emnPvNN6YAcp3n+qr+ReKtVNyIx3M6zeaaIK99e1i/3kwc3L276RtxRQ4HPPecGQ5UqhQsWWKae0QyIG9eUw8XK5b6dh8fGDQoY8/hdMLixZcWQq6vFSqkPj8+3nw9d8500L6wk/aFnbcBevSA/fsvfc3AQNMKdcHyfrz8smlpurhgKlTIfH833pix70fEJhU34tF++sl8Mn7ssZR+G61amS4zF49OuqJnnjF/wevVu/QjtUg2czgy17XrxAlT4KTVInRx61PNmqZmd51z/Lgppk6dSj01AJhLugcOpP2alSqZ+aFcGjc2o8zSuowWGgpt26ace+CA6eAdHKyZuiX7abSUeKStW82kdnPnmuOyZc1EdxdeEhCRtCUlmf5Bx46ZIqdcuZT7hg83rUBpFU0VK5qZEVxKlcp4IXTrrWa2bx8fM7LswmKofHnTN8ll1ixTuKU171GBAnDTTSnnnj1rWs7U78j7abSUeK3du+GVV8ySB65LUZ06mdtU2IhkjKvAKFjw0vteeCHjzzN3Lhw9mnafov/WPk7m6lSdlGTOO3bMfCCB1CPTwFwa++23tF+zbFnYsyfl+K67zAwOaU3seN11puucy5Ah5jXTmpE7f/7Uy66sX29ax/LlS3tW7kKFVFC5MxU34jHGjzd/fM6dM8ePPQavv66uMSK2ZGYg4a5dprP0hZfGXMXQxf3i7r4bypRJe96ji68YuzpgpzVZZExM6nMXLjQzPKQlODh1cTNwoOkDlRYfHzO6zqV9e1i0KO0lTPLlMxNL+vmZcz/9FH75JeW+iwunRx5JOXfvXvM9pFVc6cPc5am4EY9Rq5YpbO6/34wEqVXLdiIRyYyAAFOcXKlL2/jxGX/O1atN36G0JnW8uGWlTx9TPKQ1I7eroHC58UYz6uzi5z192nwfFz730aOpO3Rf7MKRmt9+C199lf65sbEpWYYMMX2g0nvOffvMhJhgprr48sv0C6y33jLzKoGZm3Tz5rSXMMmXzxStQUEpec6cSXlOT7kEqOJG3NLp0/DRR2b+kNdeM7fVqGFGat92m91sIuI+ChTI+OCB1q0z/rxjx6Z/34WtNgDjxpkWqLRm5E5ISN2BukULc2ktvWVMLpxVO39+U5C4nvPCzt/nz6du8dq717QIpWfIkJT9b781M7anZ/v2lBnE33vPtJC7+PikLobmz0+ZMeOLL8xs46GhGV8uJruouBG3cu4cTJpkCpr9+82nhKefhrAwc78KGxGx7eI5s0JDzZYRbdumHkV2Of/7n9lcEhNNseQqhC7sU/vCC2akqKt16eLC6cIRdDVrmjXb0iquLl7g9+JCLikpZRZvSF24/fmnuTx38bQFNmi0lLiFpCTTpDpoEPz1l7mtbFnzaeOpp3R9WUTEFqcz7UV4z5wxLTyu1qZff4WoKHP82GNZn0OjpcSjbN1qZhCOijLHxYqZznzdumkGVRER2xyOlD43aY2wc6lc2WzuQMWNWFe8uGnODA6Gfv1Mp79MT8AnIiLyHxU3kuN++cVM0vXqq+a4eHH4+mtzHbhoUavRRETEC6i4kRyzaxcMHmwW33Y6oX79lFWbGze2m01ERLyHihvJdgcOwBtvmLkrXD3vW7XK+OgCERGRzFBxI9nm1ClT1IwYkTL1euPGZrKpmjWtRhMRES+m4kayTZ48MGOGKWzuuAOGDYMGDWynEpHcIDExkXOutVrEY/j5+eGTBcvGq7iRLHPuHHz+uZmgKm9eM4X4hx+a2x96yDOm7BYRz+Z0Ojl48CAnLlxkSjyGj48PN9xwA34Xr4eRSSpu5JolJcH06aaz8M6dZmKn7t3Nfc2a2c0mIrmLq7ApXrw4gYGBOPSpymMkJSWxf/9+Dhw4QJkyZa7pd6fiRq6a0wnffw8vvQRbtpjbiheHwEC7uUQkd0pMTEwubIoUKWI7jlyFYsWKsX//fs6fP0/evHmv+nlU3MhVWbUKIiPNVzAT8PXvD717p16XREQkp7j62ATqE5bHcl2OSkxMVHEjOe+110xhExAAzz0HAwaAPiiJiDvQpSjPlVW/OxU3kiE7d0JISMoMwkOHwg03mH42pUvbzSYiInKhax9vJV5t/37o0QNuucXMT+NSqxaMG6fCRkTE3YSFhTFixAjrz2GTWm4kTcePw9tvw//+lzIB3549phOxWnxFRLJOgwYNqFatWpYVExs2bCAoKChLnstTqbiRVOLjTUHzzjvgmibizjvNBHz33GM1mohIruV0OklMTCRPniu/bRcrViwHErk3XZaSVF57zQztPnECKleGb781HYdV2IiIJ4uPT387cybj57pasi93bmZ07NiR5cuXM3LkSBwOBw6Hgz179rBs2TIcDgfff/89NWvWxN/fn1WrVrFz505atGhBiRIlyJ8/P7Vr1+aHH35I9ZwXX1JyOBxMnDiRhx9+mMDAQCpUqMA333yTqZzR0dG0aNGC/PnzExwcTOvWrTl06FDy/Vu2bKFhw4YUKFCA4OBgatasycaNGwHYu3cvzZs3p1ChQgQFBXHrrbcyf/78zP2gMknFTS6XlAT//pty3LevKWo++wx+/hkefFCXoUTE8+XPn/726KOpzy1ePP1zmzZNfW5Y2KXnZMbIkSOpW7cuXbp04cCBAxw4cIDQC1YVfvHFF3nrrbfYsWMHVapUIS4ujmbNmrFkyRJ+/vlnmjRpQvPmzYmOjr7s6wwZMoTWrVvzyy+/0KxZM9q2bcuxY8cylDEpKYkWLVpw7Ngxli9fzuLFi9m1axdt2rRJPqdt27Zcf/31bNiwgU2bNvHiiy8mD+Xu2bMnCQkJrFixgl9//ZW3336b/Nk9Z4jTDXz00UfOsmXLOv39/Z233367c926dZc9//jx485nn33WWbJkSaefn5+zQoUKznnz5mXotWJiYpyAMyYmJiuie6ykJKfz22+dzsqVnc4mTS69T0TE05w+fdq5fft25+nTpy+5z/QYTHtr1iz1uYGB6Z9bv37qc4sWvfSczKpfv76zd+/eqW5bunSpE3DOmTPnio+/9dZbnR9++GHycdmyZZ0ffPBB8jHgHDhwYPJxXFycE3B+//336T7nhc+xaNEip6+vrzM6Ojr5/m3btjkB5/r1651Op9NZoEAB55QpU9J8rsqVKztfffXVK34fTuflf4eZef+23udmxowZREREMHbsWOrUqcOIESNo3Lgxv//+O8WLF7/k/LNnz3L//fdTvHhxZs6cSenSpdm7dy8FCxbM+fAeasUKMwHfmjXmODrajIoqVcocq6VGRLxNXFz69/n6pj4+fDj9cy9e03HPnquOlCG1atVKdRwXF8err77KvHnzOHDgAOfPn+f06dNXbLmpUqVK8n5QUBDBwcEcvtw3eoEdO3YQGhqaqkWpUqVKFCxYkB07dlC7dm0iIiLo3Lkzn376KeHh4bRq1Ypy5coB8Pzzz9OjRw8WLVpEeHg4jz76aKo82cH6Zan333+fLl260KlTJypVqsTYsWMJDAxk0qRJaZ4/adIkjh07xpw5c6hXrx5hYWHUr1+fqlWr5nByz/Pzz6ZJtX59U9gEBJjJ93btSilsRES8UVBQ+ltAQMbPzZfvyudmbe7UT9ivXz9mz57N0KFDWblyJVFRUVSuXJmzZ89e9nkunu3X4XCQlJSUZTlfffVVtm3bxgMPPMCPP/5IpUqVmD17NgCdO3dm165dtGvXjl9//ZVatWrx4YcfZtlrp8VqcXP27Fk2bdpEeHh48m0+Pj6Eh4ezdu3aNB/zzTffULduXXr27EmJEiW47bbbGDp0KImJiWmen5CQQGxsbKotN1qwAGrUMF/z5DELW+7cCW+9BYUL204nIpJ7+fn5pfsedrHVq1fTsWNHHn74YSpXrkzJkiXZk83NRxUrVmTfvn3s27cv+bbt27dz4sQJKlWqlHzbTTfdRN++fVm0aBGPPPIIkydPTr4vNDSU7t27M2vWLF544QUmTJiQrZmtFjdHjx4lMTGREiVKpLq9RIkSHDx4MM3H7Nq1i5kzZ5KYmMj8+fMZNGgQw4cP54033kjz/GHDhhESEpK8Xdis5u0u/L9y771w443wxBOwYweMGaPWGhERdxAWFsa6devYs2cPR48evWyLSoUKFZg1axZRUVFs2bKFJ598MktbYNISHh5O5cqVadu2LZs3b2b9+vW0b9+e+vXrU6tWLU6fPk2vXr1YtmwZe/fuZfXq1WzYsIGKFSsC0KdPHxYuXMju3bvZvHkzS5cuTb4vu1i/LJVZSUlJFC9enPHjx1OzZk3atGnDyy+/zNixY9M8PzIykpiYmOTtwsrTW/37r1nEskYN+G8dOfz8zMrd06ZB+fJ284mISIp+/frh6+tLpUqVKFas2GX7z7z//vsUKlSIO++8k+bNm9O4cWNq1KiRrfkcDgdz586lUKFC3HPPPYSHh3PjjTcyY8YMAHx9ffn3339p3749N910E61bt6Zp06YMGTIEMItg9uzZk4oVK9KkSRNuuukmRo8enb2ZnU6nM1tf4TLOnj1LYGAgM2fOpGXLlsm3d+jQgRMnTjB37txLHlO/fn3y5s2balz/999/T7NmzUhISEheUTQ9sbGxhISEEBMTQ3BwcJZ9L+4gLg5GjjQT8Lmuvs2ceekwRxERb3TmzBl2797NDTfcQMDFHWnEI1zud5iZ92+rLTd+fn7UrFmTJUuWJN+WlJTEkiVLqFu3bpqPqVevHn/99VeqZrg//viD66677oqFjbc6exY++gjKlYOBA01hU6UKfPcdPPKI7XQiIiI5y/plqYiICCZMmMDUqVPZsWMHPXr0ID4+nk6dOgHQvn17IiMjk8/v0aMHx44do3fv3vzxxx/MmzePoUOH0rNnT1vfglVHjsDNN8Nzz5nhizfeCJ9/bkZGPfCAhnWLiEjuY32emzZt2nDkyBEGDx7MwYMHqVatGgsWLEjuZBwdHY3PBRMLhIaGsnDhQvr27UuVKlUoXbo0vXv3ZsCAAba+BauKFoUbbjDThw8eDM88Y/rXiIiI5FZW+9zY4Ol9bpYvhzffNB2DixY1t0VHQ5EiWT+/goiIJ1GfG8/nFX1uJOM2b4YmTaBBA1i8GN5+O+W+MmVU2IiIiLhYvywll/fHHzBoEHz5pTnOkwe6doWICLu5RERE3JWKGzfldEKvXjBunJmMz+GAJ5+EIUPMqCgRERFJm4obN+VwmAInMREefND0s8nmdcZERES8gvrcuIm4OHjjDTOLsMvgwbBqFXz7rQobERGRjFJxY1lCAvzvf+ZS06BB8PLLKfeVLAn16tnLJiIi3q1Bgwb06dPHdowsp+LGksRE+OQTMwFf795mAr7y5eGpp8zlKBERyR2yo8Do2LFjqmWNchv1ubFgwQLo1w+2bTPHpUrBK69Ap06QN6/dbCIiIp5OLTcW/PGHKWwKFTKLXP71lxnercJGRCSLOZ0QH5/zWwab4Dt27Mjy5csZOXIkDocDh8PBnj17ANi6dStNmzYlf/78lChRgnbt2nH06NHkx86cOZPKlSuTL18+ihQpQnh4OPHx8bz66qtMnTqVuXPnJj/nsmXLMpTn+PHjtG/fnkKFChEYGEjTpk35888/k+/fu3cvzZs3p1ChQgQFBXHrrbcyf/785Me2bduWYsWKkS9fPipUqMDkyZMz9nvKYmq5yQEbN8KpU3DPPea4Wzfzb79HDyhY0Go0ERHvduoU5M+f868bF5eh2VVHjhzJH3/8wW233cZrr70GQLFixThx4gT33nsvnTt35oMPPuD06dMMGDCA1q1b8+OPP3LgwAGeeOIJ3nnnHR5++GFOnjzJypUrcTqd9OvXjx07dhAbG5tcXBQuXDhDsTt27Miff/7JN998Q3BwMAMGDKBZs2Zs376dvHnz0rNnT86ePcuKFSsICgpi+/bt5P/v5zto0CC2b9/O999/T9GiRfnrr784ffr0Vf4Ar42Km2z022+mk/DMmaZvzdatZhI+f3+4YC1QERHJpUJCQvDz8yMwMJCSJUsm3/7RRx9RvXp1hg4dmnzbpEmTCA0N5Y8//iAuLo7z58/zyCOPULZsWQAqV66cfG6+fPlISEhI9ZxX4ipqVq9ezZ133gnA559/TmhoKHPmzKFVq1ZER0fz6KOPJr/WjTfemPz46OhoqlevTq1atQAICwvL/A8ki6i4yQb79pnJ9iZPhqQkM2fN7bebQl4tNSIiOSgw0PzxtfG612DLli0sXbo0uVXkQjt37qRRo0bcd999VK5cmcaNG9OoUSMee+wxChUqdNWvuWPHDvLkyUOdOnWSbytSpAg333wzO3bsAOD555+nR48eLFq0iPDwcB599FGq/DdXSY8ePXj00UfZvHkzjRo1omXLlslFUk5Tn5ssdPQovPACVKgAH39sCpuHHjJz13zyiQobEZEc53CYy0M5vTkc1xQ7Li6O5s2bExUVlWr7888/ueeee/D19WXx4sV8//33VKpUiQ8//JCbb76Z3bt3Z9EPLm2dO3dm165dtGvXjl9//ZVatWrx4YcfAtC0aVP27t1L37592b9/P/fddx/9+vXL1jzpUXGThTZtgvffN3PX1K8Pa9bA3LlwQUuhiIhIKn5+fiQmJqa6rUaNGmzbto2wsDDKly+fagv6ry+Pw+GgXr16DBkyhJ9//hk/Pz9mz56d7nNeScWKFTl//jzr1q1Lvu3ff//l999/p1KlSsm3hYaG0r17d2bNmsULL7zAhAkTku8rVqwYHTp04LPPPmPEiBGMHz8+0z+PrKDiJgs1agTPPmuGei9dCnXr2k4kIiLuLiwsjHXr1rFnzx6OHj1KUlISPXv25NixYzzxxBNs2LCBnTt3snDhQjp16kRiYiLr1q1j6NChbNy4kejoaGbNmsWRI0eoWLFi8nP+8ssv/P777xw9epRz585dMUeFChVo0aIFXbp0YdWqVWzZsoWnnnqK0qVL06JFCwD69OnDwoUL2b17N5s3b2bp0qXJrzl48GDmzp3LX3/9xbZt2/juu++S78tpKm6ykMMBo0ZB48bX3CIpIiK5RL9+/fD19aVSpUoUK1aM6OhoSpUqxerVq0lMTKRRo0ZUrlyZPn36ULBgQXx8fAgODmbFihU0a9aMm266iYEDBzJ8+HCaNm0KQJcuXbj55pupVasWxYoVY/Xq1RnKMnnyZGrWrMmDDz5I3bp1cTqdzJ8/n7z/zVWSmJhIz549qVixIk2aNOGmm25i9OjRgGktioyMpEqVKsmXzqZPn549P7QrcDiduWs+3NjYWEJCQoiJiSE4ONh2HBERySJnzpxh9+7d3HDDDQQEBNiOI1fhcr/DzLx/q+VGREREvIqKGxEREfEqKm5ERETEq6i4EREREa+i4kZERLxKLhsn41Wy6nen4kZERLyCa7jyqVOnLCeRq3X27FkAfH19r+l5tLaUiIh4BV9fXwoWLMjhw4cBCAwMxKFJxzxGUlISR44cITAwkDx5rq08UXEjIiJew7UKtqvAEc/i4+NDmTJlrrkoVXEjIiJew+FwcN1111G8ePEMLTkg7sXPzw8fn2vvMaPiRkREvI6vr+8199sQz6UOxSIiIuJVVNyIiIiIV1FxIyIiIl4l1/W5cU0QFBsbazmJiIiIZJTrfTsjE/3luuLm5MmTAISGhlpOIiIiIpl18uRJQkJCLnuOw5nL5qlOSkpi//79FChQIMsnd4qNjSU0NJR9+/YRHBycpc8tOUO/Q8+m35/n0+/Q82XX79DpdHLy5ElKlSp1xeHiua7lxsfHh+uvvz5bXyM4OFj/KT2cfoeeTb8/z6ffoefLjt/hlVpsXNShWERERLyKihsRERHxKipuspC/vz+vvPIK/v7+tqPIVdLv0LPp9+f59Dv0fO7wO8x1HYpFRETEu6nlRkRERLyKihsRERHxKipuRERExKuouBERERGvouImi4waNYqwsDACAgKoU6cO69evtx1JMmHFihU0b96cUqVK4XA4mDNnju1IkgnDhg2jdu3aFChQgOLFi9OyZUt+//1327EkE8aMGUOVKlWSJ36rW7cu33//ve1YcpXeeustHA4Hffr0sfL6Km6ywIwZM4iIiOCVV15h8+bNVK1alcaNG3P48GHb0SSD4uPjqVq1KqNGjbIdRa7C8uXL6dmzJz/99BOLFy/m3LlzNGrUiPj4eNvRJIOuv/563nrrLTZt2sTGjRu59957adGiBdu2bbMdTTJpw4YNjBs3jipVqljLoKHgWaBOnTrUrl2bjz76CDDrV4WGhvLcc8/x4osvWk4nmeVwOJg9ezYtW7a0HUWu0pEjRyhevDjLly/nnnvusR1HrlLhwoV59913eeaZZ2xHkQyKi4ujRo0ajB49mjfeeINq1aoxYsSIHM+hlptrdPbsWTZt2kR4eHjybT4+PoSHh7N27VqLyURyr5iYGMC8OYrnSUxMZPr06cTHx1O3bl3bcSQTevbsyQMPPJDqPdGGXLdwZlY7evQoiYmJlChRItXtJUqU4LfffrOUSiT3SkpKok+fPtSrV4/bbrvNdhzJhF9//ZW6dety5swZ8ufPz+zZs6lUqZLtWJJB06dPZ/PmzWzYsMF2FBU3IuJdevbsydatW1m1apXtKJJJN998M1FRUcTExDBz5kw6dOjA8uXLVeB4gH379tG7d28WL15MQECA7Tgqbq5V0aJF8fX15dChQ6luP3ToECVLlrSUSiR36tWrF9999x0rVqzg+uuvtx1HMsnPz4/y5csDULNmTTZs2MDIkSMZN26c5WRyJZs2beLw4cPUqFEj+bbExERWrFjBRx99REJCAr6+vjmWR31urpGfnx81a9ZkyZIlybclJSWxZMkSXSsWySFOp5NevXoxe/ZsfvzxR2644QbbkSQLJCUlkZCQYDuGZMB9993Hr7/+SlRUVPJWq1Yt2rZtS1RUVI4WNqCWmywRERFBhw4dqFWrFrfffjsjRowgPj6eTp062Y4mGRQXF8dff/2VfLx7926ioqIoXLgwZcqUsZhMMqJnz55MmzaNuXPnUqBAAQ4ePAhASEgI+fLls5xOMiIyMpKmTZtSpkwZTp48ybRp01i2bBkLFy60HU0yoECBApf0cQsKCqJIkSJW+r6puMkCbdq04ciRIwwePJiDBw9SrVo1FixYcEknY3FfGzdupGHDhsnHERERAHTo0IEpU6ZYSiUZNWbMGAAaNGiQ6vbJkyfTsWPHnA8kmXb48GHat2/PgQMHCAkJoUqVKixcuJD777/fdjTxQJrnRkRERLyK+tyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXUXEjIiIiXkXFjYiIiHgVFTciIiLiVVTciIjX6dixIy1btrQdQ0QsUXEjIlelY8eOOByOS7YmTZrYjsbIkSPdZtkMh8PBnDlzbMcQyVW0tpSIXLUmTZowefLkVLf5+/tbSgOJiYk4HA5CQkKsZRAR+9RyIyJXzd/fn5IlS6baChUqxLJly/Dz82PlypXJ577zzjsUL16cQ4cOAWaRy169etGrVy9CQkIoWrQogwYN4sLl7hISEujXrx+lS5cmKCiIOnXqsGzZsuT7p0yZQsGCBfnmm2+oVKkS/v7+REdHX3JZqkGDBjz33HP06dOHQoUKUaJECSZMmEB8fDydOnWiQIEClC9fnu+//z7V97d161aaNm1K/vz5KVGiBO3atePo0aOpnvf555+nf//+FC5cmJIlS/Lqq68m3x8WFgbAww8/jMPhSD4Wkeyl4kZEslyDBg3o06cP7dq1IyYmhp9//plBgwYxceJESpQokXze1KlTyZMnD+vXr2fkyJG8//77TJw4Mfn+Xr16sXbtWqZPn84vv/xCq1ataNKkCX/++WfyOadOneLtt99m4sSJbNu2jeLFi6eZaerUqRQtWpT169fz3HPP0aNHD1q1asWdd97J5s2badSoEe3atePUqVMAnDhxgnvvvZfq1auzceNGFixYwKFDh2jduvUlzxsUFMS6det45513eO2111i8eDEAGzZsAMzq5AcOHEg+FpFs5hQRuQodOnRw+vr6OoOCglJtb775ptPpdDoTEhKc1apVc7Zu3dpZqVIlZ5cuXVI9vn79+s6KFSs6k5KSkm8bMGCAs2LFik6n0+ncu3ev09fX1/nPP/+ketx9993njIyMdDqdTufkyZOdgDMqKuqSbC1atEj1WnfddVfy8fnz551BQUHOdu3aJd924MABJ+Bcu3at0+l0Ol9//XVno0aNUj3vvn37nIDz999/T/N5nU6ns3bt2s4BAwYkHwPO2bNnp/NTFJHsoD43InLVGjZsyJgxY1LdVrhwYQD8/Pz4/PPPqVKlCmXLluWDDz645PF33HEHDocj+bhu3boMHz6cxMREfv31VxITE7nppptSPSYhIYEiRYokH/v5+VGlSpUrZr3wHF9fX4oUKULlypWTb3O1KB0+fBiALVu2sHTpUvLnz3/Jc+3cuTM518Wvfd111yU/h4jYoeJGRK5aUFAQ5cuXT/f+NWvWAHDs2DGOHTtGUFBQhp87Li4OX19fNm3ahK+vb6r7Liw48uXLl6pASk/evHlTHTscjlS3uZ4jKSkp+fWbN2/O22+/fclzXXfddZd9XtdziIgdKm5EJFvs3LmTvn37MmHCBGbMmEGHDh344Ycf8PFJ6eq3bt26VI/56aefqFChAr6+vlSvXp3ExEQOHz7M3XffndPxqVGjBl9//TVhYWHkyXP1fyrz5s1LYmJiFiYTkStRh2IRuWoJCQkcPHgw1Xb06FESExN56qmnaNy4MZ06dWLy5Mn88ssvDB8+PNXjo6OjiYiI4Pfff+eLL77gww8/pHfv3gDcdNNNtG3blvbt2zNr1ix2797N+vXrGTZsGPPmzcv2761nz54cO3aMJ554gg0bNrBz504WLlxIp06dMlWshIWFsWTJEg4ePMjx48ezMbGIuKjlRkSu2oIFC1JdogG4+eabefLJJ9m7dy/fffcdYC7jjB8/nieeeIJGjRpRtWpVANq3b8/p06e5/fbb8fX1pXfv3nTt2jX5uSZPnswbb7zBCy+8wD///EPRokW54447ePDBB7P9eytVqhSrV69mwIABNGrUiISEBMqWLUuTJk1StT5dyfDhw4mIiGDChAmULl2aPXv2ZF9oEQHA4XReMKmEiEgOadCgAdWqVWPEiBG2o4iIl9FlKREREfEqKm5ERETEq+iylIiIiHgVtdyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXUXEjIiIiXkXFjYiIiHgVFTciIiLiVf4fgpX7DYjkYy8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -825,7 +825,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -845,7 +845,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -853,13 +853,13 @@ "output_type": "stream", "text": [ "The MSE of LSTM forecasts is 1.164\n", - "The MSE of baseline ridge forecasts is 2.519\n", + "The MSE of baseline ridge forecasts is 0.965\n", "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7GElEQVR4nOzdd3hTZRsG8DtNd5ume09mKaVsEMoGmbLEgYKIIChDRUVxI4oiTvBTwAkioqiAFhSUvaFQRlsKBdrS0r2b7pGc74+0ldICTZv0JOn9u65cXJycnDx5KU2ePO/7vBJBEAQQERERERERkUEwETsAIiIiIiIiImo8JvJEREREREREBoSJPBEREREREZEBYSJPREREREREZECYyBMREREREREZECbyRERERERERAaEiTwRERERERGRAWEiT0RERERERGRATMUOQB+pVCqkpqZCJpNBIpGIHQ4REREREREZOUEQUFhYCE9PT5iY3LnmzkS+AampqfDx8RE7DCIiIiIiImplbty4AW9v7zuew0S+ATKZDIB6AO3s7ESOhoiIiIiIiIydQqGAj49PbT56J0zkG1Aznd7Ozo6JPBEREREREbWYxizvZrM7IiIiIiIiIgPCRJ6IiIiIiIjIgDCRJyIiIiIiIjIgTOSJiIiIiIiIDAgTeSIiIiIiIiIDwkSeiIiIiIiIyIAwkSciIiIiIiIyIEzkiYiIiIiIiAwIE3kiIiIiIiIiA8JEnoiIiIiIiMiAiJrIr1ixAr1794ZMJoOrqysmTZqE2NjYOucMGTIEEomkzu3pp5++43UFQcBbb70FDw8PWFlZYcSIEbh69aouXwoRERERERFRixA1kT906BAWLFiAkydPYs+ePaisrMTIkSNRXFxc57w5c+YgLS2t9vbhhx/e8boffvghPv/8c6xbtw6nTp2CjY0NRo0ahbKyMl2+HCIiIiIiIiKdMxXzyXfv3l3n7xs2bICrqysiIiIwaNCg2uPW1tZwd3dv1DUFQcCqVavwxhtvYOLEiQCAjRs3ws3NDX/88QemTp2qvRcgsvIqJSSQwNyUKySIiIiIiIhaC73KAAsKCgAAjo6OdY7/9NNPcHZ2RnBwMF599VWUlJTc9hoJCQlIT0/HiBEjao/J5XL07dsXJ06caPAx5eXlUCgUdW6GYN3BeIxedRgHLmeKHQoRERERERG1EFEr8jdTqVRYtGgRQkNDERwcXHv80UcfhZ+fHzw9PREZGYklS5YgNjYW27Zta/A66enpAAA3N7c6x93c3Grvu9WKFSuwbNkyLb2SllGpVOH3szdwI7cUT2w4jaEdXfDmfUFo42IrdmhERERERESkQxJBEASxgwCAefPmYdeuXTh69Ci8vb1ve97+/fsxfPhwXLt2DW3btq13//HjxxEaGorU1FR4eHjUHn/ooYcgkUiwZcuWeo8pLy9HeXl57d8VCgV8fHxQUFAAOzu7Zr4y3Sksq8T/9l/D+mMJqFQKMJNK8ERoAJ4Z1g4ySzOxwyMiIiIiIqJGUigUkMvljcpD9WJq/cKFC7Fz504cOHDgjkk8APTt2xcAcO3atQbvr1lLn5GRUed4RkbGbdfZW1hYwM7Ors7NEMgszfDa2E74Z9EgDO3ogkqlgK8Px2Poxwfx6+kbUKn04jsaIiIiIiIi0iJRE3lBELBw4UJs374d+/fvR0BAwF0fc/78eQCoU22/WUBAANzd3bFv377aYwqFAqdOnUK/fv20Ere+aeNii/VP9MH6mb3RxtkG2UUVeHlrJCatOYaIxDyxwyMiIiIiIiItEjWRX7BgATZt2oTNmzdDJpMhPT0d6enpKC0tBQDExcXh3XffRUREBK5fv46wsDDMmDEDgwYNQkhISO11AgMDsX37dgCARCLBokWLsHz5coSFhSEqKgozZsyAp6cnJk2aJMbLbDFDA12xe9EgvD62E2wtTBGZXIApa4/j+S3nkaHg1ntERERERETGQNQ18hKJpMHj69evx8yZM3Hjxg1Mnz4d0dHRKC4uho+PDyZPnow33nijzvR3iURS+xhAXelfunQpvv76a+Tn52PAgAFYs2YNOnTo0Ki4NFmboK+yCsvx0T+X8VtEMgQBsDaXYsHQdpg9IACWZlKxwyMiIiIiIqKbaJKH6k2zO31iDIl8jcjkfLwddhFnk/IBAL6O1nh9XCeMDHK77RcpRERERERE1LKYyDeTMSXygHqGwh/nU/DBrsvIUKi78w9s74y37gtCezeZyNERERERERERE/lmMrZEvkZxeRXWHLyGbw4noEKpgtREgsfu8cPzIzpAbs3t6oiIiIiIiMTCRL6ZjDWRr5GUU4Llf8Xg3xj1Fn0O1mZYPKojpvb2hdSE0+2JiIiIiIhaGhP5ZjL2RL7G0avZWLbjIq5mFgEAOnnY4e3xQejbxknkyIiIiIiIiFoXJvLN1FoSeQCoUqqw6WQiPt1zBYqyKgDAuBAPvDa2E7zsrUSOjoiIiIiIqHVgIt9MrSmRr5FbXIFP/o3Fz+FJUAmApZkJnh7cFk8Nagsrc25XR0REREREpEtM5JupNSbyNS6mFmDZjhiEJ+QCALzsrfDq2ECM6+LB7eqIiIiIiIh0hIl8M7XmRB5Qb1f3V1Qa3v/rElILygAAfQMcsXR8ZwR5tr7xICIiIiIi0jUm8s3U2hP5GqUVSnx1OA5rD8ahvEoFEwnwSB9fvDiyIxxtzMUOj4iIiIiIyGgwkW8mJvJ1peSX4v2/L+GvyDQAgJ2lKV64twOm3eMHM6mJyNEREREREREZPibyzcREvmEn43OwbEcMLqUpAADtXW2xdHxnDGjvLHJkREREREREho2JfDMxkb89pUrAz+FJ+OTfWOSVVAIARga54Y1xQfB1shY5OiIiIiIiIsPERL6ZmMjfXUFJJT7bewU/nkyEUiXA3NQEcwYGYP6QdrCxMBU7PCIiIiIiIoPCRL6ZmMg33pWMQryzIwZHr2UDANzsLPDKmEBM6ubF7eqIiIiIiIgaiYl8MzGR14wgCPg3JgPL/4rBjdxSAEAPX3u8PaEzQrztxQ2OiIiIiIjIADCRbyYm8k1TVqnEd0cT8OWBayipUEIiAR7s6Y2XRgXCRWYhdnhERERERER6i4l8MzGRb570gjKs3H0Z28+lAABkFqZ4dnh7PN7fH+am3K6OiIiIiIjoVkzkm4mJvHZEJOZh2Y6LiEwuAAC0cbbBm/cFYWigq8iRERERERER6Rcm8s3ERF57VCoBv0ck48N/LiO7qAIAMLSjC968LwhtXGxFjo6IiIiIiEg/MJFvJiby2qcoq8T/9l3F+mPXUaUSYCaV4InQADwzrB1klmZih0dERERERCQqJvLNxERed+KyirB8ZwwOxGYBAJxtzfHyqEA80NMbJibcro6IiIiIiFonJvLNxERe9w5czsS7O2MQn10MAAjxlmPp+M7o6ecgcmREREREREQtj4l8MzGRbxkVVSpsOJ6Az/ddQ1F5FQBgcncvvDImEG52liJHR0RERERE1HKYyDcTE/mWlVlYho//icVvEckQBMDaXIoFQ9th9oAAWJpJxQ6PiIiIiIhI55jINxMTeXFEJufj7bCLOJuUDwDwdbTG6+M6YWSQGyQSrp8nIiIiIiLjxUS+mZjIi0cQBPxxPgUf7LqMDEU5AGBge2e8dV8Q2rvJRI6OiIiIiIhIN5jINxMTefEVl1fhywPX8O2RBFQoVZCaSPDYPX54fkQHyK25XR0RERERERkXJvLNxERefyTmFOO9vy7h35gMAICDtRkWj+qIqb19IeV2dUREREREZCSYyDcTE3n9c/RqNpbtuIirmUUAgE4ednh7fBD6tnESOTIiIiIiIqLmYyLfTEzk9VOlUoVNJxPx2Z4rUJSpt6sbF+KB18Z2gpe9lcjRERERERERNR0T+WZiIq/fcorK8emeK/g5PAkqAbA0M8HTg9viqUFtYWXO7eqIiIiIiMjwMJFvJibyhuFiagGW7YhBeEIuAMDL3gqvje2EsV3cuV0dEREREREZFCbyzcRE3nAIgoC/otLw/l+XkFpQBgDoG+CIpeM7I8iT/3ZERERERGQYmMg3ExN5w1NaocS6Q3FYdygO5VUqmEiAR/r44sWRHeFoYy52eERERERERHfERL6ZmMgbrpT8Urz/9yX8FZkGALCzNMUL93bA9Hv8YCo1ETk6IiIiIiKihjGRbyYm8obvZHwOlu2IwaU0BQCgg5st3rqvMwa0dxY5MiIiIiIiovo0yUNFLVGuWLECvXv3hkwmg6urKyZNmoTY2NgGzxUEAWPGjIFEIsEff/xxx+vOnDkTEomkzm306NE6eAWkr+5p44SdzwzA8knBcLA2w5WMIkz/7hTmbjyDpJwSscMjIiIiIiJqMlET+UOHDmHBggU4efIk9uzZg8rKSowcORLFxcX1zl21apVGnchHjx6NtLS02tvPP/+szdDJAEhNJJh+jx8OLB6Cmf39ITWR4N+YDIxadRiRyflih0dERERERNQkpmI++e7du+v8fcOGDXB1dUVERAQGDRpUe/z8+fP45JNPcObMGXh4eDTq2hYWFnB3d9dqvGSY7K3N8faEzni0ry9e3RaFiMQ8zN0YgbCFoXC1sxQ7PCIiIiIiIo3oVfevgoICAICjo2PtsZKSEjz66KP48ssvNUrMDx48CFdXV3Ts2BHz5s1DTk7Obc8tLy+HQqGocyPj08FNhg1P9EY7V1ukK8rw1KYIlFUqxQ6LiIiIiIhII3qTyKtUKixatAihoaEIDg6uPf7888+jf//+mDhxYqOvNXr0aGzcuBH79u3DypUrcejQIYwZMwZKZcNJ24oVKyCXy2tvPj4+zX49pJ9klmb4dkYvyK3McC4pH2/8EQ32eyQiIiIiIkOiN13r582bh127duHo0aPw9vYGAISFheHFF1/EuXPnYGtrCwCQSCTYvn07Jk2a1Ohrx8fHo23btti7dy+GDx9e7/7y8nKUl5fX/l2hUMDHx4dd643YkatZePz7cKgE4M37gjB7QIDYIRERERERUStmMF3rayxcuBA7d+7EgQMHapN4ANi/fz/i4uJgb28PU1NTmJqql/RPmTIFQ4YMafT127RpA2dnZ1y7dq3B+y0sLGBnZ1fnRsZtYHsXvD4uCADw3l8xOHwlS+SIiIiIiIiIGkfURF4QBCxcuBDbt2/H/v37ERBQtyr6yiuvIDIyEufPn6+9AcBnn32G9evXN/p5kpOTkZOT0+hGedQ6zAr1x4M9vaESgIWbzyIhu/5uCUREREREZNj+jkpDQWml2GFolaiJ/IIFC7Bp0yZs3rwZMpkM6enpSE9PR2lpKQDA3d0dwcHBdW4A4OvrWyfpDwwMxPbt2wEARUVFeOmll3Dy5Elcv34d+/btw8SJE9GuXTuMGjWq5V8k6S2JRILlk4PRw9ceirIqzNl4Booy4/oPTkRERETUmv15PgXzfzqLh786gUIj+qwvaiK/du1aFBQUYMiQIfDw8Ki9bdmyRaPrxMbG1na8l0qliIyMxIQJE9ChQwfMnj0bPXv2xJEjR2BhYaGLl0EGzMJUinWP9YS7nSWuZRZh0S/noVTpRdsIIiIiIiJqhgOxmXjx1wsAgHvaOMHWQtTd17VKb5rd6RNNmgyQcYhMzseD606gvEqFeUPaYsnoQLFDIiIiIiKiJopIzMW0b0+hrFKFid088dlD3WBiIhE7rDsyuGZ3RGIL8bbHhw+EAADWHozDn+dTRI6IiIiIiIia4nK6Ak+sP42yShWGdHTBxw921fskXlNM5ImqTezmhacHtwUAvPx7JCKT88UNiIiIiIiINJKUU4IZ34VDUVaFXn4OWDutJ8ykxpf2Gt8rImqGl0Z1xLBAV5RXqTB3YwQyC8vEDomIiIiIiBohs7AMj31/CpmF5Qh0l+G7x3vDylwqdlg6wUSe6CZSEwlWTe2Gti42SFeU4ekfI1BepRQ7LCIiIiIiuoOC0ko8/v1pJOaUwMfRChtn9YHc2kzssHSGiTzRLewszfDt471hZ2mKs0n5eGN7NNgTkoiIiIhIP5VWKPHkD6dxKU0BZ1sLbJrdF652lmKHpVNM5IkaEOBsgy8e7QETCfBbRDLWH7sudkhERERERHSLSqUKCzefxenreZBZmmLjrD7wc7IROyydYyJPdBuDOrjgtbGdAADv/X0JR69mixwRERERERHVUKkELPk9EvsuZ8LC1ATfz+yNIM/WsX04E3miO5g9IABTenhDqRKwYPNZXM8uFjskIiIiIqJWTxAELP/rEradS4HURIK103ugt7+j2GG1GCbyRHcgkUjw3uRgdPOxR0FpJZ7ceAaFZZVih0VERERE1KqtORiH748lAAA+fjAEwwLdRI6oZTGRJ7oLSzMpvn6sJ9zsLHAtswjPbzkPlYrN74iIDElZpRK7o9NQqVSJHQoRETXTT6cS8dE/sQCApeODMLm7t8gRtTwm8kSN4Gpnia8f6wVzUxPsvZSJT/bEih0SERFp4LVtUXh601msORAndihERNQMf0Wm4Y0/ogEAzw5rhydCA0SOSBxM5IkaqauPPT6cEgIA+PJAHMIupIocERERNUZcVhH+OJ8CANh2LplbihIRGagjV7OwaMs5CAIwra8vnr+3g9ghiYaJPJEGJnX3wlOD2wAAXv79AqJTCkSOiIiI7uaL/ddQsyIqMacEkcn83U1EZGjOJeXhqR8jUKkUMC7EA+9MDIZEIhE7LNEwkSfS0MujAjG0owvKKlWYs/EMsgrLxQ6JiIhuIz6rCH9WV+ODPNRbEu3gjCoiIoNyNaMQT2w4jZIKJQa2d8ZnD3WD1KT1JvEAE3kijUlNJFj9SHe0cbFBWkEZnt4UgfIqpdhhERFRA2qq8cMDXbFoRHsAwM7INDYtJSIyEMl5JXjsu3Dkl1Sim4891k3vCXNTprEcAaImsLM0w7czekFmaYqIxDy89cdFrrkkItIzCdnFtWvjnxvRHoM7ukBmaYp0RRnCr+eKHB0REd1NdlE5ZnwXjnRFGdq72mL9zN6wsTAVOyy9wESeqInauNjii0d7wEQCbDlzAz8cvy52SEREdJOaavywQFeEeNvDwlSK0Z3dAYANS4mI9FxhWSVmrg9HfHYxvOyt8OPsvnCwMRc7LL3BRJ6oGQZ3cMGrYzoBAN796xKOXcsWOSIiIgKA6zdX44e3rz0+oZsnAGBXFPeUJyLSV2WVSszZeAbRKQo42Zjjx9l94C63FDssvcJEnqiZnhwYgPu7e0GpEjD/p7NIzCkWOyQiolbviwPXoFQJGNLRBV197GuP92vjBGdbc+SVVOIov3wlItI7VUoVnv35HE7G58LWwhQ/zOqDNi62Yoeld5jIEzWTRCLB+/d3QVcfexSUVmLOxjMoKq8SOywiolYrMacY28/Vr8YDgKnUBGO7eAAAdpzn9HoiIn0iCAJe3RaFf2MyYG5qgm9m9EKwl1zssPQSE3kiLbA0k+Lrx3rCVWaBKxlFWPTLeXZEJiISyZfV1fjBHVzQ3deh3v0Tuqqn1/9zMR1lldx1hIhIX3yw6zJ+i0iGiQT44pHu6NfWSeyQ9BYTeSItcbOzxNczesHc1AR7L2Xg0z1XxA6JiKjVScopwdaz/3Wqb0gPXwd42VuhuEKJA5czWzI8IiK6jXWH4vDV4XgAwAdTQjCyujkpNYyJPJEWdfOxxwf3dwGgXp+5M5LTNomIWlJNNX5ge2f0aKAaDwAmJhLc11U9vZ7d64mIxPdLeBI+2HUZAPD62E54qJePyBHpPybyRFp2fw9vzB3UBgCw+LcLiE4pEDkiIqLW4UZuCbaeTQYALLpNNb7G+BD19Pp9lzNRWFap89iIiKhhu6PT8Nr2KADAvCFtMaf6czTdGRN5Ih1YMjoQgzu4oKxShbkbzyCrsFzskIiIjN6ag9dQVV2N7+nneMdzO3vaoY2LDSqqVPj3YkYLRUhERDc7HpeNZ38+D5UATO3tg5dHdRQ7JIPBRJ5IB6QmEnz+SHe0cbZBakEZ5m2KQEUV9ysmItKVG7kl+O2Muhp/a6f6hkgkktqmdzu4DIqIqMVFJudjzg9nUKFUYXRnd7w3uQskEonYYRkMJvJEOiK3MsM3j/eCzNIUZxLzsDQsGoLATvZERLqw5mAcqlQCBrRzRi//O1fja4yvTuSPXs1GbnGFLsMjIqKbxGUVYeb60yiuUCK0nRNWP9INUhMm8ZpgIk+kQ21dbPH5I90hkQA/h9/AjycTxQ6JiMjopOSX4veIGwBu36m+IW1dbNHZ0w5VKgF/R6XpKjwiIrpJan4pHvv2FHKLKxDiLcdXj/WChalU7LAMDhN5Ih0b2tEVr4wOBAAs2xGD49eyRY6IiMi4rDlwDZVKAf3bOqF3I6vxNWqn17N7PRGRzuUWV+Cx704htaAMbVxssOGJPrC1MBU7LIPERJ6oBcwd1AaTu3tBqRIwf/NZJOWUiB0SEZFRSMkvxa9nqqvxjVgbf6v7qhP58Ou5SC8o02psRET0n6LyKjyxPhxxWcXwkFvix9l94WhjLnZYBouJPFELkEgkWHF/F3T1liO/pBJzNp5BUXmV2GERERm8tQfV1fh+bZzQt42Txo/3srdCb38HCAKwk03viIh0orxKiad/jMCF5AI4WJvhx9l94GVvJXZYBo2JPFELsTST4qvHesFVZoHYjEI8v+U8VCo2vyMiaqrU/FL8erq6U70Ga+NvVdP0LozT64mItE6pEvD8lvM4ei0b1uZSbHiiD9q5ysQOy+AxkSdqQe5yS3z1WE+Ym5pgT0wGVu29InZIREQGa+3BOFQoVegb4Ih7mlCNrzG2iwekJhJEJhfgenaxFiMkImrdBEHAG39E4++odJhLTfD1Y73Q1cde7LCMAhN5ohbW3dcBKyZ3AQB8vv8a/opkp2QiIk2lFZRiy2nNO9U3xNnWAv3bqr8IYNM7IiLt+fjfWPwcngQTCbB6ajcMaO8sdkhGg4k8kQim9PTGkwMCAACLf7uAi6kFIkdERGRY1lVX4/sEOKJfM6rxNSbcNL1eELjsiYioub49Eo8vD8QBAN6b3AVjuniIHJFxYSJPJJJXxgRiUAcXlFYqMXdjBLKLysUOiYjIIKQXlOHn6mr8ouHtIZFImn3NkZ3dYS41wdXMIlxOL2z29YiIWrPfI5Kx/K9LAICXR3fEI318RY7I+IiayK9YsQK9e/eGTCaDq6srJk2ahNjY2AbPFQQBY8aMgUQiwR9//HHH6wqCgLfeegseHh6wsrLCiBEjcPXqVR28AqKmM5Wa4H9TuyPA2QYp+aWYv+ksKqpUYodFRKT31h2KQ0WVCr39HdCvbfOr8QAgtzLDkI4uADi9noioOfbEZGDJ1kgAwJyBAZg3uK3IERknURP5Q4cOYcGCBTh58iT27NmDyspKjBw5EsXF9RvNrFq1qtHfuH/44Yf4/PPPsW7dOpw6dQo2NjYYNWoUysq4PyzpF7m1Gb6Z0QsyC1OEX8/F0rCLnNJJRHQHGYoybA5PAgAsGtFBK9X4GhO6qafX74jk9HoioqY4GZ+DBZvPQqkS8EBPb7w2tpNWf0/Tf0RN5Hfv3o2ZM2eic+fO6Nq1KzZs2ICkpCRERETUOe/8+fP45JNP8P3339/1moIgYNWqVXjjjTcwceJEhISEYOPGjUhNTb1rJZ9IDO1cbfH5I90hkQA/hydh08lEsUMiItJbNdX4Xn4OtQ3qtGV4oBuszaW4kVuKczfytXptIiJjF51SgDk/nEFFlQojOrnhg/u7MInXIb1aI19QoG745ejoWHuspKQEjz76KL788ku4u7vf9RoJCQlIT0/HiBEjao/J5XL07dsXJ06caPAx5eXlUCgUdW5ELWlooCuWjA4EACzbEYMTcTkiR0REpH8yFWXYfEpdjX9uhHbWxt/MylyKe4PcAABh5zm9noiosRKyizFzfTgKy6vQN8ARXzzaHaZSvUo1jY5pY06KjIzU+MJBQUEwNW3U5QEAKpUKixYtQmhoKIKDg2uPP//88+jfvz8mTpzYqOukp6cDANzc3Oocd3Nzq73vVitWrMCyZcsaHSuRLjw1qA0upynwx/lUzP8pAmELB8DH0VrssIiI9Ma6Q/Eor1Khh689BrTTzRZGE7p64s/zqfgrKg1v3hcEqQmrSUREd5JeUIbp355CdlEFOnva4ZvHe8HSTCp2WEavUZl2t27dIJFIGr1ezMTEBFeuXEGbNm0aHciCBQsQHR2No0eP1h4LCwvD/v37ce7cuUZfpyleffVVvPDCC7V/VygU8PHx0elzEt1KIpHggykhiM8uRmRyAeZsPIOt8/rDxqLxX4gRERmrzMIy/HRKvfRI22vjbzawvQvkVmbIKizHqfgc9NfRFwZERMYgv6QCM74/hZT8UgQ42+CHWX1gZ2kmdlitQqPnO5w6dQoJCQl3vcXHx8PS0lKjIBYuXIidO3fiwIED8Pb2rj2+f/9+xMXFwd7eHqamprUV/ilTpmDIkCENXqtm+n1GRkad4xkZGbedmm9hYQE7O7s6NyIxWJpJ8dVjPeEis8Dl9EK88Ot5qFRsuERE9HV1Nb67rz0Gttddcm1uaoIxwerPC2HsXk9EdFslFVWYteE0rmQUwc3OAhtn9YGzrYXYYbUajUrkBw8ejHbt2sHPz++uN39/fwwaNAhWVlZ3va4gCFi4cCG2b9+O/fv3IyAgoM79r7zyCiIjI3H+/PnaGwB89tlnWL9+fYPXDAgIgLu7O/bt21d7TKFQ4NSpU+jXr19jXi6RqDzkVvjqsZ4wl5rgn4sZWL2PWycSUeuWVViOTdXV+Oe0tG/8nUzoqu5evys6nduCEhE1oKJKhXmbzuJsUj7kVmb4cXZfLgltYY1K5A8cOAB7e/tGX/Tvv/+Gh4fHXc9bsGABNm3ahM2bN0MmkyE9PR3p6ekoLS0FoK6uBwcH17kBgK+vb52kPzAwENu3bwegnp68aNEiLF++HGFhYYiKisKMGTPg6emJSZMmNfo1EImph68D3pus/nlfve8qdkWliRwREZF4vj4ch7JKFbr62GNwBxedP1/fNk5wlVmgoLQSR65m6fz5iIgMiUol4MXfLuDQlSxYmUmx/one6OAmEzusVkejVoIKhQIqVf1vppVKZZM6va9duxYFBQUYMmQIPDw8am9btmzR6DqxsbG1He8B4OWXX8YzzzyDuXPnonfv3igqKsLu3bs1nvJPJKYHe/lg9gD1F1Yv/HoBMancTYGIWp/sonL8eLJmbbzuq/EAIDWRYFyIuiDB6fVERP8RBAFv77iIHRdSYSaVYN1jPdHD10HssFqlRify27dvR69evVBWVlbvvrKyMvTu3Rs7duzQ6MkFQWjwNnPmzDs+5tbK+q2PkUgkeOedd5Ceno6ysjLs3bsXHTp00Cg2In3w6phADGzvjNJKJeZsPIOconKxQyIialHfHI5XV+O95RjSAtX4GuOrp9fviclAaYWyxZ6XiEifrdp7FRtPJEIiAT59qFuLzJKihjU6kV+7di1efvllWFvXX/tgY2ODJUuW4IsvvtBqcEStnanUBF880gP+TtZIyS/FvJ/Ocr0mEbUa2UXl2Hiiem18C1Xja3T3sYePoxVKKpTYdznj7g8gIjJyG44l1PZuemdicO0XniSORify0dHRt+0UDwCDBg1CVFSUNmIiopvIrc3w7eO9YGthivCEXCzbcVHskIiIWsQ3R+JRWqlEiLccQzu6tuhzSyQSjA9Rf0gNO8/p9UTUuv1xLgVv74gBALxwbwc8do+fyBFRoxP5vLw8VFVV3fb+yspK5OXlaSUoIqqrnasMnz/SDRIJ8NOpJGyqXi9KRGSscosr8OOJlutU35AJ3dSJ/MHYLBSUVrb48xMR6YMDlzOx+LcLAICZ/f3xzLB2IkdEgAaJvL+/P86cOXPb+8+cOQM/P34zQ6QrwwLd8NKojgCAt8Mu4mR8jsgRERHpzjdH4lFSoUQXLzmGBbZsNb5GRzcZ2rvaokKpwj8X00WJgYhITGeu52LeTxGoUgmY1M0Tb90XJMoXq1RfoxP5+++/H6+//joyMuqvE0tPT8cbb7yBKVOmaDU4Iqpr3uC2mNDVE1UqAfN/OosbuSVih0REpHW5xRX44fh1AMCzIlXjAfX0+po95Xewez0RtTKX0hSYteE0yipVGBboio8e7AoTEybx+qLRifwrr7wCmUyG9u3bY/78+Vi9ejVWr16NefPmoUOHDrC1tcUrr7yiy1iJWj2JRIKVU0LQxUuO3OIKzNl4BsXlt1/yQkRkiL6trsZ39rTDiE7iVONr1DRzOh6Xg2zuHEJErURSTglmfB8ORVkVevk54MtHe8BMqtHO5aRjjf7XkMlkOHbsGKZPn44tW7bg+eefx/PPP48tW7Zg+vTpOHr0KGQymS5jJSIAVuZSfD2jJ5xtLXA5vRCLf7sAlUoQOywiIq3Iu6kaL9ba+Jv5O9ugq7ccSpWAv6PSRI2FiKglZBaWYfp3p5BVWI5Adxm+m9kbVuZSscOiW2j0tYpcLseaNWuQnZ2NjIwMpKenIycnB2vWrIGDg4OuYiSiW3jIrfDVYz1gLjXBruh0fL7/qtghERFpxbdH41FcoUSQhx3uDXITOxwA/1Xl2b2eiIxdQWklZnwXjqTcEvg6WmPjrD6QW5mJHRY1oEnzIyQSCVxcXODq6ir6N+VErVVPP0csnxQMAFi19yp2R7NSRESGLb+kAj8cV3eqF3Nt/K3uC/GERAKcScxDSn6p2OEQEelEaYUST/5wGpfTC+Eis8Cm2X3hamcpdlh0G1zoQGTAHurtgydC/QEAL/x6AZfSFOIGRETUDN8dTUBReRU6edhhpJ5U4wHAXW6JPv6OAICdbHpHREaoUqnCgs1ncfp6HmSWptg4qw98nazFDovugIk8kYF7fWwnDGjnjJIKJeZsPIPc4gqxQyIi0lh+SQU2HLsOAHhueDu964xcO72eiTwRGRmVSsDLv0di/+VMWJqZ4PuZvdHJw07ssOgumMgTGThTqQm+eLQ7/JyskZxXivk/RaBSqRI7LCIijXx/NAGF5VUIdJdhZJC72OHUM7aLB0xNJLiYqkBcVpHY4RARaYUgCHj3rxhsP5cCUxMJ1k7rid7VM5BIvzUrkS8rK9NWHETUDPbW5vh2Ri/YWpjiZHwu3tkRI3ZIRESNVlBSifXV1fhnh7fXu2o8ADjamGNAe2cA3FOeiIzHlweu1f7+/fjBrhgaKO6Wn9R4GifyKpUK7777Lry8vGBra4v4+HgAwJtvvonvvvtO6wESUeO0d5Nh1cPdIJEAP55MxE+nEsUOiYioUb4/pq7Gd3STYXRn/avG15hw0/R6QeC2n0Rk2DadTMTH/14BACwdH4RJ3b1Ejog0oXEiv3z5cmzYsAEffvghzM3Na48HBwfj22+/1WpwRKSZEUFuWDyyIwBg6Z8XcSo+R+SIiIjurKC0Et8fSwCgv9X4GvcGucHC1ATxWcW4mMrmokRkuHZGpuLNP6MBqH/3PhEaIHJEpCmNE/mNGzfi66+/xrRp0yCVSmuPd+3aFZcvX9ZqcESkuflD2uK+EA9UqQTM++kskvNKxA6JiOi21h9LQGFZFTq42WJMsP5W4wFAZmmGYdXTTjm9nogM1eErWXh+y3kIAvDYPX54fkR7sUOiJtA4kU9JSUG7du3qHVepVKisrNRKUETUdBKJBB890BXBXnbILa7AnI0RKKmoEjssIqJ6FGWV+P6oYVTja9RMr98ZmQaVitPriciwnE3Kw1M/RqBSKWB8V08sm9AZEon+/+6l+jRO5IOCgnDkyJF6x3///Xd0795dK0ERUfNYmUvx9WO94GxrjktpCiz+7QLXcxKR3tlw7DoUZVVo72qLscEeYofTKEMDXWFrYYqU/FKcTcoTOxwioka7klGIWRtOo7RSiUEdXPDJg10N4gtUapippg9466238PjjjyMlJQUqlQrbtm1DbGwsNm7ciJ07d+oiRiJqAk97K6yb3hOPfHMSf0el43/7r+HZ4Zw6RUT6QVFWie+qq/HPGEg1HgAszaQYGeSGbedSEHYhFb24TRMRGYAbuSV47LtTyC+pRHdfe6yb3gPmptyJ3JBp/K83ceJE7NixA3v37oWNjQ3eeustXLp0CTt27MC9996rixiJqIl6+Tti+aRgAMCne65gd3S6yBEREan9cOw6Ckor0dbFBuO6GEY1vsb4burp9X9HpaFKqRI5GiKiO8suKseM78ORoShHBzdbrJ/ZG9bmGtdzSc806V9w4MCB2LNnj7ZjISIdeLi3Ly6lFWLD8et44dfz8Hfuj0B3O7HDIqJWrLCsEt/etDZeaiDV+BoD2jnDwdoM2UUVOBGfg4HtXcQOiYioQYVllXj8+3AkZBfDy94KG2f1hb21+d0fSHqvSfMp8vPz8e233+K1115Dbm4uAODs2bNISUnRanBEpB1vjOuE0HZOKKlQYs7GM8gtrhA7JCJqxTaeSKytxt8X4il2OBozk5pgbPUsgrDz7F5PRPqprFKJJ384g4upCjjZmGPTk33hLrcUOyzSEo0T+cjISHTo0AErV67ERx99hPz8fADAtm3b8Oqrr2o7PiLSAlOpCb54pAd8Ha1xI7cUC346i0pOByUiERSVV+GbI/EAgGeGGV41vsb46u71uy+mo7xKKXI0RER1VSlVeObncziVkAuZhSl+mNUHAc42YodFWqRxIv/CCy9g5syZuHr1Kiwt//tGZ+zYsTh8+LBWgyMi7XGwMce3j/eCjbkUJ+Jz8O7OGLFDIqJW6Ifj15FfUok2zja1ybAh6uPvCHc7SxSWVeFQbJbY4RAR1RIEAa9si8KemAyYm5rgm8d7IdhLLnZYpGUaJ/KnT5/GU089Ve+4l5cX0tPZSItIn3Vwk2HV1O6QSNRTW38OTxI7JCJqRYrLq/BtTTV+eDuDrcYDgImJBPeFVE+vv8Dp9USkHwRBwPt/X8LvEcmQmkjw5aM9cE8bJ7HDIh3QOJG3sLCAQqGod/zKlStwcWGzFyJ9d2+QG168twMA4K0/o3H6eq7IERFRa7HxRCLySioR4GyD8Qa4Nv5WE6q71++9lIHi8iqRoyEiAtYdisc3R9TNRFdOCcG9QW4iR0S6onEiP2HCBLzzzjuorKwEAEgkEiQlJWHJkiWYMmWK1gMkIu1bMLQdxoV4oFIp4OkfI5CSXyp2SERk5IrLq/D14TgAwMKh7WAqNfz9i7t4yeHnZI2yShX2XsoQOxwiauV+Dk/Cyt2XAagbHT/Q01vkiEiXNH4X/eSTT1BUVARXV1eUlpZi8ODBaNeuHWQyGd577z1dxEhEWiaRSPDRAyEI8rBDTnEF5vxwBiUVrCYRke78eFJdjfd3ssbEboZfjQfUv0snVK/z38Hp9UQkol1RaXh9exQAYP6QtnhyYBuRIyJd0ziRl8vl2LNnD3bu3InPP/8cCxcuxN9//41Dhw7BxoadEIkMhbW5Kb55vBecbMwRk6bAS79FQhAEscMiIiNUUlGFbw6r18YvHNbeKKrxNWoS+UNXspBfwq09iajlHbuWjed+OQ+VADzSxwcvjeoodkjUAkw1ObmyshJWVlY4f/48QkNDERoaqqu4iKgFeNlbYd1jPfHoNyfxV1QaOh2QYeGw9mKHRURGZtPJROQUV8DPyRqTjKQaX6O9mwyB7jJcTi/E7uh0TO3jK3ZIRNSKRCbnY+7GM6hQqjAm2B3LJ3WBRGK4jUSp8TT6StzMzAy+vr5QKrlfKpGx6O3viHcmBgMAPv73Cv69yN0niEh7Siqq8NUhdTV+gZGsjb9VzTZ67F5PRC3pWmYRZq4/jeIKJULbOWHV1G4GvRsIaUbjd9PXX38dr732GnJz2emayFg80scXj/fzAwA8v+U8YtMLRY6IiIzFTyeTkFNcAV9Ha0zu7iV2ODpRM73+RHwOMhVlIkdDYnrjjyj0eW8vnvzhNNYejMPp67koq2QBjLQvNb8UM747hdziCnT1luOrx3rBwlQqdljUgjSaWg8AX3zxBa5duwZPT0/4+fnVWxd/9uxZrQVHRC3njfuCcCWjCCficzBn4xn8uSAUDjbmYodFrYBSJSA8IReZhWVwlVmiT4AjKwpGorRCia9u6lRvZoTVeADwcbRGd197nEvKx19RaXgiNEDskEgEF27kY9PJJADA3kuZ2HspEwBgLjVBsJcdevk7opefA3r6OcDJ1kLMUMnA5RZX4LHvTiG1oAxtXWyw/ok+sLXQOK0jA6fxv/ikSZN0EAYRic1MaoI103pgwpdHkZRbggWbz+KHWX2M9oM36Yfd0WlYtiMGaQX/VTE95JZYOj4Io4M9RIyMtOGnU4nILqqAj6MVJvcwzmp8jfEhnjiXlI+wC6lM5FupVXuvAADuDXJD3wBHnLmehzOJecguKsfZpHycTcrH19XntnG2QU8/B/Tyd0BPP0e0dbHhuma6LUEQcCO3FJEp+YhKLsCemAzEZxfDU26JH2f3hSMLL62SRGCb6noUCgXkcjkKCgpgZ2cndjhELSo2vRD3rzmG4golZvb3x9sTOosdEhmp3dFpmLfpLG59E6r5KLt2eg8m8wastEKJgR8eQHZROT64v4vRN4HLVJThnhX7oBKAIy8PhY+jtdghUQs6fyMfk748BqmJBPteGAx/Z/WMVUEQkJRbUp3U5+LM9TxczSyq93gHazP09HNEL38H9PJzQLCXHJZmnCbdGgmCgJT8UkQlFyAypQDRKQWITC5AQWllnfMcbczx61P90M7VVqRISRc0yUM5B4OI6ujoLsNnD3fD3B8jsOH4dXTykOHh3sb9AZxanlIlYNmOmHpJPAAIUCfzy3bE4N4gd06zN1Cbw5OQXVQObwcr3N/DW+xwdM7VzhL3tHHC8bgc7IhMxfwh7cQOiVpQTTV+cnev2iQeACQSCfycbODnZIMpPdX/D/JLKnA2Ka+2Yn/hRj7ySiqx91IG9l7KAKCejt/FW147Fb+XvyOrrkZIEARkKMoRmZyPqOqEPSqlALnF9beyNJeaoJOHDMFecoR4yzE00BWuMksRoiZ9oXEi7+Dg0ODUH4lEAktLS7Rr1w4zZ87EE088cddrrVixAtu2bcPly5dhZWWF/v37Y+XKlejY8b+9D5966ins3bsXqampsLW1rT0nMDDwttedOXMmfvjhhzrHRo0ahd27d2vwSolar5Gd3fHCvR3w6Z4reOOPaLR1sUUvf0exwyIjEp6QW2c6/a0EAGkFZQhPyEW/tk4tFxhpRVmlEusOqdfGLxjaDuamrWOJzoSunjgel4Ow80zkW5NzSXk4GJsFqYkEC4fe/d/d3tocwwLdMCzQDQBQUaVCdGoBIqqr9hGJecguqkBEYh4iEvNqH9fGxQa9/BzQy88RPf0d0MaZ0/ENTWZhGaKqk/WaintWYXm980xNJOjoLkOItxxdvOwR4i1HBzdZq/ldSo2jcSL/1ltv4b333sOYMWPQp08fAEB4eDh2796NBQsWICEhAfPmzUNVVRXmzJlzx2sdOnQICxYsQO/evVFVVYXXXnsNI0eORExMTG0TvZ49e2LatGnw9fVFbm4u3n77bYwcORIJCQmQSm8/5Wj06NFYv3597d8tLNhUhEgTzwxrh8vpCvwdlY65P0bghyf6oIu3XOywyEhkFjaus3djzyP9svlUErIKy+Flb4UpraAaX2N0sDve/DMal9MLcTWjEO3dZGKHRC1g9b6rAOpX4xvL3NQEPXwd0MPXAXPQBoIgIDGnBGcS8xCRmIvT1/NwLbMI8VnFiM8qxq9nkgGop1b38HVAb3/1WvtgLzm7luuRnKLyOgl7VHIB0hvY1cJEAnRwk6FLdaW9i7c9At1lXFpBd6VxIn/06FEsX74cTz/9dJ3jX331Ff79919s3boVISEh+Pzzz++ayN9aId+wYQNcXV0RERGBQYMGAQDmzp1be7+/vz+WL1+Orl274vr162jbtu1tr21hYQF3d3dNXx4RVZNIJPj4wa5IzitFZHIBpn59Ause64mB7V3EDo2MQGOnA3LaoOFprdV4QF1pHdTeBfsuZ2LHhVS8MLLj3R9EBu3sTdX4Z4ZpZxaGRCKBv7MN/J1t8ED1dPy84urp+Il5iLieh/PJ+cgtrqg7Hd/UBCFecvT0r67a+zlwOn4LKSipVE+Nr25GF5lcgJT80nrnSSRAOxdbdPGWI8RLji7ecgR5yGFlzqSdNKdxIv/PP/9g5cqV9Y4PHz4cL774IgBg7NixeOWVVzQOpqCgAADg6NjwFN7i4mKsX78eAQEB8PHxueO1Dh48CFdXVzg4OGDYsGFYvnw5nJwanp5ZXl6O8vL/prUoFAqNYycyRtbmpvjpyb54elMEjl3LwawNp/HJQ91q90wmaqo+AY7wkFsivaCswXXyEgDucvVWdGRYfglPQmZ1Nb4mCWlNJnTzxL7LmQi7kIrn7+3Aqc9GbvVedTX+/u5e8HPSvBrfWA425hjeyQ3DO6mn45dXKRGdokBEdQO9iMQ85BRX4EyiOtn/CvEAgLYuNrVT8Xv5OSCA0/GbTVFWiehbKu1JuSUNntvG2QZdvOXV1XZ7dPa0gw23iSMt0fgnydHRETt27MDzzz9f5/iOHTtqE/Di4mLIZJpNJ1OpVFi0aBFCQ0MRHBxc5741a9bg5ZdfRnFxMTp27Ig9e/bA3Pz23zCOHj0a999/PwICAhAXF4fXXnsNY8aMwYkTJxqcjr9ixQosW7ZMo3iJWguZpRm+n9kbL/x6AX9FpuHZn88hu7AcswZweyVqOqmJBEvHB2HeprOQAHWS+ZqPmEvHB7HRnYEpq1RibXU1ft6Qtq2qGl9jRCc3WJqZ4HpOCaJSChDibS92SKQjZ5PycOhK9dp4LVXjG8vCVIqe1Y3w5g5SN027nlOC09dza9fax2UV1962nLkBAHCyMUcPP/V0/J5+jgj2suN0/DsoLq/CxVRFbTO6qOQCxGcXN3iun5M1unipk/Yu3nIEe8lhZ2nWwhFTa6Lx9nPffPMN5s2bh7Fjx9aukT99+jT+/vtvrFu3DrNnz8Ynn3yC8PBwbNmypdHXnTdvHnbt2oWjR4/C27vuN/gFBQXIzMxEWloaPv74Y6SkpODYsWOwtGzclMv4+Hi0bdsWe/fuxfDhw+vd31BF3sfHh9vPEd1EpRLwzs4YbDh+HYD6Q/rLozrym31qFu4jb1x+OH4dS8MuwkNuiYMvDWm1CcKCzWfxV2QanhwQgDfuCxI7HNKRGd+H4/CVLDzUyxsfPtBV7HDqyStWN8yrWWt/IbkAFVWqOueYm5qgq7dcvfVd9RcDDq10On5phRIxadWd46ur7XFZRWgoU/Kyt6pezy5HiJc9gr3sYG/dOseNtEuT7eeatI/8sWPH8MUXXyA2NhYA0LFjRzzzzDPo379/kwJeuHAh/vzzTxw+fBgBAXeu8lVUVMDBwQHffvstHnnkkUY/h4uLC5YvX46nnnrqrudyH3mihgmCgDUH4/DRP+r/+w/09MaK+7vATNr6qm6kPUqVgPCEXGQWlsFVpp5Oz0q84SmvUmLwhweRrijDu5OC8dg9fmKHJJp/LqbjqR8j4G5nieOvDIMJf56NTkRiHqasPQ6piQQHXhwCXydrsUO6K/V0/ILabe8iEvMa3OasnattnW3v/J2sje5L+7JKJS6nFyIqOb92y7crGYVQNZAVecgt61Tau3jJ4WQrXhNtvmcaN53vIx8aGorQ0NAmBXczQRDwzDPPYPv27Th48OBdk/iaxwiCUKeCfjfJycnIycmBhwerO0TNIZFIsGBoO7jYWuDV7VH4PSIZucUV+PLRHmzUQk0mNZFwizkj8OvpG0hXlMFDbomHerW+tfE3G9LRBTJLU6QrynD6ei76tuHPt7Gp6VQ/pYeXQSTxQM10fEf09HPEU1B/pk7ILlavq7+eizOJeYjPKsa1zCJcyyzCL6fV0/GdbdXd8Xv5qxP7YE+5QS2bqahSITa9sLYRXVRKAWLTC1HVQNbubGuBrjWV9urp8frUdJWz2OhmTarIx8XFYf369YiPj8eqVavg6uqKXbt2wdfXF507d270debPn4/Nmzfjzz//rLN3vFwuh5WVFeLj47FlyxaMHDkSLi4uSE5OxgcffIBjx47h0qVLcHV1BQAEBgZixYoVmDx5MoqKirBs2TJMmTIF7u7uiIuLw8svv4zCwkJERUU1ahs6VuSJ7m5vTAYWbD6L8ioVuvva4/vHe7fa6XhErV15lRJDPjqItIIyvDOxM2b08xc7JNG99NsF/BaRjGl9ffHe5C5ih0NaVFONNzWRYL+BVOMbK7d2Or56rX1kcgEqlHWn41uYmqCrt31tA72efg56M628UqnC1YwiRKX8V2m/nFZY7zUA6u37ard8q25G52ZnobezD3ZHp2HeprP1GsTWRLt2eg8m80ZAp1PrDx06hDFjxiA0NBSHDx/GpUuX0KZNG3zwwQc4c+YMfv/990Zf63b/UdavX4+ZM2ciNTUVTz75JCIiIpCXlwc3NzcMGjQIb731Vp3EXyKR1D6mtLQUkyZNwrlz55Cfnw9PT0+MHDkS7777Ltzc3BoVFxN5osaJSMzFrA1nUFBaibYuNtg4uy+87K3EDouIWtiPJxPx5h/RcLOzwKGXhnL/YwCHr2RhxvfhcLA2Q/jrI7gEyYg89t0pHLmajYd7+WDlAyFih6NTZZXV0/ET86q74+cir6Sy3nntXW3Rq7qBXi8/B/i1wHR8pUrAtcyi/xrRpRQgJlWB8qr6SbvcyuymhF1dafeyt9LbpP1WSpWAASv316nE36xmp5ejS4Zxmr2B02ki369fPzz44IN44YUXIJPJcOHCBbRp0wbh4eG4//77kZyc3Kzg9QETeaLGu5pRiBnfhyOtoAzudpb4YVYfdHTXbNcKIjJc5VVKDP3oIFILyrBsQmc83t9f7JD0QpVShXtW7EN2UQU2PNEbQzq6ih0SaUFEYi6mrD0BUxMJDiweAh9H46nGN4YgCIjPLkbE9Tx1h/zEvAa7uDvbWqCnnz16+Tmil78DOjdzOr5KpX7e2kp7cgEupipQWqmsd67MwhTBNZX26mZ0Po6Gk7Q35ERcDh755uRdz/t5zj1cqmbgdLpGPioqCps3b6533NXVFdnZ2ZpejogMXHs3GbbO64/Hvw/H1cwiPLjuOL6b2Ru9/bn/N1Fr8HtEMlILyuBmZ4GHe/uIHY7eMJWaYGwXD2w8kYiwC6lM5I3Equp94x/o6d3qknhAPQu2rYst2rrY4qHq/+85ReWIqG6edyYxD1HJBcguKsc/FzPwz8UMANXT8X3s0ctPvda+p68j5NYNb82mUglIzC1BZHI+olPUXeQvpipQVF5V71xrc6k6ab+pEZ2/k43RNZjMLGy4Et/U88g4aJzI29vbIy0trV5junPnzsHLy0trgRGR+BrbGdXT3gq/Pd0Ps384g4jEPEz/9hS+eLQH7g1q3HIWIjJMFVUqrDmg3jf+6cFtOaX+FuO7emLjiUT8ezEDZZVKjo+BO3M9F0euZsPURN34ldScbC0wsrM7RnZ2B6Cejh9V3R0/IlFdtc8rqUR4Qi7CE3JrH1czHb+XnyMszaR1mtEVltVP2i3NTNDZ87/p8SHecgQ427aKqeSNbbinT435SPc0TuSnTp2KJUuW4LfffoNEIoFKpcKxY8ewePFizJgxQxcxEpEINO2Mam9tjk2z+2Lh5rPYdzkTT/14Bu9P7oKpfXxbMmwiakG/RyQjJb8UrjILPML/6/X09HWAp9wSqQVlOHA5E2O6sBGVIaupxj/Yq3VW4xvL0kyK3v6O1TPz2kIQBMRlFSMiMbd267uE7GJczSzC1cwi/Bx+o941zE1N0MnDrrbSHuItRzsXW5i20l4TfQIc4SG3RHpBWb1md8B/a+T7BHA2ZGui8Rr5iooKLFiwABs2bIBSqYSpqSmUSiUeffRRbNiwAVKp4X/bzDXy1No1pzNqlVKFV7dF4bcIdb+MF+/tgIXD2hn02jQiqq+iSoWhHx9ESn4p3rovCLMG3H0L2dZoxd+X8NXheIzt4o4103qKHQ410enruXhwXetdG69t2TdNx49IzEOlUlVninwHNxkbRN6i5rMZgDqfz9i13rjotNldjaSkJERHR6OoqAjdu3dH+/btmxSsPmIiT62ZNjqjCoKAj/6JxZqD6im3M/r5Yen4zq1i+htRa/FLeBJe2RYFF5kFjrzMTvW3E51SgPv+dxQWpiY488YIyCwbXhdM+m36t6dw9Fo2HunjgxX3G3enetJf3Efe+Om02V0NX19f+PpyGh2RsQlPyL1tEg+ovwVOKyhDeELubTujSiQSvDw6EC4yC7yzMwYbTyQiu6gcnz3cDRam/LBPZOgqlSp8ceAaAOCpQW2YxN9BZ087tHG2QXx2MfbEZOD+Ht5ih0QaOn09F0evcW08iW90sAfuDXJvVP8iMn6NSuRfeOGFRl/w008/bXIwRCQ+bXZGfSI0AM62Fnjh1/P4OyodecWn8dWMnrBjRYrIoG07m4zkvFI421pgWl8/scPRaxKJBOO7emL1vqsIu5DKRN4Ardp7BQDwYC8feDtwSj2JS2oi4RZzBKCRify5c+fq/P3s2bOoqqpCx44dAQBXrlyBVCpFz55c+0Vk6LTdGXV8V084WJvjqR/P4ER8DqZ+dRIbZvVmZ1UiA3VzNf7pwW1gZc5q/N1M6KZO5I9ezUZucQUcbczFDokaKTwhF8eu5cBMKsGCoW3FDoeIqFajukgcOHCg9jZ+/HgMHjwYycnJOHv2LM6ePYsbN25g6NChGDdunK7jJSIdq+mMertJWhKo12Np0hl1QHtnbHmqH5xtzRGTpsCUtceRkF2slXiJqGVtP5eCG7mlcLY1ZzW+kdq62KKzpx2qVAJ2RaeJHQ5pgNV4ItJXGreD/OSTT7BixQo4ODjUHnNwcMDy5cvxySefaDU4Imp5UhMJlo4PAoB6yXzN35eOD9J4PVawlxxb5/WHr6M1buSW4oG1xxGZnN/seImo5VQqVfhiv7oaP3cQq/GaGN/VEwAQdj5V5EiosU7F5+B4nLoaP38Iq/FEpF80TuQVCgWysrLqHc/KykJhYaFWgiIicY0O9sDa6T3gLq87/d1dbtms7U38nGywdV5/dPa0Q05xBaZ+fRJHrtb/fUJE+umPcylIyi2Bk405pt/DarwmahL58Ou5SL9DQ1HSH6v31ewbz2o8EekfjbvWT548GU888QQ++eQT9OnTBwBw6tQpvPTSS7j//vu1HiARiUNXnVFdZBb4Ze49eHpTBI5dy8GsDafx8YNdMbGbl5YiJzJ+SpXQ4l2Lq25aGz93UBtYmzd545tWycveCr38HHAmMQ87I1Px5MA2YodEd3BzNZ6d6olIH2n8Lrxu3TosXrwYjz76KCorK9UXMTXF7Nmz8dFHH2k9QCISj646o8oszfD9zN544dcL+CsyDc/9ch45RRWYNSBA689FZGzE2kf4j/OpSMwpgaONOR7rx2p8U0zo5okziXnYcYGJvL5btVddjX+olw+87K1EjoaIqD6Np9ZbW1tjzZo1yMnJwblz53Du3Dnk5uZizZo1sLGx0UWMRGSELEyl+N/U7pjZ3x8A8M7OGKzcfRmCIIgbGJEe2x2dhnmbztZJ4gEgvaAM8zadxW4dNVKrUqrwxX51YsNqfNONCfaAiQS4kFyA62z4qbdOxufgRHz12nhW44lIT2mcyNewsbFBSEgIQkJCmMATUZOYVDfWe2mUeivLtQfj8NLvkahUqkSOjEj/KFUClu2IQUNfddUcW7YjBkqV9r8MC7uQius11XiujW8yF5kFQts5AwB2RrLpnb6q6VT/cG9W44lIfzUqkb///vuhUCgafdFp06YhMzOzyUERUeshkajXH344JQRSEwl+j0jGUz9GoLRCKXZoRHolPCG3XiX+ZgKAtIIyhCfkavV5q27qVP/kwADYWLAa3xy13esvMJHXRyficnAyPre6Uz2r8UTGQKkScCIuB3+eT8GJuBydfOEthka9G//5558NdqpviCAI2LFjB9599124uro2Kzgiaj0e6u0DRxtzLNh8FvsvZ+LRb0/i+8d7w8HGXOzQNCJGEzJqHTILG9fpvLHnNdaOyFTEZxfD3toMM/r5a/XardGozu54Y3s0rmQU4XK6AoHudmKHRDdZve+/arwnq/FEBk+svjItoVGJvCAI6NChg65jIaJWbkSQGzbP6YtZG87gXFI+Hlh3HBtn9zWYqY3G/GZB4nOVWd79JA3OawylSsD/qqvxcwa2gS2r8c0mtzLD4I4u2BOTgbDzqQgczUReX9RU482lJqzGExmBmr4yt9bfa/rKNGdLZX3QqHfkAwcOaHxhLy9uJUVEmuvp54jfn+6HGd+HIy6rGFPWHMcPs/qgo7tM7NDuyNjfLEh8fQIc4SG3RHpBWYPr5CUA3OXqWSDasjMyFfFZ6mr849WNKan5JnT1xJ6YDOyITMVLozpCIuGsHX1w89p4VuOJDNvd+spIoO4rc2+Qu8HOnGxUIj948GBdx0GaUimBxONAUQZg6wb49QdMpGJHRaQV7d1k2DqvPx7/PhxXM4vw4Lrj+G5mb/T2116Cok2t4c2CxCetbg45b9NZSIA6P281P1VLxwdp7WdMqRLw+T51p/onBwSwGq9Fwzu5wtpcihu5pTh/Ix/dfR3EDqnVOx6XjVMJ1dX4oW2bdA0urSLSH5r0ldHFVsstocld60lEMWHAqmDgh/uArbPVf64KVh8nMhKe9lb47el+6OnnAEVZFaZ/ewp7YjLEDqtBYjUho9ZndLAH1k7vAXd53enz7nJLrc/62BmZirisYsitWI3XNmtzU4zo5AaATe/0gSAItfvGT+3jAw+55tX43dFpGLByPx755iSe++U8HvnmJAas3K+zLSGJ6M7E6ivTkpjIG5qYMODXGYDiljd+RZr6OJN5MiL21ubYNLsvhge6orxKhad+PINfwpPEDque1vBmQfpjdLAHji4Zhp/n3IPVU7vh5zn34OiSYVpN4m9eG//kgADILM20dm1Sm1DdvX5nZJrRdFA2VCficxBeXY2fN0TzanzN0qpbv9CtWVrFZJ6o5YnRV6alMZE3JColsHsJcKddhHe/oj6PyEhYmUvx1WM98VAvb6gE4JVtUfjfvqsQBP354Nsa3ixIv0hNJOjX1gkTu3mhX1snrU/f/TsqDdcyi2BnaYrHQ/21em1SG9TBBXIrM2QVluNUQo7Y4bRagiBg1R51Nf6RJlTj77a0ClAvreKXNUQtq6avzO3eHSVQNyTWZl+ZlsZE3pAkHq9fia9DABQp6vOIjIip1AQrp4RgQfW6xU/2XMHSsIt688GoNbxZUOuhumlt/OwBbWDHarxOmJuaYEywOwBgB6fXi+ZEXA7Cr9dU4zXvVM+lVUT6qaavDIB6n8900VdGDE1K5KuqqrB371589dVXKCwsBACkpqaiqKhIq8HRLYoauT64secRGRCJRIKXRgXi7fFBkEiAjScS8czPZ1FeJf4MlNbwZkGtx9/RabhaXY2fyWq8To2vnl7/d1Q6KqpUIkfT+ty8Nv6RPj71ek80BpdWEemvluwrIwaNW9AmJiZi9OjRSEpKQnl5Oe69917IZDKsXLkS5eXlWLdunS7iJEDdnV6b5xEZoJmhAXCWWeD5Lefxd1Q68opP46sZPUWvGta8Wdy6j7w795EnA3JzNX7WgADIrViN16V72jjBRWaBrMJyHLmaheGd+P7dko7XVONNm1aNB7i0ikjfjQ72wL1B7ka5o4TGifxzzz2HXr164cKFC3By+q9V/+TJkzFnzhytBke38OsP2HmqG9vdbhdhO0/1eURG7L4QTzhYm+OpHyNwIj4HU786iQ2zeov+QcmY3yyoddh9MR1XMoogszTFE6EBYodj9KQmEozr4oENx69jx4VUJvItSF2NV+8b/2gf3yZV44H/llalF5Td7pMZ3Lm0ikhUNX1ljI3GU+uPHDmCN954A+bm5nWO+/v7IyUlRWuBUQNMpMDoldV/uc0E3tEfcD95ahVC2znjl7n3wNnWHDFpCkxZexwJ2cVih6XzJmREuqJSCVhdPc34iVBW41vKhG7q6fX/xmSgtEL8pUKtxfG4HJy+nlddjW/avvEAl1YRkXg0TuRVKhWUyvpvNMnJyZDJZFoJiu4gaALw0EbA7pZpunae6uNBE8SJi0gEwV5ybJ3XH35O1riRW4oH1h5HZHK+2GERGaR/LqYjNqMQMgtTzGY1vsV097GHt4MVSiqU2HeZPW5agiAI+GzPf9V4N7vmzeYy9nW4RKSfNJ5aP3LkSKxatQpff/01AHUDqqKiIixduhRjx47VeoDUgKAJQOA4dXf6ogz1mni//qzEU6vk52SD35/uj5nrw3ExVYGpX5/EV4/1xMD2LmKHRmQwVCoBq/fVVOP9IbdmNb6lSCQSjO/qibUH47DjQiruC/EUOySjd+xaDs4kNr8afzMurSKilqZxRf7jjz/GsWPHEBQUhLKyMjz66KO10+pXrlx59wuQdphIgYCBQJcH1H8yiadWzEVmgV/m3oPQdk4oqVBi1obT+PM8l/oQNda/MRm4nF4IWwtTzBrAanxLm1Ddvf5AbBYUZZUiR2Pcbl0b39xq/M24tIqIWpLGibyPjw8uXLiA119/Hc8//zy6d++ODz74AOfOnYOrq6suYiQiuiuZpRm+n9kb40I8UKkU8Nwv5/Hd0QSxwyLSezdX42f294e9tfldHkHaFuguQ3tXW1RUqfBPdLrY4Ri1o9eycSYxDxamJpivpWo8EZEYNJpaX1lZicDAQOzcuRPTpk3DtGnTdBUXEZHGLEyl+N/U7nCxtcCG49fx7s4YZBWWY8nojpBIWBkhasieSxm4lKaArYUpZrMaL4qa6fWf7rmCsAupeLCXj9ghGaWb941/tK8vXLVYjSciamkaJfJmZmYoKyu7+4mkc0qlEkeOHEFaWho8PDwwcOBASKWcXn8nHDPNGeKYmVR3EHaRWeCjf2Kx7lAcsgrL8cGULjCTajwJSWOGOGZi45hpTltjJgj/dap/vL8fHGyMsxpvCD9jE6oT+eNxOcguKoezrYWo8RjCmGnq6LVsRFRX4+cN1n413hjHTNc4ZprjmGnOaMdM0NB7770nPP7440JlZaWmDzUYBQUFAgChoKBA7FAatHXrVsHb21uAejN5AYDg7e0tbN26VezQ9BbHTHPGMGZbwpOENq/+Jfgt2SnM/P6UUFyu299bxjBmLY1jpjltjtk/0WmC35KdQtCbu4TconIdRCu+rVu3Cr4+XsJgP6kwNdhUGOwnFXx9vPTyZ2z8/44Ifkt2ChuPJ4gahzH+v1SpVMLkL48Kfkt2CsvCLmr9+sY4ZrrGMdMcx0xzhjZmmuShGifykyZNEmQymeDh4SGMHDlSmDx5cp2bMdDnRH7r1q2CRCKp88MIQJBIJIJEItHbH0oxccw0Z0xjtudiutDh9b8FvyU7hYlfHNVZsmJMY9ZSOGaa0+aYqVQqYezqw4Lfkp3Cyl2XdBi1eLZu3Src38lMSFpkKwhL7WpvSYtshfs7mendz9g3h+MEvyU7hQfWHhMthq1btwpo4GcMgAAD/n95KDZT8FuyU+jw+t9CRkGpVq/N32Wa45hpjmOmOUMcM03yUIkgCIImFfwnnnjijvevX7++0ddasWIFtm3bhsuXL8PKygr9+/fHypUr0bFjx9pznnrqKezduxepqamwtbWtPScwMPC21xUEAUuXLsU333yD/Px8hIaGYu3atWjfvn2j4lIoFJDL5SgoKICdnV2jX4+uKZVK+Pv7Izk5ucH7JRIJvL29kZCQYBzTRbSAY6Y5YxyziMRczNpwBgWllWjrYoONs/vCy95Ka9c3xjHTNY6Z5rQ9ZntjMvDkxjOwNpfi6JJhcDSyafVKpRJPD/bCV8NLAAAmN/XJUFV/9Hl6vw3WHkzWm5+xtIJS9P9gPwQBOPbKMK3+nmoMpVIJdy8fZGek3fYcF3dPpCUn6c2YNYYgCLh/7XGcS8rHrNAAvDU+SGvX5u8yzXHMNMcx05yhjpkmeajGC0bXr19/x5smDh06hAULFuDkyZPYs2cPKisrMXLkSBQXF9ee07NnT6xfvx6XLl3CP//8A0EQMHLkSCiVytte98MPP8Tnn3+OdevW4dSpU7CxscGoUaMMfn3/kSNHbvvDCKjfqG7cuIEjR460YFT6jWOmOWMcs55+jvj96X7wkFsiLqsY9685htj0Qq1d3xjHTNc4ZprT5pgJwn+d6mf08ze6JB4Ajhw+iLd6qz9PmNzS7LLm72/0KsKRwwdbOrTb8pBbobe/IwDgr8jUFn/+g4cO3zGJB4Cs9FQcPHS4hSLSjsNXs3EuKR8WpiZ4ekgbrV6bv8s0xzHTHMdMc61hzHTf+ekOdu/ejZkzZ6Jz587o2rUrNmzYgKSkJERERNSeM3fuXAwaNAj+/v7o0aMHli9fjhs3buD69esNXlMQBKxatQpvvPEGJk6ciJCQEGzcuBGpqan4448/WuaF6Uha2p3fXDU9rzXgmGnOWMesvZsMW+f1R3tXW2QoyvHguuMIT8jVyrWNdcx0iWOmOW2O2f7LmYhKKYCVmRRzBhpnp3pl/BH4yE3qJfE1TCQS+MpNoIzXrw9xNXvKh11o+UT+aORVrZ6nD4Sb9o2ffo8fXGXa7VTP32Wa45hpjmOmudYwZhon8gEBAWjTps1tb81RUFAAAHB0dGzw/uLiYqxfvx4BAQHw8Wl4a5aEhASkp6djxIgRtcfkcjn69u2LEydONPiY8vJyKBSKOjd95OHhodXzWgOOmeaMecw87a3w29P90NPPAYqyKjz23Sn8e7H5ezYb85jpCsdMc9oaszrV+P5+cBK5O7queNg27iNOY89rKWOC3SE1kSA6RYH4rKIWfW6prYNWz9MHh65k4VxSPizNTPDUYO1W4wH+LmsKjpnmOGaaaw1jpvG716JFi/Dcc8/V3ubPn49+/fqhoKAAc+fObXIgKpUKixYtQmhoKIKDg+vct2bNGtja2sLW1ha7du3Cnj17YG7e8DTA9HT1h3I3N7c6x93c3Grvu9WKFSsgl8trb7f7kkBsAwcOhLe39233w5ZIJPDx8cHAgQNbODL9xTHTnLGPmb21OTbN7ovhga4or1Lh6U0R+Dk8qVnXNPYx0wWOmea0NWYHY7MQmayuxs8dqP3ERl907DVYq+e1FCdbCwxo5wyg5avyQwYNhlTmfMdzpDJnDBmkX2N2O8JN+8ZP76v9ajzA32VNwTHTHMdMc61hzDRO5G9O4p977jksXrwYP/30E9555x3ExsY2OZAFCxYgOjoav/zyS737pk2bhnPnzuHQoUPo0KEDHnroIa2ud3/11VdRUFBQe7tx44bWrq1NUqkUq1evBoB6P5Q1f1+1apVeNWwQG8dMc61hzKzMpfjqsZ54qJc3VALw6rYofL7vKjTs/VmrNYyZtnHMNKeNMRMEAauqq/GP9TPeajwASAMGoMTMobax3a1UgoASM0dIAwa0cGR3VzO9fseF1Cb/XmqKfu1c0Hb8gjue03b8AvRr59JCETXPoStZOH+jphqv/X3jAf4uawqOmeY4ZpprFWOmrVb5cXFxgkwma9JjFyxYIHh7ewvx8fF3Pbe8vFywtrYWNm/efNs4AAjnzp2rc3zQoEHCs88+26h49Hn7OUFoeD9EHx8fvdxCQV9wzDTXGsZMpVIJH+6+JPgt2Sn4LdkpvLE9SqhSqpp8vdYwZtrGMdNcc8Zs/+UMwW/JTqHjG38LmYqyFohWZBf/FFRL7QTlW3Z1tp9TvmUnqJbaCcLFP8WOsEGK0gqhffW2mdEp+S363LuiUgWXSa8JUplznZ8xqcxZcJn0mrArKrVF42kqlUolTPhCvW/88p3a3zf+VvxdpjmOmeY4ZpoztDHT6fZzt/Phhx9izZo1t21C1xBBEPDMM89g+/btOHjwYKO2hysvL4eDgwPWrFmDmTNnNnhNT09PLF68GC+++CIAdRt/V1dXbNiwAVOnTr3rc+jr9nM3UyqVOHLkCNLS0uDh4YGBAwca9jdKLYBjprnWMmYbjiVg2c4YCAIwtos7Pn2oGyzNmvY6W8uYaRPHTHNNGTNBEDB5zXGcv5GPOQMD8Po47W3Bpa92R6fhj83r8JbpRnia/NfcMlXliHeqZmDSo09jdLB+ro98+scI7L6YjqcGt8GrYzq16HPvjk7D239G4frFCCiL8iC1dYB/5554e2IXvR2vWx2IzcQT60/D0swER14eBheZ7mef8HeZ5jhmmuOYac6QxkyTPFTjRL579+51picIgoD09HRkZWVhzZo1Gq2Tnz9/PjZv3ow///yzzt7xcrkcVlZWiI+Px5YtWzBy5Ei4uLggOTkZH3zwAY4dO4ZLly7B1dUVABAYGIgVK1Zg8uTJAICVK1figw8+wA8//ICAgAC8+eabiIyMRExMDCwt774+yhASeSLSrp2RqXh+y3lUKgXc08YRX8/oBTtLM7HDItKaQ1ey8Pj34S2a2IhJqRIwYOV+pBWUwQQq9DG5DFfkIxP2CFcFQoAJ3OWWOLpkGKQmDa+hFNPfUWmY/9NZeNlb4cjLQ2HSwjEqVQLCE3KRWVgGV5kl+gQ46uU4NUQQBExacxwXWtGXVkRkHDTJQ001vfjEiRPrJPImJiZwcXHBkCFDEBgYqNG11q5dCwAYMmRInePr16/HzJkzYWlpiSNHjmDVqlXIy8uDm5sbBg0ahOPHj9cm8QAQGxtb2/EeAF5++WUUFxdj7ty5yM/Px4ABA7B79+5GJfFkvAz5Q4loVEog8ThQlAHYugF+/QET/fwGs7nuC/GEg7U5nvoxAifjczH1q5PYMKu3TpojEbU0QRCwunoLrml9/Yw+iQeA8IRcpBWo++moYIKTqvrJXFpBGcITctGvrVNLh3dXwwJdYWthipT8Upy7kYeefg3v6KMrUhOJXo5LYxyMzcIFHa+NJyISm9am1hsTVuSNz+7oNCzbEVP7oQ4APOSWWDo+yGCmCba4mDBg9xJAcVPXZDtPYPRKIGiCeHHpWHRKAWauD0d2UQV8HK2wcVZfBDjbiB0WUbMcvpKFGd+Hw8LUBEeWDG0VX1D9eT4Fz/1y/q7nrZ7aDRO7eek+oCZ4Yct5bDuXgsf7+WHZxOC7P4DU1fgvj+FCcgHmDmqD18a27LIEIqLm0CQP1bhrvVQqRWZmZr3jOTk5ervWgFq33dFpmLfpbJ0kHgDSC8owb9NZ7I5OEykyPRYTBvw6o24SDwCKNPXxmDBx4moBwV5ybJ3XH35O1riRW4oH1h5HZHK+2GERNZlw077x03S0BZc+auzr1OfxGF/dvf6vqDRUKVUiR2MYDsZm4ULN9oqDjHd7RSIijRP52xXwy8vLb7u3O5FYlCoBy3bEoKGf2ppjy3bEQKnixJRaKqW6En+nUdv9ivo8I+XnZIPfn+6PYC875BRXYOrXJ3HkapbYYRE1ybFrOYhIzIOFqQmeHtx6Eps+AY7wkFvidguoJFDPzOoT0LJT1jUxoL0zHKzNkF1UgZPxuXd/gDaplEDCESDqd/WfBvA7XxAEfFa9hGRGPz84G/H2ikREjV4j//nnnwNQ77v37bffwtbWtvY+pVKJw4cPa7xGnkjXbl4j2RAB+r1GUhSJx+tX4usQAEWK+ryAgS0WVktzkVngl7n98NSPZ3DsWg5mbTiNjx/sqrdTcIkaIggCVlUnNo/08YWrnf5Wn7VNaiLB0vFBmLfpLCSo+9VkTXK/dHyQXvdKMZOaYEwXD2w+lYSwCykY0N65ZZ7YQJdWHYjNRGR1NX4Oq/FEZOQanch/9tlnANQfCtatW1dnGr25uTn8/f2xbt067UdIDWLjtsbJLLx9Et+U81qFogztnmfAbC1M8f3M3njx1wvYGZmG5345j+yiCsweECB2aESNcjwuB2cS82BuaoJ5Q1pf06/RwR5YO71HvR4p7gbUI2VCV09sPpWEXdHpeHdSMCxMdbyMsWZp1a2zsmqWVj20US+TefWXVuolJKzGE1Fr0OhEPiEhAQAwdOhQbNu2DQ4ODjoLiu6MjdsazxjWSLY4WzftnmfgLEyl+HxqdzjbWmDD8et4d2cMsgrLsWR0xzo7eBDpG3WnenVi82gfX7i1omr8zUYHe+DeIHeD/fK7t78j3OwskKEox6HYLIzs7K67J7vr0iqJemlV4Di928Fk/+X/qvFcG284WJgiajqNt587cOCALuKgRqpp3HbrW2xN47a103swmb9JzRrJ9IKyBj+WSKCuzOjzGskW59dfPYVSkYaGP8xJ1Pf79W/pyERjUj1F19XOAh/ujsW6Q3HIKizHB1O6wEyqcasRohZxIj4H4ddzYS41wdOtfAsuQ95KTWoiwX0hnvjuaAJ2RKbpNpE30KVVdarx/f3gxGq8QWBhiqh5NE7kASA5ORlhYWFISkpCRUVFnfs+/fRTrQRG9d2tcZsE6sZt9wa589vMasawRrLFmUjV6yB/nQHcbtRGf6B31Rhdk0gkmD+kHZxtLfDqtihsPZuM3OJyfDmtB6zNm/SrlEinahKbqX184C5vndV4YzGhqzqR3xuTgZKKKt39zjHQpVX7LmUiKqUA1uZSzB3IarwhYGGKqPk0LiXt27cPHTt2xNq1a/HJJ5/gwIEDWL9+Pb7//nucP39eByFSDU0at9F/atZI3vpB1l1uyTeK2wmaoF4HaXfL2Nh56u36yJbyUC8ffP1YT1iameBAbBYe/eYU8oor7v5AohZ0Ii4H4QnqanxrXBtvbEK85fBzskZppRJ7YnSYRBvg0ipBELBqX02nen9W4w0AdxQi0g6Nv9J99dVXsXjxYixbtgwymQxbt26Fq6srpk2bhtGjR+siRqrGxm1NZ+hrJEURNEG9DjLxuLr6Yuumnk7fyirxDRneyQ0/PXkPZm04jfM38vHAuuPYOLsvvOytxA6NCACwujqxebi3Dzzk/Lk0dBKJBONDPPHFgWvYcSFVd7tnGODSqn2XMhGdooC1uRRzBrIRqSHgjkJE2qFxRf7SpUuYMWMGAMDU1BSlpaWwtbXFO++8g5UrV2o9QPoPG7c1T80ayYndvNCvrROT+MYwkarXQXZ5QP0nk/haPf0c8PvT/eAht0RcVjHuX3MMsemFYodFhJPxOTgZnwszqYTVeCMyoZsnAODQlSwUlFTq5klqllYB+G8BGur+XY+WVrEab5hYmCLSDo0TeRsbm9p18R4eHoiLi6u9Lzs7W3uRUT01jdtul35KoG4SwsZtRC2jvZsMW+f1R3tXW2QoyvHguuNc2kKiq+lU/1AvH3hylojR6OAmQ6C7DJVKAbsvpunuiQxoadXem6rx7FRvOFiYItIOjRP5e+65B0ePHgUAjB07Fi+++CLee+89zJo1C/fcc4/WA6T/1DRuA277PTkbtxG1ME97K/z2dD/09HOAoqwKj313Cv9eTBc7LGqlwhNycSI+B2ZSCeYPbSd2OKRl47uqq/JhF+7UWV4LgiYAi6KBx3cCU75T/7koSq+SeHWnenU1/vH+/nC0MRc5ImosFqaItEPjRP7TTz9F3759AQDLli3D8OHDsWXLFvj7++O7777TeoBUFxu3Eekfe2tzbJrdF8MDXVFepcLTmyKweu9VpOaXih0atTI1a+Mf7OXDng1GaHyIOpE/EZej+2nHer60ak9MBi6mKmBjLsUcdqo3KCxMEWmHRBCERreEVCqVOHbsGEJCQmBvb6/DsMSlUCggl8tRUFAAOzs7scNpkFIlsHEbkZ6pUqrw2vYo/HomufZYD197jAvxxNgu7mw6Rjp1+nouHlx3AmZSCQ4sHgJvB2uxQyIdmPTlMZy/kY+3xwdhZmjrbO4mCALGfX4UMWkKzB/SFi+PDhQ7JGoC7iNPVJ8meahGiTwAWFpa4tKlSwgIMN43D0NI5IlIPwmCgF/P3MDvEck4k5iHm3/D9vRzwLguHhjbxYP7epPWTf/2FI5ey8YjfXyx4v4uYodDOvL90QS8szMGPXztsW1+qNjhiOLfi+mY+2MEbMylOLpkGBw4rd5gsTBFVJcmeajG288FBwcjPj7eqBN5IqKmkkgkeLi3Lx7u7Yv0gjLsik7DX5FpOJOYh4jq2zs7Y9DLzwFjmdSTlkQk5uLotWyYmkgwn53qjdq4EA+8+1cMzibl40ZuCXwcW9fMC/XaeHVDx5mh/kziDVzNjkJEpDmNE/nly5dj8eLFePfdd9GzZ0/Y2NjUuZ8VbNJbKiX3RKcW5S63xBOhAXgiNABpBaXYFZWOv6PUSX3NrSapHxfigTHBTOqpaWoSmwd6ere6xK61cbOzxD0BTjgRn4MdkamYP6R1NTX8NyYDMWnqtfFPDuDaeCJqvTSeWm9i8l9/PInkv6kvgiBAIpFAqVRqLzqRcGq9EYoJA3YvARQ3dfq181Tvl6tHXXipdahJ6v+KSkNEYl7tcYkE6qS+iwfGdPGAmx2Terq7iMQ8TFl7HKYm6rXxTOSN38/hSXh1WxQ6edhh13MDxQ6nxdy8Nn7B0LZ4aRTXxhORcdHp1PoDBw40OTAiUcSEAb/OAHDLd1aKNPVxPdsXl4yfh9wKswYEYNaAAKTml2JXdDr+ikzF2aR8nL6eh9PX87BsZwx6+zlibBd3JvV0R6v3qavxU3qwGt9ajAl2x5t/RONSmgLXMgvRzlUmdkgt4p+L6mq8rYUpq/FE1OppXJFvDViRNyIqJbAquG4lvg6JujK/KIrT7El0qfml+DsqDX9HpeFsUn7tcYkE6O3nWD393h2uTOqp2rmkPExecxxSEwkOvDgEvk5M5FuLWRtOY//lTDw7rB1eGNlR7HB0TqUSMO5/R3EpTYGFQ9th8Sjjf81E1PpokodqvI88ABw5cgTTp09H//79kZKSAgD48ccfcfTo0aZcjkh3Eo/fIYkHAAFQpKjPIxKZp70VnhzYBtvmh+L4K8PwxrhO6O5rD0EAwq/nYmnYRfRdsQ8PfXUCG09c1/0+0qT3aqrx93f3YhLfykzoqt5TfkdkGlpDTebfmHRcqqnGD2TDZSIijRP5rVu3YtSoUbCyssLZs2dRXl4OACgoKMD777+v9QCJmqUoQ7vnEbWQmqR++/xQHLs1qU/IxVt/XkTf9/fhYSb1rdb5G/k4GJsFqYkEC4e1roZnBNwb5AZLMxMkZBcjOkUhdjg6pVL916n+iVB/2FuzUz0RkcaJ/PLly7Fu3Tp88803MDMzqz0eGhqKs2fPajU4omazddPueUQi8Gogqe/mo07qT92S1P/IpL7VWL33CgBgcncv+DnZ3OVsMjY2FqYY3kn93hV2IUXkaHTr35h0XE4vhK2FKWYPYDWeiAhoQrO72NhYDBo0qN5xuVyO/Px8bcREpD1+/dVr4BVpqNfsDkDtGnm//i0dGVGT1CT1Tw5sg+S8EuyKSsfOqDRcuJGPUwm5OJWgnoLfJ8AR40I8MbqzO1xkFmKHTVpQXF6FS2kKXExV4EJyPg7UVOOHshrfWo0P8cRfkWnYGZmGV8d0gomJ5O4PMjCsxhMRNUzjRN7d3R3Xrl2Dv79/neNHjx5FmzbsIEp6xkSq3mLu1xkAJKibzFd/4Bn9ARvdkUHydrDGnEFtMGdQG9zILcGu6DT8FZWOCzfycTI+Fyfjc7H0z2j0DXDC2BAPJvUGJL+kAhdTFbiYWoDoFAWiUwuQkF2MW5dCT+3tA39nVuNbqyEdXSCzMEVaQRnOJOahT4Cj2CFp3T8X1dV4GavxRER1aJzIz5kzB8899xy+//57SCQSpKam4sSJE1i8eDHefPNNXcRI1DxBE9RbzDW4j/wH3HqOjIKPozXmDmqLuYPa/pfUR6bhQnIBTsTn4ER8Tm1SPy7EA6OD3eFsy6ReH2QqyhCdWoCL1Qn7xVQFkvNKGzzX3c4SnT3t0NlLjhAvOYYFurZwtKRPLM2kGBXsjt8jkhF2IcXoEnmVSqht6MhqPBFRXRpvPycIAt5//32sWLECJSUlAAALCwssXrwY7777rk6CbGncfs5IqZTq7vRFGeo18X79WYkno3cjt6R2S7sLyQW1x00kwD1tnDC2C5P6liIIApLzSutU2S+mKpBVWN7g+b6O1gj2skNnT7k6efeUc0YF1XP4ShZmfB8ORxtznHptOMykTdqQSC/9HZWG+T+dhczCFEeXDIPc2uzuDyIiMmCa5KFN3ke+oqIC165dQ1FREYKCgmBra9ukYPURE3kiMkY1Sf1fUWmIbCCpH1c9/d6JSX2zKVUCErKLq5N2dcIenVIARVlVvXNNJEBbF1sEe/2XsAd52kFuxaSF7q5KqULf9/chp7gCG57ojSEdjWOWhkolYMzqI4jNKMSzw9vjhXs7iB0SEZHOtUgiDwA3btwAAPj4+DT1EnqJiTwRGbuknBL8XT39PiqlblLfr60TxnXxxKjObkzqG6GiSoWrmYW4mFK9pj1VgZhUBUorlfXONZNK0NFdhuCaKruXHJ3c7WBlztlB1HRv/hGNH08mYkoPb3zyUFexw9EKVuOJqDXSaSJfVVWFZcuW4fPPP0dRUREAwNbWFs888wyWLl1aZ0s6Q8VEnohak6ScEvxVPf3+5qReaiJBv+rp90zq1UorlLiUrsDFmip7agGupBehQqmqd66VmRRBnnbo7GmnTty97NDeVQZzU+OZ+kz64fT1XDy47gRkFqY4/cYIWJoZ9hdDrMYTUWulSR6qcbO7Z555Btu2bcOHH36Ifv36AQBOnDiBt99+Gzk5OVi7dm3ToiYiIlH4Ollj3pC2mDekbW1S/1dUKqJTFDh6LRtHr2XjzT+j0a96+v2ozu5wtDH+plMFpZWIqe4cXzM1Pi6rCKoGvv62szRFZ085gr3saqfIBzjbQmqE24GR/unp6wAPuSXSCspwMDYTo4M9xA6pWXZFpyM2oxAyS3aqJyK6HY0r8nK5HL/88gvGjBlT5/jff/+NRx55BAUFBbd5pOFgRZ6ICEjMKa6t1EenKGqPS00k6N/WCeO6qJN6ByNI6rOLymvXstc0o0vKLWnwXGdbC3XCXp24d/aUw9vBChIJk3YSz/t/X8LXh+Mxtos71kzrKXY4TaZSCRi9+jCuZBThueHt8Tyr8UTUiui0Im9hYVFvD3kACAgIgLm54X+YIyIiNT8nG8wf0g7zh7TD9ezi2jX1F1MVOHI1G0euZuP1P6INKqkXBAGpBWW4mKJey14zRT5dUdbg+V72VrVJe+fqP13tLFs4aqK7m9DVE18fjse+S5koKq+CrYXGH/H0wt/RabiSUQSZpSlmsRpPRHRbGlfk33nnHVy+fBnr16+HhYV6vWR5eTlmz56N9u3bY+nSpToJtCWxIk9EdHvXs9WV+r8i0xCTVr9Sf1+IB0YGiZ/Uq1QCrucU165lj6meHp9XUlnvXIkECHC2qW1CVzM9nvtWk6EQBAHDPzmE+OxifPZwV0zu7i12SBpTqQSMWnUYVzOLsGhEeywawWo8EbUuOm12N3nyZOzbtw8WFhbo2lXdGfXChQuoqKjA8OHD65y7bds2DUPXD0zkiYgaJyG7WL2l3S1JvamJBP3bOeO+Lh4Y2dlN5wlxlVKFa1lF6v3ZU9RJe0yaAkXl9bd7MzWRoL2brLoJnTpp7+RhBxsDrWAS1fh0zxV8vu8qhnZ0wfon+ogdjsZ2RqZi4eZzkFlWd6rnFoxE1MroNJF/4oknGn3u+vXrNbm03mAiT0SkuZqkfmdkGi7dktSHtnPGOC0l9WWVSsSmFyK6ugndxZQCXEovREVV/c7xFqYm6ORhV1tlD/aUo72brcF39SZqyLXMIoz49BBMTSQ4/foI0WfFaEKpEjC6uhr//IgOeG5Ee7FDIiJqcS22j3xzrVixAtu2bcPly5dhZWWF/v37Y+XKlejYsSMAIDc3F0uXLsW///6LpKQkuLi4YNKkSXj33Xchl8tve92ZM2fihx9+qHNs1KhR2L17d6PiYiJPRNQ88VlF6kp9VHrDSX2IB0YFud91b+ii8qraKfE1jeiuZhZB2UDreJmFKTp51m1C19bFBqZSbvdGrcfY1UcQk6bA+5O74NG+vmKH02g7LqTimZ/Pwc7SFEdYjSeiVkqnze606dChQ1iwYAF69+6NqqoqvPbaaxg5ciRiYmJgY2OD1NRUpKam4uOPP0ZQUBASExPx9NNPIzU1Fb///vsdrz169Og6MwJq1vMTEZHutXGxxcJh7bFwWPvapH5nZBoupxfi0JUsHLqShddMojCgvbN6n/ogdygFoc5WbxdTFUjILm7w+o425nXWsgd7yuHraA0TbvdGrdyEbp6ISVMg7EKKwSTySpWA1fuuAgBmD2jDJJ6IqBE0rsjn5OTgrbfewoEDB5CZmQmVqu5Uxtzc3CYHk5WVBVdXVxw6dAiDBg1q8JzffvsN06dPR3FxMUxNG/4eYubMmcjPz8cff/zRpDhYkSci0o24rCL8HZmGv6LUSX0NEwka3J8dADzklrV7tNf86W5nye3eiBqQnFeCASsPQCIBTrwyHO5y/d9lIexCKp6trsYffWUY7CyZyBNR66TTivxjjz2Ga9euYfbs2XBzc9PqB6maPegdHR3veI6dnd1tk/gaBw8ehKurKxwcHDBs2DAsX74cTk5ODZ5bXl6O8vLy2r8rFIoGzyMiouZp62KLZ4a3xzPD2zeY1Ps7WaPzTVX2zp52cLLljCqixvJ2sEZPPwdEJObhr6g0zNbzLdyUKgGfV1fjnxzYhkk8EVEjaVyRl8lkOHr0aG3Hem1RqVSYMGEC8vPzcfTo0QbPyc7ORs+ePTF9+nS89957t73WL7/8AmtrawQEBCAuLg6vvfYabG1tceLECUil9Rscvf3221i2bFm946zIExG1jLSCUthYmPJDPJEW/HD8OpaGXURXH3v8uSBU7HDu6M/zKXjul/OsxhMRQcfN7nr37o3//e9/uOeee5oV5K3mzZuHXbt24ejRo/D2rr/3qUKhwL333gtHR0eEhYXBzKzxv+jj4+PRtm1b7N27t94WeUDDFXkfHx8m8kRERGRwsgrL0ff9vVAJwKGXhsDPyUbskBqkVAkY+dkhxGUV48V7O+CZ4exUT0StmyaJvMatfNesWYPXX38dhw4dQk5ODhQKRZ1bUyxcuBA7d+7EgQMHGkziCwsLMXr0aMhkMmzfvl2jJB4A2rRpA2dnZ1y7dq3B+y0sLGBnZ1fnRkRERGSIXGQW6N/WGYC6G7y+2hmZirisYsitzPB4qL/Y4RARGRSNE3l7e3soFAoMGzasdg26g4MD7O3t4eDgoNG1BEHAwoULsX37duzfvx8BAfXXcSkUCowcORLm5uYICwuDpaXmTVuSk5ORk5MDDw8PjR9LREREZGgmdPUEAOy4kCZyJA2rszZ+QACn1BMRaUjjZnfTpk2DmZkZNm/e3OxmdwsWLMDmzZvx559/QiaTIT09HQAgl8thZWVVm8SXlJRg06ZNdar+Li4utevdAwMDsWLFCkyePBlFRUVYtmwZpkyZAnd3d8TFxeHll19Gu3btMGrUqCbHSkRERGQoRgW7440/ohGbUYjY9EJ0dJeJHVIdN1fjZ7IaT0SkMY0T+ejoaJw7dw4dO3Zs9pOvXbsWADBkyJA6x9evX4+ZM2fi7NmzOHXqFACgXbt2dc5JSEiAv78/ACA2Nra2471UKkVkZCR++OEH5Ofnw9PTEyNHjsS7777LveSJiIioVZBbmWFwRxfsiclA2IUUvOQeKHZItW7eN37OwADIWI0nItKYxol8r169cOPGDa0k8nfrszdkyJC7nnPrdaysrPDPP/80OzYiIiIiQza+qyf2xGRgx4U0LB7ZUatbBjfHjgupiM8qhr21GR7v7y92OEREBknjRP6ZZ57Bc889h5deegldunSp13guJCREa8ERERERUdOM6OQKKzMpknJLcCG5AN187MUOqc7a+DkD27AaT0TURBon8g8//DAAYNasWbXHJBIJBEGARCKBUqnUXnRERERE1CTW5qa4N8gNYRdSEXY+VS8S+R0XUhGfra7Gz+jnJ3Y4REQGS+NEPiEhQRdxEBEREZGWje/qibALqdgZmYrXx3WC1ES86fVVSpVxV+NVSiDxOFCUAdi6AX79AROp2FERkZHSOJH38+O3p0RERESGYFAHZ9hZmiKzsBynEnJq95cXw47I/6rxRrc2PiYM2L0EUKT+d8zOExi9EgiaIF5cRGS0NN5HHgB+/PFHhIaGwtPTE4mJiQCAVatW4c8//9RqcERERETUdBamUowJ9gAg7p7y6mr8NQDqarythca1JP0VEwb8OqNuEg8AijT18ZgwceIiIqOmcSK/du1avPDCCxg7dizy8/Nr18Tb29tj1apV2o6PiIiIiJphQjdPAMCu6DRUVKlEiSHsQioSsovhYGzVeJVSXYlHQ7ssVR/b/Yr6PCIiLdI4kf/f//6Hb775Bq+//jqk0v/W/fTq1QtRUVFaDY6IiIiImueeNk5wtrVAfkkljl7LavHnr1Kq8L/91dX4QUZWjU88Xr8SX4cAKFLU5xERaZHGiXxCQgK6d+9e77iFhQWKi4u1EhQRERERaYfURIL7QsSbXv/n+f+q8TP6+bf48+tUUYZ2zyMiaiSNE/mAgACcP3++3vHdu3ejU6dO2oiJiIiIiLRofFf19Pp/L6ajtKLlpnmrq/HqTvVzB7U1rmo8oO5Or83ziIgaqdGJ/DvvvIOSkhK88MILWLBgAbZs2QJBEBAeHo733nsPr776Kl5++WVdxkpERERETdDD1x5e9lYorlBi/+XMFnveP8+n4npOSXU13gh3PvLrr+5Oj9tt6ycB7LzU5xERaVGjE/lly5ahqKgITz75JFauXIk33ngDJSUlePTRR7F27VqsXr0aU6dO1WWsRERERNQEEomktiofdiGlRZ7z1mq8jbFV4wH1PvGjV1b/5dZkvvrvoz/gfvJEpHWNTuQF4b9unNOmTcPVq1dRVFSE9PR0JCcnY/bs2ToJkIiIiIiab0J1In8gNguKskqdP98f1dV4Rxtz46zG1wiaADy0EbDzqHvczlN9nPvIE5EOaPTVqERS95tGa2trWFtbazUgIiIiItK+Th4ytHO1xbXMIvx7MQMP9PTW2XPVrca3Mc5q/M2CJgCB49Td6Ysy1Gvi/fqzEk9EOqPRb9UOHTrUS+ZvlZub26yAiIiIiEj7JBIJJnT1xKd7riDsQqpOE/nt51KQWF2Nf+weI67G38xECgQMFDsKImolNErkly1bBrlcrqtYiIiIiEiHxlcn8seuZSOnqBxOthZaf44qpQpfHFDvG/9Ua6jGExGJQKPfrFOnToWrq6uuYiEiIiIiHQpwtkEXLzmiUgrwd3S6Tqrldarxxrw2nohIRI1udne3KfVEREREpP9qmt7tOJ+q9WtXKlX43/7/qvHW5qzGExHpQpO61hMRERGRYbqvq7q7evj1XKTml2r12tvPpSAptwROrMYTEelUoxN5lUrFafVEREREBs5DboU+/o4AgJ2R2qvKVypV+KKmGj+Y1XgiIl1qdCJPRERERMZhfLfq6fUX0rR2ze1n1dV4Z1tzTG8tneqJiETCRJ6IiIiolRkb7A6piQRRKQVIyC5u9vUqlSr874B63/inBrVlNZ6ISMeYyBMRERG1Mk62Fght5wwACNNC07ttZ5NxI7cUzrbmmHaPb7OvR0REd8ZEnoiIiKgVquleH3YhpVlNjet2qmc1noioJTCRJyIiMjQqJZBwBIj6Xf2nSil2RGSARnV2g7mpCeKyinEprbDJ19l2NhnJeaVcG09E1IL4lSkREZEhiQkDdi8BFDdNh7bzBEavBIImiBcXGRyZpRmGdXTF7ovpCLuQiiBPO42vUVH1XzX+6cFtYWUu1XaYRETUAFbkiYiIDEVMGPDrjLpJPAAo0tTHY8LEiYsM1viuNd3rU5s0vf6/arwFpvVlNZ40xNlFRE3GijwREZEhUCnVlXg0lGwJACTA7leAwHGACaui1DjDO7nCxlyKlPxSnE3KR08/h0Y/tqJKhS8O1FTj27AaT5rh7CKiZmFFnoiIyBAkHq9fia9DABQp6vOIGsnSTIqRnd0BqKvymtjKajw1FWcXETUbE3kiIiJDUJSh3fOIqtV0r98ZmYYqpapRj6moUuGL6rXx84ZwbTxp4K6zi6CeXcRp9kR3xESeiIjIENi6afc8omqh7Zxhb22G7KJynIzPbdRjtp5NRkp+KVxkFpjWl/vGkwY4u4hIK7hGvhmUSiUqKyvFDoOoHjMzM0ilrI4QGRW//ur1o4o0NFzJkqjv9+vf0pGRgTM3NcGYYA/8HJ6EHRdSMaC98x3Pv7ka//TgtrA04/sNaYCzi4i0gol8EwiCgPT0dOTn54sdCtFt2dvbw93dHRKJROxQiEgbTKTqJlC/zgAgQd1kvvr/+egP2OiOmmRCV0/8HJ6EXdFpeGdSZ1iY3v7n6PcIVuOpGTi7iEgrmMg3QU0S7+rqCmtrayZKpFcEQUBJSQkyMzMBAB4eHiJHRERaEzQBeGjjbTo9f8BOz9RkfQIc4WZngQxFOQ5fyca9QQ0nURVVKnxZ3al+Hqvx1BScXUSkFUzkNaRUKmuTeCcnJ7HDIWqQlZUVACAzMxOurq6cZk9kTIImqLeYSzyunnpq66b+wMtKPDWD1ESCcV088f2xBIRdSL1tIv9bxA2k5JfCVWaBR1mNp6bg7CIirWCzOw3VrIm3trYWORKiO6v5GWUfByIjZCIFAgYCXR5Q/8kPvKQFE7qpu9fvjclASUVVvfsrqlT48qZO9azGU5PVzC6yu2XWoJ2n+jhnFxHdFSvyTcTp9KTv+DNKRESa6Ooth5+TNRJzSrD3UmbttnQ1fou4gdSCMrjKLPBIH1bjqZk4u4ioWUStyK9YsQK9e/eGTCaDq6srJk2ahNjY2Nr7c3Nz8cwzz6Bjx46wsrKCr68vnn32WRQUFNzxuoIg4K233oKHhwesrKwwYsQIXL16Vdcvh4iIiMhgSSQSjA9RJ+9h5+tuD1ZepWQ1nrSPs4uImkzURP7QoUNYsGABTp48iT179qCyshIjR45EcXExACA1NRWpqan4+OOPER0djQ0bNmD37t2YPXv2Ha/74Ycf4vPPP8e6detw6tQp2NjYYNSoUSgrK2uJl2Xw/P39sWrVKrHD0JqDBw9CIpFwlwEiIqK7GF9dhT90JRMFJf8tzfrtTDKr8UREekTURH737t2YOXMmOnfujK5du2LDhg1ISkpCREQEACA4OBhbt27F+PHj0bZtWwwbNgzvvfceduzYgaqq+mu3AHU1ftWqVXjjjTcwceJEhISEYOPGjUhNTcUff/zRgq9OP924cQOzZs2Cp6cnzM3N4efnh+eeew45OTlih6YVQ4YMwaJFi+oc69+/P9LS0iCXy8UJioiIyEB0dJeho5sMlUoB/1xMB1Bdja/uVD+f1XgiIr2gV83uaqbMOzo63vEcOzs7mJo2vLw/ISEB6enpGDFiRO0xuVyOvn374sSJEw0+pry8HAqFos7NGMXHx6NXr164evUqfv75Z1y7dg3r1q3Dvn370K9fP+Tm5ooSl1KphEql0tn1zc3NuZ86ERFRI9U0vQu7oJ5e/+uZZKQVlMHNzgJTWY0nItILepPIq1QqLFq0CKGhoQgODm7wnOzsbLz77ruYO3fuba+Tnq7+9tjNre62KW5ubrX33WrFihWQy+W1Nx8fnya+Cv22YMECmJub499//8XgwYPh6+uLMWPGYO/evUhJScHrr79ee25hYSEeeeQR2NjYwMvLC19++WXtfYIg4O2334avry8sLCzg6emJZ599tvb+8vJyLF68GF5eXrCxsUHfvn1x8ODB2vs3bNgAe3t7hIWFISgoCBYWFvj2229haWlZb/r7c889h2HDhgEAcnJy8Mgjj8DLywvW1tbo0qULfv7559pzZ86ciUOHDmH16tWQSCSQSCS4fv16g1Prt27dis6dO8PCwgL+/v745JNP6jyvv78/3n//fcyaNQsymQy+vr74+uuva++vqKjAwoUL4eHhAUtLS/j5+WHFihVN+nchavVUSiDhCBD1u/pPlVLsiIhatftC1J3Ej8dlIyW/FGtqq/HtWI0nItITepPIL1iwANHR0fjll18avF+hUGDcuHEICgrC22+/rdXnfvXVV1FQUFB7u3HjhkaPFwQBJRVVLX4TBOHuwVXLzc3FP//8g/nz59fuMV7D3d0d06ZNw5YtW2qv+dFHH6Fr1644d+4cXnnlFTz33HPYs2cPAHUS/Nlnn+Grr77C1atX8ccff6BLly6111u4cCFOnDiBX375BZGRkXjwwQcxevToOg0HS0pKsHLlSnz77be4ePEipk2bBnt7e2zdurX2HKVSiS1btmDatGkAgLKyMvTs2RN//fUXoqOjMXfuXDz22GMIDw8HAKxevRr9+vXDnDlzkJaWhrS0tAa/lImIiMBDDz2EqVOnIioqCm+//TbefPNNbNiwoc55n3zyCXr16oVz585h/vz5mDdvXm0zxs8//xxhYWH49ddfERsbi59++gn+/v6N/vcgomoxYcCqYOCH+4Cts9V/rgpWHyciUfg52aCrjz1UAvD0jxFIKyiDu50lHu5tnIUOIiJDpBfbzy1cuBA7d+7E4cOH4e3tXe/+wsJCjB49GjKZDNu3b4eZmdltr+Xu7g4AyMjIgIfHf3tTZmRkoFu3bg0+xsLCAhYWFk2Ov7RSiaC3/mny45sq5p1RsDZv3D/h1atXIQgCOnXq1OD9nTp1Ql5eHrKysgAAoaGheOWVVwAAHTp0wLFjx/DZZ5/h3nvvRVJSEtzd3TFixAiYmZnB19cXffr0AQAkJSVh/fr1SEpKgqenemre4sWLsXv3bqxfvx7vv/8+APXe5mvWrEHXrl1rY5g6dSo2b95c28xw3759yM/Px5QpUwAAXl5eWLx4ce35zzzzDP755x/8+uuv6NOnD+RyOczNzWFtbV37c9CQTz/9FMOHD8ebb75Z+/piYmLw0UcfYebMmbXnjR07FvPnzwcALFmyBJ999hkOHDiAjh07IikpCe3bt8eAAQMgkUjg5+fXqH8HIrpJTBjw6wwAt3wpqUhTH+dewkSimdDVExdu5CMqRb3scf5Qro0nItInolbkBUHAwoULsX37duzfvx8BAQH1zlEoFBg5ciTMzc0RFhYGS0vLO14zICAA7u7u2LdvX51rnDp1Cv369dP6azA0ja3i3zpW/fr1w6VLlwAADz74IEpLS9GmTRvMmTMH27dvr20+GBUVBaVSiQ4dOsDW1rb2dujQIcTFxdVez9zcHCEhIXWeY9q0aTh48CBSU9Vr8n766SeMGzcO9vb2ANQV+nfffRddunSBo6MjbG1t8c8//yApKUmjMbh06RJCQ0PrHAsNDcXVq1ehVP43pffm+CQSCdzd3ZGZmQlAPY3//Pnz6NixI5599ln8+++/GsVA1OqplMDuJaiXxAP/Hdv9CqfZE4nkvhAP1LSWcbezxEO9WI0nItInolbkFyxYgM2bN+PPP/+ETCarXcMul8thZWVVm8SXlJRg06ZNdRrRubi4QCpVfzMcGBiIFStWYPLkyZBIJFi0aBGWL1+O9u3bIyAgAG+++SY8PT0xadIknbwOKzMpYt4ZpZNr3+15G6tdu3aQSCS4dOkSJk+eXO/+S5cuwcHBAS4uLne9lo+PD2JjY7F3717s2bMH8+fPx0cffYRDhw6hqKgIUqkUERERtf8+NWxtbf+L3cqqXvO53r17o23btvjll18wb948bN++vc50948++girV6/GqlWr0KVLF9jY2GDRokWoqKho9Dho4taZHxKJpLYpX48ePZCQkIBdu3Zh7969eOihhzBixAj8/vvvOomFyOgkHgcUqXc4QQAUKerzAga2WFhEpOZmZ4kB7Zxx5Go2Fgzj2ngiIn0jaiK/du1aAOotw262fv16zJw5E2fPnsWpU6cAqBPRmyUkJNSuSY6Nja3teA8AL7/8MoqLizF37lzk5+djwIAB2L17912r+U0lkUgaPcVdLE5OTrj33nuxZs0aPP/883XWyaenp+Onn37CjBkzapPrkydP1nn8yZMn60zLt7Kywvjx4zF+/HgsWLAAgYGBiIqKQvfu3aFUKpGZmYmBAzX/8D1t2jT89NNP8Pb2homJCcaNG1d737FjxzBx4kRMnz4dgLpB4pUrVxAUFFR7jrm5eZ2qekM6deqEY8eO1Tl27NgxdOjQod6XD3diZ2eHhx9+GA8//DAeeOABjB49Grm5uXfcdYGIqhVlaPc8ItK6zx7uhqjkAgzpePcv+YmIqGWJmn3ebZr3kCFDGjUV/NZzJBIJ3nnnHbzzzjvNis/YfPHFF+jfvz9GjRqF5cuXIyAgABcvXsRLL70ELy8vvPfee7XnHjt2DB9++CEmTZqEPXv24LfffsNff/0FQN11XqlUom/fvrC2tsamTZtgZWUFPz8/ODk5Ydq0aZgxYwY++eQTdO/eHVlZWdi3bx9CQkLqJOYNmTZtGt5++2289957eOCBB+r0Lmjfvj1+//13HD9+HA4ODvj000+RkZFRJ5H39/fHqVOncP36ddja2jaYVL/44ovo3bs33n33XTz88MM4ceIEvvjiC6xZs6bRY/npp5/Cw8MD3bt3h4mJCX777Te4u7vXLgMgoruwdbv7OZqcR0Ra52xrgaGBrmKHQUREDdCbrvWke+3bt8eZM2fQpk0bPPTQQ2jbti3mzp2LoUOH4sSJE3WS3hdffBFnzpxB9+7dsXz5cnz66acYNUq9fMDe3h7ffPMNQkP/3969x+V8938Af307n7tE55OsJNKtclhrpHvIOafN7TA1hhExDN1zT7q5Z5M5/GbZblxtDptsuNNttYZIYpjCJHGXRGZOHbRIfX9/dPe9d6lIruvqung9H4/rwffz/Xw/h8snV+/r8/l+voHw8fHBjz/+iD179qB169YAaldUTJgwAXPnzoWnpyeGDRuG48ePw8Xlyc+edXd3R/fu3XH69Glpt/o6ixYtgp+fH0JCQtC7d2/Y2dnVu11i3rx50NXVRceOHWFtbd3g/fN+fn5ISEjAN998A29vb3zwwQeIiYlR2OjuSczNzfHxxx+ja9eu6NatGwoKCrB3717o6PBHiqhJXF8BLBwACI1kEAALx9p8RERERKRAEJ/mGWYviNLSUlhaWqKkpAQWFhYK5yorK5Gfnw83NzeVLdUnUgaOVdJ40q71gOKmd/8N7rlrPREREb1AHheHPorTh0RE1DI6Dq0N1i3sFdMtHBjEExERET2GZu/QRkREz7eOQ4EOg2p3py//tfaeeNdXAB3ukE1ERETUGAbyRETUsnR0+Yg5IiIioqfApfVEREREREREWoSBPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgTwRERERERGRFmEgT0oXHh6OYcOGSce9e/fG7Nmzn6lMZZRBRERERET0PGAg/wIJDw+HIAgQBAEGBgZwd3dHTEwMHj58qNJ6d+7cib///e9NypuWlgZBEHD37t1ml6Eq0dHR6NKlS6Pn8/PzMXbsWDg4OMDIyAhOTk4IDQ3F+fPnER8fL733jb0KCgoQHR0NQRDQv3//euWvWLECgiCgd+/equskERERERFpPL2WbsCLqrpGxE/5t3GjrBI25kbo7mYFXR1B5fX2798fcrkc9+/fx969exEREQF9fX1ERUUp5Hvw4AEMDAyUUqeVlZVGlKFKVVVV6Nu3Lzw9PbFz507Y29ujqKgI33//Pe7evYvRo0crBOcjRoyAt7c3YmJipDRra2sAgL29PQ4cOICioiI4OTlJ5zdt2gQXFxf1dYqIiIiIiDQSZ+RbQPLZYrz60X6M+edRzPomC2P+eRSvfrQfyWeLVV63oaEh7Ozs4OrqimnTpqFPnz5ITEyUlsMvW7YMDg4O8PT0BABcuXIFb7zxBmQyGaysrBAaGoqCggKpvOrqasyZMwcymQytW7fG/PnzIYqiQp2PLou/f/8+FixYAGdnZxgaGsLd3R0bN25EQUEBgoODAQCtWrWCIAgIDw9vsIw7d+5gwoQJaNWqFUxMTDBgwADk5eVJ5+Pj4yGTyZCSkgIvLy+YmZmhf//+KC7+33uclpaG7t27w9TUFDKZDIGBgbh8+XKz3tdffvkFly5dwmeffYaXX34Zrq6uCAwMxNKlS/Hyyy/D2NgYdnZ20svAwAAmJiYKabq6ugAAGxsb9OvXD19++aVU/pEjR3Dz5k0MGjSoWe0jIiIiIqLnBwN5NUs+W4xpW35GcUmlQvr1kkpM2/KzWoL5PzI2NsaDBw8AAPv27UNubi5SU1ORlJSEqqoqhISEwNzcHOnp6cjIyJAC4rprVq5cifj4eGzatAmHDx/G7du3sWvXrsfWOWHCBHz99ddYu3YtcnJy8Pnnn8PMzAzOzs747rvvAAC5ubkoLi7GmjVrGiwjPDwcJ06cQGJiIjIzMyGKIgYOHIiqqiopT0VFBWJjY7F582YcOnQIhYWFmDdvHgDg4cOHGDZsGIKCgnD69GlkZmZiypQpEITmrYqwtraGjo4Ovv32W1RXVzerjD+aOHEi4uPjpeNNmzZh3LhxSlslQURERERE2otL69WoukbEkj3nIDZwTgQgAFiy5xz6drRT+TJ7URSxb98+pKSkYObMmfjtt99gamqKDRs2SMHili1bUFNTgw0bNkgBrlwuh0wmQ1paGvr164fVq1cjKioKI0aMAACsX78eKSkpjdZ74cIFJCQkIDU1FX369AEAtGvXTjpft4TexsYGMpmswTLy8vKQmJiIjIwMvPLKKwCArVu3wtnZGbt378brr78OoHa5+/r16/HSSy8BAGbMmCEtZS8tLUVJSQkGDx4snffy8nr6N/K/HB0dsXbtWsyfPx9LlixB165dERwcjHHjxin0r6kGDx6Md955B4cOHYK/vz8SEhJw+PBhbNq0qdltJCIiIiKi5wNn5NXop/zb9Wbi/0gEUFxSiZ/yb6usDUlJSTAzM4ORkREGDBiA0aNHIzo6GgDQuXNnhRnf7OxsXLx4Eebm5jAzM4OZmRmsrKxQWVmJS5cuoaSkBMXFxejRo4d0jZ6eHrp27dpo/VlZWdDV1UVQUFCz+5CTkwM9PT2Felu3bg1PT0/k5ORIaSYmJlKQDtTee37jxg0AtV8YhIeHIyQkBEOGDMGaNWukZfeFhYVSf83MzPCPf/yjSe2KiIjA9evXsXXrVgQEBGDHjh3o1KkTUlNTn7qP+vr6GD9+PORyOXbs2IH27dvDx8fnqcshIiIiIqLnD2fk1ehGWeNBfHPyNUdwcDDi4uJgYGAABwcH6On9bwiYmpoq5C0vL4e/vz+2bt1ar5y6jdmelrGxcbOuaw59fX2FY0EQFO7fl8vliIyMRHJyMrZv345FixYhNTUVXbt2RVZWlpTvaTbaMzc3x5AhQzBkyBAsXboUISEhWLp0Kfr27fvU7Z84cSJ69OiBs2fPYuLEiU99PRERERERPZ84I69GNuZGSs3XHKampnB3d4eLi4tCEN8QPz8/5OXlwcbGBu7u7govS0tLWFpawt7eHseOHZOuefjwIU6ePNlomZ07d0ZNTQ0OHjzY4Pm6FQGPu8/cy8sLDx8+VKj31q1byM3NRceOHR/bp0f5+voiKioKR44cgbe3N7Zt2wY9PT2FvjZ3x3xBENChQwfcu3evWdd36tQJnTp1wtmzZzF27NhmlUFERERERM8fBvJq1N3NCvaWRmjs7ncBgL1l7aPoNMG4cePQpk0bhIaGIj09Hfn5+UhLS0NkZCSKiooAALNmzcLy5cuxe/dunD9/HtOnT6/3DPg/atu2LcLCwjBx4kTs3r1bKjMhIQEA4OrqCkEQkJSUhN9++w3l5eX1yvDw8EBoaCgmT56Mw4cPIzs7G+PHj4ejoyNCQ0Ob1Lf8/HxERUUhMzMTly9fxg8//IC8vLwn3if/+++/IysrS+F16dIlZGVlITQ0FN9++y3OnTuHixcvYuPGjdi0aVOT29SQ/fv3o7i4uNH9AoiIiIiI6MXDQF6NdHUELB5SO2P8aDBfd7x4SEe1PE++KUxMTHDo0CG4uLhgxIgR8PLywqRJk1BZWQkLCwsAwNy5c/Hmm28iLCwMAQEBMDc3x/Dhwx9bblxcHEaNGoXp06ejQ4cOmDx5sjRr7ejoiCVLlmDhwoWwtbXFjBkzGixDLpfD398fgwcPRkBAAERRxN69e+stp39c386fP4+RI0eiffv2mDJlCiIiIjB16tTHXnfhwgX4+voqvKZOnQonJye0bdsWS5YsQY8ePeDn54c1a9ZgyZIleP/995vUpobUPRqPiIiIiIiojiA++tBvQmlpKSwtLVFSUiIFrHUqKyuRn58PNzc3GBk1bwl88tliLNlzTmHjO3tLIywe0hH9ve2fqe1EdZQxVomIiIiISD0eF4c+ipvdtYD+3vbo29EOP+Xfxo2yStiY1y6n15SZeCIiIiIiItJcDORbiK6OgICXWrd0M4iIiIiIiEjL8B55IiIiIiIiIi3CQJ6IiIiIiIhIizCQJyIiIiIiItIiDOSJiIiIiIiItAgDeSIiIiIiIiItwkCeiIiIiIiISIswkCciIiIiIiLSIgzkSYEgCNi9ezcAoKCgAIIgICsrq0Xb1BhNbx8REREREZEqMJB/wVy/fh0zZ85Eu3btYGhoCGdnZwwZMgT79u2rl9fZ2RnFxcXw9vZWaZsYkBMRERERETWdXks34EVVXV2N9PR0FBcXw97eHj179oSurq5K6ywoKEBgYCBkMhlWrFiBzp07o6qqCikpKYiIiMD58+cV8uvq6sLOzk6lbSIiIiIiIqKnwxn5FrBz5060bdsWwcHBGDt2LIKDg9G2bVvs3LlTpfVOnz4dgiDgp59+wsiRI9G+fXt06tQJc+bMwdGjR+vlf3SmPC0tDYIgICUlBb6+vjA2Nsaf//xn3LhxA99//z28vLxgYWGBsWPHoqKiQionOTkZr776KmQyGVq3bo3Bgwfj0qVL0nk3NzcAgK+vLwRBQO/evQEANTU1iImJgZOTEwwNDdGlSxckJyc/to8HDx5E9+7dYWhoCHt7eyxcuBAPHz6UzpeVlWHcuHEwNTWFvb09Vq1ahd69e2P27NkAgJiYmAZXIHTp0gV/+9vfmvQ+ExERERERqVKLBvIffvghunXrBnNzc9jY2GDYsGHIzc1VyPPFF1+gd+/esLCwgCAIuHv37hPLjY6OhiAICq8OHTqoqBdPZ+fOnRg1ahSKiooU0q9evYpRo0apLJi/ffs2kpOTERERAVNT03rnZTJZk8uKjo7Gp59+iiNHjuDKlSt44403sHr1amzbtg3//ve/8cMPP+D//u//pPz37t3DnDlzcOLECezbtw86OjoYPnw4ampqAAA//fQTAODHH39EcXGx9B6sWbMGK1euRGxsLE6fPo2QkBAMHToUeXl5Dbbr6tWrGDhwILp164bs7GzExcVh48aNWLp0qZRnzpw5yMjIQGJiIlJTU5Geno6ff/5ZOj9x4kTk5OTg+PHjUtqpU6dw+vRpvPXWW01+j4iIiIiIiFSlRQP5gwcPIiIiAkePHkVqaiqqqqrQr18/3Lt3T8pTUVGB/v37469//etTld2pUycUFxdLr8OHDyu7+U+turoas2bNgiiK9c7Vpc2ePRvV1dVKr/vixYsQRVEpX2gsXboUgYGB8PX1xaRJk3Dw4EHExcXB19cXPXv2xKhRo3DgwAEp/8iRIzFixAi4u7ujS5cu2LRpE86cOYNz584BAKytrQEArVu3hp2dHaysrAAAsbGxWLBgAf7yl7/A09MTH330Ebp06YLVq1c32K7PPvsMzs7O+PTTT9GhQwcMGzYMS5YswcqVK1FTU4OysjJ8+eWXiI2NxWuvvQZvb2/I5XKF99vJyQkhISGQy+VSmlwuR1BQENq1a/fM7x0REREREdGzatF75B9dJh0fHw8bGxucPHkSvXr1AgBpyXNaWtpTla2np6dx93enp6fXm4n/I1EUceXKFaSnp0vLy5WloS8PmsvHx0f6u62tLUxMTBSCXFtbW2mWHQDy8vLwwQcf4NixY7h586Y0E19YWNjoRnqlpaW4du0aAgMDFdIDAwORnZ3d4DU5OTkICAiAIAgK+cvLy1FUVIQ7d+6gqqoK3bt3l85bWlrC09NToZzJkydj4sSJ+OSTT6Cjo4Nt27Zh1apVT3pbiIiIiIiI1EKjNrsrKSkBAGlG9lnk5eXBwcEBRkZGCAgIwIcffggXF5cG896/fx/379+XjktLS5+5/oYUFxcrNd/T8PDwgCAI9Ta0aw59fX3p74IgKBzXpdUF6wAwZMgQuLq64p///CccHBxQU1MDb29vPHjw4JnbogpDhgyBoaEhdu3aBQMDA1RVVWHUqFEt3SwiIiIiIiIAGrTZXU1NDWbPno3AwMBnftxZjx49EB8fj+TkZMTFxSE/Px89e/ZEWVlZg/k//PBDWFpaSi9nZ+dnqr8x9vb2Ss33NKysrBASEoJ169Yp3LpQpyl7DzTHrVu3kJubi0WLFuG1116Dl5cX7ty5o5DHwMAAABSWuFtYWMDBwQEZGRkKeTMyMtCxY8cG6/Ly8kJmZqbC6oOMjAyYm5vDyckJ7dq1g76+vsL97yUlJbhw4YJCOXp6eggLC4NcLodcLsdf/vIXGBsbN+8NICIiIiIiUjKNmZGPiIjA2bNnlXIv+4ABA6S/+/j4oEePHnB1dUVCQgImTZpUL39UVBTmzJkjHZeWlqokmO/ZsyecnJxw9erVBpe6C4IAJycn9OzZU+l1A8C6desQGBiI7t27IyYmBj4+Pnj48CFSU1MRFxeHnJwcpdfZqlUrtG7dGl988QXs7e1RWFiIhQsXKuSxsbGBsbExkpOT4eTkBCMjI1haWuK9997D4sWL8dJLL6FLly6Qy+XIysrC1q1bG6xr+vTpWL16NWbOnIkZM2YgNzcXixcvxpw5c6CjowNzc3OEhYXhvffeg5WVFWxsbLB48WLo6OgoLMcHgLfffhteXl4AUO/LBCIiIiIiopakETPyM2bMQFJSEg4cOAAnJyelly+TydC+fXtcvHixwfOGhoawsLBQeKmCrq4u1qxZAwD1Ase649WrV6vsefLt2rXDzz//jODgYMydOxfe3t7o27cv9u3bh7i4OJXUqaOjg2+++QYnT56Et7c33n33XaxYsUIhj56eHtauXYvPP/8cDg4OCA0NBQBERkZizpw5mDt3Ljp37ozk5GQkJibCw8OjwbocHR2xd+9e/PTTT/jTn/6Ed955B5MmTcKiRYukPJ988gkCAgIwePBg9OnTB4GBgfDy8oKRkZFCWR4eHnjllVfQoUMH9OjRQ8nvChERERERUfMJojJ3QXtKoihi5syZ2LVrF9LS0hoN0IDaze6Cg4Nx586dp3pUGgCUl5fDxcUF0dHRiIyMfGL+0tJSWFpaoqSkpF5QX1lZifz8fLi5udUL/ppq586dmDVrlsLGd87Ozli9ejVGjBjRrDKpee7duwdHR0esXLlSYbWGKIrw8PDA9OnTFVZraBNljFUiIiIi0iA11cDlI0D5r4CZLeD6CqCjmklAUr/HxaGPatGl9REREdi2bRv+9a9/wdzcHNevXwdQu5N43T3J169fx/Xr16XZ9DNnzsDc3BwuLi7SpnivvfYahg8fjhkzZgAA5s2bJ22wdu3aNSxevBi6uroYM2ZMC/SyvhEjRiA0NBTp6ekoLi6Gvb09evbsqbKZePqfU6dO4fz58+jevTtKSkoQExMDANIqAAD47bff8M033+D69et8djwRERERaYZziUDyAqD02v/SLByA/h8BHYe2XLuoRbRoIF+3nPvRR63J5XKEh4cDANavX48lS5ZI5+oeS/fHPJcuXcLNmzelPEVFRRgzZgxu3boFa2trvPrqqzh69Kj0vHJNoKurq/RHzFHTxMbGIjc3FwYGBvD390d6ejratGkjnbexsUGbNm3wxRdfoFWrVi3YUiIiIiIi1AbxCRMAPLKYurS4Nv2NrxjMv2BadGm9plL10noideBYJSIiInoO1FQDq70VZ+IVCLUz87PPcJm9lnuapfUasdkdERERERERNeDykccE8QAgAqVXa/PRC4OBPBERERERkaYq/1W5+ei5wECeiIiIiIhIU5nZKjcfPRcYyBMREREREWkq11dq74GH0EgGAbBwrM1HLwwG8kRERERERJpKR7f2EXMA6gfz/z3uv5wb3b1gGMgTERERERFpso5Dax8xZ2GvmG7hwEfPvaAYyJPShYeHY9iwYdJx7969MXv27GcqUxllqIsgCNi9e3ej5wsKCiAIArKystTWJiIiIiLSch2HArPPAmFJwMiNtX/OPsMg/gXFQP4FEh4eDkEQIAgCDAwM4O7ujpiYGDx8+FCl9e7cuRN///vfm5Q3LS0NgiDg7t27zS5DVaKjo6X3T1dXF87OzpgyZQpu376tkK+4uBgDBgxooVYSERER0XNLRxdw6wl0HlX7J5fTv7D0WroBL6ya6tpnPZb/WrvDpOsravlB7N+/P+RyOe7fv4+9e/ciIiIC+vr6iIqKUsj34MEDGBgYKKVOKysrjShDGTp16oQff/wR1dXVyMnJwcSJE1FSUoLt27dLeezs7FqwhUREREREJGmhuEvVOCPfEs4lAqu9gS8HA99Nqv1ztXdtuooZGhrCzs4Orq6umDZtGvr06YPExERpOfyyZcvg4OAAT09PAMCVK1fwxhtvQCaTwcrKCqGhoSgoKJDKq66uxpw5cyCTydC6dWvMnz8foigq1Pnosvj79+9jwYIFcHZ2hqGhIdzd3bFx40YUFBQgODgYANCqVSsIgoDw8PAGy7hz5w4mTJiAVq1awcTEBAMGDEBeXp50Pj4+HjKZDCkpKfDy8oKZmRn69++P4uJiKU9aWhq6d+8OU1NTyGQyBAYG4vLly499//T09GBnZwdHR0f06dMHr7/+OlJTUxXyPLq0/qeffoKvry+MjIzQtWtXnDp1ql65iYmJ8PDwgJGREYKDg/Hll1/WW5lw+PBh9OzZE8bGxnB2dkZkZCTu3bv32PZSC6ipBvLTgTPf1v5ZU93SLSIiIiJ6MbVg3KVqDOTV7VwikDABKL2mmF5aXJuu5kFlbGyMBw8eAAD27duH3NxcpKamIikpCVVVVQgJCYG5uTnS09ORkZEhBcR116xcuRLx8fHYtGkTDh8+jNu3b2PXrl2PrXPChAn4+uuvsXbtWuTk5ODzzz+HmZkZnJ2d8d133wEAcnNzUVxcjDVr1jRYRnh4OE6cOIHExERkZmZCFEUMHDgQVVVVUp6KigrExsZi8+bNOHToEAoLCzFv3jwAwMOHDzFs2DAEBQXh9OnTyMzMxJQpUyAIjT3Wo76CggKkpKQ8duVCeXk5Bg8ejI4dO+LkyZOIjo6W2lAnPz8fo0aNwrBhw5CdnY2pU6fi/fffV8hz6dIl9O/fHyNHjsTp06exfft2HD58GDNmzGhye0kNnuMPCyIiIiKtomFxl7Jxab061VQDyQsAiA2cFAEIQPJCoMMglS/3EEUR+/btQ0pKCmbOnInffvsNpqam2LBhgxSYbtmyBTU1NdiwYYMU4MrlcshkMqSlpaFfv35YvXo1oqKiMGLECADA+vXrkZKS0mi9Fy5cQEJCAlJTU9GnTx8AQLt27aTzdUvobWxsIJPJGiwjLy8PiYmJyMjIwCuv1D4vc+vWrXB2dsbu3bvx+uuvAwCqqqqwfv16vPTSSwCAGTNmICYmBgBQWlqKkpISDB48WDrv5eX1xPftzJkzMDMzQ3V1NSorKwEAn3zySaP5t23bhpqaGmzcuBFGRkbo1KkTioqKMG3aNCnP559/Dk9PT6xYsQIA4OnpibNnz2LZsmVSng8//BDjxo2TViV4eHhg7dq1CAoKQlxcHIyMjJ7YdlKxug+LR3++6z4suKMsERERkXpoUNylKpyRV6fLR+p/I6RABEqv1uZTkaSkJJiZmcHIyAgDBgzA6NGjER0dDQDo3LmzwuxydnY2Ll68CHNzc5iZmcHMzAxWVlaorKzEpUuXUFJSguLiYvTo0UO6Rk9PD127dm20/qysLOjq6iIoKKjZfcjJyYGenp5Cva1bt4anpydycnKkNBMTEylIBwB7e3vcuHEDQO0XBuHh4QgJCcGQIUOwZs0aadl9YWGh1F8zMzP84x//kMrw9PREVlYWjh8/jgULFiAkJAQzZ858bFt9fHwUAu2AgACFPLm5uejWrZtCWvfu3RWOs7OzER8fr9CukJAQ1NTUID8//4nvGanYEz8sUPthwWX2RERERKqnAXGXqnFGXp3Kf1VuvmYIDg5GXFwcDAwM4ODgAD29/w0BU1NTxWaUl8Pf3x9bt26tV461tXWz6jc2Nm7Wdc2hr6+vcCwIgsL9+3K5HJGRkUhOTsb27duxaNEipKamomvXrgqPhvvjRnt1u/0DwPLlyzFo0CAsWbJE5Tvql5eXY+rUqYiMjKx3zsXFRaV1UxM8zYeFW0+1NYuIiIjohaQBcZeqcUZencxslZuvGUxNTeHu7g4XFxeFIL4hfn5+yMvLg42NDdzd3RVelpaWsLS0hL29PY4dOyZd8/DhQ5w8ebLRMjt37oyamhocPHiwwfN1KwKqqxufufTy8sLDhw8V6r116xZyc3PRsWPHx/bpUb6+voiKisKRI0fg7e2Nbdu2QU9PT6Gvj9sxf9GiRYiNjcW1aw0HcV5eXjh9+rS0DB8Ajh49qpDH09MTJ06cUEg7fvy4wrGfnx/OnTtX79/B3d1daU8XoGfwAnxYEBEREWkNDYi7VI2BvDq5vgJYOABobEM1AbBwrM2nAcaNG4c2bdogNDQU6enpyM/PR1paGiIjI1FUVAQAmDVrFpYvX47du3fj/PnzmD59er1nwP9R27ZtERYWhokTJ2L37t1SmQkJCQAAV1dXCIKApKQk/PbbbygvL69XhoeHB0JDQzF58mQcPnwY2dnZGD9+PBwdHREaGtqkvuXn5yMqKgqZmZm4fPkyfvjhB+Tl5TXpPvk/CggIgI+Pj8Ly+z8aO3YsBEHA5MmTce7cOezduxexsbEKeaZOnYrz589jwYIF0h4C8fHxACDtTbBgwQIcOXIEM2bMQFZWFvLy8vCvf/2Lm91pihfgw4KIiIhIa2hZ3NUcDOTVSUcX6P/Rfw8eHVT/Pe6/XGM2XDAxMcGhQ4fg4uKCESNGwMvLC5MmTUJlZSUsLCwAAHPnzsWbb76JsLAwBAQEwNzcHMOHD39suXFxcRg1ahSmT5+ODh06YPLkydJj1BwdHbFkyRIsXLgQtra2jQaqcrkc/v7+GDx4MAICAiCKIvbu3VtvOf3j+nb+/HmMHDkS7du3x5QpUxAREYGpU6c+xTtU691338WGDRtw5cqVeufMzMywZ88enDlzBr6+vnj//ffx0UcfKeRxc3PDt99+i507d8LHxwdxcXHSrvWGhoYAAB8fHxw8eBAXLlxAz5494evriw8++AAODg5P3V5SgRfgw4KIiIhIa2hZ3NUcgvjoQ78JpaWlsLS0RElJiRSw1qmsrER+fj7c3Nyav1P4ucTajbH+eE+thWPtYOKu1gRg2bJlWL9+fYNfDjSVUsYqNZ20az2guOndfz8suGs9ERERkXppWdz1uDj0UdzsriV0HFr7qIPLR2rvmTWzrZ2p0+JvhOjZfPbZZ+jWrRtat26NjIwMrFixgsvmtU3HobXBer0PCweN/bAgIiIieq49x3EXA/mWoqPL3atJkpeXh6VLl+L27dtwcXHB3LlzERUV1dLNoqf1HH9YEBEREWml5zTuYiBPpAFWrVqFVatWtXQzSBme0w8LIiIiItIc3OyOiIiIiIiISIswkG8m7hFImo5jlIiIiIjo+cRA/inVPd6soqKihVtC9Hh1Y7Spj+QjIiIiIiLtwHvkn5Kuri5kMhlu3LgBoPZ55ILQ2LOjidRPFEVUVFTgxo0bkMlk0NXlRmtERERERM8TBvLNYGdnBwBSME+kiWQymTRWiYiIiIjo+cFAvhkEQYC9vT1sbGxQVVXV0s0hqkdfX58z8UREREREzykG8s9AV1eXwRIRERERERGpFTe7IyIiIiIiItIiDOSJiIiIiIiItAgDeSIiIiIiIiItwnvkGyCKIgCgtLS0hVtCREREREREL4K6+LMuHn0cBvINKCsrAwA4Ozu3cEuIiIiIiIjoRVJWVgZLS8vH5hHEpoT7L5iamhpcu3YN5ubmEAShpZvTqNLSUjg7O+PKlSuwsLBo6ebQc4rjjNSB44xUjWOM1IHjjNSB4+z5JYoiysrK4ODgAB2dx98Fzxn5Bujo6MDJyamlm9FkFhYW/CEmleM4I3XgOCNV4xgjdeA4I3XgOHs+PWkmvg43uyMiIiIiIiLSIgzkiYiIiIiIiLQIA3ktZmhoiMWLF8PQ0LClm0LPMY4zUgeOM1I1jjFSB44zUgeOMwK42R0RERERERGRVuGMPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgXwL+/DDD9GtWzeYm5vDxsYGw4YNQ25urkKeyspKREREoHXr1jAzM8PIkSPx66+/KuSJjIyEv78/DA0N0aVLlwbrOn36NHr27AkjIyM4Ozvj448/VlW3SIOoa4ylpaUhNDQU9vb2MDU1RZcuXbB161ZVdo00iDr/L6tz8eJFmJubQyaTKbk3pKnUOc5EUURsbCzat28PQ0NDODo6YtmyZarqGmkQdY6zlJQUvPzyyzA3N4e1tTVGjhyJgoICFfWMNIUyxlh2djbGjBkDZ2dnGBsbw8vLC2vWrKlXV1paGvz8/GBoaAh3d3fEx8erunukJgzkW9jBgwcRERGBo0ePIjU1FVVVVejXrx/u3bsn5Xn33XexZ88e7NixAwcPHsS1a9cwYsSIemVNnDgRo0ePbrCe0tJS9OvXD66urjh58iRWrFiB6OhofPHFFyrrG2kGdY2xI0eOwMfHB9999x1Onz6Nt956CxMmTEBSUpLK+kaaQ13jrE5VVRXGjBmDnj17Kr0vpLnUOc5mzZqFDRs2IDY2FufPn0diYiK6d++ukn6RZlHXOMvPz0doaCj+/Oc/IysrCykpKbh582aD5dDzRRlj7OTJk7CxscGWLVvwyy+/4P3330dUVBQ+/fRTKU9+fj4GDRqE4OBgZGVlYfbs2Xj77beRkpKi1v6SioikUW7cuCECEA8ePCiKoijevXtX1NfXF3fs2CHlycnJEQGImZmZ9a5fvHix+Kc//ale+meffSa2atVKvH//vpS2YMEC0dPTU/mdII2mqjHWkIEDB4pvvfWWUtpN2kXV42z+/Pni+PHjRblcLlpaWiq7+aQlVDXOzp07J+rp6Ynnz59XWdtJe6hqnO3YsUPU09MTq6urpbTExERREATxwYMHyu8IaaxnHWN1pk+fLgYHB0vH8+fPFzt16qSQZ/To0WJISIiSe0AtgTPyGqakpAQAYGVlBaD227aqqir06dNHytOhQwe4uLggMzOzyeVmZmaiV69eMDAwkNJCQkKQm5uLO3fuKKn1pA1UNcYaq6uuHnqxqHKc7d+/Hzt27MC6deuU12DSSqoaZ3v27EG7du2QlJQENzc3tG3bFm+//TZu376t3A6QVlDVOPP394eOjg7kcjmqq6tRUlKCzZs3o0+fPtDX11duJ0ijKWuMPfp7V2ZmpkIZQO3v/8/6+x1pBgbyGqSmpgazZ89GYGAgvL29AQDXr1+HgYFBvXtAbW1tcf369SaXff36ddja2tYro+4cvRhUOcYelZCQgOPHj+Ott956liaTFlLlOLt16xbCw8MRHx8PCwsLZTabtIwqx9l//vMfXL58GTt27MBXX32F+Ph4nDx5EqNGjVJmF0gLqHKcubm54YcffsBf//pXGBoaQiaToaioCAkJCcrsAmk4ZY2xI0eOYPv27ZgyZYqU1tjv/6Wlpfj999+V2xFSO72WbgD9T0REBM6ePYvDhw+3dFPoOaWuMXbgwAG89dZb+Oc//4lOnTqptC7SPKocZ5MnT8bYsWPRq1cvpZdN2kWV46ympgb379/HV199hfbt2wMANm7cCH9/f+Tm5sLT01PpdZJmUuU4u379OiZPnoywsDCMGTMGZWVl+OCDDzBq1CikpqZCEASl10maRxlj7OzZswgNDcXixYvRr18/JbaONBln5DXEjBkzkJSUhAMHDsDJyUlKt7Ozw4MHD3D37l2F/L/++ivs7OyaXL6dnV293VTrjp+mHNJeqh5jdQ4ePIghQ4Zg1apVmDBhwrM2m7SMqsfZ/v37ERsbCz09Pejp6WHSpEkoKSmBnp4eNm3apKxukIZT9Tizt7eHnp6eFMQDgJeXFwCgsLDw2RpPWkPV42zdunWwtLTExx9/DF9fX/Tq1QtbtmzBvn37cOzYMWV1gzSYMsbYuXPn8Nprr2HKlClYtGiRwrnGfv+3sLCAsbGxcjtDasdAvoWJoogZM2Zg165d2L9/P9zc3BTO+/v7Q19fH/v27ZPScnNzUVhYiICAgCbXExAQgEOHDqGqqkpKS01NhaenJ1q1avXsHSGNpa4xBtQ+4mTQoEH46KOPFJZ20fNPXeMsMzMTWVlZ0ismJgbm5ubIysrC8OHDldYf0kzqGmeBgYF4+PAhLl26JKVduHABAODq6vqMvSBNp65xVlFRAR0dxV/FdXV1AdSuCqHnl7LG2C+//ILg4GCEhYU1+HjMgIAAhTKA2t//n/b3O9JQLbnTHonitGnTREtLSzEtLU0sLi6WXhUVFVKed955R3RxcRH3798vnjhxQgwICBADAgIUysnLyxNPnTolTp06VWzfvr146tQp8dSpU9Iu9Xfv3hVtbW3FN998Uzx79qz4zTffiCYmJuLnn3+u1v6S+qlrjO3fv180MTERo6KiFOq5deuWWvtLLUNd4+xR3LX+xaKucVZdXS36+fmJvXr1En/++WfxxIkTYo8ePcS+ffuqtb/UMtQ1zvbt2ycKgiAuWbJEvHDhgnjy5EkxJCREdHV1VaiLnj/KGGNnzpwRra2txfHjxyuUcePGDSnPf/7zH9HExER87733xJycHHHdunWirq6umJycrNb+kmowkG9hABp8yeVyKc/vv/8uTp8+XWzVqpVoYmIiDh8+XCwuLlYoJygoqMFy8vPzpTzZ2dniq6++KhoaGoqOjo7i8uXL1dRLaknqGmNhYWENng8KClJfZ6nFqPP/sj9iIP9iUec4u3r1qjhixAjRzMxMtLW1FcPDw/nF5AtCnePs66+/Fn19fUVTU1PR2tpaHDp0qJiTk6OmnlJLUcYYW7x4cYNluLq6KtR14MABsUuXLqKBgYHYrl07hTpIuwmiKIrPMKFPRERERERERGrEe+SJiIiIiIiItAgDeSIiIiIiIiItwkCeiIiIiIiISIswkCciIiIiIiLSIgzkiYiIiIiIiLQIA3kiIiIiIiIiLcJAnoiIiIiIiEiLMJAnIiIiIiIi0iIM5ImIiDTYrVu3YGNjg4KCArXWGx8fD5lMppKyk5OT0aVLF9TU1KikfCIioucdA3kiIiINtmzZMoSGhqJt27b1zoWEhEBXVxfHjx9Xf8OeQf/+/aGvr4+tW7c2mmfSpEno3LkzHjx4oJC+d+9eGBgY4Oeff1Z1M4mIiDQWA3kiIiINVVFRgY0bN2LSpEn1zhUWFuLIkSOYMWMGNm3a1AKta56qqioAQHh4ONauXdtovlWrVqGsrAyLFy+W0u7evYvJkyfjb3/7G/z8/FTWNiIiIk3HQJ6IiEhD7d27F4aGhnj55ZfrnZPL5Rg8eDCmTZuGr7/+Gr///rvC+d69eyMyMhLz58+HlZUV7OzsEB0drZDn7t27mDp1KmxtbWFkZARvb28kJSUp5ElJSYGXlxfMzMzQv39/FBcXS+dqamoQExMDJycnGBoaokuXLkhOTpbOFxQUQBAEbN++HUFBQTAyMpJm4YcMGYITJ07g0qVLDfbdwsICcrkcK1euxLFjxwAAs2fPhqOjI6KionDlyhW88cYbkMlksLKyQmhoqMLtB8ePH0ffvn3Rpk0bWFpaIigoqN4sviAIiIuLw9ChQ2Fqaoply5Y18i9BRESkWRjIExERaaj09HT4+/vXSxdFEXK5HOPHj0eHDh3g7u6Ob7/9tl6+L7/8Eqampjh27Bg+/vhjxMTEIDU1FUBtED5gwABkZGRgy5YtOHfuHJYvXw5dXV3p+oqKCsTGxmLz5s04dOgQCgsLMW/ePOn8mjVrsHLlSsTGxuL06dMICQnB0KFDkZeXp9COhQsXYtasWcjJyUFISAgAwMXFBba2tkhPT2+0/8HBwZg+fTrCwsKwY8cOJCQk4KuvvoIoiggJCYG5uTnS09ORkZEhfdFQtxS/rKwMYWFhOHz4MI4ePQoPDw8MHDgQZWVlCnVER0dj+PDhOHPmDCZOnPikfxIiIiLNIBIREZFGCg0NFSdOnFgv/YcffhCtra3FqqoqURRFcdWqVWJQUJBCnqCgIPHVV19VSOvWrZu4YMECURRFMSUlRdTR0RFzc3MbrFsul4sAxIsXL0pp69atE21tbaVjBwcHcdmyZfXqmD59uiiKopifny8CEFevXt1gHb6+vmJ0dHSD5+pUVFSInp6eoo6Ojrhq1SpRFEVx8+bNoqenp1hTUyPlu3//vmhsbCympKQ0WE51dbVobm4u7tmzR0oDIM6ePfux9RMREWkizsgTERFpqN9//x1GRkb10jdt2oTRo0dDT08PADBmzBhkZGTUW6bu4+OjcGxvb48bN24AALKysuDk5IT27ds3Wr+JiQleeumlBq8vLS3FtWvXEBgYqHBNYGAgcnJyFNK6du3aYPnGxsaoqKhotP66PPPmzYOJiQlmzZoFAMjOzsbFixdhbm4OMzMzmJmZwcrKCpWVldJ78Ouvv2Ly5Mnw8PCApaUlLCwsUF5ejsLCwia1jYiISJPptXQDiIiIqGFt2rTBnTt3FNJu376NXbt2oaqqCnFxcVJ6dXU1Nm3apHCft76+vsK1giBIj3wzNjZ+Yv0NXS+K4lP3w9TUtMH027dvw9ra+onX6+npQVdXF4IgAADKy8vh7+/f4K73deWFhYXh1q1bWLNmDVxdXWFoaIiAgIB6u+A31jYiIiJNxhl5IiIiDeXr64tz584ppG3duhVOTk7Izs5GVlaW9Fq5ciXi4+NRXV3dpLJ9fHxQVFSECxcuNKttFhYWcHBwQEZGhkJ6RkYGOnbs+MTr62bPfX19n7puPz8/5OXlwcbGBu7u7govS0tLqR2RkZEYOHAgOnXqBENDQ9y8efOp6yIiItJEDOSJiIg0VEhICH755ReFWfmNGzdi1KhR8Pb2VnhNmjQJN2/eVNg1/nGCgoLQq1cvjBw5EqmpqcjPz8f333/f5OsB4L333sNHH32E7du3Izc3FwsXLkRWVpa0BP5xjh49Ks2SP61x48ahTZs2CA0NRXp6OvLz85GWlobIyEgUFRUBADw8PLB582bk5OTg2LFjGDduXJNWIRAREWkDBvJEREQaqnPnzvDz80NCQgIA4OTJk8jOzsbIkSPr5bW0tMRrr72GjRs3Nrn87777Dt26dcOYMWPQsWNHzJ8/v8kz+gAQGRmJOXPmYO7cuejcuTOSk5ORmJgIDw+PJ1779ddfY9y4cTAxMWlyfXVMTExw6NAhuLi4YMSIEfDy8sKkSZNQWVkJCwsLALVfeNy5cwd+fn548803ERkZCRsbm6eui4iISBMJYnNudiMiIiK1+Pe//4333nsPZ8+ehY7O8/H9+82bN+Hp6YkTJ07Azc2tpZtDRESkdbjZHRERkQYbNGgQ8vLycPXqVTg7O7d0c5SioKAAn332GYN4IiKiZuKMPBEREREREZEWeT7W6BERERERERG9IBjIExEREREREWkRBvJEREREREREWoSBPBEREREREZEWYSBPREREREREpEUYyBMRERERERFpEQbyRERERERERFqEgTwRERERERGRFmEgT0RERERERKRF/h/lfAWhf7rE3AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCU0lEQVR4nOzdd1RU59YG8OcMvQ69dxUQsStYopgYlZhYEo1R8XpNj9F8MYnp1cTEmNwkppl6o/GqUWOJJRFjxQqo2AuIIL23oUibOd8fA0SsDAycGeb5rTXLxZnDYaPIzD7vfvcWRFEUQUREREREREQ6TyZ1AERERERERETUMkziiYiIiIiIiPQEk3giIiIiIiIiPcEknoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0BJN4IiIiIiIiIj3BJJ6IiIiIiIhITxhLHYAuUqlUyM7Oho2NDQRBkDocIiIiIiIi6uREUUR5eTk8PDwgk916vZ1J/E1kZ2fD29tb6jCIiIiIiIjIwGRkZMDLy+uWzzOJvwkbGxsA6r88W1tbiaMhIiIiIiKizk6hUMDb27spH70VJvE30VhCb2tryySeiIiIiIiIOsydtnSzsR0RERERERGRnmAST0RERERERKQnmMQTERERERER6Qkm8URERERERER6gkk8ERERERERkZ5gEk9ERERERESkJ5jEExEREREREekJJvFEREREREREeoJJPBEREREREZGeYBJPREREREREpCckTeIXLVqEgQMHwsbGBi4uLpg4cSISExObnTNixAgIgtDs8cwzz9z2uqIo4p133oG7uzssLCxw77334tKlS+35rRARERERERG1O0mT+JiYGMyZMwexsbHYuXMn6urqMHr0aFRWVjY778knn0ROTk7T45NPPrntdT/55BN89dVX+P777xEXFwcrKyuMGTMG1dXV7fntEBEREREREbUrYym/eHR0dLOPly9fDhcXFxw/fhzDhw9vOm5paQk3N7cWXVMURSxZsgRvvfUWJkyYAABYsWIFXF1d8ccff2Dq1Kna+wYkVl2nhEwQYGrMXRFERERERESGQKeyv7KyMgCAg4NDs+OrVq2Ck5MTQkND8frrr6OqquqW10hNTUVubi7uvffepmNyuRzh4eE4cuTITT+npqYGCoWi2UMffLDtPB767hCS8yukDoWIiIiIiIg6gKQr8ddSqVSYN28ehg4ditDQ0Kbj06dPh6+vLzw8PHD69Gm8+uqrSExMxMaNG296ndzcXACAq6trs+Ourq5Nz11v0aJFWLBggZa+k45RVFGDv87koKSqDg98fQBvPxCC6WE+EARB6tCIiIiIiIionQiiKIpSBwEAs2fPxvbt23Hw4EF4eXnd8rw9e/Zg5MiRSE5ORpcuXW54/vDhwxg6dCiys7Ph7u7edHzKlCkQBAFr16694XNqampQU1PT9LFCoYC3tzfKyspga2vbxu+s/eQpqjH/91M4cKkQAHBvd1csntQTjtZmEkdGREREREREmlAoFJDL5XfMQ3WinH7u3LnYtm0b9u7de9sEHgDCw8MBAMnJyTd9vnHvfF5eXrPjeXl5t9xXb2ZmBltb22YPfeBqa45fHw3DW/d3h6mRDLsu5CHyywPYn1QgdWhERERERETUDiRN4kVRxNy5c7Fp0ybs2bMH/v7+d/yckydPAkCzVfZr+fv7w83NDbt37246plAoEBcXh8GDB2slbl0ikwl4YlgA/pgzFN1crFFQXoOZv8Tj/a3nUV2nlDo8IiIiIiIi0iJJk/g5c+Zg5cqVWL16NWxsbJCbm4vc3FxcvXoVAHD58mV88MEHOH78OK5cuYItW7Zg5syZGD58OHr16tV0neDgYGzatAkAIAgC5s2bh4ULF2LLli04c+YMZs6cCQ8PD0ycOFGKb7NDhHjYYutzd+Hfg30BAL8cSsXEbw8hMbdc4siIiIiIiIhIWyTdE3+rJmzLli3DrFmzkJGRgRkzZuDs2bOorKyEt7c3HnzwQbz11lvNSt4FQWj6HEC9wv/uu+/ixx9/RGlpKe666y4sXboUgYGBLYqrpXsRdNWei3l4Zf1pFFbUwtRYhjfuC8a/h/ix6R0REREREZGOamkeqjON7XSJvifxAFBQXoOX15/CvkT1/vgRQc74dHJvONuw6R0REREREZGu0avGdqR9zjZmWDZrIBaM7wFTYxn2JRYgcsl+7LmYd+dPJiIiIiIiIp3EJL4TEwQB/x7ih61z70Kwmw2KKmvx2PJjeGfzWTa9IyIiIiIi0kNM4g1AkJsN/pgzFI/fpe7+v+JIGh74+iDOZZdJHBkRERERERFpgkm8gTA3McLbD4Tg18fC4GxjhuT8Cjz47WH8fCAFKhXbIhAREREREekDJvEGJiLQGdHPD8O93V1Rq1Rh4Z8XMPOXeOQpqqUOjYiIiIiIiO6ASbwBcrQ2w08z++PDB0NhbiLDweRCjFmyH9Fnc6UOjYiIiIiIiG6DSbyBEgQBUeG+2PbcMPTwsEVpVR2eWXkcr288jaraeqnDIyIiIiIioptgEm/gurpYY9OzQ/F0RAAEAfgtPgMPfHUQpzNLpQ6NiIiIiIiIrsMknmBqLMPr93XHqsfD4WZrjpTCSjy09DCW7kuGkk3viIiIiIiIdAaTeGoypKsToucNw32hbqhXifgkOhHTf4pFdulVqUMjIiIiIiIiMImn69hZmmJpVD98MrkXLE2NEJdajMgl+7HtdLbUoRERERERERk8JvF0A0EQMGWAN/76v2Ho7W0HRXU95q4+gZfWnUJFDZveERERERERSYVJPN2Sn5MV1j8zGM/d0xUyAdiQkImxXx5AQnqJ1KEREREREREZJCbxdFsmRjK8NDoIa54aDE87C6QXV+Hh74/gy12XUK9USR0eERERERGRQWESTy0S5u+Av54fhvG9PaBUifhiVxIe+TEWGcVVUodGRERERERkMJjEU4vJLUzw1bS+WPJIH1ibGeN4Wgnu+/IANp3IlDo0IiIiIiIig8AknjQ2sa8ntj8/DP197VFRU48X1p7C82tOoOxqndShERERERERdWpM4qlVvB0ssfapQXhxVCCMZAI2n8zG2C8PID61WOrQiIiIiIiIOi0m8dRqxkYy/N/Ibvj9mcHwcbBEVulVTP3xCD77OxF1bHpHRERERESkdUziqc36+djjr+eHYVI/L6hE4Os9yZj8/RFcKayUOjQiIiIiIqJOhUk8aYW1mTE+m9IbX0/rC1tzY5zKKMXYrw5g3bEMiKIodXhERERERESdApN40qpxvT2wfd5whPs7oKpWiVfWn8ac1QkoraqVOjQiIiIiIiK9xySetM7TzgKrnxyEVyKDYCwT8NeZXEQuOYDDlwulDo2IiIiIiEivMYmndmEkE/DsiK7Y+OwQ+DtZIVdRjaif47Bo+wXU1rPpHRERERERUWswiad21cvLDn/+312YFuYNUQR+iEnBQ98dQnJ+hdShERERERER6R0m8dTuLE2NseihXvh+Rn/YWZrgbJYCD3x9AKvi0tj0joiIiIiISANM4qnDRIa6Yce84birqxOq61R4c9NZPLniOIoqaqQOjYiIiIiISC8wiacO5WprjhWPheGt+7vD1EiGXRfyEPnlAexPKpA6NCIiIiIiIp3HJJ46nEwm4IlhAdg0Zwi6ulijoLwGM3+Jx/tbz6O6Til1eERERERERDqLSTxJpoeHHFvn3oWZg30BAL8cSsXEbw8hMbdc4siIiIiIiIh0E5N4kpSFqRHenxCK//57ABytTHExtxzjvjmI5YdS2fSOiIiIiIjoOkziSSeM7O6K7fOGISLQGbX1Kry39TweXX4UBeVsekdERERERNSISTzpDBcbcyx/dCDeGxcCU2MZ9iUWIHLJfuy5mCd1aERERERERDqBSTzpFEEQMGuoP7bOvQvBbjYoqqzFY8uP4Z3NZ9n0joiIiIiIDB6TeNJJQW42+GPOUDw21B8AsOJIGh74+iDOZZdJHBkREREREZF0mMSTzjI3McI740Lw62NhcLYxQ3J+BR789jB+PpAClYpN74iIiIiIyPAwiSedFxHojOjnh+He7q6oVaqw8M8LmPlLPPIU1VKHRkRERERE1KGYxJNecLQ2w08z++PDB0NhbiLDweRCjFmyH9Fnc6UOjYiIiIiIqMMwiSe9IQgCosJ9se25YejhYYvSqjo8s/I4Xt94GlW19VKHR0RERERE1O6YxJPe6epijU3PDsXTEQEQBOC3+Aw88NVBnM4slTo0IiIiIiKidsUknvSSqbEMr9/XHaseD4ebrTlSCivx0NLDWLovGUo2vSMiIiIiok6KSTzptSFdnbD9+WG4L9QN9SoRn0QnYvpPscguvSp1aERERERERFrHJJ70nr2VKZZG9cMnk3rB0tQIcanFiFyyH9tOZ0sdGhERERERkVYxiadOQRAETBnojT//bxh6e8mhqK7H3NUn8NK6U6ioYdM7IiIiIiLqHJjEU6fi72SF9bOHYO7dXSEIwIaETIz98gAS0kukDo2IiIiIiKjNmMRTp2NiJMP8MUFY8+QgeNpZIL24Cg9/fwRf7rqEeqVK6vCIiIiIiIhajUk8dVrhAY746/lhGNfbA0qViC92JeGRH2ORUVwldWhEREREREStImkSv2jRIgwcOBA2NjZwcXHBxIkTkZiYeNNzRVHEfffdB0EQ8Mcff9z2urNmzYIgCM0ekZGR7fAdkK6TW5jgq6l98MUjvWFtZozjaSUY/81B5JZVSx0aERERERGRxiRN4mNiYjBnzhzExsZi586dqKurw+jRo1FZWXnDuUuWLIEgCC2+dmRkJHJycpoev/32mzZDJz0iCAIe7OuF7c8PQ5CrDUqq6vDGpjMQRc6TJyIiIiIi/WIs5RePjo5u9vHy5cvh4uKC48ePY/jw4U3HT548ic8++wzHjh2Du7t7i65tZmYGNzc3rcZL+s3bwRJfTeuLcV8fxJ6L+diQkIXJ/b2kDouIiIiIiKjFdGpPfFlZGQDAwcGh6VhVVRWmT5+Ob7/9VqOkfN++fXBxcUFQUBBmz56NoqKiW55bU1MDhULR7EGdU5CbDZ6/txsAYMHWcyyrJyIiIiIivaIzSbxKpcK8efMwdOhQhIaGNh1/4YUXMGTIEEyYMKHF14qMjMSKFSuwe/duLF68GDExMbjvvvugVCpvev6iRYsgl8ubHt7e3m3+fkh3PT08AL295CivrsfrG0+zrJ6IiIiIiPSGIOpIBjN79mxs374dBw8ehJeXusR5y5YteOmll3DixAlYW1sDUO9v3rRpEyZOnNjia6ekpKBLly7YtWsXRo4cecPzNTU1qKmpafpYoVDA29sbZWVlsLW1bds3RjrpUl457v/qIGqVKnwyuRemDOCNGyIiIiIiko5CoYBcLr9jHqoTK/Fz587Ftm3bsHfv3qYEHgD27NmDy5cvw87ODsbGxjA2Vm/hnzRpEkaMGNHi6wcEBMDJyQnJyck3fd7MzAy2trbNHtS5dXO1wbxR6rL6D7aeR07ZVYkjIiIiIiIiujNJk3hRFDF37lxs2rQJe/bsgb+/f7PnX3vtNZw+fRonT55segDAF198gWXLlrX462RmZqKoqKjFTfHIMDw1LAC9ve1QXlOP1zawWz0RERERUWekUnWu9/mSJvFz5szBypUrsXr1atjY2CA3Nxe5ubm4elW9Kurm5obQ0NBmDwDw8fFplvAHBwdj06ZNAICKigq8/PLLiI2NxZUrV7B7925MmDABXbt2xZgxYzr+mySdZWwkw38m94KpkQwxSQX4/Vim1CEREREREZEW5ZZVY/SS/dh7MV/qULRG0iT+u+++Q1lZGUaMGAF3d/emx9q1azW6TmJiYlNneyMjI5w+fRrjx49HYGAgHn/8cfTv3x8HDhyAmZlZe3wbpMe6udrghVGBAIAPtp1HdinL6omIiIiIOoN6pQr/99sJJOdX4LOdiVB2khV5SefEt6Z8+Wafc+0xCwsL7Nixo01xkWF5cpg/os/l4lRGKV7beAa/PjoQgiBIHRYREREREbXBZzuTEH+lGNZmxvhmWj8YyTrHe3ydaGxHJCVjIxk+e7gXTI1l2J9UgHXHMqQOiYiIiIiI2mDvxXx8t+8yAOCTyb3g52QlcUTawySeCEBXFxu81FBWv3DbBZbVExERERHpqezSq3hh3UkAwL8H+2Jsz87V4JxJPFGDJ4YFoK+Pulv9qxtOs1s9EREREZGeqVOq8NxvJ1BaVYeennK8cX93qUPSOibxRA2MZAI+ndwbpsYyHLhUiDVHWVZPRERERKRP/rMjEcfTSmBjboxvp/eDmbGR1CFpHZN4omt0dbHG/NHqsvoP/7yALJbVExERERHphd0X8vDD/hQAwKeTe8PH0VLiiNoHk3ii6zx+VwD6+dihoqYer7GsnoiIiIhI52WWVOHFdacAAI8O9UNkqJvEEbUfJvFE1zGSCfj04d4wayir/y2eZfVERERERLqqtl6FuatPoOxqHXp72+H1+zrfPvhrMYknuokuztaYPzoIAPDhn+eRWVIlcURERERERHQzi6Mv4mRGKWzNjfHNtL4wNe7caW7n/u6I2uCxu/zR39celbVKvLbhDMvqiYiIiIh0zI5zufjvwVQAwGdT+sDboXPug78Wk3iiW1B3q+8FM2MZDiYXYnV8utQhERERERFRg4ziKsz/Xb0P/slh/hgV4ipxRB2DSTzRbQQ4W+PlMeqy+o/+vICMYpbVExERERFJraZeiTmrE1BeXY9+PnZ4JTJY6pA6DJN4ojt4dKg/BjSU1b+64TRUKpbVExERERFJadFfF3E6swx2lib4eno/mBgZTmprON8pUSs1dqs3N5Hh8OUirGJZPRERERGRZP46k4Plh68AAD6f0huedhbSBtTBmMQTtYC/kxVeHqMu0Vn0F8vqiYj0zdJ9yej3wU4k5pZLHQoREbVBWlElXl1/GgDwdEQA7gk2jH3w12IST9RCjw7xw0A/e1TVKvHKepbVExHpi4qaeny7JxnFlbVYdyxD6nCIiKiVqusa9sHX1GOAr33TSGhDwySeqIVkMgGfTlaX1R9JKcKquDSpQyIiohbYcjIblbVKAEBMUoHE0RARUWt9+OcFnM1SwMHKFF9P72tQ++CvZZjfNVEr+TlZ4ZXGsvrtF1lWT0Sk40RRbHbTNTm/Apkl/N1NRKRvtp7Kxv9i1b/PP5/SG+5yw9oHfy0m8UQamjXED2F+DqiqVeLl9adYVk9EpMNOZpTiXLYCpsYyBLvZAAD2JXI1nohIn6QWVuL1jWcAAHPu7oIRQS4SRyQtJvFEGpLJBHwyuRcsTIwQm1KMlSyrJyLSWavi1BNFHujljgd6uQNgST0RkT6prlPi2VUJqKipR7i/A164N1DqkCTHJJ6oFfycrPBqpLqRxqK/LiK9iKWZRES6pqyqDltPZQMAosJ9m1ZuDicXorZeJWVoRETUQgu2nseFHAUcrUzx1bS+MDbQffDX4t8AUSvNHOyHcH8HXK1jWT0RkS7akJCJmnoVgt1s0M/HDiHutnCyNkVlrRLH0oqlDo+IiO5g88ks/BafDkEAvpzaF6625lKHpBOYxBO1UmO3egsTI8SlFmPFkStSh0RERA2ubWgXNcgXgiBAJhMwPNAZABDDffFERDotOb+iaR/8c/d0w13dnCSOSHcwiSdqAx9HS7x2n7pb/eLoRKQVVUocERERAUBcajEuF1TC0tQIE/t4NB2PaEziuS+eiEhnXa1VYs6qBFTVKjE4wBHPj+wmdUg6hUk8URv9a5AvBgU0ltWfZlk9EZEOaGxoN6GPJ2zMTZqOD+/mDEEALuaWI6fsqlThERHRbby35RwS88rhZG2GL6f1gZFMkDokncIknqiNZDIBn0zqDUtTI8SnFuNXltUTEUmqsKIG0WdzAABR4T7NnrO3MkVvLzsAwH6uxhMR6ZyNCZlYeywDMgH4amofuNhwH/z1mMQTaUHzsvqLuFLIsnoiIqn8fiwTdUoRvb3tEOopv+H5EUHqknrOiyci0i2X8srx5qazAIDnRwZiSFfug78ZJvFEWjIj3BeDAxxRXafCKyyrJyKShEolYnV8Q0O761bhGzXuiz94qRB1So6aIyLSBVW19Xh2VQKu1ilxV1cnzL2nq9Qh6Swm8URaIpMJ+GRyL3VZ/ZViLD98ReqQiIgMzoHkQmQUX4WtuTHG9fK46Tm9vOxgb2mC8pp6nEgv7dgAiYjopt7+4xwu5VfAxcYMS6ZyH/ztMIkn0iJvB0u8PrY7AOCTHReRyrJ6IqIOtSpWvQo/qb8XLEyNbnqO0TWj5vYl5ndYbEREdHPrjmVgQ0Kmeh/8tL5wsjaTOiSdZtySk06fPq3xhUNCQmBs3KLLE3UqUWE+2H4mB4cvF+Hl309h7dODeSeRiKgD5JRdxe6L6qT8VqX0jSICnbH5ZDZikgrwSmRwR4RHREQ3kZhbjnc2q/fBvzQ6CIMCHCWOSPe1KMvu06cPBEGAKLZsj69MJkNSUhICAgLaFByRPpLJBCye1AuRS/bjWFoJlh1KxRPD+H+BiKi9rT2aAaVKRLi/A7q62Nz23MaV+HPZCuSXV7P7MRGRBCpr6vHsquOorlMhItAZsyO6SB2SXmjxUnlcXBycnZ3veJ4oiggNDW1TUET6rrGs/q0/zuLTHYm4J9gFAc7WUodFRNRp1StVWBOfAQCIGuR7x/OdrM3Q01OOM1ll2J9UiMn9vdo7RCIiuoYoinhz0xlcLqiEm605Pp/SGzJWr7ZIi5L4iIgIdO3aFXZ2di266PDhw2FhYdGWuIj0XlS4D7afzcGh5CK8vP401rGsnoio3ey5mI9cRTUcrUwxpodriz5nRJAzzmSVYV9iPpN4IqIOtuZoBv44mQ0jmYCvp/eFI/fBt1iLGtvt3bu3xQk8APz1119wd3dvbUxEnYIgqMvqrUyNcLyhrJ6IiNrHqrh0AMDDA7xhZnzzhnbXaxw1d+BSIZQcC0pE1GHOZyvw7pZzAID5o4Mw0M9B4oj0i0bd6RUKBVSqG+epKpVKKBQKrQVF1Fl42VvijfvV3eo/3ZGIywUVEkdERNT5pBdVYf+lAgDA9LDbN7S7Vh9vO9iaG6Psah1OZpS2U3RERHStipp6zF2dgNp6Fe4OcsbTw9k7SlMtTuI3bdqEAQMGoLq6+obnqqurMXDgQGzdulWrwRF1BtPDfHBXVyfU1Kvw8u+nuNpDRKRlvx1Nhyiqm9X5OFq2+POMjWQY1k29Gh+TVNBe4RERUQNRFPH6xjNIKayEh9wcn0/pw33wrdDiJP67777DK6+8AkvLG18crays8Oqrr+Kbb77RanBEnYEgCFg8uReszYyRkF6KXw6yrJ6ISFtq6pVYd7Shod0dxsrdTERQQxLPefFERO1uVVw6tp7KhrFMwNfT+8HeylTqkPRSi5P4s2fPYsSIEbd8fvjw4Thz5ow2YiLqdDztLPBmQ1n9f/5mWT0RkbbsOJeHospauNqaYWSwi8af37gv/nRWGYoqarQdHhERNTibVYb3t50HALwaGYz+vvYSR6S/WpzEl5SUoL6+/pbP19XVoaSkRCtBEXVGUwd6Y1g3dVn9fJbVExFpxarYNADA1IE+MDbSqNUPAMDV1hzd3W0hiuoGd0REpH2K6jrMadgHf293VzwxzF/qkPRai1/t/Pz8cOzYsVs+f+zYMfj63nkuK5GhEgQBH09Sl9WfSC/FzwdSpA6JiEivJeeXIy61GDIBmBrm3errjGgoqd/HknoiIq0TRRGvbTiNtKIqeNpZ4LOHe0MQuA++LVqcxD/00EN48803kZeXd8Nzubm5eOuttzBp0iStBkfU2XjaWeCthrL6z3YmITm/XOKIiIj0V+NYuZHdXeEut2j1dRpL6vdfKoSKVVJERFq14kga/jqTCxMjAd9G9YPc0kTqkPRei5P41157DTY2NujWrRueffZZfPnll/jyyy8xe/ZsBAYGwtraGq+99lp7xkrUKTwy0BvDA51RW6/C/N9Ps6yeiKgVrtYqseF4JoDWNbS7Vn9fe1ibGaO4shZnssq0ER4REQE4nVmKhX+q98G/fl939PG2kzagTqLFSbyNjQ0OHTqEGTNmYO3atXjhhRfwwgsvYO3atZgxYwYOHjwIGxub9oyVqFMQBAEfP9QTNmbGOJlRip9YVk9EpLFtp7OhqK6Hl70FhjeMiWstEyMZhnZ1BMBRc0RE2lJ2Vb0Pvk4pYkwPVzw61E/qkDoNjTrAyOVyLF26FIWFhcjLy0Nubi6KioqwdOlS2NuzuyBRS3nYWeDtB0IAAJ+zrJ6ISGONpfTTw320MmN4RJC6sz33xRMRtZ0oinhl/SlkFF+Ft4MFPpnMffDapHkbV6hXEp2dneHi4sJ/DKJWeniAF0YEqcvqX/r9NOqVKqlDIiLSC2ezynAyoxQmRgIe7t/6hnbXatwXfzKjFKVVtVq5JhGRoVp26Ap2nMuDqZEM307vB7kF98FrU6uSeCJqO0EQsOihnrAxN8apjFL8dCBV6pCIiPTC6nj1KvyYHm5wtjHTyjU97CwQ6GoNFUfNERG1ycmMUizafgEA8Ob93dHLy07agDohSZP4RYsWYeDAgbCxsYGLiwsmTpyIxMTEm54riiLuu+8+CIKAP/7447bXFUUR77zzDtzd3WFhYYF7770Xly5daofvgKht3OX/lNV/sTMJl/JYVk9EdDsVNfXYfCILADBjkHZH2zauxnNfPBFR65RW1WLOKvU++Pt7umPmYI4gbw+SJvExMTGYM2cOYmNjsXPnTtTV1WH06NGorKy84dwlS5a0uHT/k08+wVdffYXvv/8ecXFxsLKywpgxY1BdXa3tb4GozR7u74W7g5xRq1Rh/u+nWFZPRHQbf5zIQmWtEl2crRDu76DVazfui49JKuCoOSIiDYmiiPm/n0ZW6VX4Olpi0aSe3HrdTtqUxLc1KY6OjsasWbPQo0cP9O7dG8uXL0d6ejqOHz/e7LyTJ0/is88+wy+//HLHa4qiiCVLluCtt97ChAkT0KtXL6xYsQLZ2dl3XMEnkoK6rL6Xuqw+sww/7Ge3eiKimxFFsamhXVS4r9bfHA7ws4elqREKymtwIVeh1WsTEXV2Px9Ixa4LeTA1Vu+DtzXnPvj2onESr1Kp8MEHH8DT0xPW1tZISVEnHG+//Tb++9//timYsjL1bFYHh3/urFdVVWH69On49ttv4ebmdsdrpKamIjc3F/fee2/TMblcjvDwcBw5cuSmn1NTUwOFQtHsQdSR3OTmeKehrP7LXZeQmMuyeiKi653IKMWFHAXMjGWY1M9L69c3MzbCkC7qUXP7EllST0TUUsfTSrA4+iIA4J0HQhDqKZc4os5N4yR+4cKFWL58OT755BOYmpo2HQ8NDcXPP//c6kBUKhXmzZuHoUOHIjQ0tOn4Cy+8gCFDhmDChAktuk5ubi4AwNXVtdlxV1fXpueut2jRIsjl8qaHt7d2Ot0SaWJyfy/cE+yCWqUKL69nWT0R0fVWxapX4cf19oDcsn1WeCIaS+qZxBMRtUhJZS2eW52AepWIcb09EBXuI3VInZ7GSfyKFSvw448/IioqCkZGRk3He/fujYsXL7Y6kDlz5uDs2bNYs2ZN07EtW7Zgz549WLJkSauv2xKvv/46ysrKmh4ZGRnt+vWIbkYQBHz0oLpb/WmW1RMRNVNaVYttp7MBoF3fII5oaG53PL0Eiuq6dvs6RESdgUol4sV1J5FdVg1/Jysseoj74DuCxkl8VlYWunbtesNxlUqFurrWvdjNnTsX27Ztw969e+Hl9U953J49e3D58mXY2dnB2NgYxsbGAIBJkyZhxIgRN71WY8l9Xl5es+N5eXm3LMc3MzODra1tsweRFNzk5nhvXA8AwJJdSSyrJyJqsCEhCzX1KoS426KPt127fR1vB0sEOFtBqRJxiKPmiIhu64f9KdibWACzhn3w1mbGUodkEDRO4kNCQnDgwIEbjq9fvx59+/bV6FqiKGLu3LnYtGkT9uzZA39//2bPv/baazh9+jROnjzZ9ACAL774AsuWLbvpNf39/eHm5obdu3c3HVMoFIiLi8PgwYM1io9ICg/188TIYBfUKUXM//0U6lhWT0QGTt3QLg0AEDXIp91XeThqjojozo5eKcZ//laPB39vfA+EeHAhtKNofKvknXfewb///W9kZWVBpVJh48aNSExMxIoVK7Bt2zaNrjVnzhysXr0amzdvho2NTdOedblcDgsLC7i5ud109dzHx6dZwh8cHIxFixbhwQcfhCAImDdvHhYuXIhu3brB398fb7/9Njw8PDBx4kRNv12iDicIAj56qCdGfR6DM1ll+CHmMube003qsIiIJBObUoyUgkpYmRphQh/Pdv96I4JcsOzQFexLLIAoiiwNJSK6TlFFDZ5bfQJKlYiJfTwwdSB7inUkjVfiJ0yYgK1bt2LXrl2wsrLCO++8gwsXLmDr1q0YNWqURtf67rvvUFZWhhEjRsDd3b3psXbtWo2uk5iY2NTZHgBeeeUVPPfcc3jqqacwcOBAVFRUIDo6Gubm5hpdl0gqrrbmeG+8uqz+y92XcJGjjojIgK1sWIWf2NezQ0o1w/0dYGYsQ66iGkl5Fe3+9YiI9IlKJeKFdaeQq6hGF2crfPgg98F3NEEURVHqIHSNQqGAXC5HWVkZ98eTZERRxJMrjmHXhXyEetpi07NDYWKk8X03IiK9VlBeg8GLdqNeJeKv/xvWYeWas5bFY19iAV6/LxhPR3TpkK9JRKQPvt2bjE93JMLcRIbNc+5CkJuN1CF1Gi3NQ1uVEZSWluLnn3/GG2+8geLiYgBAQkICsrKyWhctEd2gsVu93MIEZ7MU+G7fZalDIiLqcOuOZaBeJaKvj12H7rfkvngiohvFphThs4Z98O9PCGUCLxGNk/jTp08jMDAQixcvxqefforS0lIAwMaNG/H6669rOz4ig+Zia473xocAAL7ecwkXclhWT0SGQ6kS8Vu8ejZ8VLhvh37tEQ3z4o9eKUZFTX2Hfm0iIl1UUF6D//vtBFQiMKmfF6YM4D54qWicxL/44ouYNWsWLl261GyP+dixY7F//36tBkdEwMQ+nri3uyu71RORwdl/qQCZJVdha26MB3q5d+jX9neygq+jJeqUIg4nc9QcERk2pUrEC2tPIr+8Bt1crPHBxB5Sh2TQNE7ijx49iqeffvqG456enk3d5YlIe9Td6kNhZ2mCc9kKLN3LsnoiMgyrYtWr8JP7e8PcxKjDvz5L6omI1L7Zk4yDyYWwMDHC0qh+sDTlPHgpaZzEm5mZQaG4saQ3KSkJzs7OWgmKiJpzsTHHgoZu9V/vuYTz2SyrJ6LOLbv0KvZczAMATA/3kSSGEUHq9zWNo+aIiAzR4eRCLNmdBABYODEU3Vy5D15qGifx48ePx/vvv4+6ujoA6lXC9PR0vPrqq5g0aZLWAyQitfG9PTA6xBX1KpbVE1Hnt+ZoBlQiMCjAAV1drCWJYVCAI0yNZMgqvYrLBZWSxEBEJKX88mr835qTEEVgygAvTOrvJXVIhFYk8Z999hkqKirg4uKCq1evIiIiAl27doWNjQ0+/PDD9oiRiKC+YbbwQXVZ/fkcBb7dmyx1SERE7aJOqcIaiRraXcvS1BjhAQ4AgH2J+ZLFQUQkBaVKxPO/nURhRQ2CXG2wYHyo1CFRA42TeLlcjp07d2Lbtm346quvMHfuXPz111+IiYmBlZVVe8RIRA2uLav/Zk8yzmWXSRwREZH27b6Qj/zyGjhZm2JMDzdJY+G+eCIyVF/uvoQjKUWwNDXCt1H9YGHa8b1J6OY06khQV1cHCwsLnDx5EkOHDsXQoUPbKy4iuoXxvT3w15kc7DiXh/m/n8bmOUNhaqzx/TgiIp21Ki4NADBlgLfkv99GBDlj4Z8XEJdajKu1Sr6JJSKDcOBSAb7ecwkAsOihnpJta6Kb0+iV0cTEBD4+PlAqle0VDxHdgSAIWDixJ+wtTXAhR4FvWFZPRJ1IWlElDlwqhCAA08KkaWh3rS7O1vC0s0BtvQqxKUVSh0NE1O7yFNWY17APflqYDyb08ZQ6JLqOxre333zzTbzxxhsoLi5uj3iIqAWcbcywYIJ6X9LSvck4m8WyeiLqHFY37IWPCHSGt4OlxNGob5xGNHWp5754Iurc6pUqPPfbCRRV1qK7uy3eHRcidUh0Exon8d988w32798PDw8PBAUFoV+/fs0eRNQxxvVyR2QPt6Zu9bX17FZPRPqtpl6J349lApC2od31uC+eiAzFF7uSEJ9aDGszYyyN6gdzE24h0kUa7YkHgIkTJ7ZDGESkqcZu9fFXinExtxzf7LmEF0cHSR0WEVGrRZ/NRXFlLdzl5ri7YfVbFwzt6gQTIwFXiqpwpbASfk5s5EtEnc++xHx8u/cyAODjST3hz991OkvjJP7dd99tjziIqBWcrM3w/oQemLv6BL7ddxmje7gh1FMudVhERK2yKk5dSj91oA+MjXSnYae1mTEG+DrgSEoR9iXmY5aTv9QhERFpVU7ZVbyw9iQA4F+DfPFALw9pA6Lb0p1XSCJqlQd6eWBsTzcoWVZPRHrsUl454lOLYSQT8MhAb6nDuUHjvniW1BNRZ1OnVOG51SdQUlWHUE9bvHl/d6lDojvQOIm3t7eHg4PDDQ9HR0d4enoiIiICy5Yta49YiegW3p8QCgcrU1zMLW8aB0JEpE8aV+Hv7e4CN7m5xNHcaERDEn8kpQjVdZzSQ0Sdx3/+TsSxtBLYmBnj2+ncB68PNE7i33nnHchkMtx///1YsGABFixYgPvvvx8ymQxz5sxBYGAgZs+ejZ9++qk94iWim3CyNsMHjd3q913GmUx2qyci/XG1VokNCbrX0O5aQa42cLM1R3WdCvGpnNBDRJ3D7gt5+CEmBQDwyeRe8HXkPnh9oPGe+IMHD2LhwoV45plnmh3/4Ycf8Pfff2PDhg3o1asXvvrqKzz55JNaC5SIbu/+Xu7464w7/jyTg/m/n8KW54bCzJh3UolI9209lY3y6nr4OFjirq5OUodzU4IgICLQGWuPZWBfYgGGB+pO4z0iotbIKr2Kl34/BQCYNcQP9/V0lzgiaimNV+J37NiBe++994bjI0eOxI4dOwAAY8eORUpKStujIyKNvD+hBxytTJGYV46vdrOsnoj0w6q4NADA9HAfyGSCxNHc2j/74jkvnoj0m3offAJKq+rQ20uO18cGSx0SaUDjJN7BwQFbt2694fjWrVvh4OAAAKisrISNjU3boyMijTham+GDieqy+u9jUnA6s1TagIiI7uBMZhlOZZbBxEjAw/29pA7ntoZ2dYKRTMDlgkpkFFdJHQ4RUat9En0RCemlsDU3xjfT+7F6U89oXE7/9ttvY/bs2di7dy/CwsIAAEePHsVff/2F77//HgCwc+dOREREaDdSak6lBNIOAxV5gLUr4DsEkPE/HwFje7rj/l7u+PO0uqx+63N3tf4XM3/OiKidrY5Xr8LfF+oOR2sziaO5PbmFCfr52OHolRLEJBVgxiDd3L9PRHQ7O8/n4acDqQCATx/uDW8HS4kjIk1pnMQ/+eSTCAkJwTfffIONGzcCAIKCghATE4MhQ4YAAF566SXtRknNnd8CRL8KKLL/OWbrAUQuBkLGSxcX6YwPJoQiLqUISXkV+HLXJbwS2YoSKf6cEVE7U1TXYfNJ9e+YqHAfiaNpmRFBLjh6pQT7EpnEE5H+ySiuwkvrTgIAHr/LH2N6uEkbELVKq+bEDx06FL/99hsSEhKQkJCA3377rSmBp3Z2fguwbmbzxAoAFDnq4+e3SBMX6RQHK1MsbCqrv4xTGaWaXYA/Z0TUATafyEJVrRJdXawR5u8gdTgtEtHQ0O7w5ULU1qskjoaIqOVq61WY+9sJKKrr0cfbDq+2ZpGHdEKrkvjLly/jrbfewvTp05Gfr27usn37dpw7d06rwdF1VEr1yijEmzzZcCz6NfV5ZPAiQ90xrrcHVCIw//dTLZ9rzJ8zIuoAoig2zYaPCveBIOhuQ7trhbjbwsnaDFW1Shy7wlFzRKQ/Fm2/gFMZpZBbmOCb6X1hatyqVJB0gMb/cjExMejZsyfi4uKwYcMGVFRUAABOnTqFd999V+sB0jXSDt+4MtqMCCiy1OcRAVgwvgecrE1xKb8CX7a0Wz1/zoioAySkl+BibjnMTWR4qK9uN7S7lkwmNK3G70sqkDgaIqKWiT6bg2WHrgAAPnu4N7zsuQ9en2mcxL/22mtYuHAhdu7cCVNT06bj99xzD2JjY7UaHF2nIk+751Gnpy6r7wkA+CHmMk62pKyeP2dE1AFWxapX4cf18oDc0kTiaDTTNGoukUk8Eem+9KIqvLz+NADgqeEBuDfEVeKIqK00TuLPnDmDBx988IbjLi4uKCws1EpQdAvWLfwP19LzyCBEhrphvCZl9fw5I6J2VlJZi21ncgAAUXrYHG5YVyfIBCAxrxzZpVelDoeI6JZq6pWYszoB5dX16O9rj5fHBEkdEmmBxkm8nZ0dcnJybjh+4sQJeHp6aiUougXfIeru4LjVvkEBsPVUn0c3UimB1APAmfXqPw1oT7e6rN4MyfkV+GJX0u1P5s8ZEbWzDQmZqK1XIdTTFr295FKHozF7K1P09rYDAOxnST0R6bCP/ryAM1llsLc0wdfT+sLEiPvgOwON/xWnTp2KV199Fbm5uRAEASqVCocOHcL8+fMxc+bM9oiRGsmM1OO9ANyYYDV8HPkx53jfzPktwJJQ4NcHgA2Pq/9cEmowXdbtrUzx4YPqbvU/7U9BQnrJrU/mzxkRtaPmDe189aah3fVGBLoAAPaxpJ6IdNSfp3Pw65E0AMDnj/SBh52FxBGRtmicxH/00UcIDg6Gt7c3KioqEBISguHDh2PIkCF466232iNGulbIeGDKCsDWvflxWw/1cc7vvhHHpQEAxvRww8Q+6rL6l+9UVs+fMyJqJ0cuFyG1sBLWZsYY39tD6nBarXFf/KHkQtQpOWqOiHTLlcJKvLpBvQ9+9oguuDvIReKISJsEURRvNkfqjtLT03H27FlUVFSgb9++6Natm7Zjk4xCoYBcLkdZWRlsbW2lDufmVEp1d/CKPPXeZN8hXBm9GZVSveJ+y27rgjoxnXfGIP7+SqtqMeqL/Sgor8HTwwPw+tjut/8E/pwRkZbNWZWAP8/k4F+DfPHBxFCpw2k1lUrEgA93obiyFmufGoTwAEepQyIiAgBU1ynx0NLDOJ+jQJifA1Y/GQ5jltHrhZbmocat/QI+Pj7w8fFp7adTW8mMAP9hUkeh+zQZl2YAf592lqb46MGeeHLFMfx0IAVjQt3Qz8f+1p/AnzMi0qL88mrsOJcLAJgert/vIWQyAcO6OWHzyWzEJBUwiScinfHBtvM4n6OAo5UpvprWlwl8J9SiJP7FF19s8QU///zzVgdDpHUcl3aDUSGueLCvJzadyML830/hr/8bBnMTrq4TUfv7/Vgm6lUi+vvao7u7jla6aWBEkDM2n8zGvsQCvBIZLHU4RETYfDILq+LSIQjAF4/0gZvcXOqQqB20KIk/ceJEs48TEhJQX1+PoCD1iIKkpCQYGRmhf//+2o+QqC04Lu2m3h0XgoPJhUgpqMTnO5Pwxp3K6omI2kipErG6qaGdfq/CNxrezRmCAJzPUSBfUQ0XW75ZJiLpXC6owBsbzwAA5t7dFcMDnSWOiNpLi2or9u7d2/QYN24cIiIikJmZiYSEBCQkJCAjIwN333037r///vaOl0gzHJd2U3aWplj0YE8AwE8HUnA87Tbd6omItGB/UgGySq/CztIEY3u63/kT9ICjtRl6eqpH5MVw1BwRSai6Tok5qxJQWavEoAAHzLs3UOqQqB1pvEHis88+w6JFi2Bv/88+Wnt7eyxcuBCfffaZVoMjajOOS7ule0Nc8VBfT4gt6VZPRNRGq+LUY44m9/PqVFt4RjSsdO1jEk9EEnpvyzlczC2Hk7UpvpraF0Yy/RzfSS2jcRKvUChQUHDjC1VBQQHKy8u1EhSRVnFc2i29O64HXGzMkFJYif/sSJQ6HCLqpLJKr2LPxXwAwLROUkrfqHHU3MFLhajnqDkiksCmE5lYczQDggB8ObUvt/YYAI270z/44IN49NFH8dlnnyEsLAwAEBcXh5dffhkPPfSQ1gMk0oqQ8UDw/RyXdh25pQkWPdQTj/96DP89lIrIUDcM8HOQOiwi6mTWxKdDJQJDujiii7O11OFoVW8vO8gtTFB2tQ6nMkvR35e/Q4mo4yTnl+ONjWcBAP93TzcM7eokcUTUETReif/+++9x3333Yfr06fD19YWvry+mT5+OyMhILF26tD1iJNKOxnFpPSer/zTwBL7RyO6umNTPS11Wv/40rtayrJ6ItKdOqcKaoxkAgKhwX4mj0T5jIxnu6qZ+0xyTyJJ6Iuo4V2uVmLPqBK7WKTG0qyP+b2Q3qUOiDqJxEm9paYmlS5eiqKgIJ06cwIkTJ1BcXIylS5fCysqqPWIkonb2zrgQuNqaIbWwEv/5m2X1RKQ9u87noaC8Bk7WZhgV0jkngXBfPDXKLKlCQnoJ6ri1gjrAO5vPIjGvHM42ZljyCPfBGxKNy+kbWVlZoVevXtqMhYgkIrcwwccP9cKjy4/il4ay+oEsqyciLVjVMFbukYFeMDXWeO1AL0Q0JPGnM8tQWKG+YUGGp7KmHuO/OYTiylrYmBljaFcnRAQ5IyLQGR52FlKHR53M+uOZ+P14JmQC8NXUvnC24e8dQ9KiV9OHHnoICoWixReNiopCfn5+q4Mioo53d7ALJvf3aupWz7J66ihKlYgjl4uw+WQWjlwuglIlSh0SaUlqYSUOJhdCEICpAztXQ7trudiaI8TdFgBw4BJX4w3VHyezUFxZCwAor6lH9LlcvL7xDIZ8vAejv4jBh3+ex6HkQtTU8/WV2iYprxxv/aGeB//CvYEY3MVR4oioo7VoJX7z5s037Uh/M6IoYuvWrfjggw/g4uLSpuCIqGO9/UAIDl4qxJWiKny6IxHvjAuROiTq5KLP5mDB1vPIKatuOuYuN8e740IQGdo5Zokbst/i1avwIwKd4e1gKXE07WtEkDPO5ygQk1iAB/t6SR0OdTBRFLEyVv3z/vp9wRgU4Ih9iQWIScrHyYxSJOVVICmvAj8dSIWFiRGGdHHEiCBnRAS6wMexc//fIO0QRRHpxVWITSnCDzEpqK5TYVg3J8y5u6vUoZEEWpTEi6KIwMDA9o6FiCQmtzDBokk98eiyo1h2WF1WH+bPsnpqH9FnczB7ZQKuX3fPLavG7JUJ+G5GPybyeqy6Tonfj3XehnbXiwh0xtJ9l7H/UiFUKhEy7k01KAnppbiQo4CpsQxTBnjD3soUvb3t8Py93VBaVYsDlwoRk1SAmKQCFJTXYPfFfOy+mA/gHPydrBAR6IyIIGcMDnCEuQkb75I6/7pSpE7a41KKEJtSjFzFPze8XW3N8MUjffi7xkC1KInfu3evxhf29PTU+HOISHp3B7ng4f5e+P14Jl5Zfwp/PT8Mlqatbp9BdFNKlYgFW8/fkMADgAhAALBg63mMCnFjox49FX02FyVVdfCQm+Pu4M5fmdfP1x42ZsYorqzFmawy9Pa2kzok6kCrYtMAAA/0coe9lWmz5+wsTTGutwfG9faAKIrqio2kAsQkFuB4WglSCyuRWliJ5YevwMxYhvAAR0QEOmNEkDMCnKwgCPwdaAhEUURKYWVD0l6M2JQi5JfXNDvH1EiGPt52CA9wwCMDvdl/w4C16J15REREe8dBRDrkrQdCcKChrP6T6ES8N76H1CFRJxOfWtyshP56IoCcsmrEpxZzr5+eWhWnTmqmhvkYxI0YEyMZhnZ1QvS5XOxLLGASb0BKKmux7UwOAGDGoNtXnQiCgB4ecvTwkOPZEV2hqK7D4eSihqQ+H9ll1difVID9SQX4YBvgZW/RkNC7YHAXR1ib8aZ6ZyGKIpLzKxCbWtyUuBdWXJe0G8vQ19sO4QGOGBTggH4+9qzUIABt6E5PRJ2X3MIEH0/qiVnLjmL54Su4L9QN4QFMpEh78stvncC35jzSLYm55Th6pQRGMgFTB3pLHU6HGRHkrE7ik/Lx/L2c12wo1h/PRG29CiHutuir4c0bW3MTRIa6ITLUrSmpi0kqwL7EAsSnFiOz5CpWxaVjVVw6TIwEDPB1UO+lD3JGkKsNV+n1iEol4lJ+BeJSixCbUoT41GIUVtQ2O8fMWIZ+PvYID3DAoABH9PG2Y9JONyVpEr9o0SJs3LgRFy9ehIWFBYYMGYLFixcjKCio6Zynn34au3btQnZ2NqytrZvOCQ4OvuV1Z82ahV9//bXZsTFjxiA6OrrdvheizmZEkAseGeCNtccy8OK6U9j07BC42JpLHRZ1Ei42LftZaul5pFtWN6zCjw5xNajfGxFB6lFzpzJKUVJZe0NZNXU+KpXYVHUyY5Bvm5JqQRDQzdUG3Vxt8MSwAFTV1iM2pQj7EtVJfXpxFY6kFOFIShEWbb8IN1vzpr30Q7s6QW5hoq1vi7RApRKRmFfetJ89/kpx0/SCRuYmMvT3tUe4vyMGBTiit7ccZsZM2unOJE3iY2JiMGfOHAwcOBD19fV44403MHr0aJw/fx5WVlYAgP79+yMqKgo+Pj4oLi7Ge++9h9GjRyM1NRVGRrf+IY+MjMSyZcuaPjYz454RIk29+UB3xKUW4UpRFf697CjWPj0ItuZ8k0BtF+bvAHe5OXLLqm+6L14A4CY3Z2NFPVRVW4+NCVkADKOh3bXc5RYIcrVBYl45DiQXYnxvD6lDonZ26LJ665m1mTEm9NHuv7elqTHuCXbFPcGuAIArhZXYl5iPmKQCHEkpQq6iGmuPZWDtsQwYyQT087FTJ/WBLujhYcuGZx1MpRJxIVfRtJ89/koxSqvqmp1jYWKEAX72CPdXr7T38rKDqXGLJn4TNSOIoqgzA3kLCgrg4uKCmJgYDB8+/KbnnD59Gr1790ZycjK6dOly03NmzZqF0tJS/PHHH62KQ6FQQC6Xo6ysDLa2tq26BlFnkV5UhYe+O4zCihoMCnDA8kfDWNpFWtHYnR5As0S+8W0nu9Prp7VH0/HqhjPwc7TEnpdGGFwi8dFfF/Dj/hRM6ueFz6b0ljocamdP/+8YdpzLw8zBvnh/QmiHfd3qOiXiU4ubOt4n51c0e97J2hTDu6lX6Yd1c4YDq0K0TqkScSFHgdiGlfajV4pRdrV50m5paoQBfg5NSXtPTzmTdrqtluahrVqJr6+vx759+3D58mVMnz4dNjY2yM7Ohq2tLaytrVsddFlZGQDAweHmKy+VlZVYtmwZ/P394e19+z12+/btg4uLC+zt7XHPPfdg4cKFcHS8+Z7empoa1NT800hCoVC08jsg6nx8HC2x/NGBmPpjLGJTivHiupP4elo/g2hURe0rMtQd383od8OceDfOiddrq+LUs7Knh/sYXAIPACMCnfHj/hTEJBVw1Fwnl1tWjV0X8gHcuaGdtpmbGGF4oDOGBzrjbQAZxVXYf0nd8f5QciEKK2qx8UQWNp7IgiAAvbzsmjre9/ay42t4K9QrVTif03ylvby6vtk5VqZGGOjv0FAe74BQTzlMjJi0k/ZpvBKflpaGyMhIpKeno6amBklJSQgICMDzzz+PmpoafP/9960KRKVSYfz48SgtLcXBgwebPbd06VK88sorqKysRFBQEP78889brsIDwJo1a2BpaQl/f39cvnwZb7zxBqytrXHkyJGbluC/9957WLBgwQ3HuRJP9I/DyYWYtewoapUqzBzsiwXje7ChDmmFUiUiPrUY+eXVcLFRl9DzDaZ+Op1ZivHfHIKpkQyxb4w0yNW/mnol+r6/E1W1Smx77i6EesqlDonayRc7k/Dl7ksI83PAumcGSx1Ok9p6FY6nlTQ0yMvHxdzyZs/LLUwwrJsTRgS5YHigE3uP3EK9UoWz2YqGPe1FOHalBOU1zZN2GzPjhqRdvdLew8MWxkzaqQ1auhKvcRI/ceJE2NjY4L///S8cHR1x6tQpBAQEYN++fXjyySdx6dKlVgU8e/ZsbN++HQcPHoSXl1ez58rKypCfn4+cnBz85z//QVZWFg4dOgRz85b90klJSUGXLl2wa9cujBw58obnb7YS7+3tzSSe6DrbTmfjud9OQBSBl0YF4rmR7L5MRP94bcNprDmagYl9PLBkal+pw5HME78ew64LeXh5TBDm3N1V6nCoHdQpVbhr8R7kKWrw5dQ+mNDHU+qQbilPUd00l/7ApQIorls9DnG3VXe8D3RGP197g105rlOqcCarrGml/diVYlTWKpudY2NujPCmlXZHhHjY8qYzaVW7ldMfOHAAhw8fhqlp87vrfn5+yMrK0jxSAHPnzsW2bduwf//+GxJ4AJDL5ZDL5ejWrRsGDRoEe3t7bNq0CdOmTWvR9QMCAuDk5ITk5OSbJvFmZmZsfEfUAg/08kBheQ3e23oen+1MgrONGaaG+UgdFhHpAEV1HTafzAYARHVwabGuGRHkjF0X8hCTWMAkvpPafSEPeYoaOFqZIjLUTepwbsvV1hxTBnhjygBv1CtVOJVZin2J6r30pzPLcD5HgfM5Cizddxk2ZsYY2tUJEQ1JvYedhdTht5vaehXOZJUitiFpP55Wgqrrkna5hQnCrllp7+7OpJ10g8ZJvEqlglKpvOF4ZmYmbGxsNLqWKIp47rnnsGnTJuzbtw/+/v4t+hxRFJutnN9JZmYmioqK4O7O/ZVEbTVrqD8KKmrw7d7LeGPTGTham2FUiKvUYRGRxP44kYWrdUoEulpjgK+91OFIKiJQPWrueHoJyq7W6efoL5USSDsMVOQB1q6A7xBAxqamjVbGqns/TBnorVcjwYyNZOjv64D+vg54aXQQCitqcKBhL/3+S4UorqxF9LlcRJ/LBQAEulo37KV3wQA/e736Xq9XU6/E6cyyppFvx9NKcLWueU5jZ2nSbKU92M1G5/pacAsaAa1I4kePHo0lS5bgxx9/BKCeaVlRUYF3330XY8eO1ehac+bMwerVq7F582bY2NggN1f9C0Mul8PCwgIpKSlYu3YtRo8eDWdnZ2RmZuLjjz+GhYVFs68VHByMRYsW4cEHH0RFRQUWLFiASZMmwc3NDZcvX8Yrr7yCrl27YsyYMZp+u0R0E/NHB6GgvAbrjmVi7uoErHoiHAP8OAqMyFCJoohVDUlNVHjbZmV3Bt4OlujibIXLBZU4nFyI+3rq2SLC+S1A9KuAIvufY7YeQORiIGS8dHHpiNTCShxMLoQgANP1vBrNydoMD/b1woN9vaBSiTiTVdbU8f5EegmS8iqQlFeBnw6kwsLECEO6ODaU3rvAx9FS6vBvq6ZeiZPppYhLVa+0J6SXoLpO1ewcByvThqTdAYO6OCLQRfeS9mtFn825oRmsO5vBGiSN98RnZGQgMjISoiji0qVLGDBgAC5dugQnJyfs378fLi4uLf/it3iRX7ZsGWbNmoXs7Gw88cQTOH78OEpKSuDq6orhw4fjnXfeQVBQULPrNH7O1atXMXHiRJw4cQKlpaXw8PDA6NGj8cEHH8DVtWWrhRwxR3Rn9UoVnv7fcey+mA9bc2Osnz0Ega6aVeMQUedw9EoxHv7+CCxMjBD35kjYmuvhyrOWvb/1PH45lIpHBnhj8eReUofTcue3AOtmovngR6Bp+OOUFQafyC/cdh4/H0zFiCBnLH80TOpw2k1pVS0OJhcipqH0Pr+8eRWsv5OVei59kDMG+TvCwlTaVfrqOiVOpJciNqUIcalFSEgvRW1986Td0coUgwIcER6gLo/v6myt00n7tRrHst7ifybHsnYS7dbYDlCPmFu7di1OnTqFiooK9OvXD1FRUbCw6Bz7ZpjEE7XM1Volon6ORUJ6Kdzl5tgwe0in3j9HRDc3b80J/HEyW/8S1na0P6kAM3+Jh5utOY68fo9+VCeolMCS0OYr8M0I6hX5eWcMtrS+uk6J8I92o+xqHX6eOQD3Gsh2MlEUcSGnvKnj/fG0EtSr/kkhzIxlCA9wVCf1gc7o4mzV7j/z1XVKJKSVILZhpf1kxo1Ju5O1GQYFOCA8wBGDAxzQxdlaP/4vXkepEnHX4j3NVuCvJUA9nvXgq/ewtF7PtUtju7q6OgQHB2Pbtm2IiopCVFRUmwMlIv1lYWqEX2YNxOTvjyA5vwIzf4nH+mcGw87S8MZKERmq4spa/HVGvR0uapB+lxZrU5i/A8xNZMhVVCMxrxzBbnqwKJB2+DYJPACIgCJLfZ7/sA4LS5dsO52Dsqt18LSzwN3BLa8+1XeCICDEwxYhHraYPaILyqvrcPhykbpBXmI+ssuqsT+pAPuTCvABAC97i6aEfkhXJ1ibabyD9wZVtfVISCtFXKp65NupjDLUKpsn7S42Zs1W2gOc2v9mQkeITy2+ZQIPqOtmcsqqEZ9ajMFdHDsuMJKMRv+jTExMUF196x8gIjI8dpamWPFYGB5aehjJ+RV4bPlRrHpikORldUTUMdYfz0CtUoWennL08rKTOhydYW5ihMEBjtibWIB9iQX6kcRX5Gn3vE5oZWwaAGBamLdBr3jamJtgTA83jOnhBlEUcbmgoqnjfVxKMTJLrmJVXDpWxaXDxEjAAF8HRAQ5Y0SQM4JcbVqUWFfW1ON4WklD0l6M05mlqFM2LyB2szVvWmkfFOAIP0fLTpG0Xy+/vGX5V0vPI/2n8W2xOXPmYPHixfj5559hbNz2u2pEpP887Cyw4vEwTP7uMBLSSzF3dQJ++Fd/GBvorFkiQ6FSiVgd19jQjqvw14sIdMbeRHXn72ciukgdzp1Zt7A0vKXndTJns8pwMqMUxjIBUwZ6Sx2OzhAEAV1dbNDVxQZPDAtAVW09YlOKEJNYgH1JBUgrqsKRlCIcSSnCx9svwtXWrKnj/dCuTk3TGypq6nHsSjFiU4oRl1qEM5llzUr2AcBDbt5spd3HoXMm7ddzsTHX6nmk/zTOwo8ePYrdu3fj77//Rs+ePWFlZdXs+Y0bN2otOCLSH4GuNvhl1kBE/RyH3Rfz8camM1g8qZdBvLgSGarDl4twpagKNmbGGNfbQ+pwdM6IIBdg63kcSytGRU29VkqK25XvEPWed0UObmxsBzTtifcd0tGR6YRVDTesxoS6MVm6DUtTY9wT7Ip7gtU3e64UVjbtpT+SUoQ8hXq6zbpjmTCSCejrbYc6lYizWWVQXpe0e9pZNCXtgwMc4WVvYZDvK8L8HeAuN0duWfWt/mfCTa4eN0eGQeNXEzs7O0yaNKk9YiEiHaPpLNIBfg74Zno/PP2/Y1h3LBPONmZ4eUxwB0ZMRB1pVZy6tPjBfp6w0vUEVQJ+TlbwdbREWlEVDicXYnQPN6lDuj2ZkXqM3LqZUKcF16YLDb/7Iz82yKZ25dV12HwyCwAwI9xX4mj0i5+TFfycrPDvIX6orlPi6JXiptL75PwKHEsraTrX28GiaUZ7uL8DvB10e4xdRzGSCXh3XAhmr0y41f9MvDsuxKC3eBiaVnWn7+zYnZ6obbNI18Sn47WNZwAA740Lwayh/u0aKxF1vDxFNYZ8vAdKlYgd84YjyI0jJm/m3c1n8euRNEwP98FHD/aUOpyWuemceE91Am+g4+VWHLmCdzafQ1cXa+x8YbhBrga3h8ySKhxOLoKxkYDwAEd4csLNbXFOfOfXLt3picgw3GoWaW5ZNWavTLjjLNKpYT4oKK/BZzuTsGDbeTjZmOGBXiy1JepM1h3NgFIlYqCfPRP42xgR5IJfj6QhJrEAoijqR/IXMh4Ivl/dhb4iT70H3neIQa7AA+rxao0N7aLCffTj31BPeNlbYspArra3VGSoO0aFuGlUJUmdk8ZJvL+//21/eaWkpLQpICKSllIlYsHW8zfdcyVCXba1YOt5jApxu+2Lxtx7uqKgogYrjqThxbWn4GBpiiFdndorbCLqQEqViN/iGxvasbT4dgYFOMLUWIas0qu4XFCBri56csNDZmSwY+Sud/RKCZLyKmBhYoSH+nlJHQ4ZOCOZwDFypHkSP2/evGYf19XV4cSJE4iOjsbLL7+srbiISCLamkUqCALeHdcDhRU1+OtMLp7633GseWoQQj3l7RA1EXWkfQ1zoe0tTRAZquP7vCVmYWqEcH8HHLhUiH2JBfqTxFOTxlX48b09mjqpExFJSeMk/vnnn7/p8W+//RbHjh1rc0BEJC1tziI1kgn4fEofFFfGIzalGLOWHcXG2UPg48jSOSJ91til++EB3jA3McwSa01EBDrjwKVCxCQV4IlhAVKHQxoorKjB9rM5AIAZg1h1QkS6QWtDnO+77z5s2LBBW5cjIoloexapuYkRfpw5AN3dbVFYUYOZv8ShsKKmLSESkYQyS6qwNzEfADAtjLPhW2JEkAsAIC6lGFW19RJHQ5pYdywDdUoRvb3k6OnFSjIi0g1aS+LXr18PBwfOJiTSd42zSG+1212AuhOqJrNIbc1N8OujA+Flb4ErRVV4dNlRVNTwjSyRPloTnwFRBO7q6gR/Jyupw9ELXZyt4GlngVqlCrEpRVKHQy2kVIlY3VB1EsVVeCLSIRon8X379kW/fv2aHn379oW7uzveeOMNvPHGG+0RIxF1oMZZpABuSOTbMovUxdYcKx4Lg4OVKc5kleGZ/x1Hbb2q7QETUYepU6qw5mgGAHWXbmoZQRAwIsgZALAvsUDiaKil9icVILPkKmzNjTGOE1aISIdovCd+woQJzbrTy2QyODs7Y8SIEQgODtZqcEQkjchQd3w3o98Ns0jd2jiLNMDZGstmDcS0n2JxMLkQ838/hSWP9IGMo1GI9MLO83korKiBs40Z7g1xlTocvRIR6IxVcemISWISry8aG9pN7u8NC1P2fiAi3aFxEv/ee++1QxhEpGvaaxZpb287fDejPx5ffhRbTmXDydoMbz/QnXN3ifTAqjh1UjN1oDdMjLS2I88gDOnqBBMjAWlFVUgtrORWBB2XWVKFPQ29H6az6oSIdIzGr8BGRkbIz8+/4XhRURGMjHiXkqgzaZxFOqGPJwZ3cWxzAt8oItAZ/3m4NwDgl0Op+GF/ilauS0TtJ6WgAoeSiyATgKlsaKcxazNjDPRT9xKJSbzxfRTplt/i0yGKwOAAR3R1sZY6HCKiZjRO4kVRvOnxmpoamJqatjkgIjIME/t64s2x3QEAH2+/iA3HMyWOiEg/KFUijlwuwuaTWThyuQhK1c1fl7Xtt3h1g6+7g1zgaWfRIV+zs4kIbNgXz5J6nVZbr8Laht4PHCtHRLqoxeX0X331FQB1c5aff/4Z1tb/3JVUKpXYv38/98QTkUaeHB6Agooa/Lg/Ba9sOA0HK1PcHewidVhEOiv6bM4NvSrc29iroiWq65T4veFGW9QgrsK31oggFyzafhGxKUWorlPC3IQVjLpox7lcFFbUwtnGDKN7sPcDEemeFifxX3zxBQD1Svz333/frHTe1NQUfn5++P7777UfIRF1aq9FBqOgvAabTmTh2VUJWP1kOPr62EsdFpHOiT6bg9krE3D9untuWTVmr0zAdzP6tVsi/9eZHJRW1cHTzgIRgbzR1lqBrtZwszVHrqIacanFTSvzpFvY+4GIdF2Lk/jU1FQAwN13342NGzfC3p5vsomo7WQyAZ9M7oWiylrsTyrAY8uP4vdnhnAPItE1lCoRC7aevyGBBwAR6vGPC7aex6gQN631rrjWqoZZ2dPCvNvl+oaicdTcmqMZ2JeYzyReByXnlyM2pRgyAZjG3g9EpKM0vr24d+9eJvBEpFUmRjJ8F9UPvb3kKKmqw79/iUfuNeXCRIYuPrW4WQn99UQAOWXViE8t1vrXvpCjwPG0EhjLBEwZ4K316xuaxsSdo+Z008pY9Q2re4Jd4cHeD0SkozQeMQcAmZmZ2LJlC9LT01FbW9vsuc8//1wrgRGRYbEyM8YvswZi8vdHkFpYiX//Eo91zwyG3MJE6tCIJJdf3rKbWi09TxOrG1bhR/dwhYutudavb2iGdnOCkUxASkElMoqr4O1gKXVI1KCqth4bEtS9H2a0pveDSgmkHQYq8gBrV8B3CCBj3wMiqSlVotZHJktN4yR+9+7dGD9+PAICAnDx4kWEhobiypUrEEUR/fr1a48YichAOFqbYcVjYXjou8NIzCvHk78ew4rHw/Sq+VNnfKEg6bnYtCx5bul5LVVZU49NJ7IAAFHh7NKtDbbmJujvY4/4K8XYl1SAf7H7uc7Yeiob5dX18HGwxPBuGm51OL8FiH4VUGT/c8zWA4hcDISM126gRNRiUjWEbW8al9O//vrrmD9/Ps6cOQNzc3Ns2LABGRkZiIiIwMMPP9weMRKRAfF2sMSvj4bBxswY8VeK8fyaEx02Qqutos/m4K7FezDtp1g8v+Ykpv0Ui7sW70H02RypQyM9F+bvAHe5OW51O0iA+k1JmL+DVr/ullPZqKiph7+TFQYHOGr12oYsIqihpJ7z4nVKYyn99HAfyDS5+Xp+C7BuZvMEHgAUOerj57doMUoiaqnGhrDXb0drbAirz+/PNE7iL1y4gJkzZwIAjI2NcfXqVVhbW+P999/H4sWLtR4gERmeEA9b/DhzAEyNZNhxLg9vbz4LUdTtRL4zv1CQ9IxkAt4dFwIANyTyjR+/Oy5Eq1UfoihiZay6S/f0MA2TGrqtxn3xhy8XoaZeKXE0BACnMkpxJqsMpkYyPNzfq+WfqFKqV+Bv2XYSQPRr6vOIqMPcqSEsoG4Iqy8LRdfTOIm3srJq2gfv7u6Oy5cvNz1XWFiovciIyKAN7uKIJVP7QBDUe3K/3H1J6pBuqbO/UJBuiAx1x3cz+sFN3rxk3k1u3i7j5U5nluFctgKmxjJM1iSpoTvq4WELZxszVNUqcexKidThENB0w2psTzc4Wpu1/BPTDt+4At+MCCiy1OcRUYeRsiFsR9B4T/ygQYNw8OBBdO/eHWPHjsVLL72EM2fOYOPGjRg0aFB7xEhEBmpsT3e8PyEUb/9xFkt2XYKTtRlm6OD+UU1eKAZ3YUkytV5kqDtGhbh1SN+FxlnZD/R0h72Vqdavb8gEQUBEoDPWH89ETFIBhnZ1kjokg1ZWVYetp9WJuMavMRV52j2PiLRCyoawHUHjJP7zzz9HRUUFAGDBggWoqKjA2rVr0a1bN3amJyKt+9cgXxQoqvHVnmS8s/ksnKzNEBnqJnVYzXT2FwrSLUYyod1vBpVdrcOWU+qkJqo1XbrpjhqT+H2J+XhjbHepwzFo6xMyUV2nQrCbDfr7ajhG2dpVu+cRkVZI1RC2o2hUTq9UKpGZmQkfH/ULupWVFb7//nucPn0aGzZsgK+v7q2QEZH+e2FUIKaFeUMlAv+35gTiUoqkDqmZzv5CQYZn0zVJTT8fDZMaapFh3ZwgE4CkvApkl16VOhyDJYpiU9VJ1CBfCIJmVS1K78HIgyNutVtKJQK5cITSe3BbQyUiDUjVELajaJTEGxkZYfTo0Sgp4f4tIuo4giDggwmhGBXiitp6FZ5YcQwXcxVSh9Wks79QkGFRJzXqLt1R4T4aJzXUMnaWpujjbQcAiEkqkDYYA3bkchFSCiphZWqEB/t6avz58WlleKf2XwBwQyLf+PG7tf9CfFpZW0MlIg1I0RC2I2nc2C40NBQpKSntEQsR0S0ZG8nw9bS+GOhnj/Lqevz7l3hkllRJHRaAzv9CQYbl6JUSXMqvgKWpESa2IqmhlhsR5AIA2MdRc5JZ2bAKP6GvJ6zNNN5livzyauxQhWF23TzkovmN2lw4YnbdPOxQhXE7FZEEOrohbEfS+LfVwoULMX/+fHzwwQfo378/rKysmj1va2urteCIiK5lbmKEn2cOxMM/HEZSXgVm/hKP9c8MgYMONN1qfKFYsPV8syZ3bnJzvDsuRK9fKMiwNJYWT+jjARtzE4mj6dwiAp3x+c4kHEouQp1SBRMjjddWqA3yFdX4+5y64dyM8NZtCW3cJrVDFYadNQMQJrsIF5QiH3aIVwVD1bBexu1URNLoyIawHUnjJH7s2LEAgPHjxzcrsRNFEYIgQKnkHEwiaj9ySxP8+lgYJi09jJSCSjy6/Ch+ezIclqaar6BoW2d9oSDDUVRRg+1ncgEA08PY56a99fSUw8HKFMWVtTieVoJBAZxe0ZHWHM1AvUpEPx87hHi0bhGqcTtVblk1VJAhVhXS7HkB6pu53E5FJJ2OaAjb0TR+17t37972iIOIqMXc5RZY8XgYJn9/BKcySvHsqgT8NHOATqxidcYXCjIc649nolapQm8vOXp6yaUOp9OTyQQM7+aEP05mIyapgEl8B6pXqvBbvLr3Q1tGlzZup5q9MgEC1CNFG3E7FbULlRJIO6weW2jtCvgOAWRGUkdFHUzjJD4iIqI94iAi0khXFxv8998DEfVzLPYlFuDVDafx2cO92YSLqJVUKhGr4xsb2nEVvqOMCHLBHyez1b/HIoOlDsdg7E0sQE5ZNewtTTC2Z9u2O3E7FXWY81uA6FcBRfY/x2w9gMjFQMh46eKiDteq+tMDBw7ghx9+QEpKCn7//Xd4enrif//7H/z9/XHXXXdpO0Yiopvq72uPb6f3w1P/O46NCVlwtjHD6/dx3jJRaxy6XIi0oirYmBvjgd5MOjrKsG5OEATgQo4CeYpquNpy73RHWBmr7v3w8ABvmJu0fRWT26mo3Z3fAqybieb1HgAUOerjU1YwkTcgGteebtiwAWPGjIGFhQUSEhJQU1MDACgrK8NHH32k9QCJiG5nZHdXLHqoJwDgh5gU/PdgqsQREemnxqRmUj8vnegxoVUqJZB6ADizXv2nSnf69zham6GXp3rrAkfNdYz0oirsv6T+u54e5qO16zZup5rQxxODuzgygSftUSnVK/DXJ/DAP8eiX9Op323UvjRO4hcuXIjvv/8eP/30E0xM/ulaO3ToUCQkJGg1OCKilpgywBsvjwkCAHyw7Tw2n8ySOCIi/ZJbVo1dF9RjzqaHay+p0QnntwBLQoFfHwA2PK7+c0mo+riOiGgYNcckvmOsik+DKKqrIPycrO78CURSSzvcvIT+BiKgyFKfRwZB4yQ+MTERw4cPv+G4XC5HaWmpNmIiItLYsyO6YNYQPwDA/N9P4cAlvhkmaqm1RzOgVIkI83NAoKuN1OFoT2P56fVvfhvLT3UkkY8IdAYAHEgqQL1SJXE0nVtNvRK/H8sE0LaGdkQdqiJPu+eR3tM4iXdzc0NycvINxw8ePIiAgACtBEVEpClBEPDOAyF4oJc76pQinvnfcZzJLJM6LCKdV69UYc3RhoZ2gzrRKrwelZ/28baD3MIEiup6nMoslTqcTm37mVwUV9bCXW6OkcEuUodD1DLWrto9j/Sexkn8k08+ieeffx5xcXEQBAHZ2dlYtWoV5s+fj9mzZ7dHjERELSKTCfhsSm8M7eqIylolZi2LR2phpdRhEem0xi7dDlamiAx1kzoc7dGj8lMjmYBh3ZwAAPsSWUXUnhp7P0wd6ANjHRhLStQivkPUXehxqz4LAmDrqT6PDILGv71ee+01TJ8+HSNHjkRFRQWGDx+OJ554Ak8//TSee+659oiRiKjFzIyN8P2M/ujhYYuiylrM/CUO+eXVd/5EIgO1Kq6hS3d/L5gZd6JZw3pWfjqiYV88k/j2czFXgWNpJTCSCZga5i11OEQtJzNSj5EDcGMi3/Bx5MecF29ANE7iBUHAm2++ieLiYpw9exaxsbEoKCjABx980B7xERFpzMbcBMsfDYOPgyUyiq9i1i9HUV5dJ3VYRDono7iqqZnaNC126dYJelZ+OjxQvRJ/JqsMhRU1EkfTOTWuwo8OceUoP9I/IePVY+RsrxsBauvB8XIGqNV1RKamprCxsYG7uzusra21GRMRUZs525hhxWNhcLI2xfkcBZ7+33HU1Eu/95VIl/wWn955u3TrWfmpi405enjYAgD2s0u91lXU1GNTgnpyCRvakd4KGQ/MOwv8exsw6b/qP+edYQJvgDRO4uvr6/H2229DLpfDz88Pfn5+kMvleOutt1BXx5UuItIdfk5WWDYrDFamRjh8uQgvrjsFlepmTa6IDE9tvQrrjmUAAKLCO2FSo4flp41d6nVh1JxSJeLI5SJsPpmFI5eLoNTz351/nMhCZa0SAU5WGNLFUepwiFpPZgT4DwN6Tlb/qUO/w6jjGGv6Cc899xw2btyITz75BIMHDwYAHDlyBO+99x6Kiorw3XffaT1IupEoiqiqqpI6DCKdF2BvjCWTuuOZlcex9Vgq5MZKvDG2OwThVqtzRIZh+5kc5Bcr4GJrikE+Vqis7IRNIH1HAg/8COx8GyjP+ee4jTsw6n318zr0fYd7W+Gb2mrsPZsBRXk3GMmk+T2181wuPtp+Abll/5T1u8nN8MZ93TGqh/41PxRFEctjLkJVW41JvXz5/onIgFlaWnaO94CihmxtbcW//vrrhuN//vmnaGtrq9G1PvroI3HAgAGitbW16OzsLE6YMEG8ePFis3OeeuopMSAgQDQ3NxednJzE8ePHixcuXLjtdVUqlfj222+Lbm5uorm5uThy5EgxKSmpxXGVlZWJAMSysjKNvp+OVFFRIUI9I4cPPvjggw8++OCDDz744IOPOzwqKiqkTuNuq6V5qMbl9GZmZvDz87vhuL+/P0xNTTW6VkxMDObMmYPY2Fjs3LkTdXV1GD16dLPVgP79+2PZsmW4cOECduzYAVEUMXr0aCiVt97b+sknn+Crr77C999/j7i4OFhZWWHMmDGormaHaiIiIiIiItJfgiiKoiaf8P777+PixYtYtmwZzMzMAAA1NTV4/PHH0a1bN7z77rutDqagoAAuLi6IiYnB8OHDb3rO6dOn0bt3byQnJ6NLly43PC+KIjw8PPDSSy9h/vz5AICysjK4urpi+fLlmDp16h3jUCgUkMvlKCsrg62tbau/n/YkspyeqFU++zsRPx9IhZFMwNfT+uDuYN3oTE3UkT7efgG/Hk7D3cEuWBrVT+pw6Brrj2fg7T/Oobe3HGueGtyhXzsupQizlh2943nLHx2I8AD92FdeXFmLuz/dh1qlCmueCkdvb3upQyIiCel6OX1L81CN98SfOHECu3fvhpeXF3r37g0AOHXqFGprazFy5Eg89NBDTedu3LhRo2uXlZUBABwcHG76fGVlJZYtWwZ/f394e998vmdqaipyc3Nx7733Nh2Ty+UIDw/HkSNHbprE19TUoKbmn31fCoVCo7ilIAgCrKw6WSdhog7w9sS+KKszwoaETMz/IxGrnrBDf9+b/84h6oyq65TYcq4YMlNzzIoI4muJjhnd2xfv/nUZZ/NrUAsT2FtpVuXYFuXKUshM7zx6rVxppDc/N6uO56LeyBQ9vW0xOMhTp9+8ExG1lMZJvJ2dHSZNmtTs2K0Sak2oVCrMmzcPQ4cORWhoaLPnli5dildeeQWVlZUICgrCzp07b1m6n5ubCwBwdW2+uubq6tr03PUWLVqEBQsWtPl7ICLdJwgCPp7UE8WVNdibWIDHlh/D+mcGo5urjdShEXWIP0/noOxqHbzsLTC8m7PU4dB13OUWCHazwcXcchxILsT43h4d9rVdbFo2O72l50lNpRKxKi4dgHqsHBN4IuosNE7ily1b1h5xYM6cOTh79iwOHjx4w3NRUVEYNWoUcnJy8J///AdTpkzBoUOHYG6unReR119/HS+++GLTxwqFQis3JohIN5kYyfBtVD9M/ykOJzNKMfOXeGx8dgjc5RZSh0bU7lbFpQEApoX5SNb9nG4vItAZF3PLsS8xv0OT+DB/B7jLzZFbVo2b7bUUALjJzRHmrx/VSweTC5FWVAUbM2NM6NNxf49ERO1N48Z27WHu3LnYtm0b9u7dCy8vrxuel8vl6NatG4YPH47169fj4sWL2LRp002v5eamHn2Sl5fX7HheXl7Tc9czMzODra1tswcRdW6Wpsb4ZdZABDhbIaesGjP/G4/SqlqpwyJqV+ezFUhIL4WxTMCUAYZzs1rfZp5HBKkrJPYnFUDVgbEayQS8Oy4EgDphv1bjx++OC9Gbmz8rY9U3rB7q5wlLU43XrYiIdJbGSXxRURHmzJmDkJAQODk5wcHBodlDE6IoYu7cudi0aRP27NkDf3//Fn2OKIrN9rBfy9/fH25ubti9e3fTMYVCgbi4uKa59kREAOBgZYoVj4XB1dYMl/Ir8MSvx1Bdd+vJF0T6bnW8OqkZE+oGZxsziaPpGNFnc3DX4j2Y9lMsnl9zEtN+isVdi/cg+mzOnT9ZIgN8HWBlaoTCilqcz+nYPj2Roe74bkY/uMmbVzu6yc3x3Yx+iAx179B4Wiun7Cp2XVAv6EQN8pU4GiIi7dL4tuS//vUvJCcn4/HHH4erq2ub9hfNmTMHq1evxubNm2FjY9O0Z10ul8PCwgIpKSlYu3YtRo8eDWdnZ2RmZuLjjz+GhYUFxo4d23Sd4OBgLFq0CA8++CAEQcC8efOwcOFCdOvWDf7+/nj77bfh4eGBiRMntjpWIuqcvOwt8etjYXj4+yM4llaCuatP4PsZ/WBspBOFSkRaU1FTj00JWQCAqHAfiaPpGNFnczB7ZcINpeG5ZdWYvTJBZ5NSU2MZhnR1ws7zediXmI9QT3mHfv3IUHeMCnFDfGox8sur4WKjLqHXlxV4APgtPgMqUb1FIJA9T4iok9E4iT9w4AAOHjzY1Jm+Lb777jsAwIgRI5odX7ZsGWbNmgVzc3McOHAAS5YsQUlJCVxdXTF8+HAcPnwYLi4uTecnJiY2dbYH0NQE76mnnkJpaSnuuusuREdHa20PPRF1LsFutvh55gD865d47LqQh7f+OItFD/VkEyTqVDafzEJlrRIBTlYYrCfjwdpCqRKxYOv5m+7tFqEuD1+w9TxGhbjpZHI6IsgZO8/nISapAHPv6dbhX99IJmBwF/38OalTqrAm/p+GdkREnY3GSXxwcDCuXr2qlS9+pxH1Hh4e+OuvvzS+jiAIeP/99/H++++3KT4iMhzhAY74elpfzF55HGuOZsDZxgwvjQ6SOiwirRBFEStj1UnN9HAfg7hBFZ9ajJyy6ls+LwLIKatGfGqxTiarEYHqffEJ6aUou1oHuYWJxBHpj13n85BfXgMna1NE9rh5PyQiIn2mcb3o0qVL8eabbyImJgZFRUVQKBTNHkRE+mpMDzcsnNgTAPD1nmT878gVaQMi0pKTGaW4kKOAqbEMk/vf2EC2M8ovv3UC35rzOpqXvSW6ulhDqRJxKLlQ6nD0ysqGCQxTBnjD1Jhbo4io82nVnHiFQoF77rmn2XFRFCEIApRKNoUi3aRUiXq9v486xvRwH+SXV2PJrkt4Z8s5OFqbYWxP3dszS6SJxlnZD/Ryh52lqcTRdIzOMPM8ItAZyfkV2JeYz99DLZRSUIFDyUUQBPUYRSKizkjjJD4qKgomJiZYvXp1mxvbEXWU6LM5WLD1fLPSSne5Od4dF6KTTY1IWs+P7IaC8hqsikvHvDUnYWdpgiFdnKQOi6hVyqrqsPVUNgAgKtxw9gd3hpnnI4Kc8d+DqYhJKmhaLKHba7xhdXeQC7wdLCWOhoiofWicxJ89exYnTpxAUBD3ipJ+0NfuxCQdQRDw/oRQFFXUIvpcLp5ecRxrnx6MEA9bqUMj0tiGhEzU1KsQ7GaDfj52UofTYRpnns9emQABaPYaoC8zzwf6OcDCxAh5ihpczC1Hd3f+Drqd6jol1h/PBADMGMRVeCLqvDTeKDRgwABkZGS0RyxEWnen7sSAujuxUnX7JotkeIxkApZM7YMwfweU19Tj38vikVFcJXVYRBoRRRGrGvYHRw3yNbiVXH2feW5uYtTUdG9fYoHE0ei+raeyUXa1Dp52FogIdLnzJxAR6SmNV+Kfe+45PP/883j55ZfRs2dPmJg075baq1cvrQVH1Fb63p2YpGVuYoSfZg7AIz8cwcXccsz8JR7rnxkMR2szqUMjapG41GJcLqiEpakRJvbxkDocSej7zPOIQGfsuZiPmKR8zB7RRepwdNrKuH8mMOjLvy8RUWtonMQ/8sgjAIDHHnus6ZggCGxsRzpJ37sTk/TkFib49bEwPLT0MFILK/HY8qNY/eQgWJlp/OuTqMM17g+e2NcTNuaGO6JMn2eejwhSj5o7dqUE5dV1Bv3veDtns8pwKqMUJkYCpgzwljocIqJ2pfG70NTU1PaIgzTETust0xm6E5P0XG3NseLxMEz+7jBOZZbhmZXH8d9/D+ToItJphRU1iD6bAwCYzi7desvX0Qp+jpa4UlSFw5eLMIZzz2+qcdvImB5ucLZhtZS+4PtZotbROIn39TWczra6ip3WW64zdCcm3dDF2Rq/zBqI6T/F4cClQryy/hQ+n9IHMr7ZIB31+7FM1ClF9PG2Q6inXOpwqA1GBLlg+eEr2JdYwCT+JhTVdfjjhHoCw4xBfJ+qL/h+lqj1WrWM9L///Q9Dhw6Fh4cH0tLUdz6XLFmCzZs3azU4ulFjp/Xr93k3dlpvXHUhtcbuxMA/3Ygb6Ut3YtIdfX3ssXRGPxjLBPxxMhuLtl+QOiSim1KpRKyOb2hoF85VeH0X0VBSv79h1Bw1tykhC1frlOjmYo1w3pTXC3w/S9Q2Gifx3333HV588UWMHTsWpaWlTXvg7ezssGTJEm3HR9dgp/XW0ffuxKRb7g5yweJJ6gaePx1IxY/7L0scEdGNDiQXIqP4KmzNjfFAL8NsaNeZDPJ3hKmxDFmlV5GcXyF1ODpFFEWsjP3nhpWhTWDQR3w/S9R2GpfTf/311/jpp58wceJEfPzxx03HBwwYgPnz52s1OGqOndZbT9+7E5NumdTfC4UVNVi0/SI++usinKzN8FA/L6nDImqyqiGpmdTfCxamRhJHQ21lYWqEQQGO2J9UgJikAnRztZE6JJ0Rn1qMS/kVsDAxwkP9+XtYH/D9LFHbabwSn5qair59+95w3MzMDJWVlVoJim6OndbbprE78YQ+nhjcxZEJPLXJU8MD8Phd/gCAV9afxr7EfIkjIlLLKbuK3RfVP48spe88IgLVJfWcF99c41i5CX08YMvO/XqB72eJ2k7jJN7f3x8nT5684Xh0dDS6d++ujZjoFthpnUh3CIKAN8d2x4Q+HqhXiXh2VQJOZpRKHRYR1h7NgFIlItzfAV1duGLbWTSOmotPLUZVbb3E0eiGgvJ/JjCwoZ3+4PtZorZrcRL//vvvo6qqCi+++CLmzJmDtWvXQhRFxMfH48MPP8Trr7+OV155pT1jNXiNndZvtX4sQN3Vk53WiTqGTCbg08m9MaybE6pqlXhs+VGkFHC/KkmnXqnCmvgMAEAUk5pOJcDJCl72FqhVqnDkcpHU4eiEdccyUKcU0ZsTGPQK388StV2Lk/gFCxagoqICTzzxBBYvXoy33noLVVVVmD59Or777jt8+eWXmDp1anvGavDYaZ1I95gay/DdjP7o6SlHcWUtZv4Sj3wFSwBJGnsu5iNXUQ1HK1OM6eEqdTikRYIgNK3Gs6Re3RxtdUMp/QxuG9ErfD9L1HYtTuKvHWkSFRWFS5cuoaKiArm5ucjMzMTjjz/eLgFSc+y0TqR7rM2MsezRgfBztERmyVXM/CUeiuo6qcMiA7SqIal5eIA3zIzZ0K6ziQh0AQDsS8o3+FFzMUn5yCq9CrmFCcb15gQGfcP3s0Rto1F3+uvHdlhaWsLS0lKrAdGdsdM6ke5xsjbDisfC8dB3h3ExtxyjP9+PaWE+mBrmDVdb7uuj9pdeVIX9l9QrtNPDuDLZGQ3p4ggTIwEZxVeRWliJAGdrqUOSzMpY9Q2ryf29YG7CG1b6iO9niVpPoyQ+MDDwjvM3i4uL2xQQtUxjp3Ui0h0+jpb49bGBeHTZUeQqqvHFriR8tecSRnV3xYxBvhjSxREyvjmhdrI6Ph2iCAwPdIaPI2+wd0ZWZsYY6OeAw5eLEJNUYLBJfEZxFfYmcgJDZ8D3s0Sto1ESv2DBAsjlbBxCRHQrPTzkOPDq3Yg+m4uVsWk4eqUE0edyEX0uF/5OVpge5oPJ/b1gb2UqdajUidTUK/H7sYaGdkxqOrURQc44fLkI+xIL8OhQf6nDkcRvDTeshnZ1NNgbGURk2DRK4qdOnQoXF5f2ioWIqFMwMzbChD6emNDHExdzFVgdl46NCVlILazEh39dwKd/J+KBnu6IGuSLfj52d6xwIrqTHefyUFRZC1dbM4wM5ut0ZzYiyAUf/XURsSlFqK5TGlwpeW29CusabljNCOcEBiIyTC1ubMc3mUREmgt2s8X7E0IR98ZIfPRgT4S426K2XoWNJ7Iw6bvDGPvVQayMTUNFDec+U+utik0DAEwd6ANjoxa/tJMe6uZiDXe5OWrqVYhNMbxRc9HnclFYUQsXGzPcG8IJDERkmFrVnZ6IiDRjZWaM6eE++PP/7sKmZ4dgcn8vmBnLcCFHgbf+OIvwD3fhzU1ncCFHIXWopGeS88sRl1oMmQBMDfOWOhxqZ9eOmotJMrxRc//csPKGCW9YEZGBavFvP5VKxVJ6IqI2EgQBfX3s8Z+HeyPujZF46/7uCHCyQmWtEqvi0nHflwcw6bvD2HQiE9V1SqnDJT3QOFZuZHdXuMstJI6GOkJEYEMSb2Dz4i/lXXvDir0fiMhwabQnnoiItMfO0hRPDAvA43f548jlIqyKS8eOc7k4nlaC42kleH/reTw8wBvTw3zg52Qldbikg67WKrHheCYAYMYg7g82FEO6OsFYJiClsBLpRVUGM43g2htWHna8YUVEhot1SEREEhMEAUO6OuHbqH44/No9eGlUIDzk5iipqsOP+1Mw4j/78K//xiH6bC7qlSqpwyUdsu10NhTV9fB2sMCwrk5Sh0MdxNbcBP187QEAMUn5EkfTMapq63nDioioAZN4IiId4mJrjudGdsOBV+/BzzMHYESQMwQBOHCpEM+sPI6hi/fgi51JyC2rljpU0gGNK5PTw3whk7EBrSFp3Be/z0BK6reczEZ5TT18HS15w4qIDB6TeCIiHWQkE3BviCuWPxqG/S/fjdkjusDRyhR5ihp8ufsShi7eg6dWHMP+pAKoVGw8aojOZpXhZEYpTIwEPDzAS+pwqIM17os/fLkINfWdu3+GKIpYGaduaDc9zIc3rIjI4DGJJyLScd4Olng1MhiHX78HX03rizB/ByhVIv4+n4eZv8Tj7s/24YeYyyiurJU6VOpAq+PVq/CRoe5wsjaTOBrqaCHutnCxMcPVOiWOppZIHU67OpVZhrNZCpgay/DwAE5gICJiEk9EpCfMjI0wvrcH1j09GH+/MByzhvjBxswYaUVVWLT9IgZ9tBvz1pzAsSvFHAvayVXU1GPziSwAQFQ4u3QbIkEQ/ulS38n3xa9sGCt3f093OFiZShwNEZH0mMQTEemhQFcbvDe+B+LeHInFk3qip6cctUoV/jiZjcnfH8F9Xx7A/45cQXl1ndShkpZU1tTj4KVCfLEzCTN+jkNlrRJdnK0Q7u8gdWgkkQgD2BdfWlWLraeyAQAzBvGGFRERwBFzRER6zdLUGI8M9MEjA31wKqMUq+LSsOVUNi7mluPtzeewaPtFTOjjiRmDfNDDQy51uKSBoooaHL1SgqNXinHsSjHOZiugvK7/wZPDAiAI3B9sqIZ1dYZMAC7lVyCr9Co8O+HYtfXHM1FTr0Kwmw36+dhLHQ4RkU5gEk9E1En09rZDb287vDk2BBsSMrEqLg2XCyrxW3w6fotPR18fO8wI98X9vdxhbmIkdbh0DVEUkVlyFfGpxTh6Rf24XFB5w3medhYY6GePAX4OGBTggK4uNhJES7pCbmmCvj72OJ5WgpjEAkzvZFsrRFHE6oYJDDMG+fKGFRFRAybxRESdjNzSBI/d5Y9Hh/ohNqUYq+LSsONcLk6kl+JEeik++PM8JvfzwvRwHwQ4W0sdrkFSqUQk5pXj6JVixKcW49iVEuQqbhwbGOhqjYF+Dgjzd8AAP4dOudJKbTMi0FmdxCfld7ok/vDlIqQUVsLK1AgT+3pKHQ4Rkc5gEk9E1EkJgoDBXRwxuIsjCsprsO5YBlbHpSOr9Cp+PpiKnw+mYmhXR8wI98W9Ia4wMWKblPZSU6/EmcwyxF8pxtHUYhxLK0F5dX2zc4xlAnp6yRHm54CBfg4Y4GcPO0s28aLbiwhyxmc7k3AouQi19SqYGnee/8eNDe0e7OcJazO+ZSUiasTfiG2gVCpRV8emUaR7TExMYGTEcmn6h7ONGebc3RXPRHRBTFI+VsamY29iPg4lF+FQchFcbMwwdaA3pob5wIOrvW2mqK7D8bQSHLtSjKOpJTiZWYraelWzc6xMjdDP1x4DG5L2Pt52sDDl/1vSTKiHHI5WpiiqrEVCegkGBThKHZJW5Cmq8ff5PADqUnoiIvoHk/hWEEURubm5KC0tlToUoluys7ODm5sb9xBSM0YyAfcEu+KeYFdkllTht/h0rD2agfzyGny1Jxnf7E3GPcGumDHIB8O7OUMm489PS+QrqhF/RV0WH59ajIu5ClzXgw5O1qYY4OuAgf4OCPNzQHd3Gxiz+oHaSCYTMDzQGZtOZGFfYkGnSeLXxGdAqRIxwNcewW62UodDRKRTmMS3QmMC7+LiAktLSyZJpFNEUURVVRXy89Vzg93d3SWOyMColEDaYaAiD7B2BXyHADLdXF31srfEy2OC8fzIQPx9PhcrY9MQm1KMXRfysOtCHrwdLDA9zBdTBnjB0dpM6nB1hiiKSC2sbGhAp+4en1ZUdcN5vo6WDavs6tV2fycrvl5QuxgR1JjE5+O1+4KlDqfN6pUq/BavbmgXxbFyREQ3YBKvIaVS2ZTAOzp2jrvd1PlYWKjLofPz8+Hi4sLS+o5yfgsQ/SqgyP7nmK0HELkYCBkvXVx3YGoswwO9PPBALw8k55djVVw61h/PREbxVSyOvogvdiYhMtQNMwb5YqCfvcElovVKFS7klDestKsT98KKmmbnCALQ3c22oQGdOml3tTWXKGIyNMO6OUMQgIu55chTVOv9z96ei/nIVVTD3tIE94XyRjQR0fWYxGuocQ+8paWlxJEQ3V7jz2hdXR2T+I5wfguwbiaA62qoFTnq41NW6HQi36iriw3eHdcDr4wJxtbT2VgVm4ZTmWXYciobW05lI9DVGlHhvniwnydszU2kDrddVNcpcSK9tGnUW0JaCSprlc3OMTWWoY+XHQb6qxP2fr72nfbvg3Sfg5UpennZ4VRGKWISCzBloLfUIbXJyoaxclMGeHMcJhHRTTCJbyVDW4ki/cOf0Q6kUqpX4K9P4IGGYwIQ/RoQfL/OltZfz8LUCFMGeGPKAG+cySzDqrg0bD6ZjaS8Cry75Rw+3n4RE/p4YMYgX4R6yqUOt01Kq2pxrKEsPv5KMc5mlaFO2fzf0sbcGAN87Zv2s/f0ksPMWD/+LckwjAh0VifxSfqdxKcVVWJ/UgEAdLqReURE2sIknoiordIONy+hv4EIKLLU5/kP67CwtKWnlxwfe/XC62O7Y1NCJlbFpeNSfgXWHM3AmqMZ6O1th6hwH4zr5aEX3dWzSq/iWMN89qNXipGUV3HDOa62Zk3z2Qf6OSDI1YZN/kinRQQ548vdl3DgUgHqlSq9bZq4umEVfnigM3wdrSSOhohINzGJpxv4+flh3rx5mDdvntShaMW+fftw9913o6SkBHZ2dlKHQ51RRZ52z9NRcgsTzBrqj38P8UN8ajFWxaVj+9kcnMooxamMUizcdh6T+3tjergPurpYSx0uAEClEpFcUKEujU9V72fPKr16w3ldnK2aRr2F+TvAy96C1SykV3p72cHO0gSlVXU4mVGKAX4OUoekseo6JdYdywAAzOAqPBHRLTGJNzAZGRl49913ER0djcLCQri7u2PixIl45513OkWjvhEjRqBPnz5YsmRJ07EhQ4YgJycHcrl+l/ySDrN21e55Ok4QBIQHOCI8wBGFFSFYdywDq+PSkVlyFb8cSsUvh1IxOMARMwb5YlSIK0yNO25FsLZehbPZZQ0r7SU4llaM0qq6ZucYyQSEethioJ8DBjR0j2f3fdJ3RjIBw7o5Y+upbOxLLNDLJH772RyUVNXBXW6Oe4JdpA6HiEhnMYk3ICkpKRg8eDACAwPx22+/wd/fH+fOncPLL7+M7du3IzY2Fg4OHf+ir1QqIQgCZLL2eaNvamoKNze3drk2EQD1GDlbD3UTu5vuixfUz/sO6ejI2p2TtRmeHdEVzwzvgphLBVgVm4Y9F/NxJKUIR1KK4GRthqkDvTEt3AeedhZa//qVNfVISC9Rj3pLLcaJjBJU16manWNhYoS+PnZNq+x9vO1gZcaXP+p8RgSqk/iYpALMHxMkdTgaWxmrLqWfFuajt9sBiIg6An9DGpA5c+bA1NQUf//9NyIiIuDj44P77rsPu3btQlZWFt58882mc8vLyzFt2jRYWVnB09MT3377bdNzoijivffeg4+PD8zMzODh4YH/+7//a3q+pqYG8+fPh6enJ6ysrBAeHo59+/Y1Pb98+XLY2dlhy5YtCAkJgZmZGX7++WeYm5ujtLS0WczPP/887rnnHgBAUVERpk2bBk9PT1haWqJnz5747bffms6dNWsWYmJi8OWXX0IQBAiCgCtXrmDfvn0QBKHZtTds2IAePXrAzMwMfn5++Oyzz5p9XT8/P3z00Ud47LHHYGNjAx8fH/z4449Nz9fW1mLu3Llwd3eHubk5fH19sWjRolb9u1AnIDNSj5EDAFxfgt3wceTHetPUrjVkMgF3B7ng538PxIFX78Fz93SFs40ZCitq8M3eZAxbvAePLz+KvRfzoVTd7EZHyxRW1CD6bA7e33oe4785iF4L/sa//huPr3ZfwpGUIlTXqWBvaYJRIa54c2x3/DFnKE6/NxqrnxyEF0YFYmhXJybw1GkND3QGAJzJKkNBec0dztYtF3IUOJ5WAmOZgKl63JiPiHSQSgmkHgDOrFf/qVLe+XN0HN/JtJEoirhaJ80PgoWJUYv3bBYXF2PHjh348MMPm2aIN3Jzc0NUVBTWrl2LpUuXAgA+/fRTvPHGG1iwYAF27NiB559/HoGBgRg1ahQ2bNiAL774AmvWrEGPHj2Qm5uLU6dONV1v7ty5OH/+PNasWQMPDw9s2rQJkZGROHPmDLp16wYAqKqqwuLFi/Hzzz/D0dERXl5eeOedd7BhwwY8/vjjANQr9GvXrsWHH34IAKiurkb//v3x6quvwtbWFn/++Sf+9a9/oUuXLggLC8OXX36JpKQkhIaG4v333wcAODs748qVK82+3+PHj2PKlCl477338Mgjj+Dw4cN49tln4ejoiFmzZjWd99lnn+GDDz7AG2+8gfXr12P27NmIiIhAUFAQvvrqK2zZsgXr1q2Dj48PMjIykJGR0fJ/POp8Qsarx8jddE78x3oxXk5bPO0s8NLoIPzfyG7YeT4PK2PTcPhyEXZfzMfui/nwsrfAtDAfTBngDWebW5exi6KIjOKriG/az16MlMLKm369xgZ0Yf72CHCyZhM6MkjONmYI9bTF2SwFDlwqwEP9vKQOqcVWxqYBAEb3cIWLns+5JyIdcn7LLd6bLdbr92aSJvGLFi3Cxo0bcfHiRVhYWGDIkCFYvHgxgoLUJWDFxcV499138ffffyM9PR3Ozs6YOHEiPvjgg9vub541axZ+/fXXZsfGjBmD6OhorX8PV+uUCHlnh9av2xLn3x8DS9OW/RNeunQJoiiie/fuN32+e/fuKCkpQUGBeqzL0KFD8dprrwEAAgMDcejQIXzxxRcYNWoU0tPT4ebmhnvvvRcmJibw8fFBWFgYACA9PR3Lli1Deno6PDw8AADz589HdHQ0li1bho8++giAenb50qVL0bt376YYpk6ditWrVzcl8bt370ZpaSkmTZoEAPD09MT8+fObzn/uueewY8cOrFu3DmFhYZDL5TA1NYWlpeVty+c///xzjBw5Em+//XbT93f+/Hl8+umnzZL4sWPH4tlnnwUAvPrqq/jiiy+wd+9eBAUFIT09Hd26dcNdd90FQRDg6+vbon8H6uRCxqvHyKUdVjexs3ZVl9B34hX42zExkmFsT3eM7emOywUVWB2XjvXHM5FZchWf7kjEkl1JGNPDDTMG+SLc3wEqEUjMLW8a9XbsSjHyFM1XEwUBCHK1wQA/+6ZGdB7tUKZPpK8iAp1xNkuBfYn6k8RX1NTjjxNZAIAZ4Xw9JSItOb8FWDcTN2x1VOSoj09ZobeJvKRJfExMDObMmYOBAweivr4eb7zxBkaPHo3z58/DysoK2dnZyM7Oxn/+8x+EhIQgLS0NzzzzDLKzs7F+/frbXjsyMhLLli1r+tjMjE2LAPXKVksMHjz4ho8bm8U9/PDDWLJkCQICAhAZGYmxY8di3LhxMDY2xpkzZ6BUKhEYGNjs82tqapo1zjM1NUWvXr2anRMVFYVBgwYhOzsbHh4eWLVqFe6///6mjvJKpRIfffQR1q1bh6ysLNTW1qKmpgaWlpYa/R1cuHABEyZMaHZs6NChWLJkCZRKJYyM1AnXtfEJggA3Nzfk5+cDUN8oGjVqFIKCghAZGYkHHngAo0eP1igO6qRkRno5Rq69dXG2xtsPhODlMUHYdjoHK2PTcDKjFNtO52Db6Rz4OFiipKoW5dX1zT7PxEhALy87DPCzR5ifAwb4OkBuaSLRd0Gk+0YEueDbvZex/1IBlCoRRnpQlbLpRBYqa5UIcLbC4C7632SXiHSASqlegb9pryIRgABEv6ZefNHDxRZJk/jrV8aXL18OFxcXHD9+HMOHD0doaCg2bNjQ9HyXLl3w4YcfYsaMGaivr4ex8a3DNzMz65BmZhYmRjj//ph2/zq3+tot1bVrVwiCgAsXLuDBBx+84fkLFy7A3t4ezs7Od7yWt7c3EhMTsWvXLuzcuRPPPvssPv30U8TExKCiogJGRkY4fvx4UzLcyNr6n5FTFhY3jm8aOHAgunTpgjVr1mD27NnYtGkTli9f3vT8p59+ii+//BJLlixBz549YWVlhXnz5qG2trbFfw+aMDFpnigIggCVSt0wq1+/fkhNTcX27duxa9cuTJkyBffee+8dby4RGTpzEyNM7u+Fyf29cDarDKvi0rH5ZBbSi6sAANZmxujna48wP3sM8FM3oTPX4HcdkaHr620HG3NjlFbV4XRmKfr62Esd0m2JoohVDaX0UeG+HO1IRNqRdrh5Cf0NRECRpT5PDxdfdGpPfFlZGQDctkN6WVkZbG1tb5vAA+rZ4C4uLrC3t8c999yDhQsX3nKEWk1NDWpq/inZVCgULY5ZEIQWl7RLydHREaNGjcLSpUvxwgsvNNsXn5ubi1WrVmHmzJlNL56xsbHNPj82NrZZKb6FhQXGjRuHcePGYc6cOQgODsaZM2fQt29fKJVK5OfnY9gwzf9DREVFYdWqVfDy8oJMJsP999/f9NyhQ4cwYcIEzJgxAwCgUqmQlJSEkJCQpnNMTU2hVN6+R0H37t1x6NChZscOHTqEwMDAG2483I6trS0eeeQRPPLII5g8eTIiIyNRXFwsSYd/In0U6inHood64vWxwThyuQiedhYIdrNhV2qiNjA2kmFYNyf8dSYX+xILdD6JP55Wgou55TA3kWGynpT/E5EeqMjT7nk6RmfeKalUKsybNw9Dhw5FaGjoTc8pLCzEBx98gKeeeuq214qMjMSKFSuwe/duLF68GDExMbjvvvtumdwtWrQIcrm86eHt3Tm7on7zzTeoqanBmDFjsH//fmRkZCA6OhqjRo2Cp6dnUwM5QJ3UfvLJJ0hKSsK3336L33//Hc8//zwAdcXEf//7X5w9exYpKSlYuXIlLCws4Ovri8DAQERFRWHmzJnYuHEjUlNTER///+3deViU5f4/8Pew75uyb6IsgmACbmQKlonlgqZHM0xIjnoSJY+Wyi+PW3rK1Fy+mXVSwdxSKw05HohQXBEVBTURkEBcwJ1NRIF5fn+MTI4sIs6GvF/XNRfN89zPvdCtzmfu7QQ+//xz/Pe//31mHUNDQ3H69GksWbIEo0aNklkG4ebmhqSkJBw7dgxZWVmYPHkybtyQ/YPXoUMHpKWloaCgALdv35aOnD9p5syZSE5OxmeffYacnBxs2rQJX3/9tcx6+2f56quvsH37dly8eBE5OTnYtWsXbGxspFP/iaj5TPS0EdzFBt72pgzgieQgyF1yxvrBnFsqrsmz1W1oN7SrHZfKEJH8GFnLN52aUZtPS5GRkTh//jx+/PHHBu+XlZVh8ODB8PLywoIFC5rM691338WwYcPg4+OD4cOHIz4+HidPnpQ55uxJ0dHRKC0tlb5e1l3G3dzccOrUKXTs2BGjR49Gp06dMGnSJPTv3x+pqakyI8gzZ87EqVOn4Ovri8WLF+Orr75CcLBk2YCZmRm+//579OnTB127dsXvv/+OvXv3Smc6xMTEYPz48Zg5cyY8PDwwfPhwnDx5Ek5OTs+so6urK3r27ImzZ88iNDRU5t7cuXPh5+eH4OBgBAUFwcbGBsOHD5dJ8/HHH0NTUxNeXl6wtLREYWFhvTL8/Pywc+dO/Pjjj/D29sa8efOwaNEimU3tnsXY2Bhffvklunfvjh49eqCgoAD79u1T2Fn3REREzVV31Fzm1RLcva+YJWfycKfiIfadKwYAjOvNDe2ISI6cX5XsQl/v6N86IsDEXpKuFRIJzd3pTIGmTp2KX3/9FYcOHYKLi0u9++Xl5QgODoaBgQHi4+Ohp/f8R49YWlpi8eLFmDx58jPTlpWVwdTUVDp1/0lVVVXIz8+Hi4tLi+pBpCzsq0REbdegVYdwsbgcq9/thpBu9qquToO+O5iHz/93Ed72Jtg79TWuhyci+ZLuTg/IbnD3+O8aNdydvqk49EkqHTYUBAFTp07F7t27sX///gYD+LKyMgwcOBA6OjqIi4trUTBy9epV3LlzB7a2tvKoNhERkeqIa4H8w8C5nyQ/xU3vA0JtU6CHZDT+YLZ6TqkXiwVsOyGZLTeOG9oRkSJ4DZME6iZPxYAmdmoZwD8Ple7IFhkZiW3btuHXX3+FsbExioslU6pMTU2hr68vDeArKyuxZcsWlJWVSTeds7S0lG5C1rlzZ3z++ecYMWIEKioqsHDhQowcORI2NjbIy8vDrFmz4OrqKp0OTkRE1CpdiJMcmfPkjrsmdsCgpa36wwjJX5C7Fb47+CcO5d6CWCxAQ82Omjt86TYu36mEsZ4WhnWzU3V1iOhl5TVMcozc5WOSTeyMrCVT6FvhsXJPUmkQv27dOgBAUFCQzPWYmBiEh4fj9OnTSEtLAyBZK/2k/Px8dOjQAQCQnZ0t3dleU1MTZ8+exaZNm1BSUgI7OzsMHDgQn332Gc+KJyKi1ks6LfCpVXBlRZLrrXxUgeTL39kchjqauF3xCH9cL4OPg6mqqySjbkO7kX4OreKUHyJqxTQ0W+Uxck1R6d+az1qOHxQU9Mw0T+ejr6+PxMTEF64bERGR2hDXSkbgnw7ggcfXREDCHMloQysfXSD50NHSQB/X9vjtwg2kZN9UqyD+eskDJGdJTpcJ7fXsTW+JiEgWt9ImIiJSd5ePyU6hr0cAyq5J0hE9Jl0Xr2ZHzf14ohBiAejlYgE3a2NVV4eIqNVhEE9ERKTuKm7INx21CUEekvPiTxfeQ2lltYprI1FdK8aPJyVH+fJYOSKilmEQT0REpO6MrOWbjtoEezN9uFkZQSwARy7dVnV1AABJF27gZvlDtDfSRXAXG1VXh4ioVWIQT0REpO6cX5XsQo/GdhgXASb2knRETwh0l0ypT8m+qeKaSNRtaDemhwN0tPgxlIioJfi3JxERkbrT0JQcIwegfiD/+P2gL7ipHdVTN6X+YM6tZm0WrEh5typwLO8ORCJgbE9uaEeQbNqZfxg495Pkp7hW1TUiahUYxJPchYeHY/jw4dL3QUFBmD59+gvlKY88iIhaNa9hkmPkTGxlr5vY8Xg5alQPF3Poa2viZvlDZBWVq7QuW48XAgBe97CCg7mBSutCauBCHLDKG9g0BPg5QvJzlbfkOhE1iUF8GxIeHg6RSASRSAQdHR24urpi0aJFqKmpUWi5v/zyCz777LNmpU1JSYFIJEJJSUmL81CUBQsWoFu3bo3ez8/Px3vvvQc7Ozvo6enBwcEBISEhuHjxImJjY6W/+8ZeBQUFWLBgAUQiEQYNGlQv/2XLlkEkEiEoKEhxjSQi9eY1DJh+HgiLB0ZukPycfo4BPDVKV0sTr3ZqB0C1u9Q/eFSLn9K5oR09diEO2Dm+/qkbZUWS6wzkiZrEIF5FasUCUvPu4NeMa0jNu4NasXKmuA0aNAhFRUXIzc3FzJkzsWDBAixbtqxeukePHsmtTAsLCxgbv9gRMvLIQ5Gqq6vx5ptvorS0FL/88guys7OxY8cO+Pj4oKSkBGPGjEFRUZH0FRAQgIkTJ8pcc3R0BADY2triwIEDuHr1qkwZGzduhJMTpx8StXkamoBLX8BnlOQnp9DTM9QdNafKdfF7z15HWVUNHMz10e/xOn1qo8S1QMJsAA199n18LWEOp9YTNYFBvAoknC/Ca0v3Y+z3x/HRjxkY+/1xvLZ0PxLOFym8bF1dXdjY2MDZ2RkffvghBgwYgLi4OOkU+CVLlsDOzg4eHh4AgCtXrmD06NEwMzODhYUFQkJCUFBQIM2vtrYWM2bMgJmZGdq1a4dZs2bVW3P39FT4hw8fYvbs2XB0dISuri5cXV2xYcMGFBQUoH///gAAc3NziEQihIeHN5jHvXv3MH78eJibm8PAwABvvfUWcnNzpfdjY2NhZmaGxMREeHp6wsjISPoFRp2UlBT07NkThoaGMDMzQ58+fXD58uUW/V7/+OMP5OXl4ZtvvkHv3r3h7OyMPn36YPHixejduzf09fVhY2Mjfeno6MDAwEDmmqam5IO4lZUVBg4ciE2bNknzP3bsGG7fvo3Bgwe3qH5ERNR2BblL1sWnX76H8irVHDW39fGGdu/1coKmRmMbNFKbcPlY/RF4GQJQdk2SjogaxCBeyRLOF+HDLadRVFolc724tAofbjmtlED+Sfr6+tJR9+TkZGRnZyMpKQnx8fGorq5GcHAwjI2NcfjwYRw9elQaDNc9s2LFCsTGxmLjxo04cuQI7t69i927dzdZ5vjx47F9+3asWbMGWVlZ+O6772BkZARHR0f8/PPPAIDs7GwUFRVh9erVDeYRHh6OU6dOIS4uDqmpqRAEAW+//Taqq//6cFJZWYnly5dj8+bNOHToEAoLC/Hxxx8DAGpqajB8+HAEBgbi7NmzSE1NxaRJkyASteyDhaWlJTQ0NPDTTz+htvbFvzmeMGECYmNjpe83btyI0NBQ6OjovHDeRETUtji1M4BLe0PUiAUcvXRH6eWfu1qKzKul0NYUYXR3R6WXT2qm4oZ80xG1QQzilahWLGDh3gtNTR7Cwr0XlDK1XhAE/P7770hMTMTrr78OADA0NMT69evRpUsXdOnSBTt27IBYLMb69evh4+MDT09PxMTEoLCwECkpKQCAVatWITo6Gu+88w48PT3x7bffwtTUtNFyc3JysHPnTmzcuBEjRoxAx44d8cYbb2DMmDHQ1NSEhYUFAMlotI2NTYN55ebmIi4uDuvXr0ffvn3xyiuvYOvWrbh27Rr27NkjTVddXY1vv/0W3bt3h5+fH6ZOnYrk5GQAQFlZGUpLSzFkyBB06tQJnp6eCAsLa/F0dXt7e6xZswbz5s2Dubk5Xn/9dXz22Wf4888/W5TfkCFDUFZWhkOHDuH+/fvYuXMnJkyY0KK8iIiI6o6aO5ij/Cn1W9Mko/BveduivZGu0ssnNWNkLd90RG0Qg3glOpF/t94I/JMEAEWlVTiRf1dhdYiPj4eRkRH09PTw1ltvYcyYMViwYAEAwMfHR2akNzMzE5cuXYKxsTGMjIxgZGQECwsLVFVVIS8vD6WlpSgqKkKvXr2kz2hpaaF79+6Nlp+RkQFNTU0EBga2uA1ZWVnQ0tKSKbddu3bw8PBAVlaW9JqBgQE6deokfW9ra4ubNyUfXiwsLBAeHo7g4GAMHToUq1evlk61LywslLbXyMgI//73v5tVr8jISBQXF2Pr1q0ICAjArl270KVLFyQlJT13G7W1tTFu3DjExMRg165dcHd3R9euXZ87HyIiIuCvdfEHs5V71FxZVTV+zZBMnQ7txX1dCIDzq5JTNeodl1lHBJjYS9IRUYO0VF2BtuRmeeMBfEvStUT//v2xbt066OjowM7ODlpaf3UBQ0NDmbQVFRXw9/fH1q1b6+VjadmyTWn09fVb9FxLaGtry7wXiUQyH1xiYmIQFRWFhIQE7NixA3PnzkVSUhK6d++OjIwMabq62QHNYWxsjKFDh2Lo0KFYvHgxgoODsXjxYrz55pvPXf8JEyagV69eOH/+PEfhiYjohQR0bAddLQ1cL61C7s0KuFsrZ7PYX9Kv4kF1LdytjdDTpfn/ntJLTEMTGLRUsgs9RJDd4O5xYD/oC27aSdQEjsQrkZWxnlzTtYShoSFcXV3h5OQkE8A3xM/PD7m5ubCysoKrq6vMy9TUFKamprC1tUVaWpr0mZqaGqSnpzeap4+PD8RiMQ4ePNjg/bqZAE2tK/f09ERNTY1MuXfu3EF2dja8vLyabNPTfH19ER0djWPHjsHb2xvbtm2DlpaWTFufJ4h/kkgkQufOnXH//v0WPV+3rOH8+fN47733WpQHERERAOhpa6J3x8dHzWUr56g5QRCwJU1yNnxoL+cW7ztDLyGvYcDoHwATW9nrJnaS6zw2k6hJDOKVqKeLBWxN9ZqaPARbUz21+aY6NDQU7du3R0hICA4fPoz8/HykpKQgKipKevzZRx99hC+++AJ79uzBxYsXMWXKlHpnvD+pQ4cOCAsLw4QJE7Bnzx5pnjt37gQAODtL/pGPj4/HrVu3UFFRUS8PNzc3hISEYOLEiThy5AgyMzMxbtw42NvbIyQkpFlty8/PR3R0NFJTU3H58mX89ttvyM3NhaenZ5PPPXjwABkZGTKvvLw8ZGRkICQkBD/99BMuXLiAS5cuYcOGDdi4cWOz69SQ/fv3o6ioCGZmZi3Og4iICPhrXXyKktbFp+XfxaWbFdDX1sQIP3ullEmtiNcwYPp5ICweGLlB8nP6OQbwRM3AIF6JNDVEmD9UMlL8dCBf937+UC+1OXrFwMAAhw4dgpOTk3TjuoiICFRVVcHExAQAMHPmTLz//vsICwtDQEAAjI2NMWLEiCbzXbduHUaNGoUpU6agc+fOmDhxonS02t7eHgsXLsScOXNgbW2NqVOnNphHTEwM/P39MWTIEAQEBEAQBOzbt6/eFPqm2nbx4kWMHDkS7u7umDRpEiIjIzF58uQmn8vJyYGvr6/Ma/LkyXBwcECHDh2wcOFC9OrVC35+fli9ejUWLlyITz/9tFl1akjd8XdEREQvKujxuviT+fdw/2GNwsvb8vhYueG+djDRa96/z9TGaGgCLn0Bn1GSn5xCT9QsIkGZu5u0EmVlZTA1NUVpaak0WK1TVVWF/Px8uLi4QE+vZdPeE84XYeHeCzKb3Nma6mH+UC8M8rZt4kmi5pNHXyUiopeHIAjot+wArtx9gPXju2OAl+J2/75V/hCvfpGM6loB8dNeg7d94yfXEBGRRFNx6JO4sZ0KDPK2xZteNjiRfxc3y6tgZSyZQq8uI/BERET08hGJRAhyt8Lm45dxMOeWQoP4naeuoLpWQDdHMwbwRERyxiBeRTQ1RAjo1E7V1SAiIqI2JNDdEpuPX0ZKzk0IgqCQzeZqxQK2Pd7QblxvZ7nnT0TU1nFNPBEREVEbEdCpHXQ0NXDl7gPk327Z6SnPkpJ9E9dKHsBUXxtDunKZIBGRvDGIJyIiImojDHW10MPFHACQoqCj5uo2tPubvwP0tLlRGRGRvDGIJyIiImpDgtytAAApOfIP4q/crZTmG8qp9ERECsEgnoiIiKgNqTtqLu3PO6iqrpVr3ttOFEIQgNdc28OlvaFc8yYiIgkG8URERERtiKuVEexM9fCwRozUP+/ILd+HNbXYefIKAGBcbye55UtERLIYxBMRERG1ISKRCIEekin1B+W4Lj7hfDHu3H8EaxNdDPBU3PF1RERtHYN4IiIiojYm0F0ypf6gHNfFbz0uOVbu3R5O0NLkR0wiIkXh37AkQyQSYc+ePQCAgoICiEQiZGRkqLROjVH3+hEREamrPq7toKUhQv7t+7h858WPmsu5UY4TBXehqSHC2J6cSk9EpEgM4tuY4uJiTJs2DR07doSuri4cHR0xdOhQJCcn10vr6OiIoqIieHt7K7RODMaJiIiUy1hPG/7OkqPm5DEav/XxsXJvdLaCjaneC+dHRESNYxDfhhQUFMDf3x/79+/HsmXLcO7cOSQkJKB///6IjIysl15TUxM2NjbQ0tJSQW2JiIhIkYLktC7+/sMa/HL6GgBgHI+VIyJSOAbxL0gQBNy/f18lL0EQnquuU6ZMgUgkwokTJzBy5Ei4u7ujS5cumDFjBo4fP14v/dMj5CkpKRCJREhMTISvry/09fXx+uuv4+bNm/jf//4HT09PmJiY4L333kNlZaU0n4SEBLz22mswMzNDu3btMGTIEOTl5Unvu7i4AAB8fX0hEokQFBQEABCLxVi0aBEcHBygq6uLbt26ISEhock2Hjx4ED179oSuri5sbW0xZ84c1NTUSO+Xl5cjNDQUhoaGsLW1xcqVKxEUFITp06cDABYtWtTgzINu3brhX//6V7N+z0RERK1B3br4Y3kvdtRcXOZ1lD+sgXM7A7zm2l5e1SMiokYwiH9BlZWVMDIyUsnryUD5We7evYuEhARERkbC0LD+ua1mZmbNzmvBggX4+uuvcezYMVy5cgWjR4/GqlWrsG3bNvz3v//Fb7/9hv/7v/+Tpr9//z5mzJiBU6dOITk5GRoaGhgxYgTEYjEA4MSJEwCA33//HUVFRfjll18AAKtXr8aKFSuwfPlynD17FsHBwRg2bBhyc3MbrNe1a9fw9ttvo0ePHsjMzMS6deuwYcMGLF68WJpmxowZOHr0KOLi4pCUlITDhw/j9OnT0vsTJkxAVlYWTp48Kb125swZnD17Fh988EGzf0dERETqztPWGFbGunhQXYtTBfdalIcgCNjyeCp9aC8naGiI5FlFIiJqAOdJtxGXLl2CIAjo3LnzC+e1ePFi9OnTBwAQERGB6Oho5OXloWPHjgCAUaNG4cCBA5g9ezYAYOTIkTLPb9y4EZaWlrhw4QK8vb1haSkZCWjXrh1sbGyk6ZYvX47Zs2fj3XffBQAsXboUBw4cwKpVq7B27dp69frmm2/g6OiIr7/+GiKRCJ07d8b169cxe/ZszJs3D/fv38emTZuwbds2vPHGGwCAmJgY2NnZSfNwcHBAcHAwYmJi0KNHD2mawMBAafuIiIheBiKRCIHultiVfhUp2Tfxmtvzj6JnXCnBH9fLoKOlgb/5OyqglkRE9DQG8S/IwMAAFRUVKiu7uZ536n1TunbtKv1va2trGBgYyAS41tbW0tF1AMjNzcW8efOQlpaG27dvS0fgCwsLG900r6ysDNevX5d+WVCnT58+yMzMbPCZrKwsBAQEQCQSyaSvqKjA1atXce/ePVRXV6Nnz57S+6ampvDw8JDJZ+LEiZgwYQK++uoraGhoYNu2bVi5cuWzfi1E1FLiWuDyMaDiBmBkDTi/CmhoqrpWRG1CkIeVJIjPuYW5LXh+y+Nj5Yb42MLcUEe+lSMiogYxiH9BIpGowenp6sbNzQ0ikQgXL1584by0tbWl/y0SiWTe112rC9QBYOjQoXB2dsb3338POzs7iMVieHt749GjRy9cF0UYOnQodHV1sXv3bujo6KC6uhqjRo1SdbWIXk4X4oCE2UDZ9b+umdgBg5YCXsNUVy+iNuI1t/bQ1BDh0s0KXL1XCQfz5g8QlFQ+QvxZyZ/dUG5oR0SkNFwT30ZYWFggODgYa9euxf379c+DLSkpUUi5d+7cQXZ2NubOnYs33ngDnp6euHdPdt2djo7km/va2r821TExMYGdnR2OHj0qk/bo0aPw8vJqsCxPT0+kpqbKzDo4evQojI2N4eDggI4dO0JbW1tmvXtpaSlycnJk8tHS0kJYWBhiYmIQExODd999F/r6+i37BRBR4y7EATvHywbwAFBWJLl+IU419SJqQ0z1teHraAbg+Y+a+yn9Kh7WiOFpawI/JzP5V46IiBrEIL4NWbt2LWpra9GzZ0/8/PPPyM3NRVZWFtasWYOAgACFlGlubo527drhP//5Dy5duoT9+/djxowZMmmsrKygr6+PhIQE3LhxA6WlpQCATz75BEuXLsWOHTuQnZ2NOXPmICMjAx999FGDZU2ZMgVXrlzBtGnTcPHiRfz666+YP38+ZsyYAQ0NDRgbGyMsLAyffPIJDhw4gD/++AMRERHQ0NCQmYIPAH//+9+xf/9+JCQkYMKECQr53RC1aeJayQg8Glrq8/hawhxJOiJSqCAPyd40z3PUnFgsYGuaZCr9uN5O9f4dJSIixWEQ34Z07NgRp0+fRv/+/TFz5kx4e3vjzTffRHJyMtatW6eQMjU0NPDjjz8iPT0d3t7e+Oc//4lly5bJpNHS0sKaNWvw3Xffwc7ODiEhIQCAqKgozJgxAzNnzoSPjw8SEhIQFxcHNze3Bsuyt7fHvn37cOLECbzyyiv4xz/+gYiICMyd+9cqv6+++goBAQEYMmQIBgwYgD59+sDT0xN6enoyebm5ueHVV19F586d0atXLzn/VogIl4/VH4GXIQBl1yTpiEihAt0l58UfvXQbj2rEz0gtcSzvDvJv34eRrhaGd7NXZPWIiOgpIkGeO569JMrKymBqaorS0lKYmJjI3KuqqkJ+fj5cXFzqBX7U+ty/fx/29vZYsWIFIiIipNcFQYCbmxumTJlSb+ZAa8G+Smrt3E/AzxHPTjdyA+DDPSmIFEksFtDz37/jdsUjbJ/YGwGd2j3zmX9sTkfCH8V4v7czPhve8Ca1RET0fJqKQ5/EkXhqU86cOYPt27cjLy8Pp0+fRmhoKABIR/8B4NatW/j6669RXFzMs+GJFMXIWr7piKjFNDRE6OcmmVKfknPzmemLS6uQlHUDADCOG9oRESkdg3hqc5YvX45XXnkFAwYMwP3793H48GG0b//X2bhWVlZYtGgR/vOf/8Dc3FyFNSV6iTm/KtmFHo2toxUBJvaSdESkcIHPsS7+x5OFqBUL6NHBHB42xoquGhERPYVHzFGb4uvri/T09CbTcIUJkRJoaEqOkds5HpJA/sk/d48D+0Ff8Lx4IiXp62YJkQi4WFyO4tIq2Jg2vAyrplaMH09cAcBReCIiVeFIPBERqYbXMGD0D4CJrex1EzvJdZ4TT6Q0FoY6eMXBDABwqImj5pIv3kRxWRXaGepgkLeNkmpHRERP4kg8ERGpjtcwoPNgyS70FTcka+CdX+UIPJEKBHlYIuNKCVJybmJ0D8cG02w5fhkA8LfujtDV4p9TIiJVYBBPRESqpaEJuPRVdS2I2rxAd0us+j0Xh3Nvo6ZWDC1N2QmbBbfv43DubYhEwHs9nVRUSyIi4nR6IiIiIkJXBzOYG2ijvKoGZ66U1Lu/7UQhAKCfmyWc2hkouXZERFSHQTwRERERQVNDhL51R81lyx41V1Vdi12nuKEdEZE6UGkQ//nnn6NHjx4wNjaGlZUVhg8fjuzsbOn9u3fvYtq0afDw8IC+vj6cnJwQFRWF0tLSJvMVBAHz5s2Dra0t9PX1MWDAAOTm5iq6OfRYeHg4hg8fLn0fFBSE6dOnv1Ce8shDWUQiEfbs2dPo/YKCAohEImRkZCitTkRERM0RVHfU3FOb2+07V4R7ldWwM9XD652tVFE1IiJ6TKVB/MGDBxEZGYnjx48jKSkJ1dXVGDhwIO7fvw8AuH79Oq5fv47ly5fj/PnziI2NRUJCAiIiIprM98svv8SaNWvw7bffIi0tDYaGhggODkZVVZUymqW2wsPDIRKJIBKJoKOjA1dXVyxatAg1NTUKLfeXX37BZ5991qy0KSkpEIlEKCkpaXEeirJgwQLp709TUxOOjo6YNGkS7t69K5OuqKgIb731lopqSURE1HJ1I/Hnr5XhZvlfn5vqNrQb29MJmhoildSNiIgkVLqxXUJCgsz72NhYWFlZIT09Hf369YO3tzd+/vln6f1OnTphyZIlGDduHGpqaqClVb/6giBg1apVmDt3LkJCQgAAP/zwA6ytrbFnzx68++67im2Umhs0aBBiYmLw8OFD7Nu3D5GRkdDW1kZ0dLRMukePHkFHR0cuZVpYWKhFHvLQpUsX/P7776itrUVWVhYmTJiA0tJS7NixQ5rGxoZH7hARUetkaawLH3tTnLtWisM5tzHS3wEXrpfhdGEJtDREGNOz4V3riYhIedRqTXzdNPmmArbS0lKYmJg0GMADQH5+PoqLizFgwADpNVNTU/Tq1QupqakNPvPw4UOUlZXJvBROXAvkHwbO/ST5Ka5VfJkAdHV1YWNjA2dnZ3z44YcYMGAA4uLipFPglyxZAjs7O3h4eAAArly5gtGjR8PMzAwWFhYICQlBQUGBNL/a2lrMmDEDZmZmaNeuHWbNmgVBEGTKfHoq/MOHDzF79mw4OjpCV1cXrq6u2LBhAwoKCtC/f38AgLm5OUQiEcLDwxvM4969exg/fjzMzc1hYGCAt956S2bJRGxsLMzMzJCYmAhPT08YGRlh0KBBKCoqkqZJSUlBz549YWhoCDMzM/Tp0weXL19u8venpaUFGxsb2NvbY8CAAfjb3/6GpKQkmTRPT6c/ceIEfH19oaenh+7du+PMmTP18o2Li4Obmxv09PTQv39/bNq0qd6MhCNHjqBv377Q19eHo6MjoqKipLNWiIiI5CXQ/fG6+MdT6rekSf5tDO5iAytjPZXVi4iIJNQmiBeLxZg+fTr69OkDb2/vBtPcvn0bn332GSZNmtRoPsXFxQAAa2trmevW1tbSe0/7/PPPYWpqKn05Oir4W+YLccAqb2DTEODnCMnPVd6S60qmr6+PR48eAQCSk5ORnZ2NpKQkxMfHo7q6GsHBwTA2Nsbhw4dx9OhRaTBc98yKFSsQGxuLjRs34siRI7h79y52797dZJnjx4/H9u3bsWbNGmRlZeG7776DkZERHB0dpTMvsrOzUVRUhNWrVzeYR3h4OE6dOoW4uDikpqZCEAS8/fbbqK6ulqaprKzE8uXLsXnzZhw6dAiFhYX4+OOPAQA1NTUYPnw4AgMDcfbsWaSmpmLSpEkQiZo/RbCgoACJiYlNzlioqKjAkCFD4OXlhfT0dCxYsEBahzr5+fkYNWoUhg8fjszMTEyePBmffvqpTJq8vDwMGjQII0eOxNmzZ7Fjxw4cOXIEU6dObXZ9iYiImqNuXfzh3FsofVCNPWeuAQBCe/NYOSIidaA258RHRkbi/PnzOHLkSIP3y8rKMHjwYHh5eWHBggVyLTs6OhozZsyQKUthgfyFOGDneACyo9UoK5JcH/0D4DVMMWU/QRAEJCcnIzExEdOmTcOtW7dgaGiI9evXS4PSLVu2QCwWY/369dLgNiYmBmZmZkhJScHAgQOxatUqREdH45133gEAfPvtt0hMTGy03JycHOzcuRNJSUnS2RIdO3aU3q+bhWFlZQUzM7MG88jNzUVcXByOHj2KV199FQCwdetWODo6Ys+ePfjb3/4GAKiursa3336LTp06AQCmTp2KRYsWAZD8Py4tLcWQIUOk9z09PZ/5ezt37hyMjIxQW1sr3WPhq6++ajT9tm3bIBaLsWHDBujp6aFLly64evUqPvzwQ2ma7777Dh4eHli2bBkAwMPDA+fPn8eSJUukaT7//HOEhoZKZyO4ublhzZo1CAwMxLp166Cnx5ERIiKSj26OZjDR00JJZTUW7v0DlY9q0cnSEAEd26m6akREBDUZiZ86dSri4+Nx4MABODg41LtfXl6OQYMGwdjYGLt374a2tnajedWtR75x44bM9Rs3bjS6VllXVxcmJiYyL4UQ1wIJs1EvgAf+upYwR6FT6+Pj42FkZAQ9PT289dZbGDNmjPRLER8fH5lR5czMTFy6dAnGxsYwMjKCkZERLCwsUFVVhby8PJSWlqKoqAi9evWSPqOlpYXu3bs3Wn5GRgY0NTURGBjY4jZkZWVBS0tLptx27drBw8MDWVlZ0msGBgbSAB0AbG1tcfOm5MgcCwsLhIeHIzg4GEOHDsXq1aulU+0LCwul7TUyMsK///1vaR4eHh7IyMjAyZMnMXv2bAQHB2PatGlN1rVr164yQXZAQIBMmuzsbPTo0UPmWs+ePWXeZ2ZmIjY2VqZewcHBEIvFyM/Pf+bvjIiIqLm0NDWkG9z9cvrxKHwv5+earUZERIqj0pF4QRAwbdo07N69GykpKXBxcamXpqysDMHBwdDV1UVcXNwzRxxdXFxgY2OD5ORkdOvWTZpHWlqazOinSlw+BpRdbyKBAJRdk6Rz6auQKvTv3x/r1q2Djo4O7OzsZPYWMDQ0lElbUVEBf39/bN26tV4+lpaWLSpfX1+/Rc+1xNNf9ohEIpn1+jExMYiKikJCQgJ27NiBuXPnIikpCd27d5c5/u3JPRrqdvUHgC+++AKDBw/GwoULFb5zfkVFBSZPnoyoqKh695ycOL2RiIjkK9DDEv89J/lyW09bAyP96w+yEBGRaqh0JD4yMhJbtmzBtm3bYGxsjOLiYhQXF+PBgwcAJMF33ZFzGzZsQFlZmTRNbe1fo9WdO3eWrsMWiUSYPn06Fi9ejLi4OJw7dw7jx4+HnZ2dzNnlKlFx49lpniddCxgaGsLV1RVOTk6Nbg5Yx8/PD7m5ubCysoKrq6vMq27/AFtbW6SlpUmfqampQXp6eqN5+vj4QCwW4+DBgw3er5sJ8OT/36d5enqipqZGptw7d+4gOzsbXl5eTbbpab6+voiOjsaxY8fg7e2Nbdu2QUtLS6atTW20OHfuXCxfvhzXrzf85YynpyfOnj0rc7zh8ePHZdJ4eHjg1KlTMtdOnjwp897Pzw8XLlyo9//B1dVVbqcIEBER1anb3A4Ahr1iB1P9xmdBEhGRcqk0iF+3bh1KS0sRFBQEW1tb6avuuK7Tp08jLS0N586dg6urq0yaK1euSPPJzs6W7mwPALNmzcK0adMwadIk9OjRAxUVFUhISFD9umEj62eneZ50ChYaGor27dsjJCQEhw8fRn5+PlJSUhAVFYWrV68CAD766CN88cUX2LNnDy5evIgpU6bUO+P9SR06dEBYWBgmTJiAPXv2SPPcuXMnAMDZWTJdLz4+Hrdu3UJFRUW9PNzc3BASEoKJEyfiyJEjyMzMxLhx42Bvby89VvBZ8vPzER0djdTUVFy+fBm//fYbcnNzm7Uu/kkBAQHo2rWrzJT7J7333nsQiUSYOHEiLly4gH379mH58uUyaSZPnoyLFy9i9uzZ0j0DYmNjAUA6dXH27Nk4duwYpk6dioyMDOTm5uLXX3/lxnZERKQQ1iZ66OViAR1NDYS92kHV1SEioieoNIgXBKHB15PHijWWpkOHDjL51D0DSAKfRYsWobi4GFVVVfj999/h7u6u3MY1xPlVwMQOQGNrykSAib0knRowMDDAoUOH4OTkhHfeeQeenp6IiIhAVVWVdN+AmTNn4v3330dYWBgCAgJgbGyMESNGNJnvunXrMGrUKEyZMgWdO3fGxIkTpUel2dvbY+HChZgzZw6sra0bDVJjYmLg7++PIUOGICAgAIIgYN++fU3ul/B02y5evIiRI0fC3d0dkyZNQmRkJCZPnvwcvyGJf/7zn1i/fr3MF0t1jIyMsHfvXpw7dw6+vr749NNPsXTpUpk0Li4u+Omnn/DLL7+ga9euWLdunXR3el1dXQBA165dcfDgQeTk5KBv377w9fXFvHnzYGdn99z1JSIiao71Yd2RPDMQXexMVV0VIiJ6gkh4+lBvQllZGUxNTaVn0j+pqqoK+fn5cHFxadnIvnR3ekB2g7vHgb2Sdqcn9bZkyRJ8++23DX4x0Fwv3FeJiIiIiEhpmopDn6QWu9O3KV7DJIG6ia3sdRM7BvBt2DfffIOTJ0/izz//xObNm7Fs2TKEhYWpulpERERERKRm1Oac+DbFaxjQebBkF/qKG5I18M6vAhqaqq4ZqUhubi4WL16Mu3fvwsnJCTNnzkR0dLSqq0VERERERGqGQbyqaGgq7Bg5an1WrlyJlStXqroaRERERESk5jidnoiIiIiIiKiVYBBPRERERERE1EowiG8hbupP6o59lIiIiIjo5cMg/jnVnUNeWVmp4poQNa2uj9b1WSIiIiIiav24sd1z0tTUhJmZGW7evAkAMDAwgEgkUnGtiP4iCAIqKytx8+ZNmJmZQVOTpx4QEREREb0sGMS3gI2NDQBIA3kidWRmZibtq0RERERE9HJgEN8CIpEItra2sLKyQnV1taqrQ1SPtrY2R+CJiIiIiF5CDOJfgKamJgMlIiIiIiIiUhpubEdERERERETUSjCIJyIiIiIiImolGMQTERERERERtRJcE98AQRAAAGVlZSquCREREREREbUFdfFnXTzaGAbxDSgvLwcAODo6qrgmRERERERE1JaUl5fD1NS00fsi4VlhfhskFotx/fp1GBsbQyQSqbo6jSorK4OjoyOuXLkCExMTVVeHXlLsZ6QM7GekaOxjpAzsZ6QM7GcvL0EQUF5eDjs7O2hoNL7ynSPxDdDQ0ICDg4Oqq9FsJiYm/ANMCsd+RsrAfkaKxj5GysB+RsrAfvZyamoEvg43tiMiIiIiIiJqJRjEExEREREREbUSDOJbMV1dXcyfPx+6urqqrgq9xNjPSBnYz0jR2MdIGdjPSBnYz4gb2xERERERERG1EhyJJyIiIiIiImolGMQTERERERERtRIM4omIiIiIiIhaCQbxRERERERERK0Eg3gV+/zzz9GjRw8YGxvDysoKw4cPR3Z2tkyaqqoqREZGol27djAyMsLIkSNx48YNmTRRUVHw9/eHrq4uunXr1mBZZ8+eRd++faGnpwdHR0d8+eWXimoWqRFl9bGUlBSEhITA1tYWhoaG6NatG7Zu3arIppEaUebfZXUuXboEY2NjmJmZybk1pK6U2c8EQcDy5cvh7u4OXV1d2NvbY8mSJYpqGqkJZfaxxMRE9O7dG8bGxrC0tMTIkSNRUFCgoJaROpFHP8vMzMTYsWPh6OgIfX19eHp6YvXq1fXKSklJgZ+fH3R1deHq6orY2FhFN4+UgEG8ih08eBCRkZE4fvw4kpKSUF1djYEDB+L+/fvSNP/85z+xd+9e7Nq1CwcPHsT169fxzjvv1MtrwoQJGDNmTIPllJWVYeDAgXB2dkZ6ejqWLVuGBQsW4D//+Y/C2kbqQVl97NixY+jatSt+/vlnnD17Fh988AHGjx+P+Ph4hbWN1Iey+lmd6upqjB07Fn379pV7W0h9KbOfffTRR1i/fj2WL1+OixcvIi4uDj179lRIu0h9KKuP5efnIyQkBK+//joyMjKQmJiI27dvN5gPvXzk0c/S09NhZWWFLVu24I8//sCnn36K6OhofP3119I0+fn5GDx4MPr374+MjAxMnz4df//735GYmKjU9pICCKRWbt68KQAQDh48KAiCIJSUlAja2trCrl27pGmysrIEAEJqamq95+fPny+88sor9a5/8803grm5ufDw4UPptdmzZwseHh7ybwSpNUX1sYa8/fbbwgcffCCXelProuh+NmvWLGHcuHFCTEyMYGpqKu/qUyuhqH524cIFQUtLS7h48aLC6k6tg6L62K5duwQtLS2htrZWei0uLk4QiUTCo0eP5N8QUmsv2s/qTJkyRejfv7/0/axZs4QuXbrIpBkzZowQHBws5xaQsnEkXs2UlpYCACwsLABIvmWrrq7GgAEDpGk6d+4MJycnpKamNjvf1NRU9OvXDzo6OtJrwcHByM7Oxr179+RUe2oNFNXHGiurrhxqWxTZz/bv349du3Zh7dq18qswtUqK6md79+5Fx44dER8fDxcXF3To0AF///vfcffuXfk2gNSeovqYv78/NDQ0EBMTg9raWpSWlmLz5s0YMGAAtLW15dsIUnvy6mdPf+5KTU2VyQOQfP5/0c93pHoM4tWIWCzG9OnT0adPH3h7ewMAiouLoaOjU2/Np7W1NYqLi5udd3FxMaytrevlUXeP2gZF9rGn7dy5EydPnsQHH3zwIlWmVkiR/ezOnTsIDw9HbGwsTExM5FltamUU2c/+/PNPXL58Gbt27cIPP/yA2NhYpKenY9SoUfJsAqk5RfYxFxcX/Pbbb/h//+//QVdXF2ZmZrh69Sp27twpzyZQKyCvfnbs2DHs2LEDkyZNkl5r7PN/WVkZHjx4IN+GkFJpqboC9JfIyEicP38eR44cUXVV6CWlrD524MABfPDBB/j+++/RpUsXhZZF6keR/WzixIl477330K9fP7nnTa2LIvuZWCzGw4cP8cMPP8Dd3R0AsGHDBvj7+yM7OxseHh5yL5PUjyL7WHFxMSZOnIiwsDCMHTsW5eXlmDdvHkaNGoWkpCSIRCK5l0nqSR797Pz58wgJCcH8+fMxcOBAOdaO1BVH4tXE1KlTER8fjwMHDsDBwUF63cbGBo8ePUJJSYlM+hs3bsDGxqbZ+dvY2NTbObXu/fPkQ62XovtYnYMHD2Lo0KFYuXIlxo8f/6LVplZG0f1s//79WL58ObS0tKClpYWIiAiUlpZCS0sLGzdulFczSM0pup/Z2tpCS0tLGsADgKenJwCgsLDwxSpPrYKi+9jatWthamqKL7/8Er6+vujXrx+2bNmC5ORkpKWlyasZpObk0c8uXLiAN954A5MmTcLcuXNl7jX2+d/ExAT6+vrybQwpFYN4FRMEAVOnTsXu3buxf/9+uLi4yNz39/eHtrY2kpOTpdeys7NRWFiIgICAZpcTEBCAQ4cOobq6WnotKSkJHh4eMDc3f/GGkNpSVh8DJMeYDB48GEuXLpWZzkUvP2X1s9TUVGRkZEhfixYtgrGxMTIyMjBixAi5tYfUk7L6WZ8+fVBTU4O8vDzptZycHACAs7PzC7aC1Jmy+lhlZSU0NGQ/hmtqagKQzAShl5u8+tkff/yB/v37IywsrMEjMAMCAmTyACSf/5/38x2pIVXuqkeC8OGHHwqmpqZCSkqKUFRUJH1VVlZK0/zjH/8QnJychP379wunTp0SAgIChICAAJl8cnNzhTNnzgiTJ08W3N3dhTNnzghnzpyR7kZfUlIiWFtbC++//75w/vx54ccffxQMDAyE7777TqntJeVTVh/bv3+/YGBgIERHR8uUc+fOHaW2l1RDWf3sadydvm1RVj+rra0V/Pz8hH79+gmnT58WTp06JfTq1Ut48803ldpeUj5l9bHk5GRBJBIJCxcuFHJycoT09HQhODhYcHZ2limLXk7y6Gfnzp0TLC0thXHjxsnkcfPmTWmaP//8UzAwMBA++eQTISsrS1i7dq2gqakpJCQkKLW9JH8M4lUMQIOvmJgYaZoHDx4IU6ZMEczNzQUDAwNhxIgRQlFRkUw+gYGBDeaTn58vTZOZmSm89tprgq6urmBvby988cUXSmolqZKy+lhYWFiD9wMDA5XXWFIZZf5d9iQG8W2LMvvZtWvXhHfeeUcwMjISrK2thfDwcH4p2QYos49t375d8PX1FQwNDQVLS0th2LBhQlZWlpJaSqokj342f/78BvNwdnaWKevAgQNCt27dBB0dHaFjx44yZVDrJRIEQXiBgXwiIiIiIiIiUhKuiSciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8UREREREREStBIN4IiIiIiIiolaCQTwRERERERFRK8EgnoiIiIiIiKiVYBBPRERERERE1EowiCciIlJjd+7cgZWVFQoKCpRabmxsLMzMzBSSd0JCArp16waxWKyQ/ImIiF5mDOKJiIjU2JIlSxASEoIOHTrUuxccHAxNTU2cPHlS+RV7AYMGDYK2tja2bt3aaJqIiAj4+Pjg0aNHMtf37dsHHR0dnD59WtHVJCIiUksM4omIiNRUZWUlNmzYgIiIiHr3CgsLcezYMUydOhUbN25UQe1aprq6GgAQHh6ONWvWNJpu5cqVKC8vx/z586XXSkpKMHHiRPzrX/+Cn5+fwupGRESkzhjEExERqal9+/ZBV1cXvXv3rncvJiYGQ4YMwYcffojt27fjwYMHMveDgoIQFRWFWbNmwcLCAjY2NliwYIFMmpKSEkyePBnW1tbQ09ODt7c34uPjZdIkJibC09MTRkZGGDRoEIqKiqT3xGIxFi1aBAcHB+jq6qJbt25ISEiQ3i8oKIBIJMKOHTsQGBgIPT096ej70KFDcerUKeTl5TXYdhMTE8TExGDFihVIS0sDAEyfPh329vaIjo7GlStXMHr0aJiZmcHCwgIhISEySw5OnjyJN998E+3bt4epqSkCAwPrjd6LRCKsW7cOw4YNg6GhIZYsWdLI/wkiIiL1wSCeiIhITR0+fBj+/v71rguCgJiYGIwbNw6dO3eGq6srfvrpp3rpNm3aBENDQ6SlpeHLL7/EokWLkJSUBEASgL/11ls4evQotmzZggsXLuCLL76Apqam9PnKykosX74cmzdvxqFDh1BYWIiPP/5Yen/16tVYsWIFli9fjrNnzyI4OBjDhg1Dbm6uTD3mzJmDjz76CFlZWQgODgYAODk5wdraGocPH260/f3798eUKVMQFhaGXbt2YefOnfjhhx8gCAKCg4NhbGyMw4cP4+jRo9IvGeqm35eXlyMsLAxHjhzB8ePH4ebmhrfffhvl5eUyZSxYsAAjRozAuXPnMGHChGf9LyEiIlI9gYiIiNRSSEiIMGHChHrXf/vtN8HS0lKorq4WBEEQVq5cKQQGBsqkCQwMFF577TWZaz169BBmz54tCIIgJCYmChoaGkJ2dnaDZcfExAgAhEuXLkmvrV27VrC2tpa+t7OzE5YsWVKvjClTpgiCIAj5+fkCAGHVqlUNluHr6yssWLCgwXt1KisrBQ8PD0FDQ0NYuXKlIAiCsHnzZsHDw0MQi8XSdA8fPhT09fWFxMTEBvOpra0VjI2Nhb1790qvARCmT5/eZPlERETqhiPxREREaurBgwfQ09Ord33jxo0YM2YMtLS0AABjx47F0aNH601N79q1q8x7W1tb3Lx5EwCQkZEBBwcHuLu7N1q+gYEBOnXq1ODzZWVluH79Ovr06SPzTJ8+fZCVlSVzrXv37g3mr6+vj8rKykbLr0vz8ccfw8DAAB999BEAIDMzE5cuXYKxsTGMjIxgZGQECwsLVFVVSX8HN27cwMSJE+Hm5gZTU1OYmJigoqIChYWFzaobERGRutJSdQWIiIioYe3bt8e9e/dkrt29exe7d+9GdXU11q1bJ71eW1uLjRs3yqzr1tbWlnlWJBJJj3XT19d/ZvkNPS8IwnO3w9DQsMHrd+/ehaWl5TOf19LSgqamJkQiEQCgoqIC/v7+De5uX5dfWFgY7ty5g9WrV8PZ2Rm6uroICAiot9t9Y3UjIiJSVxyJJyIiUlO+vr64cOGCzLWtW7fCwcEBmZmZyMjIkL5WrFiB2NhY1NbWNivvrl274urVq8jJyWlR3UxMTGBnZ4ejR4/KXD969Ci8vLye+XzdqLmvr+9zl+3n54fc3FxYWVnB1dVV5mVqaiqtR1RUFN5++2106dIFurq6uH379nOXRUREpG4YxBMREamp4OBg/PHHHzKj8Rs2bMCoUaPg7e0t84qIiMDt27dldodvSmBgIPr164eRI0ciKSkJ+fn5+N///tfs5wHgk08+wdKlS7Fjxw5kZ2djzpw5yMjIkE57b8rx48elo+PPKzQ0FO3bt0dISAgOHz6M/Px8pKSkICoqClevXgUAuLm5YfPmzcjKykJaWhpCQ0ObNfuAiIhI3TGIJyIiUlM+Pj7w8/PDzp07AQDp6enIzMzEyJEj66U1NTXFG2+8gQ0bNjQ7/59//hk9evTA2LFj4eXlhVmzZjV7JB8AoqKiMGPGDMycORM+Pj5ISEhAXFwc3Nzcnvns9u3bERoaCgMDg2aXV8fAwACHDh2Ck5MT3nnnHXh6eiIiIgJVVVUwMTEBIPmy4969e/Dz88P777+PqKgoWFlZPXdZRERE6kYktGRxGxERESnFf//7X3zyySc4f/48NDReju/eb9++DQ8PD5w6dQouLi6qrg4REVGrwo3tiIiI1NjgwYORm5uLa9euwdHRUdXVkYuCggJ88803DOCJiIhagCPxRERERERERK3EyzEvj4iIiIiIiKgNYBBPRERERERE1EowiCciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8UREREREREStBIN4IiIiIiIiolaCQTwRERERERFRK8EgnoiIiIiIiKiV+P9TGIMfvYKB9gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -884,7 +884,7 @@ "fig, ax = plt.subplots(figsize=(12, 5))\n", "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", - "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", " label=\"Climatology\", c=\"black\")\n", "plt.scatter(ground_truth.anchor_year, predictions_baseline, label=\"Predictions-Ridge\")\n", "plt.xlabel(\"(Anchor) Year\")\n", diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 31a03eb..1c5ff38 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -458,32 +458,13 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 36, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n", - "<__array_function__ internals>:200: RuntimeWarning: invalid value encountered in cast\n" - ] - } - ], + "outputs": [], "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", "# cross-validation with Kfold\n", "k_fold_splits = 5\n", "kfold = KFold(n_splits=k_fold_splits)\n", @@ -520,7 +501,7 @@ " clusters_train = rgdr.transform(x_train)\n", " clusters_test = rgdr.transform(x_test)\n", " # train model\n", - " ridge = RidgeCV(alphas=[0.1, 10, 25, 50])\n", + " ridge = RidgeCV(alphas=[1E-3, 1E-2, 0.1, 10, 25, 50])\n", " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", @@ -534,627 +515,6 @@ " prediction))" ] }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.DataArray 'sst' (anchor_year: 50, i_interval: 1, cluster_labels: 2)>\n",
-       "array([[[-0.97626738,  0.44366444]],\n",
-       "\n",
-       "       [[-0.35536136, -0.16670312]],\n",
-       "\n",
-       "       [[ 0.49199139, -0.06453097]],\n",
-       "\n",
-       "       [[ 0.53587579, -0.0327614 ]],\n",
-       "\n",
-       "       [[ 0.45312712,  0.12878606]],\n",
-       "\n",
-       "       [[ 0.88973063, -0.53432375]],\n",
-       "\n",
-       "       [[ 0.4807509 , -0.28606691]],\n",
-       "\n",
-       "       [[ 0.51968035, -0.65672427]],\n",
-       "\n",
-       "       [[ 0.50233281,  0.11060942]],\n",
-       "\n",
-       "       [[-0.68087629,  0.50536389]],\n",
-       "\n",
-       "...\n",
-       "\n",
-       "       [[-0.66575862,  2.31406735]],\n",
-       "\n",
-       "       [[-0.39876976,  1.31702337]],\n",
-       "\n",
-       "       [[ 0.77408958, -0.87420737]],\n",
-       "\n",
-       "       [[-0.36998757,  0.12183744]],\n",
-       "\n",
-       "       [[ 0.28319172, -1.22992618]],\n",
-       "\n",
-       "       [[ 0.50763789,  0.8780428 ]],\n",
-       "\n",
-       "       [[-0.33881888,  0.89358637]],\n",
-       "\n",
-       "       [[-0.27616542,  0.6507888 ]],\n",
-       "\n",
-       "       [[ 0.31922811,  0.98354972]],\n",
-       "\n",
-       "       [[ 1.04343428,  0.15593146]]])\n",
-       "Coordinates:\n",
-       "  * anchor_year     (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n",
-       "  * i_interval      (i_interval) int64 -2\n",
-       "    left_bound      (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n",
-       "    right_bound     (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n",
-       "    is_target       (i_interval) bool False\n",
-       "  * cluster_labels  (cluster_labels) int16 -1 1\n",
-       "    latitude        (cluster_labels) float64 42.59 27.5\n",
-       "    longitude       (cluster_labels) float64 208.0 190.0\n",
-       "Attributes:\n",
-       "    data:         Clustered data with Response Guided Dimensionality Reduction.\n",
-       "    coordinates:  Latitudes and longitudes are geographical centers associate...
" - ], - "text/plain": [ - "\n", - "array([[[-0.97626738, 0.44366444]],\n", - "\n", - " [[-0.35536136, -0.16670312]],\n", - "\n", - " [[ 0.49199139, -0.06453097]],\n", - "\n", - " [[ 0.53587579, -0.0327614 ]],\n", - "\n", - " [[ 0.45312712, 0.12878606]],\n", - "\n", - " [[ 0.88973063, -0.53432375]],\n", - "\n", - " [[ 0.4807509 , -0.28606691]],\n", - "\n", - " [[ 0.51968035, -0.65672427]],\n", - "\n", - " [[ 0.50233281, 0.11060942]],\n", - "\n", - " [[-0.68087629, 0.50536389]],\n", - "\n", - "...\n", - "\n", - " [[-0.66575862, 2.31406735]],\n", - "\n", - " [[-0.39876976, 1.31702337]],\n", - "\n", - " [[ 0.77408958, -0.87420737]],\n", - "\n", - " [[-0.36998757, 0.12183744]],\n", - "\n", - " [[ 0.28319172, -1.22992618]],\n", - "\n", - " [[ 0.50763789, 0.8780428 ]],\n", - "\n", - " [[-0.33881888, 0.89358637]],\n", - "\n", - " [[-0.27616542, 0.6507888 ]],\n", - "\n", - " [[ 0.31922811, 0.98354972]],\n", - "\n", - " [[ 1.04343428, 0.15593146]]])\n", - "Coordinates:\n", - " * anchor_year (anchor_year) int64 1960 1961 1962 1963 ... 2007 2008 2009\n", - " * i_interval (i_interval) int64 -2\n", - " left_bound (anchor_year, i_interval) datetime64[ns] 1960-05-01 ... 2...\n", - " right_bound (anchor_year, i_interval) datetime64[ns] 1960-06-01 ... 2...\n", - " is_target (i_interval) bool False\n", - " * cluster_labels (cluster_labels) int16 -1 1\n", - " latitude (cluster_labels) float64 42.59 27.5\n", - " longitude (cluster_labels) float64 208.0 190.0\n", - "Attributes:\n", - " data: Clustered data with Response Guided Dimensionality Reduction.\n", - " coordinates: Latitudes and longitudes are geographical centers associate..." - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clusters_train" - ] - }, { "attachments": {}, "cell_type": "markdown", @@ -1165,7 +525,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 37, "metadata": {}, "outputs": [ { From 5d7357362666c82ce992136c49a40eaa53cac67f Mon Sep 17 00:00:00 2001 From: jannesvaningen <82503135+jannesvaningen@users.noreply.github.com> Date: Wed, 5 Jul 2023 13:18:12 +0100 Subject: [PATCH 10/12] fixed lineplot ridge. --- workflow/pred_temperature_ridge.ipynb | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index a9d3d98..34174a1 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -157,7 +157,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABelklEQVR4nO3deXhMZ/sH8O+Z7HsIEktUEPsWYq3GUlvRUooWVaV28ipeS/VFbGkopdZaKql9r1RVqSVqJ7FvDYKQRCyRlUxm5vn9kV9OjQSZZJI5Sb6f68olc+acZ+4zjzM59zybJIQQICIiIiIiMjGVqQMgIiIiIiICmJwQEREREZFCMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBHNTB1BQ6HQ6REVFwcHBAZIkmTocIiIiKsSEEEhMTESZMmWgUvG7ZCo6mJxkU1RUFNzd3U0dBhERERUhkZGRKFeunKnDIMo3TE6yycHBAUD6h4Sjo6OJoyEiIqLCLCEhAe7u7vL9B1FRweQkmzK6cjk6OjI5ISIionzBruRU1LATIxERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBE4IJ6IiKgQE0IgNTXVqOVYWVnleKC20sp5mbHiMYYXL14YrSyigoTJCRERUSGWmpqKHj165LocrVaL0NBQAIC3t3eOFwZUWjkv27p1K6ytrXN0rLHe5wxpaWlGK4uoIGFyQkREVASEPUjM1fFCp0P8Cw0sS3vi4mMtJEmbw3K0SFALqIqVwfmoJCCnLRVGiidD3ZIWuTpeFnnaOOW4eRmnHKIChskJERFREdF0uD/MzC1zdKz6eSL+mNgdAPDe+OWwsMpZC0Nacjx2Dn0PANB46Owcl2OseHRpqQgJGJKjY19n3WAvWFnkrCUnNU2HvivOGTUeooKEyQkREVERYWZuCTNLq5wdm/bveAozC0uYW+YsGdCq/x1LoYR4NDk66s2sLFSwtjDLg5KJCj/O1kVERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQI5qYOgIiIiPLfIf/BeB7/GJKkgoWNHRr0m4RiFarhyq6ViPg7GIkxd+EzZhHK1m/xxnL2TuqG53EP/78cezQZMQculWrj+bNHODJnGBKjI6CysEQz3/lwq9W0wMRjLO2+P4mY+FSoJAkO1uZY1Lcm6pV3QmxCKvqtPI9bscmwsjDD8n610bxK8TyPh0jpTNpy4u/vj4YNG8LBwQGlSpVC165dcePGDb19hBCYNm0aypQpAxsbG7Rs2RJXrlyRn3/69ClGjRqFqlWrwtbWFuXLl4evry/i4+P1ypk1axaaNWsGW1tbODs758fpERERKda7vt+j43c78IH/NlTr2A+nVk4BALjWbIwW/12KUtUaZKucVpPX4OPlx9B12d+o9clIHJ0/EgBwdrUfSlb3xidrQvHe2CUICRgMnVZTYOIxli3DG+DijBY4P90HYztUxIDVFwAAE7deR5NKzggPaI01A+qiz4pz0Gh1eR4PkdKZNDkJCQnBiBEjcPLkSezfvx8ajQbt2rVDcnKyvM+cOXMwf/58LF68GGfOnIGbmxvatm2LxMREAEBUVBSioqLw/fff49KlSwgMDMTevXsxcOBAvddSq9Xo0aMHhg0blq/nSEREpESWdo7y7+qUJEiSBAAoUbkOHFzds12Olb3Tv+UkJwBS+q1FxJFfUf3DrwAAJavWh41zKTy8fLLAxGMszrYW8u/xKWlQqdLPa8uZKIxoXQEA0LCiM1wdLXE0/Gmex0OkdCbt1rV37169x2vWrEGpUqUQGhoKHx8fCCGwYMECTJ48Gd26dQMABAUFwdXVFRs2bMCQIUNQq1YtbN++XS6jUqVKmDVrFvr27QuNRgNz8/RT9PPzAwAEBgbmz8kREREp3Ill3yD26mkAQMsJy3NcTsicoYi58DcAoN2sbXiR8BRC6GDjXELex961PJJi76N4pVqKiqdkde8cv0529Vt5DoeuPQEA7B3bGE+S1NAJgZKOVvI+FUrY4t6TF2hSKc/DIVI0RQ2Iz+iKVbx4ep/LiIgIxMTEoF27dvI+VlZWaNGiBY4fP/7GchwdHeXEJCdSU1ORkJCg90NERFSYNB02G10W/YXaPUbh3IZ5OS6nxfjl6LX+Cur3/xZnVqV3x5IgvbKXKHDxGMsvg7wQOb8NZnariv9uvpplPCL/wiFSNMUkJ0IIjBkzBs2bN0etWunfqsTExAAAXF1d9fZ1dXWVn3vVkydPMGPGDAwZMiRX8fj7+8PJyUn+cXfPfpMyERFRQVLRpwtir55BauKzXJXj2fYzRF84Kj9+/uyx/HvSw0jYlypXIOMxli+au+PQ9Sfy40cJqfLvd5+koLyLdb7GQ6REiklORo4ciYsXL2Ljxo2Znsvod5pBCJFpGwAkJCSgU6dOqFGjBqZOnZqreCZNmoT4+Hj5JzIyMlflERERKUVaShJS4mLlx5FnDsDS3gmWL43XyA51cgJSnkTLj+8c2w0rx+KwciiGCj5dcO23VQCARzfC8DzuIVxrNSkQ8RhLwvM0RMW9kB/vDI2Gi70littZoEfD0lhy8A4A4MztZ4iJT0VzT87WRaSIqYRHjRqF4OBgHDlyBOXK/fsthpubG4D0FpTSpUvL22NjYzO1piQmJqJDhw6wt7fHzp07YWFhgdywsrKClZXV23ckIiIqYNTPk3B0wdfQql9AUqlg5VAMLcYtgSRJuLJrFcL3b0RqYhxO/vQtzCws0WH2VqjMMt8yqJMTcHDGF9CqnwOSCtZOJdB2+iZIkoSGA6chZM5QbPuyAVTmlvAZ/1OWZZg6nrycsSs+RYPuS87iuVoHlQoo6WCF3aMbQpIkBPSojs9XnoPnhIOwNFdh7SAvmJupoNFp8yweooLApMmJEAKjRo3Czp07cfjwYXh4eOg97+HhATc3N+zfvx9eXl4A0mfdCgkJQUBAgLxfQkIC2rdvDysrKwQHB8Pams2iREREr2Pn4ob2MzL3VACAml2+Qs0uX2Xark7OPPbSvlQ5fLToQJbl2BQrhQ7+OwpkPMbi7mKD01Pey/I5Vycr7BuXty03RAWRSZOTESNGYMOGDdi1axccHBzkcSROTk6wsbGBJEkYPXo0Zs+eDU9PT3h6emL27NmwtbVF7969AaS3mLRr1w4pKSlYt26d3uD1kiVLwszMDABw7949PH36FPfu3YNWq8X58+cBAJUrV4a9vX3+nzwREREREekxaXKybNkyAEDLli31tq9Zswb9+/cHAIwfPx7Pnz/H8OHDERcXh8aNG2Pfvn1wcHAAAISGhuLUqVMA0hONl0VERKBChQoAgClTpiAoKEh+LqMl5tChQ5len4iIiIiI8p/Ju3W9jSRJmDZtGqZNm5bl8y1btsxWOYGBgVzjhIiIiIhIwRQzWxcRERERERVtTE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEimJs6ACIiIsofWo3aKMdq09TQqHL2/aYuLVWvTJU6Z+XkRTzGkpqmM8mxRIUBkxMiIqIi4sTSSTk+Vuj+vWn+e85QSFJOy9HKv59a/g1yWpCx4skLfVecM3UIRAUWkxMiIqIioH5Zh1wdr9VqERptDsRFoE4lb6hy2FKh1aoQelcCkqNRr3rZXJRjnHiMzr2RccpJSzNOOUQFjCSEEKYOoiBISEiAk5MT4uPj4ejoaOpwiIiIskUIgdTU3HdderkcKysrSDlt8VBYOS8zVjzGkJCQAFdXV953UJHDlhMiIqJCTJIkWFtbG6UsGxubQlmOMRjzfQYAtTrn44OICjKFtIESEREREVFRx+SEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFMGg5ESj0SAoKAgxMTF5FQ8RERERERVRBiUn5ubmGDZsGFJTU/MqHiIiIiIiKqIM7tbVuHFjnD9/Pg9CISIiIiKioszc0AOGDx+OMWPGIDIyEg0aNICdnZ3e83Xq1DFacERUNAghjNYi+3JZVlZWkCTJJGXkRVnGjscYjHFOREREGSQhhDDkAJUqc2OLJEkQQkCSJGi1WqMFpyQJCQlwcnJCfHw8HB0dTR0OUaHy4sUL9OjRwyhlabVahIaGAgC8vb2z/MzKjzLyoiwA2Lp1K6ytrXN8vDHfa2PEQ0RZ430HFVUGt5xERETkRRxERAh7kJjrMoROh/gXGliW9sTFx1pIkuFfmAidFglqAVWxMjgflQTkpqXCCPFkqFvSIsfHZhJ5OvdluDfKfRlEREQvMTg5eeedd/IiDiIiAEDT4f4wM7fM8fHq54n4Y2J3AMB745fDwsrwb/XTkuOxc+h7AIDGQ2fnqAxjxqNLS0VIwJAcx/A66wZ7wcrC8Jac1DQd+q44Z/R4iIiIDE5OMly9ehX37t2DWq3W2/7RRx/lOigiKrrMzC1hZmmV8+PT/h1PYWZhCXNLw5MBrfqFouLR5PjV38zKQgVrC7M8Kp2IiMhwBicnt2/fxscff4xLly7JY00AyAMiC+uYEyIiIiIiylsGt+f/5z//gYeHBx4+fAhbW1tcuXIFR44cgbe3Nw4fPpwHIRIRERERUVFgcMvJiRMncPDgQZQsWRIqlQoqlQrNmzeHv78/fH19ce4c+yETEREREZHhDG450Wq1sLe3BwCUKFECUVFRANIHyt+4ccO40RERERERUZFhcMtJrVq1cPHiRVSsWBGNGzfGnDlzYGlpiRUrVqBixYp5ESMRERERERUBBicn3377LZKTkwEAM2fOROfOnfHee+/BxcUFmzdvNnqARERERERUNBicnLRv317+vWLFirh69SqePn2KYsWKyTN2ERERERERGcrw1bf+382bN/Hnn3/i+fPnKF68uDFjIiIiIiKiIsjg5OTJkyd4//33UaVKFXTs2BHR0dEAgK+++gpjx441eoBERERERFQ0GNyt6+uvv4aFhQXu3buH6tWry9t79eqFr7/+GvPmzTNqgERERESUNa1Wi7S0NFOHQfRGlpaWUKmy1yZicHKyb98+/PnnnyhXrpzedk9PT9y9e9fQ4oiIiIjIQEIIxMTE4NmzZ6YOheitVCoVPDw8YGlp+dZ9DU5OkpOTYWtrm2n748ePYWVlZWhxRERERGSgjMSkVKlSsLW15aREpFg6nQ5RUVGIjo5G+fLl3/p/1eDkxMfHB7/88gtmzJgBAJAkCTqdDnPnzkWrVq1yFjURERERZYtWq5UTExcXF1OHQ/RWJUuWRFRUFDQaDSwsLN64r8HJydy5c9GyZUucPXsWarUa48ePx5UrV/D06VMcO3Ysx0ETERER0dtljDHJqicLkRJldOfSarVvTU4Mnq2rRo0auHjxIho1aoS2bdsiOTkZ3bp1w7lz51CpUqWcRUxEREREBmFXLiooDPm/anDLCQC4ubnBz88vJ4cSERERERFlyeCWkwoVKmD69OmIjIzMi3iIiIiIiKiIMrjlZOzYsQgMDMT06dPRqlUrDBw4EB9//DFn6iIiIiIytXn53NVrrMjf1zMxSZKwc+dOdO3a1dSh5FjLli1Rr149LFiwwNShZMnglpNRo0YhNDQUoaGhqFGjBnx9fVG6dGmMHDkSYWFheREjERERERVwkiS98ad///4mi61ChQrZulmPjo7GBx98kO1yAwMD4ezsnPPAiiCDk5MMdevWxcKFC/HgwQNMnToVq1atQsOGDVG3bl38/PPPEKJoZdJERERE9HrR0dHyz4IFC+Do6Ki3beHChQaVp1ar8yjS13NzczNJbyGtVgudTpfvr2sKOU5O0tLSsGXLFnz00UcYO3YsvL29sWrVKvTs2ROTJ09Gnz59jBknERERERVgbm5u8o+TkxMkSZIfW1hYYOjQoShXrhxsbW1Ru3ZtbNy4Ue/4li1bYuTIkRgzZgxKlCiBtm3bAgCCg4Ph6ekJGxsbtGrVCkFBQZAkCc+ePZOPPX78OHx8fGBjYwN3d3f4+voiOTlZLvfu3bv4+uuv5Vac15EkCb/++isA4M6dO5AkCTt27ECrVq1ga2uLunXr4sSJEwCAw4cP48svv0R8fLxc7rRp0wBAXo6jbNmysLOzQ+PGjXH48GH5dTJaXHbv3o0aNWrAysoKK1euhLW1td55AYCvry9atGgBAHjy5Ak+++yzN76PSmdwchIWFoZRo0ahdOnSGDVqFGrWrInLly/j6NGj+PLLLzF58mQEBwdj586deREvERERERUyL168QIMGDbB7925cvnwZgwcPxueff45Tp07p7RcUFARzc3McO3YMP/30E+7cuYNPPvkEXbt2xfnz5zFkyBBMnjxZ75hLly6hffv26NatGy5evIjNmzfj6NGjGDlyJABgx44dKFeuHKZPny634hhi8uTJGDduHM6fP48qVargs88+g0ajQbNmzTK1EI0bNw4A8OWXX+LYsWPYtGkTLl68iB49eqBDhw4IDw+Xy01JSYG/vz9WrVqFK1euoG/fvnB2dsb27dvlfbRaLbZs2SI3CmT3fVQygwfEN2zYEG3btsWyZcvQtWvXLBdSqVGjBj799FOjBEhEREREhVvZsmXlG3cgfYzz3r17sXXrVjRu3FjeXrlyZcyZM0d+PHHiRFStWhVz584FAFStWhWXL1/GrFmz5H3mzp2L3r17Y/To0QAAT09P/Pjjj2jRogWWLVuG4sWLw8zMDA4ODnBzczM49nHjxqFTp04AAD8/P9SsWRM3b95EtWrV9FqIMty6dQsbN27E/fv3UaZMGbmMvXv3Ys2aNZg9ezaA9F5KS5cuRd26deVje/XqhQ0bNmDgwIEAgAMHDiAuLg49evQw6H1UMoOTk9u3b+Odd9554z52dnZYs2ZNjoMiIiIioqJDq9Xiu+++w+bNm/HgwQOkpqYiNTUVdnZ2evt5e3vrPb5x4wYaNmyot61Ro0Z6j0NDQ3Hz5k2sX79e3iaEgE6nQ0REBKpXr56r2OvUqSP/Xrp0aQBAbGwsqlWrluX+YWFhEEKgSpUqettTU1Ph4uIiP7a0tNQrGwD69OmDpk2bIioqCmXKlMH69evRsWNHFCtWDED230clMzg5eVtiQkRERERkiHnz5uGHH37AggULULt2bdjZ2WH06NGZBr2/epMthMg0RuTVSZl0Oh2GDBkCX1/fTK9bvnz5XMf+ci+ijFjeNHhdp9PBzMwMoaGhMDMz03vO3t5e/t3GxibTuTVq1AiVKlXCpk2bMGzYMOzcuVOvQSC776OS5WiFeCIiIiIiY/n777/RpUsX9O3bF0D6DXx4ePhbWzWqVauGPXv26G07e/as3uP69evjypUrqFy58mvLsbS0hFarzWH0r5dVuV5eXtBqtYiNjcV7771ncJm9e/fG+vXrUa5cOahUKrlLGZDz91FJcjxbFxERERGRMVSuXBn79+/H8ePHce3aNQwZMgQxMTFvPW7IkCG4fv06JkyYgH/++QdbtmxBYGAggH9bMSZMmIATJ05gxIgROH/+PMLDwxEcHIxRo0bJ5VSoUAFHjhzBgwcP8PjxY6OdV4UKFZCUlIQDBw7g8ePHSElJQZUqVdCnTx/069cPO3bsQEREBM6cOYOAgIBMiVZW+vTpg7CwMMyaNQuffPIJrK2t5edy+j4qCVtOiIiIiAqLArpi+//+9z9ERESgffv2sLW1xeDBg9G1a1fEx8e/8TgPDw9s27YNY8eOxcKFC9G0aVNMnjwZw4YNk9cjqVOnDkJCQjB58mS89957EEKgUqVK6NWrl1zO9OnTMWTIEFSqVAmpqalGW6+vWbNmGDp0KHr16oUnT55g6tSpmDZtGtasWYOZM2di7NixePDgAVxcXNC0aVN07NjxrWV6enqiYcOGOHPmTKaFI3P6PiqJQclJWloaqlatKs+5TERERERkqP79++utCF+8eHF5/ZDXeXkdkJd99NFH+Oijj+THs2bNQrly5fRaFBo2bIh9+/a9tuwmTZrgwoULb4375aSlQoUKmZIYZ2fnTNuWLVuGZcuW6W2zsLCAn58f/Pz8snydV9+fV50+fTrL7bl5H5XCoOTEwsICqampb1ycxhD+/v7YsWMHrl+/DhsbGzRr1gwBAQGoWrWqvI8QAn5+flixYgXi4uLQuHFjLFmyBDVr1gQAPH36FFOnTsW+ffsQGRmJEiVKoGvXrpgxYwacnJzkcuLi4uDr64vg4GAA6f+RFy1aBGdnZ6OcCxEZ3yH/wXge/xiSpIKFjR0a9JuEYhWq4cqulYj4OxiJMXfhM2YRytZv8cZy9k7qhudxD/+/HHs0GTEHLpVq4/mzRzgyZxgSoyOgsrBEM9/5cKvVtMDEYyztvj+JmPhUqCQJDtbmWNS3JuqVd0JsQir6rTyPW7HJsLIww/J+tdG8SvE8j4eIyBBLly5Fw4YN4eLigmPHjmHu3LnyGiZU8BjcrWvUqFEICAjAqlWrYG6eu15hISEhGDFiBBo2bAiNRoPJkyejXbt2uHr1qjwbw5w5czB//nwEBgaiSpUqmDlzJtq2bYsbN27AwcEBUVFRiIqKwvfff48aNWrg7t27GDp0KKKiorBt2zb5tXr37o379+9j7969ACAvSvPbb7/l6hyIKO+86/s9LO0cAQD3zx7AqZVT0GHWFrjWbIzyTTrg9Mop2Sqn1eQ1sLJP/7Li7vHfcXT+SHRZEoKzq/1Qsro32s/ehkc3wnBw5hfoEXiuwMRjLFuGN4CzbfpsM7+GxWDA6gsI8/PBxK3X0aSSM/aObYwzt5/hk6WhuBXQKs/jISIyRHh4OGbOnImnT5+ifPnyGDt2LCZNmmTqsCiHDM4uTp06hQMHDmDfvn3yFGUv27FjR7bLykgUMqxZswalSpVCaGgofHx8IITAggULMHnyZHTr1g1A+sqgrq6u2LBhA4YMGYJatWrprZRZqVIlzJo1C3379oVGo4G5uTmuXbuGvXv34uTJk/ICNCtXrkTTpk1x48YNvZYaIlKOjEQAANQpSXKrbYnKdV53SJYyEgEAUCcnAFL6XCARR35Fj6DzAICSVevDxrkUHl4+ieKVaikqnpLVvbMqxmgyEhMAiE9Jg0qVfl5bzkQhYk5rAEDDis5wdbTE0fCnaFKpWJ7GQ0RkiB9++AE//PCDqcMgIzE4OXF2dkb37t3zIhZ5sE7x4undBiIiIhATE4N27drJ+1hZWaFFixY4fvw4hgwZ8tpyHB0d5ZadEydOwMnJSW9lzCZNmsDJyQnHjx/PMjnJWLQmQ0JCQu5PkIgMdmLZN4i9mt63tuWE5TkuJ2TOUMRc+BsA0G7WNrxIeAohdLBxLiHvY+9aHkmx91+bnJgqnrxOTgCg38pzOHTtCQBg79jGeJKkhk4IlHS0kvepUMIW9568QJNKeR4OEREVUQYnJ3m18rsQAmPGjEHz5s1Rq1b6jUHG1Geurq56+7q6uuLu3btZlvPkyRPMmDFDL3GJiYlBqVKlMu1bqlSp106v5u/v/9pBSkSUf5oOmw0AuH1kF85tmIeW45e95YistRifnkiE79+IM6umwGf8T5Dw6vi5t8/OorR4jOWXQV4AgKCjkfjv5qtYO9grUzxGmryGiIjotXK8zsmjR49w9OhRHDt2DI8ePcp1ICNHjsTFixexcePGTM9ltfJnVoPyExIS0KlTJ9SoUQNTp059YxlvKgcAJk2ahPj4ePknMjLSkNMhIiOr6NMFsVfPIDXxWa7K8Wz7GaIvHJUfP3/273z2SQ8jYV+qXIGMx1i+aO6OQ9efyI8fJfzbgnz3SQrKu1hndRgREZFRGJycJCcnY8CAAShdujR8fHzw3nvvoUyZMhg4cCBSUlJyFMSoUaMQHByMQ4cOoVy5f/8Qu7m5AUCm1o3Y2NhMrSmJiYno0KED7O3tsXPnTlhYWOiV8/Dhw0yv++jRo0zlZLCysoKjo6PeDxHln7SUJKTExcqPI88cgKW9EyxfGq+RHerkBKQ8iZYf3zm2G1aOxWHlUAwVfLrg2m+rAACPboThedxDuNZqUiDiMZaE52mIinshP94ZGg0Xe0sUt7NAj4alseTgHQDAmdvPEBOfiuaenK2LiIjyjsHdusaMGYOQkBD89ttvePfddwEAR48eha+vL8aOHZtpHuc3EUJg1KhR2LlzJw4fPgwPDw+95z08PODm5ob9+/fDyyu9y4FarUZISAgCAgLk/RISEtC+fXtYWVkhODhYb15rAGjatCni4+Nx+vRpNGrUCED6wP74+Hg0a9bM0LeAiPKB+nkSji74Glr1C0gqFawciqHFuCWQJAlXdq1C+P6NSE2Mw8mfvoWZhSU6zN4Ka8fMN87q5AQcnPEFtOrngKSCtVMJtJ2+CZIkoeHAaQiZMxTbvmwAlbklfMb/BJVZ1h+LpoxHp9UY/f3NEJ+iQfclZ/FcrYNKBZR0sMLu0Q0hSRICelTH5yvPwXPCQViaq7B2kBfMzVTQ6LR5Fg8RERVtBicn27dvx7Zt29CyZUt5W8eOHWFjY4OePXsalJyMGDECGzZswK5du+Dg4CC3kDg5OcHGxgaSJGH06NGYPXs2PD094enpidmzZ8PW1ha9e/cGkN5i0q5dO6SkpGDdunVISEiQB6+XLFkSZmZmqF69Ojp06IBBgwbhp59+ApA+lXDnzp05UxeRQtm5uKH9jMzdPAGgZpevULPLV9kqx75UOXy06ECWz9kUK4UO/tmbYVBp8RiLu4sNTk95L8vnXJ2ssG9c3rbcEBFR+qKLz549e+sCikoWGBiI0aNH49mzZ7kqx+DkJCUlJcuuUKVKlTK4W1dGIvNyogOkD7rPWBVz/PjxeP78OYYPHy4vwrhv3z44ODgAAEJDQ3Hq1CkAQOXKlfXKiYiIQIUKFQAA69evh6+vrzzz10cffYTFixcbFC8RERGRkpWYdiRfX+/xNB+D9u/fvz+CgoIAAObm5nB3d0e3bt3g5+eXaXmKomThwoWZVpZ/G0mSsHPnTnTt2jVvgjIRg5OTpk2bYurUqfjll1/k7lPPnz+Hn58fmjY1bCXj7FSCJEmYNm0apk2bluXzLVu2zFY5xYsXx7p16wyKj4iIiIiMq0OHDlizZg3S0tLw999/46uvvkJycnKWvW/S0tL0xhHnp7x4bbVaDUtLy0zbnZwMG79oTKZ8j7Ni8ID4hQsX4vjx4yhXrhzef/99tGnTBu7u7jh+/DgWLlyYFzESERERUSFhZWUFNzc3uLu7o3fv3ujTp4/cnWnatGmoV68efv75Z1SsWBFWVlYQQiA+Ph6DBw9GqVKl4OjoiNatW+PChQt65QYHB8Pb2xvW1tYoUaKEvIA3kP5l96tdppydnREYGAgAuHPnDiRJwpYtW9CyZUtYW1tj3bp1uHv3Lj788EMUK1YMdnZ2qFmzJvbs2SOXERISgkaNGsHKygqlS5fGxIkTodH8O06wZcuWGDlyJMaMGYMSJUqgbdu2Wb4n/fv312sBadmyJXx9fTF+/HgUL14cbm5uel/UZ/QM+vjjjyFJkvwYAH777Tc0aNAA1tbWqFixIvz8/PRikiQJy5cvR5cuXWBnZ4fp06ejXLlyWL5cf+2usLAwSJKE27dvAwDmz58vL8Du7u6O4cOHIykpKcvzyQ2Dk5NatWohPDwc/v7+qFevHurUqYPvvvsO4eHhqFmzptEDJCIiIqLCy8bGBmlpafLjmzdvYsuWLdi+fTvOnz8PAOjUqRNiYmKwZ88ehIaGon79+nj//ffx9OlTAMDvv/+Obt26oVOnTjh37hwOHDgAb2/DF7CdMGECfH19ce3aNbRv3x4jRoxAamoqjhw5gkuXLiEgIAD29vYAgAcPHqBjx45o2LAhLly4gGXLlmH16tWYOXOmXplBQUEwNzfHsWPH5LHP2REUFAQ7OzucOnUKc+bMwfTp07F//34AwJkzZwCkD4WIjo6WH//555/o27cvfH19cfXqVfz0008IDAzErFmz9MqeOnUqunTpgkuXLuGrr77Cp59+ivXr1+vts2HDBjRt2hQVK1YEAKhUKvz444+4fPkygoKCcPDgQYwfP96Adzd7DO7WBaT/Jxo0aJCxYyEiIiKiIuT06dPYsGED3n//fXmbWq3G2rVrUbJkSQDAwYMHcenSJcTGxsLKygoA8P333+PXX3/Ftm3bMHjwYMyaNQuffvqp3gLadevWNTie0aNH67W43Lt3D927d0ft2rUBQL5RB4ClS5fC3d0dixcvhiRJqFatGqKiojBhwgRMmTIFKlV6G0DlypUxZ84cg2OpU6eOvG6fp6cnFi9ejAMHDqBt27bye+Ps7CwvvQEAs2bNwsSJE/HFF1/I8c6YMQPjx4/XWwOwd+/eGDBggPy4T58+mD9/Pu7evYt33nkHOp0OmzZtwjfffKP33mTw8PDAjBkzMGzYMCxdutTgc3uTHCUn//zzDw4fPozY2FjodDq956ZMmWKUwIiIiIio8Nm9ezfs7e2h0WiQlpaGLl26YNGiRfLz77zzjnzzDaRPfpSUlAQXFxe9cp4/f45bt24BAM6fP2+UL85fbW3x9fXFsGHDsG/fPrRp0wbdu3dHnTp1AADXrl1D06ZN9Rb0fvfdd5GUlIT79++jfPnyWZaZXRmvk6F06dKIjY19zd7pQkNDcebMGb2WEq1WixcvXiAlJQW2trZZxuTl5YVq1aph48aNmDhxIkJCQhAbG4uePXvK+xw6dAizZ8/G1atXkZCQAI1GgxcvXiA5OdmokxkYnJysXLkSw4YNQ4kSJeDm5qZXIZIkMTkhIiIiotdq1aoVli1bBgsLC5QpUybTYOxXb3R1Oh1Kly6Nw4cPZyrL2dkZQHqvnjeRJCnTBEovdyV73Wt/9dVXaN++PX7//Xfs27cP/v7+mDdvHkaNGgUhhN59MPDvZE8vb8/pjfur74skSZkaBV6l0+ng5+en1/qT4eV1ALOKqU+fPtiwYQMmTpyIDRs2oH379ihRogQA4O7du+jYsSOGDh2KGTNmoHjx4jh69CgGDhyY5fuYGwYnJzNnzsSsWbMwYcIEowZCRERERIWfnZ1dpuUf3qR+/fqIiYmBubm53sDvl9WpUwcHDhzAl19+meXzJUuWRHR0tPw4PDw820tguLu7Y+jQoRg6dCgmTZqElStXYtSoUahRowa2b9+ul6QcP34cDg4OKFu2bLbPL6csLCyg1eovilu/fn3cuHHDoPc3Q+/evfHtt98iNDQU27Zt05s97ezZs9BoNJg3b57cXW3Lli25O4HXMHhAfFxcHHr06JEXsRARERER6WnTpg2aNm2Krl274s8//8SdO3dw/PhxfPvttzh79iyA9AHeGzduxNSpU3Ht2jVcunRJb5xH69atsXjxYoSFheHs2bMYOnRotqbPHT16NP78809EREQgLCwMBw8eRPXq1QEAw4cPR2RkJEaNGoXr169j165dmDp1KsaMGSPfwOelChUq4MCBA4iJiUFcXByA9OEVv/zyC6ZNm4YrV67g2rVr2Lx5M7799tu3lufh4YFmzZph4MCB0Gg06NKli/xcpUqVoNFosGjRIty+fRtr167NNLuXsRj8zvXo0QP79u3Li1iIiIiIiPRIkoQ9e/bAx8cHAwYMQJUqVfDpp5/izp078sLgLVu2xNatWxEcHIx69eqhdevW8iLdADBv3jy4u7vDx8cHvXv3xrhx4+TxF2+i1WoxYsQIVK9eHR06dEDVqlXlAeBly5bFnj17cPr0adStWxdDhw7FwIEDs5UIGMO8efOwf/9+uLu7w8vLCwDQvn177N69G/v370fDhg3RpEkTzJ8/H++88062yuzTpw8uXLiAbt266XWVq1evHubPn4+AgADUqlUL69evh7+/f56clySysYLhjz/+KP+enJyM+fPno1OnTqhdu3amrNPX19f4USpAQkICnJycEB8fD0dHR1OHQ1SovHjxAj169EDYg0Q0950HM0urHJelTk7A7nEfwrK0J7rM2QFL67f/8XlVatIzbB/YCKpiZdBx8kpYvKUvc17Ho1G/wKGZ/VG3pAW2bt2q12/YUBnvNSJPY+uIBrC2MDO8jDQteiwJBdwb5ToeIsram+47Xrx4gYiICHh4ePD6owLBkP+z2Rpz8sMPP+g9tre3R0hICEJCQvS2S5JUaJMTIiIiIiLKW9lKTiIiIvI6DiIiIiIiKuLyfrQOERERERFRNhicnHzyySf47rvvMm2fO3cuZ/EiIiIiIqIcMzg5CQkJQadOnTJt79ChA44cOWKUoIiIiIjozbIxpxGRIhjyf9Xg5CQpKQmWlpaZtltYWCAhIcHQ4oiIiIjIABkzpWZ3EUEiU1Or1QAAM7O3zxBp8ArxtWrVwubNmzFlyhS97Zs2bUKNGjUMLY6IiIiIDGBmZgZnZ2fExsYCAGxtbeUVyomURqfT4dGjR7C1tYW5+dtTD4OTk//973/o3r07bt26hdatWwMADhw4gI0bN2Lr1q2GR0xEREREBnFzcwMAOUEhUjKVSoXy5ctnK4k2ODn56KOP8Ouvv2L27NnYtm0bbGxsUKdOHfz1119o0aJFjgImIiIiouyTJAmlS5dGqVKlkJaWZupwiN7I0tISKlX2RpMYnJwAQKdOnbIcFE9ERERE+cfMzCxb/fiJCoocJSdA+sCW2NhY6HQ6ve3ly5fPdVBERERERFT0GJychIeHY8CAATh+/LjediEEJEmCVqs1WnBERERERFR0GJyc9O/fH+bm5ti9ezdKly7N2SGIiIiIiMgoDE5Ozp8/j9DQUFSrVi0v4iEiIiIioiLK4EUYa9SogcePH+dFLEREREREVIQZnJwEBARg/PjxOHz4MJ48eYKEhAS9HyIiIiIiopwwuFtXmzZtAADvv/++3nYOiCciIiIiotwwODk5dOhQXsRBRERERERFnMHJyZtWgT9//nxuYiEiglajNtrx2jQ1NNlckfZlurRUvfJUasPLyKt4jCk1Tff2nYx4HBER0dvkeBHGDPHx8Vi/fj1WrVqFCxcusFsXEeXKiaWTcnW8eGlh2L/nDEVOZjsXun8/x04t/wY5KsSI8eSVvivOmToEIiIiPTlOTg4ePIiff/4ZO3bswDvvvIPu3btj9erVxoyNiIqY+mUdcl2GVqtFaLQ5EBeBOpW8ocpBS4VWq0LoXQlIjka96mVzVIYx48kT7o1MHQEREVEmBiUn9+/fR2BgIH7++WckJyejZ8+eSEtLw/bt21GjRo28ipGICjkrKyts3brVKGUJIZCamiqXm5OFYo1RRl6UlVFGbo831nudUR4REZGxZDs56dixI44ePYrOnTtj0aJF6NChA8zMzLB8+fK8jI+IigBJkmBtbW208mxsbBRRRl6UlVvGfq+JiIiMKdvJyb59++Dr64thw4bB09MzL2MiIiIiIqIiKNudn//++28kJibC29sbjRs3xuLFi/Ho0aO8jI2IiIiIiIqQbCcnTZs2xcqVKxEdHY0hQ4Zg06ZNKFu2LHQ6Hfbv34/ExMS8jJOIiIiIiAo5SQghcnrwjRs3sHr1aqxduxbPnj1D27ZtERwcbMz4FCMhIQFOTk6Ij4+Ho6OjqcMhIiKiQoz3HVRU5WpOy6pVq2LOnDm4f/8+Nm7caKyYiIiIiIioCMpVy0lRwm8wiIiIKL/wvoOKKoWsBkZEREREREUdkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUwdzUARQ0L168gKWlZY6PF0IgNTUVAGBlZQVJkgpFOS8zVjzGYqzzIiIiIqK8xeTEQP369YOFhUWOj9dqtQgNDQUAeHt7Q6XKWeOV0sp52datW2FtbZ2jY1NTU9GjR49cx2CseIiIiIgo/zA5MdCF6CSozHL+tgmdDvEvNLAs7YmLj7WQJG0Oy9EiQS2gKlYG56OSgJy2VBgpngx1S+Y8cdMTedo45bg3Mk45RERERJTnmJzkQNPh/jAzz1nXLvXzRPwxsTsA4L3xy2FhlbNv9NOS47Fz6HsAgMZDZ+e4HGPFo0tLRUjAkBwd+zrrBnvByiJnLTmpaTr0XXHOqPEQERERUd5icpIDZuaWMLO0ytmxaf+OpzCzsIS5Zc6SAa36haLi0eToqDezslDB2sIsD0omIiIiIiXibF1ERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKYG7KF/f398eOHTtw/fp12NjYoFmzZggICEDVqlXlfYQQ8PPzw4oVKxAXF4fGjRtjyZIlqFmzprzPihUrsGHDBoSFhSExMRFxcXFwdnbWe62wsDBMmDABZ86cgZmZGbp374758+fD3t4+V+dwyH8wnsc/hiSpYGFjhwb9JqFYhWq4smslIv4ORmLMXfiMWYSy9Vu8sZy9k7rhedzD/y/HHk1GzIFLpdp4/uwRjswZhsToCKgsLNHMdz7cajUtMPEYS7vvTyImPhUqSYKDtTkW9a2JeuWdEJuQin4rz+NWbDKsLMywvF9tNK9SPM/jISIiIiLjM2nLSUhICEaMGIGTJ09i//790Gg0aNeuHZKTk+V95syZg/nz52Px4sU4c+YM3Nzc0LZtWyQmJsr7pKSkoEOHDvjmm2+yfJ2oqCi0adMGlStXxqlTp7B3715cuXIF/fv3z/U5vOv7PTp+twMf+G9DtY79cGrlFACAa83GaPHfpShVrUG2ymk1eQ0+Xn4MXZf9jVqfjMTR+SMBAGdX+6FkdW98siYU741dgpCAwdBpNQUmHmPZMrwBLs5ogfPTfTC2Q0UMWH0BADBx63U0qeSM8IDWWDOgLvqsOAeNVpfn8RARERGR8Zm05WTv3r16j9esWYNSpUohNDQUPj4+EEJgwYIFmDx5Mrp16wYACAoKgqurKzZs2IAhQ4YAAEaPHg0AOHz4cJavs3v3blhYWGDJkiVQqdLzsSVLlsDLyws3b95E5cqVc3wOlnaO8u/qlCRIkgQAKFG5jkHlWNk7/VtOcgIgpccZceRX9Ag6DwAoWbU+bJxL4eHlkyheqZai4ilZ3dug8g3lbGsh/x6fkgaVKv28tpyJQsSc1gCAhhWd4epoiaPhT9GkUrE8jYeIiIiIjM+kycmr4uPjAQDFi6d3y4mIiEBMTAzatWsn72NlZYUWLVrg+PHjcnLyNqmpqbC0tJQTEwCwsbEBABw9ejTL5CQ1NRWpqany44SEhNeWf2LZN4i9ehoA0HLC8mzFlJWQOUMRc+FvAEC7WdvwIuEphNDBxrmEvI+9a3kkxd5/bXJiqnjyOjkBgH4rz+HQtScAgL1jG+NJkho6IVDS0Urep0IJW9x78gJNKuV5OERERERkZIoZEC+EwJgxY9C8eXPUqpV+4x0TEwMAcHV11dvX1dVVfi47WrdujZiYGMydOxdqtRpxcXFyF7Do6Ogsj/H394eTk5P84+7u/trymw6bjS6L/kLtHqNwbsO8bMf1qhbjl6PX+iuo3/9bnFmV3h1LgvTKXuKt5SgtHmP5ZZAXIue3wcxuVfHfzVezjEfkXzhEREREZGSKSU5GjhyJixcvYuPGjZmey+ialEEIkWnbm9SsWRNBQUGYN28ebG1t4ebmhooVK8LV1RVmZmZZHjNp0iTEx8fLP5GRkW99nYo+XRB79QxSE59lO7aseLb9DNEXjsqPnz97LP+e9DAS9qXKZascpcVjLF80d8eh60/kx48S/m3huvskBeVdrPM1HiIiIiIyDkUkJ6NGjUJwcDAOHTqEcuX+vdF1c3MDgEytJLGxsZlaU96md+/eiImJwYMHD/DkyRNMmzYNjx49goeHR5b7W1lZwdHRUe/nVWkpSUiJi5UfR545AEt7J1i+NF4jO9TJCUh58m8Lzp1ju2HlWBxWDsVQwacLrv22CgDw6EYYnsc9hGutJlmWo7R4jCXheRqi4l7Ij3eGRsPF3hLF7SzQo2FpLDl4BwBw5vYzxMSnorknZ+siIiIiKohMOuZECIFRo0Zh586dOHz4cKZEwcPDA25ubti/fz+8vLwAAGq1GiEhIQgICMjRa2YkNT///DOsra3Rtm3bHMevfp6Eowu+hlb9ApJKBSuHYmgxbgkkScKVXasQvn8jUhPjcPKnb2FmYYkOs7dCZZb5LVcnJ+DgjC+gVT8HJBWsnUqg7fRNkCQJDQdOQ8icodj2ZQOozC3hM/6nLMswdTx5OWNXfIoG3ZecxXO1DioVUNLBCrtHN4QkSQjoUR2frzwHzwkHYWmuwtpBXjA3U0Gj0+ZZPERERESUN0yanIwYMQIbNmzArl274ODgILeQODk5wcbGBpIkYfTo0Zg9ezY8PT3h6emJ2bNnw9bWFr1795bLiYmJQUxMDG7evAkAuHTpEhwcHFC+fHl5cP3ixYvRrFkz2NvbY//+/fjvf/+L7777LtN6KIawc3FD+xmZu6EBQM0uX6Fml68ybVcnZx5Yb1+qHD5adCDLcmyKlUIH/x0FMh5jcXexwekp72X5nKuTFfaNy9uWGyIiIiLKHyZNTpYtWwYAaNmypd72NWvWyGuQjB8/Hs+fP8fw4cPlRRj37dsHBwcHef/ly5fDz89Pfuzj45OpnNOnT2Pq1KlISkpCtWrV8NNPP+Hzzz/Pu5MjIiIiIiKDmLxb19tIkoRp06Zh2rRpr93nbc8DwC+//GJgdERERERElJ8UMSCeiIiIiIiIyQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEc1MHUBBpNWqjHKtNU0Ojyll+qEtL1StTpc5ZOXkRj7GkpulMciwRERERmQaTkxw4sXRSjo8Vun9vmv+eMxSSlNNytPLvp5Z/g5wWZKx48kLfFedMHQIRERER5SMmJwaqW9oeFhYWOT5eq9UiNNociItAnUreUOWwpUKrVSH0rgQkR6Ne9bK5KMc48RideyNTR0BERERE+UwSQghTB1EQJCQkwMnJCQ8fPoSjo2OOyxFCIDU1vQuUlZUVpJy2eCisnJcZKx5jMdZ5ERER5ZeM+474+Phc3XcQFTRsOTGQtbU1rK2tc1WGjY2NUWJRWjnGIElSrt9fIiIiIiqYFNKHh4iIiIiIijomJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkXgbF3ZlDHjckJCgokjISIiosIu436DKz5QUcPkJJsSExMBAO7u7iaOhIiIiIqKxMREODk5mToMonzDRRizSafTISoqCg4ODnm+oF9CQgLc3d0RGRnJhZcKEdZr4cR6LbxYt4VTQalXIQQSExNRpkwZqFTshU9FB1tOskmlUqFcuXL5+pqOjo6K/uCknGG9Fk6s18KLdVs4FYR6ZYsJFUVMxYmIiIiISBGYnBARERERkSIwOVEgKysrTJ06FVZWVqYOhYyI9Vo4sV4LL9Zt4cR6JVI2DognIiIiIiJFYMsJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByYgKxsbHQarWmDoOIsiEpKcnUIVAe4OcwEZEyMTnJJ0IIqNVqDB48GO3bt8eJEydMHRIZycOHD/H777+DSwYVLtHR0ejTpw8+++wzDBw4EGFhYaYOiXKJn8OFV0xMDKZPn46lS5diz549pg6HiHKByUk+kSQJsbGxCA4OxqNHj3Dw4EHEx8cDAG9qC7DFixejTJky+PDDD3HlyhVTh0NGsm7dOtSqVQtqtRoffPABDh48iICAAMTExJg6NMoFfg4XTjNmzEDlypVx+vRpBAYG4uOPP8aGDRsAsF6JCiImJ/koLS0NnTt3xueff45169bh5MmTANL/YFLBIoTAnj178Ouvv2LOnDnw8vKCn58fdDqdqUOjXNJqtfjll18wZswYbN26FcOHD0dAQABCQkJgY2Nj6vAol/g5XHhotVoEBARgz5492LJlC3bv3o0DBw5gzJgxmDRpEgDWK1FBxOQkH92/fx8XL16Ev78/7OzssHHjRvlbOypYJEmCq6srPv/8cwwZMgQ//PADtm/fjj///NPUoVEuXbp0Cbdv30aZMmXkbSkpKejevTuv10KAn8OFh5mZGdRqNVq3bo0OHToAABwcHNCiRQuYm5vj1q1bJo6QiHKCyYmRqdVqPH/+PMvn7t+/jxo1agAAJk6ciCNHjmDjxo0YPHgwoqOj8zNMMlBiYiKOHDmCmzdvytsaNGiAL774Avb29vDx8UGPHj0wefJkJCYmmjBSMsTL12tGq1eNGjXg4uKC1atXY8WKFejZsycGDBiAc+fOoU6dOhg9ejRiY2NNGTa9RUJCAk6ePIkHDx5keo6fwwVXcnIywsPDkZCQIG8bN24cZs2aBZVKJXfhevr0KaytrVGpUiVThUpEucDkxIgCAgJQu3ZtHDlyRG97xk1PQkICnj17BgDo1asXzM3N4evri7Nnz0KSJPaNVagZM2agUqVKGDNmDOrUqYP58+fr/XHMqF9/f39cv34dgYGBJoqUDPHq9apSqaDRaGBpaYmFCxeiZ8+e2LVrF27duoXTp09j7969WLBgAU6fPo2lS5eaOHp6HX9/f7i7u2PQoEGoUaMGFi5cqJek8HO4YJoxYwZq166Nnj17ol69evKg94yuljqdTu7CdeLECXh5eQFI78ZHRAULkxMjePr0KYYNG4YNGzYgJiYGK1aswOPHj+XnVar0t/nevXto3749/vrrL5QrVw7Pnz+Hg4MD+vTpgxIlSrBvrMLcvn0b7dq1w9atW7F27VoEBwdj4sSJ+O677/RaRzLqt2LFihg7dixmzZqF+/fvA0jvDpScnGyS+Clrb7pezczMAABNmjSBr68vUlNTMWDAAHh7e8PR0RH9+/eHg4MDHj58yJseBfrjjz+wdu1aBAUFITg4GBMmTMDKlSsxZcoUeZ87d+7wc7gAuXv3Lrp06YLNmzdj8eLFmDdvHnx8fPDVV1/h4cOH8n4qlUq+Jk+dOoUGDRoAACwsLABwYDxRQcLkxAji4+Ph6OgIf39//P7779i5cyf++usv+Rv1jH/NzMwwYsQIdOvWDYMHD0ZkZCT69u2LoKAgHD161JSnQFl48OABmjVrhp07d6J9+/YoU6YMvvrqKzg6Or72mIkTJ8La2hpz587F2rVr0b59e05rqTBvul5fvjG9e/cubt68icaNG8vbUlJSkJCQgPLly8s3PaQce/fuhbW1Nbp27QoPDw988803GDp0KI4dO4bly5fL+/FzuOA4efIknj17hm3btqFjx45o3bo1AgMDkZycjNOnT+vta2FhgcjISNy5cwfdunUDkP5/onfv3rh7964pwieinBCUaxqNRty9e1d+3LNnT1GnTh0RERGht19wcLAICAgQ//zzj7wtNjZWVK9eXYSEhORXuJRNarVaREZG6j3++OOPRfPmzcWMGTPEP//8I7RarRBCyP8KIcTUqVOFJEnC0tJSTJo0Kd/jpjfL7vUqhBBeXl6iRYsWYu3atSIsLEx07txZ1KxZU1y4cCEfI6bs0Gq1YtiwYeLTTz8VL168kLdHRUWJIUOGiLp164qUlBTx119/idmzZ/NzWOF0Op0QQoinT5+KrVu36j0XExMjqlatKvbt25fpuHXr1on3339fREZGig8++ECYm5uLsWPH5kvMRGQcTE6MKOPD9MmTJ8LCwkL4+/vr/ZHUaDR6+2c8Tk1Nzb8gKUeuXbsmbG1tRcOGDcWUKVNEvXr1RNOmTcXq1avlfZKSksSIESOEJEli4MCBIi4uznQB01u96XrNuDZv3LghGjRoIKpWrSoqVqwoevbsKZ4+fWqymClrGXXp7+8v3N3ds/xiyMvLSwQGBurtLwQ/h5Xs5XoS4t8vga5evSpcXFz0EsyMffv16yckSRIWFhaiU6dO4vHjx/kXMBEZBbt15ZJ4qR+rJEnQaDQoXrw4Jk+ejPnz5+PatWvy8xljEzKOyejfbmlpmY8RU3aIV/onu7u7488//8TJkyfh5+eHU6dOwdnZGadPn4ZarQYAPH78GA4ODvj777+xatUqODs7myByAoAXL15kuT2716uZmRk0Gg2qVKmCv/76C7///jsOHDiAzZs3o1ixYvlyDpR9GV1nR48ejfj4eKxfv17v+ZYtW8LCwkKejevl7nv8HDa92NhYg8aEHDlyBB4eHvD09Mx0nLm5OWrVqoXTp09j9+7dcHFxMXa4RJTHmJy8RXR0NHr06IEtW7YASF/0KYNGo5H/yGVsz3g8depUWFpaYtmyZYiLi8P+/fuxbt06vX3IdCIjI7Ft2zaEhYXJgygz/si9XK8ajQYAYGtri+bNm0OlUkGn08HS0hJJSUmIiYmRb2reeecd+Pv749133zXBGREAREREoG7dupg9e3am5wy9XjNWmHZ2dkalSpVQoUKF/DkJyiQ6OhonTpzAnTt3Mj2n0WjkBMPa2hpTpkxBQEAAzp49K+/j4OAAtVqNyMjI/AqZsiEiIgIfffQRJkyYgKtXr+o996br9e+//4aPj4+87dKlS7h8+TIAYOHChbh48SLq1auXT2dBRMbG5OQtVq9eje3bt+OHH35ASkoKzMzM5G/pzM3NIYTAhAkTsGnTJuh0OpiZmckfpIsWLcLq1avRokULtG/fnutfKMSkSZNQpUoVzJs3D82aNcOwYcNw+/ZtSJIEnU6nV6+bN2/ONFBapVLh9OnTkCQJgwYNMuGZUAYhBIYOHYoqVaqgSpUq8PX1zbSPoddrUlJSfp8GZWH06NGoXbs2/vOf/6BmzZpYunSp3qKJL9frunXrMHbsWFSpUgUTJ06UJ6MICwuDEAJdu3Y10VlQhowvgX755Rc0aNAANjY2GDFiBEqUKKH3fFbXK5A+oUVoaCjat2+P6Oho9OzZE3Xr1sW9e/cAAPb29iY4KyIyJiYnb3H8+HH06tULlpaWCAgI0HsuKCgIJUqUwL59+1CnTh2525aZmRkePHiAkydPQqfToWbNmrh37x6GDx9uilOgl5w6dQq7du3Ctm3bcOjQIaxcuRLh4eH4/PPPAaQnHkFBQXBxcclUr9euXcOlS5cwZcoUdOzYETVq1ECrVq1MeToE4ObNm3BxccHRo0dx+vRpbN26Vb7ReRmv14Ll3r17+Oijj3D69GkEBwdjy5YtGD58OJYtW6Y3S9PL9VqzZk0AwNq1a+Ho6IiPP/4Y7du3x3vvvYfq1auzVVMBMr4E2rhxI/73v/9h8+bN8Pb2hoODg/w8AAQGBma6XiVJQnh4OJ49e4adO3eiUqVKiI+Px507d9CpUydTnhYRGZG5qQNQCiGE3rfjGo0G5ubmKF26ND788EP5pufTTz9F9erVkZiYiPv372PmzJkYPHiw3K0ASF91+vvvv8cvv/yCgwcPomXLliY4I8rKr7/+Cq1WK/8h+/zzz1G5cmW0a9cO8+fPx5gxY3Dnzh3Mnj0bgwYN0qvX48ePY8mSJTA3N8eWLVvQunVrU51Gkffy9WphYYEyZcqgefPm8PLywvHjx7F9+3a4uLigfv36aN68Oezt7REREYFZs2Zlqlder8p0+fJl2NraYtGiRfKaFXPnzsW6desQFxcHAEhKSkJkZKRevQohUL16dQQGBuLUqVP4559/MGXKFCYmJvTq39fDhw/j1q1bGDVqFI4fP46AgACkpqaicuXK6Nu3L5o0aYK7d+9m+ff15MmTePjwIcLCwrBr1y60bdvWFKdERHlIEoaMQiuknj9/DpVKBSsrKwD6H6R16tTBpk2bkJKSgvHjx6N27dqYO3cuwsPDUa1aNb0PzZc9fPgQrq6u+XYOlFlGPep0Ovlb8h9++AGBgYE4ceIEbG1t5f2mT5+OhQsXIjo6Wv5/8Go5arUa58+fR6NGjfL9XOhfr16vOp0Ov/76Kz755BO0a9cO169fh7e3N27evIlHjx6hbdu2CAwMfGOZvF5NL+M6y/hiKCoqCnfu3EGzZs0ApNezVqtF06ZNMWbMGPTu3VvennF9k/K8er0C6S3YnTp1wqpVqzBr1iy0adMG1tbWOHjwIC5duoSrV6/Czc1Nr5yM/x+JiYnYvn07+vfvn89nQkT5pch/ok+aNAnNmzdH586d8eOPPyIhIUG+oX3w4AHs7OxQoUIFeHt748MPP8SGDRtgbW2NAwcO6A2OfxVvdExr/vz58qDol29cnJycYGFhgQMHDsjbJEnCF198ATs7O8yfPx/Av7P/ZDwPpM/mw8TEtLK6XlUqFVq1aoXPP/8cSUlJCA4Oxvr163H+/HlMmzYNJ0+exLJlywDo1+vLeL2a1svXa8ZYgzJlyuglJiqVCtHR0bhx4wZq1aolH8vERLmyul6B9ESjXr16mD17NurVq4dZs2Zh6tSp2L17N8qWLYtvvvkGgP4ENJIkQQgBBwcHJiZEhVyR/VRXq9Xo0aMHgoODMX78eJQpUwY//fST/G2cSqWCg4MDLCwsIEkSdu7ciZkzZyItLQ116tSBr68vLC0tDZr+kPLemTNn0KpVK4wbNw47duzAiRMnAECekeuTTz5Bamoq9u7di9jYWPm40qVLo02bNggPD4dWq+UNj8K87nr97LPPAADFihXDpEmTsGDBAtSuXVtevb179+7w9PTE+fPnWa8K9Lrr9dXP1Yx6O378ODw8PPSSkwz8LFaO112vn376KYD0HgmOjo44e/YsGjVqBJVKBa1WCwcHB3z99dfYt28fkpKSMvVM4EyXREVDkf1LfevWLVy4cAELFixAr169EBQUhBUrVuDgwYOYO3cuAODs2bO4efMmGjVqhAEDBuCbb77BnDlzIEkSli5dCoB/EJXmzz//RIkSJfDzzz/L/wLp4xLS0tLg6OiIoUOH4q+//sKuXbvk46ysrBAeHg6VSvXarnpkOq+7Xg8dOiRfr9WqVYO3tzckSYJKpYIQAsWLF8f169dZrwr1uus1o/5eFRoaiqZNm8rJyqFDh/Dbb78B4I2rkrzuej18+DC+++472NraYtCgQShevDi2bt0K4N/1ZsLDw+Hp6fna/wNEVATk5QqPShYaGiokSRJPnjwRQuivMOzs7Cxu374t0tLSRI0aNcTgwYPlFYejoqJEz549hY+Pj97q72RaGfV39+5dcfz4cSFEel02btxYbNmyRQghRFpamrx/7969Rb169cRPP/0k4uLiRGhoqKhfv77YtGlT/gdPb/Wm67VYsWJ6K0W/7I8//hANGzYUx44dy7dY6e2yc71mrAaeQaPRCC8vL7F582Zx+/Zt0bp1a2FpaSk2b96cv8HTW73penVychK3bt0SQggxbdo04eLiIv73v/+Jf/75R1y/fl20aNFCTJ8+3WSxE5HpFdnk5Ny5c6JmzZpi0aJFQoh/PzzVarWoUKGCGD16tBBCiIcPH8rPZbhy5QoTkwLg1q1bomvXrqJr167i6dOnQgghUlNT5eemTJkizMzMRIMGDYSNjY0YOHCgUKvVpgyZXuNN16uHh4cYO3asECL9hvbSpUvi4MGDYsiQIcLJyUlMnDhRaDQak8VO2ZPV9fpygnLhwgXh4OAgPvjgA2Fubi569eolEhISTBUuvcHbrteMv68xMTFixYoVwtnZWdSqVUs4ODiIL7/8kn9fiYq4QtutS7ylOfidd96Bp6cnjh49iujoaHmWGAsLC4waNUpefK9UqVJyd4GMMmvUqJFpRifKH2+r15f3q1ixIj788ENER0fLszVlrOZesWJF+Pn54cKFC/Dz80NYWBhWrVolj1Wg/JWb63XkyJHYuHGjPGg6LCwMM2bMwD///IOQkBD4+/uzS5eJ5PZ6fXmMUHh4OJKSkpCamoozZ85g06ZN8toYpCxvu14z/r66urpi0KBBuHLlClatWoWwsDD8/PPP/PtKVMQVyuTk0aNHSElJkR+/PEOPRqMBkD6A9sMPP8T169exZcsWAOmzxADpMzoVL14ckZGReuWyT7NpZadeM2TM8vLJJ5+gRo0a2L17N8LDwwGkrxadcXzNmjXRqVMnVKtWLa/Dp9eIjY1FYmKi/Dgn12uxYsVw9+5dAOmD4FeuXImDBw+ibt26+XUa9Irs1GuGN12vZ8+eBQA0btwYBw4cwIEDB1CvXr08jp5eJ6Mes5qt0tC/rxnJa5kyZdC4cWNUrlw5P06BiBSuUCUnaWlpGDx4MN599118+OGH+PLLLxEXF6f37Zu5uTlevHiBTZs2YcCAAahXrx42b96MQ4cOyfvcv38fJUuWxDvvvGOK06BXZLde09LSEBQUJD/W6XRwdHREjx49oNPp4Ofnh/fffx/e3t6Zjqf8p9FoMHDgQDRq1Aht2rRBnz598OTJkxxfrx4eHgAAOzs7VKpUKd/Ph9Jlt16ze702atQIT548Qbly5dCqVStTnVaRl5aWhuHDh2PIkCEA9Fu1MhIWQ/++8gs/IspKobk7i4uLQ8eOHXHz5k2sWbMGn332GS5cuIDOnTvjxo0b8n4//vgjypYti02bNgEAxowZg4oVK6JDhw7yB++8efPQq1cvAJyNy9QMqVc3Nzf89ttv8urRGX88a9asicjISGzYsAGlSpVCdHQ0ihUrZpLzoXQajQb9+/fH1atXERQUhM8++wwXL15E165dce3aNXk/Xq8FiyH1asj16uLiYpLzoXSnTp1CmzZtsG3bNgQFBeHYsWOQJEluPcmoO16vRGQUJhrrYnR79+4VtWrVEtevX5e3Xb16VahUKuHr6yvi4uLEmjVrRPny5cX69ev1BlrqdDoxe/ZsMWjQINGxY0fO7KMghtbrq5MXHDhwQNjb24t69eqJs2fP5nf49Br37t0Tnp6eYu3atfK26OhoUbZsWTFq1Cjx9OlTXq8FkKH1yuu1YFiwYIEYOHCg2LNnj+jWrZto3Lhxpn2WLl0qPDw8eL0SUa4VmuQkKChIODs76207duyYKF68uPD09BS///670Ol0IikpSW+fV/84krLktF4zPH78WGzYsCE/QiUDnDt3TtjY2Ijw8HAhhJBn51m8eLHw9PQUv/32m9DpdCI5OVnvOF6vypbTes3A61VZMq63yMhIceXKFSFE+hdGJUuWFKtWrRJC/DsDYlpaGv++EpFRFMhuXXv27AGg3yTs7u4OFxcXBAQEyNtWrVqFgQMHQqfTYdeuXZAkCTY2Nnplsc+rchizXjPKcXFxkVcRJ9NYsWIFVq5ciSNHjsjbPD094ebmhnXr1gH4t1vIiBEj4OTkhO3btyM1NRW2trZ6ZfF6VQ5j1ivA61UpMuo1JCREvt7Kli2LGjVqAAC8vb3x6aefws/PD1qtFpaWltDpdDA3N4ednZ1eWbxeiShHTJsbGWb37t2ibNmyQpIkuWk4Y/2Cp0+firlz5wpJkkSzZs2Evb29qFWrlkhLSxOLFi0SZcuWNWXo9Aas18Jpw4YNolSpUqJp06aiXr16omTJkmLmzJlCCCHi4+PFhAkThKenp3j48KEQQojnz58LIYRYu3atcHJykh+TsrBeC6c31eur6wSdOnVKeHp6inHjxgkhMi+YSUSUGwUmOfn7779Fhw4dxMiRI8UHH3wgvL29s9wvJCRELFq0SOzbt0/e9t1334nmzZuLZ8+e5Ve4lE2s18Jp/fr1om7dumL58uVCCCEePHggFi1aJOzs7ER8fLwQQoj9+/eLhg0biuHDhwsh/u0CcujQIVGqVClx4cIF0wRPr8V6LZzeVK9ZLXSZnJws5s6dK5ycnMTdu3eFEOn1m/F/gIgoNxTfrUv8fxcfV1dXtGvXDmPGjMGMGTNw9epVrF69GoD+/Pk+Pj4YOXIk2rZtCwBQq9U4efIkvLy84OTklP8nQFlivRZOGfWalpaGxo0bo1+/fgDS1zHw8vJC2bJlcfXqVQBA8+bN0bt3bwQFBWHnzp1IS0sDABw7dgw1atRA7dq1TXMSlAnrtXDKTr2+PMtaBltbW3Tp0gVeXl7o0aMHvL290b17dzx9+jRf4yeiQsqkqdEbhIaGZvpGPKNpOS0tTYwdO1aULFlSHnD5quvXr4t//vlH9OvXT3h4eIgTJ07kecz0dqzXwik0NFTExcXJj589e5apK8j58+eFm5ubePr0qbwtISFBjB8/Xjg4OIgWLVqIHj16CBsbG7FkyRIhBAfUmhrrtXDKab2+7NKlS6JOnTpCkiQxfPhweWA8EVFuKa7lZPv27XB3d0fPnj1Rp04dTJ06FTExMQDSB1cKIWBubo4RI0bA2toakydPBpB5vvTff/8dH3zwAe7cuYM///wTTZo0yfdzoX+xXgunl+u1bt26mDJlCh4+fAgnJyeYmZnptX4dPHgQlSpVQrFixaBWqwEADg4OCAgIwM8//4yWLVvCxcUFYWFhGD58OAAOqDUV1mvhlNt6zXD06FF07twZtra2CA8Px5IlS2BpaZnfp0NEhZVpcyN9Z86cEdWqVRMLFiwQFy5cEEuXLhUlS5YUw4YNE0+ePBFC/Pstu06nE0uXLhXm5ubi9u3bQoj0KQ0z+sdGRUWJ0NBQ05wI6WG9Fk7ZqVetVivS0tKEEEJ8/PHHYsSIEaYMmbKB9Vo4GbNeo6Ki2GpNRHlGEclJRhP/smXLRLly5fQG1S1evFg0adJEzJgxI9NxT548Ec2aNRNdunQRoaGhol27dmLt2rWcOUQhWK+Fk6H1qtVqhU6nE5UqVRK7d+8WQghx48YN8emnn4p79+7lb/D0WqzXwon1SkQFjSK6dWU08UdERKBKlSowNzeXn+vfvz8aNGiAP/74A1euXAEAaLVaAEDx4sUxaNAgBAcHo2HDhrC0tET37t3lufXJtFivhZOh9apSqXDmzBnY2tqifv36GD16NOrUqYMnT56gVKlSJjkHyoz1WjixXomooDHJ3d7+/fvh6+uLhQsX4vTp0/L2d999F8ePH5fHImi1WtjZ2aFLly6QJAn79u0DAJiZmUGtVmPp0qUYOHAgfHx8cPHiRfz2229ZLsZH+YP1Wjjltl6B9AU2L1++jKpVq2L//v04duwY9u3bBysrq3w/H0rHei2cWK9EVNDla3ISHR2NDz/8EH379sXTp0+xevVqtGvXTv4AbdeuHSpUqCCvBp7xjU/btm2hUqlw8+ZNuay4uDj8888/WLNmDQ4fPoyaNWvm56nQS1ivhZMx69XCwgIlSpRAYGAgrly5ggYNGuT/CREA1mthxXolokIjv/qPJScniy+++EL06tVLHugshBANGzYU/fv3F0KkD4r+5ZdfhEqlklcKz9CnTx/RqlWr/AqXson1WjgZo15btmwpP46Njc2fwOmNWK+FE+uViAqTfGs5sbW1hZWVFfr37w8PDw9oNBoAQOfOneVFnszMzNCzZ0906dIFX331FUJCQiCEQExMDMLDw9GnT5/8CpeyifVaOBmjXvv27SuXV7JkSZOcB+ljvRZOrFciKkwkIV5ZSCIPpaWlwcLCAkD6+hWSJOHzzz+HjY0NVqxYIW978eIFPvjgA1y9ehX16tXD5cuXUb58eWzZsgXu7u75FS5lE+u1cGK9Fk6s18KJ9UpEhUW+JidZ8fHxwYABA9C/f38IIaDT6WBmZoaHDx/i4sWLOHPmDCpUqIDevXubMkwyEOu1cGK9Fk6s18KJ9UpEBZFJk5Pbt2+jWbNm+P333+UBd2q1mivNFnCs18KJ9Vo4sV4LJ9YrERVUJplKOCMfOnr0KOzt7eUPTj8/P/znP/9BbGysKcKiXGK9Fk6s18KJ9Vo4sV6JqKAzf/suxpcxheHp06fRvXt37N+/H4MHD0ZKSgrWrl3LhZ4KKNZr4cR6LZxYr4UT65WICjqTdet68eIFateujVu3bsHS0hJ+fn6YMGGCKUIhI2K9Fk6s18KJ9Vo4sV6JqCAz6ZiTtm3bwtPTE/Pnz4e1tbWpwiAjY70WTqzXwon1WjixXomooDJpcqLVamFmZmaql6c8wnotnFivhRPrtXBivRJRQWXyqYSJiIiIiIgAE83WRURERERE9ComJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRUTb0798fkiRBkiRYWFjA1dUVbdu2xc8//wydTpftcgIDA+Hs7Jx3gRIRERVgTE6IiLKpQ4cOiI6Oxp07d/DHH3+gVatW+M9//oPOnTtDo9GYOjwiIqICj8kJEVE2WVlZwc3NDWXLlkX9+vXxzTffYNeuXfjjjz8QGBgIAJg/fz5q164NOzs7uLu7Y/jw4UhKSgIAHD58GF9++SXi4+PlVphp06YBANRqNcaPH4+yZcvCzs4OjRs3xuHDh01zokRERCbC5ISIKBdat26NunXrYseOHQAAlUqFH3/8EZcvX0ZQUBAOHjyI8ePHAwCaNWuGBQsWwNHREdHR0YiOjsa4ceMAAF9++SWOHTuGTZs24eLFi+jRowc6dOiA8PBwk50bERFRfpOEEMLUQRARKV3//v3x7Nkz/Prrr5me+/TTT3Hx4kVcvXo103Nbt27FsGHD8PjxYwDpY05Gjx6NZ8+eyfvcunULnp6euH//PsqUKSNvb9OmDRo1aoTZs2cb/XyIiIiUyNzUARARFXRCCEiSBAA4dOgQZs+ejatXryIhIQEajQYvXrxAcnIy7Ozssjw+LCwMQghUqVJFb3tqaipcXFzyPH4iIiKlYHJCRJRL165dg4eHB+7evYuOHTti6NChmDFjBooXL46jR49i4MCBSEtLe+3xOp0OZmZmCA0NhZmZmd5z9vb2eR0+ERGRYjA5ISLKhYMHD+LSpUv4+uuvcfbsWWg0GsybNw8qVfqQvi1btujtb2lpCa1Wq7fNy8sLWq0WsbGxeO+99/ItdiIiIqVhckJElE2pqamIiYmBVqvFw4cPsXfvXvj7+6Nz587o168fLl26BI1Gg0WLFuHDDz/EsWPHsHz5cr0yKlSogKSkJBw4cAB169aFra0tqlSpgj59+qBfv36YN28evLy88PjxYxw8eBC1a9dGx44dTXTGRERE+YuzdRERZdPevXtRunRpVKhQAR06dMChQ4fw448/YteuXTAzM0O9evUwf/58BAQEoFatWli/fj38/f31ymjWrBmGDh2KXr16oWTJkpgzZw4AYM2aNejXrx/Gjh2LqlWr4qOPPsKpU6fg7u5uilMlIiIyCc7WRUREREREisCWEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgR/g+Z3NBGYjLcigAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABirklEQVR4nO3dd1gUV9sG8HuW3hGliKLYxd57R4O9Rk0krxq7YtfXxBgL1uhrC9FYolETC/YSjUZFsWCLCNixYgWxBBCkLMv5/uBjdAUNZWEHvH/XxRV3Z+bwDCcse++Zc0YSQggQERERERHpmUrfBRAREREREQEMJ0REREREpBAMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAiG+i4gv0hJScHTp09hZWUFSZL0XQ4REREVYEIIvH79Gs7OzlCp+FkyfToYTjLp6dOncHFx0XcZRERE9Al59OgRihcvru8yiPIMw0kmWVlZAUh9kbC2ttZzNURERFSQxcTEwMXFRX7/QfSpYDjJpLRLuaytrRlOiIiIKE/wUnL61PAiRiIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSu1kVERFSACSGQmJio03ZMTEyyvYqU0tp5l67q0YWEhASdtUWUnzCcEBERFWCJiYno2bNnjtvRaDQIDAwEANSpUyfbdy1XWjvv2r59O0xNTbN1rK5+zmnUarXO2iLKTxhOiIiIPgGXnrzO0fEiJQXRCckwLloOl19oIEmabLajQUySgKqQM4KfxgLZHanQUT1pqtsb5eh42aMLumnHqaZu2iHKZxhOiIiIPhENR8yDgaFxto5Nin+Ng9/2AAA0nbQSRibZG2FQx0Vj97CmAID6w+Zmux1d1ZOiTsSJ+UOzdeyHbBxSEyZG2RvJSVSn4KvVQTqthyg/YTghIiL6RBgYGsPA2CR7x6rfzqcwMDKGoXH2woAm6e1cCiXUk5ytoz7OxEgFUyODXGiZqODjal1ERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIhvougIiIiPLe8XlDEB/9ApKkgpGZBWr1/RZ2rm4I3DAPTy75I+7FU7Sdsx2FXCt+tJ1Dk7sj/p9n/9+OJRqMmI/CZash+sldnPrfcCTEvIKxhTWaTliOQq5u+aYeXfls4TlERCdCJUmwMjWEj2dl1Cxpg9sRsei3JgQvYpNgY2aI9YNqoHIxq1yvh0jp9DpyMm/ePNStWxdWVlZwcHBA165dERoaqrVPQkICvLy8ULhwYVhaWqJHjx549uyZvD0kJARffvklXFxcYGZmBjc3N/z4449abYSHh6NPnz4oX748VCoVxo4dmxenR0REpFiNRy9E+x92od28HajQri/Or/oeAOBSrw1aT9sAiyLOmWqn5ZR16LYyAF1XnELlHl44uXAEAODMj+NQoX1/fP7rRVTtNQanFnnlq3p0ZduI2rg8qzmCZzbDeI9S6L82GAAwdMMVDGlRArd+aIlv2pdB/zXBeVIPkdLpNZycOHECXl5eOHfuHI4cOQK1Wo3PPvsMcXFx8j7jxo3DH3/8ge3bt+PEiRN4+vQpunfvLm8PDAyEg4MDNm7ciGvXrmHKlCmYPHkyli1bJu+TmJgIe3t7fP/996hevXqeniMREZESGVtYy/9Wv3kNQAIAOLjVgXlhp0y3Y2Jp87aduBhIkoT4qOd4cTsYZdx7AQBcm3RG3PMniHlyL9/Uoyu25kbyv6PjkyFBQmRMIi6GReOrhsUAAD3qFMWjVwm48yzuQ80QfTL0elnXoUOHtB6vX78eDg4OCAwMRLNmzRAdHY21a9di8+bNaNWqFQBg3bp1cHNzw7lz59CgQQMMGDBAq43SpUvj7Nmz2LVrF0aOHAkAcHV1lUdTfv311zw4MyIiIuU7u+I7RF6/AABo/t+fs93OiQXDEBFyCgDQZvY2xD1/AjM7R6gMUt9mSJIEC/viiH3+GCY2doqqx9w+cyMyOdH3lyAcv/ESAPDnuHp49CoeRW1NYGigkuspUdgUD1/Go7idaa7XQ6RkippzEh0dDQCws0t94QoMDIRarUbr1q3lfSpWrIgSJUrg7NmzaNCgwQfbSWsjuxITE5GYmCg/jomJyVF7REREStNw+FwAwL2TexHsuwQtJq3IVjvNJ60EANw+sgUX185ArX5TCkQ9uvLb4JoAgA2nH+Gb7Tcwq3sFvdZDpGSKWa0rJSUFY8eORePGjVGlShUAQEREBIyNjWFra6u1r6OjIyIiIjJs58yZM9i6dSuGDBmSo3rmzZsHGxsb+cvFxSVH7RERESlV6WZdEHn9byS+jspRO+XafInwkNOwKOKM+FfPkKJJBgAIIRD3/DEs7Yvny3p0pV8TFxy/+RLFC5khPCoRyZoUuZ6HLxNQorBZntZDpESKCSdeXl64evUqfH19s93G1atX0aVLF0yfPh2fffZZjuqZPHkyoqOj5a9Hjx7lqD0iIiKlSIqLwZt/IuXHjy/6wdjSBsbvzNfIjMTYaLx5GS4/fnDmAEys7WBqa4/CZavhrt82AEDY6X0wL+IM62Kl80U9uhL1Ro2n/yTIj/dcikBhS2M4WBujVklrbDz7BACw82I4ituZoqyjRa7WQ5QfKOKyrpEjR2L//v04efIkihd/+ymGk5MTkpKSEBUVpTV68uzZMzg5aU+Ou379Otzd3TFkyBB8//33Oa7JxMQEJiYmOW6HiIhIadRvYnHaZwI0SQmQVCqYWBVC84nLIUkSLqz1xtOgk0iIfonj84fCyMwCnRb/mXE7cdE4NvtraJLiAUkFU5siaDPTF5IkofHoJTi5yAshvothZG6FphOWZdiGEuvRleg3avT8ORDxSSlQqQB7KxPsH1sXkiRhVb9q6L82GHP334G1mSHWDeCCPUSAnsOJEAKjRo3C7t274e/vj1KlSmltr127NoyMjODn54cePXoAAEJDQ/Hw4UM0bNhQ3u/atWto1aoV+vXrhzlz5uTpORAREeU3FvbO8Ji1JcNt9QZOz3Q7lo4l0Pknvwy32biUQ6elh/NlPbpSsog5LkxrmuG2CkUtcfb7JnlaD1F+oNdw4uXlhc2bN2Pv3r2wsrKS55HY2NjAzMwMNjY2GDhwIMaPHw87OztYW1tj1KhRaNiwoTwZ/urVq2jVqhU8PDwwfvx4uQ0DAwPY29vL3ys4OBgAEBsbi+fPnyM4OBjGxsaoVKlS3p40ERERERFlSK/hZMWK1FU4WrRoofX8unXr0L9/fwDAkiVLoFKp0KNHDyQmJsLDwwM///x2ecEdO3bg+fPn2LhxIzZu3Cg/X7JkSYSFhcmPa9asKf87MDAQmzdvTrcPERERERHpj94v6/o3pqamWL58OZYvX57h9hkzZmDGjBk6+V5ERERERKQ/ilmti4iIiIiIPm0MJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAiG+i6AiIiI8oYmOUknx2rUSUhWZe/zzRR1olabqqTstZMb9ehKojpFL8cSFQQMJ0RERJ+Isz9PzvaxIuXtm+ZTC4ZBkrLbjkb+9/mV3yG7Demqntzw1eogfZdAlG8xnBAREX0CahWzytHxGo0GgeGGwD/3Ua1MHaiyOVKh0agQ+EAC4sJRw61YDtrRTT0651JPN+2o1bpphyifkYQQQt9F5AcxMTGwsbFBdHQ0rK2t9V0OERFRpgghkJiY80uX3m3HxMQEUnZHPBTWzrt0VY8uxMTEwNHRke876JPDkRMiIqICTJIkmJqa6qQtMzOzAtmOLujy5wwASUnZnx9ElJ8pZAyUiIiIiIg+dQwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCFkKJ8nJyfjtt9/w7Nmz3KqHiIiIiIg+UVkKJ4aGhhg2bBgSEhJyqx4iIiIiIvpEZfmyrnr16iE4ODgXSiEiIiIiok+ZYVYPGDFiBMaPH49Hjx6hdu3asLCw0NperVo1nRVHRJ8GIQQSExN12o6JiQkkSSoQ7bxLV/Xoiq7Oi4iICAAkIYTIygEqVfrBFkmSIISAJEnQaDQ6K05JYmJiYGNjg+joaFhbW+u7HKICJSEhAT179sxxOxqNBoGBgQCAOnXqZPh6lR/bedf27dthamqarWN19XPWVT1E9GF830GfqiyPnNy/fz836iAiwqUnr3N0vEhJQXRCMoyLlsPlFxpIUvY+LBEpGsQkCagKOSP4aSyQ3ZEKHdWTprq9UY6Olz26oJt2XOrpph0iIqL/l+VwUrJkydyog4gIANBwxDwYGBpn69ik+Nc4+G0PAEDTSSthZJK9T/TVcdHYPawpAKD+sLnZbkdX9aSoE3Fi/tBsHfshG4fUhIlR9kZyEtUp+Gp1kE7rISIiArIRTtJcv34dDx8+RFJSktbznTt3znFRRPTpMjA0hoGxSfaOVb+dT2FgZAxD4+yFAU3S2xUJlVBPcraO+jgTIxVMjQxyoWUiIqLsy3I4uXfvHrp164YrV67Ic00AyBMiC+qcEyIiIiIiyl1ZHtMfM2YMSpUqhcjISJibm+PatWs4efIk6tSpA39//1wokYiIiIiIPgVZHjk5e/Ysjh07hiJFikClUkGlUqFJkyaYN28eRo8ejaAgXodMRERERERZl+WRE41GAysrKwBAkSJF8PTpUwCpE+VDQ0N1Wx0REREREX0ysjxyUqVKFYSEhKBUqVKoX78+FixYAGNjY6xevRqlS5fOjRqJiIiIiOgTkOVw8v333yMuLg4AMHPmTHTs2BFNmzZF4cKFsXXrVp0XSEREREREn4YshxMPDw/532XLlsXNmzfx6tUrFCpUSF6xi4iIiIiIKKuydwcuAHfu3MFff/2F+Ph42NnZ6bImIiIiIiL6BGU5nLx8+RLu7u4oX7482rdvj/DwcADAwIEDMWHCBJ0XSEREREREn4YsX9Y1btw4GBkZ4eHDh3Bzc5Of7927N8aPH49FixbptEAiIiIiyphGo4FardZ3GUQfZGRkBAMDg0zvn+VwcvjwYfz1118oXry41vPlypXDgwcPstocEREREWWREAIRERGIiorSdylE/8rW1hZOTk6Zmp+e5XASFxcHc3PzdM+/evUKJiYmWW2OiIiIiLIoLZg4ODjA3NycixKRIgkh8ObNG0RGRgIAihYt+q/HZDmcNG3aFL/99htmzZoFAJAkCSkpKViwYAFatmyZ1eaIiIiIKAs0Go0cTAoXLqzvcog+yszMDAAQGRkJBweHf73EK8vhZMGCBXB3d8fFixeRlJSESZMm4dq1a3j16hUCAgKyVzURERERZUraHJOMrmQhUqK0/1fVavW/hpMsr9ZVpUoV3Lp1C02aNEGXLl0QFxeH7t27IygoCGXKlMlexURERESUJbyUi/KLrPy/muWREwCwsbHBlClTsnMoERERERFRhrI8cuLq6oqZM2fi0aNHuVEPERERERF9orI8cjJ27FisX78eM2fORMuWLTFw4EB069aNK3URERER6duiPLzUa4LIu++lZ2FhYShVqhSCgoJQo0YNfZeTba6urhg7dizGjh2r71I+KMsjJ2PHjkVwcDAuXLgANzc3jBo1CkWLFsXIkSNx6dKl3KiRiIiIiPIxSZI++jVjxgy91rZnz56P7uPi4oLw8HBUqVIl0+3OmDEjXwcZfclyOElTq1Yt+Pj44OnTp5g+fTrWrFmDunXrokaNGvj1118hxKeTpomIiIjow8LDw+WvpUuXwtraWuu5iRMnZqm9pKSkXKo0YwYGBnBycoKhYbama+dIXp+rvmU7nKjVamzbtg2dO3fGhAkTUKdOHaxZswY9evTAd999B09PT13WSURERET5lJOTk/xlY2MDSZLkx3FxcfD09ISjoyMsLS1Rt25dHD16VOt4V1dXzJo1C3379oW1tTWGDBkCAPjll1/g4uICc3NzdOvWDYsXL4atra3WsXv37kWtWrVgamqK0qVLw9vbG8nJyXK7ANCtWzdIkiQ/fl9YWBgkSUJwcDAAwN/fH5Ikwc/PD3Xq1IG5uTkaNWqE0NBQAMD69evh7e2NkJAQeXRo/fr1AICoqCgMGjQI9vb2sLa2RqtWrRASEiJ/r7QRlzVr1qBUqVIwNTXF6tWr4ezsjJSUFK26unTpggEDBgAA7t69iy5dunz055gfZDmcXLp0SetSrsqVK+Pq1as4ffo0vv76a0ydOhVHjx7F7t27c6NeIiIiIipAYmNj0b59e/j5+SEoKAht27ZFp06d8PDhQ639Fi5ciOrVqyMoKAhTp05FQEAAhg0bhjFjxiA4OBht2rTBnDlztI45deoU+vbtizFjxuD69etYtWoV1q9fL+/3999/AwDWrVuH8PBw+XFmTZkyBYsWLcLFixdhaGgoB4XevXtjwoQJqFy5sjw61Lt3bwBAz549ERkZiYMHDyIwMBC1atWCu7s7Xr16Jbd7584d7Ny5E7t27UJwcDB69uyJly9f4vjx4/I+r169wqFDh+QBgcz+HJUuy2NTdevWRZs2bbBixQp07doVRkZG6fYpVaoUvvjiC50USEREREQFV/Xq1VG9enX58axZs7B7927s27cPI0eOlJ9v1aoVJkyYID+eMmUK2rVrJ18SVr58eZw5cwb79++X9/H29sa3336Lfv36AQBKly6NWbNmYdKkSZg+fTrs7e0BALa2tnBycspy7XPmzEHz5s0BAN9++y06dOiAhIQEmJmZwdLSEoaGhlrtnj59GhcuXEBkZKS8mNTChQuxZ88e7NixQx4RSkpKwm+//SbXBwDt2rXD5s2b4e7uDgDYsWMHihQpgpYtW2bp56h0WR45uXfvHg4dOoSePXtmGEwAwMLCAuvWrctxcURERERUsMXGxmLixIlwc3ODra0tLC0tcePGjXSf+NepU0frcWhoKOrVq6f13PuPQ0JCMHPmTFhaWspfgwcPRnh4ON68eZPj2qtVqyb/u2jRogCAyMjID+4fEhKC2NhYFC5cWKum+/fv4+7du/J+JUuW1AomAODp6YmdO3ciMTERALBp0yZ88cUXUKlS385n9ueodFkeOSlZsmRu1EFEREREn6CJEyfiyJEjWLhwIcqWLQszMzN8/vnn6SaCW1hYZLnt2NhYeHt7o3v37um2mZqaZrvmNO9+UJ92F/T354W8X0/RokXh7++fbtu7c2UyOtdOnTpBCIEDBw6gbt26OHXqFJYsWSJvz+zPUenyfskBIiIiIqL/FxAQgP79+6Nbt24AUt/Ah4WF/etxFSpUSDdH5P3HtWrVQmhoKMqWLfvBdoyMjKDRaLJe+L8wNjZO126tWrUQEREBQ0PDD06+/xBTU1N0794dmzZtwp07d1ChQgXUqlVL3p7dn6PSMJwQERERkd6UK1cOu3btQqdOnSBJEqZOnfrR0Yc0o0aNQrNmzbB48WJ06tQJx44dw8GDB+URDACYNm0aOnbsiBIlSuDzzz+HSqVCSEgIrl69itmzZwNIXbHLz88PjRs3homJCQoVKqST83J1dcX9+/cRHByM4sWLw8rKCq1bt0bDhg3RtWtXLFiwAOXLl8fTp09x4MABdOvWLd2la+/z9PREx44dce3aNXz11Vda27L7c1QahhMiIiKigiIf3rV98eLFGDBgABo1aoQiRYrgm2++QUxMzL8e17hxY6xcuRLe3t74/vvv4eHhgXHjxmHZsmXyPh4eHti/fz9mzpyJ+fPnw8jICBUrVsSgQYPkfRYtWoTx48fjl19+QbFixXQ22tCjRw/s2rULLVu2RFRUFNatW4f+/fvjzz//xJQpU/D111/j+fPncHJyQrNmzeDo6PivbbZq1Qp2dnYIDQ1Fnz59tLZl9+eoNJLIwt0S1Wo1KlasiP3798PNzS0361KcmJgY2NjYIDo6GtbW1vouh6hASUhIQM+ePXHpyWs0Gb0IBsYm2WonKS4G+yd2gnHRcuiyYBeMTc2z1U5ibBR2DqwHVSFntJ/yC4zMzPRaT3JSAo7P7o/q9kbYvn17tq+TTvs549EFbPeqDVMjg+y1o9ag5/JAwKVejuohog/72PuOhIQE3L9/X74HBr01ePBg3Lx5E6dOndJ3KfSOrPw/m6WREyMjIyQkJOSouHfNmzcPu3btws2bN2FmZoZGjRph/vz5qFChgrxPQkICJkyYAF9fXyQmJsLDwwM///yznC5DQkLwww8/4PTp03jx4gVcXV3lNa/f5e/vj/Hjx+PatWtwcXHB999/j/79++vsXIhI947PG4L46BeQJBWMzCxQq++3sHN1Q+CGeXhyyR9xL56i7ZztKORa8aPtHJrcHfH/PPv/dizRYMR8FC5bDdFP7uLU/4YjIeYVjC2s0XTCchRy/fAHL0qrR1c+W3gOEdGJUEkSrEwN4eNZGTVL2uB2RCz6rQnBi9gk2JgZYv2gGqhczCrX6yEiyqyFCxeiTZs2sLCwwMGDB7Fhwwb8/PPP+i6LciDLl3V5eXlh/vz5WLNmDQwNc3ZV2IkTJ+Dl5YW6desiOTkZ3333HT777DNcv35dXqVg3LhxOHDgALZv3w4bGxuMHDkS3bt3R0BAAAAgMDAQDg4O2LhxI1xcXHDmzBkMGTIEBgYG8prO9+/fR4cOHTBs2DBs2rQJfn5+GDRoEIoWLQoPD48cnQMR5Z7GoxfC2CL1E8NHf/vh/Krv0W7eTrjUawO3jl/j6Mx+mWqn5ZR1MLG0AQCEBezHyYUj0G3laZz5cRwqtO+Pcp/1wf1Te3FqkRc6/3Qs39SjK9tG1IateeqKM7sDw9F/bTBCZjbH0A1XMKRFCfRv4oIdfz9F/zXB+Ht601yvh4gosy5cuIAFCxbg9evXKF26NHx8fLQu2aL8J8vp4u+//4afnx8OHz6MqlWrplvqbNeuXZlu69ChQ1qP169fDwcHBwQGBqJZs2aIjo7G2rVrsXnzZrRq1QpA6h083dzccO7cOTRo0EC+E2ea0qVL4+zZs9i1a5ccTlauXIlSpUph0aJFAAA3NzecPn0aS5YsYTghUrC0IAAA6jevAaROcnRw+/iEwfelBQEAUMfFQJIkxEc9x4vbwfCYl/qa5dqkM84tn4SYJ/dgYmOnqHrM7Z2z1H5WpQUTAIiOT4YECZExibgYFo3DE+sDAHrUKYqRG6/hzrM4FLfjZSREpAzbtm3TdwmkY1kOJ7a2tujRo0du1ILo6GgAgJ1d6huDwMBAqNVqtG7dWt6nYsWKKFGiBM6ePYsGDRp8sJ20NgDg7NmzWm0AqROkxo4d+8FaEhMT5ZvcAMiXE4qICoKzK75D5PULAIDm/83+UP2JBcMQEZJ6DXKb2dsQ9/wJzOwcoTJIfRmUJAkW9sUR+/zxB8OJvurJ7XACAH1/CcLxGy8BAH+Oq4dHr+JR1NYEhgYquZ4ShU3x8GU8wwkREeWaLIeT3Lrze0pKCsaOHYvGjRujSpUqAICIiAgYGxtr3ZQGABwdHREREZFhO2fOnMHWrVtx4MAB+bmIiIh0KyA4OjoiJiYG8fHxMMtgsuu8efPg7e2dw7MiopxqOHwuAODeyb0I9l2CFpNWZKud5pNWAgBuH9mCi2tnoFa/KQWiHl35bXBNAMCG04/wzfYbmNW9wr8cQUREpHuq7B74/PlznD59GqdPn8bz589zXIiXlxeuXr0KX1/fbLdx9epVdOnSBdOnT8dnn32Wo3omT56M6Oho+evRo0c5ao+IcqZ0sy6IvP43El9H5aidcm2+RHjIaVgUcUb8q2dI0SQDAIQQiHv+GJb2xfNlPbrSr4kLjt98ieKFzBAelYhkTYpcz8OXCShROHsrlxEREWVGlsNJXFwcBgwYgKJFi6JZs2Zo1qwZnJ2dMXDgQLx58yZbRYwcORL79+/H8ePHUbz42z/ETk5OSEpKQlRUlNb+z549g5OTk9Zz169fh7u7O4YMGYLvv/9ea5uTkxOePXuWrg1ra+sMR00AwMTEBNbW1lpfRJR3kuJi8OafSPnx44t+MLa0gfE78zUyIzE2Gm9ehsuPH5w5ABNrO5ja2qNw2Wq465d6vXLY6X0wL+IM62Kl80U9uhL1Ro2n/7xdhXHPpQgUtjSGg7UxapW0xsazTwAAOy+Go7idKco6WnyoKSIiohzL8mVd48ePx4kTJ/DHH3+gcePGAIDTp09j9OjRmDBhAlasyPwlDkIIjBo1Crt374a/vz9KlSqltb127dowMjKCn5+fPM8lNDQUDx8+RMOGDeX9rl27hlatWqFfv36YM2dOuu/TsGFD/Pnnn1rPHTlyRKsNIlIW9ZtYnPaZAE1SAiSVCiZWhdB84nJIkoQLa73xNOgkEqJf4vj8oTAys0CnxX9m3E5cNI7N/hqapHhAUsHUpgjazPSFJEloPHoJTi7yQojvYhiZW6HphGUZtqHEenQl+o0aPX8ORHxSClQqwN7KBPvH1oUkSVjVrxr6rw3G3P13YG1miHUDqud6PURE9GnLcjjZuXMnduzYgRYtWsjPtW/fHmZmZujVq1eWwomXlxc2b96MvXv3wsrKSp5HYmNjAzMzM9jY2GDgwIEYP3487OzsYG1tjVGjRqFhw4byZPirV6+iVatW8PDwwPjx4+U2DAwMYG9vDwAYNmwYli1bhkmTJmHAgAE4duwYtm3bpjUvhYiUxcLeGR6ztmS4rd7A6Zlux9KxBDr/5JfhNhuXcui09HC+rEdXShYxx4VpGS8PXKGoJc5+3yRP6yEi+tS0aNECNWrUwNKlS/VdSrbNmDEDe/bsQXBwcI7bynI4efPmTbrJ5QDg4OCQ5cu60oLMu0EHSJ10n3aDxCVLlkClUqFHjx5aN2FMs2PHDjx//hwbN27Exo0b5edLliyJsLAwAECpUqVw4MABjBs3Dj/++COKFy+ONWvWcBlhIiIiKlCKzDiZZ9/rxYxmWdq/f//+2LBhA4DUG3uXKFECffv2xXfffZfje+flZ7t27YKRkdG/7/j/wsLCUKpUKQQFBaFGjRq5V5ieZPn/hIYNG2L69On47bff5NvPx8fHw9vbO8uXSQkh/nUfU1NTLF++HMuXL89w+4wZMzBjxox/badFixYICgrKUn1EREREpDtt27bFunXrkJiYiD///BNeXl4wMjLC5MmT0+2blJQEY2PjPK9RCAGNRqPzwPSh83n39hd5Ta1WZykY5YUsT4j/8ccfERAQgOLFi8Pd3R3u7u7yndl//PHH3KiRiIiIiAoAExMTODk5oWTJkhg+fDhat26Nffv2AUgdWenatSvmzJkDZ2dnVKiQuqT5o0eP0KtXL9ja2sLOzg5dunSRr45J8+uvv6Jy5cowMTFB0aJF5Rtxh4WFQZIkrcuNoqKiIEkS/P39AQD+/v6QJAkHDx5E7dq1YWJigtOnTyMkJAQtW7aElZUVrK2tUbt2bVy8eFFuZ+fOnfL3dHV1lW/2ncbV1RWzZs1C3759YW1tjSFDhmT4M2nRooXWvfdcXV0xd+5cDBgwAFZWVihRogRWr14tb0+bo12zZk1IkqR1BdKaNWvg5uYGU1NTVKxYUetqo7SfxdatW9G8eXOYmppixYoVMDMzw8GDB7Vq2r17N6ysrOSror755huUL18e5ubmKF26NKZOnQq1Wp3h+eRUliNhlSpVcPv2bWzatAk3b94EAHz55Zfw9PT84MpXRERERETvMzMzw8uXL+XHfn5+sLa2xpEjRwCkfrLv4eGBhg0b4tSpUzA0NMTs2bPRtm1bXL58GcbGxlixYgXGjx+PH374Ae3atUN0dDQCAgKyXMu3336LhQsXonTp0ihUqBCaNWuGmjVrYsWKFTAwMEBwcLA8yhAYGIhevXphxowZ6N27N86cOYMRI0agcOHC8tQEAFi4cCGmTZuG6dMzPzcRABYtWoRZs2bhu+++w44dOzB8+HA0b94cFSpUwIULF1CvXj0cPXoUlStXlkdjNm3ahGnTpmHZsmWoWbMmgoKCMHjwYFhYWKBfv35a57lo0SLUrFkTpqamOHXqFDZv3ox27drJ+2zatAldu3aFubk5AMDKygrr16+Hs7Mzrly5gsGDB8PKygqTJk3K8s/532RrvMrc3ByDBw/WdS1ERERE9AkQQsDPzw9//fUXRo0aJT9vYWGBNWvWyG+4N27ciJSUFKxZswaSJAFInZtsa2sLf39/fPbZZ5g9ezYmTJiAMWPGyO3UrVs3yzXNnDkTbdq0kR8/fPgQ//3vf1GxYkUAQLly5eRtixcvhru7O6ZOnQoAKF++PK5fv47//e9/WuGkVatWmDBhQpZrad++PUaMGAEgddRiyZIlOH78OCpUqCAv+FS4cGGtW2tMnz4dixYtQvfu3QGkjrBcv34dq1at0gonY8eOlfcBAE9PT/znP//BmzdvYG5ujpiYGBw4cAC7d++W93n3Nh2urq6YOHEifH19lRNObt++jePHjyMyMhIpKSla26ZNm6aTwoiIiIioYNm/fz8sLS2hVquRkpKCPn36aM0drlq1qta8jJCQENy5cwdWVlZa7SQkJODu3buIjIzE06dP4e7unuPa6tSpo/V4/PjxGDRoEH7//Xe0bt0aPXv2RJkyZQAAN27cQJcuXbT2b9y4MZYuXQqNRgMDA4MM28ysatWqyf+WJAlOTk6IjIz84P5xcXG4e/cuBg4cqDWAkJycDBsb7ftxvV9T+/btYWRkhH379uGLL77Azp07YW1tjdatW8v7bN26FT4+Prh79y5iY2ORnJyca/cAzHI4+eWXXzB8+HAUKVIETk5OcooFUn94DCdERERElJGWLVtixYoVMDY2hrOzc7pJ5xYW2jd6jY2NRe3atbFp06Z0bdnb20Ol+vj06bTt7y7C9KG5Eu9/7xkzZqBPnz44cOAADh48iOnTp8PX1xfdunX76Pf8WJuZ9f4kdUmS0g0IvCs2NhZA6vv0+vXra21LC0ofqsnY2Biff/45Nm/ejC+++AKbN29G79695b45e/YsPD094e3tDQ8PD9jY2MDX1zfdHBtdyXI4mT17NubMmYNvvvkmN+ohIiIiogLKwsICZcuWzfT+tWrVwtatW+Hg4PDBT+pdXV3h5+eHli1bptuWdglUeHg4atasCQBZuhdH+fLlUb58eYwbNw5ffvkl1q1bh27dusHNzS3dvJaAgACUL18+XRjQtbSRJY1GIz/n6OgIZ2dn3Lt3D56enllu09PTE23atMG1a9dw7NgxzJ49W9525swZlCxZElOmTJGfe/DgQQ7O4OOyvFrXP//8g549e+ZGLUREREREMk9PTxQpUgRdunTBqVOncP/+ffj7+2P06NF4/PgxgNQRjkWLFsHHxwe3b9/GpUuX8NNPPwFInXDfoEED/PDDD7hx4wZOnDihNX/iQ+Lj4zFy5Ej4+/vjwYMHCAgIwN9//w03NzcAwIQJE+Dn54dZs2bh1q1b2LBhA5YtW4aJEyfm3g/j/zk4OMDMzAyHDh3Cs2fPEB0dDQDw9vbGvHnz4OPjg1u3buHKlStYt24dFi9e/K9tNmvWDE5OTvD09ESpUqW0Rl/KlSuHhw8fwtfXF3fv3oWPj4/WfBRdy3I46dmzJw4fzts7GBMRERHRp8fc3BwnT55EiRIl0L17d7i5uWHgwIFISEiQR1L69euHpUuX4ueff0blypXRsWNH3L59W27j119/RXJyMmrXro2xY8dqjQp8iIGBAV6+fIm+ffuifPny6NWrF9q1awdvb28AqSM627Ztg6+vL6pUqYJp06Zh5syZWpPhc4uhoSF8fHywatUqODs7y3NfBg0ahDVr1mDdunWoWrUqmjdvjvXr18tLD3+MJEn48ssvERISkm7kpXPnzhg3bhxGjhyJGjVq4MyZM/JCALlBEpm4E6KPj4/877i4OCxevBgdOnRA1apV010TN3r0aN1XqQAxMTGwsbFBdHR0rk0AIvpUJSQkoGfPnrj05DWajF4EA2OTbLWTFBeD/RM7wbhoOXRZsAvGpubZaicxNgo7B9aDqpAz2k/5BUbZXCZdV/UkJyXg+Oz+qG5vhO3bt8s3wM2qtJ8zHl3Adq/aMDXK3qUHCWoNei4PBFzq5ageIvqwj73vSEhIwP3791GqVCn+/lG+kJX/ZzM152TJkiVajy0tLXHixAmcOHFC63lJkgpsOCEiIiIiotyVqXBy//793K6DiIiIiIg+cVmec0JERERERJQbshxOevTogfnz56d7fsGCBVzFi4iIiIiIsi3L4eTkyZNo3759uufbtWuHkydP6qQoIiIiIiL69GQ5nMTGxso3f3mXkZERYmJidFIUEREREX1cJhZcJVKErPy/muVwUrVqVWzdujXd876+vqhUqVJWmyMiIiKiLEi7jcObN2/0XAlR5qT9v/r+LUgykqnVut41depUdO/eHXfv3kWrVq0AAH5+ftiyZQu2b9+e1eaIiIiIKAsMDAxga2uLyMhIAKk3KpQkSc9VEaUnhMCbN28QGRkJW1tbGBj8+/21shxOOnXqhD179mDu3LnYsWMHzMzMUK1aNRw9ehTNmzfPVuFERERElHlOTk4AIAcUIiWztbWV/5/9N1kOJwDQoUMHdOjQITuHEhEREVEOSZKEokWLwsHBAWq1Wt/lEH2QkZFRpkZM0mQrnABAUlISIiMjkZKSovV8iRIlstskEREREWWBgYFBlt74ESldlsPJ7du3MWDAAJw5c0breSEEJEmCRqPRWXFERERERPTpyHI46d+/PwwNDbF//34ULVqUE7CIiIiIiEgnshxOgoODERgYiIoVK+ZGPURERERE9InK8n1OKlWqhBcvXuRGLURERERE9AnLcjiZP38+Jk2aBH9/f7x8+RIxMTFaX0RERERERNmR5cu6WrduDQBwd3fXep4T4omIiIiIKCeyHE6OHz+eG3UQEREREdEnLsvh5GN3gb969WqOiiEiIiIiok9Xtm/CmOb169fYsmUL1qxZg8DAQF7WRUQ5oklO0smxGnUSklVZnlYHAEhRJ2q1qUrKXju5UY+uJKpT/n2nXDiWiIjoY7IdTk6ePIm1a9di586dcHZ2Rvfu3bF8+XJd1kZEn6CzP0/O9rEi5e2b5lMLhiG7t2ESKW8/ZDm/8jtktyFd1ZMbvlodpO8SiIiI0slSOImIiMD69euxdu1axMTEoFevXkhMTMSePXtQqVKl3KqRiD4RtYpZ5eh4jUaDwHBD4J/7qFamDlTZHKnQaFQIfCABceGo4VYsB+3oph6dc6mn7wqIiIgyJAkhRGZ27NSpE06ePIkOHTrA09MTbdu2hYGBAYyMjBASElLgw0lMTAxsbGwQHR0Na2trfZdDVKAIIZCYmPNLl95tx8TEBFJ2RzwU1s67dFWPrujqvIhIG9930Kcq0yMnBw8exOjRozF8+HCUK1cuN2siok+MJEkwNTXVSVtmZmYFsh1d0OXPmYiIKDdk+hqD06dP4/Xr16hduzbq16+PZcuW8U7xRERERESkM5kOJw0aNMAvv/yC8PBwDB06FL6+vnB2dkZKSgqOHDmC169f52adRERERERUwGV6zklGQkNDsXbtWvz++++IiopCmzZtsG/fPl3Wpxi89pOIiIjyCt930KcqR0vHVKhQAQsWLMDjx4+xZcsWXdVERERERESfoByNnHxK+AkGERER5RW+76BPlUIW3SciIiIiok8dwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESmCob4LyG8SEhJgbGyc7eOFEEhMTAQAmJiYQJKkAtHOu3RVj67o6ryIiIiIKHcxnGRR3759YWRklO3jNRoNAgMDAQB16tSBSpW9wSultfOu7du3w9TUNFvHJiYmomfPnjmuQVf1EBEREVHeYTjJopDwWKgMsv9jEykpiE5IhnHRcrj8QgNJ0mSzHQ1ikgRUhZwR/DQWyO5IhY7qSVPdPvvBTcujC7ppx6WebtohIiIiolzHcJINDUfMg4Fh9i7tSop/jYPf9gAANJ20EkYm2ftEXx0Xjd3DmgIA6g+bm+12dFVPijoRJ+YPzdaxH7JxSE2YGGVvJCdRnYKvVgfptB4iIiIiyl0MJ9lgYGgMA2OT7B2rfjufwsDIGIbG2QsDmqQERdWTnK2jPs7ESAVTI4NcaJmIiIiIlIirdRERERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIY6vObz5s3D7t27cLNmzdhZmaGRo0aYf78+ahQoYK8T0JCAiZMmABfX18kJibCw8MDP//8MxwdHeV9Ro8ejYCAAFy9ehVubm4IDg5O9722bduGuXPn4tatW7C3t8fIkSPx3//+N8fncHzeEMRHv4AkqWBkZoFafb+FnasbAjfMw5NL/oh78RRt52xHIdeKH23n0OTuiP/n2f+3Y4kGI+ajcNlqiH5yF6f+NxwJMa9gbGGNphOWo5CrW76pR1c+W3gOEdGJUEkSrEwN4eNZGTVL2uB2RCz6rQnBi9gk2JgZYv2gGqhczCrX6yEiIiIi3dNrODlx4gS8vLxQt25dJCcn47vvvsNnn32G69evw8LCAgAwbtw4HDhwANu3b4eNjQ1GjhyJ7t27IyAgQKutAQMG4Pz587h8+XK673Pw4EF4enrip59+wmeffYYbN25g8ODBMDMzw8iRI3N0Do1HL4SxhTUA4NHffji/6nu0m7cTLvXawK3j1zg6s1+m2mk5ZR1MLG0AAGEB+3Fy4Qh0W3kaZ34chwrt+6PcZ31w/9RenFrkhc4/Hcs39ejKthG1YWtuBADYHRiO/muDETKzOYZuuIIhLUqgfxMX7Pj7KfqvCcbf05vmej1EREREpHt6vazr0KFD6N+/PypXrozq1atj/fr1ePjwIQIDAwEA0dHRWLt2LRYvXoxWrVqhdu3aWLduHc6cOYNz587J7fj4+MDLywulS5fO8Pv8/vvv6Nq1K4YNG4bSpUujQ4cOmDx5MubPnw8hRI7OIS0IAID6zWsAEgDAwa0OzAs7ZbqdtCAAAOq4GEiShPio53hxOxhl3HsBAFybdEbc8yeIeXIv39SjK2nBBACi45MhQUJkTCIuhkXjq4bFAAA96hTFo1cJuPMsLtfrISIiIiLd0+vIyfuio6MBAHZ2dgCAwMBAqNVqtG7dWt6nYsWKKFGiBM6ePYsGDRpkqt3ExESYm5trPWdmZobHjx/jwYMHcHV1zfCYxMRE+XFMTMwH2z+74jtEXr8AAGj+358zVVNGTiwYhoiQUwCANrO3Ie75E5jZOUJlkNpNkiTBwr44Yp8/homNnaLqMbd3zvb3yay+vwTh+I2XAIA/x9XDo1fxKGprAkMDlVxPicKmePgyHsXtTHO9HiIiIiLSLcVMiE9JScHYsWPRuHFjVKlSBQAQEREBY2Nj2Nraau3r6OiIiIiITLft4eGBXbt2wc/PDykpKbh16xYWLVoEAAgPD8/wmHnz5sHGxkb+cnFx+WD7DYfPRZefjqJqz1EI9l2S6bre13zSSvTedA21+n+Pi2tnZLsdpdWjK78NrolHi1tjdvcK+Gb7DX2XQ0REREQ6pphw4uXlhatXr8LX11fnbQ8ePBgjR45Ex44dYWxsjAYNGuCLL74AAKhUGf8IJk+ejOjoaPnr0aNH//p9SjfrgsjrfyPxdVSO6i3X5kuEh5yGRRFnxL96hhRNMgBACIG4549haV88U+0orR5d6dfEBcdvvkTxQmYIj0pEsiZFrufhywSUKGyWp/UQERERkW4oIpyMHDkS+/fvx/Hjx1G8+Ns3uk5OTkhKSkJUVJTW/s+ePYOTU+bnT0iShPnz5yM2NhYPHjxAREQE6tWrBwAfnKdiYmICa2trra/3JcXF4M0/kfLjxxf9YGxpA+N35mtkRmJsNN68fDuC8+DMAZhY28HU1h6Fy1bDXb9tAICw0/tgXsQZ1sUyrllp9ehK1Bs1nv6TID/ecykChS2N4WBtjFolrbHx7BMAwM6L4ShuZ4qyjha5Wg8RERER5Q69zjkRQmDUqFHYvXs3/P39UapUKa3ttWvXhpGREfz8/NCjRw8AQGhoKB4+fIiGDRtm+fsZGBigWLHUydNbtmxBw4YNYW9vn+361W9icdpnAjRJCZBUKphYFULzicshSRIurPXG06CTSIh+iePzh8LIzAKdFv+ZcTtx0Tg2+2tokuIBSQVTmyJoM9MXkiSh8eglOLnICyG+i2FkboWmE5blm3p0JfqNGj1/DkR8UgpUKsDeygT7x9aFJElY1a8a+q8Nxtz9d2BtZoh1A6rnej1ERERElDv0Gk68vLywefNm7N27F1ZWVvI8EhsbG5iZmcHGxgYDBw7E+PHjYWdnB2tra4waNQoNGzbUmgx/584dxMbGIiIiAvHx8fJ9TipVqgRjY2O8ePECO3bsQIsWLZCQkIB169Zh+/btOHHiRI7qt7B3hsesLRluqzdweqbbsXQsgc4/+WW4zcalHDotPZwv69GVkkXMcWFaxssDVyhqibPfN8nTeoiIiIgod+g1nKxYsQIA0KJFC63n161bh/79+wMAlixZApVKhR49emjdhPFdgwYN0goaNWvWBADcv39fXolrw4YNmDhxIoQQaNiwIfz9/eVLu4iIiIiISP/0flnXvzE1NcXy5cuxfPnyD+7j7+//0TaKFCmCs2fPZrU8IiIiIiLKQ4qYEE9ERERERMRwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREimCo7wLyI01ykk6O1aiTkKzKXj5MUSdqtalKyl47uVGPriSqU/RyLBERERHpB8NJNpz9eXK2jxUpb980n1owDJKU3XY08r/Pr/wO2W1IV/Xkhq9WB+m7BCIiIiLKQwwnWVS9qCWMjIyyfbxGo0FguCHwz31UK1MHqmyOVGg0KgQ+kIC4cNRwK5aDdnRTj8651NN3BURERESUxyQhhNB3EflBTEwMbGxs8OzZM1hbW2e7HSEEEhNTL4EyMTGBlN0RD4W18y5d1aMrujovIiKivJL2viM6OjpH7zuI8huOnGSRqakpTE1Nc9SGmZmZTmpRWju6IElSjn++RERERJQ/KeQaHiIiIiIi+tQxnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSJwta5MSltxOSYmRs+VEBERUUGX9n6Dd3ygTw3DSSa9fv0aAODi4qLnSoiIiOhT8fr1a9jY2Oi7DKI8w5swZlJKSgqePn0KKyurXL+hX0xMDFxcXPDo0SPeeKkAYb8WTOzXgon9WjDlp34VQuD169dwdnaGSsWr8OnTwZGTTFKpVChevHiefk9ra2vFv3hS1rFfCyb2a8HEfi2Y8ku/csSEPkWM4kREREREpAgMJ0REREREpAgMJwpkYmKC6dOnw8TERN+lkA6xXwsm9mvBxH4tmNivRMrHCfFERERERKQIHDkhIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDjRIy6URkSkf3wtJiJSDoaTPBQVFYUOHTrgf//7HwAgJSVFzxWRLvzzzz948OABAECj0ei5GtKVZ8+eYenSpdi1axdu3boFgG9iC4qXL19ixIgR2LdvHwD2a0Hx4sULnDlzBvfu3dN3KUSUAwwneejw4cM4ePAgfvjhB0RGRsLAwIABJZ/74YcfUKJECUyZMgUAYGBgoOeKSBemTZuGMmXKYP/+/Rg5ciT69euH69evQ5IkvpEtAObPn4+VK1diw4YNiImJgUqlYr/mc5MnT4abmxvGjh2LKlWqYMmSJXj58qW+yyKibGA4yUMnTpyAp6cnatWqhdGjR+u7HMqBxMREjB07Frt27ULTpk3x4MED7N69GwBHxPK733//HQcOHMDevXtx9OhR/P7770hJScHZs2cBAJIk6blCyqmQkBC0adMGUVFRWL9+vb7LoRx4+vQpevbsiaNHj2LHjh3YsWMHJk6ciDVr1uDMmTP6Lo+IsoHhJA8kJycDAGxtbVGrVi307dsXBw4cwMmTJ6FSsQvyGyEETExMUKZMGQwePBjz589H4cKFsXHjRn4KWwAcOnQI9vb2cHd3BwD5v/Xq1ZP3Yf/mD+/3k0ajQWJiImxtbTFlyhS4uLhg7969uHHjBiRJ4mWZ+cS7/ZrWdz4+PmjevDlKlCiBmTNnIi4uDs+ePUu3PxEpH98Z61jai+C7f+QMDQ0BAAEBAShbtiw6dOiA1q1bY9q0aRBCwM/PD0lJSXqplzLnzZs3ePToEZKSkuRPzocOHYrBgwejatWq6NChA548ecJPYfOptNGupKQk2Nvb4/Xr1wgKCsLLly/Ro0cPPHr0CNOnT8f8+fOh0Wg4epIPJCUlab2uCiFgYGAAExMT3Lp1Cy4uLvjiiy+gVquxd+9eJCUlITIyUo8VU2YkJSVp/X2tWrUqRo4ciYYNGwJI/V0WQqBYsWLy7zV/X4nyF4YTHVq0aBEGDRoEQHvuQUpKCpKTk2FmZoaSJUvCzs4OI0aMQGBgIAwMDODn54fExER9lU3/wtvbGzVr1kSPHj3g7u6O0NBQANAaIenZsycqVKiAP/74A7dv34YkSby8S+FWr16NX375BUBqX6akpMDY2Bjdu3eHnZ0dvvnmGzg4OCAqKgqrVq1C6dKlsWrVKgwbNgwAL99TshkzZqBJkybo0qULVq9ejX/++Ud+gxoaGgqVSgVXV1e0bdsWDRo0wKpVq2BqaoodO3awXxVs9uzZaNu2Lbp06YKffvoJL1++hIODA5o1awYg9XdSpVIhMjISV69eRdWqVfVcMRFli6Acu3btmujUqZOwsLAQjo6OYvv27UIIIZKTk7X2a9SokQgLCxN//fWXcHJyEoUKFRKFCxcWCQkJQgghNBpNntdOH3bmzBlRp04dUaVKFbFnzx7x+++/i2bNmokmTZpo7ZeSkiKEEGLfvn2icePG4ttvv5W3pfVp2j6kf5cuXRItWrQQkiQJd3d3ERQUJITQ/n3VaDRi1apVokOHDuLNmzfy8+vWrROOjo4iMjIyr8umTFCr1eI///mPKFu2rNiwYYP48ssvReXKlUXHjh3lfcLDw0WbNm2EEEL8+eefwt7eXlhaWopmzZqJxMREIQR/X5UmMDBQ1KlTR1SuXFmsXbtW9O7dW9SsWVOMGzcuw/3/+OMPUa5cOflvKxHlLxw50YEzZ85AkiT8+uuv8PDwwI8//oikpCQYGBjIn6zfvHkTr169gru7O3r06IGRI0di27ZtcHR0xOTJk/V8BpSRgIAAVKtWDQEBAejSpQu++uortGvXDoUKFZLnEb37KWunTp1Qv359BAQE4NixY9i2bRu8vLwA8LICpdBoNNi/fz8cHR2xYsUKxMTEYPfu3UhJSZF/X4UQUKlUCA0NhYODA8zMzOTjHz16BEdHR366rlCPHj3C33//jcWLF6Nv377YvHkzlixZAj8/PyxZsgQAEBgYiMuXL6NRo0bo3bs3xo8fj4kTJyIlJQXbtm3T8xnQ+2JjY7FlyxZUrFgRAQEBGDBgAHx9fdGhQwfcuXMHUVFR6Y65dOkS6tatCxMTEwCpr+W7du3K48qJKLsYTnIgLXj07t0bEydORK9evdCtWze8fv0aixcvBvD2zWvFihXh7OyMli1bIigoCFOmTEHjxo3Ro0cPbN68WZ5ITfqX1q8jRozApEmTYG1tDSB1YYOjR4+ibNmyOHfuHIDUy4HenUjbp08fxMfHo2PHjvjqq69gYWGhn5OgDBkYGKB79+4YPXo0hg4disaNG8Pf3x9Hjx6V90kLks+ePcOrV6/kFX9u3boFf39/tGrVCo6Ojnqpnz5OrVYjNDQU1atXl59r06YNpk6dCm9vbzx+/Bj169eHnZ0dypUrh0uXLuHbb7/F119/DUNDQ+zduxfx8fH8MEFBhBAoVaoUhg8fDhsbG/mDIRsbG4SGhsqvz+/666+/4O7ujidPnqB9+/Zo3rw5Xr9+ndelE1F26XPYpiB68eKFGD9+vKhSpYoICwsTQggRHx8vhBAiJiYm3eUC4eHhIjY2Ns/rpKzZu3evsLKyElWrVhXu7u7C2dlZeHp6iqioKHmfx48fi6FDhwpJksSAAQPEq1ev9FgxZcatW7dEgwYNxPDhw8U///wjhBAiKSlJCCHEuXPnRP369YWdnZ3o0qWLsLKyEp6enuL169d6rJg+5vr166JGjRpiwYIFWs9HR0eLUqVKiQkTJgghhHj06FG6y2jPnDnDvlWo9y+5FEKI77//XvTq1SvdvqGhoaJQoUKiXbt2wtjYWHTp0kW8ePEiz2olopzjR/U6JIRA4cKF0blzZ9ja2mLevHkAAFNTUwCAlZWV/Imc+P9P552cnPjpugKJ95aeTE5OxqZNmxAUFIRDhw7h4MGD2Lx5My5duiTvs3fvXpw4cQLnzp3D2rVrUahQobwum7IgJSUF5cqVQ48ePXDx4kXs378fAGBkZAQAqF+/PtasWYOlS5eiXr168Pf3x8aNG2FpaanPsj9p7/9evq9EiRKoUKECzp8/j7CwMACp/WxtbY0RI0Zg+/btSEhIQPHixeWR6rQ2GzZsyL5VIPH/q6ylSfsbeunSJdSqVUveJ829e/cQFRWFmJgYnDhxAnv27EHhwoXztmgiyhGGk3/x+PFjLF26FPfu3QOg/SKYNrycJu3SnkaNGqFjx47w9/fH6dOnAUC+DCgNLxvQr/DwcFy+fBkvXrxIty05OTld/3Tv3h2dOnWCgYEBDA0NUaZMGdjZ2SEoKEjeZ8SIEbhx44bW/TAob929exczZszAnTt30m17//c17ZLLYcOGoVChQti/f7/8hvbKlSsAgCpVquA///kPvvvuO/mNEOlHdHQ0YmNj5dfgd+f9pPWthYUFunbtitu3b8vzR9JCiI2NDaytrfH8+XOtdvlarF9hYWHo27dvhvN93n8tTklJgSRJiI6Oxvnz5+XlgyVJwoMHDwAAtWvXxl9//YXTp0+jQYMGeXMSRKRTDCcf8fLlS3Ts2BHffPMNjh49Kt/fIC2EGBoaQgghT7RMe2xkZIQOHTqgcuXKmDx5Mtq3b49GjRrhxo0b+jwd+n9jx45FhQoV4OnpiSpVqmDnzp3y9chCCLkfp06d+sE29u/fj9KlS6NHjx55VTZ9hBACw4cPR7ly5RAeHo7ixYvL29LexKb16759++THGo0GlpaWGDhwIO7duwcfHx+0b98e7u7u6d7Ekn4IITB27Fg0b94cbdu2Rd++ffH69WuoVCqo1WoAb/ty06ZN+OKLL9CoUSPs3r1bHg0DgBcvXsDW1hbOzs76OhV6z/Tp0+Hm5oa4uDgYGRnJITMtgL7/NzYtaPr5+cHW1hbNmjXDkydP0KtXL9StWxfPnj2Dvb092rRpo58TIiKdYDj5CDMzM9ja2sLNzQ07duyQP01NG2Jes2YNihYtim3btuHp06cA3n4KZ29vj2fPniEgIABmZmYICwuDm5ubfk6EZL/++iuOHz+OP/74A76+vujcuTOmTp0KHx8fAKn9t2bNGhQrVgzbtm2TP40DgKdPn+Lhw4eYMWMGxo4di44dO6JYsWK8+7CebdmyBUWKFMGFCxdw4cIF+Z4VAOSVt4DU+5o4ODhgx44d8go/ab/LLVu2xNOnT7F06VIYGBggMDAQ9vb2ejkfeuvcuXOoWbMmzp8/j7lz58LDwwMXL17E4MGDAby9BO+XX36Bs7MzfvvtN6jVaowZMwaVKlVCt27dMGLECIwaNQrz589H7969tVZRJP0JDg6Gn58ftm7dip07d6Jbt27yDYvT/o5m9DcWSF39smbNmpg7dy7KlSuHqKgoBAYGcqEKooIiT2e45DOXLl0SHTp0EPfu3RPFixcX3t7e8gToXbt2iRo1aog1a9aku59JSEiIKFeunChbtqw4ffq0PkqnD+jatavo0qWL1nP//e9/RbVq1cSJEydEaGioaNmyZbp+ffz4sfjhhx9EuXLlRNWqVcWxY8fyuHL6EA8PD+Hq6iqePn0qhBDiypUr4q+//hJ3796V71GyePFiYWpqKn799dd0v69+fn5CkiRRtWpVERAQkOf1U8aSk5PFpEmTxJdffqk1UX3r1q2iVKlSIiIiQgghxG+//SZcXFzE2rVrhVqt1mpj4cKFYsiQIcLDw0P4+fnlaf30cV5eXqJdu3ZCCCECAgLEmDFjxP/+9z9x/vx5IYQQR48eFdWqVcvwb2y9evWEJEnCzc1N/PXXX3leOxHlLkkIfoSUnJwsf2IDpH7aKkkS7t+/jwEDBuD48eOYNGkSDh8+jE2bNqFcuXIwNjZGYmKivI76u+Lj43HkyBF07tw5L0+DPiCtP+Pj4/HVV1/B1dUVixYtkrdfvnwZ3333nXyHaLVaLX8im0aj0eDKlSt49uwZPDw88voU6CMuX76Mbt26oU+fPrhx4wYCAwNhaWmJly9fonnz5tiyZQuEEIiOjoatrW2642NiYrBx40aMGDEi74unj/rrr79gZmYm3wEcADZs2IAFCxbg3LlzsLKyAgC8fv1a/jfw9neelCHtzu3A27mZgwcPRpkyZWBra4vZs2ejVatWuH79OiIiIvDtt99izJgxSEhIkEdB08TFxWHu3LmoVKkSPD098/xciCj3ffKXdU2bNg29evXCqFGjcOPGDXleCQCcP39evl59wYIFSEpKQr9+/WBqaopDhw5lGEyEEDAzM2Mw0bNff/0VR44cAZB6iUBavxQpUgT+/v5aE+GrVauGzz77DA8fPsSxY8fSBRMg9fKfGjVqMJjo2bx58zBu3DisWrUKSUlJAFL7r0OHDliwYAGMjY2xfft2bNq0CUuWLMG+ffswc+ZMSJIEGxubdO29u5IT6deuXbsQExOj9ZyHh4ccTNLe1L58+RKFChWCpaWlfHnWu8EE4CR3JZk5cyYGDhyIWbNm4eXLl1CpVDAwMEBCQgL27t2LgIAArFq1Chs3bkRQUBB69+6NHTt24PDhwzA1NU13CZ6FhQXmzJnDYEJUgH2y4eT58+do0qQJ9uzZg+rVq+Pw4cP48ssv5bkHQOofw0aNGgEA9uzZgydPnuDq1auYMGEC2rZtm2G7/KOoXwEBAahduzYGDRoEX19fhIeHA3j7xmby5MkICQnBwYMHtY5r164dIiIieKMuhQoNDUXlypWxZcsWhIeHY/LkyfDw8EBAQAAAYPbs2Zg4cSLmzJmDOnXqoFq1aujduze8vb2xZMkSrQ8d3sUbn+qfv78/KlasiM8//xy+vr4f3C+t/06ePIkmTZrwtVbhHj16hNq1a2PHjh2wsLDAzz//jLZt28qrco0ZMwbBwcHYt28fKlSoIPenl5cXYmNj5ddu9jPRp+eT/ct87tw5vHr1CgcOHMD06dNx+fJltGzZEj/99JO8/G9oaCj279+PZs2aYcCAAfD29kb9+vXx6NEj3Lp1S89nQO+LiorC1q1bUadOHcyZMwf+/v7w9/cHkLrqS0pKClxdXTF48GBMmzZNqw/LlSuHuLg4PHnyRE/V08ccOHAANjY2uHTpEnx9fXH9+nX8888/8PHxwa1bt2BtbY1vvvkGpUqV0jquWLFiMDY2xrVr1/RUOX3MjRs3sHLlSrRu3RqDBw/GnDlz5Del71OpVIiPj0dQUJC8GpMkSVwFUaGOHTuGlJQUnDp1CsuWLcOdO3fg7OyMn376CZcvX0b9+vXRu3dvGBoaao1klytXDs+fP//g/wdEVPB9suEkMjISsbGx8uoeJiYmGDZsGKpUqYL//ve/AIAKFSrg1atXqFChAi5evIixY8fC29sb27dvx4kTJ7TW2Sf9Mzc3R9euXTFs2DBMnjwZZcuWxZYtWxAaGgrg7SdwS5cuRXJyMqZPny4H0T///BPFihVDy5Yt9VY/ZSw5ORnXrl2Dg4ODvLqWk5MTpkyZgocPH2L9+vUAAGtr63THnj17Fg0aNEC1atXysmTKJDs7O7Rp0wZeXl5YuHAhNBqN1nyw9506dQoqlQqNGjXC9evX0bJlS9SuXRsRERF5WDVlRlhYGIyMjOSbDFtYWGDChAkwMTHB/PnzAQBTp06FoaEhfv75ZwQHBwMATpw4geLFi6NDhw76Kp2I9OyTDSdJSUlwdHRESEiI/FyFChXw9ddf4/Hjx/jjjz/Qs2dPHD9+HKtXr0bp0qUBAC1atMCGDRvQt29fXhKiMMbGxmjVqhVq1qwJAJgxYwYCAwNx6NAhJCUlQZIkqNVqmJiYYOPGjYiOjoaHhwfatm2Lbt26oXXr1qhQoYKez4LeZ2hoiMTERMTHxyMlJUW+RK9nz56oXbs2zp8/r3UzzIcPHyIsLAwjR47Enj170LdvXwD/fndxynuOjo74+uuv4ebmBisrK8yaNQvLli3Tel0G3vbdlStX4OTkhGnTpqFatWpwdnbGs2fP4OTkpI/y6SMSEhJgaGiIyMhI+blmzZqhffv2uHbtGo4ePYry5ctj7dq1uHbtGlq3bo3OnTujffv2aNy4MSpVqqTH6olIr/SzSFjuS0lJ+ejzDx48EHZ2dmLp0qUiKSlJ3v7gwQPRqVMnMXTo0HRtaDSa3CuYMuVD/fq+tL4aNGiQqF+/vjh79my6fV6+fCn27dsnli5dKq5cuaLTOkk30pYQPX78uFCpVCIoKEgIIeQlY/39/UXZsmXFtm3bhBBC3Lp1S0yYMEE4OTmJhg0bisuXL+ulbsqad3+v69evLzp37pxuWWAhhGjZsqWQJEk0bdpUBAYG5mWJlElpr703btwQkiSJ3bt3a20PDg4W9evXF/PmzZOfCwsLE1u3bhXz5s3jazERFcylhF+/fg1LS0v5Mh7xzrKS7y4bPHLkSOzfvx979uxBjRo15ON79OgBY2NjeQlSTshThsz267uPw8PD0bhxY/Tu3RuTJ0+GtbU17ty5g7Jly+rlHCi9+Ph4mJmZZbgtrR8TEhLQtm1bGBkZ4ciRI1p9X7ZsWfTt2xfTpk1DfHy8vMpeq1at8vI0KAOZ6ds0aX166tQptGjRAnv27EGnTp2g0Wjw6tUr2NvbY/PmzbC0tORqiAqR0d/Hd/u1V69euHPnDg4fPowiRYrI+zRo0AD16tWDj48P/8YSUToF6roktVqNYcOGoX379vj888/x22+/AUida5CcnAwA8hudoKAg/Pjjj9BoNFi2bJnWncAByPdD4Ium/mW2X9Vqtbx6k6GhITQaDYoWLYqhQ4fijz/+wJo1a9CmTRsMGDAAcXFxejsfSqVWqzF8+HB0794dffv2xblz5+TLd9KWCU7rx+joaHh7e+PEiRNYuXKlvN8///wDCwsLFC5cGABgZmaGFi1aMJjoWWb7Njk5Gc+ePQPw9rW2adOm+PLLL+Ht7Q0/Pz906NABPj4+SE5ORp8+fRhM9EitVmPhwoXYvXs3AO2/j2mXWxoaGiIpKQl37tzBwoULcfPmTSxZsgTR0dEAUsOLiYkJChUqlK4NIiKgAIWTe/fuoW7durh58yYmTZoEGxsb/PDDDxg6dCgAyJ/k+Pj4wMHBAZs3b4aBgQGWLl2KK1euoGPHjli7di3Gjh2LkydP4vPPP9fn6dD/y0q/Fi5cGAcOHEB8fDyAt8vE9unTB6GhoZg4cSIsLS2xa9cueZIm6UdERATq16+Py5cvo1OnTrh8+TKGDRuGBQsWAEidPwSk9qu5uTkOHTqE5s2bY/r06Zg+fTqGDh2KU6dOYdasWXj9+jXc3d31eTr0jqz0raWlJQ4ePJhuPpCXlxcuXbokr8o1fvx4rVEWynsHDx5E9erVMWnSJOzcuRNPnz4F8HY+UNpiFT4+PihUqBB27dqFEiVK4Mcff8S2bdvQu3dv7Nu3D5MmTcLt27fRsWNHvZ0LESmcPq4lyw3Lli0TLVq0EHFxcUKI1GuYV6xYISRJEjt37hQajUZ8++23olChQmLjxo1a80dCQkKEp6en8PDwEA0bNsxwfgLpR1b79f05Kdu3bxeSJIm6deuKS5cu6eMUKAM7duwQlStXFo8fPxZCCBEVFSVmzJghTE1NxdWrV4UQQvTu3Vs4OzuLDRs2aPWrj4+PaNq0qahataqoXr26OH/+vF7OgTKWlb797bfftPo2OTlZbNiwQRgZGYn69evzd1YhYmNjxaBBg8To0aPFvHnzRJ06dcSKFSu09klMTBTDhg0TDg4O4vfff9f6G/vHH3+I9u3bi4YNG4o6deqIc+fO5fUpEFE+UmDmnIwbNw4XL17EqVOn5GtYV6xYAS8vL9SoUQNHjx6FRqOBiYmJvOSoeO9a15iYmAyXIyX9yU6/vuvixYu4dOkShgwZoofq6X0pKSlQqVRYuXIlZs2apXVfmYiICHz11VdQq9U4ceIEzp8/Dzc3N7lf045N+/eDBw/S3deE9CcnfZvmzZs3+OWXX2BmZsbfWQURQuDs2bMoXLgwKlSogM8//xxJSUmYPXu2vEy3EAJ37tyBo6Njhr+zAPDs2TN5+X4iog/Jl5d1XbhwAQC07jNiZWUFU1NT/Pnnn3LgCAgIgLe3N65fv44//vgD9vb2WpfzvH+tK4OJfumqX99Vp04dvsnRsx07duDo0aMIDw+X36gYGBjAyckJp06dkvdzcnLC5MmTcfbsWRw+fBj169eHpaWlvP3dNzkqlYrBRAF01bdpzM3NMWbMGP7O6tm7/Qqk/q1s1KiRvNT60KFD8fjxY+zevVu+rEuSJJQrV07r7+j7y+0zmBBRZuSrcLJnzx4UK1YM7dq1Q1hYGFQqlTy58ssvv4SVlRX69OmDL774AlZWVrh9+zYGDhyIbt26YceOHQDeXhdLysF+LZh+//13ODo64n//+x/69OmDnj17YufOnQBSQ2NCQgLOnDkj9zUAVKlSBe3atcPGjRsBpH9zQ8rAvi2YMurXtMnvKSkpchBp06YNGjZsiOPHj+PYsWMAeB8hItKdfPPXYdOmTZg7dy6aNWuGSpUq4YcffgCQOrlSCAE3Nzf8+OOPWLJkCYoUKYKNGzfi/PnzcHZ2RkJCAlxdXfV7ApQh9mvBk5ycjB9//BHz5s3D3LlzcerUKezZswdlypTB2rVrER8fj5o1a6JJkybYtWsXzpw5Ix/r6OgIIyMjhk2FYt8WTB/r119++QWJiYlQqVSQJEke2R41ahQSEhKwd+9exMXFQQiBW7duAXi7chcRUXYoPpykvciVLVsW7u7umD9/Pjp37gx/f3/4+/tr7ePi4oKvv/4ay5YtQ5cuXQCkXuv86NEjlClTRi/1U8bYrwVXXFwcnj9/jn79+uHrr7+GsbExGjVqhEqVKiEmJkb+NN3b2xtqtRqrV6/Wmp8QHx8vLzNKysK+LZj+rV/TlmwHUke8hBCoWLEiunXrhosXL2LWrFmoW7cuPD09odFoGECJKGf0MQs/M27dupVu5aW0OwZfvXpVdO7cWbRv317e9v6+YWFh4vHjx8LT01PUrFlTPHjwIPeLpn/Ffi2Y3u/XoKAg+e7uaav2bNq0SdSoUUMkJibK+23fvl00bdpUlCxZUixatEj85z//EQ4ODuLUqVN5ewL0Qezbgim7/fru9r///lsYGRkJSZLEkCFD0u1HRJQdihs52bZtG0qVKoVOnTqhQYMG+PXXX+VtaZ/GVK5cGV27dkVYWBjWrVsHQPt61/j4eKxZswbVqlXDw4cPsX37dpQoUSJvT4S0sF8Lpvf7de3atQCAGjVqwMDAQGu1ngMHDqBGjRowNjaWP2H//PPPsWXLFnh4eODUqVN4+fIlTp48iSZNmujtnCgV+7Zgym6/vj96snLlStSrVw8tW7bEnTt3sGrVKvkeNkREOaLvdPSuw4cPC1dXV7F8+XJx6NAhMX78eGFkZCRWr14t3rx5I4R4+yn748ePxcCBA0XdunXF69evhRBCJCUlyW0FBweLEydO5P1JUDrs14LpY/0aHx8vhEgd+UpJSRHx8fGiWrVq4vfff/9ge2nHkP6xbwsmXfZrSEiI2Lp1a16WT0SfCEWEk7ShZW9vb1G7dm2tN6MjRowQderUEbt27Up33P79+0WdOnXE9OnTRUhIiOjYsaN4+PBhntVNH8d+LZiy069PnjwRrq6u4tatW0KI1EtKxo0bl3dFU6awbwsm9isR5SeKuKwr7f4V169fR5kyZWBkZAS1Wg0AmD17NkxNTbF3715EREQAeDtRumXLlqhXrx5mzpyJ2rVrQ61Ww8HBQT8nQemwXwumrPYrABw9ehQuLi4oWrQoxowZg0qVKuHBgwdQq9VcglRB2LcFE/uViPITvYSTI0eOYPTo0Vi6dKl84z0AcHd3x8GDB6HRaOQXz0KFCqFv3744e/YsQkNDAaTOUYiLi8Pq1auxatUqNG/eHJcuXcKhQ4dgYmKij1MisF8Lquz2682bNwGkzhvav38/rl69CldXV/j5+eHs2bPYuXMnjIyM0t0MlfIO+7ZgYr8SUb6Wl8M0T58+FR07dhQODg7C09NTVK1aVdjY2Ijz588LIYQIDQ0VxYoVE1OnThVCCK2VP5ycnMSSJUvkx9euXRP169cXv/32W16eAmWA/Vow6apf4+LiRMeOHUXx4sWFr69vnp8Hpce+LZjYr0RUEORZOImLixP9+vUTvXv3Fvfu3ZOfr1evnujfv78QQoiYmBgxe/ZsYWZmJs8xSLtWtnnz5mLQoEF5VS5lEvu1YNJ1v168eDEPq6ePYd8WTOxXIioo8uyyLnNzc5iYmKB///4oVaqUvCxh+/btcePGDQghYGVlhT59+qBWrVro1asXHjx4AEmS8PDhQ0RGRqJr1655VS5lEvu1YNJ1v9auXVtPZ0LvY98WTOxXIiooJCHybmabWq2GkZERAMhrqXt6esLCwgKrV6+W93vy5AlatGiB5ORk1KlTB2fOnEHFihWxefNmODo65lW5lEns14KJ/VpwsW8LJvYrERUEeRpOMtKkSRMMHjwY/fr1Q0pKCoDUGzzduXMHgYGBOH/+PKpXr45+/frps0zKIvZrwcR+LbjYtwUT+5WI8hu9hpN79+6hUaNGOHDggDyEnJSUxLvM5nPs14KJ/VpwsW8LJvYrEeVHellKOC0PnT59GpaWlvKLpre3N8aMGYPIyEh9lEU5xH4tmNivBRf7tmBivxJRfmaoj2+atkb6hQsX0KNHDxw5cgRDhgzBmzdv8Pvvv/OGe/kU+7VgYr8WXOzbgon9SkT5md4u60pISEDVqlVx9+5dGBsbw9vbG998840+SiEdYr8WTOzXgot9WzCxX4kov9LrnJM2bdqgXLlyWLx4MUxNTfVVBukY+7VgYr8WXOzbgon9SkT5kV7DiUajgYGBgb6+PeUS9mvBxH4tuNi3BRP7lYjyI70vJUxERERERAToabUuIiIiIiKi9zGcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBH9i/79+0OSJEiSBCMjIzg6OqJNmzb49ddfkZKSkul21q9fD1tb29wrlIiIKJ9jOCEiyoS2bdsiPDwcYWFhOHjwIFq2bIkxY8agY8eOSE5O1nd5REREBQLDCRFRJpiYmMDJyQnFihVDrVq18N1332Hv3r04ePAg1q9fDwBYvHgxqlatCgsLC7i4uGDEiBGIjY0FAPj7++Prr79GdHS0PAozY8YMAEBiYiImTpyIYsWKwcLCAvXr14e/v79+TpSIiEiPGE6IiLKpVatWqF69Onbt2gUAUKlU8PHxwbVr17BhwwYcO3YMkyZNAgA0atQIS5cuhbW1NcLDwxEeHo6JEycCAEaOHImzZ8/C19cXly9fRs+ePdG2bVvcvn1bb+dGRESkD5IQQui7CCIiJevfvz+ioqKwZ8+edNu++OILXL58GdevX0+3bceOHRg2bBhevHgBIHXOydixYxEVFSXv8/DhQ5QuXRoPHz6Es7Oz/Hzr1q1Rr149zJ07V+fnQ0REpFSG+i6AiCg/E0JAkiQAwNGjRzFv3jzcvHkTMTExSE5ORkJCAt68eQNzc/MMj79y5Qo0Gg3Kly+v9XxiYiIKFy6c6/UTEREpCcMJEVEO3LhxA6VKlUJYWBg6duyI4cOHY86cObCzs8Pp06cxcOBAJCUlfTCcxMbGwsDAAIGBgTAwMNDaZmlpmRenQEREpBgMJ0RE2XTs2DFcuXIF48aNQ2BgIFJSUrBo0SKoVKnT+bZt26a1v7GxMTQajdZzNWvWhEajQWRkJJo2bZpntRMRESkRwwkRUSYkJiYiIiICGo0Gz549w6FDhzBv3jx07NgRffv2xdWrV6FWq/HTTz+hU6dOCAgIwMqVK7XacHV1RWxsLPz8/FC9enWYm5ujfPny8PT0RN++fbFo0SLUrFkTz58/h5+fH6pVq4YOHTro6YyJiIjyHlfrIiLKhEOHDqFo0aJwdXVF27Ztcfz4cfj4+GDv3r0wMDBA9erVsXjxYsyfPx9VqlTBpk2bMG/ePK02GjVqhGHDhqF3796wt7fHggULAADr1q1D3759MWHCBFSoUAFdu3bF33//jRIlSujjVImIiPSGq3UREREREZEicOSEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgU4f8A1FqKMyxFD2cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -411,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -491,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -511,12 +511,12 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6G0lEQVR4nO2deXgUVdbG386ekBAMEMIelB0EQUAFBFQE3FkEHPhAVBSVZUbcxhkVcBnEURkVt9ExiIII4oKIKMriArIJCopssgkBDGBCEiAkXd8fl5O6Xenqrqqu7upKzu958lTSqa6urq6+971n9SiKooBhGIZhGMalxDh9AgzDMAzDMKHAYoZhGIZhGFfDYoZhGIZhGFfDYoZhGIZhGFfDYoZhGIZhGFfDYoZhGIZhGFfDYoZhGIZhGFcT5/QJhBuv14uDBw8iLS0NHo/H6dNhGIZhGMYAiqLgxIkTqFevHmJiAtteKr2YOXjwIBo2bOj0aTAMwzAMY4H9+/ejQYMGAfep9GImLS0NgLgY1atXd/hsGIZhGIYxQkFBARo2bFg+jwei0osZci1Vr16dxQzDMAzDuAwjISIcAMwwDMMwjKthMcMwDMMwjKthMcMwDMMwjKup9DEzRikrK8OZM2ecPg3GAeLj4xEbG+v0aTAMwzAWqfJiRlEUHDp0CH/++afTp8I4SI0aNZCVlcW1iBiGYVxIlRczJGQyMzORkpLCk1kVQ1EUFBcX48iRIwCAunXrOnxGDMMwjFmqtJgpKysrFzI1a9Z0+nQYh0hOTgYAHDlyBJmZmexyYhiGcRlVOgCYYmRSUlIcPhPGaege4LgphmEY91GlxQzBriWG7wGGYRj3wmKGYRiGYRhXw2KGYRiGYRhXw2KGCYlRo0ahf//+Tp8GwzAMU4Wp0tlMVZHJkyfjo48+wqZNm2w53vPPPw9FUWw5FhMZSkuBwkKgRg2nz4RhGMYe2DLD+MVoVk96ejpq8KzoKrKygIwM4OBBp8+EYRjGHljMaFAUoKgo8j9mjBuzZs1CzZo1cfr0aZ/HBw0ahJEjR+o+b+bMmZgyZQp+/PFHeDweeDwezJw5E4DI5nn11Vdxww03oFq1anjiiSdQVlaG2267DU2aNEFycjJatGiB559/3ueYWjdTr169MGHCBDzwwAPIyMhAVlYWJk+ebPzNMWHn6FFxv61c6fSZMAzD2AO7mTQUFwOpqZF/3cJCoFo1Y/sOHjwYEyZMwMKFCzF48GAAQF5eHhYtWoQlS5boPm/o0KHYsmULlixZgi+//BKAsKwQkyZNwtSpUzF9+nTExsbC6/WiQYMGmDdvHmrVqoVVq1bhjjvuQN26dTFkyBDd13nrrbcwceJErFmzBqtXr8aoUaPQrVs3XHnllcbeIBMRzhY9ZhiGcT0sZlxIcnIyhg0bhpycnHIxM3v2bDRo0AC9evUK+LzU1FTExcUhKyurwv+HDRuGW2+91eexKVOmlP/epEkTrFq1CvPmzQsoZtq1a4dJkyYBAJo1a4YZM2bgq6++YjETBZSUqL/n5Tl3HgzDMHbCYkZDSoqwkjjxuma4/fbb0blzZxw4cAD169dHTk4ORo0aFVLxt06dOlV47NVXX8Ubb7yBvXv34uTJkygpKcEFF1wQ8Djt2rXz+btu3brlvY8YZykoUH8/etS582AYhrETFjMaPB7j7h4n6dChA9q3b49Zs2ahb9++2Lx5Mz755JOQjllN88bnzZuHe+65B88++ywuueQSpKWl4d///jfWrFkT8Djx8fE+f3s8Hni93pDOjbGH/Hz19+PHnTsPhmEYO2Ex42JGjx6N6dOn48CBA+jduzcaNmwY9DkJCQkoKyszdPxvvvkGXbt2xd13313+2K5duyyfL+M8soD580/HToNhGMZWOJvJxQwfPhwHDhzA66+/XiHWRY/s7Gzs3r0bmzZtQl5eXoWMKJmmTZti/fr1+Pzzz7F9+3Y88sgjWLdunV2nzziA7GaSf2cYhnEzLGZcTPXq1TFo0CCkpqYarsI7aNAg9OvXD5dddhlq166Nd999V3ffO++8EwMHDsTQoUNx0UUX4ejRoz5WGsZ9nDih/u5EbBjDMEw48CiVvHxrQUEB0tPTkZ+fj+rVq/v879SpU9i9ezeaNGmCpKQkh84wNK688kq0atUKL7zwgtOn4moqw71ghHfeAUaMEL+fdx6wc6ez58MwDKNHoPlbC8fMuJRjx47hiy++wLJlyzBjxgynT4dxCbJlprjYufNgGIaxExYzLqVjx444fvw4pk2bhhYtWpQ/3qZNG+zdu9fvc1577TUMHz48UqfIRCGymDl1yrnzYBiGsRMWMy5lz549fh9fvHixbl+lOnXqhPGMGDcgx8nIBfQYhmHcDIuZSkbjxo2dPgUmiikqUn832EuUYRgm6uFsJoapQshxMqWlzp0HwzCMnbCYYZgqhCxmuCgzwzCVBRYzDFOFkN1MAMfNMO7B6wX++1/g0CGnz4SJRljMMEwV4uRJ3795YmDcwhNPAGPGAL16OX0mTDTCYoZhqhDadOzcXGfOg2HMQv1tjxxx9jyY6ITFDBMSo0aNMtxKgXEerZhhy4y9rFsH3HQTT7jh4PBhseUsPMYfnJpdxZg8eTI++ugjbNq0yZbjPf/886jkHTEqFdq+ojRBMPYwciTw669AUhIwc6bTZ1O5yMsTW87CY/zBYobxy5kzZxAfHx90v/T09AicDWMXWsvMH384cx6VlT//FFu2eNkPdXkvK3P2PJjohN1MGhRFZHxE+seMcWPWrFmoWbMmTmuW2YMGDcLIkSN1nzdz5kxMmTIFP/74IzweDzweD2aeXT56PB68+uqruOGGG1CtWjU88cQTKCsrw2233YYmTZogOTkZLVq0wPPPP+9zTK2bqVevXpgwYQIeeOABZGRkICsrC5MnTzb+5piwos1eOnrUmfOorJALhPte2Q9dUxYzjD/YMqOhuBhITY386xYWAtWqGdt38ODBmDBhAhYuXIjBgwcDAPLy8rBo0SIsWbJE93lDhw7Fli1bsGTJEnz55ZcAfC0rkyZNwtSpUzF9+nTExsbC6/WiQYMGmDdvHmrVqoVVq1bhjjvuQN26dTFkyBDd13nrrbcwceJErFmzBqtXr8aoUaPQrVs3XHnllcbeIBM2tGLm2DFnzqOyQi4QFjP2Q/cue7UZf7CYcSHJyckYNmwYcnJyysXM7Nmz0aBBA/QKkLeYnJyM1NRUxMXFISsrq8L/hw0bhltvvdXnsSlTppT/3qRJE6xatQrz5s0LKGbatWuHSZMmAQCaNWuGGTNm4KuvvmIxEwVoxQy5RRh7IDHDTTztpbBQFTEsZhh/sJjRkJLi24wvkq9rhttvvx2dO3fGgQMHUL9+feTk5GDUqFHweDyWz6FTp04VHnv11VfxxhtvYO/evTh58iRKSkpwwQUXBDxOu3btfP6uW7cujnB6R1SgDZ6kOATGHuj6agOtmdDYutX371OnRJA1wxAsZjR4PMbdPU7SoUMHtG/fHrNmzULfvn2xefNmfPLJJyEds5rmjc+bNw/33HMPnn32WVxyySVIS0vDv//9b6yhgg86aAOHPR4PvFw7PyqgmI7YWBF7wGLGXug2ZzFjL1oxc+wYUK+eM+fCRCcsZlzM6NGjMX36dBw4cAC9e/dGw4YNgz4nISEBZQYj6L755ht07doVd999d/lju3btsny+jPOQ5SAxUcR1aNsbMKFBXy0WM/ayc6fv3yxmGC2czeRihg8fjgMHDuD111+vEOuiR3Z2Nnbv3o1NmzYhLy+vQkaUTNOmTbF+/Xp8/vnn2L59Ox555BGsW7fOrtNnHIAmWzLCsZixF4rn4MJu9rJ3r+/fHLjOaGEx42KqV6+OQYMGITU11XAV3kGDBqFfv3647LLLULt2bbz77ru6+955550YOHAghg4diosuughHjx71sdIw7oPEDCWxcaCqvbCYCQ8HDvj+ffy4M+fBRC8epZKXby0oKEB6ejry8/NRvXp1n/+dOnUKu3fvRpMmTZDk0miyK6+8Eq1atcILL7zg9Km4mspwLxghPl64mrp0AdauBdLSOG7GLrxeEYsEiOBUbVNPxjrt2gGbN6t/z5wJ3HyzY6fDRIhA87cWRy0zU6dORefOnZGWlobMzEz0798f27Zt89mHMnTkn4svvtihM44ejh07hrlz52LZsmUYO3as06fDuAQKUM3MFFu2INiHnAXJhd3sRetW4pICjBZHxczKlSsxduxYfP/991i6dClKS0vRp08fFGkc+f369UNubm75z+LFix064+ihY8eOGDNmDKZNm4YWLVqUP96mTRukpqb6/Zk9e7aDZ8xEAyRm6tcXWxYz9iG7Pjh5z1601kMWM4wWR7OZtNVqc3JykJmZiQ0bNqBHjx7ljycmJvot8uaP06dP+wS1FlRSG/qePXv8Pr548WKc0Zmh6tSpE8YzYtwEJb7xpGsfLGbCh9ZlZ+uw/swzQE4OcN99wC232HhgJpJEVWp2fn4+ACAjI8Pn8RUrViAzMxM1atRAz5498eSTTyKT7OQapk6d6lO1tqrRuHFjp0+BiVLkCfbcc8VWUcTjMZwKEDLyBFu5IxEjD5UUiIsTv584YePBjx4FfvkF+P57FjMuJmqGMEVRMHHiRHTv3h1t27Ytf/yqq67C7NmzsWzZMjz77LNYt24dLr/8ct2U4oceegj5+fnlP/v374/UW2CYqEaebCXPJJvsbUJ7HbXVlhlryB3IKQbU1irtXbqI7dq1Nh6UiTRRY5kZN24cfvrpJ3z77bc+jw8dOrT897Zt26JTp05o3LgxPv30UwwcOLDCcRITE5GYmBj282UYtyG7QZo2VX8/eBDQGEMZC/iL66hVy5FTqVT8/LP6e3q6CAa2tT4SiZnNm0UlSbO9ZZioICosM+PHj8fChQuxfPlyNGjQIOC+devWRePGjbFjx44InR3DVA7OenEB+HaGz82N/LlURrRihmuh2MP27WIbFycqVwM2i5n69UU54bIyYONGGw/MRBJHxYyiKBg3bhw++OADLFu2DE2aNAn6nKNHj2L//v2oW7duBM6QYSoP8mQbE6PGyRw+7Mz5VDa0rg+uUmsPv/0mtsnJ4gcQBhRbYVeT63FUzIwdOxbvvPMO5syZg7S0NBw6dAiHDh3CybOh64WFhbjvvvuwevVq7NmzBytWrMB1112HWrVqYcCAAU6eOsO4DhIz1Fg97qyTmRua24M2KJXFjD1QK4Pq1VUxY3tBQhYzrsdRMfPKK68gPz8fvXr1Qt26dct/3nvvPQBAbGwsNm/ejBtuuAHNmzfHzTffjObNm2P16tVIS0tz8tSjlj179sDj8WDTpk0ARCaYx+PBn1Ea5Rnt51eZoMmWxAw1N8/Lc+Z8Khtaywzf0vZAbtCMDDWchcUMo8XRAOBgnRSSk5Px+eefR+hsKiddu3ZFbm4u0qkZT5hYsWIFLrvsMhw/fhw1atQI62sx1iDLDLmXEhNF7AHHdtiDVsxU0hJXEeePP8Q2M1NtkGp7T7FOncT2t9+EuufIbdcRFQHATPhISEhAVlYWPLQcZ6osNNlS/yAy2bOYsQdtHIcccM1Yh+7P+vVVMVNSYvOLpKer9QrWrbP54EwkYDGjQ1GR/o92VRBoX6051N8+VvB6vZg2bRqaNm2KxMRENGrUCE8++WSF/bRunJkzZ6JGjRpYtGgRWrRogZSUFNx4440oKirCW2+9hezsbJxzzjkYP348yqQGM++88w46deqEtLQ0ZGVlYdiwYThyNthiz549uOyyywAA55xzDjweD0aNGgVAVGSeMGECMjMzkZSUhO7du2NdkMFiwYIFaNOmDRITE5GdnY1nn33W5/+5ubm45pprkJycjCZNmmDOnDnIzs7Gf/7zHwDArbfeimuvvdbnOaWlpcjKysKbb75p+BpXNrRihkz27A6xBxYz4YHu28aNRWNUIAxiBmBXk8uJmjoz0Yacuqrl6quBTz9V/87M1I+u79kTWLFC/Ts7u2KMgpVqoQ899BBef/11TJ8+Hd27d0dubi5+/fVXQ88tLi7GCy+8gLlz5+LEiRMYOHAgBg4ciBo1amDx4sX47bffMGjQIHTv3r28zk9JSQkef/xxtGjRAkeOHME999yDUaNGYfHixWjYsCEWLFiAQYMGYdu2bahevTqSzy77H3jgASxYsABvvfUWGjdujKeffhp9+/bFzp07K1R6BoANGzZgyJAhmDx5MoYOHYpVq1bh7rvvRs2aNcsF0siRI5GXl4cVK1YgPj4eEydOLBdWADB69Gj06NEDubm55VlvixcvRmFhIYYMGWL+YlcSSDiTmKFVLrtD7EE7Btha2K0KQ/VRmzZVF5Jh6SnWpQvw9tssZtyKUsnJz89XACj5+fkV/nfy5Enll19+UU6ePFnhf0Ji+P+5+mrffVNS9Pft2dN331q1Ku5jloKCAiUxMVF5/fXXK/xv9+7dCgBl48aNiqIoyvLlyxUAyvHjxxVFUZScnBwFgLJz587y54wZM0ZJSUlRTpw4Uf5Y3759lTFjxuiew9q1axUA5c/Rvo6iKEphYaESHx+vzJ49u/yxkpISpV69esrTTz/t93nDhg1TrrzySp/Xuv/++5XWrVsriqIoW7duVQAo69atK///jh07FADK9OnTyx9r3bq1Mm3atPK/+/fvr4waNUr3/QS6FyoLd98t7reMDPH3pZeKv88/39nzqizQ9aSfW25x+ozcz5kz6vX8/ntFefxx8XtychhebM0acfBatRTF6w3DCzBmCTR/a2E3kw6Fhfo/Cxb47nvkiP6+n33mu++ePRX3McvWrVtx+vRpXHHFFZbeW0pKCs4777zyv+vUqYPs7GykSuaoOnXq+Fg7Nm7ciBtuuAGNGzdGWloaevXqBQDYt2+f7uvs2rULZ86cQbdu3cofi4+PR5cuXbB161bd9ybvDwDdunXDjh07UFZWhm3btiEuLg4dO3Ys/3/Tpk1xzjnn+Dxn9OjRyMnJAQAcOXIEn376KW699Vbdc60KkGWGUrLJZG9rAbIqjNb9zJaZ0Nm9W/29VSsR2gKI+na20769SPHLyxMDNeMqWMzoUK2a/k9SkvF9Kcgy0L5mSdYe1CTxlJN7Fo/H4/cx79nOhEVFRejTpw9SU1PxzjvvYN26dfjwww8BCPeTHspZ/5k2+FhRFN2AZH//o+Nof9fbBxCuqN9++w2rV6/GO++8g+zsbFx66aW651oVIDcIfdSUdGZ7AbIqilbM8HUNnV9+EVuPR9SZCauYSUwELrhA/M6uJtfBYsaFNGvWDMnJyfjqq68i8nq//vor8vLy8NRTT+HSSy9Fy5Ytfaw2gMiaAuATNNy0aVMkJCT49Ns6c+YM1q9fj1atWvl9rdatW1foz7Vq1So0b94csbGxaNmyJUpLS7FRKju+c+fOCnVqatasif79+yMnJwc5OTm4hbvhlgejn/2oyvsx2Z7mWkXR9r5lMRM61MqA7lkS4HIHeFvhIGDXwgHALiQpKQkPPvggHnjgASQkJKBbt274448/8PPPP1t2PQWiUaNGSEhIwIsvvog777wTW7ZsweOPP+6zT+PGjeHxeLBo0SJcffXVSE5ORmpqKu666y7cf//9yMjIQKNGjfD000+juLgYt912m9/Xuvfee9G5c2c8/vjjGDp0KFavXo0ZM2bg5ZdfBgC0bNkSvXv3xh133IFXXnkF8fHxuPfee5GcnFzBojN69Ghce+21KCsrw80332z7dXEbJFpoYqhZU2zDkhlSBWExYz/kZqLMOxLgVpImDNGlC/DSSyxmXAhbZlzKI488gnvvvRePPvooWrVqhaFDh1awlthF7dq1MXPmTMyfPx+tW7fGU089hWeeecZnn/r162PKlCn4+9//jjp16mDcuHEAgKeeegqDBg3CiBEj0LFjR+zcuROff/55hRgXomPHjpg3bx7mzp2Ltm3b4tFHH8Vjjz1WnskEALNmzUKdOnXQo0cPDBgwALfffjvS0tKQpPH/9e7dG3Xr1kXfvn1Rr149ey+KCyExQ836qC5YWDJDqiB0HUlTs8UrdPbvF9vq1cVWHjZKS8PwgmSZ2bAhTC/AhAuPoheEUEkoKChAeno68vPzUZ2+EWc5deoUdu/ejSZNmlSYCBn38Pvvv6Nhw4b48ssvfSxTxcXFqFevHt58800MHDgw4DGqwr3QqZMYozt3FgvPefOAoUNFReCwxCBUMTIzRbXa+HghbFq0AAxWS2B06NJF1LC78EJg/Xrg0CGAegz/8UcYCvV6vUIxFRQAmzaJoGDGMQLN31rYMsO4jmXLlmHhwoXYvXs3Vq1ahZtuugnZ2dno0aMHAFFQ8ODBg3jkkUeQnp6O66+/3uEzjg7InURaLStLbMMWf1DFIMsMufHYMhM6R4+KbZ06YiuXpqL/2UpMjFD7ALuaXAaLGcZ1nDlzBv/4xz/Qpk0bDBgwALVr1y4voAeIdPH69etj3rx5ePPNNxEXx6FhgBrTQWKGVrgAT7x2QGKG4js4Fil0KK6/YUOxJaEIhLErOQcBuxIe5RnX0bdvX/Tt21f3/9nZ2UGbmFZFaHKlzH5ZzOTmAk2aRP6cKhPkqqtWTbhAWMyEDgVRZ2erj3k8IgA4bD3FWMy4ErbMMEwVQWs5kFt2HDwY+fMhvF7ghx+ce327IDFDtVA4sDp0yJrYrJn6GHV9D7uY2bKFK0q6CBYzDFNF0FpmADXz5tChyJ8PMWyYCPAcPdq5c7ADij2ijBtOhgmN4mI1Bbt1a/VxEjNha+RZr55o0e31AlI9Kya6YTHDMFUEmlzlqtPUdFLb/DSSkFXG7dYZEjNUv4czxEJDzgSTLTMUAhc2ywzAQcAuhMUMw1QRSMyQmwlQWxv88Ufkz4egFbbbLfpkRaDMGxYzoUHt22JiVAEDqL+Htds7x824DhYzDFNF8GeZoeyQsKS5GoREDLVbcDtUn5HFTGjs3Cm2VOSRIAF+4kQYX5zFjOtgMcMwUcrPPwOPPWZf7AW5QeTaU5SmHbY0VwNQkKeb08Pl1gUNGogtJ9SFBjWulgPVAVWAh7UreadOYrt7t7NmS8YwLGYYJkrp1w+YNAmYPt2e45GlQJ4cKBhY06czopBY0/Y2chOyGKSaKAAXJAyFAwfElppLEhERM+npQMuW4vd168L4QoxdsJipYkyePBkXUJt7m5g5cyZqaEccJmQowJFiB0KFJta0NPUxcjmFLTMkCHLcg5tTmeXrJ9fr4WaT1jl8WGy1LQvImhj2GCt2NbkKFjMME6WQxcKuQEdye/gTM2GNPwjA9u3q725OZZYtW5TNBDjrvnM7dO3k4o6AKmbCLhRZzLgKFjNaFEVI/iA/v20uwg/fFOHXDcH3NfRjwsE+a9Ys1KxZE6c1dvlBgwZh5MiRus+bOXMmpkyZgh9//BEejwcejwczZ84EAOTn5+OOO+5AZmYmqlevjssvvxw//vhj+XN//PFHXHbZZUhLS0P16tVx4YUXYv369VixYgVuueUW5Ofnlx9z8uTJpi454x+a3O0yp9MtJsfM0O9hNdkHYNcu9Xc3B8ySZcbj8XXjsZixDon4Ro18HyfXaNgDxmUxwwFQUQ+3M9BSXFwx4swP59r9uoWFvmkmARg8eDAmTJiAhQsXYvDgwQCAvLw8LFq0CEuWLNF93tChQ7FlyxYsWbIEX375JQAgPT0diqLgmmuuQUZGBhYvXoz09HS89tpruOKKK7B9+3ZkZGRg+PDh6NChA1555RXExsZi06ZNiI+PR9euXfGf//wHjz76KLZt2wYASDVw/ZjgkFvIDqEhx27IHkGqVuuUO2TvXvV3N8eXyGImRloispixDomVczWDLZUWCPs9266dCNA5elQEAmtPhIkq2DLjQpKTkzFs2DDk5OSUPzZ79mw0aNAAvXr1Cvi81NRUxMXFISsrC1lZWUhOTsby5cuxefNmzJ8/H506dUKzZs3wzDPPoEaNGnj//fcBiOaNvXv3RsuWLdGsWTMMHjwY7du3R0JCAtLT0+HxeMqPyWLGHmgxaMegLQsi2TJD1WqdyiTav9/3b7f2MyI3HQkZqqzsVCxSZYBiqJo3932cxEzYA8YTEwGKL2RXU9TDlhktKSmGlsIHD4oS8DEx6v0e8uua4Pbbb0fnzp1x4MAB1K9fHzk5ORg1ahQ8NIqaYMOGDSgsLERN2dkP4OTJk9h11g8wceJEjB49Gm+//TZ69+6NwYMH47zzzjP9Wowx5FvQDjEjx3TIlpmMDLF1KpNI2xPqyBE1tdlNkJihisoxMcJt5mSWmJuRK1K3aeP7P1orReSe7dJFCJm1a4GbborACzJWYTGjxeMx5O6JrwF48wHFA8CYd8hWOnTogPbt22PWrFno27cvNm/ejE8++cTSsbxeL+rWrYsVK1ZU+B9lKU2ePBnDhg3Dp59+is8++wyTJk3C3LlzMWDAgBDeBaOHXNrCDquJHEQsG84oU8Qpi8iRI75/HzpUOcRMbKwQM2yZscYvv6i/UxFCgu7fiNyz1NaA07OjHhYzFqFaB07GhY0ePRrTp0/HgQMH0Lt3bzSUC1zokJCQgDJNpGXHjh1x6NAhxMXFITs7W/e5zZs3R/PmzXHPPffgL3/5C3JycjBgwAC/x2RCQ57k7RAz8qQqx3RkZoqtU5lE2pgSrbhxCyRmqNQ+iZqwltyvxFBfprg43/sVULPxIiJmyMe1b18EXowJBY6ZsYhcYtupeXz48OE4cOAAXn/9ddx6662GnpOdnY3du3dj06ZNyMvLw+nTp9G7d29ccskl6N+/Pz7//HPs2bMHq1atwsMPP4z169fj5MmTGDduHFasWIG9e/fiu+++w7p169CqVavyYxYWFuKrr75CXl4eirm4RsjIlhk7Bm2aVLVeSBIzTgXfai0Xbi22Src8iZmIlNyvxFCWG6Vhy5CYiYgAp7zw3FzOaIpyWMxYhCwzgHPxBtWrV8egQYOQmpqK/v37G3rOoEGD0K9fP1x22WWoXbs23n33XXg8HixevBg9evTArbfeiubNm+Omm27Cnj17UKdOHcTGxuLo0aMYOXIkmjdvjiFDhuCqq67ClClTAABdu3bFnXfeiaFDh6J27dp4+umnw/iuqwZyr6RwihkaqxXFGUGjDU9zskdUKFABNxoXWMyEBhlC5JpIBMV8RUTMZGWJ7Zkz7r05qwjsZrKIbPo8fdp0/K5t5ObmYvjw4UjUdmPTITExsTxDSSYtLQ0vvPACXnjhBb/Pe/fddwMe95VXXsErr7xi6ByY4Mjjph2DtjbbhqCxGhBBl2SpiRTaWiFunS9IzJCIoa1T9XvcDgWGU7adDJUTiIhFPDFRBJbl5YmT0pYjZsQAFRtbcaUUYdgyEwL02TkRPHns2DHMnTsXy5Ytw9ixYyN/AkxYoVYGgD1ihiZVrZiRxYs2sygSUPotfZfk9+0myM1ElhlaW4S95H4lhWKn/IlrssxEzJIou5qYijz+uKj3MGmSo6fBYiYEaAB2oqdMx44dMWbMGEybNg0tWrQof7xNmzZITU31+zN79uzInyhjCTml145Bm8QMBaYSsrihXjiRoqREDUOgBEK3pjJTkDaJGBYzoUH3gTaTCVCtNRETM3QSTqh9N7B/vxhgyBzpEOxmCoHYWPGFckLM7Nmzx+/jixcvxhmdE6pTp04Yz4ixEzkw1o64Q5pU4/x84ymNONJiZvdu9feMDDEeujX7h9xlFLBKYibsJfcrKeQWbdy44v+oNhIgxl+ttdF2WMwEhipfGsimDScsZkKAvkTR1O23sb9vP+M6tJN6SYlv0LlZAomZuDghZiKdSbRjh9h6PGqgp1sDZskyQ2ImYv2DKil0Pf3V5ZTFTGGhb0XrsMBupsBEiZhhN1MIkMnezd1+mehEO6mHWn+F3Ez+xAxZh+Wqq5GALDNxcaqbya0Bs5TRSGKGEgJYzJjH61WDe1u2rPh/OQY3IgHjbJnRR1FYzFQGaGLgenGM3Wgn9VCFBk2q/tza5BKJdCYRjYFJSaplxq0xJiRmyCJDYsapnlduRm4+qm1lAPhmjrKYcZg//1Sj3x0u3c1iJgRoYnBzt18mOtHWHQzVBRRIzNAEHOlMogMHxLZaNdVV4FZLBmU00kRLW7c2znSSn38WW4/Ht4+YPyJyz7KbSR9akdSqpQ4kDsFiJgRoYmDLDGM3WjGjLftvFhIJ/soR0RgU6T5CFHBcvboqZtxqyaC4OXKXRbR/UCVj506xDZQcQ/GKEREzZJnJzeWVq5YocTEBLGZCgr5sXOWasRu7i8lpU4dlaOKNdCYRuc4yMtR0W6eqaYcKiRmyyES0f1Al47ffxDZQIVISMxFJ5ecqwPqQmImC7rAsZkIgGppNRoLs7Gz85z//Kf/b4/Hgo48+CumYdhyjMqOd1ENdgZI48pcR5VS8Ck1EmZmqmHHr5E9ihoQhbTk5wDw0PwbKUqJ4xYiImYQENeo4GlxNihI9NxZbZioH8iq3Klkfc3NzcdVVVxnad/LkybjgggtCOkZVRDuphzpoa7NtZGjSiLSYoYytOnXUdNtoGaPNQq5mEoZ0Td36fpyE9ELNmvr7UCZpxFyj0RQEPGiQyFmPhmh5FjOVA1nMRPuKssTGE8zKyjLcCyqcx6jMaCfBUAdt+vj9iRmyikQ6+JZer0EDoHZt8btb48+0Yiai/YMqGeR+DNQnLOKNPKMpCHjJEtGJk4KLnITFjAsoKtL/ORuAQKuDmJNFOH1MZ1/tDOFvHwv06tUL48aNw7hx41CjRg3UrFkTDz/8MJSzPq/s7Gw88cQTGDVqFNLT03H77bcDAFatWoUePXogOTkZDRs2xIQJE1AkncORI0dw3XXXITk5GU2aNPHbAkHrIvr9999x0003ISMjA9WqVUOnTp2wZs0azJw5E1OmTMGPP/4Ij8cDj8eDmTNn+j3G5s2bcfnllyM5ORk1a9bEHXfcgUIpP3nUqFHo378/nnnmGdStWxc1a9bE2LFjdasdux0SMxQbEGo8C4kZfwkHJGYiHXxL1qLsbFXMuNXCSaKF3EtkmWExYx6yQgYKwyB3acTETLRYZkpK1DmFLTM+sJjRIzVV/2fQoPLdPB6gfZ9MpNfX2VfrSsnOrriPRd566y3ExcVhzZo1eOGFFzB9+nS88cYb5f//97//jbZt22LDhg145JFHsHnzZvTt2xcDBw7ETz/9hPfeew/ffvstxo0bV/6cUaNGYc+ePVi2bBnef/99vPzyyzgSoGJbYWEhevbsiYMHD2LhwoX48ccf8cADD8Dr9WLo0KG499570aZNG+Tm5iI3NxdDhw6tcIzi4mL069cP55xzDtatW4f58+fjyy+/9DkvAFi+fDl27dqF5cuX46233sLMmTPLxVFlgyZBsqSEOmgHEjNkzo9k8K3XqwqX884TribCja4Zei9kkSGBWNnj6cIBzdHZ2fr7kJiJWJHFaBEzsonWaTGjKMDvv4vfo0DMcDuDEHGy63nDhg0xffp0eDwetGjRAps3b8b06dPLrTCXX3457rvvvvL9R44ciWHDhuFvf/sbAKBZs2Z44YUX0LNnT7zyyivYt28fPvvsM3z//fe46KKLAAD/+9//0KpVK91zmDNnDv744w+sW7cOGWcDH5o2bVr+/9TUVMTFxSGLMgL8MHv2bJw8eRKzZs1CtbO5rTNmzMB1112HadOmlfeUOuecczBjxgzExsaiZcuWuOaaa/DVV1+Vv9/KhNyAsbg49EFbWwdFhqwikRQRhw6pvzdr5ttf58gR/w0Goxn6vFjMhA7dq82a6e8T8Uae0eJmkoPnnBYzf/whVkAeD1C/vrPnAhYz+gSaPaTWwzExwI9fHEHNmv6bolXogqbTINIKF198MTySmrrkkkvw7LPPouzssr5Tp04++2/YsAE7d+70cR0pigKv14vdu3dj+/btiIuL83ley5YtUSNA5apNmzahQ4cO5ULGClu3bkX79u3LhQwAdOvWDV6vF9u2bSsXM23atEGsdO3r1q2LzZs3W37daEUOb6pRQ4wZoY5bJFSiRcxs367+npnp6146dMh9Yoagr4r8lSkt9d9Gwu0UFNjfF6mkRL0XAqyhyi2W2npMYYMtMxUhF1OdOqE1jrOJSvgVswlpYg1ETAxQmlwNJfEAjDzF4HHtoJrmtbxeL8aMGYMJEyZU2LdRo0bYtm0bAPgIpGAk21D1UVEU3deUH4/XVNHyeDzwujXIIgCyV69WLdGQMdRBm4SKv9uPjGaRtCLs2iW25XFnkuaPdPfuUJHFJ03ucibOsWOBg1ndyJQpwOTJwF/+AsyZY99xf/1V/d1fXyaChp0qJ2aiyTITRS4mgGNmQsbJZpPff/99hb+bNWvmY72Q6dixI37++Wc0bdq0wk9CQgJatWqF0tJSrF+/vvw527Ztw58B8oLbtWuHTZs24ZhOidqEhIRyS5EerVu3xqZNm3wCkb/77jvExMSgefPmAZ9bGZHFDE2KoQbn0v3pL0SLLOhA5CYHWtTJCW1027qtLpl865N7STZUuu39GOHNN8V2zRp7j7t1q9jGxARe7Ee89xV9SQ4dcjZKXbbMREzJ6RBFwb8Ai5mQcbLZ5P79+zFx4kRs27YN7777Ll588UX89a9/1d3/wQcfxOrVqzF27Fhs2rQJO3bswMKFCzF+/HgAQIsWLdCvXz/cfvvtWLNmDTZs2IDRo0cHtL785S9/QVZWFvr374/vvvsOv/32GxYsWIDVq1cDEFlVu3fvxqZNm5CXl4fTfqJMhw8fjqSkJNx8883YsmULli9fjvHjx2PEiBHlLqaqhNyHya4y/9psGxlZzEQqJIAWdfKtRWIm0t27Q0WeX0jEyG6liBR2iyBerzqP2R00vmOH2AbzWkS8K3m0VAGOJstMFFX/BVjMhIyTYmbkyJE4efIkunTpgrFjx2L8+PG44447dPdv164dVq5ciR07duDSSy9Fhw4d8Mgjj6CuNJvl5OSgYcOG6NmzJwYOHIg77rgDmQFs5AkJCfjiiy+QmZmJq6++Gueffz6eeuqpcuvQoEGD0K9fP1x22WWoXbs23n333QrHSElJweeff45jx46hc+fOuPHGG3HFFVdgxowZIVwd90KTeUyMGlAa6qQRSMzIcTSREjP0OnLMBXkR3WbJkOcXWcSQhzTSDTzDzYcfqi5JuysjUEhhMG88/T9iGXgJCWpwmZOupmgUM1FimeGYmRBxsnN2fHw8/vOf/+CVV16p8L89OoHGnTt3xhdffKF7zKysLCxatMjnsREjRvj8rWiCKxo3boz333/f7/ESExP9/k97jPPPPx/Lli3TPS9/Kdhyi4XKBLkt4uJUMRNqzUO6P/UqAcTEiH3kLKNwQtYncssAYr4oKgq9qWak0bO8eDxi0q9sYuadd9Tf7RYzZLEL1i2b7uOI9vKqW1fcuLm5QPv2EXxhiWgMAI4SMcOWmRBxUswwlRNZzNBkH2pMFmlHqlCrhVw8AUoK2QpN8NTyBlDjZyLdvTtU6Hy1iYsRL7kfIVatUn+3cl+2aiWEXmys+MzT0kSAdHY2sHKl2Ee+L/xB93FEa2ZGQxAwW2Z0YctMiFSVZpNM5KDxKj5eXaHaJWb0Vrzx8WJikON1wglVNJbLD1G6rdsmfypo6E/MnDkT+W7k4eTUKV/Ba+W+pIwlr1dYHEtKKlbCaNIk8DGqrJiJFstMWRlw4ID4ncVM5UDOxlCUyBXRW7FiRWReiIk4JGYSE9VsJrssf3p1QRISRHJEpOJVaByW68lQ7E7EStTbhJ6YofiZaBYzM2YIV8299xrbf9Ys379DiRV84gkR+5KbK0T00aPCYpeQADz7bODnOtLIMxoK50WLZebwYXHxY2J8MwgchMVMiMhi5syZqKgdxLgcmvySkuwRM3IGJ8XgaCGrSKTiVSjWoVEj9TEK6oxYiXqboM9LWxEh4s0QTbJ3L3A2kREXXQR07x78OfPmiW1srBAyZu9LOfZryJDAVX4D4Ugjz2iwzESLmCEXU716UVMRkmNmQkT+HCMajMZUWmjyS05WEygA66tQefzTEzOUIh0pFw+9l3PPVR8j14HToQBmIfGlHdNJzESrOHv+efX3xx4z9pwNG8S2RQuxNStm/NXksQKlwDsiZpy0zERLnZkoi5cBWMyEjOxWCjXjhGEAVcykpPiKGatWE3n803MzkVUkEi4R+TXkmogkZiJWO8QmSHxpxUzEmyGaRE5aXLkyuDDJy1OF8eDBYmtWzMiZXcEylgJBz41o4gW5U9gyw2KmskKChsUMYwc0RlWr5ltJ1mqmkSwe9CzClOoaCZeI3JdJHgvJauRWMaPpthH5ZogmKC1VW0oAYuwK1pbgjTfENjYW6NvX2uvq1eQxSwit4KwjW2acSl+NlgDgKGtlALCYsQUK/GMxw9gBTeapqb4DvtXKuEasLWSxiYQVgSbRmBjf90erbbe5a4OJmWgUZ/Pnq/MxGRyeey7wcz76SGyzsys20jSKXdWQZTETMW8Lpd6VljpT2dHrjR4xE2XVfwEWM7ZAYsaJ/kxM5YMmP3K70P1lVczo1UGRIatIJCaG3bvFVjv50wQV0XRbG6BrJicDAA40QzRBTo7YZmUBo0eL33/8MXDbDGpQ37u3b7yLGYGil/llFm0jz4gQH+9sFeATJ3xrgESDmGHLjGDq1Kno3Lkz0tLSkJmZif79+5d3bvbHmDFj4PF4oq7yq5PNJrXs2bMHHo8HmzZtAiBSuD0eT8BmkU4S7efnBGSZIIFBA7/VQZsmkEBlA0hIRKJxH5Wn0Lb8cquYoWumzWSk9xeNlhnqUXvZZcDf/y7uDa8XeOYZ//vv3q2Ksjvu8LXMmKlwTFbCUMWMHPsV0YrRTmY0aaPzi4qcK3DGYsaXlStXYuzYsfj++++xdOlSlJaWok+fPj7dk4mPPvoIa9asQT25MEWUQKbyaBAzWrp27Yrc3Fyk66Wx2ASLEvsgdyVNGHR/WR20yXWk00wdgCokIuHioXlA21qBqr460ecsFEisUHo7QWIm2txmu3erAnfsWBFo3rat+Pt///P/nFdfFduEBKBjR9/3auYrr5fGbhZZDEVUzDhZa4YuNF18RYlg23CJ0lL1/bOYESxZsgSjRo1CmzZt0L59e+Tk5GDfvn3YQPl/Zzlw4ADGjRuH2bNnI15rm44CnGw2GYyEhARkZWXBE6lqfkzIkGVCK2aspk0bETNkto+EVYQCmbXZLNTP1G2tQWg+0bqZIt4M0SAvvCC2iYlAt27i97/+VWz37PHfn+uzz8SWUrJlzGTAkYgKVcwADjXyjAbLjLygd8LVdPCg+JLGxwN16kT+9XWIqpiZ/LMfVoYU3eX1ejFixAjcf//9aNOmTdBjnD59GgUFBT4/Vigq0v/RiuGSErE687ev1sTsbx8reL1eTJs2DU2bNkViYiIaNWqEJ598ssJ+WovJzJkzUaNGDSxatAgtWrRASkoKbrzxRhQVFeGtt95CdnY2zjnnHIwfPx5lkjp755130KlTJ6SlpSErKwvDhg3DkbOz0p49e3DZZZcBAM455xx4PB6MGjUKgPg8JkyYgMzMTCQlJaF79+5Yt25dwPe2YMECtGnTBomJicjOzsazmnKgubm5uOaaa5CcnIwmTZpgzpw5yM7OLnc/3nrrrbj22mt9nlNaWoqsrCy8+eabhq+xU5CFj74G5L6wavQyImYoFCAS1kWKnZTjHgDfcTEarZx60HigdZtFq5j55BOxJWsMANxyixrDNGVKxeeQ9/+qq9THSEyYuS/1avJYgawzETUGOylm6I3WrKkqZycCssjFVL9+6P5CG4maM1EUBRMnTkT37t3RVvqWTZs2DXFxcZgwYYKh40ydOhXp6enlPw0tmsFSU/V/Bg3y3bdTJ6BHD6Br14r7yl9+QGQCaPexwkMPPYRp06bhkUcewS+//II5c+agjkGVXFxcjBdeeAFz587FkiVLsGLFCgwcOBCLFy/G4sWL8fbbb+O///2vT7frkpISPP744/jxxx/x0UcfYffu3eWCpWHDhliwYAEAYNu2bcjNzcXzZytyPfDAA1iwYAHeeust/PDDD2jatCn69u2LYzq24Q0bNmDIkCG46aabsHnzZkyePBmPPPKIT9fskSNH4uDBg1ixYgUWLFiA//73v+XCCgBGjx6NJUuWIFcyBS9evBiFhYUYMmSIoWvkJKQhabKncctqDRgjEwjdOpGwLtL7IEsMIf9tNdjZCcgtqBUzjvQPCkJpqRqA/Ze/qI/HxKhWmvnzfZ+zfr36Hu+80/c5gLn70k4xE6rF0hLR4GaqUUNVyk5YZqIwXgYAoEQJd999t9K4cWNl//795Y+tX79eqVOnjnLgwIHyxxo3bqxMnz5d9zinTp1S8vPzy3/279+vAFDy8/Mr7Hvy5Enll19+UU6ePFnhf8Ih6f/n6qt9901J0d+3Z0/ffWvVqriPWQoKCpTExETl9ddfr/C/3bt3KwCUjRs3KoqiKMuXL1cAKMePH1cURVFycnIUAMrOnTvLnzNmzBglJSVFOXHiRPljffv2VcaMGaN7DmvXrlUAlD9H+zqKoiiFhYVKfHy8Mnv27PLHSkpKlHr16ilPP/203+cNGzZMufLKK31e6/7771dat26tKIqibN26VQGgrFu3rvz/O3bsUAD43BetW7dWpk2bVv53//79lVGjRum+n0D3QqSh++Krr8TfTZqIv6+91trxRo8Wz69VS3+fH39UX7eszNrrGCU9XbzOhAm+j5eVqedw9vZ1BQ0binMeNMj38fvuE49Xr+7MefnjnXfUayx93RVFUZQvv/R//ceMEY+lpPjun5AgHn/hBeOvP2KEeE5WluW3UA6Nu5MmhX4sw3z4oXjRLl0i+KJnefFF8do33qgoDRqI36VxMGI8/bR47WHDwv5S+fn5uvO3lqiwzIwfPx4LFy7E8uXL0UDKW//mm29w5MgRNGrUCHFxcYiLi8PevXtx7733Ijs72++xEhMTUb16dZ8fKxQW6v+cNUKUs3Mn8PXX4ke7L/maiT17Ku5jlq1bt+L06dO44oorLL23lJQUnHfeeeV/16lTB9nZ2UiVzER16tTxsXZs3LgRN9xwAxo3boy0tDT06tULALBv3z7d19m1axfOnDmDbrTkAxAfH48uXbpg69atuu9N3h8AunXrhh07dqCsrAzbtm1DXFwcOnbsWP7/pk2b4hxNbfTRo0cj52z+6ZEjR/Dpp5/i1ltv1T3XaEF2r5ClguL9rC7CyBIdKNxMdsNbLc5nFHK9yn2ZAF+LdaS6d9sBWS2oUSYRjZYZOSVbaxW+4gr1scmT1ce//FJszz/fd39yW5qxzOjV5LECHSOijTyjwc3Elhm/ONohSlEUjB8/Hh9++CFWrFiBJpq+7yNGjEDv3r19Huvbty9GjBiBW265JaznRveKETIyVBNzYmJgE6qZ4+qRrLVnm0QbRO3xePw+5j0biVlUVIQ+ffqgT58+eOedd1C7dm3s27cPffv2RUmASoHK2bRBbfCxoii6Acn+/kfH0f6utw8gXFF///vfsXr1aqxevRrZ2dm49NJLdc81WpC9byRmaJK0WtCOxEOgJqhyEbKDB9X6YOGAJnd/65GYGBFbGG5BZSf0frTfbUeaIQZh7Vqx1VsHXXMN8N57wBdfiL+9XrEAA4D+/X33JTFj5r4kYW1HQ15HGnmSm+nQIXFxIhkzQv609HQWM35w1DIzduxYvPPOO5gzZw7S0tJw6NAhHDp0CCfPjr41a9ZE27ZtfX7i4+ORlZWFFv7C6h1C/mJGItivWbNmSE5OxldffRX+FwPw66+/Ii8vD0899RQuvfRStGzZ0sdqA4isKQA+QcNNmzZFQkICvv322/LHzpw5g/Xr16NVq1Z+X6t169Y++wPAqlWr0Lx5c8TGxqJly5YoLS3Fxo0by/+/c+fOCinhNWvWRP/+/ZGTk4OcnJywi1+7kC8rCQwat6zWKzEiZmJi1IBOf9ksdlFSopbG8NcxmRYCboqZIWua1tJBRuFoETO7dqkTP3XL1kLBvydPAh9/DCxdqp4/Fdcj6LMyM5/qZX5ZwZHeV3IV4EjfpGyZCYijlplXXnkFAMpdFkROTk55cKkbkA0Jp0/bY30JRFJSEh588EE88MADSEhIQLdu3fDHH3/g559/tux6CkSjRo2QkJCAF198EXfeeSe2bNmCxx9/3Gefxo0bw+PxYNGiRbj66quRnJyM1NRU3HXXXbj//vuRkZGBRo0a4emnn0ZxcTFuu+02v6917733onPnznj88ccxdOhQrF69GjNmzMDLL78MAGjZsiV69+6NO+64A6+88gri4+Nx7733Ijk5uYJFZ/To0bj22mtRVlaGm2++2fbrEg5kMUOTBU2SVhMXjIgZQAiasjLg8GFrr2MECj4FgKZNK/4/Lk4IHieqxVtFT8w40gwxANQlOzERuOgi//u0aCGCwQ8fBqZNAxo3Fo/XqKHWASKsdAXXq8ljBRJEERUz8fHCZHrkiDBhaqPYwwlZZpwWM9SXKYpaGQAOW2YURfH7E0jI7NmzB3/7298ido5GiXSzyUceeQT33nsvHn30UbRq1QpDhw6tYC2xi9q1a2PmzJmYP38+WrdujaeeegrPaEqF1q9fH1OmTMHf//531KlTB+PGjQMAPPXUUxg0aBBGjBiBjh07YufOnfj8888rxLgQHTt2xLx58zB37ly0bdsWjz76KB577DGfe2LWrFmoU6cOevTogQEDBuD2229HWloakjQjZO/evVG3bl307ds3Kost+oMWe7L1mmIvrFr9jK6GaXIKZ7zKjh1i6/FUjDEBQk9DdwKyXGjFDN3iThVp1fLpp2KrjX3RQllOa9eKOEAAuPDCivvR/WJGZNO9aKeYiXh2slMZTfSlcNLNdPq0utqJMstM1GQzhYtA0dB2ZrBs2CACy/ftC/lQjEkoY+3LL7/0ebyoqEhJT09XFixYEPQY0ZLN9PLLIlEgPl597PbbxWM1a1o75gUXiOdfckng/dLSxH7332/tdYzwwgsV359MnTri/yNGhO8c7CYuTpzza6/5Pr5xY+QyxIJx5oyieDziXJ59NvC+R49WzLjUvjdFUZTsbPG/6683fh4tW4rnXHGFufP3R4cO4lgXXxz6sUxx1VXihd94I7Kv27mzeN2FCxVl5Ejx+9ms0Iixa5d43aQkRfF6w/5yZrKZHHUzVSZiY4U5OZoyFyory5YtQ2FhIc4//3zk5ubigQceQHZ2Nnr06AFAFBQ8dOgQnn32WaSnp+P66693+IyNQwHAchA5BZJavbfIohMsbjwxUcRUhLOiKiW/6a3M6fGI1g4JEXIjaTuGyEHVhYW+/YQizZw5qoXojjsC75uRIeKZyIoGACNHVtzPimXE6L1oBLLsRbz3FVl5I22ZiYYAYLlbdpRVlY+K1OzKAHfOjhxnzpzBP/7xD7Rp0wYDBgxA7dq1sWLFivKMrH379qF+/fqYN28e3nzzTcTZUaErQpCYkZPLKPbCqpgh12cw0z5NMOEUM5TRqhdXRhNURNNtQ4REglasyDEmTscAvfWW2Nata6xQp1wcLzPT/71DLkEzYoLuRTviCh0TM+RminR6thwATG/eKTETbS4mOBwAXJmIixOrDhYz4adv377o27ev7v+zs7N1U7ijHVp8yfEtFHth9d7Sq1CrhcbHcFpFyN2uZ6WgSS6iQZ0hoidm5Jig48cBTeWJiEIp2ZpKF7pMmAA88ICIB+ra1f8+JHDM9DrUq8ljBcfaRThVayYaAoCjWMywZcYmqOZCtKRhMu7En5ihtgZW7y2y6ASbQGjFHk6rCAU4yy4Yf+fgRJKGFWSBqW2cKRPRZogaduxQxaFeSraWuDjgH/8QtYAoC0qLla7gdC9abeMi47iYiaSb6dQp9Y1Gg5uJxUx04rUhd5LcAixm3Ikd94AdUB0Q2YpCE7/VUzQqZihrKpxWEbKU62W0knXDif55VpCFn78EPXI/Oylm5C7ZnTsbf95jj4lUem2lZoIsM2bEBIk/O9xMdL9GKoO0HCfcTPTF8XjEG2cxU4Eq7WZKSEhATEwMDh48iNq1ayMhIUG3Mm0w6GllZebMroyzKIqCkpIS/PHHH4iJiSkv/ucUJCRkMUMdrQFrRUeNTiAUwBrO8ZHEGs0Heufglu+QLFL8WZuoorGTAc2Ukt2+vb3HJXFsRkzopbFbwbF2EWSZiWQVYLqBqlcXr8dipgJVWszExMSgSZMmyM3NxcEQVfaJE2rwplwYjHEHKSkpaNSoEWIcbmlPY5MsPORA0oKCwO4MfxgVM3TccAZU0rH1yv7QOUTcdWARWcz4C5KNjRXX3ykxU1qqtiOQu2TbQShixo7MLjpGxOMU69QRq1eqAhyJwnly8C/AYsYPVVrMAMI606hRI5SWlvqU4jfLsmXA3XeLe1ynhyITpcTGxiIuLs6yVc5OyL0ir1zlsfLwYfNixuhqmNwk4RQSdGydPrHl7y3irgOLBBMpVpox2omZlGyzOC1mHOt9FR8vzKWRrAIsB/8CqpiJpD+2uFhdsUdZ9V+AxQwAtdGittmiGRo3BvbuVf+2o8IlU/UgywWZ0AHfNgR5eaLkvBmMihkKNA6XkPB61bgfqWm733NwMiswL08sPFu0ADZtCrwviRQ9HexIM0SJuXPFNivLngwiGbqfzHxW9Pm7WswAwrRIYuaCC8L/enL1X8AZywy1MahWzfyKKgJwALBNyIMzu5kYq5DlQjvY02RppbcdTSDBxAzF5oQrBkFuYKknyMil5qSY+fhjEbPz00/B9yUxo+edpBJHTomZDRvEtksX+49tRcyQlUhbYNAKoQbGh0SkM5q0biYn6szILqYosGJrYTFjE7IlhsUMYxUSM9qFD02WZOU1g16FWi1kLQ/XSnf7dvV3bdNC7Tk4mVxGwkNRgp9HMDFjV2fnrVuBnBxzzykpURuXDh4c2uv7g6yHVu4XOxb2jva+inRGk1z9F3DGMhPF8TIAu5lsJS5OrFJkdxPDmIGsItrBPi5OTBpWxAwN9rLryh9ZWb77282uXWJLcST+CDVzyw5k4XHwYODwABIzeu/JrmaIXbuKxXl8PPB//2fsOQsWqL/feGNor+8PsswYFTPyNdDpM2sKOXustNS3BUjYiXThvGgIAI5yMcOWGRuhgYs+c4YxC5nstWm+NFCH0k06WJyCnGEUjoBVEvmBuneToAKsudTsQHYJBVuY0FyiN5HSew11zqFzeu0148+ZN09sa9cOTwwf3U9GrWiyELdDzFB8lfbYlti/H/jgA+P7R7pztp5l5vTpyAUNsZipOpAbM9L9x5jKg56YIXeFWTEj12sJ5maSa7+E4x6m+MFAgahyYogcYxNJZMsMnXOwffXEDImIUC0zJBh++MH4c9asEduOHUN7bT3Mihn53rUjAFj+joTU+2r3bqBDB5G7bvQCR4tlBoicdYbFTNWBzK7kp2YYs9DEoI0pITFj1mIi7x9MzMhZU+EQM9SXKZC7S3Yr/fGH/edgBHluOHAg8L4kZvQSIan4YShFAL1e1fVXXGys9ENpqSoGBw60/tqBIEFi1C0pp7Hb4T6UBWRIlpnsbKB7dxFkNGSIsS+Z0wHASUlqEC6LGQAsZmyFJgunO+Qy7kRe4dap4/s/WuGbFTPyBGIk6JImGRIedkLiJJiLgc7BqUWBbEUJZh2ifYOJmVAKEWon6hkzgj/nk09UkTFsmPXXDoR8PxmxztC9aGciDB0rpHYRHo+Irm7cWAR23X57cIUmu5kiEa2udTN5PJGvNcNipupAPlwn+7Aw7kUWKto6XCRmzGbFyGLGSKcGCmQNh1WEvhd6mUzac3AqZkaeG4IJKhIpeteWXGqhFCLUejKWLAn+nPfeE9tzzrGndYA/ZFFqZD4Nh5gh4RtKLBkA8Wbee0+Ye+bNA159NfD+VAW4rAy46y4bgnaCoLXMAJENAi4oUAeoKCyYB7CYsRXKxHCqpgTjbmRriHbCp0kxFDFjBLIwhENI0FgoB/kGOgenLJyyFSXYdaBJXC+omYREKGJGayXbsyd4bZdVq8S2QwfrrxsM2W1pZC4PlsZuBdvEDABcdBEwbZr4/Z579Csm/v67UOa04vjvf8Of9aG1zACRrTVD7y89PXhapEOwmLERGqQj3S6DqRzI1hDtSp/GLbMW5WAVarXQpBwOIUHfC72+TASJGacsnLKYCXYORi0zoVRVJjFDn6HXC8yfr7+/16vG+lx/vfXXDYYcxGvE/Rksjd0KdmT5+XDPPcB11wn1+dhjFf+/eTNw8cXAtdf6mk/D7RN12jIT5S4mgMWMrdAg7ZYmeUx0oZ20ZGiFbzb2gqyERlfD5M4Kh5ih70WjRoH3I0Fl2wRlEvn7G8yyRYG9eqnPdnR2JutQfLy6YJo5U3//pUvVMI6bb7b+usGQ7ykjnxXdi3bWg6Fj2VZKwOMRF/fBB4HZs33/t3w5cOmlQikWFvoWRQpHkBlRVqZePKfEDKX1sZipGjRuLLZuaZJXGSktBb791umzsAYJCH8rVxIzZrNiyC1lVMzQ+BiOEAByjZx7buD9KGjWqU7T8jUO5jIm4UPnrIWsF6GIGbLYxccDvXqJ3ynt2h9z5qivHe4WOiS8jYiZYGnsVghL76uMDOCpp3w/1LlzgX79xE156aVikJFv5HBaZvRSEq2Imf37rdWlYctM1aJJE7E1UgadCQ89e4qx5pFHzD2vtFRY1tq3D895GYEEhL/BniZFq2LGqGmfJj+7Y2bk8bh588D70hziVKdp2TITbJ4IJmZCKflP0H2RmAiMGSN+z8/Xr4HzzTdi266d9dc0CokZI2IiHGKG3Hthi1P0ekXm0l/+IlapN94IfPGFEDxyYaZwWmZIKSYn+/ozzYqZ774TZtFRo8yfA4uZqoXcbDJYsa2qTmkp8PTT9hdG27ZNbAOtXP2xapXIsvzpp9D76FiF4jP8pfnSgsys1Y8GeaNihgKP7XbxyH2ZyIKpB43RTn0O8jUOJh6DiRn63EJpnEmfRWKisMzQ/fHSSxX39XqBffvE79ddZ/01jUIWPyPCk+ZcvTR2K9hVYVmXxx5TB6m//lVkPJFPUQ7+Cqdlxl/wL2BezGzcKLbvvAOsXWvuHFjMVC3kipS//ebcebiBG28UbulBg+w9LgXImg0epQkAAH7+2b7zMQONWf6CScliYtZdEazcvhaqb2P3Spf6MsXEBHd5kUvNqUB6+RoHE4/0f72qxvS5hWKpJTFDr9GqldguXFhx31WrVCuQlQW4WUgkGxEzwYKlrRB2MTN+PHDLLSJjafp035tXFjORsMxofYZm68zIK5S//914tcMjR4B168Tv5H6IQljM2Ax9ublzdmA+/1xs7b5OtFI266KQC3n++qt952MGEjP+0nxpHDO7wqdxzqiYofHZ7smBPmcjq3JyzUSqFpgWWcAEu94kfOTq8jL0uYXSvJOEJb3GgAFiu317RZH01ltim5pasVZROKDxzsj9EiyN3Qp2tYvQpWZN4M03RSE9bWQ+uZkyM9ULHw5oYNATM0a/rLKYWb4c+PJLY8978EFxDhdcAHTrZuw5DsBixmZo1cHNJvVZuFA139s5CJWWqoO7WReF7O6SXSKRhASYv8wYKshoNvYiWIVaLWRFtjsjj74Peu4YGbKmh9ICIBRkARMs/o321StMZ6eYode4+271tWlRQKxcKbatW1t/PTOQSDZiySPLjJ1ixo4Ky5Yh5X/0aMVmanZCIkTrZjJbZ4aOQzfSQw8FvzG/+05NnXv5ZXvz6m2GxYzN0ETEzSb1efZZ9Xc7J01yZQDmBze5xkuwTsnhggSYP5cFjZVm3RVmxUx2ttiGEuPhDxKLRupt0ZjtVIkD7XsPFNdF++pZZuQ5zmqWI81VFASemake9403fPclC9jVV1t7LbOQmDEyn4ZDzFitv2QLdeqIyb2sLLxdUYO5mYyKGbLwTJwoBM2GDcCCBfr7l5aqyvm224BLLjF6xo7AYsZmSPSG04XqZrxeYPVq9W8709hl95DZVb2cvROsuWC4oDHJn5ihkhZmV/g0yBuNU2jatOJz7YDiI4M1uwTUidqpEgda61cgcUtiRk+kkUUNsJ7uTiJAvnY0r1DmEgCsX6+ezy23WHsts9B9ZeReoe+kEeucUWg+d0T4xsWppsy//S18KVV2BQCTKGreXAgaAPjnP/VXLi+9JDIiKFU9ymExYzN0vznV8Tfaee893wBLO1PYd+5UfzcbKCu7k50SojQm+XNZyO0NzLjQaAIxKmbkTCP5eoYK1dCRJ3c9aJ9QarOEglbMBHIZ0/2rJ2bkxbTVQoT0Gcq9kG67TWz/+EO9dylsIzk5eGFCuyCLn5H5NFjmlxXsaBcREpTC+v77FZto2YVdlhnZXXXvveKLtn27/wqMublqfYupU4M3VIsCWMzYDA043GzSP//5j9jKk5pdNU327FF/NxtbIhdoc7qMvr+JUS42akYo00Ro1LSfkKDGOcpuu1Ch62skKJXGzVBqs4SCVmAHmqPoHOXS/jJy8ovV+4omalnM3HCDemzqifjVV2JL2U6RwIxlht6HXuaXFUjMOFaoVK7HEa70bLsDgGvUEDfsP/8p/p4ypaJf/v77haWpc2dVOUc5LGZshgZipwp+RTNer3DTAr5l1u3KaJJX0IpiLu5DthA71SiUBnt/E6NsrTEj/uiYeuX2/UGrbTtjh2i8rV8/+L5Wg53tglx5JOoCiRnaN1AskJkquf4gC5W8OI6J8TUKAKr47NPH2utYgUSyEbdusDR2K9jRLiIkZDETLpOuXgCw2dRsrSi66y7hJvv9dxHcS6xYIVo5eDxRH/Qrw2LGZqhOh1MFv6KZN95QJ6h//lNdWdolZrQxeGYyyuTxwKksGhIeeiXoaVI0Y5mxImZoXzsz8uiaBmsyCajfIcCZStokUMjqEGjBTfsGahsQamdn+s5orVrXXiu2W7aI2kgkFm691drrWIHuFSMB97S4sFPM2NEuIiQi0dLADjeTolQ8TlKSsMoAwL/+JcTOmTPA2LHisTvvBDp1sn7eEYbFjM3QytORVMEoh8R/kyYipowyIeyqlqyNSTAzGcsCpqzMmUmUJiO9iZEmRTOBpFbEDI2Rdmbk0WRjRMxQM0UgPD2iAiF/7mQN07OEyftGQszIrkZA1HMDxGf88MPi98REoFkza69jBTOWmWA1eaxAYsYpK15ELDN2BACfPKl+APJxRowAWrYUX7RnngGefx745Rdxsz35ZOjnHkFYzNgMBbc7tlKIUkpKgM2bxe8jR4otTbB2ZQ9pGxOaETNan7ud8SJGoZWrXskKsvaaCSSl92Um6JImCDsXmjTxy+1s9JAtEKHMD88+C7RoYc4tJwuOYPFvsvU1kJgxU4tFiyyYtNeuSRNVcH38sdgG63tlN3RfGQnApTFRryaPFWhedkzMyJaZcKVB6llmzNSZocExJsb3A4iLU0XL9OnA5Mni96ef9g3ScgEsZmyGskEc+3JFKTNmiIHZ4wHuu088Rt9FuxY0WteemeQCbXzNli2hn49ZgokZmhTNBJLSBGJGzNAYZjX7Rou8ajcSMyNXK7Z6b3i9omL79u3mFpjytSVLiF73bnnfQGLGTMl/LbKglC1WROfOYkvuriuuMP8aoUD3lZEAXBoTjdQaMgpdd8fG2/R01UISrrLvdgQAy4JIW8l4wABxIxUViZ+uXdUVp4tgMWMzslC3u/Owm3n9dbFt3lxdGAQz45tFuzo0WsfK660Y9Lljhz3nZAZahetlQVJgrt7k6g8rpn27m03KC1ajferINWO1xMEHH6ji0Iz4k68tWYj0LCrycQNZG+hzsyJmZEHu774YMcL370jVlyHMWGaCZX5ZgYR3KBWWQ4bMYeEQAHKsSyA3U7ALoGfdAcSgR3VkYmJEPECwBmpRiOEzPnjwIO677z4U+PlG5ufn4/7778dhrhSHBg3U351wVUQjxcVqN2s5y4++m3ZYALxeVQzQAGtUJMmihyYlJxqF0nikjY0gKCDVjMgIVqHWH2QBsCurS3b3GQ3+JGuGVTEzY4b6u5lgfPnaknjQW/jKQ2GgsZ8+NytJATSkejz+X2P4cFWAJyQA7dqZf41QoPvKiFudvp92ihlZ4DkR5wZAxJwA4QkALi5Wv8R6lhmvN7ia1BNExOWXA2+/DXz0EdC+vcWTdRbDYua5555DQUEBqvu5E9PT03HixAk899xztp6cG5G7Ast1T6oyzzwjJuqYGOCvf1UfJ3eKGUuDHrKFlwY4o2JGnmxJSMhdtCOBPNHp1WKhGCMzIoMmGTMZJHYHsVMgsZnFHrmarAYAr1mj/m6maSbdix6P+jnoBbfS/KC12mshMWOleSfNj3rXLiFBtXbJVuFI4bSYkV2yjpXDoAsfjhUQ3ZCxsRVXJPLfwW4uPVeVzP/9H3DddaZPMVowPLwsWbIEIwOY0UaOHIlFixbZclJuh8zKkZ4QoxWqTNqmjW8lWhIOdlgAtm4VW49HHeCMuhdIzHg8qhCKtJFRfj09y4wVMUOmfTNBlzQ52lWIjN6b0c7dgHqfWCk0t3SprwAx05aBJsSYGDXgVu860L7BxAxl/IQiZgJduzffFEk12j5NkYDmUyM1nYyksZtFFjN2xXiZhhqaffqp/XUdZIuK9kaLi6tYtbCsTJjBtW6nQG6mSoJhMbN79240ClAju0GDBtjDpggA6uAVrurWbuLPP9UFy113+f6P6onY0QOISu/Hx6vfV6MrNYrpiItTJ7BIxzvJFmo9Kwq5z8xMirQaNiNmmjQRW7uaTdJ7M9rsElC/Q1bEzPTpvn+bub9IKMbEqGnketeB7q9gNcVIhFq5z8kyFejaXXGFuP+7dTN//FCh+yrYvSK7gOy0zMjflUin8ZdDufD799u/CgpmUdEGAY8dK9xen3ziu18wN1MlwLCYSU5ODihW9uzZg2Q7m264mHDU6XArU6eKbWwscPvtvv8jd4YdfVXIzZScrK7WjFowKGYmIUHtaWOH68sMFBsSaJVvJhOTsBJ0KZfOsCMImIShlcJ9Vj6Hr78WW3LNmFks0z0TG6veC4riPx6DXINGxYwVtx1ZG+zsNG0nRuu8yEIuXBm/jokZuTur3enZwUSILGb27gVee038/b//+T8OW2aAiy66CG+//bbu/2fNmoUuXbrYclJuh77g3GwSePddse3QoaKpnIKl7ajJQ4X30tLUcvhGJ336nJKT1Yk80kUPadIKFFdCq2Az50bWZituJsCeZpM0yZhZ65BwM+uCXL9e/dwpGNaMWKbXi4vzbbrpLzNOFj6BoPdtxQNBc5AZIRhJ6L4KFnwrCw27xUyoRQlDpm5ddRXyyy/2HjuYCJFXOM88oz6ujTY3EjPjcgyLmfvuuw85OTm47777fLKWDh8+jHvvvRczZ87EfVRApIpD94tjK4Uo4dAhNR5FDvwlyNUsZyKF8lqAGCiDBW5qIctBtWpqlmWkG9fRvRIoNsKKmLESdCkHsdsR00jjsZmMKqti5umnxTYtTRWmZkQEzQFxcb6ZMv76VMn7BoLeixUxQ3OQnS0A7ITuq2DfX1lo2Fk0D4gCMRMTo35AdosZveq/BH2pDhzwDZrS3rBsmVG57LLL8NJLL2HGjBmoV68ezjnnHGRkZKBevXp46aWX8OKLL+Lyyy8P57m6BrIMRNpVEW1QsbL4eGDYsIr/p9gMIPSsRrKuZGYGD9zUQkIiNRU4/3z18UjGzRgRMzRxWHHLmY1TsLPZJI2jZiYx2tds0OyXX4rtZZdZ66hM7pD4eDFH0YLbXzVpo2KG5hsrnxuJOTtbANgJzbFmxIzdJUysFJO0HTI32Z3RFEyE0I1x+LDoo9S+vUij1RbKqgIxMybyC4AxY8bg2muvxbx587Bz504oioLmzZvjxhtvRAO5wEoVhwJbneq+HA289x7w6qvi94su8j+AySvf3bv9Vzg1CgnHevVUMWM0gFX+nsu9g7ZsAXr1sn5OZqBzkLO9tJgVM/L7NytmkpLE69jRN4smfTOLQqoSayZodts2dUK7915g/nzxuxkxQ+KJxFx8vHi+v2B+OrdAnxmgzjdWrH107ey2ZtiF0c/UaBq7FUKpsGwbdeqIL4tdjeYIowHA55wDfPON2N+fYKkCbiZTYgYA6tevj3vuuScc51JpoMm0Kjab9HqBQYNE7SVAiBi98kPkzvB6xWLikkusvy4N+g0bVgzcDLYSpOeec47YNy5OCIGtWyMnZmisCRToSeOQ0RgjeXA3G6eQmirOyY4gdhIIZsZREl9mXDPTpoltcjLQowewZIn420xMllagJCQIEeLvOhgVM1YsRARdOzszgOxEPq+SEv1rIae8201CgrhOji4eGzYENmywP5vJTABwoP3YzcRYgYxUdmTpuImffxbWFRIyWVnAr7+q/WP8QSvgUBc0dK3PPdc3cNOIq4jGAbIUUcCmHcGvRqGBOFCgJ41DRi1OspvT7BhmZxA7iXq9nlP+oPM1I2Y+/VRsSRSTdcdMirlWoNC94M8NalTM0HlYCXSnaxet3gFZJAeyjIRTzNAY4qiYGTRIbO0WC8EsKjRgyF/Ur74CBg8GnnhCfYzFDGOFCy4Q29JS+2soRStTp4rsEfpODR0qYtKoBIMe9F0MpSaP16umhrZsGTxwUwtNGFSsjibySBY9pIE4UMYPiQGjk7McQ2A2G4Zey45CZPQd0Os55Q+aJI1aMw4eVAXHhAlia6WjMp0rWcgortOfKKb7JljatBVRpT2faG1gLM+NgWJWjNbksQJdfyvtImzjwgvFdu9eextFBbPM0Cpwxgz1dXNzgfffB774wvhxKgEsZsKAbIlYtcq584gEhYVAly7AP/4hREViomjyN3eusVWYHZ2z5eDMNm18AzeNCBKy6lDMDk3kkSx6SANxoEBPOi+jmV+hxBAE6xhtBrJI6LVp8AcF0Ru1ZpCLKT5erchuRcyQQCHxR8LW30StFT56WDkPgsQcXY9oQxbJgbKJjKaxWyGUCsu20aSJGHROnLA3cyCQRaW0FPjxR/F7u3bqoNe2rdhu2SIETkmJemOzZYYxQ1yc+gWr7GLmvPOAdevE723bCgEwYIDx59OqNRR3hpwNSd9VynAwEvNBK2YK/iVRE8k6QeSyCBToSZYNows/o+X2/UHXwI7VLl1fCow3Ak3eRgXAhx+K7YUXqiLaSkdlErZkISMh4k/UkZgJVj8nFDFDYi5axYxMIPFM97eZlhZGCaXCsq3QYLZ9u33HDORmmj9f/b9c6bJlS/ElOH5c1KyQb95oDb6yARYzYYJW0Zs2OXoaYSUvTzXt338/sHmzubgIQB3oQ0mrlFsZEBTHYETMkKWDisVRZeJI1q2ghZMRMQMYc7/QatiKmLGz2SRdXwqMNwJZhoxYof78U7XO3Xmn+ngoYoYmyEDVpLX76mE0fdkfJATNWLUiDd1fgb4vJIrNtLQwSlSImbg4Vc2RtcQO9NxDigI89ZT6tzwgJCWpVYl//lk9RvXq4TGNRQmmxQzVl9H+1KxZE/Xr10fPnj2Rk5MTjnN1FRQErE33N0KkC7ZZRXbDyN8rM9hRk0duZUDQABesfo08AJOYofo3dlgl8vLEoumBBwLvR6Ih0MJJtmwYqctjtNy+PygjLNR7UZ5g5MrCwaDJW6+VgMyzz4ptbCwwYoT6uCysjb4P2o/cn4GqSZOYCVbQzoqoIui9R7OYIUtYIMuMNuXdTkIpSmgbcXHqoPPzz/YdV88y89lnwE8/6fvY2rQR2y1bqkS8DGBBzDz66KOIiYnBNddcgylTpmDy5Mm45pprEBMTg7Fjx6J58+a466678Prrr4fjfF1Dy5ZiazbuYvBgcX++/LL952Q3ZPXweKxnKdjROZtW5WTlBdTYk2ABrHK7MbJGtGghtnZko/3736KO1vPPB96PXivQeCMLHSNiJpQMknPPFduystCqM8vxTHR9jSDXHApmIXvvPbFt29b3vcquGaPVuLVihgSkPwsVuYCCiRlZVJm5lnLAcCg1mMINieVA4t9o5pcV6Po7XgqDvqB2pUGeOaOfck1N76h2hJ6Y+fnnKlFjBrBQZ+bbb7/FE088gTtley6A1157DV988QUWLFiAdu3a4YUXXsDt2s6CVYiOHYG33zbvqli6VGzffhu4+27bT8tWqIVAKOmWdnTOllsZECRsgk1ilAzg8aj+/FatxNbrDVw7wwjkPi8pEStHPZcETaKBxhv5OhvJMqLxzYplRu6dl5dn3TIg990zk1Elv97hw/ruy1On1Lnjllt8/ydfy6NHjQkC+hxIDNNz/Fl2SMwEq84rn0dBgfE5Re4HZUYIRhojRevo+x2OhpmhVFi2ldq1xSrDjrLZgK+5WhYzp0+LviubNgH9+wOff15RzLRtKy52SUmVSMsGLFhmPv/8c/Tu3bvC41dccQU+//xzAMDVV1+N3+wu6+wyuncX29JScxM1DQgBGpRHDWQdCCWoz47O2ZQ8QFYeQF0kBROTNNnKEz5Z1YDQW63I2VSBgsFpYgyWgkuCxkz9HCufjywmrLhKCbLemRW8soAMlOn20kvCfePxAHfd5fs/+X0bXVSQNYQmSHIX+0urtmKZMZPqLsd7RXPcphHLjNE0divQwsVx9zwNZnZUmgRUMZOa6nszJyaKrtgHDqi+W+0kM2CA+EDeeovdTHpkZGTgk08+qfD4J598goyz39qioiKkyTb/KkjHjurv33xj7Dlbt6p+dTvqe4QbmlBDsVzY0TmbvqtygCmJgmDuKxp3tMHDNPlu3Wr9vADfifjbb/X3o0yXYAHUNHEYCZgORczIzSYpJskK9P6tngMQ2KX21lti27y5//uQglONBpiTaKFAbG01aRm6Z4O1GpDFjpnms3a4cSMBfbaBUqO1Ke92EjVihoLtCgrs8XkFEyHVq1esAEwkJKgfDLuZ/PPII4/grrvuwvLly9GlSxd4PB6sXbsWixcvxqtnm/EsXboUPXv2tP1k3URMjPjinjoFrF4N9O0b/DlyjaMzZ8TAZzY7KJLQwBzKaos6ZxttPeAPEiw08QBq5k+w2hM02WoH2cREMR6FmmUpWwQCZbaRmAlWWC4uTr03giE3TbRCQoK4f0OxmlN6uxXBGxsr7gk9Ye/1qrGW/hqZAuJ+Kiszbpmhz4EmSLma9KFDvr27tPsawYzbma5dNAsZQL2/AllmtCnvdhJKhWVbkQeg3buB1q1DO54/EVJSIiwy9euLL5WemJFhN5N/br/9dqxcuRLVqlXDBx98gPfffx8pKSlYuXIlbrvtNgDAvffei/coKq8KQwGIRjP1vv/e92/qAByt0Go3lAGKAk0B60XqKItB7sJNbpJgCySaMLSuAlpth2KV0L5+IHcNWeSCiRmaOIxkf4WaQUKfqxz3Yhay3lkRvLSw1BMzS5ao1pK//c3/PmTJsipmAlWTNiNmSJCYKUFA92Y4MoDshM4vkDvdaBq7FUKp42Mrt9yi+qh37Qr9eP4sM1u3ikGT3Es0cPkTMzNmiHL0K1eKvyu5mLEU7dCtWzd069bN7nNxJYEEcf36YiKgAMVA+8bEVMzoW7YMuOYa//vKAqK4WD/t0+PxnajN7HvyZODsC5pQU1KC7ysHSZ46pQ488iS3datwD+nt64+kJPX/2dkVmxqeOqU+lpKiuh1OnxYuBZpsq1Xz/XzS08VkcuCAWAwFWvUlJ6uTlbxvYaHvNTlwQJwrTbC0r5xSmpqqnkdSkrrvmTNif5rg//jD93wTE9X/0b5ksYqL09+3tFQ/XiklRa27FWxfQCwUaWIrKxPvS7Z8yecQH69aa2hfLfJ7JbxeVSC+847YUvmMoiLf48qWPu31ouPT/aco4rtBbqb4+Ir7798v+j7RvnTfUaNDIjbWd9IuKlLvu8OHg+9L0HWnz0/7vQ82nkRqjKDP6cSJiuek7RiuvVb+9gWCf+/lfel85OQfGfl7r0egaxnoM/Khel3EtOqI5F9/FSmMQY4b9DM6XAggBUitA0/x2fd5NmOhuF5TKEUAPKlin0IFOPta5Z/RsWPAjz/iZHYreJECJNcq30dGvpZWx/FgQfARQbHAzp07lX/+85/KX/7yF+Xw4cOKoijKZ599pmzZssXK4cJKfn6+AkDJz88Py/HF7ef/p0EDsc3IEPumpOjv27OnotSoEfh49NOpk+85NG6sv2/r1r77tm6tv2/jxr77duqkv2+tWorSpYv4/cILxfnr7ZuS4nvcq68O/P5kbrwx8L7btqm/Dx0aeN8jR9Tj3n134H0vvFBszz9fUe67L/C+8m0/aVLgfdeuVfd9+unA+y5fru47Y0bgfRctUvfNyQm877x56r7z5gW/37p3F/suWhR4vxkz1OMuXx5436efVvdduzbwvu3bq/tu2RJ43/vuU/fdvTvwvnffre575Ejw6zB9uti3sDDwfjfe6HsPB9r36qt99w02RsjUqqW/b7SMEUTduoGvQyhjxEUXBd63sFAJim2fUcNd4pfx48PzGb36qqIASuu0vcE/owULFAVQOsVuMPQZKYr1cTxcmJm/TbuZVq5cifPPPx9r1qzBggULUHjWUfrTTz9h0qRJNkstd0MZCEZ75NB+sp8+miEfuZOZFr/+qv5upwmbUsbtDsSOZFVhuzATtBoOHE+5PYtdSSpVkXAG50aVG674rOnDrlozWqhwU5yBN021Zhz3v0UIs0rp4osvVp599llFURQlNTVV2bVrl6IoirJ27VqlXr16po71r3/9S+nUqZOSmpqq1K5dW7nhhhuUX3/91WefSZMmKS1atFBSUlKUGjVqKFdccYXy/fffG36NcFtmCgv1f+QVZ35+4H1/+knd9/77xTY+3v++xcW+51BUpH/coiLr+xYXBz5nWkn07x98X5mTJ33/l54ujnPnncH31f6QxSIuTlFOnVIfl1fwhw6Jx7xe9bi0b2am2GfwYN/j3nuveDwtTVFOnw58DmVl6nHlfW+7TRxDtrjNnVtx3w8+8F1F0k9pqbpvSYl4jFbN3br57nvmTMV9L7hA7Hvhhfr7njmj/7769xfPr18/+L6FheJ1idJS8VjTpuIYl13mu+/p0xX31f7Qcy+/XN23rEz8b9Uq9Zpt2+b/uGVl6ud7000Vj3/qlLqv16soBQXqMVevVvej1fWoUeq+snXm2299j3vypO89XFioKNWri33Hjg2+L/1cdpl4TtOm/r/3gT6LSI4RHTuK87zgAv3vPX3Hx42zNkYE2vebb/x/f+hH/t7rEei1An1GPj95J5ViJIkTadYs9M/o7vuVQqQohfc+ql73m29WFEApmvy02OeEVylENbHfrkO+n9GZM4qSmKgUI0n8f+FXQa+l1XE8XJiZv03HzGzevBlz5syp8Hjt2rVx1OQyduXKlRg7diw6d+6M0tJS/POf/0SfPn3wyy+/oNpZJ1zz5s0xY8YMnHvuuTh58iSmT5+OPn36YOfOnagtFxZxiEC+QuoKDwBffw1ce63+vpS+HRsrqgD/+9/CB6wo5lI/g2Fm32CBvXIjVjNBwFoLSrVqIv7m+PGK1zOYtYXq8SQni/gHioGgKr6AiJfQNjmkfWnVX7eu72s3aya2J08KP7/RbBx5X6oxU7OmiMUoLATWrgWGDvXdVy5up3c/xceLH/r/qVPB95VrpujtGxennzZNafNyirfRFGt6L3SP1Kypfw5675sCa+W4g5gYse/8+eLv5GSRlu0PyigExOcc6Lvq8YjvGiHfD9Wqidgqiq/yeHxjMOrVC3zsatXU+zLYecj/o/ctZ+Dq7RuMcI4RND6VluqfE92L2pg4PcxYWeWSDNqYHqOYuZa6+1ZLAtLigROnxMDk9aJaNePOjwrnXXQEQDFQOwWg/52NmUk5NwuoBgAesS0qBlB09rGzxMUBLVsimTJQstJ8/++HUMZxpzHtZqpRowZy/dhbN27ciPomy1QuWbIEo0aNQps2bdC+fXvk5ORg37592LBhQ/k+w4YNQ+/evXHuueeiTZs2eO6551BQUICffvrJ7zFPnz6NgoICnx+nkAO8Vq8OvC8VVMvI8BVBy5aF59zsgII2Q00fJzeVlS7VZHXVCr64OHXCkUvqayExo60OS1WAS0utl/On6sL16qnZVZs3V9yP1gBGKvXS+zRSiDHUDBL6OofS80YWM2ah9+oviJK+F3KlYn/ota7xh+wClIsX0v0pZyLJrjcjtciMpC9roXMOtphxGlkw6kFiJhzlx+Q1rZFikmGFVk1nzoSWBgj4T6mmQUVudBYoPZtcTdrjVEJMi5lhw4bhwQcfxKFDh+DxeOD1evHdd9/hvvvuw8iRI0M6mfyz6TEZOrNjSUkJ/vvf/yI9PR3t27f3u8/UqVORnp5e/tPQTHe7MECpnTraqxzKZGrUSF19AmpWXTRCfvBg6cTBCKVzNulqf5VzSRwEGlMo80grZtq2VX+n8cMsNLBmZ6sp6P4KY9P7NmL1oPvCSE0u+nysps5T7FYo8Q40wVkRMzTx+RNuVP/nsssCH8NMR2VZzMgCgu5POR1e/t3IHEGiyoqYiebqv4BqUQh0n1DYRjjei/xZOR3f5WMCDrUKPt1ksloePhwYOVJ0ryUCiZl27dTfWcz48uSTT6JRo0aoX78+CgsL0bp1a/To0QNdu3bFww8/bPlEFEXBxIkT0b17d7SVZxIAixYtQmpqKpKSkjB9+nQsXboUtXRm0Iceegj5+fnlP/sDLcsjANVRClZ2gFwS558vtmQ63bgxPOdlB7TaCtXbF0rnbLLm+DsHWg0Hql9Dgyy5VAhZT2/ZYv68ADWgu0UL9XP1V5qfxIwRVxZNBkaCYkmoWRUzJMC8XuvWKZrgrDRKpPeqFW4HD6qPyV2y/UHv3Yj4k8WMXKiO7gW5mrTevnqQmDFTGJYsYsFaXDiNETFD9084xIx8/R0XM3IfkFBrzfizzDzyiCh7LS/SA9WaueMO9fdK3s7AdMxMfHw8Zs+ejcceewwbN26E1+tFhw4d0IyCDCwybtw4/PTTT/jWT833yy67DJs2bUJeXh5ef/11DBkyBGvWrEGmn+53iYmJSAxHAxCLtGoFfPedb9M4f9B9S+V7mjcXAfHhCoq3AxICVpsQEiREzKxaCX+tDIikJDF56LmvZPeJXLyTSEgQA/SvvwJXX23+3EhwtG+vWgb8jTck4ozctlbEjNUaEPLi7+DBioLPCHSPaGOWjEBjuPa9zpoltnFxQKdOgY9hpqMy3UvamiQktuXPjj6zYPVLCDMWIoLuz2hfUBsRMxSPFK4uNxTzZMW6ayvyjR6qmDHahiCQZYaOkZwcnpblUYTlQtnnnXcebrzxRgwZMiRkITN+/HgsXLgQy5cvRwM/I2a1atXQtGlTXHzxxfjf//6HuLg4/O9//wvpNSMFDbaBQnf27lVXLn36iG3nzmJrJY4kEni96gDlT0iYgZ5vpXM2rZb9eRNpkNW7hnJFV3/p8PR8K1WAZddUp05Ar17id0WpWAmY7g0jsS00rhlx/RhthKiHbPy0KqrpvpbbABiFLBJaMfPZZ2LrT4BqofduJO6H7iWtQKH5SRZEZsWMGQsREYqLLpLIAcB60FgRLmFmttJz2JBXdqG6mbQVgI8fF4OR9gsRSMzIxwj0AVUCDFlmJk6caPiAzz33nOF9FUXB+PHj8eGHH2LFihVoItejD/K809FSfCIIPXqIbVmZfq+ls83GEROjDtCXXw5MmSIG4VOnoi9yXBZnJuO+K0ATnZWP1F8rA4K+43pJdnJHa3/XNz1djAXyfkahGHaPR3WxxMaK+2D5cjVbClAnUSPuIBrXjIxL2g7QVqBz3r1bFWRGkS1tVu4REjPa90rxZ5dcEvwY2gq0gaB7WhuITZ+ffAz6zIz2TTIjqgh6324XM7KLMpxiprQ0CsTMHXeID+yvfw3NMqMoFS0z8+cDY8aIsvCLFqn7GhEzR44AH38MDBpk/ZyiHENiZqMmcGPDhg0oKytDi7P5r9u3b0dsbCwulNNwDDB27FjMmTMHH3/8MdLS0nDorC8mPT0dycnJKCoqwpNPPonrr78edevWxdGjR/Hyyy/j999/x+DBg029llPIKcIrV4rO7Fook0n2jXft6vs8I40qI4lseQjVzUQCzsrCgZ7jLz2XXDJ6Axy9B70sopo1hfXGSrE0yoaUXUfVq4vF1bp1vq5smvSNWFBIDBu5VnaUGk9IENYEK4JODlezImbIMiS/1+Ji9fMcMiT4MWiiNSJmSKBo7wc6d/k89PbVg4SqGcFulxs33ND9pVebTV74hNsyYyXuzlbq11dVfyhiRu6FQisYGrC03gsjYoa6slZ1MbN8+fLy35977jmkpaXhrbfewjlnZ9/jx4/jlltuwaWXXmrqxV955RUAQC/Nki8nJwejRo1CbGwsfv31V7z11lvIy8tDzZo10blzZ3zzzTdoI6ecRTExMWKSKi4WjST9iRlK15XN5nFxYgA8eRJYsSL6xIw8wRutPaIHuXgURUwYRo8nxyFRKrUMiUM9Fx89X6+CKK3IraR7UraNHPBYr54QM7/84rsvjUFGRAeJGSNFPWmfUFJ7qe+WlSxTOfDairueYqnklT31r/V4jMUxUYxGKGKGXJiKovZ7Mitm6DMwI2bofVsJno4kdI/r3ZNyHEuoZRz0oO+wHKTtGBQ5f+yYEBNWFByJkPh4VQn7S8sG1IHDn59eVnfa5n+VDNPT0LPPPosvvviiXMgAwDnnnIMnnngCffr0wb333mv4WIpcpcoPSUlJ+OCDD8yeYtRRu7ZY4furMQKosRuaJC5kZQnzvlR2J2qgrByjg3kg5M7ZBw4Yb+cgiwJ/Az4NnHqBxSRm9AJvSVxaMV1TMT85y6pZMzGeaLsvUxyFEdFB1oogXx0A6mQYStBlaqpw0/nLwgoGCV6jrhgtFKsii4iPPhKPZWYaE7000QZqFErIxQFl5PvxyBFxr8lNPI1gxkIE+LqjrARPRxK6xnoZb7KYsRq/FQwSy46LmYIC4Pnn1RXsb78BHTuaP47sYqLArFAsM4D1tEyXYHqYKSgowGE/I9uRI0dwwvE7KTqhwVAvHozuN20MAMVVRGNG05EjYhuqVQbwtV6YscxSIG1cnP8Jk4SEXmAxBQbrxapQHI6VwGSayOVx54ILxFYbw0NixkjaqhyUG8zVZIeYoUWllUB0Gias9s6R3SskSNetE1ujHm1670YsWfQa2ntaPg8SonRPGL3/6TyMiCrA1/IZaoB9uKH3pidmIhHHQmLGSkakrXi9wKOPqjeIVVeTNvgXUP22VsXM9u3hbZLlMKbFzIABA3DLLbfg/fffx++//47ff/8d77//Pm677TYMHDgwHOfoelq3Flt/6dm//64OtJTJRNCAHSyt2wnI9WJXkzey8JgpC0TiUC84mla0eqZ9EhV6FhGKd7Ly/ad6F3J6c/fuYnvqlK8QoVW4ETEjT6zBamrYkQ5LwadWUl5JzFjNCJUtErm5Yp6g78INNxg7hpmAaZoLtOcbE1OxmrTevnoYyfiRkb/z0V40j66xnrXQbOaXFawUJQwL6em+N4XVjCZt8K+i6IuZQHVmSMwkJIibj/zfZvnnP8VqLFrTa2FBzLz66qu45ppr8H//939o3LgxGjdujOHDh+Oqq67Cyy+/HI5zdD2Unu3PcLV0qdjGxPhOfADQs6fYnjwZfVl1NJHaVdKHvv9mxIxeKwOCXE96q2H6nutNFuT2UxTjnc8JGlTlWB6qIQSoFgZAFUtGXOtyzAFZx/SgySWUyZDEk5XAShK8VjPx5OcdPiyy/ug93XSTsWPQNTVS9I8W0/4EOllgKHaI5g2jYt6MqAJUMRNOAWAX8n3r7zrTd8equ9EINA5ZsaLaisdjT60ZrWWmoEC96bTR9EbqzNBgaCVuprQU+Ne/RFbDf/5j/vkRwvTtlZKSgpdffhlHjx7Fxo0b8cMPP+DYsWN4+eWXy5tDMr5QfLPXW3EC+u47sfVXnJHEDKBmPEULJGbsShmn45jJHKJ99USAvywUGRpk9Z4vp3ubGQNKS9XX7NBBfTwpSRVt1FgUUMWWkUqvslsjUGCyPKmEUviTXBxGehtpIWuO1QrEgDqZHzmiBv+mpxsXaGbEDLn7/Al0+txIZNCkadQyQ5+BEXcXoC6A7YhJCzfy/eVPTERCzNA95riYAeypAqyt/qsowD/+IdIgtas3I26m1q1Fp2Mr5aTlXjybNpl/foSwfHtVq1YN7dq1Q/v27VnEBOG889RBecUK3/9RCq+/om9JSeokH20NJ0nw2/XR03GCWRtkArUyAHyzw/wJGrKU6X2/Y2LUyUSbgRQIeV9ZzMiv9cMPFc/NaKYH3UuBxIxsbg8lHZYs2laaTdI4GmqdG0C4BEn4m0lkNJM9E0jM0GRJrjO6HkYtk8GCZLXQvW1HTFq4kb8//lyfdC+GU5hZKUoYNuzoz6R1M9WoATz5JPDaaxX3NSJmbr4Z+OSTirEMRqAvHgD07m3++REijFqZkaH7bc0a38cpoFBvgKaJWnZLRAP0XbOroy/FdZhJg6aVv17qqpyF4s99Rau4QL2lSEyaCcKmskyUli9DonXbNvUxmuCMFkejSSFQzIwc4xKKmKFraDRwVYZW5KHE7NBknpenflfMlCmQxUywVXsgMUPfXxIZtK9RyyRN+EbFDH22bqhAL1vJ/LljzWZ+WcFM24qwI4uZffusBd35CwDWw2gFYKuQmHnsMeCee6wfJ8ywmIkQZHnUZsfRpKNXzbRpU7G1GrcVLmi1ZVevFRrszQSaBmplAPgKLW06NKAGBgdKfaX35+/5etBn7C8NlWJo5LotNMEZ7T5Ok0IgMSPHuISSDktxXFQDyAz0+YQyjtJk/uOPqqAaNcr482WBGCxgmu4HfwKFJmy6P8kyY1bMGMXumLRwIruP/GUu6WWJ2QnN51FRGJ4G+7g48eU2M3gQWsvMvn3CyuPvDRqpM1OjhvgSHz5sfmWSny/MwXLQXxTCYiZCZGeLrdzn58gRdYLQs/6Rm8JKFdpwQosAuxqx0graTKBpoFYGBA20/oq+0YIpUOornZeZonFkxfE3gVGGGk2KskAw2n2cJoVA10peIYcSq0BiGjA/JtPYGkqhNJrMV64U26QkYz2ZCNlqYFTM+Ivxofucrnkg4eMP+V4wEtdBoiCUeKNIQq7PQGLGrsxHf5hpWxF2xo0TQXZUW0PbjM0IWovKY4+JlcXTT1fc14hlpkYNsZLKyjIfBPzZZ+LL07278PfKrRSiCBYzEYLcSHLK5RdfiK3H49v2QIaCgIuKjJuoIwGZc+0qT07WETOBprTACNTnlAZQuRotQcGYgcQMLbLMxPJQ6X9/Fh/6PEtLxSAvu9WMFkcja0Wg+h0kZkLNhpGtW2brHdkpZuj6m+1pKws5o2LGnyWL3gNZm2jSNCo2zFiIAPXzC1eRObuh+8xfxqbZYGkrkGiNCjHToIEIuO3SRfz96afmj6ENANYrmAfoixm5v1N6ur57wAg1aogvSN26wHXXmUs7jRAsZiIE3ddyYObXX4ttoMyMyy9Xf4+muBmyithVnpwmcqPZCLII8NfKgKDJUFurp7RUTfMNtNKnjCgz7i8KEvV33Hbt1N9XrPAVSUavJb2nQOnieh2grUCWIKpqbBQSB0bdZ/7QigWzzS4B9RoEs/rRROhPQJAYofkikPDxh/wdN1JEjj5bt+RWkGj0d0+arcljBbNFCSPC//2f2M6da97/pXUzBRIzenVmiorUFVuNGmqtCTNiRi4elJammpaXLDF+jAjBYiZC0CCsKOp9SRlvejEfgFgZ0yDw5ZdhOz3T0MBvV0dfEg1GV1ZyxpC/7zdBk6G21pPsNiIXoD/IhWWmuDVNVv6aX8bEqOe0apXveRl1BxkRMzQW2pEOS69nttkkTSyhNErUTuYjRpg/Bl2DYCKCzteftYXENlkkaV+jYsOMhQhQ56VoL5hHUFC6v3syUGC1XdB1iop6XMePC7fQkiWiIduxY8DixeaOoXUzGbXMyOJD29+JxIyZ/jjduwOXXqr24rnqKrFlMVN1adCgYno2rXQDWRYAdWW7fn04zswaNJgbjfMIhtnO2RQQHRsbeMKm77m2hYBsJQ3kKqOYETOpyTR4B8tQ+/FH1cJkRnTQZBuo2qmd6bC08PPnqgsEfZahNEqU3VyxsUDnzuaPQdfAqJjxl6FH74HENu1rxg1E338jVj6yULpNzPhzE0dCzJgtShhWSkqASZOA554Dhg0Tj82aZe4YsmXmxAn170BipqzMdzUou6o8HuCKK8TfK1caC048cUJ0R/72W3XV2q+f2H75ZZSZwVjMRBQaJNeuFVuaYC++OPDzqBHjr7+G57ysQNZLuzr6knVEUYxZZ4K1MiDI/KydQEjMBBMR1IrC6zU2UBYUqLFNev2D6L3u2qXeA2ZER6Dq5QSJGTssM3QNzTabpEViKL2FZGFhJvBXxkjANKB+vv7EjLYAY6B99aDPwsg8YndMWriha+zPgmm2Jo8VzBRHDDu1agnxoCjANdeIxz791FzdCdkyQ2bk9HT/6aOyeVAeFLTWnRYtxMr5zBljcTxr1ogLmp0tLEyAGNRq1hQD3fffG38/EYDFTAQhU/XPPwvLY7BMJoIaFJrJqAk3NFHZJWbkztlGYsvI5RFsMqFBTjuBkJUhWLqobF0xkpQgF8PTC+oma++hQ6rLwUzaaqBMTEKvA7QV6BqaGYtld0MgN2Aw5Gw5vfIFwQg00crQ99HffEGuYOrgHWhfPUiwGhEzFGJhpWCrE9A19iewA2WJ2UVUiZnYWNWcnpEhumafOaOWsA7G6dOqAqxRQ78nExEfr2Y6yB+ANu4GAPr3F9sPPwx+HlRfRk7Jjo1VJ6zPPgt+jAjCYiaCUPzFnj1qTyaPR13963HppWJbWBgdX1Z5orKro69srjdSNDNYKwOCgmq1LhkKCA62WkxJUd0DRjIaqaJzfLy+VeSii8T2xAnVYmQmOJLETKACYWa7OgeCLMxmuh/LgjSUe0T+fIcMsXYMGueDiRn6bvkTyHIBxiNHVMtkuMSM3TFp4YbuX38COxJihq4TGUOsVKy2FVq5HjkCjBwpfjfqapI7c1avLpT0P/8ZuMCSvxWONiMKAIYOBcaOBcaPD34e/sQMoMbNsJiputCK/MgRtW5GWlpwVwBVkFYUa1l1diNbiOyyzADqxGsk0JQCZ4NlytD/tStGer6RAZYEjxHLzNatYhvIYiT36qK4KTNihuIoAg3Ydtb2oABeM802KV4RCC2LhSwTHo9qsTcLvX4wMUMCxV+cihzEvHevuq8ZN5NRCxFgf0xauPFnGCDMZn5ZoXNn9VotXizEjVFDSFigG+bwYeAvfxFKdu1aY7ECJEJocmjZEnjiCeC++/Sf4y8925+Yad8emDED6NEj8DmUlaluJK2Y6dcPeOMN0R4himAxE0FoRV5UpK7gyRUZiIwMdbAgi46TyAX87Ey3pPcoT4R6kHsmmJiiAU478ZPLxEg2Cu1jxGJE+wRaUTdqpApYug/MNOwka0CgbE+y2tghZugeNdPEjyxfoQYgDx4sjnHxxdatTHSPBqthRJYZf2ImJka10O3fr7pZzRSNNGohAlSxFEpaeyQJZJkxm/llhbg4cc+NGiU+p+Ji0Vm9a1dzFkXbkC0zmZlq4Ozbbwd/LqkwbXfsQAQSM1Yqm27eLG7U6tUrZjLUrg3cdlto/uMwwGImglDBNEVRXRbBXEwETY7REHNFgaB2d8ElK4m2Jow/grUyIMjFoQ0qJveOkZW1NjsyELRPMJFKr0v7mxEztNAKFChtp5iha2zGdE/3SKhuro4dRXxKKF3j6doGEzPBBAq9lwMHVOFjZp6gCT9QFpr2XOy0fIYTsl76u0foPg13zZyYGCAnRzR2Jh2werXQEi++GN7XroBsmQFUV9M77wSOFdi2TVhhAODRR8V2yxaxSgr0hfeXFeAvZgYQr79yJfD3v+tnNSgKcP31otO2G1q3g8VMRMnKqpjRQNaaYFAGDLkxnIQKvdnda4UGOyNZMzRZB6oRA1TMQiH0vuf+IOuOEZFFFp9g50WTlBUTvJE0VLo+dljOKF7ETNorufGioVEiiRmjliW9dGh6L/J9YCbbyKiYkf/vFjFD19hfHJeVzK9QaNdOLBIeeECMt2fOABMmiIWj2VpJlpk4URTD+sc/xN/XXSe+uPv2qdVStSgKMGaMEC1XXSXiWwBg+HDRymD5cv3XM+pmAoTZb8AAYNo0347YMh06AB9/DMye7f//J08Czz8vTKdkRnQYFjMRRhswaLSjevv2YmvEOhBuaMK2u9cKTSLamjD+MNLKAFAtoZSFQtCEYaTqLll3jJwXxZW0bBl4P2rgSJhZtdI5BxIXdqbDys0mjVpn6B4xY3EKF2TxCxQwLb8vvQwiOo5cb8dMHRj6LIKJKtmNa1eAfbgJZJmJtJghpk0TBg36Lm7dqmqLsNOokUiDphskOVmNYNcLBM7JERaTlBTg5ZdVv2aggnmEGTETHy/EFWAsq8kf8fGils7775srwhdGWMxEGG3/HUq7Dkb37mJrJggzXNCkbnfdCKOds2UfeLCCg9osFIK+80ZiEqi+iZFrT5YWEp96aD93MwM9XadACyI7C5XJwktulBoI+gyjobcQnUMgMSNX5dUTMzRfyAsKM6nTRi1EsmUyGq6fEUjo+YvjshIsbReNGwsRM326yCZ9883In0M55GqaP7/iTXDkiBrg+9hjqmm3uFi9Oc2KGbkvk5YBA8T2ww99qwYDwoe/d2/Fx2Xi4tSVeJRUA2YxE2HkeiqpqcbjTii1X1GEW9VJ6Ltld6olxQUFEw2yq00WK/6QxYqcLkwTm5FsEaoCHGwSkk3YnToF3rdrV9+/zaT40nsK5Ho329U5EElJ6iJx1y5jzyHBGQ29hUgQBAqYlgW0nuvIX/FAM73JjIoZcmPZ0VcrUtBY4C+sw0oau9387W/CShMxt+cffwBTpviagrp1E4qqsBD46CPf/e+5R9yEHToAf/2r+jgp59TUwGZAM5YZQEwoycli0Nq0yfd/ixcLMXX11fqvB0RdijaLmQhz/vnq70YymYjMTDUOy+mMJvqO2L1qpJi5YDEFRlsZAL5ZKLLYoEHXSEwC9VgKVr2brK0eT/B+RNrMSDPuCjlTSk/Q0Puzy81jttkkCdJoKMdPFoFAYkYW0Hr3FC1wZXejmbgxI6IKUOON7I5JCyeBLDNWgqVdT3ExMHky8OyzqoXD4/Ffc2bJEmDOHHHjvf667wcvu5gCqVujdWaIlBQ1w0rraqI4mmA+/L59xXbtWmM++DDDYibCyAG/wVwkWmgVuHq1fedjhXB19CVhEcgdAAA7d4qtURcKjQ1yrAP58Y1kP8oCNFAQMPViM3Je1av7jllmAklloaSXdmq3mKH3ZKQ6M6Bmm0XDBEZiJpAYpesYaL4gl5KZpqMyNOEHiztyo5ihscDfNaa5PBqEbcSgL2lJia9Spk7aS5eKAamoCLjrLvHY3/5WsQcKiZlgaZtWUrNlV5OMXrE8LQ0aiOJpXm9UdEFmMRNhKD0bMN80j2I3jFSiDSdkObHbbEwu4WC9mYy2MiC0WSherzrABhsjAF8LWqBrT+4/oxO4LGCsihltN3DC7nRYOo4cnBoIGlOjoRw/3aeB7iuabwKJGXLvkdg2W5qArmEwywwtcqMhE8woRsSMW/pM2UJysn+/ZNOmwsfs9QprzOTJwtzZqJFwS2kxEvwLBI6Z0bvw114rFPPx46qftbBQLX4VTMwAqnUnCuJmWMxEmFq11EnYbHl2qiBsdHUcLuj7YvdKi4RFsBRgsrAYFQ20IqYAYLnHkBExA6iZW99+q7/P3r1ia7Rqq2wVMhN7IU9yemKGJhW74proszbabJKsD2beV7igcw90X9G4H0igkIgkt4lZMUPf+2CWGVpQR0MmmFFoLtVeY/nvKiVmADXbQ/ulIVfTf/4jIpMB4JVX/K/OLr1UtDK49trAr6WtM3PqlKqa9S78OecIc/K+feqqY80aEeTUqJGxonhXXSUGpCjooM1ixgFyc4UYD+aS1EIWSKczmsgta/fgJAdHBxrwSZQYrY5K33MSMSQ6AON1PKhp5Ouv6+9DVgujhTEpFgcw34OHLAh6rmoaW+yKa6LP2qhrnMbRaCjHTwvkQGKGrI2B6oNp06TNihkKJA/2/XWjmKF5WHuNZTdoNFjpIgqJGa05c8gQIQAOHBDCYehQ/WDbSy8VRfQGDgz8WlrLDF34mJjAJuyWLX1vZKMuJqJHDzEovPOOsf3DCIsZB0hNDZ6F4w+6v0pLjVURDRfhWnXL10QWHFrIImpUiNBkRs8jy63HY3xCeuwxsT1wAFi/3v8+lOVFk1YwOnZUfw8WMKyFzluvkzVNKna5mUg4BkubJ0hMmX1f4YAseIFS2SkOJpCY0Qbsmy2MShlsp08HFlbhikkLJ2T90l5j+X6JBitdRKHVyi+/+D5+zjmiui4gVgn/+U/or6UnZqpXNzbIlZWJG9OsmImLcybn3g8sZlyEXJvEySDgcHX0lVeigfog0WBv1AJCkxl9v6lRppkAywED1OPo9XsjgWk0sFuOnzJrwaBz1wsApknFrgmRFplGg19pstbWVXICsioFSmWnzy7QPaFdgJgN0JXT8Tdu1N+PrrGbxAzNZ9prLN+fbooBsgUqNkWZATL//KcY0HNyAq/KvvtODIbBquxqxYyZEufTpolzmDkTGDdOBCJfcUXw50UZLGZcREyMmlXipJgJ56qbJohAcUFGWxkQ9H2mSYKsvmYH15tvFttvvqlYK6S0VJ3AO3QwdrzOncU5xMX5upyMQNdJLvYmY3dtDzPNJuUA62joRUfuDafFTFKSGnv1zTfBz8VN2T90roHETJVj6FDRV2nu3Ir/u+ACoWj799d//smTolrqeeep4kQPPcuM0ViAvDyR1XTddSKOJ1gJ8yiExYzLIFOtP7EfKWjSDoeYIYGh17bh2DHVMmTUAkIuEpokKObGbEzCk08KQen1Ao884vs/2ZJsVMzExQl38+HD5s+FJkW9+Au7q65SJl2wTBzAdwIz0/g3XMixGnqChkRaoBYd2vvdSjsPmlu0dcr8nYubxAxZLbXXl+ZgNxUAtI2sLNFx2mrfFzIhJycHDzjS1pkxI2YoRXvZsuCiKYphMeMyaHKgWitOEM6OvsE6Z//732IbG6vWbAoGTUIU60NxJmaDY1NTVVeBtiw6FcyLjTUnTFJTrcUSkIVOb+yhScUuywxZwYw0m5SFaDQ0SpTdoXqWJVrQBrLWyQUYAWtzFFm4fv1Vfx+6T92U/aMnvMgaajZYmoFvjZlgalDPzWQk5bN5c7EyPHMGuP9+4x1Zowy+xVwGZUDJBeAiiRx4bKaCsVHIkiD3UZIhi2379sYHSBIzZFWgoEQrE/0zz4jtn38Cixapj5NlJlK9dEjM6MWwkOC0S8zIQc3Bgs9pQQlER+E3WczoZWPR+B3M9Si/Hyt9r+g6BmoYS/ep3TFp4UQWXnI9H7Icmg2WrjR8/LHwT7//vvnnGq0xA4TuZiLrzOuv63fSjnJYzLgMCgJ2yhcd7o6+gTpnFxSo5fTvuMP4MUl0UayPHOhvlosuUt/3P/+pPr5jh9hGajVNFqxgYsYuV4UcLxLMKkhWtWiZwGSBqSdmjDbmlMWOlYBW+v7qxToBqhhwU/aP7AWRXZ9GssQqNWvXitYFVnrQUOCgETGjrTNjVsxQdhXgW6beRbCYcRnk5igpCV4pNxzIYiYcdTACdc4mF1NMDHDbbcaPSYXxyPVCA6zVuhcTJojtTz+pEzeNO5Fyq5CYkQt+EnLcgl3iKi7OeLNJqhFmNVTAbmQLnl5qObl2gokZuQihlfv/kkvENlB6Nj0eDTV6jCLfZ/I1pu9aNFjoHKFdO7GlqrpmsGKZOXlSDADBWhlo6dIFeO45IbzcFKwlwWLGZXTpov6+bl3kX58m73D5wClY119g65w5Ynv++eYGR9mqUFioukmMFt3Tct996kRNado0gVOgbLihsctfzIxccNDO3kj0ngPVAALUqsTRlIpL92swMRNMoMjp0lbcTHL5Dr30bAredpOYka+bbDU2kiVWqZHTs4OlV2uxImYA4TM1k5oNiJXKPfcAI0aYOsVogsWMy0hIUCeVVasi//oUyxIuszHFt2gtDoWFau2Z0aPNHVPOqNmzR524rE4WcXGiijcALFjguxAym2JtFTr3rVvF4k+OwZBdGHaKGZqwAsV7AKorJ5oq2JKY0QuYpnsiWPsHOQbJSqsIOT1bLzQhnAH2kUBeiND3OFqsdBGnWTNxoxQXBy6e5Y+bbwYefhi4+OLg+8o3Y1GReTdTJYDFjAuh+9OK5TJUSMyEa9Wt1zn7uefENibGXLwM4Osi2b9fDbAMpaAbnc+pUyJmjs63TRvrxzTDK6+I8hOAWPQ1bgw88IAQVvKEbafF2GizSRIzkQqGNgKJbz0xQy7bYAJFFodW+17R9/eHHyr+TxYC4YhJCyf0HZMtM0ayxCo1sbFqUz2zA/bAgcDjjxur9RAT4xs3w2KGcQMU0Lp9e+RfO9wdfcmiqu1bRq0/2rSx9to0mR04oB47lGys885TM8sef1yNU+nUyfoxzZCVJQJxn35arHq9XhFTVL8+8PXX6n52ugNJGOllmhEkGKKkyjkA1c2hV5fHqJiR46ysijUSKdRlXUbOBHObZYbuNfkaG80Sq9SQqyncq0+51ozZmJlKAIsZF0Ir8mDm/nBAMQfhciFQzIkcHFlcrGbQ3HqrteOSmfvgQVV4hFqd9uGHxVaegMw2Dw2V++8XcUwUi3HoEHD33eJ3uwuV0UQerNkkTWZ2pYXbgVExE6yFgBxnZVXM0D3ir8q13GDZbQKAFgxy6j5ZLN32XmylXTvxZdRrce+PggJg5Upg927jz5HTs83GzFQCWMy4EAqQN9r0DwAWLwYefDD01ybBHy4Xgtw5m1Z1zz8v4gg8HnWiNguJr3371MesNPuUGTnSd/KLj3emOFhGBvDtt8AHH/haQ+wWMzSRBysLQJNZNC0KSczqpbKTtS6YmJGrAFvtnRTo+0tixo1F5kjMyILRaGB1pWbUKHHjvfqq8eds2gT06gX06WP8ObKYYTcT4wYoHuzUqcD9ZmQGDRIuiVdeCe21w93Rl9KoATVe7q23xLZlS+srPBJfVA8GsKfU/k03qb87bYkYMEBMkH/5ixAydvdFos8mmIgmEWo19T0c0H2jV/DPaJdxOY7FqhuNrGinTlVMzw53gH048WeZYTEDMTCYHTDNZDIRNMjl56vBSixmmGhGTu/86afg+//+uzqofPxxaK9NK9twTdwJCapFgTKPKDbollusH5fGEtk1Z4fp++mn1fONhoqtcXEihb2kxJyF2giXXiq2J04EFtHkWoiG60FQGnUwMRNMoMhxVlbFDNWaASr2aCIXnhuzf8iVJ2ciGs0SYzRYETM0yMnl4V1aM8YKLGZcSGqqOnAYSc+WK2mH2qCSBqpwfkfove3bB7z4oupiGj/e+jHpfMltbVfdi4wM0dgWiFzwrxHi4ux3VVA6uqL4z8QhKFssmuqkkJjRaztDJUCC3dey5dCqmElJUcXKt9/6/i/cAfbhhN6TLBjpXqjyYua118Qq9I03jO0v92UyCokZCuKTJ4oqAIsZl0KDbqBJhfjyS/V3OcDQCjQZhNN6SQP5gQNATo74vXnz0EzV5PIIR92LZctEtpW2+WRlo0YN9bNZskR/P4o/CSX13W5oMtUTM0Ybc8pxVqFYJymeSFs4L9wB9uGEvlPyNabA6mhK03eE338XK8/vvze+P2DNMkNipgq5mAAWM66F0jYDdd8lZGtMWRmwZYv11yWzcTjjIWjgO3BAfX+hFqYklwdNWnZOFnFxwPDh7pyAzEIBsKtX6+9DVo5oSi0mMaOtX0QYFTPyewolwFmvezbFbbrRkkFCV77GRrPEKj1m07PN9GUitG4mFjOMG2jSRGz9pXdq0RY5mzfP+utGwoVA38nPPlNdTPfcE9oxta0L3DhZRAMtWojt1q3+/+/1qhVsw9FV3SokkOVWDzIkZoIJlJgY1WVFtdCsoNc9O9wB9uHEnyvPaJZYpYfEzJYt+k25ZOyImYmmdMIIwGLGpZx/vtjm5QXeb+9edUChVfXKldZfl45lta+REeg7SJkdTZuGbqbWujyiqaCbm6DeYHpVgOVWCnZki9kFjfN6YoYwspj99ltg/vzQqj3T3Kbtnk3xJm6c/P1ZZoxmiVV6zjtPDGKnTgVvOw8Ajz0GPPKIb62KYLCbiXEjNKkUFwfOLKHg37g4oEcP8bveqtoI5EKQ623YjdaFNXx46MfUloavQkH+tkJlL06d8h9/IlsaosnNROO8v07z8mNGxv9OnYAbbwztfCijSVtegcSMG+9PcrPKgtFollilJyZGXYEacTXdfrsQNGYEibb7LIsZxg1QmiwA7Nqlv99XX4ltnTpAv37i97w84/VptNDzwjlRaa0+994b+jG1Lo9oqoHiJihzC/ANLCfIwu3xRFfhN4qF8Sdm5CKAkbLMy+UV5CB+smq40UNArltyRQPGs8SqBOFua6A1X7vxJgqBKBpuGDPUqqVOFtr0ThkK/j3/fFE4DxAxDYECOPWQV1zhbIInW33OPdeeVR21SSAyMkI/ZlUkLk5dAJJQliH3UzQJGUAVM9qeX4Bv88lI3RcpKWrWrNw9m8SMGxfVZJmRxYzRwOoqQfv2IgaGgov8oSiiY+y336rBZ0bR+vLceBOFQJQNOYwZaIBYv15/n0OHxPbyy8W9TaunDz4w/3pynEQ4xYxsRRk2zJ5jalsXRFMNFLdBpS/83XcU5xRtRd9IEPuLvZQtM5Gs7+KvezYJATeKbTIM+BMzVcxI4J+77hIZG5Mm6e/z3XeiY2yfPvot3vVgMcO4FbJg6MXA7NqlDt7k48/OFttA1hw95MKS4fSBU8YMYI+LCah4vtFUA8VtUOCrP/cmiZlAi08noMk0mJiJJP66Z5PlKJqqJxuFxIxs/WIxI2GkWdpLL4nt8OHmxQiLGcatkDDZu9f//+fPF9u4ODWVu3NnsaUWAWYgy4zdDQy13Hgj0L8/8K9/2ft9lF0f4bQsVXYobsZf92x6LNpq7tBkSjEcMrQADvd9rcVf92wSW260HJKY8ReXVMXm1eD4uxFzc9WMjbFjzR9TK2aqmIJkMeNiaIWs11l+xQqxlSfua64R2z//NFbuQIZW3ZGokP3hh8BDD9l7TNn1EU01UNwG3UOlpb7WOkBNNY62iq80mfoLfKd+Y5GO86Hu2XJ6Np2fGy2HWlee2SyxKsGUKeLDffHFiv/773/FxevWDbjgAvPHZssM41aoF5Be8zyq9EsZgQBw/fXq70uXmns9Ek3RFg9hFNn1oQ0IZozTrJk68S9a5Ps/snJEWyouZa/5i6mkQnWR7lTdtavYUnq2XHAwnKUPwoVWzMgijbMHz6IoYlWozWgqKQFefVX8Pm6ctWOzmGHcCqVnK0rFFTKgBv9ecYX6WFKSGji8cKG513NzEzzAt+ovud0Ya9DkpC3ASMIg2rJX5IBarXWGLDORFjPa9Gw5dseNlkOaS8mDQn2mgCo3r+pD5riffvJ9/MMPxYCdlQUMHGjt2CxmGLfSqJHq5//mG9//bdumDiraAl/nnSe2ZtOzaaUVbfEQRpG/69HmBnEbJAa1XdjJShht7npZzJDgIpwSM9r0bHlB4kbLDNWSoXFHFmdVqHlzYKjWzM8/+/r5Y2JEHYoxY6yvFrnODONmaIJeu9b3cYoji4+v6FKh6qOBiu35gwYntwoBGmyjrQaKG+nQQWz37fN9nKoCR1tqsXw+2sBlOmcn3KdyerZc+sCNkz99v8jypRWNDMQqIDVV5K/LaWyDBwM7dgAPPmj92BwAzLgZynr45Rffxyn415+5+oYbxLaw0H9Jej3c3AQPUL/bbo35iSYuu0xsCwp83TZUWDHaUotlAa7XD8mJ+0JOz6YAe7eKbXIt0v1A8VNufT9hISZG39UUExNaB1x5YE5Kcq8J3SJ8m7kcsrrs3u37+M8/iy1ZNWXkGJpPPjH+WmSOj7bgTqPQ6jzaaqC4kauuEltFATZsUB+PRFf1UNGKmaIisXVCzMjp2RRg70arDKAuFiiImRY/LGY0yG0Njh0D3nnHt9KgVRIS1JunisXLAA6LmalTp6Jz585IS0tDZmYm+vfvj22S6e3MmTN48MEHcf7556NatWqoV68eRo4ciYP+ol2rKK1aie3hw76P0yqvd++Kz4mLUwM4Fy82/lpuboIHAB07ii3XmAmdGjVU1/5nn6mPazu0RxM0qWqL5JF10onAdjk9m9xfbrUcyvOn1+tclljUc8klQK9eIkYmJwcYMQK4+mp7jk3WmSrmYgIcFjMrV67E2LFj8f3332Pp0qUoLS1Fnz59UHR2qVRcXIwffvgBjzzyCH744Qd88MEH2L59O66X84urOBdeKLZkNQGEVYaC8Kgfk5bmzcVWG2sTCBr03Zpm+Y9/AG++CXz9tdNnUjmgWijff68+RvddNHXMJvTEDLnGnLDYyenZeXnid7dmC8rzZ3Gxc4HVUc+IEcDy5cDo0cDLL4vHbrrJnmOTmKmClhlHDZpLlizx+TsnJweZmZnYsGEDevTogfT0dCzVFEN58cUX0aVLF+zbtw+NuFhIeXp2WZlY3WVkAAsWiMcSEvRTPC+9FFizRr96sD9o0HermImJAW65xemzqDw0by7cI7/+Kv6W66REY2pxXJxIINEGplJzRyfEjJyeTXWh3BrqII8Lx46plly3us3CzpIlwG+/CeFhVxO6KixmosqbmX82YiwjQCpEfn4+PB4Pauh8WKdPn0ZBQYHPT2WGfO6A2m+Jan/Ur6//PCplcPKk8d405NaNtuBOxhm6dBFbysIhywIgmgNHG2Qh0A4JJNKdEBFyejZ52N2eLQiIa8xiJghPPim2t95qX1YFu5mcR1EUTJw4Ed27d0fbtm397nPq1Cn8/e9/x7Bhw1BdJ3Bj6tSpSE9PL/9pSC1+KylyAPyaNWJLmU3+gn+Jiy5Sa9RQGncwKB6iVi3z58lUPvr1E9tTp4Rb4fff1f9FY8wMxaJEk5gB1HmHYmbcKmbkQN8//3Q2sDrq6d0bWLVK/H7XXfYdl24etsw4x7hx4/DTTz/h3Xff9fv/M2fO4KabboLX68XL5Gf0w0MPPYT8/Pzyn/1yF7dKCokLymCi4N8rr9R/TkyMmnGi8fbpQjWeonGiYiIPxXsAojUGxeV7PNGZwUKTqhxfBqg9hELJig0FcslRSnO0VU82Ay2Q/vzT2cDqqOfii8U2Oxto2tS+41ZhN1NUGADHjx+PhQsX4uuvv0YDP/bpM2fOYMiQIdi9ezeWLVuma5UBgMTERCRWsdzbBg1E7MKuXcCmTeqgGKwqduvWQvhs3GjsddzcBI+xn7g4kaZfWAh89RVABtVoDfikSVXby4zcp05ZRJo29a2k7HYxoyhCMLKYCcBDDwmT3MiR9h63CosZR9dPiqJg3Lhx+OCDD7Bs2TI08dMwh4TMjh078OWXX6ImB2xUoEULsc3NBT74QPyemBg8o6RnT7GV3QN6yB1wObWZIWjtsWGDahGMVrcCrXHI/UGQ+9SpYpBad7Cb5yGyyBUUOBtYHfVUqwbcf7/9K0NaUcjdhasIjoqZsWPH4p133sGcOXOQlpaGQ4cO4dChQzh59ltQWlqKG2+8EevXr8fs2bNRVlZWvk+JPLtWcah+Sn6+2qMpUPAvMXiw2JaU+G9UKSOXWjdybKZqQGPnrl1q0bdoXYlTTIy26jUNJU5ZZsjjQLhZzMhB1iRm3Jqd5UqmTAH27AGuvdbpM4k4joqZV155Bfn5+ejVqxfq1q1b/vPee+8BAH7//XcsXLgQv//+Oy644AKffVZR8BRTnt5ZWqqaq6l3TiDatFEHn3nzAu8rix23Fs1j7Kd7d7HNy1MDWJ2KPQkGnZdWzFAsmFOWGTk9G4i+vlZmoPGkqMj5wOoqSUwM0Lix02fhCI67mfz9jBo1CgCQnZ2tu0+vXr2cPPWo4oIL1N9pQunTx9hzyRWlKedTgUOHxJYC/BgGUBeAZWVqzaJozcYhMUMWA4LEjFOxKqmpvunLbs4WpPdx4oQaixSt4papXERhzgFjlpiYin7pYMG/BLlWtT3PtFA8RLQGdzLOcN55apwEZdNFa+8uEllkMSCoarGTgbdyWZDKIGaKiljMMJGFxUwlQTZNJyUZHxCpdxNZXvSgeIhoDe5knIMqvx4/LrbR6oYkN5K2px+JGSdFmFwx2c3ZghQvVVysxiI55b5jqhYsZioJ8mBopk4gBQGXlgJbt+rvR+6raA3uZJzj3HN9/47W4qMkVrS5A1RywEkRJpcacbOYocVOUZHz9XuYqgWLmUoCNY4EfGNogtGokToAUU8nfxw7JrYczMdooWw6IloDWPXEDPWTclKEUfdsIDr7WhlFtsxQLFK0uh2ZygWLmUqCLGD69jX3XEq1XrZMfx/q38SrLEbLZZf5/h2tpaAoJobqyhDRIGbkjCY3x8xQ7N6pU+p1ZjHDRIKoqADMhA4VwAOAAQPMPffCC0VpAura6w8SM+z/ZrRcdZXv39E6GZOYIYsBoLqYAGfFzBVXAJ06CRdTNLaCMApZbk+ejI5YJKbqwGKmknDRRcDQocJEbdbMf911wsWUlycGd3+DKfWz4YGJ0VK9unAvkPsmWmM+SKzQJAv4Np10slhdTAywbp1zr28XsmWGrnO0BoQzlQsXrwEYLXPnAs89Z/55gwaJraKIHjv+oH420RrcyTiLLGCiNebDn5ihDCwgemN93AS5oU+fZjHDRBYWMwxSU1UT/Pz5/vehqqksZhh/UH8wIHrFDFleZNeSLGaitdifmyAxU1ISHVliTNWBxQwDQM2G0usSQYXGePXK+KNLF/V3P43vowK6dyngF/B1MzGhI1tmoiGwmqk6sJhhAKgBxL/95v//VGiMxQzjj+uvV3+P1nuEivsBahBwfr7YcpsOe6AEATljjC0zTCRgMcMAAG66SWxPnlRbF8jQ4BStmSqMs1x0EXD33aJpb7Rm48gp45SdR2ImWs/ZbfirsiyLSIYJF/wVZgAAnTurfZfefbfi/2klm5kZuXNi3MVLLwGPPur0WegjW4yoojW5mVjM2AOLGcYp+CvMlEMdtJcsqfg/ykyI1rRbhgmG3IqDKlpTlh43ULUHKt0gu5mcTHlnqg4sZphyOnQQ2x9/9H1cLjJWt27kzodh7IZiYyiLieonsZixB4qPkdPf2erFRAK+zZhyrr5abA8f9k1flTtqR2umCsMYQStmyDLD3eDtQVtUkwOrmUjBYoYpZ+hQsfV6fVO0c3PV3zkzgXEzZIGhwN+iIrFlMWMP2vGBxQwTKVjMMOVkZKgBfPPmqY+TmPF42GTMuButmKFikHHc2MUWtDVleLxgIgXfaowP550ntt98oz5GqdocV8C4HRItFCtDYkYODmaso7XM8JjBRAoWM4wP3buL7Y4d6mN//CG2vHpl3A65k7RihhokMqGhzVxiMcNEChYzjA+DB4ttUZFaWCwvT2x59cq4Ha2YOXlSbFnM2IO2pgwvgJhIwWKG8aFHDzVoj+JmqMBYUpIz58QwdkGihbKYqOcYixl70FpmOLCaiRQsZhgfYmLUwniLF4stWWioiRzDuBUSLZTFRJVq+d62B+2Ch8UMEylYzDAVaNdObH/4QWwp8yMlxZnzYRi7oMmWYmXIMsNiJjywa5qJFCxmmAr07Su2Bw+KLcUXpKU5cz4MYxdaMVNSIrYs1O1Dri3D7jsmUrCYYSowbJjYlpUJ6wzFF3DBPMbtkGghiwyJGbbM2IdcW4bFDBMpWMwwFcjKUlewc+eqq1htQSyGcRtaMUMNEalYJBM6cjo2ixkmUrCYYfzSpInYrlihpq9q0y4Zxm2QaKHAXxIz2p5CjHVkywxbvJhIwWKG8UvXrmK7bZs68GdkOHc+DGMHJFronqaO8Cxm7EOuLcPlHJhIwWKG8cvAgWJbUKCa5GvVcu58GMYOKIidLDJlZWLLbib7kMUMB1YzkYLFDOOXPn3UrAQa+DMznTsfhrEDPTHDwe32IdeWYTHDRAoWM4xf4uKAmjV9H2Mxw7gdEjPkXvJ6xZbFjH3IYoYtXkykYDHD6NK2re/f9es7cx4MYxeUkUcWGRYz9iMXymMxw0QKFjOMLr17+/5dr54z58EwdqEVM4oitixm7ENOx+bAaiZSsJhhdKHieQRnMzFuh8oLKIpqlQEqNkhkrCNbZrhqOBMpWMwwujRpog5MHo9v/QiGcSOymKFikPLjTOjI6dhs8WIiBU9PTEAaNxZbFjJMZUC2Lv7xh/o7ixn7kAvlsZhhIgVPUUxAunQRWzlDgWHcipyht3u3+jvHdtiHbJlhNxMTKVjMMAF56CGx0rriCqfPhGFCR46N2btX/Z0tj/Yh15bhfm5MpIgLvgtTlWnTxje2gGHcjFyddv9+saXikIw9yGKGA6uZSMHrEYZhqhQkXnJzff9m7EEWMxyLxEQKFjMMw1QpyKV05Ijv34w9yPFHLGaYSMFfY4ZhqhSxsWKbl+f7N2MPspjhwGomUrCYYRimSkHi5fhxsY3jyEFbkVsYsNWLiRR8qzEMU6Ug8VJQILZsmbEXqi3DsUhMJGExwzBMlYJqJhUW+v7N2EOjRmLLFi8mkvDtxjBMlYJadJw8KbYsZuzl2mtFX7du3Zw+E6YqwWKGYZgqBYmZkhLfvxn7mD3b6TNgqhrsZmIYpkqRmCi2paViy2KGYdwPixmGYaoUcu8gQBU3DMO4FxYzDMNUKeSuzkBFccMwjPtgMcMwTJVCLrcPsJhhmMoAixmGYaoULGYYpvLBYoZhmCqFXKEWqOh2YhjGfbCYYRimSqHtF6QVNwzDuA8WMwzDVCnS0nz/1rqdGIZxHyxmGIapUlDvIIItMwzjfljMMAxTpdBaZrRuJ4Zh3AeLGYZhqhTp6b5/s5hhGPfDYoZhmCpFjRq+f2vdTgzDuA8WMwzDVCm0YoYtMwzjfljMMAxTpcjI8P2bLTMM434cFTNTp05F586dkZaWhszMTPTv3x/btm3z2eeDDz5A3759UatWLXg8HmzatMmZk2UYplKgFTNaSw3DMO7DUTGzcuVKjB07Ft9//z2WLl2K0tJS9OnTB0VFReX7FBUVoVu3bnjqqaccPFOGYSoLNWv6/q0NCGYYxn3EOfniS5Ys8fk7JycHmZmZ2LBhA3r06AEAGDFiBABgz549kT49hmEqIVq3EosZhnE/jooZLfn5+QCADK0d2ASnT5/G6dOny/8uKCgI+bwYhqk8xGjs0eec48x5MAxjH1ETAKwoCiZOnIju3bujbdu2lo8zdepUpKenl/80bNjQxrNkGKYy4PGov3PMDMO4n6gRM+PGjcNPP/2Ed999N6TjPPTQQ8jPzy//2b9/v01nyDBMZUG2zsRFlX2aYRgrRMXXePz48Vi4cCG+/vprNGjQIKRjJSYmIjEx0aYzYximMhIbC5SVOX0WDMPYhaOWGUVRMG7cOHzwwQdYtmwZmjRp4uTpMAxTRSBrjDZ+hmEYd+KoZWbs2LGYM2cOPv74Y6SlpeHQoUMAgPT0dCQnJwMAjh07hn379uHgwYMAUF6HJisrC1lZWc6cOMMwrobFDMNULhz9Kr/yyivIz89Hr169ULdu3fKf9957r3yfhQsXokOHDrjmmmsAADfddBM6dOiAV1991anTZhjG5cTHi21srLPnwTCMPXgURVGcPolwUlBQgPT0dOTn56M61y1nGAZAvXpAbi6QnAwUFzt9NgzD+MPM/M1GVoZhqhwJCWLLmUwMUzlgMcMwTJUjKUlsyd3EMIy7YTHDMEyVg8UMw1QuWMwwDFPlOJssyWKGYSoJLGYYhqlypKSILcXOMAzjbljMMAxT5Rg5UgT/Dhrk9JkwDGMHnJrNMAzDMEzUwanZDMMwDMNUGVjMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjaljMMAzDMAzjauKcPoFwoygKANFKnGEYhmEYd0DzNs3jgaj0YubEiRMAgIYNGzp8JgzDMAzDmOXEiRNIT08PuI9HMSJ5XIzX68XBgweRlpYGj8cTsdctKChAw4YNsX//flSvXj1ir+sm+BoFhq9PcPgaBYevUWD4+gTHqWukKApOnDiBevXqISYmcFRMpbfMxMTEoEGDBo69fvXq1fkLEgS+RoHh6xMcvkbB4WsUGL4+wXHiGgWzyBAcAMwwDMMwjKthMcMwDMMwjKthMRMmEhMTMWnSJCQmJjp9KlELX6PA8PUJDl+j4PA1Cgxfn+C44RpV+gBghmEYhmEqN2yZYRiGYRjG1bCYYRiGYRjG1bCYYRiGYRjG1bCYYRiGYRjG1bCYCcDXX3+N6667DvXq1YPH48FHH33k8//Dhw9j1KhRqFevHlJSUtCvXz/s2LGjwnFWr16Nyy+/HNWqVUONGjXQq1cvnDx5svz/x48fx4gRI5Ceno709HSMGDECf/75Z5jfXeiEen327NkDj8fj92f+/Pnl+7n1+gD23EOHDh3CiBEjkJWVhWrVqqFjx454//33ffap6tdo165dGDBgAGrXro3q1atjyJAhOHz4sM8+br1GU6dORefOnZGWlobMzEz0798f27Zt89lHURRMnjwZ9erVQ3JyMnr16oWff/7ZZ5/Tp09j/PjxqFWrFqpVq4brr78ev//+u88+Vf0a/fe//0WvXr1QvXp1eDwev+/djdfIjutz7NgxjB8/Hi1atEBKSgoaNWqECRMmID8/3+c4Tl0fFjMBKCoqQvv27TFjxowK/1MUBf3798dvv/2Gjz/+GBs3bkTjxo3Ru3dvFBUVle+3evVq9OvXD3369MHatWuxbt06jBs3zqc087Bhw7Bp0yYsWbIES5YswaZNmzBixIiIvMdQCPX6NGzYELm5uT4/U6ZMQbVq1XDVVVeVH8ut1wew5x4aMWIEtm3bhoULF2Lz5s0YOHAghg4dio0bN5bvU5WvUVFREfr06QOPx4Nly5bhu+++Q0lJCa677jp4vd7yY7n1Gq1cuRJjx47F999/j6VLl6K0tBR9+vTxuUeefvppPPfcc5gxYwbWrVuHrKwsXHnlleW96QDgb3/7Gz788EPMnTsX3377LQoLC3HttdeirKysfJ+qfo2Ki4vRr18//OMf/9B9LTdeIzuuz8GDB3Hw4EE888wz2Lx5M2bOnIklS5bgtttu83ktx66PwhgCgPLhhx+W/71t2zYFgLJly5byx0pLS5WMjAzl9ddfL3/soosuUh5++GHd4/7yyy8KAOX7778vf2z16tUKAOXXX3+1902EEavXR8sFF1yg3HrrreV/V5broyjWr1G1atWUWbNm+RwrIyNDeeONNxRF4Wv0+eefKzExMUp+fn75PseOHVMAKEuXLlUUpXJdoyNHjigAlJUrVyqKoiher1fJyspSnnrqqfJ9Tp06paSnpyuvvvqqoiiK8ueffyrx8fHK3Llzy/c5cOCAEhMToyxZskRRFL5GMsuXL1cAKMePH/d5vLJco1CvDzFv3jwlISFBOXPmjKIozl4ftsxY5PTp0wCApKSk8sdiY2ORkJCAb7/9FgBw5MgRrFmzBpmZmejatSvq1KmDnj17lv8fEJab9PR0XHTRReWPXXzxxUhPT8eqVasi9G7sx8j10bJhwwZs2rTJR+lX1usDGL9G3bt3x3vvvYdjx47B6/Vi7ty5OH36NHr16gWAr9Hp06fh8Xh8CnolJSUhJiamfJ/KdI3IrJ+RkQEA2L17Nw4dOoQ+ffqU75OYmIiePXuWv7cNGzbgzJkzPvvUq1cPbdu2Ld+nql8jI1SWa2TX9cnPz0f16tURFyfaPDp5fVjMWKRly5Zo3LgxHnroIRw/fhwlJSV46qmncOjQIeTm5gIAfvvtNwDA5MmTcfvtt2PJkiXo2LEjrrjiinKf/6FDh5CZmVnh+JmZmTh06FDk3pDNGLk+Wv73v/+hVatW6Nq1a/ljlfX6AMav0XvvvYfS0lLUrFkTiYmJGDNmDD788EOcd955APgaXXzxxahWrRoefPBBFBcXo6ioCPfffz+8Xm/5PpXlGimKgokTJ6J79+5o27YtAJSff506dXz2rVOnTvn/Dh06hISEBJxzzjkB96nK18gIleEa2XV9jh49iscffxxjxowpf8zJ68NixiLx8fFYsGABtm/fjoyMDKSkpGDFihW46qqrEBsbCwDl/voxY8bglltuQYcOHTB9+nS0aNECb775ZvmxPB5PheMriuL3cbdg5PrInDx5EnPmzKngfwUq5/UBjF+jhx9+GMePH8eXX36J9evXY+LEiRg8eDA2b95cvk9Vvka1a9fG/Pnz8cknnyA1NRXp6enIz89Hx44dfa5jZbhG48aNw08//YR33323wv+078PIe9Puw9coOG6/RnZcn4KCAlxzzTVo3bo1Jk2aFPAYgY5jJ3FhPXol58ILL8SmTZuQn5+PkpIS1K5dGxdddBE6deoEAKhbty4AoHXr1j7Pa9WqFfbt2wcAyMrKqpB1AQB//PFHBZXsNoJdH5n3338fxcXFGDlypM/jlfn6AMGv0a5duzBjxgxs2bIFbdq0AQC0b98e33zzDV566SW8+uqrVf4aAUCfPn2wa9cu5OXlIS4uDjVq1EBWVhaaNGkCoHLcR+PHj8fChQvx9ddfo0GDBuWPZ2VlARCrYhpzAOHmpveWlZWFkpISHD9+3Mc6c+TIkXJLaFW/RkZw+zWy4/qcOHEC/fr1Q2pqKj788EPEx8f7HMep68OWGRtIT09H7dq1sWPHDqxfvx433HADACA7Oxv16tWrkAK3fft2NG7cGABwySWXID8/H2vXri3//5o1a5Cfn+/jbnEzetdH5n//+x+uv/561K5d2+fxqnB9AP1rVFxcDAA+2W+AiBshy19Vv0YytWrVQo0aNbBs2TIcOXIE119/PQB3XyNFUTBu3Dh88MEHWLZsWblAI5o0aYKsrCwsXbq0/LGSkhKsXLmy/L1deOGFiI+P99knNzcXW7ZsKd+nql8jI7j1Gtl1fQoKCtCnTx8kJCRg4cKFPrFsgMPXJ6zhxS7nxIkTysaNG5WNGzcqAJTnnntO2bhxo7J3715FUUQk9/Lly5Vdu3YpH330kdK4cWNl4MCBPseYPn26Ur16dWX+/PnKjh07lIcfflhJSkpSdu7cWb5Pv379lHbt2imrV69WVq9erZx//vnKtddeG9H3agU7ro+iKMqOHTsUj8ejfPbZZ35fx63XR1FCv0YlJSVK06ZNlUsvvVRZs2aNsnPnTuWZZ55RPB6P8umnn5bvV5WvkaIoyptvvqmsXr1a2blzp/L2228rGRkZysSJE332ces1uuuuu5T09HRlxYoVSm5ubvlPcXFx+T5PPfWUkp6ernzwwQfK5s2blb/85S9K3bp1lYKCgvJ97rzzTqVBgwbKl19+qfzwww/K5ZdfrrRv314pLS0t36eqX6Pc3Fxl48aNyuuvv64AUL7++mtl48aNytGjR8v3ceM1suP6FBQUKBdddJFy/vnnKzt37vQ5TjTcQyxmAkDpedqfm2++WVEURXn++eeVBg0aKPHx8UqjRo2Uhx9+WDl9+nSF40ydOlVp0KCBkpKSolxyySXKN9984/P/o0ePKsOHD1fS0tKUtLQ0Zfjw4RVSAqMRu67PQw89pDRo0EApKyvz+zpuvT6KYs812r59uzJw4EAlMzNTSUlJUdq1a1chVbuqX6MHH3xQqVOnjhIfH680a9ZMefbZZxWv1+uzj1uvkb9rA0DJyckp38fr9SqTJk1SsrKylMTERKVHjx7K5s2bfY5z8uRJZdy4cUpGRoaSnJysXHvttcq+fft89qnq12jSpElBj+PGa2TH9dH7ngJQdu/eXb6fU9fHc/aNMgzDMAzDuBKOmWEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYpkpQVlZW3mmcYZjKBYsZhmEizqxZs1CzZk2cPn3a5/FBgwZh5MiRAIBPPvkEF154IZKSknDuuediypQpKC0tLd/3ueeew/nnn49q1aqhYcOGuPvuu1FYWFj+/5kzZ6JGjRpYtGgRWrdujcTEROzduxcrVqxAly5dUK1aNdSoUQPdunXD3r17I/PGGYYJCyxmGIaJOIMHD0ZZWRkWLlxY/lheXh4WLVqEW265BZ9//jn+7//+DxMmTMAvv/yC1157DTNnzsSTTz5Zvn9MTAxeeOEFbNmyBW+99RaWLVuGBx54wOd1iouLMXXqVLzxxhv4+eefkZGRgf79+6Nnz5746aefsHr1atxxxx3weDwRe+8Mw9gPd81mGMYR7r77buzZsweLFy8GADz//PN44YUXsHPnTvTs2RNXXXUVHnroofL933nnHTzwwAM4ePCg3+PNnz8fd911F/Ly8gAIy8wtt9yCTZs2oX379gCAY8eOoWbNmlixYgV69uwZ5nfIMEykYDHDMIwjbNy4EZ07d8bevXtRv359XHDBBRg0aBAeeeQRVKtWDV6vF7GxseX7l5WV4dSpUygqKkJKSgqWL1+Of/3rX/jll19QUFCA0tJSnDp1CoWFhahWrRpmzpyJMWPG4NSpUz6Wl1tuuQXvvvsurrzySvTu3RtDhgxB3bp1nbgEDMPYBLuZGIZxhA4dOqB9+/aYNWsWfvjhB2zevBmjRo0CAHi9XkyZMgWbNm0q/9m8eTN27NiBpKQk7N27F1dffTXatm2LBQsWYMOGDXjppZcAAGfOnCl/jeTk5AoupJycHKxevRpdu3bFe++9h+bNm+P777+P2PtmGMZ+4pw+AYZhqi6jR4/G9OnTceDAAfTu3RsNGzYEAHTs2BHbtm1D06ZN/T5v/fr1KC0txbPPPouYGLEmmzdvnuHX7dChAzp06ICHHnoIl1xyCebMmYOLL7449DfEMIwjsGWGYRjHGD58OA4cOIDXX38dt956a/njjz76KGbNmoXJkyfj559/xtatW/Hee+/h4YcfBgCcd955KC0txYsvvojffvsNb7/9Nl599dWgr7d792489NBDWL16Nfbu3YsvvvgC27dvR6tWrcL2HhmGCT8sZhiGcYzq1atj0KBBSE1NRf/+/csf79u3LxYtWoSlS5eic+fOuPjii/Hcc8+hcePGAIALLrgAzz33HKZNm4a2bdti9uzZmDp1atDXS0lJwa+//opBgwahefPmuOOOOzBu3DiMGTMmXG+RYZgIwAHADMM4ypVXXolWrVrhhRdecPpUGIZxKSxmGIZxhGPHjuGLL77A8OHD8csvv6BFixZOnxLDMC6FA4AZhnGEjh074vjx45g2bRoLGYZhQoItMwzDMAzDuBoOAGYYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtWwmGEYhmEYxtX8P7q0hU0vNJ2TAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDSElEQVR4nOydd5gTVdvG72zvLCy7LH1ROgjSLKAURUBsICqCDREryKtiVxQ+OzZUFBWVVSwoIoiIKF0FRERAioAgSO+wy/Y23x8PZ+dkdiaZJJNMkn1+15UrbTKZTGbm3OepDkVRFDAMwzAMw4QgEXZvAMMwDMMwjLewkGEYhmEYJmRhIcMwDMMwTMjCQoZhGIZhmJCFhQzDMAzDMCELCxmGYRiGYUIWFjIMwzAMw4QsUXZvgL+pqKjA/v37kZycDIfDYffmMAzDMAxjAkVRcOrUKdSrVw8REcZ2l7AXMvv370fDhg3t3gyGYRiGYbxgz549aNCggeH7YS9kkpOTAdCOSElJsXlrGIZhGIYxQ25uLho2bFg5jhsR9kJGuJNSUlJYyDAMwzBMiOEuLISDfRmGYRiGCVlYyDAMwzAME7KwkGEYhmEYJmQJ+xgZs5SXl6O0tNTuzWBsIDo6GpGRkXZvBsMwDOMF1V7IKIqCgwcP4uTJk3ZvCmMjqampyMzM5FpDDMMwIUa1FzJCxGRkZCAhIYEHsmqGoigoKCjA4cOHAQB169a1eYsYhmEYT6jWQqa8vLxSxKSlpdm9OYxNxMfHAwAOHz6MjIwMdjMxDMOEENU62FfExCQkJNi8JYzdiGOA46QYhmFCi2otZATsTmL4GGAYhglNWMgwDMMwDBOysJBhGIZhGCZkYSHD+MSwYcMwYMAAuzeDYRiGqaZU66yl6si4ceMwe/ZsrFu3zpL1vfHGG1AUxZJ1MYGhpARwOIDoaLu3hGEYxndYyDC6lJaWItrESFejRo0AbA1jFeXlwNlnAxERwF9/0T3DMEwow5cxCUUB8vPtuXli1Pjkk0+QlpaG4uJip9cHDBiAm266yfBz2dnZGD9+PNavXw+HwwGHw4Hs7GwAlLUzefJkXHnllUhMTMRzzz2H8vJy3HbbbWjSpAni4+PRokULvPHGG07r1LqWevbsidGjR+Phhx9GrVq1kJmZiXHjxpn/cYxfyckB/v4b2LSJHjMMw4Q6bJGRKCgAkpLs+e68PCAx0dyy1157LUaPHo05c+bg2muvBUDF3L7//nv89NNPhp8bPHgwNm7ciPnz52PhwoUAnC0q48aNw4svvoiJEyciKioKFRUVaNCgAWbMmIG0tDSsWLECd9xxB+rWrYvrrrvO8Hs+/vhjPPDAA1i1ahVWrlyJYcOGoVu3brjkkkvM/UDGbxQVqY9zc4GaNe3bFoZhGCtgIROCxMfHY+jQoZg6dWqlkPn000/RqFEj9OzZ0+XnkpKSEBUVhczMzCrvDx06FLfeeqvTa+PHj6983KRJE6xcuRJfffWVSyHTrl07PP300wCAZs2aYdKkSVi0aBELmSBAK2QYhmFCHRYyEgkJZBmx67s94fbbb0eXLl2wb98+1K9fH9nZ2Rg2bJhPhd06d+5c5bW3334bH330EXbv3o3CwkKUlJTg7LPPdrmedu3aOT2vW7duZS8jxl5YyDAME26wkJFwOMy7d+ymQ4cOaN++PT755BP06dMHmzZtwvfff+/TOhM1P3769Ol48MEH8eqrr+L8889HcnIyXn75ZaxatcrlerRBwg6HAxUVFT5tG2MNLGQYhgk3WMiEMCNGjMDEiROxb98+9O7dGw0bNnT7mZiYGJSXl5ta//Lly9G1a1fcc889la/t2LHD6+1l7KewUH3MQoZhmHCAs5ZCmKFDh2Lv3r2YMmUKhg8fbuozWVlZ2LlzJ9atW4ejR49WyXySadasGf744w/8+OOP2LZtG8aOHYvVq1dbtfmMDbBFhmGYcIOFTAhTo0YNDBo0CElJSaar6w4aNAj9+vVDr169kJ6eji+++MJw2TvvvBNXX301Bg8ejHPPPRfHjh1zss4woYcsZE6dsm87GIZhrMKhhHlZ1tzcXNSoUQM5OTlISUlxeq+oqAg7d+5EkyZNEBcXZ9MW+sbFF1+MNm3a4M0337R7U0KacDgWzDBzJnDNNfT46acBLvHDMEyw4mr8luEYmRDlxIkTWLp0KZYuXYp33nnH7s1hQgR2LTEME26wkAlROnTogBMnTuCll15CixYtKl9v06YN/vvvP93PvPfee7jhhhsCtYlMEMLBvgzDhBssZEKUXbt26b4+b948lJaW6r5Xp04dP24REwqwRYZhmHCDhUyY0bhxY7s3gQliWMgwDBNucNYSw1QjWMgwDBNusJBhmGoECxmGYcINFjIMU43gYF8mVCktBX79FXBRw5OpprCQYZhqBBfEY0KVDz4ALrwQeOUVu7eECTZYyDBMNULrWgrvcphMOLFxI93v3GnvdjDBBwsZxieGDRtmuj0CYz+ykKmoAAoK7NuWcGTLFmDKFMBkX1bGAw4epHs+ZhktnH5dzRg3bhxmz56NdevWWbK+N954A2He5SKskIUMQFaZxER7tiUcGT0aWLAAOOMM4OKL7d6a8IKFDGMEW2QYXYyK6mmpUaMGUlNT/bsxjGXIwb4AB/xazeHDdH/kiL3bEY6wkGGMYCGjQ36+8U07o3W1rHbQMFrOUz755BOkpaWhWBO+P2DAANx0002Gn8vOzsb48eOxfv16OBwOOBwOZGdnAwAcDgcmT56MK6+8EomJiXjuuedQXl6O2267DU2aNEF8fDxatGiBN954w2mdWtdSz549MXr0aDz88MOoVasWMjMzMY47EwYNehYZxjrE/uXB1noOHaJ73reMFhYyOiQlGd8GDXJeNiPDeNlLL3VeNitLfzlPufbaa1FeXo45c+ZUvnb48GF8//33GD58uOHnBg8ejDFjxqBNmzY4cOAADhw4gMGDB1e+P27cOAwcOBAbNmzA8OHDUVFRgQYNGmDGjBnYvHkznnrqKTz++OP46quvXG7fxx9/jMTERKxatQoTJkzA//3f/2HBggWe/1DGcljI+BcxeeHB1lry8tRJnzeTPya84RiZECQ+Ph5Dhw7F1KlTce211wIAPv30UzRq1Ag9e/Z0+bmkpCRERUUhMzOzyvtDhw7Frbfe6vTa+PHjKx83adIEK1euxFdffYXrrrvO8HvatWuHp59+GgDQrFkzTJo0CYsWLcIll1ziyc9k/AALGf/CQsY/CLcSwPuWqQoLGR3y8ozfi4x0fi584npEaOxdBn0eveL2229Hly5dsG/fPtSvXx/Z2dkYNmwYHA6H1+vs3LlzldfefvttfPTRR9i9ezcKCwtRUlKCs88+2+V62rVr5/S8bt26OOxqRzEBQwiZ2FgqLMa1ZKxFCBmtW5nxDRYyjCtYyOjgSRaHv5Z1R4cOHdC+fXt88skn6NOnDzZt2oTvv//ep3UmajZw+vTpePDBB/Hqq6/i/PPPR3JyMl5++WWsWrXK5Xqio6OdnjscDlRUVPi0bYw1iAG2Th1g9262yFgNx8j4BxYyjCtYyIQwI0aMwMSJE7Fv3z707t0bDRs2dPuZmJgYlJsscrF8+XJ07doV99xzT+VrO3bs8Hp7GfsRA21GBgsZqykroxvAg63VsJBhXMHBviHM0KFDsXfvXkyZMsVlkK9MVlYWdu7ciXXr1uHo0aNVMp9kmjVrhj/++AM//vgjtm3bhrFjx2L16tVWbT5jA7KQAVjIWInsTmLXkrXIQqaoiIo5MoyAhUwIU6NGDQwaNAhJSUmmq+sOGjQI/fr1Q69evZCeno4vvvjCcNk777wTV199NQYPHoxzzz0Xx44dc7LOMKEHCxn/IYsXthpYiyxkABaKjDPsWgpx9u3bhxtuuAGxsbGmlo+NjcXXX39d5XW96ryxsbGYOnUqpk6d6vT6Cy+8UPlY1KERLF26tMp6Zs+ebWrbGP+iKCxk/ImcEcZCxlq0QqaggCtSMyq2WmReeOEFdOnSBcnJycjIyMCAAQOwdetWp2V69uxZWbxN3O666y6btjh4OHHiBGbNmoWlS5di5MiRdm8OEwLIXkQWMtbDriX/oSdkGEZgq5BZtmwZRo4cid9++w0LFixAaWkp+vTpg3xNxaPbb7+9soDbgQMHMGHCBJu2OHjo0KEDhg0bhpdeegktWrSofL1NmzZISkrSvX322Wc2bjFjN7LFgIWM9bBryX9ohQwXxWNkbHUtzZ8/3+l5dnY2MjIysGbNGnTv3r3y9YSEBN0CbnoUFxc7BbDmhumVepdBUZp58+YZ9kmqU6eOH7eICXaEkHE4gLQ0esx1ZKyDhYx/qKhQ2xNERVFmmKX798EHgdmzgffe406fIUpQBfvm5OQAAGrVquX0+meffYbatWujbdu2eOyxx1Dg4ih+4YUXUKNGjcqbmZTkcKJx48Zo2rSp7i05OdnuzWNsRAiZuDigRg16HKY63xZkixe7lqzj+HE1rV1czi0VMvv2ATt2AL//buFKmUASNEKmoqIC9913H7p164a2bdtWvj506FB8+umnWLJkCR577DFMmzYNN954o+F6HnvsMeTk5FTe9uzZE4jNZ5igRwy08fFASgo9ZiFjHWyR8Q/CrZSWBqSm0mNL9+8559A9C5mQJWiylkaOHImNGzfi119/dXr9jjvuqHx81llnoW7durj44ouxY8cOnHnmmVXWExsbazqDh2GqE2KgjYtjIeMPWMj4ByFkMjPVTCUWMoxMUFhkRo0ahblz52LJkiVo0KCBy2XPPfdcAMD27dsDsWkMEzbIriUhZIqKgJIS+7YpnOCsJf8g4mMyM4GEBHpsqZDp0IGa6O3fT24mJuSwVcgoioJRo0Zh1qxZWLx4MZo0aeL2M+vWrQNAjQgZhjGPLGTkcCkO+LUGbR0ZndJMjBfIFhm/CJmEBOCss+gxW2VCEluFzMiRI/Hpp5/i888/R3JyMg4ePIiDBw+i8PR0ZseOHXjmmWewZs0a7Nq1C3PmzMHNN9+M7t27V+mwzDCMa2QhExVFsTIAu5esQrbCVFSwpcsq/C5kAHYvhTi2CpnJkycjJycHPXv2RN26dStvX375JQBqcLhw4UL06dMHLVu2xJgxYzBo0CB89913dm52ULNr1y44HI5Ky9XSpUvhcDhw8uRJW7fLiGDfvnBCDvYFOE7GarTuJI6TsQY9IWN5HRkWMiGNrcG+emXxZRo2bIhly5YFaGvCk65du+LAgQOoIfJt/cTSpUvRq1cvnDhxAqkitYAJKuRgX4CEzKFD7FqyCq2QKSwEata0Z1vCCVnIiCRUv1lkVq8mc1pEUISPMibhfyvMiYmJQWZmJhwOh92bwtiM7FoC2CJjNXKMDMAWGasIiGupVSta+alTgKZNDhP8sJDRIT8/3/BWpLlauVq2UDNFM1rOGyoqKjBhwgQ0bdoUsbGxaNSoEZ577rkqy2ldN9nZ2UhNTcXcuXPRokULJCQk4JprrkFBQQE+/vhjZGVloWbNmhg9ejTKy8sr1zNt2jR07twZycnJyMzMxNChQ3H48GEA5M7q1asXAKBmzZpwOBwYNmwYAKq0PHr0aGRkZCAuLg4XXHABVq9e7fK3zZw5E23atEFsbCyysrLw6quvOr1/4MABXHbZZYiPj0eTJk3w+eefIysrCxMnTgQADB8+HJdffrnTZ0pLS5GRkYEPP/zQ9D4ON1jI+Bd2LfmHgAiZqCigUyd6zO6lkCNo6sgEE0lJSYbv9e/fH99//33l84yMDMNKwz169HDqBp2VlYWjR49WWc6di02Pxx57DFOmTMHrr7+OCy64AAcOHMCWLVtMfbagoABvvvkmpk+fjlOnTuHqq6/GwIEDkZqainnz5uHff//FoEGD0K1bNwwePBgACYFnnnkGLVq0wOHDh/HAAw9g2LBhmDdvHho2bIiZM2di0KBB2Lp1K1JSUhB/OhDj4YcfxsyZM/Hxxx+jcePGmDBhAvr27Yvt27dXqeAMAGvWrMF1112HcePGYfDgwVixYgXuuecepKWlVYqjm2++GUePHsXSpUsRHR2NBx54oFJUAcCIESPQvXt3HDhwoDK7be7cuSgoKKj8PdURFjL+Rc+1xPhGaSkgLpl+qyMjOOcc4JdfSMjccosfvoDxFyxkQpBTp07hjTfewKRJk3DL6RPuzDPPxAUXXGDYg0mmtLQUkydPriwoeM0112DatGk4dOgQkpKS0Lp1a/Tq1QtLliypHPiHDx9e+fkzzjgDb775Jrp06YK8vDwkJSVVipKMjIzKGJn8/HxMnjwZ2dnZuPTSSwEAU6ZMwYIFC/Dhhx/ioYceqrJtr732Gi6++GKMHTsWANC8eXNs3rwZL7/8MoYNG4YtW7Zg4cKFWL16NTp37gwA+OCDD9CsWbPKdXTt2hUtWrTAtGnT8PDDDwMApk6dimuvvdalSA13ONjXv7BFxnrE/CQyEqhVy48WGYADfkMYFjI65OXlGb4XGRnp9Fy2BGiJ0ASMmREZZvj7779RXFyMi71scJaQkOBUFblOnTrIyspyGuTr1Knj9NvWrFmDcePGYf369Thx4gQqKioAALt370br1q11v2fHjh0oLS1Ft27dKl+Ljo7GOeecg7///tvwt1111VVOr3Xr1g0TJ05EeXk5tm7diqioKHTs2LHy/aZNm6KmJqpyxIgReP/99/Hwww/j0KFD+OGHH7B48WJ3uyas0Qb7iloyLGSsgWNkrEe4lerUofjbgAiZ9evpzxQnChP0sJDRIVHYL21c1hXCbeMt0dHRTs8dDofua0Ks5Ofno2/fvujbty8+++wzpKenY/fu3ejbty9KgrRYxs0334xHH30UK1euxIoVK9CkSRNceOGFdm+WrbBryb+wa8l65PgYwM9CpnFjID0dOHKExMzpKvJM8MPBviFIs2bNEB8fj0WLFgXk+7Zs2YJjx47hxRdfxIUXXoiWLVtWsUTFxMQAgFOA8JlnnomYmBgsX7688rXS0lKsXr3a0IrTqlUrp+UBYPny5WjevDkiIyPRokULlJWVYe3atZXvb9++HSdOnHD6TFpaGgYMGICpU6ciOzsbt956q3c/PoxgIeNf2LVkPQEVMg4Hu5dCFLbIhCBxcXF45JFH8PDDDyMmJgbdunXDkSNHsGnTJq/dTa5o1KgRYmJi8NZbb+Guu+7Cxo0b8cwzzzgt07hxYzgcDsydOxf9+/dHfHw8kpKScPfdd+Ohhx5CrVq10KhRI0yYMAEFBQW47bbbdL9rzJgx6NKlC5555hkMHjwYK1euxKRJk/DOO+8AAFq2bInevXvjjjvuwOTJkxEdHY0xY8YgPj6+Sor5iBEjcPnll6O8vLwylqg6YyRkuI6MNQgh43BQewIWMr5jJGQsL4gnOOcc4PvvWciEGGyRCVHGjh2LMWPG4KmnnkKrVq0wePBgl/E6vpCeno7s7GzMmDEDrVu3xosvvohXXnnFaZn69etj/PjxePTRR1GnTh2MGjUKAPDiiy9i0KBBuOmmm9CxY0ds374dP/74Y5WYFkHHjh3x1VdfYfr06Wjbti2eeuop/N///V9lxhIAfPLJJ6hTpw66d++OgQMH4vbbb0dycjLiND7t3r17o27duujbty/q1atn7U4JQTjY17+I/SsObXYt+U5ALTIAW2RCFSXMycnJUQAoOTk5Vd4rLCxUNm/erBQWFtqwZYxV7NmzRwGgLFy40On1U6dOKSkpKcrMmTPdrqM6HAuDBikKoChvv03PZ8+m5+edZ+92hQutWtH+bNqU7p991u4tCn2uvZb25Ztv0vMNG+h5erqfvvDoUfoCQFGOH/fTlzBmcTV+y7BFhgk5Fi9ejDlz5mDnzp1YsWIFrr/+emRlZaF79+4AqFjg4cOH8cwzzyA1NRVXXnmlzVscHHCMjH8RFpi0NLpn15LvBNwik5YGiIzOP/7w05cwVsNChgk5SktL8fjjj6NNmzYYOHAg0tPTK4vjAZQSXqdOHXz++ef46KOPEBXFoWAACxl/I4SMqPPIriXf0QoZuSCeF3VEzcHupZCDr/BMyCFSwY3IysryqlpyuMNCxr+I/SuEDFtkfMfIIqMoQHGxn0q9nHMO8MUXLGRCCLbIMEw1QRvsKwrinTpFDX/toqICOHDAvu+3CnYtWUt+vppRJ4SMXEIrIAG/PCEKCVjIMEw1QVvZV1hkFMWP6awmePRRoF49YMkS+7bBV8rLAVEbkl1L1nDoEN0nJACi6HhUFHC6ZJX/hEyHDtQT4eBBYN8+P30JYyUsZBimmqB1LcXH0/UasLeWjIip/Osv+7bBV+T2BOxasgbZrSSXiPJ7LZn4eOCss+gxu5dCAhYyDFNN0AoZhyM44mSOHKH7UC7MJwsZdi1Zg9xnScbvmUsAB/yGGCxkGKaaoBUyQHAJGRe9WoMe4UaKjlbdICxkfEMb6CtgIcNoYSHDMEHKrl3A0qXWrU8b7AvYL2QqKoCjR+lxKFtkhJCJj1cHWo6R8Y2gEDJ//EEBUExQw0KGYYKU664DevUCtm/3fV2KUjXYF7BfyOTkqONEOAiZuLgADbTVAFuFTOvWVLTm1Clg61Y/fhFjBSxkqhnjxo3D2Wefbek6s7OzkZqaauk6GWD3brrfs8f3dZWWqpmkwSRkhFsJCG0hI1u7WMhYg5GQkYvi+Y3ISKBTJ3rM7qWgh4UMwwQpYmC3InZEDkaVhYyoJRMMQiYcYmTi41XXHbuWfMNWiwzAcTIhBAsZGVFQw8Rt37Z8bPgtH4d3mlve7c2DwkuffPIJ0tLSUFxc7PT6gAEDcNNNNxl+Ljs7G+PHj8f69evhcDjgcDiQnZ0NADh58iRGjBiB9PR0pKSk4KKLLsL69esrP7t+/Xr06tULycnJSElJQadOnfDHH39g6dKluPXWW5GTk1O5znHjxnm025mqlJerF2or0kxlIRMbqz5mi4w16MXIsEXGN1jIMGbhFgUyBQVqyoEb6p++WUZenmozdcO1116L0aNHY86cObj22msBAIcPH8b333+Pn376yfBzgwcPxsaNGzF//nwsXLgQAFCjRo3KdcbHx+OHH35AjRo18N577+Hiiy/Gtm3bUKtWLdxwww3o0KEDJk+ejMjISKxbtw7R0dHo2rUrJk6ciKeeegpbT/uSk0zuQ8YY+SJtpUUmLs65JofdQkYE+gLhIWTkGJmSEhKkolYPYx5FUQviGQkZvxdxFEJm/Xo6gfzSD4GxArbIhCDx8fEYOnQopk6dWvnap59+ikaNGqFnz54uP5eUlISoqChkZmYiMzMT8fHx+PXXX/H7779jxowZ6Ny5M5o1a4ZXXnkFqamp+PrrrwFQI8bevXujZcuWaNasGa699lq0b98eMTExqFGjBhwOR+U6Wcj4jixerLhg6wX6AqqQsUtEhItFRo6RkbPC2L3kHSdPqpWSbakjAwCNGgEZGUBZGbBunZ+/jPEFtsjIJCSYnv4ePgzs3QukpgJnnGHRd3vA7bffji5dumDfvn2oX78+srOzMWzYMDjk6bZJ1q9fj7y8PKSJSl6nKSwsxI4dOwAADzzwAEaMGIFp06ahd+/euPbaa3GmaHfPWI58GFptkZGx2yITjjEy8j72wMjLSAi3Us2azq5QIIBCxuEgq8zcueReOu88P38h4y0sZGQcDtPuncgUoCIeKI0BYO4jltKhQwe0b98en3zyCfr06YNNmzbh+++/92pdeXl5qFu3LpbqFC0R2Ujjxo3D0KFD8f333+OHH37A008/jenTp2PgwIE+/ArGCKstMqEgZE6dIpeCF1rcdmQhExFB94WFHCfjLUbxMUCAY5C6dCEhs3p1AL6M8RYWMl4SdXrPlZXZtw0jRozAxIkTsW/fPvTu3RsNGzZ0+5mYmBiUawo8dezYEQcPHkRUVBSysrIMP9u8eXM0b94c999/P4YMGYKpU6di4MCBuutkfKO6WGTkGJmyMqC4ODRDEbSuOyFk2LXkHUEjZJo3p3tRC4EJSjhGxkuCQcgMHToUe/fuxZQpUzB8+HBTn8nKysLOnTuxbt06HD16FMXFxejduzfOP/98DBgwAD/99BN27dqFFStW4IknnsAff/yBwsJCjBo1CkuXLsV///2H5cuXY/Xq1WjVqlXlOvPy8rBo0SIcPXoUBTwN9Rl/WWTk+A3AfiEjW2SA0I2T0e5fzlzyjaARMnXr0v2BAwH4MsZbWMh4iSxkPMictpQaNWpg0KBBSEpKwoABA0x9ZtCgQejXrx969eqF9PR0fPHFF3A4HJg3bx66d++OW2+9Fc2bN8f111+P//77D3Xq1EFkZCSOHTuGm2++Gc2bN8d1112HSy+9FOPHjwcAdO3aFXfddRcGDx6M9PR0TJgwwY+/unpgtUXGXbBvsAiZUI2TkV1LAAsZXzFqGAkEqCCeoF49ut+/374LPeMWdi15iRAyikL9YuxKsdy3bx9uuOEGxGoj4gyIjY2tzESSSU5Oxptvvok333xT93NffPGFy/VOnjwZkydPNrUNjHsCFSMTTAXxgNC1yGiFDBfF842gs8jk59PBKZQ/oxIENQbYIuMlERFqUKId7qUTJ05g1qxZWLp0KUaOHBn4DWD8SnWIkcnPVwf6jAy6D3UhI/YvW2R8I2iETFKSqvbZvaTP8OGUXjZlim2bwELGSxwOe+NkOnTogGHDhuGll15CixYtKl9v06YNkpKSdG+fffZZ4DeU8YpAZy2VlFCgbSARgb4xMaoFP1SFDMfIWIsZIeP3gngC2b3EVGXPHir8ow3ACyDsWvKBqChqxmdHws6uXbt0X583bx5KS0t136uj53BmghJ/WWS01xox2QRIRJj0UFqCcCulp6vbES4xMuxa8o2gscgAJGS2bmUhY4Toamsia9ZfsJDxAWGRMdANttC4cWO7N4GxgEBZZCIjKXgyP5/cS7Vr+/5dZpGFjCgaF6oWGQ72tY6yMvXYCAohw5lLxigKVYYFbBUy7FryASFkuIQKYzWByloC7IuT0bPIhLqQ4RgZ3zlyhMbHiAh9YW2LRQZgi4weR4+qs6T6lnYf9AgWMj4QDLVkmPAkUBYZwD4hI2JkwknIsEXGd4RbKSNDPxmGhUwQIawxdeoE1i+tgV1LPsBChvEXspApKSH3ZXS09+sLRiEjLDK1a9PsGwjdGBltDBLHyHiPq/gYQBUyZWW+nxemYNeSMUEQHwOwRcYnxGyBhQxjNdoB3VerjFGwL2BfLRmOkWH0OHSI7o2EjNwOL+BF8RhnWMiEPmyRYfyFdkD31VIRzBaZcHItcYyM77izyERHq5PIgBbF4+q+VRFCpkEDWzeDhYwPVBchk5WVhYkTJ1Y+dzgcmD17tk/rtGId4YzVFhkzwb6BFhF6MTKh6lri9GvrcCdkHI4A15IRQqagIDiUdkUF3YKBILHIcIyMD1QXIaPlwIEDqFmzpqllx40bh9mzZ2PdunVer6M6oh3Qw9kiU7u2OiAFwzjhDVwQzzrcCRmA9u+pUwGs7puSQifI/v32timoqAC6dCGT1G+/qcFldhEkQoYtMj4QSkKmpKTEsnVlZmaa7u3kz3WEM0K4iGPMqhiZYBQy4eRaYiHjO64aRgqqbS2Zo0eBP/8EVq8OjpOFhUwQk59vfBMjAmiQiSik1ytO6SyrtSsbrdMLevbsiVGjRmHUqFGoUaMGateujbFjx0I57cPNysrCM888g5tvvhkpKSm44447AAC//vorLrzwQsTHx6Nhw4YYPXo08qVtOHz4MK644grEx8ejSZMmum0NtG6hvXv3YsiQIahVqxYSExPRuXNnrFq1CtnZ2Rg/fjzWr18Ph8MBh8OB7Oxs3XVs2LABF110EeLj45GWloY77rgDeZIZYtiwYRgwYABeeeUV1K1bF2lpaRg5cqRhFeNQRlFUISMu5lZZZPSCfe0QMqWlVNUcCH0hoyhVhSK7lrzHrEUGqIYp2Dk56uOA9WgwoKIC2LePHrOQCUKSkoxvgwZVLhYZCbTvk4GO3ZMQkaKz7KWXOq83K0t/nV7y8ccfIyoqCr///jveeOMNvPbaa/jggw8q33/llVfQvn17rF27FmPHjsWOHTvQr18/DBo0CH/99Re+/PJL/Prrrxg1alTlZ4YNG4Y9e/ZgyZIl+Prrr/HOO+/g8OHDhtuQl5eHHj16YN++fZgzZw7Wr1+Phx9+GBUVFRg8eDDGjBmDNm3a4MCBAzhw4AAGDx5cZR35+fno27cvatasidWrV2PGjBlYuHCh03YBwJIlS7Bjxw4sWbIEH3/8MbKzsyuFUThRWKjGFIqLebhZZI4do/uICOo3F8oxMtLchi0yFsBCxgVC/QP2C5lDh2hGEhGh7h+b4BgZHxDdr+2iYcOGeP311+FwONCiRQts2LABr7/+Om6//XYAwEUXXYQxY8ZULj9ixAjccMMNuO+++wAAzZo1w5tvvokePXpg8uTJ2L17N3744Qf8/vvv6NKlCwDgww8/RKtWrQy34fPPP8eRI0ewevVq1KpVCwDQtGnTyveTkpIQFRWFTBdXpc8//xxFRUX45JNPkHg6t3LSpEm44oor8NJLL1X2iKpZsyYmTZqEyMhItGzZEpdddhkWLVpU+XvDBXkwF12hfR3gg62yr3Ar1apFE4JQTr9mIWMdhYWq0SGohEywuJaCScgIt1LduqoP3CZYyOjhatTQlJrcsuwwiouBZs2cG/ABqBqIZdDo0VvOO+88OCQ1df755+PVV19F+emeCZ07d3Zafv369fjrr7+c3EWKoqCiogI7d+7Etm3bEBUVhU6dOlW+37JlS6Smphpuw7p169ChQ4dKEeMNf//9N9q3b18pYgCgW7duqKiowNatWyuFTJs2bRAp7f+6detiw4YNXn9vsCIOv8RE9Zjyp0XGjjoycnyMvA2hKGSESIyMVIuzVQfXUnGx9cVcRQ2Z2FigRg3j5aqtRSaYXEtBEh8DsJDRR6645IbIlERU5AFlsQDcfcyD9VpBoub78vLycOedd2L06NFVlm3UqBG2bdvm8XfEB7B1e7SmhKfD4UBFsKQhWogQMklJ6iETbllLWiEjfmdpqX8GSH+iZ+0Kd4vMu+8C994LzJ4NXHaZdeuV3UquLN7ieKl2QiaYLDJB0CxSwDEyPmJndd9Vq1Y5Pf/tt9/QrFkzJ6uFTMeOHbF582Y0bdq0yi0mJgYtW7ZEWVkZ1qxZU/mZrVu34qR88mho164d1q1bh+PHj+u+HxMTU2khMqJVq1ZYv369U9Dx8uXLERERgRYtWrj8bDgiCxnhcvFnZV876sjINWQmTgTOOEN9L9TiZLQZS0D4C5mPP6ZrnuYS5DNm4mOAauxaki0ydh9cQWSRYSHjI8JIYIeQ2b17Nx544AFs3boVX3zxBd566y3873//M1z+kUcewYoVKzBq1CisW7cO//zzD7799tvKoNoWLVqgX79+uPPOO7Fq1SqsWbMGI0aMcGl1GTJkCDIzMzFgwAAsX74c//77L2bOnImVK1cCoOypnTt3Yt26dTh69CiKi4urrOOGG25AXFwcbrnlFmzcuBFLlizBvffei5tuuqnSrVSdqE4Wmdq1gfvvp+uzmIGHmntJTyTKrqVwKwabm0vZv4D1rjNPhUzAjBKyRcbOPzSYLDJBUtUXYCHjM3ZaZG6++WYUFhbinHPOwciRI/G///2vMs1aj3bt2mHZsmXYtm0bLrzwQnTo0AFPPfUU6kkR51OnTkW9evXQo0cPXH311bjjjjuQISJOdYiJicFPP/2EjIwM9O/fH2eddRZefPHFSqvQoEGD0K9fP/Tq1Qvp6en44osvqqwjISEBP/74I44fP44uXbrgmmuuwcUXX4xJkyb5sHdCF39YZMxW9g2Up07rWgLUcynUhIwri4yikKssnFi2DBBGVjnQ2QqC3iJTUBD4gksywShkgsAiwzEyPmJnUbzo6GhMnDgRkydPrvLeLoPA4i5duuCnn34yXGdmZibmzp3r9NpNN93k9FzRzEgaN26Mr7/+Wnd9sbGxuu9p13HWWWdh8eLFhtull2Ytt00IJ6y2yJSVqQOPKyEjvicQhUv1hExSEl2nQ1XIyPtWFjUFBfr7PVRZtEh9bLdFJmBCJjFRre574IDrSGR/wsG+urCQ8ZFQqu7LhAZWW2TkWbPegBobSy7S0lK6TgdSyMjjQf36JGTCIUYmOlrdpwUFlGYeLvgiZBQF6N8f+PlnIDWVbjVrqvcrVtByQSdkAHIviTYFLVsG8IslgsUiU1amBj6zkAl9WMgwVmO1RcadkHE4SLwcOxY4q7kI9o2OpioFUVGqqAk1i4xRIHV8PAmZcErBPnQI2LhRfe6pa+nkSWD+fHpcUGCcBNS4sev12CZktmyxN3MpWCwyBw6QHzoqynUviQDBQsZH7BIyS5cuDewXMgFDiJbkZGstMjExxj3mAi1khEWmdWuKITlwALjlFnot1ISMnkUGoME2N9f+5BJXzJtH7r3T9S/dovX+eirS5Jo7v/9OwubECef71FSgTx/X67FFyARD5lKwWGSEW6l+/Sq11eyAhYyPCCHjJsOYYUxjtUXGVaCvIJBF8SoqnNOvt24F2rYloQWErpDR7t9gT8H++2/g8svpv9+/31yZK+FWatCAyoh4K2Ti44GOHT37rIxtFhnAXotMsAmZIHArAZy15DOyRSbc0iwZe/BXjIwrIRPIWjInT6rCv3ZtIC2NHov+n+EQIyM/D1bX0ty5dM3KzQW+/dbcZ4SQufxyuvfUtWS0rzwl4AXxAFXI2GmRCZY6MixkwgvZqsZWGcYKhJiwOkbGjJAJhEVGWGNSUoDp0wHRG1RMBELNImMUIxPsFpkfflAfT5vmfvl//6UuK1FRquvHF4uMLwS8jgygupbssshUVDifoGyRqYSFjI9ERNhbS4YJP/QsMlYIGVeDRyCFjFwMb8UKYOZM5/dDTci4ipEBglPI5OYCv/yiPv/pJ7XPkRHCGnPeefTfAfYLmWrlWjp1ytnsb6eQCaL2BAALGUvgzCXGSvRiZIqKvLf4BZtFRq4hI+qGyISqkNHu32B2LS1aRNerZs2Ac8+lyf706e4/AwAXX6z+Vm9dS77W1bFVyBw4YE8cgbZVTDBYZIKgqi/AQsYS2CLDWImeRQbw/rplZvCwS8johRuES4xMMFtkhFvp0kuBG2+kx59+arx8RYWasXTxxd6LNDPWQTPYmrVkV3XfYBQybJEBXnjhBXTp0gXJycnIyMjAgAEDsHXrVt1lFUXBpZdeCofDgdmzZwd2Q90QTBaZXbt2weFwYN26dQAoTdvhcLhs/Ggnwb59diALmdhYNWXa2+tWsFlk5IwlYZGRS1GEmkUm1GJkFIXSrgESMoMH02Tsjz+oTIoeGzeSAE1IIAuOt0ImpF1LCQlqsSM73EtyoC9gn5ApKVH9kCxkgGXLlmHkyJH47bffsGDBApSWlqJPnz5OXZAFEydOhMNVX3cbCSYho6Vr1644cOAAavi5pDYLEuuQhYzD4XucTLAJGWGRSUtThcwNNwA9e9LjUBMyoZa1tHEjsG8fbV+PHiQo+/Wj94ysMsKt1L07pcmLY8luIVNcHOAkCztryYhrq9j5dgmZfftIDcfGOvcYsRFbhcz8+fMxbNgwtGnTBu3bt0d2djZ2796NNWvWOC23bt06vPrqq/joo49s2lLXBLOQiYmJQWZmZtCKQKYqspAB1DgZXy0yrgaPQNaREUImMVFNuX7+eeCJJ+hxqAqZUKkjI9xKvXqpx4Rop/bZZ/qNQ+X4GED9XHm5Z9c9q4WMvM6AYGfAr7DI1K9P93YJGTk+JkjGlaCKkck5/UfVkhqTFBQUYOjQoXj77beR6a4BB4Di4mLk5uY63TwlPz/f8FakiW7Lz89HSUk+CgvzkZvrvGyh5gwzWqc3VFRUYMKECWjatCliY2PRqFEjPPfcc1WW01pKsrOzkZqairlz56JFixZISEjANddcg4KCAnz88cfIyspCzZo1MXr0aJRLU51p06ahc+fOSE5ORmZmJoYOHYrDhw8DIHdWr169AAA1a9aEw+HAsGHDAND/MXr0aGRkZCAuLg4XXHABVq9e7fK3zZw5E23atEFsbCyysrLw6quvOr1/4MABXHbZZYiPj0eTJk3w+eefIysrq7KJ5PDhw3G5KHRxmtLSUmRkZODDDz80vY/tQFGqCplAWmQCISKEkBFus1q16LEQUxwj419kt5Lgiito/+/apfY7EpSWUsdroKqQATwTElYJGflYrjaZS8IiI7ahoMCeoOMgi48Bgqiyb0VFBe677z5069YNbdu2rXz9/vvvR9euXXHVVVeZWs8LL7yA8ePH+7QtSXKEpYb+/fvj+++/r3yekZGBAoMzqUePHk6tBLKysnBUBAhIaDtBm+Gxxx7DlClT8Prrr+OCCy7AgQMHsMXIwa2hoKAAb775JqZPn45Tp07h6quvxsCBA5Gamop58+bh33//xaBBg9CtWzcMHjwYAAmBZ555Bi1atMDhw4fxwAMPYNiwYZg3bx4aNmyImTNnYtCgQdi6dStSUlIQf/pK9fDDD2PmzJn4+OOP0bhxY0yYMAF9+/bF9u3bnQSrYM2aNbjuuuswbtw4DB48GCtWrMA999yDtLS0SnF088034+jRo1i6dCmio6PxwAMPVIoqABgxYgS6d++OAwcOoO5pU/DcuXNRUFBQ+XuClZISdYZrlUUm2IJ9xSnQrh393hMn6Hl0NN2HmkXGXYxMMLmWcnOB5cvpcf/+6usJCcCgQUB2NtWUueAC9b3Vq0lcpqUB7dvTa7Gx6vuFhaoIdYdVQiYigra5oKAatSkQQkZYZBSFDj5fd6ansJAxZuTIkdi4cSN+/fXXytfmzJmDxYsXY+3atabX89hjj+GBBx6ofJ6bm4uGQbTDreDUqVN44403MGnSJNxyukHNmWeeiQsuuAC7du1y+/nS0lJMnjwZZ555JgDgmmuuwbRp03Do0CEkJSWhdevW6NWrF5YsWVI58A8fPrzy82eccQbefPNNdOnSBXl5eUhKSqoUJRkZGUhNTQVAFqjJkycjOzsbl56e/k2ZMgULFizAhx9+iIceeqjKtr322mu4+OKLMXbsWABA8+bNsXnzZrz88ssYNmwYtmzZgoULF2L16tXo3LkzAOCDDz5As2bNKtfRtWtXtGjRAtOmTcPDDz8MAJg6dSquvfZalyI1GJCtEULAhGuMTO3aFGRauzZZCS67jF4PNSHjLkYmmCwyCxeSUG7eHDjjDOf3bryRhMxXXwFvvqmKFeFW6tVLDTyPiKD3i4s9S8G2SsgAqpAJqIclGFxLQkwB9ONZyASHkBk1ahTmzp2Ln3/+GQ2kvPTFixdjx44dlQOjYNCgQbjwwgt1GyfGxsYiVp4ueEGeixEjUtMg6/Dhw8jNBbZvp4GidWv1vQhNhz4zIsMMf//9N4qLi3GxsPN6SEJCQqWIAYA6deogKyvLaZCvU6eOk5VjzZo1GDduHNavX48TJ06g4rQjfffu3Wgt/2iJHTt2oLS0FN26dat8LTo6Gueccw7+/vtvw9+mtb5169YNEydORHl5ObZu3YqoqCh0lBq1NG3aFDVr1nT6zIgRI/D+++/j4YcfxqFDh/DDDz9gsbbjXRAiDr24ODX2yqoYmWATMnKcoGycKymhm+i9FOyEUoyMnltJ0LMnjdP799NyAwfS69r4GEF8PAkZO1xLQDUsiicsMmlpqorMz1erEwYKFjLOKIqCe++9F7NmzcLSpUvRpEkTp/cfffRRjBgxwum1s846C6+//jquuOIKv21XopnuadKyDgedmNHRrhuvebJeV8T7eBWIFjb80zgcDt3XhFjJz89H37590bdvX3z22WdIT0/H7t270bdvX5SUlPi0Lf7i5ptvxqOPPoqVK1dixYoVaNKkCS688EK7N8st2vgY+bGvFhmzlX0VxX8xfPn56mD27bfAqlXAkCFAmzbOy+XlOYubYMZdjEywuJYUBZg/nx7LbiVBZCRlj738MrmXBg4kkbByJb2vFTLeZC5ZVRAPqIYdsIVFpkYNGmiEkAk0QShkbA32HTlyJD799FN8/vnnSE5OxsGDB3Hw4MHKINnMzEy0bdvW6QYAjRo1qiJ67CTQjSObNWuG+Ph4LBJTJT+zZcsWHDt2DC+++CIuvPBCtGzZ0slaA1B2FACnAOEzzzwTMTExWC6c8iC31urVqw2tOK1atXJaHgCWL1+O5s2bIzIyEi1atEBZWZmTu3H79u04IQItTpOWloYBAwZg6tSpyM7Oxq233urdjw8wekImkBaZ0lK6PvoLOdD3jz+AL78ka6Y2izOU3EtGQjHYXEsbNlDmbEICpVHrIYrjff89cPw48OuvZB1r2BBo2tR5WfH7PHEtWVUQDwgCi0ygA22FRSY11feLgi8EoZCx1SIzefJkAEBPUUDiNFOnTq0M7AwFhLdJUSh1UeN9spy4uDg88sgjePjhhxETE4Nu3brhyJEj2LRpk9fuJlc0atQIMTExeOutt3DXXXdh48aNeOaZZ5yWady4MRwOB+bOnYv+/fsjPj4eSUlJuPvuu/HQQw+hVq1aaNSoESZMmICCggLcdtttut81ZswYdOnSBc888wwGDx6MlStXYtKkSXjnnXcAAC1btkTv3r1xxx13YPLkyYiOjsaYMWMQHx9fJcV8xIgRuPzyy1FeXl4ZSxTs+MMiY2YWLH9fbq41M2Y9RKBv7drqpDYzk4RUVJQa6BxKQiZUspaEW6lXL+P/t1074KyzSPR8/TWwYwe9fvHFVa103tTJCXnXkrDIFBaShUQT9uBXhEXGTiFTWAgcO0aPg6Q9AWCzRUZRFN2bKxGjKAoGDBgQsG00Q2SkepIHqpbM2LFjMWbMGDz11FNo1aoVBg8eXMVKYhXp6enIzs7GjBkz0Lp1a7z44ot45ZVXnJapX78+xo8fj0cffRR16tTBqNMtjV988UUMGjQIN910Ezp27Ijt27fjxx9/rBLTIujYsSO++uorTJ8+HW3btsVTTz2F//u//3M6Jj755BPUqVMH3bt3x8CBA3H77bcjOTkZcZqrc+/evVG3bl307dsX9cRMKsgRYkXOAgmERSYiIjC1ZPT6LNWtS+eP7OoPpRTsYI6R2b1b3T65LYEr5JYFRvExgG+upZAVMnJ130C7l4RFRriWgMALGdEsMiEBMLiG24IS5uTk5CgAlJycnCrvFRYWKps3b1YKCwt9/p516xRl9WpFycvzeVWMh+zZs0cBoCxcuNDp9VOnTikpKSnKzJkz3a7DymPBFz79VFEARbnkEvW18ePptTvv9G6dV11Fn3/vPdfL1atHy61Z4933mOHjj9XfV7MmPd60id476yx6DijKTz/5bxuspKJCURwO2ub9+53fW7GCXj/jDPu27YIL6H+dO1dRIiNpe3bscP25PXvU3yTu9+2ruly3bvSeidOrkksuoc9Mm+bZb9FjwABa17vv+r4uj2jVir5Yc73xO+np9L1//aUo3bvT46++Cuw2LFpE39uiRUC+ztX4LRNUBfFCmWCu7htuLF68GHPmzMHOnTuxYsUKXH/99cjKykL3047/iooKHD58GM888wxSU1Nx5ZVX2rzF5vFnjIy7WXAgiuIJi0ytWmr9GFHn8vLL1ViZUHEtlZaqoRLB5lr68UeKcTl2jCbS5eVAixZV0661NGhA7ieAflurVmpoiIzdriVxXgR8/8pdsAOFolQN9gUCb5EJwvgYIMgq+4YyLGQCR2lpKR5//HG0adMGAwcORHp6emVxPIBSwuvUqYPPP/8cH330EaKigqLKgCnEAO6PrCV3cS+BSMEWMTJikI+JUS3Uzz8PiKz6UBEy8iAeTEJGUdSWD6NGAb//To8vucTc54V7CdB3KwHB41oKeLyriJMJZAp2URFFXQMUI2PXjw9SIRM6V/ggh4VM4BCp4EZkZWV5VS05GPCHRcZsymsghIy2PUFmpnMQaai1KRD71uGoWvfGzqaR33wD/PknHUePPAJkZXn2+UGDgHvuofHTSMh4k7UU8jEygD21ZIQ1JiKC/lS2yDjBFhmLYCHDWIE/68i4EzLiGH7vPf91FBZC5uyzaYK5bp3z+2IbQ80iExdXNatHDLSlpWpzzEBQXg48+SQ9fuABSrkWg/2cOea2JSUFePtt4M479WvOAPa7lmwXMoF0LYlA35QUEjMsZJxgIQNUFn7zBRYyoY0Vx4AV2FVHBlAnmPv2+a+EgJy1FBnpnPjwzjuUKQOEjpBxFX9kV4fmTz8FtmyhOKQHHlCzlWJiKIvp88/NrWf4cODdd40rLFfLgniAPa4luYYMwEJGQ7V2LcXExCAiIgL79+9Heno6YmJiqtQiMYvwZHjae4SxF0VRUFJSgiNHjiAiIqKysJ9d2FXZt6SECtMB5IbYsIHqiViNiJHRFsADnEVNqAgZVxaG2Fiy0igKLSdcd/5mzRq6f/RRigsV9WP69wdmzwZeeIFiYHwVq9WyIB5gr2tJpH6zkHGiWguZiIgINGnSBAcOHMB+Hw/KvDzKDsjL859ZnvEfCQkJaNSoUZX+WIHGLovM7NnqgLB4MQ1069d7932uEBaZuXOBSZOAYcPUuiahWEfGlYVBtC4JdIfmN98EbrqJ2j6cPKm2GPi//wOWLgW2bgVmzQKuuca372HX0gH/9vOQCQaLzKlTqqBiIRNcxMTEoFGjRigrK3Mqr+8py5YBd91FTSO/+cbCDWT8TmRkJKKiory2xlmJXZV9TxdOrmTHDuuv0aWl6vV4wwZyeYg0X8DZShMOFhlA7dAc6MG2Sxe6nzePJlYtW5KFbfRoEjTPP08Bvb78v566lioq1PYXIS1k7KjuK1f1BezJPRfWmJQU54qdQUC1FzKA2jRR2zjRE2rWBP77j05Wf5V3Z8IfVxaZggI6vjw1GrmzyGzeTEI8IoLWD9BE79AhtcaLFQi3UkSEWuVcjAmAs0UmEF24jdi7lzpB33kn8NBDrpd15yoJZOPI+fPJCiNPlkXD9z596H70aODVV+latXOn+5oyrvDUtSQvF9JCJj6eBMXJk+ReCoSQkav6AvZYZERV3yCzxgAc7GsZaWl0f+wYzWSnTQP+/dfebWJCD1cWGRFr4Qnl5WqWipGQefdduhc1XMRyImbGKoSQSUtT2xPIQkkWMuK6bQfLl5NF6ssv3S/rziITqMaROTnA0KHU2HH1avX1n3+m+x496D4tjRpC/vefbyIG8Ny15KrmjjfY2Tcx4JlLWteSHXVkgjQ+BmCLjGUIIVNQAHz2GXDzzTQg2FFDggld9ISMfNHPz1cv4GaQO1kbDR4PPaQWC/3jD8pSKSoiIXPBBea/yx0iPiYtTRX5spCJi6NtFBZ7uxDnrKahustljUSiVVaD//4jK5VRAParr9L2tmqlCtKjR4FNm+jxhReqywpR4yveCpnoaGuy4mytnFy3LpkyAxXwGwzBvkEsZNgiYxE1aqgnp8gSKCqiY51hzKInZOSyEZ7Gycjm/NhY/WUaNgSeeQbo2pWei7gJqy0yQsjUrKkWKdW6rkTxNTsbLYp95omQ8bdrqWdPinvRGzcPHwZee40eP/useh365Re6b91aP0tMUdRAYG8Q4s2sa8nKQF/AZiET6MylYAj2ZSET/jgcqlVGdil98YU928OEJnpCBvD+uiUGj6gotdaRESI9WMTJ7Njh2Xe5QwgZ8dtq1qwqrl54ge7ttGSK7z55Ut0XRriLkbHCtVReDuzaRdY1URNG5uWX6bjo1AkYOFB9fdkyutezwJSWkjDq2tXZFeUJ3lpkvBUypaXA11+rgeCWCplNm4CFC80vL4K7AuVaYouMS1jIWIgQMrIVplYte7aFCT1KS1VXkFbIeJu55CrQ9/ffqbaIGByFkCktBR5/nGIurEQImYQEshroBRKLZAg7s5bEgKso7oOOzVpkfBls5f98/nzn90pKgKlT6fHTTztnIYn4mNO9VJ2IjiZLDUAZTN7grZDxNhninnuAa68FHnuMnlsmZH77jVTddddRxUAzsEUmqGAhYyFCyLRuTYF0hYXA/ffbu01M6CBfk6yyyLgSMu+8QyJm+nR6LoRMURGl6F5xhWff5Q4R7HvWWTQA67k1hJApLg5sWX8ZeWB2514yGyPji4VJFnULFzpXD587lxIM6tVzbiVw8qTa/sEoJmbMGLqfN8+95UkPT11LvhbDE0aQ99+ne1nI+NRarWNHoG1b+rOvv97cgWd3sG+ghYyisJCpLgghM2wYmeU5DZvxBDHzjompWhbeV4uMdvA4dkwVMPfcQ/dyaQh/WETk9gQREaqVXEa2DthVFE8emM0KGX+6lmSr0MmTaidrgAwCSUlUAE8OoP31Vxp7mjVzTnGXadOGPlNSomaReUKgXUsifqpRI7qXW0D4VE09JoZS1GrUIHUtGlW5ItBtCoxcSyUlgemLc/KkKpoaNPD/93kICxkLEemjYuYJkLifP597MDHuMYqPAay3yGRnk9WjQwfgnHPotdhYVUD98w+wZAnVkrEKWcgYISYDgH3uJU8sMmbryFglZABn99KoUSRCHn7YeRlXbiVBVJQ6Ju3a5fl2BVrING1K97t20XVVXo/P7qUmTYCPPqLHEyZQjrorhEVm927gvvt8NAmZwMgiAwQm2llYY9LSnBVkkMBCxkLERVgIGUUB2renEuyiMBXDGOFKyHhrkdFzfVRUqLVj7r7bOa5CuJfuuQe46CJg0SLPvs8VQsj89BOFI+itW64lEwpCJhAxMtr98OOPzs8TE6vG4rkK9JXJyqJ7b4SMp5V9fREyDz+sZoOWl1M6elSUKrwtGcuvvhq49156fMstagE4LVu2qJaRsjLgjTf8W8GxrEw98cX3ikZeQGDcS0LIBKE1BmAhYyniYjJ5MvUzcTgobRIw33GWqb4EyiKzcCGlVqekVA3oFUJGBOJamYItBP7mzcCMGfrhBcHQb8nKGBlv+hFpEWNkkyZ0v3o1icL16/UNAXl5auNIVxYZQBUy//3n+XZ5WtnXWyFz6BDwyivAHXeoBol//qF7y0NFXn6Z0r+OHVNz2mWWLgXOOw+49VZn3+jhwxZtgA6ySBLf6XAENk4miONjABYyliIEcmkp0LgxPRYDxTffcHE8xjVi5m2lRUZPyEyeTPe33FK1uJ4QMkJQWCVkKipUISOs5HqxG8HQb8nKGBkrLTItWwLt2pF4ef994OyzyS2oDdRdsYKsFo0bq9chI669ljwpl1zi+XbJQsaMZ8VbIfPdd7T+Ll3UiaE4Li2vJRMbS/Ey48fTjpGZPh3o25fiVU6ccE67s9IHq0XExyQkOAfPBVLIBHF7AoCFjKWIi158vDpwdO1KwWmnTrl3uzK+U1qqTh5CDX9aZOTB48orKTbmrruqLi9mvGLiZ1UtmZMn1a7wQtDopV+HmmspkDEyyclAv370+NNP6b5Zs6q9t8zExwguu4wqO3fu7Pl2yeLYjFXGWyEzezbdX3UVie/XX1ebjfqlKN6ZZwJPPaUWXlIUKp08ZAgF1w4aBCxY4Dyo+9Mio+2zJPD0oqAoZHrzJp6HLTLVBxHALmcPRETQ8Q+weykQDBtGwvGvvzz7XH4+zfZeeskfW2UOf8TI6Flkbr0V+PNPtY6IjBASolCdVRYZER+TnAwcP06P3QkZM5V1/YGVMTJWupZSUsggAJDrGqDjXYvZ+BhfkX+zv4RMXp5ap27AALrddx9lSwMBqO5bVEQX8QcfpOejR5PFJi7O2aToT4uMNtBX4KmQ+eIL8iU+9ZTn28BCpvogKvpqM5SEe+n77+1thhdMlJRQ0KfVtUJEaurGjZ5/btky4K23rN0eT/CHRcbTImRCSIhZ/uHD1sQxCitMzZp0Hx2tXyyyVi1V4Nh1rvijjowVrqXkZKBbNxKZigLUqaOmJMvbI84BM0KmvJxibb791vNaMnLPJDNCzZuCeD/+SNl1TZvqC2+/CxnZbPnKK8DEieqPFplLgH8tMtrUa4GnF4U//6T7l182X/hPwEKmeqAowN9/0+PCQmcxc9ZZVLOhpKRqxkF15aGHaHaZnW3tekXQojCvm0VYCQ4d8q44mBWYscicPElJEkOHAr17qzNzI7QWmdxcshwaCUghZE6dUuNVrHAvyRYZgMSKnC0liIhQrQ52FcQLthgZ2SITG6uOZ61bV22+uGoVXWfq1iUPiTsqKqge3IAB3o3FnmQueVMQT7iVBgyg46WiggKZv/qKrrF+FzJPP00n28yZVEFQPmhlIWOnRcbsjxfrKS6mGCCzbN4M7NxJj0XEeZDBQsYi9u2jQHeBGBgBOvbffJMqbV53XcA3LegoLVV9/EL8WYFcDdbTHlfiHC8rc/4fA4lWyJw8CUybRi5Jcc0qLAQefZR+36JF9L4rtEJm+nSgfn3KNNVDroX09NPAlCm0vK8IIZOYSKEHRkXaAPvbFPgjRsaKyr4pKZTpJfal3kRcdivpCUUt0dHW1JLxl2spN5fE7VVXqa916wYMHkxGBb8LmSZNgM8+0z9hxEF89tne93kwg7DI+Opakk2c2dnmLr6KAowcSaa7K65QqxEGGSxkLCIigmodiKBy7WB40UVUU8bMxSXcWbhQFXqy4PMVeVKUm+vZuuUBK1BVx7VohczllwM330yNFMVrBQVU6kK4DdxVZNUOtGLWXaeO/vKykBk5EhgxAsjI8Py3aBGDb5s2JDgXLDBeVgiZUHItBaKyb3IyWSJErOaff1YVe54E+gpEZpO/i+J5I2S+/ZaO8fPPp+cREaqlafv2IOmAnZNTVWRYiVGwr/jxngqZpCQybY0d6/4zX3xBKedxcWQKDlJYyFhEvXoUKCpciK5m9f4uAhnsiNL4gLVCRmsa//JL85+VByxvyrVbgVbIiDifCy5wvmZNmADceCM9d2fR1lpkxPJG4kSvOrUViPWJ9gQizVuPuXPpXrj0A02wxcjIrqVRo6iyb716ZD1cskRdTu5f5Umgb6CK4nmbtZSe7uxCExV+ZSETyN6JlQhT5b59/vVHWxXsKyw7Y8fSjHrmTNetz3Nz1YZcTzwRtG4lgIWM5YjqvnpCZtcu6oly0UUB3aSgoqgImDVLfW6lG0c7qHsSfxNsFpmiIvW68/zzqpVCLCMsKu5El3ag9cQik5dHrgorygYIi4yclWSE+K3+LJbqCtlNcvKk6zHKbIyMFa6l5GQa0Pv2BQYOpNfkdgV//EHfU7s20KqV+fX7ImT85VpSFGMxLQsZT8NELKVBA7VZ1d13++97rAr2FYKoWzcaiAC1lbgeTz9NF5hmzSioMYhhIWMRS5aQdcHVjDYhQbXUbdsW0M0LGr7/3tkcvnOnOsj5iixkIiJoJmd2AJHdGMEgZITgiImhiZj2miWEiKcWGbFeMxaZjRspJV2v3oyniP942TIqwvbrr8bLimwmO2JkFMX5mKmocL0d7mJkrHYtCUQ9mfnzVQuviI/p3t0zF7YVQsZqi8zatXSM9+9f1YIthMw//9jsWoqKUk3w77/vY+dKF1hlkZFdVOPHU4DUokVqfrvMX3+pKZxvvaXWYwhSWMhYwP79ZGXJyFBFs56lISNDraDpaTBqOFBUBNx/Pz0WmSkHDlBdEyvcbaIXC0CxGHPnmjdjB5trSXYBORxV68iccQZZiN016vXWtVRcrMYy7t3re1VqIWT++Qf4+mvXljhh1bRjcCotrWqBMXIvlZWp2YlmLDLeHuNCSA0bBjzyiFrzKCaGJgKi1o+39WN8iZHxl2tp9mz6H+LiqoqyZs3o3vYYGXljAOtmZFqsCPZVFGdBlJWlWpEee8z54FQUarZWXk7F/8TFOohhIWMBoq9Jy5bqTNnoQi1qynz+efWKlTl+nMSeKEcwYID63vffA2+/7ft3yMXbPHVLBJtrSSs45GuWopDg+L//o/4zrvA02DchQR2cKipUYS5qJHmLsFCK/0WvGJ5ApH37a4LrCnlAFjVvjOK45GXdxcgA3v8esc/+/ZcmQHFxdIxccAG9Pn8+Carly+m5J4G+ABWXe+klCir3FH+5luS0ay3CIvPvv+p+t03IiI0B/JeC7a6yr5kfL9cEEYLoiSdoHX/8QT10BJ98QgdTYiKVUQ4BWMhYgAhK7NTJdYwMoKYRbttWfYrj/fsvtWoQgYj16lGpcZkHH/S8Gq8W2Z0nhMl//5mrThtMQiY5mS7Q551HmZ2AapEpLydriVlki4yikPXrxhudS2DIOByqVebYMed4BF8Q/404L1wJGWEJKinx7Tu9Qewvh0PdRiOLjBkhIw/a3gy2ZWXO33PLLWrgq+xeWruWjp/UVKpb5Ql16lDGpYi78QRPXEt6Vab1+PdfYMMG+p2XXVb1/YYNqTbdV19Z47rziTPOUB/7qyieFa4lsY7ISPVzGRnOwbxlZXSwi3iYp54K2gJ4WljIWICwyHTq5D7rIyVFPR7tcmEEkt9/pwF561b1ojN8OD0Wz3v2pMF5yBDfXBjCAgvQLPb1181X5JZFZTC4lnr3JuH34Yf0mtzcUVy3du0CfvnF9fVTDvZ1OKio57Rp+lV1BfIxbIWQKS1VBxpR58eVkBEiS1shOxDI+0vsIyMhIwbm2Niq/Y4EkZFqSQZvBlttfI5odwKoQmbpUqqSDZCVRlskz5/4w7X07bd03727OjGUiYyk8feqq9S4IduEjFx10F8WGSuCfWWrjuyrGzOGdvLWrcDHH5O/+sgRiha/7z5ftzxgsJCxACFkOnZ0b5EB1Iu4P4tBBgM//EAi5cgRmiWKQez66+le7KvHHqNZ4ebN6gTBG7QXUzEznTXLWeRoUZTgssjoVfaNjFQHDbHcsGF0sV+82HidZmfBMnpCxpfqvtp9X7Om69hBkeXpa82l6dOBBx7wLDNWHmyFa8mdRcbdwOxL5pLWRSobANq2JdFXUKCW+PC2v9L27cCcOZ4nIfjDtSQ3iXSH7TEyspDxh0VGG9si40nuuVGcTUoK8Pjj9PjRR4HJk+nx2287d9oOcljI+MjBgxTs63CQG8CMkOncmWZOorlquPLZZ3R/ySWU+VJWRhffNm3oddkq8MkndP/ee8CWLZ5/V2Gh2l1ZkJVFE4uiImDGDOPPFhQ4l8PPy/O8OaOvlJerF2M9IQOoEzBtCrYrQSwLmVOnKHDXnctGFjJy8TFvEddQIaZcWWMA9TvLy723yhQWUjG/11+nEABPPgd4JmTciURf3B+yRUa4HAUOhxqHKeJMPY2PEYwfT8JBLo1gBquzlo4cUTPaXAmZPXsoaPyff+i5bUJGrq3iaf8iMxQUqBc2K1xLeoX77rmHUsmPHiXVP2SI2l48RGAh4yMiPqZlSxqAzAiZadPIJSCC9cKVTz+lQeC771RzsbDGAKqQOX4c6NOHgg0XLaJ96SmiFQigXihPnlS7A7uqKSMGKtl9HGj3knwhTkqi2IDGjZ3rhAiBI65bQhC42lY52Pfbb8nl3b+/622RhUyPHiQuPWnNokUImfh49+0JAOc0Y28F5YIF6n7yJI1bFn5WW2S8GWxli4wIgpYR7iWAjo+OHT3/DkBNwRa9ysxitWspLo4yme+9V90mPebMoTT+H36g57YUxAPoYBUXfX/0n5FjW+TIccA6IRMXp57gycnAq696saH2YlrI7N+/Hw8++CByddJBcnJy8NBDD+FQuPtKdGjfnvrRiPgoOVCyOmUlGREbSwPZokX0fPBg9T2t6Hv0UXJFeYOcVSNm9CdPUmBrRAQF4RtZFcRAVbOmOsgG2r0kBtvISNpnu3bRBC86Wl3GV4uMu4wlgSxkzjiDMqNEiXhvENfQunUpFkqIWiNiY9Xf7W3BRDkJwxMB4YlFxmwTRF+EjDgu4uL0BX7v3mp8Trdu3lt5va0lY9a1VF6uWj1d7a/kZOC226g3nSuEy1OIeNssMgDQvDnd+8O1JAsQra/V2xgZPYYNI3fS99+7n2kEIaaFzGuvvYbc3Fyk6NQWr1GjBk6dOoXXXnvN0o0LBerXJxP2rbfSczE4l5e7jssId2T3xcyZtD86d3bOVpQtMlq2bfOsxYAIEM3MdA7SrFePrD0AxbLpIc5xO4WMHB/jcOjXe9FaZMwIGdn94a6GjEAW41YgxypGRBi7zmREXIterS53lJbSjF3gLyFj1iLjiftFi5g3dumiX2G5Vi3gnHPosbduJcD7WjJmf5v8vqctCvQQ15F9++jeViEjApd8rVGgh1GgL+CZkDGKkRFERJCL6cILPd7EYMC0kJk/fz5uvvlmw/dvvvlmzBVNUqoxcXHqDMxoIPjuOzLxX3FF4LYr0HTtCrRuTfEJoreS7FYCjN1w69aRifzFF81/nxikMzPVc1UMQCLVW56ly+hZZALtWpKFTGmpuk9k64nWIuOJa8lbiwxAqb3Z2ZTY4A2ursVGCIuMN4Jy2TJn8eGNkPHEteQuRsYK15Kr3lSvv06TqXvu8Xz9AtkiY8aS/NtvZOUUsTmeCBmj/XX0KLmVzPTYatyYrE+iFIGtQkbMovxR5dSVS0iuIyP+tMJCfUHlaj1hgGkhs3PnTjRy0cK7QYMG2OVNacgQ5sQJCvLW9t1yFycTHU1Bl6I4XLiRl0di5O+/6fz65Rd6XetCNrLIJCbSJGPbNvMZJ0LI1KmjDkDi3L3qKrLGrFql/1kxUKWmquLATouMGBwiIpzTT72xyOgJGbMWGSFknnmGLI4ixddThJDZsYPiGlz1qROIrCZvvNVawerJICe7i4IhRkbus2TEeeeRe9uXMaphQ7IEFha6bxh6+DC5Gi+4gCZlgHvXkthXMTHGqeq//QbceSd1fHdHVJRznK08lgecBg3ofv36qhkHvuLKkiKETEWFqugGDiRz1dq1zsu6cy2FOKaFTHx8vEuhsmvXLsRbYTMMIVatolmQ6EQscFdLxsxMOpT5/Xc6nxs1ogwERaGLnra2kpHgy8qiC1VBAWWEmUFUBnY4qg5A8fF0cTRyaQRDjIxeVV9t11+tRaZJE6qRY1QnR1HU61t8vHnXkvhfxPHray0ZcS0+epQyTcxUXRaXEk+rvldUqOm74jwLlhgZX1xLP/7oOvPOV2JjVcOCu/moKDcBqL/J3W8zs6+EJcZswLLsppZjcAJO+/bqYyu74AKuBYgc/JufD6xYQQeKoqgKU7ue6m6ROffcczFt2jTD9z/55BOcI5y11QS5oq+MO4uMuMAeOWK9gA8GVqyg+65djd1KgLFFJjpadTubdWcIa6pccFBvAFKUqlYevRgZT0VmTg6Veff2/9QTMloXkNYik5ZGyQZGbQrkCsDeupYUxfdaMkLIiMHOXfo1oIo2T8eFVatIhKakqNlZnggIf8bI+GKROXHC/5WOX3yRzlfZ0qGHbFHT/rdGmNlXvggZwEb3kgj2BdSgHatwJUCiotRaL/n5zj0mtOln7mJkQhzTQubBBx/E1KlT8eCDDzplJx06dAhjxoxBdnY2HnzwQb9sZLAiV/SVcSdk0tPJvFpR4b8+Y3Yier40b07WmYgI4Jprqi4n9pNesG+LFnRvpkCXoqjnaZMmVV1LgmnTaPIkatYIZIuMN66l8nIytT/6KPDOO+Y/JyMLmdhYWl+HDs7LaC0y7tDGJdx0E93cVR0X/0tZGVkErLLIiFm5GSEjXClGIsII4Va64gr1mu1rjMzJk/ouzkDGyADuLWm+cuONlFUohKwRcl0eIarNupasFDK33EKJBMJVZZuQycxUM4p87bOixV2AmbgorF1LXXIFWiHDFhmiV69eePvttzFp0iTUq1cPNWvWRK1atVCvXj28/fbbeOutt3DRRRf5c1uDDm+FTGSkWhMi3NxLFRVqTyXx+y+6SN8KICwyevtJTHLMWGROnFAtIc2bG8+kd++mHi4ffFD18wCd4566lubNo/iEq6+m54895l1dLFnI9OpFVi1t7RutRQag+jk//6wfSyIGl4gImrw99xyJOHdCIj5evT7KRfH+/dc7i5MsKKOjXbdHEIjrtieZf4qiCpmrr/ZOQOjFyFRU6NeiCURlX/l7/S1kzKJXYNBXi8yRI2rMoOgv5o5Oneh/9iR5xy84HOqf/Pff1q7bnQCRT9R27aiw0P79VEhJbz3VPUYGAO68807s2LEDr7zyCoYOHYrrr78er776KrZv3467RUvwasKxY6ro1c6c3cXIAOHbpuDvv2nwiYtT06f13EqAc5q0dsbriUVGFg4NGxq7lm69lUTk8uXApk3q63oWmaNHzfnc33oLuPtuEhndutHF9O67PQ88dNWeQKBnkbntNipaJ+r0yMiBvp6W+5eP4QYNyIJdWupdgLosRuTJqyuE8K1f3/z3/PUXia34eKp4642QkQfc+Hg16FjPMmQ2RsYX15K87/wtZI4epbR1V3V+9u8nkR8Z6dx41FchI2JTmzVznaGlh+1tCgBVIPjaXVWLO5eQuCg0bUoZFl9+SbMx7UkW5q4lj8sn1a9fH/fff78/tiWkENaYpk2rilyzbQqSk133nAlFKipoYvDXX3Shb9vWuOClEDIVFXSeiRkwQPE1TzxB+8kd8uBap45qjtcOPvXqAVdeSWXY33tPLbolx8jUrk3Wi7IyiilxNZDm5al9jq68krKjzj6brDRffmks4IzWBbgWMnoWGVeZS/JAm5dH+yMjw9wxV7s2CfWjR2nQOuMMah2xY4friqt6yIOx2VpbIk6jSxfz3yOsMX370vXdVyED0DFx8CDtO+3vDkTWkux2defy8ZW1a+kYbt3auD2AiI9p04b2jQjG91XIeOpWEsyZo044bBUyGRm0M6xuU+DOkiKboxwOYxXIriVGD6NAX6Bq1oceH3xAacneVrINRnbsoHoWwk18xx0UfGmUOhobq56H2jiZNm2AZ58FBgxw/71yewK99GuZO++k+08+US98skUmIkIVB+7cS4sWUQBmkybU06lVK+DJJ+m90aM9C1SVhcyVV1LGlzbxQM8i4yoDTrbI/PgjrdNsCxWtVfHVVyn9Wu94d4cQMlFR5uJjAPWY8aS9gOxWAryzhGjjXlwF/HoaI+ONa0kcw0lJzlWe/YGZWjItWgDjxpEl8M47KS4M8D1G5s47qfihp3PkBx5Qrx22Chlx0FltNnNnSdErgf3VV6REhQ+9uFj9A1jIMDJ3302zcb1uzSKYsjqV1fnsM3Kx/f47nStff01WD217EC1mrFfukGf8tWs7Dz7aC/Ill5DwyMlRXV9yjAxgPj1eCI0rrlAtuY88QiLsyBFg7Fjzv0EWMv/9R1Ym7cDlqUVGHmjNZiwJtEKmf3/ad95cB8X/8/vv5muGycG+ZuJytm0DNm4ksXT55fSarzEygDkhE4isJbnrtb8Q162CAuPzsWVL4OmnSagPGUITF8B3i0zNmsDFFwPnnuvZNsuZS7YKGWE6DrRFRpzYL7+svrZtG5mqfv6ZnssXSFcFiUIYFjJeUqMGzW71TN/NmtH9f/+5T5kM9X5Mp05RjZYbb6THHTqQ223QIHOfd9Wm4MABmqW5q/wtKiRnZJAbRAy25eVVM3wiItR05ffeo3vZIgOYC/itqFBLxouBE6BYkg8+AG64gWauZhHbmZxsnH7ti0XGbA0ZgZk4L7OI62jNmu6FrUBcb7/5xlyclOjafNFF6v9olWsJ8C1GxhfXkrh+iE7y/iQuTj32zU7CzDaNNGu98pSgETJyRLyVF3VXLqGcHNWvLjdDa9uW7jduVJcDyO0kF6YKI1jI+IHMTJo9V1QYD8I//kjxF6IPUChSVkb9XaZNI4EwZAj52T1pAuvKIvPQQ2QFcFcITG5PANDAIsor6LmXbr2VhNb48TQYiYusVsi4ssj8+Se9n5RUtcfNeedR529PrMxCnCQkqCn57urIyMu4ipGxwiJz4gS54956y9znBcXF6nZ4kjAhxwqZEVNatxLgfyETiKwlEe8VqIm0q+aRIhhYxMXk5aljZXk5XQ+McCX61q8nS+a8eZ5vb9AIGfEn5+db2zzSlWvpnXfUnS6b7Nq0ofu//6Y/JszjYwAWMn7B4VBPsH/+0V8mNpYuCHv3Bm67rGbbNgqUj4sjK6boYKHN4nKFK4uMSMF2NyPXWjD0qvvK1KlDrq++fdXrhMOhDrRmasn89RdNbvr2dR88Ky72rhBCRi7YJ1L0BXoWGU+FjLcWmWPHqG7HI4+YbxsBOFu15fgpd8gDt7taS3v2kNvK4XAOUvVFyFgZI+Ota6mkRC1q6Gkmj7e4EjJLl9L+vfJKer5uHWX7ClwJNVeib/FiYMKEqmURzBA0QkZOcbQqc6m0VP1R2llAYSEwcaLzc8EZZ9BBWVREAYQsZKoi6sdob2lpaahfvz569OiBqVOn+mNbQwrhXjISMmIA0pv1h0q1XzFbrFePUo9FIbyuXc2vw1VRPDO1ZMrLyXIDOGc9uaruKyPeT0lRC2uZcS0NH06D/CuvGC9TUkKxJe3aqW4sI4Q4EdfDtDRzMTJZWRSzoOfGkmfBvrqWGjcm4VZY6FmxQFkofvONeauELGTcWWRES4Ju3ZyDiYMlRsZb15Ic6Pz115591luEkNHWUwPUjCXhTpfTrwHvhYy3GUuAs5CxrY4M4HxiybUdfEGeBWiV7NSpNDsRr8s/PjKSMg8AmkWFeQ0ZwAsh89RTTyEiIgKXXXYZxo8fj/Hjx+Oyyy5DREQERo4ciebNm+Puu+/GlClT/LG9IYM7ISMuuCdPOkf8P/wwDWLeloMPJHJn3pIS9ULXrZv5dbgqimemlsyBA6q1QU6VdpW5JNixgzKj5OUB820KUlNdpyLHxJCAUBRyY7lCCBlxLOgJDj2LTK1aJGL02hRYGewbHU1iBvBswimuxSJswF1VYYEnFhkRHyO7lQDfLDIPPEAZd3bGyMhVfeV2E/7kuuuoTcHIkVXfE4XwRFyrVsi4ylxyJWREKQtvhEyTJmqgvZUeHY9JTKRIc8CcCdYMcsqaWDdA7iQR3CtmjVoVJ9xLmzaFfQ0ZwIs6Mr/++iueffZZ3HXXXU6vv/fee/jpp58wc+ZMtGvXDm+++SZuv/12yzY01HAnZFJTaaArKaHBTgwSX31Fx93ChWr8WLAix5CtXUsX27Q09bebwZVrSaznyBEaSGSxIZCTBOQaJe765AA0AIogSnnd7lxL5eXmY+bq16cZp7usLCFOUlLo2qSXpSIsMqWldNyIOCAjZNfSkCFkZTZbA0Yv2LdpU4r52rGDivCZQZ5UXnxx1cHPCLMxMkePAsuW0eOBA53f80XIJCbSeoXw0zs+Pc1a8jRGxo6qvmefrV9Zt6JCFRxCyMTF0fkr9o03Fpn8fKpPBHgnZGJjyd01e3YQJE6kpNDOMBOdbgYjl9DJk1QHobCQZo3z51cVMm3b0glQUMCuJT1+/PFH9O7du8rrF198MX788UcAQP/+/fGvu1STMMedkHE4qmac5OWpJt3Nm/27fVYgW2Rkt5InVWRdBfsmJalWFqNrg7YYnsCMa2nYMHWiIwsT2bWkd3G85hpKEvj1V+N1C8QgWlLiesYqBq3u3Wlf6vVnFRYZoGqbgmXLqsbJyEJm3Djg449VwewOIWSOH1ddncKM74nlXO5erleqwAizFpk5c2iQ7dixqkiTg2zNDnJiwN24kVyacvVpo2X91WspkH2W3LF9u1qxW0z2AfPVfY2EzPr19N/UrWu+xpCWs86i+0BZrQwRJ41VdTeMLCm1a5Ovcds2dQamPbj+9z+6qDz3HLuW9KhVqxa+01bqAvDdd9+h1umzPj8/H8lhmq9uFiFk9uwxHsC0QkZu0xFqQkbueO0JriwygPuAX9kiIwsZMxaZ2rWpiSTgPOsX6ykpqeqaKiykwnC//ea6Cq9A/l2iDLuWigpVmLhaZ0yMGjcjC5kRI6iw4sKFzsvLQsZThMCsqFD3wYUX0v1HH5lv5ihS1BMTKTDaLPLlQx44tehlKwnkVG93Bdv0lmvYUBXlekH5/o6RsUvIzJ1L2WmyRUi4lTp0cPZyyELGG9eSL/ExgqBoUQB43qjNHe4ESEqKcaOpuDg16I9dS1UZO3Ys7r77bixZsgTnnHMOAGD16tWYN28e3n33XQDAggUL0MOs7TlMSU+n4yw3l0zxehfjTp3INCpORFm8hJqQuekmMkn37+/ZOtwVxBs9mtYtBlEt7oSMqxgZgLZ5zRoaqHJz6beIzscnTtA1SXY7LV1KF8wGDVQR5Ip9+9THK1Y4l3sQyBYDd+IoMZF+k5nMJTGwREWRoDbbngAgwVSjBl0Djx6l/+naaymmaNcuGtguucT1OsrKSPQBVPY+woNpU2ys2iri5pv1lzl1Su2Npydk5EGzoMC94ACcrQoNG6oNhQ8epGao8v/naYxMeTm5Bc1W6JWPXW0Gmz+5/Xb6vd26qQJDGx8j8NUiI65zvggZMYZv2OD9OiwhK4tMo7m5tFGyCdUb9ASI6DVSty6dIGY6ZrJrqSq33347li1bhsTERHzzzTf45ptvkJCQgGXLluG2224DAIwZMwZfirKp1RSHw7176Z13KG1ZDAiyeNm/3/0gbDeykOnalcrzt2vn2TrcWWQGDKC6L0axHb5YZAA16L+szLnomNHkSgxsl1/u3oVWVOQcgGhkkRGixOGgwoING6qZOFr0MpeMiuKJwePIEUqNP+8819urRRsnExlJ9XF27HAvYgASZ0KAenpcOBzqbzVqU7B8uXOLCC2RkapwMztb1wqZxx9Xn192mfM56mmMjCfbATi75cx0DLcKvRTs0aPJ3Xnjjc7LDhlCoh4wJ2S01sG336bv0YRceoQ4x42uswFj3Dj1gmJFaIWeRWbRIjqZRUaFXL9Gy5NP0gxamPrDWMh4bJEBgG7duqGbJ6kpYUq+CxUcGRmJZs3isGYNnWCulo2IiEB8fLx0kaRl//yzaslusaygoKAAikEAgMPhQIJkX/dk2cLCQlS4KBiSmJhYKWTi4wuRn+96WUFRURHKpfxycWE7cUJYRIyX1ZKQkIDoaKEmipGQUFZ5PotddOQIneMJCQlwnFYexcXFKDtdSEp2Kb3zDll/EhLikZkZgc2bgb17S5CfTznRiqJ2Bu7dm9YbHx+PiNOmhpKSEpRK9SS0mWd5eXEAIqssK8ROQgJd1PfuBRwOddnS0lKUnC7xqv1dAFC7diyAKBw65LysEABiEElLA8rKYhF12jdQVlaGYheBBbVqxWDHjmgcPaouK8S59nCOiYlB9GlTQ3l5OYpOmytEllJKivqZ6OhoxJyOVJaX1ULWp2gcOhSDli2BiooKFEqjpWjYef75tG55vWLZ+HiKnTh61FkMREVFIfa0ylEUBQUFBSgrcy7qlpYmxokoALE4cQLo00fB4sUFyMxUq+6Wl6u/LTIyEnHSaJ2fnw9FIWGmKLQdalxW1WVlhIWNsgKdz3sz1xOBp9eI+vVp2a1b1d+Vng5cfXXVa0S3bhVo0ICO2ZMnnY8L+bzPzy8EUAGHo+qxU7u262uEFu2ymZm07KlTNCmQJxjyee8Kd9dyV/9TJenpiGjaFPF//klC5qyzfPufxIUhMRGOggLa96d9nAWZmVDy81Uz56lTlTu28j/dvx/YvBmF9eujAiBVr7M98v40c90XyP9Toq/WJ19RvGD79u3KE088oQwZMkQ5dOiQoiiKMm/ePGXjxo3erM6v5OTkKACUnJwcy9cNwPDWv39/ZexYRQEU5fbbFSUhIcFw2R49eiiKoihNmtDyDkdtw2U7d+7stA2NGzc2XLZ169ZOy7Zu3dpw2caNGzst27lzZ8Nla9eurSiKolx3HW1vZmYPw2UTEhKc1tu/f3+X+03mmmuucblsXl6esn49bUNs7C0ulz18+HDleu+55x6Xy+7cuVO54QZab48eD7pcVj7mn376aZfLdujwe+WyEyZMcLns5MlLKpedNGmSy2Xvu2+uAihKnz6KMnXqVJfLfvXVV5Xr/eqrr1wu267dVAVQlA8+UJS5c+e6XHbSpEmV612yZInLZSdMmFC57O+//+5yWeBpBVCUggJF2bhxo8tlH3zwwcr17ty50+Wy99xzT+Wyhw8fdrlsRMQtCqAoZ5yhKECey2WvueYap2PY1bL9+/d3WtbMNUJQu3ZoXCMEiYn2XSPMYNn/lJ5OF45XX/XP//Too4oCKK1r1XL/P736qqIASueICNP/U48e3v1P/sLs+O2xa2nZsmU466yzsGrVKsycORN5p+3i69evx9NPP+3p6sIad64lwdq1JJSFKdddWm2wICwyZgM//YGYtZqJf/AE4VrS9mryBb0iY0Z4YgUWbjS96r6+IAJurei35Ct2boM4H9980/vMmnDAXd84V7iqBh0qBUBNISyc/ioEJtI0zQRaicBMT0pxhyqeKqTzzjtPefW02kxKSlJ27NihKIqirFq1Sqlfv75H63r++eeVzp07K0lJSUp6erpy1VVXKVu2bHFa5o477lDOOOMMJS4uTqldu7Zy5ZVXKn///bfp7/CnRSYvL8/wVlhYqKxcSeK8fn39ZRctylOAPKVRowJlzRpatnZtRXnzTXr9kkuqfqagoMBpG/Lz8w23IT8/3+tlCwoKXP4+RVGU888XFqQCBchT/vnHeFlBYWFhlfcbNaLfu3ix/rLNm9P7c+Y4f66iokKZNo22oVevIqf3li+nz9Spoy4rKCpSl23blpabNUv9bHZ2uXLzzbTewYOLK1//5ps8ZcCAPGXKFHXZ8vLyyvUWFxc7bcPYsbTuq66ie6BMOXmy6rKzZ9P7rVuL5fKUvLyyyvWWlJRULtunD70/ebL6PatXlyqAotSp47ys+N5Onej+2WfzlNLS0sr1lpaWuvyP77uvRAEU5cEHqy67cqW6rcuX5yklJSWV692ypazyvS5d6P6DD9TPFhcXVy5bVlZm+P09e+YpQLECKMqffypKeXl55XuLF9N609LylFOnqq5XLCv+32+/dV53UVFR5bIVFRVKXl6e8vfftGxMjPOyLVoUKYCiLFqkKOvXVyipqXnKzJm0bFRUnvLSS+q+qFGjULnoIkURBkCxjoYN6f2lS52vETLa33/LLfSZsWOrnveu/jdfrxGzZtH3tm1Ly9xxBz2/996q14h//lF/+4QJxud9gwZ0jVi2TH1/+HD63P33u79GuLqe/PSTug3vv1/1GmEGV9/n7n+qvK1ZoxQAdOHo18/3/+myy5Q8QMl78031f+rRQ1EAJX/qVFpm82ZaJiam6n+6d6+iAEoBQMusX+92f5q57uv9T/7C7PjtcYzMhg0b8Pnnn1d5PSMjA0c9nDYtW7YMI0eORJcuXVBWVobHH38cffr0webNmyt9bp06dcINN9yARo0a4fjx4xg3bhz69OmDnTt3ItLmTp7u/ILCIrNvH+BwJFbp/NukCd0fPqzW5mjTBujQgda7bZv7wPcE7Uq9WPbzz8kPf845appnvAkTh7DIKEo8Gjd2LhduRJxOLnDt2hS0qw0WFMu2akX7Yvdu5/2xdClw//30uG7dWCQmqik5IpsiJ6fqPoyNja2MjxBxJHXr0nKHDlEJBpEwsHNnDBITaUo+cGDVomsyMTExlTEagBp8Kxc2/PtvCrqVlxVxGWLXyFmVAMV+iPgTEfdXWqouc+aZFGdYr57zsiJcR4SgNGjgnDobFRVVGS+jhzgWjh2ruux55wFDh9Kx88wzwA8/qJ97661IAIno39+5orDesRwZGWl4HslWqaNHKaZALCuyaC68UD/TSywr3lMU43PJ4XAgMTGxMrYiPt55WZFZd+IEcNFFDuzYkVgZBJ6QQMs3bkzHZ04Oxe689hrwwgvqNULeRqPt0O4HkZq8cWNVi6MnMQmeXiNERe3du+n3rV9Pz7UZd/Hx8cjKUuN/Tp0y/m3FxfQDatVSlxFZRtogdL1rhBFxcXGV/w9ABgtvwjU82Z+Gy4oLOlBphvfpfxLm4IwMNaj3dIxMwpln0g8V6WwlJXQBkcfEevWAGjUQLy5m4iLnAjPXfYEn/5O/8di1lJqaigM6efJr165FfblGvAnmz5+PYcOGoU2bNmjfvj2ys7Oxe/durBElJAHccccd6N69O7KystCxY0c8++yz2LNnD3YZFB0qLi5Gbm6u080u0tJUs79eWXeRZVNUpGa0tG6tZmD895+1rg09FAW44Qbgiitoe1x1sNUi71pP68fIuEvBNqol8++/qstBW3pf7PeiItf1LYRbTCyfkgLcd59quf39d2qU6M3/IDKqWrVSY/JWrqy6nFi30Amu2gjoZS3VrEn9lrSFtMXvFus3255AoFfdV+b//o+2ef58EpUAZZ+JVmsPPKAKQm9qcbkqiieKEV5wget1eFJjxKjujjYDrlYt1R0SFwfcey+5hfPz1d/+7rvO2VbeNI4USSuBrljbpAnwxRfAjz+SGF63jl4XPZZkoqLU3+aqRYA2w6u0VG0g6kvqNeA8NtuauZSaql44/vvPd5+ZNm1aUdSCRiKKXv7x2oPL4VD7vABcEE/m+uuvxyOPPIKDBw/C4XCgoqICy5cvx4MPPoibjQo+mCTn9FWvlkGuYX5+PqZOnYomTZqgoUHTlhdeeAE1atSovBktFyhcxckkJKjZemLW07o1Dexi0BHlu/2FNsVbbIcZrBIyZoviaZtHGqVeAzQIihm2URp7ebn6G8S1Ij6erBtyzccJE2h9nlYUEO7sxo3V/1nMsmWE0EhIoKxKba0OGb1+S0aIgblbN+pc7WnLC3dC5swz1R5Pjz5K19n33qPrafv2wEUXWSdk5G2oqFArSVspZMRge+gQMGmS+rpeKr9eDZn4eKp506wZHXMffeTddgiEWA10Vd+4OOD668lSsmkThX3UqGF8/Ahx7aoNh1bI/P03rTclRb8dhyeIfRsV5b45q19xONQ/q6xMv4qiJ2hPntJSMhcPGaKanOPi1AudXoaUmBXHxIRO8KUXeCxknn/+ebRs2RINGzZEXl4eWrduje7du6Nr16548sknvd6QiooK3HfffejWrRvatm3r9N4777yDpKQkJCUl4YcffsCCBQucTPgyjz32GHJycipve+Qa9jZgtnmkGKRbt6Z7cfz5uzCedvf88ou5zymKcx8dX7Lx3VlkjJpHGrUnAMgC4q5NgSxwtH2c5LR3YTG+/nrjWjBaFEUVWo0aVf2fZYQoadKELA06nttK9CwyAFmnli51riUjBtsbbwSysz3rgQW4FzIAMHYsDSSrVgEzZlBFWIDaETgcvtXiMuq3tHUrHSvx8VRp1hXeCBnAWXjpCRmjGjIREfTbk5OdS+bL7RLMIv4/OwOM5UJ4RlnMQqQbTURKS1XjhNhfQtB36OBZoUQ9xL4tK0MV933AkVWnrwG/2pMnJgZ46SW6QIjxz+FwXUvmf/+je3EyhykeH0IxMTGYMmUKduzYgblz5+LTTz/Fli1bMG3aNJ9iVkaOHImNGzdi+vTpVd674YYbsHbtWixbtgzNmzfHddddZ1h7IjY2FikpKU43OzErZETxKyFkxH2wChnnehFqvxNvMGuR2bXL2U3kyiIDuK/uK15PTKyaBFCjhlpMbd48inmYOFG/oZ4eOTmqQGnYUJ3NytssEMuZaXlgZJG5806gVy+10i1gvvKsEWaETGYmxSk1aQLMnEkFBOvVAwYPpu8XmS6+WGQaN1aPAUB1K1Gsket1eCtkZEOuJ0IGIOvXnj3UyV7gjWtJ7DuzjTatZM0askq99ho9d2UlFOOs0Xkm71fhtrOiNYFAFi+eNua0HPlC5IuQqaioai42wlV1X19MoiGEVwXxAKBRo0Zo1KiRJRsxatQozJ07Fz///DMaiDKREsJN1KxZM5x33nmoWbMmZs2ahSFDhljy/f7EnZDp1ImOvzVr6IIpzoNACxnRxfaXX1BZwMsV4hyLiKCO3S5iRt0iLDJGQiYjA/jwQwomlrWyWSFjZJHRxsfIOBwUG7drFy0ngorNIrZNFFVr1476Dh09WnX/eiJkjCwyem0KxEX95EkSFZ7G5gkhc+IEzXaN/uPHHweeeorckoWF5O6JiVG3xeFwdhOZRXzmvPOcK8qajY8B/C9k9PZpXFzV171xLQkrhh3e8S+/BF5+WX2uFx8jEBMRowrM8uRD7JeiIpooWCFk5H09ejTw0EPq9TPgyBYZX6r75uWpadNChBw6ROpWtCcQuBIycnXgigrfzV9Biqnh54EHHjC9wteEhDeBoii49957MWvWLCxduhRN5KhvF59RFMVlRdJgwp2Qee01CqwbOpROPjHABVrIDBxI5eePHKFtlWfAesiTBU/7K2kRF0Ij15LDAQwf7vyaorh2LYltA9wLGaMJjxAy3vSAE9smtL6Y0ZaXk/tH1KkBVCEzdy7wySdk+bnmGv31Gllk9NoUiAFk4ED6P/XcWq6oWVPNSDl+3DhWQwzSXbpQN2oRnComg8nJ3l0/hWjT/lZhNfREyJiZqcsBxfJ8ymyMjBZFoRYkqameu5bk/lt2CBnRpqBPH2D8eOeYUS3t2lFPLaPtlEWfuL69/z61J7CixInwrhQUkAv1ootsFDIiffDFF32zyIiTJyZGVWpvvEGpcCNHOgdxmREyv/9OfvFOnbzfpiDGlJBZqwkM+PPPP1FWVoYWp4/ubdu2ITIyEp083EkjR47E559/jm+//RbJyck4ePoqXKNGDcTHx+Pff//Fl19+iT59+iA9PR179+7Fiy++iPj4ePT3dfQMEELIHDxIMxa9makQK3JjSXEi/vsvXQisLvgmEANus2aUfv3LL3RzJ2TEeWaF586dRUaP/HzaRhGcrDfIunMtubLIAMY9jMwgLDLi4t6xo9qEcds2fSFz6hSl6rvy0HpikZFnwp5mLAE06atZk/6Xo0fNB52KwcpXq7Y4V3JzSVDWrEn7audOEkZmekd5YgkR7t2YGOfmmp66lgTPP0/tbq68UhW0Zi0ysqi3U8gcOuR+P4trhVFmr9G+Mts80wxCyAA2Zy41aaLmqfsiZGRLirYFu9ZrYUbIVFRQ5HaYChlT86QlS5ZU3q644gr06NEDe/fuxZ9//ok///wTe/bsQa9evXDZZZd59OWTJ09GTk4Oevbsibp161beRMPJuLg4/PLLL+jfvz+aNm2KwYMHIzk5GStWrEBGoEP5vSQ1VTXR66VgA2oNGXkWkZFBlgpF8Xwm7QkPPUSxY1dcAQwaRFkXZurBzJ9P91bMqNxZZADKZvzwQ3JjATSgf/qp+nm9i6I715I4x42EjFHjSDNoLTJZWWpmlzZoWQgZM2nS3lhkAO8zX8zEyRhhlZBZv57Ghzlz1Gyl9u3NiWhPhIzYd9oB2VshI6xq332nLm9WyMhCyhu3nK/oNY40QuwDI2uT2eaaviDHyRhdZwOGCIjzxbWkFyWvTb0WiANW7+CSMzLEQBOGeBzZ8Oqrr+Knn35CTenqX7NmTTz77LPo06cPxowZY3pdipsCCfXq1cO8efM83cSgo1kzGgj++adqlsWvv9IFGnAWMg4HPf/1V7LYmA0y9ZSzzlIDdT0xxy5bRvdWlBc3Y5FZtQoYMYLEwHXX0WvC+mCU1WHWteQPIaO1yAA0c/3hB2MhI2IMPK0jI39G7BNF8d0iA5CQ2bbNXiEj1+ARoQFm3EqAZ0JGiGFtOSxPY2QELVrQBOG779RaLGaFjHDdJia6ttD5i8aN6V4U+LvoIuNlhejau5dCOLQB2Foh89hjFED/0ENVu2l7S9DUktmzR007PHmSLmretC4XJ4+ekPHGIgNQZcUwxWPPdW5uLo5oq1MBOHLkCE4ZRXtVc1zFyURFqWJAKyTEc9GFPVioqKDgZKDqRd8bxHmek2NckE+vlowYtI0GabPBvkYxMla4luR4eLGvxKAmEKeNCPuywiJTUuJcSM1Oi4w3qddA1eDnFSvUQN8LLzS3Dk+yhcR+15YSkF2UYp+azQh78EG6Fy5QszEyQsjYlXQpCwN31x+xD7ZsUd1zMlohs2oVFcPzpXeTFtki888/gS8iWMmxY+RTFOrbW/eS7FoCnIMCvRUyYWyR8VjIDBw4ELfeeiu++eYb7N27F3v37sXMmTNx22234eqrr/bHNoY8roSMfIHVDmD+DvjNzQXeeYeyaQTl5XTRdTWrWbdOvdCKmZsvyAOdkegQ+/DYMbo99RRV4AXcCxlvY2SsdC0BVCkVqFp0UBYlCQmus5eMLDKNG1NQ5nPP0XNtdQI7hIz2WuwpwiIjBN6GDaoINFu3yJusJa04EcdHebkqOs26Sy68kIKghUA3a5GZNo3urRzsPWXCBKBfP+DWW10vJ4sId0JGUaxNvdbbhpwcG5uMiouR8Ll7617SzgKOH1dPau3s0VUdGfni999/xqll7rjlFqBHD9dl0m3EYyHz7rvv4tJLL8XQoUPRuHFjNG7cGEOHDkW/fv3wzjvv+GMbQx5XQkae7WtdK/4uivfPPxQAL5e2f+QRcmO98Ybx52Rvn5EI8ISoKPV8NYqTSUxUJyL//EPuDmEYNBIyZgviWS1kysv13dmizuPRo86WJ1nIuHMBGVlkatQgcSf+S+31xhfXEmCva6mwkGI2KipoIDzjDPO1VTwRMuI40bqL4uNVd4lYxqyQcThUqwxgfhwRFj0728k99BC5Qt0VmZP3gTshs307HRexsdZmFoltFNZdfzWfdovofSSwyiIjLii1a1c9QM3UkREXQ28Gk0OHKJ3y55/V4Mggw2Mhk5CQgHfeeQfHjh3D2rVrsXbtWhw/fhzvvPOORw2yqhOuhIwcL6F1YYgT/Z9//DMzE1YDebAVGQquCuPJDQKtMn27K4oHqCmgW7e6T70GfKsjA6jumsOHPYsFOnSIhEpkpHN2Uvv2dK8ozkGUQpR06uS68BigWmSKilxvkxAyUVHAsGGu02ddEQxCBnCuY2I2PgbwTMiI0AbtMehwVD2WzMTICK6+2rkmjxmESDdTW8hu5H3gSsjExZFbCaBYQSsr5ov/+d576f8zk9HmF6Ki4NTF0lchIwRIairNMrUN1QBzrqVzzqE6DN6kiokIewBYtMjzzwcAr6vjJCYmol27dmjXrh0LGDcIIXPkiHMQOeDsttQKmfr16WJeXu4+gK2khAqTyT2C3KEXkCoGiQ0b9F0yx48Dv/2mPreqYKSZgF+5eaS7YniAedeSUQxHRgYNYuXlng3kYtvq1XOuWyVngwkBqyiqkJkzR83KMkI+1fTaFCxZQhYkIWSSk6mRoZza7wl2Cpm4ODXUQA5294eQqahQ96c8Dgm0QsaTqslRUarLz12hSYH4HpsLk5tC3gf79lV9X95XQshYLTTE/5ySYo2V2CfkC5JVrqXGjak2zfPPV13WjJAZPx745hvv/HmykHFVGdFGwrPMX5CRnKzO7rWCRLb0aYWMyFzSLqfHK69QraQrrzS/XXoWmcxMGnAVhYIrtRw5AvTsqZ5fVltkXKVgCyGzaZPzzM9fFpmoKNVS7Il7SS8+BnBujicCKIuLVcuKmdm3PLhrr1t3303ZJT/95JnFwBV2Chm5InDbtqqbxR9C5tAhNaxB73jSWgw9TSkWtT7Nxsj40qMq0HjiWhJCRu5lZgWuwkQCjhVtCjwJMDNb2ddbhJD55BOqzxGEsJAJEHrupdJSdWZ+3nn6Fy0zQkZR1E67npTy0RMygJoRoudeatGCrItiRmWVkDFjkRk4EFi4kNI35fo17mJkcnP13TDuYmQA1TXkSeaSnqVLrEsMxqLGpBzrYsaw6XAYx8mI/XDwoDoLjoz0LT7PTiEDqEJmzx76D9PSgJYtzX/erJCRXZV6/4ORa8mskJG3w0xTZBFM703mbqAxK2Ti4qgKcLNm/hMy+/dTm4LRo61dv0fIkfV79zp3DzWL1iKzfTtdWEpLqy5rVEdG7uybmkrP9f4gV5SXqxcaXzoD+xkWMgFCT8hs306xFElJZP3Qs6aYETIrV5Lwj4sDPv7Y/DZ5I2QEImgxkBaZxo2Biy+umqLtTsgAVV16iuKZkLHCIhMRoV7jxP8prhGRkbS8Ts/UKhhlLgmr36FDqnjZu9d9lWZX2Jl+DahCRsRlXXCBefcM4J2Q0RMnvsTIyOvcvh24/HL3y4v/NhTqfsr7QK+bjdhXCQnABx/Q5M1ENxqPEP/zqVPUgf3jj21MwX7uOTK5JibSRnhjldFaUu66iy6AehcII4uM3K8pNpYO4vr1zQdqAXRh2riRAgWbNKELodyZNkhgIRMghJCRg3vFYNaqlfHF2YyQEW03hg7V9+8b4U7IrF7tPJs/ckSt3WJ1nQtP2hRUVDjHTBhd7KOj1UFfe+6eOqVaaVwNtEIceCJk9GrICG66ie6FhUcIGYeDJktmslTcWWRkISO/7g1CyJw65fnE0gqrtvj/Fi+m+8xMz+LAxAAnu/D08FTIeNpZXM782bzZdfB+cbF6Xvny3wUKeR+I6tUygajsK86J6Gg6l3JzbUzBPvNMMhuKyH25voVZtL5Fo2J4gLGQEeuIjqYDWBxU3tSTSU+nLIt69YABA4IuDZuFTIDQs8hoWxPozSDEe1u36heLO3AAmDGDHvfpQy6mhQvNbdP06ZSpIdK8BWeeSTFl33/vPLC++y4NJA8+aL2QMWORAWgQ++EHYOxYep6a6lzOXYtRCrZ4HhPj+gLrjWvJSCACwMMP0/2BA3TdMRIjrnBX3Vd2LQG+zepr1FCPAXf/jRYrXUtiMHzvPed0ZnfIAsLVtddbi4w3Qqa01HXbkdhYtZKuEJLBTHS0eozoFfwTr5WWWlMJXA+xf0tK1PPO1gq/gFq22BvzkNYl5ErIGAUIyetwONT6D55U+JW3u0ULuiAWFLg219sAC5kAoSdkhJUlOZmOD5GeK9OoER2npaX6FsopU0jgdO1K9Y5uu02Nl3FH167AkCFVBxqHg+JQevd2ztYT9WNatPCfkHFnkfnoIwpqXrqUnrsb+I0CfuVAX1euCm9cS64sMmlp6m/dvl0VMsICbEZ0uKvue+iQ84Diy6w+IkK1lnkyw5Xd81YIGUAVrJ60TJDdHq7cS2efrR7Leu4iX4WMdjltUUQtVrtu/Y3YZzNnVhW8Yl9Nm0b78Y8/rP9+2YUosgNtEzK7dgFPP00XgthYmrFqy3m7QzZn5uSoIkWvlLo7i4yYzQkhI8qyu6OigtxJvXvTBdDhoAqJQNDVk2EhEyDEyXXihHqiy66lgwf1UxcjItTgRr1S4X37AtdfD/zvf851Vqzm6FE146BfP/tcS9pWBUZ9lgRGKdhm4mPk9ZsVMkVF5E4G9C0yRUVqMbdt26oKGU8sMmaCfQHf4yy8iZMpKlLjEq0SMuedp1oP5RIAroiIMNem4Kab1GPQHzEy2qJy7oSMOL/saBjpDWKfjR5N7QdkxL46cYIEmpmmtJ4iCxkxabSteeShQ8D//R9ZYq66il775BPzny8qUv24qamqNSYtTb86oVkhc/HFdD93rrluv1u30ux45Ur1IsBCpnqTkKCK6X/+ISuKGIxFBtDx4/pxCK7iZM49F/jiC2qkKITMtm3uLZl//UXtCfRSrAEahGbPphpM5eWU0qso1GAyLU01EVtVR8asa0n8xp9+ont3A78715K7QFRPXUvimpOQoJ9xsn27atmVhQxAbi4zgbFG161GjahcxAsvWCtkvLHICGuMw+FbUTf5sxdeqMZgGB23epgN+HVlZfE1Rka7nHawl/niC3XSHCoWGVe1ZGTrYKtW/kkp1xMytllkxEXp8GE1KO7zz/UzjvSQT57kZNduJcC9kBEX6V696IA6eNDcTECkXZ9zjmqa792bZgebNzsX87IZFjIBRD7B/v2X/Lnx8ZSSKI4TMZuXMVtL5owzyFedl+fegrBgAbUneOst/fcjIqhkwIQJdNEVWSOXXqqeZxER7suXm8VTi4zACteSK2TXkhk3t+xW0nNZydkaGzY4CxlRgM8dRhYZuU2BVcG+gHcWGXGMpKSodW+8QbZIXHABcP759NgTIePOIlNRQf+veN8fMTIREc6xXK4sMrt3q8HAoWKRcVXdVz4WrU67FshhIsLi402PNEsQM4eiIjpgMzLowi5mX+4QAkScPEbNIgWykJEvUtq0wZgYtT7HrFnut0MIGTntulYt9U8MIqsMC5kAIgsZ2a0UFeXsFtCiJ2Q2bKBy3Fu2qK/FxKgDpTv3klGKsCAyUp39LlumHrP9+zu7lTxJhXWFsF6cOuU6o8NbIaN1LZkVMsK1VFBgrk+Oq0BfgK45YoK0ebMqRjIyaOJjBlf1rwRi8GjWzPeeNr4IGV8tdmIgj4igMUEck7//bn6C684is3cvufvEce2PGBl5Oy69lFzBRp3e5clMKFpktEJGtsj4S8iIc2LLFrqGHjlC1y1bkDu/njhB6aSAefeSVoC0awc8+igwaJD+8uLHV1Q4Xzz1qioOG0ZNtIYMcb8dekIGoAMYcO5VYzMsZAKILGS0GUtiwHQlZP7+W3XpTJpEN5G9IzAbJ2NUtE1GpGFPnEiDWEoKDSRWx8cAamA94LrMQUYGbY/YJ95aZMzGyCQmqoOpGfeSq0BfQVYW3e/cqQqZa66hQEkzGFlkAAoIX7xYHQz79KG+Nr7gjZCxqjKt2Pft2tHx1qIF/WeFhe7jTATuhIycsQS4tsicPEnjhRCKnlROFtvx3HMUTC+3r5AJdSGjdS3J+91fQqZjR8p2LiykkitDhnjfHcAShFXm0CG1Gu633xr3S5HRuoTOPZf8xUZtyI36luidhH36kJndXauCw4dpoHI4VDOo4Prrgc8+o0yTIIGFTADRs8iYETJNmpBZuqiIYq9OngQ+/ZTeGzXKeVmzQsad5QBQhczBgxS3Nm4cucD8IWQiItTBwl2czP/+pw4KvsbImOnL4knmkpn9KoK38/LU5pGexJG4ssiMHEkxfeL/97VFAaAKGU/Sr62yyPTsSeeG6JUXEQFkZ1MMiVxLyBVWChlt3y1vLDLuYnXk4ywcXEtiPI2NpRg7f5CURDGpL71E27JwIX3Xa6/5L+XbJXKczNlnU7Oz4mK1VoYrvvyS7vUylPSIilI7cOoJGW9OQuG7bdOm6mykWTOyMgVRbQAWMgFEzyIjmvl17EgXbb2CdlFRqkDZvJku5AUFlE3XvbvzssOHU/zLo4+63hYzA+4559D5UVxMlpj776fX/SFkAM+K4onCfL66lsxYDFyJTC1mLDKye0wEdXoiZFxZZMS2in1opsCeO+x0LZ19Ng3s99yjvnbllXS+GFk0tHgqZPTEX3y8OlbIQsMTISOWzcujoG+jNGRxbAPm2lYEA65cS8LbMXCg+f/MG6KiqE7TX3/RtbagABgzhgwKroKr/YJskXE4VKvMtGmuP7d0qVo/48kn6f7PP2kG60qR6dWSMSqtXVJCbqH/+z/j9SUlUUqsyFIKcljIBJAzz1SrTorMFWGRGT+eOhdffbX+Z8VyGzcCb79Nj0eNqhqj0qYNBZa7GuCLi9WLpSshExenNjuV6x/5S8iYzVxSFM+FTDBZZPSaR77yimplc4cri4zYH2I7RNVnX7BTyFiBJ0ImKkp/sHU41GNFDNSRkc51lsxuxy+/0EA7fLj+ckeOqMv7EigdSISQuf564M03nd8TsUCeFDL0hWbN1IKCsbFUobxTJ3LDe9P2yCteeYUCdoSAueEGOoh++cXY51VUBNx5Jz2++241IKxXL/JHu8on17soGPl3c3KoT8bTT6smYS29e1Ng5Msv679/7Bh1477jDuNtCiAhcpqEB3Fx6gBXXk4nmdmeI0LILFpEx3ONGnRueIPwYcfFubcOCouR3OjO30LGnUUmJ0ed5XnrWjIbIwOYryWjKOYsMt26qdcoMcnKzTU/aJmxyAgxaIVrIhiFzMcfU/FHMz3w3AkZOYvUlYVFK2Q8dduJ7RD/0d9/6we2i47roeJWAtR9cc45wBVXOL8XiBYFWoT1u08fsgSVlQHPPhvAAOCmTcmMLv70+vVJHADGM5bnn6eaDHXrUkwMQBcGccF15WryRMikp6st5GfPNvFjdCgvp0CvKVM8K3vuJ1jIBBhxggEUK6E1/RvVKRJCZvVquh82zNgdMWMG8MQTxmn+desCv/4KfPWV+6yjRx8l06woCgnY71oS1piUFPeDiZUWGXfn68mTqrhwZZFp1ozq/mgxmyZtxiIjZp5W/EfBKGTeeIMs8CKxwhWeWGQ8ETKeDsxi+fh4GlvKyvSLXIqSCKHQ+Vogfpu2DURhoZrtZ0W8llnEdXbvXuCbb4Cvv6Yszz59ArcNVRDWmU8+qVrLYfNmsnAAdACIE0fMIFNTXfuf9S4Krk7CgQPpXi8N++hR9xe7jAwycwHm08r9CAuZACMLGTktdu1amqlp+x4JxOsFBSSo5ZgBLRMmkLg3qkQdH09WAe3MSY8mTSjuSxz3gP8GKbOuJbNuJcA5Rka+dngSI2PWtSQGxNq13Q9yeh2pzQoZVxYZ7TqsKD4mhExBgftAVYG/hYwnhfHcCZmrrlKLnpoRMuI48FTIiO0oLKQsLEA/8yrUqvoC6r7491+aIO3cSc9Xr1atTnZYZLZvp/N+0KCqLi+/sn07FXV65RX1tYEDSXDs2EGRyYKKCnLRlJZSAJgcX+CuGJ7AE4sMQI0fAZrRCl+m4MMP6aJ3992uvzOI0rBZyAQYIyGTnEwDtF6bAoAslVFRdKz/9pv+QCjwZ6sCIHgsMmYGfnEOl5erA7+ieGaRMetaMuNWcoUVFhltywYzv88dyclqLIjZzCWjOEOrsFLIPPUU3QDXVgNfLTKykBF91fSETKj1WQLU/bZoETB4sNqtXP5/AilkzjiDrM2nTukXGfU7+/YBzzzjnKKcmEh1FgDnmjJTppBpMSmJgtpkM7mnQkYc5IriWshkZVFdhoqKqu3khZlTHqz0EIHAP/1kU2qYCguZACMfGyL+BFAHIL2OyABlTJgtve1OyHz7LQUM65m1zWB3sK+werrrswQ4Z5vI5eXFLNFK15KZQF+BtqJyZKR+xpoeriwyDRvS9VNghXvC4fDcveRL5qcZhJD580/9jssysoAwwkwch68xMnKFYSMh88MPwAMP0ONQtMiIe7GP5Er4gRQysbHqhMKWVgVy+rWMaFnw5Zd0Idq/n1KtADKjay8eQsi4u6hoZzfyRc7oJNRzLymKqj61hfC0nHsurfv4cf90AvUAFjIBxsgik5SkHot6A+bEieqg5K5VgTsh88EHlPH088+mNrkKoWSRkbNNxOAqBE1EhLnBQgiZo0ddVx32xCJz5pnOz2vWNB/s68oik5JCWZvi2iUCR33FUyHjb9dS48b0v5SVuW/m68oik5tLY4nYl/6MkZG3Q3YtyS7PPXvUsS+ULDJiX4g2DGIfiZg+QJ1QBIpmzej89qT+kWWI9OuTJ51TpXr2JOvKyZPUvPF//6OD8Jxz9OMFvHUtyX1kjGJrhJDZtUu1qGzdSjssLs59Jc2oKOCSS+ixze0KWMgEmDPPpIEuK6vqYGZUr2TPHmreKCx+7iwp7oSMJ5YDPey2yHgiZICqAb9yfIyZFgu1aqmuFVcZkJ7sVzkFG3BfaFNGXJfy842Dw8Wg6coF6QnBJmQcDvPuJVdCZvZsSgYZN46emxEy4vz0Vsjk5VHw/OOPk2VUFjKhWNUXUK1TInV93z4SM7Los6qdiVm+/ZaOQ9GAOqDUrKnuDPlPjYwEbryRHj/4IEUhR0YC77+vX/Tpyisp46JHD9ffp60jI5tEjWZIbdrQrPivv9TvlhtFmlGel15K3202eM5PsJAJMNHRVAxv48aq9SqMhMzzz5MlQFSEddeeXjRNO35cf+Bx12fJHaFkkQGqpmB7Eh8D0HVATDxErSo9PLHIaIXM9OnmtgVwLpKm5y7ZsUN97IlAckWwCRlArZxuVApD4KpppDgXxLFsJkZGTF49FTIie3b3bvrsc89R9po8zshjXii6lsR4uH8/sGqV+r5VzWU9ISEh8OKpEodDvUBpg+uEe+m//+j+wQdVX6OWyy+nVGx3QkZrkTHTI8ThoCwSeScZ9VcyYsgQumC/9JK55f0ECxkbkN1IMnpC5r//KIgcoPRBwHmg0iMxUbUKaK0y+fmqUAhWi4zVQkbrWvKkhoxAWH0/+sg41sITgagVMp5U9pUHBb04mXvvVa+dVqW8eiJkFCUwQmb4cLLevfOO6+VcWWS0QsaMRUbg6b41E+MWqhYZsd+EKNMKmUDGxwQNwhyqjQVo3ZoaQwF0IRCR5r5gJGTMnoDFxeSn9VTIxMc7t3W3CRYyQUSHDlTEUY5reO45ylS66CI14H3Pnqr1GrTMnEmpkOed5/y6uHAnJ3s/yPhbyOTnu67AaZVryRMh068fuQNPnFBbociUl5uPywOcCyHGxHhWITYiQr8iuUAucmiHkCksVKu5+lPI1KzpHMz8999Vy3MA5oSMGAdcDbjawGlPB2dhKf33XzpeTp6k0AI5aUTOhA0li4w4zsT+P3SI+mM98QQ9t0PIHD1KnpnOnfWPC78jrCwbNlR975lnyFw6bZqxuaq4mITFf/+5/wFGMTJm0gbvu48GnYULSVTddVfVRpFBDguZIOKJJyhtcfBger5zJzB1Kj0eP56OtaQkOqZFnQYjunShwVLrdvU1Psafs+0aNdTtNbLKeNKeQGDkWvIkNTgyks5vQN8CcPAgDd6RkWpwsCuSklTBWlJC/bM8wVXmkiwCrRpAPBEyZuIMrebXX6kv0513Vg3INiNkxDKeWGQ83bcNG9LktbSU3EvLl1OIwWOPqcuEukWmvJwyiGfOJMuk8IgEshieIDkZ+P57CgaX+1cFjP/9jyr16pX579ePNkwEeumxcydV4D3rLPc+Mm9cS4LiYspTnz2bysVPnhxa1RjBQiaoee45GhwvuYSOZ4dDndW5cy8Z4auQKSpSZ9tWX2jlDCOjgF9hjZJd0O6wwiIDkCsjJoYyMeRsDLFdAMVBmG3UOHGi+tjTnjquMpdk7LDIyFbtQMUobNxIAmHKFOp1JwthM0JG7CczMTICT4VMRITqUty+XZ2wb9miWlgzM1XrXChZZMS+KC6mDuwDBtDvsKM9gcD2FOysLPInetswy2zGElC1jownQkZkL337rXH2QJDDQiYIEcfSpZeSO3X8ePU9IWTcBfwePEiZGKImhWDAAOpb5qrxqSuEW8nh8E9nXncBv998Q/cXXGA+gNAo/dpTIZOerrYWmDzZ+T1viuENHaqm4ZoVZQJXFhk5xd8OIWNHw8i77gLmzKH9snQplbgQ8WFGQiYvTz0mhHjwZ4wM4BwnU78+rbO8XM1EXLBAPcdDySIj9oUQLosXA6+9RgYJwL4YGbnCb8jhia/ayLVk5iTs2ZOWO3iQZleuakwEKSxkgohNm2hAE/ETgwaRe1V2V4qUbXcnZlERCaBJk1QLCkAWwwsuoOw6b5DLp/ujM6+7FOyvv6Z7ES9kBq1ryZtgX4EI+v3iC2ex5W0mmHAliLITZnFlkRk1Sn1cXYQMQAkeK1ZQjZnt20nMLFhgLGTKyoAxY6gFjpg8uBpw5eKK7pY1Qp6IOBz6hfFCsbKv2BeFhRTbetVVtG+XLnV+P9CI/W2LRQag2IChQ2n26CneWGS8cS3FxKgNLceMUbOpQggWMkFEjRo0sB04oF5YtWLBrGupUSMaxEpL3aeneoK/An0Friwy+/apQfVyOxJ3uKoj4ynnnUexGEVFznEtwiLjicvu8GE1Q81Ki4zs2rIqoUAWMu7iDu0SMgCFE/z+O4Ue5OQA/furVgGtkElNpVY4H39szgUiuz7dLWuENnNJT8iEcq+loiKKIdM2T7XbImObkFm4kGY9v/7q+WfF7MiMkDGqI2P2IifaDQDqIBNCsJAJIsSsvLQUePpp/TRfs66liAj1JJZTsF99lS40nnQylvG3kHFlkRFupa5dzZ3bAqtcSwANZsIqM3myKji9scjIkzRPK/C6ssiIeIvYWOusZkLIlJToiycZO4UMQOfR4sVkFbjjDrVze2kp3fQQ+8xsN3XAd4sMoAqZv/4ia1Lz5v4/x/yB7FqSBZgoKWG3kLHNteSqO6g7rLDImD0Jb72VMpbmzrWx+I73sJAJImSz9bPP6rciEBfCXbuML8oCbYVfRSGBNHKk+1otRthpkfHGrQRYF+wrGDqUfv/27TThAryzyHTvTvd163qWfg2oFhnxW2TMDsqekJCgrs+dCLZbyAAk4r75hirnyj255MmBqDxbUWE+KFU+ZnyJkREp2LJFZu9eZ8tBKFpkCgud40XNxB75k2bNaIwPVPZcFVx1B3WHL0LG066tkZEUi3DZZR5tYrDAQiZISUsDOnWq+nq9enSRLitTB08jtELm5En1OPfEoiETKIuMVsgcPKhaMAYN8mydVsbIAHTNuOUWeixSsb2xyKSn07XKm+adwkLy1FMU1C2nXItB2eqUV7NxMv7ufG0WYY2S3WuykHnySQq4ff5574SMN4NzgwY0YSkpoWOmdWsKo1iwwDn1Wq4VFArI6dd33UWxfC++aG/WEkAWrlOnvAtRsQQhZLZtc9/dVMv991N7Arm7sBG+xMiEASxkgownn6QZ5LJl+u9HRKgBv+7iZLRCRgy2aWneXyT9Pds2ci3NmkUWpXPO8TygVgw+RUV08yVGRnD33XT/3Xd0jRKDkKdp7fXre7cvH3uMJk+lpTSRat9ePWb8YZEBzAsZf3e+9pT//lNFjewWk0sRBErIREaq5+8//9B/NGwYFcOU92tKSmhZ+OV9Ubs2WSsfecR+IeNw2LwfMzNpxlJRQdkcnjBsGLUnMHPBE0KmqEittgiwkGHs4ZlnyNztSoSbjZMRQubff+ne1xoygH2upRkz6P7aaz1fp5xhdeSIOmnx1iIDUIuSXr3o+jR2LL2WmOjbOj2hTh0SUV9+SY+3bqUsyttuUxv12W2RCRYhoyiqu+PTT9XX5fMhUDEygPH5G6p9lgBjq5e/rIMhg1FqmtVoG7AF22zCz7CQCULczSDMpmC3b0/WAq2Q8bZZJGBPsO/hw6q1wVO3EkAiRpzPckVkXycrIuj3q6/ovlGjwM7+HA6qa7NlC1W0BagXlKh1Y/UsOFSFTJMm6n/96quUFagovltkvB2ctZk0u3dTmQS5NlEoBfoCdI4JMSO3T7HbIgNQkcSzzvK+dpbPtGtHHYI9KS986BBlOu3bZ255ub14To6aoscWGSZYMZuCHRtLF82oKOCPP4Cff6bXQ80iM3s2zag7dXLuUeQJYgASoi4lxXwFXiOuusq5HYEv+9UXUlOBd9+lOIBWrdQgcLbIqIj09lOngNGjyb0orvUNGgTOtQRUtchs2qQ2hBWEmkUGcA74FQhRY6eQyc+nys9//WXTBowdSz7Nxx83/5kffwQuvJDcS2ZwONR4AVn8hJoi9hIWMiGIWdeSoKyMyrZPn07Pg1nI6FlkhFvJ02wlGTEACYuMFROV6GhK7xX4YumyggsuANaupZlnQgK5mqxEZP8IS4YRwShkhOU9IoKy395+m57Xrk2DrFkXiBVCxqiWDKAKmFAcf7TVfeXHdgoZ21OwU1M9L+jkScaSQAgZ4VtOTqZZbDWAhUwIIltk3LXG+P57aqVx/DiZ08eNA66/3vvvDpRFpqiILoJHjwJLltBrvggZIVyEkLEqluX221XLjl0WGZnYWJoA5uZSnKCVtG5N9xs3ul4uGIWMuMZfdRXdP/UU3Yv/zKzlwEqLjEjBrltXtXaJIPJQFDJyUTxBMAgZeeJnSxdsb/BGyAi1LiwywXQC+hkWMiFIo0YktIuLVfFtxJYtVONIkJtLJdy9xd9CJilJnUQcO0Z9zMrLqZquLwUnta4lq4RM/fpUVwbwvu2DP/DVbabHWWfR/ebNzm0vtARL+rWMEDKXXaYeR1dcAQwZQo8DGSPTsKFzCrYcDyqsBuHiWgoGIdOkCYnwXr3cN1n1G888A3TpAvzwg7nlPemzJNAKmWA6Af0MC5kQJCqKGqsC5jOXBNquzZ7ibyHjcDjHyVjhVgKqupaszC6aMoVcOn37WrfOYOSMM0gQFBcbH3eKEtwWmbIyYP58+g1z5gAPPUTbHMgYmchI5y7YgFoAVtSGCkWLTLC6lmJiKA7pu+9sLIy3bRsFKq5ZY255KywyLGSYYMdsnEzz5s7PV60iC4e3iEHKnxdaESezfTuwaBE9tkrICAuWlUImNpYsRqFU98MbIiLUsgAbNugvk5+vHl/BKGQKCijrT66iLRcTDESMDFA1TkZUwP3jD7oPZYtMsLmWggJPU7A96bMkEEJGXORYyDDBjtmieNrzoKTEu0qyAmGR8ecgJYTM1Kk0gz7rrKqWJU/RntPV6By3FGE5MMoAEUI3MjK4KtMadcAGnAdedwNuejodO7Vq+Ta7105ERoyge5EFF4oWmWB1LQUFngiZoiI1NdAXIRNMMwk/w0ImRDFrkdHr+uqLeykQDe2Ea2nePLr31RoDVLXABKpwXbgh4mSMLDKyWymYLFSuhIwYbCMi3Pe8io2l7tqrVvmWEKK1yDRrRvVtOnem56FokXHlWqq2BfEEchCUu0CdigpKq3viCc8uVOxaYkINs0JGzyUrzNeeUlxMFh0gMK4lkZHFQiZ48ETIBBNmhIxcU8wVzZr5FngO6J+/mZnqGBfKFhl2LemQkUHFjBTFfdpfQgJV23z2Wc9mA0LIBGO0vZ9hIROimE0p1BMt3lpkhDUG8G/QnLDIAFTgTaT9+oL2nGYh4x1CyPz7r3PfIkEoC5lAWg2ERWbHDueYtVOn6D6UhUywFcQLGvzdqkDryw22k9CPsJAJUZo0IbGel0f9g4wQQqZLF/W19etVy4onCCGTlOSf9F6BsMgA3vVW0kMrXKrRZMVS0tPVKrl6PfCCXcjoNSC2Y7CVU7BFggqgnmPh4FryJBusWnD22Wq6mhHFxcD//uddGWK53xJQrS5yLGRClNhYtcSAkXuppEQ9H8SsLynJ+XVPCER8DOBskbHCrQSwa8lKXAX8BqtVWwyk7lxLgUJOwZbj2AJ1jvkDrUVGzgZjIQPgxRfJBCeXA9cyYwbw5ptU8MjT9FIWMkwo4i5OZtMmupikpqpWG5E+6417KVAXWZG50bw50LatNetk15J1uIqTCdamu2ZjZAKJ3vkrXEuhaJHRxsjI1i8WMjAX7yJ6Z9x1l+dmbxYyTCjiLgVbuJU6dQKWL6dmqt2702veCJlA1JABgP79gfHjgc8+sy7zhYWMdbgSMsHuWgqWGBmgauZSRYUadxSKFhmta0ncR0a6zwarViiKvrXljz+A334jn+Ptt3u+Xq2QCbaT0I+wkAlh3FlkRMZS587khurWjW6Ad5lLgaghA1Ba61NPqamoVhAd7RygXI0mK5YjCxltoHkoChm7AlK1568cPB2KQkbrWuL4GB3uvJN85999V/U9YY259lrKcvIUtsgwoYg7ISNbZAQi6HfTJs/7joSy/x5Qz+v4eM+b0TIqrVtTzZVjx4CDB53fC0UhY9eAq7XIiPMrKio0j08j1xILGYniYuDEiaqZS0ePAl98QY9HjfJu3SxkmFBE7oKtpbhYDcaULRv16tGtooL6A3lCqAsZ4U5it5JvxMerg7A24JeFjHm0Kdhy6nUwFRM0i5FrqdoXw5MxipT/8EO6aHfqBJx7rnfrZtcSE4qIrIdjx0jky2zcCJSWUiqzaDApEFYZT+NkWMgwAqM4mVAWMoEecLUp2KGceg2wa8kURrVkkpKoIuKoUd6rWLmOTFxcaJr1vISFTAgjjn2gqlVGditpz4vqLmSqkcXVb7gTMsG2j4MxRkabgh3q55fWtcTF8HQQQmbHDtUEBwAjRwL//QcMHer9umWLTLCdgH6GhUyIY+ReEkJGL2C2ugoZcW6zRcZ3Qtkiow1QttNyIMe5hXJVX8DYtcRCRqJ2bfLtA1VbFcTEOLdl9xQWMkyoIlKwtQG/csaSFhH8u317VZeUK0JdyLBryTqEq3/zZupQLgj2OjLl5eRylbFzwJUDftm1VE2Q3Us7dgDffut58Ts9WMjYwwsvvIAuXbogOTkZGRkZGDBgALZu3Vr5/vHjx3HvvfeiRYsWiI+PR6NGjTB69GjkiGkfo5u5VFSkzpT1hExammrS1msqaUSg6sj4ixYtnO8Z72nShK6bxcVq1o2iBC5F31Pk8AGte8nOoNRwsshw1pJJevQA+vShFOuJE4EBA1xX+zWLLGSC7QT0M7YKmWXLlmHkyJH47bffsGDBApSWlqJPnz7IP50XvH//fuzfvx+vvPIKNm7ciOzsbMyfPx+33XabnZsdVOgJmb/+olly7dpqGwMt3riXgnWQMsuIEcCKFcBDD9m9JaFPRIRaJVqI5rw8tWN5sB0j0dFqoVStkLEzliOcLDLsWjLJI48AP/4IXHIJ8PHH9Nr11/u+3mpskYmy88vnz5/v9Dw7OxsZGRlYs2YNunfvjrZt22LmzJmV75955pl47rnncOONN6KsrAxRUbZuflCgFyMju5WMAuC7dAG+/NI7IROqM8aoKOD88+3eivDhrLOA338nIXPddarFLioq+AYvh4OsMqdOVW0cGQwxMjt2qG65UD2/2LXkIdOm0QHZogVw8cW+ry86mm6lpSxk7ES4jGrJ7Y91lklJSTEUMcXFxSiWupXlitE3TBExMgcOUIG7xETXgb4CXywyoXqhZaxFG/ArB/oGYx2U+HgaN4xcS3YMuI0a0dhTUkLxRkDonl/sWvIARaE+LABlLEVY5BxJTCRFHGwmUT8TNMG+FRUVuO+++9CtWze0NegUePToUTzzzDO4w4U/8YUXXkCNGjUqbw2NfCthQs2aVCsGUK0yehV9tXTsSOfO3r1Vq7MawUKGkdHW9grW1GuBUQq2nTEycgr2n3/Sfai7loqKaJzmgnguiIsDDh+mx7fcYt16xUEerCehnwgaITNy5Ehs3LgR06dP130/NzcXl112GVq3bo1x48YZruexxx5DTk5O5W3Pnj1+2uLgQTZPFxZS+wHAtUUmKQlo1Yoem7HKlJSoMy0WMgygWmR27iRLR7CmXguMhIzd9U5EnIyYUITq+SXvv6Ii+/drUHPVVXTfr5+1f7iIk2EhE3hGjRqFuXPnYsmSJWjQoEGV90+dOoV+/fohOTkZs2bNQrSLVqqxsbFISUlxuoU7cgr2+vWUyVenDlC/vuvPeeJekms3heqMkbGW2rXVgoybNgVv6rXAnUXGrgFXTEQEoXp+aYWM3fs1qHnzTeCVV4AZM6xdLwuZwKMoCkaNGoVZs2Zh8eLFaNKkSZVlcnNz0adPH8TExGDOnDmIYztlFeTMJVcVfbUIi42ZTtjCrZSQQMGcDAM4x8mEqkXG7gFXWGQEoTr3iopSQz0KC+3fr0FNZiYwZgyZxq1EhGUYhGeEK7YKmZEjR+LTTz/F559/juTkZBw8eBAHDx5E4ekzQIiY/Px8fPjhh8jNza1cptyKAkJhguxaclUIT4tskdFWO9US6jVkGP8g4mTCQcjYNUcKF4uMw+GcucRCxgY++gjYs0edYVQTbJ1bT548GQDQs2dPp9enTp2KYcOG4c8//8SqVasAAE01Z/vOnTuRpe2GWE2RLTKHDtFjM0KmfXvKmDh6lNp8uNqdHOjL6CGul3/9pU4uQ03I2B3LES4WGYD2YX4+u5ZsIzoa0AnPCHdsFTKKGzNAz5493S7DqDEyu3er7iRXGUuC2FiaUa9ZQ1YZM0ImWAcpxh5k15IokBesx0iwupYaNlTLfwChL2QAtsgwgSUogn0Z38jIoNmwolBl1bp11b5k7jAb8MsWGUaPVq0oLuL4cWDLFnotWOMMg1XIREWpKdhA6LqWAOfqvnbvV6b6wEImDHA4nP3sZtxKAhYyjC/Ex6uukd9+o/tQs8gI15KdeQTy+RvKQkYuisdChgkULGTCBOFeArwTMmvWqH1y9GAhwxghAn6FQAglIVNaqjYetnPAFWIwJoZcvqGKnmuJE00Zf8NCJkyQZ3Rm4mMErVqppdu3bTNejoUMY4Q2QSKUhIzcd8lOISPO31A/v2TXkt1B1Ez1gYVMmOCtkImKonYFADUANIKFDGNEuAgZOy0hzZvTfbDGF5mFXUuMHbCQCRNatqT7Ro3UaqtmOfdcuj+d6a4L15FhjAgVIaPtzgw4x8fY2eiyZ0/g1luBp56ybxusgLOWGDvgGq1hQteuwLPPAued5/lnxWdEsKYebJFhjGjShCqj5+fT82AVMq4sMnYPttHRVMss1OGsJcYOWMiECRERwBNPePfZ88+n+/Xr6SIvLvgyXEeGMSIigiqiC4tesLpHglnIhAtiPxYUAMXFzq8xjL9g1xKDBg2owWR5uXHfJbbIMK4Q7qWYmODNUmEh43/EfjxxouprDOMvWMgwANy7l1jIMK4QQiaYLXZ6QiYYasiEE2I/ykKG9y3jb1jIMABYyDC+ITLfPA00DyRskfE/Yj8eP073UVF0Yxh/wocYA0AVMitXUqsDbQYHCxnGFd26AW+/rQqaYISFjP/RChner0wgYCHDAKDaM1FRwMGD1HyycWP1vbIy9eLPQobRw+EA7rnH7q1wDQsZ/6N1LfF+ZQIBu5YYAHTBOftseqx1LwlrDBDafWCY6o0sZBSFHnOMjLVog31ZyDCBgIUMU4lRnIwQMnFxlJXCMKGIEDKKoqYGs0XGWti1xNgBCxmmEndCJpgzUhjGHfKgKtxLLGSsRVi2xP7l/coEAhYyTCVCyPz5pzpjBTjQlwkPoqPpBrCQ8Rfa/cj7lQkELGSYSs44A0hPB0pKgLVr1ddZyDDhgjbgl2NkrIWFDGMHLGSYShwOffcSCxkmXNA2jmSLjLVoBSHvVyYQsJBhnGAhw4QzWosMCxlr0e5HtnQxgYCFDOOEXBhPwEKGCRdYyPgXdi0xdsBChnGiSxfqZrx7N7B/P72Wk0P3LGSYUIdjZPwLu5YYO2AhwziRnAy0bUuPV62ie7bIMOECW2T8C1tkGDtgIcNUQRsnw0KGCRdYyPgXFjKMHbCQYapgJGS4IB4T6rCQ8S/sWmLsgIUMUwUhZFavBkpL2SLDhA8cI+NfWMgwdsBChqlCixZAairNVjdsYCHDhA9skfEvERFAbKz6nPcrEwhYyDBViIgAzj2XHv/2GwsZJnxgIeN/ZKsM71cmELCQYXSR42RYyDDhAgsZ/yPvS3bZMYGAhQyji1wYj+vIMOECx8j4H1nIsEBkAkGU3RvABCfCtbR9u/oaCxkm1GGLjP9hIcMEGrbIMLrUrAm0bOn8GgsZJtQRA2tBAVBeTll58uuM73CMDBNoWMgwhgj3EkCZCHI2AsOEIsIiU1ioWmMAHnCthC0yTKBhIcMYIgsZtsYw4YDsWhLxMQDHyFgJCxkm0LCQYQxhIcOEG7KQERaZmBgqOcBYA7uWmEDDpy9jSJs2QGIiPWYhw4QDekKGB1trYYsME2hYyDCGREUB55xDj1nIMOEACxn/w0KGCTQsZBiXCPcSCxkmHNCLkeH4GGuR9yfvWyYQsJBhXHLjjUCrVsCQIXZvCcP4Dltk/A9bZJhAwwXxGJe0bg1s3mz3VjCMNcjp16IoHg+21iL2JwdRM4GCDzOGYaoNQsgAwPHjdM9CxlqEO4n3KxMoWMgwDFNtkAdXIWQ4jsNaxD5mIcMEChYyDMNUGyIj1QrVx47RPQ+41sJChgk0LGQYhqlWCPcSCxn/wK4lJtCwkGEYplohBlh2LfkHtsgwgYaFDMMw1QphkeFgX/+QluZ8zzD+htOvGYapVrBryb/07g289hrdM0wgYCHDMEy1goWMf4mOBu6/3+6tYKoT7FpiGKZaoRUyHCPDMKENCxmGYaoVQsjk5tI9W2QYJrRhIcMwTLVCru4LsJBhmFCHhQzDMNUKFjIME16wkGEYplqhFTIcI8MwoQ0LGYZhqhVskWGY8IKFDMMw1QoWMgwTXrCQYRimWsFChmHCCxYyDMNUKzhGhmHCCxYyDMNUK7QWGLbIMExow0KGYZhqBbuWGCa8YCHDMEy1goUMw4QXLGQYhqlWcIwMw4QXLGQYhqlWsEWGYcILW4XMCy+8gC5duiA5ORkZGRkYMGAAtm7d6rTM+++/j549eyIlJQUOhwMnT560Z2MZhgkLWMgwTHhhq5BZtmwZRo4cid9++w0LFixAaWkp+vTpg/z8/MplCgoK0K9fPzz++OM2binDMOGCLGSioujGMEzoYuspPH/+fKfn2dnZyMjIwJo1a9C9e3cAwH333QcAWLp0aYC3jmGYcEQWMhwfwzChT1DNRXJycgAAtWrV8nodxcXFKC4urnyem5vr83YxDBM+yEKG3UoME/oETbBvRUUF7rvvPnTr1g1t27b1ej0vvPACatSoUXlr2LChhVvJMEyow0KGYcKLoBEyI0eOxMaNGzF9+nSf1vPYY48hJyen8rZnzx6LtpBhmHBAdiexkGGY0CcoXEujRo3C3Llz8fPPP6NBgwY+rSs2NhaxsbEWbRnDMOFGRAQJmMJCjpFhmHDAVouMoigYNWoUZs2ahcWLF6NJkyZ2bg7DMNUE4V5iiwzDhD62WmRGjhyJzz//HN9++y2Sk5Nx8OBBAECNGjUQf/oKc/DgQRw8eBDbt28HAGzYsAHJyclo1KiRT0HBDMNUX4SAYSHDMKGPrRaZyZMnIycnBz179kTdunUrb19++WXlMu+++y46dOiA22+/HQDQvXt3dOjQAXPmzLFrsxmGCXHYIsMw4YOtFhlFUdwuM27cOIwbN87/G8MwTLVBCBmOkWGY0CdospYYhmECBVtkGCZ8YCHDMEy1g4UMw4QPLGQYhql2sJBhmPCBhQzDMNUOjpFhmPCBhQzDMNUOtsgwTPjAQoZhmGrHVVcBZ5wB9Otn95YwDOMrQdGigGEYJpBceSXdGIYJfdgiwzAMwzBMyMJChmEYhmGYkIWFDMMwDMMwIQsLGYZhGIZhQhYWMgzDMAzDhCwsZBiGYRiGCVlYyDAMwzAME7KwkGEYhmEYJmRhIcMwDMMwTMjCQoZhGIZhmJCFhQzDMAzDMCELCxmGYRiGYUIWFjIMwzAMw4QsLGQYhmEYhglZouzeAH+jKAoAIDc31+YtYRiGYRjGLGLcFuO4EWEvZE6dOgUAaNiwoc1bwjAMwzCMp5w6dQo1atQwfN+huJM6IU5FRQX279+P5ORkOByOgH1vbm4uGjZsiD179iAlJSVg3xsq8P5xD+8j9/A+cg/vI9fw/nGPXftIURScOnUK9erVQ0SEcSRM2FtkIiIi0KBBA9u+PyUlhU8OF/D+cQ/vI/fwPnIP7yPX8P5xjx37yJUlRsDBvgzDMAzDhCwsZBiGYRiGCVlYyPiJ2NhYPP3004iNjbV7U4IS3j/u4X3kHt5H7uF95BreP+4J9n0U9sG+DMMwDMOEL2yRYRiGYRgmZGEhwzAMwzBMyMJChmEYhmGYkIWFDMMwDMMwIQsLGRf8/PPPuOKKK1CvXj04HA7Mnj3b6f1Dhw5h2LBhqFevHhISEtCvXz/8888/VdazcuVKXHTRRUhMTERKSgq6d++OwsLCyvePHz+OG264ASkpKUhNTcVtt92GvLw8f/88n/F1/+zatQsOh0P3NmPGjMrldu/ejcsuuwwJCQnIyMjAQw89hLKyskD9TJ+w4hg6ePAgbrrpJmRmZiIxMREdO3bEzJkznZYJ1WMIsGYf7dixAwMHDkR6ejpSUlJw3XXX4dChQ07LhOo+euGFF9ClSxckJycjIyMDAwYMwNatW52WKSoqwsiRI5GWloakpCQMGjSoyu83cx4tXboUHTt2RGxsLJo2bYrs7Gx//zxLsGofjR49Gp06dUJsbCzOPvts3e/666+/cOGFFyIuLg4NGzbEhAkT/PWzLMWKfbR+/XoMGTIEDRs2RHx8PFq1aoU33nijyncF+jhiIeOC/Px8tG/fHm+//XaV9xRFwYABA/Dvv//i22+/xdq1a9G4cWP07t0b+fn5lcutXLkS/fr1Q58+ffD7779j9erVGDVqlFO55RtuuAGbNm3CggULMHfuXPz888+44447AvIbfcHX/dOwYUMcOHDA6TZ+/HgkJSXh0ksvBQCUl5fjsssuQ0lJCVasWIGPP/4Y2dnZeOqppwL6W73FimPo5ptvxtatWzFnzhxs2LABV199Na677jqsXbu2cplQPYYA3/dRfn4++vTpA4fDgcWLF2P58uUoKSnBFVdcgYqKisp1heo+WrZsGUaOHInffvsNCxYsQGlpKfr06eN0jNx///347rvvMGPGDCxbtgz79+/H1VdfXfm+mfNo586duOyyy9CrVy+sW7cO9913H0aMGIEff/wxoL/XG6zYR4Lhw4dj8ODBut+Tm5uLPn36oHHjxlizZg1efvlljBs3Du+//77ffptVWLGP1qxZg4yMDHz66afYtGkTnnjiCTz22GOYNGlS5TK2HEcKYwoAyqxZsyqfb926VQGgbNy4sfK18vJyJT09XZkyZUrla+eee67y5JNPGq538+bNCgBl9erVla/98MMPisPhUPbt22ftj/Aj3u4fLWeffbYyfPjwyufz5s1TIiIilIMHD1a+NnnyZCUlJUUpLi629kf4GW/3UWJiovLJJ584ratWrVqVy4TLMaQo3u2jH3/8UYmIiFBycnIqlzl58qTicDiUBQsWKIoSXvvo8OHDCgBl2bJliqLQb42OjlZmzJhRuczff/+tAFBWrlypKIq58+jhhx9W2rRp4/RdgwcPVvr27evvn2Q53uwjmaefflpp3759ldffeecdpWbNmk7XnkceeURp0aKF9T/Cz/i6jwT33HOP0qtXr8rndhxHbJHxkuLiYgBAXFxc5WsRERGIjY3Fr7/+CgA4fPgwVq1ahYyMDHTt2hV16tRBjx49Kt8HyGKTmpqKzp07V77Wu3dvREREYNWqVQH6NdZjZv9oWbNmDdatW4fbbrut8rWVK1firLPOQp06dSpf69u3L3Jzc7Fp0yY/bX1gMLuPunbtii+//BLHjx9HRUUFpk+fjqKiIvTs2RNA+B5DgLl9VFxcDIfD4VSsKy4uDhEREZXLhNM+ysnJAQDUqlULAJ03paWl6N27d+UyLVu2RKNGjbBy5UoA5s6jlStXOq1DLCPWEUp4s4/MsHLlSnTv3h0xMTGVr/Xt2xdbt27FiRMnLNr6wGDVPsrJyalcB2DPccRCxkvEH/zYY4/hxIkTKCkpwUsvvYS9e/fiwIEDAIB///0XADBu3DjcfvvtmD9/Pjp27IiLL7640sd/8OBBZGRkOK07KioKtWrVwsGDBwP7oyzEzP7R8uGHH6JVq1bo2rVr5WsHDx50uvgCqHweyvsHML+PvvrqK5SWliItLQ2xsbG48847MWvWLDRt2hRA+B5DgLl9dN555yExMRGPPPIICgoKkJ+fjwcffBDl5eWVy4TLPqqoqMB9992Hbt26oW3btgDot8XExCA1NdVp2Tp16lT+NjPnkdEyubm5TjF9wY63+8gM4XI9smofrVixAl9++aWTi9aO44iFjJdER0fjm2++wbZt21CrVi0kJCRgyZIluPTSSyvjX4R//s4778Stt96KDh064PXXX0eLFi3w0Ucf2bn5fsfM/pEpLCzE559/7mSNCXfM7qOxY8fi5MmTWLhwIf744w888MADuO6667BhwwYbtz4wmNlH6enpmDFjBr777jskJSWhRo0aOHnyJDp27Kh7rIUyI0eOxMaNGzF9+nS7NyVo4X3kHiv20caNG3HVVVfh6aefRp8+fSzcOs+JsvXbQ5xOnTph3bp1yMnJQUlJCdLT03HuuedWmq/r1q0LAGjdurXT51q1aoXdu3cDADIzM3H48GGn98vKynD8+HFkZmYG4Ff4D3f7R+brr79GQUEBbr75ZqfXMzMz8fvvvzu9JqLoQ33/AO730Y4dOzBp0iRs3LgRbdq0AQC0b98ev/zyC95++228++67YX0MAeaOoz59+mDHjh04evQooqKikJqaiszMTJxxxhkAwuM8GzVqVGWQcoMGDSpfz8zMRElJCU6ePOk0mz506FDlbzNzHmVmZlbJ4jl06BBSUlIQHx/vj59kOb7sIzMY7SPxXihgxT7avHkzLr74Ytxxxx148sknnd6z4zgKr+mKTdSoUQPp6en4559/8Mcff+Cqq64CAGRlZaFevXpVUty2bduGxo0bAwDOP/98nDx5EmvWrKl8f/HixaioqMC5554buB/hR4z2j8yHH36IK6+8Eunp6U6vn3/++diwYYPTILRgwQKkpKRUEYihjNE+KigoAIAqloXIyMhKi191OIYAc8dR7dq1kZqaisWLF+Pw4cO48sorAYT2PlIUBaNGjcKsWbOwePFiNGnSxOn9Tp06ITo6GosWLap8bevWrdi9ezfOP/98AObOo/PPP99pHWIZsY5gxop9ZIbzzz8fP//8M0pLSytfW7BgAVq0aIGaNWv6/kP8iFX7aNOmTejVqxduueUWPPfcc1W+x5bjyG9hxGHAqVOnlLVr1ypr165VACivvfaasnbtWuW///5TFEVRvvrqK2XJkiXKjh07lNmzZyuNGzdWrr76aqd1vP7660pKSooyY8YM5Z9//lGefPJJJS4uTtm+fXvlMv369VM6dOigrFq1Svn111+VZs2aKUOGDAnob/UGK/aPoijKP//8ozgcDuWHH36o8l5ZWZny/+3dXUhU7RoG4Fvdpi4lTTMJ/0BsorKZRjCcfvBALYIOLDMoslJCzQ6CImPACg/ChLQyhKRI034s6iDJEAkd8GAKEi0btRR1ohKkMsrM1PH5Dtp7wZDsL2qc2Wt/9wXrZK3X9a7n4R25Z80aJiEhQTZt2iRdXV3S3Nws4eHhYjab570+V/jTHk1NTUl8fLxs3LhRnjx5IgMDA3L27Fnx8vKSpqYmdZxW15CIa9bR1atXxWq1ysDAgNTX10toaKgcOXLEaYxWe3Tw4EEJDg4Wi8UiIyMj6jYxMaGOKSgokJiYGGltbZWnT5+KyWQSk8mkHv+V19Hg4KAoiiLHjh2T3t5eqaqqEh8fH2lubnZrvb/DFT0S+fG/qLOzU/Lz80Wn06nr8j/fUvr06ZNERERIdna2vHjxQhoaGkRRFKmurnZrvb/DFT3q7u6W8PBw2bNnj9M5RkdH1TGeWEcMMv9FW1ubAPhp27dvn4iIXLhwQaKiosTX11diYmKkuLh4zq8El5aWSlRUlCiKIiaTSdrb252Of/jwQXbt2iVBQUGycOFCycnJkS9fvrijxD/iqv6YzWaJjo4Wh8Mx5zzDw8OyZcsWCQgIkMWLF8vRo0dlenp6PktzGVf06NWrV7J9+3ZZsmSJKIoier3+p69ja3UNibimR8ePH5eIiAjx9fWVZcuWSXl5uczOzjqN0WqP5uoNAKmpqVHHfPv2TQoLC2XRokWiKIps27ZNRkZGnM7zK6+jtrY2WbNmjSxYsEDi4uKc5vhf5qoepaSkzHmeoaEhdcyzZ89kw4YN4ufnJ5GRkXLmzBk3VflnXNGjU6dOzXmO2NhYp7ncvY68/l0gERERkebwGRkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIvpHcDgc6i+GE9H/DwYZInK7uro6hIWF4fv37077MzIykJ2dDQC4f/8+EhMT4e/vj7i4OJSUlGBmZkYdW1FRgdWrVyMwMBDR0dEoLCzE+Pi4ery2thYhISFobGzEypUr4efnh9evX8NisWDt2rUIDAxESEgI1q9fD7vd7p7CicjlGGSIyO2ysrLgcDjQ2Nio7hsdHUVTUxNyc3PR3t6OvXv34vDhw+jp6UF1dTVqa2tx+vRpdby3tzcqKyths9lw7do1tLa2oqioyGmeiYkJlJWV4cqVK7DZbAgNDUVGRgZSUlLw/PlzWK1W5OXlwcvLy221E5Fr8devicgjCgsLMTw8jIcPHwL4cYelqqoKAwMDSE9PR2pqKsxmszr++vXrKCoqwrt37+Y83927d1FQUID3798D+HFHJicnB11dXTAYDACAjx8/IiwsDBaLBSkpKfNcIRG5A4MMEXlEZ2cnkpKSYLfbERkZCb1ej6ysLJw4cQLh4eEYHx+Hj4+POt7hcGBychJfv36Foih49OgRSktL0dfXh8+fP2NmZsbpeG1tLfLz8zE5Oel0xyUnJwe3bt1Ceno60tLSsHPnTixdutQTLSAiF+BHS0TkEUajEQaDAXV1dejo6IDNZsP+/fsBAOPj4ygpKUFXV5e6dXd3o7+/H/7+/hgeHsbWrVuh1+tx7949dHR0oKqqCgAwNTWlzhEQEPDTx0Y1NTWwWq1Yt24dbt++DZ1Oh8ePH7utbiJyrX95+gKI6J/rwIEDOH/+PN6+fYu0tDRER0cDABITE/Hy5UvEx8fP+XcdHR2YnZ1FeXk5vL1/vB+7c+fOL89rNBphNBphNpthMplw8+ZNJCcn/3lBROR2vCNDRB6ze/duvHnzBpcvX0Zubq66/+TJk6irq0NJSQlsNht6e3vR0NCA4uJiAEB8fDymp6dx8eJFDA4Oor6+HpcuXfrb+YaGhmA2m2G1WmG329HS0oL+/n6sWLFi3mokovnFIENEHhMcHIzMzEwEBQUhIyND3b9582Y8ePAALS0tSEpKQnJyMs6dO4fY2FgAgMFgQEVFBcrKypCQkIAbN26gtLT0b+dTFAV9fX3IzMyETqdDXl4eDh06hPz8/PkqkYjmGR/2JSKPSk1NxapVq1BZWenpSyEiDWKQISKPGBsbg8ViwY4dO9DT04Ply5d7+pKISIP4sC8ReYTRaMTY2BjKysoYYojot/GODBEREWkWH/YlIiIizWKQISIiIs1ikCEiIiLNYpAhIiIizWKQISIiIs1ikCEiIiLNYpAhIiIizWKQISIiIs36CwbOID1IweiHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -530,13 +530,13 @@ "fig = plt.figure()\n", "# y_train\n", "plt.plot(y_train.anchor_year, y_train.sel(i_interval=1), \"b\", label = \"y_train\")\n", - "plt.plot(y_train.anchor_year, y_train.sel(i_interval=1), \"b\", label = \"y_train\")\n", - "plt.plot(y_train.anchor_year, np.repeat(target_clim, y_train.anchor_year.size), \"b--\", \n", + "plt.plot(y_train.anchor_year, model.predict(clusters_train), \"b--\", label = \"training_pred\")\n", + "plt.plot(y_train.anchor_year, np.repeat(target_clim, y_train.anchor_year.size), \"k--\", \n", " label = \"climatology\")\n", "# y_test\n", "plt.plot(y_test.anchor_year, y_test.sel(i_interval=1), \"r\", label = \"y_test\")\n", - "plt.plot(y_test.anchor_year, prediction, \"r--\", label = \"prediction\")\n", - "plt.plot(y_test.anchor_year, np.repeat(target_clim, y_test.anchor_year.size), \"b--\", \n", + "plt.plot(y_test.anchor_year, prediction, \"r--\", label = \"test_pred\")\n", + "plt.plot(y_test.anchor_year, np.repeat(target_clim, y_test.anchor_year.size), \"k--\", \n", " label = \"climatology\")\n", "plt.xlabel(\"years\")\n", "plt.ylabel(\"deg C\")\n", @@ -554,12 +554,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYVUlEQVR4nO3deXiMZxcG8HuSSCQhsUcRQmvfib22UoTmo9RWElG02qitWlutVbRapZa0tBSlllrb0qJqry2EltgqxBLUllizvt8fp9mIyCQz88y8c/+ua67OTCYzh2jmzPOccx6DpmkaiIiIiHTCQXUARERERKbE5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuOKkOwNKSkpJw5coV5M2bFwaDQXU4RERElAWapuHu3bsoVqwYHBwyX5uxu+TmypUr8Pb2Vh0GERERZcPFixdRokSJTB9jd8lN3rx5AchfjoeHh+JoiIiIKCtiYmLg7e2d8j6eGbtLbpK3ojw8PJjcEBER2ZislJSwoJiIiIh0hckNERER6QqTGyIiItIVu6u5ISIi/UtMTER8fLzqMMhIzs7Oz2zzzgomN0REpBuapuHq1au4c+eO6lAoGxwcHFC6dGk4Ozvn6HmY3BARkW4kJzZFihSBm5sbh7XakOQhu1FRUShZsmSOfnZMboiISBcSExNTEpuCBQuqDoeyoXDhwrhy5QoSEhKQK1eubD8PC4qJiEgXkmts3NzcFEdC2ZW8HZWYmJij52FyQ0REusKtKNtlqp8dkxsiIiLSFSY3REREpCtMboiIiHTEx8cHM2bMUP4cKrFbypQuXADu3AGqV1cdCRER2YhmzZqhRo0aJksmDh48CHd3d5M8l61icmMq+/cDfn6Apydw+DCQP7/qiIiISCc0TUNiYiKcnJ79tl24cGELRGTduC1lKuXLA/nyAefPA717A5qmOiIiIvrP/ftPvzx6lPXHPnz47McaIygoCDt27MDMmTNhMBhgMBhw/vx5bN++HQaDAb/99ht8fX3h4uKCXbt24Z9//kH79u3h5eWFPHnyoE6dOti6dWu653x8S8lgMOCbb77Bq6++Cjc3N5QtWxYbNmwwKs7IyEi0b98eefLkgYeHB7p06YJr166lfP3o0aNo3rw58ubNCw8PD9SuXRuHDh0CAFy4cAH+/v7Inz8/3N3dUblyZWzcuNG4vygjMbkxlXz5gFWrAGdnYP16wIb3KomI9CZPnqdfOnVK/9giRZ7+WD+/9I/18XnyMcaYOXMmGjRogH79+iEqKgpRUVHw9vZO+foHH3yAKVOmIDw8HNWqVcO9e/fQtm1bbN26FUeOHEHr1q3h7++PyMjITF9nwoQJ6NKlC44dO4a2bduiR48euHXrVpZi1DQNHTp0wK1bt7Bjxw5s2bIF//zzD7p27ZrymB49eqBEiRI4ePAgQkNDMWLEiJQhfMHBwYiNjcXOnTvx119/4ZNPPkEeY/+ijMRtKVOqXRv44gsgOBj44AOgQQOgfn3VURERkZXy9PSEs7Mz3NzcULRo0Se+PnHiRLz88ssptwsWLIjqaeo6J02ahLVr12LDhg0YMGDAU18nKCgI3bt3BwBMnjwZs2bNwoEDB9CmTZtnxrh161YcO3YMERERKYnXkiVLULlyZRw8eBB16tRBZGQk3n//fVSoUAEAULZs2ZTvj4yMRKdOnVC1alUAQJkyZZ75mjnF5MbU3n4b2LkTWLEC6NIFOHIE4BhwIiKl7t17+tccHdPfvn796Y99/MDq8+ezHVKW+Pr6prt9//59TJgwAT///HPKMQUPHz585spNtWrVUq67u7sjb968uJ7ZHzSN8PBweHt7p1tRqlSpEvLly4fw8HDUqVMHQ4cORd++fbFkyRK0bNkSnTt3xvPPPw8AGDhwIN5++21s3rwZLVu2RKdOndLFYw7cljI1gwGYNw8oWxa4eBEIDASSklRHRURk19zdn37JnTvrj3V1ffZjTRt3+id8//33sXr1anz88cfYtWsXwsLCULVqVcTFxWX6PI+f02QwGJCUxfcmTdMynByc9v7x48fj+PHjaNeuHbZt24ZKlSph7dq1AIC+ffvi3LlzCAgIwF9//QVfX1/MmjUrS6+dXUxuzMHDA1i5EnBxATZuBKZNUx0RERFZKWdn5yyfpbRr1y4EBQXh1VdfRdWqVVG0aFGcN/PyUaVKlRAZGYmLFy+m3HfixAlER0ejYsWKKfeVK1cOQ4YMwebNm9GxY0csXLgw5Wve3t7o378/1qxZg/feew/z5883a8xMbsylRg0gOTMdPRrYvVtpOEREZJ18fHywf/9+nD9/Hjdu3Mh0ReWFF17AmjVrEBYWhqNHj+L111/P8gpMdrVs2RLVqlVDjx49cPjwYRw4cACBgYFo2rQpfH198fDhQwwYMADbt2/HhQsXsGfPHhw8eDAl8Rk8eDB+++03RERE4PDhw9i2bVu6pMgcmNyYU9++QI8eQGIi0LUr8O+/qiMiIiIrM2zYMDg6OqJSpUooXLhwpvUzX3zxBfLnz4+GDRvC398frVu3Rq1atcwan8FgwLp165A/f340adIELVu2RJkyZbBixQoAgKOjI27evInAwECUK1cOXbp0gZ+fHyZMmABATvgODg5GxYoV0aZNG5QvXx5z5841b8yaZl8DWWJiYuDp6Yno6Gh4eHiY/wXv3QPq1AFOngRatQI2bXqyIo2IiHLs0aNHiIiIQOnSpZH78UIasgmZ/QyNef/mu6y55ckj829cXYHNm4HJk1VHREREpGtMbiyhShUgeQlu3Djgjz/UxkNERKRjTG4sJShILklJwOuvA2nGVhMREZHpMLmxpDlzgMqVgatXJcHJYusfERERZR2TG0tyc5P6G3d3YNs2YOJE1RERERHpDpMbS6tYEfj6a7n+0UfAli1q4yEiItIZpcnNzp074e/vj2LFiqX00WcmKioKr7/+OsqXLw8HBwcMHjzYInGaXI8eQL9+gKbJ9StXVEdERESkG0qTm/v376N69eqYPXt2lh4fGxuLwoULY/To0elORbVJM2cC1avLYL/u3YGEBNURERER6YLSU8H9/Pzg5+eX5cf7+Phg5syZAIAFCxZk6XtiY2MRGxubcjsmJsa4IM3F1VXOn/L1lVPEx47lDBwiIrKoZs2aoUaNGpgxY4bqUExK9zU3U6ZMgaenZ8ol7ZHtypUrB3zzjVyfMkWmFxMRkV1p1qyZycssgoKC0KFDB5M+py3RfXIzcuRIREdHp1zSnmpqFbp0Ad55R64HBADWFh8REZGN0X1y4+LiAg8Pj3QXqzN9OlCrFnDzJtCtGxAfrzoiIiKygKCgIOzYsQMzZ86EwWCAwWDA+fPnAQAnTpxA27ZtkSdPHnh5eSEgIAA3btxI+d4ff/wRVatWhaurKwoWLIiWLVvi/v37GD9+PBYtWoT169enPOf27duzFM/t27cRGBiI/Pnzw83NDX5+fjhz5kzK1y9cuAB/f3/kz58f7u7uqFy5MjZu3JjyvT169EDhwoXh6uqKsmXLYuHChSb7uzKG0pob+o+Li8y/qVUL2LsXGDUKmDZNdVRERLZP04AHDyz/um5ugMHwzIfNnDkTp0+fRpUqVTDxv9lnhQsXRlRUFJo2bYp+/fph+vTpePjwIYYPH44uXbpg27ZtiIqKQvfu3fHpp5/i1Vdfxd27d7Fr1y5omoZhw4YhPDwcMTExKclFgQIFshR2UFAQzpw5gw0bNsDDwwPDhw9H27ZtceLECeTKlQvBwcGIi4vDzp074e7ujhMnTiBPnjwAgDFjxuDEiRPYtGkTChUqhLNnz+Lhw4fZ/AvMGSY31qJMGWDhQqBjR+Czz4AmTQB/f9VRERHZtgcP5ABjS7t3Twa2PoOnpyecnZ3h5uaGokWLptwfEhKCWrVqYXKaRpMFCxbA29sbp0+fxr1795CQkICOHTuiVKlSAICqVaumPNbV1RWxsbHpnvNZkpOaPXv2oGHDhgCApUuXwtvbG+vWrUPnzp0RGRmJTp06pbxWmTJlUr4/MjISNWvWhK+vLwBpAlJF6bbUvXv3EBYWhrCwMABAREQEwsLCEBkZCUDqZQIDA9N9T/Lj7927h3///RdhYWE4ceKEpUM3j1dfBQYNkuu9egH/LU0SEZF9CQ0NxR9//IE8efKkXCpUqAAA+Oeff1C9enW0aNECVatWRefOnTF//nzcvn07R68ZHh4OJycn1KtXL+W+ggULonz58ggPDwcADBw4EJMmTUKjRo0wbtw4HDt2LOWxb7/9NpYvX44aNWrggw8+wN69e3MUT04oTW4OHTqEmjVrombNmgCAoUOHombNmhg7diwAGdqXnOgkS358aGgoli1bhpo1a6Jt27YWj91sPv0UqFsXuH0b6NoViItTHRERke1yc5NVFEtf3NxyFHZSUhL8/f1TPtAnX86cOYMmTZrA0dERW7ZswaZNm1CpUiXMmjUL5cuXR0RERLZfU9O0p95v+G+LrW/fvjh37hwCAgLw119/wdfXF7NmzQIg410uXLiAwYMH48qVK2jRogWGDRuW7XhyRLMz0dHRGgAtOjpadShPFxGhafnzaxqgaYMGqY6GiMgmPHz4UDtx4oT28OFD1aEY5eWXX9YGDBiQ7r5Ro0Zp5cuX1+Lj47P0HAkJCVrx4sW1zz//XNM0TevXr5/2yiuvPPP7mjZtqg36733m9OnTGgBtz549KV+/ceOG5urqqq1atSrD7x8xYoRWtWrVDL/21VdfaXnz5s1S/Mky+xka8/6t+24pm+TjAyxaJNdnzgTWrFEaDhERmY+Pjw/279+P8+fP48aNG0hKSkJwcDBu3bqF7t2748CBAzh37hw2b96MN954A4mJidi/fz8mT56MQ4cOITIyEmvWrMG///6LihUrpjznsWPHcOrUKdy4cQPxWejCLVu2LNq3b49+/fph9+7dOHr0KHr27InixYujffv2AIDBgwfjt99+Q0REBA4fPoxt27alvObYsWOxfv16nD17FsePH8fPP/+c8jVLY3Jjrfz9geTlvDfeAP75R208RERkFsOGDYOjoyMqVaqEwoULIzIyEsWKFcOePXuQmJiI1q1bo0qVKhg0aBA8PT3h4OAADw8P7Ny5E23btkW5cuXw4Ycf4vPPP0+Z+t+vXz+UL18evr6+KFy4MPbs2ZOlWBYuXIjatWvjlVdeQYMGDaBpGjZu3IhcuXIBABITExEcHIyKFSuiTZs2KF++PObOnQsAcHZ2xsiRI1GtWrWUrbPly5eb5y/tGQya9pRNNp2KiYmBp6cnoqOjrXPmTVrx8UCzZtIeXqsWsGcPkDu36qiIiKzSo0ePEBERgdKlSyM3f1fapMx+hsa8f3PlxprlygWsWAEULAgcPgy8957qiIiIiKwekxtrV6IEsGSJXJ87V5IdIiIieiomN7bAzw8YOVKu9+sHnD6tNh4iIiIrxuTGVkycKFOL794FOncGFI20JiIisnZMbmyFkxPwww9A4cLAsWOpk4yJiCgdO+uT0RVT/eyY3NiSYsWAZcvkMLb584GlS1VHRERkNZLblR+oOCiTTCLuv6n8jo6OOXoeHpxpa1q2BMaMkW2qt96SFnFFQ5KIiKyJo6Mj8uXLh+vXrwMA3NzcUo4NIOuXlJSEf//9F25ubnByyll6wuTGFo0dC+zeDWzbJvU3+/dn6fRZIiK9Sz4FOznBIdvi4OCAkiVL5jgpZXJjixwdZXuqRg3g+HFgwABg4ULVURERKWcwGPDcc8+hSJEiWTpygKyLs7MzHBxyXjHD5MZWeXlJgXGLFsB33wFNmwJBQaqjIiKyCo6Ojjmu2yDbxYJiW9asGTBhglx/5x3g77+VhkNERGQNmNzYulGjgNatZe5N587AvXuqIyIiIlKKyY2tc3CQ4xmKFwdOngT69wc444GIiOwYkxs9KFwYWL5cCo2XLgW++UZ1RERERMowudGLF18EPv5Yrr/7LhAWpjQcIiIiVZjc6Mn77wPt2gGxsVJ/ExOjOiIiIiKLY3KjJw4OwKJFgLc3cPasnCDO+hsiIrIzTG70pmBBYOVKOWhz5UogJER1RERERBbF5EaP6tcHPv1Urg8ZAoSGqo2HiIjIgpjc6NXgwUCHDkBcnNTf3LmjOCAiIiLLYHKjVwYDsGAB4OMDREQAb7zB+hsiIrILTG70LH9+qbvJlQtYuxb48kvVEREREZkdkxu9q1MHmD5drg8bBuzfrzYeIiIiM2NyYw+Cg6XuJiEB6NIFuHVLdURERERmw+TGHhgMwPz5wPPPA5GRQFAQ62+IiEi3mNzYC09PYNUqwMUF+Okn4PPPVUdERERkFkxu7EnNmsDMmXJ9xAhgzx618RAREZkBkxt78+abQPfuQGIi0LUrcOOG6oiIiIhMismNvTEYgK+/BsqVAy5fBgICgKQk1VERERGZDJMbe5Q3r9Tf5M4N/PorMHWq6oiIiIhMhsmNvapWDZgzR66PGQPs2KE2HiIiIhNhcmPPevcGAgNlW6p7d+DaNdURERER5RiTG3tmMABz5wKVKgFRUUDPnlJoTEREZMOY3Ng7d3epv3FzA7ZuBSZNUh0RERFRjjC5IVm5+eoruT5hAvD772rjIcouTePxIkTE5Ib+ExAA9Okjbw6vvy7bVES2JCoKaNECKFRItluJyG4xuaFUs2YBVasC169LgXFCguqIiLJm61agRg3gjz8kQR80iBO4iewYkxtK5eoq9Td58khr+PjxqiMiylxiIjB2LNCqlSTlVasC/v6SmHfuDFy9qjpCIlKAyQ2lV768nCAOAJMnA7/9pjYeoqe5ckW2oT76SFZr3nwT2L8fWLYMqFxZtqm6dgXi41VHSkQWxuSGntStG9C/v7xh9OwJXLqkOiKi9DZvlm2oHTtkpXHZMjlWxNVVbq9ZI5O4d+6UQ2KJyK4wuaGMffGFnCJ+44bU3/DTL1mDhATgww+BNm2Af/8FqlcHQkPl32ha5coBixbJ9enTgZUrLR8rESnD5IYylju3vCF4eAC7d8sbCpFKydtQH38sq4pvvQX8+ackMhl59dXUVZs33gBOnLBcrESkFJMberoXXgAWLJDrn34K/Pyz2njIfv32m2xD7dwp204//CCzmVxdM/++jz4CXnoJuH8f6NgRiImxSLhEpBaTG8pcp07Au+/K9V69gMhItfGQfUlIAEaPTr8Ndfiw1IVlhZOTJEIlSgCnTskKjqaZN2Yie3f4MPDggdIQmNzQs02bBtSpI5Nfu3YF4uJUR0T24PJlWXWZPFluv/02sG8fULascc9TpAjw449ArlzA6tXA55+bPlYiEidPyv+3TZvKBxJFmNzQs7m4ACtWAPnyyZsLu0/I3H79Vbahdu2SrqcVK2TqcO7c2Xu+evWAL7+U68OHy7A/IjKtmzeBV14BoqPl/1UPD2WhMLmhrCldGvjuO7n+xRfAunUqoyG9SkgARo4E/PykU69mTVni7tIl58/91luytZqUJCuQHHFAZDrx8cBrrwH//AP4+Mg4BhcXZeEwuaGsa98eGDpUrgcFAefOKQ2HdObSJaB5c2DqVLn9zjvA3r1S2G4KBgMQEiIrQv/+KxOMucVKlHOaJrWZ27dLwf9PPwGFCysNickNGWfqVKB+fVl27NIFiI1VHRHpwaZNknTs3i3bUCtXAnPmZH8b6mlcXaXuJnmL9b33TPv8RPZo9mwZomkwSAF/lSqqI2JyQ0bKlUvqHwoUkOFpw4apjohsWXy81HC1bSv79bVqAUeOyKqKuZQpA3z/vVyfPTv1OhEZ77ffgMGD5fqnn0rNjRVgckPGK1kSWLJErs+eLYdtEhnr4kWgWTPgk0/k9rvvyjbU88+b/7XbtZMDNwE5k+rYMfO/JpHenDwp9WtJSUDv3la1EsrkhrKnbVvpOgGAPn2As2fVxkO25eefZRtq717pqPjxR+lmsmQB4tixMj/n4UMZ8HfnjuVem8jW3boF+PtLicKLL0o9m8GgOqoUTG4o+yZNkn/Ud+/KNsKjR6ojImsXHw988IH8Urx1C/D1lW2oTp0sH4ujI7B0qXR2/PMPEBgon0CJKHPJnVFnz1pFZ1RGmNxQ9jk5AcuXA4UKAWFhqfuuRBmJjJTBXtOmye2BA6WAuEwZdTEVKCAFxi4u0uExZYq6WIhsQXJn1B9/WE1nVEaY3FDOFC8un34NBqmW/+EH1RGRNfrpJ9mG+vNPwNNTEoqZM63j016tWjIgEADGjAE2b1YbD5E1s8LOqIwwuaGca9VKzv8BgH79pMiMCJDl62HDgP/9D7h9W47xOHJEalysyRtvyL9dTQNefx24cEF1RETWZ/Nmq+yMygiTGzKN8eNlANv9+1J/o/jQNLICFy4ATZqknuU0eLBsQ5UurTSsp/ryS6kBunlT6glYQ0aU6uRJmW1mhZ1RGWFyQ6bh6AgsWwZ4eQF//516kjjZpw0b5OiEfftkYN7atXJsh7Oz6sieLndu6doqWBA4dEhqgojI6jujMsLkhkynaFFJcBwcgAULgMWLVUdElhYXJ5/o2reXbai6dWUbqkMH1ZFlTalSUkdgMADz5wPffqs6IiK10nZGlSqVWoBv5ZjckGm99BIwbpxcf/tt4PhxtfGQ5Zw/DzRuDEyfLreHDJFTvX18VEZlvJdfljEHABAcLJO4iexRRp1RRYqojipLmNyQ6Y0eLW8QDx5I/c29e6ojInNbv162oQ4ckG2odeskybHmbajMjBghy/CxsfKp9eZN1RERWd7jnVFVq6qOKMuY3JDpOTrKeT3FigHh4XK6s6apjorMIS5OVmg6dJAJv/XqyTZU+/aqI8sZBwfZVn3+eVmR6tEDSExUHRWR5aTtjPrkE6vujMoIkxsyjyJFJNN3cJBzqBYsUB0RmVpEhBQXzpght997D9i50/a2oZ4mXz6ZvOrqKocDTpyoOiIiy0jbGRUUZJMHJDO5IfNp0iS1dmHAAB5OqCdr18o21MGDQP78si312We2uw31NNWqAfPmyfWJE+VMLCI9e7wz6quvrL4zKiNKk5udO3fC398fxYoVg8FgwLp16575PTt27EDt2rWRO3dulClTBl999ZX5A6XsGz4c8POTmSGdO8s5VGS74uJkqbpjR/nlV7++bEP973+qIzOfnj0lOQeAgAA5h4pIj+Lj5fe0jXVGZURpcnP//n1Ur14ds2fPztLjIyIi0LZtWzRu3BhHjhzBqFGjMHDgQKxevdrMkVK2JdculCgBnD4NvPkm629s1blzQKNGcmwCIEvVO3fKL0G9+/xzoEEDqSvq1IlDKkl/kjujtm2zuc6ojBg0zTreaQwGA9auXYsOmczDGD58ODZs2IDw8PCU+/r374+jR4/izz//zNLrxMTEwNPTE9HR0fDw8Mhp2JRVe/fKoYkJCTIAqn9/1RGRMdaskSMKoqPlsMlFi2yuwDDHLl+Wc6iuX5cTxL/7ziaX64kyNGuWDK40GGQIpxX+/23M+7dN1dz8+eefaNWqVbr7WrdujUOHDiE+Pj7D74mNjUVMTEy6CynQsGHqicuDBgGHD6uNh7ImNlZ+4XXqJIlNgwayDWWFv/jMrnhxYMUK6QZcvFhaZIn0wMY7ozJiU8nN1atX4eXlle4+Ly8vJCQk4MaNGxl+z5QpU+Dp6Zly8fb2tkSolJH33pNCtbg42deNjlYdEWUmeRtq1iy5/cEHwI4dQMmSauNSqVkzYOpUuT5wILB/v9JwiHIsbWdUr1422RmVEZtKbgDZvkoreVft8fuTjRw5EtHR0SmXixcvmj1GegqDQbYzSpWSN84+fVh/Y61+/FG6oUJDZRvq55/lE12uXKojU++992QlK3ks/fXrqiMiyp60nVGNGqUO7NMBm0puihYtiqtXr6a77/r163ByckLBggUz/B4XFxd4eHiku5BC+fMDK1fKm+Tq1TIBk6xHbKwUFXbuDMTEyHZiWBjQrp3qyKyHwQAsXAhUqABcugR06ya1ZES25PHOqDVrbLYzKiM2ldw0aNAAW7ZsSXff5s2b4evri1z8RGk76tYFpk2T6++9JyP7Sb1//pFkJjnhHD4c2L4d4Fbuk/LmlTeDPHnk3J0PP1QdEVHWaZpsq+qkMyojSpObe/fuISwsDGFhYQCk1TssLAyRkZEAZEspMDAw5fH9+/fHhQsXMHToUISHh2PBggX49ttvMUwne4R2ZeBAmZUSHy/7vbdvq47Ivq1aJZ1Ahw8DBQsCGzdKbQk/NDxdxYqpk7c/+UQGGxLZgjlzUofzLVtmU2dGZZmm0B9//KEBeOLSq1cvTdM0rVevXlrTpk3Tfc/27du1mjVras7OzpqPj48WEhJi1GtGR0drALTo6GgT/Sko2+7c0bQyZTQN0LT27TUtKUl1RPbn4UNNe/tt+RkAmvbii5p28aLqqGzL0KHyd5c3r6adOqU6GqLM/fabpjk4yL/ZTz9VHY1RjHn/tpo5N5bCOTdW5vBhaS+Oi5NBaUOHqo7Ifpw5I6tm/62cYuRIOWLAyUlpWDYnPh5o2VIGGlauDOzbJ0v9RNbm5EmZKh4dLZ1RCxfaVAGxbufckA7VqpV68OLw4UAWhzFSDq1YAdSuLYlNoULApk3A5MlMbLIjVy75+3zuOeD4caBvX3YBkvXRcWdURpjckHr9+wNdu0rHSdeuwM2bqiPSr0ePgLfflg6fu3eBxo0lwWnTRnVktq1oUalbcnKSROfLL1VHRJRK551RGWFyQ+oZDHLyctmywMWLMto+KUl1VPpz+rQsSScXEo4eLd0SxYurjkwfGjUCpk+X68OGAbt3q42HCLCLzqiMMLkh6+DhIZ98c+eWTp3kVnEyjR9+kG2oo0eBwoWBX38FJk3iNpSpDRgAdO8uq5CdOwNRUaojIntnD51RGWByQ9ajevXUUf+jRwO7dqmNRw8ePgTeegt4/XXg3j05vDQsDHjsjDYyEYMBmD8fqFIFuHpVtlmfcu4dkdk9fmaUv7/ScCyJyQ1Zlz59gJ49gcREqQvhaPvsO3VKtqHmzZM33Q8/BLZuBYoVUx2Zvrm7y/RtDw9J0IcPVx0R2aPkM6MSE3V1ZlRWMbkh62IwACEhMtr+yhUgIID1N9mxbBng6wscOybbUL/9Bnz0EbehLKVcOTk5HAC++EKKjIksxc46ozLC5IasT548Un/j6irLqpMnq47Idjx8CLz5JtCjh2xDNWsm21Avv6w6MvvTvr3MDgJkRfL4cbXxkH2ww86ojDC5IetUpYqs4ADAuHFyfg9l7uRJoF49qfkwGICxY7kNpdpHH8mAv/v35biRmBjVEZGe2WlnVEaY3JD16tUL6N1btqW6d5cCTcrY0qWyDfXXX/LLbPNmYMIEwNFRdWT2zdFRtgi9vaUVv3dvDvgj87HTzqiMMLkh6zZ7tqziXLsmHT+Jiaojsi4PHshE3J49ZXWgeXPZhmrZUnVklKxwYeDHHwFnZ9ki+Owz1RGRHm3ZktoZNXWqXXVGZYTJDVk3Nzepv3F3l62pCRNUR2Q9krehvv1WPqmNGye/4J57TnVk9Li6dVOnFo8YIdsGRKZy8qTU2SR3Rr3/vuqIlGNyQ9avQgVpZwZk8NzmzWrjsQZLlsg21N9/A15ektSMH89tKGv25ptAUJBss3brBly6pDoi0gN2RmWIyQ3ZhtdflzcHTZMtmCtXVEekxoMH0nkTGCjbUC+9JNtQLVqojoyexWAA5s4FatQA/v0XeO01IDZWdVRky9gZ9VRMbsh2zJghU4z//Vc++SYkqI7Isk6ckO2NBQvkjXLCBFnFKlpUdWSUVa6uMuAvf35g/35g6FDVEZGterwzasMGu+2MygiTG7Idrq5Sf5M3r0x+HTNGdUSWs3gxUKeOzEopWhT4/Xdp9eY2lO0pUwb4/vvUlZwlS1RHRLbo8c6oatVUR2RVmNyQbSlbVgpoAekI2LhRbTzmdv++tA/36iVbUi1byjZU8+aqI6OcaNtWklNAzv46elRtPGRb2Bn1TExuyPZ07gwEB8v1gADg4kW18ZhL8jbUd98BDg7AxIlymreXl+rIyBTGjgX8/GSqdMeOwO3bqiMiW3DqFDujsoDJDdmmzz8HateWTgE9nrz83XfSDXXihLR2//67bMNxG0o/HBxke8rHBzh3TorEeY4aZYadUVnG5IZsk4sLsHIl4OkJ/Pln6hk+tu7+/dTJzA8fyplQYWFyRhTpT4EC0uGSOzfw8888R42eLrkz6swZdkZlAZMbsl1lygALF8r1zz+XbgFb9vffUjS8eLF8qv/4Y9mGYgeEvtWsmXqO2tixcoI70eMGDZLOKHd3dkZlAZMbsm2vvppaWNerF3D+vMposkfTpL27bl0gPFwOuvzjD2DUKElySP+CglLnOL3+um3+OybzmTNHEmB2RmUZf3OS7fvkE0kM7twBunQB4uJUR5R19+5JUtanj2xDtW4t21BNmqiOjCztyy9l5e7WLRnw9+iR6ojIGmzZIqs2gHRG/e9/auOxEUxuyPY5O0v9Tf78wMGDttM98Ndf8ma2ZIms0EyeLK3thQurjoxUcHGRAzYLFgRCQ4F331UdEamWtjMqMNB2frdZASY3pA+lSkmtCiCfgFevVhtPZjRNZvXUrSsH3hUvDmzfLkXR3IaybyVLAsuXy7+Db76RC9mnxzuj5s1jZ5QR+JuU9OOVV1I/2bzxBvDPP2rjyci9ezKbp29f2XZo0wY4cgRo3Fh1ZGQtWraUA2IBYMAA4NAhtfGQ5bEzKseY3JC+fPwx0LAhEBMjvxysqW7h2DGZXbN0qcyrmToV+OUXbkPRk4YPB9q3l4M1X3sNuHlTdURkSeyMyjEmN6QvuXIBK1ZI3cKRI9ZxMKGmAfPnA/XqyR568jbU8OHchqKMOTgAixYBL7wAXLgA9OghdRekf+yMMgn+ZiX9KVFCJr8C8ktixQp1sdy9C/TsKW2+jx7JmUJhYcCLL6qLiWyDp6dsR7i6yuybCRNUR0Tmxs4ok2FyQ/rUpo3MiQGkvuX0acvHcPSobEMtWybbUJ98Avz0E1CokOVjIdtUtaqs+gHARx/JFGPSJ3ZGmRSTG9KvCROApk2liLdzZ5kjYwmaJp0N9epJUlWiBLBjB/DBB9yGIuP16JHaFt6zJ3D2rNp4yPTSdkY1bMjOKBPgb1rSLycnWTUpUkSKeQcONP9rxsTIhNm33pJi0HbtZBuqUSPzvzbp12efyZtedDTQqRPw4IHqiMhU4uNl+OiZMzIKYO1adkaZAJMb0rdixSTBMRhkZkhyLY45hIXJNtTy5bINNW2adDoULGi+1yT74OwMrFoFeHlJot6/v6wQku0bNAj4/XfpjPrpJ3ZGmQiTG9K/Fi3kQEJAVlROnDDt82sa8NVXQP368unL2xvYuRMYNozbUGQ6xYpJcbyjo0y1/uor1RFRTrEzymz4m5fsw5gxkuQ8eCD1N/fvm+Z5Y2KA7t2Bt9+WbahXXpEW9IYNTfP8RGk1bSqF6YB84t+3T208lH3sjDIrJjdkHxwdZXhe0aKychMcnPPnPHIEqF1bPk07OUldBLehyNyGDpXBfvHx8t/r11VHRMY6dUrqbNgZZTZMbsh+eHmlntuzaBGwcGH2nkfTZCm5fn3pXClZEti1C3jvPXY4kPkZDMCCBUCFCsDly0C3bkBCguqoKKuSO6Pu3GFnlBkxuSH70rQpMHGiXA8OlpO5jREdDXTtCrzzDhAXJ7+kjhyRRIfIUvLmlQF/efIAf/wBjB6tOiLKCnZGWQyTG7I/I0cCrVvL3JvOnWWKcFYcPizbUKtWyTbU9OnA+vVAgQLmjZcoIxUrpq4+fvqpJDtk3QYPZmeUhTC5Ifvj4CAt4cWLy973s9pqNU26Gho0kJPGS5UCdu8GhgzhcjKp9dprsh0KAEFB8u+ZrNOcOcDcueyMshAmN2SfChVKbatdtix1xP3joqNlGXnAANmGat9etqHq1bNsvERPM3WqbLfevQt07CgTucm6pO2MmjKFnVEWwOSG7FejRsDkyXJ94EAZwpfWoUNArVrAjz/KaeMzZsgeef78lo6U6OmcnCRRL1ZMOgH79uWAP2vyeGfUBx+ojsguMLkh+zZsmMymiY2V+puYGHljmDVLOhnOnQN8fIA9e+STF7ehyBp5eaXWgq1YAcycqToiAtgZpZBB0+wrxY+JiYGnpyeio6Ph4eGhOhyyBrduATVrApGRwKuvyi+f5OLMV1+Vttt8+ZSGSJQls2fLIZuOjtJF1bix6ojsV3w84OcnBcQlSwIHD7KAOIeMef/myg1RgQKpg/jWrpXEJlcu+fS7ejUTG7IdwcFyinhiomyFREWpjsh+sTNKKSY3RIDMqfnsM7leurRsQw0cyCVksi0GA/D110CVKsDVq5LgxMerjsr+sDNKOSY3RMkGDQL+/lsudeqojoYoe9zdZfXRw0NGFrCA1bLYGWUVmNwQpVW5MuDmpjoKopwpWxZYvFiuz5ghx46Q+Z0+zc4oK2FUcnPgwAEkJiam3H68Fjk2NhYrV640TWRERJR97dsDo0bJ9T59gOPH1cajd7dvS+clO6OsglHJTYMGDXDz5s2U256enjh37lzK7Tt37qB79+6mi46IiLJv4kSgZUvgwQMZ8BcdrToifYqPl1ESPDPKahiV3Dy+UpNRF7mddZYTEVkvR0fghx/kDff0aaB3bw74Mwd2Rlkdk9fcGLgMR0RkPQoVkinbzs6yojBtmuqI9GXuXHZGWSEWFBMR6V2dOjJ1GwBGjgS2bVMbj15s3SojIwB2RlkZJ2O/4cSJE7h69SoA2YI6efIk7v13UNuNGzdMGx0REZlGv37Avn3AwoVAt25AaCjg7a06Ktt1+rTU2bAzyioZdfyCg4MDDAZDhnU1yfcbDIZ0HVXWhscvEJHdevhQDoxNPtl+xw4WvmbH7dsy+PP0aaBBA1kJy51bdVS6Z8z7t1ErNxERETkKjIiIFHJ1lSNFatcG9u8HhgyRehHKuuTOqNOnUzujmNhYHaOSm1KlSpkrDiIisoTSpYGlS4F27YCQEFmBCAxUHZXteLwzystLdUSUAaMKim/duoVLly6lu+/48ePo3bs3unTpgmXLlpk0OCIiMgM/P2DcOLn+1ltAWJjScGxG2s6opUvZGWXFjEpugoODMX369JTb169fR+PGjXHw4EHExsYiKCgIS5YsMXmQRERkYmPGAG3bAo8eAZ06SR0JPd3jnVHt26uNhzJlVHKzb98+/C9Nq9vixYtRoEABhIWFYf369Zg8eTLmzJlj8iCJiMjEHByAJUtkm+rcOSAgAEhKUh2VdWJnlM0xKrm5evUqSpcunXJ727ZtePXVV+HkJKU7//vf/3DmzBnTRkhEROZRoIAUGOfODfzyC/Dxx6ojsj63bwP+/nJmVIMGwNdf88woG2BUcuPh4YE7d+6k3D5w4ADq16+fcttgMCA2NtZkwRERkZnVrAl89ZVcHzcO+PVXtfFYk/h4OeWbnVE2x6jkpm7duvjyyy+RlJSEH3/8EXfv3sVLL72U8vXTp0/Dm0OhiIhsS69eQP/+cu7U668D58+rjsg6DBkitTbsjLI5RiU3H330EdavXw9XV1d07doVH3zwAfLnz5/y9eXLl6Np06YmD5KIiMxsxgygbl3ZhunUSQqN7dncucCcOeyMslFGzbmpUaMGwsPDsXfvXhQtWhT16tVL9/Vu3bqhUqVKJg2QiIgswMUFWLVKBvwdPgwMGAB8843qqNRI2xk1eTI7o2yQUccv6AGPXyAiysTvvwOtWknn1Pz5QN++qiOyrNOn5WiKO3ekg2zRIhYQWwlj3r+NSm4WL16cpccFWvG0SyY3RETPMHWqnB7u7Azs3i2nitsDnhll1cyW3Dg4OCBPnjxwcnLK8PBMQDqmbt26ZVzEFsTkhojoGTQN6NgRWLdOuoRCQ4FChVRHZV7x8TLUcOtW+TMfOMACYitjzPu3UQXFFStWhLOzMwIDA7Fjxw7cvn37iYuxic3cuXNRunRp5M6dG7Vr18auXbsyffycOXNQsWJFuLq6onz58lleTSIioiwyGIDvvgPKlgUiI6WDKjFRdVTmlbYzasMGJjY2zqjk5vjx4/jll1/w8OFDNGnSBL6+vggJCUFMTEy2XnzFihUYPHgwRo8ejSNHjqBx48bw8/NDZGRkho8PCQnByJEjMX78eBw/fhwTJkxAcHAwfvrpp2y9PhERPYWnJ7BmDeDmBmzZAowfrzoi83m8M6p6ddURUQ5lu6D44cOHWLVqFRYuXIgDBw6gQ4cOWLBgAVxcXLL8HPXq1UOtWrUQEhKScl/FihXRoUMHTJky5YnHN2zYEI0aNcK0adNS7hs8eDAOHTqE3bt3Z+k1uS1FRGSEH36QlRtAVjT8/dXGY2pbtwJt2sjK1JQpwIgRqiOipzDbtlRarq6uCAwMxIQJE1C3bl0sX74cDx48yPL3x8XFITQ0FK1atUp3f6tWrbB3794Mvyc2Nha5HyvucnV1xYEDBxAfH//U74mJiUl3ISKiLOrePbUtOiAAOHtWbTymlPbMqIAAYPhw1RGRiWQrubl8+TImT56MsmXLolu3bqhTpw6OHz+ebqDfs9y4cQOJiYnwemxf08vLC1evXs3we1q3bo1vvvkGoaGh0DQNhw4dwoIFCxAfH48bN25k+D1TpkyBp6dnyoUTlImIjDRtGtCoERAdLYXGRnyQtVqPnxk1bx5bvnXEqORm5cqV8PPzQ9myZXHw4EF8/vnnuHjxIj799FNUqFAhWwEYHvvHpGnaE/clGzNmDPz8/FC/fn3kypUL7du3R1BQEADA0dExw+8ZOXIkoqOjUy4XL17MVpxERHbL2RlYuVKKbP/6C3jrLemoslU8M0r3jJpQ3K1bN5QsWRJDhgyBl5cXzp8/jzlz5jzxuIHJS5iZKFSoEBwdHZ9Ypbl+/foTqznJXF1dsWDBAnz99de4du0annvuOcybNw958+ZFoae0Kbq4uBhVB0RERBkoVkwSnJdeAr7/XubBBAerjip72Bmle0YVFPv4+Dx1VSXlCQ0GnDt3LkvPV69ePdSuXRtz585Nua9SpUpo3759hgXFGWnatCmKFy+OZcuWZenxLCgmIsqB6dOB994DcuUCduyQLR1bEhICvPOObEGtWQN06KA6IsoiY96/jVq5OZ+Fk2IvX76c5ecbOnQoAgIC4OvriwYNGmDevHmIjIxE//79AciW0uXLl1Nm2Zw+fRoHDhxAvXr1cPv2bUyfPh1///03Fi1aZMwfg4iIsmvIEGDfPjmH6rXX5BwqW1n52LoVePdduT55MhMbHTMqucnM1atXMXnyZMyfPx8PHz7M0vd07doVN2/exMSJExEVFYUqVapg48aNKFWqFAAgKioq3cybxMREfP755zh16hRy5cqF5s2bY+/evfDx8THVH4OIiDJjMADffgv8/TcQHg506yZzcJxM9nZiHuyMsitGbUvduXMHwcHB2Lx5M3LlyoURI0ZgwIABGD9+PD777DNUrlwZQ4cORffu3c0Zc45wW4qIyAROnpQzp+7dA95/H/j0U9URPR3PjNIFs825GTVqFHbu3IlevXqhQIECGDJkCF555RXs3r0bmzZtwsGDB606sSEiIhOpUEGOaACkVXz1aqXhPBU7o+ySUcnNL7/8goULF+Kzzz7Dhg0boGkaypUrh23btqFp06bmipGIiKxRp06yagMAQUGymmNt2Blll4xKbq5cuYJKlSoBAMqUKYPcuXOjb9++ZgmMiIhswOTJQLNmsj3VsaP811qEhMiZUYC0r/PMKLthVHKTlJSEXLlypdx2dHSEu7u7yYMiIiIb4eQELF8uc3DCw4E+faxjwF/azqgpU9gZZWeMKm/XNA1BQUEpQ/EePXqE/v37P5HgrFmzxnQREhGRdfPyAn78EWjaVAb91a8v20GqsDPK7hnVLdW7d+8sPW7hwoXZDsjc2C1FRGQmc+YAAwYAjo7SkdSkieVjSNsZVb8+8McfLCDWCWPev41KbvSAyQ0RkZloGhAYKPUtXl4y4K9YMcu9fkIC4OcnW1Le3sDBgywg1hGztYITERE9lcEAfP01UK0acO2atGDHx1vu9dN2Rv30ExMbO8bkhoiITMfNTWbeeHoCe/aktoqbW0gIMHu2XGdnlN1jckNERKb1wgvAf2cCYuZM4IcfzPt6v//OM6MoHSY3RERkev/7HzB6tFzv21fOojKHtJ1RPXsCI0aY53XIpjC5ISIi85gwAXj5ZeDBAxnwFx1t2ue/fRvw90/tkJo/X+p+yO4xuSEiIvNwdASWLZMznc6cAXr1ApKSTPPcCQmpZ0Z5ewPr1rHlm1IwuSEiIvMpVEgKjJ2dgfXrTXd6ODujKBNMboiIyLx8fVM7mUaPlgLgnGBnFD0DkxsiIjK/vn2BN96Qbalu3YCLF7P3POyMoixgckNEROZnMMhqS61awI0bwGuvAbGxxj3HmTPsjKIsYXJDRESW4eoq9TcFCgAHDgCDB2f9e2/fBl55hZ1RlCVMboiIyHJ8fIClSyUx+eor4Lvvnv097IwiIzG5ISIiy2rTRmbgAMDbbwNhYZk/Prkzys0N2LCBnVH0TExuiIjI8kaPBtq1Ax49kgF/t29n/LivvkrtjFq6FKhRw2Ihku1ickNERJbn4AAsWQKUKQNEREiB8OMD/rZtAwYMkOvsjCIjMLkhIiI18ueXAuPcuYGNG4FJk1K/duaMdFSxM4qygckNERGpU6MG8PXXcn38eGDTJuDOHZ4ZRTnC5IaIiNQKDJTCYk0DevQA2rcHTp1iZxRlG5MbIiJS74svgLp1ZbVm5052RlGOMLkhIiL1XFyAH38ECheWLajvv2dnFGWbk+oAiIiIAMg2VHi4HM9QvrzqaMiGMbkhIiLrUbCgXIhygNtSREREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREemK8uRm7ty5KF26NHLnzo3atWtj165dmT5+6dKlqF69Otzc3PDcc8+hd+/euHnzpoWiJSIiImunNLlZsWIFBg8ejNGjR+PIkSNo3Lgx/Pz8EBkZmeHjd+/ejcDAQPTp0wfHjx/HqlWrcPDgQfTt29fCkRMRkTls2wb88IPqKMjWKU1upk+fjj59+qBv376oWLEiZsyYAW9vb4SEhGT4+H379sHHxwcDBw5E6dKl8eKLL+Ktt97CoUOHLBw5ERGZUmwsMGgQ0KIFEBqaer+mAUlJ6uIi26QsuYmLi0NoaChatWqV7v5WrVph7969GX5Pw4YNcenSJWzcuBGapuHatWv48ccf0a5du6e+TmxsLGJiYtJdiIjIepw6BdSvD3z5pdx+8cXUr/3+O1CuHDBlChAVpSY+sj3KkpsbN24gMTERXl5e6e738vLC1atXM/yehg0bYunSpejatSucnZ1RtGhR5MuXD7NmzXrq60yZMgWenp4pF29vb5P+OYiIKHs0DfjuO6B2bSAsDChUCPj5Z6BDh9THLF4M/PMPMGoU4O0NvPoq8MsvQGKioqDJJigvKDYYDOlua5r2xH3JTpw4gYEDB2Ls2LEIDQ3Fr7/+ioiICPTv3/+pzz9y5EhER0enXC5evGjS+ImIyHgxMUDPnkDv3sD9+0Dz5sDRo8DjC/EhIcCCBUCDBpLQrFsHvPIK4OMDjBsn21lEj1OW3BQqVAiOjo5PrNJcv379idWcZFOmTEGjRo3w/vvvo1q1amjdujXmzp2LBQsWIOop65UuLi7w8PBIdyEiIrVu3ZIVGEdHYNIkYMsWoFixJx/n7i4J0N69wN9/A4MHAwUKAJcuAStXAs7OqY/VNIuFT1ZOWXLj7OyM2rVrY8uWLenu37JlCxo2bJjh9zx48AAODulDdnR0BCArPkREZL3S/pr28QG+/x7YsQMYPVqSnGepXBn44gvgyhXpqJo0CUhe6H/wAKhQAfjgA+D0abOETzZE6bbU0KFD8c0332DBggUIDw/HkCFDEBkZmbLNNHLkSAQGBqY83t/fH2vWrEFISAjOnTuHPXv2YODAgahbty6KZZTyExGRVbh+XbaTfv019b5XXgEaNTL+uVxcgG7dgE6dUu9bt06SmmnTgPLlgWbNJHl6+DCnkZMtclL54l27dsXNmzcxceJEREVFoUqVKti4cSNKlSoFAIiKiko38yYoKAh3797F7Nmz8d577yFfvnx46aWX8Mknn6j6IxAR0TNs3QoEBABXr8rW0tmzQK5cpn2Nzp1lC2v+fGDTJlkR2rEDePddee3335eCZLIPBs3O9nNiYmLg6emJ6Oho1t8QEZlRfDwwdizwySeyJVWpErBiBVClinlf99IlKUL+9lsg+fPx2bPA88+b93XJvIx5/1beLUVERPoTEQE0aQJMnSqJzZtvAgcPmj+xAYASJSSpOndOtsHGj0+f2PTqBfTrBxw4wCJkveLKDRERmdSlS1L8GxMDeHrKVlHnzqqjEteuSfKTkCC3q1UD+vaVtvT8+dXGRpnjyg0RESlTogTQsaPMpgkLs57EBgCKFJGpxz17ArlzA8eOAQMHSht6QICsLpHt48oNERHl2F9/AV5ekjwA0qXk5GT6wmFTun0bWLpUVpaOHZP7vvxSipDJ+nDlhoiILELTZIpw3bpAUFDqIZeurtad2ACyDTVggKwuHTgAvPWWrOgkW7QIeO014LffeNyDrVHaCk5ERLbr1i0pzF2zRm4bDDJML08etXEZy2AA6tSRS1ohIcD+/cDq1UCpUsAbb8ilRAk1cVLWceWGiIiMtns3UKOGJDa5cgHTpwM//WR7iU1m5s2TLap8+YALF+Qsq1KlZPjgTz+pjo4yw+SGiIiyLDFRjj1o2hS4eBF44QXgzz+BIUMAB529o1SrJjU4V67ItOOmTWXb7ZdfgLlzVUdHmdHZP0UiIjKnBw+A776TN/mePYHDh4HatVVHZV6urkCPHsD27cCpU3J+1cCBqV+/dAl4+WVg+XKeUm4t2C1FRERGOXgQCA8H0hz9Z9cmTpQtK0BOLA8MlFqkSpXUxqU3xrx/M7khIqKnio0Fhg+X7acBA1RHY50uXJDjHhYskFWcZA0byoDA7t1lpg7lDJObTDC5ISLKmtOn5fTtI0fkJO6ICOC551RHZb0SE6VtfP58KThOTATc3ICoKIBvNzlnzPs3W8HJ7iUkAMePy5yL8HA5D6d9e2kPJbJXixcD77wD3L8PFCokdTZMbDLn6Ai0bSuXqCj5O3v4MH1iExgok5tff12OpiDz4MoN2a2oKKBLFyA0VH4BpVW/PvDZZ0CjRmpiI1Ll7l1Jar7/Xm43by7XixVTG5cehIYCvr5y3c1Nfv/07SvbV/ww9WycUEz0n+vXpW1z3Dj5NPXee6lfK1QIOHQo9ZNVixYyoMvNDdi3T7pAiOxJXJxMGv7+e1mFmDQJ2LKFiY2plCkDfPGFFBond529+KKclP7FF8DNm6oj1A+u3JCuaJr8kti/X7aZzp9P//UqVeQMnGS//AI8/zxQrlzqjI6oKGDWLGD8eMDZWe7bvx8oWlQGeBHp2dSpMpn3hx9kRYFMT9PkA9T8+cCKFZLoAFKn88oramOzZiwozgSTG32Ij0+tk7lzR+ZOJKtQQWZRJKtYUcaq160L1KuXuixszGtVriwdEcHBwKhRsupDpAfXrwPR0UDZsnI7KUm2plgPYhkxMZJIbtgArF8vh40C8gErJgbo3ZsrZ8mY3GSCyY1tioiQTzoHDsjlyJHUOhl3d/nl7Ogot7/8Uj4J1a0rw8Vy+kv62jUp/tu2TW57eADvvy8TWd3dc/bcRCr9/rsM4itYUP6/cnNTHREB0uRQqpRMRnZ0BNq1k7k5bdqkJj/2iMlNJpjcWL/r1yV5ad069b527YCNG9M/ztMzdUVm5EjznmmjaVJ7MGKExAbINtXYsVIQaO2nHxOlFR8vdWhTp8q/7UqVZIvWx0d1ZATIz2fZMtm22rMn9f7ixWUlp08f+/xZMbnJBJMb63LvnhTuJq/IHDgg2z8AcPly6nLs1KnAunWpyUzdurKMbumzbJKSgJUrgdGjgXPn5L7ffwdeesmycRBl1/nzMlRu3z65/eabUqfGVRvrFB4OfPMNsGhRasHxW28BX32lNi4VmNxkgsmNOvHx0u6YvKw6eTIwZowkDGkZDFIns2QJUKuW5ePMiri41E9VS5emtnFGRgIlS6qNjehpVq2S7Y3oaFn5nD8f6NxZdVSUFbGxUpMzf7582Es+z+vgQfnA1bcvUL682hjNjclNJpjcWIamAWfPyv94aetktmyR1kdA2k0DAoASJVJXY5LrZGzxR3PjhrR61quX/pcPkTVISpIVxh07ZIjcsmX2ubWhN2+8ASxcKNcbN5bk9bXX5LBPvWFykwkmN+a1b5/s5R88CNy+/eTXv/gCGDxYrsfEyLaUXjoB1q2ToVzx8XK7a1eZE/LCC0rDIkpx6ZKcfzRyJOvE9OLXX4G5c6VmKnkV3NNTCsX79QOqV1cbnykxuckEk5ucu3tXJm0mr8p07w507Chf27dPPhUCchZNzZrpV2Wef97ydTKWFBEhRcZLl8rqlZOT1DSMGSMFyESWomlSl3HuHDBtmupoyNwuX5YVnG+/TZ3vVaqU/Pz18juXyU0mmNwY784dYPny1O2lEyfkF2eyt9+WTw4A8OiRTN2sUweoWjV1CJ69OXpUPh1v2iS38+WTQmn+kyNLuH1bajDWrJHbu3albgeTviUlSZPD/PmyNT58uNwfFwcMGyZjLerVs83jHpjcZILJzdMlJUmdzIEDQP780n4NSGu2l1f6x3p7p67GvPSS8YPx7MX27fLLpXbt1AQQkNOCk+fyEJnSnj3yBhYZKVtPn3wCDBqkn0/vlD2rV0stDiCT2vv1k62rAgXUxmUMJjeZYHKT6urV9C3YBw/KKg0AtGoF/PZb6mMDAqT4sG5dWZXhFkvWaZqsaCUX+B07BnToAEyYIG9CTHLIFBITgSlT5NiQxESp9Vq+nIXtJI4eBaZPl86qR4/kPhcXoFMnSXSaNrX+1RwmN5mw1+QmJkaKCStVkttJSbI6ExOT/nG5c0v7dcuW8uZLpterF7B4sVyvWlU6q/z8rP8XC1m3Tp1St6F69pSVwrx51cZE1ufOHakJnD9fEp5kf/8tx8xYMyY3mbCH5CYuTlYH0q7KnDwpbcpnz6Y+rlUrWb1JXo2pW1eWK9lFYV4PHsi5MVOmyLwRAGjSRLYP6tdXGxvZrtWrgaAgYM4cIDBQdTRk7TRNGkO++UaKjjdvTv3al1/KkNRWraxrZZnJTSb0ltxoWvpP/L16yVJ0XNyTjy1VSoqBkyeRsu5DrVu3ZNXmyy9lQBcgRaDz56uNi2xDbCxw+rSs/iW7fh0oUkRdTGSb0r6P3L4NPPec/PsqWVLm6PTubR3DSY15/2aJmY25ckWmVI4eDbz8stS+JL8xArKtFBcnRWJt2khb8k8/yQrN+fPpR6wzsVGrQAHg00+BM2fkl4eDg6ycET3L6dMycqFFCyAqKvV+JjaUHWk/IMfFyfEO+fNLUfr48VJv2bYtsHZt6hwva8eVGxuwbp3UaBw4ILMMHnfggGwrAbK8qGmyBcUaDtty4oTMAXJxkdsbNgB790q3Vf78amMj66Bp8rsgOBi4f19O816/HmjUSHVkpDePHkkN1/z50vWZbPp0YMgQNTFxWyoT1prcxMZKcVdy19LEibKNBMin++RZBQ4OUvSV3IZdpw7rZPQoIUF+rqdOSWIzciQwYIA+R6pT1ty9KzOlli6V282ayREmxYsrDYvswJkzMhxw6VJ5f0rult22TXYFOnaUXQNzY3KTCWtJbqKi5Jyl5ILfsLD0y30//AB06ybX//5b2rLr1JFOpjx5lIRMFqRpwM8/S1Jz/LjcV6KEdLAFBqYePkr24dAh+X3wzz+ynTxhAjBiBLeWybKSktLPS3rpJeCPP2SLPSBAagbNubXO5CYTKpKby5clgalcGShXTu5LO1ApWcGCqSsynTtbf1semV9ionw6HzMGuHhR7qtYUTpimjdXGxtZzptvyvZAyZJy4CW3oUg1TQM++ki6rZJ/NwHS8dmvnxzLY+qVZiY3mTB3cnPnjnzKSt5eOnBAioABOURx9Gi5fumS/PDTnrvk48M6GcrYo0cyt+Tjj6XLatMmKRgn+3D/PvDhh9IgwPorsiaJidJG/s03UieYkAC4u8vuhKnnLDG5yYQ5k5sTJzJebUnugnnzTSkEJMqu6GhgxQr5ZJScCP/4I1C+fPqWYLJtv/8uK3bffstjE8h2XL0KLFoks7zMMQSWyU0mzJncJCTIwYhFi6ZfkalZUzJZIlO7eVM64+7elT3vtIXoZHvi44Fx42T+kaYB8+ZJIktExr1/syzRhJycZCnO01N1JGQvYmOB1q2BVaukRXj5clkdHDUKKFRIdXRkjPPnZat63z65/eabQI8eSkMisllc8DQxJjZkScWKyUF4Bw5I50JcHPDFFzIvZ9IkqdUg67dqFVCjhiQ2np7yM/366/RDN4ko65jcEOlAnTrA1q0yMqBmTTkQdfz4jIc+knWZOBHo0kXqqerXl7EQnTurjorItjG5IdIJg0EOujt0SOYkjRuXOnoAkNWdpCR18VHG2rWTqdQjRwI7d0rXJBHlDGtuiHTGwSF1AGSyv/6SVYFateT08RYt1MRGUih8/HjqsLPatWU4HycNE5kOV26I7EB4uHTshYYCLVvKCs/hw6qjsj+3b8uWU+3awJEjqfczsSEyLSY3RHagSxdZHRg4UM4h27JF3mC7d5f7yfz27JGi4dWrZfXm2DHVERHpF5MbIjtRpAgwcyZw8qS0GBsM0jr+4ovSZUXmkZgonWtNmwKRkcALL8hp7716qY6MSL+Y3BDZmTJlZPrt4cNyhMMHHwDOzvI1TZOBgGQaly/LNuCYMZLk9Owpf+++vqojI9I3JjdEdqpGDTmjatCg1PvWrZPkZ+ZMGRBIObNyJbB9u9Q7LVoELFli+vN2iOhJTG6I7Fzas4u++w64cQMYPBioUEFWeNg+nn2DBsnl8GEgMFB1NET2g8kNEaVYvVrOM3ruOTkOICBA2sc3bZItK8rc6dPA66/LwYGAJI4zZqSfN0RE5sfkhohSODnJQY1nzwKTJ8tRAEePAm3bAu+8ozo667Z4sSSCP/wAjB6tOhoi+8bkhoie4OYmE3P/+QcYNkwm6Pr7q47KOiWfyN6rl5zl1ayZ/J0RkTpMbojoqQoWBKZNAyIiAD+/1Ps/+0xOrbb3s6tCQ2W15vvvZQvqo4/kjC8O5SNSi8kNET3Tc8/JXBwAuHcP+PhjYP58mdkyYoRM3rU3q1cDDRrIFp63N7BjB/Dhh4Cjo+rIiIjJDREZJU8e4OefZfjfo0dyVtXzz8sKz8OHqqOznPr1AQ8P4NVX5STvF19UHRERJWNyQ0RGa9RITrDesAGoXFlWbj74QLqCfv9ddXTmc/p06vXixeUE9tWrgQIF1MVERE9ickNE2WIwSJHx0aMyH8fbG4iKAkqUUB2Z6cXHA6NGyeyftWtT7/fxSd2uIyLrweSGiHLE0VE6hU6fBjZuBMqXT/3atGnArl3qYjOF8+eBJk2AKVNk1s/evaojIqJnYXJDRCaROzfQqlXq7ePHpdi4SRNZ4fn7b3WxZdeqVXJMxb59MvNn5UpJ2IjIujG5ISKzKFhQBgI6OkoBcrVqQFAQcOGC6sie7cED4K23gC5dgOhoKR4OCwM6d1YdGRFlBZMbIjKLokWBr76SFZzXXpMtnUWLpOh46FDgzh3VET7djh1yDIXBILU2O3dKfQ0R2QYmN0RkVuXLy/bO/v1A8+ZAXJwkOdbMzw8YMwbYskVm+uTKpToiIjIGkxsisoi6daVN/NdfgdmzgXz55H5Nk+QnPl5dbLdvA336AFeupN43cSLQooW6mIgo+5jcEJHFGAxA69ZA9+6p923YILUtlStLkmPp08f37JGi4QULgDfesOxrE5F5MLkhIqUePQIKFwbOnJEkp25dYNs2879uYqJsOTVtCkRGypTlSZPM/7pEZH5MbohIqa5d5fTx8ePlaIdDh2Q7qHVr4MgR87zmlSvAyy/LWVCJiUCPHsDhw4Cvr3lej4gsi8kNESmXNy8wbpwkOe++KwW8mzdL67ipt6mOHAGqVwf++ANwd5fi5u+/l3OiiEgfmNwQkdUoUgT48kvg5ElZTZk8OfV4g4cPgWvXcv4a5coBhQoBNWvKak1gYM6fk4isi/LkZu7cuShdujRy586N2rVrY1cms9qDgoJgMBieuFSuXNmCERORuZUpI6sp7dql3jdrltTFjBsHxMQY93wXLgBJSXLd3V06tv78UxIdItIfpcnNihUrMHjwYIwePRpHjhxB48aN4efnh8jIyAwfP3PmTERFRaVcLl68iAIFCqAzx4YS6ZqmSZHx/fvSov3887LCExv77O9dvFg6sT7/PPW+UqUAFxfzxUtEailNbqZPn44+ffqgb9++qFixImbMmAFvb2+EhIRk+HhPT08ULVo05XLo0CHcvn0bvXv3tnDkRGRJBgOwaZO0ipcrB9y4AQwaJKd0f/996qpMWnfvAgEBcqjn/fsykC+jxxGR/ihLbuLi4hAaGopWaU/aA9CqVSvszeKxu99++y1atmyJUqVKPfUxsbGxiImJSXchIttjMMgxDn//DXz9NfDcc3Jid0AA8P776R8bGgrUqiWJj4MD8NFHkhw5KN+IJyJLUPa/+o0bN5CYmAgvL69093t5eeHq1avP/P6oqChs2rQJffv2zfRxU6ZMgaenZ8rF29s7R3ETkVq5cgFvvgmcPSsFxwUKAMm/BpKS5NTuBg3k6yVLyrlQH34oB3gSkX1Q/jnGkNwK8R9N0564LyPfffcd8uXLhw4dOmT6uJEjRyI6OjrlcvHixZyES0RWws0NGDkSuHQJqFhR7tM0Ob07Ph7o2FGuN2qkMkoiUsFJ1QsXKlQIjo6OT6zSXL9+/YnVnMdpmoYFCxYgICAAzs7OmT7WxcUFLqwcJNItV9fU6zduAHv3AiEhwFtvpbaRE5F9UbZy4+zsjNq1a2PLli3p7t+yZQsaNmyY6ffu2LEDZ8+eRZ8+fcwZIhHZGC8vICIC6N+fiQ2RPVO2cgMAQ4cORUBAAHx9fdGgQQPMmzcPkZGR6N+/PwDZUrp8+TIWL16c7vu+/fZb1KtXD1WqVFERNhEREVkxpclN165dcfPmTUycOBFRUVGoUqUKNm7cmNL9FBUV9cTMm+joaKxevRozZ85UETIRERFZOYOmmfrkFusWExMDT09PREdHw4OHyRAREdkEY96/lXdLEREREZkSkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtKD85UIfkorZiYGMWREBERUVYlv29n5UhMu0tu7t69CwDw9vZWHAkREREZ6+7du/D09Mz0MXZ3KnhSUhKuXLmCvHnzwmAwmPS5Y2Ji4O3tjYsXL/LEcRvFn6Ft48/P9vFnaPvM9TPUNA13795FsWLF4OCQeVWN3a3cODg4oESJEmZ9DQ8PD/5PaeP4M7Rt/PnZPv4MbZ85fobPWrFJxoJiIiIi0hUmN0RERKQrTG5MyMXFBePGjYOLi4vqUCib+DO0bfz52T7+DG2fNfwM7a6gmIiIiPSNKzdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyYwI7d+6Ev78/ihUrBoPBgHXr1qkOiYwwZcoU1KlTB3nz5kWRIkXQoUMHnDp1SnVYZISQkBBUq1YtZWhYgwYNsGnTJtVhUTZNmTIFBoMBgwcPVh0KZdH48eNhMBjSXYoWLaosHiY3JnD//n1Ur14ds2fPVh0KZcOOHTsQHByMffv2YcuWLUhISECrVq1w//591aFRFpUoUQJTp07FoUOHcOjQIbz00kto3749jh8/rjo0MtLBgwcxb948VKtWTXUoZKTKlSsjKioq5fLXX38pi8Xujl8wBz8/P/j5+akOg7Lp119/TXd74cKFKFKkCEJDQ9GkSRNFUZEx/P39093++OOPERISgn379qFy5cqKoiJj3bt3Dz169MD8+fMxadIk1eGQkZycnJSu1qTFlRuix0RHRwMAChQooDgSyo7ExEQsX74c9+/fR4MGDVSHQ0YIDg5Gu3bt0LJlS9WhUDacOXMGxYoVQ+nSpdGtWzecO3dOWSxcuSFKQ9M0DB06FC+++CKqVKmiOhwywl9//YUGDRrg0aNHyJMnD9auXYtKlSqpDouyaPny5Th8+DAOHjyoOhTKhnr16mHx4sUoV64crl27hkmTJqFhw4Y4fvw4ChYsaPF4mNwQpTFgwAAcO3YMu3fvVh0KGal8+fIICwvDnTt3sHr1avTq1Qs7duxggmMDLl68iEGDBmHz5s3InTu36nAoG9KWZlStWhUNGjTA888/j0WLFmHo0KEWj4fJDdF/3n33XWzYsAE7d+5EiRIlVIdDRnJ2dsYLL7wAAPD19cXBgwcxc+ZMfP3114ojo2cJDQ3F9evXUbt27ZT7EhMTsXPnTsyePRuxsbFwdHRUGCEZy93dHVWrVsWZM2eUvD6TG7J7mqbh3Xffxdq1a7F9+3aULl1adUhkApqmITY2VnUYlAUtWrR4orOmd+/eqFChAoYPH87ExgbFxsYiPDwcjRs3VvL6TG5M4N69ezh79mzK7YiICISFhaFAgQIoWbKkwsgoK4KDg7Fs2TKsX78eefPmxdWrVwEAnp6ecHV1VRwdZcWoUaPg5+cHb29v3L17F8uXL8f27duf6IQj65Q3b94natzc3d1RsGBB1r7ZiGHDhsHf3x8lS5bE9evXMWnSJMTExKBXr15K4mFyYwKHDh1C8+bNU24n7y/26tUL3333naKoKKtCQkIAAM2aNUt3/8KFCxEUFGT5gMho165dQ0BAAKKiouDp6Ylq1arh119/xcsvv6w6NCK7cOnSJXTv3h03btxA4cKFUb9+fezbtw+lSpVSEo9B0zRNySsTERERmQHn3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BCRLjVr1gyDBw/O9DE+Pj6YMWOGReIhIsthckNEVisoKAgGg+GJS9qz3IiIHsezpYjIqrVp0wYLFy5Md1/hwoUVRUNEtoArN0Rk1VxcXFC0aNF0F0dHR+zYsQN169aFi4sLnnvuOYwYMQIJCQlPfZ7r16/D398frq6uKF26NJYuXWrBPwURWRJXbojI5ly+fBlt27ZFUFAQFi9ejJMnT6Jfv37InTs3xo8fn+H3BAUF4eLFi9i2bRucnZ0xcOBAXL9+3bKBE5FFMLkhIqv2888/I0+ePCm3/fz8UK5cOXh7e2P27NkwGAyoUKECrly5guHDh2Ps2LFwcEi/KH369Gls2rQJ+/btQ7169QAA3377LSpWrGjRPwsRWQaTGyKyas2bN0dISEjKbXd3dwQHB6NBgwYwGAwp9zdq1Aj37t3DpUuXULJkyXTPER4eDicnJ/j6+qbcV6FCBeTLl8/s8ROR5TG5ISKr5u7ujhdeeCHdfZqmpUtsku8D8MT9z/oaEekPC4qJyOZUqlQJe/fuTUlaAGDv3r3Imzcvihcv/sTjK1asiISEBBw6dCjlvlOnTuHOnTuWCJeILIzJDRHZnHfeeQcXL17Eu+++i5MnT2L9+vUYN24chg4d+kS9DQCUL18ebdq0Qb9+/bB//36Ehoaib9++cHV1VRA9EZkbkxsisjnFixfHxo0bceDAAVSvXh39+/dHnz598OGHHz71exYuXAhvb280bdoUHTt2xJtvvokiRYpYMGoishSDlnZdl4iIiMjGceWGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSlf8DJTV+h0OgioQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYCUlEQVR4nO3dd3yT1fcH8E9a6ISWVVoKhQqyZW/xy5DKtLJkQykCCoIskSEbFFAUQZkiU0GGLAfTypBZaCmyN7RI2dDSAp35/XF+bSmW0rRJbvLk83698vJJ8iQ5EExO7j3nXp1er9eDiIiISCPsVAdAREREZExMboiIiEhTmNwQERGRpjC5ISIiIk1hckNERESawuSGiIiINIXJDREREWlKLtUBmFtycjJu3LiBvHnzQqfTqQ6HiIiIskCv1+PRo0fw9vaGnV3mYzM2l9zcuHEDPj4+qsMgIiKibIiIiECxYsUyPcfmkpu8efMCkL8cNzc3xdEQERFRVkRHR8PHxyf1ezwzNpfcpExFubm5MbkhIiKyMlkpKWFBMREREWkKkxsiIiLSFCY3REREpCk2V3NDRETal5SUhISEBNVhkIEcHBxe2uadFUxuiIhIM/R6PW7evImHDx+qDoWywc7ODq+88gocHBxy9DxMboiISDNSEpvChQvDxcWFi7VakZRFdiMjI1G8ePEcvXdMboiISBOSkpJSE5uCBQuqDoeywcPDAzdu3EBiYiJy586d7edhQTEREWlCSo2Ni4uL4kgou1Kmo5KSknL0PExuiIhIUzgVZb2M9d4xuSEiIiJNYXJDREREmsLkhoiISEN8fX0xa9Ys5c+hEruljOnaNeDhQ6BKFdWREBGRlWjUqBGqVq1qtGTiyJEjcHV1NcpzWSsmN8Zy+DDQogXg7g6EhgL586uOiIiINEKv1yMpKQm5cr38a9vDw8MMEVk2TksZS9myQL58wNWrQK9egF6vOiIiIvp/sbEvvjx9mvVznzx5+bmGCAwMxJ49ezB79mzodDrodDpcvXoVu3fvhk6nw9atW1GjRg04Ojpi3759uHTpElq3bg1PT0/kyZMHtWrVwp9//pnuOZ+fUtLpdPjhhx/Qtm1buLi4oHTp0vj1118NijM8PBytW7dGnjx54Obmho4dO+LWrVup9x8/fhyNGzdG3rx54ebmhho1auDo0aMAgGvXrsHf3x/58+eHq6srKlasiC1bthj2F2UgJjfGki8fsG4d4OAAbN4MWPFcJRGR1uTJ8+JL+/bpzy1c+MXntmiR/lxf3/+eY4jZs2ejXr166Nu3LyIjIxEZGQkfH5/U+0eNGoXp06fjzJkzqFy5MmJiYtCyZUsEBQXh2LFjaN68Ofz9/REeHp7p60yaNAkdO3bEP//8g5YtW6Jbt264f/9+lmJMTk5G69atcf/+fezZswc7d+7E5cuX0alTp9RzunXrhmLFiuHIkSMICQnBqFGjUhfhGzBgAOLi4rB3716cOHECX3zxBfIY+hdlIE5LGVONGsA33wADBgAjRgD16gF166qOioiILJS7uzscHBzg4uICLy+v/9w/efJkvPXWW6nXCxQogCrP1HVOmTIFGzduxK+//oqBAwe+8HUCAwPRpUsXAMDUqVPx7bffIjg4GM2bN39pjEFBQThx4gSuXLmSmnitWLECFStWxJEjR1CrVi2Eh4fjk08+Qbly5QAApUuXTn18eHg42rdvj0qVKgEASpYs+dLXzCkmN8bWvz+wdy+wZg3QsSNw7BjAZcCJiJSKiXnxffb26a/fvv3ic5/fsPrq1WyHlCU1a9ZMdz0mJgYTJ07EH3/8gcjISCQmJuLJkycvHbmpXLly6rGrqyvc3NxwO7M/6DPOnDkDHx+fdCNKFSpUQL58+XDmzBnUqlULw4YNQ58+ffDjjz/Cz88PHTp0QKlSpQAAgwYNQv/+/bFjxw74+fmhffv26eIxBU5LGZtOB3z/PVC6NBARAQQEAMnJqqMiIrJprq4vvjg5Zf1cZ+eXn2vcuNM/4fDhw7Fx40ZMnToVf//9N8LCwlCpUiXEx8dn+jzP79Ok0+mQbMTvpokTJ+LUqVNo1aoV/vrrL1SoUAEbN24EAPTp0weXL19Gjx49cOLECdSsWRPfffed0V47I0xuTMHNDVi7FnB0BLZsAWbMUB0RERFZKAcHhyzvpbR//34EBgaibdu2qFSpEry8vHDVxMNH5cuXR0REBCIiIlJvO336NB4+fIgKFSqk3lamTBkMHToUO3bsQLt27bB06dLU+3x8fNCvXz9s2LABH3/8MRYtWmTSmJncmErVqkBKZjpmDLBvn9JwiIjIMvn6+uLw4cO4evUq7t69m+mISunSpbFhwwaEhYXh+PHj6Nq1q1FHYDLi5+eHSpUqoVu3bggNDUVwcDACAgLQsGFD1KxZE0+ePMHAgQOxe/duXLt2Dfv378eRI0dQvnx5AMCQIUOwfft2XLlyBaGhodi1a1fqfabC5MaU+vQBunUDkpKATp2AO3dUR0RERBZm+PDhsLe3R4UKFeDh4ZFp/czMmTORP39+vP766/D390ezZs1QvXp1k8an0+mwefNm5M+fHw0aNICfnx9KliyJNWvWAADs7e1x7949BAQEoEyZMujYsSNatGiBSZMmAZAdvgcMGIDy5cujefPmKFOmDObNm2famPV621qQJTo6Gu7u7oiKioKbm5vpXzAmBqhVCzh7FmjaFNi69b8VaURElGNPnz7FlStX8Morr8Dp+UIasgqZvYeGfH/zW9bU8uSR9W+cnYEdO4CpU1VHREREpGlMbszhtdeAlCG4CROAXbvUxkNERKRhTG7MJTBQLsnJQNeuwDPLVhMREZHxMLkxp7lzgYoVgZs3JcHJYusfERERZR2TG3NycZH6G1dX4K+/gMmTVUdERESkOUxuzK18eWDhQjmeMgXYuVNtPERERBqjNLnZu3cv/P394e3tDZ1Oh02bNmV6fmRkJLp27YoyZcrAzs4OQ4YMMUucRtetG9C3L6DXy/GNG6ojIiIi0gylyU1sbCyqVKmCuXPnZun8uLg4eHh4YOzYsel2RbVKs2cDVarIwn5dugCJiaojIiIi0gSlu4K3aNECLVq0yPL5vr6+mD17NgBgyZIlWXpMXFwc4uLiUq9HR0cbFqSpODvL/lM1a8ou4uPHcw0cIiIyq0aNGqFq1aqYNWuW6lCMSvM1N9OmTYO7u3vq5dkt25UrUwb44Qc5njZNVi8mIiKb0qhRI6OXWQQGBqJNmzZGfU5rovnkZvTo0YiKikq9PLurqUXo2BH48EM57tEDsLT4iIiIrIzmkxtHR0e4ubmlu1icmTOB6tWBe/eAzp2BhATVERERkRkEBgZiz549mD17NnQ6HXQ6Ha5evQoAOHnyJFq0aIE8efLA09MTPXr0wN27d1Mf+8svv6BSpUpwdnZGwYIF4efnh9jYWEycOBHLly/H5s2bU59z9+7dWYrnwYMHCAgIQP78+eHi4oIWLVrgwoULqfdfu3YN/v7+yJ8/P1xdXVGxYkVs2bIl9bHdunWDh4cHnJ2dUbp0aSxdutRof1eGUFpzQ//P0VHWv6leHThwAPj0U2DGDNVRERFZP70eePzY/K/r4gLodC89bfbs2Th//jxee+01TP7/tc88PDzw8OFDvPnmm+jTpw+++eYbPHnyBCNHjkTHjh3x119/ITIyEl26dMGXX36Jtm3b4tGjR/j777+h1+sxfPhwnDlzBtHR0anJRYECBbIUdmBgIC5cuIBff/0Vbm5uGDlyJFq2bInTp08jd+7cGDBgAOLj47F37164urri9OnTyJMnDwBg3LhxOH36NLZu3YpChQrh4sWLePLkSTb/AnOGyY2lKFkSWLoUaNcO+OoroEEDwN9fdVRERNbt8WPZwNjcYmJkwdaXcHd3h4ODA1xcXODl5ZV6+5w5c1CtWjVMfabRZMmSJfDx8cH58+cRExODxMREtGvXDiVKlAAAVKpUKfVcZ2dnxMXFpXvOl0lJavbv34/XX38dALBy5Ur4+Phg06ZN6NChA8LDw9G+ffvU1ypZsmTq48PDw1GtWjXUrFkTgDQBqaJ0WiomJgZhYWEICwsDAFy5cgVhYWEIDw8HIPUyAQEB6R6Tcn5MTAzu3LmDsLAwnD592tyhm0bbtsDgwXLcsyfw/0OTRERkW44fP45du3YhT548qZdy5coBAC5duoQqVaqgSZMmqFSpEjp06IBFixbhwYMHOXrNM2fOIFeuXKhTp07qbQULFkTZsmVx5swZAMCgQYPw2WefoX79+pgwYQL++eef1HP79++P1atXo2rVqhgxYgQOHDiQo3hyQmlyc/ToUVSrVg3VqlUDAAwbNgzVqlXD+PHjAciifSmJToqU80NCQrBq1SpUq1YNLVu2NHvsJvPll0Dt2sCDB0CnTkB8vOqIiIisl4uLjKKY++LikqOwY2Ji4O/vn/qDPuVy4cIFNGjQAPb29ti5cye2bt2KChUq4LvvvkPZsmVx5coVI/3FZaxPnz64fPkyevTogRMnTqBmzZr47rvvAMjyLteuXcPQoUNx48YNNGnSBMOHDzdpPC+ktzFRUVF6APqoqCjVobzYlSt6ff78ej2g1w8erDoaIiKr8OTJE/3p06f1T548UR2KQd566y39wIED09326aef6suWLatPSEjI0nMkJibqixYtqv/666/1er1e37dvX/3bb7/90sc1bNhQP/j/v2fOnz+vB6Dfv39/6v13797VOzs769etW5fh40eNGqWvVKlShvctWLBAnzdv3izFnyKz99CQ72/Nd0tZJV9fYPlyOZ49G9iwQWk4RERkOr6+vjh8+DCuXr2Ku3fvIjk5GQMGDMD9+/fRpUsXHDlyBJcuXcL27dvRq1cvJCUl4fDhw5g6dSqOHj2K8PBwbNiwAXfu3EH58uVTn/Off/7BuXPncPfuXSRkoQu3dOnSaN26Nfr27Yt9+/bh+PHj6N69O4oWLYrWrVsDAIYMGYLt27fjypUrCA0Nxa5du1Jfc/z48di8eTMuXryIU6dO4ffff0+9z9yY3Fgqf38gZTjvvfeAS5fUxkNERCYxfPhw2Nvbo0KFCvDw8EB4eDi8vb2xf/9+JCUloWnTpqhUqRKGDBmCfPnywc7ODm5ubti7dy9atmyJMmXKYOzYsfj6669TV/3v27cvypYti5o1a8LDwwP79+/PUixLly5FjRo18Pbbb6NevXrQ6/XYsmULcufODQBISkrCgAEDUL58eTRv3hxlypTBvHnzAAAODg4YPXo0KleunDp1tnr1atP8pb2ETq/X65W8siLR0dFwd3dHVFSUZa5586yEBKBRI2kPr14d2L8fcHJSHRURkUV6+vQprly5gldeeQVO/Ky0Spm9h4Z8f3PkxpLlzg2sWQMULAiEhgIff6w6IiIiIovH5MbSFSsG/PijHM+bJ8kOERERvRCTG2vQogUwerQc9+0LnD+vNh4iIiILxuTGWkyeLKsWP3oEdOgAKFrSmoiIyNIxubEWuXIBP/8MeHgA//yTtpIxERGlY2N9MppirPeOyY018fYGVq2SzdgWLQJWrlQdERGRxUhpV36sYqNMMor4/1+V397ePkfPw40zrY2fHzBunExTffCBtIgrWiSJiMiS2NvbI1++fLh9+zYAwMXFBbos7MxNliE5ORl37tyBi4sLcuXKWXrC5MYajR8P7NsH/PWX1N8cPpyl3WeJiLQuZRfslASHrIudnR2KFy+e46SUyY01sreX6amqVYFTp4CBA4GlS1VHRUSknE6nQ5EiRVC4cOEsbTlAlsXBwQF2djmvmGFyY608PaXAuEkTYNkyoGFDIDBQdVRERBbB3t4+x3UbZL1YUGzNGjUCJk2S4w8/BE6eVBoOERGRJWByY+0+/RRo1kzWvenQAYiJUR0RERGRUkxurJ2dnWzPULQocPYs0K8fwDUeiIjIhjG50QIPD2D1aik0XrkS+OEH1REREREpw+RGK954A/j8czn+6CMgLExpOERERKowudGSTz4BWrUC4uKk/iY6WnVEREREZsfkRkvs7IDlywEfH+DiRdlBnPU3RERkY5jcaE3BgsDatbLR5tq1wPz5qiMiIiIyKyY3WlS3LvDll3I8dCgQEqI2HiIiIjNicqNVQ4YAbdoA8fFSf/PwoeKAiIiIzIPJjVbpdMCSJYCvL3DlCvDee6y/ISIim8DkRsvy55e6m9y5gY0bgW+/VR0RERGRyTG50bpatYCZM+V4+HDg8GG18RAREZkYkxtbMGCA1N0kJgIdOwL376uOiIiIyGSY3NgCnQ5YtAgoVQoIDwcCA1l/Q0REmsXkxla4uwPr1gGOjsBvvwFff606IiIiIpNgcmNLqlUDZs+W41GjgP371cZDRERkAkxubM377wNdugBJSUCnTsDdu6ojIiIiMiomN7ZGpwMWLgTKlAH+/Rfo0QNITlYdFRERkdEwubFFefNK/Y2TE7BtGzB9uuqIiIiIjIbJja2qXBmYO1eOx40D9uxRGw8REZGRMLmxZb16AQEBMi3VpQtw65bqiIiIiHKMyY0t0+mAefOAChWAyEige3cpNCYiIrJiTG5snaur1N+4uAB//gl89pnqiIiIiHKEyQ3JyM2CBXI8aRIQFKQ2HqLs0uu5vQgRMbmh/9ejB9C7t3w5dO0q01RE1iQyEmjSBChUSKZbichmMbmhNN99B1SqBNy+LQXGiYmqIyLKmj//BKpWBXbtkgR98GCuwE1kw5jcUBpnZ6m/yZNHWsMnTlQdEVHmkpKA8eOBpk0lKa9UCfD3l8S8Qwfg5k3VERKRAkxuKL2yZWUHcQCYOhXYvl1tPEQvcuOGTENNmSKjNe+/Dxw+DKxaBVSsKNNUnToBCQmqIyUiM2NyQ//VuTPQr598YXTvDly/rjoiovR27JBpqD17ZKRx1SrZVsTZWa5v2CArce/dK5vEEpFNYXJDGfvmG9lF/O5dqb/hr1+yBImJwNixQPPmwJ07QJUqQEiI/Bt9VpkywPLlcjxzJrB2rfljJSJlmNxQxpyc5AvBzQ3Yt0++UIhUSpmG+vxzGVX84APg4EFJZDLStm3aqM177wGnT5svViJSiskNvdirrwJLlsjxl18Cv/+uNh6yXdu3yzTU3r0y7fTzz7I2k7Nz5o+bMgV4800gNhZo1w6IjjZLuESkFpMbylz79sBHH8lxz55AeLjaeMi2JCYCY8akn4YKDZW6sKzIlUsSoWLFgHPnZARHrzdtzES2LjQUePxYaQhMbujlZswAatWSlV87dQLi41VHRLbg339l1GXqVLnevz9w6BBQurRhz1O4MPDLL0Du3MD69cDXXxs/ViISZ8/K/7cNG8oPEkWY3NDLOToCa9YA+fLJlwu7T8jUtm2Taai//5aupzVrZNVhJ6fsPV+dOsC338rxyJGy2B8RGde9e8DbbwNRUfL/qpubslCY3FDWvPIKsGyZHH/zDbBpk8poSKsSE4HRo4EWLaRTr1o1GeLu2DHnz/3BBzK1mpwsI5Bc4oDIeBISgHffBS5dAnx9ZTkGR0dl4TC5oaxr3RoYNkyOAwOBy5eVhkMac/060LgxMH26XP/wQ+DAASlsNwadDpg/X0aE7tyRFYw5xUqUc3q91Gbu3i0F/7/9Bnh4KA2JyQ0ZZvp0oG5dGXbs2BGIi1MdEWnB1q2SdOzbJ9NQa9cCc+dmfxrqRZydpe4mZYr144+N+/xEtmjOHFlEU6eTAv7XXlMdEZMbMlDu3FL/UKCALJ42fLjqiMiaJSRIDVfLljJfX706cOyYjKqYSsmSwE8/yfGcOWnHRGS47duBIUPk+MsvpebGAjC5IcMVLw78+KMcz5kjm20SGSoiAmjUCPjiC7n+0UcyDVWqlOlfu1Ur2XATkD2p/vnH9K9JpDVnz0r9WnIy0KuXRY2EMrmh7GnZUrpOAKB3b+DiRbXxkHX5/XeZhjpwQDoqfvlFupnMWYA4frysn/PkiSzw9/Ch+V6byNrdvw/4+0uJwhtvSD2bTqc6qlRMbij7PvtM/lE/eiTTCE+fqo6ILF1CAjBihHwo3r8P1Kwp01Dt25s/Fnt7YOVK6ey4dAkICJBfoESUuZTOqIsXLaIzKiNMbij7cuUCVq8GChUCwsLS5l2JMhIeLgt7zZgh1wcNkgLikiXVxVSggBQYOzpKh8e0aepiIbIGKZ1Ru3ZZTGdURpjcUM4ULSq/fnU6qZb/+WfVEZEl+u03mYY6eBBwd5eEYvZsy/i1V726LBAIAOPGATt2qI2HyJJZYGdURpjcUM41bSr7/wBA375SZEYEyPD18OHAO+8ADx7INh7HjkmNiyV57z35t6vXA127AteuqY6IyPLs2GGRnVEZYXJDxjFxoizAFhsr9TeKN00jC3DtGtCgQdpeTkOGyDTUK68oDeuFvv1WaoDu3ZN6AtaQEaU5e1bWNrPAzqiMMLkh47C3B1atAjw9gZMn03YSJ9v066+ydcKhQ7Jg3saNsm2Hg4PqyF7MyUm6tgoWBI4elZogIrL4zqiMMLkh4/HykgTHzg5YsgRYsUJ1RGRu8fHyi651a5mGql1bpqHatFEdWdaUKCF1BDodsGgRsHix6oiI1Hq2M6pEibQCfAvH5IaM6803gQkT5Lh/f+DUKbXxkPlcvQr873/AzJlyfehQ2dXb11dlVIZ76y1Z5gAABgyQlbiJbFFGnVGFC6uOKkuY3JDxjRkjXxCPH0v9TUyM6ojI1DZvlmmo4GCZhtq0SZIcS56GysyoUTIMHxcnv1rv3VMdEZH5Pd8ZVamS6oiyjMkNGZ+9vezX4+0NnDkjuzvr9aqjIlOIj5cRmjZtZIXfOnVkGqp1a9WR5YydnUyrliolI1LdugFJSaqjIjKfZzujvvjCojujMsLkhkyjcGHJ9O3sZB+qJUtUR0TGduWKFBfOmiXXP/4Y2LvX+qahXiRfPll51dlZNgecPFl1RETm8WxnVGCgVW6QzOSGTKdBg7TahYEDuTmhlmzcKNNQR44A+fPLtNRXX1nvNNSLVK4MfP+9HE+eLHtiEWnZ851RCxZYfGdURpQmN3v37oW/vz+8vb2h0+mwadOmlz5m9+7dqF69OhwdHfHqq69i2bJlJo+TcmDkSKBFC1kzpEMH2YeKrFd8vAxVt2snH35168o01DvvqI7MdLp3l+QcAHr0kH2oiLQoIUE+p62sMyojSpOb2NhYVKlSBXPnzs3S+VeuXEGrVq3QuHFjhIWFYciQIejTpw+2b99u4kgp21JqF4oVA86fB95/n/U31uryZaB+fdk2AZCh6r175UNQ677+GqhXT+qK2rfnIpWkPSmdUX/9ZXWdURnR6fWW8U2j0+mwceNGtMlkPYyRI0fijz/+wMmTJ1Nv69y5Mx4+fIht27Zl6XWio6Ph7u6OqKgouLm55TRsyqoDB2TTxMREWQCqXz/VEZEhNmyQLQqiomSzyeXLra7AMMf+/Vf2obp9W3YQX7bMKofriTL03XeycKVOJ4twWuD/34Z8f1tVzc3Bgwfh5+eX7rZmzZrh4MGDL3xMXFwcoqOj011IgddfT9txefBgIDRUbTyUNXFx8oHXvr0kNvXqyTSUBX7wmVzRosCaNdINuGKFtMgSaYGVd0ZlxKqSm5s3b8LT0zPdbZ6enoiOjsaTJ08yfMy0adPg7u6eevHx8TFHqJSRjz+WQrX4eJnXjYpSHRFlJmUa6rvv5PqIEcCePUDx4mrjUqlRI2D6dDkeNAg4fFhpOEQ59mxnVM+eVtkZlRGrSm6yY/To0YiKikq9REREqA7Jdul0Mp1RooR8cfbuzfobS/XLL9INFRIi01C//y6/6HLnVh2Zeh9/LCNZKcvS376tOiKi7Hm2M6p+/bQF+zTAqpIbLy8v3Lp1K91tt27dgpubG5ydnTN8jKOjI9zc3NJdSKH8+YG1a+VLcv16WQGTLEdcnBQVdugAREfLdGJYGNCqlerILIdOByxdCpQrB1y/DnTuLLVkRNbk+c6oDRustjMqI1aV3NSrVw9BQUHpbtu5cyfq1aunKCLKltq1gRkz5Pjjj2XJflLv0iVJZlISzpEjgd27AU7l/lfevPJlkCeP7LszdqzqiIiyTq+XaVWNdEZlRGlyExMTg7CwMISFhQGQVu+wsDCEh4cDkCmlgICA1PP79euHy5cvY8SIETh79izmzZuHtWvXYujQoSrCp5wYNEjWSklIkPneBw9UR2Tb1q2TTqDQUKBgQWDLFqkt4TTUi5Uvn7by9hdfyMKGRNZg7ty0xflWrbKqPaOyTK/Qrl279AD+c+nZs6der9fre/bsqW/YsOF/HlO1alW9g4ODvmTJkvqlS5ca9JpRUVF6APqoqCjj/CEo+x4+1OtLltTrAb2+dWu9PjlZdUS258kTvb5/f3kPAL3+jTf0+ogI1VFZl2HD5O8ub169/tw51dEQZW77dr3ezk7+zX75pepoDGLI97fFrHNjLlznxsKEhkp7cXy8LJQ2bJjqiGzHhQsyavb/I6cYPVq2GMiVS2lYVichAfDzkwUNK1YEDh2SoX4iS3P2rKwqHhUlnVFLl1pVAbFm17khDapePW3jxZEjgUzWLCIjWrMGqFFDEptChYCtW4GpU5nYZEfu3PL3WaQIcOoU0KcPuwDJ8mi4MyojTG5IvX79gE6dpOOkUyfg3j3VEWnX06dA//7S4fPoEfC//0mC07y56sism5eX1C3lyiWJzrffqo6IKI3GO6MywuSG1NPpZOfl0qWBiAhZ2j45WXVU2nP+vAxJpxQSjhkj3RJFi6qOTBvq1wdmzpTj4cOBffvUxkME2ERnVEaY3JBlcHOTX75OTtKpk9IqTsbx888yDXX8OODhAWzbBnz2GaehjG3gQKBLFxmF7NABiIxUHRHZOlvojMoAkxuyHFWqpC31P2YM8PffauPRgidPgA8+ALp2BWJiZPPSsDCgaVPVkWmTTgcsWgS89hpw86ZMsyYkqI6KbNXze0b5+ysNx5yY3JBl6d0b6N4dSEqSuhAubZ99587JNNT338uX7tixwJ9/At7eqiPTNldXWX3bzU0S9JEjVUdEtihlz6ikJE3tGZVVTG7Isuh0wPz5srT9jRtAjx6sv8mOVauAmjWBf/6Raajt24EpUzgNZS5lysjO4QDwzTdSZExkLjbWGZURJjdkefLkkfobZ2cZVp06VXVE1uPJE+D994Fu3WQaqlEjmYZ66y3Vkdme1q1l7SBARiRPnVIbD9kGG+yMygiTG7JMr70mIzgAMGGC7N9DmTt7FqhTR2o+dDpg/HhOQ6k2ZYos8BcbK9uNREerjoi0zEY7ozLC5IYsV8+eQK9eMi3VpYsUaFLGVq6UaagTJ+TDbMcOYNIkwN5edWS2zd5epgh9fKQVv1cvLvBHpmOjnVEZYXJDlm3OHBnFuXVLOn6SklRHZFkeP5YVcbt3l9GBxo1lGsrPT3VklMLDA/jlF8DBQaYIvvpKdUSkRTt3pnVGTZ9uU51RGWFyQ5bNxUXqb1xdZWpq0iTVEVmOlGmoxYvll9qECfIBV6SI6sjoebVrp61aPGqUTBsQGcvZs1Jnk9IZ9cknqiNSjskNWb5y5aSdGZCF53bsUBuPJfjxR5mGOnkS8PSUpGbiRE5DWbL33wcCA2WatXNn4Pp11RGRFrAzKkNMbsg6dO0qXw56vUzB3LihOiI1Hj+WzpuAAJmGevNNmYZq0kR1ZPQyOh0wbx5QtSpw5w7w7rtAXJzqqMiasTPqhZjckPWYNUtWMb5zR375Jiaqjsi8Tp+W6Y0lS+SLctIkGcXy8lIdGWWVs7Ms8Jc/P3D4MDBsmOqIyFo93xn166822xmVESY3ZD2cnaX+Jm9eWfl13DjVEZnPihVArVqyVoqXFxAUJK3enIayPiVLAj/9lDaS8+OPqiMia/R8Z1TlyqojsihMbsi6lC4tBbSAdARs2aI2HlOLjZX24Z49ZUrKz0+moRo3Vh0Z5UTLlpKcArL31/HjauMh68LOqJdickPWp0MHYMAAOe7RA4iIUBuPqaRMQy1bBtjZAZMny27enp6qIyNjGD8eaNFCVpVu1w548EB1RGQNzp1jZ1QWMLkh6/T110CNGtIpoMWdl5ctk26o06eltTsoSKbhOA2lHXZ2Mj3l6wtcvixF4txHjTLDzqgsY3JD1snREVi7FnB3Bw4eTNvDx9rFxqatzPzkiewJFRYme0SR9hQoIB0uTk7A779zHzV6sZTOqAsX2BmVBUxuyHqVLAksXSrHX38t3QLW7ORJKRpesUJ+1X/+uUxDsQNC26pVS9tHbfx42cGd6HmDB0tnlKsrO6OygMkNWbe2bdMK63r2BK5eVRlN9uj10t5duzZw5oxsdLlrF/Dpp5LkkPYFBqat49S1q3X+OybTmTtXEmB2RmUZPznJ+n3xhSQGDx8CHTsC8fGqI8q6mBhJynr3lmmoZs1kGqpBA9WRkbl9+62M3N2/Lwv8PX2qOiKyBDt3yqgNIJ1R77yjNh4rweSGrJ+Dg9Tf5M8PHDliPd0DJ07Il9mPP8oIzdSp0tru4aE6MlLB0VE22CxYEAgJAT76SHVEpNqznVEBAdbz2WYBmNyQNpQoIbUqgPwCXr9ebTyZ0etlrZ7atWXDu6JFgd27pSia01C2rXhxYPVq+Xfwww9yIdv0fGfU99+zM8oA/CQl7Xj77bRfNu+9B1y6pDaejMTEyNo8ffrItEPz5sCxY8D//qc6MrIUfn6yQSwADBwIHD2qNh4yP3ZG5RiTG9KWzz8HXn8diI6WDwdLqlv45x9Zu2blSlmvZvp04I8/OA1F/zVyJNC6tWys+e67wL17qiMic2JnVI4xuSFtyZ0bWLNG6haOHbOMjQn1emDRIqBOHZlDT5mGGjmS01CUMTs7YPly4NVXgWvXgG7dpO6CtI+dUUbBT1bSnmLFZOVXQD4k1qxRF8ujR0D37tLm+/Sp7CkUFga88Ya6mMg6uLvLdISzs6x9M2mS6ojI1NgZZTRMbkibmjeXdWIAqW85f978MRw/LtNQq1bJNNQXXwC//QYUKmT+WMg6Vaoko34AMGWKrGJM2sTOKKNickPaNWkS0LChFPF26CDryJiDXi+dDXXqSFJVrBiwZw8wYgSnochw3bqltYV37w5cvKg2HjK+ZzujXn+dnVFGwE9a0q5cuWTUpHBhKeYdNMj0rxkdLSvMfvCBFIO2aiXTUPXrm/61Sbu++kq+9KKigPbtgcePVUdExpKQIIuPXrggSwFs3MjOKCNgckPa5u0tCY5OJ2uGpNTimEJYmExDrV4t01AzZkinQ8GCpntNsg0ODsC6dYCnpyTq/frJCCFZv8GDgaAg6Yz67Td2RhkJkxvSviZNZENCQEZUTp827vPr9cCCBUDduvLry8cH2LsXGD6c01BkPN7eUhxvby+rWi9YoDoiyil2RpkMP3nJNowbJ0nO48dSfxMba5znjY4GunQB+veXaai335YW9NdfN87zEz2rYUMpTAfkF/+hQ2rjoexjZ5RJMbkh22BvL4vneXnJyM2AATl/zmPHgBo15Nd0rlxSF8FpKDK1YcNkYb+EBPnv7duqIyJDnTsndTbsjDIZJjdkOzw90/btWb4cWLo0e8+j18tQct260rlSvDjw99/Axx+zw4FMT6cDliwBypUD/v0X6NwZSExUHRVlVUpn1MOH7IwyISY3ZFsaNgQmT5bjAQNkZ25DREUBnToBH34IxMfLh9SxY5LoEJlL3ryywF+ePMCuXcCYMaojoqxgZ5TZMLkh2zN6NNCsmax706GDrCKcFaGhMg21bp1MQ82cCWzeDBQoYNp4iTJSvnza6OOXX0qyQ5ZtyBB2RpkJkxuyPXZ20hJetKjMfb+srVavl66GevVkp/ESJYB9+4ChQzmcTGq9+65MhwJAYKD8eybLNHcuMG8eO6PMhMkN2aZChdLaaletSlvi/nlRUTKMPHCgTEO1bi3TUHXqmDdeoheZPl2mWx89Atq1kxW5ybI82xk1bRo7o8yAyQ3Zrvr1galT5XjQIFmE71lHjwLVqwO//CK7jc+aJXPk+fObO1KiF8uVSxJ1b2/pBOzThwv8WZLnO6NGjFAdkU1gckO2bfhwWZsmLk7qb6Kj5Yvhu++kk+HyZcDXF9i/X355cRqKLJGnZ1ot2Jo1wOzZqiMigJ1RCun0ettK8aOjo+Hu7o6oqCi4ubmpDocswf37QLVqQHg40LatfPikFGe2bSttt/nyKQ2RKEvmzJFNNu3tpYvqf/9THZHtSkgAWrSQAuLixYEjR1hAnEOGfH9z5IaoQIG0hfg2bpTEJndu+fW7fj0TG7IeAwbILuJJSTIVEhmpOiLbxc4opZjcEAGyTs1XX8nxK6/INNSgQRxCJuui0wELFwKvvQbcvCkJTkKC6qhsDzujlGNyQ5Ri8GDg5Em51KqlOhqi7HF1ldFHNzdZsoAFrObFziiLwOSG6FkVKwIuLqqjIMqZ0qWBFSvkeNYs2XaETO/8eXZGWQiDkpvbL9mgLTExEcHBwTkKiIiIjKB1a+DTT+W4d2/g1Cm18WjdgwfSecnOKItgUHJTpEiRdAlOpUqVEBERkXr93r17qFevnvGiIyKi7Js8GfDzAx4/lgX+oqJUR6RNCQmylAT3jLIYBiU3z3eNX716FQnPFavZWGc5EZHlsrcHfv5ZvnDPnwd69eICf6bAziiLY/SaGx2H4YiILEehQrLKtoODjCjMmKE6Im2ZN4+dURaIBcVERFpXq5asug0Ao0cDf/2lNh6t+PNPWTICYGeUhTEoudHpdHj06BGio6MRFRUFnU6HmJgYREdHp16IiMgC9e0r01LJyUDnzsAz9ZKUDefPS50NO6MskkHbL9jZ2aWbdtLr9RleT0pKMm6URsTtF4jIZj15IhvGpuxsv2cPC1+z48EDWfjz/HmgXj0ZCXNyUh2V5hny/Z3LkCfetWtXjgIjIiKFnJ1lS5EaNYDDh4GhQ6VehLIupTPq/Pm0zigmNhbHoOSmYcOGpoqDiIjM4ZVXgJUrgVatgPnzZQQiIEB1VNbj+c4oT0/VEVEGDKq5SUxMRFxcXLrbbt26hUmTJmHEiBHYt2+fUYMjIiITaNECmDBBjj/4AAgLUxqO1Xi2M2rlSnZGWTCDam569eoFBwcHLFy4EADw6NEjVKxYEU+fPkWRIkVw+vRpbN68GS1btjRZwDnFmhsiIkhhsb8/sGULULIkcPQokD+/6qgs159/As2bSwHx9OnAyJGqI7I5hnx/GzRys3//frRv3z71+ooVK5CUlIQLFy7g+PHjGDZsGGZwDQUiIstnZwf8+KNMU12+DPToIQkP/Rc7o6yOQcnNv//+i9KlS6deDwoKQvv27eHu7g4A6NmzJ05x/xIiIutQoIAUGDs5AX/8AXz+ueqILM+DBzLC9fChdEYtXMg9o6yAQcmNk5MTnjx5knr90KFDqFOnTrr7Y2JijBcdERGZVrVqwIIFcjxhArBtm9p4LElCguzyzc4oq2NQclO1alX8+OOPAIC///4bt27dwptvvpl6/6VLl+Dt7W3cCImIyLR69gT69ZN9p7p2Ba5eVR2RZRg6VGpt2BlldQxKbsaPH4/Zs2ejVKlSaNasGQIDA1GkSJHU+zdu3Ij69esbPUgiIjKxWbOA2rVlGqZ9e+DpU9URqTVvHjB3LjujrJTB69yEhIRgx44d8PLyQocOHdLdX7VqVdSuXduoARIRkRk4OgLr1skCf6GhwMCBwA8/qI5KjWf3jJo6FWjdWm08ZDCDWsG1gK3gRESZCAoCmjaVzqlFi4A+fVRHZF7nz8vWFA8fSgfZ8uUsILYQhnx/G5Tc7N27N0vnNWjQIKtPaXZMboiIXmL6dNk93MEB2LdPdhW3BdwzyqKZLLl5duPMFz2MG2cSEVk5vR5o1w7YtEm6hEJCgEKFVEdlWgkJQMuWMiVVvDgQHMwCYgtjskX88ufPDx8fH4wbNw4XLlzAgwcP/nO5f/++wQHPnTsXvr6+cHJyQp06dRAcHPzCcxMSEjB58mSUKlUKTk5OqFKlCraxdZGIyHh0OmDZMqB0aSA8XDqoLPhHq1E82xn1669MbKycQclNZGQkvvjiCxw8eBCVKlVC7969ceDAAbi5ucHd3T31Yog1a9Zg2LBhmDBhAkJDQ1GlShU0a9YMt2/fzvD8sWPHYuHChfjuu+9w+vRp9OvXD23btsWxY8cMel0iIsqEuzuwYQPg4gLs3AlMnKg6ItN5vjOqShXVEVEOZbugODw8HMuWLcPy5csRFxeHnj17YtKkSciVy6AGLNSpUwe1atXCnDlzAADJycnw8fHBRx99hFGjRv3nfG9vb4wZMwYDBgxIva19+/ZwdnbGTz/99NLX47QUEZEBfv5ZRm4AGdHw91cbj7E9u2fUtGlABt87ZBlMNi31rOLFi2P8+PH4888/UaZMGUyfPh3R0dEGPUd8fDxCQkLg5+eXFpCdHfz8/HDw4MEMHxMXFwen5wq8nJ2dX7gjeVxcHKKjo9NdiIgoi7p0SWuL7tEDuHhRbTzG9OyeUT16cDNMDclWchMXF4dVq1bBz88Pr732GgoVKoQ//vgDBQoUMOh57t69i6SkJHg+N7fp6emJmzdvZviYZs2aYebMmbhw4QKSk5Oxc+dObNiwAZGRkRmeP23atHRTZj4+PgbFSERk82bMAOrXB6KipND48WPVEeXc83tGff89W741xKDkJjg4GP3794eXlxdmzJiBd955BxEREVi7di2aN29uqhjTmT17NkqXLo1y5crBwcEBAwcORK9evWBnl/EfZfTo0YiKikq9REREmCVOIiLNcHAA1q6VItsTJ4APPpCOKmvFPaM0z6ACmbp166J48eIYNGgQatSoAQAZTge98847WXq+QoUKwd7eHrdu3Up3+61bt+Dl5ZXhYzw8PLBp0yY8ffoU9+7dg7e3N0aNGoWSJUtmeL6joyMcHR2zFA8REb2At7ckOG++Cfz0k6wH80zto1VhZ5TmGVb9CykknjJlygvvN2SdGwcHB9SoUQNBQUFo06YNACkoDgoKwsCBAzN9rJOTE4oWLYqEhASsX78eHTt2zPKfgYiIsqFBA+DLL4GPP5YEoXp1mdKxJvPnp3VG/fQTO6M0yqBpqeTk5JdeHj16ZFAAw4YNw6JFi7B8+XKcOXMG/fv3R2xsLHr16gUACAgIwOjRo1PPP3z4MDZs2IDLly/j77//RvPmzZGcnIwRI0YY9LpERJQNQ4dKEW5CAvDuu8BzI+8W7c8/gY8+kuOpU4H//1FN2pPtbqnnxcXFYebMmS+cHnqRTp064auvvsL48eNRtWpVhIWFYdu2balFxuHh4emKhZ8+fYqxY8eiQoUKaNu2LYoWLYp9+/YhX758xvqjEBHRi+h0wOLFQPnywI0bQOfOQGKi6qhejp1RNsWgdW7i4uIwceJE7Ny5Ew4ODhgxYgTatGmDJUuWYOzYsbC3t8fAgQMx0oL/0XCdGyIiIzh7VvaciokBPvlEpqssFfeM0gST7S01cuRILFy4EH5+fjhw4ADu3LmDXr164dChQ/j000/RoUMH2Nvb5/gPYEpMboiIjGT9epmaAoBffgHat1cbT0a4Z5RmmGwRv3Xr1mHFihX45ZdfsGPHDiQlJSExMRHHjx9H586dLT6xISIiI2rfXkZtACAwUEZzLA07o2ySQcnN9evXU1vAX3vtNTg6OmLo0KGpO4UTEZGNmToVaNRIpqfatZP/WoqUziiAnVE2xqDkJikpCQ4ODqnXc+XKhTx58hg9KCIishK5cgGrV8s6OGfOAL17W8YCf892Rk2bxs4oG2PQOjd6vR6BgYGpi+I9ffoU/fr1g6ura7rzNmzYYLwIiYjIsnl6Ss1Nw4ay0F/dujIdpAo7o2yeQQXFKWvPvMzSpUuzHZCpsaCYiMhE5s4FBg4E7O2lI6lBA/PH8GxnVN26wK5d7IzSCJN1S2kBkxsiIhPR64GAAKlv8fQEQkNluspcEhOBFi1kSsrHBzhyhAXEGmKybikiIqIX0umAhQuBypVl5eKOHaUV21ye7Yz67TcmNjaMyQ0RERmPi4usf+PuDuzfn9Yqbmrz5wNz5sgxO6NsHpMbIiIyrldfBVaskOPZs4Gffzbt6wUFcc8oSofJDRERGd877wBjxshxnz7AyZOmeZ1nO6O6dwdGjTLN65BVYXJDRESmMWkS8NZbwOPHssBfVJRxn//BA8DfP61DatEiqfshm8fkhoiITMPeHli1SvZ0unAB6NkTSE42znMnJkrB8vnz0hm1aRNbvikVkxsiIjKdQoWkwNjBAdi82Xi7h7MzijLB5IaIiEyrZs20TqYxY6QAOCfYGUUvweSGiIhMr08f4L33ZFqqc2cgIiJ7z8POKMoCJjdERGR6Op2MtlSvDty9C7z7LhAXZ9hzXLjAzijKEiY3RERkHs7OUn9ToAAQHAwMGZL1xz54ALz9NjujKEuY3BARkfn4+gIrV0pismABsGzZyx/DzigyEJMbIiIyr+bNZQ0cAOjfHwgLy/z8lM4oFxfg11/ZGUUvxeSGiIjMb8wYoFUr4OlTWeDvwYOMz1uwIK0zauVKoGpVs4VI1ovJDRERmZ+dHfDjj0DJksCVK1Ig/PwCf3/9BQwcKMfsjCIDMLkhIiI18ueXAmMnJ2DLFuCzz9Luu3BBOqrYGUXZwOSGiIjUqVoVWLhQjidOBLZuBR4+5J5RlCNMboiISK2AACks1uuBbt2A1q2Bc+fYGUXZxuSGiIjU++YboHZtGa3Zu5edUZQjTG6IiEg9R0fgl18ADw+ZgvrpJ3ZGUbblUh0AERERAJmGOnNGtmcoW1Z1NGTFmNwQEZHlKFhQLkQ5wGkpIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDTFIpKbuXPnwtfXF05OTqhTpw6Cg4MzPX/WrFkoW7YsnJ2d4ePjg6FDh+Lp06dmipaIiIgsmfLkZs2aNRg2bBgmTJiA0NBQVKlSBc2aNcPt27czPH/VqlUYNWoUJkyYgDNnzmDx4sVYs2YNPv30UzNHTkRExvbXX8DPP6uOgqyd8uRm5syZ6Nu3L3r16oUKFSpgwYIFcHFxwZIlSzI8/8CBA6hfvz66du0KX19fNG3aFF26dHnpaA8REVmuuDhg8GCgSRMgJCTtdr0eSE5WFxdZJ6XJTXx8PEJCQuDn55d6m52dHfz8/HDw4MEMH/P6668jJCQkNZm5fPkytmzZgpYtW2Z4flxcHKKjo9NdiIjIcpw7B9StC3z7rVx/4420+4KCgDJlgGnTgMhINfGR9VGa3Ny9exdJSUnw9PRMd7unpydu3ryZ4WO6du2KyZMn44033kDu3LlRqlQpNGrU6IXTUtOmTYO7u3vqxcfHx+h/DiIiMpxeDyxbBtSoAYSFAYUKAb//DrRpk3bOihXApUvAp58CPj5A27bAH38ASUmKgiaroHxaylC7d+/G1KlTMW/ePISGhmLDhg34448/MGXKlAzPHz16NKKiolIvERERZo6YiIieFx0NdO8O9OoFxMYCjRsDx48DrVqlP2/+fGDJEqBePUloNm0C3n4b8PUFJkyQ6Syi5ylNbgoVKgR7e3vcunUr3e23bt2Cl5dXho8ZN24cevTogT59+qBSpUpo27Ytpk6dimnTpiE5g4lZR0dHuLm5pbsQEZFa9+/LCIy9PfDZZ8DOnYC393/Pc3WVBOjAAeDkSWDIEKBAAeD6dWDtWsDBIe1cvd5s4ZOFU5rcODg4oEaNGggKCkq9LTk5GUFBQahXr16Gj3n8+DHs7NKHbW9vDwDQ8182EZHFevYj2tcX+OknYM8eYMwYSXJepmJF4JtvgBs3pKPqs88AnU7ue/wYKFcOGDECOH/eJOGTFVE+LTVs2DAsWrQIy5cvx5kzZ9C/f3/ExsaiV69eAICAgACMHj069Xx/f3/Mnz8fq1evxpUrV7Bz506MGzcO/v7+qUkOERFZltu3ZTpp27a0295+G6hf3/DncnQEOncG2rdPu23TJklqZswAypYFGjWS5OnJk5xGTtYol+oAOnXqhDt37mD8+PG4efMmqlatim3btqUWGYeHh6cbqRk7dix0Oh3Gjh2Lf//9Fx4eHvD398fnn3+u6o9ARESZ+PNPoEcP4OZNmVq6eBHIndu4r9Ghg0xhLVoEbN0qI0J79gAffSSv/cknUpBMtkGnt7G5nOjoaLi7uyMqKor1N0REJpSQAIwfD3zxhUxJVagArFkDvPaaaV/3+nUpQl68GAgPl9suXgRKlTLt65JpGfL9rXxaioiItOfKFaBBA2D6dEls3n8fOHLE9IkNABQrJknV5csyDTZxYvrEpmdPoG9fIDiYRchaxZEbIiIyquvXpfg3Ohpwd5epog4dVEclbt2S5CcxUa5Xrgz06SNt6fnzq42NMseRGyIiUqZYMaBdO1mbJizMchIbAChcWFY97t4dcHIC/vkHGDRI2tB79JDRJbJ+HLkhIqIcO3EC8PSU5AGQLqVcuYxfOGxMDx4AK1fKyNI//8ht334rRchkeThyQ0REZqHXyyrCtWsDgYFpm1w6O1t2YgPINNTAgTK6FBwMfPCBjOikWL4cePddYPt2bvdgbZS3ghMRkXW6f18KczdskOs6nSymlyeP2rgMpdMBtWrJ5Vnz5wOHDwPr1wMlSgDvvSeXYsXUxElZx5EbIiIy2L59QNWqktjkzg3MnAn89pv1JTaZ+f57maLKlw+4dk32sipRQhYf/O031dFRZpjcEBFRliUlybYHDRsCERHAq68CBw8CQ4cCdhr7RqlcWWpwbtyQ1Y4bNpRptz/+AObNUx0dZUZj/xSJiMiUHj8Gli2TL/nu3YHQUKBGDdVRmZazM9CtG7B7N3DunOxfNWhQ2v3XrwNvvQWsXs1dyi0Fu6WIiMggR44AZ84AAQGqI7EMkyfLlBUgO5YHBEgtUoUKauPSGkO+v5ncEBHRC8XFASNHyvTTwIGqo7FM167Jdg9LlsgoTorXX5cFArt0kTV1KGeY3GSCyQ0RUdacPy+7bx87JjtxX7kCFCmiOirLlZQkbeOLFknBcVIS4OICREYC/LrJOUO+v9kKTjYvMRE4dUrWuThzRvbDad1a2kOJbNWKFcCHHwKxsUChQlJnw8Qmc/b2QMuWcomMlL+zJ0/SJzYBAbJyc9eusjUFmQZHbshmRUYCHTsCISHyAfSsunWBr74C6tdXExuRKo8eSVLz009yvXFjOfb2VhuXFoSEADVryrGLi3z+9Okj01f8MfVyXKGY6P/dvi1tmxMmyK+pjz9Ou69QIeDo0bRfVk2ayAJdLi7AoUPSBUJkS+LjZaXhn36SUYjPPgN27mRiYywlSwLffCOFxildZ2+8ITulf/MNcO+e6gi1gyM3pCl6vXxIHD4s00xXr6a//7XXZA+cFH/8AZQqBZQpk7ZGR2Qk8N13wMSJgIOD3Hb4MODlJQt4EWnZ9OmyMu/PP8uIAhmfXi8/oBYtAtaskUQHkDqdt99WG5slY0FxJpjcaENCQlqdzMOHsu5EinLlZC2KFOXLy7LqtWsDdeqkDQsb8loVK0pHxIABwKefyqgPkRbcvg1ERQGlS8v15GSZmmI9iHlER0si+euvwObNstkoID+woqOBXr04cpaCyU0mmNxYpytX5JdOcLBcjh1Lq5NxdZUPZ3t7uf7tt/JLqHZtWVwspx/St25J8d9ff8l1Nzfgk09kRVZX15w9N5FKQUGyEF/BgvL/lYuL6ogIkCaHEiVkZWR7e6BVK1k3p3nztOTHFjG5yQSTG8t3+7YkL82apd3WqhWwZUv689zd00ZkRo827Z42er3UHowaJbEBMk01frwUBFr67sdEz0pIkDq06dPl33aFCjJF6+urOjIC5P1ZtUqmrfbvT7u9aFEZyend2zbfKyY3mWByY1liYqRwN2VEJjhYpn8A4N9/04Zjp08HNm1KS2Zq15ZhdHPvZZOcDKxdC4wZA1y+LLcFBQFvvmneOIiy6+pVWVTu0CG5/v77UqfGURvLdOYM8MMPwPLlaQXHH3wALFigNi4VmNxkgsmNOgkJ0u6YMqw6dSowbpwkDM/S6aRO5scfgerVzR9nVsTHp/2qWrkyrY0zPBwoXlxtbEQvsm6dTG9ERcnI56JFQIcOqqOirIiLk5qcRYvkx17Kfl5HjsgPrj59gLJl1cZoakxuMsHkxjz0euDiRfkf79k6mZ07pfURkHbTHj2AYsXSRmNS6mSs8a25e1daPevUSf/hQ2QJkpNlhHHPHllEbtUq25za0Jr33gOWLpXj//1Pktd335XNPrWGyU0mmNyY1qFDMpd/5Ajw4MF/7//mG2DIEDmOjpZpKa10AmzaJItyJSTI9U6dZJ2QV19VGhZRquvXZf+j0aNZJ6YV27YB8+ZJzVTKKLi7uxSK9+0LVKmiNj5jYnKTCSY3Offokay0mTIq06UL0K6d3HfokPwqBGQvmmrV0o/KlCpl/joZc7pyRYqMV66U0atcuaSmYdw4KUAmMhe9XuoyLl8GZsxQHQ2Z2r//ygjO4sVp63uVKCHvv1Y+c5ncZILJjeEePgRWr06bXjp9Wj44U/TvL78cAODpU1l1s1YtoFKltEXwbM3x4/LreOtWuZ4vnxRK858cmcODB1KDsWGDXP/777TpYNK25GRpcli0SKbGR46U2+PjgeHDZVmLOnWsc7sHJjeZYHLzYsnJUicTHAzkzy/t14C0Znt6pj/XxydtNObNNw1fGM9W7N4tHy41aqQlgIDsFpyyLg+RMe3fL19g4eEy9fTFF8Dgwdr59U7Zs3691OIAslJ7374ydVWggNq4DMHkJhNMbtLcvJm+BfvIERmlAYCmTYHt29PO7dFDig9r15ZRGU6xZJ1eLyNaKQV+//wDtGkDTJokX0JMcsgYkpKAadNk25CkJKn1Wr2ahe0kjh8HZs6UzqqnT+U2R0egfXtJdBo2tPzRHCY3mbDV5CY6WooJK1SQ68nJMjoTHZ3+PCcnab/285MvXzK+nj2BFSvkuFIl6axq0cLyP1jIsrVvnzYN1b27jBTmzas2JrI8Dx9KTeCiRZLwpDh5UraZsWRMbjJhC8lNfLyMDjw7KnP2rLQpX7yYdl7TpjJ6kzIaU7u2DFeyi8K0Hj+WfWOmTZP1RgCgQQOZPqhbV21sZL3WrwcCA4G5c4GAANXRkKXT66Ux5IcfpOh4x460+779VhZJbdrUskaWmdxkQmvJjV6f/hd/z54yFB0f/99zS5SQYuCUlUhZ96HW/fsyavPtt7JAFyBFoIsWqY2LrENcHHD+vIz+pbh9GyhcWF1MZJ2e/R558AAoUkT+fRUvLuvo9OplGYuTGvL9zRIzK3PjhqxSOWYM8NZbUvuS8sUIyLRSfLwUiTVvLm3Jv/0mIzRXr6ZfYp2JjVoFCgBffglcuCAfHnZ2MnJG9DLnz8uSC02aAJGRabczsaHsePYHcny8bO+QP78UpU+cKPWWLVsCGzemreNl6ThyYwU2bZIajeBgWcvgecHBMq0EyPCiXi9TUKzhsC6nT8s6QI6Ocv3XX4EDB6TbKn9+tbGRZdDr5bNgwAAgNlZ28968GahfX3VkpDVPn0oN16JF0vWZYuZMYOhQNTFxWioTlprcxMVJcVdK19LkyTKNBMiv+5S1CuzspOgrpQ27Vi3WyWhRYqK8r+fOSWIzejQwcKA2l1SnrHn0SNaUWrlSrjdqJFuYFC2qNCyyARcuyOKAK1fK91NKt+xff8msQLt2MmtgakxuMmEpyU1kpOyzlFLwGxaWfrjv55+Bzp3l+ORJacuuVUs6mfLkURIymZFeD/z+uyQ1p07JbcWKSQdbQEDa5qNkG44elc+DS5dkOnnSJGDUKE4tk3klJ6dfL+nNN4Fdu2SKvUcPqRk05dQ6k5tMqEhu/v1XEpiKFYEyZeS2ZxdUSlGwYNqITIcOlt+WR6aXlCS/zseNAyIi5Lby5aUjpnFjtbGR+bz/vkwPFC8uG15yGopU0+uBKVOk2yrlswmQjs++fWVbHmOPNDO5yYSpk5uHD+VXVsr0UnCwFAEDsonimDFyfP26vPnP7rvk68s6GcrY06eybsnnn0uX1datUjBOtiE2Fhg7VhoEWH9FliQpSdrIf/hB6gQTEwFXV5mdMPY6S0xuMmHK5Ob06YxHW1K6YN5/XwoBibIrKgpYs0Z+GaUkwr/8ApQtm74lmKxbUJCM2C1ezG0TyHrcvAksXy5reZliEVgmN5kwZXKTmCgbI3p5pR+RqVZNMlkiY7t3TzrjHj2SOe9nC9HJ+iQkABMmyPpHej3w/feSyBKRYd/fLEs0oly5ZCjO3V11JGQr4uKAZs2AdeukRXj1ahkd/PRToFAh1dGRIa5elanqQ4fk+vvvA926KQ2JyGpxwNPImNiQOXl7y0Z4wcHSuRAfD3zzjayX89lnUqtBlm/dOqBqVUls3N3lPV24MP2im0SUdUxuiDSgVi3gzz9lyYBq1WRD1IkTM170kSzL5MlAx45ST1W3riwL0aGD6qiIrBuTGyKN0Olko7ujR2WdpAkT0pYeAGR0JzlZXXyUsVatZFXq0aOBvXula5KIcoY1N0QaY2eXtgBkihMnZFSgenXZfbxJEzWxkRQKnzqVtthZjRqyOB9XGiYyHo7cENmAM2ekYy8kBPDzkxGe0FDVUdmeBw9kyqlGDeDYsbTbmdgQGReTGyIb0LGjjA4MGiT7kO3cKV+wXbrI7WR6+/dL0fD69TJ6888/qiMi0i4mN0Q2onBhYPZs4OxZaTHW6aR1/I03pMuKTCMpSTrXGjYEwsOBV1+V3d579lQdGZF2MbkhsjElS8rqt6GhsoXDiBGAg4Pcp9fLgoBkHP/+K9OA48ZJktO9u/y916ypOjIibWNyQ2SjqlaVPaoGD067bdMmSX5mz5YFAiln1q4Fdu+Weqfly4EffzT+fjtE9F9Mbohs3LN7Fy1bBty9CwwZApQrJyM8bB/PvsGD5RIaCgQEqI6GyHYwuSGiVOvXy35GRYrIdgA9ekj7+NatMmVFmTt/HujaVTYOBCRxnDUr/XpDRGR6TG6IKFWuXLJR48WLwNSpshXA8eNAy5bAhx+qjs6yrVghieDPPwNjxqiOhsi2Mbkhov9wcZEVcy9dAoYPlxV0/f1VR2WZUnZk79lT9vJq1Ej+zohIHSY3RPRCBQsCM2YAV64ALVqk3f7VV7Jrta3vXRUSIqM1P/0kU1BTpsgeX1yUj0gtJjdE9FJFisi6OAAQEwN8/jmwaJGs2TJqlKy8a2vWrwfq1ZMpPB8fYM8eYOxYwN5edWRExOSGiAySJw/w+++y+N/Tp7JXValSMsLz5Inq6Mynbl3AzQ1o21Z28n7jDdUREVEKJjdEZLD69WUH619/BSpWlJGbESOkKygoSHV0pnP+fNpx0aKyA/v69UCBAupiIqL/YnJDRNmi00mR8fHjsj6Ojw8QGQkUK6Y6MuNLSAA+/VTW/tm4Me12X9+06ToishxMbogoR+ztpVPo/HlgyxagbNm0+2bMAP7+W11sxnD1KtCgATBtmqz1c+CA6oiI6GWY3BCRUTg5AU2bpl0/dUqKjRs0kBGekyfVxZZd69bJNhWHDsmaP2vXSsJGRJaNyQ0RmUTBgrIgoL29FCBXrgwEBgLXrqmO7OUePwY++ADo2BGIipLi4bAwoEMH1ZERUVYwuSEik/DyAhYskBGcd9+VKZ3ly6XoeNgw4OFD1RG+2J49sg2FTie1Nnv3Sn0NEVkHJjdEZFJly8r0zuHDQOPGQHy8JDmWrEULYNw4YOdOWdMnd27VERGRIZjcEJFZ1K4tbeLbtgFz5gD58snter0kPwkJ6mJ78ADo3Ru4cSPttsmTgSZN1MVERNnH5IaIzEanA5o1A7p0Sbvt11+ltqViRUlyzL37+P79UjS8ZAnw3nvmfW0iMg0mN0Sk1NOngIcHcOGCJDm1awN//WX6101Kkimnhg2B8HBZZfmzz0z/ukRkekxuiEipTp1k9/GJE2Vrh6NHZTqoWTPg2DHTvOaNG8Bbb8leUElJQLduQGgoULOmaV6PiMyLyQ0RKZc3LzBhgiQ5H30kBbw7dkjruLGnqY4dA6pUAXbtAlxdpbj5p59knygi0gYmN0RkMQoXBr79Fjh7VkZTpk5N297gyRPg1q2cv0aZMkChQkC1ajJaExCQ8+ckIstiEcnN3Llz4evrCycnJ9SpUwfBwcEvPLdRo0bQ6XT/ubRq1cqMERORKZUsKaMpz/5v/d13UhczYQIQHW3Y8127BiQny7Grq3RsHTwoiQ4RaY/y5GbNmjUYNmwYJkyYgNDQUFSpUgXNmjXD7du3Mzx/w4YNiIyMTL2cPHkS9vb26MClQ4k0S6+XIuPYWGnRLlVKRnji4l7+2BUrpBPr66/TbitRAnB0NF28RKSW8uRm5syZ6Nu3L3r16oUKFSpgwYIFcHFxwZIlSzI8v0CBAvDy8kq97Ny5Ey4uLkxuiDRMpwO2bpVW8TJlgLt3gcGDZZfun35KG5V51qNHQI8esqlnbKwsyJfReUSkPUqTm/j4eISEhMDPzy/1Njs7O/j5+eHgwYNZeo7Fixejc+fOcHV1zfD+uLg4REdHp7sQkfXR6WQbh5MngYULgSJFZMfuHj2ATz5Jf25ICFC9uiQ+dnbAlCmSHNkp/zlHROag9H/1u3fvIikpCZ6enulu9/T0xM2bN1/6+ODgYJw8eRJ9+vR54TnTpk2Du7t76sXHxyfHcROROrlzA++/D1y8KAXHBQoAKR8Bycmya3e9enJ/8eKyL9TYsbKBJxHZBqv+HbN48WJUqlQJtWvXfuE5o0ePRlRUVOolIiLCjBESkam4uACjRwPXrwPly8tter3s3p2QALRrJ8f166uMkohUyKXyxQsVKgR7e3vceq6/89atW/Dy8sr0sbGxsVi9ejUmT56c6XmOjo5wZOUgkWY5O6cd370LHDgAzJ8PfPBBWhs5EdkWpSM3Dg4OqFGjBoKCglJvS05ORlBQEOrVq5fpY9etW4e4uDh0797d1GESkZXw9ASuXAH69WNiQ2TLlI7cAMCwYcPQs2dP1KxZE7Vr18asWbMQGxuLXr16AQACAgJQtGhRTJs2Ld3jFi9ejDZt2qBgwYIqwiYiIiILpTy56dSpE+7cuYPx48fj5s2bqFq1KrZt25ZaZBweHg6751oczp07h3379mHHjh0qQiYiIiILptPrjb1zi2WLjo6Gu7s7oqKi4MbNZIiIiKyCId/fVt0tRURERPQ8JjdERESkKUxuiIiISFOY3BAREZGmMLkhIiIiTWFyQ0RERJrC5IaIiIg0hckNERERaQqTGyIiItIUJjdERESkKUxuiIiISFOUb5xpbilbaUVHRyuOhIiIiLIq5Xs7K1ti2lxy8+jRIwCAj4+P4kiIiIjIUI8ePYK7u3um59jcruDJycm4ceMG8ubNC51OZ9Tnjo6Oho+PDyIiIrjjuJXie2jd+P5ZP76H1s9U76Fer8ejR4/g7e0NO7vMq2psbuTGzs4OxYoVM+lruLm58X9KK8f30Lrx/bN+fA+tnynew5eN2KRgQTERERFpCpMbIiIi0hQmN0bk6OiICRMmwNHRUXUolE18D60b3z/rx/fQ+lnCe2hzBcVERESkbRy5ISIiIk1hckNERESawuSGiIiINIXJDREREWkKkxsj2Lt3L/z9/eHt7Q2dTodNmzapDokMMG3aNNSqVQt58+ZF4cKF0aZNG5w7d051WGSA+fPno3LlyqmLhtWrVw9bt25VHRZl0/Tp06HT6TBkyBDVoZABJk6cCJ1Ol+5Srlw5JbEwuTGC2NhYVKlSBXPnzlUdCmXDnj17MGDAABw6dAg7d+5EQkICmjZtitjYWNWhURYVK1YM06dPR0hICI4ePYo333wTrVu3xqlTp1SHRgY6cuQIFi5ciMqVK6sOhbKhYsWKiIyMTL3s27dPSRw2t/2CKbRo0QItWrRQHQZl07Zt29JdX7ZsGQoXLoyQkBA0aNBAUVRkCH9//3TXP//8c8yfPx+HDh1CxYoVFUVFhoqJiUG3bt2waNEifPbZZ6rDoWzIlSsXvLy8VIfBkRui50VFRQEAChQooDgSyo6kpCSsXr0asbGxqFevnupwyAADBgxAq1at4OfnpzoUyqYLFy7A29sbJUuWRLdu3RAeHq4kDo7cED0jOTkZQ4YMQf369fHaa6+pDocMcOLECdSrVw9Pnz5Fnjx5sHHjRlSoUEF1WJRFq1evRmhoKI4cOaI6FMqmOnXqYNmyZShbtiwiIyMxadIk/O9//8PJkyeRN29es8bC5IboGQMGDMDJkyeVzRNT9pUtWxZhYWGIiorCL7/8gp49e2LPnj1McKxAREQEBg8ejJ07d8LJyUl1OJRNz5ZnVK5cGXXq1EGJEiWwdu1a9O7d26yxMLkh+n8DBw7E77//jr1796JYsWKqwyEDOTg44NVXXwUA1KhRA0eOHMHs2bOxcOFCxZHRy4SEhOD27duoXr166m1JSUnYu3cv5syZg7i4ONjb2yuMkLIjX758KFOmDC5evGj212ZyQzZPr9fjo48+wsaNG7F792688sorqkMiI0hOTkZcXJzqMCgLmjRpghMnTqS7rVevXihXrhxGjhzJxMZKxcTE4NKlS+jRo4fZX5vJjRHExMSky0yvXLmCsLAwFChQAMWLF1cYGWXFgAEDsGrVKmzevBl58+bFzZs3AQDu7u5wdnZWHB1lxejRo9GiRQsUL14cjx49wqpVq7B7925s375ddWiUBXnz5v1PjZurqysKFizI2jcrMnz4cPj7+6NEiRK4ceMGJkyYAHt7e3Tp0sXssTC5MYKjR4+icePGqdeHDRsGAOjZsyeWLVumKCrKqvnz5wMAGjVqlO72pUuXIjAw0PwBkcFu376NgIAAREZGwt3dHZUrV8b27dvx1ltvqQ6NyGZcv34dXbp0wb179+Dh4YE33ngDhw4dgoeHh9lj0en1er3ZX5WIiIjIRLjODREREWkKkxsiIiLSFCY3REREpClMboiIiEhTmNwQERGRpjC5ISIiIk1hckNERESawuSGiIiINIXJDRFpUqNGjTBkyJBMz/H19cWsWbPMEg8RmQ+TGyKyWIGBgdDpdP+5qNhlmIisB/eWIiKL1rx5cyxdujTdbSr2qiEi68GRGyKyaI6OjvDy8kp3sbe3x549e1C7dm04OjqiSJEiGDVqFBITE1/4PLdv34a/vz+cnZ3xyiuvYOXKlWb8UxCROXHkhoiszr///ouWLVsiMDAQK1aswNmzZ9G3b184OTlh4sSJGT4mMDAQN27cwK5du5A7d24MGjQIt2/fNm/gRGQWTG6IyKL9/vvvyJMnT+r1Fi1aoEyZMvDx8cGcOXOg0+lQrlw53LhxAyNHjsT48eNhZ5d+UPr8+fPYunUrgoODUatWLQDA4sWLUb58ebP+WYjIPJjcEJFFa9y4MebPn5963dXVFQMGDEC9evWg0+lSb69fvz5iYmJw/fp1FC9ePN1znDlzBrly5UKNGjVSbytXrhzy5ctn8viJyPyY3BCRRXN1dcWrr76qOgwisiIsKCYiq1O+fHkcPHgQer0+9bb9+/cjb968KFas2H/OL1euHBITExESEpJ627lz5/Dw4UNzhEtEZsbkhoiszocffoiIiAh89NFHOHv2LDZv3owJEyZg2LBh/6m3AYCyZcuiefPm+OCDD3D48GGEhISgT58+cHZ2VhA9EZkakxsisjpFixbFli1bEBwcjCpVqqBfv37o3bs3xo4d+8LHLF26FN7e3mjYsCHatWuH999/H4ULFzZj1ERkLjr9s+O6RERERFaOIzdERESkKUxuiIiISFOY3BAREZGmMLkhIiIiTWFyQ0RERJrC5IaIiIg0hckNERERaQqTGyIiItIUJjdERESkKUxuiIiISFOY3BAREZGm/B/sin2EosHZEwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -598,7 +598,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.10.0" } }, "nbformat": 4, From 5c517bed57ad8d061e293ad7d2e119265e95ce7e Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Tue, 15 Aug 2023 14:47:59 +0200 Subject: [PATCH 11/12] added same calculation of mean_squared_error to all notebooks --- workflow/comp_pred_ridge_and_LSTM.ipynb | 1780 ++++++++++++++++++- workflow/pred_temperature_autoencoder.ipynb | 1523 ++++++++-------- workflow/pred_temperature_ridge.ipynb | 42 +- workflow/pred_temperature_transformer.ipynb | 1019 +++++------ 4 files changed, 3003 insertions(+), 1361 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index 133f246..f34eb5f 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -34,9 +34,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", @@ -77,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -92,9 +103,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='07-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", + " ]\n", + ")" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# check calendar\n", "calendar" @@ -111,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -124,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -144,9 +181,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# map calendar to data\n", "calendar.map_to_data(precursor_field)\n", @@ -165,9 +213,131 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", + "
" + ], + "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "calendar.show()[:3]" ] @@ -182,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -206,7 +376,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -227,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -245,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -255,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -283,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -311,7 +481,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ @@ -342,7 +512,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -396,9 +566,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], "source": [ "print (\"Pytorch version {}\".format(torch.__version__))\n", "use_cuda = torch.cuda.is_available()\n", @@ -418,7 +598,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -457,7 +637,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -478,9 +658,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " LSTM(\n", + " (lstm): LSTM(65, 130, num_layers=2, batch_first=True)\n", + " (linear): Linear(in_features=130, out_features=1, bias=True)\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.02\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Initialize model\n", "model = LSTM(input_dim = config[\"input_dim\"],\n", @@ -509,9 +725,1367 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/36(0%)]\tLoss: 506.253204\n", + "Epoch : 0 [4/36(11%)]\tLoss: 460.902405\n", + "Epoch : 0 [8/36(22%)]\tLoss: 347.176453\n", + "Epoch : 0 [12/36(33%)]\tLoss: 293.676697\n", + "Epoch : 0 [16/36(44%)]\tLoss: 178.741714\n", + "Epoch : 0 [20/36(56%)]\tLoss: 130.735138\n", + "Epoch : 0 [24/36(67%)]\tLoss: 80.614594\n", + "Epoch : 0 [28/36(78%)]\tLoss: 43.781487\n", + "Epoch : 0 [32/36(89%)]\tLoss: 210.546402\n", + "Epoch : 1 [0/36(0%)]\tLoss: 5.412053\n", + "Epoch : 1 [4/36(11%)]\tLoss: 0.748258\n", + "Epoch : 1 [8/36(22%)]\tLoss: 0.744621\n", + "Epoch : 1 [12/36(33%)]\tLoss: 7.144383\n", + "Epoch : 1 [16/36(44%)]\tLoss: 10.724913\n", + "Epoch : 1 [20/36(56%)]\tLoss: 13.504992\n", + "Epoch : 1 [24/36(67%)]\tLoss: 19.828001\n", + "Epoch : 1 [28/36(78%)]\tLoss: 26.632847\n", + "Epoch : 1 [32/36(89%)]\tLoss: 23.814049\n", + "Epoch : 2 [0/36(0%)]\tLoss: 23.771826\n", + "Epoch : 2 [4/36(11%)]\tLoss: 18.704243\n", + "Epoch : 2 [8/36(22%)]\tLoss: 10.730898\n", + "Epoch : 2 [12/36(33%)]\tLoss: 9.185619\n", + "Epoch : 2 [16/36(44%)]\tLoss: 3.213631\n", + "Epoch : 2 [20/36(56%)]\tLoss: 1.662918\n", + "Epoch : 2 [24/36(67%)]\tLoss: 1.130406\n", + "Epoch : 2 [28/36(78%)]\tLoss: 1.742443\n", + "Epoch : 2 [32/36(89%)]\tLoss: 3.130788\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.218907\n", + "Epoch : 3 [4/36(11%)]\tLoss: 1.416911\n", + "Epoch : 3 [8/36(22%)]\tLoss: 3.335634\n", + "Epoch : 3 [12/36(33%)]\tLoss: 2.053994\n", + "Epoch : 3 [16/36(44%)]\tLoss: 5.014097\n", + "Epoch : 3 [20/36(56%)]\tLoss: 7.232190\n", + "Epoch : 3 [24/36(67%)]\tLoss: 3.900211\n", + "Epoch : 3 [28/36(78%)]\tLoss: 2.503218\n", + "Epoch : 3 [32/36(89%)]\tLoss: 2.942830\n", + "Epoch : 4 [0/36(0%)]\tLoss: 0.249588\n", + "Epoch : 4 [4/36(11%)]\tLoss: 0.536661\n", + "Epoch : 4 [8/36(22%)]\tLoss: 0.316498\n", + "Epoch : 4 [12/36(33%)]\tLoss: 0.368627\n", + "Epoch : 4 [16/36(44%)]\tLoss: 0.801114\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.570897\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.374769\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.227937\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.456325\n", + "Epoch : 5 [0/36(0%)]\tLoss: 5.060793\n", + "Epoch : 5 [4/36(11%)]\tLoss: 2.610439\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.061740\n", + "Epoch : 5 [12/36(33%)]\tLoss: 1.268814\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.818578\n", + "Epoch : 5 [20/36(56%)]\tLoss: 1.566892\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.102844\n", + "Epoch : 5 [28/36(78%)]\tLoss: 0.904148\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.613005\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.491851\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.791290\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.482874\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.325843\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.257907\n", + "Epoch : 6 [20/36(56%)]\tLoss: 2.482849\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.357918\n", + "Epoch : 6 [28/36(78%)]\tLoss: 0.939425\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.706733\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.470064\n", + "Epoch : 7 [4/36(11%)]\tLoss: 0.925060\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.371244\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.447862\n", + "Epoch : 7 [16/36(44%)]\tLoss: 2.056926\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.676597\n", + "Epoch : 7 [24/36(67%)]\tLoss: 0.794877\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.468608\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.832735\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.674352\n", + "Epoch : 8 [4/36(11%)]\tLoss: 1.266237\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.319283\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.541535\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.820091\n", + "Epoch : 8 [20/36(56%)]\tLoss: 2.518384\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.819052\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.407727\n", + "Epoch : 8 [32/36(89%)]\tLoss: 2.070285\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.262569\n", + "Epoch : 9 [4/36(11%)]\tLoss: 0.469396\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.109424\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.397742\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.008423\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.954215\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.178010\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.467255\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.748894\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.436716\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.692459\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.179323\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.466659\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.700358\n", + "Epoch : 10 [20/36(56%)]\tLoss: 1.479818\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.976322\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.375780\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.665394\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.415670\n", + "Epoch : 11 [4/36(11%)]\tLoss: 0.662969\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.153767\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.393444\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.709667\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.650595\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.086947\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.307991\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.409378\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.287346\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.574694\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.132654\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.325047\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.684265\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.571725\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.854450\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.145606\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.296147\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.340775\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.600708\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.136313\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.453118\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.717106\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.401793\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.042163\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.162036\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.037848\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.222098\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.479262\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.099346\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.487275\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.717381\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.458462\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.769191\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.012652\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.239755\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.293159\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.607477\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.047098\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.601275\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.613979\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.067756\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.921515\n", + "Epoch : 15 [28/36(78%)]\tLoss: 162.121109\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.232289\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.306235\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.406185\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.130557\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.342872\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.646884\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.350097\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.855544\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.709263\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.274891\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.569328\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.643974\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.050936\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.683309\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.644249\n", + "Epoch : 17 [20/36(56%)]\tLoss: 2.007683\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.566944\n", + "Epoch : 17 [28/36(78%)]\tLoss: 2.018664\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.334823\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.317406\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.573496\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.119140\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.567079\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.642173\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.106941\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.530857\n", + "Epoch : 18 [28/36(78%)]\tLoss: 0.456126\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.120647\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.197832\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.536572\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.024039\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.488379\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.650639\n", + "Epoch : 19 [20/36(56%)]\tLoss: 0.964098\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.478444\n", + "Epoch : 19 [28/36(78%)]\tLoss: 0.803429\n", + "Epoch : 19 [32/36(89%)]\tLoss: 0.757468\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.249769\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.845611\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.263252\n", + "Epoch : 20 [12/36(33%)]\tLoss: 1.142560\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.930385\n", + "Epoch : 20 [20/36(56%)]\tLoss: 0.724903\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.311578\n", + "Epoch : 20 [28/36(78%)]\tLoss: 0.679372\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.112038\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.150008\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.101327\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.062236\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.545105\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.654610\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.063778\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.417119\n", + "Epoch : 21 [28/36(78%)]\tLoss: 0.737832\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.005445\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.235569\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.137028\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.047480\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.417711\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.600202\n", + "Epoch : 22 [20/36(56%)]\tLoss: 1.373212\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.533923\n", + "Epoch : 22 [28/36(78%)]\tLoss: 0.479184\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.084643\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.138195\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.505956\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.242828\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.749005\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.755686\n", + "Epoch : 23 [20/36(56%)]\tLoss: 0.687998\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.246664\n", + "Epoch : 23 [28/36(78%)]\tLoss: 0.336150\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.890664\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.118931\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.170124\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.025654\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.556999\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.411331\n", + "Epoch : 24 [20/36(56%)]\tLoss: 1.048690\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.263080\n", + "Epoch : 24 [28/36(78%)]\tLoss: 0.397316\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.902095\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.100420\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.299723\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.046969\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.486272\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.546805\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.946094\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.319605\n", + "Epoch : 25 [28/36(78%)]\tLoss: 0.221041\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.622244\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.090774\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.225311\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.023461\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.598799\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.638063\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.734081\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.336795\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.161432\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.519571\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.055354\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.315078\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.032695\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.304411\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.429313\n", + "Epoch : 27 [20/36(56%)]\tLoss: 0.670855\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.223874\n", + "Epoch : 27 [28/36(78%)]\tLoss: 0.096372\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.442577\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.059600\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.211672\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.005840\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.225026\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.411765\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.609525\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.179022\n", + "Epoch : 28 [28/36(78%)]\tLoss: 0.100954\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.401543\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.053002\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.253042\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.032760\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.385629\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.470587\n", + "Epoch : 29 [20/36(56%)]\tLoss: 0.558026\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.382035\n", + "Epoch : 29 [28/36(78%)]\tLoss: 0.095259\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.499413\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.062289\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.218956\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.024757\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.360536\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.450123\n", + "Epoch : 30 [20/36(56%)]\tLoss: 0.430200\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.099528\n", + "Epoch : 30 [28/36(78%)]\tLoss: 0.065345\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.323082\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.021618\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.051878\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.014695\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.288947\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.293806\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.476934\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.091155\n", + "Epoch : 31 [28/36(78%)]\tLoss: 0.057827\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.252634\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.077214\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.089132\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.108042\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.290404\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.260178\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.586955\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.117893\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.132796\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.166074\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.029347\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.068154\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.097051\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.241436\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.414028\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.477919\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.156360\n", + "Epoch : 33 [28/36(78%)]\tLoss: 0.068574\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.489458\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.039483\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.104290\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.027518\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.281280\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.334133\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.286093\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.161606\n", + "Epoch : 34 [28/36(78%)]\tLoss: 0.055878\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.244046\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.022621\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.038350\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.098434\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.294715\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.223673\n", + "Epoch : 35 [20/36(56%)]\tLoss: 0.447094\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.065365\n", + "Epoch : 35 [28/36(78%)]\tLoss: 0.063699\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.128954\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.027052\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.114533\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.141185\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.268561\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.433334\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.354033\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.362726\n", + "Epoch : 36 [28/36(78%)]\tLoss: 0.086243\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.331907\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.071437\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.067369\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.054396\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.504052\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.460586\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.430205\n", + "Epoch : 37 [24/36(67%)]\tLoss: 1.945858\n", + "Epoch : 37 [28/36(78%)]\tLoss: 0.029698\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.279440\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.078871\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.225232\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.422833\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.587391\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.974295\n", + "Epoch : 38 [20/36(56%)]\tLoss: 1.259005\n", + "Epoch : 38 [24/36(67%)]\tLoss: 1.187464\n", + "Epoch : 38 [28/36(78%)]\tLoss: 0.448592\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.209086\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.500301\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.367923\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.060758\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.521755\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.803717\n", + "Epoch : 39 [20/36(56%)]\tLoss: 1.176471\n", + "Epoch : 39 [24/36(67%)]\tLoss: 1.156743\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.778955\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.732325\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.102499\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.099815\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.687909\n", + "Epoch : 40 [12/36(33%)]\tLoss: 1.915788\n", + "Epoch : 40 [16/36(44%)]\tLoss: 1.009312\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.504842\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.681319\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.396782\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.680996\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.398821\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.124198\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.074729\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.180139\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.233009\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.165416\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.715789\n", + "Epoch : 41 [28/36(78%)]\tLoss: 0.121776\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.668122\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.284105\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.080967\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.198853\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.274801\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.642742\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.586983\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.483698\n", + "Epoch : 42 [28/36(78%)]\tLoss: 0.145311\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.388276\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.262953\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.167837\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.025385\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.208954\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.548593\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.527186\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.393848\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.110200\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.200149\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.036351\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.137806\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.413478\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.370649\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.083914\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.564026\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.430954\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.234893\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.285551\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.080290\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.031265\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.033516\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.352272\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.266103\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.187139\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.507977\n", + "Epoch : 45 [28/36(78%)]\tLoss: 0.110415\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.118829\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.028963\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.161181\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.509685\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.230069\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.074094\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.232605\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.407399\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.069872\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.116301\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.158979\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.134198\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.155724\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.044550\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.138504\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.411191\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.309806\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.057210\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.113938\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.014707\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.255369\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.062400\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.796191\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.182202\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.166849\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.329566\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.156756\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.240300\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.167542\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.027897\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.181424\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.155569\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.187208\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.191062\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.434603\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.118187\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.127666\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.006532\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.009931\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.260848\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.160148\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.194179\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.259759\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.205414\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.038887\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.118897\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.164121\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.081178\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.099315\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.072126\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.043392\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.231936\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.117816\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.039198\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.196232\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.077942\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.019603\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.029921\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.249503\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.116644\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.183227\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.128274\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.017158\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.089993\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.004994\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.026188\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.169900\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.137267\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.047292\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.075372\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.229485\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.039357\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.067607\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.054369\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.074546\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.035754\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.150721\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.083241\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.140383\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.109975\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.012998\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.032162\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.009925\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.108467\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.011247\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.144899\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.061174\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.156759\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.086459\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.099452\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.098238\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.057272\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.028249\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.010880\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.104535\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.130396\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.040677\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.167725\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.066671\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.030228\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.041665\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.011636\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.158665\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.061332\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.074136\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.060196\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.128281\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.083816\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.063464\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.052109\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.054980\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.026843\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.117108\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.101506\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.212144\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.150426\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.050739\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.046941\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.043218\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.129434\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.031534\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.077064\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.175640\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.047728\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.082367\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.013607\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.085074\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.103003\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.052224\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.085032\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.016292\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.054939\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.050280\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.182439\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.069753\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.036221\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.014656\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.010945\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.123323\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.048453\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.050048\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.084667\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.087909\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.042712\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.061586\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.031249\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.074139\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.006327\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.008108\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.033184\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.124065\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.057760\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.031781\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.026651\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.010087\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.098889\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.009091\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.058954\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.066109\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.048226\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.074268\n", + "Epoch : 63 [28/36(78%)]\tLoss: 0.053960\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.065550\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.050128\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.006571\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.007639\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.007205\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.094372\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.026975\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.155497\n", + "Epoch : 64 [28/36(78%)]\tLoss: 0.018759\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.019661\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.000809\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.005971\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.061647\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.039291\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.051379\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.048297\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.081505\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.007329\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.018534\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.012639\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.024819\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.027003\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.015490\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.027188\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.055324\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.065316\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.040216\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.028610\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.019266\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.006832\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.003817\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.030086\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.092980\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.027223\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.085994\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.005632\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.018713\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.033993\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.023364\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.019478\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.014350\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.027154\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.033001\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.095871\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.020416\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.020234\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.006652\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.031881\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.001898\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.012139\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.036343\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.092595\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.068929\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.021780\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.010346\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.030370\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.053909\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.005442\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.009270\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.060041\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.049605\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.058340\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.026730\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.046976\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.021622\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.021870\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.016480\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.018765\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.038077\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.032522\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.054256\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.010717\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.018044\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.018884\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.003566\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.017747\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.008751\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.003732\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.015313\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.106952\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.044561\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.016322\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.026158\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.007161\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.063156\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.048873\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.028499\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.043310\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.044804\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.025726\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.002905\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.033039\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.031960\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.005513\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.007380\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.014528\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.058194\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.015462\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.026710\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.018382\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.013067\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.029270\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.012055\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.037531\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.070944\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.019141\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.016076\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.039669\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.040443\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.041922\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.015740\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.002811\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.007708\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.130680\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.035098\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.136663\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.060807\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.011094\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.001728\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.011471\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.089167\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.078577\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.007259\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.048903\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.038061\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.053143\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.034176\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.049357\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.013471\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.009318\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.021130\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.009979\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.089548\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.049293\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.029231\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.010770\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.003204\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.047518\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.012766\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.032709\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.088890\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.021922\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.014316\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.038254\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.033241\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.060068\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.010433\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.002113\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.010526\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.086736\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.015795\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.053965\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.015447\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.015597\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.014114\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.011226\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.077555\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.020359\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.040423\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.014186\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.060796\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.098217\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.035185\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.028576\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.009576\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.034584\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.028327\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.124545\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.080586\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.015497\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.012929\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.025445\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.054948\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.046828\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.003676\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.221500\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.045107\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.129102\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.097959\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.206496\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.060525\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.029312\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.064173\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.072909\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.508312\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.104812\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.055612\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.023398\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.062651\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.082578\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.123767\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.037933\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.299625\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.239910\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.418560\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.221687\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.292816\n", + "Epoch : 85 [28/36(78%)]\tLoss: 0.082767\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.014237\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.096090\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.193831\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.403055\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.375565\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.159821\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.030995\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.294489\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.418532\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.645209\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.318945\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.049834\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.274936\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.401003\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.491363\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.547275\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.076033\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.017618\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.097072\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.286551\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.600967\n", + "Epoch : 88 [8/36(22%)]\tLoss: 1.458258\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.345130\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.121254\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.608567\n", + "Epoch : 88 [24/36(67%)]\tLoss: 1.117395\n", + "Epoch : 88 [28/36(78%)]\tLoss: 1.330236\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.454643\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.193640\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.338900\n", + "Epoch : 89 [8/36(22%)]\tLoss: 2.400672\n", + "Epoch : 89 [12/36(33%)]\tLoss: 1.733737\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.485300\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.067996\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.266644\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.621732\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.895152\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.442894\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.229295\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.048027\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.291734\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.578574\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.706832\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.697539\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.270194\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.020030\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.063091\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.232640\n", + "Epoch : 91 [8/36(22%)]\tLoss: 1.341373\n", + "Epoch : 91 [12/36(33%)]\tLoss: 1.156435\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.579583\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.442662\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.767155\n", + "Epoch : 91 [28/36(78%)]\tLoss: 1.280817\n", + "Epoch : 91 [32/36(89%)]\tLoss: 1.210340\n", + "Epoch : 92 [0/36(0%)]\tLoss: 1.587707\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.431082\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.190863\n", + "Epoch : 92 [12/36(33%)]\tLoss: 1.058663\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.948559\n", + "Epoch : 92 [20/36(56%)]\tLoss: 1.588207\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.467622\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.162031\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.061248\n", + "Epoch : 93 [0/36(0%)]\tLoss: 1.002554\n", + "Epoch : 93 [4/36(11%)]\tLoss: 2.457258\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.742493\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.355845\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.790726\n", + "Epoch : 93 [20/36(56%)]\tLoss: 1.158437\n", + "Epoch : 93 [24/36(67%)]\tLoss: 1.603570\n", + "Epoch : 93 [28/36(78%)]\tLoss: 2.317739\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.050563\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.094547\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.284017\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.922509\n", + "Epoch : 94 [12/36(33%)]\tLoss: 1.722623\n", + "Epoch : 94 [16/36(44%)]\tLoss: 1.583202\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.678467\n", + "Epoch : 94 [24/36(67%)]\tLoss: 1.081480\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.194771\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.485145\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.206625\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.156031\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.185859\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.507159\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.681800\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.375758\n", + "Epoch : 95 [24/36(67%)]\tLoss: 1.310590\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.284491\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.149120\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.022800\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.098812\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.351643\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.256976\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.110145\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.382431\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.819071\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.098369\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.146612\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.018163\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.070637\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.138127\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.071191\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.069085\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.393753\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.719452\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.189512\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.132531\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.059551\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.142040\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.204825\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.059145\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.090941\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.339552\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.347569\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.137678\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.222269\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.152922\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.058461\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.082398\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.185954\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.195218\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.713628\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.191519\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.042053\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.093058\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.180418\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.372499\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.051689\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.376313\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.102542\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.412209\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.320818\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.498189\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.371949\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.098156\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.071554\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.208048\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.319775\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.161324\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.091876\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.295646\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.058079\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.065092\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.062900\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.080831\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.103076\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.051190\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.121835\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.035047\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.217320\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.100403\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.006583\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.029455\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.015840\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.064331\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.064453\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.088273\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.229750\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.136411\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.110149\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.015274\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.125090\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.112569\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.022466\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.042785\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.028290\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.341767\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.153362\n", + "Epoch : 104 [28/36(78%)]\tLoss: 0.168164\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.030814\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.014589\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.132141\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.110822\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.257005\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.109289\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.131181\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.061289\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.225857\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.177263\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.202877\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.011546\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.011662\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.237965\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.209000\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.089149\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.154248\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.036268\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.023461\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.057427\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.056115\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.473958\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.013499\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.110610\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.022933\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.379264\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.319003\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.222666\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.119405\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.016666\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.174814\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.205961\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.281657\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.337851\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.053482\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.041247\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.118849\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.212070\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.361608\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.034922\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.275924\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.082610\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.616978\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.415295\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.478778\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.121583\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.044095\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.190831\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.195188\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.590313\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.466319\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.023915\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.358943\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.337139\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.465906\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.557188\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.225138\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.120028\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.133798\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.365417\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.303740\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.715328\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.196875\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.067629\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.026257\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.143152\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.559690\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.282462\n", + "Epoch : 112 [16/36(44%)]\tLoss: 1.610202\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.038804\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.537446\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.522981\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.659231\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.411895\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.118564\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.072225\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.355751\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.270166\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.565129\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.385102\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.217509\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.152268\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.215111\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.841309\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.820539\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.522340\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.110692\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.680304\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.907340\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.897257\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.184456\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.213095\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.447343\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.351377\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.873462\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.432787\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.280614\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.262190\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.690147\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.289179\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.213759\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.126740\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.161862\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.392817\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.475456\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.709515\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.305578\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.684106\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.300216\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.351820\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.681093\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.638687\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.195692\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.244187\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.778306\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.495086\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.885813\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.104116\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.060028\n", + "Epoch : 118 [4/36(11%)]\tLoss: 0.429530\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.815812\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.333339\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.095256\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.336596\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.294469\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.681504\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.266233\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.125276\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.138902\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.463477\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.222490\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.167044\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.553772\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.224920\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.100105\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.294948\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.439457\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.587556\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.203716\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.193023\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.102177\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.794715\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.403284\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.651255\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.202771\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.065095\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.748719\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.839231\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.960712\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.270972\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.335473\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.373509\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.588890\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.780454\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.177262\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.024639\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.516328\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.528183\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.353953\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.207810\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.159342\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.238166\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.207007\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.177172\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.201061\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.296822\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.178444\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.168107\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.318168\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.251108\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.277393\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.120885\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.003149\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.190660\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.561729\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.199584\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.049625\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.588196\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.325892\n", + "Epoch : 124 [28/36(78%)]\tLoss: 0.264480\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.350180\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.187860\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.044700\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.244215\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.113055\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.499280\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.376683\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.192688\n", + "Epoch : 125 [28/36(78%)]\tLoss: 0.475990\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.167439\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.150521\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.674579\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.725140\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.911837\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.453074\n", + "Epoch : 126 [20/36(56%)]\tLoss: 0.744065\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.770269\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.987456\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.764677\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.214949\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.435029\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.800783\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.672624\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.341878\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.796726\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.425987\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.183704\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.287333\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.029028\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.014505\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.106183\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.310057\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.284194\n", + "Epoch : 128 [20/36(56%)]\tLoss: 0.328578\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.206202\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.059902\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.117519\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.064365\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.180039\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.391870\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.133589\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.232480\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.213122\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.141193\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.142637\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.076997\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.119398\n", + "Epoch : 130 [4/36(11%)]\tLoss: 0.030102\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.313670\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.238941\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.046464\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.093256\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.219240\n", + "Epoch : 130 [28/36(78%)]\tLoss: 0.040623\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.117268\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.145820\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.290570\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.063929\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.053726\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.127020\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.237310\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.070677\n", + "Epoch : 131 [28/36(78%)]\tLoss: 0.194483\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.026020\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.025214\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.094226\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.045045\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.699948\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.465790\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.198258\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.349449\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.644778\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.297318\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.165623\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.040356\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.186393\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.845973\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.558266\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.727727\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.126592\n", + "Epoch : 133 [28/36(78%)]\tLoss: 0.088078\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.085219\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.122611\n", + "Epoch : 134 [4/36(11%)]\tLoss: 0.102608\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.263440\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.035870\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.260264\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.623891\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.384641\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.191557\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.210969\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.036168\n", + "Epoch : 135 [4/36(11%)]\tLoss: 0.240559\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.745008\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.413358\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.673843\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.537171\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.540860\n", + "Epoch : 135 [28/36(78%)]\tLoss: 1.161916\n", + "Epoch : 135 [32/36(89%)]\tLoss: 1.083004\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.556653\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.060514\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.238417\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.494700\n", + "Epoch : 136 [16/36(44%)]\tLoss: 1.639770\n", + "Epoch : 136 [20/36(56%)]\tLoss: 1.656041\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.383328\n", + "Epoch : 136 [28/36(78%)]\tLoss: 0.156291\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.770658\n", + "Epoch : 137 [0/36(0%)]\tLoss: 1.517101\n", + "Epoch : 137 [4/36(11%)]\tLoss: 1.361725\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.238943\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.163507\n", + "Epoch : 137 [16/36(44%)]\tLoss: 1.036246\n", + "Epoch : 137 [20/36(56%)]\tLoss: 2.658661\n", + "Epoch : 137 [24/36(67%)]\tLoss: 1.395220\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.478440\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.308120\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.500586\n", + "Epoch : 138 [4/36(11%)]\tLoss: 2.104773\n", + "Epoch : 138 [8/36(22%)]\tLoss: 1.637633\n", + "Epoch : 138 [12/36(33%)]\tLoss: 1.793202\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.504744\n", + "Epoch : 138 [20/36(56%)]\tLoss: 1.680740\n", + "Epoch : 138 [24/36(67%)]\tLoss: 1.559327\n", + "Epoch : 138 [28/36(78%)]\tLoss: 1.628159\n", + "Epoch : 138 [32/36(89%)]\tLoss: 1.694589\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.219593\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.555289\n", + "Epoch : 139 [8/36(22%)]\tLoss: 1.209407\n", + "Epoch : 139 [12/36(33%)]\tLoss: 2.383899\n", + "Epoch : 139 [16/36(44%)]\tLoss: 1.408342\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.450214\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.438014\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.453934\n", + "Epoch : 139 [32/36(89%)]\tLoss: 1.444776\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.994853\n", + "Epoch : 140 [4/36(11%)]\tLoss: 0.441456\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.117624\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.605997\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.850923\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.608300\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.771678\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.279906\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.671098\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.189627\n", + "Epoch : 141 [4/36(11%)]\tLoss: 0.484443\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.764347\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.356374\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.314666\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.628811\n", + "Epoch : 141 [24/36(67%)]\tLoss: 1.149972\n", + "Epoch : 141 [28/36(78%)]\tLoss: 0.939379\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.975586\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.239842\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.134903\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.583294\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.465014\n", + "Epoch : 142 [16/36(44%)]\tLoss: 1.102543\n", + "Epoch : 142 [20/36(56%)]\tLoss: 1.113192\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.329958\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.664213\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.836566\n", + "Epoch : 143 [0/36(0%)]\tLoss: 1.807429\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.556531\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.009636\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.264482\n", + "Epoch : 143 [16/36(44%)]\tLoss: 1.291903\n", + "Epoch : 143 [20/36(56%)]\tLoss: 1.930230\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.814485\n", + "Epoch : 143 [28/36(78%)]\tLoss: 0.023151\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.510773\n", + "Epoch : 144 [0/36(0%)]\tLoss: 1.246313\n", + "Epoch : 144 [4/36(11%)]\tLoss: 1.165396\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.330529\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.448388\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.611518\n", + "Epoch : 144 [20/36(56%)]\tLoss: 1.591107\n", + "Epoch : 144 [24/36(67%)]\tLoss: 1.229581\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.462085\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.566715\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.228041\n", + "Epoch : 145 [4/36(11%)]\tLoss: 0.906393\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.424614\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.808381\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.334949\n", + "Epoch : 145 [20/36(56%)]\tLoss: 0.590098\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.321332\n", + "Epoch : 145 [28/36(78%)]\tLoss: 0.256068\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.563620\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.223013\n", + "Epoch : 146 [4/36(11%)]\tLoss: 0.078395\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.025426\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.290808\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.517837\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.279496\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.244702\n", + "Epoch : 146 [28/36(78%)]\tLoss: 0.179237\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.174549\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.271670\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.241825\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.589176\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.265680\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.280287\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.188931\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.243032\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.291146\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.160487\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.025905\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.145228\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.182854\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.096957\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.127001\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.198313\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.076908\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.034917\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.235786\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.092148\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.317933\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.024046\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.016109\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.208182\n", + "Epoch : 149 [20/36(56%)]\tLoss: 0.504517\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.132576\n", + "Epoch : 149 [28/36(78%)]\tLoss: 0.293377\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.032212\n", + "--- 0.08623519738515219 minutes ---\n" + ] + } + ], "source": [ "# calculate the time for the code execution\n", "start_time = tt.time()\n", @@ -572,9 +2146,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOjUlEQVR4nOzdd3iT1fsG8Dtt6V7MljLKHmUUhIKILAEREFkiIigiil+tIuLkpwIiiuJGqzgQXDgAQVBEAQFlKXsPGbJLZbSltHS+vz8eTt+kTdukpHmT9P5cV6/MJqczud/nOeeYNE3TQERERERERERO5WX0AIiIiIiIiIjKIwZyIiIiIiIiIgMwkBMREREREREZgIGciIiIiIiIyAAM5EREREREREQGYCAnIiIiIiIiMgADOREREREREZEBGMiJiIiIiIiIDMBATkRERERERGQABnIiIiIiIjfUtWtXdO3a1eb7Nm/evGwHdFWdOnVw7733OuW5iNwdAzlROTJnzhyYTCaYTCasXbu20O2apqFWrVowmUy49dZb869PS0vDpEmT0Lx5cwQFBaFy5cpo1aoVHnvsMZw+fTr/fpMnT85/fGsfiYmJTvk6iYiIbKVeGzdv3mz0UK7Z6dOnMXnyZGzfvt3ooThMnTp1YDKZ0KNHD6u3f/LJJ/nvMwr+DNeuXYvevXujRo0a8Pf3R+3atdGvXz/MnTvX4n7FvXf53//+V2ZfGxEA+Bg9ACJyPn9/f8ydOxc33nijxfVr1qzByZMn4efnl39ddnY2OnfujP3792PkyJF49NFHkZaWhj179mDu3LkYOHAgoqKiLB7nww8/RHBwcKHnDQ8PL5Ovh4iIqDz67bffLC6fPn0aL774IurUqYNWrVoZMygABw4cgJeX4+p+/v7+WLVqFRITExEZGWlx29dffw1/f39cuXLF4vp58+Zh6NCh+QWEihUr4ujRo/jjjz/wySef4K677rK4f8+ePXHPPfcUeu5GjRo57OsgsoaBnKgc6tOnD+bNm4cZM2bAx0f/NzB37ly0adMG586dy79u0aJF2LZtG77++utCL15XrlxBVlZWoce//fbbUaVKlbL7AoiIiMqx9PR0BAYGwtfX1+ihWGV+YN8ROnbsiE2bNuG7777DY489ln/9yZMn8eeff2LgwIFYsGCBxedMnjwZMTEx2LhxY6HvU1JSUqHnaNSoEUaMGOHQcRPZgi3rROXQsGHDcP78eSxfvjz/uqysLMyfP79Q6D58+DAAeTEsyN/fH6GhoWU7WCIiIhewbds29O7dG6GhoQgODkb37t2xcePGQvfbuXMnunTpgoCAANSsWRNTp07F7NmzYTKZ8O+//+bf78cff0Tfvn0RFRUFPz8/1K9fHy+99BJyc3MtHk/N/d6yZQs6d+6MwMBA/N///V/+bWoO+erVqxEXFwcAGDVqVH7L9Zw5cyweb+/evejWrRsCAwNRo0YNTJ8+3eL21atXw2Qy4fvvv8eLL76IGjVqICQkBLfffjtSUlKQmZmJcePGoVq1aggODsaoUaOQmZlp8RjW5pAnJyfj8ccfR506deDn54eaNWvinnvusSgCFMXf3x+DBg0q1Gr+zTffoGLFiujVq1ehzzl8+DDi4uKsHrSoVq1aic9J5CyskBOVQ3Xq1EGHDh3wzTffoHfv3gCAX375BSkpKbjzzjsxY8aM/PtGR0cDAL744gs8//zzMJlMJT7+hQsXCl3n4+PDlnUiInJLe/bsQadOnRAaGoqnn34aFSpUwEcffYSuXbtizZo1aN++PQDg1KlT6NatG0wmEyZMmICgoCB8+umnVivGc+bMQXBwMMaPH4/g4GD8/vvvmDhxIlJTU/H6669b3Pf8+fPo3bs37rzzTowYMQIRERGFHq9p06aYMmUKJk6ciDFjxqBTp04AgBtuuCH/PhcvXsQtt9yCQYMG4Y477sD8+fPxzDPPoEWLFvnvB5Rp06YhICAAzz77LA4dOoT33nsPFSpUgJeXFy5evIjJkydj48aNmDNnDurWrYuJEycW+f1LS0tDp06dsG/fPtx333247rrrcO7cOSxevBgnT560qavurrvuws0334zDhw+jfv36AKSz7/bbb0eFChUK3T86OhorV67EyZMnUbNmzRIf/8qVK1YPDoSGhrpsJwJ5CI2Iyo3Zs2drALRNmzZp77//vhYSEqKlp6drmqZpQ4YM0bp166ZpmqZFR0drffv21TRN09LT07XGjRtrALTo6Gjt3nvv1WbNmqWdPXu20ONPmjRJA2D1o3Hjxs77QomIiGxk/tpYlAEDBmi+vr7a4cOH8687ffq0FhISonXu3Dn/ukcffVQzmUzatm3b8q87f/68VqlSJQ2AdvTo0fzr1euvuQcffFALDAzUrly5kn9dly5dNADazJkzC92/S5cuWpcuXfIvb9q0SQOgzZ492+p9AWhffPFF/nWZmZlaZGSkNnjw4PzrVq1apQHQmjdvrmVlZeVfP2zYMM1kMmm9e/e2eNwOHTpo0dHRFtdFR0drI0eOzL88ceJEDYD2ww8/FBpXXl5eoesKPlbfvn21nJwcLTIyUnvppZc0TdO0vXv3agC0NWvWWP0Zzpo1SwOg+fr6at26ddNeeOEF7c8//9Ryc3MLPUdR710AaN98802x4yO6VmxZJyqn7rjjDmRkZOCnn37CpUuX8NNPPxVqVweAgIAA/PXXX3jqqacAyBH90aNHo3r16nj00UcLtakBwIIFC7B8+XKLj9mzZ5f510RERORoubm5+O233zBgwADUq1cv//rq1avjrrvuwtq1a5GamgoAWLZsGTp06GCxoFqlSpUwfPjwQo8bEBCQf/7SpUs4d+4cOnXqhPT0dOzfv9/ivn5+fhg1atQ1fy3BwcEW86R9fX3Rrl07HDlypNB977nnHovKc/v27aFpGu677z6L+7Vv3x4nTpxATk5Okc+7YMECxMbGYuDAgYVus6XzDgC8vb1xxx134JtvvgEgi7nVqlUrvxOgoPvuuw/Lli1D165dsXbtWrz00kvo1KkTGjZsiPXr1xe6f//+/Qu9d1m+fDm6detm0/iISost60TlVNWqVdGjRw/MnTsX6enpyM3Nxe233271vmFhYZg+fTqmT5+OY8eOYeXKlXjjjTfw/vvvIywsDFOnTrW4f+fOnbmoGxEReYT//vsP6enpaNy4caHbmjZtiry8PJw4cQLNmjXDsWPH0KFDh0L3a9CgQaHr9uzZg+effx6///57fqBXUlJSLC7XqFHDIW3TNWvWLBSAK1asiJ07dxa6b+3atS0uh4WFAQBq1apV6Pq8vDykpKSgcuXKVp/38OHDGDx48LUMHYC0rc+YMQM7duzA3LlzceeddxYb6Hv16oVevXohPT0dW7ZswXfffYeZM2fi1ltvxf79+y3mktesWbPIrdWIyhIr5ETl2F133YVffvkFM2fORO/evW2a4x0dHY377rsP69atQ3h4OL7++uuyHygREZEHSU5ORpcuXbBjxw5MmTIFS5YswfLly/Haa68BAPLy8izub15Nvxbe3t5Wr9c0zeb72vMYjta+fXvUr18f48aNw9GjR6129lkTGBiITp064f3338fzzz+Pixcv4pdffinj0RLZhhVyonJs4MCBePDBB7Fx40Z89913dn1uxYoVUb9+fezevbuMRkdERGS8qlWrIjAwEAcOHCh02/79++Hl5ZVfNY6OjsahQ4cK3a/gdatXr8b58+fxww8/oHPnzvnXHz169JrGamv7t7M58v3CsGHDMHXqVDRt2rRUe623bdsWAHDmzBmHjIfoWrFCTlSOBQcH48MPP8TkyZPRr18/q/fZsWOH1VVHjx07hr1791pt4SMiIvIU3t7euPnmm/Hjjz9abFt29uxZzJ07FzfeeGP+FqC9evXChg0bsH379vz7XbhwoVA3maoym1eVs7Ky8MEHH1zTWIOCggBIBd6VDB48GDt27MDChQsL3WZvZf3+++/HpEmT8OabbxZ7v5UrV1q9funSpQDA9y/kMlghJyrnRo4cWezty5cvx6RJk3Dbbbfh+uuvR3BwMI4cOYLPPvsMmZmZmDx5cqHPmT9/PoKDgwtd37NnT6tbtRARERnts88+w7Jlywpd/9hjj2Hq1KlYvnw5brzxRjz88MPw8fHBRx99hMzMTIt9vJ9++ml89dVX6NmzJx599NH8bc9q166NCxcu5Fewb7jhBlSsWBEjR47E2LFjYTKZ8OWXX15z23f9+vURHh6OmTNnIiQkBEFBQWjfvj3q1q17TY97rZ566inMnz8fQ4YMwX333Yc2bdrgwoULWLx4MWbOnInY2FibHys6Otrqe4+C+vfvj7p166Jfv36oX78+Ll++jBUrVmDJkiWIi4srVIg4ePAgvvrqq0KPExERgZ49e9o8PiJ7MZATUbEGDx6MS5cu4bfffsPvv/+OCxcuoGLFimjXrh2eeOIJq6uPPvTQQ1Yfa9WqVQzkRETkkj788EOr1997771o1qwZ/vzzT0yYMAHTpk1DXl4e2rdvj6+++ip/D3JAFjxbtWoVxo4di1deeQVVq1ZFfHw8goKCMHbsWPj7+wMAKleujJ9++glPPPEEnn/+eVSsWBEjRoxA9+7d0atXr1J/DRUqVMDnn3+OCRMm4H//+x9ycnIwe/ZswwN5cHAw/vzzT0yaNAkLFy7E559/jmrVqqF79+427RFeGp9++il+/PFHfP/99zh9+jQ0TUO9evXw3HPP4ZlnnoGPj2UMUquqF9SlSxcGcipTJs0ZKzAQEREREZVT48aNw0cffYS0tLQiF0UjovKJc8iJiIiIiBwkIyPD4vL58+fx5Zdf4sYbb2QYJ6JC2LJOREREROQgHTp0QNeuXdG0aVOcPXsWs2bNQmpqKl544QWjh0ZELoiBnIiIiIjIQfr06YP58+fj448/hslkwnXXXYdZs2ZZbG9GRKRwDjkRERERERGRATiHnIiIiIiIiMgADOREREREREREBvD4OeR5eXk4ffo0QkJCYDKZjB4OERERNE3DpUuXEBUVBS8vHhu/VnytJyIiV2Pra73HB/LTp0+jVq1aRg+DiIiokBMnTqBmzZpGD8Pt8bWeiIhcVUmv9R4fyENCQgDINyI0NNTg0RAREQGpqamoVatW/msUXRu+1hMRkaux9bXe4wO5al0LDQ3lizQREbkUtlc7Bl/riYjIVZX0Ws+Ja0REREREREQGYCAnIiIit5SQkICYmBjExcUZPRQiIqJSYSAnIiIitxQfH4+9e/di06ZNRg+FiIioVDx+DjkRka00TUNOTg5yc3ONHgq5OW9vb/j4+HCOOBGRi+FrPTmKo17rGciJiABkZWXhzJkzSE9PN3oo5CECAwNRvXp1+Pr6Gj0UIiICX+vJ8RzxWs9ATkTlXl5eHo4ePQpvb29ERUXB19eXlU0qNU3TkJWVhf/++w9Hjx5Fw4YN4eXFGWJlISEhAQkJCax0EVGJ+FpPjuTI13oGciIq97KyspCXl4datWohMDDQ6OGQBwgICECFChVw7NgxZGVlwd/f3+gheaT4+HjEx8cjNTUVYWFhRg+HiFwYX+vJ0Rz1Ws9D9kREV7GKSY7E3yciItfD/83kSI74feJvJBEREREREZEBGMiJiIiIiIiIDMBATkRE+erUqYN33nnH5vuvXr0aJpMJycnJZTYmAJgzZw7Cw8PL9DnI/SQkJCAmJgZxcXFGD4WIyK3w9d51MJATEbkhk8lU7MfkyZNL9bibNm3CmDFjbL7/DTfcgDNnznBBLTJEfHw89u7di02bNhk9FCKiMsHXe8/HVdaJiNzQmTNn8s9/9913mDhxIg4cOJB/XXBwcP55TdOQm5sLH5+S/+VXrVrVrnH4+voiMjLSrs8hIiIi2/D13vOxQm6HTp2AFi2Ao0eNHgkRlSVNAy5fNuZD02wbY2RkZP5HWFgYTCZT/uX9+/cjJCQEv/zyC9q0aQM/Pz+sXbsWhw8fRv/+/REREYHg4GDExcVhxYoVFo9bsIXNZDLh008/xcCBAxEYGIiGDRti8eLF+bcXbGFTrWa//vormjZtiuDgYNxyyy0WbyhycnIwduxYhIeHo3LlynjmmWcwcuRIDBgwwK6f04cffoj69evD19cXjRs3xpdffmn2M9QwefJk1K5dG35+foiKisLYsWPzb//ggw/QsGFD+Pv7IyIiArfffrtdz02e6+mn5bV+7lyjR0JEZc2o13tbX+sBvt4Dnv96z0Buh717gd27gStXjB4JEZWl9HQgONiYj/R0x30dzz77LF599VXs27cPLVu2RFpaGvr06YOVK1di27ZtuOWWW9CvXz8cP3682Md58cUXcccdd2Dnzp3o06cPhg8fjgsXLhTz/UvHG2+8gS+//BJ//PEHjh8/jieffDL/9tdeew1ff/01Zs+ejXXr1iE1NRWLFi2y62tbuHAhHnvsMTzxxBPYvXs3HnzwQYwaNQqrVq0CACxYsABvv/02PvroI/zzzz9YtGgRWrRoAQDYvHkzxo4diylTpuDAgQNYtmwZOnfubNfzk+c6eVJe65OSjB4JEZU1o17vHflaD/D13u1f7zUPl5KSogHQUlJSrvmxqlTRNEDTdu92wMCIyGVkZGRoe/fu1TIyMjRN07S0NPlbN+IjLc3+8c+ePVsLCwvLv7xq1SoNgLZo0aISP7dZs2bae++9l385Ojpae/vtt/MvA9Cef/75/MtpaWkaAO2XX36xeK6LFy/mjwWAdujQofzPSUhI0CIiIvIvR0REaK+//nr+5ZycHK127dpa//79bf4ab7jhBu2BBx6wuM+QIUO0Pn36aJqmaW+++abWqFEjLSsrq9BjLViwQAsNDdVSU1OLfD5HKPh7Zc6Rr03k2O/nyJHyt/jaa9c+LiJyHdb+Jxv1el+a13pN4+u94kqv9454rWeF3A5q3/e8PGPHQURlKzAQSEsz5iMw0HFfR9u2bS0up6Wl4cknn0TTpk0RHh6O4OBg7Nu3r8Qj5i1btsw/HxQUhNDQUCQVUz4MDAxE/fr18y9Xr149//4pKSk4e/Ys2rVrl3+7t7c32rRpY9fXtm/fPnTs2NHiuo4dO2Lfvn0AgCFDhiAjIwP16tXDAw88gIULFyInJwcA0LNnT0RHR6NevXq4++678fXXXyPd0eUKcoqyWGW9QgU5zcpy2EMSkYsy6vXeka/1AF/v3f31noHcDgzkROWDyQQEBRnzYTI57usICgqyuPzkk09i4cKFeOWVV/Dnn39i+/btaNGiBbJKSB4VVELJ//6YkFfMP0Jr99fsmTDnALVq1cKBAwfwwQcfICAgAA8//DA6d+6M7OxshISEYOvWrfjmm29QvXp1TJw4EbGxsWW+lQs5Xlmssu7rK6cM5ESez6jXe0e+1gN8vXf313sGcjswkBORO1u3bh3uvfdeDBw4EC1atEBkZCT+/fdfp44hLCwMERERFgEqNzcXW7dutetxmjZtinXr1llct27dOsTExORfDggIQL9+/TBjxgysXr0aGzZswK5duwAAPj4+6NGjB6ZPn46dO3fi33//xe+//34NXxl5ChXIs7ONHQcRUWnx9d69Xu+57ZkdGMiJyJ01bNgQP/zwA/r16weTyYQXXnih2CPfZeXRRx/FtGnT0KBBAzRp0gTvvfceLl68CJMdJYOnnnoKd9xxB1q3bo0ePXpgyZIl+OGHH/JXkZ0zZw5yc3PRvn17BAYG4quvvkJAQACio6Px008/4ciRI+jcuTMqVqyIpUuXIi8vD40bNy6rL5ncCCvkROTu+HrvXq/3DOR2YCAnInf21ltv4b777sMNN9yAKlWq4JlnnkFqaqrTx/HMM88gMTER99xzD7y9vTFmzBj06tUL3t7eNj/GgAED8O677+KNN97AY489hrp162L27Nno2rUrACA8PByvvvoqxo8fj9zcXLRo0QJLlixB5cqVER4ejh9++AGTJ0/GlStX0LBhQ3zzzTdo1qxZGX3F5E4YyInI3fH13r1e702asxv9nSw1NRVhYWFISUlBaGjoNT1W3brAv/8CGzcC7ds7ZnxEZLwrV67g6NGjqFu3Lvz9/Y0eTrmTl5eHpk2b4o477sBLL71k9HAcprjfK0e+NpFjv59TpgCTJgFjxgAffeSgARKR4fhabzxPfL13xGs9K+R2YIWciOjaHTt2DL/99hu6dOmCzMxMvP/++zh69Cjuuusuo4dGxDnkREQOwtd723BRNzswkBMRXTsvLy/MmTMHcXFx6NixI3bt2oUVK1agadOmRg+N3ExZbHvGlnUiIsfg671tWCG3AwM5EdG1q1WrVqEVU4lKIz4+HvHx8fltgY7AQE5E5Bh8vbeN4RXyU6dOYcSIEahcuTICAgLQokULbN68Of92TdMwceJEVK9eHQEBAejRowf++ecfQ8bKQE5EROTZ1La6DOREROQMhgbyixcvomPHjqhQoQJ++eUX7N27F2+++SYqVqyYf5/p06djxowZmDlzJv766y8EBQWhV69euHLlitPHy0BORETk2VghJyIiZzK0Zf21115DrVq1MHv27Pzr6tatm39e0zS88847eP7559G/f38AwBdffIGIiAgsWrQId955p1PHy0BORETk2bioGxEROZOhFfLFixejbdu2GDJkCKpVq4bWrVvjk08+yb/96NGjSExMRI8ePfKvCwsLQ/v27bFhwwarj5mZmYnU1FSLD0dhICciIvJsrJATEZEzGRrIjxw5gg8//BANGzbEr7/+ioceeghjx47F559/DgBITEwEAERERFh8XkRERP5tBU2bNg1hYWH5H7Vq1XLYeBnIiYiIPBsDOREROZOhgTwvLw/XXXcdXnnlFbRu3RpjxozBAw88gJkzZ5b6MSdMmICUlJT8jxMnTjhsvAzkREREno2LuhERkTMZGsirV6+OmJgYi+uaNm2K48ePAwAiIyMBAGfPnrW4z9mzZ/NvK8jPzw+hoaEWH47CQE5EnqZr164YN25c/uU6dergnXfeKfZzTCYTFi1adM3P7ajHKc7kyZPRqlWrMn0OMk5Z7kPOOeRE5En4eu+6DA3kHTt2xIEDByyuO3jwIKKjowHIAm+RkZFYuXJl/u2pqan466+/0KFDB6eOFWAgJyLX0a9fP9xyyy1Wb/vzzz9hMpmwc+dOux9306ZNGDNmzLUOz0JRL5JnzpxB7969HfpcVL7Ex8dj79692LRpk8Meky3rRORK+Hrv+QwN5I8//jg2btyIV155BYcOHcLcuXPx8ccfIz4+HoAcTRk3bhymTp2KxYsXY9euXbjnnnsQFRWFAQMGOH28DORE5CpGjx6N5cuX4+TJk4Vumz17Ntq2bYuWLVva/bhVq1ZFYGCgI4ZYosjISPj5+TnluYhsxUBORK6Er/eez9BAHhcXh4ULF+Kbb75B8+bN8dJLL+Gdd97B8OHD8+/z9NNP49FHH8WYMWMQFxeHtLQ0LFu2DP7+/k4fLwM5UTmhacDly8Z8aJpNQ7z11ltRtWpVzJkzx+L6tLQ0zJs3D6NHj8b58+cxbNgw1KhRA4GBgWjRogW++eabYh+3YAvbP//8g86dO8Pf3x8xMTFYvnx5oc955pln0KhRIwQGBqJevXp44YUXkH2133fOnDl48cUXsWPHDphMJphMpvwxF2xh27VrF2666SYEBASgcuXKGDNmDNLS0vJvv/feezFgwAC88cYbqF69OipXroz4+Pj857JFXl4epkyZgpo1a8LPzw+tWrXCsmXL8m/PysrCI488gurVq8Pf3x/R0dGYNm0aANmKc/Lkyahduzb8/PwQFRWFsWPH2vzc5B44h5yoHDHq9d7G13qAr/fl4fXe0H3IAfklu/XWW4u83WQyYcqUKZgyZYoTR2UdAzlROZGeDgQHG/PcaWlAUFCJd/Px8cE999yDOXPm4LnnnoPJZAIAzJs3D7m5uRg2bBjS0tLQpk0bPPPMMwgNDcXPP/+Mu+++G/Xr10e7du1KfI68vDwMGjQIERER+Ouvv5CSkmIx/0wJCQnBnDlzEBUVhV27duGBBx5ASEgInn76aQwdOhS7d+/GsmXLsGLFCgCyfWVBly9fRq9evdChQwds2rQJSUlJuP/++/HII49YvAlZtWoVqlevjlWrVuHQoUMYOnQoWrVqhQceeKDErwcA3n33Xbz55pv46KOP0Lp1a3z22We47bbbsGfPHjRs2BAzZszA4sWL8f3336N27do4ceJE/uKgCxYswNtvv41vv/0WzZo1Q2JiInbs2GHT85L74BxyonLEqNd7G1/rAb7el4vXe83DpaSkaAC0lJSUa36szp01DdC07793wMCIyGVkZGRoe/fu1TIyMuSKtDT5YzfiIy3N5nHv27dPA6CtWrUq/7pOnTppI0aMKPJz+vbtqz3xxBP5l7t06aI99thj+Zejo6O1t99+W9M0Tfv11181Hx8f7dSpU/m3//LLLxoAbeHChUU+x+uvv661adMm//KkSZO02NjYQvczf5yPP/5Yq1ixopZm9vX//PPPmpeXl5aYmKhpmqaNHDlSi46O1nJycvLvM2TIEG3o0KFFjqXgc0dFRWkvv/yyxX3i4uK0hx9+WNM0TXv00Ue1m266ScvLyyv0WG+++abWqFEjLSsrq8jnM1fo98qMI1+byLHfz/375U8xPNwBAyMil2H1f7JRr/d2vNZrGl/vNc11X+8d8VpvaMu6u2GFnKicCAyUo9dGfNgxn6tJkya44YYb8NlnnwEADh06hD///BOjR48GAOTm5uKll15CixYtUKlSJQQHB+PXX3/N38miJPv27UOtWrUQFRWVf521BTW/++47dOzYEZGRkQgODsbzzz9v83OYP1dsbCyCzCoGHTt2RF5ensXin82aNYO3t3f+5erVqyMpKcmm50hNTcXp06fRsWNHi+s7duyIffv2AZA2ue3bt6Nx48YYO3Ysfvvtt/z7DRkyBBkZGahXrx4eeOABLFy4EDk5OXZ9neT6OIecqBwx6vXezrnbfL337Nd7BnI7MJATlRMmk7SSGfFxtRXNVqNHj8aCBQtw6dIlzJ49G/Xr10eXLl0AAK+//jreffddPPPMM1i1ahW2b9+OXr16IcuBSWPDhg0YPnw4+vTpg59++gnbtm3Dc88959DnMFdBTfC9ymQyIc+B/5Svu+46HD16FC+99BIyMjJwxx134PbbbwcA1KpVCwcOHMAHH3yAgIAAPPzww+jcubNdc9rI9XEOOVE5YtTrvZ2v9QBf7z359Z6B3A4M5ETkau644w54eXlh7ty5+OKLL3Dfffflzy9bt24d+vfvjxEjRiA2Nhb16tXDwYMHbX7spk2b4sSJEzhz5kz+dRs3brS4z/r16xEdHY3nnnsObdu2RcOGDXHs2DGL+/j6+iI3N7fE59qxYwcuX76cf926devg5eWFxo0b2zzm4oSGhiIqKgrr1q2zuH7dunWIiYmxuN/QoUPxySef4LvvvsOCBQtw4cIFAEBAQAD69euHGTNmYPXq1diwYQN27drlkPGRa1AV8pwcu9ZdIiIqU3y9t527vd4bvqibO2EgJyJXExwcjKFDh2LChAlITU3Fvffem39bw4YNMX/+fKxfvx4VK1bEW2+9hbNnz1q8GBWnR48eaNSoEUaOHInXX38dqampeO655yzu07BhQxw/fhzffvst4uLi8PPPP2PhwoUW96lTpw6OHj2K7du3o2bNmggJCSm0/cnw4cMxadIkjBw5EpMnT8Z///2HRx99FHfffTciIiJK982x4qmnnsKkSZNQv359tGrVCrNnz8b27dvx9ddfAwDeeustVK9eHa1bt4aXlxfmzZuHyMhIhIeHY86cOcjNzUX79u0RGBiIr776CgEBAYiOjnbY+Mh4KpADsrCb+WUiIqPw9d4+7vR6zwq5HRjIicgVjR49GhcvXkSvXr0s5n89//zzuO6669CrVy907doVkZGRGDBggM2P6+XlhYULFyIjIwPt2rXD/fffj5dfftniPrfddhsef/xxPPLII2jVqhXWr1+PF154weI+gwcPxi233IJu3bqhatWqVrdiCQwMxK+//ooLFy4gLi4Ot99+O7p3747333/fvm9GCcaOHYvx48fjiSeeQIsWLbBs2TIsXrwYDRs2BCAryE6fPh1t27ZFXFwc/v33XyxduhReXl4IDw/HJ598go4dO6Jly5ZYsWIFlixZgsqVKzt0jGQs8wDOtnUiciV8vbedO73emzTNsxuyUlNTERYWhpSUFISGhl7TY/XtCyxdCnz2GTBqlIMGSESGu3LlCo4ePYq6devC39/f6OGQhyju98qRr03lWUJCAhISEpCbm4uDBw865PuZk6PPIz9/HqhUyQEDJSLD8bWeyoIjXutZIbcDK+RERESuIz4+Hnv37sWmTZsc9phmi/pyL3IiIipzDOR2YCAnIiLybCYTtz4jIiLnYSC3AwM5ERGR52MgJyIiZ2EgtwMDORERkedjICciImdhILcDAzmRZ/PwNS7Jyfj75L7Uom4M5ESeh/+byZEc8fvEQG4HBnIiz1Th6rvv9PR0g0dCnkT9PqnfL3IfqkLORd2IPAdf66ksOOK13sdRgykPGMiJPJO3tzfCw8ORlJQEQPbINJlMBo+K3JWmaUhPT0dSUhLCw8Phbb5sN7kFtqwTeR6+1pMjOfK1noHcDiqQs9OFyPNERkYCQP4LNdG1Cg8Pz/+9IvfCQE7kmfhaT47miNd6BnI7qINorJATeR6TyYTq1aujWrVqyGafKl2jChUqsDLuxhjIiTwTX+vJkRz1Ws9Abge2rBN5Pm9vbwYponJOTQXk+3Uiz8TXenIlXNTNDgzkREREno8VciIichYGcjswkBMREXk+BnIiInIWBnI7MJATERF5PgZyIiJyFgZyOzCQExEReT7OISciImdhILcDAzkREZHrSEhIQExMDOLi4hz6uKyQExGRszCQ24GBnIiIyHXEx8dj79692LRpk0Mfl4GciIichYHcDgzkREREno+BnIiInIWB3A4M5ERERJ5PBXLOISciorLGQG4HBnIiIiLPpxZ1Y4WciIjKGgO5HRjIiYiIPB9b1omIyFkYyO3AQE5EROT5GMiJiMhZGMjtwEBORETk+TiHnIiInIWB3A4M5ERERJ6Pc8iJiMhZGMjtwEBORETk+diyTkREzsJAbgcGciIiIs/HQE5ERM7CQG4HBnIiIiLPx0BORETOwkBuBwZyIiIiz8dF3YiIyFkYyO3AQE5EROT5uKgbERE5CwO5HRjIiYiIPB9b1omIyFkYyO3AQE5EROT5GMiJiMhZGMjtwEBORETk+TiHnIiInIWB3A4M5ERERJ6Pc8iJiMhZGMjtwEBORETk+diyTkREzsJAbgcGciIiIs/HQE5ERM7CQG4HBnIiIiLPxznkRETkLAzkdmAgJyIiKhsDBw5ExYoVcfvttxs9FFbIiYjIaRjI7cBATkREVDYee+wxfPHFF0YPAwAXdSMiIudhILcDAzkREVHZ6Nq1K0JCQoweBgBWyImIyHkMDeSTJ0+GyWSy+GjSpEn+7VeuXEF8fDwqV66M4OBgDB48GGfPnjVsvAzkREREhf3xxx/o168foqKiYDKZsGjRokL3SUhIQJ06deDv74/27dvj77//dv5AbcQ55ERE5CyGV8ibNWuGM2fO5H+sXbs2/7bHH38cS5Yswbx587BmzRqcPn0agwYNMmysDORERESFXb58GbGxsUhISLB6+3fffYfx48dj0qRJ2Lp1K2JjY9GrVy8kJSWV6vkyMzORmppq8eFIrJATEZGz+Bg+AB8fREZGFro+JSUFs2bNwty5c3HTTTcBAGbPno2mTZti48aNuP766509VAZyIiIiK3r37o3evXsXeftbb72FBx54AKNGjQIAzJw5Ez///DM+++wzPPvss3Y/37Rp0/Diiy+WerwlMZ9DrmmAyVRmT0VEROWc4RXyf/75B1FRUahXrx6GDx+O48ePAwC2bNmC7Oxs9OjRI/++TZo0Qe3atbFhw4YiH68sj5ozkBMREdknKysLW7ZssXg99/LyQo8ePYp9PS/OhAkTkJKSkv9x4sQJRw0XgF4h1zQgN9ehD01ERGTB0EDevn17zJkzB8uWLcOHH36Io0ePolOnTrh06RISExPh6+uL8PBwi8+JiIhAYmJikY85bdo0hIWF5X/UqlXLYeNlICciIrLPuXPnkJubi4iICIvrC76e9+jRA0OGDMHSpUtRs2bNYsO6n58fQkNDLT4cSQVygPPIiYiobBnasm7e3tayZUu0b98e0dHR+P777xEQEFCqx5wwYQLGjx+ffzk1NdVhoZyBnIiIqGysWLHC6CHkMw/kWVlAKd+SEBERlcjwlnVz4eHhaNSoEQ4dOoTIyEhkZWUhOTnZ4j5nz561OudcKcuj5gzkRERE9qlSpQq8vb0L7ZJS0uu5LRISEhATE4O4uLhrepyC1BxygAu7ERFR2XKpQJ6WlobDhw+jevXqaNOmDSpUqICVK1fm337gwAEcP34cHTp0MGR8DORERET28fX1RZs2bSxez/Py8rBy5cprfj2Pj4/H3r17sWnTpmsdpgWTCfC52kPIQE5ERGXJ0Jb1J598Ev369UN0dDROnz6NSZMmwdvbG8OGDUNYWBhGjx6N8ePHo1KlSggNDcWjjz6KDh06GLLCOsBATkREZE1aWhoOHTqUf/no0aPYvn07KlWqhNq1a2P8+PEYOXIk2rZti3bt2uGdd97B5cuX81ddd0W+vkBODgM5ERGVLUMD+cmTJzFs2DCcP38eVatWxY033oiNGzeiatWqAIC3334bXl5eGDx4MDIzM9GrVy988MEHho2XgZyIiKiwzZs3o1u3bvmX1VouI0eOxJw5czB06FD8999/mDhxIhITE9GqVSssW7as0EJvrsTXF0hP56JuRERUtkyapmlGD6IspaamIiwsDCkpKdc8n3z+fGDIEKBTJ+CPPxw0QCIiKncc+dpEZfP9jIgAkpKAXbuA5s0d8pBERFSO2Pra5FJzyF0dK+RERESuo6wWdQP0hd3Ysk5ERGWJgdwODORERESuo6wWdQP0rc8YyImIqCwxkNuBgZyIiKh8UIGcc8iJiKgsMZDbgYGciIiofGCFnIiInIGB3A4M5EREROUD55ATEZEzMJDbgYGciIjIdZTlom6skBMRkTMwkNuBgZyIiMh1OGNRN84hJyKissRAbgcGciIiovKBFXIiInIGBnI7MJATERGVDwzkRETkDAzkdmAgJyIiKh+4qBsRETkDA7kdGMiJiIjKB84hJyIiZ2AgtwMDORERkevgKutEROTuGMjtwEBORETkOpyxyjoDORERlSUGcjswkBMREZUPnENORETOwEBuBwZyIiKi8oEVciIicgYGcjuoQK5pxo6DiIiIyhYXdSMiImdgILcDK+RERETlAyvkRETkDAzkdmAgJyIiKh8YyImIyBkYyO3AQE5EROQ6ynLbMy7qRkREzsBAbgcGciIiItfhjG3PXGkO+YwZwFNPcS0bIiJPwkBuBwZyIiKi8sEVW9YnTADeeAM4edLokRARkaMwkNvBZJJTBnIiIiLP5mqBXNOAjAw5r06JiMj9MZDbgRVyIiKi8sHV5pDn5uqt6q7URk9ERNeGgdwODORERETlg6vNITcfh6scJCAiomvHQG4HBnIiIqLywdVa1s3H4SoHCYiI6NoxkNuBgZyIiKh8cLVAzgo5EZFn8jF6AO6EgZyIiMh1JCQkICEhAbm5uQ5/bF+fPHyJexB4IBjATIc/vr3MAzkr5EREnoMVcjswkBMREbmOstyHvNKJHRiBrzEo6SOXWNbcvCrOCjkRkedgILcDAzkREVH5UG3vav3CpUuGjUNhhZyIyDMxkNuBgZyIiKh8qLRzlX7BxQI5K+RERJ6DgdwODORERETlQG4uwnb8oV9OTTVuLFdxlXUiIs/EQG4HL7PvlqYZNw4iIiIqQ9u3wyctRb/MCjkREZURBnI7mAdyVsmJiIg81OrVlpddIJCzQk5E5JkYyO3AQE5ERFQOrFpledkFWtZZISci8kwM5HZgICciIvJwOTnAn38CAI6jllznAhVyrrJOROSZGMjtwEBORETk4bZtA1JTkRcWjrW4Ua5zgQo59yEnIvJMDOR2YCAnIiLycFfnj+d06IxkhAMAcpNZISciorLBQG4HBnIiIiLXkZCQgJiYGMTFxTnuQa/OH69wczdc8Q0FAFw8xgo5ERGVDQZyOzCQExERuY74+Hjs3bsXmzZtctyDTpgAvPACTH16IygiBACQcooVciIiKhs+Rg/AnTCQExERebhOneQDQFitUOAEkH7G+Ao5V1knIvJMrJDbgYGciIio/KhSVyrkWReMr5BzH3IiIs/EQG4HBnIiIqLyI7KRzCHXUlghJyKissFAbgeTST/PQE5EROTZasVIhdw38xLS0owdC+eQExF5JgZyO6kqOQM5ERG5sq1bt2LXrl35l3/88UcMGDAA//d//4csllhtElZLKuShSMWePcaOhausExF5JgZyOzGQExGRO3jwwQdx8OBBAMCRI0dw5513IjAwEPPmzcPTTz9t8OjcRKgE8hBcwu7dxg6FFXIiIs/kMoH81Vdfhclkwrhx4/Kvu3LlCuLj41G5cmUEBwdj8ODBOHv2rHGDBAM5ERG5h4MHD6JVq1YAgHnz5qFz586YO3cu5syZgwULFhg7OHcRIi3roUjFrp2aoUNhhZyIyDO5RCDftGkTPvroI7Rs2dLi+scffxxLlizBvHnzsGbNGpw+fRqDBg0yaJSCgZyIiNyBpmnIu/pitWLFCvTp0wcAUKtWLZw7d87IobmPqxXyCsjBgZ2Zhg6FFXIiIs9keCBPS0vD8OHD8cknn6BixYr516ekpGDWrFl46623cNNNN6FNmzaYPXs21q9fj40bNxb5eJmZmUhNTbX4cCQGciIicgdt27bF1KlT8eWXX2LNmjXo27cvAODo0aOIiIgweHRuIjg4/+zx3cautM5V1omIPJPhgTw+Ph59+/ZFjx49LK7fsmULsrOzLa5v0qQJateujQ0bNhT5eNOmTUNYWFj+R61atRw6XgZyIiJyB++88w62bt2KRx55BM899xwaNGgAAJg/fz5uuOEGg0fnJry8oF0N5VfOXUJSknFD4T7kRESeycfIJ//222+xdetWbNq0qdBtiYmJ8PX1RXh4uMX1ERERSExMLPIxJ0yYgPHjx+dfTk1NdWgoZyAnIiJ30LJlS4tV1pXXX38d3t7eBozIPZlCQoC0NIQiFbt3AzfdZMw4WCEnIvJMhlXIT5w4gcceewxff/01/P39Hfa4fn5+CA0NtfhwJAZyIiJyBydOnMDJkyfzL//9998YN24cvvjiC1SoUMHAkbkZs5XWrRzfcBrOISci8kyGBfItW7YgKSkJ1113HXx8fODj44M1a9ZgxowZ8PHxQUREBLKyspCcnGzxeWfPnkVkZKQxgwYDORERuYe77roLq1atAiBdZz179sTff/+N5557DlOmTDF4dG7EbKX1AweMGwZXWSci8kyGBfLu3btj165d2L59e/5H27ZtMXz48PzzFSpUwMqVK/M/58CBAzh+/Dg6dOhg1LAZyImIyC3s3r0b7dq1AwB8//33aN68OdavX4+vv/4ac+bMMXZwDpKQkICYmBjExcWV3ZOYVcj/+6/snqYkrJATEXkmw+aQh4SEoHnz5hbXBQUFoXLlyvnXjx49GuPHj0elSpUQGhqKRx99FB06dMD1119vxJABMJATEZF7yM7Ohp+fHwDZ9uy2224DIAuknjlzxsihOUx8fDzi4+ORmpqKsLCwsnkSswr5P+fL5ilswQo5EZFnMnyV9eK8/fbbuPXWWzF48GB07twZkZGR+OGHHwwdEwM5ERG5g2bNmmHmzJn4888/sXz5ctxyyy0AgNOnT6Ny5coGj86NmFXIzxsYyFkhJyLyTIausl7Q6tWrLS77+/sjISEBCQkJxgzICgZyIiJyB6+99hoGDhyI119/HSNHjkRsbCwAYPHixfmt7GQDswr5uXPGDYOrrBMReSaXCuTugIGciIjcQdeuXXHu3DmkpqaiYsWK+dePGTMGgYGBBo7MzRSokGsaYDI5fxjch5yIyDMxkNuJgZyIiNyFt7c3cnJysHbtWgBA48aNUadOHWMH5W7MKuSZmcDly0BwsPOHwQo5EZFncuk55K6IgZyIiNzB5cuXcd9996F69ero3LkzOnfujKioKIwePRrp6elGD899XK2Qh3ldAgDD5pFzDjkRkWdiILcTAzkREbmD8ePHY82aNViyZAmSk5ORnJyMH3/8EWvWrMETTzxh9PDcx9UKeeUKqQCMC+RcZZ2IyDOxZd1ODOREROQOFixYgPnz56Nr16751/Xp0wcBAQG444478OGHHxo3OHdytUIe7i0VcqMWdmOFnIjIM7FCbicGciIicgfp6emIiIgodH21atXYsm6PqxXyMJPrVMhzc/k+hIjIUzCQ24mBnIiI3EGHDh0wadIkXLlyJf+6jIwMvPjii+jQoYOBI3MzVyvkwZrrzCG3dpmIiNwTW9btxEBORETu4N1330WvXr1Qs2bN/D3Id+zYAX9/f/z6668Gj86NXK2QB+VKhdwVWtYBqZj7+RkzFiIichwGcjsxkBMRkTto3rw5/vnnH3z99dfYv38/AGDYsGEYPnw4AgICDB6dG7laIffPvgRAw/nzBmxCjsILubFCTkTkGRjI7cRATkRE7iIwMBAPPPCA0cNwb1cr5N55OfDHFZw/b8zBDGsVciIicn8M5HZiICciIle1ePFim+972223leFIPEhwcP7ZEFzCuXPGBHJWyImIPBMDuZ0YyImIyFUNGDDApvuZTCbk5uaW7WA8hZeXhPK0NIQiFefPVzNkGKyQExF5JgZyOzGQExGRq8rji1PZCA0F0tIQgktcZZ2IiByK257ZiYGciIionLk6jzwUqYassq5pQE6OnFfvQ1ghJyLyDAzkdmIgJyIiKmeurrQegku4fBnIzHTu05tXw4OCCl9HRETui4HcTiqQa5qx4yAiIiInuVohDzfJXuTObls3D9+BgXLKCjkRkWdgILcTK+RERETlzNUKeWTQJQBwetu6efhWFXIGciIiz8BAbicGciIiIsf76aef0LhxYzRs2BCffvqp0cOxdLVCHhnoOhVytqwTEXkGrrJuJwZyIiJyB0uXLoW3tzd69eplcf2vv/6KvLw89O7d26CRFZaTk4Px48dj1apVCAsLQ5s2bTBw4EBUrlzZ6KGJqxXyKn5SIXd2IFfVcB8fwNfX8joiInJvrJDbiYGciIjcwbPPPmt1r3FN0/Dss88aMKKi/f3332jWrBlq1KiB4OBg9O7dG7/99pvRw9JdrZBXrpACwPkt66oa7uurB3JWyIk8gKYxVBADub0YyImIyB38888/iImJKXR9kyZNcOjQIYc+1x9//IF+/fohKioKJpMJixYtKnSfhIQE1KlTB/7+/mjfvj3+/vvv/NtOnz6NGjVq5F+uUaMGTp065dAxXpM6dQAAjdJ3ADCuZb1CBfkAWCEn8ggDBgCNGwOXLxs9EjIQA7mdGMiJiMgdhIWF4ciRI4WuP3ToEILUymAOcvnyZcTGxiIhIcHq7d999x3Gjx+PSZMmYevWrYiNjUWvXr2QlJRUqufLzMxEamqqxUeZ6tEDAFA/aT2CccmwlnVWyIk8iKYBS5cChw4BW7caPRrXl5PjsUciGcjtxEBORETuoH///hg3bhwOHz6cf92hQ4fwxBNP4LbbbnPoc/Xu3RtTp07FwIEDrd7+1ltv4YEHHsCoUaMQExODmTNnIjAwEJ999hkAICoqyqIifurUKURFRRX5fNOmTUNYWFj+R61atRz69RRSvz5Qrx588rLRBWsMa1lnhZzKraNHgTNnjB6FY126JCETAPbtM3Ysri4tDahdG+je3SNDGAO5nRjIiYjIHUyfPh1BQUFo0qQJ6tati7p166Jp06aoXLky3njjDaeNIysrC1u2bEGPq1VmAPDy8kKPHj2wYcMGAEC7du2we/dunDp1Cmlpafjll18KLUZnbsKECUhJScn/OHHiRJl/HejZU06w3NCWdVbIqdxJTQViY4GWLYH//jN6NI5j/o9k717jxuEO9uyRAzJr1wIrVhg9GofjKut2YiAnIiJ3EBYWhvXr12P58uXYsWMHAgIC0LJlS3Tu3Nmp4zh37hxyc3MRERFhcX1ERAT2798PAPDx8cGbb76Jbt26IS8vD08//XSxK6z7+fnBz8+vTMddyM03Ax99hJvxG74xsGWdFXIqd44elWrypUvAs88Cs2YZPSLHMA/krJAXz3xNkYQE+X/sQRjI7cRATkRE7sJkMuHmm2/GzW7w5uW2225zeCu9Q910EzQvLzTN248KiScAlHGbvBlWyKlcO3tWP//ZZ8D99wMdOhg3Hke5cEE/zwp58U6f1s8vWQL8+2/+YpuegIHcTgzkRETkqmbMmIExY8bA398fM2bMKPa+Y8eOdcqYqlSpAm9vb5w1f1MN4OzZs4iMjLymx05ISEBCQoLV7d0cLjwcGS3aIXDHRsQmLQdwX9k/51XWFnVjhZzKjQL/OxAfD2zaBHh7F/05ly8DvXoB3boBL71UtuMrLfMK+cmT0pofGmrceFyZeYVc04CZM4FXXzVuPA7GOeR2MpnklIGciIhczdtvv43LV7fPefvtt4v8eOedd5w2Jl9fX7Rp0wYrV67Mvy4vLw8rV65Eh2uscsXHx2Pv3r3YtGnTtQ7TJlp3mUfeMWN5/lpMzmBtUTdWyMltaRqQmWn7/VUg79kTCA8Htm0Dvvii+M/5809g3Trg3Xfl+VxRwcUork7hsdnmzUCDBsAPPzhuTK5KVcivv15OP/0UuHLFuPE4GAO5nVghJyIiV3X06NH8uddHjx4t8sPadmjXIi0tDdu3b8f27dvzn3v79u04fvw4AGD8+PH45JNP8Pnnn2Pfvn146KGHcPnyZYwaNcqh4yhrfv2k9b8nluPCOee9EbDWss4KObklTQO6dgX8/eWjZk1gwYLiP0cF8hYtgIcekvNXF4Qs0j//yOmlS4AzFn0sDfOWdcD+eeQJCcDhwxJOPZ2qkD/4oKy2fv48MG+esWNyIAZyOzGQExERWdq8eTNat26N1q1bA5AA3rp1a0ycOBEAMHToULzxxhuYOHEiWrVqhe3bt2PZsmWFFnpzdT4d2+MyAlEF53Fpy0GnPa+1Rd3KbYX8+HHXrXhSyf77D/jjDzmfmSlB6/PPi/8cFcgjIgC1xWFJq60fNPv7dNX52QUr5PaMU9OA5cvl/M6djhuTq1IV8tq1gdtvl/MetHd7qeaQnzhxAiaTCTVr1gQA/P3335g7dy5iYmIwZswYhw7Q1TCQExGRO9A0DfPnz8eqVauQlJSEvAIvXD84sM2xa9eu0EoISY888ggeeeQRhz2nISpUwDmf6gjKOYyME87bjJwV8qu++Qa46y6ZO/rMM0aPhkrj0CE5rVEDmDoVGDWq8BzxgswDeXCwnC8pkKsKOSBbZt1yS+nGW5ZUIK9XDzhyxL4K+YEDetX41Cl5rGJ2pnB76muNipLfHaDk3xs3UqoK+V133YVVq1YBABITE9GzZ0/8/fffeO655zBlyhSHDtDVMJATEZE7GDduHO6++24cPXoUwcHBCAsLs/jwBAkJCYiJiUFcXJzTnjPNtyIA4EpistOeU4Xvcj+H/O+/5fSvv4wdB5Xe4cNy2qgR0LSpnE9MLP5z1O0REUDVqnLeEyrkqmX9xhvl1J5xquq44slV8rQ0WfAOkDCuOqs8KJCXqkK+e/dutGvXDgDw/fffo3nz5li3bh1+++03/O9//8tvUfNEDOREROQOvvzyS/zwww/o06eP0UMpM/Hx8YiPj0dqaqrTDjJk+IUD6UD2f8lOeT5AD9/lfpV11bbqqnOCqWSqQt6ggWWw0jR95eSCzCvk/v5yPimp6OfIzASOHdMv79lzbWMuK6pCfuONskjd0aNARgYQEFDy51oL5N26OX6MrkD93QcHAyEh+u9Ncb8DbqZUFfLs7Gz4+fkBAFasWJG/b2iTJk1w5swZx43OBTGQExGROwgLC0O9evWMHobHyQoIBwDk/HfRac/JVdavUu8xT540dhxUeiqQ16+vB6vMTL0CWlBurl4NN6+QJycX/Udw5IjlG/W9e11z3QEVyGNigIoVZcwHbVibIjsbWL1azt96q5zu2FEmQ3QJKpBHRclptWpy6kEV8lIF8mbNmmHmzJn4888/sXz5ctxydV7G6dOn81d39VQM5ERE5A4mT56MF198ERkZGUYPxaNkB0vLunYx2WnPWa72IS8uOKlAfvasB38DPJxqWW/QQCrBISFyuahwdf68/qa7alWgUiX9zfi5ItZxUKG2RQvAx0dWWnfFgziqZb1yZb1935Z55H//LV9T5crAyJFynSe3rKv542ruuDqQc+4cnLr/ZBkqVSB/7bXX8NFHH6Fr164YNmwYYmNjAQCLFy/Ob2X3VAzkRETkDu644w5cvHgR1apVQ4sWLXDddddZfFDp5IaEy5nkZKc9Z7mpkJ8/D9Spo29tZU7T9EqZ+Xl3888/wM03A2vXGj0SY5i3rANAZKScFhXI1fVVqsgvv5eXnAeKnkeuAnmzZkDDhnLeGW3r+/bJvufffCP7oBd30Cg3V/8fUqmSVMkB2+aRq3b17t2BVq3k/J49toXTzExgzRr3mvZRsEJepYr8Hmha0QdlCtK0orswXECp5pB37doV586dQ2pqKipWrJh//ZgxYxAYGOiwwbkiBnIiInIHI0eOxJYtWzBixAhERETAVNT8TDeWkJCAhIQE5ObmOu9Jw8MBAN6pxrSse3SFfO1a2dZs4ULgww8tb7t0CUhP1y+fOCHh3d0kJEigSk0FNm40ejTOlZyst2nXry+nERFykKKkQG6+RWLVqjJ/uKg5xGqF9UaNJKTu2ydBt6xXWh8xwnIrrv79gUWLrN/34kW9G6RSJfsq5CqQ9+wpK7QHBQGXL8vBjiZNiv/cd9/VdyioUwe4807glVeKnr/vClQgVxVyb28J5UlJ8vuhDuoU56WXgClTgJ9/Bnr1KruxllKpAnlGRgY0TcsP48eOHcPChQvRtGlT9HLBL9KRGMiJiMgd/Pzzz/j1119xo1rB1wMZsaibqZK896lwOdkpzweUo33IVWXz3Dl5o+Vl1shZsCLuThU+c+Yrxe/fX3KA8iSqXd18+zIVtItaab2oQA6UXCFX1XHg2irkO3cCYWFAdHTR98nNBXbvlvOtWgHbtwObNhV9f9WuHhYmbfWNG8tl1UFQlIwMfZeBHj3kb6RFCzm4s2NHyb9Pu3bp5//9V7YQHDAAaN+++M8zkvmWZ0pERPEHZQpavlx+Rm+95ZKBvFQt6/3798cXX3wBAEhOTkb79u3x5ptvYsCAAfiw4BFND8NATkRE7qBWrVoIDQ01ehgex7tyOADANz3Zac9ZbirkKkjl5koF0VzBRYNdcU5wSbKzgW3b9Muff+6Yxz17FtiyxTGPpfzxh6z67UgF29WBkrewshbI1aJeJQXyRo2kbR0ofSA/dgyIi5NpBsU5cUL+KH19gcWL9bEX1b2jOgUqVZJTtQDnkSPFr6Nw7Jg8ZkiIfoCgZUs5tWUeuXreGTMkiAPAV1+V/HmOcOgQ8NxzJW9ZV1DBCjlg/8Ju6nd5+XLpwnExpQrkW7duRadOnQAA8+fPR0REBI4dO4YvvvgCM2bMcOgAXQ0DORERuYM333wTTz/9NP7991+jh+JRfKuFAwACMp3Xsl5uKuQHDujnC75pLxjIHVUhnzULuOcey3b4srJ7N3Dlin75yy+LDmy2unJFts2KiwM2bLi2x1J27AC6dJHKqwqXjuCoQF5chTwtTf9dadjQcm52waBry8rrv/8uf4AHDxYfJNXXVq8eUL26tIDn5hY9x1kFY7UYtpp+kZqqV8+tUf/P69TR28ztCeRqPHXrAmPGyPlvv7X/H8qRI/J3s3+/7Z8zcaK0x99/v33PVVSFHLAtkGdmWq4/cbWo7EpKFcjT09MRcnVVxN9++w2DBg2Cl5cXrr/+ehwz3/fPAzGQExGROxgxYgRWrVqF+vXrIyQkBJUqVbL4oNLxi5SW9aCsZKc9Z7mrkAOFw0/BlnVHVMg1TebTfvmlfDhCejpw333AJ58Uvk21q3fuLNtcnToFrFx5bc/31lsSBjUNeP996/f54gvgvff0EFiSJUvk9PJlqaJOn150eE1Pt73iab7CunItgdxau7KaP16linyPGzUqvNL6zp0y3zs4GJgzp/gxmy++V1yV3fxgg4+PPsaitoNWoVv9Lw4I0APnkSNFP4/KWebt8yqQ27L1mQrklSvLHPRq1eS6334r+XPNPfWU/M1Mn27756hW+8WL9d+xkpgv4GheIbcnkB8/bvn7O3u2ywW5Us0hb9CgARYtWoSBAwfi119/xeOPPw4ASEpK8vj2OAZyIiJyB++8847RQ/BIgVHhAIDg3GSnPWe5WGU9JcXyzXXBsKWCTaNGEtwdUSE/dUoPqXPmAA8+eO2P+dFH8ob/+++lgujnp9+mAvmNNwLNmwMffCBt60W1Qx88KJXdlBSphg4ZIsFNOXkSePll/fL8+cA77+hhEJCQprbGeuopYPBgef6mTYE2bfRtx8z9+quctmghc46feQaoWRO46y7L+2maVNJ37waWLZPzxTHfg1wpaZV1Nbfc1gq5+YJugBzBathQFkt78EEJwioYAhIM77236DGvW6ef37MH6NrV+v2srR6flFT03PiCFXJAquunT0sgj4uz/nnFBfITJ2Sqh9mC20U+b5UqcuBg2DBZ6O2rr4C+fYv+PHOJiXrnhK37n1+4YHmgYexYWSW+pMXAz5/Xjz5Wr65fr34fbJlDrroK6taVgw9Hjsgq+CX9vjpRqSrkEydOxJNPPok6deqgXbt26NChAwCplrdu3dqhA3Q1DOREROQORo4cWeyHJ0hISEBMTAziinrzWgaCaoQDAEK1FGi5znkzUC72IVdBSimqZV1tr+uICvn27fr5jRttW+G6OFlZwJtvyvnLlwtvbaYW+WrXTg/JP/xgfTumI0ckEA8cKIFx5EjL8A1IUE5PB264AWjbVp6/YMX322/lNCBAWnfnzgUefhjo1k1CecHOg5QUvfX9xx+Bq0U3qx0Ef/4JbN4sbfMDB1p2OFhzLS3r5itpFzeH3NqCbs2by+kvv0gY9/IC1NaPxc0n/u8/y2kUtlbIAT08FlUhLyqQA8VXyM1b1hXzBefMF20rKCtL/11TzztihJwuWmT5e5iYKF+DtYNUc+boW6zZut3a5s1yWru2HNz5919g2rSSP0/9flatqv/zA+ybQ67mj8fEyKryAPDZZyV/nhOVKpDffvvtOH78ODZv3oxf1VE0AN27d8fbb7/tsMG5IgZyIiJyF3l5eTh48CDWrl2LP/74w+LDE8THx2Pv3r3YVNxqxg4WWjscAOAFDVeSnLOvbbmokJsHH6DolnUVyM+elYBZlLw84KefgJtukjBqrSXXPJAD1hdZO3Om8AJzRZk7V5/vCgBLl+rn09L0QBcXJx8NG0qYVdtYmfvsMwlQ1asDVwtf+PRT/Qe/YYM8n8kk7ehq7/aPPtLfpGqaVOoBqdr//Tfw9NNSCa1SRcY6ZYrl865aJXOfGzaUiqIKZCtX6vtmK6ot39tbvkd9+xbdFn/5sh5OrQXyxETrbfH2ziE3X9BNeeEFmUbw/PPyPTtyRA9kxU21Xb/e8nJxe4TbG8gLtqwDtgVyaxVywLZ55Opn4+WVv30j2rSRFd6vXJHtBpWVK+VnMnu2tPsreXmW0zEyMwsfTLNGBfKOHaUiDwBvvGG5poI11uaPA/a1rJsfxBg1Ss7Pm2f7HuZOUKpADgCRkZFo3bo1Tp8+jZNXj1K2a9cOTTx8+wYGciIicgcbN25EgwYN0LRpU3Tu3Bldu3bN/+jWrZvRw3NbwVX8kQF/AEDayWSnPGe5mENesLpaVIW8RQvAX77/haq7SkYG0KkT0K+fBMwrVyTMFqQCeceOclpwkbXkZAkr9evrrcuaJu26335rGSDz8vT5tCpAmwfyrVvlPjVqSLgwmYDeveW2ggcLcnP1Svc77wBr1kgAOXtW9lEGgP/7PzkdNUqqvUOHSqX08GFgxQq5bcsWCXeBgcCtt8pBgNdekwMVP/wg9/n0U8vvvSq0qa2hGjeWymJ2tv7cgATKefPk/KJFEhAPHZIWaGtvklXIrFTJsqVaBasrVyyDn/qeqpZkW+eQq5+peYW8RQtZvO+ll2R80dFSqQXk9ywjo/DjAPrPvE0bOS2qQp6Xp8+PV89bVhVyFcjNK+SAbfPIzZ9TBRqTCRg+XM7/+KN+X7VYW3a25ToHv/8u4wsNtW8xORXI27aVbgpfX/mZF9XSr1ibPw7YF8hVhbxuXeD664HWreVn/sEHJX+uk5QqkOfl5WHKlCkICwtDdHQ0oqOjER4ejpdeegl5diTVDz/8EC1btkRoaChCQ0PRoUMH/PLLL/m3X7lyBfHx8ahcuTKCg4MxePBgnLV1efsywkBORETu4H//+x/atm2L3bt348KFC7h48WL+x4XiVvGlYnl5ASmmcABA2gnnrLReLlZZV6FQVcIKhi31xjwqSlpegaLnkS9dKtXNoCDgjjvkutWrC1dgVXh77jkJKadPW4bjzZslJF68KHs+z5wp873795dg99FH+n1/+kla3kNDJax7e0uoUWHAvF1dUaH3118tx7ZihVQGK1WS56pQQZ/n/MknEopWr5ZfiMmT5fqgIJmzDsiBgbw84Lvv5PKtt8rt5jp1kutzc6VyDMgYCgZyQOadA3qIB2TOcWYmEBsrlfGffpJOhOXLAWtbIFubPw7IwQK1J3nB9/gXLugHSFSLMqAH8osXLf8Qdu6Ulu0KFaQlvzjh4frzFvV7pKYc3H+/BNdz56wfBDh1SsKlj48e9MsikGdl6X8HBSvksbFyWlw4Nl/QzdwNNxT+XPPpG+YHllR1fMQICbeAbfPIzQO5yWR7oC6pQp6UVHIoK7gy/dNPy+X33nPO7go2KFUgf+655/D+++/j1VdfxbZt27Bt2za88soreO+99/DCCy/Y/Dg1a9bEq6++ii1btmDz5s246aab0L9/f+y5egTq8ccfx5IlSzBv3jysWbMGp0+fxqBBg0ozZIdhICciInfwzz//4JVXXkHTpk0RHh6OsLAwiw8qvUs+UuHLOJPslOfzqAp5aqr1VlEVyG+8UU7NK+RpafIBSNBRgbyoeeQ//SSnY8ZI1TsgQB7PvOU4NVWvarZrp1cJzedgq6Dh4yOB66GHJCx7e8v1Y8dKFXXjRiA+Xq57+GEJZarqrgpNakE38/UOunSRH+ixY5Ztv6qd+q679EXhRo+W02XLgMce07++WrX0z4uPl8dbuVLml6t29aFDrX+fXnlFAsq8eTK+w4flAEKFCpaLl6n33r/8IgFG04CPP9bHYDLJPO1XX5XrnnqqcBuztfnjSlHhTF2uVEk/EqUuqzfk5i3y6mfXr5+05BfHZNJDrbV55BkZeojs2VMPy9aq5Oprq1tXfleAa2tZP37c+hG3Eyfkex8QYLlwH6BXq3fvLnorPfV3V/B706KFnB45IlMLAMvtzJYulec9dUpvax8zxraDAID8HE+ckO+5WmvM1kBeVIVcff05OYWnUhRkXiEHgNtvl3B+7pz1aSoGKFUg//zzz/Hpp5/ioYceQsuWLdGyZUs8/PDD+OSTTzCnpO0DzPTr1w99+vRBw4YN0ahRI7z88ssIDg7Gxo0bkZKSglmzZuGtt97CTTfdhDZt2mD27NlYv349Nm7cWORjZmZmIjU11eLDkRjIiYjIHbRv3x6H1BtFcqh033AAwJXEZKc8nwrfrVa8gdpvPw4T8myvkP/zj/6G1GgZGVIha9TIMqhomh7IVZA1D+TqvsHBsiq4CqHWKpt5eXpr9a23SkBVj7lqlX4/FSJq1ZKK4bBhcnnFCr1arQL5hAn6ns29esl89yFDJDTddptsY3bypHxdTzwh91Pt6L/8ImNSK3ubV8iDgvQDEKoyfeGCtIADMu9ZadhQQnJenoQuf38Zl7nGjWXOLyDzc48fl++ZGktBLVoAd98t52+6SQ/9HTvq1WNAglfduvLz+/VXGd+ePRIM1YEMAHjkEalMZ2TIInTqIMr69dIqD+j7gpsraqV1a/PHATkgoqq86vckO1uq9kDxq6abU9Vsa/PIN2+Wx4yMlKCsxl1cIDc/2FCaCnlkpPxc8/KsHyQwnz+u9iBXGjSQz01P1w80FfWcBQN5tWryoWly0ConR/979PKSIL5zpxzAyc6W7orYWNtb1tWBjSZN9FX9r7VC7uenz4Mv7jEyMvTbVZu/j4/+d/rGG0UfwHCiUgXyCxcuWJ0r3qRJk1K3weXm5uLbb7/F5cuX0aFDB2zZsgXZ2dno0aOHxePXrl0bG9Tqj1ZMmzbNogJQy/zIoQMwkBMRkavauXNn/sejjz6KJ554AnPmzMGWLVssbttpy5w/N2DEKusAcMUvHACQnWRDy7qmSZgbPrzUbx6ys4FAXEab759Gla/eQRtssa1CfukS0L69zGl2hZL6zJlygODiRcu25jNnJLx5eeltsOatwapKpkJOcS3rmzZJSAsN1cOual82D+SqXb1VKzm97jp5k3/hgh6wVCBv00ba08+fl4Bdv75UsZs3l/tnZ0tA37RJDzt9+sjpypXS7n7smAQBNR9ZUVueqVb5uXPlZxUbq1cTlfvv188/9FDhkAJIVV21sQNywMB8q7SCXntNDhJcvgyoxR7N29UBCX+qSv6//+nnhw+XeeuKl5ccEAgJkUXnatSQYH7TTfK9a9tWOggKKqlCXjCQA4Xnkf/yi/zcIyKAW24p+us1pwK5tfCr5o937Chff7Nmcrk0gdzaYnXWArnJVHzbumq9LtiuDshBCrWafFH/34tqWQf0KvmuXXIALztbfm/U93LmTL1dXS0EqD5HbbdWFBXIzf9Pl7TdnaJ+NtbynC2hXn3PQkMt1y4YNUq+D0eOWE7FMEipAnlsbCzef//9Qte///77aKmOltho165dCA4Ohp+fH/73v/9h4cKFiImJQWJiInx9fRGujn5cFRERgcRiFgCYMGECUlJS8j9OOGKfSjMM5ERE5KpatWqF1q1bo1WrVhg8eDD27duH++67D3FxcRa3ecoWpUassg4AmYHyxi73fHLJd75wQd7Izp0rlc1SyM4GWmAXTFff2HfABtsq5Lt3yxvls2eL37LJGdLSLLc5+vBDfYVlVY2rW1dvTT13Tn+zpaqMKuSoN+fWWtaXLJHTW27R+/tVIF+9Wn/MgoHc11cPyxs3SihW82hVa26lSnplMjhYFsEaOFC+lu++kzf9SosW8rVkZMiBgIAAafMu8L42P/yuWiXPp8KOWg3a3ODBEiIrV5aW9KJMnCjVbm9vffX1okRGyte7ZIkEpqgovVvAnArhSUnyPXjoIeCttwrfLzpa9kNv2FCmBXzxhcw1799fvv/mLdqK+Urr5qxteaYUXGlddQaMGGHZ3l6c4lrW1QrrqruitIH8yhXZSs5cZqbeGl7w+1FcIC9qQTelpBbyolrWAT3M796t/943bixdJoAE8uxs+VtS0xnMt1sr7iCv+v/ctq1+na0V8qJWlbf1MQrOH1eCgvSuF/PV5Q3iU5pPmj59Ovr27YsVK1bk70G+YcMGnDhxAkvNJ/7boHHjxti+fTtSUlIwf/58jBw5EmvWrCnNsAAAfn5+8FPzbcoAAzkREbmqo67SmuzhcoLDAQDaxeSS72zeDrt2rd7maYesLKAVtudf7oh1mJk1tuRPNN+TeNu2whVXZ3r3XQlPDRrIF3T8uBykuO8+PZA3bqyHhdxcmRtaqZIeyFVFuLiWdTV/XAUJQIJAUJAcHNm1S4JLwUAOSHV+/XoJqC1bSgAxDx0F1atXdHXNZJK5qu++K3PFZ80qvKAZIM9TrZoE3Y4d5QDKddcBDzxQ+L7+/jLuvDzrVU7z5/70U+D99/UV6YtjMsn3y/x7VtD110vYPX8emDpV38fbmptvljnIy5dLUG7cWA4SqLn3BZWmQm6+F/l//+k/d1vb1YHiW9ZV8FZ/M+aBXNMsw521QB4QIL87KSny+2t+IEZ1E3t5WXYYAKWvkAMlt5AX1bIOWFbI1QGQJk30Tg/lxRctL8fGyvdv5075PS9I0ywXdFOKOghjLiVFP5hR2kBecP64ua5d5SChkw/oWlOqCnmXLl1w8OBBDBw4EMnJyUhOTsagQYOwZ88efPnll3Y9lq+vLxo0aIA2bdpg2rRpiI2NxbvvvovIyEhkZWUhucBE/bNnzyLS2pEyJ2EgJyIiV6V2PomOjsaxY8dQo0YNi+uio6NRo0YNHCtu710qUW5oOADAlCxtmppWuAiWz7z6plZttlN2NhALfSXjG7Ae2dnWO2EtmFfkt24t1XM7xMWLwOuvy/kXXwQefVTOv/OO5fzxRo2kbVyFFNWOXFTLesEK+YkT0mZuvqUYIBXTTp3k/KpV8g1VByvMA7narmzjRr1dvWXLwvN1bTV9umw99vvv1sM4IG8sVdv6xYsSEn/6SVYft6ZixeLDuDlbwritvLxkgbylS4sP4+b379VLVpx/8cWiwzhQdLBSYa24lvX//pPuhJwc6XBQlV5bFNWynpmph181RbdxY/k9uHDBcpyaVvSCder3tWDoVMHYfHE6xZYKeUmBvKhVz21tWVcV8qZN5bnUwYiePfW/o4LPWdRBgFOn5Pvl7a1X8AHbwrT6eitXLrxLAKAflLG28r1iXiEvSB0gOHRIP0hikFLvQx4VFYWXX34ZCxYswIIFCzB16lRcvHgRs2bNuqYB5eXlITMzE23atEGFChWw0mzvuwMHDuD48eP5VXkjMJATEZE76Natm9V1XVJSUrgP+bUKl5Z1r0vJAGRabJUqlgXpfOYHP9S8VDsVrJDXwknUxAnk5JTwic4I5JomFcC1a4te7fjFF+WIRfPmwJ13Sjt1UJB8wx57TN//uFEjOS3YjlxUy3pSkoQnRS3m1qFD4Sqg+TzyffvkmxoaavlG3XwbJ7VekXmIsJevr4TXgqGrIHXwICxM5kKrr7O8KCqcqZCngrM58znk334r50eMsO95VbA9ccLyjf2hQ3I5NFQfW2CgHpbNV+tPTJSF1Ly8Coc+VUAsuLCbtRXWlWtpWVfh+N9/rR8hLK5CrhatO3sW+PNPOa8ORvzf/8mBK2tTFEoK5OogZIsWlgeZ7AnkRR2AuNYKeaVK+r7xBlfJSx3IHWHChAn4448/8O+//2LXrl2YMGECVq9ejeHDhyMsLAyjR4/G+PHjsWrVKmzZsgWjRo1Chw4dcL36h2kABnIiInIHmqbBZKWyd/78eQRZqzaQzbwqhQMAKlxOBiALc+fk6GtiWTAP5MePF73ncTFys3LREvKGV6sk1a2OWFfyPHLzQL5jh+NXE54yRd7URkVJ5ax//8L3Wb1a2rYBqZJ7eUmVV7UWv/eeXmFUc7gLBnLzPcgBeU5V/X3kEWkjfustQG29a631WgXyxYv1kB0baxmWa9aUed+5ucA33+j3KWtDh8r3Ye1a66uQezprC3ydPCkHkUwmqcwWpKqj27bJgS6TSRbWs0dUlPz8s7Isq6wHDsipqoorqlJs/neltneLjtbXLFCKWmnd2oJuSlGBPCdH/99RVECtVEnvHrG2XkVxFfLgYP251SrtTZvK6V13yffZWveBCuS7dln//6KmIRdsZ7dlUbeSWvTtnUNujdr1QG1LaBBDA3lSUhLuueceNG7cGN27d8emTZvw66+/oufVP7y3334bt956KwYPHozOnTsjMjISPxi8Eh4DORERubJBgwZh0KBBMJlMuPfee/MvDxo0CP3790evXr1www03GD1Mt+ZdJRwA4J9+EdnZ8p6vIQ6ixaePyZtd862gCrbDlqJKHpV+CEFIR65fAPLuuBOAtK0Xu3D62bMSaE0mmc+anq63hjvC6dPASy9JVdzLS57njz8sK2WpqXrwfuABy9Wvn3tOAvywYcDLL0twV2+OC66gXbBCbh6+Pv1UgsITT0jgaNxY377LXOvWeuAAZMVzteWXOVX0URVGZwRyb285sGBPu7UnMQ9Wah6GmhPeoYMevs2p3xEVpG68sfBe1SXx8dE/x/zAmdqDu+COUmqVcNWJAejVcmv7q5cmkKtKbnKy5crlp09L4K1QofgOiuLa1otb1A3Q29YB+ZtW1ePiNGgg/18yMqxvt1ZUIFc/85QUfXHHgsq6Qg4wkAPArFmz8O+//yIzMxNJSUlYsWJFfhgHAH9/fyQkJODChQu4fPkyfvjhB0PnjwMM5ERE5NrUtp+apiEkJMRiK9DIyEiMGTMGX6n9eqlUfKtJy7p/ZjKOHQOezJmGg2iMzttnSDvqd9/p24wVbDMtxTzyRunbAQAZDVvCq4vM4VTzyHHxoryZLDihXFXI6tfX5/xeS9v6kSN6NRCQFcNzcoAbbpAVowcPluvNpy6OHy9ff926wJtvWj5e9eqyn/XcudISa/6G3XzBLqBwIAeAzz+Xudkq5EdHSzjftct6gPPxkdsOHJDHzciwvnCaeReml1f5DcnOpIJVerq+d7maxnDbbdY/RwVyZejQ0j23tZXWzSvk5u6Ug2FYsUKfF/7113JqbUGzogJ5cS3rgYF69di8Sq7+j9SuXfwUiKJayLOz5QAZYFsgr1vXtjUIittuLSlJn49ecO55eLjeUVBUoC6pRV/9nRf1+Zcu6Qc/bKmQl7goR9mxa5X1QWrLgyIUXIDNEzGQExGRK5t9dfufOnXq4Mknn2R7ehnwjwwHAARlJ2P7IWAU5Hu+LrAnOprWS0D95x9pcVVv9IcNkxV9C1bIz50Dxo2T6tvYsXqLrKoa+fuj8RWpdmU2jkVwR+luaIXtOHfgEHB3TynRd+wIvPGGHihVIG/eXNpY162TQG5evbeFpkk79RNPyJugv/6StuqPPpLbx46VN+733y/bXX35pextvXy5hHOTScJzSIjtz2nesp6WplerzQO5ySRt6N26SdAIDJTQXZzAQH2eelHMA3mjRsXv4U2OERQkH5cv6+Hq99/l1JZA7uUlK9qXhrWF3YoK5A0ayO/Hxo0yb/3mm+UAm7e39W3qigrkagX3oirdjRtL4P/7b30aR0nt24oK5AVb1lUw9fIqvPWeYn7wqWB3QEnPuWmTBHLzn4Oai968eeGDACaTBOqTJ+Vnbu3rsrVCnpRUeOV7QP+eVapkuSWhuVat5P9GUpL8DpT0/S0jdlXIzY+yW/uIjo7GPffcU1ZjdQkM5ERE5A4mTZrk8WE8ISEBMTExiFOtpE4SGBUOAAjNuYh/d6ehAWQO9B3ZX0NrdvVN7d69UoVVbdd33SWnO3fqlaq8PGDkSKmyjRsn7d1pacCrr8qbyHbtgPR0xGRvBwBkNWsF1KqFk6aa8EEuqg64QX/TuW6dtPdOmCCX1RvyFi1KVyHPy5NgMny4LLyWkyNV/2HDZLyJiRIoBg6U+/foIeHm4kWpnqvq8/jxhatjJTEP5Bs3yvmaNQtvEaWEhpYcxm3Vpo3+WM5oVyeh1gdYvBj47Tf5XWvQoOhgaN4F0bWr9ZXYbVFw6zNNKzqQA/rCcV99Jb/nANCvnz5+c9YC+ZUr0hkCFL3NnNpqTN3PfHxFVXoVtZp/wZ00VLu6tZXdFfMKuT2BXP2dFGyTL6pdXSmp5dzWQJ6RIdXwgtSBj+Ja7/399fEb2LZu138vddS9PGMgJyIiV3Xddddh5cqVqFixIlq3bm11UTdlq5HbYDlIfHw84uPjkZqairCiwloZCK4lLeuBSEfWhi3wgoZTiMLp7Kq4HB2D4L//kkCu3ugFBUm1vF49aUPduFGqa+++K9tI+frK/NAvvpAqc3q6fN6uXcDLL6N5znYAQG7zVgCAv3w6omb2d/A+/5+0t86bB3z2mez5PH267O1tXiFXwWLbNuuVJHOHDgHPPgusXKmvmu7jIyulv/++zK8dM0auHzNGbzv19pa525MmycEFTZNK+tSp9n+DzbczWrVKznfrVvrtx+wRECBVs82bGcidKT5efm+eekoPhrfdVvTPvFIluU3TSt+uDhSukCclye+9yWQ9yN1xh4xzyxa9HfvBB60/trVAvmyZHJCrWVOme1gzYADwzDPSJZCcLBVt9fdcUgVXfT2nT0ubeoUKcrm4FdaVhg3l7zkrS1/QzRZFtcmXFMiLW9jN/GBmUV9zUJCsAXDqlP4/1ZwK2CUdsG3XTn6ef/9t/8KADmLoHHJ3xEBORESuqn///vDz8wMADBgwAP379y/yg0ovtKbe/hi6Td507oCEtzMVr66SvXevZYXHZJK2cgCYOFFWKH/mGbn8zjuyUFRIiITxatWkKg0A06ejunYGeTBBay5BZZPfjQCA3OBQ2SbrxhslkPfpI29Qpk+3DOQxMfJGOyVFX+QIkDe9jz8uAXz+fOCVVyQMLVggQcDfX6rbv/8u87w//1w+LydHQroK5sqoUXpI8vGR9vXS7IVtXiE3D+TOMmEC0Lmz9UXfqGyMHSu/P3l5eqW1uP9T3t7yO1G7dunb1YHCc8hVdbxOHeu/u1Wryv7qgPytRkdbXwUe0AN5Sor8rQH6Fm1DhxZdqW7USP5mc3LkgN2ZM4Ba1Np8YURrqlWTv/W8PAmqSnErrCsVKgDt28t5NbfaFuoAivl2axcu6PtAdu5s/fOKq5Bf/XnkBgbj9U8rFr3Fo9oy0HyhPUUF8pK+FhdY2M1B/T3lBwM5ERG5qkmTJgEAcnNz0a1bN7Rs2RLhRc0XpFILDvdBKkIQikuoe1wC+T7fVkAW8E+FGDQELAO5qlr17i0h9a+/5AOQlu///U+C7JYtMvf6rrukPfvIEWDJEgDAITRAaMVgAMD84FEITkvE7R8NQpNWrfSBTZggb+A/+0zeqFSoIFWvChXkTfOWLdK2rlYb/+orORhQUI8esvJ569Z6hQ2Q4PHEE7JA29Chhdt0a9WS9t3Fi2ULMtUqby8VyI8fl3nFgHMD+aBB8kHOYzIBH34oHRp//ikV8JJ2g1ixQqrABbcbs0fBlvXi2tWVESP0APjAA3JwwJqwMAn1V65IqI6IyP97zl8grigDBsj/kIULpRKfnS0H9EoKl15e8jUdOiR/P6rFvaQV1pUFC+R7Yd6+XhK13drJk3IgsGNH+RlqmrS+FzWdQF2vFsgzd/XncdwUjaefMaF6VBHbzPfpI4s5Ll2qb68IyMEM1QVmS4UckK4YdbDRyVghtxMDORERuTpvb2/cfPPNuGi+bQ45jJcXkGKStvV2uesBAKZWUiHfnnW1Qn7ggL5KsqrC3XmnzPV+5RWZP3rbbfJmUrXlNmwIPPywtKiaTMB770ELDJTHRav8bJzrH4QXMBWpDQoE3htvlA/1JqVJEz1Qq3C8ZYt+f7VwVtu2Mne6aVNpm//tN3mTah7GlenT5aDBhx9a/+bMni2fr/YELw0VyFNS5A1ynTolz50l9+fnJ4Fw2DDg7bdLDkYm07WFcUAP5BcuyPoNRW15Zu6226QSHRQk00OKG5952/qSJVJVr19fX6ytKAMGyOkvv+h/a+PHl/jlALC+UJ0tLeuA/O21bWvb85grOI+8pHZ1oPgK+dVAfvCK/O8s2A2fr0cP+T916JDlto579khXQmhoyQs5Nm4s90tPN6xKzkBuJwZyIiJyB82bN8cR821zyKHSfMIBAAGQ1dCr9GgFANicVFtW887O1tut1Rtkk0mqfhMmyJvzH3+0vvWREh2NnGlvIBdeWIiB+flYnVrdh/zZZ/Xz5lUuVW387Tc51TR9fG+8IdWhvXulTbu4udpeXvImuKhV0ytVkkr6tcz3LrillTOr42SsqlVlKzxnLRIdGqqvOv7337ZVyAMDZVXx7duL3xMc0G+fNQv44AM5f+edJf99tG0r86MvX5YwXbdu8S385gpW/QHbWtavhfk8ck2TijVQ+kB+dbHKw7kSyNV0/UJCQvTnMG9bN58/Xtw2cYB0OKjV/OfOLf6+ZYSB3E4M5ERE5A6mTp2KJ598Ej/99BPOnDmD1NRUiw+6Num+4fnnM0wBqHZDAwDAP4e99AWR1JvCa9hKJ+PehxCIdHyLYfnFQHWanW3lE/r00d8cq1N1vckkbZwnT8o73LNnpaXWfKsvV+DnZ7lNEQM5laXBg+X0wQf1ec/FBXJAQm+DBiU/tnqc2bP1bcBKalcH5G9VVckBWUiuqNZ4a2MDLCvktrasl5Z5IF+9Wg5sBAcXvZI8UPyiblcPJhxDCYEc0FelVwcBANvnjytqO8jvviviH2vZYiC3EwM5ERG5gz59+mDHjh247bbbULNmTVSsWBEVK1ZEeHg4KlasaPTw3F6Gv/49PB7eEg0ay5vlw4cBrenVtnX1ZkG9QS6F7GwgC7JQn00VcpNJtiV79FHLRdeqVdOD908/6dXxjh0lALsa8yo5AznZaONGWdi/yEXArHnjDalGq3nXQMmB3FZvvinrNNx1lzzmPfdY7vddHHWgICzM+j7nRSmuZb2sK+S7dumdACNGFN1JA9jUsv4v6gCQ2T9qXbxC+vaV0zVr9O3PbF1hXenRQ/5HnjsnU3KcjIu62YmBnIiI3MEqFbioTGQFhgNX3+NerBWLNtFSwMrIAFJrxsBiE7ZrqJCrYo3JpBfIiq2QA/KGf8aMwtf36wds2CDt8gEBcp2rht2qVeXoRoMGsmAUkQ0ee0yyWKtWxRdnLYSHy0KIavX0kJCSW9FtVbGivmOCvbp2lVb3xo2LD7YFFVw5Hij7CnmjRnJgLy1NdmwAZLHK4qhAnpwMZGbKNmenTsmBwwIVck2TKeJWdyJs2FDm5R8+LNs19uyp70Fua4Xcx0cWqnzvPTmgqaruTsJAbicGciIicgddipu7R9csJzg8/3x2c1lwrU4deU94IsQskHt7F16N3A6qCm6+dpU6b7VCXpzbbpPty1aulHmwgOsGcrUXuauOj1zSoUNyun+/HYEckD2sH3pIFlBr1sw5e96XxGQqftG4ophXyDVNHqesA7mPj3zf1MrmHToUkZ7NVKwo7T7Z2TKNpkcPmTv+wgv5W7YdQzSCgyXn79tXxEOaTFIlnzFDAnVICJCbK/93a9Sw/WsYPlw+f9EiecLgYNs/9xqxZd1ODORERORO0tPTsX//fuzcudPig65NXpjesh5wvbxLVFNK9yJGv2ONGte0jY6qgpsveK7O2z3VMSZGFofKzAQuXpRVom1t6XS2vn3ljbWzFvcit5eWJoulA3owt8sbb8h2f9a6S9xJrVpympYmf+dA2besA5ZrVjz0UMn3N5n0Kvmbb+Yv5IaXXgLy8pAJXyQhAv36ydXFziO/7z5ZD+P336XSDdi3l7q6f/36str6jz/a97nXiIHcTgzkRETkDv777z/ceuutCAkJQbNmzdC6dWuLD0+QkJCAmJgYxBkRKq+uzJwHEyK6y2rmKpBvT6mbPy/7XHA0WrWS7lO7K9pwcIXcZNJXEwaATp2sb23mCsaMkW3PbrzR6JGQmzBfVPzw4VI8QGCgdJC46kEqWwUE6GswHD8uR+5SUuRyWVXIAT2QV64MDBli2+eoQP7xx3J600353QnHURsNG3vl78JWbCCPjZWpOP7++sEHe3+OJpO+uNvXX9v3udeIgdxODOREROQOxo0bh+TkZPz1118ICAjAsmXL8Pnnn6Nhw4ZYvHix0cNziPj4eOzduxebNm1y+nN7VQoHABwx1UeNJjK/UwXynXu8kVxd9jFetrc2duyQ9YZKs1aQQyvkAPLLTYDrt4O7QtswuQ3zKdOlqpB7EvN55CqgennpW7yVhTvvlO0V33xTgrEtVCDPzZUW9kWLgG++QZZvEH5Bb7RurW9aUWwgB6Tl/aef9Ofu2NH+r2H4cGl1b9lS2v2dhHPI7cRATkRE7uD333/Hjz/+iLZt28LLywvR0dHo2bMnQkNDMW3aNPRVK9NSqaTFdkTS3KpYVuVuPHL1vYEK5D//DPyMZhiOHTjpXQctYmTx4blz9QWBbWUtkJe6Qg4AnTvLG9+LF+UNLJGHMK+QHz8uMzNccQMBp6hdG9i8Wb4RQUFyXWSk7VunlUb16sC6dfZ9jgrkgOwMERICDB2KkfMG4tsFvnjNLJAfPCir5xc7A6h7d1lqf8cO+V9nr0aNgBMnSt673MEYyO2kfj5OPGhCRERkt8uXL6Pa1YWxKlasiP/++w+NGjVCixYtsFUtvEOl1nxAAzR6+SwefVCv4rZuLQEgMxP4vuZ4NAvMxj2fjkI3X1k4eNEi4PJl/f2xLay1rF9ThbxCBakiHT8OXHddKR6AyDWZB/K8PJmS7Kjdy9yOWtjt2DFZ4Q5w+srhNlGBPCgIGDs2/+rNO+QfXuvW8qUEBsrU7iNHJDMXKza25AXliuPkMA6wZd1urJATEZE7aNy4MQ4cOAAAiI2NxUcffYRTp05h5syZqO6oLX3KsUaNgPMXTHjpJf26GjWkEr53L7DoeBu0OvA9ojrVt1gryN7ZAg6vkAPSVnrnnaX8ZCLXZN6yDpTztnUVyP/9F1i4UM4PHGjYcIrUqZOcPvNM/oJzqan6z651a8le6sBKiW3rboqB3E4M5ERE5A4ee+wxnDlzBgAwadIk/PLLL6hduzZmzJiBV155xeDReQZr3Z8NG0qLpfn0Z5MJuOsuOT93rn3PUdwc8lIHciIPpCrk6oBVuQ7kag75b78Bp09LK3j37saOyZo+fWRp/Oefz79qxw45rVlTX4PO5nnkboot63ZiICciIncwYsSI/PNt2rTBsWPHsH//ftSuXRtVynKlXbJq2DDZzWfZMlljydbdh4pbZb1ULetEHkoF8htuAFavLueBXFXIU1PltG9f151QX7GixcU9e+S0RQv9Ok8P5KyQ24mBnIiI3FFgYCCuu+46hnGDNG0q7Zc5OcB339n+eSVVyM+dk7WbiMqz7GwpBAN6IZiB3IwrtqsXQYVuFcIBICbG8jZPwwq5nRjIiYjIHYwfP97q9SaTCf7+/mjQoAH69++PSpUqOXlk5dfddwPbtsl0yeuvt21NtZIq5AMGyMLGW7ZwjTYqv06dkvfmfn5SIQdKuRe5p6haVV9h0s8P6N3b6BHZTK1BZx7I1fn9+2VhbU/bEZGB3E4M5ERE5A62bduGrVu3Ijc3F42vrohz8OBBeHt7o0mTJvjggw/wxBNPYO3atYhR5QcqUw8/DCxZAqxaJe+P163Tt0orSnEV8h079F2GNm5kIKfyS7Wr16ol6zgAwNGjNmyT5alMJqmS//MP0LOnzCF3E9Yq5PXqSQa7dAk4e1Z2cPMkbFm3EwM5ERG5g/79+6NHjx44ffo0tmzZgi1btuDkyZPo2bMnhg0bhlOnTqFz5854/PHHjR5queHnJ1uftWoFJCUB3boB06fLQshFKW6V9eXL9esOHnTwYInciArk0dGy24Gfn4TxgiuvlyvNm8vpHXcYOw47pKXJNuAA0KSJfr2fn96F/88/zh9XWWMgtxMDORERuYPXX38dL730EkJDQ/OvCwsLw+TJkzF9+nQEBgZi4sSJ2LJli4GjLH9CQ2Vht/r1gZMnpX29bl3g2Wet37+4fcjN34tc3eGOqFxSwTs6Wt6r168vl8v1PPJ33wW+/x4wW+DT1an/Y1WrFl74UnU+2BPI9+wBkpMdMrQyxUBuJwZyIiJyBykpKUhKSip0/X///YfUqyvvhoeHI4t7ZzldRITM+Z45U6rkgFTKt20rfN/iKuTmGMipPFMVclVFVVNBynUgr1ULGDLErSZcW2tXVxo1klNbArmmAS+8IE0Ct9/uuPGVFQZyOzGQExGRO+jfvz/uu+8+LFy4ECdPnsTJkyexcOFCjB49GgMGDAAA/P3332ik3uWQU4WFAQ8+CPz+u2yJpmlSLS+ouAo5INNDAWl7v3KlzIZL5NLMW9YBBnJ3pQK5ebu6YmuFPCsLGDkSmDpVLrtDExgDuZ0YyImIyB189NFH6N69O+68805ER0cjOjoad955J7p3746ZM2cCAJo0aYJPP/3U4JHSyy9LyF6+HPjtN8vbSqqQjxsn4V7TGD6ofDl1Sg9w5i3rAAO5u7K2wrpiayAfMwb48kvA21suJye7fts6A7mdGMiJiMgdBAcH45NPPsH58+exbds2bNu2DefPn8fHH3+MoKAgAECrVq3QqlUrYwd6DRISEhATE4O4uDijh3JN6tYF4uPl/NNPAz//DMybJ1Xv4lZZr1JFKuRXF9Fn2zp5pNRUmdpx332W13frJi3Jy5bpgZwt6+6tuJZ1FcgPHZIDkNZkZsq0eQD44Qf5HwnoHRSuioHcTgzkRETkToKDg1GpUiVUqlQJwcHBRg/HoeLj47F3715s2rTJ6KFcs+efl0r3jh3ArbfKwshNm0rYACyr4t26ybY/zz8v4ZyBnDzZU08Bq1cDs2dL4ALk9J9/5P34kCFARoZMla5VS26vU0dOjx0rOryRa8nO1qvf1gJ5nTpS9U5PB06ftv4YmzbJ70K1akC/fvrvQXE7WbgCBnI7MZATEZE7yMvLw5QpUxAWFpbfsh4eHo6XXnoJeXwRczmVKwMJCUCLFkCbNjKH8soV4I8/5HbzCnnDhsCZM8Bjj8llBnLyVMuXAx9/rF9W61Sar1eZlian1avrB65q1pTT9HTg4sWyHydduyNHZKu6wED952euQgXpJgKKbltfs0ZOu3SRAzQM5B6KgZyIiNzBc889h/fffx+vvvpqfsv6K6+8gvfeew8vvPCC0cMjK4YPB3buBDZvBnbtAu6/X7/NPJAXpNbl86RAfvIk8N57wPnzRo+EjJKaCowebXnd2bOWpxUrSrcIoLerA0BAgN6urPa1JtdmvqCbVxEJtaR55KtXy2mXLnKqAjwDuYdhICciInfw+eef49NPP8VDDz2Eli1bomXLlnj44YfxySefYM6cOUYPj0rg4yOVwSlTJHSo7dGsMa+QF2zPfeMN4IMPym6cZeWFF4CxY2WO8M8/Gz0aMsIrr0iYrltX/x0vGMjr1gUWLpSDUvfcY/n5qn2dgfza5OQABw+Wfet/cfPHleICeVYWsH69nFeBnBVyD6W28mMgJyIiV3bhwgU0sbJ3TJMmTXDhwgUDRkT2MpkkmJ4/L/PKi9Kwodw3ORn47z/9+n37ZP5tfLweYNzF3r1ympgoX3u3bjJX+KGHpLWVPN/WrXL6f/+nVzrV77FqWa9WDbj+ejkY9dBDlp/PQO4YzzwjB0SWLi3b5yluyzOluEC+ebNMUahSBYiJkesYyD0UK+REROQOYmNj8f777xe6/v3330dsbKwBI6LSUsWAogQE6O265m3rakE4QJ+L7i5U6B40SL7+1auB+fOBmTOl6k+eT839jowEIiLkfMEKubreGgZyx9i1S05VO3hZ2b1bTm2pkB88WPg2NX+8c2c9r7lLIPcxegDuhoGciIjcwfTp09G3b1+sWLECHTp0AABs2LABJ06cwNKyLnWQ0zVuLCtKHzgAdOok1/36q377mjVSYXYHqanAuXNyfvZsYOJEYPt2YMUK4KuvZP9p8nwqkFesyEBuJNVQpQJzWfjiC2DbNslZbdsWfT8VyA8flhb1xx6T/xUJCZYLuilqX3q1F3l4eBkM3gFYIbcTAzkREbmDLl264ODBgxg4cCCSk5ORnJyMQYMG4cCBA+ikEht5jIIrrWdk6G9QAcvzrk5Vx6tUAUJDgdhYYORIYOBAud68LZ88FwO5a1CBXFXKHW3/fuDhh+X85Ml6iLamdm1Z4DIzUxbBnDlTOmc6dADWrpX7dO2q3z8oCKhaVc67cpWcFXI7MZATEZG7iIqKwssvv2xx3cmTJzFmzBh8bL6XELm9goH8jz9k27TKlWUO+u7dUklSK0+7MhXI69e3vL5aNTllIPd8eXlS0QQsV1JnIHc+dWDk1Ck5X7Gi4x47IwMYOhS4fBm46SZZL6A4Pj5AvXryf27+fLmuenX9f0alSrIQpLk6deR/xr//Aq1aOW7sjsQKuZ0YyImIyJ2dP38es2bNMnoY5GBqIaQNGyTIqPnjAwboCxz9+acRI7Pf4cNyWq+e5fWq0mW+BzV5pkuX9PfaxVXI1UEaa1QgP3mS79tLKzdXPzACAHv2OPbxv/hCtnqsVk2mo3h7l/w5aptHAHjxRZnO0r69XO7evfCWae4wj5yB3E4M5ERERORqbrxR3qieOweMH6/PH+/VS59T6S5t66raVVQgT02VllXyXKoq6+8vH6VpWa9RQxYEzMpy/66Kf/8FXn4ZSElx7vOah3HA8fPIjx6V02HDpNJti3bt5HTIENmFolo1YNUqCffvvlv4/gzkHoiBnIiIiFyNnx/w2WcSQGbPli2EvLyAHj30QO4uK62rCnnBlvXwcGlZBdw/YFHx1Lxl1R6tgvf58zIV4/x5y+utqVBBb3V397b1qVOB558HrGycUaYK7pDp6ECuFm+0ZyrNk09KAJ87V9+BIiAAuPtu66GegdwDMZATERGRK+rYUVYdVtq3l0DTubNc3r5d3mDPnw98+qnrvpcpqkLu5aW/cWcg92yqQl6pkpxWrqy3M+/bB2ia5e9DUTxlHrkKk9c67eSnn+TvytZuGfVzUBwdyNWBlcqVbf8cf39ZuM3HxpXQ3CGQc1E3OzGQExGRKxs0aFCxtycX7EEkj/Lyy8CSJVJl7t1brqteXbYL+ucfoFkzIDFRrj9wAHj9dePGak1OjmzfBhQO5IC0pyYmMpB7OvMV1gF5/121qvzsd+6U66pUKXnOca1awN9/u38gV3+zGzbIvG5b5lpb89ln0ib+44+W24MVRVXIfX2l9X/3bjkYoirT10oF8rJcbLJuXTl15UDOCrmdGMiJiMiVhYWFFfsRHR2Ne+65x+hhUhkJDASWLpW5lePG6derN9+JiUBIiJx/4w35cCUnTkgo9/WVOcAFcWG38qFgIAf09nQVyItb0E3xlAr5mTNympoK7N1b+sf5+285VQG/JCqQt2kjGej8eX3+viOUpkJuL7WNWkpK4TnxroIVcjsxkBMRkSubPXu20UMggzVqBEyZYnnduHHyRr5rV5mD+emnwNNPA089JcF32DAjRlqYalevW7fwasmAHshZIfds1gJ5ZCSwY4d8AMXPH1c8IZBnZlrO5V63DmjRwv7HOX1ati4D9IBfEvVzqFEDaNAAOHhQ9iNXc/OvlZpDXpaBPDBQDt4kJbnu1meGVsinTZuGuLg4hISEoFq1ahgwYAAOqA00r7py5Qri4+NRuXJlBAcHY/DgwTjryEMzdmIgJyIiInfTrJm8kX/5ZQk5Tz4pq7EDwBNPSDuqKyhqQTdFVUVZIfdstlTIPTWQX7mirz4OFK5Ir19f+HMyMgrP9y5o0yb9vL0VcvP9vR01j1zT9Mcvy5Z1wPXnkRsayNesWYP4+Hhs3LgRy5cvR3Z2Nm6++WZcvnw5/z6PP/44lixZgnnz5mHNmjU4ffp0ifPjyhIDOREREbk7kwmYNk3ml585A8ybZ/SIRFELuimskJcPxQVy9bP31EB+993y+799u1wuWM22Fsj79ZOuElUBt+ZaAnnFio4P5KmpMj0FKNsKOQDUri2nx4+X7fOUlqGBfNmyZbj33nvRrFkzxMbGYs6cOTh+/Di2bNkCAEhJScGsWbPw1ltv4aabbkKbNm0we/ZsrF+/Hhs3bjRkzAzkRERE5Al8fYH4eDn/zjtSsTIaAzkBxQfyoi5bo4LY6dOyGJo7UIG74Hzvxo3lQNrhw5ZV89OngZUrZY70smVFP656PEDmUl+5UvJYzCvkqk3eUYFctasHBsrK6WVJtdi7ameNSy3qlnJ1t/tKV/c42LJlC7Kzs9GjR4/8+zRp0gS1a9fGhg0brD5GZmYmUlNTLT4ciYGciIiIPMWYMbKH+ebN1itvzsaWdQIK70MOFA7gtizqFhEh22Pl5to+b9pI6ekSsAG9vVqNu0kTvUpt/rf6++/6+aK2M9M0ywo5YFuV3Hz7OfXce/Y45uCdMxZ0U1z9/4bLBPK8vDyMGzcOHTt2RPOrP/HExET4+voiPDzc4r4RERFILOK3aNq0aRarydZSvSoOYr7AiCscSSYiIvIEAwcORMWKFXH77bcbPZRypWpVYMQIOf/uu8aOBWCFnETBfciB0lXIvb311frdoW1d/f4DhQN5ZCRwww1yft06/X4rV+rniwrkhw5JVdzPD4iKkutsCeTmB0bU9/HyZduq6yVxxpZnCgO5jeLj47F79258++231/Q4EyZMQEpKSv7HCQf/9ZkHclbJiYiIHOOxxx7DF198YfQwyqXHHpPTBQvkjbtRLlzQtyVSewcX5OpvrMkxHNWyDrjXPHLzvz8VyFVwrl4d6NhRzqsKuaZZBvLjx60vXKaq461b698PewJ5pUpAcLC+/3lJC8jZwhkrrCuu/n/DJQL5I488gp9++gmrVq1CzZo186+PjIxEVlYWkgtsGnf27FlEFrHevp+fH0JDQy0+HImBnIiIyPG6du2KELVBNjlVixbAzTfL+5qBA4FLl4wZh6oORkQAQUHW76Mq5JcuyXZQ5JnKIpC76oJe5swDuVppXVXIq1fXK+SbN0u4PHRIDjT4+gKxsXKbtSq5mj/erp0+n9relnWTCVBNy44I5GxZ1xkayDVNwyOPPIKFCxfi999/R90Ch0PbtGmDChUqYKXZoZ8DBw7g+PHj6NChg7OHC4CBnIiIyp8//vgD/fr1Q1RUFEwmExYtWlToPgkJCahTpw78/f3Rvn17/G2+ghC5vE8/lTfqu3fLnuRGLIClApPaosia8HCZEwywbd1T5eXpnRLmgbxKFcv34bbMIQdcf8src+aBPDFRtjMzb1mvVw9o2xbIzgZefVWvjnfoANxyi5y3FshVhTwuTg/kJc2pN9+WTP0c1GmBWmmpGNGybuDO2cUyNJDHx8fjq6++wty5cxESEoLExEQkJiYiIyMDABAWFobRo0dj/PjxWLVqFbZs2YJRo0ahQ4cOuP766w0ZMwM5ERGVN5cvX0ZsbCwSEhKs3v7dd99h/PjxmDRpErZu3YrY2Fj06tULSWbliFatWqF58+aFPk6rFYzsUNYLuJZHtWoBP/4oqx3//DPw1FPOH4MK5MUt/2My6VVyV6120bVJTdXXaTIP5N7e+s8+PFyqwrZQ6xGYz892VWpRQ+X4ccuWdZMJePllufzBB8BXX8n57t2Bzp3lfMFAnp0NbN0q59u1k8cBSq6Qp6cDWVlyXs3ld9cKueqmSEuTr8vV+Bj55B9++CEAaVMzN3v2bNx7770AgLfffhteXl4YPHgwMjMz0atXL3zwwQdOHqmOgZyIiMqb3r17o3fv3kXe/tZbb+GBBx7AqFGjAAAzZ87Ezz//jM8++wzPPvssAGC72lTXAaZNm4YXX3zRYY9Hol07YM4c4M47gbfflkWcnnjCec+v5viqraqKUrWqVPdYIfdMKuwFBMgiZOYiIqTKaWu7OqCvR6BawF2ZqpCbTHJQ4sgRy0AOAD17Al26SPBWi7t17y6roHt5yeecPAmoWcAHDsgibKGhQIMGtresq+p4hQr6FBJ1gMTd5pCHhMjvUmam/N+Iji7757SH4S3r1j5UGAcAf39/JCQk4MKFC7h8+TJ++OGHIuePOwMDORERkS4rKwtbtmyx2KLUy8sLPXr0KHKL0mtV1gu4lmdDhwKvvSbnn3xSr8A5g/oxlrRBjqvPB6VrY23LM0UFcXsCuaqQHz3q2u/dMzP1LpG2beV082YgJ0fOq9978yo5IIutxcVJ4G7dWq4zr5Lv3y+nTZtKjrE1kJvP4zeZ9POA+7Wsm0yu/X/DJRZ1cycM5ERERLpz584hNzcXEQXeIRe3Rak1PXr0wJAhQ7B06VLUrFmz2DBf1gu4lndPPQU8/ricHzXKefuTqzBiS4UcYIXcU1lb0E0pTSCvVUva3TMzbVvIzCj//ivZIigIUDNzN26U0ypVLFv0O3YE+vaV8126SBVbnQcsA/mBA3LauLGc2jqH3HyFdcVdW9YB1w7khrasuyMGciIiIsdbsWKF0UOgq0wm4I03JCAsXCgLvqnVncuSrRVyBnLPZm0PckXtha3at23h4yMHeY4elXZutQ+3q1Hzx+vX19vsVSC39vUmJEiYHTdOv65zZ+CttwDz45mqQq4Cufkcck3Tq98FWQvk7tqyDrh2IGeF3E4M5ERERLoqVarA29sbZwssX1vcFqWOkpCQgJiYGMTFxZXp85RHXl7Agw/K+RUr9EW2ykpWll6xY8t6+VZchXzMGPmIj7fvMd1hHrmaP96ggb4yvArF1v6VRkcDn3+ut6kDwHXXyen+/TJvHChcIVfdBdnZxQdrawdG3LVlHdC/bldcaZ2B3E4M5ERERDpfX1+0adPGYovSvLw8rFy5ssy3KI2Pj8fevXuxSe3pQw51443SJnvihOV2TGXh9GkJ/b6+JW9nZV4h37tXqqaTJ5ft+Mh5igvk9eoBH30ENGpk32OqQO7KK61bC+SKrR0BNWvK9y0nR/42NE0P5E2ayKmfn/69La6F39pcfke1rKen6wcMWCFnILebeVsHAzkREZUHaWlp2L59e/5K6UePHsX27dtx/Oqk3/Hjx+OTTz7B559/jn379uGhhx7C5cuX81ddJ/cUFKS3qpf1jALVrl6zpmXxwxr1xvq//4Dnn5cwP2OGvvgVubfiAnlpmS/s5qrMA7k6gKDYGshNJqBVKzm/Y4dUg1NT5W+qQQP9frbMIy/LlnXVrl6hgixK5wwM5B5GvVAwkBMRUXmwefNmtG7dGq2v9kaOHz8erVu3xsSJEwEAQ4cOxRtvvIGJEyeiVatW2L59O5YtW1ZooTdyP927y2lZB3JbF3QD9Ar57t0yxx2QgFBGi/qTk5VFIHeHCrmaQ96ggVSiw8L02+yZ/RMbK6c7dujzx+vUsdxCzpa9yMsykJsv6FbUHHZHc+VAzkXdSsHLS8I4AzkREZUHXbt2hVbCJOJHHnkEjzzyiJNGRM7SowfwwgvAqlVAbq6sVl0WbF3QDdADeVqa5fU//wx06uTYcZHzlccKeU6OPrb69eW0Th0J1YB9i9ipCvn27bLVGaDPH1ds2frM2s9BtazbOodc04Bp04A9e2TOemAg8Morzp8/Drh2IGeFvBRYISciIjIeF3Ure23byv7GFy8C27ZZ3nb8OLBunWOex54KecE55s88I6c//+yYsZCxituHvLRUhfzUKdn+zNWcOCGB1c9Ppm0Alm3r9gRyaxVyNX9csSWQO6JCvn078NxzwNy5wLx5sgjdO+84f8szgIHc4zCQExERGY+LupU9Hx+ga1c5b962rmlA795Skb66tMA1sadCHham77vcvz/w9NPy3mz3bj3Yk/sqiwp51aqyJoKmAceOlXz/RYvkd0vNdS4LFy4A774L3HOPfABSyVc5w3xhN3ta1mNi5O8jORlYvlyuK6pCXto55GlpcgChJKdPy2nt2vquDcuXO3/LM0BfZT0pyfUyHAN5KTCQExERUXnRo4ecmgfynTv1VZwdMb/cnkBuMgHNmkn7/PPPS2BQi8+xSu6eZs0Chg2TBciK24e8tEwm++aRT5sGLF4MLFniuDEoSUkSwKOiZA/xL78E1q6V29q21e9nHsjtqZD7+uqt6nv2yGnBQG7LHHJrB0bM57WnpJQ8lv/+k9OmTYEpU+T89u3Avn1y3pkt6+q5cnMds4+6IzGQlwIDOREREZUXKpCvXQtcuiTnf/hBv90Rbev2tKwDEry3bdMDTN++cvrTT8Dq1bIfM5c0cB/PPQd8+61UjMuiQg7Yvhe5pumt3qrC60jvvSchPDNT9hB/+WXgk09kgcIPPtDvpwJ5UBAQEmLfc6h55Iqtc8jXrwfefluq39Yq5D4++lhsCbWqEl61qrSMq3HNny+nzqyQ+/rqv1NJSfK/7I03XKOFnYu6lQIDOREREZUXTZrIG/oDB4DZs4GxYy0D+dq1EmJKu1pyWpr+5t6WCjkg1cWoKP1y377AhAnAr78CS5fKdbt3S7hQ7e3kms6fl+25AJlfrCqvjg7kamG3kirkaqswoGwC+b//yun//R8wdWrRfzetW0sAbtnS/udQ88gBWQOiYMu7tUCuadKlcPy45fegYKdCxYoSZm0J5KpCrqrTN98sFXL183ZmIAfkoMDFixLCP/5Yft+SkoDp0507joJYIS8FBnIiIiLjcVE35zCZpLUWkDew+/dL2PXxkUWozp0DDh4s/eOrdvXQUMuWWHs0by5hPjdXLnt5SZVPbSVFrku1LwNSlVUbOhhVIT9wQD9fFoH81Ck5bdq0+INYtWvL9+aXX+x/DvNA3rhx4edRgfz8eSArS87v3at3qrz2mn5ftbJ6wcu2rLSuArnaGaFnT8vbndmyDugLu509C/z4o5y3ZU2BssZAXgoM5ERERMbjom7Oc889Uik7ehQYPVquu+kmoF07OX8tbev2zB8viskEvPkm0KcPsHIl0KaNXK/m0JLr2rtXTgMD9esCA6XF2JFsrZCXdSBXj1mjRsn3bdCgdAepCgbygipX1lvPN2+WUxX8vczSYWioHHgzZ89K6+Yt6wBw442Av7/lOJxJBfI1a/QDM+qggZEYyEuBgZyIiIjKk8BA4KGH5Pz69XI6aJC8wQb0RalKwxGBHACGDJG55TfdJCtNA3rYI9elDprcf79exXZ0dRxwvQq5LYG8tKpU0R/fWiA3mWQVeUC2JAOAZcvkdMoUfS90awvrqQq5PS3rKpD7+wOdO+u3OzuQq5XWv/5av84V5pAzkJcCAzkRERGVN/Hx+nxs9YZeBfJrqZDbu6CbLWwN5P/9xyq60dTPKDYWePZZOV8WYbVePVmZPzm5+FBuHsjPnHHs+/3UVFkzAbBcA6EsqO0KO3Swfvvw4XL63XfyPfnzT7k8ZAjwzTdSmVePYU4dLLGnZd28Nf3mm/XzRlXIzVeIZ4XcTalArua4EBEREXm66tWBu+6S8x07yjxU9Wb/4MHSV5ocVSE3Z2sgv/12WfmZlXTjqO99TIxMh0hIkA9HCwyU31ug+HnZ5oE8N9exgU1V3ENDgeBgxz2uNTNnAlu2SMeINT16SEA9d04WmMvKki6Chg2BuDhZ8O2zzwp/3rW0rAOuEcjNnTtnfJGVgbwUWCEnIiIyHhd1c75XXgFGjABef10uV6woC6oBeiu7vcqyQn7gAJCTY/0+GRlS2c/JAX7/3XHPTbZLTtZDatOmUsF++GHL/bgdqXdvOS0qkGdl6dVzNYfdkW3rzmhXV4KDZfu/ohaO8/EBhg6V8x9+KKe9e+v39/e3/rm2tqxnZemVaPNA3ry5TE/43/+MDeRqr/a8PH2LN6MwkJcCAzkREZHxuKib80VFyR7K11+vX6eqjkXNI09PB776Sm/VLUgtshUd7bhxRkcDAQGy13NR7cl79uirsvNXyBiqOl6zZulX2LdHnz5yunIlcOVK4dsPH5bfieBgoFkzuc5dA7ktVMeLcsstJX+OrS3rqjru7W25UrvJJPuuq4MAzmQeyAcOtNyX3EgM5KXAQE5EREQk1DxyNQe1oJEjgbvvlup6QRkZ+r7MqmLlCN7esn86UHQ7+o4d+vm//3bcc5PtzNvVnaFFCwnDGRnAH38Uvl21qzdqpIfmsgjkZT1/3Fbt2+sLuPn6At26lfw5trasq0BeubLlyu1GMg/kt96qX2Ygd0MM5ERERESiUyc53bIFuHTJ8ralS4H58+X8ihWFP/fAAVmTp1Ily7ZWR1AVTlsC+YEDlgs9kXOoBfWcFchNJr1tfenSwrerQN64sR6aHRnI7dnyzBlMJr1K3qmTbfPabW1ZL7jCuiuoU0emxsTGypaNamxGL+zGQF4KDOREREREIjpaFoPKzbVcbT09XVZmV7ZuLdy2vm+fnDZtWvRc19IqaWG37dv185omBxTIudTPRh08cYbi5pFbC+RnzjjuuV2tZR0Ann4aeP554L33bLu/rS3r1lZYN5qfH/DPP8CGDdJFwwq5G2MgJyIiItKp7ZFWr9avmzpV2tFr1ZIAkpsrb4TNmQdyRysYyI8dkznCgARwVSFXre1sW3c+Z7esA7K6uI+P7Aygfh+Usq6Qu2IgDw4GXnrJ9r9Be1vWXalCDkhrfkCAnFeBnBVyN8RATkRERKRTc09VID9xQl+J/b339NsLzjN3RiDft0+q882ayRZn//0nBwpSU+XN+T33yP24sJtzpaQAJ0/KeWcG8tBQfd2Dgm3rzmpZd5U55KWhWtaTk4vPQq7Ysl6QGhsr5G6IgZyIiMh43PbMdXTpIqebN8s88o8/lu3EOncG+vfX55k7M5DXrSstqhkZQM+ewOXL0jL/zTd6dTwmRl8lnhVy51I/+6goy1W4naFfPzl95x19tfXz5+UDkEXdHB3Ic3P19ndXqpDbS1XI8/KK3jkBcM2W9YJYIXdjDORERETG47ZnrqN2baBePQkdv/8OfPqpXP/II3KqAvnGjbIVGSCB/eBBOV8WgdzHRyqdgOwz7Ocn5+fM0eePt2olezV7eUm11pHzhal4ql29LH72JRkzRgL3kSPA22/LdVu3ymnNmkBQEFC9ulw+e7boveztkZQkfx9eXkBExLU/nlECAvS/peLa1l21Zd0cK+RujIGciIiIyJKaR/7ss0BiIhAZCQwYINc1aSKVsitX9MXTjhwBsrOBwEAJ9GVBtUJXrizbXFWoAGzbBnz7rVwfGytzaNX9eGzHedT+840aOf+5g4OB6dPl/NSpwLJlwPDhcll1TFStKgt/5eWVPrAdP653i6j54xERcrDIndmy0ro7tKyzQu7GGMiJiIiILKl54vv3y+kDD0gABmQF9YJt66pluXHjstun+JFHpF39p59km6PbbpPr1VzhVq3ktF07OWXbuvOo/efr1DHm+e+6C7jhBtkNoHdvCWXXXQd88IHc7u0tB5WA0retP/MM8OCDwIwZrrfl2bWwZaV1d2hZL1gh//tv+V8wYYJzx8FAXgoM5ERERESW1DxyQMLMmDGWtxcVyMuyZbljR+C334Drr5fLI0da3h4bK6dqGYK//iq7sZAlowO5ySQLDqrt9uLigBUrgEqV9Ptc6zxytc/6t9+65grrpWW+0vqsWbJKu6ZZ3scdWtZVhfz8eeli2LJFumTUGhPO4uYNE8ZgICciIiKyVKsWUL++bCXVr5/MxTWnAvnatTKXVlXS1bZjznDLLfImPClJxquChWpTXrdOFoFT2yJR2VGBvG5d48Zw3XXAJ59IEJs2DQgLs7z9WgK5pgFHj8r5TZv01nxPCOSqZX3GDH1nhZtvBtq3l/N5ee4RyCtXlgMymiah3HxtCWdihbwUGMiJiIiICnvwQQm5//d/hW9r1UreyKekSAhyRoW8oAoVgBEj5Hzr1vr1zZvLAYSMDGDNGueNp7zKzNRDrlEVcmX0aGlTLxjGgWsL5OfPW65C/v33lo/pztSBLBXGAekuUJKT5aAbIKHXVXl76+NLStIr4wzkboCBnIiIiKiwp56SFc2t7UTn4wNMnqzfb/duOe/sVbaffx4YN04W81JMJplHDAC//OLc8ZRHx49LVTIw0LXnGF9LIFfVcSU7W049oUKuAjkgnSaAZSBX1fHQUH1FdlelKviJicDOnXKegdwNMJATERER2e+RR2QhrbQ0WUzL2xto2NC5Y6hYUba6atHC8vo+feR06VLnjqc8Mp8/ruZwuyJHBPJGjSwXLfSEQF6/vpx26aIfwFq/Hrh8Wc67wwrrippHrqarBAbqX5+zMJCXAgM5ERGR8RISEhATE4M4a+VYckne3sBnn+lVs/r1AV9fY8ekdO8uLe2HDgH//GP0aDyb0Qu62coRgbxdO30HAvPHdGf/+5/sXLB0qWwZGB0NZGXJ+hCAe6ywrqiDBsuXy2nLlvJ/ypkYyEuBgZyIiMh48fHx2Lt3LzZx82i30rix3i5+ww3GjsVcSIi+8Bzb1suWuwVytUK6PdQ+63XrAnfcoV/vCRXygACgb1+pJptMQI8ecr1qW3eHBd0UVSFXOyw4u10dYCAvFQZyIiIiotJ74glpEX3nHaNHYolt687hLoFczY8+d06mWNhDVcjr1gUGDZLFw5o0sb54nLtTgVxVmd2xZV0tQsdA7iYYyImIiIhKz2SS6rirhRO1sNvq1fYHMLKduwTy8HDpnABkITp7mAfyKlVkT/L16117znxp3XSTnO7YIauVu2PLuhIb6/wxMJCXAgM5ERERkedp2lTmw2ZmAitXGj0az+UKe5DbwmSS3wcAOHbM9s/LzdXvr77GiAjL1ck9SbVqepD9/Xf3bFkH5OddcLFHZ2AgLwUGciIiIiLPYzIB/fvL+a+/NnYsnsqV9iC3ha2BfPx42c8+KUm+vuxs2eqvZs2yH6MrUG3rDz8M/PijnHeHQG4+xkaNgKAg54+BgbwUVKsJAzkRERGRZxk5Uk4XLQIuXjR0KB5JtX4HBcm8alenArmq6ltz8iTw7rvSlv7tt3q7enS081fsNsrQobJLwcWLQGqqXOfsLQ1Lw7xCbsT8cQDwMeZp3Rsr5ERERESeqXVraVvdtQv4/nvgwQeNHpFnUWHV1fcgV2ypkH/2mZ4LfvxRXxvB1VvyHSkuDjh7VrYNPHFCVmB3pV0UimJeITdi/jjACnmpMJATEREReSaTCbj3Xjk/Z46RI/FM7rKgm1JSIM/NBWbN0i+vWQNs2ybny1MgB2SOfFycrCp/yy3uccClUiU92xlVIWcgLwUGciIiIiLPNXy4tBpv3Ajs32/0aDyLuwVyNc6iAvmKFdKGHx4uc5Bzc/UDOeUtkLsjLy+gXTv5+bVvb9AYjHla98ZATkREROS5IiL0Pck//9zYsXgadwvkqkKuFmor6JNP5PTuu4HBg+V8SoqcMpC7h9Wr5feyUiVjnp+BvBQYyImIiIyXkJCAmJgYxMXFGT0U8kBqcbfPP5eVwckx3C2QV6sG+PnJ+/6TJy1vO3tWX1H8gQf0FfoVBnL34Oenz/s3gqGB/I8//kC/fv0QFRUFk8mERYsWWdyuaRomTpyI6tWrIyAgAD169MA///xjzGDNMJATEREZLz4+Hnv37sWmTZuMHgp5oFtvBaKigDNngNmzjR6N53C3QO7lBdSuLecLtq0vWADk5EjLc4sWMn86MlK/nYGcbGFoIL98+TJiY2ORkJBg9fbp06djxowZmDlzJv766y8EBQWhV69euHLlipNHaomBnIiIiMiz+fkBEybI+ZdfZpXcEfbulQMcJhNQv77Ro7FdUQu7rV0rp337yqmXF9Cvn5wPDHSPfbjJeIYG8t69e2Pq1KkYOHBgods0TcM777yD559/Hv3790fLli3xxRdf4PTp04Uq6c7GQE5ERETk+e6/H6hRQ1qVP/vM6NG4v9dfl9MBA2RFbndRVCDfsEFOO3TQr7v9djlt0cI9Vhkn47nsHPKjR48iMTERPXr0yL8uLCwM7du3xwb1229FZmYmUlNTLT4cjYGciIiIyPP5++tV8ldeYZX8Wpw8CXz9tZx/5hljx2Iva4E8MVHa700my9W5b74Z+OEHLgZItnPZQJ6YmAgAiIiIsLg+IiIi/zZrpk2bhrCwsPyPWrVqOXxsDORERERE5cPo0aySO8Lbb8sq5V26GLe9VGlZC+QbN8pps2ZAaKjl/QcOBBo3ds7YyP25bCAvrQkTJiAlJSX/48SJEw5/DgZyIiIiovKBVfJrd/Ei8PHHcv7pp40dS2lYC+TW2tWJSsNlA3nk1SUKz549a3H92bNn82+zxs/PD6GhoRYfjsZATkRERFR+mFfJZ80yejTuZ9YsIC1N5lX37m30aOynAvnx4/r7fwZychSXDeR169ZFZGQkVq5cmX9damoq/vrrL3Qw+DefgZyIiIio/PD3B/7v/+Q8q+T227VLTocNc8+FzmrUkPf/WVmy93h2NrB5s9zGQE7XytBAnpaWhu3bt2P79u0AZCG37du34/jx4zCZTBg3bhymTp2KxYsXY9euXbjnnnsQFRWFAQMGGDlsBnIiIiKickZVyU+dsr9KPmMG8OGHZTMud3DunJwWWBrKbVSoID97QNrWd+wAMjJkpfhGjYwdG7k/QwP55s2b0bp1a7Ru3RoAMH78eLRu3RoTJ04EADz99NN49NFHMWbMGMTFxSEtLQ3Lli2Dv7+/kcNmICciIiIqZ/z8LKvkV67Y9nlbtwKPPQY8/LDsw10eqUBepYqx47gW5vPIVbv69dfruYCotAz9FeratSs0TSv0MWfOHACAyWTClClTkJiYiCtXrmDFihVo5AKHoRjIiYiIiMqfoqrk//d/str2qVOFP+eTT/TzamGz8saTAvm77wLz5sl5tquTI/CYTikwkBMRERGVP+ZV8mnTpEr+xx9yfu/ewq3sly8Dc+fqlz//XFqdyxtPCOT9+0sG2LAB+PNPuY6BnByBgbwUGMiJiIiIyqfRo4GaNaUaPnOmtKIr33wDaJp+ed48IDUVqFdPKqzJyXp1tbzIypLvAQBUrmzsWK7FkCHAgQPy869QAYiMdL/91Mk1MZCXAgM5ERERUflkXiV/4glgzx4Jmr6+wP79/9/encdHVZ19AP/Nkkw2spCYDcIOQgSSsBpAq0AFVBDB9UWIWGvBoCCtirWA9hVxaZVWU3DXtlooyiYVFCP7GhPCYkJAzcuehCVkJeuc94+nN5NJQjZC7szk9/187ufO3GXmOZPJnPvcc+65thHFAVt39UcfBX79a3nc1rqtX7woc6MR8PfXNZSr1qMH8P77wJkzwOHDQLt2ekdEroAJeTMwISciItJfQkICIiMjMXjwYL1DoTbmkUeklVw7Fnz9deD22+Xx8uUyT0sDdu0CTCbg4YdlH5MJ2LlTkvi2Quuu3r69lN8VBAU5d2s/ORYm5M3AhJyIiEh/8fHxSEtLQ1JSkt6hUBtjsQD/vSkQRowA4uKABx6Q58uXA5WVtvXjxwNhYTJNmCDL4uKAEydaP249uML140TXEhPyZmBCTkRERNS2PfookJgI/Oc/cmx4552AlxeQmQncdhvwxReA2Qz87ne2fRYulHtXJycDAwYAmzbpF39rYUJOVD8m5M3AhJyIiIiobTMYgJEjAV9fee7tLSNxA8B338nx4mefAcOH2/aJipL7kg8cCFy4ANxxhyTwrowJOVH9mJA3AxNyIiIiIqpJ67ZuMMgtzu69t/Y2XboAO3YAN94IlJe7/qjrTMiJ6seEvBmYkBMRERFRTXfeCSxaBKxdCzz00JW38/AApk2Tx6tXt05semFCTlQ/JuTNwISciIiIiGoyGuWWaOPHN7yt1r19zx65p7mrYkJOVD8m5M3AhJyIiIiIrkZ4OBAbK4/XrtU3lmuJCTlR/ZiQNwMTciIiIiK6WnffLXNX7rbOhJyofkzIm4EJORERERFdLS0h37wZuHhR31iuFSbkRPVjQt4MTMiJiIiI6Gr16AH07QtUVgLr1+sdzbWhJeSBgfrGQeSomJA3AxNyIiIiImoJkybJ3BW7rV++DBQVyWO2kBPVjQl5MzAhJyIiIqKWcPvtMt+61fWOLS9ckLnJBPj56RsLkaNiQt4MWkKulL5xEBEREZFzGzAA8PICcnOBtDTb8gsXbK3Lzqr69eMGg76xEDkqJuTNwBZyIiIiImoJbm7AjTfK4+3bZX76tFxfPnKkczcAaS3k7K5OdGVMyJuBCTkRERERtZSbbpK5lpCvXAlcugTs2wekp+sW1lXjCOtEDWNC3gxMyImIiIiopWgJ+Y4dMv/iC9u6detaP56WwoScqGFMyJuBCTkRERERtZQbb5SBz06eBPbsAXbutK378kv94kpJAaZPB7Kymrc/E3KihjEhbwYm5ERERETUUry9ZXA3APjtb+W68e7d5fnu3cC5c/rEtXgx8PHHwEsvNW9/JuREDWNC3gyOlpCXlMg9LN95R+9IiIiIiKg5tG7ru3bJfMYMICZGkvOvvtInpowMma9cCVRUNH1/JuREDWNC3gyOlpBv3w6sXg28/LLekRARERFRc2gJuWbyZGD8eHmsx3XkVitw7Jg8zsmR+6Q3FRNyooYxIW8GR0vIT5+W+dmzjhMTERFRY508eRK33HILIiMj0b9/f6xcuVLvkIha3YgRtscDBgBdu9oS8m++AUpLWzeeU6ekF6Zm+fKmvwYTcqKGMSFvBkdNyMvLbT98REREzsJsNmPJkiVIS0vDN998gzlz5qCoqEjvsIhaVVAQ0KePPJ48WeYDBgDh4UBhIbBlS+vGc/SozM1mma9aBZSVNe01tOPSwMCWi4vI1TAhbwYjrHgQnyGw8LjeoQAAzpyp+zEREZEzCAsLQ3R0NAAgNDQUQUFBuHjxor5BEelg8WLgvvvk+nFAGoG0VvLVq1s3Fq27+m23ASEhwMWLwLffNryf1kCkFFvIiRqDCXkz9N38V3yGKfjNwcf1DgWAfRKutZYTERG1lG3btmH8+PEIDw+HwWDAmjVram2TkJCALl26wMPDA0OHDsW+ffua9V7JycmorKxERETEVUZN5HzuugtYsQJo3962bNIkma9a1byB1ZpLayHv00dOEgCN67b+1FPAddcBI0faurwzISe6MibkTVVcjKivXgEA9LiUrHMwonoSzhZyIiJqaUVFRYiKikJCQkKd61esWIG5c+di4cKFSElJQVRUFMaMGYOcnJyqbaKjo9G3b99a05lqFdfFixcxbdo0vPvuu/XGU1paivz8fLuJyFXdeqsk6OfOAdu2td77agl5r17A/ffL4zVr6u+2rhTw+efyWOti7+4O+PhcqyiJnB8T8qZ65x145mcDAALKsoELF3QOiC3kRER0bY0bNw4vvfQS7r777jrXv/HGG/j1r3+N6dOnIzIyEsuWLYOXlxc+/PDDqm1SU1Nx+PDhWlN4eDgASbInTpyIefPmYdiwYfXGs3jxYvj5+VVNbE0nV+bmBmj/eq053mH1hDw2VrqtFxTIfdGv5MQJIDtbrjufOROwWIDhwwGDoXViJnJGTMiborgYePVV+2Xp6frE8l+VlUBWlu05W8iJiKg1lZWVITk5GaNHj65aZjQaMXr0aOyu78i9GqUUHn74YYwcORJTp05tcPvnnnsOeXl5VdPJkyebHT+RM7j3XpmvWiXHfo1VXg5MmwY891zT3q+8HMjMlMc9e8q17L/8pTz/5psr77d3r8yjooC//Q3IzQW+/rpp703U1jAhb4p33gGys1F4XRckYqQsS0vTNaScHPsfZraQExFRazp//jwqKysREhJitzwkJARZ1c8Y12Pnzp1YsWIF1qxZg+joaERHR+PQoUNX3N5iscDX19duInJlI0cCAQFy3NeUbusbNwL/+AfwyitAU67syMyU40svLxnlHWhaQj50qMw9PaWFn4iujAl5Y1VrHf/x/j/gAKIAAJWH9E3Ia7aIs4WciIiczYgRI2C1WpGamlo19evXT++wiByGmxswcaI8bkq39X/8w/b48OHG71e9u7rW3VxLyJOTr3zFZs2EnIgaxoS8sUpLpb9Q797o/fI0nPaNBABkbdG3y7rWIu7paf+ciIioNQQFBcFkMiE7O9tueXZ2NkJDQ6/peyckJCAyMhKDBw++pu9D5Ai0buuffy4t5Q25dAlYt872/ODBxr+XlpD37GlbFhYG9OsnA7clJtbep7xcknWACTlRUzAhb6yAAOCtt4CDB+HRzg0xUyQhNx5Jg9WqX1hai/iAATI/d67+0S+JiIhakru7OwYOHIjEakfoVqsViYmJiI2NvabvHR8fj7S0NCQlJV3T9yFyBKNGAR07yrHejTcCGRn1b79ypbQnaeq5CqQW7R7kvXrZL7/tNpnX1W390CG5zZm/v30iT0T1Y0LeVP+9EGbCs30AAGEVp/DVcv1ut6Il5P36yW0lAODsWd3CISIiF1RYWFjVlRwAMjMzkZqaihMnTgAA5s6di/feew+ffPIJ0tPTMXPmTBQVFWH69Ok6Rk3kWtzdpWW6Wze5xjs2VtqKjh+ve/u//13m0dEyb04Lec2EvPp15EpJI1BenizTuqsPGSKDwBFR4/DfpZl8Owcg3ycMALBqUTqU0icOrYt6hw62QTd4HTkREbWk77//HjExMYiJiQEgCXhMTAwWLFgAALj//vvxpz/9CQsWLEB0dDRSU1OxcePGWgO9EdHV6dUL2LNHWshzc4EnnwS6dAGuvx6YMAF46ing008lOd6xQ67/XrxY9j10CLWOV0+dkpb3mtel19VlHQBuukluZXbyJLBgAdCpk7Ta79rF68eJmsusdwDOzBITCWw/C5WWhu3bh+Lmm1s/Bi35Dg+XpPz//o/XkRMRUcu65ZZboBo48zxr1izMmjWrlSIiaruuuw747jtg2TJg9Wpg505JoLUkurpRo2SEdjc3ack+eVKSaM1bb8lr5ebarlEvLpZEHajdQu7lJUn5t98CL71kWz5hAuDhIY+ZkBM1DVvIr4IlWq4jj0QaPvhAnxi0hLx6CzkTciIiags4qBu1VZ6e0hq+bZsM8Pb113Lf7zlzbF3UAWDGDOnq3ru3PK/ebV0pGSBOW15cLI+1xD4gAAgMrP3e99wj86AgYMkSYNAgGXVdO/4cMqSFCknURjAhvxqRtoT888+bdn/HlqL9+IWHs8s6ERG1LRzUjUiS5ttuA2bOBN58E9i/H8jOBg4cACZPlm3695d59YQ8NRX4+Wd5XFkp+wHS4g7YBgyu6bHHpIv6Tz8Bs2cDX34JdO4s67p1kxZ8Imo8JuRX478JeZRbGoqLgX//u3XfvrTUdh/IDh1kAthCTkRERNSWBQfbknCg7oT8iy/s99GuAd+6Vea33FL3axsMMqCcr688Dw0FNmwAhg0Dnn76qkMnanOYkF+NPjLSeoeK4/BCET76qHXfXhtN3WKRbkVsISciIiKimrSEXLv1mVK2gdy0dXv3ynItIf/FLxr/+n36SMv6jBktEy9RW8KE/Gpcdx0QFASDUrjduBG7djV8T8iWVH2EdYOBLeTURp05A1y+rHcULauyEkhIkCYHqp9SMuTwuXN6R0JE5LD69ZN5RobcK/yHH+RacXd34MUXZd3evcCRI3JNuocHrwUnai1MyK/WoEEAgJXWe7ARY7Dh1Sbc5PEqVR9hvfq8TbaQl5TUPbwoOY+yMuDjj4FXXgFeew345BO5LqM+S5fKmShfX2DwYOD55xtOzvfuBaZOBdata7HQW9yiRcCsWcDtt8sIPWVljd+3rAxYvhyYP9/1fwyUAh5/XPpOhobKUMLvvw9YrXpHRq2Eg7oRNU54ONC+vZzvTU+3DeY2Zoz8dBoMcj9z7fLL2FjpgUlE155BNXQfEyeXn58PPz8/5OXlwVe72KUlZWUBCxbA+uFHMFZWIA++uLBuF7qNv6Hl36uGJUtkhM377gNWrAAKC4F27WRdXp7t2h6XsGWL3Fjz0Udr30/j558lccnIAOLjgTfekFO+V+vYMaCiQm7uaWyBc1elpdJ9oVMnwFzjjoP5+cA//gEcPizlGzUKiIi48muVlcmklNSYNctrtco9S44dA7y9ZchV7X4kGqWAEyekjO7uMmmv5ekptXNNubnSGunhIcOrRkQA/v51x3jpksz9/Op+reqOHAEeeghITrZf/stfAmvWyH1WavriC7lHS82fsHHj5D4wNY8kKiqAl18G/vhHOSIBZP9XX5Xylpbapnbt5Mau9cnOBrZvl5Ny9W2bny/3lfnpJ/ketWsH/OY3tiFva9q2Dbj1VvukMjYW+PvfgR49rvw+BQXAn/8MvPOO/C4BgI8PsHChjLrj5lZ/eTZsANaule+mxSLx3XKLvGdDfz+NUnLvxcJCoG/fxu+Xni7/x926ydSYo0Cl5AfwL3+pve6RR4B33wVMpvpfo7IS+Owz+dvceKNcANlKP5zXvG5qY/h5EjXs1lvlcGrgQDk8yM+Xc9/TpslP9g8/yABxFy5Iq/mCBXpHTOTcGls3OUVCnpCQgNdffx1ZWVmIiorCW2+9hSGN7EfTWpV0xdGfkTZoKvoX7MJJcxd4H9qL9r2D8dORcpjyLqJLWKkcYHfqZEvusrKkJcvfXxIPrc95Iz3zDPCn16148/69mN3jP0D79hiyYCySivogPd2A3j0r5T3NZvsDY6WApCRg40ZJJMaPl4vQm0MpSQzd3W3vUV4uB+X5+XLAazDI+wQFyWOlgKIiSWhyciRJ/eknIDNTkrc+feSg3GiUe3C8/bYM4QnIgfqHHwL/8z/yfNcu4K67gPPnbTGNGCGJiY+PJCFlZdJqmp4uyc6+fZIsXr4syeovfylJXKdOEtuRI9LyumuXvJ6/vxysjxkjn5XVKjXYunVSnsBASeiKiiQR8faW1rrAQHmelyfJxpEjkhT6+QGjR0uSXFQkgwF88YVsW13PnpKYDxsmSeL581KGpCR5Le1f12yWmjQmRl4vI0NqWu3+Jdo2/fpJAh0SAly8KMlkTk7df1c/P7n5aPfukkB6eMhIMDt22JJZTf/+wM03SyJTWCjlSU62Dd3q5SXf7Y4dZa59Xu7ukkReuCAXsl2+LN/Du+6y3YulqEhee/1629mm4mK5v8sDD8jf9je/AebNkxupzpolrzNpEvDee3J0sX+/TLt22XpRDBsmLeU1y1LdvfcCr79uGzoWkNdet06S46+/lv1NJuDBByXp7d/fdnKkqEiSvT/8ofbn7OUl96eJi7NffuGCfC9OnZJ1kybJkVJenrzu734H/P738h3TKAWsWiXvr12vEhYm30FtyNyICGD6dJlqnjxQSk5KPPdc3Z9DRIScLHnkEfnNevNN+e3o3Vu+n507Az/+KJ9tUpKt63i/fsATT8hn4+NT+3VPnZLP8P335SSPxmSSz37JEvmu1iU3V3oAJCTI8w8+kCaef/5TTkBYrRLzRx/VPvmlSUmRIYn37bMtMxrl/65vXyAqChg7Vo5cW+KEXA1MIFsWP0+ihj31lPy0akJD5bDC319+4quPhbRlS9OuISei2lwmIV+xYgWmTZuGZcuWYejQoViyZAlWrlyJjIwMBAcHN7h/a1bS59LPo6j/jehS8ROOeMbgnHsHxORthg+Kqra57B+KUzEToCqt6L7r7zBV2Lqilkd0hcHbGwY3E4yXi2A4f14OxD095YDWZJKu2aWlgJ8f/q8kBKbc84jAKbs4ziMQ/l5lMBcXyAKjURKAsDA5uD5xQg6gNWazJLH9+klrcG6u3Avj2DE5WDeZ5AC3pMR+0loTtdcICpKE+dSpuhOdgABJ2nJymn7Nr8kk8aWmyvO77pJyHDwo7zVggBz8z57dcvefM5slCaqe2F4tk+nKSWDv3pL0790rScLVdrs1m+XERm7ula+vdXOTZLu0tPHdonv2lHKcP29/IuRqjR4tXda1E1O7dsmJkvx8+R+47jr5fv30k+2zmThREnetJXTTJuDOO69YllJLO5z+fQI6//4hmA7ul9FntNslWSy26cIFeQ8PD+COO+S9L1+Wlvfq36/u3SUejdksywoK7LuL9+oliTUAJCYCmzfL41tvlddWSk5IpadLIt+rl5zU8PGRExszZwLffCP7aDeU7dVL/raZmbaTH927S3f3SZPkM/nkEzlZoZ0QMBjkc/7Vr+Qk06lT8pm//76sf+ghoGtX+c4nJUmi3JTu8tpnYDbLb4QW7y23ADfdJPGeOCFly8y036d3b1vrOiB9K194Qf4G2dmA1YoSkzfOpZ5G8Lr3YCmT7b6e+DcEL5iJ/v3/+zX497/lhF1lpZQlJkZO8vn5yYmMH3+UE3MpKfK5+/rK9ywpyfY5VhccLL1WuneX6eab7YcubiYmkC2LnydRw06dkvOvHTvKz9qQIbYOaO+8YxuQzWKRdouaHeuIqGlcJiEfOnQoBg8ejLfffhsAYLVaERERgSeeeALz5s1rcP/WrqSPrc9A0PgbEYBLdstL4Q4DFNxRbrd8N26EEVYMRhKMaN6fotzDB24T7wRyc1G2aQvcrQ1cdwugxOSFpIAxiCg9hi4Fh5v1vvWp9PBChV8gDEYjDJXlcMupfS2r8vCENTgEKiQM1q7dgC5dYcrPheHoERhOHIdVGaAMJhR2j8LByS8iw9oTPT54DrcmvWb3OtuC7sYrff4Os78PRkUcxf9snwG/sxkwlJXCUFEG5W6B8vBERXA4CgfcjKLoETB3DIVnoBc8L56C26YNMG35FoaCfMBggGrni8p7HkDFw48CgYEwHD4I0/atMG/4Eoad2wGlYBgzRpKXoCBJ3i5fluTJ29vWSpybK8t8faX2699fTookJ0vL4IkTsr5dO0nMbr3V1ssgL0+GOf32W7mRqK+vvFfnznKt9IABtq7g587Ja6amyna9esmJla5dJeHWuqanpkpc2dlSyw4fLq+ldQ9WSno3lJTI9kePSoJUXCxTeLhcGtCtm+3Dz86W5Gb3bmn99/GRRComRmK0WCQxPX1ajgROnZJaXjuZ4+MjJ2p69ZLk2mhEZaWtU0PprmQETb8Tbuez7P7mlzxCsMXnTvwx6C3klXmiZ09p9A4NBUpWfomZiZPhpspx1twRh80x2FUSg/2IwQ6MwAUEISBAih4TA/S9vhxhEWaEhBrg7S0fmdexA2g3fzbcdm6t9b0tC++MS3dOhWHaVPgP6QW3g8lyhLNhQ+1eDmFhwLPPynXObm5QCrCWV0ItXgzTHxfCUMdJl/KgUBxb8hUu946p6gRRVqpgWLcWkR/Mhd+FzFr7VBjdsOumeThy93PwCPCExSLn4fLzgYJzJbg+bTWikz9AWFpirX0BQBkM+Oq2Jdg18En07Clfn8BAwMNaDO9tG+Dx2Qfw2rYRys0deROmIueOR3Bq288wb0uEpfAiLod3h6FXD3gMjUbI2Bh0DLwM0ycfwvDuMhiqn/yr/p5GI4p7RuPi6PuQOyEOhrBQuJkVPNOS4f/0r+GXmVrnfpoD6I+FeBFrMRGAHFT27y897KMy1+CJ3Q/CYi2p9zU2+j+Ab8a+gc43hsm/je9ZeP10CIa0H+C5fyd8dn0DY2GB/d/nhZfgtvD5el+3MZhAtix+nkRXJzVV6kRAWsa3bNEzGiLX4BIJeVlZGby8vPD5559j4sSJVcvj4uJw6dIlrF27ttY+paWlKK02EFR+fj4iIiJatZJO+dseFC96Exg4EJFzbkPlDf3x2XIjvl5XisicLbg5dy08VTG+7fIoMq4bgQsXgILjFxGUfRiqrBwmVKIYXjiPIOTBDx4oQTsUwIRKXIYnyuEGf1xCMHJghRFvJv8CkQPkNOaLzxZjzWsZKIQPLsEfFTDDAyXwQSHCcQYROIlSWLAB41AE6UbaE0dxE7bjemSgF46iAO2QimikIRIVMMMIKxQMuAxPlMADpbCgBB5VUxnc4YNCBOE8vFCMTHRFFkIB2LrJe6IYPfAjvFCMHAQjGyEohnddH1+Dbsd/MAT7cBD98T0G4QQ6N7xTC/FFHoywIs8QALNZWuRqTlrvVoPBll/X9bi+dQ091tS8RLeh54Dk3dp/ffX51Sy72teorLQ10tfsQOCOUnTCCQQgF94oQgaux1mE1y5YNcHIRiVMuIAgAHL+YdQoaYjdvLmxnSgURiERfZCOQFyABaXYiLHYjpugqo2HaTRKEu9mVuhsPo0+hiPIhy+OqR64oNqjokLKpM01UUjFMOyCCZUwQOEUOiIdffAjeqACdV/vbYAVnXACfXEYPfAjLiAQJ9AJ6eiDc2i4x1AXZGI6PsLD+BihyMIpdMT/oQv+jN/iK9xR777tcQHlcEMBmvI7qnA9MnA7vkIM9iMHIThtjMAP1t7YjdgrvpYZ5ZiLN3An1uMS/JGDYFTADC8Uw8sL+HHgA/C573ZYlQGbNsmBY4F93owAXMQApKAfDqEHfoQPCuGNIuQgGNtxE7bjJpxGx3qjd0MZRhh2IRJp6KJ+Rnf8BPXr32DSu2Ob8BnUjQlky0hISEBCQgIqKytx9OhRfp5EzVRRIef0L1+WK39eeEHviIicn0sk5GfOnEGHDh2wa9cuxMbGVi1/5plnsHXrVuzdu7fWPi+88AJe1O7fUI2zVNJWqyQmly/XnrRkpfrUsaNc7lh9/6NHpeExOFgaaQ8cANLSpPGupEQSiOuukxawggJp5MzNlX2Vss21JKm01L6Hes0EQ5s3Z1lDvbKNRmlw7dBBGmh79pSerWFhtli11zl/XhqKk5Ol16+7u63nbHGxfH5az+bi4toH8OR4PDykA4HJJI33gJzBv/lmucTXx0f+xgcPSiN9To6MsTZsmHQoKCmRkxLVu+VVVMil1SkpMv/xR7k0OitL/s/Ky23vVZO7u3RMsFrlMvyW/vX09pYDIqPR/iSM2Syt/+Hh8p4nT0pZIyLk/0EbhOf8eflul/53yAo/P5kqKqRjgjbl5gJGWBEUbERQkPweXHed7ffj6FE5aVFWJvt6eMhkNNpOKkRHy5UuoaHSa//YMfksf/yx4cHxAek8ERIiZdQ+8/Jyeb8uXaSDxQ03yN/YYpEhHqKjJc6aKivlfVNSpBOGNjah1ukDkN+MDh3kWkmLRcp6+LDsk5YmZdZ6rHt4yHptXMLqXn75ypfbNwUT8pbFz5Po6t1zj4yjmpRkay0nouZrswm5I7SQU+NpiX/NxF0pSU4slsYP1NxU2skPLY7qMdVcZrXakv+GJq0F+Eotwg2ta+hxzTib8rixre+NWdaS641GWxKlzT08Gh4Y/FpRSr6H5eXy2GiUkwLVB7OvrJSErazMPqEsL7dtr/WiuNIckPepqJATD65wixktka1+cq/6Y6tV/rf9/a/d/3ZLKS+3H07Aw0P+Rg0N3t4YTCBbFj9PoqtXVCRXwTV0kxEiapzG1k1XGH7WMQQFBcFkMiE7O9tueXZ2NkJDQ+vcx2KxwOIKR7VthMFgGwOqtf9sRqOMFUZUk8Hw327o9ZwQMJmkZZrsab1aXIGbm/QAICJqC7y97W/iQUSto+Xv5dKC3N3dMXDgQCQm2gYislqtSExMtGsxJyIiIiIiInI2Dt1CDgBz585FXFwcBg0ahCFDhmDJkiUoKirC9OnT9Q6NiIiIiIiIqNkcPiG///77ce7cOSxYsABZWVmIjo7Gxo0bERISondoRERERERERM3m8Ak5AMyaNQuzZs3SOwwiIiJyINVve0ZEROSMHPoaciIiIqIriY+PR1paGpKSkvQOhYiIqFmYkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5EREROaWEhARERkZi8ODBeodCRETULEzIiYiIyCnFx8cjLS0NSUlJeodCRETULGa9A7jWlFIAgPz8fJ0jISIiElqdpNVRdHVY1xMRkaNpbF3v8gl5QUEBACAiIkLnSIiIiOwVFBTAz89P7zCcHut6IiJyVA3V9Qbl4qfnrVYrzpw5g3bt2sFgMFzVa+Xn5yMiIgInT56Er69vC0WoH1cqjyuVBXCt8rhSWQCWx5E5U1mUUigoKEB4eDiMRl49drVY118Zy+O4XKksgGuVx5XKArhWeZypLI2t612+hdxoNKJjx44t+pq+vr4O/wVoClcqjyuVBXCt8rhSWQCWx5E5S1nYMt5yWNc3jOVxXK5UFsC1yuNKZQFcqzzOUpbG1PU8LU9ERERERESkAybkRERERERERDpgQt4EFosFCxcuhMVi0TuUFuFK5XGlsgCuVR5XKgvA8jgyVyoL6cfVvkcsj+NypbIArlUeVyoL4FrlcaWyaFx+UDciIiIiIiIiR8QWciIiIiIiIiIdMCEnIiIiIiIi0gETciIiIiIiIiIdMCEnIiIiIiIi0gET8iZISEhAly5d4OHhgaFDh2Lfvn16h9SgxYsXY/DgwWjXrh2Cg4MxceJEZGRk2G1TUlKC+Ph4BAYGwsfHB5MnT0Z2drZOETfeK6+8AoPBgDlz5lQtc7aynD59Gg899BACAwPh6emJfv364fvvv69ar5TCggULEBYWBk9PT4wePRrHjh3TMeIrq6ysxPz589G1a1d4enqie/fu+N///V9UHzfSUcuzbds2jB8/HuHh4TAYDFizZo3d+sbEffHiRUyZMgW+vr7w9/fHr371KxQWFrZiKWzqK095eTmeffZZ9OvXD97e3ggPD8e0adNw5swZu9dwlvLUNGPGDBgMBixZssRuuSOVhxwb63rHwrresThzXQ+4Vn3Put516nom5I20YsUKzJ07FwsXLkRKSgqioqIwZswY5OTk6B1avbZu3Yr4+Hjs2bMHmzZtQnl5OW677TYUFRVVbfPUU0/hyy+/xMqVK7F161acOXMGkyZN0jHqhiUlJeGdd95B//797ZY7U1lyc3MxfPhwuLm5YcOGDUhLS8Of//xnBAQEVG3z2muv4a9//SuWLVuGvXv3wtvbG2PGjEFJSYmOkdft1VdfxdKlS/H2228jPT0dr776Kl577TW89dZbVds4anmKiooQFRWFhISEOtc3Ju4pU6bghx9+wKZNm7B+/Xps27YNjz32WGsVwU595SkuLkZKSgrmz5+PlJQUrFq1ChkZGZgwYYLdds5SnupWr16NPXv2IDw8vNY6RyoPOS7W9Y6FdT3r+pbmSvU963oXqusVNcqQIUNUfHx81fPKykoVHh6uFi9erGNUTZeTk6MAqK1btyqllLp06ZJyc3NTK1eurNomPT1dAVC7d+/WK8x6FRQUqJ49e6pNmzapX/ziF2r27NlKKecry7PPPqtGjBhxxfVWq1WFhoaq119/vWrZpUuXlMViUf/6179aI8QmueOOO9Qjjzxit2zSpElqypQpSinnKQ8AtXr16qrnjYk7LS1NAVBJSUlV22zYsEEZDAZ1+vTpVou9LjXLU5d9+/YpAOr48eNKKecsz6lTp1SHDh3U4cOHVefOndWbb75Ztc6Ry0OOhXW942Bd71h1o8ZV6nqlXKu+Z13v2OVpCFvIG6GsrAzJyckYPXp01TKj0YjRo0dj9+7dOkbWdHl5eQCA9u3bAwCSk5NRXl5uV7bevXujU6dODlu2+Ph43HHHHXYxA85XlnXr1mHQoEG49957ERwcjJiYGLz33ntV6zMzM5GVlWVXHj8/PwwdOtQhyzNs2DAkJibi6NGjAIADBw5gx44dGDduHADnK4+mMXHv3r0b/v7+GDRoUNU2o0ePhtFoxN69e1s95qbKy8uDwWCAv78/AOcrj9VqxdSpU/H000/jhhtuqLXe2cpD+mBd71hY1ztm3eiqdT3g+vU963rHZdY7AGdw/vx5VFZWIiQkxG55SEgIjhw5olNUTWe1WjFnzhwMHz4cffv2BQBkZWXB3d296p9TExISgqysLB2irN/y5cuRkpKCpKSkWuucrSw///wzli5dirlz5+L3v/89kpKS8OSTT8Ld3R1xcXFVMdf1vXPE8sybNw/5+fno3bs3TCYTKisrsWjRIkyZMgUAnK48msbEnZWVheDgYLv1ZrMZ7du3d+iyAXIt5rPPPosHH3wQvr6+AJyvPK+++irMZjOefPLJOtc7W3lIH6zrHQfresctj6vW9YBr1/es6x2vPNUxIW9D4uPjcfjwYezYsUPvUJrl5MmTmD17NjZt2gQPDw+9w7lqVqsVgwYNwssvvwwAiImJweHDh7Fs2TLExcXpHF3T/fvf/8ann36Kzz77DDfccANSU1MxZ84chIeHO2V52oLy8nLcd999UEph6dKleofTLMnJyfjLX/6ClJQUGAwGvcMh0h3resfCup70xrre8bHLeiMEBQXBZDLVGsEzOzsboaGhOkXVNLNmzcL69euxefNmdOzYsWp5aGgoysrKcOnSJbvtHbFsycnJyMnJwYABA2A2m2E2m7F161b89a9/hdlsRkhIiNOUBQDCwsIQGRlpt6xPnz44ceIEAFTF7Czfu6effhrz5s3DAw88gH79+mHq1Kl46qmnsHjxYgDOVx5NY+IODQ2tNehTRUUFLl686LBl0yro48ePY9OmTVVnzAHnKs/27duRk5ODTp06Vf0uHD9+HL/97W/RpUsXAM5VHtIP63rHwLoeVc8dsTyuWtcDrlnfs653zPLUxIS8Edzd3TFw4EAkJiZWLbNarUhMTERsbKyOkTVMKYVZs2Zh9erV+O6779C1a1e79QMHDoSbm5td2TIyMnDixAmHK9uoUaNw6NAhpKamVk2DBg3ClClTqh47S1kAYPjw4bVuS3P06FF07twZANC1a1eEhobalSc/Px979+51yPIUFxfDaLT/STGZTLBarQCcrzyaxsQdGxuLS5cuITk5uWqb7777DlarFUOHDm31mBuiVdDHjh3Dt99+i8DAQLv1zlSeqVOn4uDBg3a/C+Hh4Xj66afx9ddfA3Cu8pB+WNc7Btb1jl03umpdD7hefc+63nHLU4u+Y8o5j+XLlyuLxaI+/vhjlZaWph577DHl7++vsrKy9A6tXjNnzlR+fn5qy5Yt6uzZs1VTcXFx1TYzZsxQnTp1Ut999536/vvvVWxsrIqNjdUx6sarPvKqUs5Vln379imz2awWLVqkjh07pj799FPl5eWl/vnPf1Zt88orryh/f3+1du1adfDgQXXXXXeprl27qsuXL+sYed3i4uJUhw4d1Pr161VmZqZatWqVCgoKUs8880zVNo5anoKCArV//361f/9+BUC98cYbav/+/VUjkTYm7rFjx6qYmBi1d+9etWPHDtWzZ0/14IMPOlx5ysrK1IQJE1THjh1Vamqq3e9CaWmp05WnLjVHXlXKscpDjot1vWNiXe84nLmuV8q16nvW9a5T1zMhb4K33npLderUSbm7u6shQ4aoPXv26B1SgwDUOX300UdV21y+fFk9/vjjKiAgQHl5eam7775bnT17Vr+gm6BmJe1sZfnyyy9V3759lcViUb1791bvvvuu3Xqr1armz5+vQkJClMViUaNGjVIZGRk6RVu//Px8NXv2bNWpUyfl4eGhunXrpp5//nm7H35HLc/mzZvr/D+Ji4tTSjUu7gsXLqgHH3xQ+fj4KF9fXzV9+nRVUFCgQ2nqL09mZuYVfxc2b97sdOWpS12VtCOVhxwb63rHw7recThzXa+Ua9X3rOtdp643KKVUy7S1ExEREREREVFj8RpyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIrqmDAYD1qxZo3cYREREdA2xvidqHibkRC7s4YcfhsFgqDWNHTtW79CIiIiohbC+J3JeZr0DIKJra+zYsfjoo4/sllksFp2iISIiomuB9T2Rc2ILOZGLs1gsCA0NtZsCAgIASPeypUuXYty4cfD09ES3bt3w+eef2+1/6NAhjBw5Ep6enggMDMRjjz2GwsJCu20+/PBD3HDDDbBYLAgLC8OsWbPs1p8/fx533303vLy80LNnT6xbt+7aFpqIiKiNYX1P5JyYkBO1cfPnz8fkyZNx4MABTJkyBQ888ADS09MBAEVFRRgzZgwCAgKQlJSElStX4ttvv7WrgJcuXYr4+Hg89thjOHToENatW4cePXrYvceLL76I++67DwcPHsTtt9+OKVOm4OLFi61aTiIioraM9T2Rg1JE5LLi4uKUyWRS3t7edtOiRYuUUkoBUDNmzLDbZ+jQoWrmzJlKKaXeffddFRAQoAoLC6vW/+c//1FGo1FlZWUppZQKDw9Xzz///BVjAKD+8Ic/VD0vLCxUANSGDRtarJxERERtGet7IufFa8iJXNytt96KpUuX2i1r37591ePY2Fi7dbGxsUhNTQUApKenIyoqCt7e3lXrhw8fDqvVioyMDBgMBpw5cwajRo2qN4b+/ftXPfb29oavry9ycnKaWyQiIiKqgfU9kXNiQk7k4ry9vWt1KWspnp6ejdrOzc3N7rnBYIDVar0WIREREbVJrO+JnBOvISdq4/bs2VPreZ8+fQAAffr0wYEDB1BUVFS1fufOnTAajbj++uvRrl07dOnSBYmJia0aMxERETUN63six8QWciIXV1paiqysLLtlZrMZQUFBAICVK1di0KBBGDFiBD799FPs27cPH3zwAQBgypQpWLhwIeLi4vDCCy/g3LlzeOKJJzB16lSEhIQAAF544QXMmDEDwcHBGDduHAoKCrBz50488cQTrVtQIiKiNoz1PZFzYkJO5OI2btyIsLAwu2XXX389jhw5AkBGRF2+fDkef/xxhIWF4V//+hciIyMBAF5eXvj6668xe/ZsDB48GF5eXpg8eTLeeOONqteKi4tDSUkJ3nzzTfzud79DUFAQ7rnnntYrIBEREbG+J3JSBqWU0jsIItKHwWDA6tWrMXHiRL1DISIiomuE9T2R4+I15EREREREREQ6YEJOREREREREpAN2WSciIiIiIiLSAVvIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB/8PwJjIr8Z2FWMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -609,7 +2194,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -644,7 +2229,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -664,9 +2249,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE loss is 0.291\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzDklEQVR4nOzdd3hTZfsH8G+a7r33oKWDUTa07FaZIggCIuuHKC4EBAFFFBEQxYUCKuAEfZkqG7XIaimjLVDKphs6aOmim67k/P4IjRQKNG3ak7Tfz3Xlet+enJzcOcQk93nu534kgiAIICIiIiIiIiKNpyN2AERERERERERUN0ziiYiIiIiIiLQEk3giIiIiIiIiLcEknoiIiIiIiEhLMIknIiIiIiIi0hJM4omIiIiIiIi0BJN4IiIiIiIiIi3BJJ6IiIiIiIhIS+iKHYAmksvluHnzJszMzCCRSMQOh4iIiIiIiJo5QRBQVFQEZ2dn6Og8fLydSXwtbt68CTc3N7HDICIiIiIiohYmNTUVrq6uD72fSXwtzMzMAChOnrm5ucjREBERERERUXNXWFgINzc3ZT76MEzia1FdQm9ubs4knoiIiIiIiJrM46Z0s7EdERERERERkZZgEk9ERERERESkJZjEExEREREREWkJzoknIiIiIiKqJ0EQUFVVBZlMJnYopOGkUil0dXUbvIw5k3giIiIiIqJ6qKioQEZGBkpLS8UOhbSEsbExnJycoK+vX+9jMIknIiIiIiJSkVwuR3JyMqRSKZydnaGvr9/gEVZqvgRBQEVFBbKzs5GcnAwfHx/o6NRvdjuTeCIiIiIiIhVVVFRALpfDzc0NxsbGYodDWsDIyAh6enq4ceMGKioqYGhoWK/jsLEdERERERFRPdV3NJVaJnW8X/iOIyIiIiIiItISTOKJiIiIiIiItISoSfyKFSvQo0cPmJmZwd7eHqNGjUJsbGyNfYKDgyGRSGrcXn/99UceVxAELF68GE5OTjAyMsLAgQMRHx/fmC+FiIiIiIioWWnVqhVWrVoldhhqExoaColEgvz8fLFDaRBRk/iwsDDMmDEDEREROHjwICorKzF48GCUlJTU2O+VV15BRkaG8vb5558/8riff/451qxZg/Xr1yMyMhImJiYYMmQIysrKGvPlEBERERERaYXU1FS89NJLys76Hh4emD17NnJzc8UOTS2Cg4MxZ86cGtt69+6NjIwMWFhYiBOUmojanT4kJKTG3xs3boS9vT3Onj2L/v37K7cbGxvD0dGxTscUBAGrVq3CokWLMHLkSADAb7/9BgcHB+zevRvjx49X3wsQWVmlDDoSCfR1OSuCiIiIiIjqJikpCb169YKvry+2bt0KT09PXL58GW+//Tb++ecfREREwNrausnjkslkkEgkjdYsUF9fv855pSbTqOyvoKAAAB54w2zevBm2trbw9/fHwoULUVpa+tBjJCcnIzMzEwMHDlRus7CwQGBgIE6dOlXrY8rLy1FYWFjjpg0+2n8Fo9edQEJWsdihEBERERG1eIIgoLSiSpSbIAh1jnPGjBnQ19fHv//+i6CgILi7u+Opp57CoUOHkJ6ejvfff1+5b1FRESZMmAATExO4uLjgu+++q/F6lyxZAnd3dxgYGMDZ2Rlvvvmm8v7y8nLMnz8fLi4uMDExQWBgIEJDQ5X3b9y4EZaWlti7dy/atWsHAwMD/PTTTzA0NHyg5H327Nl48sknAQC5ubmYMGECXFxcYGxsjA4dOmDr1q3KfadOnYqwsDCsXr1aOSX7+vXrtZbT79ixA+3bt4eBgQFatWqFlStX1njeVq1a4ZNPPsFLL70EMzMzuLu744cfflDeX1FRgZkzZ8LJyQmGhobw8PDAihUr6vxvUR8as068XC7HnDlz0KdPH/j7+yu3T5w4ER4eHnB2dsaFCxewYMECxMbGYufOnbUeJzMzEwDg4OBQY7uDg4PyvvutWLECS5cuVdMraRq5xeX4+2IGbpdWYvg34fhgeDtMDHCHRCIROzQiIiIiohbpTqUM7RYfEOW5rywbAmP9x6d3eXl5OHDgAD7++GMYGRnVuM/R0RGTJk3C9u3bsXbtWgDAF198gffeew9Lly7FgQMHMHv2bPj6+mLQoEHYsWMHvv76a2zbtg3t27dHZmYmzp8/rzzezJkzceXKFWzbtg3Ozs7YtWsXhg4diosXL8LHxwcAUFpais8++ww//fQTbGxs4OrqisWLF2PHjh2YNm0aAMUI/fbt2/Hxxx8DAMrKytCtWzcsWLAA5ubm+Ouvv/B///d/aN26NQICArB69WrExcXB398fy5YtAwDY2dnh+vXrNV7v2bNnMW7cOCxZsgTPP/88Tp48iTfeeAM2NjaYOnWqcr+VK1fio48+wnvvvYc///wT06dPR1BQEPz8/LBmzRrs3bsXv//+O9zd3ZGamorU1FTV/vFUpDFJ/IwZM3Dp0iUcP368xvZXX31V+f87dOgAJycnDBgwAImJiWjdurVannvhwoWYO3eu8u/CwkK4ubmp5diNxcbUACFz+mP+H+cRHp+D93ddwtFr2fhsTAfYmBqIHR4REREREWmg+Ph4CIKAtm3b1np/27Ztcfv2bWRnZwMA+vTpg3fffRcA4OvrixMnTuDrr7/GoEGDkJKSAkdHRwwcOBB6enpwd3dHQEAAACAlJQUbNmxASkoKnJ2dAQDz589HSEgINmzYgE8++QQAUFlZibVr16JTp07KGMaPH48tW7Yok/jDhw8jPz8fY8aMAQC4uLhg/vz5yv1nzZqFAwcO4Pfff0dAQAAsLCygr6//2GnZX331FQYMGIAPPvhA+fquXLmCL774okYSP2zYMLzxxhsAgAULFuDrr7/G0aNH4efnh5SUFPj4+KBv376QSCTw8PCo479E/WlEEj9z5kzs378fx44dg6ur6yP3DQwMBAAkJCTUmsRX/yPdunULTk5Oyu23bt1C586daz2mgYEBDAy0L/F1MDfEry8G4JcTyfg8JBaHrt7C0NX5WPlcJ/T3tRM7PCIiIiKiFsVIT4ory4aI9tyqqGv5fa9evR74u7pj/XPPPYdVq1bBy8sLQ4cOxbBhwzBixAjo6uri4sWLkMlk8PX1rfH48vJy2NjYKP/W19dHx44da+wzadIk9OzZEzdv3oSzszM2b96Mp59+GpaWlgAUI/OffPIJfv/9d6Snp6OiogLl5eUwNjZW6RxcvXpV2UetWp8+fbBq1SrIZDJIpYpzem98EokEjo6OyMrKAqAo3R80aBD8/PwwdOhQDB8+HIMHD1YpDlWJOideEATMnDkTu3btwpEjR+Dp6fnYx8TExABAjQT9Xp6ennB0dMThw4eV2woLCxEZGfnAG7A50NGR4OV+Xtg9ow987E2RXVSOKb9EYdm+KyirlIkdHhERERFRiyGRSGCsryvKra7Tar29vSGRSHD16tVa77969SqsrKxgZ/f4QUE3NzfExsZi7dq1MDIywhtvvIH+/fujsrISxcXFkEqlOHv2LGJiYpS3q1evYvXq1cpjGBkZPRB7jx490Lp1a2zbtg137tzBrl27MGnSJOX9X3zxBVavXo0FCxbg6NGjiImJwZAhQ1BRUVGnc6AqPT29Gn9LJBLI5XIAQNeuXZGcnIyPPvoId+7cwbhx4zB27NhGiaOaqEn8jBkzsGnTJmzZsgVmZmbIzMxEZmYm7ty5AwBITEzERx99hLNnz+L69evYu3cvpkyZgv79+9e4GtKmTRvs2rULgOKEzpkzB8uXL8fevXtx8eJFTJkyBc7Ozhg1apQYL7NJtHM2x75ZffFCL0X5xi8nkjHquxOIzSwSOTIiIiIiItIUNjY2GDRoENauXavMu6plZmZi8+bNeP7555WJdURERI19IiIiapTiGxkZYcSIEVizZg1CQ0Nx6tQpXLx4EV26dIFMJkNWVha8vb1r3OrSIX7SpEnYvHkz9u3bBx0dHTz99NPK+06cOIGRI0di8uTJ6NSpE7y8vBAXF1fj8fr6+pDJHj2o2bZtW5w4caLGthMnTsDX11c5Cl8X5ubmeP755/Hjjz9i+/bt2LFjB/Ly8ur8eFWJmsSvW7cOBQUFCA4OhpOTk/K2fft2AIoTf+jQIQwePBht2rTBvHnzMGbMGOzbt6/GcWJjY5Wd7QHgnXfewaxZs/Dqq6+iR48eKC4uRkhICAwNDZv09TU1Qz0plo70xy9Tu8PWVB/XMosw4tvj2HgiWaVulURERERE1Hx9++23KC8vx5AhQ3Ds2DGkpqYiJCQEgwYNgouLi7KBHKBIaj///HPExcXhu+++wx9//IHZs2cDUHSX//nnn3Hp0iUkJSVh06ZNMDIygoeHB3x9fTFp0iRMmTIFO3fuRHJyMqKiorBixQr89ddfj41x0qRJiI6Oxscff4yxY8fWmP7s4+ODgwcP4uTJk7h69Spee+013Lp1q8bjW7VqhcjISFy/fh05OTnKkfN7zZs3D4cPH8ZHH32EuLg4/Prrr/j2229rzLd/nK+++gpbt27FtWvXEBcXhz/++AOOjo7K0v/GIOqc+Mcllm5ubggLC1P5OBKJBMuWLVN2ImxpnmzjgH9m98fbf55HaGw2luy7gtC4bHwxthPszLRv7j8REREREamPj48Pzpw5gw8//BDjxo1DXl4eHB0dMWrUKHz44Yc1lvyeN28ezpw5g6VLl8Lc3BxfffUVhgxRzPu3tLTEp59+irlz50Imk6FDhw7Yt2+fcs77hg0bsHz5csybNw/p6emwtbVFz549MXz48MfG6O3tjYCAAERFRSnn4FdbtGgRkpKSMGTIEBgbG+PVV1/FqFGjagzszp8/Hy+88ALatWuHO3fuIDk5+YHn6Nq1K37//XcsXrwYH330EZycnLBs2bIaTe0ex8zMDJ9//jni4+MhlUrRo0cP/P3334221j0ASAQO0T6gsLAQFhYWKCgogLm5udjh1JsgCPjt1A18/PdVVFTJYWOijy+e64gn2zg8/sFERERERPRQZWVlSE5OhqenZ7Ov+CX1edT7pq55qKjl9NS4JBIJXujdCvtm9kUbRzPkllTgpY1nsHjPJTa9IyIiIiIi0kJM4lsAP0cz7J7RB9P6Krr//3bqBoZ/cxyXbxY85pFERERERESkSZjEtxCGelJ8MLwdfn0pAHZmBkjIKsaz353ET+FJkMs5o4KIiIiIiEgbMIlvYYJ87RAyux8GtnVAhUyO5X9dxZRfonCrsEzs0IiIiIiIiOgxmMS3QDamBvhxSjd8/Kw/DPV0cDwhB0NWHUPIpUyxQyMiIiIiIqJHYBLfQkkkEkwK9MD+Wf3Q3tkc+aWVeH3TWSzceQGlFVVih0dERERERES1YBLfwnnbm2LXG33wWpAXJBJga1Qqhq85jgtp+WKHRkRERERERPdhEk/Q19XBwqfaYvO0QDiaGyIppwSj157E2tAEyNj0joiIiIiISGMwiSel3t62CJnTD0/5O6JKLuDzkFhM/DECN/PviB0aERERERFpmalTp2LUqFHKv4ODgzFnzpwGHVMdx9B2TOKpBktjfayd1BWfj+0IY30pIpPzMHTVMey/cFPs0IiIiIiISA2mTp0KiUQCiUQCfX19eHt7Y9myZaiqatzeWDt37sRHH31Up31DQ0MhkUiQn59f72M0V0zi6QESiQTjurvh7zf7oZObJQrLqjBzyznM+/08isvZ9I6IiIiISNsNHToUGRkZiI+Px7x587BkyRJ88cUXD+xXUVGhtue0traGmZmZ6MfQdkzi6aFa2Zrgz9d7YdaT3tCRADui0zBsdTiiU26LHRoRERERUbMhkws4lZiLPTHpOJWY2yR9qQwMDODo6AgPDw9Mnz4dAwcOxN69e5Ul8B9//DGcnZ3h5+cHAEhNTcW4ceNgaWkJa2trjBw5EtevX//vNchkmDt3LiwtLWFjY4N33nkHglDzddxfCl9eXo4FCxbAzc0NBgYG8Pb2xs8//4zr16/jiSeeAABYWVlBIpFg6tSptR7j9u3bmDJlCqysrGBsbIynnnoK8fHxyvs3btwIS0tLHDhwAG3btoWpqanyAka10NBQBAQEwMTEBJaWlujTpw9u3LihpjOtfkzi6ZH0pDqYN9gP217tBRdLI6TkleK59aew+lA8qmRyscMjIiIiItJqIZcy0PezI5jwYwRmb4vBhB8j0PezIwi5lPH4B6uRkZGRctT98OHDiI2NxcGDB7F//35UVlZiyJAhMDMzQ3h4OE6cOKFMhqsfs3LlSmzcuBG//PILjh8/jry8POzateuRzzllyhRs3boVa9aswdWrV/H999/D1NQUbm5u2LFjBwAgNjYWGRkZWL16da3HmDp1Ks6cOYO9e/fi1KlTEAQBw4YNQ2VlpXKf0tJSfPnll/jf//6HY8eOISUlBfPnzwcAVFVVYdSoUQgKCsKFCxdw6tQpvPrqq5BIJA0+p41FV+wASDsEeFrj79n98MHuS9h7/ia+PhSHY/HZWPV8Z7hZG4sdHhERERGR1gm5lIHpm6Jx/7h7ZkEZpm+KxrrJXTHU36lRYxAEAYcPH8aBAwcwa9YsZGdnw8TEBD/99BP09fUBAJs2bYJcLsdPP/2kTG43bNgAS0tLhIaGYvDgwVi1ahUWLlyI0aNHAwDWr1+PAwcOPPR54+Li8Pvvv+PgwYMYOHAgAMDLy0t5v7W1NQDA3t4elpaWtR4jPj4ee/fuxYkTJ9C7d28AwObNm+Hm5obdu3fjueeeAwBUVlZi/fr1aN26NQBg5syZWLZsGQCgsLAQBQUFGD58uPL+tm3bqn4imxBH4qnOLIz0sGZCF6x6vjNMDXRx9sZtPLU6HLvOpYkdGhERERGRVpHJBSzdd+WBBB6ActvSfVcarbR+//79MDU1haGhIZ566ik8//zzWLJkCQCgQ4cOygQeAM6fP4+EhASYmZnB1NQUpqamsLa2RllZGRITE1FQUICMjAwEBgYqH6Orq4vu3bs/9PljYmIglUoRFBRU79dw9epV6Orq1nheGxsb+Pn54erVq8ptxsbGygQdAJycnJCVlQVAcbFg6tSpGDJkCEaMGIHVq1fXKLXXREziSWWjurjgn9n90M3DCsXlVXhr+3nM3nYOBXcqH/9gIiIiIiJCVHIeMgrKHnq/ACCjoAxRyXmN8vxPPPEEYmJiEB8fjzt37uDXX3+FiYkJACj/t1pxcTG6deuGmJiYGre4uDhMnDixXs9vZGTU4NdQV3p6ejX+lkgkNebrb9iwAadOnULv3r2xfft2+Pr6IiIiosniUxWTeKoXN2tjbH+1J+YO8oVUR4I9MTcxbHV4o33IEBERERE1J1lFD0/g67OfqkxMTODt7Q13d3fo6j56lnXXrl0RHx8Pe3t7eHt717hZWFjAwsICTk5OiIyMVD6mqqoKZ8+efegxO3ToALlcjrCwsFrvr64EkMlkDz1G27ZtUVVVVeN5c3NzERsbi3bt2j3yNd2vS5cuWLhwIU6ePAl/f39s2bJFpcc3JSbxVG+6Uh28OcAHf7zeC+7WxkjPv4PxP5zCyn9jUcmmd0RERERED2VvZqjW/RrTpEmTYGtri5EjRyI8PBzJyckIDQ3Fm2++ibQ0xdTa2bNn49NPP8Xu3btx7do1vPHGGw+s8X6vVq1a4YUXXsBLL72E3bt3K4/5+++/AwA8PDwgkUiwf/9+ZGdno7i4+IFj+Pj4YOTIkXjllVdw/PhxnD9/HpMnT4aLiwtGjhxZp9eWnJyMhQsX4tSpU7hx4wb+/fdfxMfHa/S8eCbx1GBd3a3w9+x+GNPVFXIB+OZIAsauP4XrOSVih0ZEREREpJECPK3hZGGIh/VAlwBwsjBEgKd1U4ZVK2NjYxw7dgzu7u4YPXo02rZti2nTpqGsrAzm5uYAgHnz5uH//u//8MILL6BXr14wMzPDs88++8jjrlu3DmPHjsUbb7yBNm3a4JVXXkFJiSKHcHFxwdKlS/Huu+/CwcEBM2fOrPUYGzZsQLdu3TB8+HD06tULgiDg77//fqCE/lGv7dq1axgzZgx8fX3x6quvYsaMGXjttddUOENNSyLcv3gfobCwEBYWFigoKFC+Kalu9p2/ifd3XURhWRWM9aVY8kx7PNfNVaOXaCAiIiIiUlVZWRmSk5Ph6ekJQ8P6jZZXd6cHUKPBXfUv56boTk9N61Hvm7rmoRyJJ7Ua0ckZ/8zpj0BPa5RWyPDOnxcwY0s08ksrxA6NiIiIiEijDPV3wrrJXeFoUTOZc7QwZAJPD8V14kntXCyNsOWVnvj+WCK++jcOf1/MRPSNfHz1fCf0bm0rdnhERERERBpjqL8TBrVzRFRyHrKKymBvpiihl+qwkpVqxySeGoVUR4I3gr3R19sWs7fFIDmnBJN+isSr/b0wb5Af9HVZBEJEREREBCh+O/dqbSN2GKQlmElRo+roaom/3uyLCQFuEATg+7AkjF53AglZD3aXJCIiIiIiokdjEk+NzlhfFytGd8T6yd1gaayHS+mFGP5NODZH3gD7KhIREREREdUdk3hqMkP9HXFgTn/09bZFWaUc7++6hFd+O4vc4nKxQyMiIiIiItIKTOKpSTmYG+K3lwKw6Om20Jfq4NDVWxi6OhzH4rLFDo2IiIiIiEjjMYmnJqejI8HL/bywa0ZveNubIruoHFN+icKyfVdQVikTOzwiIiIiIiKNxSSeRNPe2QL7ZvbFlF4eAIBfTiRj1HcnEJtZJHJkREREREREmolJPInKSF+KZSP98fML3WFjoo9rmUUY8e1xbDyRzKZ3REREREQikUgk2L17NwDg+vXrkEgkiImJETWmh9H0+NSNSTxphAFtHfDPnH4I8rVDRZUcS/ZdwYsbTyO7iE3viIiIiIjULTMzE7NmzYKXlxcMDAzg5uaGESNG4PDhww/s6+bmhoyMDPj7+zdqTC0tGa8vJvGkMezNDLHxxR5YMqId9HV1EBqbjaGrjuHItVtih0ZERERE1GhkMhlCQ0OxdetWhIaGQiZr3D5R169fR7du3XDkyBF88cUXuHjxIkJCQvDEE09gxowZD+wvlUrh6OgIXV3dRo2L6oZJPGkUiUSCqX08sW9mX7RxNENuSQVe2ngGi/dcYtM7IiIiImp2du7ciVatWuGJJ57AxIkT8cQTT6BVq1bYuXNnoz3nG2+8AYlEgqioKIwZMwa+vr5o37495s6di4iIiAf2v3+EPDQ0FBKJBAcOHECXLl1gZGSEJ598EllZWfjnn3/Qtm1bmJubY+LEiSgtLVUeJyQkBH379oWlpSVsbGwwfPhwJCYmKu/39PQEAHTp0gUSiQTBwcEAALlcjmXLlsHV1RUGBgbo3LkzQkJCHvkaw8LCEBAQAAMDAzg5OeHdd99FVVWV8v6ioiJMmjQJJiYmcHJywtdff43g4GDMmTMHALBs2bJaKw86d+6MDz74oE7nubEwiSeN5Odoht0z+uClPor/kH87dQPDvzmOyzcLRI6MiIiIiEg9du7cibFjxyItLa3G9vT0dIwdO7ZREvm8vDyEhIRgxowZMDExeeB+S0vLOh9ryZIl+Pbbb3Hy5EmkpqZi3LhxWLVqFbZs2YK//voL//77L7755hvl/iUlJZg7dy7OnDmDw4cPQ0dHB88++yzkcjkAICoqCgBw6NAhZGRkKF//6tWrsXLlSnz55Ze4cOEChgwZgmeeeQbx8fG1xpWeno5hw4ahR48eOH/+PNatW4eff/4Zy5cvV+4zd+5cnDhxAnv37sXBgwcRHh6O6Oho5f0vvfQSrl69itOnTyu3nTt3DhcuXMCLL75Y53PUGJjEk8Yy1JNi8Yh2+PWlANiZGSAhqxjPfncSP4UnQS5n0zsiIiIi0l4ymQyzZ8+utZlz9bY5c+aovbQ+ISEBgiCgTZs2DT7W8uXL0adPH3Tp0gXTpk1DWFgY1q1bhy5duqBfv34YO3Ysjh49qtx/zJgxGD16NLy9vdG5c2f88ssvuHjxIq5cuQIAsLOzAwDY2NjA0dER1tbWAIAvv/wSCxYswPjx4+Hn54fPPvsMnTt3xqpVq2qNa+3atXBzc8O3336LNm3aYNSoUVi6dClWrlwJuVyOoqIi/Prrr/jyyy8xYMAA+Pv7Y8OGDTXOtaurK4YMGYINGzYot23YsAFBQUHw8vJq8LlrCCbxpPGCfO0QMrsfBrZ1QIVMjuV/XcWUX6Jwq7BM7NCIiIiIiOolPDz8gRH4ewmCgNTUVISHh6v1edW5AlTHjh2V/9/BwQHGxsY1ElwHBwdkZWUp/46Pj8eECRPg5eUFc3NztGrVCgCQkpLy0OcoLCzEzZs30adPnxrb+/Tpg6tXr9b6mKtXr6JXr16QSCQ19i8uLkZaWhqSkpJQWVmJgIAA5f0WFhbw8/OrcZxXXnkFW7duRVlZGSoqKrBlyxa89NJLjzgjTYNJPGkFG1MD/DilGz5+1h+Gejo4npCDIauOIeRSptihERERERGpLCMjQ6371ZWPjw8kEgmuXbvW4GPp6ekp/79EIqnxd/W26lJ5ABgxYgTy8vLw448/IjIyEpGRkQCAioqKBsfSGEaMGAEDAwPs2rUL+/btQ2VlJcaOHSt2WEziSXtIJBJMCvTA/ln90N7ZHPmllXh901ks3HkBpRVVjz8AEREREZGGcHJyUut+dWVtbY0hQ4bgu+++Q0lJyQP35+fnq/X5quXm5iI2NhaLFi3CgAED0LZtW9y+fbvGPvr6+gBQo6zd3Nwczs7OOHHiRI19T5w4gXbt2tX6XG3btsWpU6dqVB2cOHECZmZmcHV1hZeXF/T09GrMdy8oKEBcXFyN4+jq6uKFF17Ahg0bsGHDBowfPx5GRkb1OwFqxCSetI63vSl2vdEHrwV5QSIBtkalYvia47iQli92aEREREREddKvXz+4urrWKPm+l0QigZubG/r166f25/7uu+8gk8kQEBCAHTt2ID4+HlevXsWaNWvQq1cvtT8fAFhZWcHGxgY//PADEhIScOTIEcydO7fGPvb29jAyMkJISAhu3bqFggJFU+u3334bn332GbZv347Y2Fi8++67iImJwezZs2t9rjfeeAOpqamYNWsWrl27hj179uDDDz/E3LlzoaOjAzMzM7zwwgt4++23cfToUVy+fBnTpk2Djo7OA/8eL7/8Mo4cOYKQkBCNKKUHmMSTltLX1cHCp9pi87RAOJobIimnBKPXnsTa0ATI2PSOiIiIiDScVCrF6tWrAeCBxLH671WrVkEqlar9ub28vBAdHY0nnngC8+bNg7+/PwYNGoTDhw9j3bp1an8+ANDR0cG2bdtw9uxZ+Pv746233sIXX3xRYx9dXV2sWbMG33//PZydnTFy5EgAwJtvvom5c+di3rx56NChA0JCQrB37174+PjU+lwuLi74+++/ERUVhU6dOuH111/HtGnTsGjRIuU+X331FXr16oXhw4dj4MCB6NOnD9q2bQtDQ8Max/Lx8UHv3r3Rpk0bBAYGqvms1I9EUGdng2aisLAQFhYWKCgogLm5udjh0GPcLqnAe7su4p+78+MDPa3x9fOd4WwpfqkLERERETVPZWVlSE5Ohqen5wOJnyp27tyJ2bNn12hy5+bmhlWrVmH06NHqCJXqoKSkBC4uLli5ciWmTZum3C4IAnx8fPDGG288UDlQH49639Q1D9VtcBREIrMy0cfaSV3xx5k0LNl3GZHJeRi66hg+Gd0Bwzs6ix0eEREREdFDjR49GiNHjkR4eDgyMjLg5OSEfv36NcoIPP3n3LlzuHbtGgICAlBQUIBly5YBgHL0HwCys7Oxbds2ZGZmir42/L2YxFOzIJFIMK6HG3p4WmPOtnM4n1aAmVvO4ei1bCwd2R6mBnyrExEREZFmkkqlCA4OFjuMFufLL79EbGws9PX10a1bN4SHh8PW1lZ5v729PWxtbfHDDz/AyspKxEhrYmZDzYqnrQn+nN4bqw/F47vQBOyITsPp63lYNb4zurprzn94REREREQkni5duuDs2bOP3EdTZ56zsR01O3pSHcwf4odtr/SEi6URUvJK8dz6U1h9KB5VMvnjD0BERERERKShmMRTsxXoZYO/Z/fDiE7OkMkFfH0oDs//EIHUvFKxQyMiIiIiIqoXUZP4FStWoEePHjAzM4O9vT1GjRqF2NjYWvcVBAFPPfUUJBIJdu/e/cjjTp06FRKJpMZt6NChjfAKSNNZGOlhzfjO+Pr5TjA10MXZG7fxzLfHkVlQJnZoRERERNQMaGrJNWkmdbxfRE3iw8LCMGPGDERERODgwYOorKzE4MGDUVJS8sC+q1atemD9xEcZOnQoMjIylLetW7eqM3TSIhKJBM92ccU/s/vBz8EMt0sr8d6ui/zAJSIiIqJ609PTAwCUlrLKk+qu+v1S/f6pD1Eb24WEhNT4e+PGjbC3t8fZs2fRv39/5faYmBisXLkSZ86cgZOTU52ObWBgAEdHR7XGS9rNzdoYayZ0wYhvjuPItSzsiE7H2G6uYodFRERERFpIKpXC0tISWVlZAABjY2OVBh2pZREEAaWlpcjKyoKlpWWDlhDUqO70BQUFAABra2vlttLSUkycOBHfffedSkl5aGgo7O3tYWVlhSeffBLLly+HjY1NrfuWl5ejvLxc+XdhYWE9XwFpOj9HM8we6IMvDsRi6b7L6OttC0cLQ7HDIiIiIiItVJ2fVCfyRI9jaWnZ4MFmiaAhNcVyuRzPPPMM8vPzcfz4ceX21157DTKZDD/99BMARWn0rl27MGrUqIcea9u2bTA2NoanpycSExPx3nvvwdTUFKdOnar1iseSJUuwdOnSB7YXFBTA3Ny84S+ONEqVTI4x607ifFoBnvCzwy9Te/CqKRERERHVm0wmQ2VlpdhhkIbT09N75Ah8YWEhLCwsHpuHakwSP336dPzzzz84fvw4XF0VJc579+7FvHnzcO7cOZiamgKoWxJ/v6SkJLRu3RqHDh3CgAEDHri/tpF4Nzc3JvHNWPytIjy95jgqZHJ8PrYjxnV3EzskIiIiIiJqweqaxGvEEnMzZ87E/v37cfToUWUCDwBHjhxBYmIiLC0toaurC11dRfX/mDFjEBwcXOfje3l5wdbWFgkJCbXeb2BgAHNz8xo3at58HMwwZ5APAOCjfVeQUXBH5IiIiIiIiIgeT9QkXhAEzJw5E7t27cKRI0fg6elZ4/53330XFy5cQExMjPIGAF9//TU2bNhQ5+dJS0tDbm5unZviUcvwaj8vdHKzRFF5Fd7dwW71RERERETNkVzevH7ni5rEz5gxA5s2bcKWLVtgZmaGzMxMZGZm4s4dxaioo6Mj/P39a9wAwN3dvUbC36ZNG+zatQsAUFxcjLfffhsRERG4fv06Dh8+jJEjR8Lb2xtDhgxp+hdJGktXqoMvx3aEvlQHYXHZ+ONMmtghERERERGRGmUWlGHwqmM4eq35NB8UNYlft24dCgoKEBwcDCcnJ+Vt+/btKh0nNjZW2dleKpXiwoULeOaZZ+Dr64tp06ahW7duCA8Ph4GBQWO8DNJiPg5meGuQLwDgo/1XcDOfZfVERERERM1BlUyON7eeQ0JWMVYejIWsmYzIi7rEXH3Kl2t7zL3bjIyMcODAgQbFRS3LK/08EXI5E+dT8/Huzov49UV2qyciIiIi0nYrD8Yh6noeTA108e2ErpDqNI/f+BrR2I5ITLpSHax8riP0dXVwLC4bv59JFTskIiIiIiJqgKPXsrAuNBEA8PnYjmhlayJyROrDJJ4IgLe9GebdLatfvv8qy+qJiIiIiLTUzfw7eOv3GADAC708MKxD82pwziSe6K6X+3mhi7uiW/2CHRfYrZ6IiIiISMtUyuSYtfUc8ksr0cHFAu893VbskNSOSTzRXVIdCb4Y2wn6ujoIj8/BttMsqyciIiIi0iZfHojF2Ru3YWaoi+8mdoWBrlTskNSOSTzRPbztTTF/sKKs/uO/riKdZfVERERERFrh8NVb+P5YEgDgi7Gd4G5jLHJEjYNJPNF9pvX1Qld3SxSXV+FdltUTEREREWm8tNulmPv7eQDAi31aYai/o8gRNR4m8UT3kepI8MVznWBwt6x+axTL6omIiIiINFVFlRwzt5xDwZ1KdHKzxMKnmt88+HsxiSeqRWs7U8wf7AcA+PivK0i7XSpyREREREREVJvPQq4hJjUf5oa6+HZCF+jrNu80t3m/OqIGeKmvJ7p5WKGkQoZ3d1xkWT0RERERkYY5cDkTPx9PBgCsHNcZbtbNcx78vZjEEz2Eolt9Rxjo6uB4Qg62RKWIHRIREREREd2VmleK+X8o5sG/0s8Tg9o5iBxR02AST/QIXnameHuIoqz+k7+uIjWPZfVERERERGIrr5JhxpZoFJVVoau7Jd4Z2kbskJoMk3iix3ixjye63y2rX7DjAuRyltUTEREREYlpxd/XcCGtAJbGevhmYlfoSVtOattyXilRPVV3qzfU08HJxFxsZlk9EREREZFo/r6YgY0nrwMAvhrXCS6WRuIG1MSYxBPVgaetCd4eoijRWfE3y+qJiLTN2tAEdP3oIGIzi8QOhYiIGuBGbgkW/HkBAPBakBeebNMy5sHfi0k8UR292LsVerSyQmmFDO/8ybJ6IiJtUVxehe+OJCCvpAK/n0kVOxwiIqqnssq78+DLq9Ddw0q5JHRLwySeqI50dCT4YqyirP5UUi42R94QOyQiIqqDvTE3UVIhAwCExWWLHA0REdXXx39dxaX0Qlib6OObiV1a1Dz4e7XMV01UT61sTfBOdVn9P9dYVk9EpOEEQahx0TUhqxhpt/nZTUSkbfadv4n/RSg+z78a1wlOFi1rHvy9mMQTqWhq71YIaGWN0goZ3v7zPMvqiYg0WExqPi7fLIS+rg7aOJoBAEJjORpPRKRNknNKsHDnRQDAjCdaI9jPXuSIxMUknkhFOjoSfD62I4z0pIhIysMmltUTEWmszZGKFUWGd3TC8I5OAFhST0SkTcoqZXhjczSKy6sQ6GmNtwb6ih2S6JjEE9VDK1sTLBiqaKSx4u9rSMllaSYRkaYpKK3EvvM3AQCTAj2UIzcnE3JQUSUXMzQiIqqjpfuu4GpGIWxM9LFmQhfottB58PfiGSCqpym9WiHQ0xp3KllWT0SkiXZEp6G8So42jmbo6m6Jdk7msDXVR0mFDGdu5IkdHhERPcaemHRsjUqBRAKsHt8FDuaGYoekEZjEE9VTdbd6Iz0pIpPz8Nup62KHREREd93b0G5STw9IJBLo6EjQ39cOABDGefFERBotIatYOQ9+1pM+6OtjK3JEmoNJPFEDuNsY492nFN3qPwuJxY3cEpEjIiIiAIhMzkNidgmM9aUY1dlZuT2oOonnvHgiIo11p0KGGZujUVohQy8vG8we4CN2SBqFSTxRA/1fTw/09Kouq7/AsnoiIg1Q3dBuZGcXmBnqKbf397GDRAJcyyxCRsEdscIjIqJHWLL3MmJvFcHW1ACrJ3SGVEcidkgahUk8UQPp6Ejw+ZhOMNaXIio5D7+yrJ6ISFQ5xeUIuZQBAJgU6F7jPisTfXRytQQAHONoPBGRxtkZnYbtZ1KhIwHWjO8MezPOg78fk3giNahZVn8N13NYVk9EJJY/zqShUiagk5sl/F0sHrg/2E9RUs/14omINEv8rSK8v+sSAGD2AF/09uY8+NowiSdSk8mBHujlZYOySjneYVk9EZEo5HIBW6LuNrS7bxS+WvW8+OPxOaiUcak5IiJNUFpRhTc2R+NOpQx9vW0x80lvsUPSWEziidRER0eCz8d2VJTVX8/DxpPXxQ6JiKjFCU/IQWreHZgb6mJER+da9+noagkrYz0UlVfhXEp+0wZIRES1+mD3ZcRnFcPezACrxnMe/KMwiSdSIzdrYywc1hYA8PmBa0hmWT0RUZPaHKEYhR/TzRVG+tJa95Hes9RcaGxWk8VGRES1+/1MKnZEpynmwU/oAltTA7FD0mi6ddnpwoULKh+4Xbt20NWt0+GJmpVJAe7452IGTibm4u0/zmP7a714JZGIqAlkFNzB4WuKpPxhpfTVgnztsCfmJsLisvHO0DZNER4REdUiNrMIi/co5sHPG+yHnl42Ikek+eqUZXfu3BkSiQSCULc5vjo6OoiLi4OXl1eDgiPSRjo6Enw2piOGrjqGMzduY8OJZLzcj/8tEBE1tu2nUyGTCwj0tIa3vdkj960eib98sxBZRWXsfkxEJIKS8iq8sfksyirlCPK1w/Sg1mKHpBXqPFQeGRkJOzu7x+4nCAL8/f0bFBSRtqsuq1+0+xK+OBCLJ9vYw8vOVOywiIiarSqZHNuiUgEAk3p6PHZ/W1MDdHCxwMX0AhyLy8HYbq6NHSIREd1DEAS8v+siErNL4GhuiK/GdYIOq1frpE5JfFBQELy9vWFpaVmng/bv3x9GRkYNiYtI600KdMc/lzJwIiEXb/95Ab+zrJ6IqNEcuZaFzMIy2JjoY0h7hzo9JtjPDhfTCxAam8UknoioiW07nYrdMTch1ZHgm4ldYMN58HVWp8Z2R48erXMCDwB///03nJyc6hsTUbMgkSjK6k30pTh7t6yeiIgax+bIFADAc93dYKBbe0O7+1UvNRcenwMZlwUlImoyV24W4sO9lwEA8wf7oUcra5Ej0i4qdacvLCyEXP7geqoymQyFhYVqC4qouXC1MsZ7Tyu61X9xIBaJ2cUiR0RE1Pyk5JbiWHw2AGBiwKMb2t2rs5slzA11UXCnEjGp+Y0UHRER3au4vAozt0SjokqOJ/zs8Fp/9o5SVZ2T+F27dqF79+4oKyt74L6ysjL06NED+/btU2twRM3BxAB39PW2RXmVHG//cZ6jPUREarb1dAoEQdGszt3GuM6P05XqoJ+PYjQ+LC67scIjIqK7BEHAwp0XkZRTAmcLQ3w1rjPnwddDnZP4devW4Z133oGx8YNfjiYmJliwYAG+/fZbtQZH1BxIJBJ8NrYjTA10EZ2Sj1+Os6yeiEhdyqtk+P303YZ2j1lWrjZBfneTeK4XT0TU6DZHpmDf+ZvQ1ZHgm4ldYWWiL3ZIWqnOSfylS5cQHBz80Pv79++PixcvqiMmombHxdII798tq//yX5bVExGpy4HLt5BbUgEHcwMMaGOv8uOr58VfSC9AbnG5usMjIqK7LqUXYNn+KwCABUPboJuHlcgRaa86J/G3b99GVVXVQ++vrKzE7du31RIUUXM0vocb+vkoyurns6yeiEgtNkfcAACM7+EOXalKrX4AAA7mhmjrZA5BUDS4IyIi9Sssq8SMu/PgB7Z1wMv9PMUOSavV+duuVatWOHPmzEPvP3PmDDw8Hr8uK1FLJZFI8OkYRVn9uZR8/BSeJHZIRERaLSGrCJHJedCRAOMD3Op9nOC7JfWhLKknIlI7QRDw7o4LuJFbChdLI6x8rhMkEs6Db4g6J/GjR4/G+++/j1u3bj1wX2ZmJhYtWoQxY8aoNTii5sbF0giL7pbVrzwYh4SsIpEjIiLSXtXLyg1o6wAnC6N6H6e6pP5YfA7krJIiIlKr307dwN8XM6EnleC7SV1hYawndkhar85J/LvvvgszMzP4+PjgjTfewOrVq7F69WpMnz4dvr6+MDU1xbvvvtuYsRI1C8/3cEN/XztUVMkx/48LLKsnIqqHOxUy7DibBqB+De3u1c3DCqYGusgrqcDF9AJ1hEdERAAupOVj+V+KefALn2qLzm6W4gbUTNQ5iTczM8OJEycwefJkbN++HW+99RbeeustbN++HZMnT8bx48dhZmbWmLESNQsSiQSfju4AMwNdxKTm40eW1RMRqWz/hZsoLKuCq5UR+t9dJq6+9KQ66ONtA4BLzRERqUvBHcU8+EqZgCHtHfBin1Zih9RsqNQBxsLCAmvXrkVOTg5u3bqFzMxM5ObmYu3atbCyYndBorpytjTCB8PbAQC+Ylk9EZHKqkvpJwa6q2WN4WA/RWd7zosnImo4QRDwzp/nkZp3B27WRvh8LOfBq5PqbVyhGEm0s7ODvb09/zGI6um57q4I9lOU1c/74wKqZHKxQyIi0gqX0gsQk5oPPakEz3Wrf0O7e1XPi49JzUd+aYVajklE1FJtOHEdBy7fgr5UB99N7AoLI86DV6d6JfFE1HASiQQrRneAmaEuzqfm48fwZLFDIiLSCluiFKPwQ9o7ws7MQC3HdLY0gq+DKeRcao6IqEFiUvOx4p+rAID3n26Ljq6W4gbUDImaxK9YsQI9evSAmZkZ7O3tMWrUKMTGxta6ryAIeOqppyCRSLB79+5HHlcQBCxevBhOTk4wMjLCwIEDER8f3wivgKhhnCz+K6v/+mAc4m+xrJ6I6FGKy6uw51w6AGByT/UubVs9Gs958URE9ZNfWoEZmxXz4J/u4IQpvbgEeWMQNYkPCwvDjBkzEBERgYMHD6KyshKDBw9GSUnJA/uuWrWqzqX7n3/+OdasWYP169cjMjISJiYmGDJkCMrKytT9Eoga7LlurnjCzw4VMjnm/3GeZfVERI+w+1w6SipkaG1ngkBPa7Ueu3pefFhcNpeaIyJSkSAImP/HBaTn34GHjTFWjOnAqdeNpEFJfEOT4pCQEEydOhXt27dHp06dsHHjRqSkpODs2bM19ouJicHKlSvxyy+/PPaYgiBg1apVWLRoEUaOHImOHTvit99+w82bNx87gk8kBkVZfUdFWX1aAb4/xm71RES1EQRB2dBuUqCH2n8cdm9lBWN9KbKLynE1s1CtxyYiau5+Ck/Goau3oK+rmAdvbsh58I1F5SReLpfjo48+gouLC0xNTZGUpEg4PvjgA/z8888NCqagQLE2q7X1f1fWS0tLMXHiRHz33XdwdHR87DGSk5ORmZmJgQMHKrdZWFggMDAQp06dqvUx5eXlKCwsrHEjakqOFoZYfLesfvWheMRmsqyeiOh+51LzcTWjEAa6OhjT1VXtxzfQlaJ3a8VSc6GxLKknIqqrszdu47OQawCAxcPbwd/FQuSImjeVk/jly5dj48aN+Pzzz6Gvr6/c7u/vj59++qnegcjlcsyZMwd9+vSBv7+/cvtbb72F3r17Y+TIkXU6TmZmJgDAwcGhxnYHBwflffdbsWIFLCwslDc3N/V0uiVSxdhurniyjT0qZHK8/SfL6omI7rc5QjEKP6KTMyyMG2eEJ6i6pJ5JPBFRndwuqcCsLdGokgsY0ckZkwLdxQ6p2VM5if/tt9/www8/YNKkSZBKpcrtnTp1wrVr1+odyIwZM3Dp0iVs27ZNuW3v3r04cuQIVq1aVe/j1sXChQtRUFCgvKWmpjbq8xHVRiKR4JNnFd3qL7CsnoiohvzSCuy/cBMAGvUHYvDd5nZnU26jsKyy0Z6HiKg5kMsFzP09BjcLyuBpa4IVozkPvimonMSnp6fD29v7ge1yuRyVlfX7sps5cyb279+Po0ePwtX1v/K4I0eOIDExEZaWltDV1YWuri4AYMyYMQgODq71WNUl97du3aqx/datWw8txzcwMIC5uXmNG5EYHC0MsWREewDAqkNxLKsnIrprR3Q6yqvkaOdkjs5ulo32PG7WxvCyM4FMLuAEl5ojInqk748l4WhsNgzuzoM3NdAVO6QWQeUkvl27dggPD39g+59//okuXbqodCxBEDBz5kzs2rULR44cgaenZ4373333XVy4cAExMTHKGwB8/fXX2LBhQ63H9PT0hKOjIw4fPqzcVlhYiMjISPTq1Uul+IjEMLqrCwa0sUelTMD8P86jkmX1RNTCKRra3QAATOrp3uijPFxqjojo8U5fz8OX/yqWB1/yTHu0c+ZAaFNR+VLJ4sWL8cILLyA9PR1yuRw7d+5EbGwsfvvtN+zfv1+lY82YMQNbtmzBnj17YGZmppyzbmFhASMjIzg6OtY6eu7u7l4j4W/Tpg1WrFiBZ599FhKJBHPmzMHy5cvh4+MDT09PfPDBB3B2dsaoUaNUfblETU4ikeCT0R0w6KswXEwvwPdhiZj5pI/YYRERiSYiKQ9J2SUw0ZdiZGeXRn++YD97bDhxHaGx2RAEgaWhRET3yS0ux6wt5yCTCxjV2Rnje7CnWFNSeSR+5MiR2LdvHw4dOgQTExMsXrwYV69exb59+zBo0CCVjrVu3ToUFBQgODgYTk5Oytv27dtVOk5sbKyysz0AvPPOO5g1axZeffVV9OjRA8XFxQgJCYGhoaFKxyUSi4O5IZY8oyirX304Hte41BERtWCb7o7Cj+ri0iSlmoGe1jDQ1UFmYRnibhU3+vMREWkTuVzAW7+fR2ZhGVrbmeDjZzkPvqlJBEEQxA5C0xQWFsLCwgIFBQWcH0+iEQQBr/x2BoeuZsHfxRy73ugDPanK192IiLRadlE5eq04jCq5gL/f7Ndk5ZpTN0QhNDYbC59qg9eCWjfJcxIRaYPvjibgiwOxMNTTwZ4ZfeHnaCZ2SM1GXfPQemUE+fn5+Omnn/Dee+8hLy8PABAdHY309PT6RUtED6juVm9hpIdL6YVYF5oodkhERE3u9zOpqJIL6OJu2aTzLTkvnojoQRFJuVh5dx78spH+TOBFonISf+HCBfj6+uKzzz7DF198gfz8fADAzp07sXDhQnXHR9Si2ZsbYskz7QAA3xyJx9UMltUTUcshkwvYGqVYG35SoEeTPnfw3fXiT1/PQ3F5VZM+NxGRJsouKsebW89BLgBjurpiXHfOgxeLykn83LlzMXXqVMTHx9eYYz5s2DAcO3ZMrcERETCqswsGtnVgt3oianGOxWcj7fYdmBvqYnhHpyZ9bk9bE3jYGKNSJuBkApeaI6KWTSYX8Nb2GGQVlcPH3hQfjWovdkgtmspJ/OnTp/Haa689sN3FxUXZXZ6I1EfRrd4flsZ6uHyzEGuPsqyeiFqGzRGKUfix3dxgqCdt8udnST0RkcK3RxJwPCEHRnpSrJ3UFcb6XA9eTCon8QYGBigsfLCkNy4uDnZ2dmoJiohqsjczxNK73eq/ORKPKzdZVk9EzdvN/Ds4cu0WAGBioLsoMQT7KX7XVC81R0TUEp1MyMGqw3EAgOWj/OHjwHnwYlM5iX/mmWewbNkyVFZWAlCMEqakpGDBggUYM2aM2gMkIoVnOjljcDsHVMlZVk9Ezd+206mQC0BPL2t425uKEkNPLxvoS3WQnn8HidklosRARCSmrKIyvLktBoIAjOvuijHdXMUOiVCPJH7lypUoLi6Gvb097ty5g6CgIHh7e8PMzAwff/xxY8RIRFBcMFv+rKKs/kpGIb47miB2SEREjaJSJsc2kRra3ctYXxeBXtYAgNDYLNHiICISg0wuYPbWGOQUl8PPwQxLn/EXOyS6S+Uk3sLCAgcPHsT+/fuxZs0azJw5E3///TfCwsJgYmLSGDES0V33ltV/eyQBl28WiBwREZH6Hb6ahayictia6mNIe0dRY+G8eCJqqVYfjseppFwY60vx3aSuMNJv+t4kVDuVOhJUVlbCyMgIMTEx6NOnD/r06dNYcRHRQzzTyRl/X8zAgcu3MP+PC9gzow/0dVW+HkdEpLE2R94AAIzr7ib651uwnx2W/3UVkcl5uFMh449YImoRwuOz8c2ReADAitEdRJvWRLVT6ZtRT08P7u7ukMlkjRUPET2GRCLB8lEdYGWsh6sZhfiWZfVE1IzcyC1BeHwOJBJgQoA4De3u1drOFC6WRqiokiMiKVfscIiIGt2twjLMuTsPfkKAO0Z2dhE7JLqPype333//fbz33nvIy8trjHiIqA7szAywdKRiXtLaowm4lM6yeiJqHrbcnQsf5GsHN2tjkaNRXDgNUnap57x4ImreqmRyzNp6DrklFWjrZI4PR7QTOySqhcpJ/Lfffotjx47B2dkZfn5+6Nq1a40bETWNER2dMLS9o7JbfUUVu9UTkXYrr5LhjzNpAMRtaHc/zosnopbi60NxiErOg6mBLtZO6gpDPU4h0kQqzYkHgFGjRjVCGESkqupu9VHX83AtswjfHonH3MF+YodFRFRvIZcykVdSAScLQzxxd/RbE/TxtoWeVILruaW4nlOCVrZs5EtEzU9obBa+O5oIAPh0TAd48rNOY6mcxH/44YeNEQcR1YOtqQGWjWyPmVvO4bvQRAxu7wh/FwuxwyIiqpfNkYpS+vE93KEr1ZyGnaYGuujuYY1TSbkIjc3CVFtPsUMiIlKrjII7eGt7DADg/3p6YHhHZ3EDokfSnG9IIqqX4R2dMayDI2QsqyciLRZ/qwhRyXmQ6kjwfA83scN5QPW8eJbUE1FzUymTY9aWc7hdWgl/F3O8/3RbsUOix1A5ibeysoK1tfUDNxsbG7i4uCAoKAgbNmxojFiJ6CGWjfSHtYk+rmUWKZcDISLSJtWj8APb2sPRwlDkaB4UfDeJP5WUi7JKrtJDRM3Hl//G4syN2zAz0MV3EzkPXhuonMQvXrwYOjo6ePrpp7F06VIsXboUTz/9NHR0dDBjxgz4+vpi+vTp+PHHHxsjXiKqha2pAT6q7lYfmoiLaexWT0Ta406FDDuiNa+h3b38HMzgaG6Isko5opK5Qg8RNQ+Hr97C92FJAIDPx3aEhw3nwWsDlefEHz9+HMuXL8frr79eY/v333+Pf//9Fzt27EDHjh2xZs0avPLKK2oLlIge7emOTvj7ohP+upiB+X+cx95ZfWCgyyupRKT59p2/iaKyKrhbG6Ovt63Y4dRKIpEgyNcO28+kIjQ2G/19NafxHhFRfaTn38G8P84DAKb2boWnOjiJHBHVlcoj8QcOHMDAgQMf2D5gwAAcOHAAADBs2DAkJSU1PDoiUsmyke1hY6KP2FtFWHOYZfVEpB02R94AAEwMdIeOjkTkaB7uv3nxXC+eiLSbYh58NPJLK9HJ1QILh7UROyRSgcpJvLW1Nfbt2/fA9n379sHa2hoAUFJSAjMzs4ZHR0QqsTE1wEejFGX168OScCEtX9yAiIge42JaAc6nFUBPKsFz3VzFDueR+njbQqojQWJ2CVLzSsUOh4io3j4PuYbolHyYG+ri24ldWb2pZVQup//ggw8wffp0HD16FAEBAQCA06dP4++//8b69esBAAcPHkRQUJB6IyWiOhnWwQlPd3TCXxcUZfX7ZvXlBzMRaawtUYpR+Kf8nWBjaiByNI9mYaSHru6WOH39NsLisjG5p2bO3yciepSDV27hx/BkAMAXz3WCm7WxyBGRqlQeiX/llVcQFhYGExMT7Ny5Ezt37oSxsTHCwsIwbdo0AMC8efOwfft2tQdLRHXz0Uh/2JrqI+5WMVYfYlk9EWmmwrJK7Im5CQCYFOgucjR1E+xnDwAIjeVSc0SkfVLzSjHv9xgAwLS+nhjS3lHcgKheVB6JB4A+ffqgT58+6o6FiNTE2kQfy0f54/VN0Vgflogh7R3Ryc1S7LCIiGrYcy4dpRUyeNubIsDTWuxw6iTI1w5fHIjFycQcVFTJoa+r8ngIEZEoKqrkmLn1HArLqtDZzRILhnIevLaq1zdPYmIiFi1ahIkTJyIrS9Hc5Z9//sHly5fVGhwR1d9QfyeM6OQMuQDM/+M81zUmIo0iCIJybfhJge6QSDS3od292jmZw9bUAKUVMpy5zqXmiEh7rPjnKs6n5sPCSA/fTuzCi5BaTOV/ubCwMHTo0AGRkZHYsWMHiouLAQDnz5/Hhx9+qPYAiaj+lj7THram+ojPKsZqdqsnIg0SnXIb1zKLYKing9FdNLuh3b10dBRLzQFAaBxL6olIO4RcysCGE9cBACuf6wRXK86D12YqJ/Hvvvsuli9fjoMHD0JfX1+5/cknn0RERIRagyOihlGU1XcAAHwfloiY1HxxAyIiumtzhGIUfkRHZ1gY64kcjWqUS81xXjwRaYGU3FK8/ecFAMCr/b0wsJ2DyBFRQ6mcxF+8eBHPPvvsA9vt7e2Rk5OjlqCISH2G+jviGZbVE5EGuV1Sgf0XMwAAk7Sww3s/b1voSIDYW0W4mX9H7HCIiB6qvEqGGVuiUVRWhW4eVnh7iJ/YIZEaqJzEW1paIiMj44Ht586dg4uLi1qCIiL1UpTVGyAhqxhfH4oTOxwiauF2RKehokoOfxdzdHK1EDsclVmZ6CubhR5jST0RabBP/rqKi+kFsDLWwzcTukBPynnwzYHK/4rjx4/HggULkJmZCYlEArlcjhMnTmD+/PmYMmVKY8RIRA1kZaKPj5/1BwD8eCwJ0Sm3RY6IiFqqmg3tPLSmod39gn251BwRaba/LmTg11M3AABfPd8ZzpZGIkdE6qJyEv/JJ5+gTZs2cHNzQ3FxMdq1a4f+/fujd+/eWLRoUWPESERqMKS9I0Z1VpTVv82yeiISyanEXCTnlMDUQBfPdHIWO5x6q54XfyIhB5UyucjREBHVdD2nBAt2KObBTw9ujSf87EWOiNRJ5SReX18fP/74IxITE7F//35s2rQJ165dw//+9z9IpdLGiJGI1GTJM+1hZ2aAxOwSfH2QZfVE1PSqR+Gf7eICEwNdkaOpv44uFrA20UdReRWib7C6iYg0R1mlDG9sjkZxeRUCWllj3iBfsUMiNav3pAh3d3cMGzYM48aNg4+PjzpjIqJGYmmsj0+eVXSr/zGcZfVE1LSyispw4HImAGBioLvI0TSMjo4E/XxsAQBhnBdPRBrko/1XcCWjEDYm+lgzoQt0OQ++2anTJfC5c+fW+YBfffVVvYMhosY3qJ0Dnu3igl3n0jH/j/P4+81+MNRjFQ0RNb4/zqShSi6gm4cV2jqZix1OgwX72WFPzE2ExmbjnaFtxA6HiAh7YtKxOTIFEgnw9fOd4WhhKHZI1AjqlMSfO3euxt/R0dGoqqqCn59iiYK4uDhIpVJ069ZN/RESkdp9OKIdjifkICm7BF8djMN7w9qKHRIRNXMyuYAtyoZ22j0KX62/jx0kEuBKRiGyCstgb84fy0QknsTsYry38yIAYOYT3ujvaydyRNRY6lRbcfToUeVtxIgRCAoKQlpaGqKjoxEdHY3U1FQ88cQTePrppxs7XiJSA0tjfay4p6z+LOdzElEjOxaXjfT8O7A01sOwDk5ih6MWNqYG6OCiWCKPJfVEJKayShlmbI5GSYUMPb2sMWcg58E3ZypPkFi5ciVWrFgBKysr5TYrKyssX74cK1euVGtwRNR4BrZzwOguLhDYrZ6ImsDmSMUyR2O7ujarKTzBd0e6QpnEE5GIluy9jGuZRbA11cea8V0g1dHO5TupblRO4gsLC5Gd/eAXVXZ2NoqKitQSFBE1jQ9HtIe9mQGSckrw5YFYscMhomYqPf8OjlzLAgBMaCal9NWql5o7Hp+DKi41R0Qi2HUuDdtOp0IiAVaP78KpPS2Aykn8s88+ixdffBE7d+5EWloa0tLSsGPHDkybNg2jR49ujBiJqJFYGOthxWhFWf3PJ5Jx5nqeyBERUXO0LSoFcgHo3doGre1MxQ5HrTq5WsLCSA8FdypxPi1f7HCIqIVJyCrCezsvAQDefNIHfbxtRY6ImoLKSfz69evx1FNPYeLEifDw8ICHhwcmTpyIoUOHYu3atY0RIxE1ogFtHTCmq6uirP7PC7hTwbJ6IlKfSpkc206nAgAmBXqIHI366Up10Ld6qblYltQTUdO5UyHDjM3ncKdShj7eNnhzAJf9bilUTuKNjY2xdu1a5Obm4ty5czh37hzy8vKwdu1amJiYNEaMRNTIFo9oBwdzAyTnlODLf1lWT0Tqc+jKLWQXlcPW1ACD2jmIHU6j4Lx4qpZ2uxTRKbdRyakV1AQW77mE2FtFsDMzwKrnOQ++JanTEnO1MTExQceOHdUZCxGJxMJID5+O7ogXN57GLyeSMdTfET1aWYsdFhE1A5vvLiv3fA9X6OuqPHagFYLuJvEX0gqQU6y4YEEtT0l5FZ759gTySipgZqCLPt62CPKzQ5CvHZwtjcQOj5qZP8+m4Y+zadCRAGvGd4GdGT93WpI6fZuOHj0ahYWFdT7opEmTkJWVVe+giKjpPdHGHmO7uSq71bOsnpqKTC7gVGIu9sSk41RiLmRyQeyQSE2Sc0pwPCEHEgkwvkfzamh3L3tzQ7RzMgcAhMdzNL6l2h2TjrySCgBAUXkVQi5nYuHOi+j96REM/joMH/91BScSclBexe9Xapi4W0VYtFuxHvxbA33Rq7WNyBFRU6vTSPyePXtq7UhfG0EQsG/fPnz00Uewt7dvUHBE1LQ+GN4Ox+NzcD23FF8ciMXiEe3EDomauZBLGVi67woyCsqU25wsDPHhiHYY6t881hJvybZGKUbhg33t4GZtLHI0jSvYzw5XMgoRFpuNZ7u4ih0ONTFBELApQvF+X/hUG/T0skFobDbC4rIQk5qPuFvFiLtVjB/Dk2GkJ0Xv1jYI9rNDkK893G2a938bpB6CICAlrxQRSbn4PiwJZZVy9POxxYwnvMUOjURQpyReEAT4+vo2dixEJDILIz2sGNMBL244jQ0nFWX1AZ4sq6fGEXIpA9M3ReP+cffMgjJM3xSNdZO7MpHXYmWVMvxxpvk2tLtfkK8d1oYm4lh8DuRyATqcm9qiRKfk42pGIfR1dTCuuxusTPTRyc0Sswf6IL+0AuHxOQiLy0ZYXDayi8px+FoWDl/LAnAZnrYmCPK1Q5CfHXp52cBQTyr2yyENIAgCrucqkvbIpFxEJOUhs/C/C94O5gb4+vnO/KxpoeqUxB89elTlA7u4uKj8GCIS3xN+9niumyv+OJuGd/48j79n94Oxfr3bZxDVSiYXsHTflQcSeAAQAEgALN13BYPaObJRj5YKuZSJ26WVcLYwxBNtmn9lXlcPK5gZ6CKvpAIX0wvQyc1S7JCoCW2OuAEAGN7RCVYm+jXuszTWx4hOzhjRyRmCICgqNuKyERabjbM3biM5pwTJOSXYePI6DHR1EOhlgyBfOwT72cHL1gQSCT8DWwJBEJCUU3I3ac9DRFIusorKa+yjL9VBZzdLBHpZ4/kebuy/0YLV6Zd5UFBQY8dBRBpk0fB2CL9bVv95SCyWPNNe7JComYlKzqtRQn8/AUBGQRmikvM4109LbY5UJDXjA9xbxIUYPakO+njbIuRyJkJjs5nEtyC3Syqw/2IGAGByz0dXnUgkErR3tkB7Zwu8EeyNwrJKnEzIvZvUZ+FmQRmOxWXjWFw2PtoPuFoZ3U3o7dGrtQ1MDXhRvbkQBAEJWcWISM5TJu45xfcl7bo66OJmiUAvG/T0skZXdytWahCABnSnJ6Lmy8JID5+O6YCpG05j48nreMrfEYFeTKRIfbKKHp7A12c/0iyxmUU4ff02pDoSjO/hJnY4TSbYz06RxMdlYfZArtfcUvx5Ng0VVXK0czJHFxUv3pgb6mGovyOG+jsqk7qwuGyExmYjKjkPabfvYHNkCjZHpkBPKkF3D2vFXHo/O/g5mHGUXovI5QLis4oRmZyLiKRcRCXnIae4osY+Bro66OpuhUAva/T0skFnN0sm7VQrUZP4FStWYOfOnbh27RqMjIzQu3dvfPbZZ/Dz81Pu89prr+HQoUO4efMmTE1Nlfu0adPmocedOnUqfv311xrbhgwZgpCQkEZ7LUTNTbCfPZ7v7obtZ1Ix9/fz2PVGb9ibG4odFjUT9mZ1ey/VdT/SLFvujsIPbufQoj43gvwUS82dT83H7ZKKB8qqqfmRywVl1cnknh4NSqolEgl8HMzg42CGl/t5obSiChFJuQiNVST1KXmlOJWUi1NJuVjxzzU4mhsq59L38baFhZGeul4WqYFcLiD2VpFyPnvU9Tzl6gXVDPV00M3DCoGeNujpZYNObhYw0GXSTo8nahIfFhaGGTNmoEePHqiqqsJ7772HwYMH48qVKzAxMQEAdOvWDZMmTYK7uzvy8vKwZMkSDB48GMnJyZBKH/4mHzp0KDZs2KD828CAc0aIVPX+8LaITM7F9dxSvLDhNLa/1hPmhvyRQA0X4GkNJwtDZBaU1TovXgLA0cKQjRW1UGlFFXZGpwNoGQ3t7uVkYQQ/BzPE3ipCeEIOnunkLHZI1MhOJCqmnpka6GJkZ/X+exvr6+LJNg54so0DAOB6TglCY7MQFpeNU0m5yCwsw/Yzqdh+JhVSHQm6ulsqknpfe7R3NmfDsyYmlwu4mlmonM8edT0P+aWVNfYx0pOieysrBHoqRto7ulpCX7dOK34T1SARBEFjFuTNzs6Gvb09wsLC0L9//1r3uXDhAjp16oSEhAS0bt261n2mTp2K/Px87N69u15xFBYWwsLCAgUFBTA3N6/XMYiai5TcUoxedxI5xeXo6WWNjS8GsLSL1KK6Oz2AGol89c9OdqfXTttPp2DBjotoZWOMI/OCW1wi8cnfV/HDsSSM6eqKleM6iR0ONbLX/ncGBy7fwpReHlg20r/JnresUoao5Dxlx/uErOIa99ua6qO/j2KUvp+PHaxZFaJ2MrmAqxmFiLg70n76eh4K7tRM2o31pejeylqZtHdwsWDSTo9U1zy0XiPxVVVVCA0NRWJiIiZOnAgzMzPcvHkT5ubmMDU1rXfQBQUFAABr69pHXkpKSrBhwwZ4enrCze3Rc+xCQ0Nhb28PKysrPPnkk1i+fDlsbGqf01teXo7y8v8aSRQWFtbzFRA1P+42xtj4Yg+M/yECEUl5mPt7DL6Z0LVFNKqixjXU3wnrJnd9YJ14R64Tr9U2RyrWyp4Y6N7iEngACPa1ww/HkhAWl82l5pq5zIIyHLqaBeDxDe3UzVBPiv6+dujva4cPAKTmleJYvKLj/YmEHOQUV2DnuXTsPJcOiQTo6Gqp7HjfydWS3+H1UCWT40pGzZH2orKqGvuY6EvRw9P6bnm8NfxdLKAnZdJO6qfySPyNGzcwdOhQpKSkoLy8HHFxcfDy8sLs2bNRXl6O9evX1ysQuVyOZ555Bvn5+Th+/HiN+9auXYt33nkHJSUl8PPzw19//fXQUXgA2LZtG4yNjeHp6YnExES89957MDU1xalTp2otwV+yZAmWLl36wHaOxBP952RCDqZuOI0KmRxTenlg6TPt2VCH1EImFxCVnIesojLYmylK6PkDUztdSMvHM9+egL5UBxHvDWiRo3/lVTJ0WXYQpRUy7J/VF/4uFmKHRI3k64NxWH04HgGtrPH7673EDkepokqOszdu322Ql4VrmUU17rcw0kM/H1sE+9mjv68te488RJVMjks3C+/Oac/Fmeu3UVReM2k3M9C9m7QrRtrbO5tDl0k7NUBdR+JVTuJHjRoFMzMz/Pzzz7CxscH58+fh5eWF0NBQvPLKK4iPj69XwNOnT8c///yD48ePw9XVtcZ9BQUFyMrKQkZGBr788kukp6fjxIkTMDSs24dOUlISWrdujUOHDmHAgAEP3F/bSLybmxuTeKL77L9wE7O2noMgAPMG+WLWAHZfJqL/vLvjAradTsWozs5YNb6L2OGI5uVfz+DQ1Vt4e4gfZjzhLXY41AgqZXL0/ewIbhWWY/X4zhjZ2UXskB7qVmGZcl368PhsFN43etzOyVzR8d7XDl09rFrsyHGlTI6L6QXKkfYz1/NQUiGrsY+ZoS4ClSPtNmjnbM6LzqRWjVZOHx4ejpMnT0Jfv+bV9VatWiE9PV31SAHMnDkT+/fvx7Fjxx5I4AHAwsICFhYW8PHxQc+ePWFlZYVdu3ZhwoQJdTq+l5cXbG1tkZCQUGsSb2BgwMZ3RHUwvKMzcorKsWTfFaw8GAc7MwOMD3AXOywi0gCFZZXYE3MTADCpiUuLNU2wnx0OXb2FsNhsJvHN1OGrt3CrsBw2JvoY6u8odjiP5GBuiHHd3TCuuxuqZHKcT8tHaKxiLv2FtAJcySjElYxCrA1NhJmBLvp42yLoblLvbGkkdviNpqJKjovp+Yi4m7SfvXEbpfcl7RZGegi4Z6S9rROTdtIMKifxcrkcMpnsge1paWkwMzNT6ViCIGDWrFnYtWsXQkND4enpWafHCIJQY+T8cdLS0pCbmwsnJ86vJGqoqX08kV1cju+OJuK9XRdhY2qAQe0cxA6LiES2+1w67lTK4Otgiu4eVmKHI6ogX8VSc2dTbqPgTiWX/mqGNkUoej+M6+GmVUuC6Up10M3DGt08rDFvsB9yissRfncu/bH4HOSVVCDkciZCLmcCAHwdTO/OpbdH91ZWWvVa71deJcOFtALlkm9nb9zGncqaOY2lsV6NkfY2jmYa19eCU9AIqEcSP3jwYKxatQo//PADAMWalsXFxfjwww8xbNgwlY41Y8YMbNmyBXv27IGZmRkyMxUfGBYWFjAyMkJSUhK2b9+OwYMHw87ODmlpafj0009hZGRU47natGmDFStW4Nlnn0VxcTGWLl2KMWPGwNHREYmJiXjnnXfg7e2NIUOGqPpyiagW8wf7IbuoHL+fScPMLdHY/HIgurfiUmBELZUgCNh8N6mZFNiwtbKbAzdrY7S2M0FidglOJuTgqQ4cRGhOknNKcDwhBxIJMFHLq9FsTQ3wbBdXPNvFFXK5gIvpBcqO9+dSbiPuVjHibhXjx/BkGOlJ0bu1zd3Se3u42xiLHf4jlVfJEJOSj8hkxUh7dMptlFXKa+xjbaJ/N2m3Rs/WNvC117yk/V4hlzIeaAbrxGawLZLKc+JTU1MxdOhQCIKA+Ph4dO/eHfHx8bC1tcWxY8dgb29f9yd/yJf8hg0bMHXqVNy8eRMvv/wyzp49i9u3b8PBwQH9+/fH4sWL4efnV+M41Y+5c+cORo0ahXPnziE/Px/Ozs4YPHgwPvroIzg41G20kEvMET1elUyO1/53FoevZcHcUBd/Tu8NXwfVqnGIqHk4fT0Pz60/BSM9KSLfHwBzQ448L9t3Bb+cSMbz3d3w2diOYodDarR8/xX8dDwZwX522PhigNjhNJr80gocT8hB2N3S+6yimlWwnrYminXp/ezQ09MGRvrijtKXVcpwLiUfEUm5iEzORXRKPiqqaibtNib66Ollg0AvRXm8t52pRift96pelvX+xI3LsjYvjdbYDlAsMbd9+3acP38excXF6Nq1KyZNmgQjo+Yxb4ZJPFHd3KmQYdJPEYhOyYeThSF2TO/drOfPEVHt5mw7h90xN5mw3uNYXDam/BIFR3NDnFr4ZIuvTmguyiplCPzkMAruVOKnKd0xsIVMJxMEAVczipQd78/euI0q+X8phIGuDgK9bBRJva8dWtuZNPp7vqxShugbtxFxd6Q9JvXBpN3W1AA9vawR6GWDXl7WaG1nqpX/LcrkAvp+dqTGCPy9JFAsz3p8wZMsrddyjZLEV1ZWok2bNti/fz/atm2rlkA1EZN4orrLL63A2PWnkJBVDG97U/z5ei9YGre8ZaWIWqq8kgr0/OQwKmRy7J3ZBx1dLcUOSSOUVcrQedm/KKuUI2ROP7Rx5O+J5uDPs2mY/8d5uFga4dg7T7TYhKmorBInE3MVDfJis3DzvuTS1cpImdD39raFqYHKM3gfUFpRhegb+YhMViz5dj61ABWymkm7vZlBjZF2L9vGv5jQFE4l5mLCjxGP3W/rKz3Rq7VNE0REjaVRutPr6emhrKz2K0BE1DJZGuvjt5cCMHrtSSRkFeOljaex+eWeopfVEVHT+PNsKipkcnRwsWACfw9DPSl6edngaGw2QmOzmcQ3E5sibgAAJgS4tdgEHgDMDPUwpL0jhrR3hCAISMwuVna8j0zKQ9rtO9gcmYLNkSnQk0rQ3cMaQX52CPazg5+DWZ0S65LyKpy9cftu0p6HC2n5qJTVHHt0NDdUjrT39LJBKxvjZpG03y+rqG75V133I+2n8mWxGTNm4LPPPsNPP/0EXd2GX1UjIu3nbGmE36YFYOy6k4hOycfMLdH4/v+6QbeFrjVL1FLI5QK2RFY3tNPuBl+NIcjXDkdjFZ2/Xw9qLXY41ECX0gsQk5oPXR0JxvVwEzscjSGRSOBtbwZvezO83M8LpRVViEjKRVhsNkLjsnEjtxSnknJxKikXn/5zDQ7mBsqO9328bZWrNxSXV+HM9TxEJOUhMjkXF9MKapTsA4CzhWGNkXZ36+aZtN/P3sxQrfuR9lM5Cz99+jQOHz6Mf//9Fx06dICJiUmN+3fu3Km24IhIe/g6mOGXqT0w6adIHL6Whfd2XcRnYzq2iC9XopbqZGIurueWwsxAFyM6OYsdjsYJ9rMH9l3BmRt5KC6vUktJMYln890LVkP8HZksPYKxvi6ebOOAJ9so+gVczylRzqU/lZSLW4WK1W1+P5MGqY4EXdwsUSkXcCm9ALL7knYXSyNl0t7LywauVkYt8ndFgKc1nCwMkVlQ9kBjO+C/OfEBnlwpqKVQ+dvE0tISY8aMaYxYiEjDqLoWafdW1vh2Yle89r8z+P1MGuzMDPD2kDZNGDERNaXNkYrS4me7usCECeoDWtmawMPGGDdyS3EyIQeD2zuKHRLVU1FZJfbEpAMAJgd6iByNdmlla4JWtiZ4oXcrlFXKcPp6nrL0PiGrGGdu3Fbu62ZtpFyjPdDTGm7Wmr2MXVOR6kjw4Yh2mL4pGhKgRiJf/avswxHtWvQUj5ZG5W/cDRs2NEYcRKRh6rsW6aB2Dvjk2Q54d+dFfHc0EXamBpjax7MpQiaiJnSrsAz/XrkFQLE2PNUu2NcOv566gdC4bCbxWmzXuXSUVsjgbW+Knl4c7awvQz0p+vnYoZ+PHT4AkHa7FCcTcqErlSDQywYuXOHmoYb6O2Hd5K4P/DZz5DrxLRIvmxPRAx62FmlmQRmmb4p+7Fqk4wPckV1UjpUH47B0/xXYmhlgeEeW2hI1J7+fToVMLqBHKyv4OZqJHY7GCvazx6+nbiAsNhuCILTIUmBtJwiCsqHdpEB3/huqkauVMcb14Gh7XQ31d8Kgdo4qVUlS86RyEu/p6fnID6+kpKQGBURE4pLJBSzdd6XWOVcCFGVbS/ddwaB2jo/80pj5pDeyi8vx26kbmLv9PKyN9dHb27axwiaiJiSTC9gaVd3QjqPwj9LTywb6ujpIz7+DxOxieNvzgoe2OX39NuJuFcNIT4rRXV3FDodaOKmOhMvIkepJ/Jw5c2r8XVlZiXPnziEkJARvv/22uuIiIpFEJefVKNO6nwAgo6AMUcl5j/wSkUgk+HBEe+QUl+Pvi5l49X9nse3VnvB3sWiEqImoKYXeXRfaylgPQ/1ZIv4oRvpSBHpaIzw+B6Gx2UzitVD1KPwznZyVndSJiMSkchI/e/bsWrd/9913OHPmTIMDIiJxqXMtUqmOBF+N64y8kihEJOVh6obT2Dm9N9xtWDpHpM2qu3Q/190NhnpSkaPRfEG+dgiPz0FYXDZe7ucldjikgpzicvxzKQMAMLknq06ISDOobRHnp556Cjt27FDX4YhIJOpei9RQT4ofpnRHWydz5BSXY8ovkcgpLm9IiEQkorTbpTgamwUAmBDAteHrItjPHgAQmZSH0ooqkaMhVfx+JhWVMgGdXC3QwZWVZESkGdSWxP/555+wtma3TiJtV70W6cNmu0ug6FKvylqk5oZ6+PXFHnC1MsL13FK8uOE0isv5Q5ZIG22LSoUgAH29beFpayJ2OFqhtZ0JXCyNUCGTIyIpV+xwqI5kcgFb7ladTOIoPBFpEJWT+C5duqBr167KW5cuXeDk5IT33nsP7733XmPESERNqHotUgAPJPINWYvU3twQv70UAGsTfVxML8Dr/zuLiip5wwMmoiZTKZNj2+lUAIou3VQ3EokEwX52AIDQ2GyRo6G6OhaXjbTbd2BuqIsRXGGFiDSIynPiR44cWaM7vY6ODuzs7BAcHIw2bdqoNTgiEkdjrUXqZWeKDVN7YMKPETiekIP5f5zHquc7Q4dLoxBphYNXbiGnuBx2ZgYY2M5B7HC0SpCvHTZHpiAsjkm8tqhuaDe2mxuM9Nn7gYg0h8pJ/JIlSxohDCLSNI21FmknN0usm9wN0zaext7zN2FraoAPhrflurtEWmBzpCKpGd/DDXpStc3IaxF6e9tCTyrBjdxSJOeUcCqChku7XYojd3s/TGTVCRFpGJW/gaVSKbKysh7YnpubC6mUVymJmpPqtUhHdnZBr9Y2DU7gqwX52uHL5zoBAH45kYzvjyWp5bhE1HiSsotxIiEXOhJgPBvaqczUQBc9Wil6iYTFPvg7ijTL1qgUCALQy8sG3vamYodDRFSDykm8IAi1bi8vL4e+vn6DAyKilmFUFxe8P6wtAODTf65hx9k0kSMi0g4yuYBTibnYE5OOU4m5kMlr/15Wt61RigZfT/jZw8XSqEmes7kJ8r07L54l9RqtokqO7Xd7P3BZOSLSRHUup1+zZg0ARXOWn376Caam/12VlMlkOHbsGOfEE5FKXunvhezicvxwLAnv7LgAaxN9PNHGXuywiDRWyKWMB3pVODWwV0VdlFXK8MfdC22TenIUvr6C/eyx4p9riEjKRVmlDIZ6rGDURAcuZyKnuAJ2ZgYY3J69H4hI89Q5if/6668BKEbi169fX6N0Xl9fH61atcL69evVHyERNWvvDm2D7KJy7DqXjjc2R2PLK4Ho4m4ldlhEGifkUgamb4rG/ePumQVlmL4pGusmd220RP7vixnIL62Ei6URgnx5oa2+fB1M4WhuiMzCMkQm5ylH5kmzsPcDEWm6OifxycnJAIAnnngCO3fuhJUVf2QTUcPp6Ejw+diOyC2pwLG4bLy08TT+eL035yAS3UMmF7B035UHEngAEKBY/nHpvisY1M5Rbb0r7rX57lrZEwLcGuX4LUX1UnPbTqciNDaLSbwGSsgqQkRSHnQkwAT2fiAiDaXy5cWjR48ygScitdKT6mDdpK7o5GqB26WVeOGXKGTeUy5M1NJFJefVKKG/nwAgo6AMUcl5an/uqxmFOHvjNnR1JBjX3U3tx29pqhN3LjWnmTZFKC5YPdnGAc7s/UBEGkrlJeYAIC0tDXv37kVKSgoqKipq3PfVV1+pJTAiallMDHTxy9QeGLv+FJJzSvDCL1H4/fVesDDSEzs0ItFlFdXtolZd91PFlruj8IPbO8De3FDtx29p+vjYQqojQVJ2CVLzSuFmbSx2SHRXaUUVdkQrej9MZu8HomZDJhfUvmSy2FRO4g8fPoxnnnkGXl5euHbtGvz9/XH9+nUIgoCuXbs2RoxE1ELYmBrgt5cCMHrdScTeKsIrv57Bb9MCtKr5U3P8oiDx2ZvVLXmu6351VVJehV3n0gEAkwLZpVsdzA310M3dClHX8xAal43/Y/dzjbHv/E0UlVXB3doY/X041YGoORCrIWxjU7mcfuHChZg/fz4uXrwIQ0ND7NixA6mpqQgKCsJzzz3XGDESUQviZm2MX18MgJmBLqKu52H2tnNNtoRWQ4VcykDfz45gwo8RmL0tBhN+jEDfz44g5FKG2KGRlgvwtIaThSEedjlIAsWPkgBPa7U+797zN1FcXgVPWxP08rJR67FbsiC/uyX1XC9eo1SX0k8MdIcOL74Sab3qhrD3T0erbgirzb/PVE7ir169iilTpgAAdHV1cefOHZiammLZsmX47LPP1B4gEbU87ZzN8cOU7tCX6uDA5Vv4YM8lCIJmJ/LN+YuCxCfVkeDDEe0A4IFEvvrvD0e0U2vVhyAI2BSh6NI9MYBJjTpVz4s/mZiL8iqZyNEQAJxPzcfF9ALoS3XwXDdXscMhogZ6XENYQNEQVlsGiu6nchJvYmKinAfv5OSExMRE5X05OTnqi4yIWrRerW2wanxnSCSKObmrD8eLHdJDNfcvCtIMQ/2dsG5yVzha1CyZd7QwbJTl5S6kFeDyzULo6+pgLJMatWrvbA47MwOUVshw5vptscMhQHnBalgHR9iYGtTrGDK5gFOJudgTk45Tibn8zCcSkZgNYZuCynPie/bsiePHj6Nt27YYNmwY5s2bh4sXL2Lnzp3o2bNnY8RIRC3UsA5OWDbSHx/svoRVh+Jha2qAyRo4f1SVL4perVmSTPU31N8Jg9o5Nknfheq1sod3cIKVib7aj9+SSSQSBPna4c+zaQiLy0Yfb1uxQ2rRCkorse/CTQCo93dMc513S6StxGwI2xRUHon/6quvEBgYCABYunQpBgwYgO3bt6NVq1b4+eef1R4gEbVs/9fTA28+6Q0AWLznEkIuZYoc0YOa+xcFaRapjgS9WttgZGcX9Gpt0ygJfMGdSuw9r0hqJrFLd6OoLqkP5bx40f0ZnYaySjnaOJqhm4fqyyhzOhWR5hGrIWxTUSmJl8lkSEtLg7u74gvdxMQE69evx4ULF7Bjxw54eGjeCBkRab+3BvliQoAb5ALw5rZziEzKFTukGpr7FwW1PLvuSWq6uque1NDj9fOxhY4EiLtVjJv5d8QOp8USBEFZdTKppwckEtUuinE6FZFmEqshbFNRKYmXSqUYPHgwbt/m/C0iajoSiQQfjfTHoHYOqKiS4+XfzuBaZqHYYSk19y8KalkUSY2iS/ekQHeVkxqqG0tjfXR2swQAhMVlixtMC3YqMRdJ2SUw0Zfi2S4uKj++uc+7JdJWYjSEbUoql9P7+/sjKSmpMWIhInooXakOvpnQBT1aWaGorAov/BKFtNulYocFoPl/UVDLcvr6bcRnFcNYX4pR9UhqqO6C/ewBsKReTJvujsKP7OICUwOVW0VxOhWRBmvqhrBNSeUkfvny5Zg/fz7279+PjIwMFBYW1rgRETUWQz0pfprSA74OprhVWI4pv0Qhr6RC7LAANO8vCmpZqkuLR3Z2hpmhnsjRNG/V8+JPJOSiUiYXOZqWJ6uwDP9evgUAmBxYvymhnE5FpNmG+jvh+IInsfWVnlg9vjO2vtITxxc8qfW/y1S+5Dhs2DAAwDPPPFOjxE4QBEgkEshkXO+UiBqPhbEefn0pAGPWnkRSdgle3HgaW18JhLG+6iMo6taUncOJGkNucTn+uahoHjkxgH1uGlsHFwtYm+gjr6QCZ2/cRk8vrl7RlLadTkWVXEBXd0u0czav1zGqp1NlFpTVOi9eAsXFXE6nIhJPdUPY5kTlX71Hjx5tjDiIiOrMycIIv00LwNj1p3A+NR9vbI7Gj1O6Q0+qcnGR2jXHLwpqOf48m4YKmRydXC3QwdVC7HCaPR0dCfr72GJ3zE2ExWUziW9CVTI5tkYpej80ZOnS6ulU0zdFQwLUSOQ5nYqIGovKSXxQUFBjxEFEpBJvezP8/EIPTPopAqGx2Viw4wJWPteJTbiI6kkuF7AlqrqhHUfhm0qwnz12x9xUfI4NbSN2OC3G0dhsZBSUwcpYD8M6NKystno61f3rxDtynXgiaiT1qj8NDw/H999/j6SkJPzxxx9wcXHB//73P3h6eqJv377qjpGIqFbdPKzw3cSuePV/Z7EzOh12ZgZY+FRbscMi0konEnNwI7cUZoa6GN6JSUdT6edjC4kEuJpRiFuFZXAw59zpprApQtH74bnubjDUkzb4eJxORURNSeXa0x07dmDIkCEwMjJCdHQ0ysvLAQAFBQX45JNP1B4gEdGjDGjrgBWjOwAAvg9Lws/Hk0WOiEg7VSc1Y7q6akSPiZbCxtQAHV0UUxe41FzTSMktxbF4xbmeGOCutuNWT6ca2dkFvVrbMIEnokZTr+7069evx48//gg9vf+61vbp0wfR0dFqDY6IqC7GdXfD20P8AAAf7b+CPTHpIkdEpF0yC8pw6KpimbOJgepLaqhugu4uNcckvmlsjroBQVBUQbSyNRE7HCIilamcxMfGxqJ///4PbLewsEB+fr46YiIiUtkbwa0xtXcrAMD8P84jPJ4/honqavvpVMjkAgJaWcPXwUzscFqc6qXmwuOyUcWl5hpVeZUMf5xJA9CwhnZERGJSOYl3dHREQkLCA9uPHz8OLy8vtQRFRKQqiUSCxcPbYXhHJ1TKBLz+v7O4mFYgdlhEGq9KJse203cb2vXkKLwYOrtZwsJID4VlVTifli92OM3aPxczkVdSAScLQwxoYy92OERE9aJyEv/KK69g9uzZiIyMhEQiwc2bN7F582bMnz8f06dPb4wYiYjqREdHgpXjOqGPtw1KKmSYuiEKyTklYodFpNGqu3Rbm+hjqL+j2OG0SFIdCfr52AIAQmNZRdSYqns/jO/hDl0NWJaUiKg+VP70evfddzFx4kQMGDAAxcXF6N+/P15++WW89tprmDVrVmPESERUZwa6Uqyf3A3tnc2RW1KBKb9EIquo7PEPJGqhNkfe7dLdzRUGug3v0k31E3x3XjyT+MZzLbMQZ27chlRHgvEBbmKHQ0RUbyq3n5VIJHj//ffx9ttvIyEhAcXFxWjXrh1MTU0bIz56CJlMhvDwcGRkZMDJyQn9+vWDVMofX4/Cc6Y6bT1nZoZ62PhiAMasO4mUvFJM/eU0tr/WE2aGeo9/cANp6zkTE8+ZatR5vlLzSpXN1CaosUu3ptGG91h/X8VI/MX0AuQUl8PW1EDUeLThnKmqehR+cDuHRlnKrzmes8bGc6Y6njPVNctzJjRASkqKkJKS0pBDaKSCggIBgFBQUCB2KLXasWOH4OrqKgBQ3lxdXYUdO3aIHZrG4jlTXXM4Z8nZxUK3j/4VPBbsFyb8cEooq6xq1OdrDuesqfGcqUbd5+uzf64KHgv2C5N/ilBzpJpDm95jw1YfEzwW7Bd2nE0VNQ5tOmd1VVRWKbT74B/BY8F+4Xh8ttqP3xzPWWPjOVMdz5nqtO2c1TUPVTmJr6ysFBYtWiSYm5sLOjo6go6OjmBubi68//77QkVFRb0D1iSanMTv2LFDkEgkNd6IAASJRCJIJBKNfUOKiedMdc3pnF1IzVf+cHtj81lBJpM3yvM0p3PWVHjOVKPu81VeKVNe5PrnYkYjRS0ubXuPVV9UeXNrtGgxaNs5q6v/nboueCzYLzzxxVFBLlfv90BzPWeNiedMdTxnqtPGc1bXPFQiCIJQ93F7YPr06di5cyeWLVuGXr16AQBOnTqFJUuWYNSoUVi3bp0qh9NIhYWFsLCwQEFBAczNzcUOR0kmk6FVq1ZIS0ur9X6JRAJXV1ckJydrf4mImvCcqa45nrPj8Tl4cWMUKmUCpvZuhQ9HtINEIlHb8ZvjOWtsPGeqaYzztf/CTczccg4O5gY4vuBJ6DWzJl/a+B6LSs7DuO9PwcpYD2cWDYJUR32fU3XxuHMGiQRuGnbO6kIQBDy1OhzXMouw6Om2eLmf+lZT0sb3mdh4zlTHc6Y6bT1ndc1DVf7G3rJlCzZu3IjXXnsNHTt2RMeOHfHaa6/h559/xpYtW1Q61ooVK9CjRw+YmZnB3t4eo0aNQmxsbI19XnvtNbRu3RpGRkaws7PDyJEjce3atUceVxAELF68GE5OTjAyMsLAgQMRHx+v6kvVOOHh4Q//YoXidaempiI8PLwJo9JsPGeqa47nrK+PLVaO6wwA2HjyOtaGJqr1+M3xnDU2njPVNMb52hyhWFbu+R7uzS6BB7TzPdbV3RJmhrq4XVqJi+lNv0Tm484ZNPCc1UV0ym1cyyyCga4OxnZzVeuxtfF9JjaeM9XxnKmuuZ8zlb+1DQwM0KpVqwe2e3p6Ql9fX6VjhYWFYcaMGYiIiMDBgwdRWVmJwYMHo6TkvyWhunXrhg0bNuDq1as4cOAABEHA4MGDIZPJHnrczz//HGvWrMH69esRGRkJExMTDBkyBGVl2t2hOiMjQ637tQQ8Z6prrufsmU7OWDy8HQDgiwOx+P10qtqO3VzPWWPiOVONus9XQlYxTiXlQkcCjO/RPLt0a+N7TFeqg77e1UvNZTX586en31Trfppi090LVsM7OsPSWLXfqo+jje8zsfGcqY7nTHXN/ZypnMTPnDkTH330EcrLy5XbysvL8fHHH2PmzJkqHSskJARTp05F+/bt0alTJ2zcuBEpKSk4e/ascp9XX30V/fv3R6tWrdC1a1csX74cqampuH79eq3HFAQBq1atwqJFizBy5Eh07NgRv/32G27evIndu3er+nI1ipOTk1r3awl4zlTXnM/ZS3098XpQawDAwl0XcfjqLbUctzmfs8bCc6YadZ+vrVGKpObJNg5wtjSqd1yaTFvfY8F+dgCgXDWgKeXDRK37aYK8kgr8dUHxI31yT/WvwKCt7zMx8ZypjudMdc39nKmcxJ87dw779++Hq6srBg4ciIEDB8LV1RX79u3D+fPnMXr0aOVNVQUFitIxa2vrWu8vKSnBhg0b4OnpCTe32kcOkpOTkZmZiYEDByq3WVhYIDAwEKdOnar1MeXl5SgsLKxx00T9+vWDq6vrQ+fySiQSuLm5oV+/fk0cmebiOVNdcz9nC4b6YUxXV8jkAmZsicbZG3kNPmZzP2eNgedMNeo8X2WVMvx5VlFiOKkRkhpNoa3vsf6+iiQ+JjUft0sqmvS5ndp0gdTM9pH7SM1s4dSmSxNF1HB/nk1FhUyO9s7m6Oxmqfbja+v7TEw8Z6rjOVNdcz9nKifxlpaWGDNmDIYPHw43Nze4ublh+PDhGD16NCwsLGrcVCGXyzFnzhz06dMH/v7+Ne5bu3YtTE1NYWpqin/++QcHDx58aOl+ZmYmAMDBwaHGdgcHB+V991uxYkWNuB92gUBsUqkUq1evBoAH3pDVf69atUqjmjOIjedMdc39nEkkEnw6pgOe8LNDWaUcL208g/hbRQ06ZnM/Z42B50w16jxff13IQMGdSrhaGaG/j536g9UQ2voec7IwQhtHMwgCEJ6Q07TPbWkC6wGvPnIf6wGvwslSO0bi5XIBmyMVVSeTe3qotaFpNW19n4mJ50x1PGeqa/bnrHGa46vu9ddfFzw8PITU1AfXRs3Pzxfi4uKEsLAwYcSIEULXrl2FO3fu1HqcEydOCACEmzdv1tj+3HPPCePGjav1MWVlZUJBQYHylpqaqrFLzAlC7esdurm5aeQyCZqC50x1zf2clZRXCiO/PS54LNgv9PzkkHAzv7TBx2zu56wx8JypRh3n69nvFO/7b4/EN2KkmkMb32Of/HVF8FiwX3hr+7kmfd4qmVzo+ckhwW7Ue4LUzLbGOZOa2Qp2o94Ten5ySKhqpKU61S0sNkvwWLBf8F8cIpSUVzbqc2nj+0xsPGeq4zlTnbads0ZbYq4xzJw5E3v27MGxY8fg6en5yH0rKipgZWWFn376CRMmTHjg/qSkJLRu3Rrnzp1D586dlduDgoLQuXNn5RWZR9HUJebuJZPJEB4ejoyMDDg5OaFfv37aeyWpifCcqa65n7O8kgqMXX8SSdkl8LE3xR+v92pw06Pmfs4aA8+Zahpyvq7cLMSwNeHQ1ZHg1MIBsDMzaORoNUNFZRV+/P0vJKWkwcvdFa+Mexr6erpih/VQJxNzMPHHSNia6iPqvYHQacKl5kIuZWD6pmgIchnK0i5DVnwbUlMrGLq2h0RHinWTu2Kov3bMIX31tzP498otvNDLA0tH+j/+AQ3EzzLV8ZypjudMddp0zuqah6qcxOfm5mLx4sU4evQosrKyIJfLa9yfl1f3+aWCIGDWrFnYtWsXQkND4ePj89jHlJeXw8rKCmvXrsXUqVNrPaazszPmz5+PefPmAVCcDHt7e2zcuBHjx49/7HNoQxJPROqRdrsUY9adxK3CcnT3sMKmlwNhqKeZH+xEDbVo90VsikjB0x2d8N3ErmKH0yRCLmVg6b4ryCj4b4UaJwtDfDiincYmoxVVcnRZ9i9KKmTYP6sv/F1Um6LYUNp4zu6XUXAHfT49ArkA/PtWf/g6mIkdEhHRY9U1D1X5MvT//d//ISEhAdOmTYODg0OD5hfNmDEDW7ZswZ49e2BmZqacs25hYQEjIyMkJSVh+/btGDx4MOzs7JCWloZPP/0URkZGGDZsmPI4bdq0wYoVK/Dss89CIpFgzpw5WL58OXx8fODp6YkPPvgAzs7OGDVqVL1jJaLmydXKGL++FIDn1p/CmRu3MXPLOayf3BW6zXDdbGrZisursCs6HQAwKbD5NrS7l3JU+b7tmQVlmL4pWmNHlfV1ddDb2xYHr9xCaGxWkyfxQ/2dMKidI6KS85BVVAZ7M0MEeFpD2oQVAQ21NSoVcgEI8LRmAk9EzY7KSXx4eDiOHz+OTp06NfjJ161bBwAIDg6usX3Dhg2YOnUqDA0NER4ejlWrVuH27dtwcHBA//79cfLkSdjb2yv3j42NVXa2B4B33nkHJSUlePXVV5Gfn4++ffsiJCQEhoaGDY6ZiJqfNo7m+GlKd/zfL1E4dPUWFu2+hBWjOzRKEyQiseyJSUdJhQxetibo5WUjdjiNTiYXsHTflQcSeEAxKVICYOm+KxjUzlEjk9NgPzscvHILYXHZmPnk4ysV1U2qI0Gv1tr5PqmUybEt6r+GdkREzY3KSXybNm1w584dtTz54yr5nZ2d8ffff6t8HIlEgmXLlmHZsmUNio+IWo5ALxt8M6ELpm86i22nU2FnZoB5g/3EDotILQRBwKYIRVIzMdC9RVygikrOq1EOfj8BQEZBGaKS8zQyWQ26u9RcdEo+Cu5UwsJIT+SItMehK7eQVVQOW1N9DG3vKHY4RERqp3K96Nq1a/H+++8jLCwMubm5WrG+OhFRXQxp74jlozoAAL45koD/nboubkBEahKTmo+rGYXQ19XB2G6uYofTJLKKHp7A12e/puZqZQxve1PI5AJONPFSc9puU+QNAMC47m7Q1+XUKCJqflQeibe0tERhYSGefPLJGtsFQYBEIoFMJlNbcETqJJMLWj2/j5rGxEB3ZBWVYdWheCzeexk2pgYY1kHz5swSqaJ6rezhHZ0avAKDtrA3q9sUurruJ4YgXzskZBUjNDaLn0N1lJRdjBMJuZBIgAkBLaP3AxG1PCon8ZMmTYKenh62bNnS4MZ2RE2lOXTapaYze4APsovKsTkyBXO2xcDSWA+9W9uKHRZRvRSUVmLf+ZsAgEmBLWd+cICnNZwsDJFZUFbrvHgJAEcLxQVdTRXsZ4efjycjLC5bOVhCj1Z9weoJP3u4WRuLHA0RUeNQOYm/dOkSzp07Bz8/zhUl7aCt3YlJPBKJBMtG+iO3uAIhlzPx2m9nsf21XmjnzCUnSfvsiE5DeZUcbRzN0NXdUuxwmoxUR4IPR7TD9E3RkAA1vgOqU+EPR7TT6IqsHq2sYaQnxa3CclzLLEJbJ34GPUpZpQx/nk0DAEzuyVF4Imq+VJ4o1L17d6SmpjZGLERq97juxICiO7FM/ugmi9TySHUkWDW+MwI8rVFUXoUXNkQhNa9U7LCIVCIIAjbfnR88qadHixvJHervhHWTu8LRombJvKOFoVZcwDXUkyqb7oXGZoscjebbd/4mCu5UwsXSCEG+9o9/ABGRllJ5JH7WrFmYPXs23n77bXTo0AF6ejW7pXbs2FFtwRE1lLZ3JyZxGepJ8eOU7nj++1O4llmEKb9E4c/Xe8HG1EDs0IjqJDI5D4nZJTDWl2JUZ2exwxGFtq95HuRrhyPXshAWl4Xpwa3FDkejbYr8bwUGbfn3JSKqD5WT+Oeffx4A8NJLLym3SSQSNrYjjaTt3YlJfBZGevj1pQCMXnsSyTkleGnjaWx5pSdMDFT++CRqctXzg0d1cYGZYctdokyb1zwP9lMsNXfm+m0UlVW26H/HR7mUXoDzqfnQk0owrrub2OEQETUqlX+FJicnN0YcpCJ2Wq+b5tCdmMTnYG6I36YFYOy6kzifVoDXN53Fzy/04NJFpNFyissRcikDADCRXbq1loeNCVrZGON6bilOJuZiCNc9r1X1tJEh7R1hZ8ZqKW3B37NE9aNyEu/h0XI622oqdlqvu+bQnZg0Q2s7U/wytQcm/hiJ8PgcvPPneXw1rjN0+GODNNQfZ9JQKRPQ2c0S/i4WYodDDRDsZ4+NJ68jNDabSXwtCssqsfucYgWGyT35O1Vb8PcsUf3Vaxjpf//7H/r06QNnZ2fcuKG48rlq1Srs2bNHrcHRg6o7rd8/z7u603r1qAspVHcnBv7rRlxNW7oTk+bo4m6FtZO7QldHgt0xN7Hin6tih0RUK7lcwJaouw3tAjkKr+2C7pbUH7u71BzVtCs6HXcqZfCxN0UgL8prBf6eJWoYlZP4devWYe7cuRg2bBjy8/OVc+AtLS2xatUqdcdH92Cn9frR9u7EpFme8LPHZ2MUDTx/DE/GD8cSRY6I6EHhCTlIzbsDc0NdDO/YMhvaNSc9PW2gr6uD9Pw7SMgqFjscjSIIAjZF/HfBqqWtwKCN+HuWqOFULqf/5ptv8OOPP2LUqFH49NNPldu7d++O+fPnqzU4qomd1utP27sTk2YZ080VOcXlWPHPNXzy9zXYmhpgdFdXscMiUtp8N6kZ080VRvpSkaOhhjLSl6Knlw2OxWUjLC4bPg5mYoekMaKS8xCfVQwjPSlGd+PnsDbg71mihlN5JD45ORldunR5YLuBgQFKSkrUEhTVjp3WG6a6O/HIzi7o1dqGCTw1yKv9vTCtrycA4J0/LyA0NkvkiIgUMgru4PA1xfuRpfTNR5CvoqSe68XXVL2s3MjOzjBn536twN+zRA2nchLv6emJmJiYB7aHhISgbdu26oiJHoKd1ok0h0QiwfvD2mJkZ2dUyQW8sTkaMan5YodFhO2nUyGTCwj0tIa3PUdsm4vqpeaikvNQWlElcjSaIbvovxUY2NBOe/D3LFHD1TmJX7ZsGUpLSzF37lzMmDED27dvhyAIiIqKwscff4yFCxfinXfeacxYW7zqTusPGz+WQNHVk53WiZqGjo4EX4zthH4+tiitkOGljaeRlM35qiSeKpkc26JSAQCTmNQ0K162JnC1MkKFTI5Tiblih6MRfj+TikqZgE5cgUGr8PcsUcPVOYlfunQpiouL8fLLL+Ozzz7DokWLUFpaiokTJ2LdunVYvXo1xo8f35ixtnjstE6kefR1dbBucjd0cLFAXkkFpvwShaxClgCSOI5cy0JmYRlsTPQxpL2D2OGQGkkkEuVoPEvqFc3RttwtpZ/MaSNahb9niRquzkn8vUuaTJo0CfHx8SguLkZmZibS0tIwbdq0RgmQamKndSLNY2qgiw0v9kArG2Ok3b6DKb9EobCsUuywqAXafDepea67Gwx02dCuuQnytQcAhMZltfil5sLispCefwcWRnoY0YkrMGgb/p4lahiVutPfv2yHsbExjI2N1RoQPR47rRNpHltTA/z2UiBGrzuJa5lFGPzVMUwIcMf4ADc4mHNeHzW+lNxSHItXjNBODODIZHPUu7UN9KQSpObdQXJOCbzsTMUOSTSbIhQXrMZ2c4WhHi9YaSP+niWqP5WSeF9f38euv5mXl9eggKhuqjutE5HmcLcxxq8v9cCLG04js7AMXx+Kw5oj8RjU1gGTe3qgd2sb6PDHCTWSLVEpEASgv68d3G14gb05MjHQRY9W1jiZmIuwuOwWm8Sn5pXiaCxXYGgO+HuWqH5USuKXLl0KCws2DiEiepj2zhYIX/AEQi5lYlPEDZy+fhshlzMRcjkTnrYmmBjgjrHdXGFloi92qNSMlFfJ8MeZuw3tmNQ0a8F+djiZmIvQ2Gy82MdT7HBEsfXuBas+3jYt9kIGEbVsKiXx48ePh729fWPFQkTULBjoSjGyswtGdnbBtcxCbIlMwc7odCTnlODjv6/ii39jMbyDEyb19EBXd8vHVjgRPc6By7eQW1IBB3MDDGjD7+nmLNjPHp/8fQ0RSbkoq5S1uFLyiio5fr97wWpyIFdgIKKWqc6N7fgjk4hIdW0czbFspD8i3xuAT57tgHZO5qiokmPnuXSMWXcSw9Ycx6aIGygu57rPVH+bI24AAMb3cIeutM5f7aSFfOxN4WRhiPIqOSKSWt5ScyGXM5FTXAF7MwMMbMcVGIioZapXd3oiIlKNiYEuJga64683+2LXG70xtpsrDHR1cDWjEIt2X0Lgx4fw/q6LuJpRKHaopGUSsooQmZwHHQkwPsBN7HCokd271FxYXMtbau6/C1Zu0OMFKyJqoer86SeXy1lKT0TUQBKJBF3crfDlc50Q+d4ALHq6LbxsTVBSIcPmyBQ8tTocY9adxK5zaSirlIkdLmmB6mXlBrR1gJOFkcjRUFMI8r2bxLew9eLjb917wYq9H4io5VJpTjwREamPpbE+Xu7nhWl9PXEqMRebI1Nw4HImzt64jbM3bmPZvit4rrsbJga4o5Wtidjhkga6UyHDjrNpAIDJPTk/uKXo7W0LXR0JknJKkJJb2mJWI7j3gpWzJS9YEVHLxTok+v/27jw+yvLe//97sk32DbIQsrKFXbawFCXgQlCruFWLpIJSrQoHOadqa3taPFp/VA8+PPqr9SxFUMEFtJwip4KUJSJLgLDJFrZAEkIIWSdkI8v9/SNk2jEBQTJb5vV8POaP3Pc11/W54CLMZ677ui4ATmYymfSDPt319vQR2vrLm/Xz2/opLsxfFbWN+u+vTmriwk36yaJsrTlQrKbmFmeHCxeyen+RLPVNSogM0E19ujs7HDhIqL+vRiRFSJKyjpY4ORrHqL3YxBdWAHAJSTwAuJDoUH/90y19tfkXN+tPj4zSxNQomUzS5mOlenJpjsa/ukFvrDuq4qp6Z4cKF9A2M/nw6CR5ebEBrSdpWxe/yUMeqV+1t0jVDU1K6hbIF1YAPB5JPAC4IG8vk24dGKMlj47WV89N0lMTe6tbkJ/OWRr05vpjGv/qBj3x/i59dfS8WlrYeNQTHThTpb0FlfL1NulHo+KdHQ4crG1d/NYTZWpo6tr7ZxiGoaXZrRvaPTw6kS+sAHg8kngAcHEJkYH6xZT+2vrCzXpr2nCNTolUc4uhLw+d0yPv7tCk1zfpv7JOqLzmorNDhQN9uKN1Fn7K4B7qHmx2cjRwtIE9QhUdYlZdY7N25lU4Oxy72ldYpQNnLPLz8dKPRnECAwCQxAOAmzD7eOvuG+K0/Gfj9OU/T9DMHyQrxOyj02W1WvDFEY39/9Zr3sd7tOtUOceCdnEXGpr0lz1nJEnTx7BLtycymUx/36W+i6+LX3rpWLk7h/RQZJCfk6MBAOcjiQcAN9QvJkQv3j1I2b++Ra/eP0RDeobpYnOL/ndvkR74z226/c3N+mDbKVXXNzo7VHSSmoYmfX2sVG+sO6rMP2Wr5mKzekcFaUxKpLNDg5Oke8C6+Mrai/p8X5EkKXMsX1gBgMQRcwDg1gL9fPRQWqIeSkvUvoJKLcs+rVX7inSkuFq/+ctBLfjiiKYO66nMsYkaFBfm7HBxDcouNGjnqQrtPFWuXafKdaDIouZv7X/w+E29ZDKxPthT3dQnSl4m6VjJBZ2prFPPLnjs2qc5hWpoalH/2BCNSIxwdjgA4BJI4gGgi7ghIVw3JITr13cM1Ge7C7Us+7ROnK/RRzvy9dGOfA1PDFfmmCTdObSH/H29nR0u/oFhGCqsqNOOvHLtPNX6OnG+pl25nuEBSkuO0KjkSI3tFak+0SFOiBauIizQV8MTI5RzukJZuef1cBdbWmEYhj68dAJD5tgkvrACgEtI4gGgiwkL9NVjN6bo0fHJ2n6yXMuyT2vtwWLtya/UnvxKvfx/h/TAiHg9PCZRvaKCnR2uR2ppMZR7rlo7T5VrR165dp2qULGl/bGB/WKClZYcqdEpkRqVHNklZ1pxfSb2i2pN4o+WdLkkfuuJMp0srVGQn7fuGd7T2eEAgMsgiQeALspkMmlc724a17ubzlc3aPmuAn2Yna8zlXX609d5+tPXeRrfp5syxyTp1oEx8vVmmxR7aWhq1jeFVdpxqlw788q163SFquubbMr4eJk0JD5Mo5MjlZYcqVHJEQoPZBMvXFl6apReX3dUW46X6WJTi/x8us6/47YN7e4d0VPBZj6yAkAbfiMCgAeICjFr9qQ+ejK9t7KOlmjp9nxtzC3RluNl2nK8TNEhZv04LUE/Hp2oOGZ7r5ulvlE5pyu061S5duZVaG9hpS42tdiUCfLz1oikCKVdStqHJYQrwI9lDrg2g+PC1C3IT2U1F7U7v0Jje3Vzdkid4pylXl8eOiep9VF6AMDfkcQDgAfx9jLp5v4xurl/jAoravXRjnx9srNAJdUNemvDcf1h43Hd3D9GmWMTNaFvlLy8WIN6NUos9dpxqvWx+B155TpSbNG39qBT92A/jUqKVFpKpEYnR2pAjxD58PQDrpOXl0kT+kVp5Z4z2pR7vssk8R/vKFBzi6FRSRHqHxvq7HAAwKWQxAOAh4qPCNRzGf31zC399OWhYi3dflrbT5brb4fP6W+HzykhMkAPj07Sg6Pi1S3Y7OxwXYZhGMorrbm0AV3r7vGny2rblUvqFnhplr11tj2lexAbc8EuJqa2JfEl+uXt/Z0dznVram7RRztaN7SbzrFyANAOSTwAeDg/Hy/9cGicfjg0TsdLqrUsO1+f5hSqoLxOr645ojfWHdWUwbHKHJuktOQIj0tEm5pbdPhs9aWZ9tbEvfRCg00Zk0kaEBt6aQO61qQ9JtTfSRHD09zUN0omk3SkuFrnLPVuP/Y2HClRsaVeEYG+un1wD2eHAwAuhyQeAGDVJzpE8+8apOcz+uvz/UVatv209hVWadW+Iq3aV6R+McGaPiZJ947oqVB/X2eHaxf1jc3ak19pPept9+kK1Vxstinj5+OlYfHhSktpTdhHJEV02T8PuL7IID8NjQ/XvoJKZeWe14NpCc4O6bosvXSs3IOjEjgOEwA6QBIPAGgnwM9bD45K0IOjEvRNYZWWZZ/WX/YW6ei5C5q/6qB+/8URTR0Wp8yxSRrcM8zZ4V6XytqL2nXpsfgdp8p14EyVGpttF7SH+PtoVFKEdT37kPgwmX1ILuA6JvaLak3ij7p3En+6rEZfHT0vSV3uyDwA6Cwk8QCAKxoSH6bfxw/VC3cM0MrdhVqWna9jJRf08c4CfbyzQDckhGv6mETdNTTOLXZXP1NZp12XzmffeapcR89daFcmJtRsPZ89LTlSqTEhbPIHl5aeGqU31x/T5mPn1dTc4rabJn54aRZ+Qr8oJXULcnI0AOCaSOIBAFclLMBXM8enaMYPkrUjr1zLsvP1xYGz2ldQqX0Flfrd6kN6YGSCHh6TqD7Rwc4OV5LU0mLo+PkLrY/G57WuZz9TWdeuXO+oIOtRb6NTIhUfEeBxa//h3m6ID1d4oK8qaxu1t6BSo5IjnR3SNatvbNbyXQWSpExm4QHgskjiAQDXxGQyaUyvbhrTq5tKLwzU8l0F+jA7X4UVdXp3S57e3ZKncb26KXNskm4bGCM/H8fNCF5satGBoqpLM+0V2nW6XJW1jTZlvL1MGhwXqrTkSI26tHs8u+/D3Xl7mXRT3yh9vq9Im3LPu2US/8WBs6qobVSPMH/d3D/a2eEAgMsiiQcAfG/dg816emIfPTmht7KOndey7ae14UiJtp0s07aTZeoebNaP0xI0bUyieoYHdHr7NQ1N2p1f0XrUW1659hRUqL6xxaZMgK+3hieGW2fZhyWEK8jMf3/oeib2a03is46e17MZqc4O55ot3d76KP200YluuxwAAByBTzEAgOvm5WXSpNRoTUqN1pnKOn28I18f7yzQ+eoG/WHjcf1x03FNSo1W5tgkTegXJe/vub689EKDzSz7wSKLmltsN6GLCPTVqOTWDejSUiI1KC5UviQE8AAT+kVJkr45U6Xz1Q2KCnGfJ0wOn7Uo53SFfLxM+rEbb8wHAI5AEg8A6FQ9wwP088mpmntLX607dE5Lt5/W1hNlWn+kROuPlCg+IkDTRifqwVEJV0wyDMNQQXmddljXs5frZGlNh+21bUA3OiVCvboHswkdPFJUiFmDe4bqwBmLNh87r/tGxDs7pKu2dPtpSdLkQTGKdvNz7gHA3pyaxC9YsEB//vOfdeTIEQUEBOgHP/iBXn31VaWmtj4CVl5ervnz5+vLL79Ufn6+oqKidM899+jll19WWNjljzSaOXOm3nvvPZtrGRkZWrNmjV37AwD4O19vL90xpIfuGNJDJ85f0IfZ+fo0p1CFFXX697W5+o+/HVXGoFhljk3SmJRItRhSbnG19ai3XafKdc7SYFOnySSlxoRoVHKEdSO6ODs8pg+4q/R+UTpwxqJNue6TxF9oaNL/7jkjScock+TkaADA9Tk1ic/KytLs2bOVlpampqYm/epXv9LkyZN16NAhBQUFqaioSEVFRVq4cKEGDhyo06dP68knn1RRUZE+/fTTK9Y9ZcoULV682Pqz2ew+j5QBQFfTOypYv/nhQD2XkarV+89q6fbT2ltQqdX7z2r1/rNKjAxURe1FVdc32bzP19ukofHhGpUcodHJkRqVFKmwQF8n9QJwfRNTo/X2xhP66th5NbcY33vpiiOt3HNGNReb1SsqSON6d3N2OADg8pyaxH97ZnzJkiWKjo5WTk6OJkyYoMGDB+uzzz6z3u/du7deeeUVZWZmqqmpST4+lw/fbDYrNjbWbrEDAK6dv6+3HhgZrwdGxuvAmSoty87XX/aeUX55rSQp2OyjEUkRGp0coVHJrZvQ+fu6/tnzgKsYnhCuEH8fVdY2an9hpYYnRjg7pCsyDEPLLj1KP31MEkc7AsBVcKk18VVVVZKkyMjLH4tSVVWl0NDQKybwkrRp0yZFR0crIiJCN998s373u9+pW7eOv91taGhQQ8PfH9m0WCzfI3oAwLUY3DNMC+4bohfu6K9tJ8rUMzxA/WND2JUauA4+3l66qW93/fWbYm3KPe/ySXzO6QodKa6Wv6+XHnCTx/8BwNlc5pNSS0uL5s2bp/Hjx2vw4MEdliktLdXLL7+sJ5544op1TZkyRe+//77Wr1+vV199VVlZWbr99tvV3NzcYfkFCxYoLCzM+kpIYFdUAHCUUH9fZQyK1eCeYSTwQCeY2K/1jPWso+edHMl3a9vQ7q6hcSyVAYCrZDIMw/juYvb31FNP6YsvvtDXX3+t+Pj238RaLBbddtttioyM1KpVq+Tre/W/6E+ePKnevXvrb3/7m2655ZZ29zuaiU9ISLDO+gMAALiL4qp6jV2wXiaTlPOvtykyyM/ZIXWo7EKDxi3YoIvNLfrL7PG6ISHc2SEBgFNZLBaFhYV9Zx7qElMec+bM0erVq7Vx48YOE/jq6mpNmTJFISEhWrly5TUl8JLUq1cvde/eXcePH+/wvtlsVmhoqM0LAADAHcWG+at/bIgMQ9p8zHVn4z/NKdTF5hYN7hmqofGXP3UIAGDLqUm8YRiaM2eOVq5cqQ0bNiglJaVdGYvFosmTJ8vPz0+rVq2Sv/+1nx1aWFiosrIy9ejRozPCBgAAcGnpqVGSpKxc10ziW1oMfbgjX1LrsXJsaAcAV8+pSfzs2bO1dOlSffjhhwoJCVFxcbGKi4tVV1cn6e8JfE1NjRYtWiSLxWIt84/r2/v376+VK1dKki5cuKDnnntO27dv16lTp7R+/XpNnTpVffr0UUZGhlP6CQAA4Eht6+K/OnZeLS0usXLSxubjpTpdVqsQfx/dPSzO2eEAgFtx6u7077zzjiRp4sSJNtcXL16smTNnavfu3crOzpYk9enTx6ZMXl6ekpOTJUm5ubnWne29vb21f/9+vffee6qsrFRcXJwmT56sl19+mbPiAQCARxiZFKEgP2+VXriog0UWDXGxx9XbNrS7f0S8Av1c6rAkAHB5Tv2t+V176k2cOPE7y3y7noCAAK1du/a6YwMAAHBXfj5eGt+nu748dE6bcktcKokvqqzT+sPnJEnTxyQ6ORoAcD8usbEdAAAAOpd1XbyLHTX38Y58tRjSmJRI9Y0JcXY4AOB2SOIBAAC6oImprevid+dXqKq20cnRtGpsbtHHOwskSZljk5wcDQC4J5J4AACALqhneID6RgerxZC+Pl7q7HAkSesOnVNJdYO6B5uVMSjW2eEAgFsiiQcAAOii0vu1PlK/KbfEyZG0atvQ7qG0ePn58DEUAL4PfnsCAAB0UW2P1GcdPX9VmwXb04nzF7T1RJlMJmnaaDa0A4DviyQeAACgi0pLiVCAr7dKqht0+Gy1U2NZtj1fknRzarTiIwKdGgsAuDOSeAAAgC7K7OOtH/TuJsm5u9TXXWzWpzlsaAcAnYEkHgAAoAtrO2rOmeviP99fJEt9k+IjAjTh0jp9AMD3QxIPAADQhU3s17ouPud0harrnXPU3LJLG9o9PCZR3l4mp8QAAF0FSTwAAEAXltgtUCndg9TUYmjL8TKHt/9NYZX2FVbJ19ukB0clOLx9AOhqSOIBAAC6uLaj5rKOOv6R+mXZrbPwtw/uoe7BZoe3DwBdDUk8AABAF9e2Lj4r17FHzVnqG/WXvUWSpOljOFYOADoDSTwAAEAXN65XN5l9vFRUVa9jJRcc1u6fcwpV19isfjHBGp0S6bB2AaArI4kHAADo4vx9vTW216Wj5nIdc9ScYRhamt16Nvz0MUkymdjQDgA6A0k8AACAB2hbF7/JQevis/PKdbzkggJ8vXXviJ4OaRMAPAFJPAAAgAeYeGld/M68CtU0NNm9vaWXjpW7Z3icQv197d4eAHgKkngAAAAPkNI9SAmRAbrY3KJtJ+x71Nz56gatPVgsqfVRegBA5yGJBwAA8AAmk0kT+0VLkrKO2ndd/PJdBWpsNjQsIVyDe4bZtS0A8DQk8QAAAB7iH9fF2+uoueYWQx9e2tAucyyz8ADQ2UjiAQAAPMS43t3k5+2lgvI65ZXW2KWNTbklOlNZp7AAX/1waA+7tAEAnowkHgAAwEMEmX2UlhIhSdpkp6Pm2ja0+9HIePn7etulDQDwZCTxAAAAHqRtXfwmO6yLLyivtdY7nUfpAcAuSOIBAAA8SNtRc9kny1Tf2NypdX+4I1+GId3Yp7tSugd1at0AgFYk8QAAAB6kT3Sw4sL81dDUom0nO++ouYamZi3fWSBJyhyb2Gn1AgBskcQDAAB4EJPJpPTUS0fNdeK6+DUHilVWc1ExoWbdOiCm0+oFANgiiQcAAPAwbUfNdeZ58cu2tx4r9+O0RPl48xETAOyF37AAAAAeZnyfbvLxMimvtEany67/qLmj56q141S5vL1MmjaaR+kBwJ5I4gEAADxMiL+vRia1HjXXGbPxyy4dK3dL/2jFhvlfd30AgMsjiQcAAPBAEztpXXxNQ5P+vPuMJCmTY+UAwO5I4gEAADxQ27r4rSeu76i5VfuKVN3QpKRugbqxT/fOCg8AcBkk8QAAAB5oQI8QRYeYVdfYrF2nKr5XHYZhaOmlR+mnj0mUl5epM0MEAHSAJB4AAMADmUwm62z8ptyS71XH3oJKHSyyyM/HSz8amdCZ4QEALoMkHgAAwEO1rYvf9D03t1t66Vi5Hw7poYggv06LCwBweSTxAAAAHurGvt3l7WXS8ZILKqyovab3VtZe1Or9RZKk6WxoBwAOQxIPAADgocICfDU8IVzStR8192lOoRqaWjSgR6hGJIZ3fnAAgA6RxAMAAHiwiamt6+Kv5ai5lhZDy7JbH6XPHJsok4kN7QDAUUjiAQAAPFh6v9Z18VuOl+piU8tVvWfriTLlldYo2Oyje4b1tGd4AIBvIYkHAADwYIPiQtU92E81F5uVc/rqjpprO1bu3uE9FWT2sWd4AIBvIYkHAADwYF5eJk3oe+mouaPffdRccVW91h0+J0nKZEM7AHA4kngAAAAPl34N6+I/3pmv5hZDackRSo0NsXdoAIBvIYkHAADwcDf1jZLJJB0prlZxVf1lyzU1t+jjHQWSmIUHAGchiQcAAPBwkUF+uiE+XJL01RWOmlt/pETFlnp1C/LTlMGxDooOAPCPSOIBAABgPWruSuvi2za0+9GoBJl9vB0SFwDAFkk8AAAAlN6vNYnffKxUTc3tj5o7VVqjzcdKZTJJD49OdHR4AIBLSOIBAACgofHhigj0VXV9k/YUVLa7/+GOfEnShL5RSuwW6ODoAABtSOIBAAAgby+Tbmo7ai7X9pH6+sZmrdjFhnYA4AqcmsQvWLBAaWlpCgkJUXR0tO655x7l5uZa75eXl+uf/umflJqaqoCAACUmJmru3Lmqqqq6Yr2GYei3v/2tevTooYCAAN166606duyYvbsDAADg1trWxWd9a3O7v35zVhW1jYoL89fN/aOdERoA4BKnJvFZWVmaPXu2tm/frnXr1qmxsVGTJ09WTU2NJKmoqEhFRUVauHChDhw4oCVLlmjNmjWaNWvWFet97bXX9NZbb+k///M/lZ2draCgIGVkZKi+/vJHpgAAAHi6tpn4A2csKqn+++emtg3tpo1OlLeXySmxAQBamQzDMJwdRJvz588rOjpaWVlZmjBhQodlVqxYoczMTNXU1MjHx6fdfcMwFBcXp5///Od69tlnJUlVVVWKiYnRkiVL9OMf//g747BYLAoLC1NVVZVCQ0Ovr1MAAABu5K7//2t9c6ZKr//oBt0/Ml6Hiiy6463N8vEyaesLNys6xN/ZIQJAl3S1eahLrYlve0w+MjLyimVCQ0M7TOAlKS8vT8XFxbr11lut18LCwjRmzBht27atw/c0NDTIYrHYvAAAADxR2y71my49Ur80u3UWPmNQLAk8ALgAl0niW1paNG/ePI0fP16DBw/usExpaalefvllPfHEE5etp7i4WJIUExNjcz0mJsZ679sWLFigsLAw6yshIeF79gIAAMC9ta2L33zsvKrqGvW/e85IkqaP5Vg5AHAFLpPEz549WwcOHNDHH3/c4X2LxaI777xTAwcO1Isvvtipbb/wwguqqqqyvgoKCjq1fgAAAHcxLCFcof4+qqxt1L99flC1F5vVOypI43p1c3ZoAAC5SBI/Z84crV69Whs3blR8fHy7+9XV1ZoyZYpCQkK0cuVK+fr6Xrau2NhYSdK5c+dsrp87d85679vMZrNCQ0NtXgAAAJ7Ix9vLusHdn3dfmoUfkySTiQ3tAMAVODWJNwxDc+bM0cqVK7VhwwalpKS0K2OxWDR58mT5+flp1apV8ve/8lqslJQUxcbGav369TZ1ZGdna9y4cZ3eBwAAgK4m/dIj9ZLk7+ul+0e2n2QBADiHU5P42bNna+nSpfrwww8VEhKi4uJiFRcXq66uTtLfE/iamhotWrRIFovFWqa5udlaT//+/bVy5UpJkslk0rx58/S73/1Oq1at0jfffKNHHnlEcXFxuueee5zRTQAAALfStrmdJN19Q5zCAi7/FCQAwLE63uLdQd555x1J0sSJE22uL168WDNnztTu3buVnZ0tSerTp49Nmby8PCUnJ0uScnNzrTvbS9Lzzz+vmpoaPfHEE6qsrNSNN96oNWvWfOcsPgAAAKSYUH+NSYnUnvxKzfhBsrPDAQD8A5c6J95VcE48AADwdNX1jaqsbVRCZKCzQwEAj3C1eahTZ+IBAADgmkL8fRXiz2P0AOBqXGJ3egAAAAAA8N1I4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA34ePsAFyRYRiSJIvF4uRIAAAAAACeoC3/bMtHL4ckvgPV1dWSpISEBCdHAgAAAADwJNXV1QoLC7vsfZPxXWm+B2ppaVFRUZFCQkJkMpmcHc5lWSwWJSQkqKCgQKGhoc4OB10U4wyOwDiDvTHG4AiMMzgC46zrMgxD1dXViouLk5fX5Ve+MxPfAS8vL8XHxzs7jKsWGhrKP2DYHeMMjsA4g70xxuAIjDM4AuOsa7rSDHwbNrYDAAAAAMBNkMQDAAAAAOAmSOLdmNls1vz582U2m50dCrowxhkcgXEGe2OMwREYZ3AExhnY2A4AAAAAADfBTDwAAAAAAG6CJB4AAAAAADdBEg8AAAAAgJsgiQcAAAAAwE2QxDvZggULlJaWppCQEEVHR+uee+5Rbm6uTZn6+nrNnj1b3bp1U3BwsO6//36dO3fOpszcuXM1cuRImc1mDRs2rMO29u/fr5tuukn+/v5KSEjQa6+9Zq9uwYU4aoxt2rRJU6dOVY8ePRQUFKRhw4Zp2bJl9uwaXIgjf5e1OX78uEJCQhQeHt7JvYGrcuQ4MwxDCxcuVL9+/WQ2m9WzZ0+98sor9uoaXIQjx9jatWs1duxYhYSEKCoqSvfff79OnTplp57BlXTGONu3b5+mTZumhIQEBQQEaMCAAXrzzTfbtbVp0yaNGDFCZrNZffr00ZIlS+zdPTgASbyTZWVlafbs2dq+fbvWrVunxsZGTZ48WTU1NdYy//zP/6zPP/9cK1asUFZWloqKinTfffe1q+uxxx7TQw891GE7FotFkydPVlJSknJycvTv//7vevHFF/Xf//3fdusbXIOjxtjWrVs1dOhQffbZZ9q/f78effRRPfLII1q9erXd+gbX4ahx1qaxsVHTpk3TTTfd1Ol9gety5Dh75pln9Kc//UkLFy7UkSNHtGrVKo0ePdou/YLrcNQYy8vL09SpU3XzzTdr7969Wrt2rUpLSzusB11PZ4yznJwcRUdHa+nSpTp48KB+/etf64UXXtAf/vAHa5m8vDzdeeedmjRpkvbu3at58+bppz/9qdauXevQ/sIODLiUkpISQ5KRlZVlGIZhVFZWGr6+vsaKFSusZQ4fPmxIMrZt29bu/fPnzzduuOGGdtf/+Mc/GhEREUZDQ4P12i9+8QsjNTW18zsBl2avMdaRO+64w3j00Uc7JW64F3uPs+eff97IzMw0Fi9ebISFhXV2+HAT9hpnhw4dMnx8fIwjR47YLXa4B3uNsRUrVhg+Pj5Gc3Oz9dqqVasMk8lkXLx4sfM7Apd2veOszdNPP21MmjTJ+vPzzz9vDBo0yKbMQw89ZGRkZHRyD+BozMS7mKqqKklSZGSkpNZv2RobG3Xrrbday/Tv31+JiYnatm3bVde7bds2TZgwQX5+ftZrGRkZys3NVUVFRSdFD3dgrzF2ubba2oFnsec427Bhg1asWKG333678wKGW7LXOPv888/Vq1cvrV69WikpKUpOTtZPf/pTlZeXd24H4PLsNcZGjhwpLy8vLV68WM3NzaqqqtIHH3ygW2+9Vb6+vp3bCbi8zhpn3/7ctW3bNps6pNbP/9f7+Q7ORxLvQlpaWjRv3jyNHz9egwcPliQVFxfLz8+v3ZrPmJgYFRcXX3XdxcXFiomJaVdH2z14BnuOsW9bvny5du7cqUcfffR6QoYbsuc4Kysr08yZM7VkyRKFhoZ2ZthwM/YcZydPntTp06e1YsUKvf/++1qyZIlycnL0wAMPdGYX4OLsOcZSUlL05Zdf6le/+pXMZrPCw8NVWFio5cuXd2YX4AY6a5xt3bpVn3zyiZ544gnrtct9/rdYLKqrq+vcjsChfJwdAP5u9uzZOnDggL7++mtnh4IuylFjbOPGjXr00Uf1P//zPxo0aJBd24Lrsec4e/zxx/Xwww9rwoQJnV433Is9x1lLS4saGhr0/vvvq1+/fpKkRYsWaeTIkcrNzVVqamqntwnXY88xVlxcrMcff1wzZszQtGnTVF1drd/+9rd64IEHtG7dOplMpk5vE66pM8bZgQMHNHXqVM2fP1+TJ0/uxOjgqpiJdxFz5szR6tWrtXHjRsXHx1uvx8bG6uLFi6qsrLQpf+7cOcXGxl51/bGxse12Tm37+Vrqgfuy9xhrk5WVpbvuuktvvPGGHnnkkesNG27G3uNsw4YNWrhwoXx8fOTj46NZs2apqqpKPj4+evfddzurG3Bx9h5nPXr0kI+PjzWBl6QBAwZIkvLz868veLgFe4+xt99+W2FhYXrttdc0fPhwTZgwQUuXLtX69euVnZ3dWd2Ai+uMcXbo0CHdcssteuKJJ/Sv//qvNvcu9/k/NDRUAQEBndsZOBRJvJMZhqE5c+Zo5cqV2rBhg1JSUmzujxw5Ur6+vlq/fr31Wm5urvLz8zVu3LirbmfcuHH66quv1NjYaL22bt06paamKiIi4vo7ApflqDEmtR5jcuedd+rVV1+1eZwLXZ+jxtm2bdu0d+9e6+ull15SSEiI9u7dq3vvvbfT+gPX5KhxNn78eDU1NenEiRPWa0ePHpUkJSUlXWcv4MocNcZqa2vl5WX7Mdzb21tS65Mg6No6a5wdPHhQkyZN0owZMzo8AnPcuHE2dUitn/+v9fMdXJAzd9WDYTz11FNGWFiYsWnTJuPs2bPWV21trbXMk08+aSQmJhobNmwwdu3aZYwbN84YN26cTT3Hjh0z9uzZY/zsZz8z+vXrZ+zZs8fYs2ePdTf6yspKIyYmxvjJT35iHDhwwPj444+NwMBA47/+678c2l84nqPG2IYNG4zAwEDjhRdesGmnrKzMof2FczhqnH0bu9N7FkeNs+bmZmPEiBHGhAkTjN27dxu7du0yxowZY9x2220O7S8cz1FjbP369YbJZDL+7d/+zTh69KiRk5NjZGRkGElJSTZtoWvqjHH2zTffGFFRUUZmZqZNHSUlJdYyJ0+eNAIDA43nnnvOOHz4sPH2228b3t7expo1axzaX3Q+kngnk9Tha/HixdYydXV1xtNPP21EREQYgYGBxr333mucPXvWpp709PQO68nLy7OW2bdvn3HjjTcaZrPZ6Nmzp/H73//eQb2EMzlqjM2YMaPD++np6Y7rLJzGkb/L/hFJvGdx5Dg7c+aMcd999xnBwcFGTEyMMXPmTL6U9ACOHGMfffSRMXz4cCMoKMiIiooy7r77buPw4cMO6imcqTPG2fz58zusIykpyaatjRs3GsOGDTP8/PyMXr162bQB92UyDMO4jol8AAAAAADgIKyJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAMCFlZWVKTo6WqdOnXJou0uWLFF4eLhd6l6zZo2GDRumlpYWu9QPAEBXRhIPAIALe+WVVzR16lQlJye3u5eRkSFvb2/t3LnT8YFdhylTpsjX11fLli27bJlZs2ZpyJAhunjxos31v/71r/Lz89Pu3bvtHSYAAC6JJB4AABdVW1urRYsWadasWe3u5efna+vWrZozZ47effddJ0T3/TQ2NkqSZs6cqbfeeuuy5d544w1VV1dr/vz51muVlZV6/PHH9Zvf/EYjRoywW2wAALgykngAAFzUX//6V5nNZo0dO7bdvcWLF+uHP/yhnnrqKX300Ueqq6uzuT9x4kTNnTtXzz//vCIjIxUbG6sXX3zRpkxlZaV+9rOfKSYmRv7+/ho8eLBWr15tU2bt2rUaMGCAgoODNWXKFJ09e9Z6r6WlRS+99JLi4+NlNps1bNgwrVmzxnr/1KlTMplM+uSTT5Seni5/f3/r7Ptdd92lXbt26cSJEx32PTQ0VIsXL9brr7+u7OxsSdK8efPUs2dPvfDCCyooKNCDDz6o8PBwRUZGaurUqTZLDnbu3KnbbrtN3bt3V1hYmNLT09vN3ptMJr3zzju6++67FRQUpFdeeeUyfxMAALgOkngAAFzU5s2bNXLkyHbXDcPQ4sWLlZmZqf79+6tPnz769NNP25V77733FBQUpOzsbL322mt66aWXtG7dOkmtCfjtt9+uLVu2aOnSpTp06JB+//vfy9vb2/r+2tpaLVy4UB988IG++uor5efn69lnn7Xef/PNN/X6669r4cKF2r9/vzIyMnT33Xfr2LFjNnH88pe/1DPPPKPDhw8rIyNDkpSYmKiYmBht3rz5sv2fNGmSnn76ac2YMUMrVqzQ8uXL9f7778swDGVkZCgkJESbN2/Wli1brF8ytD1+X11drRkzZujrr7/W9u3b1bdvX91xxx2qrq62aePFF1/Uvffeq2+++UaPPfbYd/2VAADgfAYAAHBJU6dONR577LF217/88ksjKirKaGxsNAzDMN544w0jPT3dpkx6erpx44032lxLS0szfvGLXxiGYRhr1641vLy8jNzc3A7bXrx4sSHJOH78uPXa22+/bcTExFh/jouLM1555ZV2bTz99NOGYRhGXl6eIcn4j//4jw7bGD58uPHiiy92eK9NbW2tkZqaanh5eRlvvPGGYRiG8cEHHxipqalGS0uLtVxDQ4MREBBgrF27tsN6mpubjZCQEOPzzz+3XpNkzJs374rtAwDgapiJBwDARdXV1cnf37/d9XfffVcPPfSQfHx8JEnTpk3Tli1b2j2aPnToUJufe/TooZKSEknS3r17FR8fr379+l22/cDAQPXu3bvD91ssFhUVFWn8+PE27xk/frwOHz5sc23UqFEd1h8QEKDa2trLtt9W5tlnn1VgYKCeeeYZSdK+fft0/PhxhYSEKDg4WMHBwYqMjFR9fb31z+DcuXN6/PHH1bdvX4WFhSk0NFQXLlxQfn7+VcUGAICr8nF2AAAAoGPdu3dXRUWFzbXy8nKtXLlSjY2Neuedd6zXm5ub9e6779qs6/b19bV5r8lksh7rFhAQ8J3td/R+wzCuuR9BQUEdXi8vL1dUVNR3vt/Hx0fe3t4ymUySpAsXLmjkyJEd7m7fVt+MGTNUVlamN998U0lJSTKbzRo3bly73e4vFxsAAK6KmXgAAFzU8OHDdejQIZtry5YtU3x8vPbt26e9e/daX6+//rqWLFmi5ubmq6p76NChKiws1NGjR79XbKGhoYqLi9OWLVtsrm/ZskUDBw78zve3zZoPHz78mtseMWKEjh07pujoaPXp08fmFRYWZo1j7ty5uuOOOzRo0CCZzWaVlpZec1sAALgakngAAFxURkaGDh48aDMbv2jRIj3wwAMaPHiwzWvWrFkqLS212R3+StLT0zVhwgTdf//9WrdunfLy8vTFF19c9fsl6bnnntOrr76qTz75RLm5ufrlL3+pvXv3Wh97v5Lt27dbZ8ev1fTp09W9e3dNnTpVmzdvVl5enjZt2qS5c+eqsLBQktS3b1998MEHOnz4sLKzszV9+vSrevoAAABXRxIPAICLGjJkiEaMGKHly5dLknJycrRv3z7df//97cqGhYXplltu0aJFi666/s8++0xpaWmaNm2aBg4cqOeff/6qZ/Ilae7cufqXf/kX/fznP9eQIUO0Zs0arVq1Sn379v3O93700UeaPn26AgMDr7q9NoGBgfrqq6+UmJio++67TwMGDNCsWbNUX1+v0NBQSa1fdlRUVGjEiBH6yU9+orlz5yo6Ovqa2wIAwNWYjO+zuA0AADjE//3f/+m5557TgQMH5OXVNb57Ly0tVWpqqnbt2qWUlBRnhwMAgFthYzsAAFzYnXfeqWPHjunMmTNKSEhwdjid4tSpU/rjH/9IAg8AwPfATDwAAAAAAG6iazyXBwAAAACAByCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICb+H/pV4+eGtrqUQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", @@ -707,7 +2310,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 81, "metadata": {}, "outputs": [], "source": [ @@ -743,57 +2346,87 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ + "# suppress numpy warning\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", + "# cross-validation with Kfold\n", + "k_fold_splits = 5\n", + "kfold = KFold(n_splits=k_fold_splits)\n", + "cv = lilio.traintest.TrainTestSplit(kfold)\n", + "\n", + "# create lists for saving models and predictions\n", + "models = []\n", + "\n", + "rmse_train = []\n", + "rmse_test = []\n", + "train_test_splits = []\n", + "\n", + "# prepare operator for dimensionality reduction\n", + "target_intervals = 1\n", + "lags = list(np.arange(1, periods_of_interest + 1))\n", + "\n", + "RGDR_splits = []\n", "# cross validation based dimensionality reduction and model training\n", - "for x_train, x_test, y_train, y_test in cv.split(precursor_field_sel[:-test_samples],\n", - " y=target_series_sel[:-test_samples]):\n", - " # log train/test splits with anchor years\n", - " train_test_splits.append({\n", - " \"train\": x_train.anchor_year.values,\n", - " \"test\": x_test.anchor_year.values,\n", - " })\n", - " # fit dimensionality reduction operator RGDR\n", - " rgdr = RGDR(\n", - " target_intervals=target_intervals,\n", - " lag=lag,\n", - " eps_km=600,\n", - " alpha=0.05,\n", - " min_area_km2=0\n", - " )\n", - " rgdr.fit(x_train, y_train)\n", - " # save dimensionality reduction operator\n", - " RGDRs.append(rgdr)\n", - " # transform to train and test data\n", - " clusters_train = rgdr.transform(x_train)\n", - " clusters_test = rgdr.transform(x_test)\n", + "for split, (x_train, x_test, y_train, y_test) in enumerate(cv.split(precursor_field_sel, y=target_series_sel)):\n", + " clusters_train_lags = []\n", + " clusters_test_lags = []\n", + " RGDR_lags = []\n", + " for lag in lags:\n", + " # log train/test splits with anchor years\n", + " train_test_splits.append({\n", + " \"train\": x_train.anchor_year.values,\n", + " \"test\": x_test.anchor_year.values,\n", + " })\n", + " # RGDR\n", + " rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + " )\n", + " # fit dimensionality reduction operator RGDR and transform\n", + " clusters_train_lag_xr = rgdr.fit_transform(x_train, y_train)\n", + " clusters_test_lag_xr = rgdr.transform(x_test)\n", + " # convert to numpy array, reshape and append\n", + " clusters_train_lag = clusters_train_lag_xr.to_numpy()\n", + " clusters_train_lag = clusters_train_lag.reshape(len(clusters_train_lag_xr.anchor_year),-1)\n", + " clusters_train_lags.append(clusters_train_lag)\n", + " clusters_test_lag = clusters_test_lag_xr.to_numpy()\n", + " clusters_test_lag = clusters_test_lag.reshape(len(clusters_test_lag_xr.anchor_year),-1)\n", + " clusters_test_lags.append(clusters_test_lag)\n", + " RGDR_lags.append(rgdr)\n", + " # concatenate lags\n", + " clusters_train = np.concatenate(clusters_train_lags, axis=1)\n", + " clusters_test = np.concatenate(clusters_test_lags, axis=1)\n", " # train model\n", - " ridge = RidgeCV(alphas=[1E-3, 1E-2, 0.1, 10, 25, 50])\n", - " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", + " ridge = RidgeCV(alphas=[0.005, 0.01, 0.1, 10, 25, 50])\n", + " model = ridge.fit(clusters_train, y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", - " prediction = model.predict(clusters_test.isel(i_interval=0))\n", + " prediction = model.predict(clusters_test)\n", " # calculate and save rmse\n", " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", - " model.predict(clusters_train.isel(i_interval=0))))\n", + " model.predict(clusters_train)))\n", " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", - " prediction))" + " prediction))\n", + " RGDR_splits.append(RGDR_lags) " ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 83, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcKklEQVR4nO3deVhU5f/G8feAAoKCu6ahlFppuWtmVmqRW5m2qJW5lWtaKvnTKLVs0TZLv+VuLi2mZS6V5pK5a65hubS5YbmngqCiwvz+eBoQBQUFnpnhfl3XuThn5szMDSjzmec8i8PpdDoRERER8RI+tgOIiIiIZCUVNyIiIuJVVNyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXyWM7QE5LSkpi//79FChQAIfDYTuOiIiIZIDT6eTkyZOUKlUKH5/Lt83kuuJm//79hIaG2o4hIiIiV2Hfvn1cf/31lz0n1xU3BQoUAMwPJzg42HIaERERyYjY2FhCQ0OT38cvJ9cVN65LUcHBwSpuREREPExGupSoQ7GIiIh4FRU3IiIi4lWsFjcrVqygefPmlCpVCofDwZw5cy57/qpVq6hXrx5FihQhX7583HLLLXzwwQc5E1ZEREQ8gtU+N/Hx8VStWpWnn36aRx555IrnBwUF0atXL6pUqUJQUBCrVq2iW7duBAUF0bVr1xxILCIiIu7O4XQ6nbZDgOkgNHv2bFq2bJmpxz3yyCMEBQXx6aefZuj82NhYQkJCiImJUYdiERERD5GZ92+P7nPz888/s2bNGurXr5/uOQkJCcTGxqbaRERExHt5ZHFz/fXX4+/vT61atejZsyedO3dO99xhw4YREhKSvGkCPxEREe/mkcXNypUr2bhxI2PHjmXEiBF88cUX6Z4bGRlJTExM8rZv374cTCoiIiI5zSMn8bvhhhsAqFy5MocOHeLVV1/liSeeSPNcf39//P39czKeiIiIWOSRLTcXSkpKIiEhwXYMERERcRNWW27i4uL466+/ko93795NVFQUhQsXpkyZMkRGRvLPP//wySefADBq1CjKlCnDLbfcAph5ct577z2ef/55K/lFRETE/VgtbjZu3EjDhg2TjyMiIgDo0KEDU6ZM4cCBA0RHRyffn5SURGRkJLt37yZPnjyUK1eOt99+m27duuV4dhEREXFPbjPPTU7RPDciIiLZ6Mcf4Y47IDAwS58218xzIyIiIm7kzz+hWTOoXBkOHLAWQ8WNiIiIXLukJOjSBRISoHx5KFnSWhQVNyIiInLtPv4Yli83l6PGjgWHw1oUFTciIiJybfbvh//7P7P/xhvw33x0tqi4ERERkWvz3HMQEwO1a4MbTM+i4kZERESu3qxZZsuTByZMAF9f24lU3IiIiMhVOnECevUy+/37Q9WqVuO4qLgRERGRqzNggBnyfdNNMGiQ7TTJVNyIiIhI5i1fDuPHm/0JEyAgwG6eC6i4ERERkcw5c8bMaQPQrRvcc4/dPBdRcZPVEhNtJxAREcler71mZiO+7jp4+23baS6h4iar7NwJbdpAkya2k4iIiGSfLVvgnXfM/ujREBJiN08arK4K7lX8/eHrr03LzfbtUKmS7UQiIiJZ6/x56NzZvNc9+ii0bGk7UZrUcpNVrr8eWrQw+2PG2M0iIiKSHf73P9i40bTWfPih7TTpUnGTlXr0MF+nToW4OLtZREREstKuXTBwoNl/7z3T38ZNqbjJSvfea8b6nzwJ06bZTiMiIpI1nE7o3h1On4YGDeCZZ2wnuiwVN1nJxyel9WbUKPOPQURExNN9+iksXmzmshk/3uqK3xmh4iardegA+fLBL7/A2rW204iIiFybw4ehb1+z/+qrUKGC1TgZoeImqxUqBE88YfbVsVhERDxd795w7BhUqwYREbbTZIiKm+zw7LPm65dfwpEjdrOIiIhcre++g+nTTbeLiRMhb17biTJExU12qFkTateGs2dh0iTbaURERDLv5MmUfqQREea9zUOouMkurtabceO0JIOIiHiel16Cv/+GG2+EIUNsp8kUFTfZpU0b0/9m925YuNB2GhERkYxbs8aM+gXzIT0w0G6eTFJxk13y5YNOncz+6NF2s4iIiGRUQoJZYsHphI4dITzcdqJMU3GTnbp3N1/nz4c9e6xGERERyZC33oIdO6B4cRg+3Haaq6LiJjtVqACNGpnqd9w422lEREQub/t2ePNNs//hh1C4sN08V0nFTXZz9TSfONE09YmIiLijxERzOercOWjeHFq1sp3oqqm4yW4PPmhWDD96FL7+2nYaERGRtI0ZY2bWL1DA9BV18yUWLkfFTXbLkwe6dTP76lgsIiLuKDoaIiPN/ltvmQ/lHkzFTU7o3NkUOatXw5YtttOIiIikcDpNF4q4OLjzzpTBMB5MxU1OKFkSHnnE7Gu9KRERcSczZphRvX5+MGGCWWrBw3n+d+ApXDMWf/YZxMbazSIiIgLw77/w/PNm/+WXoVIlu3myiIqbnHLPPeYfTXw8fPqp7TQiIiLwwgtmgedbb4UXX7SdJsuouMkpDkfKsPDRo801ThEREVsWLYKpU83708SJ5rKUl1Bxk5PatYOgIDNJ0sqVttOIiEhuFR+fMpL3uefgjjvs5sliKm5yUkgItG1r9jUsXEREbBk82CwLVKYMvPGG7TRZzmpxs2LFCpo3b06pUqVwOBzMmTPnsufPmjWL+++/n2LFihEcHEzdunVZ6GkrbrsuTX39NRw8aDeLiIjkPhs2wIgRZn/sWDNpn5exWtzEx8dTtWpVRrmWVb+CFStWcP/99zN//nw2bdpEw4YNad68OT///HM2J81C1aqZeQTOn4ePP7adRkREcpNz58zca0lJ8OST0LSp7UTZwuF0ukfPVofDwezZs2nZsmWmHnfrrbfSpk0bBg8enOb9CQkJJFywplNsbCyhoaHExMQQHBx8LZGv3mefmf43oaGwa5eZ4E9ERCS7DRsGL70ERYqYlb+LFbOdKMNiY2MJCQnJ0Pu3R/e5SUpK4uTJkxS+zKqlw4YNIyQkJHkLDQ3NwYTpeOwxKFoU9u2DefNspxERkdzgjz9gyBCz/8EHHlXYZJZHFzfvvfcecXFxtG7dOt1zIiMjiYmJSd727duXgwnTERAAzzxj9jVjsYiIZLekJOjaFRISoHFjeOop24mylccWN9OmTWPIkCF8+eWXFC9ePN3z/P39CQ4OTrW5hW7dzNwCCxfCX3/ZTiMiIt5s4kRYvhwCA00nYg9e8TsjPLK4mT59Op07d+bLL78kPDzcdpyrc8MNKR25xo61m0VERLzX/v3wf/9n9t98E8LCrMbJCR5X3HzxxRd06tSJL774ggceeMB2nGvjWm9q8mQ4fdpuFhER8U69epk1DWvXNhP25QJWi5u4uDiioqKIiooCYPfu3URFRREdHQ2Y/jLt27dPPn/atGm0b9+e4cOHU6dOHQ4ePMjBgweJiYmxEf/aNWkCZcvCsWPw5Ze204iIiLeZNQtmzzajcidOBF9f24lyhNXiZuPGjVSvXp3q1asDEBERQfXq1ZOHdR84cCC50AEYP34858+fp2fPnlx33XXJW+/eva3kv2a+vtC9u9nXjMUiIpKVTpyAnj3N/oABUKWK1Tg5yW3muckpmRknnyMOHzbz3Zw9Cxs3Qs2athOJiIg36NoVJkyAm2+GqCgzUteD5Zp5brxC8eJm3hvQsHAREckay5aZwgbMVw8vbDJLxY07cHUsnjYNjh+3m0VERDzb6dOm1QZM14e777abxwIVN+7gzjvNtdDTp+GTT2ynERERT/baa/Dnn1CqFLz1lu00Vqi4cQcOR8pq4aNHQ+7qBiUiIlklKgrefdfsjx4NISFW49ii4sZdtG1rlp3/4w/48UfbaURExNOcP29W/E5MNH05W7SwncgaFTfuokABcM3po47FIiKSWSNHwqZNULAgfPih7TRWqbhxJ65LU3PmwD//WI0iIiIeZNcuGDTI7L/3HpQsaTePZSpu3Mmtt8I995gmRdcQPhERkctxOs1izKdPQ8OG8PTTthNZp+LG3biGhU+YAOfO2c0iIiLu75NP4IcfzFw248d7/YrfGaHixt08/DCUKGFWcf3mG9tpRETEnR06BH37mv0hQ6B8ebt53ISKG3fj52d6u4PWmxIRkcvr3dtM/lq9OkRE2E7jNlTcuKOuXcHHxwwJ/+0322lERMQdffstzJhhFmGeONGs/C2Aihv3VKYMPPig2R871m4WERFxP7GxKX00IyKgRg27edyMiht35fpHO2UKxMdbjSIiIm7mpZfg77/hxhvh1Vdtp3E7Km7c1f33Q7lyEBMD06fbTiMiIu5i9eqUPpnjx0NgoN08bkjFjbvy8TGruQKMGqX1pkREBBISoEsX857QqRPcd5/tRG5JxY0769QJ/P3h559h/XrbaURExLZhw2DHDjNlyHvv2U7jtlTcuLMiReDxx82+1psSEcndtm2DoUPN/ocfQuHCdvO4MRU37s613tT06fDvv3aziIiIHYmJ8MwzZub6hx4yq35LulTcuLvbbzdD/BISYPJk22lERMSG0aNh3TooUMD0w9QSC5el4sbdORwpw8LHjoWkJLt5REQkZ0VHQ2Sk2X/7bbj+ert5PICKG0/w+OMQEgI7d8LixbbTiIhITnE6TfeE+HioV8+s/i1XpOLGEwQFQceOZl/rTYmI5B7Tp8P8+WbdwQkTzDQhckX6KXkKV8fi774zTZQiIuLdjh6F5583+wMHQsWKdvN4EBU3nuLmm+Hee02fm/HjbacREZHs9sILpsC57TYYMMB2Go+i4saTuDoWT5gAZ8/azSIiItln4UL45BMzqGTiRHNZSjJMxY0neeghKFUKDh+G2bNtpxERkewQF5fScfj556FOHbt5PJCKG0+SN69ZUwTUsVhExFsNHgx790KZMvDGG7bTeCQVN56mSxfw9YUVK2DrVttpREQkK61fDyNHmv2xYyF/frt5PJSKG09TujS0bGn2x461GkVERLLQuXPQubMZONK2LTRtajuRx1Jx44lcw8I/+QROnrSbRUREssa778Kvv5pFkz/4wHYaj6bixhPde68ZGn7yJHz+ue00IiJyrX7/HV57zeyPGAHFilmN4+lU3HgihyOl9WbMGDM9t4iIeKakJOja1SyQ3KSJuSQl10TFjafq0AHy5YNffoE1a2ynERGRqzVhghkkEhRk+lJqxe9rpuLGUxUsCE8+afY1LFxExDP98w/072/233wTypa1m8dLWC1uVqxYQfPmzSlVqhQOh4M5c+Zc9vwDBw7w5JNPctNNN+Hj40OfPn1yJKfbcs1YPHOmmdhPREQ8h9MJPXtCbCzcfjv06mU7kdewWtzEx8dTtWpVRo0alaHzExISKFasGAMHDqRq1arZnM4D1Khh/kOcPQuTJtlOIyIimTFrFsydC3nymCUWfH1tJ/IaeWy+eNOmTWmaiXH8YWFhjPxvcqNJGXwzT0hIICEhIfk4NjY2cyHd3bPPmkmfxo6F//s//ecQEfEEx4+ntNS8+CJUrmw3j5fx+j43w4YNIyQkJHkLDQ21HSlrtW4NhQubqboXLLCdRkREMqJ/fzh40Ezr8fLLttN4Ha8vbiIjI4mJiUne9u3bZztS1sqXDzp1MvvqWCwi4v6WLjWXocB8DQiwm8cLeX1x4+/vT3BwcKrN63Tvbr5+/z3s3m03i4iIpO/0aTOnDZj5yu66y24eL+X1xU2uUL48NG5set6PG2c7jYiIpGfIEPjrL7NO4LBhttN4LRU33sI1Y/HHH8OZM3aziIjIpX7+Gd57z+yPHg0hIXbzeDGrxU1cXBxRUVFERUUBsHv3bqKiooiOjgZMf5n27duneozr/Li4OI4cOUJUVBTbt2/P6eju54EHIDQUjh41896IiIj7OH/erPidmAitWsFDD9lO5NUcTqe9hYmWLVtGw4YNL7m9Q4cOTJkyhY4dO7Jnzx6WLVuWfJ8jjWmpy5Yty549ezL0mrGxsYSEhBATE+N9/W/efBMGDoQ774TVq22nERERl/feM9N1FCwIO3ZAyZK2E3mczLx/Wy1ubPDq4ubgQdN6c/68af6sVs12IhER2bnTzGNz+rTpOvD007YTeaTMvH+rz403KVkSHn3U7I8ZYzeLiIiYgR7dupnC5t57U6bukGyl4sbbuNab+vxziImxm0VEJLebOhWWLDFz2YwfrxW/c4iKG29z991w660QHw+ffmo7jYhI7nXoEEREmP3XXoNy5ezmyUVU3HgbhyNlWPjo0aZJVEREct7zz5s1pKpXh759bafJVVTceKN27SAoyPTIX7HCdhoRkdznm2/gyy/NYsYTJ5qVvyXHqLjxRsHB8NRTZl/rTYmI5KzY2JT+jy+8ADVq2M2TC6m48VauS1OzZsGBA3aziIjkJpGR8M8/po/NK6/YTpMrqbjxVlWrQr16Zs6bjz+2nUZEJHdYvTqlxXz8eAgMtJsnl1Jx481crTfjxpkiR0REsk9CglliAcxEfffeazdPLqbixps99hgULQp//w3ffWc7jYiIdxs6FH77DUqUSFkgU6xQcePN/P1TPkVoxmIRkeyzdSsMG2b2P/oIChWymyeXU3Hj7bp1M3PfLFoEf/5pO42IiPdJTDQfJM+dgxYtUpbBEWtU3Hi7sDBo1szsjx1rNYqIiFcaNQrWrTPTcIwapSUW3ICKm9zANd/C5Mlm8TYREckae/fCSy+Z/bffhtKl7eYRQMVN7tC4sWnBOX4cZsywnUZExDs4nWZUanw83HUXdO1qO5H8R8VNbuDrC927m33NWCwikjW++AK+/x78/GDCBPDRW6q70G8it3j6afMfcMMG2LjRdhoREc929Cj07m32Bw2CW26xm0dSUXGTWxQrBq1amX0NCxcRuTZ9+5oCp3Jl6N/fdhq5iIqb3MTVsXjaNNP/RkREMm/BAvjsMzMqauJE0youbkXFTW5St65Zc+rMGZgyxXYaERHPExeX0oexd2+4/Xa7eSRNKm5yE4cjZb2pMWMgKcluHhERTzNokBn+XbYsvP667TSSDhU3uU3btlCggJmt+McfbacREfEc69bByJFmf+xYyJ/fbh5Jl4qb3CZ/fujQwexrWLiISMacPQtdupi5bZ56Cpo0sZ1ILkPFTW7kul78zTdmxXAREbm8d9+FX3+FokXhgw9sp5ErUHGTG916K9SvbxZ7mzDBdhoREff222/w2mtmf+RIU+CIW1Nxk1u5hoVPmGBWshURkUslJZnLUWfPQtOm8MQTthNJBqi4ya1atoQSJeDAAZg713YaERH3NH48rFoFQUFmlKlW/PYIKm5yKz8/82kE1LFYRCQt//yTMvvw0KFm+Ld4BBU3uVnXrmaht6VLYccO22lERNyH02ku3588CXXqQM+ethNJJqi4yc1CQ6F5c7M/dqzdLCIi7uTrr82I0jx5zBILvr62E0kmqLjJ7Vwdi6dMgfh4q1FERNzC8ePQq5fZj4yE226zm0cyTcVNbhceDuXLQ2ysWVBTRCS3+7//g0OH4JZb4OWXbaeRq6DiJrfz8UmZ1G/0aHOdWUQkt/rxR/j4Y7M/cSL4+9vNI1dFxY1Ax44QEABRUWbtFBGR3OjUKTPQAswl+3r17OaRq6biRqBIEXj8cbOvYeEiklsNGQI7d0Lp0jBsmO00cg2sFjcrVqygefPmlCpVCofDwZw5c674mGXLllGjRg38/f0pX748U6ZMyfacuUKPHubrl1/C0aN2s4iI5LTNm2H4cLM/ejQEB9vNI9fEanETHx9P1apVGTVqVIbO3717Nw888AANGzYkKiqKPn360LlzZxYuXJjNSXOB2rWhZk1ISIDJk22nERHJOefPQ+fOZr291q3hoYdsJ5Jr5HA63aMHqcPhYPbs2bRs2TLdcwYMGMC8efPYunVr8m2PP/44J06cYMGCBWk+JiEhgYSEhOTj2NhYQkNDiYmJIViVeWqTJsEzz8CNN8Kff5rOxiIi3u7dd81MxIUKmQlNS5SwnUjSEBsbS0hISIbevz3q3Wvt2rWEh4enuq1x48asXbs23ccMGzaMkJCQ5C00NDS7Y3quxx+HggVh1y5YtMh2GhGR7PfXXzB4sNkfPlyFjZfwqOLm4MGDlLjoH16JEiWIjY3l9OnTaT4mMjKSmJiY5G3fvn05EdUzBQaakVOgjsUi4v2cTujWDc6cgfvuS/n7Jx7Po4qbq+Hv709wcHCqTS7DNefNd9/B3r12s4iIZKcpU8y8NvnywbhxWvHbi3hUcVOyZEkOHTqU6rZDhw4RHBxMvnz5LKXyMjffbD7BOJ0wfrztNCIi2ePgQYiIMPuvvQblytnNI1nKo4qbunXrsmTJklS3LV68mLp161pK5KVc601NnGhGT4mIeJvnn4cTJ6BGDejTx3YayWJWi5u4uDiioqKIiooCzFDvqKgooqOjAdNfpn379snnd+/enV27dtG/f39+++03Ro8ezZdffknfvn1txPdeDz0EpUrB4cMwa5btNCIiWWvuXPjqK7PS98SJZuVv8SpWi5uNGzdSvXp1qlevDkBERATVq1dn8H891w8cOJBc6ADccMMNzJs3j8WLF1O1alWGDx/OxIkTady4sZX8XitPnpQpyMeMsZtFRCQrxcSktE736wf/vf+Id3GbeW5ySmbGyedq+/dDmTJmUqtffoHKlW0nEhG5ds8+az60lSsHv/5qOhOLR/DaeW4kB5UqBQ8/bPbVeiMi3mDVqpS/ZxMmqLDxYipuJH2u9aY+/RROnrSbRUTkWpw5A126mP1nnoGGDe3mkWyl4kbS17ChGRoeFweffWY7jYjI1XvzTfjtNyhZ0iy3IF5NxY2kz+FI6Xg3erSZ+0ZExNP8+iu89ZbZ/+gjs4aUeDUVN3J57dubZRm2boXVq22nERHJnMREs+L3+fPQsiU88ojtRJIDVNzI5RUsCE8+afa13pSIeJqPPoL16yE42OxriYVcQcWNXJmrY/HMmXDR8hciIm5rzx54+WWz/847ULq01TiSc1TcyJXVqAF16sC5czBpku00IiJX5nSahYDj4+Huu1NGSkmuoOJGMsbVsXjsWHMNW0TEnU2bBgsXgp+fmdPGR293uYl+25IxrVtD4cIQHQ3z59tOIyKSviNHoHdvsz94sJnSQnIVFTeSMQEB8PTTZl8zFouIO+vbF/791ywb07+/7TRigYobybju3c3XBQtg5067WURE0vL99/D55+Yy1MSJkDev7URigYobybhy5aBJE9NRb9w422lERFKLi0v5ENa7N9x+u908Yo2KG8kc17DwSZPMWi0iIu5i4EDTLzAsDF5/3XYasShTxc3hw4cve//58+dZv379NQUSN/fAA1CmjLme/dVXttOIiBjr1sH//mf2x46FoCC7ecSqTBU31113XaoCp3Llyuzbty/5+N9//6Vu3bpZl07cj68vdOtm9jVjsYi4g7NnzRILTie0aweNG9tOJJZlqrhxXrRw4p49ezh37txlzxEv9MwzppPeTz/Bzz/bTiMiud0775j174oWhffft51G3ECW97lxaN0O71eiBDz6qNnXsHARsem331L61/zvf6bAkVxPHYrl6rhmLP78c4iJsZtFRHKnpCSzrMLZs9CsGTz+uO1E4iYyVdw4HA5OnjxJbGwsMTExOBwO4uLiiI2NTd4kl7jrLrj1Vjh1Cj75xHYaEcmNxo2DVatM5+ExY7TityRzODPRScbHxyfVZSen05nmcaIbrz0UGxtLSEgIMTExBAcH247j2UaPhp494ZZbYPt2/WERkZzz999QqRKcPGkuRz33nO1Eks0y8/6dJzNPvHTp0msKJl7mqadgwABzzXvZMmjY0HYiEckNnE5zafzkSbjjjpTL5CL/yVRxU79+/ezKIZ4oONgUOGPHmiZhFTcikhNmzoRvvzWjNidONFNUiFwgU31uzp8/T0JCQqrbDh06xJAhQ+jfvz+rVq3K0nDiAVwzFs+eDfv3280iIt7v2DHo1cvsR0aavn8iF8lUcdOlSxeef/755OOTJ09Su3ZtRo0axcKFC2nYsCHz58/P8pDixqpUMZ2Lz583n6BERLLT//0fHD4MFSvCSy/ZTiNuKlPFzerVq3nUNb8J8Mknn5CYmMiff/7Jli1biIiI4N13383ykOLmXK0348ebIkdEJDssWWLWtXM4zIcpf3/bicRNZaq4+eeff6hQoULy8ZIlS3j00UcJCQkBoEOHDmzbti1rE4r7e/RRKFYM/vnHXAcXEclqp05B165m/9ln4c477eYRt5ap4iYgIIDTp08nH//000/UqVMn1f1xcXFZl048g7+/WdcFtN6UiGSPV1+FXbvg+uth6FDbacTNZaq4qVatGp9++ikAK1eu5NChQ9x7773J9+/cuZNSpUplbULxDF27mqbiH36AP/6wnUZEvMnmzTB8uNkfM8aM1BS5jEwVN4MHD2bkyJGUK1eOxo0b07FjR6677rrk+2fPnk29evWyPKR4gLAweOABsz92rNUoIuJFzp0zi/UmJUGbNvDgg7YTiQfI9Dw3mzZtYtGiRZQsWZJWrVqlur9atWrcfvvtWRpQPMizz8J338HkyfDGGxAYaDuRiHi6Dz6AqCgoVAhGjrSdRjxEppZf8AZafiEbJSVB+fKwe7cZ0dCpk+1EIuLJ/voLKleGM2fMh6aOHW0nEouybfmFFStWZOi8e+65JzNPK97Cxwe6dzdLMowereJGRK6e02n68p05A+Hh0KGD7UTiQa564cz0HqaFM3O5o0fNaIaEBFi/HmrXtp1IRDzRxx+bUZj58sHWrXDjjbYTiWWZef/OVIfiQoUKERoayqBBg/jzzz85fvz4JduxY8euKbx4uKJFwdUXa8wYu1lExDMdOAD9+pn9119XYSOZlqni5sCBA7z99tusXbuWypUr88wzz7BmzRqCg4MJCQlJ3jJr1KhRhIWFERAQQJ06dVi/fn265547d47XXnuNcuXKERAQQNWqVVmwYEGmX1OykWuF3i++MOvAiIhkxvPPw4kTULMm9O5tO414oKvuUBwdHc2UKVOYOnUqCQkJdOjQgSFDhpAnT6a68TBjxgzat2/P2LFjqVOnDiNGjOCrr77i999/p3jx4pecP2DAAD777DMmTJjALbfcwsKFC4mIiGDNmjVUr179iq+ny1I5wOmEGjXMCIfhwyEiwnYiEc/mdKbekpKu/vhaHpvVx2nd99tv8MILZqXvjRuhWjXbP31xE5l5/77m0VK7d+/mmWeeYfny5Rw5coTChQtn6vF16tShdu3afPTRRwAkJSURGhrKc889x4svvnjJ+aVKleLll1+mZ8+eybc9+uij5MuXj88+++yKr6fiJoeMHw/dukGFCuaPlU+mGglFrs7ixWbo8OnT7v8mnpnj3OjFF2HYMNspxI1k22gpl4SEBL7++msmTZrE2rVreeCBB5g3b16mC5uzZ8+yadMmIiMjk2/z8fEhPDyctWvXpvvaAQEBqW7Lly8fq1atSvf8hISE5OPY2NhMZZSr9OSTZvXeP/80i93df7/tROLtvvrK/LvT4q2X53CYzccnZT+7jzP72AoVYPBg2z8p8WCZKm7Wr1/P5MmTmT59OmFhYXTq1Ikvv/wy00WNy9GjR0lMTKREiRKpbi9RogS//fZbmo9p3Lgx77//Pvfccw/lypVjyZIlzJo1K90RWsOGDWPIkCFXlU+uQf78Zujmhx+aYeEqbiQ7ffKJmXogKQlat4ZHHsmaN1l3Or7W53JtIrlApoeClylThg4dOlCzZs10z3vooYcy9Hz79++ndOnSrFmzhrp16ybf3r9/f5YvX866desuecyRI0fo0qUL3377LQ6Hg3LlyhEeHs6kSZNSLerpklbLTWhoqC5L5YTt2+HWW80f2b17zRBxkaw2diz06GH2O3c2x76+djOJSJbL1stS0dHRvP766+nen5l5booWLYqvry+HDh1KdfuhQ4coWbJkmo8pVqwYc+bM4cyZM/z777+UKlWKF198kRvTGSro7++Pv79/hvJIFqtUCRo0gGXLTB+c116znUi8zfvvm86nAM89ByNGqH+XiGRuKHhSUtIVt5MnT2b4+fz8/KhZsyZLlixJ9RpLlixJ1ZKTloCAAEqXLs358+f5+uuvadGiRWa+FckprmHhEyaYBfBEsoLTadYvcxU2L75o1h1SYSMiZLK4uZyEhATef//9dFtQ0hMREcGECROYOnUqO3bsoEePHsTHx9Ppv6n727dvn6rD8bp165g1axa7du1i5cqVNGnShKSkJPr3759V34pkpZYtoWRJOHgQ5syxnUa8gdMJL70EgwaZ49dfh6FD1Z9ERJJlqrhJSEggMjKSWrVqceeddzLnvzerSZMmccMNN/DBBx/Qt2/fTAVo06YN7733HoMHD6ZatWpERUWxYMGC5E7G0dHRHDhwIPn8M2fOMHDgQCpVqsTDDz9M6dKlWbVqFQULFszU60oOyZsXunQx+6NH280ini8pCfr0gbfeMsfDh8PAgSpsRCSVTHUoHjBgAOPGjSM8PJw1a9Zw5MgROnXqxE8//cRLL71Eq1at8HXzjnya58aCv/+GsDBITIRt20xfHJHMSkw0C7NOnGiOR49O6UgsIl4v29aW+uqrr/jkk0+YOXMmixYtIjExkfPnz7NlyxYef/xxty9sxJLrr4fmzc3+2LF2s4hnOn8e2rc3hY2PD0yZosJGRNKVqeLm77//Th4Cftttt+Hv70/fvn2TVwoXSZerY/HUqRAXZzeLeJazZ6FNG5g2DfLkMWuWdehgO5WIuLFMFTeJiYn4+fklH+fJk4f8+fNneSjxQvfdZ2YdjY01b1IiGXH6tOmUPmsW+PmZr61b204lIm4uU/PcOJ1OOnbsmDxvzJkzZ+jevTtBQUGpzps1a1bWJRTv4ONj+ku88ILpK9GlizqByuXFxcFDD8HSpZAvH8ydq5muRSRDMtWh2DU8+0omT5581YGymzoUW3TsGJQuDWfOwJo1cIW5jCQXi4mBZs3Mv5P8+WHePLjnHtupRMSibJuh2J2LFvEAhQvDE0/A5Mmm9UbFjaTl33+hcWPYtAkKFoSFC+H2222nEhEPouk8JWe5Rrh8+SUcOWI3i7ifgwfNkh2bNkHRouaSlAobEckkFTeSs2rXhlq1zAgYtQTKhf7+G+rXh61b4brrYMUKqFbNdioR8UAqbiTnuYaFjx1rJmYT2bUL7r4b/vgDypQxhU3FirZTiYiHUnEjOa9NG9OXYvdu059CcrfffjOdhffsgfLlYeVK81VE5CqpuJGcFxgIrpF3Y8bYzSJ2/fKLuRT1zz9mWY4VK0zLjYjINVBxI3Z0726+zptnPrFL7rNxo+k8fPiw6VuzbJnpayMico1U3IgdN90E4eHgdMK4cbbTSE5bvdrMWn38ONSpAz/+CMWK2U4lIl5CxY3Y4+pY/PHHkJBgN4vknCVLoFEjsxRH/fqweDEUKmQ7lYh4ERU3Yk/z5mbG4iNH4OuvbaeRnDBvHjzwAJw6ZQqc+fOhQAHbqUTEy6i4EXvy5IGuXc3+6NF2s0j2+/prePhh00rXogV8843pXC4iksVU3IhdnTubImf1ajNyRrzTZ5+Z1bzPnYPHH4evvoL/FuAVEclqKm7ErlKlzKd50LBwbzV+PLRvD0lJZgqAzz6DvHltpxIRL6biRuxzrTf16aemk6l4j5EjoVs3MyquZ0+YOBF8fW2nEhEvp+JG7GvQAG65BeLjzad68Q5Dh0KfPma/f3/48EPw0Z8cEcl++ksj9jkcKcPCR482n/LFczmdMHAgvPyyOR4yBN56y/yeRURygIobcQ/t25uRM9u2mbWFxDM5nRARAW++aY7ffRcGD1ZhIyI5SsWNuIeQEGjb1uyrY7FnSkoy/adGjDDHo0ZBv35WI4lI7qTiRtyH69LU11/DwYN2s0jmnD8PHTuapTR8fGDSpJTfp4hIDlNxI+6jWjW44w4zF8rHH9tOIxl19iw88YQZ7ebrC59/nrLqu4iIBSpuxL24Pu2PGweJiXazyJWdOQOPPAIzZ4Kfn2l1e/xx26lEJJdTcSPupVUrKFIE9u0z6xCJ+4qPN+uDzZsHAQFmOYUWLWynEhFRcSNuJiAAnn7a7Gu9KfcVGwtNmsAPP0D+/LBgATRubDuViAig4kbcUbduZujwwoWwc6ftNHKxY8fgvvtg1SooWBAWL4b69W2nEhFJpuJG3E+5cqZVAGDsWLtZJLXDh6FhQ9i4EYoWhR9/NJ3ARUTciIobcU+u9aYmTYLTp+1mEeOff+Cee8zq7SVLwvLlUL267VQiIpdQcSPuqVkzKFPGXAL56ivbaWTPHlPY/P47hIbCihVQqZLtVCIiaVJxI+7J1xe6dzf76lhs1x9/wN13w65d5pLhypVQoYLtVCIi6VJxI+7rmWcgb15Ytw42b7adJnfautW02Pz9N1SsaFpsypa1nUpE5LJU3Ij7Kl4cHnvM7Gu9qZy3aZMZBXXoEFStavrYlCplO5WIyBW5RXEzatQowsLCCAgIoE6dOqxfv/6y548YMYKbb76ZfPnyERoaSt++fTlz5kwOpZUc5Zqx+PPP4cQJq1FylTVr4N57TZ+n22+HpUuhWDHbqUREMsR6cTNjxgwiIiJ45ZVX2Lx5M1WrVqVx48YcPnw4zfOnTZvGiy++yCuvvMKOHTv4+OOPmTFjBi+99FIOJ5ccUa8e3HabGTE1dartNLnDjz9Co0Zmor677zbz2BQqZDuViEiGWS9u3n//fbp06UKnTp2oVKkSY8eOJTAwkEmTJqV5/po1a6hXrx5PPvkkYWFhNGrUiCeeeOKKrT3ioRyOlNabMWPA6bSbx9t9/z088IBZWuH++83Mw8HBtlOJiGSK1eLm7NmzbNq0ifDw8OTbfHx8CA8PZ+3atWk+5s4772TTpk3JxcyuXbuYP38+zZo1S/P8hIQEYmNjU23iYZ56ykzx//vv5vKIZI9Zs8zaUGfOmDWjvvkGAgNtpxIRyTSrxc3Ro0dJTEykRIkSqW4vUaIEBw8eTPMxTz75JK+99hp33XUXefPmpVy5cjRo0CDdy1LDhg0jJCQkeQsNDc3y70OyWYEC0K6d2dew8OwxbRq0bg3nzpmvX39t1vkSEfFA1i9LZdayZcsYOnQoo0ePZvPmzcyaNYt58+bx+uuvp3l+ZGQkMTExydu+fftyOLFkCdeMxXPmwP79VqN4nYkTTetYYiJ06GAKnbx5bacSEblqeWy+eNGiRfH19eXQoUOpbj906BAlS5ZM8zGDBg2iXbt2dO7cGYDKlSsTHx9P165defnll/HxSV2v+fv74+/vnz3fgOScypVN59aVK2HCBHjlFduJvMP//ge9e5v9Hj3go4/Ax+M+84iIpGL1r5ifnx81a9ZkyZIlybclJSWxZMkS6tatm+ZjTp06dUkB4+vrC4BTnU29m6v1Zvx4c/lErs1bb6UUNi+8AKNGqbAREa9g/S9ZREQEEyZMYOrUqezYsYMePXoQHx9Pp06dAGjfvj2RkZHJ5zdv3pwxY8Ywffp0du/ezeLFixk0aBDNmzdPLnLESz3yiJnYb/9++PZb22k8l9MJgweD6//V4MHw7rtmZJqIiBewelkKoE2bNhw5coTBgwdz8OBBqlWrxoIFC5I7GUdHR6dqqRk4cCAOh4OBAwfyzz//UKxYMZo3b86bb75p61uQnOLvD507w9ChpmPxI4/YTuR5nE7o1w/ef98cv/UWDBhgN5OISBZzOHPZtZzY2FhCQkKIiYkhWPN3eJ69e+GGG8yb9G+/wc03207kOZKSoGdPGDvWHP/vf/Dcc3YziYhkUGbev61flhLJlLJl4cEHzb7rTVqu7Px5ePpp8zNzOMwIKRU2IuKlVNyI53HNWDx5splJVy7v3Dlo29YsX+HrC599ZlZcFxHxUipuxPM0agQ33ggxMTB9uu007u3MGXj0UfjySzN3zVdfwZNP2k4lIpKtVNyI5/Hxge7dzf7o0VpvKj2nTsFDD5mRZQEBMHcuPPyw7VQiItlOxY14pk6dzOipzZthwwbbadxPbCw0aWJW9A4KgvnzoWlT26lERHKEihvxTEWLmjWQQOtNXezYMbOi98qVEBJiCpyGDW2nEhHJMSpuxHO5OhbPmAH//ms3i7s4fBjuvRfWr4ciReDHHyGd2b5FRLyVihvxXHXqQPXqptPslCm209i3fz/Urw9btkCJErBsGdSoYTuViEiOU3EjnsvhSFlvaswYM0ldbrV3L9xzj5nY8PrrYcUKuO0226lERKxQcSOe7cknITgYdu6EH36wncaOP/80K6bv3GmGyK9cCTfdZDuViIg1Km7EswUFQceOZj83dizets202OzbB7fcYlpswsJspxIRsUrFjXg+15w3334L0dF2s+Skn382fWwOHoQqVWD5cihd2nYqERHrVNyI56tY0Qx1TkqCCRNsp8kZP/1kvud//4XatWHpUihe3HYqERG3oOJGvINrWPiECXD2rN0s2W35cjOPTUwM3HWX6WtUuLDtVCIibkPFjXiHFi3guuvg0CGYPdt2muyzcKGZeTguDsLDYcEC06FaRESSqbgR75A3L3TpYvbHjLGbJbvMnWvWijpzBh580PQxCgqynUpExO2ouBHv0aUL+PqayzbbttlOk7WmTzere589C61awddfm8UwRUTkEipuxHtcf71p2QDvar2ZPNnM55OYCO3awbRp4OdnO5WIiNtScSPexdWx+JNPTL8UTzdqFDz9NDid0K2bWWYiTx7bqURE3JqKG/Eu995rZuc9eRI+/9x2mmvz7rvQq5fZ79vXtEb56L+siMiV6C+leBcfn5RJ/UaPNi0ensbphCFDoH9/czxwIAwfbtbSEhGRK1JxI96nY0fIlw9++QXWrrWdJnOcThgwAF591RwPHQqvv67CRkQkE1TciPcpVAieeMLse9J6U0lJ8Nxz5nIUwIgREBlpNZKIiCdScSPeqUcP8/Wrr+DIEbtZMiIxETp3Nh2IHQ4YPx5697adSkTEI6m4Ee9Uq5ZZc+nsWZg0yXaayzt3Dp56ygz59vU1I71cExKKiEimqbgR7+UaFj52rGkZcUcJCWZSvunTzSzLM2aYQkdERK6aihvxXm3amP43e/aYNZjczalTZtLBuXPB3x/mzDGzEIuIyDVRcSPeK18+6NTJ7LvbjMUnT0LTprBoEQQGwrx50KyZ7VQiIl5BxY14N9ecN/Pnw+7ddrO4HD8O998PK1aYFb0XLYL77rOdSkTEa6i4Ee9WoYIpJJxOGDfOdhozcuvee2HdOihcGJYsgXr1bKcSEfEqKm7E+7k6Fn/8senAa8uBA9CgAURFQfHisGyZGdUlIiJZSsWNeL8HHzQrhh89CjNn2skQHQ333APbt0Pp0uaSVOXKdrKIiHg5FTfi/fLkga5dzb6NGYv/+gvuvtt8DQuDlSvh5ptzPoeISC6h4kZyh86dTZGzZg1s2ZJzr7t9u2mxiY42q5WvXAk33JBzry8ikgupuJHc4brr4JFHzH5ODQuPioL69U1fm9tuM5eirr8+Z15bRCQXc4viZtSoUYSFhREQEECdOnVYv359uuc2aNAAh8NxyfbAAw/kYGLxSK71pj77DGJisve11q2Dhg1NP5+aNU3n4RIlsvc1RUQEcIPiZsaMGURERPDKK6+wefNmqlatSuPGjTl8+HCa58+aNYsDBw4kb1u3bsXX15dWrVrlcHLxOPXrQ8WKEB8Pn36afa+zYgWEh8OJE3DnnWa4d5Ei2fd6IiKSivXi5v3336dLly506tSJSpUqMXbsWAIDA5mUzmKHhQsXpmTJksnb4sWLCQwMVHEjV+ZwpAwLHzPGzH2T1RYtgiZNIC7OzGezaBGEhGT964iISLqsFjdnz55l06ZNhIeHJ9/m4+NDeHg4a9euzdBzfPzxxzz++OMEBQWleX9CQgKxsbGpNsnF2rUzyx1s325aWLLSN99A8+Zw+rRZSuG77yCdf5ciIpJ9rBY3R48eJTExkRIX9UUoUaIEBw8evOLj169fz9atW+ncuXO65wwbNoyQkJDkLTQ09JpziwcLCUlZdTsrh4XPmGEWvTx71nydPdusbSUiIjnO+mWpa/Hxxx9TuXJlbr/99nTPiYyMJCYmJnnbt29fDiYUt+TqWDxrFmSgiL6iqVPhySfh/HlTOE2fDn5+1/68IiJyVawWN0WLFsXX15dDhw6luv3QoUOULFnyso+Nj49n+vTpPPPMM5c9z9/fn+Dg4FSb5HLVqkHduqYYmTjx2p5rzBjo2BGSkqBLF1Po5MmTFSlFROQqWS1u/Pz8qFmzJkuWLEm+LSkpiSVLllC3bt3LPvarr74iISGBp1yXGEQyw9WxeNw4U+RcjeHDU56nd2/zXD4e3RgqIuIVrP8ljoiIYMKECUydOpUdO3bQo0cP4uPj6dSpEwDt27cnMjLyksd9/PHHtGzZkiIaYitX47HHoGhR+PtvmDcvc491OuH116FfP3P80kvwwQdmNJaIiFhnvf28TZs2HDlyhMGDB3Pw4EGqVavGggULkjsZR0dH43PRp+Hff/+dVatWsWjRIhuRxRsEBMDTT8M775iOxS1aZOxxTidERsLbb5vjN96Al1/OvpwiIpJpDqczOyb7cF+xsbGEhIQQExOj/je53a5dUL48OJ04f/+DH/ZWYNQoOHUKBg+Gu+4yp23eDJ98AoEBSbRY2oc66z8EYE2rD9jZvA933ZWyXNTx4+ZpAwLMli9fyn5AgK5aiYhcrcy8f1tvuRGx5sYboWlTmD+fr8LH0Wbfe8l39eqVctr27fDhyETG0Y06fEwSDnowhvFfdYOvzGoOruJm+XJ4+OH0X3LcuJQFylevNn2Q0yuE2reHxo3Nufv2mQLLdc6F5+bLB7fcYhYcB0hIgEOHUp+XN2/W/dhERNydihvJtbZtgznHevAy8wnfN4ngvK/T6dl81KoFNWqknFepwjk2VepIte3TSHL4MLHeFGJKt6PFGTNf34VrYebJY47P/Hff6dNmIJWLv3/K/vHjsGNH+vnuvDOluNm5EwYOTP/ct96CAQPM/q+/Qu3aqe/39U0pdvr3h//7P3P73r2miEqrYAoIMKtIuJZti4uDL764tMByfS1ZEkqVMuc6nabI8vdXVyQRyXkqbiRXOnXKXHaKPdGUtpQljL3sHDqDov06pj4xIYEabz8B22dDnjz4TJtG11at6JrO8z74oNkudO5cSrGTP3/K7XXrmvU0T58297vOce27LosBFC8Ozzxz6TmufVdR4Xo9f39TXLgkJpolteLjzTyDLsePX36i5oCAlOLm4MGUVqe09OoFH5ordhw6ZBZidz3HxcVQq1bw6qvm/tOnLy2wLiy0qlRJyeB0wrffpv2cAQFQoIBWuxARFTeSixw/DoUKmf3AQOjbF7Zs8SVfme4wIpKiX42BC4ub06fhkUdgwQJTLcyceWnlkgF585qtQIHUtxcpYtbyzIhKlTI+JU/duqbgSUoyBc6FRdDp02aQmEvZsvDll+kXTQ0apJzr7w8PPZT6uS78euHAxTNnUu+fOWPWEXW5cGqr+Hjzo03PU0+lFDdnz16+73fLlmZyaJcaNUzhU6gQFC5svrq2W25JaRkDOHIEgoNTt66JiGdSh2LxejEx8N57ZrT2nDnmUguYVgCHAzh82FxLOncONmyAWrXMNZiHHoKlS00lNHduygPlipKSzI8wrYLp9GlzCatiRXNufDxMmZJ2wXTmDNxxh+mb5Dr3vvvSfs4zZ8zKF198Yc49c+byK2A8+KBpBXIJDDTPExh4aTFUp44ZJOcyZ45pKbrwnIIFNX+jSHZSh2IRzBvVqFEwbBgcO2Zumz49pUZJ7gtSvLi5TjJtmplxePhws/Dl2rWmuWX+/NTXiOSKfHxMK0hGPj8EBUHPnhl73qAg+Omn9O+/8KNanjzw44+mxe74cfNv4ML9mjVTznW1cIG5ZHnqFPzzT8r9iYmpX+fJJ82/r4sFB8P996duifq//zM/j4sLpsKFzT+9C/tsiUjWUHEjXuf8eZg8GYYMSXmDuuUWePPNy4xkevZZU9x88QX8/LPZChWChQsv7Z0rbuvCzst58kDDhhl7nL+/+XcTE5N2MXRhn6bERNOadOE5J0+a+2JjU/d1AlNgp1UIAdSrB6tWpT4+dy51AeTaL1cu9b/fgwdN7R0YqE7bIhdTcSNep0UL09gCEBpqipx27a5wyeDOO6FyZTPU6OefoVgx+OEH05tVcgVX64qrX1Z6fH1Ni9CFzp0zfYqOHzf3uyQlmctZ6bUeuTpdu2zenLq/0oXq1Utd3NSoAQcOmP5cF7cIVakCQ4emnPvNN6YAcp3n+qr+ReKtVNyIx3M6zeaaIK99e1i/3kwc3L276RtxRQ4HPPecGQ5UqhQsWWKae0QyIG9eUw8XK5b6dh8fGDQoY8/hdMLixZcWQq6vFSqkPj8+3nw9d8500L6wk/aFnbcBevSA/fsvfc3AQNMKdcHyfrz8smlpurhgKlTIfH833pix70fEJhU34tF++sl8Mn7ssZR+G61amS4zF49OuqJnnjF/wevVu/QjtUg2czgy17XrxAlT4KTVInRx61PNmqZmd51z/Lgppk6dSj01AJhLugcOpP2alSqZ+aFcGjc2o8zSuowWGgpt26ace+CA6eAdHKyZuiX7abSUeKStW82kdnPnmuOyZc1EdxdeEhCRtCUlmf5Bx46ZIqdcuZT7hg83rUBpFU0VK5qZEVxKlcp4IXTrrWa2bx8fM7LswmKofHnTN8ll1ixTuKU171GBAnDTTSnnnj1rWs7U78j7abSUeK3du+GVV8ySB65LUZ06mdtU2IhkjKvAKFjw0vteeCHjzzN3Lhw9mnafov/WPk7m6lSdlGTOO3bMfCCB1CPTwFwa++23tF+zbFnYsyfl+K67zAwOaU3seN11puucy5Ah5jXTmpE7f/7Uy66sX29ax/LlS3tW7kKFVFC5MxU34jHGjzd/fM6dM8ePPQavv66uMSK2ZGYg4a5dprP0hZfGXMXQxf3i7r4bypRJe96ji68YuzpgpzVZZExM6nMXLjQzPKQlODh1cTNwoOkDlRYfHzO6zqV9e1i0KO0lTPLlMxNL+vmZcz/9FH75JeW+iwunRx5JOXfvXvM9pFVc6cPc5am4EY9Rq5YpbO6/34wEqVXLdiIRyYyAAFOcXKlL2/jxGX/O1atN36G0JnW8uGWlTx9TPKQ1I7eroHC58UYz6uzi5z192nwfFz730aOpO3Rf7MKRmt9+C199lf65sbEpWYYMMX2g0nvOffvMhJhgprr48sv0C6y33jLzKoGZm3Tz5rSXMMmXzxStQUEpec6cSXlOT7kEqOJG3NLp0/DRR2b+kNdeM7fVqGFGat92m91sIuI+ChTI+OCB1q0z/rxjx6Z/34WtNgDjxpkWqLRm5E5ISN2BukULc2ktvWVMLpxVO39+U5C4nvPCzt/nz6du8dq717QIpWfIkJT9b781M7anZ/v2lBnE33vPtJC7+PikLobmz0+ZMeOLL8xs46GhGV8uJruouBG3cu4cTJpkCpr9+82nhKefhrAwc78KGxGx7eI5s0JDzZYRbdumHkV2Of/7n9lcEhNNseQqhC7sU/vCC2akqKt16eLC6cIRdDVrmjXb0iquLl7g9+JCLikpZRZvSF24/fmnuTx38bQFNmi0lLiFpCTTpDpoEPz1l7mtbFnzaeOpp3R9WUTEFqcz7UV4z5wxLTyu1qZff4WoKHP82GNZn0OjpcSjbN1qZhCOijLHxYqZznzdumkGVRER2xyOlD43aY2wc6lc2WzuQMWNWFe8uGnODA6Gfv1Mp79MT8AnIiLyHxU3kuN++cVM0vXqq+a4eHH4+mtzHbhoUavRRETEC6i4kRyzaxcMHmwW33Y6oX79lFWbGze2m01ERLyHihvJdgcOwBtvmLkrXD3vW7XK+OgCERGRzFBxI9nm1ClT1IwYkTL1euPGZrKpmjWtRhMRES+m4kayTZ48MGOGKWzuuAOGDYMGDWynEpHcIDExkXOutVrEY/j5+eGTBcvGq7iRLHPuHHz+uZmgKm9eM4X4hx+a2x96yDOm7BYRz+Z0Ojl48CAnLlxkSjyGj48PN9xwA34Xr4eRSSpu5JolJcH06aaz8M6dZmKn7t3Nfc2a2c0mIrmLq7ApXrw4gYGBOPSpymMkJSWxf/9+Dhw4QJkyZa7pd6fiRq6a0wnffw8vvQRbtpjbiheHwEC7uUQkd0pMTEwubIoUKWI7jlyFYsWKsX//fs6fP0/evHmv+nlU3MhVWbUKIiPNVzAT8PXvD717p16XREQkp7j62ATqE5bHcl2OSkxMVHEjOe+110xhExAAzz0HAwaAPiiJiDvQpSjPlVW/OxU3kiE7d0JISMoMwkOHwg03mH42pUvbzSYiInKhax9vJV5t/37o0QNuucXMT+NSqxaMG6fCRkTE3YSFhTFixAjrz2GTWm4kTcePw9tvw//+lzIB3549phOxWnxFRLJOgwYNqFatWpYVExs2bCAoKChLnstTqbiRVOLjTUHzzjvgmibizjvNBHz33GM1mohIruV0OklMTCRPniu/bRcrViwHErk3XZaSVF57zQztPnECKleGb781HYdV2IiIJ4uPT387cybj57pasi93bmZ07NiR5cuXM3LkSBwOBw6Hgz179rBs2TIcDgfff/89NWvWxN/fn1WrVrFz505atGhBiRIlyJ8/P7Vr1+aHH35I9ZwXX1JyOBxMnDiRhx9+mMDAQCpUqMA333yTqZzR0dG0aNGC/PnzExwcTOvWrTl06FDy/Vu2bKFhw4YUKFCA4OBgatasycaNGwHYu3cvzZs3p1ChQgQFBXHrrbcyf/78zP2gMknFTS6XlAT//pty3LevKWo++wx+/hkefFCXoUTE8+XPn/726KOpzy1ePP1zmzZNfW5Y2KXnZMbIkSOpW7cuXbp04cCBAxw4cIDQC1YVfvHFF3nrrbfYsWMHVapUIS4ujmbNmrFkyRJ+/vlnmjRpQvPmzYmOjr7s6wwZMoTWrVvzyy+/0KxZM9q2bcuxY8cylDEpKYkWLVpw7Ngxli9fzuLFi9m1axdt2rRJPqdt27Zcf/31bNiwgU2bNvHiiy8mD+Xu2bMnCQkJrFixgl9//ZW3336b/Nk9Z4jTDXz00UfOsmXLOv39/Z233367c926dZc9//jx485nn33WWbJkSaefn5+zQoUKznnz5mXotWJiYpyAMyYmJiuie6ykJKfz22+dzsqVnc4mTS69T0TE05w+fdq5fft25+nTpy+5z/QYTHtr1iz1uYGB6Z9bv37qc4sWvfSczKpfv76zd+/eqW5bunSpE3DOmTPnio+/9dZbnR9++GHycdmyZZ0ffPBB8jHgHDhwYPJxXFycE3B+//336T7nhc+xaNEip6+vrzM6Ojr5/m3btjkB5/r1651Op9NZoEAB55QpU9J8rsqVKztfffXVK34fTuflf4eZef+23udmxowZREREMHbsWOrUqcOIESNo3Lgxv//+O8WLF7/k/LNnz3L//fdTvHhxZs6cSenSpdm7dy8FCxbM+fAeasUKMwHfmjXmODrajIoqVcocq6VGRLxNXFz69/n6pj4+fDj9cy9e03HPnquOlCG1atVKdRwXF8err77KvHnzOHDgAOfPn+f06dNXbLmpUqVK8n5QUBDBwcEcvtw3eoEdO3YQGhqaqkWpUqVKFCxYkB07dlC7dm0iIiLo3Lkzn376KeHh4bRq1Ypy5coB8Pzzz9OjRw8WLVpEeHg4jz76aKo82cH6Zan333+fLl260KlTJypVqsTYsWMJDAxk0qRJaZ4/adIkjh07xpw5c6hXrx5hYWHUr1+fqlWr5nByz/Pzz6ZJtX59U9gEBJjJ93btSilsRES8UVBQ+ltAQMbPzZfvyudmbe7UT9ivXz9mz57N0KFDWblyJVFRUVSuXJmzZ89e9nkunu3X4XCQlJSUZTlfffVVtm3bxgMPPMCPP/5IpUqVmD17NgCdO3dm165dtGvXjl9//ZVatWrx4YcfZtlrp8VqcXP27Fk2bdpEeHh48m0+Pj6Eh4ezdu3aNB/zzTffULduXXr27EmJEiW47bbbGDp0KImJiWmen5CQQGxsbKotN1qwAGrUMF/z5DELW+7cCW+9BYUL204nIpJ7+fn5pfsedrHVq1fTsWNHHn74YSpXrkzJkiXZk83NRxUrVmTfvn3s27cv+bbt27dz4sQJKlWqlHzbTTfdRN++fVm0aBGPPPIIkydPTr4vNDSU7t27M2vWLF544QUmTJiQrZmtFjdHjx4lMTGREiVKpLq9RIkSHDx4MM3H7Nq1i5kzZ5KYmMj8+fMZNGgQw4cP54033kjz/GHDhhESEpK8Xdis5u0u/L9y771w443wxBOwYweMGaPWGhERdxAWFsa6devYs2cPR48evWyLSoUKFZg1axZRUVFs2bKFJ598MktbYNISHh5O5cqVadu2LZs3b2b9+vW0b9+e+vXrU6tWLU6fPk2vXr1YtmwZe/fuZfXq1WzYsIGKFSsC0KdPHxYuXMju3bvZvHkzS5cuTb4vu1i/LJVZSUlJFC9enPHjx1OzZk3atGnDyy+/zNixY9M8PzIykpiYmOTtwsrTW/37r1nEskYN+G8dOfz8zMrd06ZB+fJ284mISIp+/frh6+tLpUqVKFas2GX7z7z//vsUKlSIO++8k+bNm9O4cWNq1KiRrfkcDgdz586lUKFC3HPPPYSHh3PjjTcyY8YMAHx9ffn3339p3749N910E61bt6Zp06YMGTIEMItg9uzZk4oVK9KkSRNuuukmRo8enb2ZnU6nM1tf4TLOnj1LYGAgM2fOpGXLlsm3d+jQgRMnTjB37txLHlO/fn3y5s2balz/999/T7NmzUhISEheUTQ9sbGxhISEEBMTQ3BwcJZ9L+4gLg5GjjQT8Lmuvs2ceekwRxERb3TmzBl2797NDTfcQMDFHWnEI1zud5iZ92+rLTd+fn7UrFmTJUuWJN+WlJTEkiVLqFu3bpqPqVevHn/99VeqZrg//viD66677oqFjbc6exY++gjKlYOBA01hU6UKfPcdPPKI7XQiIiI5y/plqYiICCZMmMDUqVPZsWMHPXr0ID4+nk6dOgHQvn17IiMjk8/v0aMHx44do3fv3vzxxx/MmzePoUOH0rNnT1vfglVHjsDNN8Nzz5nhizfeCJ9/bkZGPfCAhnWLiEjuY32emzZt2nDkyBEGDx7MwYMHqVatGgsWLEjuZBwdHY3PBRMLhIaGsnDhQvr27UuVKlUoXbo0vXv3ZsCAAba+BauKFoUbbjDThw8eDM88Y/rXiIiI5FZW+9zY4Ol9bpYvhzffNB2DixY1t0VHQ5EiWT+/goiIJ1GfG8/nFX1uJOM2b4YmTaBBA1i8GN5+O+W+MmVU2IiIiLhYvywll/fHHzBoEHz5pTnOkwe6doWICLu5RERE3JWKGzfldEKvXjBunJmMz+GAJ5+EIUPMqCgRERFJm4obN+VwmAInMREefND0s8nmdcZERES8gvrcuIm4OHjjDTOLsMvgwbBqFXz7rQobERGRjFJxY1lCAvzvf+ZS06BB8PLLKfeVLAn16tnLJiIi3q1Bgwb06dPHdowsp+LGksRE+OQTMwFf795mAr7y5eGpp8zlKBERyR2yo8Do2LFjqmWNchv1ubFgwQLo1w+2bTPHpUrBK69Ap06QN6/dbCIiIp5OLTcW/PGHKWwKFTKLXP71lxnercJGRCSLOZ0QH5/zWwab4Dt27Mjy5csZOXIkDocDh8PBnj17ANi6dStNmzYlf/78lChRgnbt2nH06NHkx86cOZPKlSuTL18+ihQpQnh4OPHx8bz66qtMnTqVuXPnJj/nsmXLMpTn+PHjtG/fnkKFChEYGEjTpk35888/k+/fu3cvzZs3p1ChQgQFBXHrrbcyf/785Me2bduWYsWKkS9fPipUqMDkyZMz9nvKYmq5yQEbN8KpU3DPPea4Wzfzb79HDyhY0Go0ERHvduoU5M+f868bF5eh2VVHjhzJH3/8wW233cZrr70GQLFixThx4gT33nsvnTt35oMPPuD06dMMGDCA1q1b8+OPP3LgwAGeeOIJ3nnnHR5++GFOnjzJypUrcTqd9OvXjx07dhAbG5tcXBQuXDhDsTt27Miff/7JN998Q3BwMAMGDKBZs2Zs376dvHnz0rNnT86ePcuKFSsICgpi+/bt5P/v5zto0CC2b9/O999/T9GiRfnrr784ffr0Vf4Ar42Km2z022+mk/DMmaZvzdatZhI+f3+4YC1QERHJpUJCQvDz8yMwMJCSJUsm3/7RRx9RvXp1hg4dmnzbpEmTCA0N5Y8//iAuLo7z58/zyCOPULZsWQAqV66cfG6+fPlISEhI9ZxX4ipqVq9ezZ133gnA559/TmhoKHPmzKFVq1ZER0fz6KOPJr/WjTfemPz46OhoqlevTq1atQAICwvL/A8ki6i4yQb79pnJ9iZPhqQkM2fN7bebQl4tNSIiOSgw0PzxtfG612DLli0sXbo0uVXkQjt37qRRo0bcd999VK5cmcaNG9OoUSMee+wxChUqdNWvuWPHDvLkyUOdOnWSbytSpAg333wzO3bsAOD555+nR48eLFq0iPDwcB599FGq/DdXSY8ePXj00UfZvHkzjRo1omXLlslFUk5Tn5ssdPQovPACVKgAH39sCpuHHjJz13zyiQobEZEc53CYy0M5vTkc1xQ7Li6O5s2bExUVlWr7888/ueeee/D19WXx4sV8//33VKpUiQ8//JCbb76Z3bt3Z9EPLm2dO3dm165dtGvXjl9//ZVatWrx4YcfAtC0aVP27t1L37592b9/P/fddx/9+vXL1jzpUXGThTZtgvffN3PX1K8Pa9bA3LlwQUuhiIhIKn5+fiQmJqa6rUaNGmzbto2wsDDKly+fagv6ry+Pw+GgXr16DBkyhJ9//hk/Pz9mz56d7nNeScWKFTl//jzr1q1Lvu3ff//l999/p1KlSsm3hYaG0r17d2bNmsULL7zAhAkTku8rVqwYHTp04LPPPmPEiBGMHz8+0z+PrKDiJgs1agTPPmuGei9dCnXr2k4kIiLuLiwsjHXr1rFnzx6OHj1KUlISPXv25NixYzzxxBNs2LCBnTt3snDhQjp16kRiYiLr1q1j6NChbNy4kejoaGbNmsWRI0eoWLFi8nP+8ssv/P777xw9epRz585dMUeFChVo0aIFXbp0YdWqVWzZsoWnnnqK0qVL06JFCwD69OnDwoUL2b17N5s3b2bp0qXJrzl48GDmzp3LX3/9xbZt2/juu++S78tpKm6ykMMBo0ZB48bX3CIpIiK5RL9+/fD19aVSpUoUK1aM6OhoSpUqxerVq0lMTKRRo0ZUrlyZPn36ULBgQXx8fAgODmbFihU0a9aMm266iYEDBzJ8+HCaNm0KQJcuXbj55pupVasWxYoVY/Xq1RnKMnnyZGrWrMmDDz5I3bp1cTqdzJ8/n7z/zVWSmJhIz549qVixIk2aNOGmm25i9OjRgGktioyMpEqVKsmXzqZPn549P7QrcDiduWs+3NjYWEJCQoiJiSE4ONh2HBERySJnzpxh9+7d3HDDDQQEBNiOI1fhcr/DzLx/q+VGREREvIqKGxEREfEqKm5ERETEq6i4EREREa+i4kZERLxKLhsn41Wy6nen4kZERLyCa7jyqVOnLCeRq3X27FkAfH19r+l5tLaUiIh4BV9fXwoWLMjhw4cBCAwMxKFJxzxGUlISR44cITAwkDx5rq08UXEjIiJew7UKtqvAEc/i4+NDmTJlrrkoVXEjIiJew+FwcN1111G8ePEMLTkg7sXPzw8fn2vvMaPiRkREvI6vr+8199sQz6UOxSIiIuJVVNyIiIiIV1FxIyIiIl4l1/W5cU0QFBsbazmJiIiIZJTrfTsjE/3luuLm5MmTAISGhlpOIiIiIpl18uRJQkJCLnuOw5nL5qlOSkpi//79FChQIMsnd4qNjSU0NJR9+/YRHBycpc8tOUO/Q8+m35/n0+/Q82XX79DpdHLy5ElKlSp1xeHiua7lxsfHh+uvvz5bXyM4OFj/KT2cfoeeTb8/z6ffoefLjt/hlVpsXNShWERERLyKihsRERHxKipuspC/vz+vvPIK/v7+tqPIVdLv0LPp9+f59Dv0fO7wO8x1HYpFRETEu6nlRkRERLyKihsRERHxKipuRERExKuouBERERGvouImi4waNYqwsDACAgKoU6cO69evtx1JMmHFihU0b96cUqVK4XA4mDNnju1IkgnDhg2jdu3aFChQgOLFi9OyZUt+//1327EkE8aMGUOVKlWSJ36rW7cu33//ve1YcpXeeustHA4Hffr0sfL6Km6ywIwZM4iIiOCVV15h8+bNVK1alcaNG3P48GHb0SSD4uPjqVq1KqNGjbIdRa7C8uXL6dmzJz/99BOLFy/m3LlzNGrUiPj4eNvRJIOuv/563nrrLTZt2sTGjRu59957adGiBdu2bbMdTTJpw4YNjBs3jipVqljLoKHgWaBOnTrUrl2bjz76CDDrV4WGhvLcc8/x4osvWk4nmeVwOJg9ezYtW7a0HUWu0pEjRyhevDjLly/nnnvusR1HrlLhwoV59913eeaZZ2xHkQyKi4ujRo0ajB49mjfeeINq1aoxYsSIHM+hlptrdPbsWTZt2kR4eHjybT4+PoSHh7N27VqLyURyr5iYGMC8OYrnSUxMZPr06cTHx1O3bl3bcSQTevbsyQMPPJDqPdGGXLdwZlY7evQoiYmJlChRItXtJUqU4LfffrOUSiT3SkpKok+fPtSrV4/bbrvNdhzJhF9//ZW6dety5swZ8ufPz+zZs6lUqZLtWJJB06dPZ/PmzWzYsMF2FBU3IuJdevbsydatW1m1apXtKJJJN998M1FRUcTExDBz5kw6dOjA8uXLVeB4gH379tG7d28WL15MQECA7Tgqbq5V0aJF8fX15dChQ6luP3ToECVLlrSUSiR36tWrF9999x0rVqzg+uuvtx1HMsnPz4/y5csDULNmTTZs2MDIkSMZN26c5WRyJZs2beLw4cPUqFEj+bbExERWrFjBRx99REJCAr6+vjmWR31urpGfnx81a9ZkyZIlybclJSWxZMkSXSsWySFOp5NevXoxe/ZsfvzxR2644QbbkSQLJCUlkZCQYDuGZMB9993Hr7/+SlRUVPJWq1Yt2rZtS1RUVI4WNqCWmywRERFBhw4dqFWrFrfffjsjRowgPj6eTp062Y4mGRQXF8dff/2VfLx7926ioqIoXLgwZcqUsZhMMqJnz55MmzaNuXPnUqBAAQ4ePAhASEgI+fLls5xOMiIyMpKmTZtSpkwZTp48ybRp01i2bBkLFy60HU0yoECBApf0cQsKCqJIkSJW+r6puMkCbdq04ciRIwwePJiDBw9SrVo1FixYcEknY3FfGzdupGHDhsnHERERAHTo0IEpU6ZYSiUZNWbMGAAaNGiQ6vbJkyfTsWPHnA8kmXb48GHat2/PgQMHCAkJoUqVKixcuJD777/fdjTxQJrnRkRERLyK+tyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXUXEjIiIiXkXFjYiIiHgVFTciIiLiVVTciIjX6dixIy1btrQdQ0QsUXEjIlelY8eOOByOS7YmTZrYjsbIkSPdZtkMh8PBnDlzbMcQyVW0tpSIXLUmTZowefLkVLf5+/tbSgOJiYk4HA5CQkKsZRAR+9RyIyJXzd/fn5IlS6baChUqxLJly/Dz82PlypXJ577zzjsUL16cQ4cOAWaRy169etGrVy9CQkIoWrQogwYN4sLl7hISEujXrx+lS5cmKCiIOnXqsGzZsuT7p0yZQsGCBfnmm2+oVKkS/v7+REdHX3JZqkGDBjz33HP06dOHQoUKUaJECSZMmEB8fDydOnWiQIEClC9fnu+//z7V97d161aaNm1K/vz5KVGiBO3atePo0aOpnvf555+nf//+FC5cmJIlS/Lqq68m3x8WFgbAww8/jMPhSD4Wkeyl4kZEslyDBg3o06cP7dq1IyYmhp9//plBgwYxceJESpQokXze1KlTyZMnD+vXr2fkyJG8//77TJw4Mfn+Xr16sXbtWqZPn84vv/xCq1ataNKkCX/++WfyOadOneLtt99m4sSJbNu2jeLFi6eZaerUqRQtWpT169fz3HPP0aNHD1q1asWdd97J5s2badSoEe3atePUqVMAnDhxgnvvvZfq1auzceNGFixYwKFDh2jduvUlzxsUFMS6det45513eO2111i8eDEAGzZsAMzq5AcOHEg+FpFs5hQRuQodOnRw+vr6OoOCglJtb775ptPpdDoTEhKc1apVc7Zu3dpZqVIlZ5cuXVI9vn79+s6KFSs6k5KSkm8bMGCAs2LFik6n0+ncu3ev09fX1/nPP/+ketx9993njIyMdDqdTufkyZOdgDMqKuqSbC1atEj1WnfddVfy8fnz551BQUHOdu3aJd924MABJ+Bcu3at0+l0Ol9//XVno0aNUj3vvn37nIDz999/T/N5nU6ns3bt2s4BAwYkHwPO2bNnp/NTFJHsoD43InLVGjZsyJgxY1LdVrhwYQD8/Pz4/PPPqVKlCmXLluWDDz645PF33HEHDocj+bhu3boMHz6cxMREfv31VxITE7nppptSPSYhIYEiRYokH/v5+VGlSpUrZr3wHF9fX4oUKULlypWTb3O1KB0+fBiALVu2sHTpUvLnz3/Jc+3cuTM518Wvfd111yU/h4jYoeJGRK5aUFAQ5cuXT/f+NWvWAHDs2DGOHTtGUFBQhp87Li4OX19fNm3ahK+vb6r7Liw48uXLl6pASk/evHlTHTscjlS3uZ4jKSkp+fWbN2/O22+/fclzXXfddZd9XtdziIgdKm5EJFvs3LmTvn37MmHCBGbMmEGHDh344Ycf8PFJ6eq3bt26VI/56aefqFChAr6+vlSvXp3ExEQOHz7M3XffndPxqVGjBl9//TVhYWHkyXP1fyrz5s1LYmJiFiYTkStRh2IRuWoJCQkcPHgw1Xb06FESExN56qmnaNy4MZ06dWLy5Mn88ssvDB8+PNXjo6OjiYiI4Pfff+eLL77gww8/pHfv3gDcdNNNtG3blvbt2zNr1ix2797N+vXrGTZsGPPmzcv2761nz54cO3aMJ554gg0bNrBz504WLlxIp06dMlWshIWFsWTJEg4ePMjx48ezMbGIuKjlRkSu2oIFC1JdogG4+eabefLJJ9m7dy/fffcdYC7jjB8/nieeeIJGjRpRtWpVANq3b8/p06e5/fbb8fX1pXfv3nTt2jX5uSZPnswbb7zBCy+8wD///EPRokW54447ePDBB7P9eytVqhSrV69mwIABNGrUiISEBMqWLUuTJk1StT5dyfDhw4mIiGDChAmULl2aPXv2ZF9oEQHA4XReMKmEiEgOadCgAdWqVWPEiBG2o4iIl9FlKREREfEqKm5ERETEq+iylIiIiHgVtdyIiIiIV1FxIyIiIl5FxY2IiIh4FRU3IiIi4lVU3IiIiIhXUXEjIiIiXkXFjYiIiHgVFTciIiLiVf4fgpX7DYjkYy8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd6klEQVR4nO3de3zO5R/H8de9sZmxIcxpzofI+bSfQyFzLCFJklOpaEhLDjnLKUWEIkqlAx0cKueUU+QYkYgcpjDnzXFsu39/XG0zx417+96H9/PxuB/73vfu3fdnZvf93vW9rs9ls9vtdkRERETchJfVBYiIiIg4ksKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt5LB6gLSW3x8PEeOHCFr1qzYbDaryxEREZEUsNvtnDt3jnz58uHldfuxGY8LN0eOHCE4ONjqMkREROQuHD58mAIFCtz2Ph4XbrJmzQqYf5yAgACLqxEREZGUiI6OJjg4OPF9/HY8LtwknIoKCAhQuBEREXExKZlSognFIiIi4lYUbkRERMStKNyIiIiIW/G4OTciIuL+4uLiuHr1qtVlSCr5+PjccZl3SijciIiI27Db7Rw7doyzZ89aXYrcBS8vL4oUKYKPj889PY7CjYiIuI2EYJM7d24yZ86sZq0uJKHJ7tGjRylYsOA9/ewUbkRExC3ExcUlBpv77rvP6nLkLuTKlYsjR44QGxtLxowZ7/pxNKFYRETcQsIcm8yZM1tcidythNNRcXFx9/Q4CjciIuJWdCrKdTnqZ6dwIyIiIm5F4UZERETcisKNiIiIGylcuDATJkyw/DGspNVSIteKioKsWcEBTaRERFKibt26VKxY0WFhYtOmTfj7+zvksVyVwo1Igs8+g/btTbipVAmqVIGqVc3HEiUUeETEMna7nbi4ODJkuPPbdq5cudKhIuemV2sRgEuXoG9fc3zuHKxeDe+8A+3awf33Q7ZsUKcOhIfD55/D7t0QH29pySKSMhcu3Ppy+XLK73vpUsrumxqdOnVi1apVTJw4EZvNhs1m4+DBg6xcuRKbzcbixYupUqUKvr6+rF27lr///pvmzZsTFBRElixZqFatGj/++GOyx7z+lJLNZmPGjBm0bNmSzJkzU6JECb777rtU1RkREUHz5s3JkiULAQEBPPnkk0RGRiZ+fvv27dSrV4+sWbMSEBBAlSpV2Lx5MwCHDh2iWbNmZM+eHX9/fx544AEWLVqUun+oVNLIjQjAe+/BkSNQsCDMnw/bt8OWLeaybVtS4Fm9OulrsmS5cYSnZEmN8Ig4mSxZbv25pk1h4cKk67lzw8WLN79vnTqwcmXS9cKF4eTJG+9nt6e8tokTJ/LXX39RtmxZhg8fDpiRl4MHDwLQr18/3n77bYoWLUr27Nk5fPgwTZs2ZeTIkfj6+vLpp5/SrFkz9uzZQ8GCBW/5PMOGDWPs2LG89dZbTJo0iXbt2nHo0CFy5Mhxxxrj4+MTg82qVauIjY0lLCyMNm3asPK/f5B27dpRqVIl3n//fby9vdm2bVtiE76wsDCuXLnC6tWr8ff3Z9euXWS53Q/FARRuRKKjYfRoczx0qAkslSpBp07mtthYM1KzZQts3pwUeM6fhzVrzCXBtYEn4VKyJHh7p/M3JSKuIDAwEB8fHzJnzkyePHlu+Pzw4cNp0KBB4vUcOXJQoUKFxOtvvPEG8+bN47vvvqN79+63fJ5OnTrRtm1bAEaNGsW7777Lxo0bady48R1rXLFiBTt27ODAgQMEBwcD8Omnn/LAAw+wadMmqlWrRkREBK+99hr3338/ACVKlEj8+oiICFq1akW5cuUAKFq06B2f814p3IhMmACnTkGpUmbOzfUyZICyZc2lY0dz27WB59oRnpsFHn//5IGnalUFHpF0dP78rT93/a/h8eO3vu/1g7L/Da6kqapVqya7fv78eYYOHcrChQs5evQosbGxXLp0iYiIiNs+Tvny5ROP/f39CQgI4Pjtvtlr/PnnnwQHBycGG4AyZcqQLVs2/vzzT6pVq0Z4eDhdunRh1qxZhIaG0rp1a4oVKwZAz5496datG8uWLSM0NJRWrVolqyctKNyIZzt1Ct5+2xwPH26CTErcLPDExd0YeH77zZyEX7vWXBJcH3iqVDHhSoFHxOFSs3Aore57t65f9dS7d2+WL1/O22+/TfHixfHz8+OJJ57gypUrt32c6/dpstlsxDtw3uDQoUN5+umnWbhwIYsXL2bIkCHMnj2bli1b0qVLFxo1asTChQtZtmwZo0ePZty4cfTo0cNhz389hRvxbG++aebTVKwITzxxb4/l7Q0PPGAuHTqY21IbeCpWTD7Co8Aj4vZ8fHxSvJfSL7/8QqdOnWjZsiVgRnIOpvEQUunSpTl8+DCHDx9OHL3ZtWsXZ8+epUyZMon3K1myJCVLluSVV16hbdu2zJw5M7HO4OBgunbtSteuXenfvz/Tp09XuBFJE0eOwKRJ5njkyLSZCHyrwLNnT1LY2bw5KfD88ou5JLg+8FSpYlZvKfCIuI3ChQuzYcMGDh48SJYsWW47ybdEiRLMnTuXZs2aYbPZGDRokENHYG4mNDSUcuXK0a5dOyZMmEBsbCwvvfQSderUoWrVqly6dInXXnuNJ554giJFivDPP/+wadMmWrVqBUCvXr1o0qQJJUuW5MyZM/z888+ULl06TWtWuBHPNXKkWQdaqxY0aZJ+z+vtDWXKmEvCHJ/rA8+1IzzXB57MmW8c4VHgEXFZvXv3pmPHjpQpU4ZLly5x4MCBW953/PjxPPvss9SsWZOcOXPSt29foqOj07Q+m83GggUL6NGjBw899BBeXl40btyYSf/9cejt7c2pU6fo0KEDkZGR5MyZk8cff5xhw4YBZofvsLAw/vnnHwICAmjcuDHvvPNO2tZst6dm0Zrri46OJjAwkKioKAICAqwuR6yyf7855RMba9Z21qljdUU3iouDv/66+QjP9a4PPAkjPCmdQyTiBi5fvsyBAwcoUqQImTJlsrocuQu3+xmm5v1br3zimYYNM8GmYUPnDDZgRmJKlzaXZ54xt10feBJGeM6fh3XrzCWBn9/NR3gUeETEzelVTjzPrl1mqwUwp6Zcyc0CT3z8jYFn61YTeNavN5cE1weeKlXMYynwiIgb0SuaeJ7Bg00gaNnSjGa4Oi8vMyJz//1muwhIfeCpUCH5CI8Cj4i4ML16iWfZvBm+/RZsNnjjDaurSTu3Cjx7994YeM6dg19/NZcE1weeKlXMBGgFHhFxAXqlEs8ycKD5+MwzZnm2J/HyMpOoS5WCp582t6Um8GTKdOMIjwKPiDghvSqJ51i9GpYuNW/GQ4daXY1zuFXg2bfvxsATHQ0bNphLgusDT8IIz3XdUEVE0pPCjXgGux0GDDDHXbpAOmzc5rK8vMzeVyVLwn8b7REfD3//nbRx6O0Cj6/vjYHngQcUeEQk3SjciGdYssRsdZApU9KpKUk5Ly8oUcJcrg8814/wREXBxo3mkkCBR0TSkcKNuL/4+KRRm+7dIX9+a+txF9cGnqeeMrfFx5sGideP8Nwq8JQvnzzwlC2rwCOSjurWrUvFihWZMGGC1aU4lMKNuL+5c02ju6xZoW9fq6txb15eULy4uVwfeK4d4dmyxQSeTZvMJYGPz81HeHx8rPl+RNJBWgSMTp06cfbsWebPn++wx3QlCjfi3mJjYdAgcxweDjlzWluPJ7o28LRpY26z228+wnP27M0Dz81GeBR4ROQW0mAbZBEn8tlnsHs35Mhhwo04B5sNihUzYWfsWFixAk6fNqu05syBPn2gfn3Ilg2uXDEhaNo0eOEFE26yZoVq1aBrV5g+3QSjK1es/q5EUq1Tp06sWrWKiRMnYrPZsNlsHDx4EICdO3fSpEkTsmTJQlBQEO3bt+fkyZOJX/vNN99Qrlw5/Pz8uO+++wgNDeXChQsMHTqUTz75hAULFiQ+5sqVK1NUz5kzZ+jQoQPZs2cnc+bMNGnShL179yZ+/tChQzRr1ozs2bPj7+/PAw88wKJFixK/tl27duTKlQs/Pz9KlCjBzJkzHfZvlRoauRH3FROTtOS7f3/QRqnOLSHwFCsGTz5pbrPb4cCB5CM8W7aYEZ7Nm80lgY8PlCsHdevCkCEmAIlns9vh4kVrnjtzZvN/+g4mTpzIX3/9RdmyZRk+fDgAuXLl4uzZszz88MN06dKFd955h0uXLtG3b1+efPJJfvrpJ44ePUrbtm0ZO3YsLVu25Ny5c6xZswa73U7v3r35888/iY6OTgwXOXLkSFHZnTp1Yu/evXz33XcEBATQt29fmjZtyq5du8iYMSNhYWFcuXKF1atX4+/vz65du8iSJQsAgwYNYteuXSxevJicOXOyb98+Ll26dJf/gPdG4Ubc14wZcOgQ5M0LYWFWVyN3w2Yzy/aLFr0x8Fw/h+fMmeSnuBYtMqvjxHNdvAj/vfGmu/Pnwd//jncLDAzEx8eHzJkzkydPnsTbJ0+eTKVKlRg1alTibR999BHBwcH89ddfnD9/ntjYWB5//HEKFSoEQLly5RLv6+fnR0xMTLLHvJOEUPPLL79Qs2ZNAD7//HOCg4OZP38+rVu3JiIiglatWiU+V9Fr2mpERERQqVIlqv63rU3hwoVT/NyOptNS4p4uXEjaXmHQILOdgLiHhMDTujWMGQPLl8OpU2YOz6xZZsTm55/NKa+rV62uVuSubN++nZ9//pksWbIkXu6//34A/v77bypUqED9+vUpV64crVu3Zvr06Zw5c+aenvPPP/8kQ4YMhISEJN523333UapUKf78808AevbsyYgRI6hVqxZDhgzh999/T7xvt27dmD17NhUrVqRPnz6sW7funuq5Fwo34p4mT4bISChSBJ57zupqJK3ZbOZn/cwz8P33ZsTmu+/g2WfNai3xTJkzmxEUKy6ZM99T6efPn6dZs2Zs27Yt2WXv3r089NBDeHt7s3z5chYvXkyZMmWYNGkSpUqV4sCBAw76x7u5Ll26sH//ftq3b8+OHTuoWrUqkyZNAqBJkyYcOnSIV155hSNHjlC/fn169+6dpvXcisKNuJ+oKHjzTXM8bJhW1XiaOnXgm2/MNhuffQY9e5pTWeJ5bDZzasiKSwrm2yTw8fEhLi4u2W2VK1fmjz/+oHDhwhQvXjzZxf+/0102m41atWoxbNgwfvvtN3x8fJg3b94tH/NOSpcuTWxsLBuu6Th+6tQp9uzZQ5kyZRJvCw4OpmvXrsydO5dXX32V6dOnJ34uV65cdOzYkc8++4wJEybwwQcfpKoGR1G4EfczbpyZf1GmTNJ+SeJZHnkEPv3UvMFMmQKDB1tdkcgtFS5cmA0bNnDw4EFOnjxJfHw8YWFhnD59mrZt27Jp0yb+/vtvli5dSufOnYmLi2PDhg2MGjWKzZs3ExERwdy5czlx4gSlS5dOfMzff/+dPXv2cPLkSa6m4BRtiRIlaN68Oc8//zxr165l+/btPPPMM+TPn5/mzZsD0KtXL5YuXcqBAwfYunUrP//8c+JzDh48mAULFrBv3z7++OMPfvjhh8TPpTeFG3Evx4/D+PHm+I03wNvb2nrEOm3bwnvvmeMRI0zoFXFCvXv3xtvbmzJlypArVy4iIiLIly8fv/zyC3FxcTRs2JBy5crRq1cvsmXLhpeXFwEBAaxevZqmTZtSsmRJBg4cyLhx42jSpAkAzz//PKVKlaJq1arkypWLX375JUW1zJw5kypVqvDoo49So0YN7HY7ixYtIuN/ncPj4uIICwujdOnSNG7cmJIlS/Lef79nPj4+9O/fn/LlyyeeOps9e3ba/KPdgc1u96zx2ujoaAIDA4mKiiJAS4PdT3g4vPOO6YWyaVOqhobFTY0ZY1oBgFlBpzlYbuvy5cscOHCAIkWKkEkr5VzS7X6GqXn/1siNuI9//kn6S33kSAUbMfr1M00BwTQB/Ppra+sRkTSncCPu4403TOO+hx6Chg2trkacyZgxJtjEx0O7dmaXeBFxWwo34h727YMPPzTHGrWR69lsZlQvoffN449DCucgiIjrUbgR9zB0KMTFQdOmULu21dWIM/L2NiuomjSBS5fMiqpt26yuSkTSgMKNuL4dO+CLL8zxiBHW1iLOzcfH9MB58EHTD6lhQ/jrL6urEgfzsHUybsVRPzuFG3F9gwaZJm2tW0OlSlZXI84uc2bTxbhyZThxAkJD4fBhq6sSB0hYrnzRqs0y5Z5duXIFAO97bOOhjTPFtW3YAAsWgJcX/LejrsgdBQaaScUPPgh79kCDBrB6NeTObXVlcg+8vb3Jli0bx48fByBz5szYNP/OZcTHx3PixAkyZ85Mhgz3Fk8UbsS1DRxoPnboAP9tKieSIrlymU03a9c2AadxY7PhZmCg1ZXJPUjYBTsh4Ihr8fLyomDBgvccStXET1zXTz9B/fqQMaOZN1G4sNUViSvau9cEnOPHzcelS+9500OxXlxcXIq2HBDn4uPjg5fXzWfMpOb9WyM34prsdhgwwBy/+KKCjdy9EiVg2TKz4ebatfDEEzB/vjZcdXHe3t73PG9DXJcmFItr+uEH+PVX8PNLCjkid6tCBVi40IzYLF4M7dub1gIi4pIUbsT1xMcnzbXp2RP+O8cuck9q1YK5c81pzq++gm7dzAihiLgchRtxPV99Bb//DgEBSXsGiThCo0amZ5KXF0yfDn37KuCIuCCFG3EtsbEweLA5fu01yJHD2nrE/TzxhAk2AG+9ZfalEhGXonAjruWTT8zqlly54OWXra5G3NWzz8K4ceb49dfh/fetrUdEUkXhRlzH5cswbJg57t8fsma1th5xb+HhSXO7wsKStvgQEaencCOuY9o00ya/QAEz2VMkrQ0fDt27m3k3HTqYVXoi4vQUbsQ1nD8PI0ea48GDIVMma+sRz2CzwcSJSUvDW7eGlSutrkpE7kDhRlzDu++aTQ6LFYNOnayuRjyJlxd8+CE89pg5NdqsGWzebHVVInIbCjfi/M6cgbFjzfHw4aYPiUh6ypgR5syBevXMKGLjxrBrl9VVicgtWBpuVq9eTbNmzciXLx82m4358+ff8WtWrlxJ5cqV8fX1pXjx4nz88cdpXqdY7K23ICoKypWDp56yuhrxVJkymR3oq1eHU6fMTuIHDlhdlYjchKXh5sKFC1SoUIEpU6ak6P4HDhzgkUceoV69emzbto1evXrRpUsXli5dmsaVimWOHTNzHgBGjDCnCESskjUrLFoEDzwAR46YgHP0qNVVich1nGZXcJvNxrx582jRosUt79O3b18WLlzIzp07E2976qmnOHv2LEuWLEnR82hXcBfz8stmvk316mYvKZvN6opETLCpXduM3JQrZyYZq6GkSJpKzfu3S/0ZvH79ekJDQ5Pd1qhRI9avX3/Lr4mJiSE6OjrZRVzEoUMwdao5HjVKwUacR7588OOPkDcv7NgBjzxi5uKIiFNwqXBz7NgxgoKCkt0WFBREdHQ0ly5duunXjB49msDAwMRLcHBwepQqjjB8OFy5Ag8/DPXrW12NSHJFi8KyZWbE5tdfoUULiImxuioRwcXCzd3o378/UVFRiZfDhw9bXZKkxJ49ZqsFSOpvI+JsypaFxYshSxZYsQLatjX7n4mIpVwq3OTJk4fIyMhkt0VGRhIQEICfn99Nv8bX15eAgIBkF3EBQ4aYpmnNmsH//md1NSK3Vr26WUXl6wvz5sHzz0N8vNVViXg0lwo3NWrUYMWKFcluW758OTVq1LCoIkkT27aZniJgVkiJOLuHHzb/Z7294eOPzb5UzrFWQ8QjWRpuzp8/z7Zt29i2bRtglnpv27aNiIgIwJxS6tChQ+L9u3btyv79++nTpw+7d+/mvffe46uvvuKVV16xonxJKwmbFbZtC+XLW1uLSEo1b26CDZj2BcOHW1qOiCezNNxs3ryZSpUqUalSJQDCw8OpVKkSgwcPBuDo0aOJQQegSJEiLFy4kOXLl1OhQgXGjRvHjBkzaNSokSX1SxpYtw4WLjR/ASfsAC7iKp55BiZNMsdDhyb1aBKRdOU0fW7Si/rcODG73bS3X7UKunSB6dOtrkjk7owYAYMGmeOZM7UfmogDuG2fG3FzP/5ogo2Pj9n5W8RVDRhg5t0APPecmWgsIulG4Uacg91u3hAAXnoJ1I9IXJnNBm+/Dc8+a1ZOPfWUCe8iki4UbsQ5LFgAmzaBvz/07291NSL3zmaDDz6AJ54wzShbtDDN/kQkzSnciPXi4pJWSPXqBblzW1qOiMN4e8Nnn0HDhnDhAjRpYrZrEJE0pXAj1vvyS/jjD8iWDXr3troaEcfy9YW5c6FmTTh71gSdffusrkrErSnciLWuXjXdiAH69DEBR8Td+PubFgcVKsCxYxAaCv/+a3VVIm5L4Uas9dFHsH+/ORXVs6fV1YiknWzZYOlSKFHC7HjfoAGcPGl1VSJuSeFGrHPpUlIX14EDzV+3Iu4sKAiWL4cCBeDPP6FxY4iOtroqEbejcCPWee89OHIEChaEF16wuhqR9FGokAk4OXPCli3w2GMm6IuIwyjciDWio2H0aHM8ZIiZdCniKe6/35yiCggwjSuffNLMPxMRh1C4EWtMmACnTkHJknDN5qgiHqNyZfj+e8iUCX74wWzREB9vdVUibkHhRtLfqVOmeyvAG29AhgzW1iNilYcegm+/Nb8DX3wB3bubbt0ick8UbiT9jR0L585BxYqme6uIJ2va1DT6s9ng/feTGlqKyF1TuJH0deQITJpkjkeMAC/9FxShTRuYOtUcjxoFb71lbT0iLk7vLJK+Ro40K0Nq1jR/sYqI8cIL8Oab5rhPH5g+3dp6RFyYwo2knwMHzEaCYP46tdmsrUfE2fTpA/36meMXX4Q5c6ytR8RFKdxI+hk2DGJjTWfWOnWsrkbEOY0aBV27monFzzwDixdbXZGIy1G4kfSxaxfMmmWOR460thYRZ2azweTJ0Lat+WOgVStYs8bqqkRcisKNpI/Bg00Pj5YtoVo1q6sRcW7e3vDJJ/DII2aO2qOPwtatVlcl4jIUbiTtbdliennYbKavjYjcWcaM8PXXphdOdLTZh2rPHqurEnEJCjeS9hL6drRrBw88YG0tIq7Ez890Ma5SBU6cMPPVIiKsrkrE6SncSNpavRqWLDEdWIcOtboaEdcTEGB+h+6/Hw4fNgEnMtLqqkScmsKNpB27HQYMMMddukCxYtbWI+KqcuY0O4kXKgR//QWNGsHZs1ZXJeK0FG4k7SxdCmvXmo0B1VJe5N4UKAA//ghBQbB9u5lkfPGi1VWJOCWFG0kb8fHw+uvmOCwM8ue3th4Rd1C8OCxbBtmywS+/wOOPw5UrVlcl4nQUbiRtzJ0Lv/0GWbIkdVwVkXtXvjwsWgSZM5vR0Weegbg4q6sScSoKN+J4cXEwaJA5fvVVM19ARBynRg2YPx98fMxy8RdfNHPcRARQuJG08NlnsHs35MgB4eFWVyPinho0gC+/BC8v+PBDeO01BRyR/yjciGPFxMCQIea4Xz+zjFVE0sbjj8OMGeZ43DizL5WIKNyIg82YAYcOQd68ZiKxiKStzp3hnXfM8cCBMGWKtfWIOAGFG3GcixdhxAhzPGiQmfAoImmvVy+zfxtA9+7m1LCIB1O4EceZPBmOHYPCheG556yuRsSzDB0KPXua406d4LvvrKxGxFIKN+IYUVEwZow5HjbMrOIQkfRjs5nTUx07mhWLTz4JP/9sdVUillC4EccYNw7OnIHSpc0GmSKS/ry8zLy3Fi3M5P7HHoONG62uSiTdKdzIvTtxImlC4xtvgLe3tfWIeLIMGcwS8fr14fx5aNIE/vjD6qpE0pXCjdy7MWPMi2iVKmZpqohYK1Mm0+QvJAROnzY9cfbvt7oqkXSjcCP35p9/kpaejhxpzvuLiPWyZDHbNJQtC0ePmoBz9KjVVYmkC4UbuTdvvGHO7T/0EDRsaHU1InKtHDnMRptFi5qRm4YNzUiOiJtTuJG7t28ffPSROdaojYhzypsXfvwR8uWDnTvNHJxz56yuSiRNKdzI3Rs6FGJjzYtl7dpWVyMit1KkiBnByZHDrJ5q0QIuX7a6KpE0o3Ajd2fHDvjiC3Oc0JVYRJzXAw/AkiVmLs5PP0HbtuaPExE3pHAjd2fQILMDcevWULmy1dWISEpUqwbffw++vmY11XPPQXy81VWJOJzCjaTexo2wYIFpGDZ8uNXViEhq1K0LX39t+lF9+qnZl8put7oqEYdSuJHUGzDAfOzQAe6/39paRCT1mjWDTz4xiwAmTTLz50TciMKNpM7PP5uVFxkzwpAhVlcjInerXTuz2S2YEdiELuMibkDhRlLObk8atXnhBbP7t4i4rpdeSloQEB6e1NpBxMUp3EjKLVwI69eDn19SyBER1/b669C7tzl+/nn49ltr6xFxAIUbSZn4+KRA07OnaQwmIq7PZoOxY6FLF/N73rat6Ykj4sIUbiRlvvoKfv8dAgKgTx+rqxERR7LZYOpU09rh6lVo2RLWrbO6KpG7pnAjdxYbC4MHm+PevU2XUxFxL97e8Nln0LgxXLwIjzwC27dbXZXIXVG4kTv75BPYuxdy5jQ9MUTEPfn4mDk3tWrB2bNmo829e62uSiTVFG7k9i5fhmHDzPHrr0PWrNbWIyJpK3Nm+OEHqFgRjh+H0FD45x+rqxJJFYUbub1p0+DwYcifH7p1s7oaEUkP2bLB0qVQsiRERECDBnDihNVViaSYwo3c2vnzMGqUOR48GDJlsrYeEUk/uXPD8uUQHAy7d5u5OFFRVlclkiIKN3Jr775rhqWLFYPOna2uRkTSW8GCJuDkygVbt8Jjj8GlS1ZXJXJHCjdyc2fOmN4XYFqzZ8xobT0iYo1SpcwpqoAAWL0anngCrlyxuiqR21K4kZt7+20zBF22LDz1lNXViIiVKlUyHcr9/GDRIujYEeLirK5K5JYUbuRGkZEwYYI5HjECvPTfRMTj1a4Nc+eaUdzZsyEszOw3J+KE9K4lNxo1yjTxql7dnGMXEQEzqfizz0xH42nTTHsIESekcCPJRUSYNuxgQo7NZm09IuJcnnzSBBuAMWPgzTetrUfkJhRuJLnhw81kwXr1oH59q6sREWf0/PPw1lvmuF+/pLAj4iQUbiTJnj3w8cfmeORIS0sRESfXu3fSaalu3cw8HBEnoXAjSYYMMSsgmjWDGjWsrkZEnN2IEfDSS2Zicfv2ZkWViBOwPNxMmTKFwoULkylTJkJCQti4ceMt73v16lWGDx9OsWLFyJQpExUqVGDJkiXpWK0b27YN5swxx2+8YWkpIuIibDaYNAmefhpiY00PnNWrra5KxNpwM2fOHMLDwxkyZAhbt26lQoUKNGrUiOPHj9/0/gMHDmTatGlMmjSJXbt20bVrV1q2bMlvv/2WzpW7oUGDzMennoIKFaytRURch5eXOZ3drJnZaPfRR2HLFqurEg9ns9uta1QQEhJCtWrVmDx5MgDx8fEEBwfTo0cP+vXrd8P98+XLx4ABAwgLC0u8rVWrVvj5+fHZZ5+l6Dmjo6MJDAwkKiqKgIAAx3wjrm7dOqhVC7y9Ydcus1meiEhqXLoETZrAqlWQMyesWQP33291VeJGUvP+bdnIzZUrV9iyZQuhoaFJxXh5ERoayvr162/6NTExMWS6bvNGPz8/1q5de8vniYmJITo6OtlFrmG3w4AB5rhzZwUbEbk7fn7w3XdQtSqcPAmhoXDwoNVViYeyLNycPHmSuLg4goKCkt0eFBTEsWPHbvo1jRo1Yvz48ezdu5f4+HiWL1/O3LlzOXr06C2fZ/To0QQGBiZegoODHfp9uLwVK2DlSvDxSTo1JSJyNwICYPFiKFMG/v0XGjSAW7yei6QlyycUp8bEiRMpUaIE999/Pz4+PnTv3p3OnTvjdZvtAfr3709UVFTi5fDhw+lYsZOz25Mv5SxY0Np6RMT15cwJy5ZB4cKwbx80amQ24hVJR5aFm5w5c+Lt7U1kZGSy2yMjI8mTJ89NvyZXrlzMnz+fCxcucOjQIXbv3k2WLFkoWrToLZ/H19eXgICAZBf5z4IFsGkT+PtD//5WVyMi7iJ/fli+HPLkgd9/h0cegQsXrK5KPIhl4cbHx4cqVaqwYsWKxNvi4+NZsWIFNe7QYyVTpkzkz5+f2NhYvv32W5o3b57W5bqfuDgYONAc9+oF150eFBG5J8WLmxGc7Nlh/Xpo2RJiYqyuSjyEpaelwsPDmT59Op988gl//vkn3bp148KFC3Tu3BmADh060P+aEYUNGzYwd+5c9u/fz5o1a2jcuDHx8fH06dPHqm/Bdc2eDX/8AdmymU6jIiKOVq4cLFpkRoeXL4d27Uw/HJE0lsHKJ2/Tpg0nTpxg8ODBHDt2jIoVK7JkyZLEScYRERHJ5tNcvnyZgQMHsn//frJkyULTpk2ZNWsW2bJls+g7cFFXr8Lgwea4Tx8TcERE0sL//gfz55tTU99+Cy+8ADNmmP44ImnE0j43VlCfG8wmd127Qu7csH+/+atKRCQtzZtnOhjHx8Mrr8C4cabDsUgKuUSfG7HIpUtJ2ysMGKBgIyLpo2VL+Ogjc/zOO2ZfKpE0onDjad5/3/SfCA6GF1+0uhoR8SQdO8LEieZ48GCzL5VIGlC48STR0TBqlDkeOhR8fS0tR0Q8UM+e5vUn4fjTTy0tR9yTwo0nmTABTp0yWyx06GB1NSLiqQYPNi0oAJ591vTcEnEghRtPceqUmcAHMHw4ZLB0oZyIeDKbzbwedepkem49+aTZCkbEQRRuPMXYsea0VIUK0Lq11dWIiKfz8oLp0+Hxx+HKFWjeHDZssLoqcRMKN57gyJGkiXsjR6q/hIg4hwwZ4IsvzAabFy5Akyawc6fVVYkb0LucJxg50iwBr1EDmja1uhoRkSS+vjB3rmn2d+YMNGwIf/9tdVXi4hRu3N2BA2boF8xKKTXNEhFnkyWL2aahXDk4ehRq1jRzcs6ft7oycVEKN+5u2DCz3UKDBlC3rtXViIjcXPbsZqPN0qXh+HGz512hQuY17PRpq6sTF6Nw487+/BNmzTLHI0daW4uIyJ3kyQPbtpm9p0qUMKFm6FATcl57zYzqiKSAwo07GzzY7OPSogVUq2Z1NSIid+bjA889Z/44mzPHrPA8fx7efhsKF4Zu3cyeeCK3oXDjrrZsgW++MXNsEvaSEhFxFd7epv/Nb7/BwoVQq5ZZMj51qmlE+swzWlklt6Rw464GDjQf27WDsmWtrUVE5G7ZbGaV59q1sHo1NGpkGv99/rmZgNyihfrjyA0UbtzRmjWwZInpIZGwh4uIiKt78EHz2rZ5MzzxhAk+CxaYZeShofDTT2C3W12lOAGFG3djt8Prr5vj556DYsWsrUdExNGqVIGvv4Zdu8wWDhkymO0b6tc3/bwWLDDzDcVjKdy4m6VLzfCtry8MGmR1NSIiaef++2HmTNi3D7p3h0yZzCmqFi2gfHlz6io21uoqxQIKN+4kPj5p1KZ7d8if39p6RETSQ6FCZouZgwehf38ICIA//jCTjkuWhGnT4PJlq6uUdJSqcHP8+PHbfj42NpaNGzfeU0FyD+bONSsLsmSBfv2srkZEJH0FBZlO7IcOmd5eOXOaLu1du0KRImY5+blzVlcp6SBV4SZv3rzJAk65cuU4fPhw4vVTp05Ro0YNx1UnKRcXl3QaKjzc/FKLiHiibNnMKPahQzBxIhQoAMeOmUaAhQqZhRanTlldpaShVIUb+3Wz0A8ePMjVq1dvex9JJ599Brt3Q44cJtyIiHi6zJmhZ0+zEeeHH5pTVGfOmC0dChUyWzwcOWJ1lZIGHD7nxqaNGdPflStJS7779YPAQEvLERFxKj4+8OyzZnXVV19BxYpw4YLZnLNIEXPaSl2P3YomFLuDGTPMRLo8eSAszOpqRESck7c3tG4NW7eaXchr1zZ/HE6bZvayatcOduywukpxgFSFG5vNxrlz54iOjiYqKgqbzcb58+eJjo5OvEg6u3gxaXuFQYPMMKyIiNyazQZNmpiGp6tXm+P4ePjiC7OEvHlzdT12cTZ7KibJeHl5JTvtZLfbb3o9Li7OsVU6UHR0NIGBgURFRREQEGB1Ofdu7Fjo29dsKLdnjxl+FRGR1PntNxg92uzJl/C2+PDDZmLyww+bQCSWSs37d6rCzapVq1J0vzp16qT0IdOdW4WbqChzvvjMGfj4Y+jY0eqKRERc25498OabMGtWUgPA6tVN/5zHHgMvzeawSpqFG3fgVuFmyBAYPhxKlzbnib29ra5IRMQ9RESYvjgzZsClS+a2MmVMyHnqKbPlg6SrNAs3sbGxxMXF4evrm3hbZGQkU6dO5cKFCzz22GPUrl377itPB24Tbk6cgKJF4fx5M4zaqpXVFYmIuJ/jx02vnMmTIWFeaZEi0KeP2dcqUyZLy/MkaRZuOnfujI+PD9OmTQPg3LlzPPDAA1y+fJm8efOya9cuFixYQNOmTe/tO0hDbhNuXn0Vxo83G8ht2qTzwSIiaSkqCt57D955x/xxCWaF6quvwosvQtas1tbnAVLz/p2qk4e//PILra4ZIfj000+Ji4tj7969bN++nfDwcN566627q1pS7p9/YMoUczxihIKNiEhaCww0p6QOHoR334Xg4ORdj4cMUddjJ5KqcPPvv/9SokSJxOsrVqygVatWBP7XNK5jx4788ccfjq1QbjRiBMTEwIMPQqNGVlcjIuI5MmeGHj3MTuQzZyZ1PR4+3IScV1+Ff/+1ukqPl6pwkylTJi4lTKwCfv31V0JCQpJ9/vz5846rTm60b59pIw5mYziN2oiIpD8fHzPnZtcu+PprqFTJdD0eP97Mh3zxRbPtg1giVeGmYsWKzJo1C4A1a9YQGRnJww8/nPj5v//+m3z58jm2Qklu6FCzPLFJEzNyIyIi1vH2hieegC1bYPFi87p85Qp88IEZ1Xn6aXU9tkCqws3gwYOZOHEixYoVo1GjRnTq1Im8efMmfn7evHnUqlXL4UXKf3buNB00wZyaEhER52CzQePGpuPxmjXQtKnpevzll6br8WOPwa+/Wl2lx0jVQv06deqwZcsWli1bRp48eWjdunWyz1esWJHq1as7tEC5xqBBpnPmE09A5cpWVyMiIjdTuzYsXGi6Ho8ZY05bff+9udSrZ7oe16+vaQVpSE38XMXGjRASYrpj7txpGveJiIjz++sv0/X400+Tuh5Xq2ZWXzVvrq7HKZRmfW5Wr16dovs99NBDKX3IdOey4aZBA/jxR7PFwscfW12NiIikVkQEjBsH06cn73rcr5/pepwxo7X1Obk0CzfXbpx5qy/Txplp4OefzcZtGTOafU+KFLG6IhERuVsnTiR1PY6KMrcVLmy6HnfurK7Ht5BmTfyyZ89OcHAwgwYNYu/evZw5c+aGy+nTp++peLmO3Q4DBpjjF15QsBERcXW5cplFIYcOmZ3Ic+UyzQFfesm8xr/1Fpw7Z3WVLi1V4ebo0aO8+eabrF+/nnLlyvHcc8+xbt06AgICCAwMTLyIAy1cCOvXg59fUsgRERHXFxhoTkkdPAiTJkHBgqbrcZ8+5njwYDh50uoqXVKqwo2Pjw9t2rRh6dKl7N69m/Lly9O9e3eCg4MZMGAAsQkTpcQx4uOTAk2PHnDNsnsREXETmTND9+6mSevHH0OpUnD2LLzxhul6HB6ursepdM+rpQ4cOMBzzz3HqlWrOHHiBDly5HBUbWnCpebczJljJpkFBMD+/XDffVZXJCIiaS0uDubPh1GjYOtWc1vGjKYjcp8+ULy4ldVZJs3m3CSIiYnhiy++IDQ0lLJly5IzZ04WLlzo9MHGpcTGmr42AL17K9iIiHgKb29o1Qo2b4YlS+Chh+DqVbPKqlQp0/X499+trtKppSrcbNy4kW7dupEnTx7eeustHnvsMQ4fPsxXX31F48aN06pGz/TJJ7B3L+TMCb16WV2NiIikN5vNbI68ahWsXQuPPJLU9bhCBWjWzMzJlBukeil4wYIF6dixI1WqVLnl/R577DGHFJcWXOK0VEwMlCgBhw+bngjh4VZXJCIizmDbNtP1+KuvzGpagLp1Tdfj0FC37nqcpn1u7kR9bhzg3Xfh5Zchf34zeuPnZ3VFIiLiTP76C8aONV2Pr141t1WtakKOm3Y9TrM5N/Hx8Xe8nNPa/Htz/jyMHGmOBw9WsBERkRuVLAkzZpjFJr16mfeKzZvh8cehbFmYNSsp9Hggh0W7mJgYxo8fT9GiRR31kJ7p3Xfh+HEoVsx0qhQREbmVAgXgnXdMQ8CBA03vnD//hA4dzPSG995L2urBg6Qq3MTExNC/f3+qVq1KzZo1mT9/PgAfffQRRYoU4Z133uGVV15Jizo9w5kzpjMlwLBh2mdERERSJlcu0xcnIsLMycmd2wSesDDT9XjsWIiOtrrKdJOqOTd9+/Zl2rRphIaGsm7dOk6cOEHnzp359ddfef3112ndujXe3t5pWe89c+o5NwMGmL4GZcuaSWNO/m8pIiJO6tIl+Ogj8wfzoUPmtmzZTEPYnj3NSlwXk2Zzbr7++ms+/fRTvvnmG5YtW0ZcXByxsbFs376dp556yumDjVOLjIQJE8zxiBEKNiIicvf8/Myozd69prXI/fcn73r8yivwzz9WV5lmUhVu/vnnn8Ql4GXLlsXX15dXXnklcadwuQejRsHFi1C9OjjxUnoREXEhGTOa+Td//AHffgtVqpj3mgkToGhReP55s+2Dm0lVuImLi8PHxyfxeoYMGciSJYvDi/I4EREwdao5HjnSrfsUiIiIBby8zEqqTZtg6VKoU8esppoxw3Q9btvWrboep7rPTZMmTfD19QXg+++/5+GHH8bf3z/Z/ebOnevYKh3IKefcdOkCH34I9erBihUKNyIikvbWrYPRo+GHH5Jue+QR0yunZk3r6rqFNGvi1zmFS5NnzpyZ0odMd04Xbv76C8qUMRulrVsHNWpYXZGIiHiS7duTuh7Hx5vb6tQxIadBA6f5gzvNwo07cLpw07YtzJ4Njz4K339vdTUiIuKp9u41S8Y/+SSpAWCVKibktGhhedfjNN8VXBxk+3YTbMCskBIREbFKiRJm5/H9+81qqsyZYcsWs0P5Aw8k3+rBySncWGngQPPxqafMDq8iIiJWK1AAxo83/XEGDTL9cXbvho4dTQCaMsXpux7rtJRV1q83E7a8vWHXLrNPiIiIiLOJjjYresePNz3ZwHRADg+Hbt0gnd5LdVrK2dnt5hwmQKdOCjYiIuK8AgKgTx84cMCM2hQqZPZA7NcPChY0ozsnTlhdZTIKN1ZYsQJWrgQfH7Pzt4iIiLPz84OXXjITjz/9FEqXhqgoM2e0UCGzO7mTdD1WuElv147adOtmUq+IiIiryJgR2reHnTth7lyoWtXMwZk40XQ97tLFBCALKdyktwULTIfIzJmhf3+rqxEREbk7Xl7QsiVs3AjLlplGtFevmqa0tWtburLK8nAzZcoUChcuTKZMmQgJCWHjxo23vf+ECRMoVaoUfn5+BAcH88orr3D58uV0qvYexcWZc5Nghu+CgiwtR0RE5J7ZbKbZ308/mWa0zZqZncczZrSspAyWPTMwZ84cwsPDmTp1KiEhIUyYMIFGjRqxZ88ecufOfcP9v/jiC/r168dHH31EzZo1+euvv+jUqRM2m43x48db8B2k0uzZZhgvWzbo3dvqakRERByrRg347jszBcNClo7cjB8/nueff57OnTtTpkwZpk6dSubMmfnoo49uev9169ZRq1Ytnn76aQoXLkzDhg1p27btHUd7nMLVq0mTh197DbJnt7YeERGRtGLxlg2WhZsrV66wZcsWQkNDk4rx8iI0NJT169ff9Gtq1qzJli1bEsPM/v37WbRoEU2bNr3l88TExBAdHZ3sYomZM03Xx9y5zXCdiIiIpAnLTkudPHmSuLg4gq6bdxIUFMTu3btv+jVPP/00J0+epHbt2tjtdmJjY+natSuvJ6w+uonRo0czbNgwh9aeapcuwfDh5njAAMiSxdp6RERE3JjlE4pTY+XKlYwaNYr33nuPrVu3MnfuXBYuXMgbb7xxy6/p378/UVFRiZfDhw+nY8X/ef99+PdfCA6GF19M/+cXERHxIJaN3OTMmRNvb28iE1o5/ycyMpI8efLc9GsGDRpE+/bt6dKlCwDlypXjwoULvPDCCwwYMACvm+xY6uvri6+vr+O/gZQ6dw5GjzbHQ4aAlbWIiIh4AMtGbnx8fKhSpQorVqxIvC0+Pp4VK1ZQo0aNm37NxYsXbwgw3t7eADjtFlkTJsDJk2azsY4dra5GRETE7Vm6FDw8PJyOHTtStWpVqlevzoQJE7hw4QKdO3cGoEOHDuTPn5/R/418NGvWjPHjx1OpUiVCQkLYt28fgwYNolmzZokhx6mcOgVvv22O33gDMlj6zy0iIuIRLH23bdOmDSdOnGDw4MEcO3aMihUrsmTJksRJxhEREclGagYOHIjNZmPgwIH8+++/5MqVi2bNmjFy5EirvoXbGzvW7KZaoQK0bm11NSIiIh7BZnfa8zlpIzVbpt+To0ehWDGzUur77+HRR9PuuURERNxcat6/XWq1lEsZOdIEmxo14JFHrK5GRETEYyjcpIUDB+CDD8zxqFGWd2oUERHxJAo3aWHYMLPdQmgo1K1rdTUiIiIeReHG0f78E2bNMsfOOtFZRETEjSncONrgwRAfDy1aQPXqVlcjIiLicRRuHGnLFvjmGzPH5jZbQoiIiEjaUbhxpIEDzcenn4ayZa2tRURExEMp3DjKmjWwZInpQjx0qNXViIiIeCztB+AogYFmdVSxYlC8uNXViIiIeCyFG0cpXx6WL4crV6yuRERExKPptJSj+fhYXYGIiIhHU7gRERERt6JwIyIiIm5F4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRETEcrGxya8PGgSbN1tTi7g+hRsREbFUdDTUqweTJpnrX3wBI0ZA7drw0UfW1iauSeFGREQsExUFjRrB2rUwZAicPAmPPAKPPQYxMfDcc9C1qzkWSSmFGxERscSZM9CgAfz6K2TPDj/+CDlzmq365s2DN94Amw2mTYM6deCff6yuWFyFwo2IiKS7U6fMXsObNsF998HPP0Plykmf9/KCgQNh4UITfDZsgCpVYNUq62oW16FwIyIi6erkSahfH7ZuhVy5TLCpUOHm923SxEwsrlABTpyAixfTt1ZxTdoVXERE0tX8+bB9OwQFwU8/QZkyt79/0aKwbh0sX27CjsidaORGRETSVZcuMH48rFx552CTIHNmaN486fr+/WYezr59aVKiuDiFGxERSXNHj8K5c0nXX3kF7r//7h8vLAxWr4aqVeGHH+69PnEvCjciIpKm/vnHjLI0bQrnzzvmMT/8EGrWNEvJmzWDoUMhPt4xjy2uT+HGgWJj4fRpuHRJv2QiIgCHDplgs3evCTmnTzvmcfPlMxORw8LM9WHDTG+cM2cc8/ji2jSh2IH++gseeCDpuq8v+PklXbp2hddeM587ftycd7728wmXTJkgJAQaNjT3jYmBRYtuvE/CcWAgZM2a/t+viMjtHDhgOg8fOmQmBf/8MxQs6LjH9/GByZOhWjXz+rpwoTlevhyKFHHc84jrUbhxoMuXk1+PiTGXs2fN9aiopM+dPQvff3/rx+rZMyncnDoFjz9+6/s++6wZogVzTjs4+MYAlHDcoAH07WvuGx8Pr7568/v5+UHhwlCrVtLz7NiRFNiuvZ+3dwr+cUTEo/z9twk2hw9DiRJmVVSBAmnzXB07Qvny5nUyRw7Imzdtnkdch8KNA1WuDFevmtNS114uXzYfr/2Fy5ULPvjgxvskXGrWTLqvzQY1atx4n4SLn1/SfS9dMiHq2iB1rfz5k44vX4YJE279/Tz+eFK4sdtNnwm7/cb7ZcgAjz5qOoomePBBiIu7MQj5+ZnVEb16Jd33ww+T7nv9JXv25JMOL1wwf61lzHjrukXEWnv3mmDz77/m93fFCnMaKS1VqmT64Vy+bF5zwLyuxMfr9cITKdw4WIYM5hTRnU4TZc8Ozz+fssfMm9f0eLiVawNHjhywZ8/NQ9Ply1CoUNJ9bTbo1+/m97t0KXlTrdhYyJ076XNXriT/3PWhZ8MGE/Ru5uGHk4eb11679Xny6tXNYyUoXdr8JejtfeNoU9my8O23Sfft1cs0C7vZyFRQkBnxSrB2rfnesmc3L5Jemo0mctdiYszvU5kyJtjkyZM+z3vffcmvDx5sfrfnzEm/GsQ52Oz2m/0t7r6io6MJDAwkKiqKgIAAq8txWXFx5gUsIRBlyJD8xWPp0luPYBUsCB06JN23Y0dzmu5mgaxSJfjmm6T75s5tupTeTOXKsGVL0vWiRc05/5spWdKEwATly5vTbmBawn/9NWTLlpp/ERG51o4d5o+I3Lmtef7jx83psOhoM2r0zTdmBFxcV2revxVuxKXc6jTepUtmPlBISNJ9P/3UjNzcLGTlzg1jxiTd94knzITwffvMfe6/3/TOKFYs/b9HEVe0Y4cZgX3oIasrSbJnD7RsCX/+aU5NvfsuvPiiGbUW16NwcxsKN3I727eb+UP//GOGuOfOda4XaxFntG2bGfG8fNmsiKpWzeqKkpw7Z05BJ4wAd+4MU6Ykn6soriE179+aWSByjQoVYONG8+J86hQ0bgyRkVZXJeK8tmwx8+hOnTJzbIoXt7qi5LJmha++grFjzVy6mTOhUaObL44Q96FwI3KdvHnNnjdPPAFvv23mDYjIjTZuNLt7nzkD//uf6S+TPbvVVd3IZjMLF5Ytg5w54YUXdGrK3em0lMgt2O3JXwAjIsypKn9/62oScRbr15uRzeho0zJi0SJwhZfUs2eTLxb45x/TIkNhx/nptJSIA1z7YnfmjGmA+NBDpneHiCfbscM0GY2ONr8TS5a4RrCB5MEmMtKMOLVunXxTT3F9CjciKXDokAk4W7ea3jtbt1pdkYh1SpUy82zq1TMjNlmyWF3R3dm40SwZ//Zb83u9e7fVFYmjKNyIpEDFiqaZYJkycOSI6cB8bUdmEU/i42Mm6f7wg2ufpm3WDNasMaeldu82AUe/1+5B4UYkhYoUMZ2iGzWCixfN9hRvvqlVF+IZli0ze9El/H/39YXMma2tyRFCQsyKrzp1zKmpxx+H/v1No1JxXQo3IqkQGGj+Wu3e3Vzv188sMRVxZ4sXw2OPwfjxSZv0upOgILPSKzzcXB8zBkaPtrYmuTcKNyKplCEDTJpkLsWKmaZgIu7q+++hRQuz3Urz5sm3TnEnGTPCuHHw5ZdmK5eePa2uSO6FloKL3INrdyAGs91DzpzW1SPiSPPmQZs2ZhPcVq3MG78n7LAdH5+0ea7dDqtWQd26lpYkaCm4SLq5Nth8/LHZqO/HHy0rR8RhvvkGnnzSBJs2bTwn2EBSsAGzH1W9evDSS3DlinU1Seoo3Ig4gN0Os2aZBmGNG8PUqVZXJHL3jhyBZ56B2Fh4+mn47DPPCTbXO3/e9Lx6/30z6Vh9rlyDwo2IA9hspt/HM8+YVRbdusErr2jFhbimfPnMHkzPPguffmrmmXmqAQPMvKNs2eDXX6FKFVi92uqq5E4UbkQcxNfXvBGMGGGuT5hgJmCq86m4isuXk47btjUro7y9ravHWTzyCGzeDOXKma7G9eub01WeNWPVtSjciDiQzWb+0vvqKzMfZ+FCqF07+ZuGiDP66CMoX16nXW6lWDGzn1bbtuZ0XXg47NpldVVyKx482CiSdlq3hkKFzMhNy5bJJx6LOJtp06BrV3P88ccmoMuN/P3h889NJ2ObDR54wOqK5Fa0FFwkDR0/DrlyJW3CGRNjTl+JOIspU5KaUr78MrzzjnbITq3du2H/fmja1OpK3JuWgos4idy5k94oLl40e1ING6Zz9eIcJk5MCja9eyvY3I3oaDM6++ijMHy46ZEj1lO4EUkn8+bBpk0wdCi0aweXLlldkXiyceOgVy9z3L+/2UZEwSb1fH1NHxy7HYYMMaeiz561uipRuBFJJ+3awfTpZlntl1/Cww+blRci6e3iRZgxwxwPGgQjRyrY3C1fX3jvPbN03tfX7D1XrRrs2GF1ZZ5N4UYkHXXpYnZXzp7d9MyoXl0vgpL+MmeGFSvM/mjDhyvYOEKnTvDLL2Yhwb598L//wezZVlfluRRuRNJZvXqwYYPZqiEiAmrWNG80ImnJbodt25Ku58uXNN9GHKNKFdMPJzTUjI69/77m4FhF4UbEAiVKmJGbevXAzw+KFrW6InFndjsMHGh2u/7sM6urcW85c8KSJaaZ51dfJd+nStKP/tlFLJIjByxdCmvWQJEiSbdrJZU4kt0OffvCqFHm+ORJqytyf97epldQUFDSbSNHmhFbSR8KNyIWypgRSpVKuv7999CkiVZbiGPY7fDqq/DWW+b6pElJK6Qk/cybZ0bOHnoIPvhAf8CkB4UbESdx6RK88IIZzalRw0xKFLlbdntSUz4w8z80x8YaoaHw+ONw5Qq8+KJZWKAtWdKWwo2Ik/Dzg8WLoUAB0/E0JES7D8vdiY+HsDAzUmOzmRYECdsrSPrLmhW++QbGjDFzcD76yDT0jIiwujL3pXAj4kQqVoSNG02fjNOnzV98H39sdVXiamw2s5+ZzWbeSLt0sboisdnM3KclS+C++8yqqipVtFIyrThFuJkyZQqFCxcmU6ZMhISEsHHjxlvet27duthsthsujzzySDpWLJJ28uaFlSvN5ptXr0LnztCvn87TS8rZbKYD8a+/mv4r4jwaNDDBpnJlM7k7OtrqityT5eFmzpw5hIeHM2TIELZu3UqFChVo1KgRx48fv+n9586dy9GjRxMvO3fuxNvbm9atW6dz5SJpJ3Nm0wBs4EBz/fx5NVqT24uLM/NrEuZy2GymSaQ4n8KFYe1ac6qqZUurq3FPlu8KHhISQrVq1Zg8eTIA8fHxBAcH06NHD/r163fHr58wYQKDBw/m6NGj+Pv73/D5mJgYYmJiEq9HR0cTHBysXcHFZSxbZrZqyJDB6krEWcXGQocOZluPFi1g7lyFYVfzzz/Qvj1MnZp8BaUkcZldwa9cucKWLVsIDQ1NvM3Ly4vQ0FDWr1+fosf48MMPeeqpp24abABGjx5NYGBg4iU4ONghtYukl4YNk4LN1avmTWzrVmtrEudx9So8/bQJNhkzmv8fCjaup2dPczq6WjWYP9/qalyfpeHm5MmTxMXFEXRtpyMgKCiIY8eO3fHrN27cyM6dO+lym9ly/fv3JyoqKvFy+PDhe65bxCpjxsCsWWalxbx5VlcjVrtyBdq0ga+/Bh8f+PZbneZwVe+/b/rgnDtnfoYDBphTjXJ3LJ9zcy8+/PBDypUrR/XbnFj29fUlICAg2UXEVfXsCY0bm31rHn8c3nxTE409VUwMPPGECbm+vuZjs2ZWVyV3KygIfvwxqcniqFHQtCmcOmVpWS7L0nCTM2dOvL29iYyMTHZ7ZGQkefLkue3XXrhwgdmzZ/Pcc8+lZYkiTiUw0HQx7tHDXO/XD5591vwFL56lc2fzfyFTJliwwLwRimvLmNFMCv/8c9P3atkyqFoV9u61ujLXY2m48fHxoUqVKqy4ZqF/fHw8K1asoEaNGrf92q+//pqYmBieeeaZtC5TxKlkyADvvguTJ5s9bD7+2Cwv1Z5BnqV7d/PX/g8/QKNGVlcjjvT002YZf9GiEBBgdnCX1LF8/UV4eDgdO3akatWqVK9enQkTJnDhwgU6d+4MQIcOHcifPz+jR49O9nUffvghLVq04L777rOibBHLhYVB8eLw5JNmgvGxY2ZHYvEMNWvC/v2mbYC4n/LlTT+c6GhIWC8TH29Wxvn4WFubK7A83LRp04YTJ04wePBgjh07RsWKFVmyZEniJOOIiAi8rtszfs+ePaxdu5Zly5ZZUbKI02jUCNavh3//hbJlra5G0tL582Yl1MCBpgEcKNi4u+zZzSXBmDGwcKGZQK7RnNuzvM9NekvNOnkRV7RmDfzxh/YScifnzpk5NWvXQpEisGePmZ8hnuPMGTNSe/o05MkDX31lVk16EpfpcyMijnXsmFlG2q2bWXWhpaSuLyrKjNCtXWsmlCf0sxHPkj07bNhgRmiPHTONPSdN0mrJW1G4EXEjQUEQHm6OJ06Exx7T3jWu7OxZ08Rx/Xrz5vbjj2a3ePFMxYubicZPPWXm3vTsaboaX7xodWXOR+FGxI3YbPD66+acvJ8fLFoEtWrBwYNWVyaplbAr/MaNZhfpFSvMsmDxbP7+8MUXZsm4t7dZNl6vnkZpr6dwI+KGnngCVq0y5+Z37jR/7adwRxNxEkOGwJYtZgXcTz9BpUpWVyTOwmYzp51XrIDcueG550zQkSQKNyJuqlo181d/xYpw/Lhp7y6uY8wYaN0afv7ZLAsWuV6dOrB7Nzz/fNJtR46YJeOeTuFGxI0FB5vVU/37w7RpVlcjd3LuXNIEUX9/syJGS/zldrJnT9oo9fRpqF3bLCqIirK2Lqsp3Ii4uSxZzD41fn7meny8WWVx6ZK1dUlyR49C9eowdKjVlYir2rTJjNx8950Zuf3jD6srso7CjYiHGTbMrLKoV88sKRXr/fsv1K1rTjHMnGl6moikVkLLgIIFzX5UISFm9M8TKdyIeJi6dZN6ZoSEwO+/W12RZzt82Myd+OsvKFTITAS/tiutSGpUrWomotevDxcuQJs28NprZum4J1G4EfEw9eqZYFOiBEREmKXiCxdaXZVnOnjQBJu//zadh1etMh9F7kXOnLBkCfTta66//bZZfedJFG5EPFCJEqYZWL16Zs+ixx4zTf/U7TT97N9vgs2BA1CsmAk2hQpZXZW4iwwZzIq7b76BcuXg1Vetrih9KdyIeKgcOWDpUujSxUwy7tPHjCBI+vjlFzNyVrKkCTbBwVZXJO6oVSv47Tfz+55g9Wrr6kkvlu8KLiLWyZgRPvgASpc2zcCKF7e6Is/Rvj14eZk9gvLmtboacWfXNvibPh1eeMH8UTN5Mvj6WldXWlK4EfFwNlvSflQJdu6ETJkUdhxt926zlUKuXOZ6u3bW1iOeJyrK/M7PmAHbt8O337rnqKFOS4lIMseOwSOPmJVUq1ZZXY372LnTzLFp0ABOnbK6GvFUvXubycY5cpi+OFWqmC7Y7kbhRkRukCeP6XbaoIHpuyL3Zvt2M3n7+HHzV7MmbouVGjaEzZvN1iwnTpgNWt9+273+XyrciEgyefLAypXw5JNw9So8+6xZUqr9au7O1q1mXs3Jk+av5BUrzFJdESsVKQLr1kGHDkkLCn77zeqqHEdzbkTkBn5+8OWXUKoUvPEGjB1rmsx99pnZ80hSZvNmM/p19qw5zbdkCWTLZnVVIoafH3z8sfm/GR0NlStbXZHj2Ox2dxqIurPo6GgCAwOJiooiICDA6nJEnN7nn5vRmytXzLYNEydaXZFr2LjRDP9HRUHNmrB4MeglR1zB33/Drl3QrJnVlSSXmvdvnZYSkdtq185MOKxTx+xLJSmTM6cJMw8+aEZsFGzEFVy8CI8/bhp7DhoEcXFWV3R3FG5E5I5q1jQBJ+GUit3uXufn00LRoqZZ2uLFkDWr1dWIpEzGjGb/OYARI+DRR83iAlejcCMiKWKzJR1PmmTOz48Z414rLO7Vzz/Dd98lXS9cWHOUxLVkzGhOPc+aZebkLFliNuPcts3qylJH4UZEUu3AAfOxf3/o3BliYqytxxn8+KPpD/TEE2YViogre+YZWL/erKo6cABq1DALClyFwo2IpNo775jW7d7e8MknZkXQyZNWV2WdpUvN5MtLl8wkYndadSKeq0IFs+KvcWO4fNmM2MbGWl1VyijciMhdCQuDhQvNRNk1a8xy0j//tLqq9LdokZl8efkyNG9u2tlnymR1VSKOkSMH/PADjBxp/m9ncJEGMgo3InLXGjVKGrrevx9q14YzZ6yuKv189x20aGGWyT/+OHz1lftuRCiey9sbXn8dChRIuu2tt5z79KvCjYjckzJlYMMGqFXLLB3Nnt3qitLH5s3QqpXp4vzkkzB7Nvj4WF2VSNpbvNh0NK5TB6ZMcc5FBWriJyIOcfWqGbJOWFUVGWl2wHaVYezUio83zQ2vXjXzjtz1+xS53vnz0KULzJljrnfoAFOnmtVVaUlN/EQk3WXMmBRsoqLMfkqPPWbauruThD8Hvbzgww/h008VbMSzZMlitmcZN86csvr0U9MLK2EVpTNQuBERh9u2zbzQLV5sXvQOHrS6IseYNcv8lZqwYsTb21xEPI3NBuHhsHw55MplfuerVjUrB52Bwo2IOFydOqY7b9688McfUL26mXjsymbOhI4dTa+PWbOsrkbEOdSrB1u2mN/x06edpyWEwo2IpImqVc3mkRUrwokT5kXwiy+sruruTJ9u5tfY7dCtmwk5ImIEB5s/ZubMMXvROQOFGxFJMwUKmB44zZubLsbt2sGMGVZXlTrvvw8vvGCOe/Y0q0O89Mopkoyvr1k16Cz0KyoiaSpLFpg71ywdLVDAbFHgKiZNgpdeMsfh4TBhQvI9tkTEOWkpuIikmzNnkvfBuXgRMme2rp7bOXwYSpY0nYf79DGbhCrYiFhHS8FFxCldG2w+/xxKl4bff7euntsJDoZ582DIEAUbEVejkRsRSXdxcWZzyd9/N6etZs92ntNVp06Z5oMi4lw0ciMiTs3bG37+2aygOn/eNPubMMH6Nu7DhkG5crB3r7V1iMi9UbgREUvkyGEafj3/vNnK4JVXzDLrq1fTvxa73eyLNXQoHD0Ky5alfw0i4jgKNyJimYwZYdo008bdZjPHTZumb8Cx26F/fxgxwlwfNw7CwtLv+UXE8RRuRMRSCW3cFywAf3/T6TRjxvR5brsdXnsN3nzTXJ840dQiIq5N272JiFNo1gy2b4ciRZJui49Pu4Z5drs5FTZxork+ZUpSTxsRcW0auRERp1GsWFKYuXzZTDieOTNtnuviRfjlF3M8bZqCjYg70ciNiDilDz80+9WsXg27d8Po0Y4dxfH3NxOHf/4ZHn/ccY8rItbTyI2IOKVu3WDwYHM8diy0agUXLtzbY8bFmRVaCbJnV7ARcUcKNyLilLy8TN+Zzz4zm/LNnw8PPgj//HN3jxcXB507Q+PG8O67Di1VRJyMwo2IOLV27eCnnyBXLvjtN7OaauvW1D1GbCx06ACzZpkGgkFBaVOriDgHhRsRcXo1a8LGjfDAAxATA6nZOeXqVROQvvgCMmSAOXOgTZu0q1VErKcJxSLiEgoXhnXrYN8+KF48ZV9z5Qq0bQtz55reOV9/Dc2bp2mZIuIENHIjIi4jIMBsuJlgyRJ49lkzmnO9+Hh48kkTbHx8zEcFGxHPoHAjIi4pOtqcbpo5E0JD4eTJ5J/38oKQEDMZecECePRRa+oUkfSncCMiLikgAL780nxcu9YEmT//TH6f/v1h1y6zQkpEPIfCjYi4rIYNYf16s2XD/v1QoYK5nDuXdJ+iRa2rT0SsoXAjIi6tTBnYsAFq1zYro37/XauhRDydwo2IuLxcueDHH+HFF6FkSRgwwOqKRMRKWgouIm7B1xemTrW6ChFxBhq5EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYsDzdTpkyhcOHCZMqUiZCQEDZu3Hjb+589e5awsDDy5s2Lr68vJUuWZNGiRelUrYiIiDg7S/vczJkzh/DwcKZOnUpISAgTJkygUaNG7Nmzh9y5c99w/ytXrtCgQQNy587NN998Q/78+Tl06BDZsmVL/+JFRETEKdnsdrvdqicPCQmhWrVqTJ48GYD4+HiCg4Pp0aMH/fr1u+H+U6dO5a233mL37t1kzJjxrp4zOjqawMBAoqKiCAgIuKf6RUREJH2k5v3bstNSV65cYcuWLYSGhiYV4+VFaGgo69evv+nXfPfdd9SoUYOwsDCCgoIoW7Yso0aNIi4u7pbPExMTQ3R0dLKLiIiIuC/Lws3JkyeJi4sjKCgo2e1BQUEcO3bspl+zf/9+vvnmG+Li4li0aBGDBg1i3LhxjBgx4pbPM3r0aAIDAxMvwcHBDv0+RERExLlYPqE4NeLj48mdOzcffPABVapUoU2bNgwYMICpt9lQpn///kRFRSVeDh8+nI4Vi4iISHqzbEJxzpw58fb2JjIyMtntkZGR5MmT56ZfkzdvXjJmzIi3t3fibaVLl+bYsWNcuXIFHx+fG77G19cXX19fxxYvIiIiTsuykRsfHx+qVKnCihUrEm+Lj49nxYoV1KhR46ZfU6tWLfbt20d8fHzibX/99Rd58+a9abARERERz2PpUvDw8HA6duxI1apVqV69OhMmTODChQt07twZgA4dOpA/f35Gjx4NQLdu3Zg8eTIvv/wyPXr0YO/evYwaNYqePXum+DkTFodpYrGIiIjrSHjfTtEib7vFJk2aZC9YsKDdx8fHXr16dfuvv/6a+Lk6derYO3bsmOz+69ats4eEhNh9fX3tRYsWtY8cOdIeGxub4uc7fPiwHdBFF1100UUXXVzwcvjw4Tu+11va58YK8fHxHDlyhKxZs2Kz2Rz62NHR0QQHB3P48GH10HFR+hm6Nv38XJ9+hq4vrX6Gdrudc+fOkS9fPry8bj+rxtLTUlbw8vKiQIECafocAQEB+qV0cfoZujb9/FyffoauLy1+hoGBgSm6n0stBRcRERG5E4UbERERcSsKNw7k6+vLkCFD1FfHheln6Nr083N9+hm6Pmf4GXrchGIRERFxbxq5EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsHmTJlCoULFyZTpkyEhISwceNGq0uSVFi9ejXNmjUjX7582Gw25s+fb3VJkgqjR4+mWrVqZM2aldy5c9OiRQv27NljdVmSCu+//z7ly5dPbPxWo0YNFi9ebHVZcpfGjBmDzWajV69eljy/wo0DzJkzh/DwcIYMGcLWrVupUKECjRo14vjx41aXJil04cIFKlSowJQpU6wuRe7CqlWrCAsL49dff2X58uVcvXqVhg0bcuHCBatLkxQqUKAAY8aMYcuWLWzevJmHH36Y5s2b88cff1hdmqTSpk2bmDZtGuXLl7esBi0Fd4CQkBCqVavG5MmTAbN/VXBwMD169KBfv34WVyepZbPZmDdvHi1atLC6FLlLJ06cIHfu3KxatYqHHnrI6nLkLuXIkYO33nqL5557zupSJIXOnz9P5cqVee+99xgxYgQVK1ZkwoQJ6V6HRm7u0ZUrV9iyZQuhoaGJt3l5eREaGsr69estrEzEc0VFRQHmzVFcT1xcHLNnz+bChQvUqFHD6nIkFcLCwnjkkUeSvSdaweM2znS0kydPEhcXR1BQULLbg4KC2L17t0VViXiu+Ph4evXqRa1atShbtqzV5Ugq7Nixgxo1anD58mWyZMnCvHnzKFOmjNVlSQrNnj2brVu3smnTJqtLUbgREfcSFhbGzp07Wbt2rdWlSCqVKlWKbdu2ERUVxTfffEPHjh1ZtWqVAo4LOHz4MC+//DLLly8nU6ZMVpejcHOvcubMibe3N5GRkcluj4yMJE+ePBZVJeKZunfvzg8//MDq1aspUKCA1eVIKvn4+FC8eHEAqlSpwqZNm5g4cSLTpk2zuDK5ky1btnD8+HEqV66ceFtcXByrV69m8uTJxMTE4O3tnW71aM7NPfLx8aFKlSqsWLEi8bb4+HhWrFihc8Ui6cRut9O9e3fmzZvHTz/9RJEiRawuSRwgPj6emJgYq8uQFKhfvz47duxg27ZtiZeqVavSrl07tm3blq7BBjRy4xDh4eF07NiRqlWrUr16dSZMmMCFCxfo3Lmz1aVJCp0/f559+/YlXj9w4ADbtm0jR44cFCxY0MLKJCXCwsL44osvWLBgAVmzZuXYsWMABAYG4ufnZ3F1khL9+/enSZMmFCxYkHPnzvHFF1+wcuVKli5danVpkgJZs2a9YY6bv78/9913nyVz3xRuHKBNmzacOHGCwYMHc+zYMSpWrMiSJUtumGQszmvz5s3Uq1cv8Xp4eDgAHTt25OOPP7aoKkmp999/H4C6desmu33mzJl06tQp/QuSVDt+/DgdOnTg6NGjBAYGUr58eZYuXUqDBg2sLk1ckPrciIiIiFvRnBsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRcTudOnWiRYsWVpchIhZRuBGRu9KpUydsNtsNl8aNG1tdGhMnTnSabTNsNhvz58+3ugwRj6K9pUTkrjVu3JiZM2cmu83X19eiaiAuLg6bzUZgYKBlNYiI9TRyIyJ3zdfXlzx58iS7ZM+enZUrV+Lj48OaNWsS7zt27Fhy585NZGQkYDa57N69O927dycwMJCcOXMyaNAgrt3uLiYmht69e5M/f378/f0JCQlh5cqViZ//+OOPyZYtG9999x1lypTB19eXiIiIG05L1a1blx49etCrVy+yZ89OUFAQ06dP58KFC3Tu3JmsWbNSvHhxFi9enOz727lzJ02aNCFLliwEBQXRvn17Tp48mexxe/bsSZ8+fciRIwd58uRh6NChiZ8vXLgwAC1btsRmsyVeF5G0pXAjIg5Xt25devXqRfv27YmKiuK3335j0KBBzJgxg6CgoMT7ffLJJ2TIkIGNGzcyceJExo8fz4wZMxI/3717d9avX8/s2bP5/fffad26NY0bN2bv3r2J97l48SJvvvkmM2bM4I8//iB37tw3remTTz4hZ86cbNy4kR49etCtWzdat25NzZo12bp1Kw0bNqR9+/ZcvHgRgLNnz/Lwww9TqVIlNm/ezJIlS4iMjOTJJ5+84XH9/f3ZsGEDY8eOZfjw4SxfvhyATZs2AWZ38qNHjyZeF5E0ZhcRuQsdO3a0e3t72/39/ZNdRo4cabfb7faYmBh7xYoV7U8++aS9TJky9ueffz7Z19epU8deunRpe3x8fOJtffv2tZcuXdput9vthw4dsnt7e9v//fffZF9Xv359e//+/e12u90+c+ZMO2Dftm3bDbU1b9482XPVrl078XpsbKzd39/f3r59+8Tbjh49agfs69evt9vtdvsbb7xhb9iwYbLHPXz4sB2w79mz56aPa7fb7dWqVbP37ds38Tpgnzdv3i3+FUUkLWjOjYjctXr16vH+++8nuy1HjhwA+Pj48Pnnn1O+fHkKFSrEO++8c8PX/+9//8NmsyVer1GjBuPGjSMuLo4dO3YQFxdHyZIlk31NTEwM9913X+J1Hx8fypcvf8dar72Pt7c39913H+XKlUu8LWFE6fjx4wBs376dn3/+mSxZstzwWH///XdiXdc/d968eRMfQ0SsoXAjInfN39+f4sWL3/Lz69atA+D06dOcPn0af3//FD/2+fPn8fb2ZsuWLXh7eyf73LWBw8/PL1lAupWMGTMmu26z2ZLdlvAY8fHxic/frFkz3nzzzRseK2/evLd93ITHEBFrKNyISJr4+++/eeWVV5g+fTpz5syhY8eO/Pjjj3h5JU3127BhQ7Kv+fXXXylRogTe3t5UqlSJuLg4jh8/zoMPPpje5VO5cmW+/fZbChcuTIYMd/9SmTFjRuLi4hxYmYjciSYUi8hdi4mJ4dixY8kuJ0+eJC4ujmeeeYZGjRrRuXNnZs6cye+//864ceOSfX1ERATh4eHs2bOHL7/8kkmTJvHyyy8DULJkSdq1a0eHDh2YO3cuBw4cYOPGjYwePZqFCxem+fcWFhbG6dOnadu2LZs2beLvv/9m6dKldO7cOVVhpXDhwqxYsYJjx45x5syZNKxYRBJo5EZE7tqSJUuSnaIBKFWqFE8//TSHDh3ihx9+AMxpnA8++IC2bdvSsGFDKlSoAECHDh24dOkS1atXx9vbm5dffpkXXngh8bFmzpzJiBEjePXVV/n333/JmTMn//vf/3j00UfT/HvLly8fv/zyC3379qVhw4bExMRQqFAhGjdunGz06U7GjRtHeHg406dPJ3/+/Bw8eDDtihYRAGx2+zVNJURE0kndunWpWLEiEyZMsLoUEXEzOi0lIiIibkXhRkRERNyKTkuJiIiIW9HIjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3Mr/ASmUlieXXYK5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -825,14 +2458,19 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ - "# dimensionality reduction with the RGDR operator used by the best model\n", - "clusters_test = RGDRs[np.argmax(rmse_test)].transform(precursor_field_sel[-test_samples:])\n", - "# predict with the best model\n", - "predictions_baseline = models[np.argmax(rmse_test)].predict(clusters_test.isel(i_interval=0))" + "# best model\n", + "best_model = models[np.argmin(rmse_test)]\n", + "# clusters test best model\n", + "clusters_test = []\n", + "for i, lag in enumerate(lags):\n", + " clusters_test_lag = RGDR_splits[np.argmin(rmse_test)][i].transform(precursor_field_sel[-test_samples:])\n", + " clusters_test.append(clusters_test_lag.values.reshape(test_samples, -1))\n", + "clusters_test = np.concatenate(clusters_test, axis=1)\n", + "predictions_baseline = best_model.predict(clusters_test)" ] }, { @@ -845,7 +2483,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -853,13 +2491,13 @@ "output_type": "stream", "text": [ "The MSE of LSTM forecasts is 1.164\n", - "The MSE of baseline ridge forecasts is 0.965\n", + "The MSE of baseline ridge forecasts is 0.664\n", "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCU0lEQVR4nOzdd1RU59YG8OcMvQ69dxUQsStYopgYlZhYEo1R8XpNj9F8MYnp1cTEmNwkppl6o/GqUWOJJRFjxQqo2AuIIL23oUibOd8fA0SsDAycGeb5rTXLxZnDYaPIzD7vfvcWRFEUQUREREREREQ6TyZ1AERERERERETUMkziiYiIiIiIiPQEk3giIiIiIiIiPcEknoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0BJN4IiIiIiIiIj3BJJ6IiIiIiIhITxhLHYAuUqlUyM7Oho2NDQRBkDocIiIiIiIi6uREUUR5eTk8PDwgk916vZ1J/E1kZ2fD29tb6jCIiIiIiIjIwGRkZMDLy+uWzzOJvwkbGxsA6r88W1tbiaMhIiIiIiKizk6hUMDb27spH70VJvE30VhCb2tryySeiIiIiIiIOsydtnSzsR0RERERERGRnmAST0RERERERKQnmMQTERERERER6Qkm8URERERERER6gkk8ERERERERkZ5gEk9ERERERESkJ5jEExEREREREekJJvFEREREREREeoJJPBEREREREZGeYBJPREREREREpCckTeIXLVqEgQMHwsbGBi4uLpg4cSISExObnTNixAgIgtDs8cwzz9z2uqIo4p133oG7uzssLCxw77334tKlS+35rRARERERERG1O0mT+JiYGMyZMwexsbHYuXMn6urqMHr0aFRWVjY778knn0ROTk7T45NPPrntdT/55BN89dVX+P777xEXFwcrKyuMGTMG1dXV7fntEBEREREREbUrYym/eHR0dLOPly9fDhcXFxw/fhzDhw9vOm5paQk3N7cWXVMURSxZsgRvvfUWJkyYAABYsWIFXF1d8ccff2Dq1Kna+wYkVl2nhEwQYGrMXRFERERERESGQKeyv7KyMgCAg4NDs+OrVq2Ck5MTQkND8frrr6OqquqW10hNTUVubi7uvffepmNyuRzh4eE4cuTITT+npqYGCoWi2UMffLDtPB767hCS8yukDoWIiIiIiIg6gKQr8ddSqVSYN28ehg4ditDQ0Kbj06dPh6+vLzw8PHD69Gm8+uqrSExMxMaNG296ndzcXACAq6trs+Ourq5Nz11v0aJFWLBggZa+k45RVFGDv87koKSqDg98fQBvPxCC6WE+EARB6tCIiIiIiIionQiiKIpSBwEAs2fPxvbt23Hw4EF4eXnd8rw9e/Zg5MiRSE5ORpcuXW54/vDhwxg6dCiys7Ph7u7edHzKlCkQBAFr16694XNqampQU1PT9LFCoYC3tzfKyspga2vbxu+s/eQpqjH/91M4cKkQAHBvd1csntQTjtZmEkdGREREREREmlAoFJDL5XfMQ3WinH7u3LnYtm0b9u7de9sEHgDCw8MBAMnJyTd9vnHvfF5eXrPjeXl5t9xXb2ZmBltb22YPfeBqa45fHw3DW/d3h6mRDLsu5CHyywPYn1QgdWhERERERETUDiRN4kVRxNy5c7Fp0ybs2bMH/v7+d/yckydPAkCzVfZr+fv7w83NDbt37246plAoEBcXh8GDB2slbl0ikwl4YlgA/pgzFN1crFFQXoOZv8Tj/a3nUV2nlDo8IiIiIiIi0iJJk/g5c+Zg5cqVWL16NWxsbJCbm4vc3FxcvXoVAHD58mV88MEHOH78OK5cuYItW7Zg5syZGD58OHr16tV0neDgYGzatAkAIAgC5s2bh4ULF2LLli04c+YMZs6cCQ8PD0ycOFGKb7NDhHjYYutzd+Hfg30BAL8cSsXEbw8hMbdc4siIiIiIiIhIWyTdE3+rJmzLli3DrFmzkJGRgRkzZuDs2bOorKyEt7c3HnzwQbz11lvNSt4FQWj6HEC9wv/uu+/ixx9/RGlpKe666y4sXboUgYGBLYqrpXsRdNWei3l4Zf1pFFbUwtRYhjfuC8a/h/ix6R0REREREZGOamkeqjON7XSJvifxAFBQXoOX15/CvkT1/vgRQc74dHJvONuw6R0REREREZGu0avGdqR9zjZmWDZrIBaM7wFTYxn2JRYgcsl+7LmYd+dPJiIiIiIiIp3EJL4TEwQB/x7ih61z70Kwmw2KKmvx2PJjeGfzWTa9IyIiIiIi0kNM4g1AkJsN/pgzFI/fpe7+v+JIGh74+iDOZZdJHBkRERERERFpgkm8gTA3McLbD4Tg18fC4GxjhuT8Cjz47WH8fCAFKhXbIhAREREREekDJvEGJiLQGdHPD8O93V1Rq1Rh4Z8XMPOXeOQpqqUOjYiIiIiIiO6ASbwBcrQ2w08z++PDB0NhbiLDweRCjFmyH9Fnc6UOjYiIiIiIiG6DSbyBEgQBUeG+2PbcMPTwsEVpVR2eWXkcr288jaraeqnDIyIiIiIioptgEm/gurpYY9OzQ/F0RAAEAfgtPgMPfHUQpzNLpQ6NiIiIiIiIrsMknmBqLMPr93XHqsfD4WZrjpTCSjy09DCW7kuGkk3viIiIiIiIdAaTeGoypKsToucNw32hbqhXifgkOhHTf4pFdulVqUMjIiIiIiIiMImn69hZmmJpVD98MrkXLE2NEJdajMgl+7HtdLbUoRERERERERk8JvF0A0EQMGWAN/76v2Ho7W0HRXU95q4+gZfWnUJFDZveERERERERSYVJPN2Sn5MV1j8zGM/d0xUyAdiQkImxXx5AQnqJ1KEREREREREZJCbxdFsmRjK8NDoIa54aDE87C6QXV+Hh74/gy12XUK9USR0eERERERGRQWESTy0S5u+Av54fhvG9PaBUifhiVxIe+TEWGcVVUodGRERERERkMJjEU4vJLUzw1bS+WPJIH1ibGeN4Wgnu+/IANp3IlDo0IiIiIiIig8AknjQ2sa8ntj8/DP197VFRU48X1p7C82tOoOxqndShERERERERdWpM4qlVvB0ssfapQXhxVCCMZAI2n8zG2C8PID61WOrQiIiIiIiIOi0m8dRqxkYy/N/Ibvj9mcHwcbBEVulVTP3xCD77OxF1bHpHRERERESkdUziqc36+djjr+eHYVI/L6hE4Os9yZj8/RFcKayUOjQiIiIiIqJOhUk8aYW1mTE+m9IbX0/rC1tzY5zKKMXYrw5g3bEMiKIodXhERERERESdApN40qpxvT2wfd5whPs7oKpWiVfWn8ac1QkoraqVOjQiIiIiIiK9xySetM7TzgKrnxyEVyKDYCwT8NeZXEQuOYDDlwulDo2IiIiIiEivMYmndmEkE/DsiK7Y+OwQ+DtZIVdRjaif47Bo+wXU1rPpHRERERERUWswiad21cvLDn/+312YFuYNUQR+iEnBQ98dQnJ+hdShERERERER6R0m8dTuLE2NseihXvh+Rn/YWZrgbJYCD3x9AKvi0tj0joiIiIiISANM4qnDRIa6Yce84birqxOq61R4c9NZPLniOIoqaqQOjYiIiIiISC8wiacO5WprjhWPheGt+7vD1EiGXRfyEPnlAexPKpA6NCIiIiIiIp3HJJ46nEwm4IlhAdg0Zwi6ulijoLwGM3+Jx/tbz6O6Til1eERERERERDqLSTxJpoeHHFvn3oWZg30BAL8cSsXEbw8hMbdc4siIiIiIiIh0E5N4kpSFqRHenxCK//57ABytTHExtxzjvjmI5YdS2fSOiIiIiIjoOkziSSeM7O6K7fOGISLQGbX1Kry39TweXX4UBeVsekdERERERNSISTzpDBcbcyx/dCDeGxcCU2MZ9iUWIHLJfuy5mCd1aERERERERDqBSTzpFEEQMGuoP7bOvQvBbjYoqqzFY8uP4Z3NZ9n0joiIiIiIDB6TeNJJQW42+GPOUDw21B8AsOJIGh74+iDOZZdJHBkREREREZF0mMSTzjI3McI740Lw62NhcLYxQ3J+BR789jB+PpAClYpN74iIiIiIyPAwiSedFxHojOjnh+He7q6oVaqw8M8LmPlLPPIU1VKHRkRERERE1KGYxJNecLQ2w08z++PDB0NhbiLDweRCjFmyH9Fnc6UOjYiIiIiIqMMwiSe9IQgCosJ9se25YejhYYvSqjo8s/I4Xt94GlW19VKHR0RERERE1O6YxJPe6epijU3PDsXTEQEQBOC3+Aw88NVBnM4slTo0IiIiIiKidsUknvSSqbEMr9/XHaseD4ebrTlSCivx0NLDWLovGUo2vSMiIiIiok6KSTzptSFdnbD9+WG4L9QN9SoRn0QnYvpPscguvSp1aERERERERFrHJJ70nr2VKZZG9cMnk3rB0tQIcanFiFyyH9tOZ0sdGhERERERkVYxiadOQRAETBnojT//bxh6e8mhqK7H3NUn8NK6U6ioYdM7IiIiIiLqHJjEU6fi72SF9bOHYO7dXSEIwIaETIz98gAS0kukDo2IiIiIiKjNmMRTp2NiJMP8MUFY8+QgeNpZIL24Cg9/fwRf7rqEeqVK6vCIiIiIiIhajUk8dVrhAY746/lhGNfbA0qViC92JeGRH2ORUVwldWhEREREREStImkSv2jRIgwcOBA2NjZwcXHBxIkTkZiYeNNzRVHEfffdB0EQ8Mcff9z2urNmzYIgCM0ekZGR7fAdkK6TW5jgq6l98MUjvWFtZozjaSUY/81B5JZVSx0aERERERGRxiRN4mNiYjBnzhzExsZi586dqKurw+jRo1FZWXnDuUuWLIEgCC2+dmRkJHJycpoev/32mzZDJz0iCAIe7OuF7c8PQ5CrDUqq6vDGpjMQRc6TJyIiIiIi/WIs5RePjo5u9vHy5cvh4uKC48ePY/jw4U3HT548ic8++wzHjh2Du7t7i65tZmYGNzc3rcZL+s3bwRJfTeuLcV8fxJ6L+diQkIXJ/b2kDouIiIiIiKjFdGpPfFlZGQDAwcGh6VhVVRWmT5+Ob7/9VqOkfN++fXBxcUFQUBBmz56NoqKiW55bU1MDhULR7EGdU5CbDZ6/txsAYMHWcyyrJyIiIiIivaIzSbxKpcK8efMwdOhQhIaGNh1/4YUXMGTIEEyYMKHF14qMjMSKFSuwe/duLF68GDExMbjvvvugVCpvev6iRYsgl8ubHt7e3m3+fkh3PT08AL295CivrsfrG0+zrJ6IiIiIiPSGIOpIBjN79mxs374dBw8ehJeXusR5y5YteOmll3DixAlYW1sDUO9v3rRpEyZOnNjia6ekpKBLly7YtWsXRo4cecPzNTU1qKmpafpYoVDA29sbZWVlsLW1bds3RjrpUl457v/qIGqVKnwyuRemDOCNGyIiIiIiko5CoYBcLr9jHqoTK/Fz587Ftm3bsHfv3qYEHgD27NmDy5cvw87ODsbGxjA2Vm/hnzRpEkaMGNHi6wcEBMDJyQnJyck3fd7MzAy2trbNHtS5dXO1wbxR6rL6D7aeR07ZVYkjIiIiIiIiujNJk3hRFDF37lxs2rQJe/bsgb+/f7PnX3vtNZw+fRonT55segDAF198gWXLlrX462RmZqKoqKjFTfHIMDw1LAC9ve1QXlOP1zawWz0RERERUWekUnWu9/mSJvFz5szBypUrsXr1atjY2CA3Nxe5ubm4elW9Kurm5obQ0NBmDwDw8fFplvAHBwdj06ZNAICKigq8/PLLiI2NxZUrV7B7925MmDABXbt2xZgxYzr+mySdZWwkw38m94KpkQwxSQX4/Vim1CEREREREZEW5ZZVY/SS/dh7MV/qULRG0iT+u+++Q1lZGUaMGAF3d/emx9q1azW6TmJiYlNneyMjI5w+fRrjx49HYGAgHn/8cfTv3x8HDhyAmZlZe3wbpMe6udrghVGBAIAPtp1HdinL6omIiIiIOoN6pQr/99sJJOdX4LOdiVB2khV5SefEt6Z8+Wafc+0xCwsL7Nixo01xkWF5cpg/os/l4lRGKV7beAa/PjoQgiBIHRYREREREbXBZzuTEH+lGNZmxvhmWj8YyTrHe3ydaGxHJCVjIxk+e7gXTI1l2J9UgHXHMqQOiYiIiIiI2mDvxXx8t+8yAOCTyb3g52QlcUTawySeCEBXFxu81FBWv3DbBZbVExERERHpqezSq3hh3UkAwL8H+2Jsz87V4JxJPFGDJ4YFoK+Pulv9qxtOs1s9EREREZGeqVOq8NxvJ1BaVYeennK8cX93qUPSOibxRA2MZAI+ndwbpsYyHLhUiDVHWVZPRERERKRP/rMjEcfTSmBjboxvp/eDmbGR1CFpHZN4omt0dbHG/NHqsvoP/7yALJbVExERERHphd0X8vDD/hQAwKeTe8PH0VLiiNoHk3ii6zx+VwD6+dihoqYer7GsnoiIiIhI52WWVOHFdacAAI8O9UNkqJvEEbUfJvFE1zGSCfj04d4wayir/y2eZfVERERERLqqtl6FuatPoOxqHXp72+H1+zrfPvhrMYknuokuztaYPzoIAPDhn+eRWVIlcURERERERHQzi6Mv4mRGKWzNjfHNtL4wNe7caW7n/u6I2uCxu/zR39celbVKvLbhDMvqiYiIiIh0zI5zufjvwVQAwGdT+sDboXPug78Wk3iiW1B3q+8FM2MZDiYXYnV8utQhERERERFRg4ziKsz/Xb0P/slh/hgV4ipxRB2DSTzRbQQ4W+PlMeqy+o/+vICMYpbVExERERFJraZeiTmrE1BeXY9+PnZ4JTJY6pA6DJN4ojt4dKg/BjSU1b+64TRUKpbVExERERFJadFfF3E6swx2lib4eno/mBgZTmprON8pUSs1dqs3N5Hh8OUirGJZPRERERGRZP46k4Plh68AAD6f0huedhbSBtTBmMQTtYC/kxVeHqMu0Vn0F8vqiYj0zdJ9yej3wU4k5pZLHQoREbVBWlElXl1/GgDwdEQA7gk2jH3w12IST9RCjw7xw0A/e1TVKvHKepbVExHpi4qaeny7JxnFlbVYdyxD6nCIiKiVqusa9sHX1GOAr33TSGhDwySeqIVkMgGfTlaX1R9JKcKquDSpQyIiohbYcjIblbVKAEBMUoHE0RARUWt9+OcFnM1SwMHKFF9P72tQ++CvZZjfNVEr+TlZ4ZXGsvrtF1lWT0Sk40RRbHbTNTm/Apkl/N1NRKRvtp7Kxv9i1b/PP5/SG+5yw9oHfy0m8UQamjXED2F+DqiqVeLl9adYVk9EpMNOZpTiXLYCpsYyBLvZAAD2JXI1nohIn6QWVuL1jWcAAHPu7oIRQS4SRyQtJvFEGpLJBHwyuRcsTIwQm1KMlSyrJyLSWavi1BNFHujljgd6uQNgST0RkT6prlPi2VUJqKipR7i/A164N1DqkCTHJJ6oFfycrPBqpLqRxqK/LiK9iKWZRES6pqyqDltPZQMAosJ9m1ZuDicXorZeJWVoRETUQgu2nseFHAUcrUzx1bS+MDbQffDX4t8AUSvNHOyHcH8HXK1jWT0RkS7akJCJmnoVgt1s0M/HDiHutnCyNkVlrRLH0oqlDo+IiO5g88ks/BafDkEAvpzaF6625lKHpBOYxBO1UmO3egsTI8SlFmPFkStSh0RERA2ubWgXNcgXgiBAJhMwPNAZABDDffFERDotOb+iaR/8c/d0w13dnCSOSHcwiSdqAx9HS7x2n7pb/eLoRKQVVUocERERAUBcajEuF1TC0tQIE/t4NB2PaEziuS+eiEhnXa1VYs6qBFTVKjE4wBHPj+wmdUg6hUk8URv9a5AvBgU0ltWfZlk9EZEOaGxoN6GPJ2zMTZqOD+/mDEEALuaWI6fsqlThERHRbby35RwS88rhZG2GL6f1gZFMkDokncIknqiNZDIBn0zqDUtTI8SnFuNXltUTEUmqsKIG0WdzAABR4T7NnrO3MkVvLzsAwH6uxhMR6ZyNCZlYeywDMgH4amofuNhwH/z1mMQTaUHzsvqLuFLIsnoiIqn8fiwTdUoRvb3tEOopv+H5EUHqknrOiyci0i2X8srx5qazAIDnRwZiSFfug78ZJvFEWjIj3BeDAxxRXafCKyyrJyKShEolYnV8Q0O761bhGzXuiz94qRB1So6aIyLSBVW19Xh2VQKu1ilxV1cnzL2nq9Qh6Swm8URaIpMJ+GRyL3VZ/ZViLD98ReqQiIgMzoHkQmQUX4WtuTHG9fK46Tm9vOxgb2mC8pp6nEgv7dgAiYjopt7+4xwu5VfAxcYMS6ZyH/ztMIkn0iJvB0u8PrY7AOCTHReRyrJ6IqIOtSpWvQo/qb8XLEyNbnqO0TWj5vYl5ndYbEREdHPrjmVgQ0Kmeh/8tL5wsjaTOiSdZtySk06fPq3xhUNCQmBs3KLLE3UqUWE+2H4mB4cvF+Hl309h7dODeSeRiKgD5JRdxe6L6qT8VqX0jSICnbH5ZDZikgrwSmRwR4RHREQ3kZhbjnc2q/fBvzQ6CIMCHCWOSPe1KMvu06cPBEGAKLZsj69MJkNSUhICAgLaFByRPpLJBCye1AuRS/bjWFoJlh1KxRPD+H+BiKi9rT2aAaVKRLi/A7q62Nz23MaV+HPZCuSXV7P7MRGRBCpr6vHsquOorlMhItAZsyO6SB2SXmjxUnlcXBycnZ3veJ4oiggNDW1TUET6rrGs/q0/zuLTHYm4J9gFAc7WUodFRNRp1StVWBOfAQCIGuR7x/OdrM3Q01OOM1ll2J9UiMn9vdo7RCIiuoYoinhz0xlcLqiEm605Pp/SGzJWr7ZIi5L4iIgIdO3aFXZ2di266PDhw2FhYdGWuIj0XlS4D7afzcGh5CK8vP401rGsnoio3ey5mI9cRTUcrUwxpodriz5nRJAzzmSVYV9iPpN4IqIOtuZoBv44mQ0jmYCvp/eFI/fBt1iLGtvt3bu3xQk8APz1119wd3dvbUxEnYIgqMvqrUyNcLyhrJ6IiNrHqrh0AMDDA7xhZnzzhnbXaxw1d+BSIZQcC0pE1GHOZyvw7pZzAID5o4Mw0M9B4oj0i0bd6RUKBVSqG+epKpVKKBQKrQVF1Fl42VvijfvV3eo/3ZGIywUVEkdERNT5pBdVYf+lAgDA9LDbN7S7Vh9vO9iaG6Psah1OZpS2U3RERHStipp6zF2dgNp6Fe4OcsbTw9k7SlMtTuI3bdqEAQMGoLq6+obnqqurMXDgQGzdulWrwRF1BtPDfHBXVyfU1Kvw8u+nuNpDRKRlvx1Nhyiqm9X5OFq2+POMjWQY1k29Gh+TVNBe4RERUQNRFPH6xjNIKayEh9wcn0/pw33wrdDiJP67777DK6+8AkvLG18crays8Oqrr+Kbb77RanBEnYEgCFg8uReszYyRkF6KXw6yrJ6ISFtq6pVYd7Shod0dxsrdTERQQxLPefFERO1uVVw6tp7KhrFMwNfT+8HeylTqkPRSi5P4s2fPYsSIEbd8fvjw4Thz5ow2YiLqdDztLPBmQ1n9f/5mWT0RkbbsOJeHospauNqaYWSwi8af37gv/nRWGYoqarQdHhERNTibVYb3t50HALwaGYz+vvYSR6S/WpzEl5SUoL6+/pbP19XVoaSkRCtBEXVGUwd6Y1g3dVn9fJbVExFpxarYNADA1IE+MDbSqNUPAMDV1hzd3W0hiuoGd0REpH2K6jrMadgHf293VzwxzF/qkPRai1/t/Pz8cOzYsVs+f+zYMfj63nkuK5GhEgQBH09Sl9WfSC/FzwdSpA6JiEivJeeXIy61GDIBmBrm3errjGgoqd/HknoiIq0TRRGvbTiNtKIqeNpZ4LOHe0MQuA++LVqcxD/00EN48803kZeXd8Nzubm5eOuttzBp0iStBkfU2XjaWeCthrL6z3YmITm/XOKIiIj0V+NYuZHdXeEut2j1dRpL6vdfKoSKVVJERFq14kga/jqTCxMjAd9G9YPc0kTqkPRei5P41157DTY2NujWrRueffZZfPnll/jyyy8xe/ZsBAYGwtraGq+99lp7xkrUKTwy0BvDA51RW6/C/N9Ps6yeiKgVrtYqseF4JoDWNbS7Vn9fe1ibGaO4shZnssq0ER4REQE4nVmKhX+q98G/fl939PG2kzagTqLFSbyNjQ0OHTqEGTNmYO3atXjhhRfwwgsvYO3atZgxYwYOHjwIGxub9oyVqFMQBAEfP9QTNmbGOJlRip9YVk9EpLFtp7OhqK6Hl70FhjeMiWstEyMZhnZ1BMBRc0RE2lJ2Vb0Pvk4pYkwPVzw61E/qkDoNjTrAyOVyLF26FIWFhcjLy0Nubi6KioqwdOlS2NuzuyBRS3nYWeDtB0IAAJ+zrJ6ISGONpfTTw320MmN4RJC6sz33xRMRtZ0oinhl/SlkFF+Ft4MFPpnMffDapHkbV6hXEp2dneHi4sJ/DKJWeniAF0YEqcvqX/r9NOqVKqlDIiLSC2ezynAyoxQmRgIe7t/6hnbXatwXfzKjFKVVtVq5JhGRoVp26Ap2nMuDqZEM307vB7kF98FrU6uSeCJqO0EQsOihnrAxN8apjFL8dCBV6pCIiPTC6nj1KvyYHm5wtjHTyjU97CwQ6GoNFUfNERG1ycmMUizafgEA8Ob93dHLy07agDohSZP4RYsWYeDAgbCxsYGLiwsmTpyIxMTEm54riiLuu+8+CIKAP/7447bXFUUR77zzDtzd3WFhYYF7770Xly5daofvgKht3OX/lNV/sTMJl/JYVk9EdDsVNfXYfCILADBjkHZH2zauxnNfPBFR65RW1WLOKvU++Pt7umPmYI4gbw+SJvExMTGYM2cOYmNjsXPnTtTV1WH06NGorKy84dwlS5a0uHT/k08+wVdffYXvv/8ecXFxsLKywpgxY1BdXa3tb4GozR7u74W7g5xRq1Rh/u+nWFZPRHQbf5zIQmWtEl2crRDu76DVazfui49JKuCoOSIiDYmiiPm/n0ZW6VX4Olpi0aSe3HrdTtqUxLc1KY6OjsasWbPQo0cP9O7dG8uXL0d6ejqOHz/e7LyTJ0/is88+wy+//HLHa4qiiCVLluCtt97ChAkT0KtXL6xYsQLZ2dl3XMEnkoK6rL6Xuqw+sww/7Ge3eiKimxFFsamhXVS4r9bfHA7ws4elqREKymtwIVeh1WsTEXV2Px9Ixa4LeTA1Vu+DtzXnPvj2onESr1Kp8MEHH8DT0xPW1tZISVEnHG+//Tb++9//timYsjL1bFYHh3/urFdVVWH69On49ttv4ebmdsdrpKamIjc3F/fee2/TMblcjvDwcBw5cuSmn1NTUwOFQtHsQdSR3OTmeKehrP7LXZeQmMuyeiKi653IKMWFHAXMjGWY1M9L69c3MzbCkC7qUXP7EllST0TUUsfTSrA4+iIA4J0HQhDqKZc4os5N4yR+4cKFWL58OT755BOYmpo2HQ8NDcXPP//c6kBUKhXmzZuHoUOHIjQ0tOn4Cy+8gCFDhmDChAktuk5ubi4AwNXVtdlxV1fXpueut2jRIsjl8qaHt7d2Ot0SaWJyfy/cE+yCWqUKL69nWT0R0fVWxapX4cf19oDcsn1WeCIaS+qZxBMRtUhJZS2eW52AepWIcb09EBXuI3VInZ7GSfyKFSvw448/IioqCkZGRk3He/fujYsXL7Y6kDlz5uDs2bNYs2ZN07EtW7Zgz549WLJkSauv2xKvv/46ysrKmh4ZGRnt+vWIbkYQBHz0oLpb/WmW1RMRNVNaVYttp7MBoF3fII5oaG53PL0Eiuq6dvs6RESdgUol4sV1J5FdVg1/Jysseoj74DuCxkl8VlYWunbtesNxlUqFurrWvdjNnTsX27Ztw969e+Hl9U953J49e3D58mXY2dnB2NgYxsbGAIBJkyZhxIgRN71WY8l9Xl5es+N5eXm3LMc3MzODra1tsweRFNzk5nhvXA8AwJJdSSyrJyJqsCEhCzX1KoS426KPt127fR1vB0sEOFtBqRJxiKPmiIhu64f9KdibWACzhn3w1mbGUodkEDRO4kNCQnDgwIEbjq9fvx59+/bV6FqiKGLu3LnYtGkT9uzZA39//2bPv/baazh9+jROnjzZ9ACAL774AsuWLbvpNf39/eHm5obdu3c3HVMoFIiLi8PgwYM1io9ICg/188TIYBfUKUXM//0U6lhWT0QGTt3QLg0AEDXIp91XeThqjojozo5eKcZ//laPB39vfA+EeHAhtKNofKvknXfewb///W9kZWVBpVJh48aNSExMxIoVK7Bt2zaNrjVnzhysXr0amzdvho2NTdOedblcDgsLC7i5ud109dzHx6dZwh8cHIxFixbhwQcfhCAImDdvHhYuXIhu3brB398fb7/9Njw8PDBx4kRNv12iDicIAj56qCdGfR6DM1ll+CHmMube003qsIiIJBObUoyUgkpYmRphQh/Pdv96I4JcsOzQFexLLIAoiiwNJSK6TlFFDZ5bfQJKlYiJfTwwdSB7inUkjVfiJ0yYgK1bt2LXrl2wsrLCO++8gwsXLmDr1q0YNWqURtf67rvvUFZWhhEjRsDd3b3psXbtWo2uk5iY2NTZHgBeeeUVPPfcc3jqqacwcOBAVFRUIDo6Gubm5hpdl0gqrrbmeG+8uqz+y92XcJGjjojIgK1sWIWf2NezQ0o1w/0dYGYsQ66iGkl5Fe3+9YiI9IlKJeKFdaeQq6hGF2crfPgg98F3NEEURVHqIHSNQqGAXC5HWVkZ98eTZERRxJMrjmHXhXyEetpi07NDYWKk8X03IiK9VlBeg8GLdqNeJeKv/xvWYeWas5bFY19iAV6/LxhPR3TpkK9JRKQPvt2bjE93JMLcRIbNc+5CkJuN1CF1Gi3NQ1uVEZSWluLnn3/GG2+8geLiYgBAQkICsrKyWhctEd2gsVu93MIEZ7MU+G7fZalDIiLqcOuOZaBeJaKvj12H7rfkvngiohvFphThs4Z98O9PCGUCLxGNk/jTp08jMDAQixcvxqefforS0lIAwMaNG/H6669rOz4ig+Zia473xocAAL7ecwkXclhWT0SGQ6kS8Vu8ejZ8VLhvh37tEQ3z4o9eKUZFTX2Hfm0iIl1UUF6D//vtBFQiMKmfF6YM4D54qWicxL/44ouYNWsWLl261GyP+dixY7F//36tBkdEwMQ+nri3uyu71RORwdl/qQCZJVdha26MB3q5d+jX9neygq+jJeqUIg4nc9QcERk2pUrEC2tPIr+8Bt1crPHBxB5Sh2TQNE7ijx49iqeffvqG456enk3d5YlIe9Td6kNhZ2mCc9kKLN3LsnoiMgyrYtWr8JP7e8PcxKjDvz5L6omI1L7Zk4yDyYWwMDHC0qh+sDTlPHgpaZzEm5mZQaG4saQ3KSkJzs7OWgmKiJpzsTHHgoZu9V/vuYTz2SyrJ6LOLbv0KvZczAMATA/3kSSGEUHq9zWNo+aIiAzR4eRCLNmdBABYODEU3Vy5D15qGifx48ePx/vvv4+6ujoA6lXC9PR0vPrqq5g0aZLWAyQitfG9PTA6xBX1KpbVE1Hnt+ZoBlQiMCjAAV1drCWJYVCAI0yNZMgqvYrLBZWSxEBEJKX88mr835qTEEVgygAvTOrvJXVIhFYk8Z999hkqKirg4uKCq1evIiIiAl27doWNjQ0+/PDD9oiRiKC+YbbwQXVZ/fkcBb7dmyx1SERE7aJOqcIaiRraXcvS1BjhAQ4AgH2J+ZLFQUQkBaVKxPO/nURhRQ2CXG2wYHyo1CFRA42TeLlcjp07d2Lbtm346quvMHfuXPz111+IiYmBlZVVe8RIRA2uLav/Zk8yzmWXSRwREZH27b6Qj/zyGjhZm2JMDzdJY+G+eCIyVF/uvoQjKUWwNDXCt1H9YGHa8b1J6OY06khQV1cHCwsLnDx5EkOHDsXQoUPbKy4iuoXxvT3w15kc7DiXh/m/n8bmOUNhaqzx/TgiIp21Ki4NADBlgLfkv99GBDlj4Z8XEJdajKu1Sr6JJSKDcOBSAb7ecwkAsOihnpJta6Kb0+iV0cTEBD4+PlAqle0VDxHdgSAIWDixJ+wtTXAhR4FvWFZPRJ1IWlElDlwqhCAA08KkaWh3rS7O1vC0s0BtvQqxKUVSh0NE1O7yFNWY17APflqYDyb08ZQ6JLqOxre333zzTbzxxhsoLi5uj3iIqAWcbcywYIJ6X9LSvck4m8WyeiLqHFY37IWPCHSGt4OlxNGob5xGNHWp5754Iurc6pUqPPfbCRRV1qK7uy3eHRcidUh0Exon8d988w32798PDw8PBAUFoV+/fs0eRNQxxvVyR2QPt6Zu9bX17FZPRPqtpl6J349lApC2od31uC+eiAzFF7uSEJ9aDGszYyyN6gdzE24h0kUa7YkHgIkTJ7ZDGESkqcZu9fFXinExtxzf7LmEF0cHSR0WEVGrRZ/NRXFlLdzl5ri7YfVbFwzt6gQTIwFXiqpwpbASfk5s5EtEnc++xHx8u/cyAODjST3hz991OkvjJP7dd99tjziIqBWcrM3w/oQemLv6BL7ddxmje7gh1FMudVhERK2yKk5dSj91oA+MjXSnYae1mTEG+DrgSEoR9iXmY5aTv9QhERFpVU7ZVbyw9iQA4F+DfPFALw9pA6Lb0p1XSCJqlQd6eWBsTzcoWVZPRHrsUl454lOLYSQT8MhAb6nDuUHjvniW1BNRZ1OnVOG51SdQUlWHUE9bvHl/d6lDojvQOIm3t7eHg4PDDQ9HR0d4enoiIiICy5Yta49YiegW3p8QCgcrU1zMLW8aB0JEpE8aV+Hv7e4CN7m5xNHcaERDEn8kpQjVdZzSQ0Sdx3/+TsSxtBLYmBnj2+ncB68PNE7i33nnHchkMtx///1YsGABFixYgPvvvx8ymQxz5sxBYGAgZs+ejZ9++qk94iWim3CyNsMHjd3q913GmUx2qyci/XG1VokNCbrX0O5aQa42cLM1R3WdCvGpnNBDRJ3D7gt5+CEmBQDwyeRe8HXkPnh9oPGe+IMHD2LhwoV45plnmh3/4Ycf8Pfff2PDhg3o1asXvvrqKzz55JNaC5SIbu/+Xu7464w7/jyTg/m/n8KW54bCzJh3UolI9209lY3y6nr4OFjirq5OUodzU4IgICLQGWuPZWBfYgGGB+pO4z0iotbIKr2Kl34/BQCYNcQP9/V0lzgiaimNV+J37NiBe++994bjI0eOxI4dOwAAY8eORUpKStujIyKNvD+hBxytTJGYV46vdrOsnoj0w6q4NADA9HAfyGSCxNHc2j/74jkvnoj0m3offAJKq+rQ20uO18cGSx0SaUDjJN7BwQFbt2694fjWrVvh4OAAAKisrISNjU3boyMijTham+GDieqy+u9jUnA6s1TagIiI7uBMZhlOZZbBxEjAw/29pA7ntoZ2dYKRTMDlgkpkFFdJHQ4RUat9En0RCemlsDU3xjfT+7F6U89oXE7/9ttvY/bs2di7dy/CwsIAAEePHsVff/2F77//HgCwc+dOREREaDdSak6lBNIOAxV5gLUr4DsEkPE/HwFje7rj/l7u+PO0uqx+63N3tf4XM3/OiKidrY5Xr8LfF+oOR2sziaO5PbmFCfr52OHolRLEJBVgxiDd3L9PRHQ7O8/n4acDqQCATx/uDW8HS4kjIk1pnMQ/+eSTCAkJwTfffIONGzcCAIKCghATE4MhQ4YAAF566SXtRknNnd8CRL8KKLL/OWbrAUQuBkLGSxcX6YwPJoQiLqUISXkV+HLXJbwS2YoSKf6cEVE7U1TXYfNJ9e+YqHAfiaNpmRFBLjh6pQT7EpnEE5H+ySiuwkvrTgIAHr/LH2N6uEkbELVKq+bEDx06FL/99hsSEhKQkJCA3377rSmBp3Z2fguwbmbzxAoAFDnq4+e3SBMX6RQHK1MsbCqrv4xTGaWaXYA/Z0TUATafyEJVrRJdXawR5u8gdTgtEtHQ0O7w5ULU1qskjoaIqOVq61WY+9sJKKrr0cfbDq+2ZpGHdEKrkvjLly/jrbfewvTp05Gfr27usn37dpw7d06rwdF1VEr1yijEmzzZcCz6NfV5ZPAiQ90xrrcHVCIw//dTLZ9rzJ8zIuoAoig2zYaPCveBIOhuQ7trhbjbwsnaDFW1Shy7wlFzRKQ/Fm2/gFMZpZBbmOCb6X1hatyqVJB0gMb/cjExMejZsyfi4uKwYcMGVFRUAABOnTqFd999V+sB0jXSDt+4MtqMCCiy1OcRAVgwvgecrE1xKb8CX7a0Wz1/zoioAySkl+BibjnMTWR4qK9uN7S7lkwmNK3G70sqkDgaIqKWiT6bg2WHrgAAPnu4N7zsuQ9en2mcxL/22mtYuHAhdu7cCVNT06bj99xzD2JjY7UaHF2nIk+751Gnpy6r7wkA+CHmMk62pKyeP2dE1AFWxapX4cf18oDc0kTiaDTTNGoukUk8Eem+9KIqvLz+NADgqeEBuDfEVeKIqK00TuLPnDmDBx988IbjLi4uKCws1EpQdAvWLfwP19LzyCBEhrphvCZl9fw5I6J2VlJZi21ncgAAUXrYHG5YVyfIBCAxrxzZpVelDoeI6JZq6pWYszoB5dX16O9rj5fHBEkdEmmBxkm8nZ0dcnJybjh+4sQJeHp6aiUougXfIeru4LjVvkEBsPVUn0c3UimB1APAmfXqPw1oT7e6rN4MyfkV+GJX0u1P5s8ZEbWzDQmZqK1XIdTTFr295FKHozF7K1P09rYDAOxnST0R6bCP/ryAM1llsLc0wdfT+sLEiPvgOwON/xWnTp2KV199Fbm5uRAEASqVCocOHcL8+fMxc+bM9oiRGsmM1OO9ANyYYDV8HPkx53jfzPktwJJQ4NcHgA2Pq/9cEmowXdbtrUzx4YPqbvU/7U9BQnrJrU/mzxkRtaPmDe189aah3fVGBLoAAPaxpJ6IdNSfp3Pw65E0AMDnj/SBh52FxBGRtmicxH/00UcIDg6Gt7c3KioqEBISguHDh2PIkCF466232iNGulbIeGDKCsDWvflxWw/1cc7vvhHHpQEAxvRww8Q+6rL6l+9UVs+fMyJqJ0cuFyG1sBLWZsYY39tD6nBarXFf/KHkQtQpOWqOiHTLlcJKvLpBvQ9+9oguuDvIReKISJsEURRvNkfqjtLT03H27FlUVFSgb9++6Natm7Zjk4xCoYBcLkdZWRlsbW2lDufmVEp1d/CKPPXeZN8hXBm9GZVSveJ+y27rgjoxnXfGIP7+SqtqMeqL/Sgor8HTwwPw+tjut/8E/pwRkZbNWZWAP8/k4F+DfPHBxFCpw2k1lUrEgA93obiyFmufGoTwAEepQyIiAgBU1ynx0NLDOJ+jQJifA1Y/GQ5jltHrhZbmocat/QI+Pj7w8fFp7adTW8mMAP9hUkeh+zQZl2YAf592lqb46MGeeHLFMfx0IAVjQt3Qz8f+1p/AnzMi0qL88mrsOJcLAJgert/vIWQyAcO6OWHzyWzEJBUwiScinfHBtvM4n6OAo5UpvprWlwl8J9SiJP7FF19s8QU///zzVgdDpHUcl3aDUSGueLCvJzadyML830/hr/8bBnMTrq4TUfv7/Vgm6lUi+vvao7u7jla6aWBEkDM2n8zGvsQCvBIZLHU4RETYfDILq+LSIQjAF4/0gZvcXOqQqB20KIk/ceJEs48TEhJQX1+PoCD1iIKkpCQYGRmhf//+2o+QqC04Lu2m3h0XgoPJhUgpqMTnO5Pwxp3K6omI2kipErG6qaGdfq/CNxrezRmCAJzPUSBfUQ0XW75ZJiLpXC6owBsbzwAA5t7dFcMDnSWOiNpLi2or9u7d2/QYN24cIiIikJmZiYSEBCQkJCAjIwN333037r///vaOl0gzHJd2U3aWplj0YE8AwE8HUnA87Tbd6omItGB/UgGySq/CztIEY3u63/kT9ICjtRl6eqpH5MVw1BwRSai6Tok5qxJQWavEoAAHzLs3UOqQqB1pvEHis88+w6JFi2Bv/88+Wnt7eyxcuBCfffaZVoMjajOOS7ule0Nc8VBfT4gt6VZPRNRGq+LUY44m9/PqVFt4RjSsdO1jEk9EEnpvyzlczC2Hk7UpvpraF0Yy/RzfSS2jcRKvUChQUHDjC1VBQQHKy8u1EhSRVnFc2i29O64HXGzMkFJYif/sSJQ6HCLqpLJKr2LPxXwAwLROUkrfqHHU3MFLhajnqDkiksCmE5lYczQDggB8ObUvt/YYAI270z/44IN49NFH8dlnnyEsLAwAEBcXh5dffhkPPfSQ1gMk0oqQ8UDw/RyXdh25pQkWPdQTj/96DP89lIrIUDcM8HOQOiwi6mTWxKdDJQJDujiii7O11OFoVW8vO8gtTFB2tQ6nMkvR35e/Q4mo4yTnl+ONjWcBAP93TzcM7eokcUTUETReif/+++9x3333Yfr06fD19YWvry+mT5+OyMhILF26tD1iJNKOxnFpPSer/zTwBL7RyO6umNTPS11Wv/40rtayrJ6ItKdOqcKaoxkAgKhwX4mj0T5jIxnu6qZ+0xyTyJJ6Iuo4V2uVmLPqBK7WKTG0qyP+b2Q3qUOiDqJxEm9paYmlS5eiqKgIJ06cwIkTJ1BcXIylS5fCysqqPWIkonb2zrgQuNqaIbWwEv/5m2X1RKQ9u87noaC8Bk7WZhgV0jkngXBfPDXKLKlCQnoJ6ri1gjrAO5vPIjGvHM42ZljyCPfBGxKNy+kbWVlZoVevXtqMhYgkIrcwwccP9cKjy4/il4ay+oEsqyciLVjVMFbukYFeMDXWeO1AL0Q0JPGnM8tQWKG+YUGGp7KmHuO/OYTiylrYmBljaFcnRAQ5IyLQGR52FlKHR53M+uOZ+P14JmQC8NXUvnC24e8dQ9KiV9OHHnoICoWixReNiopCfn5+q4Mioo53d7ALJvf3aupWz7J66ihKlYgjl4uw+WQWjlwuglIlSh0SaUlqYSUOJhdCEICpAztXQ7trudiaI8TdFgBw4BJX4w3VHyezUFxZCwAor6lH9LlcvL7xDIZ8vAejv4jBh3+ex6HkQtTU8/WV2iYprxxv/aGeB//CvYEY3MVR4oioo7VoJX7z5s037Uh/M6IoYuvWrfjggw/g4uLSpuCIqGO9/UAIDl4qxJWiKny6IxHvjAuROiTq5KLP5mDB1vPIKatuOuYuN8e740IQGdo5Zokbst/i1avwIwKd4e1gKXE07WtEkDPO5ygQk1iAB/t6SR0OdTBRFLEyVv3z/vp9wRgU4Ih9iQWIScrHyYxSJOVVICmvAj8dSIWFiRGGdHHEiCBnRAS6wMexc//fIO0QRRHpxVWITSnCDzEpqK5TYVg3J8y5u6vUoZEEWpTEi6KIwMDA9o6FiCQmtzDBokk98eiyo1h2WF1WH+bPsnpqH9FnczB7ZQKuX3fPLavG7JUJ+G5GPybyeqy6Tonfj3XehnbXiwh0xtJ9l7H/UiFUKhEy7k01KAnppbiQo4CpsQxTBnjD3soUvb3t8Py93VBaVYsDlwoRk1SAmKQCFJTXYPfFfOy+mA/gHPydrBAR6IyIIGcMDnCEuQkb75I6/7pSpE7a41KKEJtSjFzFPze8XW3N8MUjffi7xkC1KInfu3evxhf29PTU+HOISHp3B7ng4f5e+P14Jl5Zfwp/PT8Mlqatbp9BdFNKlYgFW8/fkMADgAhAALBg63mMCnFjox49FX02FyVVdfCQm+Pu4M5fmdfP1x42ZsYorqzFmawy9Pa2kzok6kCrYtMAAA/0coe9lWmz5+wsTTGutwfG9faAKIrqio2kAsQkFuB4WglSCyuRWliJ5YevwMxYhvAAR0QEOmNEkDMCnKwgCPwdaAhEUURKYWVD0l6M2JQi5JfXNDvH1EiGPt52CA9wwCMDvdl/w4C16J15REREe8dBRDrkrQdCcKChrP6T6ES8N76H1CFRJxOfWtyshP56IoCcsmrEpxZzr5+eWhWnTmqmhvkYxI0YEyMZhnZ1QvS5XOxLLGASb0BKKmux7UwOAGDGoNtXnQiCgB4ecvTwkOPZEV2hqK7D4eSihqQ+H9ll1difVID9SQX4YBvgZW/RkNC7YHAXR1ib8aZ6ZyGKIpLzKxCbWtyUuBdWXJe0G8vQ19sO4QGOGBTggH4+9qzUIABt6E5PRJ2X3MIEH0/qiVnLjmL54Su4L9QN4QFMpEh78stvncC35jzSLYm55Th6pQRGMgFTB3pLHU6HGRHkrE7ik/Lx/L2c12wo1h/PRG29CiHutuir4c0bW3MTRIa6ITLUrSmpi0kqwL7EAsSnFiOz5CpWxaVjVVw6TIwEDPB1UO+lD3JGkKsNV+n1iEol4lJ+BeJSixCbUoT41GIUVtQ2O8fMWIZ+PvYID3DAoABH9PG2Y9JONyVpEr9o0SJs3LgRFy9ehIWFBYYMGYLFixcjKCio6Zynn34au3btQnZ2NqytrZvOCQ4OvuV1Z82ahV9//bXZsTFjxiA6OrrdvheizmZEkAseGeCNtccy8OK6U9j07BC42JpLHRZ1Ei42LftZaul5pFtWN6zCjw5xNajfGxFB6lFzpzJKUVJZe0NZNXU+KpXYVHUyY5Bvm5JqQRDQzdUG3Vxt8MSwAFTV1iM2pQj7EtVJfXpxFY6kFOFIShEWbb8IN1vzpr30Q7s6QW5hoq1vi7RApRKRmFfetJ89/kpx0/SCRuYmMvT3tUe4vyMGBTiit7ccZsZM2unOJE3iY2JiMGfOHAwcOBD19fV44403MHr0aJw/fx5WVlYAgP79+yMqKgo+Pj4oLi7Ge++9h9GjRyM1NRVGRrf+IY+MjMSyZcuaPjYz454RIk29+UB3xKUW4UpRFf697CjWPj0ItuZ8k0BtF+bvAHe5OXLLqm+6L14A4CY3Z2NFPVRVW4+NCVkADKOh3bXc5RYIcrVBYl45DiQXYnxvD6lDonZ26LJ665m1mTEm9NHuv7elqTHuCXbFPcGuAIArhZXYl5iPmKQCHEkpQq6iGmuPZWDtsQwYyQT087FTJ/WBLujhYcuGZx1MpRJxIVfRtJ89/koxSqvqmp1jYWKEAX72CPdXr7T38rKDqXGLJn4TNSOIoqgzA3kLCgrg4uKCmJgYDB8+/KbnnD59Gr1790ZycjK6dOly03NmzZqF0tJS/PHHH62KQ6FQQC6Xo6ysDLa2tq26BlFnkV5UhYe+O4zCihoMCnDA8kfDWNpFWtHYnR5As0S+8W0nu9Prp7VH0/HqhjPwc7TEnpdGGFwi8dFfF/Dj/hRM6ueFz6b0ljocamdP/+8YdpzLw8zBvnh/QmiHfd3qOiXiU4ubOt4n51c0e97J2hTDu6lX6Yd1c4YDq0K0TqkScSFHgdiGlfajV4pRdrV50m5paoQBfg5NSXtPTzmTdrqtluahrVqJr6+vx759+3D58mVMnz4dNjY2yM7Ohq2tLaytrVsddFlZGQDAweHmKy+VlZVYtmwZ/P394e19+z12+/btg4uLC+zt7XHPPfdg4cKFcHS8+Z7empoa1NT800hCoVC08jsg6nx8HC2x/NGBmPpjLGJTivHiupP4elo/g2hURe0rMtQd383od8OceDfOiddrq+LUs7Knh/sYXAIPACMCnfHj/hTEJBVw1Fwnl1tWjV0X8gHcuaGdtpmbGGF4oDOGBzrjbQAZxVXYf0nd8f5QciEKK2qx8UQWNp7IgiAAvbzsmjre9/ay42t4K9QrVTif03ylvby6vtk5VqZGGOjv0FAe74BQTzlMjJi0k/ZpvBKflpaGyMhIpKeno6amBklJSQgICMDzzz+PmpoafP/9960KRKVSYfz48SgtLcXBgwebPbd06VK88sorqKysRFBQEP78889brsIDwJo1a2BpaQl/f39cvnwZb7zxBqytrXHkyJGbluC/9957WLBgwQ3HuRJP9I/DyYWYtewoapUqzBzsiwXje7ChDmmFUiUiPrUY+eXVcLFRl9DzDaZ+Op1ZivHfHIKpkQyxb4w0yNW/mnol+r6/E1W1Smx77i6EesqlDonayRc7k/Dl7ksI83PAumcGSx1Ok9p6FY6nlTQ0yMvHxdzyZs/LLUwwrJsTRgS5YHigE3uP3EK9UoWz2YqGPe1FOHalBOU1zZN2GzPjhqRdvdLew8MWxkzaqQ1auhKvcRI/ceJE2NjY4L///S8cHR1x6tQpBAQEYN++fXjyySdx6dKlVgU8e/ZsbN++HQcPHoSXl1ez58rKypCfn4+cnBz85z//QVZWFg4dOgRz85b90klJSUGXLl2wa9cujBw58obnb7YS7+3tzSSe6DrbTmfjud9OQBSBl0YF4rmR7L5MRP94bcNprDmagYl9PLBkal+pw5HME78ew64LeXh5TBDm3N1V6nCoHdQpVbhr8R7kKWrw5dQ+mNDHU+qQbilPUd00l/7ApQIorls9DnG3VXe8D3RGP197g105rlOqcCarrGml/diVYlTWKpudY2NujPCmlXZHhHjY8qYzaVW7ldMfOHAAhw8fhqlp87vrfn5+yMrK0jxSAHPnzsW2bduwf//+GxJ4AJDL5ZDL5ejWrRsGDRoEe3t7bNq0CdOmTWvR9QMCAuDk5ITk5OSbJvFmZmZsfEfUAg/08kBheQ3e23oen+1MgrONGaaG+UgdFhHpAEV1HTafzAYARHVwabGuGRHkjF0X8hCTWMAkvpPafSEPeYoaOFqZIjLUTepwbsvV1hxTBnhjygBv1CtVOJVZin2J6r30pzPLcD5HgfM5Cizddxk2ZsYY2tUJEQ1JvYedhdTht5vaehXOZJUitiFpP55Wgqrrkna5hQnCrllp7+7OpJ10g8ZJvEqlglKpvOF4ZmYmbGxsNLqWKIp47rnnsGnTJuzbtw/+/v4t+hxRFJutnN9JZmYmioqK4O7O/ZVEbTVrqD8KKmrw7d7LeGPTGTham2FUiKvUYRGRxP44kYWrdUoEulpjgK+91OFIKiJQPWrueHoJyq7W6efoL5USSDsMVOQB1q6A7xBAxqamjVbGqns/TBnorVcjwYyNZOjv64D+vg54aXQQCitqcKBhL/3+S4UorqxF9LlcRJ/LBQAEulo37KV3wQA/e736Xq9XU6/E6cyyppFvx9NKcLWueU5jZ2nSbKU92M1G5/pacAsaAa1I4kePHo0lS5bgxx9/BKCeaVlRUYF3330XY8eO1ehac+bMwerVq7F582bY2NggN1f9C0Mul8PCwgIpKSlYu3YtRo8eDWdnZ2RmZuLjjz+GhYVFs68VHByMRYsW4cEHH0RFRQUWLFiASZMmwc3NDZcvX8Yrr7yCrl27YsyYMZp+u0R0E/NHB6GgvAbrjmVi7uoErHoiHAP8OAqMyFCJoohVDUlNVHjbZmV3Bt4OlujibIXLBZU4nFyI+3rq2SLC+S1A9KuAIvufY7YeQORiIGS8dHHpiNTCShxMLoQgANP1vBrNydoMD/b1woN9vaBSiTiTVdbU8f5EegmS8iqQlFeBnw6kwsLECEO6ODaU3rvAx9FS6vBvq6ZeiZPppYhLVa+0J6SXoLpO1ewcByvThqTdAYO6OCLQRfeS9mtFn825oRmsO5vBGiSN98RnZGQgMjISoiji0qVLGDBgAC5dugQnJyfs378fLi4uLf/it3iRX7ZsGWbNmoXs7Gw88cQTOH78OEpKSuDq6orhw4fjnXfeQVBQULPrNH7O1atXMXHiRJw4cQKlpaXw8PDA6NGj8cEHH8DVtWWrhRwxR3Rn9UoVnv7fcey+mA9bc2Osnz0Ega6aVeMQUedw9EoxHv7+CCxMjBD35kjYmuvhyrOWvb/1PH45lIpHBnhj8eReUofTcue3AOtmovngR6Bp+OOUFQafyC/cdh4/H0zFiCBnLH80TOpw2k1pVS0OJhcipqH0Pr+8eRWsv5OVei59kDMG+TvCwlTaVfrqOiVOpJciNqUIcalFSEgvRW1986Td0coUgwIcER6gLo/v6myt00n7tRrHst7ifybHsnYS7dbYDlCPmFu7di1OnTqFiooK9OvXD1FRUbCw6Bz7ZpjEE7XM1Volon6ORUJ6Kdzl5tgwe0in3j9HRDc3b80J/HEyW/8S1na0P6kAM3+Jh5utOY68fo9+VCeolMCS0OYr8M0I6hX5eWcMtrS+uk6J8I92o+xqHX6eOQD3Gsh2MlEUcSGnvKnj/fG0EtSr/kkhzIxlCA9wVCf1gc7o4mzV7j/z1XVKJKSVILZhpf1kxo1Ju5O1GQYFOCA8wBGDAxzQxdlaP/4vXkepEnHX4j3NVuCvJUA9nvXgq/ewtF7PtUtju7q6OgQHB2Pbtm2IiopCVFRUmwMlIv1lYWqEX2YNxOTvjyA5vwIzf4nH+mcGw87S8MZKERmq4spa/HVGvR0uapB+lxZrU5i/A8xNZMhVVCMxrxzBbnqwKJB2+DYJPACIgCJLfZ7/sA4LS5dsO52Dsqt18LSzwN3BLa8+1XeCICDEwxYhHraYPaILyqvrcPhykbpBXmI+ssuqsT+pAPuTCvABAC97i6aEfkhXJ1ibabyD9wZVtfVISCtFXKp65NupjDLUKpsn7S42Zs1W2gOc2v9mQkeITy2+ZQIPqOtmcsqqEZ9ajMFdHDsuMJKMRv+jTExMUF196x8gIjI8dpamWPFYGB5aehjJ+RV4bPlRrHpikORldUTUMdYfz0CtUoWennL08rKTOhydYW5ihMEBjtibWIB9iQX6kcRX5Gn3vE5oZWwaAGBamLdBr3jamJtgTA83jOnhBlEUcbmgoqnjfVxKMTJLrmJVXDpWxaXDxEjAAF8HRAQ5Y0SQM4JcbVqUWFfW1ON4WklD0l6M05mlqFM2LyB2szVvWmkfFOAIP0fLTpG0Xy+/vGX5V0vPI/2n8W2xOXPmYPHixfj5559hbNz2u2pEpP887Cyw4vEwTP7uMBLSSzF3dQJ++Fd/GBvorFkiQ6FSiVgd19jQjqvw14sIdMbeRHXn72ciukgdzp1Zt7A0vKXndTJns8pwMqMUxjIBUwZ6Sx2OzhAEAV1dbNDVxQZPDAtAVW09YlOKEJNYgH1JBUgrqsKRlCIcSSnCx9svwtXWrKnj/dCuTk3TGypq6nHsSjFiU4oRl1qEM5llzUr2AcBDbt5spd3HoXMm7ddzsTHX6nmk/zTOwo8ePYrdu3fj77//Rs+ePWFlZdXs+Y0bN2otOCLSH4GuNvhl1kBE/RyH3Rfz8camM1g8qZdBvLgSGarDl4twpagKNmbGGNfbQ+pwdM6IIBdg63kcSytGRU29VkqK25XvEPWed0UObmxsBzTtifcd0tGR6YRVDTesxoS6MVm6DUtTY9wT7Ip7gtU3e64UVjbtpT+SUoQ8hXq6zbpjmTCSCejrbYc6lYizWWVQXpe0e9pZNCXtgwMc4WVvYZDvK8L8HeAuN0duWfWt/mfCTa4eN0eGQeNXEzs7O0yaNKk9YiEiHaPpLNIBfg74Zno/PP2/Y1h3LBPONmZ4eUxwB0ZMRB1pVZy6tPjBfp6w0vUEVQJ+TlbwdbREWlEVDicXYnQPN6lDuj2ZkXqM3LqZUKcF16YLDb/7Iz82yKZ25dV12HwyCwAwI9xX4mj0i5+TFfycrPDvIX6orlPi6JXiptL75PwKHEsraTrX28GiaUZ7uL8DvB10e4xdRzGSCXh3XAhmr0y41f9MvDsuxKC3eBiaVnWn7+zYnZ6obbNI18Sn47WNZwAA740Lwayh/u0aKxF1vDxFNYZ8vAdKlYgd84YjyI0jJm/m3c1n8euRNEwP98FHD/aUOpyWuemceE91Am+g4+VWHLmCdzafQ1cXa+x8YbhBrga3h8ySKhxOLoKxkYDwAEd4csLNbXFOfOfXLt3picgw3GoWaW5ZNWavTLjjLNKpYT4oKK/BZzuTsGDbeTjZmOGBXiy1JepM1h3NgFIlYqCfPRP42xgR5IJfj6QhJrEAoijqR/IXMh4Ivl/dhb4iT70H3neIQa7AA+rxao0N7aLCffTj31BPeNlbYspArra3VGSoO0aFuGlUJUmdk8ZJvL+//21/eaWkpLQpICKSllIlYsHW8zfdcyVCXba1YOt5jApxu+2Lxtx7uqKgogYrjqThxbWn4GBpiiFdndorbCLqQEqViN/iGxvasbT4dgYFOMLUWIas0qu4XFCBri56csNDZmSwY+Sud/RKCZLyKmBhYoSH+nlJHQ4ZOCOZwDFypHkSP2/evGYf19XV4cSJE4iOjsbLL7+srbiISCLamkUqCALeHdcDhRU1+OtMLp7633GseWoQQj3l7RA1EXWkfQ1zoe0tTRAZquP7vCVmYWqEcH8HHLhUiH2JBfqTxFOTxlX48b09mjqpExFJSeMk/vnnn7/p8W+//RbHjh1rc0BEJC1tziI1kgn4fEofFFfGIzalGLOWHcXG2UPg48jSOSJ91til++EB3jA3McwSa01EBDrjwKVCxCQV4IlhAVKHQxoorKjB9rM5AIAZg1h1QkS6QWtDnO+77z5s2LBBW5cjIoloexapuYkRfpw5AN3dbVFYUYOZv8ShsKKmLSESkYQyS6qwNzEfADAtjLPhW2JEkAsAIC6lGFW19RJHQ5pYdywDdUoRvb3k6OnFSjIi0g1aS+LXr18PBwfOJiTSd42zSG+1212AuhOqJrNIbc1N8OujA+Flb4ErRVV4dNlRVNTwjSyRPloTnwFRBO7q6gR/Jyupw9ELXZyt4GlngVqlCrEpRVKHQy2kVIlY3VB1EsVVeCLSIRon8X379kW/fv2aHn379oW7uzveeOMNvPHGG+0RIxF1oMZZpABuSOTbMovUxdYcKx4Lg4OVKc5kleGZ/x1Hbb2q7QETUYepU6qw5mgGAHWXbmoZQRAwIsgZALAvsUDiaKil9icVILPkKmzNjTGOE1aISIdovCd+woQJzbrTy2QyODs7Y8SIEQgODtZqcEQkjchQd3w3o98Ns0jd2jiLNMDZGstmDcS0n2JxMLkQ838/hSWP9IGMo1GI9MLO83korKiBs40Z7g1xlTocvRIR6IxVcemISWISry8aG9pN7u8NC1P2fiAi3aFxEv/ee++1QxhEpGvaaxZpb287fDejPx5ffhRbTmXDydoMbz/QnXN3ifTAqjh1UjN1oDdMjLS2I88gDOnqBBMjAWlFVUgtrORWBB2XWVKFPQ29H6az6oSIdIzGr8BGRkbIz8+/4XhRURGMjHiXkqgzaZxFOqGPJwZ3cWxzAt8oItAZ/3m4NwDgl0Op+GF/ilauS0TtJ6WgAoeSiyATgKlsaKcxazNjDPRT9xKJSbzxfRTplt/i0yGKwOAAR3R1sZY6HCKiZjRO4kVRvOnxmpoamJqatjkgIjIME/t64s2x3QEAH2+/iA3HMyWOiEg/KFUijlwuwuaTWThyuQhK1c1fl7Xtt3h1g6+7g1zgaWfRIV+zs4kIbNgXz5J6nVZbr8Laht4PHCtHRLqoxeX0X331FQB1c5aff/4Z1tb/3JVUKpXYv38/98QTkUaeHB6Agooa/Lg/Ba9sOA0HK1PcHewidVhEOiv6bM4NvSrc29iroiWq65T4veFGW9QgrsK31oggFyzafhGxKUWorlPC3IQVjLpox7lcFFbUwtnGDKN7sPcDEemeFifxX3zxBQD1Svz333/frHTe1NQUfn5++P7777UfIRF1aq9FBqOgvAabTmTh2VUJWP1kOPr62EsdFpHOiT6bg9krE3D9untuWTVmr0zAdzP6tVsi/9eZHJRW1cHTzgIRgbzR1lqBrtZwszVHrqIacanFTSvzpFvY+4GIdF2Lk/jU1FQAwN13342NGzfC3p5vsomo7WQyAZ9M7oWiylrsTyrAY8uP4vdnhnAPItE1lCoRC7aevyGBBwAR6vGPC7aex6gQN631rrjWqoZZ2dPCvNvl+oaicdTcmqMZ2JeYzyReByXnlyM2pRgyAZjG3g9EpKM0vr24d+9eJvBEpFUmRjJ8F9UPvb3kKKmqw79/iUfuNeXCRIYuPrW4WQn99UQAOWXViE8t1vrXvpCjwPG0EhjLBEwZ4K316xuaxsSdo+Z008pY9Q2re4Jd4cHeD0SkozQeMQcAmZmZ2LJlC9LT01FbW9vsuc8//1wrgRGRYbEyM8YvswZi8vdHkFpYiX//Eo91zwyG3MJE6tCIJJdf3rKbWi09TxOrG1bhR/dwhYutudavb2iGdnOCkUxASkElMoqr4O1gKXVI1KCqth4bEtS9H2a0pveDSgmkHQYq8gBrV8B3CCBj3wMiqSlVotZHJktN4yR+9+7dGD9+PAICAnDx4kWEhobiypUrEEUR/fr1a48YichAOFqbYcVjYXjou8NIzCvHk78ew4rHw/Sq+VNnfKEg6bnYtCx5bul5LVVZU49NJ7IAAFHh7NKtDbbmJujvY4/4K8XYl1SAf7H7uc7Yeiob5dX18HGwxPBuGm51OL8FiH4VUGT/c8zWA4hcDISM126gRNRiUjWEbW8al9O//vrrmD9/Ps6cOQNzc3Ns2LABGRkZiIiIwMMPP9weMRKRAfF2sMSvj4bBxswY8VeK8fyaEx02Qqutos/m4K7FezDtp1g8v+Ykpv0Ui7sW70H02RypQyM9F+bvAHe5OW51O0iA+k1JmL+DVr/ullPZqKiph7+TFQYHOGr12oYsIqihpJ7z4nVKYyn99HAfyDS5+Xp+C7BuZvMEHgAUOerj57doMUoiaqnGhrDXb0drbAirz+/PNE7iL1y4gJkzZwIAjI2NcfXqVVhbW+P999/H4sWLtR4gERmeEA9b/DhzAEyNZNhxLg9vbz4LUdTtRL4zv1CQ9IxkAt4dFwIANyTyjR+/Oy5Eq1UfoihiZay6S/f0MA2TGrqtxn3xhy8XoaZeKXE0BACnMkpxJqsMpkYyPNzfq+WfqFKqV+Bv2XYSQPRr6vOIqMPcqSEsoG4Iqy8LRdfTOIm3srJq2gfv7u6Oy5cvNz1XWFiovciIyKAN7uKIJVP7QBDUe3K/3H1J6pBuqbO/UJBuiAx1x3cz+sFN3rxk3k1u3i7j5U5nluFctgKmxjJM1iSpoTvq4WELZxszVNUqcexKidThENB0w2psTzc4Wpu1/BPTDt+4At+MCCiy1OcRUYeRsiFsR9B4T/ygQYNw8OBBdO/eHWPHjsVLL72EM2fOYOPGjRg0aFB7xEhEBmpsT3e8PyEUb/9xFkt2XYKTtRlm6OD+UU1eKAZ3YUkytV5kqDtGhbh1SN+FxlnZD/R0h72Vqdavb8gEQUBEoDPWH89ETFIBhnZ1kjokg1ZWVYetp9WJuMavMRV52j2PiLRCyoawHUHjJP7zzz9HRUUFAGDBggWoqKjA2rVr0a1bN3amJyKt+9cgXxQoqvHVnmS8s/ksnKzNEBnqJnVYzXT2FwrSLUYyod1vBpVdrcOWU+qkJqo1XbrpjhqT+H2J+XhjbHepwzFo6xMyUV2nQrCbDfr7ajhG2dpVu+cRkVZI1RC2o2hUTq9UKpGZmQkfH/ULupWVFb7//nucPn0aGzZsgK+v7q2QEZH+e2FUIKaFeUMlAv+35gTiUoqkDqmZzv5CQYZn0zVJTT8fDZMaapFh3ZwgE4CkvApkl16VOhyDJYpiU9VJ1CBfCIJmVS1K78HIgyNutVtKJQK5cITSe3BbQyUiDUjVELajaJTEGxkZYfTo0Sgp4f4tIuo4giDggwmhGBXiitp6FZ5YcQwXcxVSh9Wks79QkGFRJzXqLt1R4T4aJzXUMnaWpujjbQcAiEkqkDYYA3bkchFSCiphZWqEB/t6avz58WlleKf2XwBwQyLf+PG7tf9CfFpZW0MlIg1I0RC2I2nc2C40NBQpKSntEQsR0S0ZG8nw9bS+GOhnj/Lqevz7l3hkllRJHRaAzv9CQYbl6JUSXMqvgKWpESa2IqmhlhsR5AIA2MdRc5JZ2bAKP6GvJ6zNNN5livzyauxQhWF23TzkovmN2lw4YnbdPOxQhXE7FZEEOrohbEfS+LfVwoULMX/+fHzwwQfo378/rKysmj1va2urteCIiK5lbmKEn2cOxMM/HEZSXgVm/hKP9c8MgYMONN1qfKFYsPV8syZ3bnJzvDsuRK9fKMiwNJYWT+jjARtzE4mj6dwiAp3x+c4kHEouQp1SBRMjjddWqA3yFdX4+5y64dyM8NZtCW3cJrVDFYadNQMQJrsIF5QiH3aIVwVD1bBexu1URNLoyIawHUnjJH7s2LEAgPHjxzcrsRNFEYIgQKnkHEwiaj9ySxP8+lgYJi09jJSCSjy6/Ch+ezIclqaar6BoW2d9oSDDUVRRg+1ncgEA08PY56a99fSUw8HKFMWVtTieVoJBAZxe0ZHWHM1AvUpEPx87hHi0bhGqcTtVblk1VJAhVhXS7HkB6pu53E5FJJ2OaAjb0TR+17t37972iIOIqMXc5RZY8XgYJn9/BKcySvHsqgT8NHOATqxidcYXCjIc649nolapQm8vOXp6yaUOp9OTyQQM7+aEP05mIyapgEl8B6pXqvBbvLr3Q1tGlzZup5q9MgEC1CNFG3E7FbULlRJIO6weW2jtCvgOAWRGUkdFHUzjJD4iIqI94iAi0khXFxv8998DEfVzLPYlFuDVDafx2cO92YSLqJVUKhGr4xsb2nEVvqOMCHLBHyez1b/HIoOlDsdg7E0sQE5ZNewtTTC2Z9u2O3E7FXWY81uA6FcBRfY/x2w9gMjFQMh46eKiDteq+tMDBw7ghx9+QEpKCn7//Xd4enrif//7H/z9/XHXXXdpO0Yiopvq72uPb6f3w1P/O46NCVlwtjHD6/dx3jJRaxy6XIi0oirYmBvjgd5MOjrKsG5OEATgQo4CeYpquNpy73RHWBmr7v3w8ABvmJu0fRWT26mo3Z3fAqybieb1HgAUOerjU1YwkTcgGteebtiwAWPGjIGFhQUSEhJQU1MDACgrK8NHH32k9QCJiG5nZHdXLHqoJwDgh5gU/PdgqsQREemnxqRmUj8vnegxoVUqJZB6ADizXv2nSnf69zham6GXp3rrAkfNdYz0oirsv6T+u54e5qO16zZup5rQxxODuzgygSftUSnVK/DXJ/DAP8eiX9Op323UvjRO4hcuXIjvv/8eP/30E0xM/ulaO3ToUCQkJGg1OCKilpgywBsvjwkCAHyw7Tw2n8ySOCIi/ZJbVo1dF9RjzqaHay+p0QnntwBLQoFfHwA2PK7+c0mo+riOiGgYNcckvmOsik+DKKqrIPycrO78CURSSzvcvIT+BiKgyFKfRwZB4yQ+MTERw4cPv+G4XC5HaWmpNmIiItLYsyO6YNYQPwDA/N9P4cAlvhkmaqm1RzOgVIkI83NAoKuN1OFoT2P56fVvfhvLT3UkkY8IdAYAHEgqQL1SJXE0nVtNvRK/H8sE0LaGdkQdqiJPu+eR3tM4iXdzc0NycvINxw8ePIiAgACtBEVEpClBEPDOAyF4oJc76pQinvnfcZzJLJM6LCKdV69UYc3RhoZ2gzrRKrwelZ/28baD3MIEiup6nMoslTqcTm37mVwUV9bCXW6OkcEuUodD1DLWrto9j/Sexkn8k08+ieeffx5xcXEQBAHZ2dlYtWoV5s+fj9mzZ7dHjERELSKTCfhsSm8M7eqIylolZi2LR2phpdRhEem0xi7dDlamiAx1kzoc7dGj8lMjmYBh3ZwAAPsSWUXUnhp7P0wd6ANjHRhLStQivkPUXehxqz4LAmDrqT6PDILGv71ee+01TJ8+HSNHjkRFRQWGDx+OJ554Ak8//TSee+659oiRiKjFzIyN8P2M/ujhYYuiylrM/CUO+eXVd/5EIgO1Kq6hS3d/L5gZd6JZw3pWfjqiYV88k/j2czFXgWNpJTCSCZga5i11OEQtJzNSj5EDcGMi3/Bx5MecF29ANE7iBUHAm2++ieLiYpw9exaxsbEoKCjABx980B7xERFpzMbcBMsfDYOPgyUyiq9i1i9HUV5dJ3VYRDono7iqqZnaNC126dYJelZ+OjxQvRJ/JqsMhRU1EkfTOTWuwo8OceUoP9I/IePVY+RsrxsBauvB8XIGqNV1RKamprCxsYG7uzusra21GRMRUZs525hhxWNhcLI2xfkcBZ7+33HU1Eu/95VIl/wWn955u3TrWfmpi405enjYAgD2s0u91lXU1GNTgnpyCRvakd4KGQ/MOwv8exsw6b/qP+edYQJvgDRO4uvr6/H2229DLpfDz88Pfn5+kMvleOutt1BXx5UuItIdfk5WWDYrDFamRjh8uQgvrjsFlepmTa6IDE9tvQrrjmUAAKLCO2FSo4flp41d6nVh1JxSJeLI5SJsPpmFI5eLoNTz351/nMhCZa0SAU5WGNLFUepwiFpPZgT4DwN6Tlb/qUO/w6jjGGv6Cc899xw2btyITz75BIMHDwYAHDlyBO+99x6Kiorw3XffaT1IupEoiqiqqpI6DCKdF2BvjCWTuuOZlcex9Vgq5MZKvDG2OwThVqtzRIZh+5kc5Bcr4GJrikE+Vqis7IRNIH1HAg/8COx8GyjP+ee4jTsw6n318zr0fYd7W+Gb2mrsPZsBRXk3GMmk+T2181wuPtp+Abll/5T1u8nN8MZ93TGqh/41PxRFEctjLkJVW41JvXz5/onIgFlaWnaO94CihmxtbcW//vrrhuN//vmnaGtrq9G1PvroI3HAgAGitbW16OzsLE6YMEG8ePFis3OeeuopMSAgQDQ3NxednJzE8ePHixcuXLjtdVUqlfj222+Lbm5uorm5uThy5EgxKSmpxXGVlZWJAMSysjKNvp+OVFFRIUI9I4cPPvjggw8++OCDDz744IOPOzwqKiqkTuNuq6V5qMbl9GZmZvDz87vhuL+/P0xNTTW6VkxMDObMmYPY2Fjs3LkTdXV1GD16dLPVgP79+2PZsmW4cOECduzYAVEUMXr0aCiVt97b+sknn+Crr77C999/j7i4OFhZWWHMmDGormaHaiIiIiIiItJfgiiKoiaf8P777+PixYtYtmwZzMzMAAA1NTV4/PHH0a1bN7z77rutDqagoAAuLi6IiYnB8OHDb3rO6dOn0bt3byQnJ6NLly43PC+KIjw8PPDSSy9h/vz5AICysjK4urpi+fLlmDp16h3jUCgUkMvlKCsrg62tbau/n/YkspyeqFU++zsRPx9IhZFMwNfT+uDuYN3oTE3UkT7efgG/Hk7D3cEuWBrVT+pw6Brrj2fg7T/Oobe3HGueGtyhXzsupQizlh2943nLHx2I8AD92FdeXFmLuz/dh1qlCmueCkdvb3upQyIiCel6OX1L81CN98SfOHECu3fvhpeXF3r37g0AOHXqFGprazFy5Eg89NBDTedu3LhRo2uXlZUBABwcHG76fGVlJZYtWwZ/f394e998vmdqaipyc3Nx7733Nh2Ty+UIDw/HkSNHbprE19TUoKbmn31fCoVCo7ilIAgCrKw6WSdhog7w9sS+KKszwoaETMz/IxGrnrBDf9+b/84h6oyq65TYcq4YMlNzzIoI4muJjhnd2xfv/nUZZ/NrUAsT2FtpVuXYFuXKUshM7zx6rVxppDc/N6uO56LeyBQ9vW0xOMhTp9+8ExG1lMZJvJ2dHSZNmtTs2K0Sak2oVCrMmzcPQ4cORWhoaLPnli5dildeeQWVlZUICgrCzp07b1m6n5ubCwBwdW2+uubq6tr03PUWLVqEBQsWtPl7ICLdJwgCPp7UE8WVNdibWIDHlh/D+mcGo5urjdShEXWIP0/noOxqHbzsLTC8m7PU4dB13OUWCHazwcXcchxILsT43h4d9rVdbFo2O72l50lNpRKxKi4dgHqsHBN4IuosNE7ily1b1h5xYM6cOTh79iwOHjx4w3NRUVEYNWoUcnJy8J///AdTpkzBoUOHYG6unReR119/HS+++GLTxwqFQis3JohIN5kYyfBtVD9M/ykOJzNKMfOXeGx8dgjc5RZSh0bU7lbFpQEApoX5SNb9nG4vItAZF3PLsS8xv0OT+DB/B7jLzZFbVo2b7bUUALjJzRHmrx/VSweTC5FWVAUbM2NM6NNxf49ERO1N48Z27WHu3LnYtm0b9u7dCy8vrxuel8vl6NatG4YPH47169fj4sWL2LRp002v5eamHn2Sl5fX7HheXl7Tc9czMzODra1tswcRdW6Wpsb4ZdZABDhbIaesGjP/G4/SqlqpwyJqV+ezFUhIL4WxTMCUAYZzs1rfZp5HBKkrJPYnFUDVgbEayQS8Oy4EgDphv1bjx++OC9Gbmz8rY9U3rB7q5wlLU43XrYiIdJbGSXxRURHmzJmDkJAQODk5wcHBodlDE6IoYu7cudi0aRP27NkDf3//Fn2OKIrN9rBfy9/fH25ubti9e3fTMYVCgbi4uKa59kREAOBgZYoVj4XB1dYMl/Ir8MSvx1Bdd+vJF0T6bnW8OqkZE+oGZxsziaPpGNFnc3DX4j2Y9lMsnl9zEtN+isVdi/cg+mzOnT9ZIgN8HWBlaoTCilqcz+nYPj2Roe74bkY/uMmbVzu6yc3x3Yx+iAx179B4Wiun7Cp2XVAv6EQN8pU4GiIi7dL4tuS//vUvJCcn4/HHH4erq2ub9hfNmTMHq1evxubNm2FjY9O0Z10ul8PCwgIpKSlYu3YtRo8eDWdnZ2RmZuLjjz+GhYUFxo4d23Sd4OBgLFq0CA8++CAEQcC8efOwcOFCdOvWDf7+/nj77bfh4eGBiRMntjpWIuqcvOwt8etjYXj4+yM4llaCuatP4PsZ/WBspBOFSkRaU1FTj00JWQCAqHAfiaPpGNFnczB7ZcINpeG5ZdWYvTJBZ5NSU2MZhnR1ws7zediXmI9QT3mHfv3IUHeMCnFDfGox8sur4WKjLqHXlxV4APgtPgMqUb1FIJA9T4iok9E4iT9w4AAOHjzY1Jm+Lb777jsAwIgRI5odX7ZsGWbNmgVzc3McOHAAS5YsQUlJCVxdXTF8+HAcPnwYLi4uTecnJiY2dbYH0NQE76mnnkJpaSnuuusuREdHa20PPRF1LsFutvh55gD865d47LqQh7f+OItFD/VkEyTqVDafzEJlrRIBTlYYrCfjwdpCqRKxYOv5m+7tFqEuD1+w9TxGhbjpZHI6IsgZO8/nISapAHPv6dbhX99IJmBwF/38OalTqrAm/p+GdkREnY3GSXxwcDCuXr2qlS9+pxH1Hh4e+OuvvzS+jiAIeP/99/H++++3KT4iMhzhAY74elpfzF55HGuOZsDZxgwvjQ6SOiwirRBFEStj1UnN9HAfg7hBFZ9ajJyy6ls+LwLIKatGfGqxTiarEYHqffEJ6aUou1oHuYWJxBHpj13n85BfXgMna1NE9rh5PyQiIn2mcb3o0qVL8eabbyImJgZFRUVQKBTNHkRE+mpMDzcsnNgTAPD1nmT878gVaQMi0pKTGaW4kKOAqbEMk/vf2EC2M8ovv3UC35rzOpqXvSW6ulhDqRJxKLlQ6nD0ysqGCQxTBnjD1Jhbo4io82nVnHiFQoF77rmn2XFRFCEIApRKNoUi3aRUiXq9v486xvRwH+SXV2PJrkt4Z8s5OFqbYWxP3dszS6SJxlnZD/Ryh52lqcTRdIzOMPM8ItAZyfkV2JeYz99DLZRSUIFDyUUQBPUYRSKizkjjJD4qKgomJiZYvXp1mxvbEXWU6LM5WLD1fLPSSne5Od4dF6KTTY1IWs+P7IaC8hqsikvHvDUnYWdpgiFdnKQOi6hVyqrqsPVUNgAgKtxw9gd3hpnnI4Kc8d+DqYhJKmhaLKHba7xhdXeQC7wdLCWOhoiofWicxJ89exYnTpxAUBD3ipJ+0NfuxCQdQRDw/oRQFFXUIvpcLp5ecRxrnx6MEA9bqUMj0tiGhEzU1KsQ7GaDfj52UofTYRpnns9emQABaPYaoC8zzwf6OcDCxAh5ihpczC1Hd3f+Drqd6jol1h/PBADMGMRVeCLqvDTeKDRgwABkZGS0RyxEWnen7sSAujuxUnX7JotkeIxkApZM7YMwfweU19Tj38vikVFcJXVYRBoRRRGrGvYHRw3yNbiVXH2feW5uYtTUdG9fYoHE0ei+raeyUXa1Dp52FogIdLnzJxAR6SmNV+Kfe+45PP/883j55ZfRs2dPmJg075baq1cvrQVH1Fb63p2YpGVuYoSfZg7AIz8cwcXccsz8JR7rnxkMR2szqUMjapG41GJcLqiEpakRJvbxkDocSej7zPOIQGfsuZiPmKR8zB7RRepwdNrKuH8mMOjLvy8RUWtonMQ/8sgjAIDHHnus6ZggCGxsRzpJ37sTk/TkFib49bEwPLT0MFILK/HY8qNY/eQgWJlp/OuTqMM17g+e2NcTNuaGO6JMn2eejwhSj5o7dqUE5dV1Bv3veDtns8pwKqMUJkYCpgzwljocIqJ2pfG70NTU1PaIgzTETust0xm6E5P0XG3NseLxMEz+7jBOZZbhmZXH8d9/D+ToItJphRU1iD6bAwCYzi7desvX0Qp+jpa4UlSFw5eLMIZzz2+qcdvImB5ucLZhtZS+4PtZotbROIn39TWczra6ip3WW64zdCcm3dDF2Rq/zBqI6T/F4cClQryy/hQ+n9IHMr7ZIB31+7FM1ClF9PG2Q6inXOpwqA1GBLlg+eEr2JdYwCT+JhTVdfjjhHoCw4xBfJ+qL/h+lqj1WrWM9L///Q9Dhw6Fh4cH0tLUdz6XLFmCzZs3azU4ulFjp/Xr93k3dlpvXHUhtcbuxMA/3Ygb6Ut3YtIdfX3ssXRGPxjLBPxxMhuLtl+QOiSim1KpRKyOb2hoF85VeH0X0VBSv79h1Bw1tykhC1frlOjmYo1w3pTXC3w/S9Q2Gifx3333HV588UWMHTsWpaWlTXvg7ezssGTJEm3HR9dgp/XW0ffuxKRb7g5yweJJ6gaePx1IxY/7L0scEdGNDiQXIqP4KmzNjfFAL8NsaNeZDPJ3hKmxDFmlV5GcXyF1ODpFFEWsjP3nhpWhTWDQR3w/S9R2GpfTf/311/jpp58wceJEfPzxx03HBwwYgPnz52s1OGqOndZbT9+7E5NumdTfC4UVNVi0/SI++usinKzN8FA/L6nDImqyqiGpmdTfCxamRhJHQ21lYWqEQQGO2J9UgJikAnRztZE6JJ0Rn1qMS/kVsDAxwkP9+XtYH/D9LFHbabwSn5qair59+95w3MzMDJWVlVoJim6OndbbprE78YQ+nhjcxZEJPLXJU8MD8Phd/gCAV9afxr7EfIkjIlLLKbuK3RfVP48spe88IgLVJfWcF99c41i5CX08YMvO/XqB72eJ2k7jJN7f3x8nT5684Xh0dDS6d++ujZjoFthpnUh3CIKAN8d2x4Q+HqhXiXh2VQJOZpRKHRYR1h7NgFIlItzfAV1duGLbWTSOmotPLUZVbb3E0eiGgvJ/JjCwoZ3+4PtZorZrcRL//vvvo6qqCi+++CLmzJmDtWvXQhRFxMfH48MPP8Trr7+OV155pT1jNXiNndZvtX4sQN3Vk53WiTqGTCbg08m9MaybE6pqlXhs+VGkFHC/KkmnXqnCmvgMAEAUk5pOJcDJCl72FqhVqnDkcpHU4eiEdccyUKcU0ZsTGPQK388StV2Lk/gFCxagoqICTzzxBBYvXoy33noLVVVVmD59Or777jt8+eWXmDp1anvGavDYaZ1I95gay/DdjP7o6SlHcWUtZv4Sj3wFSwBJGnsu5iNXUQ1HK1OM6eEqdTikRYIgNK3Gs6Re3RxtdUMp/QxuG9ErfD9L1HYtTuKvHWkSFRWFS5cuoaKiArm5ucjMzMTjjz/eLgFSc+y0TqR7rM2MsezRgfBztERmyVXM/CUeiuo6qcMiA7SqIal5eIA3zIzZ0K6ziQh0AQDsS8o3+FFzMUn5yCq9CrmFCcb15gQGfcP3s0Rto1F3+uvHdlhaWsLS0lKrAdGdsdM6ke5xsjbDisfC8dB3h3ExtxyjP9+PaWE+mBrmDVdb7uuj9pdeVIX9l9QrtNPDuDLZGQ3p4ggTIwEZxVeRWliJAGdrqUOSzMpY9Q2ryf29YG7CG1b6iO9niVpPoyQ+MDDwjvM3i4uL2xQQtUxjp3Ui0h0+jpb49bGBeHTZUeQqqvHFriR8tecSRnV3xYxBvhjSxREyvjmhdrI6Ph2iCAwPdIaPI2+wd0ZWZsYY6OeAw5eLEJNUYLBJfEZxFfYmcgJDZ8D3s0Sto1ESv2DBAsjlbBxCRHQrPTzkOPDq3Yg+m4uVsWk4eqUE0edyEX0uF/5OVpge5oPJ/b1gb2UqdajUidTUK/H7sYaGdkxqOrURQc44fLkI+xIL8OhQf6nDkcRvDTeshnZ1NNgbGURk2DRK4qdOnQoXF5f2ioWIqFMwMzbChD6emNDHExdzFVgdl46NCVlILazEh39dwKd/J+KBnu6IGuSLfj52d6xwIrqTHefyUFRZC1dbM4wM5ut0ZzYiyAUf/XURsSlFqK5TGlwpeW29CusabljNCOcEBiIyTC1ubMc3mUREmgt2s8X7E0IR98ZIfPRgT4S426K2XoWNJ7Iw6bvDGPvVQayMTUNFDec+U+utik0DAEwd6ANjoxa/tJMe6uZiDXe5OWrqVYhNMbxRc9HnclFYUQsXGzPcG8IJDERkmFrVnZ6IiDRjZWaM6eE++PP/7sKmZ4dgcn8vmBnLcCFHgbf+OIvwD3fhzU1ncCFHIXWopGeS88sRl1oMmQBMDfOWOhxqZ9eOmotJMrxRc//csPKGCW9YEZGBavFvP5VKxVJ6IqI2EgQBfX3s8Z+HeyPujZF46/7uCHCyQmWtEqvi0nHflwcw6bvD2HQiE9V1SqnDJT3QOFZuZHdXuMstJI6GOkJEYEMSb2Dz4i/lXXvDir0fiMhwabQnnoiItMfO0hRPDAvA43f548jlIqyKS8eOc7k4nlaC42kleH/reTw8wBvTw3zg52Qldbikg67WKrHheCYAYMYg7g82FEO6OsFYJiClsBLpRVUGM43g2htWHna8YUVEhot1SEREEhMEAUO6OuHbqH44/No9eGlUIDzk5iipqsOP+1Mw4j/78K//xiH6bC7qlSqpwyUdsu10NhTV9fB2sMCwrk5Sh0MdxNbcBP187QEAMUn5EkfTMapq63nDioioAZN4IiId4mJrjudGdsOBV+/BzzMHYESQMwQBOHCpEM+sPI6hi/fgi51JyC2rljpU0gGNK5PTw3whk7EBrSFp3Be/z0BK6reczEZ5TT18HS15w4qIDB6TeCIiHWQkE3BviCuWPxqG/S/fjdkjusDRyhR5ihp8ufsShi7eg6dWHMP+pAKoVGw8aojOZpXhZEYpTIwEPDzAS+pwqIM17os/fLkINfWdu3+GKIpYGaduaDc9zIc3rIjI4DGJJyLScd4Olng1MhiHX78HX03rizB/ByhVIv4+n4eZv8Tj7s/24YeYyyiurJU6VOpAq+PVq/CRoe5wsjaTOBrqaCHutnCxMcPVOiWOppZIHU67OpVZhrNZCpgay/DwAE5gICJiEk9EpCfMjI0wvrcH1j09GH+/MByzhvjBxswYaUVVWLT9IgZ9tBvz1pzAsSvFHAvayVXU1GPziSwAQFQ4u3QbIkEQ/ulS38n3xa9sGCt3f093OFiZShwNEZH0mMQTEemhQFcbvDe+B+LeHInFk3qip6cctUoV/jiZjcnfH8F9Xx7A/45cQXl1ndShkpZU1tTj4KVCfLEzCTN+jkNlrRJdnK0Q7u8gdWgkkQgD2BdfWlWLraeyAQAzBvGGFRERwBFzRER6zdLUGI8M9MEjA31wKqMUq+LSsOVUNi7mluPtzeewaPtFTOjjiRmDfNDDQy51uKSBoooaHL1SgqNXinHsSjHOZiugvK7/wZPDAiAI3B9sqIZ1dYZMAC7lVyCr9Co8O+HYtfXHM1FTr0Kwmw36+dhLHQ4RkU5gEk9E1En09rZDb287vDk2BBsSMrEqLg2XCyrxW3w6fotPR18fO8wI98X9vdxhbmIkdbh0DVEUkVlyFfGpxTh6Rf24XFB5w3medhYY6GePAX4OGBTggK4uNhJES7pCbmmCvj72OJ5WgpjEAkzvZFsrRFHE6oYJDDMG+fKGFRFRAybxRESdjNzSBI/d5Y9Hh/ohNqUYq+LSsONcLk6kl+JEeik++PM8JvfzwvRwHwQ4W0sdrkFSqUQk5pXj6JVixKcW49iVEuQqbhwbGOhqjYF+Dgjzd8AAP4dOudJKbTMi0FmdxCfld7ok/vDlIqQUVsLK1AgT+3pKHQ4Rkc5gEk9E1EkJgoDBXRwxuIsjCsprsO5YBlbHpSOr9Cp+PpiKnw+mYmhXR8wI98W9Ia4wMWKblPZSU6/EmcwyxF8pxtHUYhxLK0F5dX2zc4xlAnp6yRHm54CBfg4Y4GcPO0s28aLbiwhyxmc7k3AouQi19SqYGnee/8eNDe0e7OcJazO+ZSUiasTfiG2gVCpRV8emUaR7TExMYGTEcmn6h7ONGebc3RXPRHRBTFI+VsamY29iPg4lF+FQchFcbMwwdaA3pob5wIOrvW2mqK7D8bQSHLtSjKOpJTiZWYraelWzc6xMjdDP1x4DG5L2Pt52sDDl/1vSTKiHHI5WpiiqrEVCegkGBThKHZJW5Cmq8ff5PADqUnoiIvoHk/hWEEURubm5KC0tlToUoluys7ODm5sb9xBSM0YyAfcEu+KeYFdkllTht/h0rD2agfzyGny1Jxnf7E3GPcGumDHIB8O7OUMm489PS+QrqhF/RV0WH59ajIu5ClzXgw5O1qYY4OuAgf4OCPNzQHd3Gxiz+oHaSCYTMDzQGZtOZGFfYkGnSeLXxGdAqRIxwNcewW62UodDRKRTmMS3QmMC7+LiAktLSyZJpFNEUURVVRXy89Vzg93d3SWOyMColEDaYaAiD7B2BXyHADLdXF31srfEy2OC8fzIQPx9PhcrY9MQm1KMXRfysOtCHrwdLDA9zBdTBnjB0dpM6nB1hiiKSC2sbGhAp+4en1ZUdcN5vo6WDavs6tV2fycrvl5QuxgR1JjE5+O1+4KlDqfN6pUq/BavbmgXxbFyREQ3YBKvIaVS2ZTAOzp2jrvd1PlYWKjLofPz8+Hi4sLS+o5yfgsQ/SqgyP7nmK0HELkYCBkvXVx3YGoswwO9PPBALw8k55djVVw61h/PREbxVSyOvogvdiYhMtQNMwb5YqCfvcElovVKFS7klDestKsT98KKmmbnCALQ3c22oQGdOml3tTWXKGIyNMO6OUMQgIu55chTVOv9z96ei/nIVVTD3tIE94XyRjQR0fWYxGuocQ+8paWlxJEQ3V7jz2hdXR2T+I5wfguwbiaA62qoFTnq41NW6HQi36iriw3eHdcDr4wJxtbT2VgVm4ZTmWXYciobW05lI9DVGlHhvniwnydszU2kDrddVNcpcSK9tGnUW0JaCSprlc3OMTWWoY+XHQb6qxP2fr72nfbvg3Sfg5UpennZ4VRGKWISCzBloLfUIbXJyoaxclMGeHMcJhHRTTCJbyVDW4ki/cOf0Q6kUqpX4K9P4IGGYwIQ/RoQfL/OltZfz8LUCFMGeGPKAG+cySzDqrg0bD6ZjaS8Cry75Rw+3n4RE/p4YMYgX4R6yqUOt01Kq2pxrKEsPv5KMc5mlaFO2fzf0sbcGAN87Zv2s/f0ksPMWD/+LckwjAh0VifxSfqdxKcVVWJ/UgEAdLqReURE2sIknoiordIONy+hv4EIKLLU5/kP67CwtKWnlxwfe/XC62O7Y1NCJlbFpeNSfgXWHM3AmqMZ6O1th6hwH4zr5aEX3dWzSq/iWMN89qNXipGUV3HDOa62Zk3z2Qf6OSDI1YZN/kinRQQ548vdl3DgUgHqlSq9bZq4umEVfnigM3wdrSSOhohINzGJpxv4+flh3rx5mDdvntShaMW+fftw9913o6SkBHZ2dlKHQ51RRZ52z9NRcgsTzBrqj38P8UN8ajFWxaVj+9kcnMooxamMUizcdh6T+3tjergPurpYSx0uAEClEpFcUKEujU9V72fPKr16w3ldnK2aRr2F+TvAy96C1SykV3p72cHO0gSlVXU4mVGKAX4OUoekseo6JdYdywAAzOAqPBHRLTGJNzAZGRl49913ER0djcLCQri7u2PixIl45513OkWjvhEjRqBPnz5YsmRJ07EhQ4YgJycHcrl+l/ySDrN21e55Ok4QBIQHOCI8wBGFFSFYdywDq+PSkVlyFb8cSsUvh1IxOMARMwb5YlSIK0yNO25FsLZehbPZZQ0r7SU4llaM0qq6ZucYyQSEethioJ8DBjR0j2f3fdJ3RjIBw7o5Y+upbOxLLNDLJH772RyUVNXBXW6Oe4JdpA6HiEhnMYk3ICkpKRg8eDACAwPx22+/wd/fH+fOncPLL7+M7du3IzY2Fg4OHf+ir1QqIQgCZLL2eaNvamoKNze3drk2EQD1GDlbD3UTu5vuixfUz/sO6ejI2p2TtRmeHdEVzwzvgphLBVgVm4Y9F/NxJKUIR1KK4GRthqkDvTEt3AeedhZa//qVNfVISC9Rj3pLLcaJjBJU16manWNhYoS+PnZNq+x9vO1gZcaXP+p8RgSqk/iYpALMHxMkdTgaWxmrLqWfFuajt9sBiIg6An9DGpA5c+bA1NQUf//9NyIiIuDj44P77rsPu3btQlZWFt58882mc8vLyzFt2jRYWVnB09MT3377bdNzoijivffeg4+PD8zMzODh4YH/+7//a3q+pqYG8+fPh6enJ6ysrBAeHo59+/Y1Pb98+XLY2dlhy5YtCAkJgZmZGX7++WeYm5ujtLS0WczPP/887rnnHgBAUVERpk2bBk9PT1haWqJnz5747bffms6dNWsWYmJi8OWXX0IQBAiCgCtXrmDfvn0QBKHZtTds2IAePXrAzMwMfn5++Oyzz5p9XT8/P3z00Ud47LHHYGNjAx8fH/z4449Nz9fW1mLu3Llwd3eHubk5fH19sWjRolb9u1AnIDNSj5EDAFxfgt3wceTHetPUrjVkMgF3B7ng538PxIFX78Fz93SFs40ZCitq8M3eZAxbvAePLz+KvRfzoVTd7EZHyxRW1CD6bA7e33oe4785iF4L/sa//huPr3ZfwpGUIlTXqWBvaYJRIa54c2x3/DFnKE6/NxqrnxyEF0YFYmhXJybw1GkND3QGAJzJKkNBec0dztYtF3IUOJ5WAmOZgKl63JiPiHSQSgmkHgDOrFf/qVLe+XN0HN/JtJEoirhaJ80PgoWJUYv3bBYXF2PHjh348MMPm2aIN3Jzc0NUVBTWrl2LpUuXAgA+/fRTvPHGG1iwYAF27NiB559/HoGBgRg1ahQ2bNiAL774AmvWrEGPHj2Qm5uLU6dONV1v7ty5OH/+PNasWQMPDw9s2rQJkZGROHPmDLp16wYAqKqqwuLFi/Hzzz/D0dERXl5eeOedd7BhwwY8/vjjANQr9GvXrsWHH34IAKiurkb//v3x6quvwtbWFn/++Sf+9a9/oUuXLggLC8OXX36JpKQkhIaG4v333wcAODs748qVK82+3+PHj2PKlCl477338Mgjj+Dw4cN49tln4ejoiFmzZjWd99lnn+GDDz7AG2+8gfXr12P27NmIiIhAUFAQvvrqK2zZsgXr1q2Dj48PMjIykJGR0fJ/POp8Qsarx8jddE78x3oxXk5bPO0s8NLoIPzfyG7YeT4PK2PTcPhyEXZfzMfui/nwsrfAtDAfTBngDWebW5exi6KIjOKriG/az16MlMLKm369xgZ0Yf72CHCyZhM6MkjONmYI9bTF2SwFDlwqwEP9vKQOqcVWxqYBAEb3cIWLns+5JyIdcn7LLd6bLdbr92aSJvGLFi3Cxo0bcfHiRVhYWGDIkCFYvHgxgoLUJWDFxcV499138ffffyM9PR3Ozs6YOHEiPvjgg9vub541axZ+/fXXZsfGjBmD6OhorX8PV+uUCHlnh9av2xLn3x8DS9OW/RNeunQJoiiie/fuN32+e/fuKCkpQUGBeqzL0KFD8dprrwEAAgMDcejQIXzxxRcYNWoU0tPT4ebmhnvvvRcmJibw8fFBWFgYACA9PR3Lli1Deno6PDw8AADz589HdHQ0li1bho8++giAenb50qVL0bt376YYpk6ditWrVzcl8bt370ZpaSkmTZoEAPD09MT8+fObzn/uueewY8cOrFu3DmFhYZDL5TA1NYWlpeVty+c///xzjBw5Em+//XbT93f+/Hl8+umnzZL4sWPH4tlnnwUAvPrqq/jiiy+wd+9eBAUFIT09Hd26dcNdd90FQRDg6+vbon8H6uRCxqvHyKUdVjexs3ZVl9B34hX42zExkmFsT3eM7emOywUVWB2XjvXHM5FZchWf7kjEkl1JGNPDDTMG+SLc3wEqEUjMLW8a9XbsSjHyFM1XEwUBCHK1wQA/+6ZGdB7tUKZPpK8iAp1xNkuBfYn6k8RX1NTjjxNZAIAZ4Xw9JSItOb8FWDcTN2x1VOSoj09ZobeJvKRJfExMDObMmYOBAweivr4eb7zxBkaPHo3z58/DysoK2dnZyM7Oxn/+8x+EhIQgLS0NzzzzDLKzs7F+/frbXjsyMhLLli1r+tjMjE2LAPXKVksMHjz4ho8bm8U9/PDDWLJkCQICAhAZGYmxY8di3LhxMDY2xpkzZ6BUKhEYGNjs82tqapo1zjM1NUWvXr2anRMVFYVBgwYhOzsbHh4eWLVqFe6///6mjvJKpRIfffQR1q1bh6ysLNTW1qKmpgaWlpYa/R1cuHABEyZMaHZs6NChWLJkCZRKJYyM1AnXtfEJggA3Nzfk5+cDUN8oGjVqFIKCghAZGYkHHngAo0eP1igO6qRkRno5Rq69dXG2xtsPhODlMUHYdjoHK2PTcDKjFNtO52Db6Rz4OFiipKoW5dX1zT7PxEhALy87DPCzR5ifAwb4OkBuaSLRd0Gk+0YEueDbvZex/1IBlCoRRnpQlbLpRBYqa5UIcLbC4C7632SXiHSASqlegb9pryIRgABEv6ZefNHDxRZJk/jrV8aXL18OFxcXHD9+HMOHD0doaCg2bNjQ9HyXLl3w4YcfYsaMGaivr4ex8a3DNzMz65BmZhYmRjj//ph2/zq3+tot1bVrVwiCgAsXLuDBBx+84fkLFy7A3t4ezs7Od7yWt7c3EhMTsWvXLuzcuRPPPvssPv30U8TExKCiogJGRkY4fvx4UzLcyNr6n5FTFhY3jm8aOHAgunTpgjVr1mD27NnYtGkTli9f3vT8p59+ii+//BJLlixBz549YWVlhXnz5qG2trbFfw+aMDFpnigIggCVSt0wq1+/fkhNTcX27duxa9cuTJkyBffee+8dby4RGTpzEyNM7u+Fyf29cDarDKvi0rH5ZBbSi6sAANZmxujna48wP3sM8FM3oTPX4HcdkaHr620HG3NjlFbV4XRmKfr62Esd0m2JoohVDaX0UeG+HO1IRNqRdrh5Cf0NRECRpT5PDxdfdGpPfFlZGQDctkN6WVkZbG1tb5vAA+rZ4C4uLrC3t8c999yDhQsX3nKEWk1NDWpq/inZVCgULY5ZEIQWl7RLydHREaNGjcLSpUvxwgsvNNsXn5ubi1WrVmHmzJlNL56xsbHNPj82NrZZKb6FhQXGjRuHcePGYc6cOQgODsaZM2fQt29fKJVK5OfnY9gwzf9DREVFYdWqVfDy8oJMJsP999/f9NyhQ4cwYcIEzJgxAwCgUqmQlJSEkJCQpnNMTU2hVN6+R0H37t1x6NChZscOHTqEwMDAG2483I6trS0eeeQRPPLII5g8eTIiIyNRXFwsSYd/In0U6inHood64vWxwThyuQiedhYIdrNhV2qiNjA2kmFYNyf8dSYX+xILdD6JP55Wgou55TA3kWGynpT/E5EeqMjT7nk6RmfeKalUKsybNw9Dhw5FaGjoTc8pLCzEBx98gKeeeuq214qMjMSKFSuwe/duLF68GDExMbjvvvtumdwtWrQIcrm86eHt3Tm7on7zzTeoqanBmDFjsH//fmRkZCA6OhqjRo2Cp6dnUwM5QJ3UfvLJJ0hKSsK3336L33//Hc8//zwAdcXEf//7X5w9exYpKSlYuXIlLCws4Ovri8DAQERFRWHmzJnYuHEjUlNTER///+3deViU5f4/8Pew75uyb6IsgmACbmQKlonlgqZHM0xIjnoSJY+Wyi+PW3rK1Fy+mXVSwdxSKw05HohQXBEVBTURkEBcwJ1NRIF5fn+MTI4sIs6GvF/XNRfN89zPvdCtzmfu7QQ+//xz/Pe//31mHUNDQ3H69GksWbIEo0aNklkG4ebmhqSkJBw7dgxZWVmYPHkybtyQ/YPXoUMHpKWloaCgALdv35aOnD9p5syZSE5OxmeffYacnBxs2rQJX3/9tcx6+2f56quvsH37dly8eBE5OTnYtWsXbGxspFP/iaj5TPS0EdzFBt72pgzgieQgyF1yxvrBnFsqrsmz1W1oN7SrHZfKEJH8GFnLN52aUZtPS5GRkTh//jx+/PHHBu+XlZVh8ODB8PLywoIFC5rM691338WwYcPg4+OD4cOHIz4+HidPnpQ55uxJ0dHRKC0tlb5e1l3G3dzccOrUKXTs2BGjR49Gp06dMGnSJPTv3x+pqakyI8gzZ87EqVOn4Ovri8WLF+Orr75CcLBk2YCZmRm+//579OnTB127dsXvv/+OvXv3Smc6xMTEYPz48Zg5cyY8PDwwfPhwnDx5Ek5OTs+so6urK3r27ImzZ88iNDRU5t7cuXPh5+eH4OBgBAUFwcbGBsOHD5dJ8/HHH0NTUxNeXl6wtLREYWFhvTL8/Pywc+dO/Pjjj/D29sa8efOwaNEimU3tnsXY2Bhffvklunfvjh49eqCgoAD79u1T2Fn3REREzVV31Fzm1RLcva+YJWfycKfiIfadKwYAjOvNDe2ISI6cX5XsQl/v6N86IsDEXpKuFRIJzd3pTIGmTp2KX3/9FYcOHYKLi0u9++Xl5QgODoaBgQHi4+Ohp/f8R49YWlpi8eLFmDx58jPTlpWVwdTUVDp1/0lVVVXIz8+Hi4tLi+pBpCzsq0REbdegVYdwsbgcq9/thpBu9qquToO+O5iHz/93Ed72Jtg79TWuhyci+ZLuTg/IbnD3+O8aNdydvqk49EkqHTYUBAFTp07F7t27sX///gYD+LKyMgwcOBA6OjqIi4trUTBy9epV3LlzB7a2tvKoNhERkeqIa4H8w8C5nyQ/xU3vA0JtU6CHZDT+YLZ6TqkXiwVsOyGZLTeOG9oRkSJ4DZME6iZPxYAmdmoZwD8Ple7IFhkZiW3btuHXX3+FsbExioslU6pMTU2hr68vDeArKyuxZcsWlJWVSTeds7S0lG5C1rlzZ3z++ecYMWIEKioqsHDhQowcORI2NjbIy8vDrFmz4OrqKp0OTkRE1CpdiJMcmfPkjrsmdsCgpa36wwjJX5C7Fb47+CcO5d6CWCxAQ82Omjt86TYu36mEsZ4WhnWzU3V1iOhl5TVMcozc5WOSTeyMrCVT6FvhsXJPUmkQv27dOgBAUFCQzPWYmBiEh4fj9OnTSEtLAyBZK/2k/Px8dOjQAQCQnZ0t3dleU1MTZ8+exaZNm1BSUgI7OzsMHDgQn332Gc+KJyKi1ks6LfCpVXBlRZLrrXxUgeTL39kchjqauF3xCH9cL4OPg6mqqySjbkO7kX4OreKUHyJqxTQ0W+Uxck1R6d+az1qOHxQU9Mw0T+ejr6+PxMTEF64bERGR2hDXSkbgnw7ggcfXREDCHMloQysfXSD50NHSQB/X9vjtwg2kZN9UqyD+eskDJGdJTpcJ7fXsTW+JiEgWt9ImIiJSd5ePyU6hr0cAyq5J0hE9Jl0Xr2ZHzf14ohBiAejlYgE3a2NVV4eIqNVhEE9ERKTuKm7INx21CUEekvPiTxfeQ2lltYprI1FdK8aPJyVH+fJYOSKilmEQT0REpO6MrOWbjtoEezN9uFkZQSwARy7dVnV1AABJF27gZvlDtDfSRXAXG1VXh4ioVWIQT0REpO6cX5XsQo/GdhgXASb2knRETwh0l0ypT8m+qeKaSNRtaDemhwN0tPgxlIioJfi3JxERkbrT0JQcIwegfiD/+P2gL7ipHdVTN6X+YM6tZm0WrEh5typwLO8ORCJgbE9uaEeQbNqZfxg495Pkp7hW1TUiahUYxJPchYeHY/jw4dL3QUFBmD59+gvlKY88iIhaNa9hkmPkTGxlr5vY8Xg5alQPF3Poa2viZvlDZBWVq7QuW48XAgBe97CCg7mBSutCauBCHLDKG9g0BPg5QvJzlbfkOhE1iUF8GxIeHg6RSASRSAQdHR24urpi0aJFqKmpUWi5v/zyCz777LNmpU1JSYFIJEJJSUmL81CUBQsWoFu3bo3ez8/Px3vvvQc7Ozvo6enBwcEBISEhuHjxImJjY6W/+8ZeBQUFWLBgAUQiEQYNGlQv/2XLlkEkEiEoKEhxjSQi9eY1DJh+HgiLB0ZukPycfo4BPDVKV0sTr3ZqB0C1u9Q/eFSLn9K5oR09diEO2Dm+/qkbZUWS6wzkiZrEIF5FasUCUvPu4NeMa0jNu4NasXKmuA0aNAhFRUXIzc3FzJkzsWDBAixbtqxeukePHsmtTAsLCxgbv9gRMvLIQ5Gqq6vx5ptvorS0FL/88guys7OxY8cO+Pj4oKSkBGPGjEFRUZH0FRAQgIkTJ8pcc3R0BADY2triwIEDuHr1qkwZGzduhJMTpx8StXkamoBLX8BnlOQnp9DTM9QdNafKdfF7z15HWVUNHMz10e/xOn1qo8S1QMJsAA199n18LWEOp9YTNYFBvAoknC/Ca0v3Y+z3x/HRjxkY+/1xvLZ0PxLOFym8bF1dXdjY2MDZ2RkffvghBgwYgLi4OOkU+CVLlsDOzg4eHh4AgCtXrmD06NEwMzODhYUFQkJCUFBQIM2vtrYWM2bMgJmZGdq1a4dZs2bVW3P39FT4hw8fYvbs2XB0dISuri5cXV2xYcMGFBQUoH///gAAc3NziEQihIeHN5jHvXv3MH78eJibm8PAwABvvfUWcnNzpfdjY2NhZmaGxMREeHp6wsjISPoFRp2UlBT07NkThoaGMDMzQ58+fXD58uUW/V7/+OMP5OXl4ZtvvkHv3r3h7OyMPn36YPHixejduzf09fVhY2Mjfeno6MDAwEDmmqam5IO4lZUVBg4ciE2bNknzP3bsGG7fvo3Bgwe3qH5ERNR2BblL1sWnX76H8irVHDW39fGGdu/1coKmRmMbNFKbcPlY/RF4GQJQdk2SjogaxCBeyRLOF+HDLadRVFolc724tAofbjmtlED+Sfr6+tJR9+TkZGRnZyMpKQnx8fGorq5GcHAwjI2NcfjwYRw9elQaDNc9s2LFCsTGxmLjxo04cuQI7t69i927dzdZ5vjx47F9+3asWbMGWVlZ+O6772BkZARHR0f8/PPPAIDs7GwUFRVh9erVDeYRHh6OU6dOIS4uDqmpqRAEAW+//Taqq//6cFJZWYnly5dj8+bNOHToEAoLC/Hxxx8DAGpqajB8+HAEBgbi7NmzSE1NxaRJkyASteyDhaWlJTQ0NPDTTz+htvbFvzmeMGECYmNjpe83btyI0NBQ6OjovHDeRETUtji1M4BLe0PUiAUcvXRH6eWfu1qKzKul0NYUYXR3R6WXT2qm4oZ80xG1QQzilahWLGDh3gtNTR7Cwr0XlDK1XhAE/P7770hMTMTrr78OADA0NMT69evRpUsXdOnSBTt27IBYLMb69evh4+MDT09PxMTEoLCwECkpKQCAVatWITo6Gu+88w48PT3x7bffwtTUtNFyc3JysHPnTmzcuBEjRoxAx44d8cYbb2DMmDHQ1NSEhYUFAMlotI2NTYN55ebmIi4uDuvXr0ffvn3xyiuvYOvWrbh27Rr27NkjTVddXY1vv/0W3bt3h5+fH6ZOnYrk5GQAQFlZGUpLSzFkyBB06tQJnp6eCAsLa/F0dXt7e6xZswbz5s2Dubk5Xn/9dXz22Wf4888/W5TfkCFDUFZWhkOHDuH+/fvYuXMnJkyY0KK8iIiI6o6aO5ij/Cn1W9Mko/BveduivZGu0ssnNWNkLd90RG0Qg3glOpF/t94I/JMEAEWlVTiRf1dhdYiPj4eRkRH09PTw1ltvYcyYMViwYAEAwMfHR2akNzMzE5cuXYKxsTGMjIxgZGQECwsLVFVVIS8vD6WlpSgqKkKvXr2kz2hpaaF79+6Nlp+RkQFNTU0EBga2uA1ZWVnQ0tKSKbddu3bw8PBAVlaW9JqBgQE6deokfW9ra4ubNyUfXiwsLBAeHo7g4GAMHToUq1evlk61LywslLbXyMgI//73v5tVr8jISBQXF2Pr1q0ICAjArl270KVLFyQlJT13G7W1tTFu3DjExMRg165dcHd3R9euXZ87HyIiIuCvdfEHs5V71FxZVTV+zZBMnQ7txX1dCIDzq5JTNeodl1lHBJjYS9IRUYO0VF2BtuRmeeMBfEvStUT//v2xbt066OjowM7ODlpaf3UBQ0NDmbQVFRXw9/fH1q1b6+VjadmyTWn09fVb9FxLaGtry7wXiUQyH1xiYmIQFRWFhIQE7NixA3PnzkVSUhK6d++OjIwMabq62QHNYWxsjKFDh2Lo0KFYvHgxgoODsXjxYrz55pvPXf8JEyagV69eOH/+PEfhiYjohQR0bAddLQ1cL61C7s0KuFsrZ7PYX9Kv4kF1LdytjdDTpfn/ntJLTEMTGLRUsgs9RJDd4O5xYD/oC27aSdQEjsQrkZWxnlzTtYShoSFcXV3h5OQkE8A3xM/PD7m5ubCysoKrq6vMy9TUFKamprC1tUVaWpr0mZqaGqSnpzeap4+PD8RiMQ4ePNjg/bqZAE2tK/f09ERNTY1MuXfu3EF2dja8vLyabNPTfH19ER0djWPHjsHb2xvbtm2DlpaWTFufJ4h/kkgkQufOnXH//v0WPV+3rOH8+fN47733WpQHERERAOhpa6J3x8dHzWUr56g5QRCwJU1yNnxoL+cW7ztDLyGvYcDoHwATW9nrJnaS6zw2k6hJDOKVqKeLBWxN9ZqaPARbUz21+aY6NDQU7du3R0hICA4fPoz8/HykpKQgKipKevzZRx99hC+++AJ79uzBxYsXMWXKlHpnvD+pQ4cOCAsLw4QJE7Bnzx5pnjt37gQAODtL/pGPj4/HrVu3UFFRUS8PNzc3hISEYOLEiThy5AgyMzMxbtw42NvbIyQkpFlty8/PR3R0NFJTU3H58mX89ttvyM3NhaenZ5PPPXjwABkZGTKvvLw8ZGRkICQkBD/99BMuXLiAS5cuYcOGDdi4cWOz69SQ/fv3o6ioCGZmZi3Og4iICPhrXXyKktbFp+XfxaWbFdDX1sQIP3ullEmtiNcwYPp5ICweGLlB8nP6OQbwRM3AIF6JNDVEmD9UMlL8dCBf937+UC+1OXrFwMAAhw4dgpOTk3TjuoiICFRVVcHExAQAMHPmTLz//vsICwtDQEAAjI2NMWLEiCbzXbduHUaNGoUpU6agc+fOmDhxonS02t7eHgsXLsScOXNgbW2NqVOnNphHTEwM/P39MWTIEAQEBEAQBOzbt6/eFPqm2nbx4kWMHDkS7u7umDRpEiIjIzF58uQmn8vJyYGvr6/Ma/LkyXBwcECHDh2wcOFC9OrVC35+fli9ejUWLlyITz/9tFl1akjd8XdEREQvKujxuviT+fdw/2GNwsvb8vhYueG+djDRa96/z9TGaGgCLn0Bn1GSn5xCT9QsIkGZu5u0EmVlZTA1NUVpaak0WK1TVVWF/Px8uLi4QE+vZdPeE84XYeHeCzKb3Nma6mH+UC8M8rZt4kmi5pNHXyUiopeHIAjot+wArtx9gPXju2OAl+J2/75V/hCvfpGM6loB8dNeg7d94yfXEBGRRFNx6JO4sZ0KDPK2xZteNjiRfxc3y6tgZSyZQq8uI/BERET08hGJRAhyt8Lm45dxMOeWQoP4naeuoLpWQDdHMwbwRERyxiBeRTQ1RAjo1E7V1SAiIqI2JNDdEpuPX0ZKzk0IgqCQzeZqxQK2Pd7QblxvZ7nnT0TU1nFNPBEREVEbEdCpHXQ0NXDl7gPk327Z6SnPkpJ9E9dKHsBUXxtDunKZIBGRvDGIJyIiImojDHW10MPFHACQoqCj5uo2tPubvwP0tLlRGRGRvDGIJyIiImpDgtytAAApOfIP4q/crZTmG8qp9ERECsEgnoiIiKgNqTtqLu3PO6iqrpVr3ttOFEIQgNdc28OlvaFc8yYiIgkG8URERERtiKuVEexM9fCwRozUP+/ILd+HNbXYefIKAGBcbye55UtERLIYxBMRERG1ISKRCIEekin1B+W4Lj7hfDHu3H8EaxNdDPBU3PF1RERtHYN4IiIiojYm0F0ypf6gHNfFbz0uOVbu3R5O0NLkR0wiIkXh37AkQyQSYc+ePQCAgoICiEQiZGRkqLROjVH3+hEREamrPq7toKUhQv7t+7h858WPmsu5UY4TBXehqSHC2J6cSk9EpEgM4tuY4uJiTJs2DR07doSuri4cHR0xdOhQJCcn10vr6OiIoqIieHt7K7RODMaJiIiUy1hPG/7OkqPm5DEav/XxsXJvdLaCjaneC+dHRESNYxDfhhQUFMDf3x/79+/HsmXLcO7cOSQkJKB///6IjIysl15TUxM2NjbQ0tJSQW2JiIhIkYLktC7+/sMa/HL6GgBgHI+VIyJSOAbxL0gQBNy/f18lL0EQnquuU6ZMgUgkwokTJzBy5Ei4u7ujS5cumDFjBo4fP14v/dMj5CkpKRCJREhMTISvry/09fXx+uuv4+bNm/jf//4HT09PmJiY4L333kNlZaU0n4SEBLz22mswMzNDu3btMGTIEOTl5Unvu7i4AAB8fX0hEokQFBQEABCLxVi0aBEcHBygq6uLbt26ISEhock2Hjx4ED179oSuri5sbW0xZ84c1NTUSO+Xl5cjNDQUhoaGsLW1xcqVKxEUFITp06cDABYtWtTgzINu3brhX//6V7N+z0RERK1B3br4Y3kvdtRcXOZ1lD+sgXM7A7zm2l5e1SMiokYwiH9BlZWVMDIyUsnryUD5We7evYuEhARERkbC0LD+ua1mZmbNzmvBggX4+uuvcezYMVy5cgWjR4/GqlWrsG3bNvz3v//Fb7/9hv/7v/+Tpr9//z5mzJiBU6dOITk5GRoaGhgxYgTEYjEA4MSJEwCA33//HUVFRfjll18AAKtXr8aKFSuwfPlynD17FsHBwRg2bBhyc3MbrNe1a9fw9ttvo0ePHsjMzMS6deuwYcMGLF68WJpmxowZOHr0KOLi4pCUlITDhw/j9OnT0vsTJkxAVlYWTp48Kb125swZnD17Fh988EGzf0dERETqztPWGFbGunhQXYtTBfdalIcgCNjyeCp9aC8naGiI5FlFIiJqAOdJtxGXLl2CIAjo3LnzC+e1ePFi9OnTBwAQERGB6Oho5OXloWPHjgCAUaNG4cCBA5g9ezYAYOTIkTLPb9y4EZaWlrhw4QK8vb1haSkZCWjXrh1sbGyk6ZYvX47Zs2fj3XffBQAsXboUBw4cwKpVq7B27dp69frmm2/g6OiIr7/+GiKRCJ07d8b169cxe/ZszJs3D/fv38emTZuwbds2vPHGGwCAmJgY2NnZSfNwcHBAcHAwYmJi0KNHD2mawMBAafuIiIheBiKRCIHultiVfhUp2Tfxmtvzj6JnXCnBH9fLoKOlgb/5OyqglkRE9DQG8S/IwMAAFRUVKiu7uZ536n1TunbtKv1va2trGBgYyAS41tbW0tF1AMjNzcW8efOQlpaG27dvS0fgCwsLG900r6ysDNevX5d+WVCnT58+yMzMbPCZrKwsBAQEQCQSyaSvqKjA1atXce/ePVRXV6Nnz57S+6ampvDw8JDJZ+LEiZgwYQK++uoraGhoYNu2bVi5cuWzfi1E1FLiWuDyMaDiBmBkDTi/CmhoqrpWRG1CkIeVJIjPuYW5LXh+y+Nj5Yb42MLcUEe+lSMiogYxiH9BIpGowenp6sbNzQ0ikQgXL1584by0tbWl/y0SiWTe112rC9QBYOjQoXB2dsb3338POzs7iMVieHt749GjRy9cF0UYOnQodHV1sXv3bujo6KC6uhqjRo1SdbWIXk4X4oCE2UDZ9b+umdgBg5YCXsNUVy+iNuI1t/bQ1BDh0s0KXL1XCQfz5g8QlFQ+QvxZyZ/dUG5oR0SkNFwT30ZYWFggODgYa9euxf379c+DLSkpUUi5d+7cQXZ2NubOnYs33ngDnp6euHdPdt2djo7km/va2r821TExMYGdnR2OHj0qk/bo0aPw8vJqsCxPT0+kpqbKzDo4evQojI2N4eDggI4dO0JbW1tmvXtpaSlycnJk8tHS0kJYWBhiYmIQExODd999F/r6+i37BRBR4y7EATvHywbwAFBWJLl+IU419SJqQ0z1teHraAbg+Y+a+yn9Kh7WiOFpawI/JzP5V46IiBrEIL4NWbt2LWpra9GzZ0/8/PPPyM3NRVZWFtasWYOAgACFlGlubo527drhP//5Dy5duoT9+/djxowZMmmsrKygr6+PhIQE3LhxA6WlpQCATz75BEuXLsWOHTuQnZ2NOXPmICMjAx999FGDZU2ZMgVXrlzBtGnTcPHiRfz666+YP38+ZsyYAQ0NDRgbGyMsLAyffPIJDhw4gD/++AMRERHQ0NCQmYIPAH//+9+xf/9+JCQkYMKECQr53RC1aeJayQg8Glrq8/hawhxJOiJSqCAPyd40z3PUnFgsYGuaZCr9uN5O9f4dJSIixWEQ34Z07NgRp0+fRv/+/TFz5kx4e3vjzTffRHJyMtatW6eQMjU0NPDjjz8iPT0d3t7e+Oc//4lly5bJpNHS0sKaNWvw3Xffwc7ODiEhIQCAqKgozJgxAzNnzoSPjw8SEhIQFxcHNze3Bsuyt7fHvn37cOLECbzyyiv4xz/+gYiICMyd+9cqv6+++goBAQEYMmQIBgwYgD59+sDT0xN6enoyebm5ueHVV19F586d0atXLzn/VogIl4/VH4GXIQBl1yTpiEihAt0l58UfvXQbj2rEz0gtcSzvDvJv34eRrhaGd7NXZPWIiOgpIkGeO569JMrKymBqaorS0lKYmJjI3KuqqkJ+fj5cXFzqBX7U+ty/fx/29vZYsWIFIiIipNcFQYCbmxumTJlSb+ZAa8G+Smrt3E/AzxHPTjdyA+DDPSmIFEksFtDz37/jdsUjbJ/YGwGd2j3zmX9sTkfCH8V4v7czPhve8Ca1RET0fJqKQ5/EkXhqU86cOYPt27cjLy8Pp0+fRmhoKABIR/8B4NatW/j6669RXFzMs+GJFMXIWr7piKjFNDRE6OcmmVKfknPzmemLS6uQlHUDADCOG9oRESkdg3hqc5YvX45XXnkFAwYMwP3793H48GG0b//X2bhWVlZYtGgR/vOf/8Dc3FyFNSV6iTm/KtmFHo2toxUBJvaSdESkcIHPsS7+x5OFqBUL6NHBHB42xoquGhERPYVHzFGb4uvri/T09CbTcIUJkRJoaEqOkds5HpJA/sk/d48D+0Ff8Lx4IiXp62YJkQi4WFyO4tIq2Jg2vAyrplaMH09cAcBReCIiVeFIPBERqYbXMGD0D4CJrex1EzvJdZ4TT6Q0FoY6eMXBDABwqImj5pIv3kRxWRXaGepgkLeNkmpHRERP4kg8ERGpjtcwoPNgyS70FTcka+CdX+UIPJEKBHlYIuNKCVJybmJ0D8cG02w5fhkA8LfujtDV4p9TIiJVYBBPRESqpaEJuPRVdS2I2rxAd0us+j0Xh3Nvo6ZWDC1N2QmbBbfv43DubYhEwHs9nVRUSyIi4nR6IiIiIkJXBzOYG2ijvKoGZ66U1Lu/7UQhAKCfmyWc2hkouXZERFSHQTwRERERQVNDhL51R81lyx41V1Vdi12nuKEdEZE6UGkQ//nnn6NHjx4wNjaGlZUVhg8fjuzsbOn9u3fvYtq0afDw8IC+vj6cnJwQFRWF0tLSJvMVBAHz5s2Dra0t9PX1MWDAAOTm5iq6OfRYeHg4hg8fLn0fFBSE6dOnv1Ce8shDWUQiEfbs2dPo/YKCAohEImRkZCitTkRERM0RVHfU3FOb2+07V4R7ldWwM9XD652tVFE1IiJ6TKVB/MGDBxEZGYnjx48jKSkJ1dXVGDhwIO7fvw8AuH79Oq5fv47ly5fj/PnziI2NRUJCAiIiIprM98svv8SaNWvw7bffIi0tDYaGhggODkZVVZUymqW2wsPDIRKJIBKJoKOjA1dXVyxatAg1NTUKLfeXX37BZ5991qy0KSkpEIlEKCkpaXEeirJgwQLp709TUxOOjo6YNGkS7t69K5OuqKgIb731lopqSURE1HJ1I/Hnr5XhZvlfn5vqNrQb29MJmhoildSNiIgkVLqxXUJCgsz72NhYWFlZIT09Hf369YO3tzd+/vln6f1OnTphyZIlGDduHGpqaqClVb/6giBg1apVmDt3LkJCQgAAP/zwA6ytrbFnzx68++67im2Umhs0aBBiYmLw8OFD7Nu3D5GRkdDW1kZ0dLRMukePHkFHR0cuZVpYWKhFHvLQpUsX/P7776itrUVWVhYmTJiA0tJS7NixQ5rGxoZH7hARUetkaawLH3tTnLtWisM5tzHS3wEXrpfhdGEJtDREGNOz4V3riYhIedRqTXzdNPmmArbS0lKYmJg0GMADQH5+PoqLizFgwADpNVNTU/Tq1QupqakNPvPw4UOUlZXJvBROXAvkHwbO/ST5Ka5VfJkAdHV1YWNjA2dnZ3z44YcYMGAA4uLipFPglyxZAjs7O3h4eAAArly5gtGjR8PMzAwWFhYICQlBQUGBNL/a2lrMmDEDZmZmaNeuHWbNmgVBEGTKfHoq/MOHDzF79mw4OjpCV1cXrq6u2LBhAwoKCtC/f38AgLm5OUQiEcLDwxvM4969exg/fjzMzc1hYGCAt956S2bJRGxsLMzMzJCYmAhPT08YGRlh0KBBKCoqkqZJSUlBz549YWhoCDMzM/Tp0weXL19u8venpaUFGxsb2NvbY8CAAfjb3/6GpKQkmTRPT6c/ceIEfH19oaenh+7du+PMmTP18o2Li4Obmxv09PTQv39/bNq0qd6MhCNHjqBv377Q19eHo6MjoqKipLNWiIiI5CXQ/fG6+MdT6rekSf5tDO5iAytjPZXVi4iIJNQmiBeLxZg+fTr69OkDb2/vBtPcvn0bn332GSZNmtRoPsXFxQAAa2trmevW1tbSe0/7/PPPYWpqKn05Oir4W+YLccAqb2DTEODnCMnPVd6S60qmr6+PR48eAQCSk5ORnZ2NpKQkxMfHo7q6GsHBwTA2Nsbhw4dx9OhRaTBc98yKFSsQGxuLjRs34siRI7h79y52797dZJnjx4/H9u3bsWbNGmRlZeG7776DkZERHB0dpTMvsrOzUVRUhNWrVzeYR3h4OE6dOoW4uDikpqZCEAS8/fbbqK6ulqaprKzE8uXLsXnzZhw6dAiFhYX4+OOPAQA1NTUYPnw4AgMDcfbsWaSmpmLSpEkQiZo/RbCgoACJiYlNzlioqKjAkCFD4OXlhfT0dCxYsEBahzr5+fkYNWoUhg8fjszMTEyePBmffvqpTJq8vDwMGjQII0eOxNmzZ7Fjxw4cOXIEU6dObXZ9iYiImqNuXfzh3FsofVCNPWeuAQBCe/NYOSIidaA258RHRkbi/PnzOHLkSIP3y8rKMHjwYHh5eWHBggVyLTs6OhozZsyQKUthgfyFOGDneACyo9UoK5JcH/0D4DVMMWU/QRAEJCcnIzExEdOmTcOtW7dgaGiI9evXS4PSLVu2QCwWY/369dLgNiYmBmZmZkhJScHAgQOxatUqREdH45133gEAfPvtt0hMTGy03JycHOzcuRNJSUnS2RIdO3aU3q+bhWFlZQUzM7MG88jNzUVcXByOHj2KV199FQCwdetWODo6Ys+ePfjb3/4GAKiursa3336LTp06AQCmTp2KRYsWAZD8Py4tLcWQIUOk9z09PZ/5ezt37hyMjIxQW1sr3WPhq6++ajT9tm3bIBaLsWHDBujp6aFLly64evUqPvzwQ2ma7777Dh4eHli2bBkAwMPDA+fPn8eSJUukaT7//HOEhoZKZyO4ublhzZo1CAwMxLp166Cnx5ERIiKSj26OZjDR00JJZTUW7v0DlY9q0cnSEAEd26m6akREBDUZiZ86dSri4+Nx4MABODg41LtfXl6OQYMGwdjYGLt374a2tnajedWtR75x44bM9Rs3bjS6VllXVxcmJiYyL4UQ1wIJs1EvgAf+upYwR6FT6+Pj42FkZAQ9PT289dZbGDNmjPRLER8fH5lR5czMTFy6dAnGxsYwMjKCkZERLCwsUFVVhby8PJSWlqKoqAi9evWSPqOlpYXu3bs3Wn5GRgY0NTURGBjY4jZkZWVBS0tLptx27drBw8MDWVlZ0msGBgbSAB0AbG1tcfOm5MgcCwsLhIeHIzg4GEOHDsXq1aulU+0LCwul7TUyMsK///1vaR4eHh7IyMjAyZMnMXv2bAQHB2PatGlN1rVr164yQXZAQIBMmuzsbPTo0UPmWs+ePWXeZ2ZmIjY2VqZewcHBEIvFyM/Pf+bvjIiIqLm0NDWkG9z9cvrxKHwv5+earUZERIqj0pF4QRAwbdo07N69GykpKXBxcamXpqysDMHBwdDV1UVcXNwzRxxdXFxgY2OD5ORkdOvWTZpHWlqazOinSlw+BpRdbyKBAJRdk6Rz6auQKvTv3x/r1q2Djo4O7OzsZPYWMDQ0lElbUVEBf39/bN26tV4+lpaWLSpfX1+/Rc+1xNNf9ohEIpn1+jExMYiKikJCQgJ27NiBuXPnIikpCd27d5c5/u3JPRrqdvUHgC+++AKDBw/GwoULFb5zfkVFBSZPnoyoqKh695ycOL2RiIjkK9DDEv89J/lyW09bAyP96w+yEBGRaqh0JD4yMhJbtmzBtm3bYGxsjOLiYhQXF+PBgwcAJMF33ZFzGzZsQFlZmTRNbe1fo9WdO3eWrsMWiUSYPn06Fi9ejLi4OJw7dw7jx4+HnZ2dzNnlKlFx49lpniddCxgaGsLV1RVOTk6Nbg5Yx8/PD7m5ubCysoKrq6vMq27/AFtbW6SlpUmfqampQXp6eqN5+vj4QCwW4+DBgw3er5sJ8OT/36d5enqipqZGptw7d+4gOzsbXl5eTbbpab6+voiOjsaxY8fg7e2Nbdu2QUtLS6atTW20OHfuXCxfvhzXrzf85YynpyfOnj0rc7zh8ePHZdJ4eHjg1KlTMtdOnjwp897Pzw8XLlyo9//B1dVVbqcIEBER1anb3A4Ahr1iB1P9xmdBEhGRcqk0iF+3bh1KS0sRFBQEW1tb6avuuK7Tp08jLS0N586dg6urq0yaK1euSPPJzs6W7mwPALNmzcK0adMwadIk9OjRAxUVFUhISFD9umEj62eneZ50ChYaGor27dsjJCQEhw8fRn5+PlJSUhAVFYWrV68CAD766CN88cUX2LNnDy5evIgpU6bUO+P9SR06dEBYWBgmTJiAPXv2SPPcuXMnAMDZWTJdLz4+Hrdu3UJFRUW9PNzc3BASEoKJEyfiyJEjyMzMxLhx42Bvby89VvBZ8vPzER0djdTUVFy+fBm//fYbcnNzm7Uu/kkBAQHo2rWrzJT7J7333nsQiUSYOHEiLly4gH379mH58uUyaSZPnoyLFy9i9uzZ0j0DYmNjAUA6dXH27Nk4duwYpk6dioyMDOTm5uLXX3/lxnZERKQQ1iZ66OViAR1NDYS92kHV1SEioieoNIgXBKHB15PHijWWpkOHDjL51D0DSAKfRYsWobi4GFVVVfj999/h7u6u3MY1xPlVwMQOQGNrykSAib0knRowMDDAoUOH4OTkhHfeeQeenp6IiIhAVVWVdN+AmTNn4v3330dYWBgCAgJgbGyMESNGNJnvunXrMGrUKEyZMgWdO3fGxIkTpUel2dvbY+HChZgzZw6sra0bDVJjYmLg7++PIUOGICAgAIIgYN++fU3ul/B02y5evIiRI0fC3d0dkyZNQmRkJCZPnvwcvyGJf/7zn1i/fr3MF0t1jIyMsHfvXpw7dw6+vr749NNPsXTpUpk0Li4u+Omnn/DLL7+ga9euWLdunXR3el1dXQBA165dcfDgQeTk5KBv377w9fXFvHnzYGdn99z1JSIiao71Yd2RPDMQXexMVV0VIiJ6gkh4+lBvQllZGUxNTaVn0j+pqqoK+fn5cHFxadnIvnR3ekB2g7vHgb2Sdqcn9bZkyRJ8++23DX4x0Fwv3FeJiIiIiEhpmopDn6QWu9O3KV7DJIG6ia3sdRM7BvBt2DfffIOTJ0/izz//xObNm7Fs2TKEhYWpulpERERERKRm1Oac+DbFaxjQebBkF/qKG5I18M6vAhqaqq4ZqUhubi4WL16Mu3fvwsnJCTNnzkR0dLSqq0VERERERGqGQbyqaGgq7Bg5an1WrlyJlStXqroaRERERESk5jidnoiIiIiIiKiVYBBPRERERERE1EowiG8hbupP6o59lIiIiIjo5cMg/jnVnUNeWVmp4poQNa2uj9b1WSIiIiIiav24sd1z0tTUhJmZGW7evAkAMDAwgEgkUnGtiP4iCAIqKytx8+ZNmJmZQVOTpx4QEREREb0sGMS3gI2NDQBIA3kidWRmZibtq0RERERE9HJgEN8CIpEItra2sLKyQnV1taqrQ1SPtrY2R+CJiIiIiF5CDOJfgKamJgMlIiIiIiIiUhpubEdERERERETUSjCIJyIiIiIiImolGMQTERERERERtRJcE98AQRAAAGVlZSquCREREREREbUFdfFnXTzaGAbxDSgvLwcAODo6qrgmRERERERE1JaUl5fD1NS00fsi4VlhfhskFotx/fp1GBsbQyQSqbo6jSorK4OjoyOuXLkCExMTVVeHXlLsZ6QM7GekaOxjpAzsZ6QM7GcvL0EQUF5eDjs7O2hoNL7ynSPxDdDQ0ICDg4Oqq9FsJiYm/ANMCsd+RsrAfkaKxj5GysB+RsrAfvZyamoEvg43tiMiIiIiIiJqJRjEExEREREREbUSDOJbMV1dXcyfPx+6urqqrgq9xNjPSBnYz0jR2MdIGdjPSBnYz4gb2xERERERERG1EhyJJyIiIiIiImolGMQTERERERERtRIM4omIiIiIiIhaCQbxRERERERERK0Eg3gV+/zzz9GjRw8YGxvDysoKw4cPR3Z2tkyaqqoqREZGol27djAyMsLIkSNx48YNmTRRUVHw9/eHrq4uunXr1mBZZ8+eRd++faGnpwdHR0d8+eWXimoWqRFl9bGUlBSEhITA1tYWhoaG6NatG7Zu3arIppEaUebfZXUuXboEY2NjmJmZybk1pK6U2c8EQcDy5cvh7u4OXV1d2NvbY8mSJYpqGqkJZfaxxMRE9O7dG8bGxrC0tMTIkSNRUFCgoJaROpFHP8vMzMTYsWPh6OgIfX19eHp6YvXq1fXKSklJgZ+fH3R1deHq6orY2FhFN4+UgEG8ih08eBCRkZE4fvw4kpKSUF1djYEDB+L+/fvSNP/85z+xd+9e7Nq1CwcPHsT169fxzjvv1MtrwoQJGDNmTIPllJWVYeDAgXB2dkZ6ejqWLVuGBQsW4D//+Y/C2kbqQVl97NixY+jatSt+/vlnnD17Fh988AHGjx+P+Ph4hbWN1Iey+lmd6upqjB07Fn379pV7W0h9KbOfffTRR1i/fj2WL1+OixcvIi4uDj179lRIu0h9KKuP5efnIyQkBK+//joyMjKQmJiI27dvN5gPvXzk0c/S09NhZWWFLVu24I8//sCnn36K6OhofP3119I0+fn5GDx4MPr374+MjAxMnz4df//735GYmKjU9pICCKRWbt68KQAQDh48KAiCIJSUlAja2trCrl27pGmysrIEAEJqamq95+fPny+88sor9a5/8803grm5ufDw4UPptdmzZwseHh7ybwSpNUX1sYa8/fbbwgcffCCXelProuh+NmvWLGHcuHFCTEyMYGpqKu/qUyuhqH524cIFQUtLS7h48aLC6k6tg6L62K5duwQtLS2htrZWei0uLk4QiUTCo0eP5N8QUmsv2s/qTJkyRejfv7/0/axZs4QuXbrIpBkzZowQHBws5xaQsnEkXs2UlpYCACwsLABIvmWrrq7GgAEDpGk6d+4MJycnpKamNjvf1NRU9OvXDzo6OtJrwcHByM7Oxr179+RUe2oNFNXHGiurrhxqWxTZz/bv349du3Zh7dq18qswtUqK6md79+5Fx44dER8fDxcXF3To0AF///vfcffuXfk2gNSeovqYv78/NDQ0EBMTg9raWpSWlmLz5s0YMGAAtLW15dsIUnvy6mdPf+5KTU2VyQOQfP5/0c93pHoM4tWIWCzG9OnT0adPH3h7ewMAiouLoaOjU2/Np7W1NYqLi5udd3FxMaytrevlUXeP2gZF9rGn7dy5EydPnsQHH3zwIlWmVkiR/ezOnTsIDw9HbGwsTExM5FltamUU2c/+/PNPXL58Gbt27cIPP/yA2NhYpKenY9SoUfJsAqk5RfYxFxcX/Pbbb/h//+//QVdXF2ZmZrh69Sp27twpzyZQKyCvfnbs2DHs2LEDkyZNkl5r7PN/WVkZHjx4IN+GkFJpqboC9JfIyEicP38eR44cUXVV6CWlrD524MABfPDBB/j+++/RpUsXhZZF6keR/WzixIl477330K9fP7nnTa2LIvuZWCzGw4cP8cMPP8Dd3R0AsGHDBvj7+yM7OxseHh5yL5PUjyL7WHFxMSZOnIiwsDCMHTsW5eXlmDdvHkaNGoWkpCSIRCK5l0nqSR797Pz58wgJCcH8+fMxcOBAOdaO1BVH4tXE1KlTER8fjwMHDsDBwUF63cbGBo8ePUJJSYlM+hs3bsDGxqbZ+dvY2NTbObXu/fPkQ62XovtYnYMHD2Lo0KFYuXIlxo8f/6LVplZG0f1s//79WL58ObS0tKClpYWIiAiUlpZCS0sLGzdulFczSM0pup/Z2tpCS0tLGsADgKenJwCgsLDwxSpPrYKi+9jatWthamqKL7/8Er6+vujXrx+2bNmC5ORkpKWlyasZpObk0c8uXLiAN954A5MmTcLcuXNl7jX2+d/ExAT6+vrybQwpFYN4FRMEAVOnTsXu3buxf/9+uLi4yNz39/eHtrY2kpOTpdeys7NRWFiIgICAZpcTEBCAQ4cOobq6WnotKSkJHh4eMDc3f/GGkNpSVh8DJMeYDB48GEuXLpWZzkUvP2X1s9TUVGRkZEhfixYtgrGxMTIyMjBixAi5tYfUk7L6WZ8+fVBTU4O8vDzptZycHACAs7PzC7aC1Jmy+lhlZSU0NGQ/hmtqagKQzAShl5u8+tkff/yB/v37IywsrMEjMAMCAmTyACSf/5/38x2pIVXuqkeC8OGHHwqmpqZCSkqKUFRUJH1VVlZK0/zjH/8QnJychP379wunTp0SAgIChICAAJl8cnNzhTNnzgiTJ08W3N3dhTNnzghnzpyR7kZfUlIiWFtbC++//75w/vx54ccffxQMDAyE7777TqntJeVTVh/bv3+/YGBgIERHR8uUc+fOHaW2l1RDWf3sadydvm1RVj+rra0V/Pz8hH79+gmnT58WTp06JfTq1Ut48803ldpeUj5l9bHk5GRBJBIJCxcuFHJycoT09HQhODhYcHZ2limLXk7y6Gfnzp0TLC0thXHjxsnkcfPmTWmaP//8UzAwMBA++eQTISsrS1i7dq2gqakpJCQkKLW9JH8M4lUMQIOvmJgYaZoHDx4IU6ZMEczNzQUDAwNhxIgRQlFRkUw+gYGBDeaTn58vTZOZmSm89tprgq6urmBvby988cUXSmolqZKy+lhYWFiD9wMDA5XXWFIZZf5d9iQG8W2LMvvZtWvXhHfeeUcwMjISrK2thfDwcH4p2QYos49t375d8PX1FQwNDQVLS0th2LBhQlZWlpJaSqokj342f/78BvNwdnaWKevAgQNCt27dBB0dHaFjx44yZVDrJRIEQXiBgXwiIiIiIiIiUhKuiSciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8UREREREREStBIN4IiIiIiIiolaCQTwRERERERFRK8EgnoiIiIiIiKiVYBBPRERERERE1EowiCciIlJjd+7cgZWVFQoKCpRabmxsLMzMzBSSd0JCArp16waxWKyQ/ImIiF5mDOKJiIjU2JIlSxASEoIOHTrUuxccHAxNTU2cPHlS+RV7AYMGDYK2tja2bt3aaJqIiAj4+Pjg0aNHMtf37dsHHR0dnD59WtHVJCIiUksM4omIiNRUZWUlNmzYgIiIiHr3CgsLcezYMUydOhUbN25UQe1aprq6GgAQHh6ONWvWNJpu5cqVKC8vx/z586XXSkpKMHHiRPzrX/+Cn5+fwupGRESkzhjEExERqal9+/ZBV1cXvXv3rncvJiYGQ4YMwYcffojt27fjwYMHMveDgoIQFRWFWbNmwcLCAjY2NliwYIFMmpKSEkyePBnW1tbQ09ODt7c34uPjZdIkJibC09MTRkZGGDRoEIqKiqT3xGIxFi1aBAcHB+jq6qJbt25ISEiQ3i8oKIBIJMKOHTsQGBgIPT096ej70KFDcerUKeTl5TXYdhMTE8TExGDFihVIS0sDAEyfPh329vaIjo7GlStXMHr0aJiZmcHCwgIhISEySw5OnjyJN998E+3bt4epqSkCAwPrjd6LRCKsW7cOw4YNg6GhIZYsWdLI/wkiIiL1wSCeiIhITR0+fBj+/v71rguCgJiYGIwbNw6dO3eGq6srfvrpp3rpNm3aBENDQ6SlpeHLL7/EokWLkJSUBEASgL/11ls4evQotmzZggsXLuCLL76Apqam9PnKykosX74cmzdvxqFDh1BYWIiPP/5Yen/16tVYsWIFli9fjrNnzyI4OBjDhg1Dbm6uTD3mzJmDjz76CFlZWQgODgYAODk5wdraGocPH260/f3798eUKVMQFhaGXbt2YefOnfjhhx8gCAKCg4NhbGyMw4cP4+jRo9IvGeqm35eXlyMsLAxHjhzB8ePH4ebmhrfffhvl5eUyZSxYsAAjRozAuXPnMGHChGf9LyEiIlI9gYiIiNRSSEiIMGHChHrXf/vtN8HS0lKorq4WBEEQVq5cKQQGBsqkCQwMFF577TWZaz169BBmz54tCIIgJCYmChoaGkJ2dnaDZcfExAgAhEuXLkmvrV27VrC2tpa+t7OzE5YsWVKvjClTpgiCIAj5+fkCAGHVqlUNluHr6yssWLCgwXt1KisrBQ8PD0FDQ0NYuXKlIAiCsHnzZsHDw0MQi8XSdA8fPhT09fWFxMTEBvOpra0VjI2Nhb1790qvARCmT5/eZPlERETqhiPxREREaurBgwfQ09Ord33jxo0YM2YMtLS0AABjx47F0aNH601N79q1q8x7W1tb3Lx5EwCQkZEBBwcHuLu7N1q+gYEBOnXq1ODzZWVluH79Ovr06SPzTJ8+fZCVlSVzrXv37g3mr6+vj8rKykbLr0vz8ccfw8DAAB999BEAIDMzE5cuXYKxsTGMjIxgZGQECwsLVFVVSX8HN27cwMSJE+Hm5gZTU1OYmJigoqIChYWFzaobERGRutJSdQWIiIioYe3bt8e9e/dkrt29exe7d+9GdXU11q1bJ71eW1uLjRs3yqzr1tbWlnlWJBJJj3XT19d/ZvkNPS8IwnO3w9DQsMHrd+/ehaWl5TOf19LSgqamJkQiEQCgoqIC/v7+De5uX5dfWFgY7ty5g9WrV8PZ2Rm6uroICAiot9t9Y3UjIiJSVxyJJyIiUlO+vr64cOGCzLWtW7fCwcEBmZmZyMjIkL5WrFiB2NhY1NbWNivvrl274urVq8jJyWlR3UxMTGBnZ4ejR4/KXD969Ci8vLye+XzdqLmvr+9zl+3n54fc3FxYWVnB1dVV5mVqaiqtR1RUFN5++2106dIFurq6uH379nOXRUREpG4YxBMREamp4OBg/PHHHzKj8Rs2bMCoUaPg7e0t84qIiMDt27dldodvSmBgIPr164eRI0ciKSkJ+fn5+N///tfs5wHgk08+wdKlS7Fjxw5kZ2djzpw5yMjIkE57b8rx48elo+PPKzQ0FO3bt0dISAgOHz6M/Px8pKSkICoqClevXgUAuLm5YfPmzcjKykJaWhpCQ0ObNfuAiIhI3TGIJyIiUlM+Pj7w8/PDzp07AQDp6enIzMzEyJEj66U1NTXFG2+8gQ0bNjQ7/59//hk9evTA2LFj4eXlhVmzZjV7JB8AoqKiMGPGDMycORM+Pj5ISEhAXFwc3Nzcnvns9u3bERoaCgMDg2aXV8fAwACHDh2Ck5MT3nnnHXh6eiIiIgJVVVUwMTEBIPmy4969e/Dz88P777+PqKgoWFlZPXdZRERE6kYktGRxGxERESnFf//7X3zyySc4f/48NDReju/eb9++DQ8PD5w6dQouLi6qrg4REVGrwo3tiIiI1NjgwYORm5uLa9euwdHRUdXVkYuCggJ88803DOCJiIhagCPxRERERERERK3EyzEvj4iIiIiIiKgNYBBPRERERERE1EowiCciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8UREREREREStBIN4IiIiIiIiolaCQTwRERERERFRK8EgnoiIiIiIiKiV+P9TGIMfvYKB9gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCVUlEQVR4nOzdd3RU5dYG8OfMpPfeO5BACB0SihRBIaI0UUTgQ6xXBK+o2CuIInpVbMC1gVxAQIoCShSBhJqEXgQSUkjvbVJImznfH5NEAgEyySRnyvNba1bMmZOTHcDM7PPud29BFEURRERERERERKTzZFIHQEREREREREStwySeiIiIiIiISE8wiSciIiIiIiLSE0ziiYiIiIiIiPQEk3giIiIiIiIiPcEknoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0hInUAegilUqF7Oxs2NraQhAEqcMhIiIiIiIiAyeKIsrLy+Hl5QWZ7Obr7UziW5CdnQ1fX1+pwyAiIiIiIiIjk5GRAR8fn5s+zyS+Bba2tgDUf3h2dnYSR0NERERERESGTqFQwNfXtykfvRkm8S1oLKG3s7NjEk9ERERERESd5nZbutnYjoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0BJN4IiIiIiIiIj3BJJ6IiIiIiIhITzCJJyIiIiIiItITTOKJiIiIiIiI9ASTeCIiIiIiIiI9wSSeiIiIiIiISE8wiSciIiIiIiLSE5Im8UuXLsWgQYNga2sLNzc3TJ48GQkJCc3OGTVqFARBaPZ4+umnb3ldURTx9ttvw9PTE5aWlrjrrrtw+fLljvxRiIiIiIiIiDqcpEl8TEwM5s2bh9jYWOzZswd1dXUYO3YsKisrm5335JNPIicnp+nx0Ucf3fK6H330Eb744gusWrUKcXFxsLa2xrhx41BdXd2RPw4RERERERFRhzKR8ptHRUU1+3zNmjVwc3PDiRMnMGLEiKbjVlZW8PDwaNU1RVHE8uXL8eabb2LSpEkAgLVr18Ld3R2//PILpk+frr0fQGLVdUrIBAFmJtwVQUREREREZAx0KvsrKysDADg5OTU7vn79eri4uCAsLAyvvfYaqqqqbnqN1NRU5Obm4q677mo6Zm9vj4iICBw9erTFr6mpqYFCoWj20Afv7bqA+1ceRlJ+hdShEBERERERUSeQdCX+WiqVCgsWLMCwYcMQFhbWdHzGjBnw9/eHl5cXzp49i1deeQUJCQnYtm1bi9fJzc0FALi7uzc77u7u3vTc9ZYuXYpFixZp6SfpHEUVNfj9XA5Kqupw35cH8dZ9oZgR7gdBEKQOjYiIiIiIiDqIIIqiKHUQADB37lzs3r0bhw4dgo+Pz03P27dvH8aMGYOkpCR06dLlhuePHDmCYcOGITs7G56enk3Hp02bBkEQsGnTphu+pqamBjU1NU2fKxQK+Pr6oqysDHZ2du38yTpOnqIaC38+g4OXCwEAd/Vwx7KpveBsYy5xZERERERERKQJhUIBe3v72+ahOlFOP3/+fOzatQv79++/ZQIPABEREQCApKSkFp9v3Dufl5fX7HheXt5N99Wbm5vDzs6u2UMfuNtZ4MdHw/HmvT1gJpfhr4t5iPz8IA4kFkgdGhEREREREXUASZN4URQxf/58bN++Hfv27UNgYOBtv+b06dMA0GyV/VqBgYHw8PDA3r17m44pFArExcVhyJAhWolbl8hkAp4YHoRf5g1DNzcbFJTXYPYP8Vi88wKq65RSh0dERERERERaJGkSP2/ePKxbtw4bNmyAra0tcnNzkZubi6tXrwIAkpOT8d577+HEiRO4cuUKduzYgdmzZ2PEiBHo3bt303W6d++O7du3AwAEQcCCBQuwZMkS7NixA+fOncPs2bPh5eWFyZMnS/FjdopQLzvsfPYOPDLEHwDww+FUTP76MBJyyyWOjIiIiIiIiLRF0j3xN2vCtnr1asyZMwcZGRmYNWsWzp8/j8rKSvj6+mLKlCl48803m5W8C4LQ9DWAeoX/nXfewTfffIPS0lLccccdWLFiBYKDg1sVV2v3IuiqfZfy8PKWsyisqIWZiQyv39MdjwwNYNM7IiIiIiIiHdXaPFRnGtvpEn1P4gGgoLwGL205g+gE9f74USGu+PiBPnC1ZdM7IiIiIiIiXaNXje1I+1xtzbF6ziAsmtgTZiYyRCcUIHL5Aey7lHf7LyYiIiIiIiKdxCTegAmCgEeGBmDn/DvQ3cMWRZW1eGzNcbz963k2vSMiIiIiItJDTOKNQIiHLX6ZNwyP36Hu/r/2aBru+/IQ/s4ukzgyIiIiIiIi0gSTeCNhYSrHW/eF4sfHwuFqa46k/ApM+foIvjuYApWKbRGIiIiIiIj0AZN4IzMy2BVRzw3HXT3cUatUYclvFzH7h3jkKaqlDo2IiIiIiIhug0m8EXK2Mce3swfg/SlhsDCV4VBSIcYtP4Co87lSh0ZERERERES3wCTeSAmCgJkR/tj17HD09LJDaVUdnl53Aq9tO4uq2nqpwyMiIiIiIqIWMIk3cl3dbLD9mWH418ggCALwU3wG7vviEM5mlkodGhEREREREV2HSTzBzESG1+7pgfWPR8DDzgIphZW4f8URrIhOgpJN74iIiIiIiHQGk3hqMrSrC6IWDMc9YR6oV4n4KCoBM76NRXbpValDIyIiIiIiIjCJp+s4WJlhxcz++OiB3rAykyMutRiRyw9g19lsqUMjIiIiIiIyekzi6QaCIGDaQF/8/u/h6OPrAEV1PeZvOIUXN59BRQ2b3hEREREREUmFSTzdVICLNbY8PQTPju4KmQBsPZmJ8Z8fxMn0EqlDIyIiIiIiMkpM4umWTOUyvDg2BBufGgJvB0ukF1fhwVVH8flfl1GvVEkdHhERERERkVFhEk+tEh7ohN+fG46JfbygVIn47K9EPPRNLDKKq6QOjYiIiIiIyGgwiadWs7c0xRcP98Pyh/rCxtwEJ9JKcM/nB7H9VKbUoRERERERERkFJvGkscn9vLH7ueEY4O+Iipp6PL/pDJ7beAplV+ukDo2IiIiIiMigMYmnNvF1ssKmpwbjhbuDIZcJ+PV0NsZ/fhDxqcVSh0ZERERERGSwmMRTm5nIZfj3mG74+ekh8HOyQlbpVUz/5ig++TMBdWx6R0REREREpHVM4qnd+vs54vfnhmNqfx+oRODLfUl4YNVRXCmslDo0IiIiIiIig8IknrTCxtwEn0zrgy8f7gc7CxOcySjF+C8OYvPxDIiiKHV4REREREREBoFJPGnVhD5e2L1gBCICnVBVq8TLW85i3oaTKK2qlTo0IiIiIiIivccknrTO28ESG54cjJcjQ2AiE/D7uVxELj+II8mFUodGRERERESk15jEU4eQywQ8M6ortj0zFIEu1shVVGPmd3FYuvsiauvZ9I6IiIiIiKgtmMRTh+rt44Df/n0HHg73hSgC/41Jwf0rDyMpv0Lq0IiIiIiIiPQOk3jqcFZmJlh6f2+smjUADlamOJ+lwH1fHsT6uDQ2vSMiIiIiItIAk3jqNJFhHvhjwQjc0dUF1XUqvLH9PJ5cewJFFTVSh0ZERERERKQXmMRTp3K3s8Dax8Lx5r09YCaX4a+LeYj8/CAOJBZIHRoREREREZHOYxJPnU4mE/DE8CBsnzcUXd1sUFBeg9k/xGPxzguorlNKHR4REREREZHOYhJPkunpZY+d8+/A7CH+AIAfDqdi8teHkZBbLnFkREREREREuolJPEnK0kyOxZPC8P0jA+FsbYZLueWY8NUhrDmcyqZ3RERERERE12ESTzphTA937F4wHCODXVFbr8K7Oy/g0TXHUFDOpndERERERESNmMSTznCztcCaRwfh3QmhMDORITqhAJHLD2DfpTypQyMiIiIiItIJTOJJpwiCgDnDArFz/h3o7mGLospaPLbmON7+9Tyb3hERERERkdFjEk86KcTDFr/MG4bHhgUCANYeTcN9Xx7C39llEkdGREREREQkHSbxpLMsTOV4e0IofnwsHK625kjKr8CUr4/gu4MpUKnY9I6IiIiIiIwPk3jSeSODXRH13HDc1cMdtUoVlvx2EbN/iEeeolrq0IiIiIiIiDoVk3jSC8425vh29gC8PyUMFqYyHEoqxLjlBxB1Plfq0IiIiIiIiDoNk3jSG4IgYGaEP3Y9Oxw9vexQWlWHp9edwGvbzqKqtl7q8IiIiIiIiDock3jSO13dbLD9mWH418ggCALwU3wG7vviEM5mlkodGhERERERUYdiEk96ycxEhtfu6YH1j0fAw84CKYWVuH/FEayIToKSTe+IiIiIiMhAMYknvTa0qwt2Pzcc94R5oF4l4qOoBMz4NhbZpVelDo2IiIiIiEjrmMST3nO0NsOKmf3x0dTesDKTIy61GJHLD2DX2WypQyMiIiIiItIqJvFkEARBwLRBvvjt38PRx8ceiup6zN9wCi9uPoOKGja9IyIiIiIiw8AkngxKoIs1tswdivl3doUgAFtPZmL85wdxMr1E6tCIiIiIiIjajUk8GRxTuQwLx4Vg45OD4e1gifTiKjy46ig+/+sy6pUqqcMjIiIiIiJqMybxZLAigpzx+3PDMaGPF5QqEZ/9lYiHvolFRnGV1KERERERERG1iaRJ/NKlSzFo0CDY2trCzc0NkydPRkJCQovniqKIe+65B4Ig4JdffrnldefMmQNBEJo9IiMjO+AnIF1nb2mKL6b3xWcP9YGNuQlOpJVg4leHkFtWLXVoREREREREGpM0iY+JicG8efMQGxuLPXv2oK6uDmPHjkVlZeUN5y5fvhyCILT62pGRkcjJyWl6/PTTT9oMnfSIIAiY0s8Hu58dihAnGUqq6vD6+hiISja8IyIiIiIi/WIi5TePiopq9vmaNWvg5uaGEydOYMSIEU3HT58+jU8++QTHjx+Hp6dnq65tbm4ODw8PrcZLeuzCDvhGvYIvKmSYgPexLx3Y+uGjeGDKg0DoRKmjIyIiIiIiahWd2hNfVlYGAHBycmo6VlVVhRkzZuDrr7/WKCmPjo6Gm5sbQkJCMHfuXBQVFd303JqaGigUimYPMiAXdgCbZwOKbITIMvGcyVYAwKLyCcjd9Jz6eSIiIiIiIj2gM0m8SqXCggULMGzYMISFhTUdf/755zF06FBMmjSp1deKjIzE2rVrsXfvXixbtgwxMTG45557oFQqWzx/6dKlsLe3b3r4+vq2++chHaFSAlGvABCbDv1Lvgt9hGSUwxqv1T0Ocfer6vOIiIiIiIh0nKTl9NeaN28ezp8/j0OHDjUd27FjB/bt24dTp05pdK3p06c3/XevXr3Qu3dvdOnSBdHR0RgzZswN57/22mt44YUXmj5XKBRM5A1F2hFAkd3skImgwn9MV+He2g+wX9UPP5fEY1raESBwuERBEhERERERtY5OrMTPnz8fu3btwv79++Hj49N0fN++fUhOToaDgwNMTExgYqK+5zB16lSMGjWq1dcPCgqCi4sLkpKSWnze3NwcdnZ2zR5kICryWjzcTZaFBSZbAADv1f8fcvJbPo+IiIiIiEiXSJrEi6KI+fPnY/v27di3bx8CAwObPf/qq6/i7NmzOH36dNMDAD777DOsXr261d8nMzMTRUVFrW6KRwbExv2mTz0l/w19hCSUwwqvHreBKIo3PZeIiIiIiPSTSmVY7/MlTeLnzZuHdevWYcOGDbC1tUVubi5yc3Nx9epVAICHhwfCwsKaPQDAz8+vWcLfvXt3bN++HQBQUVGBl156CbGxsbhy5Qr27t2LSZMmoWvXrhg3blzn/5AkLf+hgJ0XgBvHE6rL6r+BGeoRk6HEz8czOz8+IiIiIiLqMLll1Ri7/AD2X8qXOhStkTSJX7lyJcrKyjBq1Ch4eno2PTZt2qTRdRISEpo628vlcpw9exYTJ05EcHAwHn/8cQwYMAAHDx6Eubl5R/wYpMtkciByWcMn1yfyArrJsvB8f/X/Bu/tuoDs0qudGh4REREREXWMeqUK//7pFJLyK/DJngQoDWRFXhBZQ3wDhUIBe3t7lJWVcX+8obiwQ92l/tomd3beQOSHqA+5D1NXHcWZjFKMCHbFj48OgiDcuHJPRERERET6Y1nUJayMToaNuQl2PXsHAlyspQ7pllqbh+pMd3qiDhU6Eeh+r7pbfUWeeq+8/1BAJocJgE8e7I3xXxzCgcQCbD6egYcG+UkdMRERERERtdH+S/lYGZ0MAPjogd46n8BrQie60xN1CplcPUau1wPqjzJ501Nd3Wzx4t3BAIAluy6yrJ6IiIiISE9ll17F85tPAwAeGeKP8b0Mq8E5k3iiBk8MD0I/PweU19Tjla1n2a2eiIiIiEjP1ClVePanUyitqkMvb3u8fm8PqUPSOibxRA3kMgEfP9AHZiYyHLxciI3HMqQOiYiIiIiINPCfPxJwIq0EthYm+HpGf5ibyG//RXqGSTzRNbq62WDhWHVZ/fu/XUQWy+qJiIiIiPTC3ot5+O+BFADAxw/0gZ+zlcQRdQwm8UTXefyOIPT3c0BFTT1eZVk9EREREZHOyyypwgubzwAAHh0WgMgwD4kj6jhM4omuI5cJ+PjBPjBvKKv/KZ5l9UREREREuqq2XoX5G06h7God+vg64LV7DG8f/LWYxBO1oIurDRaODQEAvP/bBWSWVEkcERERERERtWRZ1CWcziiFnYUJvnq4H8xMDDvNNeyfjqgdHrsjEAP8HVFZq8SrW8+xrJ6IiIiISMf88Xcuvj+UCgD4ZFpf+DoZ5j74azGJJ7oJdbf63jA3keFQUiE2xKdLHRIRERERETXIKK7Cwp/V++CfHB6Iu0PdJY6oczCJJ7qFIFcbvDROXVb/wW8XkVHMsnoiIiIiIqnV1Csxb8NJlFfXo7+fA16O7C51SJ2GSTzRbTw6LBADG8rqX9l6FioVy+qJiIiIiKS09PdLOJtZBgcrU3w5oz9M5caT2hrPT0rURo3d6i1MZTiSXIT1LKsnIiIiIpLM7+dysObIFQDAp9P6wNvBUtqAOhmTeKJWCHSxxkvj1CU6S39nWT0Rkb5ZEZ2E/u/tQUJuudShEBFRO6QVVeKVLWcBAP8aGYTR3Y1jH/y1mMQTtdKjQwMwKMARVbVKvLyFZfVERPqioqYeX+9LQnFlLTYfz5A6HCIiaqPquoZ98DX1GOjv2DQS2tgwiSdqJZlMwMcPqMvqj6YUYX1cmtQhERFRK+w4nY3KWiUAICaxQOJoiIiord7/7SLOZyngZG2GL2f0M6p98Ncyzp+aqI0CXKzxcmNZ/e5LLKsnItJxoig2u+malF+BzBL+7iYi0jc7z2Tjf7Hq3+efTusDT3vj2gd/LSbxRBqaMzQA4QFOqKpV4qUtZ1hWT0Skw05nlOLvbAXMTGTo7mELAIhO4Go8EZE+SS2sxGvbzgEA5t3ZBaNC3CSOSFpM4ok0JJMJ+OiB3rA0lSM2pRjrDLmsXqUEUg8C57aoP6qUUkdERKSR9XHqiSL39fbEfb09AbCknohIn1TXKfHM+pOoqKlHRKATnr8rWOqQJMcknqgNAlys8UqkupHG0t8vIb3IAEszL+wAlocBP94HbH1c/XF5mPo4EZEeKKuqw84z2QCAmRH+TSs3R5IKUVuvkjI0IiJqpUU7L+BijgLO1mb44uF+MDHSffDX4p8AURvNHhKAiEAnXK0zwLL6CzuAzbMBRXbz44oc9XEm8kSkB7aezERNvQrdPWzR388BoZ52cLExQ2WtEsfTiqUOj4iIbuPX01n4KT4dggB8Pr0f3O0spA5JJzCJJ2qjxm71lqZyxKUWY+3RK1KHpB0qJRD1CoCWbko0HIt6laX1RKTTrm1oN3OwPwRBgEwmYESwKwAghvviiYh0WlJ+RdM++GdHd8Md3Vwkjkh3MIknagc/Zyu8eo+6W/2yqASkFVVKHJEWpB25cQW+GRFQZKnPIyLSUXGpxUguqISVmRyT+3o1HR/ZmMRzXzwRkc66WqvEvPUnUVWrxJAgZzw3ppvUIekUJvFE7fR/g/0xOKixrP6s/pfVV+Rp9zwiIgk0NrSb1NcbthamTcdHdHOFIACXcsuRU3ZVqvCIiOgW3t3xNxLyyuFiY47PH+4LuUyQOiSdwiSeqJ1kMgEfTe0DKzM54lOL8aO+l9XbuGv3PCKiTlZYUYOo8zkAgJkRfs2ec7Q2Qx8fBwDAAa7GExHpnG0nM7HpeAZkAvDF9L5ws+U++OsxiSfSguZl9ZdwpVCPy+r9hwJ2XgBudsdTAOy81ecREemgn49nok4poo+vA8K87W94flSIuqSe8+KJiHTL5bxyvLH9PADguTHBGNqV++BbwiSeSEtmRfhjSJAzqutUeFmfy+plciByWcMn1yfyDZ9Hfqg+j4hIx6hUIjbENzS0u24VvlHjvvhDlwtRp+SoOSIiXVBVW49n1p/E1Tol7ujqgvmju0odks5iEk+kJTKZgI8e6K0uq79SjDVHrkgdUtuFTgSmrQXsPJsft/NSHw+dKE1cRES3cTCpEBnFV2FnYYIJvb1aPKe3jwMcrUxRXlOPU+mlnRsgERG16K1f/sbl/Aq42Zpj+XTug78VJvFEWuTrZIXXxvcAAHz0xyWk6nNZfehEYMF54JFdwNTv1R8XnGMCT0Q6bX2sehV+6gAfWJq1XDEkv2bUXHRCfqfFRkRELdt8PANbT2aq98E/3A8uNuZSh6TTTFpz0tmzZzW+cGhoKExMWnV5IoMyM9wPu8/l4EhyEV76+Qw2/WuI/t5JlMmBwOFSR0FE1Co5ZVex95I6Kb9ZKX2jkcGu+PV0NmISC/ByZPfOCI+IiFqQkFuOt39V74N/cWwIBgc5SxyR7mtVlt23b18IggBRbN0eX5lMhsTERAQFBbUrOCJ9JJMJWDa1NyKXH8DxtBKsPpyKJ4bz/wUioo626VgGlCoREYFO6Opme8tzG1fi/85WIL+8mt2PiYgkUFlTj2fWn0B1nQojg10xd2QXqUPSC61eKo+Li4Orq+ttzxNFEWFhYe0KikjfNZbVv/nLeXz8RwJGd3dDkKuN1GERERmseqUKG+MzAAAzB/vf9nwXG3P08rbHuawyHEgsxAMDfDo6RCIiuoYoinhj+zkkF1TCw84Cn07rA5m+Vq92slYl8SNHjkTXrl3h4ODQqouOGDEClpaW7YmLSO/NjPDD7vM5OJxUhJe2nMVmfS6rJyLScfsu5SNXUQ1nazOM6+neqq8ZFeKKc1lliE7IZxJPRNTJNh7LwC+nsyGXCfhyRj84cx98q7Wqsd3+/ftbncADwO+//w5PT8/bn0hkwARBXVZvbSbHiYayeiIi6hjr49IBAA8O9IW5SetGYDaOmjt4uRBKfR0LSkSkhy5kK/DOjr8BAAvHhmBQgJPEEekXjbrTKxQKqFQ3zlNVKpVQKBRaC4rIUPg4WuH1e9Xd6j/+IwHJBRUSR0REZHjSi6pw4HIBAGBG+K0b2l2rr68D7CxMUHa1DqczSjsoOiIiulZFTT3mbziJ2noV7gxxxb9GsHeUplqdxG/fvh0DBw5EdXX1Dc9VV1dj0KBB2Llzp1aDIzIEM8L9cEdXF9TUq/DSz2e42kNEpGU/HUuHKKqb1fk5W7X660zkMgzvpl6Nj0ks6KjwiIiogSiKeG3bOaQUVsLL3gKfTuvLffBt0OokfuXKlXj55ZdhZXXji6O1tTVeeeUVfPXVV1oNjsgQCIKAZQ/0ho25CU6ml+KHQyyrJyLSlpp6JTYfa2hod5uxci0ZGdKQxHNePBFRh1sfl46dZ7JhIhPw5Yz+cLQ2kzokvdTqJP78+fMYNWrUTZ8fMWIEzp07p42YiAyOt4Ml3mgoq//PnyyrJyLSlj/+zkNRZS3c7cwxprubxl/fuC/+bFYZiipqtB0eERE1OJ9VhsW7LgAAXonsjgH+jhJHpL9ancSXlJSgvr7+ps/X1dWhpKREK0ERGaLpg3wxvJu6rH4hy+qJiLRifWwaAGD6ID+YyDVq9QMAcLezQA9PO4iiusEdERFpn6K6DvMa9sHf1cMdTwwPlDokvdbqV7uAgAAcP378ps8fP34c/v63n8tKZKwEQcCHU9Vl9afSS/HdwRSpQyIi0mtJ+eWISy2GTACmh/u2+TqjGkrqo1lST0SkdaIo4tWtZ5FWVAVvB0t88mAfCAL3wbdHq5P4+++/H2+88Qby8vJueC43Nxdvvvkmpk6dqtXgiAyNt4Ml3mwoq/9kTyKS8ssljoiISH81jpUb08MdnvaWbb5OY0n9gcuFULFKiohIq9YeTcPv53JhKhfw9cz+sLcylTokvdfqJP7VV1+Fra0tunXrhmeeeQaff/45Pv/8c8ydOxfBwcGwsbHBq6++2pGxEhmEhwb5YkSwK2rrVVj481mW1RMRtcHVWiW2nsgE0LaGdtca4O8IG3MTFFfW4lxWmTbCIyIiAGczS7HkN/U++Nfu6YG+vg7SBmQgWp3E29ra4vDhw5g1axY2bdqE559/Hs8//zw2bdqEWbNm4dChQ7C1te3IWIkMgiAI+PD+XrA1N8HpjFJ8y7J6IiKN7TqbDUV1PXwcLTGiYUxcW5nKZRjW1RkAR80REWlL2VX1Pvg6pYhxPd3x6LAAqUMyGBp1gLG3t8eKFStQWFiIvLw85ObmoqioCCtWrICjI7sLErWWl4Ml3rovFADwKcvqiYg01lhKPyPCTyszhkeFqDvbc188EVH7iaKIl7ecQUbxVfg6WeKjB7gPXps0b+MK9Uqiq6sr3Nzc+JdB1EYPDvTBqBB1Wf2LP59FvVIldUhERHrhfFYZTmeUwlQu4MEBbW9od63GffGnM0pRWlWrlWsSERmr1Yev4I+/82Aml+HrGf1hb8l98NrUpiSeiNpPEAQsvb8XbC1McCajFN8eTJU6JCIivbAhXr0KP66nB1xtzbVyTS8HSwS720DFUXNERO1yOqMUS3dfBAC8cW8P9PZxkDYgAyRpEr906VIMGjQItra2cHNzw+TJk5GQkNDiuaIo4p577oEgCPjll19ueV1RFPH222/D09MTlpaWuOuuu3D58uUO+AmI2sfT/p+y+s/2JOJyHsvqiYhupaKmHr+eygIAzBqs3dG2javx3BdPRNQ2pVW1mLdevQ/+3l6emD2EI8g7gqRJfExMDObNm4fY2Fjs2bMHdXV1GDt2LCorK284d/ny5a0u3f/oo4/wxRdfYNWqVYiLi4O1tTXGjRuH6upqbf8IRO324AAf3BniilqlCgt/PsOyeiKiW/jlVBYqa5Xo4mqNiEAnrV67cV98TGIBR80REWlIFEUs/Pksskqvwt/ZCkun9uLW6w7SriS+vUlxVFQU5syZg549e6JPnz5Ys2YN0tPTceLEiWbnnT59Gp988gl++OGH215TFEUsX74cb775JiZNmoTevXtj7dq1yM7Ovu0KPpEU1GX1vdVl9Zll+O8BdqsnImqJKIpNDe1mRvhr/c3hwABHWJnJUVBeg4u5Cq1em4jI0H13MBV/XcyDmYl6H7ydBffBdxSNk3iVSoX33nsP3t7esLGxQUqKOuF466238P3337crmLIy9WxWJ6d/7qxXVVVhxowZ+Prrr+Hh4XHba6SmpiI3Nxd33XVX0zF7e3tERETg6NGjLX5NTU0NFApFswdRZ/Kwt8DbDWX1n/91GQm5LKsnIrreqYxSXMxRwNxEhqn9fbR+fXMTOYZ2UY+ai05gST0RUWudSCvBsqhLAIC37wtFmLe9xBEZNo2T+CVLlmDNmjX46KOPYGZm1nQ8LCwM3333XZsDUalUWLBgAYYNG4awsLCm488//zyGDh2KSZMmteo6ubm5AAB3d/dmx93d3Zueu97SpUthb2/f9PD11U6n2w6lUgKpB4FzW9QfVUqpI6J2emCAD0Z3d0OtUoWXtrCsnojoeutj1avwE/p4wd6qY1Z4RjaW1DOJJyJqlZLKWjy74STqVSIm9PHCzAg/qUMyeBon8WvXrsU333yDmTNnQi6XNx3v06cPLl261OZA5s2bh/Pnz2Pjxo1Nx3bs2IF9+/Zh+fLlbb5ua7z22msoKytremRkZHTo92u3CzuA5WHAj/cBWx9Xf1wepj5OeksQBHwwRd2t/izL6omImimtqsWus9kA0KFvEEc1NLc7kV4CRXVdh30fIiJDoFKJeGHzaWSXVSPQxRpL7+c++M6gcRKflZWFrl273nBcpVKhrq5tL3bz58/Hrl27sH//fvj4/FMet2/fPiQnJ8PBwQEmJiYwMTEBAEydOhWjRo1q8VqNJfd5eXnNjufl5d20HN/c3Bx2dnbNHjrrwg5g82xAkd38uCJHfZyJvF7zsLfAuxN6AgCW/5XIsnoiogZbT2ahpl6FUE879PV16LDv4+tkhSBXayhVIg5z1BwR0S3990AK9icUwLxhH7yNuYnUIRkFjZP40NBQHDx48IbjW7ZsQb9+/TS6liiKmD9/PrZv3459+/YhMDCw2fOvvvoqzp49i9OnTzc9AOCzzz7D6tWrW7xmYGAgPDw8sHfv3qZjCoUCcXFxGDJkiEbx6RyVEoh6BUBLHXMbjkW9ytJ6PXd/f2+M6e6GOqWIhT+fQR3L6onIyKkb2qUBAGYO9uvwVR6OmiMiur1jV4rxnz/V48HfndgToV46vBBqYDS+VfL222/jkUceQVZWFlQqFbZt24aEhASsXbsWu3bt0uha8+bNw4YNG/Drr7/C1ta2ac+6vb09LC0t4eHh0eLquZ+fX7OEv3v37li6dCmmTJkCQRCwYMECLFmyBN26dUNgYCDeeusteHl5YfLkyZr+uLol7ciNK/DNiIAiS31e4PBOC4u0SxAEfHB/L9z9aQzOZZXhvzHJmD+6m9RhERFJJjalGCkFlbA2k2NSX+8O/36jQtyw+vAVRCcUQBRFloYSEV2nqKIGz244BaVKxOS+Xpg+SA96ihkQjVfiJ02ahJ07d+Kvv/6CtbU13n77bVy8eBE7d+7E3XffrdG1Vq5cibKyMowaNQqenp5Nj02bNml0nYSEhKbO9gDw8ssv49lnn8VTTz2FQYMGoaKiAlFRUbCwsNDoujqnIu/252hyHuksdzsLvDtRXVb/+d7LuMRRR0RkxNY1rMJP7ufdKaWaEYFOMDeRIVdRjcS8ig7/fkRE+kSlEvH85jPIVVSji6s13p/CffCdrU2vhMOHD8eePXva/c1FsaWycM2/5vpjgiBg8eLFWLx4cZtj00k27rc/R5PzSKdN6eeN38/l4K+L+Vj48xlsf2YYTOUa33cjItJrBeU1+OO8ulJvZoR/p3xPC1M5hnRxRnRCAaIT8hHiYdsp35eISB+sjEnGgcQCWJjKsGLmAFhzH3yna1NGUFpaiu+++w6vv/46iouLAQAnT55EVlaWVoOj6/gPBey8ANzsTpcA2HmrzyO919it3t7SFOezFFgZnSx1SEREnW7z8QzUq0T083Po1P2W3BdPRHSj2JQifNKwD37xpDDe5JSIxkn82bNnERwcjGXLluHjjz9GaWkpAGDbtm147bXXtB0fXUsmByKXNXxyfSLf8Hnkh+rzyCC42Vng3YmhAIAv913GxRyW1ROR8VCqRPwUr54N31mr8I1GNcyLP3alGBU19Z36vYmIdFFBeQ3+/dMpqERgan8fTBvIffBS0TiJf+GFFzBnzhxcvny52R7z8ePH48CBA1oNjloQOhGYthaw82x+3M5LfTx0ojRxUYeZ3Ncbd/VwZ7d6IjI6By4XILPkKuwsTHBfb8/bf4EWBbpYw9/ZCnVKEUeSOGqOiIybUiXi+U2nkV9eg25uNnhvck+pQzJqGifxx44dw7/+9a8bjnt7ezd1l6cOFjoRWHAeeGQXMPV79ccF55jAGyh1t/owOFiZ4u9sBVbsZ1k9ERmH9bHqVfgHBvjCwrTzq8xYUk9EpPbVviQcSiqEpakcK2b2h5UZ98FLSeMk3tzcHArFjSW9iYmJcHV11UpQ1AoyuXqMXK8H1B9ZQm/Q3GwtsKihW/2X+y7jQjbL6onIsGWXXsW+S+ppKzMi/CSJYVSI+n1N46g5IiJjdCSpEMv3JgIAlkwOQzd37oOXmsZJ/MSJE7F48WLU1dUBUK8Spqen45VXXsHUqVO1HiARqU3s44Wxoe6oV7GsnogM38ZjGVCJwOAgJ3R1s5EkhsFBzjCTy5BVehXJBZWSxEBEJKX88mr8e+NpiCIwbaAPpg7wkTokQhuS+E8++QQVFRVwc3PD1atXMXLkSHTt2hW2trZ4//33OyJGIoL6htmSKeqy+gs5Cny9P0nqkIiIOkSdUoWNEjW0u5aVmQkigpwAANEJ+ZLFQUQkBaVKxHM/nUZhRQ1C3G2xaGKY1CFRA42TeHt7e+zZswe7du3CF198gfnz5+P3339HTEwMrK2tOyJGImpwbVn9V/uS8Hd2mcQRERFp396L+cgvr4GLjRnG9fSQNBbuiyciY/X53ss4mlIEKzM5vp7ZH5Zm3L6rKzTqSFBXVwdLS0ucPn0aw4YNw7BhwzoqLiK6iYl9vPD7uRz88XceFv58Fr/OGwYzE43vxxER6az1cWkAgGkDfSX//TYqxBVLfruIuNRiXK1V8k0sERmFg5cL8OW+ywCApff3kmxbE7VMo1dGU1NT+Pn5QalUdlQ8RHQbgiBgyeRecLQyxcUcBb5iWT0RGZC0okocvFwIQQAeDpemod21urjawNvBErX1KsSmFEkdDhFRh8tTVGNBwz74h8P9MKmvt9Qh0XU0vr39xhtv4PXXX0dxcXFHxENEreBqa45Fk9T7klbsT8L5LJbVE5Fh2NCwF35ksCt8nawkjkZ943RkU5d67osnIsNWr1Th2Z9OoaiyFj087fDOhFCpQ6IWaJzEf/XVVzhw4AC8vLwQEhKC/v37N3sQUeeY0NsTkT09mrrV19azWz0R6beaeiV+Pp4JQNqGdtfjvngiMhaf/ZWI+NRi2JibYMXM/rAw5RYiXaTRnngAmDx5cgeEQUSaauxWH3+lGJdyy/HVvst4YWyI1GEREbVZ1PlcFFfWwtPeAnc2rH7rgmFdXWAqF3ClqApXCisR4MJGvkRkeKIT8vH1/mQAwIdTeyGQv+t0lsZJ/DvvvNMRcRBRG7jYmGPxpJ6Yv+EUvo5OxtieHgjztpc6LCKiNlkfpy6lnz7IDyZy3WnYaWNugoH+TjiaUoTohHzMcQmUOiQiIq3KKbuK5zedBgD832B/3NfbS9qA6JZ05xWSiNrkvt5eGN/LA0qW1RORHrucV4741GLIZQIeGuQrdTg3aNwXz5J6IjI0dUoVnt1wCiVVdQjztsMb9/aQOiS6DY2TeEdHRzg5Od3wcHZ2hre3N0aOHInVq1d3RKxEdBOLJ4XBydoMl3LLm8aBEBHpk8ZV+Lt6uMHD3kLiaG40qiGJP5pShOo6TukhIsPxnz8TcDytBLbmJvh6BvfB6wONk/i3334bMpkM9957LxYtWoRFixbh3nvvhUwmw7x58xAcHIy5c+fi22+/7Yh4iagFLjbmeK+xW310Ms5lsls9EemPq7VKbD2pew3trhXibgsPOwtU16kQn8oJPURkGPZezMN/Y1IAAB890Bv+ztwHrw803hN/6NAhLFmyBE8//XSz4//973/x559/YuvWrejduze++OILPPnkk1oLlIhu7d7envj9nCd+O5eDhT+fwY5nh8HchHdSiUj37TyTjfLqevg5WeGOri5Sh9MiQRAwMtgVm45nIDqhACOCdafxHhFRW2SVXsWLP58BAMwZGoB7enlKHBG1lsYr8X/88QfuuuuuG46PGTMGf/zxBwBg/PjxSElJaX90RKSRxZN6wtnaDAl55fhiL8vqiUg/rI9LAwDMiPCDTCZIHM3N/bMvnvPiiUi/qffBn0RpVR36+NjjtfHdpQ6JNKBxEu/k5ISdO3fecHznzp1wcnICAFRWVsLW1rb90RGRRpxtzPHeZHVZ/aqYFJzNLJU2ICKi2ziXWYYzmWUwlQt4cICP1OHc0rCuLpDLBCQXVCKjuErqcIiI2uyjqEs4mV4KOwsTfDWjP6s39YzG5fRvvfUW5s6di/379yM8PBwAcOzYMfz+++9YtWoVAGDPnj0YOXKkdiMlolYZ38sT9/b2xG9n1WX1O5+9g7+YiUhnbYhXr8LfE+YJZxtziaO5NXtLU/T3c8CxKyWISSzArMG6uX+fiOhW9lzIw7cHUwEAHz/YB75OVhJHRJrSeCX+ySefRExMDKytrbFt2zZs27YNVlZWiImJweOPPw4AePHFF7Fp0yatB0tErfPepDC42JghMa8Cn//Fsnoi0k2K6jr8ejobADAzwk/iaFpnVIgbACA6gaPmiEj/ZBRX4cXNpwEAj98RiHE9PaQNiNpE45V4ABg2bBiGDRum7ViISEucrM2wZHIYnl53EqtikjGupwf6+DpIHRYRUTO/nspCVa0SXd1sEB7oJHU4rTIy2BUf/5GAI8mFqK1XwcxE4/UQIiJJ1NarMP+nU1BU16OvrwNeieQ+eH3Vplee5ORkvPnmm5gxYwby89XNXXbv3o2///5bq8ERUdtFhnliQh8vqERg4c9nONeYiHSKKIpNs+FnRvhBEHS3od21Qj3t4GJjjqpaJY5f4ag5ItIfS3dfxJmMUthbmuKrGf14E1KPafw3FxMTg169eiEuLg5bt25FRUUFAODMmTN45513tB4gEbXdook94WJjhsv5Ffic3eqJSIecTC/BpdxyWJjKcH8/3W5ody2ZTD1qDgCiE1lST0T6Iep8DlYfvgIA+OTBPvBx5D54faZxEv/qq69iyZIl2LNnD8zMzJqOjx49GrGxsVoNjojaR11W3wsA8N+YZJzOKJU2ICKiButj1avwE3p7wd7KVOJoNNM0as6Q98WrlEDqQeDcFvVHFau5iPRVelEVXtpyFgDw1Igg3BXqLnFE1F4aJ/Hnzp3DlClTbjju5uaGwsJCrQRFRNoTGeaBiSyrJyIdUlJZi13ncgAAM/Www/vwri6QCUBCXjmyS69KHY72XdgBLA8DfrwP2Pq4+uPyMPVxItIrNfVKzNtwEuXV9Rjg74iXxoVIHRJpgcZJvIODA3Jycm44furUKXh7e2slKCLSLnVZvTmS8ivw2V+JUodDREZu68lM1NarEOZthz4+9lKHozFHa7OmZqEHDK2k/sIOYPNsQJHd/LgiR32ciTyRXvngt4s4l1UGRytTfPlwP5jKuQ/eEGj8tzh9+nS88soryM3NhSAIUKlUOHz4MBYuXIjZs2d3RIxE1E6O1mZ4f0oYAODbAyk4mV4icUREZKyaN7Tz15uGdtcbFWyAo+ZUSiDqFQBiC082HIt6laX1RFLSYKvLb2dz8OPRNADApw/1hZeDZWdFSR1M4yT+gw8+QPfu3eHr64uKigqEhoZixIgRGDp0KN58882OiJGItGBcTw9M7qsuq3+JZfVEJJGjyUVILayEjbkJJvbxkjqcNmvcF384qRB1SpXE0WhJ2pEbV+CbEQFFlvo8Iup8Gmx1uVJYiVe2qvfBzx3VBXeGuHV2tNSBNE7izczM8O233yI5ORm7du3CunXrcOnSJfzvf/+DXC7viBiJSEvendgTrrbmSC6oxGd7WFZPRJ2vcRV+Sj9vWJubSBxN2/X2toeTtRnKa+pxMs1Aqpsq8rR7HhFpjwZbXarrlHhm/UlU1NQjPMAJL94d3MnBUkdr86YIPz8/jB8/HtOmTUO3bt20GRMRdRAHKzN8MEXdrf7bgyyrJ6LOlV9ejT/+zgUAzIjwkzia9pHJBAzv5gIAiDGUffE2rexY3drziEg7NNzq8t6uC7iQo4CztRm+eLgfTLgP3uC06hb4Cy+80OoLfvrpp20Ohog63t2h7pjSzxvbT2Vh4c9n8Pu/h8PClFU0RNTxfj6eiXqViAH+jujhaSd1OO02KsQVv57ORnRCAV6O7C51OO3nPxSw81Kv7LWYLAjq5/2HdnZkRMZNg60uv5YFYX1cOgQB+OyhvvCwt+i0MKnztCqJP3XqVLPPT548ifr6eoSEqEcUJCYmQi6XY8CAAdqPkIi07p0JoTiUVIiUgkp8uicRr4/vIXVIRGTglCoRG5oa2un3KnyjEd1cIQjAhRwF8hXVcLPT8zfLMjkQuUxdmgsBzRP5hgaEkR+qzyOiztPKLSzJ2fl4/Y9KAMD8O7tiRLBrR0ZFEmpVbcX+/fubHhMmTMDIkSORmZmJkydP4uTJk8jIyMCdd96Je++9t6PjJSItcLAyw9JryupPGMp+TiLSWQcSC5BVehUOVqYY38tT6nC0wtnGHL281SPyDKakPnQiMG0tYHfd35Gdl/p46ERp4iIyZq3YwlItmmLeYStU1ioxOMgJC+7iPnhDpvEGiU8++QRLly6Fo6Nj0zFHR0csWbIEn3zyiVaDI6KOc1eoO+7v5w2R3eqJqBOsj1OPOXqgv49BbeEZ1bDSFW0oSTygTtQXnAce2QVM/V79ccE5JvBEUmnc6oKbjeQU8K7wDC4Vq+BiY4YvpveDXKaf4zupdTRO4hUKBQoKbnyhKigoQHl5uVaCIqLO8c6EnnCzNUdKYSX+80eC1OEQkYHKKr2KfZfyAQAPG0gpfaPGUXOHLhei3lBGzQHqkvnA4UCvB9QfWUJPJJ3GrS4AbkzkBWxXDsPG6ggIAvD59H76v7WHbkvjJH7KlCl49NFHsW3bNmRmZiIzMxNbt27F448/jvvvv78jYiSiDmJvZYql96vL6r8/nIrjV4oljoiIDNHG+HSoRGBoF2d0cbWROhyt6uPjAHtLU5RdrcOZzFKpwyEiQ3WTrS5JVn3xujgXAPDv0d0wrKuLFNFRJ9M4iV+1ahXuuecezJgxA/7+/vD398eMGTMQGRmJFStWdESMRNSBxvRwx9T+Puqy+i1ncbWWZfVEpD11ShU2HssAAMyM8Jc4Gu0zkctwR+OouQQDKqknIt1z3VaXqzN2Yp7pIlytFzCsqzP+PYZjv42Fxkm8lZUVVqxYgaKiIpw6dQqnTp1CcXExVqxYAWtr646IkYg62NsTQuFuZ47Uwkr850+W1ROR9vx1IQ8F5TVwsTHH3aGGOV/cIPfFU5tkllThZHoJ6gxpawXplmu2urx9xh4JeRVwtTXH8oe4D96YtGrEXEusra3Ru3dvbcZCRBKxtzTFh/f3xqNrjuGHw6mIDPPAoAAnqcMiIgOwvmGs3EODfGBmovHagV4Y2ZDEn80sQ2GF+oYFGZ/KmnpM/OowiitrYWtugmFdXTAyxBUjg13h5WApdXhkYLacyMTPJzIhE4AvpveDqy1/7xiTVr2a3n///VAoFK2+6MyZM5Gfn9/moIio893Z3Q0PDPBp6lbPsnrqLEqViKPJRfj1dBaOJhdBqRJv/0WkF1ILK3EoqRCCAEwfZFgN7a7lZmeBUE87AMDBy1yNN1a/nM5CcWUtAKC8ph5Rf+fitW3nMPTDfRj7WQze/+0CDicVoqaer6/UPol55Xjzl3MAgOfvCsaQLs4SR0SdrVUr8b/++muLHelbIooidu7ciffeew9ubm7tCo6IOtdb94Xi0OVCXCmqwsd/JODtCaFSh0QGLup8DhbtvICcsuqmY572FnhnQigiwwxjlrgx+ylevQo/KtgVvk5WEkfTsUaFuOJCjgIxCQWY0s9H6nCok4miiHWx6n/vr93THYODnBGdUICYxHyczihFYl4FEvMq8O3BVFiayjG0izNGhbhiZLAb/JwN+/8N0g5RFJFeXIXYlCL8NyYF1XUqDO/mgnl3dpU6NJJAq5J4URQRHBzc0bEQkcTsLU2xdGovPLr6GFYfUZfVhweyrF4jKiWQdgSoyANs3NWzXTmaqUVR53Mwd91JXL/unltWjbnrTmLlrP5M5PVYdZ0SPx833IZ21xsZ7IoV0ck4cLkQKpUIGfemGpWT6aW4mKOAmYkM0wb6wtHaDH18HfDcXd1QWlWLg5cLEZNYgJjEAhSU12DvpXzsvZQP4G8EulhjZLArRoa4YkiQMyxM+ZpB6vzrSpE6aY9LKUJsSjFyFf/c8Ha3M8dnD/Xl7xoj1aokfv/+/Rpf2NvbW+OvISLp3RnihgcH+ODnE5l4ecsZ/P7ccFiZtbl9hnG5sAOIegVQZP9zzM5LPds1dKJ0cekgpUrEop0XbkjgAUCEegruop0XcHeoBxv16Kmo87koqaqDl70F7uxu+JV5/f0dYWtuguLKWpzLKkMfXwepQ6JOtD42DQBwX29POFqbNXvOwcoME/p4YUIfL4iiqK7YSCxATEIBTqSVILWwEqmFlVhz5ArMTWSICHLGyGBXjApxRZCLNQSBvwONgSiKSCmsbEjaixGbUoT88ppm55jJZejr64CIICc8NMiX/TeMWKvemY8cObKj4yAiHfLmfaE42FBW/1FUAt6d2FPqkHTfhR3A5tnA9WmpIkd9fNpaJvLXiE8tblZCfz0RQE5ZNeJTi7nXT0+tj1MnNdPD/YziRoypXIZhXV0Q9XcuohMKmMQbkZLKWuw6lwMAmOVXApzbctNKLEEQ0NPLHj297PHMqK5QVNfhSFJRQ1Kfj+yyahxILMCBxAK8twvwcbRsSOjdMKSLM2zMeVPdUIiiiKT8CsSmFjcl7oUV1yXtJjL083VARJAzBgc5ob+fIys1CEA7utMTkeGytzTFh1N7Yc7qY1hz5AruCfNARBATqZtSKdUr8LdaV456Feh+L0vrG+SX3zyBb8t5pFsScstx7EoJ5DIB0wf5Sh1OpxkV4qpO4hPz8dxdnNdsLLacyERtvQqhJlnot/sldSkR0KpKLDsLU0SGeSAyzKMpqYtJLEB0QgHiU4uRWXIV6+PSsT4uHaZyAQP9ndR76UNcEeJuy1V6PaJSibicX4G41CLEphQhPrUYhRW1zc4xN5Ghv58jIoKcMDjIGX19HZi0U4skTeKXLl2Kbdu24dKlS7C0tMTQoUOxbNkyhISENJ3zr3/9C3/99Reys7NhY2PTdE737t1vet05c+bgxx9/bHZs3LhxiIqK6rCfhcjQjApxw0MDfbHpeAZe2HwG258ZCjc7C6nD0k1pR5qX0N9ABBRZ6vMCh3daWLrMzbZ1/5Zaex7plg0Nq/BjQ92N6vfGyBD1qLkzGaUoqay9oayaDI9KJWL9wQsABMzCbjTLqTWsxBIEAd3cbdHN3RZPDA9CVW09YlOKEJ2gTurTi6twNKUIR1OKsHT3JXjYWTTtpR/W1QX2lqYd9nOS5lQqEQl55U372eOvFDdNL2hkYSrDAH9HRAQ6Y3CQM/r42sPchEk73Z6kSXxMTAzmzZuHQYMGob6+Hq+//jrGjh2LCxcuwNraGgAwYMAAzJw5E35+figuLsa7776LsWPHIjU1FXL5zf+RR0ZGYvXq1U2fm5tzzwiRpt64rwfiUotwpagKj6w+hk3/Ggw7C75JuEFFnnbPMwLhgU7wtLdAbll1i/ULAgAPews2VtRDVbX12HYyC4BxNLS7lqe9JULcbZGQV46DSYWY2MdL6pCogx2+nI8r5QJsUIVJ8sPXPdu+SiwrMxOM7u6O0d3dAQBXCisRnZCPmMQCHE0pQq6iGpuOZ2DT8QzIZQL6+zmok/pgN/T0smPDs06mUom4mKto2s8ef6UYpVV1zc6xNJVjYIAjIgLVK+29fRxgZtKqid9EzUiaxF+/Mr5mzRq4ubnhxIkTGDFiBADgqaeeano+ICAAS5YsQZ8+fXDlyhV06dLlptc2NzeHh4dHxwROZCTsLEyx9rEI3L/yCC7mKPDU2uNY82g4S7uuZ+Ou3fOMgFwm4J0JoZi77iQENN+I0Pi2850JoUaxl9rQ7DyTjfKaegQ4W2GoEfYzGBniioS8csQkFDCJNwLr9p8GANwvPwRroaaFM7RXiRXgYo05LoGYMywQ1XVKxKcWN3W8T8qvwLErJTh2pQT/+TMRLjZmGNFNvUo/vJsrnFgVonVKlYiLOQrENqy0H7tSjLKrzZN2KzM5BgY4NSXtvbztmbSTVrQpia+vr0d0dDSSk5MxY8YM2NraIjs7G3Z2drCxsWlzMGVlZQAAJ6eWV14qKyuxevVqBAYGwtf31nvsoqOj4ebmBkdHR4wePRpLliyBs3PLbyZqampQU/PPL16FQtHGn4DI8Pg5W2HNo4Mw/ZtYxKYU44XNp/Hlw/2ZXF3Lf6h676MiBy3vixfUz/sP7ezIdFpkmCdWzup/w5x4D86J12vr49SzsmdE+BnlSuCoYFd8cyAFMYkFHDVn4HLLqvFXWh0AAbPke259spYrsSxM5RgR7IoRwa54C0BGcRUOXFZ3vD+cVIjCilpsO5WFbaeyIAhAbx+Hpo73fXwc+BreBvVKFS7kNF9pL6+ub3aOtZkcgwKdGsrjnRDmbQ9TOZN20j5BFMWW3nHeVFpaGiIjI5Geno6amhokJiYiKCgIzz33HGpqarBq1ao2BaJSqTBx4kSUlpbi0KFDzZ5bsWIFXn75ZVRWViIkJAS//fbbLVfhN27cCCsrKwQGBiI5ORmvv/46bGxscPTo0RZL8N99910sWrTohuNlZWWws7Nr089DZGiOJBVizupjqFWqMHuIPxZN7MmGOtdq6k4PtLiuzO70N6VUiYhPLUZ+eTXcbNUl9HyDqZ/OZpZi4leHYSaXIfb1MUa5+ldTr0S/xXtQVavErmfvQJi3vdQhUQf5bE8iPt97GeHCRWw2f+/WJz+yq9N6otTWq3AiraShQV4+LuWWN3ve3tIUw7u5YFSIG0YEu7D3yE3UK1U4n61o2NNehONXSlBe0zxptzU3aUja1SvtPb3sYMKkndpBoVDA3t7+tnmoxkn85MmTYWtri++//x7Ozs44c+YMgoKCEB0djSeffBKXL19uU8Bz587F7t27cejQIfj4+DR7rqysDPn5+cjJycF//vMfZGVl4fDhw7CwaN0vnZSUFHTp0gV//fUXxowZc8PzLa3E+/r6Moknus6us9l49qdTEEXgxbuD8ewYdl9upsU58d5A5IdM4MkovLr1LDYey8Dkvl5YPr2f1OFI5okfj+Ovi3l4aVwI5t3ZVepwqAPUKVW4Y9k+5Clq8LndOkyq3Y1bVmItOCfZdJI8RXXTXPqDlwuguG71ONTTTt3xPtgV/f0djXbluE6pwrmssqaV9uNXilFZq2x2jq2FCSKaVtqdEeplx5vOpFWtTeI1Lqc/ePAgjhw5AjOz5nfXAwICkJWVpXmkAObPn49du3bhwIEDNyTwAGBvbw97e3t069YNgwcPhqOjI7Zv346HH364VdcPCgqCi4sLkpKSWkzizc3N2fiOqBXu6+2FwvIavLvzAj7ZkwhXW3NMD/eTOizdETpR3bwo7Yi6dPImc4KJDJGiug6/nlbfwJo52Lga2l1vVIgr/rqYh5iEAibxBmrvxTzkKWrgbG2GyAkPA1t3Azfr8BH5oaSvA+52Fpg20BfTBvqiXqnCmcxSRCeo99KfzSzDhRwFLuQosCI6GbbmJhjW1QUjG5J6LwdLyeLuaLX1KpzLKkVsQ9J+Iq0EVdcl7faWpgi/ZqW9hyeTdtINGifxKpUKSqXyhuOZmZmwtbXV6FqiKOLZZ5/F9u3bER0djcDAwFZ9jSiKzVbObyczMxNFRUXw9OT+SqL2mjMsEAUVNfh6fzJe334OzjbmuDuUDduayOQcI0dG6ZdTWbhap0Swuw0G+jtKHY6kRgarR82dSC9B2dU6jv4yQOti1b0fpg3yhXmv7oB8bQuVWF46V4llIpdhgL8TBvg74cWxISisqMHBhr30By4XoriyFlF/5yLq71wAQLC7TcNeejcMDHDU6/FnNfVKnM0saxr5diKtBFfrmuc0DlamzVbau3vY6lxfC25BI6ANSfzYsWOxfPlyfPPNNwDUMy0rKirwzjvvYPz48Rpda968ediwYQN+/fVX2NraIjdX/QvD3t4elpaWSElJwaZNmzB27Fi4uroiMzMTH374ISwtLZt9r+7du2Pp0qWYMmUKKioqsGjRIkydOhUeHh5ITk7Gyy+/jK5du2LcuHGa/rhE1IKFY0NQUF6DzcczMX/DSax/IgIDAzgKjMhYiaKI9Q1JzcwIf6Pvl+HrZIUurtZILqjEkaRC3NOLiwiGJLWwEoeSCiEIwIzGajQ9rcRysTHHlH4+mNLPByqViHNZZU0d70+llyAxrwKJeRX49mAqLE3lGNrFuaH03g1+zlZSh39LNfVKnE4vRVyqeqX9ZHoJqutUzc5xsjZrSNqdMLiLM4LddC9pv1bU+ZwbmsF6shmsUdJ4T3xGRgYiIyMhiiIuX76MgQMH4vLly3BxccGBAwfg5ubW+m9+kxf51atXY86cOcjOzsYTTzyBEydOoKSkBO7u7hgxYgTefvtthISENLtO49dcvXoVkydPxqlTp1BaWgovLy+MHTsW7733HtzdW7da2Nq9CETGrF6pwr/+dwJ7L+XDzsIEW+YORbC7ZtU4RGQYjl0pxoOrjsLSVI64N8bAzoIrz4t3XsAPh1Px0EBfLHugt9ThkBYt2XUB3x1KxagQV6x5NFzqcDpMaVUtDiUVIqah9D6/vHkVbKCLtXoufYgrBgc6w9JM2hsW1XVKnEovRWxKEeJSi3AyvRS19c2TdmdrMwwOckZEkLo8vqurjU4n7deKOp+DuetO3tB5oTH6lbP6M5G/GZVSb26wdVhjO0A9Ym7Tpk04c+YMKioq0L9/f8ycOROWloaxb4ZJPFHrXK1VYuZ3sTiZXgpPewtsnTvUoPfPEVHLFmw8hV9OZzNhvcaBxALM/iEeHnYWOPraaKOvTjAU1XVKRHywF2VX6/Dd7IG4y0i2k4miiIs55U0d70+klaBe9U8KYW4iQ0SQszqpD3ZFF1frDv83X12nxMm0EsQ2rLSfzrgxaXexMcfgICdEBDljSJATurja6OX/i0qViDuW7Wu2An8tAerxrIdeGc3S+uu12HTYC4hcplNbXRp1SBJfV1eH7t27Y9euXejRo4dWAtVFTOKJWq+0qhYPrDqKpPwKdHWzwZanh8DByvjGShEZq+LKWgz+YC9qlSrsmD8MvX0cpA5JJ1TXKdF38Z+orlMhasFwdPfg+wlDsOVEJhb+fAbeDpY48PKdRpswlVfX4UhykbpBXkI+sq9LLn0cLZsS+qFdXWBjrvEO3htU1dbjZFop4lLVI9/OZJShVtk8aXezNW+20h7k0vE3EzrD0eQiPPxt7G3P++nJwRjSxbkTItITTeN/b1K/oIPjfzukO72pqSmqq1u+A0RExsnBygxrHwvH/SuOICm/Ao+tOYb1TwyWvKyOiDrHlhMZqFWq0Mvbngn8NSxM5RgS5Iz9CQWITihgEm8g1sWmAQAeDvc12gQeAGwtTDGupwfG9fSAKIpILqho6ngfl1KMzJKrWB+XjvVx6TCVCxjo74SRIa4YFeKKEHfbViXWlTX1OJFW0pC0F+NsZinqlM2TMQ87i6aV9sFBzghwtjKIpP16+eWty79ae55RUCnVK/Atjn4UAQhA1KvqXhY6Wlp/KxrfFps3bx6WLVuG7777DiYm7b+rRkT6z8vBEmsfD8cDK4/gZHop5m84if/+3wCYGOmsWSJjoVKJ2BDX2NCO4yavNzLYFfsT1J2/nx7ZRepwqJ3OZ5XhdEYpTGQCpg3ylTocnSEIArq62aKrmy2eGB6Eqtp6xKYUISahANGJBUgrqsLRlCIcTSnCh7svwd3OvKnj/bCuLk3TGypq6nH8SjFiU4oRl1qEc5llzUr2AcDL3qLZSrufk2Em7ddzs7XQ6nlGIe1I8xL6G4iAIkt9nh5OFdI4Cz927Bj27t2LP//8E7169YK1tXWz57dt26a14IhIfwS72+KHOYMw87s47L2Uj9e3n8Oyqb2N4sWVyFgdSS7ClaIq2JqbYEIfL6nD0TmjQtyAnRdwPK0YFTX1WikpJumsb7hhNS7Mg8nSLViZmWB0d3eM7q7uF3ClsLJpL/3RlCLkKdTTbTYfz4RcJqCfrwPqVCLOZ5VBeV3S7u1g2ZS0Dwlyho+jpVG+rwgPdIKnvQVyy6pbXFdu3BMfHshJQU0q8rR7no7R+NXEwcEBU6dO7YhYiEjHaDqLdGCAE76a0R//+t9xbD6eCVdbc7w0rnsnRkxEnWl9nLq0eEp/b1gzQb1BgIs1/J2tkFZUhSNJhRjb00PqkKiNyqvr8OvpLADArAh/iaPRLwEu1ghwscYjQwNQXafEsSvFTaX3SfkVOJ5W0nSur5Nl04z2iEAn+Drp9hi7ziKXCXhnQijmrjsJAc0LxBvflb0zIdSot3jcwKaVTSdbe56O0fgVd/Xq1R0RBxHpmLbOIr071B0fTOmFV7edw9f7k+FqY445wwI7I2Qi6kR5imr8eUG9gjGTSc1NjQp2xY9H0xCdWMAkXo9tP5WFqlolurrZYHAQVzvbysJUjuHdXDG8myveApBZUoUjSUUwkQuICHKGNyfc3FRkmCdWzup/w3szD86Jb5n/UHUXekUOWt4XL6if9x/a2ZFpBW+bE9ENbjaLNLesGnPXnbztLNLp4X4oKK/BJ3sSsWjXBbjYmuO+3iy1JTIkm49lQKkSMSjAESEetlKHo7NGhbjhx6NpiEkogCiKRlkKrO9EUWxqaDczwo9/h1rk42iFaYO42t5akWGeuDvUQ6MqSaMlk6vHyG2eDdysfiHyQ71sage0IYkPDAy85S+vlJSUdgVERNJSqkQs2nnhVr08sWjnBdwd6nHLF435o7uioKIGa4+m4YVNZ+BkZYahXV06Kmwi6kRKlYif4hsb2nEV/lYGBznDzESGrNKrSC6oQFc33vDQN8eulCAxrwKWpnLc399H6nDIyMllAsfItVboRPUYuRbnxH+oc+PlNKFxEr9gwYJmn9fV1eHUqVOIiorCSy+9pK24iEgi8anFzcq0ricCyCmrRnxq8S1fRARBwDsTeqKwoga/n8vFU/87gY1PDUaYt30HRE1EnSm6YS60o5UpIsNYIn4rlmZyRAQ64eDlQkQnFDCJ10ONq/AT+3g1dVInIj0ROlE9Ri7tiLqJnY27uoReT1fgG2mcxD/33HMtHv/6669x/PjxdgdERNLS5ixSuUzAp9P6orgyHrEpxZiz+hi2zR0KP2eWzhHps8Yu3Q8O9IWFqX6/EeoMI4NdcfByIWISC/DE8CCpwyENFFbUYPf5HADArMGsOiHSSzK5Xo6RuxWtDXG+5557sHXrVm1djogkou1ZpBamcnwzeyB6eNqhsKIGs3+IQ2FFTXtCJCIJZZZUYX9CPgDg4XDOhm+NUSFuAIC4lGJU1dZLHA1pYvPxDNQpRfTxsUcvH1aSEZFu0FoSv2XLFjg5sVsnkb5rnEV6s93uAtRd6jWZRWpnYYofHx0EH0dLXCmqwqOrj6Gihm9kifTRxvgMiCJwR1cXBLpYSx2OXujiag1vB0vUKlWITSmSOhxqJaVKxIaGqpOZXIUnIh2icRLfr18/9O/fv+nRr18/eHp64vXXX8frr7/eETESUSdqnEUK4IZEvj2zSN3sLLD2sXA4WZvhXFYZnv7fCdTWq9ofMBF1mjqlChuPZQBQd+mm1hEEAaNCXAEA0QkFEkdDrXUgsQCZJVdhZ2GCCZywQkQ6ROM98ZMmTWrWnV4mk8HV1RWjRo1C9+7dtRocEUmjo2aRBrnaYPWcQXj421gcSirEwp/PYPlDfSHjaBQivbDnQh4KK2rgamuOu0LdpQ5Hr4wMdsX6uHTEJDKJ1xeNDe0eGOALSzP2fiAi3aFxEv/uu+92QBhEpGs6ahZpH18HrJw1AI+vOYYdZ7LhYmOOt+7rwbm7RHpgfZw6qZk+yBemcq3tyDMKQ7u6wFQuIK2oCqmFldyKoOMyS6qwr6H3wwxWnXQcldLguoYTdQaNk3i5XI6cnBy4ubk1O15UVAQ3NzcolUqtBUdE0uqoWaQjg13xnwf7YMGm0/jhcCrc7Mzx9MguWv8+RKQ9KQUVOJxUBJkATGdDO43ZmJtgUIATjiQXISYhH4EugVKHRLfwU3w6RBEYEuSMrm42UodjmC7suMn87mV6Pb+bqDNofBtdFMUWj9fU1MDMzKzdARGRcZjczxtvjO8BAPhw9yVsPZEpcURE+kGpEnE0uQi/ns7C0eQiKFUtvy5r20/x6gZfd4a4wdvBslO+p6EZGdywL54l9Tqttl6FTQ29HzhWroNc2AFsnt08gQcARY76+IUd0sRFpCdavRL/xRdfAFA3Z/nuu+9gY/PPXUmlUokDBw5wTzwRaeTJEUEoqKjBNwdS8PLWs3CyNsOd3d1u/4VERirqfM4NvSo829mrojWq65T4ueFG28zBXIVvq1Ehbli6+xJiU4pQXaeEhSnLhnXRH3/norCiFq625hjbk70ftE6lVK/Ao6UbkCIAAYh6Feh+L0vriW6i1Un8Z599BkC9Er9q1SrI5f/8T2VmZoaAgACsWrVK+xESkUF7NbI7CsprsP1UFp5ZfxIbnoxAPz9HqcMi0jlR53Mwd93JG9725pZVY+66k1g5q3+HJfK/n8tBaVUdvB0sMTKYN9raKtjdBh52FshVVCMutbhpZZ50C3s/dLC0IzeuwDcjAoos9XmBwzstLCJ90uokPjU1FQBw5513Ytu2bXB05JtsImo/mUzARw/0RlFlLQ4kFuCxNcfw89NDuQeR6BpKlYhFOy/cat0Ki3ZewN2hHu1uPtmS9Q2zsh8O9+2Q6xuLxlFzG49lIDohn0m8DkrKL0dsSjFkAvAwez90jIo87Z5HZIQ0vr24f/9+JvBEpFWmchlWzuyPPj72KKmqwyM/xCP3mnJhImMXn1rcrIT+eiKAnLJqxKcWa/17X8xR4ERaCUxkAqYN9NX69Y1NY+LOUXO6aV2s+obV6O7u8GLvh45h08otCq09j8gIadydHgAyMzOxY8cOpKeno7a2ttlzn376qVYCIyLjYm1ugh/mDMIDq44itbASj/wQj81PD4G9panUoRFJLr+8dTe1WnueJjY0rMKP7ekONzsLrV/f2Azr5gK5TEBKQSUyiqvg62QldUjUoKq2HltPqns/zGLvh47jP1TdhV6Rg5b3xQvq5/2HdnZkZKCUKlHrI5OlpnESv3fvXkycOBFBQUG4dOkSwsLCcOXKFYiiiP79+3dEjERkJJxtzLH2sXDcv/IIEvLK8eSPx7H28XC9av5kiC8UJD0329Ylz609r7Uqa+qx/VQWAGBmBLt0a4OdhSkG+Dki/koxohML8H/sfq4zdp7JRnl1PfycrDCiG7c6dBiZXD1GbvNsqDcDXZvIN7xeRn7IpnakFVI1hO1oGpfTv/baa1i4cCHOnTsHCwsLbN26FRkZGRg5ciQefPDBjoiRiIyIr5MVfnw0HLbmJoi/UoznNp7qtBFa7RV1Pgd3LNuHh7+NxXMbT+Phb2Nxx7J9iDqfI3VopOfCA53gaW+Bm90OEqB+UxIe6KTV77vjTDYqauoR6GKNIUHOWr22MRsZ0lBSn5AvcSR0rcZS+hkRfpDx5mvHCp0ITFsL2F2XRNl5qY9zTjxpQWND2Ou3ozU2hNXn92caJ/EXL17E7NmzAQAmJia4evUqbGxssHjxYixbtkzrARKR8Qn1ssM3swfCTC7DH3/n4a1fz0MUdTuRN+QXCpKeXCbgnQmhAHBDIt/4+TsTQrVa9SGKItbFqrt0zwhnUqNNjfvijyQXoaZeKXE0BABnMkpxLqsMZnIZHhzgI3U4xiF0IrDgPPDILmDq9+qPC84xgSetuF1DWEDdEFZfFoqup3ESb21t3bQP3tPTE8nJyU3PFRYWai8yIjJqQ7o4Y/n0vhAE9Z7cz/deljqkmzL0FwrSDZFhnlg5qz887JuXzHvYW3TIeLmzmWX4O1sBMxMZHmBSo1U9vezgamuOqloljl8pkTocAppuWI3v5QFnG/M2XUOpEnE0uQi/ns7C0eQi/s5vDZlcPUau1wPqjyyhJy2RsiFsZ9B4T/zgwYNx6NAh9OjRA+PHj8eLL76Ic+fOYdu2bRg8eHBHxEhERmp8L08snhSGt345j+V/XYaLjTlm6eD+UU1eKIZ0YUkytV1kmCfuDvXolL4LjbOy7+vlCUdrM61f35gJgoCRwa7YciITMYkFGNbVReqQjFpZVR12nlXPLW/ra4yh7rsl0ldSNoTtDBqvxH/66aeIiIgAACxatAhjxozBpk2bEBAQgO+//17rARKRcfu/wf749+iuAIC3fz2PqPO5Ekd0I0N/oSDdIpcJGNLFGZP6emNIF+cOSeDLrtZhxxl1UjOTXbo7RGNJfTT3xUtuy8lMVNep0N3DFgP8NR+jzO1URLpHqoawnUWjJF6pVCIzMxN+fuoXdGtra6xatQpnz57F1q1b4e+veytkRKT/nr87GA+H+0IlAv/eeApxKUVSh9SMob9QkPHZfk1S099P86SGbm94NxfIBCAxrwLZpVelDsdoiaLYVHUyc7A/BEGzm2LcTkWkm6RqCNtZNEri5XI5xo4di5IS7t8ios4jCALemxSGu0PdUVuvwhNrj+NSrkLqsJoY+gsFGRd1UqPu0j0zwk/jpIZax8HKDH19HQAAMYkF0gZjxI4mFyGloBLWZnJM6eet8dcb+r5bIn0lRUPYzqRxOX1YWBhSUlI6IhYiopsykcvw5cP9MCjAEeXV9Xjkh3hkllRJHRYAw3+hIONy7EoJLudXwMpMjsltSGqo9UaFuAFgSb2U1jWswk/q5w0bc41bRXE7FZEO6+yGsJ1J4yR+yZIlWLhwIXbt2oWcnBwoFIpmDyKijmJhKsd3swch2N0GeYoazP4hHsWVtVKHBcCwXyjIuDSWFk/q6wVbC1OJozFsjfviDycVoU6pkjga45OvqMaff+cBAGZFtG1LKLdTEem2yDBPHHplNH56cjA+n94XPz05GIdeGa3378s0vuU4fvx4AMDEiRObldiJoghBEKBUct4pEXUceytT/PhYOKauOIKUgko8uuYYfnoyAlZmmq+gaFtndg4n6ghFFTXYfU7dPHJGOPvcdLRe3vZwsjZDcWUtTqSVYHAQp1d0po3HMlCvEtHfzwGhXnZtukbjdqrcsuoW98ULUN/M5XYqIuk0NoQ1JBq/692/f39HxEFE1Gqe9pZY+3g4Hlh1FGcySvHM+pP4dvZAmMo1Li7SOkN8oSDjseVEJmqVKvTxsUcvH3upwzF4MpmAEd1c8MvpbMQkFjCJ70T1ShV+ilf3fmjP6NLG7VRz152EADRL5Lmdiog6isZJ/MiRIzsiDiIijXR1s8X3jwzCzO9iEZ1QgFe2nsUnD/ZhEy6iNlKpRGyIb2xox1X4zjIqxA2/nM5W/x6L7C51OEZjf0IBcsqq4WhlivG92ldW27id6vo58R6cE09EHaRN9acHDx7Ef//7X6SkpODnn3+Gt7c3/ve//yEwMBB33HGHtmMkImrRAH9HfD2jP5763wlsO5kFV1tzvHZPD6nDItJLh5MLkVZUBVsLE9zXh0lHZxnezQWCAFzMUSBPUQ13O+6d7gzrYtW9Hx4c6AsLU3m7r8ftVETUmTSuPd26dSvGjRsHS0tLnDx5EjU1NQCAsrIyfPDBB1oPkIjoVsb0cMfS+3sBAP4bk4LvD6VKHBGRfmpMaqb299GJHhPGwtnGHL291VsXOGquc6QXVeHAZfWf9YxwP61dt3E71aS+3hjSxZkJPBF1mDZ1p1+1ahW+/fZbmJr+07V22LBhOHnypFaDIyJqjWkDffHSuBAAwHu7LuDX01kSR0SkX3LLqvHXRfWYsxkR2ktqqHVGNoyaYxLfOdbHp0EU1VUQAS7WUodDRKQxjZP4hIQEjBgx4obj9vb2KC0t1UZMREQae2ZUF8wZGgAAWPjzGRy8zDfDRK216VgGlCoR4QFOCHa3lToco9M4au5gYgHqOWquQ9XUK/Hz8UwA7WtoR0QkJY2TeA8PDyQlJd1w/NChQwgKCtJKUEREmhIEAW/fF4r7enuiTini6f+dwLnMMqnDItJ59UoVNh5raGg3mKvwUujr6wB7S1MoqutxJrNU6nAM2u5zuSiurIWnvQXGdHeTOhwiojbROIl/8skn8dxzzyEuLg6CICA7Oxvr16/HwoULMXfu3I6IkYioVWQyAZ9M64NhXZ1RWavEnNXxSC2slDosIp3W2KXbydoMkWEeUodjlOQyAcO7uQAAohNYRdSRGns/TB/kBxMdGEtKRNQWGv/2evXVVzFjxgyMGTMGFRUVGDFiBJ544gn861//wrPPPtsRMRIRtZq5iRyrZg1ATy87FFXWYvYPccgvr779FxIZqfVxDV26B/jA3KT9XbqpbUY17ItnEt9xLuUqcDytBHKZgOnhvlKHQ0TUZhon8YIg4I033kBxcTHOnz+P2NhYFBQU4L333uuI+IiINGZrYYo1j4bDz8kKGcVXMeeHYyivrpM6LCKdk1Fc1dRM7WEtdukmzY0IVq/En8sqQ2FFjcTRGKbGVfixoe4c5UdEeq3NdURmZmawtbWFp6cnbGxstBkTEVG7udqaY+1j4XCxMcOFHAX+9b8TqKlXSh0WkU75KT7dOLp0q5RA6kHg3Bb1R5Xu/S5ws7VATy87AMABdqnXuoqaemw/qZ5cwoZ2RKTvNE7i6+vr8dZbb8He3h4BAQEICAiAvb093nzzTdTVcaWLiHRHgIs1Vs8Jh7WZHEeSi/DC5jNQqUSpwyLSCbX1Kmw+ngEAmBlhwEnNhR3A8jDgx/uArY+rPy4PUx/XMY1d6nVh1JxSJeJochF+PZ2Fo8lFUOr5785fTmWhslaJIBdrDO3iLHU4RETtYqLpFzz77LPYtm0bPvroIwwZMgQAcPToUbz77rsoKirCypUrtR4k3UgURVRVVUkdBpHOC3I0wfKpPfD0uhPYeTwV9iZKvD6+BwRBkDo0IkntPpeD/GIF3OzMMNjPGpWVBtgE8uJvwLYnAVyXgBZmA+v+D7j/W6DHvZKE1pIIX2t8VVuN/eczoCjvBrlMmt9Te/7OxQe7LyK37J+yfg97c7x+Tw/c3VP/mh+Koog1MZegqq3G1N7+fP9EZMSsrKwM4z2gqCE7Ozvx999/v+H4b7/9JtrZ2Wl0rQ8++EAcOHCgaGNjI7q6uoqTJk0SL1261Oycp556SgwKChItLCxEFxcXceLEieLFixdveV2VSiW+9dZbooeHh2hhYSGOGTNGTExMbHVcZWVlIgCxrKxMo5+nM1VUVIhQvyvhgw8++OCDDz744IMPPvjg4zaPiooKqdO4W2ptHqpxOb25uTkCAgJuOB4YGAgzMzONrhUTE4N58+YhNjYWe/bsQV1dHcaOHdtsNWDAgAFYvXo1Ll68iD/++AOiKGLs2LFQKm++n+2jjz7CF198gVWrViEuLg7W1tYYN24cqqvZoZqIiIiIiIj0lyCKoqjJFyxevBiXLl3C6tWrYW5uDgCoqanB448/jm7duuGdd95pczAFBQVwc3NDTEwMRowY0eI5Z8+eRZ8+fZCUlIQuXbrc8LwoivDy8sKLL76IhQsXAgDKysrg7u6ONWvWYPr06beNQ6FQwN7eHmVlZbCzs2vzz9ORRJbTE7XJJ38m4LuDqZDLBHz5cF/c2d1d6pCIOt2Huy/ixyNpuLO7G1bM7C91OB3j/Hbg12duf96kFUDYlI6Pp5W2nMjAW7/8jT6+9tj41JBO/d5xKUWYs/rYbc9b8+ggRATpx77y4spa3PlxNGqVKmx8KgJ9fB2lDomIJKTr5fStzUM13hN/6tQp7N27Fz4+PujTpw8A4MyZM6itrcWYMWNw//33N527bds2ja5dVlYGAHBycmrx+crKSqxevRqBgYHw9W15vmdqaipyc3Nx1113NR2zt7dHREQEjh492mISX1NTg5qaf/Z9KRQKjeKWgiAIsLY24E7CRB3krcn9UFYnx9aTmVj4SwLWP+GAAf4t/84hMkTVdUrs+LsYMjMLzBkZYrivJW7+gFkr3qi5+QM69Gcwto8/3vk9Gefza1ALUzhaa1bl2B7lylLIzG4/eq1cKdebfzfrT+SiXm6GXr52GBLirdNv3omIWkvjJN7BwQFTp05tduxmCbUmVCoVFixYgGHDhiEsLKzZcytWrMDLL7+MyspKhISEYM+ePTct3c/NzQUAuLs3X11zd3dveu56S5cuxaJFi9r9MxCR7hMEAR9O7YXiyhrsTyjAY2uOY8vTQ9DN3Vbq0Ig6xW9nc1B2tQ4+jpYY0c1V6nA6jv9QwM4LUORAvRXyeoL6ef+hnR3ZLXnaW6K7hy0u5ZbjYFIhJvbx6rTv7WbbutnprT1PaiqViPVx6QDUY+WYwBORodA4iV+9enVHxIF58+bh/PnzOHTo0A3PzZw5E3fffTdycnLwn//8B9OmTcPhw4dhYaGdF5HXXnsNL7zwQtPnCoVCKzcmiEg3mcpl+Hpmf8z4Ng6nM0ox+4d4bHtmKDztLaUOjajDrY9LAwA8HO4nWffzTiGTA5HLgM2zAQhonsg3/NyRH6rP0zEjg11xKbcc0Qn5nZrEhwc6wdPeArll1Te77QEPewuEB+pH9dKhpEKkFVXB1twEk/p23p8jEVFH07ixXUeYP38+du3ahf3798PHx+eG5+3t7dGtWzeMGDECW7ZswaVLl7B9+/YWr+XhoR59kpeX1+x4Xl5e03PXMzc3h52dXbMHERk2KzMT/DBnEIJcrZFTVo3Z38ejtKpW6rCIOtSFbAVOppfCRCZg2kAjuFkdOhGYthainWezw6KdFzBtrfp5HTQyRF0hcSCxAKpOnM8ulwl4Z0IogKbbHE0aP39nQqje3PxZF6u+YXV/f29YmWm8bkVEpLM0TuKLioowb948hIaGwsXFBU5OTs0emhBFEfPnz8f27duxb98+BAYGtuprRFFstof9WoGBgfDw8MDevXubjikUCsTFxTXNtSciAgAnazOsfSwc7nbmuJxfgSd+PI7quptPviDSdxvi1UnNuDAPuNqaSxxN54hSDcId1Z9jeu2b+HftfEyvfRN3VC9HlGqQ1KHd1EB/J1ibyVFYUYsLOZ3bpycyzBMrZ/WHh33zakcPewusnNUfkWGeN/lK3ZJTdhV/XVQv6Mwc7C9xNERE2qXxbcn/+7//Q1JSEh5//HG4u7u3a3/RvHnzsGHDBvz666+wtbVt2rNub28PS0tLpKSkYNOmTRg7dixcXV2RmZmJDz/8EJaWlhg/fnzTdbp3746lS5diypQpEAQBCxYswJIlS9CtWzcEBgbirbfegpeXFyZPntzmWInIMPk4WuHHx8Lx4KqjOJ5WgvkbTmHVrP4wketEoRKR1lTU1GP7ySwAwMwIP4mj6RxR53Mwd91JiACyENp0XFDUYe66kzqblJqZyDC0qwv2XMhDdEI+wrztO/X7R4Z54u5QD8SnFiO/vBputuoSen1ZgQeAn+IzoBLVWwSC2fOEiAyMxkn8wYMHcejQoabO9O2xcuVKAMCoUaOaHV+9ejXmzJkDCwsLHDx4EMuXL0dJSQnc3d0xYsQIHDlyBG5ubk3nJyQkNHW2B9DUBO+pp55CaWkp7rjjDkRFRWltDz0RGZbuHnb4bvZA/N8P8fjrYh7e/OU8lt7fi02QyKD8ejoLlbVKBLlYY4iejAdrD6VKxKKdF1rc2y1CXR6+aOcF3B3qoZPJ6agQV+y5kIeYxALMH92t07+/XCZgSBf9/HdSp1RhY/w/De2IiAyNxkl89+7dcfXqVa1889uNqPfy8sLvv/+u8XUEQcDixYuxePHidsVHRMYjIsgZXz7cD3PXncDGYxlwtTXHi2NDpA6LSCtEUcS6WHVSMyPCzyhuUMWnFiOnrPqmz4sAcsqqEZ9arJPJ6shg9b74k+mlKLtaB3tLU4kj0h9/XchDfnkNXGzMENmz5X5IRET6TON60RUrVuCNN95ATEwMioqKoFAomj2IiPTVuJ4eWDK5FwDgy31J+N/RK9IGRKQlpzNKcTFHATMTGR4YcGMDWUOUX37zBL4t53U2H0crdHWzgVIl4nBSodTh6JV1DRMYpg30hZkJt0YRkeFp05x4hUKB0aNHNzsuiiIEQYBSyaZQpJuUKlGv9/dR55gR4Yf88mos/+sy3t7xN5xtzDG+l+7tmSXSROOs7Pt6e8LBykziaDqHIcw8HxnsiqT8CkQn5PP3UCulFFTgcFIRBEE9RpGIyBBpnMTPnDkTpqam2LBhQ7sb2xF1lqjzOVi080Kz0kpPewu8MyFUJ5sakbSeG9MNBeU1WB+XjgUbT8PByhRDu7hIHRZRm5RV1WHnmWwAwMwI49kfbAgzz0eFuOL7Q6mISSxoWiyhW2u8YXVniBt8nawkjoaIqGNonMSfP38ep06dQkgI94qSfri2O/G1csuqdbo7MUlHEAQsnhSGoopaRP2di3+tPYFN/xqCUC87qUMj0tjWk5moqVehu4ct+vs5SB1Op2mceT533UkIQLPXAH2ZeT4owAmWpnLkKWpwKbccPTz5O+hWquuU2HIiEwAwazBX4YnIcGm8UWjgwIHIyMjoiFiItO523YkBdXdiperWTRbJ+MhlApZP74vwQCeU19TjkdXxyCiukjosIo2Iooj1DfuDZw72N7qVXH2feW5hKm9quhedUCBxNLpv55lslF2tg7eDJUYGu93+C4iI9JTGK/HPPvssnnvuObz00kvo1asXTE2bd0vt3bu31oIjai99705M0rIwlePb2QPx0H+P4lJuOWb/EI8tTw+Bs4251KERtUpcajGSCyphZSbH5L5eUocjCX2feT4y2BX7LuUjJjEfc0d1kTocnbYu7p8JDPry90tE1BYaJ/EPPfQQAOCxxx5rOiYIAhvbkU7S9+7EJD17S1P8+Fg47l9xBKmFlXhszTFseHIwrM01/vVJ1Oka9wdP7ucNWwvjHVGmzzPPR4WoR80dv1KC8uo6o/57vJXzWWU4k1EKU7mAaQN9pQ6HiKhDafwuNDU1tSPiIA2x03rrGEJ3YpKeu50F1j4ejgdWHsGZzDI8ve4Evn9kEEcXkU4rrKhB1PkcAMAMdunWW/7O1ghwtsKVoiocSS7COM49b1HjtpFxPT3gastqKX3B97NEbaNxEu/vbzydbXUVO623niF0Jybd0MXVBj/MGYQZ38bh4OVCvLzlDD6d1hcyvtkgHfXz8UzUKUX09XVAmLe91OFQO4wKccOaI1cQnVDAJL4Fiuo6/HJKPYFh1mC+T9UXfD9L1HZtWkb63//+h2HDhsHLywtpaeo7n8uXL8evv/6q1eDoRo2d1q/f593Yab1x1YXUGrsTA/90I26kL92JSXf083PEiln9YSIT8MvpbCzdfVHqkIhapFKJ2BDf0NAugqvw+m5kQ0n9gYZRc9Tc9pNZuFqnRDc3G0Twprxe4PtZovbROIlfuXIlXnjhBYwfPx6lpaVNe+AdHBywfPlybcdH12Cn9bbR9+7EpFvuDHHDsqnqBp7fHkzFNweSJY6I6EYHkwqRUXwVdhYmuK+3cTa0MySDA51hZiJDVulVJOVXSB2OThFFEeti/7lhZWwTGPQR388StZ/G5fRffvklvv32W0yePBkffvhh0/GBAwdi4cKFWg2OmmOn9bbT9+7EpFumDvBBYUUNlu6+hA9+vwQXG3Pc399H6rCImqxvSGqmDvCBpZlc4miovSzN5Bgc5IwDiQWISSxAN3dbqUPSGfGpxbicXwFLUznuH8Dfw/qA72eJ2k/jlfjU1FT069fvhuPm5uaorKzUSlDUMnZab5/G7sST+npjSBdnJvDULk+NCMLjdwQCAF7echbRCfkSR0SkllN2FXsvqf89spTecIwMVpfUc158c41j5Sb19YIdO/frBb6fJWo/jZP4wMBAnD59+objUVFR6NGjhzZioptgp3Ui3SEIAt4Y3wOT+nqhXiXimfUncTqjVOqwiLDpWAaUKhERgU7o6sYVW0PROGouPrUYVbX1EkejGwrK/5nAwIZ2+oPvZ4nar9VJ/OLFi1FVVYUXXngB8+bNw6ZNmyCKIuLj4/H+++/jtddew8svv9yRsRq9xk7rN1s/FqDu6slO60SdQyYT8PEDfTC8mwuqapV4bM0xpBRwvypJp16pwsb4DADATCY1BiXIxRo+jpaoVapwNLlI6nB0wubjGahTiujDCQx6he9nidqv1Un8okWLUFFRgSeeeALLli3Dm2++iaqqKsyYMQMrV67E559/junTp3dkrEaPndaJdI+ZiQwrZw1AL297FFfWYvYP8chXsASQpLHvUj5yFdVwtjbDuJ7uUodDWiQIQtNqPEvq1c3RNjSU0s/ithG9wvezRO3X6iT+2pEmM2fOxOXLl1FRUYHc3FxkZmbi8ccf75AAqTl2WifSPTbmJlj96CAEOFshs+QqZv8QD0V1ndRhkRFa35DUPDjQF+YmbGhnaEYGuwEAohPzjX7UXExiPrJKr8Le0hQT+nACg77h+1mi9tGoO/31YzusrKxgZWWl1YDo9thpnUj3uNiYY+1jEbh/5RFcyi3H2E8P4OFwP0wP94W7Hff1UcdLL6rCgcvqFdoZ4VyZNERDuzjDVC4go/gqUgsrEeRqI3VIklkXq75h9cAAH1iY8oaVPuL7WaK20yiJDw4Ovu38zeLi4nYFRK3T2GmdiHSHn7MVfnxsEB5dfQy5imp89lcivth3GXf3cMeswf4Y2sUZMr45oQ6yIT4dogiMCHaFnzNvsBsia3MTDApwwpHkIsQkFhhtEp9RXIX9CZzAYAj4fpaobTRK4hctWgR7ezYOISK6mZ5e9jj4yp2IOp+LdbFpOHalBFF/5yLq71wEulhjRrgfHhjgA0drM6lDJQNSU6/Ez8cbGtoxqTFoo0JccSS5CNEJBXh0WKDU4Ujip4YbVsO6OhvtjQwiMm4aJfHTp0+Hm5tbR8VCRGQQzE3kmNTXG5P6euNSrgIb4tKx7WQWUgsr8f7vF/Hxnwm4r5cnZg72R38/h9tWOBHdzh9/56GoshbuduYY052v04ZsVIgbPvj9EmJTilBdpzS6UvLaehU2N9ywmhXBCQxEZJxa3diObzKJiDTX3cMOiyeFIe71MfhgSi+Eetqhtl6FbaeyMHXlEYz/4hDWxaahooZzn6nt1semAQCmD/KDibzVL+2kh7q52cDT3gI19SrEphjfqLmov3NRWFELN1tz3BXKCQxEZJza1J2eiIg0Y21ughkRfvjt33dg+zND8cAAH5ibyHAxR4E3fzmPiPf/whvbz+FijkLqUEnPJOWXIy61GDIBmB7uK3U41MGuHTUXk2h8o+b+uWHlC1PesCIiI9Xq334qlYql9ERE7SQIAvr5OeI/D/ZB3Otj8Oa9PRDkYo3KWiXWx6Xjns8PYurKI9h+KhPVdUqpwyU90DhWbkwPd3jaW0ocDXWGkcENSbyRzYu/nHftDSv2fiAi46XRnngiItIeByszPDE8CI/fEYijyUVYH5eOP/7OxYm0EpxIK8HinRfw4EBfzAj3Q4CLtdThkg66WqvE1hOZAIBZg7k/2FgM7eoCE5mAlMJKpBdVGc00gmtvWHk58IYVERkv1iEREUlMEAQM7eqCr2f2x5FXR+PFu4PhZW+Bkqo6fHMgBaP+E43/+z4OUedzUa9USR0u6ZBdZ7OhqK6Hr5Mlhnd1kToc6iR2Fqbo7+8IAIhJzJc4ms5RVVvPG1ZERA2YxBMR6RA3Ows8O6YbDr4yGt/NHohRIa4QBODg5UI8ve4Ehi3bh8/2JCK3rFrqUEkHNK5Mzgj3h0zGBrTGpHFffLSRlNTvOJ2N8pp6+Dtb8YYVERk9JvFERDpILhNwV6g71jwajgMv3Ym5o7rA2doMeYoafL73MoYt24en1h7HgcQCqFRsPGqMzmeV4XRGKUzlAh4c6CN1ONTJGvfFH0kuQk29YffPEEUR6+LUDe1mhPvxhhURGT0m8UREOs7XyQqvRHbHkddG44uH+yE80AlKlYg/L+Rh9g/xuPOTaPw3JhnFlbVSh0qdaEO8ehU+MswTLjbmEkdDnS3U0w5utua4WqfEsdQSqcPpUGcyy3A+SwEzExkeHMgJDERETOKJiPSEuYkcE/t4YfO/huDP50dgztAA2JqbIK2oCkt3X8LgD/ZiwcZTOH6lmGNBDVxFTT1+PZUFAJgZwS7dxkgQhH+61Bv4vvh1DWPl7u3lCSdrM4mjISKSHpN4IiI9FOxui3cn9kTcG2OwbGov9PK2R61ShV9OZ+OBVUdxz+cH8b+jV1BeXSd1qKQllTX1OHS5EJ/tScSs7+JQWatEF1drRAQ6SR0aSWSkEeyLL62qxc4z2QCAWYN5w4qICOCIOSIivWZlZoKHBvnhoUF+OJNRivVxadhxJhuXcsvx1q9/Y+nuS5jU1xuzBvuhp5e91OGSBooqanDsSgmOXSnG8SvFOJ+tgPK6/gdPDg+CIHB/sLEa3tUVMgG4nF+BrNKr8DbAsWtbTmSipl6F7h626O/nKHU4REQ6gUk8EZGB6OPrgD6+DnhjfCi2nszE+rg0JBdU4qf4dPwUn45+fg6YFeGPe3t7wsJULnW4dA1RFJFZchXxqcU4dkX9SC6ovOE8bwdLDApwxMAAJwwOckJXN1sJoiVdYW9lin5+jjiRVoKYhALMMLCtFaIoYkPDBIZZg/15w4qIqAGTeCIiA2NvZYrH7gjEo8MCEJtSjPVxafjj71ycSi/FqfRSvPfbBTzQ3wczIvwQ5GojdbhGSaUSkZBXjmNXihGfWozjV0qQq7hxbGCwuw0GBTghPNAJAwOcDHKlldpnVLCrOolPzDe4JP5IchFSCithbSbH5H7eUodDRKQzmMQTERkoQRAwpIszhnRxRkF5DTYfz8CGuHRklV7Fd4dS8d2hVAzr6oxZEf64K9QdpnK2SekoNfVKnMssQ/yVYhxLLcbxtBKUV9c3O8dEJqCXjz3CA5wwKMAJAwMc4WDFJl50ayNDXPHJnkQcTipCbb0KZiaG8/9xY0O7Kf29YWPOt6xERI34G7EdlEol6urYNIp0j6mpKeRylkvTP1xtzTHvzq54emQXxCTmY11sOvYn5ONwUhEOJxXBzdYc0wf5Ynq4H7w6e7VXpQTSjgAVeYCNO+A/FJDp979fRXUdTqSV4PiVYhxLLcHpzFLU1quanWNtJkd/f0cMakja+/o6wNJMv39u6nxhXvZwtjZDUWUtTqaXYHCQs9QhaUWeohp/XsgDoC6lJyKifzCJbwNRFJGbm4vS0lKpQyG6KQcHB3h4eHAPITUjlwkY3d0do7u7I7OkCj/Fp2PTsQzkl9fgi31J+Gp/EkZ3d8eswX4Y0c0VMlkH//u5sAOIegVQZP9zzM4LiFwGhE7s2O+tRfmKasRfUZfFx6cW41KuAtf1oIOLjRkG+jthUKATwgOc0MPTFiasfqB2kskEjAh2xfZTWYhOKDCYJH5jfAaUKhED/R3R3cNO6nCIiHSKIHKY8A0UCgXs7e1RVlYGO7sbXzhycnJQWloKNzc3WFlZMUkinSKKIqqqqpCfnw8HBwd4enpKHRLpuNp6Ff68kIt1sWmITSluOu7rZIkZ4f6YNtAHzjbm2v/GF3YAm2cDuP5lqOF36rS1OpnIi6KI1MLKhgZ06u7xaUVVN5zn72zVsMquXm0PdLHm6wV1iF9PZ+G5jafR3cMWUQtGSB1Ou9UrVbhj2X7kKqrx2UN9MKWfj9QhERF1itvloY24Eq8hpVLZlMA7OxvG3W4yPJaW6nLo/Px8uLm5sbSebsnMRIb7envhvt5eSMovx/q4dGw5kYmM4qtYFnUJn+1JRGSYB2YN9segAEftJKIqpXoF/oYEHg3HBCDqVaD7vZKX1tcrVbiYU96w0q5O3AsrapqdIwhADw+7hgZ06qTd3c5CoojJ2Azv5gpBAC7lliNPUa33//b2XcpHrqIajlamuCeMN6KJiK7HJF5DjXvgraysJI6E6NYa/43W1dUxiadW6+pmi3cm9MTL47pj59lsrI9Nw5nMMuw4k40dZ7IR7G6DmRH+mNLfG3YWpm3/RmlHmpfQ30AEFFnq8wKHt/37tEF1nRKn0kubRr2dTCtBZa2y2TlmJjL09XHAoEB1wt7f37F9fx5E7eBkbYbePg44k1GKmIQCTBvkK3VI7bKuYazctIG+HIdJRNQCJvFtxJJI0nX8N0rtYWkmx7SBvpg20BfnMsuwPi4Nv57ORmJeBd7Z8Tc+3H0Jk/p6YdZgf4R522v+DSrytHteO5RW1eJ4Q1l8/JVinM8qQ52yeYWArYUJBvo7Nu1n7+VjD3MTJhekO0YFu6qT+ET9TuLTiipxILEAAAxuZB4RkbYwiSciolvq5WOPD31647XxPbD9ZCbWx6Xjcn4FNh7LwMZjGejj64CZEX6Y0Nur9d3Vbdy1e54Gskqv4njDfPZjV4qRmFdxwznuduZN89kHBTghxN2245v8EbXDyBBXfL73Mg5eLkC9UqW3TRM3NKzCjwh2hb+ztcTREBHpJibxdIOAgAAsWLAACxYskDoUrYiOjsadd96JkpISODg4SB0Okd6ytzTFnGGBeGRoAOJTi7E+Lh27z+fgTEYpzmSUYsmuC3hggC9mRPihq5vNrS/mP1TdhV6Rg5b3xQvq5/2HtitmlUpEUkGFujQ+Vb2fPav06g3ndXG1bhr1Fh7oBB9HS1azkF7p4+MABytTlFbV4XRGKQYGOEkdksaq65TYfDwDADCLq/BERDfFJN7IZGRk4J133kFUVBQKCwvh6emJyZMn4+233zaIRn2jRo1C3759sXz58qZjQ4cORU5ODuzt21DyS0Q3EAQBEUHOiAhyRmFFKDYfz8CGuHRkllzFD4dT8cPhVAwJcsaswf64O9QdZiYtrAjK5OoxcptnQ92N/tpEviF5jvxQ46Z2tfUqnM8ua1hpL8HxtGKUVtU1O0cuExDmZYdBAU4Y2NA9vkO67xN1IrlMwPBurth5JhvRCQV6mcTvPp+Dkqo6eNpbYHR3N6nDISLSWUzijUhKSgqGDBmC4OBg/PTTTwgMDMTff/+Nl156Cbt370ZsbCycnDr/RV+pVEIQBMhkHVP6Z2ZmBg8Pjw65NpGxc7ExxzOjuuLpEV0Qc7kA62PTsO9SPo6mFOFoShFcbMwxfZAvHo7wg7eDZfMvDp2oHiPX4pz4D1s1Xq6yph4n00vUo95Si3EqowTVdapm51iaytHPz6Fplb2vrwOszfnyR4ZnVLA6iY9JLMDCcSFSh6OxdbHqUvqHw/30djsAEVFn4G9IIzJv3jyYmZnhzz//xMiRI+Hn54d77rkHf/31F7KysvDGG280nVteXo6HH34Y1tbW8Pb2xtdff930nCiKePfdd+Hn5wdzc3N4eXnh3//+d9PzNTU1WLhwIby9vWFtbY2IiAhER0c3Pb9mzRo4ODhgx44dCA0Nhbm5Ob777jtYWFigtLS0WczPPfccRo8eDQAoKirCww8/DG9vb1hZWaFXr1746aefms6dM2cOYmJi8Pnnn0MQBAiCgCtXriA6OhqCIDS79tatW9GzZ0+Ym5sjICAAn3zySbPvGxAQgA8++ACPPfYYbG1t4efnh2+++abp+draWsyfPx+enp6wsLCAv78/li5d2qa/FyJDIJMJuDPEDd89MggHXxmNZ0d3hautOQoravDV/iQMX7YPj685hv2X8qFUXbPqHjoRWHAeeGQXMPV79ccF526awBdW1CDqfA4W77yAiV8dQu9Ff+L/vo/HF3sv42hKEarrVHC0MsXdoe54Y3wP/DJvGM6+OxYbnhyM5+8OxrCuLkzgyWCNCHYFAJzLKkNBec1tztYtF3MUOJFWAhOZgOl63JiPiKgz8J1MO4miiKt1ytuf2AEsTeWt3rNZXFyMP/74A++//37TDPFGHh4emDlzJjZt2oQVK1YAAD7++GO8/vrrWLRoEf744w8899xzCA4Oxt13342tW7fis88+w8aNG9GzZ0/k5ubizJkzTdebP38+Lly4gI0bN8LLywvbt29HZGQkzp07h27dugEAqqqqsGzZMnz33XdwdnaGj48P3n77bWzduhWPP/44APUK/aZNm/D+++8DAKqrqzFgwAC88sorsLOzw2+//Yb/+7//Q5cuXRAeHo7PP/8ciYmJCAsLw+LFiwEArq6uuHLlSrOf98SJE5g2bRreffddPPTQQzhy5AieeeYZODs7Y86cOU3nffLJJ3jvvffw+uuvY8uWLZg7dy5GjhyJkJAQfPHFF9ixYwc2b94MPz8/ZGRkICMjo/V/eUQGzNvBEi+ODcG/x3TDngt5WBebhiPJRdh7KR97L+XDx9ESD4f7YdpAX7jamqtL5lsYIyeKIjKKryK+aT97MVIKK1v8fo0N6MIDHRHkYsMmdGSUXG3NEeZth/NZChy8XID7+/tIHVKrrYtNAwCM7ekONz2fc09E1NEkTeKXLl2Kbdu24dKlS7C0tMTQoUOxbNkyhISoS8CKi4vxzjvv4M8//0R6ejpcXV0xefJkvPfee7fc3zxnzhz8+OOPzY6NGzcOUVFRWv8ZrtYpEfr2H1q/bmtcWDwOVmat+yu8fPkyRFFEjx49Wny+R48eKCkpQUGBeqzLsGHD8OqrrwIAgoODcfjwYXz22We4++67kZ6eDg8PD9x1110wNTWFn58fwsPDAQDp6elYvXo10tPT4eXlBQBYuHAhoqKisHr1anzwwQcA1LPLV6xYgT59+jTFMH36dGzYsKEpid+7dy9KS0sxdepUAIC3tzcWLlzYdP6zzz6LP/74A5s3b0Z4eDjs7e1hZmYGKyurW5bPf/rppxgzZgzeeuutpp/vwoUL+Pjjj5sl8ePHj8czzzwDAHjllVfw2WefYf/+/QgJCUF6ejq6deuGO+64A4IgwN/fv1V/D0TGxFQuw/henhjfyxPJBRXYEJeOLScykVlyFR//kYDlfyViXE8PzBrsj4hAJ6hEICG3vGnU2/ErxchTNF9NFAQgxN0WAwMcmxrReV1fpk9kxEYGu+J8lgLRCfqTxFfU1OOXU1kAgFkRfD0lIrodSZP4mJgYzJs3D4MGDUJ9fT1ef/11jB07FhcuXIC1tTWys7ORnZ2N//znPwgNDUVaWhqefvppZGdnY8uWLbe8dmRkJFavXt30ubk5mxYB6pWt1hgyZMgNnzc2i3vwwQexfPlyBAUFITIyEuPHj8eECRNgYmKCc+fOQalUIjg4uNnX19TUNGucZ2Zmht69ezc7Z+bMmRg8eDCys7Ph5eWF9evX4957723qKK9UKvHBBx9g8+bNyMrKQm1tLWpqamBlZaXRn8HFixcxadKkZseGDRuG5cuXQ6lUQi5XN9K6Nj5BEODh4YH8/HwA6htFd999N0JCQhAZGYn77rsPY8eO1SgOImPSxdUGb90XipfGhWDX2Rysi03D6YxS7Dqbg11nc+DnZIWSqlqUV9c3+zpTuYDePg4YGOCI8AAnDPR3gr2VqUQ/BZHuGxXihq/3J+PA5QIoVSLkelCVsv1UFiprlQhytcaQLvrfZJeIqKNJmsRfvzK+Zs0auLm54cSJExgxYgTCwsKwdevWpue7dOmC999/H7NmzUJ9fT1MTG4evrm5eac0M7M0lePC4nEd/n1u9r1bq2vXrhAEARcvXsSUKVNueP7ixYtwdHSEq6vrba/l6+uLhIQE/PXXX9izZw+eeeYZfPzxx4iJiUFFRQXkcjlOnDjRlAw3srH5Z+SUpeWN45sGDRqELl26YOPGjZg7dy62b9+ONWvWND3/8ccf4/PPP8fy5cvRq1cvWFtbY8GCBaitrW31n4MmTE2bJwqCIEClUjfM6t+/P1JTU7F792789ddfmDZtGu66667b3lwiMnYWpnI8MMAHDwzwwfmsMqyPS8evp7OQXlwFALAxN0F/f0eEBzhiYIC6CZ2FBr/riIxdP18H2FqYoLSqDmczS9HPz1HqkG5JFEWsbyilnxnhz9GOREStoFN74svKygDglh3Sy8rKYGdnd8sEHlDPBndzc4OjoyNGjx6NJUuW3HSEWk1NDWpq/inZVCgUrY5ZEIRWl7RLydnZGXfffTdWrFiB559/vtm++NzcXKxfvx6zZ89uevGMjY1t9vWxsbHNSvEtLS0xYcIETJgwAfPmzUP37t1x7tw59OvXD0qlEvn/3969x+V8//8Df1ydrk5XJTqfRAclpnJqjbKZmEOMz8wyNX3wmYgPG/rNx2l8zDCH78z2GWpzGjYsfXxqLUqSEIVJxUoO5ayDRHW9f3+0rrnWQdJ1SI/77Xbd9rne79f7dbi8PlzP63W6dQv9+tVd4/osQUFB2L59O2xtbaGhoYGhQ4fK7qWkpCAwMBDjx48HAEilUuTk5MDd3V2WRkdHB9XVje9R4ObmhpSUFLlrKSkpcHFxqfPDQ2OMjIwwduxYjB07FmPGjMHgwYNx7949lezwT9QaedgYY/nb3RDxVhekXr4LGxM9dLGUcFdqohegpamBfs4dcPBcERKzb6t9EJ9+5T4uFpVCV1sDY1rJ9H8iIlVTm29KUqkUM2fOhK+vLzw8POpNc+fOHXz66aeYPHlyo3kNHjwY33//PRISErBixQokJSVhyJAhDQZ3y5cvh7GxsexlZ/dy7or65Zdf4vHjxwgICMCRI0dw9epVxMbG4s0334SNjY1sAzmgJqj9/PPPkZOTgw0bNmDPnj2YMWMGgJoZE5s3b8b58+fx+++/Y9u2bdDT04ODgwNcXFwQFBSECRMmYO/evcjLy8OJEyewfPly/Pe//31mHYOCgnD69GksW7YMY8aMkVsG4ezsjPj4eBw7dgxZWVmYMmUKbt68Kfd8x44dkZaWhvz8fNy5c0c2cv602bNnIyEhAZ9++ilycnLw3Xff4csvv5Rbb/8sX3zxBXbu3ImLFy8iJycHe/bsgaWlpWzqPxE1nZGuNgK6WsLDxpgBPFEL8HepOWM9Kee2imvybLUb2g3vbs2lMkRETaQ235bCwsJw/vx5/PDDD/XeLykpwdChQ+Hu7o5FixY1mte7776LESNGoFu3bhg5ciRiYmJw8uRJuWPOnhYREYHi4mLZ62XdZdzZ2RmnTp1Cp06d8M4776Bz586YPHkyBgwYgNTUVLkR5NmzZ+PUqVPw9PTE0qVL8cUXXyAgoGbZgImJCb799lv4+vqie/fu+PXXX3HgwAHZTIfIyEhMmDABs2fPhqurK0aOHImTJ0/C3t7+mXV0cnJC7969cfbsWQQFBcndmz9/Pry8vBAQEAB/f39YWlpi5MiRcmk++ugjaGpqwt3dHWZmZigoKKhThpeXF3bv3o0ffvgBHh4eWLBgAZYsWSK3qd2zSCQSfP755+jZsyd69eqF/Px8HDx4UGFn3RMRETVV7VFzmdce4N5DxSw5awl3yx7j4LkiAMD4vtzQjoioqURCU3c6U6Bp06bh559/xpEjR+Do6FjnfmlpKQICAqCvr4+YmBjo6j7/0SNmZmZYunQppkyZ8sy0JSUlMDY2lk3df1pFRQXy8vLg6OjYrHoQKQv7KtFLSloNXDkGlN0EDC0Ah1drjukjesrgtUdwsagU697tgcAeNqquTr2+SbqM5f+7CA8bIxyY9hrXwxNRm9dYHPo0lS7mFgQB06dPx759+5CYmFhvAF9SUoKAgACIxWJER0c3Kxi5du0a7t69Cysrq5aoNhERkWpciAZi5wIlN/68ZmQNDF4BuI9QXb1I7fi5muFiUSmSsm+rZRAvlQrYcaJmttx4bmhHRPRcVDr3NywsDNu2bcOOHTsgkUhQVFSEoqIiPHr0CEBNAD9o0CA8fPgQmzdvRklJiSzN0+vbu3Tpgn379gEAysrK8PHHH+P48ePIz89HQkICAgMD4eTkJJsOTkRE1OpciAZ2T5AP4AGgpLDm+oVo1dSL1FLtuvgjubchlap80mUdyZfu4Mrdckh0tTCih7Wqq0NE1KqoNIjfuHEjiouL4e/vDysrK9lr165dAIDTp08jLS0N586dg5OTk1yap9etZ2dny3a219TUxNmzZzFixAi4uLggNDQU3t7eSE5O5lnxRETUOkmra0bgUV8w9se12Hk16YgAeDu0g4GOJu6UPcFvN5p+6o6y1G5oN9rLtlWc8kNEpE5UPp2+Mf7+/s9M89d89PT0EBcX98J1IyIiUhtXjtUdgZcjACXXa9I5Pv/xnvTy0dHSgK9TB/xy4SYSs2+hm62xqqskc+PBIyRk1ZwuE9Tn2ZveEhGRPG6lTUREpO7Kbj47zfOkozbBz7Vml3p1O2ruhxMFkApAH0dTOFtIVF0dIqJWh0E8ERGRujO0aNl01Cb4u9asiz9dcB/F5ZUqrk2NymopfjhZsySSx8oRETUPg3giIiJ15/BqzS70aGgHbxFgZFOTjugPNiZ6cDY3hFQAjl66o+rqAADiL9zErdLH6GAoRkBXS1VXh4ioVWIQT0REpO40NGuOkQNQN5D/4/3gz3hePNXh51IzpT4x+5aKa1KjdkO7sb1soaPFr6FERM3Bvz2JiIhaA/cRwDvfA0ZW8teNrGuu85x4qkftlPqknNtN2ixYkS7fLsOxy3chEgHjenNDOyKi5uKZHtTiQkJC8ODBA+zfvx9AzSkDPXr0wNq1a5udZ0vkQUTU6rmPALoMrdmFvuxmzRp4h1c5Ak8N6uXYDnramrhV+hhZhaVwtzZSWV22Hy8AALzuag7bdvoqqwcRUWvHkfg2JCQkBCKRCCKRCDo6OnBycsKSJUtQVVWl0HL37t2LTz/9tElpExMTIRKJ8ODBg2bnoSiLFi1Cjx49Gryfl5eH9957D9bW1tDV1YWtrS0CAwNx8eJFREVFyT77hl75+flYtGgRRCIRBg8eXCf/lStXQiQSwd/fX3GNJCL1p6FZc4xctzE1/2UAT40Qa2ni1c7tAah2l/pHT6rxYzo3tCMiagkM4lWkWiog9fJd/JxxHamX76JaqpwpboMHD0ZhYSFyc3Mxe/ZsLFq0CCtXrqyT7smTJy1WpqmpKSSSFztCpiXyUKTKykq8+eabKC4uxt69e5GdnY1du3ahW7duePDgAcaOHYvCwkLZy8fHB5MmTZK7ZmdnBwCwsrLC4cOHce3aNbkytmzZAnt7Tj8kIqLnU3vUnCrXxR84ewMlFVWwbaeH/n+s0yciouZhEK8CsecL8dqKQxj37XHM+CED4749jtdWHELs+UKFly0Wi2FpaQkHBwd8+OGHGDhwIKKjoxESEoKRI0di2bJlsLa2hqurKwDg6tWreOedd2BiYgJTU1MEBgYiPz9fll91dTVmzZoFExMTtG/fHnPmzKmz5s7f3x8zZ86UvX/8+DHmzp0LOzs7iMViODk5YfPmzcjPz8eAAQMAAO3atYNIJEJISEi9edy/fx8TJkxAu3btoK+vjyFDhiA3N1d2PyoqCiYmJoiLi4ObmxsMDQ1lP2DUSkxMRO/evWFgYAATExP4+vriypUrzfpcf/vtN1y+fBlfffUV+vbtCwcHB/j6+mLp0qXo27cv9PT0YGlpKXvp6OhAX19f7pqmZs1omrm5OQYNGoTvvvtOlv+xY8dw584dDB06tFn1IyKitsvfpWZdfPqV+yitUM1Rc9v/2NDuvT720NRo6JQFIiJqCgbxShZ7vhAfbjuNwuIKuetFxRX4cNtppQTyT9PT05ONuickJCA7Oxvx8fGIiYlBZWUlAgICIJFIkJycjJSUFFkwXPvM6tWrERUVhS1btuDo0aO4d+8e9u3b12iZEyZMwM6dO7F+/XpkZWXhm2++gaGhIezs7PDTTz8BALKzs1FYWIh169bVm0dISAhOnTqF6OhopKamQhAEvPXWW6is/PPLSXl5OVatWoWtW7fiyJEjKCgowEcffQQAqKqqwsiRI+Hn54ezZ88iNTUVkydPhkjUvC8WZmZm0NDQwI8//ojq6upm5fG0iRMnIioqSvZ+y5YtCAoKgo6OzgvnTUREbYt9e304djBAlVRAyqW7Si//3LViZF4rhramCO/0tFN6+URELxsG8UpULRWw+MAF1Ddxvvba4gMXlDK1XhAE/Prrr4iLi8Prr78OADAwMMCmTZvQtWtXdO3aFbt27YJUKsWmTZvQrVs3uLm5ITIyEgUFBUhMTAQArF27FhEREXj77bfh5uaGr7/+GsbGxg2Wm5OTg927d2PLli0YNWoUOnXqhDfeeANjx46FpqYmTE1NAdSMRltaWtabV25uLqKjo7Fp0yb069cPr7zyCrZv347r16/LNtMDaqa4f/311+jZsye8vLwwbdo0JCQkAABKSkpQXFyMYcOGoXPnznBzc0NwcHCzp6vb2Nhg/fr1WLBgAdq1a4fXX38dn376KX7//fdm5Tds2DCUlJTgyJEjePjwIXbv3o2JEyc2Ky8iIqLao+aScpQ/pX57Ws0o/BAPK3QwFCu9fCKilw2DeCU6kXevzgj80wQAhcUVOJF3T2F1iImJgaGhIXR1dTFkyBCMHTsWixYtAgB069ZNbqQ3MzMTly5dgkQigaGhIQwNDWFqaoqKigpcvnwZxcXFKCwsRJ8+fWTPaGlpoWfPng2Wn5GRAU1NTfj5+TW7DVlZWdDS0pIrt3379nB1dUVWVpbsmr6+Pjp37ix7b2VlhVu3ar68mJqaIiQkBAEBARg+fDjWrVsnm2pfUFAga6+hoSH+/e9/N6leYWFhKCoqwvbt2+Hj44M9e/aga9euiI+Pf+42amtrY/z48YiMjMSePXvg4uKC7t27P3c+REREwJ/r4pOylXvUXElFJX7OuAEACOrDfV2IiFoCj5hTolulDQfwzUnXHAMGDMDGjRuho6MDa2traGn92QUMDAzk0paVlcHb2xvbt2+vk4+ZWfM2pdHT02vWc82hra0t914kEsl9cYmMjER4eDhiY2Oxa9cuzJ8/H/Hx8ejZsycyMjJk6WpnBzSFRCLB8OHDMXz4cCxduhQBAQFYunQp3nzzzeeu/8SJE9GnTx+cP3+eo/BERPRCfDq1h1hLAzeKK5B7qwwuFsrZLHZv+jU8qqyGi4Uhejs2/d9TIiJqGEfilchcotui6ZrDwMAATk5OsLe3lwvg6+Pl5YXc3FyYm5vDyclJ7mVsbAxjY2NYWVkhLS1N9kxVVRXS09MbzLNbt26QSqVISkqq937tTIDG1pW7ubmhqqpKrty7d+8iOzsb7u7ujbbprzw9PREREYFjx47Bw8MDO3bsgJaWllxbnyeIf5pIJEKXLl3w8OHDZj1fu6zh/PnzeO+995qVBxEREQDoamuib6c/jprLVs5Rc4IgYFtazdnwQX0cmr3vDBERyWMQr0S9HU1hZayLhv4JEwGwMtZVm1+qg4KC0KFDBwQGBiI5ORl5eXlITExEeHi47PizGTNm4LPPPsP+/ftx8eJFTJ06tc4Z70/r2LEjgoODMXHiROzfv1+W5+7duwEADg41/8jHxMTg9u3bKCsrq5OHs7MzAgMDMWnSJBw9ehSZmZkYP348bGxsEBgY2KS25eXlISIiAqmpqbhy5Qp++eUX5Obmws3NrdHnHj16hIyMDLnX5cuXkZGRgcDAQPz444+4cOECLl26hM2bN2PLli1NrlN9Dh06hMLCQpiYmDQ7DyIiIuDPdfGJSloXn5Z3D5dulUFPWxOjvGyUUiYRUVvAIF6JNDVEWDi8ZqT4r4F87fuFw93V5ugVfX19HDlyBPb29rKN60JDQ1FRUQEjIyMAwOzZs/H+++8jODgYPj4+kEgkGDVqVKP5bty4EWPGjMHUqVPRpUsXTJo0STZabWNjg8WLF2PevHmwsLDAtGnT6s0jMjIS3t7eGDZsGHx8fCAIAg4ePFhnCn1jbbt48SJGjx4NFxcXTJ48GWFhYZgyZUqjz+Xk5MDT01PuNWXKFNja2qJjx45YvHgx+vTpAy8vL6xbtw6LFy/GJ5980qQ61af2+DsiIqIX5f/HuviTeffx8HGVwsvb9sexciM9rWGk27R/n4mI6NlEgjJ3N2klSkpKYGxsjOLiYlmwWquiogJ5eXlwdHSErm7zpr3Hni/E4gMX5Da5szLWxcLh7hjsYfVCdSeq1RJ9lYiIXh6CIKD/ysO4eu8RNk3oiYHuFgor63bpY7z6WQIqqwXETH8NHjYNn1xDREQ1GotDn8aN7VRgsIcV3nS3xIm8e7hVWgFzSc0UenUZgSciIqKXj0gkgr+LObYev4KknNsKDeJ3n7qKymoBPexMGMATEbUwBvEqoqkhgk/n9qquBhEREbUhfi5m2Hr8ChJzbkEQBIVsNlctFbDjjw3txvd1aPH8iYjaOq6JJyIiImojfDq3h46mBq7ee4S8O807PeVZErNv4fqDRzDW08aw7lwmSETU0hjEExEREbURBmIt9HJsBwBIVNBRc7Ub2v3N2xa62poKKYOIqC1jEE9ERETUhvi7mAMAEnNaPoi/eq9clm8Qp9ITESkEg3giIiKiNqT2qLm03++iorK6RfPecaIAggC85tQBjh0MWjRvIiKqwSCeiIiIqA1xMjeEtbEuHldJkfr73RbL93FVNXafvAoAGN/XvsXyJSIieQziiYiIiNoQkUgEP9eaKfVJLbguPvZ8Ee4+fAILIzEGuinu+DoioraOQTwRERFRG+PnUjOlPqkF18VvP15zrNy7veyhpcmvmEREisK/YUmOSCTC/v37AQD5+fkQiUTIyMhQaZ0aou71IyIiUle+Tu2hpSFC3p2HuHL3xY+ay7lZihP596CpIcK43pxKT0SkSAzi25iioiJMnz4dnTp1glgshp2dHYYPH46EhIQ6ae3s7FBYWAgPDw+F1onBOBERkXJJdLXh7VBz1FxLjMZv/+NYuTe6mMPSWPeF8yMiooYxiG9D8vPz4e3tjUOHDmHlypU4d+4cYmNjMWDAAISFhdVJr6mpCUtLS2hpaamgtkRERKRI/i20Lv7h4yrsPX0dADCex8oRESkcg/gXJAgCHj58qJKXIAjPVdepU6dCJBLhxIkTGD16NFxcXNC1a1fMmjULx48fr5P+ryPkiYmJEIlEiIuLg6enJ/T09PD666/j1q1b+N///gc3NzcYGRnhvffeQ3l5uSyf2NhYvPbaazAxMUH79u0xbNgwXL58WXbf0dERAODp6QmRSAR/f38AgFQqxZIlS2BrawuxWIwePXogNja20TYmJSWhd+/eEIvFsLKywrx581BVVSW7X1paiqCgIBgYGMDKygpr1qyBv78/Zs6cCQBYsmRJvTMPevTogX/9619N+pyJiIhag9p18ccuv9hRc9GZN1D6uAoO7fXxmlOHlqoeERE1gEH8CyovL4ehoaFKXk8Hys9y7949xMbGIiwsDAYGdc9tNTExaXJeixYtwpdffoljx47h6tWreOedd7B27Vrs2LED//3vf/HLL7/g//7v/2TpHz58iFmzZuHUqVNISEiAhoYGRo0aBalUCgA4ceIEAODXX39FYWEh9u7dCwBYt24dVq9ejVWrVuHs2bMICAjAiBEjkJubW2+9rl+/jrfeegu9evVCZmYmNm7ciM2bN2Pp0qWyNLNmzUJKSgqio6MRHx+P5ORknD59WnZ/4sSJyMrKwsmTJ2XXzpw5g7Nnz+KDDz5o8mdERESk7tysJDCXiPGoshqn8u83Kw9BELDtj6n0QX3soaEhaskqEhFRPThPuo24dOkSBEFAly5dXjivpUuXwtfXFwAQGhqKiIgIXL58GZ06dQIAjBkzBocPH8bcuXMBAKNHj5Z7fsuWLTAzM8OFCxfg4eEBM7OakYD27dvD0tJSlm7VqlWYO3cu3n33XQDAihUrcPjwYaxduxYbNmyoU6+vvvoKdnZ2+PLLLyESidClSxfcuHEDc+fOxYIFC/Dw4UN899132LFjB9544w0AQGRkJKytrWV52NraIiAgAJGRkejVq5csjZ+fn6x9RERELwORSAQ/FzPsSb+GxOxbeM35+UfRM64+wG83SqCjpYG/edspoJZERPRXDOJfkL6+PsrKylRWdlM979T7xnTv3l32vy0sLKCvry8X4FpYWMhG1wEgNzcXCxYsQFpaGu7cuSMbgS8oKGhw07ySkhLcuHFD9mNBLV9fX2RmZtb7TFZWFnx8fCASieTSl5WV4dq1a7h//z4qKyvRu3dv2X1jY2O4urrK5TNp0iRMnDgRX3zxBTQ0NLBjxw6sWbPmWR8LERFRq+Pval4TxOfcxvxmPL/tj2PlhnWzQjsDnZatHBER1YtB/AsSiUT1Tk9XN87OzhCJRLh48eIL56WtrS373yKRSO597bXaQB0Ahg8fDgcHB3z77bewtraGVCqFh4cHnjx58sJ1UYThw4dDLBZj37590NHRQWVlJcaMGaPqahEREbW415w7QFNDhEu3ynDtfjls2zV9gOBB+RPEnL0BAAjihnZERErDNfFthKmpKQICArBhwwY8fFj3PNgHDx4opNy7d+8iOzsb8+fPxxtvvAE3Nzfcvy+/7k5Hp+aX++rqPzfVMTIygrW1NVJSUuTSpqSkwN3dvd6y3NzckJqaKjfrICUlBRKJBLa2tujUqRO0tbXl1rsXFxcjJydHLh8tLS0EBwcjMjISkZGRePfdd6Gnp9e8D4CIiEiNGetpw9POBMDzHzX3Y/o1PK6Sws3KCF72Ji1fOSIiqheD+DZkw4YNqK6uRu/evfHTTz8hNzcXWVlZWL9+PXx8fBRSZrt27dC+fXv85z//waVLl3Do0CHMmjVLLo25uTn09PQQGxuLmzdvori4GADw8ccfY8WKFdi1axeys7Mxb948ZGRkYMaMGfWWNXXqVFy9ehXTp0/HxYsX8fPPP2PhwoWYNWsWNDQ0IJFIEBwcjI8//hiHDx/Gb7/9htDQUGhoaMhNwQeAv//97zh06BBiY2MxceJEhXw2RERE6sDftWZvmuc5ak4qFbA9rWYq/fi+9nX+HSUiIsVhEN+GdOrUCadPn8aAAQMwe/ZseHh44M0330RCQgI2btyokDI1NDTwww8/ID09HR4eHvjnP/+JlStXyqXR0tLC+vXr8c0338Da2hqBgYEAgPDwcMyaNQuzZ89Gt27dEBsbi+joaDg7O9dblo2NDQ4ePIgTJ07glVdewT/+8Q+EhoZi/vw/V/l98cUX8PHxwbBhwzBw4ED4+vrCzc0Nurq6cnk5Ozvj1VdfRZcuXdCnT58W/lSIiIjUh59LzXnxKZfu4EmV9Bmpaxy7fBd5dx7CUKyFkT1sFFk9IiL6C5HQkjuevSRKSkpgbGyM4uJiGBkZyd2rqKhAXl4eHB0d6wR+1Po8fPgQNjY2WL16NUJDQ2XXBUGAs7Mzpk6dWmfmQGvBvkpERE0hlQro/e9fcafsCXZO6gufzu2f+cw/tqYj9rcivN/XAZ+OrH+TWiIiej6NxaFP40g8tSlnzpzBzp07cfnyZZw+fRpBQUEAIBv9B4Dbt2/jyy+/RFFREc+GJyKil56Ghgj9nWum1Cfm3Hpm+qLiCsRn3QQAjOeGdkRESsfd6anNWbVqFbKzs6GjowNvb28kJyejQ4c/z8Y1NzdHhw4d8J///Aft2rVTYU2JiIiUw8/VDHvPXEdS9m1EDHFrNO0PJwtQLRXQq2M7uFpKlFRDIiKqxSCe2hRPT0+kp6c3moYrTIiIqK3p52wGkQi4WFSKouIKWBrXvwyrqlqKH05cBcBReCIiVeF0eiIiIqI2ztRAB6/YmgAAjjRy1FzCxVsoKqlAewMdDPawVFLtiIjoaQziiYiIiEh21Fxj6+K3Hb8CAPhbTzuItTSVUi8iIpLHIJ6IiIiI4OdSE8Qn595BVXXdo+by7zxEcu4diETAe73tlV09IiL6A4N4IiIiIkJ3WxO009dGaUUVzlx9UOf+jhMFAID+zmawb6+v5NoREVEtBvFEREREBE0NEfrVHjWXLT+lvqKyGntOcUM7IiJ1oNIgfvny5ejVqxckEgnMzc0xcuRIZGdny+7fu3cP06dPh6urK/T09GBvb4/w8HAUFxc3mq8gCFiwYAGsrKygp6eHgQMHIjc3V9HNoT+EhIRg5MiRsvf+/v6YOXPmC+XZEnkoi0gkwv79+xu8n5+fD5FIhIyMDKXViYiIqClq18Un/WVzu4PnCnG/vBLWxrp4vYu5KqpGRER/UGkQn5SUhLCwMBw/fhzx8fGorKzEoEGD8PDhQwDAjRs3cOPGDaxatQrnz59HVFQUYmNjERoa2mi+n3/+OdavX4+vv/4aaWlpMDAwQEBAACoqKpTRLLUVEhICkUgEkUgEHR0dODk5YcmSJaiqqlJouXv37sWnn37apLSJiYkQiUR48OBBs/NQlEWLFsk+P01NTdjZ2WHy5Mm4d++eXLrCwkIMGTJERbUkIiJqvtqR+PPXS3Cr9M/vTbUb2o3rbQ9NDZFK6kZERDVUek58bGys3PuoqCiYm5sjPT0d/fv3h4eHB3766SfZ/c6dO2PZsmUYP348qqqqoKVVt/qCIGDt2rWYP38+AgMDAQDff/89LCwssH//frz77ruKbZSaGzx4MCIjI/H48WMcPHgQYWFh0NbWRkREhFy6J0+eQEdHp0XKNDU1VYs8WkLXrl3x66+/orq6GllZWZg4cSKKi4uxa9cuWRpLSx65Q0RErZOZRIxuNsY4d70YyTl3MNrbFhdulOB0wQNoaYgwtredqqtIRNTmqdWa+Npp8o0FbMXFxTAyMqo3gAeAvLw8FBUVYeDAgbJrxsbG6NOnD1JTU+t95vHjxygpKZF7KZy0GshLBs79WPNfabXiywQgFothaWkJBwcHfPjhhxg4cCCio6NlU+CXLVsGa2truLq6AgCuXr2Kd955ByYmJjA1NUVgYCDy8/Nl+VVXV2PWrFkwMTFB+/btMWfOHAiCIFfmX6fCP378GHPnzoWdnR3EYjGcnJywefNm5OfnY8CAAQCAdu3aQSQSISQkpN487t+/jwkTJqBdu3bQ19fHkCFD5JZMREVFwcTEBHFxcXBzc4OhoSEGDx6MwsJCWZrExET07t0bBgYGMDExga+vL65cudLo56elpQVLS0vY2Nhg4MCB+Nvf/ob4+Hi5NH+dTn/ixAl4enpCV1cXPXv2xJkzZ+rkGx0dDWdnZ+jq6mLAgAH47rvv6sxIOHr0KPr16wc9PT3Y2dkhPDxcNmuFiIiopdTuUp/4x5T6bWk1/zYGdLWEuURXZfUiIqIaahPES6VSzJw5E76+vvDw8Kg3zZ07d/Dpp59i8uTJDeZTVFQEALCwsJC7bmFhIbv3V8uXL4exsbHsZWen4F+ZL0QDaz2A74YBP4XW/HetR811JdPT08OTJ08AAAkJCcjOzkZ8fDxiYmJQWVmJgIAASCQSJCcnIyUlRRYM1z6zevVqREVFYcuWLTh69Cju3buHffv2NVrmhAkTsHPnTqxfvx5ZWVn45ptvYGhoCDs7O9nMi+zsbBQWFmLdunX15hESEoJTp04hOjoaqampEAQBb731FiorK2VpysvLsWrVKmzduhVHjhxBQUEBPvroIwBAVVUVRo4cCT8/P5w9exapqamYPHkyRKKmTxHMz89HXFxcozMWysrKMGzYMLi7uyM9PR2LFi2S1aFWXl4exowZg5EjRyIzMxNTpkzBJ598Ipfm8uXLGDx4MEaPHo2zZ89i165dOHr0KKZNm9bk+hIRETVF7br45NzbKH5Uif1nrgMAgvryWDkiInWg0un0TwsLC8P58+dx9OjReu+XlJRg6NChcHd3x6JFi1q07IiICMyaNUuuLIUF8heigd0TAMiPVqOksOb6O98D7iMUU/ZTBEFAQkIC4uLiMH36dNy+fRsGBgbYtGmTLCjdtm0bpFIpNm3aJAtuIyMjYWJigsTERAwaNAhr165FREQE3n77bQDA119/jbi4uAbLzcnJwe7duxEfHy+bLdGpUyfZ/dpZGObm5jAxMak3j9zcXERHRyMlJQWvvvoqAGD79u2ws7PD/v378be//Q0AUFlZia+//hqdO3cGAEybNg1LliwBUPNnXFxcjGHDhsnuu7m5PfNzO3fuHAwNDVFdXS3bY+GLL75oMP2OHTsglUqxefNm6OrqomvXrrh27Ro+/PBDWZpvvvkGrq6uWLlyJQDA1dUV58+fx7Jly2Rpli9fjqCgINlsBGdnZ6xfvx5+fn7YuHEjdHU5MkJERC2jh50JjHS18KC8EosP/IbyJ9XobGYAn07tVV01IiKCmozET5s2DTExMTh8+DBsbW3r3C8tLcXgwYMhkUiwb98+aGtrN5hX7Xrkmzdvyl2/efNmg2uVxWIxjIyM5F4KIa0GYueiTgAP/Hktdp5Cp9bHxMTA0NAQurq6GDJkCMaOHSv7UaRbt25yo8qZmZm4dOkSJBIJDA0NYWhoCFNTU1RUVODy5csoLi5GYWEh+vTpI3tGS0sLPXv2bLD8jIwMaGpqws/Pr9ltyMrKgpaWlly57du3h6urK7KysmTX9PX1ZQE6AFhZWeHWrZojc0xNTRESEoKAgAAMHz4c69atk021LygokLXX0NAQ//73v2V5uLq6IiMjAydPnsTcuXMREBCA6dOnN1rX7t27ywXZPj4+cmmys7PRq1cvuWu9e/eWe5+ZmYmoqCi5egUEBEAqlSIvL++ZnxkREVFTaWlqyDa423v6j1H4Pg7PNVuNiIgUR6Uj8YIgYPr06di3bx8SExPh6OhYJ01JSQkCAgIgFosRHR39zBFHR0dHWFpaIiEhAT169JDlkZaWJjf6qRJXjgElNxpJIAAl12vSOfZTSBUGDBiAjRs3QkdHB9bW1nJ7CxgYGMilLSsrg7e3N7Zv314nHzMzs2aVr6en16znmuOvP/aIRCK59fqRkZEIDw9HbGwsdu3ahfnz5yM+Ph49e/aUO/7t6T0aanf1B4DPPvsMQ4cOxeLFixW+c35ZWRmmTJmC8PDwOvfs7Tm9kYiIWpafqxn+e67mx21dbQ2M9q47yEJERKqh0pH4sLAwbNu2DTt27IBEIkFRURGKiorw6NEjADXBd+2Rc5s3b0ZJSYksTXX1n6PVXbp0ka3DFolEmDlzJpYuXYro6GicO3cOEyZMgLW1tdzZ5SpRdvPZaZ4nXTMYGBjAyckJ9vb2DW4OWMvLywu5ubkwNzeHk5OT3Kt2/wArKyukpaXJnqmqqkJ6enqDeXbr1g1SqRRJSUn13q+dCfD0n+9fubm5oaqqSq7cu3fvIjs7G+7u7o226a88PT0RERGBY8eOwcPDAzt27ICWlpZcWxvbaHH+/PlYtWoVbtyo/8cZNzc3nD17Vu54w+PHj8ulcXV1xalTp+SunTx5Uu69l5cXLly4UOfPwcnJqcVOESAiIqpVu7kdAIx4xRrGeg3PgiQiIuVSaRC/ceNGFBcXw9/fH1ZWVrJX7XFdp0+fRlpaGs6dOwcnJye5NFevXpXlk52dLdvZHgDmzJmD6dOnY/LkyejVqxfKysoQGxur+nXDhhbPTvM86RQsKCgIHTp0QGBgIJKTk5GXl4fExESEh4fj2rVrAIAZM2bgs88+w/79+3Hx4kVMnTq1zhnvT+vYsSOCg4MxceJE7N+/X5bn7t27AQAODjXT9WJiYnD79m2UlZXVycPZ2RmBgYGYNGkSjh49iszMTIwfPx42NjayYwWfJS8vDxEREUhNTcWVK1fwyy+/IDc3t0nr4p/m4+OD7t27y025f9p7770HkUiESZMm4cKFCzh48CBWrVoll2bKlCm4ePEi5s6dK9szICoqCgBkUxfnzp2LY8eOYdq0acjIyEBubi5+/vlnbmxHREQKYWGkiz6OptDR1EDwqx1VXR0iInqKSoN4QRDqfT19rFhDaTp27CiXT+0zQE3gs2TJEhQVFaGiogK//vorXFxclNu4+ji8ChhZA2hoTZkIMLKpSacG9PX1ceTIEdjb2+Ptt9+Gm5sbQkNDUVFRIds3YPbs2Xj//fcRHBwMHx8fSCQSjBo1qtF8N27ciDFjxmDq1Kno0qULJk2aJDsqzcbGBosXL8a8efNgYWHRYJAaGRkJb29vDBs2DD4+PhAEAQcPHmx0v4S/tu3ixYsYPXo0XFxcMHnyZISFhWHKlCnP8QnV+Oc//4lNmzbJ/bBUy9DQEAcOHMC5c+fg6emJTz75BCtWrJBL4+joiB9//BF79+5F9+7dsXHjRtnu9GKxGADQvXt3JCUlIScnB/369YOnpycWLFgAa2vr564vERFRU2wK7omE2X7oam2s6qoQEdFTRMJfD/UmlJSUwNjYWHYm/dMqKiqQl5cHR0fH5o3sy3anB+Q3uPsjsFfS7vSk3pYtW4avv/663h8GmuqF+yoRERERESlNY3Ho09Rid/o2xX1ETaBuZCV/3ciaAXwb9tVXX+HkyZP4/fffsXXrVqxcuRLBwcGqrhYREREREakZtTknvk1xHwF0GVqzC33ZzZo18A6vAhqaqq4ZqUhubi6WLl2Ke/fuwd7eHrNnz0ZERISqq0VERERERGqGQbyqaGgq7Bg5an3WrFmDNWvWqLoaRERERESk5jidnoiIiIiIiKiVYBBPRERERERE1EowiG8mbupP6o59lIiIiIjo5cMg/jnVnkNeXl6u4poQNa62j9b2WSIiIiIiav24sd1z0tTUhImJCW7dugUA0NfXh0gkUnGtiP4kCALKy8tx69YtmJiYQFOTpx4QEREREb0sGMQ3g6WlJQDIAnkidWRiYiLrq0RERERE9HJgEN8MIpEIVlZWMDc3R2VlpaqrQ1SHtrY2R+CJiIiIiF5CDOJfgKamJgMlIiIiIiIiUhpubEdERERERETUSjCIJyIiIiIiImolGMQTERERERERtRJcE18PQRAAACUlJSquCREREREREbUFtfFnbTzaEAbx9SgtLQUA2NnZqbgmRERERERE1JaUlpbC2Ni4wfsi4VlhfhsklUpx48YNSCQSiEQiVVenQSUlJbCzs8PVq1dhZGSk6urQS4r9jJSB/YwUjX2MlIH9jJSB/ezlJQgCSktLYW1tDQ2Nhle+cyS+HhoaGrC1tVV1NZrMyMiI/wcmhWM/I2VgPyNFYx8jZWA/I2VgP3s5NTYCX4sb2xERERERERG1EgziiYiIiIiIiFoJBvGtmFgsxsKFCyEWi1VdFXqJsZ+RMrCfkaKxj5EysJ+RMrCfETe2IyIiIiIiImolOBJPRERERERE1EowiCciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8Sq2fPly9OrVCxKJBObm5hg5ciSys7Pl0lRUVCAsLAzt27eHoaEhRo8ejZs3b8qlCQ8Ph7e3N8RiMXr06FFvWWfPnkW/fv2gq6sLOzs7fP7554pqFqkRZfWxxMREBAYGwsrKCgYGBujRowe2b9+uyKaRGlHm32W1Ll26BIlEAhMTkxZuDakrZfYzQRCwatUquLi4QCwWw8bGBsuWLVNU00hNKLOPxcXFoW/fvpBIJDAzM8Po0aORn5+voJaROmmJfpaZmYlx48bBzs4Oenp6cHNzw7p16+qUlZiYCC8vL4jFYjg5OSEqKkrRzSMlYBCvYklJSQgLC8Px48cRHx+PyspKDBo0CA8fPpSl+ec//4kDBw5gz549SEpKwo0bN/D222/XyWvixIkYO3ZsveWUlJRg0KBBcHBwQHp6OlauXIlFixbhP//5j8LaRupBWX3s2LFj6N69O3766SecPXsWH3zwASZMmICYmBiFtY3Uh7L6Wa3KykqMGzcO/fr1a/G2kPpSZj+bMWMGNm3ahFWrVuHixYuIjo5G7969FdIuUh/K6mN5eXkIDAzE66+/joyMDMTFxeHOnTv15kMvn5boZ+np6TA3N8e2bdvw22+/4ZNPPkFERAS+/PJLWZq8vDwMHToUAwYMQEZGBmbOnIm///3viIuLU2p7SQEEUiu3bt0SAAhJSUmCIAjCgwcPBG1tbWHPnj2yNFlZWQIAITU1tc7zCxcuFF555ZU617/66iuhXbt2wuPHj2XX5s6dK7i6urZ8I0itKaqP1eett94SPvjggxapN7Uuiu5nc+bMEcaPHy9ERkYKxsbGLV19aiUU1c8uXLggaGlpCRcvXlRY3al1UFQf27Nnj6ClpSVUV1fLrkVHRwsikUh48uRJyzeE1NqL9rNaU6dOFQYMGCB7P2fOHKFr165yacaOHSsEBAS0cAtI2TgSr2aKi4sBAKampgBqfmWrrKzEwIEDZWm6dOkCe3t7pKamNjnf1NRU9O/fHzo6OrJrAQEByM7Oxv3791uo9tQaKKqPNVRWbTnUtiiynx06dAh79uzBhg0bWq7C1Copqp8dOHAAnTp1QkxMDBwdHdGxY0f8/e9/x71791q2AaT2FNXHvL29oaGhgcjISFRXV6O4uBhbt27FwIEDoa2t3bKNILXXUv3sr9+7UlNT5fIAar7/v+j3O1I9BvFqRCqVYubMmfD19YWHhwcAoKioCDo6OnXWfFpYWKCoqKjJeRcVFcHCwqJOHrX3qG1QZB/7q927d+PkyZP44IMPXqTK1Aopsp/dvXsXISEhiIqKgpGRUUtWm1oZRfaz33//HVeuXMGePXvw/fffIyoqCunp6RgzZkxLNoHUnCL7mKOjI3755Rf8v//3/yAWi2FiYoJr165h9+7dLdkEagVaqp8dO3YMu3btwuTJk2XXGvr+X1JSgkePHrVsQ0iptFRdAfpTWFgYzp8/j6NHj6q6KvSSUlYfO3z4MD744AN8++236Nq1q0LLIvWjyH42adIkvPfee+jfv3+L502tiyL7mVQqxePHj/H999/DxcUFALB582Z4e3sjOzsbrq6uLV4mqR9F9rGioiJMmjQJwcHBGDduHEpLS7FgwQKMGTMG8fHxEIlELV4mqaeW6Gfnz59HYGAgFi5ciEGDBrVg7UhdcSReTUybNg0xMTE4fPgwbG1tZdctLS3x5MkTPHjwQC79zZs3YWlp2eT8LS0t6+ycWvv+efKh1kvRfaxWUlIShg8fjjVr1mDChAkvWm1qZRTdzw4dOoRVq1ZBS0sLWlpaCA0NRXFxMbS0tLBly5aWagapOUX3MysrK2hpackCeABwc3MDABQUFLxY5alVUHQf27BhA4yNjfH555/D09MT/fv3x7Zt25CQkIC0tLSWagapuZboZxcuXMAbb7yByZMnY/78+XL3Gvr+b2RkBD09vZZtDCkVg3gVEwQB06ZNw759+3Do0CE4OjrK3ff29oa2tjYSEhJk17Kzs1FQUAAfH58ml+Pj44MjR46gsrJSdi0+Ph6urq5o167dizeE1Jay+hhQc4zJ0KFDsWLFCrnpXPTyU1Y/S01NRUZGhuy1ZMkSSCQSZGRkYNSoUS3WHlJPyupnvr6+qKqqwuXLl2XXcnJyAAAODg4v2ApSZ8rqY+Xl5dDQkP8arqmpCaBmJgi93Fqqn/32228YMGAAgoOD6z0C08fHRy4PoOb7//N+vyM1pMpd9UgQPvzwQ8HY2FhITEwUCgsLZa/y8nJZmn/84x+Cvb29cOjQIeHUqVOCj4+P4OPjI5dPbm6ucObMGWHKlCmCi4uLcObMGeHMmTOy3egfPHggWFhYCO+//75w/vx54YcffhD09fWFb775RqntJeVTVh87dOiQoK+vL0RERMiVc/fuXaW2l1RDWf3sr7g7fduirH5WXV0teHl5Cf379xdOnz4tnDp1SujTp4/w5ptvKrW9pHzK6mMJCQmCSCQSFi9eLOTk5Ajp6elCQECA4ODgIFcWvZxaop+dO3dOMDMzE8aPHy+Xx61bt2Rpfv/9d0FfX1/4+OOPhaysLGHDhg2CpqamEBsbq9T2UstjEK9iAOp9RUZGytI8evRImDp1qtCuXTtBX19fGDVqlFBYWCiXj5+fX7355OXlydJkZmYKr732miAWiwUbGxvhs88+U1IrSZWU1ceCg4Prve/n56e8xpLKKPPvsqcxiG9blNnPrl+/Lrz99tuCoaGhYGFhIYSEhPBHyTZAmX1s586dgqenp2BgYCCYmZkJI0aMELKyspTUUlKlluhnCxcurDcPBwcHubIOHz4s9OjRQ9DR0RE6deokVwa1XiJBEIQXGMgnIiIiIiIiIiXhmngiIiIiIiKiVoJBPBEREREREVErwSCeiIiIiIiIqJVgEE9ERERERETUSjCIJyIiIiIiImolGMQTERERERERtRIM4omIiIiIiIhaCQbxRERERERERK0Eg3giIiI1dvfuXZibmyM/P1+p5UZFRcHExEQhecfGxqJHjx6QSqUKyZ+IiOhlxiCeiIhIjS1btgyBgYHo2LFjnXsBAQHQ1NTEyZMnlV+xFzB48GBoa2tj+/btDaYJDQ1Ft27d8OTJE7nrBw8ehI6ODk6fPq3oahIREaklBvFERERqqry8HJs3b0ZoaGidewUFBTh27BimTZuGLVu2qKB2zVNZWQkACAkJwfr16xtMt2bNGpSWlmLhwoWyaw8ePMCkSZPwr3/9C15eXgqrGxERkTpjEE9ERKSmDh48CLFYjL59+9a5FxkZiWHDhuHDDz/Ezp078ejRI7n7/v7+CA8Px5w5c2BqagpLS0ssWrRILs2DBw8wZcoUWFhYQFdXFx4eHoiJiZFLExcXBzc3NxgaGmLw4MEoLCyU3ZNKpViyZAlsbW0hFovRo0cPxMbGyu7n5+dDJBJh165d8PPzg66urmz0ffjw4Th16hQuX75cb9uNjIwQGRmJ1atXIy0tDQAwc+ZM2NjYICIiAlevXsU777wDExMTmJqaIjAwUG7JwcmTJ/Hmm2+iQ4cOMDY2hp+fX53Re5FIhI0bN2LEiBEwMDDAsmXLGviTICIiUh8M4omIiNRUcnIyvL2961wXBAGRkZEYP348unTpAicnJ/z444910n333XcwMDBAWloaPv/8cyxZsgTx8fEAagLwIUOGICUlBdu2bcOFCxfw2WefQVNTU/Z8eXk5Vq1aha1bt+LIkSMoKCjARx99JLu/bt06rF69GqtWrcLZs2cREBCAESNGIDc3V64e8+bNw4wZM5CVlYWAgAAAgL29PSwsLJCcnNxg+wcMGICpU6ciODgYe/bswe7du/H9999DEAQEBARAIpEgOTkZKSkpsh8Zaqffl5aWIjg4GEePHsXx48fh7OyMt956C6WlpXJlLFq0CKNGjcK5c+cwceLEZ/2REBERqZ5AREREaikwMFCYOHFineu//PKLYGZmJlRWVgqCIAhr1qwR/Pz85NL4+fkJr732mty1Xr16CXPnzhUEQRDi4uIEDQ0NITs7u96yIyMjBQDCpUuXZNc2bNggWFhYyN5bW1sLy5Ytq1PG1KlTBUEQhLy8PAGAsHbt2nrL8PT0FBYtWlTvvVrl5eWCq6uroKGhIaxZs0YQBEHYunWr4OrqKkilUlm6x48fC3p6ekJcXFy9+VRXVwsSiUQ4cOCA7BoAYebMmY2WT0REpG44Ek9ERKSmHj16BF1d3TrXt2zZgrFjx0JLSwsAMG7cOKSkpNSZmt69e3e591ZWVrh16xYAICMjA7a2tnBxcWmwfH19fXTu3Lne50tKSnDjxg34+vrKPePr64usrCy5az179qw3fz09PZSXlzdYfm2ajz76CPr6+pgxYwYAIDMzE5cuXYJEIoGhoSEMDQ1hamqKiooK2Wdw8+ZNTJo0Cc7OzjA2NoaRkRHKyspQUFDQpLoRERGpKy1VV4CIiIjq16FDB9y/f1/u2r1797Bv3z5UVlZi48aNsuvV1dXYsmWL3LpubW1tuWdFIpHsWDc9Pb1nll/f84IgPHc7DAwM6r1+7949mJmZPfN5LS0taGpqQiQSAQDKysrg7e1d7+72tfkFBwfj7t27WLduHRwcHCAWi+Hj41Nnt/uG6kZERKSuOBJPRESkpjw9PXHhwgW5a9u3b4etrS0yMzORkZEhe61evRpRUVGorq5uUt7du3fHtWvXkJOT06y6GRkZwdraGikpKXLXU1JS4O7u/szna0fNPT09n7tsLy8v5ObmwtzcHE5OTnIvY2NjWT3Cw8Px1ltvoWvXrhCLxbhz585zl0VERKRuGMQTERGpqYCAAPz2229yo/GbN2/GmDFj4OHhIfcKDQ3FnTt35HaHb4yfnx/69++P0aNHIz4+Hnl5efjf//7X5OcB4OOPP8aKFSuwa9cuZGdnY968ecjIyJBNe2/M8ePHZaPjzysoKAgdOnRAYGAgkpOTkZeXh8TERISHh+PatWsAAGdnZ2zduhVZWVlIS0tDUFBQk2YfEBERqTsG8URERGqqW7du8PLywu7duwEA6enpyMzMxOjRo+ukNTY2xhtvvIHNmzc3Of+ffvoJvXr1wrhx4+Du7o45c+Y0eSQfAMLDwzFr1izMnj0b3bp1Q2xsLKKjo+Hs7PzMZ3fu3ImgoCDo6+s3ubxa+vr6OHLkCOzt7fH222/Dzc0NoaGhqKiogJGREYCaHzvu378PLy8vvP/++wgPD4e5uflzl0VERKRuREJzFrcRERGRUvz3v//Fxx9/jPPnz0ND4+X47f3OnTtwdXXFqVOn4OjoqOrqEBERtSrc2I6IiEiNDR06FLm5ubh+/Trs7OxUXZ0WkZ+fj6+++ooBPBERUTNwJJ6IiIiIiIiolXg55uURERERERERtQEM4omIiIiIiIhaCQbxRERERERERK0Eg3giIiIiIiKiVoJBPBEREREREVErwSCeiIiIiIiIqJVgEE9ERERERETUSjCIJyIiIiIiImolGMQTERERERERtRL/HzFQTWC+A7iMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index 619226d..26923f2 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -59,6 +59,7 @@ "from torch import nn\n", "from torch import Tensor\n", "import torch.nn.functional as f\n", + "from sklearn.metrics import mean_squared_error\n", "\n", "sys.path.append(\"../src/\")\n", "from autoencoder import Transformer\n", @@ -697,757 +698,757 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 493.525574\n", - "Epoch : 0 [8/36(22%)]\tLoss: 382.602081\n", - "Epoch : 0 [16/36(44%)]\tLoss: 321.423676\n", - "Epoch : 0 [24/36(67%)]\tLoss: 273.223145\n", - "Epoch : 0 [32/36(89%)]\tLoss: 220.791931\n", - "Epoch : 1 [0/36(0%)]\tLoss: 183.159088\n", - "Epoch : 1 [8/36(22%)]\tLoss: 153.673859\n", - "Epoch : 1 [16/36(44%)]\tLoss: 120.948517\n", - "Epoch : 1 [24/36(67%)]\tLoss: 85.598503\n", - "Epoch : 1 [32/36(89%)]\tLoss: 52.946121\n", - "Epoch : 2 [0/36(0%)]\tLoss: 34.072151\n", - "Epoch : 2 [8/36(22%)]\tLoss: 20.349691\n", - "Epoch : 2 [16/36(44%)]\tLoss: 9.432866\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.634890\n", - "Epoch : 2 [32/36(89%)]\tLoss: 1.952641\n", - "Epoch : 3 [0/36(0%)]\tLoss: 2.816437\n", - "Epoch : 3 [8/36(22%)]\tLoss: 5.471875\n", - "Epoch : 3 [16/36(44%)]\tLoss: 7.488375\n", - "Epoch : 3 [24/36(67%)]\tLoss: 9.616779\n", - "Epoch : 3 [32/36(89%)]\tLoss: 9.741524\n", - "Epoch : 4 [0/36(0%)]\tLoss: 9.224695\n", - "Epoch : 4 [8/36(22%)]\tLoss: 2.242518\n", - "Epoch : 4 [16/36(44%)]\tLoss: 0.950282\n", - "Epoch : 4 [24/36(67%)]\tLoss: 2.527443\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.715257\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.762929\n", - "Epoch : 5 [8/36(22%)]\tLoss: 1.501935\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.580740\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.118856\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.875216\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.269370\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.992763\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.907247\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.111603\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.902731\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.509021\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.402668\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.224802\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.538826\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.866921\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.278116\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.707006\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.002028\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.129255\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.768322\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.663944\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.371774\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.006437\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.180451\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.495700\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.342474\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.404965\n", - "Epoch : 10 [16/36(44%)]\tLoss: 1.026099\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.326495\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.868489\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.557525\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.417641\n", - "Epoch : 11 [16/36(44%)]\tLoss: 1.020399\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.966204\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.708186\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.374710\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.377552\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.686280\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.330648\n", - "Epoch : 12 [32/36(89%)]\tLoss: 2.033116\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.205198\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.476041\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.905903\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.980035\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.961620\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.413596\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.392897\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.980641\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.040467\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.921771\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.460903\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.364643\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.849014\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.272399\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.787441\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.467014\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.361642\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.861584\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.327746\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.869249\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.570852\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.311107\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.929859\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.321666\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.856128\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.626819\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.433318\n", - "Epoch : 18 [16/36(44%)]\tLoss: 1.097950\n", - "Epoch : 18 [24/36(67%)]\tLoss: 1.187994\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.850399\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.567910\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.294777\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.917443\n", - "Epoch : 19 [24/36(67%)]\tLoss: 1.305569\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.507412\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.490743\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.464146\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.779372\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.125775\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.891230\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.457613\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.497404\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.747831\n", - "Epoch : 21 [24/36(67%)]\tLoss: 1.244645\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.770057\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.473264\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.382030\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.841822\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.858099\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.569666\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.550062\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.352637\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.885477\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.908079\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.566973\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.550274\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.417173\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.910960\n", - "Epoch : 24 [24/36(67%)]\tLoss: 1.042699\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.705968\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.427456\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.264411\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.978601\n", - "Epoch : 25 [24/36(67%)]\tLoss: 1.075932\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.747557\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.422142\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.411199\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.935790\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.660957\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.565394\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.485171\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.456637\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.924406\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.987173\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.529413\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.522048\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.438892\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.892894\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.685807\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.458937\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.488998\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.367674\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.879758\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.666241\n", - "Epoch : 29 [32/36(89%)]\tLoss: 1.420261\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.600447\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.477000\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.865064\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.661336\n", - "Epoch : 30 [32/36(89%)]\tLoss: 1.344324\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.596371\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.500845\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.652965\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.474178\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.166756\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.627191\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.503304\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.532703\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.487657\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.005448\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.737480\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.486592\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.450243\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.380009\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.803783\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.728582\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.314549\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.465686\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.412858\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.730310\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.769498\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.455436\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.290085\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.354332\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.717146\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.648586\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.463123\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.330810\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.367811\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.540188\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.723126\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.498738\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.359102\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.253648\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.619413\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.650733\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.295204\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.324452\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.149687\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.391894\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.358371\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.278645\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.186750\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.265579\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.271604\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.413969\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.222489\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.248822\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.060141\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.284769\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.411528\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.142155\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.236907\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.106526\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.378542\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.304994\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.130791\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.348970\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.491316\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.102871\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.241138\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.652632\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.198638\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.266615\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.613319\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.365885\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.535188\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.620292\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.731895\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.669606\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.979399\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.445933\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.323799\n", - "Epoch : 45 [24/36(67%)]\tLoss: 1.088354\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.377988\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.292281\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.411117\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.417429\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.197411\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.355626\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.708459\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.237798\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.167009\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.669161\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.270577\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.321017\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.281160\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.425471\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.180371\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.160065\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.356004\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.270991\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.128476\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.083296\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.172019\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.227950\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.230251\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.200828\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.185268\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.170370\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.194182\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.418203\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.086107\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.010100\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.375894\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.336874\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.131084\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.175038\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.420965\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.016249\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.158318\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.188998\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.077656\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.097728\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.059690\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.133745\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.096144\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.042766\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.138212\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.119585\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.158246\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.215055\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.042189\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.008591\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.077085\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.215271\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.061048\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.123765\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.135825\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.045565\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.071595\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.115362\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.073267\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.043858\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.090286\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.262434\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.026790\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.129490\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.132520\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.048991\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.127197\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.353266\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.026281\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.067265\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.188076\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.233469\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.125423\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.116194\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.335926\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.037920\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.291208\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.052470\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.038724\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.090335\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.113156\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.057097\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.006524\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.101056\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.066998\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.014445\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.132838\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.102177\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.004754\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.090686\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.063959\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.019439\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.179464\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.025924\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.023790\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.096271\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.090671\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.051246\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.072286\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.207494\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.047461\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.093148\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.079813\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.022277\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.093641\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.053406\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.164670\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.012585\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.112919\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.132723\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.010350\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.157667\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.160658\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.036549\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.032579\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.122457\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.052636\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.138538\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.034422\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.053753\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.051249\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.071848\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.024393\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.033058\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.084126\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.021748\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.112402\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.025652\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.059996\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.031534\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.013414\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.102153\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.035015\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.034649\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.105123\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.003933\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.054024\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.199460\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.030936\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.017862\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.058050\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.246919\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.090069\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.215889\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.324069\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.103718\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.290504\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.102174\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.089504\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.285144\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.128792\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.143594\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.230471\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.209722\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.207821\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.362696\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.277591\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.153433\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.173360\n", - "Epoch : 77 [24/36(67%)]\tLoss: 1.048610\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.089329\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.078351\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.626610\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.566896\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.096817\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.365543\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.481995\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.086830\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.209606\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.755844\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.126565\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.054658\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.146881\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.249361\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.079469\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.072774\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.209942\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.246723\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.042439\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.535967\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.260788\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.102125\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.236821\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.381014\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.070117\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.230736\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.298236\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.048351\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.034867\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.311981\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.140017\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.054667\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.084455\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.083959\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.024887\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.044902\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.160097\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.149174\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.028745\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.105789\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.119759\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.030416\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.235008\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.230711\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.048905\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.140387\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.153362\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.027566\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.065128\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.165080\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.076642\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.056471\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.045013\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.033590\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.058066\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.018821\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.096186\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.079794\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.007683\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.063224\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.040023\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.013514\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.044282\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.018484\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.008796\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.024796\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.100544\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.034481\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.012031\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.024262\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.000916\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.042594\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.010243\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.019070\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.033103\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.015054\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.045660\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.028796\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.012160\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.014146\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.002766\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.026178\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.015247\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.010463\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.004776\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.007329\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.080672\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.049966\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.015745\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.029925\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.021196\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.012961\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.059013\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.018997\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.005517\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.017149\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.099675\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.007961\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.050863\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.073949\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.029212\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.027574\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.051932\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.033772\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.012879\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.083703\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.056479\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.024130\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.061374\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.192257\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.008055\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.096570\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.124923\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.001897\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.128047\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.048742\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.041367\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.174891\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.133183\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.013069\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.064818\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.126453\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.041394\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.048592\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.208826\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.021638\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.143039\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.212216\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.010702\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.223430\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.088693\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.053144\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.063888\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.109221\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.036915\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.031434\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.096697\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.059613\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.015003\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.233051\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.019391\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.039241\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.159849\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.135015\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.038317\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.049571\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.186892\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.058373\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.013264\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.061878\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.092630\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.035858\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.032028\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.008051\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.031950\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.027511\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.053195\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.016005\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.053923\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.037853\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.009935\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.025843\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.040075\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.066285\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.013519\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.025961\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.032016\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.016416\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.063112\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.073107\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.009313\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.054211\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.027763\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.024548\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.015899\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.038507\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.010965\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.045107\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.016966\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.067800\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.030926\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.040053\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.039306\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.001137\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.086852\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.031787\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.021832\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.110750\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.044651\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.038018\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.044389\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.083714\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.026087\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.129231\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.074909\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.018113\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.036183\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.096271\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.011404\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.186796\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.150487\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.029407\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.079026\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.083122\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.008444\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.045994\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.132059\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.081510\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.033989\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.240761\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.047633\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.044269\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.239534\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.134844\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.035412\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.210887\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.145909\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.089197\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.102213\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.176013\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.076407\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.141649\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.088107\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.010202\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.224881\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.045157\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.044478\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.135596\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.091095\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.024242\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.069462\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.140045\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.021389\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.094303\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.268776\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.027137\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.048203\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.227890\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.044201\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.038344\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.181065\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.105894\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.090249\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.274409\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.049438\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.089047\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.140666\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.103804\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.161850\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.232294\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.083329\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.071042\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.320921\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.089600\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.091873\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.218218\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.271217\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.042958\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.328822\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.314525\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.007256\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.178838\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.622055\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.068946\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.347655\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.462773\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.231065\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.287770\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.672472\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.123781\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.266082\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.436849\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.042651\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.055347\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.705547\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.059963\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.171174\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.201063\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.080018\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.078790\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.294495\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.126144\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.013263\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.079361\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.323393\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.038616\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.110918\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.423175\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.108680\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.171464\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.267605\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.262477\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.109723\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.323735\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.112725\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.021795\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.120917\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.096575\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.011824\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.087257\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.193963\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.112419\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.041119\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.161790\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.032271\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.061907\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.147163\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.090891\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.022415\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.214977\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.079233\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.025680\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.274241\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.105321\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.032160\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.084360\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.135694\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.014177\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.055224\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.104160\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.029996\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.076455\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.094274\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.119953\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.044814\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.182618\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.039392\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.005327\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.137184\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.080225\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.014656\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.069800\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.199991\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.019922\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.104428\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.107707\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.072625\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.094490\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.169863\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.006993\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.022896\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.079906\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.015851\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.013373\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.031219\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.034684\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.035095\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.036473\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.055520\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.032833\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.018468\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.045368\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.006117\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.031043\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.070046\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.006003\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.041241\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.111910\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.012024\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.006319\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.010307\n", - "--- 0.042106783390045165 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 524.326477\n", + "Epoch : 0 [8/36(22%)]\tLoss: 371.382507\n", + "Epoch : 0 [16/36(44%)]\tLoss: 315.766724\n", + "Epoch : 0 [24/36(67%)]\tLoss: 270.695923\n", + "Epoch : 0 [32/36(89%)]\tLoss: 216.691101\n", + "Epoch : 1 [0/36(0%)]\tLoss: 179.566986\n", + "Epoch : 1 [8/36(22%)]\tLoss: 150.439789\n", + "Epoch : 1 [16/36(44%)]\tLoss: 116.863503\n", + "Epoch : 1 [24/36(67%)]\tLoss: 82.824799\n", + "Epoch : 1 [32/36(89%)]\tLoss: 51.089516\n", + "Epoch : 2 [0/36(0%)]\tLoss: 31.711128\n", + "Epoch : 2 [8/36(22%)]\tLoss: 18.559822\n", + "Epoch : 2 [16/36(44%)]\tLoss: 8.058861\n", + "Epoch : 2 [24/36(67%)]\tLoss: 2.333483\n", + "Epoch : 2 [32/36(89%)]\tLoss: 2.181011\n", + "Epoch : 3 [0/36(0%)]\tLoss: 3.561988\n", + "Epoch : 3 [8/36(22%)]\tLoss: 5.278272\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.860563\n", + "Epoch : 3 [24/36(67%)]\tLoss: 7.766555\n", + "Epoch : 3 [32/36(89%)]\tLoss: 6.497755\n", + "Epoch : 4 [0/36(0%)]\tLoss: 4.723859\n", + "Epoch : 4 [8/36(22%)]\tLoss: 0.393862\n", + "Epoch : 4 [16/36(44%)]\tLoss: 3.175358\n", + "Epoch : 4 [24/36(67%)]\tLoss: 3.867015\n", + "Epoch : 4 [32/36(89%)]\tLoss: 3.275721\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.345355\n", + "Epoch : 5 [8/36(22%)]\tLoss: 0.374889\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.888120\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.043136\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.143194\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.221046\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.454091\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.800057\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.158665\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.693906\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.182917\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.463759\n", + "Epoch : 7 [16/36(44%)]\tLoss: 1.079689\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.256180\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.555708\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.575083\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.386536\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.881012\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.225078\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.687436\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.429125\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.291156\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.942206\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.358737\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.706933\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.351688\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.305467\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.742818\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.191872\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.879508\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.502568\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.489872\n", + "Epoch : 11 [16/36(44%)]\tLoss: 1.069836\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.209656\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.677031\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.374723\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.355021\n", + "Epoch : 12 [16/36(44%)]\tLoss: 1.044267\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.318999\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.522490\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.559864\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.489411\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.881514\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.972239\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.909005\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.515597\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.467815\n", + "Epoch : 14 [16/36(44%)]\tLoss: 1.057824\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.947948\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.910012\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.539304\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.392797\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.715415\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.913301\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.710073\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.349097\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.407573\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.951775\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.189612\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.350954\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.569740\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.261463\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.817718\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.946522\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.356411\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.496328\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.312134\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.845777\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.019789\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.416034\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.495404\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.458170\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.882112\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.767290\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.491332\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.498714\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.431194\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.694577\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.800438\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.578545\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.363191\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.263194\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.755978\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.647989\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.634670\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.538470\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.279066\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.760361\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.826247\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.471961\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.483527\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.287363\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.519297\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.587192\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.337225\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.360090\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.195570\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.583489\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.398668\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.059787\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.459874\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.295724\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.449113\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.624343\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.306204\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.387462\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.331933\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.359973\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.576746\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.178451\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.435474\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.340943\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.338912\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.745181\n", + "Epoch : 27 [32/36(89%)]\tLoss: 1.070688\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.415961\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.202071\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.440159\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.677778\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.069517\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.490651\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.250455\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.385005\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.474219\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.137795\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.358495\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.369561\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.300357\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.389089\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.915913\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.346958\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.172788\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.270902\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.295588\n", + "Epoch : 31 [32/36(89%)]\tLoss: 1.050273\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.352295\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.148022\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.372732\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.304725\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.961665\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.383648\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.249750\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.192248\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.170419\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.065073\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.303935\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.221045\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.173272\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.180757\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.788485\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.345255\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.120459\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.151939\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.196661\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.857989\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.326427\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.191752\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.091515\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.125371\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.592518\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.216593\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.134148\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.056354\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.140519\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.667542\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.333257\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.163707\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.087176\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.222434\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.586622\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.293523\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.142140\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.063725\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.113673\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.546012\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.408706\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.071506\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.117702\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.084201\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.340423\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.318312\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.103089\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.044421\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.025576\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.347920\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.312008\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.074765\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.045046\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.011639\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.197209\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.219735\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.099923\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.016758\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.014082\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.154061\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.225181\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.020591\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.029895\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.043782\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.144689\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.224344\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.013673\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.011321\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.075373\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.141867\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.348977\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.047664\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.199012\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.084523\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.383288\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.587677\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.354708\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.139794\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.211437\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.155387\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.877711\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.136101\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.254583\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.331333\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.136493\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.289635\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.845425\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.555160\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.527661\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.999025\n", + "Epoch : 50 [0/36(0%)]\tLoss: 1.145068\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.078307\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.308340\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.863483\n", + "Epoch : 50 [32/36(89%)]\tLoss: 1.161277\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.407367\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.775764\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.967734\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.190831\n", + "Epoch : 51 [32/36(89%)]\tLoss: 1.079908\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.354461\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.265541\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.147622\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.335364\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.569995\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.420724\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.139302\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.177874\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.085076\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.446847\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.150584\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.260496\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.209668\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.057918\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.314130\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.110397\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.079545\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.159039\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.210405\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.087204\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.058906\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.164835\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.334986\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.261066\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.349362\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.281939\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.134200\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.343780\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.078625\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.126949\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.240828\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.372774\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.226227\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.073514\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.464930\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.309932\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.066591\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.151810\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.452231\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.036823\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.155148\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.334693\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.455972\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.156780\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.468499\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.378736\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.092855\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.239026\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.078477\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.053634\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.191101\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.222670\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.358116\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.021881\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.166021\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.244493\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.021584\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.078309\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.197436\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.082201\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.060094\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.218050\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.170763\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.124466\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.348326\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.234977\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.039581\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.125979\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.049079\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.050672\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.062419\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.178573\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.131766\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.071302\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.086215\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.009081\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.023244\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.067403\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.089661\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.015605\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.016397\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.101832\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.104246\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.063155\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.183317\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.117787\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.063729\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.088742\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.024808\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.051085\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.147401\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.175683\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.049259\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.077450\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.080968\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.031363\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.122235\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.115629\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.036007\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.045760\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.021832\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.068118\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.018989\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.176813\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.097616\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.088861\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.256584\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.079277\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.029307\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.148002\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.107191\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.046051\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.068570\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.085887\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.014148\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.058778\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.220474\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.065582\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.103724\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.135619\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.035298\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.048566\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.129805\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.148329\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.001306\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.073959\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.131402\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.022376\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.241339\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.075617\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.091641\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.182181\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.113770\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.043986\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.146622\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.087131\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.039322\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.033154\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.061522\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.021905\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.026998\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.073372\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.108072\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.015310\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.092633\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.074093\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.054273\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.065731\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.157492\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.037284\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.033941\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.330518\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.061461\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.140017\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.205240\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.203052\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.005322\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.159586\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.092201\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.016941\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.048019\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.264129\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.113319\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.113604\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.110187\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.037512\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.067547\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.073128\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.198720\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.012687\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.024320\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.100665\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.048769\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.139711\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.044141\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.093173\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.038136\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.047913\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.011046\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.019020\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.022404\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.041895\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.086317\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.058155\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.035273\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.135314\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.056430\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.095994\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.060037\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.019584\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.017094\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.179255\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.012916\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.131478\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.213498\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.151011\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.120571\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.164293\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.007926\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.047734\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.146612\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.093151\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.065711\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.195272\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.103127\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.012437\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.110291\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.079682\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.007246\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.074296\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.040351\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.021653\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.006539\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.138862\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.033851\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.013645\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.104239\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.025311\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.054897\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.109692\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.044251\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.034729\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.059965\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.023876\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.031909\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.017079\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.104885\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.045216\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.044931\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.054343\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.016473\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.043028\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.028076\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.009982\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.010538\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.014052\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.062924\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.009834\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.030641\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.037158\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.048420\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.015062\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.021791\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.006104\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.005083\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.004402\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.024660\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.038100\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.023951\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.006166\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.028248\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.018262\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.020046\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.026970\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.009495\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.014283\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.019441\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.037536\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.001983\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.077717\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.058776\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.013648\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.025510\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.062689\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.008509\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.021876\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.031333\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.063796\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.077745\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.009648\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.047215\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.010794\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.010392\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.016662\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.032713\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.006271\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.023320\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.017300\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.077783\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.035734\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.014145\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.014016\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.024295\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.020264\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.007666\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.024959\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.004234\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.048842\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.034391\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.010609\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.023232\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.008517\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.038574\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.049726\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.011260\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.027826\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.033753\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.008553\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.009305\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.025753\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.006973\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.011416\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.021358\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.074236\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.009705\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.008034\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.112903\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.019369\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.017127\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.032710\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.010856\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.018642\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.019088\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.009388\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.013069\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.018264\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.020415\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.007804\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.043133\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.014752\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.013068\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.043227\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.005771\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.013901\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.003654\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.009065\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.029015\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.003687\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.046809\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.029749\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.008820\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.016063\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.076672\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.007315\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.011229\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.083808\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.022574\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.016726\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.163346\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.007365\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.015743\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.173420\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.033796\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.018463\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.079842\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.039676\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.013115\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.053365\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.060522\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.027007\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.002497\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.171167\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.029926\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.151813\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.167455\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.006707\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.164081\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.070240\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.035461\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.078243\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.127399\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.092669\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.055332\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.432029\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.048043\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.057094\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.331234\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.196889\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.098130\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.401387\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.145860\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.069388\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.163440\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.180441\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.002547\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.057106\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.405939\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.050907\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.373064\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.288275\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.140055\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.174732\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.284289\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.019927\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.198493\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.163754\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.055789\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.074748\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.474000\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.049824\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.040095\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.248741\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.102784\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.176323\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.160664\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.078709\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.030296\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.155508\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.093559\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.018098\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.056132\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.122698\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.024745\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.139497\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.121113\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.031250\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.068090\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.055066\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.032765\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.077844\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.132753\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.021366\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.039290\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.143978\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.037764\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.037960\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.142017\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.038534\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.075301\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.035813\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.057779\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.038561\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.039250\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.053544\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.015362\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.015864\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.074828\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.038479\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.030156\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.111784\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.040800\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.039824\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.022082\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.006779\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.025181\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.020871\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.044529\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.059843\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.051373\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.027145\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.014940\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.035605\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.074614\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.010390\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.007896\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.010359\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.040596\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.024526\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.053626\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.024234\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.005140\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.045519\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.019800\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.018947\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.028654\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.054078\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.011650\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.016458\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.055300\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.022035\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.011461\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.040171\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.016252\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.030379\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.013614\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.010249\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.011121\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.004026\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.036981\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.003381\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.002212\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.043327\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.001301\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.028425\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.052544\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.021578\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.004602\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.002242\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.013263\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.022423\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.032915\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.013582\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.023156\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.008939\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.013119\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.021824\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.023352\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.027081\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.007634\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.011839\n", + "--- 0.04391600290934245 minutes ---\n" ] } ], @@ -1516,7 +1517,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkmklEQVR4nOzdd3hT1R8G8DfduwUKbaHQsvcGFZAlU1BAHCwRVFQEFcT1Q2SIAooyVGQ4GCogKKCIKEOGIIjIlL0KlFFaVkt3m5zfH6c3N2nT0rRJb5q8n+fJc5Obm5uTNJC893vOuTohhAARERERERERlTg3rRtARERERERE5KoYyomIiIiIiIg0wlBOREREREREpBGGciIiIiIiIiKNMJQTERERERERaYShnIiIiIiIiEgjDOVEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRhjKiVzI4sWLodPpoNPpsG3btjz3CyFQo0YN6HQ6dOjQwbj+xo0bGDt2LOrVqwd/f38EBwejTp06GDx4MA4fPmxx/5Yulp6TiIhIS8p317///qt1U6w2dOhQREdHm62bOnUqfvrppzzbluTrnDRpEnQ6nU32VdTfLgB/v1Dp4aF1A4io5AUGBuLrr7/O8+W1fft2nD17FoGBgcZ1ycnJuO+++5CcnIw33ngDjRs3RlpaGk6dOoXVq1fj4MGDaNSokdl+Fi1ahDp16uR53nr16tnl9RAREbmi8ePHY9SoUWbrpk6disceewx9+vTRplEAhg0bhu7du9t0n9b8dgH4+4VKF4ZyIhfUr18/LF26FJ9//jmCgoKM67/++mu0atUKSUlJxnU//PADzpw5gy1btqBjx45m+xkzZgwMBkOe/Tdo0AAtWrSw3wsgIiJyYampqfDz80P16tW1bopFkZGRiIyMtOk+rfntAvD3C5Uu7L5O5IIGDBgAAFi+fLlxXWJiIlatWoVnnnnGbNsbN24AACIiIizuy82N/40QEZHz27lzJzp16oTAwED4+fmhdevW+PXXXy1u16pVK/j4+KBSpUoYP348vvrqK+h0Opw/f9643YoVK9C1a1dERETA19cXdevWxf/+9z+kpKSY7W/o0KEICAjAf//9h65duyIwMBCdOnUy3mfafV2n0yElJQVLliwxdr3OXVm+c+cOXnzxRYSGhqJcuXLo27cvrly5YrZNdHQ0HnroIaxbtw5NmzY1tm/dunUAZHfvunXrwt/fH/fcc0+eLvH5dV9ftmwZWrVqhYCAAAQEBKBJkyb4+uuv7/reA9b9dgH4+4VKF34aiVxQUFAQHnvsMSxcuNC4bvny5XBzc0O/fv3Mtm3VqhUA4KmnnsJPP/1k/JIriF6vR3Z2ttlFr9fb9kUQERGVkO3bt+OBBx5AYmIivv76ayxfvhyBgYF4+OGHsWLFCuN2hw8fRpcuXZCamoolS5Zg/vz52L9/P6ZMmZJnn6dPn0aPHj3w9ddf4/fff8fo0aOxcuVKPPzww3m2zczMRK9evfDAAw/g559/xrvvvmuxnbt374avry969OiB3bt3Y/fu3Zg7d67ZNsOGDYOnpyeWLVuG6dOnY9u2bXjyySfz7OvQoUMYO3Ys3nrrLaxevRrBwcHo27cvJk6ciK+++gpTp07F0qVLkZiYiIceeghpaWkFvocTJkzAoEGDULFiRSxevBhr1qzBkCFDcOHChQIfp7DmtwvA3y9UyggichmLFi0SAMTevXvF1q1bBQBx5MgRIYQQLVu2FEOHDhVCCFG/fn3Rvn174+MmT54svLy8BAABQFStWlUMHz5cHDp0yOL+LV3c3d1L7HUSEREVlul3Y37uu+8+UaFCBXHnzh3juuzsbNGgQQMRGRkpDAaDEEKIxx9/XPj7+4uEhATjdnq9XtSrV08AEDExMRb3bzAYRFZWlti+fbsAYPb9OmTIEAFALFy4MM/jhgwZIqKioszW+fv7iyFDhuT7OkeMGGG2fvr06QKAuHr1qnFdVFSU8PX1FZcuXTKuO3jwoAAgIiIiREpKinH9Tz/9JACItWvXGtdNnDhRmMaMc+fOCXd3dzFo0CCLr78gRf3tIgR/v1DpwUo5kYtq3749qlevjoULF+K///7D3r17LXb/AuREMhcvXsTChQvxwgsvICAgAPPnz0fz5s3NupEpvvnmG+zdu9fssmfPHnu/JCIiIptLSUnBnj178NhjjyEgIMC43t3dHYMHD8alS5dw8uRJAGpFPTQ01Lidm5sbnnjiiTz7PXfuHAYOHIjw8HC4u7vD09MT7du3BwAcP348z/aPPvqoTV5Pr169zG4rk53lrlg3adIElSpVMt6uW7cuAKBDhw7w8/PLs76givemTZug1+sxcuTIYrXdmt8uAH+/UOnBid6IXJROp8PTTz+NTz/9FOnp6ahVqxbatm2b7/ZhYWF4+umn8fTTTwMA/vzzTzz44IMYNWqUcZyXom7dupwohYiInMKtW7cghLA4NrlixYoA1PHLN27cQFhYWJ7tcq9LTk5G27Zt4ePjg/fffx+1atWCn58fYmNj0bdv3zxdwf38/MwmNyuOcuXKmd329vYGgDzPWbZsWbPbXl5eBa5PT0/P9zkTEhIAoNiTv1n72wXg7xcqHVgpJ3JhQ4cOxfXr1zF//nzjl1VhtWvXDl27dkVCQgLi4+Pt1EIiIiJtlSlTBm5ubrh69Wqe+5QJ0pTKeLly5XDt2rU828XFxZnd3rJlC65cuYKFCxdi2LBhaNeuHVq0aJHntF4KW53zWyvly5cHAFy6dKnY+yrObxeAv1/IMTGUE7mwSpUq4Y033sDDDz+MIUOGWNzm2rVrFk8botfrcfr0afj5+SEkJMTOLSUiItKGv78/7r33XqxevdqsmmwwGPDdd98hMjIStWrVAiC7V2/ZsgXXr1832+6HH34w26cSspUqtWLBggXFbq+3t/ddJ10raV27doW7uzvmzZtX7H0V5rcLwN8vVLqw+zqRi/vggw8KvP/bb7/FggULMHDgQLRs2RLBwcG4dOkSvvrqKxw9ehQTJkwwdl1THDlyBNnZ2Xn2Vb16dePRciIiIkeyZcsWs1OWKXr06IFp06ahS5cu6NixI15//XV4eXlh7ty5OHLkCJYvX24M2ePGjcMvv/yCTp06Ydy4cfD19cX8+fONpzlTTsPVunVrlClTBsOHD8fEiRPh6emJpUuX4tChQ8V+HQ0bNsS2bdvwyy+/ICIiAoGBgahdu3ax91sc0dHRePvtt/Hee+8hLS0NAwYMQHBwMI4dO4br16/nO5t8fu722wXg7xcqXRjKiahAPXv2RFxcHNavX4958+bh1q1bCAwMRKNGjfDtt99aPI1Kft3JvvzySwwbNszeTSYiIrLaW2+9ZXF9TEyMsQI+ceJEDB06FAaDAY0bN8batWvx0EMPGbdt3LgxNm3ahNdffx1PPfUUypQpg8GDB6N9+/Z46623EBwcDEB2c//111/x2muv4cknn4S/vz969+6NFStWoFmzZsV6HZ988glGjhyJ/v37IzU1Fe3bt8e2bduKtU9bmDx5MmrWrInPPvsMgwYNgoeHB2rWrIlXXnnFLs/H3y9UmuiEEELrRhAREREROauuXbvi/PnzOHXqlNZNISIHxEo5EREREZGNjBkzBk2bNkXlypVx8+ZNLF26FJs2bcLXX3+tddOIyEExlBMRERER2Yher8eECRMQFxcHnU6HevXq5dtdmogIYPd1IiIiIiIiIs3wlGhEREREREREGmEoJyIiIiIiItIIQzkRERERERGRRpx+ojeDwYArV64gMDAQOp1O6+YQERFBCIE7d+6gYsWKcHPj8fHi4nc9ERE5Gmu+650+lF+5cgWVK1fWuhlERER5xMbGIjIyUutmlHr8riciIkdVmO96pw/lgYGBAOSbERQUpHFriIiIgKSkJFSuXNn4HUXFw+96IiJyNNZ81zt9KFe6sQUFBfGLmoiIHAq7WtsGv+uJiMhRFea7ngPZiIiIiIiIiDTCUE5ERERERESkEYZyIiIiIiIiIo04/ZhyIqLCEkIgOzsber1e66ZQKefu7g4PDw+OGScicjD8ridbseV3PUM5ERGAzMxMXL16FampqVo3hZyEn58fIiIi4OXlpXVTiIgI/K4n27PVdz1DORG5PIPBgJiYGLi7u6NixYrw8vJihZOKTAiBzMxMJCQkICYmBjVr1oSbG0eLERFpid/1ZEu2/q5nKCcil5eZmQmDwYDKlSvDz89P6+aQE/D19YWnpycuXLiAzMxM+Pj4aN0kIiKXxu96sjVbftfz0D0RUQ5WM8mW+HkiInI8/L+ZbMlWnyd+KomIiIiIiIg0wlBOREREREREpBGGciIiMurQoQNGjx5d6O3Pnz8PnU6HgwcP2q1NALBt2zbodDrcvn3brs9DRETkCvh971g40RsRUSl0txljhwwZgsWLF1u939WrV8PT07PQ21euXBlXr15FaGio1c9FREREBeP3vWtgKCciKoWuXr1qvL5ixQpMmDABJ0+eNK7z9fU12z4rK6tQX75ly5a1qh3u7u4IDw+36jFERERUOPy+dw3svm6Ffv2ABg2AnTu1bgkR2ZMQQEqKNhchCtfG8PBw4yU4OBg6nc54Oz09HSEhIVi5ciU6dOgAHx8ffPfdd7hx4wYGDBiAyMhI+Pn5oWHDhli+fLnZfnN3Z4uOjsbUqVPxzDPPIDAwEFWqVMEXX3xhvD93dzal29kff/yBFi1awM/PD61btzb7AQEA77//PipUqIDAwEAMGzYM//vf/9CkSROr/k6rVq1C/fr14e3tjejoaMyYMcPs/rlz56JmzZrw8fFBWFgYHnvsMeN9P/74Ixo2bAhfX1+UK1cOnTt3RkpKilXPT85p1iygYUMg18eJiJwQv+9HG2/z+15bDOVWOHMGOHoUSErSuiVEZE+pqUBAgDaX1FTbvY633noLr7zyCo4fP45u3bohPT0dzZs3x7p163DkyBE8//zzGDx4MPbs2VPgfmbMmIEWLVrgwIEDGDFiBF588UWcOHGiwMeMGzcOM2bMwL///gsPDw8888wzxvuWLl2KKVOm4MMPP8S+fftQpUoVzJs3z6rXtm/fPjzxxBPo378//vvvP0yaNAnjx483duH7999/8corr2Dy5Mk4efIkfv/9d7Rr1w6ArDoMGDAAzzzzDI4fP45t27ahb9++EIX9hURO7eZN4MgRICZG65YQkb3x+94cv+81JJxcYmKiACASExOLva+WLYUAhFi71gYNIyKHkZaWJo4dOybS0tKEEEIkJ8t/61pckpOtb/+iRYtEcHCw8XZMTIwAIGbPnn3Xx/bo0UO89tprxtvt27cXo0aNMt6OiooSTz75pPG2wWAQFSpUEPPmzTN7rgMHDgghhNi6dasAIDZv3mx8zK+//ioAGN/fe++9V4wcOdKsHW3atBGNGzfOt53Kfm/duiWEEGLgwIGiS5cuZtu88cYbol69ekIIIVatWiWCgoJEUlJSnn3t27dPABDnz5/P9/lsIffnypQtv5vItu/nzJny3+KAATZoGBE5DEv/J/P7fpTxNr/vi8ZW3/WslFvB3V0u9Xpt20FE9uXnByQna3Px87Pd62jRooXZbb1ejylTpqBRo0YoV64cAgICsHHjRly8eLHA/TRq1Mh4Xek2Fx8fX+jHREREAIDxMSdPnsQ999xjtn3u23dz/PhxtGnTxmxdmzZtcPr0aej1enTp0gVRUVGoVq0aBg8ejKVLlyI1pyzRuHFjdOrUCQ0bNsTjjz+OL7/8Erdu3bLq+cl5KcMsb97Uth1EZH/8vjfH73vtMJRbgaGcyDXodIC/vzaXu0yyahV/f3+z2zNmzMCsWbPw5ptvYsuWLTh48CC6deuGzMzMAveTe8IYnU4Hg8FQ6McoM8eaPib3bLLCyq5kQogC9xEYGIj9+/dj+fLliIiIwIQJE9C4cWPcvn0b7u7u2LRpE3777TfUq1cPn332GWrXro0Y9lcmMJQTuRJ+35vj9712GMqtwFBORKXZjh070Lt3bzz55JNo3LgxqlWrhtOnT5d4O2rXro1//vnHbN2///5r1T7q1auHnblm3dy1axdq1aoF95z/rD08PNC5c2dMnz4dhw8fxvnz57FlyxYA8kdCmzZt8O677+LAgQPw8vLCmjVrivGqyFkwlBNRacfv+9L3fc9TolnBLecQxl0OGBEROaQaNWpg1apV2LVrF8qUKYOZM2ciLi4OdevWLdF2vPzyy3juuefQokULtG7dGitWrMDhw4dRrVq1Qu/jtddeQ8uWLfHee++hX79+2L17N+bMmYO5c+cCANatW4dz586hXbt2KFOmDNavXw+DwYDatWtjz549+OOPP9C1a1dUqFABe/bsQUJCQom/D+SYGMqJqLTj933p+75nKLcCK+VEVJqNHz8eMTEx6NatG/z8/PD888+jT58+SExMLNF2DBo0COfOncPrr7+O9PR0PPHEExg6dGieo+kFadasGVauXIkJEybgvffeQ0REBCZPnoyhQ4cCAEJCQrB69WpMmjQJ6enpqFmzJpYvX4769evj+PHj+PPPPzF79mwkJSUhKioKM2bMwIMPPminV0yliRLKb9+W3/fKdz8RUWnB7/vS932vE9Z27C9lkpKSEBwcjMTERAQFBRVrX926ARs3AkuWAE89ZaMGEpHm0tPTERMTg6pVq8LHx0fr5rikLl26IDw8HN9++63WTbGZgj5XtvxuItu+n5mZgLe3vH7jhhrSiah043e9Y3C273tbfddrOqY8Ozsb77zzDqpWrQpfX19Uq1YNkydPNpscQAiBSZMmoWLFivD19UWHDh1w9OhRTdrLSjkRUfGlpqZi5syZOHr0KE6cOIGJEydi8+bNGDJkiNZNI4KXFxAYKK+zCzsRUdHx+77wNA3lH374IebPn485c+bg+PHjmD59Oj766CN89tlnxm2mT5+OmTNnYs6cOdi7dy/Cw8PRpUsX3Llzp8Tby1BORFR8Op0O69evR9u2bdG8eXP88ssvWLVqFTp37qx104gAcFw5EZEt8Pu+8DQdU75792707t0bPXv2BABER0dj+fLlxln5hBCYPXs2xo0bh759+wIAlixZgrCwMCxbtgwvvPBCibaXoZyIqPh8fX2xefNmrZtBlK+yZYELF2T3dSIiKhp+3xeeppXy+++/H3/88QdOnToFADh06BB27tyJHj16AABiYmIQFxeHrl27Gh/j7e2N9u3bY9euXRb3mZGRgaSkJLOLrTCUExER2de0adOg0+kwevRozdrASjkREZUkTSvlb731FhITE1GnTh24u7tDr9djypQpGDBgAAAgLi4OABAWFmb2uLCwMFy4cMHiPqdNm4Z3333XLu1lKCciIrKfvXv34osvvkCjRo00bQdDORERlSRNK+UrVqzAd999h2XLlmH//v1YsmQJPv74YyxZssRsO51OZ3ZbCJFnnWLs2LFITEw0XmJjY23WXoZyIiIi+0hOTsagQYPw5ZdfokyZMpq2haGciIhKkqaV8jfeeAP/+9//0L9/fwBAw4YNceHCBUybNg1DhgxBeHg4AFkxj4iIMD4uPj4+T/Vc4e3tDW/lXCY2xlBORERkHyNHjkTPnj3RuXNnvP/++wVum5GRgYyMDONtWw5VAxjKiYioZGlaKU9NTYWbm3kT3N3djadEq1q1KsLDw7Fp0ybj/ZmZmdi+fTtat25dom2VbZNLhnIiIiLb+f7777F//35MmzatUNtPmzYNwcHBxkvlypVt15hffsGjO0ahD9YwlBMRUYnQNJQ//PDDmDJlCn799VecP38ea9aswcyZM/HII48AgHGil6lTp2LNmjU4cuQIhg4dCj8/PwwcOLDE28tQTkREZFuxsbEYNWoUvvvuO/j4+BTqMfYcqoZdu9B856dohz8ZyomIqERoGso/++wzPPbYYxgxYgTq1q2L119/HS+88ALee+894zZvvvkmRo8ejREjRqBFixa4fPkyNm7ciMDAwBJvL0M5ETmbDh06mM1yHR0djdmzZxf4GJ1Oh59++qnYz22r/RRk0qRJaNKkiV2fg4pn3759iI+PR/PmzeHh4QEPDw9s374dn376KTw8PKC38KXr7e2NoKAgs4vNBATIBZIZyonIafD73rFpOqY8MDAQs2fPLvADodPpMGnSJEyaNKnE2pUfJZTn9K4nItLMww8/jLS0NIvn/9y9ezdat26Nffv2oVmzZlbtd+/evfD397dVMwHIL8qffvoJBw8eNFt/9epVzSf0Iu116tQJ//33n9m6p59+GnXq1MFbb70Fd+XLt6TkfP4ZyonIEfD73jVoGspLG2X4OyvlRKS1Z599Fn379sWFCxcQFRVldt/ChQvRpEkTq7+gAaB8+fK2auJdKZN5kmsLDAxEgwYNzNb5+/ujXLlyedaXCFbKiciB8PveNWjafb20Yfd1IhchBJCSos1FiEI18aGHHkKFChWwePFis/WpqalYsWIFnn32Wdy4cQMDBgxAZGQk/Pz80LBhQyxfvrzA/ebuznb69Gm0a9cOPj4+qFevntnEm4q33noLtWrVgp+fH6pVq4bx48cjKysLALB48WK8++67OHToEHQ6HXQ6nbHNubuz/ffff3jggQfg6+uLcuXK4fnnn0dycrLx/qFDh6JPnz74+OOPERERgXLlymHkyJHG5yoMg8GAyZMnIzIyEt7e3mjSpAl+//134/2ZmZl46aWXEBERAR8fH0RHR5tNPjZp0iRUqVIF3t7eqFixIl555ZVCPzeVErlCOXvHETkxft8bb/P7Xtvve1bKrcBQTuQiUlONP8xLXHKysftsQTw8PPDUU09h8eLFmDBhAnQ6HQDghx9+QGZmJgYNGoTU1FQ0b94cb731FoKCgvDrr79i8ODBqFatGu699967PofBYEDfvn0RGhqKv//+G0lJSWbj0RSBgYFYvHgxKlasiP/++w/PPfccAgMD8eabb6Jfv344cuQIfv/9d2PXu+Dg4Dz7SE1NRffu3XHfffdh7969iI+Px7Bhw/DSSy+Z/RDZunUrIiIisHXrVpw5cwb9+vVDkyZN8Nxzz9319QDAJ598ghkzZmDBggVo2rQpFi5ciF69euHo0aOoWbMmPv30U6xduxYrV65ElSpVEBsba5xE7Mcff8SsWbPw/fffo379+oiLi8OhQ4cK9bxknW3btmn35Dn/9v2RAoMBuHMHsPCRJSJnwO97APy+d4jve+HkEhMTBQCRmJhY7H2NGSMEIMQbb9igYUTkMNLS0sSxY8dEWlqaXJGcLP+xa3FJTi50u48fPy4AiC1bthjXtWvXTgwYMCDfx/To0UO89tprxtvt27cXo0aNMt6OiooSs2bNEkIIsWHDBuHu7i5iY2ON9//2228CgFizZk2+zzF9+nTRvHlz4+2JEyeKxo0b59nOdD9ffPGFKFOmjEg2ef2//vqrcHNzE3FxcUIIIYYMGSKioqJEdna2cZvHH39c9OvXL9+25H7uihUriilTppht07JlSzFixAghhBAvv/yyeOCBB4TBYMizrxkzZohatWqJzMzMfJ/PVJ7PlQlbfjeRjd/PrVuFAMQxXV0BCHH2bPF3SUTas/h/Mr/vhRD8vs/Nmu97W33Xs1JuBVbKiVyEn588gq3VcxdSnTp10Lp1ayxcuBAdO3bE2bNnsWPHDmzcuBEAoNfr8cEHH2DFihW4fPkyMjIykJGRUeiJXY4fP44qVaogMjLSuK5Vq1Z5tvvxxx8xe/ZsnDlzBsnJycjOzrZ6Nuzjx4+jcePGZm1r06YNDAYDTp48ibCwMABA/fr1zSb+ioiIyDNJWH6SkpJw5coVtGnTxmx9mzZtjEfAhw4dii5duqB27dro3r07HnroIXTt2hUA8Pjjj2P27NmoVq0aunfvjh49euDhhx+Ghwe/Sp1KTtUsyC0Z0AM3bwLVqmncJiKyD37fA+D3vSN833NMuRUYyolchE4nu5RpccnpllZYzz77LFatWoWkpCQsWrQIUVFR6NSpEwBgxowZmDVrFt58801s2bIFBw8eRLdu3ZCZmVmofQsL4910udr3999/o3///njwwQexbt06HDhwAOPGjSv0c5g+V+59W3pOT0/PPPcZrBz0m/t5TJ+7WbNmiImJwXvvvYe0tDQ88cQTeOyxxwAAlStXxsmTJ/H555/D19cXI0aMQLt27awa40algMmYcgCc7I3ImfH7HgC/7x3h+56h3AoM5UTkaJ544gm4u7tj2bJlWLJkCZ5++mnjF86OHTvQu3dvPPnkk2jcuDGqVauG06dPF3rf9erVw8WLF3HlyhXjut27d5tt89dffyEqKgrjxo1DixYtULNmTVy4cMFsGy8vL4vnms79XAcPHkRKSorZvt3c3FCrVq1Ct7kgQUFBqFixInbu3Gm2fteuXahbt67Zdv369cOXX36JFStWYNWqVbiZk8x8fX3Rq1cvfPrpp9i2bRt2795d6CP3VErkhHI/A0M5ETkOft8XXmn8vmefOyswlBORowkICEC/fv3w9ttvIzExEUOHDjXeV6NGDaxatQq7du1CmTJlMHPmTMTFxZl9IRWkc+fOqF27Np566inMmDEDSUlJGDdunNk2NWrUwMWLF/H999+jZcuW+PXXX7FmzRqzbaKjoxETE4ODBw8iMjISgYGB8Pb2Nttm0KBBmDhxIoYMGYJJkyYhISEBL7/8MgYPHmzsymYLb7zxBiZOnIjq1aujSZMmWLRoEQ4ePIilS5cCAGbNmoWIiAg0adIEbm5u+OGHHxAeHo6QkBAsXrwYer0e9957L/z8/PDtt9/C19c3zylqqJTLCeWeIgueyMTNm14aN4iIiN/31ipt3/eslFuBoZyIHNGzzz6LW7duoXPnzqhSpYpx/fjx49GsWTN069YNHTp0QHh4OPr06VPo/bq5uWHNmjXIyMjAPffcg2HDhmHKlClm2/Tu3RuvvvoqXnrpJTRp0gS7du3C+PHjzbZ59NFH0b17d3Ts2BHly5e3eJoWPz8/bNiwATdv3kTLli3x2GOPoVOnTpgzZ451b8ZdvPLKK3jttdfw2muvoWHDhvj999+xdu1a1KxZE4D80fPhhx+iRYsWaNmyJc6fP4/169fDzc0NISEh+PLLL9GmTRs0atQIf/zxB3755ReUK1fOpm0kjZmMc+S5yonIkfD7vvBK2/e9TlgaROBEkpKSEBwcjMTERKsnIshtyhTgnXeAZ58FvvrKRg0kIs2lp6cjJiYGVatWhY+Pj9bNISdR0OfKlt9NZIf308cHyMhAFVzAY69WwcyZxd8lEWmL3/VkD7b6rmel3AqslBMREbkAk8neWCknIiJ7Yyi3AkM5ERGRC2AoJyKiEsRQbgUllFs5Gz8RERGVJgzlRERUghjKrcBKORERkQtgKCciohLEUG4Ft5x3i6GcyDk5+byXVML4eSrFGMqJnBb/byZbstXniaHcCqyUEzknT09PAEBqaqrGLSFnonyelM8XlSI5p0VTQjl/wxOVfvyuJ3uw1Xe9hy0a4yoYyomck7u7O0JCQhAfHw9AnkNTp9Np3CoqrYQQSE1NRXx8PEJCQuCufHlQ6WFSKc/KApKTgcBAjdtERMXC73qyJVt/1zOUW4GhnMh5hYeHA4Dxy5qouEJCQoyfKyplckJ5kHsKoAdu3mQoJ3IG/K4nW7PVdz1DuRUYyomcl06nQ0REBCpUqICsrCytm0OlnKenJyvkpVlOKC/rmQzoAfZ2JXIO/K4nW7Lldz1DuRUYyomcn7u7O8MUkatTKuVuyQCAtDQtG0NEtsbvenI0nOjNCgzlRERELiBXKE9P17IxRETk7BjKrcBQTkRE5AJyQnmgjqGciIjsj6HcCgzlRERELkCZfZ2hnIiISgBDuRUYyomIiFyAEsoFx5QTEZH9MZRbQQnlBoO27SAiIiI7ygnlfoKVciIisj+GciuwUk5EROQClFBuYCgnIiL7Yyi3AkM5ERGRC8gJ5b56dl8nIiL7Yyi3glvOu8VQTkRE5MSUUJ7NSjkREdkfQ7kVWCknIiJyATmh3FufCjfoGcqJiMiuGMqtwFBORETkAnJCOQD4IZXd14mIyK4Yyq3AUE5EROQCfHyMY9YCkMxKORER2RVDuRUYyomIiFyATgf4+wNgKCciIvtjKLcCQzkREZGLyOnC7o8Udl8nIiK7Yii3AkM5ERGRi8gJ5ayUExGRvTGUW4GhnIiIyEUwlBMRUQlhKLcCQzkREZGLMAnl7L5ORET2xFBuBYZyIiIiF8FKORERlRCGcisoodxg0LYdREREZGcM5UREVEIYyq3ASjkREZGLYPd1IiIqIQzlVmAoJyIichGslBMRUQlhKLcCQzkREZGLYCgnIqISwlBuBbecd4uhnIiIyMkxlBMRUQlhKLcCK+VEREQugmPKiYiohDCUW4GhnIiIyEWwUk5ERCWEodwKSigHeFo0IiIip2YSyjMz+b1PRET2w1BuBdNQzmo5ERGREzMJ5QBYLSciIrthKLcCQzkREZGLyAnl/kgBwFBORET2w1BuBYZyIiIiF+HvD4CVciIisj+GciswlBMREbmIXN3XOQM7ERHZC0O5FRjKiYiIXIRZKBeslBMRkd0wlFuBs68TERG5iJxQ7olseCGToZyIiOyGodwKbibvFivlRERETixnTDkgq+Xsvk5ERPbCUG4FnU4N5gzlRERETszDA/DxAQAE4g4r5UREZDcM5VZSurAzlBMRETm5nFDujQyGciIishuGciuxUk5EROQivLzkApnsvk5ERHbDUG4lVsqJiIhchEkoZ6WciIjshaHcSgzlRERELsLbGwBDORER2RdDuZUYyomIiFwEu68TEVEJYCi3EkM5ERGRi2D3dSIiKgEM5VZiKCciInIRDOVERFQCGMqtxFBORETkIhjKiYioBDCUW4mhnIiIyEVwTDkREZUAhnIrMZQTERG5CFbKiYioBDCUW0kJ5QaDtu0gIiJyFtOmTUPLli0RGBiIChUqoE+fPjh58qTWzWIoJyKiEsFQbiVWyomIiGxr+/btGDlyJP7++29s2rQJ2dnZ6Nq1K1JSUrRtWE4o90YGu68TEZHdeGjdgNKGoZyIiMi2fv/9d7PbixYtQoUKFbBv3z60a9cuz/YZGRnIyMgw3k5KSrJPw1gpJyKiEsBKuZUYyomIiOwrMTERAFC2bFmL90+bNg3BwcHGS+XKle3TEIZyIiIqAQzlVmIoJyIish8hBMaMGYP7778fDRo0sLjN2LFjkZiYaLzExsbapzGcfZ2IiEoAu69byS3nMAZDORERke299NJLOHz4MHbu3JnvNt7e3vD29rZ/Y1gpJyKiEsBQbiVWyomIiOzj5Zdfxtq1a/Hnn38iMjJS6+YwlBMRUYlgKLcSQzkREZFtCSHw8ssvY82aNdi2bRuqVq2qdZMkdl8nIqISwFBuJYZyIiIi2xo5ciSWLVuGn3/+GYGBgYiLiwMABAcHw9fXV7uG5XSRZ6WciIjsiRO9WYmhnIiIyLbmzZuHxMREdOjQAREREcbLihUrtG0Yu68TEVEJYKXcSgzlREREtiWE0LoJlrH7OhERlQDNK+WXL1/Gk08+iXLlysHPzw9NmjTBvn37jPcLITBp0iRUrFgRvr6+6NChA44ePapZexnKiYiIXAQr5UREVAI0DeW3bt1CmzZt4Onpid9++w3Hjh3DjBkzEBISYtxm+vTpmDlzJubMmYO9e/ciPDwcXbp0wZ07dzRpM0M5ERGRizAJ5dnZQHa2xu0hIiKnpGn39Q8//BCVK1fGokWLjOuio6ON14UQmD17NsaNG4e+ffsCAJYsWYKwsDAsW7YML7zwQkk32RjKDYYSf2oiIiIqSSahHADS04GAAC0bREREzkjTSvnatWvRokULPP7446hQoQKaNm2KL7/80nh/TEwM4uLi0LVrV+M6b29vtG/fHrt27bK4z4yMDCQlJZldbImVciIiIhdhIZQTERHZmqah/Ny5c5g3bx5q1qyJDRs2YPjw4XjllVfwzTffAIDxlChhYWFmjwsLCzPel9u0adMQHBxsvFSuXNmmbWYoJyIichE5odxbx1BORET2o2koNxgMaNasGaZOnYqmTZvihRdewHPPPYd58+aZbafT6cxuCyHyrFOMHTsWiYmJxktsbKxN28xQTkRE5CJyQrmvWwYAhnIiIrIPTUN5REQE6tWrZ7aubt26uHjxIgAgPDwcAPJUxePj4/NUzxXe3t4ICgoyu9gSQzkREZGLyFUp52nRiIjIHjQN5W3atMHJkyfN1p06dQpRUVEAgKpVqyI8PBybNm0y3p+ZmYnt27ejdevWJdpWhVvOO8ZQTkRE5ORyQrkPu68TEZEdaTr7+quvvorWrVtj6tSpeOKJJ/DPP//giy++wBdffAFAdlsfPXo0pk6dipo1a6JmzZqYOnUq/Pz8MHDgQE3azEo5ERGRi1AmemMoJyIiO9I0lLds2RJr1qzB2LFjMXnyZFStWhWzZ8/GoEGDjNu8+eabSEtLw4gRI3Dr1i3ce++92LhxIwIDAzVpM0M5ERGRi8g1+zq7rxMRkT1oGsoB4KGHHsJDDz2U7/06nQ6TJk3CpEmTSq5RBWAoJyIichE8JRoREZUATceUl0YM5URERC4iJ5R7CoZyIiKyH4ZyKzGUExERuYhcoZzd14mIyB4Yyq3EUE5EROQivL0BsFJORET2xVBuJYZyIiIiF5FTKfcwMJQTEZH9MJRbSQnlBoO27SAiIiI7U0K5yIYOBnZfJyIiu2AotxIr5URERC4iJ5QDgCeyWCknIiK7YCi3EkM5ERGRizAJ5V7IZCgnIiK7YCi3EkM5ERGRi/D0NF71Qia7rxMRkV0wlFuJoZyIiMhFuLsbv/hZKSciInthKLcSQzkREZELyenCzlBORET2wlBuJbecd4yhnIiIyAXkhHJvZLD7OhER2QVDuZVYKSciInIhJpVyhnIiIrIHhnIrMZQTERG5EJNQHhencVuIiMgpMZRbiaGciIjIhZiE8hMnACE0bg8RETkdhnIrMZQTERG5kJxQ7uueieRk4PJljdtDREROh6HcSgzlRERELiQnlFetmAkAOHFCy8YQEZEzYii3khLKDQZt20FEREQlQAnllRjKiYjIPhjKrcRKOREROav9+/fjv//+M97++eef0adPH7z99tvIzMzUsGUa8vYGAETnVMqPH9eyMURE5IwYyq3EUE5ERM7qhRdewKlTpwAA586dQ//+/eHn54cffvgBb775psat00hOpbxyOCvlRERkHwzlVmIoJyIiZ3Xq1Ck0adIEAPDDDz+gXbt2WLZsGRYvXoxVq1Zp2zit5ITyyPIM5UREZB8M5VZiKCciImclhIAhZ9KUzZs3o0ePHgCAypUr4/r161o2TTs5obxiqAzlV64ASUlaNoiIiJwNQ7mVGMqJiMhZtWjRAu+//z6+/fZbbN++HT179gQAxMTEICwsTOPWaSQnlPt5ZCIiQq5itZyIiGyJodxKDOVEROSsZs+ejf379+Oll17CuHHjUKNGDQDAjz/+iNatW2vcOo3khHJkZqJOHXmVoZyIiGzJQ+sGlDYM5URE5KwaNWpkNvu64qOPPoK78gXoanKF8q1bGcqJiMi2WCm3xowZaP7NKNTBcYZyIiJyOrGxsbh06ZLx9j///IPRo0fjm2++gaenp4Yt05BJKK9bV15lKCciIltiKLfGsmWo9funiMZ5hnIiInI6AwcOxNatWwEAcXFx6NKlC/755x+8/fbbmDx5ssat04gSyjMyjN3Xea5yIiKyJYZya3jI3v7u0DOUExGR0zly5AjuueceAMDKlSvRoEED7Nq1y3haNJdkYUz5mTNAVpZ2TSIiIufCUG6NnFDugWyGciIicjpZWVnw9vYGIE+J1qtXLwBAnTp1cPXqVS2bph2TUB4ZCfj7A9nZwLlz2jaLiIicB0O5NRjKiYjIidWvXx/z58/Hjh07sGnTJnTv3h0AcOXKFZQrV07j1mnEJJTrdECtWvLm6dPaNYmIiJwLQ7k1cmae9UA2DAaN20JERGRjH374IRYsWIAOHTpgwIABaNy4MQBg7dq1xm7tLscklANApUryZlycRu0hIiKnw1OiWYOVciIicmIdOnTA9evXkZSUhDJlyhjXP//88/Dz89OwZRrKFcrDw+VNhnIiIrIVhnJrcKI3IiJycu7u7sjOzsbOnTuh0+lQq1YtREdHa90s7eSulJfPRGXEIS6uioaNIiIiZ8Lu69ZgpZyIiJxYSkoKnnnmGURERKBdu3Zo27YtKlasiGeffRapqalaN08buUL5wA1P4SKi4HnyiIaNIiIiZ8JQbg2GciIicmJjxozB9u3b8csvv+D27du4ffs2fv75Z2zfvh2vvfaa1s3TRs5s9EooD4v/DwAQcuGQVi0iIiInw+7r1jCZ6I2hnIiInM2qVavw448/okOHDsZ1PXr0gK+vL5544gnMmzdPu8ZpJVel3CcjEQDgfjNBqxYREZGTYaXcGhxTTkRETiw1NRVhYWF51leoUIHd13NCuWeqDOXeSQzlRERkGwzl1mD3dSIicmKtWrXCxIkTkZ6eblyXlpaGd999F61atdKwZRoyDeXZ2XBLSQYABGclIDlZw3YREZHTYPd1azCUExGRE/vkk0/QvXt3REZGonHjxtDpdDh48CB8fHywYcMGrZunDdNQnpRkXF0eCbh2DQgI0KhdRETkNBjKrcEx5URE5MQaNGiA06dP47vvvsOJEycghED//v0xaNAg+Pr6at08bZiG8sRE4+pQXEdcHFC9ukbtIiIip8FQbg1WyomIyMn5+vriueee07oZjiOfUF4eCTgap1GbiIjIqTCUW4MTvRERkZNZu3Ztobft1auXHVvioJRQnpGRJ5THMZQTEZENMJRbg5VyIiJyMn369CnUdjqdDnpX/PLLp1JeDjcRfyUb/ClFRETFxW8Sa5iEcoNB47YQERHZgIFfaAXLJ5QDwJ3zNwDkPYUcERGRNXhKNGtwojciIiLXUkAoz7jEc5UTEVHxMZRbg2PKiYiIXEsBodxwjaGciIiKj6HcGhxTTkRE5FoKCOW4fr3k20NERE6HodwaucaUC6Fxe4iIiMi+lFCelQXcvm12l8etBP4WICKiYmMot4bJmHIAnOyNiIjI2SmhHMhTGS9rSMCtWyXcHiIicjoM5dYwqZQDYBd2IiJyKuvXr8eGDRvyrN+wYQN+++03uz//3LlzUbVqVfj4+KB58+bYsWOH3Z/zrry91esJOWPIIyMB8FzlRERkGwzl1jCZ6A1gKCciIufyv//9z+K5yIUQ+N///mfX516xYgVGjx6NcePG4cCBA2jbti0efPBBXLx40a7Pe1emlfL4eLmsUQMAQzkREdkGQ7k1WCknIiIndvr0adSrVy/P+jp16uDMmTN2fe6ZM2fi2WefxbBhw1C3bl3Mnj0blStXxrx58+z6vHfl7g645fxcUirl1asDYCgnIiLbYCi3Rq4x5QzlRETkTIKDg3Hu3Lk868+cOQN/f3+7PW9mZib27duHrl27mq3v2rUrdu3alWf7jIwMJCUlmV3sSqmWKwPITSrl167Z96mJiMj5MZRbg5VyIiJyYr169cLo0aNx9uxZ47ozZ87gtddeQ69evez2vNevX4der0dYWJjZ+rCwMMRZKEVPmzYNwcHBxkvlypXt1jYA5l3YAXZfJyIim2IotwbHlBMRkRP76KOP4O/vjzp16qBq1aqoWrUq6tati3LlyuHjjz+2+/PrdDqz20KIPOsAYOzYsUhMTDReYmNj7duwfEJ5KK4j7irPiUZERMXjoXUDShVWyomIyIkFBwdj165d2LRpEw4dOgRfX180atQI7dq1s+vzhoaGwt3dPU9VPD4+Pk/1HAC8vb3hbTorur3lDuU5Y8o9oEfypdsAypRcW4iIyOkwlFsjJ5R78jzlRETkpHQ6Hbp27ZpnfLc9eXl5oXnz5ti0aRMeeeQR4/pNmzahd+/eJdaOfJmGcl9fIDAQ2X6B8Ei9g6wrCWAoJyKi4mAot4Yy0ZsuGxCslBMRUen36aef4vnnn4ePjw8+/fTTArd95ZVX7NaOMWPGYPDgwWjRogVatWqFL774AhcvXsTw4cPt9pyFZhrKg4MBAPqy5eGRegciPgFALW3aRUREToGh3BpKpZyhnIiInMSsWbMwaNAg+Pj4YNasWflup9Pp7BrK+/Xrhxs3bmDy5Mm4evUqGjRogPXr1yMqKspuz1loFkK5LjQUuHQOXokJEAKwMPSdiIioUBjKrWEcU86J3oiIyDnExMRYvK6FESNGYMSIEZq2wSILodw9ojxwEChrSEBiIhASoknLiIjICXD2dWsooVzHid6IiIhchqVQHlYegDwtWkKCFo0iIiJnUaRKeWxsLHQ6HSIjIwEA//zzD5YtW4Z69erh+eeft2kDHYoyppyzrxMRkRMSQuDHH3/E1q1bER8fD0OuGU1Xr16tUcs0ZiGUo7wM5aG4juvXgZo1NWgXERE5hSJVygcOHIitW7cCAOLi4tClSxf8888/ePvttzF58mSbNtCh5Jp9naGciIicyahRozB48GDExMQgICAAwcHBZheXVUAoL48EXL+uQZuItKLXA59/Dpw5o3VLiJxGkSrlR44cwT333AMAWLlyJRo0aIC//voLGzduxPDhwzFhwgSbNtJh5IRydx3HlBMRkfP57rvvsHr1avTo0UPrpjiWu4TyK+y+Tq5k6VLgpZeAxo2BAwdK5yyHKSnADz8A7doB1app3RqiolXKs7Ky4O3tDQDYvHkzevXqBQCoU6cOrl69arvWORrjRG+slBMRkfMJDg5GNf5AzYuVcnIF168DmzcDuYat5LF5s1weOgT8/bf922VLQgCrVwN16wJPPw20aAHs2qV1q2S7/vsPuH27cNunpQFHjwLr1gG//AJs3AicPm2ftq1bJ9+v114DnDnnaaxIobx+/fqYP38+duzYgU2bNqF79+4AgCtXrqBcuXI2baBDYSgnIiInNmnSJLz77rtIS0vTuimOJacQASBPKK+AeE70RqWbELL6Xbs20KULMH58wdtu26benj/f7s2zifR0YNkyWRl/9FEgNlb+rr91C+jcGfj1V23adeYM8OqrQFQU0KgR0KCB7H2Qn+vXgZ49AT8/ue3DDwO9egHdugG1atn+73HlCvDUU8CJE8DMmUDVqsDbb8vPAdlUkUL5hx9+iAULFqBDhw4YMGAAGjduDABYu3atsVu7U1ImehMM5URE5Hwef/xx3Lp1CxUqVEDDhg3RrFkzs4vLslQpr1ABQE6lPIE/UKmUSkwEevcGnnwSuHlTrvvgA2DvXsvbx8TIQKtYsQK4ccP+7SyszExZyZ88GXjwQdnFvlYt+e910CBg507573n8eFn17dFDVp1797ZtoN2y5e69CI4eBe67D5g9W31PL18G2raV1e/cjhwB7rkHWL9e3g4KApo2levq1JHrRo6Ule2C3L5duFAtBDBsmDxw0bAh0Lo1kJEBTJsGfP99wY9dv14e7Mjvc0R5FCmUd+jQAdevX8f169excOFC4/rnn38e80vLEbOiUMaU8zzlRETkhIYOHYp9+/bhySefxKOPPorevXubXVxWAaHcBxlIjUvSoFFU6hkMQGqq/fafkVHw/fHxQIcOMgB6eQHvvw/07y/bNWSIrC7nplTJW7cGmjSRz7FkiY0bXgQpKTLcVq8uq/0TJwK//w4cPiy7dd+5A1SpIsP6uXNyGRoK/PSTfK16PfDii8Do0cX/gb9uHdCpE9CqlTzYER+fd5szZ2RovXEDaNZMtuPqVbkuJUUeJJg1Sw3Pq1fL/cXEyDHwBw/KcL1/P7BnD3DsmOyObzAA/foB//6b9znv3AGefx4oU0aG7K++kgck8vP118Bvv8meQt9/Lw9oKL0o3nxTtjM/48cDf/wh/xaW2kJ5iSJITU0VKSkpxtvnz58Xs2bNEr///ntRdmdXiYmJAoBITEws/s4OHRICENfcwwUgxPbtxd8lERG5Hpt+N9mQn5+f2LFjh9bNsJrd388XXxRC/jwW4o8/jKszfQKEAMRjjU/Z53nJOWVnC7F0qRA1awrh6yvErl223f/p00L06iU/r1FRQgwZIsSyZUKkpZlvU6uW3KZCBSH27ZPrb9wQIjxcrn/99bz7HjxY3jdunBALFsjrNWsKYTDY9jUUxvz5QjRrJkRkpBBeXuq/0QoVhBg4UIg5c4TYsEGIHTuEOHhQvu+WGAxCvPee+vhevYRIT1fvP39evn8ffijEG28IceJE/m26dk0+v7IvQIiQECHeeUeIixeFuHNH/u2jouR9DRrI91yRmSnECy+ojx0+XIhXX1Vvd+woxPXrlp87M1OILl3kdmFhQsTEqPf9+acQVauat0vZ7pdf8u7r3DkhAuT/b2LGDHV9aqoQ0dFy/fjxlttx/nze1698vlyMNd9NRQrlXbp0EfPmzRNCCHHr1i0RFhYmIiMjhY+Pj5g7d25Rdmk3Nv2iPnpUCEDccA8VgBBbtxZ/l0RE5HocNZTXrl1bHDp0SOtmWM3u7+eoUeoPzH//Na5OrVhNCEA8UbH0HchwallZQrRrJy9ZWVq3xtwff8ggZhpamjbNPzAKIUPj33/LUFdQ+M3MlGHZNKCaXsqWlYGvTRt1XVSUEKdyHVRau1a9f80a83ZUrizXb9okRFKSEIGB8vYPP+Tfdnv8DebNy/v6qlWTQd304IM1Vq4UwsdH7qtHD7mfOXOE8PY2f56qVYW4eTPv4w0GIXr3VsP2jh3yoIHyODc3eRBGuV2zphBXr1rez4wZQuh05s/7xhvyb1yQxEQhGjWS29etKwP/hx/K51b+3uvWCfHxx0JUqWIe/pWCq14vRPv2cn3btnk/mz/+KO/z8ZGvMTbW/CDGrFny/nvuUT9rZcoIsX9/4f4Ohw4J8dpr8kBIYaSlWXdQKCXF8t/PDuweysuVKyeOHDkihBDiyy+/FI0aNRJ6vV6sXLlS1KlTpyi7tBubflGfOCEEIBLdQgQgxObNxd8lERG5HkcN5evWrRPdunUTMaYVllLA7u/nG2+oP15PnzauTm3SSghADPJdZZ/npaL54w/172WpCmiN9HQhMjKsf9z580J8/rmsUr/9tqyODhhgXj2cOFGI4GB5+4svLO8nK0utTgNChIYK8fjjMgiZunFDiAceULfr1k1WJzdsEOKtt9QwrVx0OiE6dcq7H4VyICogQIj//pPrzp6V6zw9hUhOluvefluuK1dOiMuXzfdx86YQ9evL+4ODhahRQ4hhw2Sb8guXW7YIcf/9sr3VqgnRooXc3tSPP6qBdcwYIf75R1aF9XrL+7TG5s1qcI6IMD9wMmiQGmQffjjv8331lbzPy0tW5oWQf7+VK83/NtWry8r5tWsFt+Xnn4Xw95fvnenBkbuJjRWiUiX1QIzyvE89JUO7Ii3NvApfu7Y86Dh7trzt7y//5rkZDLJib/p5Cg4WIicbinbt5LrZs+WBm1at1LYo74sle/bIgwCmBzH+/DP/7W/cEKJzZ/UzGRYmxNSpBb83mzbJniBubvI1fP65ELdvm2+TnW3ee6EY7B7KfX19xYULF4QQQjz++ONi0qRJQgghLl68KHx9fYuyS7ux6Rf1mTNCACLZLUAAef+PICIiKgxHDeUhISHCy8tLuLm5iYCAAFGmTBmzi6Oy+/s5bpz6QzE+3rg648HeQgBiOOYWKbeRnYwYof69+vYt+n6SkoSoV08G08mT1SCa261bQixfLoc5dOmidu+1dHFzE+Kll9RKnVJVDA2V+zGVni7EI4+oj/PwUPdTrpwQ69fL/fz0kwx6SpBauTJv5TA7Wx6geOEF+ZyXLhX82rOyZGhXKsOXLwvx9dfydps25m1s0kSu79pVDap6vaw25/c+VKokq/+Ks2eF6NPH8rbe3kL89pt8TQsWqD0BXnjBPt3m//hDDeaenjJcKs+zb59aOf/wQ/UxZ87I9x4QYvp0y/s9e1aIw4eta/P163lDY2EcOqT2YvDykj0I8nvejRvVAxAeHurrmz8///0fPy7/7qGhQri7y+3btxciLk49YJKTFUViohD33ad+bo8ezbu/uDi5L0DuTxlaERVl+fVfvCh7Alj692WpIp+ZKcTYsXl7HwAyzC9dKivoc+fKf0uPPXa3d7hQ7B7KGzZsKD755BNx8eJFERQUJHbljIX5999/RVhYWFF2aTc2/aLOGSORpvMVgPy/kIiIyFqOGsoXL15c4MVR2f39fPdd9QecSfo2PPe8EICYgEniyhX7PDVZSa83r3B6egqRkFC0fQ0fbv7jPTxciCVL1HBz9KgQDz5oHpaVi7u7rPqNHy/E888L0bq1DKkmwx+EEDIsKOHi/vtlVXvqVCGefVYeEFBC6dq1srK5c6es2ppWvJXr0dEy9NnK9euyWq20QakSjxtnvt2xY2q37zfekAFe+Tfj4yOrncePy2D9wgtClC+v3rdypexKrYRgd3chRo6UgX3XLvWghLe3WnEFZGgqqMt/cf31lxBPP5337yWEOpbezU1WWrOy5N8XkFVie7bLGjt3yur+nj133/b6dXkAS3l/u3Yt/MGD8+fVv1+3bnLZooX5Nrdvy+7sSi8DU6bd/hs1kgeMkpLUz96gQebbnzsn5xFQDu78+688APDYY3Jdq1bmvRgyM9XPESD/PR49KsRHH6nhHzAfWlC+vGxDMdk9lP/www/C09NTuLm5ic6dOxvXT506VXTv3r0ou7Qbm35RX7okBCAydZ4CKH6PKCIick2OGspLK7u/n9OmqSHC1DvvCAGIz/GiKIVD8Z3Tzp3ybxUUJETjxmo3Wmtt3qz+QJ84UQ0IgKyGT5xoPna7bl05DnbRIhlCrRmzunFj/hVlf/+84yXT0mRwVbapXVveNunFYTMnTghx773mbdq0Ke92n39uuf2WDubduSNEz555t+3YMW8VNSPDvILu6ysr/VoGX4PB/IBN8+ZyGRgoA2ppZTAI8c03QjzzjOWx7gUxnSgPEGLKlLzb5AwDFm5u5j01Fi1SD6CZ/ke6a5dahf/+e3W98nmoU0etxgshu+0rvRUWLZLrsrKEeOIJtcfAihXmbUpPF+L999WDStHRQnz2Wf69Yqxk91AuhBBXr14V+/fvF3qTIxF79uwRx48fL9L+pk6dKgCIUaNGGdcZDAYxceJEERERIXx8fET79u2NY9kLy6Zf1HFxQgBCD50AZG8hIiIiazlyKNfr9eLkyZNix44dYvv27WYXR2X393PGDLVSauqzz4QAxA941HRSdtKSMkZ20CA5SRcgw3l+vvtOhkHT4JuUpM6OPWKEXJeRIQ/OKD/elcuDD8oqcHFt2iS7Q7/yihxDPmGC7BKfe5y2qQsXrA9PRWEwyAMNjz4qRP/+lseDGwxy8jWlmzIgg2t+srLUAwshIbJrfH6V2YwMua++fc3mdNCUwSB7NJh+FpYs0bpV2klLU4dQAPn/m1DGjL//vrx94YI8gAbIf1+5TZwo76tQQR7o2rVLDfbHjuXd/sMP5f2hobIi3qGDGvjXrcu//efPy54cNp6UsERCuSI2NlZcutu4lLv4559/RHR0tGjUqJFZKP/ggw9EYGCgWLVqlfjvv/9Ev379REREhEiyojuBTb+oExKMHzYd9GIV53UhIqIicNRQvnv3blG1alXh5uYmdDqd2cXNzU3r5uXL7u9nTvgWtWubr1+xQghA/In7zQo5pBGDQQ3Tq1fLyZqUaralcaaXLgnh56cGidGj5QEYpWtsdLSs6po6dUpOLhUWZt6VnVSXL8uDHHerZhsMsmt1UYcXOIJVq2RgtNf49tJk/Xr576ZZs/y3WbJEblO1qvx8KBPgtW5t+fOSnq4O73juOXUSuWeesbz/jAxZQTc9WOLhYd1EeTZkzXeTW1HObW4wGDB58mQEBwcjKioKVapUQUhICN577z0YDAar9pWcnIxBgwbhyy+/RJkyZYzrhRCYPXs2xo0bh759+6JBgwZYsmQJUlNTsWzZsqI0u/g8PIxX3aGHXq9NM4iIiOxh+PDhaNGiBY4cOYKbN2/i1q1bxsvNmze1bp52vLzkMjjYfH1YGACgAuJx/XoJt4ny2rcPuHAB8PMDunUDypYF+vSR982bl3f7d94BUlOB8uXl7dmzgddeAy5dAsLDgWXLgIAA88fUrAls2gRcvQo89RSg09nzFZVOFSsCnToB7u4Fb6fTAffcA4SGlky77KFvXyAuDpg/n5+FBx+U/wZ//TX/bR57TP4/GhMD9OsHbNki/70uWWL58+LtLd9bAPjyS+DPP+W6SZMs79/LC1i7Vt7/7rvA1KnArl3q/wMOrEihfNy4cZgzZw4++OADHDhwAPv378fUqVPx2WefYfz48Vbta+TIkejZsyc6d+5stj4mJgZxcXHo2rWrcZ23tzfat2+PXbt25bu/jIwMJCUlmV1sxiSUeyCboZyIiJzK6dOnMXXqVNStWxchISEIDg42u7gsf3+5LFfOfH2FCnKBeCQklHCbKK8ff5TLHj3kD30AeOkluVy0CDh7Vt32wAEZBAD5I379eiAyEqhbF/jqK+D8eaBVq/yfy9UDGKn4WVA1ayYPaOXHzw8YNEheX7VKLj/6CKhRI//HtGsHPPusevull4DKlfPfvmZNYOJEYMIEYOxYoGXLwrdfQx533ySvJUuW4KuvvkKvXr2M6xo3boxKlSphxIgRmDJlSqH28/3332P//v3Yu3dvnvvi4uIAAGE5R6EVYWFhuHDhQr77nDZtGt59991CPb/VGMqJiMiJ3XvvvThz5gxqFPQDyRX17AkMH67+mFTk/EYpg9u4fS0DgHfJt40kg0FWtgHgiSfU9W3byqr5hg2yevbtt7JT62uvyeWAAcB998ltL15kwCKyt2HDgLlz5fUuXYAXX7z7Y6ZPBzZuBLKzZdB2QkUK5Tdv3kSdOnXyrK9Tp06hu7fFxsZi1KhR2LhxI3x8fPLdTpfrP0chRJ51psaOHYsxY8YYbyclJaFyQUdTrGHSrYKhnIiInMHhw4eN119++WW89tpriIuLQ8OGDeHp6Wm2baNGjUq6eY4hJMRy9+eQEOjdPOBuyEbm5QQAkSXdMlJs3w7ExsqusQ8/bH7flCkylC9dCowaJbvBbt0qu8FOm6Zux0BOZH9Nm8ru5IcOAQsXFu7fXdmywNGj8kBaUJDdm6iFIoXyxo0bY86cOfj000/N1s+ZM6fQX9j79u1DfHw8mjdvblyn1+vx559/Ys6cOTh58iQAWTGPiIgwbhMfH5+nem7K29sb3t52OlLNUE5ERE6mSZMm0Ol0EEIY1z3zzDPG68p9Op0Oen7xmXNzQ0ZwBfjdugLD1WtgKLeh69eBOXOAjAwZnqtXlxVw5TdeRgaQlKSOB//mG7l84gkgd7GneXM5lvXHH4HWrYGsLBkEPv4YiIoquddERNKaNTJgW3MgLDDQfu1xAEUK5dOnT0fPnj2xefNmtGrVCjqdDrt27UJsbCzWr19fqH106tQJ//33n9m6p59+GnXq1MFbb72FatWqITw8HJs2bULTpk0BAJmZmdi+fTs+/PDDojS7+Nzc5MVg4ERvRETkFGJiYrRuQqmWXbYCcOsK3K7Ha90U5zJ9uhxramrcOODVV4EzZ4Dly4E7d2TQ7tJFHU8+eLDl/U2eDKxeLQN5aKismpvMW0REJYw9U8wUKZS3b98ep06dwueff44TJ05ACIG+ffvi+eefx6RJk9C2bdu77iMwMBANGjQwW+fv749y5coZ148ePRpTp05FzZo1UbNmTUydOhV+fn4YOHBgUZptGx4eQGYmPJANKyeaJyIicjhRJpXCP//8E61bt4aHh/nPg+zsbOzatctsW5JEhTDgLOB165rWTXEuW7bIZe/ecuKoX36R3dNNhigCAJ58EnjlFSA5GahaFWjTxvL+6taVQxD27JEBvVIl+7afiMgKRQrlAFCxYsU8E7odOnQIS5YswcKFC4vdMAB48803kZaWhhEjRuDWrVu49957sXHjRgRq2X3BJJSzUk5ERM6kY8eOuHr1KirkzCquSExMRMeOHdl93QKPCPle+d6Jt7o3JuUjKUnOjg7ILuyRkfJ0ZV99BXz3nQzfQ4fKavqWLfK0R4AM6G4FnFjo+eflhYjIwRQ5lNvDtm3bzG7rdDpMmjQJk/I7F50WcsaVM5QTEZGzyW8y1Rs3bsBfOS0YmfGqLOe5CTVcw507TjsHUcnatUvOpl6tmgzkgBwn/tJL6inOAKBFC3me63Pn5O38uq4TETk4hwrlpUJOlz6OKSciImfRt29fAPJg+NChQ80mTNXr9Th8+DBat26tVfMcmmcl83OVM5TbwJ9/ymX79gVvV64c8PPPQOfOwP33y/MTExGVQgzl1soJ5ayUExGRswgODgYgK+WBgYHw9fU13ufl5YX77rsPzz33nFbNc2w5Z4QJwzVcvy4nCadi2r5dLtu1u/u2DRoAly+bnSGHiKi0sSqUK0fS83P79u3itKV0YCgnIiIns2jRIgBAdHQ0Xn/9dXZVt0YFtVJ+KUHjtjiD1FRg7155vTChHGAgJ6JSz6pQrhxJL+j+p556qlgNcngcU05ERE5q4sSJWjeh9DGplO+5rHFbnMGePfK0ZZUqyQndiIhcgFWhXDmS7tJYKSciIifSrFkz/PHHHyhTpgyaNm1qcaI3xf79+0uwZaVETqW8PBLw8kgD9u93w4QJPONWkSnjydu141T2ROQyOKbcWpzojYiInEjv3r2NE7v16dNH28aURuXLAwA8oEeg/ha++KIc1q0DTp4EAgI0bltpZM14ciIiJ8FQbi1WyomIyIkoXdb1ej06dOiARo0aoUyZMhq3qhTx8gLKlAFu3cLGb66h7zvlcPEisHix+dm7qBDS0oDdu+V1hnIiciFuWjeg1OGYciIickLu7u7o1q2ba0zaams548qbV47H//4nV82eDf5OsNasWUB6OhAVBdStq3VriIhKDEO5tVgpJyIiJ9WwYUOcO3dO62aUPjnjynHtGp56CihbFjh7FvjlF22bVapcuwZMmyavT5nC8eRE5FIYyq1lMqbcYNC4LURERDY0ZcoUvP7661i3bh2uXr2KpKQkswvlI6dSjitX4O8PDB8ub86cqV2TSp0JE4DkZKBlS2DAAK1bQ0RUohjKrcVKOREROanu3bvj0KFD6NWrFyIjI1GmTBmUKVMGISEhHGdekIYN5XLnTgDAyJGApyewY4d6ym3FtWtAdnYJt89RCQHExQFr1wJffSXXzZwJuPHnKRG5Fk70Zi2GciIiclJbt27VugmlU9eustL7xx9AdjYqVvRA//7At9/Kntg//SQ327pVbnr//cDvvwM5k95bRYhS3LM7ORl49llg1Sr5QgCYdTt87DH55hARuRiGcmtxojciInJS7du317oJpVOLFnIg+c2bwJ49QJs2GDsWWLoU+PlnWUC/7z7g5ZdllXzbNuDpp4Hvvit8UTg1FRg4EPj7b2D6dGDwYBnOs7OBpCT59A7t2jWgZ09g3z7z9W5uQJUqstv6p59q0zYiIo0xlFuLlXIiInJyqampuHjxIjIzM83WN2rUSKMWOTh3d6BLF2DFCmDDBqBNG9StCwwbBnzxBfDGG8CgQcDRo0BwMJCSAixfDkRGAkOGyLOqeXrKpb+/3MZUairQq5csxAPyMatWAZUqAT/+CCQkAJ07A2+/DXToYF5J37dPHivo0qXE3o28LlwAOnYEYmKA0FBg5UqgTh1ZLS9XrmhdBoiInAgH7VjLZKI3hnIiInImCQkJeOihhxAYGIj69eujadOmZhcqQLducrlhg3HVpEmAn5+sbo8ZI9dNmwZ8+aW8/tFHQIMGQK1aQNWqMmSHhAAPPCBz67lzwLp1ssD8xx9AQAAwapQM8GvXAvPmyUAOAJs3y8e1ayeL9Xq9fP6WLWWXedMi9O3bwJEjdn4/FGlpQN++MpBXry7PQ96xIxARAVSsyEBORARWyq3HSjkRETmp0aNH49atW/j777/RsWNHrFmzBteuXcP777+PGTNmaN08x9a1q1zu3QvcuAEEBiLiwGbM6+OO95dVxfmsaDRs6IXnnpM/JRIT5ZxmqalAVhaQmSmX2dly7Hnu4f2BgXIceuvWwDPPAFOnyqr6E0/IrDt7tpwrTekqX7MmcPq0+vhRo2QXd71eHiC4eVMG9ZdflvcnJMju9ocOycBeowawaBHg41OM90QIOevd/v2yQr51K1C5cjF2SETknBjKrcUx5URE5KS2bNmCn3/+GS1btoSbmxuioqLQpUsXBAUFYdq0aejZs6fWTXRclSrJsveRI3Ig+fLlwObNeArAUwASEIqrT3wND49eAGRIHjUq724uXpTh+quvZLavU0dO7v7aa4DSWaFRI+D7780fN2cOMHYs8M47wJIlMpD7+QHz58su7J98Isehmxo1Snahr1RJFrMvX1bv+/dfICMD+OEH408f66SlAZ9/LpO9m5tsMAM5EZFFDOXWMqmUpzGUExGRE0lJSUGFChUAAGXLlkVCQgJq1aqFhg0bYv/+/Rq3rhTo1k2G8hdekCVvf38gOhqGczEon3Yd5cf3Bm6/Brz7rrzPgipVgMmT5SYGg3WBuFIlmYFfeUV2f3/qKaBuXTme/cYNObGcj4/c99mzcrz7wIHyeTIzZTf6gQPlMO/XXwfWrAFefFGOYd+3T3afHzxYdp+3yGAA1q8HFiyQ/e3T0uT6KVOATp2sey+JiFwIQ7m1OKaciIicVO3atXHy5ElER0ejSZMmWLBgAaKjozF//nxERERo3TzH160bMGOGDOTBwbK/+X33wS0zE3jrLdnHfMYMeQkNBcqXB9LTZR92Dw8gKEgmX09P6Dw84O7hIdebXtzd867z8JBpO+fS1McHTSN8gB0+wF4fuPn4YHFfHzwf7YMaDXwQUdUH2Z19gFM++H2bN1Lgj44PB+Lrb70QFCxniatYEXj8cTn+XRkDD8gg//33QHS0yetOSAB++QWYNct8sHqVKrKv/ZtvlsS7T0RUajGUW4tjyomIyEmNHj0aV69eBQBMnDgR3bp1w9KlS+Hl5YXFixdr27jSoG1b2R88I0MG8mbN5HovLxlY27cHRowArl4Frl+XF1Om/cdtzB1AW5PbHgAWmG7wC4BQDzl4PTAQfQMCcDUqEIdjApHiUw7uYaE4EheKS3tC8X69snh1UDzqe5+RJfQ9e9TzjgcGAsOHA08+Kfvdl9qTqhMRlRyGcmsxlBMRkZMaNGiQ8XrTpk1x/vx5nDhxAlWqVEFoaKiGLSslfHyA48fl9YCAvPf36QP07i1nebt4UYZyX185+FuvlyccT0qSlXa9Xi5NL/mty8yUBwLS0y1fCrovLU3eD8j93bolLwAqAOgMAOkALgAPKa8jDcBXuV5bkyZy1rkXX5RTyBMRUaExlFuLE70REZGL8PPzQzOl2kuFYymMm9LpZGh1pOCanS1Pnn7nDpCcLJfK9aQkOSA9p7JviL+O4ztv4Gh8KM67VUf30XXQaExnOaCdiIiKhKHcWiaVcoNB47YQERHZ0BjlZNq56HQ6+Pj4oEaNGujduzfKli1bwi0ju/LwkGPgg4PvuqkbgNrZwKQBwI8/Am9/AlRfB1SrJieUe/JJ+zeXiMjZMJRbixO9ERGRkzpw4AD2798PvV6P2rVrQwiB06dPw93dHXXq1MHcuXPx2muvYefOnahXr57WzSWNeHgAy5bJov8PPwCnTsnLH38AXboAYWFat5CIqHRx07oBpQ7HlBMRkZPq3bs3OnfujCtXrmDfvn3Yv38/Ll++jC5dumDAgAG4fPky2rVrh1dffVXrppLGPD3ladcuXJBhvHFjICsLWLhQ65YREZU+DOXW4phyIiJyUh999BHee+89BAUFGdcFBQVh0qRJmD59Ovz8/DBhwgTs27dPw1aSI6lSBXjgAWD0aHl7wQLw9xERkZUYyq3FSjkRETmpxMRExMfH51mfkJCApKQkAEBISAgyMzNLumnk4Pr1A8qUkZXz33/XujVERKULQ7m1OKaciIicVO/evfHMM89gzZo1uHTpEi5fvow1a9bg2WefRZ8+fQAA//zzD2rVqqVtQ8nh+PoCQ4fK6/PmadoUIqJSh6HcWqyUExGRk1qwYAE6deqE/v37IyoqClWqVEH//v3RqVMnzJ8/HwBQp04dfPVV7pNUEwHDh8vl+vXAmDHylOxjxoBnqyEiugvOvm4thnIiInJSAQEB+PLLLzFr1iycO3cOQghUr14dASbn3m7SpIl2DSSHVqsW0LkzsHkzMGuWur5jR+Dhh7VrFxGRo2Ol3Fqc6I2IiJxcQEAAypYti9DQULNATnQ3M2cCTzwBvPQS0KuXXPfhh9q2iYjI0TGUW4uVciIiclIGgwGTJ09GcHCwsft6SEgI3nvvPRjYB5kKoWFDYMUK4LPPgPnzAS8v4K+/gJ07tW4ZEZHjYii3Fid6IyIiJzVu3DjMmTMHH3zwAQ4cOID9+/dj6tSp+OyzzzB+/Hitm0elTESEOvmbVtXy06eBLl2AHTu0eX4iosLgmHJrsVJOREROasmSJfjqq6/QS+l3DKBx48aoVKkSRowYgSlTpmjYOiqNXn8d+PJLYN06YOVKoEIFoFIloGbNknn+Dz6QY9yDg4G2bUvmOYmIrMVKubU4ppyIiJzUzZs3UadOnTzr69Spg5s3b2rQIirtatYEHntMXu/XT076VquWnJU9I8O+z52dDfz8s7x+9qx9n4uIqDgYyq1lUinn8DoiInImjRs3xpw5c/KsnzNnDho3bmyX5zx//jyeffZZVK1aFb6+vqhevTomTpyIzMxMuzwflbz33wfuuQeoUweoXVuumzULaN3avmF5xw7gxg15/cwZQAj7PRcRUXGw+7q1OKaciIic1PTp09GzZ09s3rwZrVq1gk6nw65duxAbG4v169fb5TlPnDgBg8GABQsWoEaNGjhy5Aiee+45pKSk4OOPP7bLc1LJqlUL2LNHvb12LfD008D+/cDjj8ulPaxerV5PTgYSEmT3eSIiR8NKubU4ppyIiJxU+/btcerUKTzyyCO4ffs2bt68ib59++LkyZNoa6cBud27d8eiRYvQtWtXVKtWDb169cLrr7+O1aaJipxKr17AgQNyZvYDB4D//rP9cxgMwJo15uvOnLH98xAR2QIr5dYyCeVZWRq3hYiIyMYqVqyYZ0K32NhYPPPMM1i4cGGJtCExMRFly5bN9/6MjAxkmAxITkpKKolmkQ1VqQL06AH89BOwfLk8lZot7d0LXL4MBAQAjRoBu3bJrvKtW9v2eYiIbIGVcmuZTPTGUE5ERK7g5s2bWLJkSYk819mzZ/HZZ59h+PDh+W4zbdo0BAcHGy+VK1cukbaRbQ0YIJfLl9t+vLfS0aJnT6B+fXmdlXIiclQM5dYyqZRzDhoiIiLLJk2aBJ1OV+Dl33//NXvMlStX0L17dzz++OMYNmxYvvseO3YsEhMTjZfY2Fh7vxyyg4cekpXs8+eBv/+23X5v3wZ++EFe79sXqF5dXucM7ETkqNh93VomE70xlBMREVn20ksvoX///gVuEx0dbbx+5coVdOzYEa1atcIXX3xR4OO8vb3h7e1ti2aShvz8gD59gO++A5YtA1q1Kv4+9+wB+veXQT8kBHjwQWDjRnkfK+VE5KgYyq3FSjkREdFdhYaGIjQ0tFDbXr58GR07dkTz5s2xaNEiuLmxI5+rGDBAhvKVK+Vp0jyK8cv0119lyM/OBqpVA77/HggMZKWciBwfQ7m1TMaUM5QTEZEz6Nu3b4H33759227PfeXKFXTo0AFVqlTBxx9/jISEBON94eHhdntecgxdugDlygHx8cCECfLi41O0fc2fLwP5ww8D334LBAfL9Uoov34dSExU1xMROQoeiraWSaXcYABPi0ZERKWe6aRpli5RUVF46qmn7PLcGzduxJkzZ7BlyxZERkYiIiLCeCHn5+kJjBwpr0+bBtSrB2zaVLR9HTsml6++ah68AwPV85OzWk5EjoiVcmuZjCkHgMxMwNdXywYREREVz6JFizR77qFDh2Lo0KGaPT9pb9IkoHZt4M03gZgYoHdvIDZWVtALKzVVPhZQZ1s3Vb26rMafOSOfa+JEeUq2Bx6wyUsgIioWVsqtZVIpB8Au7ERERETFoNMBAwcCJ07Ic4qnpQHWnoHvxAl5WrVy5YDy5fPeX6OGXJ49C8ycCcyYAbzxRvHbTkRkCwzl1mIoJyIiIrK5gABgxAh5/YsvrDt3+dGjclm/vgz5uSnjyg8fBj75RF4/cQIwGIreXiIiW2Eot5bJRG8AQzkRERGRrQwcKMP5yZPA9u2Ff5wyntxS13VArZSvXAncuCGvp6YCV64Uva1ERLbCUG6tnEq5p46hnIiIiMiWAgOBQYPk9fnzC/84pVJer57l+5VKee7K+KlT1rWPiCzLygKeew5YulTrlpRODOXWyjXRW1aWlo0hIiIici4vvCCXq1fLydkK426VciWUA0B4uDwVG8BQTmQrO3cCX30FvPIKh4UUBUO5tVgpJyIiIrKbpk2Bli1l4eObb+6+fWoqcO6cvJ5fpTw0FAgKktdffVVOKAfIbvJEVHzKUJCbN9WDZFR4DOXW4phyIiIiIrtSurBv2XL3bU+eVGdeV85HnptOB4wfD/TtKyeTq1VLrmelnMg2rl1Tr//5p3btKK0Yyq3F2deJiIiI7Kp1a7ncs0edhT0xEXjmGeCPP8y3vdvM64rXXwdWrZITyTGUE9lWXJx6naHcegzl1so1ppyhnIiIiMi2GjcGvL1lV9gzZ+S6L74AFi0CXn7ZfFulq2x+XdctUUJ5TAx/yxXWc88B1arJHgcXLgC7dwPjxgGjR/M9pLyh3JpTGhJDufWUUC5YKSciIiKyBy8voHlzef3vv+Vy0ya5PH4cOH1a3da0Ul5YERGyYq7Xq+PRKX+ZmcDChfIgxvvvA9HRsjfD1KnyvO+//qp1C0lrpqH86lXg7Fnt2lIaMZRbi2PKiYiIiOzuvvvk8u+/gbQ08y6xa9eq1+92OjRLdDp2YbfGuXNyRm1fX6BjR7kuOBgoX15ev3pVu7aRY1BCuaenXLILu3UYyq2ljClnpZyIiIjIbkxD+Y4dQEaGet/PP8tlWppa6bamUg4wlFtDeY/q1pWT7924ASQkAI88ItcnJKjbxscDX38NpKSUfDtJO0oo79ZNLhnKrcNQbq2cUA4AOhgYyomIiIjs4N575fLQITWEP/CAXP71F3D9OrBx491nXs8PQ3nhKe+R8p6VLSsrosp7bno++ffeA4YNA778smTbSNrJzpb/HgHgiSfkcvt27dpTGjGUW8sklHsgm6GciIiIyA4qV5Zjv/V6OZ4ZkJONNW4su1J//7066dvTTxc887olSsDkucrvTgnlNWuar1dCuWmlXBlLfPiw/dtFjiEhQR4cc3MDHn5YLs+fBy5e1LplpQdDubUYyomIiIjsTqdTu7Cnp8vbnTsDvXvLdWPGALGxQNWqwKRJ1u+/dm25ZKX87nJXyhXKmHLTSrnSjVmZNZ+cn/I3r1ABCAkBmjWTt9et06xJpQ5DubVyJnoDGMqJiIiI7EkJ5QDQtCkQGqqG8qwsufziC8Df3/p9K1XfuDggKal47XR2+YVyS5VyJaCZzpBPzk35m4eHy2X//nI5dqw8fR7dHUO5tVgpJyIiIioRpqG8a1e5bNpUdm0HZLf1zp2Ltu/gYCAsTF5ngMxfcrI6u3ru7uu5K+V6vXo9Lk4+lpxf7lA+apT8t5uUBAwZIj8XVDCGcmuZVMrdoWcoJyIiIrKT5s3Vn15KKNfpgHnzgBdeAGbOLN7+lcrvsWPm6w2G4u3XmSgHLMqXB8qUMb9PqZTfuCGDl7JUsAu7a8gdyj08gO++kz1Ytm8v/r9TV8BQbi2dzuxc5QzlRERERPbh7w9Mnw68+CLQrp26vmdPYP58OX61OJSxr//+q65btgwIDATmzCnevp1Ffl3XATnrPSAn+bpxQw1nCvZAcA3XrsmlEsoBoHp14JNP5PXx44Fbt0q+XaUJQ3lRMJQTERERlYgxY4C5c806K9rMPffI5Z496rolS4DUVDmz+/Lltn/O0qagUO7hoQbz+Pi8oZyVcteQu1KueOYZoH59ICMDWLUq7+OSk2X39t9/t38bHR1DeVHkjCtnKCciIiIqvZRzoR84AGRmyvMt79ql3j9kCLBpkzZtcxQFhXLAfLI3Vspdk/J3V+ZoUOh0wKBB8vrSpXkft3Qp8M03wDvv2Ld9pQFDeVHkhHKOKSciIiIqvapVA8qWlYH80CHg4EFZvQsOBvr1kzO8P/YYcPu21i3VjhKs8wvlppO9KeHM11cuWSl3DflVygFg4EC53L4duHTJ/L79++Xy+HHO48BQXhSslBMRERGVejqd2oX9n3+AHTvk9fvvl93Ya9eWM0j/8ot2bdSSEMDJk/J67pnXFZYq5cqs+ayUu4aCQnlUFNC2rfws5R4OooTy1FTg/Hm7NtHhMZQXhUkoV86RSURERESlj9KFfc8e4M8/5fV27QBvb/V8yz/+qE3btHbjhtpLoEYNy9tYqpTff79cxsUBd+7YtYmksfR0IDFRXrcUygHLXdizsoDDh9XbR4/ap32lBUN5UXCiNyIiIiKnYDrZ286d8nrbtnL56KNyuWGDa4ZLZTx5lSpql/TcTCvlyvnM69ZVJ4A7e9a+bSRtKTOve3vLYR+WPP444Okph4gcOSLXHTsGsxzFUE7WY/d1IiIiIqeghPJTp4Dr12X4bN5crmvQQI6lzsgAfv1VuzZqRalk5jeeHLBcKQ8PV7u7swu7czP9m+t0lrcpWxZ48EF5fdkyuVS6risYysl6nOiNiIiIyCmEhsoJ3xT33Qd4ecnrOp2c6A1wrS7sMTFy5vmRI+XtunXz39bSmPLwcLW7O0O5c8tv5vXclAnfVqyQ48uVUF69ulweO2af9pUWDOVFwUo5ERERkdNQxpUDcjy5KSWUr18PpKSUXJu0kpIix4R/842cEfuRR4D//S//7ZVK+cWL6vhz00o5Z2B3bgVN8mbqoYdkL5Rz52QgP3BArh88WC5dfQZ2TUP5tGnT0LJlSwQGBqJChQro06cPTipTPOYQQmDSpEmoWLEifH190aFDBxzVun8Dx5QTEREROQ2lCzugjidXNGkiK+lpacBvv5VoszTx77/AlSsybO/dC6xeDVSsmP/2SqX8wgW59PICQkLYfd1VFDaU+/vLYA7IWdgPHpTXH30U8PGR/75iYuzWTIenaSjfvn07Ro4cib///hubNm1CdnY2unbtihSTw5DTp0/HzJkzMWfOHOzduxfh4eHo0qUL7mg52wYr5UREREROQwnlHh7q6bwUOp064dvatSXbLi38+69ctm0LtGhx9+2VUK5QxhYr3ddZKXc+qanAO+/IeRaUid7uFsoB4Ikn5HLBAtkjw89PDo2oU0eu17ruqiUPLZ/8999/N7u9aNEiVKhQAfv27UO7du0ghMDs2bMxbtw49O3bFwCwZMkShIWFYdmyZXjhhRe0aLbZmPIMhnIiIiKiUu2++4BXX5XjW/39897fti3w0Ufmp3ByVkooL0wgB+QkXm5uatdjJZwplfK4OHlqNWU2dir9ZswApkyR15VZ+QsTynv0kP++kpPl7SZNZAfkevVk5fzoUaBXL3u02PE51JjyxJyT3JUtWxYAEBMTg7i4OHTt2tW4jbe3N9q3b49du3ZZ3EdGRgaSkpLMLjbHSjkRERGR03BzA2bOVCc2y02Z6OzkSUCvL95zOfq4WWtDuZubnCxPoYSzkBCgfn15/Y8/bNY80pgQ6gzqgOx2DhQulPv5AQ8/rN5u1kwulc+JK1fKHSaUCyEwZswY3H///WjQoAEAIC5nkEJYrun8wsLCjPflNm3aNAQHBxsvlStXtn1jGcqJiIiIXEbVqvI8zOnp6tjpojh8WAaTd96xXdts6dYttbt5YUM5oE72BpiHs27d5HLDhuK3jRzDoUPAiRNyHPju3UCnTnLOgdzDPvKjdGEHgKZN5ZKh3IFC+UsvvYTDhw9j+fLlee7T5TrpnRAizzrF2LFjkZiYaLzExsbavrGc6I2IiIjIZbi7q+fqPn686Pv5/nt5znNHPb3avn1yWb06UKZM4R9nOq7cNJQrnV03bpQVVir9lKjWs6cM4ps3A5cuARERhXt89+5AUJC8rpz1QAnlJ04UvydKaeUQofzll1/G2rVrsXXrVkRGRhrXh+f8q85dFY+Pj89TPVd4e3sjKCjI7GJzrJQTERERuRSlC3txQvmOHXJ5+rTa7deRWNt1XZFfpbxtW9nD4NIlGbiodDMY5IElABgwQF2fT63UIl9feXrB779Xw3jVqrLynp7uujOwaxrKhRB46aWXsHr1amzZsgVVq1Y1u79q1aoIDw/Hpk2bjOsyMzOxfft2tG7duqSbqzKZ6I2hnIiIiMj5FRTK//kHeP552f07P+npcjtAhhtHDKlFDeWmlXLTiqmfn3red3ZhL/127ZLnow8MlJO2FVWbNkC/fuptd3f139d//xWvjaWVpqF85MiR+O6777Bs2TIEBgYiLi4OcXFxSMs5dKjT6TB69GhMnToVa9aswZEjRzB06FD4+flh4MCB2jWclXIiIiIil5JfKE9PBx5/HPjyS2Dx4vwf/88/MPvd6IjhwxahPPeEX6Zd2HM7dUqeGotKB6Xr+iOPqLOu24rymfv7b9vut7TQNJTPmzcPiYmJ6NChAyIiIoyXFStWGLd58803MXr0aIwYMQItWrTA5cuXsXHjRgQGBmrXcI4pJyIiInIppqHcdHz055/L6iFQcPX7zz/Nbx85Ytv2FVdCgjqJnTIrdmHl130dUCd727ZNHsBQHDokz0/9yCNWN5U0YDCocyGYdl23lVat5HL3bsv3Hz6sHjRyRpp3X7d0GTp0qHEbnU6HSZMm4erVq0hPT8f27duNs7NrhpVyIiIiIpdSq5Y8/dft28C1a3LdrVvq+ZoBecq0/CjjyRs2lEtHq5Qrk7zVrq1OxFVYppXy3NM+NWggu7SnpQF//aWu37tXHtzYtEl9brKP+Hh5vvjiOHRI7icgQM64bmtKKP/3XyAry/y+rCw5DKJlS2D4cPU8587EISZ6K3U4ppyIiIjIpfj4yAmpALUL+7RpMpiHhMjb+YXy7Gw5HhcAXnxRLh2tUl7UruuAWikPDs7brVmns9yF3fQESZ9+av1zUuH8+y9QowbQqJF5TwVrbdkil+3aAZ6etmmbqVq15Iz/aWnyAICpK1eAxER5fcECoHHjgg+AlUYM5UXBSjkRERGRyzHtwn7xohom582Ty7g4ICkp7+MOHpTVvZAQoH9/ue7SpYInhitpBw/KpbVd1wF5vumaNeXYekuU+ZlNz0OtdPkH5EzcSu8Dsp1jx+QpyO7ckcMTTp0q+r7++EMu7VElB2QvFOVc57m7sF++LJdlygBVqgDnzgHvv2+fdmiFobwoTEK5weC659MjIiIiciWmoXzCBHnO8Q4d5EzSylhqSxU8ZTz5/ffLYFG5srxtGlK1dvasXNaubf1jAwLk6/7yS8v3Kz0MTE93pVTK3d3lBHhffGH982rJYNC6BQW7eFH2ULhxQ113t1CenAz88guwcqWc1O3MGbk+M1P9DNsrlANqF3alV4ni0iW5rF8fmDlTXlc+r86CobwoTCZ6A/KOeyAiIiIi56OE8l9/Bb75Rl6fPl120VbCrKVQrownb9tWLh1tXLkQsvoIANWqFW0fBZ2rOjpaLs+fVyfJUyrlzz4rl/PmodT0QB06VB5YuXlT65bkb/p0WWGuVw/o2VOuu1uX75dfBnr1kgeZBg6UlevERDn+PyUFCA1VP7v2oPSoyF0pV0J5pUrqAS3TnhbOgKG8KEwq5UDp+Q+EiIiIiIpOCeUxMTJc9usnJ58C5JhYwHLwUSp/SihX5ix2lHHlt26p3e6VAG1LVarI0J6aKrtRC6FWyl99VU4Ed/UqsH697Z/b1oSQs5BfueLYs4ErVfHXX1cr0HcL5coQhsaN5eR9N24As2apXdc7dpTdzO3lnnvk/i9ckJ8HhdJ9PTJSfpYAeX92tv3aUtIYyovCZKI3gKGciIiIyBUooRyQk12ZzryeX6X89m05azWghvHCVMrj4oo/Y3ZhKVXyiAjbn38aALy9gYoV5fWYGBn2lEnHqlaV456BvBN8OaL4ePXc6kpYdERKJTkqSv1s3q37uvKY776Tp/oDZHfxNWvkdXt2XQeAwED134hptVyplEdGyoMFnp5y+MCVK/ZtT0liKC+KnFDu5cZKOREREZGrCA6WwRWQp2aqXl29L7/gowTeChVk6ADMK+Wm5zxXZGbKWdCbNZOzUdtbcbuuF4Yyrvz8eTX8hYXJwF6njrxdGmbUNh3LrIRFRyOE5VB+8qTlzxsgx5Mr3fGrVAH69pUV8zt31Ar6Aw/YtdkALJ+vXDn4UamSrKQ7Yxd2hvKiyBlT7s1QTkRERORS3nkHeOghYOJE8/Wmodx0EjAlxJkG+Dp15M/JW7csV/tOnZJB5OpVNRDdTWysDPLDhhX6pRiVZCiPiVG7rivhqqDx+I5Gea8Ax62UX7+uHsyJjJSnRNPpZK+NhATLj1H+JkFB8uLmBrz3nnp/5cpyP/ZmabI300q50hbA/LR6pR1DeVHkVMq93RnKiYiIiFzJiBFyhupy5czXV60qu9WmpZlXUJVQbhp4fXzkKcQAYNWqvM9x4oR6fc+eu7fp+nU50/a+fcCSJdbPDF4SoVwZqx4To1Y4lfHBhankOorSUClX3t/wcNkTwddXfa+VAx8zZgCPPirPIACoAVfZDpAHn+65R17v1Kngyfxs5d575fLAAfk5Nu2mXqmSXLJSTlJOKPd055hyIiIiIpI/D5VquGnF11KlHACef14uX389b/A+fly9/s8/BT/vnTtAjx5qkM/Otv7858qpypRqtj2Ydl/PXSmvXl2+fykpjlt9VpiGctO2fvednK38/PkSb1IeuQ96AOY9OZKTgbffBlavBrZuzf8xOh2wcCHQvz8wdqz92w3IaryXlzy4df68rOxnZcm2KENHlDayUu7qlEo5u68TERERUQ5L3bCVKnTuUD56NPDIIzJwPPqoOhkcYF0of/NNecqqcuUAPz+5ztoJ4kq6Up67KuvpqT63I3Rh/+sveaDD0sRo+XVfnzNHHlyZO9f+7bubgkL5yZNyNnUlvyjvt6XHAPLc4MuXq2cXsDcPD3WOgaNH1fc4PFx+ToDCV8odvdeFKYbyouBEb0RERESUi6VQnl+lXKcDFi+Wj7l82XwsuGn39bNn5Wzl+dm8WS6//loNVNeuFb7N2dnyFFRAyYwpv3BBrSYr4QpQ3zvT166VefOA334Dvvwy732mlfKEBLX79+nTcrl6tfZh0HSSN4XpKft+/VVdf7dQroX69eXy6FHzc5QrClMpT0+XEyr26mWfNtoaQ3lR5Ez05slQTkREREQ5cp+rPDNTDQ65QzkgJ9RauVJeX79edis2GNRg6u8vl3v3Wn6+5GQ1JLZuLauJgHWhPDYW0Ovl2GOle7A9REbKn9CZmerkdZZCuSNUypW/2b595utTUtReCMr5uq9ckbOWKzOXnz1b8KnuSoJykCW/Svm6dep65bPmqKHc9BzlitwTvd2+LXs2fP21us2xY/Lyyy9AUpLdm1xsDOVFoVTKdQzlRERERCTlDpbnz8uQ7ecnT/9lSaNGMmTo9bL788WLcjytp6da5ctvsrf//pNV2YgIoHx59Tms6b6ujCePjlaDpj14eKhhSjlHuWkAdKTToinV2f37zaveynsVEqJW/i9dAs6cMX+8cl5vrdyt+/rVq+r63JVy0wMlWilspfzGDSA1FfjhB9mz4cMP1W2UAxOA+XAQR8VQXhTKRG9unOiNiIiIiKR69eTy4kU5Rtx05vWCZq5u21Yud+5UK5c1a8rqN5D/uPJDh+SycWO5VEK5NZXykhhPrjCdSM7Dw/xAhaNUyg0GNQgmJpp3VzcdiqCExMuX1a7rykGN1atLpq2Kn38GBgxQK8KWQnlkpJyFXaGcc/zKFfk6ldfsSJXy48fV12JaKQ8OBgID5fXYWGD7dnn9wgX1zAOmofzYMfu21xYYyovCGMpZKSciIiIiqWxZoEkTeX3Tpvwnecvt/vvlcudOtapXt656Oqp//pEV2+xsOdu6IncoL0r39ZIM5cpkb4DanV2hhPILF2T1UyvXr5v/tjftwm56kEUJiZcuqaG8d2/5mg4fzls9t6f33gO+/x745hvZC0H5+5uOKXdzU0/DBwCDBqmflx075Nh4nc68Iq2VatXkcIr0dNk2wDyUA+rBg4sX1VCemamePs10FnxWyp2VMqac3deJiIiIyES3bnK5YUP+k7zlpoTy3bvV8ch168qw7ekpg+Kvv8qJqypWVKua+VXKrem+rlWlPHc36dBQeVADUEOuFnKfe9w0lJseZDGtlCsB/N57gQ4d5PWS7MKujLveulVtv5+f+n4qlAMfgByDrQwZ2LRJLitWVGc415K7u9o2peKd+2CB8vnZscP8b6YMMWCl3BUolXKGciIiIiIyoYTyjRvVsHa3UF6/vuySm5IC/PSTXFenjqwWKpX3hx+WXbuTk+UYWoNBDfC26L5uz3OUKwoK5TqdY3RhLyiUW+q+blopr1kT6NtXXi+pUJ6Vpf69t21TK8RVquQdMqFMRNiypaySK+/3xo3qYxyF0oVdkV+lfOlS8/UM5a7EGMo5ppyIiIiIVG3ayFnTr12T54MG7l6FdnOTjwOAW7fksm5duVS6sANqd+PVq2X4SE6WwV0JW0Xpvq6EmJLuvm4pADrCadGUGb2VAwimk71Z6r5uOqa8Zk2gTx95ffdutSu1PV27prbv5k31dGeW3t8hQ2QgnzRJ3laq0cr77cihPL9Kuel54wHLofz8eXnAy5ExlBdFTij3YKWciIiIiEx4eQEdO8rrytjou1XKAbULu0IJqIMGyQAydqwMegDw119qdbN+feNPU7NKuTLhVUGSkmTXeED7SjngGDOwK5Xybt3kAY/bt2Xw0+vVKrRppfzoUfVASvXqsgv4fffJ20qvB3vKHfyVyrGlgF2zppyfoEcPeVt5vxWOMPO6wjSUlykju+Obyv36WrWSS+VglXKKuoAAedBC6wkE74ahvCiUMeVgKCciIrKVjIwMNGnSBDqdDgeVExkTlUJdu6rX3dzMJ9zKj2kor1JFPUd5q1ZyMqupU2Wl+Z57ZMiYNk3er3RdB4AKFeRSr1dDSUGUoBIaKs+Zbm8REfKgBVBwpdwRQnnVqvJ0dYDswn7pkuwq7ukpq+RKpVyZ8bxSJTU4Kl3YS2IWdmU8uSIhQS4L85kzHWMOOG6l3NLkc6YHEHQ64Mkn5fWYGLVKHhICNG0qrzt6F3aG8qJgpZyIiMjm3nzzTVSsWFHrZhAVmzKuHJBBRwmiBWnZUt1O6bpuiRL4lG7WpqHcy0ud3OtuXdiFAMaPl9eVKqO9ubnJ1+nurgZeU6bdqQtT6bcHJZRHRgLNm8vr+/apXdejo2X7w8PNz+tuOrP5I4/I5bZt8lza9qRUynNXuQsTsKtUAXx8rHtMSalaVW1b7vHkgHlbGzdWw3dMjNqjITpaPU2ho8/AzlBeFEooZ6WciIjIJn777Tds3LgRH3/8sdZNISq2mjXV8dOF6boOyADSooW8XlAoVwKfwjSUA4WfgX35cjlDvLc3UJL/7Navl2OwLQXAGjVke1JS8o4VLilKKK9cWQ3lmzYBM2fK68rf08NDHcMPmIfyGjXkQQe9Hli3zr7tVSrlDz2knrsbKFzAdnc3b7cjhXJ3d/XfgaVQbrquXTt1aMSlS+oEi1FRaihnpdwZGUO5nOgtK0vLxhAREZVu165dw3PPPYdvv/0WfrkHDlqQkZGBpKQkswuRI9HpgO7d5XXT0HM3L7wgZ2F//PH8t6lVS54aTZG74lyYGdhv3ABGj5bX33lHnSiuJAQF5T9+3cMDaNhQXtdiBIsQlivlBw6oE6gpf1fAvFt17r+zcvDE3l3YlUp5lSoynCoKG7BNx5U7UigH1M+2pa743t7qZ71dO3nd11f+DZVzmzOUO7ucUO7OSjkREVGxCCEwdOhQDB8+HC2UMuFdTJs2DcHBwcZLZUeanYgox8SJwCuvAG+9VfjHPPWUnFisdeuCt1O6sEdG5j0XdWFmYH/7bTn2uH594M03C9++kqBU/pVzsJekGzeA9HR5vWJF+f5ERclu6o89BuzZA4wapW5fUChX/kYbNsiJx+xFqZRXrKhOMKjTWa4uW6KEckvnNdfa228Dr74KPPus5fvHjwf69ZMT1+l0au+U7dvl0jSUnzkDZGTYvclFxlBeFDkTvXkIhnIiIiJLJk2aBJ1OV+Dl33//xWeffYakpCSMHTu20PseO3YsEhMTjZdYZXAtkQMJDwc++cT8NGC28swzshv1sGF57ytM93VlVvBZswo33r0kKaFci0q5UiWvUEFWYr285CnRLl+W54Y3PT0dYB58a9Qwv69hQ/k3ysgAfvvNfm1WKuWVKsm5DJTzvRf276pM9la5ct7zmmutVi05bCAiwvL9I0cC338vK+SA2gNDOaNAVJR8bFCQnKPg1Cn7t7moPLRuQKnESjkREVGBXnrpJfTv37/AbaKjo/H+++/j77//hre3t9l9LVq0wKBBg7BkyZI8j/P29s6zPZEriYpSx83mdrfu69euAfHxMoAp50Z3JE2ayKUWlXLTruuKgqrHppXy3HMH6HTAww8Ds2cDf/5Z8JCE4jCtlNetC2zdaj7W/W4efFD2zBgwwD7tK0m5h0VERcm/Q716wN9/y8nelOERjoahvCiMoVyOKWcoJyIiMhcaGorQ0NC7bvfpp5/i/fffN96+cuUKunXrhhUrVuDee++1ZxOJnNLduq8fPiyXNWvmPfezI1DGEcfGytO6lWSXatNJ3gpDCe+VK6vVWlNKALTXKd5SUoDERHldOUDQvr11+yhbVp733hnkDuVKLxUllDvyuHKG8qJQQjm7rxMRERVLlVwzCwUEBAAAqlevjsjCDookIqO7dV9XQrmlU5I5guBgGa5iYmS1XBknXRKUkTCF/a+ndWt5YKNnT8v3m57izR6Uruv+/uYzr7sq01Du5weUKyevKxMZnj5d8m0qLI4pL4qcMeXuBoZyIiIiInIcd+u+7uihHNBuXLml7usFqVZNTg43d67l+5Xx2rGx9pnszXQ8uaONB9eCaShXuq4D6nj//IZ8OAKG8qLIqZS7sVJORERkU9HR0RBCoIkysJSIrKJ0X4+Pl5Nb5VaaQnlJjyu3NpQD8vzy+QXicuWA8uXldVtNMqbXA2lp8rrpeHLKG8oVSig/e7Zk22MNhvKiyJnO0EMv59VnKCciIiIiR1Chglzq9bKKayorSx1X68ihXDkmp1TKDQb5euzN2jHlhaF0YbfFuPITJ+T46MqV5QzjppVyAkJC5AUwD+XKJHw3bgC3bpV0qwqHobwogoMBAF5pcmYFhnIiIiIicgSenurkaLm7sJ86JX+3BgaahxZHo1TKjx2TY8ubNpVh1J7nmRbC+jHlhaF0YS/uuPING4D77pN/wxs35GntWCnPS6mWm56KMCBAHdbhqNVyhvKiUEJ5ehJ0MDCUExEREZHDyG8GdqXresOGgJsDp4DoaHlu6awsoGVL2e5Tp+w3izkgK6hKt3BbVp5tMdnb9u1Ajx5ypvWgILnup59YKbekVSu5zH1OeUcfV+7A/xwdWE4o1wmBACQzlBMRERGRw8hvBvbSMJ4ckGO0lWq5aRf8mBj7Pee5c3IZGirHiduKLUL5zz/LLvwPPijPQw4AmzerBylYKVd98omshj/wgPl6Rx9XzlBeFD4+sm8QgGAkMpQTERERkcPIbwb20hLKAbXSWaeOeu5te4bynTvNn9dWlFB+6pTlifcKQ+lW37277Mpfo4bsyq9MhMdKucrDQ86Knxsr5c5IpzNWyxnKiYiIiMiRKOPF//jDfH1pCuVjxwLz5smwfO+9cp09Q/m2bXLZoYNt9xsdLeeITk8HLl4s2j5MZ4XX6YA+fczvZ6X87pTJ3hjKnQ1DORERERE5oGeekWPG168H/vlHrrt5Uw13DRpo17bCKlcOGD5cLpXJu+wVyg0G4M8/5XVbh3J3d6BmTXm9qF3YlUq5Mit87lAeEVG0/boSdl93VgzlREREROSAatUCnnxSXp80SS6Vrs7R0cafsaWGEsqVcd+2dviwnOgtMFB2D7e14owrz84Grl6V15VQft996qnvQkMBb+/it9HZKaH86lUgJUXbtljCUF5UDOVERERE5KDGj5dV2t9+k93AhwyR61u00LZdRWFaKRfC9vtXuq63bSvHJNtacc5VfvWqrOR7eqpB3N0d6NVLXmfX9cIpU0ZeAMesljOUFxVDORERERE5qBo1gMGD5fURI2QX6Fq1gA8+0LZdRREVJcdSp6YCCQm237+9xpMrrKmUX74sD6JkZcnbypCDSpXMT2P39NMynLdta9u2OjNHnuyNobyoGMqJiIiIyIGNH69Wfnv3luPLlQmvShNvb7UibOtx5fYcT66wJpS/8YY8iPL11/K2Mp48MtJ8u9atZWCfOdN27XR2jjyunKG8qExCuXIki4iIiIjIUVSrBvz+O7BsGbB6dekbS27KXpO92Xs8OSB7KADyvPEbNxa87Z49cnnggFwqlXJlPLmp8HA5szsVjiNXyu0wasJFsFJORERERA6uUyetW2Ab1arJ06PZIpTfuQOMHg0EBABJSXKdvcaTA0BQkJwx/aefgB49gPnzgWHD8m6XlKROZnfsmFzmVykn6znyadEYyouKoZyIiIiIqETYslK+bBmwcKH5Ont1XVd8/70M4t99Bzz3HHDhAjB5shwrr/jvP/X60aNyUruCKuVknfy6r6emAjduaPses/t6UZmEcr0e0Os1bg8RERERkZOyZSjft08uGzcG6tWT++7Xr/j7LYi3N/DNN8DEifL2++/Lar3BoG6jnLYOkF3q4+NZKbclJZRfvAikp8vrej3Qtav8DPz+u3ZtYygvKpNQDoDjyomIiIiI7MSWoXz/frl85x1ZkT53DqhSpfj7vRudTp43fu5cefvTT2X1XDnN28GD5tsfO8ZKuS1VqACEhcn3e8YMue6rr4C//pLh/JlnZMVcCwzlRZUrlLMLOxERERGRfSih/MIF63qo7tkjK6RKFTQrS+0m3qyZbdtYWC++KKvm7u7AokXA+vVyvVIpVyZvO3xYnqccYKXcFnQ64KOP5PV33wU2bQLGjpW3/fzkez1ypDZtYygvqpxQHoLbABjKiYiIiIjspWJFwNMTyM5Wq8eFsXKlHEP88cfy9rFj8nd7cLAa9LUweLA89RkA/PCDPNCgHCzo0UMu//hDdm/39JRVXiq+J58EHnlEHpzp3l0OE2jSBNiyRR4kWbECWL685NvFUF5UrJQTEREREZUId3cgKkpet6YLe3y8XO7cKSf0UrquN21qPsmaFh57TC7XrgWOHwfS0gBfX3lOeUAGRQCoVAlwY2qzCZ0OWLAAKF9eHc8/bx5w773A+PHy9ogRJd+NnX/eosoJ5UFIgg4GhnIiIiIiIjuqVk0urQnl167JZUYGsGOHGsq16rpuqk0bWQG/dQuYPVuua9hQXgAgJUUuOZ7ctsqXl7Pve3rKyfbuu0+uf/ttOenb3LlAuXIl2yaeEq2ockK5GwQCkIzMzCCNG0RERERE5LyKMtmbEsoBYONGxwrl7u6yK/WCBcDixXJd48ZAnTrm23E8ue099BCQmAj4+KjrPD3l3ANa9KBgpbyofH0BD3lMg+cqJyIiIiKyLyWUr1kDnDlTuMco3dcB4Lff1BnOHSGUA8Cjj8qlMnld48aAvz8QHa1uw0q5ffj65g3gWg1pYCgvKp3ObFw5QzkRERERkf307QsEBABHjsjwqpxaLD8GA5CQoN4+flyOK/fzA2rVsm9bC6tDB6BMGfV2kyZyWbeuuo6VcufHUF4cISEAGMqJiIiIiOytZk15mrCOHWW4HjkS+PPP/Le/ccO8Aq1o0kR2HXcEnp7qxG4A0KiRXNarp65jpdz5MZQXByvlREREREQlpmpVYPNm4Ikn5O3Vq/PfVum6XrYs0LOnur5pU/u1ryiU11KnDhAYKK+bhnJWyp0fQ3lxMJQTEREREZUoNzdgwAB5/ZdfACEsb6dM8hYWBnTpoq53lPHkiu7dgSVLgKVL1XWslLsWzr5eHAzlREREREQlrnNnwNsbOHdOjhU3DbEKJZRXqAC0bi2r0HfuAPfcU7JtvRudDnjqKfN1DRrIqOHvL0/hRc6NlfLiYCgnIiIiIipxAQFybDkArFtneRul+3pYGODlBfz0kzz1WIMGJdHC4gkIAA4dAv79V/YMIOfGP3FxMJQTEREREWni4Yfl8pdfLN9v2n0dAB54ABgyxP7tspWoKCAiQutWUElgKC8OhnIiIiIiIk0ok7ft2iVnWs9NqZRXqFBybSIqCoby4jAJ5VlZGreFiIiIiMiFREXJU4gZDMBvv+W9P3elnMhRMZQXByvlRERERESaUbqwWzo1GkM5lRYM5cVhEsrT0zVuCxERERGRi+nbVy7XrAG++cb8PnZfp9KCobw4TEL5ihX5nyORiIiIiIhsr1kz4O235fXnngN27pTXhWClnEoPhvLiyAnlIbpE7N6d/+kYiIiIiIjIPt57D3j0USAzE3jkEeDSJXk+cqUnKyvl5OgYyosjJ5RX8LoNQB6l0+s1bA8RERERkYtxcwOWLAEaNwauXwcWLlS7rvv7ywuRI2MoL46cUO6TmYQywQYcOQIsX65xm4iIiIiIXIy/v+y+Dsgu7Oy6TqUJQ3lx5IRynRAYNyoZgMDE8QZkZGjbLCIiIiIiV9O2rVzu3g1cviyvM5RTacBQXhy+voCHBwDgxd5XcNq9Ltacb4LPP0rVuGFERERERK6lfn1ZM0tOBjZtkus4npxKA4by4tDpjNVyv08/QA39STTCf8iePBVxcRq3jYiIiIjIhbi7A23ayOs//SSXrJRTacBQXlw5odz0xIijsj7CJy+d1qhBRERERESuSenCfv26XLJSTqUBQ3lxKaFcCKBaNdxu2QXeyETbVaPwzx6euJyIiIiIqKTcf7/5bVbKqTTw0LoBhTF37lx89NFHuHr1KurXr4/Zs2ejrXIYTGtKKAeAd95BSJs2yK7bAD0Mv+GNB+Yh8/cXcX9bnXbtI1V2NnDsGHDoEFCuHNCwIRAZKYch5Ld9Vhbg46NuI4QcqHTlCoxjFPz85JSffn7yAsgTY6alyWV6ujxxZnb23S9ZWfJxqanyeaOjgSpVAC8v+dxKG4SQJ+C8dQtISZH9tTw95RwHuS/Z2XJb00t6ujx/SO6Lu7tcpqUBt2+bX4QAKlYEKlWSy4oV5TedMrfCrl3Azz8DBw4AtWoBLVoA9eoBERFAeLh8b7y85Gu8dg1ISJDnEPTwkM+rtNfPDwgKAgICgIwM+fpSUuR7kpqqvg+enkCZMvICyPuU964wy6wseVHe96wsed+dO/J5g4OBsmXlZ6VsWfPr3t7qe5mVJV+Hm5u6jXIJCJCv88oV9XLtmvo6lYuvL2AwyM9Jaqp8TEKC/KxlZMjnCAyUr7VsWbkMCZHrk5Pl+5N7mZozt4VOJ58jLEyWC5Sln59sf1KSeklPl+sDAuTF39/8ekYGEBtrfklMlO3395d/62rVgMqV5Wt0c5PtrlJFtvnQIfk5SUhQ36vQULkMCwPq1JF/e+VzfvOm/HcWFyefJz1dvuayZeXnLyJCvhYPD7l9QoKc2Uf5zGZlydfv4SG3jYyUjwXk+52cLPd7+7ZcJiXJv6W7e/6XyEj5+SYiIofUsqX8mlYmXmYop9LA4UP5ihUrMHr0aMydOxdt2rTBggUL8OCDD+LYsWOoUqWK1s1TQ3nVqsCTTwKensgc/SY8Zk7BR6kj8VuHX7FkwucIvy8aXl7mv/MDAszzYHa2/M2XX0Z0GULIH8wGg7yeni7D5/XrwJEjMvRduCC3Vd4snc78uo+PDC1+fsDFi8CpUzKQp6ebP5cSGCIjZchLTZU/zJXQbTCooSY7G5xav5CuXAG2bdO6FVQaVawow/y1azJU341OJ4N9UlLJ/Pt88UVg7lz7Pw8RERWJtzdwzz3Ajh3yNruvU2ng8KF85syZePbZZzFs2DAAwOzZs7FhwwbMmzcP06ZN07h1AO67D1i7FvjgAxnqAPh9OAmZQX7QTX4XDxrWA5OqIhFBuIRIZMAbidAjGXp4Ihue7noI6JBtcINeuMEAeRE6eYHODbAQ0nW5ruggLN+f54a6be595H0OUeA2OpPtoFNzsQ45+dh0Xc7FTejhKTLhYTC56DPhJrLhZsiGm9DDzaC33CAbyPQNws3KjeF15yaCr52E+507wNGj8pIfIWTl0XRVUBBEhXDAzQ26tFQgLRVISYEuLU1u4O0tq4c+PvLi5ZV/JTv3RamcJicD588Dly7J6p1COfigVE4DAuT9uSvuynV3d7mtcgkKkm0yPfhhetHr1YMaphe9Hrh6VVYir1yBuHwFSEiASE8HMjKgr1YTaV17I63Z/XA7dwYeh/fB5/I5eN24AveEa3K7zCwId3cYyodBV7483Lw9odPn6i2QmiqrlsnJsh1KTwSlN4JbzqibjAx5sObmTbnO11d97ywtc6/z8pLvt+nfxc9Pvkc+PrJ6evOmvNy4Yb7MyJDvY2Cg3I+bm2y7so1ySU6WgTF37wIh1Mq/UtV2c1M/N6GhQPny8jm8vWXbkpLk61Uut2/LtptWtE2Xvr5yn0rvjvh4GXSVZWqq3H9wsFwqz5WWZl51N73u4SGr4MpFqTwrj7l8GTh3Ti5zPk/6G7eA2Fi4376J9KhaSG/aGobKUfBMuQXPxBtwv30DbrdvwO3KJeiuXpUHdEz/rZUrJ3tahIRA5+Mj23D9uvwsKgfOEhLUfxsVKsg2BQfL1yOE7IFw5YpsV+5/S8p7EBIil+7ucpv8LpUqWfNfDhERaeD++9VQzko5lQY6IYS4+2bayMzMhJ+fH3744Qc88sgjxvWjRo3CwYMHsX379jyPycjIQIZJtSQpKQmVK1dGYmIigpRukbakdLEsVy7PXfojx3HpoeGIuvCn7Z/XxaTDG7dQBidRGwfQFKdQC4acKRHkwQNhdt0H6QjBbQTiDi4hEqdRE8dRF2dQAyLncV7IQDWcQyVcRiQuwR16pMAfKfDHVUTgMiohBf7wRwr8kIoseCID3khGAFLhb7Gd7jqD7OXq6Wbs7Zq7h3jujgAGg/r43AcxTFlz25aPNc34plnfmv85PD3zL3p6eMgM7O0t861OJ7OPcnxAeZ+U99LS0vR9BszbZul6cdbld7/BIF9jZqaar708DPIAm8j/b216Pb9Lftso+8x9fMXSZ6yg2zqd5fdTWSrHfEyzqfJYSxfT+5TX7I5s6O9yHDgYt1FXdxJZwh1xCEc8KiALXsbX7+VlfvF00yMkKwHlsuJwyxCMWEMlZAgviyMzdDrAHXr461IBnQ46HZDuJg/yFOb9VtYNHAhMmFDgyyiUpKQkBAcH2++7ycXw/SQiU7/9BvToIa/fvKmOdCMqSdZ8Nzl0pfz69evQ6/UIy3WIKywsDHH5nHNs2rRpePfdd0uieZJOZzGQA4B7g7qIOr9dVpliY2XFMzsbws0dGdnuSEqRF50OCPAzwMfLAEO2AfpsgexMA/RZBugz9YBOZ/yBCxSwzKldmw09Vhojcq9Xk1eB2+d6buN2uZ5bb9CZ/WDP/QNeCXJ6gw4Z8JYX4YVMeCHD4IlMg4fxkqH3QGa2G7L0bsjM0iFdeCPF4GsxHOYeFpx7qderQwbKBwFVTIrXPj7eMBjq4urVuvjrktze21sGkdRUIPMOkH4HuJNV+B94euEGfTaA7EI/xKkoQ8OV4nNamjokGpD/XDw9ZXBVZGerBVnnw7k0AfnvKjTUAwaD/DxkZpp/LhSJCMHf4l6L+xBCPsa8h7o7LiIcQHghW+IOIND6F2Di2rViPZyIiEpAmzayA1RAgFwSOTqHDuUKXa7SnRAizzrF2LFjMWbMGONtpVKuKX9/OYFRnToAZPdun5wLh7k4vowMGRh1OvPqoVL1Vg5AWFpa6hmuVO2UpWnVE0CegyDKusLetvVjlYBt2ss79zpPT/V9yf34lBR5lDogQO0drISztDT1ogQ1IG8lHDCvnJtez720VPXPryeANdcLc78ySkHpMa0cfLBU4Vben9wXa9abfpaKet204m7p/TQYzCvoppV047CUXJ9l09v+/rKXv6X/sg0G8xEXysXTUx448/SU9ynvpeklIyPvPIFKu3L3BtDr86/kF+Z9Nl0XEZH3dRARkWMJCpLTEHl6cq4mKh0cOpSHhobC3d09T1U8Pj4+T/Vc4e3tDW9v75JoHrkIb295IevpdOrk3aaUIeC+vtq0ixyDm5vaFT0/3t4y2BMREVmDU4BQaeLQfSu9vLzQvHlzbNq0yWz9pk2b0Lp1a41aRURERERERGQbDl0pB4AxY8Zg8ODBaNGiBVq1aoUvvvgCFy9exPDhw7VuGhEREREREVGxOHwo79evH27cuIHJkyfj6tWraNCgAdavX4+oqCitm0ZERERERERULA4fygFgxIgRGDFihNbNICIiIiIiIrIphx5TTkREREREROTMGMqJiIiIiIiINMJQTkRERERERKQRhnIiIiIiIiIijTCUExEREREREWmEoZyIiIiIiIhIIwzlRERERERERBphKCciIiLN/frrr7j33nvh6+uL0NBQ9O3bV+smERER/b+9e4+puv7/AP48cPAIDBA408MR5bJMAq+BOZOyr5bzlrNMpyHSaikmCFmmSx3oUlQSu5iYzfxHG86FjmpqeInUZjAuipfETbzLyGlw8ILgef3+cH5+HSE9lPK58HxsZ+N8Pu9zfD0Hnufe5xwO7cKs9gBERETUsX3//fd49913sXz5cgwfPhwigsrKSrXHIiIiahfclBMREZFqmpubkZaWhuzsbLzzzjvK8d69e6s4FRERUfsx/KZcRAAA9fX1Kk9CRER0z/1Out9RHVlZWRkuXboEDw8PDBw4EDU1NRgwYAA+/fRTxMTEtHqbxsZGNDY2Ktfr6uoAsOuJiEg72tL1ht+UOxwOAECPHj1UnoSIiMiVw+FAQECA2mOo6syZMwCAzMxM5OTkIDw8HKtXr8awYcNQVVWFoKCgFrfJysrCkiVLWhxn1xMRkda40/UmMfjT9E6nE5cvX4afnx9MJtN/uq/6+nr06NEDFy5cgL+//2OaUD1GymOkLADzaJmRsgDGyqOnLCICh8MBu90ODw9jfuZqZmZmqxvnvyspKUFVVRUSEhLw9ddfY8aMGQDuvRIeGhqKTz75BDNnzmxxuwdfKXc6nbh27RqCg4P/c9cD+vpZehQjZQGMlcdIWQBj5TFSFoB51NKWrjf8K+UeHh4IDQ19rPfp7++v6R+AtjJSHiNlAZhHy4yUBTBWHr1kMfor5CkpKZgyZcpD14SHhyvvaIuOjlaOWywWREZG4vz5863ezmKxwGKxuBzr0qXLfxu4FXr5WXKHkbIAxspjpCyAsfIYKQvAPGpwt+sNvyknIiKi9me1WmG1Wh+5LjY2FhaLBadOnUJ8fDwAoKmpCWfPnkVYWNiTHpOIiEh13JQTERGRavz9/ZGcnIyMjAz06NEDYWFhyM7OBgBMmjRJ5emIiIiePG7K28BisSAjI6PFW+b0ykh5jJQFYB4tM1IWwFh5jJSlo8nOzobZbEZiYiJu3bqFwYMHY9++fQgMDFRlHiP9LBkpC2CsPEbKAhgrj5GyAMyjB4b/oDciIiIiIiIirTLmR74SERERERER6QA35UREREREREQq4aaciIiIiIiISCXclBMRERERERGphJvyNli3bh0iIiLQuXNnxMbG4sCBA2qP9EhZWVkYNGgQ/Pz80LVrV0yYMAGnTp1yWSMiyMzMhN1uh7e3N1566SUcP35cpYndl5WVBZPJhPT0dOWY3rJcunQJ06ZNQ3BwMHx8fDBgwACUlpYq5/WUp7m5GYsWLUJERAS8vb0RGRmJpUuXwul0Kmu0mufXX3/Fq6++CrvdDpPJhB07dricd2fuxsZGpKamwmq1wtfXF+PHj8fFixfbMcX/e1iepqYmzJ8/H3379oWvry/sdjumT5+Oy5cvu9yHXvI8aObMmTCZTPjss89cjmspD2kbu15b2PXaoueuB4zV9+x6Y3U9N+Vu2rp1K9LT07Fw4UKUl5fjhRdewOjRo3H+/Hm1R3uooqIizJ49G4cPH0ZhYSGam5sxcuRI3LhxQ1mzatUq5OTkYO3atSgpKYHNZsMrr7wCh8Oh4uQPV1JSgg0bNqBfv34ux/WU5fr16xg6dCi8vLywc+dOnDhxAqtXr0aXLl2UNXrKs3LlSqxfvx5r167FyZMnsWrVKmRnZ+PLL79U1mg1z40bN9C/f3+sXbu21fPuzJ2eno7t27cjLy8PBw8eRENDA8aNG4e7d++2VwzFw/LcvHkTZWVlWLx4McrKypCfn4+qqiqMHz/eZZ1e8vzdjh078Pvvv8Nut7c4p6U8pF3sem1h12svj567HjBW37PrDdb1Qm557rnnJDk52eVYVFSULFiwQKWJ/p3a2loBIEVFRSIi4nQ6xWazyYoVK5Q1t2/floCAAFm/fr1aYz6Uw+GQXr16SWFhoQwbNkzS0tJERH9Z5s+fL/Hx8f94Xm95xo4dK2+//bbLsddff12mTZsmIvrJA0C2b9+uXHdn7r/++ku8vLwkLy9PWXPp0iXx8PCQXbt2tdvsrXkwT2uKi4sFgJw7d05E9Jnn4sWL0r17dzl27JiEhYXJmjVrlHNazkPawq7XDna9NvMYpetFjNX37Hpt53EHXyl3w507d1BaWoqRI0e6HB85ciR+++03lab6d+rq6gAAQUFBAIDq6mrU1NS4ZLNYLBg2bJhms82ePRtjx47Fyy+/7HJcb1kKCgoQFxeHSZMmoWvXrhg4cCC++eYb5bze8sTHx2Pv3r2oqqoCABw5cgQHDx7EmDFjAOgvz33uzF1aWoqmpiaXNXa7HX369NF0tvvq6upgMpmUV270lsfpdCIxMRHz5s1DTExMi/N6y0PqYNdrC7tem3mM2vWA8fueXa9tZrUH0IOrV6/i7t276Natm8vxbt26oaamRqWp2k5EMHfuXMTHx6NPnz4AoMzfWrZz5861+4yPkpeXh7KyMpSUlLQ4p7csZ86cQW5uLubOnYuPP/4YxcXFmDNnDiwWC6ZPn667PPPnz0ddXR2ioqLg6emJu3fvYtmyZZg6dSoA/X1/7nNn7pqaGnTq1AmBgYEt1mj9MeL27dtYsGAB3nzzTfj7+wPQX56VK1fCbDZjzpw5rZ7XWx5SB7teO9j12s1j1K4HjN337Hrt5XkQN+VtYDKZXK6LSItjWpaSkoKjR4/i4MGDLc7pIduFCxeQlpaGn3/+GZ07d/7HdXrIAtx7xi8uLg7Lly8HAAwcOBDHjx9Hbm4upk+frqzTS56tW7di8+bN+O677xATE4OKigqkp6fDbrcjKSlJWaeXPA/6N3NrPVtTUxOmTJkCp9OJdevWPXK9FvOUlpbi888/R1lZWZtn02IeUp9eH6PuY9drC7v+Hq3maY3R+p5dr708reHb191gtVrh6enZ4lmW2traFs+maVVqaioKCgqwf/9+hIaGKsdtNhsA6CJbaWkpamtrERsbC7PZDLPZjKKiInzxxRcwm83KvHrIAgAhISGIjo52OfbMM88oHyikp+8NAMybNw8LFizAlClT0LdvXyQmJuL9999HVlYWAP3luc+duW02G+7cuYPr16//4xqtaWpqwuTJk1FdXY3CwkLlmXNAX3kOHDiA2tpa9OzZU3lcOHfuHD744AOEh4cD0FceUg+7XhvY9fdoNY9Rux4wZt+z67WZpzXclLuhU6dOiI2NRWFhocvxwsJCPP/88ypN5R4RQUpKCvLz87Fv3z5ERES4nI+IiIDNZnPJdufOHRQVFWku24gRI1BZWYmKigrlEhcXh4SEBFRUVCAyMlI3WQBg6NChLf5kTVVVFcLCwgDo63sD3PukTw8P14cUT09P5c+k6C3Pfe7MHRsbCy8vL5c1V65cwbFjxzSZ7X5Jnz59Gnv27EFwcLDLeT3lSUxMxNGjR10eF+x2O+bNm4fdu3cD0FceUg+7XhvY9drOY9SuB4zX9+x67eZpVXt+qpye5eXliZeXl2zcuFFOnDgh6enp4uvrK2fPnlV7tIeaNWuWBAQEyC+//CJXrlxRLjdv3lTWrFixQgICAiQ/P18qKytl6tSpEhISIvX19SpO7p6/fyKriL6yFBcXi9lslmXLlsnp06dly5Yt4uPjI5s3b1bW6ClPUlKSdO/eXX788Ueprq6W/Px8sVqt8tFHHylrtJrH4XBIeXm5lJeXCwDJycmR8vJy5RNK3Zk7OTlZQkNDZc+ePVJWVibDhw+X/v37S3Nzs6byNDU1yfjx4yU0NFQqKipcHhcaGxt1l6c1D34iq4i28pB2seu1iV2vHXruehFj9T273lhdz015G3z11VcSFhYmnTp1kmeffVb5UyNaBqDVy6ZNm5Q1TqdTMjIyxGazicVikRdffFEqKyvVG7oNHixqvWX54YcfpE+fPmKxWCQqKko2bNjgcl5Peerr6yUtLU169uwpnTt3lsjISFm4cKHLg79W8+zfv7/V/ydJSUki4t7ct27dkpSUFAkKChJvb28ZN26cnD9/XoU0D89TXV39j48L+/fv112e1rRW1FrKQ9rGrtcedr126LnrRYzV9+x6Y3W9SUTk8bzmTkRERERERERtwd8pJyIiIiIiIlIJN+VEREREREREKuGmnIiIiIiIiEgl3JQTERERERERqYSbciIiIiIiIiKVcFNOREREREREpBJuyomIiIiIiIhUwk05ERERERERkUq4KSeiJ85kMmHHjh1qj0FERERPCLue6N/jppzI4N566y2YTKYWl1GjRqk9GhERET0G7HoifTOrPQARPXmjRo3Cpk2bXI5ZLBaVpiEiIqLHjV1PpF98pZyoA7BYLLDZbC6XwMBAAPfebpabm4vRo0fD29sbERER2LZtm8vtKysrMXz4cHh7eyM4OBgzZsxAQ0ODy5pvv/0WMTExsFgsCAkJQUpKisv5q1ev4rXXXoOPjw969eqFgoKCJxuaiIioA2HXE+kXN+VEhMWLF2PixIk4cuQIpk2bhqlTp+LkyZMAgJs3b2LUqFEIDAxESUkJtm3bhj179rgUcW5uLmbPno0ZM2agsrISBQUFeOqpp1z+jSVLlmDy5Mk4evQoxowZg4SEBFy7dq1dcxIREXVU7HoiDRMiMrSkpCTx9PQUX19fl8vSpUtFRASAJCcnu9xm8ODBMmvWLBER2bBhgwQGBkpDQ4Ny/qeffhIPDw+pqakRERG73S4LFy78xxkAyKJFi5TrDQ0NYjKZZOfOnY8tJxERUUfFrifSN/5OOVEH8L///Q+5ubkux4KCgpSvhwwZ4nJuyJAhqKioAACcPHkS/fv3h6+vr3J+6NChcDqdOHXqFEwmEy5fvowRI0Y8dIZ+/fopX/v6+sLPzw+1tbX/NhIRERH9DbueSL+4KSfqAHx9fVu8xexRTCYTAEBElK9bW+Pt7e3W/Xl5ebW4rdPpbNNMRERE1Dp2PZF+8XfKiQiHDx9ucT0qKgoAEB0djYqKCty4cUM5f+jQIXh4eODpp5+Gn58fwsPDsXfv3nadmYiIiNzHrifSLr5STtQBNDY2oqamxuWY2WyG1WoFAGzbtg1xcXGIj4/Hli1bUFxcjI0bNwIAEhISkJGRgaSkJGRmZuLPP/9EamoqEhMT0a1bNwBAZmYmkpOT0bVrV4wePRoOhwOHDh1Campq+wYlIiLqoNj1RPrFTTlRB7Br1y6EhIS4HOvduzf++OMPAPc+LTUvLw/vvfcebDYbtmzZgujoaACAj48Pdu/ejbS0NAwaNAg+Pj6YOHEicnJylPtKSkrC7du3sWbNGnz44YewWq1444032i8gERFRB8euJ9Ivk4iI2kMQkXpMJhO2b9+OCRMmqD0KERERPQHseiJt4++UExEREREREamEm3IiIiIiIiIilfDt60REREREREQq4SvlRERERERERCrhppyIiIiIiIhIJdyUExEREREREamEm3IiIiIiIiIilXBTTkRERERERKQSbsqJiIiIiIiIVMJNOREREREREZFKuCknIiIiIiIiUsn/AUpCVDCz8j6kAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrTUlEQVR4nOzdd3hTZRsG8Dvdu0CBtqyyZZcpAjIEGSIC8qHsoagooOBCAZkyXAgiAooIKENUQHGDMhwIsveUAmWUMkpL6aLN+/3x9OQkXTRt0rTp/buuXCc5SU/epoHkPs87DEopBSIiIiIiIiIqcC6ObgARERERERFRccVQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTlSMLFu2DAaDAQaDAVu3bs10v1IK1atXh8FgQLt27Uz7r1+/jnHjxqFOnTrw9fVFYGAgatWqhUGDBuHgwYNZHj+rS1bPSURE5EjaZ9fu3bsd3RSrDR06FJUrV7bYN3PmTHz77beZHluQv+eUKVNgMBhscqy8fncB+P2Fig43RzeAiAqev78/lixZkunDa9u2bfjvv//g7+9v2hcfH4/77rsP8fHxePXVVxEeHo7ExEScPHkS69atw/79+9GgQQOL4yxduhS1atXK9Lx16tSxy+9DRERUHE2cOBGjR4+22Ddz5kz07t0bPXv2dEyjADz11FPo0qWLTY9pzXcXgN9fqGhhKCcqhvr06YOVK1fio48+QkBAgGn/kiVL0KJFC8TFxZn2ff311zh9+jQ2b96MBx54wOI4L730EoxGY6bj16tXD02bNrXfL0BERFSMJSQkwMfHB9WqVXN0U7JUoUIFVKhQwabHtOa7C8DvL1S0sPs6UTHUr18/AMDq1atN+2JjY7F27Vo8+eSTFo+9fv06ACA0NDTLY7m48L8RIiJyfn/99Rc6dOgAf39/+Pj4oGXLlvjxxx+zfFyLFi3g5eWF8uXLY+LEifj0009hMBhw9uxZ0+PWrFmDTp06ITQ0FN7e3qhduzZef/113L592+J4Q4cOhZ+fHw4dOoROnTrB398fHTp0MN1n3n3dYDDg9u3bWL58uanrdcbK8q1bt/Dcc8+hdOnSCAoKQq9evXDp0iWLx1SuXBndunXDDz/8gEaNGpna98MPPwCQ7t61a9eGr68v7r333kxd4rPrvr5q1Sq0aNECfn5+8PPzQ8OGDbFkyZK7vvaAdd9dAH5/oaKF70aiYiggIAC9e/fGZ599Ztq3evVquLi4oE+fPhaPbdGiBQBg8ODB+Pbbb00fcjlJS0tDamqqxSUtLc22vwQREVEB2bZtG9q3b4/Y2FgsWbIEq1evhr+/Px555BGsWbPG9LiDBw+iY8eOSEhIwPLly7Fo0SLs3bsXM2bMyHTMU6dOoWvXrliyZAl++eUXjBkzBl999RUeeeSRTI9NSUlB9+7d0b59e3z33XeYOnVqlu38559/4O3tja5du+Kff/7BP//8gwULFlg85qmnnoK7uztWrVqFd955B1u3bsXAgQMzHevAgQMYN24cXnvtNaxbtw6BgYHo1asXJk+ejE8//RQzZ87EypUrERsbi27duiExMTHH13DSpEkYMGAAypUrh2XLlmH9+vUYMmQIzp07l+PPaaz57gLw+wsVMYqIio2lS5cqAGrXrl1qy5YtCoA6fPiwUkqpZs2aqaFDhyqllKpbt65q27at6eemTZumPDw8FAAFQFWpUkU9++yz6sCBA1keP6uLq6trgf2eREREuWX+2Zid++67T5UtW1bdunXLtC81NVXVq1dPVahQQRmNRqWUUo899pjy9fVVV69eNT0uLS1N1alTRwFQERERWR7faDSqO3fuqG3btikAFp+vQ4YMUQDUZ599lunnhgwZosLCwiz2+fr6qiFDhmT7e44YMcJi/zvvvKMAqMuXL5v2hYWFKW9vb3XhwgXTvv379ysAKjQ0VN2+fdu0/9tvv1UA1IYNG0z7Jk+erMxjxpkzZ5Srq6saMGBAlr9/TvL63UUpfn+hooOVcqJiqm3btqhWrRo+++wzHDp0CLt27cqy+xcgE8mcP38en332GYYPHw4/Pz8sWrQITZo0sehGpvn888+xa9cui8vOnTvt/SsRERHZ3O3bt7Fz50707t0bfn5+pv2urq4YNGgQLly4gBMnTgDQK+qlS5c2Pc7FxQWPP/54puOeOXMG/fv3R0hICFxdXeHu7o62bdsCAI4dO5bp8f/73/9s8vt0797d4rY22VnGinXDhg1Rvnx50+3atWsDANq1awcfH59M+3OqeG/atAlpaWkYOXJkvtpuzXcXgN9fqOjgRG9ExZTBYMATTzyBefPmISkpCTVr1kTr1q2zfXxwcDCeeOIJPPHEEwCAP/74Aw899BBGjx5tGuelqV27NidKISIipxATEwOlVJZjk8uVKwdAH798/fp1BAcHZ3pcxn3x8fFo3bo1vLy8MH36dNSsWRM+Pj6IjIxEr169MnUF9/HxsZjcLD+CgoIsbnt6egJApucsVaqUxW0PD48c9yclJWX7nFevXgWAfE/+Zu13F4DfX6hoYKWcqBgbOnQorl27hkWLFpk+rHKrTZs26NSpE65evYro6Gg7tZCIiMixSpYsCRcXF1y+fDnTfdoEaVplPCgoCFeuXMn0uKioKIvbmzdvxqVLl/DZZ5/hqaeeQps2bdC0adNMy3ppbLXmt6OUKVMGAHDhwoV8Hys/310Afn+hwomhnKgYK1++PF599VU88sgjGDJkSJaPuXLlSpbLhqSlpeHUqVPw8fFBiRIl7NxSIiIix/D19UXz5s2xbt06i2qy0WjEihUrUKFCBdSsWROAdK/evHkzrl27ZvG4r7/+2uKYWsjWqtSajz/+ON/t9fT0vOukawWtU6dOcHV1xcKFC/N9rNx8dwH4/YWKFnZfJyrm3nrrrRzv/+KLL/Dxxx+jf//+aNasGQIDA3HhwgV8+umnOHLkCCZNmmTquqY5fPgwUlNTMx2rWrVqprPlREREhcnmzZstlizTdO3aFbNmzULHjh3xwAMP4JVXXoGHhwcWLFiAw4cPY/Xq1aaQPWHCBHz//ffo0KEDJkyYAG9vbyxatMi0zJm2DFfLli1RsmRJPPvss5g8eTLc3d2xcuVKHDhwIN+/R/369bF161Z8//33CA0Nhb+/P+655558Hzc/KleujPHjx+PNN99EYmIi+vXrh8DAQBw9ehTXrl3Ldjb57NztuwvA7y9UtDCUE1GOHn74YURFReGnn37CwoULERMTA39/fzRo0ABffPFFlsuoZNedbPHixXjqqafs3WQiIiKrvfbaa1nuj4iIMFXAJ0+ejKFDh8JoNCI8PBwbNmxAt27dTI8NDw/Hpk2b8Morr2Dw4MEoWbIkBg0ahLZt2+K1115DYGAgAOnm/uOPP+Lll1/GwIED4evrix49emDNmjVo3Lhxvn6PDz74ACNHjkTfvn2RkJCAtm3bYuvWrfk6pi1MmzYNNWrUwIcffogBAwbAzc0NNWrUwAsvvGCX5+P3FypKDEop5ehGEBERERE5q06dOuHs2bM4efKko5tCRIUQK+VERERERDby0ksvoVGjRqhYsSJu3LiBlStXYtOmTViyZImjm0ZEhRRDORERERGRjaSlpWHSpEmIioqCwWBAnTp1su0uTUQEsPs6ERERERERkcNwSTQiIiIiIiIiB2EoJyIiIiIiInIQhnIiIiIiIiIiB3H6id6MRiMuXboEf39/GAwGRzeHiIgISincunUL5cqVg4sLz4/nFz/riYiosLHms97pQ/mlS5dQsWJFRzeDiIgok8jISFSoUMHRzSjy+FlPRESFVW4+650+lPv7+wOQFyMgIMDBrSEiIgLi4uJQsWJF02cU5Q8/64mIqLCx5rPe6UO51o0tICCAH9RERFSosKu1bfCznoiICqvcfNZzIBsRERERERGRgzCUExERERERETkIQzkRERERERGRgzj9mHIiotxSSiE1NRVpaWmObgoVca6urnBzc+OYcSKiQoaf9WQrtvysZygnIgKQkpKCy5cvIyEhwdFNISfh4+OD0NBQeHh4OLopREQEftaT7dnqs56hnIiKPaPRiIiICLi6uqJcuXLw8PBghZPyTCmFlJQUXL16FREREahRowZcXDhajIjIkfhZT7Zk6896hnIiKvZSUlJgNBpRsWJF+Pj4OLo55AS8vb3h7u6Oc+fOISUlBV5eXo5uEhFRscbPerI1W37W89Q9EVE6VjPJlvh+IiIqfPh/M9mSrd5PfFcSEREREREROQhDOREREREREZGDMJQTEZFJu3btMGbMmFw//uzZszAYDNi/f7/d2gQAW7duhcFgwM2bN+36PERERMUBP+8LF070RkRUBN1txtghQ4Zg2bJlVh933bp1cHd3z/XjK1asiMuXL6N06dJWPxcRERHljJ/3xQNDORFREXT58mXT9TVr1mDSpEk4ceKEaZ+3t7fF4+/cuZOrD99SpUpZ1Q5XV1eEhIRY9TNERESUO/y8Lx7Yfd0KffoA9eoBf/3l6JYQkT0pBdy+7ZiLUrlrY0hIiOkSGBgIg8Fgup2UlIQSJUrgq6++Qrt27eDl5YUVK1bg+vXr6NevHypUqAAfHx/Ur18fq1evtjhuxu5slStXxsyZM/Hkk0/C398flSpVwieffGK6P2N3Nq3b2e+//46mTZvCx8cHLVu2tPgCAQDTp09H2bJl4e/vj6eeegqvv/46GjZsaNXfae3atahbty48PT1RuXJlzJ492+L+BQsWoEaNGvDy8kJwcDB69+5tuu+bb75B/fr14e3tjaCgIDz44IO4ffu2Vc9PzmnOHKB+fSDD24mInBA/78eYbvPz3rEYyq1w+jRw5AgQF+folhCRPSUkAH5+jrkkJNju93jttdfwwgsv4NixY+jcuTOSkpLQpEkT/PDDDzh8+DCeeeYZDBo0CDt37szxOLNnz0bTpk2xb98+jBgxAs899xyOHz+e489MmDABs2fPxu7du+Hm5oYnn3zSdN/KlSsxY8YMvP3229izZw8qVaqEhQsXWvW77dmzB48//jj69u2LQ4cOYcqUKZg4caKpC9/u3bvxwgsvYNq0aThx4gR++eUXtGnTBoBUHfr164cnn3wSx44dw9atW9GrVy+o3H5DIqd24wZw+DAQEeHolhCRvfHz3hI/7x1IObnY2FgFQMXGxub7WM2aKQUotWGDDRpGRIVGYmKiOnr0qEpMTFRKKRUfL//WHXGJj7e+/UuXLlWBgYGm2xEREQqAmjt37l1/tmvXrurll1823W7btq0aPXq06XZYWJgaOHCg6bbRaFRly5ZVCxcutHiuffv2KaWU2rJliwKgfvvtN9PP/PjjjwqA6fVt3ry5GjlypEU7WrVqpcLDw7Ntp3bcmJgYpZRS/fv3Vx07drR4zKuvvqrq1KmjlFJq7dq1KiAgQMXFxWU61p49exQAdfbs2WyfzxYyvq/M2fKziWz7er7/vvxb7NfPBg0jokIjq/+T+Xk/2nSbn/d5Y6vPelbKreDqKtu0NMe2g4jsy8cHiI93zMXHx3a/R9OmTS1up6WlYcaMGWjQoAGCgoLg5+eHjRs34vz58zkep0GDBqbrWre56OjoXP9MaGgoAJh+5sSJE7j33nstHp/x9t0cO3YMrVq1stjXqlUrnDp1CmlpaejYsSPCwsJQtWpVDBo0CCtXrkRCelkiPDwcHTp0QP369fHYY49h8eLFiImJser5yXlpwyxv3HBsO4jI/vh5b4mf947DUG4FLZQbjY5tBxHZl8EA+Po65nKXSVat4uvra3F79uzZmDNnDsaOHYvNmzdj//796Ny5M1JSUnI8TsYJYwwGA4x3+Y/Q/Ge0mWPNfybjbLLKyq5kSqkcj+Hv74+9e/di9erVCA0NxaRJkxAeHo6bN2/C1dUVmzZtws8//4w6dergww8/xD333IMI9lcmMJQTFSf8vLfEz3vHYSi3gkv6q8VKOREVRX/++Sd69OiBgQMHIjw8HFWrVsWpU6cKvB333HMP/v33X4t9u3fvtuoYderUwV8ZZt3cvn07atasCdf0M6hubm548MEH8c477+DgwYM4e/YsNm/eDEC+JLRq1QpTp07Fvn374OHhgfXr1+fjtyJnERQkW4ZyIiqq+Hlf9D7vuSSaFdh9nYiKsurVq2Pt2rXYvn07SpYsiffffx9RUVGoXbt2gbbj+eefx9NPP42mTZuiZcuWWLNmDQ4ePIiqVavm+hgvv/wymjVrhjfffBN9+vTBP//8g/nz52PBggUAgB9++AFnzpxBmzZtULJkSfz0008wGo245557sHPnTvz+++/o1KkTypYti507d+Lq1asF/jpQ4aRVyq9fd2w7iIjyip/3Re/z3qGV8tTUVLzxxhuoUqUKvL29UbVqVUybNs2iy4NSClOmTEG5cuXg7e2Ndu3a4ciRIw5pL0M5ERVlEydOROPGjdG5c2e0a9cOISEh6NmzZ4G3Y8CAARg3bhxeeeUVNG7cGBERERg6dCi8vLxyfYzGjRvjq6++wpdffol69eph0qRJmDZtGoYOHQoAKFGiBNatW4f27dujdu3aWLRoEVavXo26desiICAAf/zxB7p27YqaNWvijTfewOzZs/HQQw/Z6TemokQL5Tdv8vOeiIomft4Xvc97g7K2Y78NzZgxA3PmzMHy5ctRt25d7N69G0888QSmT5+O0aNHAwDefvttzJgxA8uWLUPNmjUxffp0/PHHHzhx4gT8/f3v+hxxcXEIDAxEbGwsAgIC8tXezp2BjRuB5cuBwYPzdSgiKkSSkpIQERGBKlWqWPVBQbbTsWNHhISE4IsvvnB0U2wmp/eVLT+byLav5507gIeHXL92Te/OTkRFGz/rCwdn+7y31We9Q7uv//PPP+jRowcefvhhALJo/erVq01jDZRSmDt3LiZMmIBevXoBAJYvX47g4GCsWrUKw4cPL9D2slJORJR/CQkJWLRoETp37gxXV1esXr0av/32GzZt2uTophHB3R3w9wdu3ZJx5QzlRER5w8/73HNo9/X7778fv//+O06ePAkAOHDgAP766y907doVABAREYGoqCh06tTJ9DOenp5o27Yttm/fnuUxk5OTERcXZ3GxFYZyIqL8MxgM+Omnn9C6dWs0adIE33//PdauXYsHH3zQ0U0jAsAZ2ImIbIGf97nn0Er5a6+9htjYWNSqVQuurq6mNfX69esHAIiKigIABAcHW/xccHAwzp07l+UxZ82ahalTp9qlvQzlRET55+3tjd9++83RzaBCatasWRg/fjxGjx6NuXPnOqQNQUHAuXMM5URE+cHP+9xzaKV8zZo1WLFiBVatWoW9e/di+fLleO+997B8+XKLx2W1Nl3GfZpx48YhNjbWdImMjLRZexnKiYiI7GfXrl345JNP0KBBA4e2gzOwExFRQXJoKH/11Vfx+uuvo2/fvqhfvz4GDRqEF198EbNmzQIAhISEANAr5pro6OhM1XONp6cnAgICLC62ooVys8nhiYiIyAbi4+MxYMAALF68GCVLlnRoW9h9nYiICpJDQ3lCQgJcXCyb4OrqaloSrUqVKggJCbGYDCAlJQXbtm1Dy5YtC7StAKA1lZVyIiIi2xo5ciQefvjhXI01tOf8MQBDORERFSyHjil/5JFHMGPGDFSqVAl169bFvn378P777+PJJ58EIN3Wx4wZg5kzZ6JGjRqoUaMGZs6cCR8fH/Tv37/A28vu60RERLb35ZdfYu/evdi1a1euHm/P+WMAhnIiIipYDg3lH374ISZOnIgRI0YgOjoa5cqVw/DhwzFp0iTTY8aOHYvExESMGDECMTExaN68OTZu3JirNcptjaGciIjItiIjIzF69Ghs3Lgx12sHjxs3Di+99JLpdlxcHCpWrGibBq1di76//YzT6IgbN/rY5phEREQ5cGgo9/f3x9y5c3OcXdVgMGDKlCmYMmVKgbUrOwzlREREtrVnzx5ER0ejSZMmpn1paWn4448/MH/+fCQnJ8NV+wBO5+npCU9PT/s0aPdu1P93Ce6DPzYxlBMRUQFw6JjyooahnIicTbt27TBmzBjT7cqVK991GSqDwYBvv/02389tq+PkZMqUKWjYsKFdn4Pyp0OHDjh06BD2799vujRt2hQDBgzA/v37MwVyu/Pzkw3iOfs6ETkNft4Xbg6tlBc1DOVEVFg88sgjSExMzHL9z3/++QctW7bEnj170LhxY6uOu2vXLvj6+tqqmQDkg/Lbb7/F/v37LfZfvnzZ4bNsk+P5+/ujXr16Fvt8fX0RFBSUaX+BMAvlHFNORI7Gz/vigZVyKzCUE1FhMWzYMGzevBnnzp3LdN9nn32Ghg0bWv0BDQBlypSBj4+PLZp4VyEhIfbrgkyUVwzlRFSI8PO+eGAotwJDOVExoRRw+7ZjLkrlqondunVD2bJlsWzZMov9CQkJWLNmDYYNG4br16+jX79+qFChAnx8fFC/fn2sXr06x+Nm7M526tQptGnTBl5eXqhTp47FEpWa1157DTVr1oSPjw+qVq2KiRMn4s6dOwCAZcuWYerUqThw4AAMBgMMBoOpzRm7sx06dAjt27eHt7c3goKC8MwzzyA+Pt50/9ChQ9GzZ0+89957CA0NRVBQEEaOHGl6rtwwGo2YNm0aKlSoAE9PTzRs2BC//PKL6f6UlBSMGjUKoaGh8PLyQuXKlTFr1izT/VOmTEGlSpXg6emJcuXK4YUXXsj1c1Pubd269a7dKu3GLJTHxADpq7QSkTPi573pNj/vHft5z+7rVtBCOT+giZxcQoLpi3mBi48HctGdzM3NDYMHD8ayZcswadIkGAwGAMDXX3+NlJQUDBgwAAkJCWjSpAlee+01BAQE4Mcff8SgQYNQtWpVNG/e/K7PYTQa0atXL5QuXRo7duxAXFycxXg0jb+/P5YtW4Zy5crh0KFDePrpp+Hv74+xY8eiT58+OHz4MH755RdT17vAwMBMx0hISECXLl1w3333YdeuXYiOjsZTTz2FUaNGWXwR2bJlC0JDQ7FlyxacPn0affr0QcOGDfH000/f9fcBgA8++ACzZ8/Gxx9/jEaNGuGzzz5D9+7dceTIEdSoUQPz5s3Dhg0b8NVXX6FSpUqIjIxEZGQkAOCbb77BnDlz8OWXX6Ju3bqIiorCgQMHcvW8VISYhXKlgNhYgL0uiZwUP+8B8PO+UHzeKycXGxurAKjY2Nh8H+vFF5UClBo71gYNI6JCIzExUR09elQlJibKjvh4+cfuiEt8fK7bfezYMQVAbd682bSvTZs2ql+/ftn+TNeuXdXLL79sut22bVs1evRo0+2wsDA1Z84cpZRSv/76q3J1dVWRkZGm+3/++WcFQK1fvz7b53jnnXdUkyZNTLcnT56swsPDMz3O/DiffPKJKlmypIo3+/1//PFH5eLioqKiopRSSg0ZMkSFhYWp1NRU02Mee+wx1adPn2zbkvG5y5Urp2bMmGHxmGbNmqkRI0YopZR6/vnnVfv27ZXRaMx0rNmzZ6uaNWuqlJSUbJ/PXKb3lRlbfjaRjV/PrVuVAtRxQy0FKHX6dP4PSUSOl+X/yfy8V0rx8z4jaz7vbfVZz0q5Fdh9naiY8PGRM9iOeu5cqlWrFlq2bInPPvsMDzzwAP777z/8+eef2LhxIwBZVuqtt97CmjVrcPHiRSQnJyM5OTnXE7scO3YMlSpVQoUKFUz7WrRokelx33zzDebOnYvTp08jPj4eqampCAgIyPXvoT1XeHi4RdtatWoFo9GIEydOIDg4GABQt25di9m4Q0NDcejQoVw9R1xcHC5duoRWrVpZ7G/VqpXpDPjQoUPRsWNH3HPPPejSpQu6deuGTp06AQAee+wxzJ07F1WrVkWXLl3QtWtXPPLII3Bz40epU0mvmvm7xANpwPXrQLVqDm4TEdkHP+8B8PO+MHzec0y5FRjKiYoJg0G6lDnikt4tLbeGDRuGtWvXIi4uDkuXLkVYWBg6dOgAAJg9ezbmzJmDsWPHYvPmzdi/fz86d+6MlJSUXB1bZTHezZChfTt27EDfvn3x0EMP4YcffsC+ffswYcKEXD+H+XNlPHZWz+nu7p7pPqOVY4oyPo/5czdu3BgRERF48803kZiYiMcffxy9e/cGAFSsWBEnTpzARx99BG9vb4wYMQJt2rSxaowbFQFm3dcBcLI3ImfGz3sA/LwvDJ/3DOVWYCgnosLm8ccfh6urK1atWoXly5fjiSeeMH3g/Pnnn+jRowcGDhyI8PBwVK1aFadOncr1sevUqYPz58/j0qVLpn3//POPxWP+/vtvhIWFYcKECWjatClq1KiRaYZYDw8PpN3lP846depg//79uH37tsWxXVxcULNmzVy3OScBAQEoV64c/vrrL4v927dvR+3atS0e16dPHyxevBhr1qzB2rVrcSM9mXl7e6N79+6YN28etm7din/++SfXZ+6piEgP5T7GeACKoZyICgV+3udeUfy8Z587KzCUE1Fh4+fnhz59+mD8+PGIjY3F0KFDTfdVr14da9euxfbt21GyZEm8//77iIqKsvhAysmDDz6Ie+65B4MHD8bs2bMRFxeHCRMmWDymevXqOH/+PL788ks0a9YMP/74I9avX2/xmMqVKyMiIgL79+9HhQoV4O/vn2lplAEDBmDy5MkYMmQIpkyZgqtXr+L555/HoEGDTF3ZbOHVV1/F5MmTUa1aNTRs2BBLly7F/v37sXLlSgDAnDlzEBoaioYNG8LFxQVff/01QkJCUKJECSxbtgxpaWlo3rw5fHx88MUXX8Db2xthYWE2ax8VAumh3E2lwgMpuHGDy/gQkePx8946Re3znpVyKzCUE1FhNGzYMMTExODBBx9EpUqVTPsnTpyIxo0bo3PnzmjXrh1CQkLQs2fPXB/XxcUF69evR3JyMu6991489dRTmDFjhsVjevTogRdffBGjRo1Cw4YNsX37dkycONHiMf/73//QpUsXPPDAAyhTpkyWy7T4+Pjg119/xY0bN9CsWTP07t0bHTp0wPz58617Me7ihRdewMsvv4yXX34Z9evXxy+//IINGzagRo0aAORLz9tvv42mTZuiWbNmOHv2LH766Se4uLigRIkSWLx4MVq1aoUGDRrg999/x/fff4+goCCbtpEczGycI9cqJ6LChJ/3uVfUPu8NKqtBBE4kLi4OgYGBiI2NtXoigoymTwcmTgSeegpYvNhGDSQih0tKSkJERASqVKkCLy8vRzeHnERO7ytbfjaRHV5Pb28gKQlhOItHR4fBUUumE5Ht8LOe7MFWn/WslFuBlXIiIqJiwGyyt+vXHdwWIiJyegzlVtBCuZUT/xEREVFRYhbK2X2diIjsjaHcCi7prxYr5URERE6MoZyIiAoQQ7kV2H2diIioGGAoJyKiAsRQbgWGciLn5uTzXlIB4/upCGMoJ3Ja/L+ZbMlW7yeGciswlBM5J3d3dwBAQkKCg1tCzkR7P2nvLypCMoRyziVDVPTxs57swVaf9W62aExxwVBO5JxcXV1RokQJREdHA5A1NA0Gg4NbRUWVUgoJCQmIjo5GiRIl4Kp9eFDRYRbKjUYgLg4oUcKxTSKi/OFnPdmSrT/rGcqtwFBO5LxCQkIAwPRhTZRfJUqUML2vqIhJD+Ul3eKBVCAmhqGcyBnws55szVaf9QzlVmAoJ3JeBoMBoaGhKFu2LO7cuePo5lAR5+7uzgp5UZYeykukh3L2diVyDvysJ1uy5Wc9Q7kVGMqJnJ+rqyvDFFFxlx7KA13jAQBJSY5sDBHZGj/rqbDhRG9W0P7tcsIXIiIiJ5Yeyv1dGMqJiMj+GMqt4JL+arFSTkRE5MS0UA4J5YmJjmwMERE5O4ZyK7D7OhERUTGgzb5uYKWciIjsj6HcCgzlRERExUB6KPdVDOVERGR/DOVWYCgnIiIqBnx9ZcNQTkREBYCh3AoM5URERMVAeqXcx8gx5UREZH8M5VZgKCciIioG0kO5V9ptAKyUExGRfTGUW4GhnIiIqBjQQnkqu68TEZH9MZRbgeuUExERFQPpodwzLREuSGP3dSIisiuGciuwUk5ERFQMpIdyAPDFbVbKiYjIrhjKrcBQTkREVAx4epo+9P0Qz1BORER2xVBuBZf0V4uhnIiIyIkZDKZquR/i2X2diIjsiqHcCqyUExERFRNmoZyVciIisieGciswlBMRERUTDOVERFRAGMqtwFBORERUTLD7OhERFRCGciswlBMRERUTrJQTEVEBYSi3AkM5ERFRMcFQTkREBYSh3ApaKDcaHdsOIiIisjN2XyciogLCUG4FVsqJiIiKCVbKiYiogDCUW4GhnIiIqJhgKCciogLCUG4Fl/RXi6GciIjIybH7OhERFRCGciuwUk5ERFRMsFJOREQFhKHcCgzlRERExQRDORERFRCGciswlBMRERUT7L5OREQFhKHcCuZLoinl2LYQERGRHZmF8tRUIDXVwe0hIiKnxVBuBS2UA1yrnIiIyKmZhXIASE52ZGOIiMiZMZRbgaGciIiomMgQyjmunIiI7IWh3ArmoZzjyomIiJxYhlDOceVERGQvDOVWYCgnIiIqJlgpJyKiAsJQbgUXs1eLoZyIiMiJWYRyxVBORER2w1BuBVbKiYiIion0UO4CBW8ksvs6ERHZDUO5FRjKiYiIigkfH9NVP8SzUk5ERHbDUG4Fdl8nIiIqJlxcTMGcoZyIiOyJodwKBoMezBnKiYiInJyXFwDAE8nsvk5ERHbDUG4lrQs7QzkREZGT8/AAIKGclXIiIrIXhnIraaHcaHRsO4iIiMjOPD0BAB5IYSgnIiK7YSi3EivlRERExUR6KGf3dSIisieGcisxlBMRERUT6d3XWSknIiJ7Yii3Eid6IyIiKibMKuUM5UREZC8M5VZipZyIiKiYYPd1IiIqAAzlVmIoJyIisq1Zs2ahWbNm8Pf3R9myZdGzZ0+cOHHC0c1i93UiIioQDOVWYignIiKyrW3btmHkyJHYsWMHNm3ahNTUVHTq1Am3b992bMPYfZ2IiAqAm6MbUNQwlBMREdnWL7/8YnF76dKlKFu2LPbs2YM2bdo4qFWwqJSz+zoREdkLQ7mVGMqJiIjsKzY2FgBQqlSpLO9PTk5GcnKy6XZcXJx9GmJWKY9npZyIiOyE3detpIVyo9Gx7SAiInJGSim89NJLuP/++1GvXr0sHzNr1iwEBgaaLhUrVrRPY9h9nYiICgBDuZVYKSciIrKfUaNG4eDBg1i9enW2jxk3bhxiY2NNl8jISPs0ht3XiYioALD7upUYyomIiOzj+eefx4YNG/DHH3+gQoUK2T7O09MTnulVbLtipZyIiAoAQ7mVXNL7FjCUExER2YZSCs8//zzWr1+PrVu3okqVKo5ukuCSaEREVAAYyq3ESjkREZFtjRw5EqtWrcJ3330Hf39/REVFAQACAwPh7e3tuIaxUk5ERAWAY8qtxFBORERkWwsXLkRsbCzatWuH0NBQ02XNmjWObZhZKOeYciIishdWyq3EUE5ERGRbSilHNyFr7L5OREQFgJVyKzGUExERFRPsvk5ERAXA4aH84sWLGDhwIIKCguDj44OGDRtiz549pvuVUpgyZQrKlSsHb29vtGvXDkeOHHFYexnKiYiIigkuiUZERAXAoaE8JiYGrVq1gru7O37++WccPXoUs2fPRokSJUyPeeedd/D+++9j/vz52LVrF0JCQtCxY0fcunXLIW3WQrnR6JCnJyIiooLCSjkRERUAh44pf/vtt1GxYkUsXbrUtK9y5cqm60opzJ07FxMmTECvXr0AAMuXL0dwcDBWrVqF4cOHF3STWSknIiIqLhjKiYioADi0Ur5hwwY0bdoUjz32GMqWLYtGjRph8eLFpvsjIiIQFRWFTp06mfZ5enqibdu22L59e5bHTE5ORlxcnMXFlhjKiYiIigmz7utpacCdOw5uDxEROSWHhvIzZ85g4cKFqFGjBn799Vc8++yzeOGFF/D5558DgGmd0uDgYIufCw4ONt2X0axZsxAYGGi6VKxY0aZtZignIiIqJswq5QBYLSciIrtwaCg3Go1o3LgxZs6ciUaNGmH48OF4+umnsXDhQovHGQwGi9tKqUz7NOPGjUNsbKzpEhkZadM2u6S/YgzlRERETs6sUg4wlBMRkX04NJSHhoaiTp06Fvtq166N8+fPAwBCQkIAIFNVPDo6OlP1XOPp6YmAgACLiy2xUk5ERFRMpFfKvQxSKecM7EREZA8ODeWtWrXCiRMnLPadPHkSYWFhAIAqVaogJCQEmzZtMt2fkpKCbdu2oWXLlgXaVg1DORERUTGRIZSzUk5ERPbg0NnXX3zxRbRs2RIzZ87E448/jn///ReffPIJPvnkEwDSbX3MmDGYOXMmatSogRo1amDmzJnw8fFB//79HdJmhnIiIqJiIr37uqeB3deJiMh+HBrKmzVrhvXr12PcuHGYNm0aqlSpgrlz52LAgAGmx4wdOxaJiYkYMWIEYmJi0Lx5c2zcuBH+/v4OaTNDORERUTGRYaI3dl8nIiJ7cGgoB4Bu3bqhW7du2d5vMBgwZcoUTJkypeAalQMtlBuNjm0HERER2RkneiMiogLg0DHlRREr5URERMUEl0QjIqICwFBuJYZyIiKiYiI9lHsodl8nIiL7YSi3EkM5ERFRMZHefd1dsfs6ERHZD0O5lVzSXzGGciIiIieXXil3VWlwQRpDORER2QVDuZVYKSciIiom0kM5IJO9sfs6ERHZA0O5lRjKiYiIion07uuATPbGSjkREdkDQ7mVGMqJiIiKCXd301WGciIisheGcitxnXIiIqJiwmCwWKucoZyIiOyBodxKrJQTEREVI2ZrlXNMORER2QNDuZUYyomIiIoRba1yVsqJiMhOGMqtxFBORERUjKR3X+eYciIisheGcisxlBMRERUj7L5ORER2xlBuJZf0V4yhnIiIqBjgRG9ERGRnDOVWYqWciIioGGGlnIiI7Iyh3EoM5URERMWI2URvly87uC1EROSUGMqtxFBORERUjJhN9HbqFKCUg9tDREROh6HcSlooNxod2w4iIiIqAOmVci8k49YtIDrawe0hIiKnw1BuJVbKiYiIipH0SnloUAoA4PRpRzaGiIicEUO5lRjKiYiIipH0SnmFMskAgFOnHNkYIiJyRgzlVmIoJyIiZ7V3714cOnTIdPu7775Dz549MX78eKSkpDiwZQ6UHspDS8vvz1BORES2xlBuJYZyIiJyVsOHD8fJkycBAGfOnEHfvn3h4+ODr7/+GmPHjnVw6xxE675eUirl7L5ORES2xlBuJZf0V4yhnIiInM3JkyfRsGFDAMDXX3+NNm3aYNWqVVi2bBnWrl3r2MY5SnqlvGwgu68TEZF9MJRbiZVyIiJyVkopGNOXF/ntt9/QtWtXAEDFihVx7do1RzbNcdIr5aUD9O7rXBaNiIhsiaHcSgzlRETkrJo2bYrp06fjiy++wLZt2/Dwww8DACIiIhAcHOzg1jlIeqW8pE8yXFyA+HjgyhUHt4mIiJwKQ7mVGMqJiMhZzZ07F3v37sWoUaMwYcIEVK9eHQDwzTffoGXLlg5unYOkh3I3YwoqVZJdHFdORES25OboBhQ1WihP791HRETkNBo0aGAx+7rm3Xffhav2AVjcpHdfR3IyqlcHzp6VLuz33+/QVhERkRNhpdxKrJQTEZGzioyMxIULF0y3//33X4wZMwaff/453N3dHdgyB0qvlCM5GTVqyFVO9kZERLbEUG4lhnIiInJW/fv3x5YtWwAAUVFR6NixI/7991+MHz8e06ZNc3DrHESrlKekMJQTEZFdMJRb48wZlLx4CH64xVBORERO5/Dhw7j33nsBAF999RXq1auH7du3m5ZFK5ayqJRzTDkREdkSQ7k1evdG51caoCW2M5QTEZHTuXPnDjzTQ+hvv/2G7t27AwBq1aqFy5cvO7JpjqOF8pQUpM97x2XRiIjIphjKreEm8+K5IZWhnIiInE7dunWxaNEi/Pnnn9i0aRO6dOkCALh06RKCgoIc3DoHMZvorWpVwMUFuH0biIpybLOIiMh5MJRbI31AOUM5ERE5o7fffhsff/wx2rVrh379+iE8PBwAsGHDBlO39mLHrPu6hwcQFiY3Oa6ciIhshUuiWYOVciIicmLt2rXDtWvXEBcXh5IlS5r2P/PMM/Dx8XFgyxzIrPs6IKE8IgK4eNGBbSIiIqfCUG6N9FDuijSGciIickqurq5ITU3FX3/9BYPBgJo1a6Jy5cqObpbjmHVfB4CQELnJ7utERGQr7L5uDbNKudHo4LYQERHZ2O3bt/Hkk08iNDQUbdq0QevWrVGuXDkMGzYMCQkJjm6eY2SolDOUExGRrTGUW4Pd14mIyIm99NJL2LZtG77//nvcvHkTN2/exHfffYdt27bh5ZdfdnTzHIOVciIisjN2X7cGJ3ojIiIntnbtWnzzzTdo166daV/Xrl3h7e2Nxx9/HAsXLnRc4xzFbKI3gKGciIhsj5Vya3BMORERObGEhAQEBwdn2l+2bFl2X2f3dSIishOGcmuw+zoRETmxFi1aYPLkyUhKSjLtS0xMxNSpU9GiRQsHtsyB2H2diIjsjN3XrcFQTkRETuyDDz5Aly5dUKFCBYSHh8NgMGD//v3w8vLCr7/+6ujmOUaGSrnWkeDqVSA11fTVgIiIKM/4UWINjiknIiInVq9ePZw6dQorVqzA8ePHoZRC3759MWDAAHh7ezu6eY6RoVJepgzg4gIYjcC1a3rlnIiIKK8Yyq3BSjkRETk5b29vPP30045uRuFhPtGbUnB1NaBMGeDKFenCzlBORET5xVBuDU70RkRETmbDhg25fmz37t3t2JJCSgvlSgFpaYCbG0JC9FBORESUXwzl1jCrlBuNDm4LERGRDfTs2TNXjzMYDEgrjmekte7rgFTL00P5gQMM5UREZBsM5dZg93UiInIyRp5lzplWKQdksjdfX87ATkRENsUl0azBid6IiIiKF1dXwGCQ61wWjYiI7ICh3BocU05ERGQ3CxYsQJUqVeDl5YUmTZrgzz//dHSTJJCbT/YGhnIiIrIthnJrsPs6ERGRXaxZswZjxozBhAkTsG/fPrRu3RoPPfQQzp8/7+imZbtWOUM55ctffwFvvAHcvu3olhCRgzGUW4OhnIiIyC7ef/99DBs2DE899RRq166NuXPnomLFili4cKGjm5ZprXKtUn7lioPaQ85hxAhgxgwJ5kRUrDGUW4NjyomIiGwuJSUFe/bsQadOnSz2d+rUCdu3b8/0+OTkZMTFxVlc7Ird18kaCxYAs2YBN25k/5i4OODwYbk+bx6wZ4/tnl8pYOZMoFIl4Kefcn7s9evAE08AS5fa7vmJyGoM5dYwq5QrJf/nEREROYuffvoJv/76a6b9v/76K37++We7Pe+1a9eQlpaGYK1feLrg4GBEZZF8Z82ahcDAQNOlYsWKdmsbAL1Snt59XQvlN28CSUn2fWoqYo4dA0aOBMaPB6pUASZPNr1vLOzerX+RNBqBZ54BUlOzP25uv3TeuQMMGwZMmABERko1Pv1kUiYpKUCvXsCyZfIzW7bk7jlSUoBVq4DCMLSEMouMBC5dcnQryEoM5dYwm+gNAKvlRETkVF5//fUs1yJXSuH111+3+/MbtFnOzZ434z4AGDduHGJjY02XyMhI+zYsQ6W8RAk9p7MLO1n4/XfZurhINXzaNKmaZ7Rzp2zbtZM31N69wPz5WR9zyxagZElgypScw3lqKtC9u1S9XVyAwEDg3Dng008zP1Yp4NlngT/+0G8PGiSV85zExACdOwMDBgDNmgHHj+f8eHuJjQU++wz44AM5qZEbMTHA1KnA2LFy8sIZ/fUXUL06UL48UL8+MG5c4TlzuG0b0Lo1kJsTvJs2yfu+GFVAGcqtYVYpB3L/fwAREVFRcOrUKdSpUyfT/lq1auH06dN2e97SpUvD1dU1U1U8Ojo6U/UcADw9PREQEGBxsasME70ZDOzCTtnQQvmbb0ogByRgZKSF8m7dgLfekuszZmRdLZ81S0Lo1KnA9OnZP/eGDcAvvwA+PnJ95ky9LRknk3vvPT28f/MNULMmcPEiMHx49kHozBmgZUtg61a5HR0NdOgA2PH/hkzi4oDBg+Uf4LBhwJgxwIoVOf9Mairw9ttA1apyYuPdd6UnQ34cPAisXAlcvZq3n7dHZe/qVaBPH71nxuHD8t6aMCHnn1MK2LEDuHYtd8+jlLxnHn4Y+PHH3P1MRATw6KNy0qBfv5x7WezZA3TqBLRvDzRqJK9zMQjnDOXWyBDKWSknIiJnEhgYiDNnzmTaf/r0afj6+trteT08PNCkSRNsyhBeNm3ahJYtW9rteXPNfKK36dOBGjVQt9RlAAzlZCYtTQ+sDz4IPP64XN+717Iyq5Qeyps3l3AZFCShaNs2y2NGRFiG+kmTJFBnRau0jxkjgempp6QL/ZUrwIcf6o/79lvgtdfk+gcfAP/7n3RHd3MD1q6VwJWRUnLM48eBChWAzZuBevWkm3T79hLQbeHaNTmxcPJk1vdPnQp88YVUf0uWtPy9s/PGG8Drr8t4k2rVZN977wE//GD5OKWAr7+WEys5hcAVK6SXwMCBcnKgTZucw+nlyxIshw0D7r0XKFsWcHcHHnhAqsGpqcBvvwGjR8swhldflf9n5s+X3/Wvv+5e7TYapafDpUtArVrSQ+Ldd+W+Zcty/vnJk4EWLYC6dYF9+3J+nl27gPvuAx57TOYreOqpu7ctIUECeUyM3I6NBYYMyb66aX6S5cABeZ21E1zZUQr4++/cn1gojJSTi42NVQBUbGxs/g82Z45SgFqJfgpQ6tat/B+SiIiKH5t+NtnQ008/rerXr69Onz5t2nfq1CnVoEEDNWzYMLs+95dffqnc3d3VkiVL1NGjR9WYMWOUr6+vOnv27F1/1u6vZ+vWMpXM118rVamSUoB6q8kaBSi1aJF9npKKoF275H0SEKDUnTtKpaUpFRgo+/bu1R937pzsc3VV6vZt2ffUU7Lv2Wctjzlhguzv2FGp6dO1KY3kucwdOSL7XVzk+JrPP5f9vr7yPXbHDqV8fGTfyJGWx3jjDdnftKlSRqPlfTt2yH1+fkpduCD7oqKUqlFD9o8fn/Vr8tZbSr38slKXL+f82q1dqx9La+9ff1k+5vp12Q8otXq1UtHRSnl4yO2dO7M+7oULSnl5yWM++ECp1FSlRo+W26VKKXXmjDwuIUGpvn315w8PV2rlSnm8Ji1N/3sASlWooF83GJR67z153SIilHrhBaWaN5fn0B6T3UX7nXK6eHgodf/9Sv3zT9a/5+TJ8jhvb6UOHZJ9qalKVawo+1euzP7vY/48/v5K/f571o9NTlaqdGm9zdrvtmBB1o/XDBokjytbVqktW/T333vvZX5saqpSoaFy/7JlSo0bJ9fd3ZU6diz755g7V/+bXLqUc3sKkDWfTQzl1vjwQ6UAtQaPKUCpmzfzf0giIip+Cmsov3nzprrvvvuUm5ubqly5sqpcubJyc3NTDzzwgIqJibH783/00UcqLCxMeXh4qMaNG6tt27bl6ufs/np26KBMCTz9y+vqFh8oQKkpU+zzlFQEvf22vD+6d9f3deyov3c0X30l+xo21Pf98oseXLQgeOeOUuXKyf6vvpJ9ffrI7YEDLZ975EjZ37On5f7UVKXats0c8jp1kuObi45WytNT7v/zT8v7Xn5Z9vfrZ7l/7VrZHxSkn2DQbN9uGfbeekuCXUZGo1JVq+qPDQrSf2bHDv1x06bpr5t20mDw4KxfD80zz8j999+v/0xyslLNmulh99FHlWrSRG67uemhEVCqcWMJwv/+q/8MIGExLU1OgAwfru9v1UqOYf5aGwxy/LFjlVq3Tqn9+5U6flypUaP01zsoSE7MTJum1EsvKTVsmFK9eyv14INKBQfrxwoM1EO3ZsEC/f6lSy3vmzpV9rdtm/m1SS82KkCpSZOUatdOD8DmJ5E027bJ/WXKyAmZ9FykKldWKiUl69d/3z79BNTWrbLv44/1197sBLBSSqnNm+W+EiWUSkqSv1nXrrKvXbvMJ4uUUurvvy1f83vvlZMshQBDuRmbflAvXKgUoL5BLwXICTsiIiJrFdZQrpRSRqNR/frrr+qdd95RH374Ya6DsSPZ/fXUvhQ++6zpi9/WVuMVoNRzz9nnKakI6tRJ3h9z5+r7tMrqE0/o+7SAO3y4vi8lRamSJWW/Fl6++05uly4tAUUpCYdacIqKkn2xsVLBBpTatClzu+7cUWrxYr0CWbu2UtmdZHv6aXnMo4/q+4xGpcLCZP/atZaPT02VUAYo9cknlvc99ljmSvDzz2d+Tq0K7+Oj1JUrEu4feEAPoT//rFR8vB7Wv/xS/1mtd4KHh/56aE6elDCY1UmGs2ctQ7YWjLdsUeraNaXefFPv5aAFa0B6QXz+ueWxjEal3n9ffwwgYfrLLyWAx8dn/VorJW3euTP7UKsd//RpCfxaNTgyUu5buVJ/3jfeyPyzkZHSewKQEwFKyd9szBi9rdrPJSVJuwGp9Gek9aTQTswkJMhJJECp5cuzbvuIEXJ/nz6Wv4/2PIMHWz5ee/+Z98yKiJAeAFk9z5UrSpUvL/c99JBeve/TJ+sAX8AYys3Y9IN68WKlAPUtuitATigSERFZqzCH8qLI7q/no4/KF73mzU1fZI+2eDJTdqFiLDlZDw7mlcwNG2Rf3br6vvvvl32ffWZ5jKFDZf+oUXL74Yfl9ssvWz5Oex9Omya3P/hAbt9zT85BJD5eqTVrlLp6NfvHaN3gDQa9irlzpx6us6pAzp6t/47a8585o4fBAweU+ugjue7lJaHXnNad3LwKHx+vDxsBlKpfX7bVqmWu8Guvx5tvWu7XehU8/HD2v+/Bg0q98oqcQPjvP8v7rlxR6skn9TYMHpxzN/wffpAw+fff2T8mP65fV6pWLb0XgXlFf9So7P/2jzyiB91vv9XfV4AMiTD/uW+/1avfGY93332Z37ezZsm+WrWk54C527flJAag1G+/Wd6nnVxycVHq6FHZl5ysn5jK+Hitm32pUvIeVUrGEWvvkVq1lIqLkxNa7u6yb/Hi3L2udsRQbsamH9RLlyoFqB/QVQF3Hx5DRESUlcIUyj/44AOVmJhoup7TpbCy++upfbnXQhegLjV5WAFKtWhhn6ekIkbr2lu2rGWYuXxZD7lxcVIR1d5HWrjQ/Pij7A8NlYCqBaeMY2lXrNAf98UX+rjqDz+0ze/y0EOW1dJXXslc7TR382bmSr1Wie3USW4bjUo1aiT7Zs3SfzY1VamQENm/YYPlcePjlXrxRT3cA9JrNaMvvtD/fWph7t139df9wIG8vxZKSXDfvz9/x7CVs2f1yrB2GT48cyA298MPlo/XTo6sWZP5sfHx+hj8gwf1/TEx+t/h/Hl9f2ys3qPgu+8sj5Wem1TVqlm3r0cPuf/xxy3bGRxsOZZfKfl3o/VsCA6WUK+d3PL3V+rwYf2x770n+8uVyzykooAxlJux6Qd1+mQZv6KTAvR5LoiIiKxRmEJ55cqV1bX0ypU2jjyrS5UqVRzc0uzZ/fXUxq2aXW7d00QBShXil4WsYTRK1XD16rz9/MSJ8t7o2zfzfemTA6rNm2WsrtYNOmNQSUqy7DLt6irj1DNKTtaDrHbp3Tvr8dp5sXGj/vwzZ+rd07/5Jvufef55eUzt2kp9+qke0n/9VX/MsmV692utu7Y2hrhkyezbv3evUu3bS5fnrCr1d+7o1V9vb70LtHlvAmeSkCBd/k+flhM9d5OaKhVlPz8ZI9+/f+aJAs1pr+WMGfq+9ev13hgZjR0r93XsaLm/ZUvZP3Nm1s9z4ID+d3rxRf19ltUQB6Wkh0V4uOX7PjDQct4BpeTfkXYs8xNADsBQbsamH9SrVikFqN8NHRRgObklERFRbhWmUO4M7P56mn/JT7+khFQwfSckJ3DsmPxt/fysH4t6+rRU6wAJnhlpY6tnzZJJ4AClOnfO+ljaLOw1amQOG+a02ba1EJOxspgfRqN0dTZ/z/v45Fx1/O8/vauydjHvzq6UhCVtDLI2Llz7t/XUU/lrc1KSPveDduEsjJZy+77WJmJr3lzfp40N14ZWmIuI0Me1a706Dh/WT+zkNBu61gtJu5QooXdnz8rVq/pQhpIlldq9O+vHab0nAgOznwTMaJQTPrY6mZUFaz6buE65NbR1yg2yTnl2y+sRERGRE9HWKTfjdv0KAIXYWFlmmIq4iAjZxsdbt+Z2SgrQty9w6xZw//3AgAGZH3PvvbJ9+21gwwZ5P82cmfXxPvhAHrNvn6xhnp3Ro4FevWQt6w8+AFxdc9/muzEYgMWLgc8+A7y9ZV+3boCPT/Y/U7UqcOiQrCddvbrsmzpVjqXx9ASee06uv/22rI2+dq3c7tcvf2329ATWrQMeeUSec9o0WX+bdOZ/i5x06ybbnTuBqCi5vmmTbB98MPPjK1eW1x0AFiyQeP3mm3K7e3cgNDT755o1S/59PPKIrKf+339A7drZP750aWDzZvn3s3070KRJ1o/r3x8ID5c10d94A0hLs7w/JkbWTm/cGHj44UIR6gxKKWXtD0VGRsJgMKBChQoAgH///RerVq1CnTp18Mwzz9i8kfkRFxeHwMBAxMbGIiAgIH8HW78e6NUL/7i0QkvjXzh9GqhWzTbtJCKi4sOmn002pJTCN998gy1btiA6OhrGDF9U1q1b56CW5czur+fLLwPvvy/Xg4KA69cBAKVwHTEohatX5bsiFWEffww8+6xc37Ej50Bs7pVXgNmzgZIlgQMHgIoVMz/mzz+BNm302wsW6OG0sDt6FFiyBBgxIvdfepWSkxv+/pnvi4oCwsLkZIYmJAS4cME2JxaUkn+f/AeZP82aAbt3A59+KkG8cmX5+1y/DgQGZn78pk1Ap07yNx88GPjoI3n8tm1Aq1YF3nwAwM8/A127yvXq1eX/8XLlJKhPmgScPas/9qOP5D1uY9Z8NuWpUt6/f39s2bIFABAVFYWOHTvi33//xfjx4zFt2rS8HLJoSP/PQquUZzzpQkREVJSNHj0agwYNQkREBPz8/BAYGGhxKbbMK+UNG0oAA1DdV6pI6RmdirLISP26VjW/m4MHJZADwNKlWQdyQKpxLulfufv21cN/UVCnjvyO1lShDIasAzkgAXz+fKB9e6BDB6BLF2DhQttV+g0GBnJb6N5dtm+/rfdiuPferAM5IH/Le+6RHiMffST7lixxXCAH5L01d66cSD19Wk6E9eghJw3OnpXeHS+8II8dOzb3/+7txC0vP3T48GHcm94V56uvvkK9evXw999/Y+PGjXj22WcxadIkmzay0Ejvvu4OhnIiInI+K1aswLp169BVqy6Q8PTUr9etC1y8CMTEoJrfFey6XQc3bjiuaWQj58/r13P75fy772T7yCPyZT87vr7A+PHA4cPAJ5/kvhuxs3r6ablQ4dWjh1STT52Si7YvOy4uwMiResidPRsYMsT+7cyJwSDDPIYNk393X38tPSk8PYF69YAZM4CAAGD/fuCPP4Ann5SKv1ue4nG+5elZ79y5A8/0D6jffvsN3dPPptSqVQuXL1+2XesKm/Q/kqtB0jhDOREROZPAwEBUrVrV0c0ofDKG8oMHgePHUcVbKuUM5U7AvFJu3q01J7/8IlttPG1OtDG2REVBgwbA559LhblcORlykNV4cnNPPilDP5o1A8aMKZBm5oqfH/DSS3LJymefye+7dSvQrh2wYoV01y9geeq+XrduXSxatAh//vknNm3ahC5dugAALl26hKCgIJs2sFDRJnpjpZyIiJzQlClTMHXqVCQmJjq6KYWLeff1unWB4GAAQEWPKwAYyp2CtZXymBgJIADQubN92kTkSIMGyWR9w4dLV/C7VZB9fYGVKwtXIM+NatVk0kF/f+Dvv2WCuFWrCrwZeQrlb7/9Nj7++GO0a9cO/fr1Q3h4OABgw4YNpm7tTomhnIiInNhjjz2GmJgYlC1bFvXr10fjxo0tLsWWeaW8Th0ZFwugnAsr5U7BaJSJxjS5CeW//y4/V7s2UKmS/dpGRPbXo4dM1NiiBRAXJ13xC3iykDx1X2/Xrh2uXbuGuLg4lEyf7AQAnnnmGfjktFxCUadN9MZQTkRETmjo0KHYs2cPBg4ciODgYBiK+9hXjVYpDw2VSd7SK+VlFSvlTiE62nI28HPnJHC75FC7+vVX2bJKTuQcqlSRseXTp8vJ1wLu/Z2nUJ6YmAillCmQnzt3DuvXr0ft2rXR2Zn/c9LGlEPSeCFY0o6IiMhmfvzxR/z666+4//77Hd2UwqVUKdk2bCjb9Ep50B1Wyp2CNp48OFiqY3fuAJcuAelL/2ailD6ePH0IJxE5ATc3YMoUhzx1nrqv9+jRA59//jkA4ObNm2jevDlmz56Nnj17YuHChTZtYKHC7utEROTEKlasWKjWTS80unWTdcrnzJHb6ZXywGRWyp2CNp68ShW9K3pOXdiPHpXu7l5eluuPExHlUZ5C+d69e9G6dWsAwDfffIPg4GCcO3cOn3/+OebNm2fTBhYqWihXDOVEROR8Zs+ejbFjx+JsbmefLi68vIAXX5R1eAFTKPe/zUq5U9Aq5RUr6rMuZ/w3cOgQUKYM0LIlMHmy7GvbFvD2LqhWEpETy1P39YSEBPj7+wMANm7ciF69esHFxQX33Xcfzp07Z9MGFirpY8pdWSknIiInNHDgQCQkJKBatWrw8fGBu7u7xf03mD5Fevd1r7hoGGDEjRt5qnFQYaFVyitVknWLgcyV8m+/Ba5dk4vGmYdsElGBylMor169Or799ls8+uij+PXXX/Hiiy8CAKKjo5272xu7rxMRkRObO3euo5tQNJQtCwBwMaYhCNdx/XoZBzeIcuXSJeDyZaBJE8v95pVybQLjjKFcq5y3aiXHiI8HHnvMrs0louIjT6F80qRJ6N+/P1588UW0b98eLVq0ACBV80aNGuWpIbNmzcL48eMxevRo05cCpRSmTp2KTz75BDExMWjevDk++ugj1K1bN0/PkW/podxFSRpnKCciImcyZMgQRzehaHB3l5l5r19HMK7g0g2G8kLv1i2geXMJ1EePAjVr6veZV8oTEuR6xu7rWkgfPlzWbyYisqE8hfLevXvj/vvvx+XLl01rlANAhw4d8Oijj1p9vF27duGTTz5BgwYNLPa/8847eP/997Fs2TLUrFkT06dPR8eOHXHixAlT9/kCxUo5ERE5OaPRiNOnTyM6OhrGDMuMtOGkVrr0mbpDEIWjN+shLc00yo0Ko5kz9bXIt22zDOXmlXJtabSMlXLtdpUq9m0nERVLeQrlABASEoKQkBBcuHABBoMB5cuXx7333mv1ceLj4zFgwAAsXrwY06dPN+1XSmHu3LmYMGECevXqBQBYvnw5goODsWrVKgwfPjyvTc87bUk0TvRGREROaMeOHejfvz/OnTsHpZTFfQaDAWn84NOFhABHjyIYV6AUEBurr5xGhczp0zJ7vubff4Gnn5brKSlAlEzYh0qV9C93kZGyNJq7O5Caqgd3hnIisoM8zUxiNBoxbdo0BAYGIiwsDJUqVUKJEiXw5ptvZjqrfjcjR47Eww8/jAcffNBif0REBKKiotCpUyfTPk9PT7Rt2xbbt2/P9njJycmIi4uzuNiMNtEbQzkRETmhZ599Fk2bNsXhw4dx48YNxMTEmC6c5C2D9BnYwzw4A3uh9/LLEr5Ll5bbO3fq9128KOuOe3rK7OrBwXLdaNQr65GR8qXPwwMIDS349hOR08tTpXzChAlYsmQJ3nrrLbRq1QpKKfz999+YMmUKkpKSMGPGjFwd58svv8TevXuxa9euTPdFpZ+1DE7/0NNoy69lZ9asWZg6daoVv40VtEo5jAAUjEaDfZ6HiIjIAU6dOoVvvvkG1atXd3RTCr/0GdgreV4BUhjKC62vvgI2bJDvcGvWAB06AEeOyERtfn6WXdcNBrlUrgycOCFd1qtU0buuh4UBLpxpn4hsL0//syxfvhyffvopnnvuOTRo0ADh4eEYMWIEFi9ejGXLluXqGJGRkRg9ejRWrFgBLy+vbB9nMFgGX6VUpn3mxo0bh9jYWNMlUvvP1hbc9HMYrkhjpZyIiJxK8+bNcfr0aUc3o2hILxpUcGOlvFAxH3bx3XfAgAFyfcwYoH17oEIFqYLv3Sv7tUneKlbUf07roq6FcY4nJyI7y1Ol/MaNG6hVq1am/bVq1cp197Y9e/YgOjoaTcyWpUhLS8Mff/yB+fPn48SJEwCkYh5q1lUoOjo6U/XcnKenJzw9PXP7q1jHLJS7IRVpaXkekk9ERFQoHDx40HT9+eefx8svv4yoqCjUr18/0zrlGSdkLdbSv4sEG64AYCh3uJgYYNQo4JtvgDp1ZKb1JUtkPHi/fsCsWfK4e++Vbuk7dwJt2uiV8kqV9GNVrSrbU6dkq83EzlBORHaSp1QZHh6O+fPnY968eRb758+fn+sP7A4dOuDQoUMW+5544gnUqlULr732GqpWrYqQkBBs2rTJtMxaSkoKtm3bhrfffjsvzc4/s2lVJZQ7phlERES20rBhQxgMBouJ3Z588knTde0+TvSWQXr39TJprJQ73ObNwJAh+hjw/fvlAkgg//xzvbDSvDmwbp1M9gZkXSnXlvfVxp6zUk5EdpanUP7OO+/g4Ycfxm+//YYWLVrAYDBg+/btiIyMxE8//ZSrY/j7+6NevXoW+3x9fREUFGTaP2bMGMycORM1atRAjRo1MHPmTPj4+KB///55aXb+ZaqUO6YZREREthKRceknyp30cfcVbh1DCcTg+vWSDm5QMbVqlawbbjQCNWoACxYAV64Av/0mJ07efNPi+xu0lYJ27pSu7nv2yG3zSnnLlrL991+ptDOUE5Gd5SmUt23bFidPnsRHH32E48ePQymFXr164ZlnnsGUKVPQunVrmzRu7NixSExMxIgRIxATE4PmzZtj48aNjlmjHOCYciIicjphYWGm63/88QdatmwJNzfLrwepqanYvn27xWOLverVgfr14XboEB7Fety48eTdf4Zs6+uvgcGDJZAPGgQsXAj4+sp92ljyjJo0kcncIiNl7fJduwBvb6BLF/0xtWoBJUoAN28CBw8ylBOR3RlUxoVI8+HAgQNo3LhxoereFhcXh8DAQMTGxiIgICD/B3RxAZRCMKIw89NgDBuW/0MSEVHxYvPPJhtxdXXF5cuXUbZsWYv9169fR9myZQvV57s5h72eM2YAb7yBjeiILwZuxBdfFNxTF0vXrwPLlsm64rGxwNKlUsl+4gng009zPzN6/frA4cP67XffBV55xfIxXboAv/4KvPeeft/Vq/qyakREd2HNZxPXdbBWevWA3deJiMjZZLfCyfXr1+GrVSBJ16cPAKA9NiPtcrSDG+PEEhOBt94CqlWTgPzee8DixRLIBw6U69YsVaZ1YQdk/PiYMZkf06KFbFevlq2fHxAUlOdfgYgoJ5w+3FqursCdOwzlRETkNHr16gVAJnUbOnSoxSomaWlpOHjwIFpq42xJV706Yqo1Qcn/9qDhf2sBPOfoFjmf48eB7t31mdDDw4GOHQEfHwnp/ftbTMSbK/feC3z2mQT5xYstx5xrtFCujTmvUkW6vRMR2QFDubXMKuVGo4PbQkREZAOBgYEApFLu7+8Pb29v030eHh6477778PTTTzuqeYVaTKe+KLlwD9peWQOGchv7+Wegb18gLg4oX16q5f37W1cVz0rv3jJB3P/+J2PMs9K8uYRwbZRn5cr5e04iohxYFcq1M+nZuXnzZn7aUjSkh3JO9EZERM5i6dKlAIDKlSvjlVdeYVd1K9x59HFg4atolvgHcOkSVGg5FlTzSylg9mxg7Fi53rq1rD+eYa6DPAsKArZty/kxgYFA3br62HNO8kZEdmTVqcbAwMAcL2FhYRg8eLC92lo4cEw5ERE5qcmTJzOQW8m/biX8jZZwgcKdT5cjPFyKr6mpjm5ZEZWUBAwdCrz6qgTyp5+W5c1sFcitoXVhBxjKiciurKqUa2fSizWGciIiciKNGzfG77//jpIlS6JRo0ZZTvSm2bt3bwG2rGgoWRIYh2fQCtuR+s77+O/2C0iAL37/Hejc2dGtK2L+/BN48UUZx+3qCsyZA4wa5bix3C1ayJhzgKGciOyKY8qtlT6ZCEM5ERE5gx49epgmduvZs6djG1MEeXsD67wGYGLSm6h++z+MwAK8h1exahVDebbS0oB9+4A//pDx4gDw778yhhyQMx1ffQU8+KDj2ggA5pMbMpQTkR0xlFuLY8qJiMiJTJ48GYDMst6uXTs0aNAAJUuWdHCripbAIDfMuDgBS/EkXsW7WIARWLfOF4sWSWg/dgw4fRro1q2YTuCdnCyzqG/bBmzeDGzdKuuMZ+TqCjz1FDBpElCuXIE3M5OaNYGmTYEbN+Q6EZGdMJRbi93XiYjICbm6uqJz5844duwYQ7mVSpUCVlwciDcwHdVwBuNLLsIbMS/jhx9kEu/77pOC8COPAMuWyeOzk5Ii+fXgQcDdHejUSQrHRc6FC8C0aRLCIyKQacmagACgbVugQgW57e8v48erVy/4tmbHYAC2b5dtVsumERHZCP+HsRZDOREROan69evjzJkzqMKuulYpVQpIhTtmYAI+wzCMTn4bs/EEVq4shYUL9R7a338PNG4MTJkiQb1MGeD334FNm4ATJ4DISMmy5pPEubkB7doBw4cDvXrlfzUwu1IKOHkS+Pxz4P33ZdI2jb+/jNFu314ujRoVjaDr7u7oFhBRMVAE/jcsZDimnIiInNSMGTPwyiuv4M0330STJk0yzcQeEBDgoJYVblrl+1iTQcDtd+F3/DjmYxQGfLcKAODjAyxfDrz2GnDmDPDEEzkfLyAACA+XXtNHjsjk47/9BtSpI+Hc3V2GZXfrVgiWzzYapRr+6adyhuHaNf2+1q2B8ePllwkJKaZ994mI7o6h3FpmlfKMPbGIiIiKsi5dugAAunfvbjELu1IKBoMBaTwbnaV27YANG4Dxk92B4OVAy5bon7Ya6/EovsFjeP99oHdvoGNH4J13ZH6zPXuAxEQJ2p07A/feC1SsCFSqJD26tZf/1Cngiy+AefOAo0eB0aP15500SSYsr1vXBr+EUkB8vFS0zaWlAT/9BCxcKKX81q2l0n3rFnDggNx36pT+eC8v6QYwZgzQvTuDOBFRLhiUUsrRjbCnuLg4BAYGIjY21jZn+Js0AfbuRRf8jIavdcFbb+X/kEREVLzY/LPJRrZt25bj/W3bti2gllinMLyeiYkyqRsAYOJEYPp0XEMQXm+7A4u3VM+UTe/ckVyb0/hyczdvAh99BPzzD+DhAZw8loZjx4FyFVyxfTsQcyUFqxfHo5RHPJ54LB6lfRMBT09cTfDF6V0xSNuzH96nD+Iej7Pwi4mUJy9fXs4AXL4M7N0LxMTIBGuNGgElSgBXrsgA9wsXcm6cvz8weDDQv79MjObhYeWrR0TkfKz5bGKl3FocU05ERE6qsIbuosAUyAFg4kSoH39E6X378Om2GsC9TYH775dqdHIycPUq3C9dQqlbt6Rbd/ny0ic9Pl7GYXt4AJ6e8tioKODqVZTw9MSEwEDpLn7uHNSFCzDACOMFA4yVXFARaWigPf98vSll0i9ZMq9way5dkou5kiVlVvTmzWXm9L/+kn3h4RLCe/QA/Pzy+MoRERFDubUYyomIyMklJCTg/PnzSElJsdjfoEGDbH6CLHh4wPDVVxJk//gD2L1bLlk5fDhPT6EV3l2g4AL9C0mywRO3lB8S4Q1PJMMXt5Hi6o2zgeE44tYQf0dXxwVUxMBn/dDn/otSBS9VSnoCVq4slfG9e6X0HxwMhIYCrVrJwHgA+N//8tReIiLKHkO5tTjRGxEROamrV6/iiSeewM8//5zl/RxTboXq1aWqfOUK8N13UpX28JBLUJB0E/fzk0r4xYtSAff1lZL7nTtSMXd3l0p6mTKyVlpcnFTbw8Lk4uWF86dTsOmXNHR61BcVa/nCw9UNO38Cvv0WaNAA6NlTxqqXBFDvDvDnKOCHT4AfFgEu7YHHXsvQ7pYt5UJERAWGodxarJQTEZGTGjNmDGJiYrBjxw488MADWL9+Pa5cuYLp06dj9uzZjm5e0RQcDDzzjN0OX6kZMKyZftsA4OGH5ZKRuzuwaBEQGAi8+67MBt+9u/SUJyIixynMq10WTumh3BVpDOVERORUNm/ejDlz5qBZs2ZwcXFBWFgYBg4ciHfeeQezZs1ydPPIBgwGYPJk6ZUeESGTxxERkWMxlFuLlXIiInJSt2/fRtmyZQEApUqVwtWrVwEA9evXx969ex3ZNLIhX19g+nS5/uabwPXrjm0PEVFxx1BuLY4pJyIiJ3XPPffgxIkTAICGDRvi448/xsWLF7Fo0SKEhoY6uHVkS0OGyJjzmzclmFPWUlLkQkRkTwzl1jKrlBuNDm4LERGRDY0ZMwaXL18GAEyePBm//PILKlWqhHnz5mHmzJkObh3Zkqsr8N57cv2jj/I8CbxTu3gRqFcPqFFD5t0jIrIXTvRmLY4pJyIiJzVgwADT9UaNGuHs2bM4fvw4KlWqhNKlSzuwZWQPHTvK7OzffguMHCmTxRsMd/mhYuLmTaBLF30p99OnJaATEdkDK+XW4phyIiIqJnx8fNC4cWMGcic2d64sQf7HH8CKFVIdnjgRmDfP0S1znKQkoEcPy94DkZGOaw8ROT9Wyq3FUE5ERE7qpZdeynK/wWCAl5cXqlevjh49eqBUqVIF3DKyl7AwCeHjxkm1PDlZH0MdFibhtLiZOFFOUgQEAJUqSTg/f97RrSIiZ8ZQbi1O9EZERE5q37592Lt3L9LS0nDPPfdAKYVTp07B1dUVtWrVwoIFC/Dyyy/jr7/+Qp06dRzdXLKRl14Cli8Hjh+X2xUrSmV45EjggQcknBYX0dH6MnFffAH8+itDORHZH7uvW4uVciIiclI9evTAgw8+iEuXLmHPnj3Yu3cvLl68iI4dO6Jfv364ePEi2rRpgxdffNHRTSUb8vAA1q8HXnwR+PNP4MQJoGpV6cr+xhuObl3Bmj0bSEwE7r0XeOQRqZQD7L5ORPbFUG4tTvRGRERO6t1338Wbb76JALPSaEBAAKZMmYJ33nkHPj4+mDRpEvbs2ePAVpI91KoFvP8+cP/9gLc3sGiR7J8/H1i8uHisZX7tml4lnzRJJr3TQjkr5URkTwzl1mKlnIiInFRsbCyio6Mz7b969Sri4uIAACVKlEAKF252eh07AgMHAkoBzzwDlC0LdOsGpL8NnNKcOcDt20DjxkDXrrKvYkXZMpQTkT0xlFuLoZyIiJxUjx498OSTT2L9+vW4cOECLl68iPXr12PYsGHo2bMnAODff/9FzZo1HdtQKhCLFsmkZw0aAEYj8OOPwPPPO7pV9nHrFvDhh3J94kR9aTitUn7hgrwGRET2wFBuLbOJ3vifMxEROZOPP/4YHTp0QN++fREWFoZKlSqhb9++6NChAxal92euVasWPv30Uwe3lAqCry8wbRpw4ACwZQvg4gJ8/jmwZo3cv38/sGoVnKJIsW+fBPPy5YHu3fX95crJ733nDnDliuPaR0TOjaHcWhxTTkRETsrPzw+LFy/G9evXTTOxX79+HZ988gl8fX0BAA0bNkTDhg1t9pxnz57FsGHDUKVKFXh7e6NatWqYPHkyu8gXMu3aARMmyPXhw2UStEaNgAEDgJkzHdo0mzh2TLbh4RLCNW5uEswBdmEnIvthKLcWu68TEZGT8/PzQ6lSpVC6dGn4+fnZ9bmOHz8Oo9GIjz/+GEeOHMGcOXOwaNEijB8/3q7PS9abOBFo3hyIjQV++EHfP2MG8N9/jmuXLRw9KtusVvrjZG9EZG8M5dZiKCciIidlNBoxbdo0BAYGmrqvlyhRAm+++SaMdhqz1aVLFyxduhSdOnVC1apV0b17d7zyyitYt25dtj+TnJyMuLg4iwvZn7u7dFdv2RIYPFjWNX/wQSA5GRg1SiaFK6q0UF67dub7uCwaEdmbm6MbUOSYjSlnKCciImcyYcIELFmyBG+99RZatWoFpRT+/vtvTJkyBUlJSZgxY0aBtCM2NhalSpXK9v5Zs2Zh6tSpBdIWslS1KvD33/rtjz4C6tcHfvkFWLsW6N3bcW3LD1bKiciRWCm3FivlRETkpJYvX45PP/0Uzz33HBo0aIDw8HCMGDECixcvxrJlywqkDf/99x8+/PBDPPvss9k+Zty4cYiNjTVdIlnCdJiaNYHXXpPrY8bIZGlFTWwscOmSXM+qUs5l0YjI3hjKrcWJ3oiIyEnduHEDtWrVyrS/Vq1auHHjhlXHmjJlCgwGQ46X3bt3W/zMpUuX0KVLFzz22GN46qmnsj22p6cnAgICLC7kOOPGSQX94kVg8mR9f2QkcPq049qVW9okb+XLA4GBme9npZyI7I3d163FSjkRETmp8PBwzJ8/H/PmzbPYP3/+fISHh1t1rFGjRqFv3745PqZy5cqm65cuXcIDDzyAFi1a4JNPPrHqucixvL2lG/tDDwHz5gFDhgBnzwL9+gEpKcB77wGjR+trfxc2OXVdBzimnIjsj6HcWgzlRETkpN555x08/PDD+O2339CiRQsYDAZs374dkZGR+Omnn6w6VunSpVG6dOlcPfbixYt44IEH0KRJEyxduhQuLuzIV9R06SLjyb/5Rtb5jozUJ3578UVg717g448lwBc2dwvlWvf16GggMbFw/g5EVLTxU89aZhO92WkiWiIiIodo27YtTp48iUcffRQ3b97EjRs30KtXL5w4cQKtW7e2y3NeunQJ7dq1Q8WKFfHee+/h6tWriIqKQlRUlF2ej+xn7lzAz0+6eSsFPPMM8P778tXpiy+Ap592dAuzltPM6wBQqhTg4yPXL1womDYRUfHCSrm1WCknIiInVq5cuUyzrEdGRuLJJ5/EZ599ZvPn27hxI06fPo3Tp0+jQoUKFveporzGVjFUvrx0Y3/lFbm8+qp0Wa9bVyrpK1cCw4cDdjq/k2d3q5QbDNKF/fhx6QFQo0bBtY2IigdWyq3Fid6IiKiYuXHjBpYvX26XYw8dOhRKqSwvVPQMHgxcuQKMHauPIe/USarmAPDCCyhU359u3wbOnZPr2YVygDOwE5F9MZRbi5VyIiIiomxlNaHb9OlAiRLA/v3Ap58WdIuyd/y4bMuWBYKCsn8cZ2AnIntiKLeW2ZjyO3cc3BYiIiKiIqB0aWDqVLk+YULhWSrtbl3XNVooP3PGvu0houKJodxaZpXylBQHt4WIiIioiHjuOaB+feD6daBpU+DHHx3dotyH8saNZfvll8CJE/ZtExEVP5zozVpmY8oZyomIyBn06tUrx/tv3rxZMA0hp+buDvzyC/DYY8D27cAjjwAzZgCvv+6YNcyPHwe++kquZzfzuubhh4HOnYFffwWefBL44w9T50kionxjpdxarJQTEZGTCQwMzPESFhaGwYMHO7qZ5ATKlQO2bAFGjJBl08aPl3XMC3qZ2a++Apo1k+7o5crJGus5MRiATz6RJd+2bwfmzy+YdhJR8cBKubUYyomIyMksXbrU0U2gYsTDQ5ZOq1VLZmP/4APgxg1gwQIJvQBw6BDw3XfAE0/IUmu2dPAg0KePXH/gAWD1aiA4+O4/V6kS8O670g1/3Dip+JcrZ9u2EVHxxEq5tcwmektJkbO8RERERGSd558HVqyQr1ZffCGhd/x4YOBAIDwcmDgReOghWbbMlnbulG2rVsDGjbkL5JpnngEaNAASE4Ft22zbLiIqvhjKrWVWKQeA1FRHNoaIiIio6BowAPjhB6B6dSAmBpg1C1i5UooePj5SMX/2WdsWQbRlzcLDTV/rcs3FBbjvPrl++LDt2kRExRtDubXMJnoDwC7sRERERPnQpYtMurZ+vVTGe/cG9uwBfvpJqugrVgCLFtnu+bRQri1zZq369WV76JBt2kNExDHl1spQKU9JAXx9HdkgIiIioqLN1RXo2VMu5t56C3j1VWD0aOlu3qBB/p+LoZyIChtWyq1lNqYcYKWciIiIyF5efhno3h24c0eWIrPFsMH8hvJ69WR79ixw61b+20NExFBurfRKuTtDOREREZFdGQzSdb1ECenSPnt2/o5nNAKRkXI9r6E8KAgIDZXrR47krz1ERABDufW0MeUGjiknIiIisrfQUGDuXLk+ebKMP8+rqCipuru66sE6L9iFnYhsiaHcWqyUExERERWowYNlQrjkZBljnlda1/Xy5a2fed2c1oU9t6H8ueeAdu2ApCR937VrwN9/570NROQ8GMqtpU30ZmAoJyIiIioIBgMwZ45c//lnIDo6b8fJ73hyjVYpz82yaAkJwMcfy7rm//6r7x8yBLj/fuCvv/LXFiIq+hjKrcWJ3oiIiIgKXK1aQLNmQFoa8OWXeTuGrUK5eaX8bmuoHzumP0arrCulh3HzoE5ExRNDubW0MeWKoZyIiIioIA0cKNsVK/L287YK5XXqSPX+2jXgypWcH2teTT94ULZnzwJxcXI9P2Pkicg5MJRbSwvl4ERvRERERAWpTx/ptLhrF3DihPU/b6tQ7uMDVK8u1+82rtw8lGuP3b9f38dQTkQM5dbSxpSz+zoRERFRgQoOBjp1kusrV1r/87YK5YDehf1u48ozhnKjEThwQN/HUE6FTXIy0KQJ0Levo1tSfDCUW4vd14mIiIgcZtAg2a5Ycffx3BnZMpTndlk08/vj44Fz5yxD+dWrwPXr+W8Pka3s3SuXr76SJQTJ/hjKrZU+0ZsLFAwwMpQTERERFaAePQA/PyAiAliyJPc/d/u2Hn5tGcpzqpTHxAAXL8r1KlVke+iQZfd1IG9d8YnsRXtPKwVcvqzvT0mR1QTI9hjKrWW2qKUbUpGc7MC2EBERERUzPj7A88/L9aefBj75JHc/Fxkp24AAIDAw/+3QxpSfPZv9Y44ckW2lSkCrVnL9zz/1n2naVLbswk6Fifa+BYALF/Tr990HVK0qJ7jIthjKrWUWyl2Rxko5ERERUQGbPh0YNUquDx8u64DfjdZ1PSzMNm2oWFG2V68CSUlZP0arONarp1fWV62SbaVKQIsWcp2hnAoT894fWk+P2Fhg3z5ZbSBjTw/KP4Zya2WolDOUExERERUsFxdg3jzglVfk9muvAampOf+MLceTA0CpUoCXl1zXgktG5qG8QQO5fumSbMPDZe11gKGcCpesKuXnzun77ja5IVmPodxa6WPKAYZyIiIiIkcxGIC33gJKlpQq3q5dOT/e1qHcYNCr5eZdfM1pk7yZV8o1DRsylFPhc/06EBWl39be2+bDNBjKbY+h3FoM5URERESFgqsr8OCDcn3jxpwfa+tQDgAVKshWG68OANHRwM2bMkmWeaW8XDk5gaAxr5SfOcMVfahwMK+SA3ovEFbK7Yuh3FouLnIBx5QTEREROZq2brkjQ7lWTYyPl6BdpYqMHb9xQ7421qollXWtCzsglfLQUMDfH0hLA/77z3btIsorLXBrI3az6r5+6JD1yxFSzhjK8yL9XcpKOREREZFjdewo2507pUKdHa37rdbl3Ba0Y2mV8qNHZRm0mzeBgQNlX/XqgLe3XNe6sPv5SXA3GNiFnQoXrVLesqVss+q+fv269Agh22EozwuGciIiIqJCISwMuOceqTZv2ZL1Y+LiZF1zAKhd23bPnbFSfvKkbM1GO1qMJW/YULaNGpk6XuKee2R7/LgsNfXPP4DRaLs2EllDq5R37izbS5fk/WheKTd/HNkGQ3lepP9Py1BORERE5Hh368KuLeFUqRJQurTtnjfjRG8nTsj2iSeAiROlQv7oo/rjBw4Exo8H5szR92mV8jVrgJo1pUK5dKnt2kiUW0rplfIHH5SeHHfuyLJ/WiivUkW2DOW2xVCeF6yUExERERUadwvle/fKtnFj2z5vxonetEp5rVrAtGnArVvAgAH64z09gRkzgCZN9H1aKD9wQF8u7Z9/bNtOoty4ckW6pru4SA+PkBDZf/KkBHMA6NZNtgzltsVQnhfpoZwTvRERERE5Xrt2gLu7zGKe1YRp9grlWqX86lUgKUkP5VqXdPNu7Nlp1kwe5+cHPPKI7DOfATspCfjgA+DyZdu1mygr2vuuWjXp5VG+vNzevl22AQHA/ffL9YyhPC0NWL5c75VC1mEozwtWyomIiIgKDT8/fWKqb7/NfL+9QnmpUoCXl1y/cEEP5TVr5v4YlSrJz507B8ycKfuOHtVnt543DxgzRrrDE9mT+RJ+gN4T5O+/ZVu5sn7f4cP6e1QpYNQoYOhQuZD1HBrKZ82ahWbNmsHf3x9ly5ZFz549cUIbjJNOKYUpU6agXLly8Pb2Rrt27XAk4wJ6BY1jyomIiIgKlX79ZPv++1Jd1iQkAMeOyXVbh3KDQa+W79wpz+Xmpo+7za2qVSXg16ghXzPj4vT1obUq5b59tms3UVa0iFW3rmwzhvKwMHmPurvL8n/aMoOTJgGLFsn1M2cKrr3OxKGhfNu2bRg5ciR27NiBTZs2ITU1FZ06dcLt27dNj3nnnXfw/vvvY/78+di1axdCQkLQsWNH3Lp1y3ENZ6WciIiIqFAZOlRCxKVLwKef6vsPHpTZo4ODZV1wW9OCy++/y7ZqVQkteeHpKaEH0APS7t2yPXaMs7KTfWlDP7ThF1r39Rs3ZBsWJu9tbR6EffuAyZOB6dP1Y9y6JasIkHUcGsp/+eUXDB06FHXr1kV4eDiWLl2K8+fPY8+ePQCkSj537lxMmDABvXr1Qr169bB8+XIkJCRg1apVjms4x5QTERERFSqensC4cXL9rbeA5GS5rlWYbV0l12iVci2UW9N1PStalfLIERlHrlXMExP1ymRRcemSPnkdFS5ffw289JKMBddok7kFB8tWO+GkqVxZtloX9n79ZEJDQIK5r69c5/wH1itUY8pjY2MBAKVKlQIAREREICoqCp20KTUBeHp6om3bttiu9eXJIDk5GXFxcRYXm2OlnIiIiKjQGTZMqnsXLwJLlsg+e40n12jBRQvMtgrlR48C6XUqk6NH83fsgnTnjqzHHh6unyChwuO112Rpvn//1fdFR8u2bFnZZgzlYWGy1UJ5UpIsMbhsmSz1p/VEYSi3XqEJ5UopvPTSS7j//vtRL/0vHRUVBQAI1k7XpAsODjbdl9GsWbMQGBhoulTUTl/aEkM5ERERUaFjXi2fMUMqf/YO5Rm/ampdf/OqTh3ZHjmid13XFKVQfvashLxr1+Q6FS7XrslW68lgNOqVci2Ua93XNVoo79VLurA/+yxw4gQwZIjMr6AtoZZNTKMcFJpQPmrUKBw8eBCrV6/OdJ/BYLC4rZTKtE8zbtw4xMbGmi6R2sKRtsSJ3oiIiIgKpWHDgOrVJWx07w4cOiT77V0p19iyUr5rl1zX6lNFKZSbL01nPvnXzz9LV2dt5m4qeKmpMvYb0AP0jRv6nAWlS8s2YyjXuq/XqiVzHCxcKBMUalgpz7tCEcqff/55bNiwAVu2bEEFs//ZQtJPt2SsikdHR2eqnms8PT0REBBgcbE5VsqJiIiICiUvL+D774ESJYAdO6QbdcmSepXP1jJWyvMbymvWlK+acXHA5s2yb8AA2RalUG4exM2vP/20LO9mq9nkjUbg3XeBP/+0zfGKg/QRwwCAK1dkq3VdL1VKn6jQx0cP3d7eeljPDkN53jk0lCulMGrUKKxbtw6bN29GlQzrR1SpUgUhISHYtGmTaV9KSgq2bduGltpilI7Aid6IiIiICq1atYD16/Vw0bixdK+1B/NKuZ9f/md49/DQZ2BPSpIOmtpyb+brlxd25pXyiAjZxsbqE9fZagK4rVuBsWOB4cNtc7zi4OZN/bpW+8w4nlyjVcvDwu7+b4ihPO8cGspHjhyJFStWYNWqVfD390dUVBSioqKQmJgIQLqtjxkzBjNnzsT69etx+PBhDB06FD4+Pujfv7/jGs5KOREREVGh1q4dsHQpEBioh1p7KFVKqoiAVLltEf61ceWATKrVoIGE81u39FBrvhZ7YZRVpfzECX2fNqY5v7TJ8M6cKTonLBwtJka/nrFSXqaM5WO1k05a1/WccEx53jk0lC9cuBCxsbFo164dQkNDTZc1a9aYHjN27FiMGTMGI0aMQNOmTXHx4kVs3LgR/v7+jms4x5QTERERFXoDBkgAGTbMfs9hMOjBJb9d1zXauHIAaNrUsnp+7JhMXlemDPD887Z5vox27AAOHMjfMbIaU24eyrVJxfJr/37ZJifb7pjOzppKufbezs3wD1bK887NkU+ucnE6y2AwYMqUKZgyZYr9G5RbrJQTERERFQn26rZurmJF4NSp/M+8rskYygGpnh8/Ll3Yf/sNiI+Xrtt3c/QocPs20KxZ7p47JkZ6Gfj6SlBLr0VZRanMlXKlbFMpv3NHvoprf1fzkweRkZlDJWVmHsq1SnnGmdc1vXsDv/8OPPbY3Y/LUJ53hWKityKHoZyIiIiI0j30kEww17mzbY5n3n1dC+W1a8t2zRrghx/k+o0bOR/HaJSA3bq1ZZdlc5cuWa4jfvKk3L5xQw9s1oqOlhMBWnC+dQu4fj3/lfLdu+V1njlTbicmyokKjbZWPOUsY/d1pbKvlHfqJL0eOnS4+3G1UH71qpw8AeSkSVGaoNBRGMrzghO9EREREVG6V16R2dJbtLDN8WrWBKpUkXG89evLPi2o//OP/ri7hfJr1yQgJScDp09nvv/0aaBSJVl3WqNNygZI5VmzejUwbRqQlnb39mtd1ytW1CcKi4iwDNB5qZRv2iQnGj75RILkkSOW7bHHSsjOyLxSnpQk793sQrk1goJMMQnR0RL+778faNMGzEx3wVCeF2aVcvMzi0RERERUPGkzvduCh4eMG9+7F/D0lH3m1XNNUpJUi7NjHlLPns18/9atEmr//FOfJM2827n280oBzzwDTJ4MfPnl3duvHaNaNaBqVbl+6pRcNHmplF+4INvz56Xqro0n17BSnjsZe01cuZL9RG/WcHEBtFWrL1+WZe/i46WXhPnfnjJjKM8LTvRGRERERHZUooSsr6655x69O3i3bvpY75yq5eah/Ny5zPcfPCjbW7f0rupZhfLoaAlXADB1KpCamnPbtUp51apS8QfkBIB5MSsvlXItlAPAxo36eHJfX8v2Us7MK+WATPZmi0o5YDmu3Hwt+iNH8ndcZ8dQnhccU05EREREBcjbWyZrc3UFJk6UpdiAnEO5eYjNqlKuhXJAH++dVSg333fqFLBiRc5t1UK5eaX8559l6+Ul27xUys1D98aNeqW8Y0fZslKeOzlVyu0VyjmuPGcM5XlhNqbcaMzd2BoiIiIiovz4/nsJ0vfeq4fy7CZwA3KulCtlOXP5yZOyzSqUa+PMtUr9tGn6RF5Zyar7unaCoHlz2cbG5nyMrJifZNiyRQ/ljzxi2V7KWcZKeWSkvi+/odx8rXJWynOPoTwvzCrlACcuICIiIiL7K1tWH1uudW3Pa6X8wgXLcHbypHynNQ+2GUP5//4nY4YjIoClS7N/XvPu61oo1zRvLmOPAeu6sCcl6dV1f38gIUG61Ht46JXyS5esD/rFkfZ319YgP3xYtq6ulkMm8kKrlJ85YzmxHyvlOWMozwuGciIiIiJyoNx0X89YKdcmcwMsu64DEsrPn5fZzTP+vBbK69YFXn1Vrq9alfVzJiRIlRSwrJRrateWWboB60L5pUuy9fICevTQ99erJzO8e3jI76c9jrKn9a6oVUu22nuhdGn9hEleaaFcmylfm6hQO+lDWWMozwuzid4AvsGIiIiIqGBZG8pv3bKsjGtd17XuxidP6t3OtRm4L1+WyrMWyqtWlSWugKyXWAP0Y2gT1YWE6OPIAQmC2vGtGVeuVf0rVLBcDz48XIKkVvXluPK7094HWijXupbnt+s6oIdy7eRImzbSsyE1lTOw54ShPC/SK+UeLgzlRERERFTw7hbKjUbg4kW5rs3Ubt6FXauO/u9/sv3vPz003XuvZeVZC+VVqkj1G5BjZ7Ucm/kkb4CMQ9dmYAdkFvnSpeW6NZVy81CudVcHgIYNZVupkmw5rjxnSmWulCclydYWoVw7yaNp3FgfcpGxC3tSEjBrVual7YojhvK8MIVymeGNoZyIiIiIClJWodx8RvLoaKlyu7hINRmwnOxNC+Vdu0ol+84dYPNm2Vetml55jojQq89VqkjX84AA/b6MzCd502hd2MuUkep5fivlwcFA69YS+Nu0kf0VK8qWlfKcJSXp2UUL5RpbVso1jRrpoTzjZG8zZgDjxwOvvJL/5y3qGMrzIj2Ue7qyUk5EREREBS/j7OsXLwJdukjXbqNRD7GhoXpA1irliYn6EmgNGwI1asj1336TbdWqesj95x9ZacjDAyhXToJw9epyX1Zd2Pfu1Y+h0a7fc49s81spB4B162R2b1bKraN1XXdx0f+OGntUyhs2lLkIAMtQHh0NzJkj1zOuDFAcMZTnRXofIA+GciIiIiJygIyzr58+LV2To6NlfLgWTitUAMLC5LoWfo4eleBeurSEdi0sx8XJ1jyU//GHbMPC9EnAtJCvdVXX7N2rTwDXtau+v3Fj2d57r2zzUynX2lW6tN4DwHw/K+U5007ilCiROUBrf5f88PDQJ/Lz9ZUTPlooN+++PmsWcPu2XNcmBizOGMrzQquUc0w5ERGRzSQnJ6Nhw4YwGAzYz0GGRDnK2H3dfPmzf//VQ3nFikDlynJdq5Rrk7w1aCCV75o1LY9tHsr//lu25uPCswrlRiMwcqRs+/aV7uWaQYOAbduAN9+U27aolGfESnnuaJXyEiVkZvQSJfT7bFEpB/Swr03Cp4VybQb28+eBBQv0x8fHy6U4YyjPi/RQ7s4x5URERDYzduxYlCtXztHNICoSMoZybVI3ANi50zLEZqyUa+PJGzSQbcZQXqWKHspv3dL3abIK5cuWATt2AH5+wOzZlsdzdZWx3z4+clsL5dZUys0r/1lhpTx3tEq51tPCvFpuq1CujSvXhhZUqKDPwH7sGDB2rOSndu2kmg6wWs5QnhecfZ2IiMimfv75Z2zcuBHvvfeeo5tCVCTkFMrvVinft0+2Wvdv81AeEiLhWQu5mqxCuTamPC4OeO01uT51qow9z4nWTTq3lfKUFODKFbl+t1AeE8Oqa07MK+WATJqnsVUob9RIth06yNZg0Cd769gRWLNGrs+cqQf4y5dt89xFFUN5XjCUExER2cyVK1fw9NNP44svvoCPVkrLQXJyMuLi4iwuRMWNFsrj4qQCaR7KDxzQA7N5pTwmBtizB/jzT7ndqpVszUO5NilbbkL52bPy3L/9JgG7ShXg+efv3nZrK+WXL8t4eQ8P/WczCgzUZ4U378KemioVfH5fF+ZjygH7VMpnzpSK+KOP6vu0LuxXr8pzr14NtGihPz9DOVlPm+iNoZyIiChflFIYOnQonn32WTRt2jRXPzNr1iwEBgaaLhUzpgeiYsB8LPDNm5ah/M4dYPduuV6xonQd1kL8Cy9IwO3WTZ91PShIvz83obx8eQnIqakSgLWl1B5+GHB3v3vbzSvlSt398VpX/PLl9cnmsqK12TyUf/yxhL9337378xQHWqVc675uj0q5m5sst2Yw6Ps6d5btQw8Bhw/LvAOAXiln93Wynjam3MBQTkRElJUpU6bAYDDkeNm9ezc+/PBDxMXFYdy4cbk+9rhx4xAbG2u6RHJmJyqG3Nz0yvCNG3ooNw9ZgB5UtWr59u2yHTvW8nFatVwL3yVL6uN9zfcDUp/Swvt//wFbtsj19u1z13at2n3njj7je07uNsmbRpvszXyJLW32+MOHc9c2Z5ex+7pWqfb0lPkA7OXxx+V9+tNPcnJFw+7rgqE8L9JDuRsneiMiIsrSqFGjcOzYsRwv9erVw+bNm7Fjxw54enrCzc0N1dMXzm3atCmGDBmS5bE9PT0REBBgcSEqjrTq9rVreqjp2VO/38VFD11aKAeA++4D7r/f8lhaoNZmTTcY9EDv56cvc6XRurD//bcsdWUwAG3b5q7d3t564M/NuPLchnJtabdDh/R92vXiXIm9fVsfZ59xojftJE7ZspaVbXvQntMcu68LN0c3oEhipZyIiChHpUuXRunsBn+amTdvHqZPn266fenSJXTu3Blr1qxB8+bN7dlEoiKvVCkZ1338uHQld3EBuneXLtuATLiW/rXVNNkbIFXyjAFs+nRgzBjLtaorVpRjV6mS+fFaKP/sM9k2bKifJMiN0qUlLF69CqxdKzO2//ln5pnggdyHcm2CMW0iu6QkWYYL0CeKK06MRmDxYpmEz89PejVkrJRrPSDMT9oUJHZfFwzleZE+ppyhnIiIKH8qaf1N0/ml95+sVq0aKtztGzhRMaeFYK0aHBIiVXCN+T8hrbt5zZoS3DMyGCwDOaBXyrWfNaeFcm0JsgcesK7tZcpIN/Nz5+SEwK1bwM8/5y+UN24s2/37JZAeOwakScfWYhf6oqKA3r31deZjY4G9ezNP9Na2rZzEadnSIc1kpTwdu6/nhVYpB0M5ERERETlGxlBevrzs0yZwM5+sbfBgYPhwYMUKU33prurXl6223rQ5LZRrcjueXKN1pFm4UF8LXVuyDZDfqVs34L33gFOnZN/d5nSsVQvw8pKu2v/9p6/HDkgYTU62ro1F2axZEsh9ffVq+I4dmSd6c3EBnnkGqFfPIc3MVClXSk7SrF/vmPY4CivleaGNKWelnIiIyKYqV64MlZvpmIkoy1AOAM2bS5A1D7GBgcCiRdYdf8QICWva0mnmzEO5q6s+Fj23tKr8tm36PvNQPm8e8OOPctHcrVLu5iYnEnbtki7s5mPLASA6+u7B3llERMj23XcliI8fbxnKzWfvdyQtlF+9KkMw9u4FJk6UMe7mS6o5O1bK88IUyjnRGxERERE5hlbtjI6WrRbKX3pJAs1TT+Xv+B4ewIMPysRsGZmPM2/aVJ8JPreymnLCPJRr66xr4dHFxXIG+OyYjys3r5QDxasLu/aeMB/SsGNH5oneHK10aTmpo5SM+9+7V/ZHR+s9KIoDVsrzQgvl7L5ORERERA6ScWI1LZQ3agSsW2ff5/b0lKrz+fPWd10HLMev16ghlf2sQvlPP0k4MxiyDvIZaaF87169Uu7hId/Xi1Mov3pVtmXLAuHhclJDG/8PFJ5KuYuLzAB/6ZL8fQ4c0O87e1YfQuHsWCnPi/SBOAzlREREROQo2YXygtK+vdSq/vc/63/WPGBPmSLbmzflkpioT+5WsybQqRPQsWPujqtN9vb33xLyDAZ9ErPiNAO7VikvW1ZmXs8YbgtLKAcsJ3vbv1/fr3XBLw4YyvNCq5QrhnIiIiIicoyMobygFyxYuFBmT2/SxPqf1cYSh4QAjz2mh/Rz54AzZ+R6iRLWLbMGSPh0dZXl1gCZOV4b/15cKuWJifq65FqPBPNZ+b285FJYaO+FixcthxyY95xwdgzleZEeyl0hY8qL00yORERERFQ4OLpS7uUla6HnRefOwCuvACtXAu7u+jrqZ8/qXderV8+8PvrdeHvLLOya+vX1Sqx5KHfm7+9a13V3d5ngDwBatNDvL0xVckAP5X/9BSQk6PtZKaecmUI5K+VERERE5BiODuX54e4uM4Nr49GzC+V5oY0rB4AGDWTMMqB3Xz90SILpuHF5O35hp4XyMmX0kxrmlfLCMsmbRjtp8uuvlvtZKaecaaGc3deJiIiIyEHMw1VAgIwdLqqyCuUZ10LPLfNQnlWl/NdfgaQk4Lff8nb8ws58PLmmRg39/VJYK+XayQRt2TpWyiln6RO9MZQTERERkaOYV8qLUpU8K/aslGcM5UePyvby5bwdv7Azn3ld4+KiV8sLWyjX/j6anj1ly0o55YyVciIiIiJyMG9vfcIuhnJdkyYycVzlylJtz9h9XQvlV64ARmMeG1yIaZVy82XnAH0WevOwXhholXJNjx6yjY3V11V3dlynPC/SQ7mLkoneGMqJiIiIyBFKlZI1np0llJ8+rU/2lddQHhAgS2u5uUkHV60Se+uWzMquhfLUVODGjdytf16UZNV9HQBGjJBZ2YcOLfAm5cg8lBsMwL33yomUK1fkJE1hGwNvD6yU54W7OwDALU2mbWQoJyIiIiJH0LqwO0soj4+X6rWvr17hzovy5fWf9/eXXgUAsGePhHONMy6TZj7Rm7lSpYC33rKcnb4wMO++Xq2a/L2090NxGVfOUJ4X6WsLeCTGAmAoJyIiIiLH0EJ5Qa9Rbmu+vpYhMi/LoWXHYNAD+pYtlvc5YyjPrlJeWHl56ePcGzaUbZUqsi0u48oZyvMi/V3jkRgLA4wM5URERETkEH36AFWrAp06Obol+adVR4G8d13PjlaN3bzZcr8zTvaWXaW8MNP+PlooZ6Wc7i49lBuUgj9uMZQTERERkUOMGAH891/elw8rTAoilP/zj+V+VsoLh/Bw2bZrJ1vzif8AmTfhwoUCblQBYijPCy8vwNMTABCIWIZyIiIiIqJ8smco17qv37kjW20Mvq1CeVIScOKEbY6VX1ktiVbYLVkCHDwItGolt7Xu6xERwPXrEtobNpQ5B5wRQ3lepVfLS+AmQzkRERERUT6Zh3JbV/4zroXdoYNsbRXKn31WJlDbutU2x8ur27f12euLUvd1X1+gfn39tnml/O23gWvXJJxv3+6I1tkfQ3leMZQTEREREdlMQXRfBwAXF6BNG7lui1B+6xbw5Zdy/fff83+8/NCq5F5egJ+fY9uSH2Fhsr19G5g7V9+/bZtDmmN3DOV5xVBORERERGQzVavK1tvb9ku8mS+vVq2afgLAfKK3uDi9e7s1vv8eSJaVknH4sL7faJTx/kpZf0wAmDED+OAD635GG09epoztZq93BE9PoFw5uX7njmnkMEM5ZcBQTkRERERkM/fcA0yZAixaJNVsWzKvlNepA4SGynWtUh4dLcvKPfSQ9cf++mv9unkonzdPKv6ffGL9MSMigDfeAF58UarFuVUUJ3nLjjauHADmz5ftv//q3fOdCUN5XjGUExERERHZjMEATJ4MDB5s+2ObV8rr1NFDekyMVLn//lu6of/5p1S4c+vWLeDnn/Xb//2nh8Yff5Tt3r3Wt3f3btkqBZw5k/ufK4qTvGVHC+Xt2wPDhknviTt3gB07ZP+xY8CGDY5rny0xlOcVQzkRERERUZGQMZSXLAm4u8vtK1dk5m8ASEnRq825oXVdr1FDuowrJWHRaJSqLpC3cet79ujX//sv9z9n3n29qBszBvjf/4CFC+WETdu2sn/bNiA2VuYF6NEjbyc9ChuG8rxiKCciIiIiKhJ8fU1f31GvnoQ8rVoeFaWHcgA4dy73x9W6rj/2mBwXkC7sx4/LGHXt+NbKayh3pkp5kybAN98ANWvKbfNQrs3IDkgvh6LOzdENKLIYyomIiIiIioyPPpK1xMPD5XZICBAZKZO9ZQzlzZvf/Xg3buhd1x9/XLqyb9kCHDoEpKXpj7M2lCtlWf0trpXyjLRQvmMHsHOnvt/8BEZRxVCeV2ah/M4d+cdTlGc4JCIiIiJyZv37W97WJns7fdoy+J4/n/NxlALWrgVGj5au6zVrAg0a6OtsHz4sAV0TFWVdVjh3TgK/prhWyjOqWVOGIVy5IrdLlABu3tTH3xdl7L6eV2ahHMjb8glEREREROQYWvf133+3XLYsp+7rSsmkY489Bly6JLOrr1ghgdu8+7p5JTclRcJjbmmVX7f08unp0/p9L70EdOqkL8GWkTPNvp6R+bhyAFi+XLbHjukz1N+4AXz3HZCUVPDtyw+G8rzKEMrZhZ2IiIiIqOjQQvnWrZb7cwrly5YBS5dKYJ44UbqqN2sm99WtK9uLF2U/oE8mZ74e+t1oXdc7dtTbc+cOEB8v65Zv2gTs2pX1z2qVcmfsvg7IxG4AMHAg0L279HYwGoEDB2T/kCFAz57yN9H2FQUM5XnFUE5EREREVGRpoTwxUbZaqM4ulJ85A7zwglx/801g2jTAy0u/PyAAqFRJrhuNsu559epyO6tx5a+9Jl3er1+33K9Vyh95RI6fliZd6nfv1pdrO3Uq8/GUcu5KOQD06ycnJD77TG43aSLbPXvkddTG+B8+LMFce1xhx1CeV4GBABjKiYiIiIiKIi2Uax55RLZZjSlPTZX10+PjgdatgVdfzfqYWhd2ALjvPssZ3s398w/wzjsSHjdt0vcrpYfypk2BqlXl+n//WXaJzyqU37qld2t31kq5wSCvi9YDQQvlu3dLt/W0NKB2bamW37kj4/7NhyYUVgzleZVeKQ9ELADFUE5EREREVIRoE71punWT7c2b+nJmmqVLZektf3/g888BV9esj6lN9gbIDO7ac5iHcqVkbLjm+HH9emSkLPXl5ibHqlZN9ucmlGtd5H19AR+frNvnbJo2le2ePbJ8GgAMGACsXi3X4+OtG8/vKAzleZUeyl1hhB/is51sgYiIiIiICh/zSrmbmwS8UqXkdsYu7EuWyHbiRKBy5eyPaV4pb94860r5V1/Jsl6aEyf069p48rp1peu6eSg3/5msQvmUKbJt0CD79jkbrVJ+7Bjw229yvXdvee1KlpTb1ozndxSG8rzy8gI8PABwrXIiIiIioqImOFi/XqsW4OkJhIXJbfMu7CdPSpXa1RUYNCjnY2qVcldXCYwZQ3lSkowlB6R7O2BZKde6rmthUwvl27ZZhsvTpy27Za9bB3z5pTzvvHk5t9GZhIbqk73duSMnRe65R+7TXnuGcmdmMFhM9sZQTkRERERUdHh7m6aJMlWXtYnazCvlX3wh206dMo9Dz6hBA2DcOGD+fOlCnjEYfv21HLt8eWDhQtl38qQ+gZu25nbGUK7tr1MHcHGRJcC0Y167Bjz3nFx/7TW9S3dxob1WgFTJNVkNHSisGMrzg6GciIiIiKjI0kKzFsq1SrkWyo1GPZQPHnz34xkMwMyZwLPPWh5fC4ZauH78cemi7u4OJCQAFy5I5Vtb6kxbZk2bvV3TurXefV7rwv766zLrer16wKRJd2+jszE/CZFVKGel3NkxlBMRERERFVnh4bJt21a2WqVc677+558S0AMC9DWyrZGxWqutX96ggQRyrRJ+/Dhw9qws6+XubnmSwMUssTVvDtSoIddPnZKTBuvWye0PPpAu+MVNq1ayrVtXehJospv5vjBiKM8PhnIiIiIioiJr6VLg6FF9fHfGSrlWJe/dW7q7W0sLhteuyZjngwfltha6a9WS7YkTepU8PFwP1x4e+okCIHMo378fiImRWeHbtLG+fc6gQweZbX3dOumpoClKlXI3RzegSGMoJyIiIiIqsnx8ZF1rjXkov3FDZkoHctd1PSulSsnM7qmpEqCvX5fKt/ac2qRkx4/r1Xmt67qmWjWpogcESIg3D+WbN8v1tm3leYojgwHo2zfz/qI00Vsx/dPZCEM5EREREZHT0KrSly/L8me3bslY7dat83Y8FxeZ5f3iRWDjRtlXs6Zeddcq5cePS3AHgHvvtTxGtWrA779LWHdxsQzlSUlyvX37vLXPmXGit+KCoZyIiIiIyGmULSsrHysFLFgg+95/33Jct7W0iq0Wys3XEdcq5UeP6muUZ6yUd+sm2wEDZKuF8tOngT/+kOsdOuS9fc4qq+7rsbHA1auOaU9OWCnPD4ZyIiIiIiKnYTBItfzkSbndtSvQsWP+jqmFw+3bZautZQ7ooVyr5vr66tVzzSOPSEXcw0NuV64sXdW1KnmZMlLNJ0vayZCbN+W18vQE7r9fXuvjx4GgIIc2zwIr5fnBUE5ERERE5FS0LuyursC77+b/eFo41Lqnm1fKS5WS6rymSRN53ow8PfVJzNzcgCpV9PseeCB/lXxnVaKEPmFeVJRUzA8flkn3Nm1yaNMy4Z8vPxjKiYiIiIicilZ1Hj7ccomtvNJCucY8lAN6tRzI3HU9O1oXdoBd17NjMFh2YT9yRL9PG0pQWDCU50d6KA9ELJKTHdsUIiIiIiLKv4kTgVWrgDlzbHM881Du76/P8K4x766el1DOSd6yZ75WecZQrpRj2pQVhvL8MKuUr19fuP6wRERERERkvVKlgH799DHc+WUeyuvXt1xLG7CslGeceT07WiivVElmZ6esZVcpv3gROHYs8+NjYmQCvYLGUJ4fgYEAJJRv3SpLFRAREREREWm0YAhYTvKm0SrlQUEyiVtuPPoo0LAh8PrrmUM+6cyXRTt6VK67u8tW68L+888yBCA0VD8hU9A4+3p+pFfKSxpuAkph/HgDOnTgPwwiIiIiIhLmlfKM48kBmd196FCgXbvc54hy5YB9+2zROuemvfbmlfJ+/YDPP5dQ3rUr0KuXPpM9ANy+LT2gCzLTsVKeH+mh3FWloazPbezaBXz7rUNbREREREREhUhwsH49q1Du4QEsXQoMGVJwbSoutEr5nj2yRrmrKzBqlOzbtk1OhiQlyQz2//4LxMVJRb2gi6wM5fnh7W3q//DKUzcBABMmgDOxExERERERAFl7vGFDCecNGzq6NcWLVinXehVUrw40bSp/i4QE4J9/ZPK9Zctkkj1/f8e0k6E8PwwGU7X82b43Ubq0TBjw9tuObRYRERERERUeO3YA//0H+Pk5uiXFi/l4fgCoW1ciXKdO+r5339XXpncUhvL8Sg/l/mk3MW+e7HrzTcvZ/YisduUKcPIkYDTa/thK2ee4RERERJQlT0+pmFPByiqUA0Dv3rLt1Al45pmCbVNWONFbfqWHckRFoW/sx7jUyA+v7OuPJ580YPt2GbdAhP37gY8/Br76CkhLk5n7K1YEnn0W6NNHnwby7FlgxgzpQ5Oaqvd36tQJ6NlTpuxMTQWio4E//wQ2bQJOnZL/cSpWlP9pWrWSdTKUAm7elOfesgXYvh04f17WgDAagSZNgObNgSpVpD1ubsC5c8CZM/rl0iU5dVinjgyCatECuO8+mZoSkLbs2CHTVp4+LbNo3Lwp7alUSaYTbdkSaNxYPo20nzlyRAb3APLcZcrI7xkQYPm63bwJbN4sr0tKivxsUBBQvrw8R4kScsr55Elpx5EjwK1b0h8pOBho2xZo00amMtVe47Q0Oelx6BCwd6+8fjdvyiCiEiXktataVdri4wMkJ8vjb9yQISv+/nJfQIBcv30buH7d8pKWJo/18ZHfLSREricmysClpCS5npwsv9edO/rWaJTfKSBA/iZpafJ7axelZL/5xcdHXpOKFeU9YzTK8c+fByIi9MuFC/KfkpcXULasvD7t28trlZYmP3P5suXlxg15zUNDZc2W++/PvEZMZCSwfr1sb96UdoaHy7oujRrJa2FOKeDECeDvv2X7338y0KtWLaBePbnUrQuULKk//uRJ4Icf5H1vMMjrU6YMULu2PDYsTH4nV1c51oUL0p7ISODaNfkbhIXJujGVKnFGTiIiomKgbFn5yNeWrq5TR7bdu8vXwDp1CsdXAoNShX917QULFuDdd9/F5cuXUbduXcydOxetW7fO1c/GxcUhMDAQsbGxCMj4hd8WOnWSYOThYRpMvtJ9CIbdWYRnnvfCnDkM5kVaSgrw0Udyad8emDJFprvM6M4d+UMbDBJON2+WwHH2rFwiI7N/Di30nj8vwSM1VfZ7eVlOBQlIsE1Ovnu7/fwkYKWl5fIXtZK/vwSmW7dkQce7cXeXEOXlJaHt9u3MjzEYJGCVLy+3b96U4G6rqn5QkLQjOpo9BfIjIECmiQ0OltfxyBEJytlxc5MTOg0bysmSK1eAw4eBq1fv/lxlysinaGJi1u+ZjFxc5D2WkJDz4/z85L1WooS8J8wvt2/Ley8pSd6LlStLoNdOxNSqJSeZ8snun03FDF9PIiLKTnCwfP0DgIMHs16Wzh6s+Wwq9KF8zZo1GDRoEBYsWIBWrVrh448/xqeffoqjR4+iUi46/9v9g/rxx4Gvv5broaHyhdNoxA40xzy8gJDmlTH5k/LwDC6B6yn+8AtwQUBA4TgjUygYjXoF0LwiqF3Pal9uricnyxfz27dlm5CgB2dXV/mSf+uWfPm+fFkWLyxbVqqATZtKGI+OBj78UCp5Gm9vYPhwqTDWqSPTNi5ZAuzcKfe7umYdhN3dZUHJZ54BKlSQ5/39d+CDD/T/JTQdOwJTp0qV8cQJmYFiwwZZt0EL6QaDVBM7dpSAEB0tVe49e4BduyyDe4UK0t62bSVQlCsnr9G//8rlyhWpEicnywmCqlX1S0iIHPfoUTmd+PffcuLAXKlSwEMPyesWGiqV76go+bn9++VnMgYwf3+ZTcPbW16LCxfk8VmpVUuqrV5eErquXZNq/5UrUhGNi5Pw1KKFvBYlS8pxT58Gtm6V3zHj7IsGg1TEmzSRKmupUtKma9ekcn72rP7+8fCQ/82DguQ1iouzvPj4yH2lS8s2KEh/j92+LX+bK1fktre3XLy8ZOvpKcfXAqGHh7QtPl7en6mpejXc1VW2QObq+a1bemU4OVleJw8PqZxXqSLBskoVvUKclCS/5++/A3/9pb9fPDzkbx4aql+CgqT6f+mS9Ea4ciXz38hgkB4JTZvK399olPfizp2Z398aLy/pqREeLtVrf3/g+HEJ7IcPy0kqcx4eslZM587ymsfFSZuOHpXL5cuWJ1tKlJDfv2JF+dto78kzZ+T/grwaPhxYtCjvP5+OIdK2+HoSEVF2GjYEDhyQr1K3b+udN+3NqUJ58+bN0bhxYyxcuNC0r3bt2ujZsydmzZp115+3+wf1hg1SPR08WLoi//WXBPUsqodGGHAL/ogzBCLB1R9GowFp2ndIgwEGADDo1xUAhazTu8Hsz2YwyHUXKMCgHUJph4VBO4r5dch17YYB+vFcDAouBsDgkn7dJf0kglLSKIPZc2nHNLtu+jWUEQZjKlyMqTAY02Sbpl93SUu18sV2jMSAsvj3/pdR5dB3qBS5/a6PV+4eSGnaEsa27eBRvxZcq1SSbr+lSkEpyVMpKemX2ES4fb8erneS4FG9EtxqVkVSuaq4fVteTz8/yW4uLtCrjCVKSMUuuy4YyckSPAICJIzY+n+emzclaMXESMMaNdLDYpYviJLAeOuWhEFvb6Bmzcztv3IF2L1bjg9ISL3vvrvPvHG3hSSNRumCHRUlYSwkRCqwObW5ODEa5TU0/UPPnkozIvnv3TD+vhnuqUlw83CBIagUjN17Iql0BYue9S4u6f8fREbKiZHDh+U9GRIiJwmaNMn5vRkbKydH3NwkwIeE5DwYLy1NTv7cuiUnE7KbSefOHTkhcfy4frLO/OLjIyd23N31k0XXrv2/vXsPjqq++zj+OZsNm8sT0kAechEMMLWlgCINyigoLbQMeKEq1UIhpI8dbSxgkJaCBYfLjKIwxV6oMLTKP+LgQwsM1SoNSqnYsSAhEhGBGa4CeVK8JCFAbvt7/tjuhk02YYMh58L7NXMmm9/57eb3WTb58tvfOWeb34T53veaP0vlS2AS2bl4PgEAbRk3Ttq6NbTOc+BA1/1cz0zK6+vrlZKSog0bNuj++++PtBcXF6usrEw7duxodZ+6ujrVXbJKWF1drT59+nRtoT5yRFq2TOfe/1hflB3TfzedUUB8TlpHNMmnJiWoUX41yn/Z2y3b6hRQrVJ1Xik6rxTVKlUNSpRfTUq0GnXRl6xaK03VvnSdaszWmWAv9dUx3aF3dKPKVaM0fa4MlelmrdBsVStdktE9ek0PaKOGaq8G6iMd1g16SQ/rf/WQLihZAdXpM/XQRTWfQ5uUFPr/fXgifiW/cZE3PVps4XlUrPakpNAWPi05GAx9DW/h78P9ExJCX33/ufxj+Hpw4Tnbpbf9/tB8yu9v3SecL9bYYuWKp629dql5DC1zhtvDE8XwgrTfH9/RKuE+sXJcetuY5twtb19u/5X27er7Sc2ntIf5/aEF7LaOFo9Mzq32v15ui/Xch7XX1pYvs3/SJGnBgvbvHw8mkZ2L5xMA0Jb/+Z/Q5ZomTpT+9Keu+7kdqU2OXio6e/asmpqalJWVFdWelZWlioqKmPdZunSpFi9e3BXDa1v//tLq1fovSYGG0FGYPVMvKl1Vuvh/Vfr0SJVqK88pOUlKTgqtRDc1SU2Npnky0WQiq9OR/3TKRP0PNHzRAiMrMvkImhi3Y7RJoZV7mebHMCa0v7HxP9ejqrMi16NqaLTkS5B8ltQUDPVpaLTU0PCfld8Gq/kI8mDzz603iWoIRk+YG4xfDcavRpOg+qBfDcHQ18jtpgQ1Bn2tJpHxbHFNeI2kNk61fiXlkchppj5faNHs1pzQke1paZaSk+/V4eR7dTJJ2trN6NRpSwcPSinHJOtC6LlKuCD5LjQfSRu+rldbEhMvfzTtpROkeFVVdaw/0FHh3/n29nvNmTN2jwAAAHRE+LPh77zT1mG0y9GT8jCrxbKFMaZVW9iTTz6p2bNnR74Pr5TbJTExdLqklCQpScnZWeo9xLbheF54tbYjk/jwab1paaGV5fi1vZxmTGhVvLY2dHpwfX3zz7l0C6/Yhq9lFT66Oykp+vpW4RXollt77eE3Axobm0+lv3RFPPxVal5RDj93Utsrm5YVeszwxdBjrWrGGl+s5yietpbtLfuEj7y+NNelecNveoWPTm5sjO+U4pYrxrFWkS89cr6tVfR49l9p367+GeELvQcCoddWdXXodZCaGtp8vubnN/z10tdAyyMqWh6F0d7W1msg1ushls5qD1+HEAAAuMPMmdKYMaFrvDqVoyflmZmZSkhIaLUqXllZ2Wr1PCwQCCjQVWfvw3Esq3lCZvc4AoHQFv70sMv1T0kJbZe2hSc7gNN069b6E+wAAACcxucLXR/ZyXx2D6A93bp1U35+vkpKSqLaS0pKdPvtt9s0KgAAAAAAOoejJ+WSNHv2bP3xj3/USy+9pAMHDuiJJ57QiRMnVFRUZPfQAABAJ3n99dc1fPhwJScnKzMzUw888IDdQwIAoEs4+vB1SfrBD36gTz/9VEuWLNGZM2c0ePBg/fWvf1VeXp7dQwMAAJ3gz3/+sx555BE988wzGj16tIwxKi8vt3tYAAB0CUd/JFpn4GNSAABOQ21q1tjYqL59+2rx4sX68Y9/fEWPwfMJAHCajtQmxx++DgAAvKu0tFSnTp2Sz+fT0KFDlZOTo/Hjx2v//v1t3qeurk7V1dVRGwAAbsWkHAAA2ObIkSOSpEWLFmnBggV67bXXlJGRoVGjRumzzz6LeZ+lS5cqPT09stn50acAAHxZTMoBAECnW7RokSzLand7//33FQwGJUnz58/XxIkTlZ+fr7Vr18qyLG3YsCHmYz/55JOqqqqKbCdPnuzKaAAAdCrHX+gNAAC4z4wZMzRp0qR2+/Tt21c1NTWSpIEDB0baA4GA+vfvrxMnTsS8XyAQUCAQ6LzBAgBgIyblAACg02VmZiozM/Oy/fLz8xUIBHTw4EGNHDlSktTQ0KBjx47xSSsAgGsCk3IAAGCb7t27q6ioSAsXLlSfPn2Ul5en5cuXS5IefPBBm0cHAMDVx6QcAADYavny5fL7/SooKNCFCxc0fPhwvf3228rIyLB7aAAAXHV8TjkAAF2M2tS5eD4BAE7D55QDAAAAAOACTMoBAAAAALCJ588pDx+dX11dbfNIAAAICdckj59B1mWo9QAAp+lIrff8pDz8+ad9+vSxeSQAAESrqalRenq63cNwPWo9AMCp4qn1nr/QWzAY1OnTp5WWlibLsr7UY1VXV6tPnz46efKkJy4k46U8XsoikcfJvJRF8lYeN2Uxxqimpka5ubny+TiT7MvqzFovueu1dDleyiJ5K4+XskjeyuOlLBJ57NKRWu/5lXKfz6fevXt36mN2797d0S+AjvJSHi9lkcjjZF7KInkrj1uysELeea5GrZfc81qKh5eySN7K46UskrfyeCmLRB47xFvreXseAAAAAACbMCkHAAAAAMAmTMo7IBAIaOHChQoEAnYPpVN4KY+XskjkcTIvZZG8lcdLWWAvL72WvJRF8lYeL2WRvJXHS1kk8riB5y/0BgAAAACAU7FSDgAAAACATZiUAwAAAABgEyblAAAAAADYhEk5AAAAAAA2YVLeAS+88IL69eunpKQk5efn65133rF7SJe1dOlS3XLLLUpLS1OvXr1033336eDBg1F9jDFatGiRcnNzlZycrG9961vav3+/TSOO39KlS2VZlmbNmhVpc1uWU6dOaerUqerZs6dSUlJ08803a8+ePZH9bsrT2NioBQsWqF+/fkpOTlb//v21ZMkSBYPBSB+n5vnHP/6he++9V7m5ubIsS5s3b47aH8+46+rqNHPmTGVmZio1NVUTJkzQJ5980oUpmrWXp6GhQXPnztWNN96o1NRU5ebmatq0aTp9+nTUY7glT0s/+clPZFmWfv3rX0e1OykPnI1a7yzUemdxc62XvFXvqfXeqvVMyuP06quvatasWZo/f7727t2rO+64Q+PHj9eJEyfsHlq7duzYoenTp+u9995TSUmJGhsbNXbsWNXW1kb6LFu2TCtWrNDKlSu1e/duZWdn67vf/a5qampsHHn7du/erTVr1uimm26KandTls8//1wjRoxQYmKi3njjDX300Uf61a9+pa985SuRPm7K89xzz2n16tVauXKlDhw4oGXLlmn58uX63e9+F+nj1Dy1tbUaMmSIVq5cGXN/POOeNWuWNm3apPXr12vnzp06d+6c7rnnHjU1NXVVjIj28pw/f16lpaV66qmnVFpaqo0bN+rQoUOaMGFCVD+35LnU5s2b9a9//Uu5ubmt9jkpD5yLWu8s1Hrn5XFzrZe8Ve+p9R6r9QZxufXWW01RUVFU24ABA8y8efNsGtGVqaysNJLMjh07jDHGBINBk52dbZ599tlIn4sXL5r09HSzevVqu4bZrpqaGnPDDTeYkpISM2rUKFNcXGyMcV+WuXPnmpEjR7a532157r77bvPwww9HtT3wwANm6tSpxhj35JFkNm3aFPk+nnF/8cUXJjEx0axfvz7S59SpU8bn85k333yzy8YeS8s8sezatctIMsePHzfGuDPPJ598Yq677jrz4Ycfmry8PPP8889H9jk5D5yFWu8c1Hpn5vFKrTfGW/WeWu/sPPFgpTwO9fX12rNnj8aOHRvVPnbsWP3zn/+0aVRXpqqqSpLUo0cPSdLRo0dVUVERlS0QCGjUqFGOzTZ9+nTdfffd+s53vhPV7rYsW7Zs0bBhw/Tggw+qV69eGjp0qP7whz9E9rstz8iRI/XWW2/p0KFDkqQPPvhAO3fu1F133SXJfXnC4hn3nj171NDQENUnNzdXgwcPdnS2sKqqKlmWFVm5cVueYDCogoICzZkzR4MGDWq13215YA9qvbNQ652Zx6u1XvJ+vafWO5vf7gG4wdmzZ9XU1KSsrKyo9qysLFVUVNg0qo4zxmj27NkaOXKkBg8eLEmR8cfKdvz48S4f4+WsX79epaWl2r17d6t9bsty5MgRrVq1SrNnz9Yvf/lL7dq1S48//rgCgYCmTZvmujxz585VVVWVBgwYoISEBDU1Nenpp5/W5MmTJbnv3ycsnnFXVFSoW7duysjIaNXH6X8jLl68qHnz5umHP/yhunfvLsl9eZ577jn5/X49/vjjMfe7LQ/sQa13Dmq9c/N4tdZL3q731Hrn5WmJSXkHWJYV9b0xplWbk82YMUP79u3Tzp07W+1zQ7aTJ0+quLhYf/vb35SUlNRmPzdkkULv+A0bNkzPPPOMJGno0KHav3+/Vq1apWnTpkX6uSXPq6++qpdfflmvvPKKBg0apLKyMs2aNUu5ubkqLCyM9HNLnpauZNxOz9bQ0KBJkyYpGAzqhRdeuGx/J+bZs2ePfvOb36i0tLTDY3NiHtjPrX+jwqj1zkKtD3Fqnli8Vu+p9c7LEwuHr8chMzNTCQkJrd5lqaysbPVumlPNnDlTW7Zs0fbt29W7d+9Ie3Z2tiS5ItuePXtUWVmp/Px8+f1++f1+7dixQ7/97W/l9/sj43VDFknKycnRwIEDo9q+8Y1vRC4o5KZ/G0maM2eO5s2bp0mTJunGG29UQUGBnnjiCS1dulSS+/KExTPu7Oxs1dfX6/PPP2+zj9M0NDTooYce0tGjR1VSUhJ551xyV5533nlHlZWVuv766yN/F44fP66f/exn6tu3ryR35YF9qPXOQK0PcWoer9Z6yZv1nlrvzDyxMCmPQ7du3ZSfn6+SkpKo9pKSEt1+++02jSo+xhjNmDFDGzdu1Ntvv61+/fpF7e/Xr5+ys7OjstXX12vHjh2OyzZmzBiVl5errKwssg0bNkxTpkxRWVmZ+vfv75oskjRixIhWH1lz6NAh5eXlSXLXv40UutKnzxf9JyUhISHyMSluyxMWz7jz8/OVmJgY1efMmTP68MMPHZktXKQPHz6sbdu2qWfPnlH73ZSnoKBA+/bti/q7kJubqzlz5mjr1q2S3JUH9qHWOwO13tl5vFrrJe/Ve2q9c/PE1JVXlXOz9evXm8TERPPiiy+ajz76yMyaNcukpqaaY8eO2T20dj322GMmPT3d/P3vfzdnzpyJbOfPn4/0efbZZ016errZuHGjKS8vN5MnTzY5OTmmurraxpHH59Irshrjriy7du0yfr/fPP300+bw4cNm3bp1JiUlxbz88suRPm7KU1hYaK677jrz2muvmaNHj5qNGzeazMxM84tf/CLSx6l5ampqzN69e83evXuNJLNixQqzd+/eyBVK4xl3UVGR6d27t9m2bZspLS01o0ePNkOGDDGNjY2OytPQ0GAmTJhgevfubcrKyqL+LtTV1bkuTywtr8hqjLPywLmo9c5ErXcON9d6Y7xV76n13qr1TMo74Pe//73Jy8sz3bp1M9/85jcjHzXiZJJibmvXro30CQaDZuHChSY7O9sEAgFz5513mvLycvsG3QEtC7XbsvzlL38xgwcPNoFAwAwYMMCsWbMmar+b8lRXV5vi4mJz/fXXm6SkJNO/f38zf/78qD/+Ts2zffv2mL8nhYWFxpj4xn3hwgUzY8YM06NHD5OcnGzuuecec+LECRvStJ/n6NGjbf5d2L59u+vyxBKrUDspD5yNWu881HrncHOtN8Zb9Z5a761abxljTOesuQMAAAAAgI7gnHIAAAAAAGzCpBwAAAAAAJswKQcAAAAAwCZMygEAAAAAsAmTcgAAAAAAbMKkHAAAAAAAmzApBwAAAADAJkzKAQAAAACwCZNyAFedZVnavHmz3cMAAABXCbUeuHJMygGP+9GPfiTLslpt48aNs3toAACgE1DrAXfz2z0AAFffuHHjtHbt2qi2QCBg02gAAEBno9YD7sVKOXANCAQCys7OjtoyMjIkhQ43W7VqlcaPH6/k5GT169dPGzZsiLp/eXm5Ro8ereTkZPXs2VOPPvqozp07F9XnpZde0qBBgxQIBJSTk6MZM2ZE7T979qzuv/9+paSk6IYbbtCWLVuubmgAAK4h1HrAvZiUA9BTTz2liRMn6oMPPtDUqVM1efJkHThwQJJ0/vx5jRs3ThkZGdq9e7c2bNigbdu2RRXiVatWafr06Xr00UdVXl6uLVu26Ktf/WrUz1i8eLEeeugh7du3T3fddZemTJmizz77rEtzAgBwraLWAw5mAHhaYWGhSUhIMKmpqVHbkiVLjDHGSDJFRUVR9xk+fLh57LHHjDHGrFmzxmRkZJhz585F9r/++uvG5/OZiooKY4wxubm5Zv78+W2OQZJZsGBB5Ptz584Zy7LMG2+80Wk5AQC4VlHrAXfjnHLgGvDtb39bq1atimrr0aNH5PZtt90Wte+2225TWVmZJOnAgQMaMmSIUlNTI/tHjBihYDCogwcPyrIsnT59WmPGjGl3DDfddFPkdmpqqtLS0lRZWXmlkQAAwCWo9YB7MSkHrgGpqamtDjG7HMuyJEnGmMjtWH2Sk5PjerzExMRW9w0Ggx0aEwAAiI1aD7gX55QD0Hvvvdfq+wEDBkiSBg4cqLKyMtXW1kb2v/vuu/L5fPra176mtLQ09e3bV2+99VaXjhkAAMSPWg84FyvlwDWgrq5OFRUVUW1+v1+ZmZmSpA0bNmjYsGEaOXKk1q1bp127dunFF1+UJE2ZMkULFy5UYWGhFi1apH//+9+aOXOmCgoKlJWVJUlatGiRioqK1KtXL40fP141NTV69913NXPmzK4NCgDANYpaD7gXk3LgGvDmm28qJycnqu3rX/+6Pv74Y0mhq6WuX79eP/3pT5Wdna1169Zp4MCBkqSUlBRt3bpVxcXFuuWWW5SSkqKJEydqxYoVkccqLCzUxYsX9fzzz+vnP/+5MjMz9f3vf7/rAgIAcI2j1gPuZRljjN2DAGAfy7K0adMm3XfffXYPBQAAXAXUesDZOKccAAAAAACbMCkHAAAAAMAmHL4OAAAAAIBNWCkHAAAAAMAmTMoBAAAAALAJk3IAAAAAAGzCpBwAAAAAAJswKQcAAAAAwCZMygEAAAAAsAmTcgAAAAAAbMKkHAAAAAAAm/w/Ta5O+LY2E0oAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1576,7 +1577,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -1584,6 +1585,7 @@ "model.eval()\n", "hist_test = []\n", "predictions = []\n", + "observed = []\n", "hist_test_step = 0\n", "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", " var_X_batch = torch.autograd.Variable(X_batch).to(device)\n", @@ -1594,6 +1596,7 @@ " loss = criterion(output.squeeze(), var_y_batch)\n", " wandb.log({'testing_loss': loss.item()})\n", " predictions.append(output.squeeze().cpu().detach().numpy())\n", + " observed.append(var_y_batch.cpu().detach().numpy())\n", " hist_test_step += loss.item()\n", "\n", "hist_test.append(hist_test_step / len(test_loader.dataset))\n", @@ -1611,7 +1614,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1631,19 +1634,19 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.409\n" + "The MSE loss is 2.005\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACut0lEQVR4nOzdeVhUZfsH8O/MsG/Dvu+CCoIKioq7qbnlUpm7prb9UttstbdSKzPbXDItLTEtl8ottTSXXMEFFDcQRdlEdmTfZ87vD2SKQGVw4MzA93Ndc70vZw5n7nmcgPs8z3PfEkEQBBARERERERGRTpCKHQARERERERERNRwTeSIiIiIiIiIdwkSeiIiIiIiISIcwkSciIiIiIiLSIUzkiYiIiIiIiHQIE3kiIiIiIiIiHcJEnoiIiIiIiEiHMJEnIiIiIiIi0iF6YgegjZRKJW7fvg1zc3NIJBKxwyEiIiIiIqIWThAEFBYWwtnZGVLp/efcmcjX4/bt23BzcxM7DCIiIiIiImplUlJS4Orqet9zmMjXw9zcHED1AFpYWIgcDREREREREbV0BQUFcHNzU+Wj98NEvh41y+ktLCyYyBMREREREVGzacj2bha7IyIiIiIiItIhTOSJiIiIiIiIdAgTeSIiIiIiIiIdwj3yRERERERED0GhUKCyslLsMEgH6OvrQyaTPfR1mMgTERERERE1UlFREW7dugVBEMQOhXSARCKBq6srzMzMHuo6TOSJiIiIiIgaQaFQ4NatWzAxMYGdnV2Dqo1T6yUIArKysnDr1i34+vo+1Mw8E3kiIiIiIqJGqKyshCAIsLOzg7GxsdjhkA6ws7NDYmIiKisrHyqRZ7E7IiIiIiKih8CZeGooTX1WmMgTERERERER6RAuradWQ6EUcCYhF5mFZbA3N0I3L2vIpLx7SkREREREuoWJPLUK+y6nYeHuGKTll6mOOcmNMH+kP4YGOIkYGRERERGR9vL09MSrr76KV199VexQNOLIkSMYMGAA7ty5A0tLS7HDaTQuracWb9/lNLz407laSTwApOeX4cWfzmHf5TSRIiMiIiIiEk9KSgqeeeYZODs7w8DAAB4eHnjllVeQk5Mjdmga0b9//zo3IHr27Im0tDTI5XJxgtIQJvLUoimUAhbujkF9XT1rji3cHQOFkn0/iYiIiKj1uHnzJrp27Ypr165h8+bNiI+Px7fffotDhw4hNDQUubm5osSlUCigVCqb7PoGBgZwdHTU+QKFoibyixcvRkhICMzNzWFvb48xY8YgLi6u1jnTp0+HRCKp9ejRo8cDr71t2zb4+/vD0NAQ/v7+2LFjR1O9DdJiZxJy68zE/5sAIC2/DGcSxPlBRUREREQthyAIKKmoEuUhCOpNTM2ePRsGBgb466+/0K9fP7i7u2PYsGE4ePAgUlNT8b///U91bmFhISZNmgQzMzM4Ozvj66+/rnWtBQsWwN3dHYaGhnB2dsbLL7+seq6iogJvvfUWXFxcYGpqiu7du+PIkSOq59evXw9LS0vs2bNHlb+tXbsWRkZGyMvLq/U6L7/8Mvr16wcAyMnJwcSJE+Hq6goTExMEBgZi8+bNqnOnT5+Oo0ePYvny5ao8MjExEUeOHIFEIql17W3btqFDhw4wNDSEp6cnvvzyy1qv6+npiU8++QQzZ86Eubk53N3dsWbNmlrvcc6cOXBycoKRkRE8PT2xePFitf491CXqHvmjR49i9uzZCAkJQVVVFf73v//h0UcfRUxMDExNTVXnDR06FGFhYaqvDQwM7nvdiIgIjB8/Hh999BEef/xx7NixA+PGjcOJEyfQvXv3Jns/pH0yC++dxDfmPCIiIiKieymtVMD/g/2ivHbMh0NgYtCw9C43Nxf79+/HokWLYGxsXOs5R0dHTJ48GVu3bsWqVasAAJ9//jneffddLFiwAPv378drr72G9u3bY/Dgwfjtt9+wdOlSbNmyBR06dEB6ejouXLigut6MGTOQmJiILVu2wNnZGTt27MDQoUNx6dIl+Pr6AgBKSkqwePFifP/997CxsYGrqyvmz5+Pbdu24ZlnngFQPVP/yy+/4MMPPwQAlJWVoUuXLnj77bdhYWGBvXv3YurUqfD29kb37t2xfPlyXLt2DQEBAarvqenh/m9RUVEYN24cFixYgPHjxyM8PByzZs2CjY0Npk+frjrvyy+/xEcffYR3330Xv/32G1588UX07dsX7du3x4oVK/D777/jl19+gbu7O1JSUpCSktLwf7xGEDWR37dvX62vw8LCYG9vj6ioKPTt21d13NDQEI6Ojg2+7rJlyzB48GDMmzcPADBv3jwcPXoUy5Ytq3WXpiVIzSuFi6Xxg09spezNjTR6HhERERGRrrt+/ToEQYCfn1+9z/v5+eHOnTvIysoCAPTq1QvvvPMOAKBt27Y4efIkli5disGDByM5ORmOjo4YNGgQ9PX14e7ujm7dugEAbty4gc2bN+PWrVtwdnYGALzxxhvYt28fwsLC8MknnwAAKisrsWrVKnTq1EkVw/jx47Fp0yZVIn/o0CHcuXMHTz31FADAxcUFb7zxhur8l156Cfv27cOvv/6K7t27Qy6Xw8DAACYmJvfNJb/66isMHDgQ77//vur9xcTE4PPPP6+VyA8fPhyzZs0CALz99ttYunQpjhw5gvbt2yM5ORm+vr7o3bs3JBIJPDw8Gvgv0XhaVbU+Pz8fAGBtbV3r+JEjR2Bvbw9LS0v069cPixYtgr29/T2vExERgddee63WsSFDhmDZsmX1nl9eXo7y8nLV1wUFBY18B83r8NUMPL8hCrMH+GD2AB8Y6LHkwX9187KGk9wI6fll9e6TlwBwlFe3oiMiIiIiehjG+jLEfDhEtNfWlJpl+jX7yENDQ2s9HxoaqsqtnnrqKSxbtgze3t4YOnQohg8fjpEjR0JPTw/nzp2DIAho27Ztre8vLy+HjY2N6msDAwN07Nix1jmTJ09GaGgobt++DWdnZ/z8888YPnw4rKysAFTP0H/66afYunUrUlNTVTndv1d2N0RsbCxGjx5d61ivXr2wbNkyKBQKyGTV4/rv+CQSCRwdHZGZmQmgehn/4MGD0a5dOwwdOhSPPfYYHn30UbXiUJfWZH6CIGDu3Lno3bs3AgICVMeHDRuGn3/+GYcPH8aXX36Js2fP4pFHHqmVeP9Xeno6HBwcah1zcHBAenp6vecvXrwYcrlc9XBzc9PMm2piR+KyUKUUsPzQdYz+5iSu3M4XOyStI5NKMH+kP4DqpP3far6eP9Kf/eSJiIiI6KFJJBKYGOiJ8lCneJuPjw8kEgliYmLqff7q1auwsrKCra3tfd8rALi5uSEuLg7ffPMNjI2NMWvWLPTt2xeVlZVQKpWQyWSIiopCdHS06hEbG4vly5errmVsbFwn/m7duqFNmzbYsmULSktLsWPHDkyZMkX1/JdffomlS5firbfewuHDhxEdHY0hQ4agoqKiweMAVOeh/33t+uoN6Ovr13n/NUX5goODkZCQgI8++gilpaUYN24cxo4dq1Yc6tKaRH7OnDm4ePFinaXv48ePx4gRIxAQEICRI0fizz//xLVr17B37977Xq++f4x7fbjnzZuH/Px81aOp9zNoysJRHfD1xCBYmegjNq0Ao1eexFcHrqGiqumqPOqioQFOWD0lGI7y2svnHeVGWD0lmH3kiYiIiKhVsbGxweDBg7Fq1SqUlpbWei49PR0///wzxo8fr8qfTp06VeucU6dOoX379qqvjY2NMWrUKKxYsQJHjhxBREQELl26hKCgICgUCmRmZsLHx6fWoyFbpydNmoSff/4Zu3fvhlQqxYgRI1TPHT9+HKNHj8aUKVPQqVMneHt74/r167W+38DAAAqF4r6v4e/vjxMnTtQ6Fh4ejrZt26pm4xvCwsIC48ePx9q1a7F161Zs27atSSv/a8XS+pdeegm///47jh07BldX1/ue6+TkBA8Pjzr/SP/m6OhYZ/Y9MzOzzix9DUNDQxgaGqofuMgkEglGdnJGaBsbvL/zMv68nI4Vh67jQEwGvniqIzo463ZvRE0aGuCEwf6OOJOQi8zCMtibVy+n50w8EREREbVGK1euRM+ePTFkyBB8/PHH8PLywpUrV/Dmm2/CxcUFixYtUp178uRJfPbZZxgzZgwOHDiAX3/9VTWxun79eigUCnTv3h0mJibYuHEjjI2N4eHhARsbG0yePBnTpk3Dl19+iaCgIGRnZ+Pw4cMIDAzE8OHD7xvj5MmTsXDhQixatAhjx46FkdE/E3M+Pj7Ytm0bwsPDYWVlha+++grp6em19v17enri9OnTSExMhJmZWZ0t3ADw+uuvIyQkBB999BHGjx+PiIgIrFy5UlXoryGWLl0KJycndO7cGVKpFL/++iscHR1haWnZ4GuoS9QZeUEQMGfOHGzfvh2HDx+Gl5fXA78nJycHKSkpcHK69yxqaGgoDhw4UOvYX3/9hZ49ez50zNrI1swQqyYHc3b+AWRSCULb2GB0ZxeEtrFhEk9ERERErZavry8iIyPRpk0bjB8/Hm3atMHzzz+PAQMGICIiolbS+/rrryMqKgpBQUH46KOP8OWXX2LIkOpaAJaWlli7di169eqFjh074tChQ9i9e7dqD3xYWBimTZuG119/He3atcOoUaNw+vTpBm1n9vX1RUhICC5evIjJkyfXeu79999HcHAwhgwZgv79+8PR0RFjxoypdc4bb7wBmUwGf39/2NnZITk5uc5rBAcH45dffsGWLVsQEBCADz74AB9++GGtQncPYmZmhiVLlqBr164ICQlBYmIi/vjjD0ilTZduSwR1Gw5q0KxZs7Bp0ybs2rUL7dq1Ux2Xy+UwNjZGUVERFixYgCeffBJOTk5ITEzEu+++i+TkZMTGxsLc3BwAMG3aNLi4uKh69YWHh6Nv375YtGgRRo8ejV27duG9995rcPu5goICyOVy5Ofnw8LComnefBPJLipXzc4DQHtHc3zxVCcEuHB2noiIiIhIk8rKypCQkAAvL69as8VE93K/z4w6eaioM/KrV69Gfn4++vfvDycnJ9Vj69atAACZTIZLly5h9OjRaNu2LZ5++mm0bdsWERERqiQeAJKTk5GWlqb6umfPntiyZQvCwsLQsWNHrF+/Hlu3bm0VPeRrZudXTgqCtakBrqYXYsw3nJ0nIiIiIiJqKUSdkddWujwj/2+cnSciIiIiajqckSd1tYgZeWpatmaGWD2lS63Z+dHfnMRXf8Vxdp6IiIiIiEhHMZFvBR7r6Iy/XuuL4YGOUCgFrDgcj1ErT+ByKvvOExERERER6Rom8q1E9d75LvhmUjBn54mIiIiIiHQYE/lWZkRHJ87OExERERER6TAm8q3QvWbnv+TsPBERERERkdZjIt+KjejohAOv9cWIQCcolAK+vjs7f+kWZ+eJiIiIiIi0FRP5Vs7GzBDfTA6uNTs/ZlX17Hx5lULs8IiIiIiISEctWLAAnTt3Vn09ffp0jBkz5qGuqYlrtARM5AnAv2bnO/5rdv7rk5ydJyIiIiJqYaZPnw6JRAKJRAJ9fX14e3vjjTfeQHFxcZO+7vLly7F+/foGnZuYmAiJRILo6OhGX6MlYyJPKjZmhvhmUjBWTQ6GjakB4jKqZ+e/2M/ZeSIiIiKilmTo0KFIS0vDzZs38fHHH2PVqlV444036pxXWVmpsdeUy+WwtLQU/RotARN5qmN4YHVl+5rZ+ZV/c3aeiIiIiKipKJQCIm7kYFd0KiJu5EChFJr8NQ0NDeHo6Ag3NzdMmjQJkydPxs6dO1XL4detWwdvb28YGhpCEATk5+fj+eefh729PSwsLPDII4/gwoULta756aefwsHBAebm5njmmWdQVlZW6/n/LotXKpVYsmQJfHx8YGhoCHd3dyxatAgA4OXlBQAICgqCRCJB//79671GeXk5Xn75Zdjb28PIyAi9e/fG2bNnVc8fOXIEEokEhw4dQteuXWFiYoKePXsiLi5Odc6FCxcwYMAAmJubw8LCAl26dEFkZKQmhrnJMJGnenF2noiIiIio6e27nIbeSw5j4tpTeGVLNCauPYXeSw5j3+W0Zo3D2NhYNfseHx+PX375Bdu2bVMtbR8xYgTS09Pxxx9/ICoqCsHBwRg4cCByc3MBAL/88gvmz5+PRYsWITIyEk5OTli1atV9X3PevHlYsmQJ3n//fcTExGDTpk1wcHAAAJw5cwYAcPDgQaSlpWH79u31XuOtt97Ctm3b8OOPP+LcuXPw8fHBkCFDVHHV+N///ocvv/wSkZGR0NPTw8yZM1XPTZ48Ga6urjh79iyioqLwzjvvQF9fX/1BbEZ6YgdA2m14oBO6e1njg9+vYO/FNKz8Ox4HYjLw+VMd0dHVUuzwiIiIiIh01r7LaXjxp3P47/x7en4ZXvzpHFZPCcbQAKcmj+PMmTPYtGkTBg4cCACoqKjAxo0bYWdnBwA4fPgwLl26hMzMTBgaGgIAvvjiC+zcuRO//fYbnn/+eSxbtgwzZ87Es88+CwD4+OOPcfDgwTqz8jUKCwuxfPlyrFy5Ek8//TQAoE2bNujduzcAqF7bxsYGjo6O9V6juLgYq1evxvr16zFs2DAAwNq1a3HgwAH88MMPePPNN1XnLlq0CP369QMAvPPOOxgxYgTKyspgZGSE5ORkvPnmm2jfvj0AwNfXt5Ej2Xw4I08PVN/s/OOrwvH5/qucnSciIiIiagSFUsDC3TF1kngAqmMLd8c02TL7PXv2wMzMDEZGRggNDUXfvn3x9ddfAwA8PDxUiTQAREVFoaioCDY2NjAzM1M9EhIScOPGDQBAbGwsQkNDa73Gf7/+t9jYWJSXl6tuHjTGjRs3UFlZiV69eqmO6evro1u3boiNja11bseOHVX/38mp+uZIZmYmAGDu3Ll49tlnMWjQIHz66aeq96TNmMhTg9XsnX/s7t75b/6+gVFfn8TFW3lih0ZEREREpFPOJOQiLb/+2WqgOplPyy/DmYTce57zMAYMGIDo6GjExcWhrKwM27dvh729PQDA1NS01rlKpRJOTk6Ijo6u9YiLi6s1660OY2Pjh34PglB9k0MikdQ5/t9j/14qX/OcUqkEUN0m78qVKxgxYgQOHz4Mf39/7Nix46Hja0pM5EktNmaGWDkpGKs5O09ERERE1GiZhfdO4htznrpMTU3h4+MDDw+PB+4HDw4ORnp6OvT09ODj41PrYWtrCwDw8/PDqVOnan3ff7/+N19fXxgbG+PQoUP1Pm9gYAAAUCjunWP4+PjAwMAAJ06cUB2rrKxEZGQk/Pz87vue/qtt27Z47bXX8Ndff+GJJ55AWFiYWt/f3JjIU6MMC3TCgbn9as3Oj/z6BGfniYiIiIgawN7cSKPnNaVBgwYhNDQUY8aMwf79+5GYmIjw8HC89957qurur7zyCtatW4d169bh2rVrmD9/Pq5cuXLPaxoZGeHtt9/GW2+9hQ0bNuDGjRs4deoUfvjhBwCAvb09jI2NsW/fPmRkZCA/v24HLVNTU7z44ot48803sW/fPsTExOC5555DSUkJnnnmmQa9t9LSUsyZMwdHjhxBUlISTp48ibNnz6p9I6C5MZGnRrM2NVDNztuaGeBaRhFn54mIiIiIGqCblzWc5EaQ3ON5CQAnuRG6eVk3Z1j1xyKR4I8//kDfvn0xc+ZMtG3bFhMmTEBiYqKqyvz48ePxwQcf4O2330aXLl2QlJSEF1988b7Xff/99/H666/jgw8+gJ+fH8aPH6/at66np4cVK1bgu+++g7OzM0aPHl3vNT799FM8+eSTmDp1KoKDgxEfH4/9+/fDysqqQe9NJpMhJycH06ZNQ9u2bTFu3DgMGzYMCxcuVGOEmp9EqNlYQCoFBQWQy+XIz8+HhYWF2OHohNziCsz//Qp2X7gNAGjrYIYvnurEyvZERERE1GKVlZUhISEBXl5eMDJSf+a8pmo9gFpF72qS++aqWk/N536fGXXyUM7Ik0ZYmxrg64lB+HZK7dn5z/Zxdp6IiIiIqD5DA5ywekowHOW1EzpHuRGTeLov9pEnjRoa4IRuXjaq2flVR27gQEwGvniqEzq5WYodHhERERGRVhka4ITB/o44k5CLzMIy2JtXL6eXSe+16J6IM/LUBP47O389swhPrObsPBERERFRfWRSCULb2GB0ZxeEtrFhEk8PxESemszQACf89Vo/jOzkDIVSwKojN/DYihO4kJIndmhEREREREQ6i4k8Nan6ZucfX3USSzg7T0RERERE1ChM5HWYQikg4kYOdkWnIuJGDhRK7W1AUDM7P6qTM5QCsPru7Hw0Z+eJiIiIiIjUwmJ3Omrf5TQs3B2DtPwy1TEnuRHmj/TX2uqW1qYGWDExCMMDnfDezkvVe+dXncQL/drglYG+MNKXiR0iERERERGR1uOMvA6q6Tf57yQeANLzy/DiT+ew73KaSJE1zNAARxz4z+z8yK85O09ERERERNQQTOR1jEIpYOHuGNS3iL7m2MLdMVq9zB4ArO7Ozn87pQtszQxVs/Of/nkVZZXcO09ERERERHQvTOR1zJmE3Doz8f8mAEjLL8OZhNzmC+ohVM/O98XoztWz898evYHHODtPRERERCQ6iUSCnTt3AgASExMhkUgQHR0takz3ou3xaRoTeR2TWXjvJL4x52kDK1MDLJ8QhO+mVs/Ox3N2noiIiIioyaWnp+Oll16Ct7c3DA0N4ebmhpEjR+LQoUN1znVzc0NaWhoCAgKaNKbWlpA3Fovd6Rh7cyONnqdNhnRwRDdPayzYfQW7om/j26M3cDA2A5+P7YggdyuxwyMiIiIiahIKhQLHjx9HWloanJyc0KdPH8hkTVsIOjExEb169YKlpSU+++wzdOzYEZWVldi/fz9mz56Nq1ev1jpfJpPB0dGxSWOihuOMvI7p5mUNJ7kRJPd4XoLq6vXdvKybMyyNqW92/snV4Vj8Zyxn54mIiIioxdm+fTs8PT0xYMAATJo0CQMGDICnpye2b9/epK87a9YsSCQSnDlzBmPHjkXbtm3RoUMHzJ07F6dOnapz/n9nyo8cOQKJRIL9+/cjKCgIxsbGeOSRR5CZmYk///wTfn5+sLCwwMSJE1FSUqK6zr59+9C7d29YWlrCxsYGjz32GG7cuKF63svLCwAQFBQEiUSC/v37AwCUSiU+/PBDuLq6wtDQEJ07d8a+ffvu+x6PHj2Kbt26wdDQEE5OTnjnnXdQVVWler6wsBCTJ0+GqakpnJycsHTpUvTv3x+vvvoqAODDDz9EYGBgnet26dIFH3zwQYPGuakwkdcxMqkE80f6A0CdZL7m6/kj/SGT3ivV1w1DOtTeO//d0Zt47OsTOJ98R+zQiIiIiIg0Yvv27Rg7dixu3bpV63hqairGjh3bZMl8bm4u9u3bh9mzZ8PU1LTO85aWlg2+1oIFC7By5UqEh4cjJSUF48aNw7Jly7Bp0ybs3bsXBw4cwNdff606v7i4GHPnzsXZs2dx6NAhSKVSPP7441AqlQCAM2fOAAAOHjyItLQ01RgsX74cX375Jb744gtcvHgRQ4YMwahRo3D9+vV640pNTcXw4cMREhKCCxcuYPXq1fjhhx/w8ccfq86ZO3cuTp48id9//x0HDhzA8ePHce7cOdXzM2fORExMDM6ePas6dvHiRZw/fx7Tp09v8Bg1BSbyOmhogBNWTwmGo7z28nlHuRFWTwnW2j7y6uLsPBERERG1VAqFAq+88goEoW63qZpjr776KhQKzf/dGx8fD0EQ0L59+4e+1scff4xevXohKCgIzzzzDI4ePYrVq1cjKCgIffr0wdixY/H333+rzn/yySfxxBNPwNfXF507d8YPP/yAS5cuISYmBgBgZ2cHALCxsYGjoyOsratXGn/xxRd4++23MWHCBLRr1w5LlixB586dsWzZsnrjWrVqFdzc3LBy5Uq0b98eY8aMwcKFC/Hll19CqVSisLAQP/74I7744gsMHDgQAQEBCAsLqzXerq6uGDJkCMLCwlTHwsLC0K9fP3h7ez/02D0MJvI6amiAE068/Qg2P9cDyyd0xubneuDE24+0mCT+34Z0cMTBuX0x5l+z8yNWHOfsPBERERHprOPHj9eZif83QRCQkpKC48ePa/y1a24USCQPv4q3Y8eOqv/v4OAAExOTWkmug4MDMjMzVV/fuHEDkyZNgre3NywsLFRL6ZOTk+/5GgUFBbh9+zZ69epV63ivXr0QGxtb7/fExsYiNDS01nvs1asXioqKcOvWLdy8eROVlZXo1q2b6nm5XI527drVus5zzz2HzZs3o6ysDJWVlfj5558xc+bM+w1Js2CxOx0mk0oQ2sZG7DCahaWJAZZNCMLwQCe8u+MybmQV48nV4XiurzdeG9QWRvpNWwyEiIiIiEiT0tLSNHqeOnx9fSGRSBAbG4sxY8Y81LX09fVV/18ikdT6uuZYzbJ5ABg5ciTc3Nywdu1aODs7Q6lUIiAgABUVFQ98rf/eeBAE4Z43I+p77t83MO51M+O/KyRGjhwJQ0ND7NixA4aGhigvL8eTTz75wFibGmfkSac8end2/vEgl1qz8+c4O09EREREOsTJqWEraRt6njqsra0xZMgQfPPNNyguLq7zfF5ensZfEwBycnIQGxuL9957DwMHDoSfnx/u3Kn9d7yBgQEA1FribmFhAWdnZ5w4caLWueHh4fDz86v3tfz9/REeHl4rMQ8PD4e5uTlcXFzQpk0b6Ovrq/bkA9Uz///dc6+np4enn34aYWFhCAsLw4QJE2BiYtK4AdAgJvKkcyxNDLB0fGesndYVduaGuJFVjLGrw7H4D+6dJyIiIiLd0KdPH7i6ut5zRlkikcDNzQ19+vRpktdftWoVFAoFunXrhm3btuH69euIjY3FihUrEBoa2iSvaWVlBRsbG6xZswbx8fE4fPgw5s6dW+sce3t7GBsbY9++fcjIyEB+fj4A4M0338SSJUuwdetWxMXF4Z133kF0dDReeeWVel9r1qxZSElJwUsvvYSrV69i165dmD9/PubOnQupVApzc3M8/fTTePPNN/H333/jypUrmDlzJqRSaZ1/k2effRaHDx/Gn3/+qRXL6gEm8qTDBvs74MBr/5qdP8bZeSIiIiLSDTKZDMuXLwdQd3l3zdfLli1rsn7yXl5eOHfuHAYMGIDXX38dAQEBGDx4MA4dOoTVq1c3yWtKpVJs2bIFUVFRCAgIwGuvvYbPP/+81jl6enpYsWIFvvvuOzg7O2P06NEAgJdffhmvv/46Xn/9dQQGBmLfvn34/fff4evrW+9rubi44I8//sCZM2fQqVMn/N///R+eeeYZvPfee6pzvvrqK4SGhuKxxx7DoEGD0KtXL/j5+cHIqHZRcV9fX/Ts2RPt2rVD9+7dNTwqjSMR6iuT2MoVFBRALpcjPz8fFhYWYodDDXAgJgPv7riErMJySCXAc3288dpg7p0nIiIioqZTVlaGhIQEeHl51Un+Gmr79u145ZVXahW+c3Nzw7Jly/DEE09oKlRqgOLiYri4uODLL7/EM888ozpeU+H/hRdeqLOCQF33+8yok4ey2B21CIP9HRDiaYWFu2Ow43wqvjt2EwdiM/DFU50Q7G4ldnhERERERPV64oknMHr0aBw/fhxpaWlwcnJCnz59mmwmnv5x/vx5XL16Fd26dUN+fj4+/PBDAFCtAgCAzMxMbNy4EampqZgxY4ZYodbBRJ5ajJq989WV7S/h5t2988/28cZczs4TERERkZaSyWTo37+/2GG0Sl988QXi4uJgYGCALl264Pjx47C1tVU97+DgAFtbW6xZswZWVtozQchEnlqcmtn5D3fHYPv5VKw5dhMHYzPw+dhO6OKhPf/x6QKFUsCZhFxkFpbB3twI3bysIZM+fL9RIiIiIiKxBQUFISoq6r7naOtOdCby1CJZmhjgq7uz8/Puzs4/9S1n59Wx73IaFu6OQVp+meqYk9wI80f6Y2iA5tugEBERERFRw4hatX7x4sUICQmBubk57O3tMWbMGMTFxd3z/BdeeAESiQTLli2773XXr18PiURS51FWVnbf76OWZ9DdyvZP3K1sv+bYTQxfcRxJOXX7ZdI/9l1Ow4s/nauVxANAen4ZXvzpHPZdThMpMiIiIiIiEjWRP3r0KGbPno1Tp07hwIEDqKqqwqOPPori4rpJ1s6dO3H69Gk4Ozs36NoWFhZIS0ur9WhsJUnSbTWz89/f7Tt/M6sYczadR0WVUuzQtJJCKWDh7hjUt4io5tjC3TFQKLVzmRERERFRc9PW5dekfTT1WRF1af2+fftqfR0WFgZ7e3tERUWhb9++quOpqamYM2cO9u/fjxEjRjTo2hKJBI6OjhqNl3TbIH8HdHCxwLDlx3EpNR9fHojDvGF+Yoeldc4k5NaZif83AUBafhnOJOQitI1N8wVGREREpGVqKstXVFTA2NhY5GhIF1RUVADAQ3cl0Ko98vn5+QAAa2tr1TGlUompU6fizTffRIcOHRp8raKiInh4eEChUKBz58746KOPEBQUVO+55eXlKC8vV31dUFDQyHdA2s5JboxPn+iI//spCmuO3UQ/Xzv09LF98De2IpmFDduC0tDziIiIiFoqPT09mJiYICsrC/r6+pBKRV3wTFpOqVQiKysLJiYm0NN7uFRcaxJ5QRAwd+5c9O7dGwEBAarjS5YsgZ6eHl5++eUGX6t9+/ZYv349AgMDUVBQgOXLl6NXr164cOECfH1965y/ePFiLFy4UCPvg7Tf0ABHTOzmhs1nUjD3lwv485U+sDI1EDssrWFv3rAtKA09j4iIiKilkkgkcHJyQkJCApKSksQOh3SAVCqFu7s7JJKH6wQlEbRkQ8fs2bOxd+9enDhxAq6urgCAqKgojBgxAufOnVPtjff09MSrr76KV199tcHXViqVCA4ORt++fbFixYo6z9c3I+/m5ob8/HxYWFg83BsjrVRSUYXHVpzAzexiDO3giNVTgh/6P6aWQqEU0HvJYaTnl9W7T14CwFFuhBNvP8JWdERERESozjdqlkwT3Y+BgcE9V24UFBRALpc3KA/Vihn5l156Cb///juOHTumSuIB4Pjx48jMzIS7u7vqmEKhwOuvv45ly5YhMTGxQdeXSqUICQnB9evX633e0NAQhoaGD/UeSLeYGOhh+YQgPLH6JPZdSccvkSkYH+L+4G9sBWRSCeaP9MeLP52DBKiVzNek7fNH+jOJJyIiIrpLKpWysDY1K1E3cQiCgDlz5mD79u04fPgwvLy8aj0/depUXLx4EdHR0aqHs7Mz3nzzTezfv1+t14mOjoaTE3tf0z8CXeV4/dF2AIAFv8fgZlaRyBFpj6EBTlg9JRiO8tq/kBzlRlg9JZh95ImIiIhIZ5RWKFpcZwFRZ+Rnz56NTZs2YdeuXTA3N0d6ejoAQC6Xw9jYGDY2NrCxqV0VW19fH46OjmjXrp3q2LRp0+Di4oLFixcDABYuXIgePXrA19cXBQUFWLFiBaKjo/HNN98035sjnfB8H28cjctCxM0cvLIlGtte7AkDPRYpAaqT+cH+jjiTkIvMwjLYmxuhm5c1Z+KJiIiISGcolAJe/DkKJgYyfD62E0wNtWJR+kMT9V2sXr0aANC/f/9ax8PCwjB9+vQGXyc5ObnWPoO8vDw8//zzSE9Ph1wuR1BQEI4dO4Zu3bppImxqQaRSCb4a3wlDl1W3pPvqwDW8M6y92GFpDZlUwhZzRERERKSzvjoQhyNxWTDSlyI5twR+Ti2jBprWFLvTJuoUGaCW4c9LaXjx53OQSICfn+2Onm3Yko6IiIiISJftvZiG2ZvOAQCWT+iM0Z1dRI7o/tTJQ7mGmAjAsEAnjO/qBkEA5m69gLwSVh0lIiIiItJVsWkFeOPXCwCA5/t6a30Sry4m8kR3fTDSH162pkgvKMO87ZdaXEEMIiIiIqLWIK+kAs9vjERppQJ9fG3x1pB2D/4mHcNEnuguU0M9LJ/QGXpSCf68nI5fI2+JHRIREREREamhSqHES5vPIyW3FO7WJvh6YhD0ZC0v7W1574joIXR0tfynJd3uK0jILhY5IiIiIiIiaqjP98fh+PVsGOvLsGZaF1iaGIgdUpNgIk/0H8/39UYPb2uUVCjwypbzqKhSih0SERERERE9wK7oVHx37CYA4MtxndDeseUWLmciT/QfMqkES8d3htxYHxdv5WPZwWtih0RERERERPdxOTUfb2+7CACY1b8Nhgc6iRxR02IiT1QPJ7kxPn0iEACw+ugNRNzIETkiIiIiIiKqT05ROV7YGIWySiX6t7NTbZVtyZjIE93DsEAnjOvqWt2S7pdotqQjIiIiItIylQol5mw6j9S8UnjZmmL5hCDIpBKxw2pyTOSJ7mP+yA7wsjVFWn4Z3t3BlnRERERERNrkkz9iEXEzB6YGMqyZ2gVyY32xQ2oWTOSJ7sPUUA/Lxle3pPvjUjp+jWJLOiIiIiIibfBb1C2EnUwEAHw1vjN8HczFDagZMZEneoBObpZ4bXBbAMCC39mSjoiIiIhIbBdS8vDujksAgFcG+mJIB0eRI2peTOSJGuD/+rVBd6/qlnSvbjmPSgVb0hER6ZqySgW3SBERtQBZhdXF7SqqlBjk54BXBvqKHVKzYyJP1AA1LeksjPRwgS3piIh0zoWUPHRa+BcW7o4ROxQiInoIFVVKzPo5CukFZWhjZ4ql4ztB2gqK2/0XE3miBnK2NMbiJzoCAFYduYFTN9mSjohIV3zzdzzKq5T4LeoWyqsUYodDRESN9OGeKzibeAfmhnpYO60rzI1aR3G7/2IiT6SGER2d8FSX6pZ0r22NRn5JpdghERHRA6TkluBAbAYAoKi8Cqdv5oocERERNcbmM8n46VQyJBJg+cTO8LYzEzsk0TCRJ1LTglEd4GljwpZ0REQ64sfwRPz7R/Whu0k9ERHpjqikXHyw6zIA4I1H2+GR9g4iRyQuJvJEajI11MPyCUHQk0qw91IafmNLOiIirVVcXoWtkSkAgCk93AEAB2MzeROWiEiHZBSU4f9+OodKhYDhgY6Y1b+N2CGJjok8USP8uyXd/N+vIJEt6YiItNK2c7dQWFYFb1tTvDvcD4Z6UqTmleJqeqHYoRERUQOUVynwwsYoZBWWo52DOT4f2wkSSesrbvdfTOSJGunfLele2RrNlnRERFpGqRSw/mQiAGB6L0+YGOihj68tAC6vJyLSBYIg4P2dlxGdkge5sT7WTOsCU0M9scPSCkzkiRqpVku6lDwsP3hd7JCIiOhfjl7Pws3sYpgb6eHJYFcAwEC/6j2VB2IzxQyNiIga4KdTSfgl8hakEuDriUHwsDEVOyStwUSe6CE4WxrjkycCAQDfHInHabakIyLSGmF3Z+PHd3VTzeAMbG8PoLqvfGZhmVihERHRA5y+mYOFu2MAAG8PbY++be1Ejki7MJEnekiPdXTG2H+3pCtlSzoiIrHFZxbh2LUsSCXA0z09VcftLYzQyVUOADjMWXkiIq10O68Us34+hyqlgJGdnPF8X2+xQ9I6TOSJNGDBqA7wsDHB7fwy/I8t6YiIRLc+PAEAMMjPAW7WJrWeG3R3ef1BJvJERFqnrLK6uF1OcQX8nSzw2ZMdWdyuHkzkiTTAzFAPy8Z3hkwqwZ6Ladh2LlXskIiIWq38kkpsi6r+OTyjl1ed52v2yZ+Iz0JZpaJZYyMionsTBAHvbr+ES6n5sDLRx3dTu8DYQCZ2WFqJiTyRhgS5W+G1Qb4AgPm7LrMlHRGRSLacTUZppQLtHc3Rw9u6zvN+TuZwlhuhrFKJk/HZIkRIRET1CTuZiO3nUyGTSvDNpOA6K6roH0zkiTToxf4+6OZpjeIKBV5lSzoiomZXpVBiQ0QSAGBmL696l2NKJBIM8q9ZXs82dERE2iA8PhuL/ogFAPxvuB96+tiKHJF2YyJPpEEyqQRLJ3SGuZEeolPysOIQW9IRETWnAzEZSM0rhbWpAUZ1dr7neTXL6w/FZkKpZF0TIiIxpeSWYPamc1AoBTwR7IIZvTzFDknrMZEn0jAXS2N88vjdlnR/x+NMQq7IERERtR41Lecmd3eHkf6991X28LaGqYEMmYXluJSa30zRERHRf5VWKPD8xijcKalER1c5Pnk8kMXtGoCJPFETGNnJGU8Gu0LJlnRERM3mcmo+ziTmQk8qwZQeHvc911BPpupJfIjL64mIRCEIAt7adhGxaQWwNTPAt1O63PcmLP2DiTxRE1k4ugPcrU2QmleK93ZeZks6IqImVjMbP6KjExwsjB54PtvQERGJa82xm9h94Tb0pBKsmtwFzpbGYoekM/QactLvv/+u9oUHDx4MY2P+Q1DrZWaoh+UTOmPstxHYfeE2+re1w5NdXMUOi4ioRcoqLMfuC7cB1N9yrj4D2ttDKgFi0gqQmlcKF/4BSUTUbI5ey8KSfVcBAPNHdUA3r7pdRujeGpTIjxkzRq2LSiQSXL9+Hd7e3o2JiajFCHK3wqsDffHlgWv4YNdldPW0goeNqdhhERG1OJtOJ6NCoUSQuyU6u1k26HusTQ3QxcMKZxPv4HBsBqaGejZpjEREVC0xuxgvbToHpQBMCHHDlO7uYoekcxq8tD49PR1KpbJBDxMT9vsjqjFrgA9CPK3Yko6IqIlUVCnx0+nqlnMNnY2vUVO9/gCX1xMRNYvi8io8vzESBWVVCHK3xMLRHVjcrhEalMg//fTTai2TnzJlCiwsLBodFFFLIpNKsHR8dUu688l5+Jot6YiINGrvpdvIKiyHo4URhgU4qvW9NfvkT93IQVF5VVOER0REdwmCgNd/uYBrGUWwNzfEt1O6wFCPxe0ao0GJfFhYGMzNzRt80dWrV8PW1rbRQRG1NK5WJlh0tyXdyr/jcTaRLemIiDRBEASsO5EIAJga6gF9mXp1fNvYmcLTxgQVCiWOX8tqggiJiKjGN3/HY9+VdBjIpPh2apcGFSal+jX4t51CocDFixdRWlpa57mSkhJcvHgRSiWXDBPdy6hOzngi2AVKAXh1C1vSERFpQlTSHVxKzYehnhQTu6m/x1IikaiW17N6PRFR0zkUm4EvD1wDAHw4ugOC3a1Ejki3NTiR37hxI2bOnAkDA4M6zxkaGmLmzJnYtGmTRoMjamkWjvqnJd37bElHRPTQalrOjensAmvTun+jNETN8vq/4zKhUPLnMhGRpt3IKsKrW6IhCMCUHu6Y0Igbr1RbgxP5H374AW+88QZksrp7GGQyGd566y2sWbNGo8ERtTTmRvpYNqEzZFIJfr9wGzujU8UOiYhIZ93OK8W+K+kAgBm9PRt9na6eVrAw0kNucQXOJ9/RUHRERAQABWWVeG5DJArLqxDiaYUPHusgdkgtQoMT+bi4OPTo0eOez4eEhCA2NlYjQRG1ZMHuVnhloC8A4P2dV5CcUyJyREREumlDRBIUSgE929igvWPji+zqy6QY0N4eAHAgNkNT4RERtXpKpYC5W6NxM6sYjhZGWDW5Cwz01KtlQvVr8CgWFxejoKDgns8XFhaipIQJCVFDzOrfBl09rFBUXoVXt55HFVvSERGppbRCgc1nkgGo33KuPjX75A9xnzwRkcYsO3QdB2MzYaAnxXdTu8DO3FDskFqMBifyvr6+CA8Pv+fzJ06cgK+vr0aCImrp9GTS6pZ0hno4l5yHFYfjxQ6JiEin7DifivzSSrhbm+CRu7PpD6NfWzvoSSWIzyxCYnaxBiLUfQqlgIgbOdgVnYqIGzmsH0BEatl3OR0r7rZdXvx4IDq5WYobUAvT4ER+0qRJeO+993Dx4sU6z124cAEffPABJk2apNHgiFoyN2sTfPx4AABg5eHriGRLOiKiBhEEAevDEwAAT/f0hEwqeehryo310c3LGgBwkMvrse9yGnovOYyJa0/hlS3RmLj2FHovOYx9l9PEDo2IdMC1jEK8/ks0AGBGL0882cVV3IBaoAYn8q+99hoCAwPRpUsXDBs2DK+99hrmzp2LYcOGoWvXrggICMBrr73WlLEStTijO7vgiaDqlnSvbIlGQRlb0hERPcjJ+BxcyyiCqYEMT3XV3B+Hg7i8HkB1Ev/iT+eQll9W63h6fhle/Okck3kiuq/8kko8vyESxRUKhHrb4N3hfmKH1CI1OJHX19fHX3/9hUWLFiEtLQ1r1qzBt99+i7S0NCxatAh//fUX9PX11XrxxYsXIyQkBObm5rC3t8eYMWMQFxd3z/NfeOEFSCQSLFu27IHX3rZtG/z9/WFoaAh/f3/s2LFDrdiImsvC0R3gZm2saklHRET3F3ayejb+qa5usDBS72+P+6lJ5M8k5iK/pHXeWFUoBSzcHYP6FtHXHFu4O4bL7ImoXgqlgJe3nEdiTglcLI2xclIQ9GUsbtcU1BpVfX19vPXWW4iOjkZxcTFKSkoQHR2Nt956q97+8g9y9OhRzJ49G6dOncKBAwdQVVWFRx99FMXFdfem7dy5E6dPn4azs/MDrxsREYHx48dj6tSpuHDhAqZOnYpx48bh9OnTasdI1NTMjfSxbHwQZFIJdkXfxs7zbElHRHQvCdnFOHQ1ExJJ9bJ6TXK3MUFbBzMolAKOXGuds/JnEnLrzMT/mwAgLb8MZxK4HYyI6vrirzgcvZYFI/3q4nY2Zixu11REvT2yb98+TJ8+HR06dECnTp0QFhaG5ORkREVF1TovNTUVc+bMwc8//9ygWf9ly5Zh8ODBmDdvHtq3b4958+Zh4MCBDZrJJxJDFw8rvPxIdbHI93ZeRkouO0AQEdXnx/BEAMCAdvbwsjXV+PVrqtcfbKXL6zML753EN+Y8Imo99ly8jdVHbgAAljzZEQEucpEjatm0ap1Dfn4+AMDa2lp1TKlUYurUqXjzzTfRoUOHBl0nIiICjz76aK1jQ4YMuWfV/fLychQUFNR6EDW32QP+aUn3yha2pCMi+q+Cskr8GpkCoLp4UlOoWV5/JC4Tla3w57C9uZFGzyOi1iE2rQBv/lpdFP2Fvt4Y3dlF5IhaPq1J5AVBwNy5c9G7d28EBASoji9ZsgR6enp4+eWXG3yt9PR0ODg41Drm4OCA9PT0es9fvHgx5HK56uHm5ta4N0H0EP7bkm7l32xJR0T0b79G3kJxhQK+9mbo7WPbJK/R2c0SNqYGKCyrwtlWuHy8m5c1nORGuFcfAAkAJ7mRqsI/EdGd4go8vzESpZUK9PG1xVtD24sdUqugNYn8nDlzcPHiRWzevFl1LCoqCsuXL8f69eshkajXWua/5wuCcM9rzJs3D/n5+apHSkqK+m+ASAP+3ZJuxaHriEpqfX9EEhHVR6EUVMvqp/fyVPvvgoaSSSUYcLcvfWtcXi+TSjB/pD8A1Enma76eP9JfIy3/iEj3VSmUeGnzeaTklsLd2gRfTwziz4dm0uhEvqKiAnFxcaiqqnroIF566SX8/vvv+Pvvv+Hq+k8bmePHjyMzMxPu7u7Q09ODnp4ekpKS8Prrr8PT0/Oe13N0dKwz+56ZmVlnlr6GoaEhLCwsaj2IxDK6swvGdHZmSzoion85fDUTybklkBvr44mgpu1HPEi1Tz4DgtD6qrMPDXDC6inBcJTXXj7vKDfC6inBGBrgJFJkRKRtluy7ihPx2TAxkGHNtC6wNFG/ADo1jp6631BSUoKXXnoJP/74IwDg2rVr8Pb2xssvvwxnZ2e88847Db6WIAh46aWXsGPHDhw5cgReXl61np86dSoGDRpU69iQIUMwdepUzJgx457XDQ0NxYEDB2r1tf/rr7/Qs2fPBsdGJKYPxwQgMukObt0pxfxdV7B0fGexQyIiElVNy7mJ3dxhbCBr0tfq42sLA5kUybkliM8sgq+DeZO+njYaGuCEwf6OOJOQi8zCMtibVy+n50wbEdXYeT4Va49X/2z+8qlOaO/IydDmpPaM/Lx583DhwgUcOXIERkb/3KkdNGgQtm7dqta1Zs+ejZ9++gmbNm2Cubk50tPTkZ6ejtLSUgCAjY0NAgICaj309fXh6OiIdu3aqa4zbdo0zJs3T/X1K6+8gr/++gtLlizB1atXsWTJEhw8eBCvvvqqum+XSBQWRvpYPqEzpBJgx/lU7IpmSzoiar2uphcg/EYOZFIJpoV6NPnrmRrqoaePDQDgQGxGk7+etpJJJQhtY4PRnV0Q2saGSTwRqVxOzcfb26qL280e0AbDArlSp7mpncjv3LkTK1euRO/evWvtT/P398eNGzfUutbq1auRn5+P/v37w8nJSfVQ94ZAcnIy0tLSVF/37NkTW7ZsQVhYGDp27Ij169dj69at6N69u1rXJRJTFw9rvFTTkm4HW9IRUeu1/mQiAGBoB0c4Wxo3y2vWtKE71Ar3yRMR3U92UTme3xCJ8iolBrSzw9zB7R78TaRxai+tz8rKgr29fZ3jxcXFaheeacy+s8TExDrHjhw5UufY2LFjMXbsWLWvT6RNXnrEByfisxGVdAevbo3G1ud7QE+mNTUqiYiaXG5xBXacr16V1FQt5+ozyM8e7+8EziXfQU5ROWzMDJvttYmItFWlQonZP5/D7fwyeNmaYtkEFrcTi9oZQUhICPbu3av6uiZ5X7t2LUJDQzUXGRFBTybFsrst6aKS7uCbv9Vb9UJEpOs2n0lGeZUSgS5ydPGwarbXdZIbo4OzBQShutAeEREBi/bG4nRCLswM9bB2WhfIjfXFDqnVUntGfvHixRg6dChiYmJQVVWF5cuX48qVK4iIiMDRo0ebIkaiVs3N2gQfjQnAq1ujseLwdfT2tW3WP2aJiMRSqVBiY0QSgOrZ+KZqOXcvg/wccOV2AQ7FZuKprm7N+tpERNrml8gUrL/bBvSrcZ3gY9/6CoFqE7Vn5Hv27ImTJ0+ipKQEbdq0wV9//QUHBwdERESgS5cuTREjUas3JsgFozs7Q6EU8OrW8yhkSzoiagX+vJyO9IIy2JoZYkTH5i+kVNOG7tj1LJRVKpr99YmItMX55Dt4b8dlAMCrg3zxaAdHkSMitWfkASAwMFDVfo6ImsdHYwIQlXQHKbnVLem+Yks6ImrhalrOTenhDkO9pm05V58AFws4WBgio6Acp27moH+7ujWCiIhauszCMvzfT1GoUCgx2N8BL98txkzialTVrBs3buC9997DpEmTkJlZvW9s3759uHLlikaDI6J/WBjpY9n46pZ029mSjohauOiUPJxPzoOBTIrJ3Zu+5Vx9JBKJqnr9wVbcho6IWq+KKiVe/OkcMgrK4WNvhq/GdYKUxe20gtqJ/NGjRxEYGIjTp09j27ZtKCoqAgBcvHgR8+fP13iARPSPrp7WmMOWdETUCtTMxj/WyQl25uJVjB/kVz0Lfyg2s1HddoiIdNmC3VcQlXQH5kZ6WDO1C8yNWNxOW6idyL/zzjv4+OOPceDAARgYGKiODxgwABERERoNjojqevkRHwS7W6KwvAqvbY1GlUIpdkhERBqVUVCGvRfTAAAze3mJGkvPNrYw1pchLb8MV24XiBoLEVFz+vl0EjadToZEAqyYEARvOzOxQ6J/UTuRv3TpEh5//PE6x+3s7JCTk6ORoIjo3qpb0gXBzFAPkUl3sOoIW9IRUcvy06kkVCkFdPO0RoCLXNRYjPRl6O1rC6B6Vp6IqDWITMzFgt+rt02/8Wg7DGjPGiHaRu1E3tLSEmlpaXWOnz9/Hi4uLhoJiojuz93GBB+O7gAAWH7oOqKS7ogcERGRZpRVKrDpdDKA6pZz2mAw98kTUSuSnl+G//vpHCoVAoYHOmJW/zZih0T1UDuRnzRpEt5++22kp6dDIpFAqVTi5MmTeOONNzBt2rSmiJGI6vF4kAtGdWJLOiJqWX6/cBs5xRVwsTTGYH8HscMBAAxobw+JBLiUmo+MgjKxwyEiajJllQq88FMUsovK0d7RHJ+P7QSJhMXttJHaifyiRYvg7u4OFxcXFBUVwd/fH3379kXPnj3x3nvvNUWMRFQPiUSCj8YEwMXSuLol3e/sGkFEuk0QBISdTAQATAv1gJ6sUc11NM7O3BCd3SwBcHk9EbVcgiDgvZ2XcSElD3JjfayZ2hWmho3qVk7NQK3fkIIg4Pbt21i7di2uX7+OX375BT/99BOuXr2KjRs3QiZr/h6vRK2Z3FgfyybcbUl3LhW/X7gtdkhERI126mYuYtMKYKwvw4QQd7HDqWUQl9cTUQu3ISIJv0XdglQCrJwUBHcbE7FDovtQO5H39fVFamoqvL29MXbsWIwbNw6+vr5NFR8RPUCIpzXmDPABAPxvxyXcusOWdESkm2pazj0R7AK5iXa1OKpJ5E/GZ6OkokrkaIiINOvUzRx8uCcGADBvmB/6+NqJHBE9iFqJvFQqha+vL6vTE2mZlwf6IsjdEoVl1S3pFEr2OiYi3ZKSW4IDd2e7taXI3b+1dTCDq5UxyquUOHE9W+xwiIg0JjWvFLN/PgeFUsDozs54to+4bT+pYdTefPbZZ5/hzTffxOXLl5siHiJqBD2ZFMvHB8HUQIaziXew6u94sUMiIlLLj+GJEASgj68tfOzNxQ6nDolEopqV5z55ImopyioVeGFjJHKKK+DvZIFPn+jI4nY6Qu1EfsqUKThz5gw6deoEY2NjWFtb13oQkTiqW9IFAACWHbqOc8lsSUdEuqG4vApbI1MAADN7ae9MkCqRv5oJJVc+EZGOEwQB87ZfwuXUAlibGmDNtC4wNmDNM12hdhnCZcuWNUEYRKQJTwS74Mi1LOy+cBuvbonGH6/0gRmrjRKRltt27hYKy6rgbWuKfm21d19mNy9rmBvqIbuoHBdu5SHI3UrskIiIGu2HEwnYcT4VMqkEKycFwdWKxe10idp/4T/99NNNEQcRaYBEIsHHYwJwLukOknNLMH/XFXw5rpPYYRER3ZNSKWD93ZZzT/f0hFSqvUs6DfSk6NvODnsvpuFgbAYTeSLSWSeuZ+OTP2IBAO+N8EPPNrYiR0TqUntpfUFBQb2PwsJCVFRUNEWMRKQGubE+lo6vbkm37dwt7GZLOiLSYkevZ+FmdjHMjfQwtour2OE80CA/ewDcJ09EuisltwRzNp+DUgCeDHbF9J6eYodEjaB2Im9paQkrK6s6D0tLSxgbG8PDwwPz58+HUqlsiniJqAG6eVlj9t2WdO/uuITUvFKRIyIiql/Y3dn48V3dYKoDW4EGtLOHTCrB1fRCpOSy3ScR6ZaSiio8tyESeSWV6OQqx6LHA1jcTkepncivX78ezs7OePfdd7Fz507s2LED7777LlxcXLB69Wo8//zzWLFiBT799NOmiJeIGujlgb7o7Ha3Jd0WtqQjIu0Tn1mEY9eyIJVUL6vXBZYmBujiUb2k/tDddnlERLpAEAS8+dtFXE0vhK2ZAb6d2gVG+ixup6vUvvX9448/4ssvv8S4ceNUx0aNGoXAwEB89913OHToENzd3bFo0SK8++67Gg2WiBpOXybF8gmdMXz5cZxJzMXqI/GY84iv2GEREamsD08AUF0N3s1ad4osDfZzwJmEXByMzcR0La6yT0T0b98evYm9F9OgJ5Vg9ZQucJIbix0SPQS1Z+QjIiIQFBRU53hQUBAiIiIAAL1790ZycvLDR0dED8XDxhQL77akW3rwOqJT8sQNiIjorvySSmyLSgUAzNCxZHjg3X3ypxNyUFhWKXI0REQPdiQuE5/tvwoAWDCqA0I82TZc16mdyLu6uuKHH36oc/yHH36Am5sbACAnJwdWVqzkSqQNngx2wWMdnaBQCnhly3kUlVeJHRIREbacTUZppQLtHc3Rw1u3/qD0tjODt50pKhUCjl3LFjscIqL7Ssguxsubz0MQgInd3DC5u7vYIZEGqL20/osvvsBTTz2FP//8EyEhIZBIJDh79iyuXr2K3377DQBw9uxZjB8/XuPBEpH6JBIJFo0JxLmkO0jKKcGC36/gi6fYko6IxFOlUGJDRBIAYGYvL50stDTIzwFrsm7iYGwGRnR0EjscIqJ6FZVX4fkNkSgoq0KwuyUWjOqgkz9zqS61Z+RHjRqFuLg4DBs2DLm5ucjOzsawYcNw9epVPPbYYwCAF198EV999ZXGgyWixpGb/NOS7reoW9hzkS3piEg8B2IykJpXCmtTA4zq7Cx2OI0yyM8BAPB3XCaqFOzUQ0TaR6kUMHdrNK5nFsHe3BDfTukCQz0Wt2spGtXnxdPTk1XpiXRMd28bzOrvg5V/x+Pd7ZcQ5G4FF0sWOSGi5lfTcm5SN3edrZgc7G4JSxN95JVUIirpDrp724gdEhFRLSv/jsdfMRkwkEnx7dQusLcwEjsk0iC1Z+QB4Pjx45gyZQp69uyJ1NTqQjUbN27EiRMnNBocEWnWK4N80cnNEgVlVXhtK1vSEVHzu5yajzOJudCTSjA11EPscBpNTybFI+2qi94dupopcjRERLUdiMnAVweuAQA+HhOAYHfWL2tp1E7kt23bhiFDhsDY2Bjnzp1DeXk5AKCwsBCffPKJxgMkIs3Rl0mxfHxnmBrIcCYhF98evSF2SETUytTMxg8PdIKDjs8ODby7vP5gDPvJE5H2iM8swmtbowEAU3t4YFyIm7gBUZNQO5H/+OOP8e2332Lt2rXQ19dXHe/ZsyfOnTun0eCISPM8bU2xYFQHAMDSA9fYko6Imk1WYTl2X6iu0TGzt261nKtP37a20JdJcDO7GDeyisQOh4gIBWWVeH5DJIrKq9DN0xrvP+YvdkjURNRO5OPi4tC3b986xy0sLJCXl6eJmIioiY3t4ooRHZ1QpRTw6pbzKGZLOiJqBptOJ6NCoUSQuyU6u1mKHc5DMzfSR4+7e+MPxXJWnojEpVQKeHVLNG5mF8NJboRvJgfDQK9RO6lJB6j9L+vk5IT4+Pg6x0+cOAFvb2+NBEVETUsikeCTMYFwlhsh8W5LOiKiplRRpcRPp6tbzs3opfuz8TUGtq/eJ38wlvvkiUhcSw9ew+GrmTDQk+K7qV1gZ24odkjUhNRO5F944QW88sorOH36NCQSCW7fvo2ff/4Zb7zxBmbNmtUUMRJRE5Cb6OOr8Z0hkQC/Rt3C3otpYodERC3Y3ku3kVVYDkcLIwwLcBQ7HI2p2ScfmZiLO8UVIkdDRK3Vn5fS8PXh6snWxY8HoqOrpbgBUZNTO5F/6623MGbMGAwYMABFRUXo27cvnn32WbzwwguYM2dOU8RIRE2kh7cNZvVvAwCYt/0ibueVihwREbVEgiBg3YlEAMDUUA/oy1rOUk83axO0dzSHUgCOXOOsPBE1v7j0Qrz+6wUAwMxeXniyi6vIEVFzaNRv0kWLFiE7OxtnzpzBqVOnkJWVhY8++kjTsRFRM3h1UFt0cpWzJR0RNZmopDu4lJoPQz0pJnZzFzscjRtUU72ey+uJqJnll1Ti+Y2RKKlQoGcbG7w7vL3YIVEzafQtcRMTE3Tt2hXdunWDmZmZJmMiomakL5Ni+YQgmBjIcDohF98dY0s6ItKsmpZzYzq7wNrUQNxgmsBAv+p98kfjslBRpRQ5GiJqLRRKAS9tOY+knBK4WBpj5aRg6LWgFU90f3oNOemJJ55o8AW3b9/e6GCISBw1Lene+u0ivvrrGnq1sUWnFlBRmojEdzuvFPuupAMAZvT2FDeYJtLJ1RK2ZobILirHmYRc9Pa1FTskEsmlW/n47tgN+DlZoJePLQJd5JBJJWKHRS3U5/vjcOxaFoz0pVgzrUuLvFFK99agWzZyuVz1sLCwwKFDhxAZGal6PioqCocOHYJcLm+yQImoaT3VxRXDAx2rW9JtjWZLOiLSiA0RSVAoBYR626C9o4XY4TQJqVTyr+r1bEPXWgmCgP/tvIQ9F9Pw+f44jPnmJII+/AsvbIzEhohE3MgqgiBw+xppxu4Lt/Ht0epVlJ+N7YQOzszDWpsGzciHhYWp/v/bb7+NcePG4dtvv4VMJgMAKBQKzJo1CxYWLfMXNFFrIJFIsPjxjjifnIeE7GIs3H0Fn43tJHZYRKTDSisU2HwmGQAwo5enuME0sUH+DtgamYKDsRmYP9IfEglnYVubqKQ7uHgrHwZ6UvRva4eImzkoKKvC/isZ2H+l+gaPk9wIvXxs0dvHFj19bGBvbiRy1KSLolPy8OZv1cXtXujnjVGdnEWOiMQgEdS8NWhnZ4cTJ06gXbt2tY7HxcWhZ8+eyMnJ0WiAYigoKIBcLkd+fj5vTlCrc+pmDiauPQVBAFZNDsbwQCexQyIiHbXpdDLe3XEJbtbGOPLGgBa9xLi0QoHOH/6F8iol9r3ap8WuPqB7m/VzFP64lI7xXd2wZGxHKJQCLqXm42R8Nk7GZyMy8Q4qFLVrKLR1MFMl9t29bWBm2KA5NmpFFEoBcemFiEzKRWTiHUQm5uJ2fhkAoI+vLdbP6Naif7a2NurkoWr/tKiqqkJsbGydRD42NhZKJQu8EOm6Ht42eLFfG6w6cgPztl9CZzdLOFsaix0WEekYQRCwPjwBADC9p1eL/0PT2ECGXj62OHw1E4diM5nItzK37pRg3+XatSBkUgk6u1mis5slZg/wQWmFApFJuTgZn4OT8dm4fDsf1zKKcC2jCGEnE1Xn1yT2nd0sYaDHwmWtTUlFFaKT8xCZdAdnE3MRnZyHwv9sd5RJJejZxgZfTwxq8T9b6d7UTuRnzJiBmTNnIj4+Hj169AAAnDp1Cp9++ilmzJih8QCJqPm9OqgtTsRn4+KtfMz9JRo/P9uDvyiISC0n43NwLaMIpgYyPNW1dfQ0HuTngMNXM3EgJgOzB/iIHQ41ow0RSVAKQC+fe9eCMDaQoY+vHfr42gEA7hRXIOJmDk7EZyM8PhuJOSWISrqDqKQ7WHHoOkwMZOjmZY3ePrbo5WOLdg7mkPJ3cYuTWVCGyKQ71bPtSbm4crugTitgUwMZgj2s0NXDGl09rdDZzRKmXL3R6qn9Cfjiiy/g6OiIpUuXIi0tDQDg5OSEt956C6+//rrGAySi5megV92SbsSK4zh1Mxdrjt3Ei/3biB0WEemQsJPVs/FPdXWDhZG+yNE0j4F+9sAO4MKtPGQWlnH/cytRXF6lqgUxs5dXg7/PytQAwwOdVFvYUnJLEH4jGyficxAen42c4gocicvCkbgsAICtmQFC29iit48NevnYwtXKRPNvhpqUUingRlYRzt5N2iMT7yA5t6TOeU5yI3T1tEZXDyt08bBCe0dztpWjOtTeI/9vBQUFANDofeSLFy/G9u3bcfXqVRgbG6Nnz55YsmRJrWX7CxYswJYtW5CSkgIDAwN06dIFixYtQvfu3e953fXr19e7OqC0tBRGRg/+pco98kTVfjmbgre2XYSeVIINM7uhpw9bKhHRgyVkF2PAF0cgkQCHX+8PL1tTsUNqNqNWnsDFW/lY8mQgxoe4ix0ONYMNEYn4YNcVeNma4tDcfhqZNVcqBcRlFOJkfDZOxGfjTEIuSioUtc7xtDFBz7vL8EO9bWDF1mNap6xSgUup+TibmIuoxDuITLqD/NLKWudIJEA7B3OEeFbPtnf1tIYLtzS2Wk26R/7fHjbJPXr0KGbPno2QkBBUVVXhf//7Hx599FHExMTA1LT6l37btm2xcuVKeHt7o7S0FEuXLsWjjz6K+Ph42NnZ3Te2uLi4WscaksQT0T+e6uqKY9ezsOdiGp75MRIbn+mGrp7WYodFRFrux/BEAMCAdvatKokHgIHtHXDxVj4OxmYykW8FlEoBYScTAVR3ZtDU0nepVAI/Jwv4OVng2T7eqKhSIjolDyfuFs6LTslDYk4JEnOSsel0MiQSIMBZjl4+tujlY4MQT2sY6cs0Egs1XG5xBaKSqgvSRSbdwaVb+XUKHBrpS9HZzRIhntbo4mGFYA+rVrNqiTSrQTPywcHBOHToEKysrBp00d69e2Pr1q1wcXFRK5isrCzY29vj6NGj6Nu3b73n1NylOHjwIAYOHFjvOevXr8err76KvLw8tV7/v6/BGXmi6rvJz22IxPHr2TAz1MPPz3ZHJzdLscMiIi1VUFaJ0E8OobhCgY3PdFPtB24trtzOx4gVJ2CkL0X0B48ymWrhDl/NwMz1kTA30sOpeQObbd9yYVklziTkqhL7axlFtZ430JOiq4fV3cTeFoEucta60TBBEJCYU1KdtN9dKn8jq7jOebZmhujqYaWabe/gbAF9LpOne9D4jHx0dDQuXLgAa+uGzcRFR0ejvLy8Qef+W35+PgDc83UqKiqwZs0ayOVydOp0//7WRUVF8PDwgEKhQOfOnfHRRx8hKCio3nPLy8trxVuzZYCIACN9GdZM7YrpYWdwOiEX09adwebnesDfmTe5iKiuXyNvobhCAV97M/Ruhdtx/J0s4Cw3wu38MoTfyMYj7R3EDoma0LoTiQCAid3cm7X4mLmRPgb6OWCgX/XnK7OgDOE3clSJfVp+9dfhN3Lw+f44WBjpIbSNjapwnpetKSQSJvbqqKhS4srtfETdrSYflXQH2UUVdc7zsTdDiKcVunhU73H3sDHhWFOTaNCMvFQqhUQiQUO300skEly/fh3e3t4NDkQQBIwePRp37tzB8ePHaz23Z88eTJgwASUlJXBycsLOnTsREhJyz2udOnUK8fHxCAwMREFBAZYvX44//vgDFy5cgK+vb53zFyxYgIULF9Y5zhl5on8UlVdh2g+ncS45D9amBtj6fA/4OpiLHRYRaRGFUsCAL44gObcEix4PwOTuHmKHJIr3d17GxlNJmNTdHZ88Hih2ONRE4tILMWTZMUglwLG3BmhN8TlBEHAzuxjhd/fXh9/IQWFZ7fZlTnIjVZu7nj42LMxYj/zSSpxLvoOoxOrE/cKtPJRV1l4mbyCToqOrvFZhOtYqoIehzox8gxL5pKQktYNwdXWFTNbw5WSzZ8/G3r17ceLECbi61m5TU1xcjLS0NGRnZ2Pt2rU4fPgwTp8+DXt7+wZdW6lUIjg4GH379sWKFSvqPF/fjLybmxsTeaL/yC+txOTvT+FyagHszA3xywuhrW7/KxHd24GYDDy3IRJyY32cmjcQxgatc1n5kbhMTA87CwcLQ5yaN5CzcS3UO9suYsvZFAwPdMSqyV3EDueeFEoBl1LzcfLubH1k4p06+7bbOpipEvvu3jYwa2WtzQRBwK07pbVm2+MyCvHfLMnSRP/uMvnqxD3ARc7tM6RRGk/km9pLL72EnTt34tixY/DyenDbDl9fX8ycORPz5s1r8Gs899xzuHXrFv78888Hnss98kT3dqe4AhPXnsLV9EI4y42w9YVQuFlrxywEEYlr0tpTCL+Rgxf6eWPeMD+xwxFNeZUCwR8eQHGFArvn9Eagq1zskEjDcorKEfrpYVRUKfHb/4XqVCHY0goFIpNycTI+Byfjs3H5dn6thFVPKkEnN0tVYt/ZzRIGei1rT3eVQomr6YWITMzF2aTqWff0grI653namKCLhzVCPKv3uHvbmmmsoCFRfZqtav3DEgQBL730Enbs2IEjR440KImv+T519uALgoDo6GgEBnJ5G9HDsjI1wMZnumPCmgjcyCrG5O9P45cXQuEo57I8otbsanoBwm/kQCaVYFqop9jhiMpQT4Y+vnbYdyUdB2IzmMi3QJvPJKOiSomOrnJ08WhYMWhtYWxQ/fmsKUR5p7gCETer99eHx2cjMacEUUl3EJV0BysOXYeJgQzdvaxVhfPaOZjrXDJbXF6F88l5qt7t55PvoPg/7fz0pBJ0cJEj5G5hui4e1rAzNxQpYqIHEzWRnz17NjZt2oRdu3bB3Nwc6enpAAC5XA5jY2MUFxdj0aJFGDVqFJycnJCTk4NVq1bh1q1beOqpp1TXmTZtGlxcXLB48WIAwMKFC9GjRw/4+vqioKAAK1asQHR0NL755htR3idRS2Nnboifn+2Bcd9FIDm3BJO+P4Wtz4fyFx5RK7b+bguuoR0c2QMZwCB/B+y7ko5DsRmYO7it2OGQBlVUKbEhonrb6cxeXjq/dcLK1ADDA50wPNAJAJCSW4LwG9k4EZ+D8Phs5BRX4O+4LPwdlwUAsDUzQM821W3uevnYak1tgH9Lzy9TJe2RSbmITSuEQll7EbK5oR6CPaxUhek6u1m22u1ApJtETeRXr14NAOjfv3+t42FhYZg+fTpkMhmuXr2KH3/8EdnZ2bCxsUFISAiOHz+ODh06qM5PTk6GVPrPkp+8vDw8//zzSE9Ph1wuR1BQEI4dO4Zu3bo1y/siag0c5UbY9Fx3jP/uFG5mFWPK96ex+fkesGaRF6JWJ7e4AjvOpwKo7qVNwIB2dpBIgCu3C3A7rxTOvLnRYvxxKQ2ZheWwNzdUJb8tiZu1CcZbu2N8iDuUSgFxGYU4ebdw3umbucguqsDvF27j9wu3AVQvP69Zhh/axgaWJs37d4BSKeB6ZpFqb/vZxFzculNa5zwXS2NVC7iuHlZo62DOlnyk07Rij7y24R55ooZLzC7GuO8ikFlYjg7OFtj0XA/IjfXFDouImtE3f8fj8/1xCHSR4/c5vXR+hlJTnlwdjqikO/hoTACm9midFfxbGkEQMPqbk7h4Kx9vPNoWcx6p2w2pJauoUiI6JU/V5i46Ja/WTLdEAgQ4y1WJfVdPK40XgyurVCA6JQ9RSXcQeTd5L/hPVX6pBPBzsvinMJ2nFZzkvJlG2q/Ji93l5eXht99+w40bN/Dmm2/C2toa586dg4ODA1xcXBoduLZgIk+knvjMQoz/7hRyiisQ5G6Jjc90b3UVb4laq0qFEn2W/I30gjJ8Na4Tngh2ffA3tRKrj9zAkn1X0a+tHX6cyVWBLUFkYi7GfhsBQz0pwt95BDZmrXtLWWFZJc4k5KoS+2sZRbWeN9CToquHlSqxD3CRqz0Lnl1UjsjEO4hKysXZxDu4cjsflYra6YuJgQxB7pbo6lGdtAe5W/HvENJJTZrIX7x4EYMGDYJcLkdiYiLi4uLg7e2N999/H0lJSdiwYcNDBa8NmMgTqS82rQAT155CXkklunlZ48cZ3bjXjKgV+P3Cbby8+TxszQxx8p0BMNTjf/c1rmcUYvDSYzCQSXH+g8EwZWKh82b9HIU/LqVjQogbPn2yo9jhaJ3MgjKE38hRJfZp+bUrwVsY6SG0jQ163y2c52VrWmsFjyAIuJldjMjEmv3td5CQXVzndezNDRFyd6a9q4c1/JzMoSdrWZX1qXVq0qr1c+fOxfTp0/HZZ5/B3NxcdXzYsGGYNGmS+tESUYvg52SBjTO7Y9LaUziTkIvnNkTi+6e7sr8qUQsXdjIBADClhzuT+P/wsTeDh40JknJKcPx6FoYGtLz91K3JrTsl2He5ujDzjF4N67TU2thbGGFMkAvGBLmokvLwu/vrw2/koKCsCvuvZGD/lQwAgJPcSJXQ1yyXzy2uqHPddg7m6OJZXZiuq4c1XK2MuYWHWj21E/mzZ8/iu+++q3PcxcVFVXWeiFqnQFc51s8MwdQfzuBEfDZm/XwO307p0uL6zxJRteiUPJxPzoOBTIrJ3bkH/L8kEgkGtnfAupMJOBibyURex22ISIJSAHr72KKdo/mDv6GVk0gkaGNnhjZ2Zpga6gmFUsCl1HycvDtbH5l4B2n5Zfgt6lat7zPUk6KTmyW6elghxNMawe5WkJuw9g7Rf6mdyBsZGaGgoKDO8bi4ONjZ2WkkKCLSXV08rPHD0yGYHnYGh69m4pUt5/H1xCAueSNqgWpm4x/r5MT2k/cwyN8e604m4O+rmVAoBVbJ1lHF5VXYfCYZADCzt6e4wegomVSCzm6W6OxmidkDfFBaoUBkUi5OxucgNa8UgS4W6OppjQBnOScAiBpA7f9KRo8ejQ8//BCVlZUAqu+2JScn45133sGTTz6p8QCJSPeEtrHB2mldYSCT4s/L6Xj91wt1+rcSkW7LKCjD3otpAKp7aVP9QjytYW6kh5ziCkSn3BE7HGqkbeduobCsCl62pujf1l7scFoEYwMZ+vja4Z1h7fH1xCA837cNgt2tmMQTNZDa/6V88cUXyMrKgr29PUpLS9GvXz/4+PjA3NwcixYtaooYiUgH9W1rh1WTg6EnlWBX9G3M234RSibzRC3GT6eSUKUUEOJphQAXudjhaC19mRQD2lUnfgdjM0WOhhpDqRQQdjIRADCjlyekXFVBRFpA7aX1FhYWOHHiBA4fPoxz585BqVQiODgYgwYNaor4iEiHDfJ3wPIJQXhp8zn8EnkLhnoyfDi6AwvUEOm4skoFNp2uXmbMol8PNtDPHr9fuI2DMRl4e2h7scMhNR25lomE7GKYG+nhSbZXJCItoVYiX1VVBSMjI0RHR+ORRx7BI4880lRxEVELMaKjEyoUnTD3lwvYeCoJRvpSvDvcj8k8kQ77/cJt5BRXwMXSGI/6O4gdjtbr39YeelIJrmcWISmnGB42pmKHRGpYdyIRADCxmztbCBKR1lBrab2enh48PDygUCiaKh4iaoEeD3LF4scDAQBrjyfgqwPXRI6IiBpLEP5ZZjwt1IOFLBtAbqKPEE9rAFxer2vi0gtxIj4bUkn1552ISFuo/dv3vffew7x585Cbm9sU8RBRCzWhmzsWjuoAAPj6cDy++Tte5IiIqDFOJ+QiNq0AxvoyTAhxFzscnTHQr3qf/KHYDJEjIXXUdGYYGuAIVysTkaMhIvqH2uuDVqxYgfj4eDg7O8PDwwOmprWXh507d05jwRFRy/J0T0+UVSqw+M+r+Hx/HAz1pHi2j7fYYRGRGtadqE5sngh2YW9nNQz2d8DHe2NxJiEX+aWVkBtz7LRdTlE5tp9PBcDODESkfdRO5MeMGdMEYRBRa/FCvzYoq1Ri6cFr+HhvLAz1ZZjag8sViXRBSm4JDtydUZ7Ry1PcYHSMh40pfOzNEJ9ZhKPXsjCqk7PYIdEDbD6TjIoqJTq6ytHFw0rscIiIalE7kZ8/f35TxEFErcjLA31QVqXA6iM38P7OyzDUk2JcVzexwyKiB/gxPBGCAPTxtYWPvbnY4eicQX4OiM8swsGYDCbyWq6iSokNEUkAqmfjWaCViLQNK9QQUbOTSCR4a0g71Yze29suYld0qrhBEdF9FZdXYWtkCgAuM26sQXf3yR+Jy0SlQilyNHQ/f1xKQ2ZhOezNDTE80EnscIiI6lA7kZdKpZDJZPd8EBE1hEQiwQeP+WNSd3cIAjD3lwvYdzlN7LCI6B62nbuFwrIqeNuaol9bO7HD0UlB7lawNjVAQVkVziayaLC2EgQBP9ytBTEt1AMGepz3IiLto/bS+h07dtT6urKyEufPn8ePP/6IhQsXaiwwImr5JBIJPh4dgPJKJbadu4WXNp/HmqkyDGhvL3ZoRPQvSqWA9Xdbzj3d0xNSKZcZN4ZMKsGAdvbYdu4WDsVmomcbW7FDonpEJt3BpdR8GOpJMbEbOzMQkXZSO5EfPXp0nWNjx45Fhw4dsHXrVjzzzDMaCYyIWgepVILPxnZEeZUCey6m4YWforDu6RD09uUfuETa4uj1LNzMLoa5oR6e7OIqdjg6bbB/dSJ/MDYD743w495rLVTTmeHxIBfYmBmKHA0RUf00tlaoe/fuOHjwoKYuR0StiEwqwdLxnTHY3wEVVUo8u+EsziRw2SmRtgi7Oxs/LsQNZoZqzwHQv/TxtYOBTIqknBLcyCoSOxz6j5TcEuy/kg4AmNmbtSCISHtpJJEvLS3F119/DVdX3qUnosbRl0mxclIQ+rW1Q1mlEjPCzuB88h2xwyJq9eIzi3DsWhYkEuDpUE+xw9F5poZ6CG1jAwA4GJspcjT0XxsiEqG825mhrQM7MxCR9lI7kbeysoK1tbXqYWVlBXNzc6xbtw6ff/55U8RIRK2EoZ4M303tglBvGxRXKPD0ujO4nJovdlhErdr68OplxoP9HOBuYyJyNC1DTfX6gzEZIkdC/1ZUXoUtZ9mZgYh0g9rr45YuXVprP5dUKoWdnR26d+8OKysrjQZHRK2Pkb4M3z/dFU+vO4PIpDuY+sNpbHk+FO0cOTNC1NzySyqxLaq6NeQMJjYa84ifA97fdQXnku8gp6ic+7C1xLYodmYgIt2hdiL/yCOPwM3Nrd7iLMnJyXB3Z3VPIno4poZ6WDcjBFO+P42Lt/Ix+fvT+OWFHvC2MxM7NKJWZcvZZJRWKtDe0Rw9vK3FDqfFcLE0hr+TBWLSCvB3XBbGsoCg6JRKAWEnq1efzOjFzgxEpP3UXlrv5eWFrKysOsdzcnLg5cW79USkGRZG+tgwsxv8nCyQXVSOSWtPIzmnROywiFqNKoUSGyKSAFQvM2Z1dc2qWV5/KJbL67XB33GZSMwpgYWRHp4I5o0VItJ+aifygiDUe7yoqAhGRkYPHRARUQ1LEwP89Ew3+NibIb2gDJO+P4XbeaVih0XUKhyIyUBqXimsTQ0wqrOz2OG0OIP8HQAAx65lobxKIXI0tO7ubPzEbu4wZWcGItIBDf5JNXfuXACARCLBBx98ABOTfwreKBQKnD59Gp07d9Z4gETUutmYGWLTs90x7rsIJOaUYNLaU/jlhVDYW/DGIVFTqmk5N6mbO4z0ZeIG0wIFOMthb26IzMJynLqZyz3ZIrqaXoCT8TmQSSWY1tNT7HCIiBqkwTPy58+fx/nz5yEIAi5duqT6+vz587h69So6deqE9evXN2GoRNRa2VsY4efnesDF0hiJOSWY/P1p5BSVix0WUYt1OTUfZxJzoSeVYGqoh9jhaIRCKSDiRg52Raci4kYOFMr6Vxg2F6lUgoF+1bPyrF4vrrATiQCAoR0c4WJpLG4wREQN1OAZ+b///hsAMGPGDCxfvhwWFhZNFhQR0X+5WBpj83M9MO67CFzPLMKUH85g83PdYWliIHZoRC1OzWz88EAnOLSA1S/7Lqdh4e4YpOWXqY45yY0wf6Q/hgY4iRbXID97bD6TjEOxGfhwdAfWIRBBTlE5dkRXd2aY2dtT3GCIiNSg9h75sLAwJvFEJAp3GxP8/Fx32JoZIjatAE+vO4OCskqxwyJqUbIKy7H7wm0A1dW7dd2+y2l48adztZJ4AEjPL8OLP53DvstpIkUG9PKxhZG+FLfzyxCbVihaHK3ZptPJqKhSopOrHMHubKNMRLqjUdU8zp49i19//RXJycmoqKio9dz27ds1EhgRUX3a2Jnh52e7Y8KaCFy4lY+ZYWfx48xuLE5EpCGbTiejQqFEZzdLBOl4YqNQCli4Owb1LaIXAEgALNwdg8H+jpCJ0G7MSF+G3j52OBibgYOxGfB35kRJc6qoUmLDqbudGXqzMwMR6Ra1Z+S3bNmCXr16ISYmBjt27EBlZSViYmJw+PBhyOXypoiRiKiWdo7m2PhMd5gb6SEy6Q6e/TESZZWs+kz0sCqqlPjpdHVi0xJm488k5NaZif83AUBafhnOJOQ2X1D/MdifbejEsvfSbWQVlsPBwhDDRNxiQUTUGGon8p988gmWLl2KPXv2wMDAAMuXL0dsbCzGjRsHd3f3poiRiKiOABd59Uy8gQwRN3PwwsYotnAiekj/TmyGB+p+YpNZeO8kvjHnNYUB7asT+Qu38pFRIF4crY0gCPjhRHXLuWmhnjDQU/tPYiIiUan9U+vGjRsYMWIEAMDQ0BDFxcWQSCR47bXXsGbNGo0HSER0L8HuVlg3PQRG+lIcvZaFOZvOo1KhFDssIp0kCALW3a3ePS3UE/oy3U9s7M0bVqivoec1BXtzI3R2swQAHL6aKVocrU1k0h1cTi2AoZ4UE7txIoqIdI/av6Wtra1RWFhdkMXFxQWXL18GAOTl5aGkpESz0RERPUB3bxt8Py0EBnpSHIjJwGtbo0VvK0Wki6KS7uBSan6LSmy6eVnDSW6Ee+18lqC6en03L+vmDKuOQX7Vs/JsQ9d81t2djX8i2AXWpux+QkS6R+1Evk+fPjhw4AAAYNy4cXjllVfw3HPPYeLEiRg4cKDGAyQiepDevrb4dkow9GUS7LmYhjd/uwAlk3kitdS0nBvTueUkNjKpBPNH+gNAnWS+5uv5I/1FKXT3bzX95E/EZ6O0gluEmlpKbgn2X0kHAMzo5SVyNEREjaN2Ir9y5UpMmDABADBv3jy88cYbyMjIwBNPPIEffvhB4wESETXEI+0d8PXEIMikEmw/l4r3dl2GIDCZJ2qI23ml2FeT2LSwXtpDA5ywekowHOW1l887yo2wekqwqH3ka7R3NIeLpTHKq5Q4EZ8tdjgt3oaIRCgFoI+vLdo6mIsdDhFRo6jVr6mqqgq7d+/GkCFDAABSqRRvvfUW3nrrrSYJjohIHUMDnPDVOCVe3RqNTaeTYaQnw/uP+bGlENEDbIhIgkIpINTbBu0dW14LtKEBThjs74gzCbnILCyDvXn1cnqxZ+JrSCQSDPKzx48RSTgUm4HB/g5ih9RiFZVXYcvZFADATM7GE5EOU2tGXk9PDy+++CLKy8ubKh4ioocyurMLljzZEQCw7mQCPt8fx5l5ovsorVBg85lkAC2j5dy9yKQShLaxwejOLghtY6M1SXyNQXeT94Oxmdwa1IS2Rd1CYVkVvG1N0a+tndjhEBE1mtpL67t3747z5883RSxERBoxrqsbPhrdAQCw6sgNfH04XuSIiLTXjvOpyC+thJu1sWqvNjW/7l42MDPUQ3ZROS6m5osdToukVAoIO1ld5G5GL09ItexmDhGROtRaWg8As2bNwuuvv45bt26hS5cuMDU1rfV8x44dNRYc3Z9CocDx48eRlpYGJycn9OnTBzKZTOywtBbHS326PGZTQz1RXqXEx3tj8dWBazDSl+L5vm2a/HV1eczEwjFTn6bGTBAErA+vTmyeDvXUullqTdL2z5mBnhT92tph76U0HIrNULWkE5O2j5m6/o7LRGJOCSyM9PBEsKvGr9/Sxqs5cMzUxzFTX4sdM0FNEomkzkMqlar+tyXIz88XAAj5+flih3JP27ZtE1xdXQUAqoerq6uwbds2sUPTShwv9bWUMfv60DXB4+09gsfbe4T1JxOa9LVaypg1J46Z+jQ5ZsevZQkeb+8R/N//U8gvrWiCaLWDrnzOtkWlCB5v7xGGLD0qdig6M2bqmLQ2QvB4e4/wyd4YjV+7JY5XU+OYqY9jpj5dGzN18lC1E/nExMT7PloCbU/kt23bJkgkklofSACqGyva+sEUC8dLfS1tzD7fd1WVzG8+ndQkr9HSxqw5cMzUt23bNgH1jBkAAY0Ys5lhZwSPt/cIH+y81EQRi0+XPme5ReWC1zvVP6tScotFi0OXxqyhYtPyBY+39wje8/YKt+6UaPTaLXG8mhrHTH0cM/Xp4pg1aSKvSZ988onQtWtXwczMTLCzsxNGjx4tXL16tdY58+fPF9q1ayeYmJgIlpaWwsCBA4VTp0498Nq//fab4OfnJxgYGAh+fn7C9u3bGxyXNifyVVVVde4q/feD6ebmJlRVVYkdqlbgeKmvJY6ZUqkUPtp9RfB4e4/g+c4eYfu5FI1evyWOWVPjmKmvqqpKsHVwuueYARDsHJ0bPGY3s4pUN7huZhU1cfTi0MXP2VOrw5tlBdG96OKYNcRbv14QPN7eI8z6KUqj122p49WUOGbq45ipT1fHTJ08VO1idwCwceNG9OrVC87OzkhKSgIALFu2DLt27VLrOkePHsXs2bNx6tQpHDhwAFVVVXj00UdRXFysOqdt27ZYuXIlLl26hBMnTsDT0xOPPvoosrKy7nndiIgIjB8/HlOnTsWFCxcwdepUjBs3DqdPn27M29Uqx48fx61bt+75vCAISElJwfHjx5sxKu3F8VJfSxwziUSC/43ww9QeHhAE4PVfLuCPS2kau35LHLOmxjFT35Gjx5Cdcf/PbVb6bRw5eqxB1/sxPBEA8Eh7e3jZmt7/ZB2li5+zQf72AICDsRmivL4ujtmD5BSVY0d0KgBgZm9PjV67JY5XU+OYqY9jpr7WMGZqJ/KrV6/G3LlzMXz4cOTl5UGhUAAALC0tsWzZMrWutW/fPkyfPh0dOnRAp06dEBYWhuTkZERFRanOmTRpEgYNGgRvb2906NABX331FQoKCnDx4sV7XnfZsmUYPHgw5s2bh/bt22PevHkYOHCg2vFpo7S0hiUfDT2vpeN4qa+ljplEIsHCUR0wrqsrlALw8ubzOBijmT+UW+qYNSWOmfpOXLyusfMKyirxa2R1L+2W3HJOFz9nNZ0DTt3MQWFZZbO/vi6O2YNsOp2MiiolOrnKEexupdFrt8TxamocM/VxzNTXGsZM7UT+66+/xtq1a/G///2vVrW/rl274tKlSw8VTH5+dbsVa2vrep+vqKjAmjVrIJfL0alTp3teJyIiAo8++mitY0OGDEF4ePhDxacNnJycNHpeS8fxUl9LHjOpVILFT3TE6M7OqFIKmPXzORy7du/VPQ3VksesqXDM1Ccza1gC0pDzfo28heIKBXztzdDbx/ZhQ9Nauvg5a2NnBi9bU1QqBBy/nt3sr6+LY3Y/FVVKbDhVvXp0Zm8vSCSa7czQ0sarOXDM1McxU19rGDO1E/mEhAQEBQXVOW5oaFhrSby6BEHA3Llz0bt3bwQEBNR6bs+ePTAzM4ORkRGWLl2KAwcOwNb23n94pKenw8Ghdi9cBwcHpKen13t+eXk5CgoKaj20VZ8+feDq6nrPX0QSiQRubm7o06dPM0emnThe6mvpYyaTSvDlU50wtIMjKhRKPL8xEqdu5jzUNVv6mDUFjpn6+vftB5n5/ZNumbkt+vftd99zFEpBtax+ei9PjSc22kRXP2eD/O4ur9fQqiF16OqY3cuei7eRVVgOBwtDDAvQ/B/sLW28mgPHTH0cM/W1hjFTO5H38vJCdHR0neN//vkn/P39Gx3InDlzcPHiRWzevLnOcwMGDEB0dDTCw8MxdOhQjBs3DpmZmfe93n//0QRBuOc/5OLFiyGXy1UPNze3Rr+PpiaTybB8+XIAdd9jzdfLli1rGb0RNYDjpb7WMGZ6MilWTAzCI+3tUVapxMz1ZxGVdKfR12sNY6ZpHDP1hfrYoc3I2fc9p83I2Qj1sbvvOYevZiI5twRyY308EaT5XtraRFc/ZzXL6/+Oy0SVQtmsr62rY1YfQRDww4kEAMC0UE8Y6DWqNNR9taTxai4cM/VxzNTXKsZM3Up669atE1xcXIQtW7YIpqamwubNm4WPP/5Y9f8bY86cOYKrq6tw8+bNBp3v4+MjfPLJJ/d83s3NTfjqq69qHfvqq68Ed3f3es8vKysT8vPzVY+UlBStrVpfo76eiG5ublrZRkEbcLzU1xrGrLSiSpi89pTg8fYeIeCDfcLFlLyHul5rGDNN45ip589LtwW7Me8KMnPbWmMmM7cV7Ma8K/x56fYDrzFxzd1e2n9ovpe2ttK1z1lllULouGC/4PH2HuH0zRxRYtC1MavP6Zs5gsfbe4S2//tDyC0qb9LXagnj1dw4ZurjmKlP18ZMnar1EkEQBHWT/7Vr1+Ljjz9GSkp1oRwXFxcsWLAAzzzzjFrXEQQBL730Enbs2IEjR47A19e3Qd/n4+ODKVOmYMGCBfU+P378eBQWFuKPP/5QHRs2bBgsLS3rnfH/r4KCAsjlcuTn58PCwqJBMYlBoVDg+PHjSEtLg5OTE/r06aPbd5WaGMdLfa1hzEoqqjB93VmcScyFpYk+Nj/XA35Ojf/vvjWMmaZxzNSz73IaFuy6hMQrUVAU3YHMzAqeHbpgwehADH3A0uGr6QUYuuw4ZFIJjr01AC6Wxs0Utfh07XP26pbz2Bl9Gy/09ca84X6ixKBrY/Zf/7cxCvuupGNiN3csfiKwyV9P18dLDBwz9XHM1KdLY6ZOHtqoRL5GdnY2lEol7O3tG/X9s2bNwqZNm7Br1y60a9dOdVwul8PY2BjFxcVYtGgRRo0aBScnJ+Tk5GDVqlX46aefEBUVhQ4dOgAApk2bBhcXFyxevBgAEB4ejr59+2LRokUYPXo0du3ahffeew8nTpxA9+7dHxiXriTyRKQZReVVmPL9aUSn5MHG1ABbXwiFj71Zo66lUAo4k5CLzMIy2JsboZuXNWTSlrsHmcTR2M/ZO9suYsvZFAwPdMSqyV2aIVJqrD0Xb2POpvPwtjPF4df7ix2OzknJLUG/z/+GUgAOvNYXvg7mYodERPRA6uSheo19kczMTMTFxUEikUAikcDO7v578uqzevVqAED//v1rHQ8LC8P06dMhk8lw9epV/Pjjj8jOzoaNjQ1CQkJw/PhxVRIPAMnJyZBK/9n31LNnT2zZsgXvvfce3n//fbRp0wZbt25tUBJPRK2PmaEefpzZDZPWnsKV2wWY/P0p/PJCKDxs1Outve9yGhbujkFafpnqmJPcCPNH+j9wppRIHTKpBKFtbNT6ntziCuw4X91Le0Yvr6YIizSob1s76EkluJlVjITsYnjZqvfzqLX7MTwRSgHo42vLJJ6IWiS1Z+QLCgowe/ZsbN68GUpldQEWmUyG8ePH45tvvoFcLm+SQJsTZ+SJWqfc4gpMXHMKcRmFcLE0xtYXesDVyqRB37vvchpe/Okc/vsDtWaOdPWUYCbzJKpv/o7H5/vjEOBigd1zerfoavUtxZTvT+NEfDbeG+GHZ/t4ix2Ozigqr0LoJ4dQWF6FsBkhGNCucStHiYiamzp5qNrlO5999lmcPn0ae/fuRV5eHvLz87Fnzx5ERkbiueeea3TQRERiszY1wE/Pdoe3rSlS80ox+fvTSP/X7Pq9KJQCFu6OqZPEA1AdW7g7Bgplo3cyET2USoUSGyPu9tLupfle2tQ0Bt5tQ3dAhDZ0uuy3yBQUllfB284U/XzVXzFKRKQL1E7k9+7di3Xr1mHIkCGwsLCAubk5hgwZgrVr12Lv3r1NESMRUbOxMzfEz891h5u1MZJySjD5+1PILiq/7/ecScittZz+vwQAafllOJOQq+FoiRrmz8vpSC8og62ZIUZ05MoQXTHobhu6yKQ7yCupEDka3aBUCggLTwRQvYVEyholRNRCqZ3I29jY1Lt8Xi6Xw8rKSiNBERGJyUlujE3P9oCz3Ag3soox5fvTuFN87z+iMwsfPGuvznlEmhZ2srqX9pQe7jDU085KvVSXm7UJ2jmYQ6EUcCQuS+xwdMLhq5lIyimBhZEengx2ETscIqImo3Yi/95772Hu3LlIS0tTHUtPT8ebb76J999/X6PBERGJxc3aBD8/1wP25oa4ml6IaevOIL+0st5z7c2NGnTNhp5HpEnRKXk4n5wHA5kUk7t7iB0Oqalmef3BWC6vb4h1d29aTezuDhODRtd0JiLSemon8qtXr8apU6fg4eEBHx8f+Pj4wN3dHeHh4fjuu+8QHBysehAR6TIvW1P8/Gx3WJsa4FJqPmaEnUFReVWd87p5WcNJboR7LeCUoLp6fTcv6yaNl6g+NbPxj3Vygp25ocjRkLoG+Vcvrz8al4WKKqXI0Wi32LQChN/IgUwqwbRQT7HDISJqUmrfqhwzZkwThEFEpJ18Hczx0zPdMWFNBM4l5+GZ9WexfkY3GBv8szxZJpVg/kh/vPjTOUiAWkXvapL7+SP92U+eml1GQRn2XqxeQTeTLed0UmdXS9iaGSC7qAJnE3PRy8dW7JC0Vs1Nq6EBjnCxNBY5GiKipqV2Ij9//vymiIOISGv5O1tg4zPdMfn70zidkIvnN0Zi7bSuMNL/J5kfGuCE1VOC6/SRd2QfeRLRT6eSUKUUEOJphQAX3W8P2xpJpRI80t4ev0TewoGYDCby95BdVI6d0bcB8KYVEbUOD7V5qKioSNVLvgb7rhNRS9TJzRJhM0Iw7YczOH49G3M2ncOqyV1goPfPDqWhAU4Y7O+IMwm5yCwsg7159XJ6zsSTGMoqFdh0OhlAdfVu0l0D/RzwS+QtHLqagfkj/dk+sB6bTiejokqJTm6WCHa3FDscIqImp/Ye+YSEBIwYMQKmpqaqSvVWVlawtLRk1XoiatFCPK3xw9NdYagnxcHYTLy69TyqFLVvZsqkEoS2scHozi4IbWPDJJ5E8/uF28gproCLpTEevbvPmnRTH19bGOhJkZJbimsZRWKHo3XKqxTYeCoJADCzlydvdBBRq6D2jPzkyZMBAOvWrYODgwN/WBJRq9LTxxbfTe2C5zZE4o9L6TDUu4gvnurEhJ20iiAICDuZCACYGuoBPZna9+1Ji5gY6KFXGxv8HZeFg7EZaOdoLnZIWmXvxTRkFZbDwcIQwwO5jYmIWge1E/mLFy8iKioK7dq1a4p4iIi0Xv929lg5KRizfj6HHedTYagnxSePB0LKZJ60xOmEXMSmFcBIX4oJIW5ih0MaMMjfAX/HZeFQbAZmD/AROxytIQgCfjhRXeRuWqgn9HnTiohaCbV/2oWEhCAlJaUpYiEi0hlDOjhi2fjOkEqALWdTsHD3FQiC8OBvJGoG6+4mNk8Gu8LSxEDkaEgTBrav3h5xPiUP2UXlIkejPc4m3sGV2wUw1JNiUjd3scMhImo2as/If//99/i///s/pKamIiAgAPr6+rWe79ixo8aCIyLSZiM7OaO8Sok3fr2AHyOSYKQvwzvD2nPLEYkqJbcEB2IzAAAzenmKGwxpjKPcCIEuclxKzcfhq5kY15UrLYB/blo9EewKK1PetCKi1kPtRD4rKws3btzAjBkzVMckEgkEQYBEIoFCodBogERE2mxsF1eUVynwvx2X8d2xmzDUl2Hu4LZih0Wt2I/hiRCE6gJpPvbcS92SDPSzx6XUfByMyWAij+qbVn/FpAOoLnJHRNSaqJ3Iz5w5E0FBQdi8eTOL3RERAZjc3QPllUp8uCcGKw5dh5G+FLP6cw8rNb/i8ipsjaze/sZe2i3PID8HLDt4HcevZ6OsUgEjfZnYIYnqx/BEKO/etPJ14E0rImpd1E7kk5KS8Pvvv8PHh3+kEhHVmNnbC2VVCny2Lw6f7YuDTCLBM729WC2cmtW2c7dQWFYFb1tT9GtrJ3Y4pGEdnC3gJDdCWn4ZIm7kYEB7e7FDEk1ReRW2nr1706o3b1oRUeuj9l+YjzzyCC5cuNAUsRAR6bRZ/X3w8kBfAMDiP6+i15LD+GzfVSRkF4scGbUGSqWA9Xdbzj3d05NdFFogiUSCR+4m7wfv1kForX6LTEFheRW87UzRz5c3rYio9VF7Rn7kyJF47bXXcOnSJQQGBtYpdjdq1CiNBUdEpGteG+QLUwMZvj16AxkF5Vh15AZWHbmBbp7WeKqrK4YHOsHUUO0fvUQPdPR6Fm5mF8PcUA9PdnEVOxxqIoP8HfDz6WQcis3Ex2OEVrnFUakUEBaeCACY0cuLN62IqFWSCGr2S5JK7z2J31KK3RUUFEAulyM/Px8WFhZih0NEOqi8SoHDsZn4JTIFR69lQXn3J62pgQyPdXTGuBBXBLtbtco/wqlpTFt3BseuZeGZ3l54/zF/scOhJlJWqUDwRwdQUqHAnpd6I8BFLnZIze5gTAae3RAJCyM9nHp3IEwMeHOUiFoGdfJQtX/yKZXKRgdGRNRaGOrJMCzQCcMCnZCeX4Zt527h18gUJOaUYGtkCrZGpsDbzhTjurrhiWAX2JsbiR0y6bD4zCIcu5YFiQR4OtRT7HCoCRnpy9DH1xb7r2TgQExGq0zk152sbjk3sbs7k3giarUeqgpTWVmZpuIgImqxHOVGmD3AB3+/0R9bn++BsV1cYawvw82sYnz651WELj6MZ388i/1X0lGp4M1SUt/68OrEZpCfA9xtTESOhpraQD8HAMChq61vn3xsWgHCb+RAJpVgGm9aEVErpnYir1Ao8NFHH8HFxQVmZma4efMmAOD999/HDz/8oPEAiYhaColEgu7eNvjiqU44+94gLHkyEF08rKBQCjgYm4kXNkYhdPEhLNobg+sZhWKHSzoiv6QS26JSAQAz2Eu7VXikvT0kEuByagHS8kvFDqdZhd2djR8a4AgXS2ORoyEiEo/aifyiRYuwfv16fPbZZzAwMFAdDwwMxPfff6/R4IiIWiozQz2MD3HHthd74uDcfnihnzdszQyRXVSBtccTMHjpMYz55iQ2nU5GQVml2OGSFttyNhmllQq0dzRHqLeN2OFQM7A1M0SQmyUA4FBsprjBNKPsonLsjL4NAJjZiy3niKh1UzuR37BhA9asWYPJkydDJpOpjnfs2BFXr17VaHBERK2Bj70Z5g3zQ8S8R/D9tK541N8BelIJolPy8O6OS+i26CDmbo1GxI0cKJVq1SelFq5KocSGiCQA1YkNiye2HoP87y6vb0Vt6DadTkZFlRKd3SzRxcNK7HCIiESldoWQ1NRU+Pj41DmuVCpRWclZIyKixtKXSTHI3wGD/B2QVViOnedTsTUyBfGZRdh+PhXbz6fC3doET3VxxZNdXOHMZaWt3oGYDKTmlcLa1ACjOjuLHQ41o0F+DvhsXxxO3shBSUVViy/6Vl6l+OemVW/OxhMRqT0j36FDBxw/frzO8V9//RVBQUEaCYqIqLWzMzfEc329ceC1vtgxqycmdnOHmaEeknNL8OWBa+i15DCmrTuDPRdvo7xK99t+UuOEnUwEAEzq5g4jfdn9T6YWxdfeDO7WJqioUuL49Wyxw2lyey6kIbuoHI4WRhgW4Ch2OEREomvw7duZM2di+fLlmD9/PqZOnYrU1FQolUps374dcXFx2LBhA/bs2dOUsRIRtToSiQRB7lYIcrfC+4/5Yd/ldPwSmYJTN3Nx7FoWjl3LgqWJPsZ0dsFTXV3Rwbn1taJqrS6n5uNMYi70pBJMDfUQOxxqZhKJBAP97BF2MhEHYzIwpEPLTW4FQVC1nJvW0wP6sodqukRE1CI0+Cfhjz/+iNLSUowcORJbt27FH3/8AYlEgg8++ACxsbHYvXs3Bg8e3JSxEhG1aiYGengi2BVbng/F0Tf746VHfOAkN0JeSSXWhydixIoTGLHiOH4MT0ReSYXY4VITq5mNHx7oBAcLI3GDIVEMutuG7vDVTChacP2MMwm5uHK7AEb6UkwMcRc7HCIirSARBKFBP/mlUinS09Nhb2/f1DGJrqCgAHK5HPn5+bCwsBA7HCKie1IoBZyIz8YvkSk4cCUDFXf70BvIpHi0gwPGdXVDLx9byKQsgqbrcosrcD75Ds4l38G5pDycScyFQilgx6yeCHJn4a/WqFKhRPBHB1BYVoVtL/ZssQXgXtgYif1XMjCpuzs+eTxQ7HCIiJqMOnmoWpVRWA2XiEi7yKQS9Gtrh35t7XCnuAK7olOxNfIWYtMKsOdiGvZcTIOz3Ahju7hibBc3uNuYiB0yNYBCKSAuvbA6aU++g/PJeUjILq5zXr+2dkziWzF9mRT92tphz8U0HIrNaJGJfHJOCf6Kqa7MP6Onp7jBEBFpEbVm5OVy+QOT+dzcXI0EJibOyBORrrucmo9fI1OwM/o28kv/6SgS6m2DcSGuGNrBCcYGLI6mLf47237hVh5KKuoWMfS2M0WwuxWC3a0Q5G6Jdg7mkHK1Rau2KzoVr2yJRlsHM/z1Wj+xw9G4j/bE4IcTCejb1g4bZnYTOxwioibVZDPyCxcuhFzOQkpERNouwEWOABc55g33w4GYDPwSmYIT8dmIuJmDiJs5+MDwCkZ2dsa4rm7o5Prgm7SkOVUKJeIyCnE+Oe++s+1mhnro5CZXJe6d3SxhZWogQsSkzfq3tYdMKsG1jCIk55S0qFU3hWWV2Ho2BQAws5enuMEQEWkZtRL5CRMmtIo98kRELYWRvgwjOzljZCdnpOaVYlvULfwSmYJbd0qx6XQyNp1ORlsHM4zr6oYxQS6wNTMUO+QWpzGz7cEelvC1N2dtA3oguYk+QjytcOpmLg7GZrSoHuu/Rd1CUXkV2tiZoq+vndjhEBFplQYn8pytISLSbS6Wxnh5oC/mDPDBqYQc/Bp5C39cSsO1jCJ8vDcWn/55FQP97DGuqxv6tbWDHls8qU2d2fbObpYIdv//9u48Purq3v/4e7KQBZIJASYJJEDKjqAEWWQpREWMCuIFxSKCir29KohetWqv9kba+kD92Wq1dektBNdWqLQCIjQIsghhC0F2WRICJJBAIAmErHN+f2BGYxJIILPm9Xw85o+cOXPO5/vgMDOfOed7TsR3xwtGKCKU2XZcnlG9opR2qEBf7vWdRL7KbjRvfZYk6YFh8dxCAgA/0uBEvoG30gMAPJyfn0VDu7TV0C5t9cLtV2nJNzmav+Woth85o+W7Tmj5rhNqFxakCf1jddeAWHVp18rdIXssZtvhCW7sFaXffb5HGw8VqKi0QuHBge4O6Yqt3Junw6dKZA0J1Pj+HdwdDgB4nAYn8na73ZlxAADcwBoSqMmDO2ny4E7ad7xYC7Yc0cJtx5RfXKZ3Vh/UO6sPakCn1po4IE63Xh2jVkGNuiPLpzDbDk8V37alurRrqYP557R6X77GXtPe3SFdsbnrMiVJkwZ1VGiL5vu+AwD1afCu9c0Ju9YDaM7KK+1auTdPC7Yc0ap9ebJ/9ykR2sJft/WN0cSBcRrQqbXP33LFbDu8yewv9ujd1Yd0R7/2ev1nCe4O54rszinSrW+slb+fRWufvl7tI0LcHRIAuITTdq0HAPi+FgF+SuoTraQ+0TpRVKqF6ce0YMsRHTp5Tgu2HtWCrUcV37al7hoQqwn9YxUVHuzukK/YZc22d2qthDhm2+EZRvWK0rurD2nVvnxVVtm9eo+LlK8vzMbf0ieaJB4A6sGMfB2YkQeAmowx2nr4tOZvOaIl3+Q6Zqb9LFJiD5smDojVDT2j1CLAO5IHZtvha6rsRgN+l6rTJRX6+y+u03U/aePukC7LybNlGjp7pcqr7Fr4yFD179ja3SEBgMswIw8AaFIWi0UDOkdqQOdIJY+9Sp/vyNWCLUe0Oeu0Vu7N08q9eYps2UL/kdBBEwfEqUd0mLtDdqiebU/PPqNth09r2xFm2+F7/P0sur6nTQvTj2nF7hNem8h/lJat8ir7d/8XSeIBoD7MyNeBGXkAaJiD+Wf1j61H9enWo8orLnOUXxNr1V0D4jT2mvayhrh2B+2GzrZ3+W62PYHZdviIpTty9chH6ercJlSrnkr0un0syiqrNOylVTp5tkxvTErQ7T6waR8ANAYz8gAAl+jSrpWeSeqpJ2/qrjX78zV/81Gt2HNC248WavvRQv12yW7d0idaEwfE6bqftGnys6CZbQe+N6J7O7Xw91PWqRIdzD+nrjbvOjpyyfZcnTxbpujwYN3SJ9rd4QCARyORBwBcsQB/P93QM0o39IzSybNl+te2Y5q/5Yi+PXFW/8rI0b8ychTbOkR3XRunCdd2UGzr0Mvqp7Gz7f07Xbi/vautFbPt8HmtggI0+CeRWrv/pL7cc8KrEnljjOZ+t8nd1KGdFOjFm/UBgCu4dWn97NmztXDhQu3du1chISEaOnSoXn75ZfXo0UOSVFFRoeeff15Lly7VoUOHZLVaNWrUKL300ktq377+5Vbz5s3TAw88UKv8/PnzCg6+9O7KLK0HgCtnjNE3Rws1f8sRLcrIUXFZpSTJYpGGd22ruwbEaXTvKAUH+tf5embbgcZ7f0OW/vezXRrYubUWPDTU3eE02MZDp3T3X9IUHOinDc/eqNYt+T8MoPnxmqX1q1ev1vTp0zVw4EBVVlbqueee0+jRo7V79261bNlSJSUlSk9P169//Wtdc801On36tB5//HHdfvvt2rJly0XbDg8P1759+2qUNSSJBwA0DYvFomviInRNXISev623lu86rvlbjmj9wVNau/+k1u4/qfDgAN3x3QZ57SNCmG0HrtANPW363892aevh0zp9rtxrEuLq2fjx/WO9JmYAcCeP2uwuPz9fNptNq1ev1ogRI+qss3nzZg0aNEiHDx9Wx44d66wzb948Pf744zpz5sxlxcGMPAA4z5GCEi3YelT/2HJEOYWlF60bFhSgfh0jlBDHbDvQULf8ca325BbpDxOv0fj+se4O55KyT5Vo5KurZIyU+t8j1C3Kc069AABX8poZ+R8rLCyUJEVGRl60jsViUURExEXbOnv2rDp16qSqqir169dPv/3tb5WQkFBn3bKyMpWVfb/bclFRUeODBwA0SFxkqJ64qbseu7Gb1h88qflbjmr5ruMqr7Qz2w40gVG9bNqTW6QVe054RSL/3oYsGXNhsz6SeABoGI9J5I0xeuKJJzR8+HD16dOnzjqlpaV69tlndc8991z0F4qePXtq3rx56tu3r4qKivTHP/5Rw4YN0/bt29WtW7da9WfPnq1Zs2Y12bUAAC7N38+in3Zrp592a6dzZZWqtBuXH1UH+KJRvaL05soDWvPtSZVVVikooO59KDxBcWmFPtl8RJI0bVhn9wYDAF7EY5bWT58+XZ9//rnWrVun2Njavx5XVFTorrvuUnZ2tr766qtGLXm32+3q37+/RowYoTfeeKPW83XNyMfFxbG0HgAAeB273Wjw7C+VX1ym96cN0oju7dwdUr1Svs7UrMW71aVdS6X+98gmP6ISALxJY5bWe8TZHo8++qgWLVqkVatW1ZvET5w4UZmZmUpNTW10cu3n56eBAwdq//79dT4fFBSk8PDwGg8AAABv5Odn0aheNknSl3tOuDma+lXZjeatz5IkPTAsniQeABrBrYm8MUYzZszQwoULtXLlSsXHx9eqU53E79+/XytWrFCbNm0uq5+MjAzFxMQ0RdgAAAAe7caeUZKkFXvy5CGLL2tZuTdPh0+VyBoSqPH9O7g7HADwKm69R3769On6+OOP9dlnnyksLEzHjx+XJFmtVoWEhKiyslJ33nmn0tPTtWTJElVVVTnqREZGqkWLCzsXT506VR06dNDs2bMlSbNmzdJ1112nbt26qaioSG+88YYyMjL05z//2T0XCgAA4ELDurZVUICfjp05r73Hi9UrxvNWG85dd+HIuUmDOiq0hcds2wQXqrIbbcosUF5xqWxhwRoUH8kGp0ADufVd8+2335YkJSYm1ihPSUnR/fffr6NHj2rRokWSpH79+tWos2rVKsfrsrOz5ef3/eKCM2fO6Be/+IWOHz8uq9WqhIQErVmzRoMGDXLatQAAAHiKkBb++mm3tlqxJ08rdp/wuER+d06RNhw6JX8/i+4b2snd4cANlu3M1azFu5X7g2NIY6zBSh7bW0l9WEULXIrHbHbnSThHHgAAeLu/bcrWrxbu0DVxEfps+jB3h1PDLxds14KtRzX2mvZ6c1LdxwPDdy3bmauHP0zXj5OQ6rn4t+/tTzKPZsnrNrsDAABA07qx54UN77YfOaO8otJL1Had/OIyfZaRI4kj55qjKrvRrMW7ayXxkhxlsxbvVpWduUbgYkjkAQAAfJAtPFjXxFolXdhYzlN8tPGwyqvsSugYoYSOrd0dTpOpshttOHhKn2Uc04aDp0hE67Eps6DGcvofM5JyC0u1KbPAdUEBXoidRQAAAHzUqF5R2n60UCv2nNDPBnV0dzgqq6zSh2mHJUnThtU+rchbcb93w+UVN2x1SEPrAc0VM/IAAAA+6sZeF46hW3fgpEorqtwcjbR4e65Oni1XjDVYSX2i3R1Ok6i+3/vHs8zHC0v18IfpWrYz102ReSZbWHCT1gOaKxJ5AAAAH9UrJkwdIkJUWmHX1wdOujUWY4zjyLmpQzor0N/7v4Zyv3fjDYqPVIw1WPUdMmfRhdUMg+IjXRkW4HW8/x0UAAAAdbJYLLqx14VN71bsOeHWWDZmFmh3bpGCA/00aVCcW2NpKtzv3Xj+fhYlj+0tSbWS+eq/k8f25jx54BJI5AEAAHzYqO+W13+5J092N84MV8/GT+gfq4jQFm6Loylxv/flSeoTo7fv7a9oa83l89HWYI6eAxqIze4AAAB82OCfRKplC3/lFZdpx7FCXRMX4fIYsk+VKPW7FQEP+NCRc9zvffmS+sTopt7R2pRZoLziUtnCLiynZyYeaBhm5AEAAHxYUIC/RnRvJ0n60k3L6+etz5Ix0sju7dTVFuaWGJyB+72vjL+fRUO6tNG4fh00pEsbknigEUjkAQAAfFz18vrUPa4/T764tELztxyRJE0b7jtHzknc7w3AfUjkAQAAfNz1PW3ys0h7cot07Mx5l/a9YMtRnS2rVFdbK43o1talfbsC93sDcAfukQcAAPBxkS1b6NpOrbU567S+3HNCU4d0dkm/VXajeeuzJF24N95i8c2Zae73BuBqzMgDAAA0Azd+t7x+hQuX13+554SyC0pkDQnU+IRYl/XrDtzvDcCVSOQBAACager75NMOntLZskqX9Dn36wtHzt0zuKNCWvi7pE8AaA5I5AEAAJqBLu1aqnObUJVX2bX223yn97crp1Bphwrk72fR1CGdnN4fADQnJPIAAADNgMVicczKu2J5fcrXWZKkW/vGKMYa4vT+AKA5IZEHAABoJqrvk1+1L09VduO0fvKLy7QoI0eSNG1YZ6f1AwDNFYk8AABAMzGgc2tZQwJVcK5c27JPO62fjzYeVnmVXQkdI5TQsbXT+gGA5opEHgAAoJkI9PdTYo92kqTUPSec0kdZZZU+TDssSZo2LN4pfQBAc0ciDwAA0IxU3yf/pZPuk1+8PVcnz5YrxhqspD7RTukDAJo7EnkAAIBmZGSPdgrws+hA3lllnTzXpG0bYzR33YUj56YO6axAf75qAoAz8O4KAADQjIQHB2pQfKQkaUUTL6/fmFmg3blFCg7006RBcU3aNgDgeyTyAAAAzcz3x9A1bSJfPRs/oX+sIkJbNGnbAIDvkcgDAAA0M9WJ/Oas0yosqWiSNrNPlTg20HuAI+cAwKlI5AEAAJqZjm1C1T2qlarsRl992zSb3s1bnyVjpJHd26mrLaxJ2gQA1I1EHgAAoBm60bG8/soT+eLSCs3fckSSNG04R84BgLORyAMAADRD1cvrv9qXp4oq+xW1tWDLUZ0tq1RXWyuN6Na2KcIDAFwEiTwAAEAz1C8uQm1atlBxaaU2ZxZcdjtVdqN567MkSdOGxctisTRRhACA+pDIAwAANEP+fhbd0NMm6cqW13+554SyC0oUERqo/0jo0FThAQAugkQeAACgmbrxB8fQGWMuq425X184cu6eQR0V0sK/yWIDANSPRB4AAKCZ+mm3tmoR4KfsghIdyDvb6NfvyilU2qECBfhZNGVIJydECACoC4k8AABAM9UyKEBDu7SRJMcZ8I0xd12WJOnWvjGKsYY0ZWgAgIsgkQcAAGjGqpfXf9nI++Tziku1eHuOJI6cAwBXI5EHAABoxkb1urDhXXr2aZ08W9bg132Ulq3yKrv6d4xQv7gIJ0UHAKgLiTwAAEAzFmMN0VXtw2WMtGpvw2blSyuq9NHGw5KYjQcAdyCRBwAAaOZG/WD3+oZYvD1HJ8+Wq701WElXRTszNABAHUjkAQAAmrnqRH7t/pMqrai6aF1jjOZ+nSVJmjq0swL8+ToJAK7GOy8AAEAz16dDuKLCg1RSXqUNh05dtG7aoQLtyS1SSKC/fjYwzkURAgB+iEQeAACgmbNYLD/Yvf7iy+vnfp0pSZpwbQdFhLZwemwAgNpI5AEAAKCbfnAMnTGmzjqHT51z3Ed//1A2uQMAdyGRBwAAgIZ0aaOQQH/lFpZqV05RnXXmrc+SMVJij3bqamvl4ggBANVI5AEAAKDgQH/9tFtbSRdm5X+suLRCC7YclSRNG8ZsPAC4E4k8AAAAJF38GLr5W47qbFmlutpaORJ+AIB7uDWRnz17tgYOHKiwsDDZbDbdcccd2rdvn+P5iooKPfPMM+rbt69atmyp9u3ba+rUqcrJyblk259++ql69+6toKAg9e7dW//85z+deSkAAABe7/qeNlks0o5jhTpeWOoor7IbzVt/YZO7acPiZbFY3BUiAEBuTuRXr16t6dOnKy0tTampqaqsrNTo0aN17tw5SVJJSYnS09P161//Wunp6Vq4cKG+/fZb3X777Rdtd8OGDbr77rs1ZcoUbd++XVOmTNHEiRO1ceNGV1wWAACAV2oXFqR+cRGSpC/3fj8rv2LPCR0pOK+I0ED9R0IHN0UHAKhmMfVtS+oG+fn5stlsWr16tUaMGFFnnc2bN2vQoEE6fPiwOnbsWGedu+++W0VFRfriiy8cZUlJSWrdurX+9re/XTKOoqIiWa1WFRYWKjw8/PIuBgAAwAv9edUB/b/l+3RDT5vm3j9QknT3uxu0MbNAjyR20dNJPd0cIQD4psbkoR51j3xhYaEkKTIy8qJ1LBaLIiIi6q2zYcMGjR49ukbZzTffrPXr19dZv6ysTEVFRTUeAAAAzVH1ffLrDpxUSXmldh4r1MbMAgX4WTRlSCc3RwcAkDwokTfG6IknntDw4cPVp0+fOuuUlpbq2Wef1T333HPRXyiOHz+uqKioGmVRUVE6fvx4nfVnz54tq9XqeMTFxV3+hQAAAHix7lGtFNs6ROWVdq3bf1IpX2dJkm7tG6MYa4h7gwMASPKgRH7GjBn65ptv6l36XlFRoZ/97Gey2+166623LtnejzdhMcbUuzHLr371KxUWFjoeR44cafwFAAAA+ACLxeKYlf/75iNavP3CJsPThnPkHAB4Co9I5B999FEtWrRIq1atUmxsbK3nKyoqNHHiRGVmZio1NfWS9wtER0fXmn3Py8urNUtfLSgoSOHh4TUeAAAAzVV1Ir9yb57Kq+zq3zHCsQkeAMD93JrIG2M0Y8YMLVy4UCtXrlR8fO1fequT+P3792vFihVq06bNJdsdMmSIUlNTa5T9+9//1tChQ5ssdgAAAF81KD5SYUEBjr+ZjQcAzxJw6SrOM336dH388cf67LPPFBYW5phFt1qtCgkJUWVlpe68806lp6dryZIlqqqqctSJjIxUixYtJElTp05Vhw4dNHv2bEnSY489phEjRujll1/WuHHj9Nlnn2nFihVat26dey4UAADAi7QI8NOIHu30+Te5am8NVtJV0e4OCQAuS5XdaFNmgfKKS2ULC9ag+Ej5+9V9y7U3cevxc/Xds56SkqL7779fWVlZdc7SS9KqVauUmJgoSUpMTFTnzp01b948x/P/+Mc/9Pzzz+vQoUPq0qWLXnzxRY0fP75BcXH8HAAAaO62Hi7Qwx+m67nbemlcP86OB+B9lu3M1azFu5VbWOooi7EGK3lsbyX1iXFjZHVrTB7qUefIewoSeQAAAADwXst25urhD9P142S3eir57Xv7e1wy77XnyAMAAAAAcCWq7EazFu+ulcRLcpTNWrxbVXbvndMmkQcAAAAA+IxNmQU1ltP/mJGUW1iqTZkFrguqiZHIAwAAAAB8Rl5x/Un85dTzRCTyAAAAAACfYQsLbtJ6nohEHgAAAADgMwbFRyrGGqz6Dpmz6MLu9YPiI10ZVpMikQcAAAAA+Ax/P4uSx/aWpFrJfPXfyWN7e/V58iTyAAAAAACfktQnRm/f21/R1prL56OtwR559FxjBbg7AAAAAAAAmlpSnxjd1DtamzILlFdcKlvYheX03jwTX41EHgAAAADgk/z9LBrSpY27w2hyLK0HAAAAAMCLkMgDAAAAAOBFSOQBAAAAAPAi3CMPAHCrKrvxyU1oAABoanxmohqJPADAbZbtzNWsxbuVW1jqKIuxBit5bG+vPxYGAICmxGcmfoil9QAAt1i2M1cPf5he4wuJJB0vLNXDH6Zr2c5cN0UGAIBn4TMTP0YiDwBwuSq70azFu2XqeK66bNbi3aqy11UDAIDmg89M1IVEHgDgcpsyC2rNKvyQkZRbWKpNmQWuCwoAAA/EZybqQiIPAHC5vOL6v5BcTj0AAHwVn5moC4k8AMDlbGHBTVoPAABfxWcm6kIiDwBwuUHxkYqxBqu+A3MsurAT76D4SFeGBQCAx+EzE3UhkQcAuJy/n0XJY3tLUq0vJtV/J4/tzdm4AIBmj89M1IVEHgDgFkl9YvT2vf0Vba25FDDaGqy37+3PmbgAAHyHz0z8mMUYwzkFP1JUVCSr1arCwkKFh4e7OxwA8GlVdqNNmQXKKy6VLezC0kBmFQAAqI3PTN/WmDw0wEUxAQBQJ38/i4Z0aePuMAAA8Hh8ZqIaS+sBAAAAAPAiJPIAAAAAAHgREnkAAAAAALwIiTwAAAAAAF6ERB4AAAAAAC9CIg8AAAAAgBchkQcAAAAAwIuQyAMAAAAA4EVI5AEAAAAA8CIk8gAAAAAAeJEAdwfgiYwxkqSioiI3RwIAAAAAaA6q88/qfPRiSOTrUFxcLEmKi4tzcyQAAAAAgOakuLhYVqv1onUspiHpfjNjt9uVk5OjsLAwWSwWd4dzUUVFRYqLi9ORI0cUHh7u7nDggxhjcAXGGVyBcQZnY4zBFRhnvssYo+LiYrVv315+fhe/C54Z+Tr4+fkpNjbW3WE0Snh4OP+R4VSMMbgC4wyuwDiDszHG4AqMM990qZn4amx2BwAAAACAFyGRBwAAAADAi5DIe7mgoCAlJycrKCjI3aHARzHG4AqMM7gC4wzOxhiDKzDOILHZHQAAAAAAXoUZeQAAAAAAvAiJPAAAAAAAXoREHgAAAAAAL0IiDwAAAACAFyGRd7PZs2dr4MCBCgsLk81m0x133KF9+/bVqGOM0QsvvKD27dsrJCREiYmJ2rVrV406f/nLX5SYmKjw8HBZLBadOXOmVl+nT5/WlClTZLVaZbVaNWXKlDrrwfe4apxlZWXpwQcfVHx8vEJCQtSlSxclJyervLzc2ZcIN3Ple1m1srIy9evXTxaLRRkZGU64KngaV4+zzz//XIMHD1ZISIjatm2r8ePHO+vS4EFcOc6+/fZbjRs3Tm3btlV4eLiGDRumVatWOfPy4AGaYowVFBTo0UcfVY8ePRQaGqqOHTtq5syZKiwsrNEO3/99F4m8m61evVrTp09XWlqaUlNTVVlZqdGjR+vcuXOOOq+88or+8Ic/6E9/+pM2b96s6Oho3XTTTSouLnbUKSkpUVJSkv7nf/6n3r7uueceZWRkaNmyZVq2bJkyMjI0ZcoUp14fPIOrxtnevXtlt9v17rvvateuXXrttdf0zjvvXHRcwje48r2s2tNPP6327ds75XrgmVw5zj799FNNmTJFDzzwgLZv366vv/5a99xzj1OvD57BlePstttuU2VlpVauXKmtW7eqX79+GjNmjI4fP+7Ua4R7NcUYy8nJUU5Ojl599VXt2LFD8+bN07Jly/Tggw/W6Ivv/z7MwKPk5eUZSWb16tXGGGPsdruJjo42L730kqNOaWmpsVqt5p133qn1+lWrVhlJ5vTp0zXKd+/ebSSZtLQ0R9mGDRuMJLN3717nXAw8lrPGWV1eeeUVEx8f32Sxwzs4e4wtXbrU9OzZ0+zatctIMtu2bXPGZcDDOWucVVRUmA4dOpi//vWvTo0f3sFZ4yw/P99IMmvWrHGUFRUVGUlmxYoVzrkYeKQrHWPV5s+fb1q0aGEqKiqMMXz/93XMyHuY6uUwkZGRkqTMzEwdP35co0ePdtQJCgrSyJEjtX79+ga3u2HDBlmtVg0ePNhRdt1118lqtTaqHfgGZ42z+vqq7gfNhzPH2IkTJ/Sf//mf+uCDDxQaGtp0QcPrOGucpaen69ixY/Lz81NCQoJiYmJ0yy231Fo6jebBWeOsTZs26tWrl95//32dO3dOlZWVevfddxUVFaVrr722aS8CHq2pxlhhYaHCw8MVEBAgie//vo5E3oMYY/TEE09o+PDh6tOnjyQ5llZFRUXVqBsVFdWoZVfHjx+XzWarVW6z2Vi+1cw4c5z92MGDB/Xmm2/qoYceuvyA4XWcOcaMMbr//vv10EMPacCAAU0XNLyOM8fZoUOHJEkvvPCCnn/+eS1ZskStW7fWyJEjVVBQ0ERXAG/gzHFmsViUmpqqbdu2KSwsTMHBwXrttde0bNkyRURENNk1wLM11Rg7deqUfvvb3+q//uu/HGV8//dtAe4OAN+bMWOGvvnmG61bt67WcxaLpcbfxphaZZdSV/3LaQfezdnjrFpOTo6SkpJ011136ec///lltQHv5Mwx9uabb6qoqEi/+tWvrjhOeDdnjjO73S5Jeu655zRhwgRJUkpKimJjY7VgwYIaX5Th25w5zowxeuSRR2Sz2bR27VqFhITor3/9q8aMGaPNmzcrJibmiuOH52uKMVZUVKTbbrtNvXv3VnJy8kXbuFg78C7MyHuIRx99VIsWLdKqVasUGxvrKI+OjpakWr+a5eXl1fqV7mKio6N14sSJWuX5+fmNagfezdnjrFpOTo6uv/56DRkyRH/5y1+uLGh4FWePsZUrVyotLU1BQUEKCAhQ165dJUkDBgzQfffd1wRXAG/g7HFWnUD17t3bURYUFKSf/OQnys7OvpLQ4UVc8X62ZMkS/f3vf9ewYcPUv39/vfXWWwoJCdF7773XNBcBj9YUY6y4uFhJSUlq1aqV/vnPfyowMLBGO3z/910k8m5mjNGMGTO0cOFCrVy5UvHx8TWej4+PV3R0tFJTUx1l5eXlWr16tYYOHdrgfoYMGaLCwkJt2rTJUbZx40YVFhY2qh14J1eNM0k6duyYEhMT1b9/f6WkpMjPj7eZ5sBVY+yNN97Q9u3blZGRoYyMDC1dulSS9Mknn+jFF19smouBx3LVOLv22msVFBRU4zioiooKZWVlqVOnTld+IfBorhpnJSUlklTrc9LPz8+xKgS+qanGWFFRkUaPHq0WLVpo0aJFCg4OrtEO3/99nCt31kNtDz/8sLFarearr74yubm5jkdJSYmjzksvvWSsVqtZuHCh2bFjh5k0aZKJiYkxRUVFjjq5ublm27Zt5v/+7/8cO6Bu27bNnDp1ylEnKSnJXH311WbDhg1mw4YNpm/fvmbMmDEuvV64h6vG2bFjx0zXrl3NDTfcYI4ePVqjL/g2V76X/VBmZia71jcjrhxnjz32mOnQoYNZvny52bt3r3nwwQeNzWYzBQUFLr1muJ6rxll+fr5p06aNGT9+vMnIyDD79u0zTz31lAkMDDQZGRkuv264TlOMsaKiIjN48GDTt29fc+DAgRrtVFZWOtrh+7/vIpF3M0l1PlJSUhx17Ha7SU5ONtHR0SYoKMiMGDHC7Nixo0Y7ycnJl2zn1KlTZvLkySYsLMyEhYWZyZMnN+j4MHg/V42zlJSUevuCb3Ple9kPkcg3L64cZ+Xl5ebJJ580NpvNhIWFmVGjRpmdO3e66ErhTq4cZ5s3bzajR482kZGRJiwszFx33XVm6dKlLrpSuEtTjLHqYw3remRmZjrq8f3fd1mMMabx8/gAAAAAAMAduHkVAAAAAAAvQiIPAAAAAIAXIZEHAAAAAMCLkMgDAAAAAOBFSOQBAAAAAPAiJPIAAAAAAHgREnkAAAAAALwIiTwAAAAAAF6ERB4AAA936tQp2Ww2ZWVlubTfefPmKSIiwiltL1myRAkJCbLb7U5pHwAAX0YiDwCAh5s9e7bGjh2rzp0713pu9OjR8vf3V1pamusDuwJjxoyRxWLRxx9/XG+dBx98UH379lV5eXmN8qVLlyowMFBbtmxxdpgAAHgkEnkAADzY+fPnNWfOHP385z+v9Vx2drY2bNigGTNmaM6cOW6I7vJUVFRIkh544AG9+eab9dZ7/fXXVVxcrOTkZEfZmTNn9Itf/ELPPfecBgwY4LTYAADwZCTyAAB4sC+++EIBAQEaMmRIredSUlI0ZswYPfzww/rkk0907ty5Gs8nJiZq5syZevrppxUZGano6Gi98MILNepUJ8ZRUVEKDg5Wnz59tGTJkhp1li9frl69eqlVq1ZKSkpSbm6u4zm73a7f/OY3io2NVVBQkPr166dly5Y5ns/KypLFYtH8+fOVmJio4OBgffjhh5Kk22+/XZs2bdKhQ4fqvPawsDDNmzdPv//977Vx40ZJ0uOPP66YmBg9//zzOnbsmO6++261bt1abdq00bhx42rcfrB582bddNNNatu2raxWq0aOHKn09PQafVgsFr3zzjsaN26cWrZsqd/97nf1/EsAAOA5SOQBAPBga9asqXPm2RijlJQU3XvvverZs6e6d++u+fPn16r33nvvqWXLltq4caNeeeUV/eY3v1FqaqqkC0n4LbfcovXr1+vDDz/U7t279dJLL8nf39/x+pKSEr366qv64IMPtGbNGmVnZ+upp55yPP/HP/5Rv//97/Xqq6/qm2++0c0336zbb79d+/fvrxHHM888o5kzZ2rPnj26+eabJUmdOnWSzWbT2rVr673+xMREPfLII7rvvvu0YMECzZ8/X++//77Ky8t1/fXXq1WrVlqzZo3WrVvn+KGheil+cXGx7rvvPq1du1ZpaWnq1q2bbr31VhUXF9foIzk5WePGjdOOHTs0bdq0S/2TAADgfgYAAHiscePGmWnTptUq//e//23atWtnKioqjDHGvPbaa2bYsGE16owcOdIMHz68RtnAgQPNM888Y4wxZvny5cbPz8/s27evzr5TUlKMJHPgwAFH2Z///GcTFRXl+Lt9+/bmxRdfrNXHI488YowxJjMz00gyr7/+ep19JCQkmBdeeKHO56qVlJSYnj17Gj8/P/Paa68ZY4yZM2eO6dGjh7Hb7Y56ZWVlJiQkxCxfvrzOdiorK01YWJhZvHixo0ySefzxxy/aPwAAnoYZeQAAPNj58+cVHBxcq3zOnDm6++67FRAQIEmaNGmSNm7cqH379tWod/XVV9f4OyYmRnl5eZKkjIwMxcbGqnv37vX2Hxoaqi5dutT5+qKiIuXk5GjYsGE1XjNs2DDt2bOnRll997OHhISopKSk3v6r6zz55JMKDQ3VY489JknaunWrDhw4oLCwMLVq1UqtWrVSZGSkSktLdfDgQUlSXl6eHnroIXXv3l1Wq1VWq1Vnz55VdnZ2g2IDAMBTBbg7AAAAUL+2bdvq9OnTNcoKCgr0r3/9SxUVFXr77bcd5VVVVZo7d65efvllR1lgYGCN11osFseRbyEhIZfsv67XG2Nqlf2QMaZWWcuWLetsv6CgQO3atbtkHAEBAfL393e0a7fbde211+qjjz6qVbe6vfvvv1/5+fl6/fXX1alTJwUFBWnIkCG1dsGvLzYAADwVM/IAAHiwhIQE7d69u0bZRx99pNjYWG3fvl0ZGRmOx+uvv6733ntPlZWVDWr76quv1tGjR/Xtt99eVmzh4eFq37691q1bV6N8/fr16tWr1yVfXz17npCQ0Oi++/fvr/3798tms6lr1641HlarVZK0du1azZw5U7feequuuuoqBQUF6eTJk43uCwAAT0MiDwCAB7v55pu1a9euGrPyc+bM0Z133qk+ffrUeEybNk1nzpzR559/3qC2R44cqREjRmjChAlKTU1VZmamvvjiixq7zl/KL3/5S7388sv65JNPtG/fPj377LPKyMhwLIG/mLS0NMcseWNNnjxZbdu21bhx47R27VplZmZq9erVeuyxx3T06FFJUteuXfXBBx9oz5492rhxoyZPntygVQgAAHg6EnkAADxY3759NWDAAMeO9Fu3btX27ds1YcKEWnXDwsI0evToRp0p/+mnn2rgwIGaNGmSevfuraefflpVVVUNfv3MmTP15JNP6sknn1Tfvn21bNkyLVq0SN26dbvka//2t79p8uTJCg0NbXB/1UJDQ7VmzRp17NhR48ePV69evTRt2jSdP39e4eHhkqS5c+fq9OnTSkhI0JQpUzRz5kzZbLZG9wUAgKexmB/f6AYAADzK0qVL9dRTT2nnzp3y8/ON3+Dz8/PVs2dPbdmyRfHx8e4OBwAAr8JmdwAAeLhbb71V+/fv17FjxxQXF+fucJpEZmam3nrrLZJ4AAAuAzPyAAAAAAB4Ed9YnwcAAAAAQDNBIg8AAAAAgBchkQcAAAAAwIuQyAMAAAAA4EVI5AEAAAAA8CIk8gAAAAAAeBESeQAAAAAAvAiJPAAAAAAAXoREHgAAAAAAL/L/AVQBsCLxw+f5AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsvUlEQVR4nOzdd1yV5f/H8ddhD+EgKAKCiFvELThzpKllZlMbWo6Wq2HTlln5Nb/VN21ZmWm5snKUWZY7zT1xTxRUEAWZyjz37w+UX4QaR8HDeD8fj/N4xH1u7vM+anA+9/W5rstkGIaBiIiIiIiIiJQJdrYOICIiIiIiIiJFp0JeREREREREpAxRIS8iIiIiIiJShqiQFxERERERESlDVMiLiIiIiIiIlCEq5EVERERERETKEBXyIiIiIiIiImWICnkRERERERGRMsTB1gFKI4vFwqlTp/Dw8MBkMtk6joiIiIiIiJRzhmGQmppKQEAAdnZXH3NXIX8Zp06dIigoyNYxREREREREpIKJiYkhMDDwqueokL8MDw8PIO8P0NPT08ZpREREREREpLxLSUkhKCgovx69GhXyl3Gpnd7T01OFvIiIiIiIiNwwRZnercXuRERERERERMoQFfIiIiIiIiIiZYgKeREREREREZEyRHPkRURERERErkNubi7Z2dm2jiFlgKOjI/b29td9HRXyIiIiIiIi1ygtLY0TJ05gGIato0gZYDKZCAwMpFKlStd1HRXyIiIiIiIi1yA3N5cTJ07g5uZG1apVi7TauFRchmFw5swZTpw4Qd26da9rZF6FvIiIiIiIyDXIzs7GMAyqVq2Kq6urreNIGVC1alWOHTtGdnb2dRXyWuxORERERETkOmgkXoqquP6tqJAXERERERERKUPUWi8VRq7FYFNUIvGpGfh6uBAR4o29ne6eioiIiIhI2aJCXiqEJbtjGbtoL7HJGfnH/M0ujOkdSs8wfxsmExEREREpvWrWrMkzzzzDM888Y+soxWLVqlV06dKFc+fO4eXlZes410yt9VLuLdkdy9CZ2woU8QBxyRkMnbmNJbtjbZRMRERERMR2YmJiGDJkCAEBATg5OREcHMzTTz9NQkKCraMVi86dOxe6AdGuXTtiY2Mxm822CVVMVMhLuZZrMRi7aC+X29Xz0rGxi/aSa9G+nyIiIiJScRw9epRWrVpx8OBB5syZw+HDh/n8889Zvnw5bdu2JTEx0Sa5cnNzsVgsJXZ9Jycn/Pz8yvwChSrkpVzbFJVYaCT+7wwgNjmDTVG2+UElIiIiIuWHYRicz8qxycMwrBuYGj58OE5OTvzxxx906tSJGjVqcOutt7Js2TJOnjzJq6++mn9uamoqDz74IJUqVSIgIICPP/64wLXefPNNatSogbOzMwEBATz11FP5z2VlZfHiiy9SvXp13N3dad26NatWrcp/fvr06Xh5efHLL78QGhqKs7MzU6ZMwcXFhaSkpAKv89RTT9GpUycAEhISeOCBBwgMDMTNzY3GjRszZ86c/HMHDhzI6tWrmTRpEiaTCZPJxLFjx1i1ahUmk6nAtefNm0ejRo1wdnamZs2afPDBBwVet2bNmvznP/9h8ODBeHh4UKNGDb788ssC73HEiBH4+/vj4uJCzZo1GT9+vFV/H9bSHHkp1+JTr1zEX8t5IiIiIiJXciE7l9A3frfJa+99qwduTkUr7xITE/n9998ZN24crq6uBZ7z8/PjoYceYu7cuXz22WcAvPfee7zyyiu8+eab/P777zz77LM0aNCAW265hR9//JEPP/yQ7777jkaNGhEXF8fOnTvzrzdo0CCOHTvGd999R0BAAAsWLKBnz57s2rWLunXrAnD+/HnGjx/PV199hY+PD4GBgYwZM4Z58+YxZMgQIG+k/vvvv+ett94CICMjg5YtW/LSSy/h6enJ4sWLGTBgALVq1aJ169ZMmjSJgwcPEhYWlv89l/Zw/7utW7fSt29f3nzzTfr168e6desYNmwYPj4+DBw4MP+8Dz74gLfffptXXnmFH3/8kaFDh9KxY0caNGjARx99xM8//8z3339PjRo1iImJISYmpuh/edfApiPy48ePJzw8HA8PD3x9fbnzzjs5cOBAgXMGDhyYfwfl0qNNmzZXve706dMLfY/JZCIjQ8VaRePr4VKs54mIiIiIlHWHDh3CMAwaNmx42ecbNmzIuXPnOHPmDADt27fn5Zdfpl69eowcOZJ7772XDz/8EIDo6Gj8/Pzo1q0bNWrUICIigsceewyAI0eOMGfOHH744QduuukmateuzfPPP0+HDh2YNm1a/utlZ2fz2Wef0a5dO+rXr4+7uzv9+vVj9uzZ+ecsX76cc+fOcd999wFQvXp1nn/+eZo1a0atWrUYOXIkPXr04IcffgDAbDbj5OSEm5sbfn5++Pn5YW9vX+i9/u9//6Nr1668/vrr1KtXj4EDBzJixAjee++9AufddtttDBs2jDp16vDSSy9RpUqV/M6C6Oho6tatS4cOHQgODqZDhw488MAD1/JXU2Q2HZFfvXo1w4cPJzw8nJycHF599VW6d+/O3r17cXd3zz+vZ8+eBf6inZyc/vXanp6ehW4KuLioWKtoIkK88Te7EJeccdl58ibAz5y3FZ2IiIiIyPVwdbRn71s9bPbaxeVSm/6leeRt27Yt8Hzbtm2ZOHEiAPfddx8TJ06kVq1a9OzZk9tuu43evXvj4ODAtm3bMAyDevXqFfj+zMxMfHx88r92cnKiSZMmBc556KGHaNu2LadOnSIgIIBZs2Zx2223UblyZSBvhP7dd99l7ty5nDx5kszMTDIzMwvUkUWxb98++vTpU+BY+/btmThxIrm5ufnF/9/zmUwm/Pz8iI+PB/IGn2+55Rbq169Pz549uf322+nevbtVOaxl00J+yZIlBb6eNm0avr6+bN26lY4dO+Yfd3Z2xs/Pz6prX/rDlYrN3s7EmN6hDJ25DRMUKOYvLW8xpneo9pMXERERketmMpmK3N5uS3Xq1MFkMrF3717uvPPOQs/v37+fypUrU6VKlSte41KRHxQUxIEDB1i6dCnLli1j2LBhvPfee6xevRqLxYK9vT1bt24tNBpeqVKl/P92dXUttPhcREQEtWvX5rvvvmPo0KEsWLCgwODuBx98wIcffsjEiRNp3Lgx7u7uPPPMM2RlZVn1Z2EYRqHXvtx6A46OjoXe/6VF+Vq0aEFUVBS//fYby5Yto2/fvnTr1o0ff/zRqizWKFWL3SUnJwPg7V1wdHTVqlX4+vpSr149Hnvssfw7H1eTlpZGcHAwgYGB3H777Wzfvr1EMkvp1zPMn8n9W+BnLtiR4Wd2YXL/FtpHXkREREQqFB8fH2655RY+++wzLly4UOC5uLg4Zs2aRb9+/fIL3A0bNhQ4Z8OGDTRo0CD/a1dXV+644w4++ugjVq1axfr169m1axfNmzcnNzeX+Ph46tSpU+BRlEHXBx98kFmzZrFo0SLs7Ozo1atX/nNr1qyhT58+9O/fn6ZNm1KrVi0OHTpU4PudnJzIzc296muEhoaydu3aAsfWrVtHvXr1LtuKfyWenp7069ePKVOmMHfuXObNm1eiK/+XmttFhmEwatQoOnToQFhYWP7xW2+9lfvuu4/g4GCioqJ4/fXXufnmm9m6dSvOzs6XvVaDBg2YPn06jRs3JiUlhUmTJtG+fXt27tyZv6DC311qw7gkJSWl+N+g2FTPMH9uCfVjU1Qi8akZ+HrktdNrJF5EREREKqJPPvmEdu3a0aNHD9555x1CQkLYs2cPL7zwAtWrV2fcuHH55/7111/897//5c4772Tp0qX88MMPLF68GMhbnyw3N5fWrVvj5ubGjBkzcHV1JTg4GB8fHx566CEefvhhPvjgA5o3b87Zs2dZsWIFjRs35rbbbrtqxoceeoixY8cybtw47r333gJTpevUqcO8efNYt24dlStX5n//+x9xcXEF5v3XrFmTjRs3cuzYMSpVqlRowBjgueeeIzw8nLfffpt+/fqxfv16Pvnkk/yF/oriww8/xN/fn2bNmmFnZ8cPP/yAn58fXl5eRb6G1YxSYtiwYUZwcLARExNz1fNOnTplODo6GvPmzSvytXNzc42mTZsaI0eOvOzzY8aMMcjrui7wSE5Otuo9iIiIiIhIxXHhwgVj7969xoULF2wd5ZocO3bMGDhwoOHn52c4OjoaQUFBxsiRI42zZ8/mnxMcHGyMHTvW6Nu3r+Hm5mZUq1bNmDhxYv7zCxYsMFq3bm14enoa7u7uRps2bYxly5blP5+VlWW88cYbRs2aNQ1HR0fDz8/PuOuuu4zIyEjDMAxj2rRphtlsvmLG8PBwAzBWrFhR4HhCQoLRp08fo1KlSoavr6/x2muvGQ8//LDRp0+f/HMOHDhgtGnTxnB1dTUAIyoqyli5cqUBGOfOncs/78cffzRCQ0MNR0dHo0aNGsZ7771X4LWCg4ONDz/8sMCxpk2bGmPGjDEMwzC+/PJLo1mzZoa7u7vh6elpdO3a1di2bdtl38/V/s0kJycXuQ41GYaVGw6WgJEjR7Jw4UL+/PNPQkJC/vX8unXr8uijj/LSSy8V+TUee+wxTpw4wW+//VboucuNyAcFBZGcnIynp2eRX0NERERERCqOjIwMoqKiCAkJ0cLaUiRX+zeTkpKC2WwuUh1q09Z6wzAYOXIkCxYsYNWqVUUq4hMSEoiJicHfv+jzmg3DYMeOHTRu3Piyzzs7O1+xTV9ERERERESkNLHpYnfDhw9n5syZzJ49Gw8PD+Li4oiLi8tfcCEtLY3nn3+e9evXc+zYMVatWkXv3r2pUqUKd911V/51Hn74YUaPHp3/9dixY/n99985evQoO3bsYMiQIezYsYMnn3zyhr9HERERERERkeJk0xH5yZMnA9C5c+cCx6dNm8bAgQOxt7dn165dfPvttyQlJeHv70+XLl2YO3cuHh4e+edHR0djZ/f/9ySSkpJ4/PHHiYuLw2w207x5c/78808iIiJuyPsSERERERERKSmlYo58aWPN3AQREREREamYNEderFVcc+RL1T7yIiIiIiIiInJ1KuRFREREREREyhAV8iIiIiIiIiJliAp5ERERERERkTJEhbyIiIiIiIgUuzfffJNmzZrlfz1w4EDuvPPO67pmcVyjPFAhLyJXlGsxWH8kgZ92nGT9kQRyLdrkQkRERKSsGzhwICaTCZPJhKOjI7Vq1eL5558nPT29RF930qRJTJ8+vUjnHjt2DJPJxI4dO675GuWZTfeRF5HSa8nuWMYu2ktsckb+MX+zC2N6h9IzzN+GyURERETkevXs2ZNp06aRnZ3NmjVrePTRR0lPT2fy5MkFzsvOzsbR0bFYXtNsNpeKa5QHGpEXkUKW7I5l6MxtBYp4gLjkDIbO3MaS3bE2SiYiIiJS/tiiC9LZ2Rk/Pz+CgoJ48MEHeeihh1i4cGF+O/zXX39NrVq1cHZ2xjAMkpOTefzxx/H19cXT05Obb76ZnTt3Frjmu+++S7Vq1fDw8GDIkCFkZBT8LPnPtniLxcKECROoU6cOzs7O1KhRg3HjxgEQEhICQPPmzTGZTHTu3Pmy18jMzOSpp57C19cXFxcXOnTowObNm/OfX7VqFSaTieXLl9OqVSvc3Nxo164dBw4cyD9n586ddOnSBQ8PDzw9PWnZsiVbtmwpjj/mEqNCXkQKyLUYjF20l8v9+rh0bOyivWqzFxERESkGS3bH0mHCCh6YsoGnv9vBA1M20GHCihs+cOLq6kp2djYAhw8f5vvvv2fevHn5re29evUiLi6OX3/9la1bt9KiRQu6du1KYmIiAN9//z1jxoxh3LhxbNmyBX9/fz777LOrvubo0aOZMGECr7/+Onv37mX27NlUq1YNgE2bNgGwbNkyYmNjmT9//mWv8eKLLzJv3jy++eYbtm3bRp06dejRo0d+rkteffVVPvjgA7Zs2YKDgwODBw/Of+6hhx4iMDCQzZs3s3XrVl5++eVi60IoKWqtF5ECNkUlFhqJ/zsDiE3OYFNUIm1r+9y4YCIiIiLlzKUuyH8Oj1zqgpzcv8UNmdK4adMmZs+eTdeuXQHIyspixowZVK1aFYAVK1awa9cu4uPjcXZ2BuD9999n4cKF/Pjjjzz++ONMnDiRwYMH8+ijjwLwzjvvsGzZskKj8pekpqYyadIkPvnkEx555BEAateuTYcOHQDyX9vHxwc/P7/LXuPSVIDp06dz6623AjBlyhSWLl3K1KlTeeGFF/LPHTduHJ06dQLg5ZdfplevXmRkZODi4kJ0dDQvvPACDRo0AKBu3brX+Cd542hEXkQKiE+9chF/LeeJiIiISGG27oL85ZdfqFSpEi4uLrRt25aOHTvy8ccfAxAcHJxfSANs3bqVtLQ0fHx8qFSpUv4jKiqKI0eOALBv3z7atm1b4DX++fXf7du3j8zMzPybB9fiyJEjZGdn0759+/xjjo6OREREsG/fvgLnNmnSJP+//f3zbo7Ex8cDMGrUKB599FG6devGu+++m/+eSjONyItIAb4eLsV6noiIiIgUZusuyC5dujB58mQcHR0JCAgo0Eru7u5e4FyLxYK/vz+rVq0qdB0vL69ren1XV9dr+r6/M4y8mxwmk6nQ8X8e+/v7u/ScxWIB8rbJe/DBB1m8eDG//fYbY8aM4bvvvuOuu+667owlRSPyIlJARIg3/mYXTFd43kTe6vURId43MpaIiIhIuWLrLkh3d3fq1KlDcHDwv84Hb9GiBXFxcTg4OFCnTp0CjypVqgDQsGFDNmzYUOD7/vn139WtWxdXV1eWL19+2eednJwAyM3NveI16tSpg5OTE2vXrs0/lp2dzZYtW2jYsOFV39M/1atXj2effZY//viDu+++m2nTpln1/TeaCnkRKcDezsSY3qEAhYr5S1+P6R2Kvd2VSn0RERER+TdlqQuyW7dutG3bljvvvJPff/+dY8eOsW7dOl577bX81d2ffvppvv76a77++msOHjzImDFj2LNnzxWv6eLiwksvvcSLL77It99+y5EjR9iwYQNTp04FwNfXF1dXV5YsWcLp06dJTk4udA13d3eGDh3KCy+8wJIlS9i7dy+PPfYY58+fZ8iQIUV6bxcuXGDEiBGsWrWK48eP89dff7F582arbwTcaGqtF5FCeob5M7l/i0L7yPtpH3kRERGRYnGpCzIuOeOy8+RN5H32Kg1dkCaTiV9//ZVXX32VwYMHc+bMGfz8/OjYsWP+KvP9+vXjyJEjvPTSS2RkZHDPPfcwdOhQfv/99yte9/XXX8fBwYE33niDU6dO4e/vz5NPPgmAg4MDH330EW+99RZvvPEGN91002Vb+999910sFgsDBgwgNTWVVq1a8fvvv1O5cuUivTd7e3sSEhJ4+OGHOX36NFWqVOHuu+9m7Nix1v9B3UAm49LEAsmXkpKC2WwmOTkZT09PW8cRsZlci8GmqETiUzPw9cj7RaKReBEREZE8GRkZREVFERISgouL9SPnl1atBwoU85c+bd2oVevlxrnavxlr6lCNyIvIFdnbmbTFnIiIiEgJURekXCsV8iIiIiJSiLqyRG6MnmH+3BLqp//fxCoq5EVERESkgCW7YwuNEPprhFCkxKgLUqylVetFREREJN+lObv/3N86LjmDoTO3sWR3rI2SiYjIJSrkRURERATIa6cfu2jvZVfQvnRs7KK95Fq0VrKIiC2pkBcRERERADZFJRYaif87A4hNzmBTVOKNCyUiIoWokBcRERERAOJTr1zEX8t5IiJSMlTIi4iIiAgAvh5F2we7qOeJiEjJUCEvIiIiIgBEhHjjb3bhSptemchbvT4ixPtGxhIRkX9QIS8iIiIiQN4WWGN6hwIUKuYvfT2md6j2txapIEwmEwsXLgTg2LFjmEwmduzYYdNMV1La8xU3FfIiIiIikq9nmD+T+7fAz1ywfd7P7MLk/i20j7xIORIXF8fIkSOpVasWzs7OBAUF0bt3b5YvX17o3KCgIGJjYwkLCyvRTBWtIL9WDrYOICIiIiKlS88wf24J9WNTVCLxqRn4euS102skXqT8OHbsGO3bt8fLy4v//ve/NGnShOzsbH7//XeGDx/O/v37C5xvb2+Pn5+fjdLKP2lEXkREREQKsbcz0ba2D32aVadtbR8V8SLlzLBhwzCZTGzatIl7772XevXq0ahRI0aNGsWGDRsKnf/PkfJVq1ZhMpn4/fffad68Oa6urtx8883Ex8fz22+/0bBhQzw9PXnggQc4f/58/nWWLFlChw4d8PLywsfHh9tvv50jR47kPx8SEgJA8+bNMZlMdO7cGQCLxcJbb71FYGAgzs7ONGvWjCVLllz1Pa5evZqIiAicnZ3x9/fn5ZdfJicnJ//51NRUHnroIdzd3fH39+fDDz+kc+fOPPPMMwC89dZbNG7cuNB1W7ZsyRtvvFGkP+eSokJeRERERESkGBiGQXp6uk0ehmEUOWdiYiJLlixh+PDhuLu7F3rey8uryNd68803+eSTT1i3bh0xMTH07duXiRMnMnv2bBYvXszSpUv5+OOP889PT09n1KhRbN68meXLl2NnZ8ddd92FxWIBYNOmTQAsW7aM2NhY5s+fD8CkSZP44IMPeP/994mMjKRHjx7ccccdHDp06LK5Tp48yW233UZ4eDg7d+5k8uTJTJ06lXfeeSf/nFGjRvHXX3/x888/s3TpUtasWcO2bdvynx88eDB79+5l8+bN+cciIyPZvn07AwcOLPKfUUlQa72IiIiIiEgxOH/+PJUqVbLJa6elpV22KL+cw4cPYxgGDRo0uO7Xfeedd2jfvj0AQ4YMYfTo0Rw5coRatWoBcO+997Jy5UpeeuklAO65554C3z916lR8fX3Zu3cvYWFhVK1aFQAfH58Crfzvv/8+L730Evfffz8AEyZMYOXKlUycOJFPP/20UK7PPvuMoKAgPvnkE0wmEw0aNODUqVO89NJLvPHGG6Snp/PNN98we/ZsunbtCsC0adMICAjIv0ZgYCA9evRg2rRphIeH55/TqVOn/PdnKxqRFxERERERqUAujd6bTNc/ZaZJkyb5/12tWjXc3NwKFLnVqlUjPj4+/+sjR47w4IMPUqtWLTw9PfNb6aOjo6/4GikpKZw6dSr/hsEl7du3Z9++fZf9nn379tG2bdsC77F9+/akpaVx4sQJjh49SnZ2NhEREfnPm81m6tevX+A6jz32GHPmzCEjI4Ps7GxmzZrF4MGDr/ZHckNoRF5ERERERKQYuLm5kZaWZrPXLqq6detiMpnYt28fd95553W9rqOjY/5/m0ymAl9fOnapbR6gd+/eBAUFMWXKFAICArBYLISFhZGVlfWvr/XPGw+GYVzxZsTlnvv7DYwr3cz45xSF3r174+zszIIFC3B2diYzM7NQV4EtqJAXEREREREpBiaTqcjt7bbk7e1Njx49+PTTT3nqqacKZU5KSrJqnnxRJSQksG/fPr744gtuuukmANauXVvgHCcnJwByc3Pzj3l6ehIQEMDatWvp2LFj/vF169YVGFH/u9DQUObNm1egoF+3bh0eHh5Ur14dLy8vHB0d2bRpE0FBQUDeyP+hQ4fo1KlT/nUcHBx45JFHmDZtGs7Oztx///1W3TQpKSrkRUREREREKpjPPvuMdu3aERERwVtvvUWTJk3Iyclh6dKlTJ48+Yot69ejcuXK+Pj48OWXX+Lv7090dDQvv/xygXN8fX1xdXVlyZIlBAYG4uLigtls5oUXXmDMmDHUrl2bZs2aMW3aNHbs2MGsWbMu+1rDhg1j4sSJjBw5khEjRnDgwAHGjBnDqFGjsLOzw8PDg0ceeYQXXngBb29vfH19GTNmDHZ2doVG6R999FEaNmwIwF9//VXsfy7XQnPkRUREREREKpiQkBC2bdtGly5deO655wgLC+OWW25h+fLlTJ48uURe087Oju+++46tW7cSFhbGs88+y3vvvVfgHAcHBz766CO++OILAgIC6NOnDwBPPfUUzz33HM899xyNGzdmyZIl/Pzzz9StW/eyr1W9enV+/fVXNm3aRNOmTXnyyScZMmQIr732Wv45//vf/2jbti2333473bp1o3379jRs2BAXF5cC16pbty7t2rWjfv36tG7dupj/VK6NybBmn4IKIiUlBbPZTHJyMp6enraOIyIiIiIipVBGRgZRUVGEhIQUKv6k7ElPT6d69ep88MEHDBkyJP/4pRX+n3jiCUaNGnVdr3G1fzPW1KFqrRcREREREZEKZ/v27ezfv5+IiAiSk5N56623APK7AADi4+OZMWMGJ0+eZNCgQbaKWohNW+vHjx9PeHg4Hh4e+Pr6cuedd3LgwIEC5wwcOBCTyVTg0aZNm3+99rx58wgNDcXZ2ZnQ0FAWLFhQUm9DREREREREyqD333+fpk2b0q1bN9LT01mzZg1VqlTJf75atWq8++67fPnll1SuXNmGSQuy6Yj86tWrGT58OOHh4eTk5PDqq6/SvXt39u7dW2DlxJ49ezJt2rT8ry+tZHgl69evp1+/frz99tvcddddLFiwgL59+7J27dpSM6dBREREREREbKd58+Zs3br1queU1pnopWqO/JkzZ/D19WX16tX52woMHDiQpKQkFi5cWOTr9OvXj5SUFH777bf8Yz179qRy5crMmTPnX7+/LM2RT83IxsPF8d9PFBERERGRYqU58mKt4pojX6pWrU9OTgby9jX8u1WrVuHr60u9evV47LHHiI+Pv+p11q9fT/fu3Qsc69GjB+vWrbvs+ZmZmaSkpBR4lAUbjybQ7t0VfL02ipxci63jiIiIiIiIyA1Qagp5wzAYNWoUHTp0ICwsLP/4rbfeyqxZs1ixYgUffPABmzdv5uabbyYzM/OK14qLi6NatWoFjlWrVo24uLjLnj9+/HjMZnP+IygoqHjeVAmbuzmG1Iwc3vplL7d/vJbNxxJtHUlEREREpMIpRU3OUsoV17+VUlPIjxgxgsjIyEKt7/369aNXr16EhYXRu3dvfvvtNw4ePMjixYuvej2TyVTga8MwCh27ZPTo0SQnJ+c/YmJiru/N3CDv3deU/9zVGC83R/bHpXLf5+t57vudnEm98k0OEREREREpHvb29gBkZWXZOImUFZf+rVz6t3OtSsX2cyNHjuTnn3/mzz//JDAw8Krn+vv7ExwczKFDh654jp+fX6HR9/j4+EKj9Jc4Ozvj7OxsfXAbs7cz8WDrGvQM8+O93/fz3eYY5m07wR9743i+e30eal0DB/tSc69GRERERKRccXBwwM3NjTNnzuDo6IidnT57y5VZLBbOnDmDm5sbDg7XV4rbtJA3DIORI0eyYMECVq1aRUhIyL9+T0JCAjExMfj7+1/xnLZt27J06VKeffbZ/GN//PEH7dq1K5bcpY23uxPj725C31ZBvPHTHnadTGbMz3uYuzmGt+9sRMtg73+/iIiIiIiIWMVkMuHv709UVBTHjx+3dRwpA+zs7KhRo8YVu8WLyqar1g8bNozZs2fz008/Ub9+/fzjZrMZV1dX0tLSePPNN7nnnnvw9/fn2LFjvPLKK0RHR7Nv3z48PDwAePjhh6levTrjx48HYN26dXTs2JFx48bRp08ffvrpJ1577bUibz9Xllat/6dci8GcTdG89/sBki9kA3Bvy0BevrUBVSqVva4DEREREZHSzmKxqL1eisTJyemKnRvW1KE2LeSvdBdi2rRpDBw4kAsXLnDnnXeyfft2kpKS8Pf3p0uXLrz99tsFFqTr3LkzNWvWZPr06fnHfvzxR1577TWOHj1K7dq1GTduHHfffXeRcpXlQv6ShLRM/rvkAHO35M3393Rx4Pke9XmodTD2dtd390dERERERESKV5kp5Eur8lDIX7It+hyvL9zNnlN5W+o1CvDkrT5htAyubONkIiIiIiIicokK+etUngp5yGu3n73xOO/9foCUjBwA+rYK5KWeDfBRu72IiIiIiIjNWVOHalnFCsDezsSAtjVZ8Xxn7muZtyvA91tOcPMHq5mx4Ti5Ft3LERERERERKSs0In8Z5W1E/p+2Hk/k9YV72Bub124fVt2Tt/uE0byG2u1FRERERERsQa3116m8F/IAObkWZm2M5v0/DpB6sd3+/vAgXuzZAG93JxunExERERERqVjUWi//ysHejkfa1WTFc525p0Veu/13m2O4+YNVzNqodnsREREREZHSSiPyl1ERRuT/afOxRF5fuJv9cakANAk083afMJoGedk2mIiIiIiISAWg1vrrVBELechrt5+x4Tj/++MgqZk5mExwf3gNXuxRn8pqtxcRERERESkxaq2Xa+Jgb8eg9iEsf74TdzevjmHAnE3RdPlgFXM2RWNRu72IiIiIiIjNaUT+MirqiPw/bTyawJif9+S32zcN8uLtPo1oEuhl22AiIiIiIiLljFrrr5MK+f+Xk2vhm/XH+XDpQdIutts/GFGDF3rUx8tN7fYiIiIiIiLFQa31Umwc7O0Y0iGEFc914s5mARgGzNoYTZf3VzF3s9rtRUREREREbjSNyF+GRuSvbMPRBN74aTcHT6cB0CzIi3fuDCOsutnGyURERERERMoutdZfJxXyV5eda+Gbdcf4cOlB0rNyMZmgf+tgnu9eH7Obo63jiYiIiIiIlDlqrZcS5Whvx6M31WLF853pc7HdfsaG43T5YBXfb4lRu72IiIiIiEgJ0oj8ZWhE3jrrj+S12x+Kz2u3b1HDi7f6qN1eKqZci8GmqETiUzPw9XAhIsQbezuTrWOJiIiISCmn1vrrpELeetm5Fqb9FcWkZYdIz8rFzgQD2gQzqnt9zK5qt5eKYcnuWMYu2ktsckb+MX+zC2N6h9IzzN+GyURERESktFMhf51UyF+7uOQMxv26j0U7TwHg4+7E6Nsacnfz6thpVFLKsSW7Yxk6cxv//IF66V/95P4tVMyLiIiIyBVpjrzYjJ/ZhY8faM7sR1tTu6o7CelZPP/DTvp+sZ69p1JsHU+kRORaDMYu2luoiAfyj41dtJdcrR8hIiIiIsVAhbyUiHZ1qvDb0x0ZfWsD3Jzs2XL8HLd/vIY3f95DSka2reOJFKtNUYkF2un/yQBikzPYFJV440KJiIiISLmlQl5KjJODHU90qs3y5zrRq4k/FgOmrzvGze+vZv62E2hWh5QX8alXLuKv5TwRERERkatRIS8lzt/syqcPtmDmkNbUqurO2bRMRn2f126/L1bt9lL2+Xq4FOt5IiIiIiJXo0JebpgOdauw5OmOvNSzAa6O9mw+do7bP17LW4v2qt1eyrSIEG/8zS5caTlHE3mr10eEeN/IWCIiIiJSTqmQlxvKycGOoZ3z2u1va+xHrsXg67+i6PrBahZuP6l2eymT7O1MjOkdClComL/09ZjeodpPXkRERESKhbafuwxtP3fj/HnwDG/+vIejZ9OBvJHNt/uEUd/Pw8bJRKynfeRFRERE5FppH/nrpEL+xsrMyeWrNVF8vOIQGdkW7O1MDGxXk2e61cXDxdHW8USskmsx2BSVSHxqBr4eee30GokXERERkX+jQv46qZC3jZNJF3h70V6W7IkDwNfDmVd7NeSOpgGYTCqERERERESk/LKmDtUceSk1qnu58vmAlkwfFE5NHzfiUzN5+rsdPDBlAwdPp9o6noiIiIiISKmgEfnL0Ii87WXm5DLlz6N8svIwGdkWHOxMDO4QwlNd61LJ2cHW8URERERERIqVRuSlzHN2sGfEzXVZ+mwnuodWI8di8OWfR+n6wSp+3nlKq9uLiIiIiEiFpRH5y9CIfOmzcn88by7aw/GE8wC0reXDW30aUbeaVrcXEREREZGyTyPyUu50aeDL7890ZNQt9XB2sGP90QRunbSG8b/uIz0zx9bxREREREREbhgV8lJmuDja81TXuiwb1YluDfPa7b/48yhdP1jNL5FqtxcRERERkYpBhbyUOUHebnz1SCumPtKKGt5uxKVkMGL2dgZM3cTh+DRbxxMRERERESlRRZoj//PPP1t94VtuuQVXV9drCmVrmiNfdmRk5/L56iN8tuoIWTkWHO1NDOlQi5E318Fdq9uLiIiIiEgZYU0dWqRC3s7OuoF7k8nEoUOHqFWrllXfV1qokC97ohPOM3bRHpbvjwfA3+zC67eHcmuYHyaTycbpRERERERErq5EFruLi4vDYrEU6eHm5nbdb0LEGjV83Jg6MJyvHm5FkLcrsckZDJu1jYe/3sSRM2q3FxERERGR8qNIhfwjjzxiVZt8//79NZItNtEttBpLn+3EU13r4uRgx5pDZ+k58U/+u2Q/57O0ur2IiIiIiJR92kf+MtRaXz4cT0jnzZ/3sPLAGQACzC680TuUHo3Ubi8iIiIiIqVLibTW5+bmEhkZyYULFwo9d/78eSIjI7FYLFYFHT9+POHh4Xh4eODr68udd97JgQMHrnj+E088gclkYuLEiVe97vTp0zGZTIUeGRkZVuWTsi3Yx52vB4bz5YCWVPdy5VRyBk/O3MYj0zZzNi3T1vFERERERESuSZEL+RkzZjB48GCcnJwKPefs7MzgwYOZPXu2VS++evVqhg8fzoYNG1i6dCk5OTl0796d9PT0QucuXLiQjRs3EhAQUKRre3p6EhsbW+Dh4uJiVT4p+0wmE90b+bFsVCdG3lwHJ3s7/jx4hidnbCUrx7obTyIiIiIiIqVBkQv5qVOn8vzzz2Nvb1/oOXt7e1588UW+/PJLq158yZIlDBw4kEaNGtG0aVOmTZtGdHQ0W7duLXDeyZMnGTFiBLNmzcLR0bFI1zaZTPj5+RV4SMXl6mTPc93rs2hkBzycHdhy/Bz/+XWfrWOJiIiIiIhYrciF/IEDB2jTps0Vnw8PD2ffvusrjJKTkwHw9vbOP2axWBgwYAAvvPACjRo1KvK10tLSCA4OJjAwkNtvv53t27df8dzMzExSUlIKPKR8qu/nwYf9mgEwfd0x5m87YdtAIiIiIiIiVipyIZ+enn7VAjc1NZXz589fcxDDMBg1ahQdOnQgLCws//iECRNwcHDgqaeeKvK1GjRowPTp0/n555+ZM2cOLi4utG/fnkOHDl32/PHjx2M2m/MfQUFB1/w+pPTrFlqNp7rWBWD0/F3sPpls40QiIiIiIiJFV+RCvm7duqxbt+6Kz69du5a6detec5ARI0YQGRnJnDlz8o9t3bqVSZMm5S9eV1Rt2rShf//+NG3alJtuuonvv/+eevXq8fHHH1/2/NGjR5OcnJz/iImJueb3IWXDM13r0qV+VTJzLDw5cyvn0rNsHUlERERERKRIilzIP/jgg7z22mtERkYWem7nzp288cYbPPjgg9cUYuTIkfz888+sXLmSwMDA/ONr1qwhPj6eGjVq4ODggIODA8ePH+e5556jZs2aRb6+nZ0d4eHhVxyRd3Z2xtPTs8BDyjc7OxMT+zUn2MeNE+cu8NR328m1aCdGEREREREp/Yq8j3x2djbdu3dn7dq1dOvWjQYNGmAymdi3bx/Lli2jffv2LF26tMiL0UFeO/3IkSNZsGABq1atKjSin5CQQGxsbIFjPXr0YMCAAQwaNIj69esX+XUiIiJo3LgxX3/99b+er33kK459sSnc/dk6LmTnMqxzbV7s2cDWkUREREREpBjN3RyNq5MDdzQt2g5otmJNHepQ1Is6Ojryxx9/8OGHHzJ79mz+/PNPDMOgXr16jBs3jmeeecaqIh5g+PDhzJ49m59++gkPDw/i4uIAMJvNuLq64uPjg4+PT6Ecfn5+BYr4hx9+mOrVqzN+/HgAxo4dS5s2bahbty4pKSl89NFH7Nixg08//dSqfFL+NfT3ZMK9TXhqznY+W3WEJoFmeob52zqWiIiIiIgUg+X7TjN6/i4sBlT3cqFlsPe/f1MZUORCHvKK6BdffJEXX3yxWF588uTJAHTu3LnA8WnTpjFw4MAiXyc6Oho7u/+fJZCUlMTjjz9OXFwcZrOZ5s2b8+effxIREVEcsaWcuaNpAJExSXy1Nornvt9JHd9K1PH1sHUsERERERG5DtujzzF89jYsBtzXMpAWNSrbOlKxKXJrfUWi1vqKJyfXQv+pG9lwNJFaVd35aXh7PFys6zAREREREZHS4eiZNO79fD2J6Vl0rl+VKQ+3wtG+yEvE2YQ1dWjpficiN4iDvR2fPNgCf7MLR8+k89z3O7Fo8TsRERERkTLnTGomj0zbRGJ6Fk0CzXz6YItSX8Rbq3y9G5HrUKWSM5P7t8TJ3o4/9p5m8uojto4kIiIiIiJWSMvMYdD0TcQkXiDYx42vB4bj7mzVjPIyQYW8yN80C/LirT6NAHj/jwOsPnjGxolERERERKQosnMtDJu1jd0nU/Bxd+KbQRFUqeRs61gl4poL+aysLA4cOEBOTk5x5hGxufsjavBARBCGAU/N2U5M4nlbRxIRERERkaswDIOX5+3iz4NncHW0Z+rAcGpWcbd1rBJjdSF//vx5hgwZgpubG40aNSI6OhqAp556infffbfYA4rYwpt3NKJpkBfJF7J5fMZWLmTl2jqSiIiIiIhcwQd/HGTethPY25n49KHmNAvysnWkEmV1IT969Gh27tzJqlWrcHFxyT/erVs35s6dW6zhRGzF2cGez/u3wMfdiX2xKYyeH4k2eBARERERKX1mbDjOJysPA/Cfu8K4uUE1GycqeVYX8gsXLuSTTz6hQ4cOmEym/OOhoaEcOaLFwaT88De78ulDLbC3M7Fwxym+WXfM1pFERERERORvluyO442fdgPwbLd69AuvYeNEN4bVhfyZM2fw9fUtdDw9Pb1AYS9SHrSp5cMrtzUE4J3F+9gUlWjjRCIiIiIiArDlWCJPf7cdw4AHIoJ4qmsdW0e6Yawu5MPDw1m8eHH+15eK9ylTptC2bdviSyZSSgxuX5M7mgaQYzEYNmsbcckZto4kIiIiIlKhHY5PZcg3W8jMsdCtoS9v9wmrUAPLVm+oN378eHr27MnevXvJyclh0qRJ7Nmzh/Xr17N69eqSyChiUyaTiXfvaczB06nsj0tl6KytfPd4G5wd7G0dTURErHA2LROzqyOO9tp9V0SkLDudksEjX28m+UI2zYK8+PiBFjhUsJ/tVr/bdu3a8ddff3H+/Hlq167NH3/8QbVq1Vi/fj0tW7YsiYwiNufm5MAXA1ri6eLA9ugk3lq019aRRETECuuOnKXNf5bzyvxdto4iIiLXITUjm4HTNnMy6QIhVdz5emA4rk4Vb4DNZGgp7kJSUlIwm80kJyfj6elp6zhSiqw8EM/g6ZsxDPjvPU3oGx5k60giIvIvDMPgvs/Xs+X4OZwc7Nj6Wjc8XBxtHUtERKyUlWNh0PRN/HU4gSqVnJk/tB01fNxsHavYWFOHXlP/wZEjR3jttdd48MEHiY+PB2DJkiXs2bPnWi4nUmZ0qe/Ls93qAfDaT7uJPJFk20AiIvKvNkYlsuX4OSDvQ+DyffE2TiQiItayWAxe/HEnfx1OwN3JnumDwstVEW8tqwv51atX07hxYzZu3Mi8efNIS0sDIDIykjFjxhR7QJHSZkSXOnRrWI2sHAtPzthKQlqmrSOJiMhVfHpxb2EP57ylgX6JjLVlHBERuQYTft/Pwh2ncLAzMbl/S8Kqm20dyaasLuRffvll3nnnHZYuXYqTk1P+8S5durB+/fpiDSdSGtnZmfhfv6aEVHHnVHIGI+dsJyfXYutYIiJyGTtjklhz6Cz2diYm3t8MgD8PniElI9u2wUREpMim/RXFF6uPAjDhniZ0rFfVxolsz+pCfteuXdx1112FjletWpWEhIRiCSVS2nm6OPLFgJa4Odmz7kgC7/1+wNaRRETkMj65OBrfp1kANzfwpY5vJbJyLSzbe9rGyUREpCh+3RXLW7/kLTT9Qo/63NMy0MaJSgerC3kvLy9iYwu3pG3fvp3q1asXSyiRsqBeNQ/ev68pAF/8eZRfIk/ZOJGIiPzd/rgUlu49jckEwzrXwWQy0auxPwCL1V4vIlLqbTyawDNzd2AYMKBNMMM617Z1pFLD6kL+wQcf5KWXXiIuLg6TyYTFYuGvv/7i+eef5+GHHy6JjCKl1m2N/XmiUy0AXvwxkgNxqTZOJCIil3y28ggAt4b5Uce3EgC9muQV8msOnSX5gtrrRURKq4OnU3ns2y1k5Vjo0agab97RCJPJZOtYpYbVhfy4ceOoUaMG1atXJy0tjdDQUDp27Ei7du147bXXSiKjSKn2Qvf6tK/jw/msXJ6cuVUfDEVESoFjZ9PzO6WGda6Tf7xeNQ/qVVN7vYhIaRabfIFHvt5ESkYOrYIrM+n+5tjbqYj/O6sKecMwOHXqFFOmTOHQoUN8//33zJw5k/379zNjxgzs7e1LKqdIqeVgb8fHD7SgupcrUWfTGTV3BxaLYetYIiIV2uRVR7AY0KV+1UIrG992qb1+l9rrRURKm+QL2Qz8ejOxyRnUrurOV4+0wsVRdeY/WV3I161bl5MnT1KrVi3uvfde+vbtS926dUsqn0iZ4O3uxOf9W+LkYMfy/fF8vOKwrSOJiFRYp5IuMH/7CQBG3Fyn0POX5smvOXSG5PPqohIRKS0yc3J5/NstHDidiq+HM98MjsDLzenfv7ECsqqQt7Ozo27dulqdXuQyGgeaGXdnGAATlx9kxX61bIqI2MKXfx4lO9egTS1vWgZ7F3q+bjUP6lfzIDvX4I+9cTZIKCIi/2SxGIz6ficboxKp5OzA9EERBFZ2s3WsUsvqOfL//e9/eeGFF9i9e3dJ5BEp0+5rFcSANsEYBjz93Q6OnU23dSQRkQrlTGomczZFAzCiy5U7Bi8tever2utFREqFcb/uY3FkLI72Jr4Y0JLQAE9bRyrVrC7k+/fvz6ZNm2jatCmurq54e3sXeIhUdK/fHkqLGl6kZuTwxIytnM/KsXUkEZEKY+raKDJzLDQN8qJ9HZ8rnndb47+tXq/2ehERm/pqzVGmro0C4P37mtK+ThUbJyr9HKz9hokTJ5ZADJHyw8nBjsn9W3L7x2s5cDqVl+bt4qP7m2m7DBGREpZ8PpuZG44DMLJLnav+3K3jW4kGfh7sj0vl971x9G0VdKNiiojI3/y88xTvLN4HwCu3NaBPs+o2TlQ2WF3IP/LIIyWRQ6RcqebpwmcPteCBLzewaOcpmgaaefSmWraOJSJSrk1fd4y0zBwa+HnQtaHvv57fq7E/++NSWRwZq0JeRMQG1h0+y3Pf7wBgUPuaPKbPy0VmdWt9SkrKZR+pqalkZWWVREaRMim8pjev3x4KwPjf9rPuyFkbJxIRKb/SM3OYti6vLXP4v4zGX3LbxXnyfx0+S9J5fYYREbmR9sWm8MSMrWTnGvRq7M/rvULVwWoFqwt5Ly8vKleuXOjh5eWFq6srwcHBjBkzBovFUhJ5RcqUh9sGc3fz6uRaDEbO3s6ppAu2jiQiUi7N2nicpPPZ1Krinj///d/UrlqJhv6e5FgM/tijnUZERG6Uk0kXGDhtE6mZOUSEePNB36bY2amIt4bVhfz06dMJCAjglVdeYeHChSxYsIBXXnmF6tWrM3nyZB5//HE++ugj3n333ZLIK1KmmEwm/nN3Y0L9PUlIz2LozK1kZOfaOpaISLmSkZ3LlDV5o/FPdq6NvRUfBns19gPgF61eLyJyQySdz+KRrzdxOiWTetUqMWVAK1wc7W0dq8yxeo78N998wwcffEDfvn3zj91xxx00btyYL774guXLl1OjRg3GjRvHK6+8UqxhRcoiF0d7vhjQkt6frGXniWTe/HkP797TxNaxRETKjR+2xHAmNZPqXq7c1dy6RZJua+zP+38c5K/DZzmXnkVld6cSSikiIhnZuTz27RYOx6fhb3bhm8ERmN0cbR2rTLJ6RH79+vU0b9680PHmzZuzfv16ADp06EB0dPT1pxMpJ4K83fjo/ubYmeC7zTH5exyLiMj1yc618PnqowA80akWjvbWfbSpVbUSof6e5FoMft8TVxIRRUQEyLUYPPPdDjYfO4eHiwPTB0Xgb3a1dawyy+pCPjAwkKlTpxY6PnXqVIKC8lZ8TUhIoHLlytefTqQc6VivKs/3qA/AmJ/2sD36nI0TiYiUfQu3n+Rk0gWqVHK+5pXne11c9G6x2utFREqEYRiMXbSHJXvicLK3Y8rDrajv52HrWGWa1a3177//Pvfddx+//fYb4eHhmEwmNm/ezP79+/nxxx8B2Lx5M/369Sv2sCJl3dBOtdkZk8Tve04zdOY2Fo3sQFUPZ1vHEhEpk3ItBpNXHQHgsZtCrjrHMtdisCkqkfjUDHw9XIgI8c6fS9+rsT/v/X6AdUcSSEzPwlvt9SIixerz1Uf5dv1xTCb4X7+mtKnlY+tIZZ7Vhfwdd9zBgQMH+Pzzzzl48CCGYXDrrbeycOFCatasCcDQoUOLO6dIuWAymXj/vqYcjv+LI2fSGTF7GzMfbW11K6iIiMBvu2M5ejYds6sjD7UJvuJ5S3bHMnbRXmKTM/KP+ZtdGNM7lJ5h/tSs4k6jAE/2nErh9z1xPBBR40bEFxGpEOZvO8GEJfsBeL1XKLc3CbBxovLBZBiGYesQpU1KSgpms5nk5GQ8PT1tHUfKocPxadz56V+kZeYwpENI/n7zIiJSNIZhcNtHa9kXm8Iz3eryTLd6lz1vye5Yhs7cxj8/7Fxa135y/xb0DPPns1WH+e+SA3SoU4WZj7Yu0ewiIhXFmkNnGDRtMzkWg8c71uKV2xraOlKpZk0dek3DgGvWrKF///60a9eOkydPAjBjxgzWrl17LZcTqXDq+Fbi/fuaAjB1bRQ/7Thp40QiImXLiv3x7ItNwd3JnoHtal72nFyLwdhFewsV8UD+sbGL9pJrMeh1ce/59UcTSEjLLJHMIiIVye6TyTw5Yys5FoM7mgbwcs8Gto5UrlhdyM+bN48ePXrg6urKtm3byMzM+2WXmprKf/7zn2IPKFJe9QzzY3iX2gC8NC+SfbEpNk4kIlI2GIbBxysOA9C/bTBebpef074pKrFAO32h6wCxyRlsikok2MedxtXNF1evP10SsUVEKoyYxPMMmr6Z9Kxc2tX24b37mmBnZ/r3b5Qis7qQf+edd/j888+ZMmUKjo7/v+dfu3bt2LZtm1XXGj9+POHh4Xh4eODr68udd97JgQMHrnj+E088gclkYuLEif967Xnz5hEaGoqzszOhoaEsWLDAqmwiN8KoW+rTsV5VMrItPDFjK8nns20dSUSk1Ft3JIEdMUk4O9jxaIdaVzwvPvXKRfzlzrut8aXV609df0gRkQoqMT2LR77exJnUTBr4efD5gJY4O1x5MVK5NlYX8gcOHKBjx46Fjnt6epKUlGTVtVavXs3w4cPZsGEDS5cuJScnh+7du5Oenl7o3IULF7Jx40YCAv59cYT169fTr18/BgwYwM6dOxkwYAB9+/Zl48aNVuUTKWn2diY+ur8ZQd6uRCee5+m528m1aNkKEZGr+eTiaPz94UFX3fnD18OlSNe7dF5+e/2RBM6qvV6slGsxWH8kgZ92nGT9kQT9PpcK6UJWLo9+s5mjZ9Op7uXKN4Mj8HRx/PdvFKtZXcj7+/tz+PDhQsfXrl1LrVpXvit+OUuWLGHgwIE0atSIpk2bMm3aNKKjo9m6dWuB806ePMmIESOYNWtWgS6AK5k4cSK33HILo0ePpkGDBowePZquXbsWaSRf5EbzcnPi8/4tcXG0Y9WBM0xadtDWkURESq2tx8+x/mgCDnYmHu9U+6rnRoR442924UrNnCbyVq+PCPEGoIaPG00CzVgMWLI7rniDS7m2ZHcsHSas4IEpG3j6ux08MGUDHSasYMnuWFtHE7lhcnItjJyznW3RSZhdHflmcDjVPIt2Q1WsZ3Uh/8QTT/D000+zceNGTCYTp06dYtasWTz//PMMGzbsusIkJycD4O3tnX/MYrEwYMAAXnjhBRo1alSk66xfv57u3bsXONajRw/WrVt3XflESkqjADPj724MwEcrDrN0r+Zniohczqcr8wYT7m5Rneperlc9197OxJjeebuC/LOYv/T1mN6h+fvJw/+Pyv+6SwWYFM2lnRH+uR5DXHIGQ2duUzEvFYJhGLzx8x6W7TuNs4MdUx9pRR1fD1vHKtesLuRffPFF7rzzTrp06UJaWhodO3bk0Ucf5YknnmDEiBHXHMQwDEaNGkWHDh0ICwvLPz5hwgQcHBx46qmninytuLg4qlWrVuBYtWrViIu7/N31zMxMUlJSCjxEbrS7mgfmr7w8au4OjpxJs20gEZFSZs+pZFbsj8fOBEM71ynS9/QM82dy/xb4mQuOCvmZXfK3nvu7S/PkNxxN4Eyq2uvl6qzZGUGkPPtkxWFmb4zGZIJJ9zenVU3vf/8muS4O1/JN48aN49VXX2Xv3r1YLBZCQ0OpVKnSdQUZMWIEkZGRBbaw27p1K5MmTWLbtm2YTNatcvjP8w3DuOI1xo8fz9ixY60PLVLMXu3VkL2nUth0LJEnZ2xlwfD2VHK+pv9NRUTKnc9WHgGgV5MAQqq4F/n7eob5c0uoH5uiEolPzcDXI6+d3v4yKygHebvRNNDMzhPJLNkTx4A2wcWWX8ofa3ZGaFvb58YFE7mBvt8SwwdL86aGjr2jET3D/GycqGK4pn3kAdzc3GjVqhURERHXXcSPHDmSn3/+mZUrVxIYGJh/fM2aNcTHx1OjRg0cHBxwcHDg+PHjPPfcc9SsWfOK1/Pz8ys0+h4fH19olP6S0aNHk5ycnP+IiYm5rvcjcq0c7e345KHmVPN05lB8Gi/+uBPD0F18EZHD8Wn8erFF+dLWndawtzPRtrYPfZpVp21tn8sW8Zf0anJx9fpIrV4vV2ftzggi5c3KA/GMnr8LgGGda/Nw25q2DVSBFGmo7+677y7yBefPn1/kcw3DYOTIkSxYsIBVq1YREhJS4PkBAwbQrVu3Asd69OjBgAEDGDRo0BWv27ZtW5YuXcqzzz6bf+yPP/6gXbt2lz3f2dkZZ+crr3orciP5erjw2UMtuf/L9fy6K44v/jzKk/+yoJOISHk3edURDAO6NaxGAz/PEn2t2xr7859f9xcYwRe5HGt3RhApT3bGJDFs5jZyLQZ3t6jOCz3q2zpShVKkEXmz2Zz/8PT0ZPny5WzZsiX/+a1bt7J8+XLMZrNVLz58+HBmzpzJ7Nmz8fDwIC4ujri4OC5cuACAj48PYWFhBR6Ojo74+flRv/7//0N5+OGHGT16dP7XTz/9NH/88QcTJkxg//79TJgwgWXLlvHMM89YlU/EVloGV2ZM77zFHf+7ZD9rD521cSIREduJSTzPwh0nARhxc9Hmxl+PwMpuNAvywmLA71q9Xq7C2p0RRMqL4wnpDJ6+mQvZudxUtwoT7mli9VRouT5FKuSnTZuW/6hWrRp9+/YlKiqK+fPnM3/+fI4ePcr9999PlSpVrHrxyZMnk5ycTOfOnfH3989/zJ0716rrREdHExv7/yuCtmvXju+++45p06bRpEkTpk+fzty5c2ndurVV1xWxpYda16Bvq0AsBoycs40T587bOpKIiE188ecRci0GHepUoVmQ1w15zUur1/8SqRXH5cquZWcEkbLubFomD3+9iYT0LBoFeDK5f0sc7a95xrZcI5Nh5QTcqlWrsnbt2gIj4gAHDhygXbt2JCQkFGtAW0hJScFsNpOcnIynZ8m274lcTUZ2Ln2/WE/kiWTCqnvy45PtcHG0t3UsEZEbJj4lgw7/XUlWjoU5j7W5YQuGnTh3ng4TVmIywcbRXfHVXshyFUt2xzJ20d4CC9/5m10Y0zu00M4IImXZ+awcHvhyAztPJBNY2ZX5w9pp6kgxsqYOtXo57JycHPbt21eokN+3bx8Wi8Xay4nIVbg42jO5f0t6f7yW3SdTeHXBbt6/T61LIlJxTFlzlKwcCy2DK9Om1o1rTw6s7EbzGl5sj07it91xPHJxe1CRy7FmZwSRsion18LwWdvYeSKZym6OfDM4QkW8DVldyA8aNIjBgwdz+PBh2rRpA8CGDRt49913r7oAnYhcm+pernzyQHP6T93IvG0naFbDS9shiUiFcC49i1kbowEY0aXODb+J2auxP9ujk1i8K1aFvPyrSzsjiJRHhmHw6oLdrDxwBhdHO6YODKd21evbuUyuj9WF/Pvvv4+fnx8ffvhh/rx0f39/XnzxRZ577rliDygi0K5OFV6+tQH/+XU/by3aQ6i/By2DtXCOiJRv0/6K4nxWLo0CPOlcv+oNf/3bGvvzzuJ9bD6WyOmUDKqpvV5EKqiJyw4xd0sMdib45IEWtKhR2daRKjyrVyWws7PjxRdf5OTJkyQlJZGUlMTJkyd58cUXsbfX3F2RkvLYTbXo1cSf7FyDoTO3EZ+iPWlFpPxKzchm+rpjgG1G4wECvFxpUcMLw4DfdmnROxGpmOZsimbS8kMAvHNnY7qFVrNxIoFrKOT/ztPTU4vBidwgJpOJ/97ThHrVKhGfmsmwWdvIytG6FCJSPs3YcJyUjBzq+FaiRyM/m+Xo1SQAgMUq5EWkAlq+7zSvLtgFwFNd6/Jg6xo2TiSXFKmQb9GiBefOnSvyRTt06MDJkyevOZSIXJ67swNfDGiFh7MDW46fY9zivbaOJCJS7C5k5TJ1TRQAwzrXxs6GC4bd1jjvJsLmY+eIS1YnlIhUHNujzzF89jYsBvRtFciz3eraOpL8TZHmyO/YsYOdO3fi7V20Obk7duwgMzPzuoKJyOWFVHFn4v3NGPLNFr5Zf5wmgV7c0zLQ1rFERIrNd5ujSUjPIsjblTuaBtg0i7/ZlVbBldly/By/7Y5lUPsQm+YREbkRjp5JY/D0zWRkW+hSvyrj7mqsXZNKmSIvdte1a1eKuuW8/pJFSlbXhtV4umtdJi0/xCsLdlHfz4Ow6mZbxxIRuW5ZORa+/PMoAE92qo2D/XXNAiwWtzX2Z8vxcyyOVCEvIuVffGoGj0zbxLnz2TQNNPPpQy1wLAU/i6WgIhXyUVFRVl84MFAjhCIl6emudYk8kcTKA2d4cuZWFo3oQGV3J1vHEhG5LvO3nSA2OYNqns7cW0q6jW5r7M9bv+xly/FzxCZfwN/sautIIiIlIi0zh8HTNxOTeIFgHzemDgzHzcnqjc7kBijS30pwsPasFilt7OxMTOzXnDs+XcvxhPM89d12pg+KwN6Gc0lFRK5HTq6FyauPAHk7dTg7lI7dcPzMLoTXrMzmY+f4dVccQzpoVF5Eyp/sXAtDZ25l98kUfNyd+GZQBFUqOds6llyBeiREyjCzmyNfDGiJq6M9aw6d5YM/Dtg6kojINVu8K5bjCefxdncqdSsj92rsD8CvWr1eRMohwzB4aV4kaw6dxdXRnq8HhlOzirutY8lVqJAXKeMa+Hky4d4mAHy26ghLdutDpoiUPRaLwacrDwMwuH3NUtfKeWtjf0wm2Hr8HKeSLtg6johIsXr/jwPM33YSezsTnz3UgqZBXraOJP9ChbxIOXBH0wAevdjq+dz3Ozkcn2rjRCIi1lm67zQHT6fh4ezAgLY1bR2nkGqeLoQH5+3eo1F5ESlPZqw/xqcr86Y1jb+7MV0a+No4kRSFCnmRcuLlWxvQppY36Vm5PD5jK6kZ2baOJCJSJIbx/6PxD7cLxuzqaONEl9erSV57/WIV8iJSTizZHccbP+8B4Llb6tG3VZCNE0lRXVMhn5SUxFdffcXo0aNJTEwEYNu2bZw8ebJYw4lI0TnY2/HJgy3wN7tw9Ew6z32/E4ulaFtGiojY0p+HzhJ5IhlXR3sGl+Lt3W4N88Nkgu3RSZxUe72IlHFbjiXy9HfbMQx4sHUNRtxcx9aRxApWF/KRkZHUq1ePCRMm8P7775OUlATAggULGD16dHHnExErVKnkzOT+LXGyt+OPvafzV38WESnNPl2RNxr/QEQNfErxCsm+ni5E1Mxrr/9No/IiUoYdjk9lyDdbyMyx0K1hNd66oxEmk3Y+KkusLuRHjRrFwIEDOXToEC4uLvnHb731Vv78889iDSci1msW5MXbdzYC8hYuWX3wjI0TiYhc2aaoRDYdS8TJ3o7HO9aydZx/dam9/pdIFfIiUjadTsngka83k3whm+Y1vPj4geY42GvGdVlj9d/Y5s2beeKJJwodr169OnFxccUSSkSuT7/wGjwQUQPDgKfmbCc64bytI4mIXNYnF+fG39MyED+zy7+cbXs9L7bX74hJIiZRP1tFpGxJzchm4LTNnEy6QK0q7kx9JBxXJ3tbx5JrYHUh7+LiQkpKSqHjBw4coGrVqsUSSkSu35t3hNIsyIvkC9k8MXMrF7JybR1JRKSAyBNJ/HnwDPZ2JoZ2qm3rOEXi6+FC65CL7fXa7lNEypCsHAtPztzKvtgUqlRy5pvBEXi7O9k6llwjqwv5Pn368NZbb5GdnbcitslkIjo6mpdffpl77rmn2AOKyLVxdrBncv8WVKnkxL7YFEbPj8QwtPidiJQel1aqv6NpADV83Gycpuh6NQkAYPEudSKKSNlgsRi88ONO/jqcgLuTPdMHhRPkXXZ+7kphVhfy77//PmfOnMHX15cLFy7QqVMn6tSpg4eHB+PGjSuJjCJyjfzNrnzyYAvs7Uws3HGK6euO2TqSiAgAB0+n8vue0wAM61w2RuMv6dnIDzsT7FR7vYiUEROW7OenHadwsDMxuX9LwqqbbR1JrpODtd/g6enJ2rVrWbFiBdu2bcNisdCiRQu6detWEvlE5Dq1qeXDK7c15O1f9jJu8T5C/T1pXcvH1rFEpIL77OJofM9GftSt5mHjNNap6uFM6xAf1h9N4NddsTxRRqYFiEjF9PXaKL748ygA/723CR3raTp0eWBVIZ+Tk4OLiws7duzg5ptv5uabby6pXCJSjAa3r0nkiSR+2nGK4bO388vIDmViUSkRKZ+OJ6Tz885TAAzvUjb3Le7VxJ/1RxNYrEJeREqxxZGxvL14LwAv9qzP3S0CbZxIiotVrfUODg4EBweTm6tFs0TKEpPJxPi7G9PAz4OzaZkMnbWVzBz9fywitvH56iNYDOhUryqNA8tme2fPsLz2+sgTydoZRERKpQ1HE3h27g4MAx5pG1xmFhWVorF6jvxrr73G6NGjSUxMLIk8IlJC3Jwc+GJASzxdHNgencRbi/baOpKIVECxyRf4cesJAEbcXDZH4wGqVHKmbe28aUq/avV6ESllDsSl8ti3W8jKtdCzkR9v9G6EyWSydSwpRlYX8h999BFr1qwhICCA+vXr06JFiwIPESm9gn3cmfRAc0wmmLUxmu83x9g6kohUMF/+eZTsXIOIEG/Ca3rbOs51ua2xP5DXuioiUlrEJl9g4LRNpGbkEF6zMhPvb4a9nYr48sbqxe7uvPPOEoghIjdKl/q+jOpWjw+WHuS1n3bTwN+DJoFeto4lIhXA2bRM5myKBmBEGZ0b/3c9G/nx+sLd7DqZzPGEdIJ93G0dSUQquOQL2Qz8ejOxyRnU8a3ElIdb4eJob+tYUgKsLuTHjBlTEjnkGuRaDDZFJRKfmoGvhwsRId662yZFMrxLHXaeSGbZvtM8OWMri0Z2wKeSs61jiUg59/XaKDKyLTQJNHNT3Sq2jnPdfCo50652FdYePsviXbEM61z2b06ISNmVmZPL499u4cDpVKp5OvPN4Ai83JxsHUtKiNWt9VI6LNkdS4cJK3hgygae/m4HD0zZQIcJK1iieXpSBHZ2Jv7Xrym1qrhzKjmDkXO2k5NrsXUsESnHki9kM2P9cSDvZmJ5mavZq4na60XE9iwWg1Hf72RjVCIezg5MHxRBdS9XW8eSEmR1IW9nZ4e9vf0VH1LyluyOZejMbcQmZxQ4HpecwdCZ21TMS5F4ujjyxYCWuDnZs+5IAv/9/YCtI4lIOfbtumOkZuZQv5oHtzSsZus4xaZHIz/s7UzsOZXCsbPpto4jIhXUuF/3sTgyFkd7E18MaElDf09bR5ISZnVr/YIFCwp8nZ2dzfbt2/nmm28YO3ZssQWTy8u1GIxdtBfjMs8ZgAkYu2gvt4T6qc1e/lXdah68f19Ths3axpd/HqVJoJnbmwTYOpaIlDPpmTl8/VcUAMO61MauHP1+8nZ3ol1tH9YcymuvH14O5v6LSNky5c+jTF2b9zP2/fua0q5O2Z+6JP/O6kK+T58+hY7de++9NGrUiLlz5zJkyJBiCSaXtykqsdBI/N8ZQGxyBpuiEvO3xRG5mtsa+/Nkp9p8vvoIL/4YSV1fD+r7edg6loiUI3M2RXPufDY1fdzK5c3CXo398wr5SBXyInJj/bTjJON+3QfAq7c1pE+z6jZOJDdKsc2Rb926NcuWLSuuy8kVxKdeuYi/lvNEAJ7vXo8OdapwPiuXJ2ZsIflCtq0jiUg5kZGdy5d/HgVgaOfa5bJb7FJ7/d7YFKLUXl+hpWZks2jnKfbHpWCxXK5/UqT4rDt8lud/2AnA4PYhPHpTiI0TyY1ULIX8hQsX+PjjjwkMDCyOy8lV+Hq4FOt5IgAO9nZ89EBzqnu5cizhPKPm7tAHEBEpFj9uPUF8aiYBZhfual4+PydUdnei/cVW1l93aZ2aimz0/F2MnLOdnhPX0PztpQyZvpkvVh9hW/Q5snK0qKwUn72nUnhixlaycw16NfHntV4Ny80iolI0VrfWV65cucA/EsMwSE1Nxc3NjZkzZxZrOCksIsQbf7MLcckZl50nbwL8zHlb0YlYw9vdiS8GtOSeyetYvj+ej1cc5uludW0dS0TKsOxcC5+vPgLA4x1r4eRQfjfL6dXYjz8PnuEXtddXWIfjU1l88UaOq6M9yReyWb4/nuX74wFwcbSjeVBlwkO8aR3iTfMaXrg5Wf1RXISYxPMMmr6J1Mwc2tTy5n99m5artUekaKz+6fHhhx8WKOTt7OyoWrUqrVu3pnLlysUaTgqztzMxpncoQ2duwwQFivlLfytjeoeWy9ZFKXlh1c2Mu6sxz/+wk4nLD9I40JObG5Sf1aVF5Mb6eccpTpy7QJVKTtwfUcPWcUpU91A/Xl2wm32xKRw5k0btqpVsHUlusM9WHsEwoHtoNT59qAV7TqWwOSqRTccS2XIskXPns1l/NIH1RxMAcLAz0ai6mYialQmv6U14TW8qu2vPbykoK8fC/rgUdp5IZmdMEjtjkjh8Jg3DgPrVPPhiQCucHbRzWEVkMgzDqv7Z6OhogoKCLtu6ER0dTY0aZf8XdUpKCmazmeTkZDw9S+fWDUt2xzJ20d4CC9/5m10Y0zuUnmH+Nkwm5cHrC3czY8NxPFwcWDSiAzWruNs6koiUMRaLwS0frubImXRe6tmAoZ1r2zpSiXvk602sPniG526px8iu6miqSI4npHPzB6vJtRj8PKI9TQK9CjxvsRgcOZPGxqhENh9LZHNUIqcus3hxvWqVCK/pTURIXmEfoH3AKxSLxSAqIT2/YN95Ipm9p1LIyi08LaNRgCdfPdIKf7P+jZQn1tShVhfy9vb2xMbG4uvrW+B4QkICvr6+5ObmWp+4lCkLhTzkbUW3KSqR+NQMfD3y2uk1Ei/FISvHwgNTNrD1+DnqV/NgwfB2av8TEav8uiuWYbO24eniwF8v34yHi6OtI5W477fE8OKPkTTw82DJMx1tHUduoJfnRfLd5hg61avKN4MjivQ9J86dZ/OxRDZF5T2OnCm8UGJgZVcianoTfrGwr13VXfOgy5G45Ax2nrhUtCcReSKZ1IycQud5uTnSJNCLZoFmmgZ50STQi6oezjZILCXNmjrU6k/mV6r709LScHGxboG18ePHM3/+fPbv34+rqyvt2rVjwoQJ1K9fP/+cN998k++++46YmBicnJxo2bIl48aNo3Xr1le87vTp0xk0aFCh4xcuXLA6Y2lmb2fSFnNSIpwc7PjsoRbc/vFaDpxO5cUfI/n4geb68CBSSpT2G7mGYfDJisMADGwfUiGKeIAeoX68ar+L/XGpHI5Po46v2usrgpNJF5i37QQAI28u+voIgZXdCKzslr8IZEJaJpuPncsbsT+WyO6TyZw4d4ET504yf/tJAHzcnfLa8EO8iajpTUN/Dxzsy+/aE+VJ8oVsdp1ILlC4n07JLHSes4MdjaubaRLoRdMgM82CvKjh7abPYFJIkQv5UaNGAWAymXjjjTdwc3PLfy43N5eNGzfSrFkzq1589erVDB8+nPDwcHJycnj11Vfp3r07e/fuxd09r5W3Xr16fPLJJ9SqVYsLFy7w4Ycf0r17dw4fPkzVqlWveG1PT08OHDhQ4Fh5KuJFSlo1Txc+e6gFD3y5gV8iY/Fyc+StO8K0mIqIjZWFqVUrD8SzNzYFNyd7BrWraes4N4zZzZH2daqw6sAZft0Vy1Nqr68Qvlx9hOxcgza1vGlV89oXG/ap5EzPMD96hvkBkJaZw7bj5/JH7XfEJJGQnsWSPXEs2RMHgLuTPS2CKxNxsR2/aZAXLo6aL21rGdm57ItNyW+P3xmTxNHLbE1pZ4J61TxoFuR1caTdTL1qHjjq5owUQZFb67t06QLkFd9t27bFyen/F+NwcnKiZs2aPP/889Ste+2/tM6cOYOvry+rV6+mY8fLt6RdajdYtmwZXbt2vew506dP55lnniEpKemacpSV1nqRG+H7LTG8NC8Sw4A7mwXw3n1N9QtGxEaW7I5l6MxthXYtuXR7bXL/FjYv5g3D4J7J69gWncTjHWvxym0NbZrnRvthSwwv/BhJ/Woe/P6s2uvLu/jUDDpMWElWjoVZj7bO34awJGTm5LL7ZHLePPuoRLYcP1eoDdvJ3o4mgeb8EfuWNSvjWUE6Ymwl9+L6Bztikog8kcTOmGT2x6WQnVu4xKrh7UaTQHN+4d4owFNTF6WAEmmtX7lyJQCDBg1i0qRJJVLgJicnA+Dtffm7mVlZWXz55ZeYzWaaNm161WulpaURHBxMbm4uzZo14+2336Z58+aXPTczM5PMzP9vbUlJSbnGdyBS/vRtFYSzgx3Pfb+ThTtOkZaZwycPttAdf5EbLNdiMHbR3stuPWqQV8yPXbSXW0L9bNpmv/5oAtuik3BysOPRDiE2y2Er3UP9eMV+FwdOp3I4PpU6vh62jiQl6Ks1UWTlWGhew4t2JTzd0dnBnpbB3rQM9obOeT8TDsSl/v88+2OJnEnNZMvxc2w5fo7JHMFkgoZ+nvmL54WHVMbXQx2q18owDE4lZ+QvRrcjJondJ5NJzyq8RpiPuxNNg7xoGuhFkyAzTQO98NauBFKMrF7srqQYhkGfPn04d+4ca9asKfDcL7/8wv3338/58+fx9/dn4cKFhIeHX/FaGzZs4PDhwzRu3JiUlBQmTZrEr7/+ys6dOy/bMfDmm28yduzYQsc1Ii/y/1bsP83QmdvIzLHQppY3Xz0STiVn3UUWuVHWH0nggSkb/vW8OY+1sen6KQ99tYG/DicwoE0wb98ZZrMctjR4+mZW7I/n2W71eLqb2uvLq8T0LDpMWMH5rFy+HtjK5tu1GobB8YTzbLq4Kv7mY4kcSzhf6LyaPm75hX1EiLfmX1/FufSs/EXoLs1rP5uWVeg8Nyd7Glc35xfuTYPMVPdy1Z+rWK1EV60H2Lx5Mz/88APR0dFkZRX8xzx//nxrLwfA8OHDWbx4MWvXriUwMLDAc+np6cTGxnL27FmmTJnCihUr2LhxY6GV86/EYrHQokULOnbsyEcffVTo+cuNyAcFBamQF/mHDUcTePSbLaRl5tA00Mz0QRHa81bkBvlpx0me/m7Hv5436f5m9GlWveQDXcb26HPc9dk6HOxMrHqhM4GV3f79m8qheVtP8NwPO6lXrRJ/PNvJ1nGkhHzwxwE+XnGYRgGe/DKyQ6ks2uJTMvIL+03HzrE/LoV/fvL39XDOb8WPCPGmfjWPCrkezoWsXPacSmbHxXntkSeSOH6ZGyEOdiYa+HvkFeyBeS3ydXwrlaoFR6XsKtFV67/77jsefvhhunfvztKlS+nevTuHDh0iLi6Ou+6665oCjxw5kp9//pk///yzUBEP4O7uTp06dahTpw5t2rShbt26TJ06ldGjRxfp+nZ2doSHh3Po0KHLPu/s7Iyzs7ZwEPk3bWr5MOexNjz89UZ2nkim7xfrmTGkNX5mtemJlLSitsPasm3205V5K9Xf2bx6hS3iAbqFVsPR3sTB02kcPJ1KvWpqry9vki9kM/2vY0DeSvWlsYgH8PV04fYmAdzeJADIy73t+Ln8/ewjTyQRn5rJ4shYFkfGAuDp4kCrmpdG7CvTuLoXTg7la22cnFwLB0+n5c1pP5HEjphkDp5OJddSeHyzVhV3mlzc9q1pkBeh/p6aXiilgtWF/H/+8x8+/PBDhg8fjoeHB5MmTSIkJIQnnngCf3/rFtgxDIORI0eyYMECVq1aRUhI0ebSGYZRYAS9KOfv2LGDxo0bW5VPRAprHGjm+yfaMmDqJg7Fp3HfF+uYOaQ1wT7uto4mUq5FhHjjb3YhLjnjsvPkTYCfOW8rOlvYF5vCsn3xmEwwtHNtm2QoLcyujnSsW5Xl++NZHBlLvVtUyJc3M9YfIzUzh7q+lege6mfrOEVmdnWkSwNfujTI62rNyM5lR0zSxRH7RLYeP0dKRg4r9sezYn88AC6OdjQL8srfz75Fjcq4l6GpdYZhEJN4gR0Xt32LPJHErpPJZGRbCp1b1cM5byG6S/u1V/fC7KbFAqV0svr/wiNHjtCrVy8gbyQ7PT0dk8nEs88+y80333zZueZXMnz4cGbPns1PP/2Eh4cHcXF5W2mYzWZcXV1JT09n3Lhx3HHHHfj7+5OQkMBnn33GiRMnuO+++/Kv8/DDD1O9enXGjx8PwNixY/NH7lNSUvjoo4/YsWMHn376qbVvV0Quo241D354si39p27keMJ57v18PTOHtKa+nz6sipQUezsTY3qHMnTmNkxQoJi/NBY4pneozdo7L43G39bYn9pVtX96ryb+eYX8rlievaWereNIMUrPzGHq2igARtxcp0y3obs42tOmlg9tauWtq5GTa2FvbAqbLo7Ybz52jsT0LDYcTWTD0UQg72dRWIBn/n724TW9S9UibmfTMom8OMp+qXA/dz670Hkezg40Diw4r93P06XUdleI/JPVhby3tzepqakAVK9end27d9O4cWOSkpI4f77wPJKrmTx5MgCdO3cucHzatGkMHDgQe3t79u/fzzfffMPZs2fx8fEhPDycNWvW0KhRo/zzo6OjsbP7/5afpKQkHn/8ceLi4jCbzTRv3pw///yTiIgIa9+uiFxBkLcbPzzRloe/3sT+uFT6frGe6YPCaV6jsq2jiZRbPcP8mdy/RaF95P1svI/80TNpLN6V15Y7vHMdm2QobbqFVsPJ3o7D8WqvL29mb4zm3Plsavq40auxbbd7LG4O9nY0CfSiSaAXj95UC8PI21ptU9T/72d/MulC3t7oJ5L56uINjTq+lYi4OM8+PMSb6l6uNyRvemYOu05eKtjz5refTLpQ6DwnezsaBnjSLNBMk4vz2mtVcS/TN2FErF7s7sEHH6RVq1aMGjWKcePGMWnSJPr06cPSpUtp0aLFNS92V5poH3mRoks6n8Wg6ZvZHp2Em5M9Xz3cinYluI+uiORtO7UpKpH41Ax8PfLa6W250NILP+zkh60n6NrAl6kDr7yrTEXz6DebWbYvnqe61mWURuXLhYzsXG7670rOpGby33ua0Dc8yNaRbrhTSRfYfCwxfz/7Q/Fphc6p7uVKeM3KRIT4EBFSmdpVK133SHd2roUDcal5i9FdXEH+cHwa/5zWbjJB7aqVaBroRbOgvMK9gb8Hzg6a1y6lX4muWp+YmEhGRgYBAQFYLBbef/991q5dS506dXj99depXLnsj8apkBexTnpmDo/P2MJfhxNwcrDjkwea071R2ZkzKCLX7sS583R+bxU5FoP5w9rRQl05+RZsP8Gzc3dSu6o7y0Z1UstuOfDNumOM+XkP1b1cWfl853K3CNy1SEzPYsuxvFb8TcfOsftkcqFF47zdnWgVXDl/27tGAZ442F/5z85iMTiWkM7OE0nsjElm54kk9pxKISun8Lz2ALNL3nz2i+3xjaub8XDRvHYpm0qskM/JyWHWrFn06NEDP7/y+yFdhbyI9TKyc3lqznb+2HsaezsT793bhLtbFN6FQkTKlzd+2s2364/TrrYPsx9rY+s4pUpqRjYt31lGVo6FJc/cRAM/faYoy7JyLHR6byWxyRm83acRA9rWtHWkUik9M4ft0Un5295tjzlXaGE5dyd7WgRXzptnX9ObIG9X9p5KyS/cI08kkZKRU+jani4ONA3yurggnRdNgsw23alDpLiV2PZzDg4ODB06lH379l1XQBEpf1wc7fnsoRa8OC+S+dtOMur7naRm5PBIu5q2jiYiJSQ+NYPvNscAMKKL5sb/k4eLI53qVWXp3tP8GhmrQr6Mm7/tBLHJGVT1cOa+VhWvpb6o3J0d6FC3Ch3q5k2zy8qxsOtkct7ieRcX0UvJyGHNobOsOXT2itdxdrAjrLqZJoHm/MI92MdNnS0iF1m92F3r1q3Zvn07wcHBJZFHRMowB3s73r+3KZ4ujky/2H6YmpHN8C6ld49dEbl2U9dEkZVjoXkNL9rW9rF1nFLp9ib+LN17ml8url6vn4VlU06uhc9WHQHgiY61tI+4FZwc7GgZXJmWwZV5slNtLBaDg/GpbIpKZOPRRNYdOUvShWwCK7vRtpY3zYIq0yTQTH0/Dxyv0n4vUtFZXcgPGzaM5557jhMnTtCyZUvc3QvuHd2kSZNiCyciZY/dxS2yPF0d+Wj5Id7/4yDJF7J55baG+gArUo4knc9i5objQN5ovP7/vryuDavh5GDH0TPp7I9LpaG/RuXLokWRp4hOPE9lN0cebF3D1nHKNDs7Ew38PDl2Np1t0efyt4aLSTxPTq6Fmxv4ElbdbOOUIqWf1YV8v379AHjqqafyj5lMJgzDwGQykZubW3zpRKRMMplMjLqlHmZXR97+ZS9T1kSRciGH/9zd2KYra4tI8Zn21zHSs3Jp6O/JzQ18bR2n1Krk7EDnelX5Y+9pFkfGqpAvgywWg09WHAbg0Ztq4eZk9cdn+Yclu2MZOnMb/1yoKy45g6EztzG5fwubbacpUlZY/ZMoKiqqJHKISDk0pEMIHi4OvDwvkrlbYkjLzOHDfs20yq9IGZeWmcP0dccAjcYXRa8m/nmF/K5Ynuuu9vqyZsmeOI6cScfTxYGH22pq6fXKtRiMXbS3UBEPYAAmYOyivdwS6qeb/yJXYXUhr7nxImKNvq2C8HB24KnvtrN4VyxpmTl83r8lrk6aXyhSVs3ccJzkC9nUqupOz7Dyu4tNcenasBrODnZEnU1nX2wqoQEalS8rDMPg44uj8QPbh2hbs2KwKSqR2OSMKz5vALHJGWyKStTaGyJXcU3DYjNmzKB9+/YEBARw/Hje/LiJEyfy008/FWs4ESkfbm3sz9RHwnF1tGf1wTMMmLqR5AvZto4lItcgIzuXr9bkdecN61xHI2ZFUMnZgc71qwKweNcpG6cRa6zYH8++2BTcnewZpF1YikV86pWL+Gs5T6SisrqQnzx5MqNGjeK2224jKSkpf068l5cXEydOLO58IlJOdKxXlZmPRuDh4sCW4+d44MsNnE3LtHUsEbHS3M0xnE3LJLCyK32aBdg6TpnRq0nen9XiyFgM43JNxVLa/H00vn/bYCq7O9k4UflQ1H3ftT+8yNVZXch//PHHTJkyhVdffRV7+/9vjW3VqhW7du0q1nAiUr60DPZm7uNtqVLJib2xKfT9fD0nky7YOpaIFFFWjoUvVl/cgqtTbW0NZYWuDXxxdrDjWMJ59pxKsXUcKYK/DiewIyYJZwc7Hu1Qy9Zxyo2IEG/8zS5cqZfHBPibXYgI8b6RsUTKHKt/A0dFRdG8efNCx52dnUlPTy+WUCJSfoUGePL9E22p7uXK0bPp3Dd5HUfPpNk6logUwcLtJzmVnIGvhzP3tQy0dZwyxd3ZIX91/8W7Ym2cRori4xWHAHggogZVPZxtnKb8sL+4TS1QqJi/9PWY3qGatiPyL6wu5ENCQtixY0eh47/99huhoaHFkUlEyrlaVSvxw5NtqVXVnVPJGdz3+Xr2nEq2dSwRuYpci8Hki6Pxj91UCxdHLVhprV5N8rbT+nWX2utLu01RiWyMSsTR3sQTnTQaX9x6hvkzuX8L/MwF2+f9zC7aek6kiKxetf6FF15g+PDhZGRkYBgGmzZtYs6cOYwfP56vvvqqJDKKSDkU4OXK90+05ZGvN7HnVAr3f7mBaQPDaVVTrXQipdHiXbFEnU3Hy82RB1vXsHWcMunmBr64ONpx/GJ7fVh1s60jyRVcGo2/t2UQ/mZXG6cpn3qG+XNLqB+bohKJT83A1yOvnV4j8SJFY3UhP2jQIHJycnjxxRc5f/48Dz74INWrV2fSpEncf//9JZFRRMqpKpWcmfN4G4ZM38zmY+foP3UjXwxoRad6VW0dTUT+xmIx+Gxl3qJfg9uH4O5s9ccHAdyc8trrf90Vxy+RsSrkS6kdMUmsOXQWezsTQzvVtnWccs3ezqQt5kSu0TWtUvPYY49x/Phx4uPjiYuLIyYmhiFDhhR3NhGpADxdHPl2cGs61atKRraFR7/ZzK+aPypSqizfH8/+uFQqOTvwSNuato5TpvVqfHH1+l2n1F5fSn1ycaX6Ps0CqOHjZuM0IiKXd83LzcbHx7Nv3z4OHjzImTNnijOTiFQwrk72THm4Fb2a+JOdazBi9ja+3xxj61giQt4WXJ9cbDMe0DYYs5ujjROVbV0aVMXV0Z6YxAvsPqnV60ubvadSWLbvNCYTDOtcx9ZxRESuyOpCPiUlhQEDBhAQEECnTp3o2LEjAQEB9O/fn+RkLVYlItfGycGOj+5vzv3hQVgMeHFeJF+tOWrrWCIV3trDZ9l5IhkXRzuGdAixdZwy71J7PcAvu07ZOI3806er8kbjb2vsTx3fSjZOIyJyZVYX8o8++igbN25k8eLFJCUlkZyczC+//MKWLVt47LHHSiKjiFQQ9nYmxt/dmMc75q0Q/M7iffzvjwNqPxWxoUttxveH16BKJW3BVRwurV6/OFKr15cmh+PT8qd2jeii0XgRKd2sXq1m8eLF/P7773To0CH/WI8ePZgyZQo9e/Ys1nAiUvGYTCZG39oAs6sj7/1+gI9WHCYlI4c3bg/FTivZitxQW45pC66S0KW+L66O9pw4d4HIE8k0DfKydSQBPlt1GMOAW0Kr0dDf09ZxRESuyuoReR8fH8zmwqusms1mKleuXCyhRKRiM5lMDO9Sh7f7NAJg+rpjPP/DTnJyLTZOJlKxfHJxpfp7WgRqC65i5OpkT9eGee31i7W4Z6kQnXCen3bkTXXQaLyIlAVWF/KvvfYao0aNIjb2/3/xxMXF8cILL/D6668XazgRqdgGtK3Jh/2aYm9nYv72kwybtY2M7FxbxxKpEHafTGbVgTPYmeBJbcFV7G5Xe32pMnn1EXItBh3rVVWHhEg5k2sxWH8kgZ92nGT9kQRyLeXjZ67VrfWTJ0/m8OHDBAcHU6NGDQCio6NxdnbmzJkzfPHFF/nnbtu2rfiSikiFdFfzQCo5OzJ89jb+2HuawdM38+XDraikfaxFStSnF0fjezcNoGYVdxunKX861/fFzcmek0kX2HkimWYqHm0mNvkCP27N2yll5M0ajRcpT5bsjmXsor3EJmfkH/M3uzCmdyg9w/xtmOz6Wf1J+M477yyBGCIiV3ZLaDWmDwrnsW+2sO5IAv2/2sj0QeF4uTnZOppIuXQ4PpUle+IAbcFVUlwc7enasBqLdp5iceQpFfI29MXqo2TnGrQO8Sa8pret44hIMVmyO5ahM7fxz/H3uOQMhs7cxuT+Lcp0MW91IT9mzJiSyCEiclXtaldh1mNtGDhtEztikuj3xQZmDInA19PF1tFEyp3PVh7BMKB7aDXq+3nYOk651auxP4t2nuLXXXG8cltDTCYt6HmjnUnNZM6maABG3lzXxmlEpLjkWgzGLtpbqIgHMAATMHbRXm4J9cO+jC6mbPUc+b9LS0sjJSWlwENEpKQ0C/Li+yfa4uvhzIHTqdz7+XpiEs/bOpZIuRKdcJ6fdl5c9EttxiWqc/2quF9sr98Rk2TrOBXSV2uPkpljoVmQF+3r+Ng6jogUk01RiQXa6f/JAGKTM9gUlXjjQhUzqwv5qKgoevXqhbu7e/5K9ZUrV8bLy0ur1otIiatXzYMfn2xHkLcr0YnnuffzdRw6nWrrWCLlxud/5i36dVPdKjQJ9LJ1nHLtUns95C16JzfWufQsZqw/DuTNjVdHhEj5EZ965SL+Ws4rjaxurX/ooYcA+Prrr6lWrZp+6InIDVfDx40fn2zHgKkbOXg6jb5frOebwREqOkSuU1xyBj9uOQFoC64bpVcTf37eeYpfd8Xyym0NsSujLZ5l0bS/ojiflUtDf09ubuBr6zgiUox8PYo29bKo55VGVhfykZGRbN26lfr165dEHhGRIqnm6cLcx9sycNomdp5I5sEpG5nycCva1lZrpMi1mrLmKFm5FsJrVqZ1Lf2/dCN0qpfXXn8qOYPtMUm0DFZ3442QkpHNtHXHAI3Gi5RHESHe+JtdiEvOuOw8eRPgZ3YhIqTsLnBpdWt9eHg4MTExJZFFRMQqld2dmPVYG9rW8iEtM4dHpm1i+b7Tto4lUiYlpmcxe2Peol/DNRp/w7g42nNLqNrrb7QZ64+TmpFDHd9K9GzkZ+s4IlLM7O1MjOkdCuQV7X936esxvUPL7EJ3cA2F/FdffcWECRP45ptv2Lp1K5GRkQUeIiI3UiVnB6YNCqdbw2pk5Vh4YsZWftpx0taxRMqcr9dGcSE7l8bVzXSqV9XWcSqUXk0CAPhtdywWy+XGjqQ4nc/K4as1RwEY3qW2pjOIlFM9w/yZ3L8FfuaC7fN+Zpcyv/UcXENr/ZkzZzhy5AiDBg3KP2YymTAMA5PJRG5ubrEGFBH5Ny6O9kzu34IXftjJwh2neGbuDlIychjQJtjW0UTKhJSMbL5ZfwzIK2zUZnxj3VS3CpWcHYhNzmB7zDlaBpfdVs+yYPbGaM6dzybYx43eF2+iiEj51DPMn1tC/dgUlUh8aga+Hnnt9GV5JP4Sqwv5wYMH07x5c+bMmaPF7kSk1HC0t+N/fZvh6erIt+uP8/rC3aRmZDOss1qERf7NpTbjur6V6B6qNuMb7VJ7/YLtJ/klMlaFfAnKyM7liz/zRuOHda6Ng/117cQsImWAvZ2pXK6hZHUhf/z4cX7++Wfq1NGHYxEpXezsTIy9oxGeLo58svIw/11ygJQLObzUs75uOopcwfmsHKaujQLy5sarzdg2ejX2Z8H2k/y6K5bXe4Xq76GE/LAlhjOpmQSYXbireaCt44iIXDOrb0PefPPN7Ny5sySyiIhcN5PJxPM96vPKbQ0A+Hz1EV5duJtczTsVuaw5m2JITM+ihrcbtzcp2/MFy7Kb6lXBw9mB0ymZbIs+Z+s45VJWjoXPV+eNxj/ZuTZODhqNF5Gyy+oR+d69e/Pss8+ya9cuGjdujKOjY4Hn77jjjmILJyJyrR7vWBsPF0deWbCL2RujSbmQzf/6NtMHN5G/yczJ5cs/jwAwVG3GNuXskNdeP/9ie32rmmqvL24Lt5/kZNIFqno407dVkK3jiIhcF6sL+SeffBKAt956q9BzWuxOREqTByJq4OHiwLNzd/BLZCzpmTl89lBLXJ3sbR1NpFSYt/Ukp1My8fN04e4W1W0dp8Lr1cSf+Rfb69+4Xe31xSkn18Jnqw4D8PhNtXBx1O8BESnbrC7kLRZLSeSQa2AYBufPn7d1DJFSrUttM5Pubcgz3+1g+a4YHpqcxqf9W+Dp4vjv3yxSjuXkWvh06W4sWRk8El6TnMwMcjJtnapiax7girtdDnEJGazZd0Kj8sXol8hTHI1NxMvNkT5hPqSnp9s6kojYgJubW/lZN8m4DhcuXLiebzf+85//GK1atTIqVapkVK1a1ejTp4+xf//+AueMGTPGqF+/vuHm5mZ4eXkZXbt2NTZs2PCv1/7xxx+Nhg0bGk5OTkbDhg2N+fPnFzlXcnKyARjJyclWv6cbKS0tzQD00EMPPfTQQw899NBDDz30+JdHWlqarUu4q7KmDrV6Mlxubi5vv/021atXp1KlShw9mrdoyOuvv87UqVOtutbq1asZPnw4GzZsYOnSpeTk5NC9e/cCd0nr1avHJ598wq5du1i7di01a9ake/funDlz5orXXb9+Pf369WPAgAHs3LmTAQMG0LdvXzZu3Gjt2xUREREREREpVUyGYRjWfMNbb73FN998w1tvvcVjjz3G7t27qVWrFt9//z0ffvgh69evv+YwZ86cwdfXl9WrV9OxY8fLnpOSkoLZbGbZsmV07dr1suf069ePlJQUfvvtt/xjPXv2pHLlysyZM+dfc1x6jeTkZDw9Pa/tzdwAhlrrRax29EwaQ77ZTFxyJgFeLkx9JJyaVdxtHUvkhlq6J46nvtuBh4sDy57rpKkmpUhWjoWbJqwgJSOHbweHEx5S/vY+vpEMw+Duz9axPy6VJzvX4umu9WwdSURsqLS31ltTh1o9R/7bb7/lyy+/pGvXrvkL3wE0adKE/fv3W5/2b5KTkwHw9r78nLCsrCy+/PJLzGYzTZs2veJ11q9fz7PPPlvgWI8ePZg4ceJlz8/MzCQz8/8nBqakpFiZ3DZMJhPu7ipARKzR2N2d+U/dzICpm4g6m84jMyKZMSSChv6l96adSHEyDIMpG05h5+TC4M518PfxsnUk+Rt3oGfzmvy49QQrjqTQOayGrSOVaSv2n+ZgYjaVKrnzZNdGuLs72TqSiEixsLq1/uTJk9SpU6fQcYvFQnZ29jUHMQyDUaNG0aFDB8LCwgo898svv1CpUiVcXFz48MMPWbp0KVWqVLniteLi4qhWrVqBY9WqVSMuLu6y548fPx6z2Zz/CArSliQi5VlgZTe+f6ItDf09OZuWSb8v1rP1+DlbxxK5IVYdPMOeUym4OtozqH2IrePIZfRq4g/Ar7viyLVY1Tgpf2MYBh8tz1upvn+bYLxVxItIOWJ1Id+oUSPWrFlT6PgPP/xA8+bNrznIiBEjiIyMvGzre5cuXdixYwfr1q2jZ8+e9O3bl/j4+Kte758tE4ZhXLGNYvTo0SQnJ+c/YmJirvl9iEjZUNXDme8eb0PL4MqkZOTQ/6uNrDl05bU3RMoDwzD4dEVeYfNQ6xoqbEqp9rWrYHZ15GxaJpuiEm0dp8xadySBHTFJODvY8ehNumklIuVLkQv5wYMHk5qaypgxYxgxYgQTJkzAYrEwf/58HnvsMf7zn//wxhtvXFOIkSNH8vPPP7Ny5UoCAwMLPe/u7k6dOnVo06YNU6dOxcHB4aoL6/n5+RUafY+Pjy80Sn+Js7Mznp6eBR4iUv6ZXR2ZMSSCm+pW4UJ2LkOmb2HJ7st37oiUBxujEtly/BxO9nY81rGWrePIFTg52NE9NO8zy6+7Ym2cpuz6eMUhAB6IqIGvh4uN04iIFK8iF/LffPMNFy5coHfv3sydO5dff/0Vk8nEG2+8wb59+1i0aBG33HKLVS9uGAYjRoxg/vz5rFixgpCQot0tNQyjwJz2f2rbti1Lly4tcOyPP/6gXbt2VuUTkfLPzcmBrx5pxa1hfmTlWhg2ays/bFFXjpRPn67MG42/r1Ug1TxV2JRml9rrf9sdq/b6a7D5WCIbjibiaG/icd20EpFyqMiL3f19cfsePXrQo0eP637x4cOHM3v2bH766Sc8PDzyR9HNZjOurq6kp6czbtw47rjjDvz9/UlISOCzzz7jxIkT3HffffnXefjhh6levTrjx48H4Omnn6Zjx45MmDCBPn368NNPP7Fs2TLWrl173ZlFpPxxdrDn4weaM3r+Ln7YeoIXfowkNSOHwR3Uiinlx86YJNYcOou9nYknO9W2dRz5F+3rXGqvz2JjVALtal95bSAp7JOLU0jubRlIgJerjdOIiBQ/q+bIF/dS/ZMnTyY5OZnOnTvj7++f/5g7dy4A9vb27N+/n3vuuYd69epx++23c+bMGdasWUOjRo3yrxMdHU1s7P+3nrVr147vvvuOadOm0aRJE6ZPn87cuXNp3bp1seYXkfLDwd6OCfc0YcjF4v2tX/YycdlBrNyhU6TU+uTiaHyfZgEEebvZOI38G0d7O3o28gNgcaTa660ReSKJ1QfPYG9nYminwgs0i4iUB0XeR97Ozg6z2fyvxXxiYtlflKWs7CMvIsXPMAw+XnGY/y09CMCg9jV5vVcodnald89RkX+zPy6FnhPXYDLB0mc7Uce3kq0jSRH8efAMD3+9iSqVnNgwuisO9lavUVwhPf7tFv7Ye5q7m1fnf/2a2TqOiEiRldg+8mPHjsVsNl9XOBGR0sxkMvFU17p4uDgwdtFepv11jNSMHN69u7E+REuZ9dnKIwDcGuanIr4MaVvbBy+3vPb6TVGJtKuj9vp/sz8uhT/2nsZkgmFdNIVERMovqwr5+++/H19f35LKIiJSagxqH4KniyMv/LiTH7eeIC0jh0kPNMPZwd7W0USscuxsOr9EngJgWGe1GZcll9rrv9scwy+7YlXIF8GnF29a3RbmTx1fDxunEREpOUUeXiru+fEiIqXdPS0D+eyhljjZ27FkTxyPfrOF81k5to4lYpXJq45gMaBL/aqEVVdXXVlzafX6JbvjyMm12DhN6XbkTFr+TavhXXTTSkTKtyIX8lrwSUQqop5hfnw9MBw3J3vWHDpL/682knw+29axRIrkVNIF5m8/AcCIm1XYlEVta/lQ2c2RxPQsNhwt++sQlaTPVh7BMKBbQ19CA7TGkYiUb0Uu5C0Wi9rqRaRC6lC3CjMfbY2niwPbopPo9+V64lMzbB1L5F99+edRsnMN2tTypmWwt63jyDVwsLejZ1jeqPziXVq9/kpiEs+zcMdJQKPxIlIxaOUmEZEiaFGjMnOfaEuVSs7sj0ul7+frOXHuvK1jiVzRmdRM5myKBmBEl7o2TiPXo1fjS+31sWqvv4LJq4+QazG4qW4VmteobOs4IiIlToW8iEgRNfT35Mcn21Ldy5VjCee57/P1HI5Ps3UskcuaujaKzBwLTYO8aF/Hx9Zx5Dq0qeWNt7sT585ns/5ogq3jlDqxyRf4cUveFJKRN+umlYhUDCrkRUSsULOKO/OGtqOObyVikzPo+8V6dp9MtnUskQKSz2czc8NxAEZ0qaMFa8u4vPZ6PwAWR6q9/p++/PMoWbkWIkK8iQjRFBIRqRhUyIuIWMnP7ML3T7SlcXUzielZPPDlBjZFaREqKT2mrztGWmYODfw86NpA69uUB7dfbK//fU8c2Wqvz/f3KSQjtaCjiFQgKuRFRK6Bt7sTsx9rTUSIN6mZOQyYupGV++NtHUuE9Mwcpq2LAvIW/bKz02h8eRAR4o3Ppfb6I2qvv2Tq2igysvOmkHSoU8XWcUREbhgV8iIi18jDxZFvB0dwcwNfMnMsPPbtFhbtPGXrWFLBzdp4nKTz2dSq4s5tF0dxpexTe31hSeezmLH+GAAjNYVERCoYFfIiItfBxdGeLwa05I6mAeRYDJ76bnt+m6fIjZaRncuUNXmj8U92ro29RuPLlV5NLq5er/Z6AKb9dYz0rFwa+nvStaGmkIhIxaJCXkTkOjna2/Fhv2Y81LoGhgGj5+/io+WHSM/MsXU0qWB+2BLDmdRMqnu5clfz6raOI8WsdYgPVSo5kXwhm78On7V1HJtKzchm2l95N620oKOIVEQq5EVEioG9nYl37gxjaOfaAPxv6UFavrOU4bO2sWR3HBnZuTZOKOVddq6Fz1cfBeCJTrVwtNev+PLG3s7ErWF5o/K/7qrY7fUzNhwnJSOH2lXd86cciIhUJPotLyJSTEwmEy/1bMC4u8Ko6eNGRraFxbtieXLmVsLfWcZz3+9k1YF4tcRKiVi4/SQnky5QpZIzfVsF2TqOlJDb8levP01WTsX8WXI+K4ev1vz/go6aQiIiFZGDrQOIiJQ3D7UO5sGIGuw+mcLPO0/yS2QssckZzNt2gnnbTuDt7sStYX7c0TSA8JreWlVcrluuxWDyqiMAPHZTCC6O9jZOJCUlIsSbKpWcOZuWyV9HztKlfsWbGz57YzSJ6VkEebtyR9MAW8cREbEJFfIiIiXAZDLRONBM40Azo29tyJbj51i08xS/7oolIT2LWRujmbUxGj9PF25v4k/vpgE0CTRrnqdck992x3L0bDpmV0ceahNs6zhSguztTNzW2I9v1x9ncWRshSvkM7Jz+fLPvCkkwzrXwUFTSESkglIhLyJSwuzsTESEeBMR4s2Y3qGsO5LAzztP8fvuOOJSMvhqbRRfrY0i2MeN3k0CuKNZAPWqedg6tpQRhmHwyYrDAAxqX5NKzvrVXt71auzPt+uP88eeOLLuaoyTQ8UpZn/YeoL41Ez8zS7c3UILOopIxaXf9iIiN5CDvR0d61WlY72qvHNnGKsPnmHRzlMs23ea4wnn+WTlYT5ZeZj61Ty4o1kAvZsEUMPHzdaxpRRbvi+e/XGpuDvZM7BdTVvHkRugVU1vqno4cyY1k78On6VLg4oxKp+da+Hzi1NInuhYC2cHTSERkYpLhbyIiI24ONrTo5EfPRr5kZ6Zw7J9p1m08xSrD57hwOlU3vv9AO/9foCmQV70buLP7U0C8DO72Dq2lCKGYfDJyrzR+P7/1959R0dZ5X0A/86kTNrMpDFJJqEEQgsphCZNiC1Eqi+6oiKK4CpK0aOu5VUP6q4v4rGtKIgrBhVlZVdcQwsGCQm9p9BCIEFIDySZCaRNMvf9I8zIbAoEMv37OWfO2Txz5z6/53g3zDf3PvcZ1RO+Xu5WrogswUUqwcSoYHyz93dszC5xmiD/8zUbOj40ooe1yyEisioGeSIiG+Atc8W0waGYNjgUmlodUo6XYENWCfacvYisC9XIulCNdzefxIhe/pg6WI17o0Lg783Q5uz2nL2EzAvVkLlK8eTY3tYuhyxoUowa3+z9Hb+eKEVDU5TDz0436wWWX/2j1VPjuKEjERGDPBGRjVF6uWHG8B6YMbwHymvqsSWnFMlZxTj8exX2F1Rif0ElFv9yHGP7BmJKjBoJg4Ig93CzdtlkBYZ74x8a3h3d5DIrV0OWNKynH1RyGcprGrAr7yLuGhhk7ZLMamN2Mc5dqoWvlxtm3sYNHcl5NesFDhRUorymHiq5B0aE+/MRjE6KQZ6IyIap5B54fHQvPD66FwqrarExuwQbsopxvFiLHbkV2JFbAfefpbizvwpTB6tx5wAVZ6qcxOHfq7A3/xJcpRI8Nb6PtcshC5NKJZgYHYLVe85hU06JQwd5vV7g86uz8XPHhMObGzqSk0o5VoK3N5xAiabeeCxE6YHFUyKRGBVixcrIGvibkIjIToT5eWHe+D6YN74PzlZcxoasYiRnFSO/4gpSjpci5XgpvN1dkDAoGFNiQzA2optT7WbtTOoam/Hpb3kAgOlDQhHq62nlisgaJsW0BPnU42VoaGp22OX1v54ow+myy5DLXPEYN3QkJ5VyrATPrDkC8V/HSzX1eGbNEax4dAjDvJNhkCciskN9uvng+bv74bm7+uJEiRYbslpm6ouq6/Dz0SL8fLQIvl5uuDcqGFNi1bgtPIBL7+xUXWMzTpRocaxIg+xCDY4VaZBXXgO9AKQS4Jn4CGuXSFYytIcfghQylGkbsPP0Rdwd6Xiz8i0bOrb80erx0b2g9ORtROR8mvUCb2840SrEA4AAIAHw9oYTuCcymP/WOxEGeSIiOyaRSDBIrcQgtRKvJPbHkfPV2JBVjI3ZJbh4uQFrD1zA2gMXoJLLMCkmBFNi1Yjr7guJhP/Q26J6XUtozynUIKfIENovo1nf+utbN7kMz8b3QXigtxUqJVtgWF6ftLtleb0jBvkdpytwrEgLTzcXzBkbbu1yiKziQEGlyXL6/yYAlGjqcaCgEqP6BFiuMLIqBnkiIgchkUgwtKcfhvb0w5uTI7Ev/xI2ZBVjy7FSlNc0IGn3OSTtPocwP09MiVVjaqwaA4LlDPVWUq9rxskSLXKKNMbg3l5oD/SRITpUgegwX0SHKhEdqkSQQsb/doTJMS1BPvVEGep1zQ61R4YQAsuu3kLy6MgefFIHOa3ymvZD/M20I8fAIE9E5IBcpBKMiQjEmIhAvDMtCjvzKpCcVYzUE2UorKrDih1nsWLHWUSofDA1Vo0psWrO7JqRIbQfK2oJ7NmFHYV2d2NYjwpVIibMl6Gd2hXX3Q/BCg+UauuxM+8i7nGgWfm9+Zdw5Hw13F2l+PPtfLwiOS+V3KNL25FjYJAnInJw7q5S3DUwCHcNDEJdYzN+O1WGDVnFSMutwJnyy/go9TQ+Sj2NqFAFpsaqMTlGDTU3T7tp9bpmnCqtuTrTXo2cIi3yymrQ1EZoD/B2R3SY0hjco8OUCFZ4MLTTDTMsr/96dwE2ZRc7VJBf9tsfj1dUKRhQyHmNCPdHiNIDpZr6Nu+TlwAIVrY8io6cB4M8EZET8XR3weSYlrCurdfh1+NlSM4qxu4zF3GsSItjRVr83+ZTGN7LD1Nj1bg3OgSBPnw+eXsamppxqqTGZHn86Q5Ce9Q1gT06VIkQJUM73bpJMS1B3pGW1x86V2l8vOLTfLwiOTkXqQSLp0TimTVHIAFMwrzhX5DFUyK50Z2TkQgh2vrDjlPTarVQKpXQaDRQKBTWLoeIyOwuXW7A5mOl2JBVjAMFlcbjUgkwJiIQU2LVmDAo2Kl3jG5oakZuaY1x5/icIg1yS9sO7f5XQ3vM1eXx0WFKqBnayUz0eoGxS7ejWFOPlbOGYsKgYGuXdMtmJx3AjtwKzBjWHUsfiLF2OUQ2gc+Rd3ydyaEM8m1gkCciZ1aiqcOm7BIkZxUju1BjPO7uIsX4/t0wJVaNuweq4OXuuIu6Gpqacbr0MrKLqk1Cu6659T+Zfl5uVzehU1ydbfdlaCeL+9vGE/hqVwGmDVbj7w/FWbucW5JTqMGUz3ZBKgHSXopHzwDu30Fk0KwXOFBQifKaeqjkLcvpORPvODqTQx33WxgREd2UEKUnnry9N568vTfOXbyCDVnFSM4qRl75ZaSeKEPqiTJ4urng7sggTI1VY1y/QMhc7Xcpb2OTHrmGe9qLNMgpqm43tPt6uRnvZ48Ja5ltD/X1ZGgnq5sYE4KvdhVgmwMsrzc8N37a4FCGeKL/4iKV8BFzBIBBnoiIOtAr0BsL7+qLhXf1xalSLTZkFWNDVgnOV9Ze/d/FUHi4IjEqGFNi1RjVOwCuLlJrl92uxiY9TpddE9oLW2baG5v1rdoaQvu1S+TD/BjayTbFdfdFqK8niqrrsCO3AolR9rm8Pre0BluPl0EiAZ6N573xRETtYZAnIqIbMiBYgQHBCryU0B9ZhRpsyCrGxuxilGkbsO5QIdYdKkSgjzsmRodgaqwaQ3r4QWrF5X6G0H6sSIPsopb72k+VtB3alZ5uJpvQRTO0k52RSCSYGB2Mf+wswKacErsN8p+ntexUf29UMPoGya1cDRGR7eI98m3gPfJERDemWS9w8FwlkrOKsSWnBFW1OuN7ob6emBwTgimxagxSK8wainXNV2far+4cf6xIg5PthHaFh+vVwO5rDO3d/Rnayf5lXqjGfZ/vhpe7C468eY/dLa/Pr7iMuz9Kh14AmxaNxSC10tolERFZFO+RJyIii3CRSjCydwBG9g7A21MHYdeZi9iQVYxfj5ehqLoOKzPysTIjH70DvTE5Vo2psWpEqHxM+ujsxj26Zj3yyi4jp6j66hJ5LU6WaNHY1H5oNzz2LSbUl6GdHFZsmPKa5fXldreL9YodZ6EXwF0DVAzxRETXYdUgv2TJEqxfvx6nTp2Cp6cnRo8ejaVLl6J///4AAJ1OhzfeeAObN29Gfn4+lEol7r77brz33ntQq9Xt9rt69Wo88cQTrY7X1dXBw8PDbNdDROTM3FykuKO/Cnf0V6Fe14wdueVIzirGbyfLkX/xCj79LQ+f/paHgSEKTI1VY3JMCI4Xazp8lI4htBt2js8u0rQb2uUersYZdsMS+R7+Xgzt5DQkEgkmxYTgy4x8bMwusasgf6GyFj8fLQIAzL8zwsrVEBHZPqsG+fT0dMyfPx/Dhw9HU1MTXn/9dSQkJODEiRPw9vZGbW0tjhw5gjfffBOxsbGoqqrC888/j6lTp+LQoUMd9q1QKJCbm2tyjCGeiMgyPNxckBgVgsSoENTU67DtZBk2ZJUg43QFTpa0zKAvTTnV5mdLNPWYt+YIwgO9UFxdj4Z2QnuU+o+d46NDlegZwNBONCm6Jcj/drIcdY3N8HS3j+X1KzPOokkvMDYiEEN6+Fm7HCIim2fVIJ+SkmLyc1JSElQqFQ4fPoxx48ZBqVQiNTXVpM2yZcswYsQInD9/Hj169Gi3b4lEguBg+9zohYjIkcg93PA/cWH4n7gwVF1pRMrxUvySWYx9+Zc6/FzBxdqWz8tcMShUgZgw3z9Cu7+XVTfSI7JVMWEtGzUWVtUhLbccE6Ntf1a+TFuPdQcLAQALOBtPRHRDbOoeeY1GAwDw9/fvsI1EIoGvr2+HfV2+fBk9e/ZEc3MzBg8ejL/+9a+Ii4trs21DQwMaGhqMP2u12s4XT0RE1+Xn7Y6HR/RArwDv6wZ5APjowVjcNziUoZ3oBhmW169Mz8emnBK7CPJfZuSjsVmP4b38cFt4+98BiYjoDzbzsF8hBF544QWMHTsWUVFRbbapr6/Hq6++ikceeaTDXfwGDBiA1atXIzk5GWvXroWHhwfGjBmDvLy8NtsvWbIESqXS+OrevXuXXBMREbWtvKb++o3QspkeQzxR50y6Gt63nyxHbWOTlavp2MXLDfh+/+8AgAV39uXtMUREN8hmgvyCBQuQnZ2NtWvXtvm+TqfDQw89BL1ej+XLl3fY18iRI/Hoo48iNjYWt99+O9atW4d+/fph2bJlbbZ/7bXXoNFojK8LFy7c8vUQEVH7VPIb27PkRtsR0R8Mj1Ss0zUj7VSFtcvp0KpdBajX6RETpsS4voHWLoeIyG7YRJBfuHAhkpOTkZaWhrCwsFbv63Q6PPjggygoKEBqamqnn+0ulUoxfPjwdmfkZTIZFAqFyYuIiMxnRLg/QpQeaG/uTYKW3etHcJktUadJJBJMim55us+mnGIrV9O+6tpGfLvnHABgIWfjiYg6xapBXgiBBQsWYP369di+fTvCw8NbtTGE+Ly8PGzbtg0BAQE3dZ7MzEyEhNj+fWJERM7ARSrB4imRANAqzBt+XjwlssPnyRNR+ybHXF1ef8p2l9ev3nMOVxqbMSBYjrsGqKxdDhGRXbFqkJ8/fz7WrFmDH374AXK5HKWlpSgtLUVdXR0AoKmpCQ888AAOHTqE77//Hs3NzcY2jY2Nxn4ee+wxvPbaa8af3377bWzduhX5+fnIzMzE3LlzkZmZiXnz5ln8GomIqG2JUSFY8egQBCtNl88HKz2w4tEhdvUMbCJbM0itQA9/L9Tr9Nh+qtza5bRSU69D0u5zAFp2qudeGEREnWPVXetXrFgBAIiPjzc5npSUhNmzZ6OwsBDJyckAgMGDB5u0SUtLM37u/PnzkEr/+JtEdXU1nnrqKZSWlkKpVCIuLg4ZGRkYMWKE2a6FiIg6LzEqBPdEBuNAQSXKa+qhkrcsp+dMPNGtMexev2LHWWzKLsHkGLW1SzKxZt95aOp06N3NG/fyj3ZERJ0mEUIIaxdha7RaLZRKJTQaDe+XJyIiIrt0rEiDyct2QeYqxZE374G3zDaeOlzX2IyxS7fj0pVGfPinWNw/tPX+SEREzqgzOdQmNrsjIiIioq41SK1ArwAvNDTp8ZsNLa9fe+A8Ll1pRHd/T0wdbFsrBYiI7AWDPBEREZEDMiyvB4DN2SVWrqZFQ1MzVmacBQA8Mz4Cbi78KkpEdDP425OIiIjIQU2MbgnyabnluNxg/d3r/324EGXaBgQrPHD/0FBrl0NEZLcY5ImIiIgcVGSIAuGB3i3L60+WWbUWXbMeK3a0zMY/Pb43ZK4uVq2HiMieMcgTEREROSiJRIJJV2flN1l5ef0vmcUorKpDoI87Hhrew6q1EBHZOwZ5IiIiIgdmuE9+x+kK1NTrrFJDs15gedoZAMCTt/eGpztn44mIbgWDPBEREZEDGxAsR+9u3mhs0mO7lXav35RTgvyLV6D0dMOjI3tapQYiIkfCIE9ERETkwK5dXr/RCsvr9XqBz7e3zMbPGRMOHxt5nj0RkT1jkCciIiJycIbl9em5ll9en3qyDLllNZDLXDF7TC+LnpuIyFExyBMRERE5uP5BcvTp5o3GZj22WXD3eiEEPrs6G//Y6J5QerpZ7NxERI6MQZ6IiIjIwUkkEkyKUQOw7O716acrkFOkgaebC+aMCbfYeYmIHB2DPBEREZETMNwnn3H6IrQWWF4vhMCyq7PxM2/rgQAfmdnPSUTkLBjkiYiIiJxAvyAfRKh8WpbXnzD/8vp9+ZU4/HsV3F2l+PO43mY/HxGRM2GQJyIiInIC1+5eb4nl9Z+l5QEAZgzrjiCFh9nPR0TkTBjkiYiIiJyEYff6jLwKaOrMt7z+8O9V2H3mElylEjw9nrPxRERdjUGeiIiIyEn0C5KjX5APdM3CrMvrP09ruTd++pBQhPl5me08RETOikGeiIiIyIlMNCyvzzHP8vpjRRpsP1UOqQR4Jj7CLOcgInJ2DPJERERETsRwn/zOvApoart+eb1hNn5KrBrhgd5d3j8RETHIExERETmVvkFy9A+SQ9cs8OuJ0i7t+3RZDbYca+lz/h2cjSciMhcGeSIiIiInY9j0rquX1xtm4xMHBaNfkLxL+yYioj8wyBMRERE5GcN98rvyLnbZ8vqCi1ewIasYALDgTs7GExGZE4M8ERERkZOJUPlgQLAcTXqBrV20vH7FjjPQC+DOASpEhSq7pE8iImobgzwRERGREzJsercp+9aX1xdW1WL9kSIAvDeeiMgSGOSJiIiInNDEq/fJ7z5zEdW1jbfU18r0fDTpBcZEBGBoT7+uKI+IiDrAIE9ERETkhPp088HAEAWa9AK/Hi+76X7KtPX48dAFAMCCO/p2VXlERNQBBnkiIiIiJzUpOhgAsPEWdq//R0Y+Gpv0GNbTDyN7+3dVaURE1AEGeSIiIiInZdi9fveZi6i60vnl9ZcuN+D7/ecBtOxUL5FIurQ+IiJqG4M8ERERkZPq3c0HkSEKNOsFth7v/O71X+8uQJ2uGdGhSozv180MFRIRUVsY5ImIiIic2KSrm95t6uTyek2tDt/s+R0AZ+OJiCyNQZ6IiIjIiRkeQ7fn7CVUdmJ5/Td7z+FyQxP6B8lxz8Agc5VHRERtYJAnIiIicmK9Ar0xSN255fWXG5rw9e4CAMD8OyMglXI2nojIkhjkiYiIiJyccXl99o0tr/9+3++ortWhd6C3cUafiIgsh0GeiIiIyMn9sbz+Ii5dbuiwbV1jM/6xMx8A8OwdEXDhbDwRkcUxyBMRERE5uZ4B3ogOVUIvgK3Hyzps+8+D53HxciPC/DwxbbDaQhUSEdG1GOSJiIiIyPhM+U05xe22aWhqxsr0ltn4Z+L7wM2FXyWJiKyBv32JiIiIyLi8fu/ZS7jYzvL6nw4XoVRbjyCFDA8MDbNkeUREdA0GeSIiIiJCjwAvxIS1LK9POdZ693pdsx7Ld5wBADw9rg9kri6WLpGIiK5ikCciIiIiAH/Myre1e31yZjEKq+oQ4O2Oh0f0sHRpRER0DasG+SVLlmD48OGQy+VQqVS47777kJuba3xfp9PhlVdeQXR0NLy9vaFWq/HYY4+huLj9e7cMfvrpJ0RGRkImkyEyMhI///yzOS+FiIiIyO4Z7pPfX3AJFTV/LK9v1gt8fnU2/snbe8PTnbPxRETWZNUgn56ejvnz52Pfvn1ITU1FU1MTEhIScOXKFQBAbW0tjhw5gjfffBNHjhzB+vXrcfr0aUydOrXDfvfu3YsZM2Zg1qxZyMrKwqxZs/Dggw9i//79lrgsIiIiIrvU3d8LsYbl9cf/WF6/5VgJ8iuuQOnphkdHcjaeiMjaJEIIYe0iDCoqKqBSqZCeno5x48a12ebgwYMYMWIEfv/9d/To0fY/JDNmzIBWq8WWLVuMxxITE+Hn54e1a9detw6tVgulUgmNRgOFQnFzF0NERERkh77MOIv/23wKI3v7459PjYJeLzDx0504VVqD5+/ui+fv7mftEomIHFJncqhN3SOv0WgAAP7+/h22kUgk8PX1bbfN3r17kZCQYHJswoQJ2LNnT5vtGxoaoNVqTV5EREREzuiP5fWVKK+px2+nynGqtAY+MlfMHt3LusUREREAGwryQgi88MILGDt2LKKiotpsU19fj1dffRWPPPJIh3+hKC0tRVBQkMmxoKAglJa23oEVaLlXX6lUGl/du3e/+QshIiIismNhfl4Y3N0X4uru9Z9tzwMAzBrVE75e7laujoiIABsK8gsWLEB2dna7S991Oh0eeugh6PV6LF++/Lr9SSQSk5+FEK2OGbz22mvQaDTG14ULFzp/AUREREQOwrB7/ae/5SGrUAMPNynmjg23clVERGRgE0F+4cKFSE5ORlpaGsLCwlq9r9Pp8OCDD6KgoACpqanXvV8gODi41ex7eXl5q1l6A5lMBoVCYfIiIiIiclb3RgcDAC5ebgQAPDKiJwJ9ZNYsiYiIrmHVIC+EwIIFC7B+/Xps374d4eGt/9JrCPF5eXnYtm0bAgICrtvvqFGjkJqaanLs119/xejRo7usdiIiIiJHFebnhbgevgAAdxcpnh7f27oFERGRCVdrnnz+/Pn44Ycf8Msvv0Aulxtn0ZVKJTw9PdHU1IQHHngAR44cwcaNG9Hc3Gxs4+/vD3f3lvu0HnvsMYSGhmLJkiUAgOeeew7jxo3D0qVLMW3aNPzyyy/Ytm0bdu3aZZ0LJSIiIrIzM4Z1x9Hz1Zg1qieCFB7WLoeIiK5h1cfPtXfPelJSEmbPno1z5861OUsPAGlpaYiPjwcAxMfHo1evXli9erXx/X//+9944403kJ+fjz59+uDdd9/F9OnTb6guPn6OiIiInJ0QAqfLLiNC5QMXadvf2YiIqOt0Jofa1HPkbQWDPBEREREREVmS3T5HnoiIiIiIiIg6xiBPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdkRBnkiIiIiIiIiO8IgT0RERERERGRHGOSJiIiIiIiI7AiDPBEREREREZEdYZAnIiIiIiIisiMM8kRERERERER2xNXaBdgiIQQAQKvVWrkSIiIiIiIicgaG/GnIox1hkG9DTU0NAKB79+5WroSIiIiIiIicSU1NDZRKZYdtJOJG4r6T0ev1KC4uhlwuh0QisXY5HdJqtejevTsuXLgAhUJh7XLIAXGMkSVwnJElcJyRuXGMkSVwnDkuIQRqamqgVqshlXZ8Fzxn5NsglUoRFhZm7TI6RaFQ8P/IZFYcY2QJHGdkCRxnZG4cY2QJHGeO6Xoz8Qbc7I6IiIiIiIjIjjDIExEREREREdkRBnk7J5PJsHjxYshkMmuXQg6KY4wsgeOMLIHjjMyNY4wsgeOMAG52R0RERERERGRXOCNPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyVrZkyRIMHz4ccrkcKpUK9913H3Jzc03aCCHw1ltvQa1Ww9PTE/Hx8Th+/LhJmy+//BLx8fFQKBSQSCSorq5uda6qqirMmjULSqUSSqUSs2bNarMdOR5LjbNz585h7ty5CA8Ph6enJ/r06YPFixejsbHR3JdIVmbJ32UGDQ0NGDx4MCQSCTIzM81wVWRrLD3ONm3ahNtuuw2enp4IDAzE9OnTzXVpZEMsOc5Onz6NadOmITAwEAqFAmPGjEFaWpo5L49sQFeMscrKSixcuBD9+/eHl5cXevTogUWLFkGj0Zj0w+//jotB3srS09Mxf/587Nu3D6mpqWhqakJCQgKuXLlibPP+++/jo48+wmeffYaDBw8iODgY99xzD2pqaoxtamtrkZiYiP/93/9t91yPPPIIMjMzkZKSgpSUFGRmZmLWrFlmvT6yDZYaZ6dOnYJer8fKlStx/PhxfPzxx/jiiy86HJfkGCz5u8zg5ZdfhlqtNsv1kG2y5Dj76aefMGvWLDzxxBPIysrC7t278cgjj5j1+sg2WHKcTZo0CU1NTdi+fTsOHz6MwYMHY/LkySgtLTXrNZJ1dcUYKy4uRnFxMT744APk5ORg9erVSElJwdy5c03Oxe//DkyQTSkvLxcARHp6uhBCCL1eL4KDg8V7771nbFNfXy+USqX44osvWn0+LS1NABBVVVUmx0+cOCEAiH379hmP7d27VwAQp06dMs/FkM0y1zhry/vvvy/Cw8O7rHayD+YeY5s3bxYDBgwQx48fFwDE0aNHzXEZZOPMNc50Op0IDQ0VX331lVnrJ/tgrnFWUVEhAIiMjAzjMa1WKwCIbdu2mediyCbd6hgzWLdunXB3dxc6nU4Iwe//jo4z8jbGsBzG398fAFBQUIDS0lIkJCQY28hkMowfPx579uy54X737t0LpVKJ2267zXhs5MiRUCqVneqHHIO5xll75zKch5yHOcdYWVkZ/vznP+O7776Dl5dX1xVNdsdc4+zIkSMoKiqCVCpFXFwcQkJCcO+997ZaOk3OwVzjLCAgAAMHDsS3336LK1euoKmpCStXrkRQUBCGDh3atRdBNq2rxphGo4FCoYCrqysAfv93dAzyNkQIgRdeeAFjx45FVFQUABiXVgUFBZm0DQoK6tSyq9LSUqhUqlbHVSoVl285GXOOs/929uxZLFu2DPPmzbv5gsnumHOMCSEwe/ZszJs3D8OGDeu6osnumHOc5efnAwDeeustvPHGG9i4cSP8/Pwwfvx4VFZWdtEVkD0w5ziTSCRITU3F0aNHIZfL4eHhgY8//hgpKSnw9fXtsmsg29ZVY+zSpUv461//iqefftp4jN//HZurtQugPyxYsADZ2dnYtWtXq/ckEonJz0KIVseup632N9MP2TdzjzOD4uJiJCYm4k9/+hOefPLJm+qD7JM5x9iyZcug1Wrx2muv3XKdZN/MOc70ej0A4PXXX8f9998PAEhKSkJYWBj+9a9/mXxRJsdmznEmhMCzzz4LlUqFnTt3wtPTE1999RUmT56MgwcPIiQk5JbrJ9vXFWNMq9Vi0qRJiIyMxOLFizvso6N+yL5wRt5GLFy4EMnJyUhLS0NYWJjxeHBwMAC0+qtZeXl5q7/SdSQ4OBhlZWWtjldUVHSqH7Jv5h5nBsXFxbjjjjswatQofPnll7dWNNkVc4+x7du3Y9++fZDJZHB1dUVERAQAYNiwYXj88ce74ArIHph7nBkCVGRkpPGYTCZD7969cf78+VspneyIJX6fbdy4Ef/85z8xZswYDBkyBMuXL4enpye++eabrrkIsmldMcZqamqQmJgIHx8f/Pzzz3BzczPph9//HReDvJUJIbBgwQKsX78e27dvR3h4uMn74eHhCA4ORmpqqvFYY2Mj0tPTMXr06Bs+z6hRo6DRaHDgwAHjsf3790Oj0XSqH7JPlhpnAFBUVIT4+HgMGTIESUlJkEr5a8YZWGqMffrpp8jKykJmZiYyMzOxefNmAMCPP/6Id999t2suhmyWpcbZ0KFDIZPJTB4HpdPpcO7cOfTs2fPWL4RsmqXGWW1tLQC0+ndSKpUaV4WQY+qqMabVapGQkAB3d3ckJyfDw8PDpB9+/3dwltxZj1p75plnhFKpFDt27BAlJSXGV21trbHNe++9J5RKpVi/fr3IyckRDz/8sAgJCRFardbYpqSkRBw9elT84x//MO6AevToUXHp0iVjm8TERBETEyP27t0r9u7dK6Kjo8XkyZMter1kHZYaZ0VFRSIiIkLceeedorCw0ORc5Ngs+bvsWgUFBdy13olYcpw999xzIjQ0VGzdulWcOnVKzJ07V6hUKlFZWWnRaybLs9Q4q6ioEAEBAWL69OkiMzNT5Obmipdeekm4ubmJzMxMi183WU5XjDGtVituu+02ER0dLc6cOWPST1NTk7Effv93XAzyVgagzVdSUpKxjV6vF4sXLxbBwcFCJpOJcePGiZycHJN+Fi9efN1+Ll26JGbOnCnkcrmQy+Vi5syZN/T4MLJ/lhpnSUlJ7Z6LHJslf5ddi0HeuVhynDU2NooXX3xRqFQqIZfLxd133y2OHTtmoSsla7LkODt48KBISEgQ/v7+Qi6Xi5EjR4rNmzdb6ErJWrpijBkea9jWq6CgwNiO3/8dl0QIITo/j09ERERERERE1sCbV4mIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdkRBnkiIiIiIiIiO8IgT0RERERERGRHGOSJiIhs3KVLl6BSqXDu3DmLnnf16tXw9fU1S98bN25EXFwc9Hq9WfonIiJyZAzyRERENm7JkiWYMmUKevXq1eq9hIQEuLi4YN++fZYv7BZMnjwZEokEP/zwQ7tt5s6di+joaDQ2Npoc37x5M9zc3HDo0CFzl0lERGSTGOSJiIhsWF1dHVatWoUnn3yy1Xvnz5/H3r17sWDBAqxatcoK1d0cnU4HAHjiiSewbNmydtt98sknqKmpweLFi43Hqqur8dRTT+H111/HsGHDzFYbERGRLWOQJyIismFbtmyBq6srRo0a1eq9pKQkTJ48Gc888wx+/PFHXLlyxeT9+Ph4LFq0CC+//DL8/f0RHByMt956y6SNIRgHBQXBw8MDUVFR2Lhxo0mbrVu3YuDAgfDx8UFiYiJKSkqM7+n1erzzzjsICwuDTCbD4MGDkZKSYnz/3LlzkEgkWLduHeLj4+Hh4YE1a9YAAKZOnYoDBw4gPz+/zWuXy+VYvXo1PvzwQ+zfvx8A8PzzzyMkJARvvPEGioqKMGPGDPj5+SEgIADTpk0zuf3g4MGDuOeeexAYGAilUonx48fjyJEjJueQSCT44osvMG3aNHh7e+Nvf/tbO/8liIiIbAeDPBERkQ3LyMhoc+ZZCIGkpCQ8+uijGDBgAPr164d169a1avfNN9/A29sb+/fvx/vvv4933nkHqampAFpC+L333os9e/ZgzZo1OHHiBN577z24uLgYP19bW4sPPvgA3333HTIyMnD+/Hm89NJLxvf//ve/48MPP8QHH3yA7OxsTJgwAVOnTkVeXp5JHa+88goWLVqEkydPYsKECQCAnj17QqVSYefOne1ef3x8PJ599lk8/vjj+Ne//oV169bh22+/RWNjI+644w74+PggIyMDu3btMv6hwbAUv6amBo8//jh27tyJffv2oW/fvpg4cSJqampMzrF48WJMmzYNOTk5mDNnzvX+kxAREVmfICIiIps1bdo0MWfOnFbHf/31V9GtWzeh0+mEEEJ8/PHHYsyYMSZtxo8fL8aOHWtybPjw4eKVV14RQgixdetWIZVKRW5ubpvnTkpKEgDEmTNnjMc+//xzERQUZPxZrVaLd999t9U5nn32WSGEEAUFBQKA+OSTT9o8R1xcnHjrrbfafM+gtrZWDBgwQEilUvHxxx8LIYRYtWqV6N+/v9Dr9cZ2DQ0NwtPTU2zdurXNfpqamoRcLhcbNmwwHgMgnn/++Q7PT0REZGs4I09ERGTD6urq4OHh0er4qlWrMGPGDLi6ugIAHn74Yezfvx+5ubkm7WJiYkx+DgkJQXl5OQAgMzMTYWFh6NevX7vn9/LyQp8+fdr8vFarRXFxMcaMGWPymTFjxuDkyZMmx9q7n93T0xO1tbXtnt/Q5sUXX4SXlxeee+45AMDhw4dx5swZyOVy+Pj4wMfHB/7+/qivr8fZs2cBAOXl5Zg3bx769esHpVIJpVKJy5cv4/z58zdUGxERka1ytXYBRERE1L7AwEBUVVWZHKusrMR//vMf6HQ6rFixwni8ubkZX3/9NZYuXWo85ubmZvJZiURifOSbp6fndc/f1ueFEK2OXUsI0eqYt7d3m/1XVlaiW7du163D1dUVLi4uxn71ej2GDh2K77//vlVbQ3+zZ89GRUUFPvnkE/Ts2RMymQyjRo1qtQt+e7URERHZKs7IExER2bC4uDicOHHC5Nj333+PsLAwZGVlITMz0/j65JNP8M0336CpqemG+o6JiUFhYSFOnz59U7UpFAqo1Wrs2rXL5PiePXswcODA637eMHseFxfX6XMPGTIEeXl5UKlUiIiIMHkplUoAwM6dO7Fo0SJMnDgRgwYNgkwmw8WLFzt9LiIiIlvDIE9ERGTDJkyYgOPHj5vMyq9atQoPPPAAoqKiTF5z5sxBdXU1Nm3adEN9jx8/HuPGjcP999+P1NRUFBQUYMuWLSa7zl/PX/7yFyxduhQ//vgjcnNz8eqrryIzM9O4BL4j+/btM86Sd9bMmTMRGBiIadOmYefOnSgoKEB6ejqee+45FBYWAgAiIiLw3Xff4eTJk9i/fz9mzpx5Q6sQiIiIbB2DPBERkQ2Ljo7GsGHDjDvSHz58GFlZWbj//vtbtZXL5UhISOjUM+V/+uknDB8+HA8//DAiIyPx8ssvo7m5+YY/v2jRIrz44ot48cUXER0djZSUFCQnJ6Nv377X/ezatWsxc+ZMeHl53fD5DLy8vJCRkYEePXpg+vTpGDhwIObMmYO6ujooFAoAwNdff42qqirExcVh1qxZWLRoEVQqVafPRUREZGsk4r9vdCMiIiKbsnnzZrz00ks4duwYpFLH+Bt8RUUFBgwYgEOHDiE8PNza5RAREdkVbnZHRERk4yZOnIi8vDwUFRWhe/fu1i6nSxQUFGD58uUM8URERDeBM/JEREREREREdsQx1ucREREREREROQkGeSIiIiIiIiI7wiBPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdmR/wfC7A99WLxoJwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1653,14 +1656,14 @@ } ], "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "print(f\"The MSE loss is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\")\n", "\n", "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", "fig, ax = plt.subplots(figsize=(12, 5))\n", "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", - "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", " label=\"Climatology\", c=\"black\")\n", "plt.xlabel(\"(Anchor) Year\")\n", "plt.ylabel(\"Temperature [degree C]\")\n", diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index 34174a1..4a39908 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -100,7 +100,7 @@ ")" ] }, - "execution_count": 3, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -121,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -152,12 +152,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABirklEQVR4nO3dd1gUV9sG8HuW3hGliKLYxd57R4O9Rk0krxq7YtfXxBgL1uhrC9FYolETC/YSjUZFsWCLCNixYgWxBBCkLMv5/uBjdAUNZWEHvH/XxRV3Z+bwDCcse++Zc0YSQggQERERERHpmUrfBRAREREREQEMJ0REREREpBAMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAiG+i4gv0hJScHTp09hZWUFSZL0XQ4REREVYEIIvH79Gs7OzlCp+FkyfToYTjLp6dOncHFx0XcZRERE9Al59OgRihcvru8yiPIMw0kmWVlZAUh9kbC2ttZzNURERFSQxcTEwMXFRX7/QfSpYDjJpLRLuaytrRlOiIiIKE/wUnL61PAiRiIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSGEyIiIiIiUgSu1kVERFSACSGQmJio03ZMTEyyvYqU0tp5l67q0YWEhASdtUWUnzCcEBERFWCJiYno2bNnjtvRaDQIDAwEANSpUyfbdy1XWjvv2r59O0xNTbN1rK5+zmnUarXO2iLKTxhOiIiIPgGXnrzO0fEiJQXRCckwLloOl19oIEmabLajQUySgKqQM4KfxgLZHanQUT1pqtsb5eh42aMLumnHqaZu2iHKZxhOiIiIPhENR8yDgaFxto5Nin+Ng9/2AAA0nbQSRibZG2FQx0Vj97CmAID6w+Zmux1d1ZOiTsSJ+UOzdeyHbBxSEyZG2RvJSVSn4KvVQTqthyg/YTghIiL6RBgYGsPA2CR7x6rfzqcwMDKGoXH2woAm6e1cCiXUk5ytoz7OxEgFUyODXGiZqODjal1ERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIDCdERERERKQIhvougIiIiPLe8XlDEB/9ApKkgpGZBWr1/RZ2rm4I3DAPTy75I+7FU7Sdsx2FXCt+tJ1Dk7sj/p9n/9+OJRqMmI/CZash+sldnPrfcCTEvIKxhTWaTliOQq5u+aYeXfls4TlERCdCJUmwMjWEj2dl1Cxpg9sRsei3JgQvYpNgY2aI9YNqoHIxq1yvh0jp9DpyMm/ePNStWxdWVlZwcHBA165dERoaqrVPQkICvLy8ULhwYVhaWqJHjx549uyZvD0kJARffvklXFxcYGZmBjc3N/z4449abYSHh6NPnz4oX748VCoVxo4dmxenR0REpFiNRy9E+x92od28HajQri/Or/oeAOBSrw1aT9sAiyLOmWqn5ZR16LYyAF1XnELlHl44uXAEAODMj+NQoX1/fP7rRVTtNQanFnnlq3p0ZduI2rg8qzmCZzbDeI9S6L82GAAwdMMVDGlRArd+aIlv2pdB/zXBeVIPkdLpNZycOHECXl5eOHfuHI4cOQK1Wo3PPvsMcXFx8j7jxo3DH3/8ge3bt+PEiRN4+vQpunfvLm8PDAyEg4MDNm7ciGvXrmHKlCmYPHkyli1bJu+TmJgIe3t7fP/996hevXqeniMREZESGVtYy/9Wv3kNQAIAOLjVgXlhp0y3Y2Jp87aduBhIkoT4qOd4cTsYZdx7AQBcm3RG3PMniHlyL9/Uoyu25kbyv6PjkyFBQmRMIi6GReOrhsUAAD3qFMWjVwm48yzuQ80QfTL0elnXoUOHtB6vX78eDg4OCAwMRLNmzRAdHY21a9di8+bNaNWqFQBg3bp1cHNzw7lz59CgQQMMGDBAq43SpUvj7Nmz2LVrF0aOHAkAcHV1lUdTfv311zw4MyIiIuU7u+I7RF6/AABo/t+fs93OiQXDEBFyCgDQZvY2xD1/AjM7R6gMUt9mSJIEC/viiH3+GCY2doqqx9w+cyMyOdH3lyAcv/ESAPDnuHp49CoeRW1NYGigkuspUdgUD1/Go7idaa7XQ6RkippzEh0dDQCws0t94QoMDIRarUbr1q3lfSpWrIgSJUrg7NmzaNCgwQfbSWsjuxITE5GYmCg/jomJyVF7REREStNw+FwAwL2TexHsuwQtJq3IVjvNJ60EANw+sgUX185ArX5TCkQ9uvLb4JoAgA2nH+Gb7Tcwq3sFvdZDpGSKWa0rJSUFY8eORePGjVGlShUAQEREBIyNjWFra6u1r6OjIyIiIjJs58yZM9i6dSuGDBmSo3rmzZsHGxsb+cvFxSVH7RERESlV6WZdEHn9byS+jspRO+XafInwkNOwKOKM+FfPkKJJBgAIIRD3/DEs7Yvny3p0pV8TFxy/+RLFC5khPCoRyZoUuZ6HLxNQorBZntZDpESKCSdeXl64evUqfH19s93G1atX0aVLF0yfPh2fffZZjuqZPHkyoqOj5a9Hjx7lqD0iIiKlSIqLwZt/IuXHjy/6wdjSBsbvzNfIjMTYaLx5GS4/fnDmAEys7WBqa4/CZavhrt82AEDY6X0wL+IM62Kl80U9uhL1Ro2n/yTIj/dcikBhS2M4WBujVklrbDz7BACw82I4ituZoqyjRa7WQ5QfKOKyrpEjR2L//v04efIkihd/+ymGk5MTkpKSEBUVpTV68uzZMzg5aU+Ou379Otzd3TFkyBB8//33Oa7JxMQEJiYmOW6HiIhIadRvYnHaZwI0SQmQVCqYWBVC84nLIUkSLqz1xtOgk0iIfonj84fCyMwCnRb/mXE7cdE4NvtraJLiAUkFU5siaDPTF5IkofHoJTi5yAshvothZG6FphOWZdiGEuvRleg3avT8ORDxSSlQqQB7KxPsH1sXkiRhVb9q6L82GHP334G1mSHWDeCCPUSAnsOJEAKjRo3C7t274e/vj1KlSmltr127NoyMjODn54cePXoAAEJDQ/Hw4UM0bNhQ3u/atWto1aoV+vXrhzlz5uTpORAREeU3FvbO8Ji1JcNt9QZOz3Q7lo4l0Pknvwy32biUQ6elh/NlPbpSsog5LkxrmuG2CkUtcfb7JnlaD1F+oNdw4uXlhc2bN2Pv3r2wsrKS55HY2NjAzMwMNjY2GDhwIMaPHw87OztYW1tj1KhRaNiwoTwZ/urVq2jVqhU8PDwwfvx4uQ0DAwPY29vL3ys4OBgAEBsbi+fPnyM4OBjGxsaoVKlS3p40ERERERFlSK/hZMWK1FU4WrRoofX8unXr0L9/fwDAkiVLoFKp0KNHDyQmJsLDwwM///x2ecEdO3bg+fPn2LhxIzZu3Cg/X7JkSYSFhcmPa9asKf87MDAQmzdvTrcPERERERHpj94v6/o3pqamWL58OZYvX57h9hkzZmDGjBk6+V5ERERERKQ/ilmti4iIiIiIPm0MJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAgMJ0REREREpAiG+i6AiIiI8oYmOUknx2rUSUhWZe/zzRR1olabqqTstZMb9ehKojpFL8cSFQQMJ0RERJ+Isz9PzvaxIuXtm+ZTC4ZBkrLbjkb+9/mV3yG7Demqntzw1eogfZdAlG8xnBAREX0CahWzytHxGo0GgeGGwD/3Ua1MHaiyOVKh0agQ+EAC4sJRw61YDtrRTT0651JPN+2o1bpphyifkYQQQt9F5AcxMTGwsbFBdHQ0rK2t9V0OERFRpgghkJiY80uX3m3HxMQEUnZHPBTWzrt0VY8uxMTEwNHRke876JPDkRMiIqICTJIkmJqa6qQtMzOzAtmOLujy5wwASUnZnx9ElJ8pZAyUiIiIiIg+dQwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCAwnRERERESkCFkKJ8nJyfjtt9/w7Nmz3KqHiIiIiIg+UVkKJ4aGhhg2bBgSEhJyqx4iIiIiIvpEZfmyrnr16iE4ODgXSiEiIiIiok+ZYVYPGDFiBMaPH49Hjx6hdu3asLCw0NperVo1nRVHRJ8GIQQSExN12o6JiQkkSSoQ7bxLV/Xoiq7Oi4iICAAkIYTIygEqVfrBFkmSIISAJEnQaDQ6K05JYmJiYGNjg+joaFhbW+u7HKICJSEhAT179sxxOxqNBoGBgQCAOnXqZPh6lR/bedf27dthamqarWN19XPWVT1E9GF830GfqiyPnNy/fz836iAiwqUnr3N0vEhJQXRCMoyLlsPlFxpIUvY+LBEpGsQkCagKOSP4aSyQ3ZEKHdWTprq9UY6Olz26oJt2XOrpph0iIqL/l+VwUrJkydyog4gIANBwxDwYGBpn69ik+Nc4+G0PAEDTSSthZJK9T/TVcdHYPawpAKD+sLnZbkdX9aSoE3Fi/tBsHfshG4fUhIlR9kZyEtUp+Gp1kE7rISIiArIRTtJcv34dDx8+RFJSktbznTt3znFRRPTpMjA0hoGxSfaOVb+dT2FgZAxD4+yFAU3S2xUJlVBPcraO+jgTIxVMjQxyoWUiIqLsy3I4uXfvHrp164YrV67Ic00AyBMiC+qcEyIiIiIiyl1ZHtMfM2YMSpUqhcjISJibm+PatWs4efIk6tSpA39//1wokYiIiIiIPgVZHjk5e/Ysjh07hiJFikClUkGlUqFJkyaYN28eRo8ejaAgXodMRERERERZl+WRE41GAysrKwBAkSJF8PTpUwCpE+VDQ0N1Wx0REREREX0ysjxyUqVKFYSEhKBUqVKoX78+FixYAGNjY6xevRqlS5fOjRqJiIiIiOgTkOVw8v333yMuLg4AMHPmTHTs2BFNmzZF4cKFsXXrVp0XSEREREREn4YshxMPDw/532XLlsXNmzfx6tUrFCpUSF6xi4iIiIiIKKuydwcuAHfu3MFff/2F+Ph42NnZ6bImIiIiIiL6BGU5nLx8+RLu7u4oX7482rdvj/DwcADAwIEDMWHCBJ0XSEREREREn4YsX9Y1btw4GBkZ4eHDh3Bzc5Of7927N8aPH49FixbptEAiIiIiyphGo4FardZ3GUQfZGRkBAMDg0zvn+VwcvjwYfz1118oXry41vPlypXDgwcPstocEREREWWREAIRERGIiorSdylE/8rW1hZOTk6Zmp+e5XASFxcHc3PzdM+/evUKJiYmWW2OiIiIiLIoLZg4ODjA3NycixKRIgkh8ObNG0RGRgIAihYt+q/HZDmcNG3aFL/99htmzZoFAJAkCSkpKViwYAFatmyZ1eaIiIiIKAs0Go0cTAoXLqzvcog+yszMDAAQGRkJBweHf73EK8vhZMGCBXB3d8fFixeRlJSESZMm4dq1a3j16hUCAgKyVzURERERZUraHJOMrmQhUqK0/1fVavW/hpMsr9ZVpUoV3Lp1C02aNEGXLl0QFxeH7t27IygoCGXKlMlexURERESUJbyUi/KLrPy/muWREwCwsbHBlClTsnMoERERERFRhrI8cuLq6oqZM2fi0aNHuVEPERERERF9orI8cjJ27FisX78eM2fORMuWLTFw4EB069aNK3URERER6duiPLzUa4LIu++lZ2FhYShVqhSCgoJQo0YNfZeTba6urhg7dizGjh2r71I+KMsjJ2PHjkVwcDAuXLgANzc3jBo1CkWLFsXIkSNx6dKl3KiRiIiIiPIxSZI++jVjxgy91rZnz56P7uPi4oLw8HBUqVIl0+3OmDEjXwcZfclyOElTq1Yt+Pj44OnTp5g+fTrWrFmDunXrokaNGvj1118hxKeTpomIiIjow8LDw+WvpUuXwtraWuu5iRMnZqm9pKSkXKo0YwYGBnBycoKhYbama+dIXp+rvmU7nKjVamzbtg2dO3fGhAkTUKdOHaxZswY9evTAd999B09PT13WSURERET5lJOTk/xlY2MDSZLkx3FxcfD09ISjoyMsLS1Rt25dHD16VOt4V1dXzJo1C3379oW1tTWGDBkCAPjll1/g4uICc3NzdOvWDYsXL4atra3WsXv37kWtWrVgamqK0qVLw9vbG8nJyXK7ANCtWzdIkiQ/fl9YWBgkSUJwcDAAwN/fH5Ikwc/PD3Xq1IG5uTkaNWqE0NBQAMD69evh7e2NkJAQeXRo/fr1AICoqCgMGjQI9vb2sLa2RqtWrRASEiJ/r7QRlzVr1qBUqVIwNTXF6tWr4ezsjJSUFK26unTpggEDBgAA7t69iy5dunz055gfZDmcXLp0SetSrsqVK+Pq1as4ffo0vv76a0ydOhVHjx7F7t27c6NeIiIiIipAYmNj0b59e/j5+SEoKAht27ZFp06d8PDhQ639Fi5ciOrVqyMoKAhTp05FQEAAhg0bhjFjxiA4OBht2rTBnDlztI45deoU+vbtizFjxuD69etYtWoV1q9fL+/3999/AwDWrVuH8PBw+XFmTZkyBYsWLcLFixdhaGgoB4XevXtjwoQJqFy5sjw61Lt3bwBAz549ERkZiYMHDyIwMBC1atWCu7s7Xr16Jbd7584d7Ny5E7t27UJwcDB69uyJly9f4vjx4/I+r169wqFDh+QBgcz+HJUuy2NTdevWRZs2bbBixQp07doVRkZG6fYpVaoUvvjiC50USEREREQFV/Xq1VG9enX58axZs7B7927s27cPI0eOlJ9v1aoVJkyYID+eMmUK2rVrJ18SVr58eZw5cwb79++X9/H29sa3336Lfv36AQBKly6NWbNmYdKkSZg+fTrs7e0BALa2tnBycspy7XPmzEHz5s0BAN9++y06dOiAhIQEmJmZwdLSEoaGhlrtnj59GhcuXEBkZKS8mNTChQuxZ88e7NixQx4RSkpKwm+//SbXBwDt2rXD5s2b4e7uDgDYsWMHihQpgpYtW2bp56h0WR45uXfvHg4dOoSePXtmGEwAwMLCAuvWrctxcURERERUsMXGxmLixIlwc3ODra0tLC0tcePGjXSf+NepU0frcWhoKOrVq6f13PuPQ0JCMHPmTFhaWspfgwcPRnh4ON68eZPj2qtVqyb/u2jRogCAyMjID+4fEhKC2NhYFC5cWKum+/fv4+7du/J+JUuW1AomAODp6YmdO3ciMTERALBp0yZ88cUXUKlS385n9ueodFkeOSlZsmRu1EFEREREn6CJEyfiyJEjWLhwIcqWLQszMzN8/vnn6SaCW1hYZLnt2NhYeHt7o3v37um2mZqaZrvmNO9+UJ92F/T354W8X0/RokXh7++fbtu7c2UyOtdOnTpBCIEDBw6gbt26OHXqFJYsWSJvz+zPUenyfskBIiIiIqL/FxAQgP79+6Nbt24AUt/Ah4WF/etxFSpUSDdH5P3HtWrVQmhoKMqWLfvBdoyMjKDRaLJe+L8wNjZO126tWrUQEREBQ0PDD06+/xBTU1N0794dmzZtwp07d1ChQgXUqlVL3p7dn6PSMJwQERERkd6UK1cOu3btQqdOnSBJEqZOnfrR0Yc0o0aNQrNmzbB48WJ06tQJx44dw8GDB+URDACYNm0aOnbsiBIlSuDzzz+HSqVCSEgIrl69itmzZwNIXbHLz88PjRs3homJCQoVKqST83J1dcX9+/cRHByM4sWLw8rKCq1bt0bDhg3RtWtXLFiwAOXLl8fTp09x4MABdOvWLd2la+/z9PREx44dce3aNXz11Vda27L7c1QahhMiIiKigiIf3rV98eLFGDBgABo1aoQiRYrgm2++QUxMzL8e17hxY6xcuRLe3t74/vvv4eHhgXHjxmHZsmXyPh4eHti/fz9mzpyJ+fPnw8jICBUrVsSgQYPkfRYtWoTx48fjl19+QbFixXQ22tCjRw/s2rULLVu2RFRUFNatW4f+/fvjzz//xJQpU/D111/j+fPncHJyQrNmzeDo6PivbbZq1Qp2dnYIDQ1Fnz59tLZl9+eoNJLIwt0S1Wo1KlasiP3798PNzS0361KcmJgY2NjYIDo6GtbW1vouh6hASUhIQM+ePXHpyWs0Gb0IBsYm2WonKS4G+yd2gnHRcuiyYBeMTc2z1U5ibBR2DqwHVSFntJ/yC4zMzPRaT3JSAo7P7o/q9kbYvn17tq+TTvs549EFbPeqDVMjg+y1o9ag5/JAwKVejuohog/72PuOhIQE3L9/X74HBr01ePBg3Lx5E6dOndJ3KfSOrPw/m6WREyMjIyQkJOSouHfNmzcPu3btws2bN2FmZoZGjRph/vz5qFChgrxPQkICJkyYAF9fXyQmJsLDwwM///yznC5DQkLwww8/4PTp03jx4gVcXV3lNa/f5e/vj/Hjx+PatWtwcXHB999/j/79++vsXIhI947PG4L46BeQJBWMzCxQq++3sHN1Q+CGeXhyyR9xL56i7ZztKORa8aPtHJrcHfH/PPv/dizRYMR8FC5bDdFP7uLU/4YjIeYVjC2s0XTCchRy/fAHL0qrR1c+W3gOEdGJUEkSrEwN4eNZGTVL2uB2RCz6rQnBi9gk2JgZYv2gGqhczCrX6yEiyqyFCxeiTZs2sLCwwMGDB7Fhwwb8/PPP+i6LciDLl3V5eXlh/vz5WLNmDQwNc3ZV2IkTJ+Dl5YW6desiOTkZ3333HT777DNcv35dXqVg3LhxOHDgALZv3w4bGxuMHDkS3bt3R0BAAAAgMDAQDg4O2LhxI1xcXHDmzBkMGTIEBgYG8prO9+/fR4cOHTBs2DBs2rQJfn5+GDRoEIoWLQoPD48cnQMR5Z7GoxfC2CL1E8NHf/vh/Krv0W7eTrjUawO3jl/j6Mx+mWqn5ZR1MLG0AQCEBezHyYUj0G3laZz5cRwqtO+Pcp/1wf1Te3FqkRc6/3Qs39SjK9tG1IateeqKM7sDw9F/bTBCZjbH0A1XMKRFCfRv4oIdfz9F/zXB+Ht601yvh4gosy5cuIAFCxbg9evXKF26NHx8fLQu2aL8J8vp4u+//4afnx8OHz6MqlWrplvqbNeuXZlu69ChQ1qP169fDwcHBwQGBqJZs2aIjo7G2rVrsXnzZrRq1QpA6h083dzccO7cOTRo0EC+E2ea0qVL4+zZs9i1a5ccTlauXIlSpUph0aJFAAA3NzecPn0aS5YsYTghUrC0IAAA6jevAaROcnRw+/iEwfelBQEAUMfFQJIkxEc9x4vbwfCYl/qa5dqkM84tn4SYJ/dgYmOnqHrM7Z2z1H5WpQUTAIiOT4YECZExibgYFo3DE+sDAHrUKYqRG6/hzrM4FLfjZSREpAzbtm3TdwmkY1kOJ7a2tujRo0du1ILo6GgAgJ1d6huDwMBAqNVqtG7dWt6nYsWKKFGiBM6ePYsGDRp8sJ20NgDg7NmzWm0AqROkxo4d+8FaEhMT5ZvcAMiXE4qICoKzK75D5PULAIDm/83+UP2JBcMQEZJ6DXKb2dsQ9/wJzOwcoTJIfRmUJAkW9sUR+/zxB8OJvurJ7XACAH1/CcLxGy8BAH+Oq4dHr+JR1NYEhgYquZ4ShU3x8GU8wwkREeWaLIeT3Lrze0pKCsaOHYvGjRujSpUqAICIiAgYGxtr3ZQGABwdHREREZFhO2fOnMHWrVtx4MAB+bmIiIh0KyA4OjoiJiYG8fHxMMtgsuu8efPg7e2dw7MiopxqOHwuAODeyb0I9l2CFpNWZKud5pNWAgBuH9mCi2tnoFa/KQWiHl35bXBNAMCG04/wzfYbmNW9wr8cQUREpHuq7B74/PlznD59GqdPn8bz589zXIiXlxeuXr0KX1/fbLdx9epVdOnSBdOnT8dnn32Wo3omT56M6Oho+evRo0c5ao+IcqZ0sy6IvP43El9H5aidcm2+RHjIaVgUcUb8q2dI0SQDAIQQiHv+GJb2xfNlPbrSr4kLjt98ieKFzBAelYhkTYpcz8OXCShROHsrlxEREWVGlsNJXFwcBgwYgKJFi6JZs2Zo1qwZnJ2dMXDgQLx58yZbRYwcORL79+/H8ePHUbz42z/ETk5OSEpKQlRUlNb+z549g5OTk9Zz169fh7u7O4YMGYLvv/9ea5uTkxOePXuWrg1ra+sMR00AwMTEBNbW1lpfRJR3kuJi8OafSPnx44t+MLa0gfE78zUyIzE2Gm9ehsuPH5w5ABNrO5ja2qNw2Wq465d6vXLY6X0wL+IM62Kl80U9uhL1Ro2n/7xdhXHPpQgUtjSGg7UxapW0xsazTwAAOy+Go7idKco6WnyoKSIiohzL8mVd48ePx4kTJ/DHH3+gcePGAIDTp09j9OjRmDBhAlasyPwlDkIIjBo1Crt374a/vz9KlSqltb127dowMjKCn5+fPM8lNDQUDx8+RMOGDeX9rl27hlatWqFfv36YM2dOuu/TsGFD/Pnnn1rPHTlyRKsNIlIW9ZtYnPaZAE1SAiSVCiZWhdB84nJIkoQLa73xNOgkEqJf4vj8oTAys0CnxX9m3E5cNI7N/hqapHhAUsHUpgjazPSFJEloPHoJTi7yQojvYhiZW6HphGUZtqHEenQl+o0aPX8ORHxSClQqwN7KBPvH1oUkSVjVrxr6rw3G3P13YG1miHUDqud6PURE9GnLcjjZuXMnduzYgRYtWsjPtW/fHmZmZujVq1eWwomXlxc2b96MvXv3wsrKSp5HYmNjAzMzM9jY2GDgwIEYP3487OzsYG1tjVGjRqFhw4byZPirV6+iVatW8PDwwPjx4+U2DAwMYG9vDwAYNmwYli1bhkmTJmHAgAE4duwYtm3bpjUvhYiUxcLeGR6ztmS4rd7A6Zlux9KxBDr/5JfhNhuXcui09HC+rEdXShYxx4VpGS8PXKGoJc5+3yRP6yEi+tS0aNECNWrUwNKlS/VdSrbNmDEDe/bsQXBwcI7bynI4efPmTbrJ5QDg4OCQ5cu60oLMu0EHSJ10n3aDxCVLlkClUqFHjx5aN2FMs2PHDjx//hwbN27Exo0b5edLliyJsLAwAECpUqVw4MABjBs3Dj/++COKFy+ONWvWcBlhIiIiKlCKzDiZZ9/rxYxmWdq/f//+2LBhA4DUG3uXKFECffv2xXfffZfje+flZ7t27YKRkdG/7/j/wsLCUKpUKQQFBaFGjRq5V5ieZPn/hIYNG2L69On47bff5NvPx8fHw9vbO8uXSQkh/nUfU1NTLF++HMuXL89w+4wZMzBjxox/badFixYICgrKUn1EREREpDtt27bFunXrkJiYiD///BNeXl4wMjLC5MmT0+2blJQEY2PjPK9RCAGNRqPzwPSh83n39hd5Ta1WZykY5YUsT4j/8ccfERAQgOLFi8Pd3R3u7u7yndl//PHH3KiRiIiIiAoAExMTODk5oWTJkhg+fDhat26Nffv2AUgdWenatSvmzJkDZ2dnVKiQuqT5o0eP0KtXL9ja2sLOzg5dunSRr45J8+uvv6Jy5cowMTFB0aJF5Rtxh4WFQZIkrcuNoqKiIEkS/P39AQD+/v6QJAkHDx5E7dq1YWJigtOnTyMkJAQtW7aElZUVrK2tUbt2bVy8eFFuZ+fOnfL3dHV1lW/2ncbV1RWzZs1C3759YW1tjSFDhmT4M2nRooXWvfdcXV0xd+5cDBgwAFZWVihRogRWr14tb0+bo12zZk1IkqR1BdKaNWvg5uYGU1NTVKxYUetqo7SfxdatW9G8eXOYmppixYoVMDMzw8GDB7Vq2r17N6ysrOSror755huUL18e5ubmKF26NKZOnQq1Wp3h+eRUliNhlSpVcPv2bWzatAk3b94EAHz55Zfw9PT84MpXRERERETvMzMzw8uXL+XHfn5+sLa2xpEjRwCkfrLv4eGBhg0b4tSpUzA0NMTs2bPRtm1bXL58GcbGxlixYgXGjx+PH374Ae3atUN0dDQCAgKyXMu3336LhQsXonTp0ihUqBCaNWuGmjVrYsWKFTAwMEBwcLA8yhAYGIhevXphxowZ6N27N86cOYMRI0agcOHC8tQEAFi4cCGmTZuG6dMzPzcRABYtWoRZs2bhu+++w44dOzB8+HA0b94cFSpUwIULF1CvXj0cPXoUlStXlkdjNm3ahGnTpmHZsmWoWbMmgoKCMHjwYFhYWKBfv35a57lo0SLUrFkTpqamOHXqFDZv3ox27drJ+2zatAldu3aFubk5AMDKygrr16+Hs7Mzrly5gsGDB8PKygqTJk3K8s/532RrvMrc3ByDBw/WdS1ERERE9AkQQsDPzw9//fUXRo0aJT9vYWGBNWvWyG+4N27ciJSUFKxZswaSJAFInZtsa2sLf39/fPbZZ5g9ezYmTJiAMWPGyO3UrVs3yzXNnDkTbdq0kR8/fPgQ//3vf1GxYkUAQLly5eRtixcvhru7O6ZOnQoAKF++PK5fv47//e9/WuGkVatWmDBhQpZrad++PUaMGAEgddRiyZIlOH78OCpUqCAv+FS4cGGtW2tMnz4dixYtQvfu3QGkjrBcv34dq1at0gonY8eOlfcBAE9PT/znP//BmzdvYG5ujpiYGBw4cAC7d++W93n3Nh2urq6YOHEifH19lRNObt++jePHjyMyMhIpKSla26ZNm6aTwoiIiIioYNm/fz8sLS2hVquRkpKCPn36aM0drlq1qta8jJCQENy5cwdWVlZa7SQkJODu3buIjIzE06dP4e7unuPa6tSpo/V4/PjxGDRoEH7//Xe0bt0aPXv2RJkyZQAAN27cQJcuXbT2b9y4MZYuXQqNRgMDA4MM28ysatWqyf+WJAlOTk6IjIz84P5xcXG4e/cuBg4cqDWAkJycDBsb7ftxvV9T+/btYWRkhH379uGLL77Azp07YW1tjdatW8v7bN26FT4+Prh79y5iY2ORnJyca/cAzHI4+eWXXzB8+HAUKVIETk5OcooFUn94DCdERERElJGWLVtixYoVMDY2hrOzc7pJ5xYW2jd6jY2NRe3atbFp06Z0bdnb20Ol+vj06bTt7y7C9KG5Eu9/7xkzZqBPnz44cOAADh48iOnTp8PX1xfdunX76Pf8WJuZ9f4kdUmS0g0IvCs2NhZA6vv0+vXra21LC0ofqsnY2Biff/45Nm/ejC+++AKbN29G79695b45e/YsPD094e3tDQ8PD9jY2MDX1zfdHBtdyXI4mT17NubMmYNvvvkmN+ohIiIiogLKwsICZcuWzfT+tWrVwtatW+Hg4PDBT+pdXV3h5+eHli1bptuWdglUeHg4atasCQBZuhdH+fLlUb58eYwbNw5ffvkl1q1bh27dusHNzS3dvJaAgACUL18+XRjQtbSRJY1GIz/n6OgIZ2dn3Lt3D56enllu09PTE23atMG1a9dw7NgxzJ49W9525swZlCxZElOmTJGfe/DgQQ7O4OOyvFrXP//8g549e+ZGLUREREREMk9PTxQpUgRdunTBqVOncP/+ffj7+2P06NF4/PgxgNQRjkWLFsHHxwe3b9/GpUuX8NNPPwFInXDfoEED/PDDD7hx4wZOnDihNX/iQ+Lj4zFy5Ej4+/vjwYMHCAgIwN9//w03NzcAwIQJE+Dn54dZs2bh1q1b2LBhA5YtW4aJEyfm3g/j/zk4OMDMzAyHDh3Cs2fPEB0dDQDw9vbGvHnz4OPjg1u3buHKlStYt24dFi9e/K9tNmvWDE5OTvD09ESpUqW0Rl/KlSuHhw8fwtfXF3fv3oWPj4/WfBRdy3I46dmzJw4fzts7GBMRERHRp8fc3BwnT55EiRIl0L17d7i5uWHgwIFISEiQR1L69euHpUuX4ueff0blypXRsWNH3L59W27j119/RXJyMmrXro2xY8dqjQp8iIGBAV6+fIm+ffuifPny6NWrF9q1awdvb28AqSM627Ztg6+vL6pUqYJp06Zh5syZWpPhc4uhoSF8fHywatUqODs7y3NfBg0ahDVr1mDdunWoWrUqmjdvjvXr18tLD3+MJEn48ssvERISkm7kpXPnzhg3bhxGjhyJGjVq4MyZM/JCALlBEpm4E6KPj4/877i4OCxevBgdOnRA1apV010TN3r0aN1XqQAxMTGwsbFBdHR0rk0AIvpUJSQkoGfPnrj05DWajF4EA2OTbLWTFBeD/RM7wbhoOXRZsAvGpubZaicxNgo7B9aDqpAz2k/5BUbZXCZdV/UkJyXg+Oz+qG5vhO3bt8s3wM2qtJ8zHl3Adq/aMDXK3qUHCWoNei4PBFzq5ageIvqwj73vSEhIwP3791GqVCn+/lG+kJX/ZzM152TJkiVajy0tLXHixAmcOHFC63lJkgpsOCEiIiIiotyVqXBy//793K6DiIiIiIg+cVmec0JERERERJQbshxOevTogfnz56d7fsGCBVzFi4iIiIiIsi3L4eTkyZNo3759uufbtWuHkydP6qQoIiIiIiL69GQ5nMTGxso3f3mXkZERYmJidFIUEREREX1cJhZcJVKErPy/muVwUrVqVWzdujXd876+vqhUqVJWmyMiIiKiLEi7jcObN2/0XAlR5qT9v/r+LUgykqnVut41depUdO/eHXfv3kWrVq0AAH5+ftiyZQu2b9+e1eaIiIiIKAsMDAxga2uLyMhIAKk3KpQkSc9VEaUnhMCbN28QGRkJW1tbGBj8+/21shxOOnXqhD179mDu3LnYsWMHzMzMUK1aNRw9ehTNmzfPVuFERERElHlOTk4AIAcUIiWztbWV/5/9N1kOJwDQoUMHdOjQITuHEhEREVEOSZKEokWLwsHBAWq1Wt/lEH2QkZFRpkZM0mQrnABAUlISIiMjkZKSovV8iRIlstskEREREWWBgYFBlt74ESldlsPJ7du3MWDAAJw5c0breSEEJEmCRqPRWXFERERERPTpyHI46d+/PwwNDbF//34ULVqUE7CIiIiIiEgnshxOgoODERgYiIoVK+ZGPURERERE9InK8n1OKlWqhBcvXuRGLURERERE9AnLcjiZP38+Jk2aBH9/f7x8+RIxMTFaX0RERERERNmR5cu6WrduDQBwd3fXep4T4omIiIiIKCeyHE6OHz+eG3UQEREREdEnLsvh5GN3gb969WqOiiEiIiIiok9Xtm/CmOb169fYsmUL1qxZg8DAQF7WRUQ5oklO0smxGnUSklVZnlYHAEhRJ2q1qUrKXju5UY+uJKpT/n2nXDiWiIjoY7IdTk6ePIm1a9di586dcHZ2Rvfu3bF8+XJd1kZEn6CzP0/O9rEi5e2b5lMLhiG7t2ESKW8/ZDm/8jtktyFd1ZMbvlodpO8SiIiI0slSOImIiMD69euxdu1axMTEoFevXkhMTMSePXtQqVKl3KqRiD4RtYpZ5eh4jUaDwHBD4J/7qFamDlTZHKnQaFQIfCABceGo4VYsB+3oph6dc6mn7wqIiIgyJAkhRGZ27NSpE06ePIkOHTrA09MTbdu2hYGBAYyMjBASElLgw0lMTAxsbGwQHR0Na2trfZdDVKAIIZCYmPNLl95tx8TEBFJ2RzwU1s67dFWPrujqvIhIG9930Kcq0yMnBw8exOjRozF8+HCUK1cuN2siok+MJEkwNTXVSVtmZmYFsh1d0OXPmYiIKDdk+hqD06dP4/Xr16hduzbq16+PZcuW8U7xRERERESkM5kOJw0aNMAvv/yC8PBwDB06FL6+vnB2dkZKSgqOHDmC169f52adRERERERUwGV6zklGQkNDsXbtWvz++++IiopCmzZtsG/fPl3Wpxi89pOIiIjyCt930KcqR0vHVKhQAQsWLMDjx4+xZcsWXdVERERERESfoByNnHxK+AkGERER5RW+76BPlUIW3SciIiIiok8dwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESkCwwkRERERESmCob4LyG8SEhJgbGyc7eOFEEhMTAQAmJiYQJKkAtHOu3RVj67o6ryIiIiIKHcxnGRR3759YWRklO3jNRoNAgMDAQB16tSBSpW9wSultfOu7du3w9TUNFvHJiYmomfPnjmuQVf1EBEREVHeYTjJopDwWKgMsv9jEykpiE5IhnHRcrj8QgNJ0mSzHQ1ikgRUhZwR/DQWyO5IhY7qSVPdPvvBTcujC7ppx6WebtohIiIiolzHcJINDUfMg4Fh9i7tSop/jYPf9gAANJ20EkYm2ftEXx0Xjd3DmgIA6g+bm+12dFVPijoRJ+YPzdaxH7JxSE2YGGVvJCdRnYKvVgfptB4iIiIiyl0MJ9lgYGgMA2OT7B2rfjufwsDIGIbG2QsDmqQERdWTnK2jPs7ESAVTI4NcaJmIiIiIlIirdRERERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSIY6vObz5s3D7t27cLNmzdhZmaGRo0aYf78+ahQoYK8T0JCAiZMmABfX18kJibCw8MDP//8MxwdHeV9Ro8ejYCAAFy9ehVubm4IDg5O9722bduGuXPn4tatW7C3t8fIkSPx3//+N8fncHzeEMRHv4AkqWBkZoFafb+FnasbAjfMw5NL/oh78RRt52xHIdeKH23n0OTuiP/n2f+3Y4kGI+ajcNlqiH5yF6f+NxwJMa9gbGGNphOWo5CrW76pR1c+W3gOEdGJUEkSrEwN4eNZGTVL2uB2RCz6rQnBi9gk2JgZYv2gGqhczCrX6yEiIiIi3dNrODlx4gS8vLxQt25dJCcn47vvvsNnn32G69evw8LCAgAwbtw4HDhwANu3b4eNjQ1GjhyJ7t27IyAgQKutAQMG4Pz587h8+XK673Pw4EF4enrip59+wmeffYYbN25g8ODBMDMzw8iRI3N0Do1HL4SxhTUA4NHffji/6nu0m7cTLvXawK3j1zg6s1+m2mk5ZR1MLG0AAGEB+3Fy4Qh0W3kaZ34chwrt+6PcZ31w/9RenFrkhc4/Hcs39ejKthG1YWtuBADYHRiO/muDETKzOYZuuIIhLUqgfxMX7Pj7KfqvCcbf05vmej1EREREpHt6vazr0KFD6N+/PypXrozq1atj/fr1ePjwIQIDAwEA0dHRWLt2LRYvXoxWrVqhdu3aWLduHc6cOYNz587J7fj4+MDLywulS5fO8Pv8/vvv6Nq1K4YNG4bSpUujQ4cOmDx5MubPnw8hRI7OIS0IAID6zWsAEgDAwa0OzAs7ZbqdtCAAAOq4GEiShPio53hxOxhl3HsBAFybdEbc8yeIeXIv39SjK2nBBACi45MhQUJkTCIuhkXjq4bFAAA96hTFo1cJuPMsLtfrISIiIiLd0+vIyfuio6MBAHZ2dgCAwMBAqNVqtG7dWt6nYsWKKFGiBM6ePYsGDRpkqt3ExESYm5trPWdmZobHjx/jwYMHcHV1zfCYxMRE+XFMTMwH2z+74jtEXr8AAGj+358zVVNGTiwYhoiQUwCANrO3Ie75E5jZOUJlkNpNkiTBwr44Yp8/homNnaLqMbd3zvb3yay+vwTh+I2XAIA/x9XDo1fxKGprAkMDlVxPicKmePgyHsXtTHO9HiIiIiLSLcVMiE9JScHYsWPRuHFjVKlSBQAQEREBY2Nj2Nraau3r6OiIiIiITLft4eGBXbt2wc/PDykpKbh16xYWLVoEAAgPD8/wmHnz5sHGxkb+cnFx+WD7DYfPRZefjqJqz1EI9l2S6bre13zSSvTedA21+n+Pi2tnZLsdpdWjK78NrolHi1tjdvcK+Gb7DX2XQ0REREQ6pphw4uXlhatXr8LX11fnbQ8ePBgjR45Ex44dYWxsjAYNGuCLL74AAKhUGf8IJk+ejOjoaPnr0aNH//p9SjfrgsjrfyPxdVSO6i3X5kuEh5yGRRFnxL96hhRNMgBACIG4549haV88U+0orR5d6dfEBcdvvkTxQmYIj0pEsiZFrufhywSUKGyWp/UQERERkW4oIpyMHDkS+/fvx/Hjx1G8+Ns3uk5OTkhKSkJUVJTW/s+ePYOTU+bnT0iShPnz5yM2NhYPHjxAREQE6tWrBwAfnKdiYmICa2trra/3JcXF4M0/kfLjxxf9YGxpA+N35mtkRmJsNN68fDuC8+DMAZhY28HU1h6Fy1bDXb9tAICw0/tgXsQZ1sUyrllp9ehK1Bs1nv6TID/ecykChS2N4WBtjFolrbHx7BMAwM6L4ShuZ4qyjha5Wg8RERER5Q69zjkRQmDUqFHYvXs3/P39UapUKa3ttWvXhpGREfz8/NCjRw8AQGhoKB4+fIiGDRtm+fsZGBigWLHUydNbtmxBw4YNYW9vn+361W9icdpnAjRJCZBUKphYFULzicshSRIurPXG06CTSIh+iePzh8LIzAKdFv+ZcTtx0Tg2+2tokuIBSQVTmyJoM9MXkiSh8eglOLnICyG+i2FkboWmE5blm3p0JfqNGj1/DkR8UgpUKsDeygT7x9aFJElY1a8a+q8Nxtz9d2BtZoh1A6rnej1ERERElDv0Gk68vLywefNm7N27F1ZWVvI8EhsbG5iZmcHGxgYDBw7E+PHjYWdnB2tra4waNQoNGzbUmgx/584dxMbGIiIiAvHx8fJ9TipVqgRjY2O8ePECO3bsQIsWLZCQkIB169Zh+/btOHHiRI7qt7B3hsesLRluqzdweqbbsXQsgc4/+WW4zcalHDotPZwv69GVkkXMcWFaxssDVyhqibPfN8nTeoiIiIgod+g1nKxYsQIA0KJFC63n161bh/79+wMAlixZApVKhR49emjdhPFdgwYN0goaNWvWBADcv39fXolrw4YNmDhxIoQQaNiwIfz9/eVLu4iIiIiISP/0flnXvzE1NcXy5cuxfPnyD+7j7+//0TaKFCmCs2fPZrU8IiIiIiLKQ4qYEE9ERERERMRwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREisBwQkREREREimCo7wLyI01ykk6O1aiTkKzKXj5MUSdqtalKyl47uVGPriSqU/RyLBERERHpB8NJNpz9eXK2jxUpb980n1owDJKU3XY08r/Pr/wO2W1IV/Xkhq9WB+m7BCIiIiLKQwwnWVS9qCWMjIyyfbxGo0FguCHwz31UK1MHqmyOVGg0KgQ+kIC4cNRwK5aDdnRTj8651NN3BURERESUxyQhhNB3EflBTEwMbGxs8OzZM1hbW2e7HSEEEhNTL4EyMTGBlN0RD4W18y5d1aMrujovIiKivJL2viM6OjpH7zuI8huOnGSRqakpTE1Nc9SGmZmZTmpRWju6IElSjn++RERERJQ/KeQaHiIiIiIi+tQxnBARERERkSIwnBARERERkSIwnBARERERkSIwnBARERERkSJwta5MSltxOSYmRs+VEBERUUGX9n6Dd3ygTw3DSSa9fv0aAODi4qLnSoiIiOhT8fr1a9jY2Oi7DKI8w5swZlJKSgqePn0KKyurXL+hX0xMDFxcXPDo0SPeeKkAYb8WTOzXgon9WjDlp34VQuD169dwdnaGSsWr8OnTwZGTTFKpVChevHiefk9ra2vFv3hS1rFfCyb2a8HEfi2Y8ku/csSEPkWM4kREREREpAgMJ0REREREpAgMJwpkYmKC6dOnw8TERN+lkA6xXwsm9mvBxH4tmNivRMrHCfFERERERKQIHDkhIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDghIiIiIiJFYDjRIy6URkSkf3wtJiJSDoaTPBQVFYUOHTrgf//7HwAgJSVFzxWRLvzzzz948OABAECj0ei5GtKVZ8+eYenSpdi1axdu3boFgG9iC4qXL19ixIgR2LdvHwD2a0Hx4sULnDlzBvfu3dN3KUSUAwwneejw4cM4ePAgfvjhB0RGRsLAwIABJZ/74YcfUKJECUyZMgUAYGBgoOeKSBemTZuGMmXKYP/+/Rg5ciT69euH69evQ5IkvpEtAObPn4+VK1diw4YNiImJgUqlYr/mc5MnT4abmxvGjh2LKlWqYMmSJXj58qW+yyKibGA4yUMnTpyAp6cnatWqhdGjR+u7HMqBxMREjB07Frt27ULTpk3x4MED7N69GwBHxPK733//HQcOHMDevXtx9OhR/P7770hJScHZs2cBAJIk6blCyqmQkBC0adMGUVFRWL9+vb7LoRx4+vQpevbsiaNHj2LHjh3YsWMHJk6ciDVr1uDMmTP6Lo+IsoHhJA8kJycDAGxtbVGrVi307dsXBw4cwMmTJ6FSsQvyGyEETExMUKZMGQwePBjz589H4cKFsXHjRn4KWwAcOnQI9vb2cHd3BwD5v/Xq1ZP3Yf/mD+/3k0ajQWJiImxtbTFlyhS4uLhg7969uHHjBiRJ4mWZ+cS7/ZrWdz4+PmjevDlKlCiBmTNnIi4uDs+ePUu3PxEpH98Z61jai+C7f+QMDQ0BAAEBAShbtiw6dOiA1q1bY9q0aRBCwM/PD0lJSXqplzLnzZs3ePToEZKSkuRPzocOHYrBgwejatWq6NChA548ecJPYfOptNGupKQk2Nvb4/Xr1wgKCsLLly/Ro0cPPHr0CNOnT8f8+fOh0Wg4epIPJCUlab2uCiFgYGAAExMT3Lp1Cy4uLvjiiy+gVquxd+9eJCUlITIyUo8VU2YkJSVp/X2tWrUqRo4ciYYNGwJI/V0WQqBYsWLy7zV/X4nyF4YTHVq0aBEGDRoEQHvuQUpKCpKTk2FmZoaSJUvCzs4OI0aMQGBgIAwMDODn54fExER9lU3/wtvbGzVr1kSPHj3g7u6O0NBQANAaIenZsycqVKiAP/74A7dv34YkSby8S+FWr16NX375BUBqX6akpMDY2Bjdu3eHnZ0dvvnmGzg4OCAqKgqrVq1C6dKlsWrVKgwbNgwAL99TshkzZqBJkybo0qULVq9ejX/++Ud+gxoaGgqVSgVXV1e0bdsWDRo0wKpVq2BqaoodO3awXxVs9uzZaNu2Lbp06YKffvoJL1++hIODA5o1awYg9XdSpVIhMjISV69eRdWqVfVcMRFli6Acu3btmujUqZOwsLAQjo6OYvv27UIIIZKTk7X2a9SokQgLCxN//fWXcHJyEoUKFRKFCxcWCQkJQgghNBpNntdOH3bmzBlRp04dUaVKFbFnzx7x+++/i2bNmokmTZpo7ZeSkiKEEGLfvn2icePG4ttvv5W3pfVp2j6kf5cuXRItWrQQkiQJd3d3ERQUJITQ/n3VaDRi1apVokOHDuLNmzfy8+vWrROOjo4iMjIyr8umTFCr1eI///mPKFu2rNiwYYP48ssvReXKlUXHjh3lfcLDw0WbNm2EEEL8+eefwt7eXlhaWopmzZqJxMREIQR/X5UmMDBQ1KlTR1SuXFmsXbtW9O7dW9SsWVOMGzcuw/3/+OMPUa5cOflvKxHlLxw50YEzZ85AkiT8+uuv8PDwwI8//oikpCQYGBjIn6zfvHkTr169gru7O3r06IGRI0di27ZtcHR0xOTJk/V8BpSRgIAAVKtWDQEBAejSpQu++uortGvXDoUKFZLnEb37KWunTp1Qv359BAQE4NixY9i2bRu8vLwA8LICpdBoNNi/fz8cHR2xYsUKxMTEYPfu3UhJSZF/X4UQUKlUCA0NhYODA8zMzOTjHz16BEdHR366rlCPHj3C33//jcWLF6Nv377YvHkzlixZAj8/PyxZsgQAEBgYiMuXL6NRo0bo3bs3xo8fj4kTJyIlJQXbtm3T8xnQ+2JjY7FlyxZUrFgRAQEBGDBgAHx9fdGhQwfcuXMHUVFR6Y65dOkS6tatCxMTEwCpr+W7du3K48qJKLsYTnIgLXj07t0bEydORK9evdCtWze8fv0aixcvBvD2zWvFihXh7OyMli1bIigoCFOmTEHjxo3Ro0cPbN68WZ5ITfqX1q8jRozApEmTYG1tDSB1YYOjR4+ibNmyOHfuHIDUy4HenUjbp08fxMfHo2PHjvjqq69gYWGhn5OgDBkYGKB79+4YPXo0hg4disaNG8Pf3x9Hjx6V90kLks+ePcOrV6/kFX9u3boFf39/tGrVCo6Ojnqpnz5OrVYjNDQU1atXl59r06YNpk6dCm9vbzx+/Bj169eHnZ0dypUrh0uXLuHbb7/F119/DUNDQ+zduxfx8fH8MEFBhBAoVaoUhg8fDhsbG/mDIRsbG4SGhsqvz+/666+/4O7ujidPnqB9+/Zo3rw5Xr9+ndelE1F26XPYpiB68eKFGD9+vKhSpYoICwsTQggRHx8vhBAiJiYm3eUC4eHhIjY2Ns/rpKzZu3evsLKyElWrVhXu7u7C2dlZeHp6iqioKHmfx48fi6FDhwpJksSAAQPEq1ev9FgxZcatW7dEgwYNxPDhw8U///wjhBAiKSlJCCHEuXPnRP369YWdnZ3o0qWLsLKyEp6enuL169d6rJg+5vr166JGjRpiwYIFWs9HR0eLUqVKiQkTJgghhHj06FG6y2jPnDnDvlWo9y+5FEKI77//XvTq1SvdvqGhoaJQoUKiXbt2wtjYWHTp0kW8ePEiz2olopzjR/U6JIRA4cKF0blzZ9ja2mLevHkAAFNTUwCAlZWV/Imc+P9P552cnPjpugKJ95aeTE5OxqZNmxAUFIRDhw7h4MGD2Lx5My5duiTvs3fvXpw4cQLnzp3D2rVrUahQobwum7IgJSUF5cqVQ48ePXDx4kXs378fAGBkZAQAqF+/PtasWYOlS5eiXr168Pf3x8aNG2FpaanPsj9p7/9evq9EiRKoUKECzp8/j7CwMACp/WxtbY0RI0Zg+/btSEhIQPHixeWR6rQ2GzZsyL5VIPH/q6ylSfsbeunSJdSqVUveJ829e/cQFRWFmJgYnDhxAnv27EHhwoXztmgiyhGGk3/x+PFjLF26FPfu3QOg/SKYNrycJu3SnkaNGqFjx47w9/fH6dOnAUC+DCgNLxvQr/DwcFy+fBkvXrxIty05OTld/3Tv3h2dOnWCgYEBDA0NUaZMGdjZ2SEoKEjeZ8SIEbhx44bW/TAob929exczZszAnTt30m17//c17ZLLYcOGoVChQti/f7/8hvbKlSsAgCpVquA///kPvvvuO/mNEOlHdHQ0YmNj5dfgd+f9pPWthYUFunbtitu3b8vzR9JCiI2NDaytrfH8+XOtdvlarF9hYWHo27dvhvN93n8tTklJgSRJiI6Oxvnz5+XlgyVJwoMHDwAAtWvXxl9//YXTp0+jQYMGeXMSRKRTDCcf8fLlS3Ts2BHffPMNjh49Kt/fIC2EGBoaQgghT7RMe2xkZIQOHTqgcuXKmDx5Mtq3b49GjRrhxo0b+jwd+n9jx45FhQoV4OnpiSpVqmDnzp3y9chCCLkfp06d+sE29u/fj9KlS6NHjx55VTZ9hBACw4cPR7ly5RAeHo7ixYvL29LexKb16759++THGo0GlpaWGDhwIO7duwcfHx+0b98e7u7u6d7Ekn4IITB27Fg0b94cbdu2Rd++ffH69WuoVCqo1WoAb/ty06ZN+OKLL9CoUSPs3r1bHg0DgBcvXsDW1hbOzs76OhV6z/Tp0+Hm5oa4uDgYGRnJITMtgL7/NzYtaPr5+cHW1hbNmjXDkydP0KtXL9StWxfPnj2Dvb092rRpo58TIiKdYDj5CDMzM9ja2sLNzQ07duyQP01NG2Jes2YNihYtim3btuHp06cA3n4KZ29vj2fPniEgIABmZmYICwuDm5ubfk6EZL/++iuOHz+OP/74A76+vujcuTOmTp0KHx8fAKn9t2bNGhQrVgzbtm2TP40DgKdPn+Lhw4eYMWMGxo4di44dO6JYsWK8+7CebdmyBUWKFMGFCxdw4cIF+Z4VAOSVt4DU+5o4ODhgx44d8go/ab/LLVu2xNOnT7F06VIYGBggMDAQ9vb2ejkfeuvcuXOoWbMmzp8/j7lz58LDwwMXL17E4MGDAby9BO+XX36Bs7MzfvvtN6jVaowZMwaVKlVCt27dMGLECIwaNQrz589H7969tVZRJP0JDg6Gn58ftm7dip07d6Jbt27yDYvT/o5m9DcWSF39smbNmpg7dy7KlSuHqKgoBAYGcqEKooIiT2e45DOXLl0SHTp0EPfu3RPFixcX3t7e8gToXbt2iRo1aog1a9aku59JSEiIKFeunChbtqw4ffq0PkqnD+jatavo0qWL1nP//e9/RbVq1cSJEydEaGioaNmyZbp+ffz4sfjhhx9EuXLlRNWqVcWxY8fyuHL6EA8PD+Hq6iqePn0qhBDiypUr4q+//hJ3796V71GyePFiYWpqKn799dd0v69+fn5CkiRRtWpVERAQkOf1U8aSk5PFpEmTxJdffqk1UX3r1q2iVKlSIiIiQgghxG+//SZcXFzE2rVrhVqt1mpj4cKFYsiQIcLDw0P4+fnlaf30cV5eXqJdu3ZCCCECAgLEmDFjxP/+9z9x/vx5IYQQR48eFdWqVcvwb2y9evWEJEnCzc1N/PXXX3leOxHlLkkIfoSUnJwsf2IDpH7aKkkS7t+/jwEDBuD48eOYNGkSDh8+jE2bNqFcuXIwNjZGYmKivI76u+Lj43HkyBF07tw5L0+DPiCtP+Pj4/HVV1/B1dUVixYtkrdfvnwZ3333nXyHaLVaLX8im0aj0eDKlSt49uwZPDw88voU6CMuX76Mbt26oU+fPrhx4wYCAwNhaWmJly9fonnz5tiyZQuEEIiOjoatrW2642NiYrBx40aMGDEi74unj/rrr79gZmYm3wEcADZs2IAFCxbg3LlzsLKyAgC8fv1a/jfw9neelCHtzu3A27mZgwcPRpkyZWBra4vZs2ejVatWuH79OiIiIvDtt99izJgxSEhIkEdB08TFxWHu3LmoVKkSPD098/xciCj3ffKXdU2bNg29evXCqFGjcOPGDXleCQCcP39evl59wYIFSEpKQr9+/WBqaopDhw5lGEyEEDAzM2Mw0bNff/0VR44cAZB6iUBavxQpUgT+/v5aE+GrVauGzz77DA8fPsSxY8fSBRMg9fKfGjVqMJjo2bx58zBu3DisWrUKSUlJAFL7r0OHDliwYAGMjY2xfft2bNq0CUuWLMG+ffswc+ZMSJIEGxubdO29u5IT6deuXbsQExOj9ZyHh4ccTNLe1L58+RKFChWCpaWlfHnWu8EE4CR3JZk5cyYGDhyIWbNm4eXLl1CpVDAwMEBCQgL27t2LgIAArFq1Chs3bkRQUBB69+6NHTt24PDhwzA1NU13CZ6FhQXmzJnDYEJUgH2y4eT58+do0qQJ9uzZg+rVq+Pw4cP48ssv5bkHQOofw0aNGgEA9uzZgydPnuDq1auYMGEC2rZtm2G7/KOoXwEBAahduzYGDRoEX19fhIeHA3j7xmby5MkICQnBwYMHtY5r164dIiIieKMuhQoNDUXlypWxZcsWhIeHY/LkyfDw8EBAQAAAYPbs2Zg4cSLmzJmDOnXqoFq1aujduze8vb2xZMkSrQ8d3sUbn+qfv78/KlasiM8//xy+vr4f3C+t/06ePIkmTZrwtVbhHj16hNq1a2PHjh2wsLDAzz//jLZt28qrco0ZMwbBwcHYt28fKlSoIPenl5cXYmNj5ddu9jPRp+eT/ct87tw5vHr1CgcOHMD06dNx+fJltGzZEj/99JO8/G9oaCj279+PZs2aYcCAAfD29kb9+vXx6NEj3Lp1S89nQO+LiorC1q1bUadOHcyZMwf+/v7w9/cHkLrqS0pKClxdXTF48GBMmzZNqw/LlSuHuLg4PHnyRE/V08ccOHAANjY2uHTpEnx9fXH9+nX8888/8PHxwa1bt2BtbY1vvvkGpUqV0jquWLFiMDY2xrVr1/RUOX3MjRs3sHLlSrRu3RqDBw/GnDlz5Del71OpVIiPj0dQUJC8GpMkSVwFUaGOHTuGlJQUnDp1CsuWLcOdO3fg7OyMn376CZcvX0b9+vXRu3dvGBoaao1klytXDs+fP//g/wdEVPB9suEkMjISsbGx8uoeJiYmGDZsGKpUqYL//ve/AIAKFSrg1atXqFChAi5evIixY8fC29sb27dvx4kTJ7TW2Sf9Mzc3R9euXTFs2DBMnjwZZcuWxZYtWxAaGgrg7SdwS5cuRXJyMqZPny4H0T///BPFihVDy5Yt9VY/ZSw5ORnXrl2Dg4ODvLqWk5MTpkyZgocPH2L9+vUAAGtr63THnj17Fg0aNEC1atXysmTKJDs7O7Rp0wZeXl5YuHAhNBqN1nyw9506dQoqlQqNGjXC9evX0bJlS9SuXRsRERF5WDVlRlhYGIyMjOSbDFtYWGDChAkwMTHB/PnzAQBTp06FoaEhfv75ZwQHBwMATpw4geLFi6NDhw76Kp2I9OyTDSdJSUlwdHRESEiI/FyFChXw9ddf4/Hjx/jjjz/Qs2dPHD9+HKtXr0bp0qUBAC1atMCGDRvQt29fXhKiMMbGxmjVqhVq1qwJAJgxYwYCAwNx6NAhJCUlQZIkqNVqmJiYYOPGjYiOjoaHhwfatm2Lbt26oXXr1qhQoYKez4LeZ2hoiMTERMTHxyMlJUW+RK9nz56oXbs2zp8/r3UzzIcPHyIsLAwjR47Enj170LdvXwD/fndxynuOjo74+uuv4ebmBisrK8yaNQvLli3Tel0G3vbdlStX4OTkhGnTpqFatWpwdnbGs2fP4OTkpI/y6SMSEhJgaGiIyMhI+blmzZqhffv2uHbtGo4ePYry5ctj7dq1uHbtGlq3bo3OnTujffv2aNy4MSpVqqTH6olIr/SzSFjuS0lJ+ejzDx48EHZ2dmLp0qUiKSlJ3v7gwQPRqVMnMXTo0HRtaDSa3CuYMuVD/fq+tL4aNGiQqF+/vjh79my6fV6+fCn27dsnli5dKq5cuaLTOkk30pYQPX78uFCpVCIoKEgIIeQlY/39/UXZsmXFtm3bhBBC3Lp1S0yYMEE4OTmJhg0bisuXL+ulbsqad3+v69evLzp37pxuWWAhhGjZsqWQJEk0bdpUBAYG5mWJlElpr703btwQkiSJ3bt3a20PDg4W9evXF/PmzZOfCwsLE1u3bhXz5s3jazERFcylhF+/fg1LS0v5Mh7xzrKS7y4bPHLkSOzfvx979uxBjRo15ON79OgBY2NjeQlSTshThsz267uPw8PD0bhxY/Tu3RuTJ0+GtbU17ty5g7Jly+rlHCi9+Ph4mJmZZbgtrR8TEhLQtm1bGBkZ4ciRI1p9X7ZsWfTt2xfTpk1DfHy8vMpeq1at8vI0KAOZ6ds0aX166tQptGjRAnv27EGnTp2g0Wjw6tUr2NvbY/PmzbC0tORqiAqR0d/Hd/u1V69euHPnDg4fPowiRYrI+zRo0AD16tWDj48P/8YSUToF6roktVqNYcOGoX379vj888/x22+/AUida5CcnAwA8hudoKAg/Pjjj9BoNFi2bJnWncAByPdD4Ium/mW2X9Vqtbx6k6GhITQaDYoWLYqhQ4fijz/+wJo1a9CmTRsMGDAAcXFxejsfSqVWqzF8+HB0794dffv2xblz5+TLd9KWCU7rx+joaHh7e+PEiRNYuXKlvN8///wDCwsLFC5cGABgZmaGFi1aMJjoWWb7Njk5Gc+ePQPw9rW2adOm+PLLL+Ht7Q0/Pz906NABPj4+SE5ORp8+fRhM9EitVmPhwoXYvXs3AO2/j2mXWxoaGiIpKQl37tzBwoULcfPmTSxZsgTR0dEAUsOLiYkJChUqlK4NIiKgAIWTe/fuoW7durh58yYmTZoEGxsb/PDDDxg6dCgAyJ/k+Pj4wMHBAZs3b4aBgQGWLl2KK1euoGPHjli7di3Gjh2LkydP4vPPP9fn6dD/y0q/Fi5cGAcOHEB8fDyAt8vE9unTB6GhoZg4cSIsLS2xa9cueZIm6UdERATq16+Py5cvo1OnTrh8+TKGDRuGBQsWAEidPwSk9qu5uTkOHTqE5s2bY/r06Zg+fTqGDh2KU6dOYdasWXj9+jXc3d31eTr0jqz0raWlJQ4ePJhuPpCXlxcuXbokr8o1fvx4rVEWynsHDx5E9erVMWnSJOzcuRNPnz4F8HY+UNpiFT4+PihUqBB27dqFEiVK4Mcff8S2bdvQu3dv7Nu3D5MmTcLt27fRsWNHvZ0LESmcPq4lyw3Lli0TLVq0EHFxcUKI1GuYV6xYISRJEjt37hQajUZ8++23olChQmLjxo1a80dCQkKEp6en8PDwEA0bNsxwfgLpR1b79f05Kdu3bxeSJIm6deuKS5cu6eMUKAM7duwQlStXFo8fPxZCCBEVFSVmzJghTE1NxdWrV4UQQvTu3Vs4OzuLDRs2aPWrj4+PaNq0qahataqoXr26OH/+vF7OgTKWlb797bfftPo2OTlZbNiwQRgZGYn69evzd1YhYmNjxaBBg8To0aPFvHnzRJ06dcSKFSu09klMTBTDhg0TDg4O4vfff9f6G/vHH3+I9u3bi4YNG4o6deqIc+fO5fUpEFE+UmDmnIwbNw4XL17EqVOn5GtYV6xYAS8vL9SoUQNHjx6FRqOBiYmJvOSoeO9a15iYmAyXIyX9yU6/vuvixYu4dOkShgwZoofq6X0pKSlQqVRYuXIlZs2apXVfmYiICHz11VdQq9U4ceIEzp8/Dzc3N7lf045N+/eDBw/S3deE9CcnfZvmzZs3+OWXX2BmZsbfWQURQuDs2bMoXLgwKlSogM8//xxJSUmYPXu2vEy3EAJ37tyBo6Njhr+zAPDs2TN5+X4iog/Jl5d1XbhwAQC07jNiZWUFU1NT/Pnnn3LgCAgIgLe3N65fv44//vgD9vb2WpfzvH+tK4OJfumqX99Vp04dvsnRsx07duDo0aMIDw+X36gYGBjAyckJp06dkvdzcnLC5MmTcfbsWRw+fBj169eHpaWlvP3dNzkqlYrBRAF01bdpzM3NMWbMGP7O6tm7/Qqk/q1s1KiRvNT60KFD8fjxY+zevVu+rEuSJJQrV07r7+j7y+0zmBBRZuSrcLJnzx4UK1YM7dq1Q1hYGFQqlTy58ssvv4SVlRX69OmDL774AlZWVrh9+zYGDhyIbt26YceOHQDeXhdLysF+LZh+//13ODo64n//+x/69OmDnj17YufOnQBSQ2NCQgLOnDkj9zUAVKlSBe3atcPGjRsBpH9zQ8rAvi2YMurXtMnvKSkpchBp06YNGjZsiOPHj+PYsWMAeB8hItKdfPPXYdOmTZg7dy6aNWuGSpUq4YcffgCQOrlSCAE3Nzf8+OOPWLJkCYoUKYKNGzfi/PnzcHZ2RkJCAlxdXfV7ApQh9mvBk5ycjB9//BHz5s3D3LlzcerUKezZswdlypTB2rVrER8fj5o1a6JJkybYtWsXzpw5Ix/r6OgIIyMjhk2FYt8WTB/r119++QWJiYlQqVSQJEke2R41ahQSEhKwd+9exMXFQQiBW7duAXi7chcRUXYoPpykvciVLVsW7u7umD9/Pjp37gx/f3/4+/tr7ePi4oKvv/4ay5YtQ5cuXQCkXuv86NEjlClTRi/1U8bYrwVXXFwcnj9/jn79+uHrr7+GsbExGjVqhEqVKiEmJkb+NN3b2xtqtRqrV6/Wmp8QHx8vLzNKysK+LZj+rV/TlmwHUke8hBCoWLEiunXrhosXL2LWrFmoW7cuPD09odFoGECJKGf0MQs/M27dupVu5aW0OwZfvXpVdO7cWbRv317e9v6+YWFh4vHjx8LT01PUrFlTPHjwIPeLpn/Ffi2Y3u/XoKAg+e7uaav2bNq0SdSoUUMkJibK+23fvl00bdpUlCxZUixatEj85z//EQ4ODuLUqVN5ewL0Qezbgim7/fru9r///lsYGRkJSZLEkCFD0u1HRJQdihs52bZtG0qVKoVOnTqhQYMG+PXXX+VtaZ/GVK5cGV27dkVYWBjWrVsHQPt61/j4eKxZswbVqlXDw4cPsX37dpQoUSJvT4S0sF8Lpvf7de3atQCAGjVqwMDAQGu1ngMHDqBGjRowNjaWP2H//PPPsWXLFnh4eODUqVN4+fIlTp48iSZNmujtnCgV+7Zgym6/vj96snLlStSrVw8tW7bEnTt3sGrVKvkeNkREOaLvdPSuw4cPC1dXV7F8+XJx6NAhMX78eGFkZCRWr14t3rx5I4R4+yn748ePxcCBA0XdunXF69evhRBCJCUlyW0FBweLEydO5P1JUDrs14LpY/0aHx8vhEgd+UpJSRHx8fGiWrVq4vfff/9ge2nHkP6xbwsmXfZrSEiI2Lp1a16WT0SfCEWEk7ShZW9vb1G7dm2tN6MjRowQderUEbt27Up33P79+0WdOnXE9OnTRUhIiOjYsaN4+PBhntVNH8d+LZiy069PnjwRrq6u4tatW0KI1EtKxo0bl3dFU6awbwsm9isR5SeKuKwr7f4V169fR5kyZWBkZAS1Wg0AmD17NkxNTbF3715EREQAeDtRumXLlqhXrx5mzpyJ2rVrQ61Ww8HBQT8nQemwXwumrPYrABw9ehQuLi4oWrQoxowZg0qVKuHBgwdQq9VcglRB2LcFE/uViPITvYSTI0eOYPTo0Vi6dKl84z0AcHd3x8GDB6HRaOQXz0KFCqFv3744e/YsQkNDAaTOUYiLi8Pq1auxatUqNG/eHJcuXcKhQ4dgYmKij1MisF8Lquz2682bNwGkzhvav38/rl69CldXV/j5+eHs2bPYuXMnjIyM0t0MlfIO+7ZgYr8SUb6Wl8M0T58+FR07dhQODg7C09NTVK1aVdjY2Ijz588LIYQIDQ0VxYoVE1OnThVCCK2VP5ycnMSSJUvkx9euXRP169cXv/32W16eAmWA/Vow6apf4+LiRMeOHUXx4sWFr69vnp8Hpce+LZjYr0RUEORZOImLixP9+vUTvXv3Fvfu3ZOfr1evnujfv78QQoiYmBgxe/ZsYWZmJs8xSLtWtnnz5mLQoEF5VS5lEvu1YNJ1v168eDEPq6ePYd8WTOxXIioo8uyyLnNzc5iYmKB///4oVaqUvCxh+/btcePGDQghYGVlhT59+qBWrVro1asXHjx4AEmS8PDhQ0RGRqJr1655VS5lEvu1YNJ1v9auXVtPZ0LvY98WTOxXIiooJCHybmabWq2GkZERAMhrqXt6esLCwgKrV6+W93vy5AlatGiB5ORk1KlTB2fOnEHFihWxefNmODo65lW5lEns14KJ/VpwsW8LJvYrERUEeRpOMtKkSRMMHjwY/fr1Q0pKCoDUGzzduXMHgYGBOH/+PKpXr45+/frps0zKIvZrwcR+LbjYtwUT+5WI8hu9hpN79+6hUaNGOHDggDyEnJSUxLvM5nPs14KJ/VpwsW8LJvYrEeVHellKOC0PnT59GpaWlvKLpre3N8aMGYPIyEh9lEU5xH4tmNivBRf7tmBivxJRfmaoj2+atkb6hQsX0KNHDxw5cgRDhgzBmzdv8Pvvv/OGe/kU+7VgYr8WXOzbgon9SkT5md4u60pISEDVqlVx9+5dGBsbw9vbG998840+SiEdYr8WTOzXgot9WzCxX4kov9LrnJM2bdqgXLlyWLx4MUxNTfVVBukY+7VgYr8WXOzbgon9SkT5kV7DiUajgYGBgb6+PeUS9mvBxH4tuNi3BRP7lYjyI70vJUxERERERAToabUuIiIiIiKi9zGcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBERERGRIjCcEBH9i/79+0OSJEiSBCMjIzg6OqJNmzb49ddfkZKSkul21q9fD1tb29wrlIiIKJ9jOCEiyoS2bdsiPDwcYWFhOHjwIFq2bIkxY8agY8eOSE5O1nd5REREBQLDCRFRJpiYmMDJyQnFihVDrVq18N1332Hv3r04ePAg1q9fDwBYvHgxqlatCgsLC7i4uGDEiBGIjY0FAPj7++Prr79GdHS0PAozY8YMAEBiYiImTpyIYsWKwcLCAvXr14e/v79+TpSIiEiPGE6IiLKpVatWqF69Onbt2gUAUKlU8PHxwbVr17BhwwYcO3YMkyZNAgA0atQIS5cuhbW1NcLDwxEeHo6JEycCAEaOHImzZ8/C19cXly9fRs+ePdG2bVvcvn1bb+dGRESkD5IQQui7CCIiJevfvz+ioqKwZ8+edNu++OILXL58GdevX0+3bceOHRg2bBhevHgBIHXOydixYxEVFSXv8/DhQ5QuXRoPHz6Es7Oz/Hzr1q1Rr149zJ07V+fnQ0REpFSG+i6AiCg/E0JAkiQAwNGjRzFv3jzcvHkTMTExSE5ORkJCAt68eQNzc/MMj79y5Qo0Gg3Kly+v9XxiYiIKFy6c6/UTEREpCcMJEVEO3LhxA6VKlUJYWBg6duyI4cOHY86cObCzs8Pp06cxcOBAJCUlfTCcxMbGwsDAAIGBgTAwMNDaZmlpmRenQEREpBgMJ0RE2XTs2DFcuXIF48aNQ2BgIFJSUrBo0SKoVKnT+bZt26a1v7GxMTQajdZzNWvWhEajQWRkJJo2bZpntRMRESkRwwkRUSYkJiYiIiICGo0Gz549w6FDhzBv3jx07NgRffv2xdWrV6FWq/HTTz+hU6dOCAgIwMqVK7XacHV1RWxsLPz8/FC9enWYm5ujfPny8PT0RN++fbFo0SLUrFkTz58/h5+fH6pVq4YOHTro6YyJiIjyHlfrIiLKhEOHDqFo0aJwdXVF27Ztcfz4cfj4+GDv3r0wMDBA9erVsXjxYsyfPx9VqlTBpk2bMG/ePK02GjVqhGHDhqF3796wt7fHggULAADr1q1D3759MWHCBFSoUAFdu3bF33//jRIlSujjVImIiPSGq3UREREREZEicOSEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgUgeGEiIiIiIgU4f8A1FqKMyxFD2cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABelklEQVR4nO3deXhMZ/sH8O+Z7HsIEktUEPsWYq3GUlvRUooWVaV28ipeS/VFbGkopdZaKql9r1RVqSVqJ7FvDYKQRCyRlUxm5vn9kV9OjQSZZJI5Sb6f68olc+acZ+4zjzM59zybJIQQICIiIiIiMjGVqQMgIiIiIiICmJwQEREREZFCMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBHNTB1BQ6HQ6REVFwcHBAZIkmTocIiIiKsSEEEhMTESZMmWgUvG7ZCo6mJxkU1RUFNzd3U0dBhERERUhkZGRKFeunKnDIMo3TE6yycHBAUD6h4Sjo6OJoyEiIqLCLCEhAe7u7vL9B1FRweQkmzK6cjk6OjI5ISIionzBruRU1LATIxERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBE4IJ6IiKgQE0IgNTXVqOVYWVnleKC20sp5mbHiMYYXL14YrSyigoTJCRERUSGWmpqKHj165LocrVaL0NBQAIC3t3eOFwZUWjkv27p1K6ytrXN0rLHe5wxpaWlGK4uoIGFyQkREVASEPUjM1fFCp0P8Cw0sS3vi4mMtJEmbw3K0SFALqIqVwfmoJCCnLRVGiidD3ZIWuTpeFnnaOOW4eRmnHKIChskJERFREdF0uD/MzC1zdKz6eSL+mNgdAPDe+OWwsMpZC0Nacjx2Dn0PANB46Owcl2OseHRpqQgJGJKjY19n3WAvWFnkrCUnNU2HvivOGTUeooKEyQkREVERYWZuCTNLq5wdm/bveAozC0uYW+YsGdCq/x1LoYR4NDk66s2sLFSwtjDLg5KJCj/O1kVERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQI5qYOgIiIiPLfIf/BeB7/GJKkgoWNHRr0m4RiFarhyq6ViPg7GIkxd+EzZhHK1m/xxnL2TuqG53EP/78cezQZMQculWrj+bNHODJnGBKjI6CysEQz3/lwq9W0wMRjLO2+P4mY+FSoJAkO1uZY1Lcm6pV3QmxCKvqtPI9bscmwsjDD8n610bxK8TyPh0jpTNpy4u/vj4YNG8LBwQGlSpVC165dcePGDb19hBCYNm0aypQpAxsbG7Rs2RJXrlyRn3/69ClGjRqFqlWrwtbWFuXLl4evry/i4+P1ypk1axaaNWsGW1tbODs758fpERERKda7vt+j43c78IH/NlTr2A+nVk4BALjWbIwW/12KUtUaZKucVpPX4OPlx9B12d+o9clIHJ0/EgBwdrUfSlb3xidrQvHe2CUICRgMnVZTYOIxli3DG+DijBY4P90HYztUxIDVFwAAE7deR5NKzggPaI01A+qiz4pz0Gh1eR4PkdKZNDkJCQnBiBEjcPLkSezfvx8ajQbt2rVDcnKyvM+cOXMwf/58LF68GGfOnIGbmxvatm2LxMREAEBUVBSioqLw/fff49KlSwgMDMTevXsxcOBAvddSq9Xo0aMHhg0blq/nSEREpESWdo7y7+qUJEiSBAAoUbkOHFzds12Olb3Tv+UkJwBS+q1FxJFfUf3DrwAAJavWh41zKTy8fLLAxGMszrYW8u/xKWlQqdLPa8uZKIxoXQEA0LCiM1wdLXE0/Gmex0OkdCbt1rV37169x2vWrEGpUqUQGhoKHx8fCCGwYMECTJ48Gd26dQMABAUFwdXVFRs2bMCQIUNQq1YtbN++XS6jUqVKmDVrFvr27QuNRgNz8/RT9PPzAwAEBgbmz8kREREp3Ill3yD26mkAQMsJy3NcTsicoYi58DcAoN2sbXiR8BRC6GDjXELex961PJJi76N4pVqKiqdkde8cv0529Vt5DoeuPQEA7B3bGE+S1NAJgZKOVvI+FUrY4t6TF2hSKc/DIVI0RQ2Iz+iKVbx4ep/LiIgIxMTEoF27dvI+VlZWaNGiBY4fP/7GchwdHeXEJCdSU1ORkJCg90NERFSYNB02G10W/YXaPUbh3IZ5OS6nxfjl6LX+Cur3/xZnVqV3x5IgvbKXKHDxGMsvg7wQOb8NZnariv9uvpplPCL/wiFSNMUkJ0IIjBkzBs2bN0etWunfqsTExAAAXF1d9fZ1dXWVn3vVkydPMGPGDAwZMiRX8fj7+8PJyUn+cXfPfpMyERFRQVLRpwtir55BauKzXJXj2fYzRF84Kj9+/uyx/HvSw0jYlypXIOMxli+au+PQ9Sfy40cJqfLvd5+koLyLdb7GQ6REiklORo4ciYsXL2Ljxo2Znsvod5pBCJFpGwAkJCSgU6dOqFGjBqZOnZqreCZNmoT4+Hj5JzIyMlflERERKUVaShJS4mLlx5FnDsDS3gmWL43XyA51cgJSnkTLj+8c2w0rx+KwciiGCj5dcO23VQCARzfC8DzuIVxrNSkQ8RhLwvM0RMW9kB/vDI2Gi70littZoEfD0lhy8A4A4MztZ4iJT0VzT87WRaSIqYRHjRqF4OBgHDlyBOXK/fsthpubG4D0FpTSpUvL22NjYzO1piQmJqJDhw6wt7fHzp07YWFhgdywsrKClZXV23ckIiIqYNTPk3B0wdfQql9AUqlg5VAMLcYtgSRJuLJrFcL3b0RqYhxO/vQtzCws0WH2VqjMMt8yqJMTcHDGF9CqnwOSCtZOJdB2+iZIkoSGA6chZM5QbPuyAVTmlvAZ/1OWZZg6nrycsSs+RYPuS87iuVoHlQoo6WCF3aMbQpIkBPSojs9XnoPnhIOwNFdh7SAvmJupoNFp8yweooLApMmJEAKjRo3Czp07cfjwYXh4eOg97+HhATc3N+zfvx9eXl4A0mfdCgkJQUBAgLxfQkIC2rdvDysrKwQHB8Pams2iREREr2Pn4ob2MzL3VACAml2+Qs0uX2Xark7OPPbSvlQ5fLToQJbl2BQrhQ7+OwpkPMbi7mKD01Pey/I5Vycr7BuXty03RAWRSZOTESNGYMOGDdi1axccHBzkcSROTk6wsbGBJEkYPXo0Zs+eDU9PT3h6emL27NmwtbVF7969AaS3mLRr1w4pKSlYt26d3uD1kiVLwszMDABw7949PH36FPfu3YNWq8X58+cBAJUrV4a9vX3+nzwREREREekxaXKybNkyAEDLli31tq9Zswb9+/cHAIwfPx7Pnz/H8OHDERcXh8aNG2Pfvn1wcHAAAISGhuLUqVMA0hONl0VERKBChQoAgClTpiAoKEh+LqMl5tChQ5len4iIiIiI8p/Ju3W9jSRJmDZtGqZNm5bl8y1btsxWOYGBgVzjhIiIiIhIwRQzWxcRERERERVtTE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEimJs6ACIiIsofWo3aKMdq09TQqHL2/aYuLVWvTJU6Z+XkRTzGkpqmM8mxRIUBkxMiIqIi4sTSSTk+Vuj+vWn+e85QSFJOy9HKv59a/g1yWpCx4skLfVecM3UIRAUWkxMiIqIioH5Zh1wdr9VqERptDsRFoE4lb6hy2FKh1aoQelcCkqNRr3rZXJRjnHiMzr2RccpJSzNOOUQFjCSEEKYOoiBISEiAk5MT4uPj4ejoaOpwiIiIskUIgdTU3HdderkcKysrSDlt8VBYOS8zVjzGkJCQAFdXV953UJHDlhMiIqJCTJIkWFtbG6UsGxubQlmOMRjzfQYAtTrn44OICjKFtIESEREREVFRx+SEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFMGg5ESj0SAoKAgxMTF5FQ8RERERERVRBiUn5ubmGDZsGFJTU/MqHiIiIiIiKqIM7tbVuHFjnD9/Pg9CISIiIiKioszc0AOGDx+OMWPGIDIyEg0aNICdnZ3e83Xq1DFacERUNAghjNYi+3JZVlZWkCTJJGXkRVnGjscYjHFOREREGSQhhDDkAJUqc2OLJEkQQkCSJGi1WqMFpyQJCQlwcnJCfHw8HB0dTR0OUaHy4sUL9OjRwyhlabVahIaGAgC8vb2z/MzKjzLyoiwA2Lp1K6ytrXN8vDHfa2PEQ0RZ430HFVUGt5xERETkRRxERAh7kJjrMoROh/gXGliW9sTFx1pIkuFfmAidFglqAVWxMjgflQTkpqXCCPFkqFvSIsfHZhJ5OvdluDfKfRlEREQvMTg5eeedd/IiDiIiAEDT4f4wM7fM8fHq54n4Y2J3AMB745fDwsrwb/XTkuOxc+h7AIDGQ2fnqAxjxqNLS0VIwJAcx/A66wZ7wcrC8Jac1DQd+q44Z/R4iIiIDE5OMly9ehX37t2DWq3W2/7RRx/lOigiKrrMzC1hZmmV8+PT/h1PYWZhCXNLw5MBrfqFouLR5PjV38zKQgVrC7M8Kp2IiMhwBicnt2/fxscff4xLly7JY00AyAMiC+uYEyIiIiIiylsGt+f/5z//gYeHBx4+fAhbW1tcuXIFR44cgbe3Nw4fPpwHIRIRERERUVFgcMvJiRMncPDgQZQsWRIqlQoqlQrNmzeHv78/fH19ce4c+yETEREREZHhDG450Wq1sLe3BwCUKFECUVFRANIHyt+4ccO40RERERERUZFhcMtJrVq1cPHiRVSsWBGNGzfGnDlzYGlpiRUrVqBixYp5ESMRERERERUBBicn3377LZKTkwEAM2fOROfOnfHee+/BxcUFmzdvNnqARERERERUNBicnLRv317+vWLFirh69SqePn2KYsWKyTN2ERERERERGcrw1bf+382bN/Hnn3/i+fPnKF68uDFjIiIiIiKiIsjg5OTJkyd4//33UaVKFXTs2BHR0dEAgK+++gpjx441eoBERERERFQ0GNyt6+uvv4aFhQXu3buH6tWry9t79eqFr7/+GvPmzTNqgERERESUNa1Wi7S0NFOHQfRGlpaWUKmy1yZicHKyb98+/PnnnyhXrpzedk9PT9y9e9fQ4oiIiIjIQEIIxMTE4NmzZ6YOheitVCoVPDw8YGlp+dZ9DU5OkpOTYWtrm2n748ePYWVlZWhxRERERGSgjMSkVKlSsLW15aREpFg6nQ5RUVGIjo5G+fLl3/p/1eDkxMfHB7/88gtmzJgBAJAkCTqdDnPnzkWrVq1yFjURERERZYtWq5UTExcXF1OHQ/RWJUuWRFRUFDQaDSwsLN64r8HJydy5c9GyZUucPXsWarUa48ePx5UrV/D06VMcO3Ysx0ETERER0dtljDHJqicLkRJldOfSarVvTU4Mnq2rRo0auHjxIho1aoS2bdsiOTkZ3bp1w7lz51CpUqWcRUxEREREBmFXLiooDPm/anDLCQC4ubnBz88vJ4cSERERERFlyeCWkwoVKmD69OmIjIzMi3iIiIiIiKiIMrjlZOzYsQgMDMT06dPRqlUrDBw4EB9//DFn6iIiIiIytXn53NVrrMjf1zMxSZKwc+dOdO3a1dSh5FjLli1Rr149LFiwwNShZMnglpNRo0YhNDQUoaGhqFGjBnx9fVG6dGmMHDkSYWFheREjERERERVwkiS98ad///4mi61ChQrZulmPjo7GBx98kO1yAwMD4ezsnPPAiiCDk5MMdevWxcKFC/HgwQNMnToVq1atQsOGDVG3bl38/PPPEKJoZdJERERE9HrR0dHyz4IFC+Do6Ki3beHChQaVp1ar8yjS13NzczNJbyGtVgudTpfvr2sKOU5O0tLSsGXLFnz00UcYO3YsvL29sWrVKvTs2ROTJ09Gnz59jBknERERERVgbm5u8o+TkxMkSZIfW1hYYOjQoShXrhxsbW1Ru3ZtbNy4Ue/4li1bYuTIkRgzZgxKlCiBtm3bAgCCg4Ph6ekJGxsbtGrVCkFBQZAkCc+ePZOPPX78OHx8fGBjYwN3d3f4+voiOTlZLvfu3bv4+uuv5Vac15EkCb/++isA4M6dO5AkCTt27ECrVq1ga2uLunXr4sSJEwCAw4cP48svv0R8fLxc7rRp0wBAXo6jbNmysLOzQ+PGjXH48GH5dTJaXHbv3o0aNWrAysoKK1euhLW1td55AYCvry9atGgBAHjy5Ak+++yzN76PSmdwchIWFoZRo0ahdOnSGDVqFGrWrInLly/j6NGj+PLLLzF58mQEBwdj586deREvERERERUyL168QIMGDbB7925cvnwZgwcPxueff45Tp07p7RcUFARzc3McO3YMP/30E+7cuYNPPvkEXbt2xfnz5zFkyBBMnjxZ75hLly6hffv26NatGy5evIjNmzfj6NGjGDlyJABgx44dKFeuHKZPny634hhi8uTJGDduHM6fP48qVargs88+g0ajQbNmzTK1EI0bNw4A8OWXX+LYsWPYtGkTLl68iB49eqBDhw4IDw+Xy01JSYG/vz9WrVqFK1euoG/fvnB2dsb27dvlfbRaLbZs2SI3CmT3fVQygwfEN2zYEG3btsWyZcvQtWvXLBdSqVGjBj799FOjBEhEREREhVvZsmXlG3cgfYzz3r17sXXrVjRu3FjeXrlyZcyZM0d+PHHiRFStWhVz584FAFStWhWXL1/GrFmz5H3mzp2L3r17Y/To0QAAT09P/Pjjj2jRogWWLVuG4sWLw8zMDA4ODnBzczM49nHjxqFTp04AAD8/P9SsWRM3b95EtWrV9FqIMty6dQsbN27E/fv3UaZMGbmMvXv3Ys2aNZg9ezaA9F5KS5cuRd26deVje/XqhQ0bNmDgwIEAgAMHDiAuLg49evQw6H1UMoOTk9u3b+Odd9554z52dnZYs2ZNjoMiIiIioqJDq9Xiu+++w+bNm/HgwQOkpqYiNTUVdnZ2evt5e3vrPb5x4wYaNmyot61Ro0Z6j0NDQ3Hz5k2sX79e3iaEgE6nQ0REBKpXr56r2OvUqSP/Xrp0aQBAbGwsqlWrluX+YWFhEEKgSpUqettTU1Ph4uIiP7a0tNQrGwD69OmDpk2bIioqCmXKlMH69evRsWNHFCtWDED230clMzg5eVtiQkRERERkiHnz5uGHH37AggULULt2bdjZ2WH06NGZBr2/epMthMg0RuTVSZl0Oh2GDBkCX1/fTK9bvnz5XMf+ci+ijFjeNHhdp9PBzMwMoaGhMDMz03vO3t5e/t3GxibTuTVq1AiVKlXCpk2bMGzYMOzcuVOvQSC776OS5WiFeCIiIiIiY/n777/RpUsX9O3bF0D6DXx4ePhbWzWqVauGPXv26G07e/as3uP69evjypUrqFy58mvLsbS0hFarzWH0r5dVuV5eXtBqtYiNjcV7771ncJm9e/fG+vXrUa5cOahUKrlLGZDz91FJcjxbFxERERGRMVSuXBn79+/H8ePHce3aNQwZMgQxMTFvPW7IkCG4fv06JkyYgH/++QdbtmxBYGAggH9bMSZMmIATJ05gxIgROH/+PMLDwxEcHIxRo0bJ5VSoUAFHjhzBgwcP8PjxY6OdV4UKFZCUlIQDBw7g8ePHSElJQZUqVdCnTx/069cPO3bsQEREBM6cOYOAgIBMiVZW+vTpg7CwMMyaNQuffPIJrK2t5edy+j4qCVtOiIiIiAqLArpi+//+9z9ERESgffv2sLW1xeDBg9G1a1fEx8e/8TgPDw9s27YNY8eOxcKFC9G0aVNMnjwZw4YNk9cjqVOnDkJCQjB58mS89957EEKgUqVK6NWrl1zO9OnTMWTIEFSqVAmpqalGW6+vWbNmGDp0KHr16oUnT55g6tSpmDZtGtasWYOZM2di7NixePDgAVxcXNC0aVN07NjxrWV6enqiYcOGOHPmTKaFI3P6PiqJQclJWloaqlatKs+5TERERERkqP79++utCF+8eHF5/ZDXeXkdkJd99NFH+Oijj+THs2bNQrly5fRaFBo2bIh9+/a9tuwmTZrgwoULb4375aSlQoUKmZIYZ2fnTNuWLVuGZcuW6W2zsLCAn58f/Pz8snydV9+fV50+fTrL7bl5H5XCoOTEwsICqampb1ycxhD+/v7YsWMHrl+/DhsbGzRr1gwBAQGoWrWqvI8QAn5+flixYgXi4uLQuHFjLFmyBDVr1gQAPH36FFOnTsW+ffsQGRmJEiVKoGvXrpgxYwacnJzkcuLi4uDr64vg4GAA6f+RFy1aBGdnZ6OcCxEZ3yH/wXge/xiSpIKFjR0a9JuEYhWq4cqulYj4OxiJMXfhM2YRytZv8cZy9k7qhudxD/+/HHs0GTEHLpVq4/mzRzgyZxgSoyOgsrBEM9/5cKvVtMDEYyztvj+JmPhUqCQJDtbmWNS3JuqVd0JsQir6rTyPW7HJsLIww/J+tdG8SvE8j4eIyBBLly5Fw4YN4eLigmPHjmHu3LnyGiZU8BjcrWvUqFEICAjAqlWrYG6eu15hISEhGDFiBBo2bAiNRoPJkyejXbt2uHr1qjwbw5w5czB//nwEBgaiSpUqmDlzJtq2bYsbN27AwcEBUVFRiIqKwvfff48aNWrg7t27GDp0KKKiorBt2zb5tXr37o379+9j7969ACAvSvPbb7/l6hyIKO+86/s9LO0cAQD3zx7AqZVT0GHWFrjWbIzyTTrg9Mop2Sqn1eQ1sLJP/7Li7vHfcXT+SHRZEoKzq/1Qsro32s/ehkc3wnBw5hfoEXiuwMRjLFuGN4CzbfpsM7+GxWDA6gsI8/PBxK3X0aSSM/aObYwzt5/hk6WhuBXQKs/jISIyRHh4OGbOnImnT5+ifPnyGDt2LCZNmmTqsCiHDM4uTp06hQMHDmDfvn3yFGUv27FjR7bLykgUMqxZswalSpVCaGgofHx8IITAggULMHnyZHTr1g1A+sqgrq6u2LBhA4YMGYJatWrprZRZqVIlzJo1C3379oVGo4G5uTmuXbuGvXv34uTJk/ICNCtXrkTTpk1x48YNvZYaIlKOjEQAANQpSXKrbYnKdV53SJYyEgEAUCcnAFL6XCARR35Fj6DzAICSVevDxrkUHl4+ieKVaikqnpLVvbMqxmgyEhMAiE9Jg0qVfl5bzkQhYk5rAEDDis5wdbTE0fCnaFKpWJ7GQ0RkiB9++AE//PCDqcMgIzE4OXF2dkb37t3zIhZ5sE7x4undBiIiIhATE4N27drJ+1hZWaFFixY4fvw4hgwZ8tpyHB0d5ZadEydOwMnJSW9lzCZNmsDJyQnHjx/PMjnJWLQmQ0JCQu5PkIgMdmLZN4i9mt63tuWE5TkuJ2TOUMRc+BsA0G7WNrxIeAohdLBxLiHvY+9aHkmx91+bnJgqnrxOTgCg38pzOHTtCQBg79jGeJKkhk4IlHS0kvepUMIW9568QJNKeR4OEREVUQYnJ3m18rsQAmPGjEHz5s1Rq1b6jUHG1Geurq56+7q6uuLu3btZlvPkyRPMmDFDL3GJiYlBqVKlMu1bqlSp106v5u/v/9pBSkSUf5oOmw0AuH1kF85tmIeW45e95YistRifnkiE79+IM6umwGf8T5Dw6vi5t8/OorR4jOWXQV4AgKCjkfjv5qtYO9grUzxGmryGiIjotXK8zsmjR49w9OhRHDt2DI8ePcp1ICNHjsTFixexcePGTM9ltfJnVoPyExIS0KlTJ9SoUQNTp059YxlvKgcAJk2ahPj4ePknMjLSkNMhIiOr6NMFsVfPIDXxWa7K8Wz7GaIvHJUfP3/273z2SQ8jYV+qXIGMx1i+aO6OQ9efyI8fJfzbgnz3SQrKu1hndRgREZFRGJycJCcnY8CAAShdujR8fHzw3nvvoUyZMhg4cCBSUlJyFMSoUaMQHByMQ4cOoVy5f/8Qu7m5AUCm1o3Y2NhMrSmJiYno0KED7O3tsXPnTlhYWOiV8/Dhw0yv++jRo0zlZLCysoKjo6PeDxHln7SUJKTExcqPI88cgKW9EyxfGq+RHerkBKQ8iZYf3zm2G1aOxWHlUAwVfLrg2m+rAACPboThedxDuNZqUiDiMZaE52mIinshP94ZGg0Xe0sUt7NAj4alseTgHQDAmdvPEBOfiuaenK2LiIjyjsHdusaMGYOQkBD89ttvePfddwEAR48eha+vL8aOHZtpHuc3EUJg1KhR2LlzJw4fPgwPDw+95z08PODm5ob9+/fDyyu9y4FarUZISAgCAgLk/RISEtC+fXtYWVkhODhYb15rAGjatCni4+Nx+vRpNGrUCED6wP74+Hg0a9bM0LeAiPKB+nkSji74Glr1C0gqFawciqHFuCWQJAlXdq1C+P6NSE2Mw8mfvoWZhSU6zN4Ka8fMN87q5AQcnPEFtOrngKSCtVMJtJ2+CZIkoeHAaQiZMxTbvmwAlbklfMb/BJVZ1h+LpoxHp9UY/f3NEJ+iQfclZ/FcrYNKBZR0sMLu0Q0hSRICelTH5yvPwXPCQViaq7B2kBfMzVTQ6LR5Fg8RERVtBicn27dvx7Zt29CyZUt5W8eOHWFjY4OePXsalJyMGDECGzZswK5du+Dg4CC3kDg5OcHGxgaSJGH06NGYPXs2PD094enpidmzZ8PW1ha9e/cGkN5i0q5dO6SkpGDdunVISEiQB6+XLFkSZmZmqF69Ojp06IBBgwbhp59+ApA+lXDnzp05UxeRQtm5uKH9jMzdPAGgZpevULPLV9kqx75UOXy06ECWz9kUK4UO/tmbYVBp8RiLu4sNTk95L8vnXJ2ssG9c3rbcEBFR+qKLz549e+sCikoWGBiI0aNH49mzZ7kqx+DkJCUlJcuuUKVKlTK4W1dGIvNyogOkD7rPWBVz/PjxeP78OYYPHy4vwrhv3z44ODgAAEJDQ3Hq1CkAQOXKlfXKiYiIQIUKFQAA69evh6+vrzzz10cffYTFixcbFC8RERGRkpWYdiRfX+/xNB+D9u/fvz+CgoIAAObm5nB3d0e3bt3g5+eXaXmKomThwoWZVpZ/G0mSsHPnTnTt2jVvgjIRg5OTpk2bYurUqfjll1/k7lPPnz+Hn58fmjY1bCXj7FSCJEmYNm0apk2bluXzLVu2zFY5xYsXx7p16wyKj4iIiIiMq0OHDlizZg3S0tLw999/46uvvkJycnKWvW/S0tL0xhHnp7x4bbVaDUtLy0zbnZwMG79oTKZ8j7Ni8ID4hQsX4vjx4yhXrhzef/99tGnTBu7u7jh+/DgWLlyYFzESERERUSFhZWUFNzc3uLu7o3fv3ujTp4/cnWnatGmoV68efv75Z1SsWBFWVlYQQiA+Ph6DBw9GqVKl4OjoiNatW+PChQt65QYHB8Pb2xvW1tYoUaKEvIA3kP5l96tdppydnREYGAgAuHPnDiRJwpYtW9CyZUtYW1tj3bp1uHv3Lj788EMUK1YMdnZ2qFmzJvbs2SOXERISgkaNGsHKygqlS5fGxIkTodH8O06wZcuWGDlyJMaMGYMSJUqgbdu2Wb4n/fv312sBadmyJXx9fTF+/HgUL14cbm5uel/UZ/QM+vjjjyFJkvwYAH777Tc0aNAA1tbWqFixIvz8/PRikiQJy5cvR5cuXWBnZ4fp06ejXLlyWL5cf+2usLAwSJKE27dvAwDmz58vL8Du7u6O4cOHIykpKcvzyQ2Dk5NatWohPDwc/v7+qFevHurUqYPvvvsO4eHhqFmzptEDJCIiIqLCy8bGBmlpafLjmzdvYsuWLdi+fTvOnz8PAOjUqRNiYmKwZ88ehIaGon79+nj//ffx9OlTAMDvv/+Obt26oVOnTjh37hwOHDgAb2/DF7CdMGECfH19ce3aNbRv3x4jRoxAamoqjhw5gkuXLiEgIAD29vYAgAcPHqBjx45o2LAhLly4gGXLlmH16tWYOXOmXplBQUEwNzfHsWPH5LHP2REUFAQ7OzucOnUKc+bMwfTp07F//34AwJkzZwCkD4WIjo6WH//555/o27cvfH19cfXqVfz0008IDAzErFmz9MqeOnUqunTpgkuXLuGrr77Cp59+ivXr1+vts2HDBjRt2hQVK1YEAKhUKvz444+4fPkygoKCcPDgQYwfP96Adzd7DO7WBaT/Jxo0aJCxYyEiIiKiIuT06dPYsGED3n//fXmbWq3G2rVrUbJkSQDAwYMHcenSJcTGxsLKygoA8P333+PXX3/Ftm3bMHjwYMyaNQuffvqp3gLadevWNTie0aNH67W43Lt3D927d0ft2rUBQL5RB4ClS5fC3d0dixcvhiRJqFatGqKiojBhwgRMmTIFKlV6G0DlypUxZ84cg2OpU6eOvG6fp6cnFi9ejAMHDqBt27bye+Ps7CwvvQEAs2bNwsSJE/HFF1/I8c6YMQPjx4/XWwOwd+/eGDBggPy4T58+mD9/Pu7evYt33nkHOp0OmzZtwjfffKP33mTw8PDAjBkzMGzYMCxdutTgc3uTHCUn//zzDw4fPozY2FjodDq956ZMmWKUwIiIiIio8Nm9ezfs7e2h0WiQlpaGLl26YNGiRfLz77zzjnzzDaRPfpSUlAQXFxe9cp4/f45bt24BAM6fP2+UL85fbW3x9fXFsGHDsG/fPrRp0wbdu3dHnTp1AADXrl1D06ZN9Rb0fvfdd5GUlIT79++jfPnyWZaZXRmvk6F06dKIjY19zd7pQkNDcebMGb2WEq1WixcvXiAlJQW2trZZxuTl5YVq1aph48aNmDhxIkJCQhAbG4uePXvK+xw6dAizZ8/G1atXkZCQAI1GgxcvXiA5OdmokxkYnJysXLkSw4YNQ4kSJeDm5qZXIZIkMTkhIiIiotdq1aoVli1bBgsLC5QpUybTYOxXb3R1Oh1Kly6Nw4cPZyrL2dkZQHqvnjeRJCnTBEovdyV73Wt/9dVXaN++PX7//Xfs27cP/v7+mDdvHkaNGgUhhN59MPDvZE8vb8/pjfur74skSZkaBV6l0+ng5+en1/qT4eV1ALOKqU+fPtiwYQMmTpyIDRs2oH379ihRogQA4O7du+jYsSOGDh2KGTNmoHjx4jh69CgGDhyY5fuYGwYnJzNnzsSsWbMwYcIEowZCRERERIWfnZ1dpuUf3qR+/fqIiYmBubm53sDvl9WpUwcHDhzAl19+meXzJUuWRHR0tPw4PDw820tguLu7Y+jQoRg6dCgmTZqElStXYtSoUahRowa2b9+ul6QcP34cDg4OKFu2bLbPL6csLCyg1eovilu/fn3cuHHDoPc3Q+/evfHtt98iNDQU27Zt05s97ezZs9BoNJg3b57cXW3Lli25O4HXMHhAfFxcHHr06JEXsRARERER6WnTpg2aNm2Krl274s8//8SdO3dw/PhxfPvttzh79iyA9AHeGzduxNSpU3Ht2jVcunRJb5xH69atsXjxYoSFheHs2bMYOnRotqbPHT16NP78809EREQgLCwMBw8eRPXq1QEAw4cPR2RkJEaNGoXr169j165dmDp1KsaMGSPfwOelChUq4MCBA4iJiUFcXByA9OEVv/zyC6ZNm4YrV67g2rVr2Lx5M7799tu3lufh4YFmzZph4MCB0Gg06NKli/xcpUqVoNFosGjRIty+fRtr167NNLuXsRj8zvXo0QP79u3Li1iIiIiIiPRIkoQ9e/bAx8cHAwYMQJUqVfDpp5/izp078sLgLVu2xNatWxEcHIx69eqhdevW8iLdADBv3jy4u7vDx8cHvXv3xrhx4+TxF2+i1WoxYsQIVK9eHR06dEDVqlXlAeBly5bFnj17cPr0adStWxdDhw7FwIEDs5UIGMO8efOwf/9+uLu7w8vLCwDQvn177N69G/v370fDhg3RpEkTzJ8/H++88062yuzTpw8uXLiAbt266XWVq1evHubPn4+AgADUqlUL69evh7+/f56clySysYLhjz/+KP+enJyM+fPno1OnTqhdu3amrNPX19f4USpAQkICnJycEB8fD0dHR1OHQ1SovHjxAj169EDYg0Q0950HM0urHJelTk7A7nEfwrK0J7rM2QFL67f/8XlVatIzbB/YCKpiZdBx8kpYvKUvc17Ho1G/wKGZ/VG3pAW2bt2q12/YUBnvNSJPY+uIBrC2MDO8jDQteiwJBdwb5ToeIsram+47Xrx4gYiICHh4ePD6owLBkP+z2Rpz8sMPP+g9tre3R0hICEJCQvS2S5JUaJMTIiIiIiLKW9lKTiIiIvI6DiIiIiIiKuLyfrQOERERERFRNhicnHzyySf47rvvMm2fO3cuZ/EiIiIiIqIcMzg5CQkJQadOnTJt79ChA44cOWKUoIiIiIjozbIxpxGRIhjyf9Xg5CQpKQmWlpaZtltYWCAhIcHQ4oiIiIjIABkzpWZ3EUEiU1Or1QAAM7O3zxBp8ArxtWrVwubNmzFlyhS97Zs2bUKNGjUMLY6IiIiIDGBmZgZnZ2fExsYCAGxtbeUVyomURqfT4dGjR7C1tYW5+dtTD4OTk//973/o3r07bt26hdatWwMADhw4gI0bN2Lr1q2GR0xEREREBnFzcwMAOUEhUjKVSoXy5ctnK4k2ODn56KOP8Ouvv2L27NnYtm0bbGxsUKdOHfz1119o0aJFjgImIiIiouyTJAmlS5dGqVKlkJaWZupwiN7I0tISKlX2RpMYnJwAQKdOnbIcFE9ERERE+cfMzCxb/fiJCoocJSdA+sCW2NhY6HQ6ve3ly5fPdVBERERERFT0GJychIeHY8CAATh+/LjediEEJEmCVqs1WnBERERERFR0GJyc9O/fH+bm5ti9ezdKly7N2SGIiIiIiMgoDE5Ozp8/j9DQUFSrVi0v4iEiIiIioiLK4EUYa9SogcePH+dFLEREREREVIQZnJwEBARg/PjxOHz4MJ48eYKEhAS9HyIiIiIiopwwuFtXmzZtAADvv/++3nYOiCciIiIiotwwODk5dOhQXsRBRERERERFnMHJyZtWgT9//nxuYiEiglajNtrx2jQ1NNlckfZlurRUvfJUasPLyKt4jCk1Tff2nYx4HBER0dvkeBHGDPHx8Vi/fj1WrVqFCxcusFsXEeXKiaWTcnW8eGlh2L/nDEVOZjsXun8/x04t/wY5KsSI8eSVvivOmToEIiIiPTlOTg4ePIiff/4ZO3bswDvvvIPu3btj9erVxoyNiIqY+mUdcl2GVqtFaLQ5EBeBOpW8ocpBS4VWq0LoXQlIjka96mVzVIYx48kT7o1MHQEREVEmBiUn9+/fR2BgIH7++WckJyejZ8+eSEtLw/bt21GjRo28ipGICjkrKyts3brVKGUJIZCamiqXm5OFYo1RRl6UlVFGbo831nudUR4REZGxZDs56dixI44ePYrOnTtj0aJF6NChA8zMzLB8+fK8jI+IigBJkmBtbW208mxsbBRRRl6UlVvGfq+JiIiMKdvJyb59++Dr64thw4bB09MzL2MiIiIiIqIiKNudn//++28kJibC29sbjRs3xuLFi/Ho0aO8jI2IiIiIiIqQbCcnTZs2xcqVKxEdHY0hQ4Zg06ZNKFu2LHQ6Hfbv34/ExMS8jJOIiIiIiAo5SQghcnrwjRs3sHr1aqxduxbPnj1D27ZtERwcbMz4FCMhIQFOTk6Ij4+Ho6OjqcMhIiKiQoz3HVRU5WpOy6pVq2LOnDm4f/8+Nm7caKyYiIiIiIioCMpVy0lRwm8wiIiIKL/wvoOKKoWsBkZEREREREUdkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUwdzUARQ0L168gKWlZY6PF0IgNTUVAGBlZQVJkgpFOS8zVjzGYqzzIiIiIqK8xeTEQP369YOFhUWOj9dqtQgNDQUAeHt7Q6XKWeOV0sp52datW2FtbZ2jY1NTU9GjR49cx2CseIiIiIgo/zA5MdCF6CSozHL+tgmdDvEvNLAs7YmLj7WQJG0Oy9EiQS2gKlYG56OSgJy2VBgpngx1S+Y8cdMTedo45bg3Mk45RERERJTnmJzkQNPh/jAzz1nXLvXzRPwxsTsA4L3xy2FhlbNv9NOS47Fz6HsAgMZDZ+e4HGPFo0tLRUjAkBwd+zrrBnvByiJnLTmpaTr0XXHOqPEQERERUd5icpIDZuaWMLO0ytmxaf+OpzCzsIS5Zc6SAa36haLi0eToqDezslDB2sIsD0omIiIiIiXibF1ERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKYG7KF/f398eOHTtw/fp12NjYoFmzZggICEDVqlXlfYQQ8PPzw4oVKxAXF4fGjRtjyZIlqFmzprzPihUrsGHDBoSFhSExMRFxcXFwdnbWe62wsDBMmDABZ86cgZmZGbp374758+fD3t4+V+dwyH8wnsc/hiSpYGFjhwb9JqFYhWq4smslIv4ORmLMXfiMWYSy9Vu8sZy9k7rhedzD/y/HHk1GzIFLpdp4/uwRjswZhsToCKgsLNHMdz7cajUtMPEYS7vvTyImPhUqSYKDtTkW9a2JeuWdEJuQin4rz+NWbDKsLMywvF9tNK9SPM/jISIiIiLjM2nLSUhICEaMGIGTJ09i//790Gg0aNeuHZKTk+V95syZg/nz52Px4sU4c+YM3Nzc0LZtWyQmJsr7pKSkoEOHDvjmm2+yfJ2oqCi0adMGlStXxqlTp7B3715cuXIF/fv3z/U5vOv7PTp+twMf+G9DtY79cGrlFACAa83GaPHfpShVrUG2ymk1eQ0+Xn4MXZf9jVqfjMTR+SMBAGdX+6FkdW98siYU741dgpCAwdBpNQUmHmPZMrwBLs5ogfPTfTC2Q0UMWH0BADBx63U0qeSM8IDWWDOgLvqsOAeNVpfn8RARERGR8Zm05WTv3r16j9esWYNSpUohNDQUPj4+EEJgwYIFmDx5Mrp16wYACAoKgqurKzZs2IAhQ4YAAEaPHg0AOHz4cJavs3v3blhYWGDJkiVQqdLzsSVLlsDLyws3b95E5cqVc3wOlnaO8u/qlCRIkgQAKFG5jkHlWNk7/VtOcgIgpccZceRX9Ag6DwAoWbU+bJxL4eHlkyheqZai4ilZ3dug8g3lbGsh/x6fkgaVKv28tpyJQsSc1gCAhhWd4epoiaPhT9GkUrE8jYeIiIiIjM+kycmr4uPjAQDFi6d3y4mIiEBMTAzatWsn72NlZYUWLVrg+PHjcnLyNqmpqbC0tJQTEwCwsbEBABw9ejTL5CQ1NRWpqany44SEhNeWf2LZN4i9ehoA0HLC8mzFlJWQOUMRc+FvAEC7WdvwIuEphNDBxrmEvI+9a3kkxd5/bXJiqnjyOjkBgH4rz+HQtScAgL1jG+NJkho6IVDS0Urep0IJW9x78gJNKuV5OERERERkZIoZEC+EwJgxY9C8eXPUqpV+4x0TEwMAcHV11dvX1dVVfi47WrdujZiYGMydOxdqtRpxcXFyF7Do6Ogsj/H394eTk5P84+7u/trymw6bjS6L/kLtHqNwbsO8bMf1qhbjl6PX+iuo3/9bnFmV3h1LgvTKXuKt5SgtHmP5ZZAXIue3wcxuVfHfzVezjEfkXzhEREREZGSKSU5GjhyJixcvYuPGjZmey+ialEEIkWnbm9SsWRNBQUGYN28ebG1t4ebmhooVK8LV1RVmZmZZHjNp0iTEx8fLP5GRkW99nYo+XRB79QxSE59lO7aseLb9DNEXjsqPnz97LP+e9DAS9qXKZascpcVjLF80d8eh60/kx48S/m3huvskBeVdrPM1HiIiIiIyDkUkJ6NGjUJwcDAOHTqEcuX+vdF1c3MDgEytJLGxsZlaU96md+/eiImJwYMHD/DkyRNMmzYNjx49goeHR5b7W1lZwdHRUe/nVWkpSUiJi5UfR545AEt7J1i+NF4jO9TJCUh58m8Lzp1ju2HlWBxWDsVQwacLrv22CgDw6EYYnsc9hGutJlmWo7R4jCXheRqi4l7Ij3eGRsPF3hLF7SzQo2FpLDl4BwBw5vYzxMSnorknZ+siIiIiKohMOuZECIFRo0Zh586dOHz4cKZEwcPDA25ubti/fz+8vLwAAGq1GiEhIQgICMjRa2YkNT///DOsra3Rtm3bHMevfp6Eowu+hlb9ApJKBSuHYmgxbgkkScKVXasQvn8jUhPjcPKnb2FmYYkOs7dCZZb5LVcnJ+DgjC+gVT8HJBWsnUqg7fRNkCQJDQdOQ8icodj2ZQOozC3hM/6nLMswdTx5OWNXfIoG3ZecxXO1DioVUNLBCrtHN4QkSQjoUR2frzwHzwkHYWmuwtpBXjA3U0Gj0+ZZPERERESUN0yanIwYMQIbNmzArl274ODgILeQODk5wcbGBpIkYfTo0Zg9ezY8PT3h6emJ2bNnw9bWFr1795bLiYmJQUxMDG7evAkAuHTpEhwcHFC+fHl5cP3ixYvRrFkz2NvbY//+/fjvf/+L7777LtN6KIawc3FD+xmZu6EBQM0uX6Fml68ybVcnZx5Yb1+qHD5adCDLcmyKlUIH/x0FMh5jcXexwekp72X5nKuTFfaNy9uWGyIiIiLKHyZNTpYtWwYAaNmypd72NWvWyGuQjB8/Hs+fP8fw4cPlRRj37dsHBwcHef/ly5fDz89Pfuzj45OpnNOnT2Pq1KlISkpCtWrV8NNPP+Hzzz/Pu5MjIiIiIiKDmLxb19tIkoRp06Zh2rRpr93nbc8DwC+//GJgdERERERElJ8UMSCeiIiIiIiIyQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEc1MHUBBpNWqjHKtNU0Ojyll+qEtL1StTpc5ZOXkRj7GkpulMciwRERERmQaTkxw4sXRSjo8Vun9vmv+eMxSSlNNytPLvp5Z/g5wWZKx48kLfFedMHQIRERER5SMmJwaqW9oeFhYWOT5eq9UiNNociItAnUreUOWwpUKrVSH0rgQkR6Ne9bK5KMc48RideyNTR0BERERE+UwSQghTB1EQJCQkwMnJCQ8fPoSjo2OOyxFCIDU1vQuUlZUVpJy2eCisnJcZKx5jMdZ5ERER5ZeM+474+Phc3XcQFTRsOTGQtbU1rK2tc1WGjY2NUWJRWjnGIElSrt9fIiIiIiqYFNKHh4iIiIiIijomJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkXgbF3ZlDHjckJCgokjISIiosIu436DKz5QUcPkJJsSExMBAO7u7iaOhIiIiIqKxMREODk5mToMonzDRRizSafTISoqCg4ODnm+oF9CQgLc3d0RGRnJhZcKEdZr4cR6LbxYt4VTQalXIQQSExNRpkwZqFTshU9FB1tOskmlUqFcuXL5+pqOjo6K/uCknGG9Fk6s18KLdVs4FYR6ZYsJFUVMxYmIiIiISBGYnBARERERkSIwOVEgKysrTJ06FVZWVqYOhYyI9Vo4sV4LL9Zt4cR6JVI2DognIiIiIiJFYMsJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByYgKxsbHQarWmDoOIsiEpKcnUIVAe4OcwEZEyMTnJJ0IIqNVqDB48GO3bt8eJEydMHRIZycOHD/H777+DSwYVLtHR0ejTpw8+++wzDBw4EGFhYaYOiXKJn8OFV0xMDKZPn46lS5diz549pg6HiHKByUk+kSQJsbGxCA4OxqNHj3Dw4EHEx8cDAG9qC7DFixejTJky+PDDD3HlyhVTh0NGsm7dOtSqVQtqtRoffPABDh48iICAAMTExJg6NMoFfg4XTjNmzEDlypVx+vRpBAYG4uOPP8aGDRsAsF6JCiImJ/koLS0NnTt3xueff45169bh5MmTANL/YFLBIoTAnj178Ouvv2LOnDnw8vKCn58fdDqdqUOjXNJqtfjll18wZswYbN26FcOHD0dAQABCQkJgY2Nj6vAol/g5XHhotVoEBARgz5492LJlC3bv3o0DBw5gzJgxmDRpEgDWK1FBxOQkH92/fx8XL16Ev78/7OzssHHjRvlbOypYJEmCq6srPv/8cwwZMgQ//PADtm/fjj///NPUoVEuXbp0Cbdv30aZMmXkbSkpKejevTuv10KAn8OFh5mZGdRqNVq3bo0OHToAABwcHNCiRQuYm5vj1q1bJo6QiHKCyYmRqdVqPH/+PMvn7t+/jxo1agAAJk6ciCNHjmDjxo0YPHgwoqOj8zNMMlBiYiKOHDmCmzdvytsaNGiAL774Avb29vDx8UGPHj0wefJkJCYmmjBSMsTL12tGq1eNGjXg4uKC1atXY8WKFejZsycGDBiAc+fOoU6dOhg9ejRiY2NNGTa9RUJCAk6ePIkHDx5keo6fwwVXcnIywsPDkZCQIG8bN24cZs2aBZVKJXfhevr0KaytrVGpUiVThUpEucDkxIgCAgJQu3ZtHDlyRG97xk1PQkICnj17BgDo1asXzM3N4evri7Nnz0KSJPaNVagZM2agUqVKGDNmDOrUqYP58+fr/XHMqF9/f39cv34dgYGBJoqUDPHq9apSqaDRaGBpaYmFCxeiZ8+e2LVrF27duoXTp09j7969WLBgAU6fPo2lS5eaOHp6HX9/f7i7u2PQoEGoUaMGFi5cqJek8HO4YJoxYwZq166Nnj17ol69evKg94yuljqdTu7CdeLECXh5eQFI78ZHRAULkxMjePr0KYYNG4YNGzYgJiYGK1aswOPHj+XnVar0t/nevXto3749/vrrL5QrVw7Pnz+Hg4MD+vTpgxIlSrBvrMLcvn0b7dq1w9atW7F27VoEBwdj4sSJ+O677/RaRzLqt2LFihg7dixmzZqF+/fvA0jvDpScnGyS+Clrb7pezczMAABNmjSBr68vUlNTMWDAAHh7e8PR0RH9+/eHg4MDHj58yJseBfrjjz+wdu1aBAUFITg4GBMmTMDKlSsxZcoUeZ87d+7wc7gAuXv3Lrp06YLNmzdj8eLFmDdvHnx8fPDVV1/h4cOH8n4qlUq+Jk+dOoUGDRoAACwsLABwYDxRQcLkxAji4+Ph6OgIf39//P7779i5cyf++usv+Rv1jH/NzMwwYsQIdOvWDYMHD0ZkZCT69u2LoKAgHD161JSnQFl48OABmjVrhp07d6J9+/YoU6YMvvrqKzg6Or72mIkTJ8La2hpz587F2rVr0b59e05rqTBvul5fvjG9e/cubt68icaNG8vbUlJSkJCQgPLly8s3PaQce/fuhbW1Nbp27QoPDw988803GDp0KI4dO4bly5fL+/FzuOA4efIknj17hm3btqFjx45o3bo1AgMDkZycjNOnT+vta2FhgcjISNy5cwfdunUDkP5/onfv3rh7964pwieinBCUaxqNRty9e1d+3LNnT1GnTh0RERGht19wcLAICAgQ//zzj7wtNjZWVK9eXYSEhORXuJRNarVaREZG6j3++OOPRfPmzcWMGTPEP//8I7RarRBCyP8KIcTUqVOFJEnC0tJSTJo0Kd/jpjfL7vUqhBBeXl6iRYsWYu3atSIsLEx07txZ1KxZU1y4cCEfI6bs0Gq1YtiwYeLTTz8VL168kLdHRUWJIUOGiLp164qUlBTx119/idmzZ/NzWOF0Op0QQoinT5+KrVu36j0XExMjqlatKvbt25fpuHXr1on3339fREZGig8++ECYm5uLsWPH5kvMRGQcTE6MKOPD9MmTJ8LCwkL4+/vr/ZHUaDR6+2c8Tk1Nzb8gKUeuXbsmbG1tRcOGDcWUKVNEvXr1RNOmTcXq1avlfZKSksSIESOEJEli4MCBIi4uznQB01u96XrNuDZv3LghGjRoIKpWrSoqVqwoevbsKZ4+fWqymClrGXXp7+8v3N3ds/xiyMvLSwQGBurtLwQ/h5Xs5XoS4t8vga5evSpcXFz0EsyMffv16yckSRIWFhaiU6dO4vHjx/kXMBEZBbt15ZJ4qR+rJEnQaDQoXrw4Jk+ejPnz5+PatWvy8xljEzKOyejfbmlpmY8RU3aIV/onu7u7488//8TJkyfh5+eHU6dOwdnZGadPn4ZarQYAPH78GA4ODvj777+xatUqODs7myByAoAXL15kuT2716uZmRk0Gg2qVKmCv/76C7///jsOHDiAzZs3o1ixYvlyDpR9GV1nR48ejfj4eKxfv17v+ZYtW8LCwkKejevl7nv8HDa92NhYg8aEHDlyBB4eHvD09Mx0nLm5OWrVqoXTp09j9+7dcHFxMXa4RJTHmJy8RXR0NHr06IEtW7YASF/0KYNGo5H/yGVsz3g8depUWFpaYtmyZYiLi8P+/fuxbt06vX3IdCIjI7Ft2zaEhYXJgygz/si9XK8ajQYAYGtri+bNm0OlUkGn08HS0hJJSUmIiYmRb2reeecd+Pv749133zXBGREAREREoG7dupg9e3am5wy9XjNWmHZ2dkalSpVQoUKF/DkJyiQ6OhonTpzAnTt3Mj2n0WjkBMPa2hpTpkxBQEAAzp49K+/j4OAAtVqNyMjI/AqZsiEiIgIfffQRJkyYgKtXr+o996br9e+//4aPj4+87dKlS7h8+TIAYOHChbh48SLq1auXT2dBRMbG5OQtVq9eje3bt+OHH35ASkoKzMzM5G/pzM3NIYTAhAkTsGnTJuh0OpiZmckfpIsWLcLq1avRokULtG/fnutfKMSkSZNQpUoVzJs3D82aNcOwYcNw+/ZtSJIEnU6nV6+bN2/ONFBapVLh9OnTkCQJgwYNMuGZUAYhBIYOHYoqVaqgSpUq8PX1zbSPoddrUlJSfp8GZWH06NGoXbs2/vOf/6BmzZpYunSp3qKJL9frunXrMHbsWFSpUgUTJ06UJ6MICwuDEAJdu3Y10VlQhowvgX755Rc0aNAANjY2GDFiBEqUKKH3fFbXK5A+oUVoaCjat2+P6Oho9OzZE3Xr1sW9e/cAAPb29iY4KyIyJiYnb3H8+HH06tULlpaWCAgI0HsuKCgIJUqUwL59+1CnTh2525aZmRkePHiAkydPQqfToWbNmrh37x6GDx9uilOgl5w6dQq7du3Ctm3bcOjQIaxcuRLh4eH4/PPPAaQnHkFBQXBxcclUr9euXcOlS5cwZcoUdOzYETVq1ECrVq1MeToE4ObNm3BxccHRo0dx+vRpbN26Vb7ReRmv14Ll3r17+Oijj3D69GkEBwdjy5YtGD58OJYtW6Y3S9PL9VqzZk0AwNq1a+Ho6IiPP/4Y7du3x3vvvYfq1auzVVMBMr4E2rhxI/73v/9h8+bN8Pb2hoODg/w8AAQGBma6XiVJQnh4OJ49e4adO3eiUqVKiI+Px507d9CpUydTnhYRGZG5qQNQCiGE3rfjGo0G5ubmKF26ND788EP5pufTTz9F9erVkZiYiPv372PmzJkYPHiw3K0ASF91+vvvv8cvv/yCgwcPomXLliY4I8rKr7/+Cq1WK/8h+/zzz1G5cmW0a9cO8+fPx5gxY3Dnzh3Mnj0bgwYN0qvX48ePY8mSJTA3N8eWLVvQunVrU51Gkffy9WphYYEyZcqgefPm8PLywvHjx7F9+3a4uLigfv36aN68Oezt7REREYFZs2Zlqlder8p0+fJl2NraYtGiRfKaFXPnzsW6desQFxcHAEhKSkJkZKRevQohUL16dQQGBuLUqVP4559/MGXKFCYmJvTq39fDhw/j1q1bGDVqFI4fP46AgACkpqaicuXK6Nu3L5o0aYK7d+9m+ff15MmTePjwIcLCwrBr1y60bdvWFKdERHlIEoaMQiuknj9/DpVKBSsrKwD6H6R16tTBpk2bkJKSgvHjx6N27dqYO3cuwsPDUa1aNb0PzZc9fPgQrq6u+XYOlFlGPep0Ovlb8h9++AGBgYE4ceIEbG1t5f2mT5+OhQsXIjo6Wv5/8Go5arUa58+fR6NGjfL9XOhfr16vOp0Ov/76Kz755BO0a9cO169fh7e3N27evIlHjx6hbdu2CAwMfGOZvF5NL+M6y/hiKCoqCnfu3EGzZs0ApNezVqtF06ZNMWbMGPTu3VvennF9k/K8er0C6S3YnTp1wqpVqzBr1iy0adMG1tbWOHjwIC5duoSrV6/Czc1Nr5yM/x+JiYnYvn07+vfvn89nQkT5pch/ok+aNAnNmzdH586d8eOPPyIhIUG+oX3w4AHs7OxQoUIFeHt748MPP8SGDRtgbW2NAwcO6A2OfxVvdExr/vz58qDol29cnJycYGFhgQMHDsjbJEnCF198ATs7O8yfPx/Av7P/ZDwPpM/mw8TEtLK6XlUqFVq1aoXPP/8cSUlJCA4Oxvr163H+/HlMmzYNJ0+exLJlywDo1+vLeL2a1svXa8ZYgzJlyuglJiqVCtHR0bhx4wZq1aolH8vERLmyul6B9ESjXr16mD17NurVq4dZs2Zh6tSp2L17N8qWLYtvvvkGgP4ENJIkQQgBBwcHJiZEhVyR/VRXq9Xo0aMHgoODMX78eJQpUwY//fST/G2cSqWCg4MDLCwsIEkSdu7ciZkzZyItLQ116tSBr68vLC0tDZr+kPLemTNn0KpVK4wbNw47duzAiRMnAECekeuTTz5Bamoq9u7di9jYWPm40qVLo02bNggPD4dWq+UNj8K87nr97LPPAADFihXDpEmTsGDBAtSuXVtevb179+7w9PTE+fPnWa8K9Lrr9dXP1Yx6O378ODw8PPSSkwz8LFaO112vn376KYD0HgmOjo44e/YsGjVqBJVKBa1WCwcHB3z99dfYt28fkpKSMvVM4EyXREVDkf1LfevWLVy4cAELFixAr169EBQUhBUrVuDgwYOYO3cuAODs2bO4efMmGjVqhAEDBuCbb77BnDlzIEkSli5dCoB/EJXmzz//RIkSJfDzzz/L/wLp4xLS0tLg6OiIoUOH4q+//sKuXbvk46ysrBAeHg6VSvXarnpkOq+7Xg8dOiRfr9WqVYO3tzckSYJKpYIQAsWLF8f169dZrwr1uus1o/5eFRoaiqZNm8rJyqFDh/Dbb78B4I2rkrzuej18+DC+++472NraYtCgQShevDi2bt0K4N/1ZsLDw+Hp6fna/wNEVATk5QqPShYaGiokSRJPnjwRQuivMOzs7Cxu374t0tLSRI0aNcTgwYPlFYejoqJEz549hY+Pj97q72RaGfV39+5dcfz4cSFEel02btxYbNmyRQghRFpamrx/7969Rb169cRPP/0k4uLiRGhoqKhfv77YtGlT/gdPb/Wm67VYsWJ6K0W/7I8//hANGzYUx44dy7dY6e2yc71mrAaeQaPRCC8vL7F582Zx+/Zt0bp1a2FpaSk2b96cv8HTW73penVychK3bt0SQggxbdo04eLiIv73v/+Jf/75R1y/fl20aNFCTJ8+3WSxE5HpFdnk5Ny5c6JmzZpi0aJFQoh/PzzVarWoUKGCGD16tBBCiIcPH8rPZbhy5QoTkwLg1q1bomvXrqJr167i6dOnQgghUlNT5eemTJkizMzMRIMGDYSNjY0YOHCgUKvVpgyZXuNN16uHh4cYO3asECL9hvbSpUvi4MGDYsiQIcLJyUlMnDhRaDQak8VO2ZPV9fpygnLhwgXh4OAgPvjgA2Fubi569eolEhISTBUuvcHbrteMv68xMTFixYoVwtnZWdSqVUs4ODiIL7/8kn9fiYq4QtutS7ylOfidd96Bp6cnjh49iujoaHmWGAsLC4waNUpefK9UqVJyd4GMMmvUqJFpRifKH2+r15f3q1ixIj788ENER0fLszVlrOZesWJF+Pn54cKFC/Dz80NYWBhWrVolj1Wg/JWb63XkyJHYuHGjPGg6LCwMM2bMwD///IOQkBD4+/uzS5eJ5PZ6fXmMUHh4OJKSkpCamoozZ85g06ZN8toYpCxvu14z/r66urpi0KBBuHLlClatWoWwsDD8/PPP/PtKVMQVyuTk0aNHSElJkR+/PEOPRqMBkD6A9sMPP8T169exZcsWAOmzxADpMzoVL14ckZGReuWyT7NpZadeM2TM8vLJJ5+gRo0a2L17N8LDwwGkrxadcXzNmjXRqVMnVKtWLa/Dp9eIjY1FYmKi/Dgn12uxYsVw9+5dAOmD4FeuXImDBw+ibt26+XUa9Irs1GuGN12vZ8+eBQA0btwYBw4cwIEDB1CvXr08jp5eJ6Mes5qt0tC/rxnJa5kyZdC4cWNUrlw5P06BiBSuUCUnaWlpGDx4MN599118+OGH+PLLLxEXF6f37Zu5uTlevHiBTZs2YcCAAahXrx42b96MQ4cOyfvcv38fJUuWxDvvvGOK06BXZLde09LSEBQUJD/W6XRwdHREjx49oNPp4Ofnh/fffx/e3t6Zjqf8p9FoMHDgQDRq1Aht2rRBnz598OTJkxxfrx4eHgAAOzs7VKpUKd/Ph9Jlt16ze702atQIT548Qbly5dCqVStTnVaRl5aWhuHDh2PIkCEA9Fu1MhIWQ/++8gs/IspKobk7i4uLQ8eOHXHz5k2sWbMGn332GS5cuIDOnTvjxo0b8n4//vgjypYti02bNgEAxowZg4oVK6JDhw7yB++8efPQq1cvAJyNy9QMqVc3Nzf89ttv8urRGX88a9asicjISGzYsAGlSpVCdHQ0ihUrZpLzoXQajQb9+/fH1atXERQUhM8++wwXL15E165dce3aNXk/Xq8FiyH1asj16uLiYpLzoXSnTp1CmzZtsG3bNgQFBeHYsWOQJEluPcmoO16vRGQUJhrrYnR79+4VtWrVEtevX5e3Xb16VahUKuHr6yvi4uLEmjVrRPny5cX69ev1BlrqdDoxe/ZsMWjQINGxY0fO7KMghtbrq5MXHDhwQNjb24t69eqJs2fP5nf49Br37t0Tnp6eYu3atfK26OhoUbZsWTFq1Cjx9OlTXq8FkKH1yuu1YFiwYIEYOHCg2LNnj+jWrZto3Lhxpn2WLl0qPDw8eL0SUa4VmuQkKChIODs76207duyYKF68uPD09BS///670Ol0IikpSW+fV/84krLktF4zPH78WGzYsCE/QiUDnDt3TtjY2Ijw8HAhhJBn51m8eLHw9PQUv/32m9DpdCI5OVnvOF6vypbTes3A61VZMq63yMhIceXKFSFE+hdGJUuWFKtWrRJC/DsDYlpaGv++EpFRFMhuXXv27AGg3yTs7u4OFxcXBAQEyNtWrVqFgQMHQqfTYdeuXZAkCTY2Nnplsc+rchizXjPKcXFxkVcRJ9NYsWIFVq5ciSNHjsjbPD094ebmhnXr1gH4t1vIiBEj4OTkhO3btyM1NRW2trZ6ZfF6VQ5j1ivA61UpMuo1JCREvt7Kli2LGjVqAAC8vb3x6aefws/PD1qtFpaWltDpdDA3N4ednZ1eWbxeiShHTJsbGWb37t2ibNmyQpIkuWk4Y/2Cp0+firlz5wpJkkSzZs2Evb29qFWrlkhLSxOLFi0SZcuWNWXo9Aas18Jpw4YNolSpUqJp06aiXr16omTJkmLmzJlCCCHi4+PFhAkThKenp3j48KEQQojnz58LIYRYu3atcHJykh+TsrBeC6c31eur6wSdOnVKeHp6inHjxgkhMi+YSUSUGwUmOfn7779Fhw4dxMiRI8UHH3wgvL29s9wvJCRELFq0SOzbt0/e9t1334nmzZuLZ8+e5Ve4lE2s18Jp/fr1om7dumL58uVCCCEePHggFi1aJOzs7ER8fLwQQoj9+/eLhg0biuHDhwsh/u0CcujQIVGqVClx4cIF0wRPr8V6LZzeVK9ZLXSZnJws5s6dK5ycnMTdu3eFEOn1m/F/gIgoNxTfrUv8fxcfV1dXtGvXDmPGjMGMGTNw9epVrF69GoD+/Pk+Pj4YOXIk2rZtCwBQq9U4efIkvLy84OTklP8nQFlivRZOGfWalpaGxo0bo1+/fgDS1zHw8vJC2bJlcfXqVQBA8+bN0bt3bwQFBWHnzp1IS0sDABw7dgw1atRA7dq1TXMSlAnrtXDKTr2+PMtaBltbW3Tp0gVeXl7o0aMHvL290b17dzx9+jRf4yeiQsqkqdEbhIaGZvpGPKNpOS0tTYwdO1aULFlSHnD5quvXr4t//vlH9OvXT3h4eIgTJ07kecz0dqzXwik0NFTExcXJj589e5apK8j58+eFm5ubePr0qbwtISFBjB8/Xjg4OIgWLVqIHj16CBsbG7FkyRIhBAfUmhrrtXDKab2+7NKlS6JOnTpCkiQxfPhweWA8EVFuKa7lZPv27XB3d0fPnj1Rp04dTJ06FTExMQDSB1cKIWBubo4RI0bA2toakydPBpB5vvTff/8dH3zwAe7cuYM///wTTZo0yfdzoX+xXgunl+u1bt26mDJlCh4+fAgnJyeYmZnptX4dPHgQlSpVQrFixaBWqwEADg4OCAgIwM8//4yWLVvCxcUFYWFhGD58OAAOqDUV1mvhlNt6zXD06FF07twZtra2CA8Px5IlS2BpaZnfp0NEhZVpcyN9Z86cEdWqVRMLFiwQFy5cEEuXLhUlS5YUw4YNE0+ePBFC/Pstu06nE0uXLhXm5ubi9u3bQoj0KQ0z+sdGRUWJ0NBQ05wI6WG9Fk7ZqVetVivS0tKEEEJ8/PHHYsSIEaYMmbKB9Vo4GbNeo6Ki2GpNRHlGEclJRhP/smXLRLly5fQG1S1evFg0adJEzJgxI9NxT548Ec2aNRNdunQRoaGhol27dmLt2rWcOUQhWK+Fk6H1qtVqhU6nE5UqVRK7d+8WQghx48YN8emnn4p79+7lb/D0WqzXwon1SkQFjSK6dWU08UdERKBKlSowNzeXn+vfvz8aNGiAP/74A1euXAEAaLVaAEDx4sUxaNAgBAcHo2HDhrC0tET37t3lufXJtFivhZOh9apSqXDmzBnY2tqifv36GD16NOrUqYMnT56gVKlSJjkHyoz1WjixXomooDHJ3d7+/fvh6+uLhQsX4vTp0/L2d999F8ePH5fHImi1WtjZ2aFLly6QJAn79u0DAJiZmUGtVmPp0qUYOHAgfHx8cPHiRfz2229ZLsZH+YP1Wjjltl6B9AU2L1++jKpVq2L//v04duwY9u3bBysrq3w/H0rHei2cWK9EVNDla3ISHR2NDz/8EH379sXTp0+xevVqtGvXTv4AbdeuHSpUqCCvBp7xjU/btm2hUqlw8+ZNuay4uDj8888/WLNmDQ4fPoyaNWvm56nQS1ivhZMx69XCwgIlSpRAYGAgrly5ggYNGuT/CREA1mthxXolokIjv/qPJScniy+++EL06tVLHugshBANGzYU/fv3F0KkD4r+5ZdfhEqlklcKz9CnTx/RqlWr/AqXson1WjgZo15btmwpP46Njc2fwOmNWK+FE+uViAqTfGs5sbW1hZWVFfr37w8PDw9oNBoAQOfOneVFnszMzNCzZ0906dIFX331FUJCQiCEQExMDMLDw9GnT5/8CpeyifVaOBmjXvv27SuXV7JkSZOcB+ljvRZOrFciKkwkIV5ZSCIPpaWlwcLCAkD6+hWSJOHzzz+HjY0NVqxYIW978eIFPvjgA1y9ehX16tXD5cuXUb58eWzZsgXu7u75FS5lE+u1cGK9Fk6s18KJ9UpEhUW+JidZ8fHxwYABA9C/f38IIaDT6WBmZoaHDx/i4sWLOHPmDCpUqIDevXubMkwyEOu1cGK9Fk6s18KJ9UpEBZFJk5Pbt2+jWbNm+P333+UBd2q1mivNFnCs18KJ9Vo4sV4LJ9YrERVUJplKOCMfOnr0KOzt7eUPTj8/P/znP/9BbGysKcKiXGK9Fk6s18KJ9Vo4sV6JqKAzf/suxpcxheHp06fRvXt37N+/H4MHD0ZKSgrWrl3LhZ4KKNZr4cR6LZxYr4UT65WICjqTdet68eIFateujVu3bsHS0hJ+fn6YMGGCKUIhI2K9Fk6s18KJ9Vo4sV6JqCAz6ZiTtm3bwtPTE/Pnz4e1tbWpwiAjY70WTqzXwon1WjixXomooDJpcqLVamFmZmaql6c8wnotnFivhRPrtXBivRJRQWXyqYSJiIiIiIgAE83WRURERERE9ComJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRUTb0798fkiRBkiRYWFjA1dUVbdu2xc8//wydTpftcgIDA+Hs7Jx3gRIRERVgTE6IiLKpQ4cOiI6Oxp07d/DHH3+gVatW+M9//oPOnTtDo9GYOjwiIqICj8kJEVE2WVlZwc3NDWXLlkX9+vXxzTffYNeuXfjjjz8QGBgIAJg/fz5q164NOzs7uLu7Y/jw4UhKSgIAHD58GF9++SXi4+PlVphp06YBANRqNcaPH4+yZcvCzs4OjRs3xuHDh01zokRERCbC5ISIKBdat26NunXrYseOHQAAlUqFH3/8EZcvX0ZQUBAOHjyI8ePHAwCaNWuGBQsWwNHREdHR0YiOjsa4ceMAAF9++SWOHTuGTZs24eLFi+jRowc6dOiA8PBwk50bERFRfpOEEMLUQRARKV3//v3x7Nkz/Prrr5me+/TTT3Hx4kVcvXo103Nbt27FsGHD8PjxYwDpY05Gjx6NZ8+eyfvcunULnp6euH//PsqUKSNvb9OmDRo1aoTZs2cb/XyIiIiUyNzUARARFXRCCEiSBAA4dOgQZs+ejatXryIhIQEajQYvXrxAcnIy7Ozssjw+LCwMQghUqVJFb3tqaipcXFzyPH4iIiKlYHJCRJRL165dg4eHB+7evYuOHTti6NChmDFjBooXL46jR49i4MCBSEtLe+3xOp0OZmZmCA0NhZmZmd5z9vb2eR0+ERGRYjA5ISLKhYMHD+LSpUv4+uuvcfbsWWg0GsybNw8qVfqQvi1btujtb2lpCa1Wq7fNy8sLWq0WsbGxeO+99/ItdiIiIqVhckJElE2pqamIiYmBVqvFw4cPsXfvXvj7+6Nz587o168fLl26BI1Gg0WLFuHDDz/EsWPHsHz5cr0yKlSogKSkJBw4cAB169aFra0tqlSpgj59+qBfv36YN28evLy88PjxYxw8eBC1a9dGx44dTXTGRERE+YuzdRERZdPevXtRunRpVKhQAR06dMChQ4fw448/YteuXTAzM0O9evUwf/58BAQEoFatWli/fj38/f31ymjWrBmGDh2KXr16oWTJkpgzZw4AYM2aNejXrx/Gjh2LqlWr4qOPPsKpU6fg7u5uilMlIiIyCc7WRUREREREisCWEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgR/g+Z3NBGYjLcigAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -184,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -294,7 +294,7 @@ "2017 [2017-08-01, 2017-08-31) " ] }, - "execution_count": 7, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -315,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -359,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -377,7 +377,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -387,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -491,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -511,12 +511,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 51, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDSElEQVR4nOydd5gTVdvG72zvLCy7LH1ROgjSLKAURUBsICqCDREryKtiVxQ+OzZUFBWVVSwoIoiIKF0FRERAioAgSO+wy/Y23x8PZ+dkdiaZJJNMkn1+15UrbTKZTGbm3OepDkVRFDAMwzAMw4QgEXZvAMMwDMMwjLewkGEYhmEYJmRhIcMwDMMwTMjCQoZhGIZhmJCFhQzDMAzDMCELCxmGYRiGYUIWFjIMwzAMw4QsUXZvgL+pqKjA/v37kZycDIfDYffmMAzDMAxjAkVRcOrUKdSrVw8REcZ2l7AXMvv370fDhg3t3gyGYRiGYbxgz549aNCggeH7YS9kkpOTAdCOSElJsXlrGIZhGIYxQ25uLho2bFg5jhsR9kJGuJNSUlJYyDAMwzBMiOEuLISDfRmGYRiGCVlYyDAMwzAME7KwkGEYhmEYJmQJ+xgZs5SXl6O0tNTuzWBsIDo6GpGRkXZvBsMwDOMF1V7IKIqCgwcP4uTJk3ZvCmMjqampyMzM5FpDDMMwIUa1FzJCxGRkZCAhIYEHsmqGoigoKCjA4cOHAQB169a1eYsYhmEYT6jWQqa8vLxSxKSlpdm9OYxNxMfHAwAOHz6MjIwMdjMxDMOEENU62FfExCQkJNi8JYzdiGOA46QYhmFCi2otZATsTmL4GGAYhglNWMgwDMMwDBOysJBhGIZhGCZkYSHD+MSwYcMwYMAAuzeDYRiGqaZU66yl6si4ceMwe/ZsrFu3zpL1vfHGG1AUxZJ1MYGhpARwOIDoaLu3hGEYxndYyDC6lJaWItrESFejRo0AbA1jFeXlwNlnAxERwF9/0T3DMEwow5cxCUUB8vPtuXli1Pjkk0+QlpaG4uJip9cHDBiAm266yfBz2dnZGD9+PNavXw+HwwGHw4Hs7GwAlLUzefJkXHnllUhMTMRzzz2H8vJy3HbbbWjSpAni4+PRokULvPHGG07r1LqWevbsidGjR+Phhx9GrVq1kJmZiXHjxpn/cYxfyckB/v4b2LSJHjMMw4Q6bJGRKCgAkpLs+e68PCAx0dyy1157LUaPHo05c+bg2muvBUDF3L7//nv89NNPhp8bPHgwNm7ciPnz52PhwoUAnC0q48aNw4svvoiJEyciKioKFRUVaNCgAWbMmIG0tDSsWLECd9xxB+rWrYvrrrvO8Hs+/vhjPPDAA1i1ahVWrlyJYcOGoVu3brjkkkvM/UDGbxQVqY9zc4GaNe3bFoZhGCtgIROCxMfHY+jQoZg6dWqlkPn000/RqFEj9OzZ0+XnkpKSEBUVhczMzCrvDx06FLfeeqvTa+PHj6983KRJE6xcuRJfffWVSyHTrl07PP300wCAZs2aYdKkSVi0aBELmSBAK2QYhmFCHRYyEgkJZBmx67s94fbbb0eXLl2wb98+1K9fH9nZ2Rg2bJhPhd06d+5c5bW3334bH330EXbv3o3CwkKUlJTg7LPPdrmedu3aOT2vW7duZS8jxl5YyDAME26wkJFwOMy7d+ymQ4cOaN++PT755BP06dMHmzZtwvfff+/TOhM1P3769Ol48MEH8eqrr+L8889HcnIyXn75ZaxatcrlerRBwg6HAxUVFT5tG2MNLGQYhgk3WMiEMCNGjMDEiROxb98+9O7dGw0bNnT7mZiYGJSXl5ta//Lly9G1a1fcc889la/t2LHD6+1l7KewUH3MQoZhmHCAs5ZCmKFDh2Lv3r2YMmUKhg8fbuozWVlZ2LlzJ9atW4ejR49WyXySadasGf744w/8+OOP2LZtG8aOHYvVq1dbtfmMDbBFhmGYcIOFTAhTo0YNDBo0CElJSaar6w4aNAj9+vVDr169kJ6eji+++MJw2TvvvBNXX301Bg8ejHPPPRfHjh1zss4woYcsZE6dsm87GIZhrMKhhHlZ1tzcXNSoUQM5OTlISUlxeq+oqAg7d+5EkyZNEBcXZ9MW+sbFF1+MNm3a4M0337R7U0KacDgWzDBzJnDNNfT46acBLvHDMEyw4mr8luEYmRDlxIkTWLp0KZYuXYp33nnH7s1hQgR2LTEME26wkAlROnTogBMnTuCll15CixYtKl9v06YN/vvvP93PvPfee7jhhhsCtYlMEMLBvgzDhBssZEKUXbt26b4+b948lJaW6r5Xp04dP24REwqwRYZhmHCDhUyY0bhxY7s3gQliWMgwDBNucNYSw1QjWMgwDBNusJBhmGoECxmGYcINFjIMU43gYF8mVCktBX79FXBRw5OpprCQYZhqBBfEY0KVDz4ALrwQeOUVu7eECTZYyDBMNULrWgrvcphMOLFxI93v3GnvdjDBBwsZxieGDRtmuj0CYz+ykKmoAAoK7NuWcGTLFmDKFMBkX1bGAw4epHs+ZhktnH5dzRg3bhxmz56NdevWWbK+N954A2He5SKskIUMQFaZxER7tiUcGT0aWLAAOOMM4OKL7d6a8IKFDGMEW2QYXYyK6mmpUaMGUlNT/bsxjGXIwb4AB/xazeHDdH/kiL3bEY6wkGGMYCGjQ36+8U07o3W1rHbQMFrOUz755BOkpaWhWBO+P2DAANx0002Gn8vOzsb48eOxfv16OBwOOBwOZGdnAwAcDgcmT56MK6+8EomJiXjuuedQXl6O2267DU2aNEF8fDxatGiBN954w2mdWtdSz549MXr0aDz88MOoVasWMjMzMY47EwYNehYZxjrE/uXB1noOHaJ73reMFhYyOiQlGd8GDXJeNiPDeNlLL3VeNitLfzlPufbaa1FeXo45c+ZUvnb48GF8//33GD58uOHnBg8ejDFjxqBNmzY4cOAADhw4gMGDB1e+P27cOAwcOBAbNmzA8OHDUVFRgQYNGmDGjBnYvHkznnrqKTz++OP46quvXG7fxx9/jMTERKxatQoTJkzA//3f/2HBggWe/1DGcljI+BcxeeHB1lry8tRJnzeTPya84RiZECQ+Ph5Dhw7F1KlTce211wIAPv30UzRq1Ag9e/Z0+bmkpCRERUUhMzOzyvtDhw7Frbfe6vTa+PHjKx83adIEK1euxFdffYXrrrvO8HvatWuHp59+GgDQrFkzTJo0CYsWLcIll1ziyc9k/AALGf/CQsY/CLcSwPuWqQoLGR3y8ozfi4x0fi584npEaOxdBn0eveL2229Hly5dsG/fPtSvXx/Z2dkYNmwYHA6H1+vs3LlzldfefvttfPTRR9i9ezcKCwtRUlKCs88+2+V62rVr5/S8bt26OOxqRzEBQwiZ2FgqLMa1ZKxFCBmtW5nxDRYyjCtYyOjgSRaHv5Z1R4cOHdC+fXt88skn6NOnDzZt2oTvv//ep3UmajZw+vTpePDBB/Hqq6/i/PPPR3JyMl5++WWsWrXK5Xqio6OdnjscDlRUVPi0bYw1iAG2Th1g9262yFgNx8j4BxYyjCtYyIQwI0aMwMSJE7Fv3z707t0bDRs2dPuZmJgYlJsscrF8+XJ07doV99xzT+VrO3bs8Hp7GfsRA21GBgsZqykroxvAg63VsJBhXMHBviHM0KFDsXfvXkyZMsVlkK9MVlYWdu7ciXXr1uHo0aNVMp9kmjVrhj/++AM//vgjtm3bhrFjx2L16tVWbT5jA7KQAVjIWInsTmLXkrXIQqaoiIo5MoyAhUwIU6NGDQwaNAhJSUmmq+sOGjQI/fr1Q69evZCeno4vvvjCcNk777wTV199NQYPHoxzzz0Xx44dc7LOMKEHCxn/IYsXthpYiyxkABaKjDPsWgpx9u3bhxtuuAGxsbGmlo+NjcXXX39d5XW96ryxsbGYOnUqpk6d6vT6Cy+8UPlY1KERLF26tMp6Zs+ebWrbGP+iKCxk/ImcEcZCxlq0QqaggCtSMyq2WmReeOEFdOnSBcnJycjIyMCAAQOwdetWp2V69uxZWbxN3O666y6btjh4OHHiBGbNmoWlS5di5MiRdm8OEwLIXkQWMtbDriX/oSdkGEZgq5BZtmwZRo4cid9++w0LFixAaWkp+vTpg3xNxaPbb7+9soDbgQMHMGHCBJu2OHjo0KEDhg0bhpdeegktWrSofL1NmzZISkrSvX322Wc2bjFjN7LFgIWM9bBryX9ohQwXxWNkbHUtzZ8/3+l5dnY2MjIysGbNGnTv3r3y9YSEBN0CbnoUFxc7BbDmhumVepdBUZp58+YZ9kmqU6eOH7eICXaEkHE4gLQ0esx1ZKyDhYx/qKhQ2xNERVFmmKX798EHgdmzgffe406fIUpQBfvm5OQAAGrVquX0+meffYbatWujbdu2eOyxx1Dg4ih+4YUXUKNGjcqbmZTkcKJx48Zo2rSp7i05OdnuzWNsRAiZuDigRg16HKY63xZkixe7lqzj+HE1rV1czi0VMvv2ATt2AL//buFKmUASNEKmoqIC9913H7p164a2bdtWvj506FB8+umnWLJkCR577DFMmzYNN954o+F6HnvsMeTk5FTe9uzZE4jNZ5igRwy08fFASgo9ZiFjHWyR8Q/CrZSWBqSm0mNL9+8559A9C5mQJWiylkaOHImNGzfi119/dXr9jjvuqHx81llnoW7durj44ouxY8cOnHnmmVXWExsbazqDh2GqE2KgjYtjIeMPWMj4ByFkMjPVTCUWMoxMUFhkRo0ahblz52LJkiVo0KCBy2XPPfdcAMD27dsDsWkMEzbIriUhZIqKgJIS+7YpnOCsJf8g4mMyM4GEBHpsqZDp0IGa6O3fT24mJuSwVcgoioJRo0Zh1qxZWLx4MZo0aeL2M+vWrQNAjQgZhjGPLGTkcCkO+LUGbR0ZndJMjBfIFhm/CJmEBOCss+gxW2VCEluFzMiRI/Hpp5/i888/R3JyMg4ePIiDBw+i8PR0ZseOHXjmmWewZs0a7Nq1C3PmzMHNN9+M7t27V+mwzDCMa2QhExVFsTIAu5esQrbCVFSwpcsq/C5kAHYvhTi2CpnJkycjJycHPXv2RN26dStvX375JQBqcLhw4UL06dMHLVu2xJgxYzBo0CB89913dm52ULNr1y44HI5Ky9XSpUvhcDhw8uRJW7fLiGDfvnBCDvYFOE7GarTuJI6TsQY9IWN5HRkWMiGNrcG+emXxZRo2bIhly5YFaGvCk65du+LAgQOoIfJt/cTSpUvRq1cvnDhxAqkitYAJKuRgX4CEzKFD7FqyCq2QKSwEata0Z1vCCVnIiCRUv1lkVq8mc1pEUISPMibhfyvMiYmJQWZmJhwOh92bwtiM7FoC2CJjNXKMDMAWGasIiGupVSta+alTgKZNDhP8sJDRIT8/3/BWpLlauVq2UDNFM1rOGyoqKjBhwgQ0bdoUsbGxaNSoEZ577rkqy2ldN9nZ2UhNTcXcuXPRokULJCQk4JprrkFBQQE+/vhjZGVloWbNmhg9ejTKy8sr1zNt2jR07twZycnJyMzMxNChQ3H48GEA5M7q1asXAKBmzZpwOBwYNmwYAKq0PHr0aGRkZCAuLg4XXHABVq9e7fK3zZw5E23atEFsbCyysrLw6quvOr1/4MABXHbZZYiPj0eTJk3w+eefIysrCxMnTgQADB8+HJdffrnTZ0pLS5GRkYEPP/zQ9D4ON1jI+Bd2LfmHgAiZqCigUyd6zO6lkCNo6sgEE0lJSYbv9e/fH99//33l84yMDMNKwz169HDqBp2VlYWjR49WWc6di02Pxx57DFOmTMHrr7+OCy64AAcOHMCWLVtMfbagoABvvvkmpk+fjlOnTuHqq6/GwIEDkZqainnz5uHff//FoEGD0K1bNwwePBgACYFnnnkGLVq0wOHDh/HAAw9g2LBhmDdvHho2bIiZM2di0KBB2Lp1K1JSUhB/OhDj4YcfxsyZM/Hxxx+jcePGmDBhAvr27Yvt27dXqeAMAGvWrMF1112HcePGYfDgwVixYgXuuecepKWlVYqjm2++GUePHsXSpUsRHR2NBx54oFJUAcCIESPQvXt3HDhwoDK7be7cuSgoKKj8PdURFjL+Rc+1xPhGaSkgLpl+qyMjOOcc4JdfSMjccosfvoDxFyxkQpBTp07hjTfewKRJk3DL6RPuzDPPxAUXXGDYg0mmtLQUkydPriwoeM0112DatGk4dOgQkpKS0Lp1a/Tq1QtLliypHPiHDx9e+fkzzjgDb775Jrp06YK8vDwkJSVVipKMjIzKGJn8/HxMnjwZ2dnZuPTSSwEAU6ZMwYIFC/Dhhx/ioYceqrJtr732Gi6++GKMHTsWANC8eXNs3rwZL7/8MoYNG4YtW7Zg4cKFWL16NTp37gwA+OCDD9CsWbPKdXTt2hUtWrTAtGnT8PDDDwMApk6dimuvvdalSA13ONjXv7BFxnrE/CQyEqhVy48WGYADfkMYFjI65OXlGb4XGRnp9Fy2BGiJ0ASMmREZZvj7779RXFyMi71scJaQkOBUFblOnTrIyspyGuTr1Knj9NvWrFmDcePGYf369Thx4gQqKioAALt370br1q11v2fHjh0oLS1Ft27dKl+Ljo7GOeecg7///tvwt1111VVOr3Xr1g0TJ05EeXk5tm7diqioKHTs2LHy/aZNm6KmJqpyxIgReP/99/Hwww/j0KFD+OGHH7B48WJ3uyas0Qb7iloyLGSsgWNkrEe4lerUofjbgAiZ9evpzxQnChP0sJDRIVHYL21c1hXCbeMt0dHRTs8dDofua0Ks5Ofno2/fvujbty8+++wzpKenY/fu3ejbty9KgrRYxs0334xHH30UK1euxIoVK9CkSRNceOGFdm+WrbBryb+wa8l65PgYwM9CpnFjID0dOHKExMzpKvJM8MPBviFIs2bNEB8fj0WLFgXk+7Zs2YJjx47hxRdfxIUXXoiWLVtWsUTFxMQAgFOA8JlnnomYmBgsX7688rXS0lKsXr3a0IrTqlUrp+UBYPny5WjevDkiIyPRokULlJWVYe3atZXvb9++HSdOnHD6TFpaGgYMGICpU6ciOzsbt956q3c/PoxgIeNf2LVkPQEVMg4Hu5dCFLbIhCBxcXF45JFH8PDDDyMmJgbdunXDkSNHsGnTJq/dTa5o1KgRYmJi8NZbb+Guu+7Cxo0b8cwzzzgt07hxYzgcDsydOxf9+/dHfHw8kpKScPfdd+Ohhx5CrVq10KhRI0yYMAEFBQW47bbbdL9rzJgx6NKlC5555hkMHjwYK1euxKRJk/DOO+8AAFq2bInevXvjjjvuwOTJkxEdHY0xY8YgPj6+Sor5iBEjcPnll6O8vLwylqg6YyRkuI6MNQgh43BQewIWMr5jJGQsL4gnOOcc4PvvWciEGGyRCVHGjh2LMWPG4KmnnkKrVq0wePBgl/E6vpCeno7s7GzMmDEDrVu3xosvvohXXnnFaZn69etj/PjxePTRR1GnTh2MGjUKAPDiiy9i0KBBuOmmm9CxY0ds374dP/74Y5WYFkHHjh3x1VdfYfr06Wjbti2eeuop/N///V9lxhIAfPLJJ6hTpw66d++OgQMH4vbbb0dycjLiND7t3r17o27duujbty/q1atn7U4JQTjY17+I/SsObXYt+U5ALTIAW2RCFSXMycnJUQAoOTk5Vd4rLCxUNm/erBQWFtqwZYxV7NmzRwGgLFy40On1U6dOKSkpKcrMmTPdrqM6HAuDBikKoChvv03PZ8+m5+edZ+92hQutWtH+bNqU7p991u4tCn2uvZb25Ztv0vMNG+h5erqfvvDoUfoCQFGOH/fTlzBmcTV+y7BFhgk5Fi9ejDlz5mDnzp1YsWIFrr/+emRlZaF79+4AqFjg4cOH8cwzzyA1NRVXXnmlzVscHHCMjH8RFpi0NLpn15LvBNwik5YGiIzOP/7w05cwVsNChgk5SktL8fjjj6NNmzYYOHAg0tPTK4vjAZQSXqdOHXz++ef46KOPEBXFoWAACxl/I4SMqPPIriXf0QoZuSCeF3VEzcHupZCDr/BMyCFSwY3IysryqlpyuMNCxr+I/SuEDFtkfMfIIqMoQHGxn0q9nHMO8MUXLGRCCLbIMEw1QRvsKwrinTpFDX/toqICOHDAvu+3CnYtWUt+vppRJ4SMXEIrIAG/PCEKCVjIMEw1QVvZV1hkFMWP6awmePRRoF49YMkS+7bBV8rLAVEbkl1L1nDoEN0nJACi6HhUFHC6ZJX/hEyHDtQT4eBBYN8+P30JYyUsZBimmqB1LcXH0/UasLeWjIip/Osv+7bBV+T2BOxasgbZrSSXiPJ7LZn4eOCss+gxu5dCAhYyDFNN0AoZhyM44mSOHKH7UC7MJwsZdi1Zg9xnScbvmUsAB/yGGCxkGKaaoBUyQHAJGRe9WoMe4UaKjlbdICxkfEMb6CtgIcNoYSHDMEHKrl3A0qXWrU8b7AvYL2QqKoCjR+lxKFtkhJCJj1cHWo6R8Y2gEDJ//EEBUExQw0KGYYKU664DevUCtm/3fV2KUjXYF7BfyOTkqONEOAiZuLgADbTVAFuFTOvWVLTm1Clg61Y/fhFjBSxkqhnjxo3D2Wefbek6s7OzkZqaauk6GWD3brrfs8f3dZWWqpmkwSRkhFsJCG0hI1u7WMhYg5GQkYvi+Y3ISKBTJ3rM7qWgh4UMwwQpYmC3InZEDkaVhYyoJRMMQiYcYmTi41XXHbuWfMNWiwzAcTIhBAsZGVFQw8Rt37Z8bPgtH4d3mlve7c2DwkuffPIJ0tLSUFxc7PT6gAEDcNNNNxl+Ljs7G+PHj8f69evhcDjgcDiQnZ0NADh58iRGjBiB9PR0pKSk4KKLLsL69esrP7t+/Xr06tULycnJSElJQadOnfDHH39g6dKluPXWW5GTk1O5znHjxnm025mqlJerF2or0kxlIRMbqz5mi4w16MXIsEXGN1jIMGbhFgUyBQVqyoEb6p++WUZenmozdcO1116L0aNHY86cObj22msBAIcPH8b333+Pn376yfBzgwcPxsaNGzF//nwsXLgQAFCjRo3KdcbHx+OHH35AjRo18N577+Hiiy/Gtm3bUKtWLdxwww3o0KEDJk+ejMjISKxbtw7R0dHo2rUrJk6ciKeeegpbT/uSk0zuQ8YY+SJtpUUmLs65JofdQkYE+gLhIWTkGJmSEhKkolYPYx5FUQviGQkZvxdxFEJm/Xo6gfzSD4GxArbIhCDx8fEYOnQopk6dWvnap59+ikaNGqFnz54uP5eUlISoqChkZmYiMzMT8fHx+PXXX/H7779jxowZ6Ny5M5o1a4ZXXnkFqamp+PrrrwFQI8bevXujZcuWaNasGa699lq0b98eMTExqFGjBhwOR+U6Wcj4jixerLhg6wX6AqqQsUtEhItFRo6RkbPC2L3kHSdPqpWSbakjAwCNGgEZGUBZGbBunZ+/jPEFtsjIJCSYnv4ePgzs3QukpgJnnGHRd3vA7bffji5dumDfvn2oX78+srOzMWzYMDjk6bZJ1q9fj7y8PKSJSl6nKSwsxI4dOwAADzzwAEaMGIFp06ahd+/euPbaa3GmaHfPWI58GFptkZGx2yITjjEy8j72wMjLSAi3Us2azq5QIIBCxuEgq8zcueReOu88P38h4y0sZGQcDtPuncgUoCIeKI0BYO4jltKhQwe0b98en3zyCfr06YNNmzbh+++/92pdeXl5qFu3LpbqFC0R2Ujjxo3D0KFD8f333+OHH37A008/jenTp2PgwIE+/ArGCKstMqEgZE6dIpeCF1rcdmQhExFB94WFHCfjLUbxMUCAY5C6dCEhs3p1AL6M8RYWMl4SdXrPlZXZtw0jRozAxIkTsW/fPvTu3RsNGzZ0+5mYmBiUawo8dezYEQcPHkRUVBSysrIMP9u8eXM0b94c999/P4YMGYKpU6di4MCBuutkfKO6WGTkGJmyMqC4ODRDEbSuOyFk2LXkHUEjZJo3p3tRC4EJSjhGxkuCQcgMHToUe/fuxZQpUzB8+HBTn8nKysLOnTuxbt06HD16FMXFxejduzfOP/98DBgwAD/99BN27dqFFStW4IknnsAff/yBwsJCjBo1CkuXLsV///2H5cuXY/Xq1WjVqlXlOvPy8rBo0SIcPXoUBTwN9Rl/WWTk+A3AfiEjW2SA0I2T0e5fzlzyjaARMnXr0v2BAwH4MsZbWMh4iSxkPMictpQaNWpg0KBBSEpKwoABA0x9ZtCgQejXrx969eqF9PR0fPHFF3A4HJg3bx66d++OW2+9Fc2bN8f111+P//77D3Xq1EFkZCSOHTuGm2++Gc2bN8d1112HSy+9FOPHjwcAdO3aFXfddRcGDx6M9PR0TJgwwY+/unpgtUXGXbBvsAiZUI2TkV1LAAsZXzFqGAkEqCCeoF49ut+/374LPeMWdi15iRAyikL9YuxKsdy3bx9uuOEGxGoj4gyIjY2tzESSSU5Oxptvvok333xT93NffPGFy/VOnjwZkydPNrUNjHsCFSMTTAXxgNC1yGiFDBfF842gs8jk59PBKZQ/oxIENQbYIuMlERFqUKId7qUTJ05g1qxZWLp0KUaOHBn4DWD8SnWIkcnPVwf6jAy6D3UhI/YvW2R8I2iETFKSqvbZvaTP8OGUXjZlim2bwELGSxwOe+NkOnTogGHDhuGll15CixYtKl9v06YNkpKSdG+fffZZ4DeU8YpAZy2VlFCgbSARgb4xMaoFP1SFDMfIWIsZIeP3gngC2b3EVGXPHir8ow3ACyDsWvKBqChqxmdHws6uXbt0X583bx5KS0t136uj53BmghJ/WWS01xox2QRIRJj0UFqCcCulp6vbES4xMuxa8o2gscgAJGS2bmUhY4Toamsia9ZfsJDxAWGRMdANttC4cWO7N4GxgEBZZCIjKXgyP5/cS7Vr+/5dZpGFjCgaF6oWGQ72tY6yMvXYCAohw5lLxigKVYYFbBUy7FryASFkuIQKYzWByloC7IuT0bPIhLqQ4RgZ3zlyhMbHiAh9YW2LRQZgi4weR4+qs6T6lnYf9AgWMj4QDLVkmPAkUBYZwD4hI2JkwknIsEXGd4RbKSNDPxmGhUwQIawxdeoE1i+tgV1LPsBChvEXspApKSH3ZXS09+sLRiEjLDK1a9PsGwjdGBltDBLHyHiPq/gYQBUyZWW+nxemYNeSMUEQHwOwRcYnxGyBhQxjNdoB3VerjFGwL2BfLRmOkWH0OHSI7o2EjNwOL+BF8RhnWMiEPmyRYfyFdkD31VIRzBaZcHItcYyM77izyERHq5PIgBbF4+q+VRFCpkEDWzeDhYwPVBchk5WVhYkTJ1Y+dzgcmD17tk/rtGId4YzVFhkzwb6BFhF6MTKh6lri9GvrcCdkHI4A15IRQqagIDiUdkUF3YKBILHIcIyMD1QXIaPlwIEDqFmzpqllx40bh9mzZ2PdunVer6M6oh3Qw9kiU7u2OiAFwzjhDVwQzzrcCRmA9u+pUwGs7puSQifI/v32timoqAC6dCGT1G+/qcFldhEkQoYtMj4QSkKmpKTEsnVlZmaa7u3kz3WEM0K4iGPMqhiZYBQy4eRaYiHjO64aRgqqbS2Zo0eBP/8EVq8OjpOFhUwQk59vfBMjAmiQiSik1ytO6SyrtSsbrdMLevbsiVGjRmHUqFGoUaMGateujbFjx0I57cPNysrCM888g5tvvhkpKSm44447AAC//vorLrzwQsTHx6Nhw4YYPXo08qVtOHz4MK644grEx8ejSZMmum0NtG6hvXv3YsiQIahVqxYSExPRuXNnrFq1CtnZ2Rg/fjzWr18Ph8MBh8OB7Oxs3XVs2LABF110EeLj45GWloY77rgDeZIZYtiwYRgwYABeeeUV1K1bF2lpaRg5cqRhFeNQRlFUISMu5lZZZPSCfe0QMqWlVNUcCH0hoyhVhSK7lrzHrEUGqIYp2Dk56uOA9WgwoKIC2LePHrOQCUKSkoxvgwZVLhYZCbTvk4GO3ZMQkaKz7KWXOq83K0t/nV7y8ccfIyoqCr///jveeOMNvPbaa/jggw8q33/llVfQvn17rF27FmPHjsWOHTvQr18/DBo0CH/99Re+/PJL/Prrrxg1alTlZ4YNG4Y9e/ZgyZIl+Prrr/HOO+/g8OHDhtuQl5eHHj16YN++fZgzZw7Wr1+Phx9+GBUVFRg8eDDGjBmDNm3a4MCBAzhw4AAGDx5cZR35+fno27cvatasidWrV2PGjBlYuHCh03YBwJIlS7Bjxw4sWbIEH3/8MbKzsyuFUThRWKjGFIqLebhZZI4do/uICOo3F8oxMtLchi0yFsBCxgVC/QP2C5lDh2hGEhGh7h+b4BgZHxDdr+2iYcOGeP311+FwONCiRQts2LABr7/+Om6//XYAwEUXXYQxY8ZULj9ixAjccMMNuO+++wAAzZo1w5tvvokePXpg8uTJ2L17N3744Qf8/vvv6NKlCwDgww8/RKtWrQy34fPPP8eRI0ewevVq1KpVCwDQtGnTyveTkpIQFRWFTBdXpc8//xxFRUX45JNPkHg6t3LSpEm44oor8NJLL1X2iKpZsyYmTZqEyMhItGzZEpdddhkWLVpU+XvDBXkwF12hfR3gg62yr3Ar1apFE4JQTr9mIWMdhYWq0SGohEywuJaCScgIt1LduqoP3CZYyOjhatTQlJrcsuwwiouBZs2cG/ABqBqIZdDo0VvOO+88OCQ1df755+PVV19F+emeCZ07d3Zafv369fjrr7+c3EWKoqCiogI7d+7Etm3bEBUVhU6dOlW+37JlS6Smphpuw7p169ChQ4dKEeMNf//9N9q3b18pYgCgW7duqKiowNatWyuFTJs2bRAp7f+6detiw4YNXn9vsCIOv8RE9Zjyp0XGjjoycnyMvA2hKGSESIyMVIuzVQfXUnGx9cVcRQ2Z2FigRg3j5aqtRSaYXEtBEh8DsJDRR6645IbIlERU5AFlsQDcfcyD9VpBoub78vLycOedd2L06NFVlm3UqBG2bdvm8XfEB7B1e7SmhKfD4UBFsKQhWogQMklJ6iETbllLWiEjfmdpqX8GSH+iZ+0Kd4vMu+8C994LzJ4NXHaZdeuV3UquLN7ieKl2QiaYLDJB0CxSwDEyPmJndd9Vq1Y5Pf/tt9/QrFkzJ6uFTMeOHbF582Y0bdq0yi0mJgYtW7ZEWVkZ1qxZU/mZrVu34qR88mho164d1q1bh+PHj+u+HxMTU2khMqJVq1ZYv369U9Dx8uXLERERgRYtWrj8bDgiCxnhcvFnZV876sjINWQmTgTOOEN9L9TiZLQZS0D4C5mPP6ZrnuYS5DNm4mOAauxaki0ydh9cQWSRYSHjI8JIYIeQ2b17Nx544AFs3boVX3zxBd566y3873//M1z+kUcewYoVKzBq1CisW7cO//zzD7799tvKoNoWLVqgX79+uPPOO7Fq1SqsWbMGI0aMcGl1GTJkCDIzMzFgwAAsX74c//77L2bOnImVK1cCoOypnTt3Yt26dTh69CiKi4urrOOGG25AXFwcbrnlFmzcuBFLlizBvffei5tuuqnSrVSdqE4Wmdq1gfvvp+uzmIGHmntJTyTKrqVwKwabm0vZv4D1rjNPhUzAjBKyRcbOPzSYLDJBUtUXYCHjM3ZaZG6++WYUFhbinHPOwciRI/G///2vMs1aj3bt2mHZsmXYtm0bLrzwQnTo0AFPPfUU6kkR51OnTkW9evXQo0cPXH311bjjjjuQISJOdYiJicFPP/2EjIwM9O/fH2eddRZefPHFSqvQoEGD0K9fP/Tq1Qvp6en44osvqqwjISEBP/74I44fP44uXbrgmmuuwcUXX4xJkyb5sHdCF39YZMxW9g2Up07rWgLUcynUhIwri4yikKssnFi2DBBGVjnQ2QqC3iJTUBD4gksywShkgsAiwzEyPmJnUbzo6GhMnDgRkydPrvLeLoPA4i5duuCnn34yXGdmZibmzp3r9NpNN93k9FzRzEgaN26Mr7/+Wnd9sbGxuu9p13HWWWdh8eLFhtull2Ytt00IJ6y2yJSVqQOPKyEjvicQhUv1hExSEl2nQ1XIyPtWFjUFBfr7PVRZtEh9bLdFJmBCJjFRre574IDrSGR/wsG+urCQ8ZFQqu7LhAZWW2TkWbPegBobSy7S0lK6TgdSyMjjQf36JGTCIUYmOlrdpwUFlGYeLvgiZBQF6N8f+PlnIDWVbjVrqvcrVtByQSdkAHIviTYFLVsG8IslgsUiU1amBj6zkAl9WMgwVmO1RcadkHE4SLwcOxY4q7kI9o2OpioFUVGqqAk1i4xRIHV8PAmZcErBPnQI2LhRfe6pa+nkSWD+fHpcUGCcBNS4sev12CZktmyxN3MpWCwyBw6QHzoqynUviQDBQsZH7BIyS5cuDewXMgFDiJbkZGstMjExxj3mAi1khEWmdWuKITlwALjlFnot1ISMnkUGoME2N9f+5BJXzJtH7r3T9S/dovX+eirS5Jo7v/9OwubECef71FSgTx/X67FFyARD5lKwWGSEW6l+/Sq11eyAhYyPCCHjJsOYYUxjtUXGVaCvIJBF8SoqnNOvt24F2rYloQWErpDR7t9gT8H++2/g8svpv9+/31yZK+FWatCAyoh4K2Ti44GOHT37rIxtFhnAXotMsAmZIHArAZy15DOyRSbc0iwZe/BXjIwrIRPIWjInT6rCv3ZtIC2NHov+n+EQIyM/D1bX0ty5dM3KzQW+/dbcZ4SQufxyuvfUtWS0rzwl4AXxAFXI2GmRCZY6MixkwgvZqsZWGcYKhJiwOkbGjJAJhEVGWGNSUoDp0wHRG1RMBELNImMUIxPsFpkfflAfT5vmfvl//6UuK1FRquvHF4uMLwS8jgygupbssshUVDifoGyRqYSFjI9ERNhbS4YJP/QsMlYIGVeDRyCFjFwMb8UKYOZM5/dDTci4ipEBglPI5OYCv/yiPv/pJ7XPkRHCGnPeefTfAfYLmWrlWjp1ytnsb6eQCaL2BAALGUvgzCXGSvRiZIqKvLf4BZtFRq4hI+qGyISqkNHu32B2LS1aRNerZs2Ac8+lyf706e4/AwAXX6z+Vm9dS77W1bFVyBw4YE8cgbZVTDBYZIKgqi/AQsYS2CLDWImeRQbw/rplZvCwS8johRuES4xMMFtkhFvp0kuBG2+kx59+arx8RYWasXTxxd6LNDPWQTPYmrVkV3XfYBQybJEBXnjhBXTp0gXJycnIyMjAgAEDsHXrVt1lFUXBpZdeCofDgdmzZwd2Q90QTBaZXbt2weFwYN26dQAoTdvhcLhs/Ggnwb59diALmdhYNWXa2+tWsFlk5IwlYZGRS1GEmkUm1GJkFIXSrgESMoMH02Tsjz+oTIoeGzeSAE1IIAuOt0ImpF1LCQlqsSM73EtyoC9gn5ApKVH9kCxkgGXLlmHkyJH47bffsGDBApSWlqJPnz5OXZAFEydOhMNVX3cbCSYho6Vr1644cOAAavi5pDYLEuuQhYzD4XucTLAJGWGRSUtThcwNNwA9e9LjUBMyoZa1tHEjsG8fbV+PHiQo+/Wj94ysMsKt1L07pcmLY8luIVNcHOAkCztryYhrq9j5dgmZfftIDcfGOvcYsRFbhcz8+fMxbNgwtGnTBu3bt0d2djZ2796NNWvWOC23bt06vPrqq/joo49s2lLXBLOQiYmJQWZmZtCKQKYqspAB1DgZXy0yrgaPQNaREUImMVFNuX7+eeCJJ+hxqAqZUKkjI9xKvXqpx4Rop/bZZ/qNQ+X4GED9XHm5Z9c9q4WMvM6AYGfAr7DI1K9P93YJGTk+JkjGlaCKkck5/UfVkhqTFBQUYOjQoXj77beR6a4BB4Di4mLk5uY63TwlPz/f8FakiW7Lz89HSUk+CgvzkZvrvGyh5gwzWqc3VFRUYMKECWjatCliY2PRqFEjPPfcc1WW01pKsrOzkZqairlz56JFixZISEjANddcg4KCAnz88cfIyspCzZo1MXr0aJRLU51p06ahc+fOSE5ORmZmJoYOHYrDhw8DIHdWr169AAA1a9aEw+HAsGHDAND/MXr0aGRkZCAuLg4XXHABVq9e7fK3zZw5E23atEFsbCyysrLw6quvOr1/4MABXHbZZYiPj0eTJk3w+eefIysrq7KJ5PDhw3G5KHRxmtLSUmRkZODDDz80vY/tQFGqCplAWmQCISKEkBFus1q16LEQUxwj419kt5Lgiito/+/apfY7EpSWUsdroKqQATwTElYJGflYrjaZS8IiI7ahoMCeoOMgi48Bgqiyb0VFBe677z5069YNbdu2rXz9/vvvR9euXXHVVVeZWs8LL7yA8ePH+7QtSXKEpYb+/fvj+++/r3yekZGBAoMzqUePHk6tBLKysnBUBAhIaDtBm+Gxxx7DlClT8Prrr+OCCy7AgQMHsMXIwa2hoKAAb775JqZPn45Tp07h6quvxsCBA5Gamop58+bh33//xaBBg9CtWzcMHjwYAAmBZ555Bi1atMDhw4fxwAMPYNiwYZg3bx4aNmyImTNnYtCgQdi6dStSUlIQf/pK9fDDD2PmzJn4+OOP0bhxY0yYMAF9+/bF9u3bnQSrYM2aNbjuuuswbtw4DB48GCtWrMA999yDtLS0SnF088034+jRo1i6dCmio6PxwAMPVIoqABgxYgS6d++OAwcOoO5pU/DcuXNRUFBQ+XuClZISdYZrlUUm2IJ9xSnQrh393hMn6Hl0NN2HmkXGXYxMMLmWcnOB5cvpcf/+6usJCcCgQUB2NtWUueAC9b3Vq0lcpqUB7dvTa7Gx6vuFhaoIdYdVQiYigra5oKAatSkQQkZYZBSFDj5fd6ansJAxZuTIkdi4cSN+/fXXytfmzJmDxYsXY+3atabX89hjj+GBBx6ofJ6bm4uGQbTDreDUqVN44403MGnSJNxyukHNmWeeiQsuuAC7du1y+/nS0lJMnjwZZ555JgDgmmuuwbRp03Do0CEkJSWhdevW6NWrF5YsWVI58A8fPrzy82eccQbefPNNdOnSBXl5eUhKSqoUJRkZGUhNTQVAFqjJkycjOzsbl56e/k2ZMgULFizAhx9+iIceeqjKtr322mu4+OKLMXbsWABA8+bNsXnzZrz88ssYNmwYtmzZgoULF2L16tXo3LkzAOCDDz5As2bNKtfRtWtXtGjRAtOmTcPDDz8MAJg6dSquvfZalyI1GJCtEULAhGuMTO3aFGRauzZZCS67jF4PNSHjLkYmmCwyCxeSUG7eHDjjDOf3bryRhMxXXwFvvqmKFeFW6tVLDTyPiKD3i4s9S8G2SsgAqpAJqIclGFxLQkwB9ONZyASHkBk1ahTmzp2Ln3/+GQ2kvPTFixdjx44dlQOjYNCgQbjwwgt1GyfGxsYiVp4ueEGeixEjUtMg6/Dhw8jNBbZvp4GidWv1vQhNhz4zIsMMf//9N4qLi3GxsPN6SEJCQqWIAYA6deogKyvLaZCvU6eOk5VjzZo1GDduHNavX48TJ06g4rQjfffu3Wgt/2iJHTt2oLS0FN26dat8LTo6Gueccw7+/vtvw9+mtb5169YNEydORHl5ObZu3YqoqCh0lBq1NG3aFDVr1nT6zIgRI/D+++/j4YcfxqFDh/DDDz9gsbbjXRAiDr24ODX2yqoYmWATMnKcoGycKymhm+i9FOyEUoyMnltJ0LMnjdP799NyAwfS69r4GEF8PAkZO1xLQDUsiicsMmlpqorMz1erEwYKFjLOKIqCe++9F7NmzcLSpUvRpEkTp/cfffRRjBgxwum1s846C6+//jquuOIKv21XopnuadKyDgedmNHRrhuvebJeV8T7eBWIFjb80zgcDt3XhFjJz89H37590bdvX3z22WdIT0/H7t270bdvX5SUlPi0Lf7i5ptvxqOPPoqVK1dixYoVaNKkCS688EK7N8st2vgY+bGvFhmzlX0VxX8xfPn56mD27bfAqlXAkCFAmzbOy+XlOYubYMZdjEywuJYUBZg/nx7LbiVBZCRlj738MrmXBg4kkbByJb2vFTLeZC5ZVRAPqIYdsIVFpkYNGmiEkAk0QShkbA32HTlyJD799FN8/vnnSE5OxsGDB3Hw4MHKINnMzEy0bdvW6QYAjRo1qiJ67CTQjSObNWuG+Ph4LBJTJT+zZcsWHDt2DC+++CIuvPBCtGzZ0slaA1B2FACnAOEzzzwTMTExWC6c8iC31urVqw2tOK1atXJaHgCWL1+O5s2bIzIyEi1atEBZWZmTu3H79u04IQItTpOWloYBAwZg6tSpyM7Oxq233urdjw8wekImkBaZ0lK6PvoLOdD3jz+AL78ka6Y2izOU3EtGQjHYXEsbNlDmbEICpVHrIYrjff89cPw48OuvZB1r2BBo2tR5WfH7PHEtWVUQDwgCi0ygA22FRSY11feLgi8EoZCx1SIzefJkAEBPUUDiNFOnTq0M7AwFhLdJUSh1UeN9spy4uDg88sgjePjhhxETE4Nu3brhyJEj2LRpk9fuJlc0atQIMTExeOutt3DXXXdh48aNeOaZZ5yWady4MRwOB+bOnYv+/fsjPj4eSUlJuPvuu/HQQw+hVq1aaNSoESZMmICCggLcdtttut81ZswYdOnSBc888wwGDx6MlStXYtKkSXjnnXcAAC1btkTv3r1xxx13YPLkyYiOjsaYMWMQHx9fJcV8xIgRuPzyy1FeXl4ZSxTs+MMiY2YWLH9fbq41M2Y9RKBv7drqpDYzk4RUVJQa6BxKQiZUspaEW6lXL+P/t1074KyzSPR8/TWwYwe9fvHFVa103tTJCXnXkrDIFBaShUQT9uBXhEXGTiFTWAgcO0aPg6Q9AWCzRUZRFN2bKxGjKAoGDBgQsG00Q2SkepIHqpbM2LFjMWbMGDz11FNo1aoVBg8eXMVKYhXp6enIzs7GjBkz0Lp1a7z44ot45ZVXnJapX78+xo8fj0cffRR16tTBqNMtjV988UUMGjQIN910Ezp27Ijt27fjxx9/rBLTIujYsSO++uorTJ8+HW3btsVTTz2F//u//3M6Jj755BPUqVMH3bt3x8CBA3H77bcjOTkZcZqrc+/evVG3bl307dsX9cRMKsgRYkXOAgmERSYiIjC1ZPT6LNWtS+eP7OoPpRTsYI6R2b1b3T65LYEr5JYFRvExgG+upZAVMnJ130C7l4RFRriWgMALGdEsMiEBMLiG24IS5uTk5CgAlJycnCrvFRYWKps3b1YKCwt9/p516xRl9WpFycvzeVWMh+zZs0cBoCxcuNDp9VOnTikpKSnKzJkz3a7DymPBFz79VFEARbnkEvW18ePptTvv9G6dV11Fn3/vPdfL1atHy61Z4933mOHjj9XfV7MmPd60id476yx6DijKTz/5bxuspKJCURwO2ub9+53fW7GCXj/jDPu27YIL6H+dO1dRIiNpe3bscP25PXvU3yTu9+2ruly3bvSeidOrkksuoc9Mm+bZb9FjwABa17vv+r4uj2jVir5Yc73xO+np9L1//aUo3bvT46++Cuw2LFpE39uiRUC+ztX4LRNUBfFCmWCu7htuLF68GHPmzMHOnTuxYsUKXH/99cjKykL3047/iooKHD58GM888wxSU1Nx5ZVX2rzF5vFnjIy7WXAgiuIJi0ytWmr9GFHn8vLL1ViZUHEtlZaqoRLB5lr68UeKcTl2jCbS5eVAixZV0661NGhA7ieAflurVmpoiIzdriVxXgR8/8pdsAOFolQN9gUCb5EJwvgYIMgq+4YyLGQCR2lpKR5//HG0adMGAwcORHp6emVxPIBSwuvUqYPPP/8cH330EaKigqLKgCnEAO6PrCV3cS+BSMEWMTJikI+JUS3Uzz8PiKz6UBEy8iAeTEJGUdSWD6NGAb//To8vucTc54V7CdB3KwHB41oKeLyriJMJZAp2URFFXQMUI2PXjw9SIRM6V/ggh4VM4BCp4EZkZWV5VS05GPCHRcZsymsghIy2PUFmpnMQaai1KRD71uGoWvfGzqaR33wD/PknHUePPAJkZXn2+UGDgHvuofHTSMh4k7UU8jEygD21ZIQ1JiKC/lS2yDjBFhmLYCHDWIE/68i4EzLiGH7vPf91FBZC5uyzaYK5bp3z+2IbQ80iExdXNatHDLSlpWpzzEBQXg48+SQ9fuABSrkWg/2cOea2JSUFePtt4M479WvOAPa7lmwXMoF0LYlA35QUEjMsZJxgIQNUFn7zBRYyoY0Vx4AV2FVHBlAnmPv2+a+EgJy1FBnpnPjwzjuUKQOEjpBxFX9kV4fmTz8FtmyhOKQHHlCzlWJiKIvp88/NrWf4cODdd40rLFfLgniAPa4luYYMwEJGQ7V2LcXExCAiIgL79+9Heno6YmJiqtQiMYvwZHjae4SxF0VRUFJSgiNHjiAiIqKysJ9d2FXZt6SECtMB5IbYsIHqiViNiJHRFsADnEVNqAgZVxaG2Fiy0igKLSdcd/5mzRq6f/RRigsV9WP69wdmzwZeeIFiYHwVq9WyIB5gr2tJpH6zkHGiWguZiIgINGnSBAcOHMB+Hw/KvDzKDsjL859ZnvEfCQkJaNSoUZX+WIHGLovM7NnqgLB4MQ1069d7932uEBaZuXOBSZOAYcPUuiahWEfGlYVBtC4JdIfmN98EbrqJ2j6cPKm2GPi//wOWLgW2bgVmzQKuuca372HX0gH/9vOQCQaLzKlTqqBiIRNcxMTEoFGjRigrK3Mqr+8py5YBd91FTSO/+cbCDWT8TmRkJKKiory2xlmJXZV9TxdOrmTHDuuv0aWl6vV4wwZyeYg0X8DZShMOFhlA7dAc6MG2Sxe6nzePJlYtW5KFbfRoEjTPP08Bvb78v566lioq1PYXIS1k7KjuK1f1BezJPRfWmJQU54qdQUC1FzKA2jRR2zjRE2rWBP77j05Wf5V3Z8IfVxaZggI6vjw1GrmzyGzeTEI8IoLWD9BE79AhtcaLFQi3UkSEWuVcjAmAs0UmEF24jdi7lzpB33kn8NBDrpd15yoJZOPI+fPJCiNPlkXD9z596H70aODVV+latXOn+5oyrvDUtSQvF9JCJj6eBMXJk+ReCoSQkav6AvZYZERV3yCzxgAc7GsZaWl0f+wYzWSnTQP+/dfebWJCD1cWGRFr4Qnl5WqWipGQefdduhc1XMRyImbGKoSQSUtT2xPIQkkWMuK6bQfLl5NF6ssv3S/rziITqMaROTnA0KHU2HH1avX1n3+m+x496D4tjRpC/vefbyIG8Ny15KrmjjfY2Tcx4JlLWteSHXVkgjQ+BmCLjGUIIVNQAHz2GXDzzTQg2FFDggld9ISMfNHPz1cv4GaQO1kbDR4PPaQWC/3jD8pSKSoiIXPBBea/yx0iPiYtTRX5spCJi6NtFBZ7uxDnrKahustljUSiVVaD//4jK5VRAParr9L2tmqlCtKjR4FNm+jxhReqywpR4yveCpnoaGuy4mytnFy3LpkyAxXwGwzBvkEsZNgiYxE1aqgnp8gSKCqiY51hzKInZOSyEZ7Gycjm/NhY/WUaNgSeeQbo2pWei7gJqy0yQsjUrKkWKdW6rkTxNTsbLYp95omQ8bdrqWdPinvRGzcPHwZee40eP/useh365Re6b91aP0tMUdRAYG8Q4s2sa8nKQF/AZiET6MylYAj2ZSET/jgcqlVGdil98YU928OEJnpCBvD+uiUGj6gotdaRESI9WMTJ7Njh2Xe5QwgZ8dtq1qwqrl54ge7ttGSK7z55Ut0XRriLkbHCtVReDuzaRdY1URNG5uWX6bjo1AkYOFB9fdkyutezwJSWkjDq2tXZFeUJ3lpkvBUypaXA11+rgeCWCplNm4CFC80vL4K7AuVaYouMS1jIWIgQMrIVplYte7aFCT1KS1VXkFbIeJu55CrQ9/ffqbaIGByFkCktBR5/nGIurEQImYQEshroBRKLZAg7s5bEgKso7oOOzVpkfBls5f98/nzn90pKgKlT6fHTTztnIYn4mNO9VJ2IjiZLDUAZTN7grZDxNhninnuAa68FHnuMnlsmZH77jVTddddRxUAzsEUmqGAhYyFCyLRuTYF0hYXA/ffbu01M6CBfk6yyyLgSMu+8QyJm+nR6LoRMURGl6F5xhWff5Q4R7HvWWTQA67k1hJApLg5sWX8ZeWB2514yGyPji4VJFnULFzpXD587lxIM6tVzbiVw8qTa/sEoJmbMGLqfN8+95UkPT11LvhbDE0aQ99+ne1nI+NRarWNHoG1b+rOvv97cgWd3sG+ghYyisJCpLgghM2wYmeU5DZvxBDHzjompWhbeV4uMdvA4dkwVMPfcQ/dyaQh/WETk9gQREaqVXEa2DthVFE8emM0KGX+6lmSr0MmTaidrgAwCSUlUAE8OoP31Vxp7mjVzTnGXadOGPlNSomaReUKgXUsifqpRI7qXW0D4VE09JoZS1GrUIHUtGlW5ItBtCoxcSyUlgemLc/KkKpoaNPD/93kICxkLEemjYuYJkLifP597MDHuMYqPAay3yGRnk9WjQwfgnHPotdhYVUD98w+wZAnVkrEKWcgYISYDgH3uJU8sMmbryFglZABn99KoUSRCHn7YeRlXbiVBVJQ6Ju3a5fl2BVrING1K97t20XVVXo/P7qUmTYCPPqLHEyZQjrorhEVm927gvvt8NAmZwMgiAwQm2llYY9LSnBVkkMBCxkLERVgIGUUB2renEuyiMBXDGOFKyHhrkdFzfVRUqLVj7r7bOa5CuJfuuQe46CJg0SLPvs8VQsj89BOFI+itW64lEwpCJhAxMtr98OOPzs8TE6vG4rkK9JXJyqJ7b4SMp5V9fREyDz+sZoOWl1M6elSUKrwtGcuvvhq49156fMstagE4LVu2qJaRsjLgjTf8W8GxrEw98cX3ikZeQGDcS0LIBKE1BmAhYyniYjJ5MvUzcTgobRIw33GWqb4EyiKzcCGlVqekVA3oFUJGBOJamYItBP7mzcCMGfrhBcHQb8nKGBlv+hFpEWNkkyZ0v3o1icL16/UNAXl5auNIVxYZQBUy//3n+XZ5WtnXWyFz6BDwyivAHXeoBol//qF7y0NFXn6Z0r+OHVNz2mWWLgXOOw+49VZn3+jhwxZtgA6ySBLf6XAENk4miONjABYyliIEcmkp0LgxPRYDxTffcHE8xjVi5m2lRUZPyEyeTPe33FK1uJ4QMkJQWCVkKipUISOs5HqxG8HQb8nKGBkrLTItWwLt2pF4ef994OyzyS2oDdRdsYKsFo0bq9chI669ljwpl1zi+XbJQsaMZ8VbIfPdd7T+Ll3UiaE4Li2vJRMbS/Ey48fTjpGZPh3o25fiVU6ccE67s9IHq0XExyQkOAfPBVLIBHF7AoCFjKWIi158vDpwdO1KwWmnTrl3uzK+U1qqTh5CDX9aZOTB48orKTbmrruqLi9mvGLiZ1UtmZMn1a7wQtDopV+HmmspkDEyyclAv370+NNP6b5Zs6q9t8zExwguu4wqO3fu7Pl2yeLYjFXGWyEzezbdX3UVie/XX1ebjfqlKN6ZZwJPPaUWXlIUKp08ZAgF1w4aBCxY4Dyo+9Mio+2zJPD0oqAoZHrzJp6HLTLVBxHALmcPRETQ8Q+weykQDBtGwvGvvzz7XH4+zfZeeskfW2UOf8TI6Flkbr0V+PNPtY6IjBASolCdVRYZER+TnAwcP06P3QkZM5V1/YGVMTJWupZSUsggAJDrGqDjXYvZ+BhfkX+zv4RMXp5ap27AALrddx9lSwMBqO5bVEQX8QcfpOejR5PFJi7O2aToT4uMNtBX4KmQ+eIL8iU+9ZTn28BCpvogKvpqM5SEe+n77+1thhdMlJRQ0KfVtUJEaurGjZ5/btky4K23rN0eT/CHRcbTImRCSIhZ/uHD1sQxCitMzZp0Hx2tXyyyVi1V4Nh1rvijjowVrqXkZKBbNxKZigLUqaOmJMvbI84BM0KmvJxibb791vNaMnLPJDNCzZuCeD/+SNl1TZvqC2+/CxnZbPnKK8DEieqPFplLgH8tMtrUa4GnF4U//6T7l182X/hPwEKmeqAowN9/0+PCQmcxc9ZZVLOhpKRqxkF15aGHaHaZnW3tekXQojCvm0VYCQ4d8q44mBWYscicPElJEkOHAr17qzNzI7QWmdxcshwaCUghZE6dUuNVrHAvyRYZgMSKnC0liIhQrQ52FcQLthgZ2SITG6uOZ61bV22+uGoVXWfq1iUPiTsqKqge3IAB3o3FnmQueVMQT7iVBgyg46WiggKZv/qKrrF+FzJPP00n28yZVEFQPmhlIWOnRcbsjxfrKS6mGCCzbN4M7NxJj0XEeZDBQsYi9u2jQHeBGBgBOvbffJMqbV53XcA3LegoLVV9/EL8WYFcDdbTHlfiHC8rc/4fA4lWyJw8CUybRi5Jcc0qLAQefZR+36JF9L4rtEJm+nSgfn3KNNVDroX09NPAlCm0vK8IIZOYSKEHRkXaAPvbFPgjRsaKyr4pKZTpJfal3kRcdivpCUUt0dHW1JLxl2spN5fE7VVXqa916wYMHkxGBb8LmSZNgM8+0z9hxEF89tne93kwg7DI+Opakk2c2dnmLr6KAowcSaa7K65QqxEGGSxkLCIigmodiKBy7WB40UVUU8bMxSXcWbhQFXqy4PMVeVKUm+vZuuUBK1BVx7VohczllwM330yNFMVrBQVU6kK4DdxVZNUOtGLWXaeO/vKykBk5EhgxAsjI8Py3aBGDb5s2JDgXLDBeVgiZUHItBaKyb3IyWSJErOaff1YVe54E+gpEZpO/i+J5I2S+/ZaO8fPPp+cREaqlafv2IOmAnZNTVWRYiVGwr/jxngqZpCQybY0d6/4zX3xBKedxcWQKDlJYyFhEvXoUKCpciK5m9f4uAhnsiNL4gLVCRmsa//JL85+VByxvyrVbgVbIiDifCy5wvmZNmADceCM9d2fR1lpkxPJG4kSvOrUViPWJ9gQizVuPuXPpXrj0A02wxcjIrqVRo6iyb716ZD1cskRdTu5f5Umgb6CK4nmbtZSe7uxCExV+ZSETyN6JlQhT5b59/vVHWxXsKyw7Y8fSjHrmTNetz3Nz1YZcTzwRtG4lgIWM5YjqvnpCZtcu6oly0UUB3aSgoqgImDVLfW6lG0c7qHsSfxNsFpmiIvW68/zzqpVCLCMsKu5El3ag9cQik5dHrgorygYIi4yclWSE+K3+LJbqCtlNcvKk6zHKbIyMFa6l5GQa0Pv2BQYOpNfkdgV//EHfU7s20KqV+fX7ImT85VpSFGMxLQsZT8NELKVBA7VZ1d13++97rAr2FYKoWzcaiAC1lbgeTz9NF5hmzSioMYhhIWMRS5aQdcHVjDYhQbXUbdsW0M0LGr7/3tkcvnOnOsj5iixkIiJoJmd2AJHdGMEgZITgiImhiZj2miWEiKcWGbFeMxaZjRspJV2v3oyniP942TIqwvbrr8bLimwmO2JkFMX5mKmocL0d7mJkrHYtCUQ9mfnzVQuviI/p3t0zF7YVQsZqi8zatXSM9+9f1YIthMw//9jsWoqKUk3w77/vY+dKF1hlkZFdVOPHU4DUokVqfrvMX3+pKZxvvaXWYwhSWMhYwP79ZGXJyFBFs56lISNDraDpaTBqOFBUBNx/Pz0WmSkHDlBdEyvcbaIXC0CxGHPnmjdjB5trSXYBORxV68iccQZZiN016vXWtVRcrMYy7t3re1VqIWT++Qf4+mvXljhh1bRjcCotrWqBMXIvlZWp2YlmLDLeHuNCSA0bBjzyiFrzKCaGJgKi1o+39WN8iZHxl2tp9mz6H+LiqoqyZs3o3vYYGXljAOtmZFqsCPZVFGdBlJWlWpEee8z54FQUarZWXk7F/8TFOohhIWMBoq9Jy5bqTNnoQi1qynz+efWKlTl+nMSeKEcwYID63vffA2+/7ft3yMXbPHVLBJtrSSs45GuWopDg+L//o/4zrvA02DchQR2cKipUYS5qJHmLsFCK/0WvGJ5ApH37a4LrCnlAFjVvjOK45GXdxcgA3v8esc/+/ZcmQHFxdIxccAG9Pn8+Carly+m5J4G+ABWXe+klCir3FH+5luS0ay3CIvPvv+p+t03IiI0B/JeC7a6yr5kfL9cEEYLoiSdoHX/8QT10BJ98QgdTYiKVUQ4BWMhYgAhK7NTJdYwMoKYRbttWfYrj/fsvtWoQgYj16lGpcZkHH/S8Gq8W2Z0nhMl//5mrThtMQiY5mS7Q551HmZ2AapEpLydriVlki4yikPXrxhudS2DIOByqVebYMed4BF8Q/404L1wJGWEJKinx7Tu9Qewvh0PdRiOLjBkhIw/a3gy2ZWXO33PLLWrgq+xeWruWjp/UVKpb5Ql16lDGpYi78QRPXEt6Vab1+PdfYMMG+p2XXVb1/YYNqTbdV19Z47rziTPOUB/7qyieFa4lsY7ISPVzGRnOwbxlZXSwi3iYp54K2gJ4WljIWICwyHTq5D7rIyVFPR7tcmEEkt9/pwF561b1ojN8OD0Wz3v2pMF5yBDfXBjCAgvQLPb1181X5JZFZTC4lnr3JuH34Yf0mtzcUVy3du0CfvnF9fVTDvZ1OKio57Rp+lV1BfIxbIWQKS1VBxpR58eVkBEiS1shOxDI+0vsIyMhIwbm2Niq/Y4EkZFqSQZvBlttfI5odwKoQmbpUqqSDZCVRlskz5/4w7X07bd03727OjGUiYyk8feqq9S4IduEjFx10F8WGSuCfWWrjuyrGzOGdvLWrcDHH5O/+sgRiha/7z5ftzxgsJCxACFkOnZ0b5EB1Iu4P4tBBgM//EAi5cgRmiWKQez66+le7KvHHqNZ4ebN6gTBG7QXUzEznTXLWeRoUZTgssjoVfaNjFQHDbHcsGF0sV+82HidZmfBMnpCxpfqvtp9X7Om69hBkeXpa82l6dOBBx7wLDNWHmyFa8mdRcbdwOxL5pLWRSobANq2JdFXUKCW+PC2v9L27cCcOZ4nIfjDtSQ3iXSH7TEyspDxh0VGG9si40nuuVGcTUoK8Pjj9PjRR4HJk+nx2287d9oOcljI+MjBgxTs63CQG8CMkOncmWZOorlquPLZZ3R/ySWU+VJWRhffNm3oddkq8MkndP/ee8CWLZ5/V2Gh2l1ZkJVFE4uiImDGDOPPFhQ4l8PPy/O8OaOvlJerF2M9IQOoEzBtCrYrQSwLmVOnKHDXnctGFjJy8TFvEddQIaZcWWMA9TvLy723yhQWUjG/11+nEABPPgd4JmTciURf3B+yRUa4HAUOhxqHKeJMPY2PEYwfT8JBLo1gBquzlo4cUTPaXAmZPXsoaPyff+i5bUJGrq3iaf8iMxQUqBc2K1xLeoX77rmHUsmPHiXVP2SI2l48RGAh4yMiPqZlSxqAzAiZadPIJSCC9cKVTz+lQeC771RzsbDGAKqQOX4c6NOHgg0XLaJ96SmiFQigXihPnlS7A7uqKSMGKtl9HGj3knwhTkqi2IDGjZ3rhAiBI65bQhC42lY52Pfbb8nl3b+/622RhUyPHiQuPWnNokUImfh49+0JAOc0Y28F5YIF6n7yJI1bFn5WW2S8GWxli4wIgpYR7iWAjo+OHT3/DkBNwRa9ysxitWspLo4yme+9V90mPebMoTT+H36g57YUxAPoYBUXfX/0n5FjW+TIccA6IRMXp57gycnAq696saH2YlrI7N+/Hw8++CByddJBcnJy8NBDD+FQuPtKdGjfnvrRiPgoOVCyOmUlGREbSwPZokX0fPBg9T2t6Hv0UXJFeYOcVSNm9CdPUmBrRAQF4RtZFcRAVbOmOsgG2r0kBtvISNpnu3bRBC86Wl3GV4uMu4wlgSxkzjiDMqNEiXhvENfQunUpFkqIWiNiY9Xf7W3BRDkJwxMB4YlFxmwTRF+EjDgu4uL0BX7v3mp8Trdu3lt5va0lY9a1VF6uWj1d7a/kZOC226g3nSuEy1OIeNssMgDQvDnd+8O1JAsQra/V2xgZPYYNI3fS99+7n2kEIaaFzGuvvYbc3Fyk6NQWr1GjBk6dOoXXXnvN0o0LBerXJxP2rbfSczE4l5e7jssId2T3xcyZtD86d3bOVpQtMlq2bfOsxYAIEM3MdA7SrFePrD0AxbLpIc5xO4WMHB/jcOjXe9FaZMwIGdn94a6GjEAW41YgxypGRBi7zmREXIterS53lJbSjF3gLyFj1iLjiftFi5g3dumiX2G5Vi3gnHPosbduJcD7WjJmf5v8vqctCvQQ15F9++jeViEjApd8rVGgh1GgL+CZkDGKkRFERJCL6cILPd7EYMC0kJk/fz5uvvlmw/dvvvlmzBVNUqoxcXHqDMxoIPjuOzLxX3FF4LYr0HTtCrRuTfEJoreS7FYCjN1w69aRifzFF81/nxikMzPVc1UMQCLVW56ly+hZZALtWpKFTGmpuk9k64nWIuOJa8lbiwxAqb3Z2ZTY4A2ursVGCIuMN4Jy2TJn8eGNkPHEteQuRsYK15Kr3lSvv06TqXvu8Xz9AtkiY8aS/NtvZOUUsTmeCBmj/XX0KLmVzPTYatyYrE+iFIGtQkbMovxR5dSVS0iuIyP+tMJCfUHlaj1hgGkhs3PnTjRy0cK7QYMG2OVNacgQ5sQJCvLW9t1yFycTHU1Bl6I4XLiRl0di5O+/6fz65Rd6XetCNrLIJCbSJGPbNvMZJ0LI1KmjDkDi3L3qKrLGrFql/1kxUKWmquLATouMGBwiIpzTT72xyOgJGbMWGSFknnmGLI4ixddThJDZsYPiGlz1qROIrCZvvNVawerJICe7i4IhRkbus2TEeeeRe9uXMaphQ7IEFha6bxh6+DC5Gi+4gCZlgHvXkthXMTHGqeq//QbceSd1fHdHVJRznK08lgecBg3ofv36qhkHvuLKkiKETEWFqugGDiRz1dq1zsu6cy2FOKaFTHx8vEuhsmvXLsRbYTMMIVatolmQ6EQscFdLxsxMOpT5/Xc6nxs1ogwERaGLnra2kpHgy8qiC1VBAWWEmUFUBnY4qg5A8fF0cTRyaQRDjIxeVV9t11+tRaZJE6qRY1QnR1HU61t8vHnXkvhfxPHray0ZcS0+epQyTcxUXRaXEk+rvldUqOm74jwLlhgZX1xLP/7oOvPOV2JjVcOCu/moKDcBqL/J3W8zs6+EJcZswLLsppZjcAJO+/bqYyu74AKuBYgc/JufD6xYQQeKoqgKU7ue6m6ROffcczFt2jTD9z/55BOcI5y11QS5oq+MO4uMuMAeOWK9gA8GVqyg+65djd1KgLFFJjpadTubdWcIa6pccFBvAFKUqlYevRgZT0VmTg6Veff2/9QTMloXkNYik5ZGyQZGbQrkCsDeupYUxfdaMkLIiMHOXfo1oIo2T8eFVatIhKakqNlZnggIf8bI+GKROXHC/5WOX3yRzlfZ0qGHbFHT/rdGmNlXvggZwEb3kgj2BdSgHatwJUCiotRaL/n5zj0mtOln7mJkQhzTQubBBx/E1KlT8eCDDzplJx06dAhjxoxBdnY2HnzwQb9sZLAiV/SVcSdk0tPJvFpR4b8+Y3Yier40b07WmYgI4Jprqi4n9pNesG+LFnRvpkCXoqjnaZMmVV1LgmnTaPIkatYIZIuMN66l8nIytT/6KPDOO+Y/JyMLmdhYWl+HDs7LaC0y7tDGJdx0E93cVR0X/0tZGVkErLLIiFm5GSEjXClGIsII4Va64gr1mu1rjMzJk/ouzkDGyADuLWm+cuONlFUohKwRcl0eIarNupasFDK33EKJBMJVZZuQycxUM4p87bOixV2AmbgorF1LXXIFWiHDFhmiV69eePvttzFp0iTUq1cPNWvWRK1atVCvXj28/fbbeOutt3DRRRf5c1uDDm+FTGSkWhMi3NxLFRVqTyXx+y+6SN8KICwyevtJTHLMWGROnFAtIc2bG8+kd++mHi4ffFD18wCd4566lubNo/iEq6+m54895l1dLFnI9OpFVi1t7RutRQag+jk//6wfSyIGl4gImrw99xyJOHdCIj5evT7KRfH+/dc7i5MsKKOjXbdHEIjrtieZf4qiCpmrr/ZOQOjFyFRU6NeiCURlX/l7/S1kzKJXYNBXi8yRI2rMoOgv5o5Oneh/9iR5xy84HOqf/Pff1q7bnQCRT9R27aiw0P79VEhJbz3VPUYGAO68807s2LEDr7zyCoYOHYrrr78er776KrZv3467RUvwasKxY6ro1c6c3cXIAOHbpuDvv2nwiYtT06f13EqAc5q0dsbriUVGFg4NGxq7lm69lUTk8uXApk3q63oWmaNHzfnc33oLuPtuEhndutHF9O67PQ88dNWeQKBnkbntNipaJ+r0yMiBvp6W+5eP4QYNyIJdWupdgLosRuTJqyuE8K1f3/z3/PUXia34eKp4642QkQfc+Hg16FjPMmQ2RsYX15K87/wtZI4epbR1V3V+9u8nkR8Z6dx41FchI2JTmzVznaGlh+1tCgBVIPjaXVWLO5eQuCg0bUoZFl9+SbMx7UkW5q4lj8sn1a9fH/fff78/tiWkENaYpk2rilyzbQqSk133nAlFKipoYvDXX3Shb9vWuOClEDIVFXSeiRkwQPE1TzxB+8kd8uBap45qjtcOPvXqAVdeSWXY33tPLbolx8jUrk3Wi7IyiilxNZDm5al9jq68krKjzj6brDRffmks4IzWBbgWMnoWGVeZS/JAm5dH+yMjw9wxV7s2CfWjR2nQOuMMah2xY4friqt6yIOx2VpbIk6jSxfz3yOsMX370vXdVyED0DFx8CDtO+3vDkTWkux2defy8ZW1a+kYbt3auD2AiI9p04b2jQjG91XIeOpWEsyZo044bBUyGRm0M6xuU+DOkiKboxwOYxXIriVGD6NAX6Bq1oceH3xAacneVrINRnbsoHoWwk18xx0UfGmUOhobq56H2jiZNm2AZ58FBgxw/71yewK99GuZO++k+08+US98skUmIkIVB+7cS4sWUQBmkybU06lVK+DJJ+m90aM9C1SVhcyVV1LGlzbxQM8i4yoDTrbI/PgjrdNsCxWtVfHVVyn9Wu94d4cQMlFR5uJjAPWY8aS9gOxWAryzhGjjXlwF/HoaI+ONa0kcw0lJzlWe/YGZWjItWgDjxpEl8M47KS4M8D1G5s47qfihp3PkBx5Qrx22Chlx0FltNnNnSdErgf3VV6REhQ+9uFj9A1jIMDJ3302zcb1uzSKYsjqV1fnsM3Kx/f47nStff01WD217EC1mrFfukGf8tWs7Dz7aC/Ill5DwyMlRXV9yjAxgPj1eCI0rrlAtuY88QiLsyBFg7Fjzv0EWMv/9R1Ym7cDlqUVGHmjNZiwJtEKmf3/ad95cB8X/8/vv5muGycG+ZuJytm0DNm4ksXT55fSarzEygDkhE4isJbnrtb8Q162CAuPzsWVL4OmnSagPGUITF8B3i0zNmsDFFwPnnuvZNsuZS7YKGWE6DrRFRpzYL7+svrZtG5mqfv6ZnssXSFcFiUIYFjJeUqMGzW71TN/NmtH9f/+5T5kM9X5Mp05RjZYbb6THHTqQ223QIHOfd9Wm4MABmqW5q/wtKiRnZJAbRAy25eVVM3wiItR05ffeo3vZIgOYC/itqFBLxouBE6BYkg8+AG64gWauZhHbmZxsnH7ti0XGbA0ZgZk4L7OI62jNmu6FrUBcb7/5xlyclOjafNFF6v9olWsJ8C1GxhfXkrh+iE7y/iQuTj32zU7CzDaNNGu98pSgETJyRLyVF3VXLqGcHNWvLjdDa9uW7jduVJcDyO0kF6YKI1jI+IHMTJo9V1QYD8I//kjxF6IPUChSVkb9XaZNI4EwZAj52T1pAuvKIvPQQ2QFcFcITG5PANDAIsor6LmXbr2VhNb48TQYiYusVsi4ssj8+Se9n5RUtcfNeedR529PrMxCnCQkqCn57urIyMu4ipGxwiJz4gS54956y9znBcXF6nZ4kjAhxwqZEVNatxLgfyETiKwlEe8VqIm0q+aRIhhYxMXk5aljZXk5XQ+McCX61q8nS+a8eZ5vb9AIGfEn5+db2zzSlWvpnXfUnS6b7Nq0ofu//6Y/JszjYwAWMn7B4VBPsH/+0V8mNpYuCHv3Bm67rGbbNgqUj4sjK6boYKHN4nKFK4uMSMF2NyPXWjD0qvvK1KlDrq++fdXrhMOhDrRmasn89RdNbvr2dR88Ky72rhBCRi7YJ1L0BXoWGU+FjLcWmWPHqG7HI4+YbxsBOFu15fgpd8gDt7taS3v2kNvK4XAOUvVFyFgZI+Ota6mkRC1q6Gkmj7e4EjJLl9L+vfJKer5uHWX7ClwJNVeib/FiYMKEqmURzBA0QkZOcbQqc6m0VP1R2llAYSEwcaLzc8EZZ9BBWVREAYQsZKoi6sdob2lpaahfvz569OiBqVOn+mNbQwrhXjISMmIA0pv1h0q1XzFbrFePUo9FIbyuXc2vw1VRPDO1ZMrLyXIDOGc9uaruKyPeT0lRC2uZcS0NH06D/CuvGC9TUkKxJe3aqW4sI4Q4EdfDtDRzMTJZWRSzoOfGkmfBvrqWGjcm4VZY6FmxQFkofvONeauELGTcWWRES4Ju3ZyDiYMlRsZb15Ic6Pz115591luEkNHWUwPUjCXhTpfTrwHvhYy3GUuAs5CxrY4M4HxiybUdfEGeBWiV7NSpNDsRr8s/PjKSMg8AmkWFeQ0ZwAsh89RTTyEiIgKXXXYZxo8fj/Hjx+Oyyy5DREQERo4ciebNm+Puu+/GlClT/LG9IYM7ISMuuCdPOkf8P/wwDWLeloMPJHJn3pIS9ULXrZv5dbgqimemlsyBA6q1QU6VdpW5JNixgzKj5OUB820KUlNdpyLHxJCAUBRyY7lCCBlxLOgJDj2LTK1aJGL02hRYGewbHU1iBvBswimuxSJswF1VYYEnFhkRHyO7lQDfLDIPPEAZd3bGyMhVfeV2E/7kuuuoTcHIkVXfE4XwRFyrVsi4ylxyJWREKQtvhEyTJmqgvZUeHY9JTKRIc8CcCdYMcsqaWDdA7iQR3CtmjVoVJ9xLmzaFfQ0ZwIs6Mr/++iueffZZ3HXXXU6vv/fee/jpp58wc+ZMtGvXDm+++SZuv/12yzY01HAnZFJTaaArKaHBTgwSX31Fx93ChWr8WLAix5CtXUsX27Q09bebwZVrSaznyBEaSGSxIZCTBOQaJe765AA0AIogSnnd7lxL5eXmY+bq16cZp7usLCFOUlLo2qSXpSIsMqWldNyIOCAjZNfSkCFkZTZbA0Yv2LdpU4r52rGDivCZQZ5UXnxx1cHPCLMxMkePAsuW0eOBA53f80XIJCbSeoXw0zs+Pc1a8jRGxo6qvmefrV9Zt6JCFRxCyMTF0fkr9o03Fpn8fKpPBHgnZGJjyd01e3YQJE6kpNDOMBOdbgYjl9DJk1QHobCQZo3z51cVMm3b0glQUMCuJT1+/PFH9O7du8rrF198MX788UcAQP/+/fGvu1STMMedkHE4qmac5OWpJt3Nm/27fVYgW2Rkt5InVWRdBfsmJalWFqNrg7YYnsCMa2nYMHWiIwsT2bWkd3G85hpKEvj1V+N1C8QgWlLiesYqBq3u3Wlf6vVnFRYZoGqbgmXLqsbJyEJm3Djg449VwewOIWSOH1ddncKM74nlXO5erleqwAizFpk5c2iQ7dixqkiTg2zNDnJiwN24kVyacvVpo2X91WspkH2W3LF9u1qxW0z2AfPVfY2EzPr19N/UrWu+xpCWs86i+0BZrQwRJ41VdTeMLCm1a5Ovcds2dQamPbj+9z+6qDz3HLuW9KhVqxa+01bqAvDdd9+h1umzPj8/H8lhmq9uFiFk9uwxHsC0QkZu0xFqQkbueO0JriwygPuAX9kiIwsZMxaZ2rWpiSTgPOsX6ykpqeqaKiykwnC//ea6Cq9A/l2iDLuWigpVmLhaZ0yMGjcjC5kRI6iw4sKFzsvLQsZThMCsqFD3wYUX0v1HH5lv5ihS1BMTKTDaLPLlQx44tehlKwnkVG93Bdv0lmvYUBXlekH5/o6RsUvIzJ1L2WmyRUi4lTp0cPZyyELGG9eSL/ExgqBoUQB43qjNHe4ESEqKcaOpuDg16I9dS1UZO3Ys7r77bixZsgTnnHMOAGD16tWYN28e3n33XQDAggUL0MOs7TlMSU+n4yw3l0zxehfjTp3INCpORFm8hJqQuekmMkn37+/ZOtwVxBs9mtYtBlEt7oSMqxgZgLZ5zRoaqHJz6beIzscnTtA1SXY7LV1KF8wGDVQR5Ip9+9THK1Y4l3sQyBYDd+IoMZF+k5nMJTGwREWRoDbbngAgwVSjBl0Djx6l/+naaymmaNcuGtguucT1OsrKSPQBVPY+woNpU2ys2iri5pv1lzl1Su2Npydk5EGzoMC94ACcrQoNG6oNhQ8epGao8v/naYxMeTm5Bc1W6JWPXW0Gmz+5/Xb6vd26qQJDGx8j8NUiI65zvggZMYZv2OD9OiwhK4tMo7m5tFGyCdUb9ASI6DVSty6dIGY6ZrJrqSq33347li1bhsTERHzzzTf45ptvkJCQgGXLluG2224DAIwZMwZfirKp1RSHw7176Z13KG1ZDAiyeNm/3/0gbDeykOnalcrzt2vn2TrcWWQGDKC6L0axHb5YZAA16L+szLnomNHkSgxsl1/u3oVWVOQcgGhkkRGixOGgwoING6qZOFr0MpeMiuKJwePIEUqNP+8819urRRsnExlJ9XF27HAvYgASZ0KAenpcOBzqbzVqU7B8uXOLCC2RkapwMztb1wqZxx9Xn192mfM56mmMjCfbATi75cx0DLcKvRTs0aPJ3Xnjjc7LDhlCoh4wJ2S01sG336bv0YRceoQ4x42uswFj3Dj1gmJFaIWeRWbRIjqZRUaFXL9Gy5NP0gxamPrDWMh4bJEBgG7duqGbJ6kpYUq+CxUcGRmJZs3isGYNnWCulo2IiEB8fLx0kaRl//yzaslusaygoKAAikEAgMPhQIJkX/dk2cLCQlS4KBiSmJhYKWTi4wuRn+96WUFRURHKpfxycWE7cUJYRIyX1ZKQkIDoaKEmipGQUFZ5PotddOQIneMJCQlwnFYexcXFKDtdSEp2Kb3zDll/EhLikZkZgc2bgb17S5CfTznRiqJ2Bu7dm9YbHx+PiNOmhpKSEpRK9SS0mWd5eXEAIqssK8ROQgJd1PfuBRwOddnS0lKUnC7xqv1dAFC7diyAKBw65LysEABiEElLA8rKYhF12jdQVlaGYheBBbVqxWDHjmgcPaouK8S59nCOiYlB9GlTQ3l5OYpOmytEllJKivqZ6OhoxJyOVJaX1ULWp2gcOhSDli2BiooKFEqjpWjYef75tG55vWLZ+HiKnTh61FkMREVFIfa0ylEUBQUFBSgrcy7qlpYmxokoALE4cQLo00fB4sUFyMxUq+6Wl6u/LTIyEnHSaJ2fnw9FIWGmKLQdalxW1WVlhIWNsgKdz3sz1xOBp9eI+vVp2a1b1d+Vng5cfXXVa0S3bhVo0ICO2ZMnnY8L+bzPzy8EUAGHo+qxU7u262uEFu2ymZm07KlTNCmQJxjyee8Kd9dyV/9TJenpiGjaFPF//klC5qyzfPufxIUhMRGOggLa96d9nAWZmVDy81Uz56lTlTu28j/dvx/YvBmF9eujAiBVr7M98v40c90XyP9Toq/WJ19RvGD79u3KE088oQwZMkQ5dOiQoiiKMm/ePGXjxo3erM6v5OTkKACUnJwcy9cNwPDWv39/ZexYRQEU5fbbFSUhIcFw2R49eiiKoihNmtDyDkdtw2U7d+7stA2NGzc2XLZ169ZOy7Zu3dpw2caNGzst27lzZ8Nla9eurSiKolx3HW1vZmYPw2UTEhKc1tu/f3+X+03mmmuucblsXl6esn49bUNs7C0ulz18+HDleu+55x6Xy+7cuVO54QZab48eD7pcVj7mn376aZfLdujwe+WyEyZMcLns5MlLKpedNGmSy2Xvu2+uAihKnz6KMnXqVJfLfvXVV5Xr/eqrr1wu267dVAVQlA8+UJS5c+e6XHbSpEmV612yZInLZSdMmFC57O+//+5yWeBpBVCUggJF2bhxo8tlH3zwwcr17ty50+Wy99xzT+Wyhw8fdrlsRMQtCqAoZ5yhKECey2WvueYap2PY1bL9+/d3WtbMNUJQu3ZoXCMEiYn2XSPMYNn/lJ5OF45XX/XP//Too4oCKK1r1XL/P736qqIASueICNP/U48e3v1P/sLs+O2xa2nZsmU466yzsGrVKsycORN5p+3i69evx9NPP+3p6sIad64lwdq1JJSFKdddWm2wICwyZgM//YGYtZqJf/AE4VrS9mryBb0iY0Z4YgUWbjS96r6+IAJurei35Ct2boM4H9980/vMmnDAXd84V7iqBh0qBUBNISyc/ioEJtI0zQRaicBMT0pxhyqeKqTzzjtPefW02kxKSlJ27NihKIqirFq1Sqlfv75H63r++eeVzp07K0lJSUp6erpy1VVXKVu2bHFa5o477lDOOOMMJS4uTqldu7Zy5ZVXKn///bfp7/CnRSYvL8/wVlhYqKxcSeK8fn39ZRctylOAPKVRowJlzRpatnZtRXnzTXr9kkuqfqagoMBpG/Lz8w23IT8/3+tlCwoKXP4+RVGU888XFqQCBchT/vnHeFlBYWFhlfcbNaLfu3ix/rLNm9P7c+Y4f66iokKZNo22oVevIqf3li+nz9Spoy4rKCpSl23blpabNUv9bHZ2uXLzzbTewYOLK1//5ps8ZcCAPGXKFHXZ8vLyyvUWFxc7bcPYsbTuq66ie6BMOXmy6rKzZ9P7rVuL5fKUvLyyyvWWlJRULtunD70/ebL6PatXlyqAotSp47ys+N5Onej+2WfzlNLS0sr1lpaWuvyP77uvRAEU5cEHqy67cqW6rcuX5yklJSWV692ypazyvS5d6P6DD9TPFhcXVy5bVlZm+P09e+YpQLECKMqffypKeXl55XuLF9N609LylFOnqq5XLCv+32+/dV53UVFR5bIVFRVKXl6e8vfftGxMjPOyLVoUKYCiLFqkKOvXVyipqXnKzJm0bFRUnvLSS+q+qFGjULnoIkURBkCxjoYN6f2lS52vETLa33/LLfSZsWOrnveu/jdfrxGzZtH3tm1Ly9xxBz2/996q14h//lF/+4QJxud9gwZ0jVi2TH1/+HD63P33u79GuLqe/PSTug3vv1/1GmEGV9/n7n+qvK1ZoxQAdOHo18/3/+myy5Q8QMl78031f+rRQ1EAJX/qVFpm82ZaJiam6n+6d6+iAEoBQMusX+92f5q57uv9T/7C7PjtcYzMhg0b8Pnnn1d5PSMjA0c9nDYtW7YMI0eORJcuXVBWVobHH38cffr0webNmyt9bp06dcINN9yARo0a4fjx4xg3bhz69OmDnTt3ItLmTp7u/ILCIrNvH+BwJFbp/NukCd0fPqzW5mjTBujQgda7bZv7wPcE7Uq9WPbzz8kPf845appnvAkTh7DIKEo8Gjd2LhduRJxOLnDt2hS0qw0WFMu2akX7Yvdu5/2xdClw//30uG7dWCQmqik5IpsiJ6fqPoyNja2MjxBxJHXr0nKHDlEJBpEwsHNnDBITaUo+cGDVomsyMTExlTEagBp8Kxc2/PtvCrqVlxVxGWLXyFmVAMV+iPgTEfdXWqouc+aZFGdYr57zsiJcR4SgNGjgnDobFRVVGS+jhzgWjh2ruux55wFDh9Kx88wzwA8/qJ97661IAIno39+5orDesRwZGWl4HslWqaNHKaZALCuyaC68UD/TSywr3lMU43PJ4XAgMTGxMrYiPt55WZFZd+IEcNFFDuzYkVgZBJ6QQMs3bkzHZ04Oxe689hrwwgvqNULeRqPt0O4HkZq8cWNVi6MnMQmeXiNERe3du+n3rV9Pz7UZd/Hx8cjKUuN/Tp0y/m3FxfQDatVSlxFZRtogdL1rhBFxcXGV/w9ABgtvwjU82Z+Gy4oLOlBphvfpfxLm4IwMNaj3dIxMwpln0g8V6WwlJXQBkcfEevWAGjUQLy5m4iLnAjPXfYEn/5O/8di1lJqaigM6efJr165FfblGvAnmz5+PYcOGoU2bNmjfvj2ys7Oxe/durBElJAHccccd6N69O7KystCxY0c8++yz2LNnD3YZFB0qLi5Gbm6u080u0tJUs79eWXeRZVNUpGa0tG6tZmD895+1rg09FAW44Qbgiitoe1x1sNUi71pP68fIuEvBNqol8++/qstBW3pf7PeiItf1LYRbTCyfkgLcd59quf39d2qU6M3/IDKqWrVSY/JWrqy6nFi30Amu2gjoZS3VrEn9lrSFtMXvFus3255AoFfdV+b//o+2ef58EpUAZZ+JVmsPPKAKQm9qcbkqiieKEV5wget1eFJjxKjujjYDrlYt1R0SFwfcey+5hfPz1d/+7rvO2VbeNI4USSuBrljbpAnwxRfAjz+SGF63jl4XPZZkoqLU3+aqRYA2w6u0VG0g6kvqNeA8NtuauZSaql44/vvPd5+ZNm1aUdSCRiKKXv7x2oPL4VD7vABcEE/m+uuvxyOPPIKDBw/C4XCgoqICy5cvx4MPPoibjQo+mCTn9FWvlkGuYX5+PqZOnYomTZqgoUHTlhdeeAE1atSovBktFyhcxckkJKjZemLW07o1Dexi0BHlu/2FNsVbbIcZrBIyZoviaZtHGqVeAzQIihm2URp7ebn6G8S1Ij6erBtyzccJE2h9nlYUEO7sxo3V/1nMsmWE0EhIoKxKba0OGb1+S0aIgblbN+pc7WnLC3dC5swz1R5Pjz5K19n33qPrafv2wEUXWSdk5G2oqFArSVspZMRge+gQMGmS+rpeKr9eDZn4eKp506wZHXMffeTddgiEWA10Vd+4OOD668lSsmkThX3UqGF8/Ahx7aoNh1bI/P03rTclRb8dhyeIfRsV5b45q19xONQ/q6xMv4qiJ2hPntJSMhcPGaKanOPi1AudXoaUmBXHxIRO8KUXeCxknn/+ebRs2RINGzZEXl4eWrduje7du6Nr16548sknvd6QiooK3HfffejWrRvatm3r9N4777yDpKQkJCUl4YcffsCCBQucTPgyjz32GHJycipve+Qa9jZgtnmkGKRbt6Z7cfz5uzCedvf88ou5zymKcx8dX7Lx3VlkjJpHGrUnAMgC4q5NgSxwtH2c5LR3YTG+/nrjWjBaFEUVWo0aVf2fZYQoadKELA06nttK9CwyAFmnli51riUjBtsbbwSysz3rgQW4FzIAMHYsDSSrVgEzZlBFWIDaETgcvtXiMuq3tHUrHSvx8VRp1hXeCBnAWXjpCRmjGjIREfTbk5OdS+bL7RLMIv4/OwOM5UJ4RlnMQqQbTURKS1XjhNhfQtB36OBZoUQ9xL4tK0MV933AkVWnrwG/2pMnJgZ46SW6QIjxz+FwXUvmf/+je3EyhykeH0IxMTGYMmUKduzYgblz5+LTTz/Fli1bMG3aNJ9iVkaOHImNGzdi+vTpVd674YYbsHbtWixbtgzNmzfHddddZ1h7IjY2FikpKU43OzErZETxKyFkxH2wChnnehFqvxNvMGuR2bXL2U3kyiIDuK/uK15PTKyaBFCjhlpMbd48inmYOFG/oZ4eOTmqQGnYUJ3NytssEMuZaXlgZJG5806gVy+10i1gvvKsEWaETGYmxSk1aQLMnEkFBOvVAwYPpu8XmS6+WGQaN1aPAUB1K1Gsket1eCtkZEOuJ0IGIOvXnj3UyV7gjWtJ7DuzjTatZM0askq99ho9d2UlFOOs0Xkm71fhtrOiNYFAFi+eNua0HPlC5IuQqaioai42wlV1X19MoiGEVwXxAKBRo0Zo1KiRJRsxatQozJ07Fz///DMaiDKREsJN1KxZM5x33nmoWbMmZs2ahSFDhljy/f7EnZDp1ImOvzVr6IIpzoNACxnRxfaXX1BZwMsV4hyLiKCO3S5iRt0iLDJGQiYjA/jwQwomlrWyWSFjZJHRxsfIOBwUG7drFy0ngorNIrZNFFVr1476Dh09WnX/eiJkjCwyem0KxEX95EkSFZ7G5gkhc+IEzXaN/uPHHweeeorckoWF5O6JiVG3xeFwdhOZRXzmvPOcK8qajY8B/C9k9PZpXFzV171xLQkrhh3e8S+/BF5+WX2uFx8jEBMRowrM8uRD7JeiIpooWCFk5H09ejTw0EPq9TPgyBYZX6r75uWpadNChBw6ROpWtCcQuBIycnXgigrfzV9Biqnh54EHHjC9wteEhDeBoii49957MWvWLCxduhRN5KhvF59RFMVlRdJgwp2Qee01CqwbOpROPjHABVrIDBxI5eePHKFtlWfAesiTBU/7K2kRF0Ij15LDAQwf7vyaorh2LYltA9wLGaMJjxAy3vSAE9smtL6Y0ZaXk/tH1KkBVCEzdy7wySdk+bnmGv31Gllk9NoUiAFk4ED6P/XcWq6oWVPNSDl+3DhWQwzSXbpQN2oRnComg8nJ3l0/hWjT/lZhNfREyJiZqcsBxfJ8ymyMjBZFoRYkqameu5bk/lt2CBnRpqBPH2D8eOeYUS3t2lFPLaPtlEWfuL69/z61J7CixInwrhQUkAv1ootsFDIiffDFF32zyIiTJyZGVWpvvEGpcCNHOgdxmREyv/9OfvFOnbzfpiDGlJBZqwkM+PPPP1FWVoYWp4/ubdu2ITIyEp083EkjR47E559/jm+//RbJyck4ePoqXKNGDcTHx+Pff//Fl19+iT59+iA9PR179+7Fiy++iPj4ePT3dfQMEELIHDxIMxa9makQK3JjSXEi/vsvXQisLvgmEANus2aUfv3LL3RzJ2TEeWaF586dRUaP/HzaRhGcrDfIunMtubLIAMY9jMwgLDLi4t6xo9qEcds2fSFz6hSl6rvy0HpikZFnwp5mLAE06atZk/6Xo0fNB52KwcpXq7Y4V3JzSVDWrEn7audOEkZmekd5YgkR7t2YGOfmmp66lgTPP0/tbq68UhW0Zi0ysqi3U8gcOuR+P4trhVFmr9G+Mts80wxCyAA2Zy41aaLmqfsiZGRLirYFu9ZrYUbIVFRQ5HaYChlT86QlS5ZU3q644gr06NEDe/fuxZ9//ok///wTe/bsQa9evXDZZZd59OWTJ09GTk4Oevbsibp161beRMPJuLg4/PLLL+jfvz+aNm2KwYMHIzk5GStWrEBGoEP5vSQ1VTXR66VgA2oNGXkWkZFBlgpF8Xwm7QkPPUSxY1dcAQwaRFkXZurBzJ9P91bMqNxZZADKZvzwQ3JjATSgf/qp+nm9i6I715I4x42EjFHjSDNoLTJZWWpmlzZoWQgZM2nS3lhkAO8zX8zEyRhhlZBZv57Ghzlz1Gyl9u3NiWhPhIzYd9oB2VshI6xq332nLm9WyMhCyhu3nK/oNY40QuwDI2uT2eaaviDHyRhdZwOGCIjzxbWkFyWvTb0WiANW7+CSMzLEQBOGeBzZ8Oqrr+Knn35CTenqX7NmTTz77LPo06cPxowZY3pdipsCCfXq1cO8efM83cSgo1kzGgj++adqlsWvv9IFGnAWMg4HPf/1V7LYmA0y9ZSzzlIDdT0xxy5bRvdWlBc3Y5FZtQoYMYLEwHXX0WvC+mCU1WHWteQPIaO1yAA0c/3hB2MhI2IMPK0jI39G7BNF8d0iA5CQ2bbNXiEj1+ARoQFm3EqAZ0JGiGFtOSxPY2QELVrQBOG779RaLGaFjHDdJia6ttD5i8aN6V4U+LvoIuNlhejau5dCOLQB2Foh89hjFED/0ENVu2l7S9DUktmzR007PHmSLmretC4XJ4+ekPHGIgNQZcUwxWPPdW5uLo5oq1MBOHLkCE4ZRXtVc1zFyURFqWJAKyTEc9GFPVioqKDgZKDqRd8bxHmek2NckE+vlowYtI0GabPBvkYxMla4luR4eLGvxKAmEKeNCPuywiJTUuJcSM1Oi4w3qddA1eDnFSvUQN8LLzS3Dk+yhcR+15YSkF2UYp+azQh78EG6Fy5QszEyQsjYlXQpCwN31x+xD7ZsUd1zMlohs2oVFcPzpXeTFtki888/gS8iWMmxY+RTFOrbW/eS7FoCnIMCvRUyYWyR8VjIDBw4ELfeeiu++eYb7N27F3v37sXMmTNx22234eqrr/bHNoY8roSMfIHVDmD+DvjNzQXeeYeyaQTl5XTRdTWrWbdOvdCKmZsvyAOdkegQ+/DYMbo99RRV4AXcCxlvY2SsdC0BVCkVqFp0UBYlCQmus5eMLDKNG1NQ5nPP0XNtdQI7hIz2WuwpwiIjBN6GDaoINFu3yJusJa04EcdHebkqOs26Sy68kIKghUA3a5GZNo3urRzsPWXCBKBfP+DWW10vJ4sId0JGUaxNvdbbhpwcG5uMiouR8Ll7617SzgKOH1dPau3s0VUdGfni999/xqll7rjlFqBHD9dl0m3EYyHz7rvv4tJLL8XQoUPRuHFjNG7cGEOHDkW/fv3wzjvv+GMbQx5XQkae7WtdK/4uivfPPxQAL5e2f+QRcmO98Ybx52Rvn5EI8ISoKPV8NYqTSUxUJyL//EPuDmEYNBIyZgviWS1kysv13dmizuPRo86WJ1nIuHMBGVlkatQgcSf+S+31xhfXEmCva6mwkGI2KipoIDzjDPO1VTwRMuI40bqL4uNVd4lYxqyQcThUqwxgfhwRFj0728k99BC5Qt0VmZP3gTshs307HRexsdZmFoltFNZdfzWfdovofSSwyiIjLii1a1c9QM3UkREXQ28Gk0OHKJ3y55/V4Mggw2Mhk5CQgHfeeQfHjh3D2rVrsXbtWhw/fhzvvPOORw2yqhOuhIwcL6F1YYgT/Z9//DMzE1YDebAVGQquCuPJDQKtMn27K4oHqCmgW7e6T70GfKsjA6jumsOHPYsFOnSIhEpkpHN2Uvv2dK8ozkGUQpR06uS68BigWmSKilxvkxAyUVHAsGGu02ddEQxCBnCuY2I2PgbwTMiI0AbtMehwVD2WzMTICK6+2rkmjxmESDdTW8hu5H3gSsjExZFbCaBYQSsr5ov/+d576f8zk9HmF6Ki4NTF0lchIwRIairNMrUN1QBzrqVzzqE6DN6kiokIewBYtMjzzwcAr6vjJCYmol27dmjXrh0LGDcIIXPkiHMQOeDsttQKmfr16WJeXu4+gK2khAqTyT2C3KEXkCoGiQ0b9F0yx48Dv/2mPreqYKSZgF+5eaS7YniAedeSUQxHRgYNYuXlng3kYtvq1XOuWyVngwkBqyiqkJkzR83KMkI+1fTaFCxZQhYkIWSSk6mRoZza7wl2Cpm4ODXUQA5294eQqahQ96c8Dgm0QsaTqslRUarLz12hSYH4HpsLk5tC3gf79lV9X95XQshYLTTE/5ySYo2V2CfkC5JVrqXGjak2zfPPV13WjJAZPx745hvv/HmykHFVGdFGwrPMX5CRnKzO7rWCRLb0aYWMyFzSLqfHK69QraQrrzS/XXoWmcxMGnAVhYIrtRw5AvTsqZ5fVltkXKVgCyGzaZPzzM9fFpmoKNVS7Il7SS8+BnBujicCKIuLVcuKmdm3PLhrr1t3303ZJT/95JnFwBV2Chm5InDbtqqbxR9C5tAhNaxB73jSWgw9TSkWtT7Nxsj40qMq0HjiWhJCRu5lZgWuwkQCjhVtCjwJMDNb2ddbhJD55BOqzxGEsJAJEHrupdJSdWZ+3nn6Fy0zQkZR1E67npTy0RMygJoRoudeatGCrItiRmWVkDFjkRk4EFi4kNI35fo17mJkcnP13TDuYmQA1TXkSeaSnqVLrEsMxqLGpBzrYsaw6XAYx8mI/XDwoDoLjoz0LT7PTiEDqEJmzx76D9PSgJYtzX/erJCRXZV6/4ORa8mskJG3w0xTZBFM703mbqAxK2Ti4qgKcLNm/hMy+/dTm4LRo61dv0fIkfV79zp3DzWL1iKzfTtdWEpLqy5rVEdG7uybmkrP9f4gV5SXqxcaXzoD+xkWMgFCT8hs306xFElJZP3Qs6aYETIrV5Lwj4sDPv7Y/DZ5I2QEImgxkBaZxo2Biy+umqLtTsgAVV16iuKZkLHCIhMRoV7jxP8prhGRkbS8Ts/UKhhlLgmr36FDqnjZu9d9lWZX2Jl+DahCRsRlXXCBefcM4J2Q0RMnvsTIyOvcvh24/HL3y4v/NhTqfsr7QK+bjdhXCQnABx/Q5M1ENxqPEP/zqVPUgf3jj21MwX7uOTK5JibSRnhjldFaUu66iy6AehcII4uM3K8pNpYO4vr1zQdqAXRh2riRAgWbNKELodyZNkhgIRMghJCRg3vFYNaqlfHF2YyQEW03hg7V9+8b4U7IrF7tPJs/ckSt3WJ1nQtP2hRUVDjHTBhd7KOj1UFfe+6eOqVaaVwNtEIceCJk9GrICG66ie6FhUcIGYeDJktmslTcWWRkISO/7g1CyJw65fnE0gqrtvj/Fi+m+8xMz+LAxAAnu/D08FTIeNpZXM782bzZdfB+cbF6Xvny3wUKeR+I6tUygajsK86J6Gg6l3JzbUzBPvNMMhuKyH25voVZtL5Fo2J4gLGQEeuIjqYDWBxU3tSTSU+nLIt69YABA4IuDZuFTIDQs8hoWxPozSDEe1u36heLO3AAmDGDHvfpQy6mhQvNbdP06ZSpIdK8BWeeSTFl33/vPLC++y4NJA8+aL2QMWORAWgQ++EHYOxYep6a6lzOXYtRCrZ4HhPj+gLrjWvJSCACwMMP0/2BA3TdMRIjrnBX3Vd2LQG+zepr1FCPAXf/jRYrXUtiMHzvPed0ZnfIAsLVtddbi4w3Qqa01HXbkdhYtZKuEJLBTHS0eozoFfwTr5WWWlMJXA+xf0tK1PPO1gq/gFq22BvzkNYl5ErIGAUIyetwONT6D55U+JW3u0ULuiAWFLg219sAC5kAoSdkhJUlOZmOD5GeK9OoER2npaX6FsopU0jgdO1K9Y5uu02Nl3FH167AkCFVBxqHg+JQevd2ztYT9WNatPCfkHFnkfnoIwpqXrqUnrsb+I0CfuVAX1euCm9cS64sMmlp6m/dvl0VMsICbEZ0uKvue+iQ84Diy6w+IkK1lnkyw5Xd81YIGUAVrJ60TJDdHq7cS2efrR7Leu4iX4WMdjltUUQtVrtu/Y3YZzNnVhW8Yl9Nm0b78Y8/rP9+2YUosgNtEzK7dgFPP00XgthYmrFqy3m7QzZn5uSoIkWvlLo7i4yYzQkhI8qyu6OigtxJvXvTBdDhoAqJQNDVk2EhEyDEyXXihHqiy66lgwf1UxcjItTgRr1S4X37AtdfD/zvf851Vqzm6FE146BfP/tcS9pWBUZ9lgRGKdhm4mPk9ZsVMkVF5E4G9C0yRUVqMbdt26oKGU8sMmaCfQHf4yy8iZMpKlLjEq0SMuedp1oP5RIAroiIMNem4Kab1GPQHzEy2qJy7oSMOL/saBjpDWKfjR5N7QdkxL46cYIEmpmmtJ4iCxkxabSteeShQ8D//R9ZYq66il775BPzny8qUv24qamqNSYtTb86oVkhc/HFdD93rrluv1u30ux45Ur1IsBCpnqTkKCK6X/+ISuKGIxFBtDx4/pxCK7iZM49F/jiC2qkKITMtm3uLZl//UXtCfRSrAEahGbPphpM5eWU0qso1GAyLU01EVtVR8asa0n8xp9+ont3A78715K7QFRPXUvimpOQoJ9xsn27atmVhQxAbi4zgbFG161GjahcxAsvWCtkvLHICGuMw+FbUTf5sxdeqMZgGB23epgN+HVlZfE1Rka7nHawl/niC3XSHCoWGVe1ZGTrYKtW/kkp1xMytllkxEXp8GE1KO7zz/UzjvSQT57kZNduJcC9kBEX6V696IA6eNDcTECkXZ9zjmqa792bZgebNzsX87IZFjIBRD7B/v2X/Lnx8ZSSKI4TMZuXMVtL5owzyFedl+fegrBgAbUneOst/fcjIqhkwIQJdNEVWSOXXqqeZxER7suXm8VTi4zACteSK2TXkhk3t+xW0nNZydkaGzY4CxlRgM8dRhYZuU2BVcG+gHcWGXGMpKSodW+8QbZIXHABcP759NgTIePOIlNRQf+veN8fMTIREc6xXK4sMrt3q8HAoWKRcVXdVz4WrU67FshhIsLi402PNEsQM4eiIjpgMzLowi5mX+4QAkScPEbNIgWykJEvUtq0wZgYtT7HrFnut0MIGTntulYt9U8MIqsMC5kAIgsZ2a0UFeXsFtCiJ2Q2bKBy3Fu2qK/FxKgDpTv3klGKsCAyUp39LlumHrP9+zu7lTxJhXWFsF6cOuU6o8NbIaN1LZkVMsK1VFBgrk+Oq0BfgK45YoK0ebMqRjIyaOJjBlf1rwRi8GjWzPeeNr4IGV8tdmIgj4igMUEck7//bn6C684is3cvufvEce2PGBl5Oy69lFzBRp3e5clMKFpktEJGtsj4S8iIc2LLFrqGHjlC1y1bkDu/njhB6aSAefeSVoC0awc8+igwaJD+8uLHV1Q4Xzz1qioOG0ZNtIYMcb8dekIGoAMYcO5VYzMsZAKILGS0GUtiwHQlZP7+W3XpTJpEN5G9IzAbJ2NUtE1GpGFPnEiDWEoKDSRWx8cAamA94LrMQUYGbY/YJ95aZMzGyCQmqoOpGfeSq0BfQVYW3e/cqQqZa66hQEkzGFlkAAoIX7xYHQz79KG+Nr7gjZCxqjKt2Pft2tHx1qIF/WeFhe7jTATuhIycsQS4tsicPEnjhRCKnlROFtvx3HMUTC+3r5AJdSGjdS3J+91fQqZjR8p2LiykkitDhnjfHcAShFXm0CG1Gu633xr3S5HRuoTOPZf8xUZtyI36luidhH36kJndXauCw4dpoHI4VDOo4Prrgc8+o0yTIIGFTADRs8iYETJNmpBZuqiIYq9OngQ+/ZTeGzXKeVmzQsad5QBQhczBgxS3Nm4cucD8IWQiItTBwl2czP/+pw4KvsbImOnL4knmkpn9KoK38/LU5pGexJG4ssiMHEkxfeL/97VFAaAKGU/Sr62yyPTsSeeG6JUXEQFkZ1MMiVxLyBVWChlt3y1vLDLuYnXk4ywcXEtiPI2NpRg7f5CURDGpL71E27JwIX3Xa6/5L+XbJXKczNlnU7Oz4mK1VoYrvvyS7vUylPSIilI7cOoJGW9OQuG7bdOm6mykWTOyMgVRbQAWMgFEzyIjmvl17EgXbb2CdlFRqkDZvJku5AUFlE3XvbvzssOHU/zLo4+63hYzA+4559D5UVxMlpj776fX/SFkAM+K4onCfL66lsxYDFyJTC1mLDKye0wEdXoiZFxZZMS2in1opsCeO+x0LZ19Ng3s99yjvnbllXS+GFk0tHgqZPTEX3y8OlbIQsMTISOWzcujoG+jNGRxbAPm2lYEA65cS8LbMXCg+f/MG6KiqE7TX3/RtbagABgzhgwKroKr/YJskXE4VKvMtGmuP7d0qVo/48kn6f7PP2kG60qR6dWSMSqtXVJCbqH/+z/j9SUlUUqsyFIKcljIBJAzz1SrTorMFWGRGT+eOhdffbX+Z8VyGzcCb79Nj0eNqhqj0qYNBZa7GuCLi9WLpSshExenNjuV6x/5S8iYzVxSFM+FTDBZZPSaR77yimplc4cri4zYH2I7RNVnX7BTyFiBJ0ImKkp/sHU41GNFDNSRkc51lsxuxy+/0EA7fLj+ckeOqMv7EigdSISQuf564M03nd8TsUCeFDL0hWbN1IKCsbFUobxTJ3LDe9P2yCteeYUCdoSAueEGOoh++cXY51VUBNx5Jz2++241IKxXL/JHu8on17soGPl3c3KoT8bTT6smYS29e1Ng5Msv679/7Bh1477jDuNtCiAhcpqEB3Fx6gBXXk4nmdmeI0LILFpEx3ONGnRueIPwYcfFubcOCouR3OjO30LGnUUmJ0ed5XnrWjIbIwOYryWjKOYsMt26qdcoMcnKzTU/aJmxyAgxaIVrIhiFzMcfU/FHMz3w3AkZOYvUlYVFK2Q8dduJ7RD/0d9/6we2i47roeJWAtR9cc45wBVXOL8XiBYFWoT1u08fsgSVlQHPPhvAAOCmTcmMLv70+vVJHADGM5bnn6eaDHXrUkwMQBcGccF15WryRMikp6st5GfPNvFjdCgvp0CvKVM8K3vuJ1jIBBhxggEUK6E1/RvVKRJCZvVquh82zNgdMWMG8MQTxmn+desCv/4KfPWV+6yjRx8l06woCgnY71oS1piUFPeDiZUWGXfn68mTqrhwZZFp1ozq/mgxmyZtxiIjZp5W/EfBKGTeeIMs8CKxwhWeWGQ8ETKeDsxi+fh4GlvKyvSLXIqSCKHQ+Vogfpu2DURhoZrtZ0W8llnEdXbvXuCbb4Cvv6Yszz59ArcNVRDWmU8+qVrLYfNmsnAAdACIE0fMIFNTXfuf9S4Krk7CgQPpXi8N++hR9xe7jAwycwHm08r9CAuZACMLGTktdu1amqlp+x4JxOsFBSSo5ZgBLRMmkLg3qkQdH09WAe3MSY8mTSjuSxz3gP8GKbOuJbNuJcA5Rka+dngSI2PWtSQGxNq13Q9yeh2pzQoZVxYZ7TqsKD4mhExBgftAVYG/hYwnhfHcCZmrrlKLnpoRMuI48FTIiO0oLKQsLEA/8yrUqvoC6r7491+aIO3cSc9Xr1atTnZYZLZvp/N+0KCqLi+/sn07FXV65RX1tYEDSXDs2EGRyYKKCnLRlJZSAJgcX+CuGJ7AE4sMQI0fAZrRCl+m4MMP6aJ3992uvzOI0rBZyAQYIyGTnEwDtF6bAoAslVFRdKz/9pv+QCjwZ6sCIHgsMmYGfnEOl5erA7+ieGaRMetaMuNWcoUVFhltywYzv88dyclqLIjZzCWjOEOrsFLIPPUU3QDXVgNfLTKykBF91fSETKj1WQLU/bZoETB4sNqtXP5/AilkzjiDrM2nTukXGfU7+/YBzzzjnKKcmEh1FgDnmjJTppBpMSmJgtpkM7mnQkYc5IriWshkZVFdhoqKqu3khZlTHqz0EIHAP/1kU2qYCguZACMfGyL+BFAHIL2OyABlTJgtve1OyHz7LQUM65m1zWB3sK+werrrswQ4Z5vI5eXFLNFK15KZQF+BtqJyZKR+xpoeriwyDRvS9VNghXvC4fDcveRL5qcZhJD580/9jssysoAwwkwch68xMnKFYSMh88MPwAMP0ONQtMiIe7GP5Er4gRQysbHqhMKWVgVy+rWMaFnw5Zd0Idq/n1KtADKjay8eQsi4u6hoZzfyRc7oJNRzLymKqj61hfC0nHsurfv4cf90AvUAFjIBxsgik5SkHot6A+bEieqg5K5VgTsh88EHlPH088+mNrkKoWSRkbNNxOAqBE1EhLnBQgiZo0ddVx32xCJz5pnOz2vWNB/s68oik5JCWZvi2iUCR33FUyHjb9dS48b0v5SVuW/m68oik5tLY4nYl/6MkZG3Q3YtyS7PPXvUsS+ULDJiX4g2DGIfiZg+QJ1QBIpmzej89qT+kWWI9OuTJ51TpXr2JOvKyZPUvPF//6OD8Jxz9OMFvHUtyX1kjGJrhJDZtUu1qGzdSjssLs59Jc2oKOCSS+ixze0KWMgEmDPPpIEuK6vqYGZUr2TPHmreKCx+7iwp7oSMJ5YDPey2yHgiZICqAb9yfIyZFgu1aqmuFVcZkJ7sVzkFG3BfaFNGXJfy842Dw8Wg6coF6QnBJmQcDvPuJVdCZvZsSgYZN46emxEy4vz0Vsjk5VHw/OOPk2VUFjKhWNUXUK1TInV93z4SM7Los6qdiVm+/ZaOQ9GAOqDUrKnuDPlPjYwEbryRHj/4IEUhR0YC77+vX/Tpyisp46JHD9ffp60jI5tEjWZIbdrQrPivv9TvlhtFmlGel15K3202eM5PsJAJMNHRVAxv48aq9SqMhMzzz5MlQFSEddeeXjRNO35cf+Bx12fJHaFkkQGqpmB7Eh8D0HVATDxErSo9PLHIaIXM9OnmtgVwLpKm5y7ZsUN97IlAckWwCRlArZxuVApD4KpppDgXxLFsJkZGTF49FTIie3b3bvrsc89R9po8zshjXii6lsR4uH8/sGqV+r5VzWU9ISEh8OKpEodDvUBpg+uEe+m//+j+wQdVX6OWyy+nVGx3QkZrkTHTI8ThoCwSeScZ9VcyYsgQumC/9JK55f0ECxkbkN1IMnpC5r//KIgcoPRBwHmg0iMxUbUKaK0y+fmqUAhWi4zVQkbrWvKkhoxAWH0/+sg41sITgagVMp5U9pUHBb04mXvvVa+dVqW8eiJkFCUwQmb4cLLevfOO6+VcWWS0QsaMRUbg6b41E+MWqhYZsd+EKNMKmUDGxwQNwhyqjQVo3ZoaQwF0IRCR5r5gJGTMnoDFxeSn9VTIxMc7t3W3CRYyQUSHDlTEUY5reO45ylS66CI14H3Pnqr1GrTMnEmpkOed5/y6uHAnJ3s/yPhbyOTnu67AaZVryRMh068fuQNPnFBbociUl5uPywOcCyHGxHhWITYiQr8iuUAucmiHkCksVKu5+lPI1KzpHMz8999Vy3MA5oSMGAdcDbjawGlPB2dhKf33XzpeTp6k0AI5aUTOhA0li4w4zsT+P3SI+mM98QQ9t0PIHD1KnpnOnfWPC78jrCwbNlR975lnyFw6bZqxuaq4mITFf/+5/wFGMTJm0gbvu48GnYULSVTddVfVRpFBDguZIOKJJyhtcfBger5zJzB1Kj0eP56OtaQkOqZFnQYjunShwVLrdvU1Psafs+0aNdTtNbLKeNKeQGDkWvIkNTgyks5vQN8CcPAgDd6RkWpwsCuSklTBWlJC/bM8wVXmkiwCrRpAPBEyZuIMrebXX6kv0513Vg3INiNkxDKeWGQ83bcNG9LktbSU3EvLl1OIwWOPqcuEukWmvJwyiGfOJMuk8IgEshieIDkZ+P57CgaX+1cFjP/9jyr16pX579ePNkwEeumxcydV4D3rLPc+Mm9cS4LiYspTnz2bysVPnhxa1RjBQiaoee45GhwvuYSOZ4dDndW5cy8Z4auQKSpSZ9tWX2jlDCOjgF9hjZJd0O6wwiIDkCsjJoYyMeRsDLFdAMVBmG3UOHGi+tjTnjquMpdk7LDIyFbtQMUobNxIAmHKFOp1JwthM0JG7CczMTICT4VMRITqUty+XZ2wb9miWlgzM1XrXChZZMS+KC6mDuwDBtDvsKM9gcD2FOysLPInetswy2zGElC1jownQkZkL337rXH2QJDDQiYIEcfSpZeSO3X8ePU9IWTcBfwePEiZGKImhWDAAOpb5qrxqSuEW8nh8E9nXncBv998Q/cXXGA+gNAo/dpTIZOerrYWmDzZ+T1viuENHaqm4ZoVZQJXFhk5xd8OIWNHw8i77gLmzKH9snQplbgQ8WFGQiYvTz0mhHjwZ4wM4BwnU78+rbO8XM1EXLBAPcdDySIj9oUQLosXA6+9RgYJwL4YGbnCb8jhia/ayLVk5iTs2ZOWO3iQZleuakwEKSxkgohNm2hAE/ETgwaRe1V2V4qUbXcnZlERCaBJk1QLCkAWwwsuoOw6b5DLp/ujM6+7FOyvv6Z7ES9kBq1ryZtgX4EI+v3iC2ex5W0mmHAliLITZnFlkRk1Sn1cXYQMQAkeK1ZQjZnt20nMLFhgLGTKyoAxY6gFjpg8uBpw5eKK7pY1Qp6IOBz6hfFCsbKv2BeFhRTbetVVtG+XLnV+P9CI/W2LRQag2IChQ2n26CneWGS8cS3FxKgNLceMUbOpQggWMkFEjRo0sB04oF5YtWLBrGupUSMaxEpL3aeneoK/An0Friwy+/apQfVyOxJ3uKoj4ynnnUexGEVFznEtwiLjicvu8GE1Q81Ki4zs2rIqoUAWMu7iDu0SMgCFE/z+O4Ue5OQA/furVgGtkElNpVY4H39szgUiuz7dLWuENnNJT8iEcq+loiKKIdM2T7XbImObkFm4kGY9v/7q+WfF7MiMkDGqI2P2IifaDQDqIBNCsJAJIsSsvLQUePpp/TRfs66liAj1JJZTsF99lS40nnQylvG3kHFlkRFupa5dzZ3bAqtcSwANZsIqM3myKji9scjIkzRPK/C6ssiIeIvYWOusZkLIlJToiycZO4UMQOfR4sVkFbjjDrVze2kp3fQQ+8xsN3XAd4sMoAqZv/4ia1Lz5v4/x/yB7FqSBZgoKWG3kLHNteSqO6g7rLDImD0Jb72VMpbmzrWx+I73sJAJImSz9bPP6rciEBfCXbuML8oCbYVfRSGBNHKk+1otRthpkfHGrQRYF+wrGDqUfv/27TThAryzyHTvTvd163qWfg2oFhnxW2TMDsqekJCgrs+dCLZbyAAk4r75hirnyj255MmBqDxbUWE+KFU+ZnyJkREp2LJFZu9eZ8tBKFpkCgud40XNxB75k2bNaIwPVPZcFVx1B3WHL0LG066tkZEUi3DZZR5tYrDAQiZISUsDOnWq+nq9enSRLitTB08jtELm5En1OPfEoiETKIuMVsgcPKhaMAYN8mydVsbIAHTNuOUWeixSsb2xyKSn07XKm+adwkLy1FMU1C2nXItB2eqUV7NxMv7ufG0WYY2S3WuykHnySQq4ff5574SMN4NzgwY0YSkpoWOmdWsKo1iwwDn1Wq4VFArI6dd33UWxfC++aG/WEkAWrlOnvAtRsQQhZLZtc9/dVMv991N7Arm7sBG+xMiEASxkgownn6QZ5LJl+u9HRKgBv+7iZLRCRgy2aWneXyT9Pds2ci3NmkUWpXPO8TygVgw+RUV08yVGRnD33XT/3Xd0jRKDkKdp7fXre7cvH3uMJk+lpTSRat9ePWb8YZEBzAsZf3e+9pT//lNFjewWk0sRBErIREaq5+8//9B/NGwYFcOU92tKSmhZ+OV9Ubs2WSsfecR+IeNw2LwfMzNpxlJRQdkcnjBsGLUnMHPBE0KmqEittgiwkGHs4ZlnyNztSoSbjZMRQubff+ne1xoygH2upRkz6P7aaz1fp5xhdeSIOmnx1iIDUIuSXr3o+jR2LL2WmOjbOj2hTh0SUV9+SY+3bqUsyttuUxv12W2RCRYhoyiqu+PTT9XX5fMhUDEygPH5G6p9lgBjq5e/rIMhg1FqmtVoG7AF22zCz7CQCULczSDMpmC3b0/WAq2Q8bZZJGBPsO/hw6q1wVO3EkAiRpzPckVkXycrIuj3q6/ovlGjwM7+HA6qa7NlC1W0BagXlKh1Y/UsOFSFTJMm6n/96quUFagovltkvB2ctZk0u3dTmQS5NlEoBfoCdI4JMSO3T7HbIgNQkcSzzvK+dpbPtGtHHYI9KS986BBlOu3bZ255ub14To6aoscWGSZYMZuCHRtLF82oKOCPP4Cff6bXQ80iM3s2zag7dXLuUeQJYgASoi4lxXwFXiOuusq5HYEv+9UXUlOBd9+lOIBWrdQgcLbIqIj09lOngNGjyb0orvUNGgTOtQRUtchs2qQ2hBWEmkUGcA74FQhRY6eQyc+nys9//WXTBowdSz7Nxx83/5kffwQuvJDcS2ZwONR4AVn8hJoi9hIWMiGIWdeSoKyMyrZPn07Pg1nI6FlkhFvJ02wlGTEACYuMFROV6GhK7xX4YumyggsuANaupZlnQgK5mqxEZP8IS4YRwShkhOU9IoKy395+m57Xrk2DrFkXiBVCxqiWDKAKmFAcf7TVfeXHdgoZ21OwU1M9L+jkScaSQAgZ4VtOTqZZbDWAhUwIIltk3LXG+P57aqVx/DiZ08eNA66/3vvvDpRFpqiILoJHjwJLltBrvggZIVyEkLEqluX221XLjl0WGZnYWJoA5uZSnKCVtG5N9xs3ul4uGIWMuMZfdRXdP/UU3Yv/zKzlwEqLjEjBrltXtXaJIPJQFDJyUTxBMAgZeeJnSxdsb/BGyAi1LiwywXQC+hkWMiFIo0YktIuLVfFtxJYtVONIkJtLJdy9xd9CJilJnUQcO0Z9zMrLqZquLwUnta4lq4RM/fpUVwbwvu2DP/DVbabHWWfR/ebNzm0vtARL+rWMEDKXXaYeR1dcAQwZQo8DGSPTsKFzCrYcDyqsBuHiWgoGIdOkCYnwXr3cN1n1G888A3TpAvzwg7nlPemzJNAKmWA6Af0MC5kQJCqKGqsC5jOXBNquzZ7ibyHjcDjHyVjhVgKqupaszC6aMoVcOn37WrfOYOSMM0gQFBcbH3eKEtwWmbIyYP58+g1z5gAPPUTbHMgYmchI5y7YgFoAVtSGCkWLTLC6lmJiKA7pu+9sLIy3bRsFKq5ZY255KywyLGSYYMdsnEzz5s7PV60iC4e3iEHKnxdaESezfTuwaBE9tkrICAuWlUImNpYsRqFU98MbIiLUsgAbNugvk5+vHl/BKGQKCijrT66iLRcTDESMDFA1TkZUwP3jD7oPZYtMsLmWggJPU7A96bMkEEJGXORYyDDBjtmieNrzoKTEu0qyAmGR8ecgJYTM1Kk0gz7rrKqWJU/RntPV6By3FGE5MMoAEUI3MjK4KtMadcAGnAdedwNuejodO7Vq+Ta7105ERoyge5EFF4oWmWB1LQUFngiZoiI1NdAXIRNMMwk/w0ImRDFrkdHr+uqLeykQDe2Ea2nePLr31RoDVLXABKpwXbgh4mSMLDKyWymYLFSuhIwYbCMi3Pe8io2l7tqrVvmWEKK1yDRrRvVtOnem56FokXHlWqq2BfEEchCUu0CdigpKq3viCc8uVOxaYkINs0JGzyUrzNeeUlxMFh0gMK4lkZHFQiZ48ETIBBNmhIxcU8wVzZr5FngO6J+/mZnqGBfKFhl2LemQkUHFjBTFfdpfQgJV23z2Wc9mA0LIBGO0vZ9hIROimE0p1BMt3lpkhDUG8G/QnLDIAFTgTaT9+oL2nGYh4x1CyPz7r3PfIkEoC5lAWg2ERWbHDueYtVOn6D6UhUywFcQLGvzdqkDryw22k9CPsJAJUZo0IbGel0f9g4wQQqZLF/W19etVy4onCCGTlOSf9F6BsMgA3vVW0kMrXKrRZMVS0tPVKrl6PfCCXcjoNSC2Y7CVU7BFggqgnmPh4FryJBusWnD22Wq6mhHFxcD//uddGWK53xJQrS5yLGRClNhYtcSAkXuppEQ9H8SsLynJ+XVPCER8DOBskbHCrQSwa8lKXAX8BqtVWwyk7lxLgUJOwZbj2AJ1jvkDrUVGzgZjIQPgxRfJBCeXA9cyYwbw5ptU8MjT9FIWMkwo4i5OZtMmupikpqpWG5E+6417KVAXWZG50bw50LatNetk15J1uIqTCdamu2ZjZAKJ3vkrXEuhaJHRxsjI1i8WMjAX7yJ6Z9x1l+dmbxYyTCjiLgVbuJU6dQKWL6dmqt2702veCJlA1JABgP79gfHjgc8+sy7zhYWMdbgSMsHuWgqWGBmgauZSRYUadxSKFhmta0ncR0a6zwarViiKvrXljz+A334jn+Ptt3u+Xq2QCbaT0I+wkAlh3FlkRMZS587khurWjW6Ad5lLgaghA1Ba61NPqamoVhAd7RygXI0mK5YjCxltoHkoChm7AlK1568cPB2KQkbrWuL4GB3uvJN85999V/U9YY259lrKcvIUtsgwoYg7ISNbZAQi6HfTJs/7joSy/x5Qz+v4eM+b0TIqrVtTzZVjx4CDB53fC0UhY9eAq7XIiPMrKio0j08j1xILGYniYuDEiaqZS0ePAl98QY9HjfJu3SxkmFBE7oKtpbhYDcaULRv16tGtooL6A3lCqAsZ4U5it5JvxMerg7A24JeFjHm0Kdhy6nUwFRM0i5FrqdoXw5MxipT/8EO6aHfqBJx7rnfrZtcSE4qIrIdjx0jky2zcCJSWUiqzaDApEFYZT+NkWMgwAqM4mVAWMoEecLUp2KGceg2wa8kURrVkkpKoIuKoUd6rWLmOTFxcaJr1vISFTAgjjn2gqlVGditpz4vqLmSqkcXVb7gTMsG2j4MxRkabgh3q55fWtcTF8HQQQmbHDtUEBwAjRwL//QcMHer9umWLTLCdgH6GhUyIY+ReEkJGL2C2ugoZcW6zRcZ3Qtkiow1QttNyIMe5hXJVX8DYtcRCRqJ2bfLtA1VbFcTEOLdl9xQWMkyoIlKwtQG/csaSFhH8u317VZeUK0JdyLBryTqEq3/zZupQLgj2OjLl5eRylbFzwJUDftm1VE2Q3Us7dgDffut58Ts9WMjYwwsvvIAuXbogOTkZGRkZGDBgALZu3Vr5/vHjx3HvvfeiRYsWiI+PR6NGjTB69GjkiGkfo5u5VFSkzpT1hExammrS1msqaUSg6sj4ixYtnO8Z72nShK6bxcVq1o2iBC5F31Pk8AGte8nOoNRwsshw1pJJevQA+vShFOuJE4EBA1xX+zWLLGSC7QT0M7YKmWXLlmHkyJH47bffsGDBApSWlqJPnz7IP50XvH//fuzfvx+vvPIKNm7ciOzsbMyfPx+33XabnZsdVOgJmb/+olly7dpqGwMt3riXgnWQMsuIEcCKFcBDD9m9JaFPRIRaJVqI5rw8tWN5sB0j0dFqoVStkLEzliOcLDLsWjLJI48AP/4IXHIJ8PHH9Nr11/u+3mpskYmy88vnz5/v9Dw7OxsZGRlYs2YNunfvjrZt22LmzJmV75955pl47rnncOONN6KsrAxRUbZuflCgFyMju5WMAuC7dAG+/NI7IROqM8aoKOD88+3eivDhrLOA338nIXPddarFLioq+AYvh4OsMqdOVW0cGQwxMjt2qG65UD2/2LXkIdOm0QHZogVw8cW+ry86mm6lpSxk7ES4jGrJ7Y91lklJSTEUMcXFxSiWupXlitE3TBExMgcOUIG7xETXgb4CXywyoXqhZaxFG/ArB/oGYx2U+HgaN4xcS3YMuI0a0dhTUkLxRkDonl/sWvIARaE+LABlLEVY5BxJTCRFHGwmUT8TNMG+FRUVuO+++9CtWze0NegUePToUTzzzDO4w4U/8YUXXkCNGjUqbw2NfCthQs2aVCsGUK0yehV9tXTsSOfO3r1Vq7MawUKGkdHW9grW1GuBUQq2nTEycgr2n3/Sfai7loqKaJzmgnguiIsDDh+mx7fcYt16xUEerCehnwgaITNy5Ehs3LgR06dP130/NzcXl112GVq3bo1x48YZruexxx5DTk5O5W3Pnj1+2uLgQTZPFxZS+wHAtUUmKQlo1Yoem7HKlJSoMy0WMgygWmR27iRLR7CmXguMhIzd9U5EnIyYUITq+SXvv6Ii+/drUHPVVXTfr5+1f7iIk2EhE3hGjRqFuXPnYsmSJWjQoEGV90+dOoV+/fohOTkZs2bNQrSLVqqxsbFISUlxuoU7cgr2+vWUyVenDlC/vuvPeeJekms3heqMkbGW2rXVgoybNgVv6rXAnUXGrgFXTEQEoXp+aYWM3fs1qHnzTeCVV4AZM6xdLwuZwKMoCkaNGoVZs2Zh8eLFaNKkSZVlcnNz0adPH8TExGDOnDmIYztlFeTMJVcVfbUIi42ZTtjCrZSQQMGcDAM4x8mEqkXG7gFXWGQEoTr3iopSQz0KC+3fr0FNZiYwZgyZxq1EhGUYhGeEK7YKmZEjR+LTTz/F559/juTkZBw8eBAHDx5E4ekzQIiY/Px8fPjhh8jNza1cptyKAkJhguxaclUIT4tskdFWO9US6jVkGP8g4mTCQcjYNUcKF4uMw+GcucRCxgY++gjYs0edYVQTbJ1bT548GQDQs2dPp9enTp2KYcOG4c8//8SqVasAAE01Z/vOnTuRpe2GWE2RLTKHDtFjM0KmfXvKmDh6lNp8uNqdHOjL6CGul3/9pU4uQ03I2B3LES4WGYD2YX4+u5ZsIzoa0AnPCHdsFTKKGzNAz5493S7DqDEyu3er7iRXGUuC2FiaUa9ZQ1YZM0ImWAcpxh5k15IokBesx0iwupYaNlTLfwChL2QAtsgwgSUogn0Z38jIoNmwolBl1bp11b5k7jAb8MsWGUaPVq0oLuL4cWDLFnotWOMMg1XIREWpKdhA6LqWAOfqvnbvV6b6wEImDHA4nP3sZtxKAhYyjC/Ex6uukd9+o/tQs8gI15KdeQTy+RvKQkYuisdChgkULGTCBOFeArwTMmvWqH1y9GAhwxghAn6FQAglIVNaqjYetnPAFWIwJoZcvqGKnmuJE00Zf8NCJkyQZ3Rm4mMErVqppdu3bTNejoUMY4Q2QSKUhIzcd8lOISPO31A/v2TXkt1B1Ez1gYVMmOCtkImKonYFADUANIKFDGNEuAgZOy0hzZvTfbDGF5mFXUuMHbCQCRNatqT7Ro3UaqtmOfdcuj+d6a4L15FhjAgVIaPtzgw4x8fY2eiyZ0/g1luBp56ybxusgLOWGDvgGq1hQteuwLPPAued5/lnxWdEsKYebJFhjGjShCqj5+fT82AVMq4sMnYPttHRVMss1OGsJcYOWMiECRERwBNPePfZ88+n+/Xr6SIvLvgyXEeGMSIigiqiC4tesLpHglnIhAtiPxYUAMXFzq8xjL9g1xKDBg2owWR5uXHfJbbIMK4Q7qWYmODNUmEh43/EfjxxouprDOMvWMgwANy7l1jIMK4QQiaYLXZ6QiYYasiEE2I/ykKG9y3jb1jIMABYyDC+ITLfPA00DyRskfE/Yj8eP073UVF0Yxh/wocYA0AVMitXUqsDbQYHCxnGFd26AW+/rQqaYISFjP/RChner0wgYCHDAKDaM1FRwMGD1HyycWP1vbIy9eLPQobRw+EA7rnH7q1wDQsZ/6N1LfF+ZQIBu5YYAHTBOftseqx1LwlrDBDafWCY6o0sZBSFHnOMjLVog31ZyDCBgIUMU4lRnIwQMnFxlJXCMKGIEDKKoqYGs0XGWti1xNgBCxmmEndCJpgzUhjGHfKgKtxLLGSsRVi2xP7l/coEAhYyTCVCyPz5pzpjBTjQlwkPoqPpBrCQ8Rfa/cj7lQkELGSYSs44A0hPB0pKgLVr1ddZyDDhgjbgl2NkrIWFDGMHLGSYShwOffcSCxkmXNA2jmSLjLVoBSHvVyYQsJBhnGAhw4QzWosMCxlr0e5HtnQxgYCFDOOEXBhPwEKGCRdYyPgXdi0xdsBChnGiSxfqZrx7N7B/P72Wk0P3LGSYUIdjZPwLu5YYO2AhwziRnAy0bUuPV62ie7bIMOECW2T8C1tkGDtgIcNUQRsnw0KGCRdYyPgXFjKMHbCQYapgJGS4IB4T6rCQ8S/sWmLsgIUMUwUhZFavBkpL2SLDhA8cI+NfWMgwdsBChqlCixZAairNVjdsYCHDhA9skfEvERFAbKz6nPcrEwhYyDBViIgAzj2XHv/2GwsZJnxgIeN/ZKsM71cmELCQYXSR42RYyDDhAgsZ/yPvS3bZMYGAhQyji1wYj+vIMOECx8j4H1nIsEBkAkGU3RvABCfCtbR9u/oaCxkm1GGLjP9hIcMEGrbIMLrUrAm0bOn8GgsZJtQRA2tBAVBeTll58uuM73CMDBNoWMgwhgj3EkCZCHI2AsOEIsIiU1ioWmMAHnCthC0yTKBhIcMYIgsZtsYw4YDsWhLxMQDHyFgJCxkm0LCQYQxhIcOEG7KQERaZmBgqOcBYA7uWmEDDpy9jSJs2QGIiPWYhw4QDekKGB1trYYsME2hYyDCGREUB55xDj1nIMOEACxn/w0KGCTQsZBiXCPcSCxkmHNCLkeH4GGuR9yfvWyYQsJBhXHLjjUCrVsCQIXZvCcP4Dltk/A9bZJhAwwXxGJe0bg1s3mz3VjCMNcjp16IoHg+21iL2JwdRM4GCDzOGYaoNQsgAwPHjdM9CxlqEO4n3KxMoWMgwDFNtkAdXIWQ4jsNaxD5mIcMEChYyDMNUGyIj1QrVx47RPQ+41sJChgk0LGQYhqlWCPcSCxn/wK4lJtCwkGEYplohBlh2LfkHtsgwgYaFDMMw1QphkeFgX/+QluZ8zzD+htOvGYapVrBryb/07g289hrdM0wgYCHDMEy1goWMf4mOBu6/3+6tYKoT7FpiGKZaoRUyHCPDMKENCxmGYaoVQsjk5tI9W2QYJrRhIcMwTLVCru4LsJBhmFCHhQzDMNUKFjIME16wkGEYplqhFTIcI8MwoQ0LGYZhqhVskWGY8IKFDMMw1QoWMgwTXrCQYRimWsFChmHCCxYyDMNUKzhGhmHCCxYyDMNUK7QWGLbIMExow0KGYZhqBbuWGCa8YCHDMEy1goUMw4QXLGQYhqlWcIwMw4QXLGQYhqlWsEWGYcILW4XMCy+8gC5duiA5ORkZGRkYMGAAtm7d6rTM+++/j549eyIlJQUOhwMnT560Z2MZhgkLWMgwTHhhq5BZtmwZRo4cid9++w0LFixAaWkp+vTpg/z8/MplCgoK0K9fPzz++OM2binDMOGCLGSioujGMEzoYuspPH/+fKfn2dnZyMjIwJo1a9C9e3cAwH333QcAWLp0aYC3jmGYcEQWMhwfwzChT1DNRXJycgAAtWrV8nodxcXFKC4urnyem5vr83YxDBM+yEKG3UoME/oETbBvRUUF7rvvPnTr1g1t27b1ej0vvPACatSoUXlr2LChhVvJMEyow0KGYcKLoBEyI0eOxMaNGzF9+nSf1vPYY48hJyen8rZnzx6LtpBhmHBAdiexkGGY0CcoXEujRo3C3Llz8fPPP6NBgwY+rSs2NhaxsbEWbRnDMOFGRAQJmMJCjpFhmHDAVouMoigYNWoUZs2ahcWLF6NJkyZ2bg7DMNUE4V5iiwzDhD62WmRGjhyJzz//HN9++y2Sk5Nx8OBBAECNGjUQf/oKc/DgQRw8eBDbt28HAGzYsAHJyclo1KiRT0HBDMNUX4SAYSHDMKGPrRaZyZMnIycnBz179kTdunUrb19++WXlMu+++y46dOiA22+/HQDQvXt3dOjQAXPmzLFrsxmGCXHYIsMw4YOtFhlFUdwuM27cOIwbN87/G8MwTLVBCBmOkWGY0CdospYYhmECBVtkGCZ8YCHDMEy1g4UMw4QPLGQYhql2sJBhmPCBhQzDMNUOjpFhmPCBhQzDMNUOtsgwTPjAQoZhmGrHVVcBZ5wB9Otn95YwDOMrQdGigGEYJpBceSXdGIYJfdgiwzAMwzBMyMJChmEYhmGYkIWFDMMwDMMwIQsLGYZhGIZhQhYWMgzDMAzDhCwsZBiGYRiGCVlYyDAMwzAME7KwkGEYhmEYJmRhIcMwDMMwTMjCQoZhGIZhmJCFhQzDMAzDMCELCxmGYRiGYUIWFjIMwzAMw4QsLGQYhmEYhglZouzeAH+jKAoAIDc31+YtYRiGYRjGLGLcFuO4EWEvZE6dOgUAaNiwoc1bwjAMwzCMp5w6dQo1atQwfN+huJM6IU5FRQX279+P5ORkOByOgH1vbm4uGjZsiD179iAlJSVg3xsq8P5xD+8j9/A+cg/vI9fw/nGPXftIURScOnUK9erVQ0SEcSRM2FtkIiIi0KBBA9u+PyUlhU8OF/D+cQ/vI/fwPnIP7yPX8P5xjx37yJUlRsDBvgzDMAzDhCwsZBiGYRiGCVlYyPiJ2NhYPP3004iNjbV7U4IS3j/u4X3kHt5H7uF95BreP+4J9n0U9sG+DMMwDMOEL2yRYRiGYRgmZGEhwzAMwzBMyMJChmEYhmGYkIWFDMMwDMMwIQsLGRf8/PPPuOKKK1CvXj04HA7Mnj3b6f1Dhw5h2LBhqFevHhISEtCvXz/8888/VdazcuVKXHTRRUhMTERKSgq6d++OwsLCyvePHz+OG264ASkpKUhNTcVtt92GvLw8f/88n/F1/+zatQsOh0P3NmPGjMrldu/ejcsuuwwJCQnIyMjAQw89hLKyskD9TJ+w4hg6ePAgbrrpJmRmZiIxMREdO3bEzJkznZYJ1WMIsGYf7dixAwMHDkR6ejpSUlJw3XXX4dChQ07LhOo+euGFF9ClSxckJycjIyMDAwYMwNatW52WKSoqwsiRI5GWloakpCQMGjSoyu83cx4tXboUHTt2RGxsLJo2bYrs7Gx//zxLsGofjR49Gp06dUJsbCzOPvts3e/666+/cOGFFyIuLg4NGzbEhAkT/PWzLMWKfbR+/XoMGTIEDRs2RHx8PFq1aoU33nijyncF+jhiIeOC/Px8tG/fHm+//XaV9xRFwYABA/Dvv//i22+/xdq1a9G4cWP07t0b+fn5lcutXLkS/fr1Q58+ffD7779j9erVGDVqlFO55RtuuAGbNm3CggULMHfuXPz888+44447AvIbfcHX/dOwYUMcOHDA6TZ+/HgkJSXh0ksvBQCUl5fjsssuQ0lJCVasWIGPP/4Y2dnZeOqppwL6W73FimPo5ptvxtatWzFnzhxs2LABV199Na677jqsXbu2cplQPYYA3/dRfn4++vTpA4fDgcWLF2P58uUoKSnBFVdcgYqKisp1heo+WrZsGUaOHInffvsNCxYsQGlpKfr06eN0jNx///347rvvMGPGDCxbtgz79+/H1VdfXfm+mfNo586duOyyy9CrVy+sW7cO9913H0aMGIEff/wxoL/XG6zYR4Lhw4dj8ODBut+Tm5uLPn36oHHjxlizZg1efvlljBs3Du+//77ffptVWLGP1qxZg4yMDHz66afYtGkTnnjiCTz22GOYNGlS5TK2HEcKYwoAyqxZsyqfb926VQGgbNy4sfK18vJyJT09XZkyZUrla+eee67y5JNPGq538+bNCgBl9erVla/98MMPisPhUPbt22ftj/Aj3u4fLWeffbYyfPjwyufz5s1TIiIilIMHD1a+NnnyZCUlJUUpLi629kf4GW/3UWJiovLJJ584ratWrVqVy4TLMaQo3u2jH3/8UYmIiFBycnIqlzl58qTicDiUBQsWKIoSXvvo8OHDCgBl2bJliqLQb42OjlZmzJhRuczff/+tAFBWrlypKIq58+jhhx9W2rRp4/RdgwcPVvr27evvn2Q53uwjmaefflpp3759ldffeecdpWbNmk7XnkceeURp0aKF9T/Cz/i6jwT33HOP0qtXr8rndhxHbJHxkuLiYgBAXFxc5WsRERGIjY3Fr7/+CgA4fPgwVq1ahYyMDHTt2hV16tRBjx49Kt8HyGKTmpqKzp07V77Wu3dvREREYNWqVQH6NdZjZv9oWbNmDdatW4fbbrut8rWVK1firLPOQp06dSpf69u3L3Jzc7Fp0yY/bX1gMLuPunbtii+//BLHjx9HRUUFpk+fjqKiIvTs2RNA+B5DgLl9VFxcDIfD4VSsKy4uDhEREZXLhNM+ysnJAQDUqlULAJ03paWl6N27d+UyLVu2RKNGjbBy5UoA5s6jlStXOq1DLCPWEUp4s4/MsHLlSnTv3h0xMTGVr/Xt2xdbt27FiRMnLNr6wGDVPsrJyalcB2DPccRCxkvEH/zYY4/hxIkTKCkpwUsvvYS9e/fiwIEDAIB///0XADBu3DjcfvvtmD9/Pjp27IiLL7640sd/8OBBZGRkOK07KioKtWrVwsGDBwP7oyzEzP7R8uGHH6JVq1bo2rVr5WsHDx50uvgCqHweyvsHML+PvvrqK5SWliItLQ2xsbG48847MWvWLDRt2hRA+B5DgLl9dN555yExMRGPPPIICgoKkJ+fjwcffBDl5eWVy4TLPqqoqMB9992Hbt26oW3btgDot8XExCA1NdVp2Tp16lT+NjPnkdEyubm5TjF9wY63+8gM4XI9smofrVixAl9++aWTi9aO44iFjJdER0fjm2++wbZt21CrVi0kJCRgyZIluPTSSyvjX4R//s4778Stt96KDh064PXXX0eLFi3w0Ucf2bn5fsfM/pEpLCzE559/7mSNCXfM7qOxY8fi5MmTWLhwIf744w888MADuO6667BhwwYbtz4wmNlH6enpmDFjBr777jskJSWhRo0aOHnyJDp27Kh7rIUyI0eOxMaNGzF9+nS7NyVo4X3kHiv20caNG3HVVVfh6aefRp8+fSzcOs+JsvXbQ5xOnTph3bp1yMnJQUlJCdLT03HuuedWmq/r1q0LAGjdurXT51q1aoXdu3cDADIzM3H48GGn98vKynD8+HFkZmYG4Ff4D3f7R+brr79GQUEBbr75ZqfXMzMz8fvvvzu9JqLoQ33/AO730Y4dOzBp0iRs3LgRbdq0AQC0b98ev/zyC95++228++67YX0MAeaOoz59+mDHjh04evQooqKikJqaiszMTJxxxhkAwuM8GzVqVGWQcoMGDSpfz8zMRElJCU6ePOk0mz506FDlbzNzHmVmZlbJ4jl06BBSUlIQHx/vj59kOb7sIzMY7SPxXihgxT7avHkzLr74Ytxxxx148sknnd6z4zgKr+mKTdSoUQPp6en4559/8Mcff+Cqq64CAGRlZaFevXpVUty2bduGxo0bAwDOP/98nDx5EmvWrKl8f/HixaioqMC5554buB/hR4z2j8yHH36IK6+8Eunp6U6vn3/++diwYYPTILRgwQKkpKRUEYihjNE+KigoAIAqloXIyMhKi191OIYAc8dR7dq1kZqaisWLF+Pw4cO48sorAYT2PlIUBaNGjcKsWbOwePFiNGnSxOn9Tp06ITo6GosWLap8bevWrdi9ezfOP/98AObOo/PPP99pHWIZsY5gxop9ZIbzzz8fP//8M0pLSytfW7BgAVq0aIGaNWv6/kP8iFX7aNOmTejVqxduueUWPPfcc1W+x5bjyG9hxGHAqVOnlLVr1ypr165VACivvfaasnbtWuW///5TFEVRvvrqK2XJkiXKjh07lNmzZyuNGzdWrr76aqd1vP7660pKSooyY8YM5Z9//lGefPJJJS4uTtm+fXvlMv369VM6dOigrFq1Svn111+VZs2aKUOGDAnob/UGK/aPoijKP//8ozgcDuWHH36o8l5ZWZny/+3dXUhU7RoG4Fvdpi4lTTMJ/0BsorKZRjCcfvBALYIOLDMoslJCzQ6CImPACg/ChLQyhKRI034s6iDJEAkd8GAKEi0btRR1ohKkMsrM1PH5Dtp7wZDsL2qc2Wt/9wXrZK3X9a7n4R25Z80aJiEhQTZt2iRdXV3S3Nws4eHhYjab570+V/jTHk1NTUl8fLxs3LhRnjx5IgMDA3L27Fnx8vKSpqYmdZxW15CIa9bR1atXxWq1ysDAgNTX10toaKgcOXLEaYxWe3Tw4EEJDg4Wi8UiIyMj6jYxMaGOKSgokJiYGGltbZWnT5+KyWQSk8mkHv+V19Hg4KAoiiLHjh2T3t5eqaqqEh8fH2lubnZrvb/DFT0S+fG/qLOzU/Lz80Wn06nr8j/fUvr06ZNERERIdna2vHjxQhoaGkRRFKmurnZrvb/DFT3q7u6W8PBw2bNnj9M5RkdH1TGeWEcMMv9FW1ubAPhp27dvn4iIXLhwQaKiosTX11diYmKkuLh4zq8El5aWSlRUlCiKIiaTSdrb252Of/jwQXbt2iVBQUGycOFCycnJkS9fvrijxD/iqv6YzWaJjo4Wh8Mx5zzDw8OyZcsWCQgIkMWLF8vRo0dlenp6PktzGVf06NWrV7J9+3ZZsmSJKIoier3+p69ja3UNibimR8ePH5eIiAjx9fWVZcuWSXl5uczOzjqN0WqP5uoNAKmpqVHHfPv2TQoLC2XRokWiKIps27ZNRkZGnM7zK6+jtrY2WbNmjSxYsEDi4uKc5vhf5qoepaSkzHmeoaEhdcyzZ89kw4YN4ufnJ5GRkXLmzBk3VflnXNGjU6dOzXmO2NhYp7ncvY68/l0gERERkebwGRkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIiIi0iwGGSIiItIsBhkiIiLSLAYZIvpHcDgc6i+GE9H/DwYZInK7uro6hIWF4fv37077MzIykJ2dDQC4f/8+EhMT4e/vj7i4OJSUlGBmZkYdW1FRgdWrVyMwMBDR0dEoLCzE+Pi4ery2thYhISFobGzEypUr4efnh9evX8NisWDt2rUIDAxESEgI1q9fD7vd7p7CicjlGGSIyO2ysrLgcDjQ2Nio7hsdHUVTUxNyc3PR3t6OvXv34vDhw+jp6UF1dTVqa2tx+vRpdby3tzcqKyths9lw7do1tLa2oqioyGmeiYkJlJWV4cqVK7DZbAgNDUVGRgZSUlLw/PlzWK1W5OXlwcvLy221E5Fr8devicgjCgsLMTw8jIcPHwL4cYelqqoKAwMDSE9PR2pqKsxmszr++vXrKCoqwrt37+Y83927d1FQUID3798D+HFHJicnB11dXTAYDACAjx8/IiwsDBaLBSkpKfNcIRG5A4MMEXlEZ2cnkpKSYLfbERkZCb1ej6ysLJw4cQLh4eEYHx+Hj4+POt7hcGBychJfv36Foih49OgRSktL0dfXh8+fP2NmZsbpeG1tLfLz8zE5Oel0xyUnJwe3bt1Ceno60tLSsHPnTixdutQTLSAiF+BHS0TkEUajEQaDAXV1dejo6IDNZsP+/fsBAOPj4ygpKUFXV5e6dXd3o7+/H/7+/hgeHsbWrVuh1+tx7949dHR0oKqqCgAwNTWlzhEQEPDTx0Y1NTWwWq1Yt24dbt++DZ1Oh8ePH7utbiJyrX95+gKI6J/rwIEDOH/+PN6+fYu0tDRER0cDABITE/Hy5UvEx8fP+XcdHR2YnZ1FeXk5vL1/vB+7c+fOL89rNBphNBphNpthMplw8+ZNJCcn/3lBROR2vCNDRB6ze/duvHnzBpcvX0Zubq66/+TJk6irq0NJSQlsNht6e3vR0NCA4uJiAEB8fDymp6dx8eJFDA4Oor6+HpcuXfrb+YaGhmA2m2G1WmG329HS0oL+/n6sWLFi3mokovnFIENEHhMcHIzMzEwEBQUhIyND3b9582Y8ePAALS0tSEpKQnJyMs6dO4fY2FgAgMFgQEVFBcrKypCQkIAbN26gtLT0b+dTFAV9fX3IzMyETqdDXl4eDh06hPz8/PkqkYjmGR/2JSKPSk1NxapVq1BZWenpSyEiDWKQISKPGBsbg8ViwY4dO9DT04Ply5d7+pKISIP4sC8ReYTRaMTY2BjKysoYYojot/GODBEREWkWH/YlIiIizWKQISIiIs1ikCEiIiLNYpAhIiIizWKQISIiIs1ikCEiIiLNYpAhIiIizWKQISIiIs36CwbOID1IweiHAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGaUlEQVR4nOydd5gTVdvG72Qb25eyS4dF6SDtBVRAAUVQLDQFRUEs2AALguVVFGyon4oFxfYKWBHFgoogSrHRRBAQRGnSO+yyvc33x8PZOZmdmUySSSbZfX7XlSttMplMZs6556kuRVEUMAzDMAzDRChupzeAYRiGYRgmEFjMMAzDMAwT0bCYYRiGYRgmomExwzAMwzBMRMNihmEYhmGYiIbFDMMwDMMwEQ2LGYZhGIZhIppopzcg2JSVlWH//v1ITk6Gy+VyenMYhmEYhrGAoig4deoU6tWrB7fb3PZS6cXM/v370bBhQ6c3g2EYhmEYP9izZw8aNGhgukylFzPJyckAaGekpKQ4vDUMwzAMw1ghOzsbDRs2LJ/Hzaj0Yka4llJSUljMMAzDMEyEYSVEhAOAGYZhGIaJaFjMMAzDMAwT0bCYYRiGYRgmoqn0MTNWKS0tRXFxsdObwUQAMTExiIqKcnozGIZhmNNUeTGjKAoOHjyIkydPOr0pTASRlpaGOnXqcO0ihmGYMKDKixkhZDIyMpCQkMCTE2OKoijIy8vD4cOHAQB169Z1eIsYhmGYKi1mSktLy4VMzZo1nd4cJkKIj48HABw+fBgZGRnscmIYhnGYKh0ALGJkEhISHN4SJtIQxwzHWTEMwzhPlRYzAnYtMb7CxwzDMEz4wGKGYRiGYZiIhsUMwzAMwzARDYsZJiBGjRqFgQMHOr0ZDMMwTBWmSmczVUUmT56ML774AuvXr7dlfS+99BIURbFlXUxoKCsDioqAatWc3hKGYRh7YMsMo4vVLJ3U1FSkpaUFd2MYW+nfH2jcGDh1yuktYRiGsQcWMxoUBcjNDf3NF+PGu+++i5o1a6KwsNDj9SFDhmDkyJGGn5s1axamTJmCP/74Ay6XCy6XC7NmzQJA2Tmvv/46BgwYgMTERDzxxBMoLS3FTTfdhCZNmiA+Ph4tWrTASy+95LFOrZupV69euPPOO3HfffehRo0aqFOnDiZPnmz9xzFB59dfgcOHgW3bnN4ShmEYe2A3k4a8PCApKfTfm5MDJCZaW/aqq67CnXfeifnz5+Oqq64CABw9ehRff/01Fi5caPi5YcOGYdOmTVi4cCG+//57AGRZETz66KOYOnUqpk2bhqioKJSVlaFBgwaYO3cuatWqhV9//RW33HIL6tati6FDhxp+z+zZszF+/HisWrUKK1aswKhRo9C9e3dcdNFF1n4gE1QKCug+O9vZ7WAYhrELFjMRSHx8PIYPH46ZM2eWi5kPPvgADRo0QK9evUw/l5SUhOjoaNSpU6fC+8OHD8eNN97o8dqUKVPKHzdp0gS//vor5s6daypm2rVrh0cffRQA0KxZM0yfPh0//PADi5kwoLQUEB5EFjMMw1QWWMxoSEggK4kT3+sLo0ePRpcuXbBv3z7Ur18fM2fOxKhRowIq5ta5c+cKr73++ut4++238e+//yI/Px9FRUXo0KGD6XratWvn8bxu3brlvYwYZ5E9kyxmGIapLLCY0eByWXf3OEnHjh3Rvn17vPvuu+jXrx82btyIr776KqB1Jmp++Ny5c3HPPffg+eefx7nnnovk5GT83//9H1atWmW6npiYGI/nLpcLZWVlAW0bYw/CxQSwmGEYpvLAYiaCufnmmzFt2jTs27cPffr0QcOGDb1+JjY2FqWlpZbW/9NPP6Fbt2644447yl/bvn2739vLOE9+vvqYxQzDMJUFzmaKYK699lrs27cPb731VoVYFyMyMzOxc+dOrF+/HkePHq2QESXTtGlT/Pbbb1i0aBH+/vtvTJo0CWvWrLFr8xkHYMsMwzCVERYzEUxKSgqGDBmCpKQky1V4hwwZgosvvhi9e/dGeno6PvroI8Nlb7vtNgwePBjDhg3D2WefjWPHjnlYaZjIQxYzXGeGYZjKgkup5OVbs7OzkZqaiqysLKSkpHi8V1BQgJ07d6JJkyaoFqHlUC+66CK0atUKL7/8stObUqWI1GNn7VpAxHlffz1wuswQwzBM2GE2f2vhmJkI5fjx4/juu++wZMkSTJ8+3enNYSIEdjMxDFMZYTEToXTq1AknTpzAM888gxYtWpS/3qZNG/z777+6n3njjTdw7bXXhmoTmTCEA4AZhqmMsJiJUHbt2qX7+oIFCwz7KtWuXTuIW8REAmyZYRimMsJippLRuHFjpzeBCWNYzDAMUxnhbCaGqUKwmGEYpjLCYoZhqhAsZhiGqYywmGGYKoQcAJybS40nGSYSUBRgxQpneucx4Q+LGYapQsiWGYAnBiZyWLgQ6NYNuOcep7eECUdYzDBMFUIrZtjVxEQKmzbR/c6dzm4HE56wmGGQmZmJF1980fLyy5Ytg8vlwsmTJ4O2TU7j6z6JFFjMBJe9e4HXXiMXHmMvBw/SfV6es9vBhCecmh2h9OrVCx06dLBlwl2zZg0SExMtL9+tWzccOHAAqampAX83E1pYzASXxx4D3noLiIsDbrrJ6a2pXLCYYcxgMVNJURQFpaWliI72/henp6f7tO7Y2FjUqVPH300LGUVFRYiNjXV6M8IKOQAYYDFjN4cP0/2RI85uR2WExQxjBruZDMjNNb5pr27NltVOHnrL+MqoUaOwfPlyvPTSS3C5XHC5XJg1axZcLhcWLVqEzp07Iy4uDj/99BO2b9+OAQMGoHbt2khKSkKXLl3w/fffe6xP61JxuVx4++23MWjQICQkJKBZs2aYP39++ftaN9OsWbOQlpaGRYsWoVWrVkhKSsLFF1+MAwcOlH+mpKQEd955J9LS0lCzZk3cf//9uP766y13++7VqxfGjh2LsWPHlq/j4YcfhtwnNTMzE0888QRGjRqF1NRUjB49GgDw66+/4vzzz0d8fDwaNmyIO++8E7nSjj98+DAuv/xyxMfHo0mTJvjggw+s/hURB1tmgovYvzzh2s+hQ3TP+5bRg8WMAUlJxrchQzyXzcgwXvaSSzyXzcysuIyvvPTSSzj33HMxevRoHDhwAAcOHEDDhg0BAPfddx+mTp2KLVu2oF27dsjJyUH//v3x/fffY926dejXrx8uv/xy7N692/Q7pkyZgqFDh2LDhg3o378/rr32Whw/ftxw+by8PDz33HN477338OOPP2L37t2YMGFC+fvPPPMMPvjgA8ycORO//PILsrOz8cUXX/j0u2fPno3o6GisWrUKL7/8MqZNm4a3337bY5n/+7//Q9u2bbF27VpMmjQJGzduRL9+/TB48GBs2LABH3/8MX7++WeMHTu2/DOjRo3Crl27sGTJEnz66ad47bXXcFhcYlcyWMwEF3HxwhOu/QjLDMcjMboolZysrCwFgJKVlVXhvfz8fGXz5s1Kfn5+hfeoqoH+rX9/z2UTEoyX7dnTc9latSou4w89e/ZU7rrrrvLnS5cuVQAoX3zxhdfPtm7dWnnllVfKnzdu3FiZNm1a+XMAysMPP1z+PCcnR3G5XMq3337r8V0nTpxQFEVRZs6cqQBQtm3bVv6ZV199Valdu3b589q1ayv/93//V/68pKREadSokTJgwADLv7dVq1ZKWVlZ+Wv333+/0qpVK4/fMXDgQI/PjRgxQrnllls8Xvvpp58Ut9ut5OfnK1u3blUAKCtXrix/f8uWLQoAj32ixezYCWcGDfI89l54wektqlx06UL79fbbnd6SykVhoXrMxsY6vTVMqDCbv7VwzIwBZvU3oqI8n5tdxLs1ti+D/pC20blzZ4/nubm5mDJlCr7++mvs378fJSUlyM/P92qZadeuXfnjxMREJCcnm1orEhIScOaZZ5Y/r1u3bvnyWVlZOHToELp27Vr+flRUFP7zn/+grKzM8m8755xz4HK5yp+fe+65eP7551FaWoqo03+K9vevXbsW27Zt83AdKYqCsrIy7Ny5E3///Teio6M9PteyZUukpaVZ3q5IQlhm4uKAwkLg1Clnt6eyISwzWvcyExjy0FNUBJSUABbCAZkqBB8OBviQ3BO0Zf1Bm5U0ceJELFq0CM899xyaNm2K+Ph4XHnllSgqKjJdT0xMjMdzl8tlKjz0llekeBbxmoz2fTvQ/v6ysjLceuutuPPOOyss26hRI2zdulV32yorYpKtXRvYvZvdTHbDMTPBQbiYBPn5QHKyM9vChCcsZiKU2NhYlFqoRf/TTz9h1KhRGDRoEAAgJycHu4JtHtKQmpqK2rVrY/Xq1TjvvPMAAKWlpVi3bh06dOhgeT0rV66s8LxZs2blVhk9OnXqhD///BNNmzbVfb9Vq1YoKSnBb7/9Vm452rp1a6WtoSMm24wMFjPBgGNmgoNWzOTlsZhhPOEA4AglMzMTq1atwq5du3D06FFDq0nTpk3x2WefYf369fjjjz8wfPhwn1w7djFu3DhMnToVX375JbZu3Yq77roLJ06c8MkismfPHowfPx5bt27FRx99hFdeeQV33XWX6Wfuv/9+rFixAmPGjMH69evxzz//YP78+Rg3bhwAoEWLFrj44osxevRorFq1CmvXrsXNN9+M+Pj4gH5vuCKLGYDFjN2wmyk46IkZhpFhMROhTJgwAVFRUWjdujXS09MNY2CmTZuG6tWro1u3brj88svRr18/dOrUKcRbS6LimmuuwciRI3HuueciKSkJ/fr1Q7Vq1SyvY+TIkcjPz0fXrl0xZswYjBs3DrfccovpZ9q1a4fly5fjn3/+wXnnnYeOHTti0qRJqFu3bvkyM2fORMOGDdGzZ08MHjwYt9xyCzLEbF/JYDETXNgyExxYzDDecCnBCFwII7Kzs5GamoqsrCykpKR4vFdQUICdO3eiSZMmPk2qTOCUlZWhVatWGDp0KB5//HGvy9tZ8dgOIvXYadKEgtDvuw949lmge3fg55+d3qrKgaJQcoCiAO3bA+vXO71FlYexY4FXX1Wfr14NdOni3PYwocFs/tbiqGVm6tSp6NKlC5KTk5GRkYGBAweWB2QKRo0aVV4YTtzOOecch7aY8Zd///0Xb731Fv7++29s3LgRt99+O3bu3Inhw4c7vWlVCmE5YMuM/RQVkZAB2M1kN2yZYbzhqJhZvnw5xowZg5UrV2Lx4sUoKSlB3759PaqzAiivJituCxYscGiLGX9xu92YNWsWunTpgu7du2Pjxo34/vvv0apVK+zevRtJSUmGN29p5Ix12M0UPGQBw5OtvWjFDBfOY7Q4ms20cOFCj+czZ85ERkYG1q5di/PPP7/89bi4OMu9gAoLC1FYWFj+PJtH67CgYcOG+OWXX3Tfq1evHtab2OTr1auHZcuWBWfDqhhaMcN1ZuyDxUzwEGImOppqzNi6f597Dpg5E5gwAbjhBhtXzISSsErNzsrKAgDUqFHD4/Vly5YhIyMDaWlp6NmzJ5588knDAM2pU6diypQpQd9Wxj6io6MNU6cZ+1AUKpQHeFpmFAWoImV2gorcKoLdTPYixEzjxsD27TaLmWPHgM2bgZUrWcxEMGGTzaQoCsaPH48ePXqgbdu25a9fcskl+OCDD7BkyRI8//zzWLNmDS644AIP64vMgw8+iKysrPLbnj17QvUTGCaskU+Z2rXpvqSkYr8mxj9kAZOfDzhQAaFSkpOjupXOOIPubRUzojL56tU2rpQJNWFjmRk7diw2bNiAnzWpFcOGDSt/3LZtW3Tu3BmNGzfGN998g8GDB1dYT1xcHOLi4oK+vQwTaciTbc2aZI1RFLLOVNKyOiFFa40pKAASEpzZlsqEsMokJqoiPChiZuNGWjH/aRFJWFhmxo0bh/nz52Pp0qVo0KCB6bJ169ZF48aN8c8//4Ro6ximciAsMG43EBurVlDlsDJ70IoZdjXZw6FDdF+njqozbBUz9esD9eoBpaXAunU2rpgJJY6KGUVRMHbsWHz22WdYsmQJmjRp4vUzx44dw549ezyKnjEM4x0hZqpVI6sMixl70brrOAjYHoRlJmhiBmBXUyXAUTEzZswYvP/++/jwww+RnJyMgwcP4uDBg8g/fUmTk5ODCRMmYMWKFdi1axeWLVuGyy+/HLVq1SrvNcQwjDVkMQMAogYVixl70FpiWMzYA4sZxgqOipkZM2YgKysLvXr1Qt26dctvH3/8MQAgKioKGzduxIABA9C8eXNcf/31aN68OVasWIFk7jKmy65du+ByucpTnZctWwaXyxW2jRPDffsqE0LMiPgYFjP2wmImOOiJGdvrzLCYiXgcDQD21kkhPj4eixYtCtHWVE66deuGAwcOIDU1Najfs2zZMvTu3RsnTpxAWlpaUL+L8Q8x2WotM1xrxh44ZiY4hMQy07kz3e/YARw9CtSqZfMXMMEmLAKAmeARGxuLOnXq+NSdmqmcsJspuHDMTHAIiZhJTQVatKDHa9bYvHImFLCYMSA3N9fwVqAZtcyWzddcnukt4w9lZWV45pln0LRpU8TFxaFRo0Z48sknKyyndePMmjULaWlp+Prrr9GiRQskJCTgyiuvRG5uLmbPno3MzExUr14d48aNQ2lpafl63n//fXTu3BnJycmoU6cOhg8fjsOHDwMg11bv3r0BANWrV4fL5cKoUaMAUEXmO++8ExkZGahWrRp69OiBNV4Gi3nz5qFNmzaIi4tDZmYmnn/+eY/3Dxw4gEsvvRTx8fFo0qQJPvzwQ2RmZpY3obzxxhtx2WWXeXympKQEderUwTvvvGN5H1c2WMwEF3YzBYeQiBmAXU0RTtjUmQk3kpKSDN/r378/vvnmm/LnGRkZyDM4u3r27OlRij8zMxNHjx71WMafxuUPPvgg3nrrLUybNg09evTAgQMH8Ndff1n6bF5eHl5++WXMmTMHp06dwuDBgzF48GCkpaVhwYIF2LFjB4YMGYIePXqU1/kpKirC448/jhYtWuDw4cO45557MGrUKCxYsAANGzbEvHnzMGTIEGzduhUpKSmIPx2Ycd9992HevHmYPXs2GjdujGeffRb9+vXDtm3bKlR6BoC1a9di6NChmDx5MoYNG4Zff/0Vd9xxB2rWrFkukEaOHImjR49i2bJliImJwfjx48uFFQDcfPPNOP/883HgwIHyrLcFCxYgJycHQ4cO9XlfVxZYzAQXdjMFB1nMFBXR46CJmffeYzETqSiVnKysLAWAkpWVVeG9/Px8ZfPmzUp+fn6F9wAY3vr37++xbEJCguGyPXv29Fi2Vq1aFZbxlezsbCUuLk556623Kry3c+dOBYCybt06RVEUZenSpQoA5cSJE4qiKMrMmTMVAMq2bdvKP3PrrbcqCQkJyqlTp8pf69evn3LrrbcabsPq1asVAOWf0X6PoihKTk6OEhMTo3zwwQflrxUVFSn16tVTnn32Wd3PDR8+XLnooos8vmvixIlK69atFUVRlC1btigAlDVr1pS//88//ygAlGnTppW/1rp1a+WZZ54pfz5w4EBl1KhRhr/HV8yOnXDlgw8UBVCUPn3o+aRJ9HzMGGe3q7Ig9qe4vfOO01sU+ZSWKkpMDO3P3bsV5dtv6XGnTkH4slWraOW1ailKWVkQvoDxFbP5WwtbZgzIyckxfC8qKsrjuWwV0OJ2e3rydu3aFdB2AcCWLVtQWFiICy+80K/PJyQk4Mwzzyx/Xrt2bWRmZnpYo2rXru3xu9atW4fJkydj/fr1OH78OMpO12rfvXs3Wrdurfs927dvR3FxMbp3717+WkxMDLp27YotW7YY/rYBAwZ4vNa9e3e8+OKLKC0txdatWxEdHY1OnTqVv9+0aVNUr17d4zM333wz3nzzTdx33304fPgwvvnmG/zwww/edk2lRhsAzHVm7IVjZuznxAmguJgeZ2QAO3fS46Ds2/btgZgYCgDetQuwUPeMCR9YzBiQmJjo+LJGxAdYez4mJsbjucvl0n1NCJbc3Fz07dsXffv2xfvvv4/09HTs3r0b/fr1Q5Gw++qgnHafaYOPFUUxDEjWe0+R3HCKgUtO+/rIkSPxwAMPYMWKFVixYgUyMzNx3nnnGW5rVYDdTMGF3Uz2I1xMNWoAcXFBjpmJiwM6dKAA4NWrWcxEGBwAHIE0a9YM8fHxIbM0/PXXXzh69CiefvppnHfeeWjZsmUFa1RsbCwAeAQNN23aFLGxsR79toqLi/Hbb7+hVatWut/VunXrCv25fv31VzRv3hxRUVFo2bIlSkpKsE4qO75t27YKdWpq1qyJgQMHYubMmZg5cyZu4G64LGaCDAcA248cLwMEWcwAHAQcwbBlJgKpVq0a7r//ftx3332IjY1F9+7dceTIEfz5559+u57MaNSoEWJjY/HKK6/gtttuw6ZNm/D44497LNO4cWO4XC58/fXX6N+/P+Lj45GUlITbb78dEydORI0aNdCoUSM8++yzyMvLw0033aT7Xffeey+6dOmCxx9/HMOGDcOKFSswffp0vPbaawCAli1bok+fPrjlllswY8YMxMTE4N5770V8fHwFi87NN9+Myy67DKWlpbj++utt3y+RhpGY4Toz9iDEjGjgyWImcIzEjO1F8wRduwKvvspiJgJhy0yEMmnSJNx777145JFH0KpVKwwbNsw0dicQ0tPTMWvWLHzyySdo3bo1nn76aTz33HMey9SvXx9TpkzBAw88gNq1a2Ps2LEAgKeffhpDhgzBiBEj0KlTJ2zbtg2LFi2qEOMi6NSpE+bOnYs5c+agbdu2eOSRR/DYY4+VZzIBwLvvvovatWvj/PPPx6BBgzB69GgkJyejmpilT9OnTx/UrVsX/fr1Q7169ezdKREIVwAOLmL/ikOb3UyBYyRm8vOB015wexGWmbVrgZKSIHwBEzSCGoocBvibzcREDnv27FEAKN9//73H67m5uUpqaqoyb948278zEo+de++lZI2JE+n5+vX0vE4dZ7ersnDJJbQ/mzal+5tvdnqLIp+JE2lfjh9Pz0+dUrPFcnOD8IWlpYqSkkJfsH59EL6A8QVfspnYMsNEHEuWLMH8+fOxc+dO/Prrr7j66quRmZmJ888/HwAVFNy/fz8mTZqE1NRUXHHFFQ5vcXjAMTPBRVhiatake3YzBY7WMiPnPgRl/7rdQJcu9JhdTREFixkm4iguLsZ///tftGnTBoMGDUJ6enp5AT2A0sXr16+PuXPn4p133kF0NIeGAcZiJi+PLep2IMSMqAXJbqbA0YqZqCj1+OUgYEaGR3km4ujXrx/69etn+H5mZqZfVZUrO1oxIzeeP3VKjfVg/EPsXyFm2DITOFoxA1DcTEEBixnGE7bMMEwVQRsAHBtLpTUAZ11NigLs3+/c99sFu5nsx0jMACEQM5s2BTFtirEbFjMMU0XQVgAGwiNuZsYMoH59YNYs57bBDtjNZC/FxVSMFwixmKlXjw7IsjJAqmfFhDcsZhimiqB1MwHhUWvmt9/o/o8/nNsGO9CKGbbMBMaRI2S1i4pSrV1ACGrNABwEHIGwmGGYKoKZmHHSMnPkCN1HevE+sX/ZzWQPwsWUkUFJRoKgW2YAjpuJQFjMMEwVIdzFjElv14iAY2bsRS9eBmAxw+jDYoZhwpTDh4Fvv7Wv0qk2ABgILzETyZaZ4mJAtCXjmBl7cFTMdO5M9zt3qgcoE9awmGGYMGXsWKB/f2DpUnvWF64BwCLIM5LFjCxc5JgZrhDgP46KmdRUoGVLerxmTRC/iLELFjNVjMmTJ6NDhw62rnPWrFlIS0uzdZ0MsHu3532ghKObqbBQ/e5IFjNi3wKqmCktJYsN4x9GYiYxke6D7sZjV1NEwWKGYcIUMbnbFUuiJ2ZE4TynxIywygCRHTMjW72E5UB+nfEdRy0zAIuZCIPFjBZFoZw/L7fDO3OxcWUu9v3tfVlLNx/s0e+++y5q1qyJwsJCj9eHDBmCkSNHGn5u1qxZmDJlCv744w+4XC64XC7MOl3cIysrC7fccgsyMjKQkpKCCy64AH9IubJ//PEHevfujeTkZKSkpOA///kPfvvtNyxbtgw33HADsrKyytc5efJkn3Y5o4+Y3O1KQQ1Hy4wcjhDJlhkhWuLjqRihyL7hIGD/CSsxw/7CsIfbGWjJywOSkrwulnH6Zhs5Oar91AtXXXUV7rzzTsyfPx9XXXUVAODo0aP4+uuvsXDhQsPPDRs2DJs2bcLChQvx/fffAwBSU1OhKAouvfRS1KhRAwsWLEBqaireeOMNXHjhhfj7779Ro0YNXHvttejYsSNmzJiBqKgorF+/HjExMejWrRtefPFFPPLII9i6dSsAIMnC/mO8I8SMHRYLRQnPAGDZMlMZxEy1aoDLRRNuTg6LmUDwJmaCXpy3XTtSpseOUSDwGWcE+QuZQGDLTAQSHx+P4cOHY+bMmeWvffDBB2jQoAF69epl+rmkpCRER0ejTp06qFOnDuLj47F06VJs3LgRn3zyCTp37oxmzZrhueeeQ1paGj799FMA1LyxT58+aNmyJZo1a4arrroK7du3R2xsLFJTU+FyucrXyWLGHuy0zBQVqReX4VQ0T7bM5OWpGUGRhlYoint2M/nPoUN075hlJi4OEPGF7GoKe9gyo0VcUnnh5Elgxw4atFq1sul7fWD06NHo0qUL9u3bh/r162PmzJkYNWoUXC6Xz1+9du1a5OTkoKZcZhNAfn4+tm/fDgAYP348br75Zrz33nvo06cPrrrqKpx55pk+fxdjjaIiugH2WGbkANVwdTMBJNzENkUSspsJCOGEW0nJy1OPScfEDECuptWr6Xb11SH4QsZfWMxocbksuXuiFaAsHiiOBWDNO2QrHTt2RPv27fHuu++iX79+2LhxI7766iu/1lVWVoa6deti2bJlFd4TWUqTJ0/G8OHD8c033+Dbb7/Fo48+ijlz5mDQoEEB/ArGCNkaY4dlRhYzsbHq43ATM6dOsZhhVKtMfLxnd3cgxPtWtDXg9Oywh8WMn0Sf3nMlJc5tw80334xp06Zh37596NOnDxo2bOj1M7GxsSjV2PI7deqEgwcPIjo6GpmZmYafbd68OZo3b4577rkH11xzDWbOnIlBgwbprpMJDNkaY6dlRsR0CJwWM3LMDBC5cTPaGj7sZgoMOV5Ga2wOqZhp3pzu7aqPwAQNjpnxEyFmysrsq9DqK9deey327duHt956CzfeeKOlz2RmZmLnzp1Yv349jh49isLCQvTp0wfnnnsuBg4ciEWLFmHXrl349ddf8fDDD+O3335Dfn4+xo4di2XLluHff//FL7/8gjVr1qDVaf9aZmYmcnJy8MMPP+Do0aPI48vRgJEFjJ2WGTn4F3BezOhZZiIR7f5ly0xgGAX/AiHet3Xr0v2BA5zRFOawmPGTqCj1sVNGiZSUFAwZMgRJSUkYOHCgpc8MGTIEF198MXr37o309HR89NFHcLlcWLBgAc4//3zceOONaN68Oa6++mrs2rULtWvXRlRUFI4dO4aRI0eiefPmGDp0KC655BJMmTIFANCtWzfcdtttGDZsGNLT0/Hss88G8VdXDey2zOhV/wU8xYwTY7VWzERqrRl2M9mLEDO1a1d8L2RF8wBVTRUXU1YTE7awm8lPXC6yzpSU0C0mxpntOHDgAK699lrExcVZWj4uLq48Q0kmOTkZL7/8Ml5++WXdz3300Uem650xYwZmzJhhaRsY7wTLMqMVMyIeoayMJgeL1QFso7JYZrRiht1MgRE2lpm4OKBWLfKH7t9PjxlPSkro6t6P5BM7YctMADgZN3P8+HHMmTMHS5YswZgxY0K/AUxQCWbMjExiojoGOeFqEmIm43TRpkgXM2L/smUmMMJGzACeriamIo8/TibeRx91dDNYzASAcDU5IWY6deqEW2+9Fc888wxatGhR/nqbNm2QlJSke/vggw9Cv6GMX4TKMuNyOVdrprQUOH6cHot6ZJEqZjhmxl6siJmgF80T1KtH9/v3h+gLI4w9e2jAcso9cRp2MwWAk5aZXbt26b6+YMECFBt0t6ut54BmwpJgWWa0AcAAiZmsrNBbZk6cUIPnMzOBlSsrT8wMu5kCw6plRlFC4N1gMWPOnj10byGbNpiwmAmAcEjP1tK4cWOnN4GxAXlSLyggK4YcdO4rRpYZwLmMJuFiSksDqlenx5FqmeEAYHuxImbKyqiwpMVwQf9hN5M5YSJm2M0UAOEoZpjKgdZCEahJ3SibCXBezKSnq4HIkS5mOGYmcBTFmpgBQrR/2TJjjKKwmKkMsJhhgoXdYiYcLTOiYF5lEjNsmQmckyfVVh56nvGYGHXsZTHjMCdPqn9CgwaObgqLmQBgMcMEC62YCTSWJBzFjLDM1KqliplIjZnhRpP2IawyaWn6xyvgYOE8xhNhlalVSz8gL4SwmAkAFjNMsAiWZUZvvBFCwkk3k2i0zpYZxqhbtkxIC+cJy8yBA86Vew9XwsTFBLCYCQghZrgtEWM32km9MltmKpObiWNmAscsXkYQ0v3LVYCNEWLGYRcTwGImINgyEzqWLVsGl8uFkydPOr0pIcGJAOBQCwm9mJlIdTNxarZ9+CJmQlJrJjZWrfwbDq4mRQmfSYctM5UDWcyEuq9Nr169cPfdd9u2vlGjRlnu78QEn6oWMxPpbiYummcfYWeZAcIrCHjIEODMM0NYNdAEFjOVg3BoNhlJKIqCknC5oghzhHgRgrkyZjNVRjcTi5nAMWsyKajSLQ0WLgR27wa2bXN6S1jMRAS5uca30zOD2336lp+LkiyDZbV2Zr1lfGTUqFFYvnw5XnrpJbhcLrhcLuzatQubN29G//79kZSUhNq1a2PEiBE4Kmz5AD799FOcddZZiI+PR82aNdGnTx/k5uZi8uTJmD17Nr788svy9S1btsx0G3bt2gWXy4U5c+agW7duqFatGtq0aePxOeEaWrRoETp37oy4uDj89NNPUBQFzz77LM444wzEx8ejffv2FZpfLliwAM2bN0d8fDx69+5tWPG4siLEjBjQ7bLMGFUABljMBILWjcduJv9hy4wJRUXqQcWWGQ9YzBiRlGR8GzKkfLHoaKB93wxUq2Ww7CWXeK43M7PiMj7y0ksv4dxzz8Xo0aNx4MABHDhwADExMejZsyc6dOiA3377DQsXLsShQ4cwdOhQANRd+5prrsGNN96ILVu2YNmyZRg8eDAURcGECRMwdOhQXHzxxeXr69atm6VtmThxIu69916sW7cO3bp1wxVXXIFjmiC5++67D1OnTsWWLVvQrl07PPzww5g5cyZmzJiBP//8E/fccw+uu+46LF++HACwZ88eDB48GP3798f69etx880344EHHvB5P0UyQryIAb2yWWYURT9mJjc3MhNG2DJjHyxmTMjKUh87LWYUBdi7lx6HgZjhdgYBEu3AHkxNTUVsbCwSEhJQ5/QZ/8gjj6BTp0546qmnypd755130LBhQ/z999/IyclBSUkJBg8eXN7y4KyzzipfNj4+HoWFheXrs8rYsWMx5LS4mzFjBhYuXIj//e9/uO+++8qXeeyxx3DRRRcBAHJzc/HCCy9gyZIlOPfccwEAZ5xxBn7++We88cYb6NmzJ2bMmIEzzjgD06ZNg8vlQosWLbBx40Y888wzfuytyMRuy0y4VQDOyQEKC+lxrVqe/XVyc1VxEylwzIx9hKWYCRc3k5wA4bSYOXKETmKXC6hf39ltAYsZY8xmDylYJjoa+OO7w2jUSA1498CtMX4FyV2ydu1aLF26FEk6lp7t27ejb9++uPDCC3HWWWehX79+6Nu3L6688kpUF01x/EQIEgCIjo5G586dsWXLFo9lOnfuXP548+bNKCgoKBc3gqKiInTs2BEAsGXLFpxzzjlwSTOc/D2VndJSVXyEwjLjRJ0Z4WKKj6eaIYpCp0pZGbmaIk3MGGUzFRbSb9IOA5WBwkL7+yKVlqrHRliJGbbMVES4mGrXpowvh2ExY4SoyuSF6GigLD4RJXEArHzE4np9paysDJdffrmu9aJu3bqIiorC4sWL8euvv+K7777DK6+8goceegirVq1CkyZNbN0Wl6aNbaL0m8tO+xC++eYb1Neo+bjTI6MS6tSwMEMeo+yOmQkXy4wcLwOQmElOprE60uJmSkupBAlQsc4MQEInSKe9YyxYAFxxBTB9OnDbbfat98gRVfyJY0OPkBbNA8JHzISTZSaMXEwAx8wEjFO1ZmJjY1EqpVB16tQJf/75JzIzM9G0aVOPmxATLpcL3bt3x5QpU7Bu3TrExsbi888/112fVVauXFn+uKSkBGvXrkXLli0Nl2/dujXi4uKwe/fuCtvZ8PRJ0bp1a4/1ar+nsiOES1QUULMmPQ5mBWAhZgoK1Ek52MjxMp9+SqXrxbkUabVm5CBfrWUGqJyupvfeIxH366/2rle4mNLTzbvEO+ZmOnjQ2aAu2TLj9IEVRsG/AIuZgHGqCnBmZiZWrVqFXbt24ejRoxgzZgyOHz+Oa665BqtXr8aOHTvw3Xff4cYbb0RpaSlWrVqFp556Cr/99ht2796Nzz77DEeOHEGrVq3K17dhwwZs3boVR48eRbHFWe3VV1/F559/jr/++gtjxozBiRMncOONNxoun5ycjAkTJuCee+7B7NmzsX37dqxbtw6vvvoqZs+eDQC47bbbsH37dowfPx5bt27Fhx9+iFmzZgW8zyIFMZnL8eHBtMzILp1QWUXkGjNXXUXfK+LGI80yI/YtoIoYt1t1wVS2jCZFAZYsocd2/zYr8TJAiIvmAeFTBTicLDNhVP0XYDETMELMhOqKVjBhwgRERUWhdevWSE9PR1FREX755ReUlpaiX79+aNu2Le666y6kpqbC7XYjJSUFP/74I/r374/mzZvj4YcfxvPPP49LTmdbjR49Gi1atEDnzp2Rnp6OX375xdJ2PP3003jmmWfQvn17/PTTT/jyyy9RSzd4SOXxxx/HI488gqlTp6JVq1bo168fvvrqq3J3V6NGjTBv3jx89dVXaN++PV5//XWPwObKjp6YCWYF4JgYdRIOlatJ62aSiTQxI/ZtbKxnbExlDQLetAk4fJgey0LODnwVMyHbt7Gx6sHqpKspHMVMmFhmOGYmQJyyzDRv3hwrVqyo8Ppnn32mu3yrVq2wcOFCw/Wlp6fju+++83k7WrVqZegC6tWrl278i8vlwp133ok777zTcL2XXXYZLrvsMo/XbrjhBp+3LxKRxYyIDQimZQYgV1N+vrNipmZNuuiNVDGj3bcJCcCJE5VPzPzwg/rYactMSPdt3bp04B44ALRvH8IvlgjHAGAWM5UD7s/E2E0wLDNWxMyhQ86ImTp1aBJr2xZYvjxyY2a08UiV1TITqJi59VaKuUlNpVip6tXV+z//pGXCUszUqwds2MCWGQGLmcpFZRUzTz31lKFr57zzzsOMGTNCvEVVh2BaZvQCgIHQZzSJAOCaNcl6IR4DkWeZMdq3lbEKcEkJCU6BP26mOXNon+Tnq5YYLadLYRnimJgBnBUz4WKZKS0F9u2jxyxmKgci4l40m9RkJUcst912W3n1YC3x8fGoX79+lU+hDhZCuCQnh9YyA4TeMpORQRPSgQPAgw/Sa5EmZiLZMvPTTxTvd8EF1pZfs8bz//FHqInPLFxIQdInTpDBQdzHxgLXXWe+DsfcTICzhfPCxTJz6BBNem63ul8chsVMgAjLjKJQxp5ZOmEkUaNGDdSoUcPpzaiS2G2ZKS5WY7qMxEyoC+fJbqa8PM+EiEgVM3oxM0D4ipmTJ4G+fen42LaNOq14Q7iYGjSgMiO+ihm5Jk/nzqo1zleqrGUmXMSMcDHVq+dMGXwdOJspQNxu1RpT2VxNjDPoxczk5flf3kJ2BXizzIQ6NTs9nQSbXEm2ssTMhLubafFiOjZKS4EPP7T2GSFmRGy+r24mvZo8/hDyonmAKmactMyES52ZMIuXAVjMBIzLVXnjZhhnEIJCtswoiv+TojzhGJWfD6WbqbBQ/Y3r1wPDhql9moDIs8wYxcyEu2Xm22/Vx++9R8eYGXl5apE8IWZ8PSbl5Y2EtRVCXmcGUN0pbJlhMVNZYTHD2IlsmYmPVy1//losxGQbF2fcIyiUYkYE/0ZFkXvjk0883480MROJMTNlZZ5i5q+/gN9/N//ML78ARUXkYhI9av0VM2bHohUcdTMdOOBcFeBwCQAOs1YGAIsZW2Axw9iJLGbc7sCvQr0F/wKhFTNy9d9Dhyq+H6liRrt/w9nN9McflEmUmAgMHEivvf+++WeEi+nCC9XfVlTk27xuVrzRF8Q5UVwcwoKlIl+8pMSZKsBlZeEjZsKs+i/AYsYWWMwwdiKLGfneX8uMlQnECTGTnq4fflBZYmbC2TIjrDIXXgjcdBM9/ugj8zFMT8wAvsXNeCsRYBVtI8+QEBPjbBXgU6c8fYHhIGbYMkNMnToVXbp0QXJyMjIyMjBw4EBs3brVcPlbb70VLpcLL774Yug20gJOVQHWY9euXXC5XFi/fj0AYNmyZXC5XDgp+1rDiHDfPifQihkRN1NZLDNyk0lRZ0R0BwcizzITiTEzCxbQ/SWXAP36UVbRoUPA99/rL3/iBLB2LT2+8ELPY8kXMWEk/HwlLk51v1aZjCbZKgPQgOBUeQwWM54sX74cY8aMwcqVK7F48WKUlJSgb9++yNUZtb/44gusWrUK9cTBFEaEs2WmW7duOHDgAFJTU4P6PSxK7MNuy0y4iRnZzSTEzMCBNLECkSdmIi2b6cQJQHRCueQSMjhcfTU9N3I1LVtG82bLlmo2rhj3nBAzLlcVrDUjxlZxIiuK/c2xrFBSov7+MBIzjiaIa3sFzZw5ExkZGVi7di3OP//88tf37duHsWPHYtGiRbj00ktDvZleCWcxExsbizreaoMzYUWwLDNmE0go68zouZnuvZcmqGbNIlfMREqdmcWLKfyidWu10u6IEcCrrwKff07Hnzj2BLKLSRAfT/+VL/OpXWIGoP2bm1sFLTP16gE7dtDj3Fx7dqYv7N9PB1BMjKdJ1WHCKmYm6/SfJRdrKysrw4gRIzBx4kS0adPG6zoKCwuRnZ3tcfOH3Nxcw1uB5uwtKMhFfn4usrMrLpuvuWzRW58/lJWV4ZlnnkHTpk0RFxeHRo0a4cknn6ywnNZiMmvWLKSlpeHrr79GixYtkJCQgCuvvBK5ubmYPXs2MjMzUb16dYwbNw6lkt/s/fffR+fOnZGcnIw6depg+PDhOHy6de6uXbvQu3dvAED16tXhcrkwatQoAPR/3HnnncjIyEC1atXQo0cPrFmzxvS3zZs3D23atEFcXBwyMzPx/PPPe7x/4MABXHrppYiPj0eTJk3w4YcfIjMzs9z9eOONN1ZoUllSUoI6dergnXfesbyPncJJy0wohIQQM2lp6rbVqaMKqtxc55JF/CHSYmZkF5Oga1egaVPa1i++qPgZIzEDOGOZAapg4TxhmalZU62x4MTBJVxM9esHlpJmM2GzJYqiYPz48ejRowfatm1b/vozzzyD6Oho0w7LMlOnTkVqamr5raGfZrCkpCTD25AhQzyWbd06A+efn4SOHSsue4k8YgDIzMyssIw/PPjgg3jmmWcwadIkbN68GR9++CFqW1TJeXl5ePnllzFnzhwsXLgQy5Ytw+DBg7FgwQIsWLAA7733Ht588018+umn5Z8pKirC448/jj/++ANffPEFdu7cWS5YGjZsiHnz5gEAtm7digMHDuCll14CANx3332YN28eZs+ejd9//x1NmzZFv379cPz4cd1tW7t2LYYOHYqrr74aGzduxOTJkzFp0iTMmjWrfJmRI0di//79WLZsGebNm4c333yzXFgBwM0334yFCxfigGQKXrBgAXJycgxbNIQTdltmwi0AWMTM1KtH9WUOH6bfGhtLrytK+AkAM7zFzISTm6msjNoIAED//urrLpfaQuC99zw/s28fpW673UCvXurr4nhySsw4UjgvHNxMaWmBDwqBEIbxMkAYtTMYO3YsNmzYgJ9//rn8tbVr1+Kll17C77//DpfFpkcPPvggxo8fX/48Ozvbb0ETrpw6dQovvfQSpk+fjuuvvx4AcOaZZ6JHjx7YtWuX188XFxdjxowZOPPMMwEAV155Jd577z0cOnQISUlJaN26NXr37o2lS5di2LBhAMjaITjjjDPw8ssvo2vXrsjJyUFSUlK5NS0jIwNpaWkAyAo1Y8YMzJo1q1zUvfXWW1i8eDH+97//YeLEiRW27YUXXsCFF16ISZMmAQCaN2+OzZs34//+7/8watQo/PXXX/j++++xZs0adO7cGQDw9ttvo1mzZuXr6NatG1q0aIH33nsP9913HwByYV511VV+i8dQ4nTMTLB7jMkxM243uZv+/JO6ZgtOnaro6ghXvMXMhJMwW7+eAn2TkoAePTzfu/ZaYPJkCgI+cECdt5csoftOnaiztUD8PifdTECI5/NwcDOlptKPP36cxYxEWFhmxo0bh/nz52Pp0qVoIOWt//TTTzh8+DAaNWqE6OhoREdH499//8W9996LTINGInFxcUhJSfG4+UNOTo7hTVghBLt3H8aPP+bg558rLvutXJkK5JLRLuMrW7ZsQWFhIS6Ubb4+kJCQUC5kAKB27drlFiP5NdnasW7dOgwYMACNGzdGcnIyep2+RNu9e7fh92zfvh3FxcXo3r17+WsxMTHo2rUrtmzZYvjb5OUBoHv37vjnn39QWlqKrVu3Ijo6Gp06dSp/v2nTpqguj7Ig68zMmTMBAIcPH8Y333zjIcjClbIydXxyIptJUYI/PsoxMwJtj55ISs+OpJgZ4WK68ELVEiZo2hQ45xw6BufMUV/XczEB7GYKOWyZMcVRMaMoCsaOHYvPPvsMS5YsQZMmTTzeHzFiBDZs2ID169eX3+rVq4eJEydi0aJFQd22xMREw1s1zaiVmpqI+PhExMXRvbxsvOas1Vufr2jX6SsxMTEez10ul+5rZacDF3Jzc9G3b18kJSXh/fffx5o1a/D5558DIPeTEaKrttaqpiiKoaVN7z25O7dRp27t6yNHjsSOHTuwYsUKvP/++8jMzMR5551nuK3hQn6+mm1pt2XG7LCJj1ebpAbb1STEzB9/AFddBbzzTkUxE0lBwN5iZsLJzSSurWQXk8yIEXQvXE2KYixmAnEzBVo0D3A4m+ngwdAHdsmWGRYzFXBUzIwZMwbvv/8+PvzwQyQnJ+PgwYM4ePBgedBszZo10bZtW49bTEwM6tSpgxYtWji56R7InbJDkdHUrFkzxMfH4wcxygSZv/76C0ePHsXTTz+N8847Dy1btvSw2gCUNQXAI2i4adOmiI2N9XAdFhcX47fffkOrVq10v6t169YeywPAr7/+iubNmyMqKgotW7ZESUkJ1q1bV/7+tm3bKqSE16xZEwMHDsTMmTMxc+ZM3HDDDX799lAjBIvLpU6OobDMuFyhiZspLVWLp+7aBXz6KbBuHSVGnPZOAogsMWMkFsPNzXT8OLByJT3WhPKVM3QoZWeuW0euv3/+ocr1sbGAxmDql5vJrqJ5gENiRq4CLIK/QgVbZkxxVMzMmDEDWVlZ6NWrF+rWrVt++/jjj53cLJ8JdbPJatWq4f7778d9992Hd999F9u3b8fKlSvxv//9Lyjf16hRI8TGxuKVV17Bjh07MH/+fDz++OMeyzRu3Bgulwtff/01jhw5gpycHCQmJuL222/HxIkTsXDhQmzevBmjR49GXl4ebhJlRzXce++9+OGHH/D444/j77//xuzZszF9+nRMmDABANCyZUv06dMHt9xyC1avXo1169bhlltuQXx8fAWLzs0334zZs2djy5Yt5bFF4Y4QM4mJaqJAKCoAA6ERMydOqJYncaEp5odatdTlIknMREo203ffkTGhTRvjeahWLVXofPCBapXp1s2z6i5QRd1MMTFARgY9DrWrSZwwTosZ0ZcpjFoZAGHgZtK7iSwZPXbt2oW77747ZNtolVDXmpk0aRLuvfdePPLII2jVqhWGDRtWwVpiF+np6Zg1axY++eQTtG7dGk8//TSee+45j2Xq16+PKVOm4IEHHkDt2rUxduxYAMDTTz+NIUOGYMSIEejUqRO2bduGRYsWVYhxEXTq1Alz587FnDlz0LZtWzzyyCN47LHHPI6Jd999F7Vr18b555+PQYMGYfTo0UhOTq7g/uvTpw/q1q2Lfv36hWWxRT2EYBFpykBoLDNAaMSMnJYtDldhuZfFDMfM2MOhQ+oFvXAxGVllBCKr6YMP1IrAeuF5TmczObZ/ncpoEn+kk26mwkK1oVqYWWbCJpsp0gm1mHG73XjooYfw0EMPVXhPjh/p1auXx/NRo0ZVEIuTJ0/G5MmTPV6TU6EB4JprrsE111xj+D0ACSyRhSSoVq0aXn75Zbz88su6v0O7fQAwZMiQCunvMnXr1sUCEckIYO/evTh8+DCaNm3qsVx+fj5OnjxpaAUKR7SZTPLjYGYzAaEpnCcH/4rqv8IyIwcEVwbLjGy5CHaGmBETJwJffQW8/rp+SrYel19Ownb3bvUiXE/MhEs2U8jFTL16FPAVasuMnpsp1D9+3z66r1bN8+ojDAiLbKbKQDhXAa5sLFmyBPPnz8fOnTvx66+/4uqrr0ZmZmZ51eiysjLs378fkyZNQmpqKq644gqHt9g6emImFBWAgdAUztOr/ivETO/egEhSjCQx463OTFkZdZcONX/+Se0JTp6k7xf1fLSxL1ri44Err6THZWUkcrt00V8OqGJ1ZgA1oynUlplwCACWu2U7oc5NYDFjE+HUbLKyU1xcjP/+979o06YNBg0ahPT0dCxbtqw8I2v37t2oX78+5s6di3feeQfR0ZFjgBSTuBOWmVC4mUTMZK1aFd1M99xDTQ+ByBIz3mJmAGdcTY88QhahIUMo2BoAzjuvYkq2HsLVBAA9e6rjm0y4uJlCHjYiDlgnLTNO/fgwDf4F2M1kG2yZCR39+vVDPzHr6ZCZmWmYwh3uBMMyE04BwMIyk5REAc6K4uleEq6uyhAzExNDmY6lpbSMQZhYUFizBvjsM9rHjz2mupasXmz17EkX33v36ruYgCruZgKqZgBwGIsZtszYhEjPZjHDBIKTMTNigvngA/Ui0G6EmGnUiGIJjxzxvOoX2xgplpmyMvodgP4E7dSE+/DDdH/dddQL8N9/6fkvv1CKtjfcbmDGDKoKbFTVwGk3k+NiJpRupoIC9UALBzcTi5nwpMyG4kdsmala2HHM6BHMmBlvYka4IvbtU600diPHzLjdnsXyvvkGeOIJehwpYkbML0D4iJllyygNOyaG2hN89x29Xq0aHUOvvGJtPZddRjE3qan671fJonmAM24mcXXhcpH5ksVMBaq0myk2NhZutxv79+9Heno6YmNjLfeA0iLmtqIi38yuTGShKAqKiopw5MgRuN3u8mKBduHNMuNPVoyVAGBFoUJpAI3V69YB//mPb99jBREzI7uWBKfbewGIHDEjT+R6+9cf60WgrFlDQnH0aKBJE4qdAYCLLqLMppdeAsaP90z/94cqWTQPUC0zogpwKDpHCxdTSgp9H4uZClRpMeN2u9GkSRMcOHAA+wNU2QUFNFBHR4dVV3QmSCQkJKBRo0Zw2/xnm1lmhEvD16taK5aZNWvUNNytW4ELLqCLQbsTFoRlZuNGypgZMEAtoR+JdWaESImK0g+SdWLCnTiR0qurV6djRnR+uesu+m///ht44w3gdB1Kv6mybqbatenEEFWARRG9YCIH/wIsZnSo0mIGIOtMo0aNUFJS4lGK31e2bQNuu41MsqtW2biBTNgRFRWF6Ohov614ZpiJGfG+r2LGimn/tdc8n2dn0zitZ0EJBCFm9uwB5s2j5oYC+bvEhWi4421ydmrCbdmS7n/7jfZ5cjJw/vnAAw8AN94IPP88MHZsYO6ecMlmCrmYiYmhg/XwYXI1hULMyMG/gDN56Xl5asBVmFX/BVjMAFAbLWqbLfpCRoYaZBcdrX+VxjDe0BMzUVE0cRQU0IWYr7WqvFlmjh8H5A4iMTFAcTGwfbu9YkZRVDEj3Egi/ACgCwGR/ROsAGQr5OVR9+jevcklY4Y3t0kom03+/DO56lq3Vl9bsoTue/em//W66yiO5tgx4PffqU2Bv1TZbCaAXE1CzHToEPzvk6v/As5YZoTpNjHRs5FamMAOEZuQ/f0nTgBffEFFIhnGF/TEjPzcH/eLNzEzaxYt06wZPReZedu2+f5dZuTkqMXjtH2ZALLcizHSyZiZjRvp9sEH3pf1NjmHqtlkSQlw003AWWfR2CP48Ue679mT7mNigLlz6cIrECEDOO9mcrI9UcgzmrRuJifqzMgupjArmAewZcY2oqNJNGdl0QAiKmgWFdEAwjBWMBIziYnk9vFn7PJmPRgxgibDqCjPOAq7xYywysTHqwXzZDEDUHbTsWMOTVCnERPuyZPeA669ufDssh4cOQLs3Al07ar//rvvUixMrVpqXZjSUuCnn+ixEDMAcPbZgW2LwGkx46hlJtQZTXL1X8AZJRfG8TIAW2ZsRaSZ/vKL+ppo1MYwVnDCMpOeDtx3H3DVVfS8uJjugyVm5FYGspsJoIwbQO1n5ARif5WWercQWY2ZCdTNNHQoiZC1ayu+V1hIriMAePBBNUtpwwaKfUpOBtq311/vypX+Vy0Xx5NVN1NxsfpddoqZggI1mzRkhLpwXjgEALOYqTqIWIaNG9XXPvzQmW1hIhMzywzg39jlawVgMeFs3+77d5khxEyNGqpI0Fpmnn6a7hXFuW7TsvA4ccJ8WW9WL7vcTDt20L3sQhK8/TbNM/XrA7ffrr6+fDnd9+ihH8M3YABw7rnA55/7t02+Wma8pbF7Q1GA+fPVps1yu4iAY5L27KGSyVYJdedsI8tMYWHoeuiwmKk6CMvM1q3qa0LAM4wV7LbMlJSohRy1YmbfPnI/fPghTRRy3ZGxY4ExY3z7Lm8IMZOaSq7X+PiKtU4SE1W3jlNxM76ImVBlM4kWE6LztUBRKM0aAO6/33M7RLzM6f6rFRDWmief9M8KFoiYiYvz/fuef54E2PXXe34/EOD+3bkT6NgRuOYaioq2QrhYZoDQWWdYzFQdhJjJyKBgyn/+AZ55xtltYiILuy0zcoVarZh56y2a8N54gwREVJT6Pffc49ls0A5EwbyGDWm79u+vGI/icqnb4FStGX/EjLeYmUAsB4qiCru1a1VRCFBxw40bSRzI/1dZWcXgXy133UX/+fr1/s3JvrqZZHenP/GjQj+Iujlut7oNAYmZzEwyXxUVkT/PSnMypwOA5Z3IYgYAixlbEWKmTx8KxpNraDCMNxRFncC1Fgt/LTPyRCNPuMXFwJtv0uM77lBfD2azSTlmRs5ckpkxQ/2NTllm5H0WqGXGDjdTfr7qSVAUYPFi9b2dO2ncGTjQs5Hl5s0USJ2QYFzJuWZNdV4SZSV8QbbMWLHsBBr827073cfGqvvDFsuXywXMnAk0bky+1dGjvf8g2c0UioAdrZtJVv2h8seymKk6iJgZcQUK0HH+00/eB0WGkd3fdllmxMQsOjgL5s+ncbh2bWDQIPV1IaJ276bjdudO377PDFnMGCELnEhwM1mtMxPIfKMVlrKracgQsqpo6+EIq8y559Lkb0TjxnQv+nL5gvjNZWVq0LgZgYqZBg3otxQVqfOqbRlN1atTsaXoaMpdf/118+VFFeDSUgpUstK9MxC0lhkgtEHA2dnqgRiGBfMAFjO2Iiwzspi57DLyWX/yiTPbxEQOstVFDm4E/LfMGLlBZsyg+5tu8pzshGXm5ZfpuP3oI9++zwwhZrZsoUl47tyKy8gFASNBzIQiZka7H777ztMYEBtLc6uMCP41cjEJMjPp3h8xIx9TVtxogYiZp5+mKtXiPBCZdramZ599thoXcM895H/TY+9eOjBE5d8331TVVbDQWmaA0NaaEb8vNTXwpl5BgsWMjQgx8/XXauXNXr3onrOaGG8IoZKQ4GlFAQK3zMgTz9atwA8/UMzBLbd4Li/EjHBZ2JmeLUT+/v2UOPL33xWXCYf+THbGzNjRaFJcEKen02R+6BAV5NywQd/DoSjeg38FQsz442aKi1PDNqzEzfgrZoqLSczceaf62j//0L3txol77qHGVoWFwGOPVXx/40YqD33ZZZ5tDEThpGDhtGUmzF1MAIsZW5FTW8UgcfXVdP/jj8EX70xkI67AtS4m+TV/Y2bkyVZY0C+9VHUzCMQxLO7tFDPCMiOuorU1ZgBPF1Qw4nasYGfMjJ2WmVq1qAEoQJbeTp0oLk/bx+qff6ihc2ys9wJ5ffsCTz2ljlO+4HL51p/JXzGzfDn9xtq1gWuvpdeCYpkB6EfNmkWpYdoS0EuXAuedR2mAOTmeB6vIFw8GcsEjp8SMaGXAYqZqIAYVlwto0oQeN2pEx7+iePa/YYJDWZl/JvNwwCiTCQjcMiNPIL16kftBrkkikJMlAHtrzQgxI0SKtsYMoFo35eVDTbjGzCQnAxdfTI8//pjmuDp1PD0PgGqVOfts77WFunWjQnu9e/u3baEQM6K2zuWXA4MHA//3f2qBx6BUAa5Rg0xB8obOmUM7PyuLBvSffwbOOEN9P5iWGVnVy3+2P4PCnj3+1aVhy0zVYvdu/deHD6d7djUFn0mTSEh+9ZVvnysro4FSNmWHGjMxY6dlZsAAYNky4JJLKi4v3DzCfbB/vz0XfoWF6sXlsWN0rydm4uPVAm/BvNg1w86YGTvdTCkpQL9+9FgU0Rs1quLyVuNl7MCXZpP+iBlFAb78kh4PHEhCfMIE8vQAIWhpUFZGJsRrrqHI4yuvpKClGjU8TYvBPFiFiyk+3jPAzVcx88svdHWtd9B4g8VM1ULEACiKp5i+8koaoNeto+BHhsaI77+3Py5i9Wq6l6swW+Hff6kS6iuvqM0QQ00wLDNWq/8KhJjJyVHjZsTEGQgiXsbtVi0uem4mAGjRgu596cZsJ8GoM2OHmyk5mYwBYj6JjQWGDfNcVlF8FzObNwPffONfwLUvYs3XYxGgGnZ799LxL3pOyQRdzDz2GPnsACrM8/HH6g+QK6IG0zKjF/wL+D4orFtH9++/rw6UVmExU7XYsEF9LK4+AZogxBXV/Pmh3aZw5aWXqA/P1Kn2rld0Kv/hB98+J2dWOmURsGKZOXWKYl5uuIFcAz//bL5OrWUmL4/GJbmYnoxcXkDUSbIjbkYImJo1ycrtcnnGT8qIJq1uh0ancIuZkS0zgOoKbNSo4vz277/0/0ZHU1q2FS65hOJZ//zT923zxc3kzSWnh3AxXXKJ+l2bNlEA+cmTIRAz48bRyfbmm8C0aZ4HpSxmQmGZ0RZm8rXOjFgPADzwgPWyz4cPA2vW0GMRPxGGcNdsmyguVidSgCYD2aX66KPAf/9rfYCp7MyaRfd2W6rEpCmyyawin+cHDzpzAaIVM/n5lBl39CjQujW9lpcHPPecGsvy+utUvNQIrZj5+WcS1m3b6luvZDFz1100kXboENDPAuDZyiAri8ZlvX5BgJr5GQmp2VZjZgJxM4n9kJJC3ydq/5w6VbGrt7DKdO7sWfHejMxMcpHv2qW6b6wSbDfTiRNUI2nAAPW1IUPICv7DDyEQMzVrAu+8o/+eMC1mZACzZwdpA6BaZozEjFXLjDzILV1KpnHR2dWM+++nbejQQa1cGIawZcYmCgqo87C4UpItMwDQpQsF2/lTxruysXmzasWys9aUNk1182brn5UnrVBVKNeiFTOjR1N19QceUAftnBx6/bLL6LmwgBuhnWyFNVxbl0Qgi5lrr6UgYTsuxoSYadiQtkkvLVsgxIw89oYSrZgxu4ANRQVgOQB40SL1ODl0qOJ+tJqSLWNH4bxgBQBPn07HzuDB6muyxTDoYsYMYZk5doxiaIKFOBG0Zjhf68yI9YgB5sEHvVtnfvlFvfJ87bWKNSPCCBYzNpGcTO7Vzp3puVbMyPjT1K0yIWd12SlmtOvy5WJJFjPeBEKw0IqZTZvo/qKLVOt2bi5dKN11Fz33Zt3WWmbE8kYuHr0q1nYg1idaGWjHZZmvv6Z7X+Oe7EKemEtLzeO6rMbMFBX539xYdjNdcQVZ19q1o9dEnyKBP8G/dhTOC2Y2U2qqZxFJPTETqvZEHtSuTZN7aWlwBw1vbiarP15YeMaPp0Fm7Vpg3jzj5UtK1F4nN90U9m4FFjM2I1JL9cTM8ePAbbeRiV90Mq5qKAplOQrMRJ+vaCf2996zvp/D0TIjfs9DD6mWFLGMeO5tDNVOtlYtM1lZ9F2//GJP9WphmZGL4hkhxmxHrrZR0WVi5mqyGjMjL+srcgCwy0WW/hEj6DW5tcG+feR+dLt98wYEImaC6WYySs2XxUyo2xN5EB2t+qPvvjt4flG7AoCFKGrenAQNQIOL0SD56qtkQhep6mEOixmb+PlnmljMrmyTkmhi2LyZXJZVkfXrPU3jR45QRVo7kMWM203nrNVaJbJLIxzETFmZuu21a6vjVnExXeULMXLsmHlfHK1lRogZI8tMWppqBdq5k+Jxrr7aOGDYKuK3bN9OLgORbquH2LZA4kwCQfu9ZmLGW8yMbLHxd8KV3UwCUW9m2TJ1G4SLqUMHc8uXFjvEjN2WmcOHKSSlS5eK+02ImX/+cdjNBABnnkn3n37qX+txK9hlmZHdVffeS1fef/+tupFkDhygOhcAZWlYuQpxGBYzNlBSQpU05VRTPYtDbCzFQABVs+ZMWZlaPr9vX7ovLqb00kAnS4DKPwiSk2mgN0r/1RJubqZjx1S3RHq6ZzBnbi6NQ//9L/Dii+buC1/dTFFRnu5/IawCLUQoxMyRI5QCb7Y+UX/GSvPCYOCLmPE2QbtcgcfNiAv+qVOBMWPoP2zTBqhfn77/p5/ofX/ry4iYmX//9d0FHiw309df03FdWlqxT1mzZnS/fbtnlp4jCDEDBC892+4A4LQ08lk+9BA9nzKl4h84cSIdeF26kIspAmAxYwNbttCxkJysXjUYuU9EAb3PPnOujoYT5OeTkPvtN3rerZsaS/bHH+p5FQh//aU+zs7W71tjRLi5mYToqFGDsjliY+keoLErKgp48kkq8mdWt8PXAGBAvQg7dkwdqwNNzxaWSjFm6hXMEwgB6pQrVmyjqLNjFtdlpXZKoBlNwjKzZQswcyb9ly6XWu5BuJr8Cf4FyFPy5JPA22/7HtcTLDeTSMkeOLDie40b0/Gfn6/WhAoLMROs9GyjAGBffWxaUXT77fTn791Lwb2CZcuolYPLFfZBvzIsZmzg99/pvmNHtV2HkZjp3p2uqrOzq04BvSNHqOCViDWLi6PML9ly+fzzFYMZfWXfPvWxotC5e/iwtUDScBIzycm0/d27A127qu/7UwVYa5m58krg+utV0a1HMGrNCDEjrAxmYkaEIZSVORMsL/aZSFYJxDIjvxeoZQagtGRRb0a4mhYupONcjCfnnefb+mNjycp37bXG6fJG+OJm0qtGrUduLrB4MT3WEzMxMVTc8tNP1RhFx8RMKFoa2OFmUpSK66lWjawyADXoysoic+iYMfTabbepGS0RAIsZG1i7lu7/8x/v2SButzpYO+XOCCXbtpEVZsUKEjEA9VWJj1fdGaKGxPXXBzYeaONj5swhU/ytt3r/rLbOjBOTqGyZOessisP69lv1fe3YtX8/8Ouv5h2PtZaDBx4gF3nLlsafCYaYEftXCAMz91+jRurjUDebVBR10q1fn+6NxIy8rJmYCTSuQ94H11yjPu7Th8aTzZtVt3Xbtp79rYJNMNxM331H+7VJEzoP9Lj9dhJ2jouZUFhm7AgAzs9X/bbyekaMoMHg+HEqYPXSS3RApaeTuS6CYDFjA0LMdOpkns0kEFelTlWaDRVr11I237ZtFGQoAhhFh16xr666imIADh2iYpv+CgltXZIzzqCr+xUrzOuaAJ4TVnGxvSnjVjGrACy/Lpb773/JevPRR8brtHo1LKMnZgJtOCnGYzHumllmhIgAAvsfliwBbr7Zt4lOdpd4s8wUFanHqhUx44+bSVE8LTOyIaB6dbUr9lNP0b2//Zj27AEWLFCtzFYJhptJuJgGDPBel8vxAGD5D5FNw3ZiZJnxJS9dnIBut+cAEx2tipZp04DJk+nxs8+qftYIgcVMgJSWUoYOQJYZK2KmXTua5OXshMrI3Lk04HfoQKL/6FE6P0TRSWGZyc2lCTkujgbU77/37/u053R0tBpX8O675p/VTlhOuJq8iRlxIaZNzzYTxbKYKSggK463iUcWM3bEzJSUeP438fHmx35MjPpbfYl7klEUCjb/3//UujVWkAWHsB4ZiRl5WTOxGIibKTfXU9xrA7eFq0lYJX2NlxG8+SZw6aXAW2/59jm7s5lKStQmsXouJsGRIyR6Vq2i546JmdRU9WAVpZntxo4AYFkQaRXioEEU6JubS7du3YCRIwPYYGdgMRMgW7fSiZSYSKnAQszk5xufYM88Q+6BIUNCt51O8MwzdGX9009qptGQIWrjVyFmjh8nc/Krr5IAslJhW0thoRowKgbLEyfUBrHvvms8MSqKOmGJ8cIJF6AsZm67DWjQgCZjgRA5WuuG2bbKbpDffiMLWdu25tshi5l27agKqxwf6CuymyQ2lkSCtyvuQFsabNyoWpN8WYfYX1FRavybNzHjcnk2M9YSiPVA3ndRURXnMyFmBP6KGZGebeay1MNuN1NZGY0Do0aZ18pZvZrm4Ndfp+eOFM0TNG9O98EQAHKsi5mbyZs528i6A9ABLOrIuN10sjvVGC0ALG/x/v37MWHCBGTrOLGzsrIwceJEHKrsfhMd6tShSrNPPEGDTUqKGkRnZ0G4SCUqiiwun35Kz4WLCahoxbrpJnI5+YMcLyO6Lp88SRVT09LIjG5U2ycnR83iED2QnLDMiEk3KYm2V2u1DtQyYyWTCfAUMzVrUjxgnz7WfoMeYhxNSKDtEZZMM4SY8bcS8WefqY99ERHyhCus7EZiRhaKZuIsEDEjjgm3m1yx2jnmP/9RLwpatDB335nhb60Zu91MsbEUFzRzpnkwsnB/CvGVl+dgZXURgBaMAOC8PPUqzcgyU1bmvbaFkSASXHABVRn94gugfXs/N9ZZLIuZF154AdnZ2UgRofQSqampOHXqFF544QVbNy4SqFGDBPndd9Nzl8uaq6myI1ImAXIbHT9Ok2ivXurrsmVGy8GDvpm85VoUQsycOEGTuBBQerWhAPU8j4lR3SqhFjNFRWp8npyaLbsVtJYZK2JGDgD2VmNGIKdm24Ecv+hyWXOvChEj4id8JRRixmoMiC+uGC3i2rF+fc9GtoKoKLVmk79WGcCzP5MvoiDYvZmMaNKEhJ34bxXFnlpVfiHiZnbssH/d4uSJiqrYOVRbfMrKevQsM4LrrgMuv9znTQwXLIuZhQsXYqSJGW3kyJH42hfndCXGm5j5/Xe6EopQAWyJa64hYfD112r7gquu8ixZYLSf9u8n98Z991kfWMVEnZamTvJiErr+err/5hv9AU8sV726GicRajeTnG6dmKj+HtmKorXM+OJm8tcyA1D9nvffB9asMf+cEUbJGGaIzDerFZxl/vnHMx3fHzFTrZp1MeMtuNoON5PONWQ5jz9Ox3ggtZoaNiShmZ9vbZ+vX0+tLkSYiB1ipqSEXJq//uo9Vio2VhVgAsfiZoRZ65tv7C8eJltUtOa/6GjVvyl+fGkpxT5oB04zN1MlwbKY2blzJxrJOZMaGjRogF2BlgmNMMrKgJdfppgQudiUNzGTkEDmUV/905GCotBAt2MH/dbPP6fXZRcTYGyZqVGDJtKTJ61PZvLkLyYhcf6efTZZZbZtUydJGTleRgiEUFtmhECJi6MxSk94GFlmjh/3tITJ6IkZq5YZIWbefJMyOOWeWr4gxExODrUykNPNjRDCzR83kzjeBP5kM9lpmbHDzWRmzWralI5v7eTuC3FxavaWt3GptJRqavXoATzyCL3mbQ5XFO/i76+/gHHj1KB9bwhXk7hAckzMiJLEe/bYn6LqzaKiDQIeM4bcXiKKWuDNzVQJsCxm4uPjTcXKrl27EG+H/TCC+Ptv6l7cr5+nEPZWa0ZMmFlZzvWfCSY7d9I5HRNDYuTUKbry0zZdNRJ91aqpA7O3lGrBK6/QfVRUxUnI5aIrV7lMv4yeZcYpMZOUROOOECdmlpkaNehq/OWXja9k5cnZqptJ/C85OfT5QGvNiPG4oICEhpUWNsISoU23t4JwMYnzzA43k56F0EqNGSCw1Gxhmdm4kf7nYGI1bkY+J4WQ8Pbbiou9p7HLxUetxJ+K41LE1jgmZuQKlHanZ3sTIbKY+fdf4I036LmcOSCvhy0zwNlnn4333nvP8P13330XXeVypVUAcfJ16OAZrObNMpOaqloIKmPM9K+/0v1//qNOLMOGVRygzGJmRIKA1SaUovppQoJ6vhpdUWsnfnGeB+JmKiyk0gz+ZlXotTJISfG8itVaZtxuCjwfN874atcfN1NqqjpJHTsWeK0ZIWZEHKOVIFUxdovPWmXfPkrXdbnomAN8ExF6Yqa0VL/qsq8xM4FYZnJzg9eUWTBxIrkTzznHfDnZ3SjivLztY/l9b2KmUyfzdQnEcSm8L46JGTk9b/Nme9ftTYTItWaee059XXvAWomZiXAsi5kJEyZg5syZmDBhgkfW0qFDh3Dvvfdi1qxZmDBhQlA2MlyRK//KeBMzLpe1eIdI5Zdf6L5zZ9XaqXUxAep+On684pWvCOK1apkR7qh69Sq6mQQLFlAJhccf93xdtsz462YaMAC4/37V7O4r2o7ZPXqoBdEEWsuMFWTT/oABlPIq9q0RLpdx4Tx/6r6IcVRYm6yIGfEf+jqBi4Dhbt3UYG5/Y2YSEtR+WHrCOJQxM4B3i1qgDBhALQ1EhXIjRH81GW9uJitp7L6Kmcsuo1IOIoXeMTHjdqt/st1ixlvAmRgU9u2j5loCra+QLTMqvXv3xquvvorp06ejXr16qF69OmrUqIF69erh1VdfxSuvvIILLrggmNsadvgrZoDKLWaEZSY6mgaxpk31ByhhmSkqqmjR8MUyI5diyMw0jnU4cYKqAf/vf54xTnLMjLDMZGdbGxxXrqTCmZddRs9ffNG/QFlZzLRu7VmbR6C1zAA0hv3yi7FrQLbM3Hsvpby2a+d9e2Qx06gR/ZcFBdZcRFrEfyMmNCudzMU55KulS1gCBw/2T0Ro063N4mZ8jZnxx80ki7lgixmr6IkZq5YZozT2sjJg3Tp6bFXMNG9OSQVifna01ow4UOzOaPImQoSYOXSIrh7bt6fB4J9/9NfDMTPErbfeiu3bt+O5557D8OHDcfXVV+P555/Htm3bcPvttwdrG8OSsjL1SkIrZrzFzACVt6VBdraaSSIH/uoNYAkJ6lWa1tXki2UmK0t1YTRrZuxmGjKEBNSePWqnYXm56tUp0FJMTlaE5uzZwPjxdEE2fDgdFzffrJrfreKt+i+gb5mZNImsOKI3j0xZmWoN8aWdAeB5DEdHq/EU/sTNiItLRaHjwMqkLM4PK8JHcPQosHw5PR40yD8xoxUoZmLGasxMIG6mUFpmcnLIeql3LAlKSlTRIQcc+yJm9Ni2jb6/WjXzvmF6ON7SAFB9t3v32rteqwHA1avTFdDy5fTHaAdcdjNVpH79+rjnnnvw6quv4rXXXsPdd9+NBg0aBGPbwppt2+iqqVo1oFUrz/d8aWlQ2YSyqIbtcpGl06zRo1lNnrPOotTsBx7w/p179qiPGzUyDtysVk1N0xZxcoBnzIzLZT0IWFHUUvmXXUZWmZo1gQ0bqAu4L1gRM3qWGbNaM3IauttN/4dV64BWkAcSNyPHvaSnW+vMLPozeatWLPPVV2Rx69CB6pAEW8yEIptJFjPCnRIsDhyglgajRxuXRPjzTxJxqamedW2KijytnVq87StxYdi+vW+du5csUccOR8WM8M3ZfXXqSwCw2XLsZmKMMDv5xARtZpl57DFyx+jFkkQqhw9TFd9ffqHBcMAAKvRlpnWNgoDr1KF2CFYqhO/erT6WU7NLSioOcLfcQvfffKOKINkyA1gXMxs20IVYfDzQuzdNNtOm0XuTJ1e09Johi5mxY2kylwUXoG+ZMXNXynEMotmn3OTXDK2YeeAB2mfCneYLQszExFivUOtPOwPZxQT4ZxHRxsFYETNWY2b8cTPJ3xtsy4yovJGXZzx21awJTJ1KRUKvuYYeC8yK1nkTM5ddBvz4o9ow0ypPPaVaCx0VM6I3jd1iwZtFRRx8cg2LH34g/9sTT6ivsZhhjLjiCuDnn9WWFjJCpO/Zo7o/KjvffUfWpm+/pfPr1VfJzSSEnRF2VEuWJ4k6dcwDN1u2pCrEZWVqvJy2L5PVeCYR3HzRReogfd11VJG1sJDS9q0ii5k9eyg2RXt17KtlRuyXqChVLHrLZBJoxUzPnkD//tY/LyPG47lz1Xgqbwgxk5VlXENH5tQpNcZIiJlAY2YAeywzgbiZxByUnh78xrRxcaqQN6o106ABCdvJk4FLLgHknA8zseZtXyUlAeedR1X1fUHOinZUzIhYg3//tbevgjfLjHBrTZ+ufu+BA9Q/Rg6645gZxoiEBGqEJpfnFzRoQBN6SYn3AlSO9ROxiaIicgf160cTapMmZJm54w7vzQQB8/RsEQMhV3PVQ+4bVLs2fa9ZerZwe739Nv1H/lpmZBeTwOUii8rAgSTorCLETHKyfvVfwH/LjC+tDARW4r6sIl9caiuyGyEm7t9+owtNbyxYQMdi8+Zqf61wiZkJxM0krB3vvGPtfAoUX3s0RUerlmkrYsbX2C1vhI2YadKE/qBTp+w5aQRmFpWSErXHRbt26gEifLObNtEEU1Sk/gFsmWF8we1WzflGroZNm8is62uwW7gxZAjwf/9Hj4cOpYJ5/fpZT+E1s8y8+CKJRW8dm/XqshilZwMUHHrllWoRMjlmBrBWa+bQIercC1CcgUxmJlmlmjQx324Z2TJjVA/GV8uMPzVmBFoxU1BAgaFPPeW7APennYEcO2RlbpBdTGJMD7eYmUCK5gXbKiMwEzOFhcAnn6j9mwoL6RwQVlCz9Gwz4bdvH3DPPcBHH/m+vWEjZgD1T7JaT8IKZm6mTz5R35f9xy1b0iR04gQNYnLQmllfjAiHxUyQEBWujcSMcCfs3h251pm8PNU6MW8exY0AFIBptYO8lcJ53sYGPUuG2SQUF0fjwJAhdFWptcxYqTXzxx+UifWf/6hl4I3YtMn8fUC/aJ6RZaagQA22FMucPFkxZsGfVgYCrZhxuciF9tBDvjcHFmLx/vspYNMK8uTtraVFQQHF8wCqiwkITMzYGTNjRzZTqOYgMzGzcSNdsHTuTM+PHKFaSGI/+OtmWr2aLlzERZEvyGLG0dTs6Gj1z9LrCOovRu4hRfGMcZB9sdWqqTvmzz/VdaSkeDbHq2T4LGZEfRntrWbNmqhfvz569uyJmTNnBmNbIwpvYkZMQgUFnhkLgHlWQDghttvtJmuHKJbXrZv1dciF87RYrTVzxx10Lw/43qoACwoK1ElffMaKm6lvX7ImmaWxKgq5tM46iyZyM4SYiY5WJz0jywygDtzVq1N69iuvVLSG+dPKQKAVM3FxaoCoL+nZxcXqRLZ4sfVeW76ImcWLaX80aKBOtIAqZgoLrZ9TwYiZCcTNJCyW777r+2f9QYgZPfe4qJ/UpQuJW+HSFfgrZnwtlicjGlYD+mNIyIiOVlXtn3/at14jy8y331IGgiglr1VybdrQ/aZNVSJeBvBDzDzyyCNwu9249NJLMWXKFEyePBmXXnop3G43xowZg+bNm+P222/HW2+9FYztjRi8iZn4eHXyld0Z06fTMffzz8HdPjuQrxpdLjW4s3t36+sQlhk9N5MQM/v2GVe9LS2lBnWA50Rt5mYSHDigVux1udT/w2pLg8REdRv1cLnU3+Wtr474fWLSjY+vGF8SF6davMTyLhdlxo0dW3GikC0HgbiZhOVQWLJ9ETPadgQmvWo9kMWMt/9B1DOSXUyAKiIA6y4esdwrr5C10e6YGV+ssHKdILNMITu58EJqaTBlSsX3RLE8IRhjYjyPJzM3k5mYEcVH/REzCQnqeet4zS6xIf42MdNSXGycci3SyETQppGY+fPPKlFjBgB8yOgnfv75ZzzxxBO47bbbPF5/44038N1332HevHlo164dXn75ZYwePdq2DY00vIkZgNwZ2dk0WIsicZ9+SsflN99QMbRwRpwjKSn0G3bsoMlEW4bfDDM3U40aNKkePUr7sWPHisscOqQKALmIl7eOxwBZkoRpOzVVFQrCzXT4MK1ba5nVe80IIQAKCihez6iGhhAn1apRVkdMTMWAT5eLrDPZ2dZM6rKb6bLLKN1bjHHeEGKmoIAm4cREslwvWeJbrRlZzDRrZv3YkIWc2SRVUgJ8+SU9ll1MgKf7Jy/PvIaPQEy6BQU0eV98MT3XOz59zWYCSJRYDYKVBbyouxNszjzTOH1fK2YAcrEKsemPZUZRAhMzAHV0f/VV+4OLfSY9nQYNb1kfVpFPHlnMFBbSVdT69ZRpsGhRxQGhbVu6+ikqqhJp2YAflplFixahj5w+cpoLL7wQixYtAgD0798fO+wu6xxhCDGza5dxNVi9TBRhobS7xUcwkC0zwirTtq1v1kxvqdneKgHLBfPkarFW3EwDBqhiSu4Xk55OwqasTD8+5N57qb6QsAiYIbsWNmwwXk7UU2nRguptGGXw6GU07dtHljxtnIMsZsaNo4wYeSIyIzFRtWBrC+f5YkWXRcA991iPpYqKUv8TMzfTjz/Sd6SnVxT/brc6efpqmdm/n2I5xPFhR8wM4JurSXY/e4vLCjZ5eer/3qWL+rq8Xf6ImQMH6Bxzu6212dBDiKBQWa8MEYrT18ZuRggxk5TkeRUUF0c9WfbtU+uAaA+sQYNokJg9m91MRtSoUQNfiQIbEl999RVqnD7zc3NzkRyq8PswpV49MoGWllKGjx5aMXPkiDpxRKqY8SVeBjC3zADeg4C1BfMEViwzMTFkVgc8B+KoKNVlpXVxKAowfz4JEyupsvLnRUyRHlYqAMvvyxdijzxC1pwPPvBcVhYzvqJtNgnQdwD0+61a0hcsoPuoKLX6slXEb23f3ngZkcU0YIC+tczXeBXZVdKwobrvjh2r6CKyapmJiVEzfvwVM/7U9/GXpUuBGTM8LxTWr6exrG5dTwEjP/bHzSTiZVq18nQL+kJYtDMA1PTF7Gz/Ute0eBMhKSkVKwALYmNVAcRuJn0mTZqE22+/HUuXLkXXrl3hcrmwevVqLFiwAK+//joAYPHixejZs6ftGxtJuFx0JbthA7lI9GIrzjqLah4J64QsYHbsoPPB20DpJLKYGTmSBlz5qs0K2s7ZWoFw3XXAOecYu9y8iRmzmBmA1v3JJ2QZ2bZNtT7UrUtC5MABT/fWX3+ROI2L86xvY4S8fWLg1sOqmNGzzBilZ4vJJS6OrDYZGb5NGLVq0cWfEDPnnEOF0r7/noSZnElixJw5dC+KGfpCjRp0XNxwg/77iuIZL6NHQgIJEasTnTwHNWxIwcXiuz78kLpKC6zGzIjtyMrybY6Tqx8Hu5WBzH//Sw1Ua9dWL/z1XExA4JYZMeb562ICVIuMXaEqfiMHhO3cqRY88hc9EVJURCdl/fokWIzEjAy7mfQZPXo0li9fjsTERHz22Wf49NNPkZCQgOXLl+Omm24CANx77734+OOPbd/YSMNb3MzDD9OkcN119FwWM2Vl9pYrCAaymGnXDpg4Ub+IoBnCMlNSol+6/oILqAWB0bggXz36apkB1CtmAJBj1o0ymkQqeu/e1mIw5O0zy8oS4uT552mCMCq4p2eZMSqcJyaQkhK6aPQ17kKvcN5LL5Ggs2JlURS1oqs4F3xB/FajlgZbt5I7qFo148qxvl61a8XMbbeprrGbblIbWcrLWhEz/qRnyyEToeyYrZeefdVVVMH5zjs9l734YtU95E/RvPvuo//wscf8314hZvzp6G4rN9ygFg7zp4mZFj3LzJYtlMIlVKY4wPXEzPTpVCdDHLSVXMz4bJkBgO7du6O7LykrlZhcE0XcpEkUgGrlYsZsWbfbjc2b5VExF7//rn/163a7ES+NoHl5eVAM0iRcLhcSpEtiX5bNz89HmUn1u+xsuipISfG+bKIU0VlQUIBSKVe2WjW6yt27l4J4zZbVEhOTAIDMOWlphcjNpf4RIt7j2DH1PE9ISIDrtOmnsLAQJSUlHjEx77xDKdRxcUDt2vEA3Dh4ECgqKkLx6cCnL76gZS+6SF1vfHw83KdnPHnZoiJPMZSXB5SWVkPUaX+IWLakRL3KF9YgqiWjLltcXIyioiLd30VjXRwOHYr2WFaITRGzlZ5On4mLi0P0aRN0SUkJCg2CDWjsi8XRozHly9arR8vqHcqxsbGIOa0OS0tLUVBQUB6UXbOm52diYmIQezooRiyrRRyKhw7FoLQ0FlFRQFlZGfJPz4wirqhzZxJsJSWe6y0rK0NcHC17/HjFbY6Ojkbc6R2qKAry8vI8lklPp0m4Rg3g6NFoFBbG4YorgB9/VNC0qbqsoniuOyoqCtWkWTs3N9fDXeVtWcG+fWJf0b7Iz/c8772NJ/6OEfXq5QFQ8M8/6rampFA7Czp/1GXbtctHq1Zl2LCBxJd2k8S5TH9vPtzusgrLqCUVrJ/38hjRsGEBgFKUltLFg7hAEsjnvRFm+9LsP/IgJQXuVq0Q/9dfZFr3sl6v/5EwtSYlwZWXR//R6fYFefXqQcnNVU3ZOTnlO7/8/zx+HPjjD+RnZqIMIEWtsz3yvvR3HE+0Wto7mCh+sG3bNuWhhx5SrrnmGuXQoUOKoijKt99+q2zatMmf1QWVrKwsBYCSlZUVlPUDMLyddVZ/BVCUiy6iZRMSEgyX7dmzp9K7t6IAipKcrChALcNlO3fu7LENjRs3Nly2devWHsu2bt3acNnGjRt7LNu5c2fDZWvVqqXcdx9t75VXKkrLlj0Nl01ISPBYb//+/U33m8yVV15puuz+/TkKTSeKcu2115sue/jw4fL13nHHHabLjhmzUwEUZcwYRZkwYYLpsvJx/+ijj5ouu3r16vJln332WdNlly5dWr7s9OnTTZcFvlaaN6dlZ86cabrs3Llzy9c7d+5cL+udqTz8MC379ddfmy47ffr08vUuXbrUdNlnn322fNnVq1d72YZHlS1baNlNmzaZLjthwoTy9e7cudN02TvuuKN82cOHD3vZhuuVdu3oOKtdO8d02SuvvNLjGDZbtn///h7LehsjZGrVCs4YUbeufWOEYOBARQGCM0b06WM+RuTk5CjesO0/atiQDpJx44LzH73+uqIASuvkZO//0bx5igIonaOiLP1HiqIoPXv69x8FC1/mb5/dTMuXL8dZZ52FVatWYd68ecg5bR/fsGEDHn30UV9XV6kRYtVq92ThZrr88uBsj92IK/9Nm9RaL6FGWFa0Af+BIsz6diUmCMyCJAMlWHU2/Gk1ow1GDhSrxfaCyYQJlK3neD2TICO7Xu3CjnhYI8KqqK3wIwYrgEf4ra0MdqIOQ6RUYQ0UX5XSOeecozz//POKoihKUlKSsn37dkVR6OqqXr16Pq3rqaeeUjp37qwkJSUp6enpyoABA5S//vrLY5lHH31UadGihZKQkKCkpaUpF154obJy5UrL3xFsy0xOTo7hbefOfAVQFLdbUQoKKi67bVuOAuQoLleOsmtXnoLTFgYS1DlKixb6683Ly/PYhtzcXMNtyM3N9XvZvLw80993zTW0vUlJigLkKd9/b7ysTH5+vsd7551H+2HmTP1l+/Sh96dPr7jeH38sUwBFOfNMRSkoKCh/fc8e+gyQoxw/Tq+VlZWVr1cse+mltMyLL6rr/PzzHGX06FIFUJRu3RSlsLBQycnJUX74IUe5+uoc5bHHPLehtLS0fL1i2ZycHOWtt2jd55+fo6Sm0uPVq0sqLPv77/ReamqOkpxMj9euzVFKStRli4qKlJycHGX0aHr/gQfU79+7N0cBihVAUfLz1WXvvJOW7dqV7kePpuWLi4vL11tcXGz4nz33XI4CFCnC0CAvu21bjhIfT+udM4deKyoqUhRFUU6eVJSkpBIFyFEuvJCWeeQRz3UXFhaWb0NJSYnu948cKf7DQuWzz2jZ0tLSCufO/v366y0tLVX696flXnml4voLCgrKly0rK1NOnVKPme3b1eUuuihHAQqU//1PUfbuVZTGjcuU99/PUdxuWnbGDPVziYk5Steu+crWreoxnJOTo/ToQe/Pnu25Dfn5+R7Hu/zeI4/QZ0aO1D/vzc7NQMaI33/PVQA6Fk+dylGefJK244or9MaTPMXlovdHjTI+788/n8aId99V35syhT43ZIj3McJsPPnnn/zy/f/QQxWXlc97I8y+y+w/8rgdParkiUG8WbPA/6M77lByACXn3nvV/X799YoCKLmTJ9Myp07RMoCSs3275/9ZXKwocXFKnnh//nyv+9LbmG/0HwULX+Zvn69lN27ciA91arinp6fjmFGxEAOWL1+OMWPGoEuXLigpKcFDDz2Evn37YvPmzeU+uObNm2P69Ok444wzkJ+fj2nTpqFv377Ytm0b0kMZ4m+Ama8wIYEsBjk55EJt1cpz2caNyeWpKGo7j8aNga5dASAR27fTVZJcA0X/e6yniegtO38+BRx36uQZkB/vJbJRWGZycoDY2Hh0724tDbiaZiHxN4ribNpl27ShDJpduzzf376dAhMBCv6Ni4srj4GIj1f3bVGRGhAsEMuKwNs6dWjd+fnA+PFqOv3OnRQLEhsbiwsuMA40FYhlAdVqlJkJ/PQTPV69Ws34EssKF3VSkhon0aSJ5xVnTEwMYmJiymP4iorUfZGQQOnZGRn0e8WyJRQ+VH5fv37F/RsdHV0eP6NFZKqI01pe9swzqW7MU09R8OaVV6rb+9ZbQE5OFFq3Tizf3vR0447ZUVFRuueRHPsgrENutxuJiYnlmWHt23vWF5Jxu91ISaH1lpaad+x2uVyIiVEXqFFDXV4cnydO0D78808XCgsTy/+3atVof+zaRSEJq1cDjz6qNk5MTEwsr2isKObbIe8HUUxu82b9z/gSp+DLGNGiBS176hTFW4n6SOecUzEjLSEhHikpFC+TnW3828gyE4/q1dVlRM+yrl31z3ur1KihLqsdI6ziy740XDYxkUpXnzpFG1JWFth/JOJb0tPVHX86ZibhjDPUH5qYqC4rf190NNCyJeLF5CIGORO8jfkyvvxHocBnN1NaWhoO6Nje161bh/o+pkssXLgQo0aNQps2bdC+fXvMnDkTu3fvxlpxFgMYPnw4+vTpgzPOOANt2rTBCy+8gOzsbGwwqEBWWFiI7Oxsj5tTuFzmGU3R0epAKfqetG5NA2ZyMk1CoUg3nDiRaiw1buybCV3etf/5j/8VOL0VzjOqNfPvv8ZNGd1uNQnALD1b22QyJoYmaTH5HDhAWSz+uDlEWnbjxur69NKz5eq/AIlXo8QDvWwml4vKz48Z45lZI1xa4t7XWiV62UwyEyfSftu8GXjvPXqtuFht3TB+vHqM+FOvy6w/k2j34a1Kti/ZTLILUN6P2sy4xERPK/+wYXSe5uWpqdyiu7R2fb5kM4nfLMRoqEhIoJT6n36i3yr3ZNJD/LdmmYN6mV+B9GSSkednxzNAxUlWXKxemfiLXkr1aTFTns0EmKdnyyW/K3k2k89iZvjw4bj//vtx8OBBuFwulJWV4ZdffsGECRMwcuTIgDYm63QuYg1tOPppioqK8OabbyI1NRXtDSppTZ06FampqeW3hvKf7gDe0rNFWq24SmndmiYnkYociuJ5ckqvLz2hZDHja7E8GauF87SpzUY1ZgRWqgCL98Sy0dFULVfWyu+8Q1aPZ5+FT711hHu7YUP1f96ypeJyQszExwPnnw+ce65xQT69OjNGiMm5dWvKGvW1wqo3MZOWBjz4ID1+9FH6vk8/pd+dkUE1WUR6caBiRrsNwRAzclzHww+rj/XS/GXhI4vQPn3oVlpKaez+bIdA7DuD4TCoDBtG+1ZYlQG6YNFD7B+z60atmDl5Us1e1mtT4guxser5MmtWYOsKGHkgCrQKvt7Jc+21VNRL7jlhJmbkk57FjCdPPvkkGjVqhPr16yMnJwetW7fG+eefj27duuFheQTwEUVRMH78ePTo0QNt27b1eO/rr79GUlISqlWrhmnTpmHx4sWoJUZaDQ8++CCysrLKb3vkQh8OYFXMiCsKIWJataL7YIuZ7GzPQUi4Q6x+VhBIpr7Vlgbbt3tepRrVmBFYqTWjtcwIMjPVMUT8F/ffr6ZmW0GIrUaN1OKgem1bhDBJT6eSEMuWGa9TzzID0EXgTz95VpsWE+4FF5Ag81Vw6jWb1DJ2LFkSd++mqrEvvKC+Xq1aYPW65Do+spg5dYoq0gLBEzNyB3a940ium6IVnhMmVHQNi+3wJRBWHBfi/HACYSQ/88yK54hAiC1fxIz4/xo3Dvz3uVzqfC5KFziGXBAo0FozeifPpEnUokC+SDerNXPLLerjSt7OwOeYmZiYGHzwwQd47LHHsG7dOpSVlaFjx45o5k9VLImxY8diw4YN+FnHNNC7d2+sX78eR48exVtvvYWhQ4di1apVyNCpJCXHTYQDVsWMmJiFmAmVZUar9XwRM7L75txz/d8Gb5aZ+vVpEMzPp8la7FNvlhlvVYBLStQJQ2+grlOHLo5efplcBvv3A1dc4e3XqIh926gRZcEsWqRv5bBa/RcwtsxMngy8/TbFr0yaRK/5UqFWDzHJFBeTgJAneEF8PH33Qw8BGzdSpdhq1ajYHGCPZaZWLc+r95UrKcbLSiFAf8WMPFeYiRm9fdu3r2qdEvjjZpJDJkLNX3+RqH73XXpu1tNLiF6zIrTaonl2uZgECQl0Tjje0kAeiAIVM1bbEJhZZsQ64uO9B19GOH4ns5555pk406i9qo+MGzcO8+fPx48//ogGDRpUeD8xMRFNmzZF06ZNcc4556BZs2b43//+hweFjTuM8SZm2ralTsKrVtFzYQUItZipXp0G6/Xr6QpLb+KSURR1Qn3rLVWU+YPc0kAPt5ssC+npnuXTrYoZI8uMLHL0xou6dcm1deQIcPPNRluvT3a2Oo40bKjGGxQVkQVKvhr1RcwYWWb0WhqICSQ7mwZ5X9sJJCTQLS+PRJjRMTFqFHD11WQdKi6mfSkmYDvEjAg2Flh1MYnfAPgeM2NVzOjFiblcFSv2+uNmErUMjQKcg8mSJRSDJTBrUyKOPbPfphXWOTk0B9spZgDgiSeAO+4AHOumI//xgbqZtBWAT5yg1+rV8zRBmYkZeR0lJfbWrwgzLP2y8ePHW17hC8LObAFFUTBu3Dh8/vnnWLZsGZoIW7yFzxlVLQ03hJjZs0e/19LEiTQod+tGV5niuBViZuvW4B6DQsycey4Jp1276Mq3b1/zzxUWqpVlhw0LbBuEZcYsGe7qqyu+5s3N5C1mRrxuVKPGqKWBFWSRmJTk2Y7h7789LVlCzPz5J33n/fcDd9+tv14jy4xeSwMxgdx1Fx1nBQXWmmPK1KpFovHoUaqirkd0NP3GFi0oEFi4pIqK1G3wR8wI4ab9rcJ66IuYseLekSdjb2LGqtVr3Trafn/cTEVFdO+EmBEtDVq1oppBZu0URFSA0TKKUtGS9cgjZM0TvzFQxP6dO5e2xzExc8stdKVy112BWWYUpaJl5pNPgFtvBS69VO2rAlgTM4cPA19+CQwZ4v82hTmWpsh169Z5PF+7di1KS0vR4nQww99//42oqCj8xyhCzIAxY8bgww8/xJdffonk5GQcPD0Sp6amIj4+Hrm5uXjyySdxxRVXoG7dujh27Bhee+017N27F1eJnNwwp1YtGsizsujY1oQDAVCtL3LgeePGqmtlxw79RpV2ILtCatYkMfPTT97FjDjPZH+1v3izzBhRty6ZwxXFPzeTUbyMwKjnkRWE1UhMimecATRoQMkIf/2lL2YKC+m7zIKMfbHMyJaG2rV9FzKAp5ixivgeubeQN0ufHsIyc+oUCcqoKPqvVq6k1+22zMgZU7KB2Fc3k+D994ERIygGc8QI69sBwKPpqhM5DELM7N/vPUBXiFwj77583Snvr6go+xrpylZHq0VKg0L9+mqDukDETE4OynP/xZWAyGTSei+siJmyMrpaqupiZunSpeWPX3jhBSQnJ2P27NmofvosP3HiBG644Qacd955Pn35jBkzAAC9NN0JZ86ciVGjRiEqKgp//fUXZs+ejaNHj6JmzZro0qULfvrpJ7SRZ/4wRqRn//YbnWR6YubPP+levnp3u+mq6PffSewES8yMHEnduxs1IiFTVGTuHxf88gvdx8Wpjfj8RY6ZKSvTX9+RI8C339L2CZfPl1+qE14gbiYjMWOHZUbU7UlMpMrOM2ZUTLeXxQxgnkLtj2UG8L9RobeMJjOEmElK8q9Kq/hvDx0iy/pjjwH9+qn9kkRPPzN8ETNycVV5cpSPIyEyrIiZ/v3p/9qwQV23VTHjclGIQ0mJf006A0X01MrKovPELGxD7AMjq5P8ul3iRYv8fznePVuou+PHve88I8TgFBOj7jS9tGxAHRT0Di75ikJMNJUUn6eh559/HlOnTi0XMgBQvXp1PPHEE3j++ed9WpeiKLq3UaNGAaCiPJ999hn27duHwsJC7N+/H19++SW6mDlwwxCzuJmdO2mCAyp2hg5F3EzTplR47uyzyV00Zw4wYID3zy1aRPf+XO1rEWKmrMw4I2LnTurULHfMEFYIUZxQi1U3UzDEjNYyAxjXyxHCRIxFZmImEMuMP9ghZvxNohBiRrgzV6xQ42W6d7cmon0RM+JCWJtdI46PkhJ1v5vFzAhq1ABuvJEeL1lifTvEd4ll5RT1UCFbW995x3xZMdeeOKFvXRX7KiqK5ubXXiMh+txz9mwr4Lm9jlpmsrOBadPUA8/fuBnZxSQG2UAsM4Ba/6OS4rOYyc7OxiGdymqHDx/GqVOnbNmoyoaZmElNVScdbYdsIWb0apM4zY8/0r0dpQvi4tTz0VvhvP37ye0AeBbM0xNV3iwz2hozWuxwM8kVlcUYpK33KH6PGIusWGZyc9XJV97WU6fUSVC+InbSMuPvMSKEm/idK1ao8TJWjcC+ZBEJUd2hg+frcpE8ccxYjZm5+24SXWIesRozIw+lTogZGYP6pOXIHcH1ltVasX77jWIB7axnKltmjh41L5QZVMrKKCBIHHD+upq0wb+Aat7zV8z8/bd9QUphiM9iZtCgQbjhhhvw6aefYu/evdi7dy8+/fRT3HTTTRg8eHAwtjHiMRMzsvlde0UYbMuMogDTpwOff666OBSFYjpEBWw9jhxRC9jZFZzoLT07LU2dkP/5hzKoxOFmNPkHGjNjp5sJAIS3dvt2TyEiLDNWxIxsgZInxuRkSpF+9VX1NafdTHrjsS/IvzUhgda3fDk9txIvIz4H+JaarRUoLldFYWzFzQSQx0EOU7BqmRH1jNxu52qnvPceicannzZfTt4H+/dXfF+7r+xOywbU/1kIP8esM6mpninQdlhmABqYjcSMWZ0ZcRIKn6W/JZIfeohUfjh0fDXAZzHz+uuv49JLL8V1112Hxo0bo3Hjxrj22mtxySWX4LXXXgvGNkY8ZmJGrmqr7ags0rS3bPGc/Ozi+HGqditr0Fdfpe996CHjzy1apAapGtQu9BlvhfMATzfN9u3GrQwE3txMVmNmjh/3DGK0gp6bSQRSlpaqFmPAM/7F7TYvIiZPHPLnXC5ywd1xhzq2RbqbKTpa/b2ikOmJE2QJsDoR+iJmxLGn5zryV8wAwL33qo/lEAYzxBzoZCbtddeRBdZb2QV5H+hV8Jf3VV6eaqUKhpgRF0WBlnjxG5fLnloz2iuB7GxVrGiLK1mpMyP+RH/iZkpKqAnbH38AL77o++dDhM9iJiEhAa+99hqOHTuGdevW4ffff8fx48fx2muv+dRUqyohxMz+/RWPN9nqonVnnHEGCer8fP3KsYEihH5Ghnr1d845dP/LL8YC6ttv1cf+ZKno4c0yA6iVgLdu9Z6WDVh3MxmJmerV1YssX3pWlZWpYkW2zMiBnPIFkhAl7dpRir5ZLIjbbT52CRRFFTPDh/s/cTgpZgD1SlsOnO/a1bq1whcx87//0b3ef20kZqz0Izv7bGqICXi6j8wQ1sAwqv9piLwPZJEukPfV77+TmK9Tx94sLfE/9+tHWciBlosICDuqAGur/yoK8N//Uuq3NkDQipupdWvgssuMBzszZN+hKN0chvidh5KYmIh27dqhffv2LGK8UKOGerWtjbSXhbJWzERHqxO4N1eTogDPPONbbxI960GHDnRunDypL+JLS9XgX8C+CtlW0rNly4y3gnmAZ88YPWHmLWbG5VIvaHxxNR0+TK5pl8uzyJ9cp0WOgxJiZsYMaxWYjTKa9u6lK+nt2z1d4zNmqNmivuK0mBHjtjgPAOsuJsA3MSOOB73t1YoZX6srC1eN1d5eouN6sLJ/7ETeRr3uMfK+EsVBzznHnuQBgfif4+KoYKOd6/YZO/ozad1MaWnAk08Cb7xRcVkrYub664GvvvJec0MPkboKUOOxMCXApFrGKkauJjPLDGA9bmbBAuCBB6ihoFWXiNwIURAdrdZA0ZtYjx+ngUhMMnZbZqy4maxaZuSLGj3zvjfLDOCfmBHbVq8eZW8I6tVTY6Tk0k2+VACWl9OOXY8/TsXC3n/fM57G327mgPNiRlhm5F5ZvvQBE5NccbGaFaWHoqgBqXquU63l0Bc3E6D2BbQaMyP2t9Vjwklk65G3mBkhZs4+295tMAsbCTnygLR7t39Bt74EnFmtAOwvQsw89phnKe4wg8VMiPAmZs46Sz+Y1qqYeftt9Xus1n3REzOAmimiJ2bS06n45LXX0nO7xIwVy0yPHuTimjvX05xtJGZiY9VBTs/V5C1mBlD/E18ymvQsXgAJGTFRylYvX8WMkWVG7IeDBz3jZQJJYBDbe+yY73FbdoqZQ4dofS6Xf2IGMM8kOnKErI6AvpgJJGZG3o68PE+rohHiPLDr/AomoiYOoC/65X3VrBm5DAPp5aaHfJ6PHw9cc4296/cJ4WaKjqaTxp8YAa1lZvdusvLoXalaqTOTlkaK/dAhc1VvtC2+nngOwGImROiJmdxcKlQHUB2K0aMrfs6KmNm9G5g/nx5/8YWnNcAMK2LGyCwuJtJQWmZq1QIuvpiuBMXEA5gHt5plNFmxzPiT0aSXySQQxchEd+uyMvWC6pxzACulmowsM8KKdOiQp5hJSfHsNu4LQmSWlfme7hpoajagihkRp9WunW/iKC5OdTmYWUVkS5+eqAwkZgZQRU9JCf0Gb+4mK0I7nBC/b8KEiu/JYubJJ6khqd3tBoSYKSykMi9z5hjHygWdsWPpasVbYz4ztBaVxx4j896zz1Zc1oplJi2NMjvq1PE9CPjbb0ld9+hBA7TcSiGMYDETIsRxLQd+/vUX3aenG2cFyWLGaAB8/XWabC64oGLhPTOMxMzZZ9NFxb59qtgCKHhRXGQIk3woLTOC3FzaRmGBsiJm9AY2bzEzgH9uJr0aM4IbbqD7o0fJYiJPsEeOWLN+eLPMaMVMzZr+Z8XExqr/sa+uJjss3EJYiKJzZ55JE5VVXC5rcTOymNGztgQaMyNbiLKyvFtnxH9sltkWTojt1Ytn8tWKFcj3FxWpFyCOVQJu0IAG4q5d6fk33/i+Dm0AsFHBPMBYzMj+9dRU1WLkT/G8tDRSinXrUilzveAoh2ExEyL0RLq2jYGeWGnalCainBz9TIGCAqq5AgADBwLvvgvMm2dtm156Cfj444oDUEIC8MILFC8mC4UvvqDYhaFD7RczViwzANUZ+eADYNIkdeI3EzNG6dmypcFuN5ORSASoT1xSEv3X27cbCxIzvFUB1rqZ/K0xI/A3bsZON5OYED/7DLjpJt8s5VaaPPoqZnydoGULEeC9EJ0olyAseeGOWUsD8Zqi+O7hsIosWAMxiNjKddfR/Zw5vtd20Jo1zcSMUcBQbq5qwk5LU1MCfREz8qSUnAyI/osLF1pfR4hgMRMixAl2+LAqBITrqHFjOkarV68oaGJj1c/quZrmzqVJpmFDmnSuv96aqwKguidDh+qfH+PGUSaffEW5YIH6W4IlZrxZZr74giyuoqhYXJz5NhhZZrKz1X1tt5vJzDLjcnlmZQkxI6xMVoSHt/5Mhw55Tir+1pgRhIOYEaSm0oTlTQzIWLHMnHmm+l/bXWcGoP9dXtasKCWgpnBHQswMoO6z776rGCIi9tWKFfR7vvzS/u+X/2NRSd0xMXPiBA1SCxdS1P/x4+rgaRWtWdOqZUaeQLT9nYSYWbvW+nb06EFxBxs30vNLLqF7FjNVl5QUzwq2gCpO2rcnl05WVsUJCvAsnqelSxeKtbnnHtXCIxfisws5JfuSS5xzMwkhIPZFnTrmaZhGMTPiebVq5nEPgbiZ9CwzJSXkVgQ8xYzAF8uM0Wdzcz3FW2WwzAAk+rt1o8crVlhfhxUx07+/2rjSF8uML5li8oWBNzEjzi+nWxlYReyzKVNUl6BA7KujR8li2KSJ/d+vZ5lxzM1UVEQVLF94gYo8AWQy9wXZMnPqlPrcTMyUlnpG+8uuKpcLuPBCer58ubXqjadOUYv6n39WB+iLL6b7778PnpnNT1jMhBCt+VOImY4d1QnK1/TsVq2AN98kMSPWf/y494nn33+Bl1+mKykjFi2iSsBHj1JK5YkTdF6cc4462NpVZ0ZYZk6c8Azu1SLqjYhsQW+Tv5GbyUq8DKBerR86ZC2epbBQ/Q/1LDP5+aoo3LRJFSRWXGYCIxd5UhJNJq+95mnVDlTMiHHMCTEjB+Oed54qZn791fo6rNaaMbO2BBozI28HYG5Z+vln1XoRKZYZsyrAYr8WF9Ox26aN/d8fVm6mWrVIPCgKcOml9No33/h2AsmWGbFDU1P11a1c500eFLTWnRYtaMIoLrYWx7NqFQ1MmZlqwaz//IcGhOxsEjphBIuZECKfZPn5aj2l1q3NmxpaTc9OSFAnUG8tOH77DbjrLs8u1FrGj6cq1j/9pGaT9O1LMTxiorLbzWRUE0YgLDMCb5O/kZvJSiaTvP6SEu/xPIA67lSrph/UnZys7jNZzAiE1cYMI8uMy0U97m6/3fN1J9xMhYWqoLLLMtOjh5rS64uYsdJscv9+9X1vYkZR/AtqlZf95x/jmij79jnbMdsfZAuVttaMHL/VpYtnPzq7kMNGhJvJn55qtiDXYKhRg8pvFxdTgKIVCgvVnZaWZtyTSRATo6awygeVXjrhwIF0//nn3rdDXDHKKdlRUWrhPbkUfBjAYiaEyGJm61YaFGvUoCtnq2JGuESPHAFuvJFEiYxcWM4Ms/RhgZyiLY7b/v3pXBPWTLvETEyMOnCbiQZtWxKrYkbrZrIqZmJi1HHJyuAoB/8aub/EPt+xQxUkqak0UVtJq7fSzkCMhfXq0QQSCP6IGVmQBjIha8VM164UX/Tvv/p9gPTwZpkpLaX/RFhLzGJmSkpov/sjZsR29OlDFxFGVnpR/ReITMuMVszI8Vt2F8sTiHPi5Ekaq/bs8czEDDliYDp8GBg5kh5bdTWJk8flogOgYUMykY8aZfwZvVoz2owogPo8jBlDQZHe0BMzgBo3w2Km6iKLGTmTSS6brydmmjenAfzECbVvzNtvAzNnVrwKl/sXmWEW1yEQYubTT9WYsYsvVl1MgL0VSq3EzbhclM3UuTM999cy40sdD18ymsyCfwUiNuPkSXXg797durXByDIDUJzg8uVqEGbHjv5VMJfxR8yI/ZuSEtiVuBAz1auThTw5WW06aTVuxpuYOXjQ07WpJ1ASE9X09hMnAouZueMOEjNGLs5IFzNGbiYgeGKmQQO60FIU4MEHyQDhLS4pqAjf7qFDVMEvKgpYvVqtx2GGOHmSk2ngb9kSeOIJ/SI+Ar0rHD0x0749MH06cP755ttQWqq6kbRi5uKLaQL66isvPyS0sJgJIbKYES4jYXUxEzPx8Wpfn82b6erw9dfp+dixnstaFTNm6cMCIWb27CHh9OijJB6EmElKstdkbDU9e/hwcuMCgcfM+CJmfLXMGCH3Gfr9d7r3RRSaWWaeeIL6MInqzYG0MhDIVYCtYke8DECWmIYNgdtuUzO+/u//SPhdfrm1dXgTM+I/E+vXEzMul6cwDiRmxlvsjixmKoObSW6uGSwx43ZTLbf//Y/O+bVr6YLnv//1dHOFDNkyk5GhBs6+9573zwp3lNYMbYaZmPHnJNy4kf64lJSKQU7p6VQfwcjt5RAsZkKI8OUeO6Za8MRx0qYNiQej40N2NX39NVkAatas2B32iivI+vfSS+bbYmXSbdRItTA0aABMnkyP7c5kEvhSOE9YqAJ1M1mpTmsmNLVYsczIDSeFxcsXMWNmmRHbKn5fVJT15oZGBOJmClTM1KtH+/Spp9TX+vQhl5xdnbO19b+MBIosZgKJmcnNpd8k9++TOXJEfRyJlhmtpUvs9/PO82y8ajcuF7net2yhJIXSUmDqVDJG/Phj8L5XF9kyA6iupvffN88k2LqVrkgACoADKLhuxw7zviR6tWaMSnCXlZH59oEHjEuDKwpNJpddFpwgpyDAYiaEJCWpV/k//0z3QqTcdhudcFq3kUAWM9On0+PRoyteeTduTBcBZpMpYE3MAPp9moIlZqxaZgDfxUw4WWb0umd/9JHaWdkbZpYZ+YIQoDpEgTbfc1LM2IFVMSNEn5E1K1AxI7Zjxw46T4VbRIs4toHIscyI/XDhhWRYkOdrMV/edVdotqVOHTXOtVo1Sobo2ZPGWCsZybYwfjwN1v/9Lz2//HI6GXbvNlZWikJVNYuKKC5FXKleey0VQlq61Pj7rLqZAFJ5gwYBzzxjrKg7dqSUug8+0H8/P5+umK+6yjz9NISwmAkxwtUk/n+r7QfEcmvWAD/8QGbV227zbxuKi9WJ2ZuY6diR7mXTcbDFjJ2WGdnNpFdPyoqY8aXWjBXLTNu2NJEB6nGQn2+9kaMVy4zY1ujowOOahJg5ccJ6j6dgi5kvvqDYE7n7uBHexIz4z8Tx4c0yc/SoGrzrT8xMcjIVw8zO1u9BKM4DsWwkIPZDmzbAlVd6BrKHop2BFmEFb9NG7Xn3xhvWE4oCplEjCvISg2R8PFUoBYwDgWfOJItJQgLVVxAZBGYF8wS+iJmYGNVHayWrSY+YGIo7kAMqHYbFTIgRYgaggV7bKdtoQhNiRlSivvxy41LnixaRS8hooHe7KeZg7lzvNUhuvJGutjp0UF9z2s1UUKBOllYtMyILReCPZcYuN1OtWsAtt1R83WoKtRXLjJi45dom/iKnzVtt3hdsMfPuu8CMGVS7yxt2u5lkUeuPm6mwUD2f9YJUX3lFXd5q01inEb9NG58iGjUD1t2CdiDG2R07qA7X0qXUXeCmm0K3DRUQrqZPPql4MB4+rAb4PvaYGhSYl6cOiL6KGbOTcNAguv/884rmQdGEz8w/HR1N/l4gbKoBs5gJMbKYEZlMAB3L9evTVbSeoBEZMAUF5HfWBv7KvP02FU9btkz//ago8ilfdZUa9GhE9eo0YYwZo74WrInKqptJuFBiY73HvCQkqBOCHDfjS8yMVTdTVpYq9LxZvLT1cgDrYsbMMqNdhx1X9tHRnlYJKwRbzPhSPM+bmLngAnVsB7y7mfwVM/J2iIwsPTETadV/AXU/HDxIveFE9fu9e1XDgrexxk6EZebECdICvXpR7G3Iwj+OHKFBWLiZAMoKatKETlzRj0Vwzz20sR07evrjxM5LSjK/evTFMgNQimN8PF19rV/v+d6CBSSmhPnYiDBL0WYxE2K0YkaQlkaunPx8fctEYqJqiXn/fbUytR5WM5r8xWnLjLjSy8gwb2UA0Pt6GU2+WGasupnEFX6NGp5FOfVQlIrb7o9lRnvxFAwxA/geN2MUe2gXspjxFuDsTcyMGQO8+CI91jaElBHHinC5xsb6NkHLDS/bt6fHemIm0voyAaoA3LSJ3Exz59LzVavUZayca3aRkKAmAzlSCTgvj8zjzz+vHqAul37NmYULgQ8/pIPprbc8W9zLLiazwc5qnRlBQoKaYaV1NYk4Gnmy0qNfP7pfvdq3VMcgwWImxMjHh5zxFhurTuZG7gwhfv7+2/y49iZmli2jVgbagntWcToAWOwfITK8oRcE7E+dmZwcfWuIwGpQNQC8+qp3IWKEsMyUlVU06yclAY8/rk6cdv1HvoqZQLJCrdCpE50zhw+rlbSNsNI120pch1bM+Jr2LlciNhIzGzeqoRWRaJkRVlCxj2QxE8qYGcDhhpPCf19U5FmYS3TSXryYdlJurpr1cffdaldqgRAz3gYVf1KzZVeTjFGxPC0NGlAAYFmZNX9vkGExE2LOPFN9rA3+NUsBfvdd9SrQW1sDb2Jm3jyyZM6b53179QgXy4zVyV+bni3HflgRM8nJ6lhhFjdjJV5GIGc0Caz2UDJqxSJ4+GFVgNl1NeyvZSZYYqZaNXXc91Y8z8wyU1BAIlRYQ3wRM75Oznpupu3bPeuwHDigrj+SLDNiX4gxKhzETLNmtM9DlsEkEx+vqlE5Pa1pUzIrlpWRNWbyZCpV3KgRuaW0WAn+BcxjZozMo5ddRlagEyfUATEnR1XY3sQMoFp3wiBuhsVMiElIoBoZKSlqFVuBkZjJyQHuvVftDabXPVtGxGMcOOB5USDwxYKgh9OWGX/FjDhf8/LUbBSrbhAhDsx6XvmyX7ViplUr61f6UVHqskaWIvHf6MXm+EO4iRnAetyMmZhZvZrmkSFD6LkVMSPOT3/FTE4O1R179NGKcRyRWP0XqHjs7ttH55hs/Q21mHnpJdrXcrxfSBEDlCxmANXV9OKLwLRp9HjGDP20w/POo1YGl11m/l3aOjMFBWpzNKNBrnp1MgXu3q0e3KtWqf09rBTFu+QSMpGGQQdtFjMOsGwZBYsLS4TASMy8+ipNIsIH7K21fVqaepWvN/la6ctkRrAtM1lZ5inAvooZbcyMXFDOatqyaAnwzjvGywRimTEq52CEWUbT3r2qG/Kcc3xbrxHhKGZE00m99GYZs0aTcpwTYC4oxXgv0ul9nZzF+SuOk8mTyesgZ5xFYvVfQN0XwnW6fz/Fz8iuvVCLmYQE7zF1QUUMUNpgu6FDSQDs20cH07BhxsG2551HRfQGDzb/Lu2AIMzQbrf5INeypWfgl1UXk+D88+nq8/33rS0fRFjMOIBRFo6emDl1isq3A8DEiXT/77/mxSABc1dTuFpm5H2irdgrE6ibSY6XsTrYCbf2F18YNzj0RSQ2aeL53NeJyyyj6amn1DYJdrQzAMJTzFx8MU2awmJphJllRitmrFhmBL7uWxEvt22bcQmGSLXMiP0mftexYxVrw4VazDiOMItq4wKqV6fqugANeiL6PBCMxExKirUo9dJSsuT4KmbsKGRlEyxmwog2bUjoyvVjXnmFBoZmzahIWHw8DRjerkanTychI4IJBfn5arn0cBMz0dHq5GfmagrUzeRLvIygbVv6b0pLKeFADyvNOwUpKZ7F0XwdD8wsM3JgtF21PcJRzCQmetZp2rpVvxipFTEjhLTZhCv/X96W1aNxYzrGCwpIhOXlAUuWUPVngdzKIJIsM0LYFRaqx9zZZ1PtN4ACg0NdFb+sjDKr2rVzKNlGRHmLPHWZhx6i4l0zZ5pnMvzyC0W4e6uyqx0QfEknfOYZ2oZZs6jmx913m6fLhiksZsKIG26gApCiO3t2NvDcc/T40UdpQBABxN5cTe3a0YWBtuiWiCdLSPA/ODSYE5WVIGC73Ey+pg3fcQfdv/lmRRdxWZnv7juRbSHW6QtmlhnZfenNgmcVX8SMogQ/NVvL33+TS23QIM+AWsCamJELtRqhPV98FTPR0apF7p9/gJ07ac645RbVohHplpmCAgr/+PRTSnAQddXsshD6gttNjZ83bnQoo2nYMPK1zZlT8b0OHaiqqei7oEd+PtCjBw363qKYjSwzVk/Ao0cpq+nyyymORxQ2iyBYzIQxL79ME2/LlsDVV9NrYgLcvt2/dcouJn/9ycGyzADeg4Dz81WrlNWmdXZYZgCaKGvXJhf4l196vnf4MAkct9v6dj38cMWrfauYWWZkq7LVDClv+CJmCgpUERWq3kx//UXHxldfkYVctlzKYkabDi/OB2EFMZt0ExM9S4D44zYR5++2beQKjo0lQbpzJ71es6Zn24NIQRYzN9xAAdUpKc60MpARrj1HxEydOmRu97eMs/Bnx8d7H6y0dWZ8ETMiRXvJEodSv+yBxUwYIq7Sunenq81HHlFNtPJgaEZuLsWN3XCDp3++a1dKZX3jDf+3L5hixptlZtEiGiAbNrSeqaONmfFXzMTGqn1ehPlcIFxM9ep5TnhmXH45XXgB1q1MAjPLjAg0BexpZwD4JmbEeOhyhc6dfsUVZNWsXZuuxMVxDqj7oLS0okVNiBmxjNmk63J5HjP+WBvkyTU6Wq01tWED3c+aRU0RgciyzIh9IcTL+vXUOHXNGnrutJjxNl6GJXKNGW9XnkZuJitXE82bUzplcTEFZhpVlwxzWMyEESdP0mQYF0fHVe/elHYqrDKAdTdTbCyVLZg1yzNgNSmJBJIYMH2lqEgt1OaEZebTT+n+yiutW5a0biZfCuZpueUWsnwsXeqZIu9vhphwK/hqQTGzzFx2mRq3YHcAcHa2d9eVGEetxh7axdln0+TZvj3t1169KMlCFnTyOK0oJE6HD1cnW2+TrnzMBGqZAfSL50ViBWCxL4qK6LfdcAPw4INUSkV+P9Q4WjgPIBPu9derA5cvWK0xAwTuZhLWmbfeMu6kHeawmAkjUlIoALCkRJ3kXC7PSduqmykmRk3/tbOtgRyPEAwzuJllprAQmD+fHl95pfV1GrmZ/InnaNhQTUSYMUN93ZfgX0FODvn0AXstM263asmzS8ykpanCxFswZSiCf41o2BD4+WcKRSgqAkaMoGwnsT9kMeNyAVOneqbFB1vMaN0eemImknszAdTKQLT7Eb/XacuMY2Jm9WqqeLp4se+fFVdIVsSMts6Mr2JGDGoAXRVEICxmwgi3W53Ubr1VPz1ZiBkrAe566dn/+x/F4uza5d82ioE2IcG6O8UXzCwz331HYqp+fd/qp9jlZhKIQODZs1Ux4Y9lRhZs6em+bYOZZUZRVOuZXZOI260KTW+uJifFDEBCb9484LbbKJvv3HO992cS+8ub+LPLMrN9O7l/hZjZsIEE8ZlnqudrJFlm5P0mx4GJ5s/hIGa89fAKCmYdRb3hj2UmP58OLF/7iXTtCrzwAgmvSDrwJFjMhBkiVuybbygeS0vDhrRMUZF6rBuhJ2amTaNWBmaVbM0IZrwMYG6ZEZbaIUN8c1+ICSgvj/ZboGLmwgtpUsrOVs3o/lhm6tdXf4eV8UpGWGbkflOCkhI1TsrOLJJIETMA7ddXXwU+/pjiMPXEzJEj9L+VlFgPVA00ZiYzky4C8vMpPVuImR07aMLdsUON64kky0x0tHpxI6dgi6xjp8TMmWfSdzdooC/8g46cnu3t6lOLP2IGoIPc13RCl4s6d48Y4dMmhhMsZsIMeaLQy9qLilLTO73FzeiJmXAtmCcQV3VaMVNUpGYQ+eJiAmhbhavuxInAYmYAmihFET3RMNIfy0xUFKWZHzzo+2AvYljefJNKQ8htK+Sqq3aKGatBwKFOyzZCFrx6zSZnzKDaL7fd5p+Y8WeCjo5WrRXbttHxPns2uRuFlU8I0Ui7QBb7o2tXMkiMHet/tWQ7tyknhzKkHant1qwZbURenveOqFquv55SHq2YoeUdnJvru5upEsBiJsx4/nk6/pYsMbY+WI2b0YqZ7Gx10vNXzAT7qtvIzfTDD/TddeqoPXms4nar23vyZGAxM4JRo0gobNhAWTP+WGYAEgi+xssAwM0301inKCSoWrUCPvvM08UE2Fc0T2wr4F3MBLtjtq8cPaoeT7LrVhb2oRIzQMU4jpEjKUxBa2WLVDHjdpNX5ZVXnE/NFtvjGFFRVHET8N3VNHgw8PjjQMeO3pd1uz3jZljMME5zyy1klejd23gZq+nZQszs20fBs3K1U3+vUpxyM33yCd0PGeJfJVE5CDhQNxNAouuaa+jxtGlqCwp/+135SlISZap9/z0dD/v3074ZOFCdJOPi7O1N46tlJlzEjHDrAFRwVSCLmVDFzADG569cMA8ImyrxltGmZ8uPnSiaFzboRXkHA7nWTLhdUYQAFjNhiLcJyGp6dno68OefZGaNiwu8wSQQOjeTbJkpLqaeSIDvLiaBnJ5th5gB1EBgEcsTH1+xeWiwufBCsg499BBN2vPnq0LY7qvhSBUzaWmqNeTTT9Xq8oFaZvydoLWWmaNHyV14//3qMomJoS//Hyhy4TxBOFhm5s8HOnVSa0SFnHbtaFCXe1V4IzubCieJaopWkLMCwsXXG0JYzEQgVt1MLheVFI+LowqpIq3ZXxcTEDrLzKlTaiDk0qUkQNLTqYmsP4hJ6NAhdYANVMx07gx06aI+D6SqciDEx1OBxHXrKHNH7De7r4YjVcwAqoAvLSUXXWmpc24mrWXmyBHKXpSJpOBfgdgfsmXG7qw6fygro3Nj3TqHNmDUKBrQXn/d+mfWr6dCSX37Wv+MLGbYzcREAvJgaDXd8Oqr1boo4SxmUlNVQSBcTcLFNHiw/1erYhKSL3Ts+A3COgOEzsVkRNu2VGNlxgyycPXqZe/6RWaKEAFGhKOYEeEE1apR6Y+nnlJrJsliJhRuJm337GbNKn5vpMXLAOZuJifFjLy/HUnPTk72zDaygi+ZTAJxkGdlqalbLGaYcCYzk+K98vLUWA0jVqwArrtOddfefjulZvtLsMVMVJQ6YRw/Tmmzn39Oz6+6yv/1inNaiJnUVHvM+MOGqdsbiEi0C7ebsnOOHFHTxu2idWu637TJfFIIZzFz6aV0/8gjdF+9Os0zVi0IdoiZxo3p2MvPpz5f0dFqjOiDD9J9JIqZcHUzieKhWVnWu747jj9iRgim/fvV1yLxQPITFjMRSGysagXw5mrav9+zwumhQ4E1RA22mAE842aWL6f7mjX9b8EAqJOQyI4M1MUkiI+nFFSAUlLDBbfbfpdXq1Y0CZ844TleaglHd70QM2edpboqe/akgHsgtDEzMTGe3bMBNUb0r7/ovrK4mcJBzMTH039+8cUO1ZoBqBle9+7A229bW17uy2QVIWZE/5qkpOBUNg1TWMxEKL5mNAlE4zd/CYWYkTOahItp0KDAzkutm8kuMQMAkycDa9dSLEZlplo11WQvgmj1CGfLTEEBWayys4Fly6gZIhDamBmg4vkrCsUKsR2JF9Th6mYCgB9/BL79Vq3xE3L27qVGe6J/iZXlAf8sM0LMhNPVRAhgMROhWBUzIvNJsGePbwHyWuQmgsFCWGaOHKHaKYD/WUwCMQkJi4KdYsbtpmyJqnARdNZZdG8mZsIxK1SuANygQUXLh9WYmaQk1T0ZyAStzWgSrhDhDo5ky0y4uZnCAl/Ts33pyyTQuplYzDCRgBAp3txM8fEVJ1nRBM4fhGUmmBOVEDNffEGCpnp14IILAlun9ryuYue5bQgLwoYN+u8rSnhbZrz1ZvI26bpcZO2MjqYO9/6ivRg57zxyP4ljPxItM+HqZgoLhJjZtIkCAb1hR8xMOJ2AIYDFTIRi1TJz8mTFc8cOMRMKN9OCBXQ/cKDas8pftJYYOy0zVQlvlpn8fPV4C6ex1JuY8WXS/e47citmZPi/PVrLTGoqBQNffTU9j0TLDBfNM+HMM+kgLCjwPmgDwGOPAZMmqSY7K1RxN1MVMIxXToSYEd1gjYI9f/+94mu//eb/94YyAFj0qAnUxQSwmLELIWa2bKF6NlqRKawybnd4VbA1EzOlpdT7C7AmZurXp1sgaMsruFwk4oWFKJItM+xm0sHtppNn1SpyNXnLwvCnwp8QM+EYgR8C2DITocjphnodpgV6wmXNGv/rLYTSMgPQFWufPoGvU3tes5jxj8xMGjOLilSrgowcU+VEAUEjzMSMPPmGyoKQmammZ8uZYaL2TSSLmXArmhc2BLutgTjIBeFkGg0BLGYilIQE1WdvFjcjxIxoziiqaovGiL5QUqJOBqGwzADAgAGUih4oWvFSxS5abMPtVmui6LmawjFeBtDvmi2QxUyoJt2YGM/u2QJxsVDZ3EwsZkBipkED8+6vigLcdx9Vv/T1ilNbmK+KDXIsZiIYK3Eza9fSvRhohADyJ0VbXDUCwR1sZcuMHS4mgC0zdmIWBByuFm4xmepZZsSEGxMT2n5I2rgZIDSWz2DBAcBeuP12ylJ69FHjZX75Bfi//6M2BuJksgqLGSZS8SZmjh9X61aIQUW4av0RM2KgrVbNHmuJEXXr0n1yMnDRRfasMzbW0wrLYsZ/zIKAwzEtGzB3Mzk14eqdv+KCIRItMxwz4wUrftdXX6X7a6/1XYxUcTHDAcARjLf0bGGVOfNMqtfy779Ut+mHH/wTM6GoMQPQlf+0aVQ+384YhurV1cmMxYz/mImZcHczmYmZUGfcVDbLDLuZfKC0tKIZ8MABausOAGPG+L5OrZgJt5MwyLBlJoLxZpkRYqZzZ2oSePbZar2WtWvVbCGrhKLGjODuu31rGGsFWcBUsYsWWxFiZtcuT9cjEJlixqkgVTPLTCSKGa2bqbRU7eDOYuY0U6YAtWsDr7xS8b0336TAxO7dgQ4dfF93FbfMsJiJYLyJGRH8+5//qK+1aUMDS3a2fjaKGZF81Qh4nttsmfGfmjXV2KtNmzzfi0Qx45T1QNvNWVEiOwBY62aSLTQsZk6jKMDhwxUzmoqKgNdfp8ei2ZuvsJhhIhXhZjp8uOIVMqCKmc6d1deio4GOHemxr66mSBczsoBhMRMYwjqjDQKOBDGjTRJxSsyI9Oy8PErPLiggawYQmeeY1s0ki5kqXzRPYBQ9//nnwMGDZEIfPNi/dbOYYSKV1FSgVi16rI2bOXqUYmQA6hsk06UL3VdVMZOYGHhF4aqOUdxMuIsZRQEKCz3fcypmRpueLc4voOK8FAlo3UziPjaWUvoZqLVm/vzTszS7203Fw2691f/sCq4zw0QyRq4mES/TrFnFY7qqi5kqdsESFLyJmXDbx7LVRetqcrKwmxwELLuYInHy17qZuGCeDk2aUGnswkJg61b19auuooPg/vv9XzcHADORjBAzWsuMnotJIMTMunVqgJ4VIl3MiAmWXUyBI4sZ2W0TrpaZmBjVGqcVM05m3MgXI5Ec/AsYu5lYzEi43cauJrc7sJ0li5lq1aqcb4/FTIQj4maMLDN6YqZpUxowCwrI2mmVSBczQsSwmAmcVq0o3uPECbWvHRC+dWYA4yBgJyddI8tMJGLkZmIxo0Fua3D8OPD++xV9n/4QG0tBkUD4mUZDgKNiZurUqejSpQuSk5ORkZGBgQMHYqtkeisuLsb999+Ps846C4mJiahXrx5GjhyJ/XIzkyqOkZvJzDLjdquv+9J0MlR1ZoJFixae94z/VKsGNG9Oj2VXU7haZgDvYsaJC9nKZJmR3UyKwmLGkHPPBXr1ohiZmTOBESOA/v3tWbewzoTjCRhkHBUzy5cvx5gxY7By5UosXrwYJSUl6Nu3L3JzcwEAeXl5+P333zFp0iT8/vvv+Oyzz/D333/jiiuucHKzwwo9MXP4MFXNdrnUzCUt/sTNhLLOTDDo14+a1r74otNbUjnQi5uJRDETDjEz27ap+y5SLTNCDJaVkfuaxYwBI0YAS5cCN98MvPYavXb11fasW4iZKmiZcbQC8MKFCz2ez5w5ExkZGVi7di3OP/98pKamYvHixR7LvPLKK+jatSt2796NRo0ahXJzwxIhZvbupcEjPl51MbVoYTwwBiJmIvXK0eUCunZ1eisqD2edBcydq4oZRYkMMaNtNunkpCunZwujdKSeX/L+y89nMeOVhQup30xaGjB8uD3rrMJiJqxiZrJOj4Q15LbJOsu4XC6kGfxZhYWFyM7O9rhVZmrWVAe/nTvp3szFJBBiZuNGz14qZkS6mGHsRWuZyctT66SEo5gxajbp5KQrp2f//jvdR+r5JTeDLihgMeOVJ5+k+xtvtC8Xn91MzqMoCsaPH48ePXqgbdu2ussUFBTggQcewPDhw5FicMZPnToVqamp5beGDRsGc7Mdx+Wq6GrSq/yrpWFDICODSh2sX2/tu1jMMDIiKWPzZnIrCKtMVFR41kkJx5gZQD1/hZiJVDeTy+WZ0eT0fg1r+vShRnkAddO2C3GQs2XGOcaOHYsNGzbgo48+0n2/uLgYV199NcrKyvCa8DPq8OCDDyIrK6v8tmfPnmBtctigTc82y2QSuFy+u5pYzDAyjRtTyYziYuDvvz1dTFYaBIeacIyZAdS4mYMH6T6Szy85o8np/RrWnHMO3WdmqgO4HbCbyVnGjRuH+fPnY+nSpWjQoEGF94uLizF06FDs3LkTixcvNrTKAEBcXBxSUlI8bpUdOT37wAFKlXW7vfcqYzHDBILbDQgj6saN4Z2WDYRnajZQcS6LVMsM4JnR5PR+DWsefBB49llg5Up718tixhkURcHYsWPx2WefYcmSJWjSpEmFZYSQ+eeff/D999+jZs2aDmxpeCO7mYRVpmVLumo2w5f07NJSICeHHrOYYQRy3Ew4B/8C4StmhGVGEMnnl56bicWMDomJwMSJ1EHbTsTVhTgxqxCOZjONGTMGH374Ib788kskJyfj4Gk7a2pqKuLj41FSUoIrr7wSv//+O77++muUlpaWL1OjRg3E+tvDopIhu5msuJgEwjLz119U48LsilBuZBnJgy1jLyJuZuNG9XGkihmnY2YElcEyw2LGIaZMoZTvxo2d3pKQ46hlZsaMGcjKykKvXr1Qt27d8tvHH38MANi7dy/mz5+PvXv3okOHDh7L/CqCp5jywXDXLmDFCnpsRcxkZACNGlFKrRBBRggXU2ysZ9YCU7WRu2dHqmXG6dgOkZ4tiOSLBXYzOYzbXSWFDOCwZUaRm7rokJmZ6XUZBqhblwaM/HxgyRJ6zYqYAcg6s3s3xc306mW8XKQXzGOCgxAz//5LhRqB8D1GwtXNFBtL88+OHfS8MogZtswwoSYsAoCZwHC51CDg4mIS56L9hzesBgFz8C+jR40aQL169FgYS8M19jBcxQzgGTcTyW4mjplhnILFTCVB9ru3aaMO3N5gMcMEirDOiMSMSLPMCDeTk/VQ5PM3ks8xdjMxTsFippIgLDOAdRcToBbW27ULOHLEeDkWM4wRIvBXiIRIEzPhMOlWFsuMnpuJi+YxoYDFTCVBvrIzq/yrJTVV7X5sFgTMYoYxQpsFymLGdyqLZUZ2MzkdWM1ULVjMVBLkwdAXywyguppWrzZehsUMYwSLmcARFxTR0dZdxOEIu5kYp3A0m4mxjxYt6D42VjX7W+Xss4EPPgBWrTJeRqTdsphhtLRqRanF4dxkEvB0gQgUJXxiZiZMoBpq4dgKwiqczcQ4BYuZSkLDhsCrrwLp6b4PHqJNyMqVNLjrDaZsmWGMiIsjy8KWLfQ8XMWMnmWmsFB97OSk63IB//d/zn2/XXA2E+MULGYqEXfc4d/n2renQej4cWqJoC2vDnCdGcacdu1UMRNJqdmylYYn3cBhywzjFBwzwyA2Vg0aFhWEtbBlhjFDjpsJV8FrJmaiooCYmNBvU2WDY2YYp2AxwwDwdDXpwWKGMSNSxUw4xMtUJtjNxDgFixkGAIsZJjA6dqT75OTwnbyEmMnPB8rK1MdA+G5zpMF1Zhin4JgZBoAqZjZsAHJzqUO9DIsZxoyGDSkjrnr18M3GkVOeCwroOYsZexH78dQpNbuN9y0TCtgywwAAGjSgW2kp8NtvFd9nMcN4Y/hw4JJLnN4KY+RJVbiaWMzYi7DCnDihvsb7lgkFLGaYcsxcTVxnhol0oqIojRxQxQzHzNiLEC6ymOF9y4QCFjNMOUZipqyMzMYAixkmstEGAbNlxl7Efjx+nO6rVQtftyNTuWAxw5SjLZ4nyMlRH4drpgrDWIHFTHARVhixf3m/MqGCxQxTTqdO1Bvm4EHg33/V10W8TEyMaqZnmEiExUxw0e5H3q9MqGAxw5QTH6+m2MquJjn4l03GTCSjFTMcM2MvLGYYp2Axw3igFzfDmUxMZUHbbJItM/aiFYW8X5lQwWKG8YDFDFOZYTdTcNHuR7Z4MaGCxQzjgRAzv/+umuBZzDCVBRYzwYXdTIxTsJhhPGjSBMjIAIqLgXXr6DWuMcNUFjhmJriwm4lxChYzjAcuV0VXE1tmmMoCW2aCS3Q03QS8X5lQwWKGqQCLGaaywmIm+Mj7kvcrEypYzDAVMBIzXDCPiXRYzAQf2dXE+5UJFSxmmAp06QK43cDu3cD+/WyZYSoPHDMTfNgywzgBixmmAklJwFln0eOVK1nMMJUHtswEHxYzjBOwmGF0kV1NLGaYygKLmeDDbibGCVjMMLqwmGEqIyxmgo+8L9l9x4QKFjOMLkLM/PYbcPQoPWYxw0Q6HDMTfNjNxDgBixlGl+bNgbQ0unL9+296jcUME+mwZSb4sJhhnIDFDKOL261aZwQsZphIR0yuLGaCB8fMME7AYoYxRCtmuM4ME+kIywx3zQ4ebJlhnIDFDGMIW2aYygbHzAQfFjOME7CYYQzp2lV9HBXFAxMT+chiRlHYMhMM2M3EOAGLGcaQ6tWBli3pcUoKNaFkmEhGFjPFxUBZGT3nSdc+2DLDOAGLGcaUc8+le3YxMZUBIWYKC4HcXPV1nnTtg8UM4wQsZhhTRNwMixmmMiDEDAAcP073LhcQG+vM9lRGZDcTxyIxoYLFDGPKwIFAhw7AyJFObwnDBI48uR47pr7GLlT7YMsM4wTRTm8AE95kZADr1jm9FQxjD243TbD5+aqY4QnXXljMME7AlhmGYaoUwtXEYiY4cDYT4wQsZhiGqVIIMSNiZjiuw17YMsM4AYsZhmGqFGyZCS5if3JgNRNKWMwwDFOlYDETXISlKz6eA6uZ0MFihmGYKoUQL+xmCg5i/7JIZEIJixmGYaoU2pgZnnTtpWZNz3uGCQWcms0wTJWC3UzBpVUr4PXXgTZtnN4SpirBYoZhmCoFi5ngc+utTm8BU9VgNxPDMFUKrZjhmBmGiXxYzDAMU6UQYiY7m+7ZMsMwkQ+LGYZhqhRys0mAxQzDVAZYzDAMU6VgMcMwlQ8WMwzDVCm0YoZjZhgm8mExwzBMlYItMwxT+WAxwzBMlYLFDMNUPljMMAxTpWAxwzCVDxYzDMNUKThmhmEqHyxmGIapUmgtMWyZYZjIh8UMwzBVCnYzMUzlg8UMwzBVChYzDFP5YDHDMEyVgmNmGKbywWKGYZgqBVtmGKby4aiYmTp1Krp06YLk5GRkZGRg4MCB2Lp1q8cyn332Gfr164datWrB5XJh/fr1zmwswzCVAhYzDFP5cFTMLF++HGPGjMHKlSuxePFilJSUoG/fvsjNzS1fJjc3F927d8fTTz/t4JYyDFNZYDHDMJWPaCe/fOHChR7PZ86ciYyMDKxduxbnn38+AGDEiBEAgF27doV68xiGqYTExQEuF6Ao9JxjZhgm8nFUzGjJysoCANSoUcPvdRQWFqKwsLD8eXZ2dsDbxTBM5cHlIuuMMACzZYZhIp+wCQBWFAXjx49Hjx490LZtW7/XM3XqVKSmppbfGjZsaONWMgxTGZBdTWyZYZjIJ2zEzNixY7FhwwZ89NFHAa3nwQcfRFZWVvltz549Nm0hwzCVBSFm4uIAd9iMggzD+EtYuJnGjRuH+fPn48cff0SDBg0CWldcXBzi4uJs2jKGYSojQsywVYZhKgeOihlFUTBu3Dh8/vnnWLZsGZo0aeLk5jAMU0UQYobjZRimcuComBkzZgw+/PBDfPnll0hOTsbBgwcBAKmpqYg/PcocP34cu3fvxv79+wGgvA5NnTp1UKdOHWc2nGGYiEaIGBYzDFM5cNRbPGPGDGRlZaFXr16oW7du+e3jjz8uX2b+/Pno2LEjLr30UgDA1VdfjY4dO+L11193arMZholw2DLDMJULx91M3hg1ahRGjRoV/I1hGKbKwDEzDFO54Dh+hmGqHGyZYZjKBYsZhmGqHCxmGKZywWKGYZgqB4sZhqlcsJhhGKbKwTEzDFO5YDHDMEyVgy0zDFO5YDHDMEyV4+KLgTPOAAYMcHpLGIaxg7BoZ8AwDBNKunQBtm93eisYhrELtswwDMMwDBPRsJhhGIZhGCaiYTHDMAzDMExEw2KGYRiGYZiIhsUMwzAMwzARDYsZhmEYhmEiGhYzDMMwDMNENCxmGIZhGIaJaFjMMAzDMAwT0bCYYRiGYRgmomExwzAMwzBMRMNihmEYhmGYiIbFDMMwDMMwEQ2LGYZhGIZhIppopzcg2CiKAgDIzs52eEsYhmEYhrGKmLfFPG5GpRczp06dAgA0bNjQ4S1hGIZhGMZXTp06hdTUVNNlXIoVyRPBlJWVYf/+/UhOTobL5QrZ92ZnZ6Nhw4bYs2cPUlJSQva9kQTvI3N4/3iH95F3eB+Zw/vHO07tI0VRcOrUKdSrVw9ut3lUTKW3zLjdbjRo0MCx709JSeETxAu8j8zh/eMd3kfe4X1kDu8f7zixj7xZZAQcAMwwDMMwTETDYoZhGIZhmIiGxUyQiIuLw6OPPoq4uDinNyVs4X1kDu8f7/A+8g7vI3N4/3gnEvZRpQ8AZhiGYRimcsOWGYZhGIZhIhoWMwzDMAzDRDQsZhiGYRiGiWhYzDAMwzAME9GwmDHhxx9/xOWXX4569erB5XLhiy++8Hj/0KFDGDVqFOrVq4eEhARcfPHF+OeffyqsZ8WKFbjggguQmJiItLQ09OrVC/n5+eXvnzhxAiNGjEBqaipSU1MxYsQInDx5Msi/LnAC3T+7du2Cy+XSvX3yySfly0Xq/gHsOYYOHjyIESNGoE6dOkhMTESnTp3w6aefeixT1ffR9u3bMWjQIKSnpyMlJQVDhw7FoUOHPJaJ1H00depUdOnSBcnJycjIyMDAgQOxdetWj2UURcHkyZNRr149xMfHo1evXvjzzz89liksLMS4ceNQq1YtJCYm4oorrsDevXs9lqnq++jNN99Er169kJKSApfLpfvbI3Ef2bF/jh8/jnHjxqFFixZISEhAo0aNcOeddyIrK8tjPU7tHxYzJuTm5qJ9+/aYPn16hfcURcHAgQOxY8cOfPnll1i3bh0aN26MPn36IDc3t3y5FStW4OKLL0bfvn2xevVqrFmzBmPHjvUozTx8+HCsX78eCxcuxMKFC7F+/XqMGDEiJL8xEALdPw0bNsSBAwc8blOmTEFiYiIuueSS8nVF6v4B7DmGRowYga1bt2L+/PnYuHEjBg8ejGHDhmHdunXly1TlfZSbm4u+ffvC5XJhyZIl+OWXX1BUVITLL78cZWVl5euK1H20fPlyjBkzBitXrsTixYtRUlKCvn37ehwjzz77LF544QVMnz4da9asQZ06dXDRRReV96YDgLvvvhuff/455syZg59//hk5OTm47LLLUFpaWr5MVd9HeXl5uPjii/Hf//7X8LsicR/ZsX/279+P/fv347nnnsPGjRsxa9YsLFy4EDfddJPHdzm2fxTGEgCUzz//vPz51q1bFQDKpk2byl8rKSlRatSoobz11lvlr5199tnKww8/bLjezZs3KwCUlStXlr+2YsUKBYDy119/2fsjgoi/+0dLhw4dlBtvvLH8eWXZP4ri/z5KTExU3n33XY911ahRQ3n77bcVReF9tGjRIsXtditZWVnlyxw/flwBoCxevFhRlMq1jw4fPqwAUJYvX64oiqKUlZUpderUUZ5++unyZQoKCpTU1FTl9ddfVxRFUU6ePKnExMQoc+bMKV9m3759itvtVhYuXKgoCu8jmaVLlyoAlBMnTni8Xln2UaD7RzB37lwlNjZWKS4uVhTF2f3Dlhk/KSwsBABUq1at/LWoqCjExsbi559/BgAcPnwYq1atQkZGBrp164batWujZ8+e5e8DZLlJTU3F2WefXf7aOeecg9TUVPz6668h+jX2Y2X/aFm7di3Wr1/vofQr6/4BrO+jHj164OOPP8bx48dRVlaGOXPmoLCwEL169QLA+6iwsBAul8ujoFe1atXgdrvLl6lM+0iY9Wv8f3v3HxN1/ccB/IlygncIdAQcdkamaRCIQCbYD7ZS0nLmZLY1mkUrLx31B1u62yh0rdAtYVJuNlMJS0ekNqRf6pD0j8uGHvOQCg7p3IybgexOPfE87vX9g6+feWLK6uT6wPOx3T/vz+ven8/7uYO97vNjp9cDALq6uuB0OpGfn6/UREREIC8vT1nbiRMncO3atYCayZMnIy0tTakZ6xkNx2jJKFj5uFwuREdHIzx88GceQ5kPm5l/6OGHH0ZycjLMZjP6+vrg9XqxYcMGOJ1OdHd3AwDOnDkDAFi3bh3eeOMN/PDDD8jKysIzzzyjXPN3Op1ISEgYMn9CQgKcTufILSjIhpPPzbZv346UlBTMmzdPGRut+QDDz6i2thY+nw9xcXGIiIiAyWTC/v37MW3aNADMKCcnBzqdDmvXroXH48Hly5fxzjvvwO/3KzWjJSMRQUlJCZ544gmkpaUBgHL8iYmJAbWJiYnKNqfTiQkTJuCee+65bc1Yzmg4RkNGwcqnt7cX77//PkwmkzIWynzYzPxDGo0Ge/fuRXt7O/R6PbRaLZqamrBo0SKMHz8eAJTr9SaTCUVFRcjMzERlZSVmzpyJHTt2KHOFhYUNmV9EbjmuFsPJ50ZXrlzB7t27h1x/BUZnPsDwMyotLUVfXx8OHz6M5uZmlJSUYPny5bDZbErNWM4oPj4edXV1OHDgAKKiohATEwOXy4WsrKyAHEdDRsXFxTh16hT27NkzZNvN6xjO2m6uYUZ3pvaMgpGP2+3G888/j9TUVJSVld12jtvNE0zhd3X2US47OxstLS1wuVzwer2Ij4/H3Llz8eijjwIAkpKSAACpqakB70tJScHZs2cBAAaDYchTFwDw119/DemS1eZO+dzo66+/hsfjwYoVKwLGR3M+wJ0z6uzsxCeffILW1lY88sgjAICMjAwcO3YMW7ZswdatW8d8RgCQn5+Pzs5O9PT0IDw8HLGxsTAYDJg6dSqA0fE5euutt1BfX4+jR4/CaDQq4waDAcDgt+Lr/3OAwcvc19dmMBjg9XrR19cXcHbm/PnzypnQsZ7RcKg9o2Dkc/HiRSxcuBBRUVHYv38/NBpNwDyhyodnZoIgJiYG8fHx6OjoQHNzM1544QUAwAMPPIDJkycPeQSuvb0dycnJAIDc3Fy4XC788ssvyvbjx4/D5XIFXG5Rs7/L50bbt2/HkiVLEB8fHzA+FvIB/j4jj8cDAAFPvwGD941cP/M31jO60b333ovY2Fg0Njbi/PnzWLJkCQB1ZyQiKC4uxr59+9DY2Kg0aNdNnToVBoMBhw4dUsa8Xi9++uknZW3Z2dnQaDQBNd3d3WhtbVVqxnpGw6HWjIKVj9vtRn5+PiZMmID6+vqAe9mAEOdzV28vVrmLFy+K1WoVq9UqAKSiokKsVqs4HA4RGbyT+8iRI9LZ2SnffPONJCcny7JlywLmqKyslOjoaKmrq5OOjg4pLS2VyMhIsdvtSs3ChQtl1qxZYrFYxGKxSHp6uixevHhE1/pPBCMfEZGOjg4JCwuT77///pb7UWs+Iv8+I6/XK9OnT5cnn3xSjh8/Lna7XT766CMJCwuTb7/9VqkbyxmJiOzYsUMsFovY7XbZtWuX6PV6KSkpCahRa0arVq2SmJgYaWpqku7ubuXl8XiUmg0bNkhMTIzs27dPbDabvPTSS5KUlCRut1upefPNN8VoNMrhw4fl5MmT8vTTT0tGRob4fD6lZqxn1N3dLVarVbZt2yYA5OjRo2K1WqW3t1epUWNGwcjH7XbL3LlzJT09Xex2e8A8/4XPEJuZ27j+eN7Nr1deeUVERDZv3ixGo1E0Go3cf//9UlpaKlevXh0yT3l5uRiNRtFqtZKbmyvHjh0L2N7b2yuFhYUyadIkmTRpkhQWFg55JPC/KFj5mM1mMRqNMjAwcMv9qDUfkeBk1N7eLsuWLZOEhATRarUya9asIY9qj/WM1q5dK4mJiaLRaOShhx6STZs2id/vD6hRa0a3ygaA7Ny5U6nx+/1SVlYmBoNBIiIi5KmnnhKbzRYwz5UrV6S4uFj0er1MnDhRFi9eLGfPng2oGesZlZWV3XEeNWYUjHz+7u8UgHR1dSl1ocon7P8LJSIiIlIl3jNDREREqsZmhoiIiFSNzQwRERGpGpsZIiIiUjU2M0RERKRqbGaIiIhI1djMEBERkaqxmSEiIiJVYzNDREREqsZmhoiIiFSNzQwRjQkDAwPKL40T0ejCZoaIRlxNTQ3i4uJw9erVgPGCggKsWLECAHDgwAFkZ2cjMjISDz74INavXw+fz6fUVlRUID09HTqdDlOmTMHq1atx6dIlZXt1dTViY2PR0NCA1NRUREREwOFwoKmpCY899hh0Oh1iY2Px+OOPw+FwjMzCieiuYDNDRCNu+fLlGBgYQH19vTLW09ODhoYGFBUV4ccff8TLL7+Mt99+G21tbfj0009RXV2NDz74QKkfN24cqqqq0Nrais8//xyNjY1Ys2ZNwH48Hg/Ky8vx2Wef4fTp09Dr9Vi6dCny8vJw6tQpWCwWrFy5EmFhYSO2diIKPv5qNhGFxOrVq/HHH3/gu+++AwBs3rwZVVVVsNvtyMvLw6JFi2A2m5X6L774AmvWrMGff/55y/nq6uqwatUq9PT0ABg8M1NUVISWlhZkZGQAAC5cuIC4uDg0NTUhLy/vLq+QiEYKmxkiCgmr1Yo5c+bA4XDgvvvuw+zZs1FQUIB3330XOp0Ofr8f48ePV+oHBgbQ39+Py5cvQ6vV4siRI/jwww/R1tYGt9sNn8+H/v5+XLp0CTqdDtXV1TCZTOjv7w8481JUVIQ9e/ZgwYIFmD9/Pl588UUkJSWFIgIiChJeZiKikMjMzERGRgZqampw8uRJ2Gw2vPrqqwAAv9+P9evXo6WlRXnZbDZ0dHQgMjISDocDzz33HNLS0rB3716cOHECW7ZsAQBcu3ZN2cfEiROHXELauXMnLBYL5s2bh9raWsyYMQM///zziK2biIIvPNQHQERj1+uvv47KykqcO3cO8+fPx5QpUwAAWVlZ+P333zF9+vRbvq+5uRk+nw+bNm3CuHGD38m++uqrYe83MzMTmZmZMJvNyM3Nxe7du5GTk/PvF0REIcEzM0QUMoWFhTh37hy2bduG1157TRl/7733UFNTg3Xr1uH06dP49ddfUVtbi9LSUgDAtGnT4PP58PHHH+PMmTPYtWsXtm7desf9dXV1wWw2w2KxwOFw4ODBg2hvb0dKSspdWyMR3X1sZogoZKKjo1FQUICoqCgsXbpUGX/22WfR0NCAQ4cOYc6cOcjJyUFFRQWSk5MBALNnz0ZFRQU2btyItLQ0fPnllygvL7/j/rRaLX777TcUFBRgxowZWLlyJYqLi2Eyme7WEoloBPAGYCIKqQULFiAlJQVVVVWhPhQiUik2M0QUEhcuXMDBgwdRWFiItrY2zJw5M9SHREQqxRuAiSgksrKy0NfXh40bN7KRIaJ/hWdmiIiISNV4AzARERGpGpsZIiIiUjU2M0RERKRqbGaIiIhI1djMEBERkaqxmSEiIiJVYzNDREREqsZmhoiIiFTtf32B8SVTVk6HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -554,12 +554,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYCUlEQVR4nO3dd3yT1fcH8E9a6ISWVVoKhQqyZW/xy5DKtLJkQykCCoIskSEbFFAUQZkiU0GGLAfTypBZaCmyN7RI2dDSAp35/XF+bSmW0rRJbvLk83698vJJ8iQ5EExO7j3nXp1er9eDiIiISCPsVAdAREREZExMboiIiEhTmNwQERGRpjC5ISIiIk1hckNERESawuSGiIiINIXJDREREWlKLtUBmFtycjJu3LiBvHnzQqfTqQ6HiIiIskCv1+PRo0fw9vaGnV3mYzM2l9zcuHEDPj4+qsMgIiKibIiIiECxYsUyPcfmkpu8efMCkL8cNzc3xdEQERFRVkRHR8PHxyf1ezwzNpfcpExFubm5MbkhIiKyMlkpKWFBMREREWkKkxsiIiLSFCY3REREpCk2V3NDRETal5SUhISEBNVhkIEcHBxe2uadFUxuiIhIM/R6PW7evImHDx+qDoWywc7ODq+88gocHBxy9DxMboiISDNSEpvChQvDxcWFi7VakZRFdiMjI1G8ePEcvXdMboiISBOSkpJSE5uCBQuqDoeywcPDAzdu3EBiYiJy586d7edhQTEREWlCSo2Ni4uL4kgou1Kmo5KSknL0PExuiIhIUzgVZb2M9d4xuSEiIiJNYXJDREREmsLkhoiISEN8fX0xa9Ys5c+hEruljOnaNeDhQ6BKFdWREBGRlWjUqBGqVq1qtGTiyJEjcHV1NcpzWSsmN8Zy+DDQogXg7g6EhgL586uOiIiINEKv1yMpKQm5cr38a9vDw8MMEVk2TksZS9myQL58wNWrQK9egF6vOiIiIvp/sbEvvjx9mvVznzx5+bmGCAwMxJ49ezB79mzodDrodDpcvXoVu3fvhk6nw9atW1GjRg04Ojpi3759uHTpElq3bg1PT0/kyZMHtWrVwp9//pnuOZ+fUtLpdPjhhx/Qtm1buLi4oHTp0vj1118NijM8PBytW7dGnjx54Obmho4dO+LWrVup9x8/fhyNGzdG3rx54ebmhho1auDo0aMAgGvXrsHf3x/58+eHq6srKlasiC1bthj2F2UgJjfGki8fsG4d4OAAbN4MWPFcJRGR1uTJ8+JL+/bpzy1c+MXntmiR/lxf3/+eY4jZs2ejXr166Nu3LyIjIxEZGQkfH5/U+0eNGoXp06fjzJkzqFy5MmJiYtCyZUsEBQXh2LFjaN68Ofz9/REeHp7p60yaNAkdO3bEP//8g5YtW6Jbt264f/9+lmJMTk5G69atcf/+fezZswc7d+7E5cuX0alTp9RzunXrhmLFiuHIkSMICQnBqFGjUhfhGzBgAOLi4rB3716cOHECX3zxBfIY+hdlIE5LGVONGsA33wADBgAjRgD16gF166qOioiILJS7uzscHBzg4uICLy+v/9w/efJkvPXWW6nXCxQogCrP1HVOmTIFGzduxK+//oqBAwe+8HUCAwPRpUsXAMDUqVPx7bffIjg4GM2bN39pjEFBQThx4gSuXLmSmnitWLECFStWxJEjR1CrVi2Eh4fjk08+Qbly5QAApUuXTn18eHg42rdvj0qVKgEASpYs+dLXzCkmN8bWvz+wdy+wZg3QsSNw7BjAZcCJiJSKiXnxffb26a/fvv3ic5/fsPrq1WyHlCU1a9ZMdz0mJgYTJ07EH3/8gcjISCQmJuLJkycvHbmpXLly6rGrqyvc3NxwO7M/6DPOnDkDHx+fdCNKFSpUQL58+XDmzBnUqlULw4YNQ58+ffDjjz/Cz88PHTp0QKlSpQAAgwYNQv/+/bFjxw74+fmhffv26eIxBU5LGZtOB3z/PVC6NBARAQQEAMnJqqMiIrJprq4vvjg5Zf1cZ+eXn2vcuNM/4fDhw7Fx40ZMnToVf//9N8LCwlCpUiXEx8dn+jzP79Ok0+mQbMTvpokTJ+LUqVNo1aoV/vrrL1SoUAEbN24EAPTp0weXL19Gjx49cOLECdSsWRPfffed0V47I0xuTMHNDVi7FnB0BLZsAWbMUB0RERFZKAcHhyzvpbR//34EBgaibdu2qFSpEry8vHDVxMNH5cuXR0REBCIiIlJvO336NB4+fIgKFSqk3lamTBkMHToUO3bsQLt27bB06dLU+3x8fNCvXz9s2LABH3/8MRYtWmTSmJncmErVqkBKZjpmDLBvn9JwiIjIMvn6+uLw4cO4evUq7t69m+mISunSpbFhwwaEhYXh+PHj6Nq1q1FHYDLi5+eHSpUqoVu3bggNDUVwcDACAgLQsGFD1KxZE0+ePMHAgQOxe/duXLt2Dfv378eRI0dQvnx5AMCQIUOwfft2XLlyBaGhodi1a1fqfabC5MaU+vQBunUDkpKATp2AO3dUR0RERBZm+PDhsLe3R4UKFeDh4ZFp/czMmTORP39+vP766/D390ezZs1QvXp1k8an0+mwefNm5M+fHw0aNICfnx9KliyJNWvWAADs7e1x7949BAQEoEyZMujYsSNatGiBSZMmAZAdvgcMGIDy5cujefPmKFOmDObNm2famPV621qQJTo6Gu7u7oiKioKbm5vpXzAmBqhVCzh7FmjaFNi69b8VaURElGNPnz7FlStX8Morr8Dp+UIasgqZvYeGfH/zW9bU8uSR9W+cnYEdO4CpU1VHREREpGlMbszhtdeAlCG4CROAXbvUxkNERKRhTG7MJTBQLsnJQNeuwDPLVhMREZHxMLkxp7lzgYoVgZs3JcHJYusfERERZR2TG3NycZH6G1dX4K+/gMmTVUdERESkOUxuzK18eWDhQjmeMgXYuVNtPERERBqjNLnZu3cv/P394e3tDZ1Oh02bNmV6fmRkJLp27YoyZcrAzs4OQ4YMMUucRtetG9C3L6DXy/GNG6ojIiIi0gylyU1sbCyqVKmCuXPnZun8uLg4eHh4YOzYsel2RbVKs2cDVarIwn5dugCJiaojIiIi0gSlu4K3aNECLVq0yPL5vr6+mD17NgBgyZIlWXpMXFwc4uLiUq9HR0cbFqSpODvL/lM1a8ou4uPHcw0cIiIyq0aNGqFq1aqYNWuW6lCMSvM1N9OmTYO7u3vq5dkt25UrUwb44Qc5njZNVi8mIiKb0qhRI6OXWQQGBqJNmzZGfU5rovnkZvTo0YiKikq9PLurqUXo2BH48EM57tEDsLT4iIiIrIzmkxtHR0e4ubmlu1icmTOB6tWBe/eAzp2BhATVERERkRkEBgZiz549mD17NnQ6HXQ6Ha5evQoAOHnyJFq0aIE8efLA09MTPXr0wN27d1Mf+8svv6BSpUpwdnZGwYIF4efnh9jYWEycOBHLly/H5s2bU59z9+7dWYrnwYMHCAgIQP78+eHi4oIWLVrgwoULqfdfu3YN/v7+yJ8/P1xdXVGxYkVs2bIl9bHdunWDh4cHnJ2dUbp0aSxdutRof1eGUFpzQ//P0VHWv6leHThwAPj0U2DGDNVRERFZP70eePzY/K/r4gLodC89bfbs2Th//jxee+01TP7/tc88PDzw8OFDvPnmm+jTpw+++eYbPHnyBCNHjkTHjh3x119/ITIyEl26dMGXX36Jtm3b4tGjR/j777+h1+sxfPhwnDlzBtHR0anJRYECBbIUdmBgIC5cuIBff/0Vbm5uGDlyJFq2bInTp08jd+7cGDBgAOLj47F37164urri9OnTyJMnDwBg3LhxOH36NLZu3YpChQrh4sWLePLkSTb/AnOGyY2lKFkSWLoUaNcO+OoroEEDwN9fdVRERNbt8WPZwNjcYmJkwdaXcHd3h4ODA1xcXODl5ZV6+5w5c1CtWjVMfabRZMmSJfDx8cH58+cRExODxMREtGvXDiVKlAAAVKpUKfVcZ2dnxMXFpXvOl0lJavbv34/XX38dALBy5Ur4+Phg06ZN6NChA8LDw9G+ffvU1ypZsmTq48PDw1GtWjXUrFkTgDQBqaJ0WiomJgZhYWEICwsDAFy5cgVhYWEIDw8HIPUyAQEB6R6Tcn5MTAzu3LmDsLAwnD592tyhm0bbtsDgwXLcsyfw/0OTRERkW44fP45du3YhT548qZdy5coBAC5duoQqVaqgSZMmqFSpEjp06IBFixbhwYMHOXrNM2fOIFeuXKhTp07qbQULFkTZsmVx5swZAMCgQYPw2WefoX79+pgwYQL++eef1HP79++P1atXo2rVqhgxYgQOHDiQo3hyQmlyc/ToUVSrVg3VqlUDAAwbNgzVqlXD+PHjAciifSmJToqU80NCQrBq1SpUq1YNLVu2NHvsJvPll0Dt2sCDB0CnTkB8vOqIiIisl4uLjKKY++LikqOwY2Ji4O/vn/qDPuVy4cIFNGjQAPb29ti5cye2bt2KChUq4LvvvkPZsmVx5coVI/3FZaxPnz64fPkyevTogRMnTqBmzZr47rvvAMjyLteuXcPQoUNx48YNNGnSBMOHDzdpPC+ktzFRUVF6APqoqCjVobzYlSt6ff78ej2g1w8erDoaIiKr8OTJE/3p06f1T548UR2KQd566y39wIED09326aef6suWLatPSEjI0nMkJibqixYtqv/666/1er1e37dvX/3bb7/90sc1bNhQP/j/v2fOnz+vB6Dfv39/6v13797VOzs769etW5fh40eNGqWvVKlShvctWLBAnzdv3izFnyKz99CQ72/Nd0tZJV9fYPlyOZ49G9iwQWk4RERkOr6+vjh8+DCuXr2Ku3fvIjk5GQMGDMD9+/fRpUsXHDlyBJcuXcL27dvRq1cvJCUl4fDhw5g6dSqOHj2K8PBwbNiwAXfu3EH58uVTn/Off/7BuXPncPfuXSRkoQu3dOnSaN26Nfr27Yt9+/bh+PHj6N69O4oWLYrWrVsDAIYMGYLt27fjypUrCA0Nxa5du1Jfc/z48di8eTMuXryIU6dO4ffff0+9z9yY3Fgqf38gZTjvvfeAS5fUxkNERCYxfPhw2Nvbo0KFCvDw8EB4eDi8vb2xf/9+JCUloWnTpqhUqRKGDBmCfPnywc7ODm5ubti7dy9atmyJMmXKYOzYsfj6669TV/3v27cvypYti5o1a8LDwwP79+/PUixLly5FjRo18Pbbb6NevXrQ6/XYsmULcufODQBISkrCgAEDUL58eTRv3hxlypTBvHnzAAAODg4YPXo0KleunDp1tnr1atP8pb2ETq/X65W8siLR0dFwd3dHVFSUZa5586yEBKBRI2kPr14d2L8fcHJSHRURkUV6+vQprly5gldeeQVO/Ky0Spm9h4Z8f3PkxpLlzg2sWQMULAiEhgIff6w6IiIiIovH5MbSFSsG/PijHM+bJ8kOERERvRCTG2vQogUwerQc9+0LnD+vNh4iIiILxuTGWkyeLKsWP3oEdOgAKFrSmoiIyNIxubEWuXIBP/8MeHgA//yTtpIxERGlY2N9MppirPeOyY018fYGVq2SzdgWLQJWrlQdERGRxUhpV36sYqNMMor4/1+V397ePkfPw40zrY2fHzBunExTffCBtIgrWiSJiMiS2NvbI1++fLh9+zYAwMXFBbos7MxNliE5ORl37tyBi4sLcuXKWXrC5MYajR8P7NsH/PWX1N8cPpyl3WeJiLQuZRfslASHrIudnR2KFy+e46SUyY01sreX6amqVYFTp4CBA4GlS1VHRUSknE6nQ5EiRVC4cOEsbTlAlsXBwQF2djmvmGFyY608PaXAuEkTYNkyoGFDIDBQdVRERBbB3t4+x3UbZL1YUGzNGjUCJk2S4w8/BE6eVBoOERGRJWByY+0+/RRo1kzWvenQAYiJUR0RERGRUkxurJ2dnWzPULQocPYs0K8fwDUeiIjIhjG50QIPD2D1aik0XrkS+OEH1REREREpw+RGK954A/j8czn+6CMgLExpOERERKowudGSTz4BWrUC4uKk/iY6WnVEREREZsfkRkvs7IDlywEfH+DiRdlBnPU3RERkY5jcaE3BgsDatbLR5tq1wPz5qiMiIiIyKyY3WlS3LvDll3I8dCgQEqI2HiIiIjNicqNVQ4YAbdoA8fFSf/PwoeKAiIiIzIPJjVbpdMCSJYCvL3DlCvDee6y/ISIim8DkRsvy55e6m9y5gY0bgW+/VR0RERGRyTG50bpatYCZM+V4+HDg8GG18RAREZkYkxtbMGCA1N0kJgIdOwL376uOiIiIyGSY3NgCnQ5YtAgoVQoIDwcCA1l/Q0REmsXkxla4uwPr1gGOjsBvvwFff606IiIiIpNgcmNLqlUDZs+W41GjgP371cZDRERkAkxubM377wNdugBJSUCnTsDdu6ojIiIiMiomN7ZGpwMWLgTKlAH+/Rfo0QNITlYdFRERkdEwubFFefNK/Y2TE7BtGzB9uuqIiIiIjIbJja2qXBmYO1eOx40D9uxRGw8REZGRMLmxZb16AQEBMi3VpQtw65bqiIiIiHKMyY0t0+mAefOAChWAyEige3cpNCYiIrJiTG5snaur1N+4uAB//gl89pnqiIiIiHKEyQ3JyM2CBXI8aRIQFKQ2HqLs0uu5vQgRMbmh/9ejB9C7t3w5dO0q01RE1iQyEmjSBChUSKZbichmMbmhNN99B1SqBNy+LQXGiYmqIyLKmj//BKpWBXbtkgR98GCuwE1kw5jcUBpnZ6m/yZNHWsMnTlQdEVHmkpKA8eOBpk0lKa9UCfD3l8S8Qwfg5k3VERKRAkxuKL2yZWUHcQCYOhXYvl1tPEQvcuOGTENNmSKjNe+/Dxw+DKxaBVSsKNNUnToBCQmqIyUiM2NyQ//VuTPQr598YXTvDly/rjoiovR27JBpqD17ZKRx1SrZVsTZWa5v2CArce/dK5vEEpFNYXJDGfvmG9lF/O5dqb/hr1+yBImJwNixQPPmwJ07QJUqQEiI/Bt9VpkywPLlcjxzJrB2rfljJSJlmNxQxpyc5AvBzQ3Yt0++UIhUSpmG+vxzGVX84APg4EFJZDLStm3aqM177wGnT5svViJSiskNvdirrwJLlsjxl18Cv/+uNh6yXdu3yzTU3r0y7fTzz7I2k7Nz5o+bMgV4800gNhZo1w6IjjZLuESkFpMbylz79sBHH8lxz55AeLjaeMi2JCYCY8akn4YKDZW6sKzIlUsSoWLFgHPnZARHrzdtzES2LjQUePxYaQhMbujlZswAatWSlV87dQLi41VHRLbg339l1GXqVLnevz9w6BBQurRhz1O4MPDLL0Du3MD69cDXXxs/ViISZ8/K/7cNG8oPEkWY3NDLOToCa9YA+fLJlwu7T8jUtm2Taai//5aupzVrZNVhJ6fsPV+dOsC338rxyJGy2B8RGde9e8DbbwNRUfL/qpubslCY3FDWvPIKsGyZHH/zDbBpk8poSKsSE4HRo4EWLaRTr1o1GeLu2DHnz/3BBzK1mpwsI5Bc4oDIeBISgHffBS5dAnx9ZTkGR0dl4TC5oaxr3RoYNkyOAwOBy5eVhkMac/060LgxMH26XP/wQ+DAASlsNwadDpg/X0aE7tyRFYw5xUqUc3q91Gbu3i0F/7/9Bnh4KA2JyQ0ZZvp0oG5dGXbs2BGIi1MdEWnB1q2SdOzbJ9NQa9cCc+dmfxrqRZydpe4mZYr144+N+/xEtmjOHFlEU6eTAv7XXlMdEZMbMlDu3FL/UKCALJ42fLjqiMiaJSRIDVfLljJfX706cOyYjKqYSsmSwE8/yfGcOWnHRGS47duBIUPk+MsvpebGAjC5IcMVLw78+KMcz5kjm20SGSoiAmjUCPjiC7n+0UcyDVWqlOlfu1Ur2XATkD2p/vnH9K9JpDVnz0r9WnIy0KuXRY2EMrmh7GnZUrpOAKB3b+DiRbXxkHX5/XeZhjpwQDoqfvlFupnMWYA4frysn/PkiSzw9/Ch+V6byNrdvw/4+0uJwhtvSD2bTqc6qlRMbij7PvtM/lE/eiTTCE+fqo6ILF1CAjBihHwo3r8P1Kwp01Dt25s/Fnt7YOVK6ey4dAkICJBfoESUuZTOqIsXLaIzKiNMbij7cuUCVq8GChUCwsLS5l2JMhIeLgt7zZgh1wcNkgLikiXVxVSggBQYOzpKh8e0aepiIbIGKZ1Ru3ZZTGdURpjcUM4ULSq/fnU6qZb/+WfVEZEl+u03mYY6eBBwd5eEYvZsy/i1V726LBAIAOPGATt2qI2HyJJZYGdURpjcUM41bSr7/wBA375SZEYEyPD18OHAO+8ADx7INh7HjkmNiyV57z35t6vXA127AteuqY6IyPLs2GGRnVEZYXJDxjFxoizAFhsr9TeKN00jC3DtGtCgQdpeTkOGyDTUK68oDeuFvv1WaoDu3ZN6AtaQEaU5e1bWNrPAzqiMMLkh47C3B1atAjw9gZMn03YSJ9v066+ydcKhQ7Jg3saNsm2Hg4PqyF7MyUm6tgoWBI4elZogIrL4zqiMMLkh4/HykgTHzg5YsgRYsUJ1RGRu8fHyi651a5mGql1bpqHatFEdWdaUKCF1BDodsGgRsHix6oiI1Hq2M6pEibQCfAvH5IaM6803gQkT5Lh/f+DUKbXxkPlcvQr873/AzJlyfehQ2dXb11dlVIZ76y1Z5gAABgyQlbiJbFFGnVGFC6uOKkuY3JDxjRkjXxCPH0v9TUyM6ojI1DZvlmmo4GCZhtq0SZIcS56GysyoUTIMHxcnv1rv3VMdEZH5Pd8ZVamS6oiyjMkNGZ+9vezX4+0NnDkjuzvr9aqjIlOIj5cRmjZtZIXfOnVkGqp1a9WR5YydnUyrliolI1LdugFJSaqjIjKfZzujvvjCojujMsLkhkyjcGHJ9O3sZB+qJUtUR0TGduWKFBfOmiXXP/4Y2LvX+qahXiRfPll51dlZNgecPFl1RETm8WxnVGCgVW6QzOSGTKdBg7TahYEDuTmhlmzcKNNQR44A+fPLtNRXX1nvNNSLVK4MfP+9HE+eLHtiEWnZ851RCxZYfGdURpQmN3v37oW/vz+8vb2h0+mwadOmlz5m9+7dqF69OhwdHfHqq69i2bJlJo+TcmDkSKBFC1kzpEMH2YeKrFd8vAxVt2snH35168o01DvvqI7MdLp3l+QcAHr0kH2oiLQoIUE+p62sMyojSpOb2NhYVKlSBXPnzs3S+VeuXEGrVq3QuHFjhIWFYciQIejTpw+2b99u4kgp21JqF4oVA86fB95/n/U31uryZaB+fdk2AZCh6r175UNQ677+GqhXT+qK2rfnIpWkPSmdUX/9ZXWdURnR6fWW8U2j0+mwceNGtMlkPYyRI0fijz/+wMmTJ1Nv69y5Mx4+fIht27Zl6XWio6Ph7u6OqKgouLm55TRsyqoDB2TTxMREWQCqXz/VEZEhNmyQLQqiomSzyeXLra7AMMf+/Vf2obp9W3YQX7bMKofriTL03XeycKVOJ4twWuD/34Z8f1tVzc3Bgwfh5+eX7rZmzZrh4MGDL3xMXFwcoqOj011IgddfT9txefBgIDRUbTyUNXFx8oHXvr0kNvXqyTSUBX7wmVzRosCaNdINuGKFtMgSaYGVd0ZlxKqSm5s3b8LT0zPdbZ6enoiOjsaTJ08yfMy0adPg7u6eevHx8TFHqJSRjz+WQrX4eJnXjYpSHRFlJmUa6rvv5PqIEcCePUDx4mrjUqlRI2D6dDkeNAg4fFhpOEQ59mxnVM+eVtkZlRGrSm6yY/To0YiKikq9REREqA7Jdul0Mp1RooR8cfbuzfobS/XLL9INFRIi01C//y6/6HLnVh2Zeh9/LCNZKcvS376tOiKi7Hm2M6p+/bQF+zTAqpIbLy8v3Lp1K91tt27dgpubG5ydnTN8jKOjI9zc3NJdSKH8+YG1a+VLcv16WQGTLEdcnBQVdugAREfLdGJYGNCqlerILIdOByxdCpQrB1y/DnTuLLVkRNbk+c6oDRustjMqI1aV3NSrVw9BQUHpbtu5cyfq1aunKCLKltq1gRkz5Pjjj2XJflLv0iVJZlISzpEjgd27AU7l/lfevPJlkCeP7LszdqzqiIiyTq+XaVWNdEZlRGlyExMTg7CwMISFhQGQVu+wsDCEh4cDkCmlgICA1PP79euHy5cvY8SIETh79izmzZuHtWvXYujQoSrCp5wYNEjWSklIkPneBw9UR2Tb1q2TTqDQUKBgQWDLFqkt4TTUi5Uvn7by9hdfyMKGRNZg7ty0xflWrbKqPaOyTK/Qrl279AD+c+nZs6der9fre/bsqW/YsOF/HlO1alW9g4ODvmTJkvqlS5ca9JpRUVF6APqoqCjj/CEo+x4+1OtLltTrAb2+dWu9PjlZdUS258kTvb5/f3kPAL3+jTf0+ogI1VFZl2HD5O8ub169/tw51dEQZW77dr3ezk7+zX75pepoDGLI97fFrHNjLlznxsKEhkp7cXy8LJQ2bJjqiGzHhQsyavb/I6cYPVq2GMiVS2lYVichAfDzkwUNK1YEDh2SoX4iS3P2rKwqHhUlnVFLl1pVAbFm17khDapePW3jxZEjgUzWLCIjWrMGqFFDEptChYCtW4GpU5nYZEfu3PL3WaQIcOoU0KcPuwDJ8mi4MyojTG5IvX79gE6dpOOkUyfg3j3VEWnX06dA//7S4fPoEfC//0mC07y56sism5eX1C3lyiWJzrffqo6IKI3GO6MywuSG1NPpZOfl0qWBiAhZ2j45WXVU2nP+vAxJpxQSjhkj3RJFi6qOTBvq1wdmzpTj4cOBffvUxkME2ERnVEaY3JBlcHOTX75OTtKpk9IqTsbx888yDXX8OODhAWzbBnz2GaehjG3gQKBLFxmF7NABiIxUHRHZOlvojMoAkxuyHFWqpC31P2YM8PffauPRgidPgA8+ALp2BWJiZPPSsDCgaVPVkWmTTgcsWgS89hpw86ZMsyYkqI6KbNXze0b5+ysNx5yY3JBl6d0b6N4dSEqSuhAubZ99587JNNT338uX7tixwJ9/At7eqiPTNldXWX3bzU0S9JEjVUdEtihlz6ikJE3tGZVVTG7Isuh0wPz5srT9jRtAjx6sv8mOVauAmjWBf/6Raajt24EpUzgNZS5lysjO4QDwzTdSZExkLjbWGZURJjdkefLkkfobZ2cZVp06VXVE1uPJE+D994Fu3WQaqlEjmYZ66y3Vkdme1q1l7SBARiRPnVIbD9kGG+yMygiTG7JMr70mIzgAMGGC7N9DmTt7FqhTR2o+dDpg/HhOQ6k2ZYos8BcbK9uNREerjoi0zEY7ozLC5IYsV8+eQK9eMi3VpYsUaFLGVq6UaagTJ+TDbMcOYNIkwN5edWS2zd5epgh9fKQVv1cvLvBHpmOjnVEZYXJDlm3OHBnFuXVLOn6SklRHZFkeP5YVcbt3l9GBxo1lGsrPT3VklMLDA/jlF8DBQaYIvvpKdUSkRTt3pnVGTZ9uU51RGWFyQ5bNxUXqb1xdZWpq0iTVEVmOlGmoxYvll9qECfIBV6SI6sjoebVrp61aPGqUTBsQGcvZs1Jnk9IZ9cknqiNSjskNWb5y5aSdGZCF53bsUBuPJfjxR5mGOnkS8PSUpGbiRE5DWbL33wcCA2WatXNn4Pp11RGRFrAzKkNMbsg6dO0qXw56vUzB3LihOiI1Hj+WzpuAAJmGevNNmYZq0kR1ZPQyOh0wbx5QtSpw5w7w7rtAXJzqqMiasTPqhZjckPWYNUtWMb5zR375Jiaqjsi8Tp+W6Y0lS+SLctIkGcXy8lIdGWWVs7Ms8Jc/P3D4MDBsmOqIyFo93xn166822xmVESY3ZD2cnaX+Jm9eWfl13DjVEZnPihVArVqyVoqXFxAUJK3enIayPiVLAj/9lDaS8+OPqiMia/R8Z1TlyqojsihMbsi6lC4tBbSAdARs2aI2HlOLjZX24Z49ZUrKz0+moRo3Vh0Z5UTLlpKcArL31/HjauMh68LOqJdickPWp0MHYMAAOe7RA4iIUBuPqaRMQy1bBtjZAZMny27enp6qIyNjGD8eaNFCVpVu1w548EB1RGQNzp1jZ1QWMLkh6/T110CNGtIpoMWdl5ctk26o06eltTsoSKbhOA2lHXZ2Mj3l6wtcvixF4txHjTLDzqgsY3JD1snREVi7FnB3Bw4eTNvDx9rFxqatzPzkiewJFRYme0SR9hQoIB0uTk7A779zHzV6sZTOqAsX2BmVBUxuyHqVLAksXSrHX38t3QLW7ORJKRpesUJ+1X/+uUxDsQNC26pVS9tHbfx42cGd6HmDB0tnlKsrO6OygMkNWbe2bdMK63r2BK5eVRlN9uj10t5duzZw5oxsdLlrF/Dpp5LkkPYFBqat49S1q3X+OybTmTtXEmB2RmUZPznJ+n3xhSQGDx8CHTsC8fGqI8q6mBhJynr3lmmoZs1kGqpBA9WRkbl9+62M3N2/Lwv8PX2qOiKyBDt3yqgNIJ1R77yjNh4rweSGrJ+Dg9Tf5M8PHDliPd0DJ07Il9mPP8oIzdSp0tru4aE6MlLB0VE22CxYEAgJAT76SHVEpNqznVEBAdbz2WYBmNyQNpQoIbUqgPwCXr9ebTyZ0etlrZ7atWXDu6JFgd27pSia01C2rXhxYPVq+Xfwww9yIdv0fGfU99+zM8oA/CQl7Xj77bRfNu+9B1y6pDaejMTEyNo8ffrItEPz5sCxY8D//qc6MrIUfn6yQSwADBwIHD2qNh4yP3ZG5RiTG9KWzz8HXn8diI6WDwdLqlv45x9Zu2blSlmvZvp04I8/OA1F/zVyJNC6tWys+e67wL17qiMic2JnVI4xuSFtyZ0bWLNG6haOHbOMjQn1emDRIqBOHZlDT5mGGjmS01CUMTs7YPly4NVXgWvXgG7dpO6CtI+dUUbBT1bSnmLFZOVXQD4k1qxRF8ujR0D37tLm+/Sp7CkUFga88Ya6mMg6uLvLdISzs6x9M2mS6ojI1NgZZTRMbkibmjeXdWIAqW85f978MRw/LtNQq1bJNNQXXwC//QYUKmT+WMg6Vaoko34AMGWKrGJM2sTOKKNickPaNWkS0LChFPF26CDryJiDXi+dDXXqSFJVrBiwZw8wYgSnochw3bqltYV37w5cvKg2HjK+ZzujXn+dnVFGwE9a0q5cuWTUpHBhKeYdNMj0rxkdLSvMfvCBFIO2aiXTUPXrm/61Sbu++kq+9KKigPbtgcePVUdExpKQIIuPXrggSwFs3MjOKCNgckPa5u0tCY5OJ2uGpNTimEJYmExDrV4t01AzZkinQ8GCpntNsg0ODsC6dYCnpyTq/frJCCFZv8GDgaAg6Yz67Td2RhkJkxvSviZNZENCQEZUTp827vPr9cCCBUDduvLry8cH2LsXGD6c01BkPN7eUhxvby+rWi9YoDoiyil2RpkMP3nJNowbJ0nO48dSfxMba5znjY4GunQB+veXaai335YW9NdfN87zEz2rYUMpTAfkF/+hQ2rjoexjZ5RJMbkh22BvL4vneXnJyM2AATl/zmPHgBo15Nd0rlxSF8FpKDK1YcNkYb+EBPnv7duqIyJDnTsndTbsjDIZJjdkOzw90/btWb4cWLo0e8+j18tQct260rlSvDjw99/Axx+zw4FMT6cDliwBypUD/v0X6NwZSExUHRVlVUpn1MOH7IwyISY3ZFsaNgQmT5bjAQNkZ25DREUBnToBH34IxMfLh9SxY5LoEJlL3ryywF+ePMCuXcCYMaojoqxgZ5TZMLkh2zN6NNCsmax706GDrCKcFaGhMg21bp1MQ82cCWzeDBQoYNp4iTJSvnza6OOXX0qyQ5ZtyBB2RpkJkxuyPXZ20hJetKjMfb+srVavl66GevVkp/ESJYB9+4ChQzmcTGq9+65MhwJAYKD8eybLNHcuMG8eO6PMhMkN2aZChdLaaletSlvi/nlRUTKMPHCgTEO1bi3TUHXqmDdeoheZPl2mWx89Atq1kxW5ybI82xk1bRo7o8yAyQ3Zrvr1galT5XjQIFmE71lHjwLVqwO//CK7jc+aJXPk+fObO1KiF8uVSxJ1b2/pBOzThwv8WZLnO6NGjFAdkU1gckO2bfhwWZsmLk7qb6Kj5Yvhu++kk+HyZcDXF9i/X355cRqKLJGnZ1ot2Jo1wOzZqiMigJ1RCun0ettK8aOjo+Hu7o6oqCi4ubmpDocswf37QLVqQHg40LatfPikFGe2bSttt/nyKQ2RKEvmzJFNNu3tpYvqf/9THZHtSkgAWrSQAuLixYEjR1hAnEOGfH9z5IaoQIG0hfg2bpTEJndu+fW7fj0TG7IeAwbILuJJSTIVEhmpOiLbxc4opZjcEAGyTs1XX8nxK6/INNSgQRxCJuui0wELFwKvvQbcvCkJTkKC6qhsDzujlGNyQ5Ri8GDg5Em51KqlOhqi7HF1ldFHNzdZsoAFrObFziiLwOSG6FkVKwIuLqqjIMqZ0qWBFSvkeNYs2XaETO/8eXZGWQiDkpvbL9mgLTExEcHBwTkKiIiIjKB1a+DTT+W4d2/g1Cm18WjdgwfSecnOKItgUHJTpEiRdAlOpUqVEBERkXr93r17qFevnvGiIyKi7Js8GfDzAx4/lgX+oqJUR6RNCQmylAT3jLIYBiU3z3eNX716FQnPFavZWGc5EZHlsrcHfv5ZvnDPnwd69eICf6bAziiLY/SaGx2H4YiILEehQrLKtoODjCjMmKE6Im2ZN4+dURaIBcVERFpXq5asug0Ao0cDf/2lNh6t+PNPWTICYGeUhTEoudHpdHj06BGio6MRFRUFnU6HmJgYREdHp16IiMgC9e0r01LJyUDnzsAz9ZKUDefPS50NO6MskkHbL9jZ2aWbdtLr9RleT0pKMm6URsTtF4jIZj15IhvGpuxsv2cPC1+z48EDWfjz/HmgXj0ZCXNyUh2V5hny/Z3LkCfetWtXjgIjIiKFnJ1lS5EaNYDDh4GhQ6VehLIupTPq/Pm0zigmNhbHoOSmYcOGpoqDiIjM4ZVXgJUrgVatgPnzZQQiIEB1VNbj+c4oT0/VEVEGDKq5SUxMRFxcXLrbbt26hUmTJmHEiBHYt2+fUYMjIiITaNECmDBBjj/4AAgLUxqO1Xi2M2rlSnZGWTCDam569eoFBwcHLFy4EADw6NEjVKxYEU+fPkWRIkVw+vRpbN68GS1btjRZwDnFmhsiIkhhsb8/sGULULIkcPQokD+/6qgs159/As2bSwHx9OnAyJGqI7I5hnx/GzRys3//frRv3z71+ooVK5CUlIQLFy7g+PHjGDZsGGZwDQUiIstnZwf8+KNMU12+DPToIQkP/Rc7o6yOQcnNv//+i9KlS6deDwoKQvv27eHu7g4A6NmzJ05x/xIiIutQoIAUGDs5AX/8AXz+ueqILM+DBzLC9fChdEYtXMg9o6yAQcmNk5MTnjx5knr90KFDqFOnTrr7Y2JijBcdERGZVrVqwIIFcjxhArBtm9p4LElCguzyzc4oq2NQclO1alX8+OOPAIC///4bt27dwptvvpl6/6VLl+Dt7W3cCImIyLR69gT69ZN9p7p2Ba5eVR2RZRg6VGpt2BlldQxKbsaPH4/Zs2ejVKlSaNasGQIDA1GkSJHU+zdu3Ij69esbPUgiIjKxWbOA2rVlGqZ9e+DpU9URqTVvHjB3LjujrJTB69yEhIRgx44d8PLyQocOHdLdX7VqVdSuXduoARIRkRk4OgLr1skCf6GhwMCBwA8/qI5KjWf3jJo6FWjdWm08ZDCDWsG1gK3gRESZCAoCmjaVzqlFi4A+fVRHZF7nz8vWFA8fSgfZ8uUsILYQhnx/G5Tc7N27N0vnNWjQIKtPaXZMboiIXmL6dNk93MEB2LdPdhW3BdwzyqKZLLl5duPMFz2MG2cSEVk5vR5o1w7YtEm6hEJCgEKFVEdlWgkJQMuWMiVVvDgQHMwCYgtjskX88ufPDx8fH4wbNw4XLlzAgwcP/nO5f/++wQHPnTsXvr6+cHJyQp06dRAcHPzCcxMSEjB58mSUKlUKTk5OqFKlCraxdZGIyHh0OmDZMqB0aSA8XDqoLPhHq1E82xn1669MbKycQclNZGQkvvjiCxw8eBCVKlVC7969ceDAAbi5ucHd3T31Yog1a9Zg2LBhmDBhAkJDQ1GlShU0a9YMt2/fzvD8sWPHYuHChfjuu+9w+vRp9OvXD23btsWxY8cMel0iIsqEuzuwYQPg4gLs3AlMnKg6ItN5vjOqShXVEVEOZbugODw8HMuWLcPy5csRFxeHnj17YtKkSciVy6AGLNSpUwe1atXCnDlzAADJycnw8fHBRx99hFGjRv3nfG9vb4wZMwYDBgxIva19+/ZwdnbGTz/99NLX47QUEZEBfv5ZRm4AGdHw91cbj7E9u2fUtGlABt87ZBlMNi31rOLFi2P8+PH4888/UaZMGUyfPh3R0dEGPUd8fDxCQkLg5+eXFpCdHfz8/HDw4MEMHxMXFwen5wq8nJ2dX7gjeVxcHKKjo9NdiIgoi7p0SWuL7tEDuHhRbTzG9OyeUT16cDNMDclWchMXF4dVq1bBz88Pr732GgoVKoQ//vgDBQoUMOh57t69i6SkJHg+N7fp6emJmzdvZviYZs2aYebMmbhw4QKSk5Oxc+dObNiwAZGRkRmeP23atHRTZj4+PgbFSERk82bMAOrXB6KipND48WPVEeXc83tGff89W741xKDkJjg4GP3794eXlxdmzJiBd955BxEREVi7di2aN29uqhjTmT17NkqXLo1y5crBwcEBAwcORK9evWBnl/EfZfTo0YiKikq9REREmCVOIiLNcHAA1q6VItsTJ4APPpCOKmvFPaM0z6ACmbp166J48eIYNGgQatSoAQAZTge98847WXq+QoUKwd7eHrdu3Up3+61bt+Dl5ZXhYzw8PLBp0yY8ffoU9+7dg7e3N0aNGoWSJUtmeL6joyMcHR2zFA8REb2At7ckOG++Cfz0k6wH80zto1VhZ5TmGVb9CykknjJlygvvN2SdGwcHB9SoUQNBQUFo06YNACkoDgoKwsCBAzN9rJOTE4oWLYqEhASsX78eHTt2zPKfgYiIsqFBA+DLL4GPP5YEoXp1mdKxJvPnp3VG/fQTO6M0yqBpqeTk5JdeHj16ZFAAw4YNw6JFi7B8+XKcOXMG/fv3R2xsLHr16gUACAgIwOjRo1PPP3z4MDZs2IDLly/j77//RvPmzZGcnIwRI0YY9LpERJQNQ4dKEW5CAvDuu8BzI+8W7c8/gY8+kuOpU4H//1FN2pPtbqnnxcXFYebMmS+cHnqRTp064auvvsL48eNRtWpVhIWFYdu2balFxuHh4emKhZ8+fYqxY8eiQoUKaNu2LYoWLYp9+/YhX758xvqjEBHRi+h0wOLFQPnywI0bQOfOQGKi6qhejp1RNsWgdW7i4uIwceJE7Ny5Ew4ODhgxYgTatGmDJUuWYOzYsbC3t8fAgQMx0oL/0XCdGyIiIzh7VvaciokBPvlEpqssFfeM0gST7S01cuRILFy4EH5+fjhw4ADu3LmDXr164dChQ/j000/RoUMH2Nvb5/gPYEpMboiIjGT9epmaAoBffgHat1cbT0a4Z5RmmGwRv3Xr1mHFihX45ZdfsGPHDiQlJSExMRHHjx9H586dLT6xISIiI2rfXkZtACAwUEZzLA07o2ySQcnN9evXU1vAX3vtNTg6OmLo0KGpO4UTEZGNmToVaNRIpqfatZP/WoqUziiAnVE2xqDkJikpCQ4ODqnXc+XKhTx58hg9KCIishK5cgGrV8s6OGfOAL17W8YCf892Rk2bxs4oG2PQOjd6vR6BgYGpi+I9ffoU/fr1g6ura7rzNmzYYLwIiYjIsnl6Ss1Nw4ay0F/dujIdpAo7o2yeQQXFKWvPvMzSpUuzHZCpsaCYiMhE5s4FBg4E7O2lI6lBA/PH8GxnVN26wK5d7IzSCJN1S2kBkxsiIhPR64GAAKlv8fQEQkNluspcEhOBFi1kSsrHBzhyhAXEGmKybikiIqIX0umAhQuBypVl5eKOHaUV21ye7Yz67TcmNjaMyQ0RERmPi4usf+PuDuzfn9Yqbmrz5wNz5sgxO6NsHpMbIiIyrldfBVaskOPZs4Gffzbt6wUFcc8oSofJDRERGd877wBjxshxnz7AyZOmeZ1nO6O6dwdGjTLN65BVYXJDRESmMWkS8NZbwOPHssBfVJRxn//BA8DfP61DatEiqfshm8fkhoiITMPeHli1SvZ0unAB6NkTSE42znMnJkrB8vnz0hm1aRNbvikVkxsiIjKdQoWkwNjBAdi82Xi7h7MzijLB5IaIiEyrZs20TqYxY6QAOCfYGUUvweSGiIhMr08f4L33ZFqqc2cgIiJ7z8POKMoCJjdERGR6Op2MtlSvDty9C7z7LhAXZ9hzXLjAzijKEiY3RERkHs7OUn9ToAAQHAwMGZL1xz54ALz9NjujKEuY3BARkfn4+gIrV0pismABsGzZyx/DzigyEJMbIiIyr+bNZQ0cAOjfHwgLy/z8lM4oFxfg11/ZGUUvxeSGiIjMb8wYoFUr4OlTWeDvwYOMz1uwIK0zauVKoGpVs4VI1ovJDRERmZ+dHfDjj0DJksCVK1Ig/PwCf3/9BQwcKMfsjCIDMLkhIiI18ueXAmMnJ2DLFuCzz9Luu3BBOqrYGUXZwOSGiIjUqVoVWLhQjidOBLZuBR4+5J5RlCNMboiISK2AACks1uuBbt2A1q2Bc+fYGUXZxuSGiIjU++YboHZtGa3Zu5edUZQjTG6IiEg9R0fgl18ADw+ZgvrpJ3ZGUbblUh0AERERAJmGOnNGtmcoW1Z1NGTFmNwQEZHlKFhQLkQ5wGkpIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDSFyQ0RERFpCpMbIiIi0hQmN0RERKQpTG6IiIhIU5jcEBERkaYwuSEiIiJNYXJDREREmsLkhoiIiDTFIpKbuXPnwtfXF05OTqhTpw6Cg4MzPX/WrFkoW7YsnJ2d4ePjg6FDh+Lp06dmipaIiIgsmfLkZs2aNRg2bBgmTJiA0NBQVKlSBc2aNcPt27czPH/VqlUYNWoUJkyYgDNnzmDx4sVYs2YNPv30UzNHTkRExvbXX8DPP6uOgqyd8uRm5syZ6Nu3L3r16oUKFSpgwYIFcHFxwZIlSzI8/8CBA6hfvz66du0KX19fNG3aFF26dHnpaA8REVmuuDhg8GCgSRMgJCTtdr0eSE5WFxdZJ6XJTXx8PEJCQuDn55d6m52dHfz8/HDw4MEMH/P6668jJCQkNZm5fPkytmzZgpYtW2Z4flxcHKKjo9NdiIjIcpw7B9StC3z7rVx/4420+4KCgDJlgGnTgMhINfGR9VGa3Ny9exdJSUnw9PRMd7unpydu3ryZ4WO6du2KyZMn44033kDu3LlRqlQpNGrU6IXTUtOmTYO7u3vqxcfHx+h/DiIiMpxeDyxbBtSoAYSFAYUKAb//DrRpk3bOihXApUvAp58CPj5A27bAH38ASUmKgiaroHxaylC7d+/G1KlTMW/ePISGhmLDhg34448/MGXKlAzPHz16NKKiolIvERERZo6YiIieFx0NdO8O9OoFxMYCjRsDx48DrVqlP2/+fGDJEqBePUloNm0C3n4b8PUFJkyQ6Syi5ylNbgoVKgR7e3vcunUr3e23bt2Cl5dXho8ZN24cevTogT59+qBSpUpo27Ytpk6dimnTpiE5g4lZR0dHuLm5pbsQEZFa9+/LCIy9PfDZZ8DOnYC393/Pc3WVBOjAAeDkSWDIEKBAAeD6dWDtWsDBIe1cvd5s4ZOFU5rcODg4oEaNGggKCkq9LTk5GUFBQahXr16Gj3n8+DHs7NKHbW9vDwDQ8182EZHFevYj2tcX+OknYM8eYMwYSXJepmJF4JtvgBs3pKPqs88AnU7ue/wYKFcOGDECOH/eJOGTFVE+LTVs2DAsWrQIy5cvx5kzZ9C/f3/ExsaiV69eAICAgACMHj069Xx/f3/Mnz8fq1evxpUrV7Bz506MGzcO/v7+qUkOERFZltu3ZTpp27a0295+G6hf3/DncnQEOncG2rdPu23TJklqZswAypYFGjWS5OnJk5xGTtYol+oAOnXqhDt37mD8+PG4efMmqlatim3btqUWGYeHh6cbqRk7dix0Oh3Gjh2Lf//9Fx4eHvD398fnn3+u6o9ARESZ+PNPoEcP4OZNmVq6eBHIndu4r9Ghg0xhLVoEbN0qI0J79gAffSSv/cknUpBMtkGnt7G5nOjoaLi7uyMqKor1N0REJpSQAIwfD3zxhUxJVagArFkDvPaaaV/3+nUpQl68GAgPl9suXgRKlTLt65JpGfL9rXxaioiItOfKFaBBA2D6dEls3n8fOHLE9IkNABQrJknV5csyDTZxYvrEpmdPoG9fIDiYRchaxZEbIiIyquvXpfg3Ohpwd5epog4dVEclbt2S5CcxUa5Xrgz06SNt6fnzq42NMseRGyIiUqZYMaBdO1mbJizMchIbAChcWFY97t4dcHIC/vkHGDRI2tB79JDRJbJ+HLkhIqIcO3EC8PSU5AGQLqVcuYxfOGxMDx4AK1fKyNI//8ht334rRchkeThyQ0REZqHXyyrCtWsDgYFpm1w6O1t2YgPINNTAgTK6FBwMfPCBjOikWL4cePddYPt2bvdgbZS3ghMRkXW6f18KczdskOs6nSymlyeP2rgMpdMBtWrJ5Vnz5wOHDwPr1wMlSgDvvSeXYsXUxElZx5EbIiIy2L59QNWqktjkzg3MnAn89pv1JTaZ+f57maLKlw+4dk32sipRQhYf/O031dFRZpjcEBFRliUlybYHDRsCERHAq68CBw8CQ4cCdhr7RqlcWWpwbtyQ1Y4bNpRptz/+AObNUx0dZUZj/xSJiMiUHj8Gli2TL/nu3YHQUKBGDdVRmZazM9CtG7B7N3DunOxfNWhQ2v3XrwNvvQWsXs1dyi0Fu6WIiMggR44AZ84AAQGqI7EMkyfLlBUgO5YHBEgtUoUKauPSGkO+v5ncEBHRC8XFASNHyvTTwIGqo7FM167Jdg9LlsgoTorXX5cFArt0kTV1KGeY3GSCyQ0RUdacPy+7bx87JjtxX7kCFCmiOirLlZQkbeOLFknBcVIS4OICREYC/LrJOUO+v9kKTjYvMRE4dUrWuThzRvbDad1a2kOJbNWKFcCHHwKxsUChQlJnw8Qmc/b2QMuWcomMlL+zJ0/SJzYBAbJyc9eusjUFmQZHbshmRUYCHTsCISHyAfSsunWBr74C6tdXExuRKo8eSVLz009yvXFjOfb2VhuXFoSEADVryrGLi3z+9Okj01f8MfVyXKGY6P/dvi1tmxMmyK+pjz9Ou69QIeDo0bRfVk2ayAJdLi7AoUPSBUJkS+LjZaXhn36SUYjPPgN27mRiYywlSwLffCOFxildZ2+8ITulf/MNcO+e6gi1gyM3pCl6vXxIHD4s00xXr6a//7XXZA+cFH/8AZQqBZQpk7ZGR2Qk8N13wMSJgIOD3Hb4MODlJQt4EWnZ9OmyMu/PP8uIAhmfXi8/oBYtAtaskUQHkDqdt99WG5slY0FxJpjcaENCQlqdzMOHsu5EinLlZC2KFOXLy7LqtWsDdeqkDQsb8loVK0pHxIABwKefyqgPkRbcvg1ERQGlS8v15GSZmmI9iHlER0si+euvwObNstkoID+woqOBXr04cpaCyU0mmNxYpytX5JdOcLBcjh1Lq5NxdZUPZ3t7uf7tt/JLqHZtWVwspx/St25J8d9ff8l1Nzfgk09kRVZX15w9N5FKQUGyEF/BgvL/lYuL6ogIkCaHEiVkZWR7e6BVK1k3p3nztOTHFjG5yQSTG8t3+7YkL82apd3WqhWwZUv689zd00ZkRo827Z42er3UHowaJbEBMk01frwUBFr67sdEz0pIkDq06dPl33aFCjJF6+urOjIC5P1ZtUqmrfbvT7u9aFEZyend2zbfKyY3mWByY1liYqRwN2VEJjhYpn8A4N9/04Zjp08HNm1KS2Zq15ZhdHPvZZOcDKxdC4wZA1y+LLcFBQFvvmneOIiy6+pVWVTu0CG5/v77UqfGURvLdOYM8MMPwPLlaQXHH3wALFigNi4VmNxkgsmNOgkJ0u6YMqw6dSowbpwkDM/S6aRO5scfgerVzR9nVsTHp/2qWrkyrY0zPBwoXlxtbEQvsm6dTG9ERcnI56JFQIcOqqOirIiLk5qcRYvkx17Kfl5HjsgPrj59gLJl1cZoakxuMsHkxjz0euDiRfkf79k6mZ07pfURkHbTHj2AYsXSRmNS6mSs8a25e1daPevUSf/hQ2QJkpNlhHHPHllEbtUq25za0Jr33gOWLpXj//1Pktd335XNPrWGyU0mmNyY1qFDMpd/5Ajw4MF/7//mG2DIEDmOjpZpKa10AmzaJItyJSTI9U6dZJ2QV19VGhZRquvXZf+j0aNZJ6YV27YB8+ZJzVTKKLi7uxSK9+0LVKmiNj5jYnKTCSY3Offokay0mTIq06UL0K6d3HfokPwqBGQvmmrV0o/KlCpl/joZc7pyRYqMV66U0atcuaSmYdw4KUAmMhe9XuoyLl8GZsxQHQ2Z2r//ygjO4sVp63uVKCHvv1Y+c5ncZILJjeEePgRWr06bXjp9Wj44U/TvL78cAODpU1l1s1YtoFKltEXwbM3x4/LreOtWuZ4vnxRK858cmcODB1KDsWGDXP/777TpYNK25GRpcli0SKbGR46U2+PjgeHDZVmLOnWsc7sHJjeZYHLzYsnJUicTHAzkzy/t14C0Znt6pj/XxydtNObNNw1fGM9W7N4tHy41aqQlgIDsFpyyLg+RMe3fL19g4eEy9fTFF8Dgwdr59U7Zs3691OIAslJ7374ydVWggNq4DMHkJhNMbtLcvJm+BfvIERmlAYCmTYHt29PO7dFDig9r15ZRGU6xZJ1eLyNaKQV+//wDtGkDTJokX0JMcsgYkpKAadNk25CkJKn1Wr2ahe0kjh8HZs6UzqqnT+U2R0egfXtJdBo2tPzRHCY3mbDV5CY6WooJK1SQ68nJMjoTHZ3+PCcnab/285MvXzK+nj2BFSvkuFIl6axq0cLyP1jIsrVvnzYN1b27jBTmzas2JrI8Dx9KTeCiRZLwpDh5UraZsWRMbjJhC8lNfLyMDjw7KnP2rLQpX7yYdl7TpjJ6kzIaU7u2DFeyi8K0Hj+WfWOmTZP1RgCgQQOZPqhbV21sZL3WrwcCA4G5c4GAANXRkKXT66Ux5IcfpOh4x460+779VhZJbdrUskaWmdxkQmvJjV6f/hd/z54yFB0f/99zS5SQYuCUlUhZ96HW/fsyavPtt7JAFyBFoIsWqY2LrENcHHD+vIz+pbh9GyhcWF1MZJ2e/R558AAoUkT+fRUvLuvo9OplGYuTGvL9zRIzK3PjhqxSOWYM8NZbUvuS8sUIyLRSfLwUiTVvLm3Jv/0mIzRXr6ZfYp2JjVoFCgBffglcuCAfHnZ2MnJG9DLnz8uSC02aAJGRabczsaHsePYHcny8bO+QP78UpU+cKPWWLVsCGzemreNl6ThyYwU2bZIajeBgWcvgecHBMq0EyPCiXi9TUKzhsC6nT8s6QI6Ocv3XX4EDB6TbKn9+tbGRZdDr5bNgwAAgNlZ28968GahfX3VkpDVPn0oN16JF0vWZYuZMYOhQNTFxWioTlprcxMVJcVdK19LkyTKNBMiv+5S1CuzspOgrpQ27Vi3WyWhRYqK8r+fOSWIzejQwcKA2l1SnrHn0SNaUWrlSrjdqJFuYFC2qNCyyARcuyOKAK1fK91NKt+xff8msQLt2MmtgakxuMmEpyU1kpOyzlFLwGxaWfrjv55+Bzp3l+ORJacuuVUs6mfLkURIymZFeD/z+uyQ1p07JbcWKSQdbQEDa5qNkG44elc+DS5dkOnnSJGDUKE4tk3klJ6dfL+nNN4Fdu2SKvUcPqRk05dQ6k5tMqEhu/v1XEpiKFYEyZeS2ZxdUSlGwYNqITIcOlt+WR6aXlCS/zseNAyIi5Lby5aUjpnFjtbGR+bz/vkwPFC8uG15yGopU0+uBKVOk2yrlswmQjs++fWVbHmOPNDO5yYSpk5uHD+VXVsr0UnCwFAEDsonimDFyfP26vPnP7rvk68s6GcrY06eybsnnn0uX1datUjBOtiE2Fhg7VhoEWH9FliQpSdrIf/hB6gQTEwFXV5mdMPY6S0xuMmHK5Ob06YxHW1K6YN5/XwoBibIrKgpYs0Z+GaUkwr/8ApQtm74lmKxbUJCM2C1ezG0TyHrcvAksXy5reZliEVgmN5kwZXKTmCgbI3p5pR+RqVZNMlkiY7t3TzrjHj2SOe9nC9HJ+iQkABMmyPpHej3w/feSyBKRYd/fLEs0oly5ZCjO3V11JGQr4uKAZs2AdeukRXj1ahkd/PRToFAh1dGRIa5elanqQ4fk+vvvA926KQ2JyGpxwNPImNiQOXl7y0Z4wcHSuRAfD3zzjayX89lnUqtBlm/dOqBqVUls3N3lPV24MP2im0SUdUxuiDSgVi3gzz9lyYBq1WRD1IkTM170kSzL5MlAx45ST1W3riwL0aGD6qiIrBuTGyKN0Olko7ujR2WdpAkT0pYeAGR0JzlZXXyUsVatZFXq0aOBvXula5KIcoY1N0QaY2eXtgBkihMnZFSgenXZfbxJEzWxkRQKnzqVtthZjRqyOB9XGiYyHo7cENmAM2ekYy8kBPDzkxGe0FDVUdmeBw9kyqlGDeDYsbTbmdgQGReTGyIb0LGjjA4MGiT7kO3cKV+wXbrI7WR6+/dL0fD69TJ6888/qiMi0i4mN0Q2onBhYPZs4OxZaTHW6aR1/I03pMuKTCMpSTrXGjYEwsOBV1+V3d579lQdGZF2MbkhsjElS8rqt6GhsoXDiBGAg4Pcp9fLgoBkHP/+K9OA48ZJktO9u/y916ypOjIibWNyQ2SjqlaVPaoGD067bdMmSX5mz5YFAiln1q4Fdu+Weqfly4EffzT+fjtE9F9Mbohs3LN7Fy1bBty9CwwZApQrJyM8bB/PvsGD5RIaCgQEqI6GyHYwuSGiVOvXy35GRYrIdgA9ekj7+NatMmVFmTt/HujaVTYOBCRxnDUr/XpDRGR6TG6IKFWuXLJR48WLwNSpshXA8eNAy5bAhx+qjs6yrVghieDPPwNjxqiOhsi2Mbkhov9wcZEVcy9dAoYPlxV0/f1VR2WZUnZk79lT9vJq1Ej+zohIHSY3RPRCBQsCM2YAV64ALVqk3f7VV7Jrta3vXRUSIqM1P/0kU1BTpsgeX1yUj0gtJjdE9FJFisi6OAAQEwN8/jmwaJGs2TJqlKy8a2vWrwfq1ZMpPB8fYM8eYOxYwN5edWRExOSGiAySJw/w+++y+N/Tp7JXValSMsLz5Inq6Mynbl3AzQ1o21Z28n7jDdUREVEKJjdEZLD69WUH619/BSpWlJGbESOkKygoSHV0pnP+fNpx0aKyA/v69UCBAupiIqL/YnJDRNmi00mR8fHjsj6Ojw8QGQkUK6Y6MuNLSAA+/VTW/tm4Me12X9+06ToishxMbogoR+ztpVPo/HlgyxagbNm0+2bMAP7+W11sxnD1KtCgATBtmqz1c+CA6oiI6GWY3BCRUTg5AU2bpl0/dUqKjRs0kBGekyfVxZZd69bJNhWHDsmaP2vXSsJGRJaNyQ0RmUTBgrIgoL29FCBXrgwEBgLXrqmO7OUePwY++ADo2BGIipLi4bAwoEMH1ZERUVYwuSEik/DyAhYskBGcd9+VKZ3ly6XoeNgw4OFD1RG+2J49sg2FTie1Nnv3Sn0NEVkHJjdEZFJly8r0zuHDQOPGQHy8JDmWrEULYNw4YOdOWdMnd27VERGRIZjcEJFZ1K4tbeLbtgFz5gD58snter0kPwkJ6mJ78ADo3Ru4cSPttsmTgSZN1MVERNnH5IaIzEanA5o1A7p0Sbvt11+ltqViRUlyzL37+P79UjS8ZAnw3nvmfW0iMg0mN0Sk1NOngIcHcOGCJDm1awN//WX6101Kkimnhg2B8HBZZfmzz0z/ukRkekxuiEipTp1k9/GJE2Vrh6NHZTqoWTPg2DHTvOaNG8Bbb8leUElJQLduQGgoULOmaV6PiMyLyQ0RKZc3LzBhgiQ5H30kBbw7dkjruLGnqY4dA6pUAXbtAlxdpbj5p59knygi0gYmN0RkMQoXBr79Fjh7VkZTpk5N297gyRPg1q2cv0aZMkChQkC1ajJaExCQ8+ckIstiEcnN3Llz4evrCycnJ9SpUwfBwcEvPLdRo0bQ6XT/ubRq1cqMERORKZUsKaMpz/5v/d13UhczYQIQHW3Y8127BiQny7Grq3RsHTwoiQ4RaY/y5GbNmjUYNmwYJkyYgNDQUFSpUgXNmjXD7du3Mzx/w4YNiIyMTL2cPHkS9vb26MClQ4k0S6+XIuPYWGnRLlVKRnji4l7+2BUrpBPr66/TbitRAnB0NF28RKSW8uRm5syZ6Nu3L3r16oUKFSpgwYIFcHFxwZIlSzI8v0CBAvDy8kq97Ny5Ey4uLkxuiDRMpwO2bpVW8TJlgLt3gcGDZZfun35KG5V51qNHQI8esqlnbKwsyJfReUSkPUqTm/j4eISEhMDPzy/1Njs7O/j5+eHgwYNZeo7Fixejc+fOcHV1zfD+uLg4REdHp7sQkfXR6WQbh5MngYULgSJFZMfuHj2ATz5Jf25ICFC9uiQ+dnbAlCmSHNkp/zlHROag9H/1u3fvIikpCZ6enulu9/T0xM2bN1/6+ODgYJw8eRJ9+vR54TnTpk2Du7t76sXHxyfHcROROrlzA++/D1y8KAXHBQoAKR8Bycmya3e9enJ/8eKyL9TYsbKBJxHZBqv+HbN48WJUqlQJtWvXfuE5o0ePRlRUVOolIiLCjBESkam4uACjRwPXrwPly8tter3s3p2QALRrJ8f166uMkohUyKXyxQsVKgR7e3vceq6/89atW/Dy8sr0sbGxsVi9ejUmT56c6XmOjo5wZOUgkWY5O6cd370LHDgAzJ8PfPBBWhs5EdkWpSM3Dg4OqFGjBoKCglJvS05ORlBQEOrVq5fpY9etW4e4uDh0797d1GESkZXw9ASuXAH69WNiQ2TLlI7cAMCwYcPQs2dP1KxZE7Vr18asWbMQGxuLXr16AQACAgJQtGhRTJs2Ld3jFi9ejDZt2qBgwYIqwiYiIiILpTy56dSpE+7cuYPx48fj5s2bqFq1KrZt25ZaZBweHg6751oczp07h3379mHHjh0qQiYiIiILptPrjb1zi2WLjo6Gu7s7oqKi4MbNZIiIiKyCId/fVt0tRURERPQ8JjdERESkKUxuiIiISFOY3BAREZGmMLkhIiIiTWFyQ0RERJrC5IaIiIg0hckNERERaQqTGyIiItIUJjdERESkKUxuiIiISFOUb5xpbilbaUVHRyuOhIiIiLIq5Xs7K1ti2lxy8+jRIwCAj4+P4kiIiIjIUI8ePYK7u3um59jcruDJycm4ceMG8ubNC51OZ9Tnjo6Oho+PDyIiIrjjuJXie2jd+P5ZP76H1s9U76Fer8ejR4/g7e0NO7vMq2psbuTGzs4OxYoVM+lruLm58X9KK8f30Lrx/bN+fA+tnynew5eN2KRgQTERERFpCpMbIiIi0hQmN0bk6OiICRMmwNHRUXUolE18D60b3z/rx/fQ+lnCe2hzBcVERESkbRy5ISIiIk1hckNERESawuSGiIiINIXJDREREWkKkxsj2Lt3L/z9/eHt7Q2dTodNmzapDokMMG3aNNSqVQt58+ZF4cKF0aZNG5w7d051WGSA+fPno3LlyqmLhtWrVw9bt25VHRZl0/Tp06HT6TBkyBDVoZABJk6cCJ1Ol+5Srlw5JbEwuTGC2NhYVKlSBXPnzlUdCmXDnj17MGDAABw6dAg7d+5EQkICmjZtitjYWNWhURYVK1YM06dPR0hICI4ePYo333wTrVu3xqlTp1SHRgY6cuQIFi5ciMqVK6sOhbKhYsWKiIyMTL3s27dPSRw2t/2CKbRo0QItWrRQHQZl07Zt29JdX7ZsGQoXLoyQkBA0aNBAUVRkCH9//3TXP//8c8yfPx+HDh1CxYoVFUVFhoqJiUG3bt2waNEifPbZZ6rDoWzIlSsXvLy8VIfBkRui50VFRQEAChQooDgSyo6kpCSsXr0asbGxqFevnupwyAADBgxAq1at4OfnpzoUyqYLFy7A29sbJUuWRLdu3RAeHq4kDo7cED0jOTkZQ4YMQf369fHaa6+pDocMcOLECdSrVw9Pnz5Fnjx5sHHjRlSoUEF1WJRFq1evRmhoKI4cOaI6FMqmOnXqYNmyZShbtiwiIyMxadIk/O9//8PJkyeRN29es8bC5IboGQMGDMDJkyeVzRNT9pUtWxZhYWGIiorCL7/8gp49e2LPnj1McKxAREQEBg8ejJ07d8LJyUl1OJRNz5ZnVK5cGXXq1EGJEiWwdu1a9O7d26yxMLkh+n8DBw7E77//jr1796JYsWKqwyEDOTg44NVXXwUA1KhRA0eOHMHs2bOxcOFCxZHRy4SEhOD27duoXr166m1JSUnYu3cv5syZg7i4ONjb2yuMkLIjX758KFOmDC5evGj212ZyQzZPr9fjo48+wsaNG7F792688sorqkMiI0hOTkZcXJzqMCgLmjRpghMnTqS7rVevXihXrhxGjhzJxMZKxcTE4NKlS+jRo4fZX5vJjRHExMSky0yvXLmCsLAwFChQAMWLF1cYGWXFgAEDsGrVKmzevBl58+bFzZs3AQDu7u5wdnZWHB1lxejRo9GiRQsUL14cjx49wqpVq7B7925s375ddWiUBXnz5v1PjZurqysKFizI2jcrMnz4cPj7+6NEiRK4ceMGJkyYAHt7e3Tp0sXssTC5MYKjR4+icePGqdeHDRsGAOjZsyeWLVumKCrKqvnz5wMAGjVqlO72pUuXIjAw0PwBkcFu376NgIAAREZGwt3dHZUrV8b27dvx1ltvqQ6NyGZcv34dXbp0wb179+Dh4YE33ngDhw4dgoeHh9lj0en1er3ZX5WIiIjIRLjODREREWkKkxsiIiLSFCY3REREpClMboiIiEhTmNwQERGRpjC5ISIiIk1hckNERESawuSGiIiINIXJDRFpUqNGjTBkyJBMz/H19cWsWbPMEg8RmQ+TGyKyWIGBgdDpdP+5qNhlmIisB/eWIiKL1rx5cyxdujTdbSr2qiEi68GRGyKyaI6OjvDy8kp3sbe3x549e1C7dm04OjqiSJEiGDVqFBITE1/4PLdv34a/vz+cnZ3xyiuvYOXKlWb8UxCROXHkhoiszr///ouWLVsiMDAQK1aswNmzZ9G3b184OTlh4sSJGT4mMDAQN27cwK5du5A7d24MGjQIt2/fNm/gRGQWTG6IyKL9/vvvyJMnT+r1Fi1aoEyZMvDx8cGcOXOg0+lQrlw53LhxAyNHjsT48eNhZ5d+UPr8+fPYunUrgoODUatWLQDA4sWLUb58ebP+WYjIPJjcEJFFa9y4MebPn5963dXVFQMGDEC9evWg0+lSb69fvz5iYmJw/fp1FC9ePN1znDlzBrly5UKNGjVSbytXrhzy5ctn8viJyPyY3BCRRXN1dcWrr76qOgwisiIsKCYiq1O+fHkcPHgQer0+9bb9+/cjb968KFas2H/OL1euHBITExESEpJ627lz5/Dw4UNzhEtEZsbkhoiszocffoiIiAh89NFHOHv2LDZv3owJEyZg2LBh/6m3AYCyZcuiefPm+OCDD3D48GGEhISgT58+cHZ2VhA9EZkakxsisjpFixbFli1bEBwcjCpVqqBfv37o3bs3xo4d+8LHLF26FN7e3mjYsCHatWuH999/H4ULFzZj1ERkLjr9s+O6RERERFaOIzdERESkKUxuiIiISFOY3BAREZGmMLkhIiIiTWFyQ0RERJrC5IaIiIg0hckNERERaQqTGyIiItIUJjdERESkKUxuiIiISFOY3BAREZGm/B/sin2EosHZEwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYVUlEQVR4nO3deXiMZxcG8HuSSCQhsUcRQmvfib22UoTmo9RWElG02qitWlutVbRapZa0tBSlllrb0qJqry2EltgqxBLUllizvt8fp9mIyCQz88y8c/+ua67OTCYzh2jmzPOccx6DpmkaiIiIiHTCQXUARERERKbE5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuOKkOwNKSkpJw5coV5M2bFwaDQXU4RERElAWapuHu3bsoVqwYHBwyX5uxu+TmypUr8Pb2Vh0GERERZcPFixdRokSJTB9jd8lN3rx5AchfjoeHh+JoiIiIKCtiYmLg7e2d8j6eGbtLbpK3ojw8PJjcEBER2ZislJSwoJiIiIh0hckNERER6QqTGyIiItIVu6u5ISIi/UtMTER8fLzqMMhIzs7Oz2zzzgomN0REpBuapuHq1au4c+eO6lAoGxwcHFC6dGk4Ozvn6HmY3BARkW4kJzZFihSBm5sbh7XakOQhu1FRUShZsmSOfnZMboiISBcSExNTEpuCBQuqDoeyoXDhwrhy5QoSEhKQK1eubD8PC4qJiEgXkmts3NzcFEdC2ZW8HZWYmJij52FyQ0REusKtKNtlqp8dkxsiIiLSFSY3REREpCtMboiIiHTEx8cHM2bMUP4cKrFbypQuXADu3AGqV1cdCRER2YhmzZqhRo0aJksmDh48CHd3d5M8l61icmMq+/cDfn6Apydw+DCQP7/qiIiISCc0TUNiYiKcnJ79tl24cGELRGTduC1lKuXLA/nyAefPA717A5qmOiIiIvrP/ftPvzx6lPXHPnz47McaIygoCDt27MDMmTNhMBhgMBhw/vx5bN++HQaDAb/99ht8fX3h4uKCXbt24Z9//kH79u3h5eWFPHnyoE6dOti6dWu653x8S8lgMOCbb77Bq6++Cjc3N5QtWxYbNmwwKs7IyEi0b98eefLkgYeHB7p06YJr166lfP3o0aNo3rw58ubNCw8PD9SuXRuHDh0CAFy4cAH+/v7Inz8/3N3dUblyZWzcuNG4vygjMbkxlXz5gFWrAGdnYP16wIb3KomI9CZPnqdfOnVK/9giRZ7+WD+/9I/18XnyMcaYOXMmGjRogH79+iEqKgpRUVHw9vZO+foHH3yAKVOmIDw8HNWqVcO9e/fQtm1bbN26FUeOHEHr1q3h7++PyMjITF9nwoQJ6NKlC44dO4a2bduiR48euHXrVpZi1DQNHTp0wK1bt7Bjxw5s2bIF//zzD7p27ZrymB49eqBEiRI4ePAgQkNDMWLEiJQhfMHBwYiNjcXOnTvx119/4ZNPPkEeY/+ijMRtKVOqXRv44gsgOBj44AOgQQOgfn3VURERkZXy9PSEs7Mz3NzcULRo0Se+PnHiRLz88ssptwsWLIjqaeo6J02ahLVr12LDhg0YMGDAU18nKCgI3bt3BwBMnjwZs2bNwoEDB9CmTZtnxrh161YcO3YMERERKYnXkiVLULlyZRw8eBB16tRBZGQk3n//fVSoUAEAULZs2ZTvj4yMRKdOnVC1alUAQJkyZZ75mjnF5MbU3n4b2LkTWLEC6NIFOHIE4BhwIiKl7t17+tccHdPfvn796Y99/MDq8+ezHVKW+Pr6prt9//59TJgwAT///HPKMQUPHz585spNtWrVUq67u7sjb968uJ7ZHzSN8PBweHt7p1tRqlSpEvLly4fw8HDUqVMHQ4cORd++fbFkyRK0bNkSnTt3xvPPPw8AGDhwIN5++21s3rwZLVu2RKdOndLFYw7cljI1gwGYNw8oWxa4eBEIDASSklRHRURk19zdn37JnTvrj3V1ffZjTRt3+id8//33sXr1anz88cfYtWsXwsLCULVqVcTFxWX6PI+f02QwGJCUxfcmTdMynByc9v7x48fj+PHjaNeuHbZt24ZKlSph7dq1AIC+ffvi3LlzCAgIwF9//QVfX1/MmjUrS6+dXUxuzMHDA1i5EnBxATZuBKZNUx0RERFZKWdn5yyfpbRr1y4EBQXh1VdfRdWqVVG0aFGcN/PyUaVKlRAZGYmLFy+m3HfixAlER0ejYsWKKfeVK1cOQ4YMwebNm9GxY0csXLgw5Wve3t7o378/1qxZg/feew/z5883a8xMbsylRg0gOTMdPRrYvVtpOEREZJ18fHywf/9+nD9/Hjdu3Mh0ReWFF17AmjVrEBYWhqNHj+L111/P8gpMdrVs2RLVqlVDjx49cPjwYRw4cACBgYFo2rQpfH198fDhQwwYMADbt2/HhQsXsGfPHhw8eDAl8Rk8eDB+++03RERE4PDhw9i2bVu6pMgcmNyYU9++QI8eQGIi0LUr8O+/qiMiIiIrM2zYMDg6OqJSpUooXLhwpvUzX3zxBfLnz4+GDRvC398frVu3Rq1atcwan8FgwLp165A/f340adIELVu2RJkyZbBixQoAgKOjI27evInAwECUK1cOXbp0gZ+fHyZMmABATvgODg5GxYoV0aZNG5QvXx5z5841b8yaZl8DWWJiYuDp6Yno6Gh4eHiY/wXv3QPq1AFOngRatQI2bXqyIo2IiHLs0aNHiIiIQOnSpZH78UIasgmZ/QyNef/mu6y55ckj829cXYHNm4HJk1VHREREpGtMbiyhShUgeQlu3Djgjz/UxkNERKRjTG4sJShILklJwOuvA2nGVhMREZHpMLmxpDlzgMqVgatXJcHJYusfERERZR2TG0tyc5P6G3d3YNs2YOJE1RERERHpDpMbS6tYEfj6a7n+0UfAli1q4yEiItIZpcnNzp074e/vj2LFiqX00WcmKioKr7/+OsqXLw8HBwcMHjzYInGaXI8eQL9+gKbJ9StXVEdERESkG0qTm/v376N69eqYPXt2lh4fGxuLwoULY/To0elORbVJM2cC1avLYL/u3YGEBNURERER6YLSU8H9/Pzg5+eX5cf7+Phg5syZAIAFCxZk6XtiY2MRGxubcjsmJsa4IM3F1VXOn/L1lVPEx47lDBwiIrKoZs2aoUaNGpgxY4bqUExK9zU3U6ZMgaenZ8ol7ZHtypUrB3zzjVyfMkWmFxMRkV1p1qyZycssgoKC0KFDB5M+py3RfXIzcuRIREdHp1zSnmpqFbp0Ad55R64HBADWFh8REZGN0X1y4+LiAg8Pj3QXqzN9OlCrFnDzJtCtGxAfrzoiIiKygKCgIOzYsQMzZ86EwWCAwWDA+fPnAQAnTpxA27ZtkSdPHnh5eSEgIAA3btxI+d4ff/wRVatWhaurKwoWLIiWLVvi/v37GD9+PBYtWoT169enPOf27duzFM/t27cRGBiI/Pnzw83NDX5+fjhz5kzK1y9cuAB/f3/kz58f7u7uqFy5MjZu3JjyvT169EDhwoXh6uqKsmXLYuHChSb7uzKG0pob+o+Li8y/qVUL2LsXGDUKmDZNdVRERLZP04AHDyz/um5ugMHwzIfNnDkTp0+fRpUqVTDxv9lnhQsXRlRUFJo2bYp+/fph+vTpePjwIYYPH44uXbpg27ZtiIqKQvfu3fHpp5/i1Vdfxd27d7Fr1y5omoZhw4YhPDwcMTExKclFgQIFshR2UFAQzpw5gw0bNsDDwwPDhw9H27ZtceLECeTKlQvBwcGIi4vDzp074e7ujhMnTiBPnjwAgDFjxuDEiRPYtGkTChUqhLNnz+Lhw4fZ/AvMGSY31qJMGWDhQqBjR+Czz4AmTQB/f9VRERHZtgcP5ABjS7t3Twa2PoOnpyecnZ3h5uaGokWLptwfEhKCWrVqYXKaRpMFCxbA29sbp0+fxr1795CQkICOHTuiVKlSAICqVaumPNbV1RWxsbHpnvNZkpOaPXv2oGHDhgCApUuXwtvbG+vWrUPnzp0RGRmJTp06pbxWmTJlUr4/MjISNWvWhK+vLwBpAlJF6bbUvXv3EBYWhrCwMABAREQEwsLCEBkZCUDqZQIDA9N9T/Lj7927h3///RdhYWE4ceKEpUM3j1dfBQYNkuu9egH/LU0SEZF9CQ0NxR9//IE8efKkXCpUqAAA+Oeff1C9enW0aNECVatWRefOnTF//nzcvn07R68ZHh4OJycn1KtXL+W+ggULonz58ggPDwcADBw4EJMmTUKjRo0wbtw4HDt2LOWxb7/9NpYvX44aNWrggw8+wN69e3MUT04oTW4OHTqEmjVrombNmgCAoUOHombNmhg7diwAGdqXnOgkS358aGgoli1bhpo1a6Jt27YWj91sPv0UqFsXuH0b6NoViItTHRERke1yc5NVFEtf3NxyFHZSUhL8/f1TPtAnX86cOYMmTZrA0dERW7ZswaZNm1CpUiXMmjUL5cuXR0RERLZfU9O0p95v+G+LrW/fvjh37hwCAgLw119/wdfXF7NmzQIg410uXLiAwYMH48qVK2jRogWGDRuW7XhyRLMz0dHRGgAtOjpadShPFxGhafnzaxqgaYMGqY6GiMgmPHz4UDtx4oT28OFD1aEY5eWXX9YGDBiQ7r5Ro0Zp5cuX1+Lj47P0HAkJCVrx4sW1zz//XNM0TevXr5/2yiuvPPP7mjZtqg36733m9OnTGgBtz549KV+/ceOG5urqqq1atSrD7x8xYoRWtWrVDL/21VdfaXnz5s1S/Mky+xka8/6t+24pm+TjAyxaJNdnzgTWrFEaDhERmY+Pjw/279+P8+fP48aNG0hKSkJwcDBu3bqF7t2748CBAzh37hw2b96MN954A4mJidi/fz8mT56MQ4cOITIyEmvWrMG///6LihUrpjznsWPHcOrUKdy4cQPxWejCLVu2LNq3b49+/fph9+7dOHr0KHr27InixYujffv2AIDBgwfjt99+Q0REBA4fPoxt27alvObYsWOxfv16nD17FsePH8fPP/+c8jVLY3Jjrfz9geTlvDfeAP75R208RERkFsOGDYOjoyMqVaqEwoULIzIyEsWKFcOePXuQmJiI1q1bo0qVKhg0aBA8PT3h4OAADw8P7Ny5E23btkW5cuXw4Ycf4vPPP0+Z+t+vXz+UL18evr6+KFy4MPbs2ZOlWBYuXIjatWvjlVdeQYMGDaBpGjZu3IhcuXIBABITExEcHIyKFSuiTZs2KF++PObOnQsAcHZ2xsiRI1GtWrWUrbPly5eb5y/tGQya9pRNNp2KiYmBp6cnoqOjrXPmTVrx8UCzZtIeXqsWsGcPkDu36qiIiKzSo0ePEBERgdKlSyM3f1fapMx+hsa8f3PlxprlygWsWAEULAgcPgy8957qiIiIiKwekxtrV6IEsGSJXJ87V5IdIiIieiomN7bAzw8YOVKu9+sHnD6tNh4iIiIrxuTGVkycKFOL794FOncGFI20JiIisnZMbmyFkxPwww9A4cLAsWOpk4yJiCgdO+uT0RVT/eyY3NiSYsWAZcvkMLb584GlS1VHRERkNZLblR+oOCiTTCLuv6n8jo6OOXoeHpxpa1q2BMaMkW2qt96SFnFFQ5KIiKyJo6Mj8uXLh+vXrwMA3NzcUo4NIOuXlJSEf//9F25ubnByyll6wuTGFo0dC+zeDWzbJvU3+/dn6fRZIiK9Sz4FOznBIdvi4OCAkiVL5jgpZXJjixwdZXuqRg3g+HFgwABg4ULVURERKWcwGPDcc8+hSJEiWTpygKyLs7MzHBxyXjHD5MZWeXlJgXGLFsB33wFNmwJBQaqjIiKyCo6Ojjmu2yDbxYJiW9asGTBhglx/5x3g77+VhkNERGQNmNzYulGjgNatZe5N587AvXuqIyIiIlKKyY2tc3CQ4xmKFwdOngT69wc444GIiOwYkxs9KFwYWL5cCo2XLgW++UZ1RERERMowudGLF18EPv5Yrr/7LhAWpjQcIiIiVZjc6Mn77wPt2gGxsVJ/ExOjOiIiIiKLY3KjJw4OwKJFgLc3cPasnCDO+hsiIrIzTG70pmBBYOVKOWhz5UogJER1RERERBbF5EaP6tcHPv1Urg8ZAoSGqo2HiIjIgpjc6NXgwUCHDkBcnNTf3LmjOCAiIiLLYHKjVwYDsGAB4OMDREQAb7zB+hsiIrILTG70LH9+qbvJlQtYuxb48kvVEREREZkdkxu9q1MHmD5drg8bBuzfrzYeIiIiM2NyYw+Cg6XuJiEB6NIFuHVLdURERERmw+TGHhgMwPz5wPPPA5GRQFAQ62+IiEi3mNzYC09PYNUqwMUF+Okn4PPPVUdERERkFkxu7EnNmsDMmXJ9xAhgzx618RAREZkBkxt78+abQPfuQGIi0LUrcOOG6oiIiIhMismNvTEYgK+/BsqVAy5fBgICgKQk1VERERGZDJMbe5Q3r9Tf5M4N/PorMHWq6oiIiIhMhsmNvapWDZgzR66PGQPs2KE2HiIiIhNhcmPPevcGAgNlW6p7d+DaNdURERER5RiTG3tmMABz5wKVKgFRUUDPnlJoTEREZMOY3Ng7d3epv3FzA7ZuBSZNUh0RERFRjjC5IVm5+eoruT5hAvD772rjIcouTePxIkTE5Ib+ExAA9Okjbw6vvy7bVES2JCoKaNECKFRItluJyG4xuaFUs2YBVasC169LgXFCguqIiLJm61agRg3gjz8kQR80iBO4iewYkxtK5eoq9Td58khr+PjxqiMiylxiIjB2LNCqlSTlVasC/v6SmHfuDFy9qjpCIlKAyQ2lV768nCAOAJMnA7/9pjYeoqe5ckW2oT76SFZr3nwT2L8fWLYMqFxZtqm6dgXi41VHSkQWxuSGntStG9C/v7xh9OwJXLqkOiKi9DZvlm2oHTtkpXHZMjlWxNVVbq9ZI5O4d+6UQ2KJyK4wuaGMffGFnCJ+44bU3/DTL1mDhATgww+BNm2Af/8FqlcHQkPl32ha5coBixbJ9enTgZUrLR8rESnD5IYylju3vCF4eAC7d8sbCpFKydtQH38sq4pvvQX8+ackMhl59dXUVZs33gBOnLBcrESkFJMberoXXgAWLJDrn34K/Pyz2njIfv32m2xD7dwp204//CCzmVxdM/++jz4CXnoJuH8f6NgRiImxSLhEpBaTG8pcp07Au+/K9V69gMhItfGQfUlIAEaPTr8Ndfiw1IVlhZOTJEIlSgCnTskKjqaZN2Yie3f4MPDggdIQmNzQs02bBtSpI5Nfu3YF4uJUR0T24PJlWXWZPFluv/02sG8fULascc9TpAjw449ArlzA6tXA55+bPlYiEidPyv+3TZvKBxJFmNzQs7m4ACtWAPnyyZsLu0/I3H79Vbahdu2SrqcVK2TqcO7c2Xu+evWAL7+U68OHy7A/IjKtmzeBV14BoqPl/1UPD2WhMLmhrCldGvjuO7n+xRfAunUqoyG9SkgARo4E/PykU69mTVni7tIl58/91luytZqUJCuQHHFAZDrx8cBrrwH//AP4+Mg4BhcXZeEwuaGsa98eGDpUrgcFAefOKQ2HdObSJaB5c2DqVLn9zjvA3r1S2G4KBgMQEiIrQv/+KxOMucVKlHOaJrWZ27dLwf9PPwGFCysNickNGWfqVKB+fVl27NIFiI1VHRHpwaZNknTs3i3bUCtXAnPmZH8b6mlcXaXuJnmL9b33TPv8RPZo9mwZomkwSAF/lSqqI2JyQ0bKlUvqHwoUkOFpw4apjohsWXy81HC1bSv79bVqAUeOyKqKuZQpA3z/vVyfPTv1OhEZ77ffgMGD5fqnn0rNjRVgckPGK1kSWLJErs+eLYdtEhnr4kWgWTPgk0/k9rvvyjbU88+b/7XbtZMDNwE5k+rYMfO/JpHenDwp9WtJSUDv3la1EsrkhrKnbVvpOgGAPn2As2fVxkO25eefZRtq717pqPjxR+lmsmQB4tixMj/n4UMZ8HfnjuVem8jW3boF+PtLicKLL0o9m8GgOqoUTG4o+yZNkn/Ud+/KNsKjR6ojImsXHw988IH8Urx1C/D1lW2oTp0sH4ujI7B0qXR2/PMPEBgon0CJKHPJnVFnz1pFZ1RGmNxQ9jk5AcuXA4UKAWFhqfuuRBmJjJTBXtOmye2BA6WAuEwZdTEVKCAFxi4u0uExZYq6WIhsQXJn1B9/WE1nVEaY3FDOFC8un34NBqmW/+EH1RGRNfrpJ9mG+vNPwNNTEoqZM63j016tWjIgEADGjAE2b1YbD5E1s8LOqIwwuaGca9VKzv8BgH79pMiMCJDl62HDgP/9D7h9W47xOHJEalysyRtvyL9dTQNefx24cEF1RETWZ/Nmq+yMygiTGzKN8eNlANv9+1J/o/jQNLICFy4ATZqknuU0eLBsQ5UurTSsp/ryS6kBunlT6glYQ0aU6uRJmW1mhZ1RGWFyQ6bh6AgsWwZ4eQF//516kjjZpw0b5OiEfftkYN7atXJsh7Oz6sieLndu6doqWBA4dEhqgojI6jujMsLkhkynaFFJcBwcgAULgMWLVUdElhYXJ5/o2reXbai6dWUbqkMH1ZFlTalSUkdgMADz5wPffqs6IiK10nZGlSqVWoBv5ZjckGm99BIwbpxcf/tt4PhxtfGQ5Zw/DzRuDEyfLreHDJFTvX18VEZlvJdfljEHABAcLJO4iexRRp1RRYqojipLmNyQ6Y0eLW8QDx5I/c29e6ojInNbv162oQ4ckG2odeskybHmbajMjBghy/CxsfKp9eZN1RERWd7jnVFVq6qOKMuY3JDpOTrKeT3FigHh4XK6s6apjorMIS5OVmg6dJAJv/XqyTZU+/aqI8sZBwfZVn3+eVmR6tEDSExUHRWR5aTtjPrkE6vujMoIkxsyjyJFJNN3cJBzqBYsUB0RmVpEhBQXzpght997D9i50/a2oZ4mXz6ZvOrqKocDTpyoOiIiy0jbGRUUZJMHJDO5IfNp0iS1dmHAAB5OqCdr18o21MGDQP78si312We2uw31NNWqAfPmyfWJE+VMLCI9e7wz6quvrL4zKiNKk5udO3fC398fxYoVg8FgwLp16575PTt27EDt2rWRO3dulClTBl999ZX5A6XsGz4c8POTmSGdO8s5VGS74uJkqbpjR/nlV7++bEP973+qIzOfnj0lOQeAgAA5h4pIj+Lj5fe0jXVGZURpcnP//n1Ur14ds2fPztLjIyIi0LZtWzRu3BhHjhzBqFGjMHDgQKxevdrMkVK2JdculCgBnD4NvPkm629s1blzQKNGcmwCIEvVO3fKL0G9+/xzoEEDqSvq1IlDKkl/kjujtm2zuc6ojBg0zTreaQwGA9auXYsOmczDGD58ODZs2IDw8PCU+/r374+jR4/izz//zNLrxMTEwNPTE9HR0fDw8Mhp2JRVe/fKoYkJCTIAqn9/1RGRMdaskSMKoqPlsMlFi2yuwDDHLl+Wc6iuX5cTxL/7ziaX64kyNGuWDK40GGQIpxX+/23M+7dN1dz8+eefaNWqVbr7WrdujUOHDiE+Pj7D74mNjUVMTEy6CynQsGHqicuDBgGHD6uNh7ImNlZ+4XXqJIlNgwayDWWFv/jMrnhxYMUK6QZcvFhaZIn0wMY7ozJiU8nN1atX4eXlle4+Ly8vJCQk4MaNGxl+z5QpU+Dp6Zly8fb2tkSolJH33pNCtbg42deNjlYdEWUmeRtq1iy5/cEHwI4dQMmSauNSqVkzYOpUuT5wILB/v9JwiHIsbWdUr1422RmVEZtKbgDZvkoreVft8fuTjRw5EtHR0SmXixcvmj1GegqDQbYzSpWSN84+fVh/Y61+/FG6oUJDZRvq55/lE12uXKojU++992QlK3ks/fXrqiMiyp60nVGNGqUO7NMBm0puihYtiqtXr6a77/r163ByckLBggUz/B4XFxd4eHiku5BC+fMDK1fKm+Tq1TIBk6xHbKwUFXbuDMTEyHZiWBjQrp3qyKyHwQAsXAhUqABcugR06ya1ZES25PHOqDVrbLYzKiM2ldw0aNAAW7ZsSXff5s2b4evri1z8RGk76tYFpk2T6++9JyP7Sb1//pFkJjnhHD4c2L4d4Fbuk/LmlTeDPHnk3J0PP1QdEVHWaZpsq+qkMyojSpObe/fuISwsDGFhYQCk1TssLAyRkZEAZEspMDAw5fH9+/fHhQsXMHToUISHh2PBggX49ttvMUwne4R2ZeBAmZUSHy/7vbdvq47Ivq1aJZ1Ahw8DBQsCGzdKbQk/NDxdxYqpk7c/+UQGGxLZgjlzUofzLVtmU2dGZZmm0B9//KEBeOLSq1cvTdM0rVevXlrTpk3Tfc/27du1mjVras7OzpqPj48WEhJi1GtGR0drALTo6GgT/Sko2+7c0bQyZTQN0LT27TUtKUl1RPbn4UNNe/tt+RkAmvbii5p28aLqqGzL0KHyd5c3r6adOqU6GqLM/fabpjk4yL/ZTz9VHY1RjHn/tpo5N5bCOTdW5vBhaS+Oi5NBaUOHqo7Ifpw5I6tm/62cYuRIOWLAyUlpWDYnPh5o2VIGGlauDOzbJ0v9RNbm5EmZKh4dLZ1RCxfaVAGxbufckA7VqpV68OLw4UAWhzFSDq1YAdSuLYlNoULApk3A5MlMbLIjVy75+3zuOeD4caBvX3YBkvXRcWdURpjckHr9+wNdu0rHSdeuwM2bqiPSr0ePgLfflg6fu3eBxo0lwWnTRnVktq1oUalbcnKSROfLL1VHRJRK551RGWFyQ+oZDHLyctmywMWLMto+KUl1VPpz+rQsSScXEo4eLd0SxYurjkwfGjUCpk+X68OGAbt3q42HCLCLzqiMMLkh6+DhIZ98c+eWTp3kVnEyjR9+kG2oo0eBwoWBX38FJk3iNpSpDRgAdO8uq5CdOwNRUaojIntnD51RGWByQ9ajevXUUf+jRwO7dqmNRw8ePgTeegt4/XXg3j05vDQsDHjsjDYyEYMBmD8fqFIFuHpVtlmfcu4dkdk9fmaUv7/ScCyJyQ1Zlz59gJ49gcREqQvhaPvsO3VKtqHmzZM33Q8/BLZuBYoVUx2Zvrm7y/RtDw9J0IcPVx0R2aPkM6MSE3V1ZlRWMbkh62IwACEhMtr+yhUgIID1N9mxbBng6wscOybbUL/9Bnz0EbehLKVcOTk5HAC++EKKjIksxc46ozLC5IasT548Un/j6irLqpMnq47Idjx8CLz5JtCjh2xDNWsm21Avv6w6MvvTvr3MDgJkRfL4cbXxkH2ww86ojDC5IetUpYqs4ADAuHFyfg9l7uRJoF49qfkwGICxY7kNpdpHH8mAv/v35biRmBjVEZGe2WlnVEaY3JD16tUL6N1btqW6d5cCTcrY0qWyDfXXX/LLbPNmYMIEwNFRdWT2zdFRtgi9vaUVv3dvDvgj87HTzqiMMLkh6zZ7tqziXLsmHT+Jiaojsi4PHshE3J49ZXWgeXPZhmrZUnVklKxwYeDHHwFnZ9ki+Owz1RGRHm3ZktoZNXWqXXVGZYTJDVk3Nzepv3F3l62pCRNUR2Q9krehvv1WPqmNGye/4J57TnVk9Li6dVOnFo8YIdsGRKZy8qTU2SR3Rr3/vuqIlGNyQ9avQgVpZwZk8NzmzWrjsQZLlsg21N9/A15ektSMH89tKGv25ptAUJBss3brBly6pDoi0gN2RmWIyQ3ZhtdflzcHTZMtmCtXVEekxoMH0nkTGCjbUC+9JNtQLVqojoyexWAA5s4FatQA/v0XeO01IDZWdVRky9gZ9VRMbsh2zJghU4z//Vc++SYkqI7Isk6ckO2NBQvkjXLCBFnFKlpUdWSUVa6uMuAvf35g/35g6FDVEZGterwzasMGu+2MygiTG7Idrq5Sf5M3r0x+HTNGdUSWs3gxUKeOzEopWhT4/Xdp9eY2lO0pUwb4/vvUlZwlS1RHRLbo8c6oatVUR2RVmNyQbSlbVgpoAekI2LhRbTzmdv++tA/36iVbUi1byjZU8+aqI6OcaNtWklNAzv46elRtPGRb2Bn1TExuyPZ07gwEB8v1gADg4kW18ZhL8jbUd98BDg7AxIlymreXl+rIyBTGjgX8/GSqdMeOwO3bqiMiW3DqFDujsoDJDdmmzz8HateWTgE9nrz83XfSDXXihLR2//67bMNxG0o/HBxke8rHBzh3TorEeY4aZYadUVnG5IZsk4sLsHIl4OkJ/Pln6hk+tu7+/dTJzA8fyplQYWFyRhTpT4EC0uGSOzfw8888R42eLrkz6swZdkZlAZMbsl1lygALF8r1zz+XbgFb9vffUjS8eLF8qv/4Y9mGYgeEvtWsmXqO2tixcoI70eMGDZLOKHd3dkZlAZMbsm2vvppaWNerF3D+vMposkfTpL27bl0gPFwOuvzjD2DUKElySP+CglLnOL3+um3+OybzmTNHEmB2RmUZf3OS7fvkE0kM7twBunQB4uJUR5R19+5JUtanj2xDtW4t21BNmqiOjCztyy9l5e7WLRnw9+iR6ojIGmzZIqs2gHRG/e9/auOxEUxuyPY5O0v9Tf78wMGDttM98Ndf8ma2ZIms0EyeLK3thQurjoxUcHGRAzYLFgRCQ4F331UdEamWtjMqMNB2frdZASY3pA+lSkmtCiCfgFevVhtPZjRNZvXUrSsH3hUvDmzfLkXR3IaybyVLAsuXy7+Db76RC9mnxzuj5s1jZ5QR+JuU9OOVV1I/2bzxBvDPP2rjyci9ezKbp29f2XZo0wY4cgRo3Fh1ZGQtWraUA2IBYMAA4NAhtfGQ5bEzKseY3JC+fPwx0LAhEBMjvxysqW7h2DGZXbN0qcyrmToV+OUXbkPRk4YPB9q3l4M1X3sNuHlTdURkSeyMyjEmN6QvuXIBK1ZI3cKRI9ZxMKGmAfPnA/XqyR568jbU8OHchqKMOTgAixYBL7wAXLgA9OghdRekf+yMMgn+ZiX9KVFCJr8C8ktixQp1sdy9C/TsKW2+jx7JmUJhYcCLL6qLiWyDp6dsR7i6yuybCRNUR0Tmxs4ok2FyQ/rUpo3MiQGkvuX0acvHcPSobEMtWybbUJ98Avz0E1CokOVjIdtUtaqs+gHARx/JFGPSJ3ZGmRSTG9KvCROApk2liLdzZ5kjYwmaJp0N9epJUlWiBLBjB/DBB9yGIuP16JHaFt6zJ3D2rNp4yPTSdkY1bMjOKBPgb1rSLycnWTUpUkSKeQcONP9rxsTIhNm33pJi0HbtZBuqUSPzvzbp12efyZtedDTQqRPw4IHqiMhU4uNl+OiZMzIKYO1adkaZAJMb0rdixSTBMRhkZkhyLY45hIXJNtTy5bINNW2adDoULGi+1yT74OwMrFoFeHlJot6/v6wQku0bNAj4/XfpjPrpJ3ZGmQiTG9K/Fi3kQEJAVlROnDDt82sa8NVXQP368unL2xvYuRMYNozbUGQ6xYpJcbyjo0y1/uor1RFRTrEzymz4m5fsw5gxkuQ8eCD1N/fvm+Z5Y2KA7t2Bt9+WbahXXpEW9IYNTfP8RGk1bSqF6YB84t+3T208lH3sjDIrJjdkHxwdZXhe0aKychMcnPPnPHIEqF1bPk07OUldBLehyNyGDpXBfvHx8t/r11VHRMY6dUrqbNgZZTZMbsh+eHmlntuzaBGwcGH2nkfTZCm5fn3pXClZEti1C3jvPXY4kPkZDMCCBUCFCsDly0C3bkBCguqoKKuSO6Pu3GFnlBkxuSH70rQpMHGiXA8OlpO5jREdDXTtCrzzDhAXJ7+kjhyRRIfIUvLmlQF/efIAf/wBjB6tOiLKCnZGWQyTG7I/I0cCrVvL3JvOnWWKcFYcPizbUKtWyTbU9OnA+vVAgQLmjZcoIxUrpq4+fvqpJDtk3QYPZmeUhTC5Ifvj4CAt4cWLy973s9pqNU26Gho0kJPGS5UCdu8GhgzhcjKp9dprsh0KAEFB8u+ZrNOcOcDcueyMshAmN2SfChVKbatdtix1xP3joqNlGXnAANmGat9etqHq1bNsvERPM3WqbLfevQt07CgTucm6pO2MmjKFnVEWwOSG7FejRsDkyXJ94EAZwpfWoUNArVrAjz/KaeMzZsgeef78lo6U6OmcnCRRL1ZMOgH79uWAP2vyeGfUBx+ojsguMLkh+zZsmMymiY2V+puYGHljmDVLOhnOnQN8fIA9e+STF7ehyBp5eaXWgq1YAcycqToiAtgZpZBB0+wrxY+JiYGnpyeio6Ph4eGhOhyyBrduATVrApGRwKuvyi+f5OLMV1+Vttt8+ZSGSJQls2fLIZuOjtJF1bix6ojsV3w84OcnBcQlSwIHD7KAOIeMef/myg1RgQKpg/jWrpXEJlcu+fS7ejUTG7IdwcFyinhiomyFREWpjsh+sTNKKSY3RIDMqfnsM7leurRsQw0cyCVksi0GA/D110CVKsDVq5LgxMerjsr+sDNKOSY3RMkGDQL+/lsudeqojoYoe9zdZfXRw0NGFrCA1bLYGWUVmNwQpVW5MuDmpjoKopwpWxZYvFiuz5ghx46Q+Z0+zc4oK2FUcnPgwAEkJiam3H68Fjk2NhYrV640TWRERJR97dsDo0bJ9T59gOPH1cajd7dvS+clO6OsglHJTYMGDXDz5s2U256enjh37lzK7Tt37qB79+6mi46IiLJv4kSgZUvgwQMZ8BcdrToifYqPl1ESPDPKahiV3Dy+UpNRF7mddZYTEVkvR0fghx/kDff0aaB3bw74Mwd2Rlkdk9fcGLgMR0RkPQoVkinbzs6yojBtmuqI9GXuXHZGWSEWFBMR6V2dOjJ1GwBGjgS2bVMbj15s3SojIwB2RlkZJ2O/4cSJE7h69SoA2YI6efIk7v13UNuNGzdMGx0REZlGv37Avn3AwoVAt25AaCjg7a06Ktt1+rTU2bAzyioZdfyCg4MDDAZDhnU1yfcbDIZ0HVXWhscvEJHdevhQDoxNPtl+xw4WvmbH7dsy+PP0aaBBA1kJy51bdVS6Z8z7t1ErNxERETkKjIiIFHJ1lSNFatcG9u8HhgyRehHKuuTOqNOnUzujmNhYHaOSm1KlSpkrDiIisoTSpYGlS4F27YCQEFmBCAxUHZXteLwzystLdUSUAaMKim/duoVLly6lu+/48ePo3bs3unTpgmXLlpk0OCIiMgM/P2DcOLn+1ltAWJjScGxG2s6opUvZGWXFjEpugoODMX369JTb169fR+PGjXHw4EHExsYiKCgIS5YsMXmQRERkYmPGAG3bAo8eAZ06SR0JPd3jnVHt26uNhzJlVHKzb98+/C9Nq9vixYtRoEABhIWFYf369Zg8eTLmzJlj8iCJiMjEHByAJUtkm+rcOSAgAEhKUh2VdWJnlM0xKrm5evUqSpcunXJ727ZtePXVV+HkJKU7//vf/3DmzBnTRkhEROZRoIAUGOfODfzyC/Dxx6ojsj63bwP+/nJmVIMGwNdf88woG2BUcuPh4YE7d+6k3D5w4ADq16+fcttgMCA2NtZkwRERkZnVrAl89ZVcHzcO+PVXtfFYk/h4OeWbnVE2x6jkpm7duvjyyy+RlJSEH3/8EXfv3sVLL72U8vXTp0/Dm0OhiIhsS69eQP/+cu7U668D58+rjsg6DBkitTbsjLI5RiU3H330EdavXw9XV1d07doVH3zwAfLnz5/y9eXLl6Np06YmD5KIiMxsxgygbl3ZhunUSQqN7dncucCcOeyMslFGzbmpUaMGwsPDsXfvXhQtWhT16tVL9/Vu3bqhUqVKJg2QiIgswMUFWLVKBvwdPgwMGAB8843qqNRI2xk1eTI7o2yQUccv6AGPXyAiysTvvwOtWknn1Pz5QN++qiOyrNOn5WiKO3ekg2zRIhYQWwlj3r+NSm4WL16cpccFWvG0SyY3RETPMHWqnB7u7Azs3i2nitsDnhll1cyW3Dg4OCBPnjxwcnLK8PBMQDqmbt26ZVzEFsTkhojoGTQN6NgRWLdOuoRCQ4FChVRHZV7x8TLUcOtW+TMfOMACYitjzPu3UQXFFStWhLOzMwIDA7Fjxw7cvn37iYuxic3cuXNRunRp5M6dG7Vr18auXbsyffycOXNQsWJFuLq6onz58lleTSIioiwyGIDvvgPKlgUiI6WDKjFRdVTmlbYzasMGJjY2zqjk5vjx4/jll1/w8OFDNGnSBL6+vggJCUFMTEy2XnzFihUYPHgwRo8ejSNHjqBx48bw8/NDZGRkho8PCQnByJEjMX78eBw/fhwTJkxAcHAwfvrpp2y9PhERPYWnJ7BmDeDmBmzZAowfrzoi83m8M6p6ddURUQ5lu6D44cOHWLVqFRYuXIgDBw6gQ4cOWLBgAVxcXLL8HPXq1UOtWrUQEhKScl/FihXRoUMHTJky5YnHN2zYEI0aNcK0adNS7hs8eDAOHTqE3bt3Z+k1uS1FRGSEH36QlRtAVjT8/dXGY2pbtwJt2sjK1JQpwIgRqiOipzDbtlRarq6uCAwMxIQJE1C3bl0sX74cDx48yPL3x8XFITQ0FK1atUp3f6tWrbB3794Mvyc2Nha5HyvucnV1xYEDBxAfH//U74mJiUl3ISKiLOrePbUtOiAAOHtWbTymlPbMqIAAYPhw1RGRiWQrubl8+TImT56MsmXLolu3bqhTpw6OHz+ebqDfs9y4cQOJiYnwemxf08vLC1evXs3we1q3bo1vvvkGoaGh0DQNhw4dwoIFCxAfH48bN25k+D1TpkyBp6dnyoUTlImIjDRtGtCoERAdLYXGRnyQtVqPnxk1bx5bvnXEqORm5cqV8PPzQ9myZXHw4EF8/vnnuHjxIj799FNUqFAhWwEYHvvHpGnaE/clGzNmDPz8/FC/fn3kypUL7du3R1BQEADA0dExw+8ZOXIkoqOjUy4XL17MVpxERHbL2RlYuVKKbP/6C3jrLemoslU8M0r3jJpQ3K1bN5QsWRJDhgyBl5cXzp8/jzlz5jzxuIHJS5iZKFSoEBwdHZ9Ypbl+/foTqznJXF1dsWDBAnz99de4du0annvuOcybNw958+ZFoae0Kbq4uBhVB0RERBkoVkwSnJdeAr7/XubBBAerjip72Bmle0YVFPv4+Dx1VSXlCQ0GnDt3LkvPV69ePdSuXRtz585Nua9SpUpo3759hgXFGWnatCmKFy+OZcuWZenxLCgmIsqB6dOB994DcuUCduyQLR1bEhICvPOObEGtWQN06KA6IsoiY96/jVq5OZ+Fk2IvX76c5ecbOnQoAgIC4OvriwYNGmDevHmIjIxE//79AciW0uXLl1Nm2Zw+fRoHDhxAvXr1cPv2bUyfPh1///03Fi1aZMwfg4iIsmvIEGDfPjmH6rXX5BwqW1n52LoVePdduT55MhMbHTMqucnM1atXMXnyZMyfPx8PHz7M0vd07doVN2/exMSJExEVFYUqVapg48aNKFWqFAAgKioq3cybxMREfP755zh16hRy5cqF5s2bY+/evfDx8THVH4OIiDJjMADffgv8/TcQHg506yZzcJxM9nZiHuyMsitGbUvduXMHwcHB2Lx5M3LlyoURI0ZgwIABGD9+PD777DNUrlwZQ4cORffu3c0Zc45wW4qIyAROnpQzp+7dA95/H/j0U9URPR3PjNIFs825GTVqFHbu3IlevXqhQIECGDJkCF555RXs3r0bmzZtwsGDB606sSEiIhOpUEGOaACkVXz1aqXhPBU7o+ySUcnNL7/8goULF+Kzzz7Dhg0boGkaypUrh23btqFp06bmipGIiKxRp06yagMAQUGymmNt2Blll4xKbq5cuYJKlSoBAMqUKYPcuXOjb9++ZgmMiIhswOTJQLNmsj3VsaP811qEhMiZUYC0r/PMKLthVHKTlJSEXLlypdx2dHSEu7u7yYMiIiIb4eQELF8uc3DCw4E+faxjwF/azqgpU9gZZWeMKm/XNA1BQUEpQ/EePXqE/v37P5HgrFmzxnQREhGRdfPyAn78EWjaVAb91a8v20GqsDPK7hnVLdW7d+8sPW7hwoXZDsjc2C1FRGQmc+YAAwYAjo7SkdSkieVjSNsZVb8+8McfLCDWCWPev41KbvSAyQ0RkZloGhAYKPUtXl4y4K9YMcu9fkIC4OcnW1Le3sDBgywg1hGztYITERE9lcEAfP01UK0acO2atGDHx1vu9dN2Rv30ExMbO8bkhoiITMfNTWbeeHoCe/aktoqbW0gIMHu2XGdnlN1jckNERKb1wgvAf2cCYuZM4IcfzPt6v//OM6MoHSY3RERkev/7HzB6tFzv21fOojKHtJ1RPXsCI0aY53XIpjC5ISIi85gwAXj5ZeDBAxnwFx1t2ue/fRvw90/tkJo/X+p+yO4xuSEiIvNwdASWLZMznc6cAXr1ApKSTPPcCQmpZ0Z5ewPr1rHlm1IwuSEiIvMpVEgKjJ2dgfXrTXd6ODujKBNMboiIyLx8fVM7mUaPlgLgnGBnFD0DkxsiIjK/vn2BN96Qbalu3YCLF7P3POyMoixgckNEROZnMMhqS61awI0bwGuvAbGxxj3HmTPsjKIsYXJDRESW4eoq9TcFCgAHDgCDB2f9e2/fBl55hZ1RlCVMboiIyHJ8fIClSyUx+eor4Lvvnv097IwiIzG5ISIiy2rTRmbgAMDbbwNhYZk/Prkzys0N2LCBnVH0TExuiIjI8kaPBtq1Ax49kgF/t29n/LivvkrtjFq6FKhRw2Ihku1ickNERJbn4AAsWQKUKQNEREiB8OMD/rZtAwYMkOvsjCIjMLkhIiI18ueXAuPcuYGNG4FJk1K/duaMdFSxM4qygckNERGpU6MG8PXXcn38eGDTJuDOHZ4ZRTnC5IaIiNQKDJTCYk0DevQA2rcHTp1iZxRlG5MbIiJS74svgLp1ZbVm5052RlGOMLkhIiL1XFyAH38ECheWLajvv2dnFGWbk+oAiIiIAMg2VHi4HM9QvrzqaMiGMbkhIiLrUbCgXIhygNtSREREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREemK8uRm7ty5KF26NHLnzo3atWtj165dmT5+6dKlqF69Otzc3PDcc8+hd+/euHnzpoWiJSIiImunNLlZsWIFBg8ejNGjR+PIkSNo3Lgx/Pz8EBkZmeHjd+/ejcDAQPTp0wfHjx/HqlWrcPDgQfTt29fCkRMRkTls2wb88IPqKMjWKU1upk+fjj59+qBv376oWLEiZsyYAW9vb4SEhGT4+H379sHHxwcDBw5E6dKl8eKLL+Ktt97CoUOHLBw5ERGZUmwsMGgQ0KIFEBqaer+mAUlJ6uIi26QsuYmLi0NoaChatWqV7v5WrVph7969GX5Pw4YNcenSJWzcuBGapuHatWv48ccf0a5du6e+TmxsLGJiYtJdiIjIepw6BdSvD3z5pdx+8cXUr/3+O1CuHDBlChAVpSY+sj3KkpsbN24gMTERXl5e6e738vLC1atXM/yehg0bYunSpejatSucnZ1RtGhR5MuXD7NmzXrq60yZMgWenp4pF29vb5P+OYiIKHs0DfjuO6B2bSAsDChUCPj5Z6BDh9THLF4M/PMPMGoU4O0NvPoq8MsvQGKioqDJJigvKDYYDOlua5r2xH3JTpw4gYEDB2Ls2LEIDQ3Fr7/+ioiICPTv3/+pzz9y5EhER0enXC5evGjS+ImIyHgxMUDPnkDv3sD9+0Dz5sDRo8DjC/EhIcCCBUCDBpLQrFsHvPIK4OMDjBsn21lEj1OW3BQqVAiOjo5PrNJcv379idWcZFOmTEGjRo3w/vvvo1q1amjdujXmzp2LBQsWIOop65UuLi7w8PBIdyEiIrVu3ZIVGEdHYNIkYMsWoFixJx/n7i4J0N69wN9/A4MHAwUKAJcuAStXAs7OqY/VNIuFT1ZOWXLj7OyM2rVrY8uWLenu37JlCxo2bJjh9zx48AAODulDdnR0BCArPkREZL3S/pr28QG+/x7YsQMYPVqSnGepXBn44gvgyhXpqJo0CUhe6H/wAKhQAfjgA+D0abOETzZE6bbU0KFD8c0332DBggUIDw/HkCFDEBkZmbLNNHLkSAQGBqY83t/fH2vWrEFISAjOnTuHPXv2YODAgahbty6KZZTyExGRVbh+XbaTfv019b5XXgEaNTL+uVxcgG7dgE6dUu9bt06SmmnTgPLlgWbNJHl6+DCnkZMtclL54l27dsXNmzcxceJEREVFoUqVKti4cSNKlSoFAIiKiko38yYoKAh3797F7Nmz8d577yFfvnx46aWX8Mknn6j6IxAR0TNs3QoEBABXr8rW0tmzQK5cpn2Nzp1lC2v+fGDTJlkR2rEDePddee3335eCZLIPBs3O9nNiYmLg6emJ6Oho1t8QEZlRfDwwdizwySeyJVWpErBiBVClinlf99IlKUL+9lsg+fPx2bPA88+b93XJvIx5/1beLUVERPoTEQE0aQJMnSqJzZtvAgcPmj+xAYASJSSpOndOtsHGj0+f2PTqBfTrBxw4wCJkveLKDRERmdSlS1L8GxMDeHrKVlHnzqqjEteuSfKTkCC3q1UD+vaVtvT8+dXGRpnjyg0RESlTogTQsaPMpgkLs57EBgCKFJGpxz17ArlzA8eOAQMHSht6QICsLpHt48oNERHl2F9/AV5ekjwA0qXk5GT6wmFTun0bWLpUVpaOHZP7vvxSipDJ+nDlhoiILELTZIpw3bpAUFDqIZeurtad2ACyDTVggKwuHTgAvPWWrOgkW7QIeO014LffeNyDrVHaCk5ERLbr1i0pzF2zRm4bDDJML08etXEZy2AA6tSRS1ohIcD+/cDq1UCpUsAbb8ilRAk1cVLWceWGiIiMtns3UKOGJDa5cgHTpwM//WR7iU1m5s2TLap8+YALF+Qsq1KlZPjgTz+pjo4yw+SGiIiyLDFRjj1o2hS4eBF44QXgzz+BIUMAB529o1SrJjU4V67ItOOmTWXb7ZdfgLlzVUdHmdHZP0UiIjKnBw+A776TN/mePYHDh4HatVVHZV6urkCPHsD27cCpU3J+1cCBqV+/dAl4+WVg+XKeUm4t2C1FRERGOXgQCA8H0hz9Z9cmTpQtK0BOLA8MlFqkSpXUxqU3xrx/M7khIqKnio0Fhg+X7acBA1RHY50uXJDjHhYskFWcZA0byoDA7t1lpg7lDJObTDC5ISLKmtOn5fTtI0fkJO6ICOC551RHZb0SE6VtfP58KThOTATc3ICoKIBvNzlnzPs3W8HJ7iUkAMePy5yL8HA5D6d9e2kPJbJXixcD77wD3L8PFCokdTZMbDLn6Ai0bSuXqCj5O3v4MH1iExgok5tff12OpiDz4MoN2a2oKKBLFyA0VH4BpVW/PvDZZ0CjRmpiI1Ll7l1Jar7/Xm43by7XixVTG5cehIYCvr5y3c1Nfv/07SvbV/ww9WycUEz0n+vXpW1z3Dj5NPXee6lfK1QIOHQo9ZNVixYyoMvNDdi3T7pAiOxJXJxMGv7+e1mFmDQJ2LKFiY2plCkDfPGFFBond529+KKclP7FF8DNm6oj1A+u3JCuaJr8kti/X7aZzp9P//UqVeQMnGS//AI8/zxQrlzqjI6oKGDWLGD8eMDZWe7bvx8oWlQGeBHp2dSpMpn3hx9kRYFMT9PkA9T8+cCKFZLoAFKn88oramOzZiwozgSTG32Ij0+tk7lzR+ZOJKtQQWZRJKtYUcaq160L1KuXuixszGtVriwdEcHBwKhRsupDpAfXrwPR0UDZsnI7KUm2plgPYhkxMZJIbtgArF8vh40C8gErJgbo3ZsrZ8mY3GSCyY1tioiQTzoHDsjlyJHUOhl3d/nl7Ogot7/8Uj4J1a0rw8Vy+kv62jUp/tu2TW57eADvvy8TWd3dc/bcRCr9/rsM4itYUP6/cnNTHREB0uRQqpRMRnZ0BNq1k7k5bdqkJj/2iMlNJpjcWL/r1yV5ad069b527YCNG9M/ztMzdUVm5EjznmmjaVJ7MGKExAbINtXYsVIQaO2nHxOlFR8vdWhTp8q/7UqVZIvWx0d1ZATIz2fZMtm22rMn9f7ixWUlp08f+/xZMbnJBJMb63LvnhTuJq/IHDgg2z8AcPly6nLs1KnAunWpyUzdurKMbumzbJKSgJUrgdGjgXPn5L7ffwdeesmycRBl1/nzMlRu3z65/eabUqfGVRvrFB4OfPMNsGhRasHxW28BX32lNi4VmNxkgsmNOvHx0u6YvKw6eTIwZowkDGkZDFIns2QJUKuW5ePMiri41E9VS5emtnFGRgIlS6qNjehpVq2S7Y3oaFn5nD8f6NxZdVSUFbGxUpMzf7582Es+z+vgQfnA1bcvUL682hjNjclNJpjcWIamAWfPyv94aetktmyR1kdA2k0DAoASJVJXY5LrZGzxR3PjhrR61quX/pcPkTVISpIVxh07ZIjcsmX2ubWhN2+8ASxcKNcbN5bk9bXX5LBPvWFykwkmN+a1b5/s5R88CNy+/eTXv/gCGDxYrsfEyLaUXjoB1q2ToVzx8XK7a1eZE/LCC0rDIkpx6ZKcfzRyJOvE9OLXX4G5c6VmKnkV3NNTCsX79QOqV1cbnykxuckEk5ucu3tXJm0mr8p07w507Chf27dPPhUCchZNzZrpV2Wef97ydTKWFBEhRcZLl8rqlZOT1DSMGSMFyESWomlSl3HuHDBtmupoyNwuX5YVnG+/TZ3vVaqU/Pz18juXyU0mmNwY784dYPny1O2lEyfkF2eyt9+WTw4A8OiRTN2sUweoWjV1CJ69OXpUPh1v2iS38+WTQmn+kyNLuH1bajDWrJHbu3albgeTviUlSZPD/PmyNT58uNwfFwcMGyZjLerVs83jHpjcZILJzdMlJUmdzIEDQP780n4NSGu2l1f6x3p7p67GvPSS8YPx7MX27fLLpXbt1AQQkNOCk+fyEJnSnj3yBhYZKVtPn3wCDBqkn0/vlD2rV0stDiCT2vv1k62rAgXUxmUMJjeZYHKT6urV9C3YBw/KKg0AtGoF/PZb6mMDAqT4sG5dWZXhFkvWaZqsaCUX+B07BnToAEyYIG9CTHLIFBITgSlT5NiQxESp9Vq+nIXtJI4eBaZPl86qR4/kPhcXoFMnSXSaNrX+1RwmN5mw1+QmJkaKCStVkttJSbI6ExOT/nG5c0v7dcuW8uZLpterF7B4sVyvWlU6q/z8rP8XC1m3Tp1St6F69pSVwrx51cZE1ufOHakJnD9fEp5kf/8tx8xYMyY3mbCH5CYuTlYH0q7KnDwpbcpnz6Y+rlUrWb1JXo2pW1eWK9lFYV4PHsi5MVOmyLwRAGjSRLYP6tdXGxvZrtWrgaAgYM4cIDBQdTRk7TRNGkO++UaKjjdvTv3al1/KkNRWraxrZZnJTSb0ltxoWvpP/L16yVJ0XNyTjy1VSoqBkyeRsu5DrVu3ZNXmyy9lQBcgRaDz56uNi2xDbCxw+rSs/iW7fh0oUkRdTGSb0r6P3L4NPPec/PsqWVLm6PTubR3DSY15/2aJmY25ckWmVI4eDbz8stS+JL8xArKtFBcnRWJt2khb8k8/yQrN+fPpR6wzsVGrQAHg00+BM2fkl4eDg6ycET3L6dMycqFFCyAqKvV+JjaUHWk/IMfFyfEO+fNLUfr48VJv2bYtsHZt6hwva8eVGxuwbp3UaBw4ILMMHnfggGwrAbK8qGmyBcUaDtty4oTMAXJxkdsbNgB790q3Vf78amMj66Bp8rsgOBi4f19O816/HmjUSHVkpDePHkkN1/z50vWZbPp0YMgQNTFxWyoT1prcxMZKcVdy19LEibKNBMin++RZBQ4OUvSV3IZdpw7rZPQoIUF+rqdOSWIzciQwYIA+R6pT1ty9KzOlli6V282ayREmxYsrDYvswJkzMhxw6VJ5f0rult22TXYFOnaUXQNzY3KTCWtJbqKi5Jyl5ILfsLD0y30//AB06ybX//5b2rLr1JFOpjx5lIRMFqRpwM8/S1Jz/LjcV6KEdLAFBqYePkr24dAh+X3wzz+ynTxhAjBiBLeWybKSktLPS3rpJeCPP2SLPSBAagbNubXO5CYTKpKby5clgalcGShXTu5LO1ApWcGCqSsynTtbf1semV9ionw6HzMGuHhR7qtYUTpimjdXGxtZzptvyvZAyZJy4CW3oUg1TQM++ki6rZJ/NwHS8dmvnxzLY+qVZiY3mTB3cnPnjnzKSt5eOnBAioABOURx9Gi5fumS/PDTnrvk48M6GcrYo0cyt+Tjj6XLatMmKRgn+3D/PvDhh9IgwPorsiaJidJG/s03UieYkAC4u8vuhKnnLDG5yYQ5k5sTJzJebUnugnnzTSkEJMqu6GhgxQr5ZJScCP/4I1C+fPqWYLJtv/8uK3bffstjE8h2XL0KLFoks7zMMQSWyU0mzJncJCTIwYhFi6ZfkalZUzJZIlO7eVM64+7elT3vtIXoZHvi44Fx42T+kaYB8+ZJIktExr1/syzRhJycZCnO01N1JGQvYmOB1q2BVaukRXj5clkdHDUKKFRIdXRkjPPnZat63z65/eabQI8eSkMisllc8DQxJjZkScWKyUF4Bw5I50JcHPDFFzIvZ9IkqdUg67dqFVCjhiQ2np7yM/366/RDN4ko65jcEOlAnTrA1q0yMqBmTTkQdfz4jIc+knWZOBHo0kXqqerXl7EQnTurjorItjG5IdIJg0EOujt0SOYkjRuXOnoAkNWdpCR18VHG2rWTqdQjRwI7d0rXJBHlDGtuiHTGwSF1AGSyv/6SVYFateT08RYt1MRGUih8/HjqsLPatWU4HycNE5kOV26I7EB4uHTshYYCLVvKCs/hw6qjsj+3b8uWU+3awJEjqfczsSEyLSY3RHagSxdZHRg4UM4h27JF3mC7d5f7yfz27JGi4dWrZfXm2DHVERHpF5MbIjtRpAgwcyZw8qS0GBsM0jr+4ovSZUXmkZgonWtNmwKRkcALL8hp7716qY6MSL+Y3BDZmTJlZPrt4cNyhMMHHwDOzvI1TZOBgGQaly/LNuCYMZLk9Owpf+++vqojI9I3JjdEdqpGDTmjatCg1PvWrZPkZ+ZMGRBIObNyJbB9u9Q7LVoELFli+vN2iOhJTG6I7Fzas4u++w64cQMYPBioUEFWeNg+nn2DBsnl8GEgMFB1NET2g8kNEaVYvVrOM3ruOTkOICBA2sc3bZItK8rc6dPA66/LwYGAJI4zZqSfN0RE5sfkhohSODnJQY1nzwKTJ8tRAEePAm3bAu+8ozo667Z4sSSCP/wAjB6tOhoi+8bkhoie4OYmE3P/+QcYNkwm6Pr7q47KOiWfyN6rl5zl1ayZ/J0RkTpMbojoqQoWBKZNAyIiAD+/1Ps/+0xOrbb3s6tCQ2W15vvvZQvqo4/kjC8O5SNSi8kNET3Tc8/JXBwAuHcP+PhjYP58mdkyYoRM3rU3q1cDDRrIFp63N7BjB/Dhh4Cjo+rIiIjJDREZJU8e4OefZfjfo0dyVtXzz8sKz8OHqqOznPr1AQ8P4NVX5STvF19UHRERJWNyQ0RGa9RITrDesAGoXFlWbj74QLqCfv9ddXTmc/p06vXixeUE9tWrgQIF1MVERE9ickNE2WIwSJHx0aMyH8fbG4iKAkqUUB2Z6cXHA6NGyeyftWtT7/fxSd2uIyLrweSGiHLE0VE6hU6fBjZuBMqXT/3atGnArl3qYjOF8+eBJk2AKVNk1s/evaojIqJnYXJDRCaROzfQqlXq7ePHpdi4SRNZ4fn7b3WxZdeqVXJMxb59MvNn5UpJ2IjIujG5ISKzKFhQBgI6OkoBcrVqQFAQcOGC6sie7cED4K23gC5dgOhoKR4OCwM6d1YdGRFlBZMbIjKLokWBr76SFZzXXpMtnUWLpOh46FDgzh3VET7djh1yDIXBILU2O3dKfQ0R2QYmN0RkVuXLy/bO/v1A8+ZAXJwkOdbMzw8YMwbYskVm+uTKpToiIjIGkxsisoi6daVN/NdfgdmzgXz55H5Nk+QnPl5dbLdvA336AFeupN43cSLQooW6mIgo+5jcEJHFGAxA69ZA9+6p923YILUtlStLkmPp08f37JGi4QULgDfesOxrE5F5MLkhIqUePQIKFwbOnJEkp25dYNs2879uYqJsOTVtCkRGypTlSZPM/7pEZH5MbohIqa5d5fTx8ePlaIdDh2Q7qHVr4MgR87zmlSvAyy/LWVCJiUCPHsDhw4Cvr3lej4gsi8kNESmXNy8wbpwkOe++KwW8mzdL67ipt6mOHAGqVwf++ANwd5fi5u+/l3OiiEgfmNwQkdUoUgT48kvg5ElZTZk8OfV4g4cPgWvXcv4a5coBhQoBNWvKak1gYM6fk4isi/LkZu7cuShdujRy586N2rVrY1cms9qDgoJgMBieuFSuXNmCERORuZUpI6sp7dql3jdrltTFjBsHxMQY93wXLgBJSXLd3V06tv78UxIdItIfpcnNihUrMHjwYIwePRpHjhxB48aN4efnh8jIyAwfP3PmTERFRaVcLl68iAIFCqAzx4YS6ZqmSZHx/fvSov3887LCExv77O9dvFg6sT7/PPW+UqUAFxfzxUtEailNbqZPn44+ffqgb9++qFixImbMmAFvb2+EhIRk+HhPT08ULVo05XLo0CHcvn0bvXv3tnDkRGRJBgOwaZO0ipcrB9y4AQwaJKd0f/996qpMWnfvAgEBcqjn/fsykC+jxxGR/ihLbuLi4hAaGopWaU/aA9CqVSvszeKxu99++y1atmyJUqVKPfUxsbGxiImJSXchIttjMMgxDn//DXz9NfDcc3Jid0AA8P776R8bGgrUqiWJj4MD8NFHkhw5KN+IJyJLUPa/+o0bN5CYmAgvL69093t5eeHq1avP/P6oqChs2rQJffv2zfRxU6ZMgaenZ8rF29s7R3ETkVq5cgFvvgmcPSsFxwUKAMm/BpKS5NTuBg3k6yVLyrlQH34oB3gSkX1Q/jnGkNwK8R9N0564LyPfffcd8uXLhw4dOmT6uJEjRyI6OjrlcvHixZyES0RWws0NGDkSuHQJqFhR7tM0Ob07Ph7o2FGuN2qkMkoiUsFJ1QsXKlQIjo6OT6zSXL9+/YnVnMdpmoYFCxYgICAAzs7OmT7WxcUFLqwcJNItV9fU6zduAHv3AiEhwFtvpbaRE5F9UbZy4+zsjNq1a2PLli3p7t+yZQsaNmyY6ffu2LEDZ8+eRZ8+fcwZIhHZGC8vICIC6N+fiQ2RPVO2cgMAQ4cORUBAAHx9fdGgQQPMmzcPkZGR6N+/PwDZUrp8+TIWL16c7vu+/fZb1KtXD1WqVFERNhEREVkxpclN165dcfPmTUycOBFRUVGoUqUKNm7cmNL9FBUV9cTMm+joaKxevRozZ85UETIRERFZOYOmmfrkFusWExMDT09PREdHw4OHyRAREdkEY96/lXdLEREREZkSkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtKD85UIfkorZiYGMWREBERUVYlv29n5UhMu0tu7t69CwDw9vZWHAkREREZ6+7du/D09Mz0MXZ3KnhSUhKuXLmCvHnzwmAwmPS5Y2Ji4O3tjYsXL/LEcRvFn6Ft48/P9vFnaPvM9TPUNA13795FsWLF4OCQeVWN3a3cODg4oESJEmZ9DQ8PD/5PaeP4M7Rt/PnZPv4MbZ85fobPWrFJxoJiIiIi0hUmN0RERKQrTG5MyMXFBePGjYOLi4vqUCib+DO0bfz52T7+DG2fNfwM7a6gmIiIiPSNKzdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyYwI7d+6Ev78/ihUrBoPBgHXr1qkOiYwwZcoU1KlTB3nz5kWRIkXQoUMHnDp1SnVYZISQkBBUq1YtZWhYgwYNsGnTJtVhUTZNmTIFBoMBgwcPVh0KZdH48eNhMBjSXYoWLaosHiY3JnD//n1Ur14ds2fPVh0KZcOOHTsQHByMffv2YcuWLUhISECrVq1w//591aFRFpUoUQJTp07FoUOHcOjQIbz00kto3749jh8/rjo0MtLBgwcxb948VKtWTXUoZKTKlSsjKioq5fLXX38pi8Xujl8wBz8/P/j5+akOg7Lp119/TXd74cKFKFKkCEJDQ9GkSRNFUZEx/P39093++OOPERISgn379qFy5cqKoiJj3bt3Dz169MD8+fMxadIk1eGQkZycnJSu1qTFlRuix0RHRwMAChQooDgSyo7ExEQsX74c9+/fR4MGDVSHQ0YIDg5Gu3bt0LJlS9WhUDacOXMGxYoVQ+nSpdGtWzecO3dOWSxcuSFKQ9M0DB06FC+++CKqVKmiOhwywl9//YUGDRrg0aNHyJMnD9auXYtKlSqpDouyaPny5Th8+DAOHjyoOhTKhnr16mHx4sUoV64crl27hkmTJqFhw4Y4fvw4ChYsaPF4mNwQpTFgwAAcO3YMu3fvVh0KGal8+fIICwvDnTt3sHr1avTq1Qs7duxggmMDLl68iEGDBmHz5s3InTu36nAoG9KWZlStWhUNGjTA888/j0WLFmHo0KEWj4fJDdF/3n33XWzYsAE7d+5EiRIlVIdDRnJ2dsYLL7wAAPD19cXBgwcxc+ZMfP3114ojo2cJDQ3F9evXUbt27ZT7EhMTsXPnTsyePRuxsbFwdHRUGCEZy93dHVWrVsWZM2eUvD6TG7J7mqbh3Xffxdq1a7F9+3aULl1adUhkApqmITY2VnUYlAUtWrR4orOmd+/eqFChAoYPH87ExgbFxsYiPDwcjRs3VvL6TG5M4N69ezh79mzK7YiICISFhaFAgQIoWbKkwsgoK4KDg7Fs2TKsX78eefPmxdWrVwEAnp6ecHV1VRwdZcWoUaPg5+cHb29v3L17F8uXL8f27duf6IQj65Q3b94natzc3d1RsGBB1r7ZiGHDhsHf3x8lS5bE9evXMWnSJMTExKBXr15K4mFyYwKHDh1C8+bNU24n7y/26tUL3333naKoKKtCQkIAAM2aNUt3/8KFCxEUFGT5gMho165dQ0BAAKKiouDp6Ylq1arh119/xcsvv6w6NCK7cOnSJXTv3h03btxA4cKFUb9+fezbtw+lSpVSEo9B0zRNySsTERERmQHn3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BCRLjVr1gyDBw/O9DE+Pj6YMWOGReIhIsthckNEVisoKAgGg+GJS9qz3IiIHsezpYjIqrVp0wYLFy5Md1/hwoUVRUNEtoArN0Rk1VxcXFC0aNF0F0dHR+zYsQN169aFi4sLnnvuOYwYMQIJCQlPfZ7r16/D398frq6uKF26NJYuXWrBPwURWRJXbojI5ly+fBlt27ZFUFAQFi9ejJMnT6Jfv37InTs3xo8fn+H3BAUF4eLFi9i2bRucnZ0xcOBAXL9+3bKBE5FFMLkhIqv2888/I0+ePCm3/fz8UK5cOXh7e2P27NkwGAyoUKECrly5guHDh2Ps2LFwcEi/KH369Gls2rQJ+/btQ7169QAA3377LSpWrGjRPwsRWQaTGyKyas2bN0dISEjKbXd3dwQHB6NBgwYwGAwp9zdq1Aj37t3DpUuXULJkyXTPER4eDicnJ/j6+qbcV6FCBeTLl8/s8ROR5TG5ISKr5u7ujhdeeCHdfZqmpUtsku8D8MT9z/oaEekPC4qJyOZUqlQJe/fuTUlaAGDv3r3Imzcvihcv/sTjK1asiISEBBw6dCjlvlOnTuHOnTuWCJeILIzJDRHZnHfeeQcXL17Eu+++i5MnT2L9+vUYN24chg4d+kS9DQCUL18ebdq0Qb9+/bB//36Ehoaib9++cHV1VRA9EZkbkxsisjnFixfHxo0bceDAAVSvXh39+/dHnz598OGHHz71exYuXAhvb280bdoUHTt2xJtvvokiRYpYMGoishSDlnZdl4iIiMjGceWGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSlf8DJTV+h0OgioQAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index 17de0b0..ef509e2 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -59,6 +59,7 @@ "from torch import nn\n", "from torch import Tensor\n", "import torch.nn.functional as f\n", + "from sklearn.metrics import mean_squared_error\n", "\n", "sys.path.append(\"../src/\")\n", "from transformer import Transformer\n", @@ -701,507 +702,507 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 506.021881\n", - "Epoch : 0 [8/36(22%)]\tLoss: 475.474731\n", - "Epoch : 0 [16/36(44%)]\tLoss: 435.696686\n", - "Epoch : 0 [24/36(67%)]\tLoss: 386.927979\n", - "Epoch : 0 [32/36(89%)]\tLoss: 330.176575\n", - "Epoch : 1 [0/36(0%)]\tLoss: 286.846436\n", - "Epoch : 1 [8/36(22%)]\tLoss: 252.374252\n", - "Epoch : 1 [16/36(44%)]\tLoss: 211.516083\n", - "Epoch : 1 [24/36(67%)]\tLoss: 163.846466\n", - "Epoch : 1 [32/36(89%)]\tLoss: 118.904327\n", - "Epoch : 2 [0/36(0%)]\tLoss: 88.401131\n", - "Epoch : 2 [8/36(22%)]\tLoss: 63.586720\n", - "Epoch : 2 [16/36(44%)]\tLoss: 41.322487\n", - "Epoch : 2 [24/36(67%)]\tLoss: 20.409021\n", - "Epoch : 2 [32/36(89%)]\tLoss: 7.286934\n", - "Epoch : 3 [0/36(0%)]\tLoss: 1.401527\n", - "Epoch : 3 [8/36(22%)]\tLoss: 0.695382\n", - "Epoch : 3 [16/36(44%)]\tLoss: 2.689346\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.242138\n", - "Epoch : 3 [32/36(89%)]\tLoss: 7.152884\n", - "Epoch : 4 [0/36(0%)]\tLoss: 11.273768\n", - "Epoch : 4 [8/36(22%)]\tLoss: 7.817347\n", - "Epoch : 4 [16/36(44%)]\tLoss: 4.682924\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.896466\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.010625\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.647707\n", - "Epoch : 5 [8/36(22%)]\tLoss: 3.335974\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.973992\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.744300\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.265757\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.068870\n", - "Epoch : 6 [8/36(22%)]\tLoss: 1.011943\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.585855\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.351650\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.554650\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.866305\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.528709\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.472912\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.822380\n", - "Epoch : 7 [32/36(89%)]\tLoss: 2.337819\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.359279\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.445358\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.932218\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.804963\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.417920\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.498121\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.144468\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.367464\n", - "Epoch : 9 [24/36(67%)]\tLoss: 0.871716\n", - "Epoch : 9 [32/36(89%)]\tLoss: 2.485669\n", - "Epoch : 10 [0/36(0%)]\tLoss: 1.024639\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.661250\n", - "Epoch : 10 [16/36(44%)]\tLoss: 1.002649\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.327927\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.849390\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.495480\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.235851\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.701189\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.084021\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.564712\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.608021\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.602414\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.798770\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.108851\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.724937\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.729018\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.395918\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.823908\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.100993\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.283623\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.276163\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.598967\n", - "Epoch : 14 [16/36(44%)]\tLoss: 1.525860\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.436774\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.662022\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.264542\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.299752\n", - "Epoch : 15 [16/36(44%)]\tLoss: 1.181460\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.513182\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.853196\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.978928\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.514400\n", - "Epoch : 16 [16/36(44%)]\tLoss: 1.632375\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.486952\n", - "Epoch : 16 [32/36(89%)]\tLoss: 2.108686\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.672361\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.865039\n", - "Epoch : 17 [16/36(44%)]\tLoss: 1.494351\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.903042\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.086330\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.629433\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.354262\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.979544\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.969461\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.923103\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.418376\n", - "Epoch : 19 [8/36(22%)]\tLoss: 1.096712\n", - "Epoch : 19 [16/36(44%)]\tLoss: 1.058504\n", - "Epoch : 19 [24/36(67%)]\tLoss: 1.294863\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.496873\n", - "Epoch : 20 [0/36(0%)]\tLoss: 1.124646\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.513211\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.815666\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.296755\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.227790\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.633028\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.551762\n", - "Epoch : 21 [16/36(44%)]\tLoss: 1.107615\n", - "Epoch : 21 [24/36(67%)]\tLoss: 1.218125\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.850292\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.577310\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.372966\n", - "Epoch : 22 [16/36(44%)]\tLoss: 1.033291\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.992006\n", - "Epoch : 22 [32/36(89%)]\tLoss: 2.169535\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.350665\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.366637\n", - "Epoch : 23 [16/36(44%)]\tLoss: 1.417031\n", - "Epoch : 23 [24/36(67%)]\tLoss: 1.036691\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.609438\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.535583\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.394133\n", - "Epoch : 24 [16/36(44%)]\tLoss: 1.001556\n", - "Epoch : 24 [24/36(67%)]\tLoss: 1.073266\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.408681\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.650553\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.830442\n", - "Epoch : 25 [16/36(44%)]\tLoss: 1.217813\n", - "Epoch : 25 [24/36(67%)]\tLoss: 1.338362\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.349689\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.413797\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.703265\n", - "Epoch : 26 [16/36(44%)]\tLoss: 2.056289\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.983090\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.424505\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.663729\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.577409\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.834680\n", - "Epoch : 27 [24/36(67%)]\tLoss: 1.472446\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.775065\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.182383\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.487294\n", - "Epoch : 28 [16/36(44%)]\tLoss: 1.379942\n", - "Epoch : 28 [24/36(67%)]\tLoss: 1.088887\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.717813\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.612552\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.530694\n", - "Epoch : 29 [16/36(44%)]\tLoss: 1.135115\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.849216\n", - "Epoch : 29 [32/36(89%)]\tLoss: 2.290936\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.791819\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.841939\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.751247\n", - "Epoch : 30 [24/36(67%)]\tLoss: 2.223854\n", - "Epoch : 30 [32/36(89%)]\tLoss: 1.836979\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.304145\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.524288\n", - "Epoch : 31 [16/36(44%)]\tLoss: 1.183633\n", - "Epoch : 31 [24/36(67%)]\tLoss: 1.030156\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.845652\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.863263\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.447181\n", - "Epoch : 32 [16/36(44%)]\tLoss: 1.003948\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.914014\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.793885\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.492325\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.329485\n", - "Epoch : 33 [16/36(44%)]\tLoss: 1.021262\n", - "Epoch : 33 [24/36(67%)]\tLoss: 1.269948\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.097205\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.426955\n", - "Epoch : 34 [8/36(22%)]\tLoss: 1.008496\n", - "Epoch : 34 [16/36(44%)]\tLoss: 1.999888\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.745757\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.771835\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.874700\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.601034\n", - "Epoch : 35 [16/36(44%)]\tLoss: 1.394963\n", - "Epoch : 35 [24/36(67%)]\tLoss: 1.032311\n", - "Epoch : 35 [32/36(89%)]\tLoss: 1.405863\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.563602\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.429498\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.632501\n", - "Epoch : 36 [24/36(67%)]\tLoss: 1.455407\n", - "Epoch : 36 [32/36(89%)]\tLoss: 2.779716\n", - "Epoch : 37 [0/36(0%)]\tLoss: 1.226939\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.474218\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.838628\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.994023\n", - "Epoch : 37 [32/36(89%)]\tLoss: 1.786874\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.230907\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.416016\n", - "Epoch : 38 [16/36(44%)]\tLoss: 1.268639\n", - "Epoch : 38 [24/36(67%)]\tLoss: 1.375652\n", - "Epoch : 38 [32/36(89%)]\tLoss: 1.140448\n", - "Epoch : 39 [0/36(0%)]\tLoss: 1.025646\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.247747\n", - "Epoch : 39 [16/36(44%)]\tLoss: 1.232084\n", - "Epoch : 39 [24/36(67%)]\tLoss: 1.465505\n", - "Epoch : 39 [32/36(89%)]\tLoss: 1.560549\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.540635\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.711518\n", - "Epoch : 40 [16/36(44%)]\tLoss: 1.141637\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.644401\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.815609\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.538926\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.680074\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.702654\n", - "Epoch : 41 [24/36(67%)]\tLoss: 1.581463\n", - "Epoch : 41 [32/36(89%)]\tLoss: 1.927015\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.550825\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.608175\n", - "Epoch : 42 [16/36(44%)]\tLoss: 1.031083\n", - "Epoch : 42 [24/36(67%)]\tLoss: 1.069013\n", - "Epoch : 42 [32/36(89%)]\tLoss: 1.169417\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.995818\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.262753\n", - "Epoch : 43 [16/36(44%)]\tLoss: 1.131341\n", - "Epoch : 43 [24/36(67%)]\tLoss: 1.117310\n", - "Epoch : 43 [32/36(89%)]\tLoss: 1.751396\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.623241\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.476600\n", - "Epoch : 44 [16/36(44%)]\tLoss: 1.335697\n", - "Epoch : 44 [24/36(67%)]\tLoss: 1.097010\n", - "Epoch : 44 [32/36(89%)]\tLoss: 1.425824\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.679613\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.466341\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.735276\n", - "Epoch : 45 [24/36(67%)]\tLoss: 1.096575\n", - "Epoch : 45 [32/36(89%)]\tLoss: 1.164259\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.418960\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.325926\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.814923\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.773771\n", - "Epoch : 46 [32/36(89%)]\tLoss: 1.256443\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.572979\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.219952\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.903094\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.982292\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.557837\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.637207\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.391097\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.460705\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.789681\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.619922\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.340572\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.798931\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.646301\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.333447\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.503696\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.268273\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.394185\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.850764\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.941594\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.595979\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.553680\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.289719\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.917769\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.777148\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.539263\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.374052\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.713892\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.495203\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.723595\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.758440\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.527610\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.630611\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.400905\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.275668\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.593037\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.470072\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.276536\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.323487\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.208045\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.685639\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.573179\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.249735\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.239142\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.832784\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.267916\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.532594\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.516174\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.544291\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.878976\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.534233\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.250885\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.285077\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.264440\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.176701\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.121559\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.515723\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.190928\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.639301\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.176653\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.277030\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.233501\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.163751\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.151359\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.394216\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.318477\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.303578\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.246072\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.099112\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.138564\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.457102\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.131319\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.322398\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.175111\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.513825\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.193890\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.484985\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.253278\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.197306\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.437422\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.307774\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.178874\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.297232\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.167193\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.254593\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.172817\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.339134\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.135795\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.220097\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.146241\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.210194\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.268196\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.277594\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.207721\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.510624\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.245466\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.446702\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.378260\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.155661\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.212217\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.123901\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.175088\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.305720\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.077772\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.171850\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.107977\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.210955\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.133773\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.149824\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.084108\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.187185\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.236024\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.257472\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.155600\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.349844\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.206877\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.385539\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.521477\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.214908\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.414929\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.535444\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.114708\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.166098\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.557436\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.180808\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.140647\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.295184\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.322688\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.383092\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.239466\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.284149\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.380352\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.307335\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.166690\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.204713\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.608392\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.414359\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.296766\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.084090\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.166445\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.511570\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.150807\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.831381\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.138934\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.471820\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.170241\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.221684\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.271798\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.213655\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.125129\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.460172\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.380046\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.151156\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.302748\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.179922\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.326994\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.181516\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.271843\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.203029\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.232907\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.421540\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.390221\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.229783\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.039740\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.091887\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.183308\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.346911\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.609162\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.440015\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.102866\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.252971\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.285334\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.148115\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.088814\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.077130\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.234805\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.101126\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.448321\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.124789\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.047329\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.220118\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.366338\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.364387\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.474662\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.133313\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.119812\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.380383\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.210763\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.077336\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.421480\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.247005\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.283482\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.075739\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.434730\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.048596\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.151163\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.412210\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.156183\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.084887\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.150484\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.074536\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.080429\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.536628\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.246809\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.051964\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.250650\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.343138\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.222209\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.332153\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.178502\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.196364\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.227474\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.217989\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.101445\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.126245\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.290258\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.159147\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.126862\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.294369\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.284267\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.283187\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.241446\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.237238\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.149894\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.053586\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.462691\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.369333\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.099263\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.155456\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.265495\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.481865\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.262901\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.217376\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.100864\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.615846\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.229443\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.223720\n", - "Epoch : 94 [8/36(22%)]\tLoss: 1.121755\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.758085\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.292731\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.687600\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.717782\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.265387\n", - "Epoch : 95 [16/36(44%)]\tLoss: 1.056168\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.459116\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.351233\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.224290\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.801395\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.397276\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.226678\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.455763\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.739205\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.408344\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.243132\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.521203\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.186958\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.409274\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.408222\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.400289\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.097000\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.251255\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.096195\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.286169\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.326130\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.180438\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.123520\n", - "--- 0.06335703134536744 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 504.417419\n", + "Epoch : 0 [8/36(22%)]\tLoss: 481.554626\n", + "Epoch : 0 [16/36(44%)]\tLoss: 440.580414\n", + "Epoch : 0 [24/36(67%)]\tLoss: 390.124756\n", + "Epoch : 0 [32/36(89%)]\tLoss: 332.210632\n", + "Epoch : 1 [0/36(0%)]\tLoss: 289.528412\n", + "Epoch : 1 [8/36(22%)]\tLoss: 257.728027\n", + "Epoch : 1 [16/36(44%)]\tLoss: 216.380157\n", + "Epoch : 1 [24/36(67%)]\tLoss: 167.973495\n", + "Epoch : 1 [32/36(89%)]\tLoss: 120.372284\n", + "Epoch : 2 [0/36(0%)]\tLoss: 90.872261\n", + "Epoch : 2 [8/36(22%)]\tLoss: 65.457787\n", + "Epoch : 2 [16/36(44%)]\tLoss: 40.697330\n", + "Epoch : 2 [24/36(67%)]\tLoss: 21.483221\n", + "Epoch : 2 [32/36(89%)]\tLoss: 6.529948\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.206500\n", + "Epoch : 3 [8/36(22%)]\tLoss: 0.687781\n", + "Epoch : 3 [16/36(44%)]\tLoss: 2.998277\n", + "Epoch : 3 [24/36(67%)]\tLoss: 4.987329\n", + "Epoch : 3 [32/36(89%)]\tLoss: 3.565853\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.699389\n", + "Epoch : 4 [8/36(22%)]\tLoss: 1.025244\n", + "Epoch : 4 [16/36(44%)]\tLoss: 4.401149\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.845250\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.474500\n", + "Epoch : 5 [0/36(0%)]\tLoss: 3.209382\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.684705\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.994581\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.556117\n", + "Epoch : 5 [32/36(89%)]\tLoss: 2.034164\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.357589\n", + "Epoch : 6 [8/36(22%)]\tLoss: 1.058167\n", + "Epoch : 6 [16/36(44%)]\tLoss: 0.865557\n", + "Epoch : 6 [24/36(67%)]\tLoss: 2.025237\n", + "Epoch : 6 [32/36(89%)]\tLoss: 2.140758\n", + "Epoch : 7 [0/36(0%)]\tLoss: 1.082307\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.421776\n", + "Epoch : 7 [16/36(44%)]\tLoss: 1.233879\n", + "Epoch : 7 [24/36(67%)]\tLoss: 0.486655\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.437750\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.339266\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.308987\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.768660\n", + "Epoch : 8 [24/36(67%)]\tLoss: 4.194781\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.504963\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.320599\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.259937\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.469363\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.071327\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.654265\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.803222\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.404058\n", + "Epoch : 10 [16/36(44%)]\tLoss: 1.292370\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.079007\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.574221\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.613949\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.395005\n", + "Epoch : 11 [16/36(44%)]\tLoss: 1.615045\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.581750\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.677510\n", + "Epoch : 12 [0/36(0%)]\tLoss: 1.763844\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.468983\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.662503\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.796030\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.600990\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.336408\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.407801\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.543317\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.597130\n", + "Epoch : 13 [32/36(89%)]\tLoss: 2.397425\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.184805\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.675718\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.878828\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.900206\n", + "Epoch : 14 [32/36(89%)]\tLoss: 0.956394\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.704332\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.245768\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.527425\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.118637\n", + "Epoch : 15 [32/36(89%)]\tLoss: 0.868841\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.833248\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.725273\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.040252\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.301875\n", + "Epoch : 16 [32/36(89%)]\tLoss: 2.164918\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.208012\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.594523\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.164420\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.823668\n", + "Epoch : 17 [32/36(89%)]\tLoss: 0.990730\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.349494\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.250528\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.132318\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.417893\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.262682\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.431553\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.404958\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.153886\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.345481\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.476871\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.971825\n", + "Epoch : 20 [8/36(22%)]\tLoss: 1.016705\n", + "Epoch : 20 [16/36(44%)]\tLoss: 1.103630\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.610470\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.511129\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.837285\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.202544\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.495228\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.169785\n", + "Epoch : 21 [32/36(89%)]\tLoss: 0.776069\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.718129\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.610703\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.315625\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.448975\n", + "Epoch : 22 [32/36(89%)]\tLoss: 0.525476\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.635257\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.691371\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.973099\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.843321\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.951698\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.980105\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.798944\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.654796\n", + "Epoch : 24 [24/36(67%)]\tLoss: 1.022153\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.926591\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.653805\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.745755\n", + "Epoch : 25 [16/36(44%)]\tLoss: 2.068602\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.275322\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.916981\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.158006\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.746286\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.647285\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.167545\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.300576\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.651581\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.565395\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.953556\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.186060\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.755135\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.305998\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.384388\n", + "Epoch : 28 [16/36(44%)]\tLoss: 1.103699\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.584833\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.475265\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.459300\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.805838\n", + "Epoch : 29 [16/36(44%)]\tLoss: 1.536069\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.233294\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.313479\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.368160\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.097128\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.704571\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.245161\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.287778\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.353239\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.272410\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.516679\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.552681\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.137205\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.363556\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.430274\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.837059\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.472932\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.109441\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.363579\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.308022\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.523387\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.413577\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.401421\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.563633\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.348965\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.593467\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.204020\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.312199\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.412257\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.406302\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.510305\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.205402\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.300478\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.704153\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.163868\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.216923\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.127081\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.103490\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.139092\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.372539\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.286804\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.137260\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.197125\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.794329\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.246719\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.313717\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.454852\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.292049\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.609774\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.129204\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.215503\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.295024\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.176593\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.132048\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.421546\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.094126\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.401490\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.054708\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.387006\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.279632\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.447589\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.147223\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.046608\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.429392\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.120486\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.199422\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.612947\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.138823\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.296780\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.138888\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.253189\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.152111\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.087302\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.274258\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.174377\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.388720\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.123839\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.939556\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.868173\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.300755\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.384589\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.414794\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.332090\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.215795\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.533553\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.382084\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.419386\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.327926\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.348447\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.280618\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.364157\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.131269\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.412282\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.198485\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.243350\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.133355\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.110422\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.078372\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.338200\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.263732\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.134390\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.031457\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.425466\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.344948\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.186010\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.246787\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.161385\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.339902\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.626405\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.396221\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.529879\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.123988\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.321269\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.757476\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.230176\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.290800\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.426909\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.341690\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.246653\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.206893\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.077049\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.275721\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.178632\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.730348\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.128692\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.325719\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.395235\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.112492\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.218841\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.253656\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.189109\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.401433\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.239186\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.327858\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.146645\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.158530\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.193426\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.143520\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.262486\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.185963\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.643456\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.080920\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.534508\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.202667\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.297622\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.399471\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.723287\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.488528\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.391099\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.107528\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.528716\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.275100\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.214783\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.664773\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.136599\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.410616\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.675595\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.166026\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.339289\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.132045\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.307121\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.130049\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.064537\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.233359\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.087467\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.477628\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.084841\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.052759\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.319040\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.115562\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.748135\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.076111\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.160890\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.191254\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.054834\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.345263\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.154582\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.315928\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.284619\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.128184\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.393054\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.204512\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.472911\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.380424\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.211061\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.129544\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.287740\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.085721\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.244290\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.752042\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.532834\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.456943\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.476216\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.299331\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.365154\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.429351\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.156394\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.226543\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.243290\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.389107\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.302440\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.432517\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.577647\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.075969\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.446935\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.687042\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.744450\n", + "Epoch : 70 [32/36(89%)]\tLoss: 1.045894\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.506082\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.179318\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.427212\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.617581\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.162726\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.053265\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.344303\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.824864\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.190921\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.290797\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.199437\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.134539\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.359102\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.237979\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.290194\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.103993\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.322977\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.145491\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.091969\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.638775\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.453037\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.258431\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.220592\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.311342\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.276829\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.359037\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.150304\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.241249\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.235449\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.073550\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.095723\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.071754\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.152485\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.257658\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.362001\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.058072\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.190440\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.427780\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.082199\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.167068\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.167164\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.449809\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.079832\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.464002\n", + "Epoch : 79 [32/36(89%)]\tLoss: 1.031308\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.310346\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.288376\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.755176\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.568007\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.334909\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.264970\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.234951\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.222037\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.569523\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.313097\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.084510\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.752172\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.828703\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.405721\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.397106\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.425377\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.028744\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.484454\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.077190\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.240606\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.129632\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.731134\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.313991\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.042769\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.397706\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.336631\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.150392\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.205707\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.477488\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.151618\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.045352\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.314651\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.749930\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.251543\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.308236\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.148437\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.144936\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.234076\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.086708\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.446849\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.071405\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.343527\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.226478\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.306314\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.572471\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.242089\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.110867\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.236891\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.438399\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.171542\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.372731\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.315232\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.297851\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.243758\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.625427\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.104583\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.138707\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.473046\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.033924\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.137557\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.060367\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.201168\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.395934\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.219546\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.207360\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.317021\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.159867\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.159414\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.688681\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.504473\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.060708\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.076919\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.170770\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.061262\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.072908\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.090459\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.041699\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.080005\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.093153\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.128190\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.169756\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.072348\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.032764\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.083853\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.047326\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.073878\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.102684\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.018334\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.060294\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.140633\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.136413\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.054343\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.029519\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.078752\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.073248\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.139704\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.048722\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.142784\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.035548\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.175439\n", + "--- 0.0648600975672404 minutes ---\n" ] } ], @@ -1271,7 +1272,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrHUlEQVR4nOzdd3hT1RsH8G+6d8sobYFS9pC9ZRWQvfdGpqA/2UOG7CUCKogooCI4QFCWiLKX7L13mWWU3ZbuNrm/P05uRpu2aZs0afr9PE+eJPfe3HuSBm7e+77nHIUkSRKIiIiIiIiIyOrYWboBRERERERERGQYg3YiIiIiIiIiK8WgnYiIiIiIiMhKMWgnIiIiIiIislIM2omIiIiIiIisFIN2IiIiIiIiIivFoJ2IiIiIiIjISjFoJyIiIiIiIrJSDNqJiIiIiIiIrBSDdiIiIiIiG9WoUSM0atTI6G0rVKhg3gapFS1aFAMGDMiWYxHldAzaiUjPmjVroFAooFAocOTIkRTrJUlCYGAgFAoF2rZtq1keFRWFGTNmoEKFCnB3d0e+fPlQpUoVjBo1Ck+ePNFsN3PmTM3+Dd3CwsKy5X0SEREZSz43njlzxtJNybInT55g5syZuHDhgqWbYjJFixaFQqFA06ZNDa7/4YcfNL8zkv8Njxw5glatWqFQoUJwcXFBkSJF0K5dO6xbt05vu7R+u3z00Udme29EAOBg6QYQkXVycXHBunXrUL9+fb3lhw4dwqNHj+Ds7KxZlpiYiODgYNy4cQP9+/fHiBEjEBUVhatXr2LdunXo1KkTChYsqLef5cuXw8PDI8VxfXx8zPJ+iIiIcqPdu3frPX/y5AlmzZqFokWLokqVKpZpFICbN2/Czs50+UMXFxccOHAAYWFh8Pf311u3du1auLi4IC4uTm/5n3/+iR49emiSDHny5MG9e/fw33//4YcffkDv3r31tm/WrBn69euX4tilS5c22fsgMoRBOxEZ1Lp1a/z5559YunQpHBy0/1WsW7cO1atXx8uXLzXLtm7divPnz2Pt2rUpTnBxcXFISEhIsf+uXbsif/785nsDREREuVhMTAzc3Nzg5ORk6aYYpHvx3xTq1auH06dPY8OGDRg1apRm+aNHj3D48GF06tQJmzZt0nvNzJkz8c477+DEiRMpPqfnz5+nOEbp0qXRt29fk7abyBgsjycig3r16oVXr15hz549mmUJCQnYuHFjisD8zp07AMQJMzkXFxd4eXmZt7FERERW4Pz582jVqhW8vLzg4eGBJk2a4MSJEym2u3TpEho2bAhXV1cULlwYc+fOxerVq6FQKHD//n3Ndn/99RfatGmDggULwtnZGSVKlMCcOXOgVCr19if3RT979iyCg4Ph5uaGTz/9VLNO7tN+8OBB1KxZEwAwcOBATXn3mjVr9PZ37do1NG7cGG5ubihUqBAWLlyot/7gwYNQKBT4448/MGvWLBQqVAienp7o2rUrIiIiEB8fj9GjR6NAgQLw8PDAwIEDER8fr7cPQ33aw8PDMWbMGBQtWhTOzs4oXLgw+vXrp5coSI2Liws6d+6coqz9999/R548edCiRYsUr7lz5w5q1qxp8MJGgQIF0j0mUXZhpp2IDCpatCjq1KmD33//Ha1atQIA7NixAxEREejZsyeWLl2q2TYoKAgA8Msvv2Dq1KlQKBTp7v/169cpljk4OLA8noiIcqSrV6+iQYMG8PLywoQJE+Do6IiVK1eiUaNGOHToEGrXrg0AePz4MRo3bgyFQoHJkyfD3d0dP/74o8HM85o1a+Dh4YGxY8fCw8MD+/fvx/Tp0xEZGYlFixbpbfvq1Su0atUKPXv2RN++feHn55dif+XKlcPs2bMxffp0DB06FA0aNAAA1K1bV7PNmzdv0LJlS3Tu3Bndu3fHxo0bMXHiRFSsWFHze0A2f/58uLq6YtKkSQgJCcE333wDR0dH2NnZ4c2bN5g5cyZOnDiBNWvWoFixYpg+fXqqn19UVBQaNGiA69evY9CgQahWrRpevnyJbdu24dGjR0ZV5/Xu3RvNmzfHnTt3UKJECQCiQrBr165wdHRMsX1QUBD27duHR48eoXDhwunuPy4uzuAFBC8vL6utaCAbIRER6Vi9erUEQDp9+rS0bNkyydPTU4qJiZEkSZK6desmNW7cWJIkSQoKCpLatGkjSZIkxcTESGXKlJEASEFBQdKAAQOkVatWSc+ePUux/xkzZkgADN7KlCmTfW+UiIjISLrnxtR07NhRcnJyku7cuaNZ9uTJE8nT01MKDg7WLBsxYoSkUCik8+fPa5a9evVKyps3rwRAunfvnma5fP7V9eGHH0pubm5SXFycZlnDhg0lANKKFStSbN+wYUOpYcOGmuenT5+WAEirV682uC0A6ZdfftEsi4+Pl/z9/aUuXbpolh04cEACIFWoUEFKSEjQLO/Vq5ekUCikVq1a6e23Tp06UlBQkN6yoKAgqX///prn06dPlwBImzdvTtEulUqVYlnyfbVp00ZKSkqS/P39pTlz5kiSJEnXrl2TAEiHDh0y+DdctWqVBEBycnKSGjduLE2bNk06fPiwpFQqUxwjtd8uAKTff/89zfYRZRXL44koVd27d0dsbCy2b9+Ot2/fYvv27SlK4wHA1dUVJ0+exCeffAJAZAYGDx6MgIAAjBgxIkVJHABs2rQJe/bs0butXr3a7O+JiIjI1JRKJXbv3o2OHTuiePHimuUBAQHo3bs3jhw5gsjISADAzp07UadOHb1B4PLmzYs+ffqk2K+rq6vm8du3b/Hy5Us0aNAAMTExuHHjht62zs7OGDhwYJbfi4eHh16/bScnJ9SqVQt3795NsW2/fv30Mti1a9eGJEkYNGiQ3na1a9dGaGgokpKSUj3upk2bULlyZXTq1CnFOmMq+ADA3t4e3bt3x++//w5ADEAXGBioqShIbtCgQdi5cycaNWqEI0eOYM6cOWjQoAFKlSqFY8eOpdi+Q4cOKX677NmzB40bNzaqfUSZxfJ4IkqVr68vmjZtinXr1iEmJgZKpRJdu3Y1uK23tzcWLlyIhQsX4sGDB9i3bx+++OILLFu2DN7e3pg7d67e9sHBwRyIjoiIbMKLFy8QExODMmXKpFhXrlw5qFQqhIaGonz58njw4AHq1KmTYruSJUumWHb16lVMnToV+/fv1wT9soiICL3nhQoVMkmJduHChVMEyXny5MGlS5dSbFukSBG9597e3gCAwMDAFMtVKhUiIiKQL18+g8e9c+cOunTpkpWmAxAl8kuXLsXFixexbt069OzZM82gv0WLFmjRogViYmJw9uxZbNiwAStWrEDbtm1x48YNvb7thQsXTnVaOSJzYqadiNLUu3dv7NixAytWrECrVq2M6nMeFBSEQYMG4ejRo/Dx8cHatWvN31AiIiIbEh4ejoYNG+LixYuYPXs2/v77b+zZswcLFiwAAKhUKr3tdbPyWWFvb29wuSRJRm+bkX2YWu3atVGiRAmMHj0a9+7dM1ghaIibmxsaNGiAZcuWYerUqXjz5g127Nhh5tYSGYeZdiJKU6dOnfDhhx/ixIkT2LBhQ4ZemydPHpQoUQJXrlwxU+uIiIgsz9fXF25ubrh582aKdTdu3ICdnZ0m+xwUFISQkJAU2yVfdvDgQbx69QqbN29GcHCwZvm9e/ey1FZjS82zmyl/L/Tq1Qtz585FuXLlMjUXfY0aNQAAT58+NUl7iLKKmXYiSpOHhweWL1+OmTNnol27dga3uXjxosHRVB88eIBr164ZLBckIiKyFfb29mjevDn++usvvSnbnj17hnXr1qF+/fqa6U9btGiB48eP48KFC5rtXr9+naIqTc5W62anExIS8N1332Wpre7u7gBEJt+adOnSBRcvXsSWLVtSrMtohv6DDz7AjBkz8OWXX6a53b59+wwu//fffwGAv1/IajDTTkTp6t+/f5rr9+zZgxkzZqB9+/Z499134eHhgbt37+Knn35CfHw8Zs6cmeI1GzduhIeHR4rlzZo1MzhNDRERkaX99NNP2LlzZ4rlo0aNwty5c7Fnzx7Ur18fH3/8MRwcHLBy5UrEx8frzXM+YcIE/Pbbb2jWrBlGjBihmfKtSJEieP36tSYTXrduXeTJkwf9+/fHyJEjoVAo8Ouvv2a5xLxEiRLw8fHBihUr4OnpCXd3d9SuXRvFihXL0n6z6pNPPsHGjRvRrVs3DBo0CNWrV8fr16+xbds2rFixApUrVzZ6X0FBQQZ/eyTXoUMHFCtWDO3atUOJEiUQHR2NvXv34u+//0bNmjVTJCtu3bqF3377LcV+/Pz80KxZM6PbR5RRDNqJKMu6dOmCt2/fYvfu3di/fz9ev36NPHnyoFatWhg3bpzBUVX/97//GdzXgQMHGLQTEZFVWr58ucHlAwYMQPny5XH48GFMnjwZ8+fPh0qlQu3atfHbb79p5mgHxCBtBw4cwMiRI/HZZ5/B19cXw4YNg7u7O0aOHAkXFxcAQL58+bB9+3aMGzcOU6dORZ48edC3b180adIELVq0yPR7cHR0xM8//4zJkyfjo48+QlJSElavXm3xoN3DwwOHDx/GjBkzsGXLFvz8888oUKAAmjRpYtQc6pnx448/4q+//sIff/yBJ0+eQJIkFC9eHFOmTMHEiRPh4KAfKsmjxSfXsGFDBu1kVgopO0aEICIiIiKiVI0ePRorV65EVFRUqgO5EVHuxD7tRERERETZKDY2Vu/5q1ev8Ouvv6J+/foM2IkoBZbHExERERFlozp16qBRo0YoV64cnj17hlWrViEyMhLTpk2zdNOIyAoxaCciIiIiykatW7fGxo0b8f3330OhUKBatWpYtWqV3tRuREQy9mknIiIiIiIislLs005ERERERERkpRi0ExERkdWbOXMmFAqF3q1s2bKWbhYREZHZsU87AJVKhSdPnsDT0xMKhcLSzSEiolxOkiS8ffsWBQsWhJ0dr6/Lypcvj71792qeJ59DOS081xMRkbUx9nzPoB3AkydPEBgYaOlmEBER6QkNDUXhwoUt3Qyr4eDgAH9//0y9lud6IiKyVumd7xm0A/D09AQgPiwvLy8Lt4aIiHK7yMhIBAYGas5PJNy+fRsFCxaEi4sL6tSpg/nz56NIkSIGt42Pj0d8fLzmuTzuLs/1RERkLYw93zNoBzRlcl5eXjyRExGR1WAZt1bt2rWxZs0alClTBk+fPsWsWbPQoEEDXLlyxeCPnfnz52PWrFkplvNcT0RE1ia98z2nfIO4wuHt7Y2IiAieyImIyOJ4XkpfeHg4goKC8NVXX2Hw4MEp1ifPtMvZDH6mRERkLYw93zPTTkRERDmOj48PSpcujZCQEIPrnZ2d4ezsnM2tIiIiMj0OSUtEREQ5TlRUFO7cuYOAgABLN4WIiMismGknIsoApVKJxMRESzeDbICjoyPs7e0t3YwcY/z48WjXrh2CgoLw5MkTzJgxA/b29ujVq5elm0ZENkaSJCQlJUGpVFq6KZTD2dvbw8HBIctj1DBoJyIyUlRUFB49egQOBUKmoFAoULhwYXh4eFi6KTnCo0eP0KtXL7x69Qq+vr6oX78+Tpw4AV9fX0s3jYhsSEJCAp4+fYqYmBhLN4VshJubGwICAuDk5JTpfTBoJyIyglKpxKNHj+Dm5gZfX1+O6k1ZIkkSXrx4gUePHqFUqVLMuBth/fr1lm4CEdk4lUqFe/fuwd7eHgULFoSTkxPP95RpkiQhISEBL168wL1791CqVCnY2WWudzqDdiIiIyQmJkKSJPj6+sLV1dXSzSEb4Ovri/v37yMxMZFBOxGRFUhISIBKpUJgYCDc3Nws3RyyAa6urnB0dMSDBw+QkJAAFxeXTO2HA9EREWUAr7iTqfC7RERknTKbDSUyxBTfJ34jiYiIiIiIiKwUg3YiIiIiIiIiK8WgnYiIMqRo0aJYsmSJ0dsfPHgQCoUC4eHhZmsTAKxZswY+Pj5mPQYREVFuwHO9dWHQTkRkoxQKRZq3mTNnZmq/p0+fxtChQ43evm7dunj69Cm8vb0zdTwiIiIyjOf63IGjxxMR2ainT59qHm/YsAHTp0/HzZs3Nct05weXJAlKpRIODumfFjI6L7aTkxP8/f0z9BoiIiJKH8/1uQMz7SZ08yZQuTLQuLGlW0JE5iZJQHS0ZW6SZFwb/f39NTdvb28oFArN8xs3bsDT0xM7duxA9erV4ezsjCNHjuDOnTvo0KED/Pz84OHhgZo1a2Lv3r16+01eMqdQKPDjjz+iU6dOcHNzQ6lSpbBt2zbN+uQlc3Jp265du1CuXDl4eHigZcuWej88kpKSMHLkSPj4+CBfvnyYOHEi+vfvj44dO2bo77R8+XKUKFECTk5OKFOmDH799Vedv6GEmTNnokiRInB2dkbBggUxcuRIzfrvvvsOpUqVgouLC/z8/NC1a9cMHZtskyQBTZoAxYoBjx9bujVEZE481y/RPOe53rIYtJtQYiJw6RJw9aqlW0JE5hYTA3h4WOYWE2O69zFp0iR8/vnnuH79OipVqoSoqCi0bt0a+/btw/nz59GyZUu0a9cODx8+THM/s2bNQvfu3XHp0iW0bt0affr0wevXr9P4/GLwxRdf4Ndff8V///2Hhw8fYvz48Zr1CxYswNq1a7F69WocPXoUkZGR2Lp1a4be25YtWzBq1CiMGzcOV65cwYcffoiBAwfiwIEDAIBNmzZh8eLFWLlyJW7fvo2tW7eiYsWKAIAzZ85g5MiRmD17Nm7evImdO3ciODg4Q8cn26RQACEhwP37QDr/LIgoh+O5Xh/P9RYkkRQRESEBkCIiIrK0n5s3JQmQJG9v07SLiKxHbGysdO3aNSk2NlaSJEmKihL/3i1xi4rKePtXr14teev853TgwAEJgLR169Z0X1u+fHnpm2++0TwPCgqSFi9erHkOQJo6darmeVRUlARA2rFjh96x3rx5o2kLACkkJETzmm+//Vby8/PTPPfz85MWLVqkeZ6UlCQVKVJE6tChg9HvsW7dutKQIUP0tunWrZvUunVrSZIk6csvv5RKly4tJSQkpNjXpk2bJC8vLykyMjLV42VV8u+ULlOdl0jLlJ9p/fri3+L69SZoGBFZDZ7rea43B1Oc75lpNyFHR3GfmGjZdhCR+bm5AVFRlrm5uZnufdSoUUPveVRUFMaPH49y5crBx8cHHh4euH79erpX3ytVqqR57O7uDi8vLzx//jzV7d3c3FCiRAnN84CAAM32ERERePbsGWrVqqVZb29vj+rVq2fovV2/fh316tXTW1avXj1cv34dANCtWzfExsaiePHiGDJkCLZs2YKkpCQAQLNmzRAUFITixYvj/fffx9q1axFjyrQH5WhFioh7ZtqJbBvP9fp4rrccBu0m5OQk7hMSLNsOIjI/hQJwd7fMTaEw3ftwd3fXez5+/Hhs2bIFn332GQ4fPowLFy6gYsWKSEjnPzZH+aql5vNRQKVSZWh7ydgOfCYSGBiImzdv4rvvvoOrqys+/vhjBAcHIzExEZ6enjh37hx+//13BAQEYPr06ahcubLZp7KhnIFBO1HuwHO9Pp7rLYdBuwnJ38ukJOMHjyAisiZHjx7FgAED0KlTJ1SsWBH+/v64f/9+trbB29sbfn5+OH36tGaZUqnEuXPnMrSfcuXK4ejRo3rLjh49infeeUfz3NXVFe3atcPSpUtx8OBBHD9+HJcvXwYAODg4oGnTpli4cCEuXbqE+/fvY//+/Vl4Z2QrgoLEPYN2IsqJeK7Peed6TvlmQnKmHRAl8rrPiYhyglKlSmHz5s1o164dFAoFpk2bluZVdHMZMWIE5s+fj5IlS6Js2bL45ptv8ObNGygykHr45JNP0L17d1StWhVNmzbF33//jc2bN2tGyF2zZg2USiVq164NNzc3/Pbbb3B1dUVQUBC2b9+Ou3fvIjg4GHny5MG///4LlUqFMmXKmOstUw7CTDsR5WQ81+e8cz2DdhPSrQBh0E5EOdFXX32FQYMGoW7dusifPz8mTpyIyMjIbG/HxIkTERYWhn79+sHe3h5Dhw5FixYtYG9vb/Q+OnbsiK+//hpffPEFRo0ahWLFimH16tVo1KgRAMDHxweff/45xo4dC6VSiYoVK+Lvv/9Gvnz54OPjg82bN2PmzJmIi4tDqVKl8Pvvv6N8+fJmeseUkzBoJ6KcjOf6nHeuV0jZ3bHACkVGRsLb2xsRERHw8vLK9H50A/XXr4E8eUzUQCKyuLi4ONy7dw/FihWDi4uLpZuT66hUKpQrVw7du3fHnDlzLN0ck0jrO2Wq8xJpmfIzjYwEvL3F47dvxfRMRJTz8VxvWbZ4rgdMc75npt2EHHQ+TY4gT0SUeQ8ePMDu3bvRsGFDxMfHY9myZbh37x569+5t6aYRwctLBO0REUBoKFCunKVbRESU8/BcbzwORGdCCoW2RJ4jyBMRZZ6dnR3WrFmDmjVrol69erh8+TL27t2LcoyOyEqwRJ6IKGt4rjceM+0m5ugosuzMtBMRZV5gYGCK0WCJrEmRIsDlywzaiYgyi+d64zHTbmKcq52IiMjGPXiAeq5n4YR4Bu1ERGR2DNpNTC6PZ6adiIjIRlWujMkba6Ao7jNoJyIis2PQbmJypp1BOxERkY3Kn1/c4SWDdiIiMjsG7SbGgeiIiIhsHIN2IiLKRgzaTYyZdiIiIhuXLx8AEbSHhgIqlYXbQ0RENs2iQft///2Hdu3aoWDBglAoFNi6daveekmSMH36dAQEBMDV1RVNmzbF7du39bZ5/fo1+vTpAy8vL/j4+GDw4MGIiorKxnehj5l2IiIiG6fOtPsqXiIxEXj2zMLtISIim2bRoD06OhqVK1fGt99+a3D9woULsXTpUqxYsQInT56Eu7s7WrRogbi4OM02ffr0wdWrV7Fnzx5s374d//33H4YOHZpdbyEFZtqJyNY0atQIo0eP1jwvWrQolixZkuZrDF2IzQxT7SctM2fORJUqVcx6DLIx6qC9qMcrAJz2jYhyPp7rrZtFg/ZWrVph7ty56NSpU4p1kiRhyZIlmDp1Kjp06IBKlSrhl19+wZMnTzR/1OvXr2Pnzp348ccfUbt2bdSvXx/ffPMN1q9fjydPnmTzuxGYaScia9GuXTu0bNnS4LrDhw9DoVDg0qVLGd7v6dOnTX5xNLWT6dOnT9GqVSuTHosoy9RBe6DrSwAM2onIcniuzx2stk/7vXv3EBYWhqZNm2qWeXt7o3bt2jh+/DgA4Pjx4/Dx8UGNGjU02zRt2hR2dnY4efJkqvuOj49HZGSk3s1UmGknImsxePBg7NmzB48ePUqxbvXq1ahRowYqVaqU4f36+vrCzc3NFE1Ml7+/P5ydnbPlWERGUwft/o4M2onIsniuzx2sNmgPCwsDAPj5+ekt9/Pz06wLCwtDgQIF9NY7ODggb968mm0MmT9/Pry9vTW3wMBAk7WbmXaiXEKSgOhoy9wkyagmtm3bFr6+vlizZo3e8qioKPz5558YPHgwXr16hV69eqFQoUJwc3NDxYoV8fvvv6e53+Qlc7dv30ZwcDBcXFzwzjvvYM+ePSleM3HiRJQuXRpubm4oXrw4pk2bhkT11c01a9Zg1qxZuHjxIhQKBRQKhabNyUvmLl++jPfeew+urq7Ily8fhg4dqjeOyYABA9CxY0d88cUXCAgIQL58+TBs2DDNsYyhUqkwe/ZsFC5cGM7OzqhSpQp27typWZ+QkIDhw4cjICAALi4uCAoKwvz58wGIKrGZM2eiSJEicHZ2RsGCBTFy5Eijj005hM5AdACDdiKbxXO95jnP9ZY91zuYde9WavLkyRg7dqzmeWRkpMkCd2baiXKJmBjAw8Myx46KAtzd093MwcEB/fr1w5o1azBlyhQoFAoAwJ9//gmlUolevXohKioK1atXx8SJE+Hl5YV//vkH77//PkqUKIFatWqlewyVSoXOnTvDz88PJ0+eREREhF6fOJmnpyfWrFmDggUL4vLlyxgyZAg8PT0xYcIE9OjRA1euXMHOnTuxd+9eAKKyKrno6Gi0aNECderUwenTp/H8+XN88MEHGD58uN6PlQMHDiAgIAAHDhxASEgIevTogSpVqmDIkCHpvh8A+Prrr/Hll19i5cqVqFq1Kn766Se0b98eV69eRalSpbB06VJs27YNf/zxB4oUKYLQ0FCEhoYCADZt2oTFixdj/fr1KF++PMLCwnDx4kWjjks5iDrT7p3IoJ3IpvFcD4Dneqs410tWAoC0ZcsWzfM7d+5IAKTz58/rbRccHCyNHDlSkiRJWrVqleTj46O3PjExUbK3t5c2b95s9LEjIiIkAFJERESm2y9r21aSAEn68ccs74qIrEhsbKx07do1KTY2ViyIihL/2C1xi4oyut3Xr1+XAEgHDhzQLGvQoIHUt2/fVF/Tpk0bady4cZrnDRs2lEaNGqV5HhQUJC1evFiSJEnatWuX5ODgID1+/FizfseOHSn+T09u0aJFUvXq1TXPZ8yYIVWuXDnFdrr7+f7776U8efJIUTrv/59//pHs7OyksLAwSZIkqX///lJQUJCUlJSk2aZbt25Sjx49Um1L8mMXLFhQmjdvnt42NWvWlD7++GNJkiRpxIgR0nvvvSepVKoU+/ryyy+l0qVLSwkJCakeT5biO6XDlOclEkz6mV69KkmAFO+ZVwIkqVq1rO+SiCyP5/pRmuc815vmXC9JpjnfW215fLFixeDv7499+/ZplkVGRuLkyZOoU6cOAKBOnToIDw/H2bNnNdvs378fKpUKtWvXzvY2A8y0E+Uabm7iKrglbhnoY1a2bFnUrVsXP/30EwAgJCQEhw8fxuDBgwEASqUSc+bMQcWKFZE3b154eHhg165deGhk6vD69esIDAxEwYIFNcvk/6N1bdiwAfXq1YO/vz88PDwwdepUo4+he6zKlSvDXSfzUK9ePahUKty8eVOzrHz58rC3t9c8DwgIwPPnz406RmRkJJ48eYJ69erpLa9Xrx6uX78OQJTlXbhwAWXKlMHIkSOxe/duzXbdunVDbGwsihcvjiFDhmDLli1ISkrK0PukHECdaXeMegN7JOHBAwu3h4jMg+d6ADzXW8O53qJBe1RUFC5cuIALFy4AEIPPXbhwAQ8fPoRCocDo0aMxd+5cbNu2DZcvX0a/fv1QsGBBdOzYEQBQrlw5tGzZEkOGDMGpU6dw9OhRDB8+HD179tT7UmUn9mknyiUUClG2ZombuvTNWIMHD8amTZvw9u1brF69GiVKlEDDhg0BAIsWLcLXX3+NiRMn4sCBA7hw4QJatGiBBBP+J3b8+HH06dMHrVu3xvbt23H+/HlMmTLFpMfQ5Sj/R6ymUCigUqlMtv9q1arh3r17mDNnDmJjY9G9e3d07doVABAYGIibN2/iu+++g6urKz7++GMEBwdnqJ8d5QB58wIAFJKEPHiDV69EF1QisjE81xuN53rznustGrSfOXMGVatWRdWqVQEAY8eORdWqVTF9+nQAwIQJEzBixAgMHToUNWvWRFRUFHbu3AkXFxfNPtauXYuyZcuiSZMmaN26NerXr4/vv//eIu8HYKadiKxP9+7dYWdnh3Xr1uGXX37BoEGDNH3ejh49ig4dOqBv376oXLkyihcvjlu3bhm973LlyiE0NBRPnz7VLDtx4oTeNseOHUNQUBCmTJmCGjVqoFSpUniQLDXp5OQEpVKZ7rEuXryIaJ3o6OjRo7Czs0OZMmWMbnNavLy8ULBgQRw9elRv+dGjR/HOO+/obdejRw/88MMP2LBhAzZt2oTXr18DAFxdXdGuXTssXboUBw8exPHjx3H58mWTtI+shIMD4OMDACjqLvq1q7s6EhFZBM/1xsuJ53qLDkTXqFEjSGmMjKhQKDB79mzMnj071W3y5s2LdevWmaN5mcJMOxFZGw8PD/To0QOTJ09GZGQkBgwYoFlXqlQpbNy4EceOHUOePHnw1Vdf4dmzZ3onrbQ0bdoUpUuXRv/+/bFo0SJERkZiypQpetuUKlUKDx8+xPr161GzZk38888/2LJli942RYsW1VRbFS5cGJ6enimmf+nTpw9mzJiB/v37Y+bMmXjx4gVGjBiB999/P8VMI1nxySefYMaMGShRogSqVKmC1atX48KFC1i7di0A4KuvvkJAQACqVq0KOzs7/Pnnn/D394ePjw/WrFkDpVKJ2rVrw83NDb/99htcXV0RFBRksvYR8Pnnn2Py5MkYNWqU3ujG2Sp/fiA8HO8UeIkz98RgdGXLWqYpREQ812dMTjvXW22f9pyKmXYiskaDBw/Gmzdv0KJFC73uQ1OnTkW1atXQokULNGrUCP7+/pouSMaws7PDli1bEBsbi1q1auGDDz7AvHnz9LZp3749xowZg+HDh6NKlSo4duwYpk2bprdNly5d0LJlSzRu3Bi+vr4Gp6Jxc3PDrl278Pr1a9SsWRNdu3ZFkyZNsGzZsox9GOkYOXIkxo4di3HjxqFixYrYuXMntm3bhlKlSgEQo+MuXLgQNWrUQM2aNXH//n38+++/sLOzg4+PD3744QfUq1cPlSpVwt69e/H3338jn3qKMMq606dPY+XKlZmad9ik1P3aS+Z5BYAjyBOR5fFcb7ycdq5XSGmlunOJyMhIeHt7IyIiAl5eXlna18iRwDffAFOmAHPnmqiBRGRxcXFxuHfvHooVK6bXRYcos9L6TpnyvGRLoqKiUK1aNXz33XeYO3cuqlSpYnSm3eSfabt2wPbt+K3hD3j/0AeYNg1IozCQiHIAnuvJHExxvmem3cSYaSciIjKPYcOGoU2bNmjatGm628bHxyMyMlLvZlLqTHshF87VTkRE5mXRPu22iH3aiYiITG/9+vU4d+4cTp8+bdT28+fPx6xZs8zXIHXQ7mfPoJ2IiMyLmXYTY6adiIjItEJDQzFq1CisXbvW6JLVyZMnIyIiQnMLNfXw7uq+i/lUDNqJiMi8mGk3MWbaiYiITOvs2bN4/vw5qlWrplmmVCrx33//YdmyZYiPj4e9vb3ea5ydnVOMSmxS6ky7V6IYiC40FFCpADumQ4iIyMQYtJsYM+1Eto1jd5Kp8LtkvCZNmqSY/3bgwIEoW7YsJk6cmCJgzxbqoN05SmTaExKAN280CXgiysH4/zOZkim+TwzaTYyZdiLbJAcFCQkJcHV1tXBryBYkqE8UFgk4cxhPT09UqFBBb5m7uzvy5cuXYnm2UQftdq9ews0NiIkBIiMZtBPlZI7qH/IxMTE815PJxMTEANB+vzKDQbuJMdNOZJscHBzg5uaGFy9ewNHREXasgaUsUKlUePHiBdzc3ODgwFNxjqQO2vHyJby8tEE7EeVc9vb28PHxwfPnzwGIOcMVCoWFW0U5lSRJiImJwfPnz+Hj45Oli/T8pWBizLQT2SaFQoGAgADcu3cPDx48sHRzyAbY2dmhSJEi/EGYSQcPHrRsA+SUeng48pZKRFiYI4N2Ihvg7+8PAJrAnSirfHx8NN+rzGLQbmJy0M5MO5HtcXJyQqlSpTRlzURZ4eTkxIqNnCxPHkChACQJhd1e4xr88PatpRtFRFklX6QvUKAAEvmDnrLI0dHRJN3gGLSbmFwez9/0RLbJzs7O6CmniMiGOTiIwP31axRyeQXAj5l2Ihtib2/PMUfIavASv4kx005ERJRLqPu1BziKEeQZtBMRkTkwaDcxZtqJiIhyCXXQ7mfPoJ2IiMyHQbuJMdNORESUS6gHo/NVMGgnIiLzYdBuYsy0ExER5RLqTHteiUE7ERGZD4N2E2OmnYiIKJdQB+15lK8AMGgnIiLzYNBuYsy0ExER5RLqoN0rkZl2IiIyHwbtJsZMOxERUS6hDto94xi0ExGR+TBoNzFm2omIiHIJ9UB0bjEM2omIyHwYtJsYM+1ERES5hDrT7hItgva3by3ZGCIislUM2k2MmXYiIqJcQh20O0ZyIDoiIjIfBu0mxkw7ERFRLqEO2h2iIuCARAbtRERkFgzaTYyZdiIiolzCxwewEz+l8uEV3r4FVCrLNomIiGwPg3YTkzPtKhWgVFq2LURERGRG9vZA3rwAgPx4CUkCoqMt3CYiIrI5DNpNTM60AyyRJyIisnnqEeT97DiCPBERmQeDdhOTM+0Ag3YiIiKbp+7XHujGweiIiMg8GLSbmG6mnf3aiYiIbJw6aC/ozEw7ERGZB4N2E7O3BxQK8ZiZdiIiIhunDtoDHBi0ExGReTBoNwOOIE9ERJRLqIN2P3sRtL99a8nGEBGRLWLQbgacq52IiCiXUA9Elx/MtBMRkXkwaDcDZtqJiIhyCXWmPa+KQTsREZkHg3YzYKadiIgol1AH7d5Kjh5PRETmwaDdDJhpJyIiyiXUQbtXAjPtRERkHgzazYCZdiIiolxCHbR7xDFoJyIi82DQbgZypp1BOxERkY1TD0TnHP8WTohn0E5ERCbHoN0M5Ew7y+OJiIhsnLe35qEHohi0ExGRyTFoNwNm2omIiHIJe3txA+DMTDsREZkBg3YzYKadiIgoF1FfrWfQTkRE5sCg3QyYaSciIspFnJ0BAE5IwNu3Fm4LERHZHAbtZsBMOxERUS6iDtqZaSciInNg0G4GzLQTERHlIiyPJyIiM2LQbgbMtBMREeUiOpn2hAQgPt7C7SEiIpvCoN0MmGknIiLKRXT6tANgtp2IiEyKQbsZMNNORESUi6iDdh8XkWJn0E5ERKbEoN0MmGknIiIyreXLl6NSpUrw8vKCl5cX6tSpgx07dli6WYL6xO/jyqCdiIhMj0G7GTDTTkREZFqFCxfG559/jrNnz+LMmTN477330KFDB1y9etXSTdNm2hm0ExGRGThYugG2iJl2IiIi02rXrp3e83nz5mH58uU4ceIEypcvb6FWqamDdk9n9mknIiLTY9BuBsy0ExERmY9SqcSff/6J6Oho1KlTx+A28fHxiNcZxj3SnJG0Omj3cmamnYiITI/l8WbATDsREZHpXb58GR4eHnB2dsZHH32ELVu24J133jG47fz58+Ht7a25BQYGmq9h6hO/pzpof/vWfIciIqLch0G7GTDTTkREZHplypTBhQsXcPLkSfzvf/9D//79ce3aNYPbTp48GREREZpbaGio+RqmzrR7OLI8noiITI/l8WbATDsREZHpOTk5oWTJkgCA6tWr4/Tp0/j666+xcuXKFNs6OzvDWR1Mm50maGd5PBERmR4z7WbATDsREZH5qVQqvX7rFqMO2t0dGLQTEZHpMdNuBsy0ExERmdbkyZPRqlUrFClSBG/fvsW6detw8OBB7Nq1y9JN05z43Ri0ExGRGTBoNwNm2omIiEzr+fPn6NevH54+fQpvb29UqlQJu3btQrNmzSzdNE2m3dWefdqJiMj0rLo8XqlUYtq0aShWrBhcXV1RokQJzJkzB5IkabaRJAnTp09HQEAAXF1d0bRpU9y+fduCrWamnYiIyNRWrVqF+/fvIz4+Hs+fP8fevXutI2AHtEG7gpl2IiIyPasO2hcsWIDly5dj2bJluH79OhYsWICFCxfim2++0WyzcOFCLF26FCtWrMDJkyfh7u6OFi1aIC4uzmLtZqadiIgoF1FfrXdh0E5ERGZg1eXxx44dQ4cOHdCmTRsAQNGiRfH777/j1KlTAESWfcmSJZg6dSo6dOgAAPjll1/g5+eHrVu3omfPntnb4Dt3gI8/RtM33gD+YKadiIgoN1Bn2p0ZtBMRkRlYdaa9bt262LdvH27dugUAuHjxIo4cOYJWrVoBAO7du4ewsDA0bdpU8xpvb2/Url0bx48fT3W/8fHxiIyM1LuZRGwssHs3/G8eBMBMOxERUa4gB+0QJ/63by3ZGCIisjVWnWmfNGkSIiMjUbZsWdjb20OpVGLevHno06cPACAsLAwA4Ofnp/c6Pz8/zTpD5s+fj1mzZpm+weryODulSLEz005ERJQLqIN2R4mZdiIiMj2rzrT/8ccfWLt2LdatW4dz587h559/xhdffIGff/45S/udPHkyIiIiNLfQ0FDTNFjdmd0uSVxpZ6adiIgoF1BftHdUiaA9KgpQKi3ZICIisiVWnWn/5JNPMGnSJE3f9IoVK+LBgweYP38++vfvD39/fwDAs2fPEBAQoHnds2fPUKVKlVT36+zsDGf1VXGTkjPt6qCdmXYiIqJcQM60q7RX66OiAG9vSzWIiIhsiVVn2mNiYmBnp99Ee3t7qFQqAECxYsXg7++Pffv2adZHRkbi5MmTqFOnTra2FYA2065MAiAx005ERJQbqIN2u8R4zbSvLJEnIiJTsepMe7t27TBv3jwUKVIE5cuXx/nz5/HVV19h0KBBAACFQoHRo0dj7ty5KFWqFIoVK4Zp06ahYMGC6NixY/Y3WD5TA3BEIhITndLYmIiIiGyCXL0XHw8vL+DlSwbtRERkOlYdtH/zzTeYNm0aPv74Yzx//hwFCxbEhx9+iOnTp2u2mTBhAqKjozF06FCEh4ejfv362LlzJ1xcXLK/wcmC9oQEBu1EREQ2Tz7/x8fD05NBOxERmZZVB+2enp5YsmQJlixZkuo2CoUCs2fPxuzZs7OvYalRl8cDgBMSkJjobsHGEBERUbaQM+0JCfDyEg8ZtBMRkalYdZ/2HMdBew3ECQns005ERJQbJCuPBxi0ExGR6TBoNyWFQpNtF33aLdweIiIiMj+d8ngG7UREZGoM2k1NfeJmpp2IiCiXMJBpf/vWcs0hIiLbwqDd1NRBOzPtREREuQT7tBMRkRkxaDc1dXm8nGmXJAu3h4iIiMyLfdqJiMiMGLSbmk55PAAolZZsDBEREZmdbp92T3G1nkE7ERGZCoN2U9MpjwfAfu1ERES2Ts60A/B2TwLAoJ2IiEyHQbup6ZTHA2C/diIiIlunE7T7uMYDYNBORESmw6Dd1JhpJyIiyl0YtBMRkRkxaDc1dabd1Y6ZdiIiolzB3h6wEz+pvF0YtBMRkWkxaDc1dabdzUEE7cy0ExER5QLqbLunszjxM2gnIiJTYdBuauqg3cVepNiZaSciIsoF1EG7lzMz7UREZFoM2k1NLo+3Z6adiIgo11AH7R6OImh/+xaQJEs2iIiIbAWDdlNjpp2IiCj3UZ//3R1E0J6UBMTHW7JBRERkKxi0mxoz7URERLmPOtMun/8BkW0nIiLKKgbtpiZn2jl6PBERUe6hDtrtk+Lh5iYWMWgnIiJTYNBuasnK45lpJyIiygXU53/Ex8PTUzxk0E5ERKbAoN3U1OXxzLQTERHlIupMOxISNEE7R5AnIiJTYNBuauor7c52zLQTERHlGnLQzkw7ERGZGIN2U1Nn2p0VzLQTERHlGgzaiYjITBi0m5om086gnYiIKNdgn3YiIjITBu2mpj5pOylYHk9ERJRrGOjTzqCdiIhMgUG7qbE8noiIKPfRKY/38hIPGbQTEZEpMGg3Nbk8HiJoZ6adiIgoF2CfdiIiMhMG7aamzrQ7qsvjmWknIiLKmvnz56NmzZrw9PREgQIF0LFjR9y8edPSzdLHPu1ERGQmDNpNTe7TLjHTTkREZAqHDh3CsGHDcOLECezZsweJiYlo3rw5oqOjLd00LfZpJyIiM3GwdANsjjpoZ6adiIjINHbu3Kn3fM2aNShQoADOnj2L4OBgC7UqGZbHExGRmTBoNzV1eTwz7UREROYREREBAMibN2+q28THxyM+Pl7zPDIy0ryNYtBORERmwvJ4U5Mz7RJHjyciItty7tw5XL58WfP8r7/+QseOHfHpp58iIZuuUqtUKowePRr16tVDhQoVUt1u/vz58Pb21twCAwPN2zC5TzvL44mIyMQYtJuaOtPuAM7TTkREtuXDDz/ErVu3AAB3795Fz5494ebmhj///BMTJkzIljYMGzYMV65cwfr169PcbvLkyYiIiNDcQkNDzdswZtqJiMhMGLSbGjPtRERko27duoUqVaoAAP78808EBwdj3bp1WLNmDTZt2mT24w8fPhzbt2/HgQMHULhw4TS3dXZ2hpeXl97NrBi0ExGRmTBoNzV10O6gYqadiIhsiyRJUKlUAIC9e/eidevWAIDAwEC8fPnSrMcdPnw4tmzZgv3796NYsWJmO1amcco3IiIyEw5EZ2pyeTwz7UREZGNq1KiBuXPnomnTpjh06BCWL18OALh37x78/PzMdtxhw4Zh3bp1+Ouvv+Dp6YmwsDAAgLe3N1xdXc123AwxMOVbVBSgUgF2TJEQEVEW8DRiappMO0ePJyIi27JkyRKcO3cOw4cPx5QpU1CyZEkAwMaNG1G3bl2zHXf58uWIiIhAo0aNEBAQoLlt2LDBbMfMMAPl8QBgTVPJExFRzsRMu6mpM+32Ks7TTkREtqVSpUp6o8fLFi1aBHt7e7MdV5Iks+3bZHSCdldXkV1XqYDISOgF8URERBnFTLupMdNOREQ2KjQ0FI8ePdI8P3XqFEaPHo1ffvkFjuqL1rmWTp92hQLs105ERCbDoN3U1CdteyUz7UREZFt69+6NAwcOAADCwsLQrFkznDp1ClOmTMHs2bMt3DoL0+nTDjBoJyIi02HQbmpyebySmXYiIrItV65cQa1atQAAf/zxBypUqIBjx45h7dq1WLNmjWUbZ2k65fEAIM8wx6CdiIiyikG7qakz7XZKjh5PRES2JTExEc7q4HTv3r1o3749AKBs2bJ4+vSpJZtmecmCdmbaiYjIVBi0m5omaOc87UREZFvKly+PFStW4PDhw9izZw9atmwJAHjy5Any5ctn4dZZmNynneXxRERkYgzaTS1ZeTwz7UREZCsWLFiAlStXolGjRujVqxcqV64MANi2bZumbD7XYqadiIjMhFO+mZr6SrsiiZl2IiKyLY0aNcLLly8RGRmJPHnyaJYPHToUbm5uFmyZFWDQTkREZsKg3dTUmXY7lRJ2UCIx0Xzz1hIREWU3e3t7JCUl4ciRIwCAMmXKoGjRopZtlDVg0E5ERGbC8nhTk/u0AXBEIjPtRERkM6KjozFo0CAEBAQgODgYwcHBKFiwIAYPHoyYmBhLN8+ydPu0SxKDdiIiMhkG7aaWLGhnn3YiIrIVY8eOxaFDh/D3338jPDwc4eHh+Ouvv3Do0CGMGzfO0s2zLDnTLklAUhKDdiIiMhmWx5uaujweAJyQwEw7ERHZjE2bNmHjxo1o1KiRZlnr1q3h6uqK7t27Y/ny5ZZrnKXJQTsAxMfD01P8HmDQTkREWcVMu6nZ2wN24mNlpp2IiGxJTEwM/Pz8UiwvUKAAy+N1Ku1E0C4eMmgnIqKsYtBuDupsOzPtRERkS+rUqYMZM2YgLi5Osyw2NhazZs1CnTp1LNgyK+DgoLloj4QEBu1ERGQyLI83BycnID4eTkhAJDPtRERkI77++mu0aNEChQsX1szRfvHiRbi4uGDXrl0Wbp0VcHYGYmOZaSciIpNi0G4O6hI5jh5PRES2pEKFCrh9+zbWrl2LGzduAAB69eqFPn36wNXV1cKtswIM2omIyAwYtJuDTnk8+7QTEZEtcXNzw5AhQyzdDOukM+0bg3YiIjIVBu3moJNpT0oSs78oFBZuExERUSZs27bN6G3bt29vxpbkAPII8vHx8CogHkZGWq45RERkGxi0m4NOph0AEhP1B5UlIiLKKTp27GjUdgqFAkql0ryNsXY6QbucaU9IEDf+DiAiosxi0G4O6jOzHLTzZE1ERDmVSqWydBNyDgNBOyBK5PPls0yTiIgo5+OUb+agUx4PgP3aiYiIcgOdPu0ODoCLi3jKfu1ERJQVVh+0P378GH379kW+fPng6uqKihUr4syZM5r1kiRh+vTpCAgIgKurK5o2bYrbt29bsMVIUR7PEeSJiIhyAZ1MOwAORkdERCZh1UH7mzdvUK9ePTg6OmLHjh24du0avvzyS+TJk0ezzcKFC7F06VKsWLECJ0+ehLu7O1q0aIG4uDjLNVx9pd3NXtunnYiIiGwcg3YiIjIDq+7TvmDBAgQGBmL16tWaZcWKFdM8liQJS5YswdSpU9GhQwcAwC+//AI/Pz9s3boVPXv2zPY2A9Bk2l0dEgElM+1ERES5AoN2IiIyA6vOtG/btg01atRAt27dUKBAAVStWhU//PCDZv29e/cQFhaGpk2bapZ5e3ujdu3aOH78eKr7jY+PR2RkpN7NpNSZdldm2omIiHIPnT7tAIN2IiIyDasO2u/evYvly5ejVKlS2LVrF/73v/9h5MiR+PnnnwEAYWFhAAA/Pz+91/n5+WnWGTJ//nx4e3trboGBgaZtuPqk7WIvonVm2omIyBb8+++/2LVrV4rlu3btwo4dOyzQIivDTDsREZmBVQftKpUK1apVw2effYaqVati6NChGDJkCFasWJGl/U6ePBkRERGaW2hoqIlarKYuj3dhpp2IiGzIpEmTDM7FLkkSJk2aZIEWWRkG7UREZAZWHbQHBATgnXfe0VtWrlw5PHz4EADg7+8PAHj27JneNs+ePdOsM8TZ2RleXl56N5OSy+PtOHo8ERHZjtu3b6c4LwNA2bJlERISYoEWWRmWxxMRkRlYddBer1493Lx5U2/ZrVu3EBQUBEAMSufv7499+/Zp1kdGRuLkyZOoU6dOtrZVjzrT7mzPedqJiMh2eHt74+7duymWh4SEwN3d3QItsjLMtBMRkRlYddA+ZswYnDhxAp999hlCQkKwbt06fP/99xg2bBgAQKFQYPTo0Zg7dy62bduGy5cvo1+/fihYsCA6duxouYYz005ERDaoQ4cOGD16NO7cuaNZFhISgnHjxqF9+/YWbJmVYNBORERmYNVTvtWsWRNbtmzB5MmTMXv2bBQrVgxLlixBnz59NNtMmDAB0dHRGDp0KMLDw1G/fn3s3LkTLi4ulmu4Omh3smOmnYiIbMfChQvRsmVLlC1bFoULFwYAPHr0CA0aNMAXX3xh4dZZAQbtRERkBlYdtANA27Zt0bZt21TXKxQKzJ49G7Nnz87GVqVDHohOwUw7ERHZDm9vbxw7dgx79uzBxYsX4erqikqVKiE4ONjSTbMO7NNORERmYPVBe46kPmk7Kzh6PBER2RaFQoHmzZujefPmlm6K9UmWaZfHuWXQTkREWcGg3RzkgejsOE87ERHlbEuXLsXQoUPh4uKCpUuXprntyJEjs6lVVorl8UREZAYM2s1B7tMOZtqJiChnW7x4Mfr06QMXFxcsXrw41e0UCgWD9lSC9shIC7WHiIhsAoN2c5CDdgUz7URElLPdu3fP4GMygH3aiYjIDKx6yrccS10ez0w7ERGRafz3339o164dChYsCIVCga1bt1q6SSmxPJ6IiMwgU5n20NBQKBQKzXQvp06dwrp16/DOO+9g6NChJm1gjqTJtDNoJyIi2yFJEjZu3IgDBw7g+fPnUKlUeus3b95stmNHR0ejcuXKGDRoEDp37my242RJKkF7VBQgSYBCYaF2ERFRjpapoL13794YOnQo3n//fYSFhaFZs2YoX7481q5di7CwMEyfPt3U7cxZ1Jl2R7A8noiIbMfo0aOxcuVKNG7cGH5+flBkYxTaqlUrtGrVKtuOlymplMerVEBMDODubqF2ERFRjpapoP3KlSuoVasWAOCPP/5AhQoVcPToUezevRsfffQRg3Y50y4x005ERLbj119/xebNm9G6dWtLNyVd8fHxiFdnvAEgMjtGg0uWaXd3F9l1SRIl8gzaiYgoMzLVpz0xMRHO6hPT3r170b59ewBA2bJl8fTpU9O1LqdSB+0OzLQTEZEN8fb2RvHixS3dDKPMnz8f3t7emltgYKD5D5osaFcoAA8PsYj92omIKLMyFbSXL18eK1aswOHDh7Fnzx60bNkSAPDkyRPky5fPpA3MkeSB6JhpJyIiGzJz5kzMmjULsbGxlm5KuiZPnoyIiAjNLTQ01PwHTRa0AxyMjoiIsi5T5fELFixAp06dsGjRIvTv3x+VK1cGAGzbtk1TNp+ryZl2ddDOTDsREdmC7t274/fff0eBAgVQtGhROKovUsvOnTtnoZal5OzsrKkKzDbJ+rQDDNqJiCjrMhW0N2rUCC9fvkRkZCTy5MmjWT506FC4ubmZrHE5liZoFyl2ZtqJiMgW9O/fH2fPnkXfvn2zfSC6HIGZdiIiMoNMBe2xsbGQJEkTsD948ABbtmxBuXLl0KJFC5M2MEdSZx4cVMy0ExGR7fjnn3+wa9cu1K9fP9uPHRUVhZCQEM3ze/fu4cKFC8ibNy+KFCmS7e0xiEE7ERGZQab6tHfo0AG//PILACA8PBy1a9fGl19+iY4dO2L58uUmbWCOxEw7ERHZoMDAQHh5eVnk2GfOnEHVqlVRtWpVAMDYsWNRtWpV65qxhkE7ERGZQaaC9nPnzqFBgwYAgI0bN8LPzw8PHjzAL7/8gqVLl5q0gTmSnGlXMtNORES248svv8SECRNw//79bD92o0aNIElSituaNWuyvS2pMtCnXb7GwaCdiIgyK1Pl8TExMfBUXzrevXs3OnfuDDs7O7z77rt48OCBSRuYI6lP2vYqjh5PRES2o2/fvoiJiUGJEiXg5uaWYiC6169fW6hlVkI30y5JgELBTDsREWVZpoL2kiVLYuvWrejUqRN27dqFMWPGAACeP39usbI5q6IJ2jlPOxER2Y4lS5ZYugnWTQ7aJQlISgIcHRm0ExFRlmUqaJ8+fTp69+6NMWPG4L333kOdOnUAiKy73NcsV1NnHuyVzLQTEZHt6N+/v6WbYN10p5hLSGDQTkREJpGpoL1r166oX78+nj59qpmjHQCaNGmCTp06maxxOZY6026nZKadiIhsi0qlQkhICJ4/fw6VSqW3Ljg42EKtshJyn3ZAlMi7uzNoJyKiLMtU0A4A/v7+8Pf3x6NHjwAAhQsXRq1atUzWsByNmXYiIrJBJ06cQO/evfHgwQNIkqS3TqFQQKlUWqhlVsLBAbCzA1QqzQjyXq6JWIqxCL/dFEAHy7aPiIhypEyNHq9SqTB79mx4e3sjKCgIQUFB8PHxwZw5c1Jcdc+V5Ex7EkePJyIi2/HRRx+hRo0auHLlCl6/fo03b95obrl+EDpZsmnfSjzYjxFYhj7Xp1qwUURElJNlKtM+ZcoUrFq1Cp9//jnq1asHADhy5AhmzpyJuLg4zJs3z6SNzHH0yuMlJCYqLNseIiIiE7h9+zY2btyIkiVLWrop1svJCYiN1VyxzxdxFwDgkfDKkq0iIqIcLFNB+88//4wff/wR7du31yyrVKkSChUqhI8//phBu7o8XiFJsIcS8fGZ7oVARERkNWrXro2QkBAG7WlJlmkPSBBT4bonRSA2FnB1tVTDiIgop8pUNPn69WuULVs2xfKyZcuyPA7QG4jGCQkM2omIKMe6dOmS5vGIESMwbtw4hIWFoWLFiinmaa9UqVJ2N8/6JAva80TeBwC4IwYHjySiUTPHVF5IRERkWKaiycqVK2PZsmVYunSp3vJly5bxhA1oMu0A4IhE+bxNRESU41SpUgUKhUJv4LlBgwZpHsvrOBCdWrKgXXH/vmbVyd0RaNQsvwUaRUREOVmmgvaFCxeiTZs22Lt3r2aO9uPHjyM0NBT//vuvSRuYI+kE7U5IQFycBdtCRESUBffu3bN0E3IWudpOHoX2wQPNqguHIgAwaCcioozJ1OjxDRs2xK1bt9CpUyeEh4cjPDwcnTt3xtWrV/Hrr7+auo05j52dmPYFzLQTEVHOJs8SExQUhAcPHqBQoUJ6y4KCglCoUCE80AlOczXdTHtsLBAWpll1/0I4L+QTEVGGZbqzdcGCBVMMOHfx4kWsWrUK33//fZYbluM5OgJJSXBCAqJ4giYiIhvQuHFjPH36FAUKFNBbHhERgcaNG7M8HtAP2h8+1FvlmhiBEyeARo2yv1lERJRzZSrTTkZQl8eJgegs3BYiIiITkPuuJ/fq1Su4u7tboEVWSA7aExIAnf7sAOCDcBw8mO0tIiKiHI7DmpuLul+7IxKRkABIEmDgdw4REZHV69y5MwAx6NyAAQPgLAemAJRKJS5duoS6detaqnnWRe7THh+v158dALwRwaCdiIgyjEG7uehk2gFx7nZxsWSDiIiIMsfb2xuAyLR7enrCVWeycScnJ7z77rsYMmSIpZpnXXTL45Nl2r0hyuPj4vibgIiIjJehoF2+0p6a8PDwrLTFtqiDdkckAmDQTkREOdfq1asBAEWLFsX48eNZCp+WNIL2wu7hiI8GTp4EGjbM/qYREVHOlKGgXb7Sntb6fv36ZalBNkNdHi9n2uPigHQ+PiIiIqs2Y8YMSzfB+un2aZfL40uUAO7cwTuFIoBbwMGDDNqJiMh4GQra5SvtZAR1pt3DMQFIBAejIyKiHKlatWrYt28f8uTJg6pVqxociE527ty5bGyZldLt0y5n2qtUAe7cQYl84QBE0M7rH0REZCz2aTcXdabdzTERSATnZSUiohypQ4cOmoHnOnbsaNnG5ARypj0yEnjyRDyuXBnYtAkFPSIAAMePs187EREZj0G7uaivtLs7ageiIyIiymnkknilUonGjRujUqVK8PHxsWyjrJkctIeEiHs3N1EeD8BDGQE/P+DZM+DUKSA42EJtJCKiHIXztJuLOmh3ddAOREdERJRT2dvbo3nz5njz5o2lm2Ld5PL4W7fEfdGigPoihyI8HI0aicWc+o2IiIzFoN1c1OXxcqad5fFERJTTVahQAXfv3rV0M6ybnGmXg/agIO1ItBERaNBAPDx5MvubRkREORODdnORM+32LI8nIiLbMHfuXIwfPx7bt2/H06dPERkZqXcjaIP2mBhxr5NpR3g4goLEw2fPsrthRESUU7FPu7moM+1yeTwz7URElNO1bt0aANC+fXu9UeQlSYJCoYBSqbRU06yHHLTLihbVy7T75pcAKPDiRXY3jIiIcioG7ebCTDsREdmYAwcOWLoJ1k/u0y4LCtJm2pOSUMAjBoA7g3YiIjIag3ZzUZ+0Xew5EB0REdmGhg0bWroJ1s9Qpt3dHbC3B5RK+DpFAHBHbCwQHS1WERERpYVBu7nI5fH2HIiOiIhsS0xMDB4+fIiEhAS95ZUqVbJQi6xI8qA9KAhQKAAvL+DNG7gnRcDZuSDi44EXLxi0ExFR+hi0m4ucabdjeTwREdmGFy9eYODAgdixY4fB9ezTDv2g3cUF8PMTj318gDdvoIgIh68v8OiRCNqLFrVEI4mIKCfh6PHmog7ane04EB0REdmG0aNHIzw8HCdPnoSrqyt27tyJn3/+GaVKlcK2bdss3TzroNunXc6yA/qD0fmKh+zXTkRExmCm3VzU5fHOzLQTEZGN2L9/P/766y/UqFEDdnZ2CAoKQrNmzeDl5YX58+ejTZs2lm6i5elm2uX53QC9ad8YtBMRUUYw024ucqZdwYHoiIjINkRHR6NAgQIAgDx58uCFOuqsWLEizp07Z8mmWQ/doF239p2ZdiIiyiQG7eYiZ9oVHIiOiIhsQ5kyZXDz5k0AQOXKlbFy5Uo8fvwYK1asQEBAgIVbZyVSC9rlTDuDdiIiyiCWx5uLOtPuBJbHExGRbRg1ahSePn0KAJgxYwZatmyJtWvXwsnJCWvWrLFs46xF8j7tMjnTzvJ4IiLKIGbazUUO2hUciI6IiGxD3759MWDAAABA9erV8eDBA5w+fRqhoaHo0aOH2Y//7bffomjRonBxcUHt2rVx6tQpsx8zw1geT0REJsag3VzU5fGOzLQTEZGNcnNzQ7Vq1ZA/f36zH2vDhg0YO3YsZsyYgXPnzqFy5cpo0aIFnj9/bvZjZ0h65fHMtBMRUQaxPN5c5Ey7xD7tRERkG8aOHWtwuUKhgIuLC0qWLIkOHTogb968Jj/2V199hSFDhmDgwIEAgBUrVuCff/7BTz/9hEmTJpn8eJnm5ibunZ0Bf3/tcmbaiYgokxi0m4s60+4Ajh5PRES24fz58zh37hyUSiXKlCkDALh16xbs7e1RtmxZfPfddxg3bhyOHDmCd955x2THTUhIwNmzZzF58mTNMjs7OzRt2hTHjx83+Jr4+HjE65x8IyMjTdaeNBUrBowYAZQsCdjpFDRyIDoiIsoklsebizrT7iixPJ6IiGxDhw4d0LRpUzx58gRnz57F2bNn8ejRIzRr1gy9evXC48ePERwcjDFjxpj0uC9fvoRSqYSfn5/ecj8/P4SFhRl8zfz58+Ht7a25BQYGmrRNqVIogKVLgZEj9ZcbGIju7Vv+PiAiovQxaDcXddDuIHEgOiIisg2LFi3CnDlz4OXlpVnm7e2NmTNnYuHChXBzc8P06dNx9uxZC7ZSmDx5MiIiIjS30NBQyzZIJ9Pu4wM4qGsdmW0nIqL05Kig/fPPP4dCocDo0aM1y+Li4jBs2DDky5cPHh4e6NKlC549e2a5Rsrk8ngVM+1ERGQbIiIiDA789uLFC035uY+PDxISEkx63Pz588Pe3j7F+f3Zs2fw1+03rsPZ2RleXl56N4vSybQrFIA8dh+DdiIiSk+OCdpPnz6NlStXolKlSnrLx4wZg7///ht//vknDh06hCdPnqBz584WaqUOOdOu4kB0RERkGzp06IBBgwZhy5YtePToER49eoQtW7Zg8ODB6NixIwDg1KlTKF26tEmP6+TkhOrVq2Pfvn2aZSqVCvv27UOdOnVMeiyzkYP2t28BpZL92omIyGg5YiC6qKgo9OnTBz/88APmzp2rWR4REYFVq1Zh3bp1eO+99wAAq1evRrly5XDixAm8++67lmqyJtNur+JAdEREZBtWrlyJMWPGoGfPnkhKSgIAODg4oH///li8eDEAoGzZsvjxxx9NfuyxY8eif//+qFGjBmrVqoUlS5YgOjpaM5q81ZODdgCIjISvbx4ADNqJiCh9OSJoHzZsGNq0aYOmTZvqBe1nz55FYmIimjZtqllWtmxZFClSBMePH081aM+WEWXVmXZ7JcvjiYjINnh4eOCHH37A4sWLcffuXQBA8eLF4eHhodmmSpUqZjl2jx498OLFC0yfPh1hYWGoUqUKdu7cmWJwOqvl7Ay4uIjSu4gIBu1ERGQ0qw/a169fj3PnzuH06dMp1oWFhcHJyQk+8uAuammNJguIEWVnzZpl6qbqk4N2FQeiIyIi2+Lh4aGZi103YDe34cOHY/jw4dl2PJPz8QHCwjjtGxERZYhV92kPDQ3FqFGjsHbtWri4uJhsv9kyoqy6PN4uiZl2IiKyDSqVCrNnz4a3tzeCgoIQFBQEHx8fzJkzByqVytLNs34Gpn1j0E5EROmx6kz72bNn8fz5c1SrVk2zTKlU4r///sOyZcuwa9cuJCQkIDw8XC/bntZosoAYUdbZ2dmcTddk2uWgnZl2IiLK6aZMmYJVq1bh888/R7169QAAR44cwcyZMxEXF4d58+ZZuIVWTmfaNwbtRERkLKsO2ps0aYLLly/rLRs4cCDKli2LiRMnIjAwEI6Ojti3bx+6dOkCALh58yYePnxo+dFk5Uy7kgPRERGRbfj555/x448/on379ppllSpVQqFChfDxxx8zaE8PM+1ERJQJVh20e3p6okKFCnrL3N3dkS9fPs3ywYMHY+zYscibNy+8vLwwYsQI1KlTx7IjxwOaTLsikeXxRERkG16/fo2yZcumWF62bFm8fv3aAi3KYeSgPSICvkHiIYN2IiJKj1X3aTfG4sWL0bZtW3Tp0gXBwcHw9/fH5s2bLd0sbdCeJDLtSiWgnh2HiIgoR6pcuTKWLVuWYvmyZctQuXJlC7Qoh2F5PBERZYJVZ9oNOXjwoN5zFxcXfPvtt/j2228t06DUqMvj5Uw7ILLtDjnuEyciIhIWLlyINm3aYO/evZpuaMePH0doaCj+/fdfC7cuBzBQHv/mDZCYqPnZQERElEKOz7RbLXWmHQnaoJ2D0RERUU7WsGFD3Lp1C506dUJ4eDjCw8PRuXNn3Lx5Ew0aNLB086yfTqY9b15AoRBPX72yWIuIiCgHYN7XXORMe1IS7O0kKFUK9msnIqIcr2DBgikGnHv06BGGDh2K77//3kKtyiF0Mu329kC+fMDLl6JEPo1Jb4iIKJdjpt1c5Ew7AA9njiBPRES269WrV1i1apWlm2H9dAaiA8B+7UREZBQG7eaiE7R7uoigneXxREREuZhOeTzAoJ2IiIzDoN1cdEaU8XDitG9ERES5nk55PMCgnYiIjMOg3Vx0hon3dBZBOzPtREREuViyTHuBAuIpg3YiIkoLB6IzF4VCZNsTE+HmyD7tRESUc3Xu3DnN9eHqzDGlg5l2IiLKBAbt5uTkBCQmwt2RmXYiIsq5vOVgM431/fr1y6bW5GBypj0+HoiPh6+vMwAG7URElDYG7ebk5ARER8PdiZl2IiLKuVavXm3pJtgGT09RiSdJQEQEfH1FfTyDdiIiSgv7tJuTejA6OdPOoJ2IiCgXs7MTgTsAhIezPJ6IiIzCoN2c1NO+ubE8noiIiAC9wegYtBMRkTEYtJuTOtPu5sDyeCIiIoLeYHRy0P7qFaBSWa5JRERk3Ri0m5M60+5qz0w7ERERQS/Tni+feKhSAa9fW6xFRERk5Ri0m5MctDPTTkRERIBept3REciTRzxliTwREaWGQbs5qcvj5Uw7g3YiIqJcTifTDnCudiIiSh+DdnNieTwRERHpkjPtDNqJiMhIDNrNSR20u9izPJ6IiIigVx4PMGgnIqL0MWg3J3V5vIsdM+1EREQElscTEVGGMWg3JznTbsc+7URERARtpv3NGwBAgQLi6bVrFmoPERFZPQbt5qTOtDvbsTyeiIiIAAQFifuQEABAu3bi6YYNwOnTFmoTERFZNQbt5qTOtDsrWB5PREREAMqXF/e3bwPx8ahdG3j/fUCSgOHDxZztREREuhi0m5M6aHdSMNNOREREAAoVAry8gKQk4NYtAMCCBYCnJ3DqFLBmjWWbR0SU40yfDhQrBjx4YOmWmA2DdnOSy+OZaSciIiIAUCiAChXE46tXAQABAcCMGWLRpEmageWJiCg9kZHAokXA/fvA779bujVmw6DdnORMOzgQHREREanJJfLqoB0ARo4EypUTo8jLATwREaVj0yZtZnTfPsu2xYwYtJuTOtPuCFEez0w7ERERaYL2K1c0ixwdgaVLxeNvvwUuX7ZAu4iIcppff9U+PnwYiI21XFvMiEG7OTHTTkRERMkZyLQDQNOmQOfOgFIJTJhggXYREZlLZCQQFWXafYaGAgcPisc+PiLYOnYs5XYxMakH8/HxwNChwPr1pm2biTFoNyd10O4ADkRHREREanKf9jt3UvyQXLAAcHAAdu4E9u+3QNuIiEwtIgIoUwYoUQK4eNF0+127Vky90bAh0L69WLZ3r/428fFA1aqi/1FMTMp9bNkC/PADMHq02JeVYtBuTnJ5vMSB6IiIiEjNzw/Im1fM73bjht6qkiWBDz8UjydOtOrfkERExvnpJyAsDHj+HGjcGDhzJuv7lCRtafz77wNNmojHyYP2LVvETB0PHojy+eTkfvDPnonMvZVi0G5OcqZdxfJ4IiIiUlMoUi2RB8TsRR4e4nftxo3Z3DYisl3XrmX/tGhKJfDNN+Jx/vzAmzciwDZUxp4RFy6I9+PsDHTpog3az54FXr/WbvfDD9rHe/ak3I9uSdOpU1lrkxkxaDcndabdQeJAdERERJk1b9481K1bF25ubvDx8bF0c0wj2bRvugoUAMaPF48//RRITMzGdhGRbbp8GahSBXj33cwFJW/eAN9/L7Lb//wDHD8OPH6c/uu2bwfu3QPy5BGDbwYHi/7tzZsDhw5lvB0yOcvevr3oz16okCiBlyRtP/eQEP2gPHnQfv8+cPeu9vnJk5lvj5kxaDcnOdOuZKadiIgosxISEtCtWzf873//s3RTTMfACPK6xo4VwXtIiH6iiIgowyRJ/KeSmCjK1P/6K+Ov79NH9N3p1w9o2xaoWxcoXDj9adaWLBH3Q4eKrkE7dohRN6OjgQ4dROCcUUlJwLp14vH772uXN20q7uUS+R9/FPe1a4sKp0uXxPuXyQG9QiHumWnPpdRBu73EgeiIiIgya9asWRgzZgwqVqxo6aaYThrl8QDg6SnK5AFg1izTD7pMZFXevBFTJphykDLS+ucf/b7eq1dn7PWbNolg28lJBMbVq4urigDwxRepv+7SJZH1trcHhg0Ty9zcgL//Fhn/iAigd++MlxPt3Sv6oOfLB7RsqV2uG7QnJGjf54QJYjA6eZ1MvuDQqZO4P3NGXBCwQgzazUldHm+vk2nngDJERETmFx8fj8jISL2bVZGD9nv3RMbJgCFDxGDLz58DP/+cjW0jym4TJgCLFgFTp1q6JdZt9WoxWmVGMsIJCcC4ceJx9+7ifvdu4wddi4wERo0SjydNEiXmZ86I8niFQkx1ERJi+LVffy3uu3QBAgO1y11cgN9/B7y9xX5mzDD+/SiVYpoNAOjZUxNvARCjyNvbA7dvA99+K/7z9PMD2rUDmjUT28gl8pKkzbR//LG4UhoTA1y/bnxbshGDdnOSM+3qoB0Q/26IiIjIvObPnw9vb2/NLVD3B6M18PXVZqpS+ZHo5KRNTq1dm03tIspuN26I0cUBqw2YrMKLFyJ4vnMnY9OTLV8uRk/39RV9bYKDxWt/+cW410+bBjx5Ii4WTJ6sXV68ONCqlfYYhtor/8clB/26ihbV9v35/POUo76nZt48kb13c0u5X29voFYt8XjKFHE/cKAI7Js3F8/37BHv//p1USrv4gLUqwfUqCHWW2m/dgbt5qS+8mOn1JZ8cDA6IiIiYNKkSVAoFGnebiSbDi0jJk+ejIiICM0t1Bqn8kmnXzsgEkl2diIZpTtekiV89ZXoxsoKZjKpadPE9IeAqDxhf1LDZs8G3r4Vj48fF+Xq6Xn9WvSvAYA5cwAvL2DQIPF89Wr9wD82VmTGt23TZhnPngWWLROPv/tOBLi65KuKP/2Ucg70lSvF37JGDaBOHcPt69ZN9HWXJNE3/fnztN/PgQPAzJni8fLlQKlSKbeRR5GPjRX3H3wg7uvVA1xdgadPRbckOctev754X7Vri+dW2q+dQbs5qTPtdkna9Dr/HyIiIgLGjRuH69evp3krXrx4pvfv7OwMLy8vvZvVSadfOwAEBGh/g1oy2/7ihRjJ/vhxoEED45Nixjp6VPx2v33btPslK3f6tJjXUKEQv5tVKpFJthVv34ogWS5Pz6xbt4AVK8TjRo3E/dSp6WfbZ80S4wVUqAAMHiyWde0q5pS8c0c7b7lSCfTqJTL4HToA/v5i0LkPPhB/k169tOXlulq2FBn38HBR7i67e1c7AN3o0dqB3gxZvFj8XxgWJo796pXh7Z49E/3fJUlkz/v1M7yd3K8dEP95lighHjs7iyoDQGTb5f7s770n7uUMffKg/epV8d4NzfGejRi0m5M6aFckJsoPGbQTEREB8PX1RdmyZdO8OcknT1uVxrRvuvr0Efdr11pubJzly8VvGIVCxCGtWgG//Zb1/SYmikRrcLColM1qbEM5jFxu3a8fIA80eeuW5dpjSk+fii/26tWiTCUr1T6TJ4sB0lq3Bv78UwTd588DW7ak/ppr10R2HBDHd3AQj93dtX3b5Wz7yJFiRHlnZ3GlUJ7e7cIFUXL+1VeGj2FnB8izenz7rdjXixcimH/1Skwx161b2u/NzQ3YsEEc58QJkZVPfuFGqQT69hWBffny2uy/Ie++K/YJiIFBdMkXHnbu1E4LJ18VlYP2K1f0xxkZM0ZcpfzwQ21FiAUwaDcn+cdGXJymmoTl8URERBnz8OFDXLhwAQ8fPoRSqcSFCxdw4cIFROX0IdWNKI8HxMDGrq7AzZvAuXP66yIixG9kc4qLE7/HAfEbv0cPET+8/z6wcGHm9xsSIipT587V/hbeuVMk7SgX2LtXZDudnETJc5kyYvnNmxZtlklcvy6CxwsXtMsy21f66FFg82YRIC9cCOTPL7LXgJhiQqlM+RpJAkaMEP9Q27dPmSWXS+T//FMMAvfdd+KK3G+/iYsL+/aJbUqWFMG7v3/q7Rs0SJSXnz8vSs7btRMlM0FBYtR6Yy6+li8PHDsmXnP7tvjsTpwQ08F99hlQqZL4vri5AX/8oQ3KDXF2FlcAJ04UA+Dpkvu1794t/qPx9gaqVRPLChUCChYUn6f8H+3589qB665fF10HLEUiKSIiQgIgRUREmHbHBw5IEiBJ5cpJvr7i4eXLpj0EERHZHrOdl3Ko/v37SwBS3A4cOGD0PqzyM339Wvw4ACQpnXb16CE2Gz1au+zBA0kqVEiSvL0l6ckT8zXzxx/FsQMDJSkhQZKUSkkaN07b9BMnMr7PHTskyd1dvN7HR5LWr5ek8uXF8zVrTP8eUhMTI0nffCNJdetK0rx54rk1e/BAkjZsEH+DHE2lkqTq1cUffNQosWzmTPF84EDTHisiQpJq1pSkzp3Fcc3t8GFJypNHvJdSpSSpTRvxePz4jO9LpZKkOnXE6z/4QLv8zRvxDweQpHXrUr7ujz/EOmdnSbp71/B+S5fW/iMGJGnJkoy3TzZwoNiHi4u4z5NHkq5dy/h+nj7Vfi8cHPTb5+Ii/qPICpVKkvz9tfts315/fadOYvkXX4jnPXuK5/J/VjVrmvw7ZOy5iZl2c/LwEPdRUXB2Fg+ZaSciIsqYNWvWQJKkFLdGct/OnCpPHlGKCohS1jTIJfLr14vkWWQk0LYt8PixyLbL3V1NTZK0lbEjR4oxdu3sxNTMcptSq1Tdt08kCZPbvl10XY2OFjM0Xboksvdyxe6GDaZ/H8m9fStmGCtWTCQkjx0Tg02XKQOsW2e6KlilUowfZoquBIDoWtyjh2h7jvbff2KQMw8PMVgCYL5M++efi77zmzebv/ReqRTl4G/eiGzxsWOiDzmQuUz7li1iIAk3N/FFkvn4AOPHi8czZujPcx4dre1nMmmS+JInp1AAAwZon48da3iEd2PJA9LFxYms+99/A+XKZXw//v7AoUMiW5+UJNrZpAmwapUoje/RI/NtBMT+kvd516Xbr/3uXZHVB4CtW0W50+nT2r7w2c2klwpyKLNdfb9+XXO1qWRJ8fDIEdMegoiIbI9VZoVzOKv9TJs1Ez8Qfvghzc3i4yUpXz6x6b//SlKrVtpEGiBJvr6SFBtr+ubt3Cn27+EhSeHh+utOnRLrnJwk6dkz/XWHDmmTWZ06SdK9e2L55s2S5OgolnfpIt6XTP7Z5OAgSa9eZb7N169LUv36ktSihSSFhKRc//vv2s8SkKQiRSTp009FJYG8rFo1SXr/fUkaNEiSPvxQkqZOlaSoqIy35YcfxP7s7CTp7NnMvydJkqRbt7Ttc3OTpPv3s7Y/i/r6a/FGOnbULjt3TizLn990x7l3T/uPBJCkRYtMt29Djh7Vlo9ER4tl166JZa6uolQlI+Qs+5QpKddFRorPCpCkypUl6fRpsXzKFLGsaNG0S0eeP5ekKlXEF9wUpRtNmoh/vJs3Z31fSUmStHu3JD16lPV9JffLL9rvQ/IS6H37xPKgIEkaNkw8btFCrBs5Ujxv3NikzTH23MSgXTLjifzhQ83ZTC752rvXtIcgIiLbY7UBZg5mtZ/p6NHiB8JHH6W76f/+p40H5Bjg2DFJKlxYPF+9OmOHPnNGXDNYtSr1bZo3T1mWr6tWLbH+s8+0y3QrenUrWwcOlCR7e/G8Z09JSkxMub9KlcT6H3/M2HuRrVkjAlr5uO7ukrRihWjT69faaldAkkqWlKSfftJeOIiJESXyHh76bZdv8+dnrC3h4ZKmeyQgSbVrZy02kqvHU6vszVE+/li8iUmTtMvevtW+uaxctdEl9ytxdRX3DRsa97rQUMNf0PRMnSqO06OHdplSKfqwAOLChLHOnBGvcXQUZeOG/POPJOXNq70yNGSIuIoGSNKWLRlvf1bExJi3n46pPHsm/hN9552Upe4REZKkUOhfEd2/X6x7+FBbsn/8uMmaw6A9A8x2Itfpq1a7arwEiH9bREREabHaADMHs9rP9N9/xW8Fb+90U7lyEk++bdokln/+uXhepYrx3S1DQvQDylGjUsYoly9rYwFD3WIlSZJ+/lmbrZZfv3WrNhu8Z49ITOm2+/33U4+H5s0T2zRvbtz7kL19K0n9+2uP0aSJJDVqpP+8UCHx2N5ekqZPTz3p+fSpJH33nUjKfvaZJPXpI15XqVLG2iT3+y9RQpI8PcXj77/P2D5kKpXoHg1I0uTJ2thh69bM7c/i3ntPvIHkAxjIf6Rjx7J+jGPHxL4UCpH9lf/4r1+n/To5ExsYKL4AL14Yf8xq1Qy/L7miZvly4/c1YIB4Te/eaW/37Jn2SyrfWrTInv77OdWTJ6l/D955R/s5Ju/DPmiQya+YMWjPALOdyOPjNX/0FrVeS4BpKkaIiMi2WW2AmYNZ7WealCRJxYoZlV7WHTtqwQLt8levtInEgwfTP+SLF9oAUM7SA6LkPjxcVKTOmCFJAQFiedeuqe8rNlZbobtli3g78m/eTz/VtvuPP0QF7+jRYpvU3L6tja2eP0//vUiS6Hoofy52dpI0Z444hlIpSYsX61dHly4tSSdPGrdf2evX2pL+q1dTrjcUG928qX3Nv/+KMb4AMT5XWu8rMVF0O0iekT95UpswjowUCWr5YklUlGjD7t2S1KGDJHXrZv0D6kkFC4o3kHwUw9SC+YxSKkVpAyBJgweLZfIX09DAbbqvK1NGPwB2dhbBWnrB/tOn2teEhemvkzPw/fsb1/4XL7RfXGOzujt2iJL4vHkl6cYN415DKckXSwBJ2rhRf92NG9pM/KVLJjkcg/YMMOuJXF2i0r3Ow3T/nyAiIpIkKw4wczCr/kwXLhQ/AqtWTTc7FhIifpsn3+zDD8UuOnVK+1AxMdrS9SJFRMLpzz+1QX9AgLaEHRCxVXqDQE+cKLZt2lSU6MvB6Zs36b5zg+Rk5YoVaW8XFSUqBOTf0AULGr5ocfWqJLVtKzLfcjfjjGrfXhxj6lT95SqVuNjh6ysGnJbHFWjbVmzfurV4npgoLloAIv4z5M0bbcw6YID+Ork7bc+e4nl0tIjPAElq106SKlTQjzPlONUqRURoG5r8SyL3AZk8OWvHWLtW2z9CLtmWv6hpZa537BDbeHqKAQnkkcyTl7wbIn/5q1dPuW77drGubFnj2j9/vnZfGcmYK5WZ/5KTsGKF+OxLlTJ8hbFbt4xdgEkHg/YMMOuJXD3lw9AG1yQg4/3NiIgo97HqADOHsurPVDerlpn50yQRmKZXyp6UpJ3RyMdHPxg/c0ab/AQkKThYzK6kO1Bcau7d0wbOcsl9Vsb7ksv933vP8Hu4fFkUJRQvrm3voEGZv0hgjHXrtKXuujGU3BVAvgUFaWNDBwf9hKdu94ZDh/T3f/++dso7+fbXX2JdYqIkFSgglv39t/Y1f/+tv727uyT17av9W5j8N2d4uCT991/Wy67lEQz9/VOuk0sSOnfO/P7DwrRl9nPnapcfPqy9opRa/4yWLcU28jR0KpUk7dql/VCPHk39uN27i22mTUu57vlz7R8qvYx9YqK4osbAwTJiY8XVuQsXDK8/f178jTPSbSINDNozwKwncvVQpOManpaAjHVlISKi3MmqA8wcyuo/0379xI/0fv0yvQt50LixYw2vlxNITk4pg0ZJEgnJxYsl6cqVjB+7XTttTFKoUNbKs+/e1V6AWLlSkmbNEkF5vXr6g8zJ1QK7dmX+WMaKitIe+9QpsUyp1GbPW7XSxonybcyYlPuRu8QqFKLP/YoVYsBqeeroggUlqVcvbUz78qV2BP98+VL2wx8+XFR9L1qkvWgxe7a2lF63gjc6WnTTvH07kx+CPKjbwoWZ3IGa3Ge8UaOU6+QxHsqXz9y+Y2K0ZfGlS+t/EZOStIO2GfoHcOOG9o+TfNqBDz4Q62rWNDyaYGKidoTI1Prjy1eZ0vvCbtmi/YObY0oIsioM2jPArCfycuUkCZBmNT4gAeICIhERUVqsPsDMgaz+M5U7LTs7ZzqDI8c7np6S9Pix/rqoKG1guHhx1pub3K5d2mA1ndnrjFKzpn4ArHvz8BCDgE+fLvp3Zxd55Hk5GN+4UTz38hLjCkRHi3HLPD1F6bqhzP/Ll9qLK8lvFSuKAapjYzU/H6VevcTAfYCoHDeGUinGIZPj1suXJWnCBE3xp1S6dCaS5W/eaEcld3HJQuQvicEOAMMzJty5o/13kNbgB4aoVNoLC3nyiIEFkuvbV6wfPz7lOnmKr3btUq4LC9OOJvjLLynXy1n8vHlTb3fv3mKb2bPTfh9yHwndkfXJZhl7brIz/0zwuZyHBwDAUxEFAIiPt2RjiIiIyCrVrAlUry5+KPz0U6Z20aIFUKsW8PYtMGKE/rolS4CwMKBYMeDjj7Pe3OSaNgV69QK6dAEGDMj6/mbPBqpVE/sdPFg8/+034No1ICICOHgQmDUL8PTM+rGM1auXuN+wAUhKAmbMEM9Hjwby5gXc3IDJk4EXL4CrVwEfn5T7yJcP2LULuH8fWLAAqFJFLG/eHDh8GAgMBFxcgJ9/Buztgd9/FzcA6NPHuHba2YnPqnBh4NYtoGJFYOFC4M0bsf7WLeDKlQy++b/+AhISxOO4OODDD8W1hsy4cUPcly2bcl1QEODsLP4dPHyYsf3OnCn+OA4OwKZNQOnSKbdp107cb9+uvzw8HFizRjweNSrl6/z8gE8/FY8nTwaio/XX//uvuG/RQvzhDKldW9yfOJH6e7h8Gdi/X/wRP/oo9e0o12HQbm7u7gC0QXtcnCUbQ0RERFZJodBG0ytWAEplhndhZwf88IOIWTZvBrZsEctfvBABIgDMmwc4OZmozcmOvW4dsHGjOD7+/Rd45x0RxISFZXh/LVsCZ88Ce/YAP/4ITJsmgtZy5cSxzEqlAh49ShGUtmghAvEnT8RFkatXAW9vYMwY/Zc7O4sAPi1BQcCECcD588CzZ8DOnWJfspo1gUmTxOOkJKBoUaBuXePfQv78wJ9/Ao6O4nnTpiLubt1aPP/7b+P3BUAEwwDQvz/g6ioCSznIzai0gnZ7e6BkSfH45k3j97l2rbiyAwArVwKNGxvernlz8QW9cQMICdEuX71aBOLlywPvvWf4taNHiz/E48fAokX663bsEPetWqXeRjloP3nS8AWP6GjtlZmOHcWXhEiNQbu5qTPt7hBX5JhpJyIiIoN69gTy5AHu3QPatAHmzwcOHABevxbpc/n29Clw6pTIJi5ZIgKO8HAAQKVKIhgEgGHDxOJ588TLqlYFevQw83t49kykpNu0Aa5fB3bvFhUEaWUXrYEkiWBq7FigSBGR8u7aVXz2as7OopIAENdVAGDcOMMZ9YwoUEBcs0lu2jSRJQdELGdom7S8+664sHDrlrj40b490KGDWLdtWwZ29OqV2AEgssxycDxuXMYvyCQlaYPlMmUMbyNnyI0N2v/5R1veMWECMGhQ6tv6+AANGojHmzeLKzDXrwPLlollI0em/kG7uGiD9YULRaAuSWIfFy6I17Vokfqxq1QRV8xevQLu3tVfJ0mi3Zcvi6z+0qVpv2fKdRws3QCbpw7a3SRm2omIiCgNbm4i2z5vnqih3rXL+Nf+739Ap07AgAGY3qUwlKtOo/DTMwgrfg7dwxWoh4KoVbQQ7Bb4iTrp+/eBBw9EwFG0qKhFr1YNqFBBZPkjI8UtLk6bOnZ1FY/loEahEOtfvhS3R49E8BMeLtLhH38M7NsngqKGDYFvvwU++EC8VqkEYmLEPh3S+DkaGyva+eCBaE+ZMuLm7JzJD1nHq1fiosi+fSLVff++/vrNm8XFkbVrgeBgAMAHda4iaNV6BCIUx9yaYdSAtgC8U+xaQ5JEkOrtLaLzDHB2FgUL69eLP69mf0lJ2hR6OkqV0n/etq24P3VKXF/x8zNiJ5s3i2NWqSI++xIlRM3+uXOilFzOwhvj/n1RZu/iIi6OGCIH87dupb+//fvFlZSkJHGxaP789F/Trp34u0+cKG6yvHmBvn3Tfm2XLuK7fOiQKFuoXl3bx6FGjbT/xs7O4srZyZPiIlaJEtp1ixYBf/wh/i1s3AgUKpT++6BchUG7ucmZdhX7tBMREVE65swRkdWxY+KH/fHjIhjWZWcHBASIbHBgoAiKr1wR0d369XAG8Lm87Rud121R35J79Ag4csR076FqVVGnX726SPEPGCACvyFDRJAUE6OfxXBzA7y8xE2SRECflCQC9hcvUu7f3l5Eo0WKiAAwLk7cJElcBJAvMNjbi1J3pVLcJyaK7ePjgagoUSKtW6bs7i7S0T16AL6+ot23b4tS6/ffB86exbtXruBd9eYDYn4GSjiK2vPWrUVavFw58dqwMBHs//yz+Ns4Oor9TZoEFC9u9EdZuDAwfjzE57hiLfDddyKYnTBB9LF2ccnQn6ZgQRFbnjkjEtRpJaU11q8X9z17insHB9FnoWZNEWiOHAnUq2dcA+TS+DJlUu/nIAft6WXajx8Xf6/4eFFC8PPPxvWd6NZN/Dt780Zs7+UlMvBTp6bfr0GhEN/luXNFucXZs+IGaPsepKV2bRG0nzypLYXfvVtUMADAN98A9eunvx/KdRi0m5u6T7srg3YiIiJKj0Ih6prffVe7LDZWfxtHR/3stCSJztFr1ohAMT4eqFYNe8JrYvXl6oiHMxaPf4IiDk9Eab2Pj8iuFy0qUq0hISJreu6cCJRcXEQg4+kpgt/4eBFox8Zqf8jIwa6Tk+hALd9q1hQjx8nt8/QUmcPPPwemTNErN9eIiRG31EqtPTxEW93dRdAXESHu5QAwK8qXB5o0EbemTfWDtnPnROf1NWtEQAgAjo54Xr0VrqnKIjjyb9jduC7KpOU+zYDI2IaHiwsFgPgsEhPFhYyffgJ69xaZe4VC3JRKMehaSIi4SPDokcjYFi0q+jUnJIjM9tu32mPMmSOWffcd0KxZht5y+/YiaN+2zYigPSxMjPoHAN27a5dXrSouZKxZA/zyC6Iq18PUqaJ4YeXKNGLftPqzy4wpj79wQfQfj44Wf7f1642uPkDhwuLfQUKC+G5ltN9B3rzAV1+JQPvrr0WgHR8vLgak5913Ren7jz+KQQYkCXj+XHxXPvhADPBHZIBCkjI79KPtiIyMhLe3NyIiIuDl5WXanU+dCsybh3P1R6D6kaXo2xf49VfTHoKIiGyLWc9LuVSu+UzlGcTs7BAeLsYNq14dmD7d0g2DCJRevxaBkoeHuCAQGyuC8IgIEZTa2YkMuYODKCcuXFj085cDK0kSA4FdvSrqu11ctDdA7E++wKBSif3JN0dHsU8nJ3FfoYKoWEjPH3+I8QNatBBdEPLk0a67fl1kXk+cEEPb37unvaBRt674A3TvLto7b55+cJ9RpUuLLge+vsAnn4iuDYAo2R44UASvRnQbuHBBxNxubiLITjNZv2yZuHBRu3bKcQn27weaNEGSVx5U83+Ky7fEsUePBhYvTmV/H3wArFolht6fOdPwNq9eiQtAgKiIUCfANJ49E1/qx49Fhn/XrpTbZKeoKHHz909/26dPRVl88gtxwcEi426Kbh+Uoxh7brLqTPv8+fOxefNm3LhxA66urqhbty4WLFiAMjoDV8TFxWHcuHFYv3494uPj0aJFC3z33XfwM6qTTjZQl8e7JDHTTkRERGYmZ28hEup//WXZ5ugJCEgZJLu5iXnQjKVQiEC+cGHTti0t3bvrZ5l1lSsnKghksbGifN3bW2TKZfXqiQ7qZ8+Kvv0vX2ovsADi/ZQsKcr+CxcW3QLkcQciI8Vo4k2aaMu/27YVI9UtWyYuKGzaJKoaWrcWfbYbNjT8Gb19i8peL9HM7y1inkXi0hcxqPW/6qn/DeT+6gZGMJSCGyLGpyDcw5+geOQOPM3fES9fiuRzp06aYQD0GZNpz5dP3F69EpUHcp9xQHSb6NFDBOxlyogaf0sG7ID2IpQxAgLEIHQPH4rvsp2duEBVsWI2TItAOZlVB+2HDh3CsGHDULNmTSQlJeHTTz9F8+bNce3aNbir/4GOGTMG//zzD/788094e3tj+PDh6Ny5M44ePWrh1qvJQXsiB6IjIiIismmurkDlyqmvr15dlMhnlZeXiI4HDhSZ6y1bRCC7YYM20C5aVIyU7uYmSs1v3gSePoUCwG55P9MAfOYqKgLGjNGUpksS8Oh4KAKPHIGkUEBh4KLFJ5Ps4R/eC+PxJcb5rcUPlzti8mTRnIEDgYsXDcSyxgTtgAjIjx0TbdYN2idOFIPAeXiI96w7T15O4e9vXFaeSEeOKo9/8eIFChQogEOHDiE4OBgRERHw9fXFunXr0LVrVwDAjRs3UK5cORw/fhzv6vYHS4NZS+ZWrwYGDcLjSq1Q+NK/aN48Y4PBEhFR7pNrSrmzET9TsmkqFXD6tAhk9+0T/fHlPvXJuboi3sULD954wcleiaJKMf2YpFAgtEIrPI1wh33YIxROuAt/PMPdwg1QPPQ/vV1cviyuTVSWzuM8qkFydobi2TNEKrxRoQIQGioq+b/9VudFL1+K0n5A9EVPa9C3gQNFf/l33xWD97VuLbohyIPhbdyonX+PKAezifL45CIiIgAAefPmBQCcPXsWiYmJaNq0qWabsmXLokiRImkG7fHx8YjXqVOPjIw0X6PVlxidEphpJyIiIiIzsLMT/c5r1xbP374Vo6sfOSKCd3mqvDJlAG9vSHFAtfxAdLSEY/P/g8+PX6Dcne0ocvlf6E7EpoIC0558jGk39JPjn34qsvElu1QBrpWDQt2332vgQPz0kxgb77vvgM6dRVU/AG2WPSgo/VHaW7QQQfuJE6JrgK+vCPQBMXI+A3bKZXJM5wmVSoXRo0ejXr16qFChAgAgLCwMTk5O8PHx0dvWz88PYamNQArRV97b21tzCwwMNF/D1UG7Y6L4j4Z92omIiIjIrDw9gebNgdmzxfRk778P1KqlKSd3cRFxMaBA3ckN8c6dv1EW17E4/1zsaL4Yl6ZvRMyBk+jb9BnWqXpi9Ght9/vDh4Ht28V4gfM+U2inLlu7FoAYD0+eV75bNzHe3PPn0I4GrzM2Vap69hRT5Y0fL2Y4ePFCDDD43ntiQD+iXCbHBO3Dhg3DlStXsF6eKzILJk+ejIiICM0tNDTUBC1MhRy0x3EgOiIiIiKyDp07ax/XqQMs2FoWo55NQatdo1FpVhe4NaqFWd/5wtFRdO3cvl0E7hMnitd88IG6C3zv3mLB/v2aEe0XLhTl82/eALNmAUWKADu/NrI/u6x8eWDRIlFr//ff4gLExo360x0S5RI54ls/fPhwbN++Hf/99x8K64yE6e/vj4SEBISHh+tl2589ewb/NAZ4cHZ2hnN2TamgDtod4lkeT0RERETWoXdvUTlfvLgY3N6QUqWAsWOBBQvEVG6xsaLq3tVVZxrBYsXEDo4eFfOljx0LDw/RxX7TJjGl+enTQOLlDAbtMkdHMVp+27aZfatEOZ5VZ9olScLw4cOxZcsW7N+/H8WKFdNbX716dTg6OmLfvn2aZTdv3sTDhw9Rp06d7G6uYepR7u1jmWknIiIiIuugUIiq+dQCdtmUKdqZyvr2FctGjwYKFtTZSC6R/+03zSJHR1HlfvKkKKkvCxG0v8yfwaCdiKw7aB82bBh+++03rFu3Dp6enggLC0NYWBhiY2MBAN7e3hg8eDDGjh2LAwcO4OzZsxg4cCDq1Klj9MjxZqfOtNvHRQOQmGknIiIiohzD01OUuwNAYiKQN68YC05Pt26ibP38eeDUKb1VCgVQv2Y8ikOMUn8uhkE7WdaWLWKMxpzEqoP25cuXIyIiAo0aNUJAQIDmtkGefxLA4sWL0bZtW3Tp0gXBwcHw9/fH5s2bLdjqZNRBu0KphDPimWknIiIiohylTx9tRn7qVCDZGNBA/vzaNPzkydpR62Q7d8IeKoTDG0fvcI5yspyrV8V4Dm3aiItQOYVV92k3Zgp5FxcXfPvtt/hWbyJIK6IujwcAD0QhLt7Fgo0hIiIiIsoYhUKMBXfsmJgy3aCZM4F168SAdHv3innfADHq++jRAICV+BBnziqyo8lEBv3zj7iPjAQuXgRq1LBse4xl1Zl2m2BvL+bVgDpoZ3k8EREREeUwefKI7KQitZg7KAj4+GPxePJkMcodAHz2GXD/PuL9AjEb03H2bMpEPFF22bFD+/joUcu1I6MYtGcHdYm8O6KhVAJJSRZuDxERERGRqX36qfjde/asGDr+5k1th/glXyPe3h3PngGPH1u2mZQ7RUbq92U/dsxybckoBu3ZQR20e4AjyBMRERGRjfL1BcaPF4+nTBGZ98REoHVrOPfoiHfeEavOnrVcEyn32rtXJE8dHcXzo0dzTtUHg/bswKCdiIiIiHKDsWNF8H77tujf7uICfPMNoFBo+g+fOZP+bh490lbYE5mCXBrfv7/owfz4MRAaatk2GYtBe3ZQD0bnpWDQTkREREQ2zNNTDDEv+/RToHhxADA6aP/2WyAwEFi+3ExtpFxHkrRBe9euQNWq4nFOKZFn0J4d1Jl2HwcRtHMwOiIiIiKyWR9+CDRoAAQHA598ollcvbq4T2swuvh4YO5c8XjbNjO3k3KNK1dEZt3VFWjYEKhbVyzPKYPRMWjPDnLQ7hgNgJl2IiIiIrJhzs7Af/8Bhw5pZlECgEqVAAcH4MWL1MuS160DwsLE41Onck6fY7Ju//4r7hs3Fl/JevXEc2baSUsdtHvbM9NORERERLmTqytQvrx4bKhEXpKAL7/UPg8PB0JCsqVpZOPk0vhWrcS9nGm/eBGIirJMmzKCQXt2kPu027NPOxERUUbcv38fgwcPRrFixeDq6ooSJUpgxowZSEhIsHTTiCgT5H7thkaQ37ULuHpV5LsqVBDLTp3KvraRbYqM1JbBy0F74cJi3ASlMmd8xxi0Zwd1pl0eiI6ZdiIiIuPcuHEDKpUKK1euxNWrV7F48WKsWLECn376qaWbRkSZkNZgdHKW/YMPgCZNxOOcEFCRdZOneitdGihRQrs8J5XIO1i6AbmCOmj3tGOfdiIiooxo2bIlWrZsqXlevHhx3Lx5E8uXL8cXX3xhwZYRUWYkH4xOoRDPL1wQwZW9PTBqlDaQMhS0JyYCb98CefNmS5Mph5P7s8tZdlndusD69TkjaGemPTtwnnYiIiKTiYiIQN50fq3Hx8cjMjJS70ZEllepEuDoCLx6BTx4oF3+1VfivmtXoGhRoFYt8fz8eSB5b5gPPwT8/Iyb751yN5UK2LlTPDYUtAPA8eNiO2vGoD07JAvaWR5PRESUOSEhIfjmm2/w4Ycfprnd/Pnz4e3trbkFBgZmUwuJKC3Oztr+6mfOiGz7/v3A77+LZePHi/sSJYA8eUSy6/Jl7evfvAF++02UO//8c/a2nXKew4fFVG+enmKqN12VKwNubmLAw+vXLdI8ozFozw7qgejcmWknIiICAEyaNAkKhSLN240bN/Re8/jxY7Rs2RLdunXDkCFD0tz/5MmTERERobmFpja/FBFlO7lf++LFQNmyov96UpIIquR1CoU2265bIr91qyiPB4C//spZU8IlJAC9ewOLFlm6JbnHmjXivkcPvdkHAYjpB2vXFo+tvUSeQXt2UGfa3VSiTzsz7URElNuNGzcO169fT/NWvHhxzfZPnjxB48aNUbduXXz//ffp7t/Z2RleXl56NyKyDnJgfuwYcOuW+Kn8wQeif7EuQ0H7hg3ax6Ghonw+pzhwQFQUzJhh/eXYtiAqCvjzT/F4wADD28gl8vLo8taKA9FlB03Qzkw7ERERAPj6+sLX19eobR8/fozGjRujevXqWL16NezsmHMgysnatweWLAF8fESw3r275ueynuRB+4sXYrA6AKhSRQxe99dfQLVq5m+zKRw/Lu5jY8UFh6Agy7bH1m3aBERHAyVLaoPz5Bo0EPe//QZUrAiMHasdHNGa8KyXHdT/C7kqGbQTERFlxOPHj9GoUSMUKVIEX3zxBV68eIGwsDCEhYVZumlElEn+/sC1ayLTPmiQ4YAdAGrWFPfXr4u5tjdvFvNqV60KjB4t1v31V7Y02SROnNA+Ttb7h8xAHvOgf//UA/FmzYB+/cT3avx4oGdPkaG3Ngzas4O6T7uLkgPRERERZcSePXsQEhKCffv2oXDhwggICNDciMi2+fmJbLQkiSni5NL4nj2BNm0AOzvg4kXg/n2LNtMoKhWD9ux0/77ojqBQiKA8NXZ2ot/7N9+IPu5//CH6ud+9m10tNQ6D9uygvnzokshMOxERUUYMGDAAkiQZvBGR7ZNL5LdtAw4dEo+7dwfy59eWNm/bZpm2ZcSNG0BEhPb5zZuGt4uOFllfyppffhH3770HFCmS9rYKBTB8OHDwIBAQIKpAPvrI7E3MEAbt2UEdtDsmxUABFTPtRERERERGkIP2774T2eratcU87gDQoYO437rVEi3LGLk/u8xQpv3wYTE1WbFiwLRpwJ072dM2W6NSaUeNT20AOkPq1QP27ROP9+8X0wtaCwbt2UEdtNtBgitimWknIiIiIjKCHLQnJIj7nj216+Sg/b//gNevs7ddGSUH7Y0bi3tDQfuWLaIrQGgoMHeuGECtUaPUs/Jk2JEjwL174gJIp04Ze225csA774hqhx07zNO+zGDQnh1cXTUPPRDFoJ2IiIiIyAjVqol+x4AoY+7WTbuueHEx4rdSCfz7r2XaZyy5P7uc+X36VAyup+vMGXE/eDDQooV4v4cOcV73jJKz7N27a4YWy5D27cW9NXW7YNCeHezsNN8YD0SxPJ6IiIiIyAgeHiLzCQD16wOFCumvl7Pt1jyKfESE6CcNAC1bitHzAf0MulKpnXN+zBhg507tHONHjmRfW3M6SQL+/ls8fv/9zO1D/k7t2KGt8LA0Bu3ZRV0i745oZtqJiIiIiIzUqpW4HzIk5TrdAMtaE2MnT4pgsnhxoEABoGxZsVy3RP7WLTHVmJubdn2jRuL+5k0xRz2l78UL4OVLUaUgTxmYUbVqiZkLIiO1gx9aGoP27KIO2j0QhfBwyzaFiIiIiCinmDMHuHTJcOa0enUgMFCMuv7bb9nfNmPI/dnr1BH3ZcqIe91M+9mz4r5KFcDeXjzOl0/0sQbEnPaUvuvXxX3RouICSGbY2QHt2onH1lIiz6A9u+iUx1vbvH9ERERERNbK2Vn0XTdEoQDGjROPZ8+2zqmV5aD93XfFvaFMuxy016ih/9r69cX90aPma58tkYN2+WJHZun2a7eGGUYZtGcXnUz7vXucf5GIiIiIyBQ+/FD0dQ8NBX74IfXt4uJEEDZ8OLB9e/a0TaUS5fGANtNuKGiXB6GrXl3/9fXqiXv2azeOPHZAVoP2pk3FWOIPHwIXL2a9XVnFoD27qIN2b7soJCQAjx9buD1ERERERDbAxUXMaw4A8+YBMTH66/ftA/r0Ef3JO3QAvv0WGDhQBNTmdvMmEB4uAsBKlcQyuTz+9m2RyNMdhC61TPuZM0BsrPnbm9PJmXZ58MLMcnUFmjcXj62hRJ5Be3ZRB+1F8kUDAEvkiYiIiIhMZOBAoFgxICwM+O47sUylAqZOFVnTdeuAt29FRt7FRQxWdvlyyv3ExQE//ihuW7aIgchCQjLfLrk0vmZNwNFRPC5SRLQhIQG4f18E9tHRojetHNDLihcXg6IlJmqz8ebw+rWYjm7fPvMdIzuYqjwe0JbIW8PMBAzas4u6T3tgnigAwJ07lmwMEREREZHtcHICZswQjz//HHj2DOjRQ2TeATH3+dGjoty5cWOxzFCAunixGKV+yBCgc2cxgnupUiKIz4zkg9ABYqC50qXF4xs3DA9CJ1MoUu/Xvn8/MH68uBiRVV99Bfz8M/Dpp1nfl6VERGirmU0RtLdtKz7/c+eAR4+yvr+sYNCeXdSZ9oJeDNqJiIiIiEytTx+RqX71SvQb37hRZLdXrxZBd926YmTwJk3E9oaC9k2bxH316iLQDgoSzxcsyFw5vaGgHdAfQV7OoCcvjZcZ6tceHQ307Al8+SUwdmzG26VLqQTWrBGPL10CkpKytj9LkccICAgAfHyyvr8CBbR/N0uXyDNozy7qoL2AG4N2IiIiIiJTc3AAZs4Uj8PDxZRpe/eKsm9dctD+33+i7Fz26JHIeisUwD//iGnWrl4FvL1FifyOHRlrz40b2oHR5JHjZbqD0cmZ9uSD0MnkTPuxY9oLB99+q527/ccfgd27M9Y2XXv2aDPUcXH6U9Gl5tUrYNUqYPp00TWhaVOgWzfL9rs3ZWm8TC6R37nTdPvMDAbt2UUdtOdzEX3aGbQTEREREZlW9+7i1qiRGLU9ODjlNpUqiYA+Kgo4fVq7/O+/xf2774p+5IDo4frBB+Lx118b3w5JAkaMEPdt22r3J5OD9qtXtYPQpRa0V6ki5hx/80YEplFRwKJFYp08Fd4HHwCRkca3T9fq1frP5fak5f33xTHnzBFZ+n37RGVDRi9smJJ8gSSrg9DpatpU3B86ZNkKBAbt2UUdtPs4MtNORERERGQOdnbAhg3AgQNAiRKpb2OoX7s84FiHDvrbDx8uXrNnjzYwTM/GjSLL7+xsONiXy+NPnBCj3RsahE7m6AjUri0eHz0KLFsmBtIrVQo4fFgMVhcaCnzyiXFt0/XqFbB1q3jcoIG4P3cu7dfcuSOCc4UCGDoUmDtXXCQBjAv4zcUcmfYqVYA8ecQFEXMOBJgeBu3ZRT0QnadCBO3h4WKURiIiIiIiyl7J+7VHRoqB3YCUQXvRotpl33yT/r6jooAxY8TjSZNEUJ2cHKDL5e5Vq6YchE6X3K99505tln3aNFG6/9NP4vn334sLBRmxbp0Yxb5qVVHmDqQfeH//vbhv0QJYuRKYMgXo0sW415qTOYJ2e/u0By7MLgzas4s60+4QGwV/f7GI2XYiIiIiouwnB+3Hj4tM965don97qVKGM94jR4r7X34RZeppmTNH9BEvVgyYONHwNh4eQOHC2uepDUInk/u1b9kiEn+lSwO9eollDRsCw4aJxx98IAapM5Yc8A8aJAJ3ALhwQZT1G5KQoC2n//BD7XL5tZYK2mNjtVNqm7I8Hkh74MLswqA9u6iDdkRHa0p1OFc7EREREVH2K1lSBM0JCaLkXLc0XqFIuX3DhqIvfEyMGIBNpRJl5XXrAnnzigHLli8Xme6vvhKvWboUcHVNvQ1yv3Yg9f7ssnff1W/X9Oli4D3Z55+Lke4fPNBmwtNz/rwI0J2cgN69RbDr6Cgqgu/fN/yaLVvEAHgFC4q++rLKlUX7njwBnj9P/9iSlLnR+FNz65bYZ548YtR3U5KD9mPHLDfQHoP27CIH7VFRmqCdmXYiIiIiouynUGiDsV27xGjxQMrSeN3t5Wz7V18BFSoAnTqJTP2bN2IQu48/Bpo1EwOWtWunH9QaopvRTy9o9/YWFw0AEez37Km/3sMDmDpVPP7iCyA+Pu39Adose6dO4sKDk5N4X0DqGfOVK8X9Bx/oXzTw8BBVCmm9Vvb6tehy4OYmStnbtgVGjQIuX06/zanRLY03dNElK0qXBgoVEp/p0aOm3bexGLRnF3WfdgbtRERERESWJwftK1eK7HL+/CnnU9fVu7cYdf7pUxEkensDn34q5k+fN08M5GZvL+YIX7Ik/ePLmXYPDxEYpqd3bxEoL1pkuP97v36ieuDJE+2864ZIkphmbt068XzQIO26tMrcb94UA/zZ2WlH1NdlbIn81q3Aw4ciCL5xQ1wwWbpUDGqXWeYYOV6mUADvvSceW6pEnkF7dmGmnYiIiIjIasiBWJQYJxpt26Y9GJyrq8iyV6sGLFggStHnzRODxH36qZj3/fVrUVpuaPC55IKDxfFatkz7uLIJE4C3b1PP4Ds5AePHi8cLFqScouz+fWD2bJGNrlFDtDUoSHvxAhDvDTAceMtl961bA4GBKdcbG7TLU+uNGiW6E8gD650/b3hatchI4LvvgEuXUt+nOQah02Xpfu0M2rMLg3YiIiIiIqtRqJB+iXpqpfG6+vUTWeoJE0SmPTkvL8PLDalUCbh9O+U86WlxcUl7/ZAhgK8vcO8esH69dvnWrSKgnTFDZMxdXIAePYB//9W/YJBa4B0Xp83ef/SR4WMbE7THxYmp8wDxWTZpAowdK0Kl+HjRtuTmzRMD7VWuLEZy37oVUCr1t5GDdnNk2gFt0H72rKjKyG4M2rOLHLTHxaFEUfEte/xYfHGJiIiIiCj7ycGYi4voj57dihXThgmm4OamnW5u/nwx2NvKlWJKtrg4Uf6/Zg3w7JkI6pMHuZUqaQeUe/ZMu3zjRpGZL1JEVAYYIgftt2+LigBDDh4Uo9sXLKjd3s5OBOSAGBgvuSNH9F/fqZO42CLPJ5+UJAaiA8yXaS9cWHRhUKmAQ4fMc4y0MGjPLnKfdgD5XaPh4SH6k9y7Z8E2ERERERHlYl27ivsuXfR+rudoH38ssv3XrolR7T/6SASbH3wgSvj79xcVAYbo9q+XM+ZJScBnn4nHQ4akXsrv6yuqFwDg4kXD22zfLu7bttUfMK5KFXGfPGhPStK2Y/duMYVenjyiYrllS3GB4M4dMV2fm5vhsn1TsWSJPIP27OLiIi4jAVBEs0SeiIiIiMjSGjcWpdXGTpOWE3h7A8OHi8fyqPjTpon3qDvie2qSl7n//LP4jPLlA0aMyNhrdUmSftCuK7Wg/epVMc2al5cImj//XCQ9q1UTU881b64NosuV04RbZsGgPTdQKAz2a+dc7UREREREllO2rMjS2pLRo0XwrlCIQdxmzzZ+KjTdwDs2VvSDB4ApU9Lvr59W0H7lihi8z8VFf/A7QD9olyTt8tOnxX316tqA3Nsb2LEDKFlSDK4nX0gwV2m8rHFj8RleuyZmEMhODNqzkxy0R0cz005ERERERGaRP7/o8339OvC//2XstbqB9zffiHG4ihQxbj9pBe1ylr1Jk5QXScqXF2X3L1+K/vSyU6fEfa1a+tsXKCDK5f39Rek/YP6gPW9e7fvbv9+8x0qOQXt24lztRERERESUDYoX1x8d31hyYBoSou3LPmdO+iPX67726lUgIUF/nTzVW7t2KV/n6qqdt163RF7OtNesmfI1xYoBu3Zps//ysc1JrhA4ccL8x9LFoD07cdo3IiIiIiKyYvnzawd0i4gAKlYE+vQx7rVBQWKguMREEbjLXrzQBrpt2hh+bfJ+7bGxwOXL4rGhoB0Qo90fPw78+CPQooVxbcyKjz8WbVq61PzH0sWgPTsZCNrv3dOWdBAREREREVmabtZ6/vzUR4xPTqHQBt+6JfL//iv6qlepIqZPMyR50H7hgpiPvUCBtEeFL1cOGDzYvIPQyYoWBSpUMH58AFNh0J6ddPq0BwaK0Rvj40U/ESIiIiIiImtQu7a4Dw4GWrfO2GsN9WuX+7MbKo2XJQ/adUvjsztItjZGDPpPJqOTaXdwEFdqQkJEibw55xQkIiIiIiIy1ogRgJMT0LdvxgNm3aD95k1Rup7aVG+6KlcW9yEhwNu3afdnz20YtGcnnYHoAKBy4GvUCdmOh1c6Ao28LNcuIiIiIiIiNU9PYPz4zL1WDtqPHdMOLgeIrH2NGqm/ztcXKFRIVCFfusSgXRfL47OTTqYdd+7g23Pv4hf0R+nx7bH6hyQkJlq2eURERERERFlRpgzg5SX6sNvZiZL4v/4C9u1Lv9+5XCJ/6JDI0gMM2gEG7dlLDtqPHQPefRd+EbcBAO/GH8KjobNQujTw/fdAUpIF20hERERERJRJDg7Ali3AkiXAw4fAtm1A+/ZieXrkoP2nn8R90aIiA5/bMWjPTnLQfuAA8PIlUL064heJ+QKmYB5K3d+NDz8U0xU8f27BdhIREVmR9u3bo0iRInBxcUFAQADef/99PHnyxNLNIiKiVLz3HjBqlCh3zwg5aJenxWaWXbCZoP3bb79F0aJF4eLigtq1a+PUqVOWblJKcp92QIzCcPAgnMePAD76CHaQsNW9D0q6Psb+/UC1atq5DImIiHKzxo0b448//sDNmzexadMm3LlzB127drV0s4iIyMR0p5oDGLTLbCJo37BhA8aOHYsZM2bg3LlzqFy5Mlq0aIHn1paubtQI8PcXl522bNFm3hcvBqpUgVv0S1x4pxeaFQvB08dKBAcDCxeKPh3nzwN37wKvXoF934nItsTHAwkJovObqahUoqLp+nXg1i0gOtrwdmkdV5KAmBjTtosyZcyYMXj33XcRFBSEunXrYtKkSThx4gQSeUIkIrIpxYqJQfBkDNoFhSTl/F8jtWvXRs2aNbFs2TIAgEqlQmBgIEaMGIFJkyal+/rIyEh4e3sjIiICXl5mHsVdkgzPm3D7NlC9upjfAEC8nQuuqsrhNkohAt6IggfewhNxcIEEBeztFXB2UcDFBXBx/X979x4cVXn+Afz7nrP33DYQcpOE+wAqKIJixN90WjIj6LTV0otMaqNlyoBgoUxVLEVlOhQ6nbHTlg4dnUo7UypTOkAprTo2WFoshEsBQS5qoYBAEiCG7CbZ2znP74+TPclKkGQT2RPy/cyc2ew57zn7nGc3efLu+55dBb8fCPgFmgaYhiCRAAwD0HQFj1fB49Pg9mlwu8RadIGuW9fPJxJALK7sfYyEWLcmoGvWMZSuoCnAFAUR6zQSCSASBaIRIBKx1um6tbh0gdsD+LyA1wt4PQIxTRhRA4mYASNmQpQG0V3tiw7TaH/85GICpmH97w0F+HwKgQDg91vHswNpZwogUBBRECiYprWv0X6Mzvc1LXUxpeOxTFMgpgCGad1CoCsTurJulQJMzQVT6TCVDs2lwe814fcJfF4TmrLyGU8oROMaBApKAUpTUJqCkRDEY4JEzEQiIdB1Bd2jweXR4HJrVjuVfJmIFZchME3rdF2u9sWtIACirSaibdZimoDu0aF7detYugZTFAxRMEWDpiu43Aq6y7qFiJVG08qj12vl1++3foZSMKFZi1iv22Rb3YzDFw/BFw/BG22GMhKI6T7ElRdR5UNM9yPmzkLMnYWoKwvi9UHzeaD5PNB9bujKhEvi0Iw43EYEeS3nkdt8Ftkfn4X38nlo4RBUaxiqJQwkEoiXDkNs6Ci0lY5EvHAoPAEdXr8Gn0/BpQvirXEYEWuReBxuicOFhP0YKh6zOmjxONDWZnXGWlutF29WFpCfDwwaBOTlWS/iJMOw2oXD1hKJdLxwdN16Mnw+K2k+n/X9KLre0aatDWhs7Fja2qwYkkswCLOwGPGCEsTzC+EKeODxApqC9YJsb2dEYjBbo0A4DBUOQbVYubFy1GJ1Sk3TejMwufh8HTHqunWs5Hm3tlr7JM+rtbUjD/n5Vh4Mw+pQR6PWvim/NGbHMVparNwmKWW9gPLygGCwI6exWMfxmpuBpiZriUY79vX5Opbki9Hvt/Lqdlu3LlfqL3UiYeU1ErFum5utDrtppv6dDQYhQ4dCoIDGRqiPG6Ha2iBuD+IFxYjlFyOSWwhPaxO8jefhvngeWjQCycqGWVYOs2wYUFgELR6B1hKCCoWsc+qc8+xs6+N2R43qcXno7IbWpX6msbER8+fPx7lz57Bz585rtotGo4h2em01NzejrKyMOSUicrj/+z9g507r34krV1I78Teb7tb7fv+Vb7FYDPv378dzzz1nr9M0DZWVldi1a1eX+3RVyG+Ya33R4ZgxwKZNwNKlwJEj8EYjuAsHcBcOdN3eANDSvhANAK7TJ+HH28i71vYbGk3f0gB425dr0duXz1Q4DNTX993x6up6vk+k/V3APtKk5cMlcWRLGGhqgmpqwif/Cqt4DJ4LZ+C5cAbZXRxDtYShHz8K/fjRbj3m8fvnYFzv+uzUhWeffRZr1qxBa2sr7r33XmxLfunvNaxatQorVqy4QdEREVFfufNOq9M+btzN3WHvif78fy4A4NKlSzAMA0VFRSnri4qKcPz48S73cWwhr6wE9u2zRrdOngTeew/43/+sf6RDISAchtkaQTwmiMcF8aggFhPEoh0DWAJlDYS5VMeoe1xgxEwk4iYMQ8EwFQwTMEwFXQN0XeDSrVtNV9A0a1+lKUj7qLNpijUcrSkoWO89aJo18OVyA24XoDRATGuEXAxBwlDWIGFCIZ4AlK5Bc+vQ3dbotBIzObQPZSSgNCselRzMa38MpQEwBbE4kBwsTSTQ8QZI+601vm4tUMnR7fZY23/WFKCUAO2nY40yA9CU3cYa5bZGxdt3gAkN0j7aLACUaUAzDSjTgGmYiCc0RBMaYnEFiDXTwKWbcGsmoKz4Bdat0hU0lwbdZY18m6bATJgwEyYkYQDJuABAkiP07bdIzkCwRt6ViDWq7tHgdlvtzLhhHStuTR1QysqJJiZEBGJ0ek7bZwEkc5gwrOcqkQDMREc+NZhQMDu96aSQUC60aDkIIwdhZCOh3PBpUfhUFH5E4EMbfEYLAkYYPqMFLjMK3YhBN+PQjRhEaUjAjYRyI6Y8aNBKcFaG4mS8DKfit6AJQYSRjRZkQ9OAUfr/MEb7L0bhvxhi1kMME6ZpxSZQiMONONxItN/G7PsuxOBpX2fdtsGPVgTQigAi8CEbYeTjY+TjYwTRZL2G2glUexxZCCMbEfigINBhQIMJN+Lwow0+ROBHGzyI2dt1GGhFAB8jH40YhI+Rj1YE7DgM6AiiCSW4gGLUoRAN0GGk/FmIwWO3j8KLMLLtmTfJmJLxmdCQhRbkIIQchOBFFDoMa8YBEojDbZ93KwL2vmFkow1+ZKHFzkMeriABF6LwIgov4nDbr4VkjC3IspcYPNaskvbc+dGGPFxBHq4giCZoMO1jReFFCDloQhBNCOIK8qAg9tZkLpOLDxF47GfUmkFhzwCBBgO63ToCH0LIwUUMwSUUIGG6AQA5aMZQfISh+AgCZT8fYT2IIf4whnkuoMxdh2KtAZeNIP4XK8WpSAk+igxGEepRjjMYhtMoRIOduxByEIcbAbTamcxBCI8MKeu7unATW7p0KX7yk598aptjx45hXPuX/D799NOYM2cOTp8+jRUrVuBb3/oWtm3bBnWNN8Ofe+45LFmyxL6fHGknIiJnmzEDWLPG+qo4svT76fHnz5/HLbfcgn//+9+oqKiw1z/zzDPYsWMHamtrr9qHU+aInO1aV5F8UnKGdjzefhmGt2NmeyKROrPbMGBfAgJ0vPGUvBSh8+MlEtabQ8nZ9C6X9QaV220dv3Pb5CUXyUtNTPPqYyb/yia/rzQ5s17Xr74kIRpNnbHu9XbMFPd4Uo+XnL0eiVi3iUTHcZNxdr4sJLkk73eVh+Q6oNOlGC5rXefZ7Z1nyyevBki2Td7vLJnT5P7Jc+jqsbrKcTye+pwkZ8p3fk6Sx0xeSpJcdB0IBGBfXpO8isHtvv73xSaP1TmPyTiS55O80iEZ24QJqZ87mo6BMD3+4sWLuHz58qe2GTlyJDzJF34nH330EcrKyq6q/Z9mIOSUiOhm8eGHQHl5x/8+N6sBMz2+oKAAuq6j/hNTOuvr61FcXNzlPl6vF17vp01EJaJM6k6HHbA6XNldzWdGRwewt52nGy3Zged3kjpDslPf+WMOAoHMxHKzGTJkCIak+UI32z+voPMb8EREdPMYPTrTEThLv//0eI/Hg8mTJ6OmpsZeZ5omampquv3uOxERETlTbW0t1qxZg4MHD+L06dPYvn07Zs+ejVGjRrHOExHRgNDvO+0AsGTJErzyyiv43e9+h2PHjmH+/PloaWnBE088kenQiIiIqBcCgQA2bdqE6dOnY+zYsZgzZw4mTpyIHTt2cNYcERENCP1+ejwAfOMb38DFixfx/PPPo66uDnfeeSfeeOONqz6cjoiIiPqXCRMmYPv27ZkOg4iIKGNuik47ACxcuBALFy7MdBhEREREREREfeammB5PREREREREdDNip52IiIiIiIjIodhpJyIiIiIiInIodtqJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHbaiYiIiIiIiByKnXYiIiIiIiIih2KnnYiIiIiIiMihXJkOwAlEBADQ3Nyc4UiIiIg66lGyPlHvsdYTEZHTdLfes9MOIBQKAQDKysoyHAkREVGHUCiEvLy8TIdxU2CtJyIip7pevVfCt/FhmibOnz+PnJwcKKV6dazm5maUlZXh7NmzyM3N7aMIb37MW88xZ+lh3nqOOUtPb/ImIgiFQigtLYWm8Uq2vsBan3nMW88xZ+lh3tLDvPVcb3PW3XrPkXYAmqZh6NChfXrM3NxcvtjTwLz1HHOWHuat55iz9KSbN46w9y3Weudg3nqOOUsP85Ye5q3nepOz7tR7vn1PRERERERE5FDstBMRERERERE5FDvtfczr9eKFF16A1+vNdCj9CvPWc8xZepi3nmPO0sO83bz43KaHees55iw9zFt6mLeeu1E54wfRERERERERETkUR9qJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHba+9CvfvUrDB8+HD6fD1OnTsWePXsyHZKjrFq1CnfffTdycnJQWFiIhx9+GCdOnEhpE4lEsGDBAgwePBjZ2dmYNWsW6uvrMxSx86xevRpKKSxevNhex5x17dy5c/jmN7+JwYMHw+/3Y8KECdi3b5+9XUTw/PPPo6SkBH6/H5WVlfjggw8yGHHmGYaB5cuXY8SIEfD7/Rg1ahR+9KMfofPnlQ70vP3zn//EF7/4RZSWlkIphS1btqRs705+GhsbUVVVhdzcXASDQcyZMwfhcPgGngX1Fuv9tbHW9x5rffex1vcca333OK7eC/WJDRs2iMfjkVdffVXee+89+c53viPBYFDq6+szHZpjPPDAA7Ju3To5cuSIHDx4UB588EEpLy+XcDhst5k3b56UlZVJTU2N7Nu3T+6991657777Mhi1c+zZs0eGDx8uEydOlEWLFtnrmbOrNTY2yrBhw+Txxx+X2tpaOXnypLz55pvy4Ycf2m1Wr14teXl5smXLFjl06JB86UtfkhEjRkhbW1sGI8+slStXyuDBg2Xbtm1y6tQp2bhxo2RnZ8vPf/5zu81Az9vf/vY3WbZsmWzatEkAyObNm1O2dyc/M2bMkDvuuEN2794t//rXv2T06NEye/bsG3wmlC7W+0/HWt87rPXdx1qfHtb67nFavWenvY/cc889smDBAvu+YRhSWloqq1atymBUztbQ0CAAZMeOHSIi0tTUJG63WzZu3Gi3OXbsmACQXbt2ZSpMRwiFQjJmzBh566235HOf+5xdyJmzrj377LNy//33X3O7aZpSXFwsP/3pT+11TU1N4vV65bXXXrsRITrSQw89JN/+9rdT1n3lK1+RqqoqEWHePumTRbw7+Tl69KgAkL1799ptXn/9dVFKyblz525Y7JQ+1vueYa3vPtb6nmGtTw9rfc85od5zenwfiMVi2L9/PyorK+11mqahsrISu3btymBkznblyhUAwKBBgwAA+/fvRzweT8njuHHjUF5ePuDzuGDBAjz00EMpuQGYs2vZunUrpkyZgq997WsoLCzEpEmT8Morr9jbT506hbq6upS85eXlYerUqQM6b/fddx9qamrw/vvvAwAOHTqEnTt3YubMmQCYt+vpTn527dqFYDCIKVOm2G0qKyuhaRpqa2tveMzUM6z3Pcda332s9T3DWp8e1vrey0S9d/U+bLp06RIMw0BRUVHK+qKiIhw/fjxDUTmbaZpYvHgxpk2bhttvvx0AUFdXB4/Hg2AwmNK2qKgIdXV1GYjSGTZs2ID//Oc/2Lt371XbmLOunTx5EmvXrsWSJUvwgx/8AHv37sV3v/tdeDweVFdX27np6nd2IOdt6dKlaG5uxrhx46DrOgzDwMqVK1FVVQUAzNt1dCc/dXV1KCwsTNnucrkwaNAg5rAfYL3vGdb67mOt7znW+vSw1vdeJuo9O+2UEQsWLMCRI0ewc+fOTIfiaGfPnsWiRYvw1ltvwefzZTqcfsM0TUyZMgU//vGPAQCTJk3CkSNH8Otf/xrV1dUZjs65/vjHP2L9+vX4wx/+gNtuuw0HDx7E4sWLUVpayrwRUY+x1ncPa316WOvTw1rfP3F6fB8oKCiArutXfYpnfX09iouLMxSVcy1cuBDbtm3D22+/jaFDh9rri4uLEYvF0NTUlNJ+IOdx//79aGhowF133QWXywWXy4UdO3bgF7/4BVwuF4qKipizLpSUlODWW29NWTd+/HicOXMGAOzc8Hc21dNPP42lS5fi0UcfxYQJE/DYY4/he9/7HlatWgWAebue7uSnuLgYDQ0NKdsTiQQaGxuZw36A9b77WOu7j7U+Paz16WGt771M1Ht22vuAx+PB5MmTUVNTY68zTRM1NTWoqKjIYGTOIiJYuHAhNm/ejO3bt2PEiBEp2ydPngy3252SxxMnTuDMmTMDNo/Tp0/H4cOHcfDgQXuZMmUKqqqq7J+Zs6tNmzbtqq8Yev/99zFs2DAAwIgRI1BcXJySt+bmZtTW1g7ovLW2tkLTUsuCruswTRMA83Y93clPRUUFmpqasH//frvN9u3bYZompk6desNjpp5hvb8+1vqeY61PD2t9eljrey8j9T7dT9GjVBs2bBCv1yu//e1v5ejRozJ37lwJBoNSV1eX6dAcY/78+ZKXlyf/+Mc/5MKFC/bS2tpqt5k3b56Ul5fL9u3bZd++fVJRUSEVFRUZjNp5On+irAhz1pU9e/aIy+WSlStXygcffCDr16+XQCAgv//97+02q1evlmAwKH/+85/l3XfflS9/+csD7utMPqm6ulpuueUW+2tgNm3aJAUFBfLMM8/YbQZ63kKhkBw4cEAOHDggAOSll16SAwcOyOnTp0Wke/mZMWOGTJo0SWpra2Xnzp0yZswYfuVbP8J6/+lY6/sGa/31sdanh7W+e5xW79lp70O//OUvpby8XDwej9xzzz2ye/fuTIfkKAC6XNatW2e3aWtrkyeffFLy8/MlEAjII488IhcuXMhc0A70yULOnHXtL3/5i9x+++3i9Xpl3Lhx8vLLL6dsN01Tli9fLkVFReL1emX69Oly4sSJDEXrDM3NzbJo0SIpLy8Xn88nI0eOlGXLlkk0GrXbDPS8vf32213+HauurhaR7uXn8uXLMnv2bMnOzpbc3Fx54oknJBQKZeBsKF2s99fGWt83WOu7h7W+51jru8dp9V6JiPR8fJ6IiIiIiIiIPmu8pp2IiIiIiIjIodhpJyIiIiIiInIodtqJiIiIiIiIHIqddiIiIiIiIiKHYqediIiIiIiIyKHYaSciIiIiIiJyKHbaiYiIiIiIiByKnXYiIiIiIiIih2KnnYgyTimFLVu2ZDoMIiIi+oyw1hOlj512ogHu8ccfh1LqqmXGjBmZDo2IiIj6AGs9Uf/mynQARJR5M2bMwLp161LWeb3eDEVDREREfY21nqj/4kg7EcHr9aK4uDhlyc/PB2BNZ1u7di1mzpwJv9+PkSNH4k9/+lPK/ocPH8YXvvAF+P1+DB48GHPnzkU4HE5p8+qrr+K2226D1+tFSUkJFi5cmLL90qVLeOSRRxAIBDBmzBhs3br1sz1pIiKiAYS1nqj/YqediK5r+fLlmDVrFg4dOoSqqio8+uijOHbsGACgpaUFDzzwAPLz87F3715s3LgRf//731MK9dq1a7FgwQLMnTsXhw8fxtatWzF69OiUx1ixYgW+/vWv491338WDDz6IqqoqNDY23tDzJCIiGqhY64kcTIhoQKuurhZd1yUrKytlWblypYiIAJB58+al7DN16lSZP3++iIi8/PLLkp+fL+Fw2N7+17/+VTRNk7q6OhERKS0tlWXLll0zBgDywx/+0L4fDocFgLz++ut9dp5EREQDFWs9Uf/Ga9qJCJ///Oexdu3alHWDBg2yf66oqEjZVlFRgYMHDwIAjh07hjvuuANZWVn29mnTpsE0TZw4cQJKKZw/fx7Tp0//1BgmTpxo/5yVlYXc3Fw0NDSke0pERETUCWs9Uf/FTjsRISsr66opbH3F7/d3q53b7U65r5SCaZqfRUhEREQDDms9Uf/Fa9qJ6Lp279591f3x48cDAMaPH49Dhw6hpaXF3v7OO+9A0zSMHTsWOTk5GD58OGpqam5ozERERNR9rPVEzsWRdiJCNBpFXV1dyjqXy4WCggIAwMaNGzFlyhTcf//9WL9+Pfbs2YPf/OY3AICqqiq88MILqK6uxosvvoiLFy/iqaeewmOPPYaioiIAwIsvvoh58+ahsLAQM2fORCgUwjvvvIOnnnrqxp4oERHRAMVaT9R/sdNORHjjjTdQUlKSsm7s2LE4fvw4AOvTXjds2IAnn3wSJSUleO2113DrrbcCAAKBAN58800sWrQId999NwKBAGbNmoWXXnrJPlZ1dTUikQh+9rOf4fvf/z4KCgrw1a9+9cadIBER0QDHWk/UfykRkUwHQUTOpZTC5s2b8fDDD2c6FCIiIvoMsNYTORuvaSciIiIiIiJyKHbaiYiIiIiIiByK0+OJiIiIiIiIHIoj7UREREREREQOxU47ERERERERkUOx005ERERERETkUOy0ExERERERETkUO+1EREREREREDsVOOxEREREREZFDsdNORERERERE5FDstBMRERERERE51P8DRh8t0k9CpMEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxy0lEQVR4nOzdd3hT5RcH8G+6Fx0gtAVK2XtP2aAoArKngEwBBWSIiggCIorg4ocoIDIcgMgUUEH2XrKRoexRyqale+T+/ji5GW26kyZNv5/nyZPk5ubmTVpIzz3nPa9GURQFRERERERERGR3nGw9ACIiIiIiIiIyj0E7ERERERERkZ1i0E5ERERERERkpxi0ExEREREREdkpBu1EREREREREdopBOxEREREREZGdYtBOREREREREZKcYtBMRERERERHZKQbtRERERERERHaKQTsRERERkYNq0aIFWrRokel9q1atat0B6ZQsWRIDBgzIldciyusYtBORiaVLl0Kj0UCj0WDfvn2pHlcUBSEhIdBoNHj55Zf126OiojBlyhRUrVoV3t7eKFSoEGrWrInRo0cjLCxMv9/UqVP1xzd3CQ8Pz5X3SURElFnqd+Pff/9t66HkWFhYGKZOnYqTJ0/aeigWU7JkSWg0GrRq1crs4wsXLtT/nZHyZ7hv3z60adMGxYoVg4eHB0qUKIH27dtj+fLlJvul97fL66+/brX3RgQALrYeABHZJw8PDyxfvhxNmjQx2b57927cunUL7u7u+m2JiYlo1qwZLly4gP79++PNN99EVFQU/vnnHyxfvhydO3dG0aJFTY4zb948+Pj4pHpdf39/q7wfIiKi/Oivv/4yuR8WFoYPP/wQJUuWRM2aNW0zKAAXL16Ek5Pl8oceHh7YuXMnwsPDERQUZPLYsmXL4OHhgbi4OJPtq1atQs+ePfVJhoCAAFy9ehV79uzBwoUL0bt3b5P9X3jhBfTr1y/Va5cvX95i74PIHAbtRGRW27ZtsWrVKsyZMwcuLob/KpYvX446dergwYMH+m3r16/HiRMnsGzZslRfcHFxcUhISEh1/G7duuGZZ56x3hsgIiLKx2JiYuDl5QU3NzdbD8Us45P/ltC4cWMcPXoUK1euxOjRo/Xbb926hb1796Jz585Ys2aNyXOmTp2KypUr49ChQ6k+p3v37qV6jfLly6Nv374WHTdRZrA8nojMeuWVV/Dw4UNs3bpVvy0hIQGrV69OFZhfvnwZgHxhpuTh4QFfX1/rDpaIiMgOnDhxAm3atIGvry98fHzw/PPP49ChQ6n2O336NJo3bw5PT08UL14c06dPx5IlS6DRaHDt2jX9fr/99hvatWuHokWLwt3dHWXKlMFHH32E5ORkk+Opc9GPHTuGZs2awcvLC++//77+MXVO+65du1CvXj0AwMCBA/Xl3UuXLjU53rlz59CyZUt4eXmhWLFimDVrlsnju3btgkajwa+//ooPP/wQxYoVQ4ECBdCtWzdEREQgPj4eY8aMQZEiReDj44OBAwciPj7e5Bjm5rQ/efIEY8eORcmSJeHu7o7ixYujX79+JomCtHh4eKBLly6pytpXrFiBgIAAtG7dOtVzLl++jHr16pk9sVGkSJEMX5MotzDTTkRmlSxZEg0bNsSKFSvQpk0bAMCff/6JiIgI9OrVC3PmzNHvGxoaCgD48ccfMWnSJGg0mgyP/+jRo1TbXFxcWB5PRER50j///IOmTZvC19cX7777LlxdXbFgwQK0aNECu3fvRoMGDQAAt2/fRsuWLaHRaDBhwgR4e3vj+++/N5t5Xrp0KXx8fPDWW2/Bx8cHO3bswOTJkxEZGYnPPvvMZN+HDx+iTZs26NWrF/r27YvAwMBUx6tUqRKmTZuGyZMnY+jQoWjatCkAoFGjRvp9Hj9+jJdeegldunRBjx49sHr1aowfPx7VqlXT/z2gmjFjBjw9PfHee+/h0qVL+Prrr+Hq6gonJyc8fvwYU6dOxaFDh7B06VKUKlUKkydPTvPzi4qKQtOmTXH+/HkMGjQItWvXxoMHD7BhwwbcunUrU9V5vXv3xosvvojLly+jTJkyAKRCsFu3bnB1dU21f2hoKLZv345bt26hePHiGR4/Li7O7AkEX19fu61oIAehEBEZWbJkiQJAOXr0qDJ37lylQIECSkxMjKIoitK9e3elZcuWiqIoSmhoqNKuXTtFURQlJiZGqVChggJACQ0NVQYMGKAsWrRIuXv3bqrjT5kyRQFg9lKhQoXce6NERESZZPzdmJZOnTopbm5uyuXLl/XbwsLClAIFCijNmjXTb3vzzTcVjUajnDhxQr/t4cOHSsGCBRUAytWrV/Xb1e9fY8OGDVO8vLyUuLg4/bbmzZsrAJT58+en2r958+ZK8+bN9fePHj2qAFCWLFlidl8Ayo8//qjfFh8frwQFBSldu3bVb9u5c6cCQKlataqSkJCg3/7KK68oGo1GadOmjclxGzZsqISGhppsCw0NVfr376+/P3nyZAWAsnbt2lTj0mq1qbalPFa7du2UpKQkJSgoSPnoo48URVGUc+fOKQCU3bt3m/0ZLlq0SAGguLm5KS1btlQ++OADZe/evUpycnKq10jrbxcAyooVK9IdH1FOsTyeiNLUo0cPxMbGYtOmTXj69Ck2bdqUqjQeADw9PXH48GG88847ACQzMHjwYAQHB+PNN99MVRIHAGvWrMHWrVtNLkuWLLH6eyIiIrK05ORk/PXXX+jUqRNKly6t3x4cHIzevXtj3759iIyMBABs3rwZDRs2NGkCV7BgQfTp0yfVcT09PfW3nz59igcPHqBp06aIiYnBhQsXTPZ1d3fHwIEDc/xefHx8TOZtu7m5oX79+rhy5Uqqffv162eSwW7QoAEURcGgQYNM9mvQoAFu3ryJpKSkNF93zZo1qFGjBjp37pzqscxU8AGAs7MzevTogRUrVgCQBnQhISH6ioKUBg0ahM2bN6NFixbYt28fPvroIzRt2hTlypXDgQMHUu3fsWPHVH+7bN26FS1btszU+Iiyi+XxRJSmwoULo1WrVli+fDliYmKQnJyMbt26md3Xz88Ps2bNwqxZs3D9+nVs374dn3/+OebOnQs/Pz9Mnz7dZP9mzZqxER0RETmE+/fvIyYmBhUqVEj1WKVKlaDVanHz5k1UqVIF169fR8OGDVPtV7Zs2VTb/vnnH0yaNAk7duzQB/2qiIgIk/vFihWzSIl28eLFUwXJAQEBOH36dKp9S5QoYXLfz88PABASEpJqu1arRUREBAoVKmT2dS9fvoyuXbvmZOgApER+zpw5OHXqFJYvX45evXqlG/S3bt0arVu3RkxMDI4dO4aVK1di/vz5ePnll3HhwgWTue3FixdPc1k5Imtipp2I0tW7d2/8+eefmD9/Ptq0aZOpOeehoaEYNGgQ9u/fD39/fyxbtsz6AyUiInIgT548QfPmzXHq1ClMmzYNGzduxNatWzFz5kwAgFarNdnfOCufE87Ozma3K4qS6X2zcgxLa9CgAcqUKYMxY8bg6tWrZisEzfHy8kLTpk0xd+5cTJo0CY8fP8aff/5p5dESZQ4z7USUrs6dO2PYsGE4dOgQVq5cmaXnBgQEoEyZMjh79qyVRkdERGR7hQsXhpeXFy5evJjqsQsXLsDJyUmffQ4NDcWlS5dS7Zdy265du/Dw4UOsXbsWzZo102+/evVqjsaa2VLz3GbJvxdeeeUVTJ8+HZUqVcrWWvR169YFANy5c8ci4yHKKWbaiShdPj4+mDdvHqZOnYr27dub3efUqVNmu6lev34d586dM1suSERE5CicnZ3x4osv4rfffjNZsu3u3btYvnw5mjRpol/+tHXr1jh48CBOnjyp3+/Ro0epqtLUbLVxdjohIQHffvttjsbq7e0NQDL59qRr1644deoU1q1bl+qxrGboX3vtNUyZMgVffPFFuvtt377d7PY//vgDAPj3C9kNZtqJKEP9+/dP9/GtW7diypQp6NChA5599ln4+PjgypUrWLx4MeLj4zF16tRUz1m9ejV8fHxSbX/hhRfMLlNDRERka4sXL8bmzZtTbR89ejSmT5+OrVu3okmTJhg+fDhcXFywYMECxMfHm6xz/u677+Lnn3/GCy+8gDfffFO/5FuJEiXw6NEjfSa8UaNGCAgIQP/+/TFq1ChoNBr89NNPOS4xL1OmDPz9/TF//nwUKFAA3t7eaNCgAUqVKpWj4+bUO++8g9WrV6N79+4YNGgQ6tSpg0ePHmHDhg2YP38+atSokeljhYaGmv3bI6WOHTuiVKlSaN++PcqUKYPo6Ghs27YNGzduRL169VIlK/7991/8/PPPqY4TGBiIF154IdPjI8oqBu1ElGNdu3bF06dP8ddff2HHjh149OgRAgICUL9+fYwbN85sV9U33njD7LF27tzJoJ2IiOzSvHnzzG4fMGAAqlSpgr1792LChAmYMWMGtFotGjRogJ9//lm/RjsgTdp27tyJUaNG4ZNPPkHhwoUxYsQIeHt7Y9SoUfDw8AAAFCpUCJs2bcK4ceMwadIkBAQEoG/fvnj++efRunXrbL8HV1dX/PDDD5gwYQJef/11JCUlYcmSJTYP2n18fLB3715MmTIF69atww8//IAiRYrg+eefz9Qa6tnx/fff47fffsOvv/6KsLAwKIqC0qVLY+LEiRg/fjxcXExDJbVbfErNmzdn0E5WpVFyoyMEERERERGlacyYMViwYAGioqLSbORGRPkT57QTEREREeWi2NhYk/sPHz7ETz/9hCZNmjBgJ6JUWB5PRERERJSLGjZsiBYtWqBSpUq4e/cuFi1ahMjISHzwwQe2HhoR2SEG7UREREREuaht27ZYvXo1vvvuO2g0GtSuXRuLFi0yWdqNiEjFOe1EREREREREdopz2omIiIiIiIjsFIN2IiIiIiIiIjvFOe0AtFotwsLCUKBAAWg0GlsPh4iI8jlFUfD06VMULVoUTk48v24J/K4nIiJ7k9nvewbtAMLCwhASEmLrYRAREZm4efMmihcvbuthOAR+1xMRkb3K6PueQTuAAgUKAJAPy9fX18ajISKi/C4yMhIhISH67yfKOX7XExGRvcns9z2DdkBfJufr68svciIishss47YcftcTEZG9yuj7nhPliIiIiIiIiOwUg3YiIiIiIiIiO8WgnYiIiIiIiMhOcU47EVEWJCcnIzEx0dbDIAfg6uoKZ2dnWw+DiIhSUBQFSUlJSE5OtvVQKI9zdnaGi4tLjnvUMGgnIsqkqKgo3Lp1C4qi2Hoo5AA0Gg2KFy8OHx8fWw+FiIh0EhIScOfOHcTExNh6KOQgvLy8EBwcDDc3t2wfg0E7EVEmJCcn49atW/Dy8kLhwoXZ1ZtyRFEU3L9/H7du3UK5cuWYcScisgNarRZXr16Fs7MzihYtCjc3N37fU7YpioKEhATcv38fV69eRbly5eDklL3Z6QzaiYgyITExEYqioHDhwvD09LT1cMgBFC5cGNeuXUNiYiKDdiIiO5CQkACtVouQkBB4eXnZejjkADw9PeHq6orr168jISEBHh4e2ToOG9EREWUBz7iTpfB3iYjIPmU3G0pkjiV+n/gbSURERERERGSnGLQTERERERER2SkG7URElCUlS5bE7NmzM73/rl27oNFo8OTJE6uNCQCWLl0Kf39/q74GERFRfsDvevvCoJ2IyEFpNJp0L1OnTs3WcY8ePYqhQ4dmev9GjRrhzp078PPzy9brERERkXn8rs8f2D2eiMhB3blzR3975cqVmDx5Mi5evKjfZrw+uKIoSE5OhotLxl8LhQsXztI43NzcEBQUlKXnEBERUcb4XZ8/MNNuQRcvAjVqAC1b2nokRGRtigJER9vmoiiZG2NQUJD+4ufnB41Go79/4cIFFChQAH/++Sfq1KkDd3d37Nu3D5cvX0bHjh0RGBgIHx8f1KtXD9u2bTM5bsqSOY1Gg++//x6dO3eGl5cXypUrhw0bNugfT1kyp5a2bdmyBZUqVYKPjw9eeuklkz88kpKSMGrUKPj7+6NQoUIYP348+vfvj06dOmXp5zRv3jyUKVMGbm5uqFChAn766Sejn6GCqVOnokSJEnB3d0fRokUxatQo/ePffvstypUrBw8PDwQGBqJbt25Zem1yTIoCtGoFhIYC4eG2Hg0RWRO/62fr7/O73rYYtFtQYiJw+jTwzz+2HgkRWVtMDODjY5tLTIzl3sd7772HTz/9FOfPn0f16tURFRWFtm3bYvv27Thx4gReeukltG/fHjdu3Ej3OB9++CF69OiB06dPo23btujTpw8ePXqUzucXg88//xw//fQT9uzZgxs3buDtt9/WPz5z5kwsW7YMS5Yswf79+xEZGYn169dn6b2tW7cOo0ePxrhx43D27FkMGzYMAwcOxM6dOwEAa9aswVdffYUFCxbgv//+w/r161GtWjUAwN9//41Ro0Zh2rRpuHjxIjZv3oxmzZpl6fXJMWk0wH//ATduAFeu2Ho0RGRN/K43xe96G1JIiYiIUAAoEREROTrOxYuKAiiKn59lxkVE9iM2NlY5d+6cEhsbqyiKokRFyb93W1yiorI+/iVLlih+Rv857dy5UwGgrF+/PsPnVqlSRfn666/190NDQ5WvvvpKfx+AMmnSJP39qKgoBYDy559/mrzW48eP9WMBoFy6dEn/nG+++UYJDAzU3w8MDFQ+++wz/f2kpCSlRIkSSseOHTP9Hhs1aqQMGTLEZJ/u3bsrbdu2VRRFUb744gulfPnySkJCQqpjrVmzRvH19VUiIyPTfL2cSvk7ZcxS30tkYMnPtGVL+bf4008WGBgR2Q1+1/O73hos8X3PTLsFubnJdWKibcdBRNbn5QVERdnm4uVlufdRt25dk/tRUVF4++23UalSJfj7+8PHxwfnz5/P8Ox79erV9be9vb3h6+uLe/fupbm/l5cXypQpo78fHBys3z8iIgJ3795F/fr19Y87OzujTp06WXpv58+fR+PGjU22NW7cGOfPnwcAdO/eHbGxsShdujSGDBmCdevWISkpCQDwwgsvIDQ0FKVLl8arr76KZcuWIcaSaQ/K00qXlmtm2okcG7/rTfG73nYYtFuQq6tcJyTYdhxEZH0aDeDtbZuLRmO59+Ht7W1y/+2338a6devwySefYO/evTh58iSqVauGhAz+Y3NV/wPUfz4aaLXaLO2vZHYCn4WEhITg4sWL+Pbbb+Hp6Ynhw4ejWbNmSExMRIECBXD8+HGsWLECwcHBmDx5MmrUqGH1pWwob2DQTpQ/8LveFL/rbYdBuwWpmfakpMw3jyAisif79+/HgAED0LlzZ1SrVg1BQUG4du1aro7Bz88PgYGBOHr0qH5bcnIyjh8/nqXjVKpUCfv37zfZtn//flSuXFl/39PTE+3bt8ecOXOwa9cuHDx4EGfOnAEAuLi4oFWrVpg1axZOnz6Na9euYceOHTl4Z+QoGLQTUV7G7/q8913PJd8syPhkUmKiIYgnIsorypUrh7Vr16J9+/bQaDT44IMP0j2Lbi1vvvkmZsyYgbJly6JixYr4+uuv8fjxY2iykHp455130KNHD9SqVQutWrXCxo0bsXbtWn2H3KVLlyI5ORkNGjSAl5cXfv75Z3h6eiI0NBSbNm3ClStX0KxZMwQEBOCPP/6AVqtFhQoVrPWWKQ9Rg/bLl207DiKi7OB3fd77rmfQbkHGQTqDdiLKi7788ksMGjQIjRo1wjPPPIPx48cjMjIy18cxfvx4hIeHo1+/fnB2dsbQoUPRunVrODs7Z/oYnTp1wv/+9z98/vnnGD16NEqVKoUlS5agRYsWAAB/f398+umneOutt5CcnIxq1aph48aNKFSoEPz9/bF27VpMnToVcXFxKFeuHFasWIEqVapY6R1TXqIG7WFhQGws4Olp2/EQEWUFv+vz3ne9RsntiQV2KDIyEn5+foiIiICvr2+2j2McqD96BAQEWGiARGRzcXFxuHr1KkqVKgUPDw9bDyff0Wq1qFSpEnr06IGPPvrI1sOxiPR+pyz1vUQGlvxMFQXw8wOePgXOnQMqVbLQIInIpvhdb1uO+F0PWOb7npl2C3Ix+jTZQZ6IKPuuX7+Ov/76C82bN0d8fDzmzp2Lq1evonfv3rYeGhE0GqBMGeDkSZnXzqCdiCjr+F2feWxEZ0EaDTvIExFZgpOTE5YuXYp69eqhcePGOHPmDLZt24ZKjI7ITrAZHRFRzvC7PvOYabcwNzfJsjPTTkSUfSEhIam6wRLZjXbtMPfIDRzBH7hyJcTWoyEiypP4XZ95zLRbGDPtREREDu70aQQ/OIsghDPTTkREVseg3cLURnQM2omIiBxUkSJyhXsM2omIyOoYtFuYmmlneTwREZGDShG0cx0eIiKyJgbtFsZMOxERkYPTBe2BuIeYGODuXRuPh4iIHBqDdgtjpp2IiMjB6YL2MgXuAWAHeSIisi4G7RbGTDsREZGD0wXtJb0YtBMRkfUxaLcwNWhnpp2IHEWLFi0wZswY/f2SJUti9uzZ6T5Ho9Fg/fr1OX5tSx0nPVOnTkXNmjWt+hrkYHRBe7ALg3Yicgz8rrdvDNotjEu+EZG9aN++PV566SWzj+3duxcajQanT5/O8nGPHj2KoUOH5nR4JtL6Mr1z5w7atGlj0dciyjFd0P6MlkE7EdkWv+vzB5sG7Xv27EH79u1RtGhRs2dYFEXB5MmTERwcDE9PT7Rq1Qr//fefyT6PHj1Cnz594OvrC39/fwwePBhRUVG5+C5MMdNORPZi8ODB2Lp1K27dupXqsSVLlqBu3bqoXr16lo9buHBheHl5WWKIGQoKCoK7u3uuvBZRpumCdt84Bu1EZFv8rs8fbBq0R0dHo0aNGvjmm2/MPj5r1izMmTMH8+fPx+HDh+Ht7Y3WrVsjLi5Ov0+fPn3wzz//YOvWrdi0aRP27Nlj8bNCWcFMO1E+oShAdLRtLplcX+rll19G4cKFsXTpUpPtUVFRWLVqFQYPHoyHDx/ilVdeQbFixeDl5YVq1aphxYoV6R43Zcncf//9h2bNmsHDwwOVK1fG1q1bUz1n/PjxKF++PLy8vFC6dGl88MEHSNSd3Vy6dCk+/PBDnDp1ChqNBhqNRj/mlCd0z5w5g+eeew6enp4oVKgQhg4danKidsCAAejUqRM+//xzBAcHo1ChQhgxYoT+tTJDq9Vi2rRpKF68ONzd3VGzZk1s3rxZ/3hCQgJGjhyJ4OBgeHh4IDQ0FDNmzAAgJ5unTp2KEiVKwN3dHUWLFsWoUaMy/dqURwQGAgA8Iu8BUBi0Ezkqftfr7/O73rbf9S5WPXoG2rRpk2YphKIomD17NiZNmoSOHTsCAH788UcEBgZi/fr16NWrF86fP4/Nmzfj6NGjqFu3LgDg66+/Rtu2bfH555+jaNGiufZeVMy0E+UTMTGAj49tXjsqCvD2znA3FxcX9OvXD0uXLsXEiROh0WgAAKtWrUJycjJeeeUVREVFoU6dOhg/fjx8fX3x+++/49VXX0WZMmVQv379DF9Dq9WiS5cuCAwMxOHDhxEREWEyJ05VoEABLF26FEWLFsWZM2cwZMgQFChQAO+++y569uyJs2fPYvPmzdi2bRsAwM/PL9UxoqOj0bp1azRs2BBHjx7FvXv38Nprr2HkyJEmf6zs3LkTwcHB2LlzJy5duoSePXuiZs2aGDJkSIbvBwD+97//4YsvvsCCBQtQq1YtLF68GB06dMA///yDcuXKYc6cOdiwYQN+/fVXlChRAjdv3sTNmzcBAGvWrMFXX32FX375BVWqVEF4eDhOnTqVqdelPKRwYQCAU3ISAvAYt28XRFwc4OFh43ERkWXxux4Av+vt4rtesRMAlHXr1unvX758WQGgnDhxwmS/Zs2aKaNGjVIURVEWLVqk+Pv7mzyemJioODs7K2vXrk3zteLi4pSIiAj95ebNmwoAJSIiIsfvo317RQEUZeHCHB+KiOxIbGyscu7cOSU2NlY2REXJP3ZbXKKiMj3u8+fPKwCUnTt36rc1bdpU6du3b5rPadeunTJu3Dj9/ebNmyujR4/W3w8NDVW++uorRVEUZcuWLYqLi4ty+/Zt/eN//vlnqv/TU/rss8+UOnXq6O9PmTJFqVGjRqr9jI/z3XffKQEBAUqU0fv//fffFScnJyU8PFxRFEXp37+/EhoaqiQlJen36d69u9KzZ880x5LytYsWLap8/PHHJvvUq1dPGT58uKIoivLmm28qzz33nKLValMd64svvlDKly+vJCQkpPl6qlS/U0YiIiIs9r1EwuKfqZ+fogBKba/zCqAo589b5rBEZDv8rh+tv8/vest81yuKZb7v7bYRXXh4OAAgUFeCpgoMDNQ/Fh4ejiK6eWUqFxcXFCxYUL+POTNmzICfn5/+EhISYrFxM9NOlE94eclZcFtcsjDHrGLFimjUqBEWL14MALh06RL27t2LwYMHAwCSk5Px0UcfoVq1aihYsCB8fHywZcsW3LhxI1PHP3/+PEJCQkwqmxo2bJhqv5UrV6Jx48YICgqCj48PJk2alOnXMH6tGjVqwNso89C4cWNotVpcvHhRv61KlSpwdnbW3w8ODsa9e/cy9RqRkZEICwtD48aNTbY3btwY58+fByBleSdPnkSFChUwatQo/PXXX/r9unfvjtjYWJQuXRpDhgzBunXrkJSUlKX3SXmE7u+PmkXld+vyZVsOhoisgt/1APhdbw/f9XYbtFvThAkTEBERob+opQ6WwDntRPmERiNla7a46ErfMmvw4MFYs2YNnj59iiVLlqBMmTJo3rw5AOCzzz7D//73P4wfPx47d+7EyZMn0bp1ayRY8D+xgwcPok+fPmjbti02bdqEEydOYOLEiRZ9DWOu6n/EOhqNBlqt1mLHr127Nq5evYqPPvoIsbGx6NGjB7p16wYACAkJwcWLF/Htt9/C09MTw4cPR7NmzbI0z44y9umnn0Kj0Zgtz8w1uqC9YiE2oyNyWPyuzzR+11v3u95ug/agoCAAwN27d0223717V/9YUFBQqjMqSUlJePTokX4fc9zd3eHr62tysRQ1086gnYjsRY8ePeDk5ITly5fjxx9/xKBBg/Rz3vbv34+OHTuib9++qFGjBkqXLo1///0308euVKkSbt68iTt37ui3HTp0yGSfAwcOIDQ0FBMnTkTdunVRrlw5XL9+3WQfNzc3JCcnZ/hap06dQnR0tH7b/v374eTkhAoVKmR6zOnx9fVF0aJFsX//fpPt+/fvR+XKlU3269mzJxYuXIiVK1dizZo1ePToEQDA09MT7du3x5w5c7Br1y4cPHgQZ86cscj4SJYhWrBgQba6IVuULmgv48OgnYhsj9/1mZcXv+vtNmgvVaoUgoKCsH37dv22yMhIHD58WF+O0bBhQzx58gTHjh3T77Njxw5otVo0aNAg18cMGDLtTKoQkb3w8fFBz549MWHCBNy5cwcDBgzQP1auXDls3boVBw4cwPnz5zFs2LBUJ0vT06pVK5QvXx79+/fHqVOnsHfvXkycONFkn3LlyuHGjRv45ZdfcPnyZcyZMwfr1q0z2adkyZK4evUqTp48iQcPHiA+Pj7Va/Xp0wceHh7o378/zp49i507d+LNN9/Eq6++mmoqVU688847mDlzJlauXImLFy/ivffew8mTJzF69GgAwJdffokVK1bgwoUL+Pfff7Fq1SoEBQXB398fS5cuxaJFi3D27FlcuXIFP//8Mzw9PREaGmqx8eVnUVFR6NOnDxYuXIiAgIB0942Pj0dkZKTJxaJ0QXuIO4N2IrI9ftdnTV77rrdp0B4VFYWTJ0/i5MmTAKD/Id64cUNf9jZ9+nRs2LABZ86cQb9+/VC0aFF06tQJgJyJeemllzBkyBAcOXIE+/fvx8iRI9GrVy+bdI4HmGknIvs0ePBgPH78GK1btzb5/3HSpEmoXbs2WrdujRYtWiAoKEj/f2xmODk5Yd26dYiNjUX9+vXx2muv4eOPPzbZp0OHDhg7dixGjhyJmjVr4sCBA/jggw9M9unatSteeukltGzZEoULFza7FI2Xlxe2bNmCR48eoV69eujWrRuef/55zJ07N2sfRgZGjRqFt956C+PGjUO1atWwefNmbNiwAeXKlQMg3XFnzZqFunXrol69erh27Rr++OMPODk5wd/fHwsXLkTjxo1RvXp1bNu2DRs3bkShQoUsOsb8asSIEWjXrh1atWqV4b7W7F8DQB+0BzoxaCci+8Dv+szLa9/1GkXJ5CKAVrBr1y60bNky1fb+/ftj6dKlUBQFU6ZMwXfffYcnT56gSZMm+Pbbb1G+fHn9vo8ePcLIkSOxceNGODk5oWvXrpgzZw58srA8Q2RkJPz8/BAREZHjUvnRo4E5c4D33wdS/C4TUR4WFxeHq1evolSpUvDguk5kAen9Tlnye8lR/PLLL/j4449x9OhReHh4oEWLFqhZs6bJOsLG4uPjTbI4kZGRCAkJsdxnOncu8OabeNq6K3y3rNb3q8riNFQisiP8ridrsMT3vU3XaW/RogXSO2eg0Wgwbdo0TJs2Lc19ChYsiOXLl1tjeNnCTDsREZFl3bx5E6NHj8bWrVsz/Ye0u7s73N3drTcoXabdO1oy7TExwKNHAIsqiIjI0ux2TntexTntRERElnXs2DHcu3cPtWvXhouLC1xcXLB7927MmTMHLi4uGTY2sgpd0O50/x7UlYkiInJ/GERE5Phsmml3RMy0ExERWdbzzz+fqivvwIEDUbFiRYwfP95krd5cowvace8e/PyA6GjgyZPcHwYRETk+Bu0WpgbtzLQTERFZRoECBVC1alWTbd7e3ihUqFCq7blG7WL8+DEKByUgLMyNmXYiIrIKlsdbmFoez0w7kWOyYe9OcjD8XcrjAgIAXYa/hNcDAMy0EzkK/v9MlmSJ3ydm2i2MmXYix6SW3yYkJMDT09PGoyFHkKA7u2uT0m4HsGvXLtsOwMkJKFwYCA9HCfe7AIoy006Ux7nqsm8xMTH8rieLiYmJAWD4/coOBu0Wxkw7kWNycXGBl5cX7t+/D1dXVzg5sVCJsk+r1eL+/fvw8vKCiwu/ivOsIkWA8HAUc5UO8sy0E+Vtzs7O8Pf3x7178m/ay8sLGq7jSNmkKApiYmJw7949+Pv75+gkPf9SsDBm2okck0ajQXBwMK5evYrr16/bejjkAJycnFCiRAn+QZiX6ZrRBTnLH/jMtBPlfUFBQQCgD9yJcsrf31//e5VdDNotjJl2Isfl5uaGcuXK6cuaiXLCzc2NFRt5nS5oL6Iw007kKNST9EWKFEEis3CUQ66urhaZBseg3cKYaSdybE5OTvDw8LD1MIjIHuiC9kLJzLQTORpnZ2f2HCG7wVP8FsZMOxERUT6hC9r9E5hpJyIi62HQbmFqpp1BOxERkYPTBe0F4hi0ExGR9TBotzA1087yeCIiIgenC9q9o1keT0RE1sOg3cKYaSciIsondEG7ZyQz7UREZD0M2i2MmXYiIqJ8Qhe0uz65B0Bhpp2IiKyCQbuFMdNORESUT+iCdqf4OPggCk+eAIpi2yEREZHjYdBuYcy0ExER5RPe3nIBUAT3kJwMxMTYeExERORwGLRbGDPtRERE+Ygu2x7sxHntRERkHQzaLUwN2plpJyIiygd0QXsp77sA2EGeiIgsj0G7hanl8cy0ExER5QO6oL2EOzPtRERkHQzaLYyZdiIionxEF7QXc+Va7UREZB0M2i3MONPODrJEREQOThe0B3FOOxERWQmDdgtTM+0AkJxsu3EQERFRLtAF7UXATDsREVkHg3YLUzPtAOe1ExEROTxd0F4omZl2IiKyDgbtFmacaee8diIiIgenC9r9E5lpJyIi62DQbmHMtBMREeUjuqDdN5aZdiIisg4G7Ram0QAuLnKbQTsREZGD0wXtXrEP4IRkBu1ERGRxDNqtQM22szyeiIjIwRUqBADQKAr8EMHyeCIisjgG7Vagzmtnpp2IiMjBuboCTvLnlDvimWknIiKLY9BuBcy0ExER5SMeHnKFOGbaiYjI4hi0WwEz7URERPmIu7tcMdNORERWwKDdCphpJyIiykd0QTsz7UREZA0M2q2AmXYiIqJ8RFce7454REfzpD0REVkWg3YrUIN2fmkTERHlA0aZdgCIjLTlYIiIyNEwaLcCtTyemXYiIqJ8QJdp93OPBwDOayciIoti0G4FzLQTERHlI7pMe0FvybRzXjsREVkSg3YrYKadiIgoH9Fl2gO8mGknIiLLY9BuBcy0ExER5SO6THuABzPtRERkeQzarYCZdiIionxEndPuwUw7ERFZHoN2K2CmnYiIKB/RZdr93JlpJyIiy2PQbgXMtBMREeUjuky7jxsz7UREZHkM2q1AzbQzaCciIsoHdJn2Aq4M2omIyPIYtFuBmmlneTwREVE+oAvafVxYHk9ERJbHoN0KmGknIiLKR3Tl8V4uzLQTEZHlMWi3AmbaiYiI8hFdpt1Lw0w7ERFZHoN2K2CmnYiIKB/RZdo9nZhpJyIiy2PQbgVc8o2IiCgf0WXaPcBMOxERWR6Ddivgkm9ERET5iC7T7g5m2omIyPIYtFsBM+1ERET5iC7T7qY1ZNoVxZYDIiIiR8Kg3QqYaSciIspHdJl2V0Uy7cnJQHS0LQdERESOhEG7FTDTTkRElI/oMu3OiXFwdpZNnNdORESWwqDdCphpJyIiykd0mXZNfDz8/WUT57UTEZGlMGi3AmbaiYiI8hFdph3x8fDzk5vMtBMRkaW42HoADuXRI+D331HhpBuAnsy0ExER5Qdq0B4Xx0w7ERFZHIN2S7p1C+jXD419A8GgnYiIKJ/QlccjPh5+ReQmM+1ERGQpLI+3JF1dvJNW6uJZHk9ERJQPMNNORERWZNdBe3JyMj744AOUKlUKnp6eKFOmDD766CMoRoufKoqCyZMnIzg4GJ6enmjVqhX+++8/2wxY14HOKUlS7My0ExER5QNGmXYG7UREZGl2HbTPnDkT8+bNw9y5c3H+/HnMnDkTs2bNwtdff63fZ9asWZgzZw7mz5+Pw4cPw9vbG61bt0ZcXFzuD1jNtCcz005ERJRvGGXa2YiOiIgsza7ntB84cAAdO3ZEu3btAAAlS5bEihUrcOTIEQCSZZ89ezYmTZqEjh07AgB+/PFHBAYGYv369ejVq5fZ48bHxyM+Pl5/PzIy0jIDZqadiIgo/2GmnYiIrMiuM+2NGjXC9u3b8e+//wIATp06hX379qFNmzYAgKtXryI8PBytWrXSP8fPzw8NGjTAwYMH0zzujBkz4Ofnp7+EhIRYZsC6TLtGUeCEZGbaiYiI8gM1056QAL8CWgDMtBMRkeXYdab9vffeQ2RkJCpWrAhnZ2ckJyfj448/Rp8+fQAA4eHhAIDAwECT5wUGBuofM2fChAl466239PcjIyMtE7jrMu0A4IYEJCR45vyYREREZN/UTDuAQgUSAHgw005ERBZj10H7r7/+imXLlmH58uWoUqUKTp48iTFjxqBo0aLo379/to/r7u4Od/WsuCXpMu2ABO2JiQzaiYiIHJ7R3xQBnnEAPJhpJyIii7HroP2dd97Be++9p5+bXq1aNVy/fh0zZsxA//79ERQUBAC4e/cugoOD9c+7e/cuatasmfsDNsq0uyKRc9qJiIjyA6OT9v6e0jOHmXYiIrIUu57THhMTAycn0yE6OztDq5X5YqVKlUJQUBC2b9+ufzwyMhKHDx9Gw4YNc3WsAAAnJ8DZGYCaac/9IRAREVEu02j02XY/DwnamWknIiJLsetMe/v27fHxxx+jRIkSqFKlCk6cOIEvv/wSgwYNAgBoNBqMGTMG06dPR7ly5VCqVCl88MEHKFq0KDp16mSbQbu5AbGxcEUiophpJyIiyh/c3YH4ePi5y5KzDNqJiMhS7Dpo//rrr/HBBx9g+PDhuHfvHooWLYphw4Zh8uTJ+n3effddREdHY+jQoXjy5AmaNGmCzZs3w8OoKUyucnUFYmOZaSciIspPPDyAyEh4aCTTHhsLKIok4YmIiHJCoyiKYutB2FpkZCT8/PwQEREBX1/fnB2scGHgwQNUxj+44l4ZcXGWGSMREeUfFv1eIgC58JmWKAHcvInIbUfg16oeACA+3mS6OxERkYnMfjfZ9Zz2PEnXjI6ZdiIionxEV+Hnjnj9pthYWw2GiIgcCYN2S9OdUndFIrRaIDnZxuMhIiIi69M1onPTxulL4hm0ExGRJTBotzSjTDsALvtGRESUH+gy7ZqEePUmg3YiIrIIBu2Wpsu0q0E7S+SJiIjyAV2mHXFx8PSUmwzaiYjIEhi0W5ou0+4KidaZaSciIsoH1PR6fDyDdiIisigG7Zamy7R7aJhpJyIiyjeMMu1eXnKTQTsREVkCg3ZL02XaPV2YaSciIso3mGknIiIrYdBuabpMu6czM+1ERET5hpppNwraY2JsNxwiInIcDNotTQ3amWknIiLKP9iIjoiIrIRBu6Wp5fHMtBMREVnEjBkzUK9ePRQoUABFihRBp06dcPHiRVsPyxTL44mIyEoYtFuaLtPu7sRMOxERkSXs3r0bI0aMwKFDh7B161YkJibixRdfRHR0tK2HZsBMOxERWYmLrQfgcJhpJyIisqjNmzeb3F+6dCmKFCmCY8eOoVmzZmafEx8fj/j4eP39yMhIq46RmXYiIrIWZtotTV3yzUmCdmbaiYiILCsiIgIAULBgwTT3mTFjBvz8/PSXkJAQ6w6KmXYiIrISBu2Wpsu0q+XxzLQTERFZjlarxZgxY9C4cWNUrVo1zf0mTJiAiIgI/eXmzZvWHRgz7UREZCUsj7c0ZtqJiIisZsSIETh79iz27duX7n7u7u5wV7PfucE40/6M3GTQTkRElsCg3dKYaSciIrKKkSNHYtOmTdizZw+KFy9u6+GYYqadiIishEG7peky7W4aZtqJiIgsQVEUvPnmm1i3bh127dqFUqVK2XpIqRll2r285CaDdiIisgQG7ZamLvmm4ZJvREREljBixAgsX74cv/32GwoUKIDw8HAAgJ+fHzzVtLatMdNORERWwkZ0lqYrj1cz7SyPJyIiypl58+YhIiICLVq0QHBwsP6ycuVKWw/NQM20M2gnIiILY6bd0vTl8cy0ExERWYKiKLYeQsa45BsREVkJM+2WpmbawUw7ERFRvmGmPD4mxnbDISIix8Gg3dLUTDvYiI6IiCjfYKadiIishEG7peky7a7gkm9ERET5BhvRERGRlTBotzQ1064w005ERJRvMNNORERWwqDd0phpJyIiyn+YaSciIith0G5puky7CzPtRETkYI4fP44zZ87o7//222/o1KkT3n//fSTk9y88ZtqJiMhKGLRbmi5od1WYaSciIscybNgw/PvvvwCAK1euoFevXvDy8sKqVavw7rvv2nh0NmacafeQJeoYtBMRkSUwaLc0XXk8M+1ERORo/v33X9SsWRMAsGrVKjRr1gzLly/H0qVLsWbNGtsOztbUTLuiwNNFztgnJcmFiIgoJxi0W5paHq9lpp2IiByLoijQarUAgG3btqFt27YAgJCQEDx48MCWQ7M9NdMOwMs5Xn+b2XYiIsopBu2Wpmbatcy0ExGRY6lbty6mT5+On376Cbt370a7du0AAFevXkVgYKCNR2djaqYdgIeGQTsREVkOg3ZL02XanXVBOzPtRETkKGbPno3jx49j5MiRmDhxIsqWLQsAWL16NRo1amTj0dmYkxPg4gIA0MTH6RPvDNqJiCinXGw9AIejy7Q768rjmWknIiJHUb16dZPu8arPPvsMzs7ONhiRnfHwAKKi9Mu+xcUxaCciopxjpt3S1Ex7MsvjiYjIsdy8eRO3bt3S3z9y5AjGjBmDH3/8Ea66k9b5mpll32JibDccIiJyDAzaLS1Fpp3l8URE5Ch69+6NnTt3AgDCw8Pxwgsv4MiRI5g4cSKmTZtm49HZAeNl37hWOxERWQiDdktjpp2IiBzU2bNnUb9+fQDAr7/+iqpVq+LAgQNYtmwZli5datvB2QMzmXYG7URElFMM2i1NF7Q7JTPTTkREjiUxMRHuusB027Zt6NChAwCgYsWKuHPnji2HZh+YaSciIitg0G5puvJ4pyRm2omIyLFUqVIF8+fPx969e7F161a89NJLAICwsDAUKlTIxqOzA8y0ExGRFTBotzRm2omIyEHNnDkTCxYsQIsWLfDKK6+gRo0aAIANGzboy+bzNWbaiYjICrjkm6XpMu0arRZOSEZCApfAISIix9CiRQs8ePAAkZGRCAgI0G8fOnQovLy8bDgyO8FMOxERWQGDdkvTZdoBwA0JSEz0tOFgiIiILMvZ2RlJSUnYt28fAKBChQooWbKkbQdlL5hpJyIiK2B5vKUZrVPrikTOaSciIocRHR2NQYMGITg4GM2aNUOzZs1QtGhRDB48GDFckNyQaY+Ph1p4wKCdiIhyikG7pRkF7ZJpt+FYiIiILOitt97C7t27sXHjRjx58gRPnjzBb7/9ht27d2PcuHG2Hp7tsTyeiIisgOXxlubsDDg5AVotM+1ERORQ1qxZg9WrV6NFixb6bW3btoWnpyd69OiBefPm2W5w9oDl8UREZAXMtFuDbl47M+1ERORIYmJiEBgYmGp7kSJFWB4PMNNORERWwaDdGnRBOzPtRETkSBo2bIgpU6YgLi5Ovy02NhYffvghGjZsaMOR2Qlm2omIyApYHm8NunntzLQTEZEj+d///ofWrVujePHi+jXaT506BQ8PD2zZssXGo7MDxpn2wnKTBQhERJRTDNqtgZl2IiJyQFWrVsV///2HZcuW4cKFCwCAV155BX369IGnJ5c4ZaadiIisgUG7NRhl2pOTAa1WetMRERHldV5eXhgyZIith2GfOKediIisgEG7NRg1ogOAxETD9zgREVFesmHDhkzv26FDByuOJA9gpp2IiKyAQbs16DLtrpAJ7QkJDNqJiChv6tSpU6b202g0SE5Otu5g7B0z7UREZAUM2q3BTKadiIgoL9JqtbYeQt7BTDsREVkBZ1pbg35OuyHTTkRERA5OzbQzaCciIgti0G4Nuky7pwsz7URERPmGmmmPi4OXl9xk0E5ERDnFoN0a1KDdmZl2IiKifIOZdiIisgK7D9pv376Nvn37olChQvD09ES1atXw999/6x9XFAWTJ09GcHAwPD090apVK/z33382HDH05fFezLQTERHlH2xER0REVmDXQfvjx4/RuHFjuLq64s8//8S5c+fwxRdfICAgQL/PrFmzMGfOHMyfPx+HDx+Gt7c3Wrdujbi4ONsNXJdp92CmnYiIKP8w04guIQHI7031iYgoZ+y6e/zMmTMREhKCJUuW6LeVKlVKf1tRFMyePRuTJk1Cx44dAQA//vgjAgMDsX79evTq1SvXxwxAn2n3dGamnYiIHMcff/wBZ2dntG7d2mT7li1boNVq0aZNGxuNzE6YybTr7sLb2zZDIiKivM+uM+0bNmxA3bp10b17dxQpUgS1atXCwoUL9Y9fvXoV4eHhaNWqlX6bn58fGjRogIMHD6Z53Pj4eERGRppcLErNtDtJ0M5MOxEROYL33nvP7FrsiqLgvffes8GI7IyZTDsAxMTYZjhEROQY7Dpov3LlCubNm4dy5cphy5YteOONNzBq1Cj88MMPAIDw8HAAQGBgoMnzAgMD9Y+ZM2PGDPj5+ekvISEhlh24LtPuriuPZ6adiIgcwX///YfKlSun2l6xYkVcunTJBiOyM0aZdicn/Tl8zmsnIqIcseugXavVonbt2vjkk09Qq1YtDB06FEOGDMH8+fNzdNwJEyYgIiJCf7l586aFRqyjZto1zLQTEZHj8PPzw5UrV1Jtv3TpErxZ/22SaQfAZnRERGQRdh20BwcHpzqjX6lSJdy4cQMAEBQUBAC4e/euyT53797VP2aOu7s7fH19TS4WlSLTzqCdiIgcQceOHTFmzBhcvnxZv+3SpUsYN24cOnToYMOR2QmjTDvAoJ2IiCzDroP2xo0b4+LFiybb/v33X4SGhgKQpnRBQUHYvn27/vHIyEgcPnwYDRs2zNWxmkiRaWd5PBEROYJZs2bB29sbFStWRKlSpVCqVClUqlQJhQoVwueff27r4dmemmlPTgaSkxm0ExGRRdh19/ixY8eiUaNG+OSTT9CjRw8cOXIE3333Hb777jsAgEajwZgxYzB9+nSUK1cOpUqVwgcffICiRYuiU6dOthu4Lmh3c2KmnYiIHIefnx8OHDiArVu34tSpU/D09ET16tXRrFkzWw/NPqiZdkDXjM4LAIN2IiLKGbsO2uvVq4d169ZhwoQJmDZtGkqVKoXZs2ejT58++n3effddREdHY+jQoXjy5AmaNGmCzZs3w0M9220Lank8mGknIiLHotFo8OKLL+LFF1+09VDsj/HfHnFx8PJi0E5ERDln10E7ALz88st4+eWX03xco9Fg2rRpmDZtWi6OKgPMtBMRkYOYM2cOhg4dCg8PD8yZMyfdfUeNGpVLo7JTLi6AkxOg1Zos+8agnYiIcsLug/Y8SZdpd2OmnYiI8rivvvoKffr0gYeHB7766qs099NoNAzaASmRj40F4uIYtBMRkUUwaLcGNdOuYaadiIjytqtXr5q9TWnw8JAonZl2IiKyELvuHp9nMdNORESUPxkt+8agnYiILCFbmfabN29Co9GgePHiAIAjR45g+fLlqFy5MoYOHWrRAeZJaqZdkaCdmXYiInIEiqJg9erV2LlzJ+7duwetVmvy+Nq1a200MjuiNqNjpp2IiCwkW5n23r17Y+fOnQCA8PBwvPDCCzhy5AgmTpxoXw3hbEWXaXeFpNiZaSciIkcwZswYvPrqq7h69Sp8fHzg5+dnciEw005ERBaXrUz72bNnUb9+fQDAr7/+iqpVq2L//v3466+/8Prrr2Py5MkWHWSeo8u0uzLTTkREDuSnn37C2rVr0bZtW1sPxX6ZybTHxNhuOERElPdlK9OemJgId92Z5G3btqFDhw4AgIoVK+LOnTuWG11epQbtzLQTEZED8fPzQ+nSpW09DPvGTDsREVlYtoL2KlWqYP78+di7dy+2bt2Kl156CQAQFhaGQoUKWXSAeZKuPN6FmXYiInIgU6dOxYcffohYRqFp45x2IiKysGyVx8+cOROdO3fGZ599hv79+6NGjRoAgA0bNujL5vM1XabdRWGmnYiIHEePHj2wYsUKFClSBCVLloSr7iS16vjx4zYamR1RM+0M2omIyEKyFbS3aNECDx48QGRkJAICAvTbhw4dCi8vL4sNLs9SM+1aZtqJiMhx9O/fH8eOHUPfvn0RGBgIjUZj6yHZHzXTzvJ4IiKykGwF7bGxsVAURR+wX79+HevWrUOlSpXQunVriw4wT0qRaWfQTkREjuD333/Hli1b0KRJE1sPxX4ZZdq9CshNBu1ERJQT2ZrT3rFjR/z4448AgCdPnqBBgwb44osv0KlTJ8ybN8+iA8yT1Ex7skTrLI8nIiJHEBISAl9fX1sPw76xER0REVlYtoL248ePo2nTpgCA1atXIzAwENevX8ePP/6IOXPmWHSAeZIu0+7M8ngiInIgX3zxBd59911cu3bN1kOxX2xER0REFpat8viYmBgUKCA1X3/99Re6dOkCJycnPPvss7h+/bpFB5gn6TLtzlo2oiMiIsfRt29fxMTEoEyZMvDy8krViO7Ro0c2GpkdYaadiIgsLFtBe9myZbF+/Xp07twZW7ZswdixYwEA9+7dY9kcYMi0JzPTTkREjmP27Nm2HoL9Y6adiIgsLFtB++TJk9G7d2+MHTsWzz33HBo2bAhAsu61atWy6ADzJF3Q7pTMTDsRETmO/v3723oI9o+ZdiIisrBsBe3dunVDkyZNcOfOHf0a7QDw/PPPo3PnzhYbXJ6llscz005ERA5Gq9Xi0qVLuHfvHrRarcljzZo1s9Go7Agz7UREZGHZCtoBICgoCEFBQbh16xYAoHjx4qhfv77FBpanMdNOREQO6NChQ+jduzeuX78ORVFMHtNoNEhOTrbRyOyImUx7TIzthkNERHlftrrHa7VaTJs2DX5+fggNDUVoaCj8/f3x0UcfpTrrni/pMu1OScy0ExGR43j99ddRt25dnD17Fo8ePcLjx4/1Fzah0zGTaY+PB/jnERERZVe2Mu0TJ07EokWL8Omnn6Jx48YAgH379mHq1KmIi4vDxx9/bNFB5jm6TLtGq4UTkhEf72zjAREREeXcf//9h9WrV6Ns2bK2Hor9MpNp192Fl5dthkRERHlbtoL2H374Ad9//z06dOig31a9enUUK1YMw4cPZ9ButASOKxIZtBMRkUNo0KABLl26xKA9PWYy7YDMa2fQTkRE2ZGtoP3Ro0eoWLFiqu0VK1ZkeRygz7QDgBsSEBfnYcPBEBERZd/p06f1t998802MGzcO4eHhqFatWqp12qtXr57bw7M/aqY9Ph4uLoCLC5CUxGZ0RESUfdkK2mvUqIG5c+dizpw5Jtvnzp3LL2zATKbdhmMhIiLKgZo1a0Kj0Zg0nhs0aJD+tvoYG9HpGJXHA5Jdj4xk0E5ERNmXraB91qxZaNeuHbZt26Zfo/3gwYO4efMm/vjjD4sOME9ydgacnACtFm5IYNBORER51tWrV209hLzFqDweADw9LRu0HzsGnDgBDB4MaDSWOSYREdm3bHWPb968Of7991907twZT548wZMnT9ClSxf8888/+Omnnyw9xrxJl213RaJ6sp2IiCjPUVeJCQ0NxfXr11GsWDGTbaGhoShWrBiuX79u66HahxSZdkuv1T5oEDBkCHD8uGWOR0RE9i9bQTsAFC1aFB9//DHWrFmDNWvWYPr06Xj8+DEWLVpkyfHlXbp57cy0ExGRo2jZsqXZ3jURERFo2bKl1V//m2++QcmSJeHh4YEGDRrgyJEjVn/NLDOTaQcsF7TfvCnXt29b5nhERGT/sh20UwZ0QbsrEpGcLE1oiIiI8jJ17npKDx8+hLe3t1Vfe+XKlXjrrbcwZcoUHD9+HDVq1EDr1q1x7949q75ullkx056UBDx5IrcfP8758YiIKG/I1px2ygRdebwbEgDICXcXftpERJQHdenSBYA0nRswYADc1cAUQHJyMk6fPo1GjRpZdQxffvklhgwZgoEDBwIA5s+fj99//x2LFy/Ge++9Z9XXzhIrZtofPwbUfoBq8E5ERI6PYaS1GGXaAfnutnISgoiIyCr8/PwASKa9QIEC8DRagNzNzQ3PPvsshgwZYrXXT0hIwLFjxzBhwgT9NicnJ7Rq1QoHDx40+5z4+HjEG81Pi4yMtNr4TKhBe0wMAMsG7Q8eGG4z005ElH9kKWhXz7Sn5QlP+xroMu0emgRAAee1ExFRnrVkyRIAQMmSJfH2229bvRQ+pQcPHiA5ORmBgYEm2wMDA3HhwgWzz5kxYwY+/PDD3BieqYIF5To6GoiPh6enVCUwaCciouzKUtCunmlP7/F+/frlaEAOQ5dp93FLAOLBDvJERJTnTZkyxdZDyLQJEybgrbfe0t+PjIxESEiI9V/Y31+Wfk1OBu7fh6dncQD6xHuOPHxouM2gnYgo/8hS0K6eaadM0GXavVwTgXhm2omIKG+qXbs2tm/fjoCAANSqVctsIzrVcSutQ/bMM8/A2dkZd+/eNdl+9+5dBAUFmX2Ou7u7ydz7XOPkBBQuDISHmwTtzLQTEVF2cU67tegy7V4uhkZ0REREeU3Hjh31wW+nTp1sMgY3NzfUqVMH27dv149Bq9Vi+/btGDlypE3GlC6ToF02MWgnIqLsYtBuLcaZdrA8noiI8ia1JD45ORktW7ZE9erV4e/vn+vjeOutt9C/f3/UrVsX9evXx+zZsxEdHa3vJm9XCheWawsH7cbl8WwjRESUfzBotxZm2omIyIE4OzvjxRdfxPnz520StPfs2RP379/H5MmTER4ejpo1a2Lz5s2pmtPZBaOg3ctLbjLTTkRE2cWg3Vp0Qbuni2HJNyIiorysatWquHLlCkqVKmWT1x85cqR9lsOnpAbt9+7BU9don0E7ERFll5OtB+Cw1PJ4Xaad5fFERJTXTZ8+HW+//TY2bdqEO3fuIDIy0uRCOkWKyLUVy+NjY5kQICLKL5hptxZdpt3DmZl2IiJyDG3btgUAdOjQwaSLvKIo0Gg0SE5OttXQ7IvxnPbactPSmXZAsu1pNM8nIiIHwqDdWnSZdk9nzmknIiLHsHPnTlsPIW+wUiM6Bu1ERPkTg3Zr0WfaWR5PRESOoXnz5rYeQt5ghaA9Kckwj93HB4iKYgd5IqL8gkG7tegy7R5OLI8nIiLHEhMTgxs3biAhIcFke/Xq1W00Ijtj3IjOQkG7ceO50qWB06fZjI6IKL9g0G4tuky7u4bl8URE5Bju37+PgQMH4s8//zT7OOe066hBe0QEvF0TALiZNJHLDrU0PiDAcHgG7URE+QO7x1uLLtPurmtEx/J4IiLK68aMGYMnT57g8OHD8PT0xObNm/HDDz+gXLly2LBhg62HZz8KFgSc5E+sWiEP4OYGXLoEHD2a/UOqQXuhQhK4AwzaiYjyCwbt1sJMOxEROZgdO3bgyy+/RN26deHk5ITQ0FD07dsXs2bNwowZM2w9PPvh5AQ88wwAoGDyfXTvLpvnzcv+IdVM/TPPAP7+cptBOxFR/sCg3Vp0QbubhnPaiYjIMURHR6OIbg3ygIAA3L9/HwBQrVo1HD9+3JZDsz9GzejeeENu/vJL9gNtNdP+zDPMtBMR5TcM2q1FLY8Hu8cTEZFjqFChAi5evAgAqFGjBhYsWIDbt29j/vz5CA4OtvHo7IxR0N6oEVCtmjSj++GH7B2OQTtROp4+BW7csPUoiKyGQbu1MNNOREQOZvTo0bhz5w4AYMqUKfjzzz9RokQJzJkzB5988omNR2dnjDrIazTA8OFyd/58QFGyfji1PN54TjuXfCPSeflloEwZYOtWW48kb4uNBbRaW4+CzGDQbi26TLsrOKediIgcQ9++fTFgwAAAQJ06dXD9+nUcPXoUN2/eRM+ePW07OHtjlGkHgD59ZH31ixeBnTuzfjhm2onSoCjAkSNAUpL8QwsLs/WI8qajR6VhxoQJth4JmcGg3VrUTLvC8ngiInJMXl5eqF27Np7RNV0jI7q5/2rQXqAA8Oqrsunbb7N+OOOgnY3oiIw8eGD4Q/v+feCVVySAp6z5/nsgIQFYscLWIyEzuE67tegz7SyPJyIix/DWW2+Z3a7RaODh4YGyZcuiY8eOKFiwYC6PzA6lyLQDwBtvSAf59eslGVikCHD3LhAdDZQrB2g0aR+OS74RpUGdy+7rK1n3PXuAKVOAjz+27bjykuRk4Lff5PbNm3IJCbHtmMgEg3Zr0WXaXZhpJyIiB3HixAkcP34cycnJqFChAgDg33//hbOzMypWrIhvv/0W48aNw759+1C5cmUbj9bGzATt1aoBjRsD+/cDlSoBUVGG6aOzZgHvvJP24YyXfGPQTmREDdorVgTGjQN69gQ++QRo2hR46SXbji2vOHRIziCqDh5k0G5nWB5vLWqmXWGmnYiIHEPHjh3RqlUrhIWF4dixYzh27Bhu3bqFF154Aa+88gpu376NZs2aYezYsbYequ2ZCdoBQP1oIiNN+z1l1D/L3Jz2qCggMdECYyXKy27elOsSJYAePQxdH199VcpYKGPr1pneP3DANuOgNDFotxY1065lIzoiInIMn332GT766CP4+vrqt/n5+WHq1KmYNWsWvLy8MHnyZBw7dsyGo7QTRt3jjXXtCvz9t1zu3DH8bXz6dNqHSkoyZNWN57QDQESE5YZMlCepmfYSJeT6yy+B0FA507Vli+3GlVcoiszZAeQ/KCDzQXt2lsKgbGHQbi26oN1Zl2lneTwREeV1ERERuJciCAWA+/fvIzIyEgDg7++PhISE3B6a/VGD9sePU6XD69SRS1AQUL26zGW/e9e0OtWYcRl8QADg4iKN7VI+RpQvqUG7Ws7t7g506ya31661zZjykrNngcuXAQ8P4MMPZduJE7L8W1ru3QO6dJHGHEeO5M4487k8FbR/+umn0Gg0GDNmjH5bXFwcRowYgUKFCsHHxwddu3bF3bS+9XKTrjzeJZmZdiIicgwdO3bEoEGDsG7dOty6dQu3bt3CunXrMHjwYHTq1AkAcOTIEZQvX962A7UHhQoZOsupE9LN8PYGypaV22ll29XSeDVgB9hBnkjPuDxe1aWLXG/aJB3RKW1qafyLLwKVKwPBwVLe8/ff5vf/4w9p0LFunfznNGYMM+65IM8E7UePHsWCBQtQvXp1k+1jx47Fxo0bsWrVKuzevRthYWHoov5DtSVdpt1JyzntRETkGBYsWIDnn38evXr1QmhoKEJDQ9GrVy88//zzmD9/PgCgYsWK+P777208Ujvg7CyBO5BqXntKNWrIdUZBu/HKemxGR6STsjweAJ59VkpZIiKAnTttM668Qg3aO3WSE42NGsn9lCXycXHAyJFAu3aSaa9SBfD0lKZ1Gzfm6pDzozwRtEdFRaFPnz5YuHAhAtRvKUiZ3qJFi/Dll1/iueeeQ506dbBkyRIcOHAAhw4dsuGIoc+0OyezezwRETkGHx8fLFy4EA8fPsSJEydw4sQJPHz4EN999x28vb0BADVr1kTNmjVtO1B7Ya4Z3a1b8kfxTz/pN6n5iFOnzB9GTdSr5wAABu1EACSLfueO3Dbudu7kJEEokHaJfEyMBJxffy3N6/buNb/fmTPA4MHA9esWG7bduHYNOHlSPq/27WVbWkH7O+8A33wjt0ePlkz86NFyf+JEWTaOrCZPBO0jRoxAu3bt0KpVK5Ptx44dQ2Jiosn2ihUrokSJEjh48GCax4uPj0dkZKTJxeLUOe0sjyciIgfj4+ODggULomDBgvDx8bH1cOyXuWZ0P/0kgcLw4frtzLQTZVNYmJRmu7sb/r2pOneW699+Mw0oHz4EWrWSxhCNGgGjRgHz5kmQHxZmeoyoKNm+eDHw9tvWfCe2oTaga9bM8B+McdCulr2HhwMLF8rtVauA2bNlDvy778pcnbNngeXLc3Hg+Y/dB+2//PILjh8/jhkzZqR6LDw8HG5ubvA3bqMKIDAwEOHh4Wkec8aMGfDz89NfQqyxDqEu0+6UxPJ4IiJyDFqtFtOmTYOfn5++PN7f3x8fffQRtMbrl5Ewl2lXmzZFRQHTpgEwZNrPnTO/hFt6QfuTJ5Ybbr51/jzw3HMSjFDeYtyEzilFWNOihQSUd+/KiTLV6NHA9u2y5mJgoJR7V6wIPHoEvPaa6fzst98GrlyR22vXGm47CuPSeFWtWnIS5MED4NIl2TZnjgQzzz5r6DAPyH9E48fL7cmTLdc/4M4doF8/4Mcfzc+XT0oy/MeYT9h10H7z5k2MHj0ay5Ytg4eHh8WOO2HCBEREROgvN9UGFpakzmlPYnk8ERE5hokTJ2Lu3Ln49NNP9eXxn3zyCb7++mt88MEHth6e/SlSRK7NBe0AsGAB8N9/CA0FfH0lYL9wIfVhWB6fSdlthjV6tMx77tXLZNoC5QHm5rOr3NwMJd9qifzGjcCyZRLg79kjweGmTcCaNRKo/vkn8N13su/mzfJvFADKl5cgf/Zsq76dXHX/PrBvn9w2Dtrd3YG6deX2gQNAZCTw7bdyf/x4Q4NN1ahR0rzu2jXDZ5dTkyfLv8X+/YGXXwZu35btWi2wcqU0zCtcWH5G+YRdB+3Hjh3DvXv3ULt2bbi4uMDFxQW7d+/GnDlz4OLigsDAQCQkJOBJitPMd+/eRVBQUJrHdXd3h6+vr8nF4nSZdk0yM+1EROQYfvjhB3z//fd44403UL16dVSvXh3Dhw/HwoULsXTpUlsPz/6kzLTfvi3lt87OktlNSgLefx8ajSHbbq5E3lymnd3jjSiKofN1yvLmjOzeDWzdKre1WgkSfvzR8mMk61ATb2lVzaol8uvWSVnK66/L/XHjgKZNDQFo5crAp5/K7bfeAo4elXnsgASlc+fK7cWLJSPvCFavlt/5OnVkXXtjDRvK9YEDUhYfESHVCB06pD6OlxegnrSdPh2Ijs7ZuB4+lBMrgCyX8ccfQNWqwMcfy1h79QL++08ez0ffO3YdtD///PM4c+YMTp48qb/UrVsXffr00d92dXXF9u3b9c+5ePEibty4gYbqL5ut6DLtmkTJtGu18t1MRESUVz169AgVK1ZMtb1ixYp45Ch/yFpSyqBdzbJXrSoZO41G/nA+fDjLQTsz7UaOH5fA+8IFCdIyW96oKMCkSXJ72DAJ6BQFGDAA+OEHqw2XLCi9TDsAtG4tHc6vXZOAMywMKFfOsB65sVGjgJYtpUFd48ayb/nywIwZMge+enUJSNXsuz04fdoQVGfVzz/Lde/eqR9T57Xv2QN89ZXcfued1FMQVK+9BpQuLVMR1IA7uxYtkjXia9WS7pz16skJl0mTpGlegQLybxQAtmzJNwGWXQftBQoUQNWqVU0u3t7eKFSoEKpWrQo/Pz8MHjwYb731Fnbu3Iljx45h4MCBaNiwIZ599lnbDl4N2pMMk9NYIk9ERHlZjRo1MFfNOBmZO3cuaqjd1MggZdB++LBc168v6xz37y/3330X1atJabe5DvIM2jPw66+G20eOAEOHZq5U/q+/pDzY3V0yhd9+Kw0CFQUYOFBKdPNaqeS8ecD770vPhLxMUaTXQEa9MjIK2r28gJdektt798qJssWLJZBPyclJMrfqXBUnJ6m68PKS540bJ/t9/bXtfy+iomQ8tWrJ73toKDB1aub/Q7hyRbLoTk6SuU5JTX5euCAVQkWLAn36pH08V1dgxAi5nZMS+aQkQ4f6UaOkAuLAAeCTT+SkwDvvAFevAt9/DxQsKMF8Os3HHYldB+2Z8dVXX+Hll19G165d0axZMwQFBWFtWks75CZdebxxQwZb//smIiLKiVmzZmHx4sWoXLkyBg8ejMGDB6Ny5cpYunQpPvvsM1sPz/6k7B6vZtrr15fradOkA/OePWge9TsA85l2zmlPh6IYgvbhw2XqwU8/AV9+mfHz1Cz78OFAsWISmM2dC7z5pjz+0UdAzZqGeb/2LjxcAqcZM6SM+Pjx9PdPTpYTFRcv5s74smLuXAnY1CxvWjIqjweALl0Mt0eMAJo0SXvfEiUkk+7iIqXeDRoYHuvVS4LXO3eAFSsyfg/WoNXKvPzKleV3XKuVMUVESPVAaKgEuBmdtFI7vT/3nDw/paAgCZJVY8fKya309OsnSctjx+SSHRs3yomYZ54xnExwcQEmTAAuXwZmzZL/CJ2dDSdjfv89e6+V1yikREREKACUiIgIyx00LExRAEVxdlacneXm7duWOzwRETkuq3wvWcjt27eV999/X+nSpYvSpUsXZeLEicrtPPAFZ5PP9PRp+QOgUCFFSUpSlAIF5P7p04Z93npLUQAloUsPRf7SVpR790wPExAg28+dM2w7cEC2lSqVO2/Fbh05Ih+El5eiREcrypw5ct/JSVFWrlSU+Hjzz1u7Vvbz9laUu3dNH9NqFeXXXxUlMFDR/1Bef11R4uKs/35yYt48w3gBRXF1VZTPP1eU5GTz+//wg+wXGKgod+7k7ljTo9UqSqVKMrZGjdLf188v9T+OlJ48UZTgYEWpXFlRnj7N3BgSE81v//RTeb2qVWWc1nb4sKI0bqwooaHyXjUaw8+3VClF+fNP+fmuWqUo1aoZHvvjj7SPqdUqSsWKst/SpWnv17ev7OPnpyiZ/X/zlVfkOcOGZeFNGmnRQp7//vsZ77tsmexbrVr2XisnLPizz+x3E4N2xUpf5Pfv6//h+HgmKYCiXL5sucMTEZHjsueg3ZybN28qQ4YMsfUw0mWTzzQ8XP4W0GgMAby3twTwqu3bZXuJEkqZMnJz2zbDw4mJhr/DjYP5c+dkm79/5ofz+LGitG+vKCtW5Pid2Y+335YPomdPua/VKsprrxk+NHd3RWnYUFFGj1aUL76QwPaHHySAAxRl4sS0j/3okemx3nsvV95StrVqZRhn586GcffqZX7/rl0N+7RokXagagnh4Yry8suKMmVKxvuePGkYl4uLokRFmd8vIsKwX0bBeGysXHLq8WNF8fGR19y61fw+J06k/VhW3LsnJxuMT8QAiuLmpijjx8tJKmPJyYbf1y5d0j7u33/LPh4e6QfjmzbJfp99lvkx79wpz/HxyfwJEpX6f6Szs6LcvJnx/g8eyMk5QFGuX8/aa2VXTIyiLFqkKLVqyQlDC2DQngVW+SI3+o8kOCA2w5OAREREqrwWtJ88eVJxcnKy9TDSZZPP1DjinjlTrps1M90nMlL/h+fgNrcVQFG+/NLw8L17hkMYx1R37hjOB6SVSE1JTcRWqJDzt2YXtFpFKVFC3tSaNYbt8fGKMmiQnNFIGfAYX/z8JDDPyIoVhhMAV65Y7e3kyMOHir6087//5LOZP9+w7cIF0/3j4w2VHy4umc9uZsedO4bMeXpBuGr8eNOfU1oB8Nmz8nhAgOXHnJ5hw+R1X3st9WOxsYpSsKA8vnNn9l9Dq1WUdu3kOJUqKcrBg/IzvHMn/YqPU6cMn3PKChLVmDGmJ7rSk/LEQGbGXa6cHH/hwqw9d8gQeV63bpl/TqNG8pz587P2Wll15YqivPOO4WcLKMrAgRY5dGa/m/L8nHa7pc5pB+DtxmXfiIiI8h0XF2mWBBjmXarz2VUFCkg3eQAvFDgEwLQZndqELiBADqdS57QrSuYbR6vTTC9elKWX87wjR2T+q7c30KaNYbubm3SgfvhQ3uxPP0lTqz59pLt869bSJXzhQsMHmZ6ePaV7eHw88O67WRtjVJS8jrXnxW/cKHPUq1cHypaV+fnDhslSeACwapXp/vv2AU+fAkWKGJa4++QTWV4ru/7+WzqHG/9ChoUBLVpIUzlAGo2l1zhMqwV++UVuBwbK9a5d5vfNqAmdtXTrJtfr18tnbmzLFsOScGPHpn4ckH5XGc05/9//5P8Md3dZl/zZZ4EKFWSueXpzy6tXl27rSUnmly5MSjJ8vuk1llN5eWW8jzGNRhrjAVlrSHf2rKGb/ahRmX9eu3Zynd68dkUBxowBBg3KejCm1UqDv7Jlgc8+k59tyZLAzJlyPxcxaLcWXfd4APBxk2Z07B5PRESUz6jN6Pbvl2vjxlYqXafm2vESzBg3ozPXOR6Qv9vVBtiZbUZn3BvqxInMPceuqYFohw5pdwMvXx7o21eCoJ9/BtauBTZvBnbsALp3z9zraDTS9MvJSZbo27074+fEx0uX8TJlJIhp21aWErOWNWvk2rjpGmB4jymDdjXIadMGeOUVQ+fvV18Frl/P+utfvw40by6fdVCQHHP1agnYL16URnHPPSf77tmT9nEOHpRjFShgWPs7rc/bVkF78+ZysufBg9QnY4xXMjh5MnXgfOoUULy4rHme1vs6ftxwcujLL2Wliax47TW5/v771CcHduyQhoWFCsnJK2vo31+Sl0ePGv6juXhRut2PHCknmNS13G/dAgYPBmrUkGXeatdOv1FgSmrQvn172oHWH3/Iv/8lSyRwz8zKEoCc2ezSRRr8abXACy8AGzYAly7Jz8e4M2husEheP4+zWsmcrllEk7J3FEBRdu2y7OGJiMgxsTze8mz2mTZpYlrqa27u5dKligIosXUa66esqqXw69bJ0xo2TP20okXlsb//zngYsbHSl0wdxuef5+hd5Y705lhrtYoSEiJvZt263BnPG2/I69WqZdqXIKX166VxWMpy/F9+sc64IiOldB9QlDNnTB97+NBQ/m5cIl+hgmz79Ve5HxenKHXryrZXX83a62u10ixBnSed8n2Hhkp58cKF5qeIGBsxQvbp109RLl0yNNQzV6Y9caI8Pnx41sZrCf37y2uPHm3YFhNjmO/eo4dcBwUZ5nbfuqUoxYqZfjbDhkmjPEWR/bZtM5SXd+qUvYZnERHSmBFQlH37TB/r10+2v/FGdt515vXsKa/Trp30MjA3L79pU9Pfly5dsj43Xas1fKabN6d+PDlZUWrWNH3tSZMyPu7Fi4YpHe7uirJkSdbGlQUsj7cHumy7t6tk2lkeT0REeVGXLl3SvYwdO9bWQ7RfaqYdkHJfc0tTPfssAMD9n2MI8E5AQoJhFS41024uqZOVZd/OnJGlp1V//52JsefUzZuG9eqyasECybamtbTW4cNyfB8fw9JP1vbhh4Cfn2QPly41v8/t21I+ff06EBwMzJ9vyJqqy2xZ2p9/yh+Z5coBVaqYPlawoGQIAUO2/fJl+QVzcTGUz7u7A7Nny+3ffjNZsjhDv/0m2VNXVynnOHpUMqoFC0qlw65dQKlSQLNmsv/hw+azoklJhkz1K6/IkmPFiskv7qFDqfe3VaYdMFQ0rF1ryNz++adMhyhRQjLsZcpIVnvmTJmK8PLL8vtRsaKhhHzBAlm+rW5dwN9fpmH8959k4xctkiqPrPL1BXr0kNvff2/Yfv68jBeQighrUt/f778DmzbJ++jQQZZXLFlSfr/27pXfg6ZNpcJizZqs/yw1GqliUV8rpTVrpOKhQAHg889l2/TpwOLFqffVaqUKZMQImWJw/rwsh7dnDzBgQNbGZQUM2q1JF7R7ucq3JMvjiYgoL/Lz80v3Ehoain79+tl6mPapSBHD7fr1zf8RXr48ULAgNHFx6FxaJrTv3CkPpVUeD8jf+ADw5Ekar/3okQRyAwboS+N9fOQ6u8soZ9qdO0ClShKMREVl/flr18ofTkOGSBCTkhrcdewoa93nhsKFgcmT5fb775tvDLBsmQSf9epJGe2wYVIuDEhQp853zqybNyV4S+95xqXx5n6/UpbIq8FNkyZyEkLVsKGUtkdGSrlxZjx9KuvaA8A77xgC0K+/ll/ec+ckSAPkdzEoSE4wHD2a+ljbtwP378vn/Pzz8l5atJDHzM1rt2XQ/sIL0kvh5k3DPyb1d7JHDzkJos55/vxz+T09eVL+P/jjDwnWd+2SzyQsTI6RnCzvpXdv4K+/DP0wskMtkf/1V/l57tkDNGok/xZr1dJPybGaFi3k9Tw9JVC/cEFO7nzzDXDligTE334rPQB279afuMwW43ntxqXvSUmGf69vvSXl+ZMmyf1hw+Tn88UXsm3IEDmh2ry5jCsyUsb/99+p+5DYitVy/XmI1UrmdB0GX617zqQCiYiIKD15rTw+L7DZZzppkqEs86OP0t6vbVtFAZQNrf6n333UKKn8BWRls5TUqtPvvkvjmOo6xhqNMrbPXQVQlKFDDcN5/NgSbzANP/5oeKH0llVLi1r6DihKnTqm661v3mwoq12/3nJjzoz4eEP58hdfmD6m1SpKlSrmfyhqie6CBabbz52TuQ+jRpmula7VSjm52uG9UCHpkJ2yLD82VpYRBGRNb3NSlsi/+GLaS3mpUwDMdUY3Z+xY2b90aSkPz4haNm7u34Jacm5c7v7dd2mX1JcqJY/t3Zu5sVpat26GrvvR0YaSdHUpMK1WUZo3N/wee3goyqFDpseIiZHS6xUrFOXGDcuNTas1TIHo1k3K0QFFefZZ07UjrSkpybrLCKqePjW8P+P/D5YskW0FCxqWttNqFaV37/RXlBgwQNa5z42xKyyPtw+6TLunC7vHExER5UvG5fHmmtCpdJmmNgGH8PrrsmnOHEn6ANksj1eb3ykKfPdKdvXFFw2Jz+PHMx5+thk32fr8c+DqVRw4IAn4DD19KhlMQMoJjh0zNCXbtEnKbOPigPbtpeQ4N7m5Gcrd58yRbJ7q5Engn38ky5qyyV3v3nJtXCKv1UpjrIMH5VhlykgG/+xZKfkdMkQ+iwIFZJrB669L1m/XLsMflVu3SlOv4sUlu2+OcYn80qWGrLVaVmysa1e5Xr/e9L2Zc+KENPgCJINqrhlgSmqJfMpmdLGxhtLtV14xbFcz7YcOyT4qrVaamAG2ybQDpiXyf/whjQZLlZJKA8DQwFCjkcvPP6f+P8DTU0qve/UyP3UmuzQaQ7Z99WopR+/aVRrRGf+fZE3OzqZLXliLjw/QqZPc7tQJGDhQpiV8+KFse+89mTIAyOeyeLFUhbRpI/8uR46U/19++w24e1ca1rVpkztjz4pcOYVg56x29l13lnhMk6NKdpYrJCKi/ImZdsuz2We6fLkhi5PemuBbt8o+JUsqiiKJnuBgw1PN/Q0xapQ89t57hm3ffSdJO0VRFKVGDf0B1mk6K4CiXL1qSBDOmmWpN2lG2bLyIkWKKAqgPGjRRQEUpUWLTDz3yBF5bmCgoRMfoCjvvmvIGHftapp9z00xMYryzDMyjlWrDNvV9a+7d0/9nBs39FUP+oyqmkX28VGU+vVTZ/3c3aVjYFycovzvf5IFVB9zcpLfFbUiYdSo9Me8eLGhAZj6e2auyVlCQubWGU9OVpQGDQxN1zLrzBl5jre3vJZK/XdSooQcW6XVGv4hGI8nLMzwOeRSRjSViAjD56lWUowfn3q/LVvkktvu3jWM7623TD9XR/P0qTQF1DUB11fiBAVlfa35XMZMuz1Q57S7sBEdERFRvqRmAStXTn9NcHW++7VrQHg42rSRhGvfvnKI5s1TPyVlpn3vXun/1Ls3cPOfSOk+p/OCsgXBAXEIDTUkAq3WjC4sTOZzazSShXR2RqFda9ESO3DwYMYJXP2a3pUqSeZMLT2YNUue3Lu3rDVttLxurvL0BN54Q25/9ZVcJyYasujm+juEhEiWWVFk3e3794Hx4+Wxjz6STPJvvwFVq8q2+vUlcz9unGTuR40C/v1Xsqc+PpJpvnbNUJGQ0fJ1HTtK5lBtMNeunfn5766usi9gyHybs2yZNJTz8TF8BplRubJk/qOjDaUeiYmyFjYgy385GYUnac1rV+ezFy1qu4yor6/MvQfkZwUYGsAZe/FFQ8O/3FSkiMwZX79e5m47OXDY5+MjjRT375f/N9RGYpMmZX2teTvlwD89O+DqCoDl8URERPlWo0bAvHnATz+lv5+vr6Hzt65TdsGC8rTr16VfVUopg/ZPPpFrRQH2fnZIAruSJRHlXwzeiMHAkjuh0QB16sh+Vgva1dL4mjWBxo31Ae5sjEFSfBIuXcrg+cZBOyABR+XKcnvAAOnMbevS1TfekL/zDhwAjhyRxmH37knpcVrrX6sl8suWScD++LGsTz1ypKG79smTcrbmwAHpMm6sSBFg4UJpknXnjpSYL14sjegyWtvauEQeMDTvMse47FurTf14VJSUHAPAxIkSOGeWk1PqEvnFi+WEROHCgLmVKNQzVsZTLtSTFbYqjVepnxUg0xtq1bLdWMxp0cJwEiY/aNhQpm3MmCEnvIYMsfWILIZBuzWlyLSzezwREVE+o9FIprh27Yz3VTs6HzyYqUMbd48/dgzYvNnw2MPf9smNJk3wd1B7AEB7bARgCNqvXMnccnFZpgZXugzp07c/xEMURHWcwVB8h9OnM3j+uXNyrQbqXl4SxO7YIZ3UnZ2tMOgsCg42zL3+6ivDSZnevfVJm1S6dZPHTp6UebOAnNAxPgHh7Cwnb9J7jxqNdGFv2lTm7xoHjulRs/GenobstTmtWsk8+tu3zXd5nzlTqilKlwbGjMncaxtTg/bduyXjrmbZP/hAXjcldawHDxr+mLZl53hjHToYMtg9emRviTayLHd3Oan0+ee2q8axAgbt1qT7T9vDmZl2IiIiyoC5oD0xUZoqmWGcaZ8xQ2537ixxT+UnuiZ0TZpgTYIE7dVvbgIUBQEBkhQErLT0mxq06zKke/8piCmQplCjMMe4at+8lJl2QJYma9nSvkp81azwqlVSggyYL41XFSpkuqb8a69Zf+ktYz17ymXmzPSbxnl4GDLx6nJyqmvXDOtdf/559pbbU4P2ffukiiI8XBq4DRtmfv/y5YHAQPlDeuZM4NQp4OpVecySzduyo0gRORni42MXa3mT47Kj//kckO7sjocT57QTERFRBtS1iv/+WzplL1oElC0r5cdLl6baPcBfwURMx6snx2HdGilj/ugjoHePJDTAYQBAQr3GWHrjOUTDC14PbkrAAyuWyN+9K2syazSSCYYkyJdDSsMr4iKu/30/7efHxwOXL8tt46DdHtWsKVng5GQZd5UqGZdH9+kj14UKAZ9+au0RmvLykl4A6rrq6TEukTde+/rddyXb3bKloWN3VtWsKWeWIiLkFxYAPv447ayoRiPZf0Cy8jVrAnPnyn1bZ9oB6Qp/966cXCCyEjvrZe9g1KBdl2lneTwRERGlqUIFqXl/8kRKj40z7EOHyjY1Swmg4tL30BSzgERgB5oAnTqjShVgeONT8FkUjcfwx8nHlRGV5ITdri+gbeJvwIYNQM2aqFsX+PVXK2Ta1Sx7tWoyjxrAzp3AYxREmH9lFH1yDh4nDgLoYP75//0n86h9faUE3d6NHWtokNavX8bl0d27Aw8eyAkac+v42Ys2bSSLfvmynFzw8ZHmeatWSbXD7NnZLwV3dpY5+H/+KY0Fa9WSCoD0fPaZrFV46JD0EHj6VLarZ59sycXF9j0WyOEx025Nank8M+1ERESUEScnQ7Y9PFwac335pQR6iYmS/VSz0DNnovCSWfqnvoPP8P77crtapJTGH0RDvPe+/Kl3vpwuSN4o89qz3EH+7l3g++8l07lrl4zHnBSl8Y8eSV8oAPB4rhEAoMzd/YiKSuN1jOez54X5wS+/LIFjQIC0+s+IkxMwYoR9BJvp8fExNNR7/33pXq9mxYcOBapXz9nxjU4+YebMjKc9BAcD06cD27bJfJCzZ6X7fG5OLyCyIZ4WsiZdpt3diXPaiYiIKBPefluCkk6dpKu4j4/M9b16VSLsl1+WudC67t0z8B7ewpdohINAwn4AjaE5IEH7fjTGkSNy2Ljn2wHnNXKMsDDUri0dv69dAx4+TCPpe/eulOX/9ptkONUy6Q8/lPLmF1+UDGm3boYAO0XQvmePPK1iRaBg+8bA2u/RCAfwzz9AgwZmXtPcfHZ75uQka+0lJMi8e0cybZpkxZOTpbmXm5ucSJoyJefH7txZTgC1bWva1T4z1GZ9RPkIg3Zr0mXa3TXsHk9ERESZ8PzzhrWfVV5eUtZer57MF3/7bQCAMuF9zPz2YxSOuI/XsEhKiBs1kgZfAA46NQF0K3ZVbB4IHKkva2v//jv8hgxBuXJSjX7sWIplpGNjpfz5k09gkhKvW1fWntu2TUql16yRy+TJEsg/eAD884/sq8uk7tghd597DjI2APVwFMuPx6NBA/fU7z+vBe2ANHVLr7FbXlW9eupGdJZSoYL8Djni50ZkBSyPtyY1065heTwRERHlQHCwlLZ7ecn911+H5uPp+PVXIHCWBPHYsEHWCw8LA1xcULB1Pf3T69SBLE8FSIC9bBnq1ZGIXl8in5QErFghafH335eAvU4d4JtvZF3so0eB5culdP/IEWD0aHnetGlyUdfdrlJFMrKQ+eyA9C1DuXKI8nwGHojHk50nzL9PNWhXl3sjx1WgAOeCE2US/6VYky7T7qZheTwRERHlUK1asl756dOyHrhGIxnyFysC+zpI0D54sOxbuzZ6v+aFNX8CzzwDhIZC1vResEDWuO7bF18W+wKR+BDuvzwCTv8JbNkiTfAAoHhxaUD2yiup5xs7OUnWv1492e+dd6RkulQpeVxXGn/3rkw9BnRLbWs0eFShEXxOboDH8f0AnjU9bnIycPGi3M5LmXYiIitjpt2adJl2N5bHExERkSXUqAG8+qrM6zX2zjtyffu2XDdujE6dZP32H37QTTkPDpZM9scfA76+CLx9AhvRAePODABWrpSAvWBBafh18aIsT2YUsP/8M9Crl6zUpff224aly9S1s3VBu9pUvXp1OXEAAE5NpEQ+5OYBk5XE9M+Pjwc8PKCUCEV4OFLvQ0SUDzFotyY10w5m2omIiMiKGjc2dJ7X3Xdykn51bdsa7eflJaXvly9DGTUaT5wCcAy1cbH7JMni37sHTJxoKMPXiYwEhg+X2H7BghSvPX68nAgAJMjXzWdXS+Ofe86wa+FOjQEA9RL2I/xOiohcVxqfWLoCWrd1RnCwJNynTDFMlSciyo8YtFuTLtPuqnBOOxEREVmRRmPItgMSxKfnmWeg+d9sTH3zEeriGGYV+EiWz0qZwddZvNiwNPbixWYy4O+/D/zyi0T1QUEAUjSh03FvVAcJcEUQ7uLS1qumx9AF7RsuVcbWrbLp4kWZLl+1KlCzpqzyRUSU3zBotyY1aNfNaWd5PBEREVlNx47AG29IplwXOGekfXu5/v13QKs1v09yMjBnjuH+xYvAwYNmdlSXfwNw65Z0pjdKvAtPT1wrKGuUP92yX785Lg44uEjWaD+ZUAk1a0qvu59+klXuXF2BU6eAJk2AX3/N1FsjInIYDNqtSVce76plpp2IiIiszNkZ+PZbmZOeSU2bAr6+0jTu6FHz+2zaJNPNAwKAHj1k2+LF6R9XzZTXrZt6+fKHFWReu8exA/pto0cDTv9Kpr1c+0o4dEj63PXtK03zw8KAl16S1eh69gQ++CDtkwxERI6GQbs16TLtLpzTTkRERHbIzU2CYUCaz5sze7ZcDxsGjBwpt1euNF3CPaW//pLr1q1TP+bUVEr3Q25Ipn3XLuC77xRUggTt/WZUgnuKJdyfeUZOHuiWqMf06UD37gzciSh/YNBuTSky7SyPJyIiInujlshv3Jj6sZMnJah2dpZGdE2aAGXLSsC+erX542m1hkz7iy+mfrxIJ8m0l4k7i6e3IjBkCFAUYfDFU3mhcuXMHtfZGfjsM+mG7+YGrF1reB0iIkfGoN2a1Ew7y+OJiIjITrVpI3PPz5wBrl83fex//5Prbt2AkBDpdzdokGxbtMj88U6cAB4+BAoUABo0SP14aIMgXNGUhhMUfNnjEC5dApoWlPnsKFtW//dTWvr1k6XnAGDPnky+SSKiPIxBuzXpMu3OWjaiIyIiIvtUqJCh2bxxtv3ePWD5crk9Zoxhe79+EuTv2wf8+2/q46ml8c89p/9TyISTE3CxoGTbuxx8G/vRCD8k95UHK1XK1JibNpXrvXvNP37kCLB0KbBqFfDHHxLcq93viYjyGgbt1qQ7U+xslGlPtUQKERERkY29/LJcq0H7w4fAqFFAQoJky42XgC9WTLLzALBkSepjqUG7udJ41d1KLQAA1XAWjXAQ7hH35IF27TI1XjVoP3IkdSVjWJg8PnCgNM5r1w5o3hx4/nn+HUZEeRODdmtKkWlXFCApyZYDIiIiIkpNnde+a5fMGy9XTprNAbIEe0pqifwPP5j+bRMVBezXreSWXtAe1aUf3sQcjPecgyeL1sgacmFhwGuvZWq85csDRYpIwJ6y6/3vv8vJhsKFJXivU0f+JDt6FPj770wdnojIrjBotyY1056UoN/EEnkiIiKyNxUrAmXKSLD77rvA48dA9erAtm1Ahw6p93/5ZQmK79wBFi40bN+zB0hMBEqVkuOlpe9AV0QPfBNt/3wT/oO6SCo/ODjT49VopCkekLpEftMmuR49Wsbz99/SaR7IeKk6IiJ7xKDdmnRBu1Nyon4Tm9ERERGRvdFoDM3dihQBvvsOOH5cSsrNcXMDJk+W25MmAY8eyW3j0niNJu3X8/eXALp58+yP2dy89thYOdEAGEr+AUNlwIoVsg8RUV7CoN2adOXxmsQEuLjIJgbtREREZI+mTAG2bAH++w8YMkSWWEvP668DVatKwK4G8JmZz24patC+fz+QnCy3d+0CYmKA4sWlUkDVsiUQGgpERADr1ll/bERElsSg3ZrUJUsSE+HuLjdZHk9ERET2yNVVgm1f38zt7+ICzJkjt+fNky7t589Ld/jnnrPeOFU1asiycpGRslwdYCiNf/ll00y/k5M0pgNYIk9EeQ+DdmtSg/b4eHh46G8SEREROYSWLWW+uFYL9Owp2xo0kPJ3a3NxARrJynHYu1ca/hoH7Sn17y/X27cD165Zf3xERJbCoN2avL3lOjpan2ln0E5ERESO5LPPAA8P6RwP5E5pvMp4XvuZM8CNG4Cnp/lMf8mShjn6S5fm1giJiHKOQbs1+fjIdVQUy+OJiIjIIYWGAu+9Z7hvq6BdXWP++eclcDdHbUi3dKlUBxAR5QUM2q3JKNPO8ngiIiJyVO++K+uh16sH1K+fe69bv77MRgwPBxYskG3mSuNVnTsDfn7A9evAzp25M0Yiopxi0G5NZjLtDNqJiIjI0Xh6AkePAkeOQL9iTm7w8JATBQBw86Zcpxe0e3oCvXvL7Q8/NJT0E+U3ycnA+PHAb7/ZeiSUGQzarUkN2hMS4O2aAIDl8URERFlx7do1DB48GKVKlYKnpyfKlCmDKVOmICEhwdZDoxTSW5fdmtQSeQCoVQsoViz9/UeOlOB9716gRQvg7l2rDo+sYNo0oGxZqZig7NmxA5g1C3j1VZ68ygsYtFuTWh4PwN81GgAz7URERFlx4cIFaLVaLFiwAP/88w+++uorzJ8/H++//76th0Z2wjhoTy/LrqpcWQKWZ54Bjh0DGjYELl603vjIsg4fBqZOBS5fBlatsvVo8q4LF+T66VNg2TLbjoUyxqDdmtzcZNFTAP4ucgqLQTsREVHmvfTSS1iyZAlefPFFlC5dGh06dMDbb7+NtWvX2npoZCcaNTJk+du1y9xznn0WOHgQKFMGuHpVjnH0qPXGSJaRlAS88YYs7wcABw7Ydjx52X//GW7Pm2f4TMk+MWi3Nl2JfAEnybSzPJ6IiChnIiIiULBgwXT3iY+PR2RkpMmFHJO/P/Dtt5J9zUoTvLJlJXBv0AB49AgYOFDm+VL2RERIQ0BrmjcPOHECcHaW+/v3561gMywMGDAA+PJLW48E+Pdfw+1Tp4BDh2w3FsoYg3Zr0wXtfs7MtBMREeXUpUuX8PXXX2PYsGHp7jdjxgz4+fnpLyEhIbk0QrKF118HpkzJ+rz6woWBP/8EAgKAf/4Bfvwx4+fcugV89x0wfTowahTwyiuy5J29B/zR0UC3bsDs2ZY/tqLINIXy5Q0NAS3tzh1g0iS5/fnnUtB67x5w5Yp1Xs/Sdu0CatcGfvgBGDcO2LTJtuNRg/by5eX6229tNxbKGIN2a1Mz7RoG7URERKr33nsPGo0m3csFddKlzu3bt/HSSy+he/fuGDJkSLrHnzBhAiIiIvSXm9aKJCjPCwgA1BYJkycDsbFp75uUJOvQDxsGfPAB8PXXwC+/ADNnSvBvz375BVizRgLfxETLHvvvv4EzZ2R+9NKllj22atw4IDJSVgt4801ZYhCQbLs9UxT5/Xj+eWl6WKCAbH/tNeDBA9uMKT7e0MTvs8/k+tdfbTceyhiDdmvTNaNTg3aWxxMREQHjxo3D+fPn072ULl1av39YWBhatmyJRo0a4bvvvsvw+O7u7vD19TW5EKVl5EggJESy6F9/nfZ+S5YA589LoD94sGTY27SRx77/PnfGml0rV8p1dDRw/Lhlj71uneH20qWWL1nfsQNYsQJwcgLmz5fy+MaN5TF7nteuKECfPvJ7otUC/foB165JM8S7d6VCxBbl/VeuyHh8fID27aUCICFBfr9Ve/fK2IcPl38T27ZxpQVbysWVNPMpXabdR8Pu8URERKrChQujcOHCmdr39u3baNmyJerUqYMlS5bAyYk5B7IsDw/go49kvvGMGZIFTdk2ISZGSvABuR49Wm6fPy9Z9k2bpIQ7ODhXh54p9+4B27cb7u/aJXP5LcU4aL9yRQK+Zs0sd/wFC+T69dclwASkeSBg35n2Y8fkZIOLC/DNN8CQITKF46ef5PNfs0Y6t/ftm7vjUpvQlSsn43njDRnbggXyu//eezIFJCUnJ2DtWqBjx9wdLzHTbn26oN1bYXk8ERFRVt2+fRstWrRAiRIl8Pnnn+P+/fsIDw9HuLU7XlG+07cvUK0a8OSJBO4p/e9/EpSXKiXBo6pSJcn6JifLfGV7tGaNZFZVu3db7tgXLsjF1VXmzAOWL5E/d06ujZf0U4P2f/6Rn5k9UqsbOncGhg419FyoXdtwAmjkSOv1AUhLyvnsr7wC+PnJMnqlShkC9gEDgPHjJUgPDpbfoT/+yN2xkmDQbm0pgnaWxxMREWXe1q1bcenSJWzfvh3FixdHcHCw/kJkSc7OwKefyu2vv5YARvXwoeGx6dMBd3fT5772mlx//719djNXg8feveV63z6Zn28J69fL9XPPGaoPfv0ViIqyzPGTkgxBZqVKhu2BgbJkn6LYZ+dzRZHPAQB69kz9+HvvyWoHERHAiBG5OzbjTDsgs3n79ZPbERGyfdcuKZf/9FP5Gasd78+cyd2xkmDQbm26oN1Ly0w7ERFRVg0YMACKopi9EFlamzZA8+by91qtWsAXX0jTtk8+kSZoNWsCvXqlfl737tJg7PJlCXbsSVgYsGeP3P74Y8moPn0KnDxpmeOrpfGdO0vFQdmyMm9+zRrLHP/aNZlv7ekJlChh+pg6r92WJfJLlsjvRMps/+HDwI0bEhC3bZv6eS4uUpHg5ARs3CjLruWWlJl2wNCf4YMPgNOn5d+BsapV5frsWfs8MeXoGLRbm64RnaeWc9qJiIiI7JlGI0FY/foS2L79NlC9OjB3rjw+c6YEWSl5exuy2PbWkG71agmyGjYESpaUpdmA1CcXbt+WcuisNKm7fRs4ckQ+t44d5XrAAHnMUiXy58/LdYUKqT97tUTeks3oIiOBadOkKWFGtFr5HVm50lCJoVKz7B06yAkHcypVkhM+gPxu5ZaUmXYAKFpUSt+nTZMeDymVLy9TIJ4+zf1yfmLQbn26TLtHMsvjiYiIiOxdqVLAwYPA4sWyjvuFC5Lpff554IUX0n6eWiK/Zg3w6FH2X//evew/15xffpFrtURbzaCmnNc+frzMyR82LPOZVLU0vmFDIChIbvfrJ8H7rl2WWUNdXfmxYsXUj6mZ9sOHLVfuP2uWzDcfOjTjfU+eNPys58wB1FYbWm36pfHGxo+X65Urc2fN+ehoOdkCmGbaM+LmJidOAMm2U+5i0G5tuqDdM4nl8URERER5gZMTMHCglBGPGSNrg8+ZY2gkZk6dOkCNGvK33rJlWX/NhAQJeAMDgQ8/zPbQTdy4IScgNBpDRrdFC7neu1ea5wGSOVWD+7//ludkhnFpvCokBGjVSm7/+GOOhg/AELQbz2dXVa4s5f7R0VLSrdqwAVi1KnuvpzZa27w544zytm2G27GxMo0CkM/v9m3A1xdo3Tr9Y9SqJftotcDnn2dvzFlx6ZJcFyyYeoWEjKgl8rk9rz02Vn4/Y2Nz93XtiV0H7TNmzEC9evVQoEABFClSBJ06dcLFixdN9omLi8OIESNQqFAh+Pj4oGvXrrhrT4sI6oJ290QG7URERER5ib8/8NVXUgJeuXL6+2o0hmz7hx9KZr5NGykbX7Qo/edGRMi+P/0k9z/+GEjxJ2+2qNneZs2k/BmQefkFCshrqoHunDmGAF69n5FHjwwl9sZBO2BaIp/T+c9qeby5TLuTk2T5AZnXrijA1KnymffsacgoZ9bdu8CJE3JbUaTaIj1q0K4ugbZggZwoURv/dexovtQ8pffek+vFi7O2FvratXJyKSvd883NZ8+satXkOrcz7TNmSId79aRIfmTXQfvu3bsxYsQIHDp0CFu3bkViYiJefPFFREdH6/cZO3YsNm7ciFWrVmH37t0ICwtDly5dbDjqFHRz2t2SZMwsjyciIiJyTH36SHb14UNgxw7J1m7YIKXWx46Zf87Nm0CTJrK/j48sB5aYCIwalfOAVw0ejUu0XVzk9QApkY+IMKyDrgZFq1dnPKd70yYJ9KtVky7uxjp3Bry8gOvXc5aVVZT0y+MBQ4n83r2yfJpapZCdrvJ//SXXrq5yvWiR6ckMY3Fx8pqAnGRp0UKqJT78UD4/IOPSeFXz5rJue3y8LC2YGadPSyC7dGnWgll1Pnt2gnbjZnS5accOud6+PXdf157YddC+efNmDBgwAFWqVEGNGjWwdOlS3LhxA8d0/+tFRERg0aJF+PLLL/Hcc8+hTp06WLJkCQ4cOIBD9rL2gy7T7pbATDsRERGRIwsIkOB89Wpg+XIJqNq0kdLnN95IHQBevAg8+6wEQcHBEgSuXCnzh//6C/jtt+yP5exZKXV3cgK6djV9TC2R37VLGuc9fSqVBOPHSwCZnAzMm5f+8deuleuUWXZAGq+pr6EGwtlx7x7w+LFUMaQVZKrN6FatAr79VvZV514fPpy119u8Wa5HjpTS8Zs3ga1bze974IAE7sHB8tlNny7bFy8G7tyRKo30eiAY02gM2fZvvpETKemJjZXGhwkJhudktheCmmk3bkKXWWrQfv685XoIAHKCqGJFOfmRUkKC4YTXsWP5NwFq10F7ShG63+CCugkYx44dQ2JiIlqpE2cAVKxYESVKlMDBdCbjxMfHIzIy0uRiNWrQHs+gnYiIiMjRlS0rQfIrrwD9+0u21tcXOHrUtLP8/fuyFFhYmAR9hw5J6XrZstKRHADGjs3+PF51Xe3OnYEiRUwfU5vR7dkDzJ4tt996SwJ8da31BQvSfu0bNyTTDhjmyqekBqzmgvbERMlIq0vRpUXNspcqlXaZef36gLOz3HZ1lbnPanO3rATtWq1hrJ06Aa++KrcXLjS/v5r1bdVKgu7GjeUEjapzZzn5klkdOsi8/chIYP789PcdPx745x/pf1CjBhATA3z2WeZeJyeZ9pIlpYg4Pt4wNz6ztNq0K0eWLZMTWF99JfsZO33aEKgbB/D5TZ4J2rVaLcaMGYPGjRujqu40T3h4ONzc3ODv72+yb2BgIMLV9o1mzJgxA35+fvpLSEiI9QauC9pd4tk9noiIiCi/CQ42ZGEnTJCMaGysBGlXrkhAunOn6Rrk778PFC8ua5SnFYwlJABvvgm8+KKcADB25w7w889y+513Uj+3dm0Jvh4/lixnYKCU9gMyrtBQKfFfscL8a8+dK9n4li0N2deUXnxRrvfsSR38//STzD3v3j39v43V+ezmmtCpfHwkyA4IkCZyPXpIqTkglQaZzQgfPw48eCDz/Rs2NPQn2LDB/DxzdT67Ue5Q/3MGMl8ar3JyMmTbZ86Un405f/wBfP213DYujf/mm8zNh89Jpt3JCahSRW5npUQ+JkZ+T+rVMz/dQK1mePgw9XFTFk9bcnm/vCTPBO0jRozA2bNn8Yva2jIHJkyYgIiICP3lpjUXG9TNaXeJ5zrtRERERPnRG29IFv3xYwmi+/WTYEQNNFNmwr29gS++kNszZqReOz0qCmjfXoLnrVulw72xr7+WbHaTJoYA1pirq2EuOCDBv5rJdnaW8nBA5lenzI5GRQHffSe3x45N+z1XqgQUKyZ/+6pzv1Vqd/1799LvtJ/RfHbVqlWy3JoaQFesKMF3TIxkpDNjyxa5fv55+XyqVpWpC0lJshSesceP5YSAur+qdm2pcBgzxjSYz6w+fSQofvw49brvgATlAwfK7VGjgJdekux+/fpyYmTWrPSP//ixnJgAshe0A9nrIL9ihZyAOXYs9coEMTGmvx87d5o+rgbtzzwj1wza7djIkSOxadMm7Ny5E8WLF9dvDwoKQkJCAp6kaJl49+5dBKmLRZrh7u4OX19fk4vV6DLtzrEsjyciIiLKj1xcDHPEf/xR5ry7usqSaWkFpN27SyY7Lk4ylG++KUHXw4cSEP71lzR7c3KS+fO//y7Pi4oyvNa4cWmPSZ1z7uUFvP666WODB8v206cNTcBUS5bInOty5YB27dI+vkZjyLYbl8jfvm0amH35Zdpl05nJtKuvZVyK7uQknxmQ+RJ5dT77Sy8Ztg0ZItfff286xl27pIxbPTFhbOxYKfNWS/azwtlZsuyAnDC5ccPwWEIC0KuXnOioWtWwn0YjVQuA/NzTKTbWl8YHB+tDlCzLagd5RZGTS6r1600f37vXMDcfSDtoHz5crg8cyHmDxrzIroN2RVEwcuRIrFu3Djt27ECpUqVMHq9Tpw5cXV2x3aiV4MWLF3Hjxg00VNd/sDWToF1heTwRERFRPvTss4YgEJDgV51bbo5GI/Ozu3eXAHHuXAmUn31WAtGCBSWgVrPdb7whDeWWLJElwMqVk2x8Wvr2lQDs44+BQoVMHwsIMCzb1q+fYem05GRDd/MxYyQ4To+5oP2XXyToql1bsuHnzhmy3CllNtNujlphcORIxvtGRBgywMbrqvfoIWP87z/T92CuNN5S2raV34v4eGDyZNmmKHJiZdcuCS1++cV0jv9LL8n7zSjbnpP57KqsdpA/eBA4edJwf/1606BbLY2vXl2ud+82lNDfvw9cviy333hDTnTduyfTSvIdxY698cYbip+fn7Jr1y7lzp07+ktMTIx+n9dff10pUaKEsmPHDuXvv/9WGjZsqDRs2DBLrxMREaEAUCIiIiz9FhQlIkJR5HdTcUes4udn+ZcgIiLHYtXvpXyKnynZg0ePFKV7d0WZNy9rz9u+XVGqVNH/SakUL64o587JY9HRilK6tGx//XVFKVVKbmf1NVJ6/FhRKleWY9WqpShPnyrK+vVyPyBAUaKiMj7G/fuKotHIc8LCZFutWobxjR0rt1u1Sv3cp08N7/fBg6yPXx1r1aoZ77tmjexboULqx4YPl8cKFFCUHTtkW/nysu2337I+rsw4fFiOr9EoyqlTijJjhtx3clKUP/4w/5zNm2UfDw9FCQ83v8/kybLPa69lf2x37hjGYhSSKaNHy+f377+m+/fuLft3764o7u5y+8wZw+PVqsm2n3+WzxhQlGPH5LGNG+V+pUpy/9ln5f6PP6Y/Rq1WLnlBZr+b7DpoB2D2smTJEv0+sbGxyvDhw5WAgADFy8tL6dy5s3Lnzp0svY5Vv8iTkvT/4xTEA8XDw/IvQUREjoUBpuXxM6W8LiFBUebMUZRXX1WU69dNH9u2zRDgAoryzDMSzOfUlSuKUriwHLN9e0Vp2lRujx+f+WPUqWMItM6dk9suLhKIX7smwR+gKCdPmj7v2DHZXrhw9sauBpcajaJERqa/75Ahsu/o0akfi4hQlBYt5HE3N0X56iu57eysKE+eZG9smdGjh7xOuXKGn+vcuWnvr9UqSr16st+nn5rf55VX5PFZs7I/Lq1Wfr+Mg+sjRwxjrFHDEMzfuaMorq6GfV9+WW5/9JE8HhZm+Bndv68o7drJ/c8/l8cnTpT7AwfK/XHjDCen0htf167yuWX0c7cHmf1usvvyeHOXAWq9DgAPDw988803ePToEaKjo7F27dp057PnOmdnff2KD6IQF5c/52EQERERUfa5usq89h9/NO00D0gztEGDDPeHD5c56TlVqpSsFe/uDmzcKPOPXVwMjeoyw7hEXm0616aNlOSHhgLdusm2r74yfV5m57OnJShIPidFMTSNM0dRzM9nV/n6An/+CXTpInOv1ekI9esDfn7ZG1tmfPKJ/MzVkvZRo4ARI9LeX6Mx9CZYuDD10mlAzjrHG79OyhL59983PH7qlGHZwIULpSHis8/KdIhOnWS7Oq9dnWZQq5Y0mmvZUu6r89rV+ezPPivXjRrJdXrN6JYvB9askc/txInsvEP7ZNdBu8PQzWv3gTSjS0y05WCIiIiIyNF8/rkEqQULph/cZVXDhnKiQNWjhyxHl1nGQfvy5XJbXV4OMDTLW75c1qxX5WQ+u6p+fblOrxndP/8AN2/KiYlmzczv4+EB/PorMGyYYZs15rMbK1PG8HNs104a9mWkZ0+Zg3/5ssx/N6YolpnTDph2kN+2TS5ubhKkazRyvXQpsGCB7Kee5GnfXh4/dkw+c3U+u/o7ogbte/bICRK1H4EatKsty86ckfXsU3r61HSJwzt3cvY+7QmD9tyQImhnB3kiIiIisqSAAOn2/u+/qZeQy6kePaQRXs2awJQpWXtuw4ayhN29e8DVq/JnsXGDvPr1ZWm6xETTJmo5zbQDGTeje/IE6N1bbrdqlX51grOzdGefMUOyxkaFv1Yza5ac7Fi7NnPd6L29pcEgYFiWT3XunAS6Gg1QunTOxqV2kD9zxrC2/BtvyNr2avO8QYOkgWHhwoZqiiJFDEsNrl9vCNpfeEGua9QA/P0l+F62TK69vQ1rwwcHS/WHopg/EfPxx6aBuvFJoLyOQXtu0K3V7g1Zq50d5ImIiIjI0vz8UneCt5QRI6TcOKtZWnd3w/JygJSZpwyO1fLq//3PUDptiUy7GrSbC/BiY+XkwZkzUkr/9dcZH0+jkSD12LGcB76Z4eoqAa3xcnYZUVcoWLdOuq8DUiqvls63bWvaeT471Ez71q3yWfj4GH6GH3wg0zXU6cBDh8rvgEotkf/iC1meztPTEMg7OxtWVFCXtKtf3/SERVol8v/+a6hGUMfHTDtljS7T7u/MTDsRERER5S9qJhUwLY1XtWkjS8gBssTc2bOG+dc5Cdrr1JGALywMuHXLsD0pSdY837dPTnRs2SIZXEdQqxZQt66Ul6vTGubPl/fq7Q18803OX0MNitV58+PGGao7nJ0lS168uIRAxlMKAKBjR7m+fl2umzc3DerVEvmLF+VaLY1XpRW0jx0r1Rpt2sjvEMBMO2WVGrS7SNDOTDsRERER5Rft2knWODQUeO458/vMmiUB3NOnEuQnJkoWNmXTvazw8jKUcqvZ9vh4yf5u2CDB4oYNhjXCHcXQoXK9cKEEx+PHy/1PP5WfQU75+hp+Ls88A7z1lunjgYEyVePiRSAkxPSxsmUNQT9gekIHMATtqrSC9kOHZD33+Hhg0SLgjz/kd2z2bKBoUdmHmXbKmhRBOzPtRERERJRflC0r88r37JHu8+a4ugIrVwLFiknZNABUqAA45TBaUZvRHTggzdHKlweWLJHj/vJL2s3n8rJevSSrfvGiNHmLipIS9OHDLfcaalO4SZMkiE8pIMAQPKeklsgDqYP2qlVNp3ioUxyMH/fxkfn5L7wg+772mjw2dqz8fIOD5T4z7ZQ1ujntvi4yp51BOxERERHlJzVrZpw1DwyUpmvqHO6cNKFTqUHfl18CAwcCN25IMLlypWnw6EgKFDA02Pv3X6koWLQo5ydAjH39tSyFN2pU1p/brZv0ByhZ0jTrDsgY1XntpUrJ74QxFxfDz3TnTiA6WnoSjBxpaJKoBu3MtFPW6DLtfk4sjyciIiIiSkv9+hJgFikiS5jllJoRBmQ5vM8+Ay5dMnQ0d1RqiTwgwWyFCpY9fuHCsq69RpP159aoAezeLZ3xzT1fXV0grWX1pk2Tn98nn0hzxLAwOYmgNjhUM/wREUBMTNbHZ4/SKFAhi9IF7QWcWB5PRERERJSevn0NS5flVKVKwJw5Ery9/ro0nssP6tSR5n6PHwNvv23r0aTWtGnaj/XvL4F3yvnsqkaNDHPbzfH1lX4IsbGSbS9TJmdjtQcM2nODLmj31TBoJyIiIiLKTW++aesR5D6NBvjqK1uPIns0GpmLn5PnFy0KXL7sOEE7y+Nzg25Ouw9YHk9ERERERGRNjtaMjkF7btBl2r3BRnRERERERETW5GjLvjFozw1q0K6wPJ6IiIiIiMiamGmnrNMF7V4Ky+OJiIiIiIisiZl2yjrdnHYvLTPtRERERERE1sRMO2WdLtPukcw57URERERERNakBu3MtFPmqUF7EsvjiYiIiIiIrInl8ZR1KYJ2ZtqJiIiIiIisQ820P34MxMbadiyWwKA9N+iCdrfEaAAKg3YiIiIiIiIr8fcHPDzkdni4TYdiEQzac4OuEZ0TFHgiluXxREREREREVqLROFYzOgbtucHLS3/TB1HMtBMREREREVmRI81rZ9CeG5yc9Nl2Bu1ERERERETWxUw7ZZ1uXrsPolgeT0REREREZEXMtFPW6TLt3ojG48c2HgsREREREZEDc6S12hm05xajTPuNGzYeCxERERERkQNTM+0sj6fMSxG0K4qNx0NEREREROSgmGmnrDMK2mNigIcPbTweIiIiIiIiB8VGdJR1ujntRX2jAYAl8kRERERERFailsc/eoQ8v3oXg/bcosu0F/OLAsCgnYiIiIiIyFoCAgB3d7md10vkGbTnFl3QHuQjQfv167YcDBERERERkePSaBxnXjuD9tyiC9qLeDHTTkREREREZG2OMq+dQXtu0c1pL+jBOe1ERERERETWps5rZ6adMkeXaQ9wYXk8ERERERGRtbE8nrJGF7QXcGJ5PBERERERkbWpmXaWx1Pm6IJ2L60E7XfvAnFxthwQERERERGR42KmnbJGN6fdNSEaXl6y6eZNG46HiIiIiIjIgVm6Ed333wNduwJr11rmeJnFoD236DLtmqgohIbKJpbIExERERERWYelG9Ht3CkB+8WLljleZjFozy26oB1RUShRQm4yaCciIiIiIrIONdP+4AHw9GnOj3f6tFxXr57zY2UFg/bcYiZoZwd5IiIiIiIi6yhUCChdWm5PnpyzYyUkABcuyO1q1XJ2rKxi0J5bdHPaER3N8ngiIiIiIiIr02iAb76R2//7H3DoUPaPdeECkJQE+PkBISGWGV9mMWjPLWqmPSYGocWTATBoJyIiIiIisqaXXgL69QMUBRg0CIiPz95xzpyR62rV5GRAbmLQnlvUoB1AySIxAFgeT0REREREZG1ffQUUKQKcPw98/HH2jmGr+ewAg/bc4+EBOMnHHVpI1mq/eRPQam05KCIiIiIiIsdWsKChTH7GDODUqawfwzjTntsYtOcWjUY/rz2oQDQ0GinNuH/fxuMiIiIiIiJycN26AV26yLz0wYOB5OSsPZ+Z9vxCVyLvGh+lXzOQ89qJiIiIiIis75tvAH9/4NgxQ+Y9Mx49Am7flttVq1plaOli0J6buOwbERERERGRTQQFAZ9+KrcnTTIE4hlRS+NDQwFfX+uMLT0M2nOTUdDOZd+IiIiIiIhy15AhwLPPAk+fAmPGZO45atBui9J4gEF77lLXajfKtDNoJyIiIiIiyh1OTsD8+YCzM7B6NfDHHxk/R53PbosmdACD9tylZtqjo1keT0REREREZAM1ahiy7CNHAjEx6e/PTHt+wvJ4IiIiIiIim5s6FQgJAa5eBUaNAmJjze+n1QJnz8ptZtrzAzON6Bi0ExERERER5S4fH2DuXLm9aBFQqRKwZg2gKKb7XbsGREUBbm5A+fK5PkwADNpzl5k57Q8eANHRthsSERERERFRftShg8xrDwmRacvdugGtWgGXLxv2UUvjK1cGXFxsM04G7bnJaE67v79huYCbN202IiIiIiIionyra1fgwgVg8mTAwwPYsQNo08Ywz11tQmer+ewAg/bcZVQeD8DiJfIHDwLnzlnmWERERERERPmBlxfw4YcSSxUrBvz3HzB+vDymZtptNZ8dcKCg/ZtvvkHJkiXh4eGBBg0a4MiRI7YeUmpq0P7/9u48SKr63P/4+5zeZt93FhnUq7gTRyeIt1IRbol6k2jMor+JGUxKCwWDmg1j3G5CsCpVxmhSWKYiSd0YMRjBLWgMGBO97AHUKKiRKAqzMcxMz9bLOd/fH4duaBhgZhjoHvi8qr41M2fpfs7T3fPMc7ZZvRr+9a8Ru4P8rl3wta/BRRd5e4B+/GNwnCN7TBERERERkRNJbS0sWuR9/4tfwMsvZ8aRdsuY/S+1H32efPJJvv71r/PII49QX1/Pgw8+yJIlS9i6dSsVFRWHXb+rq4vCwkI6OzspSJyzfjT83//BZz4D8TgEg7x05m18aeOd9Fp5fKp6J1PL3+U/cj8hEswnHCihO1BMvKiM2voK6i6wOPdcby/QvpYuhZtugubm1On/+Z/wv/9L8i71gxGNejdYOG5Eo9DSsjc5ubleAnNzvQtSbBssa+/XBMeBjg7Yvdsbvb0QCkF29t4RCHgjGPTOo8nL8x4nU/X3e7lw3b1xB4OQnz9w3NGot+2hkJevQODoxGWM93mIxby87vs6DMR1vdemvx8qK71/sHmwx/3nP+G552D5cgiHobgYioq8UVPjfTgmTPAuYnIc6OryRjjsxeS63gAvTwUF3tdQyDtbJrG860JpKZSVeaO83FtmIPG4t40Hi3uwHMd7X/b3793exPRo1MtnNOpN8/v3jvx8KCw8+HvVdaG9HZqaYOdO+OAD76Kuf/0LWlu9u6+cc443JkyAzk7vxhxtbd73/f17h9/v5SUxErkpLR36+ynxuu/7XIGAl+dg0MtnLLb3vRQKebvJa2qO/i81Y7z4HMd7fsfxfs8c4Wt8zOrSCUQ5FRGRwZozB375S+/PiZ07vVK/YwdUV4/s8wy2Nh0XTXt9fT0XXHABv9hz+z/XdRk3bhy33HIL8+bNO+z6x7SQv/023HYb/PnPAHRQhI1DAeGDrtJPiA85iY84iZ7ccgK2g89ysY1DV9giQoicwiBTLwnR0WFY+/coxGPkBqKUjwnSY3IJu7l0O9kUs5tKdyfl8Z3kR9votvJpccr4OFJGc6wEXyhAXqFNfqGPvAKbrJAhFHAJBQ0Bnwuug+U44Di4josTc3FiBifmggX+gI0vYOEP2tgBH1YwiBUMYAX9WB278bc2EWhvItTVSowAPeTSbXIJmzz688pxS8uxqysIVpbgGBsnbojHwe7tpmDXNgrbP6C4/QOyIh3E/NnEAznEAtlg2/idKD4ngt+JkNW3m+yeXUf3tdyPk5OHm5uPk1uAm1eIk1eAm1uAHY/iD7fj72zH7tqNFY1API7lenk0+QWY4lJMWZnXUEWjXkPW0wORCNg2xvaBz4+xLCwnjhWPYTlxr2FINGQ+H5bPh7EswPKW7erEbm3G6uwcMGbj8+EUlxEvqSCeX0ygaxf+1p34OtpTl/P7Mbn5uCWlmNIyKC3DKiwA28JiT68djWJ6ejE9PbDnq9XdDT3d2H093m87n88bto0Vj0EkgrWnMTbZ2ZgxY3Grx+CWVWLFo9h9PVi9PVjhLqzWVq9x3HMaifH5cKtqiFWOI1pQhsHCxcY1kPveJrJ2bDuKr/ahmYICnLJKnJIKMAZfeyt2eyt2ZwcAbnYObm4+bk4euC5WpB+rvw87FvFea78f49+zY8gYLON6eXLiWH29WJHI8GPz+bBKSrzm2ba91y0a9RrtXbu8z/dRZoqKvG3bt9FN7MywbSzbxjjO3kY8GsUabqmqrITiYozfD4EAxufHikaw9t1J4/N5O9+ys72vtr13R8i+TXliJHaKJHaQ7G/9ejj//GHnB9RgHkwkEqG+vp7NmzezceNGzjvvvEGvq5yKiMhg9fTA5MneafLgHXtoaTn88aWhOmGa9mg0Sk5ODk899RRXXnllcnpjYyMdHR0888wzB6wTiUSI7PNHb1dXF+PGjTt2hdwYeOEFr3l//31vkm3TXV7L7rxxBKI9ZPXtJqt3N6HedmxG9UuUVjH8NFOJwSKXHnLpIUR0UOvtppjdFNNDLln0k00f2fSRRT8BYgSIEWSAP9gzVIQgcfwEiRIgnu5wjoiDjQ/3kMv0E2IF03iOz/FvJlBEB0V0UEI7Y/mYk/iQk/iQcWwnSpAuCuiigG7yiBHwdgBgY+OSRzcFdJFPmCz6CZOfXN7FppRdlNNKGW34Sd+1KQ42UYJ73p0BDBZ+4viJEyA2qPc+wC5KaKaSbdTyPqfwL05mF6WcxlbO4Q3O4Q3G8jHtlNBGGW2U0UkhfWTTTxYRQgSJUcIuSveMMtooZdcR/T7rpIA2yuiiAD9xgkQJEsVPPLnNMQLk0MsYPhn09o609x9fwyn/78Ijegw1mAObO3cu7733HsuXL1fTLiIiR9Xq1TB1qrfv/rOf9W5QN9IGW5vSdNP6kdPW1objOFRWVqZMr6ysZMuWLQOus2DBAu67775jEd7ALAv++7/hv/4L1q6F0lKsk08mPxQif/9lYzH4+GPMtn/TsflDOre14+Ajjg/H+CgvM5QXRLwjPpGI99jBII4vyPrNAXo7ouRZPeSYbrKcXvpCRezOqqbVX80uu5yqvG7GZbdR5W+jIN5OT2ecjt0u4d0OPWGX/qhNJGrRH7GIOjbG8mFsH2bP0TB/yIc/aOMPWmAgFjXEIi7xqIsbc7DiMex4FCseoy+riN78KvqLq3CKyykpdCjP7qYsu4cCuojuaCO2sxVaWvCHd2Mnzlz3WTj+EO0Ftewqmsjuoon0ZJXij/cTiPfhj/ZiHJeoFSJigkRMkHa3iA8jVXzcW0Jn2Mbn885gz82FvGyHgO1gGa8tw3WTZ/T29UFfv0W3m4NrrOSBtcRZt4kDf8bsGa4hi36K/WFK/F0U2V0U2mHy3C7yTRf5bif9JkSbU0xLvISWWDF9ZO1po/wYLArpTDY2hXQSIUQPufSSQ4QQNi5+HIJ2HBuXftdrTBLr+3CSjZkPBwuTHGHyaaKKZirppBDwdg9auISIUOFrpybQSrW/lTK7nZZ4CR9Gq/koXk07JQSIkUMvBXYPRXYXRc4uSozXphXQhWHv7sY4/mTcPeTSRw7RYB7RYB7xUC6OsXFjDvGoixN1iJgA/WTRvycfFbQwlo8ZwydU0kw/Wd6ZGOTRTR6tlNNCBW2UEcdPJc2MYzunhrZTEWjHbxv8PoPPZ9hpjeFldxptfbnJO3/u+/Eb7q5Ky/JOaki8Bw6Yj0shnVTQQgUtjPE3Y7Bpdstpdr3mFqDYF6YkEKY4EAafn6idRcyXRdQKeUfe4zFs13vTxRybmGMTdWwcfMn89pJDP1nJ13QwgkRSGmhgT9vrjV2U0hmsIKcoSH7+3rPtI3t+xbxg772aJLGnOZGHWMzbK+0eYl+KjUMRHZTTip84Dr7k8Oa7yeH9nvPe2TECtFNClINcdjAgQxltjGM7+YSTOy4CxOgnK7njpZs8LExyh1wW/Vh7diwk3t8OvmRkDr6UnCU+i4l4HXy8OnEoccpgLV++nD//+c/88Y9/ZPny5ekOR0REjnOf/jT88IfwP/8Dl1yS3lhGfdM+HHfccQe333578ufEkfZjLhTyLj4/lEAAamuxamspvgSKB/nQPqB+GCHlAOXDWG908e0ZI8ECsveMw98/YSD7nnnrul5TZNsHv+R+/7N1kzsQ9ow9Zxgnm9N9l7Vtr+kMBGx8vmxsewww5oCYEs2a3x/E7w9iWUXJ5Vw3dedF4tJvY7y36z5n6x/yFKL9G0KfL59A4GQCAW9d1/WeIzESz+G63uPm5dWQk1ODbR/6nZ5oIvdtNB3He97Ezhpj9s7bN+eJ1yEY9D6ufn/qYyR25CRy77o2tl1MKFRMMHhayqXjicv3vddn6J+yxPr7nqXtOHtf78TY9+dEnIkcOk6IeLxmz0jdRtv2dmxlZQ05tJQYIxGveY/F9r4PEpd3u64PxynFcUrx+VIvt983n7FY6q0X/P69Z6RHvKtLyMryRijkxR6L7X09YzGwLAsox7LKk2feJ3ITjXoxJsZAn6PE9uy/c2b/ZWDvYyfGGWcOP4cysObmZm644QaWLVtGzv43dzmIgc6qExERGYp774VrroFTTklvHKO+aS8rK8Pn89G8353YmpubqaqqGnCdUChE6GA3ihI5xhIN02DvzbVvA3K0+Hze5b0DsW2vUTrSj1DiOQ72PCNloHuu+XzevcIG+bf/gBKvwWCbXMs6svv5JdYf6mMkmuJjwbL2NtMjze8/9Hsl0eDrrOfjjzGGmTNnMmvWLOrq6vj3v/89qPXSfladiIiMepYFkyalO4rj4F++BYNBzj//fFasWJGc5rouK1asYMqUKWmMTERERA5m3rx5WJZ1yLFlyxYefvhhwuEwd9xxx5Ae/4477qCzszM5tm/ffpS2RERE5Oga9UfaAW6//XYaGxupq6vjwgsv5MEHH6Snp4frr78+3aGJiIjIAL797W8zc+bMQy4zceJEVq5cyapVqw44Q66uro6GhgZ++9vfDriuzqoTEZHjxXHRtH/1q1+ltbWVu+++m6amJs477zxefPHFA25OJyIiIpmhvLyc8vLD39/hoYce4sc//nHy5x07dnDppZfy5JNPUl8/nLu3iIiIjC7HRdMOMGfOHObMmZPuMERERGQEjR8/PuXnvLw8AE4++WTGjh2bjpBERESOqVF/TbuIiIiIiIjI8eq4OdIuIiIix78JEyZg9v9ffCIiIscxHWkXERERERERyVBq2kVEREREREQylJp2ERERERERkQylpl1EREREREQkQ6lpFxEREREREclQatpFREREREREMpSadhEREREREZEMpaZdREREREREJEP50x1AJjDGANDV1ZXmSERERPbWo0R9kiOnWi8iIplmsPVeTTsQDocBGDduXJojERER2SscDlNYWJjuMI4LqvUiIpKpDlfvLaPd+Liuy44dO8jPz8eyrCN6rK6uLsaNG8f27dspKCgYoQiPf8rb0Clnw6O8DZ1yNjxHkjdjDOFwmJqaGmxbV7KNBNX69FPehk45Gx7lbXiUt6E70pwNtt7rSDtg2zZjx44d0ccsKCjQm30YlLehU86GR3kbOuVseIabNx1hH1mq9ZlDeRs65Wx4lLfhUd6G7khyNph6r933IiIiIiIiIhlKTbuIiIiIiIhIhlLTPsJCoRD33HMPoVAo3aGMKsrb0Clnw6O8DZ1yNjzK2/FLr+3wKG9Dp5wNj/I2PMrb0B2rnOlGdCIiIiIiIiIZSkfaRURERERERDKUmnYRERERERGRDKWmXURERERERCRDqWkXERERERERyVBq2kfQL3/5SyZMmEBWVhb19fWsXbs23SFllAULFnDBBReQn59PRUUFV155JVu3bk1Zpr+/n9mzZ1NaWkpeXh5XX301zc3NaYo489x///1YlsWtt96anKacDeyTTz7ha1/7GqWlpWRnZ3P22Wezfv365HxjDHfffTfV1dVkZ2czffp03nvvvTRGnH6O43DXXXdRW1tLdnY2J598Mj/60Y/Y936lJ3re/va3v/G5z32OmpoaLMti2bJlKfMHk5/29nYaGhooKCigqKiIb37zm3R3dx/DrZAjpXp/cKr1R061fvBU64dOtX5wMq7eGxkRixcvNsFg0Dz22GPmn//8p7nhhhtMUVGRaW5uTndoGePSSy81ixYtMm+99ZbZtGmTufzyy8348eNNd3d3cplZs2aZcePGmRUrVpj169ebT3/60+aiiy5KY9SZY+3atWbChAnmnHPOMXPnzk1OV84O1N7ebk466SQzc+ZMs2bNGvPBBx+Yl156ybz//vvJZe6//35TWFholi1bZjZv3mw+//nPm9raWtPX15fGyNNr/vz5prS01Dz//PNm27ZtZsmSJSYvL8/8/Oc/Ty5zouftT3/6k7nzzjvN008/bQCzdOnSlPmDyc+MGTPMueeea1avXm3+/ve/m1NOOcVce+21x3hLZLhU7w9Ntf7IqNYPnmr98KjWD06m1Xs17SPkwgsvNLNnz07+7DiOqampMQsWLEhjVJmtpaXFAObVV181xhjT0dFhAoGAWbJkSXKZd955xwBm1apV6QozI4TDYXPqqaeal19+2XzmM59JFnLlbGDf//73zcUXX3zQ+a7rmqqqKvPTn/40Oa2jo8OEQiHzxBNPHIsQM9IVV1xhvvGNb6RM++IXv2gaGhqMMcrb/vYv4oPJz9tvv20As27duuQyy5cvN5ZlmU8++eSYxS7Dp3o/NKr1g6daPzSq9cOjWj90mVDvdXr8CIhGo2zYsIHp06cnp9m2zfTp01m1alUaI8tsnZ2dAJSUlACwYcMGYrFYSh5PP/10xo8ff8Lncfbs2VxxxRUpuQHl7GCeffZZ6urq+PKXv0xFRQWTJ0/mV7/6VXL+tm3baGpqSslbYWEh9fX1J3TeLrroIlasWMG7774LwObNm3nttde47LLLAOXtcAaTn1WrVlFUVERdXV1ymenTp2PbNmvWrDnmMcvQqN4PnWr94KnWD41q/fCo1h+5dNR7/5GHLW1tbTiOQ2VlZcr0yspKtmzZkqaoMpvrutx6661MnTqVs846C4CmpiaCwSBFRUUpy1ZWVtLU1JSGKDPD4sWL+cc//sG6desOmKecDeyDDz5g4cKF3H777fzgBz9g3bp1fOtb3yIYDNLY2JjMzUCf2RM5b/PmzaOrq4vTTz8dn8+H4zjMnz+fhoYGAOXtMAaTn6amJioqKlLm+/1+SkpKlMNRQPV+aFTrB0+1fuhU64dHtf7IpaPeq2mXtJg9ezZvvfUWr732WrpDyWjbt29n7ty5vPzyy2RlZaU7nFHDdV3q6ur4yU9+AsDkyZN56623eOSRR2hsbExzdJnrD3/4A48//ji///3vOfPMM9m0aRO33norNTU1ypuIDJlq/eCo1g+Pav3wqNaPTjo9fgSUlZXh8/kOuItnc3MzVVVVaYoqc82ZM4fnn3+eV155hbFjxyanV1VVEY1G6ejoSFn+RM7jhg0baGlp4VOf+hR+vx+/38+rr77KQw89hN/vp7KyUjkbQHV1NWeccUbKtEmTJvHRRx8BJHOjz2yq7373u8ybN49rrrmGs88+m+uuu47bbruNBQsWAMrb4QwmP1VVVbS0tKTMj8fjtLe3K4ejgOr94KnWD55q/fCo1g+Pav2RS0e9V9M+AoLBIOeffz4rVqxITnNdlxUrVjBlypQ0RpZZjDHMmTOHpUuXsnLlSmpra1Pmn3/++QQCgZQ8bt26lY8++uiEzeO0adN488032bRpU3LU1dXR0NCQ/F45O9DUqVMP+BdD7777LieddBIAtbW1VFVVpeStq6uLNWvWnNB56+3txbZTy4LP58N1XUB5O5zB5GfKlCl0dHSwYcOG5DIrV67EdV3q6+uPecwyNKr3h6daP3Sq9cOjWj88qvVHLi31frh30ZNUixcvNqFQyPzmN78xb7/9trnxxhtNUVGRaWpqSndoGeOmm24yhYWF5q9//avZuXNncvT29iaXmTVrlhk/frxZuXKlWb9+vZkyZYqZMmVKGqPOPPveUdYY5Wwga9euNX6/38yfP9+899575vHHHzc5OTnmd7/7XXKZ+++/3xQVFZlnnnnGvPHGG+YLX/jCCffvTPbX2NhoxowZk/w3ME8//bQpKysz3/ve95LLnOh5C4fDZuPGjWbjxo0GMA888IDZuHGj+fDDD40xg8vPjBkzzOTJk82aNWvMa6+9Zk499VT9y7dRRPX+0FTrR4Zq/eGp1g+Pav3gZFq9V9M+gh5++GEzfvx4EwwGzYUXXmhWr16d7pAyCjDgWLRoUXKZvr4+c/PNN5vi4mKTk5NjrrrqKrNz5870BZ2B9i/kytnAnnvuOXPWWWeZUChkTj/9dPPoo4+mzHdd19x1112msrLShEIhM23aNLN169Y0RZsZurq6zNy5c8348eNNVlaWmThxornzzjtNJBJJLnOi5+2VV14Z8PdYY2OjMWZw+dm1a5e59tprTV5enikoKDDXX3+9CYfDadgaGS7V+4NTrR8ZqvWDo1o/dKr1g5Np9d4yxpihH58XERERERERkaNN17SLiIiIiIiIZCg17SIiIiIiIiIZSk27iIiIiIiISIZS0y4iIiIiIiKSodS0i4iIiIiIiGQoNe0iIiIiIiIiGUpNu4iIiIiIiEiGUtMuIiIiIiIikqHUtItI2lmWxbJly9IdhoiIiBwlqvUiw6emXeQEN3PmTCzLOmDMmDEj3aGJiIjICFCtFxnd/OkOQETSb8aMGSxatChlWigUSlM0IiIiMtJU60VGLx1pFxFCoRBVVVUpo7i4GPBOZ1u4cCGXXXYZ2dnZTJw4kaeeeipl/TfffJNLLrmE7OxsSktLufHGG+nu7k5Z5rHHHuPMM88kFApRXV3NnDlzUua3tbVx1VVXkZOTw6mnnsqzzz57dDdaRETkBKJaLzJ6qWkXkcO66667uPrqq9m8eTMNDQ1cc801vPPOOwD09PRw6aWXUlxczLp161iyZAl/+ctfUgr1woULmT17NjfeeCNvvvkmzz77LKecckrKc9x333185Stf4Y033uDyyy+noaGB9vb2Y7qdIiIiJyrVepEMZkTkhNbY2Gh8Pp/Jzc1NGfPnzzfGGAOYWbNmpaxTX19vbrrpJmOMMY8++qgpLi423d3dyfkvvPCCsW3bNDU1GWOMqampMXfeeedBYwDMD3/4w+TP3d3dBjDLly8fse0UERE5UanWi4xuuqZdRPjsZz/LwoULU6aVlJQkv58yZUrKvClTprBp0yYA3nnnHc4991xyc3OT86dOnYrrumzduhXLstixYwfTpk07ZAznnHNO8vvc3FwKCgpoaWkZ7iaJiIjIPlTrRUYvNe0iQm5u7gGnsI2U7OzsQS0XCARSfrYsC9d1j0ZIIiIiJxzVepHRS9e0i8hhrV69+oCfJ02aBMCkSZPYvHkzPT09yfmvv/46tm1z2mmnkZ+fz4QJE1ixYsUxjVlEREQGT7VeJHPpSLuIEIlEaGpqSpnm9/spKysDYMmSJdTV1XHxxRfz+OOPs3btWn79618D0NDQwD333ENjYyP33nsvra2t3HLLLVx33XVUVlYCcO+99zJr1iwqKiq47LLLCIfDvP7669xyyy3HdkNFREROUKr1IqOXmnYR4cUXX6S6ujpl2mmnncaWLVsA726vixcv5uabb6a6uponnniCM844A4CcnBxeeukl5s6dywUXXEBOTg5XX301DzzwQPKxGhsb6e/v52c/+xnf+c53KCsr40tf+tKx20AREZETnGq9yOhlGWNMuoMQkcxlWRZLly7lyiuvTHcoIiIichSo1otkNl3TLiIiIiIiIpKh1LSLiIiIiIiIZCidHi8iIiIiIiKSoXSkXURERERERCRDqWkXERERERERyVBq2kVEREREREQylJp2ERERERERkQylpl1EREREREQkQ6lpFxEREREREclQatpFREREREREMpSadhEREREREZEM9f8BzpoyBFYFNsoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1365,12 +1366,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.137\n" + "The MSE loss is 0.216\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABENUlEQVR4nO3deXxU5aH/8e9kgCRkmRBwskCACAik4MYmhCL+xBAXFmvlumLUn3gxUVK0LN4iItgI1RZpK1S9DVrE5f5sbOTWUGSJIiQoSCVFU8SAVJJQWWYgmIgz5/fHmNEhCSQ4yczkfN6v17zwPOeZM8+Mgfnm2Y7FMAxDAAAAJhEW6AYAAAC0JcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcIPAAAwlQ6BbkAwcrvdOnjwoGJiYmSxWALdHAAA0AyGYej48eNKTk5WWFjT/TuEn0YcPHhQKSkpgW4GAAA4BwcOHFCPHj2aPE/4aURMTIwkz4cXGxsb4NYAAIDmcDqdSklJ8X6PN4Xw04j6oa7Y2FjCDwAAIeZsU1aY8AwAAEyF8AMAAEyF8AMAAEyFOT8AgKDhcrl06tSpQDcDQapjx46yWq0/+DqEHwBAwBmGoaqqKh07dizQTUGQi4uLU2Ji4g/ah4/wAwAIuPrgY7fb1blzZzaYRQOGYejkyZM6dOiQJCkpKemcr0X4AQAElMvl8gafrl27Bro5CGKRkZGSpEOHDslut5/zEBgTngEAAVU/x6dz584BbglCQf3PyQ+ZG0b4AQAEBYa60Bz++Dlh2KutuF3S/i3SiWopOkHqNUoK++Ez1gEAQMsEtOcnLy9Pw4YNU0xMjOx2uyZPnqzy8nKfOmPHjpXFYvF5/Od//ucZr2sYhh555BElJSUpMjJS48aN0549e1rzrZzZ7kJp6SDpheuk1+/2/Ll0kKccAAC0qYCGn+LiYmVnZ6ukpETr1q3TqVOnlJGRoZqaGp9699xzjyorK72PJUuWnPG6S5Ys0bJly7RixQqVlpYqKipK48ePV21tbWu+ncbtLpRemyo5D/qWOys95QQgAMBZZGVlafLkyd7jsWPHKjc39wdd0x/XCFUBHfYqKiryOV65cqXsdru2b9+uMWPGeMs7d+6sxMTEZl3TMAwtXbpUv/jFLzRp0iRJ0osvvqiEhAS98cYbuummm/z3Bs7G7ZKKZksyGmupJItUNEcacC1DYADgBy63oW0VR3ToeK3sMREanhova1jrzSXKysrSCy+8IMmzAV/Pnj01depUPfzww+rQofW+Yv/85z+rY8eOzaq7adMmXXHFFTp69Kji4uLO6RrtTVDN+XE4HJKk+Ph4n/KXXnpJq1atUmJioiZMmKB58+Y1uSqgoqJCVVVVGjdunLfMZrNpxIgR2rp1a6Php66uTnV1dd5jp9Ppj7fjmeNzeo+PD0NyfuGpl/pj/7wmAJhUUVmlFry5W5WO73r5k2wRmj8hTZmDzn1PmLPJzMxUfn6+6urq9Ne//lXZ2dnq2LGj5s6d61Pv66+/VqdOnfzymqd/TwbqGqEqaFZ7ud1u5ebmKj09XYMGDfKW33LLLVq1apU2btyouXPn6k9/+pNuu+22Jq9TVVUlSUpISPApT0hI8J47XV5enmw2m/eRkpLih3ckz+Rmf9YDADSqqKxS01ft8Ak+klTlqNX0VTtUVFbZaq8dHh6uxMRE9erVS9OnT9e4ceNUWFjoHap6/PHHlZycrP79+0uSDhw4oClTpiguLk7x8fGaNGmS9u3b572ey+XSzJkzFRcXp65du2rWrFkyDN8RhNOHrOrq6jR79mylpKQoPDxcffv21X//939r3759uuKKKyRJXbp0kcViUVZWVqPXOHr0qKZOnaouXbqoc+fOuvrqq33my65cuVJxcXFau3atBg4cqOjoaGVmZqqy8rvPdtOmTRo+fLiioqIUFxen9PR07d+/30+ftP8ETfjJzs5WWVmZXnnlFZ/yadOmafz48Ro8eLBuvfVWvfjiiyooKNDevXv99tpz586Vw+HwPg4cOOCfC0cnnL1OS+oBABpwuQ0teHN3kxMMJGnBm7vlcjdWw/8iIyP19ddfS5LWr1+v8vJyrVu3TmvWrNGpU6c0fvx4xcTE6N1339V7773nDRH1z3nqqae0cuVK/fGPf9TmzZt15MgRFRQUnPE1p06dqpdfflnLli3Txx9/rD/84Q+Kjo5WSkqKXn/9dUlSeXm5Kisr9fTTTzd6jaysLH3wwQcqLCzU1q1bZRiGrrnmGp/9dE6ePKknn3xSf/rTn/TOO+/o888/10MPPSRJ+uabbzR58mRdfvnl+uijj7R161ZNmzYtKLcwCIphr5ycHK1Zs0bvvPOOevTocca6I0aMkCR9+umn6tOnT4Pz9XODqqurfba+rq6u1sUXX9zoNcPDwxUeHn6OrT+DXqOk2GTP5OZG/1paPOd7jfL/awOASWyrONKgx+f7DEmVjlptqziikX1abwdpwzC0fv16rV27Vvfff7/+/e9/KyoqSs8//7x3uGvVqlVyu916/vnnvaEgPz9fcXFx2rRpkzIyMrR06VLNnTtXP/nJTyRJK1as0Nq1a5t83X/+85967bXXtG7dOu+Uj/PPP997vn54y263+8z5+b49e/aosLBQ7733nkaN8nwnvfTSS0pJSdEbb7yhG2+8UZJnY8EVK1Z4v39zcnL02GOPSfJMGXE4HLruuuu85wcOHNjyD7INBLTnxzAM5eTkqKCgQBs2bFBqaupZn7Nz505JTd/TIzU1VYmJiVq/fr23zOl0qrS0VCNHjvRLu5stzCplLv724PTk++1x5hNMdgaAH+DQ8eat5G1uvZZas2aNoqOjFRERoauvvlr/8R//oUcffVSSNHjwYJ95Pn//+9/16aefKiYmRtHR0YqOjlZ8fLxqa2u1d+9eORwOVVZWen/Rl6QOHTpo6NChTb7+zp07ZbVadfnll5/ze/j444/VoUMHn9ft2rWr+vfvr48//thb1rlzZ5+Oh6SkJO+9tuLj45WVlaXx48drwoQJevrpp32GxIJJQMNPdna2Vq1apdWrVysmJkZVVVWqqqrSV199JUnau3evFi5cqO3bt2vfvn0qLCzU1KlTNWbMGF144YXe6wwYMMDbJWixWJSbm6tFixapsLBQu3bt0tSpU5WcnOyzTLDNpE2UprwoxZ4W1mKTPeVpE9u+TQDQjthjIvxar6WuuOIK7dy5U3v27NFXX32lF154QVFRUZLk/bPeiRMnNGTIEO3cudPn8c9//lO33HLLOb1+/f2u2sLpq8MsFovPfKT8/Hxt3bpVo0aN0quvvqoLLrhAJSUlbda+5grosNfy5csleSZdfV9+fr6ysrLUqVMnvf3221q6dKlqamqUkpKiG264Qb/4xS986peXl3tXiknSrFmzVFNTo2nTpunYsWMaPXq0ioqKFBHROj/4Z5U20bOcnR2eAcDvhqfGK8kWoSpHbVMTDJRo8yx7bw1RUVHq27dvs+peeumlevXVV2W32xUbG9tonaSkJJWWlnq3fPnmm2+0fft2XXrppY3WHzx4sNxut4qLi31WOter73lyuVxNtmvgwIH65ptvVFpa6h32Onz4sMrLy5WWltas91bvkksu0SWXXKK5c+dq5MiRWr16tS677LIWXaO1BTT8nD57/XQpKSkqLi5u8XUsFosee+wx7zhkUAizspwdAFqBNcyi+RPSNH3VDlnkO8OyfsLB/AlprbrfT3Pdeuut+tWvfqVJkybpscceU48ePbR//379+c9/1qxZs9SjRw/NmDFDTzzxhPr166cBAwbo17/+tY4dO9bkNXv37q077rhDd911l5YtW6aLLrpI+/fv16FDhzRlyhT16tVLFotFa9as0TXXXKPIyEhFR0f7XKNfv36aNGmS7rnnHv3hD39QTEyM5syZo+7du3v3zDubiooKPfvss5o4caKSk5NVXl6uPXv2aOrUqT/kI2sVQbPaCwCAc5U5KEnLb7tUiTbfHv5EW4SW33Zpq+7z0xKdO3fWO++8o549e+onP/mJBg4cqLvvvlu1tbXenqAHH3xQt99+u+644w6NHDlSMTExuv7668943eXLl+unP/2p7rvvPg0YMED33HOP924J3bt314IFCzRnzhwlJCQoJyen0Wvk5+dryJAhuu666zRy5EgZhqG//vWvzd4IsXPnzvrkk090ww036IILLtC0adOUnZ2te++9twWfUNuwGGfrfjEhp9Mpm80mh8PRZLckAMA/amtrVVFRodTU1B88PaGtd3hG2zvTz0tzv7+DYqk7AAD+YA2ztOpydrQPDHsBAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAGBCjz76qC6++OJAN0Njx45Vbm5um74m4QcAgB+gqqpKM2bMUN++fRUREaGEhASlp6dr+fLlOnnyZKCbd842bdoki8VyxvuKBfJ6PwQ7PAMA2g+3S9q/RTpRLUUnSL1GeW4s3Uo+++wzpaenKy4uTr/85S81ePBghYeHa9euXXr22WfVvXt3TZw4sdHnnjp1qtn3zQpmX3/9tffO8aGCnh8AQPuwu1BaOkh64Trp9bs9fy4d5ClvJffdd586dOigDz74QFOmTNHAgQN1/vnna9KkSfrf//1fTZgwwVvXYrFo+fLlmjhxoqKiovT4449L8tyUtE+fPurUqZP69++vP/3pT97n7Nu3TxaLRTt37vSWHTt2TBaLRZs2bZL0XY/K+vXrNXToUHXu3FmjRo1SeXm5T1ufeOIJJSQkKCYmxnsz1abs27dPV1xxhSSpS5cuslgsysrKkuQZpsrJyVFubq66deum8ePHn7WdZ7qeJLndbs2aNUvx8fFKTEzUo48+2tz/BeeE8AMACH27C6XXpkrOg77lzkpPeSsEoMOHD+tvf/ubsrOzFRUV1Wgdi8X3pqqPPvqorr/+eu3atUt33XWXCgoKNGPGDD344IMqKyvTvffeqzvvvFMbN25scXv+67/+S0899ZQ++OADdejQQXfddZf33GuvvaZHH31Uv/zlL/XBBx8oKSlJzzzzTJPXSklJ0euvvy5JKi8vV2VlpZ5++mnv+RdeeEGdOnXSe++9pxUrVpy1bc25XlRUlEpLS7VkyRI99thjWrduXYs/g+Zi2AsAENrcLqlotiSjkZOGJItUNEcacK1fh8A+/fRTGYah/v37+5R369bN26uSnZ2txYsXe8/dcsstuvPOO73HN998s7KysnTfffdJkmbOnKmSkhI9+eST3p6S5nr88cd1+eWXS5LmzJmja6+9VrW1tYqIiNDSpUt199136+6775YkLVq0SG+//XaTvT9Wq1Xx8fGSJLvdrri4OJ/z/fr105IlS7zH+/btO2Pbzna9Cy+8UPPnz/de+3e/+53Wr1+vq666qlnvvaXo+QEAhLb9Wxr2+PgwJOcXnnptYNu2bdq5c6d+9KMfqa6uzufc0KFDfY4//vhjpaen+5Slp6fr448/bvHrXnjhhd7/TkpKkiQdOnTI+zojRozwqT9y5MgWv0a9IUOGnPNzG/P9tkue9te3vTXQ8wMACG0nqv1br5n69u0ri8XSYG7N+eefL0mKjIxs8JymhseaEhbm6aMwjO96tU6dOtVo3e9Pnq4fbnO73S16veY6/X20pJ2NOX3it8ViabW2S/T8AABCXXSCf+s1U9euXXXVVVfpd7/7nWpqas7pGgMHDtR7773nU/bee+8pLS1NknTeeedJkiorK73nvz+puCWvU1pa6lNWUlJyxufUr+ByuVxnvX5z2tmS67U2en4AAKGt1ygpNtkzubnReT8Wz/leo/z+0s8884zS09M1dOhQPfroo7rwwgsVFham999/X5988slZh4d+/vOfa8qUKbrkkks0btw4vfnmm/rzn/+st99+W5Kn9+iyyy7TE088odTUVB06dEi/+MUvWtzOGTNmKCsrS0OHDlV6erpeeukl/eMf//D2UjWmV69eslgsWrNmja655hpFRkYqOjq60brNaWdLrtfa6PkBAIS2MKuUWT+p2HLayW+PM59olf1++vTpow8//FDjxo3T3LlzddFFF2no0KH67W9/q4ceekgLFy484/MnT56sp59+Wk8++aR+9KMf6Q9/+IPy8/M1duxYb50//vGP+uabbzRkyBDl5uZq0aJFLW7nf/zHf2jevHmaNWuWhgwZov3792v69OlnfE737t21YMECzZkzRwkJCcrJyTlj/bO1s6XXa00W4/sDdJAkOZ1O2Ww2ORwOxcbGBro5ANCu1dbWqqKiQqmpqYqIiDj3C+0u9Kz6+v7k59junuCT1vhGgwg9Z/p5ae73N8NeAID2IW2iZzl7G+7wjNBE+AEAtB9hVin1x4FuBYIcc34AAICpEH4AAICpEH4AAEGB9TdoDn/8nBB+AAABVb+778mTJwPcEoSC+p+T03eFbgkmPAMAAspqtSouLs57L6fOnTs3uBs6YBiGTp48qUOHDikuLk5W67mv4iP8AAACLjExUZJa9WaWaB/i4uK8Py/nivADAAg4i8WipKQk2e32Ft0QE+bSsWPHH9TjU4/wAwAIGlar1S9fbsCZMOEZAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCpsc4jtul7R/i3SiWopOkHqNksLYbAwA0L4QfuCxu1Aqmi05D35XFpssZS6W0iYGrl0AAPgZw17wBJ/XpvoGH0lyVnrKdxcGpl0AALQCwo/ZuV2eHh8ZjZz8tqxojqceAADtAOHH7PZvadjj48OQnF946gEA0A4ENPzk5eVp2LBhiomJkd1u1+TJk1VeXt5oXcMwdPXVV8tiseiNN94443WzsrJksVh8HpmZma3wDtqBE9X+rQcAQJALaPgpLi5Wdna2SkpKtG7dOp06dUoZGRmqqalpUHfp0qWyWCzNvnZmZqYqKyu9j5dfftmfTW8/ohP8Ww8AgCAX0NVeRUVFPscrV66U3W7X9u3bNWbMGG/5zp079dRTT+mDDz5QUlJSs64dHh6uxMTEZtWtq6tTXV2d99jpdDbree1Cr1GeVV3OSjU+78fiOd9rVFu3DACAVhFUc34cDockKT4+3lt28uRJ3XLLLfr973/f7DAjSZs2bZLdblf//v01ffp0HT58uMm6eXl5stls3kdKSsq5v4lQE2b1LGeXJJ3es/btceYT7PcDAGg3LIZhNPbrfptzu92aOHGijh07ps2bN3vL7733XrlcLj3//POSJIvFooKCAk2ePLnJa73yyivq3LmzUlNTtXfvXj388MOKjo7W1q1bZbU2/BJvrOcnJSVFDodDsbGx/nuTwazRfX66e4IP+/wAAPyhlTfTdTqdstlsZ/3+DppNDrOzs1VWVuYTfAoLC7VhwwZ9+OGHLbrWTTfd5P3vwYMH68ILL1SfPn20adMmXXnllQ3qh4eHKzw8/Nwb3x6kTZQGXMsOzwCA1hFEm+kGxbBXTk6O1qxZo40bN6pHjx7e8g0bNmjv3r2Ki4tThw4d1KGDJ6vdcMMNGjt2bLOvf/7556tbt2769NNP/d309iXMKqX+WBr8U8+fBB8AgD8E2Wa6Ae35MQxD999/vwoKCrRp0yalpqb6nJ8zZ47+7//9vz5lgwcP1m9+8xtNmDCh2a/zr3/9S4cPH272ZGkAAOAnZ91M1+LZTHfAtW32S3dAe36ys7O1atUqrV69WjExMaqqqlJVVZW++uorSVJiYqIGDRrk85Cknj17+gSlAQMGqKCgQJJ04sQJ/fznP1dJSYn27dun9evXa9KkSerbt6/Gjx/f9m8SAAAzC8LNdAMafpYvXy6Hw6GxY8cqKSnJ+3j11VdbdJ3y8nLvSjGr1aqPPvpIEydO1AUXXKC7775bQ4YM0bvvvsu8HgAA2loQbqYb8GEvfzzn+2WRkZFau3btD2oXAADwkyDcTDcoJjwDAIB2qn4z3QZ7ydWzeLZWacPNdAk/AACg9QThZrqEHwAA0LrSJkpTXpRiT1t1HZvsKW/jfX6CZpNDAADQjgXRZrqEHwAA0DbqN9MNdDMC3QAAAIC2RPgBAACmQvgBAACmwpwfADhXbldQTN4E0DKEHwA4F7sLPTdr/P49i2KTPfuZtPGyXQAtw7AXALTU7kLptakNb9borPSU7y4MTLsANAvhBwBawu3y9PiosXsTfltWNMdTD0BQIvwAQEvs39Kwx8eHITm/8NQDEJQIPwDQEieq/VsPQJsj/ABAS0Qn+LcegDZH+AGAlug1yrOqq8HdqetZpNjunnoAghLhBwBaIszqWc4uqWEA+vY48wn2+wGCGOEHAFoqbaI05UUpNsm3PDbZU84+P0BQY5NDADgXaROlAdeywzMQggg/AHCuwqxS6o8D3QoALcSwFwAAMBV6ftqIy21oW8URHTpeK3tMhIanxssa1tRqEQAA0FoIP22gqKxSC97crUpHrbcsyRah+RPSlDko6QzPBAAA/sawVysrKqvU9FU7fIKPJFU5ajV91Q4VlVUGqGUAAJgT4acVudyGFry5+0y3P9SCN3fL5W6sBgAAaA2En1a0reJIgx6f7zMkVTpqta3iSNs1CgAAkyP8tKJDx5sOPudSDwAA/HBMeG5F9pgIv9ZrbaxIAwCYAeGnFQ1PjVeSLUJVjtpG5/1YJCXaPCEj0FiRBgAwC4a9WpE1zKL5E9IkNXn7Q82fkBbw3hVWpAEAzITw08oyByVp+W2XKtHmO7SVaIvQ8tsuDXivCivSAABmw7BXG8gclKSr0hKDcj5NS1akjezTte0aBgBAKyH8tBFrmCUowwMr0gAAZsOwl8mF2oo0AAB+KMKPydWvSGtqAM4iz6qvYFiRBgCAPxB+TC5UVqQBAOAvhB8E/Yo0AAD8iQnPkBTcK9IAAPAnwg+8gnVFGgAA/sSwFwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJWAhp+8vDwNGzZMMTExstvtmjx5ssrLyxutaxiGrr76alksFr3xxhtnvK5hGHrkkUeUlJSkyMhIjRs3Tnv27GmFdwAAAEJNQMNPcXGxsrOzVVJSonXr1unUqVPKyMhQTU1Ng7pLly6VxdK8PWeWLFmiZcuWacWKFSotLVVUVJTGjx+v2lpuzgkAgNlZDMMwAt2Iev/+979lt9tVXFysMWPGeMt37typ6667Th988IGSkpJUUFCgyZMnN3oNwzCUnJysBx98UA899JAkyeFwKCEhQStXrtRNN93U4Dl1dXWqq6vzHjudTqWkpMjhcCg2Nta/bxIAALQKp9Mpm8121u/voJrz43A4JEnx8d/dRPPkyZO65ZZb9Pvf/16JiYlnvUZFRYWqqqo0btw4b5nNZtOIESO0devWRp+Tl5cnm83mfaSkpPzAdwIAAIJV0IQft9ut3Nxcpaena9CgQd7yn/3sZxo1apQmTZrUrOtUVVVJkhISEnzKExISvOdON3fuXDkcDu/jwIED5/guAABAsAua21tkZ2errKxMmzdv9pYVFhZqw4YN+vDDD1v1tcPDwxUeHt6qrwEAAIJDUPT85OTkaM2aNdq4caN69OjhLd+wYYP27t2ruLg4dejQQR06eLLaDTfcoLFjxzZ6rfqhserqap/y6urqZg2bAQCA9i2g4ccwDOXk5KigoEAbNmxQamqqz/k5c+boo48+0s6dO70PSfrNb36j/Pz8Rq+ZmpqqxMRErV+/3lvmdDpVWlqqkSNHttp7AQAAoSGgw17Z2dlavXq1/vKXvygmJsY7J8dmsykyMlKJiYmN9tb07NnTJygNGDBAeXl5uv7662WxWJSbm6tFixapX79+Sk1N1bx585ScnNzkCjEAAGAeAQ0/y5cvl6QGQ1j5+fnKyspq9nXKy8u9K8UkadasWaqpqdG0adN07NgxjR49WkVFRYqIiPBHswEAQAgLqn1+gkVz9wkAAADBIyT3+QEAAGhthB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqHQLdAKAlXG5D2yqO6NDxWtljIjQ8NV7WMEugmwUACCGEH4SMorJKLXhztyodtd6yJFuE5k9IU+agpAC2DAAQShj2QkgoKqvU9FU7fIKPJFU5ajV91Q4VlVUGqGUAgFBD+EHQc7kNLXhzt4xGztWXLXhzt1zuxmoAAOCL8IOgt63iSIMen+8zJFU6arWt4kjbNQoAELIIPwh6h443HXzOpR4AwNwIPwh69pgIv9YDAJgb4QdBb3hqvJJsEWpqQbtFnlVfw1Pj27JZAIAQRfhB0LOGWTR/QpokNQhA9cfzJ6Sx3w8AoFkIPwgJmYOStPy2S5Vo8x3aSrRFaPltl7LPDwCg2djkECEjc1CSrkpLZIdnAMAPQvhBSLGGWTSyT9dANwMAEMIY9gIAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKbCai8AQGC5XdL+LdKJaik6Qeo1SgqzBrpVaMcIPwCAwNldKBXNlpwHvyuLTZYyF0tpEwPXLrRrDHsBAAJjd6H02lTf4CNJzkpP+e7CwLQrVLldUsW70q7/5/nT7Qp0i4IWPT8AgLbndnl6fGQ0ctKQZJGK5kgDrmUIrDnoQWsRen4AAG1v/5aGPT4+DMn5hacezowetBYj/AAA2t6Jav/WM6uz9qDJ04PGEJgPwg8AoO1FJ/i3nlnRg3ZOmPOD0MKSWKB96DXKMyfFWanGey0snvO9RrV1y0ILPWjnhPCD0MGEPqD9CLN6/u6+NlWSRb4ByOL5I/MJfrk5G3rQzgnDXggNTOgD2p+0idKUF6XYJN/y2GRPOb/UnJUrZaSq1VXuxjrPJLkNqUpd5UoZ2bYNC3I/qOentrZWr776qmpqanTVVVepX79+/moX8B2WxALtV9pEuS64Rp+UrtVXR79QZJfuGjBivKwdGJhojm37HVr59e1a3nGp3IYUZvnuXH0gmv/17cra79DIPl0D08gg1Oyen5kzZ+r+++/3Hn/99dcaOXKk7rnnHj388MO65JJLtHXr1ha9eF5enoYNG6aYmBjZ7XZNnjxZ5eXlPnXuvfde9enTR5GRkTrvvPM0adIkffLJJ2e8blZWliwWi88jMzOzRW1DEGFCH9BuFZVVavSvinXtm9JPN3fXtW9Ko39VrKKyykA3LSQcOl6rte7hmn4qV1WK9zlXpa6afipXa93Ddeh4bYBaGJyaHX7+9re/6aqrrvIev/TSS9q/f7/27Nmjo0eP6sYbb9SiRYta9OLFxcXKzs5WSUmJ1q1bp1OnTikjI0M1NTXeOkOGDFF+fr4+/vhjrV27VoZhKCMjQy7XmZftZWZmqrKy0vt4+eWXW9Q2BBEm9AHtUlFZpaav2qFKh+8Xc5WjVtNX7SAANYM9JkKStNY9XKPrlummr3+hB77O0U1f/0Kj657WWvdwn3rwaHa/4ueff660tDTv8d/+9jf99Kc/Va9evSRJM2bM0DXXXNOiFy8qKvI5Xrlypex2u7Zv364xY8ZIkqZNm+Y937t3by1atEgXXXSR9u3bpz59+jR57fDwcCUmJraoPQhSTOgD2h2X29CCN3efaTBbC97cravSEmX9/lgOfAxPjVeSLUJVjlq5FaYSd5rPeYukRFuEhqfGN34Bk2p2z09YWJgM47sf05KSEl122WXe47i4OB09evQHNcbhcEiS4uMb/59UU1Oj/Px8paamKiUl5YzX2rRpk+x2u/r376/p06fr8OHDTdatq6uT0+n0eSCI1C+JVVP/AFqk2O4siQVCyLaKIw16fL7PkFTpqNW2iiNt16gQZA2zaP4ET+A5/V/I+uP5E9IIkKdpdvgZOHCg3nzzTUnSP/7xD33++ee64oorvOf379+vhIRz/83b7XYrNzdX6enpGjRokM+5Z555RtHR0YqOjtZbb72ldevWqVOnTk1eKzMzUy+++KLWr1+vxYsXq7i4WFdffXWTQ2V5eXmy2Wzex9mCFdpY/ZJYSU3+9WZJLBBSmjsHhbkqZ5c5KEnLb7tUiTbfoa1EW4SW33apMgclNfFM87IY3+/OOYOCggLddNNNGj16tP7xj39o2LBh3jAkSbNnz1ZFRYVee+21c2rI9OnT9dZbb2nz5s3q0aOHzzmHw6FDhw6psrJSTz75pL744gu99957ioho3hjmZ599pj59+ujtt9/WlVde2eB8XV2d6urqvMdOp1MpKSlyOByKjY09p/eDVtDoPj/dPcGHJbFASNm697Bufq7krPVevucyVik1k8ttaFvFER06Xit7jGeoy2w9Pk6nUzab7azf382e83P99dfrr3/9q9asWaOMjAyflV+S1LlzZ913333n1NicnBytWbNG77zzToPgI8nbI9OvXz9ddtll6tKliwoKCnTzzTc36/rnn3++unXrpk8//bTR8BMeHq7w8PBzajvaUNpEz3J2dngGQt7356o0sb8zc1VayBpmISg2U7PDz2OPPaaHHnqo0fAgSfPnz2/xixuGofvvv18FBQXatGmTUlNTm/UcwzB8emrO5l//+pcOHz6spCS6/kJemFVK/XGgWwHgB6qfqzJ91Y6m9ndmrgpaTbPn/CxYsEAnTpzw64tnZ2dr1apVWr16tWJiYlRVVaWqqip99dVXkjzDVXl5edq+fbs+//xzbdmyRTfeeKMiIyN9VpYNGDBABQUFkqQTJ07o5z//uUpKSrRv3z6tX79ekyZNUt++fTV+/Hi/th8AcO6Yq4JAaXbPTzOnBrXI8uXLJUljx471Kc/Pz1dWVpYiIiL07rvvaunSpTp69KgSEhI0ZswYbdmyRXa73Vu/vLzcu1LMarXqo48+0gsvvKBjx44pOTlZGRkZWrhwIUNbABBkMgcl6aq0xKCfq8J8mval2ROew8LCVF1drfPOO6+12xRwzZ0wBQBo/4rKKrWwcJdSTvxddh3TIcXpQPRFmjdxML1TQcbvE54l6YILLpDFcuake+QIezLA3PgNEWg/isoq9cbqFfqfji8qudN3328H6+L12Oqp0i3/SQAKQS0KPwsWLJDNZmuttgAhr6isUgve3O2zeVuSLULzJ6TxDyQQYlxuQ5ve+KOe6bi0wblEHdEzHZfq4Tc66aq0h/kFJ8S0aNirqqrKZ65Ne8WwF85F/X2KTv8LVf9PIhM4gdCydc8h9Vo1Qok6osayjdvw3Dx0/20lGtmv/X83hoLmfn83e7XX2Ya7ADM7232KJM99ilxu/y8caK9cbkNb9x7WX3Z+oa17D/PZoc259r2nZEvjwUeSwixSsuWwXPvea9uG4QcL6GovoL1oyX2K2ITs7Bg+RDCwW475tR6CZ05ks8OP2+1uzXYAIY37FPlPU8OHVY5aTV+1g+FDtJk+5/eRNjezHs4qmH6pafawF4Cm2WOad5+55tYzK4YPEUysvdP1VWSimvpxcxvSV5GJsvZOb9uGhaD6X2pO7yGv/6WmqKyyTdtD+AH8oP4+RU113lrk+Q2H+xSdWUuGD4FWF2ZV5IRfyWKx6PSxD7c8c2EjJ/yK+wueRTD+UkP4Afyg/j5FkhoEIO5T1HwMHyLopE2UZcqLssQm+xRbYrvLMuVFzw2XcUbB+EtNi/b5AdC0+vsUnT6mnchE3WZj+BBBKW2iLAOulfZvkU5US9EJsvQaRY9PMwXjLzWEH8CPQuU+RcGqfviwylHbaBe5RZ4wyfAh2lyYVUr9caBbEZKC8Zcahr0AP7OGWTSyT1dNuri7RvbpSvBpAYYPgfYnGOdEEn4ABJX64cNEm+9vgYm2CJa5nwM2i0SgBeMvNc2+vYWZcHsLIPCCZTO0UBZM+6oAbfHz2Nzvb8JPIwg/AEId95pDMGrtX2qa+/3NhGcAaGfOtq+KRZ59Va5KS6Q3DW2qfk5koDHnBwDamWDcVwUIJoQfAGhngnFfFSCYMOwFmBCTidu3YNxXBQgmhB/AZFgB1P6xWSRwZgx7ASYSbHdWRusIxn1VgGBC+AFMIhjvrIzWw2aRQNMY9gJMoiUrgIJhKSp+OO41BzSO8AOYBCuAzClY9lUBggnDXoBJsAIIADwIP4BJBOOdlQEgEAg/gEmwAggAPAg/gImwAsi/XG5DW/ce1l92fqGtew+zUg4IEUx4BkyGFUD+wWaRQOiyGIbBryqncTqdstlscjgcio2NDXRzAASZ+s0iT//Hsz4+0osGBEZzv78Z9gKAFmCzSCD0EX4AoAVaslkkgOBE+AGAFmCzSCD0EX4AoAXYLBIIfYQfAGgBNosEQh/hBwBagM0igdBH+AGAFmKzSCC0sckhAJwDNosEQhfhBwDOkTXMopF9uga6GQBaiGEvAABgKoQfAABgKoQfAABgKoQfAABgKoQfAABgKgENP3l5eRo2bJhiYmJkt9s1efJklZeX+9S599571adPH0VGRuq8887TpEmT9Mknn5zxuoZh6JFHHlFSUpIiIyM1btw47dmzpzXfCgAACBEBDT/FxcXKzs5WSUmJ1q1bp1OnTikjI0M1NTXeOkOGDFF+fr4+/vhjrV27VoZhKCMjQy6Xq8nrLlmyRMuWLdOKFStUWlqqqKgojR8/XrW13GgQAACzsxiGYQS6EfX+/e9/y263q7i4WGPGjGm0zkcffaSLLrpIn376qfr06dPgvGEYSk5O1oMPPqiHHnpIkuRwOJSQkKCVK1fqpptuOms7nE6nbDabHA6HYmNjf9ibAgAAbaK5399BNefH4XBIkuLjG78hYE1NjfLz85WamqqUlJRG61RUVKiqqkrjxo3zltlsNo0YMUJbt25t9Dl1dXVyOp0+DwAA0D4FTfhxu93Kzc1Venq6Bg0a5HPumWeeUXR0tKKjo/XWW29p3bp16tSpU6PXqaqqkiQlJCT4lCckJHjPnS4vL082m837aCpYAQCA0Bc04Sc7O1tlZWV65ZVXGpy79dZb9eGHH6q4uFgXXHCBpkyZ4tf5O3PnzpXD4fA+Dhw44LdrAwCA4BIU9/bKycnRmjVr9M4776hHjx4Nztf3yPTr10+XXXaZunTpooKCAt18880N6iYmJkqSqqurlZT03Z2Vq6urdfHFFzf6+uHh4QoPD/fPmwEAAEEtoD0/hmEoJydHBQUF2rBhg1JTU5v1HMMwVFdX1+j51NRUJSYmav369d4yp9Op0tJSjRw50m9tBwAAoSmg4Sc7O1urVq3S6tWrFRMTo6qqKlVVVemrr76SJH322WfKy8vT9u3b9fnnn2vLli268cYbFRkZqWuuucZ7nQEDBqigoECSZLFYlJubq0WLFqmwsFC7du3S1KlTlZycrMmTJwfibQIAgCAS0GGv5cuXS5LGjh3rU56fn6+srCxFRETo3Xff1dKlS3X06FElJCRozJgx2rJli+x2u7d+eXm5d6WYJM2aNUs1NTWaNm2ajh07ptGjR6uoqEgRERFt8r4AAEDwCqp9foIF+/wAABB6QnKfHwAAgNZG+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKYS0BubAu2S2yXt3yKdqJaiE6Reo6Qwa6BbBQD4FuEH8KfdhVLRbMl58Luy2GQpc7GUNjFw7QIAeDHsBfjL7kLptam+wUeSnJWe8t2FgWkXAMAH4QfwB7fL0+Mjo5GT35YVzfHUAwAEFOEH8If9Wxr2+PgwJOcXnnoAgIAi/AD+cKLav/UAAK2G8AP4Q3SCf+sBAFoN4Qfwh16jPKu6ZGmigkWK7e6pBwAIKMIP4A9hVs9ydkkNA9C3x5lPsN8PAAQBwg/gL2kTpSkvSrFJvuWxyZ5y9vkBgKDAJoeAP6VNlAZcyw7PABDECD+Av4VZpdQfB7oVAIAmMOwFAABMhZ4fAMGJG8QCaCWEHwDBhxvEAmhFDHsBCC7cIBZAKyP8AAge3CAWQBsg/AAIHtwgFkAbIPwACB7cIBZAGyD8AAge3CAWQBsg/AAIHtwgFkAbIPwACB7cIBZAGyD8AAgu3CAWQCtjk0MAwYcbxAJoRYQfAMGJG8QCaCUMewEAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFNhqTtgRm4Xe+gAMC3CD2A2uwulotmS8+B3ZbHJnttKsHsyABMI6LBXXl6ehg0bppiYGNntdk2ePFnl5eXe80eOHNH999+v/v37KzIyUj179tQDDzwgh8NxxutmZWXJYrH4PDIzM1v77QDBb3eh9NpU3+AjSc5KT/nuwsC0CwDaUEDDT3FxsbKzs1VSUqJ169bp1KlTysjIUE1NjSTp4MGDOnjwoJ588kmVlZVp5cqVKioq0t13333Wa2dmZqqystL7ePnll1v77QDBze3y9PjIaOTkt2VFczz1AKAdC+iwV1FRkc/xypUrZbfbtX37do0ZM0aDBg3S66+/7j3fp08fPf7447rtttv0zTffqEOHppsfHh6uxMTEVms7EHL2b2nY4+PDkJxfeOpxWwkA7VhQrfaqH86Kj48/Y53Y2NgzBh9J2rRpk+x2u/r376/p06fr8OHDTdatq6uT0+n0eQDtzolq/9YDgBAVNOHH7XYrNzdX6enpGjRoUKN1vvzySy1cuFDTpk0747UyMzP14osvav369Vq8eLGKi4t19dVXy+VqvDs/Ly9PNpvN+0hJSfnB7wcIOtEJ/q0HACHKYhhGYxMA2tz06dP11ltvafPmzerRo0eD806nU1dddZXi4+NVWFiojh07Nvvan332mfr06aO3335bV155ZYPzdXV1qqur83mtlJQUby8T0C64XdLSQZ7JzY3O+7F4Vn3l7mLZO4CQ5HQ6ZbPZzvr9HRQ9Pzk5OVqzZo02btzYaPA5fvy4MjMzFRMTo4KCghYFH0k6//zz1a1bN3366aeNng8PD1dsbKzPA2h3wqye5eySJMtpJ789znyC4AOg3Qto+DEMQzk5OSooKNCGDRuUmpraoI7T6VRGRoY6deqkwsJCRUREtPh1/vWvf+nw4cNKSkryR7OB0JU2UZryohR72t+F2GRPOfv8ADCBgA573XfffVq9erX+8pe/qH///t5ym82myMhIb/A5efKkCgoKFBUV5a1z3nnnyWr1/IY6YMAA5eXl6frrr9eJEye0YMEC3XDDDUpMTNTevXs1a9YsHT9+XLt27VJ4ePhZ29XcbjMgZLHDM4B2qLnf3wFd6r58+XJJ0tixY33K8/PzlZWVpR07dqi0tFSS1LdvX586FRUV6t27tySpvLzcu1LMarXqo48+0gsvvKBjx44pOTlZGRkZWrhwYbOCD2AKYVaWswMwraCZ8BxM6PkBACD0hNSEZwAAgLZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKZC+AEAAKYS0PCTl5enYcOGKSYmRna7XZMnT1Z5ebn3/JEjR3T//ferf//+ioyMVM+ePfXAAw/I4XCc8bqGYeiRRx5RUlKSIiMjNW7cOO3Zs6e13w4AAAgBAQ0/xcXFys7OVklJidatW6dTp04pIyNDNTU1kqSDBw/q4MGDevLJJ1VWVqaVK1eqqKhId9999xmvu2TJEi1btkwrVqxQaWmpoqKiNH78eNXW1rbF2wIAAEHMYhiGEehG1Pv3v/8tu92u4uJijRkzptE6//M//6PbbrtNNTU16tChQ4PzhmEoOTlZDz74oB566CFJksPhUEJCglauXKmbbrqpwXPq6upUV1fnPXY6nUpJSZHD4VBsbKyf3h0AAGhNTqdTNpvtrN/fQTXnp344Kz4+/ox1YmNjGw0+klRRUaGqqiqNGzfOW2az2TRixAht3bq10efk5eXJZrN5HykpKT/gXQBAEHG7pIp3pV3/z/On2xXoFgEB13iCCAC3263c3Fylp6dr0KBBjdb58ssvtXDhQk2bNq3J61RVVUmSEhISfMoTEhK85043d+5czZw503tc3/MDACFtd6FUNFtyHvyuLDZZylwspU0MXLuAAAua8JOdna2ysjJt3ry50fNOp1PXXnut0tLS9Oijj/r1tcPDwxUeHu7XawJAQO0ulF6bKum0mQ3OSk/5lBcJQDCtoBj2ysnJ0Zo1a7Rx40b16NGjwfnjx48rMzNTMTExKigoUMeOHZu8VmJioiSpurrap7y6utp7DgDaNbfL0+NzevCRvisrmsMQGEwroOHHMAzl5OSooKBAGzZsUGpqaoM6TqdTGRkZ6tSpkwoLCxUREXHGa6ampioxMVHr16/3uUZpaalGjhzp9/cAAEFn/xbfoa4GDMn5haceYEIBDT/Z2dlatWqVVq9erZiYGFVVVamqqkpfffWVpO+CT01Njf77v/9bTqfTW8fl+u43lgEDBqigoECSZLFYlJubq0WLFqmwsFC7du3S1KlTlZycrMmTJwfibQJA2zpRffY6LakHtDMBnfOzfPlySdLYsWN9yvPz85WVlaUdO3aotLRUktS3b1+fOhUVFerdu7ckqby83Gfjw1mzZqmmpkbTpk3TsWPHNHr0aBUVFZ211wgA2oXohLPXaUk9oJ0Jqn1+gkVz9wkAgKDkdklLB3kmNzc678fiWfWVu0sKs7Z164BWE5L7/AAA/CDM6lnOLkmynHby2+PMJwg+MC3CDwC0R2kTPcvZY5N8y2OTWeYO0wuafX4AAH6WNlEacK1nVdeJas8cn16j6PGB6RF+AKA9C7NKqT8OdCuAoMKwFwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBV2eG5E/Y3unU5ngFsCAACaq/57u/57vCmEn0YcP35ckpSSkhLglgAAgJY6fvy4bDZbk+ctxtnikQm53W4dPHhQMTExslgsfruu0+lUSkqKDhw4oNjYWL9d12z4HP2Dz9E/+Bz9g8/RP8z+ORqGoePHjys5OVlhYU3P7KHnpxFhYWHq0aNHq10/NjbWlD+U/sbn6B98jv7B5+gffI7+YebP8Uw9PvWY8AwAAEyF8AMAAEyF8NOGwsPDNX/+fIWHhwe6KSGNz9E/+Bz9g8/RP/gc/YPPsXmY8AwAAEyFnh8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhJ829Pvf/169e/dWRESERowYoW3btgW6SSElLy9Pw4YNU0xMjOx2uyZPnqzy8vJANyvkPfHEE7JYLMrNzQ10U0LOF198odtuu01du3ZVZGSkBg8erA8++CDQzQopLpdL8+bNU2pqqiIjI9WnTx8tXLjwrPdmMrt33nlHEyZMUHJysiwWi9544w2f84Zh6JFHHlFSUpIiIyM1btw47dmzJzCNDUKEnzby6quvaubMmZo/f7527Nihiy66SOPHj9ehQ4cC3bSQUVxcrOzsbJWUlGjdunU6deqUMjIyVFNTE+imhaz3339ff/jDH3ThhRcGuikh5+jRo0pPT1fHjh311ltvaffu3XrqqafUpUuXQDctpCxevFjLly/X7373O3388cdavHixlixZot/+9reBblpQq6mp0UUXXaTf//73jZ5fsmSJli1bphUrVqi0tFRRUVEaP368amtr27ilQcpAmxg+fLiRnZ3tPXa5XEZycrKRl5cXwFaFtkOHDhmSjOLi4kA3JSQdP37c6Nevn7Fu3Trj8ssvN2bMmBHoJoWU2bNnG6NHjw50M0Letddea9x1110+ZT/5yU+MW2+9NUAtCj2SjIKCAu+x2+02EhMTjV/96lfesmPHjhnh4eHGyy+/HIAWBh96ftrA119/re3bt2vcuHHesrCwMI0bN05bt24NYMtCm8PhkCTFx8cHuCWhKTs7W9dee63PzyWar7CwUEOHDtWNN94ou92uSy65RM8991ygmxVyRo0apfXr1+uf//ynJOnvf/+7Nm/erKuvvjrALQtdFRUVqqqq8vm7bbPZNGLECL5zvsWNTdvAl19+KZfLpYSEBJ/yhIQEffLJJwFqVWhzu93Kzc1Venq6Bg0aFOjmhJxXXnlFO3bs0Pvvvx/opoSszz77TMuXL9fMmTP18MMP6/3339cDDzygTp066Y477gh080LGnDlz5HQ6NWDAAFmtVrlcLj3++OO69dZbA920kFVVVSVJjX7n1J8zO8IPQlJ2drbKysq0efPmQDcl5Bw4cEAzZszQunXrFBEREejmhCy3262hQ4fql7/8pSTpkksuUVlZmVasWEH4aYHXXntNL730klavXq0f/ehH2rlzp3Jzc5WcnMzniFbDsFcb6Natm6xWq6qrq33Kq6urlZiYGKBWha6cnBytWbNGGzduVI8ePQLdnJCzfft2HTp0SJdeeqk6dOigDh06qLi4WMuWLVOHDh3kcrkC3cSQkJSUpLS0NJ+ygQMH6vPPPw9Qi0LTz3/+c82ZM0c33XSTBg8erNtvv10/+9nPlJeXF+imhaz67xW+c5pG+GkDnTp10pAhQ7R+/Xpvmdvt1vr16zVy5MgAtiy0GIahnJwcFRQUaMOGDUpNTQ10k0LSlVdeqV27dmnnzp3ex9ChQ3Xrrbdq586dslqtgW5iSEhPT2+w1cI///lP9erVK0AtCk0nT55UWJjvV5HVapXb7Q5Qi0JfamqqEhMTfb5znE6nSktL+c75FsNebWTmzJm64447NHToUA0fPlxLly5VTU2N7rzzzkA3LWRkZ2dr9erV+stf/qKYmBjv2LXNZlNkZGSAWxc6YmJiGsyTioqKUteuXZk/1QI/+9nPNGrUKP3yl7/UlClTtG3bNj377LN69tlnA920kDJhwgQ9/vjj6tmzp370ox/pww8/1K9//WvdddddgW5aUDtx4oQ+/fRT73FFRYV27typ+Ph49ezZU7m5uVq0aJH69eun1NRUzZs3T8nJyZo8eXLgGh1MAr3czEx++9vfGj179jQ6depkDB8+3CgpKQl0k0KKpEYf+fn5gW5ayGOp+7l58803jUGDBhnh4eHGgAEDjGeffTbQTQo5TqfTmDFjhtGzZ08jIiLCOP/8843/+q//Murq6gLdtKC2cePGRv89vOOOOwzD8Cx3nzdvnpGQkGCEh4cbV155pVFeXh7YRgcRi2GwjSYAADAP5vwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAMJ2srCy2+QdMjPADoFVkZWXJYrE0eGRmZga6aXr66ae1cuXKQDdDkmSxWPTGG28EuhmAqXBjUwCtJjMzU/n5+T5l4eHhAWqN5HK5ZLFYZLPZAtYGAIFHzw+AVhMeHq7ExESfR5cuXbRp0yZ16tRJ7777rrfukiVLZLfbVV1dLUkaO3ascnJylJOTI5vNpm7dumnevHn6/u0I6+rq9NBDD6l79+6KiorSiBEjtGnTJu/5lStXKi4uToWFhUpLS1N4eLg+//zzBsNeY8eO1f3336/c3Fx16dJFCQkJeu6551RTU6M777xTMTEx6tu3r9566y2f91dWVqarr75a0dHRSkhI0O23364vv/zS57oPPPCAZs2apfj4eCUmJurRRx/1nu/du7ck6frrr5fFYvEeA2hdhB8AbW7s2LHKzc3V7bffLofDoQ8//FDz5s3T888/r4SEBG+9F154QR06dNC2bdv09NNP69e//rWef/557/mcnBxt3bpVr7zyij766CPdeOONyszM1J49e7x1Tp48qcWLF+v555/XP/7xD9nt9kbb9MILL6hbt27atm2b7r//fk2fPl033nijRo0apR07digjI0O33367Tp48KUk6duyY/s//+T+65JJL9MEHH6ioqEjV1dWaMmVKg+tGRUWptLRUS5Ys0WOPPaZ169ZJkt5//31JUn5+viorK73HAFpZgO8qD6CduuOOOwyr1WpERUX5PB5//HHDMAyjrq7OuPjii40pU6YYaWlpxj333OPz/Msvv9wYOHCg4Xa7vWWzZ882Bg4caBiGYezfv9+wWq3GF1984fO8K6+80pg7d65hGIaRn59vSDJ27tzZoG2TJk3yea3Ro0d7j7/55hsjKirKuP32271llZWVhiRj69athmEYxsKFC42MjAyf6x44cMCQZJSXlzd6XcMwjGHDhhmzZ8/2HksyCgoKmvgUAbQG5vwAaDVXXHGFli9f7lMWHx8vSerUqZNeeuklXXjhherVq5d+85vfNHj+ZZddJovF4j0eOXKknnrqKblcLu3atUsul0sXXHCBz3Pq6urUtWtX73GnTp104YUXnrWt369jtVrVtWtXDR482FtW3yN16NAhSdLf//53bdy4UdHR0Q2utXfvXm+7Tn/tpKQk7zUABAbhB0CriYqKUt++fZs8v2XLFknSkSNHdOTIEUVFRTX72idOnJDVatX27dtltVp9zn0/kERGRvoEqKZ07NjR59hisfiU1V/D7XZ7X3/ChAlavHhxg2slJSWd8br11wAQGIQfAAGxd+9e/exnP9Nzzz2nV199VXfccYfefvtthYV9NxWxtLTU5zklJSXq16+frFarLrnkErlcLh06dEg//vGP27r5uvTSS/X666+rd+/e6tDh3P8p7dixo1wulx9bBuBsmPAMoNXU1dWpqqrK5/Hll1/K5XLptttu0/jx43XnnXcqPz9fH330kZ566imf53/++eeaOXOmysvL9fLLL+u3v/2tZsyYIUm64IILdOutt2rq1Kn685//rIqKCm3btk15eXn63//931Z/b9nZ2Tpy5Ihuvvlmvf/++9q7d6/Wrl2rO++8s0Vhpnfv3lq/fr2qqqp09OjRVmwxgHr0/ABoNUVFRT5DQJLUv39/3XLLLdq/f7/WrFkjyTNM9Oyzz+rmm29WRkaGLrroIknS1KlT9dVXX2n48OGyWq2aMWOGpk2b5r1Wfn6+Fi1apAcffFBffPGFunXrpssuu0zXXXddq7+35ORkvffee5o9e7YyMjJUV1enXr16KTMz06f36myeeuopzZw5U88995y6d++uffv2tV6jAUiSLIbxvU0zACBIjB07VhdffLGWLl0a6KYAaGcY9gIAAKZC+AEAAKbCsBcAADAVen4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICpEH4AAICp/H/Bsc1FqdKJqwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC+UlEQVR4nO3de1zUVeL/8fcwKiCXITRuikreSbt5S2nNvhnSRaVtc7sa1Tf7GphkrZe+a2lZqFu7ZlvaZRdrzbLvryhyN1ryQnnDslw1jdTQLAFLk1FMspnP74+JyRFQsIGZ4fN6Ph7zcD/nc+bMmVlt3nPO+ZyPxTAMQwAAACYR5OsOAAAANCfCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJVWvu6AP3I6ndq3b58iIiJksVh83R0AANAAhmHo8OHDSkhIUFBQ/eM7hJ867Nu3T4mJib7uBgAAOAN79+5Vx44d6z1P+KlDRESEJNeHFxkZ6ePeAACAhrDb7UpMTHR/j9eH8FOHmqmuyMhIwg8AAAHmdEtWWPAMAABMhfADAABMhfADAABMhTU/AAC/4XA4dPz4cV93A36qdevWslqtv7odwg8AwOcMw1B5ebkOHTrk667Az0VFRSkuLu5X7cNH+AEA+FxN8ImJiVHbtm3ZYBa1GIaho0ePav/+/ZKk+Pj4M26L8AMA8CmHw+EOPu3atfN1d+DHQkNDJUn79+9XTEzMGU+BseAZAOBTNWt82rZt6+OeIBDU/D35NWvDCD8AAL/AVBcawht/T5j2ai5Oh7RnrXSkQgqPlToPkYJ+/Yp1AADQOD4d+cnJydGAAQMUERGhmJgYpaenq6SkxKPOsGHDZLFYPB7/8z//c8p2DcPQQw89pPj4eIWGhmr48OHasWNHU76VU9uWL83rI710jfTGna4/5/VxlQMAgGbl0/BTVFSkzMxMrV+/XoWFhTp+/LhSU1NVVVXlUe+uu+5SWVmZ+zF37txTtjt37lzNnz9fCxcuVHFxscLCwjRixAgdO3asKd9O3bblS6+Plez7PMvtZa5yAhAA4DQyMjKUnp7uPh42bJiys7N/VZveaCNQ+XTaq6CgwON40aJFiomJ0caNGzV06FB3edu2bRUXF9egNg3D0Lx58/THP/5Ro0ePliS9/PLLio2N1VtvvaUbbrjBe2/gdJwOqWCKJKOunkqySAVTpV5XMwUGAF7gcBraUHpQ+w8fU0xEiAYmRcsa1HRriTIyMvTSSy9Jcm3A16lTJ40dO1YPPvigWrVquq/YN998U61bt25Q3VWrVumyyy7T999/r6ioqDNqo6XxqzU/lZWVkqTo6GiP8ldeeUWLFy9WXFycRo4cqenTp9d7VUBpaanKy8s1fPhwd5nNZtOgQYO0bt26OsNPdXW1qqur3cd2u90bb8e1xufkER8PhmT/xlUv6TfeeU0AMKmCrWWa+c42lVX+MsofbwvRwyOTldbnzPeEOZ20tDTl5uaqurpa//rXv5SZmanWrVtr2rRpHvV+/PFHtWnTxiuvefL3pK/aCFR+c7WX0+lUdna2UlJS1KdPH3f5TTfdpMWLF2vlypWaNm2a/vGPf+iWW26pt53y8nJJUmxsrEd5bGys+9zJcnJyZLPZ3I/ExEQvvCO5Fjd7sx4AoE4FW8s0fvEnHsFHksorj2n84k9UsLWsyV47ODhYcXFx6ty5s8aPH6/hw4crPz/fPVX12GOPKSEhQT179pQk7d27V2PGjFFUVJSio6M1evRo7d69292ew+HQpEmTFBUVpXbt2mny5MkyDM8ZhJOnrKqrqzVlyhQlJiYqODhY3bp109/+9jft3r1bl112mSTprLPOksViUUZGRp1tfP/99xo7dqzOOusstW3bVldeeaXHetlFixYpKipK7733nnr37q3w8HClpaWprOyXz3bVqlUaOHCgwsLCFBUVpZSUFO3Zs8dLn7T3+E34yczM1NatW/Xaa695lI8bN04jRoxQ3759dfPNN+vll19WXl6edu3a5bXXnjZtmiorK92PvXv3eqfh8NjT12lMPQBALQ6noZnvbKt3gYEkzXxnmxzOump4X2hoqH788UdJ0vLly1VSUqLCwkItW7ZMx48f14gRIxQREaEPP/xQa9ascYeImuc8+eSTWrRokf7+979r9erVOnjwoPLy8k75mmPHjtWrr76q+fPna/v27XruuecUHh6uxMREvfHGG5KkkpISlZWV6amnnqqzjYyMDH388cfKz8/XunXrZBiGrrrqKo/9dI4ePaonnnhC//jHP/TBBx/oq6++0gMPPCBJ+umnn5Senq5LL71Umzdv1rp16zRu3Di/3MLAL6a9srKytGzZMn3wwQfq2LHjKesOGjRIkrRz50517dq11vmatUEVFRUeW19XVFToggsuqLPN4OBgBQcHn2HvT6HzECkywbW4uc5/lhbX+c5DvP/aAGASG0oP1hrxOZEhqazymDaUHtTgrk23g7RhGFq+fLnee+89TZgwQd9++63CwsL04osvuqe7Fi9eLKfTqRdffNEdCnJzcxUVFaVVq1YpNTVV8+bN07Rp0/Tb3/5WkrRw4UK999579b7uF198oddff12FhYXuJR/nnHOO+3zN9FZMTIzHmp8T7dixQ/n5+VqzZo2GDHF9J73yyitKTEzUW2+9peuvv16Sa2PBhQsXur9/s7Ky9Mgjj0hyLRmprKzUNddc4z7fu3fvxn+QzcCnIz+GYSgrK0t5eXlasWKFkpKSTvucTZs2Sar/nh5JSUmKi4vT8uXL3WV2u13FxcUaPHiwV/rdYEFWKW3OzwcnJ9+fj9Nms9gZAH6F/YcbdiVvQ+s11rJlyxQeHq6QkBBdeeWV+v3vf68ZM2ZIkvr27euxzuc///mPdu7cqYiICIWHhys8PFzR0dE6duyYdu3apcrKSpWVlbl/6EtSq1at1L9//3pff9OmTbJarbr00kvP+D1s375drVq18njddu3aqWfPntq+fbu7rG3bth4DD/Hx8e57bUVHRysjI0MjRozQyJEj9dRTT3lMifkTn4afzMxMLV68WEuWLFFERITKy8tVXl6uH374QZK0a9cuPfroo9q4caN2796t/Px8jR07VkOHDtV5553nbqdXr17uIUGLxaLs7GzNmjVL+fn52rJli8aOHauEhASPywSbTfIoaczLUuRJYS0ywVWePKr5+wQALUhMRIhX6zXWZZddpk2bNmnHjh364Ycf9NJLLyksLEyS3H/WOHLkiPr166dNmzZ5PL744gvddNNNZ/T6Nfe7ag4nXx1msVg81iPl5uZq3bp1GjJkiJYuXaoePXpo/fr1zda/hvLptNeCBQskuRZdnSg3N1cZGRlq06aN3n//fc2bN09VVVVKTEzUddddpz/+8Y8e9UtKStxXiknS5MmTVVVVpXHjxunQoUO65JJLVFBQoJCQpvmLf1rJo1yXs7PDMwB43cCkaMXbQlReeay+BQaKs7kue28KYWFh6tatW4PqXnTRRVq6dKliYmIUGRlZZ534+HgVFxe7t3z56aeftHHjRl100UV11u/bt6+cTqeKioo8rnSuUTPy5HA46u1X79699dNPP6m4uNg97XXgwAGVlJQoOTm5Qe+txoUXXqgLL7xQ06ZN0+DBg7VkyRJdfPHFjWqjqfk0/Jy8ev1kiYmJKioqanQ7FotFjzzyiHse0i8EWbmcHQCagDXIoodHJmv84k9kkecKy5oFBw+PTG7S/X4a6uabb9af/vQnjR49Wo888og6duyoPXv26M0339TkyZPVsWNHTZw4UbNnz1b37t3Vq1cv/fnPf9ahQ4fqbbNLly667bbbdMcdd2j+/Pk6//zztWfPHu3fv19jxoxR586dZbFYtGzZMl111VUKDQ1VeHi4Rxvdu3fX6NGjddddd+m5555TRESEpk6dqg4dOrj3zDud0tJSPf/88xo1apQSEhJUUlKiHTt2aOzYsb/mI2sSfnO1FwAAZyqtT7wW3HKR4myeI/xxthAtuOWiJt3npzHatm2rDz74QJ06ddJvf/tb9e7dW3feeaeOHTvmHgm6//77deutt+q2227T4MGDFRERoWuvvfaU7S5YsEC/+93vdM8996hXr16666673HdL6NChg2bOnKmpU6cqNjZWWVlZdbaRm5urfv366ZprrtHgwYNlGIb+9a9/NXgjxLZt2+rzzz/Xddddpx49emjcuHHKzMzU3Xff3YhPqHlYjNMNv5iQ3W6XzWZTZWVlvcOSAADvOHbsmEpLS5WUlPSrlyc09w7PaH6n+vvS0O9vv7jUHQAAb7AGWZr0cna0DEx7AQAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AABgQjNmzNAFF1zg625o2LBhys7ObtbXJPwAAPArlJeXa+LEierWrZtCQkIUGxurlJQULViwQEePHvV1987YqlWrZLFYTnlfMV+292uwwzMAoOVwOqQ9a6UjFVJ4rNR5iOvG0k3kyy+/VEpKiqKiovT444+rb9++Cg4O1pYtW/T888+rQ4cOGjVqVJ3PPX78eIPvm+XPfvzxR/ed4wMFIz8AgJZhW740r4/00jXSG3e6/pzXx1XeRO655x61atVKH3/8scaMGaPevXvrnHPO0ejRo/XPf/5TI0eOdNe1WCxasGCBRo0apbCwMD322GOSXDcl7dq1q9q0aaOePXvqH//4h/s5u3fvlsVi0aZNm9xlhw4dksVi0apVqyT9MqKyfPly9e/fX23bttWQIUNUUlLi0dfZs2crNjZWERER7pup1mf37t267LLLJElnnXWWLBaLMjIyJLmmqbKyspSdna327dtrxIgRp+3nqdqTJKfTqcmTJys6OlpxcXGaMWNGQ/8vOCOEHwBA4NuWL70+VrLv8yy3l7nKmyAAHThwQP/+97+VmZmpsLCwOutYLJ43VZ0xY4auvfZabdmyRXfccYfy8vI0ceJE3X///dq6davuvvtu3X777Vq5cmWj+/O///u/evLJJ/Xxxx+rVatWuuOOO9znXn/9dc2YMUOPP/64Pv74Y8XHx+vZZ5+tt63ExES98cYbkqSSkhKVlZXpqaeecp9/6aWX1KZNG61Zs0YLFy48bd8a0l5YWJiKi4s1d+5cPfLIIyosLGz0Z9BQTHsBAAKb0yEVTJFk1HHSkGSRCqZKva726hTYzp07ZRiGevbs6VHevn1796hKZmam5syZ4z5300036fbbb3cf33jjjcrIyNA999wjSZo0aZLWr1+vJ554wj1S0lCPPfaYLr30UknS1KlTdfXVV+vYsWMKCQnRvHnzdOedd+rOO++UJM2aNUvvv/9+vaM/VqtV0dHRkqSYmBhFRUV5nO/evbvmzp3rPt69e/cp+3a69s477zw9/PDD7rb/+te/avny5briiisa9N4bi5EfAEBg27O29oiPB0Oyf+Oq1ww2bNigTZs26dxzz1V1dbXHuf79+3scb9++XSkpKR5lKSkp2r59e6Nf97zzznP/7/j4eEnS/v373a8zaNAgj/qDBw9u9GvU6Nev3xk/ty4n9l1y9b+m702BkR8AQGA7UuHdeg3UrVs3WSyWWmtrzjnnHElSaGhorefUNz1Wn6Ag1xiFYfwyqnX8+PE66564eLpmus3pdDbq9Rrq5PfRmH7W5eSF3xaLpcn6LjHyAwAIdOGx3q3XQO3atdMVV1yhv/71r6qqqjqjNnr37q01a9Z4lK1Zs0bJycmSpLPPPluSVFZW5j5/4qLixrxOcXGxR9n69etP+ZyaK7gcDsdp229IPxvTXlNj5AcAENg6D5EiE1yLm+tc92Nxne88xOsv/eyzzyolJUX9+/fXjBkzdN555ykoKEgfffSRPv/889NOD/3hD3/QmDFjdOGFF2r48OF655139Oabb+r999+X5Bo9uvjiizV79mwlJSVp//79+uMf/9jofk6cOFEZGRnq37+/UlJS9Morr+izzz5zj1LVpXPnzrJYLFq2bJmuuuoqhYaGKjw8vM66DelnY9praoz8AAACW5BVSqtZVGw56eTPx2mzm2S/n65du+rTTz/V8OHDNW3aNJ1//vnq37+/nn76aT3wwAN69NFHT/n89PR0PfXUU3riiSd07rnn6rnnnlNubq6GDRvmrvP3v/9dP/30k/r166fs7GzNmjWr0f38/e9/r+nTp2vy5Mnq16+f9uzZo/Hjx5/yOR06dNDMmTM1depUxcbGKisr65T1T9fPxrbXlCzGiRN0kCTZ7XbZbDZVVlYqMjLS190BgBbt2LFjKi0tVVJSkkJCQs68oW35rqu+Tlz8HNnBFXyS695oEIHnVH9fGvr9zbQXAKBlSB7lupy9GXd4RmAi/AAAWo4gq5T0G1/3An6ONT8AAMBUCD8AAMBUCD8AAL/A9TdoCG/8PSH8AAB8qmZ336NHj/q4JwgENX9PTt4VujFY8AwA8Cmr1aqoqCj3vZzatm1b627ogGEYOnr0qPbv36+oqChZrWd+FR/hBwDgc3FxcZLUpDezRMsQFRXl/vtypgg/AACfs1gsio+PV0xMTKNuiAlzad269a8a8alB+AEA+A2r1eqVLzfgVFjwDAAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIVNDvELp0Pas1Y6UiGFx0qdh0hBbDYGAGhZCD9w2ZYvFUyR7Pt+KYtMkNLmSMmjfNcvAAC8jGkvuILP62M9g48k2ctc5dvyfdMvAACaAOHH7JwO14iPjDpO/lxWMNVVDwCAFoDwY3Z71tYe8fFgSPZvXPUAAGgBfBp+cnJyNGDAAEVERCgmJkbp6ekqKSmps65hGLryyitlsVj01ltvnbLdjIwMWSwWj0daWloTvIMW4EiFd+sBAODnfBp+ioqKlJmZqfXr16uwsFDHjx9XamqqqqqqatWdN2+eLBZLg9tOS0tTWVmZ+/Hqq696s+stR3isd+sBAODnfHq1V0FBgcfxokWLFBMTo40bN2ro0KHu8k2bNunJJ5/Uxx9/rPj4+Aa1HRwcrLi4uAbVra6uVnV1tfvYbrc36HktQuchrqu67GWqe92PxXW+85Dm7hkAAE3Cr9b8VFZWSpKio6PdZUePHtVNN92kZ555psFhRpJWrVqlmJgY9ezZU+PHj9eBAwfqrZuTkyObzeZ+JCYmnvmbCDRBVtfl7JKkk0fWfj5Om81+PwCAFsNiGEZdP/ebndPp1KhRo3To0CGtXr3aXX733XfL4XDoxRdflCRZLBbl5eUpPT293rZee+01tW3bVklJSdq1a5cefPBBhYeHa926dbJaa3+J1zXyk5iYqMrKSkVGRnrvTfqzOvf56eAKPuzzAwDwhibeTNdut8tms532+9tvNjnMzMzU1q1bPYJPfn6+VqxYoU8//bRRbd1www3u/923b1+dd9556tq1q1atWqXLL7+8Vv3g4GAFBwefeedbguRRUq+r2eEZANA0/GgzXb+Y9srKytKyZcu0cuVKdezY0V2+YsUK7dq1S1FRUWrVqpVatXJlteuuu07Dhg1rcPvnnHOO2rdvr507d3q76y1LkFVK+o3U93euPwk+AABv8LPNdH068mMYhiZMmKC8vDytWrVKSUlJHuenTp2q//7v//Yo69u3r/7yl79o5MiRDX6dr7/+WgcOHGjwYmkAAOAlp91M1+LaTLfX1c32o9unIz+ZmZlavHixlixZooiICJWXl6u8vFw//PCDJCkuLk59+vTxeEhSp06dPIJSr169lJeXJ0k6cuSI/vCHP2j9+vXavXu3li9frtGjR6tbt24aMWJE879JAADMzA830/Vp+FmwYIEqKys1bNgwxcfHux9Lly5tVDslJSXuK8WsVqs2b96sUaNGqUePHrrzzjvVr18/ffjhh6zrAQCgufnhZro+n/byxnNOLAsNDdV77733q/oFAAC8xA830/WLBc8AAKCFqtlMt9ZecjUsrq1VmnEzXcIPAABoOn64mS7hBwAANK3kUdKYl6XIk666jkxwlTfzPj9+s8khAABowfxoM13CDwAAaB41m+n6uhu+7gAAAEBzIvwAAABTIfwAAABTYc0PAJwpp8MvFm8CaBzCDwCciW35rps1nnjPosgE134mzXzZLoDGYdoLABprW770+tjaN2u0l7nKt+X7pl8AGoTwAwCN4XS4RnxU170Jfy4rmOqqB8AvEX4AoDH2rK094uPBkOzfuOoB8EuEHwBojCMV3q0HoNkRfgCgMcJjvVsPQLMj/ABAY3Qe4rqqq9bdqWtYpMgOrnoA/BLhBwAaI8jqupxdUu0A9PNx2mz2+wH8GOEHABoreZQ05mUpMt6zPDLBVc4+P4BfY5NDADgTyaOkXlezwzMQgAg/AHCmgqxS0m983QsAjcS0FwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBWfhp+cnBwNGDBAERERiomJUXp6ukpKSuqsaxiGrrzySlksFr311lunbNcwDD300EOKj49XaGiohg8frh07djTBOwAAAIHGp+GnqKhImZmZWr9+vQoLC3X8+HGlpqaqqqqqVt158+bJYrE0qN25c+dq/vz5WrhwoYqLixUWFqYRI0bo2LFj3n4LAAAgwFgMwzB83Yka3377rWJiYlRUVKShQ4e6yzdt2qRrrrlGH3/8seLj45WXl6f09PQ62zAMQwkJCbr//vv1wAMPSJIqKysVGxurRYsW6YYbbqj1nOrqalVXV7uP7Xa7EhMTVVlZqcjISO++SQAA0CTsdrtsNttpv7/9as1PZWWlJCk6OtpddvToUd1000165plnFBcXd9o2SktLVV5eruHDh7vLbDabBg0apHXr1tX5nJycHNlsNvcjMTHxV74TAADgr/wm/DidTmVnZyslJUV9+vRxl993330aMmSIRo8e3aB2ysvLJUmxsbEe5bGxse5zJ5s2bZoqKyvdj717957huwAAAP6ula87UCMzM1Nbt27V6tWr3WX5+flasWKFPv300yZ97eDgYAUHBzfpawAAAP/gFyM/WVlZWrZsmVauXKmOHTu6y1esWKFdu3YpKipKrVq1UqtWrqx23XXXadiwYXW2VTM1VlFR4VFeUVHRoGkzAADQsvk0/BiGoaysLOXl5WnFihVKSkryOD916lRt3rxZmzZtcj8k6S9/+Ytyc3PrbDMpKUlxcXFavny5u8xut6u4uFiDBw9usvcCAAACg0+nvTIzM7VkyRK9/fbbioiIcK/JsdlsCg0NVVxcXJ2jNZ06dfIISr169VJOTo6uvfZaWSwWZWdna9asWerevbuSkpI0ffp0JSQk1HuFGAAAMA+fhp8FCxZIUq0prNzcXGVkZDS4nZKSEveVYpI0efJkVVVVady4cTp06JAuueQSFRQUKCQkxBvdBgAAAcyv9vnxFw3dJwAAAPiPgNznBwAAoKkRfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKm08nUHgMZwOA1tKD2o/YePKSYiRAOTomUNsvi6WwCAAEL4QcAo2Fqmme9sU1nlMXdZvC1ED49MVlqfeB/2DADQEP7yA5bwg4BQsLVM4xd/IuOk8vLKYxq/+BMtuOUiAhAA+DF/+gHLmh/4PYfT0Mx3ttUKPpLcZTPf2SaHs64aAABfq/kBe2LwkX75AVuwtaxZ+0P4gd/bUHqw1j+YExmSyiqPaUPpwebrFACgQfzxByzhB35v/+H6g8+Z1AMANB9//AHLmh/4vZiIEK/Wg/8sOgTQ8vnjD1jCD/zewKRoxdtCVF55rM5hU4ukOJvrCxyn50+LDgG0fP74A5ZpL/g9a5BFD49MluQKOieqOX54ZDIjFw3gb4sOAbR8NT9g6/svtEWuH2DN+QOW8IOAkNYnXgtuuUhxNs9fBnG2EC5zbyB/XHQIoOXzxx+wTHshYKT1idcVyXGsVTlDjVl0OLhru+brGIAWr+YH7MlT7nE+mnIn/CCgWIMsfDGfIX9cdIimx+J2+At/+gFL+AFMwh8XHaJpsbjdXAIh6PrLD1jCD2ASXDVnLtwSxlwIuo3DgmfAJPxx0SGaRsAtbnc6pNIPpS3/z/Wn0+HrHgUUruJsPMIPYCJcNWcO/rijbr225Uvz+kgvXSO9cafrz3l9XOU4rYALun6CaS/AZPxp0SGaRsAsbt+WL70+Vjr5q9te5iof87KUPMonXQsUJwbdIDk1MOhzxeiQ9itKG5y95FQQV3HWgfADmJC/LDpE0wiIxe1Oh1QwRbWCj/RzmUUqmCr1uloKsjZz5wJHTYAdEbRBD7d+WQmWX0bz9hnRmnl8rN5zDvR90PUzTHsBQAvjjzvq1rJnrWTfd4oKhmT/xlUP9YqJCNGIoA1a0Hqe4uQ5jRmng1rQep5GBG3gKs6TEH4AoIUJiMXtRyq8W8+kBna26ZE2/5Aknfx/Z83xzDb/0MDOtmbumX8j/ABAC+T3i9vDY71bz6Sse9cpVgdqBZ8aQRYpTgdk3buueTvm51jzg8DidLiGwY9UuP6j2HkI6wGAevj14vbOQ6TIBNfi5vp2nopMcNVD/RhBOyOEHwSObfmuBZInrhOITJDS5nBFCFAPv13cHmR1/dt9faxck3EnBqCfw1nabH7cnA4jaGeEaS8EhppLYk9eIFlzSSx7ggCBJ3mU63L2yJOm4CITuMy9oWpG0E61vD2yAyNoJ/lVIz/Hjh3T0qVLVVVVpSuuuELdu3f3Vr+AX3BJLNByJY9y/dtlOvvMMIJ2Rho88jNp0iRNmDDBffzjjz9q8ODBuuuuu/Tggw/qwgsv1Lp1jVtQlZOTowEDBigiIkIxMTFKT09XSUmJR527775bXbt2VWhoqM4++2yNHj1an3/++SnbzcjIkMVi8XikpaU1qm/wI1wSC7RsQVYp6TdS39+5/uSLunEYQWu0Boeff//737riiivcx6+88or27NmjHTt26Pvvv9f111+vWbNmNerFi4qKlJmZqfXr16uwsFDHjx9Xamqqqqqq3HX69eun3Nxcbd++Xe+9954Mw1BqaqocjlPf+yUtLU1lZWXux6uvvtqovsGPsKAPAE4teZSUvVW6bZl03d9cf2ZvIfjUo8HTXl999ZWSk5Pdx//+97/1u9/9Tp07d5YkTZw4UVdddVWjXrygoMDjeNGiRYqJidHGjRs1dOhQSdK4cePc57t06aJZs2bp/PPP1+7du9W1a9d62w4ODlZcXFyj+gM/xYI+ADi9mhE0nFaDR36CgoJkGL/MJa5fv14XX3yx+zgqKkrff//9r+pMZWWlJCk6uu5dR6uqqpSbm6ukpCQlJiaesq1Vq1YpJiZGPXv21Pjx43XgwIF661ZXV8tut3s84EdY0AcA8KIGh5/evXvrnXfekSR99tln+uqrr3TZZZe5z+/Zs0exsWf+y9vpdCo7O1spKSnq06ePx7lnn31W4eHhCg8P17vvvqvCwkK1adOm3rbS0tL08ssva/ny5ZozZ46Kiop05ZVX1jtVlpOTI5vN5n6cLlihmdUs6JNU7361LOgDADSQxThxOOcU8vLydMMNN+iSSy7RZ599pgEDBrjDkCRNmTJFpaWlev3118+oI+PHj9e7776r1atXq2PHjh7nKisrtX//fpWVlemJJ57QN998ozVr1igkpGH3Kvnyyy/VtWtXvf/++7r88strna+urlZ1dbX72G63KzExUZWVlYqMjDyj94MmUOc+Px1cwYd5bQAwPbvdLpvNdtrv7wav+bn22mv1r3/9S8uWLVNqaqrHlV+S1LZtW91zzz1n1NmsrCwtW7ZMH3zwQa3gI8k9ItO9e3ddfPHFOuuss5SXl6cbb7yxQe2fc845at++vXbu3Fln+AkODlZwcPAZ9R3NiEtiAQBe0ODw88gjj+iBBx6oMzxI0sMPP9zoFzcMQxMmTFBeXp5WrVqlpKSkBj3HMAyPkZrT+frrr3XgwAHFx/v4XjZ+zuE0/HMb/BOxoA8A8Cs1eNrLarWqrKxMMTExXnvxe+65R0uWLNHbb7+tnj17usttNptCQ0P15ZdfaunSpUpNTdXZZ5+tr7/+WrNnz9aaNWu0fft2d1969eqlnJwcXXvttTpy5Ihmzpyp6667TnFxcdq1a5cmT56sw4cPa8uWLQ0a4WnosFlLUrC1TDPf2aayymPusnhbiB4emez7GyACANAADf3+bvCC5wZmpEZZsGCBKisrNWzYMMXHx7sfS5culSSFhIToww8/1FVXXaVu3brp97//vSIiIrR27VqPEFZSUuK+UsxqtWrz5s0aNWqUevTooTvvvFP9+vXThx9+yNRWPQq2lmn84k88go8klVce0/jFn6hga5mPegYAgPc1eOQnKChIFRUVOvvss5u6Tz5nppEfh9PQJXNW1Ao+NSyS4mwhWj3lv/xvCgwAmovTwXrDAOD1Bc+S1KNHD1ksp/4CPHjwYGOahI9tKD1Yb/CRXHeJKas8pg2lB/3zztAA0NTqvNI0wbUFB1eaBqRGhZ+ZM2fKZrM1VV/gA/sP1x98zqQeADSWX19ssS3/55uGnjRJYi9zlXPvrIDUqPBzww03eHXBM3wvJqJheyU1tB4ANIZfX2zhdLhGfE4OPtLPZRapYKprCw6mwAJKgxc8n266C4FpYFK04m0hp7pxhOJtrl9iAOBNfn+xxZ61nlNdtRiS/RtXPQQUn17tBd+zBln08EjXDWvruXGEHh6Z7D9D0ABaBIfT0Mx3ttU7piJJM9/ZJofTh989Ryq8Ww9+o8Hhx+l0MuXVQqX1ideCWy5SnM1zaivOFqIFt1zk+6FnAC1OYy628JnwBt6vsqH14DcateYHZ86vF/TJFYCuSI7z6z4CaDkC4mKLzkNcV3XZy1T3uh+L63znIc3dM/xKhJ9m4NcL+k5gDbJwOTuAZhEQF1sEWV2Xs78+Vq6FACcGoJ9/GKbNZrFzAGrwtBfOjN8v6AMAHwiYiy2SR7kuZ4886YdqZAKXuQcwRn6a0OkW9FnkWtB3RXIc00sATKXmYovxiz+pb0zFfy62SB7lupydHZ5bDEZ+mlBALOgDAB8JpIstHArSOmey3nYM1jpnshx8fQY0Rn6aUEAs6AMAHwqEiy0CZd0mGo7w04QCYkEfAPiYP19sUbNu8+TlCzXrNv1thAoNw7hdEwqYBX0AgFoCYiNGnBHCTxNi92RzcjgNrdt1QG9v+kbrdh3gP4xAgGLdZsvFtFcTq1nQd/J8cRzzxS0SawOAloN1my0X4acZBMKCPvx6rA0wH3/fuR2/Dus2Wy7CTzPx5wV9+PXY08l8GOVr+WrWbZZXHqvv5haKY91mQGLND+AFrA0wF3ZuNwfWbbZchB/AC1gbYB5cAWQugbQRIxqOaS/AC1gbYB6NGeVjqrtlYN1my0P4AbyAtQHmwSifObFus2Vh2gvwAtYGmAejfEDgI/wAXsLaAHNg53Yg8DHtBXgRawNavppRvvGLP5FF8pjmZJQPCAwWwzC4JOEkdrtdNptNlZWVioyM9HV3AFPy9w0E2ecH8D8N/f5m5AeA3wmEYMEoHxC4GPmpAyM/gO/Ud5uQmkjB+ikA9Wno9zcLngH4DTYQBNAcCD8A/Aa3CQHQHAg/APwGGwgCaA6EHwB+gw0EATQHwg8Av8EGggCaA+EHgN/gNiEAmgPhB4Bf4TYhAJoamxwC8DtsIAigKRF+APgla5BFg7u283U3ALRATHsBAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABT8Wn4ycnJ0YABAxQREaGYmBilp6erpKTEo87dd9+trl27KjQ0VGeffbZGjx6tzz///JTtGoahhx56SPHx8QoNDdXw4cO1Y8eOpnwrAAAgQPg0/BQVFSkzM1Pr169XYWGhjh8/rtTUVFVVVbnr9OvXT7m5udq+fbvee+89GYah1NRUORyOetudO3eu5s+fr4ULF6q4uFhhYWEaMWKEjh071hxvCwAA+DGLYRiGrztR49tvv1VMTIyKioo0dOjQOuts3rxZ559/vnbu3KmuXbvWOm8YhhISEnT//ffrgQcekCRVVlYqNjZWixYt0g033HDaftjtdtlsNlVWVioyMvLXvSkAANAsGvr97VdrfiorKyVJ0dHRdZ6vqqpSbm6ukpKSlJiYWGed0tJSlZeXa/jw4e4ym82mQYMGad26dXU+p7q6Wna73eMBAABaJr8JP06nU9nZ2UpJSVGfPn08zj377LMKDw9XeHi43n33XRUWFqpNmzZ1tlNeXi5Jio2N9SiPjY11nztZTk6ObDab+1FfsAIAAIHPb8JPZmamtm7dqtdee63WuZtvvlmffvqpioqK1KNHD40ZM8ar63emTZumyspK92Pv3r1eaxsAAPgXv7ire1ZWlpYtW6YPPvhAHTt2rHW+ZkSme/fuuvjii3XWWWcpLy9PN954Y626cXFxkqSKigrFx8e7yysqKnTBBRfU+frBwcEKDg72zpsBAAB+zacjP4ZhKCsrS3l5eVqxYoWSkpIa9BzDMFRdXV3n+aSkJMXFxWn58uXuMrvdruLiYg0ePNhrfQcAAIHJp+EnMzNTixcv1pIlSxQREaHy8nKVl5frhx9+kCR9+eWXysnJ0caNG/XVV19p7dq1uv766xUaGqqrrrrK3U6vXr2Ul5cnSbJYLMrOztasWbOUn5+vLVu2aOzYsUpISFB6erov3iYAAPAjPp32WrBggSRp2LBhHuW5ubnKyMhQSEiIPvzwQ82bN0/ff/+9YmNjNXToUK1du1YxMTHu+iUlJe4rxSRp8uTJqqqq0rhx43To0CFdcsklKigoUEhISLO8LwAA4L/8ap8ff8E+PwAABJ6A3OcHAACgqRF+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqfj0xqZAi+R0SHvWSkcqpPBYqfMQKcjq614BAH5G+AG8aVu+VDBFsu/7pSwyQUqbIyWP8l2/AABuTHsB3rItX3p9rGfwkSR7mat8W75v+gUA8ED4AbzB6XCN+Mio4+TPZQVTXfUAAD5F+AG8Yc/a2iM+HgzJ/o2rHgDApwg/gDccqfBuPQBAkyH8AN4QHuvdegCAJkP4Abyh8xDXVV2y1FPBIkV2cNUDAPgU4QfwhiCr63J2SbUD0M/HabPZ7wcA/ADhB/CW5FHSmJelyHjP8sgEVzn7/ACAX2CTQ8CbkkdJva5mh2cA8GOEH8DbgqxS0m983QsAQD2Y9gIAAKbCyA8A/8QNYgE0EcIPAP/DDWIBNCGmvQD4F24QC6CJEX4A+A9uEAugGRB+APgPbhALoBkQfgD4D24QC6AZEH4A+A9uEAugGRB+APgPbhALoBkQfgD4D24QC6AZEH4A+BduEAugibHJIQD/ww1iATQhwg8A/8QNYgE0Eaa9AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqXCpO2BGTgd76AAwLcIPYDbb8qWCKZJ93y9lkQmu20qwezIAE/DptFdOTo4GDBigiIgIxcTEKD09XSUlJe7zBw8e1IQJE9SzZ0+FhoaqU6dOuvfee1VZWXnKdjMyMmSxWDweaWlpTf12AP+3LV96faxn8JEke5mrfFu+b/oFAM3Ip+GnqKhImZmZWr9+vQoLC3X8+HGlpqaqqqpKkrRv3z7t27dPTzzxhLZu3apFixapoKBAd95552nbTktLU1lZmfvx6quvNvXbAfyb0+Ea8ZFRx8mfywqmuuoBQAvm02mvgoICj+NFixYpJiZGGzdu1NChQ9WnTx+98cYb7vNdu3bVY489pltuuUU//fSTWrWqv/vBwcGKi4trsr4DAWfP2tojPh4Myf6Nqx63lQDQgvnV1V4101nR0dGnrBMZGXnK4CNJq1atUkxMjHr27Knx48frwIED9datrq6W3W73eAAtzpEK79YDgADlN+HH6XQqOztbKSkp6tOnT511vvvuOz366KMaN27cKdtKS0vTyy+/rOXLl2vOnDkqKirSlVdeKYej7uH8nJwc2Ww29yMxMfFXvx/A74THerceAAQoi2EYdS0AaHbjx4/Xu+++q9WrV6tjx461ztvtdl1xxRWKjo5Wfn6+Wrdu3eC2v/zyS3Xt2lXvv/++Lr/88lrnq6urVV1d7fFaiYmJ7lEmoEVwOqR5fVyLm+tc92NxXfWVvYXL3gEEJLvdLpvNdtrvb78Y+cnKytKyZcu0cuXKOoPP4cOHlZaWpoiICOXl5TUq+EjSOeeco/bt22vnzp11ng8ODlZkZKTHA2hxgqyuy9klSZaTTv58nDab4AOgxfNp+DEMQ1lZWcrLy9OKFSuUlJRUq47dbldqaqratGmj/Px8hYSENPp1vv76ax04cEDx8fHe6DYQuJJHSWNeliJP+rcQmeAqZ58fACbg02mve+65R0uWLNHbb7+tnj17usttNptCQ0Pdwefo0aPKy8tTWFiYu87ZZ58tq9X1C7VXr17KycnRtddeqyNHjmjmzJm67rrrFBcXp127dmny5Mk6fPiwtmzZouDg4NP2q6HDZkDAYodnAC1QQ7+/fXqp+4IFCyRJw4YN8yjPzc1VRkaGPvnkExUXF0uSunXr5lGntLRUXbp0kSSVlJS4rxSzWq3avHmzXnrpJR06dEgJCQlKTU3Vo48+2qDgA5hCkJXL2QGYlt8sePYnjPwAABB4AmrBMwAAQHMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFPxafjJycnRgAEDFBERoZiYGKWnp6ukpMR9/uDBg5owYYJ69uyp0NBQderUSffee68qKytP2a5hGHrooYcUHx+v0NBQDR8+XDt27GjqtwMAAAKAT8NPUVGRMjMztX79ehUWFur48eNKTU1VVVWVJGnfvn3at2+fnnjiCW3dulWLFi1SQUGB7rzzzlO2O3fuXM2fP18LFy5UcXGxwsLCNGLECB07dqw53hYAAPBjFsMwDF93osa3336rmJgYFRUVaejQoXXW+b//+z/dcsstqqqqUqtWrWqdNwxDCQkJuv/++/XAAw9IkiorKxUbG6tFixbphhtuqPWc6upqVVdXu4/tdrsSExNVWVmpyMhIL707AADQlOx2u2w222m/v/1qzU/NdFZ0dPQp60RGRtYZfCSptLRU5eXlGj58uLvMZrNp0KBBWrduXZ3PycnJkc1mcz8SExN/xbsAAD/idEilH0pb/p/rT6fD1z0CfK7uBOEDTqdT2dnZSklJUZ8+feqs89133+nRRx/VuHHj6m2nvLxckhQbG+tRHhsb6z53smnTpmnSpEnu45qRHwAIaNvypYIpkn3fL2WRCVLaHCl5lO/6BfiY34SfzMxMbd26VatXr67zvN1u19VXX63k5GTNmDHDq68dHBys4OBgr7YJAD61LV96faykk1Y22Mtc5WNeJgDBtPxi2isrK0vLli3TypUr1bFjx1rnDx8+rLS0NEVERCgvL0+tW7eut624uDhJUkVFhUd5RUWF+xwAtGhOh2vE5+TgI/1SVjCVKTCYlk/Dj2EYysrKUl5enlasWKGkpKRadex2u1JTU9WmTRvl5+crJCTklG0mJSUpLi5Oy5cv92ijuLhYgwcP9vp7AAC/s2et51RXLYZk/8ZVDzAhn4afzMxMLV68WEuWLFFERITKy8tVXl6uH374QdIvwaeqqkp/+9vfZLfb3XUcjl9+sfTq1Ut5eXmSJIvFouzsbM2aNUv5+fnasmWLxo4dq4SEBKWnp/vibQJA8zpScfo6jakHtDA+XfOzYMECSdKwYcM8ynNzc5WRkaFPPvlExcXFkqRu3bp51CktLVWXLl0kSSUlJR4bH06ePFlVVVUaN26cDh06pEsuuUQFBQWnHTUCgBYhPPb0dRpTD2hh/GqfH3/R0H0CAMAvOR3SvD6uxc11rvuxuK76yt4iBVmbu3dAkwnIfX4AAF4QZHVdzi5Jspx08ufjtNkEH5gW4QcAWqLkUa7L2SPjPcsjE7jMHabnN/v8AAC8LHmU1Otq11VdRypca3w6D2HEB6ZH+AGAlizIKiX9xte9APwK014AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBU2OG5DjU3urfb7T7uCQAAaKia7+2a7/H6EH7qcPjwYUlSYmKij3sCAAAa6/Dhw7LZbPWetxini0cm5HQ6tW/fPkVERMhisXitXbvdrsTERO3du1eRkZFea9ds+By9g8/RO/gcvYPP0TvM/jkahqHDhw8rISFBQUH1r+xh5KcOQUFB6tixY5O1HxkZacq/lN7G5+gdfI7ewefoHXyO3mHmz/FUIz41WPAMAABMhfADAABMhfDTjIKDg/Xwww8rODjY110JaHyO3sHn6B18jt7B5+gdfI4Nw4JnAABgKoz8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8NKNnnnlGXbp0UUhIiAYNGqQNGzb4uksBJScnRwMGDFBERIRiYmKUnp6ukpISX3cr4M2ePVsWi0XZ2dm+7krA+eabb3TLLbeoXbt2Cg0NVd++ffXxxx/7ulsBxeFwaPr06UpKSlJoaKi6du2qRx999LT3ZjK7Dz74QCNHjlRCQoIsFoveeustj/OGYeihhx5SfHy8QkNDNXz4cO3YscM3nfVDhJ9msnTpUk2aNEkPP/ywPvnkE51//vkaMWKE9u/f7+uuBYyioiJlZmZq/fr1Kiws1PHjx5Wamqqqqipfdy1gffTRR3ruued03nnn+borAef7779XSkqKWrdurXfffVfbtm3Tk08+qbPOOsvXXQsoc+bM0YIFC/TXv/5V27dv15w5czR37lw9/fTTvu6aX6uqqtL555+vZ555ps7zc+fO1fz587Vw4UIVFxcrLCxMI0aM0LFjx5q5p37KQLMYOHCgkZmZ6T52OBxGQkKCkZOT48NeBbb9+/cbkoyioiJfdyUgHT582OjevbtRWFhoXHrppcbEiRN93aWAMmXKFOOSSy7xdTcC3tVXX23ccccdHmW//e1vjZtvvtlHPQo8koy8vDz3sdPpNOLi4ow//elP7rJDhw4ZwcHBxquvvuqDHvofRn6awY8//qiNGzdq+PDh7rKgoCANHz5c69at82HPAltlZaUkKTo62sc9CUyZmZm6+uqrPf5eouHy8/PVv39/XX/99YqJidGFF16oF154wdfdCjhDhgzR8uXL9cUXX0iS/vOf/2j16tW68sorfdyzwFVaWqry8nKPf9s2m02DBg3iO+dn3Ni0GXz33XdyOByKjY31KI+NjdXnn3/uo14FNqfTqezsbKWkpKhPnz6+7k7Aee211/TJJ5/oo48+8nVXAtaXX36pBQsWaNKkSXrwwQf10Ucf6d5771WbNm102223+bp7AWPq1Kmy2+3q1auXrFarHA6HHnvsMd18882+7lrAKi8vl6Q6v3Nqzpkd4QcBKTMzU1u3btXq1at93ZWAs3fvXk2cOFGFhYUKCQnxdXcCltPpVP/+/fX4449Lki688EJt3bpVCxcuJPw0wuuvv65XXnlFS5Ys0bnnnqtNmzYpOztbCQkJfI5oMkx7NYP27dvLarWqoqLCo7yiokJxcXE+6lXgysrK0rJly7Ry5Up17NjR190JOBs3btT+/ft10UUXqVWrVmrVqpWKioo0f/58tWrVSg6Hw9ddDAjx8fFKTk72KOvdu7e++uorH/UoMP3hD3/Q1KlTdcMNN6hv37669dZbdd999yknJ8fXXQtYNd8rfOfUj/DTDNq0aaN+/fpp+fLl7jKn06nly5dr8ODBPuxZYDEMQ1lZWcrLy9OKFSuUlJTk6y4FpMsvv1xbtmzRpk2b3I/+/fvr5ptv1qZNm2S1Wn3dxYCQkpJSa6uFL774Qp07d/ZRjwLT0aNHFRTk+VVktVrldDp91KPAl5SUpLi4OI/vHLvdruLiYr5zfsa0VzOZNGmSbrvtNvXv318DBw7UvHnzVFVVpdtvv93XXQsYmZmZWrJkid5++21FRES4565tNptCQ0N93LvAERERUWudVFhYmNq1a8f6qUa47777NGTIED3++OMaM2aMNmzYoOeff17PP/+8r7sWUEaOHKnHHntMnTp10rnnnqtPP/1Uf/7zn3XHHXf4umt+7ciRI9q5c6f7uLS0VJs2bVJ0dLQ6deqk7OxszZo1S927d1dSUpKmT5+uhIQEpaen+67T/sTXl5uZydNPP2106tTJaNOmjTFw4EBj/fr1vu5SQJFU5yM3N9fXXQt4XOp+Zt555x2jT58+RnBwsNGrVy/j+eef93WXAo7dbjcmTpxodOrUyQgJCTHOOecc43//93+N6upqX3fNr61cubLO/x7edttthmG4LnefPn26ERsbawQHBxuXX365UVJS4ttO+xGLYbCNJgAAMA/W/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAwnYyMDLb5B0yM8AOgSWRkZMhisdR6pKWl+bpreuqpp7Ro0SJfd0OSZLFY9NZbb/m6G4CpcGNTAE0mLS1Nubm5HmXBwcE+6o3kcDhksVhks9l81gcAvsfID4AmExwcrLi4OI/HWWedpVWrVqlNmzb68MMP3XXnzp2rmJgYVVRUSJKGDRumrKwsZWVlyWazqX379po+fbpOvB1hdXW1HnjgAXXo0EFhYWEaNGiQVq1a5T6/aNEiRUVFKT8/X8nJyQoODtZXX31Va9pr2LBhmjBhgrKzs3XWWWcpNjZWL7zwgqqqqnT77bcrIiJC3bp107vvvuvx/rZu3aorr7xS4eHhio2N1a233qrvvvvOo917771XkydPVnR0tOLi4jRjxgz3+S5dukiSrr32WlksFvcxgKZF+AHQ7IYNG6bs7Gzdeuutqqys1Keffqrp06frxRdfVGxsrLveSy+9pFatWmnDhg166qmn9Oc//1kvvvii+3xWVpbWrVun1157TZs3b9b111+vtLQ07dixw13n6NGjmjNnjl588UV99tlniomJqbNPL730ktq3b68NGzZowoQJGj9+vK6//noNGTJEn3zyiVJTU3Xrrbfq6NGjkqRDhw7pv/7rv3ThhRfq448/VkFBgSoqKjRmzJha7YaFham4uFhz587VI488osLCQknSRx99JEnKzc1VWVmZ+xhAE/PxXeUBtFC33XabYbVajbCwMI/HY489ZhiGYVRXVxsXXHCBMWbMGCM5Odm46667PJ5/6aWXGr179zacTqe7bMqUKUbv3r0NwzCMPXv2GFar1fjmm288nnf55Zcb06ZNMwzDMHJzcw1JxqZNm2r1bfTo0R6vdckll7iPf/rpJyMsLMy49dZb3WVlZWWGJGPdunWGYRjGo48+aqSmpnq0u3fvXkOSUVJSUme7hmEYAwYMMKZMmeI+lmTk5eXV8ykCaAqs+QHQZC677DItWLDAoyw6OlqS1KZNG73yyis677zz1LlzZ/3lL3+p9fyLL75YFovFfTx48GA9+eSTcjgc2rJlixwOh3r06OHxnOrqarVr18593KZNG5133nmn7euJdaxWq9q1a6e+ffu6y2pGpPbv3y9J+s9//qOVK1cqPDy8Vlu7du1y9+vk146Pj3e3AcA3CD8AmkxYWJi6detW7/m1a9dKkg4ePKiDBw8qLCyswW0fOXJEVqtVGzdulNVq9Th3YiAJDQ31CFD1ad26tcexxWLxKKtpw+l0ul9/5MiRmjNnTq224uPjT9luTRsAfIPwA8Andu3apfvuu08vvPCCli5dqttuu03vv/++goJ+WYpYXFzs8Zz169ere/fuslqtuvDCC+VwOLR//3795je/ae7u66KLLtIbb7yhLl26qFWrM/9PaevWreVwOLzYMwCnw4JnAE2murpa5eXlHo/vvvtODodDt9xyi0aMGKHbb79dubm52rx5s5588kmP53/11VeaNGmSSkpK9Oqrr+rpp5/WxIkTJUk9evTQzTffrLFjx+rNN99UaWmpNmzYoJycHP3zn/9s8veWmZmpgwcP6sYbb9RHH32kXbt26b333tPtt9/eqDDTpUsXLV++XOXl5fr++++bsMcAajDyA6DJFBQUeEwBSVLPnj110003ac+ePVq2bJkk1zTR888/rxtvvFGpqak6//zzJUljx47VDz/8oIEDB8pqtWrixIkaN26cu63c3FzNmjVL999/v7755hu1b99eF198sa655pomf28JCQlas2aNpkyZotTUVFVXV6tz585KS0vzGL06nSeffFKTJk3SCy+8oA4dOmj37t1N12kAkiSLYZywaQYA+Ilhw4bpggsu0Lx583zdFQAtDNNeAADAVAg/AADAVJj2AgAApsLIDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJX/D2na3hU3k/8KAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1402,7 +1403,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1429,12 +1430,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.137\n" + "The MSE loss is 0.861\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyz0lEQVR4nOzdd3hTZfsH8G+a7r33oKW0BcqGsimyRRAEVNYPcYuAIKCIIgKiuFBABV4XqEyVjVhktZTRFihlSOmGDlq66N7J+f0RWqkUaErSk6Tfz3Xlet8mJyd3HmKb+zz3cz8SQRAEEBEREREREZHG0xM7ACIiIiIiIiJqHCbxRERERERERFqCSTwRERERERGRlmAST0RERERERKQlmMQTERERERERaQkm8URERERERERagkk8ERERERERkZZgEk9ERERERESkJfTFDkATyeVy3Lx5ExYWFpBIJGKHQ0RERERERDpOEAQUFxfD1dUVenr3n29nEt+AmzdvwsPDQ+wwiIiIiIiIqIVJS0uDu7v7fR9nEt8ACwsLAIrBs7S0FDkaIiIiIiIi0nVFRUXw8PCoy0fvh0l8A2pL6C0tLZnEExERERERUbN52JJuNrYjIiIiIiIi0hJM4omIiIiIiIi0BJN4IiIiIiIiIi3BNfFERERERERNJAgCampqIJPJxA6FNJxUKoW+vv4jb2POJJ6IiIiIiKgJqqqqkJmZibKyMrFDIS1hamoKFxcXGBoaNvkcTOKJiIiIiIiUJJfLkZKSAqlUCldXVxgaGj7yDCvpLkEQUFVVhZycHKSkpKBNmzbQ02va6nYm8UREREREREqqqqqCXC6Hh4cHTE1NxQ6HtICJiQkMDAxw48YNVFVVwdjYuEnnYWM7IiIiIiKiJmrqbCq1TKr4vPATR0RERERERKQlmMQTERERERERaQlRk/iVK1eiR48esLCwgKOjI8aOHYu4uLh6xwwcOBASiaTe7bXXXnvgeQVBwJIlS+Di4gITExMMGTIECQkJ6nwrREREREREOqVVq1ZYvXq12GGoTGhoKCQSCQoKCsQO5ZGImsSHhYVh5syZiIiIwOHDh1FdXY1hw4ahtLS03nEvv/wyMjMz626fffbZA8/72WefYe3atdiwYQMiIyNhZmaG4cOHo6KiQp1vh4iIiIiISCukpaXhhRdeqOus7+XlhTlz5iAvL0/s0FRi4MCBmDt3br37+vTpg8zMTFhZWYkTlIqI2p0+JCSk3s+bNm2Co6Mjzp8/jwEDBtTdb2pqCmdn50adUxAErF69GosXL8aYMWMAAL/88gucnJywZ88eTJw4UXVvQGQV1TLoSSQw1OeqCCIiIiIiapzk5GT07t0bfn5+2LZtG7y9vfHPP//grbfewl9//YWIiAjY2to2e1wymQwSiURtzQINDQ0bnVdqMo3K/goLCwHgng/Mli1bYG9vj8DAQCxatAhlZWX3PUdKSgqysrIwZMiQuvusrKzQs2dPnDlzpsHnVFZWoqioqN5NG3x44CrGrT+FxOwSsUMhIiIiImrxBEFAWVWNKDdBEBod58yZM2FoaIi///4bwcHB8PT0xOOPP44jR44gIyMD7733Xt2xxcXFmDRpEszMzODm5oZvv/223vtdunQpPD09YWRkBFdXV7zxxht1j1dWVmLBggVwc3ODmZkZevbsidDQ0LrHN23aBGtra+zbtw/t2rWDkZERfvjhBxgbG99T8j5nzhwMGjQIAJCXl4dJkybBzc0Npqam6NChA7Zt21Z37PTp0xEWFoY1a9bULcm+fv16g+X0O3fuRPv27WFkZIRWrVph1apV9V63VatW+Pjjj/HCCy/AwsICnp6e+O677+oer6qqwqxZs+Di4gJjY2N4eXlh5cqVjf63aAqN2SdeLpdj7ty56Nu3LwIDA+vunzx5Mry8vODq6opLly5h4cKFiIuLw65duxo8T1ZWFgDAycmp3v1OTk51j/3XypUrsWzZMhW9k+aRV1KJg5czcbusGqO+Dsf7o9phcpAnJBKJ2KEREREREbVI5dUytFtySJTXvrp8OEwNH57e5efn49ChQ/joo49gYmJS7zFnZ2dMmTIFO3bswLp16wAAn3/+Od59910sW7YMhw4dwpw5c+Dn54ehQ4di586d+Oqrr7B9+3a0b98eWVlZuHjxYt35Zs2ahatXr2L79u1wdXXF7t27MWLECFy+fBlt2rQBAJSVleHTTz/FDz/8ADs7O7i7u2PJkiXYuXMnXnzxRQCKGfodO3bgo48+AgBUVFSgW7duWLhwISwtLfHnn3/i//7v/9C6dWsEBQVhzZo1iI+PR2BgIJYvXw4AcHBwwPXr1+u93/Pnz+OZZ57B0qVL8eyzz+L06dN4/fXXYWdnh+nTp9cdt2rVKnz44Yd499138ccff2DGjBkIDg6Gv78/1q5di3379uG3336Dp6cn0tLSkJaWptw/npI0JomfOXMmrly5gpMnT9a7/5VXXqn7/x06dICLiwsGDx6MpKQktG7dWiWvvWjRIsybN6/u56KiInh4eKjk3OpiZ26EkLkDsOD3iwhPyMV7u6/g+LUcfDq+A+zMjcQOj4iIiIiINFBCQgIEQUDbtm0bfLxt27a4ffs2cnJyAAB9+/bFO++8AwDw8/PDqVOn8NVXX2Ho0KFITU2Fs7MzhgwZAgMDA3h6eiIoKAgAkJqaio0bNyI1NRWurq4AgAULFiAkJAQbN27Exx9/DACorq7GunXr0KlTp7oYJk6ciK1bt9Yl8UePHkVBQQHGjx8PAHBzc8OCBQvqjp89ezYOHTqE3377DUFBQbCysoKhoeFDl2V/+eWXGDx4MN5///2693f16lV8/vnn9ZL4kSNH4vXXXwcALFy4EF999RWOHz8Of39/pKamok2bNujXrx8kEgm8vLwa+S/RdBqRxM+aNQsHDhzAiRMn4O7u/sBje/bsCQBITExsMImv/Ue6desWXFxc6u6/desWOnfu3OA5jYyMYGSkfYmvk6Uxfn4+CD+dSsFnIXE4EnsLI9YUYNXTnTDAz0Hs8IiIiIiIWhQTAymuLh8u2msro7Hl9717977n59qO9U8//TRWr14NHx8fjBgxAiNHjsTo0aOhr6+Py5cvQyaTwc/Pr97zKysrYWdnV/ezoaEhOnbsWO+YKVOmoFevXrh58yZcXV2xZcsWPPHEE7C2tgagmJn/+OOP8dtvvyEjIwNVVVWorKyEqampUmMQGxtb10etVt++fbF69WrIZDJIpYoxvTs+iUQCZ2dnZGdnA1CU7g8dOhT+/v4YMWIERo0ahWHDhikVh7JEXRMvCAJmzZqF3bt349ixY/D29n7oc2JiYgCgXoJ+N29vbzg7O+Po0aN19xUVFSEyMvKeD6Au0NOT4KX+Ptgzsy/aOJojp7gS036KwvL9V1FRLRM7PCIiIiKiFkMikcDUUF+UW2OX1fr6+kIikSA2NrbBx2NjY2FjYwMHh4dPCnp4eCAuLg7r1q2DiYkJXn/9dQwYMADV1dUoKSmBVCrF+fPnERMTU3eLjY3FmjVr6s5hYmJyT+w9evRA69atsX37dpSXl2P37t2YMmVK3eOff/451qxZg4ULF+L48eOIiYnB8OHDUVVV1agxUJaBgUG9nyUSCeRyOQCga9euSElJwYcffojy8nI888wzmDBhglriqCVqEj9z5kxs3rwZW7duhYWFBbKyspCVlYXy8nIAQFJSEj788EOcP38e169fx759+zBt2jQMGDCg3tWQgIAA7N69G4BiQOfOnYsVK1Zg3759uHz5MqZNmwZXV1eMHTtWjLfZLNq5WmL/7H54rreifOOnUykY++0pxGUVixwZERERERFpCjs7OwwdOhTr1q2ry7tqZWVlYcuWLXj22WfrEuuIiIh6x0RERNQrxTcxMcHo0aOxdu1ahIaG4syZM7h8+TK6dOkCmUyG7Oxs+Pr61rs1pkP8lClTsGXLFuzfvx96enp44okn6h47deoUxowZg6lTp6JTp07w8fFBfHx8vecbGhpCJnvwpGbbtm1x6tSpevedOnUKfn5+dbPwjWFpaYlnn30W33//PXbs2IGdO3ciPz+/0c9XlqhJ/Pr161FYWIiBAwfCxcWl7rZjxw4AioE/cuQIhg0bhoCAAMyfPx/jx4/H/v37650nLi6urrM9ALz99tuYPXs2XnnlFfTo0QMlJSUICQmBsbFxs76/5mZsIMWyMYH4aXp32Jsb4lpWMUZ/cxKbTqUo1a2SiIiIiIh01zfffIPKykoMHz4cJ06cQFpaGkJCQjB06FC4ubnVNZADFEntZ599hvj4eHz77bf4/fffMWfOHACK7vI//vgjrly5guTkZGzevBkmJibw8vKCn58fpkyZgmnTpmHXrl1ISUlBVFQUVq5ciT///POhMU6ZMgXR0dH46KOPMGHChHrLn9u0aYPDhw/j9OnTiI2Nxauvvopbt27Ve36rVq0QGRmJ69evIzc3t27m/G7z58/H0aNH8eGHHyI+Ph4///wzvvnmm3rr7R/myy+/xLZt23Dt2jXEx8fj999/h7Ozc13pvzqIuib+YYmlh4cHwsLClD6PRCLB8uXL6zoRtjSDApzw15wBeOuPiwiNy8HS/VcRGp+Dzyd0goOF9q39JyIiIiIi1WnTpg3OnTuHDz74AM888wzy8/Ph7OyMsWPH4oMPPqi35ff8+fNx7tw5LFu2DJaWlvjyyy8xfLhi3b+1tTU++eQTzJs3DzKZDB06dMD+/fvr1rxv3LgRK1aswPz585GRkQF7e3v06tULo0aNemiMvr6+CAoKQlRUVN0a/FqLFy9GcnIyhg8fDlNTU7zyyisYO3ZsvYndBQsW4LnnnkO7du1QXl6OlJSUe16ja9eu+O2337BkyRJ8+OGHcHFxwfLly+s1tXsYCwsLfPbZZ0hISIBUKkWPHj1w8OBBte11DwASgVO09ygqKoKVlRUKCwthaWkpdjhNJggCfjlzAx8djEVVjRx2Zob4/OmOGBTg9PAnExERERHRfVVUVCAlJQXe3t46X/FLqvOgz01j81BRy+lJvSQSCZ7r0wr7Z/VDgLMF8kqr8MKmc1iy9wqb3hEREREREWkhJvEtgL+zBfbM7IsX+ym6//9y5gZGfX0S/9wsfMgziYiIiIiISJMwiW8hjA2keH9UO/z8QhAcLIyQmF2Cp749jR/CkyGXc0UFERERERGRNmAS38IE+zkgZE5/DGnrhCqZHCv+jMW0n6Jwq6hC7NCIiIiIiIjoIZjEt0B25kb4flo3fPRUIIwN9HAyMRfDV59AyJUssUMjIiIiIiKiB2AS30JJJBJM6emFA7P7o72rJQrKqvHa5vNYtOsSyqpqxA6PiIiIiIiIGsAkvoXzdTTH7tf74tVgH0gkwLaoNIxaexKX0gvEDo2IiIiIiIj+g0k8wVBfD4seb4stL/aEs6UxknNLMW7daawLTYSMTe+IiIiIiIg0BpN4qtPH1x4hc/vj8UBn1MgFfBYSh8nfR+BmQbnYoRERERERkZaZPn06xo4dW/fzwIEDMXfu3Ec6pyrOoe2YxFM91qaGWDelKz6b0BGmhlJEpuRjxOoTOHDpptihERERERGRCkyfPh0SiQQSiQSGhobw9fXF8uXLUVOj3t5Yu3btwocfftioY0NDQyGRSFBQUNDkc+gqJvF0D4lEgme6e+DgG/3RycMaRRU1mLX1Aub/dhEllWx6R0RERESk7UaMGIHMzEwkJCRg/vz5WLp0KT7//PN7jquqqlLZa9ra2sLCwkL0c2g7JvF0X63szfDHa70xe5Av9CTAzuh0jFwTjujU22KHRkRERESkM2RyAWeS8rA3JgNnkvKapS+VkZERnJ2d4eXlhRkzZmDIkCHYt29fXQn8Rx99BFdXV/j7+wMA0tLS8Mwzz8Da2hq2trYYM2YMrl+//u97kMkwb948WFtbw87ODm+//TYEof77+G8pfGVlJRYuXAgPDw8YGRnB19cXP/74I65fv47HHnsMAGBjYwOJRILp06c3eI7bt29j2rRpsLGxgampKR5//HEkJCTUPb5p0yZYW1vj0KFDaNu2LczNzesuYNQKDQ1FUFAQzMzMYG1tjb59++LGjRsqGmnVYxJPD2Qg1cP8Yf7Y/kpvuFmbIDW/DE9vOIM1RxJQI5OLHR4RERERkVYLuZKJfp8ew6TvIzBnewwmfR+Bfp8eQ8iVzIc/WYVMTEzqZt2PHj2KuLg4HD58GAcOHEB1dTWGDx8OCwsLhIeH49SpU3XJcO1zVq1ahU2bNuGnn37CyZMnkZ+fj927dz/wNadNm4Zt27Zh7dq1iI2Nxf/+9z+Ym5vDw8MDO3fuBADExcUhMzMTa9asafAc06dPx7lz57Bv3z6cOXMGgiBg5MiRqK6urjumrKwMX3zxBX799VecOHECqampWLBgAQCgpqYGY8eORXBwMC5duoQzZ87glVdegUQieeQxVRd9sQMg7RDkbYuDc/rj/T1XsO/iTXx1JB4nEnKw+tnO8LA1FTs8IiIiIiKtE3IlEzM2R+O/8+5ZhRWYsTka66d2xYhAF7XGIAgCjh49ikOHDmH27NnIycmBmZkZfvjhBxgaGgIANm/eDLlcjh9++KEuud24cSOsra0RGhqKYcOGYfXq1Vi0aBHGjRsHANiwYQMOHTp039eNj4/Hb7/9hsOHD2PIkCEAAB8fn7rHbW1tAQCOjo6wtrZu8BwJCQnYt28fTp06hT59+gAAtmzZAg8PD+zZswdPP/00AKC6uhobNmxA69atAQCzZs3C8uXLAQBFRUUoLCzEqFGj6h5v27at8gPZjDgTT41mZWKAtZO6YPWznWFupI/zN27j8TXh2H0hXezQiIiIiIi0ikwuYNn+q/ck8ADq7lu2/6raSusPHDgAc3NzGBsb4/HHH8ezzz6LpUuXAgA6dOhQl8ADwMWLF5GYmAgLCwuYm5vD3Nwctra2qKioQFJSEgoLC5GZmYmePXvWPUdfXx/du3e/7+vHxMRAKpUiODi4ye8hNjYW+vr69V7Xzs4O/v7+iI2NrbvP1NS0LkEHABcXF2RnZwNQXCyYPn06hg8fjtGjR2PNmjX1Su01EZN4UtrYLm74a05/dPOyQUllDd7ccRFztl9AYXn1w59MRERERESISslHZmHFfR8XAGQWViAqJV8tr//YY48hJiYGCQkJKC8vx88//wwzMzMAqPvfWiUlJejWrRtiYmLq3eLj4zF58uQmvb6Jickjv4fGMjAwqPezRCKpt15/48aNOHPmDPr06YMdO3bAz88PERERzRafspjEU5N42Jpixyu9MG+oH6R6EuyNuYmRa8LV9kuGiIiIiEiXZBffP4FvynHKMjMzg6+vLzw9PaGv/+BV1l27dkVCQgIcHR3h6+tb72ZlZQUrKyu4uLggMjKy7jk1NTU4f/78fc/ZoUMHyOVyhIWFNfh4bSWATCa77znatm2Lmpqaeq+bl5eHuLg4tGvX7oHv6b+6dOmCRYsW4fTp0wgMDMTWrVuVen5zYhJPTaYv1cMbg9vg99d6w9PWFBkF5Zj43Rms+jsO1Wx6R0RERER0X44Wxio9Tp2mTJkCe3t7jBkzBuHh4UhJSUFoaCjeeOMNpKcrltbOmTMHn3zyCfbs2YNr167h9ddfv2eP97u1atUKzz33HF544QXs2bOn7py//fYbAMDLywsSiQQHDhxATk4OSkpK7jlHmzZtMGbMGLz88ss4efIkLl68iKlTp8LNzQ1jxoxp1HtLSUnBokWLcObMGdy4cQN///03EhISNHpdPJN4emRdPW1wcE5/jO/qDrkAfH0sERM2nMH13FKxQyMiIiIi0khB3rZwsTLG/XqgSwC4WBkjyNu2OcNqkKmpKU6cOAFPT0+MGzcObdu2xYsvvoiKigpYWloCAObPn4//+7//w3PPPYfevXvDwsICTz311APPu379ekyYMAGvv/46AgIC8PLLL6O0VJFDuLm5YdmyZXjnnXfg5OSEWbNmNXiOjRs3olu3bhg1ahR69+4NQRBw8ODBe0roH/Terl27hvHjx8PPzw+vvPIKZs6ciVdffVWJEWpeEuG/m/cRioqKYGVlhcLCwroPJTXO/os38d7uyyiqqIGpoRRLn2yPp7u5a/QWDUREREREyqqoqEBKSgq8vb1hbNy02fLa7vQA6jW4q/3m3Bzd6al5Pehz09g8lDPxpFKjO7nir7kD0NPbFmVVMrz9xyXM3BqNgrIqsUMjIiIiItIoIwJdsH5qVzhb1U/mnK2MmcDTfXGfeFI5N2sTbH25F/53Iglf/h2Pg5ezEH2jAF8+2wl9WtuLHR4RERERkcYYEeiCoe2cEZWSj+ziCjhaKEropXqsZKWGMYkntZDqSfD6QF/087XHnO0xSMktxZQfIvHKAB/MH+oPQ30WgRARERERAYrvzr1b24kdBmkJZlKkVh3drfHnG/0wKcgDggD8LywZ49afQmL2vd0liYiIiIiI6MGYxJPamRrqY+W4jtgwtRusTQ1wJaMIo74Ox5bIG2BfRSIiIiIiosZjEk/NZkSgMw7NHYB+vvaoqJbjvd1X8PIv55FXUil2aERERERERFqBSTw1KydLY/zyQhAWP9EWhlI9HIm9hRFrwnEiPkfs0IiIiIiIiDQek3hqdnp6ErzU3we7Z/aBr6M5coorMe2nKCzffxUV1TKxwyMiIiIiItJYTOJJNO1drbB/Vj9M6+0FAPjpVArGfnsKcVnFIkdGRERERESkmZjEk6hMDKVYPiYQPz7XHXZmhriWVYzR35zEplMpbHpHRERERCQSiUSCPXv2AACuX78OiUSCmJgYUWO6H02PT9WYxJNGGNzWCX/N7Y9gPwdU1cixdP9VPL/pLHKK2fSOiIiIiEjVsrKyMHv2bPj4+MDIyAgeHh4YPXo0jh49es+xHh4eyMzMRGBgoFpjamnJeFMxiSeN4WhhjE3P98DS0e1gqK+H0LgcjFh9Aseu3RI7NCIiIiIitZHJZAgNDcW2bdsQGhoKmUy9faKuX7+Obt264dixY/j8889x+fJlhISE4LHHHsPMmTPvOV4qlcLZ2Rn6+vpqjYsah0k8aRSJRILpfb2xf1Y/BDhbIK+0Ci9sOocle6+w6R0RERER6Zxdu3ahVatWeOyxxzB58mQ89thjaNWqFXbt2qW213z99dchkUgQFRWF8ePHw8/PD+3bt8e8efMQERFxz/H/nSEPDQ2FRCLBoUOH0KVLF5iYmGDQoEHIzs7GX3/9hbZt28LS0hKTJ09GWVlZ3XlCQkLQr18/WFtbw87ODqNGjUJSUlLd497e3gCALl26QCKRYODAgQAAuVyO5cuXw93dHUZGRujcuTNCQkIe+B7DwsIQFBQEIyMjuLi44J133kFNTU3d48XFxZgyZQrMzMzg4uKCr776CgMHDsTcuXMBAMuXL2+w8qBz5854//33GzXO6sIknjSSv7MF9szsixf6Kv5D/uXMDYz6+iT+uVkocmRERERERKqxa9cuTJgwAenp6fXuz8jIwIQJE9SSyOfn5yMkJAQzZ86EmZnZPY9bW1s3+lxLly7FN998g9OnTyMtLQ3PPPMMVq9eja1bt+LPP//E33//ja+//rru+NLSUsybNw/nzp3D0aNHoaenh6eeegpyuRwAEBUVBQA4cuQIMjMz697/mjVrsGrVKnzxxRe4dOkShg8fjieffBIJCQkNxpWRkYGRI0eiR48euHjxItavX48ff/wRK1asqDtm3rx5OHXqFPbt24fDhw8jPDwc0dHRdY+/8MILiI2NxdmzZ+vuu3DhAi5duoTnn3++0WOkDkziSWMZG0ixZHQ7/PxCEBwsjJCYXYKnvj2NH8KTIZez6R0RERERaS+ZTIY5c+Y02My59r65c+eqvLQ+MTERgiAgICDgkc+1YsUK9O3bF126dMGLL76IsLAwrF+/Hl26dEH//v0xYcIEHD9+vO748ePHY9y4cfD19UXnzp3x008/4fLly7h69SoAwMHBAQBgZ2cHZ2dn2NraAgC++OILLFy4EBMnToS/vz8+/fRTdO7cGatXr24wrnXr1sHDwwPffPMNAgICMHbsWCxbtgyrVq2CXC5HcXExfv75Z3zxxRcYPHgwAgMDsXHjxnpj7e7ujuHDh2Pjxo11923cuBHBwcHw8fF55LF7FEziSeMF+zkgZE5/DGnrhCqZHCv+jMW0n6Jwq6hC7NCIiIiIiJokPDz8nhn4uwmCgLS0NISHh6v0dVW5A1THjh3r/r+TkxNMTU3rJbhOTk7Izs6u+zkhIQGTJk2Cj48PLC0t0apVKwBAamrqfV+jqKgIN2/eRN++fevd37dvX8TGxjb4nNjYWPTu3RsSiaTe8SUlJUhPT0dycjKqq6sRFBRU97iVlRX8/f3rnefll1/Gtm3bUFFRgaqqKmzduhUvvPDCA0akeTCJJ61gZ26E76d1w0dPBcLYQA8nE3MxfPUJhFzJEjs0IiIiIiKlZWZmqvS4xmrTpg0kEgmuXbv2yOcyMDCo+/8SiaTez7X31ZbKA8Do0aORn5+P77//HpGRkYiMjAQAVFVVPXIs6jB69GgYGRlh9+7d2L9/P6qrqzFhwgSxw2IST9pDIpFgSk8vHJjdH+1dLVFQVo3XNp/Hol2XUFZV8/ATEBERERFpCBcXF5Ue11i2trYYPnw4vv32W5SWlt7zeEFBgUpfr1ZeXh7i4uKwePFiDB48GG3btsXt27frHWNoaAgA9craLS0t4erqilOnTtU79tSpU2jXrl2Dr9W2bVucOXOmXtXBqVOnYGFhAXd3d/j4+MDAwKDeevfCwkLEx8fXO4++vj6ee+45bNy4ERs3bsTEiRNhYmLStAFQISbxpHV8Hc2x+/W+eDXYBxIJsC0qDaPWnsSl9AKxQyMiIiIiapT+/fvD3d29Xsn33SQSCTw8PNC/f3+Vv/a3334LmUyGoKAg7Ny5EwkJCYiNjcXatWvRu3dvlb8eANjY2MDOzg7fffcdEhMTcezYMcybN6/eMY6OjjAxMUFISAhu3bqFwkJFU+u33noLn376KXbs2IG4uDi88847iImJwZw5cxp8rddffx1paWmYPXs2rl27hr179+KDDz7AvHnzoKenBwsLCzz33HN46623cPz4cfzzzz948cUXoaend8+/x0svvYRjx44hJCREI0rpASbxpKUM9fWw6PG22PJiTzhbGiM5txTj1p3GutBEyNj0joiIiIg0nFQqxZo1awDgnsSx9ufVq1dDKpWq/LV9fHwQHR2Nxx57DPPnz0dgYCCGDh2Ko0ePYv369Sp/PQDQ09PD9u3bcf78eQQGBuLNN9/E559/Xu8YfX19rF27Fv/73//g6uqKMWPGAADeeOMNzJs3D/Pnz0eHDh0QEhKCffv2oU2bNg2+lpubGw4ePIioqCh06tQJr732Gl588UUsXry47pgvv/wSvXv3xqhRozBkyBD07dsXbdu2hbGxcb1ztWnTBn369EFAQAB69uyp4lFpGomgys4GOqKoqAhWVlYoLCyEpaWl2OHQQ9wurcK7uy/jrzvr43t62+KrZzvD1Vr8UhciIiIi0k0VFRVISUmBt7f3PYmfMnbt2oU5c+bUa3Ln4eGB1atXY9y4caoIlRqhtLQUbm5uWLVqFV588cW6+wVBQJs2bfD666/fUznQFA/63DQ2D9V/5CiIRGZjZoh1U7ri93PpWLr/H0Sm5GPE6hP4eFwHjOroKnZ4RERERET3NW7cOIwZMwbh4eHIzMyEi4sL+vfvr5YZePrXhQsXcO3aNQQFBaGwsBDLly8HgLrZfwDIycnB9u3bkZWVJfre8HdjEk86QSKR4JkeHujhbYu52y/gYnohZm29gOPXcrBsTHuYG/GjTkRERESaSSqVYuDAgWKH0eJ88cUXiIuLg6GhIbp164bw8HDY29vXPe7o6Ah7e3t89913sLGxETHS+pjZkE7xtjfDHzP6YM2RBHwbmoid0ek4ez0fqyd2RldPzfkPj4iIiIiIxNOlSxecP3/+gcdo6spzNrYjnWMg1cOC4f7Y/nIvuFmbIDW/DE9vOIM1RxJQI5M//AREREREREQaikk86ayePnY4OKc/RndyhUwu4Ksj8Xj2uwik5ZeJHRoREREREVGTiJrEr1y5Ej169ICFhQUcHR0xduxYxMXFNXisIAh4/PHHIZFIsGfPngeed/r06ZBIJPVuI0aMUMM7IE1nZWKAtRM746tnO8HcSB/nb9zGk9+cRFZhhdihEREREZEO0NSSa9JMqvi8iJrEh4WFYebMmYiIiMDhw4dRXV2NYcOGobS09J5jV69efc/+iQ8yYsQIZGZm1t22bdumytBJi0gkEjzVxR1/zekPfycL3C6rxru7L/MXLhERERE1mYGBAQCgrIxVntR4tZ+X2s9PU4ja2C4kJKTez5s2bYKjoyPOnz+PAQMG1N0fExODVatW4dy5c3BxcWnUuY2MjODs7KzSeEm7ediaYu2kLhj99Ukcu5aNndEZmNDNXeywiIiIiEgLSaVSWFtbIzs7GwBgamqq1KQjtSyCIKCsrAzZ2dmwtrZ+pC0ENao7fWFhIQDA1ta27r6ysjJMnjwZ3377rVJJeWhoKBwdHWFjY4NBgwZhxYoVsLOza/DYyspKVFZW1v1cVFTUxHdAms7f2QJzhrTB54fisGz/P+jnaw9nK2OxwyIiIiIiLVSbn9Qm8kQPY21t/ciTzRJBQ2qK5XI5nnzySRQUFODkyZN197/66quQyWT44YcfAChKo3fv3o2xY8fe91zbt2+HqakpvL29kZSUhHfffRfm5uY4c+ZMg1c8li5dimXLlt1zf2FhISwtLR/9zZFGqZHJMX79aVxML8Rj/g74aXoPXjUlIiIioiaTyWSorq4WOwzScAYGBg+cgS8qKoKVldVD81CNSeJnzJiBv/76CydPnoS7u6LEed++fZg/fz4uXLgAc3NzAI1L4v8rOTkZrVu3xpEjRzB48OB7Hm9oJt7Dw4NJvA5LuFWMJ9aeRJVMjs8mdMQz3T3EDomIiIiIiFqwxibxGrHF3KxZs3DgwAEcP368LoEHgGPHjiEpKQnW1tbQ19eHvr6i+n/8+PEYOHBgo8/v4+MDe3t7JCYmNvi4kZERLC0t691It7VxssDcoW0AAB/uv4rMwnKRIyIiIiIiIno4UZN4QRAwa9Ys7N69G8eOHYO3t3e9x9955x1cunQJMTExdTcA+Oqrr7Bx48ZGv056ejry8vIa3RSPWoZX+vugk4c1iitr8M5OdqsnIiIiItJFcrlufc8XNYmfOXMmNm/ejK1bt8LCwgJZWVnIyspCebliVtTZ2RmBgYH1bgDg6elZL+EPCAjA7t27AQAlJSV46623EBERgevXr+Po0aMYM2YMfH19MXz48OZ/k6Sx9KV6+GJCRxhK9RAWn4Pfz6WLHRIREREREalQVmEFhq0+gePXdKf5oKhJ/Pr161FYWIiBAwfCxcWl7rZjxw6lzhMXF1fX2V4qleLSpUt48skn4efnhxdffBHdunVDeHg4jIyM1PE2SIu1cbLAm0P9AAAfHriKmwUsqyciIiIi0gU1Mjne2HYBidklWHU4DjIdmZEXdYu5ppQvN/Scu+8zMTHBoUOHHikualle7u+NkH+ycDGtAO/suoyfn2e3eiIiIiIibbfqcDyirufD3Egf30zqCqmebnzH14jGdkRi0pfqYdXTHWGor4cT8Tn47Vya2CEREREREdEjOH4tG+tDkwAAn03oiFb2ZiJHpDpM4okA+DpaYP6dsvoVB2JZVk9EREREpKVuFpTjzd9iAADP9fbCyA661eCcSTzRHS/190EXT0W3+oU7L7FbPRERERGRlqmWyTF72wUUlFWjg5sV3n2irdghqRyTeKI7pHoSfD6hEwz19RCekIvtZ1lWT0RERESkTb44FIfzN27Dwlgf307uCiN9qdghqRyTeKK7+DqaY8EwRVn9R3/GIoNl9UREREREWuFo7C3870QyAODzCZ3gaWcqckTqwSSe6D9e7OeDrp7WKKmswTssqyciIiIi0njpt8sw77eLAIDn+7bCiEBnkSNSHybxRP8h1ZPg86c7wehOWf22KJbVExERERFpqqoaOWZtvYDC8mp08rDGosd1bx383ZjEEzWgtYM5FgzzBwB89OdVpN8uEzkiIiIiIiJqyKch1xCTVgBLY318M6kLDPV1O83V7XdH9Ahe6OeNbl42KK2S4Z2dl1lWT0RERESkYQ79k4UfT6YAAFY90xketrq5Dv5uTOKJ7kPRrb4jjPT1cDIxF1ujUsUOiYiIiIiI7kjLL8OC3xXr4F/u742h7ZxEjqh5MIknegAfB3O8NVxRVv/xn7FIy2dZPRERERGR2CprZJi5NRrFFTXo6mmNt0cEiB1Ss2EST/QQz/f1Rvc7ZfULd16CXM6yeiIiIiIiMa08eA2X0gthbWqAryd3hYG05aS2LeedEjVRbbd6YwM9nE7KwxaW1RMRERERiebg5UxsOn0dAPDlM53gZm0ibkDNjEk8USN425vhreGKEp2VB1lWT0SkbdaFJqLrh4cRl1UsdihERPQIbuSVYuEflwAArwb7YFBAy1gHfzcm8USN9HyfVujRygZlVTK8/QfL6omItEVJZQ2+PZaI/NIq/HYuTexwiIioiSqq76yDr6xBdy+bui2hWxom8USNpKcnwecTFGX1Z5LzsCXyhtghERFRI+yLuYnSKhkAICw+R+RoiIioqT76MxZXMopga2aIryd3aVHr4O/WMt81URO1sjfD27Vl9X9dY1k9EZGGEwSh3kXXxOwSpN/m724iIm2z/+JN/Bqh+H3+5TOd4GLVstbB341JPJGSpvdphaBWtiirkuGtPy6yrJ6ISIPFpBXgn5tFMNTXQ4CzBQAgNI6z8URE2iQltxSLdl0GAMx8rDUG+juKHJG4mMQTKUlPT4LPJnSEiYEUEcn52MyyeiIijbUlUrGjyKiOLhjV0QUAS+qJiLRJRbUMr2+JRkllDXp62+LNIX5ihyQ6JvFETdDK3gwLRygaaaw8eA2peSzNJCLSNIVl1dh/8SYAYEpPr7qZm9OJuaiqkYsZGhERNdKy/VcRm1kEOzNDrJ3UBfotdB383TgCRE00rXcr9PS2RXk1y+qJiDTRzuh0VNbIEeBsga6e1mjnYgl7c0OUVslw7ka+2OEREdFD7I3JwLaoVEgkwJqJXeBkaSx2SBqBSTxRE9V2qzcxkCIyJR+/nLkudkhERHTH3Q3tpvTygkQigZ6eBAP8HAAAYVwXT0Sk0RKzS+rWwc8e1Ab92tiLHJHmYBJP9Ag87UzxzuOKbvWfhsThRl6pyBEREREARKbkIymnFKaGUozt7Fp3f3BtEs918UREGqu8SoaZW6JRViVDbx87zBncRuyQNAqTeC0lkws4k5SHvTEZOJOUBxlLuUXzf7280Muntqz+EsvqiYg0QG1DuzGd3WBhbFB3/4A2DpBIgGtZxcgsLBcrPCIieoCl+/5B3K1i2JsbYc2kzpDqScQOSaMwiddCIVcy0e/TY5j0fQTmbI/BpO8j0O/TYwi5kil2aC2Snp4En43vBFNDKaJS8vEzy+qJiESVW1JZ9zdxSk/Peo/ZmBmik7s1AOAEZ+OJiDTOruh07DiXBj0JsHZiZzhacB38fzGJ1zIhVzIxY3M0Mgsr6t2fVViBGZujmciLpH5Z/TVcz2VZPRGRWH4/l45qmYBOHtYIdLO65/GB/oqSeu4XT0SkWRJuFeO93VcAAHMG+6GPL9fBN4RJvBaRyQUs238VDRVr1963bP9VltaLZGpPL/T2sUNFtRxvs6yeiEgUcrmArVF3Gtr9Zxa+Vu26+JMJuaiWcas5IiJNUFZVg9e3RKO8WoZ+vvaYNchX7JA0FpN4LRKVkn/PDPzdBACZhRWISuG2OWLQ05PgswkdFWX11/Ox6fR1sUMiImpxwhNzkZZfDktjfYzu6NrgMR3drWFjaoDiyhpcSC1o3gCJiKhB7+/5BwnZJXC0MMLqiVwH/yBM4rVIdvH9E/imHEeq52FrikUj2wIAPjt0DSksqycialZbIhSz8OO7ucPEUNrgMdK7tpoLjctuttiIiKhhv51Lw87odMU6+EldYG9uJHZIGk2/MQddunRJ6RO3a9cO+vqNOj01UmObOrD5Q8NkcgFRKfnILq6Ao4Uxgrxt1XKFb0qQJ/66nInTSXl46/eL2PFqb15JJCJqBpmF5Th6TZGU36+UvlawnwP2xtxEWHwO3h4R0BzhERFRA+KyirFkr2Id/Pxh/ujlYydyRJqvUVl2586dIZFIIAiNW+Orp6eH+Ph4+Pj4PFJwVF+Qty1crIyRVVjR4Lp4CQBnK0VySvWFXMnEsv1X6y1HcLEyxgej22FEoItKX0tPT4JPx3fEiNUncO7GbWw8lYKX+vO/BSIiddtxNg0yuYCe3rbwdbR44LG1M/H/3Cyqu7hLRETNq7SyBq9vOY+KajmC/RwwI7i12CFphUaX00dGRiIlJeWht+TkZBgb8w+hOkj1JPhgdDsAioT9brU/fzC6HWd9/0OMjv53l9V/figOyTklKn8NIiL6V41Mju1RaQCAKb28Hnq8vbkROtzpXH8iPletsRER0b0EQcB7uy8jKacUzpbG+PKZTtBjHtMojUrig4OD4evrCy8vr4feWrVqhQEDBsDExETdsbdIIwJdsH5qVzhb1b9Q4mxljPVTu6p8VlnbidnRf0pPT/T1tUNljRxv/XGJuwYQEanRsWvZyCqqgJ2ZIYa3d2rUc/7dao7r4omImtv2s2nYE3MTUj0Jvp7cBXZcB99ojSqnP378uFInPXjwYJOCocYZEeiCoe2cm2V9t7ZTpqN/79aqXX8jkSjK6od/dQLnWVZPRKRWWyJTAQBPd/eAkX7DDe3+K9jPAV8fS0R4Qi5kcoF/R4mImsnVm0X4YN8/AIAFw/zRoxWXAytDqe70RUVFkMvv3U9VJpOhqKhIZUHRw0n1JOjd2g5jOruhd2s7fvG4D7E7+rvbmOLdJ/4tq09iWT0Rkcql5pXhREIOAGBy0IMb2t2ts4c1LI31UVhejZi0AjVFR0REdyuprMGsrdGoqpHjMX8HvDqAk1zKanQSv3v3bnTv3h0VFfcmOxUVFejRowf279+v0uCIHpUmdPSfHOSJfr72irL63y+yrJ6ISMW2nU2FICia1XnamTb6efpSPfRvoyipD4vPUVd4RER0hyAIWLTrMpJzS+FqZYwvn+nMdfBN0Ogkfv369Xj77bdhanrvH0czMzMsXLgQ33zzjUqDI3pUtR397/erQQJFl3p1dvSXSCT4dEJHmBvpIzq1AD+dTFHbaxERtTSVNTL8dvZOQ7uHbCvXkOA76+LDuC6eiEjttkSmYv/Fm9DXk+DryV1hY2YodkhaqdFJ/JUrVzBw4MD7Pj5gwABcvnxZFTERqYymdPR3szbBe3fK6r/4m2X1RESqcuifW8grrYKTpREGBzgq/fzgO1vNXcooRF5JparDIyKiO65kFGL5gasAgIUjAtDNy0bkiLRXo5P427dvo6am5r6PV1dX4/bt2yoJikiVNKWj/8QeHujfRlFWv4Bl9UREKrEl4gYAYGIPT+hLlWr1AwBwsjRGWxdLCAIQnsCt5oiI1KGoohoz76yDH9LWCS/19xY7JK3WqO70ANCqVSucO3cOAQEBDT5+7tw5eHk9fF9WIjFoQkd/iUSCT+50q7+QWoAfwpPxanDrZnt9IiJdk5hdjMiUfOhJgIlBHk0+z0B/B8RmFiE0Lhtju7ipMEIiIhIEAe/svIQbeWVwszbBqqc7QSLhOvhH0ehL1uPGjcN7772HW7du3fNYVlYWFi9ejPHjx6s0OCJV0oSO/m7WJlh8p6x+1eF4JGYXN3sMRES6onZbucFtneBiZdLk89SW1J9IyIWcVVJERCr1y5kbOHg5CwZSCb6d0hVWpgZih6T1Gp3Ev/POO7CwsECbNm3w+uuvY82aNVizZg1mzJgBPz8/mJub45133lFnrEQ64dkeHhjg54CqGjkW/H6JZfVERE1QXiXDzvPpAJrW0O5u3bxsYG6kj/zSKlzOKFRFeEREBOBSegFW/KlYB7/o8bbo7GEtbkA6otFJvIWFBU6dOoWpU6dix44dePPNN/Hmm29ix44dmDp1Kk6ePAkLCwt1xkqkEyQSCT4Z1wEWRvqISSvA9+HJYodERKR1Dly6iaKKGrjbmGDAnW3imspAqoe+vnYAuNUcEZGqFJYr1sFXywQMb++E5/u2EjsknaFUBxgrKyusW7cOubm5uHXrFrKyspCXl4d169bBxobdBYkay9XaBO+PUnTN/5Jl9URESqstpZ/c01MlewwP9Fd0tg/lVnNERI9MEAS8/cdFpOWXw8PWBJ9N4Dp4VVK+jSsUM4kODg5wdHTkPwZREz3d3R0D/RVl9fN/v4QamVzskIiItMKVjELEpBXAQCrB092a3tDubrXr4mPSClBQVqWScxIRtVQbT13HoX9uwVCqh28nd4WVCdfBq1KTkngienQSiQQrx3WAhbE+LqYV4PvwFLFDIiLSClujFLPww9s7w8HCSCXndLU2gZ+TOeTcao6I6JHEpBVg5V+xAID3nmiLju7W4gakg0RN4leuXIkePXrAwsICjo6OGDt2LOLi4ho8VhAEPP7445BIJNizZ88DzysIApYsWQIXFxeYmJhgyJAhSEhIUMM7IHo0Llb/ltV/dTgeCbdYVk9E9CAllTXYeyEDADC1l2q3tq2djee6eCKipikoq8LMLYp18E90cMG03tyCXB1ETeLDwsIwc+ZMRERE4PDhw6iursawYcNQWlp6z7GrV69udOn+Z599hrVr12LDhg2IjIyEmZkZhg8fjoqKClW/BaJH9nQ3dzzm74AqmRwLfr/IsnoiogfYcyEDpVUytHYwQ09vW5Weu3ZdfFh8DreaIyJSkiAIWPD7JWQUlMPLzhQrx3fg0ms1eaQk/lGT4pCQEEyfPh3t27dHp06dsGnTJqSmpuL8+fP1jouJicGqVavw008/PfScgiBg9erVWLx4McaMGYOOHTvil19+wc2bNx86g08kBkVZfUdFWX16If53gt3qiYgaIghCXUO7KT29VP7lsHsrG5gaSpFTXInYrCKVnpuISNf9EJ6CI7G3YKivWAdvacx18OqidBIvl8vx4Ycfws3NDebm5khOViQc77//Pn788cdHCqawULE3q63tv1fWy8rKMHnyZHz77bdwdnZ+6DlSUlKQlZWFIUOG1N1nZWWFnj174syZMw0+p7KyEkVFRfVuRM3J2coYS+6U1a85koC4LJbVExH914W0AsRmFsFIXw/ju7qr/PxG+lL0aa3Yai40jiX1RESNdf7GbXwacg0AsGRUOwS6WYkckW5TOolfsWIFNm3ahM8++wyGhoZ19wcGBuKHH35ociByuRxz585F3759ERgYWHf/m2++iT59+mDMmDGNOk9WVhYAwMnJqd79Tk5OdY/918qVK2FlZVV38/BQTadbImVM6OaOQQGOqJLJ8dYfLKsnIvqvLRGKWfjRnVxhZaqeGZ7g2pJ6JvFERI1yu7QKs7dGo0YuYHQnV0zp6Sl2SDpP6ST+l19+wXfffYcpU6ZAKpXW3d+pUydcu3atyYHMnDkTV65cwfbt2+vu27dvH44dO4bVq1c3+byNsWjRIhQWFtbd0tLS1Pp6RA2RSCT4+ClFt/pLLKsnIqqnoKwKBy7dBAC1fkEceKe53fnU2yiqqFbb6xAR6QK5XMC832Jws7AC3vZmWDmO6+Cbg9JJfEZGBnx9fe+5Xy6Xo7q6aX/sZs2ahQMHDuD48eNwd/+3PO7YsWNISkqCtbU19PX1oa+vDwAYP348Bg4c2OC5akvub926Ve/+W7du3bcc38jICJaWlvVuRGJwtjLG0tHtAQCrj8SzrJ6I6I6d0RmorJGjnYslOntYq+11PGxN4eNgBplcwCluNUdE9ED/O5GM43E5MLqzDt7cSF/skFoEpZP4du3aITw8/J77//jjD3Tp0kWpcwmCgFmzZmH37t04duwYvL296z3+zjvv4NKlS4iJiam7AcBXX32FjRs3NnhOb29vODs74+jRo3X3FRUVITIyEr1791YqPiIxjOvqhsEBjqiWCVjw+0VUs6yeiFo4RUO7GwCAKb081T7Lw63miIge7uz1fHzxt2J78KVPtkc7V06ENhelL5UsWbIEzz33HDIyMiCXy7Fr1y7ExcXhl19+wYEDB5Q618yZM7F161bs3bsXFhYWdWvWraysYGJiAmdn5wZnzz09Pesl/AEBAVi5ciWeeuopSCQSzJ07FytWrECbNm3g7e2N999/H66urhg7dqyyb5eo2UkkEnw8rgOGfhmGyxmF+F9YEmYNaiN2WEREoolIzkdyTinMDKUY09lN7a830N8RG09dR2hcDgRBYGkoEdF/5JVUYvbWC5DJBYzt7IqJPdhTrDkpPRM/ZswY7N+/H0eOHIGZmRmWLFmC2NhY7N+/H0OHDlXqXOvXr0dhYSEGDhwIFxeXutuOHTuUOk9cXFxdZ3sAePvttzF79my88sor6NGjB0pKShASEgJjY2OlzkskFidLYyx9UlFWv+ZoAq5xqyMiasE235mFH9vFrVlKNXt628JIXw9ZRRWIv1Wi9tcjItImcrmAN3+7iKyiCrR2MMNHT3EdfHOTCIIgiB2EpikqKoKVlRUKCwu5Pp5EIwgCXv7lHI7EZiPQzRK7X+8LA6nS192IiLRaTnEleq88ihq5gINv9G+2cs3pG6MQGpeDRY8H4NXg1s3ymkRE2uDb44n4/FAcjA30sHdmP/g7W4gdks5obB7apIygoKAAP/zwA959913k5+cDAKKjo5GRkdG0aInoHrXd6q1MDHAlowjrQ5PEDomIqNn9di4NNXIBXTytm3W9JdfFExHdKyI5D6vurINfPiaQCbxIlE7iL126BD8/P3z66af4/PPPUVBQAADYtWsXFi1apOr4iFo0R0tjLH2yHQDg62MJiM1kWT0RtRwyuYBtUYq94af09GrW1x54Z7/4s9fzUVJZ06yvTUSkiXKKK/HGtguQC8D4ru54pjvXwYtF6SR+3rx5mD59OhISEuqtMR85ciROnDih0uCICBjb2Q1D2jqxWz0RtTgnEnKQfrsclsb6GNXRpVlf29veDF52pqiWCTidyK3miKhlk8kFvLkjBtnFlWjjaI4Px7YXO6QWTekk/uzZs3j11Vfvud/Nza2uuzwRqY6iW30grE0N8M/NIqw7zrJ6ImoZtkQoZuEndPOAsYG02V+fJfVERArfHEvEycRcmBhIsW5KV5gacj94MSmdxBsZGaGo6N6S3vj4eDg4OKgkKCKqz9HCGMvudKv/+lgCrt5kWT0R6babBeU4du0WAGByT09RYhjor/heU7vVHBFRS3Q6MRerj8YDAFaMDUQbJ66DF5vSSfyTTz6J5cuXo7q6GoBiljA1NRULFy7E+PHjVR4gESk82ckVw9o5oUbOsnoi0n3bz6ZBLgC9fGzh62guSgy9fOxgKNVDRkE5knJKRYmBiEhM2cUVeGN7DAQBeKa7O8Z3cxc7JEITkvhVq1ahpKQEjo6OKC8vR3BwMHx9fWFhYYGPPvpIHTESERQXzFY8pSirv5pZhG+PJ4odEhGRWlTL5NguUkO7u5ka6qOnjy0AIDQuW7Q4iIjEIJMLmLMtBrkllfB3ssCyJwPFDonuUDqJt7KywuHDh3HgwAGsXbsWs2bNwsGDBxEWFgYzMzN1xEhEd9xdVv/NsUT8c7NQ5IiIiFTvaGw2sosrYW9uiOHtnUWNheviiailWnM0AWeS82BqKMW3U7rCxLD5e5NQw5TqSFBdXQ0TExPExMSgb9++6Nu3r7riIqL7eLKTKw5ezsShf25hwe+XsHdmXxjqK309johIY22JvAEAeKa7h+i/3wb6O2DFn7GITMlHeZWMX2KJqEUIT8jB18cSAAArx3UQbVkTNUypv4wGBgbw9PSETCZTVzxE9BASiQQrxnaAjakBYjOL8A3L6olIh9zIK0V4Qi4kEmBSkDgN7e7W2sEcbtYmqKqRIyI5T+xwiIjU7lZRBebeWQc/KcgTYzq7iR0S/YfSl7ffe+89vPvuu8jPz1dHPETUCA4WRlg2RrEuad3xRFzJYFk9EemGrXfWwgf7OcDD1lTkaBQXToPrutRzXTwR6bYamRyzt11AXmkV2rpY4oPR7cQOiRqgdBL/zTff4MSJE3B1dYW/vz+6du1a70ZEzWN0RxeMaO9c162+qobd6olIu1XWyPD7uXQA4ja0+y+uiyeiluKrI/GISsmHuZE+1k3pCmMDLiHSREqtiQeAsWPHqiEMIlJWbbf6qOv5uJZVjG+OJWDeMH+xwyIiarKQK1nIL62Ci5UxHrsz+60J+vraw0AqwfW8MlzPLUUrezbyJSLdExqXjW+PJwEAPhnfAd78XaexlE7iP/jgA3XEQURNYG9uhOVj2mPW1gv4NjQJw9o7I9DNSuywiIiaZEukopR+Yg9P6Es1p2GnuZE+unvZ4kxyHkLjsjHd3lvskIiIVCqzsBxv7ogBAPxfLy+M6ugqbkD0QJrzF5KImmRUR1eM7OAMGcvqiUiLJdwqRlRKPqR6Ejzbw0PscO5Ruy6eJfVEpGuqZXLM3noBt8uqEehmifeeaCt2SPQQSifxNjY2sLW1vedmZ2cHNzc3BAcHY+PGjeqIlYjuY/mYQNiaGeJaVnHddiBERNqkdhZ+SFtHOFsZixzNvQbeSeLPJOehopq79BCR7vji7zicu3EbFkb6+HYy18FrA6WT+CVLlkBPTw9PPPEEli1bhmXLluGJJ56Anp4eZs6cCT8/P8yYMQPff/+9OuIlogbYmxvhw9pu9aFJuJzObvVEpD3Kq2TYGa15De3u5u9kAWdLY1RUyxGVwh16iEg3HI29hf+FJQMAPpvQEV52XAevDZReE3/y5EmsWLECr732Wr37//e//+Hvv//Gzp070bFjR6xduxYvv/yyygIlogd7oqMLDl52wZ+XM7Hg94vYN7svjPR5JZWINN/+izdRXFEDT1tT9PO1FzucBkkkEgT7OWDHuTSExuVggJ/mNN4jImqKjIJyzP/9IgBgep9WeLyDi8gRUWMpPRN/6NAhDBky5J77Bw8ejEOHDgEARo4cieTk5EePjoiUsnxMe9iZGSLuVjHWHn30snqZXMCZpDzsjcnAmaQ8yOSCCqIkIqpvS+QNAMDknp7Q05OIHM39/bsunvvFE5F2U6yDj0ZBWTU6uVth0cgAsUMiJSidxNva2mL//v333L9//37Y2toCAEpLS2FhYfHo0RGRUuzMjfDhWEVZ/YawZFxKL2jyuUKuZKLfp8cw6fsIzNkeg0nfR6Dfp8cQciVTRdESEQGX0wtxMb0QBlIJnu7mLnY4D9TX1x5SPQmSckqRll8mdjhERE32Wcg1RKcWwNJYH99M7srqTS2jdDn9+++/jxkzZuD48eMICgoCAJw9exYHDx7Ehg0bAACHDx9GcHCwaiMlokYZ2cEFT3R0wZ+XFGX1+2f3U/oXc8iVTMzYHI3/zrtnFVZgxuZorJ/aFSMCWXJFRI9ua5RiFv7xQBfYmRuJHM2DWZkYoKunNc5ev42w+BxM7aWZ6/eJiB7k8NVb+D48BQDw+dOd4GFrKnJEpCylZ+JffvllhIWFwczMDLt27cKuXbtgamqKsLAwvPjiiwCA+fPnY8eOHSoPloga58MxgbA3N0T8rRKsOaJcWb1MLmDZ/qv3JPAA6u5btv8qS+uJ6JEVVVRjb8xNAMCUnp4iR9M4A/0dAQChcdxqjoi0T1p+Geb/FgMAeLGfN4a3dxY3IGoSpWfiAaBv377o27evqmMhIhWxNTPEirGBeG1zNDaEJWF4e2d08rBu1HOjUvKRWVhx38cFAJmFFYhKyUfv1naqCZiIWqS9FzJQViWDr6M5grxtxQ6nUYL9HPD5oTicTspFVY0chvpKz4cQEYmiqkaOWdsuoKiiBp09rLFwBNfBa6sm/eVJSkrC4sWLMXnyZGRnK5q7/PXXX/jnn39UGhwRNd2IQBeM7uQKuQAs+P1io/c1zi6+fwLflOOIiBoiCELd3vBTenpCItHchnZ3a+diCXtzI5RVyXDuOreaIyLtsfKvWFxMK4CViQG+mdyFFyG1mNL/cmFhYejQoQMiIyOxc+dOlJSUAAAuXryIDz74QOUBElHTLXuyPezNDZGQXYI1jexW72hhrNLjiIgaEp16G9eyimFsoIdxXTS7od3d9PQUW80BQGg8S+qJSDuEXMnExlPXAQCrnu4Edxuug9dmSifx77zzDlasWIHDhw/D0NCw7v5BgwYhIiJCpcER0aNRlNV3AAD8LywJMWkFD31OkLctXKyMcb85MQkAFytjrSl9JSLNtCVCMQs/uqMrrEwNRI5GOXVbzXFdPBFpgdS8Mrz1xyUAwCsDfDCknZPIEdGjUjqJv3z5Mp566ql77nd0dERubq5KgiIi1RkR6IwnlSirl+pJ8MHodgBwTyJf+/MHo9tBqsF7ORORZrtdWoUDlxXbVU7Rwg7v/X3toScB4m4V42ZBudjhEBHdV2WNDDO3RqO4ogbdvGzw1nB/sUMiFVA6ibe2tkZm5r37RF+4cAFubm4qCYqIVEtRVm+ExOwSfHUk/qHHjwh0wfqpXeFsVb9k3tnKmNvLEdEj2xmdjqoaOQLdLNHJ3UrscJRmY2ZY1yz0BEvqiUiDffxnLC5nFMLG1ABfT+oCAynXwesCpbvTT5w4EQsXLsTvv/8OiUQCuVyOU6dOYcGCBZg2bZo6YiSiR2RjZoiPngrEq7+ex/cnkjG8vTO6eto88DkjAl0wtJ0zolLykV1cAUcLRQk9Z+CJ6FHUb2jnpTUN7f5roJ8jLqQWIDQuBxODtGN7PCJqWf68lImfz9wAAHz5bGe4WpuIHBGpitKXYj7++GMEBATAw8MDJSUlaNeuHQYMGIA+ffpg8eLF6oiRiFRgeHtnjO2sKKt/q5Hd6qV6EvRubYcxnd3Qu7UdE3giemRnkvKQklsKcyN9PNnJVexwmqx2XfypxFxUy+QiR0NEVN/13FIs3KlYBz9jYGs85u8ockSkSkon8YaGhvj++++RlJSEAwcOYPPmzbh27Rp+/fVXSKVSdcRIRCqy9Mn2cLAwQlJOKb46/PCyeiIiVaudhX+qixvMjJQuCNQYHd2sYGtmiOLKGkTfuC12OEREdSqqZXh9SzRKKmsQ1MoW84f6iR0SqViTF0V4enpi5MiReOaZZ9CmTRtVxkREamJtaoiPn1J0q/8+PBnRqfziSUTNJ7u4Aof+yQIATO6p3SXoenoS9G9jDwAI47p4ItIgHx64iquZRbAzM8TaSV2gz3XwOqdRl8DnzZvX6BN++eWXTQ6GiNRvaDsnPNXFDbsvZGDB7xdx8I3+MDZgFQ0Rqd/v59JRIxfQzcsGbV0sxQ7nkQ30d8DemJsIjcvB2yMCxA6HiAh7YzKwJTIVEgnw1bOd72lSTLqhUUn8hQsX6v0cHR2Nmpoa+PsrtiiIj4+HVCpFt27dVB8hEancB6Pb4WRiLpJzSvHl4Xi8O7Kt2CERkY6TyQVsrWtop92z8LUGtHGARAJczSxCdlEFHC35ZZmIxJOUU4J3d10GAMx6zBcD/BxEjojUpVG1FcePH6+7jR49GsHBwUhPT0d0dDSio6ORlpaGxx57DE888YS64yUiFbA2NcTKu8rqz3M9JxGp2Yn4HGQUlMPa1AAjO+jGNpV25kbo4KbYIo8l9UQkpopqGWZuiUZplQy9fGwxdwjXwesypRdIrFq1CitXroSNzb/bU9nY2GDFihVYtWqVSoMjIvUZ0s4J47q4QVCiWz0RUVNtiVRsczShq7tOLeEZeGemK5RJPBGJaOm+f3Atqxj25oZYO7ELdxTScUon8UVFRcjJufcPVU5ODoqLi1USFBE1jw9Gt4ejhRGSc0vxxaE4scMhIh2VUVCOY9eyAQCTdKSUvlbtVnMnE3JRw63miEgEuy+kY/vZNEgkwJqJXbi0pwVQOol/6qmn8Pzzz2PXrl1IT09Heno6du7ciRdffBHjxo1TR4xEpCZWpgZYOU5RVv/jqRScu54vckREpIu2R6VCLgB9WtuhtYO52OGoVCd3a1iZGKCwvBoX0wvEDoeIWpjE7GK8u+sKAOCNQW3Q19de5IioOSidxG/YsAGPP/44Jk+eDC8vL3h5eWHy5MkYMWIE1q1bp44YiUiNBrd1wviu7oqy+j8uobyKZfVEpDrVMjm2n00DAEzp6SVyNKqnL9VDv9qt5uJYUk9Ezae8SoaZWy6gvFqGvr52eGMwt/1uKZRO4k1NTbFu3Trk5eXhwoULuHDhAvLz87Fu3TqYmZmpI0YiUrMlo9vBydIIKbml+OJvltUTkeocuXoLOcWVsDc3wtB2TmKHoxZcF0+10m+XITr1Nqq5tIKawZK9VxB3qxgOFkZY/SzXwbckjdpiriFmZmbo2LGjKmMhIpFYmRjgk3Ed8fyms/jpVApGBDqjRytbscMiIh2w5c62cs/2cIehvtJzB1oh+E4Sfym9ELkligsW1PKUVtbgyW9OIb+0ChZG+ujra49gfwcE+znA1dpE7PBIx/xxPh2/n0+HngRYO7ELHCz4e6cladRf03HjxqGoqKjRJ50yZQqys7ObHBQRNb/HAhwxoZt7Xbd6ltUT0aNKyS3FycRcSCTAxB661dDubo6WxmjnYgkACE/gbHxLtScmA/mlVQCA4soahPyThUW7LqPPJ8cw7KswfPTnVZxKzEVlDf++0qOJv1WMxXsU+8G/OcQPvVvbiRwRNbdGzcTv3bu3wY70DREEAfv378eHH34IR0fHRwqOiJrX+6Pa4WRCLq7nleHzQ3FYMrqd2CERkRbbFqWYhR/o5wAPW1ORo1Gvgf4OuJpZhLC4HDzVxV3scKiZCYKAzRGKz/uixwPQy8cOoXE5CIvPRkxaAeJvlSD+Vgm+D0+BiYEUfVrbYaC/A4L9HOFpp9v/bZBqCIKA1PwynE7Kw9qjCaiolqOjmxVeC24tdmgkgkYl8YIgwM/PT92xEJHIrEwMsHJ8Bzy/8Sw2nlaU1Qd5s6yeiJRXUS3D7+d0t6HdfwX7OWBdaBJOJORCLhegx7WpLUp0agFiM4tgqK+HZ7p7wMbMEJ08rDFnSBsUlFUhPCEXYfE5CIvPQU5xJY5ey8bRa9kA/oG3vRmC/RwQ7O+A3j52MDaQiv12SAMIgoDreWWISM5DZHIeIpLzkVVUUe+YSxmFGPD5cXwwuh1GBLqIFCmJoVFJ/PHjx5U+sZubm9LPISLxPebviKe7ueP38+l4+4+LODinP0wNm9w+g4haqJArWbhdVg1XK2M8FqD7lXldvWxgYaSP/NIqXM4oRCcPa7FDoma0JeIGAGBURxfYmBnWe8za1BCjO7lidCdXCIKgqNiIz0FYXA7O37iNlNxSpOSWYtPp6zDS10NPHzsE+zlgoL8DfOzNIJHwglBLIAgCknNL7yTt+YhIzkN2ceVDn5dVWIEZm6OxfmpXJvItSKO+mQcHB6s7DiLSIItHtUP4nbL6z0LisPTJ9mKHRERaZkukIqmZGOTZIjomG0j10NfXHiH/ZCE0LodJfAtyu7QKBy5nAgCm9npw1YlEIkF7Vyu0d7XC6wN9UVRRjdOJeXeS+mzcLKzAifgcnIjPwYcHAHcbkzsJvSN6t7aDuREvqusKQRCQmF2CiJT8usQ9t6R+0m6or4cuHtYI8rbFlsgbyC+tvvc8ACQAlu2/iqHtnFvE71t6hO70RKS7rEwM8Mn4Dpi+8Sw2nb6OxwOd0dOHTVOIqHHisopx9vptSPUkmNjDQ+xwms1AfwdFEh+fjTlDuF9zS/HH+XRU1cjRzsUSFVUy7I3JgKOFMYK8bR+aUFkaG2BEoDNGBDrXJXVh8TkIjctBVEo+0m+XY0tkKrZEpsJAKkF3L1vFWnp/B/g7WXCWXovI5QISsksQmZKHiOQ8RKXkI7ekqt4xRvp66Oppg54+tujlY4fOHtYwNpDiTFIevj6WeN9zCwAyCysQlZLPJncthKhJ/MqVK7Fr1y5cu3YNJiYm6NOnDz799FP4+/vXHfPqq6/iyJEjuHnzJszNzeuOCQgIuO95p0+fjp9//rnefcOHD0dISIja3guRrhno74hnu3tgx7k0zPvtIna/3geOlsZih0VEWmDrnVn4Ye2cWtTvjWB/xVZzF9MKcLu06p6yatI9crlQV3WSUVCGyT9E1j3mYmWs1FpliUSCNk4WaONkgZf6+6CsqgYRyXkIjVMk9an5ZTiTnIczyXlY+dc1OFsa162l7+trDysTA7W8R2oauVxA3K3iuvXsUdfz63YvqGVsoIduXjbo6W2HXj526ORhBSP9e3siZBdX3HNfQxp7HGk/UZP4sLAwzJw5Ez169EBNTQ3effddDBs2DFevXoWZmRkAoFu3bpgyZQo8PT2Rn5+PpUuXYtiwYUhJSYFUev/GHyNGjMDGjRvrfjYy4t6JRMp6b1RbRKbk4XpeGZ7beBY7Xu0FS2N+SSCi+yurqsGu6AwALaOh3d1crEzg72SBuFvFCE/MxZOdXMUOidTsVJJi6RkAFJbX1HvsUdcqmxrqY1CAEwYFOAEArueWIjQuG2HxOTiTnIesogrsOJeGHefSINWToKuntSKp93NEe1dLNldsZnK5gNisorr17FHX81FQVr/83cRAiu6tbNDTWzHT3tHdGob6D9/x29GicRdDG3scaT+JIAiC2EHUysnJgaOjI8LCwjBgwIAGj7l06RI6deqExMREtG7d8JYK06dPR0FBAfbs2dOkOIqKimBlZYXCwkJYWlo26RxEuiI1rwzj1p9GbkklevnYYtPzQeycS0T3teNsKhbuvIxWdqY4Nn9gi0skPj4Yi+9OJGN8V3eseqaT2OGQmr3yyzn8ffXWfR+XAHC2MsbJhYNUula5olqGqJT8uo73idkl9R63NzfEgDaKWfr+bRxgy6oQlZPJBcRmFiHizkz72ev5KCyvn7SbGkrRvZVtXdLewc2qUUl7Q6/V79NjyCqsQEOJm7o+Z9T8GpuHNmkmvqamBqGhoUhKSsLkyZNhYWGBmzdvwtLSEubm5k0OurCwEABga9vwllalpaXYuHEjvL294eHx4DV2oaGhcHR0hI2NDQYNGoQVK1bAzq7hNSKVlZWorPy3kURRUVET3wGR7vG0M8Wm53tg4ncRiEjOx7zfYvD1pK78I0FEDdoSqdgre3JPzxaXwAPAQD8HfHciGWHxOdxqTsdlFVbgSOz9E3hAfWuVjQ2kGODngAF+DngfQFp+GU4kKDren0rMRW5JFXZdyMCuCxmQSICO7tZ1He87uVvzb3gT1MjkuJpZf6a9uKJ+9YWZoRQ9vG3vlMfbItDNCgZS5ZP2/5LqSfDB6HaYsTkaEqBeIl/7L/nB6Hb8d21BlJ6Jv3HjBkaMGIHU1FRUVlYiPj4ePj4+mDNnDiorK7Fhw4YmBSKXy/Hkk0+ioKAAJ0+erPfYunXr8Pbbb6O0tBT+/v74888/7zsLDwDbt2+HqakpvL29kZSUhHfffRfm5uY4c+ZMgyX4S5cuxbJly+65nzPxRP86nZiL6RvPokomx7TeXlj2ZHs21CGiei6lF+DJb07BUKqHiHcHt8jZv8oaGbosP4yyKhkOzO6HQDcrsUMiNfnqcDzWHE1o1LFrJnbGmM7Ns/1yVY0c52/cvtMgLxvXsorrPW5lYoD+bewx0N8RA/zsWYJ9HzUyOa7cLLqzpj0P567fRnFl/aTdwkj/TtKumGlv72oJfRUk7fcTciUTy/ZfRWbhv2vfle29QJqtsTPxSifxY8eOhYWFBX788UfY2dnh4sWL8PHxQWhoKF5++WUkJDTul9l/zZgxA3/99RdOnjwJd3f3eo8VFhYiOzsbmZmZ+OKLL5CRkYFTp07B2Lhxv3SSk5PRunVrHDlyBIMHD77n8YZm4j08PJjEE/3HgUs3MXvbBQgCMH+oH2YPZvdlIvrXOzsvYfvZNIzt7IrVE7uIHY5oXvr5HI7E3sJbw/0x8zFfscMhNaiWydHv02O4VfTwfbwBYNvLvUTrGn6rqKJuX/rwhBwU/Wf2uJ2LpaLjvZ8DunrZqGTmWBtVy+S4nFFYN9N+7no+Sqtk9Y6xMNZHz7qZdju0c7Vs9tlvmVxAVEo+sosrGr0LAmkPtZXTh4eH4/Tp0zA0rH91vVWrVsjIyFA+UgCzZs3CgQMHcOLEiXsSeACwsrKClZUV2rRpg169esHGxga7d+/GpEmTGnV+Hx8f2NvbIzExscEk3sjIiI3viBphVEdX5BZXYun+q1h1OB4OFkaYGOQpdlhEpAGKKqqxN+YmAGDKQ/bK1nUD/R1wJPYWwuJymMTrqKOxt3CrqBK2ZoYwlEpwq6jygWuVg7wbXiraHJwsjfFMdw88090DNTI5LqYXIDROsZb+UnohrmYW4WpmEdaFJsHCSB99fe0RfCepd7U2ES1udauqkeNyRgEi7iTt52/cRtl/knYrEwME3TXT3tal+ZP2/5LqSbiNHCmfxMvlcshksnvuT09Ph4WFhVLnEgQBs2fPxu7duxEaGgpvb+9GPUcQhHoz5w+Tnp6OvLw8uLiwzIToUU3v642ckkp8ezwJ7+6+DDtzIwxt5yR2WEQksj0XMlBeLYOfkzm6e9mIHY6ogv0UW82dT72NwvJqbv2lgzZHKHo/PNvDA53crbRmrbK+VA/dvGzRzcsW84f5I7ekEuF31tKfSMhFfmkVQv7JQsg/WQAAPyfzO2vpHdG9lU2D259pi8oaGS6lF9Zt+Xb+xm2UV9fPaaxNDerNtAc4W7CvBWkkpZP4YcOGYfXq1fjuu+8AKPa0LCkpwQcffICRI0cqda6ZM2di69at2Lt3LywsLJCVpfiFYWVlBRMTEyQnJ2PHjh0YNmwYHBwckJ6ejk8++QQmJib1XisgIAArV67EU089hZKSEixbtgzjx4+Hs7MzkpKS8Pbbb8PX1xfDhw9X9u0SUQMWDPNHTnElfjuXjllbo7HlpZ7o3kq8WQYiEpcgCNhyJ6mZ0tOrxffL8LA1RWsHMyTllOJ0Yi4e78BJBF2SkluKk4m5kEiAyUGe8LA1xfqpXe9Zq+ysBWuV7c2N8FQXdzzVxR1yuYDLGYV1He8vpN5G/K0SxN8qwffhKTAxkKJPa7s7pfeO8LQzFTv8B6qskSEmtQCRKYqZ9ujU26ioltc7xtbM8E7Sbotere3g58iknbSD0mvi09LSMGLECAiCgISEBHTv3h0JCQmwt7fHiRMn4Ojo2PgXv88f+Y0bN2L69Om4efMmXnrpJZw/fx63b9+Gk5MTBgwYgCVLlsDf37/eeWqfU15ejrFjx+LChQsoKCiAq6srhg0bhg8//BBOTo2bLeQWc0QPVyOT49Vfz+PotWxYGuvjjxl94OekXDUOEemGs9fz8fSGMzAxkCLyvcGwNObM8/L9V/HTqRQ8290Dn07oKHY4pEIrDlzFDydTMNDfAZueD6q7X9fWKheUVeFkYi7C7pTeZxfXr4L1tjdT7Evv74Be3nYwMVR+ll6VY1ZRLcOF1AJEJOchMiUP0akFqKqpn7TbmRmil48devooyuN9HcyZtJNGUVtjO0CxxdyOHTtw8eJFlJSUoGvXrpgyZQpMTHRj3QyTeKLGKa+SYcoPEYhOLYCLlTF2zuij0+vniKhhc7dfwJ6Ym0xY73IiPgfTfoqCs6Uxziwa1OKrE3RFRbUMPT8+isLyavwwrTuGtJDlZIIgIDazuK7j/fkbt1Ej/zeFMNLXQ08fO0VS7+eA1g5mD/3MP2qn9YpqGaJv3EbEnZn2mLR7k3Z7cyP08rFFTx879PaxRWsHc/63SBpNLUl8dXU1AgICcODAAbRt21YlgWoiJvFEjVdQVoUJG84gMbsEvo7m+OO13rA2bXnbStXStZkYoofJL61Cr4+Pokomx75ZfdHR3VrskDRCRbUMnZf/jYpqOULm9keAM79P6II/zqdjwe8X4WZtghNvP9Zif78XV1TjdFKeokFeXDZu3pWIA4C7jUldQt/H1x7mRvVX8IZcycSMzdH3NAOsHc31U7vek8iXVdUg+kYBIlMUW75dTCtElax+0u5oYVRvpt3H/uEXE4g0iVq60xsYGKCiouLhBxJRi2FtaohfXgjCuHWnkZhdghc2ncWWl3o1qaxO23H/VmqJ/jifhiqZHB3crJjA38XYQIrePnY4HpeD0LgcJvE6YnPEDQDApCCPFpvAA4CFsQGGt3fG8PbOEAQBSTkldR3vI5PzkX67HFsiU7ElMhUGUgm6e9ki2N8BA/0d4OtgjmX7rzbYzV+AIpFftv8q+rS2R0xabdKej0vpBaiW1X+Ws6Vx3Ux7Lx87tLIzZdJOLYLS5fQff/wx4uPj8cMPP0BfX+m+eFqBM/FEyou/VYwJ60+jqKIGgwMc8b//6wb9FrTXbFNmFYi0nVwuYNCqUFzPK8Mn4zpwy8n/2HQqBUv3X0VvHztse6WX2OHQI7qSUYhRX5+Evp4EpxcNgqOFsdghaaSyqhpEJOchLC4HofE5uJFXVu9xG1MD3C6rfuh5pBIJZP9JU1ytjOvNtHvaMmkn3aK2feLPnj2Lo0eP4u+//0aHDh1gZmZW7/Fdu3YpHy0RaT0/Jwv8NL0HpvwQiaPXsvHu7sv4dHzHFvHHVSYXGjWrMLSdc4ueuSHdczopD9fzymBhpI/RnVzFDkfjDPR3BPZfxbkb+SiprLmnpJi0y5ZIxQ4MwwOdmcA/gKmhPgYFOGFQgKJfwPXc0rq19GeS8xqVwAOATBDgZm1Sl7T39rGDu41Ji/heQfQwSv81sba2xvjx49URCxFpue6tbPHN5K549ddz+O1cOhwsjPDW8ACxw1K7qJT8eiX0/yUAyCysQFRKPnq3tmu+wEgnaVLfhS2RitLip7q6wYwJ6j1a2ZvBy84UN/LKcDoxF8PaO4sdEjVRcUU19sZkAACm9vQSORrt0sreDK3szfBcn1aoqJbh59PXsfKvaw993tqJnfFkZ7dmiJBI+yj9F3fjxo3qiIOIdMTQdk74+KkOeGfXZXx7PAkO5kaY3tdb7LDUKru4cb1CGnsc0f1oUt+FW0UV+PvqLQCKveGpYQP9HPDzmRsIjc9hEq/Fdl/IQFmVDL6O5ujlYyt2OFrL2ECKl/r7YNPp68gqrGiwgk0CwNnKGE90ZHUPqYYmXfxWlZazYJWIms3EIE/MH+oHAFh24CoOXLopckTq1diySpZf0qOo7bvw36qPrMIKzNgcjZArmc0az29n0yCTC+jRygb+zhbN+traZKC/IwAgLC4HTdjVlzSAIAh1De2m9PRkOfcjkupJ8MHodgD+7RtTq/bnD0a30/okizRDyJVM9Pv0GCZ9H4E522Mw6fsI9Pv0WLP/zVQ1pZN4b29v+Pj43PdGRAQAswb5YlpvLwgCMG/HRZxOzBU7JLUJ8raFi5XxPV9GakmgmC0N8ubsDTXNw/ouAIq+CzJ58ySJMrmAbVGK9cGchX+wXj52MNTXQ0ZBOZJySsQOh5rg7PXbiL9VAhMDKcZ1dRc7HJ0wItAF66d2hbNV/YvbzlbGbARLKqNpF79VSely+rlz59b7ubq6GhcuXEBISAjeeustVcVFRFpOIpHgg9HtkVtSiYOXs/DKr+ex/ZVeCHSzEjs0laudVZixORoSoF6ixVkFUgVN67sQemdfaBtTA4wIZIn4g5gYStHT2xbhCbkIjcuBryOrFrRN7Sz8k51cYWViIHI0umNEoAuGtnPWuTJn0gy63nRY6SR+zpw5Dd7/7bff4ty5c48cEBHpDqmeBF8+0xn5pVGISM7H9I1nsWtGH3jamYodmsrVzir8d72yM/eJJxXQtL4LtV26n+7uAWMDabO8pjYL9nNAeEIuwuJz8FJ/Vi1qk9ySSvx1Z7Zuai9WnaiaVE/Chq+kFpp28VvVVLYm/vHHH8fOnTtVdToi0hHGBlJ8N6072rpYIrekEtN+ikRuSaXYYanFiEAXnFw4CNte7oU1Eztj28u9cHLhICbw9Mg0qe9C+u0yHI/LBgBM4r7wjVK7Lj4yOR9lVTUiR0PK+O1cGqplAjq5W6GDu+5VkhHpKk27+K1qKkvi//jjD9jacr0nEd3L0tgAPz/fA+42JrieV4bnN55FSaVufpGtnVUY09kNvVvbaWWJFmkeTeq7sD0qDYIA9PO1h7e9mdpfTxe0djCDm7UJqmRyRCTniR0ONZJMLmDrnaqTKZyFJ9IqmnTxWx2UTuK7dOmCrl271t26dOkCFxcXvPvuu3j33XfVESMR6QBHS2P88kIQbM0McTmjEK/9eh5VNXKxwyLSCprSzblaJsf2s2kAFF26qXEkEgkG+jsAAELjckSOhhrrRHwO0m+Xw9JYH6O53RmRVtGki9/qoPSa+DFjxtTbWkNPTw8ODg4YOHAgAgICVBocEekWHwdzbJzeA5O+j8DJxFws+P0iVj/bGXqcrSZ6KE3ou3D46i3kllTCwcIIQ9o5qf31dEmwnwO2RKYiLF47knhd3FdZWbUN7SZ084CJIXs/EGkTXW86rHQSv3TpUjWEQUQtRScPa6yf2g0vbjqLfRdvwt7cCO+Past9d4kaQexuzlsiFUnNxB4eMJCqbEVei9DH1x4GUglu5JUhJbdUo5cihFzJvOdikUsLa9KZfrsMx+70fpjMqhMiraQJF7/VRekkXiqVIjMzE46OjvXuz8vLg6OjI2QymcqCIyLdFOzngC+e7oS5O2Lw06kUOFoa4bXg1mKHRaQVxOrmnJxTglOJedCTABPZ0E5p5kb66NHKFqeT8hAWlw1ve2+xQ2pQ7b7K/92WqXZf5Zayh/e2qFQIAtDbxw6+juZih0NETST2xW91UfoyuiA0tNseUFlZCUNDw0cOiIhahrFd3PDeyLYAgE/+uoad59NFjoiIHmRblKLB12P+jnCzNhE5Gu0U7HdnXbyGltQ/bF9lQLGvskze8HdBXVFVI8eOO70fuK0ckfbTxabDjZ6JX7t2LQBFc5YffvgB5ub/XpWUyWQ4ceIE18QTkVJeHuCDnJJKfHciGW/vvARbM0M8FuD48CcSUbOqqJbh9zsX2qb04ix8Uw30d8TKv64hIjkPFdUyGBto1jprXd9XubEO/ZOF3JIqOFgYYVh79n4gIs3T6CT+q6++AqCYid+wYQOk0n//8BgaGqJVq1bYsGGD6iMkIp32zogA5BRXYveFDLy+JRpbX+6JLp42YodFRHc5eDkTBWXVcLM2QbAfL7Q1lZ+TOZwtjZFVVIHIlPy6mXlNoev7KjcWez8QkaZrdBKfkpICAHjsscewa9cu2NjwSzYRPTo9PQk+m9AReaVVOBGfgxc2ncXvr/XhGkQiDbLlzl7Zk4I8dKIMUSy1W81tP5uG0LhsjUvidX1f5cZIzC5GRHI+9CTAJPZ+ICINpfTlxePHjzOBJyKVMpDqYf2UrujkboXbZdV47qcoZD2gpJN0i0wu4ExSHvbGZOBMUp7Or7fVNrGZRTh/4zb09SR4pruH2OFovdrEXRO3mtP1fZUbY3OE4oLVoAAnuLL3AxFpKKW70wNAeno69u3bh9TUVFRVVdV77Msvv1RJYETUspgZ6eOn6T0wYcMZpOSW4rmfovDba71hZWIgdmikRtzKSvNtvTMLP6y9ExwtdXcGtrn0bWMPqZ4EyTmlSMsvg4etqdgh1dH1fZUfpqyqBjujFb0fprL3AxFpMKVn4o8ePQp/f3+sX78eq1atwvHjx7Fx40b89NNPiImJUUOIRNRS2Jkb4ZcXguBgYYS4W8V4+edzqKjmtpW6qnYrq/820qrdyirkSqZIkVGt0soa7L6QAQCY0pNdulXB0tgA3e70/dDELvW1+yo7W9W/YONsZazz28vtv3gTxRU18LQ1xYA2mrXUgYjobkon8YsWLcKCBQtw+fJlGBsbY+fOnUhLS0NwcDCefvppdcRIRC2Ih60pfn4+CBZG+oi6no852y+wvFoHcSsr7bDv4k2UVNbA294MvX10txt5cwv2v1NSH5ctciQNGxHogpMLB2Hby72wZmJnbHu5F04uHKTTCTzwbyn95J6e0NPRagMi0g1KJ/GxsbGYNm0aAEBfXx/l5eUwNzfH8uXL8emnn6o8QCJqedq5WuK7ad1hKNXDoX9u4f29VyAITOZ0iTJbWZE4BEHA5ghFl+7JQUxqVKl2XfzppDxU1mhmtZEu7qv8IBfTCnA5oxCGUj083c1d7HCIiB5I6STezMysbh28i4sLkpKS6h7Lzc1VXWRE1KL1bm2H1RM7QyJRrMldczRB7JBIhbiVlea7lF6If24WwVBfDxOY1KhUe1dLOFgYoaxKhnPXb4sdDgF1F6xGdnCGnbmRyNEQET2Y0kl8r169cPLkSQDAyJEjMX/+fHz00Ud44YUX0KtXL5UHSEQt18gOLlg+JhAAsPpIQt2XLNJ+3MpK89XulT2qgwtszAxFjka3SCQSje5S39IUllVj/6WbAICpvdj7gYg0n9JJ/JdffomePXsCAJYtW4bBgwdjx44daNWqFX788UeVB0hELdv/9fLCG4N8AQBL9l5ByJUskSMiVeBWVpqtsLwa+y4qkpop7NKtFrVJfKiGrotvSf6ITkdFtRwBzhbo5sVtlIlI8ymVxMtkMqSnp8PTU/EH3czMDBs2bMClS5ewc+dOeHnx6iURqd6bQ/0wKcgDcgF4Y/sFRCbniR0SPaLarawA3JPIt4StrDTd7ruSmq6eTGrUoX8be+hJgPhbJbhZUC52OC2WIAh1VSdTenlBIuHvHCLSfEol8VKpFMOGDcPt21y/RUTNRyKR4MMxgRjazglVNXK89Ms5XMsqEjssekQteSsrTaZIahRduqf09NSJpEYmF3AmKQ97YzJwJilPI3Y9sDY1RGcPawAsqRfTmaQ8JOeUwsxQiqe6uIkdDhFRo+gr+4TAwEAkJyfD29tbHfEQETVIX6qHryd1wf/9GImz12/juZ+isHNGH7jbmIodGj2CEYEuGNrOGVEp+cguroCjhaKEnjPw4jl7/TYSsktgaijFWB1IakKuZGLZ/qv1dkNwsTLGB6PbiX6haKC/I6JTCxAal41JQVy2IIbNd2bhx3Rxg7mR0l+LiYhEofSa+BUrVmDBggU4cOAAMjMzUVRUVO9GRKQuxgZS/DCtB/yczHGrqBLTfopCfmmV2GHRI2ppW1lputrS4jGdXWFhbCByNI8m5EomZmyOvmc7w6zCCszYHI2QK5kiRaZQuy7+VGIeqmVyUWNpibKLKvD3P7cAAFN7ckkoEWkPpZP4kSNH4uLFi3jyySfh7u4OGxsb2NjYwNraGjY2XDdHROplZWqAn18IgquVMZJzSvH8prMoq6oROywinZBXUom/LiuaR04O0u6kRiYXsGz/VTRUOF9737L9V0Utre/gZgVbM0OUVNbg/A0uVWxu28+moUYuoKunNdq5WoodDhFRoyldN3T8+HF1xEFE1GguVib45cUgTNhwBhfTCvD6lmh8P607DKRKX5ckorv8cT4dVTI5OrlboYO7ldjhPJKolPx7ZuDvJgDILKxAVEo+ere2a77A7qKnJ8GANvbYE3MTYfE56OUjThwtUY1Mjm1Rit4P3FaOiLSN0kl8cHCwOuIgIlKKr6MFfnyuB6b8EIHQuBws3HkJq57upBNNuIjEIJcL2BpV29BO+5Oa7OL7J/BNOU5dBvo7Yk/MTcXvsREBosbSkhyPy0FmYQVsTA0wsgObaBKRdmnStFV4eDimTp2KPn36ICMjAwDw66+/4uTJkyoNjojoQbp52eDbyV0h1ZNgV3QGPgm5JnZIRFrrVFIubuSVwcJYH6M6aX9S42hh/PCDlDhOXfq3sYdEAsRmFuFWkbgXFFqSzRGK3g9Pd/eAsYFU5GiIiJSjdBK/c+dODB8+HCYmJoiOjkZlZSUAoLCwEB9//LHKAyQiepDBbZ2wclwHAMD/wpLx48kUkSMi0k61Sc34ru4wNdT+Lt1B3rZwsTLG/WpzJFB0qQ/ytm3OsO5hZ26Ejm6KpQvcaq55pOaV4USCYqwnc1cAItJCTepOv2HDBnz//fcwMPi3a23fvn0RHR2t0uCIiBrjme4eeGu4PwDgwwNXsTcmQ+SIiLRLVmEFjsRmAwAm99SNpEaqJ8EHo9sBwD2JfO3PH4xupxG7IQT7OwJgEt9ctkTdgCAoqiBa2ZuJHQ4RkdKUTuLj4uIwYMCAe+63srJCQUGBKmIiIlLa6wNbY3qfVgCABb9fRHgCvwwTNdaOs2mQyQUEtbKFn5OF2OGozIhAF6yf2hXOVvVL5p2tjLF+alfR94mvVbvVXHh8Dmq41ZxaVdbI8Pu5dABsaEdE2kvpejlnZ2ckJiaiVatW9e4/efIkfHx8VBUXEZFSJBIJloxqh9ySShy4lInXfj2P7a/01voO20TqViOTY/vZOw3teunGLPzdRgS6YGg7Z0Sl5CO7uAKOFooSek2Yga/V2cMaViYGKCyvxsX0AnTzErfEX5f9dTkL+aVVcLEyxuAAR7HDISJqEqVn4l9++WXMmTMHkZGRkEgkuHnzJrZs2YIFCxZgxowZ6oiRiKhR9PQkWPVMJ/T1tUNplQzTN0YhJbdU7LCINFptl25bM0OMCHQWOxy1kOpJ0Lu1HcZ0dkPv1nYalcADivj6t7EHAITGsYpInWp7P0zs4Ql9bktKRFpK6d9e77zzDiZPnozBgwejpKQEAwYMwEsvvYRXX30Vs2fPVkeMRESNZqQvxYap3dDe1RJ5pVWY9lOk6FtIEWmyLZF3unR3c4eRPrt0i2XgnXXxTOLV51pWEc7duA2pngQTgzzEDoeIqMmULqeXSCR477338NZbbyExMRElJSVo164dzM3N1REf3YdMJkN4eDgyMzPh4uKC/v37Qyrll68H4ZgpT1vHzMLYAJueD8L49aeRml+G6T+dxY5Xe8HC2ODhT35E2jpmYuKYKUeV45WWX1bXTG2SDnfp1obP2AA/xUz85YxC5JZUwt7cSNR4tGHMlFU7Cz+snROcLFW/taAujpm6ccyUxzFTnk6OmfAIUlNThdTU1Ec5hUYqLCwUAAiFhYVih9KgnTt3Cu7u7gKAupu7u7uwc+dOsUPTWBwz5enCmKXklAjdPvxb8Fp4QJj03RmhorpGra+nC2PW3DhmylH1eH36V6zgtfCAMPWHCBVHqjm06TM2cs0JwWvhAWHn+TRR49CmMWus4opqod37fwleCw8IJxNyVH5+XRwzdeOYKY9jpjxtG7PG5qFKJ/HV1dXC4sWLBUtLS0FPT0/Q09MTLC0thffee0+oqqpqcsCaRJOT+J07dwoSiaTeBxGAIJFIBIlEorEfSDFxzJSnS2N2Ka2g7ovb61vOCzKZXC2vo0tj1lw4ZspR9XhVVsvqLnL9dTlTTVGLS9s+Y7UXVd7YFi1aDNo2Zo3165nrgtfCA8Jjnx8X5HLV/h3Q1TFTJ46Z8jhmytPGMWtsHioRBEFo/Lw9MGPGDOzatQvLly9H7969AQBnzpzB0qVLMXbsWKxfv16Z02mkoqIiWFlZobCwEJaWlmKHU0cmk6FVq1ZIT09v8HGJRAJ3d3ekpKRof4mIinDMlKeLY3YyIRfPb4pCtUzA9D6t8MHodpBIVNfYShfHTN04ZspRx3gduHQTs7ZegJOlEU4uHAQDHWvypY2fsaiUfDzzvzOwMTXAucVDm70BnzaOWWMIgoDH14TjWlYxFj/RFi/1V91uSro6ZurEMVMex0x52jpmjc1Dlf6LvXXrVmzatAmvvvoqOnbsiI4dO+LVV1/Fjz/+iK1btyp1rpUrV6JHjx6wsLCAo6Mjxo4di7i4uHrHvPrqq2jdujVMTEzg4OCAMWPG4Nq1aw88ryAIWLJkCVxcXGBiYoIhQ4YgISFB2beqccLDw+/7QQQU7zstLQ3h4eHNGJVm45gpTxfHrF8be6x6pjMAYNPp61gXmqTS8+vimKkbx0w56hivLRGKbeWe7eGpcwk8oJ2fsa6e1rAw1sftsmpczihs9tfXxjFrjOjU27iWVQwjfT1M6Oau0nPr6pipE8dMeRwz5en6mCn9V9vIyOiePeIBwNvbG4aGhkqdKywsDDNnzkRERAQOHz6M6upqDBs2DKWl/24J1a1bN2zcuBGxsbE4dOgQBEHAsGHDIJPJ7nvezz77DGvXrsWGDRsQGRkJMzMzDB8+HBUV2t2hOjMzU6XHtQQcM+Xp6pg92ckVS0a1AwB8figOv51NU9m5dXXM1IljphxVj1didgnOJOdBTwJM7KGbXbq18TOmL9VDP9/areaym/31tXHMGmPznQtWozq6wtpUue+qD6OrY6ZOHDPlccyUp+tjpnQSP2vWLHz44YeorKysu6+yshIfffQRZs2apdS5QkJCMH36dLRv3x6dOnXCpk2bkJqaivPnz9cd88orr2DAgAFo1aoVunbtihUrViAtLQ3Xr19v8JyCIGD16tVYvHgxxowZg44dO+KXX37BzZs3sWfPHmXfrkZxcXFR6XEtAcdMebo8Zi/088Zrwa0BAIt2X8bR2FsqOa8uj5m6cMyUo+rx2halSGoGBTjB1dqkyXFpMm39jA30dwCAul0DmpO2jtmD5JdW4c9Lii/pU3upfgcGXRwzdeOYKY9jpjxdHzOl18Q/9dRTOHr0KIyMjNCpUycAwMWLF1FVVYXBgwfXO3bXrl1KBZOYmIg2bdrg8uXLCAwMvOfx0tJSLF68GHv37sW1a9canPlPTk5G69atceHCBXTu3Lnu/uDgYHTu3Blr1qy55zmVlZX1LkoUFRXBw8NDY9fEZ2RkoKF/Nk1d2yEmjpnydH3MBEHAgt8vYWd0OowN9LDlpZ7o5mX7SOfU9TFTB46ZclQ5XhXVMvT8+CgKy6ux8fkeeOzO/uS6Rls/Y5mF5ei98hgkEiB68VDYmKl25vhBtHXMHuS7E0n4+OA1tHe1xIHZ/VTaDwXQzTFTN46Z8jhmytPWMVPbmnhra2uMHz8eo0aNgoeHBzw8PDBq1CiMGzcOVlZW9W7KkMvlmDt3Lvr27XtPAr9u3TqYm5vD3Nwcf/31Fw4fPnzf0v2srCwAgJOTU737nZyc6h77r5UrV9aL28NDM0sLpVJp3UWI//4Rqv159erVGvVBFBvHTHm6PmYSiQSfjO+Ax/wdUFEtxwubziHhVvEjnVPXx0wdOGbKUeV4/XkpE4Xl1XC3McGANg6qD1ZDaOtnzMXKBAHOFhAEIDwxt1lfW1vH7H7kcgFbIhVVJ1N7eak8gQd0b8yaA8dMeRwz5en8mKmmGf6je+211wQvLy8hLe3evVELCgqE+Ph4ISwsTBg9erTQtWtXoby8vMHznDp1SgAg3Lx5s979Tz/9tPDMM880+JyKigqhsLCw7paWlqaxW8wJQsP7HXp4eGjkNgmagmOmPF0fs9LKamHMNycFr4UHhF4fHxFuFpQ98jl1fczUgWOmHFWM11PfKj733xxLUGOkmkMbP2Mf/3lV8Fp4QHhzxwVRXl8bx6whYXHZgtfCA0LgkhChtLJara+lK2PWnDhmyuOYKU/bxkxtW8ypw6xZs7B3716cOHEC3t7eDzy2qqoKNjY2+OGHHzBp0qR7Hm9KOf1/aeoWc3eTyWQIDw9HZmYmXFxc0L9/f+29ktRMOGbK0/Uxyy+twoQNp5GcU4o2jub4/bXej9z0SNfHTB04Zsp5lPG6erMII9eGQ19PgjOLBsPBwkjN0WoGbfuMnU7KxeTvI2Fvboiod4dAr5m3mgO0b8wa8sov5/D31Vt4rrcXlo25d5mmqunCmDU3jpnyOGbK06Yxa2weqnQSn5eXhyVLluD48ePIzs6GXC6v93h+fn6jzyUIAmbPno3du3cjNDQUbdq0eehzKisrYWNjg3Xr1mH69OkNntPV1RULFizA/PnzASgGw9HREZs2bcLEiRMf+hrakMQTkWqk3y7D+PWncauoEt29bLD5pZ4wNtDMX+xEj2rxnsvYHJGKJzq64NvJXcUOh+6jqkaOLsv/RmmVDAdm90Ogm3JLFEnRW6DvJ8cgF4C/3xwAPycLsUMiInqoxuah+sqe+P/+7/+QmJiIF198EU5OTo+0vmjmzJnYunUr9u7dCwsLi7o161ZWVjAxMUFycjJ27NiBYcOGwcHBAenp6fjkk09gYmKCkSNH1p0nICAAK1euxFNPPQWJRIK5c+dixYoVaNOmDby9vfH+++/D1dUVY8eObXKsRKSb3G1M8fMLQXh6wxmcu3Ebs7ZewIapXaGvg/tmU8tWUlmD3dEZAIApPVXfpZtUx1BfD3187XH46i2ExmUziW+CbVFpkAtAkLctE3gi0jlKJ/Hh4eE4efJkXWf6R7F+/XoAwMCBA+vdv3HjRkyfPh3GxsYIDw/H6tWrcfv2bTg5OWHAgAE4ffo0HB3/7aYbFxeHwsLCup/ffvttlJaW4pVXXkFBQQH69euHkJAQGBsbP3LMRKR7Apwt8cO07vi/n6JwJPYWFu+5gpXjOqilCRKRWPbGZKC0SgYfezP09rETOxx6iIH+Djh89RbC4nMwa9DDKxXpX9UyObZH/dvQjohI1yidxAcEBKC8vFwlL/6wSn5XV1ccPHhQ6fNIJBIsX74cy5cvf6T4iKjl6Oljh68ndcGMzeex/WwaHCyMMH+Yv9hhEamEIAjYHKFIaib39OQFKi0Q7KfYOSA6tQCF5dWwMjEQOSLtceTqLWQXV8Le3BAj2juLHQ4RkcopXS+6bt06vPfeewgLC0NeXh6Kiorq3YiItNXw9s5YMbYDAODrY4n49cx1cQMiUpGYtALEZhbBUF8PE7q5ix0ONYK7jSl8Hc0hkws41cxbzWm7zZE3AADPdPeAoT6XRhGR7mnSPvFFRUUYNGgQHB0dYWNjAxsbG1hbW8PGxkYdMRIRNZvJPT0xd4iidHXJvn9w8HKmyBERPbravbJHdXR55B0YqPnUzsaHxmWLHIn2SM4pwanEPEgkwKQg9n4gIt2kdDn9lClTYGBggK1btz5yYzsiIk00Z3Ab5BRXYktkKuZuj4G1qQH6tLYXOyyiJiksq8b+izcBAFN6cn2wNhno74AfT6YgLD4HgiDwO1cj1F6weszfER62piJHQ0SkHkon8VeuXMGFCxfg78+1okSkmyQSCZaPCUReSRVC/snCq7+cx45Xe6OdK7ecJO2zMzodlTVyBDhboKuntdjhkBJ6tLKFiYEUt4oqcS2rGG1d+DvoQSqqZfjjfDoAYGovzsITke5Supy+e/fuSEtLU0csREQaQ6onweqJnRHkbYviyho8tzEKafllYodFpBRBELDlzvrgKb28OJOrZYwNpOjdWrGTQGhcjsjRaL79F2+isLwabtYmCPZzfPgTiIi0lNJJ/OzZszFnzhxs2rQJ58+fx6VLl+rdiIh0hbGBFN9P644AZwvkFFdi2k9RyCupFDssokaLTMlHUk4pTA2lGNvZVexwqAlq18WHxXNd/MNsjvx3BwapHi9YEZHuUrqc/tlnnwUAvPDCC3X3SSSSurVaMplMddEREYnMysQAP78QhHHrTiMltxQvbDqLrS/3gpmR0r8+iZpd7frgsV3cYGHMLcq00UB/RRJ/7vptFFdU89/xPq5kFOJiWgEMpBI8091D7HCIiNRK6W+hKSkp6oiDiEhjOVka45cXgzBh/WlcTC/Ea5vP48fnenDrItJouSWVCLmi2F1hMrt0ay0vOzO0sjPF9bwynE7Kw3Due96g2mUjw9s7w8HCSORoiIjUS+lvoF5eXg+8ERHpotYO5vhpeg+YGEgRnpCLt/+4CLlcEDssovv6/Vw6qmUCOntYI9DNSuxw6BEM9Fes7+a6+IYVVVRjzwXFDgxTe/G7KBHpviZNI/3666/o27cvXF1dceOG4srn6tWrsXfvXpUGR0SkSbp42mDd1K7Q15NgT8xNrPwrVuyQiBoklwvYGnWnoV1PzsJru+A7JfUn7mw1R/Xtjs5AebUMbRzN0dPbVuxwiIjUTukkfv369Zg3bx5GjhyJgoKCujXw1tbWWL16tarjIyLSKI/5O+LT8R0BAN+Hp+C7E0kiR0R0r/DEXKTll8PSWB+jOrKhnbbr5W0HQ309ZBSUIzG7ROxwNIogCNgc8e8FK+7AQEQtgdJJ/Ndff43vv/8e7733HqRSad393bt3x+XLl1UaHBGRJhrfzR2LHg8AAHx88Bp2RaeLHBFRfVvuJDXju7nDxFD6kKNJ05kYStHLR7HVXFg8S+rvFpWSj4TsEpgYSDGum7vY4RARNQulk/iUlBR06dLlnvuNjIxQWlqqkqCIiDTdKwN88GI/bwDA239cQmgct38izZBZWI6j1xSfR5bS647area4Lr6+2m3lxnR2hSU79xNRC6F0Eu/t7Y2YmJh77g8JCUHbtm1VERMRkcaTSCR4b2RbjOnsihq5gNe3RCMmrUDssIiw42waZHIBPb1t4etoIXY4pCK1W81FpeSjrKpG5Gg0Q07xvzswsKEdEbUkjU7ily9fjrKyMsybNw8zZ87Ejh07IAgCoqKi8NFHH2HRokV4++231RkrEZFG0dOT4PMJndC/jT3KqmR4YdNZJOdwvSqJp0Ymx/aoNADAFCY1OsXH3gzuNiaokslxJilP7HA0wm/n0lAtE9CJOzAQUQvT6CR+2bJlKCkpwUsvvYRPP/0UixcvRllZGSZPnoz169djzZo1mDhxojpjJSLSOIb6elg/tRs6uFkhv7QK036KQnZRhdhhUQt17Fo2sooqYGdmiOHtncQOh1RIIpHUzcazpB6QyQVsvVNKP5XLRoiohWl0En/3liZTpkxBQkICSkpKkJWVhfT0dLz44otqCZCISNOZG+lj4/M90MrOFOm3yzHtpygUVVSLHRa1QFvuJDVPd/eAkT4b2umaYL87+8XHZ7f4rebC4rORUVAOKxMDjO7EHRiIqGVRak38f7ftMDU1haOjo0oDIiLSRvbmRvjlhZ6wNzfCtaxiDPvyBNYcScAtzspTM0nNK8OJBMUM7eQgzkzqoj6t7WAglSAtvxwpuS27mfDmCMUFqwnd3GFswAtWRNSyKJXE+/n5wdbW9oE3IqKWytPOFD+/0AOOFkbIKqrAV0fi0eeTY3jt1/M4mZALubxlz5yRem2NSoUgAAP8HOBpZyp2OKQGZkb66NFK8V2rJW81l5ZfhuNx3IGBiFoufWUOXrZsGays2DiEiOh+2rtaIXzhYwi5koXNETdw9vpthPyThZB/suBtb4bJQZ6Y0M0dNmaGYodKOqSyRobfz91paMekRqcN9HfA6aQ8hMbl4Pm+3mKHI4ptdy5Y9fW1g4+DudjhEBE1O6WS+IkTJ7J8nojoIYz0pRjT2Q1jOrvhWlYRtkamYld0BlJyS/HRwVh8/nccRnVwwZReXujqaX3PUiUiZR365xbySqvgZGmEwQH8O63LBvo74uOD1xCRnIeKalmLKyWvqpHjtzsXrKb25A4MRNQyNbqcnl8yiYiUF+BsieVjAhH57mB8/FQHtHOxRFWNHLsuZGD8+tMYufYkNkfcQEkl932mptsScQMAMLGHJ/SlSq2UIy3TxtEcLlbGqKyRIyK55W01F/JPFnJLquBoYYQh7bgDAxG1TE3qTk9ERMoxM9LH5J6e+PONftj9eh9M6OYOI309xGYWYfGeK+j50RG8t/syYjOLxA6VtExidjEiU/KhJwEmBnmIHQ6p2d1bzbXEdfH/XrDygAEvWBFRC9Xo335yuZyl9EREj0gikaCLpw2+eLoTIt8djMVPtIWPvRlKq2TYEpmKx9eEY/z609h9IR0V1TKxwyUtULut3OC2TnCxMhE5GmoOwX53kvgWtl98wq27L1ix9wMRtVxKrYknIiLVsTY1xEv9ffBiP2+cScrDlshUHPonC+dv3Mb5G7exfP9VPN3dA5ODPNHK3kzscEkDlVfJsPN8OgBgai+uD24p+vjaQ19PguTcUqTmlbWY3QjuvmDlas0LVkTUcrEOiYhIZBKJBH187fHtlK44/c4gzB/qB1crY9wuq8Z3J5Ix8Iv/b+/O46Ms7/3/vyfbZN8gCyErW9hlC0tRAi4EtYpbtUgqKNWqcJBzqra2p8Wj9Uf14MOjv1rPUgQVXEDLKXIqSFkisgQIm2xhCyQhhJB1Qjay3N8/QqYdExAks2Vez8dj/sh9X3Ndnwsuwnzmuq/r2qSfLMrWmgPFampucXa4cCGr9xfJUt+khMgA3dSnu7PDgYOE+vtqRFKEJCnraImTo3GM2otNfGEFAJeQxAOAC4kO9dc/3dJXm39xs/70yChNTI2SySRtPlaqJ5fmaPyrG/TGuqMqrqp3dqhwAW0zkw+PTpKXFxvQepK2dfGbPOSR+lV7i1Td0KSkboF8YQXA45HEA4AL8vYy6daBMVry6Gh99dwkPTWxt7oF+emcpUFvrj+m8a9u0BPv79JXR8+rpYWNRz3RgTNV2ltQKV9vk340Kt7Z4cDB2tbFbz1Rpoamrr1/hmEYWprduqHdw6MT+cIKgMcjiQcAF5cQGahfTOmvrS/crLemDdfolEg1txj68tA5PfLuDk16fZP+K+uEymsuOjtUONCHO1pn4acM7qHuwWYnRwNHG9gjVNEhZtU1NmtnXoWzw7GrfYVVOnDGIj8fL/1oFCcwAABJPAC4CbOPt+6+IU7LfzZOX/7zBM38QbJCzD46XVarBV8c0dj/b73mfbxHu06VcyxoF3ehoUl/2XNGkjR9DLt0eyKTyfT3Xeq7+Lr4pZeOlbtzSA9FBvk5ORoAcD6SeABwQ/1iQvTi3YOU/etb9Or9QzSkZ5guNrfof/cW6YH/3Kbb39ysD7adUnV9o7NDRSepaWjS18dK9ca6o8r8U7ZqLjard1SQxqREOjs0OEm6B6yLr6y9qM/3FUmSMsfyhRUASBwxBwBuLdDPRw+lJeqhtETtK6jUsuzTWrWvSEeKq/WbvxzUgi+OaOqwnsocm6hBcWHODhfXoOxCg3aeqtDOU+XadapcB4osav7W/geP39RLJhPrgz3VTX2i5GWSjpVc0JnKOvXsgseufZpTqIamFvWPDdGIxAhnhwMALoEkHgC6iBsSwnVDQrh+fcdAfba7UMuyT+vE+Rp9tCNfH+3I1/DEcGWOSdKdQ3vI39fb2eHiHxiGocKKOu3IK9fOU62vE+dr2pXrGR6gtOQIjUqO1NhekeoTHeKEaOEqwgJ9NTwxQjmnK5SVe14Pd7GlFYZh6MNLJzBkjk3iCysAuIQkHgC6mLBAXz12Y4oeHZ+s7SfLtSz7tNYeLNae/Ertya/Uy/93SA+MiNfDYxLVKyrY2eF6pJYWQ7nnqrXzVLl25JVr16kKFVvaHxvYLyZYacmRGp0SqVHJkV1yphXXZ2K/qNYk/mhJl0vit54o08nSGgX5eeue4T2dHQ4AuAySeADookwmk8b17qZxvbvpfHWDlu8q0IfZ+TpTWac/fZ2nP32dp/F9uilzTJJuHRgjX2+2SbGXhqZmfVNYpR2nyrUzr1y7Tleour7JpoyPl0lD4sM0OjlSacmRGpUcofBANvHClaWnRun1dUe15XiZLja1yM+n6/w7btvQ7t4RPRVs5iMrALThNyIAeICoELNmT+qjJ9N7K+toiZZuz9fG3BJtOV6mLcfLFB1i1o/TEvTj0YmKY7b3ulnqG5VzukK7TpVrZ16F9hZW6mJTi02ZID9vjUiKUNqlpH1YQrgC/FjmgGszOC5M3YL8VFZzUbvzKzS2Vzdnh9Qpzlnq9eWhc5JaH6UHAPwdSTwAeBBvL5Nu7h+jm/vHqLCiVh/tyNcnOwtUUt2gtzYc1x82HtfN/WOUOTZRE/pGycuLNahXo8RSrx2nWh+L35FXriPFFn1rDzp1D/bTqKRIpaVEanRypAb0CJEPTz/gOnl5mTShX5RW7jmjTbnnu0wS//GOAjW3GBqVFKH+saHODgcAXApJPAB4qPiIQD2X0V/P3NJPXx4q1tLtp7X9ZLn+dvic/nb4nBIiA/Tw6CQ9OCpe3YLNzg7XZRiGobzSmksb0LXuHn+6rLZduaRugZdm2Vtn21O6B7ExF+xiYmpbEl+iX97e39nhXLem5hZ9tKN1Q7vpHCsHAO2QxAOAh/Pz8dIPh8bph0PjdLykWsuy8/VpTqEKyuv06pojemPdUU0ZHKvMsUlKS47wuES0qblFh89WX5ppb03cSy802JQxmaQBsaGXNqBrTdpjQv2dFDE8zU19o2QySUeKq3XOUu/2Y2/DkRIVW+oVEeir2wf3cHY4AOBySOIBAFZ9okM0/65Bej6jvz7fX6Rl209rX2GVVu0r0qp9ReoXE6zpY5J074ieCvX3dXa4dlHf2Kw9+ZXWo952n65QzcVmmzJ+Pl4aFh+utJTWhH1EUkSX/fOA64sM8tPQ+HDtK6hUVu55PZiW4OyQrsvSS8fKPTgqgeMwAaADJPEAgHYC/Lz14KgEPTgqQd8UVmlZ9mn9ZW+Rjp67oPmrDur3XxzR1GFxyhybpME9w5wd7nWprL2oXZcei99xqlwHzlSpsdl2QXuIv49GJUVY17MPiQ+T2YfkAq5jYr+o1iT+qHsn8afLavTV0fOS1OWOzAOAzkISDwC4oiHxYfp9/FC9cMcArdxdqGXZ+TpWckEf7yzQxzsLdENCuKaPSdRdQ+PcYnf1M5V12nXpfPadp8p19NyFdmViQs3W89nTkiOVGhPCJn9waempUXpz/TFtPnZeTc0tbrtp4oeXZuEn9ItSUrcgJ0cDAK6JJB4AcFXCAnw1c3yKZvwgWTvyyrUsO19fHDirfQWV2ldQqd+tPqQHRibo4TGJ6hMd7OxwJUktLYaOn7/Q+mh8Xut69jOVde3K9Y4Ksh71NjolUvERAR639h/u7Yb4cIUH+qqytlF7Cyo1KjnS2SFds/rGZi3fVSBJymQWHgAuiyQeAHBNTCaTxvTqpjG9uqn0wkAt31WgD7PzVVhRp3e35OndLXka16ubMscm6baBMfLzcdyM4MWmFh0oqro0016hXafLVVnbaFPG28ukwXGhSkuO1KhLu8ez+z7cnbeXSTf1jdLn+4q0Kfe8WybxXxw4q4raRvUI89fN/aOdHQ4AuCySeADA99Y92KynJ/bRkxN6K+vYeS3bflobjpRo28kybTtZpu7BZv04LUHTxiSqZ3hAp7df09Ck3fkVrUe95ZVrT0GF6htbbMoE+HpreGK4dZZ9WEK4gsz894euZ2K/1iQ+6+h5PZuR6uxwrtnS7a2P0k8bnei2ywEAwBH4FAMAuG5eXiZNSo3WpNRonams08c78vXxzgKdr27QHzYe1x83Hdek1Ghljk3ShH5R8v6e68tLLzTYzLIfLLKoucV2E7qIQF+NSm7dgC4tJVKD4kLlS0IADzChX5Qk6ZszVTpf3aCoEPd5wuTwWYtyTlfIx8ukH7vxxnwA4Agk8QCATtUzPEA/n5yqubf01bpD57R0+2ltPVGm9UdKtP5IieIjAjRtdKIeHJVwxSTDMAwVlNdph3U9e7lOltZ02F7bBnSjUyLUq3swm9DBI0WFmDW4Z6gOnLFo87Hzum9EvLNDumpLt5+WJE0eFKNoNz/nHgDszalJ/IIFC/TnP/9ZR44cUUBAgH7wgx/o1VdfVWpq6yNg5eXlmj9/vr788kvl5+crKipK99xzj15++WWFhV3+SKOZM2fqvffes7mWkZGhNWvW2LU/AIC/8/X20h1DeuiOIT104vwFfZidr09zClVYUad/X5ur//jbUWUMilXm2CSNSYlUiyHlFldbj3rbdapc5ywNNnWaTFJqTIhGJUdYN6KLs8Nj+oC7Su8XpQNnLNqU6z5J/IWGJv3vnjOSpMwxSU6OBgBcn1OT+KysLM2ePVtpaWlqamrSr371K02ePFmHDh1SUFCQioqKVFRUpIULF2rgwIE6ffq0nnzySRUVFenTTz+9Yt1TpkzR4sWLrT+bze7zSBkAdDW9o4L1mx8O1HMZqVq9/6yWbj+tvQWVWr3/rFbvP6vEyEBV1F5UdX2Tzft8vU0aGh+uUckRGp0cqVFJkQoL9HVSLwDXNzE1Wm9vPKGvjp1Xc4vxvZeuONLKPWdUc7FZvaKCNK53N2eHAwAuz6lJ/LdnxpcsWaLo6Gjl5ORowoQJGjx4sD777DPr/d69e+uVV15RZmammpqa5ONz+fDNZrNiY2PtFjsA4Nr5+3rrgZHxemBkvA6cqdKy7Hz9Ze8Z5ZfXSpKCzT4akRSh0ckRGpXcugmdv6/rnz0PuIrhCeEK8fdRZW2j9hdWanhihLNDuiLDMLTs0qP008ckcbQjAFwFl1oTX1VVJUmKjLz8sShVVVUKDQ29YgIvSZs2bVJ0dLQiIiJ0880363e/+526dev4292GhgY1NPz9kU2LxfI9ogcAXIvBPcO04L4heuGO/tp2okw9wwPUPzaEXamB6+Dj7aWb+nbXX78p1qbc8y6fxOecrtCR4mr5+3rpATd5/B8AnM1lPim1tLRo3rx5Gj9+vAYPHtxhmdLSUr388st64oknrljXlClT9P7772v9+vV69dVXlZWVpdtvv13Nzc0dll+wYIHCwsKsr4QEdkUFAEcJ9fdVxqBYDe4ZRgIPdIKJ/VrPWM86et7JkXy3tg3t7hoax1IZALhKJsMwjO8uZn9PPfWUvvjiC3399deKj2//TazFYtFtt92myMhIrVq1Sr6+V/+L/uTJk+rdu7f+9re/6ZZbbml3v6OZ+ISEBOusPwAAgLsorqrX2AXrZTJJOf96myKD/JwdUofKLjRo3IINutjcor/MHq8bEsKdHRIAOJXFYlFYWNh35qEuMeUxZ84crV69Whs3buwwga+urtaUKVMUEhKilStXXlMCL0m9evVS9+7ddfz48Q7vm81mhYaG2rwAAADcUWyYv/rHhsgwpM3HXHc2/tOcQl1sbtHgnqEaGn/5U4cAALacmsQbhqE5c+Zo5cqV2rBhg1JSUtqVsVgsmjx5svz8/LRq1Sr5+1/72aGFhYUqKytTjx49OiNsAAAAl5aeGiVJysp1zSS+pcXQhzvyJbUeK8eGdgBw9ZyaxM+ePVtLly7Vhx9+qJCQEBUXF6u4uFh1dXWS/p7A19TUaNGiRbJYLNYy/7i+vX///lq5cqUk6cKFC3ruuee0fft2nTp1SuvXr9fUqVPVp08fZWRkOKWfAAAAjtS2Lv6rY+fV0uISKydtbD5eqtNltQrx99Hdw+KcHQ4AuBWn7k7/zjvvSJImTpxoc33x4sWaOXOmdu/erezsbElSnz59bMrk5eUpOTlZkpSbm2vd2d7b21v79+/Xe++9p8rKSsXFxWny5Ml6+eWXOSseAAB4hJFJEQry81bphYs6WGTREBd7XL1tQ7v7R8Qr0M+lDksCAJfn1N+a37Wn3sSJE7+zzLfrCQgI0Nq1a687NgAAAHfl5+Ol8X2668tD57Qpt8SlkviiyjqtP3xOkjR9TKKTowEA9+MSG9sBAACgc1nXxbvYUXMf78hXiyGNSYlU35gQZ4cDAG6HJB4AAKALmpjaui5+d36FqmobnRxNq8bmFn28s0CSlDk2ycnRAIB7IokHAADognqGB6hvdLBaDOnr46XODkeStO7QOZVUN6h7sFkZg2KdHQ4AuCWSeAAAgC4qvV/rI/WbckucHEmrtg3tHkqLl58PH0MB4PvgtycAAEAX1fZIfdbR81e1WbA9nTh/QVtPlMlkkqaNZkM7APi+SOIBAAC6qLSUCAX4equkukGHz1Y7NZZl2/MlSTenRis+ItCpsQCAOyOJBwAA6KLMPt76Qe9ukpy7S33dxWZ9msOGdgDQGUjiAQAAurC2o+acuS7+8/1FstQ3KT4iQBMurdMHAHw/JPEAAABd2MR+revic05XqLreOUfNLbu0od3DYxLl7WVySgwA0FWQxAMAAHRhid0CldI9SE0thrYcL3N4+98UVmlfYZV8vU16cFSCw9sHgK6GJB4AAKCLaztqLuuo4x+pX5bdOgt/++Ae6h5sdnj7ANDVkMQDAAB0cW3r4rNyHXvUnKW+UX/ZWyRJmj6GY+UAoDOQxAMAAHRx43p1k9nHS0VV9TpWcsFh7f45p1B1jc3qFxOs0SmRDmsXALoykngAAIAuzt/XW2N7XTpqLtcxR80ZhqGl2a1nw08fkySTiQ3tAKAzkMQDAAB4gLZ18ZsctC4+O69cx0suKMDXW/eO6OmQNgHAE5DEAwAAeICJl9bF78yrUE1Dk93bW3rpWLl7hscp1N/X7u0BgKcgiQcAAPAAKd2DlBAZoIvNLdp2wr5HzZ2vbtDag8WSWh+lBwB0HpJ4AAAAD2AymTSxX7QkKeuofdfFL99VoMZmQ8MSwjW4Z5hd2wIAT0MSDwAA4CH+cV28vY6aa24x9OGlDe0yxzILDwCdjSQeAADAQ4zr3U1+3l4qKK9TXmmNXdrYlFuiM5V1Cgvw1Q+H9rBLGwDgyUjiAQAAPESQ2UdpKRGSpE12OmqubUO7H42Ml7+vt13aAABPRhIPAADgQdrWxW+yw7r4gvJaa73TeZQeAOyCJB4AAMCDtB01l32yTPWNzZ1a94c78mUY0o19uiule1Cn1g0AaEUSDwAA4EH6RAcrLsxfDU0t2nay846aa2hq1vKdBZKkzLGJnVYvAMAWSTwAAIAHMZlMSk+9dNRcJ66LX3OgWGU1FxUTatatA2I6rV4AgC2SeAAAAA/TdtRcZ54Xv2x767FyP05LlI83HzEBwF74DQsAAOBhxvfpJh8vk/JKa3S67PqPmjt6rlo7TpXL28ukaaN5lB4A7IkkHgAAwMOE+PtqZFLrUXOdMRu/7NKxcrf0j1ZsmP911wcAuDySeAAAAA80sZPWxdc0NOnPu89IkjI5Vg4A7I4kHgAAwAO1rYvfeuL6jppbta9I1Q1NSuoWqBv7dO+s8AAAl0ESDwAA4IEG9AhRdIhZdY3N2nWq4nvVYRiGll56lH76mER5eZk6M0QAQAdI4gEAADyQyWSyzsZvyi35XnXsLajUwSKL/Hy89KORCZ0ZHgDgMkjiAQAAPFTbuvhN33Nzu6WXjpX74ZAeigjy67S4AACXRxIPAADgoW7s213eXiYdL7mgworaa3pvZe1Frd5fJEmazoZ2AOAwJPEAAAAeKizAV8MTwiVd+1Fzn+YUqqGpRQN6hGpEYnjnBwcA6BBJPAAAgAebmNq6Lv5ajppraTG0LLv1UfrMsYkymdjQDgAchSQeAADAg6X3a10Xv+V4qS42tVzVe7aeKFNeaY2CzT66Z1hPe4YHAPgWkngAAAAPNiguVN2D/VRzsVk5p6/uqLm2Y+XuHd5TQWYfe4YHAPgWkngAAAAP5uVl0oS+l46aO/rdR80VV9Vr3eFzkqRMNrQDAIcjiQcAAPBw6dewLv7jnflqbjGUlhyh1NgQe4cGAPgWkngAAAAPd1PfKJlM0pHiahVX1V+2XFNziz7eUSCJWXgAcBaSeAAAAA8XGeSnG+LDJUlfXeGoufVHSlRsqVe3ID9NGRzroOgAAP+IJB4AAADWo+autC6+bUO7H41KkNnH2yFxAQBskcQDAABA6f1ak/jNx0rV1Nz+qLlTpTXafKxUJpP08OhER4cHALiEJB4AAAAaGh+uiEBfVdc3aU9BZbv7H+7IlyRN6BulxG6BDo4OANCGJB4AAADy9jLppraj5nJtH6mvb2zWil1saAcArsCpSfyCBQuUlpamkJAQRUdH65577lFubq71fnl5uf7pn/5JqampCggIUGJioubOnauqqqor1msYhn7729+qR48eCggI0K233qpjx47ZuzsAAABurW1dfNa3Nrf76zdnVVHbqLgwf93cP9oZoQEALnFqEp+VlaXZs2dr+/btWrdunRobGzV58mTV1NRIkoqKilRUVKSFCxfqwIEDWrJkidasWaNZs2Zdsd7XXntNb731lv7zP/9T2dnZCgoKUkZGhurrL39kCgAAgKdrm4k/cMaikuq/f25q29Bu2uhEeXuZnBIbAKCVyTAMw9lBtDl//ryio6OVlZWlCRMmdFhmxYoVyszMVE1NjXx8fNrdNwxDcXFx+vnPf65nn31WklRVVaWYmBgtWbJEP/7xj78zDovForCwMFVVVSk0NPT6OgUAAOBG7vr/v9Y3Z6r0+o9u0P0j43WoyKI73tosHy+Ttr5ws6JD/J0dIgB0SVebh7rUmvi2x+QjIyOvWCY0NLTDBF6S8vLyVFxcrFtvvdV6LSwsTGPGjNG2bds6fE9DQ4MsFovNCwAAwBO17VK/6dIj9UuzW2fhMwbFksADgAtwmSS+paVF8+bN0/jx4zV48OAOy5SWlurll1/WE088cdl6iouLJUkxMTE212NiYqz3vm3BggUKCwuzvhISEr5nLwAAANxb27r4zcfOq6quUf+754wkafpYjpUDAFfgMkn87NmzdeDAAX388ccd3rdYLLrzzjs1cOBAvfjii53a9gsvvKCqqirrq6CgoFPrBwAAcBfDEsIV6u+jytpG/dvnB1V7sVm9o4I0rlc3Z4cGAJCLJPFz5szR6tWrtXHjRsXHx7e7X11drSlTpigkJEQrV66Ur6/vZeuKjY2VJJ07d87m+rlz56z3vs1sNis0NNTmBQAA4Il8vL2sG9z9efelWfgxSTKZ2NAOAFyBU5N4wzA0Z84crVy5Uhs2bFBKSkq7MhaLRZMnT5afn59WrVolf/8rr8VKSUlRbGys1q9fb1NHdna2xo0b1+l9AAAA6GrSLz1SL0n+vl66f2T7SRYAgHM4NYmfPXu2li5dqg8//FAhISEqLi5WcXGx6urqJP09ga+pqdGiRYtksVisZZqbm6319O/fXytXrpQkmUwmzZs3T7/73e+0atUqffPNN3rkkUcUFxene+65xxndBAAAcCttm9tJ0t03xCks4PJPQQIAHKvjLd4d5J133pEkTZw40eb64sWLNXPmTO3evVvZ2dmSpD59+tiUycvLU3JysiQpNzfXurO9JD3//POqqanRE088ocrKSt14441as2bNd87iAwAAQIoJ9deYlEjtya/UjB8kOzscAMA/cKlz4l0F58QDAABPV13fqMraRiVEBjo7FADwCFebhzp1Jh4AAACuKcTfVyH+PEYPAK7GJXanBwAAAAAA340kHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATPs4OwBUZhiFJslgsTo4EAAAAAOAJ2vLPtnz0ckjiO1BdXS1JSkhIcHIkAAAAAABPUl1drbCwsMveNxnfleZ7oJaWFhUVFSkkJEQmk8nZ4VyWxWJRQkKCCgoKFBoa6uxw0EUxzuAIjDPYG2MMjsA4gyMwzrouwzBUXV2tuLg4eXldfuU7M/Ed8PLyUnx8vLPDuGqhoaH8A4bdMc7gCIwz2BtjDI7AOIMjMM66pivNwLdhYzsAAAAAANwESTwAAAAAAG6CJN6Nmc1mzZ8/X2az2dmhoAtjnMERGGewN8YYHIFxBkdgnIGN7QAAAAAAcBPMxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJvJMtWLBAaWlpCgkJUXR0tO655x7l5ubalKmvr9fs2bPVrVs3BQcH6/7779e5c+dsysydO1cjR46U2WzWsGHDOmxr//79uummm+Tv76+EhAS99tpr9uoWXIijxtimTZs0depU9ejRQ0FBQRo2bJiWLVtmz67BhTjyd1mb48ePKyQkROHh4Z3cG7gqR44zwzC0cOFC9evXT2azWT179tQrr7xir67BRThyjK1du1Zjx45VSEiIoqKidP/99+vUqVN26hlcSWeMs3379mnatGlKSEhQQECABgwYoDfffLNdW5s2bdKIESNkNpvVp08fLVmyxN7dgwOQxDtZVlaWZs+ere3bt2vdunVqbGzU5MmTVVNTYy3zz//8z/r888+1YsUKZWVlqaioSPfdd1+7uh577DE99NBDHbZjsVg0efJkJSUlKScnR//+7/+uF198Uf/93/9tt77BNThqjG3dulVDhw7VZ599pv379+vRRx/VI488otWrV9utb3AdjhpnbRobGzVt2jTddNNNnd4XuC5HjrNnnnlGf/rTn7Rw4UIdOXJEq1at0ujRo+3SL7gOR42xvLw8TZ06VTfffLP27t2rtWvXqrS0tMN60PV0xjjLyclRdHS0li5dqoMHD+rXv/61XnjhBf3hD3+wlsnLy9Odd96pSZMmae/evZo3b55++tOfau3atQ7tL+zAgEspKSkxJBlZWVmGYRhGZWWl4evra6xYscJa5vDhw4YkY9u2be3eP3/+fOOGG25od/2Pf/yjERERYTQ0NFiv/eIXvzBSU1M7vxNwafYaYx254447jEcffbRT4oZ7sfc4e/75543MzExj8eLFRlhYWGeHDzdhr3F26NAhw8fHxzhy5IjdYod7sNcYW7FiheHj42M0Nzdbr61atcowmUzGxYsXO78jcGnXO87aPP3008akSZOsPz///PPGoEGDbMo89NBDRkZGRif3AI7GTLyLqaqqkiRFRkZKav2WrbGxUbfeequ1TP/+/ZWYmKht27Zddb3btm3ThAkT5OfnZ72WkZGh3NxcVVRUdFL0cAf2GmOXa6utHXgWe46zDRs2aMWKFXr77bc7L2C4JXuNs88//1y9evXS6tWrlZKSouTkZP30pz9VeXl553YALs9eY2zkyJHy8vLS4sWL1dzcrKqqKn3wwQe69dZb5evr27mdgMvrrHH27c9d27Zts6lDav38f72f7+B8JPEupKWlRfPmzdP48eM1ePBgSVJxcbH8/PzarfmMiYlRcXHxVdddXFysmJiYdnW03YNnsOcY+7bly5dr586devTRR68nZLghe46zsrIyzZw5U0uWLFFoaGhnhg03Y89xdvLkSZ0+fVorVqzQ+++/ryVLlignJ0cPPPBAZ3YBLs6eYywlJUVffvmlfvWrX8lsNis8PFyFhYVavnx5Z3YBbqCzxtnWrVv1ySef6IknnrBeu9znf4vForq6us7tCBzKx9kB4O9mz56tAwcO6Ouvv3Z2KOiiHDXGNm7cqEcffVT/8z//o0GDBtm1Lbgee46zxx9/XA8//LAmTJjQ6XXDvdhznLW0tKihoUHvv/+++vXrJ0latGiRRo4cqdzcXKWmpnZ6m3A99hxjxcXFevzxxzVjxgxNmzZN1dXV+u1vf6sHHnhA69atk8lk6vQ24Zo6Y5wdOHBAU6dO1fz58zV58uROjA6uipl4FzFnzhytXr1aGzduVHx8vPV6bGysLl68qMrKSpvy586dU2xs7FXXHxsb227n1Lafr6UeuC97j7E2WVlZuuuuu/TGG2/okUceud6w4WbsPc42bNighQsXysfHRz4+Ppo1a5aqqqrk4+Ojd999t7O6ARdn73HWo0cP+fj4WBN4SRowYIAkKT8///qCh1uw9xh7++23FRYWptdee03Dhw/XhAkTtHTpUq1fv17Z2dmd1Q24uM4YZ4cOHdItt9yiJ554Qv/6r/9qc+9yn/9DQ0MVEBDQuZ2BQ5HEO5lhGJozZ45WrlypDRs2KCUlxeb+yJEj5evrq/Xr11uv5ebmKj8/X+PGjbvqdsaNG6evvvpKjY2N1mvr1q1TamqqIiIirr8jcFmOGmNS6zEmd955p1599VWbx7nQ9TlqnG3btk179+61vl566SWFhIRo7969uvfeezutP3BNjhpn48ePV1NTk06cOGG9dvToUUlSUlLSdfYCrsxRY6y2tlZeXrYfw729vSW1PgmCrq2zxtnBgwc1adIkzZgxo8MjMMeNG2dTh9T6+f9aP9/BBTlzVz0YxlNPPWWEhYUZmzZtMs6ePWt91dbWWss8+eSTRmJiorFhwwZj165dxrhx44xx48bZ1HPs2DFjz549xs9+9jOjX79+xp49e4w9e/ZYd6OvrKw0YmJijJ/85CfGgQMHjI8//tgIDAw0/uu//suh/YXjOWqMbdiwwQgMDDReeOEFm3bKysoc2l84h6PG2bexO71ncdQ4a25uNkaMGGFMmDDB2L17t7Fr1y5jzJgxxm233ebQ/sLxHDXG1q9fb5hMJuPf/u3fjKNHjxo5OTlGRkaGkZSUZNMWuqbOGGfffPONERUVZWRmZtrUUVJSYi1z8uRJIzAw0HjuueeMw4cPG2+//bbh7e1trFmzxqH9RecjiXcySR2+Fi9ebC1TV1dnPP3000ZERIQRGBho3HvvvcbZs2dt6klPT++wnry8PGuZffv2GTfeeKNhNpuNnj17Gr///e8d1Es4k6PG2IwZMzq8n56e7rjOwmkc+bvsH5HEexZHjrMzZ84Y9913nxEcHGzExMQYM2fO5EtJD+DIMfbRRx8Zw4cPN4KCgoyoqCjj7rvvNg4fPuygnsKZOmOczZ8/v8M6kpKSbNrauHGjMWzYMMPPz8/o1auXTRtwXybDMIzrmMgHAAAAAAAOwpp4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALgJkngAAFxYWVmZoqOjderUKYe2u2TJEoWHh9ul7jVr1mjYsGFqaWmxS/0AAHRlJPEAALiwV155RVOnTlVycnK7exkZGfL29tbOnTsdH9h1mDJlinx9fbVs2bLLlpk1a5aGDBmiixcv2lz/61//Kj8/P+3evdveYQIA4JJI4gEAcFG1tbVatGiRZs2a1e5efn6+tm7dqjlz5ujdd991QnTfT2NjoyRp5syZeuutty5b7o033lB1dbXmz59vvVZZWanHH39cv/nNbzRixAi7xQYAgCsjiQcAwEX99a9/ldls1tixY9vdW7x4sX74wx/qqaee0kcffaS6ujqb+xMnTtTcuXP1/PPPKzIyUrGxsXrxxRdtylRWVupnP/uZYmJi5O/vr8GDB2v16tU2ZdauXasBAwYoODhYU6ZM0dmzZ633Wlpa9NJLLyk+Pl5ms1nDhg3TmjVrrPdPnTolk8mkTz75ROnp6fL397fOvt91113atWuXTpw40WHfQ0NDtXjxYr3++uvKzs6WJM2bN089e/bUCy+8oIKCAj344IMKDw9XZGSkpk6darPkYOfOnbrtttvUvXt3hYWFKT09vd3svclk0jvvvKO7775bQUFBeuWVVy7zNwEAgOsgiQcAwEVt3rxZI0eObHfdMAwtXrxYmZmZ6t+/v/r06aNPP/20Xbn33ntPQUFBys7O1muvvaaXXnpJ69atk9SagN9+++3asmWLli5dqkOHDun3v/+9vL29re+vra3VwoUL9cEHH+irr75Sfn6+nn32Wev9N998U6+//roWLlyo/fv3KyMjQ3fffbeOHTtmE8cvf/lLPfPMMzp8+LAyMjIkSYmJiYqJidHmzZsv2/9Jkybp6aef1owZM7RixQotX75c77//vgzDUEZGhkJCQrR582Zt2bLF+iVD2+P31dXVmjFjhr7++mtt375dffv21R133KHq6mqbNl588UXde++9+uabb/TYY499118JAADOZwAAAJc0depU47HHHmt3/csvvzSioqKMxsZGwzAM44033jDS09NtyqSnpxs33nijzbW0tDTjF7/4hWEYhrF27VrDy8vLyM3N7bDtxYsXG5KM48ePW6+9/fbbRkxMjPXnuLg445VXXmnXxtNPP20YhmHk5eUZkoz/+I//6LCN4cOHGy+++GKH99rU1tYaqamphpeXl/HGG28YhmEYH3zwgZGammq0tLRYyzU0NBgBAQHG2rVrO6ynubnZCAkJMT7//HPrNUnGvHnzrtg+AACuhpl4AABcVF1dnfz9/dtdf/fdd/XQQw/Jx8dHkjRt2jRt2bKl3aPpQ4cOtfm5R48eKikpkSTt3btX8fHx6tev32XbDwwMVO/evTt8v8ViUVFRkcaPH2/znvHjx+vw4cM210aNGtVh/QEBAaqtrb1s+21lnn32WQUGBuqZZ56RJO3bt0/Hjx9XSEiIgoODFRwcrMjISNXX11v/DM6dO6fHH39cffv2VVhYmEJDQ3XhwgXl5+dfVWwAALgqH2cHAAAAOta9e3dVVFTYXCsvL9fKlSvV2Niod955x3q9ublZ7777rs26bl9fX5v3mkwm67FuAQEB39l+R+83DOOa+xEUFNTh9fLyckVFRX3n+318fOTt7S2TySRJunDhgkaOHNnh7vZt9c2YMUNlZWV68803lZSUJLPZrHHjxrXb7f5ysQEA4KqYiQcAwEUNHz5chw4dsrm2bNkyxcfHa9++fdq7d6/19frrr2vJkiVqbm6+qrqHDh2qwsJCHT169HvFFhoaqri4OG3ZssXm+pYtWzRw4MDvfH/brPnw4cOvue0RI0bo2LFjio6OVp8+fWxeYWFh1jjmzp2rO+64Q4MGDZLZbFZpaek1twUAgKshiQcAwEVlZGTo4MGDNrPxixYt0gMPPKDBgwfbvGbNmqXS0lKb3eGvJD09XRMmTND999+vdevWKS8vT1988cVVv1+SnnvuOb366qv65JNPlJubq1/+8pfau3ev9bH3K9m+fbt1dvxaTZ8+Xd27d9fUqVO1efNm5eXladOmTZo7d64KCwslSX379tUHH3ygw4cPKzs7W9OnT7+qpw8AAHB1JPEAALioIUOGaMSIEVq+fLkkKScnR/v27dP999/frmxYWJhuueUWLVq06Krr/+yzz5SWlqZp06Zp4MCBev755696Jl+S5s6dq3/5l3/Rz3/+cw0ZMkRr1qzRqlWr1Ldv3+9870cffaTp06crMDDwqttrExgYqK+++kqJiYm67777NGDAAM2aNUv19fUKDQ2V1PplR0VFhUaMGKGf/OQnmjt3rqKjo6+5LQAAXI3J+D6L2wAAgEP83//9n5577jkdOHBAXl5d47v30tJSpaamateuXUpJSXF2OAAAuBU2tgMAwIXdeeedOnbsmM6cOaOEhARnh9MpTp06pT/+8Y8k8AAAfA/MxAMAAAAA4Ca6xnN5AAAAAAB4AJJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALiJ/wdpcyQvwev8AgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxRUlEQVR4nOzdd3hTZfsH8G+a7r33oKULKBtahkAVBEQQBETWD1HcwAsCiigOEMWFAiqgoqAyVTZikdVSRltWGQLd0EFL96YrOb8/0lYrBZo26UnS7+e6cr1vk5OTOw+xzX2e+7kfiSAIAoiIiIiIiIhI4+mJHQARERERERERNQ2TeCIiIiIiIiItwSSeiIiIiIiISEswiSciIiIiIiLSEkziiYiIiIiIiLQEk3giIiIiIiIiLcEknoiIiIiIiEhLMIknIiIiIiIi0hL6YgegieRyOW7dugULCwtIJBKxwyEiIiIiIiIdJwgCSkpK4OrqCj29e8+3M4lvxK1bt+Dh4SF2GERERERERNTGpKWlwd3d/Z6PM4lvhIWFBQDF4FlaWoocDREREREREem64uJieHh41Oej98IkvhF1JfSWlpZM4omIiIiIiKjVPGhJNxvbEREREREREWkJJvFEREREREREWoJJPBEREREREZGW4Jp4IiIiIiKiZhIEATU1NZDJZGKHQhpOKpVCX1+/xduYM4knIiIiIiJqhqqqKmRmZqK8vFzsUEhLmJqawsXFBYaGhs0+B5N4IiIiIiIiJcnlcqSkpEAqlcLV1RWGhoYtnmEl3SUIAqqqqpCTk4OUlBT4+flBT695q9uZxBMRERERESmpqqoKcrkcHh4eMDU1FTsc0gImJiYwMDDAzZs3UVVVBWNj42adh43tiIiIiIiImqm5s6nUNqni88JPHBEREREREZGWYBJPREREREREpCVETeKXL1+O3r17w8LCAo6OjhgzZgzi4uIaHBMaGgqJRNLg9vLLL9/3vIIg4N1334WLiwtMTEwwZMgQJCQkqPOtEBERERER6ZR27dph5cqVYoehMuHh4ZBIJCgsLBQ7lBYRNYmPiIjAzJkzERUVhUOHDqG6uhpDhw5FWVlZg+NeeOEFZGZm1t8+/fTT+573008/xerVq7Fu3TpER0fDzMwMw4YNQ0VFhTrfDhERERERkVZIS0vDc889V99Z38vLC3PmzEFeXp7YoalEaGgo5s6d2+C+fv36ITMzE1ZWVuIEpSKidqcPCwtr8PPGjRvh6OiIc+fOYeDAgfX3m5qawtnZuUnnFAQBK1euxOLFizF69GgAwM8//wwnJyfs3r0bEydOVN0bEFlFtQx6EgkM9bkqgoiIiIiImiY5ORl9+/aFv78/tm7dCm9vb/z99994/fXX8eeffyIqKgq2tratHpdMJoNEIlFbs0BDQ8Mm55WaTKOyv6KiIgC46wOzefNm2NvbIygoCIsWLUJ5efk9z5GSkoKsrCwMGTKk/j4rKyuEhITg9OnTjT6nsrISxcXFDW7a4IP9VzF27UkkZpeKHQoRERERUZsnCALKq2pEuQmC0OQ4Z86cCUNDQ/z1118YNGgQPD098dhjj+Hw4cPIyMjA22+/XX9sSUkJJk2aBDMzM7i5ueGbb75p8H7ff/99eHp6wsjICK6urvjf//5X/3hlZSUWLFgANzc3mJmZISQkBOHh4fWPb9y4EdbW1ti7dy86duwIIyMjrF+/HsbGxneVvM+ZMwePPPIIACAvLw+TJk2Cm5sbTE1N0blzZ2zdurX+2OnTpyMiIgKrVq2qX5J948aNRsvpd+zYgU6dOsHIyAjt2rXDihUrGrxuu3bt8NFHH+G5556DhYUFPD098d1339U/XlVVhVmzZsHFxQXGxsbw8vLC8uXLm/xv0Rwas0+8XC7H3Llz0b9/fwQFBdXfP3nyZHh5ecHV1RWXLl3CwoULERcXh507dzZ6nqysLACAk5NTg/udnJzqH/uv5cuXY8mSJSp6J60jr7QSBy5noqC8GiO/isQ7IzticrAnJBKJ2KEREREREbVJd6pl6PjuQVFe++rSYTA1fHB6l5+fj4MHD+LDDz+EiYlJg8ecnZ0xZcoUbN++HWvWrAEAfPbZZ3jrrbewZMkSHDx4EHPmzIG/vz8effRR7NixA19++SW2bduGTp06ISsrCxcvXqw/36xZs3D16lVs27YNrq6u2LVrF4YPH47Lly/Dz88PAFBeXo5PPvkE69evh52dHdzd3fHuu+9ix44dmDFjBgDFDP327dvx4YcfAgAqKirQs2dPLFy4EJaWlvjjjz/wf//3f2jfvj2Cg4OxatUqxMfHIygoCEuXLgUAODg44MaNGw3e77lz5zBhwgS8//77ePrpp3Hq1Cm8+uqrsLOzw/Tp0+uPW7FiBT744AO89dZb+P333/HKK69g0KBBCAgIwOrVq7F37178+uuv8PT0RFpaGtLS0pT7x1OSxiTxM2fOxJUrV3DixIkG97/44ov1/79z585wcXHB4MGDkZSUhPbt26vktRctWoR58+bV/1xcXAwPDw+VnFtd7MyNEDZ3IBb8dhGRCbl4e9cVHLueg0/GdYaduZHY4RERERERkQZKSEiAIAjo0KFDo4936NABBQUFyMnJAQD0798fb775JgDA398fJ0+exJdffolHH30UqampcHZ2xpAhQ2BgYABPT08EBwcDAFJTU7FhwwakpqbC1dUVALBgwQKEhYVhw4YN+OijjwAA1dXVWLNmDbp27Vofw8SJE7Fly5b6JP7IkSMoLCzEuHHjAABubm5YsGBB/fGzZ8/GwYMH8euvvyI4OBhWVlYwNDR84LLsL774AoMHD8Y777xT//6uXr2Kzz77rEESP2LECLz66qsAgIULF+LLL7/EsWPHEBAQgNTUVPj5+eGhhx6CRCKBl5dXE/8lmk8jkvhZs2Zh//79OH78ONzd3e97bEhICAAgMTGx0SS+7h/p9u3bcHFxqb//9u3b6NatW6PnNDIygpGR9iW+TpbG+OnZYPx4MgWfhsXh8LXbGL6qECue6oqB/g5ih0dERERE1KaYGEhxdekw0V5bGU0tv+/bt+9dP9d1rH/qqaewcuVK+Pj4YPjw4RgxYgRGjRoFfX19XL58GTKZDP7+/g2eX1lZCTs7u/qfDQ0N0aVLlwbHTJkyBX369MGtW7fg6uqKzZs34/HHH4e1tTUAxcz8Rx99hF9//RUZGRmoqqpCZWUlTE1NlRqDa9eu1fdRq9O/f3+sXLkSMpkMUqliTP8dn0QigbOzM7KzswEoSvcfffRRBAQEYPjw4Rg5ciSGDh2qVBzKEnVNvCAImDVrFnbt2oWjR4/C29v7gc+JjY0FgAYJ+r95e3vD2dkZR44cqb+vuLgY0dHRd30AdYGengTPD/DB7pn94edojpySSkz7MQZL911FRbVM7PCIiIiIiNoMiUQCU0N9UW5NXVbr6+sLiUSCa9euNfr4tWvXYGNjAweHB08Kenh4IC4uDmvWrIGJiQleffVVDBw4ENXV1SgtLYVUKsW5c+cQGxtbf7t27RpWrVpVfw4TE5O7Yu/duzfat2+Pbdu24c6dO9i1axemTJlS//hnn32GVatWYeHChTh27BhiY2MxbNgwVFVVNWkMlGVgYNDgZ4lEArlcDgDo0aMHUlJS8MEHH+DOnTuYMGECxo8fr5Y46oiaxM+cORObNm3Cli1bYGFhgaysLGRlZeHOnTsAgKSkJHzwwQc4d+4cbty4gb1792LatGkYOHBgg6shgYGB2LVrFwDFgM6dOxfLli3D3r17cfnyZUybNg2urq4YM2aMGG+zVXR0tcS+2Q/hmb6K8o0fT6ZgzDcnEZdVInJkRERERESkKezs7PDoo49izZo19XlXnaysLGzevBlPP/10fWIdFRXV4JioqKgGpfgmJiYYNWoUVq9ejfDwcJw+fRqXL19G9+7dIZPJkJ2dDV9f3wa3pnSInzJlCjZv3ox9+/ZBT08Pjz/+eP1jJ0+exOjRozF16lR07doVPj4+iI+Pb/B8Q0NDyGT3n9Ts0KEDTp482eC+kydPwt/fv34WviksLS3x9NNP4/vvv8f27duxY8cO5OfnN/n5yhI1iV+7di2KiooQGhoKFxeX+tv27dsBKAb+8OHDGDp0KAIDAzF//nyMGzcO+/bta3CeuLi4+s72APDGG29g9uzZePHFF9G7d2+UlpYiLCwMxsbGrfr+WpuxgRRLRgfhx+m9YG9uiOtZJRj19QlsPJmiVLdKIiIiIiLSXV9//TUqKysxbNgwHD9+HGlpaQgLC8Ojjz4KNze3+gZygCKp/fTTTxEfH49vvvkGv/32G+bMmQNA0V3+hx9+wJUrV5CcnIxNmzbBxMQEXl5e8Pf3x5QpUzBt2jTs3LkTKSkpiImJwfLly/HHH388MMYpU6bg/Pnz+PDDDzF+/PgGy5/9/Pxw6NAhnDp1CteuXcNLL72E27dvN3h+u3btEB0djRs3biA3N7d+5vzf5s+fjyNHjuCDDz5AfHw8fvrpJ3z99dcN1ts/yBdffIGtW7fi+vXriI+Px2+//QZnZ+f60n91EHVN/IMSSw8PD0RERCh9HolEgqVLl9Z3ImxrHgl0wp9zBuL13y8iPC4H7++7ivD4HHw2viscLLRv7T8REREREamOn58fzp49i/feew8TJkxAfn4+nJ2dMWbMGLz33nsNtvyeP38+zp49iyVLlsDS0hJffPEFhg1TrPu3trbGxx9/jHnz5kEmk6Fz587Yt29f/Zr3DRs2YNmyZZg/fz4yMjJgb2+PPn36YOTIkQ+M0dfXF8HBwYiJialfg19n8eLFSE5OxrBhw2BqaooXX3wRY8aMaTCxu2DBAjzzzDPo2LEj7ty5g5SUlLteo0ePHvj111/x7rvv4oMPPoCLiwuWLl3aoKndg1hYWODTTz9FQkICpFIpevfujQMHDqhtr3sAkAicor1LcXExrKysUFRUBEtLS7HDaTZBEPDz6Zv48MA1VNXIYWdmiM+e6oJHAp0e/GQiIiIiIrqniooKpKSkwNvbW+crfkl17ve5aWoeKmo5PamXRCLBM/3aYd+shxDobIG8sio8t/Es3t1zhU3viIiIiIiItBCT+DYgwNkCu2f2x4yHFN3/fz59EyO/OoG/bxU94JlERERERESkSZjEtxHGBlK8M7IjfnouGA4WRkjMLsWT35zC+shkyOVcUUFERERERKQNmMS3MYP8HRA2ZwCGdHBClUyOZX9cw7QfY3C7uELs0IiIiIiIiOgBmMS3QXbmRvh+Wk98+GQQjA30cCIxF8NWHkfYlSyxQyMiIiIiIqL7YBLfRkkkEkwJ8cL+2QPQydUSheXVeHnTOSzaeQnlVTVih0dERERERESNYBLfxvk6mmPXq/3x0iAfSCTA1pg0jFx9ApfSC8UOjYiIiIiIiP6DSTzBUF8Pix7rgM0zQuBsaYzk3DKMXXMKa8ITIWPTOyIiIiIiIo3BJJ7q9fO1R9jcAXgsyBk1cgGfhsVh8vdRuFV4R+zQiIiIiIhIy0yfPh1jxoyp/zk0NBRz585t0TlVcQ5txySeGrA2NcSaKT3w6fguMDWUIjolH8NXHsf+S7fEDo2IiIiIiFRg+vTpkEgkkEgkMDQ0hK+vL5YuXYqaGvX2xtq5cyc++OCDJh0bHh4OiUSCwsLCZp9DVzGJp7tIJBJM6OWBA/8bgK4e1iiuqMGsLRcw/9eLKK1k0zsiIiIiIm03fPhwZGZmIiEhAfPnz8f777+Pzz777K7jqqqqVPaatra2sLCwEP0c2o5JPN1TO3sz/P5yX8x+xBd6EmDH+XSMWBWJ86kFYodGRERERKQzZHIBp5PysCc2A6eT8lqlL5WRkRGcnZ3h5eWFV155BUOGDMHevXvrS+A//PBDuLq6IiAgAACQlpaGCRMmwNraGra2thg9ejRu3Ljxz3uQyTBv3jxYW1vDzs4Ob7zxBgSh4fv4byl8ZWUlFi5cCA8PDxgZGcHX1xc//PADbty4gYcffhgAYGNjA4lEgunTpzd6joKCAkybNg02NjYwNTXFY489hoSEhPrHN27cCGtraxw8eBAdOnSAubl5/QWMOuHh4QgODoaZmRmsra3Rv39/3Lx5U0UjrXpM4um+DKR6mD80ANte7As3axOk5pfjqXWnsepwAmpkcrHDIyIiIiLSamFXMvHQJ0cx6fsozNkWi0nfR+GhT44i7Ermg5+sQiYmJvWz7keOHEFcXBwOHTqE/fv3o7q6GsOGDYOFhQUiIyNx8uTJ+mS47jkrVqzAxo0b8eOPP+LEiRPIz8/Hrl277vua06ZNw9atW7F69Wpcu3YN3377LczNzeHh4YEdO3YAAOLi4pCZmYlVq1Y1eo7p06fj7Nmz2Lt3L06fPg1BEDBixAhUV1fXH1NeXo7PP/8cv/zyC44fP47U1FQsWLAAAFBTU4MxY8Zg0KBBuHTpEk6fPo0XX3wREomkxWOqLvpiB0DaIdjbFgfmDMA7u69g78Vb+PJwPI4n5GDl093gYWsqdnhERERERFon7EomXtl0Hv+dd88qqsArm85j7dQeGB7kotYYBEHAkSNHcPDgQcyePRs5OTkwMzPD+vXrYWhoCADYtGkT5HI51q9fX5/cbtiwAdbW1ggPD8fQoUOxcuVKLFq0CGPHjgUArFu3DgcPHrzn68bHx+PXX3/FoUOHMGTIEACAj49P/eO2trYAAEdHR1hbWzd6joSEBOzduxcnT55Ev379AACbN2+Gh4cHdu/ejaeeegoAUF1djXXr1qF9+/YAgFmzZmHp0qUAgOLiYhQVFWHkyJH1j3fo0EH5gWxFnImnJrMyMcDqSd2x8uluMDfSx7mbBXhsVSR2XUgXOzQiIiIiIq0ikwtYsu/qXQk8gPr7luy7qrbS+v3798Pc3BzGxsZ47LHH8PTTT+P9998HAHTu3Lk+gQeAixcvIjExERYWFjA3N4e5uTlsbW1RUVGBpKQkFBUVITMzEyEhIfXP0dfXR69eve75+rGxsZBKpRg0aFCz38O1a9egr6/f4HXt7OwQEBCAa9eu1d9nampan6ADgIuLC7KzswEoLhZMnz4dw4YNw6hRo7Bq1aoGpfaaiEk8KW1Mdzf8OWcAenrZoLSyBq9tv4g52y6g6E71g59MRERERESISclHZlHFPR8XAGQWVSAmJV8tr//www8jNjYWCQkJuHPnDn766SeYmZkBQP3/1iktLUXPnj0RGxvb4BYfH4/Jkyc36/VNTExa/B6aysDAoMHPEomkwXr9DRs24PTp0+jXrx+2b98Of39/REVFtVp8ymIST83iYWuK7S/2wbxH/SHVk2BP7C2MWBWptl8yRERERES6JLvk3gl8c45TlpmZGXx9feHp6Ql9/fuvsu7RowcSEhLg6OgIX1/fBjcrKytYWVnBxcUF0dHR9c+pqanBuXPn7nnOzp07Qy6XIyIiotHH6yoBZDLZPc/RoUMH1NTUNHjdvLw8xMXFoWPHjvd9T//VvXt3LFq0CKdOnUJQUBC2bNmi1PNbE5N4ajZ9qR7+N9gPv73cF562psgovIOJ353Gir/iUM2md0RERERE9+RoYazS49RpypQpsLe3x+jRoxEZGYmUlBSEh4fjf//7H9LTFUtr58yZg48//hi7d+/G9evX8eqrr961x/u/tWvXDs888wyee+457N69u/6cv/76KwDAy8sLEokE+/fvR05ODkpLS+86h5+fH0aPHo0XXngBJ06cwMWLFzF16lS4ublh9OjRTXpvKSkpWLRoEU6fPo2bN2/ir7/+QkJCgkavi2cSTy3Ww9MGB+YMwLge7pALwFdHEzF+3WncyC0TOzQiIiIiIo0U7G0LFytj3KsHugSAi5Uxgr1tWzOsRpmamuL48ePw9PTE2LFj0aFDB8yYMQMVFRWwtLQEAMyfPx//93//h2eeeQZ9+/aFhYUFnnzyyfued+3atRg/fjxeffVVBAYG4oUXXkBZmSKHcHNzw5IlS/Dmm2/CyckJs2bNavQcGzZsQM+ePTFy5Ej07dsXgiDgwIEDd5XQ3++9Xb9+HePGjYO/vz9efPFFzJw5Ey+99JISI9S6JMJ/N+8jFBcXw8rKCkVFRfUfSmqafRdv4e1dl1FcUQNTQynef6ITnurprtFbNBARERERKauiogIpKSnw9vaGsXHzZsvrutMDaNDgru6bc2t0p6fWdb/PTVPzUM7Ek0qN6uqKP+cORIi3LcqrZHjj90uYueU8CsurxA6NiIiIiEijDA9ywdqpPeBs1TCZc7YyZgJP98R94knl3KxNsOWFPvj2eBK++CseBy5n4fzNQnzxdFf0a28vdnhERERERBpjeJALHu3ojJiUfGSXVMDRQlFCL9VjJSs1jkk8qYVUT4JXQ33xkK895myLRUpuGaasj8aLA30w/9EAGOqzCISIiIiICFB8d+7b3k7sMEhLMJMiteribo0//vcQJgV7QBCAbyOSMXbtSSRm391dkoiIiIiIiO6PSTypnamhPpaP7YJ1U3vC2tQAVzKKMfKrSGyOvgn2VSQiIiIiImo6JvHUaoYHOePg3IF4yNceFdVyvL3rCl74+RzySivFDo2IiIiIiEgrMImnVuVkaYyfnwvG4sc7wFCqh8PXbmP4qkgcj88ROzQiIiIiIiKNxySeWp2engTPD/DBrpn94OtojpySSkz7MQZL911FRbVM7PCIiIiIiIg0FpN4Ek0nVyvsm/UQpvX1AgD8eDIFY745ibisEpEjIyIiIiIi0kxM4klUJoZSLB0dhB+e6QU7M0NczyrBqK9PYOPJFDa9IyIiIiISiUQiwe7duwEAN27cgEQiQWxsrKgx3Yumx6dqTOJJIwzu4IQ/5w7AIH8HVNXI8f6+q3h24xnklLDpHRERERGRqmVlZWH27Nnw8fGBkZERPDw8MGrUKBw5cuSuYz08PJCZmYmgoCC1xtTWkvHmYhJPGsPRwhgbn+2N90d1hKG+HsLjcjB85XEcvX5b7NCIiIiIiNRGJpMhPDwcW7duRXh4OGQy9faJunHjBnr27ImjR4/is88+w+XLlxEWFoaHH34YM2fOvOt4qVQKZ2dn6OvrqzUuahom8aRRJBIJpvf3xr5ZDyHQ2QJ5ZVV4buNZvLvnCpveEREREZHO2blzJ9q1a4eHH34YkydPxsMPP4x27dph586danvNV199FRKJBDExMRg3bhz8/f3RqVMnzJs3D1FRUXcd/98Z8vDwcEgkEhw8eBDdu3eHiYkJHnnkEWRnZ+PPP/9Ehw4dYGlpicmTJ6O8vLz+PGFhYXjooYdgbW0NOzs7jBw5EklJSfWPe3t7AwC6d+8OiUSC0NBQAIBcLsfSpUvh7u4OIyMjdOvWDWFhYfd9jxEREQgODoaRkRFcXFzw5ptvoqampv7xkpISTJkyBWZmZnBxccGXX36J0NBQzJ07FwCwdOnSRisPunXrhnfeeadJ46wuTOJJIwU4W2D3zP54rr/iP+SfT9/EyK9O4O9bRSJHRkRERESkGjt37sT48eORnp7e4P6MjAyMHz9eLYl8fn4+wsLCMHPmTJiZmd31uLW1dZPP9f777+Prr7/GqVOnkJaWhgkTJmDlypXYsmUL/vjjD/z111/46quv6o8vKyvDvHnzcPbsWRw5cgR6enp48sknIZfLAQAxMTEAgMOHDyMzM7P+/a9atQorVqzA559/jkuXLmHYsGF44oknkJCQ0GhcGRkZGDFiBHr37o2LFy9i7dq1+OGHH7Bs2bL6Y+bNm4eTJ09i7969OHToECIjI3H+/Pn6x5977jlcu3YNZ86cqb/vwoULuHTpEp599tkmj5E6MIknjWVsIMW7ozrip+eC4WBhhMTsUjz5zSmsj0yGXM6md0RERESkvWQyGebMmdNoM+e6++bOnavy0vrExEQIgoDAwMAWn2vZsmXo378/unfvjhkzZiAiIgJr165F9+7dMWDAAIwfPx7Hjh2rP37cuHEYO3YsfH190a1bN/z444+4fPkyrl69CgBwcHAAANjZ2cHZ2Rm2trYAgM8//xwLFy7ExIkTERAQgE8++QTdunXDypUrG41rzZo18PDwwNdff43AwECMGTMGS5YswYoVKyCXy1FSUoKffvoJn3/+OQYPHoygoCBs2LChwVi7u7tj2LBh2LBhQ/19GzZswKBBg+Dj49PisWsJJvGk8Qb5OyBszgAM6eCEKpkcy/64hmk/xuB2cYXYoRERERERNUtkZORdM/D/JggC0tLSEBkZqdLXVeUOUF26dKn//05OTjA1NW2Q4Do5OSE7O7v+54SEBEyaNAk+Pj6wtLREu3btAACpqan3fI3i4mLcunUL/fv3b3B///79ce3atUafc+3aNfTt2xcSiaTB8aWlpUhPT0dycjKqq6sRHBxc/7iVlRUCAgIanOeFF17A1q1bUVFRgaqqKmzZsgXPPffcfUakdTCJJ61gZ26E76f1xIdPBsHYQA8nEnMxbOVxhF3JEjs0IiIiIiKlZWZmqvS4pvLz84NEIsH169dbfC4DA4P6/y+RSBr8XHdfXak8AIwaNQr5+fn4/vvvER0djejoaABAVVVVi2NRh1GjRsHIyAi7du3Cvn37UF1djfHjx4sdFpN40h4SiQRTQrywf/YAdHK1RGF5NV7edA6Ldl5CeVXNg09ARERERKQhXFxcVHpcU9na2mLYsGH45ptvUFZWdtfjhYWFKn29Onl5eYiLi8PixYsxePBgdOjQAQUFBQ2OMTQ0BIAGZe2WlpZwdXXFyZMnGxx78uRJdOzYsdHX6tChA06fPt2g6uDkyZOwsLCAu7s7fHx8YGBg0GC9e1FREeLj4xucR19fH8888ww2bNiADRs2YOLEiTAxMWneAKgQk3jSOr6O5tj1an+8NMgHEgmwNSYNI1efwKX0QrFDIyIiIiJqkgEDBsDd3b1Byfe/SSQSeHh4YMCAASp/7W+++QYymQzBwcHYsWMHEhIScO3aNaxevRp9+/ZV+esBgI2NDezs7PDdd98hMTERR48exbx58xoc4+joCBMTE4SFheH27dsoKlI0tX799dfxySefYPv27YiLi8Obb76J2NhYzJkzp9HXevXVV5GWlobZs2fj+vXr2LNnD9577z3MmzcPenp6sLCwwDPPPIPXX38dx44dw99//40ZM2ZAT0/vrn+P559/HkePHkVYWJhGlNIDTOJJSxnq62HRYx2weUYInC2NkZxbhrFrTmFNeCJkbHpHRERERBpOKpVi1apVAHBX4lj388qVKyGVSlX+2j4+Pjh//jwefvhhzJ8/H0FBQXj00Udx5MgRrF27VuWvBwB6enrYtm0bzp07h6CgILz22mv47LPPGhyjr6+P1atX49tvv4WrqytGjx4NAPjf//6HefPmYf78+ejcuTPCwsKwd+9e+Pn5Nfpabm5uOHDgAGJiYtC1a1e8/PLLmDFjBhYvXlx/zBdffIG+ffti5MiRGDJkCPr3748OHTrA2Ni4wbn8/PzQr18/BAYGIiQkRMWj0jwSQZWdDXREcXExrKysUFRUBEtLS7HDoQcoKKvCW7su48/a9fEh3rb48ulucLUWv9SFiIiIiHRTRUUFUlJS4O3tfVfip4ydO3dizpw5DZrceXh4YOXKlRg7dqwqQqUmKCsrg5ubG1asWIEZM2bU3y8IAvz8/PDqq6/eVTnQHPf73DQ1D9VvcRREIrMxM8SaKT3w29l0vL/vb0Sn5GP4yuP4aGxnjOziKnZ4RERERET3NHbsWIwePRqRkZHIzMyEi4sLBgwYoJYZePrHhQsXcP36dQQHB6OoqAhLly4FgPrZfwDIycnBtm3bkJWVJfre8P/GJJ50gkQiwYTeHujtbYu52y7gYnoRZm25gGPXc7BkdCeYG/GjTkRERESaSSqVIjQ0VOww2pzPP/8ccXFxMDQ0RM+ePREZGQl7e/v6xx0dHWFvb4/vvvsONjY2IkbaEDMb0ine9mb4/ZV+WHU4Ad+EJ2LH+XScuZGPlRO7oYen5vyHR0RERERE4unevTvOnTt332M0deU5G9uRzjGQ6mHBsABse6EP3KxNkJpfjqfWncaqwwmokckffAIiIiIiIiINxSSedFaIjx0OzBmAUV1dIZML+PJwPJ7+Lgpp+eVih0ZERERERNQsoibxy5cvR+/evWFhYQFHR0eMGTMGcXFxjR4rCAIee+wxSCQS7N69+77nnT59OiQSSYPb8OHD1fAOSNNZmRhg9cRu+PLprjA30se5mwV44usTyCqqEDs0IiIiItIBmlpyTZpJFZ8XUZP4iIgIzJw5E1FRUTh06BCqq6sxdOhQlJWV3XXsypUr79o/8X6GDx+OzMzM+tvWrVtVGTppEYlEgie7u+PPOQMQ4GSBgvJqvLXrMn/hEhEREVGzGRgYAADKy1nlSU1X93mp+/w0h6iN7cLCwhr8vHHjRjg6OuLcuXMYOHBg/f2xsbFYsWIFzp49CxcXlyad28jICM7OziqNl7Sbh60pVk/qjlFfncDR69nYcT4D43u6ix0WEREREWkhqVQKa2trZGdnAwBMTU2VmnSktkUQBJSXlyM7OxvW1tYt2kJQo7rTFxUVAQBsbW3r7ysvL8fkyZPxzTffKJWUh4eHw9HRETY2NnjkkUewbNky2NnZNXpsZWUlKisr638uLi5u5jsgTRfgbIE5Q/zw2cE4LNn3Nx7ytYezlbHYYRERERGRFqrLT+oSeaIHsba2bvFks0TQkJpiuVyOJ554AoWFhThx4kT9/S+99BJkMhnWr18PQFEavWvXLowZM+ae59q2bRtMTU3h7e2NpKQkvPXWWzA3N8fp06cbveLx/vvvY8mSJXfdX1RUBEtLy5a/OdIoNTI5xq09hYvpRXg4wAE/Tu/Nq6ZERERE1GwymQzV1dVih0EazsDA4L4z8MXFxbCysnpgHqoxSfwrr7yCP//8EydOnIC7u6LEee/evZg/fz4uXLgAc3NzAE1L4v8rOTkZ7du3x+HDhzF48OC7Hm9sJt7Dw4NJvA5LuF2Cx1efQJVMjk/Hd8GEXh5ih0RERERERG1YU5N4jdhibtasWdi/fz+OHTtWn8ADwNGjR5GUlARra2vo6+tDX19R/T9u3DiEhoY2+fw+Pj6wt7dHYmJio48bGRnB0tKywY10m5+TBeY+6gcA+GDfVWQW3RE5IiIiIiIiogcTNYkXBAGzZs3Crl27cPToUXh7ezd4/M0338SlS5cQGxtbfwOAL7/8Ehs2bGjy66SnpyMvL6/JTfGobXhxgA+6elijpLIGb+5gt3oiIiIiIl0kl+vW93xRk/iZM2di06ZN2LJlCywsLJCVlYWsrCzcuaOYFXV2dkZQUFCDGwB4eno2SPgDAwOxa9cuAEBpaSlef/11REVF4caNGzhy5AhGjx4NX19fDBs2rPXfJGksfakePh/fBYZSPUTE5+C3s+lih0RERERERCqUVVSBoSuP49h13Wk+KGoSv3btWhQVFSE0NBQuLi71t+3btyt1nri4uPrO9lKpFJcuXcITTzwBf39/zJgxAz179kRkZCSMjIzU8TZIi/k5WeC1R/0BAB/sv4pbhSyrJyIiIiLSBTUyOf639QISs0ux4lAcZDoyIy/qFnPNKV9u7Dn/vs/ExAQHDx5sUVzUtrwwwBthf2fhYloh3tx5GT89y271RERERETabsWheMTcyIe5kT6+ntQDUj3d+I6vEY3tiMSkL9XDiqe6wFBfD8fjc/Dr2TSxQyIiIiIiohY4dj0ba8OTAACfju+CdvZmIkekOkziiQD4Olpgfm1Z/bL911hWT0RERESkpW4V3sFrv8YCAJ7p64URnXWrwTmTeKJazw/wQXdPRbf6hTsusVs9EREREZGWqZbJMXvrBRSWV6OzmxXeeryD2CGpHJN4olpSPQk+G98Vhvp6iEzIxbYzLKsnIiIiItImnx+Mw7mbBbAw1sc3k3vASF8qdkgqxySe6F98Hc2xYKiirP7DP64hg2X1RERERERa4ci12/j2eDIA4LPxXeFpZypyROrBJJ7oP2Y85IMentYorazBmyyrJyIiIiLSeOkF5Zj360UAwLP922F4kLPIEakPk3ii/5DqSfDZU11hVFtWvzWGZfVERERERJqqqkaOWVsuoOhONbp6WGPRY7q3Dv7fmMQTNaK9gzkWDA0AAHz4x1WkF5SLHBERERERETXmk7DriE0rhKWxPr6e1B2G+rqd5ur2uyNqgece8kZPLxuUVcnw5o7LLKsnIiIiItIwB//Owg8nUgAAKyZ0g4etbq6D/zcm8UT3oOhW3wVG+no4kZiLLTGpYodERERERES10vLLseA3xTr4FwZ449GOTiJH1DqYxBPdh4+DOV4fpiir/+iPa0jLZ1k9EREREZHYKmtkmLnlPEoqatDD0xpvDA8UO6RWwySe6AGe7e+NXrVl9Qt3XIJczrJ6IiIiIiIxLT9wHZfSi2BtaoCvJveAgbTtpLZt550SNVNdt3pjAz2cSsrDZpbVExERERGJ5sDlTGw8dQMA8MWErnCzNhE3oFbGJJ6oCbztzfD6MEWJzvIDLKsnItI2a8IT0eODQ4jLKhE7FCIiaoGbeWVY+PslAMBLg3zwSGDbWAf/b0ziiZro2X7t0LudDcqrZHjjd5bVExFpi9LKGnxzNBH5ZVX49Wya2OEQEVEzVVTXroOvrEEvL5v6LaHbGibxRE2kpyfBZ+MVZfWnk/OwOfqm2CEREVET7I29hbIqGQAgIj5H5GiIiKi5PvzjGq5kFMPWzBBfTe7eptbB/1vbfNdEzdTO3gxv1JXV/3mdZfVERBpOEIQGF10Ts0uRXsDf3URE2mbfxVv4JUrx+/yLCV3hYtW21sH/G5N4IiVN79cOwe1sUV4lw+u/X2RZPRGRBotNK8Tft4phqK+HQGcLAEB4HGfjiYi0SUpuGRbtvAwAmPlwe4QGOIockbiYxBMpSU9Pgk/Hd4GJgRRRyfnYxLJ6IiKNtTlasaPIyC4uGNnFBQBL6omItElFtQyvbj6P0soahHjb4rUh/mKHJDom8UTN0M7eDAuHKxppLD9wHal5LM0kItI0ReXV2HfxFgBgSohX/czNqcRcVNXIxQyNiIiaaMm+q7iWWQw7M0OsntQd+m10Hfy/cQSImmla33YI8bbFnWqW1RMRaaId59NRWSNHoLMFenhao6OLJezNDVFWJcPZm/lih0dERA+wJzYDW2NSIZEAqyZ2h5OlsdghaQQm8UTNVNet3sRAiuiUfPx8+obYIRERUa1/N7Sb0scLEokEenoSDPR3AABEcF08EZFGS8wurV8HP/sRPzzkZy9yRJqDSTxRC3jameLNxxTd6j8Ji8PNvDKRIyIiIgCITslHUk4ZTA2lGNPNtf7+QXVJPNfFExFprDtVMszcfB7lVTL09bHDnMF+YoekUZjEE7XQ//XxQh+furL6SyyrJyLSAHUN7UZ3c4OFsUH9/QP9HCCRANezSpBZdEes8IiI6D7e3/s34m6XwN7cCKsmdYNUTyJ2SBqFSTxRC+npSfDpuK4wNZQiJiUfP7GsnohIVLmllQi7kgkAmBLi2eAxGzNDdHW3BgAc52w8EZHG2Xk+HdvPpkFPAqye2A2OFlwH/19M4olUoGFZ/XXcyGVZPRGRWH47m45qmYCuHtYIcrO66/HQAEVJPfeLJyLSLAm3S/D2risAgDmD/dHPl+vgG8MknkhFpoZ4oa+PHSqq5XiDZfVERKKQywVsialtaPefWfg6deviTyTkolrGreaIiDRBeVUNXt18HneqZXjI1x6zHvEVOySNxSSeSEX09CT4dHwXRVn9jXxsPHVD7JCIiNqcyMRcpOXfgaWxPkZ1cW30mC7u1rAxNUBJZQ0upBa2boBERNSod3b/jYTsUjhaGGHlRK6Dvx8m8UQq5GFrikUjOgAAPj14HSksqycialWboxSz8ON6usPEUNroMdJ/bTUXHpfdarEREVHjfj2bhh3n0xXr4Cd1h725kdghaTT9phx06dIlpU/csWNH6Os36fREOmVKsCf+vJyJU0l5eP23i9j+Ul9eSSQiagWZRXdw5LoiKb9XKX2dQf4O2BN7CxHxOXhjeGBrhEdERI2IyyrBu3sU6+DnDw1AHx87kSPSfE3Ksrt16waJRAJBaNoaXz09PcTHx8PHx6dFwRFpIz09CT4Z1wXDVx7H2ZsF2HAyBc8P4H8LRETqtv1MGmRyASHetvB1tLjvsXUz8X/fKkZ2SQW7HxMRiaCssgavbj6Himo5Bvk74JVB7cUOSSs0eao8OjoaDg4ODzxOEAQEBQW1KCgibVdXVr949xV8djAOjwQ6wsfBXOywiIh0Vo1Mjm0xaQCAKX28Hni8vbkROrtZ4XJGEY7H52J8T3d1h0hERP8iCALe3nUZSTllcLY0xhcTukKP1atN0qQkftCgQfD19YW1tXWTTjpw4ECYmJi0JC4irTclxBN/XsnEycQ8vP77JfzKsnoiIrU5ej0bWcUVsDMzxLBOTk16TmiAAy5nFCE8LptJPBFRK9t2Jg27Y29BqifBV5O7w47r4JusSY3tjh071uQEHgAOHDgAFxeX5sZEpBMkEkVZvZmhFOdqy+qJiEg9NkenAgCe6uUBI/3GG9r9V91Wc5EJuZBxW1AiolZz9VYx3tv7NwBgwdAA9G5nK3JE2kWp7vTFxcWQy+/eT1Umk6G4uFhlQRHpCncbU7z1uKJb/WcH45CUUypyREREuic1rxzHE3IAAJOD79/Q7t+6eVjD0lgfRXeqEZtWqKboiIjo30orazBry3lU1cjxcIADXhrI3lHKanISv2vXLvTq1QsVFRV3PVZRUYHevXtj3759Kg2OSBdMDvbEQ772qKyR4/XfLnK2h4hIxbaeSYUgKJrVedqZNvl5+lI9DPBTzMZHxOeoKzwiIqolCAIW7byM5NwyuFoZ44sJ3bgOvhmanMSvXbsWb7zxBkxN7/7jaGZmhoULF+Lrr79WaXBEukAikeCT8V1gbqSP86mF+PEEy+qJiFSlskaGX8/UNrR7wLZyjRkUUJvEc794IiK12xydin0Xb0FfT4KvJveAjZmh2CFppSYn8VeuXEFoaOg9Hx84cCAuX76sipiIdI6btQneri2r//wvltUTEanKwb9vI6+sCk6WRhgc6Kj08+vWxV/KKEJeaaWqwyMiolpXMoqwdP9VAMDC4YHo6WUjckTaq8lJfEFBAWpqau75eHV1NQoKClQSFJEumtjbAwP8FGX1C1hWT0SkEpujbgIAJvb2hL5UqVY/AAAnS2N0cLGEICga3BERkeoVV1RjZu06+CEdnPD8AG+xQ9JqTf5r165dO5w9e/aej589exZeXg/el5WorZJIJPh4nKKs/kJqIdZHJosdEhGRVkvMLkF0Sj70JMDEYI9mnye0tqQ+nCX1REQqJwgC3txxCTfzyuFmbYIVT3WFRMJ18C3R5CR+7NixePvtt3H79u27HsvKysLixYsxbtw4lQZHpGvcrE2wuLasfsWheCRml4gcERGR9qrbVm5wBye4WJk0+zx1JfXHE3IhZ5UUEZFK/Xz6Jg5czoKBVIJvpvSAlamB2CFpvSYn8W+++SYsLCzg5+eHV199FatWrcKqVavwyiuvwN/fH+bm5njzzTfVGSuRTni6twcG+jugqkaOBb9dYlk9EVEz3KmSYce5dADNa2j3bz29bGBupI/8sipczihSRXhERATgUnohlv2hWAe/6LEO6OZhLW5AOqLJSbyFhQVOnjyJqVOnYvv27Xjttdfw2muvYfv27Zg6dSpOnDgBCwsLdcZKpBMkEgk+HtsZFkb6iE0rxPcsqyciUtr+S7dQXFEDdxsTDKzdJq65DKR66O9rB4BbzRERqUrRHcU6+GqZgGGdnPBs/3Zih6QzlOoAY2VlhTVr1iA3Nxe3b99GVlYW8vLysGbNGtjYsLsgUVO5WpvgnZEdAQBfsKyeiEhpdaX0k0M8VbLHcGiAorM918UTEbWcIAh44/eLSMu/Aw9bE3w6nuvgVUn5Nq5QzCQ6ODjA0dGR/xhEzfRUL3eEBijK6uf/dgk1MrnYIRERaYUrGUWITSuEgVSCp3o2v6Hdv9Wti49NK0RheZVKzklE1FZtOHkDB/++DUOpHr6Z3ANWJlwHr0rNSuKJqOUkEgmWj+0MC2N9XEwrxPeRKWKHRESkFbbEKGbhh3VyhoOFkUrO6WptAn8nc8i51RwRUYvEphVi+Z/XAABvP94BXdytxQ1IB4maxC9fvhy9e/eGhYUFHB0dMWbMGMTFxTV6rCAIeOyxxyCRSLB79+77nlcQBLz77rtwcXGBiYkJhgwZgoSEBDW8A6KWcbH6p6z+y0PxSLjNsnoiovsprazBngsZAICpfVS7tW3dbDzXxRMRNU9heRVmblasg3+8swum9eUW5OogahIfERGBmTNnIioqCocOHUJ1dTWGDh2KsrKyu45duXJlk0v3P/30U6xevRrr1q1DdHQ0zMzMMGzYMFRUVKj6LRC12FM93fFwgAOqZHIs+O0iy+qJiO5j94UMlFXJ0N7BDCHetio9d926+Ij4HG41R0SkJEEQsOC3S8govAMvO1MsH9eZS6/VpEVJfEuT4rCwMEyfPh2dOnVC165dsXHjRqSmpuLcuXMNjouNjcWKFSvw448/PvCcgiBg5cqVWLx4MUaPHo0uXbrg559/xq1btx44g08kBkVZfRdFWX16Eb49zm71RESNEQShvqHdlBAvlX857NXOBqaGUuSUVOJaVrFKz01EpOvWR6bg8LXbMNRXrIO3NOY6eHVROomXy+X44IMP4ObmBnNzcyQnKxKOd955Bz/88EOLgikqUuzNamv7z5X18vJyTJ48Gd988w2cnZ0feI6UlBRkZWVhyJAh9fdZWVkhJCQEp0+fbvQ5lZWVKC4ubnAjak3OVsZ4t7asftXhBMRlsayeiOi/LqQV4lpmMYz09TCuh7vKz2+kL0W/9oqt5sLjWFJPRNRU524W4JOw6wCAd0d2RJCblcgR6Talk/hly5Zh48aN+PTTT2FoaFh/f1BQENavX9/sQORyOebOnYv+/fsjKCio/v7XXnsN/fr1w+jRo5t0nqysLACAk5NTg/udnJzqH/uv5cuXw8rKqv7m4aGaTrdEyhjf0x2PBDqiSibH67+zrJ6I6L82Rylm4Ud1dYWVqXpmeAbVldQziSciapKCsirM3nIeNXIBo7q6YkqIp9gh6Tylk/iff/4Z3333HaZMmQKpVFp/f9euXXH9+vVmBzJz5kxcuXIF27Ztq79v7969OHr0KFauXNns8zbFokWLUFRUVH9LS0tT6+sRNUYikeCjJxXd6i+xrJ6IqIHC8irsv3QLANT6BTG0trndudQCFFdUq+11iIh0gVwuYN6vsbhVVAFvezMsH8t18K1B6SQ+IyMDvr6+d90vl8tRXd28P3azZs3C/v37cezYMbi7/1Med/ToUSQlJcHa2hr6+vrQ19cHAIwbNw6hoaGNnquu5P727dsN7r99+/Y9y/GNjIxgaWnZ4EYkBmcrY7w/qhMAYOXheJbVExHV2nE+A5U1cnR0sUQ3D2u1vY6HrSl8HMwgkws4ya3miIju69vjyTgWlwOj2nXw5kb6YofUJiidxHfs2BGRkZF33f/777+je/fuSp1LEATMmjULu3btwtGjR+Ht7d3g8TfffBOXLl1CbGxs/Q0AvvzyS2zYsKHRc3p7e8PZ2RlHjhypv6+4uBjR0dHo27evUvERiWFsDzcMDnREtUzAgt8uoppl9UTUxika2t0EAEzp46n2WR5uNUdE9GBnbuTj878U24O//0QndHTlRGhrUfpSybvvvotnnnkGGRkZkMvl2LlzJ+Li4vDzzz9j//79Sp1r5syZ2LJlC/bs2QMLC4v6NetWVlYwMTGBs7Nzo7Pnnp6eDRL+wMBALF++HE8++SQkEgnmzp2LZcuWwc/PD97e3njnnXfg6uqKMWPGKPt2iVqdRCLBR2M749EvInA5owjfRiRh1iN+YodFRCSaqOR8JOeUwcxQitHd3NT+eqEBjthw8gbC43IgCAJLQ4mI/iOvtBKzt1yATC5gTDdXTOzNnmKtSemZ+NGjR2Pfvn04fPgwzMzM8O677+LatWvYt28fHn30UaXOtXbtWhQVFSE0NBQuLi71t+3btyt1nri4uPrO9gDwxhtvYPbs2XjxxRfRu3dvlJaWIiwsDMbGxkqdl0gsTpbGeP8JRVn9qiMJuM6tjoioDdtUOws/prtbq5RqhnjbwkhfD1nFFYi/Xar21yMi0iZyuYDXfr2IrOIKtHcww4dPch18a5MIgiCIHYSmKS4uhpWVFYqKirg+nkQjCAJe+PksDl/LRpCbJXa92h8GUqWvuxERabWckkr0XX4ENXIBB/43oNXKNadviEF4XA4WPRaIlwa1b5XXJCLSBt8cS8RnB+NgbKCHPTMfQoCzhdgh6Yym5qHNyggKCwuxfv16vPXWW8jPzwcAnD9/HhkZGc2LlojuUtet3srEAFcyirE2PEnskIiIWt2vZ9NQIxfQ3dO6Vddbcl08EdHdopLzsKJ2HfzS0UFM4EWidBJ/6dIl+Pv745NPPsFnn32GwsJCAMDOnTuxaNEiVcdH1KY5Whrj/Sc6AgC+OpqAa5ksqyeitkMmF7A1RrE3/JQQr1Z97dDa/eLP3MhHaWVNq742EZEmyimpxP+2XoBcAMb1cMeEXlwHLxalk/h58+Zh+vTpSEhIaLDGfMSIETh+/LhKgyMiYEw3Nwzp4MRu9UTU5hxPyEF6wR1YGutjZBeXVn1tb3szeNmZolom4FQit5ojorZNJhfw2vZYZJdUws/RHB+M6SR2SG2a0kn8mTNn8NJLL911v5ubW313eSJSHUW3+iBYmxrg71vFWHOMZfVE1DZsjlLMwo/v6QFjA2mrvz5L6omIFL4+mogTibkwMZBizZQeMDXkfvBiUjqJNzIyQnHx3SW98fHxcHBwUElQRNSQo4UxltR2q//qaAKu3mJZPRHptluFd3D0+m0AwOQQT1FiCA1QfK+p22qOiKgtOpWYi5VH4gEAy8YEwc+J6+DFpnQS/8QTT2Dp0qWorq4GoJglTE1NxcKFCzFu3DiVB0hECk90dcXQjk6okbOsnoh037YzaZALQB8fW/g6mosSQx8fOxhK9ZBReAdJOWWixEBEJKbskgr8b1ssBAGY0Msd43q6ix0SoRlJ/IoVK1BaWgpHR0fcuXMHgwYNgq+vLywsLPDhhx+qI0YiguKC2bInFWX1VzOL8c2xRLFDIiJSi2qZHNtEamj3b6aG+gjxsQUAhMdlixYHEZEYZHIBc7bGIre0EgFOFljyRJDYIVEtpZN4KysrHDp0CPv378fq1asxa9YsHDhwABERETAzM1NHjERU699l9V8fTcTft4pEjoiISPWOXMtGdkkl7M0NMayTs6ixcF08EbVVq44k4HRyHkwNpfhmSg+YGLZ+bxJqnFIdCaqrq2FiYoLY2Fj0798f/fv3V1dcRHQPT3R1xYHLmTj4920s+O0S9szsD0N9pa/HERFprM3RNwEAE3p5iP77LTTAAcv+uIbolHzcqZLxSywRtQmRCTn46mgCAGD52M6iLWuixin1l9HAwACenp6QyWTqioeIHkAikWDZmM6wMTXAtcxifM2yeiLSITfzyhCZkAuJBJgULE5Du39r72AON2sTVNXIEZWcJ3Y4RERqd7u4AnNr18FPCvbE6G5uYodE/6H05e23334bb731FvLz89URDxE1gYOFEZaMVqxLWnMsEVcyWFZPRLphS+1a+EH+DvCwNRU5GsWF00H1Xeq5Lp6IdFuNTI7ZWy8gr6wKHVws8d6ojmKHRI1QOon/+uuvcfz4cbi6uiIgIAA9evRocCOi1jGqiwuGd3Ku71ZfVcNu9USk3SprZPjtbDoAcRva/RfXxRNRW/Hl4XjEpOTD3Egfa6b0gLEBlxBpIqXWxAPAmDFj1BAGESmrrlt9zI18XM8qwddHEzBvaIDYYRERNVvYlSzkl1XBxcoYD9fOfmuC/r72MJBKcCOvHDdyy9DOno18iUj3hMdl45tjSQCAj8d1hjd/12kspZP49957Tx1xEFEz2JsbYenoTpi15QK+CU/C0E7OCHKzEjssIqJm2RytKKWf2NsT+lLNadhpbqSPXl62OJ2ch/C4bEy39xY7JCIilcosuoPXtscCAP6vjxdGdnEVNyC6L835C0lEzTKyiytGdHaGjGX1RKTFEm6XICYlH1I9CZ7u7SF2OHepWxfPknoi0jXVMjlmb7mAgvJqBLlZ4u3HO4gdEj2A0km8jY0NbG1t77rZ2dnBzc0NgwYNwoYNG9QRKxHdw9LRQbA1M8T1rJL67UCIiLRJ3Sz8kA6OcLYyFjmau4XWJvGnk/NQUc1deohId3z+VxzO3iyAhZE+vpnMdfDaQOkk/t1334Wenh4ef/xxLFmyBEuWLMHjjz8OPT09zJw5E/7+/njllVfw/fffqyNeImqEvbkRPqjrVh+ehMvp7FZPRNrjTpUMO85rXkO7fwtwsoCzpTEqquWISeEOPUSkG45cu41vI5IBAJ+O7wIvO66D1wZKr4k/ceIEli1bhpdffrnB/d9++y3++usv7NixA126dMHq1avxwgsvqCxQIrq/x7u44MBlF/xxORMLfruIvbP7w0ifV1KJSPPtu3gLJRU18LQ1xUO+9mKH0yiJRIJB/g7YfjYN4XE5GOivOY33iIiaI6PwDub/dhEAML1fOzzW2UXkiKiplJ6JP3jwIIYMGXLX/YMHD8bBgwcBACNGjEBycnLLoyMipSwd3Ql2ZoaIu12C1UdYVk9E2mFz9E0AwOQQT+jpSUSO5t7+WRfP/eKJSLsp1sGfR2F5Nbq6W2HRiECxQyIlKJ3E29raYt++fXfdv2/fPtja2gIAysrKYGFh0fLoiEgpduZG+GCMoqx+XUQyLqUXihsQEdEDXE4vwsX0IhhIJXiqp7vY4dxXf197SPUkSMopQ1p+udjhEBE126dh13E+tRCWxvr4enIPVm9qGaXL6d955x288sorOHbsGIKDgwEAZ86cwYEDB7Bu3ToAwKFDhzBo0CDVRkpETTKiswse7+KCPy4pyur3zX6Iv5iJSGNtiVHMwj8W5AI7cyORo7k/KxMD9PC0xpkbBYiIz8HUPpq5fp+I6H4OXb2N7yNTAACfPdUVHramIkdEylJ6Jv6FF15AREQEzMzMsHPnTuzcuROmpqaIiIjAjBkzAADz58/H9u3bVR4sETXNB6ODYG9uiPjbpVh1uPll9TK5gNNJedgTm4HTSXmQyQUVRklEbV1xRTX2xN4CAEwJ8RQ5mqYJDXAEAITHcas5ItI+afnlmP9rLABgxkPeGNbJWdyAqFmUnokHgP79+6N///6qjoWIVMTWzBDLxgTh5U3nsS4iCcM6OaOrh7VS5wi7kokl+64is6ii/j4XK2O8N6ojhgex8QkRtdyeCxkor5LB19Ecwd62YofTJIP8HfDZwTicSspFVY0chvpKz4cQEYmiqkaOWVsvoLiiBt08rLFweNtYBy+TC4hJyUd2SQUcLYwR7G0LqQb3X2mKZv3lSUpKwuLFizF58mRkZyuau/z555/4+++/VRocETXf8CAXjOrqCrkALPjtolL7GoddycQrm843SOABIKuoAq9sOo+wK5mqDpeI2hhBEOr3hp8S4gmJRDu+UHV0sYS9uRHKq2Q4e4NbzRGR9lj+5zVcTCuElYkBvp7cvU1chAy7komHPjmKSd9HYc62WEz6PgoPfXJU67/LKv0vFxERgc6dOyM6Oho7duxAaWkpAODixYt47733VB4gETXfkic6wd7cEAnZpVjVxG71MrmAJfuuorHC+br7luy7ytJ6ImqR86kFuJ5VAmMDPYztrtkN7f5NT0+x1RwAhMezpJ6ItEPYlUxsOHkDALDiqa5wt9H9dfC6PCmldBL/5ptvYtmyZTh06BAMDQ3r73/kkUcQFRWl0uCIqGUUZfWdAQDfRiQhNq3wgc+JScm/65fdvwkAMosqEJPCGSgiar7NUYpZ+FFdXGFlaiByNMqp32qO6+KJSAuk5pXj9d8vAQBeHOiDIR2dRI5I/XR9UkrpJP7y5ct48skn77rf0dERubm5KgmKiFRneJAznlCirD675N4JfHOOIyL6r4KyKuy/rJgBmaKFHd4H+NpDTwLE3S7BrcI7YodDRHRPlTUyzNxyHiUVNejpZYPXhwWIHVKr0PVJKaWTeGtra2Rm3l16cOHCBbi5uakkKCJSLUVZvRESs0vx5eH4+x7raGHcpHM29TiiB+EuCG3PjvPpqKqRI8jNEl3drcQOR2k2Zob1zUKPs6SeiDTYR39cw+WMItiYGuCrSd1hINX9dfCA7k9KKf2vOHHiRCxcuBBZWVmQSCSQy+U4efIkFixYgGnTpqkjRiJqIRszQ3z4ZBAA4PvjyTifWnDPY4O9beFiZYx7tZiSQNGlXls6SZNm09WGM3RvDRvaeWlNQ7v/CvXnVnNEpNn+uJSJn07fBAB88XQ3uFqbiBxR69H1SSmlk/iPPvoIgYGB8PDwQGlpKTp27IiBAweiX79+WLx4sTpiJCIVGNbJGWO6KcrqX79PWb1UT4L3RnUEgLsS+bqf3xvVUeu35iDx6XLDGbq300l5SMktg7mRPp7o6ip2OM1Wty7+ZGIuqmVykaMhImroRm4ZFu5QrIN/JbQ9Hg5wFDmi1qXrk1JKJ/GGhob4/vvvkZSUhP3792PTpk24fv06fvnlF0ilUnXESEQq8v4TneBgYYSknDJ8eejeZfXDg1ywdmoPOFs1vDrpbGWMtVN7cJ94ajFdbzhD91Y3C/9kdzeYGemLHE3zdXGzgq2ZIUoqa3D+5r2rm4iIWltFtQyvbj6P0soaBLezxfxH/cUOqdXp+qRUs/96enp6wtPTU5WxEJGaWZsa4qMnO+OFn8/i+8hkDAtyRg9Pm0aPHR7kgkc7OiMmJR/ZJRVwtFBcrdTWX3akWZRpONO3vV3rBUZqlV1SgYN/ZwEAJodo93cIPT0JBvjZY0/sLUTE5yDEh59TItIMH+y/iquZxbAzM8TqSd2h30bWwf9X3aTUkn1XG3zncLYyxnujOmr1pFSTkvh58+Y1+YRffPFFs4MhIvV7tKMTnuzuhl0XMrDgt4s48L8BMDZovIpGqidhAkVqoesNZ6hxv51NR41cQE8vG3RwsRQ7nBYLDXDAnthbCI/LwRvDA8UOh4gIe2IzsDk6FRIJ8OXT3e6qqmxrdHVSqklJ/IULFxr8fP78edTU1CAgQLFFQXx8PKRSKXr27Kn6CIlI5d4b1REnEnORnFOGLw7F460RHcQOidoYXW84Q3eTyQVsqW9op92z8HUG+jlAIgGuZhYju7gCjpa683mVyQWd+9JLpOuSckrx1s7LAIBZD/tioL+DyBFpBl2clGpSEn/s2LH6///FF1/AwsICP/30E2xsFGW4BQUFePbZZzFgwAD1RElEKmVtaojlT3bG83Vl9Z2c0dOr8bJ6InWoaziTVVTR6Lp4CRTlbtracIbudjw+BxmFd2BtaoARnbW3hPHf7MyN0NnNCpfSixARn4OnenmIHZJKhF3JvKv81EUHyk+JdMG9LrBVVMswc/N5lFXJ0MfHFnOHtL118G2J0gskVqxYgeXLl9cn8ABgY2ODZcuWYcWKFSoNjojUZ0hHJ4zt7gbhAd3qidRB1xvO0N02Ryu2ORrfw/2eS3i0UWjtTFe4juwXz10jiDTX/bZlfX/v37ieVQJ7c0Osntidfz91nNJJfHFxMXJy7v5DlZOTg5KSEpUERUSt471RneBoYYTk3DJ8fjBO7HCojeEuCG1HRuEdHL2eDQCYpCOl9HXqtpo7kZCLGi3fao67RhBprvtdYHt503lsO5MGiQRYNbG7Ti3tocYp3Z3+ySefxLPPPosVK1YgODgYABAdHY3XX38dY8eOVXmARKQ+VqYGWD62M2b8dBY/nEzB8CBn9GrH8mVqPbracIYa2haTCrkA9Gtvh/YO5mKHo1Jd3a1hZWKAojvVuJheiJ5e2vs7lLtGEGmmplxgA4DZD/uiv699a4VFIlJ6Jn7dunV47LHHMHnyZHh5ecHLywuTJ0/G8OHDsWbNGnXESERqNLiDE8b1cFeU1f9+CXeqWFZPrauu4czobm7o296OCbyOqZbJse1MGgBgSoiXyNGonr5UDw/5Kb40R8Rpd0k9d40g0kwPusBWJ8SbF9faCqWTeFNTU6xZswZ5eXm4cOECLly4gPz8fKxZswZmZmbqiJGI1OzdUR3hZGmElNwyfP4Xy+qJSHUOX72NnJJK2Jsb4dGOTmKHoxa6si6eu0a0XHpBOc6nFqBay5dWkGZp6oWz3LJKNUdCmkLpcvo6ZmZm6NKliypjISKRWJkY4OOxXfDsxjP4sbasvjfL6olIBTbXbiv3dG93GOorPXegFQbVJvGX0ouQW6q4YKGNuGtEy5RV1uCJr08iv6wKFkb66O9rj0EBDhjk7wBXaxOxwyMtxgts9F9N+ms6duxYFBcXN/mkU6ZMQXZ2drODIqLW93CgI8b3dK/vVs+yeiJqqZTcMpxIzIVEAkzsrVsN7f7N0dIYHV0sAQCRCdo7G89dI1pmd2wG8suqAAAllTUI+zsLi3ZeRr+Pj2LolxH48I+rOJmYi8oa/n0l5dRdYLvXf3kSKLaB5AW2tqNJSfyePXuQk5OD4uLiB96Kioqwb98+lJaWqjt2IlKxd0Z2hLOlMW7kleMzdqsnohbaGqOYhQ/1d4CHranI0ahXaG2Xem1fF89dI5pHEARsilJ83hc9Fog9M/vjtSH+6OFpDT0JEH+7FN9HpmDK+mh0W3IIMzaewS+nbyA1r1zkyEkbSPUkeHdkh0YrZOrwAlvb0qRyekEQ4O/vr+5YiEhkViYGWD6uM57dcAYbTinK6nlVl4iao6Jaht/O6m5Du/8a5O+ANeFJOJ6QC7lcgJ4Wf5nmrhHKO59aiGuZxTDU18OEXh6wMTNEVw9rzBnih8LyKkQm5CIiPgcR8TnIKanEkevZOHI9G8Df8LY3wyB/BwwKcEBfHzsYG0jFfjukAQRBwI28ckQl5yE6OQ9RyfmNHudiZYz3RnXkBbY2pklJ/LFjx5Q+sZubm9LPISLxPRzgiKd6uuO3c+l44/eLODBnAEwNm90+g4jaqLArWSgor4arlTEeDnQUOxy16+FlAwsjfeSXVeFyRhG6eliLHVKL1O0aQU2zOeomAGBkFxfYmBk2eMza1BCjurpiVFdXCIKAq5nFioQ+LgfnbhYgJbcMKbll2HjqBoz09RDiY4dB/g4IDXCAj70ZJBJePGkLBEFAcm5ZbdKej6jkPGSXNGxUZyjVQ1cPK7jbmKKLuxUCnS15ga2NatI380GDBqk7DiLSIItHdkRkQi5u5JXj07A4vP9EJ7FDIiItszlakdRMDPZsE18wDaR66O9rj7C/sxAel6P1STw1XUFZFfZfzgQATO1z/6oTiUSCTq5W6ORqhVdDfVFcUY1TiXm1SX02bhVV4Hh8Do7H5+CD/YC7jUltQu+Ivu3tYG7Ei+q6QhAEJGaXIiolvz5xzy39T9Kur4fuHtYI8bFDHx9b9PC0YaUGAWhBd3oi0l1WJgb4eFxnTN9wBhtP3cBjQc4I8eGMDBE1TVxWCc7cKIBUT4KJvT3EDqfVhAY4KJL4+GzMGeIndjjUSn4/l46qGjk6uliiu5IXbyyNDTA8yBnDg5zrk7qI+ByEx+UgJiUf6QV3sDk6FZujU2EglaCXly1CAxSl9wFOFpyl1yJyuYCE7FJEp+QhKjkPMSn5yC2tanCMkb4eenjaIMTHFn187NDNw5pJOzVK1CR++fLl2LlzJ65fvw4TExP069cPn3zyCQICAuqPeemll3D48GHcunUL5ubm9ccEBgbe87zTp0/HTz/91OC+YcOGISwsTG3vhUjXhAY44uleHth+Ng3zfr2IXa/2g6Mlty4hogfbUjsLP7SjU5v6vTGotrndxbRCFJRV3VVWTbpHLhfqq06m9vFqUVItkUjg52QBPycLPD/AB+VVNYhKzkN4nCKpT80vx+nkPJxOzsPyP6/D2dK4fi19f197WJkYqOptkQrI5QLibpfUr2ePuZFfv3tBHWMDPfT0skGItx36+Nihq4cVjPSZtNODiZrER0REYObMmejduzdqamrw1ltvYejQobh69SrMzMwAAD179sSUKVPg6emJ/Px8vP/++xg6dChSUlIgld77Qz58+HBs2LCh/mcjI+3cs5VITG+P7IDolDzcyCvHMxvOYPtLfWBpzC8JRHRv5VU12Hk+A0DbaGj3by5WJghwskDc7RJEJubiia6uYodEanYySbH0zNxIH6O7qfbf29RQH48EOuGRQCcAwI3cMoTHZSMiPgenk/OQVVyB7WfTsP1sGqR6EvTwtFYk9f6O6ORqqdXNFbWRXC7gWlZx/Xr2mBv5KCyvbnCMiYEUvdrZIMRbMdPexd0ahvpN2iyMqAGJIAj3262gVeXk5MDR0REREREYOHBgo8dcunQJXbt2RWJiItq3b9/oMdOnT0dhYSF2797drDiKi4thZWWFoqIiWFpaNuscRLoiNa8cY9eeQm5pJfr42GLjs8Es7SKie9p+JhULd1xGOztTHJ0f2uYSiY8OXMN3x5Mxroc7VkzoKnY4pGYv/XIWB/++jWl9vbB0dFCrvW5FtQwxKfn1He8Tsxtu7WxvboiBfopZ+gF+DrBlVYjKyeQCrmUWI6p2pv3MjXwU3WmYtJsaStGrnW190t7ZzYpJO91XU/PQZs3E19TUIDw8HElJSZg8eTIsLCxw69YtWFpawtzcvNlBFxUVAQBsbRvf0qqsrAwbNmyAt7c3PDzuv8YuPDwcjo6OsLGxwSOPPIJly5bBzq7xNb2VlZWorPynkURxcXEz3wGR7vG0M8XGZ3tj4ndRiErOx7xfY/HVpB5tolEVESlvc7Rir+zJIZ5tLoEHgFB/B3x3PBkR8Tlav9Uc3V9WUQUOX8sG8OCGdqpmbCDFQH8HDPR3wDsA0vLLcTxB0fH+ZGIuckursPNCBnZeyIBEAnRxt67veN/V3Zp/w5uhRibH1cyGM+0lFTUNjjEzlKK3t21tebwtgtysYCBl0k6qp/RM/M2bNzF8+HCkpqaisrIS8fHx8PHxwZw5c1BZWYl169Y1KxC5XI4nnngChYWFOHHiRIPH1qxZgzfeeANlZWUICAjAH3/8cc9ZeADYtm0bTE1N4e3tjaSkJLz11lswNzfH6dOnGy3Bf//997FkyZK77udMPNE/TiXmYvqGM6iSyTGtrxeWPNGJDXWIqIFL6YV44uuTMJTqIeqtwW1y9q+yRobuSw+hvEqG/bMfQpCbldghkZp8eSgeq44kILidLX59ua/Y4dSrqpHj3M2C2gZ52bieVdLgcSsTAwzws0dogCMG+tvD0aLt9K1QRo1Mjiu3imvXtOfh7I0ClFQ2TNotjPRrk3bFTHsnV0voM2mnFmjqTLzSSfyYMWNgYWGBH374AXZ2drh48SJ8fHwQHh6OF154AQkJCc0K+JVXXsGff/6JEydOwN3dvcFjRUVFyM7ORmZmJj7//HNkZGTg5MmTMDZu2i+d5ORktG/fHocPH8bgwYPveryxmXgPDw8m8UT/sf/SLczeegGCAMx/1B+zB7P7MhH9480dl7DtTBrGdHPFyondxQ5HNM//dBaHr93G68MCMPNhX7HDITWolsnx0CdHcbu4EqsmdsPobm5ih3RPt4sr6velj0zIQfF/Zo87ulgqOt77O6CHl02bnTmulslxOaOofqb97I18lFXJGhxjYayPkPqZdjt0dLVkVQOplNrK6SMjI3Hq1CkYGja8ut6uXTtkZGQoHymAWbNmYf/+/Th+/PhdCTwAWFlZwcrKCn5+fujTpw9sbGywa9cuTJo0qUnn9/Hxgb29PRITExtN4o2MjNj4jqgJRnZxRW5JJd7fdxUrDsXDwcIIE4M9xQ6LiDRAcUU19sTeAgBMaeXSYk0TGuCAw9duIyIuh0m8jjpy7TZuF1fCzswQw4OcxQ7nvpwsjTGhlwcm9PJAjUyOi+mFCI9TrKW/lF6Eq5nFuJpZjDXhSbAw0kd/X3sMqk3qXa1NxA5fbapq5LicUYio2qT93M0ClP8nabcyMUDwv2baO7gwaSfNoHQSL5fLIZPJ7ro/PT0dFhYWSp1LEATMnj0bu3btQnh4OLy9vZv0HEEQGsycP0h6ejry8vLg4uKiVHykW2RyATEp+cguqYCjhTGCvW35i7gZpvf3Rk5pJb45loS3dl2GnbkRHu3oJHZYRCSy3RcycKdaBn8nc/TyshE7HFEN8ldsNXcutQBFd6q59ZcO2hSl6P0wobeHVm0Jpi/VQ08vW/T0ssX8oQHILa1EZO1a+uMJucgvq0LY31kI+zsLAODvZF67lt4RvdrZaNV7/a/KGhkupRfVb/l27mYB7lQ3zGmsTQ0azLQHOluwrwVpJKWT+KFDh2LlypX47rvvACj2tCwtLcV7772HESNGKHWumTNnYsuWLdizZw8sLCyQlaX4hWFlZQUTExMkJydj+/btGDp0KBwcHJCeno6PP/4YJiYmDV4rMDAQy5cvx5NPPonS0lIsWbIE48aNg7OzM5KSkvDGG2/A19cXw4YNU/btko4Iu5KJJfuuIrOoov4+FytjvDeqI4YH8eKOshYMDUBOSSV+PZuOWVvOY/PzIejVrvGGlESk+wRBwObapGZKSMv2ytYFHramaO9ghqScMpxKzMVjnfl3Rpek5JbhRGIuJBJgspZXo9mbG+HJ7u54srs75HIBlzOK6jveX0gtQPztUsTfLsX3kSkwMZCiX3u72tJ7R3jamYod/n1V1sgQm1qI6BTFTPv51AJUVMsbHGNrZlibtNuiT3s7+DsyaSftoPSa+LS0NAwfPhyCICAhIQG9evVCQkIC7O3tcfz4cTg6Ojb9xe/xR37Dhg2YPn06bt26heeffx7nzp1DQUEBnJycMHDgQLz77rsICAhocJ6659y5cwdjxozBhQsXUFhYCFdXVwwdOhQffPABnJyaNlvILeZ0S9iVTLyy6Tz++0Gv+/StndqDiXwz1MjkeOmXczhyPRuWxvr4/ZV+8HdSrhqHiHTDmRv5eGrdaZgYSBH99mBYGnPmeem+q/jxZAqe7uWBT8Z3ETscUqFl+69i/YkUhAY4YOOzwWKHozaF5VU4kZiLiNrS++yShlWw3vZmin3pAxzQx9sOJobiztJXVMtwIbUQUcl5iE7Jw/nUQlTVNEza7cwM0cfHDiE+ivJ4XwdzJu2kUdTW2A5QbDG3fft2XLx4EaWlpejRowemTJkCExPdWDfDJF53yOQCHvrkaIMZ+H+TAHC2MsaJhY+wtL4Z7lTJMGV9FM6nFsLFyhg7Xumn0+vniKhxc7ddwO7YW0xY/+V4fA6m/RgDZ0tjnF70SJuvTtAVFdUyhHx0BEV3qrF+Wi8MaSPLyQRBwLXMkvqO9+duFqBG/k8KYaSvhxAfO0VS7++A9g5mav/MV1TLcP5mAaJqZ9pj0+5O2u3NjdDHxxYhPnbo62OL9g7m/G+RNJpakvjq6moEBgZi//796NChg0oC1URM4nXH6aQ8TPo+6oHHbX2hD/q2t2uFiHRPYXkVxq87jcTsUvg6muP3l/vC2rTtbStF1Fbll1Whz0dHUCWTY++s/ujibi12SBqholqGbkv/QkW1HGFzByDQmd8ndMHv59Kx4LeLcLM2wfE3Hm6zEwAlFdU4lZSnaJAXl41b/5kscbcxqU/o+/naw9xI6RW8dymvqsH5m4WITlFs+XYxrQhVsoZJu6OFUYOZdh979V9MIFIltXSnNzAwQEVF4zOaRJoou6Rpn9emHkd3szY1xM/PBWPsmlNIzC7FcxvPYPPzfUQvqyOi1vH7uTRUyeTo7GbFBP5fjA2k6Otjh2NxOQiPy2ESryM2Rd0EAEwK9mizCTwAWBgbYFgnZwzr5AxBEJCUU1rf8T46OR/pBXewOToVm6NTYSCVoJeXLQYFOCA0wAEBThZNSqzLKmtw7mZBbdKej0vphaiWNZx7dLY0rp9p7+Njh3Z2pkzaqU1Q+rLYzJkz8cknn2D9+vXQ12/5VTUidXK0MFbpcdQ4V2sT/DwjGOPXnsL51ELM2nIe3/5fT+i30b1midoKuVzAlui6hnba3eBLHQb5O+BYnKLz98uD2osdDrXQlYwixKYVQl9Pggm9Pe56vK3ugiORSODraAFfRws8P8AH5VU1iErOQ0RcDsLjc3Azrxynk/NwOjkPH/95HU6WRvUd7/v72tfv3lBaWYOzN/IRlZyP6JQ8XE4valCyDwCuVsYNZto9bZm0U9ukdBZ+5swZHDlyBH/99Rc6d+4MMzOzBo/v3LlTZcERtVSwty1crIyRVVRxV2M74J818cHe7KzeUv5OFvhxem9MWR+NI9ez8dauy/hkXBf+cSXSYaeS8nAjrxwWRvoY1dVV7HA0TmiAI7DvKs7ezEdpZY1KSopJPJtrL1gNC3K+6+I/d8H5h6mhPh4JdMIjgYp+ATdyy+rX0p9OzsPtYsXuNr+eTYdUT4LuHtaolgu4klEE2X+Sdjdrk/qkva+PHdxtTPi9ggjNSOKtra0xbtw4dcRCpHJSPQneG9URr2w6DwnQIJGv+xPw3qiObeJKeWvo1c4WX0/ugZd+OYtfz6bDwcIIrw8LFDssIlKTzdGK0uIne7jBjAnqXdrZm8HLzhQ388pxKjEXQzs5ix0SNVNJRTX2xGYAAKaGeDV47F674GQVVeCVTefb/C447ezN0M7eDM/0a4eKahnO3MivL71PzC7F2ZsF9cd62JrU79Ee4m0LD1vN3saOSCxK/8XdsGGDOuIgUpvhQS5YO7XHXVfIndvoFXJ1e7SjEz56sjPe3HkZ3xxLgoO5Eab39xY7LCJSsdvFFfjr6m0Air3hqXGh/g746fRNhMfnMInXYrsuZKC8SgZfR3P08fmnek8mF7Bk39VGq/0EKCYMluy7ikc7OnPCAIpeEQP8HDDAzwHvAEgvKMepxDzoSyUI8bGDG3e4IWoSXjanNmF4kAse7ejcJteqiWFisCdySiqx4lA8luy/CnsLI4zswlJbIl3y65k0yOQCerezQYCzhdjhaKzQAEf8dPomIuJyIAgCS4G1kCAI9Q3tpoR4Nvg3jEnJv+c2toAikc8sqkBMSj53wWmEu40pJvTmbDuRspRO4r29ve/7Byg5OblFAVHTtNXmKS0h1ZPwD2grmvWIL3JKK/Hz6ZuYt/0ibE0N0c/XXuywiEgFZHIBW2PqGtpxFv5++vjYwVBfDxmFd5CUUwpfR17w0DZnbhQg/nYpTAykGNvDvcFj3AWHiMSgdBI/d+7cBj9XV1fjwoULCAsLw+uvv66quOg+2DyFtIFEIsF7ozoht7QSBy5n4cVfzmHbi30Q5GYldmhE1ELhtftC25gaYHgQS8Tvx8RQihBvW0Qm5CI8LodJvBaqm4V/oqtrfSf1OtwFh4jEoHQSP2fOnEbv/+abb3D27NkWB0T3x+YppE2kehJ8MaEb8stiEJWcj+kbzmDnK/3gacfSOSJtVtel+6leHjA2kIocjeYb5O+AyIRcRMTn4PkBPmKHQ0rILa3En1cyAQBT+9xddcJdcIhIDCrbxPmxxx7Djh07VHU6asSDmqcAiuYp/92eg0hMxgZSfDetFzq4WCK3tBLTfoxGbmml2GERUTOlF5TjWFw2AGBSMPeGb4rQAEcAQHRyPsqrakSOhpTx69k0VMsEdHW3Qmf3uyvJ6nbBAf7Z9aYOd8EhInVRWRL/+++/w9aWVxnVSZnmKUSaxNLYAD892xvuNia4kVeOZzecQWklv8gSaaNtMWkQBOAhX3t425uJHY5WaO9gBjdrE1TJ5IhKzhM7HGoimVzAltqqkymNzMLXqdsFx9mqYcm8s5UxKyQfQCYXcDopD3tiM3A6KY8TUURNpHQ5fffu3Rs0thMEAVlZWcjJycGaNWtUGhw1xOYppM0cLY3x83PBGL/uNC5nFOHlX87hx+m9YaivsmuJRKRm1TI5tp1JA6Do0k1NI5FIEBrggM3RqQiPy8EjgU5ih0RNcDw+B+kFd2BprI9RD9hhhbvgKI89noiaT+kkfvTo0Q2SeD09PTg4OCA0NBSBgYEqDY4aYvMU0nY+DubYML03Jn0fhROJuVjw20WsfLob9Pglh0grHLp6G7mllXCwMMKQjkxElTHIX5HER8TniB0KNVFdQ7vxPT1gYvjg3g/cBafp2OOJqGWUTuLff/99NYRBTcHmKaQLunpYY+3Unpix8Qz2XrwFe3MjvDOyA/dOJtICm6MVSc3E3h4wkLKKRhn9fO1hIJXgZl45UnLLuBRBw6UXlONobe+Hyaw6UakH9XiSQNHj6dGOzqxkILoHpf8CS6VSZGdn33V/Xl4epFJ2qFUnNk8hXTHI3wGfP9UVAPDjyRR8ezxZ5IiI6EGSc0pxMjEPehJgIhvaKc3cSB+92ykuskfE3f09ijTL1phUCALQ18cOvo7mYoejU9jjiajllE7iBaHxhhOVlZUwNDRscUB0f2yeQrpiTHc3vD2iAwDg4z+vY8e5dJEjUg026SFdtTVG0eDr4QBHuFmbiByNdhrk7wAACGdJvUarqpFje23vh8a2laOWYY8nopZrcjn96tWrASias6xfvx7m5v9clZTJZDh+/DjXxLcSNk8hXfHCQB/klFbiu+PJeGPHJdiaGeLhQEexw2o2NukhXVVRLcNvtRfapvThLHxzhQY4Yvmf1xGVnIeKahmMDVjBqIkO/p2F3NIqOFgYYWgn9n5QNfZ4Imq5JifxX375JQDFTPy6desalM4bGhqiXbt2WLduneojpEaxeQrpijeHByKnpBK7LmTg1c3nseWFEHT3tBE7LKWxSQ/psgOXM1FYXg03axMM8te+C20yuaARF779nczhbGmMrOIKRKfk18/Mk2Zh7wf1Yo8nopZrchKfkpICAHj44Yexc+dO2Nho35dsItI8enoSfDq+C/LKqnA8PgfPbTyD317up1VrENmkh3Td5tq9sicFe2jdZ1iTKmTqtprbdiYN4XHZTOI1UGJ2CaKS86EnASax94Na1PV4emXTeUiABn872eOJqGmUvrx47NgxJvBEpFIGUj2sndIDXd2tUFBejWd+jEHWfZreaBo26SFddi2zGOduFkBfT4IJvTzEDkcpdRUy//3vs65CJuxKZqvHVJe4c6s5zbQpSnHB6pFAJ7iy94PasMcTUcsovcUcAKSnp2Pv3r1ITU1FVVVVg8e++OILlQRGRG2LmZE+fpzeG+PXnUZKbhme+TEGv77cF1YmBmKH9kBs0kO6bEvtLPzQTk5wtNSeNaqaWiHT388eUj0JknPKkJZfDg9b01Z7bbq/8qoa7Div6P0wlb0f1I49noiaT+kk/siRI3jiiSfg4+OD69evIygoCDdu3IAgCOjRo4c6YiSiNsLO3Ag/PxeMsWtPIe52CV746Sx+nhGs8c2f2KSHdFVZZQ12XcgAAEwJ0a4u3cpUyLRmjxlLYwP09LRBzI18hMfn4P/Y/Vxj7Lt4CyUVNfC0NcVAPy51aA3s8UTUPEqX0y9atAgLFizA5cuXYWxsjB07diAtLQ2DBg3CU089pY4YiagN8bA1xU/PBsPCSB8xN/IxZ9sFjd+mra5Jz73mDiRQrMFlkx7SNnsv3kJpZQ287c3Q10e7vmhrcoXMoIDaknruF69R6krpJ4d4Qo+zwUSkwZRO4q9du4Zp06YBAPT19XHnzh2Ym5tj6dKl+OSTT1QeIBG1PR1dLfHdtF4wlOrh4N+38c6eKxAEzU3k65r0ALgrkWeTHtJWgiBgU5SiS/fkYO1LajS5QqZuXfyppDxU1sha/fXpbhfTCnE5owiGUj081dNd7HCIiO5L6STezMysfh28i4sLkpKS6h/Lzc1VXWRE1Kb1bW+HlRO7QSJRrMlddSRB7JDui016SNdcSi/C37eKYaivh/FamNRocoVMJ1dLOFgYobxKhrM3Clr99eludResRnR2hp25kcjREBHdn9Jr4vv06YMTJ06gQ4cOGDFiBObPn4/Lly9j586d6NOnjzpiJKI2akRnFywdHYR3dl/BysMJsDc3wlQNXj/KJj3UGlprz/O6vbJHdnaBjZmhys+vbpq8jZVEIsEgfwf8fi4dEfE56O9r3+ox0D+Kyqux79ItANDovzFERHWUTuK/+OILlJaWAgCWLFmC0tJSbN++HX5+fuxMT0Qq9399vJBTXIHVRxPx7p4rsDc3wvAgZ7HDuic26SF1aq09z4vuVGPvRUVSM0WLu3TXVcj8d8ycRdon/t/qkvjwuGy8NaKDaHEQ8Pv5dFRUyxHobIGeXtxGmYg0n1JJvEwmQ3p6Orp06QJAUVq/bt06tQRGRFTntUf9kVNaia0xafjftgv45blghGhZky2ilqrb8/y/3SHq9jxX5bKNXf9Kanp4andSo6kVMgP87KEnAeJvl+JW4R3uSS4SQRDqq06m9PGCRMLKKSLSfEqtiZdKpRg6dCgKCrh+i4haj0QiwQejg/BoRydU1cjx/M9ncT2rWOywiFrNg/Y8BxR7nqtiJwdFUqPo0j0lxFMnkpq6CpnR3dzQt72d6Ak8AFibGqKbhzUAICI+R9xg2rDTSXlIzimDmaEUT3Z3EzscIqImUbqxXVBQEJKTk9URCxHRPelL9fDVpO7o3c4GJRU1eObHGKQXlIsdFlGrUGbP85Y6c6MACdmlMDWUYgyTGrUKDXAEAIRzqznRbKqdhR/d3Q3mRkqvMiUiEoXSSfyyZcuwYMEC7N+/H5mZmSguLm5wIyJSF2MDKdZP6w1/J3PcLq7EtB9jkF9WJXZYRGrXmnue15UWj+7mCgtjgxafj+6tbqu5k4l5qJbJRY6m7ckursBff98GAEwNYUM7ItIeSifxI0aMwMWLF/HEE0/A3d0dNjY2sLGxgbW1NWxstHvdHBFpPitTA/z0XDBcrYyRnFOGZzeeQXlVjdhhEalVa+15nldaiT8vZwEAJgczqVG3zm5WsDUzRGllDc7d5FLF1rbtTBpq5AJ6eFqjo6ul2OEQETWZ0nVDx44dU0ccRERN5mJlgp9nBGP8utO4mFaIVzefx/fTesFAqvR1SSKtULfneVZRRaPr4iVQdFxv6Z7nv59LR5VMjq7uVujsbtWic9GD6elJMNDPHrtjbyEiPgd92LCz1dTI5Ngao+j9wG3liEjbKJ3EDxo0SB1xEBEpxdfRAj880xtT1kchPC4HC3dcwoqnuupEEy6i/2qNPc/lcgFbYuoa2jGpaS2hAY7YHXtL8XtseKDY4bQZx+JykFlUARtTA4zoLN5Wg0REzdGsaavIyEhMnToV/fr1Q0ZGBgDgl19+wYkTJ1QaHBHR/fT0ssE3k3tAqifBzvMZ+DjsutghEalN3Z7nzlYNS+adrYxVsr3cyaRc3Mwrh4WxPkZ2ZVLTWgb42UMiAa5lFuN2cct7GlDTbIpS9H54qpcHjA2kIkdDRKQcpZP4HTt2YNiwYTAxMcH58+dRWVkJACgqKsJHH32k8gCJiO5ncAcnLB/bGQDwbUQyfjiRInJEROozPMgFJxY+gq0v9MGqid2w9YU+OLHwEZXsD1+X1Izr4Q5TQ3bpbi125kbo4qZYusCt5lpHal45jicoxnpysKfI0RARKa9Z3enXrVuH77//HgYG/3St7d+/P86fP6/S4IiImmJCLw+8PiwAAPDB/qvYE5shckRE6qOOPc+ziipw+Jpim7PJIUxqWtug2q3mmMS3js0xNyEIiiqIdvZmYodDRKQ0pZP4uLg4DBw48K77raysUFhYqIqYiIiU9mpoe0zv1w4AsOC3i4hM4JdhoqbafiYNMrmA4Ha28HeyEDucNqduq7nI+BzUcKs5taqskeG3s+kA2NCOiLSX0km8s7MzEhMT77r/xIkT8PHxUUlQRETKkkgkeHdkR4zs4oJqmYCXfzmHy+lFYodFpPFqZHJsO1Pb0K4PZ+HF0M3DGlYmBiiuqMHF9EKxw9Fpf17OQn5ZFVysjDE40FHscIiImkXpJP6FF17AnDlzEB0dDYlEglu3bmHz5s1YsGABXnnlFXXESETUJHp6EqyY0BX9fe1QViXD9A0xSMktEzssIo1W16Xb1swQw4OcxQ6nTZLqSTDAzx4AEB7HKiJ1quv9MLG3J/S5LSkRaSmlf3u9+eabmDx5MgYPHozS0lIMHDgQzz//PF566SXMnj1bHTESETWZkb4U66b2RCdXS+SVVWHaj9HILmHHZ6J72Rxd26W7pzuM9NmlWyyhtevimcSrz/WsYpy9WQCpngQTgz3EDoeIqNmUbj8rkUjw9ttv4/XXX0diYiJKS0vRsWNHmJubqyM+ugeZTIbIyEhkZmbCxcUFAwYMgFTKL1/3wzFTnraOmYWxATY+G4xxa08hNb8c0388g+0v9YGFscGDn9xC2jpmYuKYKUeV45WWX17fTG2SDnfp1obP2EB/xUz85Ywi5JZWwt7cSNR4tGHMlFU3Cz+0oxOcLI0fcLTydHHM1I1jpjyOmfJ0csyEFkhNTRVSU1NbcgqNVFRUJAAQioqKxA6lUTt27BDc3d0FAPU3d3d3YceOHWKHprE4ZsrThTFLySkVen7wl+C1cL8w6bvTQkV1jVpfTxfGrLVxzJSj6vH65M9rgtfC/cLU9VEqjlRzaNNnbMSq44LXwv3CjnNposahTWPWVCUV1ULHd/4UvBbuF04k5Kj8/Lo4ZurGMVMex0x52jZmTc1DlU7iq6urhcWLFwuWlpaCnp6eoKenJ1haWgpvv/22UFVV1eyANYkmJ/E7duwQJBJJgw8iAEEikQgSiURjP5Bi4pgpT5fG7FJaYf0Xt1c3nxNkMrlaXkeXxqy1cMyUo+rxqqyW1V/k+vNyppqiFpe2fcbqLqr8b+t50WLQtjFrql9O3xC8Fu4XHv7smCCXq/bvgK6OmTpxzJTHMVOeNo5ZU/NQiSAIQtPn7YFXXnkFO3fuxNKlS9G3b18AwOnTp/H+++9jzJgxWLt2rTKn00jFxcWwsrJCUVERLC0txQ6nnkwmQ7t27ZCent7o4xKJBO7u7khJSdH+EhEV4ZgpTxfH7ERCLp7dGINqmYDp/drhvVEdIZG0fG/tOro4ZurGMVOOOsZr/6VbmLXlApwsjXBi4SMw0LEmX9r4GYtJyceEb0/DxtQAZxc/Cqme6n5PNYU2jllTCIKAx1ZF4npWCRY/3gHPD1Ddbkq6OmbqxDFTHsdMedo6Zk3NQ5X+i71lyxZs3LgRL730Erp06YIuXbrgpZdewg8//IAtW7Yoda7ly5ejd+/esLCwgKOjI8aMGYO4uLgGx7z00kto3749TExM4ODggNGjR+P69ev3Pa8gCHj33Xfh4uICExMTDBkyBAkJCcq+VY0TGRl5zw8ioHjfaWlpiIyMbMWoNBvHTHm6OGYP+dljxYRuAICNp25gTXiSSs+vi2Ombhwz5ahjvDZHKbaVe7q3p84l8IB2fsZ6eFrDwlgfBeXVuJzR+ltkauOYNcX51AJczyqBkb4exvd0V+m5dXXM1IljpjyOmfJ0fcyU/qttZGSEdu3a3XW/t7c3DA0NlTpXREQEZs6ciaioKBw6dAjV1dUYOnQoysr+2RKqZ8+e2LBhA65du4aDBw9CEAQMHToUMpnsnuf99NNPsXr1aqxbtw7R0dEwMzPDsGHDUFGh3R2qMzMzVXpcW8AxU56ujtkTXV3x7siOAIDPDsbh1zNpKju3ro6ZOnHMlKPq8UrMLsXp5DzoSYCJvXWzS7c2fsb0pXp4yLduq7nsVn99bRyzpthUe8FqZBdXWJsq9131QXR1zNSJY6Y8jpnydH3MlE7iZ82ahQ8++ACVlZX191VWVuLDDz/ErFmzlDpXWFgYpk+fjk6dOqFr167YuHEjUlNTce7cufpjXnzxRQwcOBDt2rVDjx49sGzZMqSlpeHGjRuNnlMQBKxcuRKLFy/G6NGj0aVLF/z888+4desWdu/erezb1SguLi4qPa4t4JgpT5fH7LmHvPHyoPYAgEW7LuPItdsqOa8uj5m6cMyUo+rx2hqjSGoeCXSCq7VJs+PSZNr6GQsNcACA+l0DWpO2jtn95JdV4Y9Lii/pU/uofgcGXRwzdeOYKY9jpjxdHzOl18Q/+eSTOHLkCIyMjNC1a1cAwMWLF1FVVYXBgwc3OHbnzp1KBZOYmAg/Pz9cvnwZQUFBdz1eVlaGxYsXY8+ePbh+/XqjM//Jyclo3749Lly4gG7dutXfP2jQIHTr1g2rVq266zmVlZUNLkoUFxfDw8NDY9fEZ2RkoLF/Nk1d2yEmjpnydH3MBEHAgt8uYcf5dBgb6GHz8yHo6WXbonPq+pipA8dMOaocr4pqGUI+OoKiO9XY8GxvPFy7P7mu0dbPWGbRHfRdfhQSCXB+8aOwMVPtzPH9aOuY3c93x5Pw0YHr6ORqif2zH1JpPxRAN8dM3ThmyuOYKU9bx0xta+Ktra0xbtw4jBw5Eh4eHvDw8MDIkSMxduxYWFlZNbgpQy6XY+7cuejfv/9dCfyaNWtgbm4Oc3Nz/Pnnnzh06NA9S/ezsrIAAE5OTg3ud3Jyqn/sv5YvX94gbg8PzSwtlEql9Rch/vtHqO7nlStXatQHUWwcM+Xp+phJJBJ8PK4zHg5wQEW1HM9tPIuE2yUtOqeuj5k6cMyUo8rx+uNSJoruVMPdxgQD/RxUH6yG0NbPmIuVCQKdLSAIQGRibqu+traO2b3I5QI2RyuqTqb28VJ5Ag/o3pi1Bo6Z8jhmytP5MVNNM/yWe/nllwUvLy8hLe3uvVELCwuF+Ph4ISIiQhg1apTQo0cP4c6dO42e5+TJkwIA4datWw3uf+qpp4QJEyY0+pyKigqhqKio/paWlqaxW8wJQuP7HXp4eGjkNgmagmOmPF0fs7LKamH01ycEr4X7hT4fHRZuFZa3+Jy6PmbqwDFTjirG68lvFJ/7r48mqDFSzaGNn7GP/rgqeC3cL7y2/YIor6+NY9aYiLhswWvhfiHo3TChrLJara+lK2PWmjhmyuOYKU/bxkxtW8ypw6xZs7Bnzx4cP34c3t7e9z22qqoKNjY2WL9+PSZNmnTX480pp/8vTd1i7t9kMhkiIyORmZkJFxcXDBgwQHuvJLUSjpnydH3M8suqMH7dKSTnlMHP0Ry/vdy3xU2PdH3M1IFjppyWjNfVW8UYsToS+noSnF40GA4WRmqOVjNo22fsVFIuJn8fDXtzQ8S8NQR6rbzVHKB9Y9aYF38+i7+u3sYzfb2wZPTdyzRVTRfGrLVxzJTHMVOeNo1ZU/NQpZP4vLw8vPvuuzh27Biys7Mhl8sbPJ6fn9/kcwmCgNmzZ2PXrl0IDw+Hn5/fA59TWVkJGxsbrFmzBtOnT2/0nK6urliwYAHmz58PQDEYjo6O2LhxIyZOnPjA19CGJJ6IVCO9oBzj1p7C7eJK9PKywabnQ2BsoJm/2IlaavHuy9gUlYrHu7jgm8k9xA6H7qGqRo7uS/9CWZUM+2c/hCA35ZYokqK3QP+Pj0IuAH+9NhD+ThZih0RE9EBNzUP1lT3x//3f/yExMREzZsyAk5NTi9YXzZw5E1u2bMGePXtgYWFRv2bdysoKJiYmSE5Oxvbt2zF06FA4ODggPT0dH3/8MUxMTDBixIj68wQGBmL58uV48sknIZFIMHfuXCxbtgx+fn7w9vbGO++8A1dXV4wZM6bZsRKRbnK3McVPzwXjqXWncfZmAWZtuYB1U3tAXwf3zaa2rbSyBrvOZwAApoSovks3qY6hvh76+drj0NXbCI/LZhLfDFtj0iAXgGBvWybwRKRzlE7iIyMjceLEifrO9C2xdu1aAEBoaGiD+zds2IDp06fD2NgYkZGRWLlyJQoKCuDk5ISBAwfi1KlTcHT8p5tuXFwcioqK6n9+4403UFZWhhdffBGFhYV46KGHEBYWBmNj4xbHTES6J9DZEuun9cL//RiDw9duY/HuK1g+trNamiARiWVPbAbKqmTwsTdDXx87scOhBwgNcMChq7cREZ+DWY88uFKR/lEtk2NbzD8N7YiIdI3SSXxgYCDu3Lmjkhd/UCW/q6srDhw4oPR5JBIJli5diqVLl7YoPiJqO0J87PDVpO54ZdM5bDuTBgcLI8wfGiB2WEQqIQgCNkUpkprJIZ68QKUFBvkrdg44n1qIojvVsDIxEDki7XH46m1kl1TC3twQwzs5ix0OEZHKKV0vumbNGrz99tuIiIhAXl4eiouLG9yIiLTVsE7OWDamMwDgq6OJ+OX0DXEDIlKR2LRCXMsshqG+Hsb3dBc7HGoCdxtT+DqaQyYXcLKVt5rTdpuibwIAJvTygKE+l0YRke5p1j7xxcXFeOSRR+Do6AgbGxvY2NjA2toaNjY26oiRiKjVTA7xxNwhitLVd/f+jQOXM0WOiKjl6vbKHtnFpcU7MFDrqZuND4/LFjkS7ZGcU4qTiXmQSIBJwez9QES6Sely+ilTpsDAwABbtmxpcWM7IiJNNGewH3JKKrE5OhVzt8XC2tQA/drbix0WUbMUlVdj38VbAIApIVwfrE1CAxzww4kURMTnQBAEfudqgroLVg8HOMLD1lTkaIiI1EPpJP7KlSu4cOECAgK4VpSIdJNEIsHS0UHIK61C2N9ZeOnnc9j+Ul90dOWWk6R9dpxPR2WNHIHOFujhaS12OKSE3u1sYWIgxe3iSlzPKkEHF/4Oup+Kahl+P5cOAJjah7PwRKS7lC6n79WrF9LS0tQRCxGRxpDqSbByYjcEe9uipLIGz2yIQVp+udhhESlFEARsrl0fPKWPF2dytYyxgRR92yt2EgiPyxE5Gs237+ItFN2phpu1CQb5Oz74CUREWkrpJH727NmYM2cONm7ciHPnzuHSpUsNbkREusLYQIrvp/VCoLMFckoqMe3HGOSVVoodFlGTRafkIymnDKaGUozp5ip2ONQMdeviI+K5Lv5BNkX/swODVI8XrIhIdyldTv/0008DAJ577rn6+yQSSf1aLZlMprroiIhEZmVigJ+eC8bYNaeQkluG5zaewZYX+sDMSOlfn0Strm598JjubrAw5hZl2ig0QJHEn71RgJKKav473sOVjCJcTCuEgVSCCb08xA6HiEitlP4WmpKSoo44iIg0lpOlMX6eEYzxa0/hYnoRXt50Dj8805tbF5FGyy2tRNgVxe4Kk9mlW2t52ZmhnZ0pbuSV41RSHoZx3/NG1S0bGdbJGQ4WRiJHQ0SkXkp/A/Xy8rrvjYhIF7V3MMeP03vDxECKyIRcvPH7RcjlgthhEd3Tb2fTUS0T0M3DGkFuVmKHQy0QGqBY38118Y0rrqjG7guKHRim9uF3USLSfc2aRvrll1/Qv39/uLq64uZNxZXPlStXYs+ePSoNjohIk3T3tMGaqT2gryfB7thbWP7nNbFDImqUXC5gS0xtQ7sQzsJru0G1JfXHa7eao4Z2nc/AnWoZ/BzNEeJtK3Y4RERqp3QSv3btWsybNw8jRoxAYWFh/Rp4a2trrFy5UtXxERFplIcDHPHJuC4AgO8jU/Dd8SSRIyK6W2RiLtLy78DSWB8ju7Chnbbr420HQ309ZBTeQWJ2qdjhaBRBELAp6p8LVtyBgYjaAqWT+K+++grff/893n77bUil0vr7e/XqhcuXL6s0OCIiTTSupzsWPRYIAPjowHXsPJ8uckREDW2uTWrG9XSHiaH0AUeTpjMxlKKPj2KruYh4ltT/W0xKPhKyS2FiIMXYnu5ih0NE1CqUTuJTUlLQvXv3u+43MjJCWVmZSoIiItJ0Lw70wYyHvAEAb/x+CeFx3P6JNENm0R0cua74PLKUXnfUbTXHdfEN1W0rN7qbKyzZuZ+I2gilk3hvb2/ExsbedX9YWBg6dOigipiIiDSeRCLB2yM6YHQ3V9TIBby6+Txi0wrFDosI28+kQSYXEOJtC19HC7HDIRWp22ouJiUf5VU1IkejGXJK/tmBgQ3tiKgtaXISv3TpUpSXl2PevHmYOXMmtm/fDkEQEBMTgw8//BCLFi3CG2+8oc5YiYg0ip6eBJ+N74oBfvYor5LhuY1nkJzD9aoknhqZHNti0gAAU5jU6BQfezO425igSibH6aQ8scPRCL+eTUO1TEBX7sBARG1Mk5P4JUuWoLS0FM8//zw++eQTLF68GOXl5Zg8eTLWrl2LVatWYeLEieqMlYhI4xjq62Ht1J7o7GaF/LIqTPsxBtnFFWKHRW3U0evZyCqugJ2ZIYZ1chI7HFIhiURSPxvPknpAJhewpbaUfiqXjRBRG9PkJP7fW5pMmTIFCQkJKC0tRVZWFtLT0zFjxgy1BEhEpOnMjfSx4dneaGdnivSCO5j2YwyKK6rFDovaoM21Sc1TvTxgpM+GdrpmkH/tfvHx2W1+q7mI+GxkFN6BlYkBRnXlDgxE1LYotSb+v9t2mJqawtHRUaUBERFpI3tzI/z8XAjszY1wPasEQ784jlWHE3Cbs/LUSlLzynE8QTFDOzmYM5O6qF97OxhIJUjLv4OU3LbdTHhTlOKC1fie7jA24AUrImpblEri/f39YWtre98bEVFb5Wlnip+e6w1HCyNkFVfgy8Px6PfxUbz8yzmcSMiFXN62Z85IvbbEpEIQgIH+DvC0MxU7HFIDMyN99G6n+K7VlreaS8svx7E47sBARG2XvjIHL1myBFZWbBxCRHQvnVytELnwYYRdycKmqJs4c6MAYX9nIezvLHjbm2FysCfG93SHjZmh2KGSDqmskeG3s7UN7ZjU6LTQAAecSspDeFwOnu3vLXY4othae8Gqv68dfBzMxQ6HiKjVKZXET5w4keXzREQPYKQvxehubhjdzQ3Xs4qxJToVO89nICW3DB8euIbP/orDyM4umNLHCz08re9aqkSkrIN/30ZeWRWcLI0wOJB/p3VZaIAjPjpwHVHJeaiolrW5UvKqGjl+rb1gNTWEOzAQUdvU5HJ6fskkIlJeoLMllo4OQvRbg/HRk53R0cUSVTVy7LyQgXFrT2HE6hPYFHUTpZXc95mab3PUTQDAxN6e0JcqtVKOtIyfozlcrIxRWSNHVHLb22ou7O8s5JZWwdHCCEM6cgcGImqbmtWdnoiIlGNmpI/JIZ74438PYder/TC+pzuM9PVwLbMYi3dfQciHh/H2rsu4llksdqikZRKzSxCdkg89CTAx2EPscEjN/r3VXFtcF//PBSsPGPCCFRG1UU3+7SeXy1lKT0TUQhKJBN09bfD5U10R/dZgLH68A3zszVBWJcPm6FQ8tioS49aewq4L6aiolokdLmmBum3lBndwgouVicjRUGsY5F+bxLex/eITbv/7ghV7PxBR26XUmngiIlIda1NDPD/ABzMe8sbppDxsjk7Fwb+zcO5mAc7dLMDSfVfxVC8PTA72RDt7M7HDJQ10p0qGHefSAQBT+3B9cFvRz9ce+noSJOeWITWvvM3sRvDvC1au1rxgRURtF+uQiIhEJpFI0M/XHt9M6YFTbz6C+Y/6w9XKGAXl1fjueDJCPw/H//0QjbArWaiRycUOlzTI/ku3UFxRAw9bEwzwtRc7HGollsYG6OFlAwCIiM8WOZrWUV5VwwtWRES1mMQTEWkQR0tjzB7sh8iFj2D9tF4IDXCARAJEJuTi5U3n0P+To/jyUDyyiirEDpU0QN3M5ORgL+jpsQFtW1K3Lj68jZTU7429hZLKGnjZmfKCFRG1eUziiYg0kFRPgiEdnbDx2WAcf/1hvBLaHnZmhrhdXIlVRxLQ/5OjePHnszgenwO5nI1H26IrGUWITSuEgVSCp3q5ix0OtbK6dfGnkvJQWaPb/TMEQcCmaEVDu8nBnrxgRURtHpN4IiIN52FrioXDA3Fq0SNYPak7gr1tIZML+OvqbUz7MQYPrwjHtxFJyC+rEjtUakVbYhSz8MODXGBvbiRyNNTaOrpYwtHCCHeqZTiTUiB2OGp1Mb0IVzKKYaivh6d6cQcGIiIm8UREWsJIX4onurri15f64q/XBmJ6v3awMNLHzbxyLP/zOvp8dARzt13A2Rv53BZUx5VW1mDPhQwAwJQQduluiyQSyT9d6nV8Xfym2m3lHu/sAlszw/9v787jo67u/Y+/J9tk3yALIStb2GULS1ECLgRXVKyKpIJSbRUucm+V1m5QrQ/U4sPqr9bee4ugggtouUWqIGWJiBD2HcIWSEIIIeuEbGT5/v4ImXZMQJDMlryej8f8ke/3zDmfA4cwnznfc46TowEA5yOJBwA31CsqSPPu6afMX92iVyYN0ICuIbrY0Kj/25OvB/6yRbe/sUnvbzmlipo6Z4eKNlJZW6+vjxXp9bVHlf7XTFVebFD3iACNSAp3dmhwktQOsC6+rOqiPtubL0lKH8kXVgAgccQcALg1fx8vPZQSr4dS4rU3t0xLM09r5d58HSmo0G/+flDzvziiiYO6Kn1kvPrFhDg7XFyD4gu12n6qVNtPlWjHqRIdyLeo4Vv7HzxxUzeZTKwP7qhu6hEhD5N0rPCCzpRVq2s7PHbtk515qq1vVO/oIA2JD3N2OADgEkjiAaCduCEuVDfEhepXd/TVp7vytDTztE6cr9SH23L04bYcDY4PVfqIBN05sIt8vT2dHS7+jWEYyiut1rbsEm0/1fQ6cb6yRbmuoX5KSQzTsMRwjewWrh6RQU6IFq4ixN9bg+PDtPN0qTKyzuuRdra0wjAMfXDpBIb0kQl8YQUAl5DEA0A7E+LvrcdvTNJjoxO19WSJlmae1pqDBdqdU6bdOWV68R+H9MCQWD0yIl7dIgKdHW6H1NhoKOtchbafKtG27BLtOFWqAkvLYwN7RQUqJTFcw5PCNSwxvF3OtOL6jO0V0ZTEHy1sd0n8NyeKdbKoUgE+nrp3cFdnhwMALoMkHgDaKZPJpFHdO2lU9046X1GrZTty9UFmjs6UVeuvX2frr19na3SPTkofkaBb+0bJ25NtUuyltr5B+/PKte1UibZnl2jH6VJV1NTblPHyMGlAbIiGJ4YrJTFcwxLDFOrPJl64stTkCL229qg2Hy/WxfpG+Xi1n3/HzRva3TekqwLNfGQFgGb8RgSADiAiyKwZ43rop6ndlXG0UEu25mhDVqE2Hy/W5uPFigwy6+GUOD08PF4xzPZeN0tNnXaeLtWOUyXanl2qPXlluljfaFMmwMdTQxLClHIpaR8UFyo/H5Y54Nr0jwlRpwAfFVde1K6cUo3s1snZIbWJc5YafXnonKSmR+kBAP9CEg8AHYinh0k3947Szb2jlFdapQ+35ejj7bkqrKjVm+uP608bjuvm3lFKHxmvMT0j5OHBGtSrUWip0bZTTY/Fb8su0ZECi761B506B/poWEK4UpLCNTwxXH26BMmLpx9wnTw8TBrTK0Irdp/Rxqzz7SaJ/2hbrhoaDQ1LCFPv6GBnhwMALoUkHgA6qNgwfz2X1lvP3NJLXx4q0JKtp7X1ZIn+efic/nn4nOLC/fTI8AQ9OCxWnQLNzg7XZRiGoeyiyksb0DXtHn+6uKpFuYRO/pdm2Ztm25M6B7AxF+xibHJzEl+oX9ze29nhXLf6hkZ9uK1pQ7spHCsHAC2QxANAB+fj5aG7BsboroExOl5YoaWZOfpkZ55yS6r1yuojen3tUU3oH630kQlKSQzrcIlofUOjDp+tuDTT3pS4F12otSljMkl9ooMvbUDXlLRHBfs6KWJ0NDf1jJDJJB0pqNA5S43bj731RwpVYKlRmL+3bu/fxdnhAIDLIYkHAFj1iAzS3Lv7aU5ab322L19Lt57W3rxyrdybr5V789UrKlBTRiToviFdFezr7exw7aKmrkG7c8qsR73tOl2qyosNNmV8vDw0KDZUKUlNCfuQhLB2++cB1xce4KOBsaHam1umjKzzejAlztkhXZcll46Ve3BYHMdhAkArSOIBAC34+XjqwWFxenBYnPbnlWtp5mn9fU++jp67oLkrD+rlL45o4qAYpY9MUP+uIc4O97qUVV3UjkuPxW87VaIDZ8pV12C7oD3I10vDEsKs69kHxIbI7EVyAdcxtldEUxJ/1L2T+NPFlfrq6HlJandH5gFAWyGJBwBc0YDYEL0cO1DP39FHK3blaWlmjo4VXtBH23P10fZc3RAXqikj4nX3wBi32F39TFm1dlw6n337qRIdPXehRZmoYLP1fPaUxHAlRwWxyR9cWmpyhN5Yd0ybjp1XfUOj226a+MGlWfgxvSKU0CnAydEAgGsiiQcAXJUQP29NG52kqT9I1LbsEi3NzNEXB85qb26Z9uaW6ferDumBoXF6ZES8ekQGOjtcSVJjo6Hj5y80PRqf3bSe/UxZdYty3SMCrEe9DU8KV2yYX4db+w/3dkNsqEL9vVVWVac9uWUalhju7JCuWU1dg5btyJUkpTMLDwCXRRIPALgmJpNJI7p10ohunVR0oa+W7cjVB5k5yiut1jubs/XO5myN6tZJ6SMTdFvfKPl4OW5G8GJ9ow7kl1+aaS/VjtMlKquqsynj6WFS/5hgpSSGa9il3ePZfR/uztPDpJt6RuizvfnamHXeLZP4Lw6cVWlVnbqE+Orm3pHODgcAXBZJPADge+scaNbTY3vop2O6K+PYeS3delrrjxRqy8libTlZrM6BZj2cEqfJI+LVNdSvzduvrK3XrpzSpqPesku0O7dUNXWNNmX8vD01OD7UOss+KC5UAWb++0P7M7ZXUxKfcfS8nk1LdnY412zJ1qZH6ScPj3fb5QAA4Ah8igEAXDcPD5PGJUdqXHKkzpRV66NtOfpoe67OV9TqTxuO688bj2tccqTSRyZoTK8IeX7P9eVFF2ptZtkP5lvU0Gi7CV2Yv7eGJTZtQJeSFK5+McHyJiFABzCmV4Qkaf+Zcp2vqFVEkPs8YXL4rEU7T5fKy8Okh914Yz4AcASSeABAm+oa6qefjU/WrFt6au2hc1qy9bS+OVGsdUcKte5IoWLD/DR5eLweHBZ3xSTDMAzlllRrm3U9e4lOFlW22l7zBnTDk8LUrXMgm9ChQ4oIMqt/12AdOGPRpmPndf+QWGeHdNWWbD0tSRrfL0qRbn7OPQDYm1OT+Pnz5+tvf/ubjhw5Ij8/P/3gBz/QK6+8ouTkpkfASkpKNHfuXH355ZfKyclRRESE7r33Xr344osKCbn8kUbTpk3Tu+++a3MtLS1Nq1evtmt/AAD/4u3poTsGdNEdA7roxPkL+iAzR5/szFNeabX+sCZLf/znUaX1i1b6yASNSApXoyFlFVRYj3rbcapE5yy1NnWaTFJyVJCGJYZZN6KLscNj+oC7Su0VoQNnLNqY5T5J/IXaev3f7jOSpPQRCU6OBgBcn1OT+IyMDM2YMUMpKSmqr6/XL3/5S40fP16HDh1SQECA8vPzlZ+frwULFqhv3746ffq0fvrTnyo/P1+ffPLJFeueMGGCFi1aZP3ZbHafR8oAoL3pHhGo39zVV8+lJWvVvrNasvW09uSWadW+s1q176ziw/1VWnVRFTX1Nu/z9jRpYGyohiWGaXhiuIYlhCvE39tJvQBc39jkSL214YS+OnZeDY3G91664kgrdp9R5cUGdYsI0KjunZwdDgC4PKcm8d+eGV+8eLEiIyO1c+dOjRkzRv3799enn35qvd+9e3e99NJLSk9PV319vby8Lh++2WxWdHS03WIHAFw7X29PPTA0Vg8MjdWBM+Vampmjv+85o5ySKklSoNlLQxLCNDwxTMMSmzah8/V2/bPnAVcxOC5UQb5eKquq0768Mg2OD3N2SFdkGIaWXnqUfsqIBI52BICr4FJr4svLyyVJ4eGXPxalvLxcwcHBV0zgJWnjxo2KjIxUWFiYbr75Zv3+979Xp06tf7tbW1ur2tp/PbJpsVi+R/QAgGvRv2uI5t8/QM/f0VtbThSra6ifekcHsSs1cB28PD10U8/O+nx/gTZmnXf5JH7n6VIdKaiQr7eHHnCTx/8BwNlc5pNSY2OjZs+erdGjR6t///6tlikqKtKLL76oJ5988op1TZgwQe+9957WrVunV155RRkZGbr99tvV0NDQavn58+crJCTE+oqLY1dUAHCUYF9vpfWLVv+uISTwQBsY26vpjPWMo+edHMl3a97Q7u6BMSyVAYCrZDIMw/juYvb31FNP6YsvvtDXX3+t2NiW38RaLBbddtttCg8P18qVK+XtffW/6E+ePKnu3bvrn//8p2655ZYW91ubiY+Li7PO+gMAALiLgvIajZy/TiaTtPPXtyk8wMfZIbWq+EKtRs1fr4sNjfr7jNG6IS7U2SEBgFNZLBaFhIR8Zx7qElMeM2fO1KpVq7Rhw4ZWE/iKigpNmDBBQUFBWrFixTUl8JLUrVs3de7cWcePH2/1vtlsVnBwsM0LAADAHUWH+Kp3dJAMQ9p0zHVn4z/ZmaeLDY3q3zVYA2Mvf+oQAMCWU5N4wzA0c+ZMrVixQuvXr1dSUlKLMhaLRePHj5ePj49WrlwpX99rPzs0Ly9PxcXF6tKlS1uEDQAA4NJSkyMkSRlZrpnENzYa+mBbjqSmY+XY0A4Arp5Tk/gZM2ZoyZIl+uCDDxQUFKSCggIVFBSourpa0r8S+MrKSi1cuFAWi8Va5t/Xt/fu3VsrVqyQJF24cEHPPfectm7dqlOnTmndunWaOHGievToobS0NKf0EwAAwJGa18V/dey8GhtdYuWkjU3Hi3S6uEpBvl66Z1CMs8MBALfi1N3p3377bUnS2LFjba4vWrRI06ZN065du5SZmSlJ6tGjh02Z7OxsJSYmSpKysrKsO9t7enpq3759evfdd1VWVqaYmBiNHz9eL774ImfFAwCADmFoQpgCfDxVdOGiDuZbNMDFHldv3tBu0pBY+fu41GFJAODynPpb87v21Bs7dux3lvl2PX5+flqzZs11xwYAAOCufLw8NLpHZ3156Jw2ZhW6VBKfX1atdYfPSZKmjIh3cjQA4H5cYmM7AAAAtC3rungXO2ruo205ajSkEUnh6hkV5OxwAMDtkMQDAAC0Q2OTm9bF78opVXlVnZOjaVLX0KiPtudKktJHJjg5GgBwTyTxAAAA7VDXUD/1jAxUoyF9fbzI2eFIktYeOqfCilp1DjQrrV+0s8MBALdEEg8AANBOpfZqeqR+Y1ahkyNp0ryh3UMpsfLx4mMoAHwf/PYEAABop5ofqc84ev6qNgu2pxPnL+ibE8UymaTJw9nQDgC+L5J4AACAdiolKUx+3p4qrKjV4bMVTo1l6dYcSdLNyZGKDfN3aiwA4M5I4gEAANops5enftC9kyTn7lJffbFBn+xkQzsAaAsk8QAAAO1Y81FzzlwX/9m+fFlq6hUb5qcxl9bpAwC+H5J4AACAdmxsr6Z18TtPl6qixjlHzS29tKHdIyPi5elhckoMANBekMQDAAC0Y/Gd/JXUOUD1jYY2Hy92ePv788q1N69c3p4mPTgszuHtA0B7QxIPAADQzjUfNZdx1PGP1C/NbJqFv71/F3UONDu8fQBob0jiAQAA2rnmdfEZWY49as5SU6e/78mXJE0ZwbFyANAWSOIBAADauVHdOsns5aH88hodK7zgsHb/tjNP1XUN6hUVqOFJ4Q5rFwDaM5J4AACAds7X21Mju106ai7LMUfNGYahJZlNZ8NPGZEgk4kN7QCgLZDEAwAAdADN6+I3OmhdfGZ2iY4XXpCft6fuG9LVIW0CQEdAEg8AANABjL20Ln57dqkqa+vt3t6SS8fK3Ts4RsG+3nZvDwA6CpJ4AACADiCpc4Diwv10saFRW07Y96i58xW1WnOwQFLTo/QAgLZDEg8AANABmEwmje0VKUnKOGrfdfHLduSqrsHQoLhQ9e8aYte2AKCjIYkHAADoIP59Xby9jppraDT0waUN7dJHMgsPAG2NJB4AAKCDGNW9k3w8PZRbUq3sokq7tLExq1BnyqoV4uetuwZ2sUsbANCRkcQDAAB0EAFmL6UkhUmSNtrpqLnmDe1+ODRWvt6edmkDADoykngAAIAOpHld/EY7rIvPLamy1juFR+kBwC5I4gEAADqQ5qPmMk8Wq6auoU3r/mBbjgxDurFHZyV1DmjTugEATUjiAQAAOpAekYGKCfFVbX2jtpxsu6PmausbtGx7riQpfWR8m9ULALBFEg8AANCBmEwmpSZfOmquDdfFrz5QoOLKi4oKNuvWPlFtVi8AwBZJPAAAQAfTfNRcW54Xv3Rr07FyD6fEy8uTj5gAYC/8hgUAAOhgRvfoJC8Pk7KLKnW6+PqPmjt6rkLbTpXI08OkycN5lB4A7IkkHgAAoIMJ8vXW0ISmo+baYjZ+6aVj5W7pHanoEN/rrg8AcHkk8QAAAB3Q2DZaF19ZW6+/7TojSUrnWDkAsDuSeAAAgA6oeV38Nyeu76i5lXvzVVFbr4RO/rqxR+e2Cg8AcBkk8QAAAB1Qny5Bigwyq7quQTtOlX6vOgzD0JJLj9JPGREvDw9TW4YIAGgFSTwAAEAHZDKZrLPxG7MKv1cde3LLdDDfIh8vD/1waFxbhgcAuAySeAAAgA6qeV38xu+5ud2SS8fK3TWgi8ICfNosLgDA5ZHEAwAAdFA39uwsTw+TjhdeUF5p1TW9t6zqolbty5ckTWFDOwBwGJJ4AACADirEz1uD40IlXftRc5/szFNtfaP6dAnWkPjQtg8OANAqkngAAIAObGxy07r4azlqrrHR0NLMpkfp00fGy2RiQzsAcBSSeAAAgA4stVfTuvjNx4t0sb7xqt7zzYliZRdVKtDspXsHdbVneACAbyGJBwAA6MD6xQSrc6CPKi82aOfpqztqrvlYufsGd1WA2cue4QEAvoUkHgAAoAPz8DBpTM9LR80d/e6j5grKa7T28DlJUjob2gGAw5HEAwAAdHCp17Au/qPtOWpoNJSSGKbk6CB7hwYA+BaSeAAAgA7upp4RMpmkIwUVKiivuWy5+oZGfbQtVxKz8ADgLCTxAAAAHVx4gI9uiA2VJH11haPm1h0pVIGlRp0CfDShf7SDogMA/DuSeAAAAFiPmrvSuvjmDe1+OCxOZi9Ph8QFALBFEg8AAACl9mpK4jcdK1J9Q8uj5k4VVWrTsSKZTNIjw+MdHR4A4BKSeAAAAGhgbKjC/L1VUVOv3bllLe5/sC1HkjSmZ4TiO/k7ODoAQDOSeAAAAMjTw6Sbmo+ay7J9pL6mrkHLd7ChHQC4Aqcm8fPnz1dKSoqCgoIUGRmpe++9V1lZWdb7JSUl+o//+A8lJyfLz89P8fHxmjVrlsrLy69Yr2EY+u1vf6suXbrIz89Pt956q44dO2bv7gAAALi15nXxGd/a3O7z/WdVWlWnmBBf3dw70hmhAQAucWoSn5GRoRkzZmjr1q1au3at6urqNH78eFVWVkqS8vPzlZ+frwULFujAgQNavHixVq9erenTp1+x3ldffVVvvvmm/vKXvygzM1MBAQFKS0tTTc3lj0wBAADo6Jpn4g+csaiw4l+fm5o3tJs8PF6eHianxAYAaGIyDMNwdhDNzp8/r8jISGVkZGjMmDGtllm+fLnS09NVWVkpLy+vFvcNw1BMTIx+9rOf6dlnn5UklZeXKyoqSosXL9bDDz/8nXFYLBaFhISovLxcwcHB19cpAAAAN3L3//ta+8+U67Uf3qBJQ2N1KN+iO97cJC8Pk755/mZFBvk6O0QAaJeuNg91qTXxzY/Jh4eHX7FMcHBwqwm8JGVnZ6ugoEC33nqr9VpISIhGjBihLVu2tPqe2tpaWSwWmxcAAEBH1LxL/cZLj9QvyWyahU/rF00CDwAuwGWS+MbGRs2ePVujR49W//79Wy1TVFSkF198UU8++eRl6ykoKJAkRUVF2VyPioqy3vu2+fPnKyQkxPqKi4v7nr0AAABwb83r4jcdO6/y6jr93+4zkqQpIzlWDgBcgcsk8TNmzNCBAwf00UcftXrfYrHozjvvVN++fTVv3rw2bfv5559XeXm59ZWbm9um9QMAALiLQXGhCvb1UllVnX732UFVXWxQ94gAjerWydmhAQDkIkn8zJkztWrVKm3YsEGxsbEt7ldUVGjChAkKCgrSihUr5O3tfdm6oqOjJUnnzp2zuX7u3DnrvW8zm80KDg62eQEAAHREXp4e1g3u/rbr0iz8iASZTGxoBwCuwKlJvGEYmjlzplasWKH169crKSmpRRmLxaLx48fLx8dHK1eulK/vlddiJSUlKTo6WuvWrbOpIzMzU6NGjWrzPgAAALQ3qZceqZckX28PTRracpIFAOAcTk3iZ8yYoSVLluiDDz5QUFCQCgoKVFBQoOrqakn/SuArKyu1cOFCWSwWa5mGhgZrPb1799aKFSskSSaTSbNnz9bvf/97rVy5Uvv379ejjz6qmJgY3Xvvvc7oJgAAgFtp3txOku65IUYhfpd/ChIA4Fitb/HuIG+//bYkaezYsTbXFy1apGnTpmnXrl3KzMyUJPXo0cOmTHZ2thITEyVJWVlZ1p3tJWnOnDmqrKzUk08+qbKyMt14441avXr1d87iAwAAQIoK9tWIpHDtzinT1B8kOjscAMC/calz4l0F58QDAICOrqKmTmVVdYoL93d2KADQIVxtHurUmXgAAAC4piBfbwX58hg9ALgal9idHgAAAAAAfDeSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNeDk7AFdkGIYkyWKxODkSAAAAAEBH0Jx/Nuejl0MS34qKigpJUlxcnJMjAQAAAAB0JBUVFQoJCbnsfZPxXWl+B9TY2Kj8/HwFBQXJZDI5O5zLslgsiouLU25uroKDg50dDtopxhkcgXEGe2OMwREYZ3AExln7ZRiGKioqFBMTIw+Py698Zya+FR4eHoqNjXV2GFctODiYf8CwO8YZHIFxBntjjMERGGdwBMZZ+3SlGfhmbGwHAAAAAICbIIkHAAAAAMBNkMS7MbPZrLlz58psNjs7FLRjjDM4AuMM9sYYgyMwzuAIjDOwsR0AAAAAAG6CmXgAAAAAANwESTwAAAAAAG6CJB4AAAAAADdBEg8AAAAAgJsgiXey+fPnKyUlRUFBQYqMjNS9996rrKwsmzI1NTWaMWOGOnXqpMDAQE2aNEnnzp2zKTNr1iwNHTpUZrNZgwYNarWtffv26aabbpKvr6/i4uL06quv2qtbcCGOGmMbN27UxIkT1aVLFwUEBGjQoEFaunSpPbsGF+LI32XNjh8/rqCgIIWGhrZxb+CqHDnODMPQggUL1KtXL5nNZnXt2lUvvfSSvboGF+HIMbZmzRqNHDlSQUFBioiI0KRJk3Tq1Ck79QyupC3G2d69ezV58mTFxcXJz89Pffr00RtvvNGirY0bN2rIkCEym83q0aOHFi9ebO/uwQFI4p0sIyNDM2bM0NatW7V27VrV1dVp/PjxqqystJb5z//8T3322Wdavny5MjIylJ+fr/vvv79FXY8//rgeeuihVtuxWCwaP368EhIStHPnTv3hD3/QvHnz9D//8z926xtcg6PG2DfffKOBAwfq008/1b59+/TYY4/p0Ucf1apVq+zWN7gOR42zZnV1dZo8ebJuuummNu8LXJcjx9kzzzyjv/71r1qwYIGOHDmilStXavjw4XbpF1yHo8ZYdna2Jk6cqJtvvll79uzRmjVrVFRU1Go9aH/aYpzt3LlTkZGRWrJkiQ4ePKhf/epXev755/WnP/3JWiY7O1t33nmnxo0bpz179mj27Nn68Y9/rDVr1ji0v7ADAy6lsLDQkGRkZGQYhmEYZWVlhre3t7F8+XJrmcOHDxuSjC1btrR4/9y5c40bbrihxfU///nPRlhYmFFbW2u99vOf/9xITk5u+07ApdlrjLXmjjvuMB577LE2iRvuxd7jbM6cOUZ6erqxaNEiIyQkpK3Dh5uw1zg7dOiQ4eXlZRw5csRuscM92GuMLV++3PDy8jIaGhqs11auXGmYTCbj4sWLbd8RuLTrHWfNnn76aWPcuHHWn+fMmWP069fPpsxDDz1kpKWltXEP4GjMxLuY8vJySVJ4eLikpm/Z6urqdOutt1rL9O7dW/Hx8dqyZctV17tlyxaNGTNGPj4+1mtpaWnKyspSaWlpG0UPd2CvMXa5tprbQcdiz3G2fv16LV++XG+99VbbBQy3ZK9x9tlnn6lbt25atWqVkpKSlJiYqB//+McqKSlp2w7A5dlrjA0dOlQeHh5atGiRGhoaVF5ervfff1+33nqrvL2927YTcHltNc6+/blry5YtNnVITZ//r/fzHZyPJN6FNDY2avbs2Ro9erT69+8vSSooKJCPj0+LNZ9RUVEqKCi46roLCgoUFRXVoo7me+gY7DnGvm3ZsmXavn27HnvssesJGW7InuOsuLhY06ZN0+LFixUcHNyWYcPN2HOcnTx5UqdPn9by5cv13nvvafHixdq5c6ceeOCBtuwCXJw9x1hSUpK+/PJL/fKXv5TZbFZoaKjy8vK0bNmytuwC3EBbjbNvvvlGH3/8sZ588knrtct9/rdYLKqurm7bjsChvJwdAP5lxowZOnDggL7++mtnh4J2ylFjbMOGDXrsscf0v//7v+rXr59d24Lrsec4e+KJJ/TII49ozJgxbV433Is9x1ljY6Nqa2v13nvvqVevXpKkhQsXaujQocrKylJycnKbtwnXY88xVlBQoCeeeEJTp07V5MmTVVFRod/+9rd64IEHtHbtWplMpjZvE66pLcbZgQMHNHHiRM2dO1fjx49vw+jgqpiJdxEzZ87UqlWrtGHDBsXGxlqvR0dH6+LFiyorK7Mpf+7cOUVHR191/dHR0S12Tm3++Vrqgfuy9xhrlpGRobvvvluvv/66Hn300esNG27G3uNs/fr1WrBggby8vOTl5aXp06ervLxcXl5eeuedd9qqG3Bx9h5nXbp0kZeXlzWBl6Q+ffpIknJycq4veLgFe4+xt956SyEhIXr11Vc1ePBgjRkzRkuWLNG6deuUmZnZVt2Ai2uLcXbo0CHdcsstevLJJ/XrX//a5t7lPv8HBwfLz8+vbTsDhyKJdzLDMDRz5kytWLFC69evV1JSks39oUOHytvbW+vWrbNey8rKUk5OjkaNGnXV7YwaNUpfffWV6urqrNfWrl2r5ORkhYWFXX9H4LIcNcakpmNM7rzzTr3yyis2j3Oh/XPUONuyZYv27Nljfb3wwgsKCgrSnj17dN9997VZf+CaHDXORo8erfr6ep04ccJ67ejRo5KkhISE6+wFXJmjxlhVVZU8PGw/hnt6ekpqehIE7VtbjbODBw9q3Lhxmjp1aqtHYI4aNcqmDqnp8/+1fr6DC3LmrnowjKeeesoICQkxNm7caJw9e9b6qqqqspb56U9/asTHxxvr1683duzYYYwaNcoYNWqUTT3Hjh0zdu/ebfzkJz8xevXqZezevdvYvXu3dTf6srIyIyoqyvjRj35kHDhwwPjoo48Mf39/47//+78d2l84nqPG2Pr16w1/f3/j+eeft2mnuLjYof2FczhqnH0bu9N3LI4aZw0NDcaQIUOMMWPGGLt27TJ27NhhjBgxwrjtttsc2l84nqPG2Lp16wyTyWT87ne/M44ePWrs3LnTSEtLMxISEmzaQvvUFuNs//79RkREhJGenm5TR2FhobXMyZMnDX9/f+O5554zDh8+bLz11luGp6ensXr1aof2F22PJN7JJLX6WrRokbVMdXW18fTTTxthYWGGv7+/cd999xlnz561qSc1NbXVerKzs61l9u7da9x4442G2Ww2unbtarz88ssO6iWcyVFjbOrUqa3eT01NdVxn4TSO/F3270jiOxZHjrMzZ84Y999/vxEYGGhERUUZ06ZN40vJDsCRY+zDDz80Bg8ebAQEBBgRERHGPffcYxw+fNhBPYUztcU4mzt3bqt1JCQk2LS1YcMGY9CgQYaPj4/RrVs3mzbgvkyGYRjXMZEPAAAAAAAchDXxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAALiw4uJiRUZG6tSpUw5td/HixQoNDbVL3atXr9agQYPU2Nhol/oBAGjPSOIBAHBhL730kiZOnKjExMQW99LS0uTp6ant27c7PrDrMGHCBHl7e2vp0qWXLTN9+nQNGDBAFy9etLn++eefy8fHR7t27bJ3mAAAuCSSeAAAXFRVVZUWLlyo6dOnt7iXk5Ojb775RjNnztQ777zjhOi+n7q6OknStGnT9Oabb1623Ouvv66KigrNnTvXeq2srExPPPGEfvOb32jIkCF2iw0AAFdGEg8AgIv6/PPPZTabNXLkyBb3Fi1apLvuuktPPfWUPvzwQ1VXV9vcHzt2rGbNmqU5c+YoPDxc0dHRmjdvnk2ZsrIy/eQnP1FUVJR8fX3Vv39/rVq1yqbMmjVr1KdPHwUGBmrChAk6e/as9V5jY6NeeOEFxcbGymw2a9CgQVq9erX1/qlTp2QymfTxxx8rNTVVvr6+1tn3u+++Wzt27NCJEyda7XtwcLAWLVqk1157TZmZmZKk2bNnq2vXrnr++eeVm5urBx98UKGhoQoPD9fEiRNtlhxs375dt912mzp37qyQkBClpqa2mL03mUx6++23dc899yggIEAvvfTSZf4mAABwHSTxAAC4qE2bNmno0KEtrhuGoUWLFik9PV29e/dWjx499Mknn7Qo9+677yogIECZmZl69dVX9cILL2jt2rWSmhLw22+/XZs3b9aSJUt06NAhvfzyy/L09LS+v6qqSgsWLND777+vr776Sjk5OXr22Wet99944w299tprWrBggfbt26e0tDTdc889OnbsmE0cv/jFL/TMM8/o8OHDSktLkyTFx8crKipKmzZtumz/x40bp6efflpTp07V8uXLtWzZMr333nsyDENpaWkKCgrSpk2btHnzZuuXDM2P31dUVGjq1Kn6+uuvtXXrVvXs2VN33HGHKioqbNqYN2+e7rvvPu3fv1+PP/74d/2VAADgfAYAAHBJEydONB5//PEW17/88ksjIiLCqKurMwzDMF5//XUjNTXVpkxqaqpx44032lxLSUkxfv7znxuGYRhr1qwxPDw8jKysrFbbXrRokSHJOH78uPXaW2+9ZURFRVl/jomJMV566aUWbTz99NOGYRhGdna2Icn44x//2GobgwcPNubNm9fqvWZVVVVGcnKy4eHhYbz++uuGYRjG+++/byQnJxuNjY3WcrW1tYafn5+xZs2aVutpaGgwgoKCjM8++8x6TZIxe/bsK7YPAICrYSYeAAAXVV1dLV9f3xbX33nnHT300EPy8vKSJE2ePFmbN29u8Wj6wIEDbX7u0qWLCgsLJUl79uxRbGysevXqddn2/f391b1791bfb7FYlJ+fr9GjR9u8Z/To0Tp8+LDNtWHDhrVav5+fn6qqqi7bfnOZZ599Vv7+/nrmmWckSXv37tXx48cVFBSkwMBABQYGKjw8XDU1NdY/g3PnzumJJ55Qz549FRISouDgYF24cEE5OTlXFRsAAK7Ky9kBAACA1nXu3FmlpaU210pKSrRixQrV1dXp7bfftl5vaGjQO++8Y7Ou29vb2+a9JpPJeqybn5/fd7bf2vsNw7jmfgQEBLR6vaSkRBEREd/5fi8vL3l6espkMkmSLly4oKFDh7a6u31zfVOnTlVxcbHeeOMNJSQkyGw2a9SoUS12u79cbAAAuCpm4gEAcFGDBw/WoUOHbK4tXbpUsbGx2rt3r/bs2WN9vfbaa1q8eLEaGhququ6BAwcqLy9PR48e/V6xBQcHKyYmRps3b7a5vnnzZvXt2/c73988az548OBrbnvIkCE6duyYIiMj1aNHD5tXSEiINY5Zs2bpjjvuUL9+/WQ2m1VUVHTNbQEA4GpI4gEAcFFpaWk6ePCgzWz8woUL9cADD6h///42r+nTp6uoqMhmd/grSU1N1ZgxYzRp0iStXbtW2dnZ+uKLL676/ZL03HPP6ZVXXtHHH3+srKws/eIXv9CePXusj71fydatW62z49dqypQp6ty5syZOnKhNmzYpOztbGzdu1KxZs5SXlydJ6tmzp95//30dPnxYmZmZmjJlylU9fQAAgKsjiQcAwEUNGDBAQ4YM0bJlyyRJO3fu1N69ezVp0qQWZUNCQnTLLbdo4cKFV13/p59+qpSUFE2ePFl9+/bVnDlzrnomX5JmzZql//qv/9LPfvYzDRgwQKtXr9bKlSvVs2fP73zvhx9+qClTpsjf3/+q22vm7++vr776SvHx8br//vvVp08fTZ8+XTU1NQoODpbU9GVHaWmphgwZoh/96EeaNWuWIiMjr7ktAABcjcn4PovbAACAQ/zjH//Qc889pwMHDsjDo318915UVKTk5GTt2LFDSUlJzg4HAAC3wsZ2AAC4sDvvvFPHjh3TmTNnFBcX5+xw2sSpU6f05z//mQQeAIDvgZl4AAAAAADcRPt4Lg8AAAAAgA6AJB4AAAAAADdBEg8AAAAAgJsgiQcAAAAAwE2QxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAbuL/AxblKbT4boLyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1444,7 +1445,7 @@ } ], "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "print(f\"The MSE loss is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\")\n", "\n", "\n", "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", From e96549195020fe1cdef39c01299a0586e6218871 Mon Sep 17 00:00:00 2001 From: semvijverberg Date: Tue, 15 Aug 2023 15:09:48 +0200 Subject: [PATCH 12/12] restored seed for reproducability --- workflow/comp_pred_ridge_and_LSTM.ipynb | 76 +- workflow/pred_temperature_LSTM.ipynb | 2843 ++++++++++++++----- workflow/pred_temperature_autoencoder.ipynb | 1626 +++++------ workflow/pred_temperature_ridge.ipynb | 342 +-- workflow/pred_temperature_transformer.ipynb | 1264 +++++---- 5 files changed, 3711 insertions(+), 2440 deletions(-) diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index f55dffe..c5f4fee 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 178, "metadata": {}, "outputs": [ { @@ -43,7 +43,7 @@ "" ] }, - "execution_count": 91, + "execution_count": 178, "metadata": {}, "output_type": "execute_result" } @@ -63,7 +63,7 @@ "from torch.autograd import Variable\n", "\n", "# for reproducibility \n", - "np.random.seed(1)\n", + "np.random.seed(3)\n", "torch.manual_seed(2)" ] }, @@ -89,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 179, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 180, "metadata": {}, "outputs": [ { @@ -128,7 +128,7 @@ ")" ] }, - "execution_count": 93, + "execution_count": 180, "metadata": {}, "output_type": "execute_result" } @@ -149,17 +149,17 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 181, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", - " )" + " )" ] }, - "execution_count": 94, + "execution_count": 181, "metadata": {}, "output_type": "execute_result" } @@ -177,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 182, "metadata": {}, "outputs": [], "source": [ @@ -190,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 183, "metadata": {}, "outputs": [], "source": [ @@ -210,7 +210,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 184, "metadata": {}, "outputs": [ { @@ -242,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 185, "metadata": {}, "outputs": [ { @@ -362,7 +362,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 98, + "execution_count": 185, "metadata": {}, "output_type": "execute_result" } @@ -381,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 186, "metadata": {}, "outputs": [], "source": [ @@ -405,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 187, "metadata": {}, "outputs": [], "source": [ @@ -426,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 188, "metadata": {}, "outputs": [], "source": [ @@ -444,7 +444,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 189, "metadata": {}, "outputs": [], "source": [ @@ -454,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 190, "metadata": {}, "outputs": [], "source": [ @@ -482,7 +482,7 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 191, "metadata": {}, "outputs": [], "source": [ @@ -510,7 +510,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 192, "metadata": {}, "outputs": [], "source": [ @@ -541,7 +541,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 193, "metadata": {}, "outputs": [], "source": [ @@ -595,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 194, "metadata": {}, "outputs": [ { @@ -627,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 195, "metadata": {}, "outputs": [], "source": [ @@ -666,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 196, "metadata": {}, "outputs": [], "source": [ @@ -687,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 197, "metadata": {}, "outputs": [ { @@ -721,7 +721,7 @@ "[]" ] }, - "execution_count": 110, + "execution_count": 197, "metadata": {}, "output_type": "execute_result" } @@ -754,7 +754,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 198, "metadata": {}, "outputs": [ { @@ -2111,7 +2111,7 @@ "Epoch : 149 [24/36(67%)]\tLoss: 0.132576\n", "Epoch : 149 [28/36(78%)]\tLoss: 0.293377\n", "Epoch : 149 [32/36(89%)]\tLoss: 0.032212\n", - "--- 0.08104951779047648 minutes ---\n" + "--- 0.08080296516418457 minutes ---\n" ] } ], @@ -2175,7 +2175,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 199, "metadata": {}, "outputs": [ { @@ -2223,7 +2223,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 200, "metadata": {}, "outputs": [], "source": [ @@ -2258,7 +2258,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 201, "metadata": {}, "outputs": [], "source": [ @@ -2278,7 +2278,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 202, "metadata": {}, "outputs": [ { @@ -2339,7 +2339,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 203, "metadata": {}, "outputs": [], "source": [ @@ -2375,7 +2375,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 204, "metadata": {}, "outputs": [], "source": [ @@ -2450,7 +2450,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 205, "metadata": {}, "outputs": [ { @@ -2487,7 +2487,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 206, "metadata": {}, "outputs": [], "source": [ @@ -2512,7 +2512,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 207, "metadata": {}, "outputs": [ { diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index d786329..6638b82 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -1,785 +1,2066 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Predict 2 meter temperature with sea surface temperature using LSTM\n", - "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", - "We will predict temperature in US at seasonal time scales using ERA5 dataset with LSTM network.
\n", - "\n", - "\"usecase\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This recipe includes the following steps:\n", - "- Define a calendar (`lilio`)\n", - "- Download/load input data (`era5cli`) (test data, accessible via `era5cli`)\n", - "- Map the calendar to the data (`lilio`)\n", - "- Train-validate-test split (60%/20%/20%)\n", - "- Preprocessing based on the training set (`s2spy`)\n", - "- Resample data to the calendar (`lilio`)\n", - "- Create LSTM model (`torch`)\n", - "- Specify hyper-parameters (`wandb`)\n", - "- Train model (`torch`)\n", - "- Evaludate model" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The workflow is illustrated below:\n", - "\n", - "\"Transformer\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import lilio\n", - "import numpy as np\n", - "import pandas as pd\n", - "import time as tt\n", - "import wandb\n", - "import sys\n", - "import urllib\n", - "import xarray as xr\n", - "from pathlib import Path\n", - "from s2spy import preprocess\n", - "import torch\n", - "from torch import nn\n", - "from torch.autograd import Variable\n", - "\n", - "# import utils function to check the statistics of parameters\n", - "sys.path.append(\"../src/\")\n", - "import utils\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Define a calendar with `lilio` to specify time range for targets and precursors." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", - "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", - "# add precursor periods\n", - "periods_of_interest = 8\n", - "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# check calendar\n", - "calendar" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Load test data SST and (clustered) T2M\n", - "For the sake of batch size, we use 61 years (1961-2021) of data." - ] - }, - { - "cell_type": "code", - "execution_count": null, -<<<<<<< HEAD -======= - "metadata": {}, - "outputs": [], - "source": [ - "# URL of the dataset from zenodo\n", - "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", - "t2m_url = \"https://zenodo.org/record/8186914/files/t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", - "sst_field = \"sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", - "t2m_field = \"t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", - "\n", - "urllib.request.urlretrieve(sst_url, sst_field)\n", - "urllib.request.urlretrieve(t2m_url, t2m_field)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 - "metadata": {}, - "outputs": [], - "source": [ - "# load data\n", - "precursor_field = xr.open_dataset(sst_field)\n", - "precursor_field = precursor_field.sel(time=slice(\"19610101\",\"20211231\"))\n", - "target_field = xr.open_dataset(t2m_field)\n", - "target_field = target_field.sel(time=slice(\"19610101\",\"20211231\"))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert Klevin to Celcius\n", - "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", - "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Map the calendar to the data\n", - "After mapping the calendar to the field, we can visualize our calendar by calling the `visualize` method." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# map calendar to data\n", - "calendar.map_to_data(precursor_field)\n", - "calendar.visualize(show_length=True)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also, we can get a list of all intervals by running the following line. There, you will find the intervals `-1` and `1`, which corresponds to the creation of a precursor interval (negative integer(s)) and a target interval (positive integer(s)), respectively.
\n", - "\n", - "For more information about the definition of intervals, and how `lilio` works, please check the [README](https://github.com/AI4S2S/lilio) of `lilio`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "calendar.show()[:3]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Train-validate-test split based on the anchor years (60%/20%/20% split)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# get 60% of instance as training\n", - "years = sorted(calendar.get_intervals().index)\n", - "train_samples = round(len(years) * 0.6)\n", - "test_samples = round(len(years) * 0.2)\n", - "start_year = years[0]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fit preprocessor with training samples and preprocess data\n", - "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", - "\n", - "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# create preprocessor\n", - "preprocessor = preprocess.Preprocessor(\n", - " rolling_window_size=25,\n", - " detrend=\"linear\",\n", - " subtract_climatology=True,\n", - ")\n", - "\n", - "# fit preprocessor with training data\n", - "preprocessor.fit(\n", - " precursor_field.sel(\n", - " time=slice(str(start_year), str(start_year + train_samples - 1))\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# preprocess the whole precursor field\n", - "precursor_field_prep = preprocessor.transform(precursor_field)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Resample data to the calendar" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [], - "source": [ - "precursor_field_resample = lilio.resample(calendar, precursor_field_prep)\n", - "target_field_resample = lilio.resample(calendar, target_field)" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [], - "source": [ - "# select variables and intervals\n", - "precursor_field_sel = precursor_field_resample['sst']\n", - "# selecting 1-d timeseries of cluster 3 for target\n", - "target_series_sel = target_field_resample['t2m'].sel(cluster=3) " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to convert our data to `torch.Tensor`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# slice and reshape input desired by LSTM (samples, lags, space)\n", - "sequence_lags_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", - "lat_precursor = len(precursor_field_sel.latitude)\n", - "lon_precursor = len(precursor_field_sel.longitude)\n", - "\n", - "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", - "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", - "\n", - "# shape (samples, lags, space)\n", - "X_torch = X_torch.view(-1, sequence_lags_precursor, lat_precursor*lon_precursor)\n", - "\n", - "# turn nan to 0.0\n", - "X_torch = torch.nan_to_num(X_torch, 0.0)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We split our data into train/cross-validate/test sets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# train/validate/test split and use pytorch dataloader\n", - "train_X_torch = X_torch[:train_samples]\n", - "train_y_torch = y_torch[:train_samples]\n", - "\n", - "valid_X_torch = X_torch[train_samples:train_samples + test_samples]\n", - "valid_y_torch = y_torch[train_samples:train_samples + test_samples]\n", - "\n", - "test_X_torch = X_torch[-test_samples:]\n", - "test_y_torch = y_torch[-test_samples:]\n", - "\n", - "# pytorch train and test sets\n", - "train_set = torch.utils.data.TensorDataset(train_X_torch, train_y_torch)\n", - "valid_set = torch.utils.data.TensorDataset(valid_X_torch, valid_y_torch)\n", - "test_set = torch.utils.data.TensorDataset(test_X_torch, test_y_torch)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Build LSTM model\n", - "Build a LSTM model with `nn.LSTM` module.\n", - "\n", - "The architecture of the autoencoder used here is shown in the figure below.\n", - "\n", - "\"LSTM\"\n", - "\n", - "(source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class LSTM(nn.Module):\n", - " def __init__(self, input_dim, hidden_dim, output_dim=1,\n", - " batch_size=1, num_layers=1, dropout=0.1):\n", - " \"\"\"\n", - " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", - " Expected input timeseries dimension [batch_size, sequence, channels]\n", - "\n", - " args:\n", - " input_dim: The number of expected features in the input x\n", - " hidden_dim: The number of features in the hidden state h\n", - " output_dim: The number of output features h\n", - " num_layers: Number of recurrent layers. E.g., setting num_layers=2 would \n", - " mean stacking two LSTMs together to form a stacked LSTM, with the second \n", - " LSTM taking in outputs of the first LSTM and computing the final results. \n", - " Default: 1\n", - " \"\"\"\n", - " super().__init__()\n", - " self.hidden_dim = hidden_dim\n", - " self.batch_size = batch_size \n", - " self.num_layers = num_layers\n", - " # Define the LSTM layer\n", - " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", - " num_layers = num_layers, batch_first = True, dropout = dropout)\n", - "\n", - " # Define the output layer\n", - " self.linear = nn.Linear(hidden_dim, output_dim)\n", - " \n", - " def init_hidden(self):\n", - " \"\"\"Initialize hidden state with random values.\"\"\"\n", - " return (torch.randn(self.num_layers, self.batch_size, self.hidden_dim),\n", - " torch.randn(self.num_layers, self.batch_size, self.hidden_dim))\n", - " \n", - " def forward(self, input):\n", - " (h_0, c_0) = self.init_hidden()\n", - " x, _ = self.lstm(input, (h_0, c_0))\n", - " x = self.linear(x)\n", - " \n", - " return x" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Print system info." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print (\"Pytorch version {}\".format(torch.__version__))\n", - "use_cuda = torch.cuda.is_available()\n", - "print(\"Is CUDA available? {}\".format(use_cuda))\n", - "# use GPU if possible\n", - "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", - "print(\"Device to be used for computation: {}\".format(device))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Hyper-parameter tuning with W&B\n", - "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
\n", - "\n", - "You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# define hyperparameters and the \n", - "hyperparameters = dict(\n", - " epoch = 150,\n", - " input_dim = lat_precursor*lon_precursor,\n", - " hidden_dim = lat_precursor*lon_precursor*2,\n", - " output_dim = 1,\n", - " batch_size = 6, \n", - " num_layers = 2,\n", - " dropout = 0.0,\n", - " learning_rate = 0.02,\n", - " dataset = 'Weather',\n", - " architecture = 'LSTM'\n", - ")\n", - "\n", - "# call weights & biases service\n", - "wandb.login()\n", - "\n", - "# initialize weights & biases service\n", - "mode = 'disabled'\n", - "mode = 'online' # <- uncomment this line to enable wandb\n", - "team = 'ai4s2s-demo' # <- your own team namehere\n", - "project = 'test-LSTM' # <- your own project name here\n", - "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", - "config = wandb.config" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create data loaders with chosen batch size. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# create data loader and use batch \n", - "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = True)\n", - "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = True)\n", - "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = True)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize and train model\n", - "Create model using specified hyperparameter. Initialize model and choose loss function and optimizer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize model\n", - "model = LSTM(input_dim = config[\"input_dim\"],\n", - " hidden_dim = config[\"hidden_dim\"],\n", - " output_dim = config[\"output_dim\"], \n", - " batch_size = config[\"batch_size\"], \n", - " num_layers = config[\"num_layers\"]\n", - ")\n", - "# Specify loss function\n", - "criterion = nn.MSELoss()\n", - "# Choose optimizer\n", - "optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)\n", - "# Print model and optimizer details\n", - "print('Model details:\\n', model)\n", - "print('Optimizer details:\\n',optimizer)\n", - "wandb.watch(model)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# display the total number of parameters\n", - "utils.total_num_param(model)\n", - "# for more details about the trainable parameter in each layer\n", - "#utils.param_trainable(model)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Start the training and cross validation loop." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# calculate the time for the code execution\n", - "start_time = tt.time()\n", - "\n", - "# switch model into training mode\n", - "model.train()\n", - "\n", - "hist_train = []\n", - "hist_valid = []\n", - "for epoch in range(config.epoch):\n", - " # training loop\n", - " # switch model into train mode\n", - " model.train()\n", - " hist_train_step = 0\n", - " for batch_idx, (X_batch, y_batch) in enumerate(train_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " # note: decoder input is the last instance of encoder input\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch) # we only need the last instance from output sequence\n", - " loss.backward()\n", - " optimizer.step()\n", - " wandb.log({'train_loss': loss.item()})\n", - " print(f'Epoch : {epoch} [{batch_idx*len(X_batch)}/{len(train_loader.dataset)}'\n", - " f'({100.* batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item():.6f}')\n", - " hist_train_step += loss.item()\n", - "\n", - " hist_train.append(hist_train_step / len(train_loader.dataset))\n", - "\n", - " # cross-validation loop\n", - " # switch model into evaluation mode\n", - " model.eval()\n", - " hist_valid_step = 0\n", - "\n", - " for batch_idx, (X_batch, y_batch) in enumerate(valid_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " with torch.no_grad():\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", - " wandb.log({'validation_loss': loss.item()})\n", - " hist_valid_step += loss.item()\n", - "\n", - " hist_valid.append(hist_valid_step / len(valid_loader.dataset))\n", - "\n", - "print (f\"--- {(tt.time() - start_time)/60} minutes ---\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's check the training loss and validation loss." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "fig = plt.figure(figsize=(12, 5))\n", - "fig.add_subplot(1, 2, 1)\n", - "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", - "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", - "plt.xlabel('Epoch')\n", - "plt.ylabel('Loss')\n", - "plt.title(\"MSE\")\n", - "plt.legend()\n", - "\n", - "fig.add_subplot(1, 2, 2)\n", - "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", - "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", - "plt.xlabel('Epoch')\n", - "plt.ylabel('Logarithmic loss')\n", - "plt.title(\"Logarithmic MSE\")\n", - "plt.legend()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# save the checkpoint model training if necessary\n", - "output_path = \"./\"\n", - "\n", - "torch.save({\n", - " 'epoch': epoch,\n", - " 'model_state_dict': model.state_dict(),\n", - " 'optimizer_state_dict': optimizer.state_dict(),\n", - " 'loss': loss.item()\n", - " }, Path(output_path,'lstm_train_checkpoint.pt'))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Evaluate model\n", - "Now we can evaluate our model with testing set and compare the predictions with the ground truth." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# switch model into evaluation mode\n", - "model.eval()\n", - "hist_test = []\n", - "predictions = []\n", - "hist_test_step = 0\n", - "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " with torch.no_grad():\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", - " wandb.log({'testing_loss': loss.item()})\n", - " predictions.append(output.squeeze().cpu().detach().numpy()[:,-1])\n", - " hist_test_step += loss.item()\n", - "\n", - "hist_test.append(hist_test_step / len(test_loader.dataset))\n", - "# call wandb finish to stop logging\n", - "wandb.finish()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plot the predictions versus observations and climatology." - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [], - "source": [ - "# get climatology of target period\n", - "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", - "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", - "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", - "\n", - "preprocessor = preprocess.Preprocessor(\n", - " rolling_window_size=25,\n", - " detrend=None,\n", - " subtract_climatology=True,\n", - ")\n", - "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", - "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" - ] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.257\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACza0lEQVR4nOzdd3gU5frG8e+m956QQhJCS+i9S1MExAKKooIF9VixcEDFdlQQxYaiPwWO5WBBEBVQQAUR6VV6DwECBEhISEhCerK7vz8C0UjLQpJJuT/Xtdc5zE5m731Zwz4z7zyvyWq1WhERERERERGRKs/O6AAiIiIiIiIiUjYq4kVERERERESqCRXxIiIiIiIiItWEingRERERERGRakJFvIiIiIiIiEg1oSJeREREREREpJpQES8iIiIiIiJSTaiIFxEREREREakmHIwOUBVZLBaOHz+Op6cnJpPJ6DgiIiIiIiJSw1mtVk6fPk1oaCh2dhe+3q4i/jyOHz9OeHi40TFERERERESklklISKBu3boXfF5F/Hl4enoCxYPn5eVlcBoRERERERGp6TIzMwkPDy+pRy9ERfx5nJ1C7+XlpSJeREREREREKs2lbulWYzsRERERERGRakJFvIiIiIiIiEg1oSJeREREREREpJrQPfEiIiIiIiKXyWq1UlRUhNlsNjqKVHH29vY4ODhc8TLmKuJFREREREQuQ0FBAYmJieTk5BgdRaoJNzc3QkJCcHJyuuxjqIgXERERERGxkcViIT4+Hnt7e0JDQ3FycrriK6xSc1mtVgoKCkhJSSE+Pp5GjRphZ3d5d7eriBcREREREbFRQUEBFouF8PBw3NzcjI4j1YCrqyuOjo4cPnyYgoICXFxcLus4amwnIiIiIiJymS73aqrUTuXxedEnTkRERERERKSaUBEvIiIiIiIiUk0YWsRPmDCBDh064OnpSVBQEIMGDSI2NrbUPr169cJkMpV6PPLIIxc9rtVq5eWXXyYkJARXV1f69OlDXFxcRb4VERERERGRGqVevXpMmjTJ6BjlZtmyZZhMJtLT042OckUMLeKXL1/OiBEjWLduHYsXL6awsJC+ffuSnZ1dar8HH3yQxMTEksfbb7990eO+/fbbfPjhh0ydOpX169fj7u5Ov379yMvLq8i3IyIiIiIiUi0kJCRw//33l3TWj4yM5KmnniI1NdXoaOWiV69ejBw5stS2rl27kpiYiLe3tzGhyomh3ekXLlxY6s9ffPEFQUFBbNq0iR49epRsd3NzIzg4uEzHtFqtTJo0iZdeeomBAwcC8NVXX1GnTh1+/PFH7rjjjvJ7AwbLKzRjZzLh5KC7IkREREREpGwOHjxIly5daNy4MTNnziQqKopdu3bxzDPP8Ouvv7Ju3Tr8/PwqPZfZbMZkMlVYs0AnJ6cy15VVWZWq/jIyMgDO+cB88803BAQE0Lx5c55//nlycnIueIz4+HiSkpLo06dPyTZvb286derE2rVrz/sz+fn5ZGZmlnpUB+MW7OaWKavZn3za6CgiIiIiIrWe1Wolp6DIkIfVai1zzhEjRuDk5MRvv/1Gz549iYiI4LrrruP333/n2LFjvPjiiyX7nj59mjvvvBN3d3fCwsL4+OOPS73fV199lYiICJydnQkNDeXJJ58seT4/P5+nn36asLAw3N3d6dSpE8uWLSt5/osvvsDHx4d58+bRtGlTnJ2d+eyzz3BxcTlnyvtTTz3F1VdfDUBqaip33nknYWFhuLm50aJFC2bOnFmy7/Dhw1m+fDkffPBByS3Zhw4dOu90+tmzZ9OsWTOcnZ2pV68eEydOLPW69erV44033uD+++/H09OTiIgIPvnkk5LnCwoKePzxxwkJCcHFxYXIyEgmTJhQ5r+Ly1Fl1om3WCyMHDmSbt260bx585LtQ4cOJTIyktDQULZv386YMWOIjY1lzpw55z1OUlISAHXq1Cm1vU6dOiXP/dOECRMYO3ZsOb2TypGalc+vOxI5lVPI9R+u4vnrYrinSz3s7ExGRxMRERERqZVyC800fXmRIa+9e1w/3JwuXd6lpaWxaNEiXn/9dVxdXUs9FxwczLBhw5g1axaTJ08G4J133uGFF15g7NixLFq0iKeeeorGjRtz7bXXMnv2bN5//32+/fZbmjVrRlJSEtu2bSs53uOPP87u3bv59ttvCQ0NZe7cufTv358dO3bQqFEjAHJycnjrrbf47LPP8Pf3p27durz88svMnj2bBx54ACi+Qj9r1ixef/11APLy8mjXrh1jxozBy8uLn3/+mbvvvpsGDRrQsWNHPvjgA/bt20fz5s0ZN24cAIGBgRw6dKjU+920aRNDhgzh1Vdf5fbbb2fNmjU89thj+Pv7M3z48JL9Jk6cyGuvvcYLL7zADz/8wKOPPkrPnj2Jjo7mww8/ZN68eXz33XdERESQkJBAQkKCbX95NqoyRfyIESPYuXMnq1atKrX9oYceKvn/LVq0ICQkhGuuuYYDBw7QoEGDcnnt559/nlGjRpX8OTMzk/Dw8HI5dkXx93Bm4cgePPPDdlbsS+HV+btZsjeZd29rRR0vF6PjiYiIiIhIFRQXF4fVaqVJkybnfb5JkyacOnWKlJQUALp168Zzzz0HQOPGjVm9ejXvv/8+1157LUeOHCE4OJg+ffrg6OhIREQEHTt2BODIkSNMmzaNI0eOEBoaCsDTTz/NwoULmTZtGm+88QYAhYWFTJ48mVatWpVkuOOOO5gxY0ZJEb9kyRLS09MZPHgwAGFhYTz99NMl+z/xxBMsWrSI7777jo4dO+Lt7Y2Tk9Mlb8t+7733uOaaa/jPf/5T8v52797NO++8U6qIHzBgAI899hgAY8aM4f3332fp0qVER0dz5MgRGjVqxFVXXYXJZCIyMrKMfxOXr0oU8Y8//jgLFixgxYoV1K1b96L7durUCYD9+/eft4g/+5d04sQJQkJCSrafOHGC1q1bn/eYzs7OODs7X2Z649TxcuHL+zrw9brDvP7zHlbGnaTfpBW8cXMLBrQIufQBRERERESk3Lg62rN7XD/DXtsWZZ1+36VLl3P+fLZj/W233cakSZOoX78+/fv3Z8CAAdx44404ODiwY8cOzGYzjRs3LvXz+fn5+Pv7l/zZycmJli1bltpn2LBhdO7cmePHjxMaGso333zD9ddfj4+PD1B8Zf6NN97gu+++49ixYxQUFJCfn4+bm5tNY7Bnz56SPmpndevWjUmTJmE2m7G3Lx7Tv+czmUwEBweTnJwMFE/dv/baa4mOjqZ///7ccMMN9O3b16YctjL0nnir1crjjz/O3Llz+eOPP4iKirrkz2zduhWgVIH+d1FRUQQHB7NkyZKSbZmZmaxfv/6cD2BNYDKZuKdLPX5+sjstwrxJzynksW82M2rWVjLzCo2OJyIiIiJSa5hMJtycHAx5mExlu622YcOGmEwm9uzZc97n9+zZg6+vL4GBgZc8Vnh4OLGxsUyePBlXV1cee+wxevToQWFhIVlZWdjb27Np0ya2bt1a8tizZw8ffPBByTFcXV3Pyd6hQwcaNGjAt99+S25uLnPnzmXYsGElz7/zzjt88MEHjBkzhqVLl7J161b69etHQUFBmcbAVo6OjqX+bDKZsFgsALRt25b4+Hhee+01cnNzGTJkCLfeemuF5DjL0CJ+xIgRTJ8+nRkzZuDp6UlSUhJJSUnk5uYCcODAAV577TU2bdrEoUOHmDdvHvfccw89evQodTYkJiaGuXPnAsUDOnLkSMaPH8+8efPYsWMH99xzD6GhoQwaNMiIt1kpGgZ5MOexrjxxdUPsTDBnyzGum7SS9QdrxhIRIiIiIiJy5fz9/bn22muZPHlySd11VlJSEt988w233357SWG9bt26UvusW7eu1FR8V1dXbrzxRj788EOWLVvG2rVr2bFjB23atMFsNpOcnEzDhg1LPcrSIX7YsGF88803zJ8/Hzs7O66//vqS51avXs3AgQO56667aNWqFfXr12ffvn2lft7JyQmz2XzR12jSpAmrV68utW316tU0bty45Cp8WXh5eXH77bfz6aefMmvWLGbPnk1aWlqZf95Whk6nnzJlClC8ht/fTZs2jeHDh+Pk5MTvv//OpEmTyM7OJjw8nMGDB/PSSy+V2j82Nraksz3As88+S3Z2Ng899BDp6elcddVVLFy4EBeXmn2vuKO9HaP7RtMrOpB/z9rGkbQc7vh0HQ91r8+ovo1xdrBtio2IiIiIiNQ8H330EV27dqVfv36MHz++1BJzYWFhJQ3koLioffvttxk0aBCLFy/m+++/5+effwaKu8ubzWY6deqEm5sb06dPx9XVlcjISPz9/Rk2bBj33HMPEydOpE2bNqSkpLBkyRJatmxZqig/n2HDhvHqq6/y+uuvc+utt5a6/blRo0b88MMPrFmzBl9fX9577z1OnDhB06ZNS/apV68e69ev59ChQ3h4eJx3ybzRo0fToUMHXnvtNW6//XbWrl3LRx99VNLUryzee+89QkJCaNOmDXZ2dnz//fcEBweXTP2vCIYW8Ze6DyM8PJzly5fbfByTycS4ceNKOhHWNu0i/fjlqe68Nn83szYm8N8VB1kRd5JJt7cmOtjT6HgiIiIiImKgRo0asXHjRl555RWGDBlCWloawcHBDBo0iFdeeaVUwTt69Gg2btzI2LFj8fLy4r333qNfv+L7/n18fHjzzTcZNWoUZrOZFi1aMH/+/JJ73qdNm8b48eMZPXo0x44dIyAggM6dO3PDDTdcMmPDhg3p2LEjGzZsKLkH/6yXXnqJgwcP0q9fP9zc3HjooYcYNGhQqQu7Tz/9NPfeey9NmzYlNzeX+Pj4c16jbdu2fPfdd7z88su89tprhISEMG7cuFJN7S7F09OTt99+m7i4OOzt7enQoQO//PJLha11D2Cy2rKgYC2RmZmJt7c3GRkZeHl5GR3niizalcTzc3aQll2Ak4Mdz/aL5v5uUVqKTkRERETkCuTl5REfH09UVFSNn/Er5edin5uy1qGG3hMvFa9fs2AWjezB1TFBFBRZGP/zHu76fD3H03Mv/cMiIiIiIiJSpaiIrwUCPZ35/N72vH5zc1wd7VlzIJX+k1bw09ZjRkcTERERERERG6iIryVMJhPDOkXy85NX0Srch8y8Ip76ditPztxCRo6WohMREREREakOVMTXMvUDPfjhkS6M7NMIezsT87Ydp/8HK1iz/6TR0UREREREROQSVMTXQo72dozs05gfHulCVIA7iRl5DP1sPa8t2E1e4cXXUhQRERERERHjqIivxdpE+PLzk1cxtFMEAJ+vimfgR6vZfTzT4GQiIiIiIiJyPiriazk3JwfeuLkF/xvengAPJ2JPnGbQx6v57/IDmC1afVBERERERKQqUREvAFwdU4dFI3twbdM6FJgtTPh1L3d+uo6jp3KMjiYiIiIiIiJnqIiXEv4eznxydzveGtwCNyd7NsSncd2klczZfBSrVVflRURERESk7IYPH86gQYNK/tyrVy9Gjhx5Rccsj2NUdyripRSTycTtHSL49anutI3w4XR+EaO+28bjM7aQnlNgdDwREREREblCw4cPx2QyYTKZcHJyomHDhowbN46ioqIKfd05c+bw2muvlWnfZcuWYTKZSE9Pv+xj1FQq4uW8Iv3d+e7hLjzdtzEOdiZ+3pFIv0krWBmXYnQ0ERERERG5Qv379ycxMZG4uDhGjx7Nq6++yjvvvHPOfgUF5Xchz8/PD09PT8OPUd2piJcLcrC34/GrGzHnsa7UD3TnRGY+d3++gVfn7dJSdCIiIiIi5cRssbL2QCo/bT3G2gOpldJg2tnZmeDgYCIjI3n00Ufp06cP8+bNK5kC//rrrxMaGkp0dDQACQkJDBkyBB8fH/z8/Bg4cCCHDh366z2YzYwaNQofHx/8/f159tlnz7kl959T4fPz8xkzZgzh4eE4OzvTsGFDPv/8cw4dOkTv3r0B8PX1xWQyMXz48PMe49SpU9xzzz34+vri5ubGddddR1xcXMnzX3zxBT4+PixatIgmTZrg4eFRcgLjrGXLltGxY0fc3d3x8fGhW7duHD58uJxGuvypiJdLalnXh5+f6M49XSIB+GLNIW74v1XsPJZhcDIRERERkept4c5ErnrrD+78dB1PfbuVOz9dx1Vv/cHCnYmX/uFy5OrqWnLVfcmSJcTGxrJ48WIWLFhAYWEh/fr1w9PTk5UrV7J69eqSYvjsz0ycOJEvvviC//3vf6xatYq0tDTmzp170de85557mDlzJh9++CF79uzhv//9Lx4eHoSHhzN79mwAYmNjSUxM5IMPPjjvMYYPH87GjRuZN28ea9euxWq1MmDAAAoLC0v2ycnJ4d133+Xrr79mxYoVHDlyhKeffhqAoqIiBg0aRM+ePdm+fTtr167loYcewmQyXfGYVhQHowNI9eDqZM+4gc25OiaIZ3/Yzv7kLAZ9vJp/X9uYR3o2wN6u6n7IRURERESqooU7E3l0+mb+ed09KSOPR6dvZspdbenfPKRCM1itVpYsWcKiRYt44oknSElJwd3dnc8++wwnJycApk+fjsVi4bPPPispbqdNm4aPjw/Lli2jb9++TJo0ieeff55bbrkFgKlTp7Jo0aILvu6+ffv47rvvWLx4MX369AGgfv36Jc/7+fkBEBQUhI+Pz3mPERcXx7x581i9ejVdu3YF4JtvviE8PJwff/yR2267DYDCwkKmTp1KgwYNAHj88ccZN24cAJmZmWRkZHDDDTeUPN+kSRPbB7IS6Uq82KRXdBCLRvbguubBFFmsvLMoltv/u5aENC1FJyIiIiJSVmaLlbHzd59TwAMl28bO311hU+sXLFiAh4cHLi4uXHfdddx+++28+uqrALRo0aKkgAfYtm0b+/fvx9PTEw8PDzw8PPDz8yMvL48DBw6QkZFBYmIinTp1KvkZBwcH2rdvf8HX37p1K/b29vTs2fOy38OePXtwcHAo9br+/v5ER0ezZ8+ekm1ubm4lBTpASEgIycnJQPHJguHDh9OvXz9uvPFGPvjgg1JT7asiFfFiM193JyYPa8u7t7XCw9mBjYdP0X/SCr7bmKCl6EREREREymBDfBqJGXkXfN4KJGbksSE+rUJev3fv3mzdupW4uDhyc3P58ssvcXd3Byj537OysrJo164dW7duLfXYt28fQ4cOvazXd3V1veL3UFaOjo6l/mwymUrVLdOmTWPt2rV07dqVWbNm0bhxY9atW1dp+WylIl4ui8lk4tZ2dfn1qe50qOdLdoGZZ3/YziPTN5GWraXoREREREQuJvn0hQv4y9nPVu7u7jRs2JCIiAgcHC5+l3Xbtm2Ji4sjKCiIhg0blnp4e3vj7e1NSEgI69evL/mZoqIiNm3adMFjtmjRAovFwvLly8/7/NmZAGbzhRtqN2nShKKiolKvm5qaSmxsLE2bNr3oe/qnNm3a8Pzzz7NmzRqaN2/OjBkzbPr5yqQiXq5IuJ8b3z7UhTH9Y3C0N7Fo1wn6vr+CpXuTjY4mIiIiIlJlBXm6lOt+FWnYsGEEBAQwcOBAVq5cSXx8PMuWLePJJ5/k6NGjADz11FO8+eab/Pjjj+zdu5fHHnvsnDXe/65evXrce++93H///fz4448lx/zuu+8AiIyMxGQysWDBAlJSUsjKyjrnGI0aNWLgwIE8+OCDrFq1im3btnHXXXcRFhbGwIEDy/Te4uPjef7551m7di2HDx/mt99+Iy4urkrfF68iXq6YvZ2JR3s1YO5j3WgU5MHJrHzu++JPXvpxBzkFRUbHExERERGpcjpG+RHi7cKF2kObgBBvFzpG+VVmrPNyc3NjxYoVREREcMstt9CkSRMeeOAB8vLy8PLyAmD06NHcfffd3HvvvXTp0gVPT09uvvnmix53ypQp3HrrrTz22GPExMTw4IMPkp2dDUBYWBhjx47lueeeo06dOjz++OPnPca0adNo164dN9xwA126dMFqtfLLL7+cM4X+Yu9t7969DB48mMaNG/PQQw8xYsQIHn74YRtGqHKZrLqJ+RyZmZl4e3uTkZFR8qGUsskrNPP2wlj+tzoegPoB7rx/e2tahfsYG0xEREREpBzl5eURHx9PVFQULi6Xd7X8bHd6oFSDu7OFfWV0p5fKdbHPTVnrUF2Jl3Ll4mjPyzc2ZfoDnQj2cuHgyWxumbKGD36Po8hsMTqeiIiIiEiV0b95CFPuakuwd+liLtjbRQW8XJCuxJ+HrsSXj/ScAl76cScLthcv0dAmwof3h7SmXoD7JX5SRERERKRqK48r8WeZLVY2xKeRfDqPIM/iKfT2dheaaC/Vma7ES5Xm4+bE/93Zhg/uaI2niwNbjqQz4MOVzNxwREvRiYiIiIicYW9noksDfwa2DqNLA38V8HJRKuKlQplMJga2DmPhyB50ru9HToGZ5+fs4MGvNnIyK9/oeCIiIiIiItWKinipFGE+rsz4V2deHNAEJ3s7ft+TTL/3V/D77hNGRxMREREREak2VMRLpbGzM/Fgj/r89Hg3YoI9Sc0u4F9fbeT5OdvJztdSdCIiIiIiIpeiIl4qXZMQL34c0Y2HetTHZIKZGxK4/sOVbD5yyuhoIiIiIiIiVZqKeDGEi6M9Lwxowox/dSbU24VDqTncOmUN7/0WS6GWohMRERERETkvFfFiqC4N/Pl1ZA8GtQ7FYoUP/9jPrVPWcCAly+hoIiIiIiIiVY6KeDGct6sjk+5ow//d2QYvFwe2Hc3g+g9X8vW6w1qKTkRERETEACaTiR9//BGAQ4cOYTKZ2Lp1q6GZLqSq5ytvKuKlyrixVSiL/t2Dbg39ySu08J8fd3LfF3+SfDrP6GgiIiIiIjVKUlISTzzxBPXr18fZ2Znw8HBuvPFGlixZcs6+4eHhJCYm0rx58wrNVNuK8culIl6qlBBvV76+vxMv39AUJwc7lsWm0O/9FSzcmWR0NBERERGRCmE2m1m2bBkzZ85k2bJlmM3mCn29Q4cO0a5dO/744w/eeecdduzYwcKFC+nduzcjRow4Z397e3uCg4NxcHCo0FxSNiripcqxszNx/1VRLHjiKpqGeHEqp5BHpm/ime+3kaWl6ERERESkBpkzZw716tWjd+/eDB06lN69e1OvXj3mzJlTYa/52GOPYTKZ2LBhA4MHD6Zx48Y0a9aMUaNGsW7dunP2/+cV8mXLlmEymVi0aBFt2rTB1dWVq6++muTkZH799VeaNGmCl5cXQ4cOJScnp+Q4Cxcu5KqrrsLHxwd/f39uuOEGDhw4UPJ8VFQUAG3atMFkMtGrVy8ALBYL48aNo27dujg7O9O6dWsWLlx40fe4fPlyOnbsiLOzMyEhITz33HMUFf1VS5w+fZphw4bh7u5OSEgI77//Pr169WLkyJEAjBs37rwzD1q3bs1//vOfMo1zRVERL1VW4zqe/DiiG4/2aoDJBN9vOsp1H6zgz0NpRkcTEREREblic+bM4dZbb+Xo0aOlth87doxbb721Qgr5tLQ0Fi5cyIgRI3B3dz/neR8fnzIf69VXX+Wjjz5izZo1JCQkMGTIECZNmsSMGTP4+eef+e233/i///u/kv2zs7MZNWoUGzduZMmSJdjZ2XHzzTdjsRSvTrVhwwYAfv/9dxITE0ve/wcffMDEiRN599132b59O/369eOmm24iLi7uvLmOHTvGgAED6NChA9u2bWPKlCl8/vnnjB8/vmSfUaNGsXr1aubNm8fixYtZuXIlmzdvLnn+/vvvZ8+ePfz5558l27Zs2cL27du57777yjxGFUFFvFRpTg52jOkfw6yHuhDm40pCWi63/3ctby/cS0GRlqITERERkerJbDbz1FNPnbeR89ltI0eOLPep9fv378dqtRITE3PFxxo/fjzdunWjTZs2PPDAAyxfvpwpU6bQpk0bunfvzq233srSpUtL9h88eDC33HILDRs2pHXr1vzvf/9jx44d7N69G4DAwEAA/P39CQ4Oxs/PD4B3332XMWPGcMcddxAdHc1bb71F69atmTRp0nlzTZ48mfDwcD766CNiYmIYNGgQY8eOZeLEiVgsFk6fPs2XX37Ju+++yzXXXEPz5s2ZNm1aqbGuW7cu/fr1Y9q0aSXbpk2bRs+ePalfv/4Vj92VUBEv1ULHKD8WjuzO4LZ1sVhh8rID3Dx5NXEnThsdTURERETEZitXrjznCvzfWa1WEhISWLlyZbm+bnmu/tSyZcuS/1+nTh3c3NxKFbh16tQhOTm55M9xcXHceeed1K9fHy8vL+rVqwfAkSNHLvgamZmZHD9+nG7dupXa3q1bN/bs2XPen9mzZw9dunTBZDKV2j8rK4ujR49y8OBBCgsL6dixY8nz3t7eREdHlzrOgw8+yMyZM8nLy6OgoIAZM2Zw//33X2REKoeKeKk2PF0cmTikFVOGtcXHzZFdxzO54f9WMW11PBaLlqITERERkeojMTGxXPcrq0aNGmEymdi7d+8VH8vR0bHk/5tMplJ/Prvt7FR5gBtvvJG0tDQ+/fRT1q9fz/r16wEoKCi44iwV4cYbb8TZ2Zm5c+cyf/58CgsLufXWW42OpSJeqp/rWoTw28ge9GwcSH6RhbHzd3PvtA0kZWgpOhERERGpHkJCQsp1v7Ly8/OjX79+fPzxx2RnZ5/zfHp6erm+3lmpqanExsby0ksvcc0119CkSRNOnTpVah8nJyeAUtPavby8CA0NZfXq1aX2Xb16NU2bNj3vazVp0oS1a9eWmnWwevVqPD09qVu3LvXr18fR0bHU/e4ZGRns27ev1HEcHBy49957mTZtGtOmTeOOO+7A1dX18gagHKmIl2opyMuFL+7rwLiBzXB2sGNl3En6TVrBz9vL90yliIiIiEhF6N69O3Xr1i015fvvTCYT4eHhdO/evdxf++OPP8ZsNtOxY0dmz55NXFwce/bs4cMPP6RLly7l/noAvr6++Pv788knn7B//37++OMPRo0aVWqfoKAgXF1dWbhwISdOnCAjIwOAZ555hrfeeotZs2YRGxvLc889x9atW3nqqafO+1qPPfYYCQkJPPHEE+zdu5effvqJV155hVGjRmFnZ4enpyf33nsvzzzzDEuXLmXXrl088MAD2NnZnfP38a9//Ys//viDhQsXVomp9KAiXqoxk8nEPV3q8fOT3WkR5k1GbiEjZmzm37O2kplXaHQ8EREREZELsre354MPPgA4p3A8++dJkyZhb29f7q9dv359Nm/eTO/evRk9ejTNmzfn2muvZcmSJUyZMqXcXw/Azs6Ob7/9lk2bNtG8eXP+/e9/884775Tax8HBgQ8//JD//ve/hIaGMnDgQACefPJJRo0axejRo2nRogULFy5k3rx5NGrU6LyvFRYWxi+//MKGDRto1aoVjzzyCA888AAvvfRSyT7vvfceXbp04YYbbqBPnz5069aNJk2a4OLiUupYjRo1omvXrsTExNCpU6dyHpXLY7KWZ2eDGiIzMxNvb28yMjLw8vIyOo6UQaHZwodL4vh46X4sVgjzcWXikFZ0ru9vdDQRERERqYHy8vKIj48nKirqnMLPFnPmzOGpp54q1eQuPDycSZMmccstt5RHVCmD7OxswsLCmDhxIg888EDJdqvVSqNGjXjsscfOmTlwOS72uSlrHepwxSlEqgBHeztG942mV3Qg/561jSNpOdz56Toe6l6fUX0b4+xQ/mcwRURERESu1C233MLAgQNZuXIliYmJhISE0L179wq5Ai9/2bJlC3v37qVjx45kZGQwbtw4gJKr/wApKSl8++23JCUlGb42/N+piJcapV2kH7881Z3xC3bz7Z8J/HfFQZbvS2HSHa2JCdasChERERGpeuzt7enVq5fRMWqdd999l9jYWJycnGjXrh0rV64kICCg5PmgoCACAgL45JNP8PX1NTBpaSripcbxcHbgzcEtuTomiOfm7GBv0mlu+r/VPNs/mvu7RWFnd/7mISIiIiIiUju0adOGTZs2XXSfqnrnuRrbSY3Vt1kwi0b24OqYIArMFsb/vIe7Pl/P8fRco6OJiIiIiIhcFkOL+AkTJtChQwc8PT0JCgpi0KBBxMbGnndfq9XKddddh8lk4scff7zocYcPH47JZCr16N+/fwW8A6nqAj2d+fze9rx+c3NcHe1ZcyCVG/9vFcmZWlNeRERERESqH0OL+OXLlzNixAjWrVvH4sWLKSwspG/fvmRnZ5+z76RJky64huL59O/fn8TExJLHzJkzyzO6VCMmk4lhnSL55anuNAryIDW7gOfm7Kiy02NEREREpPrQd0qxRXl8Xgy9J37hwoWl/vzFF18QFBTEpk2b6NGjR8n2rVu3MnHiRDZu3EhISEiZju3s7ExwcHC55pXqLSrAnY+GtuXG/1vFH3uT+X7jUYZ0CDc6loiIiIhUQ46OjgDk5OTg6upqcBqpLnJycoC/Pj+Xo0o1tsvIyADAz8+vZFtOTg5Dhw7l448/tqkoX7ZsGUFBQfj6+nL11Vczfvx4/P3Pv2Z4fn4++fn5JX/OzMy8zHcgVV10sCej+zZmwq97GbdgN10b+lPX183oWCIiIiJSzdjb2+Pj40NycjIAbm5uNs0cltrFarWSk5NDcnIyPj4+V7SEoMlaReZ/WCwWbrrpJtLT01m1alXJ9ocffhiz2cxnn30GFE+Nnjt3LoMGDbrgsb799lvc3NyIioriwIEDvPDCC3h4eLB27drzDtarr77K2LFjz9mekZGBl5eWJatpzBYrQ/67lk2HT9G1gT/TH+ikjvUiIiIiYjOr1UpSUhLp6elGR5FqwsfHh+Dg4POe8MnMzMTb2/uSdWiVKeIfffRRfv31V1atWkXdunUBmDdvHqNHj2bLli14eHgAZSvi/+ngwYM0aNCA33//nWuuueac5893JT48PFxFfA126GQ2132wktxCM6/e2JTh3aKMjiQiIiIi1ZTZbKawsNDoGFLFOTo6XvQKfFmL+Coxnf7xxx9nwYIFrFixoqSAB/jjjz84cOAAPj4+pfYfPHgw3bt3Z9myZWU6fv369QkICGD//v3nLeKdnZ1xdna+krcg1Uy9AHeeHxDDyz/t4s2Fe+nROJD6gR5GxxIRERGRasje3v6KpkeL2MLQ7vRWq5XHH3+cuXPn8scffxAVVfpq6HPPPcf27dvZunVryQPg/fffZ9q0aWV+naNHj5KamlrmpnhSO9zVKZKrGgaQV2hh9PfbMFuqxKQUEREREREpR6fzatYsCUOL+BEjRjB9+nRmzJiBp6cnSUlJJCUlkZubC0BwcDDNmzcv9QCIiIgoVfDHxMQwd+5cALKysnjmmWdYt24dhw4dYsmSJQwcOJCGDRvSr1+/yn+TUmXZ2Zl469aWeDo7sOVIOp+sOGh0JBERERERKUf7TpzmqreW8vW6wzVmOUBDi/gpU6aQkZFBr169CAkJKXnMmjXLpuPExsaWdLa3t7dn+/bt3HTTTTRu3JgHHniAdu3asXLlSk2Zl3OE+bjy8o1NAXh/8T72JmllAhERERGRmiArv4hHpm8iI7eQRTuTqCE1fNVpbFeVlLWhgNQMVquVB7/ayO97kmka4sWPI7rh5GDo+S0REREREbkCVquVJ2ZuYcH2RIK9XPj5yavw96jaF3XLWoeqUpFaz2Qy8cYtLfB1c2R3YiYf/RFndCQREREREbkCX609zILtiTjYmfh4WJsqX8DbQkW8CBDk6cL4QS0A+HjZAbYlpBsbSERERERELsuWI6cY//NuAJ4f0IR2kX4GJypfKuJFzri+ZQg3tgrFbLEy+vtt5BWajY4kIiIiIiI2SMsuYMQ3myk0WxnQIpj7u9UzOlK5UxEv8jfjbmpGoKcz+5OzeHdRrNFxRERERESkjCwWKyNnbeV4Rh71A9x5a3BLTCaT0bHKnYp4kb/xdXfircHF0+o/Xx3P+oOpBicSEREREZGy+L8/9rNiXwoujnZMvqstni6ORkeqECriRf7h6pg63N4+HKsVnv5hG9n5RUZHEhERERGRi1gZl8KkJfsAeH1QC2KCa+4qYyriRc7jpRuaEObjSkJaLm/8ssfoOCIiIiIicgHH03N56tutWK1wZ8dwBrera3SkCqUiXuQ8PF0ceee2lgB8s/4Iy/elGJxIRERERET+qaDIwuMzNpOWXUCzUC9eubGZ0ZEqnIp4kQvo2iCA4V3rATDmh+1k5BQaG0hEREREREp589e9bD6SjpeLA1OGtcPF0d7oSBVORbzIRYzpH0NUgDtJmXmMnb/L6DgiIiIiInLGz9sT+d/qeAAmDmlNhL+bwYkqh4p4kYtwdbLn3dtaYWeCOVuOsXBnktGRRERERERqvQMpWTz7wzYAHunZgGub1jE4UeVRES9yCe0ifXm4ZwMAXpy7g5NZ+QYnEhERERGpvXIKinhs+mayC8x0ivLj6b6NjY5UqVTEi5TByD6NiAn2JDW7gJfm7sRqtRodSUREbJByOp+ftyfq97eISDVntVp5ae5OYk+cJtDTmf8b2gYH+9pV1taudytymZwd7Jk4pBUOdiYW7krip63HjY4kIiI2eGLmZkbM2MzcLceMjiIiIldg5oYE5mw5hr2dif+7sw1Bni5GR6p0KuJFyqhZqDdPXdMIgJd/2klSRp7BiUREpCz2JmWy7mAaAL/tOmFwGhERuVw7jmbw6rziZtPP9Iumc31/gxMZQ0W8iA0e7dWAVnW9ycwrYszs7ZqWKSJSDUxfd7jk/6/af5KCIouBaURE5HJk5BTy2IxNFJgt9GlSh4d71Dc6kmFUxIvYwMHejolDWuPsYMfyfSnM3JBgdCQREbmI03mFzN1cPIXe0d5EVn4RGw+nGZxKRERsYbFYGf39VhLScgn3c2XikFaYTCajYxlGRbyIjRoGefBMv2gAxv+8myOpOQYnEhGRC/lxyzGyC8w0CHTnxpahACyPTTE4lYiI2OK/Kw7y+55knBzsmDKsHd6ujkZHMpSKeJHLcH+3KDpG+ZFTYObpH7ZhsWhavYhIVWO1Wvn6zFT6uztH0jsmCIClsclGxhIRERusPZDKO4v2AjD2pmY0D/M2OJHxVMSLXAY7OxPv3toKNyd7NsSn8b/V8UZHEhGRf9gQn8a+E1m4OtpzS7u69GgUiJ0J9p3I4ugpzaISEanqkjPzeGLmFixWGNy2Lnd0CDc6UpWgIl7kMkX4u/HS9U0BeHtRLPuTTxucSERE/u7sVfhBbcLwcnHE282RdpG+ACzTlHoRkSqtyGzh8ZlbOJmVT0ywJ+MHNa/V98H/nYp4kStwZ8dwejQOpKDIwujvtlFkVsdjEZGqIPl0Hot2JQFwV+eIku29ooun1C/TlHoRkSrtnd9i2RCfhoezA5OHtcXVyd7oSFWGiniRK2AymXh7cEu8XBzYdjSDqcsPGB1JRESA7/5MoNBspV2kL81C/7p/sveZIn71/lTyCs1GxRMRkYv4bVcS/11+EIC3b21J/UAPgxNVLSriRa5QsLcLYwc2A+CDJXHsOp5hcCIRkdqtyGxhxvojQHFDu79rEuJJHS9ncgvNbIjXUnMiIlXN4dRsRn+/DShuJj2gRYjBiaoeFfEi5WBQ6zD6Nwum0Gxl9HfbyC/S1R0REaP8sTeZ4xl5+Lk7cV2L4FLPmUymkqvx6lIvIlK15BWaeXT6Zk7nFdEu0pfnB8QYHalKUhEvUg5MJhPjb26Ov7sTe5NO88HvcUZHEhGptc42tBvSPhxnh3PvoewVHQiouZ2ISFXz6rxd7E7MxM/diY+GtsHRXuXq+WhURMpJgIczr9/cHICpyw+w+cgpgxOJiNQ+8SezWRl3EpMJhnWKOO8+3RoG4GBnIv5kNodOZldyQhEROZ/vNybw7Z8JmEzw4R1tCPF2NTpSlaUiXqQc9W8ews1twrBY4envtpFboGn1IiKV6ZszV+F7RwcR7ud23n08XRzpUM8PUJd6EZGqYE9iJi/9uBOAf/dpzFWNAgxOVLWpiBcpZ6/e2IxgLxcOnszmrYV7jY4jIlJr5BaY+X7TUeDchnb/1DumeEr9Uk2pFxExVGZeIY9O30R+kYVe0YE83ruh0ZGqPBXxIuXM282Rt25tCcAXaw6x5sBJgxOJiNQO87cfJyO3kHA/V3o0Drzovmeb2609mKpZUyIiBrFarYz5YTuHUnMI9Xbh/SGtsbMzGR2rynMoy07bt2+3+cBNmzbFwaFMhxepcXo2DmRopwhmrD/CM99vZ+HI7ni6OBodS0SkRpt+Zir9sE6R2F/iS2DDIA/CfFw5lp7L2oMnuTqmTmVEFBGRv/l8VTy/7kzC0d7E5Lva4evuZHSkaqFMVXbr1q0xmUxYrdYyHdTOzo59+/ZRv379KwonUp29MKAJK+NSSEjLZfyCPSVX50VEpPxtS0hn+9EMnBzsGNI+/JL7m0wmescEMn3dEZbuTVERLyJSyTYeSuPNX4tvPf3PDU1pHe5jbKBqpMyXytevX09g4MWnpkHxlIjmzZtfUSiRmsDD2YF3b23FHZ+uY9bGBPo1r6MviSIiFeTssnI3tAjBr4xXcnpHBxUX8bHJWK1WTCZN4RQRqQwns/IZMWMzRRYrN7YKvWQfEymtTEV8z549adiwIT4+PmU6aI8ePXB11ZIAIp3q+/NAtyg+WxXPmNk7+G2kr6YJiYiUs1PZBczfdhyAu7qU/Ytglwb+ONnbcfRULgdSsmgY5FlREUVE5AyzxcpT327hRGY+DYM8ePOWFjqJaqMyNbZbunRpmQt4gF9++YWQkJDLzSRSozzdL5oGge6knM7nlXm7jI4jIlLj/LDpKPlFFpqFetHGhumYbk4OdKp/dqk5dakXEakMk37fx+r9qbg62jNlWFvcndVHzVY2dafPzMzEYrGcs91sNpOZmVluoURqEhdHe94b0hp7OxPzth3n5+2JRkcSEakxLBYr09cXT6W/u3OkzVdzznapX6r14kVEKtzS2GT+74/9ALw5uAWN6mgG1OUocxE/d+5c2rdvT15e3jnP5eXl0aFDB+bPn1+u4URqilbhPozo1QCAl37cQfLpc/87EhER263cf5LDqTl4ujhwU+tQm3++d0xxEb8hPo2s/KLyjiciImccPZXDv2dtBYpPug5sHWZsoGqszEX8lClTePbZZ3FzczvnOXd3d8aMGcNHH31UruFEapLHr25E0xAvTuUU8sKcnWVe7UFERC7s67XFV+FvbVcXNyfbp2RGBbhTz9+NQrOV1ftPlnc8EREB8ovMjPhmM+k5hbSq681LNzQxOlK1VuYifufOnfTq1euCz/fo0YMdO3aURyaRGsnJwY73bm+Fo72J3/ecYPbmY0ZHEhGp1o6eyuGPvScAuOsKOhv3OjOlfpmm1IuIVIjXf97DtqMZeLs68vGwtjg72BsdqVorcxF/6tQpioouPM2ssLCQU6dOlUsokZoqJtiLf1/bGICx83ZxPD3X4EQiItXXzA1HsFihW0N/GgR6XPZxzk6pX7o3RbOkRETK2U9bj/HVmVlTk25vTV3fc2d2i23KXMTXq1ePjRs3XvD5jRs3Ehmp9f1ELuXhHg1oE+HD6fwinv1hOxaLvjCKiNgqv8jMrD8TAK54feFOUX64ONqRlJnH3qTT5RFPRESAuBOneX5O8WztJ65uWHLSVK5MmYv4W265hRdffJETJ06c81xSUhIvvfQSgwcPLtdwIjWRvZ2Jibe1wsXRjlX7T/LNma7KIiJSdgt3JnEyq4A6Xs70aVLnio7l4mhP1wYBgLrUi4iUl+z8Ih79ZjM5BWa6NvBnZJ/GRkeqMcpcxD/33HN4enrSqFEjHnvsMT744AM++OADHn30URo3boyHhwfPPfdcRWYVqTHqB3rwXP8YAN74ZS+HTmYbnEhEpHqZvq74BOjQjpE42Nu0Yu559Y4OBLRevIhIebBarTw3Zwf7k7Oo4+XMh3e2wd7OtiVA5cLK3MbV09OT1atX8/zzzzNr1qyS+999fHy46667eP311/H01Dp/ImV1T5d6LNp1grUHU3n6+23MeriLfrmJiJTBnsRM/jx0Cgc7E3d0DC+XYxY3t9vFpsOnyMgtxNvVsVyOKyJSG01fd5j5245jb2fi46FtCfBwNjpSjWLTqWtvb28mT57MyZMnOXHiBElJSaSmpjJ58mR8fX0rKqNIjWRnZ+Kd21ri4ezAxsOn+GzlQaMjiYhUC2evwvdrFkwdL5dyOWa4nxsNgzwwW6ysitNScyIil2trQjrjFuwG4PnrYmhfz8/gRDXPZc0/M5lMBAYGEhQUhMl0+VcOJ0yYQIcOHfD09CQoKIhBgwYRGxt73n2tVivXXXcdJpOJH3/88aLHtVqtvPzyy4SEhODq6kqfPn2Ii4u77JwiFaWurxsv39AUgIm/7WPfCTVUEhG5mNN5hczdUrxE55UsK3c+Z6fU6754EZHLcyq7gBHfbKbQbKV/s2AeuCrK6Eg10pXfRHYFli9fzogRI1i3bh2LFy+msLCQvn37kp197v3BkyZNKvMJg7fffpsPP/yQqVOnsn79etzd3enXrx95eXnl/RZErtht7etydUwQBWYLo77bSqHZYnQkEZEq68ctx8gpMNMwyIPO9cv36k7vkvXiU7RyiIiIjSwWK//+bivH0nOp5+/G27e1vKILvnJhhhbxCxcuZPjw4TRr1oxWrVrxxRdfcOTIETZt2lRqv61btzJx4kT+97//XfKYVquVSZMm8dJLLzFw4EBatmzJV199xfHjxy95BV/ECCaTiTdvaYG3qyM7j2Xy8dL9RkcSEamSrFYrX5+ZSn9358hy/3LYvp4f7k72nMzKZ9fxzHI9tohITffx0v0si03B2cGOycPa4eWi3iIVxdAi/p8yMjIA8PP768x6Tk4OQ4cO5eOPPyY4OPiSx4iPjycpKYk+ffqUbPP29qZTp06sXbv2vD+Tn59PZmZmqYdIZQrycuG1Qc0B+OiP/ew4mmFwIhGRqmdDfBr7TmTh6mjPzW3Dyv34Tg52XNVIS82JiNhqVdxJ3vt9HwDjBzWnaaiXwYlqtisq4stzerrFYmHkyJF069aN5s2bl2z/97//TdeuXRk4cGCZjpOUlARAnTql14ytU6dOyXP/NGHCBLy9vUse4eHl0+lWxBY3tQrl+pYhFFmsjPpuK3mFZqMjiYhUKWevwg9qE1ZhV3h6nZlSryJeRKRsEjNyefLbLVitcHv7cG5rr1qqotlcxFssFl577TXCwsLw8PDg4MHijtr/+c9/+Pzzzy87yIgRI9i5cyfffvttybZ58+bxxx9/MGnSpMs+blk8//zzZGRklDwSEhIq9PVELuS1gc0J8HAmLjmL9xfvMzqOiEiVkXw6j4U7i0/G39U5osJep9eZ5nZbE9JJyy6osNcREakJCs0WHp+xhbTsApqGeDF2YDOjI9UKNhfx48eP54svvuDtt9/GycmpZHvz5s357LPPLivE448/zoIFC1i6dCl169Yt2f7HH39w4MABfHx8cHBwwMGheFn7wYMH06tXr/Me6+yU+xMnTpTafuLEiQtOx3d2dsbLy6vUQ8QIfu5OTLilBQCfrDzIxkNpBicSEakaZm1IoMhipV2kL81CvSvsdUK8XYkJ9sRqhZVxKRX2OiIiNcGbv+5l0+FTeLo4MOWutrg42hsdqVawuYj/6quv+OSTTxg2bBj29n/9JbVq1Yq9e/fadCyr1crjjz/O3Llz+eOPP4iKKr0EwXPPPcf27dvZunVryQPg/fffZ9q0aec9ZlRUFMHBwSxZsqRkW2ZmJuvXr6dLly425RMxwrVN63Bru7pYrTD6+21k5xcZHUlExFBFZgszNhwBihvaVbTeMWem1O/VlHoRkQv5dUcin6+KB2Diba2I9Hc3OFHtYXMRf+zYMRo2bHjOdovFQmFhoU3HGjFiBNOnT2fGjBl4enqSlJREUlISubm5QPFV9ebNm5d6AERERJQq+GNiYpg7dy5Q3Ol75MiRjB8/nnnz5rFjxw7uueceQkNDGTRokK1vV8QQL9/YlFBvFw6n5vDmr7adHBMRqWmW7E0mMSMPP3cnrmtx6Sa3V+rsUnPL96Vg1lJzIiLnOJiSxTM/bAfg4R716dus4n83y19sLuKbNm3KypUrz9n+ww8/0KZNG5uONWXKFDIyMujVqxchISElj1mzZtl0nNjY2JLO9gDPPvssTzzxBA899BAdOnQgKyuLhQsX4uLiYtNxRYzi5eLI27e2AoobOWlKp4jUZtPPNLS7vUM4zg4VP1WzbYQPni4OnMopZNvR9Ap/PRGR6iS3wMxj32wmK7+IjvX8eKZftNGRah0HW3/g5Zdf5t577+XYsWNYLBbmzJlDbGwsX331FQsWLLDpWFar7We3z/cz/9xmMpkYN24c48aNs/n4IlXFVY0CuKdLJF+tPcyzP2xn0b97aL1NEal1DqZksTLuJCYTDO1YcQ3t/s7B3o4ejQP5eXsiy/Ym0zbCt1JeV0SkqrNarbz04072Jp0mwMOZj4a2wcG+Sq1aXivYPOIDBw5k/vz5/P7777i7u/Pyyy+zZ88e5s+fz7XXXlsRGUVqreeui6GevxuJGXmMnbfb6DgiIpXum/XF98JfHR1EuJ9bpb1u75Kl5jQTSkTkrFl/JjB781HsTPB/d7YhyEsznY1g85V4gO7du7N48eLyziIi/+Dm5MDEIa24bepaZm8+Sr9mdXTPkYjUGrkFZr7fWLzs611dKr6h3d/1bFy81NyOYxkkn84jyFNfVEWkdtt5LIOX5+0C4Ol+0XRp4G9wotrrsuY+pKen89lnn/HCCy+Qlla8BNbmzZs5duxYuYYTEWgX6ceDPeoD8MLcHVq3WERqjfnbjpOZV0S4nys9GwVW6msHejrTIqx4KbsV+05W6muLiFQ1GbmFPPbNZgqKLFwTE8QjPRoYHalWs7mI3759O40bN+att97inXfeIT09HYA5c+bw/PPPl3c+EQH+3acxjet4cDKrgJd+3HFZ/SRERKoTq9XKV+sOAXBXp0js7EyVnqF3dPGJg6WxWmpORGovq9XK6O+2cSQth7q+rrw3pLUhv5PlLzYX8aNGjWL48OHExcWV6vY+YMAAVqxYUa7hRKSYi6M97w1pjYOdiV92JDFv23GjI4mIVKhtRzPYeSwTJwc7bmsfbkiGXmfWi1+xL4Uis8WQDCIiRvvvioP8vucETvZ2TBnWDm83NVo2ms1F/J9//snDDz98zvawsDCSkpLKJZSInKt5mDdPXN0IgJd/2sWJzDyDE4mIVJyv1xYvK3dDyxD83J0MydCqrg++bo6cziti85F0QzKIiBhp3cFU3lkUC8ArNzWlRV1vgxMJXEYR7+zsTGZm5jnb9+3bR2Bg5d6vJlLbPNa7AS3CvMnILeS52ds1rV5EaqRT2QXM31484+juzpXb0O7v7O1MJQ3uNKVeRGqb5Mw8npi5BbPFyi1twiptmU+5NJuL+Jtuuolx48ZRWFgIFK/JfuTIEcaMGcPgwYPLPaCI/MXR3o6JQ1rh5GDH0tgUvjvTtVlEpCb5flMCBUUWmod50Trcx9Asvc9MqV+6V0W8iNQeRWYLT8zcQsrpfBrX8WD8zc0xmXQffFVhcxE/ceJEsrKyCAoKIjc3l549e9KwYUM8PT15/fXXKyKjiPxN4zqePN23MQDj5u8mIS3H4EQiIuXHYrEyfV3x2vB3d440/Etjj0aBmEywN+k0iRm5hmYREaksExfvY318Gu5O9ky5qx1uTpe1MrlUEJuLeG9vbxYvXsyCBQv48MMPefzxx/nll19Yvnw57u7uFZFRRP7hgavq06GeL9kFZp75YRsWi6bVi0jNsCIuhSNpOXi6OHBTqzCj4+Dr7lQyG2BZbIqxYUREKsHi3SeYsuwAAG/d2pIGgR4GJ5J/sqmILywsxMHBgZ07d9KtWzcee+wxnn32Wfr06VNR+UTkPOztTLx7WytcHe1ZdzCNL9ceMjqSiEi5mL6uuKHdbe3CcXWyNzhNsd7RxVPql+m+eBGp4Y6k5jD6u60ADO9ajxtahhobSM7LpiLe0dGRiIgIzGZzReURkTKK9HfnheubAPDmr3s5kJJlcCIRkSuTkJbDkjP3ng/rXHUaKJ0t4lfFnaSgSEvNiUjNlFdo5rEZm8jMK6JNhA8vDGhidCS5AJun07/44ou88MILpKWlVUQeEbHBXZ0i6N4ogPwiC6O/26Z1jEWkWpu54QhWK1zVMKBKTd9sFupFgIcz2QVmNh7S9x8RqZnGzt/NzmOZ+Lk78fHQtjg52FwqSiWx+W/mo48+YsWKFYSGhhIdHU3btm1LPUSk8phMJt4a3BJPFwe2JqTz3xUHjY4kInJZ8ovMzPqzeMWNuwxcVu587OxM9IrWUnMiUnPN3nSUmRuOYDLBpNtbE+rjanQkuQib2wwOGjSoAmKIyOUK9XHl1RubMfr7bUz6fR9XxwTRJMTL6FgiIjZZuDOJ1OwCgr1c6NMkyOg45+gdHcQPm46yNDaFF683Oo2ISPnZm5TJiz/uAOCpaxrRo3GgwYnkUmwu4l955ZWKyCEiV+CWtmEs3JXE4t0nGPXdNn4a0U1ToESkWjnb0G5opwgc7Kve76+rGgVgb2dif3IWCWk5hPu5GR1JROSKnc4r5NHpm8krtNC9UQBPXN3I6EhSBlXvX0kRsZnJZOKNm1vg5+7EnsRM/u+POKMjiYiU2Z7ETP48dAoHOxN3dAg3Os55ebs60i7SF1CXehGpGaxWK2Nmbyf+ZDYh3i58cEcb7O1MRseSMrC5iPf19cXPz++ch7+/P2FhYfTs2ZNp06ZVRFYRuYhAT2fGD2oOwORlB9iakG5sIBGRMjp7Fb5fs2CCvFwMTnNhf90Xr/XiRaT6m7b6EL/sSMLR3sTHw9ri5+5kdCQpI5uL+Jdffhk7Ozuuv/56xo4dy9ixY7n++uuxs7NjxIgRNG7cmEcffZRPP/20IvKKyEUMaBHCwNahmC1WRn23lbxCLQcpIlXb6bxC5m45BlS9hnb/dHapuTUHTur3q4hUa5sOp/HGL3sAeHFAE9pG+BqcSGxh8z3xq1atYvz48TzyyCOltv/3v//lt99+Y/bs2bRs2ZIPP/yQBx98sNyCikjZjL2pGWsPpHIwJZt3FsXynxuaGh1JROSC5m45Rk6BmYZBHnSu72d0nIuKCfYk2MuFpMw81sen0VPNn0SkGkrNymfEN1sosli5vmUI93atZ3QksZHNV+IXLVpEnz59ztl+zTXXsGjRIgAGDBjAwYNa6krECD5uTrw1uCUA/1sdz7qDqQYnEhE5P6vVytdri6fS3905EpOpat+LaTKZ6B1zZkr9Xt0XLyLVj9li5alvt5KUmUf9QHfeGtyyyv/ulXPZXMT7+fkxf/78c7bPnz8fP7/iM+jZ2dl4enpeeToRuSy9Y4K4s2M4Vis8/f02svKLjI4kInKO9fFpxCVn4eZkz81tw4yOUya9zkypV3M7EamOPlgSx6r9J3F1tGfqXe3wcLZ5YrZUATb/rf3nP//h0UcfZenSpXTs2BGAP//8k19++YWpU6cCsHjxYnr27Fm+SUXEJi9e35SVcSc5eiqX13/ew4RbWhgdSUSklK/PNLQb1CYMLxdHg9OUTbeGATjamziUmkP8yWyiAtyNjiQiUibLYpNLVjB645bmNK6ji67Vlc1X4h988EGWL1+Ou7s7c+bMYc6cObi5ubF8+XIeeOABAEaPHs2sWbPKPayIlJ2HswPv3NoKgJkbjuiqkYhUKcmZeSzamQTAXZ2qdkO7v/NwdqBjVPHMQ02pF5Hq4lh6LiNnbcVqhWGdIri5TV2jI8kVuKz5E926daNbt27lnUVEylmXBv7c160e01YfYszs7fw2sifebtXjapeI1Gzf/plAkcVK+0hfmoZ6GR3HJr2jg1i9P5Wlscncf1WU0XFERC6qoMjCY99sJj2nkBZh3mp6XAPYfCUe4MCBA7z00ksMHTqU5OTis9C//voru3btKtdwInLlxvSPoX6gOycy83ll3k6j44iIUGS2MGP9EQDu7lJ9rsKfdXa9+PUH08gpUM8REanaXv95N9sS0vF2dWTysLa4ONobHUmukM1F/PLly2nRogXr169n9uzZZGVlAbBt2zZeeeWVcg8oIlfGxdGeibe1ws4EP249zq87Eo2OJCK13O97kknKzMPf3Yn+zYONjmOzBoEe1PV1pcBsYe0BrQAiIlXXvG3H+fLMKiDvDWlFuJ+bwYmkPNhcxD/33HOMHz+exYsX4+TkVLL96quvZt26deUaTkTKR5sIXx7t1QCAF3/cycmsfIMTiUhtNv1MQ7vbO4Tj7FD9rgiZTCZ6n+lSv1T9RkSkitqffJrnZm8H4LFeDbimSR2DE0l5sbmI37FjBzfffPM524OCgjh58mS5hBKR8vfkNY2ICfYkLbuAF+bswGq1Gh1JRGqhAylZrNp/EpMJhnaKMDrOZftrvfgU/T4VkSonO7+IR6ZvJqfATJf6/oy6trHRkaQc2VzE+/j4kJh47nTcLVu2EBZWPdZ4FamNnB3seW9IaxztTfy2+wRztxwzOpKI1ELfrCu+F/6amCDq+lbfaZ1d6gfg5GDHsfRc9idnGR1HRKSE1Wrlxbk72J+cRZCnMx/e2QYH+8tqhSZVlM1/m3fccQdjxowhKSkJk8mExWJh9erVPP3009xzzz0VkVFEyknTUC9G9ik+E/vKvF0kZuQanEhEapOcgiK+35QAwF2dq19Du79zdbKnS31/QFPqRaRqmb7+CD9uPY69nYmPhrYl0NPZ6EhSzmwu4t944w1iYmIIDw8nKyuLpk2b0qNHD7p27cpLL71UERlFpBw93KM+rcJ9OJ1XxLM/bNc0UBGpNPO3Hed0XhERfm70aBRodJwr1jv6ryn1IiJVwbaEdF6bvxuAMf2j6RjlZ3AiqQg2F/FOTk58+umnHDhwgAULFjB9+nT27t3L119/jb199WtOI1LbONjbMfG2Vjg72LEy7iQzNhwxOpKI1AJWq5WvznRIvqtzBHZ2JoMTXbleZ5rb/XkojdN5hQanEZHa7lR2AY99s5kCs4W+TevwYPf6RkeSCnLZN0dEREQwYMAAhgwZQqNGjcozk4hUsIZBHozpHwPA6z/v4XBqtsGJRKSm25qQzq7jmTg52HFbu3Cj45SLegHuRAW4U2Sxsnq/mvuKiHEsFiujvtvKsfRcIv3deOe2VphM1f9kqZyfQ1l2GjVqVJkP+N577112GBGpPMO71mPRriTWx6fxzPfbmflQZ+xrwJUxEamavj6zrNyNLUPxdXe6xN7VR6/oQOJPZrMsNoX+zUOMjiMitdTkZftZGpuCs4Mdk4e1xdvV0ehIUoHKVMRv2bKl1J83b95MUVER0dHRAOzbtw97e3vatWtX/glFpELY2Zl497ZW9J+0gg2H0pi2Op5/adqViFSAtOwCFmwvXtnm7i7Vu6HdP/WODmLa6kMsjU3GarXqypeIVLrV+0/y3uJ9ALw2sDnNQr0NTiQVrUxF/NKlS0v+/3vvvYenpydffvklvr6+AJw6dYr77ruP7t27V0xKEakQ4X5uvHRDU56fs4O3F8XSKzqQhkGeRscSkRrm+40JFBRZaBHmTau6NevLZccoP1wd7TmRmc+exNM0DfUyOpKI1CJJGXk89e0WLFa4rV1dhnSoGbcrycXZfE/8xIkTmTBhQkkBD+Dr68v48eOZOHFiuYYTkYp3R4dwekUHUlBkYdR32yg0W4yOJCI1iMViZfr64qn0d3eOrHFXql0c7enWUEvNiUjlKzRbeHzGZk5mFRAT7Mlrg5obHUkqic1FfGZmJikp5y6lkpKSwunTp8sllIhUHpPJxFuDW+Lt6sj2oxlMWXbA6EgiUoMsj0shIS0XLxcHbmwVanScCnG2S/0yFfG13qnsAuJPZmv5VqkUby/cy8bDp/B0dmDKXe1wcdRKYbWFzUX8zTffzH333cecOXM4evQoR48eZfbs2TzwwAPccsstFZFRRCpYHS8Xxg1sBsCHS+LYeSzD4EQiUlN8c6ah3W3tw3F1qplfMHudWS9+0+FTZORoqbnaKq/QzPUfrqT3u8vo9uYfjPlhOz9vT9RnQirEwp2JfLoyHoB3bmtJVIC7wYmkMpXpnvi/mzp1Kk8//TRDhw6lsLD4l5KDgwMPPPAA77zzTrkHFJHKcVOrUBbuTOLXnUmM/m4b857ohrNDzfzCLSKVIyEthyV7i69OD+sUYXCailPX143GdTzYdyKLFXEpNXbGgVzc/G3HOZ6RB8DxjDxmbUxg1sYE7EzQKtyHHo0C6RkdSKu6PloNRq5I/Mlsnvl+OwAPdo/Syhi1kM1FvJubG5MnT+add97hwIHiabcNGjTA3V1nf0SqM5PJxPhBzfnzUBqxJ07z/uI4nrsuxuhYIlKNzdxwBKsVrmoYQP1AD6PjVKhe0UHsO5HF0thkFfG11PQzs06evKYRbSN8WLHvJCviUtifnMWWI+lsOZLOB0vi8HZ15KqGAfRoHECPxoGEeLsanFyqi2PpuWyIT2XKsgOczi+iQz1fnu2v72q1kc1F/Fnu7u60bNmyPLOIiMH8PZx5/eYWPPz1Jj5ZcYBrmwbRLtLP6FgiUg3lF5mZ9WcCAHd1rlnLyp1Pr+hAPllxkBX7UrBYrNjpSmutsi0hnW1HM3Cyt+PeLpH4eziX9Eo4np7Lin0prIhLYVXcSTJyC/l5RyI/7yhedrFRkAc9GgfSo3EgnaL8dF+zAGC1WjmcmsP6+FTWx6ex/mAax9JzS54P8HDio6FtcbS3+e5oqQHKVMTfcsstfPHFF3h5lW3ZlGHDhvH+++8TFBR0ReFEpPL1axbMLW3DmLP5GKO/28YvT3XHzemyz/eJSC21cGcSqdkFBHu50KdJzf8+0D7SDw9nB05mFbDzeAYt6/oYHUkq0Vdri6/CX98yBH8P51LPhfq4ckfHCO7oGEGR2cK2oxklRf22hHTikrOIS87i81XxODvY0THKj55nivpGQR41bkUHOT+r1UpcctaZgj2VDfFpJJ/OL7WPvZ2J5mHedIry486OEdTxcjEorRitTN/Mf/rpp/N2pD8fq9XK/Pnzee2111TEi1RTr9zYjLUHUjmUmsPbC2N59aZmRkcSkWrm6zNFzdBOETjUgitFTg52XNUwgIW7kli6N0VFfC2Sll3A/O3HAbi7y8VnnTjY29Eu0pd2kb78+9rGpOcUsHp/aklRn5iRx8q4k6yMOwk/7yHE24XujYqn3V/VMAAfN6fKeEtSCcwWK3sSM1kfn8aG+FT+PHSKtOyCUvs42dvRKtybTlH+dIzyo12kL+7OurAiZSzirVYrjRs3rugsIlJFeLs68tbgltzzvw18seYQ1zatQ7eGAUbHEpFqYvfxTDYePoWDnYk7OoQbHafS9I4JLC7iY5N5qk8jo+NIJfluYwIFRRaah3nRJtzHpp/1cXPi+pYhXN8yBKvVyv7kLJbvS2H5vhQ2xKeRmJHHdxuP8t3Go9iZoGVdH3o0DqRn4wBa1fWpFSfIaopCs4UdxzLYcOZK+8ZDpzidX1RqHxfH4pM8Hev506m+H63DfXR7hZxXmYr4pUuX2nzgsLCwS+4zYcIE5syZw969e3F1daVr16689dZbREdHl+zz8MMP8/vvv3P8+HE8PDxK9omJuXATh+HDh/Pll1+W2tavXz8WLlxo8/sQqa16NA7krs4RTF93hH/P2srsR7sS7udmdCwRqQamry++Ct+veTBBtWi659l7oLcdTSc1K/+cadVS85gt1pKGdvd0rndFU99NJhON6njSqI4n/+pen7xCM+vj04qv0u9LIS45i60J6WxNSOfDJXF4uTjQrWFAyf30YT5qkFeV5BWa2ZqQzob4NDbEp7Hp8ClyC82l9vF0dqB9PV86nrnS3iLMGycHnZiRSytTEd+zZ88KefHly5czYsQIOnToQFFRES+88AJ9+/Zl9+7dJd3u27Vrx7Bhw4iIiCAtLY1XX32Vvn37Eh8fj739hc9M9e/fn2nTppX82dlZ/5CK2Or565qwIT6NfSeyuOd/G/j+kS4E6EupiFxEZl4hP245BsDdtaCh3d/V8XKhaYgXuxMzWRGXws1t6hodSSrYsthkjp7KxdvVsdxXJXBxtKdn40B6Ng4EihvkrYxLYcW+k6zaX9wg79czS8MCNAzyoEejQHo0DqBTlD+uTrqCW5my84vYfOTUmSvtaWxNSKfAbCm1j4+bIx3r+dGpvj+dovxoEuKl5QblspisVqvV6BBnpaSkEBQUxPLly+nRo8d599m+fTutWrVi//79NGjQ4Lz7DB8+nPT0dH788cfLypGZmYm3tzcZGRllbuYnUlMlZeQxeMoajqXn0jzMi5kPdsbTxdHoWCJSRX255hCvzNtFoyAPfvt3j1rXlOudRXv5eOkBbmoVyod3tjE6jlSw4dM2sCw2hX9dFcVLNzSttNc1W6xsO5pecpV+a0I6lr99o3dysKNTlN+Zoj6QxnXUIK+8ZeQWsvFQ8VX29fFp7DyWQZGldFkV6OlMpyg/OkX50THKn0ZBHlq5Qi6qrHVoleqMkJGRAYCf3/mXtMrOzmbatGlERUURHn7xe+yWLVtGUFAQvr6+XH311YwfPx5/f//z7pufn09+/l/dHzMzMy/zHYjUPMHeLnz9QEdum7qWnccyefCrjXxxX0fdoyUi57BarXx9Zmrx3V0ia2XR0Cs6iI+XHmBFXApmi1VX2Wqww6nZLN9X3Pi5spdRtLcz0TbCl7YRvozs05iMnEJWHzhZUtQf/1uDvNd/2UOwV+kGeb7uapBnq9SsfP48lMa6g8WF+56kTP55KTTMx7W4aK9fXLTX83erlb8HpeJVmSvxFouFm266ifT0dFatWlXqucmTJ/Pss8+SnZ1NdHQ0P//88wWvwgN8++23uLm5ERUVxYEDB3jhhRfw8PBg7dq1552C/+qrrzJ27NhztutKvMhfdh7L4I5P1pGVX0TfpnWYPKytGuqISClrD6Ry56frcHOyZ/0L19TKWTtFZgttX1tMZl4Rsx/tSrtIX6MjSQV5/efdfLoynp6NA/ny/o5GxylhtVo5kJLF8n3FRf26g6nkF/01rdt0pkFezzNFfetwNcg7n6SMPNbHp5Zcad+fnHXOPvUD3OkY5VfyqOur3kFyZcp6Jb7KFPGPPvoov/76K6tWraJu3dL3kGVkZJCcnExiYiLvvvsux44dY/Xq1bi4lK1ZzsGDB2nQoAG///4711xzzTnPn+9KfHh4uIp4kX9YeyCVe6dtoKDIwu3tw3lzcAudYRaREiO+2czPOxIZ1imC129uYXQcwzw+YzMLtifyxNUNGd03+tI/INVOboGZzhOWkJFbyOf3tueaJnWMjnRBeYVmNpxtkBeXwr4TpYtRTxcHujU42yAvoFYWolarlaOncv9ao/1QGodTc87ZL7qOJx3PXmmv51erGndK5ajQ6fRFRUUsW7aMAwcOMHToUDw9PTl+/DheXl54eHjYfLzHH3+cBQsWsGLFinMKeABvb2+8vb1p1KgRnTt3xtfXl7lz53LnnXeW6fj169cnICCA/fv3n7eId3Z2VuM7kTLo0sCf/7uzDY9O38SsjQn4ujvx3HUXXilCRGqPE5l5LNpV3GCrsqcWVzW9o4NYsD2RpbHJKuJrqPnbjpORW0hdX9eSVQmqKhdH+5IO9gCJGbms3HeS5XEprIorbpC3cFcSC8/891s/0J0ejYob6nWuXzMb5BXPVsg+0zk+lfVnlvP7OzsTNA31KlmjvWM9P92GIFWGzUX84cOH6d+/P0eOHCE/P59rr70WT09P3nrrLfLz85k6dWqZj2W1WnniiSeYO3cuy5YtIyoqqkw/Y7VaS105v5SjR4+SmppKSEhImX9GRM6vX7Ng3rylJc/O3s7U5QfwdXPk4Z4Xvr1FRGqHbzckUGSx0qGeL01Cavcstp7RxcXSzmOZJGfm6WpdDWO1Wvlq3SGg+IRVdet7EOLtypAO4QzpEI7ZYmX70XRW7DvJirgUthw5xcGUbA6mZPPFmkM42dvRIcqXnmdOAkTX8ayWM/AsFiuxJ06XXGXfEJ/GyayCUvs42JloWdebjlHFa7S3i/TFqxbeEiTVg81F/FNPPUX79u3Ztm1bqUZxN998Mw8++KBNxxoxYgQzZszgp59+wtPTk6Sk4jOA3t7euLq6cvDgQWbNmkXfvn0JDAzk6NGjvPnmm7i6ujJgwICS48TExDBhwgRuvvlmsrKyGDt2LIMHDyY4OJgDBw7w7LPP0rBhQ/r162fr2xWR8xjSIZxTOQVM+HUvE37di6+7E0PaX7zZpIjUXIVmCzM2FDe0q+1X4QECPJxpVdebbUczWLYvRb8fa5gtCensPJaJk4Ndtf+7tbcz0SbClzYRvjzVpxEZuYWs2V9c0K/Yd5Jj6bms3p/K6v2pvPHLXup4OdP9TMf77lW4QV6R2cKu45ln7mdP5c9Dp8jILSy1j7ODHW0ifIqL9ig/2kT44OZUpXp+i1yQzZ/UlStXsmbNGpycSv9HW69ePY4dO2bTsaZMmQJAr169Sm2fNm0aw4cPx8XFhZUrVzJp0iROnTpFnTp16NGjB2vWrCEo6K+pS7GxsSWd7e3t7dm+fTtffvkl6enphIaG0rdvX1577TVNmRcpRw/3bEBadgH/XXGQ52Zvx9vVkX7Ngo2OJSIGWLLnBCcy8wnwcKJ/c/0egOIu9duOZrAsNrnaF3pS2vS1xSesbmgZgl8VLWIvl7erI9e1COG6FiElU87P3ku/7mAqJzLz+WHTUX7YdLS4QV6Yd8lU/TYGNsjLLzKz42hG8T3t8WlsOpRGdoG51D5uTva0i/Slc/3i6fEt63rj7FDzbhWQ2sHmIt5isWA2m8/ZfvToUTw9PW061qV66oWGhvLLL7/YdBxXV1cWLVpkUw4RuTzPXRfDqZwCvtt4lCdmbuHL+zrSpcH5l3IUkZrr7LJyt3cI15fiM3rHBPHBkjhW7jtJodmCo7p/1wipWfks2J4IwD1d6hkbpoKZTCYaBnnQMMiD+6+KIq/QzJ+HzjTI23eS2BOn2XY0g21HM/i/P/bj6exA14b+xUV9o0DC/SquQV5ugZktR06dKdpT2XIkvVQHfgAvF4e/dY73p3mol7rwS41hcxHft29fJk2axCeffAIU/weelZXFK6+8UmqKu4jUfCaTiTdubkF6TiG/7T7Bg19t5NuHOtM8zNvoaCJSSfYnZ7F6fyp2JrizY4TRcaqMlmHe+Lk7kZZdwKbDp+hcXyc4a4JZGxMoMFtoWdeb1uE+RsepVC6O9nRvFEj3RoG8eH3xEmzF0+5TWLX/JOk5hSzadYJFu04Axcuvne1437m+/xVNVT+dV8jGw6fONKJLY/vRdArNpS8G+rs7FXeOP1O0Rwd7Vrt+BSJlZfMScwkJCfTv3x+r1UpcXBzt27cnLi6OgIAAVqxYUWqae3VV1tb+IlIsr9DMvf/bwPr4NPzdnfjh0a5EBbgbHUtEKsHY+buYtvoQfZrU4bN72xsdp0r596ytzN1yjEd6NtBKHjWA2WKlx9tLOZaeyzu3tuQ23SZRwmyxsuNYxpmr9ClsSUjHbPmrxHCyt6N9PV96NC7ueh8TfPEGeaeyC/jzTAO69fFp7DqegeUfFUuwl0vxUm9RfnSK8qdBoHu1bLon8ncVuk58UVERs2bNYtu2bWRlZdG2bVuGDRuGq6vrFYWuKlTEi9judF4hd366jp3HMgnzcWX2o10J9lZHZpGaLKegiE5vLOF0XhFf3t+RnmeWsJJiP209xlPfbiUm2JOFI3sYHUeu0OIzM8583BxZ9/w1uDjq1pELycgtZO2Bkyzfd5IV+1I4lp5b6vkgz7MN8gLo3iiQIoul5Cr7hvg09iadPueYEX5uZ66yFxft4X6uKtqlxqmQIr6wsJCYmBgWLFhAkyZNyiVoVaQiXuTynMzK57apa4k/mU3jOh5893AXfNxqVtMfEfnLtxuO8NycHUT6u7F0dC/sNHW1lFPZBbQbvxiLFdY8dzWhPjXjYkdtdffn61kZd5KHe9Tn+QE193twebNarRw8mV1ylX7dwTRyC8/tr/VPDYM8/jY93o8Qb/33IzVfWetQm25OcXR0JC8v74rDiUjNFODhzFf3d+TWqWvYdyKL+774k2/+1UlLtojUQFarla/OdOm+q1OkCvjz8HV3ok2EL5sOn2JZbApDO6lnQHV1MCWLlXEnMZlgWCcto2gLk8lEg0APGgR6cF+3KPKLzGw8dIrlZ4r6vUmnMZkgJtiLTmeK9g5RfgR4aFUpkQux+Zv1iBEjeOutt/jss89wcNAXcxEpLdzPja8f6MRtU9ey5Ug6j07fzKf3tMfJQR1hRWqSLQnp7E7MxNnBjlvb1TU6TpXVOzqQTYdPsTQ2WUV8NfbN+iMA9GocSIR/xXVdrw2cHezp1jCAbg0DeGFAE1Kz8nGwt8Pb1dHoaCLVhs1V+J9//smSJUv47bffaNGiBe7upZtXzZkzp9zCiUj11LiOJ/8b3oG7PlvP8n0pPP39Nibd3lpX6kRqkOlnlpW7sVUovjVsrezy1Cs6iHd/28fq/SfJLzJrCb5qKLfAzPcbE4Cav6ycEfx1xV3EZjYX8T4+PgwePLgisohIDdIu0pcpd7XlX19uZN624/i6OfLqTc3UhEakBkjLLihZK/uuzppafDHNQr0I8nQm+XQ+f8af4qpGAUZHEhv9tPUYmXlFRPi5qXmjiFQJNhfx06ZNq4gcIlID9YoOYuKQVoyctZUv1x7G192JkX0aGx1LRK7Q9xsTKCiy0CLMm1Z1vY2OU6WZTCZ6Ng7k+01HWRqbrCK+minV+6FzhGaUiUiVoJtURaRCDWwdxribmgEw6fc4vlp7yNhAInJFLBYr09cXFzV3d47U7Joy6B0TBMCy2GSDk4itNh85VdL7YYjWhReRKsLmK/FRUVEX/Qf74MGDVxRIRGqeu7vUIzW7gEm/x/HKvF14uzoysHWY0bFE5DIsj0shIS0XLxcHbmwVanScauGqRgHY25k4kJLNkdQcNUarRs5ehb+pVaiWTBWRKsPmIn7kyJGl/lxYWMiWLVtYuHAhzzzzTHnlEpEa5qlrGnEqu4Av1x5m9Hfb8HZ1pFd0kNGxRMRG088UNbe1D8fVSU3aysLLxZH2kb6sj09j2b5kNUerJlJO5/PLjuLeD/o7E5GqxOYi/qmnnjrv9o8//piNGzdecSARqZlMJhOv3NiMUzmFzNt2nEenb2b6vzrRLtLX6GgiUkYJaTn8cWZK+DAtl2aT3jFBrI9PY+leFfHVxXcbEyg0W2kV7kML9X4QkSqk3O6Jv+6665g9e3Z5HU5EaiA7OxPv3taKno0DyS00c/8Xf7LvxGmjY4lIGc3YcASrFbo3CqB+oIfRcaqV3mdmHq05kEpeodngNHIpRWYL35xZRvEercAgIlVMuRXxP/zwA35+fuV1OBGpoZwc7JhyV1vaRviQkVvI3Z+vJyEtx+hYInIJ+UVmZv1ZvFa2lpWzXeM6HoR6u5BfZGHtwVSj48glLNmbzPGMPPzcnbi+ZYjRcURESrF5On2bNm1KNbazWq0kJSWRkpLC5MmTyzWciNRMbk4O/G94B4b8dy37TmRx9+fr+eHRrgR4OBsdTUQu4NcdSaRlFxDi7cI1MepnYSuTyUSvmCBmrD/Csr3JJVfmpWr6+kzvhyHtw3FxVO8HEalabC7iBw4cWKqIt7OzIzAwkF69ehETE1Ou4USk5vJxc+Kr+zsxeMoaDqXmcO//NvDtQ53xdHE0OpqInMfXZ6YWD+0YgYO9Vqi9HL0aBzJj/RGWxqbwqtWq5fmqqAMpWazafxKTSb0fRKRqsrmIf/XVVysghojURsHeLkz/VydunbKGXccz+deXG/ny/o666iFSxew6nsGmw6dwsDNxe0etlX25ujUMwNHexJG0HOJPZquvQBV19ir8NTFBhPtpOUARqXpsPpVub29PcnLyOdtTU1Oxt9cXbxGxTVSAO1/e3xFPZwfWx6fx5MwtFJktRscSkb+Zvu4IAP2bBxPk6WJwmurL3dmBTlH+ACyNTTE4jZxPdn4RszcdBeBurSIgIlWUzUW81Wo97/b8/HycnJyuOJCI1D7Nw7z59N72ODnY8dvuEzw/Z8cFf9eISOXKzCvkxy3HALhbDe2uWK/oQACWxZ57QUSM99PW45zOL6KevxvdGwYYHUdE5LzKPJ3+ww8/BIobs3z22Wd4ePw1BcxsNrNixQrdEy8il61zfX8+urMNj0zfxPebjuLn7sTzA5oYHUuk1puz6Si5hWYa1/GgY5RWoblSvWOCGP/zHtYfTCM7vwh3Z5vvbJQKYrVa+WrtIaB4BQY7O/UsEJGqqcz/crz//vtA8S+4qVOnlpo67+TkRL169Zg6dWr5JxSRWqNvs2DeHNySZ3/Yzn9XHMTX3YlHejYwOpZIrWW1Wksa2t3dOVKN2MpB/QB3IvzcOJKWw5oDqVzbtI7RkeSMjYdPsTfpNC6OdtzWTr0fRKTqKnMRHx8fD0Dv3r2ZM2cOvr6+FRZKRGqvIe3DSc8p4I1f9vLmr3vxc3NiSAd9mRIxwtqDqRxIycbdyZ5BbcKMjlMjmEwmekcH8uXawyyNTVYRX4V8daah3cBWYXi7aaUUEam6bL4nfunSpSrgRaRCPdSjAQ/3rA/Ac3O2s2hXksGJRGqn6Weuwt/cNkzLP5ajXjHFa8Qv25us/h9VRPLpPBbuTATg7i7q/SAiVdtl3Yh19OhR5s2bx5EjRygoKCj13HvvvVcuwUSkdnuufwzp2YXM2pjAEzO38OV9HenSwN/oWCK1xonMPBbtOgEU3x8s5adLfX+cHew4npHHvhNZRAd7Gh2p1vt2QwKFZittI3xoHuZtdBwRkYuyuYhfsmQJN910E/Xr12fv3r00b96cQ4cOYbVaadu2bUVkFJFayGQy8frNzUnPLWDRrhM8+NVGvn2os75ciVSSmRuOYLZY6VjPj5hgL6Pj1CgujvZ0aeDPstgUlsUmq4g3WJHZwoz1xcso3qNl5USkGrB5Ov3zzz/P008/zY4dO3BxcWH27NkkJCTQs2dPbrvttorIKCK1lIO9HR/c0YYu9f3Jyi/i3v9t4GBKltGxRGq8QrOFmRuKi5q7NLW4QvSOLp5Sv1RLzRnu9z0nSMrMw9/dietaBBsdR0Tkkmwu4vfs2cM999wDgIODA7m5uXh4eDBu3Djeeuutcg8oIrWbi6M9n9zTjuZhXqRmF3D35xtIysgzOpZIjfb77hOcyMwnwMOJ/s1U1FSEs0X8xkOnyMwrNDhN7Xa2od3tHcJxdrC/xN4iIsazuYh3d3cvuQ8+JCSEAwcOlDx38uTJ8ksmInKGp4sjX9zXkfoB7hxLz+Xuz9eTnlNw6R8Ukctydlm5OzpE4ORg81cFKYMIfzfqB7pTZLGyOk7fn4yyP/k0aw6kYmeCYer9ICLVhM3/Mnfu3JlVq1YBMGDAAEaPHs3rr7/O/fffT+fOncs9oIgIQICHM1890JFgLxfikrO474s/ySkoMjqWSI3z96Lmzk4RRsep0TSl3nhfn7kKf02TOoT5uBqcRkSkbGwu4t977z06deoEwNixY7nmmmuYNWsW9erV4/PPPy/3gCIiZ9X1deOrBzri7erIliPpPDJ9MwVFFqNjidQo09cV3wuvoqbi/VXEp2ipOQNk5Rcxe/MxAO5R7wcRqUZsKuLNZjNHjx4lIqL4zLy7uztTp05l+/btzJ49m8hI/QIUkYrVuI4n0+7rgKujPSv2pTD6+21YLPryK1IecgqKmL35KKBl5SpDhyhf3JzsSTmdz67jmUbHqXXmbjlGVn4R9QPc6dYgwOg4IiJlZlMRb29vT9++fTl16lRF5RERuaS2Eb5MvbsdjvYm5m87zqvzd+kqlkg5mLf1OKfzioj0d6N7QxU1Fc3ZwZ6uZ4rHZZpSX6msVitfrz0EFJ+wsrMzGRtIRMQGNk+nb968OQcPHqyILCIiZdazcSDvDWmNyVTcWXjS73FGRxKp1qxWa0mX7rs6qaipLL1jAgFYFpticJLaZUN8GvtOZOHqaM/gdnWNjiMiYhObi/jx48fz9NNPs2DBAhITE8nMzCz1EBGpLDe2CmXcwOYAfLAkji9WxxucSKT62pKQzu7ETJwd7LhVRU2l6XXmvvjNR05p1Y1K9NWZFRgGtQnF29XR4DQiIrZxsPUHBgwYAMBNN92EyfTXWXqr1YrJZMJsNpdfOhGRS7i7cyRpWQW8//s+Xp2/G193Jwa2DjM6lki1M/3MVfgbW4Xi6+5kcJraI8zHleg6nsSeOM2KuJPc1CrU6Eg1XnJmHot2JgFwd+d6xoYREbkMNhfxS5curYgcIiKX7clrGnIqp4Av1hxi9Hfb8HJ1LOn6LCKXlpZdwILtiUDxiTGpXL1iAok9cZple5NVxFeCGRuOUGSx0j7Sl6ahXkbHERGxmc1FfM+ePSsih4jIZTOZTLx8Q1NO5RTw09bjPDp9E9/8qxPtIv2MjiZSLXy3MYECs4WWdb1pFe5jdJxap3d0EP9dfpBl+1KwWKzqR1CBCs0WZqwvXkbxbi0rJyLVlM33xAOsXLmSu+66i65du3LsWPH6ml9//TWrVq0q13AiImVlZ2finVtb0Ss6kLxCC/dN+5PYpNNGxxKp8swWK9+sP9PQTlfhDdEu0hdPZwfSsgvYfizD6Dg12m+7TpB8Op8AD2euax5idBwRkcticxE/e/Zs+vXrh6urK5s3byY/Px+AjIwM3njjjXIPKCJSVk4Odkwe1pa2ET5k5hVx9+frSUjLMTqWSJW2Yl8KCWm5eLs6cmNLTeU2gqO9Hd0bFy81t3SvlpqrSF+dWVbuzo7hODlc1rUsERHDXVZ3+qlTp/Lpp5/i6PhXN89u3bqxefPmcg0nImIrNycH/je8A9F1PEk+nc/dn68n5XS+0bFEqqyvz3Tpvq1dXVyd7A1OU3v1alzcx0PrxVecfSdOsz4+DTsT3Nkxwug4IiKXzeZ74mNjY+nRo8c52729vUlPTy+PTFIGZrOZlStXkpiYSEhICN27d8feXl++LkZjZrvqOmY+bk589UBHBk9Zw6HUHIZP28DMhzrj5VLxywhV1zEzksbMNuU5XglpOSw9UzQOq8FT6avDZ6xndPF68duPZXAyq3i6t5Gqw5jZ6uszKzBc27QOoT6u5X78mjhmFU1jZjuNme1q5JhZbRQVFWVdvHix1Wq1Wj08PKwHDhywWq1W65dffmlt0qSJrYerkjIyMqyANSMjw+go5zV79mxr3bp1rUDJo27dutbZs2cbHa3K0pjZriaMWXxKlrXda79ZI8cssN42dY01t6CoQl+vJoxZZdOY2aa8x2vCL3uskWMWWO/6bF05J606qtNnbMAHK6yRYxZYZ29KMDRHdRqzssrMLbA2/c+v1sgxC6yr4lLK/fg1ccwqmsbMdhoz21W3MStrHWpzEf/GG29YmzZtal23bp3V09PTunLlSuv06dOtgYGB1g8//PCyA1clVbmInz17ttVkMpX6IAJWk8lkNZlMVfYDaSSNme1q0pjtOJpubf7yQmvkmAXWB77401pYZK6Q16lJY1ZZNGa2Ke/xyi0osrYZV3ySa9HOxApKbazq9hl7Z+Fea+SYBdbHZ2w2LEN1G7Oy+nJNvDVyzALr1e8utVoslnI9dk0ds4qkMbOdxsx21XHMylqHmqxWq7Xs1+3BarXyxhtvMGHCBHJyihtGOTs78/TTT/Paa6/ZcqgqKzMzE29vbzIyMvDyqjrrh5rNZurVq8fRo0fP+7zJZKJu3brEx8dX/yki5URjZruaOGbrDqZyz/82UFBk4dZ2dXnn1paYTOW3hFNNHLOKpjGzTUWM19wtR/n3rG2Eeruw4tneONjXrCZf1fEztulwGoOnrMXb1ZFNL/Wp9L+T6jhmZWG1Wrn2/RXsT87i1RubMrxbVLkdu6aOWUXSmNlOY2a76jpmZa1Dbf7XwWQy8eKLL5KWlsbOnTtZt24dKSkpl1XAT5gwgQ4dOuDp6UlQUBCDBg0iNja21D4PP/wwDRo0wNXVlcDAQAYOHMjevXsvelyr1crLL79MSEgIrq6u9OnTh7i4OJvzVTUrV6684AcRit93QkICK1eurMRUVZvGzHY1ccw61/fn46Ftsbcz8cOmo0z49eK/Q2xVE8esomnMbFMR43X2/uChnSJqXAEP1fMz1jrcFx83RzJyC9makF7pr18dx6ws1h5MZX9yFm5O9tzSrm65HrumjllF0pjZTmNmu5o+Zpf9r7aTkxOenp6EhITg4eFxWcdYvnw5I0aMYN26dSxevJjCwkL69u1LdnZ2yT7t2rVj2rRp7Nmzh0WLFmG1Wunbty9ms/mCx3377bf58MMPmTp1KuvXr8fd3Z1+/fqRl5d3WTmrisTExHLdrzbQmNmupo7ZtU3r8OYtLQD4ZMVBpi4/UG7HrqljVpE0ZrYp7/HaeSyDzUfScbQ3MaRD+JVEq7Kq42fM3s5Ej0bFDe6WGtClvjqOWVmcPWF1c5uwcm9wWlPHrCJpzGynMbNdTR8zm4v4oqIi/vOf/+Dt7U29evWoV68e3t7evPTSSxQWFtp0rIULFzJ8+HCaNWtGq1at+OKLLzhy5AibNm0q2eehhx6iR48e1KtXj7Zt2zJ+/HgSEhI4dOjQeY9ptVqZNGkSL730EgMHDqRly5Z89dVXHD9+nB9//NHWt1ulhISElOt+tYHGzHY1ecxuax/OiwOaAPDmr3uZ9eeRcjluTR6ziqIxs015j9c364uLmv7NQwjydLnsXFVZdf2M9Y45U8TvTan0166uY3YxSRl5/Lb7BAB3dyn/FRhq4phVNI2Z7TRmtqvpY2ZzEf/EE0/wySef8Pbbb7Nlyxa2bNnC22+/zeeff86TTz55RWEyMjIA8PPzO+/z2dnZTJs2jaioKMLDz3/lID4+nqSkJPr06VOyzdvbm06dOrF27drz/kx+fj6ZmZmlHlVR9+7dqVu37gXv5TWZTISHh9O9e/dKTlZ1acxsV9PH7MEe9Xm0VwMAnp+zg4U7k674mDV9zCqCxsw25TleGbmF/LjlOAB31+Bl5arrZ6xHo0BMJtidmMmJzMqdQVhdx+xiZmw4gtlipWM9P2KCy7/PUU0cs4qmMbOdxsx2NX3MbC7iZ8yYwRdffMHDDz9My5YtadmyJQ8//DCff/45M2bMuOwgFouFkSNH0q1bN5o3b17qucmTJ+Ph4YGHhwe//vorixcvxsnJ6bzHSUoq/kJep06dUtvr1KlT8tw/TZgwAW9v75LHhU4QGM3e3p4PPvgA4JwP5Nk/T5o0qUo1ZzCaxsx2tWHMnu0XzR0dwrFY4cmZW1hz4OQVHa82jFl505jZpjzHa87mo+QWmomu40mHer7lH7aKqK6fMX8PZ1rW9QFgeWzlXo2vrmN2IQVFFmZuKJ5xVRFX4aHmjVll0JjZTmNmuxo/Zra2vQ8MDLTu3r37nO27d++2BgQE2Hq4Eo888og1MjLSmpBw7tqo6enp1n379lmXL19uvfHGG61t27a15ubmnvc4q1evtgLW48ePl9p+2223WYcMGXLen8nLy7NmZGSUPBISEqrsEnNW6/nXOwwPD6+SyyRUFRoz29X0MSssMlsf/mqjNXLMAmvT//xq3Z6QfsXHrOljVhE0Zra50vGyWCzW3u8utUaOWWD9au2hCk5bNVTHz9j7i2OtkWMWWB/5eqMhr18dx+x85m09Zo0cs8Dafvxia35hxSwvelZNGbPKpDGzncbMdtVtzCpsiblx48axd+9epk2bhrOzM1A8Hf2BBx6gUaNGvPLKK7adRQAef/xxfvrpJ1asWEFU1MWX/SgoKMDX15fPPvuMO++885znDx48SIMGDdiyZQutW7cu2d6zZ09at25dckbmYqrqEnN/ZzabWblyJYmJiYSEhNC9e/fqeyapkmjMbFfTxyyv0Mx90/5k7cFU/Nyd+P6RLjQIvLxGnWfV9DGrCBoz21zJeK3Zf5Khn63H3cme9S/2wcPZoYLTVg3V7TO2LSGdgR+vxsPZgS0vX4ujAasHVLcxO58hU9ey4VAaT17TiFHXNq7w16sJY1bZNGa205jZrjqNWVnrUJuL+JtvvpklS5bg7OxMq1atANi2bRsFBQVcc801pfadM2fORY9ltVp54oknmDt3LsuWLaNRo0aXfP38/Hx8fX2ZPHkyw4cPP+8xQ0NDefrppxk9ejRQPBhBQUF88cUX3HHHHZd8jepQxItI+TidV8jQT9ez41gGYT6u/PBoF0K8XY2OJVIhHp2+iV93JnF350heG9T80j8ghrBYrHR4/XdSswuY+WBnujTwNzpStbM3KZP+k1Zib2di9ZirCfaumQ0cRaRmKWsdavMpeB8fHwYPHlxq2+XeQz5ixAhmzJjBTz/9hKenZ8k9697e3ri6unLw4EFmzZpF3759CQwM5OjRo7z55pu4uroyYMCAkuPExMQwYcIEbr75ZkwmEyNHjmT8+PE0atSIqKgo/vOf/xAaGsqgQYMuK6eI1FyeLo58cV8Hbpu6loMns7nn8w1893AXfN3P33dDpLr6e5fuu2pwQ7uawM7ORM/oQOZsPsay2GQV8ZfhqzPLyvVrVkcFvIjUODYX8dOmTSu3F58yZQoAvXr1Ouc1hg8fjouLCytXrmTSpEmcOnWKOnXq0KNHD9asWUNQUFDJ/rGxsSWd7QGeffZZsrOzeeihh0hPT+eqq65i4cKFuLjol7iInMvfw5mvHujIrVPWEpecxX1f/Mk3/+qEey2Zamw0s8XKhvg0kk/nEeTpQscoP+ztzt9NVi7fzLNduqP8iA72NDqOXELv6CDmbD7G0thknj+zNKaUTWZeIT9uOQbohJWI1Ew2T6evDTSdXqRYbSuu4k6c5rb/riU9p5DujQL4/N4OODlU/r2otcnCnYmMnb+bxIy/ltIK8XbhlRub0r959Vy7tSoqNFvo9uYfJJ/O58M723BTq1CjI8klZOQU0ua137BYYdWY3tT1dTM6UrXxxep4Xp2/m0ZBHvz27x4XXGJKRKSqKWsdavO309TUVEaMGEHTpk0JCAjAz8+v1ENEaoaFOxO56q0/uPPTdTz17Vbu/HQdV731Bwt3JhodrcI0quPJtOEdcHOyZ2XcSUZ9txWzRec5K8rCnYk8On1zqQIeiqd9Pzp9c43+rFW233efIPl0PgEeTvRvFmx0HCkDbzdH2kYULwG4rJKXmqvOrFYrX68rnkp/d5dIFfAiUiPZPFf07rvvZv/+/TzwwAPUqVNHvxxFaqCzxdU/y9ezxdWUu9rW2KukbSJ8mXpXOx748k8WbE/Ex82R1wY21++6cma2WBk7f/c5nzEoXv/FBIydv5trmwbX6NkfleVsUXNHhwjNLqlGescEsfHwKZbFJmtaeBmtOZDKgZRs3J3sublNmNFxREQqhM1F/MqVK1m1alVJZ3oRqVlUXEGPxoG8f3trnpi5henrjuDn7lwpyxPVJhvi0865Av93ViAxI48N8Wlq6nWF9iefZs2BVOxMcGenCKPjiA16RQfyzqJYVu9PJb/IjLND1VwSqSr5au0hAG5pWxdPF0djw4iIVBCbT8fHxMSQm5tbEVlEpAqwpbiqyW5oGcq4gcVLcH24JI5pq+MNTlSzJJ++8GfscvaTC5u+7ggA1zSpQ5iPlk+sTpqGeBHk6UxuobnG/84tD8fTc1l8ZgWGu7to5oKI1Fw2F/GTJ0/mxRdfZPny5aSmppKZmVnqISLVm4qrv9zdObLkCvzY+btLuh3LlQvyLNtqIWXdT84vp6CI2ZuOAsWfZ6leTCYTvaOLV+NZulf3xV/KjPVHsFihc30/GtfRCgwiUnPZXMT7+PiQmZnJ1VdfTVBQEL6+vvj6+uLj44Ovr29FZBSRSqTiqrQnrm7I8K71AHj6+20sjU02NlAN0THKjxBvFy50Q4aJ4i71HaPUMPVK/LT1OKfzi6jn78ZVDQOMjiOXoXdMIADL9LvnogqKLHz7Z/Gsk7s71zM2jIhIBbP5nvhhw4bh6OjIjBkz1NhOpAY6W1wlZeSd9754ExBci4ork8nEyzc0JT2ngB+3HufR6Zv45l+daBdZO95/RbG3M/HKjU15dPpmTFDqs3b2X5VXbmxaY/suVAar1crXa4sb2t3VORI7jWW11K1hAA52Jg6ezObQyWzqBbgbHalK+nVnIiezCqjj5UzfZnWMjiMiUqFsLuJ37tzJli1biI6Orog8Uka1bf1uqTwqrs5lZ2findtakZ5byLLYFO6b9iffPdKFmOALr98pl9a/eQhT7mp7zjrxwVonvlxsPpLO7sRMnB3suLVdXaPjyGXydHGkQz0/1h5MZVlsMsMDooyOVCWdPWF1Z8cIHO21AoOI1Gw2F/Ht27cnISFBRbyBFu5MPOdLb4i+9Eo5UnF1Lkd7O6YMa8fdn69n4+FT3PP5BmY/2pVwPzejo1Vr/ZuHcG3TYJ2UrADTzywrd1OrUHzcnAxOI1eiV3Qgaw+msjQ2heHdVMT/0+7jmWw8fAoHOxNDO2oFBhGp+Wwu4p944gmeeuopnnnmGVq0aIGjY+nlO1q2bFlu4eRctXn9bqlcKq7O5epkz+f3duD2T9ayN+k0d32+nh8e6Uqgp7PR0ao1ezuTlpErZ6lZ+fy8PRFQl+6aoHdMEBN+3cvag6nkFphxddJSc3/39bpDAPRrHkyQV+3o1yIitZvNRfztt98OwP3331+yzWQyYbVaMZlMmM3m8ksnpWj9bqlsKq7O5e3myJf3d+TWqWs4nJrDPf/bwKyHO+Ol9YilCvlu41EKzBZa1fWmZV0fo+PIFWoU5EGYjyvH0nNZdzCV3jFBRkeqMjJyC/lxy3EA7tEKDCJSS9h801B8fPw5j4MHD5b8r1Qcrd8tUjXU8XLh6/s7EeDhzJ7ETP715UbyCnUCU6oGs8XKN+v/amgn1Z/JZKJXdHGXeq2QUdoPm46SW2gmuo5nrWm4KiJicxEfGRl50YdUHK3fLVJ11Atw58v7O+Dp7MCG+DQen7GFIrPF6FgiLN+XzNFTuXi7OnJjq1Cj40g5Obte/B97k7Fazzcnr/axWKwlvR/u6hKpFZNEpNa4rPadX3/9Nd26dSM0NJTDh4t/eU6aNImffvqpXMNJaVq/W6RqaRbqzWf3tsfZwY7f95xgzOwdWCz6ci3GOtule0j7urg46t7pmqJrQ3+c7O04eiqXAynZRsepElYfOEn8yWw8nB24uU2Y0XFEKoXZYmXtgVR+2nqMtQdSMet7R61kcxE/ZcoURo0axYABA0hPTy+5B97Hx4dJkyaVdz75m7Prd1/oPLOJ4i71mk4mUnk61ffno6FtsbczMXvzUd74ZY+ukolhjqTmsGxfCgDDOml2XE3i5uRAp/rF/74v05R6AL46c8JqcNswPJxtbvMkUu0s3JnIVW/9wZ2fruOpb7dy56fruOqtP1i4M9HoaFLJbC7i/+///o9PP/2UF198EXv7v87wt2/fnh07dpRrOCnt7PrdwDmFfG1dv1ukKri2aR3eGly8Msdnq+KZsvyAwYmktvpmw2GsVujROJB6Ae5Gx5FydnZKve6Lh2PpuSzZcwLQCgxSO5xdoeqf/bHOrlClQr52uazGdm3atDlnu7OzM9nZmt5V0c6u3x3sXXrKfLC3i5aXEzHQre3q8tL1TQB4e2Esby/cS3Km+lNI5ckrNPPdnwkA3K2GdjXS2eZ2G+LTyMovMjiNsb5ZdxiLFbo28KdhkKfRcUQq1KVWqILiFao0tb72sHnuUVRUFFu3bj2nid3ChQtp0qRJuQWTC9P63SJV07+61yctu4DJyw4wedkBPllxkD5N6jC0UwRXNQzATv+NSgX6ZUcip3IKCfNx5WotQVYjRQW4E+nvxuHUHFbvP0m/ZsFGRzJEfpGZWWdOWN2jq/BSC9iyQpWWBq4dylzEjxs3jqeffppRo0YxYsQI8vLysFqtbNiwgZkzZzJhwgQ+++yziswqf6P1u0Wqpmf6RRMd7MlXaw+z6fApFu5KYuGuJCL83LijYzi3tQsn0NPZ6JhSA319pkv30E4ROqlbQ5lMJnpHB/HFmkMsi02ptUX8LzsSSc0uINjLhT5N6hgdR6TCaYUq+acyF/Fjx47lkUce4V//+heurq689NJL5OTkMHToUEJDQ/nggw+44447KjKriEiVZzKZGNg6jIGtw9iblMnM9UeYs+UYR9JyeHthLO/9to++zeowtGMkXRv46+q8lIudxzLYciQdR3sTQ9qHGx1HKlCv6MAzRXzxUnO1cVm1syswDO0UgYP9ZS20JFKtaIUq+acyF/F/77Y8bNgwhg0bRk5ODllZWQQFadqeiMg/xQR7MXZgc567rgnztx9n5oYjbDmSzi87kvhlRxKR/m7c0SGC29rXJcBDV+fl8p1dK/u65iGa6VHDda7vj4ujHYkZecSeOE1MsJfRkSrVzmMZbD5zwuqOjjphJbXD2RWqkjLyzntfvIni/lhaoar2sOn05T/P9rq5uamAFxG5BFcne4a0D2fuY9345cnu3N05Ek9nBw6n5vDWwr10mbCEETM2s2b/Sa0zLzbLyC3kx63HAHXprg1cHO3p2iAAgKV7UwxOU/nOXoXv3zxEVx2l1tAKVfJPNhXxjRs3xs/P76IPERG5sKahXrw2qDnrX7yGtwe3pFW4D4VmKz9vT2ToZ+u5euIy/rv8AKlZ+UZHlWpi9qaj5BVaiAn2pH2kr9FxpBL0PtOlvrYtNZeRU8hP24pPWKmhndQ2WqFK/s6m7vRjx47F29u7orKIiNQabk4ODOkQzpAO4ew6nsHMDUf4cctxDqXmMOHXvUz8bR/9mgdzZ8dwutT3r5X3vcqlWa1Wpq8vvjI5rHOkPie1RK/oIGAXmw6fIiO3EG9XR6MjVYrvNyXohJXUalqhSs6yqYi/4447NH1eRKScNQv1ZvygFjx/XRPmbyu+d37b0QzmbzvO/G3HqR/gzp0dIxjcri5+7k5Gx5UqZO2BVA6mZOPuZM/NbcKMjiOVJNzPjQaB7hxIyWZV3Emub1nzr8BZLNaSFRju6VJPJ6yk1tIKVQI2TKfXL0sRkYrl7uzAHR0j+Onxq1jwxFUM7RSBu5M9B09m8/ove+j8xhKenLmFdQdTSzUbldrrbFFzS9u6eDjbdF5eqrne0cUXVWrLlPoVcSkcTs3B09mBQW1CjY4jImKoMhfx+sIoIlJ5mod588bNLVj/Yh/euLkFzcO8KDBbmLftOHd8so4+7y3ns5UHOZVdYHRUMUhSRh6/7T4BwF2ddX9wbdM7priIX74vpVY0xDy7AsPgdnVxc9IJKxGp3cr8W9BisVRkDhEROQ8PZweGdopgaKcIdhzNYMaGw/y09Tj/3969x0Vd5v3jf81wBmcGkPMZRVFERfBEmmgHsUwx617TPJXVbult3rvlru1uaG1rdduvu31s6+69t+l6TM1s1VrMnwcyQxQQFVE8BI7IWWBmBEGYub5/jMw2AYY453k9H495POLzueb6vC+70HnPdbpS24Q/fHke7+8vweOJIZgzJhqjYvw4a8qJbDuhhFYnMDrWH/EhMmuHY9O0OuFwa0hHxvjBx90FtZpWFFeqkRjuuHsWXatvxsEL+hkHPIGBiOge18QTEZH1DI1QYHXEMLzx+GDsOV2BrblKnKtQ44vCCnxRWIG4oD76tfPJ4fD15tp5R6XVCXx3pQ7rj5UCAJ4dE2XliGxbVlElVu0tRqWqxXAtVOGJzGkJdr2bs4erC8bFBeDr4mocvlDj0En8llwlhADGxwWgf2Afa4dDRGR1EsF58p2o1WooFAqoVCrI5XJrh0NE1CUhBM6Uq7A1V4k9pytwq00LAPBwlWLq0FDMGROFlGiOzjuSHSeV+OO/LqCxuc1wLUTugZXTh9h1QmouWUWVeHlzAX78QafjN8Lej2XadkKJFZ+fRXKULz5/ZZy1wzGLljYtUlcfRENzG/42LwXpQ0KsHRIRkdn0NA9lEt8FJvFEZG80LW34olA/On++Um24PjBYPzo/c0QEFN7OcQyVoxBC4EptE/LK6pF3tQHZF2tRq2ntVM5RElJT0+oExr93yGgE/ock0J+v/O2vH7LbqfWVqltIXX0IEgmQ/7tHHfL0il355fjVztMIU3jim+WT4OrS4+2ciIjsTk/zUE6nJyIyIWutvZV5umHe2GjMHROF0+UqbM29ir2nK3Gx+iZW7S3Gu/+6gCeGhWHOmCgkR/lydN4GtbZrUXRdhbyyBpwsa0D+1Xo0/GDEvTsC+oR01d5iPJoQYrcJqamdKK3vNoEH9H9ulaoWnCitt9vjmkIVXhgUIsOFKg2OXqpFRpLjHTO48c6Gds+OjWYCT0R0B5N4IiITsYW1txKJBEmRvkiK9MXvnkjAF6euY2uuEheqNNhVUI5dBeUYFCLD7NFRmDEiHAovjs5bi6q5DfnKen3CXtaAwvJG3G433kTWw1WK4ZG+CFN44ovCim7rcoSE1NRqNN0n8L0pZ6smxgfhQpUGhy/UOFwSf6a8EaevNcLNRYJZoyKtHQ6ZgSNuOkm2xxH7GZN4IiIT6G7tbZWqBS9vLrDKVGe5pxvmp8Zg3thonLrWiK25Suw7U4ELVRpk7jmH1f86bxidHxHJ0XlzEkKgvOEW8q7qk/a8snpcrL7ZqZy/jztGRvthZIwfRsb4IzFMAXdXKf5ZeP2uSXwHe09ITSlI5mnScrZqUnwg/pp9BdkXa6HVCbv/YPpDm3L0o/CPDw1FQB8PK0dDpmYLX3yT43PUfsYknojoPml1Aqv2FndK4AHbmOoskUiQHOWH5Cg//P6JBOwuKMfWE0pcrL6Jz/LL8Vm+fnT+2TFRyBgRDrknR+fvV7tWhwtVGpwsq0deWQPyrtajWt15PXu/AB+kRPthVIw/UmL80C/Ap8svU5wlITWl0bH+CFV4okrV0uXvZsea+NGx/pYOzaSSo/0g83RFQ3MbzpQ3YkSUn7VDMomGptvYc1r/xdV8HivncGzxi29yPI7cz5jEExHdJ3tae6vwcsPCcbFY8EAMCpQN2JKrxJdnKnGhSoPf//Mc/vjVBUwbHoo5Y6IxPELB0fkeamptxyllI/Ku6pP2U8oGNN3WGpVxlUqQGK7AqBg/pET7Y2SMX49HF50lITUlF6kEmdMS8PLmAkgAoz+3jl6dOS3B7keu3VykmDAgEF+ercThklqHSeJ35l9Da7sOCaFyJDtIm0jP1r/4Jsfg6P2MSTwR0X2yx7W3EokEKdH+SIn2R+YTQ/D5qXJszVXiUs1N7Mgrx468ciSEyjFnTBQyksIg4+i8kWp1y50N6OqRf7UBxZVqaHXGHxVkHq5IjvbDqDtT44dH+MLL3aVXz3OWhNTUpiSGYu3c5E5TKUMcYCrlD02M1yfxR0pq8MtHB5qkTmuuIdXpBDYfVwLQj8Lzy0THYk9ffJP9cvR+xiSeiOg+2ftUZ4W3G54bF4uFD8Qg72oDtuUqse9sJYor1fjdF0X441fnMX24fu38sAhfa4drcTqdwOXam/pp8WX1OHm1Htfqb3UqF+7rZVjLPjLaDwODZSZNepwlITW1KYmheDQhxOE2NfqhtPhAAMCZchVqNa0IlN3f+nFrryHNvlgLZX0z5J6uDrdZH9nnF99kfxy9nzGJJyK6T44y1VkikWBUjD9GxfjjzWkJ2FVwHVtzr+JKbRM+PXkNn568hsRwOWaPjkJGUjj6eDjmPyEtbVqcva4yrGfPv9oA1S3jo94kEmBwiNwoaQ/z9TJ7bM6QkJqDi1RilyMtPRUk88TQcAXOXlch+2Itnk6J6HVdtrCGdGNOGQDgP0ZG9nr2Ctkue//im+yDo/czx/wERkRkQY441dnX2x2Lxsfi+XExOFFaj20nlPiqqApF19X47e4i/PHL85ieFI5nx0QhMVxh7XDvS33TbeRfbTCsZz9brsJtrfFRb15uLkiK9DVMjR8R5Wu1JQaOnpBS70yKD8TZ6yocLqnpdRJvC2tIlTeaceRiLQBg7lhuaOeIHOWLb7Jtjt7PmMQTEZmAo051lkgkGNOvL8b064vMptvYdWdn++9rm7DthBLbTigxLEKB2aOjMH14GHxsfHReCAFlfbPhmLe8qw24XNP5qLeAPh53NqDT7xyfECaHm4vUChET9UxafBD+dOgyvrlYi3atDq696K+2sIZ0S+5VCAE8OCAAsQE+ZnkGWZcjfvFNtsfR+5ltf9oiIrIjjj7V2c/HHS882A+Lxscit7QeW3OVyCqqwplyFc6Un8U7X55HRlIYZo+2ndH5Nq0OxRVq5F29s569rAF1Nzsf9RYX1OfO+ez6qfHRfb25mRbZlaRIX/h6u6GxuQ0FysZejS5Zew1pS5sW2/OuAQDmp8aY5RlkGxz1i2+yLY7cz5jEExGZkDNMdZZIJBjbry/G9uuL+qbb2JVfjm0nlPi+rglbcpXYkqvE8AgF5oyJwrThYfB2t9w/NZqWNv1Rb3cS9sJrjbjVZnzUm7uLFEMjFPr17NH+SIn2g7+Pu8ViJDIHF6kEaQMD8c/CChwpqelVEm/tNaR7T1egsbkN4b5eeGhQkFmeQbbD0b/4JtvgqP2MSTwREfWav487XpzQDy88GIuc729ga64S+89V4XS5CqfLz+LtfecxY0QY5oyORkKY3OTPr1TdwsmyBuTfSdovVKnxo5PeoPByQ0q0H0bG6KfGDw1XwNONm2WR45kUH4R/FlbgcEktlk8ZdM/vt/Ya0k3HrwIAnh0bZfcfsKlnnOGLb7I+R+xnTOKJiOi+SSQSPNA/AA/0D8CNm6347M7ofNmNZmw+rsTm40okRfrqR+eHhfVqx2mtTuBitcYwNT6vrAHXGzsf9Rbp74VR0f76qfExfogL7AMpEwJyAhMGBkIiAc5XqlGlakGI4t5GzK25hrTwWiPOlKvg7iLFrJGRJq+fiMiRSIQQXX3ZahGrV6/G559/jgsXLsDLywsPPPAA3nvvPcTHxwMA6uvrkZmZia+//hpKpRKBgYGYMWMG3n77bSgU3a+3XLhwIf7xj38YXUtPT0dWVlaP4lKr1VAoFFCpVJDLTT9yRETkDHQ6YTQ6335niFzm6YonR4RjzpgoDArp/u/YW7e1OF3eaNiALv9qAzQt7UZlpBJgSJjCsAHdyBg/BMvt87gYIlN48i/HcErZiHdnDsUzo6N6VYc1zon/5Y5CfF5wHTNHhOP/m5VklmcQEdm6nuahVh2Jz87OxuLFizFq1Ci0t7fjjTfewOTJk1FcXAwfHx9UVFSgoqICa9asQUJCAq5evYpf/OIXqKiowGeffXbXuqdMmYL169cbfvbw8DB3c4iI6AekUgnGxQVgXFwAajX/Hp1X1jdjY85VbMy5iuQoX8weHYUnhoWh+Xa70QZ05ypUaNMaf8/s4+6CEVH/nhqfFOlr8zviE1nSpPggnFI24nBJTa+TeEuvIa1vuo19ZyoBAPNSeawcEdFPsepI/I/V1tYiKCgI2dnZmDBhQpdldu7ciblz56KpqQmurl1/cFu4cCEaGxvxxRdf9CoOjsQTEZmHTifw3ZUb2HriKr4+V20YnfdwlaK1XdepfLDcAyNj/DHqzs7xg0JkvTo6i8hZnC1XYdqfv4WPuwtOvTkZ7q62//vy1+wrePdfF5AYLsfeJeN5MgQROS27GIn/MZVKBQDw9+9+w5SOBnWXwHc4cuQIgoKC4Ofnh4ceegh/+MMf0LevY21oQERkb6RSCcYPCMD4AQGo0bRgZ145Pj2pxLV6/dr2+GAZUmL8MOrOzvERfl78QE90D4aEyRHQxx11N28jr6weD8QFWDuku9LqBDbf2dBu/tgY/r4TEfWAzSTxOp0Oy5Ytw7hx45CYmNhlmbq6Orz99tt46aWX7lrXlClTMHPmTMTGxuLKlSt444038NhjjyEnJwcuLp03U2ptbUVr67/PDVar1ffXGCIi+klBMk8snhSHl9P642KNBqFyLyi83awdFpFdk0olSBsYhF0F5ThcUmPzSfyRkhqUN9yCwssN04aHWTscIiK7YDNJ/OLFi1FUVIRvv/22y/tqtRpTp05FQkICVq5cede6nnnmGcN/Dx06FMOGDUP//v1x5MgRPPzww53Kr169GqtWrbqv+ImIqHekUsldN7gjonszaVAgdhWU40hJLX471drR3N3GHP0o/M9GRvTq1AoiImdkEwullixZgn379uHw4cOIiIjodF+j0WDKlCmQyWTYvXs33NzubaSmX79+CAgIwOXLl7u8v2LFCqhUKsPr2rVrvWoHERERkbU9GBcIF6kEl2pu4lp9s7XD6VZZXROyL9ZCIgHmjuWGdkREPWXVJF4IgSVLlmD37t04dOgQYmNjO5VRq9WYPHky3N3dsWfPHnh63vvRQeXl5bhx4wZCQ7s+FsXDwwNyudzoRURERGSPFN5uSInyAwAcuVhr5Wi617EWPm1gIKL7+lg5GiIi+2HVJH7x4sXYvHkztm7dCplMhqqqKlRVVeHWLf0GRx0JfFNTE9atWwe1Wm0oo9VqDfUMGjQIu3fvBgDcvHkTr7/+Oo4fP46ysjIcPHgQGRkZiIuLQ3p6ulXaSURERGRJEwcFAgCOXKixciRdu3Vbix15+pmP83msHBHRPbFqEr927VqoVCpMnDgRoaGhhtf27dsBAAUFBcjNzcXZs2cRFxdnVOaHU95LSkoMO9u7uLjgzJkzmD59OgYOHIhFixYhJSUFR48e5VnxRERE5BQmxQcBAI5dqUNLm/YnSlve3tMVULe0I8LPC2kDg6wdDhGRXbHqxnY/dUT9xIkTf7LMj+vx8vLC/v377zs2IiIiIns1KESGELknqtQtyC2tR9rAQGuHZCCEwMbjZQD0a+FdpDxWjojoXtjExnZEREREZDoSiQQT4/WJ+2Ebm1J/6lojiq6r4e4qxc9GRlo7HCIiu8MknpyGVieQc+UG/ll4HTlXbkCr++lZHkRERPZq4p0p9UdKbCuJ33TnWLlpw8Lg7+Nu5WiIiOyPzZwTT2ROWUWVWLW3GJWqFsO1UIUnMqclYEpi16cWEBER2bNxcX3h5iJB2Y1mlNY1ITbA+jvA191sxZdnKgFwQzsiot7iSDw5vKyiSry8ucAogQeAKlULXt5cgKyiSitFRkREZD4yTzeMivEHYDuj8dtPXsNtrQ7DIxQYHulr7XCIiOwSk3hyaFqdwKq9xehq4nzHtVV7izm1noiIHFLHLvWHS6x/XrxWJ7A1VwkAmJcaY91giIjsGJN4cmgnSus7jcD/kABQqWrBidJ6ywVFRERkIZPunBd//PsbaL7dbtVYDl2owfXGW/D1dsMTw7iUjYiot5jEk0Or0XSfwPemHBERkT3pH9gHEX5euN2uQ86VG1aNZWNOGQBg1shIeLq5WDUWIiJ7xiSeHFqQzNOk5YiIiOyJRCL5wZR6662L/772Jo5eqoNEoj8bnoiIeo9JPDm00bH+CFV4QtLNfQn0u9SPjvW3ZFhEREQW8+/z4mshhHX2gNl8XL8WflJ8ECL9va0SAxGRo2ASTw7NRSpB5rQEAOiUyHf8nDktAS7S7tJ8IiIi+5bavy/cXaW43ngLl2tuWvz5zbfbsTP/GgBgHo+VIyK6b0ziyeFNSQzF2rnJCFEYT5kPUXhi7dxknhNPREQOzdvdFWP79QUAHLHCLvX/LKyApqUd0X29kTYg0OLPJyJyNK7WDoDIEqYkhuLRhBCcKK1HjaYFQTL9FHqOwBMRkTOYFB+Iby7W4nBJDV6c0M9izxVCYGPOVQDA3DHRkPLfXSKi+8aReHIaLlIJUvv3RUZSOFL792UCT0RETqNjc7uTZfXQtLRZ7LkFygacr1TDw1WK/xgZYbHnEhE5MibxRERERA4uJsAHsQE+aNMKHLtsuaPmOkbhpw8Pg6+3u8WeS0TkyJjEExERETmBjl3qj1joqLlaTSu+OlsJAJifGmORZxIROQMm8URERERO4IfnxVviqLntJ5Vo0wokRfpiaITC7M8jInIWTOKJiIiInMDoWH94ubmgWt2K85Uasz6rXavDllz92fDzeawcEZFJMYknIiIicgKebi54oL/+qLnDZp5S//+fr0GlqgX+Pu54fCiPciUiMiUm8UREREROYuIg/ZT6bDOfF7/peBkAYNaoSHi6uZj1WUREzoZJPBEREZGTmDhQv7ldvrIBqmbzHDV3ueYmjl2+AYkEmDM6yizPICJyZkziiYiIiJxEpL83BgT1gVYncPSyeUbjNx/XHyv38KAgRPp7m+UZRETOjEk8ERERkROZdGdK/eELpk/im1rbsSu/HAAwj8fKERGZBZN4IiIiIifScV589sUa6HSmPWrui8Lr0LS2I6avNx6MCzBp3UREpMcknoiIiMiJjIz2Rx8PV9TdvI2iCpXJ6hVCYFOOfir93LHRkEolJqubiIj+jUk8ERERkRNxd5Vi/J1RclNOqT9Z1oALVRp4uknxHymRJquXiIiMMYknIiIicjIdU+pNeV78xpwyAEDG8HAovN1MVi8RERljEk9ERETkZCbG6ze3O13eiPqm2/ddX42mBVlFVQCAeanR910fERF1j0k8ERERkZMJUXhicKgcQgDfXLz/KfWfnriGdp1AcpQvEsMVJoiQiIi6wySeiIiIyAlNMtGU+natDltzlQCA+TxWjojI7JjEExERETmhjvPisy/WQnsfR80dKK5GlboFfX3c8djQEFOFR0RE3WAST0REROSERkT6Qu7pisbmNhRea+x1PRvvHCv3zOhIeLi6mCg6IiLqDpN4IiIiIifk6iLFhIH6KfVHejml/lK1Bjnf34BUAswZww3tiIgsgUk8ERERkZOadGeX+t6ui990XD8K//DgYIT7epksLiIi6h6TeCIiIiIn1TESX3RdjRpNyz2992ZrOz4vuA4AmM9j5YiILIZJPBEREZGTCpR5YFiE/ki47JJ7O2pu96nruNnajn4BPhjXP8Ac4RERUReYxBMRERE5sYl3ptQfuYckXgiBTTllAIC5Y6MhlUrMERoREXWBSTwRERGRE+s4L/6bS7Vo0+p69J7c0npcrL4JLzcXPJUSYc7wiIjoR5jEExERETmxYRG+8Pdxh6alHQVXG3r0nk13jpWbMSIcCi83c4ZHREQ/wiSeiIiIyIm5SCVIu7PB3eEeTKmvVrdg/7kqAMC8sdzQjojI0pjEExERETm5ifE9Py9+a64S7TqBkdF+SAiTmzs0IiL6ESbxRERERE5uwoBASCXAhSoNKhpvdVuuTavDthNKAMA8HitHRGQVTOKJiIiInJyfjzuSIn0B3H2X+q/PVaNG04qAPh54LDHUQtEREdEPMYknIiIiIkwyHDXX/ZT6jXeOlZs9OhLurvwYSURkDfzbl4iIiIgwaZA+iT92uQ6t7dpO90uqNMgtrYeLVII5Y6IsHR4REd3BJJ6IiIiIkBAqR6DMA023tcgr63zU3KbjZQCARwcHI1ThZeHoiIioA5N4IiIiIoJUKsHEjqPmLhhPqde0tGF3wXUAwHxuaEdEZFVWTeJXr16NUaNGQSaTISgoCDNmzEBJSYnhfn19Pf7zP/8T8fHx8PLyQlRUFJYuXQqVSnXXeoUQePPNNxEaGgovLy888sgjuHTpkrmbQ0RERGTXOqbUH/7RuvjPC66j6bYW/QN9kNq/rzVCIyKiO6yaxGdnZ2Px4sU4fvw4Dhw4gLa2NkyePBlNTU0AgIqKClRUVGDNmjUoKirChg0bkJWVhUWLFt213vfffx9/+tOf8Ne//hW5ubnw8fFBeno6WlpaLNEsIiIiIrs0fkAAXKQSXKltgvJGMwD94Mim41cBAPPGRkMikVgzRCIipycRQghrB9GhtrYWQUFByM7OxoQJE7oss3PnTsydOxdNTU1wdXXtdF8IgbCwMPzqV7/Ca6+9BgBQqVQIDg7Ghg0b8Mwzz/xkHGq1GgqFAiqVCnK5/P4aRURERGRHZv0tB7ml9XgrYwjmp8bguyt1mPP3XHi7u+D4Gw9D7ulm7RCJiBxST/NQm1oT3zFN3t/f/65l5HJ5lwk8AJSWlqKqqgqPPPKI4ZpCocCYMWOQk5PT5XtaW1uhVquNXkRERETOaOKdo+Y61sVvytGPwj85IpwJPBGRDbCZJF6n02HZsmUYN24cEhMTuyxTV1eHt99+Gy+99FK39VRVVQEAgoODja4HBwcb7v3Y6tWroVAoDK/IyMhetoKIiIjIvk0apN/cLuf7Gyira8LXxdUAgPmpMVaMioiIOthMEr948WIUFRXh008/7fK+Wq3G1KlTkZCQgJUrV5r02StWrIBKpTK8rl27ZtL6iYiIiOxFfLAMoQpPtLTp8MsdhdDqBEbH+iM+RGbt0IiICDaSxC9ZsgT79u3D4cOHERER0em+RqPBlClTIJPJsHv3bri5dT+VKyQkBABQXV1tdL26utpw78c8PDwgl8uNXkRERETOSCKRGKbUFygbAfBYOSIiW2LVJF4IgSVLlmD37t04dOgQYmNjO5VRq9WYPHky3N3dsWfPHnh6et61ztjYWISEhODgwYNGdeTm5iI1NdXkbSAiIiJyNJPiAw3/HSjzwOSErgdCiIjI8qyaxC9evBibN2/G1q1bIZPJUFVVhaqqKty6dQvAvxP4pqYmrFu3Dmq12lBGq9Ua6hk0aBB2794NQP/t8bJly/CHP/wBe/bswdmzZzF//nyEhYVhxowZ1mgmERERkV0ZFxcANxf9UXKzR0fB3dUmJm8SERGArrd4t5C1a9cCACZOnGh0ff369Vi4cCEKCgqQm5sLAIiLizMqU1paipiYGABASUmJYWd7AFi+fDmamprw0ksvobGxEePHj0dWVtZPjuITEREREeDj4YrnxsXi6KU6zBvLqfRERLbEps6JtxU8J56IiIiI7oVWJ3CitB41mhYEyTwxOtYfLlKJtcMiIjvS0zzUqiPxRERERET2LquoEqv2FqNS1WK4FqrwROa0BExJDLViZETkiLjAiYiIiIiol7KKKvHy5gKjBB4AqlQteHlzAbKKKq0UGRE5KibxRERERES9oNUJrNpbjK7WpnZcW7W3GFodV68SkekwiSciIiIi6oUTpfWdRuB/SACoVLXgRGm95YIiIofHJJ6IiIiIqBdqNN0n8L0pR0TUE0ziiYiIiIh6IUjWs+OLe1qOiKgnmMQTEREREfXC6Fh/hCo80d1BchLod6kfHetvybCIyMExiSciIiIi6gUXqQSZ0xIAoFMi3/Fz5rQEnhdPRCbFJJ6IiIiIqJemJIZi7dxkhCiMp8yHKDyxdm4yz4knIpNztXYARERERET2bEpiKB5NCMGJ0nrUaFoQJNNPoecIPBGZA5N4IiIiIqL75CKVILV/X2uHQUROgNPpiYiIiIiIiOwEk3giIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKJiIiIiIiI7ASTeCIiIiIiIiI74WrtAGyREAIAoFarrRwJEREREREROYOO/LMjH+0Ok/guaDQaAEBkZKSVIyEiIiIiIiJnotFooFAour0vET+V5jshnU6HiooKyGQySCQSa4fTLbVajcjISFy7dg1yudza4ZCDYj8jS2A/I3NjHyNLYD8jS2A/c1xCCGg0GoSFhUEq7X7lO0fiuyCVShEREWHtMHpMLpfzF5jMjv2MLIH9jMyNfYwsgf2MLIH9zDHdbQS+Aze2IyIiIiIiIrITTOKJiIiIiIiI7ASTeDvm4eGBzMxMeHh4WDsUcmDsZ2QJ7GdkbuxjZAnsZ2QJ7GfEje2IiIiIiIiI7ARH4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKtbPXq1Rg1ahRkMhmCgoIwY8YMlJSUGJVpaWnB4sWL0bdvX/Tp0wdPPfUUqqurjcosXboUKSkp8PDwQFJSUpfPOnPmDB588EF4enoiMjIS77//vrmaRTbEUn3syJEjyMjIQGhoKHx8fJCUlIQtW7aYs2lkQyz5d1mHy5cvQyaTwdfX18StIVtlyX4mhMCaNWswcOBAeHh4IDw8HO+88465mkY2wpJ9bP/+/Rg7dixkMhkCAwPx1FNPoayszEwtI1tiin52+vRpzJ49G5GRkfDy8sLgwYPx0UcfdXrWkSNHkJycDA8PD8TFxWHDhg3mbh5ZAJN4K8vOzsbixYtx/PhxHDhwAG1tbZg8eTKampoMZf7rv/4Le/fuxc6dO5GdnY2KigrMnDmzU13PP/88Zs2a1eVz1Go1Jk+ejOjoaOTn5+O///u/sXLlSvzv//6v2dpGtsFSfey7777DsGHDsGvXLpw5cwbPPfcc5s+fj3379pmtbWQ7LNXPOrS1tWH27Nl48MEHTd4Wsl2W7Gevvvoq/u///g9r1qzBhQsXsGfPHowePdos7SLbYak+VlpaioyMDDz00EMoLCzE/v37UVdX12U95HhM0c/y8/MRFBSEzZs349y5c/jtb3+LFStW4M9//rOhTGlpKaZOnYpJkyahsLAQy5YtwwsvvID9+/dbtL1kBoJsSk1NjQAgsrOzhRBCNDY2Cjc3N7Fz505DmfPnzwsAIicnp9P7MzMzxfDhwztd/8tf/iL8/PxEa2ur4dqvf/1rER8fb/pGkE0zVx/ryuOPPy6ee+45k8RN9sXc/Wz58uVi7ty5Yv369UKhUJg6fLIT5upnxcXFwtXVVVy4cMFssZN9MFcf27lzp3B1dRVardZwbc+ePUIikYjbt2+bviFk0+63n3V45ZVXxKRJkww/L1++XAwZMsSozKxZs0R6erqJW0CWxpF4G6NSqQAA/v7+APTfsrW1teGRRx4xlBk0aBCioqKQk5PT43pzcnIwYcIEuLu7G66lp6ejpKQEDQ0NJoqe7IG5+lh3z+p4DjkXc/azQ4cOYefOnfj4449NFzDZJXP1s71796Jfv37Yt28fYmNjERMTgxdeeAH19fWmbQDZPHP1sZSUFEilUqxfvx5arRYqlQqbNm3CI488Ajc3N9M2gmyeqfrZjz935eTkGNUB6D//3+/nO7I+JvE2RKfTYdmyZRg3bhwSExMBAFVVVXB3d++05jM4OBhVVVU9rruqqgrBwcGd6ui4R87BnH3sx3bs2IGTJ0/iueeeu5+QyQ6Zs5/duHEDCxcuxIYNGyCXy00ZNtkZc/az77//HlevXsXOnTuxceNGbNiwAfn5+Xj66adN2QSycebsY7Gxsfj666/xxhtvwMPDA76+vigvL8eOHTtM2QSyA6bqZ9999x22b9+Ol156yXCtu8//arUat27dMm1DyKJcrR0A/dvixYtRVFSEb7/91tqhkIOyVB87fPgwnnvuOfz973/HkCFDzPossj3m7Gcvvvgi5syZgwkTJpi8brIv5uxnOp0Ora2t2LhxIwYOHAgAWLduHVJSUlBSUoL4+HiTP5Nsjzn7WFVVFV588UUsWLAAs2fPhkajwZtvvomnn34aBw4cgEQiMfkzyTaZop8VFRUhIyMDmZmZmDx5sgmjI1vFkXgbsWTJEuzbtw+HDx9GRESE4XpISAhu376NxsZGo/LV1dUICQnpcf0hISGddk7t+Ple6iH7Ze4+1iE7OxvTpk3Dhx9+iPnz599v2GRnzN3PDh06hDVr1sDV1RWurq5YtGgRVCoVXF1d8cknn5iqGWTjzN3PQkND4erqakjgAWDw4MEAAKVSeX/Bk10wdx/7+OOPoVAo8P7772PEiBGYMGECNm/ejIMHDyI3N9dUzSAbZ4p+VlxcjIcffhgvvfQSfve73xnd6+7zv1wuh5eXl2kbQxbFJN7KhBBYsmQJdu/ejUOHDiE2NtbofkpKCtzc3HDw4EHDtZKSEiiVSqSmpvb4Oampqfjmm2/Q1tZmuHbgwAHEx8fDz8/v/htCNstSfQzQH2MydepUvPfee0bTucjxWaqf5eTkoLCw0PB66623IJPJUFhYiCeffNJk7SHbZKl+Nm7cOLS3t+PKlSuGaxcvXgQAREdH32cryJZZqo81NzdDKjX+GO7i4gJAPxOEHJup+tm5c+cwadIkLFiwoMsjMFNTU43qAPSf/+/18x3ZIGvuqkdCvPzyy0KhUIgjR46IyspKw6u5udlQ5he/+IWIiooShw4dEnl5eSI1NVWkpqYa1XPp0iVx6tQp8fOf/1wMHDhQnDp1Spw6dcqwG31jY6MIDg4W8+bNE0VFReLTTz8V3t7e4m9/+5tF20uWZ6k+dujQIeHt7S1WrFhh9JwbN25YtL1kHZbqZz/G3emdi6X6mVarFcnJyWLChAmioKBA5OXliTFjxohHH33Uou0ly7NUHzt48KCQSCRi1apV4uLFiyI/P1+kp6eL6Ohoo2eRYzJFPzt79qwIDAwUc+fONaqjpqbGUOb7778X3t7e4vXXXxfnz58XH3/8sXBxcRFZWVkWbS+ZHpN4KwPQ5Wv9+vWGMrdu3RKvvPKK8PPzE97e3uLJJ58UlZWVRvWkpaV1WU9paamhzOnTp8X48eOFh4eHCA8PF++++66FWknWZKk+tmDBgi7vp6WlWa6xZDWW/Lvsh5jEOxdL9rPr16+LmTNnij59+ojg4GCxcOFCfinpBCzZx7Zt2yZGjBghfHx8RGBgoJg+fbo4f/68hVpK1mSKfpaZmdllHdHR0UbPOnz4sEhKShLu7u6iX79+Rs8g+yURQoj7GMgnIiIiIiIiIgvhmngiIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvBJJ6IiIiIiIjITjCJJyIiIiIiIrITTOKJiIiIiIiI7ASTeCIiIht248YNBAUFoayszKLP3bBhA3x9fc1Sd1ZWFpKSkqDT6cxSPxERkSNjEk9ERGTD3nnnHWRkZCAmJqbTvfT0dLi4uODkyZOWD+w+TJkyBW5ubtiyZUu3ZRYtWoShQ4fi9u3bRte/+uoruLu7o6CgwNxhEhER2SQm8URERDaqubkZ69atw6JFizrdUyqV+O6777BkyRJ88sknVoiud9ra2gAACxcuxJ/+9Kduy3344YfQaDTIzMw0XGtsbMSLL76I3//+90hOTjZbbERERLaMSTwREZGN+uqrr+Dh4YGxY8d2urd+/Xo88cQTePnll7Ft2zbcunXL6P7EiROxdOlSLF++HP7+/ggJCcHKlSuNyjQ2NuLnP/85goOD4enpicTEROzbt8+ozP79+zF48GD06dMHU6ZMQWVlpeGeTqfDW2+9hYiICHh4eCApKQlZWVmG+2VlZZBIJNi+fTvS0tLg6elpGH2fNm0a8vLycOXKlS7bLpfLsX79enzwwQfIzc0FACxbtgzh4eFYsWIFrl27hp/97Gfw9fWFv78/MjIyjJYcnDx5Eo8++igCAgKgUCiQlpbWafReIpFg7dq1mD59Onx8fPDOO+9083+CiIjIdjCJJyIislFHjx5FSkpKp+tCCKxfvx5z587FoEGDEBcXh88++6xTuX/84x/w8fFBbm4u3n//fbz11ls4cOAAAH0C/thjj+HYsWPYvHkziouL8e6778LFxcXw/ubmZqxZswabNm3CN998A6VSiddee81w/6OPPsIHH3yANWvW4MyZM0hPT8f06dNx6dIlozh+85vf4NVXX8X58+eRnp4OAIiKikJwcDCOHj3abfsnTZqEV155BQsWLMDOnTuxY8cObNy4EUIIpKenQyaT4ejRozh27JjhS4aO6fcajQYLFizAt99+i+PHj2PAgAF4/PHHodFojJ6xcuVKPPnkkzh79iyef/75n/pfQkREZH2CiIiIbFJGRoZ4/vnnO13/+uuvRWBgoGhraxNCCPHhhx+KtLQ0ozJpaWli/PjxRtdGjRolfv3rXwshhNi/f7+QSqWipKSky2evX79eABCXL182XPv4449FcHCw4eewsDDxzjvvdHrGK6+8IoQQorS0VAAQ//M//9PlM0aMGCFWrlzZ5b0Ozc3NIj4+XkilUvHhhx8KIYTYtGmTiI+PFzqdzlCutbVVeHl5if3793dZj1arFTKZTOzdu9dwDYBYtmzZXZ9PRERkazgST0REZKNu3boFT0/PTtc/+eQTzJo1C66urgCA2bNn49ixY52mpg8bNszo59DQUNTU1AAACgsLERERgYEDB3b7fG9vb/Tv37/L96vValRUVGDcuHFG7xk3bhzOnz9vdG3kyJFd1u/l5YXm5uZun99R5rXXXoO3tzdeffVVAMDp06dx+fJlyGQy9OnTB3369IG/vz9aWloMfwbV1dV48cUXMWDAACgUCsjlcty8eRNKpbJHsREREdkqV2sHQERERF0LCAhAQ0OD0bX6+nrs3r0bbW1tWLt2reG6VqvFJ598YrSu283Nzei9EonEcKybl5fXTz6/q/cLIe65HT4+Pl1er6+vR2Bg4E++39XVFS4uLpBIJACAmzdvIiUlpcvd7TvqW7BgAW7cuIGPPvoI0dHR8PDwQGpqaqfd7ruLjYiIyFZxJJ6IiMhGjRgxAsXFxUbXtmzZgoiICJw+fRqFhYWG1wcffIANGzZAq9X2qO5hw4ahvLwcFy9e7FVscrkcYWFhOHbsmNH1Y8eOISEh4Sff3zFqPmLEiHt+dnJyMi5duoSgoCDExcUZvRQKhSGOpUuX4vHHH8eQIUPg4eGBurq6e34WERGRrWEST0REZKPS09Nx7tw5o9H4devW4emnn0ZiYqLRa9GiRairqzPaHf5u0tLSMGHCBDz11FM4cOAASktL8a9//avH7weA119/He+99x62b9+OkpIS/OY3v0FhYaFh2vvdHD9+3DA6fq+effZZBAQEICMjA0ePHkVpaSmOHDmCpUuXory8HAAwYMAAbNq0CefPn0dubi6effbZHs0+ICIisnVM4omIiGzU0KFDkZycjB07dgAA8vPzcfr0aTz11FOdyioUCjz88MNYt25dj+vftWsXRo0ahdmzZyMhIQHLly/v8Ug+ACxduhS//OUv8atf/QpDhw5FVlYW9uzZgwEDBvzke7dt24Znn30W3t7ePX5eB29vb3zzzTeIiorCzJkzMXjwYCxatAgtLS2Qy+UA9F92NDQ0IDk5GfPmzcPSpUsRFBR0z88iIiKyNRLRm8VtREREZBFffvklXn/9dRQVFUEqdYzv3uvq6hAfH4+8vDzExsZaOxwiIiK7wo3tiIiIbNjUqVNx6dIlXL9+HZGRkdYOxyTKysrwl7/8hQk8ERFRL3AknoiIiIiIiMhOOMa8PCIiIiIiIiInwCSeiIiIiIiIyE4wiSciIiIiIiKyE0ziiYiIiIiIiOwEk3giIiIiIiIiO8EknoiIiIiIiMhOMIknIiIiIiIishNM4omIiIiIiIjsBJN4IiIiIiIiIjvx/wB+VKRGAvgTKwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict 2 meter temperature with sea surface temperature using LSTM\n", + "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", + "We will predict temperature in US at seasonal time scales using ERA5 dataset with LSTM network.
\n", + "\n", + "\"usecase\"" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This recipe includes the following steps:\n", + "- Define a calendar (`lilio`)\n", + "- Download/load input data (`era5cli`) (test data, accessible via `era5cli`)\n", + "- Map the calendar to the data (`lilio`)\n", + "- Train-validate-test split (60%/20%/20%)\n", + "- Preprocessing based on the training set (`s2spy`)\n", + "- Resample data to the calendar (`lilio`)\n", + "- Create LSTM model (`torch`)\n", + "- Specify hyper-parameters (`wandb`)\n", + "- Train model (`torch`)\n", + "- Evaludate model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The workflow is illustrated below:\n", + "\n", + "\"Transformer\"" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import lilio\n", + "import numpy as np\n", + "import pandas as pd\n", + "import time as tt\n", + "import wandb\n", + "import sys\n", + "import urllib\n", + "import xarray as xr\n", + "from pathlib import Path\n", + "from s2spy import preprocess\n", + "import torch\n", + "from torch import nn\n", + "from torch.autograd import Variable\n", + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# import utils function to check the statistics of parameters\n", + "sys.path.append(\"../src/\")\n", + "import utils\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a calendar with `lilio` to specify time range for targets and precursors." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "# create custom calendar based on the time of interest\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", + "# add target periods\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", + "# add precursor periods\n", + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='07-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", + " ]\n", + ")" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check calendar\n", + "calendar" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Load test data SST and (clustered) T2M\n", + "For the sake of batch size, we use 61 years (1961-2021) of data." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# URL of the dataset from zenodo\n", + "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", + "t2m_url = \"https://zenodo.org/record/8186914/files/t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", + "sst_field = \"sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", + "t2m_field = \"t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", + "\n", + "urllib.request.urlretrieve(sst_url, sst_field)\n", + "urllib.request.urlretrieve(t2m_url, t2m_field)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "# load data\n", + "precursor_field = xr.open_dataset(sst_field)\n", + "precursor_field = precursor_field.sel(time=slice(\"19610101\",\"20211231\"))\n", + "target_field = xr.open_dataset(t2m_field)\n", + "target_field = target_field.sel(time=slice(\"19610101\",\"20211231\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert Klevin to Celcius\n", + "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", + "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Map the calendar to the data\n", + "After mapping the calendar to the field, we can visualize our calendar by calling the `visualize` method." + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# map calendar to data\n", + "calendar.map_to_data(precursor_field)\n", + "calendar.visualize(show_length=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we can get a list of all intervals by running the following line. There, you will find the intervals `-1` and `1`, which corresponds to the creation of a precursor interval (negative integer(s)) and a target interval (positive integer(s)), respectively.
\n", + "\n", + "For more information about the definition of intervals, and how `lilio` works, please check the [README](https://github.com/AI4S2S/lilio) of `lilio`." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", + "
" + ], + "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calendar.show()[:3]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Train-validate-test split based on the anchor years (60%/20%/20% split)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "# get 60% of instance as training\n", + "years = sorted(calendar.get_intervals().index)\n", + "train_samples = round(len(years) * 0.6)\n", + "test_samples = round(len(years) * 0.2)\n", + "start_year = years[0]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fit preprocessor with training samples and preprocess data\n", + "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", + "\n", + "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [], + "source": [ + "# create preprocessor\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=\"linear\",\n", + " subtract_climatology=True,\n", + ")\n", + "\n", + "# fit preprocessor with training data\n", + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "# preprocess the whole precursor field\n", + "precursor_field_prep = preprocessor.transform(precursor_field)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Resample data to the calendar" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "precursor_field_resample = lilio.resample(calendar, precursor_field_prep)\n", + "target_field_resample = lilio.resample(calendar, target_field)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "# select variables and intervals\n", + "precursor_field_sel = precursor_field_resample['sst']\n", + "# selecting 1-d timeseries of cluster 3 for target\n", + "target_series_sel = target_field_resample['t2m'].sel(cluster=3) " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to convert our data to `torch.Tensor`." + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "# slice and reshape input desired by LSTM (samples, lags, space)\n", + "sequence_lags_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", + "lat_precursor = len(precursor_field_sel.latitude)\n", + "lon_precursor = len(precursor_field_sel.longitude)\n", + "\n", + "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", + "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", + "\n", + "# shape (samples, lags, space)\n", + "X_torch = X_torch.view(-1, sequence_lags_precursor, lat_precursor*lon_precursor)\n", + "\n", + "# turn nan to 0.0\n", + "X_torch = torch.nan_to_num(X_torch, 0.0)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We split our data into train/cross-validate/test sets." + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "# train/validate/test split and use pytorch dataloader\n", + "train_X_torch = X_torch[:train_samples]\n", + "train_y_torch = y_torch[:train_samples]\n", + "\n", + "valid_X_torch = X_torch[train_samples:train_samples + test_samples]\n", + "valid_y_torch = y_torch[train_samples:train_samples + test_samples]\n", + "\n", + "test_X_torch = X_torch[-test_samples:]\n", + "test_y_torch = y_torch[-test_samples:]\n", + "\n", + "# pytorch train and test sets\n", + "train_set = torch.utils.data.TensorDataset(train_X_torch, train_y_torch)\n", + "valid_set = torch.utils.data.TensorDataset(valid_X_torch, valid_y_torch)\n", + "test_set = torch.utils.data.TensorDataset(test_X_torch, test_y_torch)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Build LSTM model\n", + "Build a LSTM model with `nn.LSTM` module.\n", + "\n", + "The architecture of the autoencoder used here is shown in the figure below.\n", + "\n", + "\"LSTM\"\n", + "\n", + "(source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim=1,\n", + " batch_size=1, num_layers=1, dropout=0.1):\n", + " \"\"\"\n", + " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", + " Expected input timeseries dimension [batch_size, sequence, channels]\n", + "\n", + " args:\n", + " input_dim: The number of expected features in the input x\n", + " hidden_dim: The number of features in the hidden state h\n", + " output_dim: The number of output features h\n", + " num_layers: Number of recurrent layers. E.g., setting num_layers=2 would \n", + " mean stacking two LSTMs together to form a stacked LSTM, with the second \n", + " LSTM taking in outputs of the first LSTM and computing the final results. \n", + " Default: 1\n", + " \"\"\"\n", + " super().__init__()\n", + " self.hidden_dim = hidden_dim\n", + " self.batch_size = batch_size \n", + " self.num_layers = num_layers\n", + " # Define the LSTM layer\n", + " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", + " num_layers = num_layers, batch_first = True, dropout = dropout)\n", + "\n", + " # Define the output layer\n", + " self.linear = nn.Linear(hidden_dim, output_dim)\n", + " \n", + " def init_hidden(self):\n", + " \"\"\"Initialize hidden state with random values.\"\"\"\n", + " return (torch.randn(self.num_layers, self.batch_size, self.hidden_dim),\n", + " torch.randn(self.num_layers, self.batch_size, self.hidden_dim))\n", + " \n", + " def forward(self, input):\n", + " (h_0, c_0) = self.init_hidden()\n", + " x, _ = self.lstm(input, (h_0, c_0))\n", + " x = self.linear(x)\n", + " \n", + " return x" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print system info." + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], + "source": [ + "print (\"Pytorch version {}\".format(torch.__version__))\n", + "use_cuda = torch.cuda.is_available()\n", + "print(\"Is CUDA available? {}\".format(use_cuda))\n", + "# use GPU if possible\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "print(\"Device to be used for computation: {}\".format(device))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Hyper-parameter tuning with W&B\n", + "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
\n", + "\n", + "You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "wandb version 0.15.8 is available! To upgrade, please run:\n", + " $ pip install wandb --upgrade" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.15.4" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/semv/surfdrive/Scripts/escience/cookbook/workflow/wandb/run-20230815_150902-fh7xdmqd" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run dry-shape-17 to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/ai4s2s-demo/test-LSTM" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/ai4s2s-demo/test-LSTM/runs/fh7xdmqd" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# define hyperparameters and the \n", + "hyperparameters = dict(\n", + " epoch = 150,\n", + " input_dim = lat_precursor*lon_precursor,\n", + " hidden_dim = lat_precursor*lon_precursor*2,\n", + " output_dim = 1,\n", + " batch_size = 6, \n", + " num_layers = 2,\n", + " dropout = 0.0,\n", + " learning_rate = 0.02,\n", + " dataset = 'Weather',\n", + " architecture = 'LSTM'\n", + ")\n", + "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", + "# initialize weights & biases service\n", + "mode = 'disabled'\n", + "mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-LSTM' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", + "config = wandb.config" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create data loaders with chosen batch size. " + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "# create data loader and use batch \n", + "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = True)\n", + "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = True)\n", + "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize and train model\n", + "Create model using specified hyperparameter. Initialize model and choose loss function and optimizer." + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " LSTM(\n", + " (lstm): LSTM(65, 130, num_layers=2, batch_first=True, dropout=0.1)\n", + " (linear): Linear(in_features=130, out_features=1, bias=True)\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.02\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Initialize model\n", + "model = LSTM(input_dim = config[\"input_dim\"],\n", + " hidden_dim = config[\"hidden_dim\"],\n", + " output_dim = config[\"output_dim\"], \n", + " batch_size = config[\"batch_size\"], \n", + " num_layers = config[\"num_layers\"]\n", + ")\n", + "# Specify loss function\n", + "criterion = nn.MSELoss()\n", + "# Choose optimizer\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)\n", + "# Print model and optimizer details\n", + "print('Model details:\\n', model)\n", + "print('Optimizer details:\\n',optimizer)\n", + "wandb.watch(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "238811\n" + ] + } + ], + "source": [ + "# display the total number of parameters\n", + "utils.total_num_param(model)\n", + "# for more details about the trainable parameter in each layer\n", + "#utils.param_trainable(model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start the training and cross validation loop." + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/36(0%)]\tLoss: 516.528259\n", + "Epoch : 0 [6/36(17%)]\tLoss: 493.644196\n", + "Epoch : 0 [12/36(33%)]\tLoss: 309.414124\n", + "Epoch : 0 [18/36(50%)]\tLoss: 244.629639\n", + "Epoch : 0 [24/36(67%)]\tLoss: 221.758804\n", + "Epoch : 0 [30/36(83%)]\tLoss: 116.422852\n", + "Epoch : 1 [0/36(0%)]\tLoss: 68.948174\n", + "Epoch : 1 [6/36(17%)]\tLoss: 41.374641\n", + "Epoch : 1 [12/36(33%)]\tLoss: 28.808563\n", + "Epoch : 1 [18/36(50%)]\tLoss: 9.308384\n", + "Epoch : 1 [24/36(67%)]\tLoss: 2.922521\n", + "Epoch : 1 [30/36(83%)]\tLoss: 1.122476\n", + "Epoch : 2 [0/36(0%)]\tLoss: 116.638184\n", + "Epoch : 2 [6/36(17%)]\tLoss: 13.724627\n", + "Epoch : 2 [12/36(33%)]\tLoss: 18.838598\n", + "Epoch : 2 [18/36(50%)]\tLoss: 17.926105\n", + "Epoch : 2 [24/36(67%)]\tLoss: 26.309319\n", + "Epoch : 2 [30/36(83%)]\tLoss: 20.750399\n", + "Epoch : 3 [0/36(0%)]\tLoss: 18.211731\n", + "Epoch : 3 [6/36(17%)]\tLoss: 14.880689\n", + "Epoch : 3 [12/36(33%)]\tLoss: 11.606751\n", + "Epoch : 3 [18/36(50%)]\tLoss: 6.439905\n", + "Epoch : 3 [24/36(67%)]\tLoss: 8.875995\n", + "Epoch : 3 [30/36(83%)]\tLoss: 4.185455\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.051760\n", + "Epoch : 4 [6/36(17%)]\tLoss: 1.442731\n", + "Epoch : 4 [12/36(33%)]\tLoss: 2.496709\n", + "Epoch : 4 [18/36(50%)]\tLoss: 0.768737\n", + "Epoch : 4 [24/36(67%)]\tLoss: 0.946671\n", + "Epoch : 4 [30/36(83%)]\tLoss: 3.218945\n", + "Epoch : 5 [0/36(0%)]\tLoss: 6.234029\n", + "Epoch : 5 [6/36(17%)]\tLoss: 3.201366\n", + "Epoch : 5 [12/36(33%)]\tLoss: 1.873161\n", + "Epoch : 5 [18/36(50%)]\tLoss: 3.825061\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.931075\n", + "Epoch : 5 [30/36(83%)]\tLoss: 1.693661\n", + "Epoch : 6 [0/36(0%)]\tLoss: 2.324636\n", + "Epoch : 6 [6/36(17%)]\tLoss: 2.397951\n", + "Epoch : 6 [12/36(33%)]\tLoss: 1.893287\n", + "Epoch : 6 [18/36(50%)]\tLoss: 0.454697\n", + "Epoch : 6 [24/36(67%)]\tLoss: 0.467605\n", + "Epoch : 6 [30/36(83%)]\tLoss: 0.381001\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.539064\n", + "Epoch : 7 [6/36(17%)]\tLoss: 1.890634\n", + "Epoch : 7 [12/36(33%)]\tLoss: 1.339070\n", + "Epoch : 7 [18/36(50%)]\tLoss: 2.234175\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.684829\n", + "Epoch : 7 [30/36(83%)]\tLoss: 1.125388\n", + "Epoch : 8 [0/36(0%)]\tLoss: 1.900899\n", + "Epoch : 8 [6/36(17%)]\tLoss: 1.828272\n", + "Epoch : 8 [12/36(33%)]\tLoss: 1.580706\n", + "Epoch : 8 [18/36(50%)]\tLoss: 1.083183\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.200776\n", + "Epoch : 8 [30/36(83%)]\tLoss: 0.339798\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.267858\n", + "Epoch : 9 [6/36(17%)]\tLoss: 0.379382\n", + "Epoch : 9 [12/36(33%)]\tLoss: 1.278743\n", + "Epoch : 9 [18/36(50%)]\tLoss: 0.836766\n", + "Epoch : 9 [24/36(67%)]\tLoss: 2.466715\n", + "Epoch : 9 [30/36(83%)]\tLoss: 1.716142\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.400726\n", + "Epoch : 10 [6/36(17%)]\tLoss: 0.401261\n", + "Epoch : 10 [12/36(33%)]\tLoss: 2.837988\n", + "Epoch : 10 [18/36(50%)]\tLoss: 0.417636\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.920130\n", + "Epoch : 10 [30/36(83%)]\tLoss: 1.602870\n", + "Epoch : 11 [0/36(0%)]\tLoss: 1.309004\n", + "Epoch : 11 [6/36(17%)]\tLoss: 0.151987\n", + "Epoch : 11 [12/36(33%)]\tLoss: 1.359560\n", + "Epoch : 11 [18/36(50%)]\tLoss: 1.303441\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.295403\n", + "Epoch : 11 [30/36(83%)]\tLoss: 1.382628\n", + "Epoch : 12 [0/36(0%)]\tLoss: 1.168896\n", + "Epoch : 12 [6/36(17%)]\tLoss: 1.369395\n", + "Epoch : 12 [12/36(33%)]\tLoss: 1.545065\n", + "Epoch : 12 [18/36(50%)]\tLoss: 0.580785\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.182766\n", + "Epoch : 12 [30/36(83%)]\tLoss: 1.148893\n", + "Epoch : 13 [0/36(0%)]\tLoss: 1.633968\n", + "Epoch : 13 [6/36(17%)]\tLoss: 1.488160\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.226085\n", + "Epoch : 13 [18/36(50%)]\tLoss: 1.706136\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.422177\n", + "Epoch : 13 [30/36(83%)]\tLoss: 0.330229\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.949657\n", + "Epoch : 14 [6/36(17%)]\tLoss: 0.580374\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.927473\n", + "Epoch : 14 [18/36(50%)]\tLoss: 1.959393\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.352005\n", + "Epoch : 14 [30/36(83%)]\tLoss: 0.225588\n", + "Epoch : 15 [0/36(0%)]\tLoss: 1.296610\n", + "Epoch : 15 [6/36(17%)]\tLoss: 0.229849\n", + "Epoch : 15 [12/36(33%)]\tLoss: 1.977288\n", + "Epoch : 15 [18/36(50%)]\tLoss: 1.222303\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.370004\n", + "Epoch : 15 [30/36(83%)]\tLoss: 0.417258\n", + "Epoch : 16 [0/36(0%)]\tLoss: 1.781260\n", + "Epoch : 16 [6/36(17%)]\tLoss: 0.654886\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.394193\n", + "Epoch : 16 [18/36(50%)]\tLoss: 1.166058\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.165968\n", + "Epoch : 16 [30/36(83%)]\tLoss: 0.553601\n", + "Epoch : 17 [0/36(0%)]\tLoss: 2.482478\n", + "Epoch : 17 [6/36(17%)]\tLoss: 0.265560\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.980500\n", + "Epoch : 17 [18/36(50%)]\tLoss: 0.264857\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.461799\n", + "Epoch : 17 [30/36(83%)]\tLoss: 0.640123\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.559402\n", + "Epoch : 18 [6/36(17%)]\tLoss: 0.973921\n", + "Epoch : 18 [12/36(33%)]\tLoss: 1.157495\n", + "Epoch : 18 [18/36(50%)]\tLoss: 0.349703\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.901509\n", + "Epoch : 18 [30/36(83%)]\tLoss: 1.027236\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.447277\n", + "Epoch : 19 [6/36(17%)]\tLoss: 0.830845\n", + "Epoch : 19 [12/36(33%)]\tLoss: 1.187034\n", + "Epoch : 19 [18/36(50%)]\tLoss: 0.384522\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.084943\n", + "Epoch : 19 [30/36(83%)]\tLoss: 0.442460\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.897299\n", + "Epoch : 20 [6/36(17%)]\tLoss: 0.755689\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.472379\n", + "Epoch : 20 [18/36(50%)]\tLoss: 0.490551\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.136415\n", + "Epoch : 20 [30/36(83%)]\tLoss: 0.711152\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.197751\n", + "Epoch : 21 [6/36(17%)]\tLoss: 0.411152\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.528997\n", + "Epoch : 21 [18/36(50%)]\tLoss: 0.504573\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.004126\n", + "Epoch : 21 [30/36(83%)]\tLoss: 1.608831\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.178852\n", + "Epoch : 22 [6/36(17%)]\tLoss: 0.480259\n", + "Epoch : 22 [12/36(33%)]\tLoss: 1.195150\n", + "Epoch : 22 [18/36(50%)]\tLoss: 0.091800\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.907932\n", + "Epoch : 22 [30/36(83%)]\tLoss: 0.767417\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.430879\n", + "Epoch : 23 [6/36(17%)]\tLoss: 1.672636\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.489114\n", + "Epoch : 23 [18/36(50%)]\tLoss: 0.536694\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.122730\n", + "Epoch : 23 [30/36(83%)]\tLoss: 0.708865\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.309483\n", + "Epoch : 24 [6/36(17%)]\tLoss: 0.777648\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.449275\n", + "Epoch : 24 [18/36(50%)]\tLoss: 0.501902\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.294374\n", + "Epoch : 24 [30/36(83%)]\tLoss: 1.187251\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.790861\n", + "Epoch : 25 [6/36(17%)]\tLoss: 0.631538\n", + "Epoch : 25 [12/36(33%)]\tLoss: 1.005407\n", + "Epoch : 25 [18/36(50%)]\tLoss: 0.669365\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.376691\n", + "Epoch : 25 [30/36(83%)]\tLoss: 0.297374\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.403546\n", + "Epoch : 26 [6/36(17%)]\tLoss: 1.206046\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.385522\n", + "Epoch : 26 [18/36(50%)]\tLoss: 0.129889\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.440866\n", + "Epoch : 26 [30/36(83%)]\tLoss: 0.701802\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.070548\n", + "Epoch : 27 [6/36(17%)]\tLoss: 0.617127\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.665235\n", + "Epoch : 27 [18/36(50%)]\tLoss: 0.360384\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.271670\n", + "Epoch : 27 [30/36(83%)]\tLoss: 0.354018\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.680938\n", + "Epoch : 28 [6/36(17%)]\tLoss: 0.248818\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.514232\n", + "Epoch : 28 [18/36(50%)]\tLoss: 0.492709\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.354993\n", + "Epoch : 28 [30/36(83%)]\tLoss: 0.542415\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.929637\n", + "Epoch : 29 [6/36(17%)]\tLoss: 0.537237\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.405150\n", + "Epoch : 29 [18/36(50%)]\tLoss: 0.610814\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.134008\n", + "Epoch : 29 [30/36(83%)]\tLoss: 0.173096\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.443617\n", + "Epoch : 30 [6/36(17%)]\tLoss: 0.190090\n", + "Epoch : 30 [12/36(33%)]\tLoss: 1.051087\n", + "Epoch : 30 [18/36(50%)]\tLoss: 0.156531\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.172341\n", + "Epoch : 30 [30/36(83%)]\tLoss: 0.607138\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.675803\n", + "Epoch : 31 [6/36(17%)]\tLoss: 0.383659\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.854909\n", + "Epoch : 31 [18/36(50%)]\tLoss: 0.224671\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.103603\n", + "Epoch : 31 [30/36(83%)]\tLoss: 0.485713\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.211679\n", + "Epoch : 32 [6/36(17%)]\tLoss: 0.343030\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.201261\n", + "Epoch : 32 [18/36(50%)]\tLoss: 0.674630\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.160821\n", + "Epoch : 32 [30/36(83%)]\tLoss: 0.778926\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.267954\n", + "Epoch : 33 [6/36(17%)]\tLoss: 0.658938\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.702804\n", + "Epoch : 33 [18/36(50%)]\tLoss: 0.486097\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.383082\n", + "Epoch : 33 [30/36(83%)]\tLoss: 0.202792\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.605238\n", + "Epoch : 34 [6/36(17%)]\tLoss: 0.258349\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.143604\n", + "Epoch : 34 [18/36(50%)]\tLoss: 0.699042\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.173236\n", + "Epoch : 34 [30/36(83%)]\tLoss: 0.373154\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.603755\n", + "Epoch : 35 [6/36(17%)]\tLoss: 0.229070\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.276144\n", + "Epoch : 35 [18/36(50%)]\tLoss: 0.343710\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.425285\n", + "Epoch : 35 [30/36(83%)]\tLoss: 0.395606\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.275225\n", + "Epoch : 36 [6/36(17%)]\tLoss: 0.302472\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.769961\n", + "Epoch : 36 [18/36(50%)]\tLoss: 0.194864\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.249271\n", + "Epoch : 36 [30/36(83%)]\tLoss: 0.173123\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.178454\n", + "Epoch : 37 [6/36(17%)]\tLoss: 0.478488\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.338690\n", + "Epoch : 37 [18/36(50%)]\tLoss: 0.291107\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.828552\n", + "Epoch : 37 [30/36(83%)]\tLoss: 0.195684\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.400808\n", + "Epoch : 38 [6/36(17%)]\tLoss: 0.444077\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.293709\n", + "Epoch : 38 [18/36(50%)]\tLoss: 0.111199\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.577450\n", + "Epoch : 38 [30/36(83%)]\tLoss: 0.586312\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.259011\n", + "Epoch : 39 [6/36(17%)]\tLoss: 0.038859\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.984449\n", + "Epoch : 39 [18/36(50%)]\tLoss: 0.249646\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.346607\n", + "Epoch : 39 [30/36(83%)]\tLoss: 0.410170\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.378226\n", + "Epoch : 40 [6/36(17%)]\tLoss: 0.286662\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.323225\n", + "Epoch : 40 [18/36(50%)]\tLoss: 0.226514\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.402541\n", + "Epoch : 40 [30/36(83%)]\tLoss: 0.200133\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.254956\n", + "Epoch : 41 [6/36(17%)]\tLoss: 0.101516\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.150805\n", + "Epoch : 41 [18/36(50%)]\tLoss: 0.363133\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.701897\n", + "Epoch : 41 [30/36(83%)]\tLoss: 0.379300\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.682549\n", + "Epoch : 42 [6/36(17%)]\tLoss: 0.212808\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.368408\n", + "Epoch : 42 [18/36(50%)]\tLoss: 0.466276\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.258903\n", + "Epoch : 42 [30/36(83%)]\tLoss: 0.194381\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.300274\n", + "Epoch : 43 [6/36(17%)]\tLoss: 0.375221\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.389522\n", + "Epoch : 43 [18/36(50%)]\tLoss: 0.699092\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.198897\n", + "Epoch : 43 [30/36(83%)]\tLoss: 0.531829\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.057890\n", + "Epoch : 44 [6/36(17%)]\tLoss: 0.546469\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.764858\n", + "Epoch : 44 [18/36(50%)]\tLoss: 0.557032\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.240198\n", + "Epoch : 44 [30/36(83%)]\tLoss: 0.343167\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.474389\n", + "Epoch : 45 [6/36(17%)]\tLoss: 0.348931\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.201976\n", + "Epoch : 45 [18/36(50%)]\tLoss: 0.242682\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.421929\n", + "Epoch : 45 [30/36(83%)]\tLoss: 0.183847\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.085930\n", + "Epoch : 46 [6/36(17%)]\tLoss: 0.086074\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.261842\n", + "Epoch : 46 [18/36(50%)]\tLoss: 0.288911\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.272918\n", + "Epoch : 46 [30/36(83%)]\tLoss: 0.838976\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.133252\n", + "Epoch : 47 [6/36(17%)]\tLoss: 0.211231\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.250015\n", + "Epoch : 47 [18/36(50%)]\tLoss: 0.295242\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.365185\n", + "Epoch : 47 [30/36(83%)]\tLoss: 0.357987\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.215357\n", + "Epoch : 48 [6/36(17%)]\tLoss: 0.009172\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.258865\n", + "Epoch : 48 [18/36(50%)]\tLoss: 0.249907\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.278797\n", + "Epoch : 48 [30/36(83%)]\tLoss: 0.361466\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.160715\n", + "Epoch : 49 [6/36(17%)]\tLoss: 0.128147\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.191254\n", + "Epoch : 49 [18/36(50%)]\tLoss: 0.324773\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.243476\n", + "Epoch : 49 [30/36(83%)]\tLoss: 0.569911\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.099596\n", + "Epoch : 50 [6/36(17%)]\tLoss: 0.397075\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.283573\n", + "Epoch : 50 [18/36(50%)]\tLoss: 0.119007\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.290386\n", + "Epoch : 50 [30/36(83%)]\tLoss: 0.114752\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.269920\n", + "Epoch : 51 [6/36(17%)]\tLoss: 0.083404\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.097491\n", + "Epoch : 51 [18/36(50%)]\tLoss: 0.249201\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.608813\n", + "Epoch : 51 [30/36(83%)]\tLoss: 0.740791\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.023241\n", + "Epoch : 52 [6/36(17%)]\tLoss: 0.108144\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.507702\n", + "Epoch : 52 [18/36(50%)]\tLoss: 0.262222\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.145016\n", + "Epoch : 52 [30/36(83%)]\tLoss: 0.586246\n", + "Epoch : 53 [0/36(0%)]\tLoss: 1.085643\n", + "Epoch : 53 [6/36(17%)]\tLoss: 0.205110\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.895370\n", + "Epoch : 53 [18/36(50%)]\tLoss: 0.409061\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.718132\n", + "Epoch : 53 [30/36(83%)]\tLoss: 0.091833\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.076207\n", + "Epoch : 54 [6/36(17%)]\tLoss: 0.395567\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.561963\n", + "Epoch : 54 [18/36(50%)]\tLoss: 0.446378\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.380219\n", + "Epoch : 54 [30/36(83%)]\tLoss: 0.094934\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.435205\n", + "Epoch : 55 [6/36(17%)]\tLoss: 0.143462\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.091203\n", + "Epoch : 55 [18/36(50%)]\tLoss: 0.203511\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.605771\n", + "Epoch : 55 [30/36(83%)]\tLoss: 0.344020\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.189467\n", + "Epoch : 56 [6/36(17%)]\tLoss: 0.356118\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.153569\n", + "Epoch : 56 [18/36(50%)]\tLoss: 0.235099\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.486784\n", + "Epoch : 56 [30/36(83%)]\tLoss: 0.103804\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.153700\n", + "Epoch : 57 [6/36(17%)]\tLoss: 0.356951\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.176532\n", + "Epoch : 57 [18/36(50%)]\tLoss: 0.429583\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.196846\n", + "Epoch : 57 [30/36(83%)]\tLoss: 0.196656\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.075515\n", + "Epoch : 58 [6/36(17%)]\tLoss: 0.225036\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.269354\n", + "Epoch : 58 [18/36(50%)]\tLoss: 0.302932\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.109417\n", + "Epoch : 58 [30/36(83%)]\tLoss: 0.333395\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.352131\n", + "Epoch : 59 [6/36(17%)]\tLoss: 0.752487\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.289071\n", + "Epoch : 59 [18/36(50%)]\tLoss: 0.039652\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.116225\n", + "Epoch : 59 [30/36(83%)]\tLoss: 0.080902\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.272397\n", + "Epoch : 60 [6/36(17%)]\tLoss: 0.097903\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.157691\n", + "Epoch : 60 [18/36(50%)]\tLoss: 0.533456\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.083062\n", + "Epoch : 60 [30/36(83%)]\tLoss: 0.230806\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.222781\n", + "Epoch : 61 [6/36(17%)]\tLoss: 0.364903\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.384747\n", + "Epoch : 61 [18/36(50%)]\tLoss: 0.155332\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.435321\n", + "Epoch : 61 [30/36(83%)]\tLoss: 0.145292\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.103781\n", + "Epoch : 62 [6/36(17%)]\tLoss: 0.306506\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.153479\n", + "Epoch : 62 [18/36(50%)]\tLoss: 0.337080\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.251309\n", + "Epoch : 62 [30/36(83%)]\tLoss: 0.242955\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.087441\n", + "Epoch : 63 [6/36(17%)]\tLoss: 0.115906\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.372951\n", + "Epoch : 63 [18/36(50%)]\tLoss: 0.185549\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.131421\n", + "Epoch : 63 [30/36(83%)]\tLoss: 0.619966\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.233455\n", + "Epoch : 64 [6/36(17%)]\tLoss: 0.161063\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.131513\n", + "Epoch : 64 [18/36(50%)]\tLoss: 0.061368\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.340880\n", + "Epoch : 64 [30/36(83%)]\tLoss: 0.302182\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.462188\n", + "Epoch : 65 [6/36(17%)]\tLoss: 0.256910\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.139457\n", + "Epoch : 65 [18/36(50%)]\tLoss: 0.075599\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.359870\n", + "Epoch : 65 [30/36(83%)]\tLoss: 0.113247\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.313677\n", + "Epoch : 66 [6/36(17%)]\tLoss: 0.158622\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.537946\n", + "Epoch : 66 [18/36(50%)]\tLoss: 0.149310\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.125288\n", + "Epoch : 66 [30/36(83%)]\tLoss: 0.086708\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.071125\n", + "Epoch : 67 [6/36(17%)]\tLoss: 0.218499\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.146712\n", + "Epoch : 67 [18/36(50%)]\tLoss: 0.196738\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.132106\n", + "Epoch : 67 [30/36(83%)]\tLoss: 0.536286\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.310024\n", + "Epoch : 68 [6/36(17%)]\tLoss: 0.054234\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.181129\n", + "Epoch : 68 [18/36(50%)]\tLoss: 0.118671\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.150839\n", + "Epoch : 68 [30/36(83%)]\tLoss: 0.139774\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.187910\n", + "Epoch : 69 [6/36(17%)]\tLoss: 0.621686\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.084671\n", + "Epoch : 69 [18/36(50%)]\tLoss: 0.164249\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.172852\n", + "Epoch : 69 [30/36(83%)]\tLoss: 0.073985\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.174874\n", + "Epoch : 70 [6/36(17%)]\tLoss: 0.197621\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.116429\n", + "Epoch : 70 [18/36(50%)]\tLoss: 0.620843\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.261749\n", + "Epoch : 70 [30/36(83%)]\tLoss: 0.138441\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.074517\n", + "Epoch : 71 [6/36(17%)]\tLoss: 0.244431\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.066475\n", + "Epoch : 71 [18/36(50%)]\tLoss: 0.408789\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.065595\n", + "Epoch : 71 [30/36(83%)]\tLoss: 0.228927\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.292318\n", + "Epoch : 72 [6/36(17%)]\tLoss: 0.146810\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.394246\n", + "Epoch : 72 [18/36(50%)]\tLoss: 0.190826\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.134544\n", + "Epoch : 72 [30/36(83%)]\tLoss: 0.065008\n", + "Epoch : 73 [0/36(0%)]\tLoss: 3.369841\n", + "Epoch : 73 [6/36(17%)]\tLoss: 0.049753\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.134656\n", + "Epoch : 73 [18/36(50%)]\tLoss: 1.645666\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.606362\n", + "Epoch : 73 [30/36(83%)]\tLoss: 0.623104\n", + "Epoch : 74 [0/36(0%)]\tLoss: 12.719373\n", + "Epoch : 74 [6/36(17%)]\tLoss: 0.099318\n", + "Epoch : 74 [12/36(33%)]\tLoss: 102.835365\n", + "Epoch : 74 [18/36(50%)]\tLoss: 67.283539\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.199630\n", + "Epoch : 74 [30/36(83%)]\tLoss: 31.779831\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.467689\n", + "Epoch : 75 [6/36(17%)]\tLoss: 0.926636\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.168478\n", + "Epoch : 75 [18/36(50%)]\tLoss: 2.949016\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.591696\n", + "Epoch : 75 [30/36(83%)]\tLoss: 1.064394\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.972614\n", + "Epoch : 76 [6/36(17%)]\tLoss: 0.669377\n", + "Epoch : 76 [12/36(33%)]\tLoss: 1.131222\n", + "Epoch : 76 [18/36(50%)]\tLoss: 0.861548\n", + "Epoch : 76 [24/36(67%)]\tLoss: 35.605019\n", + "Epoch : 76 [30/36(83%)]\tLoss: 0.215892\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.526098\n", + "Epoch : 77 [6/36(17%)]\tLoss: 0.923627\n", + "Epoch : 77 [12/36(33%)]\tLoss: 1.203469\n", + "Epoch : 77 [18/36(50%)]\tLoss: 3.352507\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.845145\n", + "Epoch : 77 [30/36(83%)]\tLoss: 1.802333\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.232007\n", + "Epoch : 78 [6/36(17%)]\tLoss: 0.300379\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.951327\n", + "Epoch : 78 [18/36(50%)]\tLoss: 3.375023\n", + "Epoch : 78 [24/36(67%)]\tLoss: 1.218309\n", + "Epoch : 78 [30/36(83%)]\tLoss: 1.156554\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.234493\n", + "Epoch : 79 [6/36(17%)]\tLoss: 0.246628\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.647008\n", + "Epoch : 79 [18/36(50%)]\tLoss: 0.432790\n", + "Epoch : 79 [24/36(67%)]\tLoss: 1.182180\n", + "Epoch : 79 [30/36(83%)]\tLoss: 12.006156\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.949562\n", + "Epoch : 80 [6/36(17%)]\tLoss: 0.314957\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.810043\n", + "Epoch : 80 [18/36(50%)]\tLoss: 2.196857\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.983161\n", + "Epoch : 80 [30/36(83%)]\tLoss: 0.596102\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.859142\n", + "Epoch : 81 [6/36(17%)]\tLoss: 61.319912\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.484783\n", + "Epoch : 81 [18/36(50%)]\tLoss: 110.458710\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.639279\n", + "Epoch : 81 [30/36(83%)]\tLoss: 2.228316\n", + "Epoch : 82 [0/36(0%)]\tLoss: 5.809715\n", + "Epoch : 82 [6/36(17%)]\tLoss: 3.203912\n", + "Epoch : 82 [12/36(33%)]\tLoss: 1.216486\n", + "Epoch : 82 [18/36(50%)]\tLoss: 0.564137\n", + "Epoch : 82 [24/36(67%)]\tLoss: 1.842664\n", + "Epoch : 82 [30/36(83%)]\tLoss: 1.111481\n", + "Epoch : 83 [0/36(0%)]\tLoss: 1.170580\n", + "Epoch : 83 [6/36(17%)]\tLoss: 4.031375\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.696435\n", + "Epoch : 83 [18/36(50%)]\tLoss: 1.082865\n", + "Epoch : 83 [24/36(67%)]\tLoss: 2.158972\n", + "Epoch : 83 [30/36(83%)]\tLoss: 0.572473\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.922986\n", + "Epoch : 84 [6/36(17%)]\tLoss: 0.838192\n", + "Epoch : 84 [12/36(33%)]\tLoss: 1.868088\n", + "Epoch : 84 [18/36(50%)]\tLoss: 73.240532\n", + "Epoch : 84 [24/36(67%)]\tLoss: 3.658828\n", + "Epoch : 84 [30/36(83%)]\tLoss: 0.390205\n", + "Epoch : 85 [0/36(0%)]\tLoss: 1.976658\n", + "Epoch : 85 [6/36(17%)]\tLoss: 1.225062\n", + "Epoch : 85 [12/36(33%)]\tLoss: 266.889801\n", + "Epoch : 85 [18/36(50%)]\tLoss: 0.902017\n", + "Epoch : 85 [24/36(67%)]\tLoss: 3.669490\n", + "Epoch : 85 [30/36(83%)]\tLoss: 127.617928\n", + "Epoch : 86 [0/36(0%)]\tLoss: 1.092226\n", + "Epoch : 86 [6/36(17%)]\tLoss: 67.933434\n", + "Epoch : 86 [12/36(33%)]\tLoss: 1.672033\n", + "Epoch : 86 [18/36(50%)]\tLoss: 42.726612\n", + "Epoch : 86 [24/36(67%)]\tLoss: 7.241706\n", + "Epoch : 86 [30/36(83%)]\tLoss: 2.562827\n", + "Epoch : 87 [0/36(0%)]\tLoss: 1.797821\n", + "Epoch : 87 [6/36(17%)]\tLoss: 2.229503\n", + "Epoch : 87 [12/36(33%)]\tLoss: 1.964905\n", + "Epoch : 87 [18/36(50%)]\tLoss: 6.147216\n", + "Epoch : 87 [24/36(67%)]\tLoss: 6.479892\n", + "Epoch : 87 [30/36(83%)]\tLoss: 2.875613\n", + "Epoch : 88 [0/36(0%)]\tLoss: 8.414809\n", + "Epoch : 88 [6/36(17%)]\tLoss: 3.974190\n", + "Epoch : 88 [12/36(33%)]\tLoss: 3.360028\n", + "Epoch : 88 [18/36(50%)]\tLoss: 7.482008\n", + "Epoch : 88 [24/36(67%)]\tLoss: 2.242666\n", + "Epoch : 88 [30/36(83%)]\tLoss: 1.671168\n", + "Epoch : 89 [0/36(0%)]\tLoss: 1.606203\n", + "Epoch : 89 [6/36(17%)]\tLoss: 1.699688\n", + "Epoch : 89 [12/36(33%)]\tLoss: 2.770833\n", + "Epoch : 89 [18/36(50%)]\tLoss: 0.933833\n", + "Epoch : 89 [24/36(67%)]\tLoss: 3.556570\n", + "Epoch : 89 [30/36(83%)]\tLoss: 0.604366\n", + "Epoch : 90 [0/36(0%)]\tLoss: 1.927208\n", + "Epoch : 90 [6/36(17%)]\tLoss: 1.239066\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.722313\n", + "Epoch : 90 [18/36(50%)]\tLoss: 0.806551\n", + "Epoch : 90 [24/36(67%)]\tLoss: 1.883615\n", + "Epoch : 90 [30/36(83%)]\tLoss: 0.220522\n", + "Epoch : 91 [0/36(0%)]\tLoss: 1.029199\n", + "Epoch : 91 [6/36(17%)]\tLoss: 1.531538\n", + "Epoch : 91 [12/36(33%)]\tLoss: 1.759547\n", + "Epoch : 91 [18/36(50%)]\tLoss: 0.881549\n", + "Epoch : 91 [24/36(67%)]\tLoss: 1.689017\n", + "Epoch : 91 [30/36(83%)]\tLoss: 0.562529\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.676592\n", + "Epoch : 92 [6/36(17%)]\tLoss: 1.124748\n", + "Epoch : 92 [12/36(33%)]\tLoss: 1.120721\n", + "Epoch : 92 [18/36(50%)]\tLoss: 0.872815\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.522370\n", + "Epoch : 92 [30/36(83%)]\tLoss: 0.618109\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.213659\n", + "Epoch : 93 [6/36(17%)]\tLoss: 2.170986\n", + "Epoch : 93 [12/36(33%)]\tLoss: 2.248702\n", + "Epoch : 93 [18/36(50%)]\tLoss: 2.239091\n", + "Epoch : 93 [24/36(67%)]\tLoss: 2.697868\n", + "Epoch : 93 [30/36(83%)]\tLoss: 1.131321\n", + "Epoch : 94 [0/36(0%)]\tLoss: 1.076946\n", + "Epoch : 94 [6/36(17%)]\tLoss: 2.555366\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.873257\n", + "Epoch : 94 [18/36(50%)]\tLoss: 1.220926\n", + "Epoch : 94 [24/36(67%)]\tLoss: 1.589047\n", + "Epoch : 94 [30/36(83%)]\tLoss: 1.679684\n", + "Epoch : 95 [0/36(0%)]\tLoss: 1.891107\n", + "Epoch : 95 [6/36(17%)]\tLoss: 0.663794\n", + "Epoch : 95 [12/36(33%)]\tLoss: 2.673156\n", + "Epoch : 95 [18/36(50%)]\tLoss: 1.529525\n", + "Epoch : 95 [24/36(67%)]\tLoss: 1.825976\n", + "Epoch : 95 [30/36(83%)]\tLoss: 0.922602\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.705357\n", + "Epoch : 96 [6/36(17%)]\tLoss: 1.641641\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.964518\n", + "Epoch : 96 [18/36(50%)]\tLoss: 0.668384\n", + "Epoch : 96 [24/36(67%)]\tLoss: 4.322579\n", + "Epoch : 96 [30/36(83%)]\tLoss: 0.529233\n", + "Epoch : 97 [0/36(0%)]\tLoss: 3.278654\n", + "Epoch : 97 [6/36(17%)]\tLoss: 0.730294\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.354096\n", + "Epoch : 97 [18/36(50%)]\tLoss: 0.798599\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.914651\n", + "Epoch : 97 [30/36(83%)]\tLoss: 0.243752\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.792792\n", + "Epoch : 98 [6/36(17%)]\tLoss: 0.675701\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.093855\n", + "Epoch : 98 [18/36(50%)]\tLoss: 0.468604\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.776354\n", + "Epoch : 98 [30/36(83%)]\tLoss: 0.389371\n", + "Epoch : 99 [0/36(0%)]\tLoss: 1.688394\n", + "Epoch : 99 [6/36(17%)]\tLoss: 0.263404\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.167605\n", + "Epoch : 99 [18/36(50%)]\tLoss: 0.588965\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.973092\n", + "Epoch : 99 [30/36(83%)]\tLoss: 0.398584\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.384865\n", + "Epoch : 100 [6/36(17%)]\tLoss: 1.563835\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.557181\n", + "Epoch : 100 [18/36(50%)]\tLoss: 0.689081\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.286379\n", + "Epoch : 100 [30/36(83%)]\tLoss: 0.870730\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.680938\n", + "Epoch : 101 [6/36(17%)]\tLoss: 0.442050\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.933344\n", + "Epoch : 101 [18/36(50%)]\tLoss: 0.218322\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.317497\n", + "Epoch : 101 [30/36(83%)]\tLoss: 0.426083\n", + "Epoch : 102 [0/36(0%)]\tLoss: 1.109933\n", + "Epoch : 102 [6/36(17%)]\tLoss: 0.158786\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.379553\n", + "Epoch : 102 [18/36(50%)]\tLoss: 0.178328\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.149858\n", + "Epoch : 102 [30/36(83%)]\tLoss: 0.607439\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.230417\n", + "Epoch : 103 [6/36(17%)]\tLoss: 0.362516\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.140880\n", + "Epoch : 103 [18/36(50%)]\tLoss: 0.396187\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.076652\n", + "Epoch : 103 [30/36(83%)]\tLoss: 0.332667\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.310046\n", + "Epoch : 104 [6/36(17%)]\tLoss: 0.812822\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.236418\n", + "Epoch : 104 [18/36(50%)]\tLoss: 0.434578\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.239052\n", + "Epoch : 104 [30/36(83%)]\tLoss: 0.118270\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.597732\n", + "Epoch : 105 [6/36(17%)]\tLoss: 0.531988\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.664510\n", + "Epoch : 105 [18/36(50%)]\tLoss: 0.279040\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.696525\n", + "Epoch : 105 [30/36(83%)]\tLoss: 0.142167\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.597683\n", + "Epoch : 106 [6/36(17%)]\tLoss: 0.294101\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.103234\n", + "Epoch : 106 [18/36(50%)]\tLoss: 0.855245\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.121444\n", + "Epoch : 106 [30/36(83%)]\tLoss: 0.478951\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.389475\n", + "Epoch : 107 [6/36(17%)]\tLoss: 1.087856\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.195425\n", + "Epoch : 107 [18/36(50%)]\tLoss: 0.173625\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.043061\n", + "Epoch : 107 [30/36(83%)]\tLoss: 0.352717\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.179039\n", + "Epoch : 108 [6/36(17%)]\tLoss: 0.536110\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.283813\n", + "Epoch : 108 [18/36(50%)]\tLoss: 0.090871\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.312659\n", + "Epoch : 108 [30/36(83%)]\tLoss: 0.106891\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.154622\n", + "Epoch : 109 [6/36(17%)]\tLoss: 0.392797\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.578963\n", + "Epoch : 109 [18/36(50%)]\tLoss: 0.591535\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.115368\n", + "Epoch : 109 [30/36(83%)]\tLoss: 0.509420\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.768169\n", + "Epoch : 110 [6/36(17%)]\tLoss: 0.118197\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.394091\n", + "Epoch : 110 [18/36(50%)]\tLoss: 0.080976\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.180286\n", + "Epoch : 110 [30/36(83%)]\tLoss: 0.123542\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.172618\n", + "Epoch : 111 [6/36(17%)]\tLoss: 0.218067\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.141147\n", + "Epoch : 111 [18/36(50%)]\tLoss: 0.460004\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.193006\n", + "Epoch : 111 [30/36(83%)]\tLoss: 0.145130\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.488930\n", + "Epoch : 112 [6/36(17%)]\tLoss: 0.179750\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.245076\n", + "Epoch : 112 [18/36(50%)]\tLoss: 0.114840\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.320025\n", + "Epoch : 112 [30/36(83%)]\tLoss: 0.295626\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.759944\n", + "Epoch : 113 [6/36(17%)]\tLoss: 0.064492\n", + "Epoch : 113 [12/36(33%)]\tLoss: 1.199525\n", + "Epoch : 113 [18/36(50%)]\tLoss: 0.259818\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.272911\n", + "Epoch : 113 [30/36(83%)]\tLoss: 0.296827\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.159150\n", + "Epoch : 114 [6/36(17%)]\tLoss: 0.091708\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.138736\n", + "Epoch : 114 [18/36(50%)]\tLoss: 0.122963\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.344788\n", + "Epoch : 114 [30/36(83%)]\tLoss: 0.112649\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.180079\n", + "Epoch : 115 [6/36(17%)]\tLoss: 0.227955\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.376193\n", + "Epoch : 115 [18/36(50%)]\tLoss: 0.350139\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.659816\n", + "Epoch : 115 [30/36(83%)]\tLoss: 0.144657\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.210013\n", + "Epoch : 116 [6/36(17%)]\tLoss: 0.571910\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.220492\n", + "Epoch : 116 [18/36(50%)]\tLoss: 2.272974\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.722035\n", + "Epoch : 116 [30/36(83%)]\tLoss: 0.232504\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.062753\n", + "Epoch : 117 [6/36(17%)]\tLoss: 0.064161\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.071717\n", + "Epoch : 117 [18/36(50%)]\tLoss: 0.172628\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.219890\n", + "Epoch : 117 [30/36(83%)]\tLoss: 0.534218\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.354081\n", + "Epoch : 118 [6/36(17%)]\tLoss: 0.426698\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.174897\n", + "Epoch : 118 [18/36(50%)]\tLoss: 0.340198\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.174137\n", + "Epoch : 118 [30/36(83%)]\tLoss: 0.196453\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.177256\n", + "Epoch : 119 [6/36(17%)]\tLoss: 0.352865\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.135174\n", + "Epoch : 119 [18/36(50%)]\tLoss: 0.159987\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.842922\n", + "Epoch : 119 [30/36(83%)]\tLoss: 0.261793\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.385063\n", + "Epoch : 120 [6/36(17%)]\tLoss: 0.107991\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.332020\n", + "Epoch : 120 [18/36(50%)]\tLoss: 0.560043\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.270980\n", + "Epoch : 120 [30/36(83%)]\tLoss: 0.403778\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.192637\n", + "Epoch : 121 [6/36(17%)]\tLoss: 0.151545\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.120354\n", + "Epoch : 121 [18/36(50%)]\tLoss: 0.319577\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.415029\n", + "Epoch : 121 [30/36(83%)]\tLoss: 0.388238\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.132614\n", + "Epoch : 122 [6/36(17%)]\tLoss: 0.090033\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.322347\n", + "Epoch : 122 [18/36(50%)]\tLoss: 0.154459\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.809650\n", + "Epoch : 122 [30/36(83%)]\tLoss: 0.269429\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.245376\n", + "Epoch : 123 [6/36(17%)]\tLoss: 0.119164\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.387067\n", + "Epoch : 123 [18/36(50%)]\tLoss: 0.165872\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.041171\n", + "Epoch : 123 [30/36(83%)]\tLoss: 0.138812\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.054688\n", + "Epoch : 124 [6/36(17%)]\tLoss: 0.159392\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.166988\n", + "Epoch : 124 [18/36(50%)]\tLoss: 0.326587\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.375290\n", + "Epoch : 124 [30/36(83%)]\tLoss: 0.531928\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.300878\n", + "Epoch : 125 [6/36(17%)]\tLoss: 0.087902\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.154143\n", + "Epoch : 125 [18/36(50%)]\tLoss: 0.125778\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.249460\n", + "Epoch : 125 [30/36(83%)]\tLoss: 0.133553\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.041772\n", + "Epoch : 126 [6/36(17%)]\tLoss: 0.204622\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.140386\n", + "Epoch : 126 [18/36(50%)]\tLoss: 0.180318\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.090402\n", + "Epoch : 126 [30/36(83%)]\tLoss: 0.201399\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.405775\n", + "Epoch : 127 [6/36(17%)]\tLoss: 0.108344\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.450601\n", + "Epoch : 127 [18/36(50%)]\tLoss: 0.216860\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.128336\n", + "Epoch : 127 [30/36(83%)]\tLoss: 0.167995\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.202221\n", + "Epoch : 128 [6/36(17%)]\tLoss: 0.186202\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.529513\n", + "Epoch : 128 [18/36(50%)]\tLoss: 0.164291\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.105880\n", + "Epoch : 128 [30/36(83%)]\tLoss: 0.245320\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.138535\n", + "Epoch : 129 [6/36(17%)]\tLoss: 0.161283\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.154673\n", + "Epoch : 129 [18/36(50%)]\tLoss: 0.084565\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.206926\n", + "Epoch : 129 [30/36(83%)]\tLoss: 0.225562\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.245667\n", + "Epoch : 130 [6/36(17%)]\tLoss: 0.084159\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.062941\n", + "Epoch : 130 [18/36(50%)]\tLoss: 0.054142\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.390961\n", + "Epoch : 130 [30/36(83%)]\tLoss: 0.116688\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.136555\n", + "Epoch : 131 [6/36(17%)]\tLoss: 0.284964\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.362835\n", + "Epoch : 131 [18/36(50%)]\tLoss: 0.186836\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.278055\n", + "Epoch : 131 [30/36(83%)]\tLoss: 0.102143\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.050786\n", + "Epoch : 132 [6/36(17%)]\tLoss: 0.231531\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.083026\n", + "Epoch : 132 [18/36(50%)]\tLoss: 0.400751\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.268667\n", + "Epoch : 132 [30/36(83%)]\tLoss: 0.205448\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.094088\n", + "Epoch : 133 [6/36(17%)]\tLoss: 0.192220\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.167280\n", + "Epoch : 133 [18/36(50%)]\tLoss: 0.135429\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.217528\n", + "Epoch : 133 [30/36(83%)]\tLoss: 0.447770\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.271674\n", + "Epoch : 134 [6/36(17%)]\tLoss: 0.530523\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.021405\n", + "Epoch : 134 [18/36(50%)]\tLoss: 0.361863\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.186222\n", + "Epoch : 134 [30/36(83%)]\tLoss: 0.189936\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.459656\n", + "Epoch : 135 [6/36(17%)]\tLoss: 0.107108\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.116203\n", + "Epoch : 135 [18/36(50%)]\tLoss: 0.195681\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.179724\n", + "Epoch : 135 [30/36(83%)]\tLoss: 0.162040\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.011443\n", + "Epoch : 136 [6/36(17%)]\tLoss: 0.041357\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.162508\n", + "Epoch : 136 [18/36(50%)]\tLoss: 0.099451\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.121898\n", + "Epoch : 136 [30/36(83%)]\tLoss: 0.541782\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.152728\n", + "Epoch : 137 [6/36(17%)]\tLoss: 0.130085\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.256350\n", + "Epoch : 137 [18/36(50%)]\tLoss: 0.257110\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.332473\n", + "Epoch : 137 [30/36(83%)]\tLoss: 0.032539\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.125433\n", + "Epoch : 138 [6/36(17%)]\tLoss: 0.166761\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.093310\n", + "Epoch : 138 [18/36(50%)]\tLoss: 0.085774\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.109534\n", + "Epoch : 138 [30/36(83%)]\tLoss: 0.156493\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.145761\n", + "Epoch : 139 [6/36(17%)]\tLoss: 0.161404\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.335532\n", + "Epoch : 139 [18/36(50%)]\tLoss: 0.166434\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.058041\n", + "Epoch : 139 [30/36(83%)]\tLoss: 0.204345\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.199551\n", + "Epoch : 140 [6/36(17%)]\tLoss: 0.062383\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.125405\n", + "Epoch : 140 [18/36(50%)]\tLoss: 0.144914\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.148058\n", + "Epoch : 140 [30/36(83%)]\tLoss: 0.150687\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.118983\n", + "Epoch : 141 [6/36(17%)]\tLoss: 1.023777\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.209858\n", + "Epoch : 141 [18/36(50%)]\tLoss: 0.150454\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.137919\n", + "Epoch : 141 [30/36(83%)]\tLoss: 0.100986\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.133646\n", + "Epoch : 142 [6/36(17%)]\tLoss: 0.174662\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.083238\n", + "Epoch : 142 [18/36(50%)]\tLoss: 0.172380\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.097094\n", + "Epoch : 142 [30/36(83%)]\tLoss: 0.060915\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.366261\n", + "Epoch : 143 [6/36(17%)]\tLoss: 0.227913\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.236050\n", + "Epoch : 143 [18/36(50%)]\tLoss: 0.117458\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.497034\n", + "Epoch : 143 [30/36(83%)]\tLoss: 0.027992\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.053335\n", + "Epoch : 144 [6/36(17%)]\tLoss: 0.203574\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.270039\n", + "Epoch : 144 [18/36(50%)]\tLoss: 0.133844\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.084505\n", + "Epoch : 144 [30/36(83%)]\tLoss: 0.331770\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.053721\n", + "Epoch : 145 [6/36(17%)]\tLoss: 0.165064\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.121223\n", + "Epoch : 145 [18/36(50%)]\tLoss: 0.087087\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.351447\n", + "Epoch : 145 [30/36(83%)]\tLoss: 0.389364\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.171402\n", + "Epoch : 146 [6/36(17%)]\tLoss: 0.127015\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.094621\n", + "Epoch : 146 [18/36(50%)]\tLoss: 0.195566\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.616622\n", + "Epoch : 146 [30/36(83%)]\tLoss: 0.075825\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.206116\n", + "Epoch : 147 [6/36(17%)]\tLoss: 0.018409\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.083936\n", + "Epoch : 147 [18/36(50%)]\tLoss: 0.104666\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.191175\n", + "Epoch : 147 [30/36(83%)]\tLoss: 0.070275\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.227934\n", + "Epoch : 148 [6/36(17%)]\tLoss: 0.185090\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.190087\n", + "Epoch : 148 [18/36(50%)]\tLoss: 0.148435\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.328254\n", + "Epoch : 148 [30/36(83%)]\tLoss: 0.264559\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.080325\n", + "Epoch : 149 [6/36(17%)]\tLoss: 0.091150\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.066419\n", + "Epoch : 149 [18/36(50%)]\tLoss: 0.554178\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.133934\n", + "Epoch : 149 [30/36(83%)]\tLoss: 0.054944\n", + "--- 0.06382423639297485 minutes ---\n" + ] + } + ], + "source": [ + "# calculate the time for the code execution\n", + "start_time = tt.time()\n", + "\n", + "# switch model into training mode\n", + "model.train()\n", + "\n", + "hist_train = []\n", + "hist_valid = []\n", + "for epoch in range(config.epoch):\n", + " # training loop\n", + " # switch model into train mode\n", + " model.train()\n", + " hist_train_step = 0\n", + " for batch_idx, (X_batch, y_batch) in enumerate(train_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " # note: decoder input is the last instance of encoder input\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch) # we only need the last instance from output sequence\n", + " loss.backward()\n", + " optimizer.step()\n", + " wandb.log({'train_loss': loss.item()})\n", + " print(f'Epoch : {epoch} [{batch_idx*len(X_batch)}/{len(train_loader.dataset)}'\n", + " f'({100.* batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item():.6f}')\n", + " hist_train_step += loss.item()\n", + "\n", + " hist_train.append(hist_train_step / len(train_loader.dataset))\n", + "\n", + " # cross-validation loop\n", + " # switch model into evaluation mode\n", + " model.eval()\n", + " hist_valid_step = 0\n", + "\n", + " for batch_idx, (X_batch, y_batch) in enumerate(valid_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'validation_loss': loss.item()})\n", + " hist_valid_step += loss.item()\n", + "\n", + " hist_valid.append(hist_valid_step / len(valid_loader.dataset))\n", + "\n", + "print (f\"--- {(tt.time() - start_time)/60} minutes ---\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's check the training loss and validation loss." + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADalUlEQVR4nOzdd3iTVf8G8DtNR1q6mC2zDFllKiAisgREVGQpiAuUH+hrARVcvCqgorgHWsVXEURBZSqooICIgKDIkj0E2WWVtnSPPL8/Tk6eJ6tN2qRZ9+e6eiVN0ienpTS5n+/3nKNTFEUBEREREREREVWqEG8PgIiIiIiIiCgYMZATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREfmhnj17omfPnk4/tnXr1p4dkEnDhg0xatSoSnkuIn/HQE4URObOnQudTgedToeNGzfa3K8oCurXrw+dTofbbrvNfHt2djamTp2K1q1bo0qVKqhevTrat2+PRx99FGfOnDE/btq0aebj2/tIS0urlO+TiIjIWfK18a+//vL2UCrszJkzmDZtGnbu3OntobhNw4YNodPp0KdPH7v3f/LJJ+b3Gdb/hhs3bkT//v1Rt25dGAwGNGjQAAMGDMCCBQssHlfae5eHH37YY98bEQCEensARFT5DAYDFixYgBtuuMHi9vXr1+PUqVOIiIgw31ZUVITu3bvjwIEDGDlyJMaPH4/s7Gzs3bsXCxYswODBg1GnTh2L43z00UeIjo62ed74+HiPfD9ERETB6Oeff7b4/MyZM3jhhRfQsGFDtG/f3juDAnDw4EGEhLiv7mcwGLBu3TqkpaUhMTHR4r758+fDYDAgPz/f4vZFixZh+PDh5gJC1apVcezYMfz222/45JNPcPfdd1s8vm/fvrj//vttnrtZs2Zu+z6I7GEgJwpCt9xyCxYtWoSZM2ciNFT9M7BgwQJ06NABFy9eNN/27bffYseOHZg/f77Ni1d+fj4KCwttjn/HHXegRo0anvsGiIiIglhubi6ioqIQHh7u7aHYpT2x7w5du3bF1q1b8c033+DRRx81337q1Cls2LABgwcPxpIlSyy+Ztq0aUhOTsaWLVtsfk7nz5+3eY5mzZrh3nvvdeu4iZzBlnWiIDRixAhcunQJq1evNt9WWFiIxYsX24Tuf/75B4B4MbRmMBgQGxvr2cESERH5gB07dqB///6IjY1FdHQ0evfujS1bttg87u+//0aPHj0QGRmJevXqYfr06ZgzZw50Oh3+/fdf8+O+++473HrrrahTpw4iIiLQpEkTvPTSSygpKbE4npz7vW3bNnTv3h1RUVH473//a75PziH/9ddf0alTJwDAAw88YG65njt3rsXx9u3bh169eiEqKgp169bF66+/bnH/r7/+Cp1Oh4ULF+KFF15A3bp1ERMTgzvuuAOZmZkoKCjAY489hlq1aiE6OhoPPPAACgoKLI5hbw55RkYGHn/8cTRs2BARERGoV68e7r//fosigCMGgwFDhgyxaTX/6quvULVqVfTr18/ma/755x906tTJ7kmLWrVqlfmcRJWFFXKiINSwYUN06dIFX331Ffr37w8AWLlyJTIzM3HXXXdh5syZ5scmJSUBAObNm4fnnnsOOp2uzOOnp6fb3BYaGsqWdSIi8kt79+5Ft27dEBsbi6eeegphYWH4+OOP0bNnT6xfvx6dO3cGAJw+fRq9evWCTqfD5MmTUaVKFXz66ad2K8Zz585FdHQ0Jk6ciOjoaPzyyy+YMmUKsrKy8MYbb1g89tKlS+jfvz/uuusu3HvvvUhISLA5XsuWLfHiiy9iypQpGDt2LLp16wYAuP76682PuXz5Mm6++WYMGTIEw4YNw+LFi/H000+jTZs25vcD0owZMxAZGYlnnnkGR44cwfvvv4+wsDCEhITg8uXLmDZtGrZs2YK5c+eiUaNGmDJlisOfX3Z2Nrp164b9+/fjwQcfxDXXXIOLFy9i+fLlOHXqlFNddXfffTduuukm/PPPP2jSpAkA0dl3xx13ICwszObxSUlJWLt2LU6dOoV69eqVefz8/Hy7JwdiY2N9thOBAoRCREFjzpw5CgBl69atygcffKDExMQoubm5iqIoyp133qn06tVLURRFSUpKUm699VZFURQlNzdXad68uQJASUpKUkaNGqXMnj1bOXfunM3xp06dqgCw+9G8efPK+0aJiIicpH1tdGTQoEFKeHi48s8//5hvO3PmjBITE6N0797dfNv48eMVnU6n7Nixw3zbpUuXlGrVqikAlGPHjplvl6+/Wg899JASFRWl5Ofnm2/r0aOHAkCZNWuWzeN79Oih9OjRw/z51q1bFQDKnDlz7D4WgDJv3jzzbQUFBUpiYqIydOhQ823r1q1TACitW7dWCgsLzbePGDFC0el0Sv/+/S2O26VLFyUpKcnitqSkJGXkyJHmz6dMmaIAUJYuXWozLqPRaHOb9bFuvfVWpbi4WElMTFReeuklRVEUZd++fQoAZf369Xb/DWfPnq0AUMLDw5VevXopzz//vLJhwwalpKTE5jkcvXcBoHz11Veljo+ootiyThSkhg0bhry8PHz//fe4cuUKvv/+e5t2dQCIjIzEH3/8gSeffBKAOKM/evRo1K5dG+PHj7dpUwOAJUuWYPXq1RYfc+bM8fj3RERE5G4lJSX4+eefMWjQIDRu3Nh8e+3atXH33Xdj48aNyMrKAgCsWrUKXbp0sVhQrVq1arjnnntsjhsZGWm+fuXKFVy8eBHdunVDbm4uDhw4YPHYiIgIPPDAAxX+XqKjoy3mSYeHh+Paa6/F0aNHbR57//33W1SeO3fuDEVR8OCDD1o8rnPnzjh58iSKi4sdPu+SJUvQrl07DB482OY+ZzrvAECv12PYsGH46quvAIjF3OrXr2/uBLD24IMPYtWqVejZsyc2btyIl156Cd26dUPTpk3x+++/2zx+4MCBNu9dVq9ejV69ejk1PqLyYss6UZCqWbMm+vTpgwULFiA3NxclJSW444477D42Li4Or7/+Ol5//XUcP34ca9euxZtvvokPPvgAcXFxmD59usXju3fvzkXdiIgoIFy4cAG5ublo3ry5zX0tW7aE0WjEyZMn0apVKxw/fhxdunSxedxVV11lc9vevXvx3HPP4ZdffjEHeikzM9Pi87p167qlbbpevXo2Abhq1ar4+++/bR7boEEDi8/j4uIAAPXr17e53Wg0IjMzE9WrV7f7vP/88w+GDh1akaEDEG3rM2fOxK5du7BgwQLcddddpQb6fv36oV+/fsjNzcW2bdvwzTffYNasWbjttttw4MABi7nk9erVc7i1GpEnsUJOFMTuvvturFy5ErNmzUL//v2dmuOdlJSEBx98EJs2bUJ8fDzmz5/v+YESEREFkIyMDPTo0QO7du3Ciy++iBUrVmD16tV47bXXAABGo9Hi8dpqekXo9Xq7tyuK4vRjXTmGu3Xu3BlNmjTBY489hmPHjtnt7LMnKioK3bp1wwcffIDnnnsOly9fxsqVKz08WiLnsEJOFMQGDx6Mhx56CFu2bME333zj0tdWrVoVTZo0wZ49ezw0OiIiIu+rWbMmoqKicPDgQZv7Dhw4gJCQEHPVOCkpCUeOHLF5nPVtv/76Ky5duoSlS5eie/fu5tuPHTtWobE62/5d2dz5fmHEiBGYPn06WrZsWa691jt27AgAOHv2rFvGQ1RRrJATBbHo6Gh89NFHmDZtGgYMGGD3Mbt27bK76ujx48exb98+uy18REREgUKv1+Omm27Cd999Z7Ft2blz57BgwQLccMMN5i1A+/Xrh82bN2Pnzp3mx6Wnp9t0k8kqs7aqXFhYiA8//LBCY61SpQoAUYH3JUOHDsWuXbuwbNkym/tcraz/3//9H6ZOnYq33nqr1MetXbvW7u0//vgjAPD9C/kMVsiJgtzIkSNLvX/16tWYOnUqbr/9dlx33XWIjo7G0aNH8dlnn6GgoADTpk2z+ZrFixcjOjra5va+ffva3aqFiIjI2z777DOsWrXK5vZHH30U06dPx+rVq3HDDTfgkUceQWhoKD7++GMUFBRY7OP91FNP4csvv0Tfvn0xfvx487ZnDRo0QHp6urmCff3116Nq1aoYOXIkJkyYAJ1Ohy+++KLCbd9NmjRBfHw8Zs2ahZiYGFSpUgWdO3dGo0aNKnTcinryySexePFi3HnnnXjwwQfRoUMHpKenY/ny5Zg1axbatWvn9LGSkpLsvvewNnDgQDRq1AgDBgxAkyZNkJOTgzVr1mDFihXo1KmTTSHi0KFD+PLLL22Ok5CQgL59+zo9PiJXMZATUamGDh2KK1eu4Oeff8Yvv/yC9PR0VK1aFddeey0mTZpkd/XR//znP3aPtW7dOgZyIiLySR999JHd20eNGoVWrVphw4YNmDx5MmbMmAGj0YjOnTvjyy+/NO9BDogFz9atW4cJEybglVdeQc2aNZGSkoIqVapgwoQJMBgMAIDq1avj+++/x6RJk/Dcc8+hatWquPfee9G7d2/069ev3N9DWFgYPv/8c0yePBkPP/wwiouLMWfOHK8H8ujoaGzYsAFTp07FsmXL8Pnnn6NWrVro3bu3U3uEl8enn36K7777DgsXLsSZM2egKAoaN26MZ599Fk8//TRCQy1jkFxV3VqPHj0YyMmjdEplrMBARERERBSkHnvsMXz88cfIzs52uCgaEQUnziEnIiIiInKTvLw8i88vXbqEL774AjfccAPDOBHZYMs6EREREZGbdOnSBT179kTLli1x7tw5zJ49G1lZWXj++ee9PTQi8kEM5EREREREbnLLLbdg8eLF+N///gedTodrrrkGs2fPttjejIhI4hxyIiIiIiIiIi/gHHIiIiIiIiIiL2AgJyIiIiIiIvKCgJ9DbjQacebMGcTExECn03l7OERERFAUBVeuXEGdOnUQEsJz4xXF13oiIvI1zr7WB3wgP3PmDOrXr+/tYRAREdk4efIk6tWr5+1h+D2+1hMRka8q67U+4AN5TEwMAPGDiI2N9fJoiIiIgKysLNSvX9/8GkUVw9d6IiLyNc6+1gd8IJeta7GxsXyRJiIin8L2avfgaz0REfmqsl7rOXGNiIiIiIiIyAsYyImIiIiIiIi8gIGciIiI/FJqaiqSk5PRqVMnbw+FiIioXHSKoijeHoQnZWVlIS4uDpmZmZxXRkSlUhQFxcXFKCkp8fZQyM/p9XqEhoY6nDfG1yb34s+TiJzF13pyF3e91gf8om5ERM4oLCzE2bNnkZub6+2hUICIiopC7dq1ER4e7u2hEBER+FpP7ueO13oGciIKekajEceOHYNer0edOnUQHh7O1a+p3BRFQWFhIS5cuIBjx46hadOmCAnhDDEiIm/iaz25kztf6xnIiSjoFRYWwmg0on79+oiKivL2cCgAREZGIiwsDMePH0dhYSEMBoO3h0REFNT4Wk/u5q7Xep6yJyIyYRWT3Im/T0REvod/m8md3PH7xN9IIiIiIiIiIi9gICciIiK/xG3PiIjI3zGQExGRWcOGDfHuu+86/fhff/0VOp0OGRkZHhsTAMydOxfx8fEefQ7yPykpKdi3bx+2bt3q7aEQEfkVvt77DgZyIiI/pNPpSv2YNm1auY67detWjB071unHX3/99Th79izi4uLK9XxERETkGF/vAx9XWSci8kNnz541X//mm28wZcoUHDx40HxbdHS0+bqiKCgpKUFoaNl/8mvWrOnSOMLDw5GYmOjS1xAREZFz+Hof+Fghd0G3bkCbNsCxY94eCRF5kqIAOTne+VAU58aYmJho/oiLi4NOpzN/fuDAAcTExGDlypXo0KEDIiIisHHjRvzzzz8YOHAgEhISEB0djU6dOmHNmjUWx7VuYdPpdPj0008xePBgREVFoWnTpli+fLn5fusWNtlq9tNPP6Fly5aIjo7GzTffbPGGori4GBMmTEB8fDyqV6+Op59+GiNHjsSgQYNc+nf66KOP0KRJE4SHh6N58+b44osvNP+GCqZNm4YGDRogIiICderUwYQJE8z3f/jhh2jatCkMBgMSEhJwxx13uPTcFLieekq81i9Y4O2REJGneev13tnXeoCv90Dgv94zkLtg3z5gzx4gP9/bIyEiT8rNBaKjvfORm+u+7+OZZ57Bq6++iv3796Nt27bIzs7GLbfcgrVr12LHjh24+eabMWDAAJw4caLU47zwwgsYNmwY/v77b9xyyy245557kJ6eXsrPLxdvvvkmvvjiC/z22284ceIEnnjiCfP9r732GubPn485c+Zg06ZNyMrKwrfffuvS97Zs2TI8+uijmDRpEvbs2YOHHnoIDzzwANatWwcAWLJkCd555x18/PHHOHz4ML799lu0adMGAPDXX39hwoQJePHFF3Hw4EGsWrUK3bt3d+n5KXCdOiVe68+f9/ZIiMjTvPV6787XeoCv937/eq8EuMzMTAWAkpmZWeFj1aihKICi7NnjhoERkc/Iy8tT9u3bp+Tl5SmKoijZ2eL/ujc+srNdH/+cOXOUuLg48+fr1q1TACjffvttmV/bqlUr5f333zd/npSUpLzzzjvmzwEozz33nPnz7OxsBYCycuVKi+e6fPmyeSwAlCNHjpi/JjU1VUlISDB/npCQoLzxxhvmz4uLi5UGDRooAwcOdPp7vP7665UxY8ZYPObOO+9UbrnlFkVRFOWtt95SmjVrphQWFtoca8mSJUpsbKySlZXl8Pncwfr3Ssudr03k3p/nyJHi/+Lrr1d8XETkO+z9TfbW6315XusVha/3ki+93rvjtZ4VchfIfd+NRu+Og4g8KyoKyM72zkdUlPu+j44dO1p8np2djSeeeAItW7ZEfHw8oqOjsX///jLPmLdt29Z8vUqVKoiNjcX5UsqHUVFRaNKkifnz2rVrmx+fmZmJc+fO4dprrzXfr9fr0aFDB5e+t/3796Nr164Wt3Xt2hX79+8HANx5553Iy8tD48aNMWbMGCxbtgzFxcUAgL59+yIpKQmNGzfGfffdh/nz5yPX3eUK8lvh4eKysNC74yAiz/PW6707X+sBvt77++s9A7kLGMiJgoNOB1Sp4p0Pnc5930eVKlUsPn/iiSewbNkyvPLKK9iwYQN27tyJNm3aoLCM5BEWFmb189HBWMofQnuPV1yZMOcG9evXx8GDB/Hhhx8iMjISjzzyCLp3746ioiLExMRg+/bt+Oqrr1C7dm1MmTIF7dq18/hWLuR+ntiHnIGcKHh46/Xena/1AF/v/f31noHcBQzkROTPNm3ahFGjRmHw4MFo06YNEhMT8e+//1bqGOLi4pCQkGCxb3RJSQm2b9/u0nFatmyJTZs2Wdy2adMmJCcnmz+PjIzEgAEDMHPmTPz666/YvHkzdu/eDQAIDQ1Fnz598Prrr+Pvv//Gv//+i19++aUC3xl5gyf2IWcgJyJ/x9d7/3q957ZnLmAgJyJ/1rRpUyxduhQDBgyATqfD888/X+qZb08ZP348ZsyYgauuugotWrTA+++/j8uXL0PnQsngySefxLBhw3D11VejT58+WLFiBZYuXWpeRXbu3LkoKSlB586dERUVhS+//BKRkZFISkrC999/j6NHj6J79+6oWrUqfvzxRxiNRjRv3txT3zL5EQZyIvJ3fL33r9d7BnIXyEBeUuLdcRARlcfbb7+NBx98ENdffz1q1KiBp59+GllZWZU+jqeffhppaWm4//77odfrMXbsWPTr1w96vd7pYwwaNAjvvfce3nzzTTz66KNo1KgR5syZg549ewIA4uPj8eqrr2LixIkoKSlBmzZtsGLFClSvXh3x8fFYunQppk2bhvz8fDRt2hRfffUVWrVq5aHvmPwJAzkR+Tu+3vvX671OqexG/0qWlZWFuLg4ZGZmIjY2tkLHatxY7EG+eTNw3XVuGiAReV1+fj6OHTuGRo0awWAweHs4QcdoNKJly5YYNmwYXnrpJW8Px21K+71y52sTuffnOX068PzzwNixwMcfu2mAROR1fK33vkB8vXfHaz0r5C5gyzoRUcUdP34cP//8M3r06IGCggJ88MEHOHbsGO6++25vD42IFXIiIjfh671zuKibCxjIiYgqLiQkBHPnzkWnTp3QtWtX7N69G2vWrEHLli29PTQiBnIiIjfh671zWCF3AQM5EVHF1a9f32bFVCJfwUBOROQefL13DivkLmAgJyIiCmwM5EREVJkYyF3AQE5EROQ7UlNTkZycjE6dOrntmGFh4pKBnIiIKgMDuQsYyImIiHxHSkoK9u3bh61bt7rtmKyQExFRZWIgdwEDORERUWBjICciosrk1UA+bdo06HQ6i48WLVqY78/Pz0dKSgqqV6+O6OhoDB06FOfOnfPaeBnIiYiIAhsDORERVSavV8hbtWqFs2fPmj82btxovu/xxx/HihUrsGjRIqxfvx5nzpzBkCFDvDZWBnIiIqLAxkBORESVyeuBPDQ0FImJieaPGjVqAAAyMzMxe/ZsvP3227jxxhvRoUMHzJkzB7///ju2bNnilbEykBNRoOnZsycee+wx8+cNGzbEu+++W+rX6HQ6fPvttxV+bncdpzTTpk1D+/btPfocFFhkIC8q8u44iIjcia/3vsvrgfzw4cOoU6cOGjdujHvuuQcnTpwAAGzbtg1FRUXo06eP+bEtWrRAgwYNsHnzZofHKygoQFZWlsWHuzCQE5GvGDBgAG6++Wa7923YsAE6nQ5///23y8fdunUrxo4dW9HhWXD0Inn27Fn079/frc9FVFGskBORL+HrfeDzaiDv3Lkz5s6di1WrVuGjjz7CsWPH0K1bN1y5cgVpaWkIDw9HfHy8xdckJCQgLS3N4TFnzJiBuLg480f9+vXdNl4GciLyFaNHj8bq1atx6tQpm/vmzJmDjh07om3bti4ft2bNmoiKinLHEMuUmJiIiIiISnkuImcxkBORL+HrfeDzaiDv378/7rzzTrRt2xb9+vXDjz/+iIyMDCxcuLDcx5w8eTIyMzPNHydPnnTbeBnIiYKEogA5Od75UBSnhnjbbbehZs2amDt3rsXt2dnZWLRoEUaPHo1Lly5hxIgRqFu3LqKiotCmTRt89dVXpR7XuoXt8OHD6N69OwwGA5KTk7F69Wqbr3n66afRrFkzREVFoXHjxnj++edRZOr3nTt3Ll544QXs2rXLvHinHLN1C9vu3btx4403IjIyEtWrV8fYsWORnZ1tvn/UqFEYNGgQ3nzzTdSuXRvVq1dHSkqK+bmcYTQa8eKLL6JevXqIiIhA+/btsWrVKvP9hYWFGDduHGrXrg2DwYCkpCTMmDEDAKAoCqZNm4YGDRogIiICderUwYQJE5x+bvIPDOREQcRbr/dOvtYDfL0Phtf7UI8duRzi4+PRrFkzHDlyBH379kVhYSEyMjIsquTnzp1DYmKiw2NERER47AwMAzlRkMjNBaKjvfPc2dlAlSplPiw0NBT3338/5s6di2effRY6nQ4AsGjRIpSUlGDEiBHIzs5Ghw4d8PTTTyM2NhY//PAD7rvvPjRp0gTXXnttmc9hNBoxZMgQJCQk4I8//kBmZqbF/DMpJiYGc+fORZ06dbB7926MGTMGMTExeOqppzB8+HDs2bMHq1atwpo1awAAcXFxNsfIyclBv3790KVLF2zduhXnz5/H//3f/2HcuHEWb0LWrVuH2rVrY926dThy5AiGDx+O9u3bY8yYMWV+PwDw3nvv4a233sLHH3+Mq6++Gp999hluv/127N27F02bNsXMmTOxfPlyLFy4EA0aNMDJkyfNJ3aXLFmCd955B19//TVatWqFtLQ07Nq1y6nnJf/BQE4URLz1eu/kaz3A1/ugeL1XfMiVK1eUqlWrKu+9956SkZGhhIWFKYsXLzbff+DAAQWAsnnzZqePmZmZqQBQMjMzKzy+Hj0UBVCUb76p8KGIyIfk5eUp+/btU/Ly8sQN2dniP7s3PrKznR73/v37FQDKunXrzLd169ZNuffeex1+za233qpMmjTJ/HmPHj2URx991Px5UlKS8s477yiKoig//fSTEhoaqpw+fdp8/8qVKxUAyrJlyxw+xxtvvKF06NDB/PnUqVOVdu3a2TxOe5z//e9/StWqVZVszff/ww8/KCEhIUpaWpqiKIoycuRIJSkpSSkuLjY/5s4771SGDx/ucCzWz12nTh3l5ZdftnhMp06dlEceeURRFEUZP368cuONNypGo9HmWG+99ZbSrFkzpbCw0OHzadn8Xmm487WJ3PvzPHJE/FeMiXHDwIjIZ9j9m+yt13sXXusVha/3iuK7r/fueK33aoX8iSeewIABA5CUlIQzZ85g6tSp0Ov1GDFiBOLi4jB69GhMnDgR1apVQ2xsLMaPH48uXbrguuuu88p4WSEnChJRUeLstbee20ktWrTA9ddfj88++ww9e/bEkSNHsGHDBrz44osAgJKSErzyyitYuHAhTp8+jcLCQhQUFDg9Z2z//v2oX78+6tSpY76tS5cuNo/75ptvMHPmTPzzzz/Izs5GcXExYmNjnf4+5HO1a9cOVTQVg65du8JoNOLgwYNISEgAILbK1Ov15sfUrl0bu3fvduo5srKycObMGXTt2tXi9q5du5rPfI8aNQp9+/ZF8+bNcfPNN+O2227DTTfdBAC488478e6776Jx48a4+eabccstt2DAgAEIDfWpZjOqIFbIiYKIt17vXZy7zdf7wH699+oc8lOnTmHEiBFo3rw5hg0bhurVq2PLli2oWbMmAOCdd97BbbfdhqFDh6J79+5ITEzE0qVLvTZeBnKiIKHTiVYyb3yYWtGcNXr0aCxZsgRXrlzBnDlz0KRJE/To0QMA8MYbb+C9997D008/jXXr1mHnzp3o168fCt2YNDZv3ox77rkHt9xyC77//nvs2LEDzz77rFufQyssLMzic51OB6Mb/yhfc801OHbsGF566SXk5eVh2LBhuOOOOwAA9evXx8GDB/Hhhx8iMjISjzzyCLp37+7SnDbyfdpA7sI0TyLyR956vXfxtR7g630gv957NZB//fXXOHPmDAoKCnDq1Cl8/fXXaNKkifl+g8GA1NRUpKenIycnB0uXLi11/rinMZATka8ZNmwYQkJCsGDBAsybNw8PPvigeX7Zpk2bMHDgQNx7771o164dGjdujEOHDjl97JYtW+LkyZM4e/as+bYtW7ZYPOb3339HUlISnn32WXTs2BFNmzbF8ePHLR4THh6OkpKSMp9r165dyMnJMd+2adMmhISEoHnz5k6PuTSxsbGoU6cONm3aZHH7pk2bkJycbPG44cOH45NPPsE333yDJUuWID09HQAQGRmJAQMGYObMmfj111+xefNmp8/Yk/ulpqYiOTkZnTp1ctsxZSBXFKCMX1siokrD13vn+dvrPfvsXCC7JvgCTUS+Ijo6GsOHD8fkyZORlZWFUaNGme9r2rQpFi9ejN9//x1Vq1bF22+/jXPnzlm8GJWmT58+aNasGUaOHIk33ngDWVlZePbZZy0e07RpU5w4cQJff/01OnXqhB9++AHLli2zeEzDhg1x7Ngx7Ny5E/Xq1UNMTIzN4pv33HMPpk6dipEjR2LatGm4cOECxo8fj/vuu8/cvuYOTz75JKZOnYomTZqgffv2mDNnDnbu3In58+cDAN5++23Url0bV199NUJCQrBo0SIkJiYiPj4ec+fORUlJCTp37oyoqCh8+eWXiIyMRFJSktvGR65JSUlBSkoKsrKy7C4eVB4ykAOiSs4ZCUTkC/h67xp/er33aoXc37BCTkS+aPTo0bh8+TL69etnMf/rueeewzXXXIN+/fqhZ8+eSExMxKBBg5w+bkhICJYtW4a8vDxce+21+L//+z+8/PLLFo+5/fbb8fjjj2PcuHFo3749fv/9dzz//PMWjxk6dChuvvlm9OrVCzVr1rS7FUtUVBR++uknpKeno1OnTrjjjjvQu3dvfPDBB679MMowYcIETJw4EZMmTUKbNm2watUqLF++HE2bNgUgVpB9/fXX0bFjR3Tq1An//vsvfvzxR4SEhCA+Ph6ffPIJunbtirZt22LNmjVYsWIFqlev7tYxkndZB3IiIl/B13vn+dPrvU5RAnuGlDxrnpmZ6fKiA9YGDAC+/x749FNg9Gg3DZCIvC4/Px/Hjh1Do0aNYDAYvD0cChCl/V6587WJ3PvzVBT1BPy5c0CtWm4YIBF5HV/ryRPc8VrPCrkLWCEnIiIKbDodV1onIqLKw0DuAgZyIiKiwCcX92UgJyIiT2MgdwEDORERUeBjhZyIiCoLA7kLGMiJiIgCHwM5ERFVFgZyFzCQEwW2AF/jkioZf5/8FwM5UeDi32ZyJ3f8PjGQu4CBnCgwhZkmjObm5np5JBRI5O+T/P0i/yEDeVGRd8dBRO7D13ryBHe81oe6azDBgIGcKDDp9XrEx8fj/PnzAMQemTqdzsujIn+lKApyc3Nx/vx5xMfHQ6/Xe3tI5CJWyIkCD1/ryZ3c+VrPQO4CBnKiwJWYmAgA5hdqooqKj483/16Rf2EgJwpMfK0nd3PHaz0DuQsYyIkCl06nQ+3atVGrVi0UsU+VKigsLIyVcT/GQE4UmPhaT+7krtd6BnIXMJATBT69Xs8gRRTkGMiJAhtf68mXcFE3FzCQExERBT4GciIiqiwM5C5gICciIgp8DORERFRZGMhdwEBOREQU+BjIiYiosjCQu4CBnIiIKPAxkBMRUWVhIHcBAzkREZHvSE1NRXJyMjp16uTW4zKQExFRZWEgdwEDORERke9ISUnBvn37sHXrVrcel4GciIgqCwO5C+TuCCUl3h0HEREReQ4DORERVRYGchewQk5ERBT4GMiJiKiyMJC7gIGciIgo8DGQExFRZWEgdwEDORERUeALCxOXDORERORpDOQuYCAnIiIKfKyQExFRZWEgdwEDORERUeBjICciosrCQO4CBnIiIqLAJwN5UZF3x0FERIGPgdwFDORERESBjxVyIiKqLKHeHoA/YSAnIiIKcAcPIunEOdRBExQW1vX2aIiIKMCxQu4CBnIiIqIAN2UKhrzbA0OwlBVyIiLyOAZyFzCQExERBTjTnmehKGYgJyIij2MgdwEDORERUYALFbP5GMiJiKgyMJC7gIGciIgowJkCeRiKGMiJiMjjGMhdwEBOREQU4NiyTkRElYiB3AUM5ERERAGOLetEleP0aeDOO4HffvP2SIi8itueuYCBnIiIKMCxZZ2ocixcCCxeLN5gd+/u7dEQeQ0r5C5gICciIgpwrJATVY5z58RlTo53x0HkZQzkLmAgJyIiCnCcQ05UOS5cEJd5ed4dB5GXMZC7gIGciIgowLFlnahyMJATAWAgdwkDORERUYBjyzpR5WAgJwLAQO4SvV5clpR4dxxERETkIWxZJ6ocDOREABjIXcIKORERUYBjhZyocly8KC4ZyCnIMZC7gIGciIgowGnmkBcVeXksRIGqsBDIzAQAGHMZyCm4MZC7gIGciIjIMwYPHoyqVavijjvu8O5ANC3rRiOnqRF5hKyOAyjMZCCn4MZA7gIGciIiIs949NFHMW/ePG8Pw6JlHQDb1ok8Qc4fBxBWzEBOwY2B3AUM5ERERJ7Rs2dPxMTEeHsYFi3rAAM5kUdoArleKQHnh1AwYyB3AQM5ERGRrd9++w0DBgxAnTp1oNPp8O2339o8JjU1FQ0bNoTBYEDnzp3x559/Vv5AncEKOZHnaQI5AC7sRkGNgdwFDORERES2cnJy0K5dO6Smptq9/5tvvsHEiRMxdepUbN++He3atUO/fv1w/vz5Sh6pE0xzyMN0DOREHsNATmQW6u0B+BMGciIiIlv9+/dH//79Hd7/9ttvY8yYMXjggQcAALNmzcIPP/yAzz77DM8884zLz1dQUICCggLz51lZWa4P2hFThTxcVwwoDOREHsFATmTGCrkLGMiJiIhcU1hYiG3btqFPnz7m20JCQtCnTx9s3ry5XMecMWMG4uLizB/169d313DVQB7COeREHsNATmTGQO4CBnIiIiLXXLx4ESUlJUhISLC4PSEhAWlpaebP+/TpgzvvvBM//vgj6tWrV2pYnzx5MjIzM80fJ0+edN+A2bJO5HlWgdyYw0BOwYst6y5gICciIvKMNWvWOP3YiIgIREREeGYg5lXWGciJPMYqkOdfzkOUl4ZC5G2skLuAgZyIiMg1NWrUgF6vx7lz5yxuP3fuHBITE700qlLIQK5jyzqRx1gF8rx0VsgpeDGQu4CBnIiIyDXh4eHo0KED1q5da77NaDRi7dq16NKlS4WOnZqaiuTkZHTq1Kmiw1SZAzkr5EQeYwrkOaa6eP5lBnIKXmxZdwEDORERka3s7GwcOXLE/PmxY8ewc+dOVKtWDQ0aNMDEiRMxcuRIdOzYEddeey3effdd5OTkmFddL6+UlBSkpKQgKysLcXFxFf02BNMccu5DTuQhJSVAejoA4AQaoCUOoCCDgZyCFwO5CxjIiYiIbP3111/o1auX+fOJEycCAEaOHIm5c+di+PDhuHDhAqZMmYK0tDS0b98eq1atslnozSeYKuQM5EQecukSoCgAgFOoh5Y4gMJMBnIKXj7Tsv7qq69Cp9PhscceM9+Wn5+PlJQUVK9eHdHR0Rg6dKjNHLTKxEBORERkq2fPnlAUxeZj7ty55seMGzcOx48fR0FBAf744w907tzZewMujXlRN84hJ/IIU7v6ZV01ZCMaAFCYxUBOwcsnAvnWrVvx8ccfo23btha3P/7441ixYgUWLVqE9evX48yZMxgyZIiXRslATkREFPBky7rCCjmRR5gC+QVdTeQhEgBQzEBOQczrgTw7Oxv33HMPPvnkE1StWtV8e2ZmJmbPno23334bN954Izp06IA5c+bg999/x5YtW7wyVgZyIiIi3+HJRd30bFkn8gwZyBVNIL/CQE7By+uBPCUlBbfeeiv69Oljcfu2bdtQVFRkcXuLFi3QoEEDbN682eHxCgoKkJWVZfHhLnq9uGQgJyIi8r6UlBTs27cPW7dudd9B5RxyRbSsFxW579BEBHMgP6cJ5MYcBnIKXl5d1O3rr7/G9u3b7b6QpqWlITw8HPHx8Ra3JyQkIC0tzeExZ8yYgRdeeMHdQwWgVshLSjxyeCIiIvI2U8u6ni3rRJ4hK+RgICcCvFghP3nyJB599FHMnz8fBoPBbcedPHkyMjMzzR8nT55027HZsk5ERBTgZMs6AzmRZ9gJ5EouAzkFL68F8m3btuH8+fO45pprEBoaitDQUKxfvx4zZ85EaGgoEhISUFhYiIyMDIuvO3fuHBITEx0eNyIiArGxsRYf7sJATkREFOBkIDdylXUij7ATyJHPQE7By2st671798bu3bstbnvggQfQokULPP3006hfvz7CwsKwdu1aDB06FABw8OBBnDhxAl26dPHGkBnIiYiIAp15DnkxAAWFhTrvjoco0GgCeS2cBwDoGMgpiHktkMfExKB169YWt1WpUgXVq1c33z569GhMnDgR1apVQ2xsLMaPH48uXbrguuuu88aQGciJiIh8SGpqKlJTU1HizsVdTHPIASAERhQW6t13bCKyCOQxuAIACGEgpyDm1UXdyvLOO+8gJCQEQ4cORUFBAfr164cPP/zQa+NhICciIvIdKSkpSElJQVZWFuLi4txz0FD1rVEoihnIidxNE8hr4ywAQF/IQE7By6cC+a+//mrxucFgMJ/99gUM5ERERAFOE8jDUITCwggvDoYowCgKcPEiAOAiapjnkOuL8r05KiKv8vo+5P6EgZyIiCjAaVrWRYXci2MhCjSFheb9g68gxhzIQ4tZIafgxUDuAgZyIiKiAKdXW9QZyIncLF+thOfDABhEIA9nIKcgxkDuAgZyIiKiABcSYn7BFy3rXh4PUSDRBPJChCOymimQlzCQU/BiIHcBAzkREVEQkFufmSrkFy4AU6YA//7r3WERedK33wKjRgG5uR58ElMgLw4zANAhqroI5BFKHhTFg89L5MMYyF3AQE5EROQ7UlNTkZycjE6dOrn3wKZ55DKQv/8+8NJLwDvvuPdpiHzJjBnA558Dv/3mwSeRgTzUAACoUkME8kjkIY9FcgpSDOQuYCAnIiLyHSkpKdi3bx+2bt3q3gNbVch37RI3mxaHJgpIsps835MLnstArheBPLqmGsivXPHg8xL5MAZyFzCQExERBQFTIJdzyHfvFjdnZ3txTEQeVlxseekRpkBeZArk+mgZyPNxJYs96xScGMhdwEBOREQUBDQt6+npwLFj4mYGcgpklRnIC02BPDQm0nxXziXuRU7BiYHcBQzkREREQUDTsi6r4wDYUksBrahIXFZKINeJQB4Wqwby3EucRE7BiYHcBQzkREREQUDTsq5dcZoVcgpkMojLYO4RpkBeECICeUSVUBRD/H9jIKdgxUDuAgZyIiKiIKBpWddihZwCWWW2rBdABPKoKKBAL6rkBRkM5BScGMhdoNeLSwZyIiKiAKZpWddihZwCWWUG8nxTII+MBApNgTz/MgM5BScGchewQk5EROQ7PLYPuYNAfuUKoHAhaApQ7ppDPmsWkJwMnDxp586CAgBAvhIBQARyuSc5K+QUrBjIXSADuaLwBZmIiMjbPL0PeRgsJ9OWlJjzBFHAcdcc8q+/BvbvB377zc6dpgp5nqK2rJeEiQp5URYDOQUnBnIXhGh+WqySExERBSirOeT166t3sW2dApW7WtZLDfamQJ5rVFvWi8MZyCm4MZC7gIGciIgoCFi1rLdrJyp5ABd2o8DlrpZ1+fWFhXbutBPIjREikBdfYSCn4MRA7gIGciIioiBg1bLeujUQHS3uYoWcApGiiCkZQMUDuQz2pQXyHKPasq4YRCAvyWYgp+DEQO4CBnIiIqIgYNWyrg3krJBTIJJhHKicCnlOsVohhymQG3MYyCk4MZC7gIGciIgoCFi1rLduDcTEiLtYIadApA3hFV3UTX59aXPIs7WBPEoEciWXgZyCU6i3B+BPGMiJiIiCgCmQR4UWIdoAtGjBCjkFNm14rowK+ZVitWW92BTIkcdATsGJFXIXMJATEREFAVMgn/RoMdasASIiWCGnwKYN4ZURyOW2Z5GRQEgVEch1+QzkFJxYIXcBAzkREVEQMM0hb9a4GOgsbuKibhTI3BnInVnULR9qhTw/hoGcghsr5C5gICciIvIdqampSE5ORqdOndx7YFOFXJtMZIWcLesUiNw5h9yZCnk+DAgJEee+wkyBPKSAgZyCEwO5CxjIiYiIfEdKSgr27duHrVu3uvfAMpBrkgkr5BTI3DmH3NkKeWQkoNMBobEikIcW5UFRKvbcRP6IgdwFOp16nYGciIgoQJla1rXJhIu6USCr7Dnk+TAgKkrcFB4nAnmEkoeCgoo9N5E/YiB3kaySM5ATEREFqFJa1lkhp0DkjUAeaVpcPcIUyCORxxNeFJQYyF3EQE5ERBTgSmlZZ2CgQOStlnVAXWU9Enk84UVBiYHcRQzkREREAc5Oyzor5BTIPLGom93j2GlZl8mcFXIKVgzkLmIgJyIiCnB2Wta5qBsFMne1rBuN6ntkZyvkDOQU7BjIXcRATkRE/mD79u3YvXu3+fPvvvsOgwYNwn//+18U2n2nTGbc9oyCjLsCufZryxPI87jzGQUhBnIX6fXikoGciIh82UMPPYRDhw4BAI4ePYq77roLUVFRWLRoEZ566ikvj87HcdszCjLumkPuSiC317LOQE7BiIHcRayQExGRPzh06BDat28PAFi0aBG6d++OBQsWYO7cuViyZIl3B+fruO0ZBRl3Vci1wd4mkCtKmRVy091EQYWB3EUM5ERE5A8URYHR9GK1Zs0a3HLLLQCA+vXr4+LFi94cmu/jtmcUZNy1qFupFfKiIhHKwZZ1Ii0GchfJQF5S4t1xEBERlaZjx46YPn06vvjiC6xfvx633norAODYsWNISEjw8uh8XCkt6zk5PClPgadSKuQFBepVRNhtWWeFnIIRA7mLWCEnIiJ/8O6772L79u0YN24cnn32WVx11VUAgMWLF+P666/38uh8XCnbngEilBMFkkqZQ65J2wWIYIWcyCTU2wPwNwzkRETkD9q2bWuxyrr0xhtvQC9XKPVzqampSE1NRYm729bstKwbDOI9gNEo2ta1AZ3I33lilXWb1ndTIC8KCYdiDLEJ5KEoQX52MRhPKNiwQu4iBnIiIvIHJ0+exKlTp8yf//nnn3jssccwb948hMkKsJ9LSUnBvn37sHXrVvce2E4g1+m49RkFLnfNIS+1ZV0Gcr0BAGxa1gGgJJslcgo+DOQuYiAnIiJ/cPfdd2PdunUAgLS0NPTt2xd//vknnn32Wbz44oteHp2PszOHHODWZxS4KmUfcqtAbs7hBoP69VcYyCn4MJC7iIGciIj8wZ49e3DttdcCABYuXIjWrVvj999/x/z58zF37lzvDs7X2ZlDDnDrMwpc7ppD7kyFvEBnFch1OhSFituMOQzkFHwYyF3EQE5ERP6gqKgIERERAMS2Z7fffjsAoEWLFjh79qw3h+b77LSsA9z6jAJXZVbIC3VWLesAisNEOmcgp2DEQO4iBnIiIvIHrVq1wqxZs7BhwwasXr0aN998MwDgzJkzqF69updH5+PKaFlnhZwCTWUG8nzrCjnUQK7kMpBT8GEgdxEDORER+YPXXnsNH3/8MXr27IkRI0agXbt2AIDly5ebW9nJAQct66yQU6DSnnty56JuiqK5UwZy2AZyYzhb1il4cV8BFzGQExGRP+jZsycuXryIrKwsVK1a1Xz72LFjEaXtFSVbDlrWWSGnQOWJCrn83LypgymQ5yl2WtYjxdkufS7/c1HwYSB3EQM5ERH5C71ej+LiYmzcuBEA0Lx5czRs2NC7g/IHDlrWWSGnQOWuQG5dXS8qchzILVrWq8QBAMJyM8v/5ER+ii3rLmIgJyIif5CTk4MHH3wQtWvXRvfu3dG9e3fUqVMHo0ePRm5urreH59vKWGWdgZwCjacq5BbzyE2BPNdop2U92hTI8xjIKfgwkLuIgZyIiPzBxIkTsX79eqxYsQIZGRnIyMjAd999h/Xr12PSpEneHp5vY8s6BRl3zSF3JZBrW9aNMSKQG/Izyv/kRH6KLesuYiAnIiJ/sGTJEixevBg9e/Y033bLLbcgMjISw4YNw0cffeS9wfk6bntGQcZTLev2AnlOiW2FXImPBwAY8lkhp+DDCrmLGMiJiMgf5ObmIiEhweb2WrVqsWW9LNz2jIKMNoQbjeV/n1velnXEiQp5ZBEDOQUfBnIXMZATEZE/6NKlC6ZOnYp805tgAMjLy8MLL7yALl26eHFkfoDbnlGQsQ7SJSXlO44zFXK57VlEhHpXSLwI5FGFDOQUfNiy7iIGciIi8gfvvfce+vXrh3r16pn3IN+1axcMBgN++uknL4/Ox3EOOQUZ6yBtsV2ZC5ypkNsL5Prq8QCA6OIM15+UyM8xkLtIrxeXDOREROTLWrdujcOHD2P+/Pk4cOAAAGDEiBG45557EGnRK0o2uO0ZBRnrIF1UZNVSXs7jlBbItYFfX01UyKNLWCGn4MNA7iJWyImIyF9ERUVhzJgx3h6G/+G2ZxRkrIN0eRd2c7ZlPSIC0OnUu0Kri0Aeo2TCaFTfbxMFAwZyFzGQExGRr1q+fLnTj7399ts9OJLKkZqaitTUVJSUd8KrI2xZpyBjr2W9POxV2s2sArlWWA0RyOORgYKC8lXnifwVA7mLZCB392s/ERFRRQ0aNMipx+l0OveHWC9ISUlBSkoKsrKyEGdapdktrAP5iRPA9OmoOuxRAK1YIaeA440KuVZEQjwAIA6ZyMtjIKfgwkDuIlbIiYjIVxn54uQe1nPI580DPvkEVREB4H0UFoqgER7utRESuVWple0KHMcikBcUiAtEwGCwfJxsWY9FFs7lKQB0IAoWnKHhIgZyIiKiAGc9hzwjAwAQXphjfgir5BRI3FUhd3ZRN+sKudyHXA8j8i/yPxcFF68G8o8++ght27ZFbGwsYmNj0aVLF6xcudJ8f35+PlJSUlC9enVER0dj6NChOHfunBdHzEBOREQU8GSFvKQEUBQgNxcAEFJcaA4SnEdOgcRdc8jL27KOyEgUmRp3iy5klO/JifyUVwN5vXr18Oqrr2Lbtm3466+/cOONN2LgwIHYu3cvAODxxx/HihUrsGjRIqxfvx5nzpzBkCFDvDlkBnIiIqJAF6qZ0VdcDOSYKuOFhVxpnQKS1yvkOh2yQuIBAEUXufUZBRevziEfMGCAxecvv/wyPvroI2zZsgX16tXD7NmzsWDBAtx4440AgDlz5qBly5bYsmULrrvuOm8MmYGciIgo0Gk3SC4uNlfIUVhoXmzKlC2IAoJ1kA755zBQtyYQH+/SccpdIQeQrY9DdeNFlKQzkFNw8Zk55CUlJfj666+Rk5ODLl26YNu2bSgqKkKfPn3Mj2nRogUaNGiAzZs3OzxOQUEBsrKyLD7ciYGciIgowDmqkBcUmBejYiCnQKIN5PVwEi0GtwDKsTViuSvkAHJCxTxy42UGcgouXg/ku3fvRnR0NCIiIvDwww9j2bJlSE5ORlpaGsLDwxFvdWYuISEBaWlpDo83Y8YMxMXFmT/q16/v1vEykBMRkT/48ccf8dNPP9nc/tNPP1ms10J2lNKyzkBOgUhb2W6EY9AZjcCePS4fp7z7kANATlg8AMCYnuHy8xL5M68H8ubNm2Pnzp34448/8J///AcjR47Evn37yn28yZMnIzMz0/xx8uRJN46WgZyIiPzDM888Y3evcUVR8Mwzz3hhRH5Er1evFxVZtKwzkFMg0gbpKJh+3y9fdnn/s4q0rOeFiwo5Mlkhp+Di9X3Iw8PDcdVVVwEAOnTogK1bt+K9997D8OHDUVhYiIyMDIsq+blz55CYmOjweBEREYiw97/cTRjIiYjIHxw+fBjJyck2t7do0QJHjhzxwoj8iE4nquTFxayQU1CwG8gBID0dSEgo13EA1wJ5fgQDOQUnr1fIrRmNRhQUFKBDhw4ICwvD2rVrzfcdPHgQJ06cQJcuXbw2PgZyIiLyB3FxcTh69KjN7UeOHEGVKlW8MCI/I9vWrRZ1YyCnQOQwkF+86NJxKlIhLzSIQK67wkBOwcWrFfLJkyejf//+aNCgAa5cuYIFCxbg119/xU8//YS4uDiMHj0aEydORLVq1RAbG4vx48ejS5cuXlthHWAgJyIi/zBw4EA89thjWLZsGZo0aQJAhPFJkybh9nIs1hR0ZCAvKmKFnAKeNkhbBPILF1w6jsMKeXExYJpC4yiQF0TGAwBCr2S49JxE/s6rgfz8+fO4//77cfbsWcTFxaFt27b46aef0LdvXwDAO++8g5CQEAwdOhQFBQXo168fPvzwQ28OmYGciIj8wuuvv46bb74ZLVq0QL169QAAp06dQrdu3fDmm296eXR+QG59xpZ1CgLuqpDL44SFiZBvDuSa/zCOAnlRlKiQ67NZIafg4tVAPnv27FLvNxgMSE1NRWpqaiWNqGwM5ERE5A/i4uLw+++/Y/Xq1di1axciIyPRtm1bdO/e3dtD8w+yQl5YCOTlievc9owClLtb1iMjHQfyAkTYDeTFVUQgD8tlIKfg4vVF3fwNAzkREfkLnU6Hm266CTfddJO3h+J/ZCC/ckW9jRVyClAySIeEAFHGilfIo6KArCzbQF4cEgajUW8/kMfEAwDCczNcek4if8dA7iIGciIi8lUzZ87E2LFjYTAYMHPmzFIfO2HChEoalZ+SLevaFZ8ZyClAySBtMABRueWfQy6DvVw30jw33fQfpkhvAIywG8iVGFEhD89nhZyCCwO5i+TWpAzkRETka9555x3cc889MBgMeOeddxw+TqfTMZCXRVbIGcgpCMhAHhlpFcgrUCEHbCvkRXoDUATz/yMtJVYEckMBAzkFFwZyF7FCTkREvurYsWN2r1M5MJBTELEI5G5Y1E1WyK0DeWGI+A9kr0KOOBHIIxnIKcj43D7kvo6BnIiIKAjYC+RFRTBEKAAYyCmwyNZyg6Fi257J4ziqkJcayOPjAQCRxVfMW6QRBYNyVchPnjwJnU5n3kblzz//xIIFC5CcnIyxY8e6dYC+hoGciIj8gaIoWLx4MdatW4fz58/DaPXCtXTpUi+NzE/Ym0MOoEpYIYAIBnIKKBZzyN1QIXcUyAt0jgO5vlqc+klWFlC1qkvPTeSvylUhv/vuu7Fu3ToAQFpaGvr27Ys///wTzz77LF588UW3DtDXyEDOE3dEROTLHnvsMdx33304duwYoqOjERcXZ/FBZZAV8qwsi5ujQkXCYCCnQOKulvWyKuSlBfLw6HDkwTQnJJNt6xQ8ylUh37NnD6699loAwMKFC9G6dWts2rQJP//8Mx5++GFMmTLFrYP0JayQExGRP/jiiy+wdOlS3HLLLd4ein+y17IOBnIKTA4DeV4ekJurJmwnj+MwkMNxII+MBDIRh0jkM5BTUClXhbyoqAgRpv9Ja9aswe233w4AaNGiBc6ePeu+0fkgBnIiIvIHcXFxaNy4sbeH4b9ky3pGhsXNkXoGcgo8DueQAy7NI3e4qFtBgbiAyA+OAnkG4sUnVv/viAJZuQJ5q1atMGvWLGzYsAGrV6/GzTffDAA4c+YMqlev7tYB+hoGciIi8gfTpk3DCy+8gLy8PG8PxT+xZZ2ChKKoUzHtBnIX2tbLalnPK6VCbjCICjkAVsgpqJQrkL/22mv4+OOP0bNnT4wYMQLt2rUDACxfvtzcyh6oGMiJiMgfDBs2DJcvX0atWrXQpk0bXHPNNRYfvub7779H8+bN0bRpU3z66afeHo7DlnVDCAM5BRbtukgWLeum/wMl55wP5NYt6zKgmwO5UnbLOgAGcgoq5ZpD3rNnT1y8eBFZWVmoqlkBcezYsYhyco6Jv2IgJyIifzBy5Ehs27YN9957LxISEqDT6bw9JIeKi4sxceJErFu3DnFxcejQoQMGDx7s3a47R3PI9aL1loGcAoU5NMMqkNetCxw/jjGDLmDkaqBHD+eP5Wgf8jxj6RVyc8s6AzkFkXIF8ry8PCiKYg7jx48fx7Jly9CyZUv069fPrQP0NQzkRETkD3744Qf89NNPuOGGG7w9lDL9+eefaNWqFerWrQsA6N+/P37++WeMGDHCe4NysO2ZRYU8LQ2oWRPQ6yt5cETuI6vaAGCIUNRAnpQEHD+O2KKL2LzZuUBe1qJuuc5WyDmHnIJIuVrWBw4ciHnz5gEAMjIy0LlzZ7z11lsYNGgQPvroI7cO0NcwkBMRkT+oX78+YmNjK+W5fvvtNwwYMAB16tSBTqfDt99+a/OY1NRUNGzYEAaDAZ07d8aff/5pvu/MmTPmMA4AdevWxenTpytj6I45qJBHmAL5VVnbgTp1gIcfruyREbmVNpBHRxQhFKYe9gYNAAA1cBG5uXa+sJRjOaqQ55ZRIWfLOgWjcgXy7du3o1u3bgCAxYsXIyEhAcePH8e8efMwc+ZMtw7Q1zCQExGRP3jrrbfw1FNP4d9///X4c+Xk5KBdu3ZITU21e/8333yDiRMnYurUqdi+fTvatWuHfv364fz58x4fW7nJQK6dYAvAoBMJo2HuPrEalubEApE/sgjkIZrkXY5ALlvWIyPFpU0gL3GuQm7MYCCn4FGulvXc3FzExMQAAH7++WcMGTIEISEhuO6663D8+HG3DtDXMJATEZE/uPfee5Gbm4smTZogKioKYbIF2yQ9Pd1tz9W/f3/079/f4f1vv/02xowZgwceeAAAMGvWLPzwww/47LPP8Mwzz6BOnToWFfHTp0+XukhsQUEBCkzbKAFAltVK6G5h9fOSIkyBPKTQNIn8zBn3PzdRJZIhWq9X54+X6PTQ16kDAKiJC9idYwTuvhcIDwfmzAEcrEnhsGXdtNtDThmBXM4hN6ZnlK9qSOSHyhXIr7rqKnz77bcYPHgwfvrpJzz++OMAgPPnz1dae5y3MJATEZE/ePfdd709BABAYWEhtm3bhsmTJ5tvCwkJQZ8+fbB582YAwLXXXos9e/bg9OnTiIuLw8qVK/H88887POaMGTPwwgsveHbgofbfIoVDJIzQItN2chcvij2W7SUMIj8gQ3RoKBCpiEBeGBqFyJo1AYgKec2T24EfvhIPfPFFc/XcmsNF3S5fBgBcNIr1p8pqWTdeZoWcgke5AvmUKVNw99134/HHH8eNN96ILl26ABDV8quvvtqtA/Q1DOREROQPRo4c6e0hAAAuXryIkpISJCQkWNyekJCAAwcOAABCQ0Px1ltvoVevXjAajXjqqadKXWF98uTJmDhxovnzrKws1K9f370DdxTIlQLTpWaZ9bQ0sQAWkR+SgTwsDDAYNYG8Rg0AIpC3/Hel+gU7dzoM5A4r5Ka9zC9CHNNgsP1avR7I0ccBJYDClnUKIuUK5HfccQduuOEGnD171rwHOQD07t0bgwcPdtvgfBEDORER+Quj0YgjR47g/PnzMFq9cHXv3t1Lo7Lv9ttvx+233+7UYyMiIhDh6Yq0g5Z1WSE3QBPIz5xhICe/pa2Qy0BeoI8SOwhAtKy3ObNK/YKdOwEH/1etF3UrKRHvmUMuXACgBnJH/31zwqsCeYDusvum1BD5unIFcgBITExEYmIiTp06BQCoV69eqfO9AgUDORER+YMtW7bg7rvvxvHjx6EoisV9Op0OJVaLlXlKjRo1oNfrce7cOYvbz507h8TExEoZQ7lYV8hDQ4HiYoQpDgI5kZ+SbeY2gVxTIa9++ZL6BTt22D2OoqhrIMoKuTx+hFWFPDzc/lhyImsAeUBI+sVyfjdE/qdc6yUYjUa8+OKLiIuLQ1JSEpKSkhAfH4+XXnrJ5gx8oGEgJyIif/Dwww+jY8eO2LNnD9LT03H58mXzhzsXdCtLeHg4OnTogLVr15pvMxqNWLt2rXnKm0+yDuRVxdzXkOJC0drLQE4Bwm6FPCQKME0bCYECPYxq18jOnaUeB7AM5IWFMLesX0BNhIc7XBMOOVGiKh+addnygEQBrFwV8meffRazZ8/Gq6++iq5duwIANm7ciGnTpiE/Px8vv/yyWwfpS/R6cclATkREvuzw4cNYvHgxrrrqKo8/V3Z2No4cOWL+/NixY9i5cyeqVauGBg0aYOLEiRg5ciQ6duyIa6+9Fu+++y5ycnLMq66XV2pqKlJTUz1T7bcXyC9cAAoLYTAAkXJRN4CBnPyadg55RIkI5Pn6KCA8HJmIQxxM87nvvVessP7vv0BGBhAfb3EcWWkHrAJ5Rq55lfWLqFHq+ocFUVVhhA4hUID0dKBWrYp9c0R+oFyB/PPPP8enn35qMderbdu2qFu3Lh555JGADuSskBMRkT/o3Lkzjhw5UimB/K+//kKvXr3Mn8sF10aOHIm5c+di+PDhuHDhAqZMmYK0tDS0b98eq1atslnozVUpKSlISUlBVlYW4uLiKnQsG9ZzyGX4MAVywxVNhfzsWfc+N1El0lbIw4tNgTxEJOqLqKEG8hEjgF9+AY4fB3btAnr0sHscQMwRDwkR75dL0sT8cWNYOLKLolGjlEAeHhWKy6iK6kgXVXUGcgoC5Qrk6enpaNGihc3tLVq0qNQ2OG9gICciIl/1999/m6+PHz8ekyZNQlpaGtq0aWOzD3nbtm3d9rw9e/a0madubdy4cRg3bpzbntPjHLSsmwM5W9YpQGjnkIfLCrkuCooCXEANNME/yNNFIrJbN6B9exHId+4sNZCHhYl54vn5QMk50a5eHF8DuKArtUJuMIiTANWRLjpSiIJAuQJ5u3bt8MEHH2DmzJkWt3/wwQdufYH3RQzkRETkq9q3bw+dTmcRjh988EHzdXlfZS7q5rccBfKCAgZyCijaCnmEqUKep4tCQYGY8w0AG/S9cJPBAFx9NfDdd3bnkWtb1kNC1EBuPC8CeVFcTeCC4xXWASAyUjxncxwyzzsnCnTlCuSvv/46br31VqxZs8a8IMvmzZtx8uRJ/Pjjj24doK9hICciIl917Ngxbw8hcJTVss5ATgFCO4c8TBPI8/OBXWiHAfge3yjDcBMgKuSA3UCuPY5Op66krlwQwbogtvQtzwC1Qg6AgZyCRrlWWe/RowcOHTqEwYMHIyMjAxkZGRgyZAj27t2LL774wt1j9CkykLOwQEREvkbufJKUlITjx4+jbt26FrclJSWhbt26OH78uLeH6hapqalITk5Gp06d3H9wbYU8IkJdpUou6gbNom6XL5sXrSLyNxYt60WWgfxlPIuO2IrPSu4X731lIN+717R8uv3jAJqtzS6ZAnl02YE8MpKBnIJPuQI5ANSpUwcvv/wylixZgiVLlmD69Om4fPkyZs+e7c7x+RxWyImIyB/06tXL7roumZmZFguw+bOUlBTs27cPW7dudf/BtYE8KkpNF/Yq5AAXdiO/pW1ZDy0WJ5ZyTYE8H5HYho4AdOKcU4MGolukqAjYv9/hcQD1v4zuopgLnudkIJdt8pcOXMALLwBXrlT0OyTybeUO5MGKgZyIiPyBnCtu7dKlS6hSpYoXRuRntIG8SpWyAznb1slPWbSsF4oKeS5EINfKzYXoRZdV8h07HB4HUP/LhKSLSneuaY9xZ1vWd665iGnTgMWLXf2OiPxLueaQBzMGciIi8mVDhgwBIBZwGzVqFCI0735LSkrw999/4/rrr/fW8PyHdg55aRVyubcTAzn5KW1lO8zUsp6rOAjkgFjY7ddfbeaRO2pZ15sCeU6Uay3rcjG4tDSXvh0iv8NA7iIGciIi8mVyP25FURATE4PIyEjzfeHh4bjuuuswZswYbw3PfziqkFuvst6gAfDvvwzk5Le0QTo0X6TunNICudz6+MgRi/utK+TyMjTDFMgNzi3qdtQUyKsaxdddvuzCN0Pkh1wK5PKsuyMZGRkVGYtfYCAnIiJfNmfOHABAw4YN8cQTT7A9vbycbVlv0oSBnPyatkKuL3QikDdqJC6tdnVwVCEPzRBzyK9EuDaHvCbE1zGQU6BzKZDLs+6l3X///fdXaEC+joGciIj8wdSpU709BI9LTU1FamqqZ/ZUt25ZlymisBCGGM0q6zKcMJCTn9JWtkML1EBuvXGAOZA3biwujx0DFEXMK4fjRd3Cs0SlOzNcBG2DwfFYtHPIa4AVcgoOLgVyedY9mDGQExGRr7rmmmuwdu1aVK1aFVdffbXdRd2k7du3V+LIPCMlJQUpKSnIysoqs2jgMmcr5DKccJV18lP2KuTZxlIq5A0aiDfEeXnAuXNAYqLFcbSLuulgRPiVSwCAzDDX5pBXQS4ikYuMjKiKfYNEPo5zyF3EQE5ERL5q4MCB5kXcBg0a5N3B+LvStj2LUGBAgfhcBnJWyMlPaVvN9flOBPKwMKB+feD4cVElNwVyey3rcchEiFF0sGToqwMoO5BfQQwKEYZwFKE6LuHyZQZyCmwM5C5iICciIl8l29RLSkrQq1cvtG3bFvHx8d4dlL/StqxbVcijwwrU+xjIyc9pK+QhBY4DuUULe6NGIpAfPQp06WJxHG2FXLadIyYGuSUiiZe1qBugwwXURF2cQU1cwOXL9cv/zRH5Ae5D7iIGciIi8nV6vR433XQTLnPyZfmVssp6Fb0mqTRpIi6zsoDs7MobH5GbaIN0iDMVcsDuwm72KuRyYTbUrIkC03mssirkgOU8cv4Zo0DHQO4iBnIiIvIHrVu3xtGjR709DP9VSst6tF6UCo26EKBqVSA6WtzHeeTkh7RBWgbyKyVlBHLZGaL5G2NvUTdzhbxGDfPxyq6QWwbyzEy+76bAxkDuIgZyIiLyB9OnT8cTTzyB77//HmfPnkVWVpbFB5XBukKuWWU9KkQki8IQg1hhuk4dcR/b1skPmYO0XkFInkjdWcWuV8jt7UOuDeTOVMjlua0rEWJF9hq4CEUBMjNd+Y6I/AvnkLuIgZyIiPzBLbfcAgC4/fbbLVZbVxQFOp3OM1uFVbJK3fZMUyHXBnIDACQkAIcOiRWnifyMDNLy9xooXyC3v6iba4H8+uuBe+8Fks/VAFYDdUIvAMVi67OqVV38xoj8BAO5i/R6cclATkREvmzdunXeHoLHeWvbM4sKOQDExIjLnBz3joGoEshAHqmoiftKcaRzLesnT4okHhZW+qJuNWqg4IS4WtYc8i++ADDNFMjDL5oDuUOnTwN33QWMHw8MG1bat0rkkxjIXcQKORER+YMePXp4ewj+rZRAHqkTSaVAJwJ5emE0qgEoyshGGIj8i6xsR0Ek7nxEoAR6ywAOq0CekCDSc14ecOIE0KRJ2Yu6HRZXSwvkZjXEHPKEUBHoSw3kixYBGzeKMwHOBvLDh4HHHwcmTwa6dnXua4g8hIHcRQzkRETkT3Jzc3HixAkUFhZa3N62bVsvjchPOGpZLyhAJMSibvkQS0Jv2RuNWwAc3pGN5EoeJlFFycq2wSgSdy7Evt9XrojbY2LEdYtArtMBDRsC+/eLhd2aNClzUTdnWtbNaoo55LVMgT4jo5TH7tkjLtPTnTiwyVdfAT/8AMTFMZCT1zGQu4iBnIiI/MGFCxfwwAMPYOXKlXbvD4Q55B5VSoXcAFEhzxczyHEhT6xEVXCR256R/zHPIYdlIJe7+FWrZieQA6Jtff9+8zzyMlvWXQnkpgp5NcWJCnl5AvkFU+X+1Cnnv4bIQ7jKuosYyImIyB889thjyMjIwB9//IHIyEisWrUKn3/+OZo2bYrly5d7e3i+r5RtzyIUEcjzFBHIL5oCeUkWAzn5H+sKeZ6p80MbyAHRnW7BamE3ey3rFQ3kcUVlBHJFAfbuFdddCeQXTeNiICcfwAq5ixjIiYjIH/zyyy/47rvv0LFjR4SEhCApKQl9+/ZFbGwsZsyYgVtvvdXbQ/RtpWx7pg3khYXAxQK5VxMDOfkfGaStW9atA7lNhVwGctNe5Pa2PbOYQ16OQB5TcBGAgsuXdfYfd+KEOtCcHKCgwLknuHRJXJ46JUK9zsHxiSoBK+QukoGcnX5EROTLcnJyUKtWLQBA1apVccHUotmmTRts377dm0PzD47mkBuNiCgWq6nnKgZcuABkQwRyXQ4DOfmfsuaQOwzkcqV1BxVyg74I8TBtIF7OCrleKUE8MhxXyGW7ulRqb7uGrJAXFqrXibyEgdxFrJATEZE/aN68OQ4ePAgAaNeuHT7++GOcPn0as2bNQu3atb08OvdITU1FcnIyOnXq5P6DO5pDDiAiX4SMHGMkzp9XA3lILgM5+R+blnWdk4HcQYVc/teJKRRV6BKEAPHx5kBuMDgxqIgI83aCNXBRzdmXLgGvvqq2p1sHcmfb1rUhnG3r5GUM5C5iICciIn/w6KOP4uzZswCAqVOnYuXKlWjQoAFmzpyJV155xcujc4+UlBTs27cPW7dudf/BSwnk4XkikOeWGCwCeWg+Azn5HxmkI0pM257pXGxZv3QJuHLFpmVdBvKcsHhAr3etQg6Yq+QWgfz998VWZZMmic+tA7lsRS+L9nGnT9veryhlLO1O5D4M5C5iICciIn9w7733YtSoUQCADh064Pjx49i6dStOnjyJ4cOHe3dw/iBSLGwFvV60rGta2MPysgAAeTDgzBk1kIcVMJCT/5Gt5uHFpgp5iJOBPDbWHJrx9982LetRRnGA3NBYAHA9kJu2PrMI5MePi8tvvxXt5nJBN8mZCnluruU3Y69C/thjQPXqgCdO9hFZYSB3EQM5ERH5o6ioKFxzzTWoId9AU+ni4oA33wQ++ECEcZ3OHMpDc0Ugz4dBrCllCuQRRQzk5H+sK+QFpkAuV1V3GMgBoF8/cTl/vk2F3FBiWmshxLQtYDkr5DVxQQ3kcruyjAzg55+BffvE582aiUtnArl1Fd1eIN+0SbzZX7bMycESlR9XWXcRAzkREfmDiRMn2r1dp9PBYDDgqquuwsCBA1FNvtsmW7ItVoqIAIqKoM+xH8gNJQzk5H9kkJYV8nx9lMX9pQbykSOB+fOBr7+Gcu/bAAzmCnmk6f+DDOT5YnMC5wO5aVHKWjivdo/LQA6IueQFBaKbpUMH4NAh9wXyc+fE5YYN6m2KIo5fvbqT3wCRcxjIXcRATkRE/mDHjh3Yvn07SkpK0Lx5cwDAoUOHoNfr0aJFC3z44YeYNGkSNm7ciOTkZC+P1k+Y5pHrrsiW9UiLQB5lzOYOSuR3rFvWZYVckoG8qEiEd+3yCrjxRqBePeDUKbQ4vALAneb7ZcdIji4aiiI6zAHXA3kCziEjw7Q7mTaQb9okLlu1UlvnnQnk1quqWwdyRQHOnxfX//xTnEkwGES3zIQJwJdfAvfc4+Q3UQ5btwKrVwNPPmm524M/OXZM/OyGDeMfRCewZd1FDOREROQPBg4ciD59+uDMmTPYtm0btm3bhlOnTqFv374YMWIETp8+je7du+Pxxx/39lD9h1zYLVMs6mZdIY9GNvLzFG+NjqhczK3mRaZA7qBCDqht7GZ6PXDffQCATvs/F8cxZUgZyHNRxRzGARcCeUKCuMA5lJSYVn2XgVwbVFu1UgfpSoVcnjmwDuSZmerZg8JCEZAVBUhNFbd99JGT30A5jR8PPPss8Msvnn0eTxo7FrjrLmDNGm+PxC8wkLuIgZyIiPzBG2+8gZdeegmxsbHm2+Li4jBt2jS8/vrriIqKwpQpU7Bt2zYvjtLPyECepbasnzypBnI9jLh8Nt9boyMqF3MglxXyUMtAHh+vXrduW583D3jl9EgAQPKJVaiFczYV8mxdtHn+OOB6IK+tE+3jGWfz1JXm7rhDfVzr1q4Fclkhl51Bp06JwC3JdnXpt9/E4nGmbSTx+++AaQcLjzh0SFx68jk87fBhcfnXX94dh5/waiCfMWMGOnXqhJiYGNSqVQuDBg0y75kq5efnIyUlBdWrV0d0dDSGDh2Kc9b/USoRAzkREfmDzMxMnJdtlxoXLlxAlilQxsfHo1BbuqLS2amQ5+UBuVADzJWznEdO/sUcyAtF2i6yCuSRkWKjAcA2kD/5JPDsvObIadMZeqUE92C+uXgdXmgK5EoFA3mIeN9/5aimOj56tPq48gbydu3EZU6O+f80ANtAvmEDsGiR+rmieG6xt8xMmFewM69k52cUBUhLE9etV8Enu7wayNevX4+UlBRs2bIFq1evRlFREW666Sbk5OSYH/P4449jxYoVWLRoEdavX48zZ85gyJAhXhszAzkREfmDgQMH4sEHH8SyZctw6tQpnDp1CsuWLcPo0aMxaNAgAMCff/6JZnJ1Yj+UmpqK5ORkdOrUqXKe0E6FHACM0CPHFMqz0xjIyb+YtysztawXWgVyg8F+IC8pUTvIT/UUbesDsMJcIZfbAF7RBPLQUPW9dJlMgbwWREDOPWF6spo1gR49gMaNgehosaCbXGjNmX3I5WPq11eDvLZtXZ7IrFpVXP7+O7Bwobh+9dXicskS576HCxeA776zrMCX5t9/1evOnFzwRRkZ6pL61vvEk11eDeSrVq3CqFGj0KpVK7Rr1w5z587FiRMnzO1zmZmZmD17Nt5++23ceOON6NChA+bMmYPff/8dW7Zs8cqYGciJiMgffPzxx+jduzfuuusuJCUlISkpCXfddRd69+6NWbNmAQBatGiBTz/91MsjLb+UlBTs27cPWytrr2BZ2jOlkjxEmu/K04u29exzOTZfRuTLZIU8tNB+II+IsB/IL11Sc+b5eHFirzou2QTyLGO061ueAeZAHl9yCXoUo/CUJpCHhopF3f7+W3xengp5jRpiQTrAMpDLCnn37mL7wytXgAMHRGV+9mxx36+/Wq747sgzzwCDBgGffFL2YwGxGJrkrxVyWR0HxM9N/oKRQz41hzzT1C4it2DZtm0bioqK0KdPH/NjWrRogQYNGmDz5s12j1FQUICsrCyLD3diICciIn8QHR2NTz75BJcuXcKOHTuwY8cOXLp0Cf/73/9QpUoVAED79u3Rvn177w7Un8gKuYmskBsMQGG4COR5F1khJ/9iHciLwtRAHhoqPiJN5560gVybRy+XiLUqYpFl07KeXhjt+pZngKh6h4QgBApq4gKKz2oCOQAkJgKNGonr5Qnk1auXHshr1wa6dlVvv+kmUSG/+moRBL77ruzn+vtvcTl/ftmPBSwDub9WyLVz3wsKgH/+8d5Y/ITPBHKj0YjHHnsMXbt2RevWrQEAaWlpCA8PR7x2NQkACQkJSNOefdGYMWMG4uLizB/169d36zj1ejletx6WiIjII6Kjo1GtWjVUq1YN0dHR3h6Of3MQyGvVUgN5/gUGcvIvMpBHZIpW7ZwIdVl1g/gVt1sh1wbyi4VqIJcV8mid6BZJL4rGkSOm53AlkOv15u3MEnAOxnNWgVxLBvIrV9QefEdky3pZFfKEBKBbN/X2O+8Ul0OHiktn2tZPnhSXGzZYVo4dCYSWdevvk/PIy+QzgTwlJQV79uzB119/XaHjTJ48GZmZmeaPk/I/gpuwQk5ERP7AaDTixRdfRFxcnLllPT4+Hi+99BKMfBErHweBvGZNoCRCdB0UppcRyI8fLzswEFWioiJAByMiLohQejGqgfk+60Cu3fZMG8gvFGgq5KGijz0k17SoG6Kxfbt4nEuBHLDY+kx/yTS3214g1xbvymr1drZlPSFBtK0Dol399tvFdRnI1641rycBQPTva+eKFxSox1IUYOnS0scFBEbLuvXq8P40j9xodH6+vxv5RCAfN24cvv/+e6xbtw715H8MAImJiSgsLERGRobF48+dO4fExES7x4qIiEBsbKzFhzsxkBMRkT949tln8cEHH+DVV181t6y/8soreP/99/H88897e3j+qZQKeUmkqJAXXS4lkH/7LdCwITBjhocGSOS64mKgJi4gpKgQ0OmQEVXHfJ+zFfLz+eL9dihKEKGY+tOz1UAud1esSCAPvWx6wlq1bB+n16uhvKzKclkt63JRt4QEoEsX4LnngP/9T13krUUL0SpfVCQWfJMefFCcLJAVYuv9zRcvLn1cQGC1rMt/bH+qkP/4I1ClCjB4cKU+rVcDuaIoGDduHJYtW4ZffvkFjeQ8EJMOHTogLCwMa9euNd928OBBnDhxAl26dKns4QJgICciIv/w+eef49NPP8V//vMftG3bFm3btsUjjzyCTz75BHPnzvX28PxTKYFcqSICeUlWKYH8m2/E5YYNHhkeUXkUFwP1YeoorV0buvAw831OB/KcKurXFJqqxqZAnoMq5gq5PJ7TzCutn0fElVJa1gHn5pHn5anfhLZCfvq0+hhthVynA156CRg1yvI4spV940ZxmZ0NfPmlaIeX/79ll648UbB+vRr27VEU51rW33wTuOsu4PHHgffes9yyzRfIExI33CAu/alCfvKk+B2p5KAXWqnPZiUlJQULFizAd999h5iYGPO88Li4OERGRiIuLg6jR4/GxIkTUa1aNcTGxmL8+PHo0qULrrvuOq+MmYGciIj8QXp6Olq0aGFze4sWLZDur5UXb7Mq78lV1mvVgth+CYDiKJAriliZGVDfqBP5gKIiTSCvX988BxxwPpCnZ4QgRx+DKiVXEFWcBSDBokJuXTR1mqZCHpXtRCA/erT0rc/kfaGhQGxs6S3r9irxUrduwLx5avj+7Td1Mv7hw+LyxAlx2bGjaD/ftk3sX/7QQ47Hlq35+5GRIQKHdp+4o0fF5u9aX30lnt/qhKHXyH/sPn1EW/+hQ0Bhoe+MrzQn1f8HlcmrFfKPPvoImZmZ6NmzJ2rXrm3++EaeQQbwzjvv4LbbbsPQoUPRvXt3JCYmYqkzczA8hIGciIj8Qbt27fDBBx/Y3P7BBx+gXbt2XhhRACilQh4Sa1owL9tBID94UK0cnTzplXmKRPYUFwMNYAqP9eubV0kHnA/kGRlAjl60rUcUWFbIs6EuJlmRQB6dX0Ygl3uRl3bCUduurtOpgTwjQ4w3J0d8aJ7bLlkh/+MPMVd8zRr1PrmCnTbcyQXh3n0XeOEFsQ3alSuWx5Tt6vL7MBot56gDwE8/icsWLUQwj48XY3j2WcdjrWzy71zHjuKkR3GxCOX+IBgDuaIodj9GadpCDAYDUlNTkZ6ejpycHCxdutTh/PHKwEBORET+4PXXX8dnn32G5ORkjB49GqNHj0ZycjLmzp2LN954w9vD80+lLOqmjxOhQ5frIJDL6jggUo2/LthEAceiZd2qQi63O3MmkGeHiEBu3bJeGOaeQF61qJRF3QDnWta1K6wDQEyMCI2ACGOypdxgEPc50qyZOBNXUAD89ZdlILeukDdoANxxhzgBcOAAMG0aMHYsMGGC5TFlIG/RQv3BW/+dkIH8vvuA118H5swRn7/5JvDDD47H62579wIjRgC7d9veJyvkdeoArVqpj/cHwRjI/ZEM5CUl3h0HERFRaXr06IFDhw5h8ODByMjIQEZGBoYMGYKDBw+im3YrH3JeKRXysKoidOgdBfJ16yw/Z9s6+YjSArmskJe1D7k2kEcUZInKlenBtZtWPJA3wAlEG00VZUet5M4Ecm2FXGrWTFzu2WM7f9wRnU6dI714sWUwtVchb9IEWLEC+O9/gQceELfPmwfs369+nZw/3qiR/e+lsFC0gANAv37ictAg4NFHxfX776+cE33Z2eJ5v/7atjJfUKCOITERMG1l7TfzyBnI/QMr5ERE5C/q1KmDl19+GUuWLMGSJUswffp0GI1GjB071ttD80+lBPLw6iJ0hBXYCeTa+ePyGAzk5CPcMYf88mUgW6cJ5JoHJrWqQCA3he+mEFVnJTTUcoszLUeBfM0aoGdPMW1Eu+WZ1KGDuNy2zTKQl0We2Jw1S1w2aSIu09JEO/oJdRoAAODWW4GXXwY++wwYOFCEialT1ePJCnnDhuqK7trvZfNmEYZr1gSuvlq9/fXXgaZNxWNXr7Y/VndWEh97TD3psGqV5UkA2a4eHi6+h7Iq5EVFwMKFtu370vz54t+urD3cFUWc3CgsdPa7sGU0qmsJMJD7NgZyIiLyZ5cuXcLs2bO9PQz/ZBXICyDSRa1aQGQNETrCi7Jt3yPs3y9aYQ0GoHdvcRsDOfkI6wq5M3PIjUY12wJiYepMRQTy8PwsdS2FkBA0a6surV7eCnkoRKA0VqvhuHJtCuQHN6db5s/33xcrnL/2mm3LOmA/kJe2oJskA3m+aZu3IUPU4/7zj/p/vEED26996SXxfSxaBOzYIW6TgVxbIdeGXdmuftNNlgu9hYcDt9wirq9fb/tcx44BjRuLkwAVtWQJMHu2GHutWiJQf/uter9sV09MFI+RFfI//hCPtTZ3LjB8uFgx3tqVK8C4ceJ7+uqr0sf1ww9AcjJw3XW2280568IFEeh1OqBu3fIdo5wYyF3EQE5EROQbUlNTkZycjE6dOlXOE2rSRHGoAYAIBjVrAgZTII9Gts06TObqeNeuahWNgZw8ad8+4PnnRVIuhaIAKClGHZwRN5RRIZeHy8iwLbpeLBSBPEwbyKOj0bqNGqDLWyGXCmIczB8HzCH23x3pmD9fc/vBg+Jy2TLgjOn71Lasl7dC3q6deXcFAGJV8aZN1WPJPwT2qq1t2oitywDx7wRYBnJ7FXIZyGW7ulaPHuLSOpAXFIgF5U6cAL7/Xl0Jvjzy89UV4p9+Wp0D//XX6mNkJbt2bXHZpYv4NzxzRuzlbu3AAXH53Xe2v1Cffip+0QCY981zZPNmcbljB3DttWJef1m++UacVJFb18m/yYmJsDgrVQkYyF3EQE5EROQbUlJSsG/fPmzdurVynlBTIS8JE0klJkaElvBqaiCX7yHN5PzxXr3UN+fuCuS5ueWvCGllZACV9XMkz5swAZg+XcxTLkVJCVAbZ6GHUbSDJyQ41bIu29VjYoC4OHH9UrGpQp5nGchl1zJQjkAeFqZWiwFciSw7kFdDOswbNhUViWo1IH7H5U5N2gp569bieS5fBv78U9zmTCAPDRWBExB/G264AbjqKvH5L7+oY6pSxf7Xv/ACoNeL6u6nnwLHj4vbGza0bb8/f14NpTfdZHssWa3fu9dyLsGkSeLkACDCi6xgl8ehQ6LDID5ejH34cHH72rXqc8rjy0AeFaW25b/wgm1rujwBcvGiZYguKgLeflv9vKxAfvSouAwLE2Po0cPxyu65ucCYMeKEyMaN6pQDL80fBxjIXabtEOGOJUREREFEG8jD1fnjAMyVsmhkW66rpChq1apnT/cH8jvuEBW1iq5i/OCDorIk91Um/1VQAGzaJK5rFw2zQzt/XKlTF9DrXQrkNWuqU7qzIAJ5qDaQV6mCRo3U47gcyAGLcHw5tJRWclOIrY5L+PlnU7f3sWOWVWE5cG2FPDxcVKwBddE0ZwI5AHTvLi6vv178kGSFXAby0sJd06Zqdfyhh8S/m14vvsa6ZV3ODW/f3v7YatRQv4fffhOXCxcCqaniulyVT85rLw8Zeps2FT+zq64S3QUlJaKVHVAr5NodscaMEV9z4QLw1luWx5SBHAB+/FG9/vXX4kSj7BQ4cEDdjs4eedLlk09EJ1JuLjBjhu3jCgvFv9mnn6q3yQX5GMj9hzaQs0pORES+ZsiQIaV+PG5vrh45RxPIjaUEcosK+aVLagjo0EF9s1faG+PcXFHhuf/+0sezfz+wcqUIHD//7Pz3Ya2gQCzOBABbtpT/OOQbtm5V5zXLLbgAUZ18/30gM9N8k3b+uFJP/G46M4e8tEAelmtZIdfrgZYtxacVDeTnFMcV8sIYEbKrIR3FxaapzbJKKgOppK2QA2rbuuzJdzaQjxsHPPywGjRlhVwGU3vzx7WmTBHbh8lQUb++qLxbt6zLLht77eqSbFv/9Vfx7y//1k+eDMhpPdoTgTk5sG3nKYUM5I0bq7fJKrlsSbCukAPiF+qVV8T1N9+0XKDNXiBXFLFQHQA89ZQ4ltEI7NrleGwykF99tfpv8eWXtn9nv/9edAzEx6uhfP9+cWbKSwu6AQzkLmMgJyIiXxYXF1fqR1JSEu4vK+iRfZpAHlk1ErffLjpCATgO5PJNXq1aIt3IN+inTjl+I7FwoahyffFF6e3on32mXndmzqQjW7eqQUQb4Mg/aecRy9WwAbGo2YQJYqVvk+JisaUYAOgaiCBS0Qq53iqQA+raXvI4LtGE49MFjgN5OkRVOR6Z0KMYCxfCPH/8XKdbodSpoz7YUSC385ylio8HPvoIuOYa8bmskEtlhTudTvw/lq3vMtBbt6zLefDa1dWtaeeR/+9/Yt52/fqiZdy6M0dRgM6dxSromhM0ZpcuiQUotW3j2jnu0rBh6nOeOmW/Qg4AQ4eKkwI5ObCY4K8N5H/9Jb7+q6/ENmnR0eJkh/zZOmpbz8hQf06NG4vvq1cv8cttXZGX+7Y/9JDYfi46WoTxQ4e8WiEPLfshpMVATkREvmyOfMNB7qcJ5PoqBnz3neY+Ry3rMlDXqycu69QRbyaKisS8UOs3rgDw8cfq9V9+sV8pLywEPv9c/bwigVwuOgcwkAcCbSA/elQEk9BQ9XdEzpOGZYVcZzpZ5Mw+5DKQ16oluqwBTct6jm0gf/xxcc7n7rvL8f1oFnY7luM4kF8orgr5vykeGVizpgbSqxxENQAf/9YSXVrVRd8z74kHaFvWAdtA7swq6/bIQC2VVSEHxA95+XLRYi0DrqyQyz8m8sSK9fG1ZPv87t1i/QBA7BMeEWHbmXP2rDrNZcUK4N57LY/18cfib8/evcDEieI2exXypCQxf33DBvH3yF6FHBAnHnr3Fif/5H7rJSXqUv3164tAPHu2qKIDwJNPihMeHTqIefZyLrw1Oa6EBHWRvcmTRVfBJ58Azz0nzhydPatW4R94QPwdbt1adAXt3s2WdX/CQE5ERBSktP22MqlIpjeCBhQg65Jme5/Tp8WlDOShoeqbVXvzyP/+27JtXM5FtbZihUhFMlgcOuRa+6kWA3ngKCoCfv9d/by4WA1he/aIy127zAshaeeQl7dCLrOjuUJuJ5BffbXY4atZs3J8T5pq9eHLjgP5pcxQZJrG0LWFaFvfu1RUlg+iOabuHaY+2DqQt2lj+Y07WyG3Fh9vWX13NtzVqCGquZ07i8+1FfLsbLXyLHdpsKdWLbH1FyD+gZKSRPAE1BMD8m+OdsGzxYstj2M0iiALiAq23CrOXiAHgP/7P3E5e7a6ir11IAfUv4Hyb+LFi+K5dDr1hMBzz4m/Yx07ilANlF0hl+3q2nH16SOCfF6eWuX/4gvxfNdfDzRvLm6T8+4ZyP0LAzkREVGQ0u5D7iCQA0DOec3iQ9YVcqD0hd3kG2H5+F9+sb+KrNxLfswYtYW0rJWI7SkstAxwp0+rqYv8z/btoi24WjWgRQtx2+HDotIqg1BGhvn30noPcqDiLesh2VnqAlzabcHKSxOO/8mu5XBtr4sX1bb1ob1EC/NVigieHe9uji24DnN0D+LskBT1LIIUEaH21WvncJeHtm3dmQq5PdpF3WTgrFFD/WE7ItvWAVEdl3+zrCvk2hNvq1ZZrn6+Zo1axQbEFnpGo3qbtmUdEAtLxsaKlnYZyO11/si/afJvomxXr1EDuP129XEGgwjPcjEDGcj37lXXRtCSJwq0Jyt0OuC//xXXX3tNVPxl95g8SQGogXzXLvX/BwO572MgJyIiClKlBfLwcBSHiDeQeRdz8Omn4j3qma0uBPLcXPFGFAA++EC8IT15Un1DLp08qS7C9uCDopoElK9tXc4fr1FDDQHaecfkuj//tJ37X1xcvu15XP0a2a7evbtajj582HYVftMCWfYCeWmLusmlBuwF8iuIAQCE5FyxqZBXiCaQX0BNhxsUXLoEXISoTt/S6l/UrpKF2hCV5cc+bIY77gzBg8psdN76gc2W1wDUtvVatSzf8LtK21Ze3nCnXdTNmXZ1qU8fcdmwITBypHp7aRXyggLLFc7lSUFp715Roc/PV1eB14qKspyLoNPZ7zBwFMgTEsT8cjlN4I031JNJ8utq1hQt7nJFdO1JQ/n30bp7YPBgseieooi56AcOiLEO03RKyED+66/i+KGh9k8meBgDuYsYyImIiIKUNpBbr9oMoChChI+0I9mYNEkUndJ3md581q2rPtBRIF+0SCyw1LgxMGCAutCTddv6kiXiTWb37qIaV5FALtvVe/ZUK3tsWy+//fvFv1u/fmqYzs8H2rUTgc/ZN49ZWSJQ16gB3Hor8Oqrtns42yMDeY8e6r/nkSNqu7okA3lOARJwXtzmRIW8qEhkodIq5Lps25b1CrEK5I42KLh4EVgPUSGu8dsyHP7etBBaYiJ0cbH47DPxfdg7xwVADeTlbVeX5M9dpxNrRpSHPDmWm6ueTHEmkA8aJAL1ypWWf6/k35yLF8Ux5f9xGYLltmXnzpmWp4e63/nevWoVun59yzM20ujR6vUaNew/Rv4NTEsTv0jaQK7XA999J6rYjzxi+XU6nVol37pVhOzoaLH4G2C/ZV1+3cyZwNNPq7fJar4kA7lsu6hTR10UoRIxkLtI+2/EQE5ERBRESquQAyiJFOFjx8ZsZGWJ2yIuulAh//JLcfl//ycqADfeKD6XeyNLcgukW28Vl3JLo61bSx9/UZHtbQzk7rVxo3iDuG+fugjVypXi8x071JWqy7Junfh3SE8X1cvJk4H33iv9a0pKxPMD6skaQBxHBvIqVcTl33+LS1O1Mg8G87xqe4G8alX113b16jICeV6euhiZOwK5KcgVhBhwGVUdBvJLl4BvYNqG6/vvUeXQDnHdNF84OlosKg6ohVYLQ4aIUC7nRJeXDM516tgPps6IixOBElD/XzsTyENCxPi1FWZA/CPJf/tTp9QK+WOPicsffxRB/dNPRdtE585iOzZA/O7K31vr0Ct16CBOOgGOK8y1aolfLkURoVwGcnlS4LrrgFGj7HcnyED+1FNib3VFUVvQHVXIAfEznDFDVN1bthQLxWlVr245390L7eoAA7nLWCEnIiIKUmUEcmOkeMMbjWzzbYnFTgby3Fyx1RkgggEgViUGRDiTbzpKStQqqAzs8s3qv/+qqxZrFRaK/dmqVFH33pW3b9okrmsrqgzk5afdK3nRInEpK3mAbaXaEfnvcvvtYloCYDnX354dO0RlPS5OhCMZ4I4cURPo4MEW4ww5LX4Hz+jrmwOgNpDLRhCdTuxcBYg1wOwt6iZb1gGoq23LEFgRdesCM2fiy16fQUFIqYH8L3RERrVG4v/Tu++KO+QCXlCnidsN5AkJosvEukLrqu7dRQCWJ8zKIyREPdMhV8V3JpA7otOpbev//quG2LvuEu3tOTli5b3nnhO3jxmjnr3QVsgdBXKdDhg7Vly33vpNCglRq+SnTllWyMsiuxdyctTq6Pr14sSP/DvqaME7nQ544glxYkH+AmjJKjnAQO4v5MkqgIGciIgoqJS2yjoAVFG3PuvXD7ixYxZiZDgvq2X9t99EQG7QQJ37e+21osf2wgW1bXXHDtHWHhen7kkcF6d+jfXWQCdOiIDw9tuiQi7bUQHL+ePJyQzk7qAN5AsXijbzFSvU21wN5EOGiD2TAREWS5tT/sMP4rJXLxFa5L/n0aNqRfyee8Tl4cNAbi7CD4nxnA1VFx+zN4ccUAP50qXiVxWwrJAXIVxU2gF1cS93VMgBYPx4nO8tKrbHj9t/iDgXpcPxa01zhPfvF5eapd21i2p7TN26YktD7faF5SHb1s+bphRUJJAD6t+dTZvEP2B4uPh7I/9hDx0SZ2MefBC47z5RUQZEcJZVeusF3bQefhiYN892728t7TxyVwJ5ly7iF7NKFdFx0rix+B4++0wEsqio8k81YCD3PzqdGsoZyImIiIJIGRXykFgRPmKQjddfB25tJ6rjOeFVLSuF8k3fmTOiPRQAfv5ZXN50k/pGIzxc7PELiD5hQG1X797dch6dbFvXziO/dEm0nv7xh5qytIFQvsm+/npRvWIgrxijUQ3kOp2oRE6ZYrkytDOBPD9f/Xfs2hVo21YEpQsX4LA8DIg5uAAwcKC4rFdPnEQqLhYrq4eEiKkJNWuKse7ZgxpLZgEA1le5xXwYey3rgPg1qV1bXU8rKkp8aBf+lm3rbg/kELt4AY5/BHJ3rvS+wy3v0FTIKyWQA+VvVdeyXum9ooFcVsjlFJirrhJ/QyZOFJ0Tzz0nznbMni3+9kRHi+q59mscVcgB8ft1333q19gjT0yePu1aIK9TR3QK7N0L9O0L3GL6fU1NVcelrZq6goHcP8m2dQZyIiKiIFLGom5VEkX4ePi+bLRtC9zQUATyU6hr+cCEBPGG3WhUW3tl4JYLKUm33SYuP/pItKvLQN6rl+Xj5MJu2nnkzz0n5mo2b67ubX78OMwT3GV4lJV2GcjT0pxbQIws/fuv+LlFRIjFtQC1bVqeMHEmkG/bJqp/tWqJNlyDQYRywPE6ASdOiO6JkBC1VTokxLKNt2lTcSw51/fddxF1dC+yUQVL4x80P8xRIA8JUTveAZHrAQeBPF1sO+bOQC7zZFmBPKxTe8u2aTst60eO+MHufrJCDogfsvbz8pBh848/xKX8GdWpI9oeXnrJdhE6ua+5PKlUWiB3Rnkr5ADQvr16Vkb+jsu57aXtz14WBnL/xEBOREQUhMqokOtM4aNnB9Gm3jpeBPKjhfXMW9wCEG8k5BvLn38W1cQ9e0SFR84bl0aNEpWyI0dEC/SGDeJ2OX9ckiuyf/+9aJHevl1tmf3f/8Q8c/lmW7a/79wpLtu3F5dxcWrK4tZnrpM/z1atLLeBAkTYAcTWS7Lf2xHZrt61q1r1K2sl/eXLxeX116v/hoBlMJVpVAZy09z2zzES+YZ488McBXJALFIt2QvkV3SxFo/3RCA/eVK8B1+wAHjnHfV+uXxC9Ro6YLipSh4aatFmnZAgZmgoitrR7rO0Afyqq8pfAZZk2JRdOZpWfofkPHKptJZ1Z1QkkGv16GF5UrQigbxlSzXcMZD7DwZyIiKiIFRGIDeHD9OWT1HpskJez7xem9nDD4vLZ59Vtxzq2NG2ChYdDYwfL65PmCCOXb26ZVUHEPPNH3hAVNGHDQPuvVekjhEjRHs7oAayPXtEKJTBXAZyQG2LPXxYJJ4mTcQCT5s3l28f7WAiOw7atRMttXKvsHbtROdDbKwIQ2VNCdAGcqmslfSt29UlbZuz/PeX1XaTDzDOIoQ7mkMOiBkUMojLy5gY9b1xdojnAnmdOuJ55FII994ruq0PHVK78gHTYvH33Sd+/t27W5xh0OkqsW29orQt6xVtVwfUMxqSo8XXtLSBPDpanM2oCBnIT55U58aXJ5BHRlqelKxI5T4yEkhJEV1HVv83KgsDeTnIPzolJd4dBxEREVUiFwO53FLKbiAfP168IT53TmzlA9i2q2sfGxmplgB79LDdGkinE5XwAQNEe+n+/WLe+htvqI/RJpH9+0WyiYtTq/WA+iZ96VKxt/DRo2Jl9uuvF+FGfm8k5nQPHw6sWiU+13YcREWp/d333y/+fUpd4ttEUdTV1O0F8r/+sq0IZWSo29dZB/LSKuQALlxzEw6gpUUgL61CHhqqduPL3a10OrVK7slAHhqqTkF+8EH1/NCBA+oua4DpnFazZiKpaxcxNPGbQG5dIa8o6+qvqxXyiszTluQ/4J49apCS2565SruKfUUq5IDYr/yXX9wz978cGMjLgRVyIiIi70tNTUVycjI6ybDiaRUI5N9/L4rhzz9v6gYPDxcrnwPq/ExHgbxGDcu9ka3nj0uhocDXX6tBbupUy9XdtRVybXjUvsmWAe6bb8S4brwRGDlSnBDYuFFU9lkpF95/X0wjeOAB8bPSVsgB4IMPxB5hjz4qPtf+/B05dEiceDEY1O3sADGX12AQ8/8PHxYdDvPmiSD+3XeiRNyypW3V014gb9nS/Lt89NYJAOB0IAfEr9X996tbWANqIM/xYCAH1CJvZqZ625Ej6rmq+HjN+OvWFeV7K86cF/EJ7q6QWwdyZyrk2v3MK9quDqgVcrmORdWqln9XXSEXdgMqHsi9jIHcFWfOAEePIlxXBICBnIiIyJtSUlKwb98+bHXUxutuZW17Zh3ITRPHz+rq4tQp4JVXgOnTRXf5li0Abr0V+T36AQCKI6OB665z/NyTJqmrqlvPM9eKigLWrBFV1ieesLxPGwhleNS2qwOWb9Lr1hXBfO5c4KefxPPPn2+5l3mwUhR1n/G0NLHVk9yPS7a9xseLLaXkv5szgVy2q3fqZBlUwsLUxff++gsYN06cKOnVS6wzANhWxwF1fmxMjBrqwsOBTz4BXnwRZ9r1Nx9eKiuQ160LfP65ZXevOZDrrQK5O/Yh19A2c8gf5+HD6oJu1auXfYygrZBHRqot51WqiCXzy6Jdab2iC7oB4jm1JwDLu1UZIH4Z/vtfsW+8O34+XhRa9kPILDkZyMxEo+iDuIxmDORERETBpIxV1h1VyB95pR7qHRVfsmmTWES7d29g5EgdNm15D9+hH77HMIwuCYedowpJScCyZWL1ark/sCMGg7rIm1ZysngzfOGCCNiARfuy+TGACJFff62+ge/WTZxRePpp0ULfqZNtmA8m+/aJXmnphRfEZVKS7XZVkiuB/IYbbO/r2FHM5Z8xQ8z/1+nERO7z50XoHjbM9mtq1xbTD6pVs0za998PAChaKD51VCHXnoMqjTmQh3o2kMtf/VtuAe68UzQnHDmiBnJnpjjLLuy0NFFZr+i0aI9xdyAHRJX84kVx4s3Z9vO2bcUOAs5U1MsSFibmOsjdJSoSyAHg5ZcrPiYfwEDuCtNfJUNIAQBWyImIiIKKKy3rubnmrZ9ue7gebosXd+XkiKLpTz+JncyA5rhK/y9K8oCQOaLY49CAARUbf1SUaO08ckQESsA2VLdpI1qxGzWyDYVPPCFWef/+ezE3ff78io3H36SnqyFp8WJx2aePCMcyYFif4NCSgfzoUfGLYC+syi2p7J1QkVMz5GJ8//2vWL19zx5RsXe0IJW9yrmJXHDb3qJu4eG2SxU4IgN5njaQR0S4fU7uo4+KTDlkCPD33+I2bcu6MxXymBjx633smPjR9ezp1iG6jzyxEx1d/nnW1ho0ENvjOTN/XHrlFfG7dc897hlD3bruC+QBgi3rrjAF8kgdAzkREVHQ0evVhFJWIJf7nFWpIhZOg/rp8uXA2LGiA3nxYnWr6jffVAOSx8hQCIgUJiviWuPGWS6YJIWEAA89JK7LQB8s5s0Tae/ZZ8Xnsl393nuBJ59UH1daIK9ZUwQrR3tu5eaqt3foYHu/dq2Erl2BadPUZcPLuTq0vUAur9v7FXdEZsdcbSB38/xxQITpkSMtO/BPnBCzSgHnAjngJ/PIr75a/P8cNarii6lJck92610aStOqlTjxExtb9mOdIeeRAwzkJqyQu8J0ZjxCJ/aPZCAnIiIKMuHhYgGvsgK5qV0d9erZvJkOD1e3CAdEDps2TVTslixRt1D2iDZt1JWnk5Od70mWZGXt0CERLN0VFHyd3P/9lVfEP+DevaL6e/vt4vNXXhFlWu1CbPa0bi1Wc96zR91bXNq1S7y5TExU94zXatZMLLKVkSG6E0Ir/jZerieo/TUoTyCXFfL8MM0iah4I5Fq1aomnyM5Wt2d3tv28TRtgxQq12cAnxcS4f4BPPSW6ZDz6R6YMDOQ2WCF3hWxZZ4WciIgoOMm29dICeVaWZSAvQ1SUutX4a6/ZLmLu1vcb2gp5eeaAN2okElturtoFEAxkCRYQZ08A0a5etapoe1i2DHjxxbKnFZS2otj27eLSUagPCRGh/cgRy9XNKiAvT1xql0SQ4dyV6d/mlvUwz1bItXQ6dVrzli3i0tkKuVxwPC3N/ePyadWri/YcTddOpdPu/MBADoCB3DWmv1ARYCAnIiIKSnIuZ82atvfJVHL0KJCSIq5r33yWYtw4Ecx37BA7i50/L3LXsGHidrctbK5tVS1PIA8LU1dbPnRIvf3PP8We6oFKBnJt5fqOO9TrN9wg9rSTK6o7UtrCbtu2iUt77epSeLhbF0qzF8ivvlosljZlivPHMVfIwysvkANq2/r58+LS2Qq5/G8sv44qESvkNhjIXcGWdSIiouC2cKFo+ZYbImu1bCnmE0dFAVeuiNucqJADonD13/+K6//7n8i8LVuKqcoFBaKC7pbu1auuUqv8pc13Lo1sWz94UFz+8QfQubP7Fn3yRTKQf/ml+IepVQsYPNj145QWyMuqkHuAvUAeGgp89pm6m5ozZCAviPBOIJecrZAzkHuR9m+iuxar83MM5K5gyzoREVFwu/pqx6tWh4QAr78OnDwptuO56Sax6JeTnn0WWLdOTC3OyRELbvXvL7aazs8Xh8rNFYvAXXUV8OGH5Rh/WBjw3HNimWp7W2s5Qy4MJSvka9aIyw0bgKKi8h3TlxUVqcmtdWvRxvDvv463NyuNXETvzBnzKvwAxD+wPONSWoXczewF8vLo3FkU7pt3qtxAbr0TFwO5H2CF3AYXdXMFW9aJiIioLNWqiXK3LHm7oGdPUXBeuVJUHbt2FTsEtWkD7NwpCvNyz+UnnxRd0y4XmZ5/3uVxWdAu7AaoW3UVFopVwsu54nelKSkB1q8Hrr3WudAoJxqHhYnE5+xeYPbExor538ePiwDerZu4ffducQamRg2nuyrcwV2BvGlTcX4hPD0W+Mx0o5v3ILfHukLuasv6lSviZ1DR759cUK+eWLAOEAsYEivkLmGFnIiIiDwsJETsOta1q/i8dm3gk0/E9UuXRFBv3FhUy197zQsD1LasK4oayAG17dobPvhAnAw4caL0x339NdC7t/MnTGS7eu3aFQvjkr22de388Upcud5dgRwwzYSI9Y+W9bg4dYv0CxfcOyYqg8Egumk2bHBtKf8AxkDuCs4hJyIiIi8YPBh4/31g0iSRg1NTxe0ffigq6JVKtqwfOwYcPmzZ9+vNQP7hh6LS/OWXpT9uxw5xKefAl8Xegm4VYW8TbC/MHwfcG8jNB5IL21VCIE9MtCzEOxvIdTq2rXtVu3blX8MiADGQu4It60SVo6BAVA6s9/4hIgpi48YBb74pgkS/fkCXLmLq8auvVvJAEhNF2DIaga++srzPXiA/cQL4z3/KrlxXREGBODkAiH2+S3PsmLh0Nol5KpA7qpBXIrcHcp1OrZJXQiDX6dQqeXS05X7qZWEgJ1/BQO4KBnKiyjFxopgw+fPP3h4JEZFP0umAl14S12fNEkH98uVKfHJZJf/iC3HZq5e43LnT9g3SjBlikHLAnnDokJiDDQCbNomA7oi3A7ncek6eeC4sVKvl/l4hByo1kAPqwm7OVsclBnLyFQzkrjC1rIeDLetEHnXggLg8csS74yAi8mE33ihWYS8sFAu81asnplFXCjmP/J9/xOX994tUl5OjVqqlrVvF5e+/e2482mpzfj6wZYvjx2oDuTOdWO4O5M2bi7buy5fFfIM9e8RK7lWrAg0buuc5nBQIgVxWyBnIyV8xkLuCFXKiypGZKS7lOwUiIrKh0wFLlwKffirWMsvNFQ1Gp09XwpPLQC516aLOCdW2rRcUAH//La7v2wdkZHhmPNb7eq9bZ/9xly+rYygudm487g7kBoNa1t2zR237v+66Sl3QDVBfZqOi3HhQGcgrYZV1QGwLD7j+z8NATr6CgdwVpkAerjCQE3lUVpa4ZCAnIiqVwQCMHi06xbt3F4XW996rhCeWLeuAWPa9aVO13VobyHfvttybvLTKdUXIPbxlO7ijeeSyOi45k8bcHcgBdR75xo3Axx+L6+PGue/4TvJIhXzYMFG27tHDjQd17M47xWyIV15x7esYyMlXMJC7Qq6yzgo5kWexQk5E5BKdDnjqKXF91iz1z6jHaCvk114rtgOzF8j/+svy6zzVti4r5BMmiMstW0TLgDVfC+RvvSU2w27dWsw/qGQeCeQTJohpC0lJbjyoY5GRwHPPqedinMVATr6CgdwVpgp5mGkOeUmJNwdDFMBYIScicln//kCrViLfyaJrSYmH3q9oA3nnzuJSBvIdO9S52TKQJyaKS08E8txc4OhRcf3224H69UVVftMm28e6Gsjz84H0dHHdE4FcnjR48slKb1cHPBTI/QQDOfkKBnJXyDnkbFkn8pzCQvEGCGAgJyJyQUiIyHUA8M47Yp21atWAFi0st7x2i5gYoG5dcV0G8latgLAwMU/7+HFxmwzk//mPuPzjD+fOEGzcCDz8MDB3LpCWVvpj9+8XJwBq1hQpS674bq9t3dVALjd5NxhEa767yEAOiNX47rrLfcd2AQM5Azl5HwO5KziHnMjzZHUcYCAnInLRiBEiJ6eliR3JsrLEhhVdugDLlrn5yWbOBCZNAm6+WXweHq72DW/eLP6Gy1by++8XIT4723YBNi1FEXu49ewpyvwPPADUrg3cdBNw8qT9r5HHkyH3xhvF5ZIltgFcfi43rL5wofTvUduu7s4K9lVXqWN4/HHztMjKxkBuu9i+ogBTpohlEv791ytDoyDDQO4K0x/LMG57RuQ52kBub/4fERE5FB4OvP++6B6fMAFYvRro3VvsRjZkiLqgt1sMGSLCs16v3nbTTeLy7beBXbtENbxWLTGf+LrrxH322tYVRdw+aJAo85eUiKDfsaO4f/VqsYr7d9/Zfq0M5K1aicubbxYrfR8+DCQnixW/5B7lMpDL9vqyyqOemD8OiJ/Zs8+KFvuxY917bCcpSnAH8po1xWVRkeWaC6++Kn5lDh0CVqzwzticcfq0+NWRmxiQ/2IgdwUr5ESep31VZIWciMhlgwcD27aJ1db79AFWrQLGjBH3vfaah5/88cfFHlp//QW8+KK4rWNHUV2+/nrxuXUgX7BAlCO7dgWWLxdt7x9+CPz4o9jD/NAhcYzLl0Vgf/55y5KmXGFdVsgTEsSibr16iSlQU6YA774rvkaWPGWbvb1AnpsrTiYAngvkgPg+vvuu0vbrtlZQoF4PxkAeGSmaNgD112D2bOC//1Ufs39/5Y/LWfPmAZ98IhpVyL8xkLuCgZzI89iyTkTkVqGhouoXHi5yptvnk2vVqqVu37VypbiUVW5tIFcU8TFtGnDPPaKaXaWKaG3/808x51y2iDdtKhZomzRJfD59ugj+MpRbt6wDYnPqtWvVkwLz54s+/vx8Mdm+Qwdxu71A/p//AO3bA19+6dlA7mXal9hgDOSAZdv633+rzQrt24tLXw7k586JS4/vqEAex0DuClPLOgM5kQexQk4UlAYPHoyqVavijjvu8PZQAlK1asCtt4rrX3whLs+cAQYOFAVqt3riCRGuJRnIO3cWIfvoUVER798feOEFcd/TT4vA/PnnahrSCg8X7fGpqeLz994TQX7NGnVuuWxZl3Q6Ea71erFR+9q14vZ69dQF6awDeUYG8PXX4vr06eqxAziQ6/WiKSEYaQP58uXivf1NN6m7FPhyIL90SVxmZ3t3HFRxDOSukNueKZxDTuQxrJATBaVHH30U8+bN8/YwAtp994nL+fPFFO0xY0QI+c9/RDe429SsqVbJAbUaHRcngrfBICriP/0kqtWzZokSvjOt2488IlZeDwkRE+L79hW3161rfxX0GjWAHj3E9bfeEpeNGjleYnvxYrHbBwAcPKjOWQ/gQB6s1XHA8tdgwwZxfcAA0WABiCq0W/9vuJEM5Dk53h0HVRwDuStky7qRFXIij2EgJwpKPXv2RIyc0EkeccstQNWqojI+ZoyYog2IP7vvvSeuFxeLwvDSpRV8sieeABo2BLp1swyzM2aI9LNgATBqFPDDD8BDD7l27JEjgZ9/Bu68U3xDgJgs78jQoeJy505xqQ3kly6pC74B4mwFIKrogLq4KAN5QJK/BmfOqEsbdOsm5pbLXwFfrZIzkAcOBnJXmCvkDOREHsOWdSKf89tvv2HAgAGoU6cOdDodvv32W5vHpKamomHDhjAYDOjcuTP+/PPPyh8olSoiAhg+XFyfM0dc9uwpLt99V3RrT5gg1hq7+271DX+51KghFmNbv972vpgYsT/bnDnqlmmu6t0bWLhQbFu2f7+osjsyeLDllmWNGoke/hDT2+CLF8XliRPAr7+K6999Z5lUGcgDkgzkq1eL1u+4OHUpAlkl9/VAzpZ1/8dA7gq57Rlb1ok8R1MhN+YykBP5gpycHLRr1w6pcv6ulW+++QYTJ07E1KlTsX37drRr1w79+vXDeU07cPv27dG6dWubjzNy0SwXFBQUICsry+KDnCPb1gExVXvVKrEzWGam6P7+6CNxX0GBmM5dIWFh7t272x69HmjRQrTBO1K7tljBXWrUSHxdjRric/l7KveE69FDbIv2f/+nfg0DeUCSgXzLFnF5ww3qLn6+HsjleSRWyP0fA7krZIWcLetEnqOpkBdfYSAn8gX9+/fH9OnTMXjwYLv3v/322xgzZgweeOABJCcnY9asWYiKisJnn31mfszOnTuxZ88em4865Qg6M2bMQFxcnPmjfv365f7egk2XLiKIR0YCn30m3tpMmSLu++svcXnDDeJy1izL3cX8mmxbB4DGjcWl9Txy2a5+773ictIkUc1v1kzdHyuAMJCrvwJSt27qdV8O5MXF6tslBnL/x0DuCgZyIs/TVLpCixjIiXxdYWEhtm3bhj6aObwhISHo06cPNm/e7JHnnDx5MjIzM80fJ+VK2FQmnQ747Tex0PnVV4vb7rhDVMkBURReuVLkz8OHgV9+8d5Y3WrIEPV6kybismZNcXnhgtgLbvdu0Q0pV/pPShJ7nG/aZHGooiJ1ark/k99DMAfyhATLz7t3V6/7ciBPT1evs2Xd/4V6ewB+RbasM5ATeY6mQh5iLBHvfIJ1PxYiP3Dx4kWUlJQgweqdbUJCAg4cOOD0cfr06YNdu3YhJycH9erVw6JFi9ClSxe7j42IiECE6SQ5uS4mxrLgq9eL1dY3bhRzx8PCRGv7hx+KKnnv3iLAR0Sou4X5nQYNgE8+EfuQJyaK27QV8lWrxPW+fS1Xa7fTfdG9O3DsGPDPP5a7u/kbVsgtK+SRkeqGAIAayP/9V/ysfOnnpF3fobhYbAxgiinkhxjIXcFtz4g8z3ouaF4eAzlREFizZo23hxDUmjRRC8cA8PDDIpB/+y1w7bXA1q1iHbQjR9SFzf2Odk44YBnIt20T10tbrR3iHLGcb3zwoJhq7q8YyC0DeefOlqG2Zk3xO5+eLv6t27ev9OE5ZL3gYk4OA7k/82rLelmrtiqKgilTpqB27dqIjIxEnz59cPjwYe8MFjAH8tASVsiJPEa7yjrAldaJfFyNGjWg1+tx7tw5i9vPnTuHRFmJJL/Tpo1YB624WIRxQASTxYu9Oy63kmns1Cl1E+obbyz1S7StwqdPe2hclYSB3HKxfW27OiCmd/hq27pc0E1i27p/82ogL2vV1tdffx0zZ87ErFmz8Mcff6BKlSro168f8vPzK3mkJqZArocRehQzkBN5gr0KORH5rPDwcHTo0AFr164132Y0GrF27VqHLefukpqaiuTkZHTq1MmjzxOsZs4UU6/ffRd4+mlx25dfenVI7iUD+cqVYkJ1zZrqnlcOaIMQA7n/0+vVXwPtgm6SrwZyexVy8l9ebVnv378/+vfvb/c+RVHw7rvv4rnnnsPAgQMBAPPmzUNCQgK+/fZb3HXXXZU5VEHTCxKOQhiN7PgncjsGciKfk52djSNHjpg/P3bsGHbu3Ilq1aqhQYMGmDhxIkaOHImOHTvi2muvxbvvvoucnBw88MADHh1XSkoKUlJSkJWVhbi4OI8+VzC65hpgyRJx/eRJ4PXXxYJwJ06IKdl+TyaxCxfE5Y03quVSB+RDAQbyQPHaa8D27UCvXrb3MZBTZfDZVdaPHTuGtLQ0i1Vb4+Li0Llz51JXbfXo3qSaBWQiUMAKOZG7KQoUU8t6ifzzFAhL2RL5ub/++gtXX301rjYtyz1x4kRcffXVmGLaL2v48OF48803MWXKFLRv3x47d+7EqlWrbBZ6I/9Vv77YnhsAFizw7ljcxnrPq969y/wSVsgDz/33iy4Quf+4lr8Ecras+zefDeRpaWkAYHfVVnmfPR7dmzQ0VEwoAQM5kUfk50NXXAwAuADTdjSskBN5Xc+ePaEois3H3LlzzY8ZN24cjh8/joKCAvzxxx/o3Lmz9wZMHnHPPeLyyy8DZH9y60BexvxxgIE82MiF3PbtE50hpcnOFssRVAZWyAOLzwby8vLo3qQ6nbltPQIFKClx36GJCOYF3YzQ4SJqiNsYyImIfMIdd4i3QXv3An//7e3RuIE2kCclAY0bl/klbFkPLrVri1Z2RQHmzSv9scOGAVddJbazd5c//7T/e2a9qBsDuX/z2UAuV2Z1ddXWiIgIxMbGWny4laltXcwhd++hiYKeaYpJFmKRA9PmrgzkROQAF3WrXPHxwG23ieu33w785z/A6tVeHVLFxMSo6wP17m3ugiwNK+TBZ9QocTl3ruPOkMJCYM0aoKAA+Pxz9zzvP/8A110HDBpkex9b1gOLzwbyRo0aITEx0WLV1qysLPzxxx8eX7W1VKZAzpZ1Ig8wVcizEIs8mN4hMJATkQMpKSnYt28ftsp9ucjjxo8Xb4VOnABmzQJuugl46y31/vPngV9/9ZOWdp1OrZI7MX8csAzkGRn+vcwJA7lzhg4FoqNFQN640f5j9u4Ve9QDwMKF7vn937dPHOfoUdv7ZCCvXl1cskLu37wayLOzs7Fz507s3LkTgLpq64kTJ6DT6fDYY49h+vTpWL58OXbv3o37778fderUwSB7p4oqCwM5keeYKuSZiDMHcmMOAzkRka/o2VOE7uXLxWJYAPDEE8CnnwLffAO0aCFafOfMUb9m9WqgaVNRQfQ5Tz8NDB4MmHb0KYu2ZR3w7yo5A7lzqlQR7eiAqJLbs2OHev3kSWDLloo/r/zdysqyDfgykCcliUsGcv/m1UBe1qqtTz31FMaPH4+xY8eiU6dOyM7OxqpVq2AwGLw3aFNrE1vWiTxA07IuA3lhJgM5EZEviY0FBgwQ4eTJJ8VtY8YAd90FXL4sPn/3XREiFAWYOBE4ckRsL+Vzxo0Dli4VqcsJ1nN3GciDg2xbX7jQfvjdvt3y82++qfhzyt+t4mLRCi8pihrI5faDDOT+zauBvKxVW3U6HV588UWkpaUhPz8fa9asQbNmzbw5ZFbIiTzJ1LKurZAXZDCQExH5Ip1OhOwxY8Tnej3wzDMi4O3eDWzaJKrje/aI+9etA9LTvTded5AVcrlEEQN5cLjhBqBJEzFXe+lS2/tlhfyuu8TlokWocE7Qrtiu3cU5MxPmhaVlIOcccv/ms3PIfRYDOZHn2KuQZzGQExH5Kp0O+OgjsTf59u3AjBnq9mipqcDbb6uPLSkBVqzw3FiOHxcnCCZMAIYPB+bPd+/xFUWtkLdtKy4ra5srT2Agd55Opy6utm2b5X0lJYBp9i2eeQaIiwPOnHE839xZ2pM92kAuq+NRUZxDHigYyF2l2faMgZzIzexUyIsYyInIAa6y7hv0emDECDWkPvKIuFy0CPjpJyAkRJ1vvmSJZ8agKGLxrWeeAd5/X7QWP/QQ3LpFbW4ukJ8vrsv9qVkhDx4NG4pL6x2VDx8WvxtRUUDr1mJJAqDibetlBfIaNdSZFgzk/o2B3FXc9ozIc+xUyIuvMJATkX1cZd03XX010KWLGoYHDxYLvwHAzz8DV66U/vUFBcDjjwP16onKuzM2bhSVS4NBrNNWpYoIKQcOlP/7sCbb1Q0GQM6gZCAPHvXri0vrQC7nj7drp56cAsTChkeOlP/5ygrk1auL1d8Btqz7OwZyV7Flnchz7Gx7VpLNQE5E5G9klRwAJk0SlcOrrhJh+8cfHX/d4cMizL/7rggk99wDvPNO2c8nH3P//cCrrwLXXCM+t24vrgjZrl6jBlC3rrjOQB48HAVyOX9c/s717Qv06SN+vqNH284lP35crCVYWljPzja/JQJgGcjl72H16qyQBwoGclcxkBN5Drc9IyIKCHfeKebc/uc/ImDrdKKlHBCtvH//DXz/vdjLWzp9GujUSQSc6tXVBbImTgSmTnX8XEePAt9+K64/+qi47NBBXDKQO8ZA7hoZyM+dAwoL1dtlhdy0aRR0OuCTT0RY/u034MMPLY+Tmio+3nzT8XNZ/145qpAzkAcGBnJXcdszIs+x07Ku5DKQExH5m4gIYNkyyzAyZIi4XLZMtPcOGKBuJwWIbdQyM0U1fdcu0a7+6qvivpdeEvuf2/PBB2IO+U03AcnJ4raOHcXlX3+573uSLes1a6qB/OxZ985Tr0wykEdFeXcc/qJGDfF7rShqYFYU2wo5IOaby23+nnkGOHFCve/wYXG5e7fj53I2kLNlPTAwkLuKFXIiz7GzqBtyc704ICIicpdOndQqYny8uFy+XIQVRQG+/FLcNmmSCLw6nZgP3qaNuH/9ettjZmUBn34qrj/+uHq7rJDv3Om+wKytkCcmisXqSkocnyjwZUVF6s+FFXLn6HRiXQNAbVs/fhy4fBkICwNatbJ8/H/+A1x3naheaxczPHpUXO7ZI36v7WGFPLgwkLuKgZzIcywq5OKUvS6PFXIiokCg0wF//CEqzenpwI03ikDy6aeitfzAAREOZSVd6tVLXK5bZ3vM1FSxSFyLFqJCLjVrJqqHubnuW9hNG8hDQ4GEBPG5P7ata19aGcidZz2PXFbHW7c2N9GahYQAvXuL64cOiUtFUQN5VpbjbfOsf6e0CyFylfXAw0DuKm57RuQ5mgp5WKx4h6ArYCAnIvu47Zn/CQsTQUKnA8aOFbfNni3a1QFg4EAgNtbyaxwF8owM4PXXxfXnnhMBSAoJUavx7mpb17asA/49j1wGcp3OXGsiJ1gH8l27xKXcBs+aXI1fBvKLFy3by/fssf91pVXItYu6sWU9MDCQu4rbnhF5jqZCHllNBHI9AzkROcBtz/zb4MEi3J45A3z0kbjt3nttH9ejhwiOBw6IOdvSm2+KUN6qlboAnJacR17ehd0UBZg8WV3BXVshBwIjkBsM4mdLzrEO5HIeeJs29h9vHchldVxyFMhl5bxBA3FZVst6bq7j9vd//xUVfHv/t8g3MJC7ii3rRJ5hNFoE8io1TIG8iIGciCgQhYcDDzwgrhuNIpxr286lqlXVCuSvv4rLc+fE1mgAMH262P/ZWkVXWj90SCwqN2mSCEGyQh5IgZzt6q6RgVwGZmcD+alToq3cOpDv3Wv/6+TvlFyksKxAriiW0xCkixeBfv3E88yfL+a7k+9hIHcVAzmRZ+TkmE/vZiIO0TXFu4RQBnIiooA1Zox6/a67REu7PdZt66+8Il42OnUSbe72yEC+YwdQXOz62GR4kgvKyQq5dcu6o3nAvoyBvHy0FfLcXHUvcUeBvFo18QGIx8rfKXlbWS3rLVuKS0eBXLtCvnXbek4OcNttanUeALZssf985F0M5K7itmdEnmGaP16EUOTDgNgE8S4hrJiBnIgoUF11FTBsmGidlnPK7ZGB/NdfgR9+AN5/X3z+8suOW67lwm55eeVb2O3/27vv8Kiq/A3g752ZZNIbIUAIVZAOIk2EtdFE7F0RWN1dFgVFXNtvWRR3175rR1zLuruuiuLKLqKoiAgiVXoNKL2EFkJ6mzm/P745uXcmCZkJSabwfp4nz51MPSeZmXvfe9ru3eblb7+t2mW9c2fZzp5dv+udNwYG8rqxBvKtW+VkTWoqkJZW82N0K/nOnWYgHzVKtlu3Vl0FoLwcyMqSy96BvKjI/N81aSI9Q/T/0Htit8mTZRLFlBTgoovkumXLfK8rNR4Gcn+xhZyoYeju6kYiAANJLWQPE+liICciCmf//rd0Qe/eveb7/OIXMlHbzp3ALbdIEBo/Hhg2rObH2Gzm2tDPPed/KLd2L16wwHN2a0Ba5keOlIB09dWh1XWdgbxudCA/fhzQU1f06HH6cfjWceT6PTV0qJyEKiryPPEDyGfB7Zaw3aGDXKcDuV5iLzLSnPywupnWjx8H3ntPLn/yCXD77XJ5+XLf60qNh4HcX5ZAXl/rWhIRzECuZA+TnC5HCU43AzkRUTiLiKg6s7q3xEQzXBcUSIufbiU/Hd2y/t570tp4zTW+d1+3BqUdO8xJs5o0ka3dDnz4oYzzPXRInru42LfnDjQG8rpJSjID8Jdfyram7uqaNZD//LNc7tjRHB/u3W1dn9hp0ULmTwDMQG6d6V+fBNDlsXZZ/9e/gNJSGbZx6aXAwIFy/cqVVVvkKfAYyP3FZc+IGkblkmdyVNYko6KFHGXcexARUeWazm3aSKuf97rP1Zk2DZg1S8bS2u3A3LnAf/7j2+vpQG5t/UxK8hznnpgIfPaZhPQ1a4CPP/btuQONgbxuDMNsJf/mG9n6Gsg3bTLnG2jf3uwR4h3I9X0yMswTVd4t5NYu8nrpM91CrhTw5ptyWQ8D6dYNiI+X0K5fb9EiYN6805edGgcDub+47BlRw8jOlg1kppPUVpajhOqmDiWisx7XIT+7PPggMHWqBCE9sVpt7Hbp4v7ZZ7JWOQA8/3zNS0RZ6UB++eXmddW9bvv2wKRJctnXsB9oDOR1pwN5YaFsTzfUAjAD+bp18r6LiZFAXVMg1y3kLVuagbywUNomdAu5NZB7d1n//nsgM1Ouv+02uc5uBwYMkMvLlklL/fDhwLXXms8ZimbPNk8+hDIGcn9xDDlRw7AEcpvNbCEHAFc+AzkRVcV1yM8uqamyxJkeV+uviRNl3O6aNcCSJae/b06O/ADAXXd5lqE6N94o26++8pwR2xf5+fIan3/u3+POhA6TDOT+04Fc69bt9PfX71d9Eqh9e2lp9yWQx8eb1+flmS3k1hND3l3WdUC9/XbPx194oWyXLQOeeEKGbrhcZjf6UONyAWPHAr/9bWifVAAYyP3nFciVMr/UiMLV0aPmZDYNpmJxzGykIC4OiE+0oQTSH7HgOAM5ERGdmaZNgV/+Ui4///zp76tbx9PSZB1nh0N+rymQd+sGdOoElJT4H6z/+U/g3Xelld2Xlvv6wBbyurMG8nbtPENvdWJjzSXyAOCcc2SrA3lmpoz31qyB3Ok0h2bk5tbeZf3ECRnOAVRdtUCPI//iC1mTXNu79/TlD1YnT5pzNui/S6hiIPeX17JnkybJuKFt2wJcLqIGUlIiBxrnnYeG7RVS0UJ+EsmIjZWdUCFkgc2ibAZyIiI6cw88IK2Tn38uS05ZrVhhLjelA7kOXP37y+81dZU3DLOVXAei6mRlSVCyHjd+/bVs9+yRcNYYGMjrzhrIaxs/rulu64C0kAMyRjwpSVqqN240b9djyHWIt44jr63L+sKFctzWvbtM6GZ1wQWyzc72PJ6zBvLc3MZ7D54pvQwhUNmmE7IYyP3lNcv6Rx/J2ZmVKwNcLqIGcuSIfOkdOFA571rDsHRZj42Vg5tiQ44UCk8wkBMR0Znr2FHGzQLAyy+b1y9aJC2IN98sv1sDOQBcdZVsO3Wq+bl1IP/iC88Zr62eeQZ46y1gyhT5vaxMXlv74gufq3JGGMjrrr4CuWHIcn6ArHMPSEv5jz/KZT0LuzWQn67LekGBGab79au6FFtSkvmchmG+p62B/IYbZDUCf5cIDAQG8rOZJZBv325249VnVInCjfVLrkG/8LwCOQCU2uVIoTib40KIiKh+3HuvbHWjCgD8/e+yXbpUWiH1etE6kD/wgIw710G6Or16SXfk4mJg/vzq76Nbw7/5RgLFqlUyNlhjIA9+1kBe24RuWnWBHDBXDtCBfNkyOZnTtKm8n4DaW8h1l/X8fFlazfv1rC66SLY33ywrDwBmIHe75fWVMtdYbwhKyeSM06ad2RAN67hxBvKzjWXZM2v3kiNHAlQeogZWkZOrXK53ljHkVQL5SbaQExFR/bj4YqB1a+n19dln0rI4Z47cppR0+/VuIY+MlNZM65Jn3qzd1p94AvjTn+T59cqdBw6YXdVdLpmRfcEC+V2vsb5kiRnQ9WzZZ+rnn2WddCsG8rqrrxZyALjsMtl+/720jusTNsOHA7aKlFZdC3lNXdZrC+TTpwPPPgvMnCnLBwJmID90yJwXS5+Qagg7dgBPPSUTNOrPWV2whfxsZln2zHpWhy3kFK4au4VcjyEHgDKHHCmU5DCQExFR/bDZgNGj5fJ77wH/+5+5ZBQgoUgHBWt48sWtt8p2yxbgsceAq68GZsyQ63T41mbNMq+7+25pXS8rkxMCc+ZIa+aQIWagr4t9+6SlddAgz3HDDOR1FxcH3HmndPnu3Nm3x+iAbBhA27bm9d27S7guLJThr199JdePGGHeRwfyU6dqn2W9tkDerBnw8MNAcrJnIFfK8+RPTTOvr1kDrF9/uprWTq/fDsiJiLqqKZCXlFQ9ARXsGMj9ZemybsVATuEqEF3Wdfer8gg5Uig9xUBORET1Z8wY2c6fD7z6qlzWs1B//bVMsAaYLeS+Ou884IcfgOeeA664Qq57+WUJw7r1c9w42S5ebM5BNGyYef+33wZ+/Wu5fPAgsHatf2WwevttOdmwZ4/nWGEG8jPz978Dc+fK+t6+6NgRuO8+6TURFWVebxhmK/msWeb/etgw8z46kB8+bA6xqK7L+p49slSfYfi2NGDr1rLNy5PH1RbIc3Jk6bTeveVEk7WnsD+sJ6YaIpDfdJPUTZ+cCAUM5P5iIKezTH0Gcre7hjP9SlU7htwVKUcKZbkM5EREVH+6dJFZqMvLZXZ1AHj9dTnMO3hQgo/NVnXNaV9ceCHw0EPAxx/LRFq7dsms7jqI/OY3ch+lZJ/YsaO0VupA/vnnnkPErOPRc3I8g8jplJcD77xj/r5pk3mZgbxxGYacmJk6teptOpDr9cN79QKaNzdv14Fch+SYGLNVHDAvr1sn2zZtPEN/TWJizJb2vXtrD+S7dpnLs332mZTzgw9qfx2r8nLPSQyXLvXv8VY1jSFfu1Y+V999V/fnbmwM5P6yLHsGmG94BnIKV9aDgjMJ5EpJ60OPHvKF7KGoqPJb3hrI3U45UnDlM5ATUVUzZsxA165d0a9fv0AXhULQ2LHm5b59pXVbz3oNSBg/3Zjx2sTGAnfdJZcnT5aJgPUSarprO2C2hl58sRmQY2OlazEAfPmlbAsLpYzNmkkr4A8/nH5SrHnzPLvuWls0GciDh57YTR8bWburA+Y65z/9JFvvpff0MVNOjmxr6q5eHWu3dWsgP3Kk6koBen30Dh3MMs+b5/trATKDfG6uWafMzLqvIV5dC7lSZlA/0671jYmB3F9eLeT6Q5OTY3YjIQon1hB+JpO6nTols8lu22ausen9xC6bAwWIrdy5qCgGciKq2cSJE7F161asbsgpgSls3Xqr2eVYjym3dhX2t7t6de65R1pH9Zj0yy6TkH/TTeakXfo1o6OB666Ty6+/DkyaJJdXrpTd5PvvS3Byu2Wt88GD5aSCbrX0pltcmzSRLQN5cGrf3nNc+fDhnrd7t5Bbu6sDZpd1rT4COVB1Yjd97Natm7lSQU2TDu7fL2Hd+4SR7iUyfLg5Q31dW8mrC+R5eebnwZ9AXlRkrpwVCAzk/qoI5A64YIMLV1xReRVnWqewVF9d1q1di6qcDa0I5AXOFACG2RWLgZyIiBpIWhrw6KPSfVy3llvDUH0E8nPOMbuiW5+/eXNZ9unaa4HLLzdvf/ttaQkdO1Za6Lt1M8ef63XT779fxpg7HMC//w2MGiWtjlZ79pgt63/8o2wZyIOX7rYeEyMnWqx0INc5wzuQW7uvA3UL5JmZ5hwD+jrvbus6kGdkAJ06yeUdO6rvpaEnvXvhBc/r9YRuQ4eavVHqOo68ukBuPdbcuNH3CREvvlg+74EK5Qzk/qrosg5IK/mgQeY4D3Zbp3DUmIE8PzIFgLlzMWLkSEEVMpATEVH9+/Ofpet3iux+0LOnGXjqI5ADZmsi4Bn4p0+X2dSt432joyXEayNHyvbxx2Xm9rg4edxbb0kLZGyshJxLL5XZpbV33pGgNGQIcP31ct3OneayVgzkweXaa2U7apTZ0KfpQK7V1GVd02HZFzp8L1wo75fERHNyQ+9ArrusZ2RIq77dLt3aDx/2vJ9S0iMSkDHzW7fK5fx8YPlyuTxsmBnI67OF3HqsWVBQ/Vh4l8vzJILLJbPH5+WZkyw2NgZyf1k+JU0TStGli4zlARjIKTw1SiCveOJchxwR6e5XlYG8iIGciIgans0G3HGHXL700vp5zmHDpOv6737nGbZ9oVvP9YzRd94poQmQYZPffSdLWK1d6zl7tW6JHDtWjlObNpWWdh2OGMiDy1VXyYmht96qept3IG+ILuu66/m555rv0ZpayFu2lPZJfcLKu9v6/v0SbgE5STRunCznt2SJbNu2lUCvewKsW1d1vHptSkrM1wCqD+RA1W7rJ05IrxPdIwGQNiG9JGCgxp0zkPvLMrvHiEtKYLOxhZzCW31N6mYN4TW1kJ+yJQMwz/ba4mIAAAYDORERNZJnn5VWP++uw3Vls8la5H/5i4wn98fgwZZeY4Znazsgk9FdeaVc1mHC5TK7p/fvL4/r2VN+1zOtM5AHnwsvNE+2WNUWyK0t5E6nfysD6ECudepUcyC3tpADZvD3Xl5syxbzfsnJMpFb587m/AjDhsl7slUreX2Xy2w595X3SgPFxfKe9g7kGzZ4/v7gg3IC4bvvzJMA1sd437+xMJD7yzCgKrqt/+VJ6RukAznHkFM4qq9J3Xzpsn7S8Oyybo+XIwWjhIGciIgah8PhuexUIDmdZmveqFGyRJq3886TrV726qefpGt6dLR5fx3IN26U1kAdRhjIg58/XdY7dPB9bXTA90CulLR8A9JCru8LVG0h14F84EDgtdfksl4yLTXVXHkAqPs4ch3ImzY1J0c8edI81tR/A2uL97ffAv/4h/m7zm3WY9JAtZA7AvOyoc1wOoHSUiREyTR+bCGncOV2m8toAA0/hjxbeQbyiIpAbmcgJyKis9T06RIwnnmm+tt1INdhQm979jSDiTWQf/KJBPLExLqts06Ny58u6/50VweApCRZgkx3/+7USbqTAzLJW1mZdA7OzZUx2YAZyGtrIe/WDbj9dil/cTFw/vnSzd3aS+Sii2RiQuva5L7QgTwtTVrYs7M9A/mAAcCyZeZnoagI+O1vPZ/jyBE5+WA9Jt25U+rpPS6/obGFvC70OPISzxZyBnIKN3l55rgaQL6QfZ2x0psvY8iPu70CeUJFIC9jICciorPT+efL5G81TdalA/muXbLEqO5226uXeZ8ePWS7YQPwxBNyecoUmdWbglttgdzpNFuJ/Q3khuHZSt6pE5CeLs/pcpmt4rq7enKyeYxWWwt5t26yvfJK4MYbJeh7D9kYOlS2K1aYvTby8yU8f/FFzeXWx5SpqVImwDOQX3aZvNahQ3LMOX269BxJTzfLpXOb9fhUKXNYR2NiIK8LBnI6S+gu6papEzxazP3hSwv5MZd8q+qzvZGJEsgjygrr9qJERERhLiUFaN1aLm/YYLYK6qAOAF27Smg7cUImdktMBCZPbuySUl3Ex3v+7t1l3TCqhmR/WAN5hw7yPtGt5LrbunVCN02/1u7d5trf1okDdfA9nXbt5LXKy2XSN0CW/nvzTZmhvSbWLuvWQK6PL9u1k7oAwIsvAs8/L5dff90cxlFdl3UgMOPIGcjrQi99xkBOYU53UU9NNUNyXbut+xLIj5R6tpBHJetAXlTtOpdERETk2W29ukAeHe3ZejplinRXpuAXG+vZsuwdyAHzf3kmgbx1a7PHhPc4cu8J3QCgRQs5NnS5pHcGAOzbJ12+IyPNQFwb3UquVwb46CPZ7tpV/RrngBnIa2ohb9rUfP8/84w8z29+A1xzjbk6lncgd1QM5A7EOHIG8rrQLeSlVceQMzRQONHhOznZ8wuvLqyB/Ngxz67wOpAfLvEM5EktJJA7VREnTSQiIqpB796y/eormSHeMMxu6poeR87W8dBis5mt5AkJnuvWa08/LSdZLrjA/+dv21a21jDvHcirayE3jKrjyDdvNp/L2rvydIYMke033wB79kj3dUCGSVqPOU+dMsex+xPIAZnl/cUX5bL3ctU6kOu/HQN5qPDqsq7/sUVFnmviEYU6/UWYkmJ+4dVlpnWlPAN5eblXsK/45air+jHk0SiqsvwGEdGMGTPQtWtX9OvXL9BFIQooHT6+/FK2HTtWXZ961CjZPv44W8dDjR5HXl3rOACMHg288II5ltwfN98MDB8ugV6rKZBbW8gBM5DrceTe48d9oVcR2LQJeOUVz9t275btyZPS4q7Duy+B/Pzz5XJkJDBrlnls6b06ln7MsGFmOeo6X1JdMZDXhVeX9ZgY88wVu61TOLG2kKekeF7nj/z8yo9L5Zldj27retkzeK5DrtdjYSAnoupMnDgRW7duxerVqwNdFKKA0oFc9z6ztg5qY8ZIkLEGLwoNOpB7T+hWH9q0kZ4VI0ea1+lAvm2bbKvrsg6Yreq6hbwugTw11ezhUVMgX7NG3rsrV0q3eGvw1oH84EFpHNXXDxsGTJsG/Pe/nhMc1tRlffBgOewsKKi6BntDYyCvC68u6wDHkVN40q3hZ9plXX9xRkebE89UBvKyMumXBCAbKbDbzXNeDORERES1a9PGs9W7ukBuGECTJo1VIqpPtbWQ17cLLpDW9u3bJQBX12UdqJ8WcsAcR+5yyVJ9w4fL7zqQb99u3veHH6pvIdcnBSIjpaHUbgf++EfPEw1AzV3WW7QAuneXy409sRsDeV14dVkHGMgpPNXXGHLrmUx9drcykFumbc9BEuLiLJOXWAL5Tz/5/7pERERnA8PwDOHVBXIKXQ3ZQl6dlBRg4EC5PH9+zV3WrS3kbrfZol7XQA5Iy7YehVSXQN60adXl1aysXdbLyszjWuu488YeR85AXhcM5HSWqK9ArsN3Wlo1gbziCV1xCXDBYXZXByrHgsQjD/t2loCIiIiqx0Aevho7kAPAFVfI9tNPZbk8oGoLuXUJsXvvlS7jTqfZ5d1XgwebvSNvuUWWLQP8C+Q6g9XWi0C3kBcWyiRygPQGSEkxPzdsIQ8FXmPIgaoTBBCFg/qa1O20LeQVT1gW5zmhGwAgPR1lTZrBAReSdqzy/4WJiIjOEnocblqaeVxK4aFLF9nqmfIbgw7kCxbINjraPBbUEhLMEPv667Lt3Fm6i/sjJgZ47DHg6quBm24yA7leTs0ayNevN0cNWwO5Vlsgj4szjzU3bjQfY7PJRHA9etRt+bgz4WjclwsTHENOZwlrC7n+cj3TLuv6zKR3IC+OkUCuzwIDkD5HF10EzJmNXqcW49SpXyAx0f/XJyIiCnejRgF9+wLXXXf6LrsUeh5/HLj1VjOYN4ZevWRc9eHD8ntGRvXvq8WLgblzgc8+kyXLxo+v2+tNnWpe1oF8zx5Z7kxPKte0qXlMGRMjP/4GckCORXftkhnVAbOx6IILzJDemNhCXhfWLutHjgCLFjGQU1iyTup2JrOs+9JCfkLJC3ivmxox5GIAwMVYzIndiIiIatCkCbB6NfD73we6JFTf7Haga9fGPdFiGGYrOVC1u7qWkADccQfw0UfA3r3APfec+Wu3aiV1Li0FvvtOrmve3FyaDJDWcaDugRwwA3ljTZZXEwbyurB2WR8zBrjsMnQ9vBAAAzmFl0aZ1K0ikB8ulhfQ60ZWuugiAMCFWIZdmWX+vzgRERER+c0ayL0ndGtIDoeEckAmlQOkK/ygQeZ9agrkvoyz1w2p3i3kgcJAXhe6hfz4ceDbbwEA7X6SARZ79phrQBKFOu9A3gc/4uOt3YB58/x6ntMG8ooX2X1KWsj79PF6cLduyItMQSwKUfj9mjrUgoiIiIj8NXSohGOg5hbyhqK7rVsD+eDB5u06kCckePYc8KeFXK/gw0AeinQg//prWTAPQNOfliE2Vhr7Nm8OYNmI6onLJeN2AHNStyl4EeeWbQWmTPHrzFN1gbxyAsSKFvL9hSkwDBmz5MFmw4H20koes3pxHWtDRERERP5ISKjsqIj27Rv3tXUg37dPtp07y3Jq3muy22xAUpL5OH8CuVKyZSAPRTqQ68X2ANjW/IhLBkl32opGc6KQduqU+UWVnAwkx5djJCpOU/70E/D55z4/V3WB/NSpioUKKgJ5NlLQubPXLOsVCvrIOPKMXQzkRERERI1l5kyZVG7MmMZ9XR3INT17u14fXbeQA57d1n0J5N6rEHAMeSjSY8itiopwcydZtI6BnMKB7q4eEyNv+aTty5ECywDyF1/0+bmsgTwpyez+dOwYKgP5SSRX7a5eIWKoBPJuJ5cC5eV+1IKIiIiI6urcc4Hp02XZs8ZUXSAHgNtvl7bRSy4xb/M3kOsWco0t5KFIt5AD0k/iggsAAJc4lwMAsr7dCve9k80+FkQhyDp+HAAcX0qL+CJcAmW3A4sWYVyv9cjJdgPLltU421thofwA5jqPHuPIKx6XjZSqE7pVaDGiJ3KQiHiVh5KV6+uhdkREREQUrKyBPDranORt7FggLw+49lrz9jNtIWcgD0XWQN63b+UUhBkHliMpCfhLwQTYXnsFuPxycxAuUYjxDuR6Irc3MR67zr8RAPDrjfeirGtPmfayc2dZiNKLbh13OoH4eLmsv/hO7jgGZGYCAI4jtcZA3rS5HcvtvwAA5H7g34RyRERERBRarIG8Uydp0NEiIjzvW9l45PAcT14T7xZydlkPRdYu68OGVQ5msK1Yjl+dtwYX4Xu5bds24Oab2cWWQpIO5CkpkOUDtmxBOez4CiPw0MEpAIBfYCmaHtkidzx6FLjmGuDOOz1ORFm7q+tZMNPSAANudHp6HJCdjW3ojFXoj969qy+LYQAr0q+X8vztKcwctwJTp/KjRURERBSOmjcHoqLksu6uXhMdyFNTfVurnV3Ww4G1hXzYMKB/f/nv79mD+w4/CgDYlDRYBt9+/TVOjp1szo5FFCIqhnbLl1zFBG5bEgfhJFIw59AAfIhbccDIwO/xJGa9fAR4+GH5HPzjH0CPHsDChQDM5c2sZx/T0oAH8AIyNs6HKzIKN+NjtOnorJw5szpb+v0Sn+AG2F1luOpfN+Ktp47inntq+WhlZgLvvWf2mffFsWNS9ooVFIiIiIiocRkG0LatXPY1kPva0h0bC8TFyeXISJz2+LMxhEQgnzFjBtq2bYuoqCgMGDAAq1atCmyBdCCPiZHx4wkJQPfuAIDWmd8AACYUvYT3r3gfbhhI/vB1rLr2ydqfl6GdgohHl/WK7uobWo2qvP2p7h/ig2f242n8Hn9+Mw3qmWeB778HzjkH2L8fGDoUuYOvQMbMqbgRs5HepKTysYOLFuBp/B8AYMEVL2EzetTYXV07v4+BO/EutqEzMnAQ/8EN+OKtA3j66YrC3nuvLGJ+xx3As88Cw4fLN/jYsdKl3pc5HRYskDU1hg4FBgyQsfFWhw8D990H3HQT8OqrwLp1wFdfAc8/D0ybBnz8scxA770kXHWf7X37gJUrgZyc2ssFSK+Dt94CPvjAryXngkppqZT/7bflbxlqdu8GiosDXQoiIqKzgu452b//6e/nbyAHzFbytDTfWtUbkiOwL1+7jz76CA888ADeeOMNDBgwAC+99BJGjBiBzMxMpAWqf4E+XTNqlBnOBw4ENm0CACyP+AWWlfTBsk/6YCVewiuYjP5zp+GTIU3Q6qm7Jei4XOiSuxItN86HY/2PwPr10iR5xRUSIC6+WIK+3S7XHzgAHDwoP1lZ8u7p2FHKkpIi983NlSC0f78c7B84IH09evaUEwZJSTIrgmEARUXmbFuFhXJdx47mFIr5+cCOHcD27bKNjAQGD5ZPhNMJlJVJf+HISCljoN/JwUgp8+/idku3759/lv9Dixbyd8zKkhbZFi3k7++o5SNZUgLs3Sv/X5dLBtTExcljres/WJWWyuvs3y//z23b5HG/+AVw4YVy25o1wPHj8j7p3VvKtvsErsEGPLj4HWDPVwCAnzpdCWyWp504EbjtNuDPfwa2bAHeeQcYPnwQtj+/ASd/8zBuOfE6En6Yj56Yj9kA9v3YA1j3T2DzZvx6zl2woxyzbTdjwuLxAFDjDOvalCnAuefGIyHpU+C6/vhF/lLswLn459RxyP3zp0goqmiKX7vWfJBhyN9n/Xrkd+mLD/q/DHTpguQ2CUjdtQqpW75DTO4RFDdrA6e9HOd8/ToMHZ7XrJEgf9ll8ney2YAXXpDPBgB88knNhY2Pl79j69byN9+8WfYWV14p80785z8S/vVrNW9uDrCPjJT7pqSYC8CfPClhX7f0z5wJvPGG1G/JEinrli3SI6C4WK6PiJD3WlIS0KaNnGjo0EE++ydPyk92ttSnTx8ZbtC+vfz9Vq+Wx7dqJXsspeT9lpMj75eTJ2VAV58+8t5esEDKkZUl9ykrA1q2lMdnZMg2O1tOlOgTI4YhJz3OPVf2oG3bAiNGyHt5/37p2bB+vfwN9WfjxAn5OX5ctjExUgb9ni0ulv9Ty5bymdq4Efj6a9k6nfL9lpQkdUpNlVPk0dHyGTl0SE4SFBTI3ygyEjj/fHn+NWukPN9/D3z0kQxFoqAwY8YMzJgxAy72aCEiCjuvvw5MmCCHrKfTrZtse/Tw/bmbNZPD8kCPHwcAQ6ngbpYdMGAA+vXrh9deew0A4Ha70apVK9x777149NFHa318bm4uEhMTcerUKSTUZ3+E9eulJVAfRL/7LnDXXQCAly76FFOWXIekJDluTv/b47jouz/CDQPrcR5csKMt9qApjtf6MuWww4HGOdBwGzbkpLRHRFkR4nMPVn8fmx0AYHObZVKGAXeEE25HJFzRcShu2QFFrTvBcNjhPHEIjrxsuJKborxFBtwpTYHoaBjOSCDnJGxHsoCiQrhTUqGaNIUR5YTNULDbFGyGGw6bApSC26XgLnfL1qWg3AqGcgMGYBiGnBTQPw47jIrLhtsF49BB2A7tB8rKUZ6UivKkVBhxsbDFOGGPiYI9xglHTCTsRw7BtusnGCezgW7dYPQ5XwJRfr7nj8sFV2Q0isvsiNi5FY6Na4B9+1Bmj0IJnHAU58OZewz2/FyouDiohEQYOSdh1NZt2umUFt127SScOJ1Q+QVQp07B2LsHxu7dckKmpo9scrI8R2GhGUz0yZf6cOedeLjJO3j+LwYSEqQocXHAgw8Cf/1r1btfELUefYqXogc24Xp8Ku93u72yK/i8uFtxQ/4/UAo5qbVokecSFqe1bp20VC9dWnnVNnTG87ZH0dK9Dz2xEXsdHbC023g4Iu34/eprcT7W+fTU79h+g7k9puLh0j/hwu1/NwN6hQMZA7Cn6yicc3AJUnevQlnTdJSc2xNGUiJif1oPx9aNMEpKanh2T+60ZrAdPeJjpQHVuTOwfz+MggKfH+MP5XDAaOiB+S1aSMheubL62zMyTv8+DyTDAP7wB+CPfzzjp2qwfdNZin9PIqKzl1LSLnHuudWvTl2dG24APv1U2gK+/LJhyuXrvimoA3lpaSliYmLwySef4FrL3Pbjxo1DTk4O/ve//1V5TElJCUosB8O5ublo1apVw++k9+2TMHXOOdg3dz3e+8COsWMrpuhXCj+NvBcdvprh8ZAcJGI+RmIxLsZ6nIcSOHEbPsTt+AAZ8AzER9EUB9ESB9ESR9AMzZGFDvgJrbAfMTAD13E0wX60qvyJRx56YiO6YBucKPV4znLYUYBYFCIGTpR4rjFd8ZqZ6IRMdEI88nARlqAFsur373YWKYYTu9Ae8chDCxyGAy4cRxMcQ1O0wn7EwbeQVYAY7DPaoNRwwg43kpGNlu4Dp31MKSJwxJ6OXY5zkWnrgkhXMS4s+w7nqh3IRyw22HrjuC0N3dyb0MG9EwBQiGgcRgu4r70BHZ/5FdCpE2bNklbxqVOlZRyQMeJ33CGNs4cPS+aeOBH4v/+T3Pzb3wJ5u45iRe970H7df+RBDz8M9dTTyNxpw/z5cu7gvvv87GihFNR/PsXxJ17DIvtQTNr9II7lOqu9awwK8WHb/0O/4iWIOXUYscUnsDe+O7Y1uxRH49oj4dR+xOUdxgcFV+O9whsrH9cJ23EJvkN/rEJLHMR7GIMPcDvUaUb7OFCGztiO3liHDBxAJjphM7qjDfbiaszF+ViL73AJ3savsRvtkYBT6GLbAYdbvrecKEEyTiIZJ5GCbDS1ZcNpL8ccXIfF5YPQUu3HDEzEVZiHQkRjpTEQ62MGYk1xd2x0dUUe4mFAIRKlSEIOmtqy0T3qJ3Qs3YJWrt3IU3HIRgpOIhnZSEEZIjAEC3EZvoUTpTiOJliOgXDDhja2/UjDUZQrO8qVHblIxDF7MxTZ4tDFvQXnuGSG/A32PvjGGIqf0QGnjCS4DTtaqgNoiQPIcO9HhtqPaBRiVsRY/Mv5G5TYopGuDuKS8m+QprKQqo6hR/k6DCxbggjICYFlERdjUdRIpLmz0Nb1Ewwo5NiaIMfeBNn2VOTYmyDZnY0eJT+ic9lGAECxEY0IdymalR9AHApwAin4IWooNsQPQmkJYC8uQLw7B2k4iqY4hhgUIhpFcMGBLFs6DhvpKIpIgDsyColGLrrmr0K30rU4aGuFT6PvwOeJt+OXf8jAhAl+vE9rwABZv/j3JCIif9xzjzScjhkD/OtfDfMaYRHIDx06hJYtW2LZsmUYWDGTOQA8/PDDWLx4MVZW08Iyffp0PPHEE1Wub5Sd9N690nXcuhieppR0ezx2TFoIk5Kg+g/A8VMRKC6Wm60/KC2FkZ8HVViEnIimyClyorBQHqp/ystlq4pLYMvNQUlEHEocsZXXV7lfaRlQXAx3uRvFthiUqgjzPmUKsflHkJa9DcWIxoHYTshzJHs83lWukFRwEOUuA4WIQYnLAaO8DLbyUtjKSmB3lSKmNAetinagTXEm3ArIMtKRjRQklx9Di/L9iHedRJS7CBGqBHm2JJyIaI5iWwySXceR4joKu7sMLrcNLmXA5Tbghg0KsoVhwDAMGDYDyjCglAEFAwbcsCsXbHBVbm3KDRtcUDBwxGiBg7ZWKLdFItU4gSY4Dqe7CJGuYjjcJYhCMaJQjKNIw050RA6S0AOb0BvrEINC5CPO48cNG6JQDCdK8DPOwY/oi53oiOS4MrRuWoxcVyy2n2iKgwWJiEM+EnEKeYjHzzgHblT0MIALNrhRDlm3wYAb7bAbXbANbbAXbbEHDpSjALHIQzz2oTV2oT12ox2OoSkAz+QajUKcg59hg1v+N3DCgIIdLuQhHifQpNoQmYgc5CG+slwAEIMCxMbZcPUt0bjzTum1rbndwK5d0jmkuvDsdsuPted9UZF0KOnfT8G+4Et5M115pa+fKp+VlUmv49hY6cm8f7/0VD5yRF5OjzQB4DmcwKv8u3bJR/XHH6X3dmmp9HJOSJAOCBER0gkhK0ueW3dIyM+vusqh0ym9COLi5OWKi+XvUVwsow+q43TWfJsWHaVwbuIRZB5LQbHb81Rw06ZAly5AYqL0PM/y8RxaHPKQiuPYg7bwfn+d7jF2uHAKSb69SC3ikYsBWImf0AF70K72B9RIIR55KECsx3u7PvzlL8Dvfnfmz8MAWb/49yQiIn+8+aY0Gj3/vPT2bAhnbSAPWAs51Tul5GSA7pHeEMPU9WuUlEhO1IFSX67uOrtdwllcnPxeUiItvN5vr9LSihMhynwO/VPbdS6XhNrISAmA+jpruay/67+N9W+kL7tcUpbSUnnOiAjPHz082FrXNm3M6QTId+XlMrza4ZD3h/c6mVZutwRz/RMTIyNg7HbztqIi+SkpMf9f8fHmzKDl5XLi4dQpc8i5vg2Q/+2BA3KywOmUn6go2Toc5nvO+4SgUvK6+flSjqgoc/qJkhLPH0BeMyZGPgd6j1Ldc1Y58ejD/fx9Lr0GaWKilO/ECalHXJz87SIjq35+9OdanzQpKJATPHFxcoLHWu+MDCA9/czfKwyQ9Yt/TyIi8ofbLdMqde4sxwANwdd9U1BP6paamgq73Y4jRzzHWB45cgTNmzev9jFOpxNOZ/XdVim06HmpGuM1zuR1agquvo5hofDhcPg+OYjNJiE2Jsa/27xfr91pGpINo2LYTB0kJdXtccGmTZtAl4CIiIiCjc1mTgYXaEG97FlkZCT69OmDhRXrGQMyqdvChQs9WsyJiIiIiIiIQk1Qt5ADwAMPPIBx48ahb9++6N+/P1566SUUFBTgzjvvDHTRiIiIiIiIiOos6AP5LbfcgmPHjuGxxx5DVlYWzjvvPHz55ZdopldzJyIiIiIiIgpBQR/IAWDSpEmYNGlSoItBREREREREVG+Cegw5ERERERERUbhiICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAEegC9DQlFIAgNzc3ACXhIiISOh9kt5H0Znhvp6IiIKNr/v6sA/keXl5AIBWrVoFuCRERESe8vLykJiYGOhihDzu64mIKFjVtq83VJifnne73Th06BDi4+NhGMYZPVdubi5atWqF/fv3IyEhoZ5KGDjhVJ9wqgsQXvUJp7oArE8wC6W6KKWQl5eH9PR02GwcPXamuK+vGesTvMKpLkB41Sec6gKEV31CqS6+7uvDvoXcZrMhIyOjXp8zISEh6N8A/gin+oRTXYDwqk841QVgfYJZqNSFLeP1h/v62rE+wSuc6gKEV33CqS5AeNUnVOriy76ep+WJiIiIiIiIAoCBnIiIiIiIiCgAGMj94HQ68fjjj8PpdAa6KPUinOoTTnUBwqs+4VQXgPUJZuFUFwqccHsfsT7BK5zqAoRXfcKpLkB41Sec6qKF/aRuRERERERERMGILeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOR+mDFjBtq2bYuoqCgMGDAAq1atCnSRavX000+jX79+iI+PR1paGq699lpkZmZ63Ke4uBgTJ05EkyZNEBcXhxtuuAFHjhwJUIl998wzz8AwDNx///2V14VaXQ4ePIg77rgDTZo0QXR0NHr06IEff/yx8nalFB577DG0aNEC0dHRGDp0KHbu3BnAEtfM5XJh2rRpaNeuHaKjo3HOOefgT3/6E6zzRgZrfZYsWYKrrroK6enpMAwD//3vfz1u96Xc2dnZGD16NBISEpCUlIRf/epXyM/Pb8RamE5Xn7KyMjzyyCPo0aMHYmNjkZ6ejrFjx+LQoUMezxEq9fE2YcIEGIaBl156yeP6YKoPBTfu64ML9/XBJZT39UB47e+5rw+ffT0DuY8++ugjPPDAA3j88cexdu1a9OrVCyNGjMDRo0cDXbTTWrx4MSZOnIgVK1ZgwYIFKCsrw/Dhw1FQUFB5nylTpuCzzz7D7NmzsXjxYhw6dAjXX399AEtdu9WrV+Nvf/sbevbs6XF9KNXl5MmTGDRoECIiIjB//nxs3boVf/3rX5GcnFx5n+eeew6vvPIK3njjDaxcuRKxsbEYMWIEiouLA1jy6j377LOYOXMmXnvtNWzbtg3PPvssnnvuObz66quV9wnW+hQUFKBXr16YMWNGtbf7Uu7Ro0djy5YtWLBgAebNm4clS5Zg/PjxjVUFD6erT2FhIdauXYtp06Zh7dq1+PTTT5GZmYmrr77a436hUh+rOXPmYMWKFUhPT69yWzDVh4IX9/XBhft67uvrWzjt77mvD6N9vSKf9O/fX02cOLHyd5fLpdLT09XTTz8dwFL57+jRowqAWrx4sVJKqZycHBUREaFmz55deZ9t27YpAGr58uWBKuZp5eXlqY4dO6oFCxaoiy++WE2ePFkpFXp1eeSRR9TgwYNrvN3tdqvmzZur559/vvK6nJwc5XQ61YcfftgYRfTLqFGj1F133eVx3fXXX69Gjx6tlAqd+gBQc+bMqfzdl3Jv3bpVAVCrV6+uvM/8+fOVYRjq4MGDjVb26njXpzqrVq1SANTevXuVUqFZnwMHDqiWLVuqzZs3qzZt2qgXX3yx8rZgrg8FF+7rgwf39cG1b9TCZV+vVHjt77mvD+761IYt5D4oLS3FmjVrMHTo0MrrbDYbhg4diuXLlwewZP47deoUACAlJQUAsGbNGpSVlXnUrXPnzmjdunXQ1m3ixIkYNWqUR5mB0KvL3Llz0bdvX9x0001IS0tD79698dZbb1Xevnv3bmRlZXnUJzExEQMGDAjK+lx44YVYuHAhduzYAQDYsGEDli5dipEjRwIIvfpovpR7+fLlSEpKQt++fSvvM3ToUNhsNqxcubLRy+yvU6dOwTAMJCUlAQi9+rjdbowZMwYPPfQQunXrVuX2UKsPBQb39cGF+/rg3DeG674eCP/9Pff1wcsR6AKEguPHj8PlcqFZs2Ye1zdr1gzbt28PUKn853a7cf/992PQoEHo3r07ACArKwuRkZGVH06tWbNmyMrKCkApT2/WrFlYu3YtVq9eXeW2UKvLrl27MHPmTDzwwAP4/e9/j9WrV+O+++5DZGQkxo0bV1nm6t53wVifRx99FLm5uejcuTPsdjtcLheefPJJjB49GgBCrj6aL+XOyspCWlqax+0OhwMpKSlBXTdAxmI+8sgjuO2225CQkAAg9Orz7LPPwuFw4L777qv29lCrDwUG9/XBg/v64K1PuO7rgfDe33NfH3z1sWIgP4tMnDgRmzdvxtKlSwNdlDrZv38/Jk+ejAULFiAqKirQxTljbrcbffv2xVNPPQUA6N27NzZv3ow33ngD48aNC3Dp/Pfxxx/j/fffxwcffIBu3bph/fr1uP/++5Genh6S9TkblJWV4eabb4ZSCjNnzgx0cepkzZo1ePnll7F27VoYhhHo4hAFHPf1wYX7ego07uuDH7us+yA1NRV2u73KDJ5HjhxB8+bNA1Qq/0yaNAnz5s3DokWLkJGRUXl98+bNUVpaipycHI/7B2Pd1qxZg6NHj+L888+Hw+GAw+HA4sWL8corr8DhcKBZs2YhUxcAaNGiBbp27epxXZcuXbBv3z4AqCxzqLzvHnroITz66KO49dZb0aNHD4wZMwZTpkzB008/DSD06qP5Uu7mzZtXmfSpvLwc2dnZQVs3vYPeu3cvFixYUHnGHAit+nz//fc4evQoWrduXfm9sHfvXvzud79D27ZtAYRWfShwuK8PDtzXo/L3YKxPuO7rgfDc33NfH5z18cZA7oPIyEj06dMHCxcurLzO7XZj4cKFGDhwYABLVjulFCZNmoQ5c+bg22+/Rbt27Txu79OnDyIiIjzqlpmZiX379gVd3YYMGYJNmzZh/fr1lT99+/bF6NGjKy+HSl0AYNCgQVWWpdmxYwfatGkDAGjXrh2aN2/uUZ/c3FysXLkyKOtTWFgIm83zK8Vut8PtdgMIvfpovpR74MCByMnJwZo1ayrv8+2338LtdmPAgAGNXuba6B30zp078c0336BJkyYet4dSfcaMGYONGzd6fC+kp6fjoYcewldffQUgtOpDgcN9fXDgvj64943huq8Hwm9/z3198NanisDOKRc6Zs2apZxOp/rHP/6htm7dqsaPH6+SkpJUVlZWoIt2WnfffbdKTExU3333nTp8+HDlT2FhYeV9JkyYoFq3bq2+/fZb9eOPP6qBAweqgQMHBrDUvrPOvKpUaNVl1apVyuFwqCeffFLt3LlTvf/++yomJkb9+9//rrzPM888o5KSktT//vc/tXHjRnXNNdeodu3aqaKiogCWvHrjxo1TLVu2VPPmzVO7d+9Wn376qUpNTVUPP/xw5X2CtT55eXlq3bp1at26dQqAeuGFF9S6desqZyL1pdyXX3656t27t1q5cqVaunSp6tixo7rtttuCrj6lpaXq6quvVhkZGWr9+vUe3wslJSUhV5/qeM+8qlRw1YeCF/f1wYn7+uARyvt6pcJrf899ffjs6xnI/fDqq6+q1q1bq8jISNW/f3+1YsWKQBepVgCq/Xn33Xcr71NUVKTuuecelZycrGJiYtR1112nDh8+HLhC+8F7Jx1qdfnss89U9+7dldPpVJ07d1Zvvvmmx+1ut1tNmzZNNWvWTDmdTjVkyBCVmZkZoNKeXm5urpo8ebJq3bq1ioqKUu3bt1dTp071+OIP1vosWrSo2s/JuHHjlFK+lfvEiRPqtttuU3FxcSohIUHdeeedKi8vLwC1OX19du/eXeP3wqJFi0KuPtWpbicdTPWh4MZ9ffDhvj54hPK+Xqnw2t9zXx8++3pDKaXqp62diIiIiIiIiHzFMeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADORE1KAMw8B///vfQBeDiIiIGhD390R1w0BOFMZ++ctfwjCMKj+XX355oItGRERE9YT7e6LQ5Qh0AYioYV1++eV49913Pa5zOp0BKg0RERE1BO7viUITW8iJwpzT6UTz5s09fpKTkwFI97KZM2di5MiRiI6ORvv27fHJJ594PH7Tpk247LLLEB0djSZNmmD8+PHIz8/3uM/f//53dOvWDU6nEy1atMCkSZM8bj9+/Diuu+46xMTEoGPHjpg7d27DVpqIiOgsw/09UWhiICc6y02bNg033HADNmzYgNGjR+PWW2/Ftm3bAAAFBQUYMWIEkpOTsXr1asyePRvffPONxw545syZmDhxIsaPH49NmzZh7ty56NChg8drPPHEE7j55puxceNGXHHFFRg9ejSys7MbtZ5ERERnM+7viYKUIqKwNW7cOGW321VsbKzHz5NPPqmUUgqAmjBhgsdjBgwYoO6++26llFJvvvmmSk5OVvn5+ZW3f/7558pms6msrCyllFLp6elq6tSpNZYBgPrDH/5Q+Xt+fr4CoObPn19v9SQiIjqbcX9PFLo4hpwozF166aWYOXOmx3UpKSmVlwcOHOhx28CBA7F+/XoAwLZt29CrVy/ExsZW3j5o0CC43W5kZmbCMAwcOnQIQ4YMOW0ZevbsWXk5NjYWCQkJOHr0aF2rRERERF64vycKTQzkRGEuNja2Spey+hIdHe3T/SIiIjx+NwwDbre7IYpERER0VuL+nig0cQw50VluxYoVVX7v0qULAKBLly7YsGEDCgoKKm//4YcfYLPZ0KlTJ8THx6Nt27ZYuHBho5aZiIiI/MP9PVFwYgs5UZgrKSlBVlaWx3UOhwOpqakAgNmzZ6Nv374YPHgw3n//faxatQrvvPMOAGD06NF4/PHHMW7cOEyfPh3Hjh3DvffeizFjxqBZs2YAgOnTp2PChAlIS0vDyJEjkZeXhx9++AH33ntv41aUiIjoLMb9PVFoYiAnCnNffvklWrRo4XFdp06dsH37dgAyI+qsWbNwzz33oEWLFvjwww/RtWtXAEBMTAy++uorTJ48Gf369UNMTAxuuOEGvPDCC5XPNW7cOBQXF+PFF1/Egw8+iNTUVNx4442NV0EiIiLi/p4oRBlKKRXoQhBRYBiGgTlz5uDaa68NdFGIiIiogXB/TxS8OIaciIiIiIiIKAAYyImIiIiIiIgCgF3WiYiIiIiIiAKALeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQA/w8MYkGK21uQ2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig = plt.figure(figsize=(12, 5))\n", + "fig.add_subplot(1, 2, 1)\n", + "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.title(\"MSE\")\n", + "plt.legend()\n", + "\n", + "fig.add_subplot(1, 2, 2)\n", + "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Logarithmic loss')\n", + "plt.title(\"Logarithmic MSE\")\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [], + "source": [ + "# save the checkpoint model training if necessary\n", + "output_path = \"./\"\n", + "\n", + "torch.save({\n", + " 'epoch': epoch,\n", + " 'model_state_dict': model.state_dict(),\n", + " 'optimizer_state_dict': optimizer.state_dict(),\n", + " 'loss': loss.item()\n", + " }, Path(output_path,'lstm_train_checkpoint.pt'))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Evaluate model\n", + "Now we can evaluate our model with testing set and compare the predictions with the ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "

Run history:


testing_loss█▁
train_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss▃▂▂▁▂▂▂▂▁▁▁▁▁▁▂▂▂▂▂▂█▃█▃▂▂▃▃▂▃▂▂▁▂▂▂▃▂▂▃

Run summary:


testing_loss1.43589
train_loss0.05494
validation_loss2.15114

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run dry-shape-17 at: https://wandb.ai/ai4s2s-demo/test-LSTM/runs/fh7xdmqd
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230815_150902-fh7xdmqd/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# switch model into evaluation mode\n", + "model.eval()\n", + "hist_test = []\n", + "predictions = []\n", + "hist_test_step = 0\n", + "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'testing_loss': loss.item()})\n", + " predictions.append(output.squeeze().cpu().detach().numpy()[:,-1])\n", + " hist_test_step += loss.item()\n", + "\n", + "hist_test.append(hist_test_step / len(test_loader.dataset))\n", + "# call wandb finish to stop logging\n", + "wandb.finish()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus observations and climatology." + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE of LSTM forecasts is 2.108\n", + "The MSE of climatology is 1.033\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzYklEQVR4nOzdd3RU1frG8e+k995JAgmQ0DuEooCigCiCgorgTxGvehUs194FRLl2sIDXAugVBBVQQQWR3nsVSCgBEkhIIwlJSJ35/RHINYKQCQkn5fmsNWuZM2fOPBNiMu/sd+9tslgsFkRERERERESkxrMxOoCIiIiIiIiIVIyKeBEREREREZFaQkW8iIiIiIiISC2hIl5ERERERESkllARLyIiIiIiIlJLqIgXERERERERqSVUxIuIiIiIiIjUEiriRURERERERGoJO6MD1ERms5kTJ07g7u6OyWQyOo6IiIiIiIjUcRaLhdOnTxMSEoKNzd+Pt6uIv4ATJ04QFhZmdAwRERERERGpZxISEggNDf3b+1XEX4C7uztQ+s3z8PAwOI2IiIiIiIjUddnZ2YSFhZXVo39HRfwFnGuh9/DwUBEvIiIiIiIiV8ylpnRrYTsRERERERGRWkJFvIiIiIiIiEgtoSJeREREREREpJbQnHgREREREalzLBYLxcXFlJSUGB1FBABbW1vs7OwuextzFfEiIiIiIlKnFBYWkpSURF5entFRRMpxcXEhODgYBweHSl9DRbyIiIiIiNQZZrOZ+Ph4bG1tCQkJwcHB4bJHPkUul8ViobCwkNTUVOLj42natCk2NpWb3a4iXkRERERE6ozCwkLMZjNhYWG4uLgYHUekjLOzM/b29hw9epTCwkKcnJwqdR0tbCciIiIiInVOZUc5RapTVfxc6idbREREREREpJZQES8iIiIiIiJSSxhaxE+cOJHOnTvj7u5OQEAAgwcPJjY2ttw5vXv3xmQylbv985//vOh1LRYLr7zyCsHBwTg7O3Pddddx4MCB6nwpIiIiIiIiV0SjRo2YNGmS0TGqzIoVKzCZTGRmZhodpVYwtIhfuXIlo0ePZsOGDSxZsoSioiL69u1Lbm5uufPuv/9+kpKSym5vvfXWRa/71ltv8cEHH/DJJ5+wceNGXF1d6devH/n5+dX5ckRERERERC5LQkICo0aNKltZv2HDhjz22GOkp6cbHa1K9O7dm8cff7zcse7du5OUlISnp6cxoWoZQ1enX7RoUbmvZ8yYQUBAAFu3bqVnz55lx11cXAgKCqrQNS0WC5MmTeKll15i0KBBAHz11VcEBgbyww8/MGzYsKp7AQbLLyrBxmTCwU6zIkREREREarvDhw/TrVs3oqKi+Oabb4iIiOCPP/7g6aef5tdff2XDhg34+Phc8VwlJSWYTKZqWyzQwcGhwvWe1LA58VlZWQDn/WDOnDkTPz8/WrVqxfPPP09eXt7fXiM+Pp7k5GSuu+66smOenp7ExMSwfv36Cz6moKCA7Ozscrfa4LWFe7l16loOpuQYHUVEREREpEayWCzkFRYbcrNYLFZlHT16NA4ODvz222/06tWL8PBwbrjhBn7//XeOHz/Oiy++WHbu6dOnufPOO3F1daVBgwZ8/PHH5V7z2LFjCQ8Px9HRkZCQEB599NGy+wsKCnjqqado0KABrq6uxMTEsGLFirL7Z8yYgZeXFz/99BMtWrTA0dGRzz//HCcnp/Na3h977DGuvfZaANLT07nzzjtp0KABLi4utG7dmm+++abs3JEjR7Jy5UomT55cNlX6yJEjF2ynnzt3Li1btsTR0ZFGjRrx7rvvlnveRo0a8cYbbzBq1Cjc3d0JDw/n008/Lbu/sLCQMWPGEBwcjJOTEw0bNmTixIlW/XvUVDVmn3iz2czjjz9Ojx49aNWqVdnx4cOH07BhQ0JCQti1axfPPvsssbGxzJs374LXSU5OBiAwMLDc8cDAwLL7/mrixImMGzeuil7JlZGeU8Avu5M4lVfETR+u5uWbWjC8Szgmk8noaCIiIiIiNcaZohJavLLYkOfeO74fLg4VK7kyMjJYvHgxr7/+Os7OzuXuCwoKYsSIEcyZM4cpU6YA8Pbbb/PCCy8wbtw4Fi9ezGOPPUZUVBTXX389c+fO5f3332f27Nm0bNmS5ORkdu7cWXa9MWPGsHfvXmbPnk1ISAjz58+nf//+7N69m6ZNmwKQl5fHm2++yeeff46vry+hoaG88sorzJ07l/vuuw8oHaGfM2cOr7/+OgD5+fl07NiRZ599Fg8PD37++Wf+7//+j8aNG9OlSxcmT55MXFwcrVq1Yvz48QD4+/tz5MiRcq9369at3H777YwdO5Y77riDdevW8fDDD+Pr68vIkSPLznv33Xd57bXXeOGFF/j+++956KGH6NWrF9HR0XzwwQf89NNPfPvtt4SHh5OQkEBCQkLF//FqsBpTxI8ePZo9e/awZs2acscfeOCBsv9u3bo1wcHB9OnTh0OHDtG4ceMqee7nn3+eJ554ouzr7OxswsLCquTa1cXXzZFFj/fkqe92svpAGi/O38Py/am8OaQ1vm6ORscTERERERErHDhwAIvFQvPmzS94f/PmzTl16hSpqakA9OjRg+eeew6AqKgo1q5dy/vvv8/111/PsWPHCAoK4rrrrsPe3p7w8HC6dOkCwLFjx5g+fTrHjh0jJCQEgKeeeopFixYxffp03njjDQCKioqYMmUKbdu2LcswbNgwZs2aVVbEL126lMzMTIYMGQJAgwYNeOqpp8rOf+SRR1i8eDHffvstXbp0wdPTEwcHh0tOl37vvffo06cPL7/8ctnr27t3L2+//Xa5In7AgAE8/PDDADz77LO8//77LF++nOjoaI4dO0bTpk256qqrMJlMNGzYsIL/EjVfjSjix4wZw8KFC1m1ahWhoaEXPTcmJgaAgwcPXrCIP/fDcPLkSYKDg8uOnzx5knbt2l3wmo6Ojjg61r7CN9DDiS/v7cK0tfG8tSiW3/edpP/kTN69rS09o/yNjiciIiIiYjhne1v2ju9n2HNbq6It+N26dTvv63Mr1t92221MmjSJyMhI+vfvz4ABAxg4cCB2dnbs3r2bkpISoqKiyj2+oKAAX1/fsq8dHBxo06ZNuXNGjBhB165dOXHiBCEhIcycOZMbb7wRLy8voHRk/o033uDbb7/l+PHjFBYWUlBQgIuLi1Xfg3379pWtb3ZOjx49mDRpEiUlJdjaln5f/5zPZDIRFBRESkoKUNq6f/311xMdHU3//v256aab6Nu3r1U5aipD58RbLBbGjBnD/PnzWbZsGREREZd8zI4dOwDKFeh/FhERQVBQEEuXLi07lp2dzcaNG8/7Qa8LbGxM/OPqSH4Y3YOmAW6kni7g7mmbGL9gL/lFJUbHExERERExlMlkwsXBzpCbNVNdmzRpgslkYt++fRe8f9++fXh7e+Pvf+nBurCwMGJjY5kyZQrOzs48/PDD9OzZk6KiInJycrC1tWXr1q3s2LGj7LZv3z4mT55cdg1nZ+fz8nfu3JnGjRsze/Zszpw5w/z58xkxYkTZ/W+//TaTJ0/m2WefZfny5ezYsYN+/fpRWFhY4e+DNezt7ct9bTKZMJvNAHTo0IH4+Hhee+01zpw5w+23387QoUOrJceVZmgRP3r0aL7++mtmzZqFu7s7ycnJJCcnc+bMGQAOHTrEa6+9xtatWzly5Ag//fQTd999Nz179iz3qUuzZs2YP38+UPoP9/jjjzNhwgR++ukndu/ezd13301ISAiDBw824mVeES1CPFjwyFXc0620TWTa2ngGf7yW2OTTBicTEREREZFL8fX15frrr2fKlCll9dA5ycnJzJw5kzvuuKOssN6wYUO5czZs2FCuFd/Z2ZmBAwfywQcfsGLFCtavX8/u3btp3749JSUlpKSk0KRJk3K3iqwQP2LECGbOnMmCBQuwsbHhxhtvLLtv7dq1DBo0iLvuuou2bdsSGRlJXFxcucc7ODhQUnLxwcbmzZuzdu3acsfWrl1LVFRU2Sh8RXh4eHDHHXfw2WefMWfOHObOnUtGRkaFH19TGVrET506laysLHr37k1wcHDZbc6cOUDpP/Dvv/9O3759adasGU8++SRDhgxhwYIF5a4TGxtbtrI9wDPPPMMjjzzCAw88QOfOncnJyWHRokU4OTld0dd3pTnZ2zJuUCumjeyEn5sD+5NPM/CjNcxYG2/1ypgiIiIiInJlffTRRxQUFNCvXz9WrVpFQkICixYt4vrrr6dBgwZlC8hBaVH71ltvERcXx8cff8x3333HY489BpSuLv/FF1+wZ88eDh8+zNdff42zszMNGzYkKiqKESNGcPfddzNv3jzi4+PZtGkTEydO5Oeff75kxhEjRrBt2zZef/11hg4dWm5actOmTVmyZAnr1q1j3759PPjgg5w8ebLc4xs1asTGjRs5cuQIaWlpZSPnf/bkk0+ydOlSXnvtNeLi4vjyyy/56KOPys23v5T33nuPb775hv379xMXF8d3331HUFBQWet/bWbonPhLFZZhYWGsXLnS6uuYTCbGjx9ftuJhfXNts0B+fawnT3+/kxWxqYxdsJcVcam8PbQt/u61b+6/iIiIiEh90LRpU7Zs2cKrr77K7bffTkZGBkFBQQwePJhXX3213FbcTz75JFu2bGHcuHF4eHjw3nvv0a9f6dx/Ly8v/v3vf/PEE09QUlJC69atWbBgQdmc9+nTpzNhwgSefPJJjh8/jp+fH127duWmm266ZMYmTZrQpUsXNm3aVDYH/5yXXnqJw4cP069fP1xcXHjggQcYPHhwuQHXp556invuuYcWLVpw5swZ4uPjz3uODh068O233/LKK6/w2muvERwczPjx48stancp7u7uvPXWWxw4cABbW1s6d+7ML7/8Um173V9JJouGaM+TnZ2Np6cnWVlZeHh4GB2n0iwWC1+tP8rrv+yjsNiMr6sDb9/WhmubBV76wSIiIiIitVB+fj7x8fFERETU+U5cqX0u9vNZ0Tq09n8MIX/LZDJxT/dGLBhzFc2C3EnPLWTUjC288uMeLXonIiIiIiJSC6mIrweig9z5YXQP7ruqdPX/r9Yf5aYP1/DHiaxLPFJERERERERqEhXx9YSTvS0v39SCL0d1wd/dkYMpOdzy8To+X30Ys1kzKkRERERERGoDFfH1TK8ofxY9djXXNQ+ksMTMhJ/3cfe0TZzMzjc6moiIiIiIiFyCivh6yNfNkc/u7sjrt7TCyd6GNQfT6DdpFYv2JBsdTURERERERC5CRXw9ZTKZGBHTkIWPXE3LEA8y84r459dbeX7eLvIKi42OJyIiIiIiIhegIr6eaxLgxvyHe/Bgr0hMJvhmUwI3fbCGXYmZRkcTERERERGRv1ARLzjY2fD8Dc2ZeV8MQR5OHE7L5dYp65iy4iAlWvRORERERESkxlARL2W6N/Fj0eNXc0OrIIrNFt5aFMvwzzZwIvOM0dFERERERKSKjBw5ksGDB5d93bt3bx5//PHLumZVXEMqRkW8lOPl4sCUER14a2gbXBxs2RifQf9Jq1i464TR0URERERE6rSRI0diMpkwmUw4ODjQpEkTxo8fT3Fx9a5ZNW/ePF577bUKnbtixQpMJhOZmZmVvkZ1GTt2LO3atfvb++Pj4xk+fDghISE4OTkRGhrKoEGD2L9/PzNmzCj73v/d7ciRI4wdOxaTyUT//v3Pu/7bb7+NyWSid+/e1fciUREvF2Aymbi9Uxi/PHo1bcO8yM4vZsys7Tz57U5yCrTonYiIiIhIdenfvz9JSUkcOHCAJ598krFjx/L222+fd15hYWGVPaePjw/u7u6GX6M6FRUVcf3115OVlcW8efOIjY1lzpw5tG7dmszMTO644w6SkpLKbt26deP+++8vdywsLAyA4OBgli9fTmJiYrnnmDZtGuHh4dX+WlTEy99q5OfK9//sxiPXNsHGBHO3JTJg8mq2HTtldDQRERERkWpVYraw/lA6P+44zvpD6VdsrShHR0eCgoJo2LAhDz30ENdddx0//fRTWQv866+/TkhICNHR0QAkJCRw++234+XlhY+PD4MGDeLIkSP/ex0lJTzxxBN4eXnh6+vLM888g8VS/rX8tRW+oKCAZ599lrCwMBwdHWnSpAlffPEFR44c4ZprrgHA29sbk8nEyJEjL3iNU6dOcffdd+Pt7Y2Liws33HADBw4cKLt/xowZeHl5sXjxYpo3b46bm1vZBxjnrFixgi5duuDq6oqXlxc9evTg6NGjlfq+/vHHHxw6dIgpU6bQtWtXGjZsSI8ePZgwYQJdu3bF2dmZoKCgspuDgwMuLi7ljtna2gIQEBBA3759+fLLL8uuv27dOtLS0rjxxhsrlc8aKuLlouxtbXiybzSzH+hGAy9njmXkcdsn65n8+wGKS8xGxxMRERERqXKL9iRx1ZvLuPOzDTw2ewd3fraBq95cxqI9SZd+cBVzdnYuG3VfunQpsbGxLFmyhIULF1JUVES/fv1wd3dn9erVrF27tqwYPveYd999lxkzZjBt2jTWrFlDRkYG8+fPv+hz3n333XzzzTd88MEH7Nu3j//85z+4ubkRFhbG3LlzAYiNjSUpKYnJkydf8BojR45ky5Yt/PTTT6xfvx6LxcKAAQMoKioqOycvL4933nmH//73v6xatYpjx47x1FNPAVBcXMzgwYPp1asXu3btYv369TzwwAOYTKZKfR/9/f2xsbHh+++/p6SkpFLX+LNRo0YxY8aMsq+nTZvGiBEjcHBwuOxrX4qKeKmQLhE+/PLY1dzcNoQSs4X3f4/jjk83kJCRZ3Q0EREREZEqs2hPEg99vY2krPxyx5Oz8nno621XrJC3WCz8/vvvLF68mGuvvRYAV1dXPv/8c1q2bEnLli2ZM2cOZrOZzz//nNatW9O8eXOmT5/OsWPHWLFiBQCTJk3i+eef59Zbb6V58+Z88skneHp6/u3zxsXF8e233zJt2jRuueUWIiMj6dOnD3fccQe2trb4+PgApaPRQUFBF7zWgQMH+Omnn/j888+5+uqradu2LTNnzuT48eP88MMPZecVFRXxySef0KlTJzp06MCYMWNYunQpANnZ2WRlZXHTTTfRuHFjmjdvzj333FPpdvUGDRrwwQcf8Morr+Dt7c21117La6+9xuHDhyt1vZtuuons7GxWrVpFbm4u3377LaNGjarUtaylIl4qzNPZng/ubM+kO9rh5mjH1qOnuGHyauZvT7z0g0VEREREargSs4VxC/Zyocb5c8fGLdhbra31CxcuxM3NDScnJ2644QbuuOMOxo4dC0Dr1q3LjfTu3LmTgwcP4u7ujpubG25ubvj4+JCfn8+hQ4fIysoiKSmJmJiYssfY2dnRqVOnv33+HTt2YGtrS69evSr9Gvbt24ednV255/X19SU6Opp9+/aVHXNxcaFx48ZlXwcHB5OSkgKUzrEfOXIk/fr1Y+DAgUyePLms1f7YsWNlr9fNzY033nijQrlGjx5NcnIyM2fOpFu3bnz33Xe0bNmSJUuWWP0a7e3tueuuu5g+fTrfffcdUVFRtGnTxurrVIbdFXkWqVMGt29Ax4bePD5nB1uPnuJfc3ayIjaV8YNa4elsb3Q8EREREZFK2RSfcd4I/J9ZgKSsfDbFZ9CtsW+1ZLjmmmuYOnUqDg4OhISEYGf3v5LN1dW13Lk5OTl07NiRmTNnnncdf3//Sj2/s7NzpR5XGfb25WsHk8lUbr7+9OnTefTRR1m0aBFz5szhpZdeYsmSJXTq1IkdO3aUnXeuO6Ai3N3dGThwIAMHDmTChAn069ePCRMmcP3111udf9SoUcTExLBnz54rNgoPGomXSgrzcWHOA1154voobG1M/LjjBAMmr2ZTfIbR0UREREREKiXl9N8X8JU5rzJcXV1p0qQJ4eHh5Qr4C+nQoQMHDhwgICCAJk2alLt5enri6elJcHAwGzduLHtMcXExW7du/dtrtm7dGrPZzMqVKy94/7lOgIvNK2/evDnFxcXlnjc9PZ3Y2FhatGhx0df0V+3bt+f5559n3bp1tGrVilmzZmFnZ1futVpTxP+ZyWSiWbNm5ObmVurx56Y17Nmzh+HDh1fqGpWhIl4qzc7Whkf7NOW7f3Yj3MeF45lnGPbpet79LZYiLXonIiIiIrVMgLtTlZ5X3UaMGIGfnx+DBg1i9erVxMfHs2LFCh599NGy7c8ee+wx/v3vf/PDDz+wf/9+Hn744fP2eP+zRo0acc899zBq1Ch++OGHsmt+++23ADRs2BCTycTChQtJTU0lJyfnvGs0bdqUQYMGcf/997NmzRp27tzJXXfdRYMGDRg0aFCFXlt8fDzPP/8869ev5+jRo/z2228cOHCA5s2bX/RxZ86cYceOHeVuhw4dYseOHQwaNIjvv/+evXv3cvDgQb744gumTZtW4UwXsmzZMpKSkvDy8qr0NaylIl4uW4dwb3557GqGdAjFbIEPlx1k6CfrOZJWuU+0RERERESM0CXCh2BPJ/5u/XMTEOzpRJeIyo38VjUXFxdWrVpFeHh42cJ19913H/n5+Xh4eADw5JNP8n//93/cc889dOvWDXd3d2655ZaLXnfq1KkMHTqUhx9+mGbNmnH//feXjVY3aNCAcePG8dxzzxEYGMiYMWMueI3p06fTsWNHbrrpJrp164bFYuGXX345r4X+Yq9t//79DBkyhKioKB544AFGjx7Ngw8+eNHHxcXF0b59+3K3Bx98kNDQUBo1asS4ceOIiYmhQ4cOTJ48mXHjxvHiiy9WKNOFnNv+7koyWf66SaCQnZ2Np6cnWVlZZT/8UjELdp7gxfm7yc4vxsXBlrE3t+S2jqGV3gpCRERERMQa+fn5xMfHExERgZOT9SPm51anB8otcHfu3ezUuzrQv1Xw5QeVeuliP58VrUM1Ei9VamDbEH59vCcxET7kFZbwzPe7GD1rG5l5hUZHExERERG5pP6tgpl6VweCPMsXWEGeTirgpUbQ6vRS5Rp4OTPr/q78Z9Uh3vstjl92J7PtaCbv3dGW7o39jI4nIiIiInJR/VsFc32LIDbFZ5ByOp8A99IWelsbdZeK8VTES7WwtTHxcO8mXNXEj8dm7yA+LZcRn2/kgZ6RPHl9NA52agIRERERkZrL1sZUbdvIiVwOVVJSrdqEevHzo1dxZ5cwLBb4z8rD3Dp1LQdTzl/FUkRERERERC5ORbxUOxcHOybe2oZP7uqIl4s9e45nc9OHq5m58ShaV1FERERERKTiVMTLFdO/VRCLH+/JVU38yC8y8+L8Pdz/1VbScwqMjiYiIiIiIlIrqIiXKyrQw4mvRnXhpRub42Brw+/7TtJ/8mpWxaUaHU1ERERERKTGUxEvV5yNjYl/XB3J/NHdaRLgRurpAu6etonxC/aSX1RidDwREREREZEaS0W8GKZliCcLxlzF3d0aAjBtbTyDP15LbPJpg5OJiIiIiIjUTCrixVDODraMH9SKL+7phK+rA/uTTzPwozXMWBuvRe9ERERERP7CZDLxww8/AHDkyBFMJhM7duwwNNPfqen5aisV8VIj9GkeyK+PX02vKH8Ki82MXbCXe2dsJvW0Fr0TERERkfojOTmZRx55hMjISBwdHQkLC2PgwIEsXbr0vHPDwsJISkqiVatW1ZpJxXjNoiJeaowAdydm3NuZsQNb4GBnw4rYVPpPWsWy/SeNjiYiIiIiUu2OHDlCx44dWbZsGW+//Ta7d+9m0aJFXHPNNYwePfq8821tbQkKCsLOzs6AtGIUFfFSo5hMJkb2iGDBmKtoFuROem4ho2Zs4ZUf92jROxERERGp0x5++GFMJhObNm1iyJAhREVF0bJlS5544gk2bNhw3vl/HSFfsWIFJpOJxYsX0759e5ydnbn22mtJSUnh119/pXnz5nh4eDB8+HDy8vLKrrNo0SKuuuoqvLy88PX15aabbuLQoUNl90dERADQvn17TCYTvXv3BsBsNjN+/HhCQ0NxdHSkXbt2LFq06KKvceXKlXTp0gVHR0eCg4N57rnnKC4uLrv/9OnTjBgxAldXV4KDg3n//ffp3bs3jz/+OADjx4+/YOdBu3btePnllyv0fa7tVMRLjRQd5M4Po3swqkfpL4yv1h/lpg/X8MeJLIOTiYiIiEhtYrFYyM3NNeRmzRpPGRkZLFq0iNGjR+Pq6nre/V5eXhW+1tixY/noo49Yt24dCQkJ3H777UyaNIlZs2bx888/89tvv/Hhhx+WnZ+bm8sTTzzBli1bWLp0KTY2Ntxyyy2YzWYANm3aBMDvv/9OUlIS8+bNA2Dy5Mm8++67vPPOO+zatYt+/fpx8803c+DAgQvmOn78OAMGDKBz587s3LmTqVOn8sUXXzBhwoSyc5544gnWrl3LTz/9xJIlS1i9ejXbtm0ru3/UqFHs27ePzZs3lx3bvn07u3bt4t57763w96g2U9+F1FhO9ra8MrAFvaL9eeq7nRxMyeGWj9fxTP9oRvWIwMbGZHREEREREanh8vLycHNzM+S5c3JyLliQX8jBgwexWCw0a9bssp93woQJ9OjRA4D77ruP559/nkOHDhEZGQnA0KFDWb58Oc8++ywAQ4YMKff4adOm4e/vz969e2nVqhX+/v4A+Pr6EhQUVHbeO++8w7PPPsuwYcMAePPNN1m+fDmTJk3i448/Pi/XlClTCAsL46OPPsJkMtGsWTNOnDjBs88+yyuvvEJubi5ffvkls2bNok+fPgBMnz6dkJCQsmuEhobSr18/pk+fTufOncvO6dWrV9nrq+s0Ei81Xq8ofxY9djXXNQ+ksMTMhJ/3cfe0TZzMzjc6moiIiIhIlajKnZnatGlT9t+BgYG4uLiUK3ADAwNJSUkp+/rAgQPceeedREZG4uHhQaNGjQA4duzY3z5HdnY2J06cKPuw4JwePXqwb9++Cz5m3759dOvWDZPJVO78nJwcEhMTOXz4MEVFRXTp0qXsfk9PT6Kjo8td5/777+ebb74hPz+fwsJCZs2axahRoy7yHalbNBIvtYKvmyOf3d2RWZuO8drCvaw5mEa/Sav4961t6N8q6NIXEBEREZF6ycXFhZycHMOeu6KaNm2KyWRi//79l/289vb2Zf9tMpnKfX3u2LlWeYCBAwfSsGFDPvvsM0JCQjCbzbRq1YrCwsLLzlIdBg4ciKOjI/Pnz8fBwYGioiKGDh1qdKwrRkW81Bomk4kRMQ2JifDlsdnb+eNENv/8eit3dgnj5Zta4OKgH2cRERERKc9kMlW4pd1IPj4+9OvXj48//phHH330vMyZmZlWzYuvqPT0dGJjY/nss8+4+uqrAVizZk25cxwcHAAoKfnfQtMeHh6EhISwdu1aevXqVXZ87dq15UbS/6x58+bMnTsXi8VSNhq/du1a3N3dCQ0NxdvbG3t7ezZv3kx4eDgAWVlZxMXF0bNnz7Lr2NnZcc899zB9+nQcHBwYNmwYzs7OVfDdqB3UTi+1TpMAN+Y/3IMHe0ViMsE3mxK46YM17ErMNDqaiIiIiEilffzxx5SUlNClSxfmzp3LgQMH2LdvHx988AHdunWrluf09vbG19eXTz/9lIMHD7Js2TKeeOKJcucEBATg7OzMokWLOHnyJFlZpYtNP/3007z55pvMmTOH2NhYnnvuOXbs2MFjjz12wed6+OGHSUhI4JFHHmH//v38+OOPvPrqqzzxxBPY2Njg7u7OPffcw9NPP83y5cv5448/uO+++7CxsSnXgg/wj3/8g2XLlrFo0aJ61UoPKuKllnKws+H5G5oz874YgjycOJyWy61T1jFlxUFKzFU3n0hERERE5EqJjIxk27ZtXHPNNTz55JO0atWK66+/nqVLlzJ16tRqeU4bGxtmz57N1q1badWqFf/61794++23y51jZ2fHBx98wH/+8x9CQkIYNGgQAI8++ihPPPEETz75JK1bt2bRokX89NNPNG3a9ILP1aBBA3755Rc2bdpE27Zt+ec//8l9993HSy+9VHbOe++9R7du3bjpppu47rrr6NGjB82bN8fJyanctZo2bUr37t1p1qwZMTExVfxdqdlMlqpcQaGOyM7OxtPTk6ysLDw8PIyOI5dwKreQF+bv5tc9yQDERPjw/h3tCPGqPy01IiIiIlIqPz+f+Ph4IiIiziv8pPbJzc2lQYMGvPvuu9x3331lxy0WC02bNuXhhx8+r3OgJrvYz2dF61CNxEut5+3qwJQRHXhrSBtcHGzZGJ9B/0mrWLjrhNHRRERERETECtu3b+ebb77h0KFDbNu2jREjRgCUjf4DpKam8tFHH5GcnFxv9ob/M60EJnWCyWTi9s5hdI7w4fHZ29mZmMWYWdtZvj+VcYNa4uaoH3URERERkdrgnXfeITY2FgcHBzp27Mjq1avx8/Mruz8gIAA/Pz8+/fRTvL29DUxqDFU2UqdE+Lny/UPdmfz7AT5ecZC52xLZfCSDScPa0SG8/v0PLiIiIiJSm7Rv356tW7de9Jz6PiNc7fRS59jb2vBUv2hm39+VBl7OHMvI47ZP1jP59wMUl5gvfQEREREREZEaSkW81Fkxkb788tjVDGwbQonZwvu/x3HHpxtIyMgzOpqIiIiIiEilGFrET5w4kc6dO+Pu7k5AQACDBw8mNjb2gudaLBZuuOEGTCYTP/zww0WvO3LkSEwmU7lb//79q+EVSE3n6WzPB8Pa8f4dbXFztGPr0VPc/NEakrPyjY4mIiIiItWovrdcS81UFT+XhhbxK1euZPTo0WzYsIElS5ZQVFRE3759yc3NPe/cSZMmYTKZKnzt/v37k5SUVHb75ptvqjK61CImk4lb2ofy62NXEx3ozqm8Il6Yv1u/2EVERETqIHt7ewDy8tR9KTXPuZ/Lcz+nlWHownaLFi0q9/WMGTMICAhg69at9OzZs+z4jh07ePfdd9myZQvBwcEVurajoyNBQUFVmldqtzAfFz64sz0DP1zDsv0pzN12nKEdQ42OJSIiIiJVyNbWFi8vL1JSUgBwcXGxajBQpDpYLBby8vJISUnBy8sLW1vbSl+rRq1On5WVBYCPj0/Zsby8PIYPH87HH39sVVG+YsUKAgIC8Pb25tprr2XChAn4+vpe8NyCggIKCgrKvs7Ozq7kK5CaLjrInceua8rbi2MZt+APrmriR5Cnk9GxRERERKQKnasbzhXyIjWFl5fXZQ82myw1pKfYbDZz8803k5mZyZo1a8qOP/jgg5SUlPD5558Dpa3R8+fPZ/DgwX97rdmzZ+Pi4kJERASHDh3ihRdewM3NjfXr11/wE4+xY8cybty4845nZWXh4eFx+S9OapTiEjNDpq5jZ2IW10T7M21kZ306KyIiIlIHlZSUUFRUZHQMEaC0hf5iI/DZ2dl4enpesg6tMUX8Qw89xK+//sqaNWsIDS1tcf7pp5948skn2b59O25ubkDFivi/Onz4MI0bN+b333+nT58+591/oZH4sLAwFfF12IGTp7nxgzUUlph5a2gbbu8UZnQkERERERGpxypaxNeILebGjBnDwoULWb58eVkBD7Bs2TIOHTqEl5cXdnZ22NmVdv8PGTKE3r17V/j6kZGR+Pn5cfDgwQve7+joiIeHR7mb1G1NA915/PqmALy2YC9JWWcMTiQiIiIiInJphhbxFouFMWPGMH/+fJYtW0ZERES5+5977jl27drFjh07ym4A77//PtOnT6/w8yQmJpKenl7hRfGkfnjg6kjahnlxuqCY5+ZqtXoRERERkbrIbK5b7/MNLeJHjx7N119/zaxZs3B3dyc5OZnk5GTOnCkdFQ0KCqJVq1blbgDh4eHlCv5mzZoxf/58AHJycnj66afZsGEDR44cYenSpQwaNIgmTZrQr1+/K/8ipcays7XhnaFtcLC1YWVcKt9tSTQ6koiIiIiIVKHkrHz6TlrF8v11Z5FDQ4v4qVOnkpWVRe/evQkODi67zZkzx6rrxMbGlq1sb2try65du7j55puJiorivvvuo2PHjqxevRpHR8fqeBlSizUNdOdf10cB8NrCvZzIVFu9iIiIiEhdUFxi5tFvtnMwJYd3l8RSUkdG5A3dYq4y7csXesyfjzk7O7N48eLLyiX1y/1XR7Doj2R2JmTy3LzdfHmvVqsXEREREant3l0Sx6YjGbg52vHRnR2wtakb7/FrxMJ2Ikays7Xh3dva4GBnw6q4VL7dkmB0JBERERERuQzL96cwdcUhAN4a2oZGfq4GJ6o6KuJFgCYB7jx5tq1+wsJ9aqsXEREREamlTmSe4V/f7gDgnm4NGdC6bi1wriJe5Kx/XB1J+/DS1eqfnbtLq9WLiIiIiNQyRSVmHvlmO5l5RbRu4MkLNzY3OlKVUxEvcpatjYm3h7bFwc6G1QfSmL1ZbfUiIiIiIrXJO4tj2Xr0FO5Odnw8vAOOdrZGR6pyKuJF/qRJgBtP9S1tq3/9530cV1u9iIiIiEitsHTfSf6z6jAAbw9tS7ivi8GJqoeKeJG/uO+qSDqEe5FTUMxzaqsXEREREanxEk/l8cS3OwG4t0cj+rcKMjhR9VERL/IXtjYm3r6tLY5n2+q/2aS2ehERERGRmqqw2MyYWdvJOlNE2zAvnr+h7s2D/zMV8SIX0Njfjaf6RgPw+s97STyVZ3AiERERERG5kDcX7WdHQiYeTnZ8dGd7HOzqdplbt1+dyGUYdVUEHRt6k1tYwnNzd6utXkRERESkhln8RzJfrIkH4N3b2xHmUzfnwf+ZiniRv1G6Wn0bHO1sWHMwjVmbjhkdSUREREREzkrIyOOp70rnwd9/dQTXtwg0ONGVoSJe5CIi/d14ul9pW/0bP+8jIUNt9SIiIiIiRisoLmH0rG2czi+mQ7gXz/RvZnSkK0ZFvMgl3Nsjgk5n2+qfnbsLs1lt9SIiIiIiRpr4y352JWbh5WLPh8M7YG9bf0rb+vNKRSrp3Gr1TvY2rDuUzky11YuIiIiIGOaX3UnMWHcEgPdub0sDL2djA11hKuJFKiDCz5Wn+5W26Ez8RW31IiK1zZQVB+nw2hJik08bHUVERC7D0fRcnv1+FwAP9ork2mb1Yx78n6mIF6mge7s3onMjb/IKS3jme7XVi4jUFjkFxXy87CAZuYV8uyXB6DgiIlJJ+UVn58EXFNOpoXfZltD1jYp4kQqysTHx9tDStvr1h9OZufGo0ZFERKQCftpxgtzCEgBWxqUanEZERCrr9Z/3sed4Nj6uDnw4vH29mgf/Z/XzVYtUUiM/V54511b/63611YuI1HAWi6Xch64HU3JIPKXf3SIitc2CnSf474bS3+fv3d6WYM/6NQ/+z1TEi1hpZPdGdGnkQ15hCU9/v1Nt9SIiNdiOhEz+OJGNg50NzYLcAVgRq9F4EZHaJD4tl+fn7QZg9DWN6R0dYHAiY6mIF7GSjY2Jt4a2wdnelg2HM/habfUiIjXWzI2lO4rc1CaYm9oEA2qpFxGpTfKLSnh45jZyCoqJifDhX9dFGR3JcCriRSqhkZ8rz/YvXUhj4i/7OZau1kwRkZomK6+IBTtPADAipmHZyM26g2kUFpuNjCYiIhU0bsFe9iVl4+vqwAd3tseuns6D/zN9B0Qq6e5ujYiJ8OFMkdrqRURqornbEikoNtMsyJ0O4V60CPbAz82B3MISthzNMDqeiIhcwo87jvPNpmOYTDB5WHsCPZyMjlQjqIgXqaRzq9U729uyMT6Dr9YfMTqSiIic9ecF7UZ0bYjJZMLGxkTPKH8AVmpevIhIjXYwJadsHvwj1zblqqZ+BieqOVTEi1yGcF8XnruhdLX6NxfFcjQ91+BEIiICsDE+g0Opubg42DK4XUjZ8V7ninjNixcRqbHOFJYweuY28gpL6Bbpy2N9mhodqUZRES9ymf6va0O6Rp5rq9+ltnoRkRrg3IJ2g9o1wN3Jvux4z6b+mEywP/k0SVlnjIonIiIXMfanP4g9eRo/N0cm39kOWxuT0ZFqFBXxIpfJxsbEW0Pa4uJgy6b4DL5UW72IiKHScgpYtCcJgBEx4eXu83Z1oG2oFwCrNBovIlLjzNuWyJwtCdiY4INh7Qhw1zz4v1IRL1IFyrfV7+dImtrqRUSM8t2WRIpKLLQN86JVA8/z7u8dXdpSr/3iRURqlgMnT/Pi/D0APNYniu5NNA/+QlTEi1SRu2Ia0i3Sl/wiM8+orV5ExBBms4VZm84uaPeXUfhzzs2LX3MgjaISbTUnIlIT5BUW8/DMbZwpKuGqJn6MubaJ0ZFqLBXxIlXExsbEW0PblLbVH8lgxrojRkcSEal3Vh9MIyHjDB5OdgxsE3LBc9qEeuHtYs/pgmK2H8u8sgFFROSCXv7hDw6k5BDg7sikYZoHfzEq4kWqUJiPC88PaA7AW4v3E6+2ehGRK2rmhtJR+CEdQ3F2sL3gObZ/2mpuRWzKFcsmIiIX9u2WBOZuSyydB39ne/zcHI2OVKPZVeSkXbt2WX3hFi1aYGdXocuL1CkjuoTz6+4k1h1K5+nvdjLnwW76JFFE5ApIyjrD0v2lRfnftdKf0yvKnx93nGBlXCrP9G92JeKJiMgFxCaf5pUfS+fBP9k3mq6RvgYnqvkqVGW3a9cOk8mExVKxOb42NjbExcURGRl5WeFEaiMbGxNvDmlD/0mr2HL0FNPXxvOPq/X/gohIdZuzOYESs4WYCB+aBLhf9NxzI/F/nMgm5XS+Vj8WETFAbkExD8/cSn6RmV5R/jzUq7HRkWqFCg+Vb9y4EX9//0ueZ7FYaNWq1WWFEqntzrXVv/TDHt5eHMu1zQKI9HczOpaISJ1VXGJm9qYEAEZ0bXjJ8/3cHGndwJPdx7NYFZfG0I6h1R1RRET+xGKx8OL83RxKzSXIw4n3bm+LjbpXK6RCRXyvXr1o0qQJXl5eFbpoz549cXZ2vpxcIrXeiJhwft2TxNqD6Tz9/S6+VVu9iEi1WbY/heTsfHxdHejXMrBCj+kd7c/u41msiE1RES8icoXN3pzADztOYGtj4sPh7fHVPPgKq9DCdsuXL69wAQ/wyy+/EBwcXNlMInWCyVTaVu/qYMvWs231IiJSPWZuPAbAbZ3CcLS78IJ2f3Vuq7nVB9Io0bagIiJXzN4T2bz60x8APNU3ms6NfAxOVLtYtTp9dnY2ZvP5+6mWlJSQnZ1dZaFE6opQbxdeuLF0tfq3F8dyKDXH4EQiInXPsfQ8Vh1IBWB4l4svaPdn7cK88HCyI+tMETsSMqspnYiI/FlOQTFjZm2jsNjMNdH+PNhTa0dZq8JF/Pz58+nUqRP5+fnn3Zefn0/nzp1ZsGBBlYYTqQuGdwnnqiZ+FBSbefq7nRrtERGpYt9sPobFUrpYXbivS4UfZ2drw9VNS0fjV8alVlc8ERE5y2Kx8Py83RxOyyXE04n3bm+nefCVUOEifurUqTzzzDO4uJz/x9HV1ZVnn32Wjz76qErDidQFJpOJN4e2wc3Rjm3HMpm2Rm31IiJVpaC4hG83n13Q7hLbyl1Ir+izRbz2ixcRqXYzNx5jwc4T2NmY+HB4B7xdHYyOVCtVuIjfs2cPvXv3/tv7e/bsye7du6sik0id08DLmRfPttW/85va6kVEqsriP06SnltIoIcjfZoFWP34c/Pidx3PIj2noKrjiYjIWXuOZzF+4V4Anu3fjI4NvQ1OVHtVuIg/deoUxcXFf3t/UVERp06dqpJQInXRsM5hXN20tK3+KbXVi4hUiZkbjgIwrHM4drZWLfUDQKCHE82DPbBYShe4ExGRqpedX8Tos/Pgr2seyD+ujjA6Uq1W4b92jRo1YsuWLX97/5YtW2jY8NL7sorUVyaTiX8PKW2r334sk89XHzY6kohIrXYw5TQb4zOwMcGwLmGVvk7vsy31K9RSLyJS5SwWC8/N3cXR9DwaeDnz7m1tMZk0D/5yVLiIv/XWW3nxxRc5efLkefclJyfz0ksvMWTIkCoNJ1LXNPBy5qWzbfXvLonjYMppgxOJiNRe57aV69M8kGBP50pf51xL/aoDaZjVJSUiUqW+Wn+UX3YnY29r4uMRHfB0sTc6Uq1X4SL+ueeew93dnaZNm/Lwww8zefJkJk+ezEMPPURUVBRubm4899xz1ZlVpE64o3MYPaP8KSw289R3u9RWLyJSCWcKS5i7NRGo3IJ2f9axoTdujnZk5Bay+3hWVcQTERFgV2ImE34unQf//A3NaRfmZWygOqLCRby7uztr167lrrvuYs6cOfzrX//iX//6F3PmzOGuu+5izZo1uLu7V2dWkTrBZDLx71tb4+5ox46ETD5TW72IiNUW7jpBdn4xod7O9Dy7TVxl2dva0KOJL6Ct5kREqkrWmdJ58EUlFvq1DOTeHo2MjlRnWLUCjKenJ1OmTCEtLY2TJ0+SnJxMeno6U6ZMwdtbqwuKVFSIlzMv39QCgPfUVi8iYrVzrfTDY8KrZI/h3tGlK9trXryIyOWzWCw88/1OEjLOEObjzFtDNQ++Klm/jCulI4n+/v4EBAToH0Okkm7rFErv6NK2+ie/20VxidnoSCIitcKe41nsSMjE3tbEbR0rv6Ddn52bF78jIZPMvMIquaaISH01fe0RFv9xEgdbGz4e3gFPZ82Dr0qVKuJF5PKZTCYm3toadyc7diZk8tnqeKMjiYjUCrM2lY7C92sZhL+7Y5VcM8TLmahAN8zaak5E5LLsSMhk4q/7AHjxxua0CfUyNlAdZGgRP3HiRDp37oy7uzsBAQEMHjyY2NjYC55rsVi44YYbMJlM/PDDDxe9rsVi4ZVXXiE4OBhnZ2euu+46Dhw4UA2vQOTyBHv+r63+/SVxHDiptnoRkYvJKSjmx+3HAbira9VubXtuNF7z4kVEKiczr5DRM0vnwd/YOpi7u2kL8upgaBG/cuVKRo8ezYYNG1iyZAlFRUX07duX3Nzc886dNGlShVv333rrLT744AM++eQTNm7ciKurK/369SM/P7+qX4LIZbutYyjXRPtTWGLmqe92qq1eROQifth+nNzCEhr7uxIT4VOl1z43L35lXKq2mhMRsZLFYuGp73ZxPPMMDX1dmDiktaZeV5PLKuIvtyhetGgRI0eOpGXLlrRt25YZM2Zw7Ngxtm7dWu68HTt28O677zJt2rRLXtNisTBp0iReeuklBg0aRJs2bfjqq684ceLEJUfwRYxQ2lbfprStPjGL/6zSavUiIhdisVjKFrQbEdOwyt8cdmrkjYuDLamnC9iXnF2l1xYRqes+Xx3P7/tO4mBXOg/ew0nz4KuL1UW82Wzmtddeo0GDBri5uXH4cGnB8fLLL/PFF19cVpisrNK9WX18/vfJel5eHsOHD+fjjz8mKCjokteIj48nOTmZ6667ruyYp6cnMTExrF+//oKPKSgoIDs7u9xN5EoK8nTilbNt9ZN/P0BsstrqRUT+antCJvuSsnG0s2FIh9Aqv76jnS3dG5duNbciVi31IiIVtfXoKd5ctB+AV25qQasGngYnqtusLuInTJjAjBkzeOutt3BwcCg73qpVKz7//PNKBzGbzTz++OP06NGDVq1alR3/17/+Rffu3Rk0aFCFrpOcnAxAYGBgueOBgYFl9/3VxIkT8fT0LLuFhVXNSrci1hjaMZRrmwVQWGLm6e/VVi8i8lczN5SOwg9sG4KnS/WM8PQ611KvIl5EpEJO5RbyyKxtFJstDGwbwoiYcKMj1XlWF/FfffUVn376KSNGjMDW1rbseNu2bdm/f3+lg4wePZo9e/Ywe/bssmM//fQTy5YtY9KkSZW+bkU8//zzZGVlld0SEhKq9flELsRkMvHGLaWr1e9SW72ISDmZeYUs3HUCoFrfIPY+u7jd1mOnyM4vqrbnERGpC8xmC098u4MTWflE+Lky8VbNg78SrC7ijx8/TpMmTc47bjabKSqq3B+7MWPGsHDhQpYvX05o6P/a45YtW8ahQ4fw8vLCzs4OOzs7AIYMGULv3r0veK1zLfcnT54sd/zkyZN/247v6OiIh4dHuZuIEYI8nRg7sCUAk36PU1u9iMhZc7cdp6DYTItgD9qFeVXb84T5uBDp70qJ2cJabTUnInJR/1l1mOWxqTienQfv5mhndKR6weoivkWLFqxevfq8499//z3t27e36loWi4UxY8Ywf/58li1bRkRERLn7n3vuOXbt2sWOHTvKbgDvv/8+06dPv+A1IyIiCAoKYunSpWXHsrOz2bhxI926dbMqn4gRbu3QgD7NAigqsfDUdzspUlu9iNRzpQvaHQVgRNfwah/l0VZzIiKXtvlIBu/8Vro9+NibW9IiRAOhV4rVH5W88sor3HPPPRw/fhyz2cy8efOIjY3lq6++YuHChVZda/To0cyaNYsff/wRd3f3sjnrnp6eODs7ExQUdMHR8/Dw8HIFf7NmzZg4cSK33HILJpOJxx9/nAkTJtC0aVMiIiJ4+eWXCQkJYfDgwda+XJErzmQy8catrbn+vZXsPp7Ff1YeYsy1TY2OJSJimA2HMzicmourgy2D2jWo9ufrHR3A9LVHWBGbisViUWuoiMhfpOcU8Mis7ZSYLQxuF8KwzlpT7EqyeiR+0KBBLFiwgN9//x1XV1deeeUV9u3bx4IFC7j++uututbUqVPJysqid+/eBAcHl93mzJlj1XViY2PLVrYHeOaZZ3jkkUd44IEH6Ny5Mzk5OSxatAgnJyerritilEAPJ8beXNpWP3npAfZrqyMRqce+PjsKP7h9gyvSqhkT4YOjnQ3J2fnEncyp9ucTEalNzGYL//p2J8nZ+TT2d+X1WzQP/kozWSwWi9Ehaprs7Gw8PT3JysrS/HgxjMVi4f6vtvD7vhRaNfBg/sM9sLe1+nM3EZFaLfV0Ad0mLqXYbOGXR6++Yu2aI6dvYkVsKs/f0IwHezW+Is8pIlIbfLz8IG8vjsXJ3oYfR19FdJC70ZHqjIrWoZWqCDIzM/n888954YUXyMjIAGDbtm0cP368cmlF5DznVqv3dLZnz/Fspq44ZHQkEZEr7tstCRSbLbQP97qi8y01L15E5HwbDqfz7tl58OMHtVIBbxCri/hdu3YRFRXFm2++ydtvv01mZiYA8+bN4/nnn6/qfCL1WoCHE2NvbgHAh8sOsC9JbfUiUn+UmC18s6l0b/gRMQ2v6HP3Prtf/OYjGeQUFF/R5xYRqYlSTxfw6DfbMVtgSIdQbu+kefBGsbqIf+KJJxg5ciQHDhwoN8d8wIABrFq1qkrDiQgMbteA65oHarV6Eal3Vh1IJfHUGTyc7LipTfAVfe4IP1ca+rpQVGJh3UFtNSci9VuJ2cK/5uwg5XQBTQPceG1wS6Mj1WtWF/GbN2/mwQcfPO94gwYNylaXF5GqU7pafSu8XOz540Q2U5arrV5E6oeZG0pH4Yd2DMPJ3vaKP79a6kVESn207CBrDqbhbG/LlBEdcHHQfvBGsrqId3R0JDv7/JbeuLg4/P39qySUiJQX4O7EuLOr1X+47AB7T6itXkTqthOZZ1i2/yQAw2PCDcnQO7r0fc25reZEROqjdQfTmLQ0DoAJg1vRNFDz4I1mdRF/8803M378eIqKioDSUcJjx47x7LPPMmTIkCoPKCKlbm4bQt8WgRSb1VYvInXf7M0JmC3QNdKHJgFuhmToGumLg60NxzPPcCg115AMIiJGSjmdz6Ozd2CxwO2dQhnSMdToSEIlivh3332XnJwcAgICOHPmDL169aJJkya4u7vz+uuvV0dGEaH0A7MJt5S21e9Nyubj5QeNjiQiUi2KSszMNmhBuz9zcbAjJtIHgBWxKYblEBExQonZwmPf7CAtp4DoQHfG3dzK6EhyltVFvKenJ0uWLGHhwoV88MEHjBkzhl9++YWVK1fi6upaHRlF5Kw/t9V/tOwgf5zIMjiRiEjVW7ovhZTTBfi5OdCvZZChWTQvXkTqq8lLD7D+cDouDrZ8PKIDzg5Xfm0SuTCrViQoKirC2dmZHTt20KNHD3r06FFduUTkb9zcNoRfdiex+I+TPPXdLn4c3QMHO6s/jxMRqbFmbjwKwO2dwgz//dY72p8JP+9jY3wGZwpL9CZWROqF1QdS+XDZAQAm3trasGlNcmFW/WW0t7cnPDyckpKS6sojIpdgMpmYMLg13i727EvK5iO11YtIHXI0PZfVB9IwmeDOLsYsaPdnjf3daODlTGGxmQ2H042OIyJS7U5m5/P42Xnwd3YJZ1C7BkZHkr+w+uPtF198kRdeeIGMjIzqyCMiFeDv7si4QaXzkqYsP8ie42qrF5G6YdbZufC9ovwJ83ExOE3pB6e9ylap17x4EanbikvMPPLNdtJzC2ke7MGrA1sYHUkuwOoi/qOPPmLVqlWEhIQQHR1Nhw4dyt1E5MoY2CaY/i2DylarLyzWavUiUrsVFJfw3ZZEwNgF7f5K8+JFpL54//c4NsVn4OZox5QRHXCy1xSimsiqOfEAgwcProYYImKtc6vVbzqSwf7k03y07ABP9I02OpaISKUt2pNMRm4hwZ5OXHN29Lsm6NHED3tbE0fS8ziSlksjPy3kKyJ1z4rYFD5efgiAfw9pTYR+19VYVhfxr776anXkEJFK8HNzZPygloyZtZ2PVxyib8sgWjXwNDqWiEilzNxY2ko/rHM4drY1Z8FON0c7OjX0Yf3hdFbEpjDSL8LoSCIiVSop6wz/mrMDgP/r2pCb2oQYG0guqub8hRSRSrmpTQgDWgdRorZ6EanFDpw8zab4DGxtTNzROczoOOc5Ny9eLfUiUtcUlZh5ZNZ2TuUV0aqBBy/e2NzoSHIJVhfx3t7e+Pj4nHfz9fWlQYMG9OrVi+nTp1dHVhH5G+MHtcLH1YH9yafLtgMREalNzo3CX9c8gCBPJ4PTnK/32SJ+/eF08ou0S4+I1B3v/BbLlqOncHe04+PhmgdfG1hdxL/yyivY2Nhw4403Mm7cOMaNG8eNN96IjY0No0ePJioqioceeojPPvusOvKKyAX4uTny2rnV6lccYneiVqsXkdrjTGEJc7fVvAXt/iw60J0gDyfyi8xsitcOPSJSNyzdd5L/rDwMwFtD29DQV/PgawOr58SvWbOGCRMm8M9//rPc8f/85z/89ttvzJ07lzZt2vDBBx9w//33V1lQEbm4G9sE88vuYH7encRT3+3kp0d64GinT1JFpOZbsPMEp/OLCfdx4aomfkbHuSCTyUSvKH/mbElgRWwqPaNqzsJ7IiKVcTzzDE9+txOAkd0bcUPrYIMTSUVZPRK/ePFirrvuuvOO9+nTh8WLFwMwYMAADh8+fPnpRMQq4we1xNfVgdiTp/lgqdrqRaR2mLnxKADDY8KxsTEZnObv/W9evPaLF5HarXQe/DYy84poG+rJ8wOaGR1JrGB1Ee/j48OCBQvOO75gwQJ8fHwAyM3Nxd3d/fLTiYhVfN0ceW1waVv9JysPsysx09hAIiKXsDsxi52JWdjbmritY6jRcS6qRxM/bG1MHErNJSEjz+g4IiKV9tai/Ww7lomHkx0fDe+g7s1axup2+pdffpmHHnqI5cuX06VLFwA2b97ML7/8wieffALAkiVL6NWrV9UmFZEKGdA6mBvbBPPzrtK2+gWPXKVfzCJSY83aVDoKf0OrYHzdHA1Oc3GezvZ0CPdi85FTrIxL5a6uNXP+vojIxSzZe5LPVscD8PZtbQnzcTE4kVjL6pH4+++/n5UrV+Lq6sq8efOYN28eLi4urFy5kvvuuw+AJ598kjlz5lR5WBGpmNcGtcLPzYG4kzlM/l1t9SJSM2XnF/HjjhMAjIgJNzhNxfSODgBgRay2mhOR2ichI48nv90BwH1XRdCvZZCxgaRSrB6JB+jRowc9evSo6iwiUkV8XB2YMLgV//x6G5+sPES/lkG0DfMyOpaISDk/bj9OXmEJTQLc6BLhY3ScCukV5c/bi2NZdyiNwmIzDnZWj4eIiBiisNjMmG+2k51fTLswL57tr3nwtVWl/vIcOnSIl156ieHDh5OSUrq4y6+//soff/xRpeFEpPL6twpmYNsQzBZ46rud2tdYRGoUi8VStjf8iJhwTKaau6Ddn7UI9sDPzZG8whK2HNFWcyJSe0z8dR87EzLxdLbno+Ht9SFkLWb1v9zKlStp3bo1GzduZO7cueTk5ACwc+dOXn311SoPKCKVN+7mlvi5OXAgJYfJWq1eRGqQbcdOsT/5NE72NtzavmYvaPdnNjalW80BrIhTS72I1A6L9iQxfe0RAN69rS2h3poHX5tZXcQ/99xzTJgwgSVLluDg4FB2/Nprr2XDhg1VGk5ELk9pW31rAP6z8hA7EjKNDSQictbMDaWj8APbhODpYm9wGuuUbTWnefEiUgscS8/j6e93AfBAz0iuaxFocCK5XFYX8bt37+aWW24573hAQABpaWlVEkpEqk7/VkHcrLZ6EalBTuUWsnB3EgAjauEK71c38cPGBLEnT3Mi84zRcURE/lZBcQmjZ23jdH4xHRt683S/aKMjSRWwuoj38vIiKSnpvOPbt2+nQYMGVRJKRKpWaVu9IwdTcnj/9zij44hIPTd3WyKFxWZaNfCgbain0XGs5u3qULZY6Cq11ItIDfbGz/vYfTwLbxd7PryzPfa2mgdfF1j9rzhs2DCeffZZkpOTMZlMmM1m1q5dy1NPPcXdd99dHRlF5DJ5uzrw+i2tAPhs1WG2HTtlcCIRqa/KL2jXsNYsaPdXvaO01ZyI1Gw/70riy/VHAXjvjnaEeDkbnEiqitVF/BtvvEGzZs0ICwsjJyeHFi1a0LNnT7p3785LL71UHRlFpAr0axnE4HalbfVPq61eRAyy/lA68Wm5uDnacXPbEKPjVNq5efFrD6ZRVGI2OI2ISHlH0nJ5dm7pPPiHejfmmugAgxNJVbK6iHdwcOCzzz7j0KFDLFy4kK+//pr9+/fz3//+F1tb2+rIKCJVZOzNLfF3d+RQai7vL1FbvYhceedG4W9p3wBXRzuD01Remwae+Lg6cLqgmG1H1d0kIjVHflEJD8/cRk5BMV0a+fDk9VFGR5IqVulJEeHh4QwYMIDbb7+dpk2bVmUmEakmXi4OvHFL6Wr1n61WW72IXFkpp/NZ/EcyAMNjwg1Oc3lsbExc3dQPgJWaFy8iNchrC/eyNykbX1cHPrizPXaaB1/nVOgj8CeeeKLCF3zvvfcqHUZEqt/1LQK5pX0D5m8/zlPf7eSXR6/GyV5dNCJS/b7bkkix2ULHht40D/YwOs5l6x3tz487TrAiNpVn+jczOo6ICD/uOM7MjccwmeD9O9oR5OlkdCSpBhUq4rdv317u623btlFcXEx0dOkWBXFxcdja2tKxY8eqTygiVe7VgS1YczCNw6m5vLckjhcGNDc6kojUcSVmC7PKFrSr3aPw5/Rs6o/JBHuTsknJzifAQ2+WRcQ4h1JzeGHebgDGXNOEnlH+BieS6lKh3orly5eX3QYOHEivXr1ITExk27ZtbNu2jYSEBK655hpuvPHG6s4rIlXAy8WBiX9qq9+q+ZwiUs1WxaVyPPMMXi72DGgdbHScKuHr5kjrBqVb5KmlXkSMlF9UwuiZ28gtLKFrpA+PX6d58HWZ1RMk3n33XSZOnIi3t3fZMW9vbyZMmMC7775bpeFEpPpc1yKQW9s3wKLV6kXkCpi5sXSbo6EdQuvUFJ7eZ0e6VqiIFxEDjf3pD/Ynn8bPzYEPhrXH1qZ2bt8pFWN1EZ+dnU1q6vl/qFJTUzl9+nSVhBKRK+PVgS0JcHfkcFou7yyONTqOiNRRxzPPsGx/CgB31pFW+nPObTW35kAaxdpqTkQMMH97IrM3J2AyweRh7TW1px6wuoi/5ZZbuPfee5k3bx6JiYkkJiYyd+5c7rvvPm699dbqyCgi1cTTxZ6Jt5a21X+xNp4tRzIMTiQiddHsTccwW6B7Y18a+7sZHadKtQ31wtPZnqwzRexMzDQ6jojUMwdTTvPCvD0APHptU3o08TM4kVwJVhfxn3zyCTfccAPDhw+nYcOGNGzYkOHDh9O/f3+mTJlSHRlFpBr1aR7IkA6hpW313+/iTKHa6kWk6hSVmJm9OQGAETENDU5T9exsbbjq3FZzsWqpF5Er50xhCaNnbudMUQk9mvjyaB9t+11fWF3Eu7i4MGXKFNLT09m+fTvbt28nIyODKVOm4OrqWh0ZRaSavTKwBYEejsSn5fLOb2qrF5Gq8/vek6SeLsDPzZHrWwQaHadaaF68nJN4Ko9tx05RpKkVcgW88uMeYk+ext/dkUl3aB58fVKhLeYuxNXVlTZt2lRlFhExiKezPf++tQ33ztjMtLXx9G8VROdGPkbHEpE6YObZbeXu6ByKg53VYwe1Qq+zRfyuxCzScko/sJD6J7egmJs/WktGbiHujnb0aOJHr2h/ekX5E+LlbHQ8qWO+35rId1sTsTHBB8Pa4++u3zv1SYX+mt56661kZ2dX+KIjRowgJSWl0qFE5Mq7plkAQzuGlq1Wr7Z6Eblc8Wm5rDmYhskEwzrXrQXt/izAw4kWwR4ArD6g0fj66ocdx8nILQTgdEExi/5I5vl5u+n+72X0fX8lr/+8l7UH0ygo1t9XuTxxJ0/z0g+l+8H/67ooujX2NTiRXGkVGon/8ccfL7gi/YVYLBYWLFjAa6+9RkBAwGWFE5Er6+WbWrDmQBpH0vN4e3EsrwxsYXQkEanFvtlUOgrfO8qfMB8Xg9NUr97R/uxNymZlbCq3tA81Oo5cYRaLha83lP68P39DM7pG+rIiNpWVcSnsSMgk7mQOcSdz+Gx1PM72tnRv7EvvaH96RQUQ7lu3/9+QqmGxWDiWkceGw+n8Z+Vh8ovMXN3Uj9HXNDE6mhigQkW8xWIhKiqqurOIiME8ne2ZOKQ1907fzPR1pW31XSLUVi8i1ssvKuG7LXV3Qbu/6hXlz5QVh1h1IA2z2YKN5qbWK9uOZbIvKRsHOxtu7xSGt6sDbcO8eOy6pmTmFbL6QBor41JZGZdK6ukClu5PYen+FOAPIvxc6RXlT69of7pF+uJkb2v0y5EawGKxcCS9tGjfeDidDYczSM7OL7s/0MOR9+9op9819VSFivjly5dbfeEGDRpY/RgRMd410QHc1jGU77Ym8sz3O/nlsatxcaj08hkiUk8t2pPMqbwiQjyduKZZ3e/M69DQG3dHOzJyC9l9PIu2YV5GR5IraOaGowDc1CYYb1eHcvd5uTgwsG0IA9uGYLFYSjs24lJZGZvK1qOniE/LJT4tlxnrjuBoZ0NMpC+9ovzpHe1PpJ8rJpOKtPrAYrFwOC33bNGewYbD6aScLih3joOtDe3CvIiJ9OGOzmFaf6Meq9A78169elV3DhGpQV66qQWrz7bVv7UolrE3tzQ6kojUMjM3lhY1w7qE14sVk+1tbejRxI9FfySzIjZVRXw9ciq3kIW7kwC4q+vFu05MJhMtQzxpGeLJw72bkJ1fxLqD6WeL+hROZOWzKi6VVXGpvLYQQr2dzxb0AXRr7Iuboz5UryssFgsHU3LYEJ9RVrin5fylaLezoX2YFzGRvnSN9KFDuLc6NQS4jNXpRaTu8nS2599DWjNy+mZmrDvCDa2CiInUoikiUjGxyafZfOQUtjYmhnUOMzrOFdM72r+0iI9L4bHrtF9zffH91kQKi820CPagvZUf3ng42dO/VRD9WwWVFXUr41JZEZvKpvgMEk+dYebGY8zceAx7WxOdGvqUzqWP9ic60F2j9LWI2WzhQEoOG+PT2XA4nU3xGaTlFJY7x9HOhg7h3sRE+tA10pd2YV4q2uWCDC3iJ06cyLx589i/fz/Ozs50796dN998k+jo6LJzHnzwQX7//XdOnDiBm5tb2TnNmjX72+uOHDmSL7/8styxfv36sWjRomp7LSJ1Te/oAO7oFMacLQk88e1O5j/cnQAPJ6NjiUgtMOvsKHzfFoH16vdGr+jSreZ2JmRyKrfwvLZqqXvMZktZ18ldXRteVlFtMploGuhO00B3/nF1JHmFxWw4nM6K2NKi/lhGHusPp7P+cDoTf91PkIdT2Vz6Hk388HS2r6qXJVXAbLYQe/J02Xz2TUcyynYvOMfJ3oaODb2JifCla6QvbcM8cbRT0S6XZmgRv3LlSkaPHk3nzp0pLi7mhRdeoG/fvuzduxdXV1cAOnbsyIgRIwgPDycjI4OxY8fSt29f4uPjsbX9+x/y/v37M3369LKvHR01Z0TEWi/e1JyN8ekcSc/jnumbmfNgVzyc9CZBRP5eXmEx87YdB+rHgnZ/FuzpTHSgO7EnT7P6YBo3tw0xOpJUs7WHSqeeuTnaMahd1f57uzjYcW2zQK5tFgjAkbRcVsSmsDIulfWH00nOzmfOlgTmbEnA1sZEh3Cv0qI+KoCWIR5a8OwKM5st7EvOLpvPvulIBpl5ReXOcba3pVMjb2IiSkfa24R64WBXoR2/RcoxWSwWi9EhzklNTSUgIICVK1fSs2fPC56za9cu2rZty8GDB2ncuPEFzxk5ciSZmZn88MMPlcqRnZ2Np6cnWVlZeHh4VOoaInXFsfQ8bp26jrScArpG+jDj3i5q7RKRvzVn8zGenbubRr4uLHuyd70rJN74ZR+frjrMkA6hvHt7W6PjSDV78L9bWPzHSe7u1pDxg1pdsefNLyphU3xG2Yr3B1Nyyt3v5+ZAz6alo/RXN/XHR10hVa7EbGFfUjYbzo60bz6SQdaZ8kW7i4MtnRr5lBXtrRt4qmiXi6poHVqpkfji4mJWrFjBoUOHGD58OO7u7pw4cQIPDw/c3NwqHTorKwsAH58Lb2mVm5vL9OnTiYiIICzs4nPsVqxYQUBAAN7e3lx77bVMmDABX98Lz+ktKCigoOB/C0lkZ2dX8hWI1D3hvi7MuLczwz7dwIbDGTzx7Q4+vLNDvVioSkSsN3Nj6V7Zw2PC610BD9A7yp9PVx1mZVyqtpqr45Kz8vl9Xwpw6QXtqpqTvS09o/zpGeXPy0BCRh6rDpSueL/2YBppOYXM236ceduPYzJBm1CvshXv24Z66W94JRSXmNmbVH6k/XR+cblzXB1s6Rzhc7Y93odWDTyxt1XRLlXP6pH4o0eP0r9/f44dO0ZBQQFxcXFERkby2GOPUVBQwCeffFKpIGazmZtvvpnMzEzWrFlT7r4pU6bwzDPPkJubS3R0ND///PPfjsIDzJ49GxcXFyIiIjh06BAvvPACbm5urF+//oIt+GPHjmXcuHHnHddIvMj/rDuYxsjpmyksMXN3t4aMu7mlFtQRkXJ2JWZy80drcbC1YcMLferl6F9BcQntxy8hr7CEhY9cRasGnkZHkmry/pI4Ji89QJdGPnz7z25GxylTWGxm69FTZxfIS2F/8uly93s623N1Uz96RwfQM8qPAPf6s26FNYpLzOw5kX12Tns6W46c4nRB+aLd3dHubNFeOtLeMsQDOxXtchkqOhJvdRE/ePBg3N3d+eKLL/D19WXnzp1ERkayYsUK7r//fg4cOFCpwA899BC//vora9asITQ0tNx9WVlZpKSkkJSUxDvvvMPx48dZu3YtTk4V+6Vz+PBhGjduzO+//06fPn3Ou/9CI/FhYWEq4kX+YuGuEzzyzXYsFnjy+ige6aPVl0Xkf56bu4vZmxMY3C6EScPaGx3HMP/4cgu/7zvJ0/2iGX1NE6PjSDUoKjFz1ZvLOJldwORh7RjUroHRkf7Wyez8sn3pVx9IJfsvo8ctgj1KV7yP8qdDQ+96O3JcVGJm9/GsspH2LUcyyC0sKXeOu5MdMWUj7b60CPFQV4NUqWprp1+9ejXr1q3DwaH8p+uNGjXi+PHj1icFxowZw8KFC1m1atV5BTyAp6cnnp6eNG3alK5du+Lt7c38+fO58847K3T9yMhI/Pz8OHjw4AWLeEdHRy18J1IBN7UJIe10AWMX7OXdJXH4uzsyrEu40bFEpAbIzi/ixx0nABhxhVuLa5re0f78vu8kK2NTVcTXUUv3neRkdgG+rg70bxVkdJyLCvRw4vZOYdzeKYziEjM7EzNZEVs6l35XYhZ7k7LZm5TNlBWHcHe0o0cTP3qdLepDvJyNjl9tCovN7D6eyYazRfvWo6fI+0vR7ulsT5c/jbQ3D1bRLjWD1UW82WympKTkvOOJiYm4u7tbdS2LxcIjjzzC/PnzWbFiBRERERV6jMViKTdyfimJiYmkp6cTHBxsVT4ROd/IHhGk5hTw8fJDvDB/N75ujlzfItDoWCJisB+2H+dMUQlRgW50auhtdBxD9Yoq3Wpu67FTZJ0p0tZfddDXG0rXfri9c1it2hLMztaGjg196NjQhyf7RpOWU8Dqs3PpVx1IIyO3kEV/JLPoj2QAogLdzs6lD6BTI+9a9Vr/qqC4hF2JWWVbvm09eoozReVrGi8X+3Ij7c2C3LWuhdRIVhfxffv2ZdKkSXz66adA6Z6WOTk5vPrqqwwYMMCqa40ePZpZs2bx448/4u7uTnJy6S8MT09PnJ2dOXz4MHPmzKFv3774+/uTmJjIv//9b5ydncs9V7NmzZg4cSK33HILOTk5jBs3jiFDhhAUFMShQ4d45plnaNKkCf369bP25YrIBTzVN5rU0wV8uyWRMbO2MfMfMXRqdOEFKUWk7rNYLMw8W9SMiLm8vbLrgjAfFxr7u3IoNZd1B9O4obUGEeqS+LRc1hxMw2SC4bW8G83PzZFb2odyS/tQzGYLu49nla14v/3YKeJO5hB3MofPVsfjbG9L98a+Z1vvAwj3dTE6/kUVFJew41gmG+NLR9q3HTtFfpG53Dk+rg5ni3Yfujb2JSpARbvUDlYX8e+88w79+/enRYsW5OfnM3z4cA4cOICfnx/ffPONVdeaOnUqAL179y53fPr06YwcORInJydWr17NpEmTOHXqFIGBgfTs2ZN169YREBBQdn5sbGzZyva2trbs2rWLL7/8kszMTEJCQujbty+vvfaaWuZFqojJZOKNW1qTnlPI0v0pjJqxme8f6k5UoHXdOCJSN2w5eorYk6dxtrfllg41d27wldQrKoBDqfGsiE1VEV/HzNxwFCjtuAjzqdmFrDVsbEy0DfOibZgXj/ZpSmZeIWsOprHybOt9yukClu5PYen+FOAPIvxcS/elj/ana4Qvzg7GjtLnF5Ww/VgmGw6nszE+nW3HMiksLl+0+7o60DXSl5jI0vb4Jv5uKtqlVqrUPvHFxcXMmTOHnTt3kpOTQ4cOHRgxYgTOznVj3oz2iRepmDOFJYz4fAPbjmUS7OnE3Ie61+n5cyJyYY/P3s4PO05wR6cw3hzaxug4NcKquFTunraJIA8n1j9/bb3vTqgr8otKiHljKVlnivj87k5cV0+mk1ksFvYlnS5b8X7r0VMUm/9XQjja2RAT6Vta1Ef509jftdp/5vOLSth29BQbzo6070g4v2j3c3Oka6QPMZG+dIv0obG/m/5flBqtWlanLyoqolmzZixcuJDmzZtXSdCaSEW8SMVl5hUy9JP1HEzJoUmAG9//sxteLvVvWymR+iojt5CubyylsMTMT2N60CbUy+hINUJ+UQntxv9GfpGZRY9fTbMgvZ+oC77fmshT3+2kgZczq565pt4ucnY6v4h1h9JLF8iLTeFEVn65+0O9ncsK+u5N/HBztLr59zx5hcVsO5rJxvjSLd92JmRRWFK+aA9wdyw30h7pV/0fJohUpWpZnd7e3p78/PxLnygi9YaXiwNfjerCrVPWcTAlh1EzNjPzH10Nb6sTkSvj+60JFJaYad3AUwX8nzjZ29It0pflsamsiE1VEV9HfH22lf7OLmH1toAHcHeyp1/LIPq1DMJisXAoNadsxfuNhzNIPHWGmRuPMXPjMextTXRq6EOvaH96R/sTHeheocI6t6CYrUdPnS3aM9iVmElRSfmxxyAPp7KR9q6RvjTydVHRLvWC1e30b7zxBnFxcXz++efY2V3+p2o1kUbiRawXd/I0Q6euIzu/mD7NAvjP/3XErp7uNStSX5jNFq59dwVH0vP4962tteXkX8xYG8/YBXvpFunLNw90NTqOXKY9x7O46cM12NmYWPf8tQS4OxkdqUbKKyxmw+F0VsamsiIulaPpeeXuD/RwLFvxvkcTv7LdG3IKitlyJIMNhzPYGJ/O7sSsci37ACGeTuVG2sN9VLRL3VJt+8Rv3ryZpUuX8ttvv9G6dWtcXV3L3T9v3jzr04pIrRcV6M60kZ0Z8flGlu5P4YX5u3lzSBv9cRWpw9YdSudIeh7ujnYMbBtidJwap3d0ACzYy5ajGeQUFFdJS7EYZ+bG0h0Y+rUKUgF/ES4OdlzbLJBrm5WuF3AkLbdsLv36w+mczC7d3ebbLYnY2phoH+ZFkdnCnuNZlPylaG/g5VxWtHeL9CXU21nvK0SoRBHv5eXFkCFDqiOLiNRynRr58NHwDjz43y18uyURf3dHnu7XzOhYIlJNZm4sbS2+pUMDXFWgnqeRnysNfV04mp7HuoNp9G0ZZHQkqaTT+UX8uOM4AHfFNDQ4Te3SyM+VRn6u3NO9EflFJWw+klHWen8wJYctR0+VnRvm41y2R3tMhE+dWv1fpCpZ/Rd3+vTp1ZFDROqI61sE8sYtrXlu3m4+Xn4IfzdHRvaIMDqWiFSxk9n5/Lb3JFC6N7xcWO8of75cf5QVcakq4mux+duPk1dYQpMAN7pG+hgdp9Zysrfl6qb+XN3Un5eBxFN5rDuYjp2tiZhIXxpohxuRCtGEVRGpcsO6hPPk9VEAjFu4l4W7ThicSESq2rebEygxW+jcyJvoIHej49RYvaMDAFgZm0oldvWVGsBisZQtaDciJlzt3FUo1NuF2zuHcWuHUBXwIlaweiQ+IiLior+8Dh8+fFmBRKRuGHNtE1JzCvhq/VGemLMTHxcHujfxMzqWiFSBErOFbzaVzg/WKPzFdY30xcHOhuOZZziUmkOTAH3gUdtsPnKKuJM5ONvbcmuHUKPjiIhYX8Q//vjj5b4uKipi+/btLFq0iKeffrqqcolILWcymXh1YEvScgr4ZXcyD/x3K7Mf6EqrBp5GRxORy7Ti7L7Q3i729G+lFvGLcXawJSbCh9UH0lgRm6oivhY6Nwp/c9uQspXURUSMZHUR/9hjj13w+Mcff8yWLVsuO5CI1B22Nibeu70dGbmb2HA4g5HTNzPvoe6E+2qhGpHa7Nwq3bd1CsPJ3tbgNDVfryh/Vh9IY2VcKv+4OtLoOGKFtJwCft2TBMBdXdV1IiI1Q5XNib/hhhuYO3duVV1OROoIJ3tbPr27E82DPUjLKeDuaRtJyykwOpaIVFLiqTyWx6YAcKf2ha+Qc/PiNx7OIK+w2OA0Yo1vtyRQVGKhbagnrUPVSSYiNUOVFfHff/89Pj5arVNEzufhZM+X93Ym1NuZI+l53Dt9MzkFeiMrUhvN3pSAxQJXNfEjws/V6Di1QmN/Vxp4OVNYYmbD4XSj40gFlZgtzDrbdTJCo/AiUoNY3U7fvn37cgvbWSwWkpOTSU1NZcqUKVUaTkTqjgAPJ74a1YWhn6xn9/Es/vnfrUwb2RkHO22SIVJbFJWYmb05AShdpVsqxmQy0Tvan5kbj7EiNpVrmwUaHUkqYFVcKomnzuDhZMfANiFGxxERKWN1ET9o0KByRbyNjQ3+/v707t2bZs2aVWk4EalbIv3dmD6yM3d+toE1B9N46rudTLqjHTY22q5HpDZYsvckaTkF+Ls7cl0LFaLW6BVVWsSvjEs1OopU0LkF7YZ2DMPZQWs/iEjNYXURP3bs2GqIISL1RdswL6be1ZH7Zmzmp50n8HNz5OWbmmvfXZFaYObG0qJmWOcw7G3VRWON7k38sLc1cTQ9j/i0XE1FqOEST+Wx7OzaD8PVdSIiNYzVf4FtbW1JSUk573h6ejq2tvqUUkQurVeUP+/c1haAaWvj+c+qwwYnEpFLOZyaw9qD6diYYJgWtLOam6MdnRuVrh20Mvb891FSs3yz6RgWC3SL9KVJgJvRcUREyrG6iLdYLBc8XlBQgIODw2UHEpH6YXD7Brw4oDkA//51P3O3JhqcSEQu5ptNpQt8XRMdQAMvZ4PT1E69ovwBWKGW+hqtsNjMnLNrP2hbORGpiSrcTv/BBx8ApYuzfP7557i5/e9TyZKSElatWqU58SJilft7RpKaU8Cnqw7zzNxd+Lg6cE2zAKNjichf5BeV8N3ZD9pGdNUofGX1jg5g4q/72XA4nfyiEpzs1cFYEy3+I5m0nEL83R3p21JrP4hIzVPhIv79998HSkfiP/nkk3Kt8w4ODjRq1IhPPvmk6hOKSJ32XP9mpJ4uYP724zw8cxuz7o+hfbi30bFE5E9+2Z1EZl4RDbyc6RWlD9oqKyrQjSAPJ5Kz89kYn1E2Mi81i9Z+EJGarsJFfHx8PADXXHMN8+bNw9tbb7JF5PLZ2Jh4a2gb0nMLWRWXyqgZm/nun901B1GkBpl5dq/sO7uEYavdJCrt3FZzszcnsCI2RUV8DXQw5TQbDmdgY4I7tfaDiNRQVn+8uHz5chXwIlKl7G1tmDqiA21DPTmVV8Q90zaRnJVvdCwRAfYlZbP16CnsbEzc3inM6Di13rnCXVvN1Uxfbyj9wOraZoGEaO0HEamhrN5iDiAxMZGffvqJY8eOUVhYWO6+9957r0qCiUj94upox7SRnRn6yXri03K5Z9omvv1nNzyd7Y2OJlKvzTo7Ct+3ZSABHk4Gp6n9ejT1w9bGxOHUXBIy8gjzcTE6kpyVV1jM3G2laz/cpbUfRKQGs7qIX7p0KTfffDORkZHs37+fVq1aceTIESwWCx06dKiOjCJST/i6OfLVqC7cOnUdsSdPc/+XW/jqvi5a/EnEILkFxczffhyAETFapbsqeDjZ0zHcm01HMlgRl8r/afXzGmPBzhOczi8m3MeFnk011UFEai6r2+mff/55nnrqKXbv3o2TkxNz584lISGBXr16cdttt1VHRhGpR8J8XPjy3i64O9qx6UgGj83eTon5wltbikj1+mnnCXIKionwc6VbpK/RceqMXtFnW+q1X3yNcq6VfnhMODZa+0FEajCri/h9+/Zx9913A2BnZ8eZM2dwc3Nj/PjxvPnmm1UeUETqnxYhHnx6dyccbG1Y/MdJXv5xDxaLCnmRK8lisfD1htJVuod3UVFTlc7Ni193KJ2C4hKD0wjAzoRMdh/PwsHWhts6hhodR0Tkoqwu4l1dXcvmwQcHB3Po0KGy+9LS0qoumYjUa90a+zJpWDtMptI5uZOXHjA6kki9sisxiz9OZONgZ8NQFTVVqmWIB/7ujuQVlrDlyCmj4wiUfWA1oHUQvm6OBqcREbk4q4v4rl27smbNGgAGDBjAk08+yeuvv86oUaPo2rVrlQcUkfprQOtgxg9qBcCk3w+UvckSkep3bq/sm1oH4+3qYHCausVkMmmV+hokK6+IBbtOAHCX1igQkVrA6iL+vffeIyYmBoBx48bRp08f5syZQ6NGjfjiiy+qPKCI1G//17Uhj17bBIBXftzDoj3JBicSqfuyzhTx087SomaEVumuFueK+BWaF2+477clkl9kplmQOx0bahtlEan5rFqdvqSkhMTERNq0aQOUttZ/8skn1RJMROScf10fRWpOAd9sSuDR2dv576guxGiRLZFqM/9PRU2HcBU11eHqpn7YmCDuZA4nMs9oT3KDWCyWsq6TEV0bYjJp7QcRqfmsGom3tbWlb9++nDql+VsicuWYTCZeG9SK61sEUlhs5h9fbWF/crbRsUTqpNKipnSV7hEx4SpqqomXiwPtwrwAtdQbaf2hdA6n5uLqYMst7RsYHUdEpEKsbqdv1aoVhw8fro4sIiJ/y87Whg/vbE/nRt6czi/mnmmbSDyVZ3QskTpn85FTHEjJwcXBlsEqaqpV7+gAQC31Rvr67Cj8oPYNcHO0qkFVRMQwVhfxEyZM4KmnnmLhwoUkJSWRnZ1d7iYiUl2c7G35/O7ORAW6cTK7gLunbSIjt9DoWCJ1yrnW4kHtQnB3sjc4Td12bl782oPpFJWYDU5T/6Rk5/PbHycBuCtGC9qJSO1hdRE/YMAAdu7cyc0330xoaCje3t54e3vj5eWFt7fmzYlI9fJ0sefLUV0I8XTicGou987YTF5hsdGxROqE9JwCft1dunjk8C4qaqpb6wae+Lg6kFNQzNajmqp4pc3enECx2UKHcC9ahHgYHUdEpMKs7htavnx5deQQEamwYE9nvrqvC0M/Wc/OhEwenrmNz+7uhL2t1Z9LisiffL81kcISM21DPWkd6ml0nDrPxsZEz6Z+/LDjBCvjUumqBTuvmOISM99sKl37QdvKiUhtY3UR36tXr+rIISJilSYB7nxxT2dGfL6BFbGpPDt3F+/e1laLcIlUktlsYdamcwvaqai5UnpHB/DDjhOlv8f6NzM6Tr2xPDaVpKx8vF3sGdA62Og4IiJWqdSw1erVq7nrrrvo3r07x48fB+C///0va9asqdJwIiIX07GhNx8P74CtjYl5247z70X7jY4kUmutPZTG0fQ83J3suKmtipor5eqmfphMsC8pm5PZ+UbHqTe+3lC69sNtncJwsrc1OI2IiHWsLuLnzp1Lv379cHZ2Ztu2bRQUFACQlZXFG2+8UeUBRUQupk/zQCbe2hqA/6w8zBdr4g1OJFI7nStqhnQIxcVBq3RfKb5ujrRpUDp1QVvNXRnH0vNYdaD0ez28S7jBaURErFep1ek/+eQTPvvsM+zt/7dqbY8ePdi2bVuVhhMRqYjbO4XxdL9oAF5buJcfdxw3OJFI7ZKclc/v+0q3ORseo6LmSut1dqs5FfFXxsxNR7FYSrsgGvm5Gh1HRMRqVhfxsbGx9OzZ87zjnp6eZGZmVkUmERGrPdy7MSO7NwLgqe92svqA3gyLVNSczQmUmC10aeRDVKC70XHqnXNbza2OS6VYW81Vq4LiEr7bkghoQbuaoMRsYf2hdH7ccZz1h9IpMVuMjiRSK1jdLxcUFMTBgwdp1KhRueNr1qwhMjKyqnKJiFjFZDLxyk0tSMspYOGuJP75363MfqCbVtgWuYTiEjOzN59d0K6rRuGN0C7MC09ne7LOFLEzMZOODX2MjlRn/bo7mYzcQoI9nejTLMDoOPXaoj1JjFuwl6Ss/60FEezpxKsDW9C/ldblELkYq0fi77//fh577DE2btyIyWTixIkTzJw5k6eeeoqHHnqoOjKKiFSIjY2Jd29vS48mvuQWljBy+ibi03KNjiVSo51bpdvH1YH+rYKMjlMv2dqYuLqpHwArYtVFVJ3Orf0wrHM4dtqW1DCL9iTx0NfbyhXwUDq156Gvt7FoT5JByURqB6t/ez333HMMHz6cPn36kJOTQ8+ePfnHP/7Bgw8+yCOPPFIdGUVEKszRzpZP7upIyxAP0nMLuXvaRlJOa8Vnkb8zc+PZVbo7huJop1W6jdL77Lx4FfHVZ39yNluOnsLWxsSwLmFGx6m3SswWxi3Yy4Ua588dG7dgr1rrRS7C6iLeZDLx4osvkpGRwZ49e9iwYQOpqam89tpr1ZFPRMRq7k72zLi3C+E+LiRknGHktM2czi8yOpZIjZOQkVe2mNqdWqXbUD2jSkfidx/PIi2nwOA0ddO5Ufi+LQIJ9HAyOE39tSk+47wR+D+zAElZ+WyKz7hyoURqmUr3ETk4OODu7k5wcDBubm5VmUlE5LL5uzvy1agu+Lk5sDcpmwf/u5WC4hKjY4nUKN9sOqZVumuIAHcnWoZ4ALBKq9RXuZyCYuZvK925RAvaGaui3XHqohP5e1YX8cXFxbz88st4enrSqFEjGjVqhKenJy+99BJFRRrpEpGao5GfK9NHdsHVwZZ1h9J54tudmNWeJwJAYbGZb7ckADAiRkVNTXBulXptNVf1fth+nNzCEiL9XOne2NfoOPVagHvFuiAqep5IfWT16vSPPPII8+bN46233qJbt24ArF+/nrFjx5Kens7UqVOrPKScz2KxkJeXZ3QMkRov0tuOSUOa88+vt7JgSzyediW8MKA5JpPJ6Ggihvp1dxIpGdkEeDjQNdyV3FwtAmm0mDBXPirMZ/meBLJPN8XWRr+nqoLFYmHGyv2YC/MZ0qah3j8ZrGWAIwHOFk5mFVxwXrwJCPR0pGWAo34vSZVzcXGpG+8BLVby8PCw/PLLL+cd//nnny0eHh5WXeuNN96wdOrUyeLm5mbx9/e3DBo0yLJ///5y5zzwwAOWyMhIi5OTk8XPz89y8803W/bt23fR65rNZsvLL79sCQoKsjg5OVn69OljiYuLq3CurKwsC2DJysqy6vVcSTk5ORZKpw3ppptuuummm2666aabbrrpdolbTk6O0WXcRVW0DrW6nd7R0fG8PeIBIiIicHBwsOpaK1euZPTo0WzYsIElS5ZQVFRE3759y33q1rFjR6ZPn86+fftYvHgxFouFvn37UlLy93Nb33rrLT744AM++eQTNm7ciKurK/369SM/X3NrREREREREpPYyWSwWizUPGD9+PPv372f69Ok4OjoCUFBQwH333UfTpk159dVXKx0mNTWVgIAAVq5cSc+ePS94zq5du2jbti0HDx6kcePG591vsVgICQnhySef5KmnngIgKyuLwMBAZsyYwbBhwy6ZIzs7G09PT7KysvDw8Kj066lOFrXTi1TKu7/F8vnqeGxtTHx4ZzuuaRZodCSRK+7fv+7jy3VHuaZZAFNGdDA6jvzJ91sTePmHP2gb5snsB7oZHafWy8gt5Jq3V1BYYmb2AzG0DfM2OpL8SYnZwpYjGaTmFODv5kinRj6aRiLVqqa301e0DrV6Tvz27dtZunQpoaGhtG3bFoCdO3dSWFhInz59uPXWW8vOnTdvnlXXzsrKAsDHx+eC9+fm5jJ9+nQiIiIIC7vw/p7x8fEkJydz3XXXlR3z9PQkJiaG9evXX7CILygooKDgf9u5ZGdnW5XbCCaTCVdXrSQsYq2XB7cnq8iWudsSeeqHWGb+w4uODS/8O0ekLsovKuGnPzKwcXBiZK9o/S2pYfq2bcirvxxiT0oBhdjj7Wpdl6OUN3NrMsW2DrQO86BbdIMa/ea9vrq2tXa5ErGW1UW8l5cXQ4YMKXfs7wpqa5jNZh5//HF69OhBq1atyt03ZcoUnnnmGXJzc4mOjmbJkiV/27qfnJwMQGBg+dG1wMDAsvv+auLEiYwbN+6yX4OI1Hwmk4l/D2lNRm4By2NTGTVjC9//sxtNA92NjiZyRfy8K4msM0WEejvTs6m/0XHkL4I9nWkW5M7+5NOsPpjGzW1DjI5Ua5nNFmZuPAaUbiunAl5E6gqri/jp06dXRw5Gjx7Nnj17WLNmzXn3jRgxguuvv56kpCTeeecdbr/9dtauXYuTU9VsPfH888/zxBNPlH2dnZ1dJR9MiEjNZG9rw8cjOjD8s43sSMjk7mmbmPdwd4I9nY2OJlLtZm48CsCdXcLVtlpD9YryZ3/yaVbEpqiIvwxrDqZxND0Pd0c7BrXT91FE6g6rF7arDmPGjGHhwoUsX76c0NDQ8+739PSkadOm9OzZk++//579+/czf/78C14rKCgIgJMnT5Y7fvLkybL7/srR0REPD49yNxGp21wc7Jg2sjOR/q4kZeVz9xebyMwrNDqWSLXaeyKbbccysbMxcXsnfVhdU/WKLu2QWBWXitls1dJF8idfbyj9wOrWDg1wcbB63EpEpMayuohPT09n9OjRtGjRAj8/P3x8fMrdrGGxWBgzZgzz589n2bJlREREVOgxFoul3Bz2P4uIiCAoKIilS5eWHcvOzmbjxo1l+9qLiAD4uDrw1aguBHo4ciAlh398uYX8or/f+UKktpu1qbSo6dcqCH93R4PTyN/p1NAHVwdb0nIK2ZtU89fpqYmSss7w+77SAZ0RXRsanEZEpGpZ/bHk//3f/3Hw4EHuu+8+AgMDL2t+0ejRo5k1axY//vgj7u7uZXPWPT09cXZ25vDhw8yZM4e+ffvi7+9PYmIi//73v3F2dmbAgAFl12nWrBkTJ07klltuwWQy8fjjjzNhwgSaNm1KREQEL7/8MiEhIQwePLjSWUWkbgr1duHLUV247ZP1bDl6ijGztvPJXR2ws60RjUoiVSanoJj5244DMCIm3OA0cjEOdjZ0b+LHkr0nWRGbQqsGnkZHqnW+2ZSA2QJdInyI0ponIlLHWF3Er169mjVr1pStTH85pk6dCkDv3r3LHZ8+fTojR47EycmJ1atXM2nSJE6dOkVgYCA9e/Zk3bp1BAQElJ0fGxtbtrI9ULYI3gMPPEBmZiZXXXUVixYtqrI59CJStzQL8uDzuzvxf9M28fu+k7z0wx4m3tpaiyBJnfLjjuPkFpYQ6edKt0hfo+PIJfSO9mfJ3pOsjEtlzLVNjY5TqxSVmJm96X8L2omI1DVWF/HNmjXjzJkzVfLkl9qiPiQkhF9++cXq65hMJsaPH8/48eMvK5+I1B8xkb58eGd7Hvp6K7M3J+Dv7siTfaONjiVSJSwWC19vKC1qhseE6wOqWqBXVOm8+G3HMsk6U4Sns73BiWqP3/eeJOV0AX5uDvRveeH1kEREajOr+0WnTJnCiy++yMqVK0lPTyc7O7vcTUSkturXMogJg1sD8OGyg/x3/RFjA4lUkR0JmexLysbBzoahHc9fQFZqnlBvF5oEuFFitrD2YJrRcWqVr8/uwHB7pzAc7DQ1SkTqHqt/s3l5eZGdnc21115LQEAA3t7eeHt74+Xlhbe3d3VkFBG5YobHhPP4daWtq6/89Ae/7E4yOJHI5Tu3V/ZNbYLxcnEwOI1U1LnR+BWxKQYnqT0Op+aw9mA6JlPpNooiInWR1e30I0aMwN7enlmzZl32wnYiIjXRY32aknq6gJkbj/H47B14udjTvbGf0bFEKiUrr4gFO08AMCJG84Nrk97R/nyxJp6VcalYLJYr+p6rxGxhU3wGKafzCXB3okuED7Y2Nf8937kPrK6JDiDMx8XgNCIi1cPqIn7Pnj1s376d6GjNFRWRuslkMjF+UCvScwpZ9EcyD361lTkPdqNFiIfR0USsNndbIgXFZpoFudMh3MvoOGKFzo18cLa35WR2AfuTT9M8+Mr8Dlq0J4lxC/aSlJVfdizY04lXB7agf6vgK5KhMvKLSvh+ayIAd3XVKLyI1F1Wt9N36tSJhISE6sgiIlJj2NqYmDSsHV0ifDhdUMw90zeRkJFndCwRq1gsFmaenR88omtDdc/VMk72tnRrXLqTwIrY1CvynIv2JPHQ19vKFfAAyVn5PPT1NhbtqblTjBbsPEHWmSIaeDnTKyrg0g8QEamlrC7iH3nkER577DFmzJjB1q1b2bVrV7mbiEhd4WRvy2d3d6JZkDuppwu4e9om0nMKjI4lUmEb4zM4lJqLi4Mtg9uFGB1HKuHcvPiVcdU/L77EbGHcgr1caO+gc8fGLdhLifniuwsZ5euN/9uBoTa0/ouIVJbV7fR33HEHAKNGjSo7ZjKZyuZqlZSUVF06ERGDeTrb8+WoLtw6ZR3xabmMmrGZWfd3xdXR6l+fIlfcufnBg9s3wN1JW5TVRr2jS4v4LUdOcTq/qFr/HTfFZ5w3Av9nFiApK59N8RllHQI1xZ7jWexMyMTe1sTtncKMjiMiUq2sfhcaHx9fHTlERGqsQA8nvrqvC0OnrmNnYhb//HorX9zTWVsXSY2WllNQ1vo8XKt011oNfV1p5OvCkfQ81h1Kp1817nuecvrvC/jKnHclnZs20q9lEP7ujganERGpXla/A23YsOFFbyIidVFjfzemjeyMs70tqw+k8cz3OzHX0JZSEYDvtiRSVGKhXZgXrRp4Gh1HLkPv6NL53dU9Lz7A3alKz7tSsvOL+GF76Q4Md3XVe1ERqfsqNYz03//+lx49ehASEsLRo6WffE6aNIkff/yxSsOJiNQk7cO9mXJXB+xsTPyw4wQTf91ndCSRCzKbLczadHZBuxiNwtd2vc621K86u9VcdekS4UOwpxN/N5vcROkq9V0ifKotQ2XM33acM0UlNA1wI6aGZRMRqQ5WF/FTp07liSeeYMCAAWRmZpbNgffy8mLSpElVnU9EpEa5JjqAN4e0AeCz1fF8uuqQwYlEzrf6YBoJGWfwcLLjpjZa0K626xrhi4OdDcczz3AwJafansfWxsSrA1sAnFfIn/v61YEtatSicRaLha83/O8DK+3AICL1gdVF/Icffshnn33Giy++iK2tbdnxTp06sXv37ioNJyJSEw3pGMrzNzQD4I1f9jNvW6LBiUTKm3m2qBnSMRRnB9tLnC01nbODLV0jSxeSWxlXvS31/VsFM/WuDgR5lm+ZD/J0YupdHWrcPvGb4jM4kJKDs70tt3YMNTqOiMgVUamF7dq3b3/ecUdHR3Jzc6sklIhITfdAz0hSThfwxZp4nvl+Fz6uDmXzVkWMlJR1hqX7S7cjUyt93dEryp9VcamsiE3lH1dHVutz9W8VzPUtgtgUn0HK6XwC3Etb6GvSCPw557aVG9QuBA/twCAi9YTVI/ERERHs2LHjvOOLFi2iefPmVZFJRKTGM5lMvDigOYPahVBstvDwzG3sSMg0OpYIczYnUGK2EBPhQ5MAd6PjSBU5t9XcpvgM8gqLq/35bG1MdGvsy6B2DejW2LdGFvCpp/+3A4MWtBOR+qTCRfz48ePJy8vjiSeeYPTo0cyZMweLxcKmTZt4/fXXef7553nmmWeqM6uISI1iY2Pi7aFtubqpH3mFJYyasZnDqdU3X1XkUopLzMzelADACBU1dUqknyuh3s4UlphZfyjd6Dg1wrdbEigqsdBWOzCISD1T4SJ+3Lhx5OTk8I9//IM333yTl156iby8PIYPH87UqVOZPHkyw4YNq86sIiI1joOdDVPv6kjrBp5k5BZy97RNpGTXvD2UpX5Ytj+F5Ox8fF0d6Ncy0Og4UoVMJlPZaHx1bzVXG5SYLcw620p/l6aNiEg9U+Ei/s9bmowYMYIDBw6Qk5NDcnIyiYmJ3HfffdUSUESkpnNztGP6vZ1p5OtC4qkz3D1tE9n5RUbHknpo5tmi5rZOYTjaaUG7uqZX1Nn94uNSqnWrudpgZVwKxzPP4Olsz8C22oFBROoXq+bE/3XbDhcXFwICtJCTiIifmyNfjYrBz82R/cmn6fveKib/foCTGpWXK+RYeh6rDpSO0A7vopHJuqh7Y1/sbU0kZJwhPq1+Lyb89YbSD6yGdgzFyV4fWIlI/WJVER8VFYWPj89FbyIi9VW4rwtfjupMgLsjydn5vP97HN3/vYx//ncraw6kYTbX75EzqV6zNh3DYoGeUf6E+7oYHUeqgaujHZ0blb7Xqu6t5mqyhIw8lsdqBwYRqb+s2mJu3LhxeHpq4RARkb/TMsST1c9ew6I9yXy94Sibj5xi0R/JLPojmQg/V4Z3CWdox1C8XR2Mjip1SEFxCd9tObugnYqaOq13tD/rDqWzIjaVe3tEGB3HEN+c/cCqRxNfIv3djI4jInLFWVXEDxs2TO3zIiKX4Ghny6B2DRjUrgH7k7OZtfEY87YdJz4tl9d/2cfbv8VyU+tgRnRtSIdwr/OmKolYa/EfJ0nPLSTQw5E+zfR3ui7rHR3AG7/sZ8PhdPKLSupdK3lhsZlvz35gdVeMdmAQkfqpwu30epMpImK9ZkEejB/Uio0v9OGNW1rTItiDwmIz87YfZ8jUdQz4YA1fbzhKTkH17/ssddfMDUcBGNY5HDtbq2bKSS3TNMCNYE8nCorNbDhc/7aaW/RHMmk5hQS4O3JdC+3AICL1U6VWpxcREeu4OtoxPCacnx+9ivkPd2dox1Ac7WzYl5TNSz/sIeb133lx/m72JWUbHVVqmYMpp9kYn4GNCYZ1CTM6jlSzP281Vx/nxf/vA6sw7PWBlYjUUxX+7Wc2m9VKLyJymUwmE+3DvXnntrZsfKEPL93YnEg/V3ILS5i58Rg3TF7NkKnrmL89kfyiEqPjSi1wblu5Ps0DCfZ0NjiNXAm9os4W8fVsv/gDJ//8gZXWfhCR+suqOfEiIlJ1vFwc+MfVkdx3VQTrD6Uzc+MxFv+RzNajp9h69BTjF+zltk5hDO8STiM/V6PjSg10prCEuVsTAbirq+YH1xfdm/hhZ2PicFoux9Lz6s1uBH/+wCrESx9YiUj9pSJeRKQKlZgtbIrPIOV0PgHuTnSJ8MHW5uJriphMJro38aN7Ez9SsvOZszmBbzYd40RWPp+uOsynqw5zdVM/RsQ05LrmAZrzLGUW7jpBdn4xYT7OXN3Ez+g4coV4ONnToaE3m+IzWBmXwv91a2R0pGqXV1isD6xERM5SES8iUkUW7Uli3IK9JGXllx0L9nTi1YEt6N8quELXCPBw4pE+TXn4miYs35/C1xuPsjIuldUH0lh9II1AD0eGdQ7nzi7hBHk6VddLkVri3Mjk8C4NsbnEh0VSt/SO9mdTfAYrYlPrRRH/044TnC4opqGviz6wEpF6T8M5IiJVYNGeJB76elu5Ah4gOSufh77exqI9SVZdz9bGxHUtAplxbxdWPX0ND/VujK+rAyezC5i89AA93lzGA19tYVVcKmazFh6tj/Ycz2JHQib2tiZu6xRqdBy5ws7Ni193KJ2C4rq9fobFYuHrjaUL2g3vEq4PrESk3lMRL/VGidnC+kPp/LjjOOsPpVOiwkeqSInZwrgFe7nQT9S5Y+MW7K30z1yYjwvP9m/Guuev5YM729MlwocSs4Xf9p7k7mmbuObdFfxn5SEycgsr/Rqk9pm1qXQUvn+rYPzcHA1OI1dai2APAtwdOVNUwub4U0bHqVY7E7PYczwbBzsbbuukHRhERNROL/VCVbQ5i/ydTfEZ543A/5kFSMrKZ1N8Bt0a+1b6eRztbLm5bQg3tw0h7uRpZm08xtytiRxNz2Pir/t597c4BrQO4q6uDenY0BuTSaNVdVVOQTE/bj8OwIgYrdJdH5lMJnpF+fPd1kRWxqVwVdO622L+9dlt5W5sHYyPq4PBaUREjKeReKnzqrrNWeSvUk7/fQFfmfMqIirQnbE3t2Tji314c0hrWjfwpLDEzA87TjD0k/Xc8P/t3XlY1Ne9P/D3sA3bMICy7y6giEZBVKoBNVGoqdHENImRRhMbG6PXeG8TU7thFh9jap40+TX13tsabURjNKk3ahOMVcElLIqiIoob+yL7DLIzc35/AJNMAEWZnffreeYPvnPm+/18xyPMZ87nnPPhSexML0Rja4fOrknG1dTWiVPXa/DBkWtI/HsmmtpVGOnhhKkh7sYOjYwkrnu/+FQL3mquobkdBy+UAwASp/ELKyIigCPxZOHuVeYsQVeZ85xw73uuIE7UH0/ZwBaYG2i7++FoZ4NnogPxTHQgLpQ0YFdmEQ5cKMfVykb84avL2PTNVSyY6IfEaYEY5yvX+fVJf2rvtOFMYT3OFNbhbGEdcsuVvaZkvPTwCFZcDGEPj/KAlQS4XnUHZQ0t8LPAbde+yC5FW6caY7xliAx0M3Y4REQmgUk8WTRDlTnT0DYlxB0+cntUKlr7/MJIAsBb3rXdnD49FOCKhwJc8bt54fjyXCl2ZRbhZnUTPssqxmdZxZgU6IrEqUF4bIIP7G2t9RoL3R8hBErrW5BVUIczhV2Pm9VNvdr5uTogOtgNk4PdMW2EO0Z5yowQLZkKuaMtJgW6IbuoHmn51XjOwqZWCCGwu3sHhsRpQfzCioioG5N4smjGKHOmocfaSoKk+eFYmXwOEkArke/5yJk0P9xg1R5yR1u8OCMEL0wPRsatOuzKLMLhy5U4X9yA88UNePtfeXgq0h/PTQ3ECA9ng8RE2tRqgfzbjThTWIesgjqcLaxHpbL376FQL2dEB7tjSog7Jge7W+RIKw3OzFCPriT+WpXFJfHf3azFrZomONlZY+EkP2OHQ0RkMpjEk0UzZpkzDS0JET7YmhjZawFFbyMuoCiRSBAzchhiRg5DdWMb9p4twe7MYpQ1tODvpwrw91MFmD5qGBKnBuHRcC/YWnOZFH1p61ThUqkCWYV1OFNQh7NF9Whs7dRqY2MlwXh/OaYEuyM62B2Tg93g6shFvOju4sI88P6Razh9oxbtnWrY2VjO/+OeBe2eiPSDs5QfWYmIevA3Ilk0UylzpqEhIcIHc8K9kVVQh6rGVnjKuvqWKay34CGTYtWsUXg5biTSrlUhOaMYx/OrcPpGLU7fqIWnTIpnowPw7JRA+HK0d9CUrR3ILqrH2cI6nCmoR05pA9o71VptnOysERnkhujupH1igCsc7DjNge5PhK8cw5zsUNvUjnPF9Zg2wjKmht1WtuLbvNsAukrpiYjoe0ziyaKZWpkzWT5rK4lJr69gbSXB7DFemD3GC6X1zfgsqxifnylBVWMbPjp2A385fgOzx3ghcVogYkd7wIr/NwakStmKrMKusvisgjpcrVTiR2vQYbizHSYHuSM6xB1Tgt0x1kcGG1Y/0CBZWUkQG+qB/efLkJpfbTFJ/J6sEqjUApOD3DDG28XY4RARmRSJEKKvAcohTalUQi6XQ6FQwMWFfzgsAfeJJ+pfe6ca3+ZVIjmjCBm36jTHA9wd8NyUIDw92R/DnKVGjNC0CCFQUNPUvQBd1+rxRbXNvdoFDXPsHmXvGm0PGe7EhblIL77KKcOre3IwxluGlLWxxg5n0DpVaszYfByVylZ88MxDeGKSv7FDIiIyiIHmoUzi+8Ak3jKp1MIky5yJTMmNqkbsyizGF9mlmjnbdtZWSIjwRuK0IEQHuw25RLRTpcaVisbukfauxL3mTptWG4kEGOvt0r0AXVfS7uXCtTbIMOqa2hH1zhEIAWT+9hGz73vfXq7Eip3ZcHO0Rfr6R7ibBhENGQPNQ1lOT0OGqZc5E5mCUZ4yJM0fh3XxY3DwYjl2ZRThQqkCBy6U48CFcoR6OWPJ1CA8EekHF3tbY4erF60dKpwvbtBs9XauqB5N7SqtNnY2Vpjo74rokK6EPTLIzWLfDzJ97k52mODvigslDUjLr8bT0QHGDmlQkru3lXt6cgATeCKiPjCJJyKiXhzsrPH05AA8PTkAl0oV2JVZhK9yynHt9h0kHbiMd7+5igUTfZE4LQgRfnJjhzsoDc3tONtdFp9VWIfcMgU6VNpFajJ7G0wOctPMZx/vL4fUhskFmY6ZoR5dSfw1807ii2qbcOJaNQBY3JZ5RES6wiSeiIjuary/HO/6T8D6eWOx/1wpdmUW43rVHew5U4I9Z0rwUIArlkwNxPwJvmaxunpZQwvOdu/PfqawDtdu3+nVxstFqtmfPTrYHWFeMi7yRyYtLswDHx69jpPXq9GpUpvtoom7u0fhY0M9EDTMycjREBGZJibxREQ0IHIHWyybHoKlPwlGVkEddmUW45vcClwoacCFkga8cygPT0UF4LmpgRjl6WzscAEAarXAjeo7XaXxBV3z2csaWnq1G+nhpNnqbUqIO/zdHIbc3H8ybw/5u8LV0RYNzR3IKWnA5GDz2zq1tUOFvWdLAACJHIUnIuoXk3giIrovEokEU0cMw9QRw1BzJxx7z5Zgd2YxSutb8MnpAnxyugAxI4YhcVoQ5oR7wc7GcCOC7Z1q5JYrukfa63G2qA4NzR1abaytJIjwdUF0sDsmd68ez9X3ydxZW0nw8GgPHLxQjtT8arNM4r/JrUB9cwd85PaYPcbT2OEQEZksJvFERPTAhjtL8crMUXg5diTSrldjV0YRjl2tQvqtWqTfqsVwZymejQ7A4qmB8HN10Pn1m9o6ca64vmurt4I6nC+pR2uHWquNg601JgW6akbZJwa4wknKP39keWaGdiXxadeq8Vp8mLHDuW/JGV2l9IunBJrtdAAiIkPgpxgiIho0KysJZoV5YlaYJ8oaWrAnqxh7zpSgurENfzl+A39NvYFZYZ5InBaE2FCPB97eseZOm9Yo++VyJVRq7UXo3BxtMTm4awG66BB3jPN1gS0TAhoCYkM9AACXyhSobmyDh8x8KkyuVCiRXVQPGysJnjXjhfmIiAyBSTwREemUn6sDfj03DGseGY0jebeRnFGE727W4ujVKhy9WgV/NwcsnhKIpycH3DXJEEKgpK4FWZr57HW4VdPU5/V6FqCbEuKGEcOduQgdDUkeMiki/FyQW6bEyevVeDLS39ghDVhyRhEAYO44L3ia+T73RET6ZtQkftOmTfjnP/+Jq1evwsHBAT/5yU+wefNmhIV1lYDV1dUhKSkJ3377LYqLi+Hh4YGFCxfi7bffhlze/5ZGy5Ytwz/+8Q+tY/Hx8UhJSdHr/RAR0fdsra0wb7wP5o33wc3qO9idWYwvsktRWt+CPx3Ox5//fQ3x47yROC0IU0PcoRZAfmWjZqu3s4V1uK1s0zqnRAKEeckwOdhNsxCdrx7K9InMVVyoB3LLlEjNN58k/k5bJ/7vfBkAIHFqkJGjISIyfUZN4tPS0rBq1SpER0ejs7MTv/3tbzF37lzk5eXByckJ5eXlKC8vx5YtWxAeHo6ioiK8/PLLKC8vxxdffHHXcyckJGD79u2an6VS8ykpIyKyNCM9nPGHn4Xj9fgwHLpYgeSMIuSUNODQxQoculiBQHdH1De3o7G1U+t1ttYSTPB3xeRgN0wJdsfkIHfIHW2NdBdEpm9mmCc+Pn4TJ65XQ6UWDzx1xZD2ny9DU7sKIzycEDNymLHDISIyeUZN4n88Mr5jxw54enoiOzsbsbGxiIiIwJdffql5fuTIkdi4cSMSExPR2dkJG5v+w5dKpfD29tZb7EREdP/sba3xVJQ/noryR26ZArsyi/FVThmK65oBAM5SG0QGuWFKsBsmB3ctQmdva/p7zxOZikkBrpDZ26ChuQMXSxswKdDN2CHdlRACu7pL6ZdMDeLWjkT3oFILZBXUoaqxFZ4ye0wJcTeLL+uMyRLfM5OaE69QKAAA7u79b4uiUCjg4uJy1wQeAFJTU+Hp6Qk3NzfMnj0b77zzDoYN6/vb3ba2NrS1fV+yqVQqHyB6IiK6HxF+cmx6cjzWzxuD9Ju18HN1wBhvGVelJhoEG2srPDx6OL6+VInU/GqTT+Kzi+pxtbIR9rZWeMpMyv+JjCUltwJvHsxDhaJVc8xHbo+k+eFIiPAxYmSmy1LfM5P5pKRWq7F27VpMnz4dERERfbapqanB22+/jRUrVtz1XAkJCfj0009x9OhRbN68GWlpafjpT38KlUrVZ/tNmzZBLpdrHgEBXBWViMhQXOxtET/OGxF+cibwRDowM7Rrj/W0a9VGjuTeeha0mz/Bl1NliO4iJbcCK5PPaSWjAFCpaMXK5HNIya0wUmSmy5LfM4kQQty7mf6tXLkS33zzDU6dOgV//97fxCqVSsyZMwfu7u44cOAAbG0H/ov+1q1bGDlyJP7973/jkUce6fV8XyPxAQEBmlF/IiIiMl+WWEp5N5WKVkzbdBQSCZD9+zlwd7Izdkh9qr3ThphNx9CuUuOrVdPxUICrsUMiMkkqtcCMzcd6JaM9JAC85fY49cZsi/7ddj/M9T1TKpWQy+X3zENNopx+9erVOHToEE6cONFnAt/Y2IiEhATIZDLs37//vhJ4ABgxYgSGDx+OGzdu9JnES6VSLnxHRERkgSy1lPJuvOX2GOMtw9XKRpy8Xo0FE/2MHVKfvsguRbtKjQg/F0zw73/XIaKhLqugrt9kFAAEgApFK7IK6rg4ZDdLf8+MWrcohMDq1auxf/9+HDt2DCEhIb3aKJVKzJ07F3Z2djhw4ADs7e9/79DS0lLU1tbCx8cy/1gTERFRb5ZcSnkvcWEeAIC0fNMsqVerBXZnFQPo2lbOEha0U6kF0m/W4qucMqTfrIVKbRLFrmQBqhr7T0YfpN1QYOnvmVGT+FWrViE5ORm7d++GTCZDZWUlKisr0dLSAuD7BL6pqQnbtm2DUqnUtPnh/PYxY8Zg//79AIA7d+7g9ddfR0ZGBgoLC3H06FEsWLAAo0aNQnx8vFHuk4iIiAxLpRZ482Ae+kqjeo69eTDPYhOtnnnxJ65XQ22C93jyRg2Kapshs7fB4xN9jR3OoKXkVmDG5mNY/LcMvLonB4v/loEZm49Z9BdFZDiesoENYg603VBg6e+ZUZP4rVu3QqFQYObMmfDx8dE8Pv/8cwDAuXPnkJmZiUuXLmHUqFFabUpKSjTnyc/P16xsb21tjYsXL+Lxxx9HaGgoli9fjqioKJw8eZIl80REREPE/ZRSWqKoIDc42Vmj5k47Lpeb3q47PQvaLYr0h6OdSczufGBDueKDDGNKiDt85Pbor15Fgq5pQlNC+t/ha6ix9PfMqL8177Wm3syZM+/Z5sfncXBwwOHDhwcdGxEREZkvSy+lvBc7GytMHzUc3+bdRmp+Fcab0Jzz8oYWHL1yGwCwZGqgkaMZnHtVfEjQVfExJ9zbpBbPIvNibSVB0vxwrEw+Bwmg1d96elXS/HD2sR+w9PeMe/kQERGRxbH0UsqB0MyLN7Gt5vZkFUMtgKkh7hjtJTN2OIMy1Cs+yHASInywNTES3nLt31necntsTYy02IU6B8OS3zPzrl8iIiIi6kNPKWWlorXPUdKe7YXMtZRyIGaGdc2LP1dcD0Vzh0nsw96hUmPPma4pkYnTgowczeAN9YoPMqyECB/MCfceUltmDpalvmdM4omIiMjiWHop5UD4uTpgtKczrlfdwakbNXhsgvFHnY7k3UZVYxuGO0sRP87b2OEMGis+yNCsrSRmuSWaMVnie8ZyeiIiIrJIllxKOVBxoV0l9an5VUaOpEvPgnbPRPvDzsb8P4Za+uJZRGSaOBJPREREFstSSykHamaYJ/5+qgBp16ohhDDqfuw3q+/gu5u1kEiAxVPMe0G7Hqz4ICJjYBJPRERGpVKLIZtgkWFYYinlQEWHuMHB1hpVjW24UtGIcF8Xo8WyK6MYADA7zBP+bo5Gi0PXeio+3jyYp7XInbfcHknzw4dExQcRGRaTeCIiMpqU3IpeH3x9+MGXSGekNtb4ychhOHq1CmnXqo2WxLe0q/BFtuUsaPdjQ73ig4gMy/wnIxERkVlKya3AyuRzvbZnqlS0YmXyOaTkVhgpMiLL0rPVnDHnxR+8WA5layf83RwQ2z1P39L0VHwsmOiHmJHDmMATkd4wiSciIoNTqQXePJjX59ZfPcfePJgHlbqvFkObSi2QfrMWX+WUIf1mLd8juqeZoV1bzWUX1aOxtcMoMezqXtDuuamBTG6JiAaJ5fRERGRwWQV1vUbgf0gAqFC0IqugbsjOZe4Lpx/Qgwgc5oiQ4U4oqGnC6Ru1SIgw7NZul0oVuFCqgK21BE9PDjDotYmILBFH4omIyOCqGvtP4B+k3VDA6Qc0GD1bzaVdM3xJ/a7MrlH4n0b4YLiz1ODXJyKyNEziiYjI4Dxl9vdudB/tLB2nH9Bg9cyLT8vv2mrOUJStHfgqpxwAsGSqZWwrR0RkbEziiYjI4KaEuMNHbo/+ZsZK0FUmPiXE3ZBhmaz7mX5A1JeYEcMgtbFCuaIV16vuGOy6/8wuRUuHCqFezvz/TESkI0ziiYjI4KytJEiaHw4AvRL5np+T5odzAaxunH5Ag2Vva41pI7rWl0jLrzbINYUQSM7s2ht+ydQgSCT8/0xEpAtM4omIyCgSInywNTES3nLtknlvuT22JkZyobYf4PQD0oWeefGpBpoXn1lQhxtVd+Bga40nIv0Mck0ioqGAq9MTEZHRJET4YE64N7IK6lDV2ApPWVcJPUfgtfVMP6hUtPY5L16Cri8/WK5MdzMzzANvHQLOFNSjqa0TTlL9fgxM7t5WbuEkX7jY2+r1WkREQwlH4omIyKisrSSIGTkMCyb6IWbkMCbwfeD0A9KFkOFOCHB3QLtKjfSbtXq9VnVjGw5frgTQVUpPRES6wySeiIjIDHD6AQ2WRCLBzFBPAEDaNf3Oi997tgQdKoGJAa6I8JPr9VpEREMNy+mJiIjMBKcf0GDFhXpgZ0YRUq9VQQihl8XmVGqB3d0L2iVO4yg8EZGuMYknIiIyIz3TD4geRMzIYbCztkJJXQsKapowwsNZ59dIza9CWUML5A62+NkEVogQEekay+mJiIiIhggnqQ2iQ9wAAKl62mquZ0G7n0f5w97WWi/XICIaypjEExEREQ0hPfPiU/UwL76krllz3iUspSci0gsm8UTUL5VaIP1mLb7KKUP6zVqo1H1tbkVEROZkZljXfvGZt2rR2qHS6bl3ZxVDCGDGqOEIGe6k03MTEVEXzoknoj6l5FbgzYN5qFC0ao75yO2RND+cq2ATEZmxUZ7O8JXbo1zRivRbtZgV5qmT87Z1qrD3TAkAIHFaoE7OSUREvXEknoh6ScmtwMrkc1oJPABUKlqxMvkcUnIrjBQZERENlkQiQVx34p6mw3nxKbmVqG1qh5eLFI+O9dLZeYmISBuTeCLSolILvHkwD30Vzvcce/NgHkvriYjMWFxoV0m9LveL35XRta3cs9GBsLHmR0wiIn3hb1gi0pJVUNdrBP6HBIAKRSuyCuoMFxQREenU9FHDYGMlQUFNE4pqmwZ9vmu3G5FVWAdrKwkWT2EpPRGRPjGJJyItVY39J/AP0o6IiEyPzN4WUUFdW83pYjR+V/e2co+M8YS33H7Q5yMiov4xiSciLZ6ygX34Gmg7IiIyTTN1NC++qa0T/zxXBgBI5LZyRER6xySeiLRMCXGHj9wekn6el6BrlfopIe6GDIuIiHSsZ178dzcHt9XcgQvlaGzrRNAwR8wYNVxX4RERUT+YxBORFmsrCZLmhwNAr0S+5+ek+eGwtuovzSciInMw1kcGT5kULR0qnC2sf6BzCCGQ3F1Kv2RqIKz4t4GISO+YxBNRLwkRPtiaGNlrXqO33B5bEyO5TzwRkQWQSCSa0fjU/KoHOkdOSQMulythZ2OFn0cF6DI8IiLqh42xAyAi05QQ4YM54d7IKqhDVWMrPGVdJfQcgScishwzwzyxL7sUqdeq8fsHeH1y97ZyPxvvAzcnO90GR0REfWIST0T9sraSIGbkMGOHQUREejJj9HBYW0lwo+oOSuub4e/mOODXNjS349DFcgDAEi5oR0RkMCynJyIiIhqi5A62mBTgCuD+t5r7IrsUbZ1qjPVxQWSgq+6DIyKiPjGJJyIiIhrCZoZ1zYu/n63m1GqBXZldpfSJ0wIhkXCqFRGRoTCJJyIiIhrC4kK79os/faMG7Z3qAb3mu5u1KKhpgrPUBgsn+ukzPCIi+hEm8URERERD2DhfFwx3tkNTuwrZRQPbaq5nW7knJvnBScolloiIDIlJPBEREdEQZmUlQezo7q3mrt17q7lKRSuOXLkNAEjkgnZERAbHJJ6IiIhoiIu7j3nxe84UQ6UWiA52Q5i3TN+hERHRjzCJJyIiIhriHh7tAYkEuFrZiEpFa7/tOlVq7MkqAcBReCIiY2EST0RERDTEuTvZ4SF/VwDAibtsNXf0ahUqla0Y5mSHhAhvA0VHREQ/xCSeiIiIiDRbzd1tXnzPgnY/nxwAqY21QeIiIiJtTOKJiIiICHGhXUn8yes16FT13mqusKYJJ6/XQCIBnpsSaOjwiIioG5N4IiIiIsIEf1e4OdqisbUT50saej2/O6sYABA72gOBwxwNHB0REfVgEm+mVGqB9Ju1+CqnDOk3a6FSC2OHRERERGbM2kqCh3u2msvXLqlv7VBh31kuaEdEZAqMmsRv2rQJ0dHRkMlk8PT0xMKFC5Gfn695vq6uDv/xH/+BsLAwODg4IDAwEGvWrIFCobjreYUQ+OMf/wgfHx84ODjg0UcfxfXr1/V9OwaTkluBGZuPYfHfMvDqnhws/lsGZmw+hpTcCmOHRkRERGasZ1582o8Wt/v6UgXqmzvgK7fH7DGexgiNiIi6GTWJT0tLw6pVq5CRkYEjR46go6MDc+fORVNTEwCgvLwc5eXl2LJlC3Jzc7Fjxw6kpKRg+fLldz3ve++9h48++gj//d//jczMTDg5OSE+Ph6trf1vmWIuUnIrsDL5HCp+tP1LpaIVK5PPMZEnIiKiB9YzEp9bpkRV4/efNXoWtFs8JRDWVhKjxEZERF0kQgiTqcOurq6Gp6cn0tLSEBsb22ebffv2ITExEU1NTbCxsen1vBACvr6++PWvf43XXnsNAKBQKODl5YUdO3bg2WefvWccSqUScrkcCoUCLi4ug7spHVKpBWZsPtYrge8hAeAtt8epN2bzDywRERE9kPn/7xQulSnw/s8fwqIof+SVKzHvo5OwsZLgu/Wz4SmzN3aIREQWaaB5qEnNie8pk3d3d79rGxcXlz4TeAAoKChAZWUlHn30Uc0xuVyOqVOnIj09vc/XtLW1QalUaj1MUVZBXb8JPAAIABWKVmQV1BkuKCIiIrIoPavUp3aX1Cdndo3Cx4/zZgJPRGQCTCaJV6vVWLt2LaZPn46IiIg+29TU1ODtt9/GihUr+j1PZWUlAMDLy0vruJeXl+a5H9u0aRPkcrnmERAQ8IB3oV8/LGvTRTsiIiKiH+uZF3/yejUULR34v/NlAIAl07itHBGRKTCZJH7VqlXIzc3Fnj17+nxeqVTiscceQ3h4ODZs2KDTa69fvx4KhULzKCkp0en5dWWg337zW3IiIiJ6UBMDXOFib4OG5g68efAymttVGOnhhJgRw4wdGhERwUSS+NWrV+PQoUM4fvw4/P39ez3f2NiIhIQEyGQy7N+/H7a2tv2ey9vbGwBw+/ZtreO3b9/WPPdjUqkULi4uWg9TNCXEHT5ye/Q3210CwEdujykh/U9HICIiIrobG2srzQJ3/zzXPQo/NQgSCdfbISIyBUZN4oUQWL16Nfbv349jx44hJCSkVxulUom5c+fCzs4OBw4cgL393UeZQ0JC4O3tjaNHj2qdIzMzEzExMTq/B0OytpIgaX44APRK5Ht+TpofzkXtiIiIaFDiukvqAcDe1gqLonoPshARkXEYNYlftWoVkpOTsXv3bshkMlRWVqKyshItLS0Avk/gm5qasG3bNiiVSk0blUqlOc+YMWOwf/9+AIBEIsHatWvxzjvv4MCBA7h06RKef/55+Pr6YuHChca4TZ1KiPDB1sRIeMu1v8zwlttja2IkEiJ8jBQZERERWYqexe0A4PGHfCF36L8KkoiIDKvvJd4NZOvWrQCAmTNnah3fvn07li1bhnPnziEzMxMAMGrUKK02BQUFCA4OBgDk5+drVrYHgHXr1qGpqQkrVqxAQ0MDZsyYgZSUlHuO4puLhAgfzAn3RlZBHaoaW+Ep6yqh5wg8ERER6YKXiz2mhrjjfHEDlv4k2NjhEBHRD5jUPvGmwlT3iSciIiIylMbWDjQ0dyDA3dHYoRARDQkDzUONOhJPRERERKZJZm8LmT3L6ImITI1JrE5PRERERERERPfGJJ6IiIiIiIjITDCJJyIiIiIiIjITTOKJiIiIiIiIzASTeCIiIiIiIiIzwSSeiIiIiIiIyEwwiSciIiIiIiIyE0ziiYiIiIiIiMwEk3giIiIiIiIiM8EknoiIiIiIiMhMMIknIiIiIiIiMhNM4omIiIiIiIjMBJN4IiIiIiIiIjPBJJ6IiIiIiIjITNgYOwBTJIQAACiVSiNHQkRERERERENBT/7Zk4/2h0l8HxobGwEAAQEBRo6EiIiIiIiIhpLGxkbI5fJ+n5eIe6X5Q5BarUZ5eTlkMhkkEomxw+mXUqlEQEAASkpK4OLiYuxwyEKxn5EhsJ+RvrGPkSGwn5EhsJ9ZLiEEGhsb4evrCyur/me+cyS+D1ZWVvD39zd2GAPm4uLC/8Ckd+xnZAjsZ6Rv7GNkCOxnZAjsZ5bpbiPwPbiwHREREREREZGZYBJPREREREREZCaYxJsxqVSKpKQkSKVSY4dCFoz9jAyB/Yz0jX2MDIH9jAyB/Yy4sB0RERERERGRmeBIPBEREREREZGZYBJPREREREREZCaYxBMRERERERGZCSbxRERERERERGaCSbyRbdq0CdHR0ZDJZPD09MTChQuRn5+v1aa1tRWrVq3CsGHD4OzsjEWLFuH27dtabdasWYOoqChIpVJMnDixz2tdvHgRDz/8MOzt7REQEID33ntPX7dFJsRQfSw1NRULFiyAj48PnJycMHHiROzatUuft0YmxJC/y3rcuHEDMpkMrq6uOr4bMlWG7GdCCGzZsgWhoaGQSqXw8/PDxo0b9XVrZCIM2ccOHz6MadOmQSaTwcPDA4sWLUJhYaGe7oxMiS762YULF7B48WIEBATAwcEBY8eOxYcfftjrWqmpqYiMjIRUKsWoUaOwY8cOfd8eGQCTeCNLS0vDqlWrkJGRgSNHjqCjowNz585FU1OTps1//ud/4uDBg9i3bx/S0tJQXl6OJ598ste5XnzxRTzzzDN9XkepVGLu3LkICgpCdnY2/vSnP2HDhg343//9X73dG5kGQ/Wx7777DhMmTMCXX36Jixcv4oUXXsDzzz+PQ4cO6e3eyHQYqp/16OjowOLFi/Hwww/r/F7IdBmyn7366qv4+9//ji1btuDq1as4cOAApkyZopf7ItNhqD5WUFCABQsWYPbs2cjJycHhw4dRU1PT53nI8uiin2VnZ8PT0xPJycm4fPkyfve732H9+vX4y1/+omlTUFCAxx57DLNmzUJOTg7Wrl2LX/7ylzh8+LBB75f0QJBJqaqqEgBEWlqaEEKIhoYGYWtrK/bt26dpc+XKFQFApKen93p9UlKSeOihh3od/+tf/yrc3NxEW1ub5tgbb7whwsLCdH8TZNL01cf6Mm/ePPHCCy/oJG4yL/ruZ+vWrROJiYli+/btQi6X6zp8MhP66md5eXnCxsZGXL16VW+xk3nQVx/bt2+fsLGxESqVSnPswIEDQiKRiPb2dt3fCJm0wfazHq+88oqYNWuW5ud169aJcePGabV55plnRHx8vI7vgAyNI/EmRqFQAADc3d0BdH3L1tHRgUcffVTTZsyYMQgMDER6evqAz5ueno7Y2FjY2dlpjsXHxyM/Px/19fU6ip7Mgb76WH/X6rkODS367GfHjh3Dvn378PHHH+suYDJL+upnBw8exIgRI3Do0CGEhIQgODgYv/zlL1FXV6fbGyCTp68+FhUVBSsrK2zfvh0qlQoKhQI7d+7Eo48+CltbW93eBJk8XfWzH3/uSk9P1zoH0PX5f7Cf78j4mMSbELVajbVr12L69OmIiIgAAFRWVsLOzq7XnE8vLy9UVlYO+NyVlZXw8vLqdY6e52ho0Gcf+7G9e/fizJkzeOGFFwYTMpkhffaz2tpaLFu2DDt27ICLi4suwyYzo89+duvWLRQVFWHfvn349NNPsWPHDmRnZ+Opp57S5S2QidNnHwsJCcG3336L3/72t5BKpXB1dUVpaSn27t2ry1sgM6Crfvbdd9/h888/x4oVKzTH+vv8r1Qq0dLSotsbIYOyMXYA9L1Vq1YhNzcXp06dMnYoZKEM1ceOHz+OF154AX/7298wbtw4vV6LTI8++9lLL72E5557DrGxsTo/N5kXffYztVqNtrY2fPrppwgNDQUAbNu2DVFRUcjPz0dYWJjOr0mmR599rLKyEi+99BKWLl2KxYsXo7GxEX/84x/x1FNP4ciRI5BIJDq/JpkmXfSz3NxcLFiwAElJSZg7d64OoyNTxZF4E7F69WocOnQIx48fh7+/v+a4t7c32tvb0dDQoNX+9u3b8Pb2HvD5vb29e62c2vPz/ZyHzJe++1iPtLQ0zJ8/Hx988AGef/75wYZNZkbf/ezYsWPYsmULbGxsYGNjg+XLl0OhUMDGxgaffPKJrm6DTJy++5mPjw9sbGw0CTwAjB07FgBQXFw8uODJLOi7j3388ceQy+V47733MGnSJMTGxiI5ORlHjx5FZmamrm6DTJwu+lleXh4eeeQRrFixAr///e+1nuvv87+LiwscHBx0ezNkUEzijUwIgdWrV2P//v04duwYQkJCtJ6PioqCra0tjh49qjmWn5+P4uJixMTEDPg6MTExOHHiBDo6OjTHjhw5grCwMLi5uQ3+RshkGaqPAV3bmDz22GPYvHmzVjkXWT5D9bP09HTk5ORoHm+99RZkMhlycnLwxBNP6Ox+yDQZqp9Nnz4dnZ2duHnzpubYtWvXAABBQUGDvAsyZYbqY83NzbCy0v4Ybm1tDaCrEoQsm6762eXLlzFr1iwsXbq0zy0wY2JitM4BdH3+v9/Pd2SCjLmqHgmxcuVKIZfLRWpqqqioqNA8mpubNW1efvllERgYKI4dOybOnj0rYmJiRExMjNZ5rl+/Ls6fPy9+9atfidDQUHH+/Hlx/vx5zWr0DQ0NwsvLS/ziF78Qubm5Ys+ePcLR0VH8z//8j0HvlwzPUH3s2LFjwtHRUaxfv17rOrW1tQa9XzIOQ/WzH+Pq9EOLofqZSqUSkZGRIjY2Vpw7d06cPXtWTJ06VcyZM8eg90uGZ6g+dvToUSGRSMSbb74prl27JrKzs0V8fLwICgrSuhZZJl30s0uXLgkPDw+RmJiodY6qqipNm1u3bglHR0fx+uuviytXroiPP/5YWFtbi5SUFIPeL+kek3gjA9DnY/v27Zo2LS0t4pVXXhFubm7C0dFRPPHEE6KiokLrPHFxcX2ep6CgQNPmwoULYsaMGUIqlQo/Pz/x7rvvGuguyZgM1ceWLl3a5/NxcXGGu1kyGkP+LvshJvFDiyH7WVlZmXjyySeFs7Oz8PLyEsuWLeOXkkOAIfvYZ599JiZNmiScnJyEh4eHePzxx8WVK1cMdKdkTLroZ0lJSX2eIygoSOtax48fFxMnThR2dnZixIgRWtcg8yURQohBDOQTERERERERkYFwTjwRERERERGRmWAST0RERERERGQmmMQTERERERERmQkm8URERERERERmgkk8ERERERERkZlgEk9ERERERERkJpjEExEREREREZkJJvFEREREREREZoJJPBERkQmrra2Fp6cnCgsLDXrdHTt2wNXVVS/nTklJwcSJE6FWq/VyfiIiIkvGJJ6IiMiEbdy4EQsWLEBwcHCv5+Lj42FtbY0zZ84YPrBBSEhIgK2tLXbt2tVvm+XLl2P8+PFob2/XOv7111/Dzs4O586d03eYREREJolJPBERkYlqbm7Gtm3bsHz58l7PFRcX47vvvsPq1avxySefGCG6B9PR0QEAWLZsGT766KN+233wwQdobGxEUlKS5lhDQwNeeukl/OEPf0BkZKTeYiMiIjJlTOKJiIhM1Ndffw2pVIpp06b1em779u342c9+hpUrV+Kzzz5DS0uL1vMzZ87EmjVrsG7dOri7u8Pb2xsbNmzQatPQ0IBf/epX8PLygr29PSIiInDo0CGtNocPH8bYsWPh7OyMhIQEVFRUaJ5Tq9V466234O/vD6lUiokTJyIlJUXzfGFhISQSCT7//HPExcXB3t5eM/o+f/58nD17Fjdv3uzz3l1cXLB9+3a8//77yMzMBACsXbsWfn5+WL9+PUpKSvD000/D1dUV7u7uWLBggdaUgzNnzmDOnDkYPnw45HI54uLieo3eSyQSbN26FY8//jicnJywcePGfv4liIiITAeTeCIiIhN18uRJREVF9TouhMD27duRmJiIMWPGYNSoUfjiiy96tfvHP/4BJycnZGZm4r333sNbb72FI0eOAOhKwH/605/i9OnTSE5ORl5eHt59911YW1trXt/c3IwtW7Zg586dOHHiBIqLi/Haa69pnv/www/x/vvvY8uWLbh48SLi4+Px+OOP4/r161px/OY3v8Grr76KK1euID4+HgAQGBgILy8vnDx5st/7nzVrFl555RUsXboU+/btw969e/Hpp59CCIH4+HjIZDKcPHkSp0+f1nzJ0FN+39jYiKVLl+LUqVPIyMjA6NGjMW/ePDQ2NmpdY8OGDXjiiSdw6dIlvPjii/f6JyEiIjI+QURERCZpwYIF4sUXX+x1/NtvvxUeHh6io6NDCCHEBx98IOLi4rTaxMXFiRkzZmgdi46OFm+88YYQQojDhw8LKysrkZ+f3+e1t2/fLgCIGzduaI59/PHHwsvLS/Ozr6+v2LhxY69rvPLKK0IIIQoKCgQA8ec//7nPa0yaNEls2LChz+d6NDc3i7CwMGFlZSU++OADIYQQO3fuFGFhYUKtVmvatbW1CQcHB3H48OE+z6NSqYRMJhMHDx7UHAMg1q5de9frExERmRqOxBMREZmolpYW2Nvb9zr+ySef4JlnnoGNjQ0AYPHixTh9+nSv0vQJEyZo/ezj44OqqioAQE5ODvz9/REaGtrv9R0dHTFy5Mg+X69UKlFeXo7p06drvWb69Om4cuWK1rHJkyf3eX4HBwc0Nzf3e/2eNq+99hocHR3x6quvAgAuXLiAGzduQCaTwdnZGc7OznB3d0dra6vmPbh9+zZeeukljB49GnK5HC4uLrhz5w6Ki4sHFBsREZGpsjF2AERERNS34cOHo76+XutYXV0d9u/fj46ODmzdulVzXKVS4ZNPPtGa121ra6v1WolEotnWzcHB4Z7X7+v1Qoj7vg8nJ6c+j9fV1cHDw+Oer7exsYG1tTUkEgkA4M6dO4iKiupzdfue8y1duhS1tbX48MMPERQUBKlUipiYmF6r3fcXGxERkaniSDwREZGJmjRpEvLy8rSO7dq1C/7+/rhw4QJycnI0j/fffx87duyASqUa0LknTJiA0tJSXLt27YFic3Fxga+vL06fPq11/PTp0wgPD7/n63tGzSdNmnTf146MjMT169fh6emJUaNGaT3kcrkmjjVr1mDevHkYN24cpFIpampq7vtaREREpoZJPBERkYmKj4/H5cuXtUbjt23bhqeeegoRERFaj+XLl6OmpkZrdfi7iYuLQ2xsLBYtWoQjR46goKAA33zzzYBfDwCvv/46Nm/ejM8//xz5+fn4zW9+g5ycHE3Z+91kZGRoRsfv15IlSzB8+HAsWLAAJ0+eREFBAVJTU7FmzRqUlpYCAEaPHo2dO3fiypUryMzMxJIlSwZUfUBERGTqmMQTERGZqPHjxyMyMhJ79+4FAGRnZ+PChQtYtGhRr7ZyuRyPPPIItm3bNuDzf/nll4iOjsbixYsRHh6OdevWDXgkHwDWrFmD//qv/8Kvf/1rjB8/HikpKThw4ABGjx59z9d+9tlnWLJkCRwdHQd8vR6Ojo44ceIEAgMD8eSTT2Ls2LFYvnw5Wltb4eLiAqDry476+npERkbiF7/4BdasWQNPT8/7vhYREZGpkYgHmdxGREREBvGvf/0Lr7/+OnJzc2FlZRnfvdfU1CAsLAxnz55FSEiIscMhIiIyK1zYjoiIyIQ99thjuH79OsrKyhAQEGDscHSisLAQf/3rX5nAExERPQCOxBMRERERERGZCcuoyyMiIiIiIiIaApjEExEREREREZkJJvFEREREREREZoJJPBEREREREZGZYBJPREREREREZCaYxBMRERERERGZCSbxRERERERERGaCSTwRERERERGRmWAST0RERERERGQm/j89DQWJOmGq7QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", + "\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", + "plt.legend()\n", + "plt.show()" + ] + } ], - "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", - "\n", - "\n", - "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", - "ground_truth = target_series_sel[:,-1][-test_samples:]\n", - "\n", - "fig, ax = plt.subplots(figsize=(12, 5))\n", - "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", - "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", - "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", - " label=\"Climatology\", c=\"black\")\n", - "plt.xlabel(\"(Anchor) Year\")\n", - "plt.ylabel(\"Temperature [degree C]\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "s2spy", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 + "metadata": { + "kernelspec": { + "display_name": "s2spy", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index a8723fe..850d40c 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -42,9 +42,20 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 99, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", @@ -64,7 +75,10 @@ "\n", "sys.path.append(\"../src/\")\n", "from autoencoder import Transformer\n", - "import utils" + "import utils\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)" ] }, { @@ -77,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -92,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -116,7 +130,7 @@ ")" ] }, - "execution_count": 3, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -137,9 +151,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 102, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# URL of the dataset from zenodo\n", "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", @@ -153,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -166,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 104, "metadata": {}, "outputs": [], "source": [ @@ -186,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -218,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -338,7 +364,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -357,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -379,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -400,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -418,7 +444,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -428,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -439,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -459,7 +485,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -490,7 +516,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -522,18 +548,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 115, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - } - ], + "outputs": [], "source": [ "hyperparameters = dict(\n", " epoch = 150,\n", @@ -564,7 +581,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ @@ -589,7 +606,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -655,7 +672,7 @@ "[]" ] }, - "execution_count": 18, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -680,7 +697,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -708,764 +725,764 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 119, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 524.326477\n", - "Epoch : 0 [8/36(22%)]\tLoss: 371.382507\n", - "Epoch : 0 [16/36(44%)]\tLoss: 315.766724\n", - "Epoch : 0 [24/36(67%)]\tLoss: 270.695923\n", - "Epoch : 0 [32/36(89%)]\tLoss: 216.691101\n", - "Epoch : 1 [0/36(0%)]\tLoss: 179.566986\n", - "Epoch : 1 [8/36(22%)]\tLoss: 150.439789\n", - "Epoch : 1 [16/36(44%)]\tLoss: 116.863503\n", - "Epoch : 1 [24/36(67%)]\tLoss: 82.824799\n", - "Epoch : 1 [32/36(89%)]\tLoss: 51.089516\n", - "Epoch : 2 [0/36(0%)]\tLoss: 31.711128\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.559822\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.058861\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.333483\n", - "Epoch : 2 [32/36(89%)]\tLoss: 2.181011\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.561988\n", - "Epoch : 3 [8/36(22%)]\tLoss: 5.278272\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.860563\n", - "Epoch : 3 [24/36(67%)]\tLoss: 7.766555\n", - "Epoch : 3 [32/36(89%)]\tLoss: 6.497755\n", - "Epoch : 4 [0/36(0%)]\tLoss: 4.723859\n", - "Epoch : 4 [8/36(22%)]\tLoss: 0.393862\n", - "Epoch : 4 [16/36(44%)]\tLoss: 3.175358\n", - "Epoch : 4 [24/36(67%)]\tLoss: 3.867015\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.275721\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.345355\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.374889\n", - "Epoch : 5 [16/36(44%)]\tLoss: 0.888120\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.043136\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.143194\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.221046\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.454091\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.800057\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.158665\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.693906\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.182917\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.463759\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.079689\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.256180\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.555708\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.575083\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.386536\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.881012\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.225078\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.687436\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.429125\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.291156\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.942206\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.358737\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.706933\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.351688\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.305467\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.742818\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.191872\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.879508\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.502568\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.489872\n", - "Epoch : 11 [16/36(44%)]\tLoss: 1.069836\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.209656\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.677031\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.374723\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.355021\n", - "Epoch : 12 [16/36(44%)]\tLoss: 1.044267\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.318999\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.522490\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.559864\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.489411\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.881514\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.972239\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.909005\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.515597\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.467815\n", - "Epoch : 14 [16/36(44%)]\tLoss: 1.057824\n", - "Epoch : 14 [24/36(67%)]\tLoss: 0.947948\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.910012\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.539304\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.392797\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.715415\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.913301\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.710073\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.349097\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.407573\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.951775\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.189612\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.350954\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.569740\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.261463\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.817718\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.946522\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.356411\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.496328\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.312134\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.845777\n", - "Epoch : 18 [24/36(67%)]\tLoss: 1.019789\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.416034\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.495404\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.458170\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.882112\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.767290\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.491332\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.498714\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.431194\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.694577\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.800438\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.578545\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.363191\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.263194\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.755978\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.647989\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.634670\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.538470\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.279066\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.760361\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.826247\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.471961\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.483527\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.287363\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.519297\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.587192\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.337225\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.360090\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.195570\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.583489\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.398668\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.059787\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.459874\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.295724\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.449113\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.624343\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.306204\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.387462\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.331933\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.359973\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.576746\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.178451\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.435474\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.340943\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.338912\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.745181\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.070688\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.415961\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.202071\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.440159\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.677778\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.069517\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.490651\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.250455\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.385005\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.474219\n", - "Epoch : 29 [32/36(89%)]\tLoss: 1.137795\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.358495\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.369561\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.300357\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.389089\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.915913\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.346958\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.172788\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.270902\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.295588\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.050273\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.352295\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.148022\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.372732\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.304725\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.961665\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.383648\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.249750\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.192248\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.170419\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.065073\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.303935\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.221045\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.173272\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.180757\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.788485\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.345255\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.120459\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.151939\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.196661\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.857989\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.326427\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.191752\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.091515\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.125371\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.592518\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.216593\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.134148\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.056354\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.140519\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.667542\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.333257\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.163707\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.087176\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.222434\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.586622\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.293523\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.142140\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.063725\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.113673\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.546012\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.408706\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.071506\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.117702\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.084201\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.340423\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.318312\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.103089\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.044421\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.025576\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.347920\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.312008\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.074765\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.045046\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.011639\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.197209\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.219735\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.099923\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.016758\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.014082\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.154061\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.225181\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.020591\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.029895\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.043782\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.144689\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.224344\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.013673\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.011321\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.075373\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.141867\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.348977\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.047664\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.199012\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.084523\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.383288\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.587677\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.354708\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.139794\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.211437\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.155387\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.877711\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.136101\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.254583\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.331333\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.136493\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.289635\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.845425\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.555160\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.527661\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.999025\n", - "Epoch : 50 [0/36(0%)]\tLoss: 1.145068\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.078307\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.308340\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.863483\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.161277\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.407367\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.775764\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.967734\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.190831\n", - "Epoch : 51 [32/36(89%)]\tLoss: 1.079908\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.354461\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.265541\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.147622\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.335364\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.569995\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.420724\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.139302\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.177874\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.085076\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.446847\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.150584\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.260496\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.209668\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.057918\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.314130\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.110397\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.079545\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.159039\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.210405\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.087204\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.058906\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.164835\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.334986\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.261066\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.349362\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.281939\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.134200\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.343780\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.078625\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.126949\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.240828\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.372774\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.226227\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.073514\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.464930\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.309932\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.066591\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.151810\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.452231\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.036823\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.155148\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.334693\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.455972\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.156780\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.468499\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.378736\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.092855\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.239026\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.078477\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.053634\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.191101\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.222670\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.358116\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.021881\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.166021\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.244493\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.021584\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.078309\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.197436\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.082201\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.060094\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.218050\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.170763\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.124466\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.348326\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.234977\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.039581\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.125979\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.049079\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.050672\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.062419\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.178573\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.131766\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.071302\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.086215\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.009081\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.023244\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.067403\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.089661\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.015605\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.016397\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.101832\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.104246\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.063155\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.183317\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.117787\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.063729\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.088742\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.024808\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.051085\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.147401\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.175683\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.049259\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.077450\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.080968\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.031363\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.122235\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.115629\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.036007\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.045760\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.021832\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.068118\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.018989\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.176813\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.097616\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.088861\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.256584\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.079277\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.029307\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.148002\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.107191\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.046051\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.068570\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.085887\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.014148\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.058778\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.220474\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.065582\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.103724\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.135619\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.035298\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.048566\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.129805\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.148329\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.001306\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.073959\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.131402\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.022376\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.241339\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.075617\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.091641\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.182181\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.113770\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.043986\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.146622\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.087131\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.039322\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.033154\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.061522\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.021905\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.026998\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.073372\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.108072\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.015310\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.092633\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.074093\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.054273\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.065731\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.157492\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.037284\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.033941\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.330518\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.061461\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.140017\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.205240\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.203052\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.005322\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.159586\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.092201\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.016941\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.048019\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.264129\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.113319\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.113604\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.110187\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.037512\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.067547\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.073128\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.198720\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.012687\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.024320\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.100665\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.048769\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.139711\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.044141\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.093173\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.038136\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.047913\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.011046\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.019020\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.022404\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.041895\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.086317\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.058155\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.035273\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.135314\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.056430\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.095994\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.060037\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.019584\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.017094\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.179255\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.012916\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.131478\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.213498\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.151011\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.120571\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.164293\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.007926\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.047734\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.146612\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.093151\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.065711\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.195272\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.103127\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.012437\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.110291\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.079682\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.007246\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.074296\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.040351\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.021653\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.006539\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.138862\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.033851\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.013645\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.104239\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.025311\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.054897\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.109692\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.044251\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.034729\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.059965\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.023876\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.031909\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.017079\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.104885\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.045216\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.044931\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.054343\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.016473\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.043028\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.028076\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.009982\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.010538\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.014052\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.062924\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.009834\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.030641\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.037158\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.048420\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.015062\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.021791\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.006104\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.005083\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.004402\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.024660\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.038100\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.023951\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.006166\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.028248\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.018262\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.020046\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.026970\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.009495\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.014283\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.019441\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.037536\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.001983\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.077717\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.058776\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.013648\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.025510\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.062689\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.008509\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.021876\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.031333\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.063796\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.077745\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.009648\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.047215\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.010794\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.010392\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.016662\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.032713\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.006271\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.023320\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.017300\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.077783\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.035734\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.014145\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.014016\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.024295\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.020264\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.007666\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.024959\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.004234\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.048842\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.034391\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.010609\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.023232\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.008517\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.038574\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.049726\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.011260\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.027826\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.033753\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.008553\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.009305\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.025753\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.006973\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.011416\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.021358\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.074236\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.009705\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.008034\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.112903\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.019369\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.017127\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.032710\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.010856\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.018642\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.019088\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.009388\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.013069\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.018264\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.020415\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.007804\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.043133\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.014752\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.013068\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.043227\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.005771\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.013901\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.003654\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.009065\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.029015\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.003687\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.046809\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.029749\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.008820\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.016063\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.076672\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.007315\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.011229\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.083808\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.022574\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.016726\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.163346\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.007365\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.015743\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.173420\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.033796\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.018463\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.079842\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.039676\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.013115\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.053365\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.060522\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.027007\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.002497\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.171167\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.029926\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.151813\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.167455\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.006707\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.164081\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.070240\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.035461\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.078243\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.127399\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.092669\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.055332\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.432029\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.048043\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.057094\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.331234\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.196889\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.098130\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.401387\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.145860\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.069388\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.163440\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.180441\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.002547\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.057106\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.405939\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.050907\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.373064\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.288275\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.140055\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.174732\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.284289\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.019927\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.198493\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.163754\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.055789\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.074748\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.474000\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.049824\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.040095\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.248741\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.102784\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.176323\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.160664\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.078709\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.030296\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.155508\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.093559\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.018098\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.056132\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.122698\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.024745\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.139497\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.121113\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.031250\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.068090\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.055066\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.032765\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.077844\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.132753\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.021366\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.039290\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.143978\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.037764\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.037960\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.142017\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.038534\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.075301\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.035813\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.057779\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.038561\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.039250\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.053544\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.015362\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.015864\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.074828\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.038479\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.030156\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.111784\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.040800\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.039824\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.022082\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.006779\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.025181\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.020871\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.044529\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.059843\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.051373\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.027145\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.014940\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.035605\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.074614\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.010390\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.007896\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.010359\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.040596\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.024526\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.053626\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.024234\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.005140\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.045519\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.019800\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.018947\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.028654\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.054078\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.011650\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.016458\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.055300\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.022035\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.011461\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.040171\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.016252\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.030379\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.013614\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.010249\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.011121\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.004026\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.036981\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.003381\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.002212\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.043327\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.001301\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.028425\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.052544\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.021578\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.004602\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.002242\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.013263\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.022423\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.032915\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.013582\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.023156\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.008939\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.013119\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.021824\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.023352\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.027081\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.007634\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.011839\n", - "--- 0.04391600290934245 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 498.465942\n", + "Epoch : 0 [8/36(22%)]\tLoss: 396.591125\n", + "Epoch : 0 [16/36(44%)]\tLoss: 342.367188\n", + "Epoch : 0 [24/36(67%)]\tLoss: 292.723633\n", + "Epoch : 0 [32/36(89%)]\tLoss: 240.742172\n", + "Epoch : 1 [0/36(0%)]\tLoss: 200.513672\n", + "Epoch : 1 [8/36(22%)]\tLoss: 171.574829\n", + "Epoch : 1 [16/36(44%)]\tLoss: 136.309921\n", + "Epoch : 1 [24/36(67%)]\tLoss: 99.565331\n", + "Epoch : 1 [32/36(89%)]\tLoss: 64.782127\n", + "Epoch : 2 [0/36(0%)]\tLoss: 42.542572\n", + "Epoch : 2 [8/36(22%)]\tLoss: 27.024628\n", + "Epoch : 2 [16/36(44%)]\tLoss: 14.084803\n", + "Epoch : 2 [24/36(67%)]\tLoss: 4.608022\n", + "Epoch : 2 [32/36(89%)]\tLoss: 1.703398\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.771523\n", + "Epoch : 3 [8/36(22%)]\tLoss: 3.976899\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.606761\n", + "Epoch : 3 [24/36(67%)]\tLoss: 9.038103\n", + "Epoch : 3 [32/36(89%)]\tLoss: 10.554676\n", + "Epoch : 4 [0/36(0%)]\tLoss: 11.127979\n", + "Epoch : 4 [8/36(22%)]\tLoss: 4.584048\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.072801\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.202619\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.454965\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.871697\n", + "Epoch : 5 [8/36(22%)]\tLoss: 2.885219\n", + "Epoch : 5 [16/36(44%)]\tLoss: 3.538662\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.196210\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.855278\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.474646\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.709006\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.125959\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.411158\n", + "Epoch : 6 [32/36(89%)]\tLoss: 2.225983\n", + "Epoch : 7 [0/36(0%)]\tLoss: 1.248317\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.391478\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.996695\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.532873\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.895214\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.223050\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.586095\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.131278\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.047360\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.769035\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.463254\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.448671\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.848117\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.168776\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.882771\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.463574\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.349940\n", + "Epoch : 10 [16/36(44%)]\tLoss: 1.094482\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.347443\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.678146\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.278244\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.430040\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.834275\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.110529\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.758548\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.666826\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.511530\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.876517\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.269902\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.495202\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.321890\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.365229\n", + "Epoch : 13 [16/36(44%)]\tLoss: 1.030877\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.120981\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.666209\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.506027\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.411680\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.934161\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.931598\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.559381\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.462070\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.218398\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.951118\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.225085\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.762151\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.493757\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.347340\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.859490\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.129076\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.534853\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.319218\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.393084\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.762041\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.998985\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.791939\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.337561\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.401867\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.679504\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.926042\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.649994\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.420557\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.439425\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.838788\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.939638\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.620312\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.484760\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.253122\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.675508\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.839949\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.739386\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.316432\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.199918\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.454996\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.757614\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.576970\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.331070\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.169740\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.482030\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.547438\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.167602\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.206746\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.259180\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.389581\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.430423\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.098307\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.164005\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.327840\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.253118\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.328490\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.765978\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.147702\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.467551\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.215626\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.405444\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.088265\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.229313\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.292561\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.284516\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.422559\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.848718\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.108235\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.225959\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.158690\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.347318\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.747895\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.104262\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.086381\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.204398\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.213052\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.744899\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.062580\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.013871\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.150691\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.114291\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.404894\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.065304\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.069535\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.141703\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.188128\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.463515\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.037126\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.055910\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.155965\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.071759\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.396185\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.041042\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.059201\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.111584\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.120064\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.373817\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.009088\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.042156\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.072548\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.072916\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.102719\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.033844\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.026913\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.099951\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.069801\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.166564\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.038485\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.017442\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.036168\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.035265\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.165607\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.007053\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.067841\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.221159\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.048890\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.149592\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.031605\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.059947\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.126093\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.171457\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.047286\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.057825\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.044621\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.317380\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.032038\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.130548\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.036164\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.029053\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.175825\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.012318\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.298550\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.115395\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.072737\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.157977\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.266155\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.105890\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.101254\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.069831\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.136563\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.091814\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.289170\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.076170\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.027150\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.094307\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.216206\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.107411\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.026411\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.089602\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.070877\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.089721\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.026658\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.078175\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.055470\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.281724\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.108501\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.048622\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.052299\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.006211\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.081729\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.179483\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.091907\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.022553\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.132015\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.194891\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.031771\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.125103\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.184654\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.025901\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.051296\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.087738\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.053716\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.041074\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.045978\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.271925\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.088732\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.134611\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.087949\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.022975\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.083305\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.114814\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.061549\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.030172\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.135649\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.195419\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.058638\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.188626\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.289974\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.055023\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.044802\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.224354\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.167561\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.025721\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.070347\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.133864\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.027991\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.114634\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.053178\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.061965\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.017643\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.048995\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.110756\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.040940\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.045881\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.097332\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.038228\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.007046\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.086137\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.070097\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.010695\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.095522\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.075421\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.052085\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.065717\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.082152\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.018721\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.018400\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.049522\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.016776\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.031486\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.027662\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.042384\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.042221\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.017778\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.069183\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.053108\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.012433\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.057023\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.037573\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.042147\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.042609\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.072206\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.061381\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.011509\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.072146\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.003073\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.015526\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.010017\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.075825\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.052086\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.030191\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.025197\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.040883\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.004280\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.018754\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.006329\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.035650\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.044605\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.027110\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.004116\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.017941\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.021035\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.053046\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.039625\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.017799\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.030920\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.023225\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.058187\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.031869\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.022329\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.009843\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.014379\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.008207\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.095971\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.026601\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.054091\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.008720\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.012156\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.021286\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.026616\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.010510\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.006848\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.034059\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.002644\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.013511\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.023949\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.010329\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.008967\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.006437\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.012253\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.014939\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.023222\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.030088\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.028112\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.034380\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.012746\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.050581\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.014405\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.016338\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.005654\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.006169\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.049619\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.005909\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.013595\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.018520\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.009003\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.006375\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.020438\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.018165\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.024184\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.016328\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.003064\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.010983\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.034650\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.007742\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.009576\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.061754\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.064914\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.021992\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.031733\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.020834\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.026222\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.050471\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.023255\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.017060\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.034878\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.064182\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.031848\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.030227\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.089845\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.018304\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.039431\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.045399\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.004456\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.007254\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.048386\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.010565\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.014958\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.094453\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.005889\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.021258\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.054840\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.056275\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.017234\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.051948\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.061923\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.028589\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.074236\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.126720\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.033792\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.080789\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.129728\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.010782\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.020901\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.171721\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.050375\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.148151\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.069507\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.054044\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.113737\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.191077\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.046529\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.010907\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.178664\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.140063\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.020853\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.080153\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.053588\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.021130\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.026665\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.089935\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.009724\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.054783\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.062000\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.049274\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.072003\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.056384\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.018033\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.034764\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.050641\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.032271\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.071423\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.077045\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.005553\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.024617\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.204803\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.030263\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.040154\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.099791\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.029133\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.016286\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.166929\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.088182\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.047976\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.055756\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.047950\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.031022\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.066972\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.070877\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.073479\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.148307\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.155081\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.066756\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.085689\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.187199\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.031053\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.090385\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.198091\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.052522\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.025253\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.289778\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.127757\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.050005\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.288369\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.232602\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.018226\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.241231\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.283641\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.027505\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.100916\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.185150\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.076808\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.011132\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.202945\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.197144\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.051944\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.222508\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.259178\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.053769\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.229076\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.108656\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.120962\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.006037\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.234002\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.237718\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.041133\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.124790\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.511420\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.033493\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.124959\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.175142\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.037616\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.053390\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.172249\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.231145\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.130431\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.228968\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.227438\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.115614\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.226967\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.057544\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.055181\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.090819\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.049605\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.073145\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.030798\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.088554\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.083407\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.007137\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.253704\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.148343\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.034150\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.116590\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.145375\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.024420\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.209265\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.360293\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.058020\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.188751\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.316962\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.089220\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.078423\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.192076\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.345154\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.254030\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.676103\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.171828\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.040675\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.421917\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.044996\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.418566\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.965645\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.143208\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.359013\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.063624\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.524550\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.219951\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.170740\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.267654\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.518493\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.014536\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.167054\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.153607\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.053445\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.304338\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.574945\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.176445\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.084453\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.046030\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.206315\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.055557\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.066555\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.085624\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.128727\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.036197\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.078925\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.055318\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.079125\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.039115\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.016887\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.215468\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.015628\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.072089\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.034152\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.166113\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.029084\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.051001\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.134022\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.074209\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.116683\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.155051\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.111560\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.059707\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.352683\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.187180\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.100144\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.332521\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.203934\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.010037\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.131537\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.229531\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.012884\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.062966\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.248968\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.193995\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.050740\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.332583\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.098094\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.029512\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.298129\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.101798\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.040026\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.090045\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.160848\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.048863\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.198334\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.198368\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.155471\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.114694\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.513598\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.123758\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.072116\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.189216\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.070787\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.182104\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.075330\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.020740\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.018320\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.057574\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.230162\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.027181\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.170325\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.071373\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.039867\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.148021\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.058429\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.064890\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.060083\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.078922\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.033592\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.136540\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.046919\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.154215\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.027824\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.058273\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.138773\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.001192\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.035190\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.096801\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.117461\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.025115\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.096758\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.105773\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.020279\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.070434\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.104038\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.020863\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.091947\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.044923\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.038661\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.051862\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.073353\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.100629\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.013606\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.098244\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.024387\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.027153\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.111275\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.125642\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.006807\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.061652\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.024928\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.035391\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.039955\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.005344\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.037422\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.044620\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.072225\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.007113\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.004914\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.081317\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.056659\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.100679\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.009015\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.006333\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.049024\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.029390\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.070769\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.017542\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.010062\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.029891\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.014959\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.046186\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.008259\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.011713\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.109458\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.021408\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.051914\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.048931\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.006168\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.096591\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.004635\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.081627\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.056935\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.012284\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.022663\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.042094\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.130895\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.012255\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.034246\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.070623\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.003458\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.097751\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.089657\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.032072\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.058146\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.116066\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.039885\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.054360\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.014351\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.038088\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.010929\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.039814\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.005909\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.018548\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.031954\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.008730\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.025960\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.025219\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.003331\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.022451\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.004331\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.066973\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.019133\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.009011\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.010337\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.069278\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.031961\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.025324\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.025091\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.059933\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.032740\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.015920\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.011236\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.036356\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.021760\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.008992\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.070552\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.017617\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.002389\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.035667\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.029870\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.047817\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.058648\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.008709\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.005495\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.048692\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.125410\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.029666\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.015359\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.021925\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.034226\n", + "--- 0.04978280067443848 minutes ---\n" ] } ], @@ -1529,12 +1546,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrTUlEQVR4nOzdd3hTZRsG8Dvdu0CBtqyyZZcpAjIEGSIC8qHsoagooOBCAZkyXAgiAooIKENUQHGDMhwIsveUAmWUMkpL6aLN+/3x9OQkXTRt0rTp/buuXCc5SU/epoHkPs87DEopBSIiIiIiIiIqcC6ObgARERERERFRccVQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTkREREREROQgDOVEREREREREDsJQTlSMLFu2DAaDAQaDAVu3bs10v1IK1atXh8FgQLt27Uz7r1+/jnHjxqFOnTrw9fVFYGAgatWqhUGDBuHgwYNZHj+rS1bPSURE5EjaZ9fu3bsd3RSrDR06FJUrV7bYN3PmTHz77beZHluQv+eUKVNgMBhscqy8fncB+P2Fig43RzeAiAqev78/lixZkunDa9u2bfjvv//g7+9v2hcfH4/77rsP8fHxePXVVxEeHo7ExEScPHkS69atw/79+9GgQQOL4yxduhS1atXK9Lx16tSxy+9DRERUHE2cOBGjR4+22Ddz5kz07t0bPXv2dEyjADz11FPo0qWLTY9pzXcXgN9fqGhhKCcqhvr06YOVK1fio48+QkBAgGn/kiVL0KJFC8TFxZn2ff311zh9+jQ2b96MBx54wOI4L730EoxGY6bj16tXD02bNrXfL0BERFSMJSQkwMfHB9WqVXN0U7JUoUIFVKhQwabHtOa7C8DvL1S0sPs6UTHUr18/AMDq1atN+2JjY7F27Vo8+eSTFo+9fv06ACA0NDTLY7m48L8RIiJyfn/99Rc6dOgAf39/+Pj4oGXLlvjxxx+zfFyLFi3g5eWF8uXLY+LEifj0009hMBhw9uxZ0+PWrFmDTp06ITQ0FN7e3qhduzZef/113L592+J4Q4cOhZ+fHw4dOoROnTrB398fHTp0MN1n3n3dYDDg9u3bWL58uanrdcbK8q1bt/Dcc8+hdOnSCAoKQq9evXDp0iWLx1SuXBndunXDDz/8gEaNGpna98MPPwCQ7t61a9eGr68v7r333kxd4rPrvr5q1Sq0aNECfn5+8PPzQ8OGDbFkyZK7vvaAdd9dAH5/oaKF70aiYiggIAC9e/fGZ599Ztq3evVquLi4oE+fPhaPbdGiBQBg8ODB+Pbbb00fcjlJS0tDamqqxSUtLc22vwQREVEB2bZtG9q3b4/Y2FgsWbIEq1evhr+/Px555BGsWbPG9LiDBw+iY8eOSEhIwPLly7Fo0SLs3bsXM2bMyHTMU6dOoWvXrliyZAl++eUXjBkzBl999RUeeeSRTI9NSUlB9+7d0b59e3z33XeYOnVqlu38559/4O3tja5du+Kff/7BP//8gwULFlg85qmnnoK7uztWrVqFd955B1u3bsXAgQMzHevAgQMYN24cXnvtNaxbtw6BgYHo1asXJk+ejE8//RQzZ87EypUrERsbi27duiExMTHH13DSpEkYMGAAypUrh2XLlmH9+vUYMmQIzp07l+PPaaz57gLw+wsVMYqIio2lS5cqAGrXrl1qy5YtCoA6fPiwUkqpZs2aqaFDhyqllKpbt65q27at6eemTZumPDw8FAAFQFWpUkU9++yz6sCBA1keP6uLq6trgf2eREREuWX+2Zid++67T5UtW1bdunXLtC81NVXVq1dPVahQQRmNRqWUUo899pjy9fVVV69eNT0uLS1N1alTRwFQERERWR7faDSqO3fuqG3btikAFp+vQ4YMUQDUZ599lunnhgwZosLCwiz2+fr6qiFDhmT7e44YMcJi/zvvvKMAqMuXL5v2hYWFKW9vb3XhwgXTvv379ysAKjQ0VN2+fdu0/9tvv1UA1IYNG0z7Jk+erMxjxpkzZ5Srq6saMGBAlr9/TvL63UUpfn+hooOVcqJiqm3btqhWrRo+++wzHDp0CLt27cqy+xcgE8mcP38en332GYYPHw4/Pz8sWrQITZo0sehGpvn888+xa9cui8vOnTvt/SsRERHZ3O3bt7Fz50707t0bfn5+pv2urq4YNGgQLly4gBMnTgDQK+qlS5c2Pc7FxQWPP/54puOeOXMG/fv3R0hICFxdXeHu7o62bdsCAI4dO5bp8f/73/9s8vt0797d4rY22VnGinXDhg1Rvnx50+3atWsDANq1awcfH59M+3OqeG/atAlpaWkYOXJkvtpuzXcXgN9fqOjgRG9ExZTBYMATTzyBefPmISkpCTVr1kTr1q2zfXxwcDCeeOIJPPHEEwCAP/74Aw899BBGjx5tGuelqV27NidKISIipxATEwOlVJZjk8uVKwdAH798/fp1BAcHZ3pcxn3x8fFo3bo1vLy8MH36dNSsWRM+Pj6IjIxEr169MnUF9/HxsZjcLD+CgoIsbnt6egJApucsVaqUxW0PD48c9yclJWX7nFevXgWAfE/+Zu13F4DfX6hoYKWcqBgbOnQorl27hkWLFpk+rHKrTZs26NSpE65evYro6Gg7tZCIiMixSpYsCRcXF1y+fDnTfdoEaVplPCgoCFeuXMn0uKioKIvbmzdvxqVLl/DZZ5/hqaeeQps2bdC0adNMy3ppbLXmt6OUKVMGAHDhwoV8Hys/310Afn+hwomhnKgYK1++PF599VU88sgjGDJkSJaPuXLlSpbLhqSlpeHUqVPw8fFBiRIl7NxSIiIix/D19UXz5s2xbt06i2qy0WjEihUrUKFCBdSsWROAdK/evHkzrl27ZvG4r7/+2uKYWsjWqtSajz/+ON/t9fT0vOukawWtU6dOcHV1xcKFC/N9rNx8dwH4/YWKFnZfJyrm3nrrrRzv/+KLL/Dxxx+jf//+aNasGQIDA3HhwgV8+umnOHLkCCZNmmTquqY5fPgwUlNTMx2rWrVqprPlREREhcnmzZstlizTdO3aFbNmzULHjh3xwAMP4JVXXoGHhwcWLFiAw4cPY/Xq1aaQPWHCBHz//ffo0KEDJkyYAG9vbyxatMi0zJm2DFfLli1RsmRJPPvss5g8eTLc3d2xcuVKHDhwIN+/R/369bF161Z8//33CA0Nhb+/P+655558Hzc/KleujPHjx+PNN99EYmIi+vXrh8DAQBw9ehTXrl3Ldjb57NztuwvA7y9UtDCUE1GOHn74YURFReGnn37CwoULERMTA39/fzRo0ABffPFFlsuoZNedbPHixXjqqafs3WQiIiKrvfbaa1nuj4iIMFXAJ0+ejKFDh8JoNCI8PBwbNmxAt27dTI8NDw/Hpk2b8Morr2Dw4MEoWbIkBg0ahLZt2+K1115DYGAgAOnm/uOPP+Lll1/GwIED4evrix49emDNmjVo3Lhxvn6PDz74ACNHjkTfvn2RkJCAtm3bYuvWrfk6pi1MmzYNNWrUwIcffogBAwbAzc0NNWrUwAsvvGCX5+P3FypKDEop5ehGEBERERE5q06dOuHs2bM4efKko5tCRIUQK+VERERERDby0ksvoVGjRqhYsSJu3LiBlStXYtOmTViyZImjm0ZEhRRDORERERGRjaSlpWHSpEmIioqCwWBAnTp1su0uTUQEsPs6ERERERERkcNwSTQiIiIiIiIiB2EoJyIiIiIiInIQhnIiIiIiIiIiB3H6id6MRiMuXboEf39/GAwGRzeHiIgISincunUL5cqVg4sLz4/nFz/riYiosLHms97pQ/mlS5dQsWJFRzeDiIgok8jISFSoUMHRzSjy+FlPRESFVW4+650+lPv7+wOQFyMgIMDBrSEiIgLi4uJQsWJF02cU5Q8/64mIqLCx5rPe6UO51o0tICCAH9RERFSosKu1bfCznoiICqvcfNZzIBsRERERERGRgzCUExERERERETkIQzkRERERERGRgzj9mHIiotxSSiE1NRVpaWmObgoVca6urnBzc+OYcSKiQoaf9WQrtvysZygnIgKQkpKCy5cvIyEhwdFNISfh4+OD0NBQeHh4OLopREQEftaT7dnqs56hnIiKPaPRiIiICLi6uqJcuXLw8PBghZPyTCmFlJQUXL16FREREahRowZcXDhajIjIkfhZT7Zk6896hnIiKvZSUlJgNBpRsWJF+Pj4OLo55AS8vb3h7u6Oc+fOISUlBV5eXo5uEhFRscbPerI1W37W89Q9EVE6VjPJlvh+IiIqfPh/M9mSrd5PfFcSEREREREROQhDOREREREREZGDMJQTEZFJu3btMGbMmFw//uzZszAYDNi/f7/d2gQAW7duhcFgwM2bN+36PERERMUBP+8LF070RkRUBN1txtghQ4Zg2bJlVh933bp1cHd3z/XjK1asiMuXL6N06dJWPxcRERHljJ/3xQNDORFREXT58mXT9TVr1mDSpEk4ceKEaZ+3t7fF4+/cuZOrD99SpUpZ1Q5XV1eEhIRY9TNERESUO/y8Lx7Yfd0KffoA9eoBf/3l6JYQkT0pBdy+7ZiLUrlrY0hIiOkSGBgIg8Fgup2UlIQSJUrgq6++Qrt27eDl5YUVK1bg+vXr6NevHypUqAAfHx/Ur18fq1evtjhuxu5slStXxsyZM/Hkk0/C398flSpVwieffGK6P2N3Nq3b2e+//46mTZvCx8cHLVu2tPgCAQDTp09H2bJl4e/vj6eeegqvv/46GjZsaNXfae3atahbty48PT1RuXJlzJ492+L+BQsWoEaNGvDy8kJwcDB69+5tuu+bb75B/fr14e3tjaCgIDz44IO4ffu2Vc9PzmnOHKB+fSDD24mInBA/78eYbvPz3rEYyq1w+jRw5AgQF+folhCRPSUkAH5+jrkkJNju93jttdfwwgsv4NixY+jcuTOSkpLQpEkT/PDDDzh8+DCeeeYZDBo0CDt37szxOLNnz0bTpk2xb98+jBgxAs899xyOHz+e489MmDABs2fPxu7du+Hm5oYnn3zSdN/KlSsxY8YMvP3229izZw8qVaqEhQsXWvW77dmzB48//jj69u2LQ4cOYcqUKZg4caKpC9/u3bvxwgsvYNq0aThx4gR++eUXtGnTBoBUHfr164cnn3wSx44dw9atW9GrVy+o3H5DIqd24wZw+DAQEeHolhCRvfHz3hI/7x1IObnY2FgFQMXGxub7WM2aKQUotWGDDRpGRIVGYmKiOnr0qEpMTFRKKRUfL//WHXGJj7e+/UuXLlWBgYGm2xEREQqAmjt37l1/tmvXrurll1823W7btq0aPXq06XZYWJgaOHCg6bbRaFRly5ZVCxcutHiuffv2KaWU2rJliwKgfvvtN9PP/PjjjwqA6fVt3ry5GjlypEU7WrVqpcLDw7Ntp3bcmJgYpZRS/fv3Vx07drR4zKuvvqrq1KmjlFJq7dq1KiAgQMXFxWU61p49exQAdfbs2WyfzxYyvq/M2fKziWz7er7/vvxb7NfPBg0jokIjq/+T+Xk/2nSbn/d5Y6vPelbKreDqKtu0NMe2g4jsy8cHiI93zMXHx3a/R9OmTS1up6WlYcaMGWjQoAGCgoLg5+eHjRs34vz58zkep0GDBqbrWre56OjoXP9MaGgoAJh+5sSJE7j33nstHp/x9t0cO3YMrVq1stjXqlUrnDp1CmlpaejYsSPCwsJQtWpVDBo0CCtXrkRCelkiPDwcHTp0QP369fHYY49h8eLFiImJser5yXlpwyxv3HBsO4jI/vh5b4mf947DUG4FLZQbjY5tBxHZl8EA+Po65nKXSVat4uvra3F79uzZmDNnDsaOHYvNmzdj//796Ny5M1JSUnI8TsYJYwwGA4x3+Y/Q/Ge0mWPNfybjbLLKyq5kSqkcj+Hv74+9e/di9erVCA0NxaRJkxAeHo6bN2/C1dUVmzZtws8//4w6dergww8/xD333IMI9lcmMJQTFSf8vLfEz3vHYSi3gkv6q8VKOREVRX/++Sd69OiBgQMHIjw8HFWrVsWpU6cKvB333HMP/v33X4t9u3fvtuoYderUwV8ZZt3cvn07atasCdf0M6hubm548MEH8c477+DgwYM4e/YsNm/eDEC+JLRq1QpTp07Fvn374OHhgfXr1+fjtyJnERQkW4ZyIiqq+Hlf9D7vuSSaFdh9nYiKsurVq2Pt2rXYvn07SpYsiffffx9RUVGoXbt2gbbj+eefx9NPP42mTZuiZcuWWLNmDQ4ePIiqVavm+hgvv/wymjVrhjfffBN9+vTBP//8g/nz52PBggUAgB9++AFnzpxBmzZtULJkSfz0008wGo245557sHPnTvz+++/o1KkTypYti507d+Lq1asF/jpQ4aRVyq9fd2w7iIjyip/3Re/z3qGV8tTUVLzxxhuoUqUKvL29UbVqVUybNs2iy4NSClOmTEG5cuXg7e2Ndu3a4ciRIw5pL0M5ERVlEydOROPGjdG5c2e0a9cOISEh6NmzZ4G3Y8CAARg3bhxeeeUVNG7cGBERERg6dCi8vLxyfYzGjRvjq6++wpdffol69eph0qRJmDZtGoYOHQoAKFGiBNatW4f27dujdu3aWLRoEVavXo26desiICAAf/zxB7p27YqaNWvijTfewOzZs/HQQw/Z6TemokQL5Tdv8vOeiIomft4Xvc97g7K2Y78NzZgxA3PmzMHy5ctRt25d7N69G0888QSmT5+O0aNHAwDefvttzJgxA8uWLUPNmjUxffp0/PHHHzhx4gT8/f3v+hxxcXEIDAxEbGwsAgIC8tXezp2BjRuB5cuBwYPzdSgiKkSSkpIQERGBKlWqWPVBQbbTsWNHhISE4IsvvnB0U2wmp/eVLT+byLav5507gIeHXL92Te/OTkRFGz/rCwdn+7y31We9Q7uv//PPP+jRowcefvhhALJo/erVq01jDZRSmDt3LiZMmIBevXoBAJYvX47g4GCsWrUKw4cPL9D2slJORJR/CQkJWLRoETp37gxXV1esXr0av/32GzZt2uTophHB3R3w9wdu3ZJx5QzlRER5w8/73HNo9/X7778fv//+O06ePAkAOHDgAP766y907doVABAREYGoqCh06tTJ9DOenp5o27Yttm/fnuUxk5OTERcXZ3GxFYZyIqL8MxgM+Omnn9C6dWs0adIE33//PdauXYsHH3zQ0U0jAsAZ2ImIbIGf97nn0Er5a6+9htjYWNSqVQuurq6mNfX69esHAIiKigIABAcHW/xccHAwzp07l+UxZ82ahalTp9qlvQzlRET55+3tjd9++83RzaBCatasWRg/fjxGjx6NuXPnOqQNQUHAuXMM5URE+cHP+9xzaKV8zZo1WLFiBVatWoW9e/di+fLleO+997B8+XKLx2W1Nl3GfZpx48YhNjbWdImMjLRZexnKiYiI7GfXrl345JNP0KBBA4e2gzOwExFRQXJoKH/11Vfx+uuvo2/fvqhfvz4GDRqEF198EbNmzQIAhISEANAr5pro6OhM1XONp6cnAgICLC62ooVys8nhiYiIyAbi4+MxYMAALF68GCVLlnRoW9h9nYiICpJDQ3lCQgJcXCyb4OrqaloSrUqVKggJCbGYDCAlJQXbtm1Dy5YtC7StAKA1lZVyIiIi2xo5ciQefvjhXI01tOf8MQBDORERFSyHjil/5JFHMGPGDFSqVAl169bFvn378P777+PJJ58EIN3Wx4wZg5kzZ6JGjRqoUaMGZs6cCR8fH/Tv37/A28vu60RERLb35ZdfYu/evdi1a1euHm/P+WMAhnIiIipYDg3lH374ISZOnIgRI0YgOjoa5cqVw/DhwzFp0iTTY8aOHYvExESMGDECMTExaN68OTZu3JirNcptjaGciIjItiIjIzF69Ghs3Lgx12sHjxs3Di+99JLpdlxcHCpWrGibBq1di76//YzT6IgbN/rY5phEREQ5cGgo9/f3x9y5c3OcXdVgMGDKlCmYMmVKgbUrOwzlREREtrVnzx5ER0ejSZMmpn1paWn4448/MH/+fCQnJ8NV+wBO5+npCU9PT/s0aPdu1P93Ce6DPzYxlBMRUQFw6JjyooahnIicTbt27TBmzBjT7cqVK991GSqDwYBvv/02389tq+PkZMqUKWjYsKFdn4Pyp0OHDjh06BD2799vujRt2hQDBgzA/v37MwVyu/Pzkw3iOfs6ETkNft4Xbg6tlBc1DOVEVFg88sgjSExMzHL9z3/++QctW7bEnj170LhxY6uOu2vXLvj6+tqqmQDkg/Lbb7/F/v37LfZfvnzZ4bNsk+P5+/ujXr16Fvt8fX0RFBSUaX+BMAvlHFNORI7Gz/vigZVyKzCUE1FhMWzYMGzevBnnzp3LdN9nn32Ghg0bWv0BDQBlypSBj4+PLZp4VyEhIfbrgkyUVwzlRFSI8PO+eGAotwJDOVExoRRw+7ZjLkrlqondunVD2bJlsWzZMov9CQkJWLNmDYYNG4br16+jX79+qFChAnx8fFC/fn2sXr06x+Nm7M526tQptGnTBl5eXqhTp47FEpWa1157DTVr1oSPjw+qVq2KiRMn4s6dOwCAZcuWYerUqThw4AAMBgMMBoOpzRm7sx06dAjt27eHt7c3goKC8MwzzyA+Pt50/9ChQ9GzZ0+89957CA0NRVBQEEaOHGl6rtwwGo2YNm0aKlSoAE9PTzRs2BC//PKL6f6UlBSMGjUKoaGh8PLyQuXKlTFr1izT/VOmTEGlSpXg6emJcuXK4YUXXsj1c1Pubd269a7dKu3GLJTHxADpq7QSkTPi573pNj/vHft5z+7rVtBCOT+giZxcQoLpi3mBi48HctGdzM3NDYMHD8ayZcswadIkGAwGAMDXX3+NlJQUDBgwAAkJCWjSpAlee+01BAQE4Mcff8SgQYNQtWpVNG/e/K7PYTQa0atXL5QuXRo7duxAXFycxXg0jb+/P5YtW4Zy5crh0KFDePrpp+Hv74+xY8eiT58+OHz4MH755RdT17vAwMBMx0hISECXLl1w3333YdeuXYiOjsZTTz2FUaNGWXwR2bJlC0JDQ7FlyxacPn0affr0QcOGDfH000/f9fcBgA8++ACzZ8/Gxx9/jEaNGuGzzz5D9+7dceTIEdSoUQPz5s3Dhg0b8NVXX6FSpUqIjIxEZGQkAOCbb77BnDlz8OWXX6Ju3bqIiorCgQMHcvW8VISYhXKlgNhYgL0uiZwUP+8B8PO+UHzeKycXGxurAKjY2Nh8H+vFF5UClBo71gYNI6JCIzExUR09elQlJibKjvh4+cfuiEt8fK7bfezYMQVAbd682bSvTZs2ql+/ftn+TNeuXdXLL79sut22bVs1evRo0+2wsDA1Z84cpZRSv/76q3J1dVWRkZGm+3/++WcFQK1fvz7b53jnnXdUkyZNTLcnT56swsPDMz3O/DiffPKJKlmypIo3+/1//PFH5eLioqKiopRSSg0ZMkSFhYWp1NRU02Mee+wx1adPn2zbkvG5y5Urp2bMmGHxmGbNmqkRI0YopZR6/vnnVfv27ZXRaMx0rNmzZ6uaNWuqlJSUbJ/PXKb3lRlbfjaRjV/PrVuVAtRxQy0FKHX6dP4PSUSOl+X/yfy8V0rx8z4jaz7vbfVZz0q5Fdh9naiY8PGRM9iOeu5cqlWrFlq2bInPPvsMDzzwAP777z/8+eef2LhxIwBZVuqtt97CmjVrcPHiRSQnJyM5OTnXE7scO3YMlSpVQoUKFUz7WrRokelx33zzDebOnYvTp08jPj4eqampCAgIyPXvoT1XeHi4RdtatWoFo9GIEydOIDg4GABQt25di9m4Q0NDcejQoVw9R1xcHC5duoRWrVpZ7G/VqpXpDPjQoUPRsWNH3HPPPejSpQu6deuGTp06AQAee+wxzJ07F1WrVkWXLl3QtWtXPPLII3Bz40epU0mvmvm7xANpwPXrQLVqDm4TEdkHP+8B8PO+MHzec0y5FRjKiYoJg0G6lDnikt4tLbeGDRuGtWvXIi4uDkuXLkVYWBg6dOgAAJg9ezbmzJmDsWPHYvPmzdi/fz86d+6MlJSUXB1bZTHezZChfTt27EDfvn3x0EMP4YcffsC+ffswYcKEXD+H+XNlPHZWz+nu7p7pPqOVY4oyPo/5czdu3BgRERF48803kZiYiMcffxy9e/cGAFSsWBEnTpzARx99BG9vb4wYMQJt2rSxaowbFQFm3dcBcLI3ImfGz3sA/LwvDJ/3DOVWYCgnosLm8ccfh6urK1atWoXly5fjiSeeMH3g/Pnnn+jRowcGDhyI8PBwVK1aFadOncr1sevUqYPz58/j0qVLpn3//POPxWP+/vtvhIWFYcKECWjatClq1KiRaYZYDw8PpN3lP846depg//79uH37tsWxXVxcULNmzVy3OScBAQEoV64c/vrrL4v927dvR+3atS0e16dPHyxevBhr1qzB2rVrcSM9mXl7e6N79+6YN28etm7din/++SfXZ+6piEgP5T7GeACKoZyICgV+3udeUfy8Z587KzCUE1Fh4+fnhz59+mD8+PGIjY3F0KFDTfdVr14da9euxfbt21GyZEm8//77iIqKsvhAysmDDz6Ie+65B4MHD8bs2bMRFxeHCRMmWDymevXqOH/+PL788ks0a9YMP/74I9avX2/xmMqVKyMiIgL79+9HhQoV4O/vn2lplAEDBmDy5MkYMmQIpkyZgqtXr+L555/HoEGDTF3ZbOHVV1/F5MmTUa1aNTRs2BBLly7F/v37sXLlSgDAnDlzEBoaioYNG8LFxQVff/01QkJCUKJECSxbtgxpaWlo3rw5fHx88MUXX8Db2xthYWE2ax8VAumh3E2lwgMpuHGDy/gQkePx8946Re3znpVyKzCUE1FhNGzYMMTExODBBx9EpUqVTPsnTpyIxo0bo3PnzmjXrh1CQkLQs2fPXB/XxcUF69evR3JyMu6991489dRTmDFjhsVjevTogRdffBGjRo1Cw4YNsX37dkycONHiMf/73//QpUsXPPDAAyhTpkyWy7T4+Pjg119/xY0bN9CsWTP07t0bHTp0wPz58617Me7ihRdewMsvv4yXX34Z9evXxy+//IINGzagRo0aAORLz9tvv42mTZuiWbNmOHv2LH766Se4uLigRIkSWLx4MVq1aoUGDRrg999/x/fff4+goCCbtpEczGycI9cqJ6LChJ/3uVfUPu8NKqtBBE4kLi4OgYGBiI2NtXoigoymTwcmTgSeegpYvNhGDSQih0tKSkJERASqVKkCLy8vRzeHnERO7ytbfjaRHV5Pb28gKQlhOItHR4fBUUumE5Ht8LOe7MFWn/WslFuBlXIiIqJiwGyyt+vXHdwWIiJyegzlVtBCuZUT/xEREVFRYhbK2X2diIjsjaHcCi7prxYr5URERE6MoZyIiAoQQ7kV2H2diIioGGAoJyKiAsRQbgWGciLn5uTzXlIB4/upCGMoJ3Ja/L+ZbMlW7yeGciswlBM5J3d3dwBAQkKCg1tCzkR7P2nvLypCMoRyziVDVPTxs57swVaf9W62aExxwVBO5JxcXV1RokQJREdHA5A1NA0Gg4NbRUWVUgoJCQmIjo5GiRIl4Kp9eFDRYRbKjUYgLg4oUcKxTSKi/OFnPdmSrT/rGcqtwFBO5LxCQkIAwPRhTZRfJUqUML2vqIhJD+Ul3eKBVCAmhqGcyBnws55szVaf9QzlVmAoJ3JeBoMBoaGhKFu2LO7cuePo5lAR5+7uzgp5UZYeykukh3L2diVyDvysJ1uy5Wc9Q7kVGMqJnJ+rqyvDFFFxlx7KA13jAQBJSY5sDBHZGj/rqbDhRG9W0P7tcsIXIiIiJ5Yeyv1dGMqJiMj+GMqt4JL+arFSTkRE5MS0UA4J5YmJjmwMERE5O4ZyK7D7OhERUTGgzb5uYKWciIjsj6HcCgzlRERExUB6KPdVDOVERGR/DOVWYCgnIiIqBnx9ZcNQTkREBYCh3AoM5URERMVAeqXcx8gx5UREZH8M5VZgKCciIioG0kO5V9ptAKyUExGRfTGUW4GhnIiIqBjQQnkqu68TEZH9MZRbgeuUExERFQPpodwzLREuSGP3dSIisiuGciuwUk5ERFQMpIdyAPDFbVbKiYjIrhjKrcBQTkREVAx4epo+9P0Qz1BORER2xVBuBZf0V4uhnIiIyIkZDKZquR/i2X2diIjsiqHcCqyUExERFRNmoZyVciIisieGciswlBMRERUTDOVERFRAGMqtwFBORERUTLD7OhERFRCGciswlBMRERUTrJQTEVEBYSi3AkM5ERFRMcFQTkREBYSh3ApaKDcaHdsOIiIisjN2XyciogLCUG4FVsqJiIiKCVbKiYiogDCUW4GhnIiIqJhgKCciogLCUG4Fl/RXi6GciIjIybH7OhERFRCGciuwUk5ERFRMsFJOREQFhKHcCgzlRERExQRDORERFRCGciswlBMRERUT7L5OREQFhKHcCuZLoinl2LYQERGRHZmF8tRUIDXVwe0hIiKnxVBuBS2UA1yrnIiIyKmZhXIASE52ZGOIiMiZMZRbgaGciIiomMgQyjmunIiI7IWh3ArmoZzjyomIiJxYhlDOceVERGQvDOVWYCgnIiIqJlgpJyKiAsJQbgUXs1eLoZyIiMiJWYRyxVBORER2w1BuBVbKiYiIion0UO4CBW8ksvs6ERHZDUO5FRjKiYiIigkfH9NVP8SzUk5ERHbDUG4Fdl8nIiIqJlxcTMGcoZyIiOyJodwKBoMezBnKiYiInJyXFwDAE8nsvk5ERHbDUG4lrQs7QzkREZGT8/AAIKGclXIiIrIXhnIraaHcaHRsO4iIiMjOPD0BAB5IYSgnIiK7YSi3EivlRERExUR6KGf3dSIisieGcisxlBMRERUT6d3XWSknIiJ7Yii3Eid6IyIiKibMKuUM5UREZC8M5VZipZyIiKiYYPd1IiIqAAzlVmIoJyIisq1Zs2ahWbNm8Pf3R9myZdGzZ0+cOHHC0c1i93UiIioQDOVWYignIiKyrW3btmHkyJHYsWMHNm3ahNTUVHTq1Am3b992bMPYfZ2IiAqAm6MbUNQwlBMREdnWL7/8YnF76dKlKFu2LPbs2YM2bdo4qFWwqJSz+zoREdkLQ7mVGMqJiIjsKzY2FgBQqlSpLO9PTk5GcnKy6XZcXJx9GmJWKY9npZyIiOyE3detpIVyo9Gx7SAiInJGSim89NJLuP/++1GvXr0sHzNr1iwEBgaaLhUrVrRPY9h9nYiICgBDuZVYKSciIrKfUaNG4eDBg1i9enW2jxk3bhxiY2NNl8jISPs0ht3XiYioALD7upUYyomIiOzj+eefx4YNG/DHH3+gQoUK2T7O09MTnulVbLtipZyIiAoAQ7mVXNL7FjCUExER2YZSCs8//zzWr1+PrVu3okqVKo5ukuCSaEREVAAYyq3ESjkREZFtjRw5EqtWrcJ3330Hf39/REVFAQACAwPh7e3tuIaxUk5ERAWAY8qtxFBORERkWwsXLkRsbCzatWuH0NBQ02XNmjWObZhZKOeYciIishdWyq3EUE5ERGRbSilHNyFr7L5OREQFgJVyKzGUExERFRPsvk5ERAXA4aH84sWLGDhwIIKCguDj44OGDRtiz549pvuVUpgyZQrKlSsHb29vtGvXDkeOHHFYexnKiYiIigkuiUZERAXAoaE8JiYGrVq1gru7O37++WccPXoUs2fPRokSJUyPeeedd/D+++9j/vz52LVrF0JCQtCxY0fcunXLIW3WQrnR6JCnJyIiooLCSjkRERUAh44pf/vtt1GxYkUsXbrUtK9y5cqm60opzJ07FxMmTECvXr0AAMuXL0dwcDBWrVqF4cOHF3STWSknIiIqLhjKiYioADi0Ur5hwwY0bdoUjz32GMqWLYtGjRph8eLFpvsjIiIQFRWFTp06mfZ5enqibdu22L59e5bHTE5ORlxcnMXFlhjKiYiIigmz7utpacCdOw5uDxEROSWHhvIzZ85g4cKFqFGjBn799Vc8++yzeOGFF/D5558DgGmd0uDgYIufCw4ONt2X0axZsxAYGGi6VKxY0aZtZignIiIqJswq5QBYLSciIrtwaCg3Go1o3LgxZs6ciUaNGmH48OF4+umnsXDhQovHGQwGi9tKqUz7NOPGjUNsbKzpEhkZadM2u6S/YgzlRERETs6sUg4wlBMRkX04NJSHhoaiTp06Fvtq166N8+fPAwBCQkIAIFNVPDo6OlP1XOPp6YmAgACLiy2xUk5ERFRMpFfKvQxSKecM7EREZA8ODeWtWrXCiRMnLPadPHkSYWFhAIAqVaogJCQEmzZtMt2fkpKCbdu2oWXLlgXaVg1DORERUTGRIZSzUk5ERPbg0NnXX3zxRbRs2RIzZ87E448/jn///ReffPIJPvnkEwDSbX3MmDGYOXMmatSogRo1amDmzJnw8fFB//79HdJmhnIiIqJiIr37uqeB3deJiMh+HBrKmzVrhvXr12PcuHGYNm0aqlSpgrlz52LAgAGmx4wdOxaJiYkYMWIEYmJi0Lx5c2zcuBH+/v4OaTNDORERUTGRYaI3dl8nIiJ7cGgoB4Bu3bqhW7du2d5vMBgwZcoUTJkypeAalQMtlBuNjm0HERER2RkneiMiogLg0DHlRREr5URERMUEl0QjIqICwFBuJYZyIiKiYiI9lHsodl8nIiL7YSi3EkM5ERFRMZHefd1dsfs6ERHZD0O5lVzSXzGGciIiIieXXil3VWlwQRpDORER2QVDuZVYKSciIiom0kM5IJO9sfs6ERHZA0O5lRjKiYiIion07uuATPbGSjkREdkDQ7mVGMqJiIiKCXd301WGciIisheGcitxnXIiIqJiwmCwWKucoZyIiOyBodxKrJQTEREVI2ZrlXNMORER2QNDuZUYyomIiIoRba1yVsqJiMhOGMqtxFBORERUjKR3X+eYciIisheGcisxlBMRERUj7L5ORER2xlBuJZf0V4yhnIiIqBjgRG9ERGRnDOVWYqWciIioGGGlnIiI7Iyh3EoM5URERMWI2URvly87uC1EROSUGMqtxFBORERUjJhN9HbqFKCUg9tDREROh6HcSlooNxod2w4iIiIqAOmVci8k49YtIDrawe0hIiKnw1BuJVbKiYiIipH0SnloUAoA4PRpRzaGiIicEUO5lRjKiYiIipH0SnmFMskAgFOnHNkYIiJyRgzlVmIoJyIiZ7V3714cOnTIdPu7775Dz549MX78eKSkpDiwZQ6UHspDS8vvz1BORES2xlBuJYZyIiJyVsOHD8fJkycBAGfOnEHfvn3h4+ODr7/+GmPHjnVw6xxE675eUirl7L5ORES2xlBuJZf0V4yhnIiInM3JkyfRsGFDAMDXX3+NNm3aYNWqVVi2bBnWrl3r2MY5SnqlvGwgu68TEZF9MJRbiZVyIiJyVkopGNOXF/ntt9/QtWtXAEDFihVx7do1RzbNcdIr5aUD9O7rXBaNiIhsiaHcSgzlRETkrJo2bYrp06fjiy++wLZt2/Dwww8DACIiIhAcHOzg1jlIeqW8pE8yXFyA+HjgyhUHt4mIiJwKQ7mVGMqJiMhZzZ07F3v37sWoUaMwYcIEVK9eHQDwzTffoGXLlg5unYOkh3I3YwoqVZJdHFdORES25OboBhQ1WihP791HRETkNBo0aGAx+7rm3Xffhav2AVjcpHdfR3IyqlcHzp6VLuz33+/QVhERkRNhpdxKrJQTEZGzioyMxIULF0y3//33X4wZMwaff/453N3dHdgyB0qvlCM5GTVqyFVO9kZERLbEUG4lhnIiInJW/fv3x5YtWwAAUVFR6NixI/7991+MHz8e06ZNc3DrHESrlKekMJQTEZFdMJRb48wZlLx4CH64xVBORERO5/Dhw7j33nsBAF999RXq1auH7du3m5ZFK5ayqJRzTDkREdkSQ7k1evdG51caoCW2M5QTEZHTuXPnDjzTQ+hvv/2G7t27AwBq1aqFy5cvO7JpjqOF8pQUpM97x2XRiIjIphjKreEm8+K5IZWhnIiInE7dunWxaNEi/Pnnn9i0aRO6dOkCALh06RKCgoIc3DoHMZvorWpVwMUFuH0biIpybLOIiMh5MJRbI31AOUM5ERE5o7fffhsff/wx2rVrh379+iE8PBwAsGHDBlO39mLHrPu6hwcQFiY3Oa6ciIhshUuiWYOVciIicmLt2rXDtWvXEBcXh5IlS5r2P/PMM/Dx8XFgyxzIrPs6IKE8IgK4eNGBbSIiIqfCUG6N9FDuijSGciIickqurq5ITU3FX3/9BYPBgJo1a6Jy5cqObpbjmHVfB4CQELnJ7utERGQr7L5uDbNKudHo4LYQERHZ2O3bt/Hkk08iNDQUbdq0QevWrVGuXDkMGzYMCQkJjm6eY2SolDOUExGRrTGUW4Pd14mIyIm99NJL2LZtG77//nvcvHkTN2/exHfffYdt27bh5ZdfdnTzHIOVciIisjN2X7cGJ3ojIiIntnbtWnzzzTdo166daV/Xrl3h7e2Nxx9/HAsXLnRc4xzFbKI3gKGciIhsj5Vya3BMORERObGEhAQEBwdn2l+2bFl2X2f3dSIishOGcmuw+zoRETmxFi1aYPLkyUhKSjLtS0xMxNSpU9GiRQsHtsyB2H2diIjsjN3XrcFQTkRETuyDDz5Aly5dUKFCBYSHh8NgMGD//v3w8vLCr7/+6ujmOUaGSrnWkeDqVSA11fTVgIiIKM/4UWINjiknIiInVq9ePZw6dQorVqzA8ePHoZRC3759MWDAAHh7ezu6eY6RoVJepgzg4gIYjcC1a3rlnIiIKK8Yyq3BSjkRETk5b29vPP30045uRuFhPtGbUnB1NaBMGeDKFenCzlBORET5xVBuDU70RkRETmbDhg25fmz37t3t2JJCSgvlSgFpaYCbG0JC9FBORESUXwzl1jCrlBuNDm4LERGRDfTs2TNXjzMYDEgrjmekte7rgFTL00P5gQMM5UREZBsM5dZg93UiInIyRp5lzplWKQdksjdfX87ATkRENsUl0azBid6IiIiKF1dXwGCQ61wWjYiI7ICh3BocU05ERGQ3CxYsQJUqVeDl5YUmTZrgzz//dHSTJJCbT/YGhnIiIrIthnJrsPs6ERGRXaxZswZjxozBhAkTsG/fPrRu3RoPPfQQzp8/7+imZbtWOUM55ctffwFvvAHcvu3olhCRgzGUW4OhnIiIyC7ef/99DBs2DE899RRq166NuXPnomLFili4cKGjm5ZprXKtUn7lioPaQ85hxAhgxgwJ5kRUrDGUW4NjyomIiGwuJSUFe/bsQadOnSz2d+rUCdu3b8/0+OTkZMTFxVlc7Ird18kaCxYAs2YBN25k/5i4OODwYbk+bx6wZ4/tnl8pYOZMoFIl4Kefcn7s9evAE08AS5fa7vmJyGoM5dYwq5QrJf/nEREROYuffvoJv/76a6b9v/76K37++We7Pe+1a9eQlpaGYK1feLrg4GBEZZF8Z82ahcDAQNOlYsWKdmsbAL1Snt59XQvlN28CSUn2fWoqYo4dA0aOBMaPB6pUASZPNr1vLOzerX+RNBqBZ54BUlOzP25uv3TeuQMMGwZMmABERko1Pv1kUiYpKUCvXsCyZfIzW7bk7jlSUoBVq4DCMLSEMouMBC5dcnQryEoM5dYwm+gNAKvlRETkVF5//fUs1yJXSuH111+3+/MbtFnOzZ434z4AGDduHGJjY02XyMhI+zYsQ6W8RAk9p7MLO1n4/XfZurhINXzaNKmaZ7Rzp2zbtZM31N69wPz5WR9zyxagZElgypScw3lqKtC9u1S9XVyAwEDg3Dng008zP1Yp4NlngT/+0G8PGiSV85zExACdOwMDBgDNmgHHj+f8eHuJjQU++wz44AM5qZEbMTHA1KnA2LFy8sIZ/fUXUL06UL48UL8+MG5c4TlzuG0b0Lo1kJsTvJs2yfu+GFVAGcqtYVYpB3L/fwAREVFRcOrUKdSpUyfT/lq1auH06dN2e97SpUvD1dU1U1U8Ojo6U/UcADw9PREQEGBxsasME70ZDOzCTtnQQvmbb0ogByRgZKSF8m7dgLfekuszZmRdLZ81S0Lo1KnA9OnZP/eGDcAvvwA+PnJ95ky9LRknk3vvPT28f/MNULMmcPEiMHx49kHozBmgZUtg61a5HR0NdOgA2PH/hkzi4oDBg+Uf4LBhwJgxwIoVOf9Mairw9ttA1apyYuPdd6UnQ34cPAisXAlcvZq3n7dHZe/qVaBPH71nxuHD8t6aMCHnn1MK2LEDuHYtd8+jlLxnHn4Y+PHH3P1MRATw6KNy0qBfv5x7WezZA3TqBLRvDzRqJK9zMQjnDOXWyBDKWSknIiJnEhgYiDNnzmTaf/r0afj6+trteT08PNCkSRNsyhBeNm3ahJYtW9rteXPNfKK36dOBGjVQt9RlAAzlZCYtTQ+sDz4IPP64XN+717Iyq5Qeyps3l3AZFCShaNs2y2NGRFiG+kmTJFBnRau0jxkjgempp6QL/ZUrwIcf6o/79lvgtdfk+gcfAP/7n3RHd3MD1q6VwJWRUnLM48eBChWAzZuBevWkm3T79hLQbeHaNTmxcPJk1vdPnQp88YVUf0uWtPy9s/PGG8Drr8t4k2rVZN977wE//GD5OKWAr7+WEys5hcAVK6SXwMCBcnKgTZucw+nlyxIshw0D7r0XKFsWcHcHHnhAqsGpqcBvvwGjR8swhldflf9n5s+X3/Wvv+5e7TYapafDpUtArVrSQ+Ldd+W+Zcty/vnJk4EWLYC6dYF9+3J+nl27gPvuAx57TOYreOqpu7ctIUECeUyM3I6NBYYMyb66aX6S5cABeZ21E1zZUQr4++/cn1gojJSTi42NVQBUbGxs/g82Z45SgFqJfgpQ6tat/B+SiIiKH5t+NtnQ008/rerXr69Onz5t2nfq1CnVoEEDNWzYMLs+95dffqnc3d3VkiVL1NGjR9WYMWOUr6+vOnv27F1/1u6vZ+vWMpXM118rVamSUoB6q8kaBSi1aJF9npKKoF275H0SEKDUnTtKpaUpFRgo+/bu1R937pzsc3VV6vZt2ffUU7Lv2Wctjzlhguzv2FGp6dO1KY3kucwdOSL7XVzk+JrPP5f9vr7yPXbHDqV8fGTfyJGWx3jjDdnftKlSRqPlfTt2yH1+fkpduCD7oqKUqlFD9o8fn/Vr8tZbSr38slKXL+f82q1dqx9La+9ff1k+5vp12Q8otXq1UtHRSnl4yO2dO7M+7oULSnl5yWM++ECp1FSlRo+W26VKKXXmjDwuIUGpvn315w8PV2rlSnm8Ji1N/3sASlWooF83GJR67z153SIilHrhBaWaN5fn0B6T3UX7nXK6eHgodf/9Sv3zT9a/5+TJ8jhvb6UOHZJ9qalKVawo+1euzP7vY/48/v5K/f571o9NTlaqdGm9zdrvtmBB1o/XDBokjytbVqktW/T333vvZX5saqpSoaFy/7JlSo0bJ9fd3ZU6diz755g7V/+bXLqUc3sKkDWfTQzl1vjwQ6UAtQaPKUCpmzfzf0giIip+Cmsov3nzprrvvvuUm5ubqly5sqpcubJyc3NTDzzwgIqJibH783/00UcqLCxMeXh4qMaNG6tt27bl6ufs/np26KBMCTz9y+vqFh8oQKkpU+zzlFQEvf22vD+6d9f3deyov3c0X30l+xo21Pf98oseXLQgeOeOUuXKyf6vvpJ9ffrI7YEDLZ975EjZ37On5f7UVKXats0c8jp1kuObi45WytNT7v/zT8v7Xn5Z9vfrZ7l/7VrZHxSkn2DQbN9uGfbeekuCXUZGo1JVq+qPDQrSf2bHDv1x06bpr5t20mDw4KxfD80zz8j999+v/0xyslLNmulh99FHlWrSRG67uemhEVCqcWMJwv/+q/8MIGExLU1OgAwfru9v1UqOYf5aGwxy/LFjlVq3Tqn9+5U6flypUaP01zsoSE7MTJum1EsvKTVsmFK9eyv14INKBQfrxwoM1EO3ZsEC/f6lSy3vmzpV9rdtm/m1SS82KkCpSZOUatdOD8DmJ5E027bJ/WXKyAmZ9FykKldWKiUl69d/3z79BNTWrbLv44/1197sBLBSSqnNm+W+EiWUSkqSv1nXrrKvXbvMJ4uUUurvvy1f83vvlZMshQBDuRmbflAvXKgUoL5BLwXICTsiIiJrFdZQrpRSRqNR/frrr+qdd95RH374Ya6DsSPZ/fXUvhQ++6zpi9/WVuMVoNRzz9nnKakI6tRJ3h9z5+r7tMrqE0/o+7SAO3y4vi8lRamSJWW/Fl6++05uly4tAUUpCYdacIqKkn2xsVLBBpTatClzu+7cUWrxYr0CWbu2UtmdZHv6aXnMo4/q+4xGpcLCZP/atZaPT02VUAYo9cknlvc99ljmSvDzz2d+Tq0K7+Oj1JUrEu4feEAPoT//rFR8vB7Wv/xS/1mtd4KHh/56aE6elDCY1UmGs2ctQ7YWjLdsUeraNaXefFPv5aAFa0B6QXz+ueWxjEal3n9ffwwgYfrLLyWAx8dn/VorJW3euTP7UKsd//RpCfxaNTgyUu5buVJ/3jfeyPyzkZHSewKQEwFKyd9szBi9rdrPJSVJuwGp9Gek9aTQTswkJMhJJECp5cuzbvuIEXJ/nz6Wv4/2PIMHWz5ee/+Z98yKiJAeAFk9z5UrSpUvL/c99JBeve/TJ+sAX8AYys3Y9IN68WKlAPUtuitATigSERFZqzCH8qLI7q/no4/KF73mzU1fZI+2eDJTdqFiLDlZDw7mlcwNG2Rf3br6vvvvl32ffWZ5jKFDZf+oUXL74Yfl9ssvWz5Oex9Omya3P/hAbt9zT85BJD5eqTVrlLp6NfvHaN3gDQa9irlzpx6us6pAzp6t/47a8585o4fBAweU+ugjue7lJaHXnNad3LwKHx+vDxsBlKpfX7bVqmWu8Guvx5tvWu7XehU8/HD2v+/Bg0q98oqcQPjvP8v7rlxR6skn9TYMHpxzN/wffpAw+fff2T8mP65fV6pWLb0XgXlFf9So7P/2jzyiB91vv9XfV4AMiTD/uW+/1avfGY93332Z37ezZsm+WrWk54C527flJAag1G+/Wd6nnVxycVHq6FHZl5ysn5jK+Hitm32pUvIeVUrGEWvvkVq1lIqLkxNa7u6yb/Hi3L2udsRQbsamH9RLlyoFqB/QVQF3Hx5DRESUlcIUyj/44AOVmJhoup7TpbCy++upfbnXQhegLjV5WAFKtWhhn6ekIkbr2lu2rGWYuXxZD7lxcVIR1d5HWrjQ/Pij7A8NlYCqBaeMY2lXrNAf98UX+rjqDz+0ze/y0EOW1dJXXslc7TR382bmSr1Wie3USW4bjUo1aiT7Zs3SfzY1VamQENm/YYPlcePjlXrxRT3cA9JrNaMvvtD/fWph7t139df9wIG8vxZKSXDfvz9/x7CVs2f1yrB2GT48cyA298MPlo/XTo6sWZP5sfHx+hj8gwf1/TEx+t/h/Hl9f2ys3qPgu+8sj5Wem1TVqlm3r0cPuf/xxy3bGRxsOZZfKfl3o/VsCA6WUK+d3PL3V+rwYf2x770n+8uVyzykooAxlJux6Qd1+mQZv6KTAvR5LoiIiKxRmEJ55cqV1bX0ypU2jjyrS5UqVRzc0uzZ/fXUxq2aXW7d00QBShXil4WsYTRK1XD16rz9/MSJ8t7o2zfzfemTA6rNm2WsrtYNOmNQSUqy7DLt6irj1DNKTtaDrHbp3Tvr8dp5sXGj/vwzZ+rd07/5Jvufef55eUzt2kp9+qke0n/9VX/MsmV692utu7Y2hrhkyezbv3evUu3bS5fnrCr1d+7o1V9vb70LtHlvAmeSkCBd/k+flhM9d5OaKhVlPz8ZI9+/f+aJAs1pr+WMGfq+9ev13hgZjR0r93XsaLm/ZUvZP3Nm1s9z4ID+d3rxRf19ltUQB6Wkh0V4uOX7PjDQct4BpeTfkXYs8xNADsBQbsamH9SrVikFqN8NHRRgObklERFRbhWmUO4M7P56mn/JT7+khFQwfSckJ3DsmPxt/fysH4t6+rRU6wAJnhlpY6tnzZJJ4AClOnfO+ljaLOw1amQOG+a02ba1EJOxspgfRqN0dTZ/z/v45Fx1/O8/vauydjHvzq6UhCVtDLI2Llz7t/XUU/lrc1KSPveDduEsjJZy+77WJmJr3lzfp40N14ZWmIuI0Me1a706Dh/WT+zkNBu61gtJu5QooXdnz8rVq/pQhpIlldq9O+vHab0nAgOznwTMaJQTPrY6mZUFaz6buE65NbR1yg2yTnl2y+sRERGRE9HWKTfjdv0KAIXYWFlmmIq4iAjZxsdbt+Z2SgrQty9w6xZw//3AgAGZH3PvvbJ9+21gwwZ5P82cmfXxPvhAHrNvn6xhnp3Ro4FevWQt6w8+AFxdc9/muzEYgMWLgc8+A7y9ZV+3boCPT/Y/U7UqcOiQrCddvbrsmzpVjqXx9ASee06uv/22rI2+dq3c7tcvf2329ATWrQMeeUSec9o0WX+bdOZ/i5x06ybbnTuBqCi5vmmTbB98MPPjK1eW1x0AFiyQeP3mm3K7e3cgNDT755o1S/59PPKIrKf+339A7drZP750aWDzZvn3s3070KRJ1o/r3x8ID5c10d94A0hLs7w/JkbWTm/cGHj44UIR6gxKKWXtD0VGRsJgMKBChQoAgH///RerVq1CnTp18Mwzz9i8kfkRFxeHwMBAxMbGIiAgIH8HW78e6NUL/7i0QkvjXzh9GqhWzTbtJCKi4sOmn002pJTCN998gy1btiA6OhrGDF9U1q1b56CW5czur+fLLwPvvy/Xg4KA69cBAKVwHTEohatX5bsiFWEffww8+6xc37Ej50Bs7pVXgNmzgZIlgQMHgIoVMz/mzz+BNm302wsW6OG0sDt6FFiyBBgxIvdfepWSkxv+/pnvi4oCwsLkZIYmJAS4cME2JxaUkn+f/AeZP82aAbt3A59+KkG8cmX5+1y/DgQGZn78pk1Ap07yNx88GPjoI3n8tm1Aq1YF3nwAwM8/A127yvXq1eX/8XLlJKhPmgScPas/9qOP5D1uY9Z8NuWpUt6/f39s2bIFABAVFYWOHTvi33//xfjx4zFt2rS8HLJoSP/PQquUZzzpQkREVJSNHj0agwYNQkREBPz8/BAYGGhxKbbMK+UNG0oAA1DdV6pI6RmdirLISP26VjW/m4MHJZADwNKlWQdyQKpxLulfufv21cN/UVCnjvyO1lShDIasAzkgAXz+fKB9e6BDB6BLF2DhQttV+g0GBnJb6N5dtm+/rfdiuPferAM5IH/Le+6RHiMffST7lixxXCAH5L01d66cSD19Wk6E9eghJw3OnpXeHS+8II8dOzb3/+7txC0vP3T48GHcm94V56uvvkK9evXw999/Y+PGjXj22WcxadIkmzay0Ejvvu4OhnIiInI+K1aswLp169BVqy6Q8PTUr9etC1y8CMTEoJrfFey6XQc3bjiuaWQj58/r13P75fy772T7yCPyZT87vr7A+PHA4cPAJ5/kvhuxs3r6ablQ4dWjh1STT52Si7YvOy4uwMiResidPRsYMsT+7cyJwSDDPIYNk393X38tPSk8PYF69YAZM4CAAGD/fuCPP4Ann5SKv1ue4nG+5elZ79y5A8/0D6jffvsN3dPPptSqVQuXL1+2XesKm/Q/kqtB0jhDOREROZPAwEBUrVrV0c0ofDKG8oMHgePHUcVbKuUM5U7AvFJu3q01J7/8IlttPG1OtDG2REVBgwbA559LhblcORlykNV4cnNPPilDP5o1A8aMKZBm5oqfH/DSS3LJymefye+7dSvQrh2wYoV01y9geeq+XrduXSxatAh//vknNm3ahC5dugAALl26hKCgIJs2sFDRJnpjpZyIiJzQlClTMHXqVCQmJjq6KYWLeff1unWB4GAAQEWPKwAYyp2CtZXymBgJIADQubN92kTkSIMGyWR9w4dLV/C7VZB9fYGVKwtXIM+NatVk0kF/f+Dvv2WCuFWrCrwZeQrlb7/9Nj7++GO0a9cO/fr1Q3h4OABgw4YNpm7tTomhnIiInNhjjz2GmJgYlC1bFvXr10fjxo0tLsWWeaW8Th0ZFwugnAsr5U7BaJSJxjS5CeW//y4/V7s2UKmS/dpGRPbXo4dM1NiiBRAXJ13xC3iykDx1X2/Xrh2uXbuGuLg4lEyf7AQAnnnmGfjktFxCUadN9MZQTkRETmjo0KHYs2cPBg4ciODgYBiK+9hXjVYpDw2VSd7SK+VlFSvlTiE62nI28HPnJHC75FC7+vVX2bJKTuQcqlSRseXTp8vJ1wLu/Z2nUJ6YmAillCmQnzt3DuvXr0ft2rXR2Zn/c9LGlEPSeCFY0o6IiMhmfvzxR/z666+4//77Hd2UwqVUKdk2bCjb9Ep50B1Wyp2CNp48OFiqY3fuAJcuAelL/2ailD6ePH0IJxE5ATc3YMoUhzx1nrqv9+jRA59//jkA4ObNm2jevDlmz56Nnj17YuHChTZtYKHC7utEROTEKlasWKjWTS80unWTdcrnzJHb6ZXywGRWyp2CNp68ShW9K3pOXdiPHpXu7l5eluuPExHlUZ5C+d69e9G6dWsAwDfffIPg4GCcO3cOn3/+OebNm2fTBhYqWihXDOVEROR8Zs+ejbFjx+JsbmefLi68vIAXX5R1eAFTKPe/zUq5U9Aq5RUr6rMuZ/w3cOgQUKYM0LIlMHmy7GvbFvD2LqhWEpETy1P39YSEBPj7+wMANm7ciF69esHFxQX33Xcfzp07Z9MGFirpY8pdWSknIiInNHDgQCQkJKBatWrw8fGBu7u7xf03mD5Fevd1r7hoGGDEjRt5qnFQYaFVyitVknWLgcyV8m+/Ba5dk4vGmYdsElGBylMor169Or799ls8+uij+PXXX/Hiiy8CAKKjo5272xu7rxMRkRObO3euo5tQNJQtCwBwMaYhCNdx/XoZBzeIcuXSJeDyZaBJE8v95pVybQLjjKFcq5y3aiXHiI8HHnvMrs0louIjT6F80qRJ6N+/P1588UW0b98eLVq0ACBV80aNGuWpIbNmzcL48eMxevRo05cCpRSmTp2KTz75BDExMWjevDk++ugj1K1bN0/PkW/podxFSRpnKCciImcyZMgQRzehaHB3l5l5r19HMK7g0g2G8kLv1i2geXMJ1EePAjVr6veZV8oTEuR6xu7rWkgfPlzWbyYisqE8hfLevXvj/vvvx+XLl01rlANAhw4d8Oijj1p9vF27duGTTz5BgwYNLPa/8847eP/997Fs2TLUrFkT06dPR8eOHXHixAlT9/kCxUo5ERE5OaPRiNOnTyM6OhrGDMuMtOGkVrr0mbpDEIWjN+shLc00yo0Ko5kz9bXIt22zDOXmlXJtabSMlXLtdpUq9m0nERVLeQrlABASEoKQkBBcuHABBoMB5cuXx7333mv1ceLj4zFgwAAsXrwY06dPN+1XSmHu3LmYMGECevXqBQBYvnw5goODsWrVKgwfPjyvTc87bUk0TvRGREROaMeOHejfvz/OnTsHpZTFfQaDAWn84NOFhABHjyIYV6AUEBurr5xGhczp0zJ7vubff4Gnn5brKSlAlEzYh0qV9C93kZGyNJq7O5Caqgd3hnIisoM8zUxiNBoxbdo0BAYGIiwsDJUqVUKJEiXw5ptvZjqrfjcjR47Eww8/jAcffNBif0REBKKiotCpUyfTPk9PT7Rt2xbbt2/P9njJycmIi4uzuNiMNtEbQzkRETmhZ599Fk2bNsXhw4dx48YNxMTEmC6c5C2D9BnYwzw4A3uh9/LLEr5Ll5bbO3fq9128KOuOe3rK7OrBwXLdaNQr65GR8qXPwwMIDS349hOR08tTpXzChAlYsmQJ3nrrLbRq1QpKKfz999+YMmUKkpKSMGPGjFwd58svv8TevXuxa9euTPdFpZ+1DE7/0NNoy69lZ9asWZg6daoVv40VtEo5jAAUjEaDfZ6HiIjIAU6dOoVvvvkG1atXd3RTCr/0GdgreV4BUhjKC62vvgI2bJDvcGvWAB06AEeOyERtfn6WXdcNBrlUrgycOCFd1qtU0buuh4UBLpxpn4hsL0//syxfvhyffvopnnvuOTRo0ADh4eEYMWIEFi9ejGXLluXqGJGRkRg9ejRWrFgBLy+vbB9nMFgGX6VUpn3mxo0bh9jYWNMlUvvP1hbc9HMYrkhjpZyIiJxK8+bNcfr0aUc3o2hILxpUcGOlvFAxH3bx3XfAgAFyfcwYoH17oEIFqYLv3Sv7tUneKlbUf07roq6FcY4nJyI7y1Ol/MaNG6hVq1am/bVq1cp197Y9e/YgOjoaTcyWpUhLS8Mff/yB+fPn48SJEwCkYh5q1lUoOjo6U/XcnKenJzw9PXP7q1jHLJS7IRVpaXkekk9ERFQoHDx40HT9+eefx8svv4yoqCjUr18/0zrlGSdkLdbSv4sEG64AYCh3uJgYYNQo4JtvgDp1ZKb1JUtkPHi/fsCsWfK4e++Vbuk7dwJt2uiV8kqV9GNVrSrbU6dkq83EzlBORHaSp1QZHh6O+fPnY968eRb758+fn+sP7A4dOuDQoUMW+5544gnUqlULr732GqpWrYqQkBBs2rTJtMxaSkoKtm3bhrfffjsvzc4/s2lVJZQ7phlERES20rBhQxgMBouJ3Z588knTde0+TvSWQXr39TJprJQ73ObNwJAh+hjw/fvlAkgg//xzvbDSvDmwbp1M9gZkXSnXlvfVxp6zUk5EdpanUP7OO+/g4Ycfxm+//YYWLVrAYDBg+/btiIyMxE8//ZSrY/j7+6NevXoW+3x9fREUFGTaP2bMGMycORM1atRAjRo1MHPmTPj4+KB///55aXb+ZaqUO6YZREREthKRceknyp30cfcVbh1DCcTg+vWSDm5QMbVqlawbbjQCNWoACxYAV64Av/0mJ07efNPi+xu0lYJ27pSu7nv2yG3zSnnLlrL991+ptDOUE5Gd5SmUt23bFidPnsRHH32E48ePQymFXr164ZlnnsGUKVPQunVrmzRu7NixSExMxIgRIxATE4PmzZtj48aNjlmjHOCYciIicjphYWGm63/88QdatmwJNzfLrwepqanYvn27xWOLverVgfr14XboEB7Fety48eTdf4Zs6+uvgcGDJZAPGgQsXAj4+sp92ljyjJo0kcncIiNl7fJduwBvb6BLF/0xtWoBJUoAN28CBw8ylBOR3RlUxoVI8+HAgQNo3LhxoereFhcXh8DAQMTGxiIgICD/B3RxAZRCMKIw89NgDBuW/0MSEVHxYvPPJhtxdXXF5cuXUbZsWYv9169fR9myZQvV57s5h72eM2YAb7yBjeiILwZuxBdfFNxTF0vXrwPLlsm64rGxwNKlUsl+4gng009zPzN6/frA4cP67XffBV55xfIxXboAv/4KvPeeft/Vq/qyakREd2HNZxPXdbBWevWA3deJiMjZZLfCyfXr1+GrVSBJ16cPAKA9NiPtcrSDG+PEEhOBt94CqlWTgPzee8DixRLIBw6U69YsVaZ1YQdk/PiYMZkf06KFbFevlq2fHxAUlOdfgYgoJ5w+3FqursCdOwzlRETkNHr16gVAJnUbOnSoxSomaWlpOHjwIFpq42xJV706Yqo1Qcn/9qDhf2sBPOfoFjmf48eB7t31mdDDw4GOHQEfHwnp/ftbTMSbK/feC3z2mQT5xYstx5xrtFCujTmvUkW6vRMR2QFDubXMKuVGo4PbQkREZAOBgYEApFLu7+8Pb29v030eHh6477778PTTTzuqeYVaTKe+KLlwD9peWQOGchv7+Wegb18gLg4oX16q5f37W1cVz0rv3jJB3P/+J2PMs9K8uYRwbZRn5cr5e04iohxYFcq1M+nZuXnzZn7aUjSkh3JO9EZERM5i6dKlAIDKlSvjlVdeYVd1K9x59HFg4atolvgHcOkSVGg5FlTzSylg9mxg7Fi53rq1rD+eYa6DPAsKArZty/kxgYFA3br62HNO8kZEdmTVqcbAwMAcL2FhYRg8eLC92lo4cEw5ERE5qcmTJzOQW8m/biX8jZZwgcKdT5cjPFyKr6mpjm5ZEZWUBAwdCrz6qgTyp5+W5c1sFcitoXVhBxjKiciurKqUa2fSizWGciIiciKNGzfG77//jpIlS6JRo0ZZTvSm2bt3bwG2rGgoWRIYh2fQCtuR+s77+O/2C0iAL37/Hejc2dGtK2L+/BN48UUZx+3qCsyZA4wa5bix3C1ayJhzgKGciOyKY8qtlT6ZCEM5ERE5gx49epgmduvZs6djG1MEeXsD67wGYGLSm6h++z+MwAK8h1exahVDebbS0oB9+4A//pDx4gDw778yhhyQMx1ffQU8+KDj2ggA5pMbMpQTkR0xlFuLY8qJiMiJTJ48GYDMst6uXTs0aNAAJUuWdHCripbAIDfMuDgBS/EkXsW7WIARWLfOF4sWSWg/dgw4fRro1q2YTuCdnCyzqG/bBmzeDGzdKuuMZ+TqCjz1FDBpElCuXIE3M5OaNYGmTYEbN+Q6EZGdMJRbi93XiYjICbm6uqJz5844duwYQ7mVSpUCVlwciDcwHdVwBuNLLsIbMS/jhx9kEu/77pOC8COPAMuWyeOzk5Ii+fXgQcDdHejUSQrHRc6FC8C0aRLCIyKQacmagACgbVugQgW57e8v48erVy/4tmbHYAC2b5dtVsumERHZCP+HsRZDOREROan69evjzJkzqMKuulYpVQpIhTtmYAI+wzCMTn4bs/EEVq4shYUL9R7a338PNG4MTJkiQb1MGeD334FNm4ATJ4DISMmy5pPEubkB7doBw4cDvXrlfzUwu1IKOHkS+Pxz4P33ZdI2jb+/jNFu314ujRoVjaDr7u7oFhBRMVAE/jcsZDimnIiInNSMGTPwyiuv4M0330STJk0yzcQeEBDgoJYVblrl+1iTQcDtd+F3/DjmYxQGfLcKAODjAyxfDrz2GnDmDPDEEzkfLyAACA+XXtNHjsjk47/9BtSpI+Hc3V2GZXfrVgiWzzYapRr+6adyhuHaNf2+1q2B8ePllwkJKaZ994mI7o6h3FpmlfKMPbGIiIiKsi5dugAAunfvbjELu1IKBoMBaTwbnaV27YANG4Dxk92B4OVAy5bon7Ya6/EovsFjeP99oHdvoGNH4J13ZH6zPXuAxEQJ2p07A/feC1SsCFSqJD26tZf/1Cngiy+AefOAo0eB0aP15500SSYsr1vXBr+EUkB8vFS0zaWlAT/9BCxcKKX81q2l0n3rFnDggNx36pT+eC8v6QYwZgzQvTuDOBFRLhiUUsrRjbCnuLg4BAYGIjY21jZn+Js0AfbuRRf8jIavdcFbb+X/kEREVLzY/LPJRrZt25bj/W3bti2gllinMLyeiYkyqRsAYOJEYPp0XEMQXm+7A4u3VM+UTe/ckVyb0/hyczdvAh99BPzzD+DhAZw8loZjx4FyFVyxfTsQcyUFqxfHo5RHPJ54LB6lfRMBT09cTfDF6V0xSNuzH96nD+Iej7Pwi4mUJy9fXs4AXL4M7N0LxMTIBGuNGgElSgBXrsgA9wsXcm6cvz8weDDQv79MjObhYeWrR0TkfKz5bGKl3FocU05ERE6qsIbuosAUyAFg4kSoH39E6X378Om2GsC9TYH775dqdHIycPUq3C9dQqlbt6Rbd/ny0ic9Pl7GYXt4AJ6e8tioKODqVZTw9MSEwEDpLn7uHNSFCzDACOMFA4yVXFARaWigPf98vSll0i9ZMq9way5dkou5kiVlVvTmzWXm9L/+kn3h4RLCe/QA/Pzy+MoRERFDubUYyomIyMklJCTg/PnzSElJsdjfoEGDbH6CLHh4wPDVVxJk//gD2L1bLlk5fDhPT6EV3l2g4AL9C0mywRO3lB8S4Q1PJMMXt5Hi6o2zgeE44tYQf0dXxwVUxMBn/dDn/otSBS9VSnoCVq4slfG9e6X0HxwMhIYCrVrJwHgA+N//8tReIiLKHkO5tTjRGxEROamrV6/iiSeewM8//5zl/RxTboXq1aWqfOUK8N13UpX28JBLUJB0E/fzk0r4xYtSAff1lZL7nTtSMXd3l0p6mTKyVlpcnFTbw8Lk4uWF86dTsOmXNHR61BcVa/nCw9UNO38Cvv0WaNAA6NlTxqqXBFDvDvDnKOCHT4AfFgEu7YHHXsvQ7pYt5UJERAWGodxarJQTEZGTGjNmDGJiYrBjxw488MADWL9+Pa5cuYLp06dj9uzZjm5e0RQcDDzzjN0OX6kZMKyZftsA4OGH5ZKRuzuwaBEQGAi8+67MBt+9u/SUJyIixynMq10WTumh3BVpDOVERORUNm/ejDlz5qBZs2ZwcXFBWFgYBg4ciHfeeQezZs1ydPPIBgwGYPJk6ZUeESGTxxERkWMxlFuLlXIiInJSt2/fRtmyZQEApUqVwtWrVwEA9evXx969ex3ZNLIhX19g+nS5/uabwPXrjm0PEVFxx1BuLY4pJyIiJ3XPPffgxIkTAICGDRvi448/xsWLF7Fo0SKEhoY6uHVkS0OGyJjzmzclmFPWUlLkQkRkTwzl1jKrlBuNDm4LERGRDY0ZMwaXL18GAEyePBm//PILKlWqhHnz5mHmzJkObh3Zkqsr8N57cv2jj/I8CbxTu3gRqFcPqFFD5t0jIrIXTvRmLY4pJyIiJzVgwADT9UaNGuHs2bM4fvw4KlWqhNKlSzuwZWQPHTvK7OzffguMHCmTxRsMd/mhYuLmTaBLF30p99OnJaATEdkDK+XW4phyIiIqJnx8fNC4cWMGcic2d64sQf7HH8CKFVIdnjgRmDfP0S1znKQkoEcPy94DkZGOaw8ROT9Wyq3FUE5ERE7qpZdeynK/wWCAl5cXqlevjh49eqBUqVIF3DKyl7AwCeHjxkm1PDlZH0MdFibhtLiZOFFOUgQEAJUqSTg/f97RrSIiZ8ZQbi1O9EZERE5q37592Lt3L9LS0nDPPfdAKYVTp07B1dUVtWrVwoIFC/Dyyy/jr7/+Qp06dRzdXLKRl14Cli8Hjh+X2xUrSmV45EjggQcknBYX0dH6MnFffAH8+itDORHZH7uvW4uVciIiclI9evTAgw8+iEuXLmHPnj3Yu3cvLl68iI4dO6Jfv364ePEi2rRpgxdffNHRTSUb8vAA1q8HXnwR+PNP4MQJoGpV6cr+xhuObl3Bmj0bSEwE7r0XeOQRqZQD7L5ORPbFUG4tTvRGRERO6t1338Wbb76JALPSaEBAAKZMmYJ33nkHPj4+mDRpEvbs2ePAVpI91KoFvP8+cP/9gLc3sGiR7J8/H1i8uHisZX7tml4lnzRJJr3TQjkr5URkTwzl1mKlnIiInFRsbCyio6Mz7b969Sri4uIAACVKlEAKF252eh07AgMHAkoBzzwDlC0LdOsGpL8NnNKcOcDt20DjxkDXrrKvYkXZMpQTkT0xlFuLoZyIiJxUjx498OSTT2L9+vW4cOECLl68iPXr12PYsGHo2bMnAODff/9FzZo1HdtQKhCLFsmkZw0aAEYj8OOPwPPPO7pV9nHrFvDhh3J94kR9aTitUn7hgrwGRET2wFBuLbOJ3vifMxEROZOPP/4YHTp0QN++fREWFoZKlSqhb9++6NChAxal92euVasWPv30Uwe3lAqCry8wbRpw4ACwZQvg4gJ8/jmwZo3cv38/sGoVnKJIsW+fBPPy5YHu3fX95crJ733nDnDliuPaR0TOjaHcWhxTTkRETsrPzw+LFy/G9evXTTOxX79+HZ988gl8fX0BAA0bNkTDhg1t9pxnz57FsGHDUKVKFXh7e6NatWqYPHkyu8gXMu3aARMmyPXhw2UStEaNgAEDgJkzHdo0mzh2TLbh4RLCNW5uEswBdmEnIvthKLcWu68TEZGT8/PzQ6lSpVC6dGn4+fnZ9bmOHz8Oo9GIjz/+GEeOHMGcOXOwaNEijB8/3q7PS9abOBFo3hyIjQV++EHfP2MG8N9/jmuXLRw9KtusVvrjZG9EZG8M5dZiKCciIidlNBoxbdo0BAYGmrqvlyhRAm+++SaMdhqz1aVLFyxduhSdOnVC1apV0b17d7zyyitYt25dtj+TnJyMuLg4iwvZn7u7dFdv2RIYPFjWNX/wQSA5GRg1SiaFK6q0UF67dub7uCwaEdmbm6MbUOSYjSlnKCciImcyYcIELFmyBG+99RZatWoFpRT+/vtvTJkyBUlJSZgxY0aBtCM2NhalSpXK9v5Zs2Zh6tSpBdIWslS1KvD33/rtjz4C6tcHfvkFWLsW6N3bcW3LD1bKiciRWCm3FivlRETkpJYvX45PP/0Uzz33HBo0aIDw8HCMGDECixcvxrJlywqkDf/99x8+/PBDPPvss9k+Zty4cYiNjTVdIlnCdJiaNYHXXpPrY8bIZGlFTWwscOmSXM+qUs5l0YjI3hjKrcWJ3oiIyEnduHEDtWrVyrS/Vq1auHHjhlXHmjJlCgwGQ46X3bt3W/zMpUuX0KVLFzz22GN46qmnsj22p6cnAgICLC7kOOPGSQX94kVg8mR9f2QkcPq049qVW9okb+XLA4GBme9npZyI7I3d163FSjkRETmp8PBwzJ8/H/PmzbPYP3/+fISHh1t1rFGjRqFv3745PqZy5cqm65cuXcIDDzyAFi1a4JNPPrHqucixvL2lG/tDDwHz5gFDhgBnzwL9+gEpKcB77wGjR+trfxc2OXVdBzimnIjsj6HcWgzlRETkpN555x08/PDD+O2339CiRQsYDAZs374dkZGR+Omnn6w6VunSpVG6dOlcPfbixYt44IEH0KRJEyxduhQuLuzIV9R06SLjyb/5Rtb5jozUJ3578UVg717g448lwBc2dwvlWvf16GggMbFw/g5EVLTxU89aZhO92WkiWiIiIodo27YtTp48iUcffRQ3b97EjRs30KtXL5w4cQKtW7e2y3NeunQJ7dq1Q8WKFfHee+/h6tWriIqKQlRUlF2ej+xn7lzAz0+6eSsFPPMM8P778tXpiy+Ap592dAuzltPM6wBQqhTg4yPXL1womDYRUfHCSrm1WCknIiInVq5cuUyzrEdGRuLJJ5/EZ599ZvPn27hxI06fPo3Tp0+jQoUKFveporzGVjFUvrx0Y3/lFbm8+qp0Wa9bVyrpK1cCw4cDdjq/k2d3q5QbDNKF/fhx6QFQo0bBtY2IigdWyq3Fid6IiKiYuXHjBpYvX26XYw8dOhRKqSwvVPQMHgxcuQKMHauPIe/USarmAPDCCyhU359u3wbOnZPr2YVygDOwE5F9MZRbi5VyIiIiomxlNaHb9OlAiRLA/v3Ap58WdIuyd/y4bMuWBYKCsn8cZ2AnIntiKLeW2ZjyO3cc3BYiIiKiIqB0aWDqVLk+YULhWSrtbl3XNVooP3PGvu0houKJodxaZpXylBQHt4WIiIioiHjuOaB+feD6daBpU+DHHx3dotyH8saNZfvll8CJE/ZtExEVP5zozVpmY8oZyomIyBn06tUrx/tv3rxZMA0hp+buDvzyC/DYY8D27cAjjwAzZgCvv+6YNcyPHwe++kquZzfzuubhh4HOnYFffwWefBL44w9T50kionxjpdxarJQTEZGTCQwMzPESFhaGwYMHO7qZ5ATKlQO2bAFGjJBl08aPl3XMC3qZ2a++Apo1k+7o5crJGus5MRiATz6RJd+2bwfmzy+YdhJR8cBKubUYyomIyMksXbrU0U2gYsTDQ5ZOq1VLZmP/4APgxg1gwQIJvQBw6BDw3XfAE0/IUmu2dPAg0KePXH/gAWD1aiA4+O4/V6kS8O670g1/3Dip+JcrZ9u2EVHxxEq5tcwmektJkbO8RERERGSd558HVqyQr1ZffCGhd/x4YOBAIDwcmDgReOghWbbMlnbulG2rVsDGjbkL5JpnngEaNAASE4Ft22zbLiIqvhjKrWVWKQeA1FRHNoaIiIio6BowAPjhB6B6dSAmBpg1C1i5UooePj5SMX/2WdsWQbRlzcLDTV/rcs3FBbjvPrl++LDt2kRExRtDubXMJnoDwC7sRERERPnQpYtMurZ+vVTGe/cG9uwBfvpJqugrVgCLFtnu+bRQri1zZq369WV76JBt2kNExDHl1spQKU9JAXx9HdkgIiIioqLN1RXo2VMu5t56C3j1VWD0aOlu3qBB/p+LoZyIChtWyq1lNqYcYKWciIiIyF5efhno3h24c0eWIrPFsMH8hvJ69WR79ixw61b+20NExFBurfRKuTtDOREREZFdGQzSdb1ECenSPnt2/o5nNAKRkXI9r6E8KAgIDZXrR47krz1ERABDufW0MeUGjiknIiIisrfQUGDuXLk+ebKMP8+rqCipuru66sE6L9iFnYhsiaHcWqyUExERERWowYNlQrjkZBljnlda1/Xy5a2fed2c1oU9t6H8ueeAdu2ApCR937VrwN9/570NROQ8GMqtpU30ZmAoJyIiIioIBgMwZ45c//lnIDo6b8fJ73hyjVYpz82yaAkJwMcfy7rm//6r7x8yBLj/fuCvv/LXFiIq+hjKrcWJ3oiIiIgKXK1aQLNmQFoa8OWXeTuGrUK5eaX8bmuoHzumP0arrCulh3HzoE5ExRNDubW0MeWKoZyIiIioIA0cKNsVK/L287YK5XXqSPX+2jXgypWcH2teTT94ULZnzwJxcXI9P2Pkicg5MJRbSwvl4ERvRERERAWpTx/ptLhrF3DihPU/b6tQ7uMDVK8u1+82rtw8lGuP3b9f38dQTkQM5dbSxpSz+zoRERFRgQoOBjp1kusrV1r/87YK5YDehf1u48ozhnKjEThwQN/HUE6FTXIy0KQJ0Levo1tSfDCUW4vd14mIiIgcZtAg2a5Ycffx3BnZMpTndlk08/vj44Fz5yxD+dWrwPXr+W8Pka3s3SuXr76SJQTJ/hjKrZU+0ZsLFAwwMpQTERERFaAePQA/PyAiAliyJPc/d/u2Hn5tGcpzqpTHxAAXL8r1KlVke+iQZfd1IG9d8YnsRXtPKwVcvqzvT0mR1QTI9hjKrWW2qKUbUpGc7MC2EBERERUzPj7A88/L9aefBj75JHc/Fxkp24AAIDAw/+3QxpSfPZv9Y44ckW2lSkCrVnL9zz/1n2naVLbswk6Fifa+BYALF/Tr990HVK0qJ7jIthjKrWUWyl2Rxko5ERERUQGbPh0YNUquDx8u64DfjdZ1PSzMNm2oWFG2V68CSUlZP0arONarp1fWV62SbaVKQIsWcp2hnAoT894fWk+P2Fhg3z5ZbSBjTw/KP4Zya2WolDOUExERERUsFxdg3jzglVfk9muvAampOf+MLceTA0CpUoCXl1zXgktG5qG8QQO5fumSbMPDZe11gKGcCpesKuXnzun77ja5IVmPodxa6WPKAYZyIiIiIkcxGIC33gJKlpQq3q5dOT/e1qHcYNCr5eZdfM1pk7yZV8o1DRsylFPhc/06EBWl39be2+bDNBjKbY+h3FoM5URERESFgqsr8OCDcn3jxpwfa+tQDgAVKshWG68OANHRwM2bMkmWeaW8XDk5gaAxr5SfOcMVfahwMK+SA3ovEFbK7Yuh3FouLnIBx5QTEREROZq2brkjQ7lWTYyPl6BdpYqMHb9xQ7421qollXWtCzsglfLQUMDfH0hLA/77z3btIsorLXBrI3az6r5+6JD1yxFSzhjK8yL9XcpKOREREZFjdewo2507pUKdHa37rdbl3Ba0Y2mV8qNHZRm0mzeBgQNlX/XqgLe3XNe6sPv5SXA3GNiFnQoXrVLesqVss+q+fv269Agh22EozwuGciIiIqJCISwMuOceqTZv2ZL1Y+LiZF1zAKhd23bPnbFSfvKkbM1GO1qMJW/YULaNGpk6XuKee2R7/LgsNfXPP4DRaLs2EllDq5R37izbS5fk/WheKTd/HNkGQ3lepP9Py1BORERE5Hh368KuLeFUqRJQurTtnjfjRG8nTsj2iSeAiROlQv7oo/rjBw4Exo8H5szR92mV8jVrgJo1pUK5dKnt2kiUW0rplfIHH5SeHHfuyLJ/WiivUkW2DOW2xVCeF6yUExERERUadwvle/fKtnFj2z5vxonetEp5rVrAtGnArVvAgAH64z09gRkzgCZN9H1aKD9wQF8u7Z9/bNtOoty4ckW6pru4SA+PkBDZf/KkBHMA6NZNtgzltsVQnhfpoZwTvRERERE5Xrt2gLu7zGKe1YRp9grlWqX86lUgKUkP5VqXdPNu7Nlp1kwe5+cHPPKI7DOfATspCfjgA+DyZdu1mygr2vuuWjXp5VG+vNzevl22AQHA/ffL9YyhPC0NWL5c75VC1mEozwtWyomIiIgKDT8/fWKqb7/NfL+9QnmpUoCXl1y/cEEP5TVr5v4YlSrJz507B8ycKfuOHtVnt543DxgzRrrDE9mT+RJ+gN4T5O+/ZVu5sn7f4cP6e1QpYNQoYOhQuZD1HBrKZ82ahWbNmsHf3x9ly5ZFz549cUIbjJNOKYUpU6agXLly8Pb2Rrt27XAk4wJ6BY1jyomIiIgKlX79ZPv++1Jd1iQkAMeOyXVbh3KDQa+W79wpz+Xmpo+7za2qVSXg16ghXzPj4vT1obUq5b59tms3UVa0iFW3rmwzhvKwMHmPurvL8n/aMoOTJgGLFsn1M2cKrr3OxKGhfNu2bRg5ciR27NiBTZs2ITU1FZ06dcLt27dNj3nnnXfw/vvvY/78+di1axdCQkLQsWNH3Lp1y3ENZ6WciIiIqFAZOlRCxKVLwKef6vsPHpTZo4ODZV1wW9OCy++/y7ZqVQkteeHpKaEH0APS7t2yPXaMs7KTfWlDP7ThF1r39Rs3ZBsWJu9tbR6EffuAyZOB6dP1Y9y6JasIkHUcGsp/+eUXDB06FHXr1kV4eDiWLl2K8+fPY8+ePQCkSj537lxMmDABvXr1Qr169bB8+XIkJCRg1apVjms4x5QTERERFSqensC4cXL9rbeA5GS5rlWYbV0l12iVci2UW9N1PStalfLIERlHrlXMExP1ymRRcemSPnkdFS5ffw289JKMBddok7kFB8tWO+GkqVxZtloX9n79ZEJDQIK5r69c5/wH1itUY8pjY2MBAKVKlQIAREREICoqCp20KTUBeHp6om3bttiu9eXJIDk5GXFxcRYXm2OlnIiIiKjQGTZMqnsXLwJLlsg+e40n12jBRQvMtgrlR48C6XUqk6NH83fsgnTnjqzHHh6unyChwuO112Rpvn//1fdFR8u2bFnZZgzlYWGy1UJ5UpIsMbhsmSz1p/VEYSi3XqEJ5UopvPTSS7j//vtRL/0vHRUVBQAI1k7XpAsODjbdl9GsWbMQGBhoulTUTl/aEkM5ERERUaFjXi2fMUMqf/YO5Rm/ampdf/OqTh3ZHjmid13XFKVQfvashLxr1+Q6FS7XrslW68lgNOqVci2Ua93XNVoo79VLurA/+yxw4gQwZIjMr6AtoZZNTKMcFJpQPmrUKBw8eBCrV6/OdJ/BYLC4rZTKtE8zbtw4xMbGmi6R2sKRtsSJ3oiIiIgKpWHDgOrVJWx07w4cOiT77V0p19iyUr5rl1zX6lNFKZSbL01nPvnXzz9LV2dt5m4qeKmpMvYb0AP0jRv6nAWlS8s2YyjXuq/XqiVzHCxcKBMUalgpz7tCEcqff/55bNiwAVu2bEEFs//ZQtJPt2SsikdHR2eqnms8PT0REBBgcbE5VsqJiIiICiUvL+D774ESJYAdO6QbdcmSepXP1jJWyvMbymvWlK+acXHA5s2yb8AA2RalUG4exM2vP/20LO9mq9nkjUbg3XeBP/+0zfGKg/QRwwCAK1dkq3VdL1VKn6jQx0cP3d7eeljPDkN53jk0lCulMGrUKKxbtw6bN29GlQzrR1SpUgUhISHYtGmTaV9KSgq2bduGltpilI7Aid6IiIiICq1atYD16/Vw0bixdK+1B/NKuZ9f/md49/DQZ2BPSpIOmtpyb+brlxd25pXyiAjZxsbqE9fZagK4rVuBsWOB4cNtc7zi4OZN/bpW+8w4nlyjVcvDwu7+b4ihPO8cGspHjhyJFStWYNWqVfD390dUVBSioqKQmJgIQLqtjxkzBjNnzsT69etx+PBhDB06FD4+Pujfv7/jGs5KOREREVGh1q4dsHQpEBioh1p7KFVKqoiAVLltEf61ceWATKrVoIGE81u39FBrvhZ7YZRVpfzECX2fNqY5v7TJ8M6cKTonLBwtJka/nrFSXqaM5WO1k05a1/WccEx53jk0lC9cuBCxsbFo164dQkNDTZc1a9aYHjN27FiMGTMGI0aMQNOmTXHx4kVs3LgR/v7+jms4x5QTERERFXoDBkgAGTbMfs9hMOjBJb9d1zXauHIAaNrUsnp+7JhMXlemDPD887Z5vox27AAOHMjfMbIaU24eyrVJxfJr/37ZJifb7pjOzppKufbezs3wD1bK887NkU+ucnE6y2AwYMqUKZgyZYr9G5RbrJQTERERFQn26rZurmJF4NSp/M+8rskYygGpnh8/Ll3Yf/sNiI+Xrtt3c/QocPs20KxZ7p47JkZ6Gfj6SlBLr0VZRanMlXKlbFMpv3NHvoprf1fzkweRkZlDJWVmHsq1SnnGmdc1vXsDv/8OPPbY3Y/LUJ53hWKityKHoZyIiIiI0j30kEww17mzbY5n3n1dC+W1a8t2zRrghx/k+o0bOR/HaJSA3bq1ZZdlc5cuWa4jfvKk3L5xQw9s1oqOlhMBWnC+dQu4fj3/lfLdu+V1njlTbicmyokKjbZWPOUsY/d1pbKvlHfqJL0eOnS4+3G1UH71qpw8AeSkSVGaoNBRGMrzghO9EREREVG6V16R2dJbtLDN8WrWBKpUkXG89evLPi2o//OP/ri7hfJr1yQgJScDp09nvv/0aaBSJVl3WqNNygZI5VmzejUwbRqQlnb39mtd1ytW1CcKi4iwDNB5qZRv2iQnGj75RILkkSOW7bHHSsjOyLxSnpQk793sQrk1goJMMQnR0RL+778faNMGzEx3wVCeF2aVcvMzi0RERERUPGkzvduCh4eMG9+7F/D0lH3m1XNNUpJUi7NjHlLPns18/9atEmr//FOfJM2827n280oBzzwDTJ4MfPnl3duvHaNaNaBqVbl+6pRcNHmplF+4INvz56Xqro0n17BSnjsZe01cuZL9RG/WcHEBtFWrL1+WZe/i46WXhPnfnjJjKM8LTvRGRERERHZUooSsr6655x69O3i3bvpY75yq5eah/Ny5zPcfPCjbW7f0rupZhfLoaAlXADB1KpCamnPbtUp51apS8QfkBIB5MSsvlXItlAPAxo36eHJfX8v2Us7MK+WATPZmi0o5YDmu3Hwt+iNH8ndcZ8dQnhccU05EREREBcjbWyZrc3UFJk6UpdiAnEO5eYjNqlKuhXJAH++dVSg333fqFLBiRc5t1UK5eaX8559l6+Ul27xUys1D98aNeqW8Y0fZslKeOzlVyu0VyjmuPGcM5XlhNqbcaMzd2BoiIiIiovz4/nsJ0vfeq4fy7CZwA3KulCtlOXP5yZOyzSqUa+PMtUr9tGn6RF5Zyar7unaCoHlz2cbG5nyMrJifZNiyRQ/ljzxi2V7KWcZKeWSkvi+/odx8rXJWynOPoTwvzCrlACcuICIiIiL7K1tWH1uudW3Pa6X8wgXLcHbypHynNQ+2GUP5//4nY4YjIoClS7N/XvPu61oo1zRvLmOPAeu6sCcl6dV1f38gIUG61Ht46JXyS5esD/rFkfZ319YgP3xYtq6ulkMm8kKrlJ85YzmxHyvlOWMozwuGciIiIiJyoNx0X89YKdcmcwMsu64DEsrPn5fZzTP+vBbK69YFXn1Vrq9alfVzJiRIlRSwrJRrateWWboB60L5pUuy9fICevTQ99erJzO8e3jI76c9jrKn9a6oVUu22nuhdGn9hEleaaFcmylfm6hQO+lDWWMozwuzid4AvsGIiIiIqGBZG8pv3bKsjGtd17XuxidP6t3OtRm4L1+WyrMWyqtWlSWugKyXWAP0Y2gT1YWE6OPIAQmC2vGtGVeuVf0rVLBcDz48XIKkVvXluPK7094HWijXupbnt+s6oIdy7eRImzbSsyE1lTOw54ShPC/SK+UeLgzlRERERFTw7hbKjUbg4kW5rs3Ubt6FXauO/u9/sv3vPz003XuvZeVZC+VVqkj1G5BjZ7Ucm/kkb4CMQ9dmYAdkFvnSpeW6NZVy81CudVcHgIYNZVupkmw5rjxnSmWulCclydYWoVw7yaNp3FgfcpGxC3tSEjBrVual7YojhvK8MIVymeGNoZyIiIiIClJWodx8RvLoaKlyu7hINRmwnOxNC+Vdu0ol+84dYPNm2Vetml55jojQq89VqkjX84AA/b6MzCd502hd2MuUkep5fivlwcFA69YS+Nu0kf0VK8qWlfKcJSXp2UUL5RpbVso1jRrpoTzjZG8zZgDjxwOvvJL/5y3qGMrzIj2Ue7qyUk5EREREBS/j7OsXLwJdukjXbqNRD7GhoXpA1irliYn6EmgNGwI1asj1336TbdWqesj95x9ZacjDAyhXToJw9epyX1Zd2Pfu1Y+h0a7fc49s81spB4B162R2b1bKraN1XXdx0f+OGntUyhs2lLkIAMtQHh0NzJkj1zOuDFAcMZTnRXofIA+GciIiIiJygIyzr58+LV2To6NlfLgWTitUAMLC5LoWfo4eleBeurSEdi0sx8XJ1jyU//GHbMPC9EnAtJCvdVXX7N2rTwDXtau+v3Fj2d57r2zzUynX2lW6tN4DwHw/K+U5007ilCiROUBrf5f88PDQJ/Lz9ZUTPlooN+++PmsWcPu2XNcmBizOGMrzQquUc0w5ERGRzSQnJ6Nhw4YwGAzYz0GGRDnK2H3dfPmzf//VQ3nFikDlynJdq5Rrk7w1aCCV75o1LY9tHsr//lu25uPCswrlRiMwcqRs+/aV7uWaQYOAbduAN9+U27aolGfESnnuaJXyEiVkZvQSJfT7bFEpB/Swr03Cp4VybQb28+eBBQv0x8fHy6U4YyjPi/RQ7s4x5URERDYzduxYlCtXztHNICoSMoZybVI3ANi50zLEZqyUa+PJGzSQbcZQXqWKHspv3dL3abIK5cuWATt2AH5+wOzZlsdzdZWx3z4+clsL5dZUys0r/1lhpTx3tEq51tPCvFpuq1CujSvXhhZUqKDPwH7sGDB2rOSndu2kmg6wWs5QnhecfZ2IiMimfv75Z2zcuBHvvfeeo5tCVCTkFMrvVinft0+2Wvdv81AeEiLhWQu5mqxCuTamPC4OeO01uT51qow9z4nWTTq3lfKUFODKFbl+t1AeE8Oqa07MK+WATJqnsVUob9RIth06yNZg0Cd769gRWLNGrs+cqQf4y5dt89xFFUN5XjCUExER2cyVK1fw9NNP44svvoCPVkrLQXJyMuLi4iwuRMWNFsrj4qQCaR7KDxzQA7N5pTwmBtizB/jzT7ndqpVszUO5NilbbkL52bPy3L/9JgG7ShXg+efv3nZrK+WXL8t4eQ8P/WczCgzUZ4U378KemioVfH5fF+ZjygH7VMpnzpSK+KOP6vu0LuxXr8pzr14NtGihPz9DOVlPm+iNoZyIiChflFIYOnQonn32WTRt2jRXPzNr1iwEBgaaLhUzpgeiYsB8LPDNm5ah/M4dYPduuV6xonQd1kL8Cy9IwO3WTZ91PShIvz83obx8eQnIqakSgLWl1B5+GHB3v3vbzSvlSt398VpX/PLl9cnmsqK12TyUf/yxhL9337378xQHWqVc675uj0q5m5sst2Yw6Ps6d5btQw8Bhw/LvAOAXiln93Wynjam3MBQTkRElJUpU6bAYDDkeNm9ezc+/PBDxMXFYdy4cbk+9rhx4xAbG2u6RHJmJyqG3Nz0yvCNG3ooNw9ZgB5UtWr59u2yHTvW8nFatVwL3yVL6uN9zfcDUp/Swvt//wFbtsj19u1z13at2n3njj7je07uNsmbRpvszXyJLW32+MOHc9c2Z5ex+7pWqfb0lPkA7OXxx+V9+tNPcnJFw+7rgqE8L9JDuRsneiMiIsrSqFGjcOzYsRwv9erVw+bNm7Fjxw54enrCzc0N1dMXzm3atCmGDBmS5bE9PT0REBBgcSEqjrTq9rVreqjp2VO/38VFD11aKAeA++4D7r/f8lhaoNZmTTcY9EDv56cvc6XRurD//bcsdWUwAG3b5q7d3t564M/NuPLchnJtabdDh/R92vXiXIm9fVsfZ59xojftJE7ZspaVbXvQntMcu68LN0c3oEhipZyIiChHpUuXRunsBn+amTdvHqZPn266fenSJXTu3Blr1qxB8+bN7dlEoiKvVCkZ1338uHQld3EBuneXLtuATLiW/rXVNNkbIFXyjAFs+nRgzBjLtaorVpRjV6mS+fFaKP/sM9k2bKifJMiN0qUlLF69CqxdKzO2//ln5pnggdyHcm2CMW0iu6QkWYYL0CeKK06MRmDxYpmEz89PejVkrJRrPSDMT9oUJHZfFwzleZE+ppyhnIiIKH8qaf1N0/ml95+sVq0aKtztGzhRMaeFYK0aHBIiVXCN+T8hrbt5zZoS3DMyGCwDOaBXyrWfNaeFcm0JsgcesK7tZcpIN/Nz5+SEwK1bwM8/5y+UN24s2/37JZAeOwakScfWYhf6oqKA3r31deZjY4G9ezNP9Na2rZzEadnSIc1kpTwdu6/nhVYpB0M5ERERETlGxlBevrzs0yZwM5+sbfBgYPhwYMUKU33prurXl6223rQ5LZRrcjueXKN1pFm4UF8LXVuyDZDfqVs34L33gFOnZN/d5nSsVQvw8pKu2v/9p6/HDkgYTU62ro1F2axZEsh9ffVq+I4dmSd6c3EBnnkGqFfPIc3MVClXSk7SrF/vmPY4CivleaGNKWelnIiIyKYqV64MlZvpmIkoy1AOAM2bS5A1D7GBgcCiRdYdf8QICWva0mnmzEO5q6s+Fj23tKr8tm36PvNQPm8e8OOPctHcrVLu5iYnEnbtki7s5mPLASA6+u7B3llERMj23XcliI8fbxnKzWfvdyQtlF+9KkMw9u4FJk6UMe7mS6o5O1bK88IUyjnRGxERERE5hlbtjI6WrRbKX3pJAs1TT+Xv+B4ewIMPysRsGZmPM2/aVJ8JPreymnLCPJRr66xr4dHFxXIG+OyYjys3r5QDxasLu/aeMB/SsGNH5oneHK10aTmpo5SM+9+7V/ZHR+s9KIoDVsrzQgvl7L5ORERERA6ScWI1LZQ3agSsW2ff5/b0lKrz+fPWd10HLMev16ghlf2sQvlPP0k4MxiyDvIZaaF87169Uu7hId/Xi1Mov3pVtmXLAuHhclJDG/8PFJ5KuYuLzAB/6ZL8fQ4c0O87e1YfQuHsWCnPi/SBOAzlREREROQo2YXygtK+vdSq/vc/63/WPGBPmSLbmzflkpioT+5WsybQqRPQsWPujqtN9vb33xLyDAZ9ErPiNAO7VikvW1ZmXs8YbgtLKAcsJ3vbv1/fr3XBLw4YyvNCq5QrhnIiIiIicoyMobygFyxYuFBmT2/SxPqf1cYSh4QAjz2mh/Rz54AzZ+R6iRLWLbMGSPh0dZXl1gCZOV4b/15cKuWJifq65FqPBPNZ+b285FJYaO+FixcthxyY95xwdgzleZEeyl0hY8qL00yORERERFQ4OLpS7uUla6HnRefOwCuvACtXAu7u+jrqZ8/qXderV8+8PvrdeHvLLOya+vX1Sqx5KHfm7+9a13V3d5ngDwBatNDvL0xVckAP5X/9BSQk6PtZKaecmUI5K+VERERE5BiODuX54e4uM4Nr49GzC+V5oY0rB4AGDWTMMqB3Xz90SILpuHF5O35hp4XyMmX0kxrmlfLCMsmbRjtp8uuvlvtZKaecaaGc3deJiIiIyEHMw1VAgIwdLqqyCuUZ10LPLfNQnlWl/NdfgaQk4Lff8nb8ws58PLmmRg39/VJYK+XayQRt2TpWyiln6RO9MZQTERERkaOYV8qLUpU8K/aslGcM5UePyvby5bwdv7Azn3ld4+KiV8sLWyjX/j6anj1ly0o55YyVciIiIiJyMG9vfcIuhnJdkyYycVzlylJtz9h9XQvlV64ARmMeG1yIaZVy82XnAH0WevOwXhholXJNjx6yjY3V11V3dlynPC/SQ7mLkoneGMqJiIiIyBFKlZI1np0llJ8+rU/2lddQHhAgS2u5uUkHV60Se+uWzMquhfLUVODGjdytf16UZNV9HQBGjJBZ2YcOLfAm5cg8lBsMwL33yomUK1fkJE1hGwNvD6yU54W7OwDALU2mbWQoJyIiIiJH0LqwO0soj4+X6rWvr17hzovy5fWf9/eXXgUAsGePhHONMy6TZj7Rm7lSpYC33rKcnb4wMO++Xq2a/L2090NxGVfOUJ4X6WsLeCTGAmAoJyIiIiLH0EJ5Qa9Rbmu+vpYhMi/LoWXHYNAD+pYtlvc5YyjPrlJeWHl56ePcGzaUbZUqsi0u48oZyvMi/V3jkRgLA4wM5URERETkEH36AFWrAp06Obol+adVR4G8d13PjlaN3bzZcr8zTvaWXaW8MNP+PlooZ6Wc7i49lBuUgj9uMZQTERERkUOMGAH891/elw8rTAoilP/zj+V+VsoLh/Bw2bZrJ1vzif8AmTfhwoUCblQBYijPCy8vwNMTABCIWIZyIiIiIqJ8smco17qv37kjW20Mvq1CeVIScOKEbY6VX1ktiVbYLVkCHDwItGolt7Xu6xERwPXrEtobNpQ5B5wRQ3lepVfLS+AmQzkRERERUT6Zh3JbV/4zroXdoYNsbRXKn31WJlDbutU2x8ur27f12euLUvd1X1+gfn39tnml/O23gWvXJJxv3+6I1tkfQ3leMZQTEREREdlMQXRfBwAXF6BNG7lui1B+6xbw5Zdy/fff83+8/NCq5F5egJ+fY9uSH2Fhsr19G5g7V9+/bZtDmmN3DOV5xVBORERERGQzVavK1tvb9ku8mS+vVq2afgLAfKK3uDi9e7s1vv8eSJaVknH4sL7faJTx/kpZf0wAmDED+OAD635GG09epoztZq93BE9PoFw5uX7njmnkMEM5ZcBQTkRERERkM/fcA0yZAixaJNVsWzKvlNepA4SGynWtUh4dLcvKPfSQ9cf++mv9unkonzdPKv6ffGL9MSMigDfeAF58UarFuVUUJ3nLjjauHADmz5ftv//q3fOdCUN5XjGUExERERHZjMEATJ4MDB5s+2ObV8rr1NFDekyMVLn//lu6of/5p1S4c+vWLeDnn/Xb//2nh8Yff5Tt3r3Wt3f3btkqBZw5k/ufK4qTvGVHC+Xt2wPDhknviTt3gB07ZP+xY8CGDY5rny0xlOcVQzkRERERUZGQMZSXLAm4u8vtK1dk5m8ASEnRq825oXVdr1FDuowrJWHRaJSqLpC3cet79ujX//sv9z9n3n29qBszBvjf/4CFC+WETdu2sn/bNiA2VuYF6NEjbyc9ChuG8rxiKCciIiIiKhJ8fU1f31GvnoQ8rVoeFaWHcgA4dy73x9W6rj/2mBwXkC7sx4/LGHXt+NbKayh3pkp5kybAN98ANWvKbfNQrs3IDkgvh6LOzdENKLIYyomIiIiIioyPPpK1xMPD5XZICBAZKZO9ZQzlzZvf/Xg3buhd1x9/XLqyb9kCHDoEpKXpj7M2lCtlWf0trpXyjLRQvmMHsHOnvt/8BEZRxVCeV2ah/M4d+cdTlGc4JCIiIiJyZv37W97WJns7fdoy+J4/n/NxlALWrgVGj5au6zVrAg0a6OtsHz4sAV0TFWVdVjh3TgK/prhWyjOqWVOGIVy5IrdLlABu3tTH3xdl7L6eV2ahHMjb8glEREREROQYWvf133+3XLYsp+7rSsmkY489Bly6JLOrr1ghgdu8+7p5JTclRcJjbmmVX7f08unp0/p9L70EdOqkL8GWkTPNvp6R+bhyAFi+XLbHjukz1N+4AXz3HZCUVPDtyw+G8rzKEMrZhZ2IiIiIqOjQQvnWrZb7cwrly5YBS5dKYJ44UbqqN2sm99WtK9uLF2U/oE8mZ74e+t1oXdc7dtTbc+cOEB8v65Zv2gTs2pX1z2qVcmfsvg7IxG4AMHAg0L279HYwGoEDB2T/kCFAz57yN9H2FQUM5XnFUE5EREREVGRpoTwxUbZaqM4ulJ85A7zwglx/801g2jTAy0u/PyAAqFRJrhuNsu559epyO6tx5a+9Jl3er1+33K9Vyh95RI6fliZd6nfv1pdrO3Uq8/GUcu5KOQD06ycnJD77TG43aSLbPXvkddTG+B8+LMFce1xhx1CeV4GBABjKiYiIiIiKIi2Uax55RLZZjSlPTZX10+PjgdatgVdfzfqYWhd2ALjvPssZ3s398w/wzjsSHjdt0vcrpYfypk2BqlXl+n//WXaJzyqU37qld2t31kq5wSCvi9YDQQvlu3dLt/W0NKB2bamW37kj4/7NhyYUVgzleZVeKQ9ELADFUE5EREREVIRoE71punWT7c2b+nJmmqVLZektf3/g888BV9esj6lN9gbIDO7ac5iHcqVkbLjm+HH9emSkLPXl5ibHqlZN9ucmlGtd5H19AR+frNvnbJo2le2ePbJ8GgAMGACsXi3X4+OtG8/vKAzleZUeyl1hhB/is51sgYiIiIiICh/zSrmbmwS8UqXkdsYu7EuWyHbiRKBy5eyPaV4pb94860r5V1/Jsl6aEyf069p48rp1peu6eSg3/5msQvmUKbJt0CD79jkbrVJ+7Bjw229yvXdvee1KlpTb1ozndxSG8rzy8gI8PABwrXIiIiIioqImOFi/XqsW4OkJhIXJbfMu7CdPSpXa1RUYNCjnY2qVcldXCYwZQ3lSkowlB6R7O2BZKde6rmthUwvl27ZZhsvTpy27Za9bB3z5pTzvvHk5t9GZhIbqk73duSMnRe65R+7TXnuGcmdmMFhM9sZQTkRERERUdHh7m6aJMlWXtYnazCvlX3wh206dMo9Dz6hBA2DcOGD+fOlCnjEYfv21HLt8eWDhQtl38qQ+gZu25nbGUK7tr1MHcHGRJcC0Y167Bjz3nFx/7TW9S3dxob1WgFTJNVkNHSisGMrzg6GciIiIiKjI0kKzFsq1SrkWyo1GPZQPHnz34xkMwMyZwLPPWh5fC4ZauH78cemi7u4OJCQAFy5I5Vtb6kxbZk2bvV3TurXefV7rwv766zLrer16wKRJd2+jszE/CZFVKGel3NkxlBMRERERFVnh4bJt21a2WqVc677+558S0AMC9DWyrZGxWqutX96ggQRyrRJ+/Dhw9qws6+XubnmSwMUssTVvDtSoIddPnZKTBuvWye0PPpAu+MVNq1ayrVtXehJospv5vjBiKM8PhnIiIiIioiJr6VLg6FF9fHfGSrlWJe/dW7q7W0sLhteuyZjngwfltha6a9WS7YkTepU8PFwP1x4e+okCIHMo378fiImRWeHbtLG+fc6gQweZbX3dOumpoClKlXI3RzegSGMoJyIiIiIqsnx8ZF1rjXkov3FDZkoHctd1PSulSsnM7qmpEqCvX5fKt/ac2qRkx4/r1Xmt67qmWjWpogcESIg3D+WbN8v1tm3leYojgwHo2zfz/qI00Vsx/dPZCEM5EREREZHT0KrSly/L8me3bslY7dat83Y8FxeZ5f3iRWDjRtlXs6Zeddcq5cePS3AHgHvvtTxGtWrA779LWHdxsQzlSUlyvX37vLXPmXGit+KCoZyIiIiIyGmULSsrHysFLFgg+95/33Jct7W0iq0Wys3XEdcq5UeP6muUZ6yUd+sm2wEDZKuF8tOngT/+kOsdOuS9fc4qq+7rsbHA1auOaU9OWCnPD4ZyIiIiIiKnYTBItfzkSbndtSvQsWP+jqmFw+3bZautZQ7ooVyr5vr66tVzzSOPSEXcw0NuV64sXdW1KnmZMlLNJ0vayZCbN+W18vQE7r9fXuvjx4GgIIc2zwIr5fnBUE5ERERE5FS0LuyursC77+b/eFo41Lqnm1fKS5WS6rymSRN53ow8PfVJzNzcgCpV9PseeCB/lXxnVaKEPmFeVJRUzA8flkn3Nm1yaNMy4Z8vPxjKiYiIiIicilZ1Hj7ccomtvNJCucY8lAN6tRzI3HU9O1oXdoBd17NjMFh2YT9yRL9PG0pQWDCU50d6KA9ELJKTHdsUIiIiIiLKv4kTgVWrgDlzbHM881Du76/P8K4x766el1DOSd6yZ75WecZQrpRj2pQVhvL8MKuUr19fuP6wRERERERkvVKlgH799DHc+WUeyuvXt1xLG7CslGeceT07WiivVElmZ6esZVcpv3gROHYs8+NjYmQCvYLGUJ4fgYEAJJRv3SpLFRAREREREWm0YAhYTvKm0SrlQUEyiVtuPPoo0LAh8PrrmUM+6cyXRTt6VK67u8tW68L+888yBCA0VD8hU9A4+3p+pFfKSxpuAkph/HgDOnTgPwwiIiIiIhLmlfKM48kBmd196FCgXbvc54hy5YB9+2zROuemvfbmlfJ+/YDPP5dQ3rUr0KuXPpM9ANy+LT2gCzLTsVKeH+mh3FWloazPbezaBXz7rUNbREREREREhUhwsH49q1Du4QEsXQoMGVJwbSoutEr5nj2yRrmrKzBqlOzbtk1OhiQlyQz2//4LxMVJRb2gi6wM5fnh7W3q//DKUzcBABMmgDOxExERERERAFl7vGFDCecNGzq6NcWLVinXehVUrw40bSp/i4QE4J9/ZPK9Zctkkj1/f8e0k6E8PwwGU7X82b43Ubq0TBjw9tuObRYRERERERUeO3YA//0H+Pk5uiXFi/l4fgCoW1ciXKdO+r5339XXpncUhvL8Sg/l/mk3MW+e7HrzTcvZ/YisduUKcPIkYDTa/thK2ee4RERERJQlT0+pmFPByiqUA0Dv3rLt1Al45pmCbVNWONFbfqWHckRFoW/sx7jUyA+v7OuPJ580YPt2GbdAhP37gY8/Br76CkhLk5n7K1YEnn0W6NNHnwby7FlgxgzpQ5Oaqvd36tQJ6NlTpuxMTQWio4E//wQ2bQJOnZL/cSpWlP9pWrWSdTKUAm7elOfesgXYvh04f17WgDAagSZNgObNgSpVpD1ubsC5c8CZM/rl0iU5dVinjgyCatECuO8+mZoSkLbs2CHTVp4+LbNo3Lwp7alUSaYTbdkSaNxYPo20nzlyRAb3APLcZcrI7xkQYPm63bwJbN4sr0tKivxsUBBQvrw8R4kScsr55Elpx5EjwK1b0h8pOBho2xZo00amMtVe47Q0Oelx6BCwd6+8fjdvyiCiEiXktataVdri4wMkJ8vjb9yQISv+/nJfQIBcv30buH7d8pKWJo/18ZHfLSREricmysClpCS5npwsv9edO/rWaJTfKSBA/iZpafJ7axelZL/5xcdHXpOKFeU9YzTK8c+fByIi9MuFC/KfkpcXULasvD7t28trlZYmP3P5suXlxg15zUNDZc2W++/PvEZMZCSwfr1sb96UdoaHy7oujRrJa2FOKeDECeDvv2X7338y0KtWLaBePbnUrQuULKk//uRJ4Icf5H1vMMjrU6YMULu2PDYsTH4nV1c51oUL0p7ISODaNfkbhIXJujGVKnFGTiIiomKgbFn5yNeWrq5TR7bdu8vXwDp1CsdXAoNShX917QULFuDdd9/F5cuXUbduXcydOxetW7fO1c/GxcUhMDAQsbGxCMj4hd8WOnWSYOThYRpMvtJ9CIbdWYRnnvfCnDkM5kVaSgrw0Udyad8emDJFprvM6M4d+UMbDBJON2+WwHH2rFwiI7N/Di30nj8vwSM1VfZ7eVlOBQlIsE1Ovnu7/fwkYKWl5fIXtZK/vwSmW7dkQce7cXeXEOXlJaHt9u3MjzEYJGCVLy+3b96U4G6rqn5QkLQjOpo9BfIjIECmiQ0OltfxyBEJytlxc5MTOg0bysmSK1eAw4eBq1fv/lxlysinaGJi1u+ZjFxc5D2WkJDz4/z85L1WooS8J8wvt2/Ley8pSd6LlStLoNdOxNSqJSeZ8snun03FDF9PIiLKTnCwfP0DgIMHs16Wzh6s+Wwq9KF8zZo1GDRoEBYsWIBWrVrh448/xqeffoqjR4+iUi46/9v9g/rxx4Gvv5broaHyhdNoxA40xzy8gJDmlTH5k/LwDC6B6yn+8AtwQUBA4TgjUygYjXoF0LwiqF3Pal9uricnyxfz27dlm5CgB2dXV/mSf+uWfPm+fFkWLyxbVqqATZtKGI+OBj78UCp5Gm9vYPhwqTDWqSPTNi5ZAuzcKfe7umYdhN3dZUHJZ54BKlSQ5/39d+CDD/T/JTQdOwJTp0qV8cQJmYFiwwZZt0EL6QaDVBM7dpSAEB0tVe49e4BduyyDe4UK0t62bSVQlCsnr9G//8rlyhWpEicnywmCqlX1S0iIHPfoUTmd+PffcuLAXKlSwEMPyesWGiqV76go+bn9++VnMgYwf3+ZTcPbW16LCxfk8VmpVUuqrV5eErquXZNq/5UrUhGNi5Pw1KKFvBYlS8pxT58Gtm6V3zHj7IsGg1TEmzSRKmupUtKma9ekcn72rP7+8fCQ/82DguQ1iouzvPj4yH2lS8s2KEh/j92+LX+bK1fktre3XLy8ZOvpKcfXAqGHh7QtPl7en6mpejXc1VW2QObq+a1bemU4OVleJw8PqZxXqSLBskoVvUKclCS/5++/A3/9pb9fPDzkbx4aql+CgqT6f+mS9Ea4ciXz38hgkB4JTZvK399olPfizp2Z398aLy/pqREeLtVrf3/g+HEJ7IcPy0kqcx4eslZM587ymsfFSZuOHpXL5cuWJ1tKlJDfv2JF+dto78kzZ+T/grwaPhxYtCjvP5+OIdK2+HoSEVF2GjYEDhyQr1K3b+udN+3NqUJ58+bN0bhxYyxcuNC0r3bt2ujZsydmzZp115+3+wf1hg1SPR08WLoi//WXBPUsqodGGHAL/ogzBCLB1R9GowFp2ndIgwEGADDo1xUAhazTu8Hsz2YwyHUXKMCgHUJph4VBO4r5dch17YYB+vFcDAouBsDgkn7dJf0kglLSKIPZc2nHNLtu+jWUEQZjKlyMqTAY02Sbpl93SUu18sV2jMSAsvj3/pdR5dB3qBS5/a6PV+4eSGnaEsa27eBRvxZcq1SSbr+lSkEpyVMpKemX2ES4fb8erneS4FG9EtxqVkVSuaq4fVteTz8/yW4uLtCrjCVKSMUuuy4YyckSPAICJIzY+n+emzclaMXESMMaNdLDYpYviJLAeOuWhEFvb6Bmzcztv3IF2L1bjg9ISL3vvrvPvHG3hSSNRumCHRUlYSwkRCqwObW5ODEa5TU0/UPPnkozIvnv3TD+vhnuqUlw83CBIagUjN17Iql0BYue9S4u6f8fREbKiZHDh+U9GRIiJwmaNMn5vRkbKydH3NwkwIeE5DwYLy1NTv7cuiUnE7KbSefOHTkhcfy4frLO/OLjIyd23N31k0XXrv2/vXsPjqq++zj+OZsNm8sT0kAechEMMLWlgCINyigoLbQMeKEq1UIhpI8dbSxgkJaCBYfLjKIwxV6oMLTKP+LgQwsM1SoNSqnYsSAhEhGBGa4CeVK8JCFAbvt7/tjuhk02YYMh58L7NXMmm9/57eb3WTb58tvfOWeb34T53veaP0vlS2AS2bl4PgEAbRk3Ttq6NbTOc+BA1/1cz0zK6+vrlZKSog0bNuj++++PtBcXF6usrEw7duxodZ+6ujrVXbJKWF1drT59+nRtoT5yRFq2TOfe/1hflB3TfzedUUB8TlpHNMmnJiWoUX41yn/Z2y3b6hRQrVJ1Xik6rxTVKlUNSpRfTUq0GnXRl6xaK03VvnSdaszWmWAv9dUx3aF3dKPKVaM0fa4MlelmrdBsVStdktE9ek0PaKOGaq8G6iMd1g16SQ/rf/WQLihZAdXpM/XQRTWfQ5uUFPr/fXgifiW/cZE3PVps4XlUrPakpNAWPi05GAx9DW/h78P9ExJCX33/ufxj+Hpw4Tnbpbf9/tB8yu9v3SecL9bYYuWKp629dql5DC1zhtvDE8XwgrTfH9/RKuE+sXJcetuY5twtb19u/5X27er7Sc2ntIf5/aEF7LaOFo9Mzq32v15ui/Xch7XX1pYvs3/SJGnBgvbvHw8mkZ2L5xMA0Jb/+Z/Q5ZomTpT+9Keu+7kdqU2OXio6e/asmpqalJWVFdWelZWlioqKmPdZunSpFi9e3BXDa1v//tLq1fovSYGG0FGYPVMvKl1Vuvh/Vfr0SJVqK88pOUlKTgqtRDc1SU2Npnky0WQiq9OR/3TKRP0PNHzRAiMrMvkImhi3Y7RJoZV7mebHMCa0v7HxP9ejqrMi16NqaLTkS5B8ltQUDPVpaLTU0PCfld8Gq/kI8mDzz603iWoIRk+YG4xfDcavRpOg+qBfDcHQ18jtpgQ1Bn2tJpHxbHFNeI2kNk61fiXlkchppj5faNHs1pzQke1paZaSk+/V4eR7dTJJ2trN6NRpSwcPSinHJOtC6LlKuCD5LjQfSRu+rldbEhMvfzTtpROkeFVVdaw/0FHh3/n29nvNmTN2jwAAAHRE+LPh77zT1mG0y9GT8jCrxbKFMaZVW9iTTz6p2bNnR74Pr5TbJTExdLqklCQpScnZWeo9xLbheF54tbYjk/jwab1paaGV5fi1vZxmTGhVvLY2dHpwfX3zz7l0C6/Yhq9lFT66Oykp+vpW4RXollt77eE3Axobm0+lv3RFPPxVal5RDj93Utsrm5YVeszwxdBjrWrGGl+s5yietpbtLfuEj7y+NNelecNveoWPTm5sjO+U4pYrxrFWkS89cr6tVfR49l9p367+GeELvQcCoddWdXXodZCaGtp8vubnN/z10tdAyyMqWh6F0d7W1msg1ushls5qD1+HEAAAuMPMmdKYMaFrvDqVoyflmZmZSkhIaLUqXllZ2Wr1PCwQCCjQVWfvw3Esq3lCZvc4AoHQFv70sMv1T0kJbZe2hSc7gNN069b6E+wAAACcxucLXR/ZyXx2D6A93bp1U35+vkpKSqLaS0pKdPvtt9s0KgAAAAAAOoejJ+WSNHv2bP3xj3/USy+9pAMHDuiJJ57QiRMnVFRUZPfQAABAJ3n99dc1fPhwJScnKzMzUw888IDdQwIAoEs4+vB1SfrBD36gTz/9VEuWLNGZM2c0ePBg/fWvf1VeXp7dQwMAAJ3gz3/+sx555BE988wzGj16tIwxKi8vt3tYAAB0CUd/JFpn4GNSAABOQ21q1tjYqL59+2rx4sX68Y9/fEWPwfMJAHCajtQmxx++DgAAvKu0tFSnTp2Sz+fT0KFDlZOTo/Hjx2v//v1t3qeurk7V1dVRGwAAbsWkHAAA2ObIkSOSpEWLFmnBggV67bXXlJGRoVGjRumzzz6LeZ+lS5cqPT09stn50acAAHxZTMoBAECnW7RokSzLand7//33FQwGJUnz58/XxIkTlZ+fr7Vr18qyLG3YsCHmYz/55JOqqqqKbCdPnuzKaAAAdCrHX+gNAAC4z4wZMzRp0qR2+/Tt21c1NTWSpIEDB0baA4GA+vfvrxMnTsS8XyAQUCAQ6LzBAgBgIyblAACg02VmZiozM/Oy/fLz8xUIBHTw4EGNHDlSktTQ0KBjx47xSSsAgGsCk3IAAGCb7t27q6ioSAsXLlSfPn2Ul5en5cuXS5IefPBBm0cHAMDVx6QcAADYavny5fL7/SooKNCFCxc0fPhwvf3228rIyLB7aAAAXHV8TjkAAF2M2tS5eD4BAE7D55QDAAAAAOACTMoBAAAAALCJ588pDx+dX11dbfNIAAAICdckj59B1mWo9QAAp+lIrff8pDz8+ad9+vSxeSQAAESrqalRenq63cNwPWo9AMCp4qn1nr/QWzAY1OnTp5WWlibLsr7UY1VXV6tPnz46efKkJy4k46U8XsoikcfJvJRF8lYeN2Uxxqimpka5ubny+TiT7MvqzFovueu1dDleyiJ5K4+XskjeyuOlLBJ57NKRWu/5lXKfz6fevXt36mN2797d0S+AjvJSHi9lkcjjZF7KInkrj1uysELeea5GrZfc81qKh5eySN7K46UskrfyeCmLRB47xFvreXseAAAAAACbMCkHAAAAAMAmTMo7IBAIaOHChQoEAnYPpVN4KY+XskjkcTIvZZG8lcdLWWAvL72WvJRF8lYeL2WRvJXHS1kk8riB5y/0BgAAAACAU7FSDgAAAACATZiUAwAAAABgEyblAAAAAADYhEk5AAAAAAA2YVLeAS+88IL69eunpKQk5efn65133rF7SJe1dOlS3XLLLUpLS1OvXr1033336eDBg1F9jDFatGiRcnNzlZycrG9961vav3+/TSOO39KlS2VZlmbNmhVpc1uWU6dOaerUqerZs6dSUlJ08803a8+ePZH9bsrT2NioBQsWqF+/fkpOTlb//v21ZMkSBYPBSB+n5vnHP/6he++9V7m5ubIsS5s3b47aH8+46+rqNHPmTGVmZio1NVUTJkzQJ5980oUpmrWXp6GhQXPnztWNN96o1NRU5ebmatq0aTp9+nTUY7glT0s/+clPZFmWfv3rX0e1OykPnI1a7yzUemdxc62XvFXvqfXeqvVMyuP06quvatasWZo/f7727t2rO+64Q+PHj9eJEyfsHlq7duzYoenTp+u9995TSUmJGhsbNXbsWNXW1kb6LFu2TCtWrNDKlSu1e/duZWdn67vf/a5qampsHHn7du/erTVr1uimm26KandTls8//1wjRoxQYmKi3njjDX300Uf61a9+pa985SuRPm7K89xzz2n16tVauXKlDhw4oGXLlmn58uX63e9+F+nj1Dy1tbUaMmSIVq5cGXN/POOeNWuWNm3apPXr12vnzp06d+6c7rnnHjU1NXVVjIj28pw/f16lpaV66qmnVFpaqo0bN+rQoUOaMGFCVD+35LnU5s2b9a9//Uu5ubmt9jkpD5yLWu8s1Hrn5XFzrZe8Ve+p9R6r9QZxufXWW01RUVFU24ABA8y8efNsGtGVqaysNJLMjh07jDHGBINBk52dbZ599tlIn4sXL5r09HSzevVqu4bZrpqaGnPDDTeYkpISM2rUKFNcXGyMcV+WuXPnmpEjR7a532157r77bvPwww9HtT3wwANm6tSpxhj35JFkNm3aFPk+nnF/8cUXJjEx0axfvz7S59SpU8bn85k333yzy8YeS8s8sezatctIMsePHzfGuDPPJ598Yq677jrz4Ycfmry8PPP8889H9jk5D5yFWu8c1Hpn5vFKrTfGW/WeWu/sPPFgpTwO9fX12rNnj8aOHRvVPnbsWP3zn/+0aVRXpqqqSpLUo0cPSdLRo0dVUVERlS0QCGjUqFGOzTZ9+nTdfffd+s53vhPV7rYsW7Zs0bBhw/Tggw+qV69eGjp0qP7whz9E9rstz8iRI/XWW2/p0KFDkqQPPvhAO3fu1F133SXJfXnC4hn3nj171NDQENUnNzdXgwcPdnS2sKqqKlmWFVm5cVueYDCogoICzZkzR4MGDWq13215YA9qvbNQ652Zx6u1XvJ+vafWO5vf7gG4wdmzZ9XU1KSsrKyo9qysLFVUVNg0qo4zxmj27NkaOXKkBg8eLEmR8cfKdvz48S4f4+WsX79epaWl2r17d6t9bsty5MgRrVq1SrNnz9Yvf/lL7dq1S48//rgCgYCmTZvmujxz585VVVWVBgwYoISEBDU1Nenpp5/W5MmTJbnv3ycsnnFXVFSoW7duysjIaNXH6X8jLl68qHnz5umHP/yhunfvLsl9eZ577jn5/X49/vjjMfe7LQ/sQa13Dmq9c/N4tdZL3q731Hrn5WmJSXkHWJYV9b0xplWbk82YMUP79u3Tzp07W+1zQ7aTJ0+quLhYf/vb35SUlNRmPzdkkULv+A0bNkzPPPOMJGno0KHav3+/Vq1apWnTpkX6uSXPq6++qpdfflmvvPKKBg0apLKyMs2aNUu5ubkqLCyM9HNLnpauZNxOz9bQ0KBJkyYpGAzqhRdeuGx/J+bZs2ePfvOb36i0tLTDY3NiHtjPrX+jwqj1zkKtD3Fqnli8Vu+p9c7LEwuHr8chMzNTCQkJrd5lqaysbPVumlPNnDlTW7Zs0fbt29W7d+9Ie3Z2tiS5ItuePXtUWVmp/Px8+f1++f1+7dixQ7/97W/l9/sj43VDFknKycnRwIEDo9q+8Y1vRC4o5KZ/G0maM2eO5s2bp0mTJunGG29UQUGBnnjiCS1dulSS+/KExTPu7Oxs1dfX6/PPP2+zj9M0NDTooYce0tGjR1VSUhJ551xyV5533nlHlZWVuv766yN/F44fP66f/exn6tu3ryR35YF9qPXOQK0PcWoer9Z6yZv1nlrvzDyxMCmPQ7du3ZSfn6+SkpKo9pKSEt1+++02jSo+xhjNmDFDGzdu1Ntvv61+/fpF7e/Xr5+ys7OjstXX12vHjh2OyzZmzBiVl5errKwssg0bNkxTpkxRWVmZ+vfv75oskjRixIhWH1lz6NAh5eXlSXLXv40UutKnzxf9JyUhISHyMSluyxMWz7jz8/OVmJgY1efMmTP68MMPHZktXKQPHz6sbdu2qWfPnlH73ZSnoKBA+/bti/q7kJubqzlz5mjr1q2S3JUH9qHWOwO13tl5vFrrJe/Ve2q9c/PE1JVXlXOz9evXm8TERPPiiy+ajz76yMyaNcukpqaaY8eO2T20dj322GMmPT3d/P3vfzdnzpyJbOfPn4/0efbZZ016errZuHGjKS8vN5MnTzY5OTmmurraxpHH59Irshrjriy7du0yfr/fPP300+bw4cNm3bp1JiUlxbz88suRPm7KU1hYaK677jrz2muvmaNHj5qNGzeazMxM84tf/CLSx6l5ampqzN69e83evXuNJLNixQqzd+/eyBVK4xl3UVGR6d27t9m2bZspLS01o0ePNkOGDDGNjY2OytPQ0GAmTJhgevfubcrKyqL+LtTV1bkuTywtr8hqjLPywLmo9c5ErXcON9d6Y7xV76n13qr1TMo74Pe//73Jy8sz3bp1M9/85jcjHzXiZJJibmvXro30CQaDZuHChSY7O9sEAgFz5513mvLycvsG3QEtC7XbsvzlL38xgwcPNoFAwAwYMMCsWbMmar+b8lRXV5vi4mJz/fXXm6SkJNO/f38zf/78qD/+Ts2zffv2mL8nhYWFxpj4xn3hwgUzY8YM06NHD5OcnGzuuecec+LECRvStJ/n6NGjbf5d2L59u+vyxBKrUDspD5yNWu881HrncHOtN8Zb9Z5a761abxljTOesuQMAAAAAgI7gnHIAAAAAAGzCpBwAAAAAAJswKQcAAAAAwCZMygEAAAAAsAmTcgAAAAAAbMKkHAAAAAAAmzApBwAAAADAJkzKAQAAAACwCZNyAFedZVnavHmz3cMAAABXCbUeuHJMygGP+9GPfiTLslpt48aNs3toAACgE1DrAXfz2z0AAFffuHHjtHbt2qi2QCBg02gAAEBno9YD7sVKOXANCAQCys7OjtoyMjIkhQ43W7VqlcaPH6/k5GT169dPGzZsiLp/eXm5Ro8ereTkZPXs2VOPPvqozp07F9XnpZde0qBBgxQIBJSTk6MZM2ZE7T979qzuv/9+paSk6IYbbtCWLVuubmgAAK4h1HrAvZiUA9BTTz2liRMn6oMPPtDUqVM1efJkHThwQJJ0/vx5jRs3ThkZGdq9e7c2bNigbdu2RRXiVatWafr06Xr00UdVXl6uLVu26Ktf/WrUz1i8eLEeeugh7du3T3fddZemTJmizz77rEtzAgBwraLWAw5mAHhaYWGhSUhIMKmpqVHbkiVLjDHGSDJFRUVR9xk+fLh57LHHjDHGrFmzxmRkZJhz585F9r/++uvG5/OZiooKY4wxubm5Zv78+W2OQZJZsGBB5Ptz584Zy7LMG2+80Wk5AQC4VlHrAXfjnHLgGvDtb39bq1atimrr0aNH5PZtt90Wte+2225TWVmZJOnAgQMaMmSIUlNTI/tHjBihYDCogwcPyrIsnT59WmPGjGl3DDfddFPkdmpqqtLS0lRZWXmlkQAAwCWo9YB7MSkHrgGpqamtDjG7HMuyJEnGmMjtWH2Sk5PjerzExMRW9w0Ggx0aEwAAiI1aD7gX55QD0Hvvvdfq+wEDBkiSBg4cqLKyMtXW1kb2v/vuu/L5fPra176mtLQ09e3bV2+99VaXjhkAAMSPWg84FyvlwDWgrq5OFRUVUW1+v1+ZmZmSpA0bNmjYsGEaOXKk1q1bp127dunFF1+UJE2ZMkULFy5UYWGhFi1apH//+9+aOXOmCgoKlJWVJUlatGiRioqK1KtXL40fP141NTV69913NXPmzK4NCgDANYpaD7gXk3LgGvDmm28qJycnqu3rX/+6Pv74Y0mhq6WuX79eP/3pT5Wdna1169Zp4MCBkqSUlBRt3bpVxcXFuuWWW5SSkqKJEydqxYoVkccqLCzUxYsX9fzzz+vnP/+5MjMz9f3vf7/rAgIAcI2j1gPuZRljjN2DAGAfy7K0adMm3XfffXYPBQAAXAXUesDZOKccAAAAAACbMCkHAAAAAMAmHL4OAAAAAIBNWCkHAAAAAMAmTMoBAAAAALAJk3IAAAAAAGzCpBwAAAAAAJswKQcAAAAAwCZMygEAAAAAsAmTcgAAAAAAbMKkHAAAAAAAm/w/Ta5O+LY2E0oAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh60lEQVR4nOzdd3hT1R8G8Dfdu0CBDih77ymyq8gQZchPhgxBlgioiBNRqCigKIKKoiBLkaEMQVGWDEFQ9hSZBcooZbZ0j5zfH6c3N2nT0rRJb5q8n+fJc5Ob25uTknLz3u855+qEEAJEREREREREVORctG4AERERERERkbNiKCciIiIiIiLSCEM5ERERERERkUYYyomIiIiIiIg0wlBOREREREREpBGGciIiIiIiIiKNMJQTERERERERaYShnIiIiIiIiEgjDOVEREREREREGmEoJ3Iiixcvhk6ng06nw44dO3I8L4RAtWrVoNPpEBERYVh/+/ZtTJgwAXXq1IGvry8CAwNRq1YtDBo0CMeOHTO7f3M3c69JRESkJeXYdeDAAa2bYrEhQ4agUqVKJuumTZuGn3/+Oce2Rfk+IyMjodPprLKvgn53Afj9hYoPN60bQERFz9/fHwsWLMhx8Nq5cyfOnz8Pf39/w7qEhAQ8/PDDSEhIwOuvv46GDRsiOTkZZ86cwZo1a3DkyBE0aNDAZD+LFi1CrVq1crxunTp1bPJ+iIiInNG7776Ll19+2WTdtGnT8PTTT6Nnz57aNArA8OHD0aVLF6vu05LvLgC/v1DxwlBO5IT69u2LH374AV9++SUCAgIM6xcsWICWLVsiPj7esO6nn37CuXPnsG3bNjzyyCMm+xk/fjz0en2O/derVw/NmjWz3RsgIiJyYklJSfDx8UHVqlW1bopZ5cuXR/ny5a26T0u+uwD8/kLFC7uvEzmhZ555BgCwfPlyw7q4uDisXr0aQ4cONdn29u3bAIDQ0FCz+3Jx4X8jRETk+Hbv3o0OHTrA398fPj4+aNWqFTZs2GB2u5YtW8LLywvlypXDu+++i2+//RY6nQ4XL140bLdy5Up06tQJoaGh8Pb2Ru3atfHWW28hMTHRZH9DhgyBn58fjh8/jk6dOsHf3x8dOnQwPGfcfV2n0yExMRFLliwxdL3OXlm+f/8+XnjhBZQuXRpBQUHo1asXrl27ZrJNpUqV8OSTT+LXX39F48aNDe379ddfAcju3rVr14avry8eeuihHF3ic+u+vmzZMrRs2RJ+fn7w8/NDo0aNsGDBggf+7gHLvrsA/P5CxQs/jUROKCAgAE8//TQWLlxoWLd8+XK4uLigb9++Jtu2bNkSAPDss8/i559/Nhzk8pKZmYmMjAyTW2ZmpnXfBBERURHZuXMnHn30UcTFxWHBggVYvnw5/P390a1bN6xcudKw3bFjx9CxY0ckJSVhyZIl+Prrr3Ho0CFMnTo1xz7Pnj2Lrl27YsGCBdi4cSPGjRuHH3/8Ed26dcuxbVpaGrp3745HH30U69atw3vvvWe2nXv37oW3tze6du2KvXv3Yu/evfjqq69Mthk+fDjc3d2xbNkyzJgxAzt27MDAgQNz7Ovo0aOYMGEC3nzzTaxZswaBgYHo1asXJk+ejG+//RbTpk3DDz/8gLi4ODz55JNITk7O83c4adIkDBgwAGFhYVi8eDHWrl2LwYMH49KlS3n+nMKS7y4Av79QMSOIyGksWrRIABD79+8X27dvFwDEiRMnhBBCNG/eXAwZMkQIIUTdunVF+/btDT83ZcoU4eHhIQAIAKJy5cpi1KhR4ujRo2b3b+7m6upaZO+TiIgov4yPjbl5+OGHRdmyZcX9+/cN6zIyMkS9evVE+fLlhV6vF0II0bt3b+Hr6ytu3rxp2C4zM1PUqVNHABBRUVFm96/X60V6errYuXOnAGByfB08eLAAIBYuXJjj5wYPHiwqVqxoss7X11cMHjw41/c5evRok/UzZswQAMT169cN6ypWrCi8vb3FlStXDOuOHDkiAIjQ0FCRmJhoWP/zzz8LAGL9+vWGdZMnTxbGMePChQvC1dVVDBgwwOz7z0tBv7sIwe8vVHywUk7kpNq3b4+qVati4cKFOH78OPbv32+2+xcgJ5K5fPkyFi5ciOeffx5+fn74+uuv0bRpU5NuZIrvvvsO+/fvN7n9888/tn5LREREVpeYmIh//vkHTz/9NPz8/AzrXV1dMWjQIFy5cgWnT58GoFbUS5cubdjOxcUFffr0ybHfCxcuoH///ggJCYGrqyvc3d3Rvn17AMCpU6dybP+///3PKu+ne/fuJo+Vyc6yV6wbNWqEcuXKGR7Xrl0bABAREQEfH58c6/OqeG/ZsgWZmZkYM2ZModpuyXcXgN9fqPjgRG9ETkqn0+G5557D559/jpSUFNSoUQNt27bNdfvg4GA899xzeO655wAAf/75Jx5//HG8/PLLhnFeitq1a3OiFCIicgh3796FEMLs2OSwsDAA6vjl27dvIzg4OMd22dclJCSgbdu28PLywgcffIAaNWrAx8cH0dHR6NWrV46u4D4+PiaTmxVGUFCQyWNPT08AyPGapUqVMnns4eGR5/qUlJRcX/PmzZsAUOjJ3yz97gLw+wsVD6yUEzmxIUOG4NatW/j6668NB6v8ateuHTp16oSbN28iNjbWRi0kIiLSVsmSJeHi4oLr16/neE6ZIE2pjAcFBeHGjRs5touJiTF5vG3bNly7dg0LFy7E8OHD0a5dOzRr1izHZb0U1rrmt1bKlCkDALhy5Uqh91WY7y4Av7+QfWIoJ3Ji5cqVw+uvv45u3bph8ODBZre5ceOG2cuGZGZm4uzZs/Dx8UGJEiVs3FIiIiJt+Pr6okWLFlizZo1JNVmv12Pp0qUoX748atSoAUB2r962bRtu3bplst1PP/1ksk8lZCtVasU333xT6PZ6eno+cNK1otapUye4urpi7ty5hd5Xfr67APz+QsULu68TObkPP/wwz+e///57fPPNN+jfvz+aN2+OwMBAXLlyBd9++y1OnjyJSZMmGbquKU6cOIGMjIwc+6patarhbDkREZE92bZtm8klyxRdu3bF9OnT0bFjRzzyyCN47bXX4OHhga+++gonTpzA8uXLDSF74sSJ+OWXX9ChQwdMnDgR3t7e+Prrrw2XOVMuw9WqVSuULFkSo0aNwuTJk+Hu7o4ffvgBR48eLfT7qF+/Pnbs2IFffvkFoaGh8Pf3R82aNQu938KoVKkS3n77bbz//vtITk7GM888g8DAQPz777+4detWrrPJ5+ZB310Afn+h4oWhnIjy9MQTTyAmJga//fYb5s6di7t378Lf3x8NGjTA999/b/YyKrl1J5s/fz6GDx9u6yYTERFZ7M033zS7PioqylABnzx5MoYMGQK9Xo+GDRti/fr1ePLJJw3bNmzYEFu2bMFrr72GZ599FiVLlsSgQYPQvn17vPnmmwgMDAQgu7lv2LABr776KgYOHAhfX1/06NEDK1euRJMmTQr1Pj777DOMGTMG/fr1Q1JSEtq3b48dO3YUap/WMGXKFFSvXh1ffPEFBgwYADc3N1SvXh0vvfSSTV6P31+oONEJIYTWjSAiIiIiclSdOnXCxYsXcebMGa2bQkR2iJVyIiIiIiIrGT9+PBo3bozw8HDcuXMHP/zwA7Zs2YIFCxZo3TQislMM5UREREREVpKZmYlJkyYhJiYGOp0OderUybW7NBERwO7rRERERERERJrhJdGIiIiIiIiINMJQTkRERERERKQRhnIiIiIiIiIijTj8RG96vR7Xrl2Dv78/dDqd1s0hIiKCEAL3799HWFgYXFx4fryweKwnIiJ7Y8mx3uFD+bVr1xAeHq51M4iIiHKIjo5G+fLltW5GscdjPRER2av8HOsdPpT7+/sDkL+MgIAAjVtDREQExMfHIzw83HCMosLhsZ6IiOyNJcd6hw/lSje2gIAAHqiJiMiusKu1dfBYT0RE9io/x3oOZCMiIiIiIiLSCEM5ERERERERkUYYyomIiIiIiIg04vBjyomI8ksIgYyMDGRmZmrdFCrmXF1d4ebmxjHjRER2hsd6shZrHusZyomIAKSlpeH69etISkrSuinkIHx8fBAaGgoPDw+tm0JEROCxnqzPWsd6hnIicnp6vR5RUVFwdXVFWFgYPDw8WOGkAhNCIC0tDTdv3kRUVBSqV68OFxeOFiMi0hKP9WRN1j7WM5QTkdNLS0uDXq9HeHg4fHx8tG4OOQBvb2+4u7vj0qVLSEtLg5eXl9ZNIiJyajzWk7VZ81jPU/dERFlYzSRr4ueJiMj+8P9msiZrfZ74qSQiIiIiIiLSCEM5ERERERERkUYYyomIyCAiIgLjxo3L9/YXL16ETqfDkSNHbNYmANixYwd0Oh3u3btn09chIiJyBjze2xdO9EZEVAw9aMbYwYMHY/HixRbvd82aNXB3d8/39uHh4bh+/TpKly5t8WsRERFR3ni8dw4M5URExdD169cN91euXIlJkybh9OnThnXe3t4m26enp+fr4FuqVCmL2uHq6oqQkBCLfoaIiIjyh8d758Du6xbo2xeoVw/YvVvrlhCRLQkBJCZqcxMif20MCQkx3AIDA6HT6QyPU1JSUKJECfz444+IiIiAl5cXli5ditu3b+OZZ55B+fLl4ePjg/r162P58uUm+83ena1SpUqYNm0ahg4dCn9/f1SoUAHz5s0zPJ+9O5vS7eyPP/5As2bN4OPjg1atWpl8gQCADz74AGXLloW/vz+GDx+Ot956C40aNbLo32n16tWoW7cuPD09UalSJcycOdPk+a+++grVq1eHl5cXgoOD8fTTTxueW7VqFerXrw9vb28EBQXhscceQ2JiokWvT45p1iygfn0g28eJiBwQj/fjDI95vNcWQ7kFzp0DTp4E4uO1bgkR2VJSEuDnp80tKcl67+PNN9/ESy+9hFOnTqFz585ISUlB06ZN8euvv+LEiRMYOXIkBg0ahH/++SfP/cycORPNmjXD4cOHMXr0aLzwwgv477//8vyZiRMnYubMmThw4ADc3NwwdOhQw3M//PADpk6dio8++ggHDx5EhQoVMHfuXIve28GDB9GnTx/069cPx48fR2RkJN59911DF74DBw7gpZdewpQpU3D69Gls3LgR7dq1AyCrDs888wyGDh2KU6dOYceOHejVqxdEfr8hkUO7cwc4cQKIitK6JURkazzem+LxXkPCwcXFxQkAIi4urtD7at5cCECI9eut0DAishvJycni33//FcnJyUIIIRIS5N+6FreEBMvbv2jRIhEYGGh4HBUVJQCI2bNnP/Bnu3btKl599VXD4/bt24uXX37Z8LhixYpi4MCBhsd6vV6ULVtWzJ071+S1Dh8+LIQQYvv27QKA2Lp1q+FnNmzYIAAYfr8tWrQQY8aMMWlH69atRcOGDXNtp7Lfu3fvCiGE6N+/v+jYsaPJNq+//rqoU6eOEEKI1atXi4CAABEfH59jXwcPHhQAxMWLF3N9PWvI/rkyZs1jE1n39zl7tvxb7NvXCg0jIrth7v9kHu9fNjzm8b5grHWsZ6XcAq6ucpmZqW07iMi2fHyAhARtbj4+1nsfzZo1M3mcmZmJqVOnokGDBggKCoKfnx82b96My5cv57mfBg0aGO4r3eZiY2Pz/TOhoaEAYPiZ06dP46GHHjLZPvvjBzl16hRat25tsq5169Y4e/YsMjMz0bFjR1SsWBFVqlTBoEGD8MMPPyApqyzRsGFDdOjQAfXr10fv3r0xf/583L1716LXJ8elzGF065a27SAi2+Px3hSP99phKLcAQzmRc9DpAF9fbW4PmGTVIr6+viaPZ86ciVmzZuGNN97Atm3bcOTIEXTu3BlpaWl57if7hDE6nQ56vT7fP6PMHGv8M9lnkxUWdiUTQuS5D39/fxw6dAjLly9HaGgoJk2ahIYNG+LevXtwdXXFli1b8Pvvv6NOnTr44osvULNmTUSxvzKBoZzImfB4b4rHe+0wlFuAoZyIirNdu3ahR48eGDhwIBo2bIgqVarg7NmzRd6OmjVrYt++fSbrDhw4YNE+6tSpg93ZZt3cs2cPatSoAdes/6zd3Nzw2GOPYcaMGTh27BguXryIbdu2AZBfElq3bo333nsPhw8fhoeHB9auXVuId0WOgqGciIo7Hu+L3/Gel0SzAEM5ERVn1apVw+rVq7Fnzx6ULFkSn376KWJiYlC7du0ibceLL76IESNGoFmzZmjVqhVWrlyJY8eOoUqVKvnex6uvvormzZvj/fffR9++fbF3717MmTMHX331FQDg119/xYULF9CuXTuULFkSv/32G/R6PWrWrIl//vkHf/zxBzp16oSyZcvin3/+wc2bN4v890D2yTiUC2HdahYRUVHg8b74He8Zyi3AUE5Exdm7776LqKgodO7cGT4+Phg5ciR69uyJuLi4Im3HgAEDcOHCBbz22mtISUlBnz59MGTIkBxn0/PSpEkT/Pjjj5g0aRLef/99hIaGYsqUKRgyZAgAoESJElizZg0iIyORkpKC6tWrY/ny5ahbty5OnTqFP//8E7Nnz0Z8fDwqVqyImTNn4vHHH7fRO6biRAnlqanyskV+ftq2h4jIUjzeF7/jvU5Y2rG/mImPj0dgYCDi4uIQEBBQqH116QJs2gQsXgwMHmyd9hGR9lJSUhAVFYXKlSvDy8tL6+Y4pY4dOyIkJATff/+91k2xmrw+V9Y8NpF1f59CyAmYUlLkZdEqVbJOG4lIWzzW2wdHO95b61jPSrkFWCknIiq8pKQkfP311+jcuTNcXV2xfPlybN26FVu2bNG6aUTQ6WS1/MoV2YWdoZyIqGB4vM8/hnILuGX9tjIytG0HEVFxptPp8Ntvv+GDDz5AamoqatasidWrV+Oxxx7TumlEAExDORERFQyP9/nHUG4BVsqJiArP29sbW7du1boZRLniDOxERIXH433+8ZJoFmAoJyIicnwM5UREVJQYyi3AUE5ERGRb06dPh06nw7hx4zRrA0M5EREVJYZyCzCUExER2c7+/fsxb948NGjQQNN2MJQTEVFRYii3AEM5ERGRbSQkJGDAgAGYP38+SpYsqV1DIiPx1kcl8D7eYSgnIqIiwVBuAYZyIiIi2xgzZgyeeOKJfM3Km5qaivj4eJOb1ej18EyOQwncYygnIqIiwdnXLcBQTkREZH0rVqzAoUOHsH///nxtP336dLz33nu2aYy/v1zgPkM5EREVCVbKLcBQTkSOJiIiwmRCrUqVKmH27Nl5/oxOp8PPP/9c6Ne21n7yEhkZiUaNGtn0NahwoqOj8fLLL2Pp0qXw8vLK189MmDABcXFxhlt0dLT1GpQVygMQz1BORA6Dx3v7xlBuAYZyIrIX3bp1y7Wb7969e6HT6XDo0CGL97t//36MHDmysM0zkduB8vr163j88cet+lpU/Bw8eBCxsbFo2rQp3Nzc4Obmhp07d+Lzzz+Hm5sbMs0cdD09PREQEGBys5qsfSmVciGst2siIkvxeO8c2H3dAgzlRGQvhg0bhl69euHSpUuoWLGiyXMLFy5Eo0aN0KRJE4v3W6ZMGWs18YFCQkKK7LXIfnXo0AHHjx83Wffcc8+hVq1aePPNN+GqHHyLilH39cxMIC4OKFGiaJtARKTg8d45sFJuAYZyIichBJCYqM0tn2W5J598EmXLlsXixYtN1iclJWHlypUYNmwYbt++jWeeeQbly5eHj48P6tevj+XLl+e53+zd2c6ePYt27drBy8sLderUwZYtW3L8zJtvvokaNWrAx8cHVapUwbvvvov09HQAwOLFi/Hee+/h6NGj0Ol00Ol0hjZn7852/PhxPProo/D29kZQUBBGjhyJhIQEw/NDhgxBz5498cknnyA0NBRBQUEYM2aM4bXyQ6/XY8qUKShfvjw8PT3RqFEjbNy40fB8Wloaxo4di9DQUHh5eaFSpUqYPn264fnIyEhUqFABnp6eCAsLw0svvZTv1ybz/P39Ua9ePZObr68vgoKCUK9evaJvUFalvIROTh7HLuxEDozHe8NjHu+1Pd6zUm4BhnIiJ5GUBPj5afPaCQmAr+8DN3Nzc8Ozzz6LxYsXY9KkSdDpdACAn376CWlpaRgwYACSkpLQtGlTvPnmmwgICMCGDRswaNAgVKlSBS1atHjga+j1evTq1QulS5fG33//jfj4eJPxaAp/f38sXrwYYWFhOH78OEaMGAF/f3+88cYb6Nu3L06cOIGNGzdi69atAIDAwMAc+0hKSkKXLl3w8MMPY//+/YiNjcXw4cMxduxYky8i27dvR2hoKLZv345z586hb9++aNSoEUaMGPHA9wMAn332GWbOnIlvvvkGjRs3xsKFC9G9e3ecPHkS1atXx+eff47169fjxx9/RIUKFRAdHW0Yr7xq1SrMmjULK1asQN26dRETE4OjR4/m63WpGFHGlLvcBzJlKK9WTeM2EZFt8HgPgMd7uzjeCwcXFxcnAIi4uLhC7+v114UAhBg/3goNIyK7kZycLP7991+RnJwsVyQkyD92LW4JCflu96lTpwQAsW3bNsO6du3aiWeeeSbXn+natat49dVXDY/bt28vXn75ZcPjihUrilmzZgkhhNi0aZNwdXUV0dHRhud///13AUCsXbs219eYMWOGaNq0qeHx5MmTRcOGDXNsZ7yfefPmiZIlS4oEo/e/YcMG4eLiImJiYoQQQgwePFhUrFhRZGRkGLbp3bu36Nu3b65tyf7aYWFhYurUqSbbNG/eXIwePVoIIcSLL74oHn30UaHX63Psa+bMmaJGjRoiLS0t19czluNzZcSaxyay8u/zzBkhAHHfxV8AQvzyS+F3SUTaM/t/Mo/3Qgge77Oz5HhvrWM9K+UWYKWcyEn4+Mgz2Fq9dj7VqlULrVq1wsKFC/HII4/g/Pnz2LVrFzZv3gwAyMzMxIcffoiVK1fi6tWrSE1NRWpqKnzzcWYeAE6dOoUKFSqgfPnyhnUtW7bMsd2qVaswe/ZsnDt3DgkJCcjIyLB44q1Tp06hYcOGJm1r3bo19Ho9Tp8+jeDgYABA3bp1TcYYh4aG5hiPnJv4+Hhcu3YNrVu3NlnfunVrwxnwIUOGoGPHjqhZsya6dOmCJ598Ep06dQIA9O7dG7Nnz0aVKlXQpUsXdO3aFd26dYObGw+lDiXrs+ujTwAgcOuWTtv2EJHt8HgPgMd7ezjeazqmPCMjA++88w4qV64Mb29vVKlSBVOmTIFerzdsI4RAZGQkwsLC4O3tjYiICJw8eVKT9jKUEzkJnU52KdPiprMsAAwbNgyrV69GfHw8Fi1ahIoVK6JDhw4AgJkzZ2LWrFl44403sG3bNhw5cgSdO3dGWlpavvYtzIx302Vr399//41+/frh8ccfx6+//orDhw9j4sSJ+X4N49fKvm9zr+nu7p7jOeNjRn5kfx3j127SpAmioqLw/vvvIzk5GX369MHTTz8NAAgPD8fp06fx5ZdfwtvbG6NHj0a7du0sGuNGxUBW93UXCPgikWPKiRwZj/cAeLy3h+O9pqH8o48+wtdff405c+bg1KlTmDFjBj7++GN88cUXhm1mzJiBTz/9FHPmzMH+/fsREhKCjh074v79+0XeXoZyIrI3ffr0gaurK5YtW4YlS5bgueeeMxxwdu3ahR49emDgwIFo2LAhqlSpgrNnz+Z733Xq1MHly5dx7do1w7q9e/eabPPXX3+hYsWKmDhxIpo1a4bq1avj0qVLJtt4eHiYvaxV9tc6cuQIEhMTTfbt4uKCGjVq5LvNeQkICEBYWBh2795tsn7Pnj2oXbu2yXZ9+/bF/PnzsXLlSqxevRp37twBAHh7e6N79+74/PPPsWPHDuzduzffZ+6pmPD2NhzwAxCP27c1bg8REXi8t0RxPN5r2udu79696NGjB5544gkAchbA5cuX48CBAwDk2YzZs2dj4sSJ6NWrFwBgyZIlCA4OxrJly/D8888XaXsZyonI3vj5+aFv3754++23ERcXhyFDhhieq1atGlavXo09e/agZMmS+PTTTxETE2NyQMrLY489hpo1a+LZZ5/FzJkzER8fj4kTJ5psU61aNVy+fBkrVqxA8+bNsWHDBqxdu9Zkm0qVKiEqKgpHjhxB+fLl4e/vD09PT5NtBgwYgMmTJ2Pw4MGIjIzEzZs38eKLL2LQoEGGrmzW8Prrr2Py5MmoWrUqGjVqhEWLFuHIkSP44YcfAACzZs1CaGgoGjVqBBcXF/z0008ICQlBiRIlsHjxYmRmZqJFixbw8fHB999/D29v7xyXqKFiTqeT1fJ79wzXKici0hqP95Ypbsd7TSvlbdq0wR9//IEzZ84AAI4ePYrdu3eja9euAICoqCjExMQY+vcDgKenJ9q3b489e/aY3Wdqairi4+NNbtaiDCNgKCciezJs2DDcvXsXjz32GCpUqGBY/+6776JJkybo3LkzIiIiEBISgp49e+Z7vy4uLli7di1SU1Px0EMPYfjw4Zg6darJNj169MArr7yCsWPHolGjRtizZw/effddk23+97//oUuXLnjkkUdQpkwZs5dp8fHxwaZNm3Dnzh00b94cTz/9NDp06IA5c+ZY9st4gJdeegmvvvoqXn31VdSvXx8bN27E+vXrUb16dQDyS89HH32EZs2aoXnz5rh48SJ+++03uLi4oESJEpg/fz5at26NBg0a4I8//sAvv/yCoKAgq7aR7IAyAzviGcqJyG7weJ9/xe14rxPmBhEUESEE3n77bXz00UdwdXVFZmYmpk6digkTJgCQXQxat26Nq1evIiwszPBzI0eOxKVLl7Bp06Yc+4yMjMR7772XY31cXJzFExFk99FHwFtvAUOGAIsWFWpXRGRHUlJSEBUVhcqVK8PLy0vr5pCDyOtzFR8fj8DAQKscm8gGv8969YCTJ/Eo/kB6m0exa1fhd0lE2uKxnmzBWsd6TSvlK1euxNKlS7Fs2TIcOnQIS5YswSeffIIlS5aYbJfXIP3sJkyYgLi4OMNNud6cNSjd1zMyrLZLIiIisjdZlXJ2XycioqKg6Zjy119/HW+99Rb69esHAKhfvz4uXbqE6dOnY/DgwQgJCQEAxMTEIDQ01PBzsbGxuY458PT0zDF2wVo4ppyIiMgJZFU02H2diIiKgqaV8qSkJLi4mDbB1dXVMN195cqVERISgi1bthieT0tLw86dO9GqVasibatsm1wylBMRETkwo0r5nTs87hMRkW1pWinv1q0bpk6digoVKqBu3bo4fPgwPv30UwwdOhSA7LY+btw4TJs2DdWrV0f16tUxbdo0+Pj4oH///kXeXoZyIiIiJ2A00ZteD9y7B3A+PyIishVNQ/kXX3yBd999F6NHj0ZsbCzCwsLw/PPPY9KkSYZt3njjDSQnJ2P06NG4e/cuWrRogc2bN8M/64BZlBjKiRybhvNekgPi56kYy+q+HuR+H0gH7txhKCdyFPy/mazJWp8nTUO5v78/Zs+ejdmzZ+e6jU6nQ2RkJCIjI4usXblhKCdyTO7u7gDkkBpvb2+NW0OOIikpCYD6+aJiJOvEf0k3GcqTkzVuDxEVGo/1ZAvWOtZrGsqLG4ZyIsfk6uqKEiVKIDY2FoC8hmZuV3ggehAhBJKSkhAbG4sSJUrAVTl4UPGRVSkv4RIPgKGcyBHwWE/WZO1jPUO5BRjKiRyXcrUH5WBNVFglSpQwfK6omFHGlLvcBwBkFUKIqJjjsZ6szVrHeoZyCzCUEzkunU6H0NBQlC1bFunp6Vo3h4o5d3d3VsiLM6OJ3gBWyokcBY/1ZE3WPNYzlFuAoZzI8bm6ujJMETm7rO7r/kJWyhnKiRwLj/VkbzS9Tnlxw1BORETkBLIq5X6ClXIiIrI9hnILMJQTERE5gaxKuU8mK+VERGR7DOUWYCgnIiJyAlmVciWUc6I3IiKyJYZyCzCUExEROYGsUO6dcR+AYKWciIhsiqHcAgzlRERETiCr+7qL0MMHSQzlRERkUwzlFmAoJyIicgI+PoCL/IoUgHiGciIisimGcgu4ZV1AjqGciIjIgel0hi7s/rjPUE5ERDbFUG4BVsqJiIichFEo50RvRERkSwzlFmAoJyIichJZoZzd14mIyNYYyi2ghPKMDG3bQURERDaWNdkbu68TEZGtMZRbgJVyIiIiJ8FKORERFRGGcgswlBMRETkJVsqJiKiIMJRbgKGciIjISXD2dSIiKiIM5RZgKCciInISRt3XOfs6ERHZEkO5BRjKiYiInAS7rxMRURFhKLcAQzkREZGT4ERvRERURBjKLcBQTkRE5CQ4ppyIiIoIQ7kFGMqJiIicBLuvExFREWEotwBDORERkZMw6r6emspjPxER2Q5DuQUYyomIiJyEUaUcAFJStGwMERE5MoZyCzCUExEROQmjSjkAdmEnIiKbYSi3gBLKhZA3IiIiclBGE70BDOVERGQ7DOUWUEI5wGo5ERGRQzPpvi4YyomIyGYYyi3AUE5EROQksirlbsiEN5KRlKRxe4iIyGExlFvAzU29z1BORETkwHx9AZ0OAC+LRkREtsVQbgFWyomIiJyEi4sM5mAoJyIi22IotwBDORERkRNxd5cLpDOUExGRzTCUW4ChnIiIyIl4eABgKCciIttiKLeAi9Fvi6GciIjIwbFSTkRERYCh3AI6nRrMMzK0bQsRERHZmFEo5+zrRERkKwzlFlK6sLNSTkRE5OBYKScioiLAUG4hhnIiIiInwVBORERFgKHcQgzlREREToKhnIiIigBDuYUYyomIiJwEQzkRERUBhnILMZQTERE5iaxQ7oE0TvRGREQ2w1BuIYZyIiIiJ8FKORERFQGGcgsxlBMRETkJhnIiIioCDOUWYignIiJyEh4eABjKiYjIthjKLcRQTkRE5CRYKScioiLAUG4hhnIiIiInYRTKOdEbERHZCkO5hRjKiYiInAQr5UREVAQYyi3EUE5EROQkGMqJiKgIMJRbyM1NLhnKiYiIrGP69Olo3rw5/P39UbZsWfTs2ROnT5/WulkM5UREVCQYyi3ESjkREZF17dy5E2PGjMHff/+NLVu2ICMjA506dUJiYqK2DWMoJyKiIuCmdQOKG4ZyIiIi69q4caPJ40WLFqFs2bI4ePAg2rVrp1GrYAjlHkhjKCciIpthKLcQQzkREZFtxcXFAQBKlSpl9vnU1FSkpqYaHsfHx9umIZx9nYiIigC7r1uIoZyIiMh2hBAYP3482rRpg3r16pndZvr06QgMDDTcwsPDbdMYDw8AMpSnp/PYT0REtsFQbiGGciIiItsZO3Ysjh07huXLl+e6zYQJExAXF2e4RUdH26YxRpVyAOzCTkRENsHu6xZSQnlGhrbtICIicjQvvvgi1q9fjz///BPly5fPdTtPT094enravkFmQrmfn+1floiInAtDuYVYKSciIrIuIQRefPFFrF27Fjt27EDlypW1bpKUFco9XdIBPSvlRERkGwzlFmIoJyIisq4xY8Zg2bJlWLduHfz9/RETEwMACAwMhLe3t3YNywrl3q4ylHOyNyIisgWOKbcQQzkREZF1zZ07F3FxcYiIiEBoaKjhtnLlSm0blhXKvVw5ppyIiGyHlXILMZQTERFZlxBC6yaYZ9x9HQzlRERkG6yUW4ihnIiIyEkooZyVciIisiGGcgsxlBMRETkJpfu6Lg0AQzkREdkGQ7mFGMqJiIicRFYo98jqvs6J3oiIyBYYyi3EUE5EROQkPDzkQsfu60REZDsM5RZiKCciInISSqUcDOVERGQ7DOUWYignIiJyElmh3J2VciIisiGGcgsxlBMRETkJJZQLhnIiIrIdhnILuWVd2Z2hnIiIyMFlhXI3dl8nIiIbYii3ECvlRERETiJbpZyzrxMRkS0wlFuIoZyIiMhJZIVyV3ZfJyIiG2IotxBDORERkZNQuq8zlBMRkQ0xlFuIoZyIiMhJKJXyzDQADOVERGQbmofyq1evYuDAgQgKCoKPjw8aNWqEgwcPGp4XQiAyMhJhYWHw9vZGREQETp48qVl7GcqJiIichBLK9ayUExGR7Wgayu/evYvWrVvD3d0dv//+O/7991/MnDkTJUqUMGwzY8YMfPrpp5gzZw7279+PkJAQdOzYEffv39ekzQzlRERETsLDA4AayuPitGwMERE5KjctX/yjjz5CeHg4Fi1aZFhXqVIlw30hBGbPno2JEyeiV69eAIAlS5YgODgYy5Ytw/PPP1/UTWYoJyIichZZlXKXTBnKb97UsjFEROSoNK2Ur1+/Hs2aNUPv3r1RtmxZNG7cGPPnzzc8HxUVhZiYGHTq1MmwztPTE+3bt8eePXvM7jM1NRXx8fEmN2tSQnlGhlV3S0RERPZGCeUZ6QAEYmO1bQ4RETkmTUP5hQsXMHfuXFSvXh2bNm3CqFGj8NJLL+G7774DAMTExAAAgoODTX4uODjY8Fx206dPR2BgoOEWHh5u1TazUk5EROQkskI5ALgiE7dv86Q8ERFZn6ahXK/Xo0mTJpg2bRoaN26M559/HiNGjMDcuXNNttPpdCaPhRA51ikmTJiAuLg4wy06OtqqbWYoJyIichJGodwD6RACuHVLw/YQEZFD0jSUh4aGok6dOibrateujcuXLwMAQkJCACBHVTw2NjZH9Vzh6emJgIAAk5s1MZQTERE5CaNQHhIkx5WzCzsREVmbpqG8devWOH36tMm6M2fOoGLFigCAypUrIyQkBFu2bDE8n5aWhp07d6JVq1ZF2lYFQzkREZGTMArloaUZyomIyDY0nX39lVdeQatWrTBt2jT06dMH+/btw7x58zBv3jwAstv6uHHjMG3aNFSvXh3Vq1fHtGnT4OPjg/79+2vSZoZyIiIiJ+HqCuh0gBCslBMRkc1oGsqbN2+OtWvXYsKECZgyZQoqV66M2bNnY8CAAYZt3njjDSQnJ2P06NG4e/cuWrRogc2bN8Pf31+TNjOUExERORF3dyAtDSGl0gAwlBMRkfVpGsoB4Mknn8STTz6Z6/M6nQ6RkZGIjIwsukblgaGciIjIiWSF8uBSrJQTEZFtaDqmvDhiKCciInIiHh4AgDIlGMqJiMg2GMot5JbVt4ChnIiIyAlkTfZWmqGciIhshKHcQqyUExEROREllAcwlBMRkW0wlFuIoZyIiMiJZIXyIIZyIiKyEYZyCzGUExEROZGsUF7Kn6GciIhsg6HcQgzlRERETiQrlJf0k6E8MVHeiIiIrIWh3EIM5URE5KgOHTqE48ePGx6vW7cOPXv2xNtvv420tDQNW6ahrFDu454OT0+56uZNDdtDREQOh6HcEu3bo89wf3TAVoZyIiJyOM8//zzOnDkDALhw4QL69esHHx8f/PTTT3jjjTc0bp1GskK5LiMdZcvKVezCTkRE1sRQbomkJLinJMADaQzlRETkcM6cOYNGjRoBAH766Se0a9cOy5Ytw+LFi7F69WptG6eVrFCOtDQEB8u7DOVERGRNDOWWyLpIuRsyGMqJiMjhCCGg1+sBAFu3bkXXrl0BAOHh4bh165aWTdOOEsrTWSknIiLbYCi3RNaAcoZyIiJyRM2aNcMHH3yA77//Hjt37sQTTzwBAIiKikKwUiZ2Nh4ecslQTkRENsJQbgmjSnlGhsZtISIisrLZs2fj0KFDGDt2LCZOnIhq1aoBAFatWoVWrVpp3DqNZKuUuyEdKReuadsmIiJyKG5aN6BYyQrlrshkpZyIiBxOgwYNTGZfV3z88cdwVS4/4myyhfIlGIx+81cA404Adepo2zYiInIIrJRbgmPKiYjIgUVHR+PKlSuGx/v27cO4cePw3XffwV0Jp84mWyivhxNwgQCOHdO2XURE5DAYyi3BUE5ERA6sf//+2L59OwAgJiYGHTt2xL59+/D2229jypQpGrdOI9lCuQ+S5OM7d7RrExERORSGckswlBMRkQM7ceIEHnroIQDAjz/+iHr16mHPnj2Gy6I5JYZyIiKyMYZyS3D2dSIicmDp6enw9PQEIC+J1r17dwBArVq1cP36dS2bpp1cQrm4zVBORETWwVBuCVbKiYjIgdWtWxdff/01du3ahS1btqBLly4AgGvXriEoKEjj1mnEKJSXKaOG8tQYhnIiIrIOhnJLcPZ1IiJyYB999BG++eYbRERE4JlnnkHDhg0BAOvXrzd0a3c6SihPS4OHLh0eSAcApN9gKCciIuvgJdEswUo5ERE5sIiICNy6dQvx8fEoWbKkYf3IkSPh4+OjYcs05OEhl+npQHKyYbX+JkM5ERFZB0O5JRjKiYjIwbm6uiIjIwO7d++GTqdDjRo1UKlSJa2bpR2j7utISjKsFpzojYiIrITd1y3Bid6IiMiBJSYmYujQoQgNDUW7du3Qtm1bhIWFYdiwYUgyCqROJZdQ7hrHUE5ERNbBUG4JVsqJiMiBjR8/Hjt37sQvv/yCe/fu4d69e1i3bh127tyJV199VevmaSOXUO6VdAcQQqNGERGRI2H3dUtwojciInJgq1evxqpVqxAREWFY17VrV3h7e6NPnz6YO3eudo3TSi6h3F2kA4mJgJ+fRg0jIiJHwUq5JVgpJyIiB5aUlITg4OAc68uWLcvu69lCOQBkcrI3IiKyAoZySzCUExGRA2vZsiUmT56MlJQUw7rk5GS89957aNmypYYt01AeoTzmX4ZyIiIqPHZftwRDORERObDPPvsMXbp0Qfny5dGwYUPodDocOXIEXl5e2LRpk9bN00Yeofzq8Tso94QGbSIiIofCUG4Jzr5OREQOrF69ejh79iyWLl2K//77D0II9OvXDwMGDIC3t7fWzdNGHqH85mlWyomIqPAYyi3BSjkRETk4b29vjBgxQutm2A8llKel5Qjl96IYyomIqPAYyi1hNPu6EPJKKDqdxm0iIiIqhPXr1+d72+7du9uwJXbKw0MuzVTKk6IZyomIqPAYyi1hVCkHgMxMwyoiIqJiqWfPnvnaTqfTIdMZu4nl0X09/QZDORERFR4jpSWyhfKMDIZyIiIq3vR6vdZNsG95hHKPxDu4fx/w99egXURE5DB4STRLGE30BoDjyomIiByduVBeogQAoBTu4MwZbZpFRESOg6HcEma6rxMREZEDMxfKy5cHIEP56dMatYuIiBwGQ7kljCZ6AxjKiYiIHB5DORER2RhDuSVYKSciIrKZr776CpUrV4aXlxeaNm2KXbt2ad0khnIiIrI5hnJLMJQTERHZxMqVKzFu3DhMnDgRhw8fRtu2bfH444/j8uXL2jaMoZyIiGyModwSWaHcnaGciIgc0G+//YZNmzblWL9p0yb8/vvvNn3tTz/9FMOGDcPw4cNRu3ZtzJ49G+Hh4Zg7d65NX/eB8gjlPkjG1XPJEEKjthERkUNgKLdE1uzr7jqGciIicjxvvfWW2WuRCyHw1ltv2ex109LScPDgQXTq1MlkfadOnbBnz54c26empiI+Pt7kZjNKKE9LU0N5SAiEckWWhLu4w8uVExFRITCUW0Lpvs5QTkREDujs2bOoU6dOjvW1atXCuXPnbPa6t27dQmZmJoKDg03WBwcHIyYmJsf206dPR2BgoOEWHh5us7bBw0MujSvlvr7QlSwJQHZhj4qy3csTEZHjYyi3hGFMOWdfJyIixxMYGIgLFy7kWH/u3Dn4+vra/PV1Op3JYyFEjnUAMGHCBMTFxRlu0dHRtmuUue7rPj5AqVIAGMqJiKjwGMotwUo5ERE5sO7du2PcuHE4f/68Yd25c+fw6quvonv37jZ73dKlS8PV1TVHVTw2NjZH9RwAPD09ERAQYHKzGYZyIiKyMYZyS3CiNyIicmAff/wxfH19UatWLVSuXBmVK1dG7dq1ERQUhE8++cRmr+vh4YGmTZtiy5YtJuu3bNmCVq1a2ex184WhnIiIbMxN6wYUK8qkLgzlRETkgAIDA7Fnzx5s2bIFR48ehbe3Nxo0aIB27drZ/LXHjx+PQYMGoVmzZmjZsiXmzZuHy5cvY9SoUTZ/7TwpoVwIIDFR3s8Wyk8wlBMRUSEwlFuC3deJiMjB6XQ6dOrUKcdM6LbWt29f3L59G1OmTMH169dRr149/Pbbb6hYsWKRtiMHJZQbY6WciIisiKHcElmh3JUTvRERkYP4/PPPMXLkSHh5eeHzzz/Pc9uXXnrJpm0ZPXo0Ro8ebdPXsJi5UO7tbRLKL14E9HrAhYMCiYioABjKLWGYfZ2VciIicgyzZs3CgAED4OXlhVmzZuW6nU6ns3kot0vZQ7m7u7xlhfIg3R2kpQHXrwPlymnQPiIiKvYYyi3BUE5ERA4myqjvdRT7YeeUNZ+MgY+PXGaF8lDPO0AKEBXFUE5ERAXDjlaWYCgnIiJyLjqdabU8WygPdrsDABxXTkREBVagSnl0dDR0Oh3Kly8PANi3bx+WLVuGOnXqYOTIkVZtoF3JOlvuKhjKiYjI8QghsGrVKmzfvh2xsbHQ6/Umz69Zs0ajlmnMw0NeEg3IEcpLgqGciIgKp0CV8v79+2P79u0AgJiYGHTs2BH79u3D22+/jSlTpli1gXYlW6U8I0PLxhAREVnXyy+/jEGDBiEqKgp+fn4IDAw0uTktc5XykiUBAH7pdwEwlBMRUcEVqFJ+4sQJPPTQQwCAH3/8EfXq1cNff/2FzZs3Y9SoUZg0aZJVG2k3OPs6ERE5sKVLl2LNmjXo2rWr1k2xL+ZCeYkSAACv1Hi4IBNRUa45f46IiCgfClQpT09Ph6enJwBg69at6N69OwCgVq1auH79uvVaZ2+UUM7u60RE5IACAwNRpUoVrZthf/KolANAIOJYKSciogIrUCivW7cuvv76a+zatQtbtmxBly5dAADXrl1DUFCQVRtoV5Tu6wzlRETkgCIjI/Hee+8hOTlZ66bYF3Oh3N0d8PUFAJTEXVy5og47JyIiskSBuq9/9NFHeOqpp/Dxxx9j8ODBaNiwIQBg/fr1hm7tDkmZ6I2zrxMRkQPq3bs3li9fjrJly6JSpUpwz3aN7kOHDmnUMo2ZC+WA7MKemIhgj3u4kAZcvgxUrVrkrSMiomKuQKE8IiICt27dQnx8PEoadd8aOXIkfIwPVo6G3deJiMiBDRkyBAcPHsTAgQMRHBwMnU6ndZPsQ26hvGRJ4OpV1Aq+i73RcrI3hnIiIrJUgUJ5cnIyhBCGQH7p0iWsXbsWtWvXRufOna3aQLuSFcpdIKCDHpmZvMw7ERE5jg0bNmDTpk1o06aN1k2xL3mFcgDVgu4C0ZyBnYiICqZAqbJHjx747rvvAAD37t1DixYtMHPmTPTs2RNz5861agPtipt6DsMVmayUExGRQwkPD0dAQIDWzbA/eXVfB1C5hLws2oULRdgmIiJyGAUK5YcOHULbtm0BAKtWrUJwcDAuXbqE7777Dp9//rlVG2hXjEK5GzIYyomIyKHMnDkTb7zxBi5evKh1U+zLAyrl5f3uAQDOny/CNhERkcMoUPf1pKQk+Pv7AwA2b96MXr16wcXFBQ8//DAuXbpk1QbaFYZyIiJyYAMHDkRSUhKqVq0KHx+fHBO93blzR6OWaczDQ71vJpSHeMpKOUM5EREVRIFCebVq1fDzzz/jqaeewqZNm/DKK68AAGJjYx2721vW7OsAQzkRETme2bNna90E+/SA7utBLmooFwLg/HhERGSJAoXySZMmoX///njllVfw6KOPomXLlgBk1bxx48ZWbaBdMQrlHFNORESOZvDgwVo3wT49oPt6gLgHAIiLA+7cAYKCirBtRERU7BUolD/99NNo06YNrl+/brhGOQB06NABTz31lNUaZ3dcXORNr2elnIiIHJJer8e5c+cQGxsLvV5v8ly7du00apXGHhDK3eLvIjQUuH5dVssZyomIyBIFCuUAEBISgpCQEFy5cgU6nQ7lypXDQw89ZM222Sc3NyAtjaGciIgczt9//43+/fvj0qVLEEKYPKfT6ZDprAe+B3Rfx927qFpVDeXO8HWIiIisp0Czr+v1ekyZMgWBgYGoWLEiKlSogBIlSuD999/PcVbd4WRN9sZQTkREjmbUqFFo1qwZTpw4gTt37uDu3buGm9NO8gY8sFKOe/dQtaq8y8neiIjIUgWqlE+cOBELFizAhx9+iNatW0MIgb/++guRkZFISUnB1KlTrd1O+5E1rpyhnIiIHM3Zs2exatUqVKtWTeum2JcHhfKsSjnAUE5ERJYrUChfsmQJvv32W3Tv3t2wrmHDhihXrhxGjx7t2KGclXIiInJQLVq0wLlz5xjKs8tP9/UqAoCOoZyIiCxWoFB+584d1KpVK8f6WrVqOX73tqxQztnXiYjIERw7dsxw/8UXX8Srr76KmJgY1K9fP8d1yhs0aFDUzbMPD6qUZ2aielgiAD+GciIisliBQnnDhg0xZ84cfP755ybr58yZ4/gHbFbKiYjIgTRq1Ag6nc5kYrehQ4ca7ivPOfVEbx4e6n3jUO7jIwN7ejqqlroLwA/XrgHJyYC3d5G3koiIiqkChfIZM2bgiSeewNatW9GyZUvodDrs2bMH0dHR+O2336zdRvvCUE5ERA4kKipK6ybYv9wq5Tqd7MJ+8yZK4i4CAsIRHw9cuADUrVvkrSQiomKqQLOvt2/fHmfOnMFTTz2Fe/fu4c6dO+jVqxdOnjyJRYsWFagh06dPh06nw7hx4wzrhBCIjIxEWFgYvL29ERERgZMnTxZo/1ZjFMozMrRtChERUWFVrFjRcLt06RLKlStnsq5ixYooV64cLl26pHVTtZNbKAcMXdh1cZyBnYiICqZAoRwAwsLCMHXqVKxevRpr1qzBBx98gLt372LJkiUW72v//v2YN29ejq7vM2bMwKeffoo5c+Zg//79CAkJQceOHXH//v2CNrvwOPs6ERE5qEceecTs3DBxcXF45JFHNGiRnTAO5V5eps9xBnYiIiqkAodya0lISMCAAQMwf/58lFQObJBV8tmzZ2PixIno1asX6tWrhyVLliApKQnLli3TrsGc6I2IiByUMnY8u9u3b8PX11eDFtkJJZR7ewMu2b46Gc/AzlBOREQFUKAx5dY0ZswYPPHEE3jsscfwwQcfGNZHRUUhJiYGnTp1Mqzz9PRE+/btsWfPHjz//PNm95eamorU1FTD4/j4eOs2mGPKiYjIwfTq1QuAnNRtyJAh8PT0NDyXmZmJY8eOoVWrVlo1T3tKKM/edR1QK+X32H2diIgKRtNQvmLFChw6dAj79+/P8VxMTAwAIDg42GR9cHBwnuPapk+fjvfee8+6DTXGUE5ERA4mMDAQgKyU+/v7w9to6nAPDw88/PDDGDFihFbN015+Qvndu6iaNQqPoZzICc2ZA8ycCWzaBNSooXVrqJixKJQrZ9Jzc+/evXzvKzo6Gi+//DI2b94Mr+zjs4xk70aXW9c6xYQJEzB+/HjD4/j4eISHh+e7XQ/EUE5ERA5GmaS1UqVKeO2115y7q7o5eYVyM93XL1wA5s0Dhg/P2dudiBzUggXAxYsM5VQgFoVy5Ux6Xs8/++yz+drXwYMHERsbi6ZNmxrWZWZm4s8//8ScOXNw+vRpALJiHhoaatgmNjY2R/XcmKenp0m3O6vjRG9EROSgJk+erHUT7FM+u69XqAB07Ahs2QI8/zywcCGwYgVQqVKRtZSItJCRAZw6Je9HR2vbFiqWLArlBb3cmTkdOnTA8ePHTdY999xzqFWrFt58801UqVIFISEh2LJlCxo3bgwASEtLw86dO/HRRx9ZrR0WY6WciIgcSJMmTfDHH3+gZMmSaNy4cZ690Q4dOlSELbMj+ey+rtMBv/0me7FOmgT88w8wbhzw889F1VAi0sT584Ayp5UWoXzNGmDdOuCLL4CAgKJ/fSo0zcaU+/v7o169eibrfH19ERQUZFg/btw4TJs2DdWrV0f16tUxbdo0+Pj4oH///lo0WeLs60RE5EB69Ohh6GHWs2dPbRtjr5Rhdua69Rt1Xwfk14Rx44CICKBxYxnSb98GgoKKoqFEpAnjQmNRh/I9e4C+fWW1vlEj4JVXivb1ySo0n309L2+88QaSk5MxevRo3L17Fy1atMDmzZvh7++vXaNYKSciIgeidFnPzMxEREQEGjRoYHKJUgLQuTPQtSswalTO54wq5cYaNZK3I0eAlSuB0aNt3Ugi0syJE+r9ogzlMTFA794ykAPyPxuG8mLJrkL5jh07TB7rdDpERkYiMjJSk/aYxVBOREQOyNXVFZ07d8apU6cYyrMLDgY2bDD/nNGYcgBAZiZw7hxw8iRmVr6Gvkf6YunSMgzlRI7MOJRfvSr/H8iah8pm0tNlhfzaNaB6ddmF/p9/5GRznMii2OGcoJbiRG9EROSg6tevjwsXLmjdjOLFuPt6WhrQsCFQqxbwv//h0bUvYhbGY+9emdOJyEEZd1/PzASuX7f9a65bB/z5J+DvD/zyC9C+vVy/apXtX5usjqHcUqyUExGRg5o6dSpee+01/Prrr7h+/Tri4+NNbmSGUilPTpZfkk+elBPD1a8PAOjl+jO8kIylS9UfEULOyzRpEnD/vgZt1tKmTcB774FfoshhJCerZ938/OSyKLqw//WXXA4eDNSsCfTpIx//+KPtX5uszq66rxcLnOiNiIgcVJcuXQAA3bt3N5mFXQgBnU6HTB74cgoMBHQ6mbS/+EKue/FF4JNPgEqV4HP5MrpgI5YseQqNGsk546ZOBXbvlptGRwNWvLiNfbt8GejVC0hKkrPgde+udYtUQgBLlgAVKgCPPqp1a6g4+e8/QK+XsznWqiXDcnQ00LKlbV93/365fOghuezVCxgzRq6/cAGoUsW2r09WxVBuKVbKiYjIQW3fvl3rJhQ/Li7yEkRxccCuXXLdoEEyqD/9NPDpp+jv+iN+vvgUnnpK/TFvbyAlBVi8WH6X7tZNztK+e7fMqxUqmL6MEDK8Hz0qC81Kr/liZfx4GcgBYNs2+wrlS5YAzz0n/y1v3zZ83yMHdekS8MILQOXKwPDh8o+uoJSu6/XqAaGh8r6tK+UZGYByiUollJctCzzyCPDHH8BPPwFvvmnbNpBV8X8cSzGUExGRg2qvjEkky5QsKUM5IL+YN2wo7/fpA3z6KZ5y/wV9n0jGheveuHFDXi7tgw+Azz+XBfURI4B33wUmT5Z5EJBFtn795MTKgYFy4vfvv5fP7dwpe4EHBxf5Oy24LVuA1avVx9u2md8uMxNITJTXhM8rGCckyAmuatQofNuuXpXXsQOA+Hjg2DGgSZPC75e0c/++7LkSGipPthhTJkj75x/5+KuvgFatgPXrC3btQmWSt/r15ecWsH0oP3lSdpsPCJCTvCn69JGh/McfGcoLQgjgo4+A1q2Btm2L9KU5ptxSDOVEROTgkpKS8N9//+HYsWMmN8qF8Wz1AwfKKjkgK1gVKsAtJRErBv+OfftkgW7JEiA8HHh/ikDt2sCNG8DYsTKQh4TIH9+7F3j5ZaBcOdkL9fvv5VyzpUrJanmbNjLj/vwz8Pff8rukxfR6YMECmfLNEUI2TrncUn4IIWd/1uvVdcnJsks/APTvL5fHjwM3b5r+7P37MmAEBspx+f7+wIoV5l/nmWfUrsKFIQQwcqR6UgUo/D5JO0LIy4LVqgVMnCir4MqVERTvvisDeYkSMsR6eMhrfc+eXbDXVEJ5vXryDxuQQzVsad8+uWzeXPbWUTz1lPwP5NAhebIpu1u35Amy5GTbtq84Sk+XZ0gnTAB69sz5/5ONMZRbirOvExGRg7p58yaefPJJ+Pv7o27dumjcuLHJjXKh9CXX6dTQqTzu3VveN558afdu4LHH4BVSAlvaf4AAjxT4+gJfvH8P0Sv34OqZRHz2mSzeKbm4TBlg61aZJSpVkvNKPf20/A7esqWssiuio4Hp0+UljHMlhDwTMHy4LN2/847p5Gt//y3HVoeEyJL8s8/KLrE3bsjnL1yQM9X16QMcPizXxcfLL7OVK8uJpz7+WDakShXg9Gm5n6++kuEFyHky4IcfgKgo9XFCggzz2UPV1avyEnVKn/7C+P574LffZDBT/u327CncPkkbf/4pq5v9+sleFIA8OaRM4AAAmzfLSiggT0itXKl2Qfn2WxnMLGXcfV0J5baulBuHcmNlygAPPyzvG1/GcelSoFkz2cW9UyfT/6es6fRpeSUKa7t8Wf5fNWaMZScJ8ysuDnjiCfmZcHEBpkyRv8uiJBxcXFycACDi4uKss8MRI4QAxES8L7p2tc4uiYjIuVj92GQl/fv3F61atRL79u0Tvr6+YvPmzeL7778XNWvWFL/++qvWzcuV5r/PXr2EAIR45JGcz/3zj3zO01M+37y5fGx0S6tYVaRGdBTCzU2u8/ERom9fIb7/Xlz77bD47pskceWKussrV4R4+mkhWrQw3d26dUKcPy9EhQrycdu2Quj1ubR5woQc7RBt2gjxzDNyx9mfM76Fh5s+dnUVYvx4IerWzf1nypcXYssW+dovvijXjR6ttkevF6J+fbn+44+FiI0VonZt+fjll03b/umn6n5LlhQiNbXg/3aNGsn9TJ0qxLZt6vuj4iMpSYgePdTPhJeXEJGRQgwcKB+/9prcLjNTiIoV5boXXlB/PjVViOBguf6nnyx77bt31de9d0+Igwfl/eBg67y3mzeFuHMn5/qGDeXrrFmT87mpU+Vz3brJx//9Z/q3qNPJ5dq11mmjYscOIVxc5N9tcrJ19pmaKsQHHwjh7a22/623rLNvRUqKEA8/rP7f+8svVtu1JccmhnJLvfCCEICYhEjRqZN1dklERM5F8xCZi5CQEPHPP/8IIYTw9/cXp0+fFkIIsW7dOtG6dWstm5YnzX+fs2bJL6Pmvszp9ULUrGn6pdjNTYiRI4WYP1+I0FDT50qWNB9qfXyECAqS+xo4UIgvvhDihx+EWLBAfNfxO1EasSIgQGZf4x9btsxMez/8UN3gm2/kRj4+pj/o4iLE0KFCXLggxM6dQrzyigzNyhd6nU6ITp2E6NnT9OdCQ4XYvl2Ib7+VIb9VKyG++06ItDT19deskdvWrq2u27VLrvP2lkFHCCE2b1ZD/4kT6rYPPWT6mhs2FOzf7fp19b3ExgqRkCBfCxDi8uWC7ZNM3b4t/203bhRi06bCnUDJzVdfqX9XL7wgxNWrcv1338n1zZvLx3//LR/7+wuRmGi6j4kT5XMdOsjHd+4I8fPPDw6Xv/9ueiInNlb9XKakFO59Xb0q/z8IDhYiKkpdb/w5NT5bpzhyRP1bSkqSJ7WU93btmhBvvy0flysnRHx84dqoSE8Xol499b1PnJj39klJ8rPxIMqJFUCIBg3U+7kF58xMIaZMkf8RBgYK4e4uRNOmcvvczlBmZTtRooQQBw48uE0WYCg3YvUDddbZ3Sl4x/B3S0REZAnNQ2Qu/P39RVTWl7+KFSuK3bt3CyGEuHDhgvD29tawZXmzi9/n/fu5P3f9uhCrVwuxfLkQS5eafsGOj5eV308+EeLMGfnFcf9+Wd1r00aIUqXyrlpn3dLhKn7BE+JlzBKvlFshPnt6pwjGdREWqjdtmnEg/+gjdf2//woxaZIQM2cKsWKFEOfOmX8vd+4I8ccfpqF17VohKlUSon17NRDl5fZtNdxfvy7XPfOMfDxsmOm2Suh/9FH5uzl/Xj1p0Lu3vD9o0INf05wlS+TPN22qrmvaVK5bsaJg+3RkV6/Kk0EjRwrRubM88ZKXxEQhQkJMP6stW8pQmR9Hjwrx7rtCXLqU+zbGPSxmzTJ97tIl9aROfLwQb74pH/ftm3M/Fy+qn8kFC2RgBeRJpVu35Dbnz8vA999/8nFystqbY+RItT1eXnLd+fP5e5+5efZZ9ffWqJF6IkE5gRUamvvvRDk79+OPMpwC8gSCEDIQV6livhdKQX3+udpLQTlBcvSo+W1v3RKiRg25zdtvy/ZER8u2PPaYegLuxx/Vf7/vvpPv66WX1ACdddLYICFB7bVk7ta4sewFVKaMENWqCTFjhhBffln4k3t5YCg3YvUD9SuvCAGIaXhLRERYZ5dERORc7CJEmtGsWTOxceNGIYQQPXr0EIMGDRJXrlwRb7zxhqhSpYrGrcudvf4+rUKvl19iL1wQ4uRJ+cU6MlKIJ56QX2CffFINkmZut1BKnKsQIStXr7+uPvfee9ZvpyWUbuPLlwsREyMrWoDs/mvs/HnZ9R+QJyqUrrmPPaaGE3//gnWXVU4EGFf1lK71L75o2b7OnpUnOc6csbwdxcGtW2oXb+PbmDGySmrO0qVqL49GjeS/EyBEx455V5FTUoR45x11OEelSrn3XDDXw8JYpUry+Y0b1R4ry5eb39eTT5r/O6pZU37/9/BQe7Ps3atWnIODTau+1avL9Tt2mH+dK1eE6NdPntzKjVLVV15POZmg16vDN3r0yP3nR41SgzsgQ3hmpvr8xo3qyS1lWEl2//4reyGMGiVE167y/52DB3P+rcfGypAMCPH110I89ZTaQyEjw3TbtDQhIiJMf7/lyqm/WyVwr1ypnpB8913151NT1eE1np7y/7RDh4SYPVut1Ht4yB5AZ87Ik4tvvmna/d3cbdKk3H+XhcBQbsTqB+rXXhMCEDPwmmjb1jq7JCIi52KvIXLp0qVi0aJFQgghDh06JMqUKSNcXFyEl5eXWGHHlUN7/X0Wqf/+E/pJk4Xo00eIdu2EqFJF6JXKX/abtQN5QWQVOUSdOmpAb9HC/LYLF6ptV7rZL1ggQ4ZSEcw+Pnb7dvnFfNMm054JiowMORwAEOLPP9X1K1bkrJ4/SEyM2g6dTo7l/fvv/P+8lvR6GTBjYvLebuhQNSC//bYMQ8rnq1Mn89Xvjh3l85GR8vHevUL4+sp1Tz0lK6TZ3bqlVr6VEy6ArGwePSqHbLz0khB//SW379/ffA8LxeDB6usB8uRPbv9P/Pqr+rqDB8v5ILKPByldWv0cKl3Is4/rfvRRuf6778y/jtKW3IYE6fXqGOfBg+XnUzlB0aqV+vfywQfmfz77ewHkPA3ZPfecfC4wUIhTp0yfO3/eNCgb32rXVqvgiYlqb5ZGjeTf1dWrQgQEyHWvvmoa4pWu4n5+Qnz2mdojAZD/bynvW7k1aWI69EUIeVKjfXvzbStTRv1sGLt6VYh584RYtUqeWFiwQO0O37VrzpMHVsJQbsTqB+q33hICEJ9inGjVyjq7JCIi51JcQmRiYqI4ePCguHnzptZNyVNx+X0WNX1ikhjS6LAYjnnicMNnZSXJ3JdzLWzYkPMLdW4VTCFkt3plO3d3dfKr8ePlut691W3//FNWAI33nT3A7Nsn1wcEmH7pv3xZrnd1zTkk4dSpnIEuJUV2yVYqfMrrubnJ7rfWkJ4uxO7dQhw+bL0xwELISq3S9oAA2R3dXI+HP/9U35dx4Fm7Vj1JolRxFZcvq6H9wgV1/datathr0EBWYxXGVdSyZWWAunxZrXYb39zd5WdZ6WGR21jgBQtMf65Ll9x/H3q9nOdh3Tp13ZUrahDesEGefOjUSd1fnz4596OcCJg6NedzO3eqP+vpaX6M/Q8/yOd9fdXhIN9+m/MzvXlz7u8lKUmtDnt6ql3wjSUny/cGCFG1qpxUTjFmjFxfvbqsNH/2mQzfyr+3t7cccqNUp11c5GdUofSSUP72bt5UT+zodEKsXy+3i4uTXd+VE2NJSepJC09P2TvIHL1ennho2FB2mX/sMdmea9dy/52Y28eZM7n39LAChnIjVj9Qv/OOEID4DC/mekKXiIgoLwyR1sXfZ+6WL5ffb8PCchacNJWZKbvhvveerCgeOPDgLvDvvpszCB04oH75/+Yb2Y1YmR2+bl1ZiVdCsvFkce+/r1ZQs1N+fts2dZ0yZtbdXU6YNWWKHMOsBAhljOt//6nrXFyEWLy4UL8msXevWhlVbqVKyWplRIRsg6WTp+3Zo1Zzs986dZLzH9y9K/89YmPV3+GIETn3ZVzFNT7hM22aWv3MbutWGbqVinNkpPzdPf+8WkU1/re6cEG9pECjRvIqBsZtfuih3N/ruXOm237zjWW/K3NSU+WVAx59VIgbN3I+n5UVxKhRpuszM4Vo1sy0PVkTa5pQLqnw/vum66Oj5cmpFi3ka5vraWBM6Y4/eHDu29y4oZ70iIiQFePYWDXQZ+9if+uWnE/A+D0EB5vvim98lQSlxwMgw3NeMjJk7xjjkJ8XS4fOFCGGciNWP1BHRgoBiC/xgmjWzDq7JCIi52KvIfKVV14xexs/frx4++23xcKFC8Xt/MyYW8Ts9fdpD1JTZY9OwPzVk4qdI0dyVrCVsb06nZzMSanwKVVl5XJZ7durX+Bbt849pPXrJ5978kl5JuPQody78irhe9Mm9eczMoQYPlx9ftAgGTDS02Vo//lneSJi/ny5PH1atkuvl5XhX3+VodZ4Znt/f7XrdPZb9epyArbhw+UEWh06mHbJV1y9KuciUH7Ow0OOnY+OlpNeKWP3lfdkPCN/mTK5z5atTJbl4iLbbnzFgQULzP/M9euyupn9veh05mfWTkxUX1+vN3wfF4AQWUNuzNLr1S7SOp06saAtzZsnX++JJ0zXK9Vjf3+1m3b2yenOnFF7apgL/JY4eVJOQPegyRdPnlSHFUyaJG+APIFgLvBmZMhtXFzkv2Fev9PJk9V/pwYN8h+0HQRDuRGrH6g/+EAIQHyDEaJxY+vskoiInIu9hsiIiAgREBAgfH19RZMmTUTjxo2Fn5+fCAwMFC1atBAlSpQQJUuWFCdz61KoEXv9fdqLrJF3omNHrVtiI3q9WmVVqtnG3ZkvXlQrf0uWyOqkMh744sWc+/vrLzWE/+9/asDs3l0G6Fmz5HjcZ56RF4w37u5s3CZl3LxyU17T3K1s2dwvhzdkiBrQ4uJkFXnbNlm9Nzf5mnLr0kWeUBBCVowrV1bbMWxYzvf+339yvHatWqb7qVBBTgyW1+9fGZ8MqNfQ9vHJu7t9ZqY8KdG5s/q7mTEj9+2z27BB9rR4UPdjZUK/ohp3qlwmrUEDdV1GhnqN9GnT1J4ExsMuhFBPNjz+eNG0VaGcMNDpZE8F4MHDL+7ff3CVWq+XJ2YWLLBpN3F7xVBuxOoH6qxLiSzAcyZ/a0RERPllryFy1qxZolevXibtiouLE08//bSYPXu2SExMFD169BCdOnXSsJU52evv015ERanDex11cnCRkSEn/dLpZFjNTpm13fhWq1bu+9uwwbQ6Xq6c+XG5D/LPP3IsrXJSwMdHTiLXsaOsxLdubfo6bm5ynG7//vI754OumxwXJ8SECfLyeePGySr8qFFql3LlxIJyabKqVU3HcefmyhU5o3x+Z7VPTpbB3Ph1Bw7M388KIcccHz6c/+0tsXOnHL/x88+22X92J0/K9+/np/7+fvtNrgsKkt3Ot2+Xj8uXV39Or5c9HQAhvv++aNpqbMQI9d+ualWbTX7mTBjKjVj9QP3xx0IAYgkGibp1rbNLIiJyLvYaIsPCwsxWwU+cOCHCwsKEEEIcPHhQBAUFFXXT8mSvv0970rWr/K49frzWLbGx3CYlTElRJ6UKCJBjp43HjJuzfr2suut0D972QeLj5XWzjS9LpUhOluO8Dx3K+1Jhljh7VogBA9SzMYCc1dySibAK4to1Wb1+8knZBmeUnq6OgV+4UK7r3Vs+fukl+TghQe0doFzubf9++djb27oT+uVXUpI68/28eUX/+g7IkmOTC8gybm5ygQxkZmrcFiIiIiuKi4tDbGxsjvU3b95EfHw8AKBEiRJIS0sr6qZRIY0dK5dz5wJXr2rbFpsqXdr8ek9PYM8e4L//gLt3gU2bgEceyXtf3boBR48C+/c/eNsH8fcHKlQAXMx89fbyAlq2BBo3lu20hmrVgKVLgSNHgD59gP/9D9ixAwgNtc7+cxMaCkyaBPzyi2yDM3JzA8aMkfc/+wy4fRtYt04+HjpULn19gYYN5f09e+Ry2TK57NFDfl6Kmre3/Ixs2AAMH170r+/kGMotlRXKXZHJUE5ERA6lR48eGDp0KNauXYsrV67g6tWrWLt2LYYNG4aePXsCAPbt24caNWpo21CyWJcuQJs2QHIyMHmy1q3RiL8/ULOm+WCcm9q1gaZNbdcmW2vQAFi5Eli1CihVSuvWOI/hw2XIPXoUeOEFIC1NnnRRgjgAtGoll3v3ApmZwIoV8nH//kXfXkWpUkDXroBOp10bnBRDuaWMKuUZGRq3hYiIyIq++eYbdOjQAf369UPFihVRoUIF9OvXDx06dMDXX38NAKhVqxa+/fZbjVtKltLpgBkz5P1Fi4ATJ7RtD5FDK1UKePZZef+nn+TyuedMt1FC+Y4dwIABwPXrQMmSQOfORdZMsh8M5ZYyCuXp6Rq3hYiIyIr8/Pwwf/583L59G4cPH8ahQ4dw+/ZtzJs3D76+vgCARo0aoVGjRto2lAqkZUvZi1mvB956K/ftVq8G1q4tunYROaSXXlLve3jkrIC3bCmXR4/K3gxubsAXX8htyekwlFvK1RUAQzkRETkuPz8/lCpVCqVLl4afn5/WzSErmjZNfvffsEHesouJkUOQ+/SRQ6+JqIDq1AE6dpT3u3cHgoJMn69YUR3jX6YMsG2brJiTU2Iot5RRpZzz3BARkSPR6/WYMmUKAgMDDd3XS5Qogffffx96vd4mr3nx4kUMGzYMlStXhre3N6pWrYrJkydzMjkbqVFDLeA995wM4cZ27ZKV9IwM4Nixom8fkUP54gtg8GDgo49yPqeMKenbV04m2LZt0beP7Iab1g0odowmeuP3BSIiciQTJ07EggUL8OGHH6J169YQQuCvv/5CZGQkUlJSMHXqVKu/5n///Qe9Xo9vvvkG1apVw4kTJzBixAgkJibik08+sfrrETB1KvDHH7LX7ODBwO+/q3Of7dqlbnfsGNC+vTZtJHIINWsCixfn/vzAgfJGTo+h3FIcU05ERA5qyZIl+Pbbb9G9e3fDuoYNG6JcuXIYPXq0TUJ5ly5d0KVLF8PjKlWq4PTp05g7dy5DuY14ecmrLzVrBmzeDMyeDYwfL58zDuVHj2rSPCKHIAQnMaf8Y/d1S2Xrvi6Exu0hIiKykjt37qBWrVo51teqVQt37twpsnbExcWhVB6Xb0pNTUV8fLzJjSxTpw4wa5a8/957QFISEBdnGsTZfZ3IcqmpQN268spizAmUXwzlljIK5QB4rXIiInIYDRs2xJw5c3KsnzNnDhoaX1/Xhs6fP48vvvgCo0aNynWb6dOnIzAw0HALDw8vkrY5mhEjgEqVgPh4Odv6nj0yRChz+504we85RJY6fx74919g40bg77+1bg0VFwzlljKafR0Ax5UTEZHDmDFjBhYuXIg6depg2LBhGD58OOrUqYPFixfj448/tmhfkZGR0Ol0ed4OHDhg8jPXrl1Dly5d0Lt3bwwfPjzXfU+YMAFxcXGGW3R0dIHer7NzcZFjygF57XKl63qvXoCPD5CcDJw9q137iIqjhAT1/sKF2rWDiheOKbdUtkp5Wpo8cBERERV37du3x5kzZ/Dll1/iv//+gxACvXr1wujRoxEWFmbRvsaOHYt+/frluU2lSpUM969du4ZHHnkELVu2xLx58/L8OU9PT3h6elrUHjJv8GDZfX3bNuDSJbmufXvg9Gngn39kF3YzIxqIKBfGoXzFCjlMhFeWpAdhKLeU0ezrADjZGxEROZSwsLAcE7pFR0dj6NChWGhB2ad06dIoXbp0vra9evUqHnnkETRt2hSLFi2Ciws78hWVypWBRx4Btm8Hzp2T69q2lYH8n3/kGPM+fbRtI1Fxcv++ej8hAVi1ChgyRLPmUDHBo56lzFTKiYiIHNmdO3ewZMkSm+z72rVriIiIQHh4OD755BPcvHkTMTExiMl+AW2ymeeeU+8HBwPVqgENGsjHnIGdyDLGlXKAXdgpfxjKLZUVyt11DOVERESFtXnzZpw7dw7btm1D+fLlERoaarhR0ejVC/D3l/fbtpWXcVLm9eMM7ESWUUJ58+Zy3oZdu4AzZ7RtE9k/hnJLZU30poRydl8nIiIquCFDhkAIYfZGRcPXFxg6VN7v0UMulUp5dDRQhFfDIyr2lFBesybQpYu8v3Kldu2h4oGh3FLsvk5EREQO5uOPgYMHgQED5OOAADneHGC1nMgSyphyPz/gscfk/ePHtWsPFQ+c6M1S2SZ6YygnIqLirlevXnk+f+/evaJpCGnG3R1o0sR0XYMGQFQUcPgwEBGhSbOIih2lUu7vr1654NQp7dpDxQNDuaWyVcrZfZ2IiIq7wMDABz7/7LPPFlFryF40aQKsWwe88QZw8iTw9ttAlSpat4rIvimh3M9PDeVnzgCZmYZRsEQ5MJRbit3XiYjIwSxatEjrJpAdevllYPduYMsWYMECYPVq4MQJoFw5rVtGZL+Mu69XrAh4eQEpKcDFi0DVqpo2jewYx5RbipVyIiIicgKBgcDmzcBffwE1agD37gFr1mjdKiL7Zlwpd3GRE74BwH//adcmsn8M5ZbK6nfiKlgpJyIiIsfXqhUwYoS8/+uv2raFyN4ZjykHOK6c8oeh3FLsvk5ERERO5skn5XLHDrV7LhHlZNx9HVBDOSvllBeGcktlhXIXIWdfZ/d1IiIicnQ1a8rxsGlpcow5EZln3H0dAGrXlkuGcsoLQ7mlDJdE00MHPSvlRERE5PB0OqBbN3mfXdiJcpdb93WGcsoLQ7ml3NQJ612RyVBORERETkHpwr5hA6DXa9sWInuVvVJevbo8qXX7NnDzpnbtIvvGUG4powsMuiGD3deJiIjIKbRtK6t/sbHAgQNat4bI/giRc0y5j4+8NBrAajnljqHcUkaVcjdksFJORERETsHDA+jcWd7/5Rdt20Jkj9LSgAw5F7QhlAMcV04PxlBuKXZfJyIiIieldGHfuFHbdhDZI6XrOmAaynMbV/7RR0CbNkBcnO3bRvaNodxS7L5ORERETqp9e7k8cgRITta0KUR2R+m67uVlUscze63y5GRgyhTgr7+AP/4oujaSfWIot5SLi7yB3deJiIjIuVSsCISGyi66HFdOZCr7JG8Kc5XyrVuBpCR5PyrK9m0j+8ZQXhBZp74YyomIiMiZ6HRAy5by/p492raFyN5kvxyaQhlTfvEikJgo7//8s/r8xYs2bhjZPYbygsjqws7u60RERORsWrWSy717tW0Hkb3JrVJeujRQqZKcnX3xYiAzE1i/Xn2eoZwYyguClXIiIiJyUkqlfO9eGTIAOS6WM0uTs8t+OTSFTge89pq8/9FHwI4dwK1b6vMM5cRQXhBZodwVmayUExERkVNp0gRwd5fXK79wAdi/X17D/LHHAL1e69YRaSe3SjkADBsm52OIjgaGD5frHnpILi9eVE9wkXNiKC8IVsqJiIjISXl5AU2byvt79wLTpslAcfWq6ezSRM4mtzHlgPy7eeMNeV+pjL/0kvpzt2/bvHlkxxjKC4KhnIiIiJyY0oV94ULTCat27dKkOUR2Ibfu64qRI4GyZeV9T0+gRw9ZPQfYhd3ZMZQXBCd6IyIiIiemTPa2fbtcurvLJUM5ObO8uq8DgI8P8Prr8n7XrnK7SpXkY4Zy58ZQXhCslBMREZETUyrlivffl0uGcnJmDwrlADB+PLBmDfDNN/IxQzkBDOUFYzTRG0M5EREROZty5YDwcHm/Y0dg7Fj59Sg6Grh0Sdu2EWklrzHlChcX4KmngDJl5GOGcgIYygvGqFLO7utERETkjAYNAnx9ZZXc11fOyg6wWk7O60Fjys1RQnlUlNWbQ8UIQ3lBsPs6ERERObmpU4F794AWLeTjtm3lkqGcnFV+uq9nV7myXLJS7twYyguCoZyIiIhI+UoEgKGcKD/d17Mz7r7Oa5U7L4byguDs60REREQm2rSRy1OngFu3tG0LkRYK0n29QgW5TEqyzt/NL78AR44Ufj9UtBjKC4KVciIiIiITQUFAnTry/u7d2raFqCikpMjZ1Ddvlo8L0n3d0xMIC5P3C9uFff9+oHt3oGfPwu2Hih5DeUEYzb7OSjkRERGR1L69XP70k7btICoKCxYAs2YBr74qHxcklAPWm+xt9Wq5vHQJuHmzcPuiosVQXhCslBMRERHlMHy4XK5cydmkyfH98INcnj0LZGaq3dctGVMOWG+yt59/Vu+fPFm4fVHRYigvCIZyIiIiohyaNAE6dZIB5eOPrbPPmzd57XOyP+fPA3v3yvupqUB0dOEr5YUJ5f/9B5w+rT4+caLg+6Kix1BeEJzojYiIiMisCRPkcuFCICam8Pt79FGgfn3g+vXC74ucR0KCHPNtK8uWmT4+dgzQ6+V9LUL5unWmjxnKixeG8oJgpZyIiIjIrPbtgZYtZfVw1qzC7evmTRku7t8Htm2zTvvI8V2+DFSrBjRuDGRkWH//Qqhd17285PLQIfV5X1/L9leQMeXnzwPlywPjxsn2KKFcuQoCQ3nxwlBeEEYTvTGUExEREal0OrVaPncukJxc8H0Zj4v988/CtYucQ2YmMGgQcOOG7NK9Z4/1X+PQIdlV3MsLGDxYrjt4UC59fAydavNNuSxadHT+r1W+Zg1w9Srw2WfA888Df/8t17/9tlyeOMHrnhcnDOUFYVQpZ/d1IiIiIlNPPCEvkXb/vgxGBcVQTpb6+GPTz4rx5Gf5lZEhQ+3588CdOznDrVIl794daNZM3lcq5ZZ2XQdkxRsAEhOBe/fy9zPKSQAAmD9ftrF5czncw9UViIuToZ2KB01D+fTp09G8eXP4+/ujbNmy6NmzJ04bz1AAQAiByMhIhIWFwdvbGxERETip9XSC7L5ORERElCsXF6BWLXm/MKH833/V+//9B8TGFq5d5NgOHgTefVfef+opuVy3Lv8V4/R0YNEi+dmtX192gQ8KAh5+WFbgFb/8Ipf9+wM1asj7167JZUFCuY+PfB1AVsvz48ABuezeXV3Xs6e87rnSJq0jE+WfpqF8586dGDNmDP7++29s2bIFGRkZ6NSpExITEw3bzJgxA59++inmzJmD/fv3IyQkBB07dsR95ZoDWmAoJyIiIsqTEsqz1Vsskj1U7N5d8H2R4/vkE1nl/t//gO++k93LL1zI3/jqP/4AatcGhg6VFXIfH3Vs+L59wJUr8n5Ghjr2u2lTNQArLL0cmiI8XC7zE8rv3pVtBORJhA8+kFXy556T6+rVk0tz7/vWLXZrt0eahvKNGzdiyJAhqFu3Lho2bIhFixbh8uXLOJjVH0MIgdmzZ2PixIno1asX6tWrhyVLliApKQnLsk95WJSMZl/X603PnBERERERULOmXFojlLdoIZdF1YWdwxOLpzNn5PLZZ2XFumNH+Vjpwn7/fs5x2zdvyjHZjz0mg27ZsrIL/I0bcgb36tXldsrM6Neuye/+7u5AaCgQHGwaxAtSKQcsC+VKV/kqVYBSpYCJE+WJg9BQuT63UP7JJ0CZMsC0aQVrI9mOXY0pj4uLAwCUKlUKABAVFYWYmBh06tTJsI2npyfat2+PPbnM2pCamor4+HiTm9UZVcoB/sdNRERElF1hu6/Hxsqqnk4HjBwp1+3aZZ225WXhQsDbG/jqK9u/FlmXEpwrV5bLHj3kct06GVDr1JGTqlWqBDzzjKx0BwcD8+bJ7caMAc6dA157TQ3X2S9XdumSXIaHyzqdTmdaLS+KUK50XVfGs2dnLpSvWAG8/rq8/8cfBWsj2Y7dhHIhBMaPH482bdqgXtYnKSbr4pbBwcEm2wYHBxuey2769OkIDAw03MKVT7g1Gc2+DjCUExEREWWnVMrPnFGv32wJZTx55cpA587y/pEjcgIrRUoK8MorwPLlhWqqiVmzZCX0pZeK5iQAWUd8vJyUDVCDdLduMjQfPCgvFaZ0Qb98WYbUQ4dk1bxJE2D7dmDOnJzdz7OHcmWprAeKPpQrk7w1bWr++bp15fLkSfm3t2uXOks8oPYoIPthN6F87NixOHbsGJab+V9Vp9OZPBZC5FinmDBhAuLi4gy36PzOlmCJbJVyjisnIiIiMlW5svzKlJSU9yzQhw7JMJSaarpe6bpepw5QrhxQtaoMGMadJSdPBmbPlgHaGo4fV6uLmZlAnz7A9evW2TfZljLOOyhIDdZlywKtW8v7cXEymEdHA5s3A++/D3z/vfz3PXgQiIgwv9/cKuUVK6rbGIfyohhT/qBKedWqcsK35GT5N/L44zKvKCe3rl6VXfPJfthFKH/xxRexfv16bN++HeWVawIACAkJAYAcVfHY2Ngc1XOFp6cnAgICTG5WlxXK3RnKiYiIiMxyd5ezVwPmu7AnJMgqd/PmwIsv5hznqoRyperXtq1cKl1v9+2TY2QB2c391q3Ct1mpDXXqJLsAx8TIbs6cGMv+Ze+6rlAqxD17yjBevrwca/7OO8DAgUBW3MiVpaHc1pXy27fVExBNmpjfxs1NTloHyEngEhOBDh2AtWuB0qXl+rNnC9ZOsg1NQ7kQAmPHjsWaNWuwbds2VM72V1S5cmWEhIRgy5YthnVpaWnYuXMnWrVqVdTNVWVN9ObpyjHlRERERLnJbbK3s2dl6J09W+3aPneu7I6uULqvK6H8scfkcuZMWRkfOtS0W3xhJpQDZPBesULeHzoUWL1aVht37izcZd2oaChB1bhbOQAMGyYD9Zo1cq4AS+Wn+7oyGRxQ+FB+5UreJ4GUSd6qVQNKlMh9uwYN5NLTE/j0U3lCwtvbdFgJ2Q9NQ/mYMWOwdOlSLFu2DP7+/oiJiUFMTAySk5MByG7r48aNw7Rp07B27VqcOHECQ4YMgY+PD/r3769dw7Mq5R4urJQTERER5cZcKL92TVaiL12SwebXX2UguXkTML64TvZKeb9+ciIuAPjiC/l8mTJqF97ChvJ//pHBztdXjkWuUUOtRB4+XLh9k+3lVinX6WRVO5eRrw+khO/oaHk5NHOVcmuE8nLlZBtTU+XfQm4e1HVd8c47csK6w4dljxSXrNSnVPUL+/dC1qVpKJ87dy7i4uIQERGB0NBQw23lypWGbd544w2MGzcOo0ePRrNmzXD16lVs3rwZ/gUdsGENSih3lRO9MZQTERER5ZR9BvZ794AuXWSAqlZNBuEnnpDd1wFZORfCdOZ1ZR+urnLs+e+/y0s/6XTA118DLVuavkZBKScEevaU16gGgMaN5ZKh3P7lVikvrJAQwMNDzjEQHS0nicv+OiVKyPHrQMHHlHt4yJngAfU1zHnQJG+K6tXlpd2UbuwKJZSzUm5f3LR8cZGPATo6nQ6RkZGIjIy0fYPySxlT7sLu60RERES5Ma6UCwH07y8nUwsJkd1plSAzfDjw3nvyuW3bDCMFUbmyGpAVXbrIQHHjhpzQSpmI7UGVv/h4OY49LCzncxkZwI8/yvvGnTEZyouP3CrlheXiIqviZ88Cf/8tK9kuLrKybaxmTXkyqTDTWYWHy3kMoqPNV8L1etkG4MGV8tzkNqSEtGUXE70VO1mh3JPd14mIiIhypQSA6Gg5ydTvv8uK4MaNpuGpZElgyBB5f+hQ9brkStf17Pz8ZCA3fo28QoYQckx6tWrqZbGMbdokQ35QkJwETGEcyjnZm/0SQq2UWzuUA2pVfOdOuSxXTk5kaOydd+QQiyefLPjrVKggl7lN9rZ5s5w5PTAQeOihgr2GcaWcn2n7wVBeEFmnb90ZyomIiIhyFRSkzvasBO2xY4GGDXNu+/LL8ivW5cvqzNDt2j34NZTu7efP59578cABYP9+eYko40uqKebPl8tnnzUNW/XqyVrMnTv5u1QVmXfqlDzB8csvttn/nTvA/fvyvvFYb2vJHsrNdZHv1EnO3q983gviQTOwf/WVXD73XM4eJPlVrZoc+hEfLyv7ZB8YygtCGVOuY/d1IiIiorwolezbt+XY24kTzW9XvboMPQsXAj//LLvpjh//4P2XKycnZ8vIAC5cML/NDz+o948fN33u2jU52RwAjBhh+pynp7xOOsAu7IWxeDFw5AgwYYJtqrNK1/WQkILNsP4gSghX5i2wRfAH8g7lFy+qn9MXXij4a3h6qu+HXdjtB0N5QWQbU85KOREREZF5SigHZCgrVSr3bVu3llXAHj2AFi3UGaPzotPlPaN0RoZ6qTMAOHHC9PlFi+QkXm3a5JwUC+C4cmtQZtI/eVKGc2uz1SRviuz71SKUf/ONPKHRsaPpddELgpdFsz8M5QWhhHIdZ18nIiIiyosSdMPD1VnWrS37LO/R0bICDsiJ427cULc1DuV6PfDtt/J+9iq5gqG88JRrzgPA999bf/+2muRNkT2U2yr85xbKU1PVz+no0YV/HV4Wzf4wlBeEIZSz+zoRERFRXp57Tk7itnKlbboWA6aTvd24IcesV64sZ1RXuq4//bRcnj8PJCbK+1u3ykBXogTQu7f5fTOUF05iolrJBuS464wM676GLSd5A4q+Un7tGhAXB3TvLj+bgYHyEoHlyxduIjkFL4tmfxjKCyJbKGelnIiIiMi8oCDZRVy5nrgtGIfyWbOAu3fl97N+/dSu6+PGyUuwCSEnHgPk+HUAGDgw9xMGjRrJZXS0DEZkGeV3HRQkbzExwB9/WPc1lEq5rSrYyrXKFbZ8HTc3OZyie3c5MV5cnKyUA8CbbxpiSKGw+7r9YSgviKzZ191YKSciIiLSnNJ9/fhx4Msv5f1HHpEBPC1NhqhWreRs6sp2aWnAb7/JxwMH5r7vgAD18muslltO6bpev748SQJYvwu7rSvlyrXKFUpF29pcXYGwMHn/zz/llQA2bJDv79YteeUCa1Aq5efPW7/XAhUMQ3lBKJVysFJOREREpLXq1eUyPh5ISAAaNJBd06dNk8Fm3Dg5IZwSyk+cAHbvlpfRKlsWaN487/2zC3v+paebVmCVSd7q1gUGDZL3166V/07WIITtK+XG+w4JAby8bPc6xoH/yy+Brl3lawcFWe81ypeXPUPS02XPEqUST9phKC+IrFDuxoneiIiIiDTn6wtUqKA+fvttWd2cMEGGv5dfluvr15fLEydkBRIAHn/8wbO8N2kil998wy6/D/Lxx7J79JIl8rESyuvUAR56SIbOpCTg0KHCvc7vvwODB8t/6+RkedLF+DNgbUoot2XwB+QJJQB4/vncJx8sLBcX4LHH5P033pD/Xrt22ea1KH8YygtCCeVg93UiIiIie6CMk61RQ53UDTAdC2zcfV0J5U888eB9Dx4sA9+FC/JSbVu3WqfNjujvv+Vy/ny5VLqv160rg7MyFODKlcK9zvjxwHffAR9+KB+XK2f6b21tSrurVLHdawCyd8fGjeowDFtZtQqYOxcIDQUuXbLOrO5UcAzlBZEtlLNSTkREVHipqalo1KgRdDodjtjiYsbk0Lp1k2NyP/zQMP1PDnXryuX163JSODc3oFOnB+87LAzYt09OVnfvnqyu83JS5imXovvrL+DsWXW8t/K7L19eLgsTyvV6eYIEkLPmt24NvPNOwfeXH0OGyDHdb71l29cpUQLo3Dn3z7C1eHgAo0YBBw/KxydPyuEcpA2G8oJQJnpjKCciIrKaN954A2HKLEdEFnrxRdlV/amnct/G39+0+3GbNvJyU/kRHAxs3y4DYEaGHBdNOSmhHACmTpXLsmWB0qXlfWuE8mvX5PdvNzd5ibXdu2V3b1sKDga++EIdAuEoQkPlkAIhCj+kgAqOobwgsirlruy+TkREZBW///47Nm/ejE8++UTrplAxlp8JuIxDVX66rhvz9AT695f3N2607GedQWamvE68YulSuaxTR11njVCuVN8rVLB9RdkZNGsml/v3a9sOZ8ZQXhDsvk5ERGQ1N27cwIgRI/D999/Dx8fngdunpqYiPj7e5EaUX8q4csDyUA4AXbrI5V9/ydneSRUbK7uW63TycaacE9nQdR1QZxe3Rii31SXQnI1y9YEDB7RtR34cOiTb+8svWrfEuhjKC0KplAvOvk5ERFQYQggMGTIEo0aNQjOlXPMA06dPR2BgoOEWbquLBpNDathQLitXVq9vbokqVeQl2DIygD/+sG7bijul63poqJwQT2Ecyi2tlAshhyS0a6d+52Yoty5rV8qFkHMvWJteL2ekP3AAWLzY+vvXEkN5QbD7OhERUZ4iIyOh0+nyvB04cABffPEF4uPjMWHChHzve8KECYiLizPcoqOjbfhOyNE89RTw2mvAwoVqRddSSrVc6cKelATs2CHDiDNTQnlYmJyATWGu+3pMTP4KW0ePAj//LC/ZdeyYXMdQbl1KKL9wAbh9u/D7mzIFKFUK2LKl8PsytnSpOu795k3r7ltrDOUFYaiUs/s6ERGROWPHjsWpU6fyvNWrVw/btm3D33//DU9PT7i5uaFatWoAgGbNmmHw4MFm9+3p6YmAgACTG1F+eXjIa2lHRBR8H8ahPC1NXvP5kUeAZcus0sRiy7hS/r//yfsuLqaV8tKl5b+BEHIW/AdZtUq9z1BuGyVLAln/9eLgQSAxEejYEXj2WVmdttT69fLfd+9e67UxMREwPnfraKHcTesGFEtZM0q46mWJnJVyIiIiU6VLl0ZpZbrlPHz++ef44IMPDI+vXbuGzp07Y+XKlWhh3P+VyI60by8nfbt8WV4TXQkfa9YAAwZo2zYtKSE7LEzOcr9smQxnxv8VuLjIa4pHRcku7BUr5r4/IYCfflIfM5TbTrNmwLlzsgv7wYPA1q1yfatW8tJp+ZWaChw/Lu/HxFivfZ98Ik/6+PnJqywwlJNhak+3zFQArJQTEREVVIUKFUwe+/n5AQCqVq2K8ko/VyI74+srxzhv2WI64dTWrbJY4+6uXdu0ZNx9HQCeecb8duXLq6E8LydOAGfOqI+PHZPfu5WfYyi3nubNgRUrgM2b5ZABxeuvA127ypnu8+P4cbVgaa1QnpYmQzkATJ8uL394546cSNBRZt9n9/WC8PcHAHim3gfAUE5ERETkbJQu7ADw5puyGhwfb90uu8VN9lCem/xO9qZ0XVfC99GjsneCEICPj7z+OVmHMgP7n38CcXFAgwaySp6QIK8Bn9/5EoxncLdWKD9zRrbD31+9Hr0Q1hn/bi8Yygsi6yy+e1oCAMHu60RERFZSqVIlCCHQqFEjrZtClKfeveVY3G7dgA8+ADp3luud+frltgrlb78tu73fuQPs3i3XVapU8In6KKfGjeXvWDF9OrBggRymsXGjDO0vvfTgKw4cPKjet1YoP3lSLuvWlb1QSpWSjx2pCztDeUFkhXIXfSa8kMJKOREREZGTCQ+X1+Vet07OAZx9RvaUFGDtWlnhcxbGE73lJT/XKv/3X3lzd5cnQGrWlOvXrZNLdl23Lj8/oHZteb9tW+Dxx+UlAz/5RJ78OHgQ+OILefJJ+Xc2J3ul3BpXJDAO5QBQpoxcMpQ7O19fw10/JDCUExERETkhNze1Wtupk1wePixDy9NPA716yYqjM8jIkCcpAOtUyn/+WS47dQICA9Xry2/aJJcM5dY3YoQ8YTJ7tvq5HjtWjv9ftkxOypeZaTpE46235MztFy/KE1EnTqjPJScD9+8Xvl0M5WSeq6scyALAH/fZfZ2IiIjIyZUtCzRtKu936wZs2CDvO8sY8xs3ZFXU1VUNTbnJTyhXJht75BG5bNBALpOT5ZKh3PpeflmO2W/SxHR9xYpy0r7HH5eP//5bLjMygC+/BM6fB2bMkBPxZWTIf/+sKbis0oVdCeXK9e4ZykmV9UljpZyIiIiIALUL+6FD6rpjx6zThdfeGXddd3lAwlBC+bVrMsSZc+6cXNaoIZdKKFcwlBc95SqV//wjl4cPq8MzFi0Cfv9d3m/aFAgJkfcLG8pTU9XPAivllFPWuHJ/3GcoJyIiIiJDJREAXnhBVo1v3857DK6jyO8kb4DsVeDmBuj15kObEMDZs/J+tWpyyVCuvYcflssDB+Rlz3buVJ9LSQE+/FDeb9bMeqH8zBnZZT4gQF7fHmAoJ2NGlXJ2XyciIiKihx8G+vYFhgwBPv9cnZzs2LG8fy4hQVYEizNLQrmrq7qduS7ssbFyLLJOB1SpIteVLy9nu1cwlBe9GjXk+P7kZDl2XAnlLVvKZUqKXFozlBuPJ1fGuTOUk4qVciIiIiIy4uoKrFghu/K6uanV3bxC+Y0bcnKt7t2Lpo22cv26XD5o5nVFXuPKle7KFSrIS3IBMpApv8+SJWU4pKLl4gI89JC8v2cPsGuXvP/pp6YnSazZfT37JG8AQzkZY6WciIiIiPKQn1D+11/AvXvA5s3Fu5u7JZVyIO/Loild16tXN12v/D5ZJdeO0oV9/nwgLk5GombNgFdekeuDg2U3c4ZyyzCUFxQr5URERESUh/yEcuNLSG3dmr/9CgF8+60aWOyBpaE8r0p5bqG8VSu5VC6PRkVPmexNmR2/dWvZK2TECBnMv/xS9moorqH81CltJmZ0K/qXdBCcfZ2IiIiI8qCE8v/+k2PGla7YxoxD+ZYtwLPPPni/K1fKENS2LfDnn9Zpa2FZM5Qr3deVSd4UvXvLbutKtZaKnhLKFe3by6WXl+zGrrBGKE9JyTnzOqCG8lu35GSBD5rtP78uXpSXXataVZ4MMPf3aiuslBdUVqWc3deJiIiIyJzy5YESJeRlv06dktXFSpWAmTPVbbJXyvNTpVu1Si7//dearS2cgnZf/+cfIDHR9LncKuWurnKGe+MJ36holS4tQ6tCCeXZWSOUnzkjQ3eJEqZzFZQuLZeZmXLoh7WsXSuX5csXbSAHGMoLjt3XiYiIiCgPxpOTHTsGvPoqcOmS7OILyOr5mTPyvpubDDDGId2c5GT1etC3bwPx8bZpuyXS09WuxPmd6K1DBxngL14EXnxRXW98ObTsoZzsg9JTwcdHjic3RwnlsbEyPBeEuZnXARmYAwLkfWt2YV+zRi7/9z/r7TO/GMoLit3XiYiIiOgBlFD+xRfAH3/I+1FRwNWrwOnTMrCUKCFDKiC7sOdlyxYgKUl9HBVl9SZbTKmGursDQUH5+5kSJYBly2TX40WLgKVL5frYWHmJOBcXTuhmr9q0kcu2beW/uTllysggnZkpTx4VhLnx5Mb7B6wXymNi5KSLANCzp3X2aQmG8oIyqpSz+zoRERERmaNMSnbggOn6XbvUqni9ekDHjvL+g0L5zz+bPraHUK6cbKhc2bLxve3bA5MmyfujRgEXLqhVcuPLoZF9GToU+OQTYM6c3Ldxd1e7mRe0C/v27XLZpEnO56wdytetk700HnpIHVpRlBjKCyrbJdG0mKWPiIiIiOybUikHAF9f4Jln5P3cQvnOnbJbuzkZGcD69fJ+uXJyeeGC9dtsCSFkQAOAYcMs//l33gHatZPjyj/8kF3XiwMPDzkUI/tEfNllH1ceFSXHiOfHzZvA3r3y/hNP5Hze2qF89Wq57NXLOvuzFEN5QRlVygGwWk5EREREORiPhx03Th2vmj2U168vr/GcnAzs2WN+X7t3y67ApUoB/fvLdUVVKf/mG6B7d2DAAGDsWODgQbn+999lN2N/f+D55y3fr6srMHWqvP/dd+p7f1DgI/tnHMq//RaoUkWeeMmPDRvkCZ8mTdSZ+o1ZM5TfuaNW5bUK5bwkWkEZVcoBGco9PLRsEBERERHZG19fWUE+cQJ47TW1Cn7ihFpBrFdPBvcOHeQ46507gUcekc8lJADz5skq+Y4dcl23bmoluSgq5ZcvA2PGmE7YtXChrNp//LF8PHKkvFxZQbRuLS+19c8/cr8AK+WOQAnl16/LeQMAYO5c4K23HjzMQekR0q2b+eetGcp//VX+fdWvr93njqG8oLJVytPS5H+6RERERETG5s83fVy9uuymrQQKZSKrhx6SofzwYXXbuXOBN94w/fmePQ31oSKplH/5pQzkTZvKSvmvvwLbtsluxWlpcub4l18u+P51Otkduk8ftXszQ3nxp4TyVavkpIaAvC79n38CERE5t1euOZ6SAmzaJNd1725+39YM5cqs61pVyQF2Xy+4bJVyzsBORERERPnRtq16PyREnRBLmdDq0CH1eWVG6JYtgaeekpcPe/JJdWbyqCjbzm2UmKieVJg0CXjlFeC334AePdTvv888U/jJsZ56ynS2dXZfL/6UUK5McujqKpc//GC6XXo6MHCgDNobNsiu5ElJct6Exo3N79taoTw1Fdi6Vd7v0aNw+yoMhvKC4phyIiIiIioA41Ber556X5mp/coVGTaEkF26AdlNfM0a4PPPZWU6PFyGnJSUgs9unR9LlwJ378rxwMqEW56ewE8/Ac8+K8fBT5xY+Ndxc5OBH+Dl0ByFEsoVytwBq1apwzgyMmQg/+EHOba7Vy/gvffkc927m16f3Ji1Qvnu3fLEU0gI0KhR4fZVGAzlBZVVKfdBMlyQyUo5EREREeVLbqE8IEDttn34sLyWeUyMDN/ZK4bu7mp12lbjyoWQJwEAWaFXKp3K6y9ZIscL16xpndcbOlSOq3/hBV4OzREYh/L69eWcCuXKAffuyd4WqanAc88BP/4oP0/t2sneF8qJqNzGkwP5C+VHj8p9r1kjL9uXkZFzm99/l8suXXI/AVAUGMoLKqtSDqiXRSMiIiIiepAqVYDQUHnfOJQDavg+fBjYt0/er18f8PExvx/AduPKN20C/v1Xfu197jnz21gzyPj6yq7EeV3/mooP41A+YoQ8qaNcEnDqVKBOHdkTw9VVhuetW+UwBkB+FpTJDs0xDuXmhm/cuCHnaOjbV17x4LHHgC++yLndxo1y+fjjlr8/a2IoLyhPT8PpQj8ksFJORERERPmi08ku361a5RzHqowrNw7lDz1kfj9KF29bVMovXQKGDJH3hw0r+Mzq5LwqVJAndPz9ZRd1QE4UCMhL6l24IIP76tVy8kJ3d2DFCmDKFNmd3csr930roTwtDbh/P+fze/bI5wID1ZNXxhMoAkB0tLycn4uLDO1a4uzrBaXTyU/YvXvwx32GciIiIiLKtzFj5C07pVJ+6BAQGyvv5xbK81spF8KyinZ8vJxM7sYNOc72gw/y/7NECj8/OVGhuztQsqRc17Ah0LGjXP/667JLu1EHZHh4AO++++B9+/jIW1KSrJYHBJg+r0wu9/TTwKOPypMBly+bbqNUyR9+GChVqmDv0VoYygvDzw+4d4/d14mIiIjIKpRQfvasHFMOFK5S3rGjHPe9fz/g7Z37ditWAJMny86gCQky6IeGAr/8YhqaiCzRoIHpY51OjuPW6R58rfIHKVdO/p0sW5YzyO/fL5fNm8uKPZAzlBuPJ9cau68XhtFl0VgpJyIiIqLCKlMGKF9e3k9KkmNr69Qxv+2DKuUJCXKc7smT6qXVzMnIkFXLM2eA48fl/nx8ZCBX2kJkLa6uhQ/kAPDmm3I5aRKwbp26Xgi1Um4cyq9ckddCB+SVs5RLoTGUF3dGl0VjKCciIiIia1DGlQNA06ams54bUyrlV66ol5gydv26en/nztxfb8MGuY/SpeXkbqtWyYDetKnlbScqKsOGqUNABg4ETpyQ98+fl5fx8/SUkySGhcmTAOnpckgGAOzdK8eily5tH59zhvLCMKqUs/s6EREREVmD8eXPcuu6Dsiquq+vrAxm75oLmIbyHTty389XX8nl0KFAp05ytupy5SxqMpEmZs2Ss7QnJMjPL6B2XW/USI5nd3NTP8/K34ly2bWICOtU7QvLDppQjLFSTkRERERWZlwpzyuU63R5jyu/dk29v28fkJws7yckABcvyvvnzgGbN8t9Pf98oZpNVOTc3YHly+UEcfv3ywkSjceTK7KPKz99Wi7r1i26tuaFobwwOKaciIiIiKzMOJQbBwtzataUyyNHcj5nXClPSwP+/ltW1R9/XIb5QYOADz+Uz3fpoo5RJypOgoNl7w4AmD9fDeXNmqnbZA/l//0nl8rfj9Y4+3phGFXK2X2diIiIiKyhfHk5m7ReD1SsmPe2bdrI6zzv3KlOfKUwDuWA7MKemQns3i0fL12qPjd6dKGbTaSZESNkxfyHH+RnHMi7Uq6E8lq1iq6NeWEoLwxWyomIiIjIBqZMyd92ERFyuXu3nEXdzejbvRLKq1WT3dR37pQTXAFAjx6yC/vRo7JC/vjj1mo5UdGLiFA/54CsnRpXwY1D+a1bwO3b8nGNGkXazFyx+3phsFJORERERBqqXx8oUULOJH34sOlzSih/5hm53L0b2LJFzuY+e7bs5rt2rbqOqLjS6YCRI9XH2a9aYBzKlfHk4eFyokR7wFBeGFmhnJVyIiIiItKCqyvQtq28n/2yZ0oob9cOCAlRu/X27QtUqiQnyerZk2PJyTEMHiw/00DOuRjCw+Xy8mX767oOMJQXTlb3dX/cR3y8xm0hIiIiIqekdGHPftkzJZSHhqrbAMDrrxdBo4iKWNmywJAh8v4TT5g+p1TKb91Se5QwlDsKo0r5rl0at4WIiIiInFL79nK5a5daDU9JAe7elfdDQ9Ux4127yus3EzmiL78ELl0yPQkFyCEeWdENW7fKpb3MvA4wlBeOUaV8506wCzsRERERFblGjYCAACA+Xk7cBqhVck9PoGRJefmz9euBZcs0ayaRzbm7q1VxYzqdul4ZU85KuaPIOt0S6JqApCR1NksiIiIioqJiPK5c6cKuhPKQEBlIdDqgWzcgMFCTJhJpLntYZyh3FFmV8tKe9wGoXSGIiIiIiIqS0oVdmexNCeVhYdq0h8jeGIdyPz/7+ttgKC8MozHlAEM5EREREWnDeFy5Xm86yRsRmYbymjVl7xF7wVBeGFmVco+0BAAC+/YB9+5p2iIiIiIickKNGwPe3nJyt9OnGcqJsjMO5fbUdR1gKC+crEq5LiMD9aqlop7+KA5+d1LjRhERERGRs3F3V6/NvHcvQzlRdtkr5faEobwwlHn1AfRtdh5/42G0ebUFcOOGho0iIiIiImf08MNyyVBOlBMr5Y7K1VX2EwLQL3EBvJECz4xE6D/7QuOGEREREZGzadlSLv/+m6GcKLty5dRx5KyUO5qsanmV3UsMq5JmfgV9fIJWLSIiIiIiJ6SE8pMngfPn5X2GciLJwwN4/XWgXz+gXj2tW2OKobywsiZ7c7l7B8LFBZcRDr+0u1jddQGE0LhtREREROQ0goOBypUBIYCErPqQPV32iUhrH30ELF8OuNhZCraz5hRDRuPKdR06IOa5twEAzf+ahaHPZhj+QyQiIiIisjWlWg4Abm5A6dLatYWI8qdYhPKvvvoKlStXhpeXF5o2bYpdu3Zp3SRVVqUcANC/Px76cjCS/cugEi7Ba+l8NGkCHDqkXfOIiIiIyHkYh/LgYPurCBJRTnb/Z7py5UqMGzcOEydOxOHDh9G2bVs8/vjjuHz5stZNk5RKuacn0KsX4O0N7wmvAADmYjSeOzsBzZtmomNHYMUK4N9/gXPngGvXgPR0DdtNREVDCODiReDSpaJ/7bQ0ecFadtkhInIaxqGc48mJigc3rRvwIJ9++imGDRuG4cOHAwBmz56NTZs2Ye7cuZg+fbrGrYNaKe/WDQgIkPdffx24dQv49FNMwIfojZ+g2ypQeusteCANLtAjA264grK47RaMNFcfIGsmwKwFdDph8lh9XphZJ9erT2Td1WWtz7EOcHUVcHEBXF0AF9espQvg6iLg4grT57LakpEBZGTK9e7ugJurgM5FzmKo0wEuOkDnArhA7lvnYtp+XW6D7DMyZGi4f1/OZl++vDyKuGV9PFNSgHv3gLg4IDNTrnNxkdsqNx8fuf3du/J3r9MBQUHy5u0tZ3ZwdZWvlZmZ9WYyAL1e/pybW9abynrNuDi5r3v35DI+Xvb/Cg8HQkLk/tzd5baZmaY3reh0D97G2oSQwS89XS7T0uTvwNVV/R1lv2Vmyt/vvXvq79/VNefNeD2Q++tk/3nlcUqKfJ24OPlzyr+58hkICpID7UqUkJ89Zdu4OPl51Onkfnx8gJIl5XZuRv9lKr9vvV7eMjNzLhMTgePH5XsFkBZWCddqPYrk0uFw8feFm7cbvDIS4ZmRAI+0BHikJsBVn46MUmWQHhQK+HjD0yUD7rp0uCRm/Y3cvy8/j0obs/9+b9wALlwALl+WvyeFr6/87Co3X1/13yE9XbYZALy85N9M9qW3t/z3vn9fvi9l+4LS6eTfsUvWfyJCAKmp8t9NCPU5Fxf572C8bXq63DY1Vb7H1FT1M+fhIU+SenjIbZV/H+Ob8m+U2y2v5/v2BSZMKNx7JyKyoQYN5H/ZyckM5UTFhV2H8rS0NBw8eBBvvfWWyfpOnTphz549Zn8mNTUVqamphsfx8fE2bSN69pTXnXj9dXWdmxswcybw0EPAsGGolng+x495Ig2VcRGVMy4CGbZtYrFzPufvyy5cuADs26d1K6gYSoUHXKCHx7WLqHRt4QO3dwfgbe1GJCbKvy17/fsqJvZ7tEZzZnIismPu7kDz5sCffzKUExUXdh3Kb926hczMTAQHB5usDw4ORkxMjNmfmT59Ot57772iaJ40YIC8mdO3L9CmDXDwoKzKlS4tq046HfQpaYg7G4v4szeQliCrWULAMGO7EICALttjAEbrDY+V+8p645/J2t74caYeSEsFUtN0SE3Lum98S9OZPE5LA/RCB19fWTRMTVULdRmZOkPhWVmmZ8C4nm/C3Ho9XJAAPyTADz5IQnlcQQhi4AI9BHRIgwfuoiTiEIiMrI+sGzLgjWSTmzvScRclcRtBAIDSuIVSuAMvpMADaXBFJjLghky4GpZ6uMAVmXBDBtyQAXekwwV6xCEQd1HScEuAH0rjFirgMsrgJtyRDg/If7dMuJrsM7f3bkvGPSKKWho8kA53wzIDbobfpXLzQJrhvh4uhn/PTLjCDRlZv8FMk/vGN+V1lFs63JEJV5Ntsu8nFZ6IQyDiEYA0eCADbob2CehQGrcQhmsIRBziEYA4BBpuCfCDDgKuyIQPklASd1EC9+ACveF3LXutCOjhYvgsGS8z4Yo0eOBf1MEp1IYH0tDFZxeeLLEbAZl34ZGWAGSkI17vh7gMP9zL8MO9TD9kwA1lcBNhuA4PpGZ9Mt2QAD/EIwD34Y/78EcC5NAZ49+zO9JxB6VwHlVxCRVxDyWQCF94IhXBuIFQXEcIYhCCGPggCfdQAnEIRCo8oYcLdBDwQgq8kWxYGt8HYHjtTLgW+DOj/B6Vm/K3ngIvQ1tcoIcL9HBFpuG+ckuHO1LhabilKSc9kAZPpBqWALL9pHpT/q0sfb5ttXA0L8wfDBFREXj8cRnKGzXSuiVElB92HcoVumzdcoUQOdYpJkyYgPHjxxsex8fHIzw83Kbty1O5cvKWjQuAkjWqoWTRt8jm9HrZAzUtTZ4E0OvVpXLf+Ga8Lvvz2Z8zZtwbPnvPeGs/Z+v9F9VzufVwz6vnu6U/k9v67L2QjXsmK72XzZ5UsnC9cS/nvO4bL83J65KGuT2X188EBnogNPRx6HSP57qNXi//btzd5e9F+VtKTFRvxj3S888dgB+Aqhb/ZF6/++zrsm+ffT/5XVfQkRgF+TlLf4ZVJyIqDl57DXjySaBOHa1bQkT5YdehvHTp0nB1dc1RFY+Njc1RPVd4enrC09OzKJpHuXBxkRV1Hx+tW0JUvLi4yM40xo+Vv6UyZbRrFxERFS9ubkC9elq3gojyy65nX/fw8EDTpk2xZcsWk/VbtmxBq1atNGoVERERERERkXXYdaUcAMaPH49BgwahWbNmaNmyJebNm4fLly9j1KhRWjeNiIiIiIiIqFDsPpT37dsXt2/fxpQpU3D9+nXUq1cPv/32GypWrKh104iIiIiIiIgKxa67rytGjx6NixcvIjU1FQcPHkS7du20bhIRERFZ0YYNG9CiRQt4e3ujdOnS6NWrl9ZNIiIiKhJ2XyknIiIix7Z69WqMGDEC06ZNw6OPPgohBI4fP651s4iIiIoEQzkRERFpJiMjAy+//DI+/vhjDBs2zLC+Zs2aGraKiIio6BSL7utERETkmA4dOoSrV6/CxcUFjRs3RmhoKB5//HGcPHky159JTU1FfHy8yY2IiKi4YignIiIizVy4cAEAEBkZiXfeeQe//vorSpYsifbt2+POnTtmf2b69OkIDAw03MLDw4uyyURERFbFUE5ERERWFxkZCZ1Ol+ftwIED0Ov1AICJEyfif//7H5o2bYpFixZBp9Php59+MrvvCRMmIC4uznCLjo4uyrdGRERkVRxTTkRERFY3duxY9OvXL89tKlWqhPv37wMA6tSpY1jv6emJKlWq4PLly2Z/ztPTE56entZrLBERkYYYyomIiMjqSpcujdKlSz9wu6ZNm8LT0xOnT59GmzZtAADp6em4ePEiKlasaOtmEhERaY6hnIiIiDQTEBCAUaNGYfLkyQgPD0fFihXx8ccfAwB69+6tceuIiIhsj6GciIiINPXxxx/Dzc0NgwYNQnJyMlq0aIFt27ahZMmSWjeNiIjI5nRCCKF1I2wpPj4egYGBiIuLQ0BAgNbNISIi4rHJyvj7JCIie2PJscnhK+XKOQdew5SIiOyFckxy8PPiRYbHeiIisjeWHOsdPpQrs7ryGqZERGRv7t+/j8DAQK2bUezxWE9ERPYqP8d6h+++rtfrce3aNfj7+0On0xVqX/Hx8QgPD0d0dLRDdI9zpPfjSO8F4PuxZ470XgDHej/F6b0IIXD//n2EhYXBxcVF6+YUe9Y81gPF67P0II70XgDHej+O9F4Ax3o/jvReAL4frVhyrHf4SrmLiwvKly9v1X0GBATY9QfAUo70fhzpvQB8P/bMkd4L4Fjvp7i8F1bIrccWx3qg+HyW8sOR3gvgWO/Hkd4L4Fjvx5HeC8D3o4X8Hut5ep6IiIiIiIhIIwzlRERERERERBphKLeAp6cnJk+eDE9PT62bYhWO9H4c6b0AfD/2zJHeC+BY78eR3gtpy5E+S470XgDHej+O9F4Ax3o//2/v7mOqLP8wgF8HDhzgjAhhcjgyFZZFgJKBNYOytBioMctyGiKtPwwDhCzChU5yM9QW9kLibOY/2nBs6KimBmYkNoPxIqgkbpHmCyOXKS/Ji+f7+8P5/HoE9eiS53kO12c7Gzz3DX6vMc+1m/OCK2UBmMcIXP6N3oiIiIiIiIj0io+UExEREREREWmEh3IiIiIiIiIijfBQTkRERERERKQRHsqJiIiIiIiINMJD+V3YvHkzQkND4eXlhZiYGBw6dEjrke6osLAQ06ZNg6+vL8aOHYt58+bh5MmTqj0igoKCAtjtdnh7e+PZZ5/F8ePHNZrYeYWFhTCZTMjJyVGuGS3LuXPnsHjxYgQEBMDHxwePPfYY6uvrlXUj5RkcHMSqVasQGhoKb29vhIWFYe3atXA4HMoeveb56aef8OKLL8Jut8NkMmHPnj2qdWfm7uvrQ1ZWFgIDA2G1WpGcnIyzZ8+OYIr/u12egYEB5OXlYfLkybBarbDb7ViyZAnOnz+v+h5GyXOzN998EyaTCZ988onqup7ykL6x6/WFXa8vRu56wLX6nl3vWl3PQ7mTdu3ahZycHOTn56OxsRFPP/00kpKScObMGa1Hu63q6mpkZGTgyJEjqKysxODgIBISEtDT06Ps2bhxI4qKilBcXIy6ujrYbDa88MIL6Orq0nDy26urq8PWrVsxZcoU1XUjZbl06RLi4uLg4eGBvXv34sSJE/j444/x4IMPKnuMlGfDhg3YsmULiouL0draio0bN+Kjjz7C559/ruzRa56enh5ER0ejuLh42HVn5s7JycHu3btRWlqKmpoadHd3Y+7cubh27dpIxVDcLk9vby8aGhqwevVqNDQ0oLy8HG1tbUhOTlbtM0qef9uzZw9++eUX2O32IWt6ykP6xa7XF3a9/vIYuesB1+p7dr2Ldb2QU5544glJT09XXQsPD5eVK1dqNNG96ezsFABSXV0tIiIOh0NsNpusX79e2XP16lXx8/OTLVu2aDXmbXV1dcmkSZOksrJSZsyYIdnZ2SJivCx5eXkSHx9/y3Wj5ZkzZ4688cYbqmsvv/yyLF68WESMkweA7N69W/ncmbn//vtv8fDwkNLSUmXPuXPnxM3NTfbt2zdisw/n5jzDqa2tFQBy+vRpETFmnrNnz8q4cePk2LFjMmHCBNm0aZOypuc8pC/sev1g1+szj6t0vYhr9T27Xt95nMFHyp3Q39+P+vp6JCQkqK4nJCTg559/1miqe3P58mUAwJgxYwAA7e3t6OjoUGWzWCyYMWOGbrNlZGRgzpw5eP7551XXjZaloqICsbGxePXVVzF27FhMnToVX375pbJutDzx8fE4cOAA2traAABHjx5FTU0NZs+eDcB4eW5wZu76+noMDAyo9tjtdkRFRek62w2XL1+GyWRSHrkxWh6Hw4HU1FTk5uYiMjJyyLrR8pA22PX6wq7XZx5X7XrA9fueXa9vZq0HMIKLFy/i2rVrCAoKUl0PCgpCR0eHRlPdPRHBihUrEB8fj6ioKABQ5h8u2+nTp0d8xjspLS1FQ0MD6urqhqwZLctvv/2GkpISrFixAu+//z5qa2uxfPlyWCwWLFmyxHB58vLycPnyZYSHh8Pd3R3Xrl3DunXrsGjRIgDG+/nc4MzcHR0d8PT0hL+//5A9er+PuHr1KlauXInXXnsNDzzwAADj5dmwYQPMZjOWL18+7LrR8pA22PX6wa7Xbx5X7XrAtfueXa+/PDfjofwumEwm1eciMuSanmVmZqK5uRk1NTVD1oyQ7Y8//kB2dja+//57eHl53XKfEbIA13/jFxsbiw8//BAAMHXqVBw/fhwlJSVYsmSJss8oeXbt2oUdO3bg66+/RmRkJJqampCTkwO73Y60tDRln1Hy3Oxe5tZ7toGBASxcuBAOhwObN2++43495qmvr8enn36KhoaGu55Nj3lIe0a9j7qBXa8v7Prr9JpnOK7W9+x6/eUZDp++7oTAwEC4u7sP+S1LZ2fnkN+m6VVWVhYqKipw8OBBhISEKNdtNhsAGCJbfX09Ojs7ERMTA7PZDLPZjOrqanz22Wcwm83KvEbIAgDBwcGIiIhQXXv00UeVNxQy0s8GAHJzc7Fy5UosXLgQkydPRmpqKt5++20UFhYCMF6eG5yZ22azob+/H5cuXbrlHr0ZGBjAggUL0N7ejsrKSuU354Cx8hw6dAidnZ0YP368cr9w+vRpvPPOO5g4cSIAY+Uh7bDr9YFdf51e87hq1wOu2ffsen3mGQ4P5U7w9PRETEwMKisrVdcrKyvx1FNPaTSVc0QEmZmZKC8vxw8//IDQ0FDVemhoKGw2mypbf38/qqurdZdt1qxZaGlpQVNTk3KLjY1FSkoKmpqaEBYWZpgsABAXFzfkT9a0tbVhwoQJAIz1swGuv9Onm5v6LsXd3V35MylGy3ODM3PHxMTAw8NDtefChQs4duyYLrPdKOlTp06hqqoKAQEBqnUj5UlNTUVzc7PqfsFutyM3Nxf79+8HYKw8pB12vT6w6/Wdx1W7HnC9vmfX6zfPsEbyXeWMrLS0VDw8PGTbtm1y4sQJycnJEavVKr///rvWo93WsmXLxM/PT3788Ue5cOGCcuvt7VX2rF+/Xvz8/KS8vFxaWlpk0aJFEhwcLFeuXNFwcuf8+x1ZRYyVpba2Vsxms6xbt05OnTolO3fuFB8fH9mxY4eyx0h50tLSZNy4cfLtt99Ke3u7lJeXS2BgoLz33nvKHr3m6erqksbGRmlsbBQAUlRUJI2Njco7lDozd3p6uoSEhEhVVZU0NDTIzJkzJTo6WgYHB3WVZ2BgQJKTkyUkJESamppU9wt9fX2GyzOcm9+RVURfeUi/2PX6xK7XDyN3vYhr9T273rW6nofyu/DFF1/IhAkTxNPTUx5//HHlT43oGYBhb9u3b1f2OBwOWbNmjdhsNrFYLPLMM89IS0uLdkPfhZuL2mhZvvnmG4mKihKLxSLh4eGydetW1bqR8ly5ckWys7Nl/Pjx4uXlJWFhYZKfn6+689drnoMHDw77/yQtLU1EnJv7n3/+kczMTBkzZox4e3vL3Llz5cyZMxqkuX2e9vb2W94vHDx40HB5hjNcUespD+kbu15/2PX6YeSuF3GtvmfXu1bXm0RE/pvH3ImIiIiIiIjobvA15UREREREREQa4aGciIiIiIiISCM8lBMRERERERFphIdyIiIiIiIiIo3wUE5ERERERESkER7KiYiIiIiIiDTCQzkRERERERGRRngoJyIiIiIiItIID+VEdN+ZTCbs2bNH6zGIiIjoPmHXE907HsqJXNzrr78Ok8k05JaYmKj1aERERPQfYNcTGZtZ6wGI6P5LTEzE9u3bVdcsFotG0xAREdF/jV1PZFx8pJxoFLBYLLDZbKqbv78/gOtPNyspKUFSUhK8vb0RGhqKsrIy1de3tLRg5syZ8Pb2RkBAAJYuXYru7m7Vnq+++gqRkZGwWCwIDg5GZmamav3ixYt46aWX4OPjg0mTJqGiouL+hiYiIhpF2PVExsVDORFh9erVmD9/Po4ePYrFixdj0aJFaG1tBQD09vYiMTER/v7+qKurQ1lZGaqqqlRFXFJSgoyMDCxduhQtLS2oqKjAQw89pPo3PvjgAyxYsADNzc2YPXs2UlJS8Ndff41oTiIiotGKXU+kY0JELi0tLU3c3d3FarWqbmvXrhUREQCSnp6u+ponn3xSli1bJiIiW7duFX9/f+nu7lbWv/vuO3Fzc5OOjg4REbHb7ZKfn3/LGQDIqlWrlM+7u7vFZDLJ3r17/7OcREREoxW7nsjY+JpyolHgueeeQ0lJieramDFjlI+nT5+uWps+fTqampoAAK2trYiOjobValXW4+Li4HA4cPLkSZhMJpw/fx6zZs267QxTpkxRPrZarfD19UVnZ+e9RiIiIqJ/YdcTGRcP5USjgNVqHfIUszsxmUwAABFRPh5uj7e3t1Pfz8PDY8jXOhyOu5qJiIiIhseuJzIuvqaciHDkyJEhn4eHhwMAIiIi0NTUhJ6eHmX98OHDcHNzw8MPPwxfX19MnDgRBw4cGNGZiYiIyHnseiL94iPlRKNAX18fOjo6VNfMZjMCAwMBAGVlZYiNjUV8fDx27tyJ2tpabNu2DQCQkpKCNWvWIC0tDQUFBfjzzz+RlZWF1NRUBAUFAQAKCgqQnp6OsWPHIikpCV1dXTh8+DCysrJGNigREdEoxa4nMi4eyolGgX379iE4OFh17ZFHHsGvv/4K4Pq7pZaWluKtt96CzWbDzp07ERERAQDw8fHB/v37kZ2djWnTpsHHxwfz589HUVGR8r3S0tJw9epVbNq0Ce+++y4CAwPxyiuvjFxAIiKiUY5dT2RcJhERrYcgIu2YTCbs3r0b8+bN03oUIiIiug/Y9UT6xteUExEREREREWmEh3IiIiIiIiIijfDp60REREREREQa4SPlRERERERERBrhoZyIiIiIiIhIIzyUExEREREREWmEh3IiIiIiIiIijfBQTkRERERERKQRHsqJiIiIiIiINMJDOREREREREZFGeCgnIiIiIiIi0sj/AAJT2LWmNCMYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1568,7 +1585,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -1594,7 +1611,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 122, "metadata": {}, "outputs": [], "source": [ @@ -1631,7 +1648,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ @@ -1651,19 +1668,20 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 125, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 2.005\n" + "The MSE of LSTM forecasts is 1.633\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsvUlEQVR4nOzdd1yV5f/H8ddhD+EgKAKCiFvELThzpKllZlMbWo6Wq2HTlln5Nb/VN21ZmWm5snKUWZY7zT1xTxRUEAWZyjz37w+UX4QaR8HDeD8fj/N4xH1u7vM+anA+9/W5rstkGIaBiIiIiIiIiJQJdrYOICIiIiIiIiJFp0JeREREREREpAxRIS8iIiIiIiJShqiQFxERERERESlDVMiLiIiIiIiIlCEq5EVERERERETKEBXyIiIiIiIiImWICnkRERERERGRMsTB1gFKI4vFwqlTp/Dw8MBkMtk6joiIiIiIiJRzhmGQmppKQEAAdnZXH3NXIX8Zp06dIigoyNYxREREREREpIKJiYkhMDDwqueokL8MDw8PIO8P0NPT08ZpREREREREpLxLSUkhKCgovx69GhXyl3Gpnd7T01OFvIiIiIiIiNwwRZnercXuRERERERERMoQFfIiIiIiIiIiZYgKeREREREREZEyRHPkRURERERErkNubi7Z2dm2jiFlgKOjI/b29td9HRXyIiIiIiIi1ygtLY0TJ05gGIato0gZYDKZCAwMpFKlStd1HRXyIiIiIiIi1yA3N5cTJ07g5uZG1apVi7TauFRchmFw5swZTpw4Qd26da9rZF6FvIiIiIiIyDXIzs7GMAyqVq2Kq6urreNIGVC1alWOHTtGdnb2dRXyWuxORERERETkOmgkXoqquP6tqJAXERERERERKUPUWi8VRq7FYFNUIvGpGfh6uBAR4o29ne6eioiIiIhI2aJCXiqEJbtjGbtoL7HJGfnH/M0ujOkdSs8wfxsmExEREREpvWrWrMkzzzzDM888Y+soxWLVqlV06dKFc+fO4eXlZes410yt9VLuLdkdy9CZ2woU8QBxyRkMnbmNJbtjbZRMRERERMR2YmJiGDJkCAEBATg5OREcHMzTTz9NQkKCraMVi86dOxe6AdGuXTtiY2Mxm822CVVMVMhLuZZrMRi7aC+X29Xz0rGxi/aSa9G+nyIiIiJScRw9epRWrVpx8OBB5syZw+HDh/n8889Zvnw5bdu2JTEx0Sa5cnNzsVgsJXZ9Jycn/Pz8yvwChSrkpVzbFJVYaCT+7wwgNjmDTVG2+UElIiIiIuWHYRicz8qxycMwrBuYGj58OE5OTvzxxx906tSJGjVqcOutt7Js2TJOnjzJq6++mn9uamoqDz74IJUqVSIgIICPP/64wLXefPNNatSogbOzMwEBATz11FP5z2VlZfHiiy9SvXp13N3dad26NatWrcp/fvr06Xh5efHLL78QGhqKs7MzU6ZMwcXFhaSkpAKv89RTT9GpUycAEhISeOCBBwgMDMTNzY3GjRszZ86c/HMHDhzI6tWrmTRpEiaTCZPJxLFjx1i1ahUmk6nAtefNm0ejRo1wdnamZs2afPDBBwVet2bNmvznP/9h8ODBeHh4UKNGDb788ssC73HEiBH4+/vj4uJCzZo1GT9+vFV/H9bSHHkp1+JTr1zEX8t5IiIiIiJXciE7l9A3frfJa+99qwduTkUr7xITE/n9998ZN24crq6uBZ7z8/PjoYceYu7cuXz22WcAvPfee7zyyiu8+eab/P777zz77LM0aNCAW265hR9//JEPP/yQ7777jkaNGhEXF8fOnTvzrzdo0CCOHTvGd999R0BAAAsWLKBnz57s2rWLunXrAnD+/HnGjx/PV199hY+PD4GBgYwZM4Z58+YxZMgQIG+k/vvvv+ett94CICMjg5YtW/LSSy/h6enJ4sWLGTBgALVq1aJ169ZMmjSJgwcPEhYWlv89l/Zw/7utW7fSt29f3nzzTfr168e6desYNmwYPj4+DBw4MP+8Dz74gLfffptXXnmFH3/8kaFDh9KxY0caNGjARx99xM8//8z3339PjRo1iImJISYmpuh/edfApiPy48ePJzw8HA8PD3x9fbnzzjs5cOBAgXMGDhyYfwfl0qNNmzZXve706dMLfY/JZCIjQ8VaRePr4VKs54mIiIiIlHWHDh3CMAwaNmx42ecbNmzIuXPnOHPmDADt27fn5Zdfpl69eowcOZJ7772XDz/8EIDo6Gj8/Pzo1q0bNWrUICIigsceewyAI0eOMGfOHH744QduuukmateuzfPPP0+HDh2YNm1a/utlZ2fz2Wef0a5dO+rXr4+7uzv9+vVj9uzZ+ecsX76cc+fOcd999wFQvXp1nn/+eZo1a0atWrUYOXIkPXr04IcffgDAbDbj5OSEm5sbfn5++Pn5YW9vX+i9/u9//6Nr1668/vrr1KtXj4EDBzJixAjee++9AufddtttDBs2jDp16vDSSy9RpUqV/M6C6Oho6tatS4cOHQgODqZDhw488MAD1/JXU2Q2HZFfvXo1w4cPJzw8nJycHF599VW6d+/O3r17cXd3zz+vZ8+eBf6inZyc/vXanp6ehW4KuLioWKtoIkK88Te7EJeccdl58ibAz5y3FZ2IiIiIyPVwdbRn71s9bPbaxeVSm/6leeRt27Yt8Hzbtm2ZOHEiAPfddx8TJ06kVq1a9OzZk9tuu43evXvj4ODAtm3bMAyDevXqFfj+zMxMfHx88r92cnKiSZMmBc556KGHaNu2LadOnSIgIIBZs2Zx2223UblyZSBvhP7dd99l7ty5nDx5kszMTDIzMwvUkUWxb98++vTpU+BY+/btmThxIrm5ufnF/9/zmUwm/Pz8iI+PB/IGn2+55Rbq169Pz549uf322+nevbtVOaxl00J+yZIlBb6eNm0avr6+bN26lY4dO+Yfd3Z2xs/Pz6prX/rDlYrN3s7EmN6hDJ25DRMUKOYvLW8xpneo9pMXERERketmMpmK3N5uS3Xq1MFkMrF3717uvPPOQs/v37+fypUrU6VKlSte41KRHxQUxIEDB1i6dCnLli1j2LBhvPfee6xevRqLxYK9vT1bt24tNBpeqVKl/P92dXUttPhcREQEtWvX5rvvvmPo0KEsWLCgwODuBx98wIcffsjEiRNp3Lgx7u7uPPPMM2RlZVn1Z2EYRqHXvtx6A46OjoXe/6VF+Vq0aEFUVBS//fYby5Yto2/fvnTr1o0ff/zRqizWKFWL3SUnJwPg7V1wdHTVqlX4+vpSr149Hnvssfw7H1eTlpZGcHAwgYGB3H777Wzfvr1EMkvp1zPMn8n9W+BnLtiR4Wd2YXL/FtpHXkREREQqFB8fH2655RY+++wzLly4UOC5uLg4Zs2aRb9+/fIL3A0bNhQ4Z8OGDTRo0CD/a1dXV+644w4++ugjVq1axfr169m1axfNmzcnNzeX+Ph46tSpU+BRlEHXBx98kFmzZrFo0SLs7Ozo1atX/nNr1qyhT58+9O/fn6ZNm1KrVi0OHTpU4PudnJzIzc296muEhoaydu3aAsfWrVtHvXr1LtuKfyWenp7069ePKVOmMHfuXObNm1eiK/+XmttFhmEwatQoOnToQFhYWP7xW2+9lfvuu4/g4GCioqJ4/fXXufnmm9m6dSvOzs6XvVaDBg2YPn06jRs3JiUlhUmTJtG+fXt27tyZv6DC311qw7gkJSWl+N+g2FTPMH9uCfVjU1Qi8akZ+HrktdNrJF5EREREKqJPPvmEdu3a0aNHD9555x1CQkLYs2cPL7zwAtWrV2fcuHH55/7111/897//5c4772Tp0qX88MMPLF68GMhbnyw3N5fWrVvj5ubGjBkzcHV1JTg4GB8fHx566CEefvhhPvjgA5o3b87Zs2dZsWIFjRs35rbbbrtqxoceeoixY8cybtw47r333gJTpevUqcO8efNYt24dlStX5n//+x9xcXEF5v3XrFmTjRs3cuzYMSpVqlRowBjgueeeIzw8nLfffpt+/fqxfv16Pvnkk/yF/oriww8/xN/fn2bNmmFnZ8cPP/yAn58fXl5eRb6G1YxSYtiwYUZwcLARExNz1fNOnTplODo6GvPmzSvytXNzc42mTZsaI0eOvOzzY8aMMcjrui7wSE5Otuo9iIiIiIhIxXHhwgVj7969xoULF2wd5ZocO3bMGDhwoOHn52c4OjoaQUFBxsiRI42zZ8/mnxMcHGyMHTvW6Nu3r+Hm5mZUq1bNmDhxYv7zCxYsMFq3bm14enoa7u7uRps2bYxly5blP5+VlWW88cYbRs2aNQ1HR0fDz8/PuOuuu4zIyEjDMAxj2rRphtlsvmLG8PBwAzBWrFhR4HhCQoLRp08fo1KlSoavr6/x2muvGQ8//LDRp0+f/HMOHDhgtGnTxnB1dTUAIyoqyli5cqUBGOfOncs/78cffzRCQ0MNR0dHo0aNGsZ7771X4LWCg4ONDz/8sMCxpk2bGmPGjDEMwzC+/PJLo1mzZoa7u7vh6elpdO3a1di2bdtl38/V/s0kJycXuQ41GYaVGw6WgJEjR7Jw4UL+/PNPQkJC/vX8unXr8uijj/LSSy8V+TUee+wxTpw4wW+//VboucuNyAcFBZGcnIynp2eRX0NERERERCqOjIwMoqKiCAkJ0cLaUiRX+zeTkpKC2WwuUh1q09Z6wzAYOXIkCxYsYNWqVUUq4hMSEoiJicHfv+jzmg3DYMeOHTRu3Piyzzs7O1+xTV9ERERERESkNLHpYnfDhw9n5syZzJ49Gw8PD+Li4oiLi8tfcCEtLY3nn3+e9evXc+zYMVatWkXv3r2pUqUKd911V/51Hn74YUaPHp3/9dixY/n99985evQoO3bsYMiQIezYsYMnn3zyhr9HERERERERkeJk0xH5yZMnA9C5c+cCx6dNm8bAgQOxt7dn165dfPvttyQlJeHv70+XLl2YO3cuHh4e+edHR0djZ/f/9ySSkpJ4/PHHiYuLw2w207x5c/78808iIiJuyPsSERERERERKSmlYo58aWPN3AQREREREamYNEderFVcc+RL1T7yIiIiIiIiInJ1KuRFREREREREyhAV8iIiIiIiIiJliAp5ERERERERkTJEhbyIiIiIiIgUuzfffJNmzZrlfz1w4EDuvPPO67pmcVyjPFAhLyJXlGsxWH8kgZ92nGT9kQRyLdrkQkRERKSsGzhwICaTCZPJhKOjI7Vq1eL5558nPT29RF930qRJTJ8+vUjnHjt2DJPJxI4dO675GuWZTfeRF5HSa8nuWMYu2ktsckb+MX+zC2N6h9IzzN+GyURERETkevXs2ZNp06aRnZ3NmjVrePTRR0lPT2fy5MkFzsvOzsbR0bFYXtNsNpeKa5QHGpEXkUKW7I5l6MxtBYp4gLjkDIbO3MaS3bE2SiYiIiJS/tiiC9LZ2Rk/Pz+CgoJ48MEHeeihh1i4cGF+O/zXX39NrVq1cHZ2xjAMkpOTefzxx/H19cXT05Obb76ZnTt3Frjmu+++S7Vq1fDw8GDIkCFkZBT8LPnPtniLxcKECROoU6cOzs7O1KhRg3HjxgEQEhICQPPmzTGZTHTu3Pmy18jMzOSpp57C19cXFxcXOnTowObNm/OfX7VqFSaTieXLl9OqVSvc3Nxo164dBw4cyD9n586ddOnSBQ8PDzw9PWnZsiVbtmwpjj/mEqNCXkQKyLUYjF20l8v9+rh0bOyivWqzFxERESkGS3bH0mHCCh6YsoGnv9vBA1M20GHCihs+cOLq6kp2djYAhw8f5vvvv2fevHn5re29evUiLi6OX3/9la1bt9KiRQu6du1KYmIiAN9//z1jxoxh3LhxbNmyBX9/fz777LOrvubo0aOZMGECr7/+Onv37mX27NlUq1YNgE2bNgGwbNkyYmNjmT9//mWv8eKLLzJv3jy++eYbtm3bRp06dejRo0d+rkteffVVPvjgA7Zs2YKDgwODBw/Of+6hhx4iMDCQzZs3s3XrVl5++eVi60IoKWqtF5ECNkUlFhqJ/zsDiE3OYFNUIm1r+9y4YCIiIiLlzKUuyH8Oj1zqgpzcv8UNmdK4adMmZs+eTdeuXQHIyspixowZVK1aFYAVK1awa9cu4uPjcXZ2BuD9999n4cKF/Pjjjzz++ONMnDiRwYMH8+ijjwLwzjvvsGzZskKj8pekpqYyadIkPvnkEx555BEAateuTYcOHQDyX9vHxwc/P7/LXuPSVIDp06dz6623AjBlyhSWLl3K1KlTeeGFF/LPHTduHJ06dQLg5ZdfplevXmRkZODi4kJ0dDQvvPACDRo0AKBu3brX+Cd542hEXkQKiE+9chF/LeeJiIiISGG27oL85ZdfqFSpEi4uLrRt25aOHTvy8ccfAxAcHJxfSANs3bqVtLQ0fHx8qFSpUv4jKiqKI0eOALBv3z7atm1b4DX++fXf7du3j8zMzPybB9fiyJEjZGdn0759+/xjjo6OREREsG/fvgLnNmnSJP+//f3zbo7Ex8cDMGrUKB599FG6devGu+++m/+eSjONyItIAb4eLsV6noiIiIgUZusuyC5dujB58mQcHR0JCAgo0Eru7u5e4FyLxYK/vz+rVq0qdB0vL69ren1XV9dr+r6/M4y8mxwmk6nQ8X8e+/v7u/ScxWIB8rbJe/DBB1m8eDG//fYbY8aM4bvvvuOuu+667owlRSPyIlJARIg3/mYXTFd43kTe6vURId43MpaIiIhIuWLrLkh3d3fq1KlDcHDwv84Hb9GiBXFxcTg4OFCnTp0CjypVqgDQsGFDNmzYUOD7/vn139WtWxdXV1eWL19+2eednJwAyM3NveI16tSpg5OTE2vXrs0/lp2dzZYtW2jYsOFV39M/1atXj2effZY//viDu+++m2nTpln1/TeaCnkRKcDezsSY3qEAhYr5S1+P6R2Kvd2VSn0RERER+TdlqQuyW7dutG3bljvvvJPff/+dY8eOsW7dOl577bX81d2ffvppvv76a77++msOHjzImDFj2LNnzxWv6eLiwksvvcSLL77It99+y5EjR9iwYQNTp04FwNfXF1dXV5YsWcLp06dJTk4udA13d3eGDh3KCy+8wJIlS9i7dy+PPfYY58+fZ8iQIUV6bxcuXGDEiBGsWrWK48eP89dff7F582arbwTcaGqtF5FCeob5M7l/i0L7yPtpH3kRERGRYnGpCzIuOeOy8+RN5H32Kg1dkCaTiV9//ZVXX32VwYMHc+bMGfz8/OjYsWP+KvP9+vXjyJEjvPTSS2RkZHDPPfcwdOhQfv/99yte9/XXX8fBwYE33niDU6dO4e/vz5NPPgmAg4MDH330EW+99RZvvPEGN91002Vb+999910sFgsDBgwgNTWVVq1a8fvvv1O5cuUivTd7e3sSEhJ4+OGHOX36NFWqVOHuu+9m7Nix1v9B3UAm49LEAsmXkpKC2WwmOTkZT09PW8cRsZlci8GmqETiUzPw9cj7RaKReBEREZE8GRkZREVFERISgouL9SPnl1atBwoU85c+bd2oVevlxrnavxlr6lCNyIvIFdnbmbTFnIiIiEgJURekXCsV8iIiIiJSiLqyRG6MnmH+3BLqp//fxCoq5EVERESkgCW7YwuNEPprhFCkxKgLUqylVetFREREJN+lObv/3N86LjmDoTO3sWR3rI2SiYjIJSrkRURERATIa6cfu2jvZVfQvnRs7KK95Fq0VrKIiC2pkBcRERERADZFJRYaif87A4hNzmBTVOKNCyUiIoWokBcRERERAOJTr1zEX8t5IiJSMlTIi4iIiAgAvh5F2we7qOeJiEjJUCEvIiIiIgBEhHjjb3bhSptemchbvT4ixPtGxhIRkX9QIS8iIiIiQN4WWGN6hwIUKuYvfT2md6j2txapIEwmEwsXLgTg2LFjmEwmduzYYdNMV1La8xU3FfIiIiIikq9nmD+T+7fAz1ywfd7P7MLk/i20j7xIORIXF8fIkSOpVasWzs7OBAUF0bt3b5YvX17o3KCgIGJjYwkLCyvRTBWtIL9WDrYOICIiIiKlS88wf24J9WNTVCLxqRn4euS102skXqT8OHbsGO3bt8fLy4v//ve/NGnShOzsbH7//XeGDx/O/v37C5xvb2+Pn5+fjdLKP2lEXkREREQKsbcz0ba2D32aVadtbR8V8SLlzLBhwzCZTGzatIl7772XevXq0ahRI0aNGsWGDRsKnf/PkfJVq1ZhMpn4/fffad68Oa6urtx8883Ex8fz22+/0bBhQzw9PXnggQc4f/58/nWWLFlChw4d8PLywsfHh9tvv50jR47kPx8SEgJA8+bNMZlMdO7cGQCLxcJbb71FYGAgzs7ONGvWjCVLllz1Pa5evZqIiAicnZ3x9/fn5ZdfJicnJ//51NRUHnroIdzd3fH39+fDDz+kc+fOPPPMMwC89dZbNG7cuNB1W7ZsyRtvvFGkP+eSokJeRERERESkGBiGQXp6uk0ehmEUOWdiYiJLlixh+PDhuLu7F3rey8uryNd68803+eSTT1i3bh0xMTH07duXiRMnMnv2bBYvXszSpUv5+OOP889PT09n1KhRbN68meXLl2NnZ8ddd92FxWIBYNOmTQAsW7aM2NhY5s+fD8CkSZP44IMPeP/994mMjKRHjx7ccccdHDp06LK5Tp48yW233UZ4eDg7d+5k8uTJTJ06lXfeeSf/nFGjRvHXX3/x888/s3TpUtasWcO2bdvynx88eDB79+5l8+bN+cciIyPZvn07AwcOLPKfUUlQa72IiIiIiEgxOH/+PJUqVbLJa6elpV22KL+cw4cPYxgGDRo0uO7Xfeedd2jfvj0AQ4YMYfTo0Rw5coRatWoBcO+997Jy5UpeeuklAO65554C3z916lR8fX3Zu3cvYWFhVK1aFQAfH58Crfzvv/8+L730Evfffz8AEyZMYOXKlUycOJFPP/20UK7PPvuMoKAgPvnkE0wmEw0aNODUqVO89NJLvPHGG6Snp/PNN98we/ZsunbtCsC0adMICAjIv0ZgYCA9evRg2rRphIeH55/TqVOn/PdnKxqRFxERERERqUAujd6bTNc/ZaZJkyb5/12tWjXc3NwKFLnVqlUjPj4+/+sjR47w4IMPUqtWLTw9PfNb6aOjo6/4GikpKZw6dSr/hsEl7du3Z9++fZf9nn379tG2bdsC77F9+/akpaVx4sQJjh49SnZ2NhEREfnPm81m6tevX+A6jz32GHPmzCEjI4Ps7GxmzZrF4MGDr/ZHckNoRF5ERERERKQYuLm5kZaWZrPXLqq6detiMpnYt28fd95553W9rqOjY/5/m0ymAl9fOnapbR6gd+/eBAUFMWXKFAICArBYLISFhZGVlfWvr/XPGw+GYVzxZsTlnvv7DYwr3cz45xSF3r174+zszIIFC3B2diYzM7NQV4EtqJAXEREREREpBiaTqcjt7bbk7e1Njx49+PTTT3nqqacKZU5KSrJqnnxRJSQksG/fPr744gtuuukmANauXVvgHCcnJwByc3Pzj3l6ehIQEMDatWvp2LFj/vF169YVGFH/u9DQUObNm1egoF+3bh0eHh5Ur14dLy8vHB0d2bRpE0FBQUDeyP+hQ4fo1KlT/nUcHBx45JFHmDZtGs7Oztx///1W3TQpKSrkRUREREREKpjPPvuMdu3aERERwVtvvUWTJk3Iyclh6dKlTJ48+Yot69ejcuXK+Pj48OWXX+Lv7090dDQvv/xygXN8fX1xdXVlyZIlBAYG4uLigtls5oUXXmDMmDHUrl2bZs2aMW3aNHbs2MGsWbMu+1rDhg1j4sSJjBw5khEjRnDgwAHGjBnDqFGjsLOzw8PDg0ceeYQXXngBb29vfH19GTNmDHZ2doVG6R999FEaNmwIwF9//VXsfy7XQnPkRUREREREKpiQkBC2bdtGly5deO655wgLC+OWW25h+fLlTJ48uURe087Oju+++46tW7cSFhbGs88+y3vvvVfgHAcHBz766CO++OILAgIC6NOnDwBPPfUUzz33HM899xyNGzdmyZIl/Pzzz9StW/eyr1W9enV+/fVXNm3aRNOmTXnyyScZMmQIr732Wv45//vf/2jbti2333473bp1o3379jRs2BAXF5cC16pbty7t2rWjfv36tG7dupj/VK6NybBmn4IKIiUlBbPZTHJyMp6enraOIyIiIiIipVBGRgZRUVGEhIQUKv6k7ElPT6d69ep88MEHDBkyJP/4pRX+n3jiCUaNGnVdr3G1fzPW1KFqrRcREREREZEKZ/v27ezfv5+IiAiSk5N56623APK7AADi4+OZMWMGJ0+eZNCgQbaKWohNW+vHjx9PeHg4Hh4e+Pr6cuedd3LgwIEC5wwcOBCTyVTg0aZNm3+99rx58wgNDcXZ2ZnQ0FAWLFhQUm9DREREREREyqD333+fpk2b0q1bN9LT01mzZg1VqlTJf75atWq8++67fPnll1SuXNmGSQuy6Yj86tWrGT58OOHh4eTk5PDqq6/SvXt39u7dW2DlxJ49ezJt2rT8ry+tZHgl69evp1+/frz99tvcddddLFiwgL59+7J27dpSM6dBREREREREbKd58+Zs3br1queU1pnopWqO/JkzZ/D19WX16tX52woMHDiQpKQkFi5cWOTr9OvXj5SUFH777bf8Yz179qRy5crMmTPnX7+/LM2RT83IxsPF8d9PFBERERGRYqU58mKt4pojX6pWrU9OTgby9jX8u1WrVuHr60u9evV47LHHiI+Pv+p11q9fT/fu3Qsc69GjB+vWrbvs+ZmZmaSkpBR4lAUbjybQ7t0VfL02ipxci63jiIiIiIiIyA1Qagp5wzAYNWoUHTp0ICwsLP/4rbfeyqxZs1ixYgUffPABmzdv5uabbyYzM/OK14qLi6NatWoFjlWrVo24uLjLnj9+/HjMZnP+IygoqHjeVAmbuzmG1Iwc3vplL7d/vJbNxxJtHUlEREREpMIpRU3OUsoV17+VUlPIjxgxgsjIyEKt7/369aNXr16EhYXRu3dvfvvtNw4ePMjixYuvej2TyVTga8MwCh27ZPTo0SQnJ+c/YmJiru/N3CDv3deU/9zVGC83R/bHpXLf5+t57vudnEm98k0OEREREREpHvb29gBkZWXZOImUFZf+rVz6t3OtSsX2cyNHjuTnn3/mzz//JDAw8Krn+vv7ExwczKFDh654jp+fX6HR9/j4+EKj9Jc4Ozvj7OxsfXAbs7cz8WDrGvQM8+O93/fz3eYY5m07wR9743i+e30eal0DB/tSc69GRERERKRccXBwwM3NjTNnzuDo6IidnT57y5VZLBbOnDmDm5sbDg7XV4rbtJA3DIORI0eyYMECVq1aRUhIyL9+T0JCAjExMfj7+1/xnLZt27J06VKeffbZ/GN//PEH7dq1K5bcpY23uxPj725C31ZBvPHTHnadTGbMz3uYuzmGt+9sRMtg73+/iIiIiIiIWMVkMuHv709UVBTHjx+3dRwpA+zs7KhRo8YVu8WLyqar1g8bNozZs2fz008/Ub9+/fzjZrMZV1dX0tLSePPNN7nnnnvw9/fn2LFjvPLKK0RHR7Nv3z48PDwAePjhh6levTrjx48HYN26dXTs2JFx48bRp08ffvrpJ1577bUibz9Xllat/6dci8GcTdG89/sBki9kA3Bvy0BevrUBVSqVva4DEREREZHSzmKxqL1eisTJyemKnRvW1KE2LeSvdBdi2rRpDBw4kAsXLnDnnXeyfft2kpKS8Pf3p0uXLrz99tsFFqTr3LkzNWvWZPr06fnHfvzxR1577TWOHj1K7dq1GTduHHfffXeRcpXlQv6ShLRM/rvkAHO35M3393Rx4Pke9XmodTD2dtd390dERERERESKV5kp5Eur8lDIX7It+hyvL9zNnlN5W+o1CvDkrT5htAyubONkIiIiIiIicokK+etUngp5yGu3n73xOO/9foCUjBwA+rYK5KWeDfBRu72IiIiIiIjNWVOHalnFCsDezsSAtjVZ8Xxn7muZtyvA91tOcPMHq5mx4Ti5Ft3LERERERERKSs0In8Z5W1E/p+2Hk/k9YV72Bub124fVt2Tt/uE0byG2u1FRERERERsQa3116m8F/IAObkWZm2M5v0/DpB6sd3+/vAgXuzZAG93JxunExERERERqVjUWi//ysHejkfa1WTFc525p0Veu/13m2O4+YNVzNqodnsREREREZHSSiPyl1ERRuT/afOxRF5fuJv9cakANAk083afMJoGedk2mIiIiIiISAWg1vrrVBELechrt5+x4Tj/++MgqZk5mExwf3gNXuxRn8pqtxcRERERESkxaq2Xa+Jgb8eg9iEsf74TdzevjmHAnE3RdPlgFXM2RWNRu72IiIiIiIjNaUT+MirqiPw/bTyawJif9+S32zcN8uLtPo1oEuhl22AiIiIiIiLljFrrr5MK+f+Xk2vhm/XH+XDpQdIutts/GFGDF3rUx8tN7fYiIiIiIiLFQa31Umwc7O0Y0iGEFc914s5mARgGzNoYTZf3VzF3s9rtRUREREREbjSNyF+GRuSvbMPRBN74aTcHT6cB0CzIi3fuDCOsutnGyURERERERMoutdZfJxXyV5eda+Gbdcf4cOlB0rNyMZmgf+tgnu9eH7Obo63jiYiIiIiIlDlqrZcS5Whvx6M31WLF853pc7HdfsaG43T5YBXfb4lRu72IiIiIiEgJ0oj8ZWhE3jrrj+S12x+Kz2u3b1HDi7f6qN1eKqZci8GmqETiUzPw9XAhIsQbezuTrWOJiIiISCmn1vrrpELeetm5Fqb9FcWkZYdIz8rFzgQD2gQzqnt9zK5qt5eKYcnuWMYu2ktsckb+MX+zC2N6h9IzzN+GyURERESktFMhf51UyF+7uOQMxv26j0U7TwHg4+7E6Nsacnfz6thpVFLKsSW7Yxk6cxv//IF66V/95P4tVMyLiIiIyBVpjrzYjJ/ZhY8faM7sR1tTu6o7CelZPP/DTvp+sZ69p1JsHU+kRORaDMYu2luoiAfyj41dtJdcrR8hIiIiIsVAhbyUiHZ1qvDb0x0ZfWsD3Jzs2XL8HLd/vIY3f95DSka2reOJFKtNUYkF2un/yQBikzPYFJV440KJiIiISLmlQl5KjJODHU90qs3y5zrRq4k/FgOmrzvGze+vZv62E2hWh5QX8alXLuKv5TwRERERkatRIS8lzt/syqcPtmDmkNbUqurO2bRMRn2f126/L1bt9lL2+Xq4FOt5IiIiIiJXo0JebpgOdauw5OmOvNSzAa6O9mw+do7bP17LW4v2qt1eyrSIEG/8zS5caTlHE3mr10eEeN/IWCIiIiJSTqmQlxvKycGOoZ3z2u1va+xHrsXg67+i6PrBahZuP6l2eymT7O1MjOkdClComL/09ZjeodpPXkRERESKhbafuwxtP3fj/HnwDG/+vIejZ9OBvJHNt/uEUd/Pw8bJRKynfeRFRERE5FppH/nrpEL+xsrMyeWrNVF8vOIQGdkW7O1MDGxXk2e61cXDxdHW8USskmsx2BSVSHxqBr4eee30GokXERERkX+jQv46qZC3jZNJF3h70V6W7IkDwNfDmVd7NeSOpgGYTCqERERERESk/LKmDtUceSk1qnu58vmAlkwfFE5NHzfiUzN5+rsdPDBlAwdPp9o6noiIiIiISKmgEfnL0Ii87WXm5DLlz6N8svIwGdkWHOxMDO4QwlNd61LJ2cHW8URERERERIqVRuSlzHN2sGfEzXVZ+mwnuodWI8di8OWfR+n6wSp+3nlKq9uLiIiIiEiFpRH5y9CIfOmzcn88by7aw/GE8wC0reXDW30aUbeaVrcXEREREZGyTyPyUu50aeDL7890ZNQt9XB2sGP90QRunbSG8b/uIz0zx9bxREREREREbhgV8lJmuDja81TXuiwb1YluDfPa7b/48yhdP1jNL5FqtxcRERERkYpBhbyUOUHebnz1SCumPtKKGt5uxKVkMGL2dgZM3cTh+DRbxxMRERERESlRRZoj//PPP1t94VtuuQVXV9drCmVrmiNfdmRk5/L56iN8tuoIWTkWHO1NDOlQi5E318Fdq9uLiIiIiEgZYU0dWqRC3s7OuoF7k8nEoUOHqFWrllXfV1qokC97ohPOM3bRHpbvjwfA3+zC67eHcmuYHyaTycbpRERERERErq5EFruLi4vDYrEU6eHm5nbdb0LEGjV83Jg6MJyvHm5FkLcrsckZDJu1jYe/3sSRM2q3FxERERGR8qNIhfwjjzxiVZt8//79NZItNtEttBpLn+3EU13r4uRgx5pDZ+k58U/+u2Q/57O0ur2IiIiIiJR92kf+MtRaXz4cT0jnzZ/3sPLAGQACzC680TuUHo3Ubi8iIiIiIqVLibTW5+bmEhkZyYULFwo9d/78eSIjI7FYLFYFHT9+POHh4Xh4eODr68udd97JgQMHrnj+E088gclkYuLEiVe97vTp0zGZTIUeGRkZVuWTsi3Yx52vB4bz5YCWVPdy5VRyBk/O3MYj0zZzNi3T1vFERERERESuSZEL+RkzZjB48GCcnJwKPefs7MzgwYOZPXu2VS++evVqhg8fzoYNG1i6dCk5OTl0796d9PT0QucuXLiQjRs3EhAQUKRre3p6EhsbW+Dh4uJiVT4p+0wmE90b+bFsVCdG3lwHJ3s7/jx4hidnbCUrx7obTyIiIiIiIqVBkQv5qVOn8vzzz2Nvb1/oOXt7e1588UW+/PJLq158yZIlDBw4kEaNGtG0aVOmTZtGdHQ0W7duLXDeyZMnGTFiBLNmzcLR0bFI1zaZTPj5+RV4SMXl6mTPc93rs2hkBzycHdhy/Bz/+XWfrWOJiIiIiIhYrciF/IEDB2jTps0Vnw8PD2ffvusrjJKTkwHw9vbOP2axWBgwYAAvvPACjRo1KvK10tLSCA4OJjAwkNtvv53t27df8dzMzExSUlIKPKR8qu/nwYf9mgEwfd0x5m87YdtAIiIiIiIiVipyIZ+enn7VAjc1NZXz589fcxDDMBg1ahQdOnQgLCws//iECRNwcHDgqaeeKvK1GjRowPTp0/n555+ZM2cOLi4utG/fnkOHDl32/PHjx2M2m/MfQUFB1/w+pPTrFlqNp7rWBWD0/F3sPpls40QiIiIiIiJFV+RCvm7duqxbt+6Kz69du5a6detec5ARI0YQGRnJnDlz8o9t3bqVSZMm5S9eV1Rt2rShf//+NG3alJtuuonvv/+eevXq8fHHH1/2/NGjR5OcnJz/iImJueb3IWXDM13r0qV+VTJzLDw5cyvn0rNsHUlERERERKRIilzIP/jgg7z22mtERkYWem7nzp288cYbPPjgg9cUYuTIkfz888+sXLmSwMDA/ONr1qwhPj6eGjVq4ODggIODA8ePH+e5556jZs2aRb6+nZ0d4eHhVxyRd3Z2xtPTs8BDyjc7OxMT+zUn2MeNE+cu8NR328m1aCdGEREREREp/Yq8j3x2djbdu3dn7dq1dOvWjQYNGmAymdi3bx/Lli2jffv2LF26tMiL0UFeO/3IkSNZsGABq1atKjSin5CQQGxsbIFjPXr0YMCAAQwaNIj69esX+XUiIiJo3LgxX3/99b+er33kK459sSnc/dk6LmTnMqxzbV7s2cDWkUREREREpBjN3RyNq5MDdzQt2g5otmJNHepQ1Is6Ojryxx9/8OGHHzJ79mz+/PNPDMOgXr16jBs3jmeeecaqIh5g+PDhzJ49m59++gkPDw/i4uIAMJvNuLq64uPjg4+PT6Ecfn5+BYr4hx9+mOrVqzN+/HgAxo4dS5s2bahbty4pKSl89NFH7Nixg08//dSqfFL+NfT3ZMK9TXhqznY+W3WEJoFmeob52zqWiIiIiIgUg+X7TjN6/i4sBlT3cqFlsPe/f1MZUORCHvKK6BdffJEXX3yxWF588uTJAHTu3LnA8WnTpjFw4MAiXyc6Oho7u/+fJZCUlMTjjz9OXFwcZrOZ5s2b8+effxIREVEcsaWcuaNpAJExSXy1Nornvt9JHd9K1PH1sHUsERERERG5DtujzzF89jYsBtzXMpAWNSrbOlKxKXJrfUWi1vqKJyfXQv+pG9lwNJFaVd35aXh7PFys6zAREREREZHS4eiZNO79fD2J6Vl0rl+VKQ+3wtG+yEvE2YQ1dWjpficiN4iDvR2fPNgCf7MLR8+k89z3O7Fo8TsRERERkTLnTGomj0zbRGJ6Fk0CzXz6YItSX8Rbq3y9G5HrUKWSM5P7t8TJ3o4/9p5m8uojto4kIiIiIiJWSMvMYdD0TcQkXiDYx42vB4bj7mzVjPIyQYW8yN80C/LirT6NAHj/jwOsPnjGxolERERERKQosnMtDJu1jd0nU/Bxd+KbQRFUqeRs61gl4poL+aysLA4cOEBOTk5x5hGxufsjavBARBCGAU/N2U5M4nlbRxIRERERkaswDIOX5+3iz4NncHW0Z+rAcGpWcbd1rBJjdSF//vx5hgwZgpubG40aNSI6OhqAp556infffbfYA4rYwpt3NKJpkBfJF7J5fMZWLmTl2jqSiIiIiIhcwQd/HGTethPY25n49KHmNAvysnWkEmV1IT969Gh27tzJqlWrcHFxyT/erVs35s6dW6zhRGzF2cGez/u3wMfdiX2xKYyeH4k2eBARERERKX1mbDjOJysPA/Cfu8K4uUE1GycqeVYX8gsXLuSTTz6hQ4cOmEym/OOhoaEcOaLFwaT88De78ulDLbC3M7Fwxym+WXfM1pFERERERORvluyO442fdgPwbLd69AuvYeNEN4bVhfyZM2fw9fUtdDw9Pb1AYS9SHrSp5cMrtzUE4J3F+9gUlWjjRCIiIiIiArDlWCJPf7cdw4AHIoJ4qmsdW0e6Yawu5MPDw1m8eHH+15eK9ylTptC2bdviSyZSSgxuX5M7mgaQYzEYNmsbcckZto4kIiIiIlKhHY5PZcg3W8jMsdCtoS9v9wmrUAPLVm+oN378eHr27MnevXvJyclh0qRJ7Nmzh/Xr17N69eqSyChiUyaTiXfvaczB06nsj0tl6KytfPd4G5wd7G0dTURErHA2LROzqyOO9tp9V0SkLDudksEjX28m+UI2zYK8+PiBFjhUsJ/tVr/bdu3a8ddff3H+/Hlq167NH3/8QbVq1Vi/fj0tW7YsiYwiNufm5MAXA1ri6eLA9ugk3lq019aRRETECuuOnKXNf5bzyvxdto4iIiLXITUjm4HTNnMy6QIhVdz5emA4rk4Vb4DNZGgp7kJSUlIwm80kJyfj6elp6zhSiqw8EM/g6ZsxDPjvPU3oGx5k60giIvIvDMPgvs/Xs+X4OZwc7Nj6Wjc8XBxtHUtERKyUlWNh0PRN/HU4gSqVnJk/tB01fNxsHavYWFOHXlP/wZEjR3jttdd48MEHiY+PB2DJkiXs2bPnWi4nUmZ0qe/Ls93qAfDaT7uJPJFk20AiIvKvNkYlsuX4OSDvQ+DyffE2TiQiItayWAxe/HEnfx1OwN3JnumDwstVEW8tqwv51atX07hxYzZu3Mi8efNIS0sDIDIykjFjxhR7QJHSZkSXOnRrWI2sHAtPzthKQlqmrSOJiMhVfHpxb2EP57ylgX6JjLVlHBERuQYTft/Pwh2ncLAzMbl/S8Kqm20dyaasLuRffvll3nnnHZYuXYqTk1P+8S5durB+/fpiDSdSGtnZmfhfv6aEVHHnVHIGI+dsJyfXYutYIiJyGTtjklhz6Cz2diYm3t8MgD8PniElI9u2wUREpMim/RXFF6uPAjDhniZ0rFfVxolsz+pCfteuXdx1112FjletWpWEhIRiCSVS2nm6OPLFgJa4Odmz7kgC7/1+wNaRRETkMj65OBrfp1kANzfwpY5vJbJyLSzbe9rGyUREpCh+3RXLW7/kLTT9Qo/63NMy0MaJSgerC3kvLy9iYwu3pG3fvp3q1asXSyiRsqBeNQ/ev68pAF/8eZRfIk/ZOJGIiPzd/rgUlu49jckEwzrXwWQy0auxPwCL1V4vIlLqbTyawDNzd2AYMKBNMMM617Z1pFLD6kL+wQcf5KWXXiIuLg6TyYTFYuGvv/7i+eef5+GHHy6JjCKl1m2N/XmiUy0AXvwxkgNxqTZOJCIil3y28ggAt4b5Uce3EgC9muQV8msOnSX5gtrrRURKq4OnU3ns2y1k5Vjo0agab97RCJPJZOtYpYbVhfy4ceOoUaMG1atXJy0tjdDQUDp27Ei7du147bXXSiKjSKn2Qvf6tK/jw/msXJ6cuVUfDEVESoFjZ9PzO6WGda6Tf7xeNQ/qVVN7vYhIaRabfIFHvt5ESkYOrYIrM+n+5tjbqYj/O6sKecMwOHXqFFOmTOHQoUN8//33zJw5k/379zNjxgzs7e1LKqdIqeVgb8fHD7SgupcrUWfTGTV3BxaLYetYIiIV2uRVR7AY0KV+1UIrG992qb1+l9rrRURKm+QL2Qz8ejOxyRnUrurOV4+0wsVRdeY/WV3I161bl5MnT1KrVi3uvfde+vbtS926dUsqn0iZ4O3uxOf9W+LkYMfy/fF8vOKwrSOJiFRYp5IuMH/7CQBG3Fyn0POX5smvOXSG5PPqohIRKS0yc3J5/NstHDidiq+HM98MjsDLzenfv7ECsqqQt7Ozo27dulqdXuQyGgeaGXdnGAATlx9kxX61bIqI2MKXfx4lO9egTS1vWgZ7F3q+bjUP6lfzIDvX4I+9cTZIKCIi/2SxGIz6ficboxKp5OzA9EERBFZ2s3WsUsvqOfL//e9/eeGFF9i9e3dJ5BEp0+5rFcSANsEYBjz93Q6OnU23dSQRkQrlTGomczZFAzCiy5U7Bi8tever2utFREqFcb/uY3FkLI72Jr4Y0JLQAE9bRyrVrC7k+/fvz6ZNm2jatCmurq54e3sXeIhUdK/fHkqLGl6kZuTwxIytnM/KsXUkEZEKY+raKDJzLDQN8qJ9HZ8rnndb47+tXq/2ehERm/pqzVGmro0C4P37mtK+ThUbJyr9HKz9hokTJ5ZADJHyw8nBjsn9W3L7x2s5cDqVl+bt4qP7m2m7DBGREpZ8PpuZG44DMLJLnav+3K3jW4kGfh7sj0vl971x9G0VdKNiiojI3/y88xTvLN4HwCu3NaBPs+o2TlQ2WF3IP/LIIyWRQ6RcqebpwmcPteCBLzewaOcpmgaaefSmWraOJSJSrk1fd4y0zBwa+HnQtaHvv57fq7E/++NSWRwZq0JeRMQG1h0+y3Pf7wBgUPuaPKbPy0VmdWt9SkrKZR+pqalkZWWVREaRMim8pjev3x4KwPjf9rPuyFkbJxIRKb/SM3OYti6vLXP4v4zGX3LbxXnyfx0+S9J5fYYREbmR9sWm8MSMrWTnGvRq7M/rvULVwWoFqwt5Ly8vKleuXOjh5eWFq6srwcHBjBkzBovFUhJ5RcqUh9sGc3fz6uRaDEbO3s6ppAu2jiQiUi7N2nicpPPZ1Krinj///d/UrlqJhv6e5FgM/tijnUZERG6Uk0kXGDhtE6mZOUSEePNB36bY2amIt4bVhfz06dMJCAjglVdeYeHChSxYsIBXXnmF6tWrM3nyZB5//HE++ugj3n333ZLIK1KmmEwm/nN3Y0L9PUlIz2LozK1kZOfaOpaISLmSkZ3LlDV5o/FPdq6NvRUfBns19gPgF61eLyJyQySdz+KRrzdxOiWTetUqMWVAK1wc7W0dq8yxeo78N998wwcffEDfvn3zj91xxx00btyYL774guXLl1OjRg3GjRvHK6+8UqxhRcoiF0d7vhjQkt6frGXniWTe/HkP797TxNaxRETKjR+2xHAmNZPqXq7c1dy6RZJua+zP+38c5K/DZzmXnkVld6cSSikiIhnZuTz27RYOx6fhb3bhm8ERmN0cbR2rTLJ6RH79+vU0b9680PHmzZuzfv16ADp06EB0dPT1pxMpJ4K83fjo/ubYmeC7zTH5exyLiMj1yc618PnqowA80akWjvbWfbSpVbUSof6e5FoMft8TVxIRRUQEyLUYPPPdDjYfO4eHiwPTB0Xgb3a1dawyy+pCPjAwkKlTpxY6PnXqVIKC8lZ8TUhIoHLlytefTqQc6VivKs/3qA/AmJ/2sD36nI0TiYiUfQu3n+Rk0gWqVHK+5pXne11c9G6x2utFREqEYRiMXbSHJXvicLK3Y8rDrajv52HrWGWa1a3177//Pvfddx+//fYb4eHhmEwmNm/ezP79+/nxxx8B2Lx5M/369Sv2sCJl3dBOtdkZk8Tve04zdOY2Fo3sQFUPZ1vHEhEpk3ItBpNXHQHgsZtCrjrHMtdisCkqkfjUDHw9XIgI8c6fS9+rsT/v/X6AdUcSSEzPwlvt9SIixerz1Uf5dv1xTCb4X7+mtKnlY+tIZZ7Vhfwdd9zBgQMH+Pzzzzl48CCGYXDrrbeycOFCatasCcDQoUOLO6dIuWAymXj/vqYcjv+LI2fSGTF7GzMfbW11K6iIiMBvu2M5ejYds6sjD7UJvuJ5S3bHMnbRXmKTM/KP+ZtdGNM7lJ5h/tSs4k6jAE/2nErh9z1xPBBR40bEFxGpEOZvO8GEJfsBeL1XKLc3CbBxovLBZBiGYesQpU1KSgpms5nk5GQ8PT1tHUfKocPxadz56V+kZeYwpENI/n7zIiJSNIZhcNtHa9kXm8Iz3eryTLd6lz1vye5Yhs7cxj8/7Fxa135y/xb0DPPns1WH+e+SA3SoU4WZj7Yu0ewiIhXFmkNnGDRtMzkWg8c71uKV2xraOlKpZk0dek3DgGvWrKF///60a9eOkydPAjBjxgzWrl17LZcTqXDq+Fbi/fuaAjB1bRQ/7Thp40QiImXLiv3x7ItNwd3JnoHtal72nFyLwdhFewsV8UD+sbGL9pJrMeh1ce/59UcTSEjLLJHMIiIVye6TyTw5Yys5FoM7mgbwcs8Gto5UrlhdyM+bN48ePXrg6urKtm3byMzM+2WXmprKf/7zn2IPKFJe9QzzY3iX2gC8NC+SfbEpNk4kIlI2GIbBxysOA9C/bTBebpef074pKrFAO32h6wCxyRlsikok2MedxtXNF1evP10SsUVEKoyYxPMMmr6Z9Kxc2tX24b37mmBnZ/r3b5Qis7qQf+edd/j888+ZMmUKjo7/v+dfu3bt2LZtm1XXGj9+POHh4Xh4eODr68udd97JgQMHrnj+E088gclkYuLEif967Xnz5hEaGoqzszOhoaEsWLDAqmwiN8KoW+rTsV5VMrItPDFjK8nns20dSUSk1Ft3JIEdMUk4O9jxaIdaVzwvPvXKRfzlzrut8aXV609df0gRkQoqMT2LR77exJnUTBr4efD5gJY4O1x5MVK5NlYX8gcOHKBjx46Fjnt6epKUlGTVtVavXs3w4cPZsGEDS5cuJScnh+7du5Oenl7o3IULF7Jx40YCAv59cYT169fTr18/BgwYwM6dOxkwYAB9+/Zl48aNVuUTKWn2diY+ur8ZQd6uRCee5+m528m1aNkKEZGr+eTiaPz94UFX3fnD18OlSNe7dF5+e/2RBM6qvV6slGsxWH8kgZ92nGT9kQT9PpcK6UJWLo9+s5mjZ9Op7uXKN4Mj8HRx/PdvFKtZXcj7+/tz+PDhQsfXrl1LrVpXvit+OUuWLGHgwIE0atSIpk2bMm3aNKKjo9m6dWuB806ePMmIESOYNWtWgS6AK5k4cSK33HILo0ePpkGDBowePZquXbsWaSRf5EbzcnPi8/4tcXG0Y9WBM0xadtDWkURESq2tx8+x/mgCDnYmHu9U+6rnRoR442924UrNnCbyVq+PCPEGoIaPG00CzVgMWLI7rniDS7m2ZHcsHSas4IEpG3j6ux08MGUDHSasYMnuWFtHE7lhcnItjJyznW3RSZhdHflmcDjVPIt2Q1WsZ3Uh/8QTT/D000+zceNGTCYTp06dYtasWTz//PMMGzbsusIkJycD4O3tnX/MYrEwYMAAXnjhBRo1alSk66xfv57u3bsXONajRw/WrVt3XflESkqjADPj724MwEcrDrN0r+Zniohczqcr8wYT7m5Rneperlc9197OxJjeebuC/LOYv/T1mN6h+fvJw/+Pyv+6SwWYFM2lnRH+uR5DXHIGQ2duUzEvFYJhGLzx8x6W7TuNs4MdUx9pRR1fD1vHKtesLuRffPFF7rzzTrp06UJaWhodO3bk0Ucf5YknnmDEiBHXHMQwDEaNGkWHDh0ICwvLPz5hwgQcHBx46qmninytuLg4qlWrVuBYtWrViIu7/N31zMxMUlJSCjxEbrS7mgfmr7w8au4OjpxJs20gEZFSZs+pZFbsj8fOBEM71ynS9/QM82dy/xb4mQuOCvmZXfK3nvu7S/PkNxxN4Eyq2uvl6qzZGUGkPPtkxWFmb4zGZIJJ9zenVU3vf/8muS4O1/JN48aN49VXX2Xv3r1YLBZCQ0OpVKnSdQUZMWIEkZGRBbaw27p1K5MmTWLbtm2YTNatcvjP8w3DuOI1xo8fz9ixY60PLVLMXu3VkL2nUth0LJEnZ2xlwfD2VHK+pv9NRUTKnc9WHgGgV5MAQqq4F/n7eob5c0uoH5uiEolPzcDXI6+d3v4yKygHebvRNNDMzhPJLNkTx4A2wcWWX8ofa3ZGaFvb58YFE7mBvt8SwwdL86aGjr2jET3D/GycqGK4pn3kAdzc3GjVqhURERHXXcSPHDmSn3/+mZUrVxIYGJh/fM2aNcTHx1OjRg0cHBxwcHDg+PHjPPfcc9SsWfOK1/Pz8ys0+h4fH19olP6S0aNHk5ycnP+IiYm5rvcjcq0c7e345KHmVPN05lB8Gi/+uBPD0F18EZHD8Wn8erFF+dLWndawtzPRtrYPfZpVp21tn8sW8Zf0anJx9fpIrV4vV2ftzggi5c3KA/GMnr8LgGGda/Nw25q2DVSBFGmo7+677y7yBefPn1/kcw3DYOTIkSxYsIBVq1YREhJS4PkBAwbQrVu3Asd69OjBgAEDGDRo0BWv27ZtW5YuXcqzzz6bf+yPP/6gXbt2lz3f2dkZZ+crr3orciP5erjw2UMtuf/L9fy6K44v/jzKk/+yoJOISHk3edURDAO6NaxGAz/PEn2t2xr7859f9xcYwRe5HGt3RhApT3bGJDFs5jZyLQZ3t6jOCz3q2zpShVKkEXmz2Zz/8PT0ZPny5WzZsiX/+a1bt7J8+XLMZrNVLz58+HBmzpzJ7Nmz8fDwIC4ujri4OC5cuACAj48PYWFhBR6Ojo74+flRv/7//0N5+OGHGT16dP7XTz/9NH/88QcTJkxg//79TJgwgWXLlvHMM89YlU/EVloGV2ZM77zFHf+7ZD9rD521cSIREduJSTzPwh0nARhxc9Hmxl+PwMpuNAvywmLA71q9Xq7C2p0RRMqL4wnpDJ6+mQvZudxUtwoT7mli9VRouT5FKuSnTZuW/6hWrRp9+/YlKiqK+fPnM3/+fI4ePcr9999PlSpVrHrxyZMnk5ycTOfOnfH3989/zJ0716rrREdHExv7/yuCtmvXju+++45p06bRpEkTpk+fzty5c2ndurVV1xWxpYda16Bvq0AsBoycs40T587bOpKIiE188ecRci0GHepUoVmQ1w15zUur1/8SqRXH5cquZWcEkbLubFomD3+9iYT0LBoFeDK5f0sc7a95xrZcI5Nh5QTcqlWrsnbt2gIj4gAHDhygXbt2JCQkFGtAW0hJScFsNpOcnIynZ8m274lcTUZ2Ln2/WE/kiWTCqnvy45PtcHG0t3UsEZEbJj4lgw7/XUlWjoU5j7W5YQuGnTh3ng4TVmIywcbRXfHVXshyFUt2xzJ20d4CC9/5m10Y0zu00M4IImXZ+awcHvhyAztPJBNY2ZX5w9pp6kgxsqYOtXo57JycHPbt21eokN+3bx8Wi8Xay4nIVbg42jO5f0t6f7yW3SdTeHXBbt6/T61LIlJxTFlzlKwcCy2DK9Om1o1rTw6s7EbzGl5sj07it91xPHJxe1CRy7FmZwSRsion18LwWdvYeSKZym6OfDM4QkW8DVldyA8aNIjBgwdz+PBh2rRpA8CGDRt49913r7oAnYhcm+pernzyQHP6T93IvG0naFbDS9shiUiFcC49i1kbowEY0aXODb+J2auxP9ujk1i8K1aFvPyrSzsjiJRHhmHw6oLdrDxwBhdHO6YODKd21evbuUyuj9WF/Pvvv4+fnx8ffvhh/rx0f39/XnzxRZ577rliDygi0K5OFV6+tQH/+XU/by3aQ6i/By2DtXCOiJRv0/6K4nxWLo0CPOlcv+oNf/3bGvvzzuJ9bD6WyOmUDKqpvV5EKqiJyw4xd0sMdib45IEWtKhR2daRKjyrVyWws7PjxRdf5OTJkyQlJZGUlMTJkyd58cUXsbfX3F2RkvLYTbXo1cSf7FyDoTO3EZ+iPWlFpPxKzchm+rpjgG1G4wECvFxpUcMLw4DfdmnROxGpmOZsimbS8kMAvHNnY7qFVrNxIoFrKOT/ztPTU4vBidwgJpOJ/97ThHrVKhGfmsmwWdvIytG6FCJSPs3YcJyUjBzq+FaiRyM/m+Xo1SQAgMUq5EWkAlq+7zSvLtgFwFNd6/Jg6xo2TiSXFKmQb9GiBefOnSvyRTt06MDJkyevOZSIXJ67swNfDGiFh7MDW46fY9zivbaOJCJS7C5k5TJ1TRQAwzrXxs6GC4bd1jjvJsLmY+eIS1YnlIhUHNujzzF89jYsBvRtFciz3eraOpL8TZHmyO/YsYOdO3fi7V20Obk7duwgMzPzuoKJyOWFVHFn4v3NGPLNFr5Zf5wmgV7c0zLQ1rFERIrNd5ujSUjPIsjblTuaBtg0i7/ZlVbBldly/By/7Y5lUPsQm+YREbkRjp5JY/D0zWRkW+hSvyrj7mqsXZNKmSIvdte1a1eKuuW8/pJFSlbXhtV4umtdJi0/xCsLdlHfz4Ow6mZbxxIRuW5ZORa+/PMoAE92qo2D/XXNAiwWtzX2Z8vxcyyOVCEvIuVffGoGj0zbxLnz2TQNNPPpQy1wLAU/i6WgIhXyUVFRVl84MFAjhCIl6emudYk8kcTKA2d4cuZWFo3oQGV3J1vHEhG5LvO3nSA2OYNqns7cW0q6jW5r7M9bv+xly/FzxCZfwN/sautIIiIlIi0zh8HTNxOTeIFgHzemDgzHzcnqjc7kBijS30pwsPasFilt7OxMTOzXnDs+XcvxhPM89d12pg+KwN6Gc0lFRK5HTq6FyauPAHk7dTg7lI7dcPzMLoTXrMzmY+f4dVccQzpoVF5Eyp/sXAtDZ25l98kUfNyd+GZQBFUqOds6llyBeiREyjCzmyNfDGiJq6M9aw6d5YM/Dtg6kojINVu8K5bjCefxdncqdSsj92rsD8CvWr1eRMohwzB4aV4kaw6dxdXRnq8HhlOzirutY8lVqJAXKeMa+Hky4d4mAHy26ghLdutDpoiUPRaLwacrDwMwuH3NUtfKeWtjf0wm2Hr8HKeSLtg6johIsXr/jwPM33YSezsTnz3UgqZBXraOJP9ChbxIOXBH0wAevdjq+dz3Ozkcn2rjRCIi1lm67zQHT6fh4ezAgLY1bR2nkGqeLoQH5+3eo1F5ESlPZqw/xqcr86Y1jb+7MV0a+No4kRSFCnmRcuLlWxvQppY36Vm5PD5jK6kZ2baOJCJSJIbx/6PxD7cLxuzqaONEl9erSV57/WIV8iJSTizZHccbP+8B4Llb6tG3VZCNE0lRXVMhn5SUxFdffcXo0aNJTEwEYNu2bZw8ebJYw4lI0TnY2/HJgy3wN7tw9Ew6z32/E4ulaFtGiojY0p+HzhJ5IhlXR3sGl+Lt3W4N88Nkgu3RSZxUe72IlHFbjiXy9HfbMQx4sHUNRtxcx9aRxApWF/KRkZHUq1ePCRMm8P7775OUlATAggULGD16dHHnExErVKnkzOT+LXGyt+OPvafzV38WESnNPl2RNxr/QEQNfErxCsm+ni5E1Mxrr/9No/IiUoYdjk9lyDdbyMyx0K1hNd66oxEmk3Y+KkusLuRHjRrFwIEDOXToEC4uLvnHb731Vv78889iDSci1msW5MXbdzYC8hYuWX3wjI0TiYhc2aaoRDYdS8TJ3o7HO9aydZx/dam9/pdIFfIiUjadTsngka83k3whm+Y1vPj4geY42GvGdVlj9d/Y5s2beeKJJwodr169OnFxccUSSkSuT7/wGjwQUQPDgKfmbCc64bytI4mIXNYnF+fG39MyED+zy7+cbXs9L7bX74hJIiZRP1tFpGxJzchm4LTNnEy6QK0q7kx9JBxXJ3tbx5JrYHUh7+LiQkpKSqHjBw4coGrVqsUSSkSu35t3hNIsyIvkC9k8MXMrF7JybR1JRKSAyBNJ/HnwDPZ2JoZ2qm3rOEXi6+FC65CL7fXa7lNEypCsHAtPztzKvtgUqlRy5pvBEXi7O9k6llwjqwv5Pn368NZbb5GdnbcitslkIjo6mpdffpl77rmn2AOKyLVxdrBncv8WVKnkxL7YFEbPj8QwtPidiJQel1aqv6NpADV83Gycpuh6NQkAYPEudSKKSNlgsRi88ONO/jqcgLuTPdMHhRPkXXZ+7kphVhfy77//PmfOnMHX15cLFy7QqVMn6tSpg4eHB+PGjSuJjCJyjfzNrnzyYAvs7Uws3HGK6euO2TqSiAgAB0+n8vue0wAM61w2RuMv6dnIDzsT7FR7vYiUEROW7OenHadwsDMxuX9LwqqbbR1JrpODtd/g6enJ2rVrWbFiBdu2bcNisdCiRQu6detWEvlE5Dq1qeXDK7c15O1f9jJu8T5C/T1pXcvH1rFEpIL77OJofM9GftSt5mHjNNap6uFM6xAf1h9N4NddsTxRRqYFiEjF9PXaKL748ygA/723CR3raTp0eWBVIZ+Tk4OLiws7duzg5ptv5uabby6pXCJSjAa3r0nkiSR+2nGK4bO388vIDmViUSkRKZ+OJ6Tz885TAAzvUjb3Le7VxJ/1RxNYrEJeREqxxZGxvL14LwAv9qzP3S0CbZxIiotVrfUODg4EBweTm6tFs0TKEpPJxPi7G9PAz4OzaZkMnbWVzBz9fywitvH56iNYDOhUryqNA8tme2fPsLz2+sgTydoZRERKpQ1HE3h27g4MAx5pG1xmFhWVorF6jvxrr73G6NGjSUxMLIk8IlJC3Jwc+GJASzxdHNgencRbi/baOpKIVECxyRf4cesJAEbcXDZH4wGqVHKmbe28aUq/avV6ESllDsSl8ti3W8jKtdCzkR9v9G6EyWSydSwpRlYX8h999BFr1qwhICCA+vXr06JFiwIPESm9gn3cmfRAc0wmmLUxmu83x9g6kohUMF/+eZTsXIOIEG/Ca3rbOs51ua2xP5DXuioiUlrEJl9g4LRNpGbkEF6zMhPvb4a9nYr48sbqxe7uvPPOEoghIjdKl/q+jOpWjw+WHuS1n3bTwN+DJoFeto4lIhXA2bRM5myKBmBEGZ0b/3c9G/nx+sLd7DqZzPGEdIJ93G0dSUQquOQL2Qz8ejOxyRnU8a3ElIdb4eJob+tYUgKsLuTHjBlTEjnkGuRaDDZFJRKfmoGvhwsRId662yZFMrxLHXaeSGbZvtM8OWMri0Z2wKeSs61jiUg59/XaKDKyLTQJNHNT3Sq2jnPdfCo50652FdYePsviXbEM61z2b06ISNmVmZPL499u4cDpVKp5OvPN4Ai83JxsHUtKiNWt9VI6LNkdS4cJK3hgygae/m4HD0zZQIcJK1iieXpSBHZ2Jv7Xrym1qrhzKjmDkXO2k5NrsXUsESnHki9kM2P9cSDvZmJ5mavZq4na60XE9iwWg1Hf72RjVCIezg5MHxRBdS9XW8eSEmR1IW9nZ4e9vf0VH1LyluyOZejMbcQmZxQ4HpecwdCZ21TMS5F4ujjyxYCWuDnZs+5IAv/9/YCtI4lIOfbtumOkZuZQv5oHtzSsZus4xaZHIz/s7UzsOZXCsbPpto4jIhXUuF/3sTgyFkd7E18MaElDf09bR5ISZnVr/YIFCwp8nZ2dzfbt2/nmm28YO3ZssQWTy8u1GIxdtBfjMs8ZgAkYu2gvt4T6qc1e/lXdah68f19Ths3axpd/HqVJoJnbmwTYOpaIlDPpmTl8/VcUAMO61MauHP1+8nZ3ol1tH9YcymuvH14O5v6LSNky5c+jTF2b9zP2/fua0q5O2Z+6JP/O6kK+T58+hY7de++9NGrUiLlz5zJkyJBiCSaXtykqsdBI/N8ZQGxyBpuiEvO3xRG5mtsa+/Nkp9p8vvoIL/4YSV1fD+r7edg6loiUI3M2RXPufDY1fdzK5c3CXo398wr5SBXyInJj/bTjJON+3QfAq7c1pE+z6jZOJDdKsc2Rb926NcuWLSuuy8kVxKdeuYi/lvNEAJ7vXo8OdapwPiuXJ2ZsIflCtq0jiUg5kZGdy5d/HgVgaOfa5bJb7FJ7/d7YFKLUXl+hpWZks2jnKfbHpWCxXK5/UqT4rDt8lud/2AnA4PYhPHpTiI0TyY1ULIX8hQsX+PjjjwkMDCyOy8lV+Hq4FOt5IgAO9nZ89EBzqnu5cizhPKPm7tAHEBEpFj9uPUF8aiYBZhfual4+PydUdnei/cVW1l93aZ2aimz0/F2MnLOdnhPX0PztpQyZvpkvVh9hW/Q5snK0qKwUn72nUnhixlaycw16NfHntV4Ny80iolI0VrfWV65cucA/EsMwSE1Nxc3NjZkzZxZrOCksIsQbf7MLcckZl50nbwL8zHlb0YlYw9vdiS8GtOSeyetYvj+ej1cc5uludW0dS0TKsOxcC5+vPgLA4x1r4eRQfjfL6dXYjz8PnuEXtddXWIfjU1l88UaOq6M9yReyWb4/nuX74wFwcbSjeVBlwkO8aR3iTfMaXrg5Wf1RXISYxPMMmr6J1Mwc2tTy5n99m5artUekaKz+6fHhhx8WKOTt7OyoWrUqrVu3pnLlysUaTgqztzMxpncoQ2duwwQFivlLfytjeoeWy9ZFKXlh1c2Mu6sxz/+wk4nLD9I40JObG5Sf1aVF5Mb6eccpTpy7QJVKTtwfUcPWcUpU91A/Xl2wm32xKRw5k0btqpVsHUlusM9WHsEwoHtoNT59qAV7TqWwOSqRTccS2XIskXPns1l/NIH1RxMAcLAz0ai6mYialQmv6U14TW8qu2vPbykoK8fC/rgUdp5IZmdMEjtjkjh8Jg3DgPrVPPhiQCucHbRzWEVkMgzDqv7Z6OhogoKCLtu6ER0dTY0aZf8XdUpKCmazmeTkZDw9S+fWDUt2xzJ20d4CC9/5m10Y0zuUnmH+Nkwm5cHrC3czY8NxPFwcWDSiAzWruNs6koiUMRaLwS0frubImXRe6tmAoZ1r2zpSiXvk602sPniG526px8iu6miqSI4npHPzB6vJtRj8PKI9TQK9CjxvsRgcOZPGxqhENh9LZHNUIqcus3hxvWqVCK/pTURIXmEfoH3AKxSLxSAqIT2/YN95Ipm9p1LIyi08LaNRgCdfPdIKf7P+jZQn1tShVhfy9vb2xMbG4uvrW+B4QkICvr6+5ObmWp+4lCkLhTzkbUW3KSqR+NQMfD3y2uk1Ei/FISvHwgNTNrD1+DnqV/NgwfB2av8TEav8uiuWYbO24eniwF8v34yHi6OtI5W477fE8OKPkTTw82DJMx1tHUduoJfnRfLd5hg61avKN4MjivQ9J86dZ/OxRDZF5T2OnCm8UGJgZVcianoTfrGwr13VXfOgy5G45Ax2nrhUtCcReSKZ1IycQud5uTnSJNCLZoFmmgZ50STQi6oezjZILCXNmjrU6k/mV6r709LScHGxboG18ePHM3/+fPbv34+rqyvt2rVjwoQJ1K9fP/+cN998k++++46YmBicnJxo2bIl48aNo3Xr1le87vTp0xk0aFCh4xcuXLA6Y2lmb2fSFnNSIpwc7PjsoRbc/vFaDpxO5cUfI/n4geb68CBSSpT2G7mGYfDJisMADGwfUiGKeIAeoX68ar+L/XGpHI5Po46v2usrgpNJF5i37QQAI28u+voIgZXdCKzslr8IZEJaJpuPncsbsT+WyO6TyZw4d4ET504yf/tJAHzcnfLa8EO8iajpTUN/Dxzsy+/aE+VJ8oVsdp1ILlC4n07JLHSes4MdjaubaRLoRdMgM82CvKjh7abPYFJIkQv5UaNGAWAymXjjjTdwc3PLfy43N5eNGzfSrFkzq1589erVDB8+nPDwcHJycnj11Vfp3r07e/fuxd09r5W3Xr16fPLJJ9SqVYsLFy7w4Ycf0r17dw4fPkzVqlWveG1PT08OHDhQ4Fh5KuJFSlo1Txc+e6gFD3y5gV8iY/Fyc+StO8K0mIqIjZWFqVUrD8SzNzYFNyd7BrWraes4N4zZzZH2daqw6sAZft0Vy1Nqr68Qvlx9hOxcgza1vGlV89oXG/ap5EzPMD96hvkBkJaZw7bj5/JH7XfEJJGQnsWSPXEs2RMHgLuTPS2CKxNxsR2/aZAXLo6aL21rGdm57ItNyW+P3xmTxNHLbE1pZ4J61TxoFuR1caTdTL1qHjjq5owUQZFb67t06QLkFd9t27bFyen/F+NwcnKiZs2aPP/889Ste+2/tM6cOYOvry+rV6+mY8fLt6RdajdYtmwZXbt2vew506dP55lnniEpKemacpSV1nqRG+H7LTG8NC8Sw4A7mwXw3n1N9QtGxEaW7I5l6MxthXYtuXR7bXL/FjYv5g3D4J7J69gWncTjHWvxym0NbZrnRvthSwwv/BhJ/Woe/P6s2uvLu/jUDDpMWElWjoVZj7bO34awJGTm5LL7ZHLePPuoRLYcP1eoDdvJ3o4mgeb8EfuWNSvjWUE6Ymwl9+L6Bztikog8kcTOmGT2x6WQnVu4xKrh7UaTQHN+4d4owFNTF6WAEmmtX7lyJQCDBg1i0qRJJVLgJicnA+Dtffm7mVlZWXz55ZeYzWaaNm161WulpaURHBxMbm4uzZo14+2336Z58+aXPTczM5PMzP9vbUlJSbnGdyBS/vRtFYSzgx3Pfb+ThTtOkZaZwycPttAdf5EbLNdiMHbR3stuPWqQV8yPXbSXW0L9bNpmv/5oAtuik3BysOPRDiE2y2Er3UP9eMV+FwdOp3I4PpU6vh62jiQl6Ks1UWTlWGhew4t2JTzd0dnBnpbB3rQM9obOeT8TDsSl/v88+2OJnEnNZMvxc2w5fo7JHMFkgoZ+nvmL54WHVMbXQx2q18owDE4lZ+QvRrcjJondJ5NJzyq8RpiPuxNNg7xoGuhFkyAzTQO98NauBFKMrF7srqQYhkGfPn04d+4ca9asKfDcL7/8wv3338/58+fx9/dn4cKFhIeHX/FaGzZs4PDhwzRu3JiUlBQmTZrEr7/+ys6dOy/bMfDmm28yduzYQsc1Ii/y/1bsP83QmdvIzLHQppY3Xz0STiVn3UUWuVHWH0nggSkb/vW8OY+1sen6KQ99tYG/DicwoE0wb98ZZrMctjR4+mZW7I/n2W71eLqb2uvLq8T0LDpMWMH5rFy+HtjK5tu1GobB8YTzbLq4Kv7mY4kcSzhf6LyaPm75hX1EiLfmX1/FufSs/EXoLs1rP5uWVeg8Nyd7Glc35xfuTYPMVPdy1Z+rWK1EV60H2Lx5Mz/88APR0dFkZRX8xzx//nxrLwfA8OHDWbx4MWvXriUwMLDAc+np6cTGxnL27FmmTJnCihUr2LhxY6GV86/EYrHQokULOnbsyEcffVTo+cuNyAcFBamQF/mHDUcTePSbLaRl5tA00Mz0QRHa81bkBvlpx0me/m7Hv5436f5m9GlWveQDXcb26HPc9dk6HOxMrHqhM4GV3f79m8qheVtP8NwPO6lXrRJ/PNvJ1nGkhHzwxwE+XnGYRgGe/DKyQ6ks2uJTMvIL+03HzrE/LoV/fvL39XDOb8WPCPGmfjWPCrkezoWsXPacSmbHxXntkSeSOH6ZGyEOdiYa+HvkFeyBeS3ydXwrlaoFR6XsKtFV67/77jsefvhhunfvztKlS+nevTuHDh0iLi6Ou+6665oCjxw5kp9//pk///yzUBEP4O7uTp06dahTpw5t2rShbt26TJ06ldGjRxfp+nZ2doSHh3Po0KHLPu/s7Iyzs7ZwEPk3bWr5MOexNjz89UZ2nkim7xfrmTGkNX5mtemJlLSitsPasm3205V5K9Xf2bx6hS3iAbqFVsPR3sTB02kcPJ1KvWpqry9vki9kM/2vY0DeSvWlsYgH8PV04fYmAdzeJADIy73t+Ln8/ewjTyQRn5rJ4shYFkfGAuDp4kCrmpdG7CvTuLoXTg7la22cnFwLB0+n5c1pP5HEjphkDp5OJddSeHyzVhV3mlzc9q1pkBeh/p6aXiilgtWF/H/+8x8+/PBDhg8fjoeHB5MmTSIkJIQnnngCf3/rFtgxDIORI0eyYMECVq1aRUhI0ebSGYZRYAS9KOfv2LGDxo0bW5VPRAprHGjm+yfaMmDqJg7Fp3HfF+uYOaQ1wT7uto4mUq5FhHjjb3YhLjnjsvPkTYCfOW8rOlvYF5vCsn3xmEwwtHNtm2QoLcyujnSsW5Xl++NZHBlLvVtUyJc3M9YfIzUzh7q+lege6mfrOEVmdnWkSwNfujTI62rNyM5lR0zSxRH7RLYeP0dKRg4r9sezYn88AC6OdjQL8srfz75Fjcq4l6GpdYZhEJN4gR0Xt32LPJHErpPJZGRbCp1b1cM5byG6S/u1V/fC7KbFAqV0svr/wiNHjtCrVy8gbyQ7PT0dk8nEs88+y80333zZueZXMnz4cGbPns1PP/2Eh4cHcXF5W2mYzWZcXV1JT09n3Lhx3HHHHfj7+5OQkMBnn33GiRMnuO+++/Kv8/DDD1O9enXGjx8PwNixY/NH7lNSUvjoo4/YsWMHn376qbVvV0Quo241D354si39p27keMJ57v18PTOHtKa+nz6sipQUezsTY3qHMnTmNkxQoJi/NBY4pneozdo7L43G39bYn9pVtX96ryb+eYX8rlievaWereNIMUrPzGHq2igARtxcp0y3obs42tOmlg9tauWtq5GTa2FvbAqbLo7Ybz52jsT0LDYcTWTD0UQg72dRWIBn/n724TW9S9UibmfTMom8OMp+qXA/dz670Hkezg40Diw4r93P06XUdleI/JPVhby3tzepqakAVK9end27d9O4cWOSkpI4f77wPJKrmTx5MgCdO3cucHzatGkMHDgQe3t79u/fzzfffMPZs2fx8fEhPDycNWvW0KhRo/zzo6OjsbP7/5afpKQkHn/8ceLi4jCbzTRv3pw///yTiIgIa9+uiFxBkLcbPzzRloe/3sT+uFT6frGe6YPCaV6jsq2jiZRbPcP8mdy/RaF95P1svI/80TNpLN6V15Y7vHMdm2QobbqFVsPJ3o7D8WqvL29mb4zm3Plsavq40auxbbd7LG4O9nY0CfSiSaAXj95UC8PI21ptU9T/72d/MulC3t7oJ5L56uINjTq+lYi4OM8+PMSb6l6uNyRvemYOu05eKtjz5refTLpQ6DwnezsaBnjSLNBMk4vz2mtVcS/TN2FErF7s7sEHH6RVq1aMGjWKcePGMWnSJPr06cPSpUtp0aLFNS92V5poH3mRoks6n8Wg6ZvZHp2Em5M9Xz3cinYluI+uiORtO7UpKpH41Ax8PfLa6W250NILP+zkh60n6NrAl6kDr7yrTEXz6DebWbYvnqe61mWURuXLhYzsXG7670rOpGby33ua0Dc8yNaRbrhTSRfYfCwxfz/7Q/Fphc6p7uVKeM3KRIT4EBFSmdpVK133SHd2roUDcal5i9FdXEH+cHwa/5zWbjJB7aqVaBroRbOgvMK9gb8Hzg6a1y6lX4muWp+YmEhGRgYBAQFYLBbef/991q5dS506dXj99depXLnsj8apkBexTnpmDo/P2MJfhxNwcrDjkwea071R2ZkzKCLX7sS583R+bxU5FoP5w9rRQl05+RZsP8Gzc3dSu6o7y0Z1UstuOfDNumOM+XkP1b1cWfl853K3CNy1SEzPYsuxvFb8TcfOsftkcqFF47zdnWgVXDl/27tGAZ442F/5z85iMTiWkM7OE0nsjElm54kk9pxKISun8Lz2ALNL3nz2i+3xjaub8XDRvHYpm0qskM/JyWHWrFn06NEDP7/y+yFdhbyI9TKyc3lqznb+2HsaezsT793bhLtbFN6FQkTKlzd+2s2364/TrrYPsx9rY+s4pUpqRjYt31lGVo6FJc/cRAM/faYoy7JyLHR6byWxyRm83acRA9rWtHWkUik9M4ft0Un5295tjzlXaGE5dyd7WgRXzptnX9ObIG9X9p5KyS/cI08kkZKRU+jani4ONA3yurggnRdNgsw23alDpLiV2PZzDg4ODB06lH379l1XQBEpf1wc7fnsoRa8OC+S+dtOMur7naRm5PBIu5q2jiYiJSQ+NYPvNscAMKKL5sb/k4eLI53qVWXp3tP8GhmrQr6Mm7/tBLHJGVT1cOa+VhWvpb6o3J0d6FC3Ch3q5k2zy8qxsOtkct7ieRcX0UvJyGHNobOsOXT2itdxdrAjrLqZJoHm/MI92MdNnS0iF1m92F3r1q3Zvn07wcHBJZFHRMowB3s73r+3KZ4ujky/2H6YmpHN8C6ld49dEbl2U9dEkZVjoXkNL9rW9rF1nFLp9ib+LN17ml8url6vn4VlU06uhc9WHQHgiY61tI+4FZwc7GgZXJmWwZV5slNtLBaDg/GpbIpKZOPRRNYdOUvShWwCK7vRtpY3zYIq0yTQTH0/Dxyv0n4vUtFZXcgPGzaM5557jhMnTtCyZUvc3QvuHd2kSZNiCyciZY/dxS2yPF0d+Wj5Id7/4yDJF7J55baG+gArUo4knc9i5objQN5ovP7/vryuDavh5GDH0TPp7I9LpaG/RuXLokWRp4hOPE9lN0cebF3D1nHKNDs7Ew38PDl2Np1t0efyt4aLSTxPTq6Fmxv4ElbdbOOUIqWf1YV8v379AHjqqafyj5lMJgzDwGQykZubW3zpRKRMMplMjLqlHmZXR97+ZS9T1kSRciGH/9zd2KYra4tI8Zn21zHSs3Jp6O/JzQ18bR2n1Krk7EDnelX5Y+9pFkfGqpAvgywWg09WHAbg0Ztq4eZk9cdn+Yclu2MZOnMb/1yoKy45g6EztzG5fwubbacpUlZY/ZMoKiqqJHKISDk0pEMIHi4OvDwvkrlbYkjLzOHDfs20yq9IGZeWmcP0dccAjcYXRa8m/nmF/K5Ynuuu9vqyZsmeOI6cScfTxYGH22pq6fXKtRiMXbS3UBEPYAAmYOyivdwS6qeb/yJXYXUhr7nxImKNvq2C8HB24KnvtrN4VyxpmTl83r8lrk6aXyhSVs3ccJzkC9nUqupOz7Dyu4tNcenasBrODnZEnU1nX2wqoQEalS8rDMPg44uj8QPbh2hbs2KwKSqR2OSMKz5vALHJGWyKStTaGyJXcU3DYjNmzKB9+/YEBARw/Hje/LiJEyfy008/FWs4ESkfbm3sz9RHwnF1tGf1wTMMmLqR5AvZto4lItcgIzuXr9bkdecN61xHI2ZFUMnZgc71qwKweNcpG6cRa6zYH8++2BTcnewZpF1YikV86pWL+Gs5T6SisrqQnzx5MqNGjeK2224jKSkpf068l5cXEydOLO58IlJOdKxXlZmPRuDh4sCW4+d44MsNnE3LtHUsEbHS3M0xnE3LJLCyK32aBdg6TpnRq0nen9XiyFgM43JNxVLa/H00vn/bYCq7O9k4UflQ1H3ftT+8yNVZXch//PHHTJkyhVdffRV7+/9vjW3VqhW7du0q1nAiUr60DPZm7uNtqVLJib2xKfT9fD0nky7YOpaIFFFWjoUvVl/cgqtTbW0NZYWuDXxxdrDjWMJ59pxKsXUcKYK/DiewIyYJZwc7Hu1Qy9Zxyo2IEG/8zS5cqZfHBPibXYgI8b6RsUTKHKt/A0dFRdG8efNCx52dnUlPTy+WUCJSfoUGePL9E22p7uXK0bPp3Dd5HUfPpNk6logUwcLtJzmVnIGvhzP3tQy0dZwyxd3ZIX91/8W7Ym2cRori4xWHAHggogZVPZxtnKb8sL+4TS1QqJi/9PWY3qGatiPyL6wu5ENCQtixY0eh47/99huhoaHFkUlEyrlaVSvxw5NtqVXVnVPJGdz3+Xr2nEq2dSwRuYpci8Hki6Pxj91UCxdHLVhprV5N8rbT+nWX2utLu01RiWyMSsTR3sQTnTQaX9x6hvkzuX8L/MwF2+f9zC7aek6kiKxetf6FF15g+PDhZGRkYBgGmzZtYs6cOYwfP56vvvqqJDKKSDkU4OXK90+05ZGvN7HnVAr3f7mBaQPDaVVTrXQipdHiXbFEnU3Hy82RB1vXsHWcMunmBr64ONpx/GJ7fVh1s60jyRVcGo2/t2UQ/mZXG6cpn3qG+XNLqB+bohKJT83A1yOvnV4j8SJFY3UhP2jQIHJycnjxxRc5f/48Dz74INWrV2fSpEncf//9JZFRRMqpKpWcmfN4G4ZM38zmY+foP3UjXwxoRad6VW0dTUT+xmIx+Gxl3qJfg9uH4O5s9ccHAdyc8trrf90Vxy+RsSrkS6kdMUmsOXQWezsTQzvVtnWccs3ezqQt5kSu0TWtUvPYY49x/Phx4uPjiYuLIyYmhiFDhhR3NhGpADxdHPl2cGs61atKRraFR7/ZzK+aPypSqizfH8/+uFQqOTvwSNuato5TpvVqfHH1+l2n1F5fSn1ycaX6Ps0CqOHjZuM0IiKXd83LzcbHx7Nv3z4OHjzImTNnijOTiFQwrk72THm4Fb2a+JOdazBi9ja+3xxj61giQt4WXJ9cbDMe0DYYs5ujjROVbV0aVMXV0Z6YxAvsPqnV60ubvadSWLbvNCYTDOtcx9ZxRESuyOpCPiUlhQEDBhAQEECnTp3o2LEjAQEB9O/fn+RkLVYlItfGycGOj+5vzv3hQVgMeHFeJF+tOWrrWCIV3trDZ9l5IhkXRzuGdAixdZwy71J7PcAvu07ZOI3806er8kbjb2vsTx3fSjZOIyJyZVYX8o8++igbN25k8eLFJCUlkZyczC+//MKWLVt47LHHSiKjiFQQ9nYmxt/dmMc75q0Q/M7iffzvjwNqPxWxoUttxveH16BKJW3BVRwurV6/OFKr15cmh+PT8qd2jeii0XgRKd2sXq1m8eLF/P7773To0CH/WI8ePZgyZQo9e/Ys1nAiUvGYTCZG39oAs6sj7/1+gI9WHCYlI4c3bg/FTivZitxQW45pC66S0KW+L66O9pw4d4HIE8k0DfKydSQBPlt1GMOAW0Kr0dDf09ZxRESuyuoReR8fH8zmwqusms1mKleuXCyhRKRiM5lMDO9Sh7f7NAJg+rpjPP/DTnJyLTZOJlKxfHJxpfp7WgRqC65i5OpkT9eGee31i7W4Z6kQnXCen3bkTXXQaLyIlAVWF/KvvfYao0aNIjb2/3/xxMXF8cILL/D6668XazgRqdgGtK3Jh/2aYm9nYv72kwybtY2M7FxbxxKpEHafTGbVgTPYmeBJbcFV7G5Xe32pMnn1EXItBh3rVVWHhEg5k2sxWH8kgZ92nGT9kQRyLeXjZ67VrfWTJ0/m8OHDBAcHU6NGDQCio6NxdnbmzJkzfPHFF/nnbtu2rfiSikiFdFfzQCo5OzJ89jb+2HuawdM38+XDraikfaxFStSnF0fjezcNoGYVdxunKX861/fFzcmek0kX2HkimWYqHm0mNvkCP27N2yll5M0ajRcpT5bsjmXsor3EJmfkH/M3uzCmdyg9w/xtmOz6Wf1J+M477yyBGCIiV3ZLaDWmDwrnsW+2sO5IAv2/2sj0QeF4uTnZOppIuXQ4PpUle+IAbcFVUlwc7enasBqLdp5iceQpFfI29MXqo2TnGrQO8Sa8pret44hIMVmyO5ahM7fxz/H3uOQMhs7cxuT+Lcp0MW91IT9mzJiSyCEiclXtaldh1mNtGDhtEztikuj3xQZmDInA19PF1tFEyp3PVh7BMKB7aDXq+3nYOk651auxP4t2nuLXXXG8cltDTCYt6HmjnUnNZM6maABG3lzXxmlEpLjkWgzGLtpbqIgHMAATMHbRXm4J9cO+jC6mbPUc+b9LS0sjJSWlwENEpKQ0C/Li+yfa4uvhzIHTqdz7+XpiEs/bOpZIuRKdcJ6fdl5c9EttxiWqc/2quF9sr98Rk2TrOBXSV2uPkpljoVmQF+3r+Ng6jogUk01RiQXa6f/JAGKTM9gUlXjjQhUzqwv5qKgoevXqhbu7e/5K9ZUrV8bLy0ur1otIiatXzYMfn2xHkLcr0YnnuffzdRw6nWrrWCLlxud/5i36dVPdKjQJ9LJ1nHLtUns95C16JzfWufQsZqw/DuTNjVdHhEj5EZ965SL+Ws4rjaxurX/ooYcA+Prrr6lWrZp+6InIDVfDx40fn2zHgKkbOXg6jb5frOebwREqOkSuU1xyBj9uOQFoC64bpVcTf37eeYpfd8Xyym0NsSujLZ5l0bS/ojiflUtDf09ubuBr6zgiUox8PYo29bKo55VGVhfykZGRbN26lfr165dEHhGRIqnm6cLcx9sycNomdp5I5sEpG5nycCva1lZrpMi1mrLmKFm5FsJrVqZ1Lf2/dCN0qpfXXn8qOYPtMUm0DFZ3442QkpHNtHXHAI3Gi5RHESHe+JtdiEvOuOw8eRPgZ3YhIqTsLnBpdWt9eHg4MTExJZFFRMQqld2dmPVYG9rW8iEtM4dHpm1i+b7Tto4lUiYlpmcxe2Peol/DNRp/w7g42nNLqNrrb7QZ64+TmpFDHd9K9GzkZ+s4IlLM7O1MjOkdCuQV7X936esxvUPL7EJ3cA2F/FdffcWECRP45ptv2Lp1K5GRkQUeIiI3UiVnB6YNCqdbw2pk5Vh4YsZWftpx0taxRMqcr9dGcSE7l8bVzXSqV9XWcSqUXk0CAPhtdywWy+XGjqQ4nc/K4as1RwEY3qW2pjOIlFM9w/yZ3L8FfuaC7fN+Zpcyv/UcXENr/ZkzZzhy5AiDBg3KP2YymTAMA5PJRG5ubrEGFBH5Ny6O9kzu34IXftjJwh2neGbuDlIychjQJtjW0UTKhJSMbL5ZfwzIK2zUZnxj3VS3CpWcHYhNzmB7zDlaBpfdVs+yYPbGaM6dzybYx43eF2+iiEj51DPMn1tC/dgUlUh8aga+Hnnt9GV5JP4Sqwv5wYMH07x5c+bMmaPF7kSk1HC0t+N/fZvh6erIt+uP8/rC3aRmZDOss1qERf7NpTbjur6V6B6qNuMb7VJ7/YLtJ/klMlaFfAnKyM7liz/zRuOHda6Ng/117cQsImWAvZ2pXK6hZHUhf/z4cX7++Wfq1NGHYxEpXezsTIy9oxGeLo58svIw/11ygJQLObzUs75uOopcwfmsHKaujQLy5sarzdg2ejX2Z8H2k/y6K5bXe4Xq76GE/LAlhjOpmQSYXbireaCt44iIXDOrb0PefPPN7Ny5sySyiIhcN5PJxPM96vPKbQ0A+Hz1EV5duJtczTsVuaw5m2JITM+ihrcbtzcp2/MFy7Kb6lXBw9mB0ymZbIs+Z+s45VJWjoXPV+eNxj/ZuTZODhqNF5Gyy+oR+d69e/Pss8+ya9cuGjdujKOjY4Hn77jjjmILJyJyrR7vWBsPF0deWbCL2RujSbmQzf/6NtMHN5G/yczJ5cs/jwAwVG3GNuXskNdeP/9ie32rmmqvL24Lt5/kZNIFqno407dVkK3jiIhcF6sL+SeffBKAt956q9BzWuxOREqTByJq4OHiwLNzd/BLZCzpmTl89lBLXJ3sbR1NpFSYt/Ukp1My8fN04e4W1W0dp8Lr1cSf+Rfb69+4Xe31xSkn18Jnqw4D8PhNtXBx1O8BESnbrC7kLRZLSeSQa2AYBufPn7d1DJFSrUttM5Pubcgz3+1g+a4YHpqcxqf9W+Dp4vjv3yxSjuXkWvh06W4sWRk8El6TnMwMcjJtnapiax7girtdDnEJGazZd0Kj8sXol8hTHI1NxMvNkT5hPqSnp9s6kojYgJubW/lZN8m4DhcuXLiebzf+85//GK1atTIqVapkVK1a1ejTp4+xf//+AueMGTPGqF+/vuHm5mZ4eXkZXbt2NTZs2PCv1/7xxx+Nhg0bGk5OTkbDhg2N+fPnFzlXcnKyARjJyclWv6cbKS0tzQD00EMPPfTQQw899NBDDz30+JdHWlqarUu4q7KmDrV6Mlxubi5vv/021atXp1KlShw9mrdoyOuvv87UqVOtutbq1asZPnw4GzZsYOnSpeTk5NC9e/cCd0nr1avHJ598wq5du1i7di01a9ake/funDlz5orXXb9+Pf369WPAgAHs3LmTAQMG0LdvXzZu3Gjt2xUREREREREpVUyGYRjWfMNbb73FN998w1tvvcVjjz3G7t27qVWrFt9//z0ffvgh69evv+YwZ86cwdfXl9WrV9OxY8fLnpOSkoLZbGbZsmV07dr1suf069ePlJQUfvvtt/xjPXv2pHLlysyZM+dfc1x6jeTkZDw9Pa/tzdwAhlrrRax29EwaQ77ZTFxyJgFeLkx9JJyaVdxtHUvkhlq6J46nvtuBh4sDy57rpKkmpUhWjoWbJqwgJSOHbweHEx5S/vY+vpEMw+Duz9axPy6VJzvX4umu9WwdSURsqLS31ltTh1o9R/7bb7/lyy+/pGvXrvkL3wE0adKE/fv3W5/2b5KTkwHw9r78nLCsrCy+/PJLzGYzTZs2veJ11q9fz7PPPlvgWI8ePZg4ceJlz8/MzCQz8/8nBqakpFiZ3DZMJhPu7ipARKzR2N2d+U/dzICpm4g6m84jMyKZMSSChv6l96adSHEyDIMpG05h5+TC4M518PfxsnUk+Rt3oGfzmvy49QQrjqTQOayGrSOVaSv2n+ZgYjaVKrnzZNdGuLs72TqSiEixsLq1/uTJk9SpU6fQcYvFQnZ29jUHMQyDUaNG0aFDB8LCwgo898svv1CpUiVcXFz48MMPWbp0KVWqVLniteLi4qhWrVqBY9WqVSMuLu6y548fPx6z2Zz/CArSliQi5VlgZTe+f6ItDf09OZuWSb8v1rP1+DlbxxK5IVYdPMOeUym4OtozqH2IrePIZfRq4g/Ar7viyLVY1Tgpf2MYBh8tz1upvn+bYLxVxItIOWJ1Id+oUSPWrFlT6PgPP/xA8+bNrznIiBEjiIyMvGzre5cuXdixYwfr1q2jZ8+e9O3bl/j4+Kte758tE4ZhXLGNYvTo0SQnJ+c/YmJirvl9iEjZUNXDme8eb0PL4MqkZOTQ/6uNrDl05bU3RMoDwzD4dEVeYfNQ6xoqbEqp9rWrYHZ15GxaJpuiEm0dp8xadySBHTFJODvY8ehNumklIuVLkQv5wYMHk5qaypgxYxgxYgQTJkzAYrEwf/58HnvsMf7zn//wxhtvXFOIkSNH8vPPP7Ny5UoCAwMLPe/u7k6dOnVo06YNU6dOxcHB4aoL6/n5+RUafY+Pjy80Sn+Js7Mznp6eBR4iUv6ZXR2ZMSSCm+pW4UJ2LkOmb2HJ7st37oiUBxujEtly/BxO9nY81rGWrePIFTg52NE9NO8zy6+7Ym2cpuz6eMUhAB6IqIGvh4uN04iIFK8iF/LffPMNFy5coHfv3sydO5dff/0Vk8nEG2+8wb59+1i0aBG33HKLVS9uGAYjRoxg/vz5rFixgpCQot0tNQyjwJz2f2rbti1Lly4tcOyPP/6gXbt2VuUTkfLPzcmBrx5pxa1hfmTlWhg2ays/bFFXjpRPn67MG42/r1Ug1TxV2JRml9rrf9sdq/b6a7D5WCIbjibiaG/icd20EpFyqMiL3f19cfsePXrQo0eP637x4cOHM3v2bH766Sc8PDzyR9HNZjOurq6kp6czbtw47rjjDvz9/UlISOCzzz7jxIkT3HffffnXefjhh6levTrjx48H4Omnn6Zjx45MmDCBPn368NNPP7Fs2TLWrl173ZlFpPxxdrDn4weaM3r+Ln7YeoIXfowkNSOHwR3Uiinlx86YJNYcOou9nYknO9W2dRz5F+3rXGqvz2JjVALtal95bSAp7JOLU0jubRlIgJerjdOIiBQ/q+bIF/dS/ZMnTyY5OZnOnTvj7++f/5g7dy4A9vb27N+/n3vuuYd69epx++23c+bMGdasWUOjRo3yrxMdHU1s7P+3nrVr147vvvuOadOm0aRJE6ZPn87cuXNp3bp1seYXkfLDwd6OCfc0YcjF4v2tX/YycdlBrNyhU6TU+uTiaHyfZgEEebvZOI38G0d7O3o28gNgcaTa660ReSKJ1QfPYG9nYminwgs0i4iUB0XeR97Ozg6z2fyvxXxiYtlflKWs7CMvIsXPMAw+XnGY/y09CMCg9jV5vVcodnald89RkX+zPy6FnhPXYDLB0mc7Uce3kq0jSRH8efAMD3+9iSqVnNgwuisO9lavUVwhPf7tFv7Ye5q7m1fnf/2a2TqOiEiRldg+8mPHjsVsNl9XOBGR0sxkMvFU17p4uDgwdtFepv11jNSMHN69u7E+REuZ9dnKIwDcGuanIr4MaVvbBy+3vPb6TVGJtKuj9vp/sz8uhT/2nsZkgmFdNIVERMovqwr5+++/H19f35LKIiJSagxqH4KniyMv/LiTH7eeIC0jh0kPNMPZwd7W0USscuxsOr9EngJgWGe1GZcll9rrv9scwy+7YlXIF8GnF29a3RbmTx1fDxunEREpOUUeXiru+fEiIqXdPS0D+eyhljjZ27FkTxyPfrOF81k5to4lYpXJq45gMaBL/aqEVVdXXVlzafX6JbvjyMm12DhN6XbkTFr+TavhXXTTSkTKtyIX8lrwSUQqop5hfnw9MBw3J3vWHDpL/682knw+29axRIrkVNIF5m8/AcCIm1XYlEVta/lQ2c2RxPQsNhwt++sQlaTPVh7BMKBbQ19CA7TGkYiUb0Uu5C0Wi9rqRaRC6lC3CjMfbY2niwPbopPo9+V64lMzbB1L5F99+edRsnMN2tTypmWwt63jyDVwsLejZ1jeqPziXVq9/kpiEs+zcMdJQKPxIlIxaOUmEZEiaFGjMnOfaEuVSs7sj0ul7+frOXHuvK1jiVzRmdRM5myKBmBEl7o2TiPXo1fjS+31sWqvv4LJq4+QazG4qW4VmteobOs4IiIlToW8iEgRNfT35Mcn21Ldy5VjCee57/P1HI5Ps3UskcuaujaKzBwLTYO8aF/Hx9Zx5Dq0qeWNt7sT585ns/5ogq3jlDqxyRf4cUveFJKRN+umlYhUDCrkRUSsULOKO/OGtqOObyVikzPo+8V6dp9MtnUskQKSz2czc8NxAEZ0qaMFa8u4vPZ6PwAWR6q9/p++/PMoWbkWIkK8iQjRFBIRqRhUyIuIWMnP7ML3T7SlcXUzielZPPDlBjZFaREqKT2mrztGWmYODfw86NpA69uUB7dfbK//fU8c2Wqvz/f3KSQjtaCjiFQgKuRFRK6Bt7sTsx9rTUSIN6mZOQyYupGV++NtHUuE9Mwcpq2LAvIW/bKz02h8eRAR4o3Ppfb6I2qvv2Tq2igysvOmkHSoU8XWcUREbhgV8iIi18jDxZFvB0dwcwNfMnMsPPbtFhbtPGXrWFLBzdp4nKTz2dSq4s5tF0dxpexTe31hSeezmLH+GAAjNYVERCoYFfIiItfBxdGeLwa05I6mAeRYDJ76bnt+m6fIjZaRncuUNXmj8U92ro29RuPLlV5NLq5er/Z6AKb9dYz0rFwa+nvStaGmkIhIxaJCXkTkOjna2/Fhv2Y81LoGhgGj5+/io+WHSM/MsXU0qWB+2BLDmdRMqnu5clfz6raOI8WsdYgPVSo5kXwhm78On7V1HJtKzchm2l95N620oKOIVEQq5EVEioG9nYl37gxjaOfaAPxv6UFavrOU4bO2sWR3HBnZuTZOKOVddq6Fz1cfBeCJTrVwtNev+PLG3s7ErWF5o/K/7qrY7fUzNhwnJSOH2lXd86cciIhUJPotLyJSTEwmEy/1bMC4u8Ko6eNGRraFxbtieXLmVsLfWcZz3+9k1YF4tcRKiVi4/SQnky5QpZIzfVsF2TqOlJDb8levP01WTsX8WXI+K4ev1vz/go6aQiIiFZGDrQOIiJQ3D7UO5sGIGuw+mcLPO0/yS2QssckZzNt2gnnbTuDt7sStYX7c0TSA8JreWlVcrluuxWDyqiMAPHZTCC6O9jZOJCUlIsSbKpWcOZuWyV9HztKlfsWbGz57YzSJ6VkEebtyR9MAW8cREbEJFfIiIiXAZDLRONBM40Azo29tyJbj51i08xS/7oolIT2LWRujmbUxGj9PF25v4k/vpgE0CTRrnqdck992x3L0bDpmV0ceahNs6zhSguztTNzW2I9v1x9ncWRshSvkM7Jz+fLPvCkkwzrXwUFTSESkglIhLyJSwuzsTESEeBMR4s2Y3qGsO5LAzztP8fvuOOJSMvhqbRRfrY0i2MeN3k0CuKNZAPWqedg6tpQRhmHwyYrDAAxqX5NKzvrVXt71auzPt+uP88eeOLLuaoyTQ8UpZn/YeoL41Ez8zS7c3UILOopIxaXf9iIiN5CDvR0d61WlY72qvHNnGKsPnmHRzlMs23ea4wnn+WTlYT5ZeZj61Ty4o1kAvZsEUMPHzdaxpRRbvi+e/XGpuDvZM7BdTVvHkRugVU1vqno4cyY1k78On6VLg4oxKp+da+Hzi1NInuhYC2cHTSERkYpLhbyIiI24ONrTo5EfPRr5kZ6Zw7J9p1m08xSrD57hwOlU3vv9AO/9foCmQV70buLP7U0C8DO72Dq2lCKGYfDJyrzR+P7/1959R0dZ5X0A/86kTNrMpDFJJqEEQgsphCZNiC1Eqi+6oiKK4CpK0aOu5VUP6q4v4rGtKIgrBhVlZVdcQwsGCQm9p9BCIEFIDySZCaRNMvf9I8zIbAoEMv37OWfO2Txz5z6/53g3zDf3PvcZ1RO+Xu5WrogswUUqwcSoYHyz93dszC5xmiD/8zUbOj40ooe1yyEisioGeSIiG+Atc8W0waGYNjgUmlodUo6XYENWCfacvYisC9XIulCNdzefxIhe/pg6WI17o0Lg783Q5uz2nL2EzAvVkLlK8eTY3tYuhyxoUowa3+z9Hb+eKEVDU5TDz0436wWWX/2j1VPjuKEjERGDPBGRjVF6uWHG8B6YMbwHymvqsSWnFMlZxTj8exX2F1Rif0ElFv9yHGP7BmJKjBoJg4Ig93CzdtlkBYZ74x8a3h3d5DIrV0OWNKynH1RyGcprGrAr7yLuGhhk7ZLMamN2Mc5dqoWvlxtm3sYNHcl5NesFDhRUorymHiq5B0aE+/MRjE6KQZ6IyIap5B54fHQvPD66FwqrarExuwQbsopxvFiLHbkV2JFbAfefpbizvwpTB6tx5wAVZ6qcxOHfq7A3/xJcpRI8Nb6PtcshC5NKJZgYHYLVe85hU06JQwd5vV7g86uz8XPHhMObGzqSk0o5VoK3N5xAiabeeCxE6YHFUyKRGBVixcrIGvibkIjIToT5eWHe+D6YN74PzlZcxoasYiRnFSO/4gpSjpci5XgpvN1dkDAoGFNiQzA2optT7WbtTOoam/Hpb3kAgOlDQhHq62nlisgaJsW0BPnU42VoaGp22OX1v54ow+myy5DLXPEYN3QkJ5VyrATPrDkC8V/HSzX1eGbNEax4dAjDvJNhkCciskN9uvng+bv74bm7+uJEiRYbslpm6ouq6/Dz0SL8fLQIvl5uuDcqGFNi1bgtPIBL7+xUXWMzTpRocaxIg+xCDY4VaZBXXgO9AKQS4Jn4CGuXSFYytIcfghQylGkbsPP0Rdwd6Xiz8i0bOrb80erx0b2g9ORtROR8mvUCb2840SrEA4AAIAHw9oYTuCcymP/WOxEGeSIiOyaRSDBIrcQgtRKvJPbHkfPV2JBVjI3ZJbh4uQFrD1zA2gMXoJLLMCkmBFNi1Yjr7guJhP/Q26J6XUtozynUIKfIENovo1nf+utbN7kMz8b3QXigtxUqJVtgWF6ftLtleb0jBvkdpytwrEgLTzcXzBkbbu1yiKziQEGlyXL6/yYAlGjqcaCgEqP6BFiuMLIqBnkiIgchkUgwtKcfhvb0w5uTI7Ev/xI2ZBVjy7FSlNc0IGn3OSTtPocwP09MiVVjaqwaA4LlDPVWUq9rxskSLXKKNMbg3l5oD/SRITpUgegwX0SHKhEdqkSQQsb/doTJMS1BPvVEGep1zQ61R4YQAsuu3kLy6MgefFIHOa3ymvZD/M20I8fAIE9E5IBcpBKMiQjEmIhAvDMtCjvzKpCcVYzUE2UorKrDih1nsWLHWUSofDA1Vo0psWrO7JqRIbQfK2oJ7NmFHYV2d2NYjwpVIibMl6Gd2hXX3Q/BCg+UauuxM+8i7nGgWfm9+Zdw5Hw13F2l+PPtfLwiOS+V3KNL25FjYJAnInJw7q5S3DUwCHcNDEJdYzN+O1WGDVnFSMutwJnyy/go9TQ+Sj2NqFAFpsaqMTlGDTU3T7tp9bpmnCqtuTrTXo2cIi3yymrQ1EZoD/B2R3SY0hjco8OUCFZ4MLTTDTMsr/96dwE2ZRc7VJBf9tsfj1dUKRhQyHmNCPdHiNIDpZr6Nu+TlwAIVrY8io6cB4M8EZET8XR3weSYlrCurdfh1+NlSM4qxu4zF3GsSItjRVr83+ZTGN7LD1Nj1bg3OgSBPnw+eXsamppxqqTGZHn86Q5Ce9Q1gT06VIkQJUM73bpJMS1B3pGW1x86V2l8vOLTfLwiOTkXqQSLp0TimTVHIAFMwrzhX5DFUyK50Z2TkQgh2vrDjlPTarVQKpXQaDRQKBTWLoeIyOwuXW7A5mOl2JBVjAMFlcbjUgkwJiIQU2LVmDAo2Kl3jG5oakZuaY1x5/icIg1yS9sO7f5XQ3vM1eXx0WFKqBnayUz0eoGxS7ejWFOPlbOGYsKgYGuXdMtmJx3AjtwKzBjWHUsfiLF2OUQ2gc+Rd3ydyaEM8m1gkCciZ1aiqcOm7BIkZxUju1BjPO7uIsX4/t0wJVaNuweq4OXuuIu6Gpqacbr0MrKLqk1Cu6659T+Zfl5uVzehU1ydbfdlaCeL+9vGE/hqVwGmDVbj7w/FWbucW5JTqMGUz3ZBKgHSXopHzwDu30Fk0KwXOFBQifKaeqjkLcvpORPvODqTQx33WxgREd2UEKUnnry9N568vTfOXbyCDVnFSM4qRl75ZaSeKEPqiTJ4urng7sggTI1VY1y/QMhc7Xcpb2OTHrmGe9qLNMgpqm43tPt6uRnvZ48Ja5ltD/X1ZGgnq5sYE4KvdhVgmwMsrzc8N37a4FCGeKL/4iKV8BFzBIBBnoiIOtAr0BsL7+qLhXf1xalSLTZkFWNDVgnOV9Ze/d/FUHi4IjEqGFNi1RjVOwCuLlJrl92uxiY9TpddE9oLW2baG5v1rdoaQvu1S+TD/BjayTbFdfdFqK8niqrrsCO3AolR9rm8Pre0BluPl0EiAZ6N573xRETtYZAnIqIbMiBYgQHBCryU0B9ZhRpsyCrGxuxilGkbsO5QIdYdKkSgjzsmRodgaqwaQ3r4QWrF5X6G0H6sSIPsopb72k+VtB3alZ5uJpvQRTO0k52RSCSYGB2Mf+wswKacErsN8p+ntexUf29UMPoGya1cDRGR7eI98m3gPfJERDemWS9w8FwlkrOKsSWnBFW1OuN7ob6emBwTgimxagxSK8wainXNV2far+4cf6xIg5PthHaFh+vVwO5rDO3d/Rnayf5lXqjGfZ/vhpe7C468eY/dLa/Pr7iMuz9Kh14AmxaNxSC10tolERFZFO+RJyIii3CRSjCydwBG9g7A21MHYdeZi9iQVYxfj5ehqLoOKzPysTIjH70DvTE5Vo2psWpEqHxM+ujsxj26Zj3yyi4jp6j66hJ5LU6WaNHY1H5oNzz2LSbUl6GdHFZsmPKa5fXldreL9YodZ6EXwF0DVAzxRETXYdUgv2TJEqxfvx6nTp2Cp6cnRo8ejaVLl6J///4AAJ1OhzfeeAObN29Gfn4+lEol7r77brz33ntQq9Xt9rt69Wo88cQTrY7X1dXBw8PDbNdDROTM3FykuKO/Cnf0V6Fe14wdueVIzirGbyfLkX/xCj79LQ+f/paHgSEKTI1VY3JMCI4Xazp8lI4htBt2js8u0rQb2uUersYZdsMS+R7+Xgzt5DQkEgkmxYTgy4x8bMwusasgf6GyFj8fLQIAzL8zwsrVEBHZPqsG+fT0dMyfPx/Dhw9HU1MTXn/9dSQkJODEiRPw9vZGbW0tjhw5gjfffBOxsbGoqqrC888/j6lTp+LQoUMd9q1QKJCbm2tyjCGeiMgyPNxckBgVgsSoENTU67DtZBk2ZJUg43QFTpa0zKAvTTnV5mdLNPWYt+YIwgO9UFxdj4Z2QnuU+o+d46NDlegZwNBONCm6Jcj/drIcdY3N8HS3j+X1KzPOokkvMDYiEEN6+Fm7HCIim2fVIJ+SkmLyc1JSElQqFQ4fPoxx48ZBqVQiNTXVpM2yZcswYsQInD9/Hj169Gi3b4lEguBg+9zohYjIkcg93PA/cWH4n7gwVF1pRMrxUvySWYx9+Zc6/FzBxdqWz8tcMShUgZgw3z9Cu7+XVTfSI7JVMWEtGzUWVtUhLbccE6Ntf1a+TFuPdQcLAQALOBtPRHRDbOoeeY1GAwDw9/fvsI1EIoGvr2+HfV2+fBk9e/ZEc3MzBg8ejL/+9a+Ii4trs21DQwMaGhqMP2u12s4XT0RE1+Xn7Y6HR/RArwDv6wZ5APjowVjcNziUoZ3oBhmW169Mz8emnBK7CPJfZuSjsVmP4b38cFt4+98BiYjoDzbzsF8hBF544QWMHTsWUVFRbbapr6/Hq6++ikceeaTDXfwGDBiA1atXIzk5GWvXroWHhwfGjBmDvLy8NtsvWbIESqXS+OrevXuXXBMREbWtvKb++o3QspkeQzxR50y6Gt63nyxHbWOTlavp2MXLDfh+/+8AgAV39uXtMUREN8hmgvyCBQuQnZ2NtWvXtvm+TqfDQw89BL1ej+XLl3fY18iRI/Hoo48iNjYWt99+O9atW4d+/fph2bJlbbZ/7bXXoNFojK8LFy7c8vUQEVH7VPIb27PkRtsR0R8Mj1Ss0zUj7VSFtcvp0KpdBajX6RETpsS4voHWLoeIyG7YRJBfuHAhkpOTkZaWhrCwsFbv63Q6PPjggygoKEBqamqnn+0ulUoxfPjwdmfkZTIZFAqFyYuIiMxnRLg/QpQeaG/uTYKW3etHcJktUadJJBJMim55us+mnGIrV9O+6tpGfLvnHABgIWfjiYg6xapBXgiBBQsWYP369di+fTvCw8NbtTGE+Ly8PGzbtg0BAQE3dZ7MzEyEhNj+fWJERM7ARSrB4imRANAqzBt+XjwlssPnyRNR+ybHXF1ef8p2l9ev3nMOVxqbMSBYjrsGqKxdDhGRXbFqkJ8/fz7WrFmDH374AXK5HKWlpSgtLUVdXR0AoKmpCQ888AAOHTqE77//Hs3NzcY2jY2Nxn4ee+wxvPbaa8af3377bWzduhX5+fnIzMzE3LlzkZmZiXnz5ln8GomIqG2JUSFY8egQBCtNl88HKz2w4tEhdvUMbCJbM0itQA9/L9Tr9Nh+qtza5bRSU69D0u5zAFp2qudeGEREnWPVXetXrFgBAIiPjzc5npSUhNmzZ6OwsBDJyckAgMGDB5u0SUtLM37u/PnzkEr/+JtEdXU1nnrqKZSWlkKpVCIuLg4ZGRkYMWKE2a6FiIg6LzEqBPdEBuNAQSXKa+qhkrcsp+dMPNGtMexev2LHWWzKLsHkGLW1SzKxZt95aOp06N3NG/fyj3ZERJ0mEUIIaxdha7RaLZRKJTQaDe+XJyIiIrt0rEiDyct2QeYqxZE374G3zDaeOlzX2IyxS7fj0pVGfPinWNw/tPX+SEREzqgzOdQmNrsjIiIioq41SK1ArwAvNDTp8ZsNLa9fe+A8Ll1pRHd/T0wdbFsrBYiI7AWDPBEREZEDMiyvB4DN2SVWrqZFQ1MzVmacBQA8Mz4Cbi78KkpEdDP425OIiIjIQU2MbgnyabnluNxg/d3r/324EGXaBgQrPHD/0FBrl0NEZLcY5ImIiIgcVGSIAuGB3i3L60+WWbUWXbMeK3a0zMY/Pb43ZK4uVq2HiMieMcgTEREROSiJRIJJV2flN1l5ef0vmcUorKpDoI87Hhrew6q1EBHZOwZ5IiIiIgdmuE9+x+kK1NTrrFJDs15gedoZAMCTt/eGpztn44mIbgWDPBEREZEDGxAsR+9u3mhs0mO7lXav35RTgvyLV6D0dMOjI3tapQYiIkfCIE9ERETkwK5dXr/RCsvr9XqBz7e3zMbPGRMOHxt5nj0RkT1jkCciIiJycIbl9em5ll9en3qyDLllNZDLXDF7TC+LnpuIyFExyBMRERE5uP5BcvTp5o3GZj22WXD3eiEEPrs6G//Y6J5QerpZ7NxERI6MQZ6IiIjIwUkkEkyKUQOw7O716acrkFOkgaebC+aMCbfYeYmIHB2DPBEREZETMNwnn3H6IrQWWF4vhMCyq7PxM2/rgQAfmdnPSUTkLBjkiYiIiJxAvyAfRKh8WpbXnzD/8vp9+ZU4/HsV3F2l+PO43mY/HxGRM2GQJyIiInIC1+5eb4nl9Z+l5QEAZgzrjiCFh9nPR0TkTBjkiYiIiJyEYff6jLwKaOrMt7z+8O9V2H3mElylEjw9nrPxRERdjUGeiIiIyEn0C5KjX5APdM3CrMvrP09ruTd++pBQhPl5me08RETOikGeiIiIyIlMNCyvzzHP8vpjRRpsP1UOqQR4Jj7CLOcgInJ2DPJERERETsRwn/zOvApoart+eb1hNn5KrBrhgd5d3j8RETHIExERETmVvkFy9A+SQ9cs8OuJ0i7t+3RZDbYca+lz/h2cjSciMhcGeSIiIiInY9j0rquX1xtm4xMHBaNfkLxL+yYioj8wyBMRERE5GcN98rvyLnbZ8vqCi1ewIasYALDgTs7GExGZE4M8ERERkZOJUPlgQLAcTXqBrV20vH7FjjPQC+DOASpEhSq7pE8iImobgzwRERGREzJsercp+9aX1xdW1WL9kSIAvDeeiMgSGOSJiIiInNDEq/fJ7z5zEdW1jbfU18r0fDTpBcZEBGBoT7+uKI+IiDrAIE9ERETkhPp088HAEAWa9AK/Hi+76X7KtPX48dAFAMCCO/p2VXlERNQBBnkiIiIiJzUpOhgAsPEWdq//R0Y+Gpv0GNbTDyN7+3dVaURE1AEGeSIiIiInZdi9fveZi6i60vnl9ZcuN+D7/ecBtOxUL5FIurQ+IiJqG4M8ERERkZPq3c0HkSEKNOsFth7v/O71X+8uQJ2uGdGhSozv180MFRIRUVsY5ImIiIic2KSrm95t6uTyek2tDt/s+R0AZ+OJiCyNQZ6IiIjIiRkeQ7fn7CVUdmJ5/Td7z+FyQxP6B8lxz8Agc5VHRERtYJAnIiIicmK9Ar0xSN255fWXG5rw9e4CAMD8OyMglXI2nojIkhjkiYiIiJyccXl99o0tr/9+3++ortWhd6C3cUafiIgsh0GeiIiIyMn9sbz+Ii5dbuiwbV1jM/6xMx8A8OwdEXDhbDwRkcUxyBMRERE5uZ4B3ogOVUIvgK3Hyzps+8+D53HxciPC/DwxbbDaQhUSEdG1GOSJiIiIyPhM+U05xe22aWhqxsr0ltn4Z+L7wM2FXyWJiKyBv32JiIiIyLi8fu/ZS7jYzvL6nw4XoVRbjyCFDA8MDbNkeUREdA0GeSIiIiJCjwAvxIS1LK9POdZ693pdsx7Ld5wBADw9rg9kri6WLpGIiK5ikCciIiIiAH/Myre1e31yZjEKq+oQ4O2Oh0f0sHRpRER0DasG+SVLlmD48OGQy+VQqVS47777kJuba3xfp9PhlVdeQXR0NLy9vaFWq/HYY4+huLj9e7cMfvrpJ0RGRkImkyEyMhI///yzOS+FiIiIyO4Z7pPfX3AJFTV/LK9v1gt8fnU2/snbe8PTnbPxRETWZNUgn56ejvnz52Pfvn1ITU1FU1MTEhIScOXKFQBAbW0tjhw5gjfffBNHjhzB+vXrcfr0aUydOrXDfvfu3YsZM2Zg1qxZyMrKwqxZs/Dggw9i//79lrgsIiIiIrvU3d8LsYbl9cf/WF6/5VgJ8iuuQOnphkdHcjaeiMjaJEIIYe0iDCoqKqBSqZCeno5x48a12ebgwYMYMWIEfv/9d/To0fY/JDNmzIBWq8WWLVuMxxITE+Hn54e1a9detw6tVgulUgmNRgOFQnFzF0NERERkh77MOIv/23wKI3v7459PjYJeLzDx0504VVqD5+/ui+fv7mftEomIHFJncqhN3SOv0WgAAP7+/h22kUgk8PX1bbfN3r17kZCQYHJswoQJ2LNnT5vtGxoaoNVqTV5EREREzuiP5fWVKK+px2+nynGqtAY+MlfMHt3LusUREREAGwryQgi88MILGDt2LKKiotpsU19fj1dffRWPPPJIh3+hKC0tRVBQkMmxoKAglJa23oEVaLlXX6lUGl/du3e/+QshIiIismNhfl4Y3N0X4uru9Z9tzwMAzBrVE75e7laujoiIABsK8gsWLEB2dna7S991Oh0eeugh6PV6LF++/Lr9SSQSk5+FEK2OGbz22mvQaDTG14ULFzp/AUREREQOwrB7/ae/5SGrUAMPNynmjg23clVERGRgE0F+4cKFSE5ORlpaGsLCwlq9r9Pp8OCDD6KgoACpqanXvV8gODi41ex7eXl5q1l6A5lMBoVCYfIiIiIiclb3RgcDAC5ebgQAPDKiJwJ9ZNYsiYiIrmHVIC+EwIIFC7B+/Xps374d4eGt/9JrCPF5eXnYtm0bAgICrtvvqFGjkJqaanLs119/xejRo7usdiIiIiJHFebnhbgevgAAdxcpnh7f27oFERGRCVdrnnz+/Pn44Ycf8Msvv0Aulxtn0ZVKJTw9PdHU1IQHHngAR44cwcaNG9Hc3Gxs4+/vD3f3lvu0HnvsMYSGhmLJkiUAgOeeew7jxo3D0qVLMW3aNPzyyy/Ytm0bdu3aZZ0LJSIiIrIzM4Z1x9Hz1Zg1qieCFB7WLoeIiK5h1cfPtXfPelJSEmbPno1z5861OUsPAGlpaYiPjwcAxMfHo1evXli9erXx/X//+9944403kJ+fjz59+uDdd9/F9OnTb6guPn6OiIiInJ0QAqfLLiNC5QMXadvf2YiIqOt0Jofa1HPkbQWDPBEREREREVmS3T5HnoiIiIiIiIg6xiBPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdkRBnkiIiIiIiIiO8IgT0RERERERGRHGOSJiIiIiIiI7AiDPBEREREREZEdYZAnIiIiIiIisiMM8kRERERERER2xNXaBdgiIQQAQKvVWrkSIiIiIiIicgaG/GnIox1hkG9DTU0NAKB79+5WroSIiIiIiIicSU1NDZRKZYdtJOJG4r6T0ev1KC4uhlwuh0QisXY5HdJqtejevTsuXLgAhUJh7XLIAXGMkSVwnJElcJyRuXGMkSVwnDkuIQRqamqgVqshlXZ8Fzxn5NsglUoRFhZm7TI6RaFQ8P/IZFYcY2QJHGdkCRxnZG4cY2QJHGeO6Xoz8Qbc7I6IiIiIiIjIjjDIExEREREREdkRBnk7J5PJsHjxYshkMmuXQg6KY4wsgeOMLIHjjMyNY4wsgeOMAG52R0RERERERGRXOCNPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyVrZkyRIMHz4ccrkcKpUK9913H3Jzc03aCCHw1ltvQa1Ww9PTE/Hx8Th+/LhJmy+//BLx8fFQKBSQSCSorq5uda6qqirMmjULSqUSSqUSs2bNarMdOR5LjbNz585h7ty5CA8Ph6enJ/r06YPFixejsbHR3JdIVmbJ32UGDQ0NGDx4MCQSCTIzM81wVWRrLD3ONm3ahNtuuw2enp4IDAzE9OnTzXVpZEMsOc5Onz6NadOmITAwEAqFAmPGjEFaWpo5L49sQFeMscrKSixcuBD9+/eHl5cXevTogUWLFkGj0Zj0w+//jotB3srS09Mxf/587Nu3D6mpqWhqakJCQgKuXLlibPP+++/jo48+wmeffYaDBw8iODgY99xzD2pqaoxtamtrkZiYiP/93/9t91yPPPIIMjMzkZKSgpSUFGRmZmLWrFlmvT6yDZYaZ6dOnYJer8fKlStx/PhxfPzxx/jiiy86HJfkGCz5u8zg5ZdfhlqtNsv1kG2y5Dj76aefMGvWLDzxxBPIysrC7t278cgjj5j1+sg2WHKcTZo0CU1NTdi+fTsOHz6MwYMHY/LkySgtLTXrNZJ1dcUYKy4uRnFxMT744APk5ORg9erVSElJwdy5c03Oxe//DkyQTSkvLxcARHp6uhBCCL1eL4KDg8V7771nbFNfXy+USqX44osvWn0+LS1NABBVVVUmx0+cOCEAiH379hmP7d27VwAQp06dMs/FkM0y1zhry/vvvy/Cw8O7rHayD+YeY5s3bxYDBgwQx48fFwDE0aNHzXEZZOPMNc50Op0IDQ0VX331lVnrJ/tgrnFWUVEhAIiMjAzjMa1WKwCIbdu2mediyCbd6hgzWLdunXB3dxc6nU4Iwe//jo4z8jbGsBzG398fAFBQUIDS0lIkJCQY28hkMowfPx579uy54X737t0LpVKJ2267zXhs5MiRUCqVneqHHIO5xll75zKch5yHOcdYWVkZ/vznP+O7776Dl5dX1xVNdsdc4+zIkSMoKiqCVCpFXFwcQkJCcO+997ZaOk3OwVzjLCAgAAMHDsS3336LK1euoKmpCStXrkRQUBCGDh3atRdBNq2rxphGo4FCoYCrqysAfv93dAzyNkQIgRdeeAFjx45FVFQUABiXVgUFBZm0DQoK6tSyq9LSUqhUqlbHVSoVl285GXOOs/929uxZLFu2DPPmzbv5gsnumHOMCSEwe/ZszJs3D8OGDeu6osnumHOc5efnAwDeeustvPHGG9i4cSP8/Pwwfvx4VFZWdtEVkD0w5ziTSCRITU3F0aNHIZfL4eHhgY8//hgpKSnw9fXtsmsg29ZVY+zSpUv461//iqefftp4jN//HZurtQugPyxYsADZ2dnYtWtXq/ckEonJz0KIVseup632N9MP2TdzjzOD4uJiJCYm4k9/+hOefPLJm+qD7JM5x9iyZcug1Wrx2muv3XKdZN/MOc70ej0A4PXXX8f9998PAEhKSkJYWBj+9a9/mXxRJsdmznEmhMCzzz4LlUqFnTt3wtPTE1999RUmT56MgwcPIiQk5JbrJ9vXFWNMq9Vi0qRJiIyMxOLFizvso6N+yL5wRt5GLFy4EMnJyUhLS0NYWJjxeHBwMAC0+qtZeXl5q7/SdSQ4OBhlZWWtjldUVHSqH7Jv5h5nBsXFxbjjjjswatQofPnll7dWNNkVc4+x7du3Y9++fZDJZHB1dUVERAQAYNiwYXj88ce74ArIHph7nBkCVGRkpPGYTCZD7969cf78+VspneyIJX6fbdy4Ef/85z8xZswYDBkyBMuXL4enpye++eabrrkIsmldMcZqamqQmJgIHx8f/Pzzz3BzczPph9//HReDvJUJIbBgwQKsX78e27dvR3h4uMn74eHhCA4ORmpqqvFYY2Mj0tPTMXr06Bs+z6hRo6DRaHDgwAHjsf3790Oj0XSqH7JPlhpnAFBUVIT4+HgMGTIESUlJkEr5a8YZWGqMffrpp8jKykJmZiYyMzOxefNmAMCPP/6Id999t2suhmyWpcbZ0KFDIZPJTB4HpdPpcO7cOfTs2fPWL4RsmqXGWW1tLQC0+ndSKpUaV4WQY+qqMabVapGQkAB3d3ckJyfDw8PDpB9+/3dwltxZj1p75plnhFKpFDt27BAlJSXGV21trbHNe++9J5RKpVi/fr3IyckRDz/8sAgJCRFardbYpqSkRBw9elT84x//MO6AevToUXHp0iVjm8TERBETEyP27t0r9u7dK6Kjo8XkyZMter1kHZYaZ0VFRSIiIkLceeedorCw0ORc5Ngs+bvsWgUFBdy13olYcpw999xzIjQ0VGzdulWcOnVKzJ07V6hUKlFZWWnRaybLs9Q4q6ioEAEBAWL69OkiMzNT5Obmipdeekm4ubmJzMxMi183WU5XjDGtVituu+02ER0dLc6cOWPST1NTk7Effv93XAzyVgagzVdSUpKxjV6vF4sXLxbBwcFCJpOJcePGiZycHJN+Fi9efN1+Ll26JGbOnCnkcrmQy+Vi5syZN/T4MLJ/lhpnSUlJ7Z6LHJslf5ddi0HeuVhynDU2NooXX3xRqFQqIZfLxd133y2OHTtmoSsla7LkODt48KBISEgQ/v7+Qi6Xi5EjR4rNmzdb6ErJWrpijBkea9jWq6CgwNiO3/8dl0QIITo/j09ERERERERE1sCbV4mIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdkRBnkiIiIiIiIiO8IgT0RERERERGRHGOSJiIhs3KVLl6BSqXDu3DmLnnf16tXw9fU1S98bN25EXFwc9Hq9WfonIiJyZAzyRERENm7JkiWYMmUKevXq1eq9hIQEuLi4YN++fZYv7BZMnjwZEokEP/zwQ7tt5s6di+joaDQ2Npoc37x5M9zc3HDo0CFzl0lERGSTGOSJiIhsWF1dHVatWoUnn3yy1Xvnz5/H3r17sWDBAqxatcoK1d0cnU4HAHjiiSewbNmydtt98sknqKmpweLFi43Hqqur8dRTT+H111/HsGHDzFYbERGRLWOQJyIismFbtmyBq6srRo0a1eq9pKQkTJ48Gc888wx+/PFHXLlyxeT9+Ph4LFq0CC+//DL8/f0RHByMt956y6SNIRgHBQXBw8MDUVFR2Lhxo0mbrVu3YuDAgfDx8UFiYiJKSkqM7+n1erzzzjsICwuDTCbD4MGDkZKSYnz/3LlzkEgkWLduHeLj4+Hh4YE1a9YAAKZOnYoDBw4gPz+/zWuXy+VYvXo1PvzwQ+zfvx8A8PzzzyMkJARvvPEGioqKMGPGDPj5+SEgIADTpk0zuf3g4MGDuOeeexAYGAilUonx48fjyJEjJueQSCT44osvMG3aNHh7e+Nvf/tbO/8liIiIbAeDPBERkQ3LyMhoc+ZZCIGkpCQ8+uijGDBgAPr164d169a1avfNN9/A29sb+/fvx/vvv4933nkHqampAFpC+L333os9e/ZgzZo1OHHiBN577z24uLgYP19bW4sPPvgA3333HTIyMnD+/Hm89NJLxvf//ve/48MPP8QHH3yA7OxsTJgwAVOnTkVeXp5JHa+88goWLVqEkydPYsKECQCAnj17QqVSYefOne1ef3x8PJ599lk8/vjj+Ne//oV169bh22+/RWNjI+644w74+PggIyMDu3btMv6hwbAUv6amBo8//jh27tyJffv2oW/fvpg4cSJqampMzrF48WJMmzYNOTk5mDNnzvX+kxAREVmfICIiIps1bdo0MWfOnFbHf/31V9GtWzeh0+mEEEJ8/PHHYsyYMSZtxo8fL8aOHWtybPjw4eKVV14RQgixdetWIZVKRW5ubpvnTkpKEgDEmTNnjMc+//xzERQUZPxZrVaLd999t9U5nn32WSGEEAUFBQKA+OSTT9o8R1xcnHjrrbfafM+gtrZWDBgwQEilUvHxxx8LIYRYtWqV6N+/v9Dr9cZ2DQ0NwtPTU2zdurXNfpqamoRcLhcbNmwwHgMgnn/++Q7PT0REZGs4I09ERGTD6urq4OHh0er4qlWrMGPGDLi6ugIAHn74Yezfvx+5ubkm7WJiYkx+DgkJQXl5OQAgMzMTYWFh6NevX7vn9/LyQp8+fdr8vFarRXFxMcaMGWPymTFjxuDkyZMmx9q7n93T0xO1tbXtnt/Q5sUXX4SXlxeee+45AMDhw4dx5swZyOVy+Pj4wMfHB/7+/qivr8fZs2cBAOXl5Zg3bx769esHpVIJpVKJy5cv4/z58zdUGxERka1ytXYBRERE1L7AwEBUVVWZHKusrMR//vMf6HQ6rFixwni8ubkZX3/9NZYuXWo85ubmZvJZiURifOSbp6fndc/f1ueFEK2OXUsI0eqYt7d3m/1XVlaiW7du163D1dUVLi4uxn71ej2GDh2K77//vlVbQ3+zZ89GRUUFPvnkE/Ts2RMymQyjRo1qtQt+e7URERHZKs7IExER2bC4uDicOHHC5Nj333+PsLAwZGVlITMz0/j65JNP8M0336CpqemG+o6JiUFhYSFOnz59U7UpFAqo1Wrs2rXL5PiePXswcODA637eMHseFxfX6XMPGTIEeXl5UKlUiIiIMHkplUoAwM6dO7Fo0SJMnDgRgwYNgkwmw8WLFzt9LiIiIlvDIE9ERGTDJkyYgOPHj5vMyq9atQoPPPAAoqKiTF5z5sxBdXU1Nm3adEN9jx8/HuPGjcP999+P1NRUFBQUYMuWLSa7zl/PX/7yFyxduhQ//vgjcnNz8eqrryIzM9O4BL4j+/btM86Sd9bMmTMRGBiIadOmYefOnSgoKEB6ejqee+45FBYWAgAiIiLw3Xff4eTJk9i/fz9mzpx5Q6sQiIiIbB2DPBERkQ2Ljo7GsGHDjDvSHz58GFlZWbj//vtbtZXL5UhISOjUM+V/+uknDB8+HA8//DAiIyPx8ssvo7m5+YY/v2jRIrz44ot48cUXER0djZSUFCQnJ6Nv377X/ezatWsxc+ZMeHl53fD5DLy8vJCRkYEePXpg+vTpGDhwIObMmYO6ujooFAoAwNdff42qqirExcVh1qxZWLRoEVQqVafPRUREZGsk4r9vdCMiIiKbsnnzZrz00ks4duwYpFLH+Bt8RUUFBgwYgEOHDiE8PNza5RAREdkVbnZHRERk4yZOnIi8vDwUFRWhe/fu1i6nSxQUFGD58uUM8URERDeBM/JEREREREREdsQx1ucREREREREROQkGeSIiIiIiIiI7wiBPREREREREZEcY5ImIiIiIiIjsCIM8ERERERERkR1hkCciIiIiIiKyIwzyRERERERERHaEQZ6IiIiIiIjIjjDIExEREREREdmR/wfC7A99WLxoJwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvFUlEQVR4nOzdd1yVZRsH8N85h70OS/YQBFQEFRTcO3eOhlquXGWuhmVly6zMrMxRaWYFvu7KnXuiJoqL4QAVQZAhCHLY65zn/QM5STg4CDxw+H0/n+fzxnOec5/rIC+c67mv+74kgiAIICIiIiIiIqIGQSp2AERERERERERUdUzkiYiIiIiIiBoQJvJEREREREREDQgTeSIiIiIiIqIGhIk8ERERERERUQPCRJ6IiIiIiIioAWEiT0RERERERNSAMJEnIiIiIiIiakB0xA6gPlKpVEhOToapqSkkEonY4RAREREREZGWEwQBOTk5cHBwgFT6+Dl3JvIPkZycDGdnZ7HDICIiIiIiokYmMTERTk5Oj72GifxDmJqaAij7BpqZmYkcDREREREREWm77OxsODs7q/PRx2Ei/xDl5fRmZmZM5ImIiIiIiKjOVGV5Nze7IyIiIiIiImpAmMgTERERERERNSBM5ImIiIiIiIgaEK6RJyIiIiIirSMIAkpLS6FUKsUOhUhNV1cXMpnsqcdhIk9ERERERFqluLgYKSkpyM/PFzsUogokEgmcnJxgYmLyVOMwkSciIiIiIq2hUqkQFxcHmUwGBwcH6OnpVWkXcKLaJggC0tPTcfv2bXh6ej7VzDwTeSIiIiIi0hrFxcVQqVRwdnaGkZGR2OEQVdCkSRPEx8ejpKTkqRJ5bnZHRERERERaRyplqkP1T01Vh/Cnm4iIiIiIiKgBETWRX7hwIQICAmBqagobGxsMHz4cMTExFa6ZMGECJBJJhaNjx46PHTc4OLjScyQSCQoLC2vz7RBpHaVKQGhsBnaEJyE0NgNKlSB2SEREREREjZ6oa+RDQkIwY8YMBAQEoLS0FB999BH69euHK1euwNjYWH3dgAEDEBQUpP5aT0/viWObmZlVuilgYGBQc8ETabl9l1Iwf9cVpCj+vQFmLzfAvCHeGOBjL2JkRERERI1b06ZN8dZbb+Gtt94SO5QacezYMfTq1Qv37t2Dubm52OE0CKLOyO/btw8TJkxAq1at0KZNGwQFBSEhIQHnz5+vcJ2+vj7s7OzUh6Wl5RPHlkgkFZ5jZ2dXW2+DSOvsu5SCaesuVEjiASBVUYhp6y5g36UUkSIjIiIi0m6JiYmYPHmyesd9V1dXvPnmm8jIyBA7tBrRs2fPSjcgOnfujJSUFMjlcnGCaoDq1Rp5hUIBAJUS9WPHjsHGxgZeXl549dVXkZaW9sSxcnNz4erqCicnJzz77LO4ePFircRMpG2UKgHzd13Bw4roy8/N33WFZfZERERENezmzZto3749rl27ho0bN+LGjRv4+eefcfjwYXTq1AmZmZmixKVUKqFSqWptfD09PdjZ2bFNoAbqTSIvCAJmz56Nrl27wsfHR31+4MCBWL9+PY4cOYLFixfj7Nmz6N27N4qKih45VosWLRAcHIydO3di48aNMDAwQJcuXXD9+vWHXl9UVITs7OwKB1FjFRaXWWkm/kECgBRFIcLixPlDQkRERKQpQRCQX1xa54cgaDbxMWPGDOjp6eHAgQPo0aMHXFxcMHDgQBw6dAhJSUn46KOP1Nfm5ORg9OjRMDExgYODA3744YcKY3322WdwcXGBvr4+HBwc8MYbb6gfKy4uxnvvvQdHR0cYGxujQ4cOOHbsmPrx4OBgmJub4++//4a3tzf09fWxevVqGBgYICsrq8LrvPHGG+jRowcAICMjAy+//DKcnJxgZGQEX19fbNy4UX3thAkTEBISgmXLlqn3MYuPj8exY8cgkUgqjL1lyxa0atUK+vr6aNq0KRYvXlzhdZs2bYqvvvoKkyZNgqmpKVxcXPDLL79UeI8zZ86Evb09DAwM0LRpUyxcuFCjf4/6rN70kZ85cyYiIyNx8uTJCudHjRql/m8fHx+0b98erq6u2L17N55//vmHjtWxY8cKG+J16dIF/v7++OGHH7B8+fJK1y9cuBDz58+voXdC1LCl5VRtU8iqXkdEREQktoISJbw/3V/nr3vl8/4w0qtaypWZmYn9+/djwYIFMDQ0rPCYnZ0dxowZg82bN2PFihUAgG+//RYffvghPvvsM+zfvx9vv/02WrRogb59++Kvv/7CkiVLsGnTJrRq1QqpqamIiIhQjzdx4kTEx8dj06ZNcHBwwLZt2zBgwABERUXB09MTAJCfn4+FCxfi119/hZWVFZycnDBv3jxs2bIFkydPBlA2U//HH3/g888/BwAUFhaiXbt2eP/992FmZobdu3dj3LhxcHd3R4cOHbBs2TJcu3YNPj4+6ueU91V/0Pnz5zFy5Eh89tlnGDVqFE6dOoXp06fDysoKEyZMUF+3ePFifPHFF/jwww/x119/Ydq0aejevTtatGiB5cuXY+fOnfjjjz/g4uKCxMREJCYmVv0fr56rF4n8rFmzsHPnThw/fhxOTk6Pvdbe3h6urq6PnF1/GKlUioCAgEc+Z+7cuZg9e7b66+zsbDg7O1d5fCJtYmNatU0hq3odERERET3Z9evXIQgCWrZs+dDHW7ZsiXv37iE9PR1A2WTlBx98AADw8vLCP//8gyVLlqBv375ISEiAnZ0dnnnmGejq6sLFxQWBgYEAgNjYWGzcuBG3b9+Gg4MDAODdd9/Fvn37EBQUhK+++goAUFJSghUrVqBNmzbqGEaNGoUNGzaoE/nDhw/j3r17GDFiBADA0dER7777rvr6WbNmYd++ffjzzz/RoUMHyOVy6OnpwcjI6LF7mH3//ffo06cPPvnkE/X7u3LlCr799tsKifygQYMwffp0AMD777+PJUuW4NixY2jRogUSEhLg6emJrl27QiKRwNXVtYr/Eg2DqIm8IAiYNWsWtm3bhmPHjsHNze2Jz8nIyEBiYiLs7au+a7YgCAgPD4evr+9DH9fX14e+vn6VxyPSZoFulrCXGyBVUfjQdfISAHZyAwS6PXnTSSIiIqL6wFBXhiuf9xfldWtKeZl++TryTp06VXi8U6dOWLp0KQBgxIgRWLp0Kdzd3TFgwAAMGjQIQ4YMgY6ODi5cuABBEODl5VXh+UVFRbCyslJ/raenh9atW1e4ZsyYMejUqROSk5Ph4OCA9evXY9CgQbCwsABQNkP/9ddfY/PmzUhKSkJRURGKiooqdCSriqtXr2LYsGEVznXp0gVLly6FUqmETFb2fX0wvvLNzsv3U5swYQL69u2L5s2bY8CAAXj22WfRr18/jeKoz0RN5GfMmIENGzZgx44dMDU1RWpqKgBALpfD0NAQubm5+Oyzz/DCCy/A3t4e8fHx+PDDD2FtbY3nnntOPc748ePh6OioXvMwf/58dOzYEZ6ensjOzsby5csRHh6On376SZT3SdSQyKQSzBvijWnrLkACVEjmy7cfmTfEGzIpNyMhIiKihkEikVS5xF0sHh4ekEgkuHLlCoYPH17p8ejoaFhYWMDa2vqRY5Qn+c7OzoiJicHBgwdx6NAhTJ8+Hd9++y1CQkKgUqkgk8lw/vx5dUJczsTERP3fhoaGlTafCwwMRLNmzbBp0yZMmzYN27Ztq9AmfPHixViyZAmWLl0KX19fGBsb46233kJxcbFG3wtBECq99sP2G9DV1a30/ss35fP390dcXBz27t2LQ4cOYeTIkXjmmWfw119/aRRLfSXqT/PKlSsBlLUgeFBQUBAmTJgAmUyGqKgo/O9//0NWVhbs7e3Rq1cvbN68GaampurrExISIJX+u29fVlYWXnvtNaSmpkIul8PPzw/Hjx9Xl5MQ0eMN8LHHyrH+lfrI27GPPBEREVGtsLKyQt++fbFixQq8/fbbFdbJp6amYv369Rg/frw6wT19+nSF558+fRotWrRQf21oaIihQ4di6NChmDFjBlq0aIGoqCj4+flBqVQiLS0N3bp10zjO0aNHY/369XBycoJUKsXgwYPVj504cQLDhg3D2LFjAQAqlQrXr1+vsFxAT08PSqXysa/h7e1dae+0U6dOwcvLq9LNh8cxMzPDqFGjMGrUKLz44osYMGAAMjMzq9TOvL4TvbT+cQwNDbF//5M3pXhwh0UAWLJkCZYsWfI0oRE1egN87NHX2w5hcZlIyymEjWlZOT1n4omIiIhqx48//ojOnTujf//++PLLL+Hm5obLly9jzpw5cHR0xIIFC9TX/vPPP/jmm28wfPhwHDx4EH/++Sd2794NoGzXeaVSiQ4dOsDIyAhr166FoaEhXF1dYWVlhTFjxmD8+PFYvHgx/Pz8cPfuXRw5cgS+vr4YNGjQY2McM2YM5s+fjwULFuDFF1+EgcG/+yZ5eHhgy5YtOHXqFCwsLPD9998jNTW1QiLftGlTnDlzBvHx8TAxMXloUv3OO+8gICAAX3zxBUaNGoXQ0FD8+OOP6o3+qmLJkiWwt7dH27ZtIZVK8eeff8LOzg7m5uZVHqM+qzft54io/pFJJejUzArD2jqiUzMrJvFEREREtcjT0xPnzp1Ds2bNMGrUKDRr1gyvvfYaevXqhdDQ0ApJ7zvvvIPz58/Dz88PX3zxBRYvXoz+/cv2ATA3N8fq1avRpUsXtG7dGocPH8auXbvUa+CDgoIwfvx4vPPOO2jevDmGDh2KM2fOVGnDb09PTwQEBCAyMhJjxoyp8Ngnn3wCf39/9O/fHz179oSdnV2lZQLvvvsuZDIZvL290aRJEyQkJFR6DX9/f/zxxx/YtGkTfHx88Omnn+Lzzz+vsNHdk5iYmGDRokVo3749AgICEB8fjz179lSo5G7IJIKmzQ0bgezsbMjlcigUCpiZmYkdDhERERERVVFhYSHi4uLg5uZWYbaYqD543M+nJnmodtyOICIiIiIiImokmMgTERERERERNSBM5ImIiIiIiIgaECbyRERERERERA0IE3kiIiIiIiKiBoSJPBEREREREVEDwkSeiIiIiIiIqAFhIk9ERERERETUgDCRJyIiIiIiakQ+++wztG3bVv31hAkTMHz48KcasybGoKpjIk9ERERERFQPTJgwARKJBBKJBLq6unB3d8e7776LvLy8Wn3dZcuWITg4uErXxsfHQyKRIDw8vNpj1Jbg4GCYm5s/8vG0tDRMnToVLi4u0NfXh52dHfr374/Q0FAcO3ZM/b1/1BEcHKy+zsLCAoWFhRXGDwsLU19b23Rq/RWIiIiIiIioSgYMGICgoCCUlJTgxIkTmDJlCvLy8rBy5coK15WUlEBXV7dGXlMul9eLMWrbCy+8gJKSEqxZswbu7u64c+cODh8+jMzMTPTt2xcpKSnqa998801kZ2cjKChIfU4ul+PMmTMAAFNTU2zbtg0vv/yy+vHff/8dLi4uSEhIqPX3whl5IiIiIiKi/1CqBITGZmBHeBJCYzOgVAl18rrlM8XOzs4YPXo0xowZg+3bt6vL4X///Xe4u7tDX18fgiBAoVDgtddeg42NDczMzNC7d29ERERUGPPrr7+Gra0tTE1NMXny5Eozyf8ti1epVFi0aBE8PDygr68PFxcXLFiwAADg5uYGAPDz84NEIkHPnj0fOkZRURHeeOMN2NjYwMDAAF27dsXZs2fVj5fPbB8+fBjt27eHkZEROnfujJiYGPU1ERER6NWrF0xNTWFmZoZ27drh3Llz1fq+ZmVl4eTJk1i0aBF69eoFV1dXBAYGYu7cuRg8eDD09PRgZ2enPgwNDdX/Fg+eK/fKK6/g999/V39dUFCATZs24ZVXXqlWfJpiIk9ERERERPSAfZdS0HXREby8+jTe3BSOl1efRtdFR7DvUsqTn1zDDA0NUVJSAgC4ceMG/vjjD2zZskVd2j548GCkpqZiz549OH/+PPz9/dGnTx9kZmYCAP744w/MmzcPCxYswLlz52Bvb48VK1Y89jXnzp2LRYsW4ZNPPsGVK1ewYcMG2NraAigrHweAQ4cOISUlBVu3bn3oGO+99x62bNmCNWvW4MKFC/Dw8ED//v3VcZX76KOPsHjxYpw7dw46OjqYNGmS+rExY8bAyckJZ8+exfnz5/HBBx9UuwrBxMQEJiYm2L59O4qKiqo1xoPGjRuHEydOqGfft2zZgqZNm8Lf3/+px64KJvJERERERET37buUgmnrLiBFUXHWOlVRiGnrLtRpMh8WFoYNGzagT58+AIDi4mKsXbsWfn5+aN26NY4ePYqoqCj8+eefaN++PTw9PfHdd9/B3Nwcf/31FwBg6dKlmDRpEqZMmYLmzZvjyy+/hLe39yNfMycnB8uWLcM333yDV155Bc2aNUPXrl0xZcoUAECTJk0AAFZWVrCzs4OlpWWlMcqXAnz77bcYOHAgvL29sXr1ahgaGuK3336rcO2CBQvQo0cPeHt744MPPsCpU6fUFQMJCQl45pln0KJFC3h6emLEiBFo06ZNtb6XOjo6CA4Oxpo1a2Bubo4uXbrgww8/RGRkZLXGs7GxwcCBA9X7Avz+++8VbkLUNibyREREREREKCunn7/rCh5WRF9+bv6uK7VaZv/333/DxMQEBgYG6NSpE7p3744ffvgBAODq6qpOpAHg/PnzyM3NhZWVlXrG2cTEBHFxcYiNjQUAXL16FZ06darwGv/9+kFXr15FUVGR+uZBdcTGxqKkpARdunRRn9PV1UVgYCCuXr1a4drWrVur/9ve3h5A2aZ0ADB79mxMmTIFzzzzDL7++mv1ewJQ4f2+/vrrVYrrhRdeQHJyMnbu3In+/fvj2LFj8Pf3r/YmfZMmTUJwcDBu3ryJ0NBQjBkzplrjVAc3uyMiIiIiIgIQFpdZaSb+QQKAFEUhwuIy0amZVa3E0KtXL6xcuRK6urpwcHCoUEpubGxc4VqVSgV7e3scO3as0jiP2739cR5cB15dglB2o+O/u7cLglDp3IPvr/wxlUoFoKxN3ujRo7F7927s3bsX8+bNw6ZNm/Dcc89V2DXfzMysyrEZGBigb9++6Nu3Lz799FNMmTIF8+bNw4QJEzR5iwCAQYMGYerUqZg8eTKGDBkCK6va+Zl4GM7IExERERERAUjLeXQSX53rqsPY2BgeHh5wdXV94npwf39/pKamQkdHBx4eHhUOa2trAEDLli1x+vTpCs/779cP8vT0hKGhIQ4fPvzQx/X09AAASqXykWN4eHhAT08PJ0+eVJ8rKSnBuXPn0LJly8e+p//y8vLC22+/jQMHDuD5559X7yL/4Hu1sbHRaMwHeXt7V7u9n0wmw7hx43Ds2LE6LasHOCNPREREREQEALAxNajR62rbM888g06dOmH48OFYtGgRmjdvjuTkZOzZswfDhw9H+/bt8eabb+KVV15B+/bt0bVrV6xfvx6XL1+Gu7v7Q8c0MDDA+++/j/feew96enro0qUL0tPTcfnyZUyePBk2NjYwNDTEvn374OTkBAMDg0qt54yNjTFt2jTMmTMHlpaWcHFxwTfffIP8/HxMnjy5Su+toKAAc+bMwYsvvgg3Nzfcvn0bZ8+exQsvvPDY5ymVyko97vX09GBra4sRI0Zg0qRJaN26NUxNTXHu3Dl88803GDZsWJViepgvvvgCc+bMqdPZeICJPBEREREREQAg0M0S9nIDpCoKH7pOXgLATm6AQLfKG7yJQSKRYM+ePfjoo48wadIkpKenw87ODt27d1fvMj9q1CjExsbi/fffR2FhIV544QVMmzYN+/fvf+S4n3zyCXR0dPDpp58iOTkZ9vb26nXoOjo6WL58OT7//HN8+umn6Nat20NL+7/++muoVCqMGzcOOTk5aN++Pfbv3w8LC4sqvTeZTIaMjAyMHz8ed+7cgbW1NZ5//nnMnz//sc/Lzc2Fn59fhXOurq6IiYlBhw4dsGTJEvUafmdnZ7z66qv48MMPqxTTw+jp6amrH+qSRChfwEBq2dnZkMvlUCgUGq23ICIiIiIicRUWFiIuLg5ubm4wMNB85rx813oAFZL58pXdK8f6Y4CP/dMHSo3S434+NclDuUaeiIiIiIjovgE+9lg51h928opJlp3cgEk81RssrSciIiIiInrAAB979PW2Q1hcJtJyCmFjWlZOL5NKnvxkojrARJ6IiIiIiOg/ZFJJrbWYI3paLK0nIiIiIiIiakCYyBMRERERERE1IEzkiYiIiIiIiBoQJvJEREREREREDQgTeSIiIiIiIqIGhIk8ERERERERUQPCRJ6IiIiIiKiBkEgk2L59OwAgPj4eEokE4eHhosb0KPU9voaMiTwREREREVE9kZqailmzZsHd3R36+vpwdnbGkCFDcPjw4UrXOjs7IyUlBT4+PrUaExPy+kdH7ACIiIiIiIioLGHu0qULzM3N8c0336B169YoKSnB/v37MWPGDERHR1e4XiaTwc7OTqRoSUyckSciIiIiIqoHpk+fDolEgrCwMLz44ovw8vJCq1atMHv2bJw+fbrS9f+dKT927BgkEgn2798PPz8/GBoaonfv3khLS8PevXvRsmVLmJmZ4eWXX0Z+fr56nH379qFr164wNzeHlZUVnn32WcTGxqofd3NzAwD4+flBIpGgZ8+eAACVSoXPP/8cTk5O0NfXR9u2bbFv377HvseQkBAEBgZCX18f9vb2+OCDD1BaWqp+PCcnB2PGjIGxsTHs7e2xZMkS9OzZE2+99RYA4PPPP4evr2+lcdu1a4dPP/20St9nbcBEnoiIiIiItJogCMjLy6vzQxCEKseYmZmJffv2YcaMGTA2Nq70uLm5eZXH+uyzz/Djjz/i1KlTSExMxMiRI7F06VJs2LABu3fvxsGDB/HDDz+or8/Ly8Ps2bNx9uxZHD58GFKpFM899xxUKhUAICwsDABw6NAhpKSkYOvWrQCAZcuWYfHixfjuu+8QGRmJ/v37Y+jQobh+/fpD40pKSsKgQYMQEBCAiIgIrFy5Er/99hu+/PJL9TWzZ8/GP//8g507d+LgwYM4ceIELly4oH580qRJuHLlCs6ePas+FxkZiYsXL2LChAlV/h41dCytJyIiIiIirZafnw8TE5M6f93c3NyHJuUPc+PGDQiCgBYtWjz163755Zfo0qULAGDy5MmYO3cuYmNj4e7uDgB48cUXcfToUbz//vsAgBdeeKHC83/77TfY2NjgypUr8PHxQZMmTQAAVlZWFUr5v/vuO7z//vt46aWXAACLFi3C0aNHsXTpUvz000+V4lqxYgWcnZ3x448/QiKRoEWLFkhOTsb777+PTz/9FHl5eVizZg02bNiAPn36AACCgoLg4OCgHsPJyQn9+/dHUFAQAgIC1Nf06NFD/f4aA87IExERERERiax89l4ikTz1WK1bt1b/t62tLYyMjCokuba2tkhLS1N/HRsbi9GjR8Pd3R1mZmbqUvqEhIRHvkZ2djaSk5PVNwzKdenSBVevXn3oc65evYpOnTpVeI9dunRBbm4ubt++jZs3b6KkpASBgYHqx+VyOZo3b15hnFdffRUbN25EYWEhSkpKsH79ekyaNOlx3xKtwxl5IiIiIiLSakZGRsjNzRXldavK09MTEokEV69exfDhw5/qdXV1ddX/LZFIKnxdfq68bB4AhgwZAmdnZ6xevRoODg5QqVTw8fFBcXHxE1/rvzceBEF45M2Ihz324A2MR93M+O8ShSFDhkBfXx/btm2Dvr4+ioqKKlUVaDtRZ+QXLlyIgIAAmJqawsbGBsOHD0dMTEyFayZMmACJRFLh6Nix4xPH3rJlC7y9vaGvrw9vb29s27attt4GERERERHVYxKJBMbGxnV+aDK7bmlpif79++Onn35CXl5epcezsrJq8Dvyr4yMDFy9ehUff/wx+vTpg5YtW+LevXsVrtHT0wMAKJVK9TkzMzM4ODjg5MmTFa49deoUWrZs+dDX8vb2xqlTpyok5qdOnYKpqSkcHR3RrFkz6OrqqtfkA2Uz//9dc6+jo4NXXnkFQUFBCAoKwksvvaTRTRNtIGoiHxISghkzZuD06dM4ePAgSktL0a9fv0o/uAMGDEBKSor62LNnz2PHDQ0NxahRozBu3DhERERg3LhxGDlyJM6cOVObb4eIiIiIiKjaVqxYAaVSicDAQGzZsgXXr1/H1atXsXz5cnTq1KlWXtPCwgJWVlb45ZdfcOPGDRw5cgSzZ8+ucI2NjQ0MDQ2xb98+3LlzBwqFAgAwZ84cLFq0CJs3b0ZMTAw++OADhIeH480333zoa02fPh2JiYmYNWsWoqOjsWPHDsybNw+zZ8+GVCqFqakpXnnlFcyZMwdHjx7F5cuXMWnSJEil0ko3RaZMmYIjR45g7969ja6sHhC5tP6/rQmCgoJgY2OD8+fPo3v37urz+vr6GvVHXLp0Kfr27Yu5c+cCAObOnYuQkBAsXboUGzdurJng6wFBEBCdmoOW9mZih0JERERERE/Jzc0NFy5cwIIFC/DOO+8gJSUFTZo0Qbt27bBy5cpaeU2pVIpNmzbhjTfegI+PD5o3b47ly5erW8wBZTPgy5cvx+eff45PP/0U3bp1w7Fjx/DGG28gOzsb77zzDtLS0uDt7Y2dO3fC09Pzoa/l6OiIPXv2YM6cOWjTpg0sLS0xefJkfPzxx+prvv/+e7z++ut49tlnYWZmhvfeew+JiYkwMDCoMJanpyc6d+6MjIwMdOjQoVa+N/WZRNCkJ0Itu3HjBjw9PREVFQUfHx8AZaX127dvh56eHszNzdGjRw8sWLAANjY2jxzHxcUFb7/9Nt5++231uSVLlmDp0qW4detWpeuLiopQVFSk/jo7OxvOzs5QKBQwM6u/SfKO8CS8uSkco9o744OBLWBhrCd2SEREREREoiosLERcXBzc3NwqJX/U8OTl5cHR0RGLFy/G5MmT1efLd/ifOnVqpQqC+uxxP5/Z2dmQy+VVykPrza71giBg9uzZ6Nq1qzqJB4CBAwdi/fr1OHLkCBYvXoyzZ8+id+/eFRLv/0pNTYWtrW2Fc7a2tkhNTX3o9QsXLoRcLlcfzs7ONfOmatnVlBwAwOZziei9+Bj+OJsIlare3JchIiIiIiLSyMWLF7Fx40bExsbiwoULGDNmDABg2LBh6mvS0tLw/fffIykpCRMnThQrVFHVm13rZ86cicjIyEqbJYwaNUr93z4+Pmjfvj1cXV2xe/duPP/8848cT5PdE+fOnVvhLk75jHx998HAFujT0gYfb7uEmDs5eG9LJDafS8SXw31Ybk9ERERERA3Sd999h5iYGOjp6aFdu3Y4ceIErK2t1Y/b2trC2toav/zyCywsLESMVDz1IpGfNWsWdu7ciePHj8PJyemx19rb28PV1bXSzoUPsrOzqzT7npaWVmmWvpy+vj709fU1D7weCGhqib/f6Irgf+Kx5NA1nL91D8/+cBITOzfFW329YKJfL/6JiYiIiIiInsjPzw/nz59/7DX1aHW4aEQtrRcEATNnzsTWrVtx5MgRuLm5PfE5GRkZSExMhL29/SOv6dSpEw4ePFjh3IEDB9C5c+enjrk+0pVJ8Wp3dxya3QMDWtlBqRLw68k4PLM4BHujUviDTkREREREpEVETeRnzJiBdevWYcOGDTA1NUVqaipSU1NRUFAAAMjNzcW7776L0NBQxMfH49ixYxgyZAisra3x3HPPqccZP368eod6AHjzzTdx4MABLFq0CNHR0Vi0aBEOHTqEt956q67fYp1yMDfEz+PaIWhCAFwsjZCaXYhp6y9gQtBZ3Mqo3IuSiIiIiIiIGh5RE/mVK1dCoVCgZ8+esLe3Vx+bN28GAMhkMkRFRWHYsGHw8vLCK6+8Ai8vL4SGhsLU1FQ9TkJCAlJSUtRfd+7cGZs2bUJQUBBat26N4OBgbN68udG0JejVwgYH3u6ON3p7QE8mRci1dPRbchzLD19HUalS7PCIiIiIiGodq1KpPqqpn8t61X6uvtBk2//6LjY9F5/uuIR/bmQAANysjfHFMB909bR+wjOJiIiIiBoepVKJa9euwcbGBlZWVmKHQ1SBQqFAcnIyPDw8oKurW+ExTfJQJvIPoU2JPFB212dXZAq++PsK0nPK2vYNaeOAjwe3hK0Ze2sSERERkXZJSUlBVlYWbGxsYGRk9MjuVUR1SaVSITk5Gbq6unBxcan0c8lE/ilpWyJfLruwBN8fuIb/hcZDJQAm+jp4p58XxnV0hY5M1FUWREREREQ1RhAEpKamIisrS+xQiCqQSqVwc3ODnp5epceYyD8lbU3ky11KUuCj7ZcQkZgFAGjlYIYvh/vAz6Vx9mAkIiIiIu2kVCpRUlIidhhEanp6epBKHz6JykT+KWl7Ig8ASpWAjWEJ+GZfNLILSyGRAC8HuuD9/i0gN9J98gBERERERERUY5jIP6XGkMiXu5tbhK/2XMXWC0kAACtjPcwd1BIv+DtyLREREWkNpUpAWFwm0nIKYWNqgEA3S8ik/DtHRET1BxP5p9SYEvlyp29m4OPtl3AjLRcAEOhmiS+H+8DL1vQJzyQiIqrf9l1KwfxdV5CiKFSfs5cbYN4QbwzwsRcxMiIion8xkX9KjTGRB4DiUhV+OxmHZYevobBEBR2pBJO7ueHNPp4w0tMROzwiIiKN7buUgmnrLuC/H3bK5+JXjvVnMk9ERPWCJnkotyonNT0dKab1bIZDs3ugr7ctSlUCVoXcRN/vj+PA5VSxwyMiItKIUiVg/q4rlZJ4AOpz83ddgVLFOQ0iImpYmMhTJU4WRlg9vj1+Hd8ejuaGSMoqwGtrz2PKmrNIzMwXOzwiIqIqCYvLrFBO/18CgBRFIcLiMusuKCIiohrARJ4e6RlvWxyc3R3TejaDjlSCQ1fT0HdJCH46egPFpSqxwyMiInqstJxHJ/HVuY6IiKi+YCJPj2Wkp4P3B7TA3je7oaO7JQpLVPh2fwwGLjuOU7F3xQ6PiIjokWxMDWr0OiIiovqCiTxViaetKTa+2hFLRrWBtYkeYtPzMHr1Gby9ORzpOUVih0dERFRJoJsl7OUGeFSTOQnKdq8PdLOsy7CIiIieGhN5qjKJRILn/JxweHZPjO3oAokE2HYxCb0XH8Pa0HhuFkRERPWKTCrBvCHeAFApmS//et4Qb/aTJyKiBoft5x6isbaf01REYhY+3n4JUUkKAEBrJzm+HO6D1k7m4gZGRET0APaRJyKihoB95J8SE/mqU6oErDt9C9/tj0FOUSkkEmBcR1e806855Ia6YodHREQEoOzvVVhcJtJyCmFjWlZOz5l4IiKqT5jIPyUm8ppLyynEgt1XsSM8GQBgbaKPjwe3xLC2DpBI+EGJiIiIiIjocTTJQ7lGnmqEjakBlr3kh/VTOsC9iTHu5hbhrc3hGPPrGdxIyxU7PCIiIiIiIq3BRJ5qVBcPa+x9sxve7ecFfR0pTsVmYOCy4/h2fzQKipVih0dERERERNTgsbT+IVhaXzMSMvIxb+clHI1JBwA4WRhi/tBW6NPSVpR4uD6SiIiIiIjqK66Rf0pM5GuOIAjYf/kO5u+6rN4tuJ+3LeYNbQVHc8M6i4M7FhMRERERUX3GRP4pMZGveXlFpVh++Dp+OxmHUpUAQ10Z3nrGE5O6ukFXVrsrPPZdSsG0dRfw3x/08rn4lWP9mcwTERH9ByvZiIjqFhP5p8REvvbEpObg4+1ROBt/DwDgZWuCL4f7ItDNslZeT6kS0HXRkQoz8Q+SALCTG+Dk+7354YSIiOg+VrIREdU97lpP9VZzO1Nsfq0Tvn2xNSyN9XDtTi5GrgrFO39EICO3qMZfLywu85FJPAAIAFIUhQiLy6zx1yYiImqIyivZ/vv3M1VRiGnrLmDfpRSRIiMionJM5KnOSaUSjGjvjMOze+DlQGcAwJYLt9F7cQg2nEmASlVzRSJpOY9O4qtzHRERkTZTqgTM33Wl0nI0AOpz83ddgbIG/1YTEZHmmMiTaCyM9bDw+dbYOr0zWtqbQVFQgg+3ReH5ladwKUlRI69hY2pQo9cRERFpM1ayERE1DEzkSXT+LhbYNbMLPnnWG8Z6MoQnZmHojycxf9dl5BSWPNXYgW6WsJcb4FGr3yUoW/NXW2v0iYiIGhJWshERNQxM5Kle0JFJMbmrGw6/0xODW9tDJQBB/8Sjz+IQ7IpIRnX3ZJRJJZg3xBsAKiXz5V/PG+LNje6IiIjASjYiooaCiTzVK3ZyA/w02h//mxSIplZGSMspwqyNFzH+9zDE3c2r1pgDfOyxcqw/7OQVP3TYyQ3Yeo6IiOgBrGQjImoY2H7uIdh+rn4oLFHi55BYrDgWi+JSFfRkUrzesxmm92wGA12ZxuOxHy4REdGTle9aD6DCpnflfzF5E5yIqHawj/xTYiJfv8TdzcOnOy7hxPW7AABXKyN8PswHPbyaiBwZERGRdmIfeSKiusdE/ikxka9/BEHAnqhUfP73ZdzJLus3P8jXDp8+26pSyTwRERE9PVayERHVLSbyT4mJfP2VU1iCJQevI/hUHFQCYKwnw9t9vTChc1PoyLjlAxERERERNUxM5J8SE/n673KyAp9sv4QLCVkAgBZ2pljwnA/auXLzHSIiIiIiang0yUM5hUkNUisHOf56vTO+ft4X5ka6iE7NwQsrQ/HBlkjcyysWOzwiIiIiIqJaw0SeGiypVIKXAl1weHYPjGjnBADYdDYRvRcfwx9nE6FSsdiEiIiIiIi0D0vrH4Kl9Q3T2fhMfLztEmLu5AAA2rta4MvnfNDCjv+GRERERERUv7G0nhqlgKaW+PuNrvhwUAsY6clw7tY9DF5+Egt2X0FuUanY4REREREREdUIJvKkVXRlUrzWvRkOze6BAa3soFQJWH0iDs8sDsHeqBSwAIWIiIiIiBq6KpXW79y5U+OB+/btC0NDw8des3DhQmzduhXR0dEwNDRE586dsWjRIjRv3vyh10+dOhW//PILlixZgrfeeuuR4wYHB2PixImVzhcUFMDA4Mk9x1larz2ORqfh052XkJhZAADo2bwJPh/qAxcrI5EjIyIiIiIi+pcmeahOVQYcPny4RgFIJBJcv34d7u7uj70uJCQEM2bMQEBAAEpLS/HRRx+hX79+uHLlCoyNjStcu337dpw5cwYODg5VisHMzAwxMTEVzlUliSft0quFDQ4264Gfjt7AzyGxOBaTjr5LQvDzuHbo1dxG7PCIiIiIiIg0VqVEHgBSU1NhY1O1xMfU1LRK1+3bt6/C10FBQbCxscH58+fRvXt39fmkpCTMnDkT+/fvx+DBg6s0tkQigZ2dXZWuJe1moCvDO/2aY7ifIz7aFoXTNzPx5saL+HtWN87MExERERFRg1OlNfKvvPLKE8vkHzR27NhqlaQrFAoAgKWlpfqcSqXCuHHjMGfOHLRq1arKY+Xm5sLV1RVOTk549tlncfHiRY3jIe3SrIkJ1kwKRFtnc2QXluL1dedRWKIUOywiIiIiIiKNVCmRDwoKqvIsOwCsXLkS1tbWGgUiCAJmz56Nrl27wsfHR31+0aJF0NHRwRtvvFHlsVq0aIHg4GDs3LkTGzduhIGBAbp06YLr168/9PqioiJkZ2dXOEg76evIsGKMPyyN9XAlJRsfb7/EDfCIiIiIiKhBqfKu9UqlEpGRkSgoKKj0WH5+PiIjI6FSqaodyMyZMxEZGYmNGzeqz50/fx7Lli1DcHAwJBJJlcfq2LEjxo4dizZt2qBbt274448/4OXlhR9++OGh1y9cuBByuVx9ODs7V/t9UP3nYG6IH172g1QC/HX+NjadTRQ7JCIiIiIioiqrciK/du1aTJo0CXp6epUe09fXx6RJk7Bhw4ZqBTFr1izs3LkTR48ehZOTk/r8iRMnkJaWBhcXF+jo6EBHRwe3bt3CO++8g6ZNm1Z5fKlUioCAgEfOyM+dOxcKhUJ9JCYysdN2XTys8U6/su4I83ZcRuTtLHEDIiIiIiIiqqIqJ/K//fYb3n33XchkskqPyWQyvPfee/jll180enFBEDBz5kxs3boVR44cgZubW4XHx40bh8jISISHh6sPBwcHzJkzB/v379fodcLDw2Fvb//Qx/X19WFmZlbhIO03rUczPNPSFsVKFaatu4B7ecVih0RERERERDVMqRK0bjltlXetj4mJQceOHR/5eEBAAK5evarRi8+YMQMbNmzAjh07YGpqitTUVACAXC6HoaEhrKysYGVlVeE5urq6sLOzq9Brfvz48XB0dMTChQsBAPPnz0fHjh3h6emJ7OxsLF++HOHh4fjpp580io+0m1QqweKRbTD0x5O4lZGPNzeHI2hCAGTSqi/jICIiIiKi+ksQBHywJRJGejJ8OqSV1nzWr/KMfF5e3mM3gcvJyUF+fr5GL75y5UooFAr07NkT9vb26mPz5s0ajZOQkICUlBT111lZWXjttdfQsmVL9OvXD0lJSTh+/DgCAwM1Gpe0n9xQFz+PbQcDXSmOX0vHssMPX35BREREREQNz/LDN/Dn+dtYe/oWIrRoOW2VZ+Q9PT1x6tQptG7d+qGPnzx5Ep6enhq9eHXKG+Lj4yudO3bsWIWvlyxZgiVLlmg8NjVOLe3NsGC4L975MwLLD1+Hn7M5erWwETssIiIiIiJ6Cn+dv40lh64BAD4f5gN/FwuRI6o5VZ6RHz16ND7++GNERkZWeiwiIgKffvopRo8eXaPBEdWVF9o5YUwHFwDAW5vDkZipWXUJERERERHVHyev38UHW8py12k9m2FsR1eRI6pZEqGK0+IlJSXo168fTp48iWeeeQYtWrSARCLB1atXcejQIXTp0gUHDx6Erq5ubcdc67KzsyGXy6FQKLjxXSNSVKrEyFWnEZGYBR9HM/z1emcY6Fbe3JGIiIiIiOqvqynZGPFzKHKLSjG0jQOWjmoLaQNYG69JHlrlGXldXV0cOHAACxYsQEpKCn755Rf8/PPPSElJwYIFC3DgwAGtSOKp8dLXkWHFGH9YGOniUlI25u24LHZIRERERESkgRRFASYGnUVuUSk6uFni2xGtG0QSr6kqz8g3JpyRb9xOXE/H+N/DIAjAohd8MSrAReyQiIiIiIjoCXIKSzDi51BEp+bAw8YEW17vDLlRw5lsrpUZeaLGoptnE7zT1wsA8MmOy4i6rRA5IiIiIiIiepwSpQrT1l1AdGoOrE30ETQhoEEl8ZpiIk/0ENN7eqBPCxsUl6owbf15ZOUXix0SERERERE9hCAImLs1Cidv3IWRngxBEwLgbGkkdli1iok80UNIpRJ8P7ItXCyNcPteAd7eHA6ViqtQiIiIiIjqm2WHr+Ov87chlQA/jfaHr5Nc7JBqHRN5okeQG+li5Vh/6OtIcTQmHT8cuSF2SERERERE9IA/zyVi6aHrAIAvh/uiVwsbkSOqG9VO5IuLixETE4PS0tKajIeoXmnlIMeXw30AAEsPX8OxmDSRIyIiIiIiIqBsk+q5W6MAANN7NsPoDo1nk2qNE/n8/HxMnjwZRkZGaNWqFRISEgAAb7zxBr7++usaD5BIbCPaO+PlQBcIAvDW5nAkZuaLHRIRERERUaN2JTkb09ZdQKlKwLC2Dni3X3OxQ6pTGifyc+fORUREBI4dOwYDAwP1+WeeeQabN2+u0eCI6ot5Q7zR2kmOrPwSTF9/AYUlSrFDIiIiDaVlF6K4VCV2GERE9JRSFAWYFPxvr/hvXtTOXvGPo3Eiv337dvz444/o2rUrJJJ/v1ne3t6IjY2t0eCI6gsDXRlWjPGHuZEuopIUmL/ritghERGRBv65cRedvj6iLsEkIqKGKbuwBBODziI1uxCeNib4ZVx76OvIxA6rzmmcyKenp8PGpvIGAnl5eRUSeyJt42RhhGUv+UEiATaGJeDPc4lih0RERFW05OA1KFUCdkUmI6ewROxwiIioGopLVZh+v1d8E1N9BE3U7l7xj6NxIh8QEIDdu3ervy5P3levXo1OnTrVXGRE9VAPryZ4q48XAODj7ZdwOVkhckRERPQkZ+Mzce7WPQBlHwKPRHPjUiKihuZhveKdLLS7V/zj6Gj6hIULF2LAgAG4cuUKSktLsWzZMly+fBmhoaEICQmpjRiJ6pVZvT0QnngPR2PS8fq68/h7ZrdGeyeQiKghWHG0rH2osZ4MecVK7IlKwbC2jiJHRUREmlh66Dq2XLgNmVSCn8b4w8dR+3vFP47GM/KdO3fGP//8g/z8fDRr1gwHDhyAra0tQkND0a5du9qIkahekUolWDKqLZwsDJGYWYC3/wiHSiWIHRYRET3EleRsHI1Jh1QCfDeiDQDgWEw68orYPpeIqKH441wilh0u6xX/xTAf9GreOHrFP47GM/IA4OvrizVr1tR0LEQNhrmRHn4e2w7PrzyFI9Fp+OnoDczq4yl2WERE9B8rQ8o24h3ka48BPnZoamWE+Ix8HIlOw5A2DiJHR0RET3L8Wjo+vL9R6YxejatX/ONoPCMPALGxsfj4448xevRopKWVrTPbt28fLl++XKPBEdVnPo5yfDnMBwDw/aFrOHE9XeSIiIjoQfF387A7MhkAMK1nM0gkEgzytQcA7L2UImZoRERUBZeTFZi27nyj7RX/OBon8iEhIfD19cWZM2ewZcsW5ObmAgAiIyMxb968Gg+QqD4bGeCMUe2dIQjAGxsvIimrQOyQiIjovlXHb0IlAD2bN0Erh7K1lOWJ/NHodOQXs7yeiKi+Ss4q6xWfV6xER/eyXvHskvYvjRP5Dz74AF9++SUOHjwIPT099flevXohNDS0RoMjagjmD2sFH0cz3MsvwfR151FUqhQ7JCKiRu9OdiG2nL8NAJje00N9vpWDGZwtDVFQokRIDCupiIjqo/Je8Xeyi+BpY4JVjbRX/ONonMhHRUXhueeeq3S+SZMmyMjIqJGgiBoSA10ZVo5pB7mhLiJuK/D5ritih0RE1Oj9djIOxUoV2rtaINDNUn3+wfL63VEsryciqm+KS1WYtu48Yu7kwMZUH8GTAiE3ZIeo/9I4kTc3N0dKSuU/fBcvXoSjI1u5UOPkbGmEpS+1hUQCrD+ToJ4FIiKiuqfIL8H607cAANN7Nav0+CCfskT+SHQaCktYRUVEVF8IgoAPtkbinxsZMNKT4fcJAXA0NxQ7rHpJ40R+9OjReP/995GamgqJRAKVSoV//vkH7777LsaPH18bMRI1CL2a2+CN3mU713+4LQpXkrNFjoiIqHFaExqPvGIlWtiZPrRFUWsnORzNDZFfrETINZbXExHVF0sOXsPWC0nsFV8FGifyCxYsgIuLCxwdHZGbmwtvb290794dnTt3xscff1wbMRI1GG/28UQPryYoKlVh2vrzUBSUiB0SEVGjkl9ciqB/4gD8u1P9f5WV19sBAPawvJ6IqF7YfDYBy4/cAAB8OZy94p9Eo0ReEAQkJydj9erVuH79Ov744w+sW7cO0dHRWLt2LWQybkBAjZtUKsHSUW3haG6IWxn5eOePCKhUgthhERE1GpvCEnEvvwQulkYYfH8t/MMMvP/Y4assryciElvItXR8uO0SAGBmLw+8HMhe8U+icSLv6emJpKQkuLu748UXX8TIkSPh6elZW/ERNTgWxnpYOdYfejIpDl29g5UhsWKHRETUKBSXqvDriZsAgKk93KEje/THnLZO5rCXGyC3qBQnr9+tqxCJiOg/LicrMH3deShVAp73c8Q7/bzEDqlB0CiRl0ql8PT05O70RE/Q2skc84e1AgAsPhCDf27wQyIRUW3bEZ6EZEUhmpjq4wV/p8deK5VKMMCH5fVERGJKyirAxKCyXvGd3K3w9QvsFV9VGq+R/+abbzBnzhxcunSpNuIh0hovBThjRDsnqARg1saLSM4qEDskIiKtpVIJ+Pl+BdTkrm4w0H3ycr/y0vuDV++gqJTl9UREdUlRUIKJQWFIyymCl60Jfh7XDno6GqenjZbG36mxY8ciLCwMbdq0gaGhISwtLSscRFRGIpHgi+E+aOVghsy8Ykxff4EfFImIasmBK6mITc+DmYEOxnSo2tpKfxcL2JjqI6ewFKdusNqQiKiulPeKv3YnFzam+giayF7xmtLR9AlLly6thTCItJOBrgwrx7TDsz+cQHhiFhbsvorPh/mIHRYRkVYRBAErjpXNxo/v1BSmBlX7MCiVSjDQxw5rQm9hT1QKerXgDslERLVNEAR8sCUSp2IzYMxe8dWmcSL/yiuv1EYcRFrLxcoIS19qi0nB5/C/0Fvwd7HAcD9HscMiItIa/9zIQORtBQx0pZjYpalGzx3ka481obdw4ModfKVUQfcxG+QREdHT+/7gNWy9WNYrfsXYduwVX00a/7XKzs5+6JGTk4Pi4uLaiJGowevdwhazensAAD7YGono1GyRIyIi0h4rjpX1HX4pwAVWJvoaPbd9U0tYm+hDUVCCU7Esryciqk2bwhLww/1e8V8954MeXk1Ejqjh0jiRNzc3h4WFRaXD3NwchoaGcHV1xbx586BSqWojXqIG661nvNDN0xqFJSq8vvY8sgtLxA6JiKjBC0/MwqnYDOhIJXi1u7vGz5dJJRjgYwsA2Mvd64mIas2xmDR8tL1sw/Q3entgVAB7xT8NjRP54OBgODg44MMPP8T27duxbds2fPjhh3B0dMTKlSvx2muvYfny5fj6669rI16iBksmlWDZS35wNDdEfEY+3v0jAoIgiB0WEVGDtuJo2czOsLaO1V5jOej+7vX7L6eiRMmJCCKimnYpSYEZ6y+oe8W/3Ze94p+Wxmvk16xZg8WLF2PkyJHqc0OHDoWvry9WrVqFw4cPw8XFBQsWLMCHH35Yo8ESNXSWxnpYMcYfI34OxYErd/BzyE1M69lM7LCIiBqk63dycODKHUgkwLSems/GlwtsagkrYz1k5BXjzM1MdPW0rsEoiYgat6SsAkwKLusV37kZe8XXFI1n5ENDQ+Hn51fpvJ+fH0JDQwEAXbt2RUJCwtNHR6SF2jibY95QbwDAt/ujcerGXZEjIiJqmFbe7xvfz9sWHjam1R5HRyZFv1Z2AIA9l1heT0RUUx7sFd/c1pS94muQxt9FJycn/Pbbb5XO//bbb3B2dgYAZGRkwMLC4umjI9JSowNd8IK/E1QCMGvjRaQqCsUOiYioQbl9Lx87w5MBANN7ejz1eIPLy+svpaKU5fVERE+tqFSJqWvP4dqdXNia6SNoYgDMqtgelJ5M49L67777DiNGjMDevXsREBAAiUSCs2fPIjo6Gn/99RcA4OzZsxg1alSNB0ukLSQSCb4c7oPLyQpEp+Zg+vrz2PRaJ96hJCKqol9PxKFUJaCLhxXaOJs/9Xgd3C1hYaSLjLxihMVnonMzltcTEVWXIAh4/69InL6Zqe4V78Be8TVK46xh6NChiImJwcCBA5GZmYm7d+9i4MCBiI6OxrPPPgsAmDZtGr7//vsaD5ZImxjqybBqXDuYGujgQkIWvtpzVeyQiIgahIzcImw6W7aEryZm4wFAVyZFP++y8vq9Uak1MiYRUWO1+MA1bA9Phkwqwcqx7dDKgb3ia1q1pv+aNm2Kr7/+Glu3bsW2bduwcOFCNG3aVONxFi5ciICAAJiamsLGxgbDhw9HTEzMI6+fOnUqJBIJli5d+sSxt2zZAm9vb+jr68Pb2xvbtm3TOD6i2uZqZYwlI9sCAIJPxWNHeJK4ARERNQBB/8SjsESF1k5ydG5mVWPjDvS9n8hfSoVSxa4iRETVsTEsAT/e7yiy8DlfdGev+FpRrUT+xIkTGDt2LDp37oykpLLEY+3atTh58qRG44SEhGDGjBk4ffo0Dh48iNLSUvTr1w95eXmVrt2+fTvOnDkDBweHJ44bGhqKUaNGYdy4cYiIiMC4ceMwcuRInDlzRqP4iOrCM962mNGrbOf6D7ZEISY1R+SIiIjqr5zCEqwJjQcATO/ZrEZ3Pu7iYQ25oS7u5hbhXHxmjY1LRNRYHI1Jw8flveL7eGJkgLPIEWkvjRP5LVu2oH///jA0NMSFCxdQVFQEAMjJycFXX32l0Vj79u3DhAkT0KpVK7Rp0wZBQUFISEjA+fPnK1yXlJSEmTNnYv369dDVffIGCUuXLkXfvn0xd+5ctGjRAnPnzkWfPn2qNJNPJIbZfZujq4c1CkqUmLbuPHIKS8QOiYioXlp/JgE5haVo1sRYXQpfU3RlUvT1tgVQNitPRERVV6FXvL8j3n7GU+yQtJrGifyXX36Jn3/+GatXr66QVHfu3BkXLlx4qmAUCgUAwNLSUn1OpVJh3LhxmDNnDlq1alWlcUJDQ9GvX78K5/r3749Tp0499PqioiJkZ2dXOIjqkkwqwbKX2sJBboCbd/Mw589ICALLOomIHlRYosRvJ+MAAK/3aAaptOb7EA9Sl9enQMXyeiKiKrl9Lx8Tg88iv1iJLh5W+Pp59oqvbRon8jExMejevXul82ZmZsjKyqp2IIIgYPbs2ejatSt8fHzU5xctWgQdHR288cYbVR4rNTUVtra2Fc7Z2toiNfXhd9cXLlwIuVyuPsrb6BHVJSsTffw0xh+6Mgn2XU7F6hM3xQ6JiKhe+ev8baTnFMFBboBhbR1r5TW6eFjD1EAHd7KLcCHhXq28BhGRNlHkl2BC0Fmk5xShhZ0pVo5lr/i6oPF32N7eHjdu3Kh0/uTJk3B3d692IDNnzkRkZCQ2btyoPnf+/HksW7YMwcHBGt/R+e/1giA8coy5c+dCoVCoj8TERM3fAFEN8HOxwKfPegMAFu2LwembGSJHRERUP5QqVVh1PBYA8Gp391r7kKivI0PflmWTAXu4ez0R0WMVlSoxdd053EjLhZ2ZAXvF1yGN/wpOnToVb775Js6cOQOJRILk5GSsX78e7777LqZPn16tIGbNmoWdO3fi6NGjcHJyUp8/ceIE0tLS4OLiAh0dHejo6ODWrVt45513HrtLvp2dXaXZ97S0tEqz9OX09fVhZmZW4SASy9iOrnjOzxFKlYCZGy7iTnah2CEREYlud1QKEjMLYGmsh5cCXGr1tQb62gNgeT0R0eMIgoD37veKN9HXwe8TAmAvZ6/4uqJxIv/ee+9h+PDh6NWrF3Jzc9G9e3dMmTIFU6dOxcyZMzUaSxAEzJw5E1u3bsWRI0fg5uZW4fFx48YhMjIS4eHh6sPBwQFz5szB/v37Hzlup06dcPDgwQrnDhw4gM6dO2sUH5EYJBIJvnrOFy3sTHE3twgz1l9AiVIldlhERKIRBAErj5XNxk/s3BSGerJafb1untYw0ddBiqIQ4bezavW1iIgaqu8OxGBHeDJ0pBKsGOMPbwdOhtYlneo8acGCBfjoo49w5coVqFQqeHt7w8TERONxZsyYgQ0bNmDHjh0wNTVVz6LL5XIYGhrCysoKVlYV+8Pq6urCzs4OzZs3V58bP348HB0dsXDhQgDAm2++ie7du2PRokUYNmwYduzYgUOHDmncHo9ILIZ6Mqwc2w5DfziJc7fu4as9VzFvSNU2eyQi0jZHotMQnZoDYz0ZxndqWuuvZ6ArQ5+WNtgRnoy9USnwd7Go9dckImpINpxJwE9Hy26wfvU8e8WLodoLzIyMjNC+fXsEBgZWK4kHgJUrV0KhUKBnz56wt7dXH5s3b9ZonISEBKSkpKi/7ty5MzZt2oSgoCC0bt0awcHB2Lx5Mzp06FCtOInE4GZtjMUj2wAAgv6Jx66IZJEjIiKqe4IgYMX92fixHV0hN6qbtZcDfcrK6/dEpbKLCBHRA45Gp+GTHWW94t/s44mR7blRuBgkQhX+Oj3//PNVHnDr1q1PFVB9kJ2dDblcDoVCwfXyJLpF+6Kx8lgsjPRk2DGjCzxtTcUOiYiozoTFZWLkqlDo6Uhx8r1esDEzqJPXLSxRwv+Lg8gvVmLHjC5o42xeJ69LRFSfRd1WYNQvocgvVuLFdk749kW2matJmuShVZqRf7A1m5mZGQ4fPoxz586pHz9//jwOHz4MuVz+dJETUSXv9PVCJ3cr5Bcr8fq688gtKhU7JCKiOrPiWFmnnBfbOdVZEg+Uldf3bmEDANhzKeUJVxMRab/EzHxMWlPWK76bpzUWPu/LJF5EVUrkg4KC1IetrS1GjhyJuLg4bN26FVu3bsXNmzfx0ksvwdraurbjJWp0dGRS/DDaD3ZmBohNz8N7f0WwzJOIGoXLyQoci0mHVAJM7V79FrfVNah893qW1xNRI6fIL8HE4H97xa8Y4w9dGXvFi0nj7/7vv/+Od999FzLZvzvGymQyzJ49G7///nuNBkdEZaxN9PHTGH/oyiTYE5WK307GiR0SEVGtK9+pfnBrB7haGdf56/ds3gQGulIkZObjcnJ2nb8+EVF9UFSqxGtrK/aKN2WveNFpnMiXlpbi6tWrlc5fvXoVKhVbZBHVlnauFvh4sDcAYOHeaJy5mSFyREREtSf+bh72RJWVtE/r0UyUGIz0dP4tr49ieT0RNT4qlYA5f0biTFxZr/igiewVX19onMhPnDgRkyZNwnfffYeTJ0/i5MmT+O677zBlyhRMnDixNmIkovvGd3LFsLYOUKoEzNx4EWnZhWKHRERUK1Ydj4VKAHo1byJqb+J/d69PYXk9ETU63x2Iwc6Isl7xK8f6o6U9NwKvLzTuI//dd9/Bzs4OS5YsUbd8s7e3x3vvvYd33nmnxgMkon9JJBIsfN4X0Sk5iLmTg5kbLmL9qx24RomItMqd7EJsOZ8EAJjey0PUWHq3sIG+jhTxGfmITs3hh1giajTWn7mlbv+58HlfdPNkr/j6RONP/1KpFO+99x6SkpKQlZWFrKwsJCUl4b333quwbp6IaoeRng5WjvWHib4OwuIzsWhvtNghERHVqF9P3ESxUoWAphYIaGopaizG+jro2bzswyvL64mosTh89Q4+2V7WK/6tZzwxgr3i652nmsYzMzNjn3UiEbg3McF3I1oDAH49GYfdkfxwSUTaISu/GOvPJAAApvcUdza+XPnu9btZXk9EjUDk7SzM3HARKgEY0c4Jb/bxFDskeogqJfL+/v64d+9elQft2rUrkpKSqh0UET3ZAB97dTum9/6KwI20HJEjIiJ6emtO3UJ+sRIt7c3UM+Fi693CBno6UtxMz8P1tFyxwyEiqjWJmfmYFHwOBSVlveK/Yq/4eqtKa+TDw8MREREBS8uqlbeFh4ejqKjoqQIjoieb0785Im5n4fTNTLy+7gJ2zOgCY32Nt74gIqoX8otLEXyqrL3mtJ7N6s2HR1MDXXT3bIJDV+9gd2QKvPqaih0SEVGNU+SXYEJQGO7msld8Q1DlT/x9+vSpcjlZffnDS6TtdGRS/PCyP5794QRupOXi/S2R+OFlP/5/kIgapI1hibiXXwJXKyMM8rETO5wKBvna4dDVO9h7KQVv9/USOxwiohpVVKrEq2vPITY9D/ZyAwRPDGSv+HquSol8XFycxgM7OTlp/Bwi0lwTU32sGOOPUatO4+/IFPi7WGBSVzexwyIi0khxqQq/nrgJAJjavRl06tksUJ+WttCVSXDtTi5upOXAw4az8kSkHVQqAe/+GYmwuEyY3u8Vbyc3EDsseoIqJfKurq61HQcRPYV2rpb4aHBLzN91BV/tuYrWTnK0F3mnZyIiTWwPT0KKohA2pvp4oZ2j2OFUIjfURVcPaxyNSceeqFS80YeJPBFph2/2x2DX/V7xP49rhxZ23My8Iahft7uJqNomdG6KZ1vbo1QlYPr6C0jLKRQ7JCKiKlGqBPwcUtareEo3N+jr1M92tuW717MNHRFpi7Wnb6l//y56oTW6eFiLHBFVFRN5Ii0hkUiw6IXW8LQxQVpOEWZtuIhSpUrssIiInujA5VTcTM+DmYEORneov1WAfb1toSOVIDo1BzfTuXs9ETVsh6/ewbwdZb3iZ/f1wgvtuDS6IWEiT6RFjPV1sHJsOxjryXAmLhPf7I8ROyQioscSBAErjpXNBr3SuSlM6nHnDXMjPXS+P1u191KqyNEQEVXfg73iR7Z3wqzeHmKHRBpiIk+kZTxsTPDtiDYAgF+O38S+SywBJaL66+SNu4hKUsBAV4oJnZuKHc4TDfYt202f5fVE1FCV9Yo/q+4Vv+A59opviKqVyGdlZeHXX3/F3LlzkZmZCQC4cOECkpKSajQ4IqqeQb72eLVb2c717/4ZiViWgBJRPbXiaNls/EsBLrAy0Rc5mifr620HmVSCy8nZuJWRJ3Y4REQaycovvt8rvhgt7c3YK74B0/hfLTIyEl5eXli0aBG+++47ZGVlAQC2bduGuXPn1nR8RFRN7w9ogUA3S+QWlWLauvPILy4VOyQiogouJtxD6M0M6EgleLW7u9jhVImlsR46uVsBYHk9ETUshSVKvPa/8+pe8UETAtgrvgHTOJGfPXs2JkyYgOvXr8PA4N/+ggMHDsTx48drNDgiqj4dmRQ/vuyHJqb6uHYnFx9siYIgCGKHRUSkVr42frifIxzNDUWOpuq4ez0RNTRlveIjEBZf1is+eGIge8U3cBon8mfPnsXUqVMrnXd0dERqKu9ME9UnNmYG+Gm0P2RSCXZGJGPNqXixQyIiAgBcu5ODg1fuQCIBXu/RTOxwNNKvlS2kEiDytgKJmflih0NE9ESL9kfj78gU6MokWDWuHZrbmYodEj0ljRN5AwMDZGdnVzofExODJk2a1EhQRFRzAt0sMXdgCwDAl7uv4vytTJEjIiICfr4/G9/f2w4eNiYiR6MZaxN9dHArK6/fx/J6Iqrn1obGY1XITQBlveI7s1e8VtA4kR82bBg+//xzlJSUACjrXZ2QkIAPPvgAL7zwQo0HSERPb3JXNwxubY9SlYDp6y/gbm6R2CERUSN2+14+dkQkAwCm92pYs/HlBrUuK6/fzfJ6IqrHDl25g3k7LwMA3unrhef92SteW2icyH/33XdIT0+HjY0NCgoK0KNHD3h4eMDU1BQLFiyojRiJ6ClJJBIseqE1mjUxxp3sIszacBGlSpXYYRFRI7X6+E0oVQK6elijtZO52OFUS/9WtpBIgPDELCRlFYgdDhFRJRGJWZi1saxX/Kj2zpjJXvFaReNE3szMDCdPnsSWLVvw9ddfY+bMmdizZw9CQkJgbGxcGzESUQ0w0dfBqnHtYKwnQ+jNDHx34JrYIRFRI3Q3twibziYCAKb3bJiz8QBgY2qAgKaWAFheT0T1T0JGPiavKesV392rCb58zoe94rWMjiYXl5aWwsDAAOHh4ejduzd69+5dW3ERUS3wsDHFohdbY+aGi/g5JBZ+Lubo38pO7LCIqBEJ+icORaUqtHE2R6dmVmKH81QG+dghLC4Te6JSMLmrm9jhEBEBAO7lFWNCcFmveG/2itdaGv2L6ujowNXVFUqlsrbiIaJa9mxrB0zqUvaB890/IhB3N0/kiIioscgpLMH/Qm8BAKb1aNbgZ4cG3m9Dd/7WPaQqCkWOhojofq/4tedwMz0PDnIDBE0MgIm+RnO31EBofGvm448/xty5c5GZyZ2viRqquYNaIKCpBXKKSvH62vPILy4VOyQiagTWnU5ATmEpPGxM0M/bVuxwnpqtmQHau1oAAPZd4qZ3RCQulUrAO39G4Gz8PZga6CB4UiBszdgrXltpnMgvX74cJ06cgIODA5o3bw5/f/8KBxHVf7oyKX4a7Q9rE33E3MnBR9suQRAEscMiIi1WWKLEbyfjAJT1jZdKG/ZsfLnyWfk9XCdPRCJbtC8au8t7xY9tBy9b9orXZhrXWQwfPrwWwiCiumZjZoCfRvth9K9nsO1iEvxdzDGuU1Oxw6JGSKkSEBaXibScQtiYGiDQzRIyLUny6F9/nr+Nu7lFcDQ3xLC2DmKHU2MG+tjhi7+v4Gx8JtKyC2HD2S8iEsH/QuOx6nhZr/hvXmSv+MZA40R+3rx5tREHEYmgg7sVPhjQAgv2XMXnf19BK0c5/F0sxA6LGpF9l1Iwf9cVpDywvtheboB5Q7wxwMdexMioJpUqVfjleCwA4NVublq16ZKDuSH8XMxxMSEL+y+n8oYoEdW5g1fu4LP7veLf7eeF5/zYK74x0J6/pERULVO6uWGgjx1KlAJmrL+AjNwisUOiRmLfpRRMW3ehQhIPAKmKQkxbd4FrjrXI35EpSMwsgJWxHkYFuIgdTo0bdP+m054oltcTUd0KT8zCrI0XoBKAlwKcMaMXe8U3Fhon8lKpFDKZ7JEH1R2lSkBobAZ2hCchNDYDShXXOJPmJBIJvnmxNdybGCNFUYg3Nl3kzxLVOqVKwPxdV/Cwn7Tyc/N3XeHPohZQqQSsPFY2Gz+xS1MY6mnfZ4WBvmVtPM/EZeAub4Y2aiqVgOSsAv7uojqRkJGPycFnUViiQg+vJvhyOHvFNyYal9Zv27atwtclJSW4ePEi1qxZg/nz59dYYPR4LEelmmRqoIufx7bDsB//wT83MrD4QAzeG9BC7LBIi4XFZVaaiX+QACBFUYiwuMwG32u8sTsSnYaYOzkw0dfR2rJzJwsjtHGSI+K2Avsvp2JMB1exQyKRLDl0DT8cuQFTfR20b2qBDu5WCHSzhK+jXKuWlJD47uUVY0JQGDLyitHKwQw/jfGHDn/GGhWNE/lhw4ZVOvfiiy+iVatW2Lx5MyZPnlwjgdGjlZej/vdeb3k56sqx/kzmSWNetqZY9GJrvLHxIlYci4WfiwX6akF7KKqf0nKq1nO7qtdR/SQIAlYcuwEAGNPRBXJDXZEjqj0Dfe0RcVuBvVFM5BurzLxi/HqirDNDTlEpjsak42hMOgDAUFcGf1dzdHArS+zbOpvDQFf7qlOobhSWKPHq/87h5t08OJob4vcJ7BXfGNXYv3iHDh3w6quv1tRw9AhPKkeVoKwcta+3HXd9Jo0NbeOAC7fuIfhUPGb/EY5dM7uiqbWx2GGRFrIxrdrO3lW9juqnsLhMXEjIgp6OFJO7uokdTq0a5GOPr/dGI/RmBjLzimFprCd2SFTHgv+JQ0GJEj6OZlj4XGucictAWFwmwuIzkZVfgn9uZOCfGxkAAD2ZFG2c5erE3t/VgokYPZIgCEjIzEd4YhbCE7Nw6kYGYu7kwNRAB0ETA9grvpGqkd8YBQUF+OGHH+DkxB0SaxvLUam2fTioJaKSFDh/6x5eX3ce26Z30co1rSSuQDdL2MsNkKoofOiNSQkAO3lZKzpquFbcXxs/op2T1t+UcbEygo+jGS4lZePA5VS8FKh9m/rRo+UUliD4VDwAYEZPD/g6yeHrJMeUbu5QqQRcT8tFWFwGzsRl4kxcJtJzinA2/h7Oxt8DjgIyqQQ+DmZlpfhNLRHQ1BJyI+2tYKHHu5dXjPDbWYi4n7hHJGbhXn5JhWv0daRYNY694hszjRN5CwuLCpsoCIKAnJwcGBkZYd26dTUaHFXGclSqbXo6Uvw02h/P/nAC0ak5+Gh7FBaPaMPNU6hGyaQSzBvijWnrLkACVEjmy3/S5g3xZmVRA3YpSYGQa+mQSoCp3ZuJHU6dGOhjj0tJ2dhziYl8Y7P+TAKyC0vRrIkx+reyq/CYVCpBcztTNLczxbhOTSEIAuIz8v9N7G9mIimrABG3FYi4rcAvx29CIgFa2Jmhg5slAt3KEvsmpvoivTuqTUWlSlxJzlbPtkckZiE+I7/SdXoyKbwdzNDW2Rxtnc3RqZkVZ+IbOY0T+SVLllT4QC+VStGkSRN06NABFhaa9Z9euHAhtm7diujoaBgaGqJz585YtGgRmjdvrr7ms88+w6ZNm5CYmAg9PT20a9cOCxYsQIcOHR45bnBwMCZOnFjpfEFBAQwMGvYPPMtRqS7YyQ3ww8v+GPPraWy9kAR/FwuM7cg1n1SzBvjYY+VY/0obd9px406tsDKkbDZ+SBsHuFgZiRxN3Rjka49v98fg1I27yMovhrkRy+sbg8ISpXpt/LSeHpA+4QakRCKBm7Ux3KyN1e0Yb9/Lx9n4TITdn7G/mZ6HqynZuJqSrZ7pd29ijA5uVurk3sHcsFbfF9U8lUpAfEZehaT9Sko2SpSVa9PcrY3R5n7S3tbZHC3sTaGvwwpJ+pfGiXzv3r3h7Oz80Nm5hIQEuLhU/Q50SEgIZsyYgYCAAJSWluKjjz5Cv379cOXKFRgbl63L9fLywo8//gh3d3cUFBRgyZIl6NevH27cuIEmTZo8cmwzMzPExMRUONfQk3iA5ahUdzo1s8J7A1rg673RmL/rMlwsjdDd69H/nyOqjgE+9ujrbYewuEyk5RTCxrTs9xdn4hu2uLt52BuVAgB4vUfjmI0HADdrY7S0N8PVlGwcuHIHI9s7ix0S1YE/zyXibm4RHM0NMaytQ7XGcLIwgpOFEZ7zK1ummpZTiLNx99Sz9tGpObiZnoeb6XnYGJYAAHC2NERg038Te1crI1bP1TMZuUXqhP3i/f/NLiytdJ2lsZ46YW/jbI42TnLeCKQnkgiCoFGjS5lMhpSUFNjY2FQ4n5GRARsbGyiVymoHk56eDhsbG4SEhKB79+4PvSY7OxtyuRyHDh1Cnz59HnpNcHAw3nrrLWRlZVUrjvLXUCgUMDMzq9YYtal813rg4eWo3LWeaoogCJix4QL2RKVCTybFD6P9KpUMEhH91wdbIrHpbCJ6t7DB7xMCxA6nTv1w+DoWH7yGXs2bIGhioNjhUC0rUarQ89tjSMoqwOfDWmF8LbVYzMovxtn4fxP7S0kK/LdVva2ZPgLvb57Xwc0SnjYmTOzrUGGJEpeTFbiYcH+2/XYWEjMLKl2nryOFj6NcnbT7OZvDycKQ/1YEQLM8VOMZ+Ufl/bm5uU89461QKAAAlpYPn00uLi7GL7/8ArlcjjZt2jx2rNzcXLi6ukKpVKJt27b44osv4Ofn91Tx1RcsR6W6IpFIsHSUH4CL2BOViunrL+D7kW0wrK2j2KERUT2VqijElgu3AQDTezae2fhyA33tsfjgNZy8cReKghKtbrlHwM7wZCRlFcDaRK9WKzDMjfTQ19tW3RY2t6gU52/dT+xvZiLidhbuZBdhV0QydkUkAyib5Q1oaoHA++X4Le3NWO1UQ1QqATfv5lZI2qNTclD637srADxsTNDGyRxtXcqS9uZ2ptBlv3eqAVVO5GfPng2g7IP9p59+CiOjf9e7KZVKnDlzBm3btq12IIIgYPbs2ejatSt8fHwqPPb333/jpZdeQn5+Puzt7XHw4EFYW1s/cqwWLVogODgYvr6+yM7OxrJly9ClSxdERETA09Oz0vVFRUUoKipSf52dnV3t91FXWI5KdUVPR4rlL/nBUDcKWy7cxlubw5FfrMTL3MiJiB7i1xM3UaIUENjUEu2bNr5lXh42Jmhua4qYOzk4dOUOXmjHjj7aSqUSsOLYDQDA5K7uddoX3kRfBz28mqDH/SVvhSVKXEzIur/GPgMXEu4hM68Y+y/fwf7LdwAApvo6aH8/sQ90s0RrJzkTyipKyylEeEJZwh6emIXIRAVyiiqXyFub6KOtszn8XMrK5H2d5DAz4M08qh1VLq3v1asXgLJ17Z06dYKe3r/rNvT09NC0aVO8++67D02Uq2LGjBnYvXs3Tp48WamNXV5eHlJSUnD37l2sXr0aR44cwZkzZyqV9z+KSqWCv78/unfvjuXLl1d6/LPPPsP8+fMrna+vpfVEYlCpBMzbeRlrT98CAHzyrLfW94UmIs3cyytGl0VHkF+sRNDEAPRqXrW/09pm6aFrWHroOp5paYNfX2lcSwsak32XUvD6ugswNdDBqQ96w7QeJWzFpSpEJSnUif25+HvI/U/iaagrg7+redk6e3dLtHU2r9ObEfVVfnEpom4r1El7RKICSVmVS+QNdWXwdZSjrYu5esbdQW7AEnl6KpqU1mu8Rn7ixIlYtmxZjSa4s2bNwvbt23H8+HG4uT05MfD09MSkSZMwd+7cKr/Gq6++itu3b2Pv3r2VHnvYjLyzszMTeaL/EAQBX++LxqqQmwCAd/p6YWZvD/7RIiIA/yaw3vZm2P1G10b7u+HanRz0W3IcejIpzn/yTL1K8KhmCIKAoT/+g6gkBWb28sC7/Zs/+UkiUqoEXE3JxumbGQiLy0RYfCay/tOXXE8mRRtn+f019lbwd7WAib7Gq3AbFKVKwPW0HHW/9vBEBa7dyYHyPyXyEgngZWOqXtfe1tkcXrYm0GFFA9WwWl0jHxQUVO3A/ksQBMyaNQvbtm3DsWPHqpTElz/vwcS7KteHh4fD19f3oY/r6+tDX5+9OYmeRCKR4IMBLWCsp4PvD17D4oPXkFesxPsDmjfaD+xEVCavqFTdJmtaz2aN+neCl60pPGxMcCMtF4evpmG4H/cV0TYnrt9FVJICBrpSTOzSVOxwnkgmlcDHUQ4fRzmmdHOHSiXgRnouzty838s+LhPpOUU4G38PZ+Pv4aejsWXPcTBTJ/YBTS0hN2rYN6VSFYUIT7yn3kE+6rYCecWVN+q2MzOokLT7Osm1/qYGNTzV+ok8e/Ys/vzzTyQkJKC4uLjCY1u3bq3yODNmzMCGDRuwY8cOmJqaIjU1FQAgl8thaGiIvLw8LFiwAEOHDoW9vT0yMjKwYsUK3L59GyNGjFCPM378eDg6OmLhwoUAgPnz56Njx47w9PREdnY2li9fjvDwcPz000/VebtE9ACJRII3+njCSE+GL3dfxc8hscgvLsVnQ1o9sXcuEWmvTWcTkZVfgqZWRhjky01XB/nYYfmRG9gTlcJEXgv9dLRsbfzLgS6wMml4k0FSqQRetqbwsjXFuE5NIQgCbmXk48z9XfHD4jJx+14BIm4rEHFbgdUn4iCRAM1tTdHBzRId3MsS+yam9fe95xaVIvJ2WWl8eOI9hCeWbQj4X8Z6Mvg6ydHW2ULdAs5O3vBbVpP20ziR37RpE8aPH49+/frh4MGD6NevH65fv47U1FQ899xzGo21cuVKAEDPnj0rnA8KCsKECRMgk8kQHR2NNWvW4O7du7CyskJAQABOnDiBVq1aqa9PSEiAVPpvaUtWVhZee+01pKamQi6Xw8/PD8ePH0dgINvAENWUKd3cYaSng4+2R+F/obeQX6zE18/7ssyMqBEqLlXh1xNlS26m9mjGjVdRtnv98iM3cOxaOnKLSjmbp0XOxZfNYOvKJHi1m7vY4dQIiUSCptbGaGptjFEBZZvZJmUVICwu4/46+0zcTM9DdGoOolNzsCa0bL8c9ybGZYn9/Q30HMwNRYm/VKlCzJ2cCkn79bRc/HcBsVQCNLczu5+wlyXvHjYm/J1FDZLGa+Rbt26NqVOnYsaMGTA1NUVERATc3NwwdepU2NvbP3TTuIamvveRJ6pPtl9Mwjt/RkCpEjDY1x5LRrWFng6TeaLG5I+ziXhvSyRszfRx/L1e0NfhhlmCIKD34hDE3c3D8pf9MLSNg9ghUQ2ZFHwWR6LTMKq9Mxa92FrscOpMek5R2fr6+7P20ak5la5xsjBEoJslOt5P7F2tjGp8mY0gCEhWlO0iH554DxGJCkQlKVBQUrlE3tHc8H6JfFnS7uNoBiM93lSj+qtW18jHxsZi8ODBAMrWlufl5UEikeDtt99G7969tSKRJ6KqG+7nCANdGd7YeBG7o1JQUKLEijH+3PmWqJFQqgT8HBILAJjS1Z1J/H0SiQSDfO3w09FY7I1KYSKvJS4nK3AkOg1SCfB6z2Zih1OnmpjqY3BrewxuXbZ0Jiu/GGfj76ln7S8lZ+P2vQLcvpeErReSAAC2Zvrqdncd3Czh0cRE42V42YUliFTPtCsQnpiFu7mVS+RN9XXQ2ll+f7bdAm2c5bAxZYk8aS+NE3lLS0vk5JTdgXN0dMSlS5fg6+uLrKws5Ofn13iARFT/DfCxw+pX2mPq2nM4Ep2GScFnsXp8exizlJRI6+2/nIqbd/MgN9TFyx1cxA6nXhnoY4+fjsbiaEwa8otLOROoBVYeK7tpNcjXHm7WxiJHIy5zIz309bZFX29bAGVr0s/f+jexj0hU4E52EXZFJGNXRDIAwMJIF4Fulgh0s0IHN0u0tDerUNZeolQhOiUH4bez1DPusel5lV5bRypBC3tTddLe1lkOd2vNbxIQNWQa/0Xp1q0bDh48CF9fX4wcORJvvvkmjhw5goMHD6JPnz61ESMRNQA9vJpgzcRATAo+i1OxGRj32xkETQyE3LBh73BLRI8mCAJWHCvb9OuVTq5cB/4frRzM4GJphITMfByLSecmgA1c3N087IlKAQBM7+khcjT1j4m+Dnp4NUEPryYAgMISJS4mZN1vd5eB87fu4V5+CfZfvoP9l+8AKJtFb9/UAs6WRricnI1LSQoUlaoqje1saVg2y+4kh5+LOVo5yFn5R42exmvkMzMzUVhYCAcHB6hUKnz33Xc4efIkPDw88Mknn8DCwqK2Yq0zXCNPVH3hiVl45fcwKApK0MrBDP+bFNggd/Qloic7fi0d438Pg6GuDP980BuWxnpih1TvfL03Gj+HxGJwa3v8NNpf7HDoKXywJRKbziaidwsb/D4hQOxwGpziUhWikhTqdfbn4u8hp6i00nVyQ92ytm9OcrR1MUdrJ3NY83MENRKa5KEaJfKlpaVYv349+vfvDzs7u6cOtL5iIk/0dK6mZGPcb2dwN7cYHjYmWD+lA2zNuE6NSNu89EsoTt/MxMQuTTFvSKsnP6ERirydhaE//gMjPRnOf9wXhnqcRWyIUhQF6P7NUZQoBWyZ1gntXC3FDqnBU6oEXE3Jxpm4TKQqCuDtYIY2TuZwszau8Q3yiBoKTfJQjbaW1tHRwbRp01BUVHmDCSKici3tzbB5aifYyw1wIy0XI34ORWIm99Ag0iYXEu7h9E3tasFVG3wd5XCyMER+sRIh19LFDoeqafXxOJQoBXRws2QSX0NkUgl8HOWY3NUNHw32xnN+TnBvYsIknqiKNO4R1aFDB1y8eLE2YiEiLdKsiQn+mNpJvT505KpQ3EzPFTssIqohK46Wbfo1vK2jaL2jG4Ky3evL1saXr6+mhiUjtwgbwxIAADN6cW08EdUPGify06dPxzvvvIMff/wRoaGhiIyMrHAQEZVztjTCn693goeNCVIUhRi56jSiU7PFDouInlJMag4OXb0DSSNswVUdA33KliMevnoHhQ/pdU31W/CpeBSUKOHrKEc3T2uxwyEiAlCNXetHjRoFAHjjjTfU5yQSCQRBgEQigVLJP1BE9C9bMwNsfq0jxv0Whisp2Ri16jT+NykQbZzNxQ6NiKqpvG/8gFZ2aNbERORo6r+2zuZwkBsgWVGIE9fvqtt1Uf2XU1iC4FPxAIAZvZqx7JuI6g2NZ+Tj4uIqHTdv3lT/LxHRf1mZ6GPjax3h52IORUEJxvx6BmduZogdFhFVQ2JmPnbe7wnNFlxVI5FIMJDl9Q3SutMJyCksRbMmxujnrb0bPRNRw6NxIu/q6vrYg4joYeSGulg3uQM6uVsht6gUrwSFceMnogZo9YmbUKoEdPO0hq+TXOxwGoxBvmVJ4KErd1BUyurFhqCwRInfTpZNUk3v6QGplLPxRFR/aJzIA8DatWvRpUsXODg44NatWwCApUuXYseOHTUaHBFpF2N9HQRNDEDvFjYoLFHh1TXnsP9yqthhEVEVpecUYfPZRADANK6N14ifswVszfSRU1SKf27cFTscqoI/ziXibm4xHM0NMbStg9jhEBFVoHEiv3LlSsyePRuDBg1CVlaWek28ubk5li5dWtPxEZGWMdCV4eex7TDY1x7FShWmr7+AHeFJYodFRFUQ9E8cikpVaOtsjk7uVmKH06BIpRIM9Ckrr98dyRuY9V2JUoVVIWWz8VN7uENXVq25LyKiWqPxb6UffvgBq1evxkcffQSZTKY+3759e0RFRdVocESknfR0pFj2Ulu84O8EpUrAW5vD1a19iKh+yi4swdrQsiq86T256Vd1lLehO3glFcWlKpGjocfZEZ6MpKwCWJvoYWR7Z7HDISKqpFqb3fn5+VU6r6+vj7y8vBoJioi0n45Mim9fbI1xHV0hCMDcrVH47WSc2GER0SOsO30LOUWl8LQxwTMtuet6dbRztUATU31kF5biVCzL6+srpUrAimM3AACTu7rDQFf2hGcQEdU9jRN5Nzc3hIeHVzq/d+9eeHt710RMRNRISKUSfD6sFab2cAcAfPH3Ffxw+DoEQRA5MiJ6UGGJEr/fv9H2eo9m3PSrmmRSCQa0Ktv0bm8Uy+vrqwOXU3EzPQ+mBjoY29FF7HCIiB5K4z7yc+bMwYwZM1BYWAhBEBAWFoaNGzdi4cKF+PXXX2sjRiLSYhKJBB8MaAETPR0sPngNiw9eQ25xKT4Y0IKlu0T1xJ/c9KvGDPK1x9rTt7D/Siq+VPpw7XU9IwgCfro/Gz+hc1OYGuiKHJF2U6oEhMVlIi2nEDamBgh0s4SMNwqJqkTjRH7ixIkoLS3Fe++9h/z8fIwePRqOjo5YtmwZXnrppdqIkYi0nEQiwaw+njDUk+HL3VexKuQmCoqV+GxIK878EYmsVKnCquNlm3691p2bfj2tQDdLWBnrISOvGKdvZqCbZxOxQ6IHHL9+F5eSsmGoK8PELm5ih6PV9l1KwfxdV5CiKFSfs5cbYN4Qbwy4vzEkET1atf4av/rqq7h16xbS0tKQmpqKxMRETJ48uaZjI6JGZko3d3z1nC8kEuB/obfw3pZIlCq5IRSRmHZFJuP2vQJYGXPTr5ogk0rQ36esvH4Py+vrnZ+Ols3GvxzoAktjPZGj0V77LqVg2roLFZJ4AEhVFGLaugvYdylFpMiIGo5q31ZPS0vD1atXce3aNaSnp9dkTETUiI3u4IIlI9tCJpXgr/O38eamcO7uTCQSlUrAymOxAIBJXd1gqMdNv2rC4Pu71++/nMqblfXIufhMhMVlQlcmwavdORtfW5QqAfN3XcHDdsMpPzd/1xUoVdwvh+hxNE7ks7OzMW7cODg4OKBHjx7o3r07HBwcMHbsWCgUitqIkYgameF+jvhptD/0ZFLsjkrB6+vOo7BEKXZYRI3O4eg0XLuTCxN9HYzt6Cp2OFqjg5slLIx0kZlXjLC4TLHDoftW3L9p9YK/E+zlhiJHo73C4jIrzcQ/SACQoijk/zeInkDjRH7KlCk4c+YMdu/ejaysLCgUCvz99984d+4cXn311dqIkYgaoQE+dlj9SnsY6EpxJDoNE4POIq+oVOywiBoNQfi3BdfYjq6QG3LTr5qiI5Oi//3d6/ewhLheuJyswJHoNEglwNQezcQOR6ul5Tw6ia/OdUSNlcaJ/O7du/H777+jf//+MDMzg6mpKfr374/Vq1dj9+7dtREjETVSPbyaYM3EQJjo6yD0ZgbG/XYGioISscN6LKVKQGhsBnaEJyE0NoOlgdRgnYnLxMWELOjpSDGpa1Oxw9E6g+6X1++7dIe/J+qB8iUkg1s7wM3aWORotJuNqUGNXkfUWGm8a72VlRXkcnml83K5HBYWFjUSFBFRuQ7uVlg3pQNe+T0MFxKy8PIvp7F2ciCsTPTFDq0S7sBL2qS8zHhkeyd+oK4FnZpZQW6oi7u5RTgbn4mO7lZih9Ro3UzPxe6ossqI6T05G1/bAt0sYS83QKqi8KHr5CUA7ORlreiI6NE0npH/+OOPMXv2bKSk/FsKlpqaijlz5uCTTz6p0eCIiACgrbM5Nr3WEdYmeriSko1Rv5zGnez6VXLHHXhJm1xKUuD4tXTIpBJM7c7EpjboyqTo520LANgbxd8PYloVchOCAPRpYYOW9mZih6P1ZFIJ5g3xBlCWtD+o/Ot5Q7zZT57oCTRO5FeuXInTp0/D1dUVHh4e8PDwgIuLC06dOoVVq1bB399ffRAR1ZSW9mbYPLUT7OUGuJGWixE/hyIxM1/ssABwB17SPuVlxkNa28PZ0kjkaLRXeXn93kupUPH3gyiSswqw9eJtAMD0Xh4iR9N4DPCxx8qx/rCTV6z2sZMbYOVYf1axEVWBxqX1w4cPr4UwiIierFkTE/wxtRPG/HoGCZn5GLkqFOumdECzJiaixqXJDrydmrF8luq3m+m56g3YXmeZca3q4mENUwMdpOUU4XzCPQQ0ZSlxXVt94iZKlAI6uluinSuXiNalAT726Otth7C4TKTlFMLGtKycnjPxRFWjcSI/b9682oiDiKhKnC2N8OfrZcn8jbRcjFoVirWTO4haDskdeEmbPFhm3MKOZca1SU9Hir7etth6IQl7olKYyNexjNwibAxLAADM4Gy8KGRSCW9wE1WTxqX1D8rNzUV2dnaFg4iottmaGWDzax3RysEMd3OL8dIvpxGemCVaPNyBl7RFiuLBMmPOxteFQT7lu9ezvL6uBf0Tj8ISFXwd5ejqYS12OEREGtE4kY+Li8PgwYNhbGys3qnewsIC5ubm3LWeiOqMlYk+NrzaEf4u5lAUlGDsr2dw5maGKLGU78D7qGJACcp2r+cOvFTf/XoiDiVKAYFulmjnyp/XutDNyxom+jpIURTioog3JBub7MISrAmNBwDM6NUMEgnLuYmoYdE4kR8zZgzu3buH33//HYcPH8aRI0dw5MgRHD16FEeOHKmNGImIHkpuqIu1kzugk7sVcotK8UpQGEKupdd5HNyBl7TBvbxidZkxW3DVHX0dGZ5paQOAu9fXpXWnbyGnsBTNmhijn7ed2OEQEWlM4zXykZGROH/+PJo3b14b8RARacRYXwdBEwMwff0FHIlOw6trzuGH0X7o36puP5iV78D73z7yduwjTw1E8Kl45Bcr0crBDD28mogdTqMy0Nce28OTsfdSKj4a3JKzw7WsoFiJ307EAQCm9/SAlDdZiagB0jiRDwgIQGJiIhN5Iqo3DHRl+HlsO7y9ORy7o1Iwff0FLB7RBsP9HOs0Du7ASw1VXlEpgk/FAwCm9WSZcV3r4dUExnoyJGUVIOK2Am2dzcUOSav9cS4RGXnFcDQ3xNC2DmKHQ0RULRon8r/++itef/11JCUlwcfHB7q6uhUeb926dY0FR0RUVXo6Uix7qS0MdGXYcuE23v4jHPnFSozu4FKncXAHXmqINoYlQFFQAjdrYwxk9UidM9CVoXdLW+yKSMbeqBQm8rWouFSFVSGxAIDXe7hDV/ZU+z4TEYlG40Q+PT0dsbGxmDhxovqcRCKBIAiQSCRQKpU1GiARUVXpyKT49sXWMNKTYe3pW/hwWxTyi0sxpZu72KER1VtFpUr8er/MeGp3d1aQiGSQjx12RSRjz6UUfDCwBasiasmO8CQkKwphbaKPEe2dxQ6HiKjaNE7kJ02aBD8/P2zcuBG2trb8Q0NE9YpUKsHnw1rBSF+GVSE38eXuq8gvVmJWbw/+viJ6iO0Xk5CaXQhbM30851+3y1HoXz2b28BQV4bEzAJcSsqGr5Nc7JC0jlIlYOX92fgp3dxgoCsTOSIiourTOJG/desWdu7cCQ8Pj9qIh4joqUkkEnwwoAVM9HSw+OA1fH/wGvKKS/HBAM5yET1IqRLwc8hNAMCr3dyhr8PERiyGejL0bmGD3VEp2HMphYl8LThwORU30/NgZqCDMXW87IqIqKZpvDCod+/eiIiIqI1YiIhqjEQiwaw+nvh4cEsAwKqQm/h0x2WoVILIkRHVH/supSLubh7MjXTxciATG7EN9C3rtrE3KgWCwN9VNUkQBPx07AYAYELnpjA10H3CM4iI6jeNZ+SHDBmCt99+G1FRUfD19a202d3QoUNrLDh6PEEQkJ+fL3YYRPXay/62kKmK8dnOy1hzPAaK7Fx8MbwVdLjBETVygiBg+f4oqIoL8VJnR6C0CHmlRWKH1agFOhlDV1WMmymFOB+bipb2ZmKHpDVOXE9HZFwaDHVlGNHWBnl5eWKHREQiMDIy0p7qTEFDEonkkYdUKtVorK+++kpo3769YGJiIjRp0kQYNmyYEB0dXeGaefPmCc2bNxeMjIwEc3NzoU+fPsLp06efOPZff/0ltGzZUtDT0xNatmwpbN26tcpxKRQKAYCgUCg0ej91LTc3VwDAgwcPHjx48ODBgwcPHjyecOTm5oqdwj2WJnmoxlNSKpXqkYemO9aHhIRgxowZOH36NA4ePIjS0lL069evwl1SLy8v/Pjjj4iKisLJkyfRtGlT9OvXD+np6Y8cNzQ0FKNGjcK4ceMQERGBcePGYeTIkThz5oymb5eIiIiIiIioXpEIQvUXYRUWFsLAwKDGgklPT4eNjQ1CQkLQvXv3h16TnZ0NuVyOQ4cOoU+fPg+9ZtSoUcjOzsbevXvV5wYMGAALCwts3LjxiXGUv4ZCoYCZWf0taxNYWk+ksRPX0/HGxosoLFGhg5slfhrjD2N9jVcZETVoFxPuYfTqM9CVSXDg7e6wkxuKHRLdl1tUii5fH0FxqQo7ZnaBl62p2CE1eFPXnsPxa3cxor0jPh/mK3Y4RCSi+l5ar0keqvGnV6VSia+++go///wz7ty5g2vXrsHd3R2ffPIJmjZtismTJ1c7cIVCAQCwtLR86OPFxcX45ZdfIJfL0aZNm0eOExoairfffrvCuf79+2Pp0qUPvb6oqAhFRf+uC8zOztYwcnFIJBIYGxuLHQZRgzKgrTHWmpli8ppzOJuUj9c3XULQxEDIDbnxETUewWFXINUzwAvtndDMwVrscOgBxsZALx9nHLxyB0djs+Hnbid2SA3a5WQFTsbnQkffALP6+fJzExFpDY1L6xcsWIDg4GB888030NPTU5/39fXFr7/+Wu1ABEHA7Nmz0bVrV/j4+FR47O+//4aJiQkMDAywZMkSHDx4ENbWj/7gkZqaCltb2wrnbG1tkZqa+tDrFy5cCLlcrj6cnZ2r/T6IqP7r4G6F9VM6QG6oiwsJWXj5l9PIyOUmX9Q4xKTm4NDVNEgkwNQezcQOhx5i0AO719PTWXGsrG/8s60d0NSaSTwRaQ+NE/n//e9/+OWXXzBmzBjIZP/2m23dujWio6OrHcjMmTMRGRn50NL3Xr16ITw8HKdOncKAAQMwcuRIpKWlPXa8/5ZMCILwyDKKuXPnQqFQqI/ExMRqvw8iahjaOJtj02sdYW2ihysp2Rj1y2mkKgrFDouo1v0cUpbYDPSxQ7MmJiJHQw/Tp6Ut9GRSXE/LxfU7OWKH02DdTM/Fnvs3Q6b15E0rItIuGifySUlJ8PDwqHRepVKhpKSkWkHMmjULO3fuxNGjR+Hk5FTpcWNjY3h4eKBjx4747bffoKOjg99+++2R49nZ2VWafU9LS6s0S19OX18fZmZmFQ4i0n4t7c3wx9ROsJcb4EZaLkauCkViJvedIO2VmJmPnRHJAIDpPSv/Laf6wcxAF908yyoP90Q9vJqQnuznkFgIAtCnhQ1b+RGR1tE4kW/VqhVOnDhR6fyff/4JPz8/jcYSBAEzZ87E1q1bceTIEbi5uVX5eQ+uaf+vTp064eDBgxXOHThwAJ07d9YoPiLSfu5NTPDH1E5wsTRCQmY+Rq4KRWx6rthhEdWKX47fhFIloJunNXwc5WKHQ48x0NceALD3EsvrqyMpqwBbLyQBAKb34k0rItI+Vd7sbtKkSVi2bBnmzZuHcePGISkpCSqVClu3bkVMTAz+97//4e+//9boxWfMmIENGzZgx44dMDU1Vc+iy+VyGBoaIi8vDwsWLMDQoUNhb2+PjIwMrFixArdv38aIESPU44wfPx6Ojo5YuHAhAODNN99E9+7dsWjRIgwbNgw7duzAoUOHcPLkSY3iI6LGwdnSCH++3gljfj2DG2m5GLUqFGsnd+AMDmmV9Jwi/HGubOkYZ+Prv74tbaEjlSA6NQex6blcBqGh1cdvolQloKO7Jdq5WogdDhFRjavyjPyaNWtQUFCAIUOGYPPmzdizZw8kEgk+/fRTXL16Fbt27ULfvn01evGVK1dCoVCgZ8+esLe3Vx+bN28GAMhkMkRHR+OFF16Al5cXnn32WaSnp+PEiRNo1aqVepyEhASkpPx7x7pz587YtGkTgoKC0Lp1awQHB2Pz5s3o0KGDRvERUeNha2aAza91RCsHM9zNLcZLv5xGeGKW2GER1Zjf/4lDUakKfi7m6Oj+8O4wVH/IjXTRxaOsvJ6b3mnmbm4RNp1NAADM4Gw8EWmpKveRl0qlSE1NhY2NTW3HJLqG0keeiGqeoqAEE4PCcCEhC8Z6Mvw+IQAd3K3EDovoqWQXlqDLwiPIKSrF6vHt0df74XvGUP3yx9lEvLclEt72ZtjzZjexw2kwvt0fjZ+OxqK1kxw7ZnSp1z2jiYgepEkeqtEaef4iJCJtJzfUxdrJHdDJ3Qp5xUq8EhSGkGvpYodF9FTWht5CTlEpvGxN0KeF9t+Q1xZ9vW0hk0pwJSUb8XfzxA6nQcguLMH/Tt0CULaEhJ9diUhbaZTIe3l5wdLS8rEHEVFDZ6yvg6CJAejdwgaFJSpMWXMW+y5x52hqmApLlAj6Jw5AWQsuqZSJTUNhYayHzs3KKoL28ndQlZTftPKwMUE/Vp4QkRar8mZ3ADB//nzI5dzlloi0n4GuDD+PbYe3N4djd1QKZmy4gMUj2mC4n6PYoRFp5I9zibibWwxHc0M829pB7HBIQ4N87XHi+l3siUphL/QnKChW4veTZTetpvOmFRFpOY0S+ZdeeqlRrJEnIgIAPR0plr3UFga6Mmy5cBtv/xGO/GIlRndwETs0oiopUaqwKuQmAGBqD3foyjTuOksi6+dti4+2RSEqSYHEzHw4WxqJHVK99ce5RGTkFcPJwhBD2vCmFRFptyr/RecaIyJqjHRkUnz7YmuM7+QKQQA+3BaFX0/cFDssoirZFZGMpKwCWJvoYWR7Z7HDoWqwMtFHR/fy8nruXv8oxaUqrAqJBQBM7dGMN62ISOtV+bdcFTe3JyLSOlKpBPOHtsLrPcrKWr/cfRXLD1/n70Wq11QqASuPlSU2E7u4wUBXJnJEVF2DfO0BALujuE7+UXaEJyFZUQhrE32MaOckdjhERLWuyom8SqViWT0RNVoSiQTvD2iOd/p6AQC+P3gNX++NZjJP9dbh6DRcT8uFqb4OxnVyFTscegr9W9lBIgEiErNw+16+2OHUO0qVgJX3Z+Nf7cabVkTUOLDuiIioiiQSCWb18cTHg1sCAFYdv4lPd1yGSsVknuoXQRCw4tgNAMDYTq4wM9AVOSJ6Gk1M9RHYtKwzEDtoVLb/cipupufBzEAHYzryphURNQ5M5ImINDSlmzsWPu8LiQRYe/oW5vwViVKlSuywiNRO38zExYQs6OtIMamLm9jhUA0Y3LqsvH5PFNfJP0gQBPx0tOym1YQubjDR12gfZyKiBouJPBFRNbwc6IKlo9pCJpVgy4XbeGPTRRSXMpmn+qF8Nn5ke2c0MdUXORqqCeXl9RcSspCiKBA7nHoj5Fo6Lidnw0hPhomdm4odDhFRnWEiT0RUTcPaOmLFGH/oyaTYE5WKqWvPobBEKXZY1MhF3VbgxPW7kEkleK27u9jhUA2xNTNAe1cLACyvf9CKo2Vr40cHusDCWE/UWJQqAaGxGdgRnoTQ2AwoueyKiGoRE3kioqfQv5UdVr/SHga6UhyNScfEoLPILSoVOyxqxFaGlM3GD23jwJ7jWmagD8vrHxQWl4mw+EzoyaSY0k3cm1b7LqWg66IjeHn1aby5KRwvrz6NrouOYB9bBhKJTltvsjGRJyJ6Sj28mmDNxECY6Osg9GYGxv12Bor8ErHDokYoNj0Xe+/P1k7r2UzkaKimDfS1AwCcu3UPd7ILRY5GfOVLSF5o5wg7uYFocey7lIJp6y4gRVHx3yRVUYhp6y4wmScSkTbfZGMiT0RUAzq4W2H9lA6QG+riYkIWnl/5D9aevoXMvGKxQ6NGZFVILAQBeKalLbxsTcUOh2qYvdwQ/i7mEISyndobs0tJChyLSYdUAkztLt5NK6VKwPxdV/Cw+b3yc/N3XdGaGUCihkTbb7IxkSciqiFtnM2x6bWOsDbRQ2x6Hj7ZfgmBCw5hYlAYtl9MQh5L7qkWpSgKsO1iEgDOxmuzQb4srweAlcfK1sY/29oBTa2NRYsjLC6zUpLwIAFAiqIQYXGZdRcUETWKm2xM5ImIalBLezPsf6s7Ph7cEr6OcpSqBByNScdbm8PR/stDeGPjRRy+eoc73FONW308DiVKAR3cLNHu/qZopH0G3k/kw+IykZ5TJHI04ohNz8We+zNpYt+0Ssup2hKHql5HRDWjMdxkY7NNIqIaZmWijynd3DGlmzti03OxMzwZO8KTEJ+Rj50RydgZkQxzI10M8rXHsDYOCGhqCalUInbY1IBl5hVjY1gCAGB6Lw+Ro6Ha5GhuiDbO5ohIzML+y6kY29FV7JDq3M/HypeQ2KClvZmosdiYVm1tflWvI6Ka0RhusnFGnoioFjVrYoK3+3rh6Ls9sXNmF0zu6gYbU31k5Zdgw5kEjPrlNLosOoKFe67icrICgtBwS7xIPMGn4lFQokQrBzN097QWOxyqZYN8yja929vA13dWR1LWv0tI6sNNq0A3S9jLDfCoW7ESAPZyAwS6WdZlWESNXmO4ycZEnoioDkgkErR2Mscnz3ojdG4fbJjSAaPaO8PUQAcpikKsOn4Tg5efRN8lx/HD4eu4lZEndsjUQOQVlWLNqXgAwPSeHpBIWN2h7crXyYfGZiAjt3GV168+fhOlKgGd3K3g7yL+EhKZVIJ5Q7wBoFIyX/71vCHekLHqiqhONYabbEzkiYjqmEwqQWcPayx6sTXOffwMVo1rh8G+9tDXkeJGWi4WH7yGHt8ew/Cf/kHQP3ENuuyLat/GsAQoCkrgbm2MAfdnakm7OVsawddRDpUAHLhyR+xw6szd3CJsOlu2hGRGPZiNLzfAxx4rx/pXaoFnJzfAyrH+GOBjL1JkRI1XY7jJxjXyREQi0teRoX8rO/RvZYecwhIcuHwHOyKScfJ6OsITsxCemIUv/r6CLh7WGNrGAf197GBmoCt22FRPFJUqsfrETQDA1B7uDfoDCWlmoK8dopIU2BOVgpcDXcQOp04E/ROHwhIV2jjJ0cXDSuxwKhjgY4++3nYIi8tEWk4hbEzLZvr4/0ki8ZTfZJu/60qFje/s5AaYN8S7wd9kkwhckFlJdnY25HI5FAoFzMzE3USFiBqn9Jwi7I5Mxo6IZFxMyFKf19ORok8LGwxr64CezW1goCsTL0gS3aawBHywNQp2ZgY4/l4v6Omw0K6xiL+bh/+3d+dxUVf7/8BfMyzDNjMIOKwuBG4IivuCKXYVl1T6VbfNLFtumZr1uPVtudnDuvfbT+1XWVnaZlpat+WbpRli9BVBE9wHQRRBx4VNkGVmZJ1hzu8PZGouuKDMyuv5eMyjB2fOnM/7PDoOnzfnfM5JfGsX3KQSHHxlCnr4eto7JKvSNRqQsHwn9E1GfDxvBKYN5uoTIro+LSbhNH9k60weyhl5IiIH1FMuw/yESMxPiMS5qnpszSnBT+pSFFVcwva8cmzPK4dc5o7psSFIjg/HuKhAh/2lRNbRYhL4OLN1Nv7xWyOZxHczfYN8EROqQH6ZDmn5F3DPqF72DsmqNmadhb7JiH4qP0wdFGzvcIjIibhJJRgX5VireLoCE3kiIgfXO9AHi2/rh0WTo3G8TI8tOSX4WV2KUm0jvj9UjO8PFaOnXIZZQ0KRHB+OoRFKbnjWDWzPK4PmYh38fTy6zdJqsjQzLgT5ZTqk5JW5dCLf0NyCz/doAAALJ0fxuE4iIjCRJyJyGhKJBDFhCsSEKfDitIE4eLYGW9Ql+CW3DJX6Jqz//QzW/34GfQJ9kDw0DHPiwxGt8rN32NTF6puNOFaqwwc7iwAA88f3ha+Mv867oxlxoXjr15P4vegitPUGKH1cc/+Mbw+cQ1VdMyJ6eGP2kDB7h0NE5BD4m5+IyAlJpRKMjgzA6MgALJs9GHuKKrFFXYpfj13A2ap6vL+zCO/vLMLgMAXuiA/HrKGhCFV62zts6qRGQwuOl+mQW6LF0WItcou1KKzQw3R5dxsfTzc8PK6vXWMk+4nq6YeBIXKcKNcj7fgF3D0iwt4hdblmowmfXH6EZMGkKLi78RESIiKAiTwRkdPzdJfitoHBuG1gMOqbjUjLv4Ct6lJknKzEsVIdjpXq8H+3H8eYyAAkx4djRmwI/H1ce2MsZ2RoMaGgXH85aa/F0WItCsr1MJra70kbrJAhLtwfj98a6fKbnNHVzYgNxYlyPbbnlrlkIv+TugSl2kb0lMtcsn9EneVMG7eRdXHX+g5w13oicgU1dc1IySvDFnUp9muqzeUebhJM6t+68/2UQcHw9uTO97bWYhIoqriEo8W1yC3RIqdYi+NlOjQbTe3qBvh6YkiEEkMi/DEkXIm4CCWCFV4dtErdUeEFPaauyoSnmxQHX53iUsdTtpgEpr6TgdMX6/CPmQPxxMQoe4dEZFepeWXtjlILdZGj1KhVZ/JQJvIdYCJPRK6mpLYB23JKsUVdivwynbncx7P1HPs58WGYEB0EDy5b7XImk4Cmqg65xa3L448W1+JYqQ4NhpZ2dRVe7hgS4Y+4CCWGhCsxpJc/wpRe3LyQrmrqOxkorLiEVfcOxf8Z5jqz1r8cLcOirw9D6e2B31+6DX7cC4K6sdS8Mjy16TD+M3Fr++2w9sHhTOZdAI+fIyIiC+H+3nhyUhSenBSFwgt6bL2c1J+rrsePR0rw45ESBPh64va4UCTHh2F47x7cGfoGCCFQXNOAnOJac+KeV6KFvsnYrq6vpxtiw5UYEqFE3OXZ9j6BPkzaqdNmxIWi8H8LkZJb7jKJvBACH6a3buj48Pi+TOKpW2sxCbz+c367JB4ABFqT+dd/zsfUmBAus+9G+K1IRNTN9AuW47mkAfj71P5Qn6/FFnUpth0txcVLzdiYfRYbs88i3N8bc+LDkBwfhoEhXJnUESEEynWN5ln2o8Va5JZoUVtvaFfXy0OKwWFKxF1O3IdEKBEZ5McbLuoSM+NC8P7/FiLjZCUuNRldIunddbIS+WU6+Hi64ZHxfe0dDpFd7ddUWyyn/08CQJm2Efs11S55Xjp1zPm/6YmI6IZIJBIM690Dw3r3wNLbByHrdBV+OlKKHcfKUVLbgLW7TmHtrlMYECzHnPgwzBkahl4BPvYO224q9U3ILam9nLi3vi5eampXz8NNgkGhitaEPbx1mXw/lR932yarGRAsxy09fXG6sg7/e/wCkuPD7R3STVtzeTb+gdG9uaEjdXsV+isn8TdSj1wDE3kiIoK7mxS39uuJW/v1xBuGWOw8UYEt6hKkn6hEwQU9/t+OAvy/HQUY0acHkuPDMDMuFEF+MnuHbTU1dc3ILdFa7CDf0WyIm1SC/sFy8yZ0QyP80T/EDzJ3biBItiORSDAzNhQfpBdhe2650yfy+zXVOHCmBp5uUjx+6y32DofI7lTy69vg9HrrkWtgIk9ERBa8PNwwMy4UM+NCoW0wYEdeObbklGDvqSocOluDQ2dr8PrP+ZgQHYTk+DAkDQ5x6qW8+kZDa9JerMXRy/89V13frp5EAkT39DNvRBcX4Y/BYQp4eTBpJ/ubEReCD9KLkF5QgbomI3yd+N9k27Pxd42IQIiSiQnR6MgAhCq9UK5t7PA5eQmAEGXrUXTUfTjvtzwREVmd0tsD94zqhXtG9cIFXSO2HS3DVnUJcoq1yDhZiYyTlfDyyMVfBgUjeWgYJg3o6dCz0fXNRuSX6v54rr1Ei9OVdR3WjQzyNT/THheuxOBwpVP/wYJcW0yoAn0CfXC2qh7pBRWYNSTM3iHdkLyS1u8WqQRYMImz8URA6+qvZbNj8NSmw5AAFsl8204ry2bHcN+VbobHz3WAx88REV2d5mIdtqpLsUVdgtMX/0iEFV7umBkXijnxYRgTGWjXm4pGQwtOlOuRW/zHc+2FFXqYOvitF+7v/cdZ7RFKxIYpofRxnfO4qXtYmXoCa3edwu1xofhw7nB7h3NDFn51CCm55UiOD8N79w2zdzhEDoXnyLs+niN/k5jIExFdHyEEjpXqsEVdgq05pbig+2PztxCFF2YPDUVyfDgGhymseqyaocWEgnL95WfatcgtqUVBuR6Glva/4oIVMsSF+5t3j48LVyLQhZ/3p+4jt1iL2R/sgbeHGw6/OhXeno67OqYjpyovYco7GRACSH32Vp6YQdSBFpPAfk01KvSNUMlbl9NzJt518Bx5IiKyCYlEgthwJWLDlXhpxiDs11Rja04JfjlahnJdIz7drcGnuzW4pacvkoeGY058GCKDfG/qmi0mgaKKSzhaXGtO3PPLdGg2mtrVDfD1vLx7/OWz2iOUCFbwmVtyTbHhCkT08EZxTQMyTlY43QzdR7tOQQhgyqBgJvFEV+AmlfCIOQJg5xn55cuXY/PmzThx4gS8vb0xfvx4rFy5EgMGDAAAGAwGLF26FCkpKTh9+jSUSiWmTJmCFStWICzsys9+bdiwAY888ki78oaGBnh5XfsGjjPyREQ3p8nYgsyTF7FFXYLfjl9Ao+GPJHtohBJz4sMxe0goVNdIqk0mgTNVdcgt0SLnfOtMe16JDg2GlnZ1FV7uGBLh/6fN6JQI9/e26koAIkezPOU4Ps48jdlDw7D6fudZml5S24BJb6bDaBLYvHA8hvfuYe+QiIhszmlm5DMyMrBo0SKMGjUKRqMRr7zyCpKSkpCfnw9fX1/U19fj8OHDePXVVzF06FDU1NTg2WefxZw5c3Dw4MGrtq1QKFBQUGBRdj1JPBER3TyZuxumxgRjakwwLjUZkZZfji3qUuwuvIicYi1yirV445d8jIsKRPLQcEyLDYHCyx3FNQ2tz7OX1OLoeS3ySrTQNxnbte/r6YbB4UoMjbg80x6uRJ9AHybt1O3NiAvFx5mnsfP4BTQaWpzmVIVPM0/DaBIYHxXIJJ6I6Do41DPylZWVUKlUyMjIwMSJEzusc+DAAYwePRpnz55F7969O6yzYcMGPPvss6itrb2hODgjT0RkHVWXmpCSW4Yt6lIcPFtjLvd0k8JX5oaaekO7z8jcpRgcpjBvRDckQonIID8+E0jUASEEJqxMR0ltAz6ZNwJJg0PsHdI1XbzUhIQVO9FkNOGrx8cgITrI3iEREdmF08zI/yetVgsACAi48hmIWq0WEokE/v7+V23r0qVL6NOnD1paWhAfH49//etfGDbMeZaYERG5okA/GeaN64t54/rifHU9fj5aii1HSlFwQY/mehM83CQYFKowH/s2JMIf/VR+cHeT2jt0IqcgkUgwIzYEn+3RICW3zCkS+c/3aNBkNGFoL3+M57O/RETXxWFm5IUQSE5ORk1NDXbv3t1hncbGRkyYMAEDBw7Epk2brthWdnY2ioqKEBcXB51Oh/feew8pKSnIyclBv3792tVvampCU9MfOy3rdDr06tWLM/JERDZSVKFHQ7MJ/UP8HPoceiJncOhsDe5auxd+MnccenWKQ/+b0jYYMGHFTuibjE6zgoCIyFqcckZ+8eLFOHr0KPbs2dPh+waDAffddx9MJhPWrFlz1bbGjh2LsWPHmn9OSEjA8OHDsXr1arz//vvt6i9fvhyvv/76zXWAiIhuWLRKbu8QiFzGsF7+CFF4oVzXiD2FF/GXQcH2DumKNmWfhb7JiP7BfpjiwHESETkah1ir+PTTT2Pr1q1IT09HREREu/cNBgPuueceaDQapKWldXqWXCqVYtSoUSgsLOzw/Zdffhlardb8On/+/A31g4iIiMjepFIJZsS1zmz/kltm52iurKG5Bev2aAAACxOjIeW+F0RE182uibwQAosXL8bmzZuxc+dOREZGtqvTlsQXFhbit99+Q2Bg55+dEkJArVYjNLTj81RlMhkUCoXFi4iIiMhZzYxrvedJy7+AZqPpGrXt45sD51Bd14xeAd6YNcS5zrwnIrI3uy6tX7RoEb7++mts2bIFcrkc5eXlAAClUglvb28YjUbcfffdOHz4MLZt24aWlhZznYCAAHh6egIAHnroIYSHh2P58uUAgNdffx1jx45Fv379oNPp8P7770OtVuPDDz+0T0eJiIiIbGhE7x5QyWWo0Dfh91MXMXmAyt4hWWg2mvBJ5mkAwJMTo7ihJRFRJ9n1W3Pt2rXQarVITExEaGio+fXtt98CAIqLi7F161YUFxcjPj7eos7evXvN7Zw7dw5lZX8sHautrcUTTzyBQYMGISkpCSUlJcjMzMTo0aNt3kciIiIiW5NKJZge27q8PuWo4y2v/+lICcq0jegpl+HuEe0fqyQioqtzmF3rHQnPkSciIiJnl326Cvd9kg2ltwcOLp0CDweZ9W4xCUx5JwOai3X4x8yBeGJilL1DIiJyCJ3JQx3jG52IiIiIutSovgEI8vOEtsGArFNV9g7HbHteGTQX66D09sADY/rYOxwiIqfERJ6IiIjIBblJJZh2+Vz27XmOsbxeCIEP008BAOaP7ws/mcOchExE5FSYyBMRERG5qNsv716/49gFGFvsv3v9roJKHC/TwcfTDfPH97V3OERETouJPBEREZGLGh0ZgABfT1TXNWOfptre4eDD9CIAwNwxvdHD19PO0RAROS8m8kREREQuyt1NimmDgwEAKbn2XV6/X1ONg2dr4OkmxeO33mLXWIiInB0TeSIiIiIXNtO8vL4cLSb7HVbUNht/98gIBCu87BYHEZErYCJPRERE5MLG3hIIfx8PXLzUjP12Wl6fV6JFxslKSCXAAh43R0R005jIExEREbkwDzcpkmJal9fba/f6NbtaZ+PnDA1D70Afu8RARORKmMgTERERubgZl5fXb8+z/fL6oopL2J5XDgB4KjHaptcmInJVTOSJiIiIXFxCVBAUXu6o1Dfh0Nkam177o4xTEAKYGhOMASFym16biMhVMZEnIiIicnGe7lJMjQkBYNvd64tr6vHTkRIAwMJEPhtPRNRVmMgTERERdQMz41oT+dS8cphstLz+08zTMJoEEqIDMax3D5tck4ioO2AiT0RERNQNTOgXBLnMHeW6Rhw5b/3l9ZX6Jnxz4DwAYBGfjSci6lJM5ImIiIi6AZm7G6Zc3r0+Jbfc6tf7/HcNmowmxPfyx7ioQKtfj4ioO2EiT0RE5GRaTAJZp6qwRV2CrFNVNt+FnJzXjNjW5fXbc8sghPXGjbbBgI1ZZwG0PhsvkUisdi0iou7I3d4BEBER0fVLzSvD6z/no0zbaC4LVXph2ewYTI8NtWNk5Awm9u8JX083lGoboT5fa7Xn1jdmncGlJiP6B/thyqBgq1yDiKg744w8ERGRk0jNK8NTmw5bJPEAUK5txFObDiM1z3a7kZNz8vJww18uJ9ZtZ7t3tfpmIz7//QwAYGFiNKRSzsYTEXU1JvJEREROoMUk8PrP+ehoMXRb2es/53OZPV1T2+71KVZaXv/N/vOormtGrwBvzBrCVSJERNbARJ6IiMgJ7NdUt5uJ/zMBoEzbiP2aatsFRU4pcYAKPp5uKK5pQG6Jtkvbbjaa8EnmaQDAgklRcHfjrSYRkTXw25WIiMgJVOivnMTfSD3qvrw83DB5oApA1+9e/+ORYpTrGqGSy3DX8IgubZuIiP7ARJ6IiMgJqOReXVqPureZlzdG3J7XdcvrW0wCH2W0zsb/7dZb4OXh1iXtEhFRe0zkiYiInMDoyACEKr1wpW3DJGjdvX50ZIAtwyInNXlgT3h5SHG2qh7HSnVd0ub2vDJoLtZB6e2BB8b07pI2iYioY0zkiYiInICbVIJls2MAoF0y3/bzstkxcOMO4XQdfDzdMXlA6/L67V1w2oEQAh+mnwIAPJLQF74ynnBMRGRNTOSJiIicxPTYUKx9cDhClJbL50OUXlj74HCeI0+dMiOudbyk5Jbf9PL6XQWVOF6mg4+nG+aP79sF0RER0dXwz6VEREROZHpsKKbGhGC/phoV+kao5K3L6TkTT51120AVPN2l0FysQ8EFPQaGKG6oHSEEPkgvAgA8OLYP/H08uzJMIiLqABN5IiIiJ+MmlWBcVKC9wyAn5ydzR2L/nvg1/wJSjpbdcCK/X1ONQ2dr4OkmxeMTIrs4SiIi6giX1hMRERF1UzPbltfn3fgxdB/uan02/q8jI6BS8NQEIiJbYCJPRERE1E3dNkgFTzcpiiouofCCvtOfzy3WIvNkJdykEjw5McoKERIRUUeYyBMRERF1UwovD0zsHwQA+CW387vXr9nV+mz8nKFh6B3o06WxERHRlTGRJyIiIurGZlw+7WB7bueW1xdV6JF6rPUzTyVyNp6IyJaYyBMRERF1Y1NiguHhJkHBBT2KKi5d9+fW7joNIYCkmGD0D5ZbMUIiIvpPTOSJiIiIujGltwcmRLcur99+ncvrz1fX4yd1CQBg4eRoq8VGREQdYyJPRERE1M3N6OTu9Z/uPo0Wk0BCdCDie/lbMTIiIuoIE3kiIiKibi4pJhjuUgmOl+mguVh31boV+kZ8c+A8AGBRImfjiYjsgYk8ERERUTfn7+OJcVGBAICUayyv/3zPGTQbTYjv5W/+DBER2RYTeSIiIiLC7ZeX12/Pu3Iir603YFP2WQDAosnRkEgkNomNiIgsMZEnIiIiIiQNDoGbVIK8Eh3OVdV3WOfLrDO41GTEgGA5/jJQZeMIiYioDRN5IiIiIkKAryfG3hIAoONZ+fpmIz7/XQMAWDg5ClIpZ+OJiOyFiTwRERERAQBmtu1e38Fz8t/sP4+aegN6B/iYl+ETEZF92DWRX758OUaNGgW5XA6VSoU77rgDBQUF5vcNBgNefPFFxMXFwdfXF2FhYXjooYdQWlp6zbZ/+OEHxMTEQCaTISYmBj/++KM1u0JERETk9JJiQiCVADnFWhTX/LG8vtlowieZpwEACyZFwd2Nc0FERPZk12/hjIwMLFq0CNnZ2UhLS4PRaERSUhLq6lqPPamvr8fhw4fx6quv4vDhw9i8eTNOnjyJOXPmXLXdrKws3HvvvZg3bx5ycnIwb9483HPPPdi3b58tukVERETklHrKZRgd2bq8PvVPZ8r/eKQY5bpGqOQy3DUi3F7hERHRZRIhhLB3EG0qKyuhUqmQkZGBiRMndljnwIEDGD16NM6ePYvevXt3WOfee++FTqfD9u3bzWXTp09Hjx498O9///uaceh0OiiVSmi1WigUihvrDBEREZET2ph1Bq9uOYZhvf3x48IEtJgE/vL2LpypqsfS2wfh8VtvsXeIREQuqTN5qEOti9JqtQCAgICAq9aRSCTw9/e/Yp2srCwkJSVZlE2bNg179+7tsH5TUxN0Op3Fi4iIiKg7mjY4BBIJcORcLUprG5CSW4YzVfXw9/HA/aM7nkQhIiLbcphEXgiBv//975gwYQJiY2M7rNPY2IiXXnoJDzzwwFX/QlFeXo7g4GCLsuDgYJSXl3dYf/ny5VAqleZXr169brwjRERERE5MpfDCqD5tu9eX48P0IgDAI+Mj4Stzt2doRER0mcMk8osXL8bRo0evuPTdYDDgvvvug8lkwpo1a67ZnkRieSSKEKJdWZuXX34ZWq3W/Dp//nznO0BERETkImbEhQAAVu8sxIlyPXw93fDw+D52joqIiNo4RCL/9NNPY+vWrUhPT0dERES79w0GA+655x5oNBqkpaVd83mBkJCQdrPvFRUV7Wbp28hkMigUCosXERERUXc1I7b1eLnaegMA4MGxfeDv42nPkIiI6E/smsgLIbB48WJs3rwZO3fuRGRkZLs6bUl8YWEhfvvtNwQGBl6z3XHjxiEtLc2i7Ndff8X48eO7LHYiIiIiVxWi9MKIPj0AAJ7uUjw2of09GhER2Y9dH3RatGgRvv76a2zZsgVyudw8i65UKuHt7Q2j0Yi7774bhw8fxrZt29DS0mKuExAQAE/P1r8MP/TQQwgPD8fy5csBAM888wwmTpyIlStXIjk5GVu2bMFvv/2GPXv22KejRERERE7mnpEROHS2BvPG9oFK4WXvcIiI6E/sevzclZ5ZX79+PebPn48zZ850OEsPAOnp6UhMTAQAJCYmom/fvtiwYYP5/f/5n//B0qVLcfr0aURFReGNN97AnXfeeV1x8fg5IiIi6u6EEDh54RKiVX5wk3Z8z0ZERF2nM3moQ50j7yiYyBMREREREZEtOe058kRERERERER0dUzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JEnoiIiIiIiMiJMJEnIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIifCRJ6IiIiIiIjIiTCRJyIiIiIiInIiTOSJiIiIiIiInAgTeSIiIiIiIiInwkSeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJyIu70DcERCCACATqezcyRERERERETUHbTln2356NUwke+AXq8HAPTq1cvOkRAREREREVF3otfroVQqr1pHIq4n3e9mTCYTSktLIZfLIZFI7B3OVel0OvTq1Qvnz5+HQqGwdzjkgjjGyBY4zsgWOM7I2jjGyBY4zlyXEAJ6vR5hYWGQSq/+FDxn5DsglUoRERFh7zA6RaFQ8B8yWRXHGNkCxxnZAscZWRvHGNkCx5lrutZMfBtudkdERERERETkRJjIExERERERETkRJvJOTiaTYdmyZZDJZPYOhVwUxxjZAscZ2QLHGVkbxxjZAscZAdzsjoiIiIiIiMipcEaeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JE3s6WL1+OUaNGQS6XQ6VS4Y477kBBQYFFHSEEXnvtNYSFhcHb2xuJiYk4duyYRZ1PPvkEiYmJUCgUkEgkqK2tbXetmpoazJs3D0qlEkqlEvPmzeuwHrkeW42zM2fO4LHHHkNkZCS8vb0RFRWFZcuWobm52dpdJDuz5XdZm6amJsTHx0MikUCtVluhV+RobD3OfvnlF4wZMwbe3t4ICgrCnXfeaa2ukQOx5Tg7efIkkpOTERQUBIVCgYSEBKSnp1uze+QAumKMVVdX4+mnn8aAAQPg4+OD3r17Y8mSJdBqtRbt8P7fdTGRt7OMjAwsWrQI2dnZSEtLg9FoRFJSEurq6sx13nzzTbzzzjv44IMPcODAAYSEhGDq1KnQ6/XmOvX19Zg+fTr+8Y9/XPFaDzzwANRqNVJTU5Gamgq1Wo158+ZZtX/kGGw1zk6cOAGTyYSPP/4Yx44dw6pVq/DRRx9ddVySa7Dld1mbF154AWFhYVbpDzkmW46zH374AfPmzcMjjzyCnJwc/P7773jggQes2j9yDLYcZ7fffjuMRiN27tyJQ4cOIT4+HrNmzUJ5eblV+0j21RVjrLS0FKWlpXjrrbeQm5uLDRs2IDU1FY899pjFtXj/78IEOZSKigoBQGRkZAghhDCZTCIkJESsWLHCXKexsVEolUrx0Ucftft8enq6ACBqamosyvPz8wUAkZ2dbS7LysoSAMSJEyes0xlyWNYaZx158803RWRkZJfFTs7B2mMsJSVFDBw4UBw7dkwAEEeOHLFGN8jBWWucGQwGER4eLj777DOrxk/OwVrjrLKyUgAQmZmZ5jKdTicAiN9++806nSGHdLNjrM13330nPD09hcFgEELw/t/VcUbewbQthwkICAAAaDQalJeXIykpyVxHJpNh0qRJ2Lt373W3m5WVBaVSiTFjxpjLxo4dC6VS2al2yDVYa5xd6Vpt16Huw5pj7MKFC/jb3/6GjRs3wsfHp+uCJqdjrXF2+PBhlJSUQCqVYtiwYQgNDcWMGTPaLZ2m7sFa4ywwMBCDBg3Cl19+ibq6OhiNRnz88ccIDg7GiBEjurYT5NC6aoxptVooFAq4u7sD4P2/q2Mi70CEEPj73/+OCRMmIDY2FgDMS6uCg4Mt6gYHB3dq2VV5eTlUKlW7cpVKxeVb3Yw1x9l/OnXqFFavXo0FCxbceMDkdKw5xoQQmD9/PhYsWICRI0d2XdDkdKw5zk6fPg0AeO2117B06VJs27YNPXr0wKRJk1BdXd1FPSBnYM1xJpFIkJaWhiNHjkAul8PLywurVq1Camoq/P39u6wP5Ni6aoxVVVXhX//6F5588klzGe//XZu7vQOgPyxevBhHjx7Fnj172r0nkUgsfhZCtCu7lo7q30g75NysPc7alJaWYvr06fjrX/+Kxx9//IbaIOdkzTG2evVq6HQ6vPzyyzcdJzk3a44zk8kEAHjllVdw1113AQDWr1+PiIgIfP/99xY3yuTarDnOhBBYuHAhVCoVdu/eDW9vb3z22WeYNWsWDhw4gNDQ0JuOnxxfV4wxnU6H22+/HTExMVi2bNlV27haO+RcOCPvIJ5++mls3boV6enpiIiIMJeHhIQAQLu/mlVUVLT7K93VhISE4MKFC+3KKysrO9UOOTdrj7M2paWlmDx5MsaNG4dPPvnk5oImp2LtMbZz505kZ2dDJpPB3d0d0dHRAICRI0fi4Ycf7oIekDOw9jhrS6BiYmLMZTKZDLfccgvOnTt3M6GTE7HF99m2bdvwzTffICEhAcOHD8eaNWvg7e2NL774oms6QQ6tK8aYXq/H9OnT4efnhx9//BEeHh4W7fD+33UxkbczIQQWL16MzZs3Y+fOnYiMjLR4PzIyEiEhIUhLSzOXNTc3IyMjA+PHj7/u64wbNw5arRb79+83l+3btw9arbZT7ZBzstU4A4CSkhIkJiZi+PDhWL9+PaRSfs10B7YaY++//z5ycnKgVquhVquRkpICAPj222/xxhtvdE1nyGHZapyNGDECMpnM4jgog8GAM2fOoE+fPjffEXJothpn9fX1ANDu96RUKjWvCiHX1FVjTKfTISkpCZ6enti6dSu8vLws2uH9v4uz5c561N5TTz0llEql2LVrlygrKzO/6uvrzXVWrFghlEql2Lx5s8jNzRX333+/CA0NFTqdzlynrKxMHDlyRHz66afmHVCPHDkiqqqqzHWmT58uhgwZIrKyskRWVpaIi4sTs2bNsml/yT5sNc5KSkpEdHS0uO2220RxcbHFtci12fK77M80Gg13re9GbDnOnnnmGREeHi527NghTpw4IR577DGhUqlEdXW1TftMtmercVZZWSkCAwPFnXfeKdRqtSgoKBDPP/+88PDwEGq12ub9JtvpijGm0+nEmDFjRFxcnCgqKrJox2g0mtvh/b/rYiJvZwA6fK1fv95cx2QyiWXLlomQkBAhk8nExIkTRW5urkU7y5Ytu2Y7VVVVYu7cuUIulwu5XC7mzp17XceHkfOz1Thbv379Fa9Frs2W32V/xkS+e7HlOGtubhbPPfecUKlUQi6XiylTpoi8vDwb9ZTsyZbj7MCBAyIpKUkEBAQIuVwuxo4dK1JSUmzUU7KXrhhjbccadvTSaDTmerz/d10SIYTo/Dw+EREREREREdkDH14lIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIifCRJ6IiIiIiIjIiTCRJyIiIiIiInIiTOSJiIiIiIiInAgTeSIiIiIiIiInwkSeiIiIiIiIyIkwkSciInJwVVVVUKlUOHPmjE2vu2HDBvj7+1ul7W3btmHYsGEwmUxWaZ+IiMiVMZEnIiJycMuXL8fs2bPRt2/fdu8lJSXBzc0N2dnZtg/sJsyaNQsSiQRff/31Fes89thjiIuLQ3Nzs0V5SkoKPDw8cPDgQWuHSURE5JCYyBMRETmwhoYGrFu3Do8//ni7986dO4esrCwsXrwY69ats0N0N8ZgMAAAHnnkEaxevfqK9d59913o9XosW7bMXFZbW4snnngCr7zyCkaOHGm12IiIiBwZE3kiIiIHtn37dri7u2PcuHHt3lu/fj1mzZqFp556Ct9++y3q6uos3k9MTMSSJUvwwgsvICAgACEhIXjttdcs6rQlxsHBwfDy8kJsbCy2bdtmUWfHjh0YNGgQ/Pz8MH36dJSVlZnfM5lM+Oc//4mIiAjIZDLEx8cjNTXV/P6ZM2cgkUjw3XffITExEV5eXti0aRMAYM6cOdi/fz9Onz7dYd/lcjk2bNiAt99+G/v27QMAPPvsswgNDcXSpUtRUlKCe++9Fz169EBgYCCSk5MtHj84cOAApk6diqCgICiVSkyaNAmHDx+2uIZEIsFHH32E5ORk+Pr64r//+7+v8H+CiIjIcTCRJyIicmCZmZkdzjwLIbB+/Xo8+OCDGDhwIPr374/vvvuuXb0vvvgCvr6+2LdvH958803885//RFpaGoDWJHzGjBnYu3cvNm3ahPz8fKxYsQJubm7mz9fX1+Ott97Cxo0bkZmZiXPnzuH55583v//ee+/h7bffxltvvYWjR49i2rRpmDNnDgoLCy3iePHFF7FkyRIcP34c06ZNAwD06dMHKpUKu3fvvmL/ExMTsXDhQjz88MP4/vvv8d133+HLL79Ec3MzJk+eDD8/P2RmZmLPnj3mPzS0LcXX6/V4+OGHsXv3bmRnZ6Nfv36YOXMm9Hq9xTWWLVuG5ORk5Obm4tFHH73W/xIiIiL7E0REROSwkpOTxaOPPtqu/NdffxU9e/YUBoNBCCHEqlWrREJCgkWdSZMmiQkTJliUjRo1Srz44otCCCF27NghpFKpKCgo6PDa69evFwBEUVGRuezDDz8UwcHB5p/DwsLEG2+80e4aCxcuFEIIodFoBADx7rvvdniNYcOGiddee63D99rU19eLgQMHCqlUKlatWiWEEGLdunViwIABwmQymes1NTUJb29vsWPHjg7bMRqNQi6Xi59//tlcBkA8++yzV70+ERGRo+GMPBERkQNraGiAl5dXu/J169bh3nvvhbu7OwDg/vvvx759+1BQUGBRb8iQIRY/h4aGoqKiAgCgVqsRERGB/v37X/H6Pj4+iIqK6vDzOp0OpaWlSEhIsPhMQkICjh8/blF2pefZvb29UV9ff8Xrt9V57rnn4OPjg2eeeQYAcOjQIRQVFUEul8PPzw9+fn4ICAhAY2MjTp06BQCoqKjAggUL0L9/fyiVSiiVSly6dAnnzp27rtiIiIgclbu9AyAiIqIrCwoKQk1NjUVZdXU1fvrpJxgMBqxdu9Zc3tLSgs8//xwrV640l3l4eFh8ViKRmI988/b2vub1O/q8EKJd2Z8JIdqV+fr6dth+dXU1evbsec043N3d4ebmZm7XZDJhxIgR+Oqrr9rVbWtv/vz5qKysxLvvvos+ffpAJpNh3Lhx7XbBv1JsREREjooz8kRERA5s2LBhyM/Ptyj76quvEBERgZycHKjVavPr3XffxRdffAGj0XhdbQ8ZMgTFxcU4efLkDcWmUCgQFhaGPXv2WJTv3bsXgwYNuubn22bPhw0b1ulrDx8+HIWFhVCpVIiOjrZ4KZVKAMDu3buxZMkSzJw5E4MHD4ZMJsPFixc7fS0iIiJHw0SeiIjIgU2bNg3Hjh2zmJVft24d7r77bsTGxlq8Hn30UdTW1uKXX365rrYnTZqEiRMn4q677kJaWho0Gg22b99usev8tfzXf/0XVq5ciW+//RYFBQV46aWXoFarzUvgryY7O9s8S95Zc+fORVBQEJKTk7F7925oNBpkZGTgmWeeQXFxMQAgOjoaGzduxPHjx7Fv3z7MnTv3ulYhEBEROTom8kRERA4sLi4OI0eONO9If+jQIeTk5OCuu+5qV1culyMpKalTZ8r/8MMPGDVqFO6//37ExMTghRdeQEtLy3V/fsmSJXjuuefw3HPPIS4uDqmpqdi6dSv69et3zc/++9//xty5c+Hj43Pd12vj4+ODzMxM9O7dG3feeScGDRqERx99FA0NDVAoFACAzz//HDU1NRg2bBjmzZuHJUuWQKVSdfpaREREjkYi/vNBNyIiInIoKSkpeP7555GXlwep1DX+Bl9ZWYmBAwfi4MGDiIyMtHc4REREToWb3RERETm4mTNnorCwECUlJejVq5e9w+kSGo0Ga9asYRJPRER0AzgjT0REREREROREXGN9HhEREREREVE3wUSeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JEnoiIiIiIiMiJMJEnIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIify/wFoDoMGiENzlwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1673,13 +1691,18 @@ } ], "source": [ - "print(f\"The MSE loss is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\")\n", + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", "\n", "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", "fig, ax = plt.subplots(figsize=(12, 5))\n", "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", - "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", " label=\"Climatology\", c=\"black\")\n", "plt.xlabel(\"(Anchor) Year\")\n", @@ -1687,13 +1710,6 @@ "plt.legend()\n", "plt.show()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index c29171a..8221d4f 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,23 +39,20 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "import lilio\n", -<<<<<<< HEAD - "import numpy as np\n", - "import pandas as pd\n", -======= "import urllib\n", ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 "import xarray as xr\n", "from s2spy import preprocess\n", "from s2spy import RGDR\n", - "from sklearn.linear_model import RidgeCV\n", + "from sklearn.linear_model import Ridge\n", "from sklearn.metrics import mean_squared_error\n", - "from sklearn.model_selection import KFold" + "from sklearn.model_selection import KFold\n", + "# for reproducibility \n", + "np.random.seed(1)" ] }, { @@ -68,42 +65,46 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", + "calendar.add_intervals(\"target\", length=\"30d\")\n", "# add precursor periods\n", - "periods_of_interest = 4\n", - "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Calendar(\n", - " anchor='07-01',\n", + " anchor='08-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='0d')\n", + " Interval(role='target', length='30d', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='1M')\n", " ]\n", ")" ] }, - "execution_count": 39, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -124,17 +125,17 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", - " )" + " )" ] }, - "execution_count": 4, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -152,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -163,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -183,16 +184,12 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 42, -======= - "execution_count": 7, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABelklEQVR4nO3deXhMZ/sH8O+Z7HsIEktUEPsWYq3GUlvRUooWVaV28ipeS/VFbGkopdZaKql9r1RVqSVqJ7FvDYKQRCyRlUxm5vn9kV9OjQSZZJI5Sb6f68olc+acZ+4zjzM59zybJIQQICIiIiIiMjGVqQMgIiIiIiICmJwQEREREZFCMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBHNTB1BQ6HQ6REVFwcHBAZIkmTocIiIiKsSEEEhMTESZMmWgUvG7ZCo6mJxkU1RUFNzd3U0dBhERERUhkZGRKFeunKnDIMo3TE6yycHBAUD6h4Sjo6OJoyEiIqLCLCEhAe7u7vL9B1FRweQkmzK6cjk6OjI5ISIionzBruRU1LATIxERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBE4IJ6IiKgQE0IgNTXVqOVYWVnleKC20sp5mbHiMYYXL14YrSyigoTJCRERUSGWmpqKHj165LocrVaL0NBQAIC3t3eOFwZUWjkv27p1K6ytrXN0rLHe5wxpaWlGK4uoIGFyQkREVASEPUjM1fFCp0P8Cw0sS3vi4mMtJEmbw3K0SFALqIqVwfmoJCCnLRVGiidD3ZIWuTpeFnnaOOW4eRmnHKIChskJERFREdF0uD/MzC1zdKz6eSL+mNgdAPDe+OWwsMpZC0Nacjx2Dn0PANB46Owcl2OseHRpqQgJGJKjY19n3WAvWFnkrCUnNU2HvivOGTUeooKEyQkREVERYWZuCTNLq5wdm/bveAozC0uYW+YsGdCq/x1LoYR4NDk66s2sLFSwtjDLg5KJCj/O1kVERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQI5qYOgIiIiPLfIf/BeB7/GJKkgoWNHRr0m4RiFarhyq6ViPg7GIkxd+EzZhHK1m/xxnL2TuqG53EP/78cezQZMQculWrj+bNHODJnGBKjI6CysEQz3/lwq9W0wMRjLO2+P4mY+FSoJAkO1uZY1Lcm6pV3QmxCKvqtPI9bscmwsjDD8n610bxK8TyPh0jpTNpy4u/vj4YNG8LBwQGlSpVC165dcePGDb19hBCYNm0aypQpAxsbG7Rs2RJXrlyRn3/69ClGjRqFqlWrwtbWFuXLl4evry/i4+P1ypk1axaaNWsGW1tbODs758fpERERKda7vt+j43c78IH/NlTr2A+nVk4BALjWbIwW/12KUtUaZKucVpPX4OPlx9B12d+o9clIHJ0/EgBwdrUfSlb3xidrQvHe2CUICRgMnVZTYOIxli3DG+DijBY4P90HYztUxIDVFwAAE7deR5NKzggPaI01A+qiz4pz0Gh1eR4PkdKZNDkJCQnBiBEjcPLkSezfvx8ajQbt2rVDcnKyvM+cOXMwf/58LF68GGfOnIGbmxvatm2LxMREAEBUVBSioqLw/fff49KlSwgMDMTevXsxcOBAvddSq9Xo0aMHhg0blq/nSEREpESWdo7y7+qUJEiSBAAoUbkOHFzds12Olb3Tv+UkJwBS+q1FxJFfUf3DrwAAJavWh41zKTy8fLLAxGMszrYW8u/xKWlQqdLPa8uZKIxoXQEA0LCiM1wdLXE0/Gmex0OkdCbt1rV37169x2vWrEGpUqUQGhoKHx8fCCGwYMECTJ48Gd26dQMABAUFwdXVFRs2bMCQIUNQq1YtbN++XS6jUqVKmDVrFvr27QuNRgNz8/RT9PPzAwAEBgbmz8kREREp3Ill3yD26mkAQMsJy3NcTsicoYi58DcAoN2sbXiR8BRC6GDjXELex961PJJi76N4pVqKiqdkde8cv0529Vt5DoeuPQEA7B3bGE+S1NAJgZKOVvI+FUrY4t6TF2hSKc/DIVI0RQ2Iz+iKVbx4ep/LiIgIxMTEoF27dvI+VlZWaNGiBY4fP/7GchwdHeXEJCdSU1ORkJCg90NERFSYNB02G10W/YXaPUbh3IZ5OS6nxfjl6LX+Cur3/xZnVqV3x5IgvbKXKHDxGMsvg7wQOb8NZnariv9uvpplPCL/wiFSNMUkJ0IIjBkzBs2bN0etWunfqsTExAAAXF1d9fZ1dXWVn3vVkydPMGPGDAwZMiRX8fj7+8PJyUn+cXfPfpMyERFRQVLRpwtir55BauKzXJXj2fYzRF84Kj9+/uyx/HvSw0jYlypXIOMxli+au+PQ9Sfy40cJqfLvd5+koLyLdb7GQ6REiklORo4ciYsXL2Ljxo2Znsvod5pBCJFpGwAkJCSgU6dOqFGjBqZOnZqreCZNmoT4+Hj5JzIyMlflERERKUVaShJS4mLlx5FnDsDS3gmWL43XyA51cgJSnkTLj+8c2w0rx+KwciiGCj5dcO23VQCARzfC8DzuIVxrNSkQ8RhLwvM0RMW9kB/vDI2Gi70littZoEfD0lhy8A4A4MztZ4iJT0VzT87WRaSIqYRHjRqF4OBgHDlyBOXK/fsthpubG4D0FpTSpUvL22NjYzO1piQmJqJDhw6wt7fHzp07YWFhgdywsrKClZXV23ckIiIqYNTPk3B0wdfQql9AUqlg5VAMLcYtgSRJuLJrFcL3b0RqYhxO/vQtzCws0WH2VqjMMt8yqJMTcHDGF9CqnwOSCtZOJdB2+iZIkoSGA6chZM5QbPuyAVTmlvAZ/1OWZZg6nrycsSs+RYPuS87iuVoHlQoo6WCF3aMbQpIkBPSojs9XnoPnhIOwNFdh7SAvmJupoNFp8yweooLApMmJEAKjRo3Czp07cfjwYXh4eOg97+HhATc3N+zfvx9eXl4A0mfdCgkJQUBAgLxfQkIC2rdvDysrKwQHB8Pams2iREREr2Pn4ob2MzL3VACAml2+Qs0uX2Xark7OPPbSvlQ5fLToQJbl2BQrhQ7+OwpkPMbi7mKD01Pey/I5Vycr7BuXty03RAWRSZOTESNGYMOGDdi1axccHBzkcSROTk6wsbGBJEkYPXo0Zs+eDU9PT3h6emL27NmwtbVF7969AaS3mLRr1w4pKSlYt26d3uD1kiVLwszMDABw7949PH36FPfu3YNWq8X58+cBAJUrV4a9vX3+nzwREREREekxaXKybNkyAEDLli31tq9Zswb9+/cHAIwfPx7Pnz/H8OHDERcXh8aNG2Pfvn1wcHAAAISGhuLUqVMA0hONl0VERKBChQoAgClTpiAoKEh+LqMl5tChQ5len4iIiIiI8p/Ju3W9jSRJmDZtGqZNm5bl8y1btsxWOYGBgVzjhIiIiIhIwRQzWxcRERERERVtTE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEimJs6ACIiIsofWo3aKMdq09TQqHL2/aYuLVWvTJU6Z+XkRTzGkpqmM8mxRIUBkxMiIqIi4sTSSTk+Vuj+vWn+e85QSFJOy9HKv59a/g1yWpCx4skLfVecM3UIRAUWkxMiIqIioH5Zh1wdr9VqERptDsRFoE4lb6hy2FKh1aoQelcCkqNRr3rZXJRjnHiMzr2RccpJSzNOOUQFjCSEEKYOoiBISEiAk5MT4uPj4ejoaOpwiIiIskUIgdTU3HdderkcKysrSDlt8VBYOS8zVjzGkJCQAFdXV953UJHDlhMiIqJCTJIkWFtbG6UsGxubQlmOMRjzfQYAtTrn44OICjKFtIESEREREVFRx+SEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFMGg5ESj0SAoKAgxMTF5FQ8RERERERVRBiUn5ubmGDZsGFJTU/MqHiIiIiIiKqIM7tbVuHFjnD9/Pg9CISIiIiKioszc0AOGDx+OMWPGIDIyEg0aNICdnZ3e83Xq1DFacERUNAghjNYi+3JZVlZWkCTJJGXkRVnGjscYjHFOREREGSQhhDDkAJUqc2OLJEkQQkCSJGi1WqMFpyQJCQlwcnJCfHw8HB0dTR0OUaHy4sUL9OjRwyhlabVahIaGAgC8vb2z/MzKjzLyoiwA2Lp1K6ytrXN8vDHfa2PEQ0RZ430HFVUGt5xERETkRRxERAh7kJjrMoROh/gXGliW9sTFx1pIkuFfmAidFglqAVWxMjgflQTkpqXCCPFkqFvSIsfHZhJ5OvdluDfKfRlEREQvMTg5eeedd/IiDiIiAEDT4f4wM7fM8fHq54n4Y2J3AMB745fDwsrwb/XTkuOxc+h7AIDGQ2fnqAxjxqNLS0VIwJAcx/A66wZ7wcrC8Jac1DQd+q44Z/R4iIiIDE5OMly9ehX37t2DWq3W2/7RRx/lOigiKrrMzC1hZmmV8+PT/h1PYWZhCXNLw5MBrfqFouLR5PjV38zKQgVrC7M8Kp2IiMhwBicnt2/fxscff4xLly7JY00AyAMiC+uYEyIiIiIiylsGt+f/5z//gYeHBx4+fAhbW1tcuXIFR44cgbe3Nw4fPpwHIRIRERERUVFgcMvJiRMncPDgQZQsWRIqlQoqlQrNmzeHv78/fH19ce4c+yETEREREZHhDG450Wq1sLe3BwCUKFECUVFRANIHyt+4ccO40RERERERUZFhcMtJrVq1cPHiRVSsWBGNGzfGnDlzYGlpiRUrVqBixYp5ESMRERERERUBBicn3377LZKTkwEAM2fOROfOnfHee+/BxcUFmzdvNnqARERERERUNBicnLRv317+vWLFirh69SqePn2KYsWKyTN2ERERERERGcrw1bf+382bN/Hnn3/i+fPnKF68uDFjIiIiIiKiIsjg5OTJkyd4//33UaVKFXTs2BHR0dEAgK+++gpjx441eoBERERERFQ0GNyt6+uvv4aFhQXu3buH6tWry9t79eqFr7/+GvPmzTNqgERERESUNa1Wi7S0NFOHQfRGlpaWUKmy1yZicHKyb98+/PnnnyhXrpzedk9PT9y9e9fQ4oiIiIjIQEIIxMTE4NmzZ6YOheitVCoVPDw8YGlp+dZ9DU5OkpOTYWtrm2n748ePYWVlZWhxRERERGSgjMSkVKlSsLW15aREpFg6nQ5RUVGIjo5G+fLl3/p/1eDkxMfHB7/88gtmzJgBAJAkCTqdDnPnzkWrVq1yFjURERERZYtWq5UTExcXF1OHQ/RWJUuWRFRUFDQaDSwsLN64r8HJydy5c9GyZUucPXsWarUa48ePx5UrV/D06VMcO3Ysx0ETERER0dtljDHJqicLkRJldOfSarVvTU4Mnq2rRo0auHjxIho1aoS2bdsiOTkZ3bp1w7lz51CpUqWcRUxEREREBmFXLiooDPm/anDLCQC4ubnBz88vJ4cSERERERFlyeCWkwoVKmD69OmIjIzMi3iIiIiIiKiIMrjlZOzYsQgMDMT06dPRqlUrDBw4EB9//DFn6iIiIiIytXn53NVrrMjf1zMxSZKwc+dOdO3a1dSh5FjLli1Rr149LFiwwNShZMnglpNRo0YhNDQUoaGhqFGjBnx9fVG6dGmMHDkSYWFheREjERERERVwkiS98ad///4mi61ChQrZulmPjo7GBx98kO1yAwMD4ezsnPPAiiCDk5MMdevWxcKFC/HgwQNMnToVq1atQsOGDVG3bl38/PPPEKJoZdJERERE9HrR0dHyz4IFC+Do6Ki3beHChQaVp1ar8yjS13NzczNJbyGtVgudTpfvr2sKOU5O0tLSsGXLFnz00UcYO3YsvL29sWrVKvTs2ROTJ09Gnz59jBknERERERVgbm5u8o+TkxMkSZIfW1hYYOjQoShXrhxsbW1Ru3ZtbNy4Ue/4li1bYuTIkRgzZgxKlCiBtm3bAgCCg4Ph6ekJGxsbtGrVCkFBQZAkCc+ePZOPPX78OHx8fGBjYwN3d3f4+voiOTlZLvfu3bv4+uuv5Vac15EkCb/++isA4M6dO5AkCTt27ECrVq1ga2uLunXr4sSJEwCAw4cP48svv0R8fLxc7rRp0wBAXo6jbNmysLOzQ+PGjXH48GH5dTJaXHbv3o0aNWrAysoKK1euhLW1td55AYCvry9atGgBAHjy5Ak+++yzN76PSmdwchIWFoZRo0ahdOnSGDVqFGrWrInLly/j6NGj+PLLLzF58mQEBwdj586deREvERERERUyL168QIMGDbB7925cvnwZgwcPxueff45Tp07p7RcUFARzc3McO3YMP/30E+7cuYNPPvkEXbt2xfnz5zFkyBBMnjxZ75hLly6hffv26NatGy5evIjNmzfj6NGjGDlyJABgx44dKFeuHKZPny634hhi8uTJGDduHM6fP48qVargs88+g0ajQbNmzTK1EI0bNw4A8OWXX+LYsWPYtGkTLl68iB49eqBDhw4IDw+Xy01JSYG/vz9WrVqFK1euoG/fvnB2dsb27dvlfbRaLbZs2SI3CmT3fVQygwfEN2zYEG3btsWyZcvQtWvXLBdSqVGjBj799FOjBEhEREREhVvZsmXlG3cgfYzz3r17sXXrVjRu3FjeXrlyZcyZM0d+PHHiRFStWhVz584FAFStWhWXL1/GrFmz5H3mzp2L3r17Y/To0QAAT09P/Pjjj2jRogWWLVuG4sWLw8zMDA4ODnBzczM49nHjxqFTp04AAD8/P9SsWRM3b95EtWrV9FqIMty6dQsbN27E/fv3UaZMGbmMvXv3Ys2aNZg9ezaA9F5KS5cuRd26deVje/XqhQ0bNmDgwIEAgAMHDiAuLg49evQw6H1UMoOTk9u3b+Odd9554z52dnZYs2ZNjoMiIiIioqJDq9Xiu+++w+bNm/HgwQOkpqYiNTUVdnZ2evt5e3vrPb5x4wYaNmyot61Ro0Z6j0NDQ3Hz5k2sX79e3iaEgE6nQ0REBKpXr56r2OvUqSP/Xrp0aQBAbGwsqlWrluX+YWFhEEKgSpUqettTU1Ph4uIiP7a0tNQrGwD69OmDpk2bIioqCmXKlMH69evRsWNHFCtWDED230clMzg5eVtiQkRERERkiHnz5uGHH37AggULULt2bdjZ2WH06NGZBr2/epMthMg0RuTVSZl0Oh2GDBkCX1/fTK9bvnz5XMf+ci+ijFjeNHhdp9PBzMwMoaGhMDMz03vO3t5e/t3GxibTuTVq1AiVKlXCpk2bMGzYMOzcuVOvQSC776OS5WiFeCIiIiIiY/n777/RpUsX9O3bF0D6DXx4ePhbWzWqVauGPXv26G07e/as3uP69evjypUrqFy58mvLsbS0hFarzWH0r5dVuV5eXtBqtYiNjcV7771ncJm9e/fG+vXrUa5cOahUKrlLGZDz91FJcjxbFxERERGRMVSuXBn79+/H8ePHce3aNQwZMgQxMTFvPW7IkCG4fv06JkyYgH/++QdbtmxBYGAggH9bMSZMmIATJ05gxIgROH/+PMLDwxEcHIxRo0bJ5VSoUAFHjhzBgwcP8PjxY6OdV4UKFZCUlIQDBw7g8ePHSElJQZUqVdCnTx/069cPO3bsQEREBM6cOYOAgIBMiVZW+vTpg7CwMMyaNQuffPIJrK2t5edy+j4qCVtOiIiIiAqLArpi+//+9z9ERESgffv2sLW1xeDBg9G1a1fEx8e/8TgPDw9s27YNY8eOxcKFC9G0aVNMnjwZw4YNk9cjqVOnDkJCQjB58mS89957EEKgUqVK6NWrl1zO9OnTMWTIEFSqVAmpqalGW6+vWbNmGDp0KHr16oUnT55g6tSpmDZtGtasWYOZM2di7NixePDgAVxcXNC0aVN07NjxrWV6enqiYcOGOHPmTKaFI3P6PiqJQclJWloaqlatKs+5TERERERkqP79++utCF+8eHF5/ZDXeXkdkJd99NFH+Oijj+THs2bNQrly5fRaFBo2bIh9+/a9tuwmTZrgwoULb4375aSlQoUKmZIYZ2fnTNuWLVuGZcuW6W2zsLCAn58f/Pz8snydV9+fV50+fTrL7bl5H5XCoOTEwsICqampb1ycxhD+/v7YsWMHrl+/DhsbGzRr1gwBAQGoWrWqvI8QAn5+flixYgXi4uLQuHFjLFmyBDVr1gQAPH36FFOnTsW+ffsQGRmJEiVKoGvXrpgxYwacnJzkcuLi4uDr64vg4GAA6f+RFy1aBGdnZ6OcCxEZ3yH/wXge/xiSpIKFjR0a9JuEYhWq4cqulYj4OxiJMXfhM2YRytZv8cZy9k7qhudxD/+/HHs0GTEHLpVq4/mzRzgyZxgSoyOgsrBEM9/5cKvVtMDEYyztvj+JmPhUqCQJDtbmWNS3JuqVd0JsQir6rTyPW7HJsLIww/J+tdG8SvE8j4eIyBBLly5Fw4YN4eLigmPHjmHu3LnyGiZU8BjcrWvUqFEICAjAqlWrYG6eu15hISEhGDFiBBo2bAiNRoPJkyejXbt2uHr1qjwbw5w5czB//nwEBgaiSpUqmDlzJtq2bYsbN27AwcEBUVFRiIqKwvfff48aNWrg7t27GDp0KKKiorBt2zb5tXr37o379+9j7969ACAvSvPbb7/l6hyIKO+86/s9LO0cAQD3zx7AqZVT0GHWFrjWbIzyTTrg9Mop2Sqn1eQ1sLJP/7Li7vHfcXT+SHRZEoKzq/1Qsro32s/ehkc3wnBw5hfoEXiuwMRjLFuGN4CzbfpsM7+GxWDA6gsI8/PBxK3X0aSSM/aObYwzt5/hk6WhuBXQKs/jISIyRHh4OGbOnImnT5+ifPnyGDt2LCZNmmTqsCiHDM4uTp06hQMHDmDfvn3yFGUv27FjR7bLykgUMqxZswalSpVCaGgofHx8IITAggULMHnyZHTr1g1A+sqgrq6u2LBhA4YMGYJatWrprZRZqVIlzJo1C3379oVGo4G5uTmuXbuGvXv34uTJk/ICNCtXrkTTpk1x48YNvZYaIlKOjEQAANQpSXKrbYnKdV53SJYyEgEAUCcnAFL6XCARR35Fj6DzAICSVevDxrkUHl4+ieKVaikqnpLVvbMqxmgyEhMAiE9Jg0qVfl5bzkQhYk5rAEDDis5wdbTE0fCnaFKpWJ7GQ0RkiB9++AE//PCDqcMgIzE4OXF2dkb37t3zIhZ5sE7x4undBiIiIhATE4N27drJ+1hZWaFFixY4fvw4hgwZ8tpyHB0d5ZadEydOwMnJSW9lzCZNmsDJyQnHjx/PMjnJWLQmQ0JCQu5PkIgMdmLZN4i9mt63tuWE5TkuJ2TOUMRc+BsA0G7WNrxIeAohdLBxLiHvY+9aHkmx91+bnJgqnrxOTgCg38pzOHTtCQBg79jGeJKkhk4IlHS0kvepUMIW9568QJNKeR4OEREVUQYnJ3m18rsQAmPGjEHz5s1Rq1b6jUHG1Geurq56+7q6uuLu3btZlvPkyRPMmDFDL3GJiYlBqVKlMu1bqlSp106v5u/v/9pBSkSUf5oOmw0AuH1kF85tmIeW45e95YistRifnkiE79+IM6umwGf8T5Dw6vi5t8/OorR4jOWXQV4AgKCjkfjv5qtYO9grUzxGmryGiIjotXK8zsmjR49w9OhRHDt2DI8ePcp1ICNHjsTFixexcePGTM9ltfJnVoPyExIS0KlTJ9SoUQNTp059YxlvKgcAJk2ahPj4ePknMjLSkNMhIiOr6NMFsVfPIDXxWa7K8Wz7GaIvHJUfP3/273z2SQ8jYV+qXIGMx1i+aO6OQ9efyI8fJfzbgnz3SQrKu1hndRgREZFRGJycJCcnY8CAAShdujR8fHzw3nvvoUyZMhg4cCBSUlJyFMSoUaMQHByMQ4cOoVy5f/8Qu7m5AUCm1o3Y2NhMrSmJiYno0KED7O3tsXPnTlhYWOiV8/Dhw0yv++jRo0zlZLCysoKjo6PeDxHln7SUJKTExcqPI88cgKW9EyxfGq+RHerkBKQ8iZYf3zm2G1aOxWHlUAwVfLrg2m+rAACPboThedxDuNZqUiDiMZaE52mIinshP94ZGg0Xe0sUt7NAj4alseTgHQDAmdvPEBOfiuaenK2LiIjyjsHdusaMGYOQkBD89ttvePfddwEAR48eha+vL8aOHZtpHuc3EUJg1KhR2LlzJw4fPgwPDw+95z08PODm5ob9+/fDyyu9y4FarUZISAgCAgLk/RISEtC+fXtYWVkhODhYb15rAGjatCni4+Nx+vRpNGrUCED6wP74+Hg0a9bM0LeAiPKB+nkSji74Glr1C0gqFawciqHFuCWQJAlXdq1C+P6NSE2Mw8mfvoWZhSU6zN4Ka8fMN87q5AQcnPEFtOrngKSCtVMJtJ2+CZIkoeHAaQiZMxTbvmwAlbklfMb/BJVZ1h+LpoxHp9UY/f3NEJ+iQfclZ/FcrYNKBZR0sMLu0Q0hSRICelTH5yvPwXPCQViaq7B2kBfMzVTQ6LR5Fg8RERVtBicn27dvx7Zt29CyZUt5W8eOHWFjY4OePXsalJyMGDECGzZswK5du+Dg4CC3kDg5OcHGxgaSJGH06NGYPXs2PD094enpidmzZ8PW1ha9e/cGkN5i0q5dO6SkpGDdunVISEiQB6+XLFkSZmZmqF69Ojp06IBBgwbhp59+ApA+lXDnzp05UxeRQtm5uKH9jMzdPAGgZpevULPLV9kqx75UOXy06ECWz9kUK4UO/tmbYVBp8RiLu4sNTk95L8vnXJ2ssG9c3rbcEBFR+qKLz549e+sCikoWGBiI0aNH49mzZ7kqx+DkJCUlJcuuUKVKlTK4W1dGIvNyogOkD7rPWBVz/PjxeP78OYYPHy4vwrhv3z44ODgAAEJDQ3Hq1CkAQOXKlfXKiYiIQIUKFQAA69evh6+vrzzz10cffYTFixcbFC8RERGRkpWYdiRfX+/xNB+D9u/fvz+CgoIAAObm5nB3d0e3bt3g5+eXaXmKomThwoWZVpZ/G0mSsHPnTnTt2jVvgjIRg5OTpk2bYurUqfjll1/k7lPPnz+Hn58fmjY1bCXj7FSCJEmYNm0apk2bluXzLVu2zFY5xYsXx7p16wyKj4iIiIiMq0OHDlizZg3S0tLw999/46uvvkJycnKWvW/S0tL0xhHnp7x4bbVaDUtLy0zbnZwMG79oTKZ8j7Ni8ID4hQsX4vjx4yhXrhzef/99tGnTBu7u7jh+/DgWLlyYFzESERERUSFhZWUFNzc3uLu7o3fv3ujTp4/cnWnatGmoV68efv75Z1SsWBFWVlYQQiA+Ph6DBw9GqVKl4OjoiNatW+PChQt65QYHB8Pb2xvW1tYoUaKEvIA3kP5l96tdppydnREYGAgAuHPnDiRJwpYtW9CyZUtYW1tj3bp1uHv3Lj788EMUK1YMdnZ2qFmzJvbs2SOXERISgkaNGsHKygqlS5fGxIkTodH8O06wZcuWGDlyJMaMGYMSJUqgbdu2Wb4n/fv312sBadmyJXx9fTF+/HgUL14cbm5uel/UZ/QM+vjjjyFJkvwYAH777Tc0aNAA1tbWqFixIvz8/PRikiQJy5cvR5cuXWBnZ4fp06ejXLlyWL5cf+2usLAwSJKE27dvAwDmz58vL8Du7u6O4cOHIykpKcvzyQ2Dk5NatWohPDwc/v7+qFevHurUqYPvvvsO4eHhqFmzptEDJCIiIqLCy8bGBmlpafLjmzdvYsuWLdi+fTvOnz8PAOjUqRNiYmKwZ88ehIaGon79+nj//ffx9OlTAMDvv/+Obt26oVOnTjh37hwOHDgAb2/DF7CdMGECfH19ce3aNbRv3x4jRoxAamoqjhw5gkuXLiEgIAD29vYAgAcPHqBjx45o2LAhLly4gGXLlmH16tWYOXOmXplBQUEwNzfHsWPH5LHP2REUFAQ7OzucOnUKc+bMwfTp07F//34AwJkzZwCkD4WIjo6WH//555/o27cvfH19cfXqVfz0008IDAzErFmz9MqeOnUqunTpgkuXLuGrr77Cp59+ivXr1+vts2HDBjRt2hQVK1YEAKhUKvz444+4fPkygoKCcPDgQYwfP96Adzd7DO7WBaT/Jxo0aJCxYyEiIiKiIuT06dPYsGED3n//fXmbWq3G2rVrUbJkSQDAwYMHcenSJcTGxsLKygoA8P333+PXX3/Ftm3bMHjwYMyaNQuffvqp3gLadevWNTie0aNH67W43Lt3D927d0ft2rUBQL5RB4ClS5fC3d0dixcvhiRJqFatGqKiojBhwgRMmTIFKlV6G0DlypUxZ84cg2OpU6eOvG6fp6cnFi9ejAMHDqBt27bye+Ps7CwvvQEAs2bNwsSJE/HFF1/I8c6YMQPjx4/XWwOwd+/eGDBggPy4T58+mD9/Pu7evYt33nkHOp0OmzZtwjfffKP33mTw8PDAjBkzMGzYMCxdutTgc3uTHCUn//zzDw4fPozY2FjodDq956ZMmWKUwIiIiIio8Nm9ezfs7e2h0WiQlpaGLl26YNGiRfLz77zzjnzzDaRPfpSUlAQXFxe9cp4/f45bt24BAM6fP2+UL85fbW3x9fXFsGHDsG/fPrRp0wbdu3dHnTp1AADXrl1D06ZN9Rb0fvfdd5GUlIT79++jfPnyWZaZXRmvk6F06dKIjY19zd7pQkNDcebMGb2WEq1WixcvXiAlJQW2trZZxuTl5YVq1aph48aNmDhxIkJCQhAbG4uePXvK+xw6dAizZ8/G1atXkZCQAI1GgxcvXiA5OdmokxkYnJysXLkSw4YNQ4kSJeDm5qZXIZIkMTkhIiIiotdq1aoVli1bBgsLC5QpUybTYOxXb3R1Oh1Kly6Nw4cPZyrL2dkZQHqvnjeRJCnTBEovdyV73Wt/9dVXaN++PX7//Xfs27cP/v7+mDdvHkaNGgUhhN59MPDvZE8vb8/pjfur74skSZkaBV6l0+ng5+en1/qT4eV1ALOKqU+fPtiwYQMmTpyIDRs2oH379ihRogQA4O7du+jYsSOGDh2KGTNmoHjx4jh69CgGDhyY5fuYGwYnJzNnzsSsWbMwYcIEowZCRERERIWfnZ1dpuUf3qR+/fqIiYmBubm53sDvl9WpUwcHDhzAl19+meXzJUuWRHR0tPw4PDw820tguLu7Y+jQoRg6dCgmTZqElStXYtSoUahRowa2b9+ul6QcP34cDg4OKFu2bLbPL6csLCyg1eovilu/fn3cuHHDoPc3Q+/evfHtt98iNDQU27Zt05s97ezZs9BoNJg3b57cXW3Lli25O4HXMHhAfFxcHHr06JEXsRARERER6WnTpg2aNm2Krl274s8//8SdO3dw/PhxfPvttzh79iyA9AHeGzduxNSpU3Ht2jVcunRJb5xH69atsXjxYoSFheHs2bMYOnRotqbPHT16NP78809EREQgLCwMBw8eRPXq1QEAw4cPR2RkJEaNGoXr169j165dmDp1KsaMGSPfwOelChUq4MCBA4iJiUFcXByA9OEVv/zyC6ZNm4YrV67g2rVr2Lx5M7799tu3lufh4YFmzZph4MCB0Gg06NKli/xcpUqVoNFosGjRIty+fRtr167NNLuXsRj8zvXo0QP79u3Li1iIiIiIiPRIkoQ9e/bAx8cHAwYMQJUqVfDpp5/izp078sLgLVu2xNatWxEcHIx69eqhdevW8iLdADBv3jy4u7vDx8cHvXv3xrhx4+TxF2+i1WoxYsQIVK9eHR06dEDVqlXlAeBly5bFnj17cPr0adStWxdDhw7FwIEDs5UIGMO8efOwf/9+uLu7w8vLCwDQvn177N69G/v370fDhg3RpEkTzJ8/H++88062yuzTpw8uXLiAbt266XWVq1evHubPn4+AgADUqlUL69evh7+/f56clySysYLhjz/+KP+enJyM+fPno1OnTqhdu3amrNPX19f4USpAQkICnJycEB8fD0dHR1OHQ1SovHjxAj169EDYg0Q0950HM0urHJelTk7A7nEfwrK0J7rM2QFL67f/8XlVatIzbB/YCKpiZdBx8kpYvKUvc17Ho1G/wKGZ/VG3pAW2bt2q12/YUBnvNSJPY+uIBrC2MDO8jDQteiwJBdwb5ToeIsram+47Xrx4gYiICHh4ePD6owLBkP+z2Rpz8sMPP+g9tre3R0hICEJCQvS2S5JUaJMTIiIiIiLKW9lKTiIiIvI6DiIiIiIiKuLyfrQOERERERFRNhicnHzyySf47rvvMm2fO3cuZ/EiIiIiIqIcMzg5CQkJQadOnTJt79ChA44cOWKUoIiIiIjozbIxpxGRIhjyf9Xg5CQpKQmWlpaZtltYWCAhIcHQ4oiIiIjIABkzpWZ3EUEiU1Or1QAAM7O3zxBp8ArxtWrVwubNmzFlyhS97Zs2bUKNGjUMLY6IiIiIDGBmZgZnZ2fExsYCAGxtbeUVyomURqfT4dGjR7C1tYW5+dtTD4OTk//973/o3r07bt26hdatWwMADhw4gI0bN2Lr1q2GR0xEREREBnFzcwMAOUEhUjKVSoXy5ctnK4k2ODn56KOP8Ouvv2L27NnYtm0bbGxsUKdOHfz1119o0aJFjgImIiIiouyTJAmlS5dGqVKlkJaWZupwiN7I0tISKlX2RpMYnJwAQKdOnbIcFE9ERERE+cfMzCxb/fiJCoocJSdA+sCW2NhY6HQ6ve3ly5fPdVBERERERFT0GJychIeHY8CAATh+/LjediEEJEmCVqs1WnBERERERFR0GJyc9O/fH+bm5ti9ezdKly7N2SGIiIiIiMgoDE5Ozp8/j9DQUFSrVi0v4iEiIiIioiLK4EUYa9SogcePH+dFLEREREREVIQZnJwEBARg/PjxOHz4MJ48eYKEhAS9HyIiIiIiopwwuFtXmzZtAADvv/++3nYOiCciIiIiotwwODk5dOhQXsRBRERERERFnMHJyZtWgT9//nxuYiEiglajNtrx2jQ1NNlckfZlurRUvfJUasPLyKt4jCk1Tff2nYx4HBER0dvkeBHGDPHx8Vi/fj1WrVqFCxcusFsXEeXKiaWTcnW8eGlh2L/nDEVOZjsXun8/x04t/wY5KsSI8eSVvivOmToEIiIiPTlOTg4ePIiff/4ZO3bswDvvvIPu3btj9erVxoyNiIqY+mUdcl2GVqtFaLQ5EBeBOpW8ocpBS4VWq0LoXQlIjka96mVzVIYx48kT7o1MHQEREVEmBiUn9+/fR2BgIH7++WckJyejZ8+eSEtLw/bt21GjRo28ipGICjkrKyts3brVKGUJIZCamiqXm5OFYo1RRl6UlVFGbo831nudUR4REZGxZDs56dixI44ePYrOnTtj0aJF6NChA8zMzLB8+fK8jI+IigBJkmBtbW208mxsbBRRRl6UlVvGfq+JiIiMKdvJyb59++Dr64thw4bB09MzL2MiIiIiIqIiKNudn//++28kJibC29sbjRs3xuLFi/Ho0aO8jI2IiIiIiIqQbCcnTZs2xcqVKxEdHY0hQ4Zg06ZNKFu2LHQ6Hfbv34/ExMS8jJOIiIiIiAo5SQghcnrwjRs3sHr1aqxduxbPnj1D27ZtERwcbMz4FCMhIQFOTk6Ij4+Ho6OjqcMhIiKiQoz3HVRU5WpOy6pVq2LOnDm4f/8+Nm7caKyYiIiIiIioCMpVy0lRwm8wiIiIKL/wvoOKKoWsBkZEREREREUdkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUwdzUARQ0L168gKWlZY6PF0IgNTUVAGBlZQVJkgpFOS8zVjzGYqzzIiIiIqK8xeTEQP369YOFhUWOj9dqtQgNDQUAeHt7Q6XKWeOV0sp52datW2FtbZ2jY1NTU9GjR49cx2CseIiIiIgo/zA5MdCF6CSozHL+tgmdDvEvNLAs7YmLj7WQJG0Oy9EiQS2gKlYG56OSgJy2VBgpngx1S+Y8cdMTedo45bg3Mk45RERERJTnmJzkQNPh/jAzz1nXLvXzRPwxsTsA4L3xy2FhlbNv9NOS47Fz6HsAgMZDZ+e4HGPFo0tLRUjAkBwd+zrrBnvByiJnLTmpaTr0XXHOqPEQERERUd5icpIDZuaWMLO0ytmxaf+OpzCzsIS5Zc6SAa36haLi0eToqDezslDB2sIsD0omIiIiIiXibF1ERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKYG7KF/f398eOHTtw/fp12NjYoFmzZggICEDVqlXlfYQQ8PPzw4oVKxAXF4fGjRtjyZIlqFmzprzPihUrsGHDBoSFhSExMRFxcXFwdnbWe62wsDBMmDABZ86cgZmZGbp374758+fD3t4+V+dwyH8wnsc/hiSpYGFjhwb9JqFYhWq4smslIv4ORmLMXfiMWYSy9Vu8sZy9k7rhedzD/y/HHk1GzIFLpdp4/uwRjswZhsToCKgsLNHMdz7cajUtMPEYS7vvTyImPhUqSYKDtTkW9a2JeuWdEJuQin4rz+NWbDKsLMywvF9tNK9SPM/jISIiIiLjM2nLSUhICEaMGIGTJ09i//790Gg0aNeuHZKTk+V95syZg/nz52Px4sU4c+YM3Nzc0LZtWyQmJsr7pKSkoEOHDvjmm2+yfJ2oqCi0adMGlStXxqlTp7B3715cuXIF/fv3z/U5vOv7PTp+twMf+G9DtY79cGrlFACAa83GaPHfpShVrUG2ymk1eQ0+Xn4MXZf9jVqfjMTR+SMBAGdX+6FkdW98siYU741dgpCAwdBpNQUmHmPZMrwBLs5ogfPTfTC2Q0UMWH0BADBx63U0qeSM8IDWWDOgLvqsOAeNVpfn8RARERGR8Zm05WTv3r16j9esWYNSpUohNDQUPj4+EEJgwYIFmDx5Mrp16wYACAoKgqurKzZs2IAhQ4YAAEaPHg0AOHz4cJavs3v3blhYWGDJkiVQqdLzsSVLlsDLyws3b95E5cqVc3wOlnaO8u/qlCRIkgQAKFG5jkHlWNk7/VtOcgIgpccZceRX9Ag6DwAoWbU+bJxL4eHlkyheqZai4ilZ3dug8g3lbGsh/x6fkgaVKv28tpyJQsSc1gCAhhWd4epoiaPhT9GkUrE8jYeIiIiIjM+kycmr4uPjAQDFi6d3y4mIiEBMTAzatWsn72NlZYUWLVrg+PHjcnLyNqmpqbC0tJQTEwCwsbEBABw9ejTL5CQ1NRWpqany44SEhNeWf2LZN4i9ehoA0HLC8mzFlJWQOUMRc+FvAEC7WdvwIuEphNDBxrmEvI+9a3kkxd5/bXJiqnjyOjkBgH4rz+HQtScAgL1jG+NJkho6IVDS0Urep0IJW9x78gJNKuV5OERERERkZIoZEC+EwJgxY9C8eXPUqpV+4x0TEwMAcHV11dvX1dVVfi47WrdujZiYGMydOxdqtRpxcXFyF7Do6Ogsj/H394eTk5P84+7u/trymw6bjS6L/kLtHqNwbsO8bMf1qhbjl6PX+iuo3/9bnFmV3h1LgvTKXuKt5SgtHmP5ZZAXIue3wcxuVfHfzVezjEfkXzhEREREZGSKSU5GjhyJixcvYuPGjZmey+ialEEIkWnbm9SsWRNBQUGYN28ebG1t4ebmhooVK8LV1RVmZmZZHjNp0iTEx8fLP5GRkW99nYo+XRB79QxSE59lO7aseLb9DNEXjsqPnz97LP+e9DAS9qXKZascpcVjLF80d8eh60/kx48S/m3huvskBeVdrPM1HiIiIiIyDkUkJ6NGjUJwcDAOHTqEcuX+vdF1c3MDgEytJLGxsZlaU96md+/eiImJwYMHD/DkyRNMmzYNjx49goeHR5b7W1lZwdHRUe/nVWkpSUiJi5UfR545AEt7J1i+NF4jO9TJCUh58m8Lzp1ju2HlWBxWDsVQwacLrv22CgDw6EYYnsc9hGutJlmWo7R4jCXheRqi4l7Ij3eGRsPF3hLF7SzQo2FpLDl4BwBw5vYzxMSnorknZ+siIiIiKohMOuZECIFRo0Zh586dOHz4cKZEwcPDA25ubti/fz+8vLwAAGq1GiEhIQgICMjRa2YkNT///DOsra3Rtm3bHMevfp6Eowu+hlb9ApJKBSuHYmgxbgkkScKVXasQvn8jUhPjcPKnb2FmYYkOs7dCZZb5LVcnJ+DgjC+gVT8HJBWsnUqg7fRNkCQJDQdOQ8icodj2ZQOozC3hM/6nLMswdTx5OWNXfIoG3ZecxXO1DioVUNLBCrtHN4QkSQjoUR2frzwHzwkHYWmuwtpBXjA3U0Gj0+ZZPERERESUN0yanIwYMQIbNmzArl274ODgILeQODk5wcbGBpIkYfTo0Zg9ezY8PT3h6emJ2bNnw9bWFr1795bLiYmJQUxMDG7evAkAuHTpEhwcHFC+fHl5cP3ixYvRrFkz2NvbY//+/fjvf/+L7777LtN6KIawc3FD+xmZu6EBQM0uX6Fml68ybVcnZx5Yb1+qHD5adCDLcmyKlUIH/x0FMh5jcXexwekp72X5nKuTFfaNy9uWGyIiIiLKHyZNTpYtWwYAaNmypd72NWvWyGuQjB8/Hs+fP8fw4cPlRRj37dsHBwcHef/ly5fDz89Pfuzj45OpnNOnT2Pq1KlISkpCtWrV8NNPP+Hzzz/Pu5MjIiIiIiKDmLxb19tIkoRp06Zh2rRpr93nbc8DwC+//GJgdERERERElJ8UMSCeiIiIiIiIyQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEc1MHUBBpNWqjHKtNU0Ojyll+qEtL1StTpc5ZOXkRj7GkpulMciwRERERmQaTkxw4sXRSjo8Vun9vmv+eMxSSlNNytPLvp5Z/g5wWZKx48kLfFedMHQIRERER5SMmJwaqW9oeFhYWOT5eq9UiNNociItAnUreUOWwpUKrVSH0rgQkR6Ne9bK5KMc48RideyNTR0BERERE+UwSQghTB1EQJCQkwMnJCQ8fPoSjo2OOyxFCIDU1vQuUlZUVpJy2eCisnJcZKx5jMdZ5ERER5ZeM+474+Phc3XcQFTRsOTGQtbU1rK2tc1WGjY2NUWJRWjnGIElSrt9fIiIiIiqYFNKHh4iIiIiIijomJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkXgbF3ZlDHjckJCgokjISIiosIu436DKz5QUcPkJJsSExMBAO7u7iaOhIiIiIqKxMREODk5mToMonzDRRizSafTISoqCg4ODnm+oF9CQgLc3d0RGRnJhZcKEdZr4cR6LbxYt4VTQalXIQQSExNRpkwZqFTshU9FB1tOskmlUqFcuXL5+pqOjo6K/uCknGG9Fk6s18KLdVs4FYR6ZYsJFUVMxYmIiIiISBGYnBARERERkSIwOVEgKysrTJ06FVZWVqYOhYyI9Vo4sV4LL9Zt4cR6JVI2DognIiIiIiJFYMsJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByYgKxsbHQarWmDoOIsiEpKcnUIVAe4OcwEZEyMTnJJ0IIqNVqDB48GO3bt8eJEydMHRIZycOHD/H777+DSwYVLtHR0ejTpw8+++wzDBw4EGFhYaYOiXKJn8OFV0xMDKZPn46lS5diz549pg6HiHKByUk+kSQJsbGxCA4OxqNHj3Dw4EHEx8cDAG9qC7DFixejTJky+PDDD3HlyhVTh0NGsm7dOtSqVQtqtRoffPABDh48iICAAMTExJg6NMoFfg4XTjNmzEDlypVx+vRpBAYG4uOPP8aGDRsAsF6JCiImJ/koLS0NnTt3xueff45169bh5MmTANL/YFLBIoTAnj178Ouvv2LOnDnw8vKCn58fdDqdqUOjXNJqtfjll18wZswYbN26FcOHD0dAQABCQkJgY2Nj6vAol/g5XHhotVoEBARgz5492LJlC3bv3o0DBw5gzJgxmDRpEgDWK1FBxOQkH92/fx8XL16Ev78/7OzssHHjRvlbOypYJEmCq6srPv/8cwwZMgQ//PADtm/fjj///NPUoVEuXbp0Cbdv30aZMmXkbSkpKejevTuv10KAn8OFh5mZGdRqNVq3bo0OHToAABwcHNCiRQuYm5vj1q1bJo6QiHKCyYmRqdVqPH/+PMvn7t+/jxo1agAAJk6ciCNHjmDjxo0YPHgwoqOj8zNMMlBiYiKOHDmCmzdvytsaNGiAL774Avb29vDx8UGPHj0wefJkJCYmmjBSMsTL12tGq1eNGjXg4uKC1atXY8WKFejZsycGDBiAc+fOoU6dOhg9ejRiY2NNGTa9RUJCAk6ePIkHDx5keo6fwwVXcnIywsPDkZCQIG8bN24cZs2aBZVKJXfhevr0KaytrVGpUiVThUpEucDkxIgCAgJQu3ZtHDlyRG97xk1PQkICnj17BgDo1asXzM3N4evri7Nnz0KSJPaNVagZM2agUqVKGDNmDOrUqYP58+fr/XHMqF9/f39cv34dgYGBJoqUDPHq9apSqaDRaGBpaYmFCxeiZ8+e2LVrF27duoXTp09j7969WLBgAU6fPo2lS5eaOHp6HX9/f7i7u2PQoEGoUaMGFi5cqJek8HO4YJoxYwZq166Nnj17ol69evKg94yuljqdTu7CdeLECXh5eQFI78ZHRAULkxMjePr0KYYNG4YNGzYgJiYGK1aswOPHj+XnVar0t/nevXto3749/vrrL5QrVw7Pnz+Hg4MD+vTpgxIlSrBvrMLcvn0b7dq1w9atW7F27VoEBwdj4sSJ+O677/RaRzLqt2LFihg7dixmzZqF+/fvA0jvDpScnGyS+Clrb7pezczMAABNmjSBr68vUlNTMWDAAHh7e8PR0RH9+/eHg4MDHj58yJseBfrjjz+wdu1aBAUFITg4GBMmTMDKlSsxZcoUeZ87d+7wc7gAuXv3Lrp06YLNmzdj8eLFmDdvHnx8fPDVV1/h4cOH8n4qlUq+Jk+dOoUGDRoAACwsLABwYDxRQcLkxAji4+Ph6OgIf39//P7779i5cyf++usv+Rv1jH/NzMwwYsQIdOvWDYMHD0ZkZCT69u2LoKAgHD161JSnQFl48OABmjVrhp07d6J9+/YoU6YMvvrqKzg6Or72mIkTJ8La2hpz587F2rVr0b59e05rqTBvul5fvjG9e/cubt68icaNG8vbUlJSkJCQgPLly8s3PaQce/fuhbW1Nbp27QoPDw988803GDp0KI4dO4bly5fL+/FzuOA4efIknj17hm3btqFjx45o3bo1AgMDkZycjNOnT+vta2FhgcjISNy5cwfdunUDkP5/onfv3rh7964pwieinBCUaxqNRty9e1d+3LNnT1GnTh0RERGht19wcLAICAgQ//zzj7wtNjZWVK9eXYSEhORXuJRNarVaREZG6j3++OOPRfPmzcWMGTPEP//8I7RarRBCyP8KIcTUqVOFJEnC0tJSTJo0Kd/jpjfL7vUqhBBeXl6iRYsWYu3atSIsLEx07txZ1KxZU1y4cCEfI6bs0Gq1YtiwYeLTTz8VL168kLdHRUWJIUOGiLp164qUlBTx119/idmzZ/NzWOF0Op0QQoinT5+KrVu36j0XExMjqlatKvbt25fpuHXr1on3339fREZGig8++ECYm5uLsWPH5kvMRGQcTE6MKOPD9MmTJ8LCwkL4+/vr/ZHUaDR6+2c8Tk1Nzb8gKUeuXbsmbG1tRcOGDcWUKVNEvXr1RNOmTcXq1avlfZKSksSIESOEJEli4MCBIi4uznQB01u96XrNuDZv3LghGjRoIKpWrSoqVqwoevbsKZ4+fWqymClrGXXp7+8v3N3ds/xiyMvLSwQGBurtLwQ/h5Xs5XoS4t8vga5evSpcXFz0EsyMffv16yckSRIWFhaiU6dO4vHjx/kXMBEZBbt15ZJ4qR+rJEnQaDQoXrw4Jk+ejPnz5+PatWvy8xljEzKOyejfbmlpmY8RU3aIV/onu7u7488//8TJkyfh5+eHU6dOwdnZGadPn4ZarQYAPH78GA4ODvj777+xatUqODs7myByAoAXL15kuT2716uZmRk0Gg2qVKmCv/76C7///jsOHDiAzZs3o1ixYvlyDpR9GV1nR48ejfj4eKxfv17v+ZYtW8LCwkKejevl7nv8HDa92NhYg8aEHDlyBB4eHvD09Mx0nLm5OWrVqoXTp09j9+7dcHFxMXa4RJTHmJy8RXR0NHr06IEtW7YASF/0KYNGo5H/yGVsz3g8depUWFpaYtmyZYiLi8P+/fuxbt06vX3IdCIjI7Ft2zaEhYXJgygz/si9XK8ajQYAYGtri+bNm0OlUkGn08HS0hJJSUmIiYmRb2reeecd+Pv749133zXBGREAREREoG7dupg9e3am5wy9XjNWmHZ2dkalSpVQoUKF/DkJyiQ6OhonTpzAnTt3Mj2n0WjkBMPa2hpTpkxBQEAAzp49K+/j4OAAtVqNyMjI/AqZsiEiIgIfffQRJkyYgKtXr+o996br9e+//4aPj4+87dKlS7h8+TIAYOHChbh48SLq1auXT2dBRMbG5OQtVq9eje3bt+OHH35ASkoKzMzM5G/pzM3NIYTAhAkTsGnTJuh0OpiZmckfpIsWLcLq1avRokULtG/fnutfKMSkSZNQpUoVzJs3D82aNcOwYcNw+/ZtSJIEnU6nV6+bN2/ONFBapVLh9OnTkCQJgwYNMuGZUAYhBIYOHYoqVaqgSpUq8PX1zbSPoddrUlJSfp8GZWH06NGoXbs2/vOf/6BmzZpYunSp3qKJL9frunXrMHbsWFSpUgUTJ06UJ6MICwuDEAJdu3Y10VlQhowvgX755Rc0aNAANjY2GDFiBEqUKKH3fFbXK5A+oUVoaCjat2+P6Oho9OzZE3Xr1sW9e/cAAPb29iY4KyIyJiYnb3H8+HH06tULlpaWCAgI0HsuKCgIJUqUwL59+1CnTh2525aZmRkePHiAkydPQqfToWbNmrh37x6GDx9uilOgl5w6dQq7du3Ctm3bcOjQIaxcuRLh4eH4/PPPAaQnHkFBQXBxcclUr9euXcOlS5cwZcoUdOzYETVq1ECrVq1MeToE4ObNm3BxccHRo0dx+vRpbN26Vb7ReRmv14Ll3r17+Oijj3D69GkEBwdjy5YtGD58OJYtW6Y3S9PL9VqzZk0AwNq1a+Ho6IiPP/4Y7du3x3vvvYfq1auzVVMBMr4E2rhxI/73v/9h8+bN8Pb2hoODg/w8AAQGBma6XiVJQnh4OJ49e4adO3eiUqVKiI+Px507d9CpUydTnhYRGZG5qQNQCiGE3rfjGo0G5ubmKF26ND788EP5pufTTz9F9erVkZiYiPv372PmzJkYPHiw3K0ASF91+vvvv8cvv/yCgwcPomXLliY4I8rKr7/+Cq1WK/8h+/zzz1G5cmW0a9cO8+fPx5gxY3Dnzh3Mnj0bgwYN0qvX48ePY8mSJTA3N8eWLVvQunVrU51Gkffy9WphYYEyZcqgefPm8PLywvHjx7F9+3a4uLigfv36aN68Oezt7REREYFZs2Zlqlder8p0+fJl2NraYtGiRfKaFXPnzsW6desQFxcHAEhKSkJkZKRevQohUL16dQQGBuLUqVP4559/MGXKFCYmJvTq39fDhw/j1q1bGDVqFI4fP46AgACkpqaicuXK6Nu3L5o0aYK7d+9m+ff15MmTePjwIcLCwrBr1y60bdvWFKdERHlIEoaMQiuknj9/DpVKBSsrKwD6H6R16tTBpk2bkJKSgvHjx6N27dqYO3cuwsPDUa1aNb0PzZc9fPgQrq6u+XYOlFlGPep0Ovlb8h9++AGBgYE4ceIEbG1t5f2mT5+OhQsXIjo6Wv5/8Go5arUa58+fR6NGjfL9XOhfr16vOp0Ov/76Kz755BO0a9cO169fh7e3N27evIlHjx6hbdu2CAwMfGOZvF5NL+M6y/hiKCoqCnfu3EGzZs0ApNezVqtF06ZNMWbMGPTu3VvennF9k/K8er0C6S3YnTp1wqpVqzBr1iy0adMG1tbWOHjwIC5duoSrV6/Czc1Nr5yM/x+JiYnYvn07+vfvn89nQkT5pch/ok+aNAnNmzdH586d8eOPPyIhIUG+oX3w4AHs7OxQoUIFeHt748MPP8SGDRtgbW2NAwcO6A2OfxVvdExr/vz58qDol29cnJycYGFhgQMHDsjbJEnCF198ATs7O8yfPx/Av7P/ZDwPpM/mw8TEtLK6XlUqFVq1aoXPP/8cSUlJCA4Oxvr163H+/HlMmzYNJ0+exLJlywDo1+vLeL2a1svXa8ZYgzJlyuglJiqVCtHR0bhx4wZq1aolH8vERLmyul6B9ESjXr16mD17NurVq4dZs2Zh6tSp2L17N8qWLYtvvvkGgP4ENJIkQQgBBwcHJiZEhVyR/VRXq9Xo0aMHgoODMX78eJQpUwY//fST/G2cSqWCg4MDLCwsIEkSdu7ciZkzZyItLQ116tSBr68vLC0tDZr+kPLemTNn0KpVK4wbNw47duzAiRMnAECekeuTTz5Bamoq9u7di9jYWPm40qVLo02bNggPD4dWq+UNj8K87nr97LPPAADFihXDpEmTsGDBAtSuXVtevb179+7w9PTE+fPnWa8K9Lrr9dXP1Yx6O378ODw8PPSSkwz8LFaO112vn376KYD0HgmOjo44e/YsGjVqBJVKBa1WCwcHB3z99dfYt28fkpKSMvVM4EyXREVDkf1LfevWLVy4cAELFixAr169EBQUhBUrVuDgwYOYO3cuAODs2bO4efMmGjVqhAEDBuCbb77BnDlzIEkSli5dCoB/EJXmzz//RIkSJfDzzz/L/wLp4xLS0tLg6OiIoUOH4q+//sKuXbvk46ysrBAeHg6VSvXarnpkOq+7Xg8dOiRfr9WqVYO3tzckSYJKpYIQAsWLF8f169dZrwr1uus1o/5eFRoaiqZNm8rJyqFDh/Dbb78B4I2rkrzuej18+DC+++472NraYtCgQShevDi2bt0K4N/1ZsLDw+Hp6fna/wNEVATk5QqPShYaGiokSRJPnjwRQuivMOzs7Cxu374t0tLSRI0aNcTgwYPlFYejoqJEz549hY+Pj97q72RaGfV39+5dcfz4cSFEel02btxYbNmyRQghRFpamrx/7969Rb169cRPP/0k4uLiRGhoqKhfv77YtGlT/gdPb/Wm67VYsWJ6K0W/7I8//hANGzYUx44dy7dY6e2yc71mrAaeQaPRCC8vL7F582Zx+/Zt0bp1a2FpaSk2b96cv8HTW73penVychK3bt0SQggxbdo04eLiIv73v/+Jf/75R1y/fl20aNFCTJ8+3WSxE5HpFdnk5Ny5c6JmzZpi0aJFQoh/PzzVarWoUKGCGD16tBBCiIcPH8rPZbhy5QoTkwLg1q1bomvXrqJr167i6dOnQgghUlNT5eemTJkizMzMRIMGDYSNjY0YOHCgUKvVpgyZXuNN16uHh4cYO3asECL9hvbSpUvi4MGDYsiQIcLJyUlMnDhRaDQak8VO2ZPV9fpygnLhwgXh4OAgPvjgA2Fubi569eolEhISTBUuvcHbrteMv68xMTFixYoVwtnZWdSqVUs4ODiIL7/8kn9fiYq4QtutS7ylOfidd96Bp6cnjh49iujoaHmWGAsLC4waNUpefK9UqVJyd4GMMmvUqJFpRifKH2+r15f3q1ixIj788ENER0fLszVlrOZesWJF+Pn54cKFC/Dz80NYWBhWrVolj1Wg/JWb63XkyJHYuHGjPGg6LCwMM2bMwD///IOQkBD4+/uzS5eJ5PZ6fXmMUHh4OJKSkpCamoozZ85g06ZN8toYpCxvu14z/r66urpi0KBBuHLlClatWoWwsDD8/PPP/PtKVMQVyuTk0aNHSElJkR+/PEOPRqMBkD6A9sMPP8T169exZcsWAOmzxADpMzoVL14ckZGReuWyT7NpZadeM2TM8vLJJ5+gRo0a2L17N8LDwwGkrxadcXzNmjXRqVMnVKtWLa/Dp9eIjY1FYmKi/Dgn12uxYsVw9+5dAOmD4FeuXImDBw+ibt26+XUa9Irs1GuGN12vZ8+eBQA0btwYBw4cwIEDB1CvXr08jp5eJ6Mes5qt0tC/rxnJa5kyZdC4cWNUrlw5P06BiBSuUCUnaWlpGDx4MN599118+OGH+PLLLxEXF6f37Zu5uTlevHiBTZs2YcCAAahXrx42b96MQ4cOyfvcv38fJUuWxDvvvGOK06BXZLde09LSEBQUJD/W6XRwdHREjx49oNPp4Ofnh/fffx/e3t6Zjqf8p9FoMHDgQDRq1Aht2rRBnz598OTJkxxfrx4eHgAAOzs7VKpUKd/Ph9Jlt16ze702atQIT548Qbly5dCqVStTnVaRl5aWhuHDh2PIkCEA9Fu1MhIWQ/++8gs/IspKobk7i4uLQ8eOHXHz5k2sWbMGn332GS5cuIDOnTvjxo0b8n4//vgjypYti02bNgEAxowZg4oVK6JDhw7yB++8efPQq1cvAJyNy9QMqVc3Nzf89ttv8urRGX88a9asicjISGzYsAGlSpVCdHQ0ihUrZpLzoXQajQb9+/fH1atXERQUhM8++wwXL15E165dce3aNXk/Xq8FiyH1asj16uLiYpLzoXSnTp1CmzZtsG3bNgQFBeHYsWOQJEluPcmoO16vRGQUJhrrYnR79+4VtWrVEtevX5e3Xb16VahUKuHr6yvi4uLEmjVrRPny5cX69ev1BlrqdDoxe/ZsMWjQINGxY0fO7KMghtbrq5MXHDhwQNjb24t69eqJs2fP5nf49Br37t0Tnp6eYu3atfK26OhoUbZsWTFq1Cjx9OlTXq8FkKH1yuu1YFiwYIEYOHCg2LNnj+jWrZto3Lhxpn2WLl0qPDw8eL0SUa4VmuQkKChIODs76207duyYKF68uPD09BS///670Ol0IikpSW+fV/84krLktF4zPH78WGzYsCE/QiUDnDt3TtjY2Ijw8HAhhJBn51m8eLHw9PQUv/32m9DpdCI5OVnvOF6vypbTes3A61VZMq63yMhIceXKFSFE+hdGJUuWFKtWrRJC/DsDYlpaGv++EpFRFMhuXXv27AGg3yTs7u4OFxcXBAQEyNtWrVqFgQMHQqfTYdeuXZAkCTY2Nnplsc+rchizXjPKcXFxkVcRJ9NYsWIFVq5ciSNHjsjbPD094ebmhnXr1gH4t1vIiBEj4OTkhO3btyM1NRW2trZ6ZfF6VQ5j1ivA61UpMuo1JCREvt7Kli2LGjVqAAC8vb3x6aefws/PD1qtFpaWltDpdDA3N4ednZ1eWbxeiShHTJsbGWb37t2ibNmyQpIkuWk4Y/2Cp0+firlz5wpJkkSzZs2Evb29qFWrlkhLSxOLFi0SZcuWNWXo9Aas18Jpw4YNolSpUqJp06aiXr16omTJkmLmzJlCCCHi4+PFhAkThKenp3j48KEQQojnz58LIYRYu3atcHJykh+TsrBeC6c31eur6wSdOnVKeHp6inHjxgkhMi+YSUSUGwUmOfn7779Fhw4dxMiRI8UHH3wgvL29s9wvJCRELFq0SOzbt0/e9t1334nmzZuLZ8+e5Ve4lE2s18Jp/fr1om7dumL58uVCCCEePHggFi1aJOzs7ER8fLwQQoj9+/eLhg0biuHDhwsh/u0CcujQIVGqVClx4cIF0wRPr8V6LZzeVK9ZLXSZnJws5s6dK5ycnMTdu3eFEOn1m/F/gIgoNxTfrUv8fxcfV1dXtGvXDmPGjMGMGTNw9epVrF69GoD+/Pk+Pj4YOXIk2rZtCwBQq9U4efIkvLy84OTklP8nQFlivRZOGfWalpaGxo0bo1+/fgDS1zHw8vJC2bJlcfXqVQBA8+bN0bt3bwQFBWHnzp1IS0sDABw7dgw1atRA7dq1TXMSlAnrtXDKTr2+PMtaBltbW3Tp0gVeXl7o0aMHvL290b17dzx9+jRf4yeiQsqkqdEbhIaGZvpGPKNpOS0tTYwdO1aULFlSHnD5quvXr4t//vlH9OvXT3h4eIgTJ07kecz0dqzXwik0NFTExcXJj589e5apK8j58+eFm5ubePr0qbwtISFBjB8/Xjg4OIgWLVqIHj16CBsbG7FkyRIhBAfUmhrrtXDKab2+7NKlS6JOnTpCkiQxfPhweWA8EVFuKa7lZPv27XB3d0fPnj1Rp04dTJ06FTExMQDSB1cKIWBubo4RI0bA2toakydPBpB5vvTff/8dH3zwAe7cuYM///wTTZo0yfdzoX+xXgunl+u1bt26mDJlCh4+fAgnJyeYmZnptX4dPHgQlSpVQrFixaBWqwEADg4OCAgIwM8//4yWLVvCxcUFYWFhGD58OAAOqDUV1mvhlNt6zXD06FF07twZtra2CA8Px5IlS2BpaZnfp0NEhZVpcyN9Z86cEdWqVRMLFiwQFy5cEEuXLhUlS5YUw4YNE0+ePBFC/Pstu06nE0uXLhXm5ubi9u3bQoj0KQ0z+sdGRUWJ0NBQ05wI6WG9Fk7ZqVetVivS0tKEEEJ8/PHHYsSIEaYMmbKB9Vo4GbNeo6Ki2GpNRHlGEclJRhP/smXLRLly5fQG1S1evFg0adJEzJgxI9NxT548Ec2aNRNdunQRoaGhol27dmLt2rWcOUQhWK+Fk6H1qtVqhU6nE5UqVRK7d+8WQghx48YN8emnn4p79+7lb/D0WqzXwon1SkQFjSK6dWU08UdERKBKlSowNzeXn+vfvz8aNGiAP/74A1euXAEAaLVaAEDx4sUxaNAgBAcHo2HDhrC0tET37t3lufXJtFivhZOh9apSqXDmzBnY2tqifv36GD16NOrUqYMnT56gVKlSJjkHyoz1WjixXomooDHJ3d7+/fvh6+uLhQsX4vTp0/L2d999F8ePH5fHImi1WtjZ2aFLly6QJAn79u0DAJiZmUGtVmPp0qUYOHAgfHx8cPHiRfz2229ZLsZH+YP1Wjjltl6B9AU2L1++jKpVq2L//v04duwY9u3bBysrq3w/H0rHei2cWK9EVNDla3ISHR2NDz/8EH379sXTp0+xevVqtGvXTv4AbdeuHSpUqCCvBp7xjU/btm2hUqlw8+ZNuay4uDj8888/WLNmDQ4fPoyaNWvm56nQS1ivhZMx69XCwgIlSpRAYGAgrly5ggYNGuT/CREA1mthxXolokIjv/qPJScniy+++EL06tVLHugshBANGzYU/fv3F0KkD4r+5ZdfhEqlklcKz9CnTx/RqlWr/AqXson1WjgZo15btmwpP46Njc2fwOmNWK+FE+uViAqTfGs5sbW1hZWVFfr37w8PDw9oNBoAQOfOneVFnszMzNCzZ0906dIFX331FUJCQiCEQExMDMLDw9GnT5/8CpeyifVaOBmjXvv27SuXV7JkSZOcB+ljvRZOrFciKkwkIV5ZSCIPpaWlwcLCAkD6+hWSJOHzzz+HjY0NVqxYIW978eIFPvjgA1y9ehX16tXD5cuXUb58eWzZsgXu7u75FS5lE+u1cGK9Fk6s18KJ9UpEhUW+JidZ8fHxwYABA9C/f38IIaDT6WBmZoaHDx/i4sWLOHPmDCpUqIDevXubMkwyEOu1cGK9Fk6s18KJ9UpEBZFJk5Pbt2+jWbNm+P333+UBd2q1mivNFnCs18KJ9Vo4sV4LJ9YrERVUJplKOCMfOnr0KOzt7eUPTj8/P/znP/9BbGysKcKiXGK9Fk6s18KJ9Vo4sV6JqKAzf/suxpcxheHp06fRvXt37N+/H4MHD0ZKSgrWrl3LhZ4KKNZr4cR6LZxYr4UT65WICjqTdet68eIFateujVu3bsHS0hJ+fn6YMGGCKUIhI2K9Fk6s18KJ9Vo4sV6JqCAz6ZiTtm3bwtPTE/Pnz4e1tbWpwiAjY70WTqzXwon1WjixXomooDJpcqLVamFmZmaql6c8wnotnFivhRPrtXBivRJRQWXyqYSJiIiIiIgAE83WRURERERE9ComJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRUTb0798fkiRBkiRYWFjA1dUVbdu2xc8//wydTpftcgIDA+Hs7Jx3gRIRERVgTE6IiLKpQ4cOiI6Oxp07d/DHH3+gVatW+M9//oPOnTtDo9GYOjwiIqICj8kJEVE2WVlZwc3NDWXLlkX9+vXxzTffYNeuXfjjjz8QGBgIAJg/fz5q164NOzs7uLu7Y/jw4UhKSgIAHD58GF9++SXi4+PlVphp06YBANRqNcaPH4+yZcvCzs4OjRs3xuHDh01zokRERCbC5ISIKBdat26NunXrYseOHQAAlUqFH3/8EZcvX0ZQUBAOHjyI8ePHAwCaNWuGBQsWwNHREdHR0YiOjsa4ceMAAF9++SWOHTuGTZs24eLFi+jRowc6dOiA8PBwk50bERFRfpOEEMLUQRARKV3//v3x7Nkz/Prrr5me+/TTT3Hx4kVcvXo103Nbt27FsGHD8PjxYwDpY05Gjx6NZ8+eyfvcunULnp6euH//PsqUKSNvb9OmDRo1aoTZs2cb/XyIiIiUyNzUARARFXRCCEiSBAA4dOgQZs+ejatXryIhIQEajQYvXrxAcnIy7Ozssjw+LCwMQghUqVJFb3tqaipcXFzyPH4iIiKlYHJCRJRL165dg4eHB+7evYuOHTti6NChmDFjBooXL46jR49i4MCBSEtLe+3xOp0OZmZmCA0NhZmZmd5z9vb2eR0+ERGRYjA5ISLKhYMHD+LSpUv4+uuvcfbsWWg0GsybNw8qVfqQvi1btujtb2lpCa1Wq7fNy8sLWq0WsbGxeO+99/ItdiIiIqVhckJElE2pqamIiYmBVqvFw4cPsXfvXvj7+6Nz587o168fLl26BI1Gg0WLFuHDDz/EsWPHsHz5cr0yKlSogKSkJBw4cAB169aFra0tqlSpgj59+qBfv36YN28evLy88PjxYxw8eBC1a9dGx44dTXTGRERE+YuzdRERZdPevXtRunRpVKhQAR06dMChQ4fw448/YteuXTAzM0O9evUwf/58BAQEoFatWli/fj38/f31ymjWrBmGDh2KXr16oWTJkpgzZw4AYM2aNejXrx/Gjh2LqlWr4qOPPsKpU6fg7u5uilMlIiIyCc7WRUREREREisCWEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgR/g+Z3NBGYjLcigAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr5klEQVR4nO3dd1gUV9sG8HsW2KWDIIoFOxas2DUGNYli7NFXTWyxJNboazSvJSYqNoKJRmONJWrsPdZYYsHYFWIvwY4KooAUkQV2z/cHH6MroCywyyD377q44szOzDnP4WSZZ+acGUkIIUBERERERJTHVHldASIiIiIiIoDJCRERERERKQSTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkWwzOsK5Bd6vR6PHj2Cg4MDJEnK6+oQERHRO0wIgbi4OBQvXhwqFa8lU8HB5CSLHj16BA8Pj7yuBhERERUgoaGhKFmyZF5Xg8hsmJxkkYODA4DULwlHR8c8rg0RERG9y2JjY+Hh4SGffxAVFExOsihtKJejoyOTEyIiIjILDiWngoaDGImIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrACfFERGRACAGtVpvt/TUaTZYn8ZqrrJyWY86y3rWY3sX+YI5yEhMTs7UfUX7H5ISIiAxotVp06dIl2/tv2rQJ1tbWiiorp+WYs6x3LaZ3sT+Yo5zk5ORs7UeU3zE5ISKiDAU/jDN6n9olsvdOhgtPjD8Rq+lmZfQ+2YkJyF5cjCl78QDm63vm+h0h9Izx+7h7G78P0TuAyQkREWWq0RB/WFiq37qdLiUJJxeMy1FZTcf8CpWV5q3b6ZO1CAwYmO1yshoTkPO4CmpMOY0HMF/fM9fvaPUAb2is3j7VV5usR8/F/2S7HKL8jskJERFlysJSDQv120/ccoPKSgNL9duHyqTksBzGlDNZiSmn8QDmi8lcvyONlQrWVhY5PArRu49P6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEy7yuABERKdth/wF4EfMUkqSClY0d6vQeh0JlKiMxJhInF41H/ONQqCwtYWXrCMAh2+Uc+L4bEuVy7NFw6Ay4lq+OF8+e4OiMwYgLuwOVlRoNBv9gspiubF+CO3/vQFz4PfiMnAv3ag1zVE5mMV1YNxMhf61H7MNb+GjSWhSv3SxfxCT0Ohye2gcxD27CUmMDm0JF0Xj4LDi4l8LTf//ByQVjoEtKhE77ApBUgFvFbJcV+NNQJMZGvbHfWVipUbvX2GyXAZi337X86RTCY7RQSRIcrC0xt2dV1CrlhIhYLXovOY9bEc+htlTB2cYyB/8nEeVveZqc+Pv7Y+vWrbh+/TpsbGzQuHFjBAQEoFKlSvI2Qgj4+flh8eLFiI6ORoMGDTB//nxUrVoVABAVFYWJEydi//79CA0NReHChdGxY0dMmTIFTk5O8nGmTZuG3bt34/z581Cr1Xj27Jm5wyUiypfeG/4T1HaOAIAH5w7i9JIJaDVtI85vmI3CFWqg+ZhFeHI9GId/GAC9Z/Fsl9N0zGLYuhQFANw7sRvHZn2FDvMDcW6ZH9yq1IXv9M14ciMYh6b0RqGyXiaJqWjVBijVsBXOLJmQo+OnySymYt5NUbZpJxz7eViulAOYLybPVr1QulFrSJKEq9sX4/icEWjlvxXHZv8XtXuNRalGrfE8MgybetdCXLli2S6n0ZAfYONcOF08r/a7yFuXcWzO13DyyH4SZM5+t3FIHTjbWgEA/ggOR79lFxDs54Oxm66jYXln7B3VAMdCItHyx9NoUk6fo7KI8qs8HdYVGBiIoUOH4tSpUzhw4ABSUlLQsmVLPH/+XN5mxowZmDVrFubNm4ezZ8/C3d0dLVq0QFxcHADg0aNHePToEX766SdcunQJK1aswN69e9G/f3+DspKSktClSxcMHjzYrDESEeV3aSe8AJCUEA9JkgAAoaf2wbPFpwAAl3JVobJSIyoqKvvl2L+8oJT0PDb1yjuAO0f/QJV2XwAA3CrVhrWzG7Rxz7JdDpB5TIUr1IBDUY8cHdugnExiKlK5LhyLl821cgDzxCSpLFCy7ofysYtUqYe4sLvy59r4WABASmICJEmClZVVtstS2768d5BZv3MtXw3Wji5Iio/Jfjlm7HdpiQkAxCQkQ6VKjWnj2UcY+kEZAEDdMs5QW6p4EZUKrDy9c7J3716D5eXLl6NIkSIICgqCj48PhBCYPXs2xo8fj06dOgEAVq5ciaJFi2Lt2rUYOHAgqlWrhi1btsjHKF++PKZNm4aePXsiJSUFlpapIfr5+QEAVqxYYZ7giIjeIScXfouIq2cAAM3GLII27hmEELB2dJG3sVBbIzExMUflBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB0/K/3OtnBxxD8OzVE55ux3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29jq7bAixcvclwWUX6kqDknMTGpVz5cXFK/dO7cuYPw8HC0bNlS3kaj0aBp06Y4ceIEBg4cmOlxHB0d5cQkO7RaLbRarbwcGxub7WMREeV3jQZPBwDcProd/6ydiUaD/YH/v5L9kshxOU1Hp55QhxxYh7NLJ8Bn9K+QkPvlAOljajZ6Ya4c93Wvx9Ry6iaTlAOYLyYAuLBuJmIf3cZ7w2cBAC5t+gX1vpiMck0/QfT9G9gxtBniS7nmqIws9TuRv/rd7196AwBWHgvF/zZcxaoB3hmURVRwKeZpXUIIjBw5Ek2aNEG1atUAAOHh4QCAokWLGmxbtGhR+bPXRUZGYsqUKZkmLlnl7+8PJycn+cfDI/du8xMR5VflfDog4upZeTkx9uUwLl2SNsdXytN4tvgMYReOycsvnj2V/x0f8QAWGptcKQd4GVNOh+y8TVpMr7aZqZg6pkub5uLu8V1oOXUTLK1tkRgTiXsndqNc008AAA7upaG2d0J0dHSulPemfpcQGQYLdf7rd5838cDh65Hy8pPYlxdEE5J0sLHJvbKI8hPFJCdfffUVLl68iHXr1qX7THrtKokQIt06IPXuRps2beDl5YWJEyfmqD7jxo1DTEyM/BMamrNbxkRE+VHyi3gkREfIy6FnD0Jt7wS1vRNK1W+BkAPrAQBRt69An5wk3/k2lj4lBQmRLy863T2+CxpHF2gcCqGMTwdc27kUAPDkRjBeREdA4+Bskphy05tiym3migkArv6xCLePbEEr/23Q/P/x1fbOsLDSIOzicQBAYkwkkuJj4OCQvWdO6XUpeBH9RF7OrN9F3rqMxJjIbMdpzn4X+yIZj6JfDnvcFhQGV3s1XOys0KVeMcw/dBcAcO7uM2hT9HB2zn5ZRPmZIoZ1DRs2DDt27MDRo0dRsmRJeb27uzuA1DsoxYq9fOJHREREurspcXFxaNWqFezt7bFt27YcTcIDUoePaTSat29IRPQOS06Ix4kFY6FLSoSkUkHjUAhNv5kPSZJQ87OvcWrBt9g5sg1UFpZwLl0ZKlX2rnnpdck4PK0v9MlaQFLB2qkwWkxeD0mSUK//JATOGITNfetAZalGk5FzcW37YpPEdGX7UoQcWAdtXDRO/fodLKzUcCxRPtdjurB+Fq7tXIbEmKf4e+ZQWFhp4Fy6MoDs/e0yV0wp2kScW+YHh2Jl8OfodgAAlZUG7X/5C83HL8eZX8dDr0uBPiUJDsXKZPsEW+hScHzuKOiSk97c7yytUP/Lyfh3/9pslWPOfhfzIgU9fv0HL5L0UKkANwcNdo2oB0mSENClCnot+QeeYw7BykIF71KO2f5/iSi/y9PkRAiBYcOGYdu2bThy5AjKljV8cknZsmXh7u6OAwcOwNs7dYxmUlISAgMDERAQIG8XGxsLX19faDQa7NixI9eGFRARFXS2ru7wnZL+jjYA2DgVRvNxqSdruiQtjv0yKtvlWGps0GLKBlhmMDzHplARtPLfKi+nJCXm6CTxTTFV7fAFqnb4Ql7OSVxviqnmpyNR89OR8nJKUiIOT+2TrXIAc8Zkjd47wzKMqUTtZihR+wiAnMdjobZG02/mw0Kd/iLhq/0OSI0nu8mJOfudh4sNzkx4P8PPijppsP+b1PfPJCbr0GV+EJKzXRJR/panycnQoUOxdu1abN++HQ4ODvI8EicnJ9jY2ECSJIwYMQLTp0+Hp6cnPD09MX36dNja2qJ79+4AUu+YtGzZEgkJCVi9ejViY2Plyetubm6wsLAAANy/fx9RUVG4f/8+dDodzp8/DwCoUKEC7O3tzR88EREREREZyNPkZOHC1KeINGvWzGD98uXL0adPHwDA6NGj8eLFCwwZMkR+CeP+/fvlcaxBQUE4ffo0gNRE41V37txBmTJlAAATJkzAypUr5c/S7sQcPnw4XflERERERGR+eT6s620kScKkSZMwadKkDD9v1qxZlo6zYsUKvuOEiIiIiEjBONuKiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBMu8rgARESmXLiUpV7d7E32yFilZ3C4njKlrTuMqqDHlNB7AfH3PXL8jbbI+V7cjelcxOSEiokydXDDObGUFBgw0SzmMKWfetZjMFU/Pxf+YpRyi/I7JCRERZah2CQezlVXTzcos5TCmnHnXYjJXPPCob/w+ycm5Xw+ifEASQoi8rkR+EBsbCycnJ8TExMDR0TGvq0NEZDJCCGi12R/CotFoIEmSosrKaTnmLOtdi+ld7A/mKCc2NhZFixbleQcVOLxzQkREBiRJgrW19TtVFmPKH2WxnJeSknI+j4soP+LTuoiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiGJWcpKSkYOXKlQgPDzdVfYiIiIiIqIAyKjmxtLTE4MGDodVqTVUfIiIiIiIqoIwe1tWgQQOcP3/eBFUhIiIiIqKCzNLYHYYMGYKRI0ciNDQUderUgZ2dncHnNWrUyLXKERV0Qogc3anUaDSQJEkx5ZizrJyWY86yCmo55izLnDEREVH2SUIIYcwOKlX6my2SJEEIAUmSoNPpcq1yShIbGwsnJyfExMTA0dExr6tDBURiYiK6dOmS7f03bdoEa2trxZRjzrJyWo45yyqo5ZizLHPGRJQbeN5BBZXRd07u3LljinoQ0RsEP4wzep/aJRyM3ufCk2Sj96npZmX0PoCyYwKyF5eSY1JyPIAZ+17oGeP38ahv/D5ERJQtRicnpUuXNkU9iOgtGg3xh4Wl+q3b6VKScHLBuGyX03TMr1BZad66nT5Zi8CAgdkuB1BeTEDO41JaTPklHsB8Ma0e4A2N1dunXGqT9ei5+J9sl0NERMYzOjlJc/XqVdy/fx9JSUkG69u3b5/jShFRehaWalios3aCnRMqKw0s1W8fvpKSC2UpLSYg53EpLab8Eg9gvpg0VipYW1nk8ChERGQKRicnt2/fxieffIJLly7Jc00AyBMF39U5J0REREREZFpGP0r4v//9L8qWLYvHjx/D1tYWV65cwdGjR1G3bl0cOXLEBFUkIiIiIqKCwOg7JydPnsShQ4fg5uYGlUoFlUqFJk2awN/fH8OHD8c//3B8LhERERERGc/oOyc6nQ729vYAgMKFC+PRo0cAUifK37hxI3drR0REREREBYbRd06qVauGixcvoly5cmjQoAFmzJgBtVqNxYsXo1y5cqaoIxERERERFQBGJyffffcdnj9/DgCYOnUq2rZti/fffx+urq7YsGFDrleQiIiIiIgKBqOTE19fX/nf5cqVw9WrVxEVFYVChQrJT+wiIiIiIiIyltFzTtLcvHkT+/btw4sXL+Di4pKbdSIiIiIiogLI6OQkMjISH374ISpWrIjWrVsjLCwMAPDFF19g1KhRuV5BIiIiIiIqGIwe1vX111/DysoK9+/fR5UqVeT13bp1w9dff42ZM2fmagWJiIiIKGM6nQ7Jycl5XQ2iN1Kr1VCpsnZPxOjkZP/+/di3bx9KlixpsN7T0xP37t0z9nBEREREZCQhBMLDw/Hs2bO8rgrRW6lUKpQtWxZqtfqt2xqdnDx//hy2trbp1j99+hQajcbYwxERERGRkdISkyJFisDW1pYPJSLF0uv1ePToEcLCwlCqVKm39lWjkxMfHx/8/vvvmDJlCgBAkiTo9Xr8+OOPaN68efZqTURERERZotPp5MTE1dU1r6tD9FZubm549OgRUlJSYGVl9cZtjU5OfvzxRzRr1gznzp1DUlISRo8ejStXriAqKgrHjx/PdqWJiIiI6O3S5phkNJKFSInShnPpdLq3JidGP63Ly8sLFy9eRP369dGiRQs8f/4cnTp1wj///IPy5ctnr8ZEREREZBQO5aL8wpi+avSdEwBwd3eHn59fdnYlIiIiIiLKkNF3TsqUKYPJkycjNDTUFPUhIiIiIqICyug7J6NGjcKKFSswefJkNG/eHP3798cnn3zCJ3URERER5bWZZh7qNUqYt7w8JkkStm3bho4dO+Z1VbKtWbNmqFWrFmbPnp3XVcmQ0XdOhg0bhqCgIAQFBcHLywvDhw9HsWLF8NVXXyE4ONgUdSQiIiKifE6SpDf+9OnTJ8/qVqZMmSydrIeFheHjjz/O8nFXrFgBZ2fn7FesADI6OUlTs2ZNzJkzBw8fPsTEiROxdOlS1KtXDzVr1sRvv/0GIQpWJk1EREREmQsLC5N/Zs+eDUdHR4N1c+bMMep4SUlJJqpp5tzd3fNktJBOp4Nerzd7uXkh28lJcnIyNm7ciPbt22PUqFGoW7culi5diq5du2L8+PHo0aNHbtaTiIiIiPIxd3d3+cfJyQmSJMnLVlZWGDRoEEqWLAlbW1tUr14d69atM9i/WbNm+OqrrzBy5EgULlwYLVq0AADs2LEDnp6esLGxQfPmzbFy5UpIkoRnz57J+544cQI+Pj6wsbGBh4cHhg8fjufPn8vHvXfvHr7++mv5Lk5mJEnCH3/8AQC4e/cuJEnC1q1b0bx5c9ja2qJmzZo4efIkAODIkSPo27cvYmJi5ONOmjQJAOTXcZQoUQJ2dnZo0KABjhw5IpeTdsdl165d8PLygkajwZIlS2BtbW0QFwAMHz4cTZs2BQBERkbis88+e2M7Kp3RyUlwcDCGDRuGYsWKYdiwYahatSouX76MY8eOoW/fvhg/fjx27NiBbdu2maK+RERERPSOSUxMRJ06dbBr1y5cvnwZAwYMQK9evXD69GmD7VauXAlLS0scP34cv/76K+7evYv//Oc/6NixI86fP4+BAwdi/PjxBvtcunQJvr6+6NSpEy5evIgNGzbg2LFj+OqrrwAAW7duRcmSJTF58mT5Lo4xxo8fj2+++Qbnz59HxYoV8dlnnyElJQWNGzdOd4fom2++AQD07dsXx48fx/r163Hx4kV06dIFrVq1QkhIiHzchIQE+Pv7Y+nSpbhy5Qp69uwJZ2dnbNmyRd5Gp9Nh48aN8k2BrLajkhk9Ib5evXpo0aIFFi5ciI4dO2b4IhUvLy98+umnuVJBIiIiInq3lShRQj5xB1LnOO/duxebNm1CgwYN5PUVKlTAjBkz5OWxY8eiUqVK+PHHHwEAlSpVwuXLlzFt2jR5mx9//BHdu3fHiBEjAACenp745Zdf0LRpUyxcuBAuLi6wsLCAg4MD3N3dja77N998gzZt2gAA/Pz8ULVqVdy8eROVK1c2uEOU5tatW1i3bh0ePHiA4sWLy8fYu3cvli9fjunTpwNIHaW0YMEC1KxZU963W7duWLt2Lfr37w8AOHjwIKKjo9GlSxej2lHJjE5Obt++jdKlS79xGzs7OyxfvjzblSIiIiKigkOn0+GHH37Ahg0b8PDhQ2i1Wmi1WtjZ2RlsV7duXYPlGzduoF69egbr6tevb7AcFBSEmzdvYs2aNfI6IQT0ej3u3LmDKlWq5KjuNWrUkP9drFgxAEBERAQqV66c4fbBwcEQQqBixYoG67VaLVxdXeVltVptcGwA6NGjBxo1aoRHjx6hePHiWLNmDVq3bo1ChQoByHo7KpnRycnbEhMiIiIiImPMnDkTP//8M2bPno3q1avDzs4OI0aMSDfp/fWTbCFEujkirz+USa/XY+DAgRg+fHi6ckuVKpXjur86iiitLm+avK7X62FhYYGgoCBYWFgYfGZvby//28bGJl1s9evXR/ny5bF+/XoMHjwY27ZtM7ghkNV2VLJsvSGeiIiIiCi3/P333+jQoQN69uwJIPUEPiQk5K13NSpXrow9e/YYrDt37pzBcu3atXHlyhVUqFAh0+Oo1WrodLps1j5zGR3X29sbOp0OEREReP/9940+Zvfu3bFmzRqULFkSKpVKHlIGZL8dlSTbT+siIiIiIsoNFSpUwIEDB3DixAlcu3YNAwcORHh4+Fv3GzhwIK5fv44xY8bg33//xcaNG7FixQoAL+9ijBkzBidPnsTQoUNx/vx5hISEYMeOHRg2bJh8nDJlyuDo0aN4+PAhnj59mmtxlSlTBvHx8Th48CCePn2KhIQEVKxYET169EDv3r2xdetW3LlzB2fPnkVAQEC6RCsjPXr0QHBwMKZNm4b//Oc/sLa2lj/LbjsqCe+cEBEREb0r8ukb27///nvcuXMHvr6+sLW1xYABA9CxY0fExMS8cb+yZcti8+bNGDVqFObMmYNGjRph/PjxGDx4sPw+kho1aiAwMBDjx4/H+++/DyEEypcvj27dusnHmTx5MgYOHIjy5ctDq9Xm2vv6GjdujEGDBqFbt26IjIzExIkTMWnSJCxfvhxTp07FqFGj8PDhQ7i6uqJRo0Zo3br1W4/p6emJevXq4ezZs+leHJnddlQSo5KT5ORkVKpUSX7mMhERERGRsfr06WPwRngXFxf5/SGZefU9IK9q37492rdvLy9PmzYNJUuWNLijUK9ePezfvz/TYzds2BAXLlx4a71fTVrKlCmTLolxdnZOt27hwoVYuHChwTorKyv4+fnBz88vw3Jeb5/XnTlzJsP1OWlHpTAqObGysoJWq33jy2mM4e/vj61bt+L69euwsbFB48aNERAQgEqVKsnbCCHg5+eHxYsXIzo6Gg0aNMD8+fNRtWpVAEBUVBQmTpyI/fv3IzQ0FIULF0bHjh0xZcoUODk5yceJjo7G8OHDsWPHDgCpHXnu3LlwdnbOlViITC3wp6FIjI2CJKlgZWOHOr3HoVCZykiMicTJReMR/zgUFlZq1O41NkflHPi+GxJjnv5/OfZoOHQGXMtXx4tnT3B0xmDEhd2BykqNBoN/MFlMV7YvwZ2/dyAu/B58Rs6Fe7WGOS5r77hOeBH9OF1cF9bNRMhf6xH78BY+mrQWxWs3U3xMQq/D4al9EPPgJiw1NrApVBSNh8+Cg3spPLkRjNOLxiH5RTwkSYU6/SbmKB4AOOw/AC/kPpFx31NZWsLK1hGAQ7bLMVffa/vzGUTEJUElSXCwtsTcnlVRq5QTImK16L3kPG5FPIfGygJzuvMiHFF+sGDBAtSrVw+urq44fvw4fvzxR/kdJpT/GD2sa9iwYQgICMDSpUthaZmzUWGBgYEYOnQo6tWrh5SUFIwfPx4tW7bE1atX5acxzJgxA7NmzcKKFStQsWJFTJ06FS1atMCNGzfg4OCAR48e4dGjR/jpp5/g5eWFe/fuYdCgQXj06BE2b94sl9W9e3c8ePAAe/fuBQD5pTQ7d+7MUQxE5tJoyA+wcS4MAHhw7iBOL5mAVtM24vyG2ShcoQaaj1mEyFuXcWzO13DyqPiWo2Wu6ZjFsHUpCgC4d2I3js36Ch3mB+LcMj+4VakL3+mb8eRGMA5N6Y1CZXN28pZZTEWrNkCphq1wZsmEHB3/Vc3HL4fGPvWCxatxFfNuirJNO+HYz8PecoSsMVdMnq16oXSj1pAkCVe3L8bxOSPgO30LDk7uhab/W4Ritd7Hs/v/Yu+4T/7/95T+nVRZ9d7wn6C2c0wX06t978n1YBz+YQD0nsWzXY65+t7qgd5wd0q9ovpHcDj6LbuAYD8fjN10HQ3LO2PvqAY4e/sZOs8/h+olHTg5k0jhQkJCMHXqVERFRaFUqVIYNWoUxo0bl9fVomwyOrs4ffo0Dh48iP3798uPKHvV1q1bs3ystEQhzfLly1GkSBEEBQXBx8cHQgjMnj0b48ePR6dOnQCkvhm0aNGiWLt2LQYOHIhq1aoZvCmzfPnymDZtGnr27ImUlBRYWlri2rVr2Lt3L06dOiW/gGbJkiVo1KgRbty4YXCnhkip1LYvr0gnJcTLdzBDT+1Du9mp/y+5lq8Ga0cXJMXHAHDMXjn2L+84Jj2PBaTUU7M7R/9Al5XnAQBulWrD2tkN2rhnQJGi2SoHyDymwhVqZLZLtmkyiatI5bqZ7ZIt5ohJUlmgZN0P5WMXqVIPV7YtgjY2Ctq4aBSrlfr0F+dSFaG2c0Tis6dA0ZLZLi8tMQEy73su5apCZaVGVFRU9ssxU99ztn2ZqMUkJEOlSo1n49lHuDPjAwBAvXLOKOKoQdTzZBTOVilEZC4///wzfv7557yuBuUSo5MTZ2dndO7c2RR1kSfruLi4AADu3LmD8PBwtGzZUt5Go9GgadOmOHHiBAYOHJjpcRwdHeU7OydPnoSTk5PBmzEbNmwIJycnnDhxIsPkJO2lNWliY2NzHiBRDp1c+C0irqaOM202ZhG0cc8ghIC1o4u8jW3h4oh/HJqjcgJnDEL4hb8BAC2nbUZibBSE0Mt3BADAvogH4sLu5KgcIH1MpvR6XKZizpgA4Mofv6JUw1awdnKFjbMb7v69A2Xeb4+I6+cQ+/A2HIuXzXEZWel7FmprJCYm5qgcc/W93kv+weFrkQCAvaMaIDI+CXoh4Oaokbcp7WqD2xHPc1QOEREZx+jkxFRvfhdCYOTIkWjSpAmqVasGAPKjz4oWNbw6VrRoUdy7dy/D40RGRmLKlCkGiUt4eDiKFCmSbtsiRYpk+ng1f3//TCcpEeWVRoOnAwBuH92Of9bORKPB/sDrc8By4QkjTUennlCHHFiHs0snwGf0r5Dw+lyz3HmSyesxNRu98C17ZN/rcbWcuskk5ZgzpgvrZiL20W28N3wWAOCjSWtwdtkkXFg/E4XKeKGIV30kxuT8sZhZ6nu50CfM1fd+/9IbALDyWCj+t+EqVg3wTldOLj2sh4iIjJDtobRPnjzBsWPHcPz4cTx58iTHFfnqq69w8eJFrFu3Lt1nGb35M6NJ+bGxsWjTpg28vLwwcaLhJNCMts/sOAAwbtw4xMTEyD+hoTm7Ek2Um8r5dEDE1bPycmLsy6E0CZFhsFBbZ7Sb0TxbfIawC8fk5RfPXp7kxkc8gIXGJlfKAV7GpI17lmvHzExaXK+2mymYOqZLm+bi7vFdaDl1EyytbQEALuWqwXfaZnSYHwif/y3Ei6hwWNnYv+VIWfemvqdL0ho8HScnzNX3Pm/igcPXI+XlJ7Ev75jfj3oBa7VFRrsREZGJGJ2cPH/+HP369UOxYsXg4+OD999/H8WLF0f//v2RkJCQrUoMGzYMO3bswOHDh1Gy5Mtx0e7u7gCQ7u5GREREurspcXFxaNWqFezt7bFt2zZYWVkZHOfx48fpyn3y5Em646TRaDRwdHQ0+CHKK3pdCl5Ev7wIEHr2INT2TlDbO6FU/RYIObAeABB56zISYyINxu4bVU5KChIiX/7/dvf4LmgcXaBxKIQyPh1wbedSAMCTG8F4ER0BjYOzSWLKbUkJcUiIDJOXX40rN5kzpqt/LMLtI1vQyn+bwXyahKiX33U39qyEpbUtNK8MvTJW8ot4JERHyMuZ9b2o21egT06Sh+Uay1x9L1mnx6NnL4eebQsKg6u9Gi52VuhSrxjmH7oLADh7+xkex2jhYpf9BwkQEZHxjB7WNXLkSAQGBmLnzp147733AADHjh3D8OHDMWrUqHTPcX4TIQSGDRuGbdu24ciRIyhb1nBcdNmyZeHu7o4DBw7A2zv1FnxSUhICAwMREBAgbxcbGwtfX19oNBrs2LEj3ZW7Ro0aISYmBmfOnEH9+vUBpE7sj4mJQePGjY1tAiKzE7oUHJ87CrrkJEgqFTQOhdD0m/mQJAk1P/sapxZ8i50j20BlaYX6X07Gv/vXZqscvS4Zh6f1hT5ZC0gqWDsVRovJ6yFJEur1n4TAGYOwuW8dqCzVaDJyLq5tX2ySmK5sX4qQA+ugjYvGqV+/g4WVGo4lyme7rOTnsQj8YQB0SS/SxXVh/Sxc27kMiTFP8ffMobCw0sC5dGVk5+lW5oopRZuIc8v84FCsDP4c3Q4AoLLSoP0vf+HGnhW4dWgTIAScSlVEs29/w5lfx2erHABITojHiQVjoUtKfHPfs7CEc+nKUKmyd0PeXH0vRSfQdUEwtMl6qFSAm4MGu0bUgyRJCOhSBb2W/APPMYegtlTht3418Mtfd7NVDhERZY/RycmWLVuwefNmNGvWTF7XunVr2NjYoGvXrkYlJ0OHDsXatWuxfft2ODg4yHdInJycYGNjA0mSMGLECEyfPh2enp7w9PTE9OnTYWtri+7duwNIvWPSsmVLJCQkYPXq1YiNjZUnr7u5ucHCwgJVqlRBq1at8OWXX+LXX38FkPoo4bZt2/JJXZQvWKit0fSb+bBQa9J9ZuNUGM3HvTxR0yVps52cWGps0GLKBlhmMCzMplARtPJ/+TS+lKTEHCUnb4qpaocvULXDF/KyLkmLY7+MynZZdm4l0H7uwQw/q/npSNT8dKS8nJKUiMNT+2SrHHPFZKmxRu+dYRn+nrx7joF3zzHyckpSziao27q6w3dK+uG2gGHfy+nvyFx9z0ZtgV1f14e1VfrhWkWdNNj/zcv3zyQm65icEJFZ9OnTB8+ePXvrCxSVbMWKFRgxYgSePXuWo+MYnZwkJCRkOBSqSJEiRg/rSktkXk10gNRJ92lvxRw9ejRevHiBIUOGyC9h3L9/PxwcUh/XGRQUhNOnTwMAKlSoYHCcO3fuoEyZMgCANWvWYPjw4fKTv9q3b4958+YZVV8iIiIiJSs86ahZy3s6yceo7fv06YOVK1cCACwtLeHh4YFOnTrBz88v3espCpI5c+ake7P820iShG3btqFjx46mqVQeMTo5adSoESZOnIjff/9dHj714sUL+Pn5oVGjRkYdKyu/BEmSMGnSJEyaNCnDz5s1a5al47i4uGD16tVG1Y+IiIiIclerVq2wfPlyJCcn4++//8YXX3yB58+fZzj6Jjk52WAesTmZouykpCSo1ep0652ccn9uYlblZRtnxOjBwXPmzMGJEydQsmRJfPjhh/joo4/g4eGBEydOYM6cOaaoIxERERG9IzQaDdzd3eHh4YHu3bujR48e8nCmSZMmoVatWvjtt99Qrlw5aDQaCCEQExODAQMGoEiRInB0dMQHH3yACxcuGBx3x44dqFu3LqytrVG4cGH5Bd5A6sXu14dMOTs7Y8WKFQCAu3fvQpIkbNy4Ec2aNYO1tTVWr16Ne/fuoV27dihUqBDs7OxQtWpV7NmzRz5GYGAg6tevD41Gg2LFimHs2LFISUmRP2/WrBm++uorjBw5EoULF0aLFi0ybJM+ffoY3AFp1qwZhg8fjtGjR8PFxQXu7u4GF+rTRgZ98sknkCRJXgaAnTt3ok6dOrC2tka5cuXg5+dnUCdJkrBo0SJ06NABdnZ2mDx5MkqWLIlFiwzfyxUcHAxJknD79m0AwKxZs+QXsHt4eGDIkCGIj4/PMJ6cMDo5qVatGkJCQuDv749atWqhRo0a+OGHHxASEoKqVavmegWJiIiI6N1lY2OD5ORkefnmzZvYuHEjtmzZgvPnzwMA2rRpg/DwcOzZswdBQUGoXbs2PvzwQ0RFpT7OfPfu3ejUqRPatGmDf/75BwcPHkTdunWNrsuYMWMwfPhwXLt2Db6+vhg6dCi0Wi2OHj2KS5cuISAgAPb2qY9nf/jwIVq3bo169erhwoULWLhwIZYtW4apU6caHHPlypWwtLTE8ePH5bnPWbFy5UrY2dnh9OnTmDFjBiZPnowDBw4AAM6eTX2k+/LlyxEWFiYv79u3Dz179sTw4cNx9epV/Prrr1ixYgWmTZtmcOyJEyeiQ4cOuHTpEr744gt8+umnWLNmjcE2a9euRaNGjVCuXDkAgEqlwi+//ILLly9j5cqVOHToEEaPHm1E62aN0cO6gNRO9OWXX+Z2XYiIiIioADlz5gzWrl2LDz/8UF6XlJSEVatWwc3NDQBw6NAhXLp0CREREdBoUh848tNPP+GPP/7A5s2bMWDAAEybNg2ffvqpwQu0a9asaXR9RowYYXDH5f79++jcuTOqV68OAPKJOgAsWLAAHh4emDdvHiRJQuXKlfHo0SOMGTMGEyZMkJ9eWKFCBcyYMcPoutSoUUN+b5+npyfmzZuHgwcPokWLFnLbODs7y6/eAIBp06Zh7Nix+Pzzz+X6TpkyBaNHjzZ4B2D37t3Rr18/eblHjx6YNWsW7t27h9KlS0Ov12P9+vX49ttvDdomTdmyZTFlyhQMHjwYCxYsMDq2N8lWcvLvv//iyJEjiIiIgF6vN/hswoQJuVIxIiIiInr37Nq1C/b29khJSUFycjI6dOiAuXPnyp+XLl1aPvkGUh9+FB8fD1dXV4PjvHjxArdu3QIAnD9/PlcunL9+t2X48OEYPHgw9u/fj48++gidO3dGjRo1AADXrl1Do0aNDF7o/d577yE+Ph4PHjxAqVKlMjxmVqWVk6ZYsWKIiIjIZOtUQUFBOHv2rMGdEp1Oh8TERCQkJMDW1jbDOnl7e6Ny5cpYt24dxo4di8DAQERERKBr167yNocPH8b06dNx9epVxMbGIiUlBYmJiXj+/HmuPszA6ORkyZIlGDx4MAoXLgx3d3eDX4gkSUxOiIiIiChTzZs3x8KFC2FlZYXixYunm4z9+omuXq9HsWLFcOTIkXTHcnZ2BpA6qudNJElK9wClV4eSZVb2F198AV9fX+zevRv79++Hv78/Zs6ciWHDhkEIYXAeDLx82NOr67N74v56u0iSlO6mwOv0ej38/PwM7v6kefU9gBnVqUePHli7di3Gjh2LtWvXwtfXF4ULFwYA3Lt3D61bt8agQYMwZcoUuLi44NixY+jfv3+G7ZgTRicnU6dOxbRp0zBmzJi3b0xERERE9Ao7O7t0r394k9q1ayM8PByWlpYGE79fVaNGDRw8eBB9+/bN8HM3NzeEhYXJyyEhIVl+BYaHhwcGDRqEQYMGYdy4cViyZAmGDRsGLy8vbNmyxSBJOXHiBBwcHFCiRIksx5ddVlZW0Ol0Butq166NGzduGNW+abp3747vvvsOQUFB2Lx5s8HT086dO4eUlBTMnDlTHq62cePGnAWQCaMnxEdHR6NLly6mqAsRERERkYGPPvoIjRo1QseOHbFv3z7cvXsXJ06cwHfffYdz584BSJ3gvW7dOkycOBHXrl3DpUuXDOZ5fPDBB5g3bx6Cg4Nx7tw5DBo0KEuPzx0xYgT27duHO3fuIDg4GIcOHUKVKlUAAEOGDEFoaCiGDRuG69evY/v27Zg4cSJGjhwpn8CbUpkyZXDw4EGEh4cjOjoaQOr0it9//x2TJk3ClStXcO3aNWzYsAHffffdW49XtmxZNG7cGP3790dKSgo6dOggf1a+fHmkpKRg7ty5uH37NlatWpXu6V65xeiW69KlC/bv32+KuhARERERGZAkCXv27IGPjw/69euHihUr4tNPP8Xdu3flF4M3a9YMmzZtwo4dO1CrVi188MEH8ku6AWDmzJnw8PCAj48Punfvjm+++Uaef/EmOp0OQ4cORZUqVdCqVStUqlRJngBeokQJ7NmzB2fOnEHNmjUxaNAg9O/fP0uJQG6YOXMmDhw4AA8PD3h7ewMAfH19sWvXLhw4cAD16tVDw4YNMWvWLJQuXTpLx+zRowcuXLiATp06GQyVq1WrFmbNmoWAgABUq1YNa9asgb+/v0niytKwrl9++UX+d4UKFfD999/j1KlTqF69erqsc/jw4blbQyIiIiLKEmPf2G5uae8VyUxmL952cHDAL7/8YnBO+rpOnTplONcCAIoXL459+/YZrHv27Jn87zJlymT4Uu9XJ+pnpGnTpjhz5kymn2c0TyYjr7dLRvu9/p6Wdu3aoV27dum28/X1ha+vb6Zlvenl5UOGDMGQIUMy/Ozrr7/G119/bbCuV69e8r/79OmDPn36ZHrsrMpScvLzzz8bLNvb2yMwMBCBgYEG6yVJYnJCRERERETZkqXk5M6dO6auBxERERERFXCmn61DRERERESUBUYnJ//5z3/www8/pFv/448/8ileRERERESUbUYnJ4GBgWjTpk269a1atcLRo0dzpVJERERE9GZvmthMpCTG9FWjk5P4+Hio1ep0662srBAbG2vs4YiIiIjICGlPSs3qSwSJ8lpSUhIAwMLC4q3bGv2G+GrVqmHDhg2YMGGCwfr169fDy8vL2MMRERERkREsLCzg7OyMiIgIAICtra38hnIipdHr9Xjy5AlsbW1hafn21MPo5OT7779H586dcevWLXzwwQcAgIMHD2LdunXYtGmT8TUmIiIiIqO4u7sDgJygECmZSqVCqVKlspREG52ctG/fHn/88QemT5+OzZs3w8bGBjVq1MBff/2Fpk2bZqvCRERERJR1kiShWLFiKFKkCJKTk/O6OkRvpFaroVJlbTaJ0ckJALRp0ybDSfFEREREZD4WFhZZGsdPlF9kKzkBUie2REREQK/XG6wvVapUjitFREREREQFj9HJSUhICPr164cTJ04YrBdCQJIk6HS6XKscEREREREVHEYnJ3369IGlpSV27dqFYsWK8ekQRERERESUK4xOTs6fP4+goCBUrlzZFPUhIiIiIqICyuiXMHp5eeHp06emqAsRERERERVgRicnAQEBGD16NI4cOYLIyEjExsYa/BAREREREWWH0cO6PvroIwDAhx9+aLCeE+KJiIiIiCgnjE5ODh8+bIp6EBERERFRAWd0cvKmt8CfP38+J3UhojfQpSTl6naZ0SdrkZLF7XJKaTGlbZsTSospv8QDmC8mbbL+7RsZsR0REeWebL+EMU1MTAzWrFmDpUuX4sKFCxzWRWQiJxeMM0s5gQEDzVIOwJhywlwxmSsewHwx9Vz8j1nKISIi42U7OTl06BB+++03bN26FaVLl0bnzp2xbNmy3KwbEf2/2iUczFJOTTcrs5QDMKacMFdM5ooHMOPvyaO+ecohIqJskYQQIqsbP3jwACtWrMBvv/2G58+fo2vXrli0aBEuXLgALy8vU9Yzz8XGxsLJyQkxMTFwdHTM6+pQASGEgFab/SEsGo0mSy9KNVc55iwrp+WYs6yCWo45yzJnTES5gecdVFBl+c5J69atcezYMbRt2xZz585Fq1atYGFhgUWLFpmyfkQFmiRJsLa2fmfKMWdZjEn55ZizLHPGRERE2Zfl5GT//v0YPnw4Bg8eDE9PT1PWiYiIiIiICqAsv4Tx77//RlxcHOrWrYsGDRpg3rx5ePLkiSnrRkREREREBUiWk5NGjRphyZIlCAsLw8CBA7F+/XqUKFECer0eBw4cQFxcnCnrSURERERE7zijJsS/7saNG1i2bBlWrVqFZ8+eoUWLFtixY0du1k8xODGNiIiIzIXnHVRQZfnOSUYqVaqEGTNm4MGDB1i3bl1u1YmIiIiIiAqgHN05KUh4BYOIiIjMhecdVFDl6M4JERERERFRbmFyQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSJY5nUF8pvExESo1Wqj99NoNJAk6a3bCSGg1WqzUzWjyjFnWfmlHHOVVZB/R+Yui4iIiPIXJidG6t27N6ysrIzeb9OmTbC2tn7rdlqtFl26dMlO1Ywqx5xl5ZdyzFVWQf4dmbssIiIiyl+YnBjpQlg8VBbGNVvtEg7Gl/Mk2eh9aroZnzQBQPDDOKP3UXJM2YkHME9M/B29IvSM8ft41M9eWURERJQvMDnJhkZD/GFh+fahXbqUJJxcMC7b5TQd8ytUVpq3bqdP1iIwYGC2ywHevZiyGg9gnpj4O8rY6gHe0Fi9feqbNlmPnov/yVFZREREpHxMTrLBwlINC/XbT95ySmWlgaX67cNXUnKhrHctJnPFA2QtJv6OMqaxUsHayiIXjkRERETvAj6ti4iIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBEs87Jwf39/bN26FdevX4eNjQ0aN26MgIAAVKpUSd5GCAE/Pz8sXrwY0dHRaNCgAebPn4+qVavK2yxevBhr165FcHAw4uLiEB0dDWdnZ4OygoODMWbMGJw9exYWFhbo3LkzZs2aBXt7e6PrHfjTUCTGRkGSVLCysUOd3uNQqExlJMZE4uSi8Yh/HAoLKzVq9xqb7bYBgAPfd0NizNP/L8ceDYfOgGv56njx7AmOzhiMuLA7UFmp0WDwDzkq500xXdm+BHf+3oG48HvwGTkX7tUamiSmC+tmIuSv9Yh9eAsfTVqL4rWb5Timw/4D8EIuyzQxCb0Oh6f2QcyDm7DU2MCmUFE0Hj4LDu6l8PTff3BywRjokhKh074AJBXgVjHbZb2L/a7tz2cQEZcElSTBwdoSc3tWRa1SToiI1aL3kvO4FfEcGisLzOnuleOyiIiISPnyNDkJDAzE0KFDUa9ePaSkpGD8+PFo2bIlrl69Cjs7OwDAjBkzMGvWLKxYsQIVK1bE1KlT0aJFC9y4cQMODg4AgISEBLRq1QqtWrXCuHHj0pXz6NEjfPTRR+jWrRvmzZuH2NhYjBgxAn369MHmzZuNrnejIT/AxrkwAODBuYM4vWQCWk3biPMbZqNwhRpoPmYRIm9dxrE5X8PJI/sno03HLIatS1EAwL0Tu3Fs1lfoMD8Q55b5wa1KXfhO34wnN4JxaEpvFCqbs5O3zGIqWrUBSjVshTNLJuTo+Gkyi6mYd1OUbdoJx34elivlAMB7w3+C2s4RgGlj8mzVC6UbtYYkSbi6fTGOzxmBVv5bcWz2f1G711iUatQazyPDsKl3LcSVK5btct7Ffrd6oDfcnawBAH8Eh6PfsgsI9vPB2E3X0bC8M/aOaoCzt5+h8/xzqF7Sgbd6iYiI3nF5mpzs3bvXYHn58uUoUqQIgoKC4OPjAyEEZs+ejfHjx6NTp04AgJUrV6Jo0aJYu3YtBg4cCAAYMWIEAODIkSMZlrNr1y5YWVlh/vz5UKlST2/mz58Pb29v3Lx5ExUqVDCq3mpbB/nfSQnxkCQJABB6ah/azU6NybV8NVg7uiApPgaAo1HHl8uxd3pZzvPY1CvvAO4c/QNdVp4HALhVqg1rZzdo454BRYpmqxwg85gKV6iR7WNmWE4mMRWpXDdXywEgJyaA6WKSVBYoWfdD+dhFqtTDlW2L5M+18bEAgJTEBEiSBCsrq2yX9S72O2fbl+0Rk5AMlSo1po1nH+HOjA8AAPXKOaOIowZRz5NRONslERERUX6Qp8nJ62JiYgAALi4uAIA7d+4gPDwcLVu2lLfRaDRo2rQpTpw4IScnb6PVaqFWq+XEBABsbGwAAMeOHcswOdFqtdBqtfJybGyswecnF36LiKtnAADNxiyCNu4ZhBCwdnSRt7EtXBzxj0OzVMfMBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB3/Xex3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29T2tUGtyOe57gsIiIiUjbFjJIQQmDkyJFo0qQJqlWrBgAIDw8HABQtanhltmjRovJnWfHBBx8gPDwcP/74I5KSkhAdHY1vv/0WABAWFpbhPv7+/nBycpJ/PDw8DD5vNHg6Osz9C9W7DMM/a2emrvz/K9mvBJXlOmam6ehF6LbmCmr3+Q5nl6YOQ5LwWjnIeTlAJjGZQEYxmYq5YgKAC+tmIvbRbdTp8x0A4NKmX1Dvi8notvoy2s8/gpgHIYiPj89RGe9iv/v9S2+EzvoIUztVwv82XM2wrFwIiYiIiPIBxSQnX331FS5evIh169al+0ySXj9REenWvUnVqlWxcuVKzJw5E7a2tnB3d0e5cuVQtGhRWFhYZLjPuHHjEBMTI/+EhmZ8JbqcTwdEXD0rLyfGRsn/TogMg4U6Z1fK03i2+AxhF47Jyy+ePZX/HR/xABYam1wpB3gZkzbuWa4dMyNpMb3aZqZi6pgubZqLu8d3oeXUTbC0tkViTCTundiNck0/AQA4uJeG2t4J0dHRuVLeu9jvPm/igcPXI+XlJ7Ev71zej3oBa3XG/68SERHRu0MRycmwYcOwY8cOHD58GCVLlpTXu7u7A0C6uyQRERHp7qa8Tffu3REeHo6HDx8iMjISkyZNwpMnT1C2bNkMt9doNHB0dDT4AQC9LgUvop/I24WePQi1vRPU9k4oVb8FQg6sBwBE3rqMxJhIg/H7xtCnpCAh8mXcd4/vgsbRBRqHQijj0wHXdi4FADy5EYwX0RHQODhnq5y3xZSb3hRTbkt+EY+E6Ah52VQxAcDVPxbh9pEtaOW/DZr/P77a3hkWVhqEXTwOAEiMiURSfIz8EAdjvYv9Llmnx6NnifLytqAwuNqr4WJnhS71imH+obsAgLO3n+FxjBYudtmfr0NERET5Q57OORFCYNiwYdi2bRuOHDmSLlEoW7Ys3N3dceDAAXh7ewMAkpKSEBgYiICAgGyVmZbU/Pbbb7C2tkaLFi2Mq7NOh+NzR0GXnARJpYLGoRCafjMfkiSh5mdf49SCb7FzZBuoLK1Q/8vJ+Hf/2mzVU69LxuFpfaFP1gKSCtZOhdFi8npIkoR6/SchcMYgbO5bBypLNZqMnItr2xdnq5zUmFIyjenK9qUIObAO2rhonPr1O1hYqeFYonyux3Rh/Sxc27kMiTFP8ffMobCw0sC5dGUA2TshTU6Ix4kFY6FLSjRpTCnaRJxb5geHYmXw5+h2AACVlQbtf/kLzccvx5lfx0OvS4E+JQkOxcqke8R1Vr3pd5Rf+12KTqDrgmBok/VQqQA3Bw12jagHSZIQ0KUKei35B55jDkFtqcJv/Wrgl7/uZrssIiIiyh/yNDkZOnQo1q5di+3bt8PBwUG+Q+Lk5AQbGxtIkoQRI0Zg+vTp8PT0hKenJ6ZPnw5bW1t0795dPk54eDjCw8Nx8+ZNAMClS5fg4OCAUqVKyZPr582bh8aNG8Pe3h4HDhzA//73P/zwww9GnyxaqDVoPmYRLNSadJ/ZOBVG83EvT9Z0SdpsnyRaamzQYsoGWGYwPMemUBG08t8qL6ckJeboJNFCbY2m38zPMKaqHb5A1Q5fyMu6JC2O/TIqW+W8Kaaan45EzU9HysspSYk4PLVPtsoBAFtXd/hOST9EEMjtmKzRe2dYhjGVqN0MJWofAZDzeN70O8qv/c5GbYFdX9eHtVX64VpFnTTY/83L988kJuuYnBARERUAeZqcLFy4EADQrFkzg/XLly9Hnz59AACjR4/GixcvMGTIEPkljPv37zcYHrNo0SL4+fnJyz4+PumOc+bMGUycOBHx8fGoXLkyfv31V/Tq1ct0wRERERERkVHyfFjX20iShEmTJmHSpEmZbvO2zwHg999/N7J2RERERERkToqYEE9ERERERMTkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKYJlXlcgP9KlJOXqdpnRJ2uRksXtcupdi8mYepojJv6OMqZN1ufqdkRERJS/MTnJhpMLxpmlnMCAgWYpB3j3YjJXPMC7F5M5+13Pxf+YrSwiIiJSPiYnRqpZzB5WVlamL8fN9GWkqV3CwSzlmCsmc8UDvHsxmbPfwaO++coiIiKifEESQoi8rkR+EBsbCycnJzx+/BiOjo5G76/RaCBJ0lu3E0JAq83+cJmslmPOsvJLOeYqqyD/jsxdFhFRfpV23hETE5Ot8w6i/Ip3ToxkbW0Na2trkx1fkiSTHj8vynrXyjFnWe9aOeYui4iIiPIXPq2LiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEfi0rixKe+JybGxsHteEiIiI3nVp5xt84wMVNExOsiguLg4A4OHhkcc1ISIiooIiLi4OTk5OeV0NIrPhSxizSK/X49GjR3BwcOAL4IwQGxsLDw8PhIaG8iVSuYjtajpsW9Nh25oG29V08rJthRCIi4tD8eLFoVJxFD4VHLxzkkUqlQolS5bM62rkW46OjvyjaQJsV9Nh25oO29Y02K6mk1dtyzsmVBAxFSciIiIiIkVgckJERERERIrA5IRMSqPRYOLEidBoNHldlXcK29V02Lamw7Y1Dbar6bBticyPE+KJiIiIiEgReOeEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5oWy7cOECbt26ldfVeCdFRERAp9PldTWIsiw+Pj6vq/DO4vcBERUkTE7IaI8fP0b79u3x0UcfYd++fXjx4kVeV+mdIIRAUlISBgwYAF9fX5w8eTKvq/ROefz4MXbv3g2+2il3hYWFoUePHvjss8/Qv39/BAcH53WV3gn8PjCt8PBwTJ48GQsWLMCePXvyujpE9AomJ2SU0NBQtG3bFpIk4cSJE+jVqxdsbGzyulrvBEmSEBERgR07duDJkyc4dOgQYmJiAIAn1Dk0b948FC9eHO3atcOVK1fyujrvjNWrV6NatWpISkrCxx9/jEOHDiEgIADh4eF5XbV8j98HpjNlyhRUqFABZ86cwYoVK/DJJ59g7dq1ANi2RErA5ISMsmfPHri6umL79u3w9PTEvXv3cP/+faSkpOR11d4JycnJaNu2LXr16oXVq1fj1KlTAFJPVMh4Qgjs2bMHf/zxB2bMmAFvb2/4+flBr9fnddXyPZ1Oh99//x0jR47Epk2bMGTIEAQEBCAwMJAXLHIJvw9yl06nQ0BAAPbs2YONGzdi165dOHjwIEaOHIlx48YBYNsSKQGTE8qStKtJFy9eRPHixREVFYXmzZuja9euaNSoEXr06IGjR4/mcS3zvwcPHuDixYvw9/eHnZ0d1q1bJ18tJeNJkoSiRYuiV69eGDhwIH7++Wds2bIF+/bty+uq5XuXLl3C7du3Ubx4cXldQkICOnfuzD6bS/h9kLssLCyQlJSEDz74AK1atQIAODg4oGnTprC0tOQcSiKFYHJCGXr+/DlCQkIQGxsrr9Pr9YiOjoa9vT3Gjh0LT09PbNmyBbNnz0ZsbCzGjx/P4RxZkJSUlOk8nQcPHsDLywsAMHbsWBw9ehTr1q3DgAEDEBYWZs5q5ktxcXE4evQobt68Ka+rU6cOPv/8c9jb28PHxwddunTB+PHjERcXl4c1zV9e7bNpd528vLzg6uqKZcuWYfHixejatSv69euHf/75BzVq1MCIESMQERGRl9XOF2JjY3Hq1Ck8fPgw3Wf8PsiZjP6OffPNN5g2bRpUKpV80S0qKgrW1tYoX758XlWViF7B5ITSmTJlCqpXr46uXbuiVq1a+PPPP6HX66FSqdCoUSPMmzcP+/btw5AhQ1ClShV06dIFw4YNg06nw4YNG/K6+ooWEBCA6tWrp7vLlHbCFxsbi2fPngEAunXrBktLSwwfPhznzp2DJEkcD/0GU6ZMQfny5TFy5EjUqFEDs2bNSpdcA4C/vz+uX7+OFStW5FFN85fX+6xKpUJKSgrUajXmzJmDrl27Yvv27bh16xbOnDmDvXv3Yvbs2Thz5gwWLFiQx7VXNn9/f3h4eODLL7+El5cX5syZY5Ck8Psg+17/O5Y26T1tyKFer5eHcJ08eRLe3t4AUofSEVHeYnJCsnv37qFDhw7YsGED5s2bh5kzZ8LHxwf9+/fHkydPAED+IxodHQ2V6mX3adGiBZ4/f87xupmIiorC4MGDsXbtWoSHh2Px4sV4+vSp/HlaW96/fx++vr7466+/ULJkSbx48QIODg7o0aMHChcuzPbNwO3bt9GyZUts2rQJq1atwo4dOzB27Fj88MMPBndH0tq4XLlyGDVqFKZNm4YHDx4ASB2O9Pz58zypv1K9qc9aWFgAABo2bIjhw4dDq9WiX79+qFu3LhwdHdGnTx84ODjg8ePHPNnLxJ9//olVq1Zh5cqV2LFjB8aMGYMlS5ZgwoQJ8jZ3797l94GRMvs79sUXX+Dx48fydiqVSu6bp0+fRp06dQAAVlZWADgxnigvMTkh2alTp/Ds2TNs3rwZrVu3xgcffIAVK1bg+fPnOHv2LADA2toa33//PeLj4/Hnn3/KX+BarRaSJMHFxSUvQ1CsmJgYODo6wt/fH7t378a2bdvw119/yVfz0/5rYWGBoUOHolOnThgwYABCQ0PRs2dPrFy5EseOHcvLEBTr4cOHaNy4MbZt2wZfX18UL14cX3zxBRwdHTPdZ+zYsbC2tsaPP/6IVatWwdfXl48Tfc2b+uyrJ8X37t3DzZs30aBBA3ldQkICYmNjUapUKflkjwzt3bsX1tbW6NixI8qWLYtvv/0WgwYNwvHjx7Fo0SJ5O34fGOdNf8fOnDljsK2VlRVCQ0Nx9+5ddOrUCUDq76V79+64d+9eXlSfiABAUIGn1+uFEEJERUWJTZs2GXwWHh4uKlWqJPbv32+wvlevXqJKlSqiS5cuYufOnaJNmzaiTp064sGDB2ard36SkpIi7t27Jy937dpV1KhRQ9y5c8dgux07doiAgADx77//yusiIiJElSpVRGBgoLmqm68kJSWJ0NBQg+VPPvlENGnSREyZMkX8+++/QqfTCSGE/F8hhJg4caKQJEmo1Woxbtw4s9db6bLaZ4UQwtvbWzRt2lSsWrVKBAcHi7Zt24qqVauKCxcumLHG+YdOpxODBw8Wn376qUhMTJTXP3r0SAwcOFDUrFlTJCQkiL/++ktMnz6d3wdZkJ2/Y0IIsXr1avHhhx+K0NBQ8fHHHwtLS0sxatQos9SZiDLG5ISEEC+/2NOkncRdvXpVuLq6yn8cU1JShBBCxMTEiN9//134+PiI+vXri27duomoqCjzVjofSmvnyMhIYWVlJfz9/Q1OTtLa9/VlrVZrvkrmY9euXRO2traiXr16YsKECaJWrVqiUaNGYtmyZfI28fHxYujQoUKSJNG/f38RHR2ddxXOB97UZ9P6540bN0SdOnVEpUqVRLly5UTXrl35fZCJtPb09/cXHh4eGV6g8Pb2FitWrDDYXgh+H7xNVv+Ovbpt7969hSRJwsrKSrRp00Y8ffrUfBUmogxxWBe90dGjR1G2bFl4enpCCCGPNXd0dESvXr1w4MAB7N27F+vXr0ehQoXyuLbKJF4ZuyxJElJSUuDi4oLx48dj1qxZuHbtmvx52ryItH3S2lutVpuxxvmHeG1cuIeHB/bt24dTp07Bz88Pp0+fhrOzM86cOYOkpCQAwNOnT+Hg4IC///4bS5cuhbOzcx7UXBkSExMzXJ/VPmthYYGUlBRUrFgRf/31F3bv3o2DBw9iw4YN/D7IRNoQzhEjRiAmJgZr1qwx+LxZs2awsrKSn8b16hA6fh+kioiIMGpOyOt/x15laWmJatWq4cyZM9i1axdcXV1zu7pEZCQmJwVEaGgodu7ciUuXLkGn0wF4eQKSkpIi/wFM+yxt+e+//4aPj4+87tKlS7h8+bJ8XLVaXeBPQsLCwtClSxds3LgRwMs2BN7cthMnToRarcbChQsRHR2NAwcOYPXq1QbbFHShoaHYvHkzgoOD5cmrGfXbtJeA2traokmTJlCpVNDr9VCr1YiPj0d4eLh8Qle6dGn4+/vjvffey4OIlOHOnTuoWbMmpk+fnu4zY/ts2pu1nZ2dUb58eZQpU8Y8QShUWFgYTp48ibt376b7LCUlRU4wrK2tMWHCBAQEBODcuXPyNg4ODkhKSkJoaKi5qpxv3LlzB+3bt8eYMWNw9epVg8+y+3dszpw5uHjxImrVqmWmKIjobZicFADffPMNKleujDlz5qBJkyYYNmwYbt++DUmSoNfrYWlpCSEExowZg/Xr18tX9mJiYhAUFARfX1+EhYWha9euqFmzJicKvmbZsmXYsmULfv75ZyQkJMDCwkJuw4za1sLCQv7jOXfuXCxbtgxNmzaFr68v373xinHjxqFixYqYOXMmGjdujMGDB2fabzds2JBuorZKpcKZM2cgSRK+/PLLPIxEOYQQGDRoECpWrIiKFSti+PDh6bYxts/Gx8ebOwzFGjFiBKpXr47//ve/qFq1KhYsWGDw0sRX23b16tUYNWoUKlasiLFjx8oPZAgODoYQAh07dsyjKJQl7WLE77//jjp16sDGxgZDhw5F4cKFDT439u/Y/fv3AQD29vZ5EBURvQmTk3fcb7/9hhMnTmDfvn3Yu3cvlixZgsuXL6Nfv34AUk/gVq5cicKFC2P//v2oUaMGVCoVJElCSEgInj17hm3btqF8+fKIiYnB3bt30aZNmzyOSllOnDiBbt26Qa1WIyAgwOCzjNoWSB2e8fDhQ5w6dQp6vR5Vq1bF/fv3MWTIkLwIQXFOnz6N7du3Y/PmzTh8+DCWLFmCkJAQ9OrVC8DLfuvq6pquba9du4ZLly5hwoQJaN26Nby8vNC8efO8DEcRbt68CVdXVxw7dgxnzpzBpk2b5BO8V7HPGu/+/fto3749zpw5gx07dmDjxo0YMmQIFi5caPCEqFfbtmrVqgCAVatWwdHREZ988gl8fX3x/vvvo0qVKgX6zt6r0i5GrFu3Dt9//z02bNiAunXrwsHBQf4cAFasWMG/Y0TvCjPPcSETS5vkl/bf1q1bi549expsM2zYMCFJkli8eLEQQohJkyaJhQsXppuMPXfuXCFJkqhfv36GTzkpaF6fbJmcnCyEEKJfv35i27ZtYty4caJKlSri6tWrQgghYmNjxdSpU8WCBQvSta1WqxUjRowQLi4u4vDhw2apf34yduxYUbFiRYN1J06cEPb29mLmzJlCiMz77dKlS4W3t7eoV6+eOHjwoNnqrESv9tm7d++KqlWrioEDBwohhDh+/LgYOXKkmDZtmvjzzz9FXFycECL1KWYZtSv7bOZ2794tunXrJs6dO2ew3t3dXWzYsEEIIURcXJyYMmWKQdum/X5iYmLE/v37xbx588SxY8fMW3kFev279uDBg8LT01MkJyeL48ePi/bt2wtfX18xdOhQcfLkSSFE6vdBRt+1/DtGlP8wOXmHJCQkGDz5KTo6WrRu3VqMGzfO4BGq//vf/0SlSpVE4cKF5RPsV6X9YYiNjRXLly83eb3zg9fb9tU/ntWrVxdXrlwRZ8+eFc2bNxfDhw8XWq1WXL58Od0fyleFh4ebtM75RVpbvtpHZ82aJWrUqCGeP39usN2kSZNEoUKFDH4Xrx9Hq9WK06dPm7jWyvd6n9XpdGLLli1CkiTh6+srSpcuLTp37ixq1qwpihcvLj7//PO3HpN9NlVaX0v7/nz48KE4fvy4/LlOpxNJSUmiTp06Ys2aNQbr6c1e77dCCHHq1Cnh6uoqtm3bJurWrSvGjh0rJk2aJHx8fEShQoVEWFhYuuPw7xhR/sVhXe+IcePGoUmTJmjbti1++eUXPHv2DM7OzqhSpQoOHDiAqVOnIjIyEqNHj8aKFSswceJEWFlZYcmSJQDSP51HCAEHBwf06dMnjyJSjtfbNjY2Vh5q8PDhQ9jZ2aFMmTKoW7cu2rVrh7Vr18La2hoHDx40mBz/uqJFi5oxCmWaNWuWPCk7bfgQADg5OcHKygoHDx6U10mShM8//xx2dnaYNWsWgJdPPkr7HEh9SEP9+vXNUX3FyqjPqlQqNG/eHL169UJ8fDx27NiBNWvW4Pz585g0aRJOnTqFhQsXAjBs11exzxr22bR5DsWLF0fjxo0BpLadSqVCWFgYbty4gWrVqsn7vtrHKb2M+i2Q+vepVq1amD59OmrVqoVp06Zh4sSJ2LVrF0qUKIFvv/0WgOHDSPh3jCgfy9PUiHJMq9WK//znP8LLy0usX79e9O7dW3h5eQlfX18hROpQgv/+97+iQoUKwsXFRVSrVk2+qvzee++JWbNm5WX1FS2ztm3Tpo28TUxMjHj//fdFQkKC2Lp1q3BxcRFOTk6iZs2a8javD1EgIc6cOSOaNWsmJEkStWvXFidOnBBCpL5AUYjUdq1WrZoYMmSIePz4sbxfYmKi6NOnj+jbt+8b70oVVJn12datW8vbXLt2TZw9e1bo9Xr5Sn5kZKRo27atGDBgANs1E5n12czuhqxbt05Ur149w8/5nWAos3778ccfCyGEeP78ufjkk08MhiOn9dNly5aJEiVKyMMSiSj/42WcfO7WrVu4cOECZs+ejW7dumHlypVYvHgxjh49ih9++AH29vaYPXs2Dh8+jCNHjuDSpUuoX78+tFot/v33X2g0mrwOQbEya9tDhw7hxx9/BACcO3cON2/eRP369dGvXz98++23mDFjBiRJwoIFCwCkfxcHAfv27UPhwoXx22+/yf8FACsrKyQnJ8PR0RGDBg3CX3/9he3bt8v7aTQahISEQKVSyY9kpZcy67OHDx+W+2zlypVRt25dSJIElUoFIQRcXFxw/fp1tusbZNZn09rwdUFBQWjUqJF8t+Tw4cPYuXMnAD4q/HWZ9dsjR47ghx9+gK2tLb788ku4uLhg06ZNAF6+8yUkJASenp6Z/h6IKB/K29yIciooKEhIkiQiIyOFEIZvHy5UqJC4ceOGwfZpn//++++iQYMG4tGjR+atcD7yprZ1dnYWt2/fFsnJycLLy0sMGDBAftPzo0ePRNeuXYWPj0+GcyMKsrQ2vHfvnnzl2d/fXzRo0EBs3LhRCCEM5kF1795d1KpVS/z6668iOjpaBAUFidq1a4v169ebv/L5wNu+D159Q/ar/vzzT1GvXj2DeROUKit99vW7IykpKcLb21ts2LBB3L59W3zwwQdCrVbLk+PJ0Jv6rZOTk7h165YQInXSu6urq/j+++/Fv//+K65fvy6aNm0qJk+enGd1J6Lcx+Qkn/vnn39E1apVxdy5c4UQL7/Uk5KSRNmyZcWoUaOEEKl/LJ8+fSq2bt0qBgwYIOzs7MTkyZOFXq/nEINMvKlty5QpI0aMGCGEEOLx48fp2vDKlStMTLLo1q1bomPHjqJjx44iKipKCJE6zCPtswkTJggLCwtRp04dYWNjI/r37y8P/yJDWf0+0Ol04tKlS+LQoUNi4MCBwsnJSYwdO5ZDurIooz77aoJy4cIF4eDgID7++GNhaWkpunXrJmJjY/Oquor3tn6b9l0bHh4uFi9eLJydnUW1atWEg4OD6Nu3L79rid4xHNaVz5UuXRqenp44duwYwsLCIEkSUlJSYGVlha+++grr1q2TX6Km1+tx4sQJ3L59G8ePH8f3338PSZIK7BAD8ZYhAG9q22HDhskv/itSpIjchmnH9PLyKtBD5t7Wtq9uV65cObRr1w5hYWFYsWIFAMhvcy9Xrhz8/Pxw4cIF+Pn5ITg4GEuXLoWVlZWpqq5oOemzr34fqFQqBAcHY8qUKfj3338RGBgIf3//Aj2kK6d99tXJ7iEhIYiPj4dWq8XZs2exfv16+b0clN7b+m3ad23RokXx5Zdf4sqVK1i6dCmCg4Px22+/FejvWqJ3EZMTBQsNDUVQUBAePXqU7rOUlBQAQKFChdCuXTtcv34dGzduBJD6BBkg9YlHhQoVkt+E6+bmhgkTJuDAgQOoWbOmmaJQpidPniAhIUFefvXpRFltWxcXF4SGhhoct6Ameq/KStumSXu6zn/+8x94eXlh165dCAkJAZD6puy0/atWrYo2bdqgcuXKpq6+YkVERCAuLk5ezk6fLVSoEO7duwcA6Ny5M5YsWYJDhw4V+O+DrLRtmjf12XPnzgEAGjRogIMHD+LgwYOoVauWiWuvbGltmdGTC439rk1LIIsXL44GDRqgQoUK5giBiMyMyYkCJScnY+DAgahduzb69euHmjVr4vjx4wBeftFbWloiMTER69evR79+/VCrVi1s2LABhw8flo/z4MEDuLm5oUyZMvK6gn71Ljk5GQMGDMB7772Hdu3aoW/fvoiOjja46mlM25YuXTovwlCkrLZtcnIyVq5cKS/r9Xo4OjqiS5cu0Ov18PPzw4cffoi6deum278gSklJQf/+/VG/fn189NFH6NGjByIjI7PdZ8uWLQsAsLOzQ/ny5c0ej5JktW2z2mfr16+PyMhIlCxZEs2bN8+rsBQhOTkZQ4YMwcCBAwEY3lnKzt+x0qVL8+IPUUGRdyPKKCNxcXGiffv2onnz5iI4OFhcv35dtGzZUjRt2tRguzlz5ggXFxfRoUMHIUTqGOcePXoItVotBg8eLAYMGCAcHBzEwoULhRB8dKUQQkRFRYmPPvpING/eXBw7dkwsXrxYeHt7i8aNG4vr16/L27FtjWds23bu3Fkeq5/m3r17onz58kKSJPHpp5/yhX8i9eEAPXr0EA0bNhRHjhwRs2bNEtWqVRNNmjQRV69elbdjnzWesW3LPpt1p06dEj4+PsLNzU1YWVnJb71/fU4T+y0RZYTJicKcPn1aeHp6ikOHDsnrlixZItq3by9/Mc+bN0+UKVNGrFmzxmASpl6vF9OnTxdffvmlaN26NZ+885q9e/eKatWqGZwsX716VahUKjF8+HARHR0tli9fLkqVKsW2NZKxbfv6ScbBgweFvb29qFWrljh37py5q69Y9+/fF56enmLVqlXyurCwMFGiRAkxbNgwERUVxT6bTca2Lfts1s2ePVv0799f7NmzR3Tq1Ek0aNAg3TYLFiwQZcuWZb8lonSYnCjMsWPHhCRJ8hfykydPRK1atcSgQYPEokWLhBCpT4V5/vy5wX68ovR2K1euFM7Ozgbrjh8/LlxcXISnp6fYvXu30Ov1Ij4+3mAbtu3bZbdt0zx9+lSsXbvWHFXNV/755x9hY2MjQkJChBBCfirRvHnzhKenp9i5c6fQ6/X8PsiG7LZtGvbZ9NL6XWhoqLhy5YoQIvXChZubm1i6dKkQ4uWT+JKTk/ldS0QZKtiDufPYnj17ABg+Jea9995D8+bN0bdvX3z88ccoWrQo3N3doVar8d1336FLly64fPkybG1tDfbjWFxDGbWth4cHXF1dERAQIK9bunQp+vfvD71ej+3bt0OSJNjY2Bgci21rKDfbNu04rq6u+Oyzz0xfeQVbvHgxlixZgqNHj8rrPD094e7ujtWrVwN4OW5/6NChcHJywpYtW6DVamFra2twLPZZQ7nZtgD77KvS2jYwMFDudyVKlICXlxcAoG7duvj000/h5+cHnU4HtVoNvV4PS0tL2NnZGRyL/ZaIAHDOSV7YtWuXKFGihMEdEp1OJ9/ajo+PFyEhIaJx48bip59+kvc7f/68KFeunPziL0ovo7ZNG+ccFRUlfvzxRyFJkmjcuLGwt7cX1apVE8nJyWLu3LmiRIkSeVl1xWPbmsbatWtFkSJFRKNGjUStWrWEm5ubmDp1qhBCiJiYGDFmzBjh6ekpHj9+LIQQ4sWLF0IIIVatWiWcnJzkZUqPbWs6b2rb1+eWpA1X/uabb4QQ6V9aSUT0KiYnZvb333+LVq1aia+++kp8/PHHom7duhluFxwcLCpVqiQiIiLkW93JycnC2dnZIGGhl7LatoGBgWLu3Lli//798roffvhBNGnSRDx79sxc1c1X2LamsWbNGlGzZk15yObDhw/F3LlzhZ2dnYiJiRFCCHHgwAFRr149MWTIECHEy6Evhw8fFkWKFBEXLlzIm8orHNvWdN7Uthm9bPL58+fixx9/FE5OTuLevXtCiNQ2Tvs9EBG9isO6zET8/xCYokWLomXLlhg5ciSmTJmCq1evYtmyZQAMn61va2uLkJAQhIaGyre6d+3ahXLlyuGDDz4wfwAKZmzb+vj44KuvvkKLFi0AAElJSTh16hS8vb3h5ORk/gAUjG1rGmntmpycjAYNGqB3794AUt/f4O3tjRIlSuDq1asAgCZNmqB79+5YuXIltm3bhuTkZADA8ePH4eXlherVq+dNEArFtjWdrLTttWvX0u1na2uLDh06wNvbG126dEHdunXRuXNnREVFmbX+RJRP5GVmVBAEBQWlu2Kcdss7OTlZjBo1Sri5ucmTMdOu3EVGRorPPvtM2NraikGDBonevXsLBwcHMWHCBE4a/H/Gtu3rrl+/Lv7991/Ru3dvUbZsWXHy5EmT1zm/YNuaRlBQkIiOjpaXnz17lm4IzPnz54W7u7vBY2tjY2PF6NGjhYODg2jatKno0qWLsLGxEfPnzxdCcCKxEGxbU8pu277q0qVLokaNGkKSJDFkyBB5YjwR0et458REtmzZAg8PD3Tt2hU1atTAxIkTER4eDiB14qUQApaWlhg6dCisra0xfvx4AC+vTLm4uGDZsmUYOnQoEhMTAaS+fdjPz6/ATxrMadum2b17Nz7++GPcvXsX+/btQ8OGDc0ei9KwbU3j1XatWbMmJkyYgMePH8PJyQkWFhYGd58OHTqE8uXLo1ChQkhKSgKQ+vLUgIAA/Pbbb2jWrBlcXV0RHByMIUOGACjYE4nZtqaT07ZNc+zYMbRt21YeETB//nyo1Wpzh0NE+UVeZkbvqrNnz4rKlSuL2bNniwsXLogFCxYINzc3MXjwYBEZGSmEeHkVWq/XiwULFghLS0tx+/ZtIUTqIy1fHbebnJxs/iAUKqdtq9Vq5bZ99OiRCAoKyptAFIhtaxpZaVedTif/f/7JJ5+IoUOH5mWV8w22renkZts+evSId0+JKMuYnOSitNv/CxcuFCVLljSY7Ddv3jzRsGFDMWXKlHT7RUZGisaNG4sOHTqIoKAg0bJlS7Fq1SoOJ3hFbrctnxbzEtvWNIxtV51OJ/R6vShfvrzYtWuXEEKIGzduiE8//VTcv3/fvJVXOLat6bBtiSivcVhXLkq7/X/nzh1UrFgRlpaW8md9+vRBnTp18Oeff+LKlSsAAJ1OByB1CNeXX36JHTt2oF69elCr1ejcuXOBHk7wutxu27R3GhDb1lSMbVeVSoWzZ8/C1tYWtWvXxogRI1CjRg1ERkaiSJEieRKDUrFtTYdtS0R5jWcROXDgwAEMHz4cc+bMwZkzZ+T17733Hk6cOCGP1dfpdLCzs0OHDh0gSRL2798PALCwsEBSUhIWLFiA/v37w8fHBxcvXsTOnTszfFldQcK2NR22rWnktF2B1BdcXr58GZUqVcKBAwdw/Phx7N+/HxqNxuzxKAnb1nTYtkSkNExOsiEsLAzt2rVDz549ERUVhWXLlqFly5byF3vLli1RpkwZ+W3ZaVeiWrRoAZVKhZs3b8rHio6Oxr///ovly5fjyJEjqFq1qvkDUhC2remwbU0jN9vVysoKhQsXxooVK3DlyhXUqVPH/AEpCNvWdNi2RKRYeT2uLL95/vy5+Pzzz0W3bt3kicBCCFGvXj3Rp08fIUTqpOHff/9dqFQq+U3aaXr06CGaN29u1jrnF2xb02HbmkZutGuzZs3k5YiICPNUPB9g25oO25aIlIx3Toxka2sLjUaDPn36oGzZskhJSQEAtG3bVn75lIWFBbp27YoOHTrgiy++QGBgIIQQCA8PR0hICHr06JGXISgW29Z02LamkRvt2rNnT/l4bm5ueRKHErFtTYdtS0RKJgnx2gsK6K2Sk5NhZWUFIPX9DpIkoVevXrCxscHixYvldYmJifj4449x9epV1KpVC5cvX0apUqWwceNGeHh45HEUysS2NR22rWmwXU2HbWs6bFsiUiomJ7nEx8cH/fr1Q58+fSCEgF6vh4WFBR4/foyLFy/i7NmzKFOmDLp3757XVc132Lamw7Y1Dbar6bBtTYdtS0RKwOQkF9y+fRuNGzfG7t275YmASUlJfANuLmDbmg7b1jTYrqbDtjUdti0RKQXnnORAWl537Ngx2Nvby1/ofn5++O9//4uIiIi8rF6+xrY1HbatabBdTYdtazpsWyJSGsu3b0KZSXu04pkzZ9C5c2ccOHAAAwYMQEJCAlatWsUXUOUA29Z02LamwXY1Hbat6bBtiUhpOKwrhxITE1G9enXcunULarUafn5+GDNmTF5X653AtjUdtq1psF1Nh21rOmxbIlISJie5oEWLFvD09MSsWbNgbW2d19V5p7BtTYdtaxpsV9Nh25oO25aIlILJSS7Q6XSwsLDI62q8k9i2psO2NQ22q+mwbU2HbUtESsHkhIiIiIiIFIFP6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEWVBnz59IEkSJEmClZUVihYtihYtWuC3336DXq/P8nFWrFgBZ2dn01WUiIgoH2NyQkSURa1atUJYWBju3r2LP//8E82bN8d///tftG3bFikpKXldPSIionyPyQkRURZpNBq4u7ujRIkSqF27Nr799lts374df/75J1asWAEAmDVrFqpXrw47Ozt4eHhgyJAhiI+PBwAcOXIEffv2RUxMjHwXZtKkSQCApKQkjB49GiVKlICdnR0aNGiAI0eO5E2gREREeYTJCRFRDnzwwQeoWbMmtm7dCgBQqVT45ZdfcPnyZaxcuRKHDh3C6NGjAQCNGzfG7Nmz4ejoiLCwMISFheGbb74BAPTt2xfHjx/H+vXrcfHiRXTp0gWtWrVCSEhInsVGRERkbpIQQuR1JYiIlK5Pnz549uwZ/vjjj3Sfffrpp7h48SKuXr2a7rNNmzZh8ODBePr0KYDUOScjRozAs2fP5G1u3boFT09PPHjwAMWLF5fXf/TRR6hfvz6mT5+e6/EQEREpkWVeV4CIKL8TQkCSJADA4cOHMX36dFy9ehWxsbFISUlBYmIinj9/Djs7uwz3Dw4OhhACFStWNFiv1Wrh6upq8voTEREpBZMTIqIcunbtGsqWLYt79+6hdevWGDRoEKZMmQIXFxccO3YM/fv3R3Jycqb76/V6WFhYICgoCBYWFgaf2dvbm7r6REREisHkhIgoBw4dOoRLly7h66+/xrlz55CSkoKZM2dCpUqd0rdx40aD7dVqNXQ6ncE6b29v6HQ6RERE4P333zdb3YmIiJSGyQkRURZptVqEh4dDp9Ph8ePH2Lt3L/z9/dG2bVv07t0bly5dQkpKCubOnYt27drh+PHjWLRokcExypQpg/j4eBw8eBA1a9aEra0tKlasiB49eqB3796YOXMmvL298fTpUxw6dAjVq1dH69at8yhiIiIi8+LTuoiIsmjv3r0oVqwYypQpg1atWuHw4cP45ZdfsH37dlhYWKBWrVqYNWsWAgICUK1aNaxZswb+/v4Gx2jcuDEGDRqEbt26wc3NDTNmzAAALF++HL1798aoUaNQqVIltG/fHqdPn4aHh0dehEpERJQn+LQuIiIiIiJSBN45ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBTh/wD/eko6SfVdNgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -219,11 +216,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 43, -======= - "execution_count": 8, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -247,6 +240,10 @@ " \n", " \n", " i_interval\n", + " -8\n", + " -7\n", + " -6\n", + " -5\n", " -4\n", " -3\n", " -2\n", @@ -260,46 +257,70 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " 2021\n", - " [2021-03-01, 2021-04-01)\n", + " [2020-04-01, 2020-05-01)\n", + " [2020-06-01, 2020-07-01)\n", + " [2020-08-01, 2020-09-01)\n", + " [2020-10-01, 2020-11-01)\n", + " [2020-12-01, 2021-01-01)\n", + " [2021-02-01, 2021-03-01)\n", " [2021-04-01, 2021-05-01)\n", - " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", - " [2020-03-01, 2020-04-01)\n", + " [2019-04-01, 2019-05-01)\n", + " [2019-06-01, 2019-07-01)\n", + " [2019-08-01, 2019-09-01)\n", + " [2019-10-01, 2019-11-01)\n", + " [2019-12-01, 2020-01-01)\n", + " [2020-02-01, 2020-03-01)\n", " [2020-04-01, 2020-05-01)\n", - " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", - " [2019-03-01, 2019-04-01)\n", + " [2018-04-01, 2018-05-01)\n", + " [2018-06-01, 2018-07-01)\n", + " [2018-08-01, 2018-09-01)\n", + " [2018-10-01, 2018-11-01)\n", + " [2018-12-01, 2019-01-01)\n", + " [2019-02-01, 2019-03-01)\n", " [2019-04-01, 2019-05-01)\n", - " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", " \n", " 2018\n", - " [2018-03-01, 2018-04-01)\n", + " [2017-04-01, 2017-05-01)\n", + " [2017-06-01, 2017-07-01)\n", + " [2017-08-01, 2017-09-01)\n", + " [2017-10-01, 2017-11-01)\n", + " [2017-12-01, 2018-01-01)\n", + " [2018-02-01, 2018-03-01)\n", " [2018-04-01, 2018-05-01)\n", - " [2018-05-01, 2018-06-01)\n", " [2018-06-01, 2018-07-01)\n", " [2018-08-01, 2018-08-31)\n", " \n", " \n", " 2017\n", - " [2017-03-01, 2017-04-01)\n", + " [2016-04-01, 2016-05-01)\n", + " [2016-06-01, 2016-07-01)\n", + " [2016-08-01, 2016-09-01)\n", + " [2016-10-01, 2016-11-01)\n", + " [2016-12-01, 2017-01-01)\n", + " [2017-02-01, 2017-03-01)\n", " [2017-04-01, 2017-05-01)\n", - " [2017-05-01, 2017-06-01)\n", " [2017-06-01, 2017-07-01)\n", " [2017-08-01, 2017-08-31)\n", " \n", @@ -308,21 +329,37 @@ "" ], "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", + "2020 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2019 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", + "2018 [2017-04-01, 2017-05-01) [2017-06-01, 2017-07-01) \n", + "2017 [2016-04-01, 2016-05-01) [2016-06-01, 2016-07-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2020-08-01, 2020-09-01) [2020-10-01, 2020-11-01) \n", + "2020 [2019-08-01, 2019-09-01) [2019-10-01, 2019-11-01) \n", + "2019 [2018-08-01, 2018-09-01) [2018-10-01, 2018-11-01) \n", + "2018 [2017-08-01, 2017-09-01) [2017-10-01, 2017-11-01) \n", + "2017 [2016-08-01, 2016-09-01) [2016-10-01, 2016-11-01) \n", + "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", - "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", - "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", - "2018 [2018-03-01, 2018-04-01) [2018-04-01, 2018-05-01) \n", - "2017 [2017-03-01, 2017-04-01) [2017-04-01, 2017-05-01) \n", + "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", + "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", + "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2018 [2017-12-01, 2018-01-01) [2018-02-01, 2018-03-01) \n", + "2017 [2016-12-01, 2017-01-01) [2017-02-01, 2017-03-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", - "2018 [2018-05-01, 2018-06-01) [2018-06-01, 2018-07-01) \n", - "2017 [2017-05-01, 2017-06-01) [2017-06-01, 2017-07-01) \n", + "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2018 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", + "2017 [2017-04-01, 2017-05-01) [2017-06-01, 2017-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -333,11 +370,7 @@ "2017 [2017-08-01, 2017-08-31) " ] }, -<<<<<<< HEAD - "execution_count": 43, -======= - "execution_count": 8, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -358,11 +391,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 44, -======= - "execution_count": 9, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -385,11 +414,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 45, -======= - "execution_count": 10, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -410,11 +435,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 46, -======= - "execution_count": 11, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -432,11 +453,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 47, -======= - "execution_count": 12, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -446,11 +463,7 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 48, -======= - "execution_count": 13, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -474,18 +487,10 @@ }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 49, -======= - "execution_count": 14, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ - "# suppress numpy warning\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", "# cross-validation with Kfold\n", "k_fold_splits = 5\n", "kfold = KFold(n_splits=k_fold_splits)\n", @@ -500,50 +505,38 @@ "\n", "# prepare operator for dimensionality reduction\n", "target_intervals = 1\n", - "lags = list(np.arange(1, periods_of_interest + 1))\n", + "lag = 2\n", + "rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + ")\n", "\n", "# cross validation based dimensionality reduction and model training\n", - "for split, (x_train, x_test, y_train, y_test) in enumerate(cv.split(precursor_field_sel, y=target_series_sel)):\n", - " clusters_train_lags = []\n", - " clusters_test_lags = []\n", - " for lag in lags:\n", - " # log train/test splits with anchor years\n", - " train_test_splits.append({\n", - " \"train\": x_train.anchor_year.values,\n", - " \"test\": x_test.anchor_year.values,\n", - " })\n", - " # RGDR\n", - " rgdr = RGDR(\n", - " target_intervals=target_intervals,\n", - " lag=lag,\n", - " eps_km=600,\n", - " alpha=0.05,\n", - " min_area_km2=0\n", - " )\n", - " # fit dimensionality reduction operator RGDR and transform\n", - " clusters_train_lag_xr = rgdr.fit_transform(x_train, y_train)\n", - " clusters_test_lag_xr = rgdr.transform(x_test)\n", - " # convert to numpy array, reshape and append\n", - " clusters_train_lag = clusters_train_lag_xr.to_numpy()\n", - " clusters_train_lag = clusters_train_lag.reshape(len(clusters_train_lag_xr.anchor_year),-1)\n", - " clusters_train_lags.append(clusters_train_lag)\n", - " clusters_test_lag = clusters_test_lag_xr.to_numpy()\n", - " clusters_test_lag = clusters_test_lag.reshape(len(clusters_test_lag_xr.anchor_year),-1)\n", - " clusters_test_lags.append(clusters_test_lag)\n", - " # concatenate lags\n", - " clusters_train = np.concatenate(clusters_train_lags, axis=1)\n", - " clusters_test = np.concatenate(clusters_test_lags, axis=1)\n", + "for x_train, x_test, y_train, y_test in cv.split(precursor_field_sel, y=target_series_sel):\n", + " # log train/test splits with anchor years\n", + " train_test_splits.append({\n", + " \"train\": x_train.anchor_year.values,\n", + " \"test\": x_test.anchor_year.values,\n", + " })\n", + " # fit dimensionality reduction operator RGDR\n", + " rgdr.fit(x_train, y_train)\n", + " # transform to train and test data\n", + " clusters_train = rgdr.transform(x_train)\n", + " clusters_test = rgdr.transform(x_test)\n", " # train model\n", - " ridge = RidgeCV(alphas=[0.005, 0.01, 0.1, 10, 25, 50])\n", - " model = ridge.fit(clusters_train, y_train.sel(i_interval=1))\n", + " ridge = Ridge(alpha=1.0)\n", + " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", - " prediction = model.predict(clusters_test)\n", + " prediction = model.predict(clusters_test.isel(i_interval=0))\n", " predictions.append(prediction)\n", " # calculate and save rmse\n", " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", - " model.predict(clusters_train)))\n", + " model.predict(clusters_train.isel(i_interval=0))))\n", " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", " prediction))" ] @@ -553,45 +546,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Plot the predictions" + "#### Plot the RMSE for both training and testing for each experiment (split)" ] }, { "cell_type": "code", -<<<<<<< HEAD - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "# get climatology of target period\n", - "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", - "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", - "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", - "\n", - "preprocessor = preprocess.Preprocessor(\n", - " rolling_window_size=25,\n", - " detrend=None,\n", - " subtract_climatology=True,\n", - ")\n", - "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", - "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" - ] - }, - { - "cell_type": "code", - "execution_count": 51, -======= - "execution_count": 15, ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { -<<<<<<< HEAD - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGaUlEQVR4nOydd5gTVdvG72Qb25eyS4dF6SDtBVRAAUVQLDQFRUEs2AALguVVFGyon4oFxfYKWBHFgoogSrHRRBAQRGnSO+yyvc33x8PZOZmdmUySSSbZfX7XlSttMplMZs6556kuRVEUMAzDMAzDRChupzeAYRiGYRgmEFjMMAzDMAwT0bCYYRiGYRgmomExwzAMwzBMRMNihmEYhmGYiIbFDMMwDMMwEQ2LGYZhGIZhIppopzcg2JSVlWH//v1ITk6Gy+VyenMYhmEYhrGAoig4deoU6tWrB7fb3PZS6cXM/v370bBhQ6c3g2EYhmEYP9izZw8aNGhgukylFzPJyckAaGekpKQ4vDUMwzAMw1ghOzsbDRs2LJ/Hzaj0Yka4llJSUljMMAzDMEyEYSVEhAOAGYZhGIaJaFjMMAzDMAwT0bCYYRiGYRgmoqn0MTNWKS0tRXFxsdObwUQAMTExiIqKcnozGIZhmNNUeTGjKAoOHjyIkydPOr0pTASRlpaGOnXqcO0ihmGYMKDKixkhZDIyMpCQkMCTE2OKoijIy8vD4cOHAQB169Z1eIsYhmGYKi1mSktLy4VMzZo1nd4cJkKIj48HABw+fBgZGRnscmIYhnGYKh0ALGJkEhISHN4SJtIQxwzHWTEMwzhPlRYzAnYtMb7CxwzDMEz4wGKGYRiGYZiIhsUMwzAMwzARDYsZJiBGjRqFgQMHOr0ZDMMwTBWmSmczVUUmT56ML774AuvXr7dlfS+99BIURbFlXUxoKCsDioqAatWc3hKGYRh7YMsMo4vVLJ3U1FSkpaUFd2MYW+nfH2jcGDh1yuktYRiGsQcWMxoUBcjNDf3NF+PGu+++i5o1a6KwsNDj9SFDhmDkyJGGn5s1axamTJmCP/74Ay6XCy6XC7NmzQJA2Tmvv/46BgwYgMTERDzxxBMoLS3FTTfdhCZNmiA+Ph4tWrTASy+95LFOrZupV69euPPOO3HfffehRo0aqFOnDiZPnmz9xzFB59dfgcOHgW3bnN4ShmEYe2A3k4a8PCApKfTfm5MDJCZaW/aqq67CnXfeifnz5+Oqq64CABw9ehRff/01Fi5caPi5YcOGYdOmTVi4cCG+//57AGRZETz66KOYOnUqpk2bhqioKJSVlaFBgwaYO3cuatWqhV9//RW33HIL6tati6FDhxp+z+zZszF+/HisWrUKK1aswKhRo9C9e3dcdNFF1n4gE1QKCug+O9vZ7WAYhrELFjMRSHx8PIYPH46ZM2eWi5kPPvgADRo0QK9evUw/l5SUhOjoaNSpU6fC+8OHD8eNN97o8dqUKVPKHzdp0gS//vor5s6daypm2rVrh0cffRQA0KxZM0yfPh0//PADi5kwoLQUEB5EFjMMw1QWWMxoSEggK4kT3+sLo0ePRpcuXbBv3z7Ur18fM2fOxKhRowIq5ta5c+cKr73++ut4++238e+//yI/Px9FRUXo0KGD6XratWvn8bxu3brlvYwYZ5E9kyxmGIapLLCY0eByWXf3OEnHjh3Rvn17vPvuu+jXrx82btyIr776KqB1Jmp++Ny5c3HPPffg+eefx7nnnovk5GT83//9H1atWmW6npiYGI/nLpcLZWVlAW0bYw/CxQSwmGEYpvLAYiaCufnmmzFt2jTs27cPffr0QcOGDb1+JjY2FqWlpZbW/9NPP6Fbt2644447yl/bvn2739vLOE9+vvqYxQzDMJUFzmaKYK699lrs27cPb731VoVYFyMyMzOxc+dOrF+/HkePHq2QESXTtGlT/Pbbb1i0aBH+/vtvTJo0CWvWrLFr8xkHYMsMwzCVERYzEUxKSgqGDBmCpKQky1V4hwwZgosvvhi9e/dGeno6PvroI8Nlb7vtNgwePBjDhg3D2WefjWPHjnlYaZjIQxYzXGeGYZjKgkup5OVbs7OzkZqaiqysLKSkpHi8V1BQgJ07d6JJkyaoFqHlUC+66CK0atUKL7/8stObUqWI1GNn7VpAxHlffz1wuswQwzBM2GE2f2vhmJkI5fjx4/juu++wZMkSTJ8+3enNYSIEdjMxDFMZYTEToXTq1AknTpzAM888gxYtWpS/3qZNG/z777+6n3njjTdw7bXXhmoTmTCEA4AZhqmMsJiJUHbt2qX7+oIFCwz7KtWuXTuIW8REAmyZYRimMsJippLRuHFjpzeBCWNYzDAMUxnhbCaGqUKwmGEYpjLCYoZhqhAsZhiGqYywmGGYKoQcAJybS40nGSYSUBRgxQpneucx4Q+LGYapQsiWGYAnBiZyWLgQ6NYNuOcep7eECUdYzDBMFUIrZtjVxEQKmzbR/c6dzm4HE56wmGGQmZmJF1980fLyy5Ytg8vlwsmTJ4O2TU7j6z6JFFjMBJe9e4HXXiMXHmMvBw/SfV6es9vBhCecmh2h9OrVCx06dLBlwl2zZg0SExMtL9+tWzccOHAAqampAX83E1pYzASXxx4D3noLiIsDbrrJ6a2pXLCYYcxgMVNJURQFpaWliI72/henp6f7tO7Y2FjUqVPH300LGUVFRYiNjXV6M8IKOQAYYDFjN4cP0/2RI85uR2WExQxjBruZDMjNNb5pr27NltVOHnrL+MqoUaOwfPlyvPTSS3C5XHC5XJg1axZcLhcWLVqEzp07Iy4uDj/99BO2b9+OAQMGoHbt2khKSkKXLl3w/fffe6xP61JxuVx4++23MWjQICQkJKBZs2aYP39++ftaN9OsWbOQlpaGRYsWoVWrVkhKSsLFF1+MAwcOlH+mpKQEd955J9LS0lCzZk3cf//9uP766y13++7VqxfGjh2LsWPHlq/j4YcfhtwnNTMzE0888QRGjRqF1NRUjB49GgDw66+/4vzzz0d8fDwaNmyIO++8E7nSjj98+DAuv/xyxMfHo0mTJvjggw+s/hURB1tmgovYvzzh2s+hQ3TP+5bRg8WMAUlJxrchQzyXzcgwXvaSSzyXzcysuIyvvPTSSzj33HMxevRoHDhwAAcOHEDDhg0BAPfddx+mTp2KLVu2oF27dsjJyUH//v3x/fffY926dejXrx8uv/xy7N692/Q7pkyZgqFDh2LDhg3o378/rr32Whw/ftxw+by8PDz33HN477338OOPP2L37t2YMGFC+fvPPPMMPvjgA8ycORO//PILsrOz8cUXX/j0u2fPno3o6GisWrUKL7/8MqZNm4a3337bY5n/+7//Q9u2bbF27VpMmjQJGzduRL9+/TB48GBs2LABH3/8MX7++WeMHTu2/DOjRo3Crl27sGTJEnz66ad47bXXcFhcYlcyWMwEF3HxwhOu/QjLDMcjMboolZysrCwFgJKVlVXhvfz8fGXz5s1Kfn5+hfeoqoH+rX9/z2UTEoyX7dnTc9latSou4w89e/ZU7rrrrvLnS5cuVQAoX3zxhdfPtm7dWnnllVfKnzdu3FiZNm1a+XMAysMPP1z+PCcnR3G5XMq3337r8V0nTpxQFEVRZs6cqQBQtm3bVv6ZV199Valdu3b589q1ayv/93//V/68pKREadSokTJgwADLv7dVq1ZKWVlZ+Wv333+/0qpVK4/fMXDgQI/PjRgxQrnllls8Xvvpp58Ut9ut5OfnK1u3blUAKCtXrix/f8uWLQoAj32ixezYCWcGDfI89l54wektqlx06UL79fbbnd6SykVhoXrMxsY6vTVMqDCbv7VwzIwBZvU3oqI8n5tdxLs1ti+D/pC20blzZ4/nubm5mDJlCr7++mvs378fJSUlyM/P92qZadeuXfnjxMREJCcnm1orEhIScOaZZ5Y/r1u3bvnyWVlZOHToELp27Vr+flRUFP7zn/+grKzM8m8755xz4HK5yp+fe+65eP7551FaWoqo03+K9vevXbsW27Zt83AdKYqCsrIy7Ny5E3///Teio6M9PteyZUukpaVZ3q5IQlhm4uKAwkLg1Clnt6eyISwzWvcyExjy0FNUBJSUABbCAZkqBB8OBviQ3BO0Zf1Bm5U0ceJELFq0CM899xyaNm2K+Ph4XHnllSgqKjJdT0xMjMdzl8tlKjz0llekeBbxmoz2fTvQ/v6ysjLceuutuPPOOyss26hRI2zdulV32yorYpKtXRvYvZvdTHbDMTPBQbiYBPn5QHKyM9vChCcsZiKU2NhYlFqoRf/TTz9h1KhRGDRoEAAgJycHu4JtHtKQmpqK2rVrY/Xq1TjvvPMAAKWlpVi3bh06dOhgeT0rV66s8LxZs2blVhk9OnXqhD///BNNmzbVfb9Vq1YoKSnBb7/9Vm452rp1a6WtoSMm24wMFjPBgGNmgoNWzOTlsZhhPOEA4AglMzMTq1atwq5du3D06FFDq0nTpk3x2WefYf369fjjjz8wfPhwn1w7djFu3DhMnToVX375JbZu3Yq77roLJ06c8MkismfPHowfPx5bt27FRx99hFdeeQV33XWX6Wfuv/9+rFixAmPGjMH69evxzz//YP78+Rg3bhwAoEWLFrj44osxevRorFq1CmvXrsXNN9+M+Pj4gH5vuCKLGYDFjN2wmyk46IkZhpFhMROhTJgwAVFRUWjdujXS09MNY2CmTZuG6tWro1u3brj88svRr18/dOrUKcRbS6LimmuuwciRI3HuueciKSkJ/fr1Q7Vq1SyvY+TIkcjPz0fXrl0xZswYjBs3DrfccovpZ9q1a4fly5fjn3/+wXnnnYeOHTti0qRJqFu3bvkyM2fORMOGDdGzZ08MHjwYt9xyCzLEbF/JYDETXNgyExxYzDDecCnBCFwII7Kzs5GamoqsrCykpKR4vFdQUICdO3eiSZMmPk2qTOCUlZWhVatWGDp0KB5//HGvy9tZ8dgOIvXYadKEgtDvuw949lmge3fg55+d3qrKgaJQcoCiAO3bA+vXO71FlYexY4FXX1Wfr14NdOni3PYwocFs/tbiqGVm6tSp6NKlC5KTk5GRkYGBAweWB2QKRo0aVV4YTtzOOecch7aY8Zd///0Xb731Fv7++29s3LgRt99+O3bu3Inhw4c7vWlVCmE5YMuM/RQVkZAB2M1kN2yZYbzhqJhZvnw5xowZg5UrV2Lx4sUoKSlB3759PaqzAiivJituCxYscGiLGX9xu92YNWsWunTpgu7du2Pjxo34/vvv0apVK+zevRtJSUmGN29p5Ix12M0UPGQBw5OtvWjFDBfOY7Q4ms20cOFCj+czZ85ERkYG1q5di/PPP7/89bi4OMu9gAoLC1FYWFj+PJtH67CgYcOG+OWXX3Tfq1evHtab2OTr1auHZcuWBWfDqhhaMcN1ZuyDxUzwEGImOppqzNi6f597Dpg5E5gwAbjhBhtXzISSsErNzsrKAgDUqFHD4/Vly5YhIyMDaWlp6NmzJ5588knDAM2pU6diypQpQd9Wxj6io6MNU6cZ+1AUKpQHeFpmFAWoImV2gorcKoLdTPYixEzjxsD27TaLmWPHgM2bgZUrWcxEMGGTzaQoCsaPH48ePXqgbdu25a9fcskl+OCDD7BkyRI8//zzWLNmDS644AIP64vMgw8+iKysrPLbnj17QvUTGCaskU+Z2rXpvqSkYr8mxj9kAZOfDzhQAaFSkpOjupXOOIPubRUzojL56tU2rpQJNWFjmRk7diw2bNiAnzWpFcOGDSt/3LZtW3Tu3BmNGzfGN998g8GDB1dYT1xcHOLi4oK+vQwTaciTbc2aZI1RFLLOVNKyOiFFa40pKAASEpzZlsqEsMokJqoiPChiZuNGWjH/aRFJWFhmxo0bh/nz52Pp0qVo0KCB6bJ169ZF48aN8c8//4Ro6ximciAsMG43EBurVlDlsDJ70IoZdjXZw6FDdF+njqozbBUz9esD9eoBpaXAunU2rpgJJY6KGUVRMHbsWHz22WdYsmQJmjRp4vUzx44dw549ezyKnjEM4x0hZqpVI6sMixl70brrOAjYHoRlJmhiBmBXUyXAUTEzZswYvP/++/jwww+RnJyMgwcP4uDBg8g/fUmTk5ODCRMmYMWKFdi1axeWLVuGyy+/HLVq1SrvNcQwjDVkMQMAogYVixl70FpiWMzYA4sZxgqOipkZM2YgKysLvXr1Qt26dctvH3/8MQAgKioKGzduxIABA9C8eXNcf/31aN68OVasWIFk7jKmy65du+ByucpTnZctWwaXyxW2jRPDffsqE0LMiPgYFjP2wmImOOiJGdvrzLCYiXgcDQD21kkhPj4eixYtCtHWVE66deuGAwcOIDU1Najfs2zZMvTu3RsnTpxAWlpaUL+L8Q8x2WotM1xrxh44ZiY4hMQy07kz3e/YARw9CtSqZfMXMMEmLAKAmeARGxuLOnXq+NSdmqmcsJspuHDMTHAIiZhJTQVatKDHa9bYvHImFLCYMSA3N9fwVqAZtcyWzddcnukt4w9lZWV45pln0LRpU8TFxaFRo0Z48sknKyyndePMmjULaWlp+Prrr9GiRQskJCTgyiuvRG5uLmbPno3MzExUr14d48aNQ2lpafl63n//fXTu3BnJycmoU6cOhg8fjsOHDwMg11bv3r0BANWrV4fL5cKoUaMAUEXmO++8ExkZGahWrRp69OiBNV4Gi3nz5qFNmzaIi4tDZmYmnn/+eY/3Dxw4gEsvvRTx8fFo0qQJPvzwQ2RmZpY3obzxxhtx2WWXeXympKQEderUwTvvvGN5H1c2WMwEF3YzBYeQiBmAXU0RTtjUmQk3kpKSDN/r378/vvnmm/LnGRkZyDM4u3r27OlRij8zMxNHjx71WMafxuUPPvgg3nrrLUybNg09evTAgQMH8Ndff1n6bF5eHl5++WXMmTMHp06dwuDBgzF48GCkpaVhwYIF2LFjB4YMGYIePXqU1/kpKirC448/jhYtWuDw4cO45557MGrUKCxYsAANGzbEvHnzMGTIEGzduhUpKSmIPx2Ycd9992HevHmYPXs2GjdujGeffRb9+vXDtm3bKlR6BoC1a9di6NChmDx5MoYNG4Zff/0Vd9xxB2rWrFkukEaOHImjR49i2bJliImJwfjx48uFFQDcfPPNOP/883HgwIHyrLcFCxYgJycHQ4cO9XlfVxZYzAQXdjMFB1nMFBXR46CJmffeYzETqSiVnKysLAWAkpWVVeG9/Px8ZfPmzUp+fn6F9wAY3vr37++xbEJCguGyPXv29Fi2Vq1aFZbxlezsbCUuLk556623Kry3c+dOBYCybt06RVEUZenSpQoA5cSJE4qiKMrMmTMVAMq2bdvKP3PrrbcqCQkJyqlTp8pf69evn3LrrbcabsPq1asVAOWf0X6PoihKTk6OEhMTo3zwwQflrxUVFSn16tVTnn32Wd3PDR8+XLnooos8vmvixIlK69atFUVRlC1btigAlDVr1pS//88//ygAlGnTppW/1rp1a+WZZ54pfz5w4EBl1KhRhr/HV8yOnXDlgw8UBVCUPn3o+aRJ9HzMGGe3q7Ig9qe4vfOO01sU+ZSWKkpMDO3P3bsV5dtv6XGnTkH4slWraOW1ailKWVkQvoDxFbP5WwtbZgzIyckxfC8qKsrjuWwV0OJ2e3rydu3aFdB2AcCWLVtQWFiICy+80K/PJyQk4Mwzzyx/Xrt2bWRmZnpYo2rXru3xu9atW4fJkydj/fr1OH78OMpO12rfvXs3Wrdurfs927dvR3FxMbp3717+WkxMDLp27YotW7YY/rYBAwZ4vNa9e3e8+OKLKC0txdatWxEdHY1OnTqVv9+0aVNUr17d4zM333wz3nzzTdx33304fPgwvvnmG/zwww/edk2lRhsAzHVm7IVjZuznxAmguJgeZ2QAO3fS46Ds2/btgZgYCgDetQuwUPeMCR9YzBiQmJjo+LJGxAdYez4mJsbjucvl0n1NCJbc3Fz07dsXffv2xfvvv4/09HTs3r0b/fr1Q5Gw++qgnHafaYOPFUUxDEjWe0+R3HCKgUtO+/rIkSPxwAMPYMWKFVixYgUyMzNx3nnnGW5rVYDdTMGF3Uz2I1xMNWoAcXFBjpmJiwM6dKAA4NWrWcxEGBwAHIE0a9YM8fHxIbM0/PXXXzh69CiefvppnHfeeWjZsmUFa1RsbCwAeAQNN23aFLGxsR79toqLi/Hbb7+hVatWut/VunXrCv25fv31VzRv3hxRUVFo2bIlSkpKsE4qO75t27YKdWpq1qyJgQMHYubMmZg5cyZu4G64LGaCDAcA248cLwMEWcwAHAQcwbBlJgKpVq0a7r//ftx3332IjY1F9+7dceTIEfz5559+u57MaNSoEWJjY/HKK6/gtttuw6ZNm/D44497LNO4cWO4XC58/fXX6N+/P+Lj45GUlITbb78dEydORI0aNdCoUSM8++yzyMvLw0033aT7Xffeey+6dOmCxx9/HMOGDcOKFSswffp0vPbaawCAli1bok+fPrjlllswY8YMxMTE4N5770V8fHwFi87NN9+Myy67DKWlpbj++utt3y+RhpGY4Toz9iDEjGjgyWImcIzEjO1F8wRduwKvvspiJgJhy0yEMmnSJNx777145JFH0KpVKwwbNsw0dicQ0tPTMWvWLHzyySdo3bo1nn76aTz33HMey9SvXx9TpkzBAw88gNq1a2Ps2LEAgKeffhpDhgzBiBEj0KlTJ2zbtg2LFi2qEOMi6NSpE+bOnYs5c+agbdu2eOSRR/DYY4+VZzIBwLvvvovatWvj/PPPx6BBgzB69GgkJyejmpilT9OnTx/UrVsX/fr1Q7169ezdKREIVwAOLmL/ikOb3UyBYyRm8vOB015wexGWmbVrgZKSIHwBEzSCGoocBvibzcREDnv27FEAKN9//73H67m5uUpqaqoyb948278zEo+de++lZI2JE+n5+vX0vE4dZ7ersnDJJbQ/mzal+5tvdnqLIp+JE2lfjh9Pz0+dUrPFcnOD8IWlpYqSkkJfsH59EL6A8QVfspnYMsNEHEuWLMH8+fOxc+dO/Prrr7j66quRmZmJ888/HwAVFNy/fz8mTZqE1NRUXHHFFQ5vcXjAMTPBRVhiatake3YzBY7WMiPnPgRl/7rdQJcu9JhdTREFixkm4iguLsZ///tftGnTBoMGDUJ6enp5AT2A0sXr16+PuXPn4p133kF0NIeGAcZiJi+PLep2IMSMqAXJbqbA0YqZqCj1+OUgYEaGR3km4ujXrx/69etn+H5mZqZfVZUrO1oxIzeeP3VKjfVg/EPsXyFm2DITOFoxA1DcTEEBixnGE7bMMEwVQRsAHBtLpTUAZ11NigLs3+/c99sFu5nsx0jMACEQM5s2BTFtirEbFjMMU0XQVgAGwiNuZsYMoH59YNYs57bBDtjNZC/FxVSMFwixmKlXjw7IsjJAqmfFhDcsZhimiqB1MwHhUWvmt9/o/o8/nNsGO9CKGbbMBMaRI2S1i4pSrV1ACGrNABwEHIGwmGGYKoKZmHHSMnPkCN1HevE+sX/ZzWQPwsWUkUFJRoKgW2YAjpuJQFjMMEwVIdzFjElv14iAY2bsRS9eBmAxw+jDYoZhwpTDh4Fvv7Wv0qk2ABgILzETyZaZ4mJAtCXjmBl7cFTMdO5M9zt3qgcoE9awmGGYMGXsWKB/f2DpUnvWF64BwCLIM5LFjCxc5JgZrhDgP46KmdRUoGVLerxmTRC/iLELFjNVjMmTJ6NDhw62rnPWrFlIS0uzdZ0MsHu3532ghKObqbBQ/e5IFjNi3wKqmCktJYsN4x9GYiYxke6D7sZjV1NEwWKGYcIUMbnbFUuiJ2ZE4TynxIywygCRHTMjW72E5UB+nfEdRy0zAIuZCIPFjBZFoZw/L7fDO3OxcWUu9v3tfVlLNx/s0e+++y5q1qyJwsJCj9eHDBmCkSNHGn5u1qxZmDJlCv744w+4XC64XC7MOl3cIysrC7fccgsyMjKQkpKCCy64AH9IubJ//PEHevfujeTkZKSkpOA///kPfvvtNyxbtgw33HADsrKyytc5efJkn3Y5o4+Y3O1KQQ1Hy4wcjhDJlhkhWuLjqRihyL7hIGD/CSsxw/7CsIfbGWjJywOSkrwulnH6Zhs5Oar91AtXXXUV7rzzTsyfPx9XXXUVAODo0aP4+uuvsXDhQsPPDRs2DJs2bcLChQvx/fffAwBSU1OhKAouvfRS1KhRAwsWLEBqaireeOMNXHjhhfj7779Ro0YNXHvttejYsSNmzJiBqKgorF+/HjExMejWrRtefPFFPPLII9i6dSsAIMnC/mO8I8SMHRYLRQnPAGDZMlMZxEy1aoDLRRNuTg6LmUDwJmaCXpy3XTtSpseOUSDwGWcE+QuZQGDLTAQSHx+P4cOHY+bMmeWvffDBB2jQoAF69epl+rmkpCRER0ejTp06qFOnDuLj47F06VJs3LgRn3zyCTp37oxmzZrhueeeQ1paGj799FMA1LyxT58+aNmyJZo1a4arrroK7du3R2xsLFJTU+FyucrXyWLGHuy0zBQVqReX4VQ0T7bM5OWpGUGRhlYoint2M/nPoUN075hlJi4OEPGF7GoKe9gyo0VcUnnh5Elgxw4atFq1sul7fWD06NHo0qUL9u3bh/r162PmzJkYNWoUXC6Xz1+9du1a5OTkoKZcZhNAfn4+tm/fDgAYP348br75Zrz33nvo06cPrrrqKpx55pk+fxdjjaIiugH2WGbkANVwdTMBJNzENkUSspsJCOGEW0nJy1OPScfEDECuptWr6Xb11SH4QsZfWMxocbksuXuiFaAsHiiOBWDNO2QrHTt2RPv27fHuu++iX79+2LhxI7766iu/1lVWVoa6deti2bJlFd4TWUqTJ0/G8OHD8c033+Dbb7/Fo48+ijlz5mDQoEEB/ArGCNkaY4dlRhYzsbHq43ATM6dOsZhhVKtMfLxnd3cgxPtWtDXg9Oywh8WMn0Sf3nMlJc5tw80334xp06Zh37596NOnDxo2bOj1M7GxsSjV2PI7deqEgwcPIjo6GpmZmYafbd68OZo3b4577rkH11xzDWbOnIlBgwbprpMJDNkaY6dlRsR0CJwWM3LMDBC5cTPaGj7sZgoMOV5Ga2wOqZhp3pzu7aqPwAQNjpnxEyFmysrsq9DqK9deey327duHt956CzfeeKOlz2RmZmLnzp1Yv349jh49isLCQvTp0wfnnnsuBg4ciEWLFmHXrl349ddf8fDDD+O3335Dfn4+xo4di2XLluHff//FL7/8gjVr1qDVaf9aZmYmcnJy8MMPP+Do0aPI48vRgJEFjJ2WGTn4F3BezOhZZiIR7f5ly0xgGAX/AiHet3Xr0v2BA5zRFOawmPGTqCj1sVNGiZSUFAwZMgRJSUkYOHCgpc8MGTIEF198MXr37o309HR89NFHcLlcWLBgAc4//3zceOONaN68Oa6++mrs2rULtWvXRlRUFI4dO4aRI0eiefPmGDp0KC655BJMmTIFANCtWzfcdtttGDZsGNLT0/Hss88G8VdXDey2zOhV/wU8xYwTY7VWzERqrRl2M9mLEDO1a1d8L2RF8wBVTRUXU1YTE7awm8lPXC6yzpSU0C0mxpntOHDgAK699lrExcVZWj4uLq48Q0kmOTkZL7/8Ml5++WXdz3300Uem650xYwZmzJhhaRsY7wTLMqMVMyIeoayMJgeL1QFso7JYZrRiht1MgRE2lpm4OKBWLfKH7t9PjxlPSkro6t6P5BM7YctMADgZN3P8+HHMmTMHS5YswZgxY0K/AUxQCWbMjExiojoGOeFqEmIm43TRpkgXM2L/smUmMMJGzACeriamIo8/TibeRx91dDNYzASAcDU5IWY6deqEW2+9Fc888wxatGhR/nqbNm2QlJSke/vggw9Cv6GMX4TKMuNyOVdrprQUOH6cHot6ZJEqZjhmxl6siJmgF80T1KtH9/v3h+gLI4w9e2jAcso9cRp2MwWAk5aZXbt26b6+YMECFBt0t6ut54BmwpJgWWa0AcAAiZmsrNBbZk6cUIPnMzOBlSsrT8wMu5kCw6plRlFC4N1gMWPOnj10byGbNpiwmAmAcEjP1tK4cWOnN4GxAXlSLyggK4YcdO4rRpYZwLmMJuFiSksDqlenx5FqmeEAYHuxImbKyqiwpMVwQf9hN5M5YSJm2M0UAOEoZpjKgdZCEahJ3SibCXBezKSnq4HIkS5mOGYmcBTFmpgBQrR/2TJjjKKwmKkMsJhhgoXdYiYcLTOiYF5lEjNsmQmckyfVVh56nvGYGHXsZTHjMCdPqn9CgwaObgqLmQBgMcMEC62YCTSWJBzFjLDM1KqliplIjZnhRpP2IawyaWn6xyvgYOE8xhNhlalVSz8gL4SwmAkAFjNMsAiWZUZvvBFCwkk3k2i0zpYZxqhbtkxIC+cJy8yBA86Vew9XwsTFBLCYCQghZrgtEWM32km9MltmKpObiWNmAscsXkYQ0v3LVYCNEWLGYRcTwGImINgyEzqWLVsGl8uFkydPOr0pIcGJAOBQCwm9mJlIdTNxarZ9+CJmQlJrJjZWrfwbDq4mRQmfSYctM5UDWcyEuq9Nr169cPfdd9u2vlGjRlnu78QEn6oWMxPpbiYummcfYWeZAcIrCHjIEODMM0NYNdAEFjOVg3BoNhlJKIqCknC5oghzhHgRgrkyZjNVRjcTi5nAMWsyKajSLQ0WLgR27wa2bXN6S1jMRAS5uca30zOD2336lp+LkiyDZbV2Zr1lfGTUqFFYvnw5XnrpJbhcLrhcLuzatQubN29G//79kZSUhNq1a2PEiBE4Kmz5AD799FOcddZZiI+PR82aNdGnTx/k5uZi8uTJmD17Nr788svy9S1btsx0G3bt2gWXy4U5c+agW7duqFatGtq0aePxOeEaWrRoETp37oy4uDj89NNPUBQFzz77LM444wzEx8ejffv2FZpfLliwAM2bN0d8fDx69+5tWPG4siLEjBjQ7bLMGFUABljMBILWjcduJv9hy4wJRUXqQcWWGQ9YzBiRlGR8GzKkfLHoaKB93wxUq2Ww7CWXeK43M7PiMj7y0ksv4dxzz8Xo0aNx4MABHDhwADExMejZsyc6dOiA3377DQsXLsShQ4cwdOhQANRd+5prrsGNN96ILVu2YNmyZRg8eDAURcGECRMwdOhQXHzxxeXr69atm6VtmThxIu69916sW7cO3bp1wxVXXIFjmiC5++67D1OnTsWWLVvQrl07PPzww5g5cyZmzJiBP//8E/fccw+uu+46LF++HACwZ88eDB48GP3798f69etx880344EHHvB5P0UyQryIAb2yWWYURT9mJjc3MhNG2DJjHyxmTMjKUh87LWYUBdi7lx6HgZjhdgYBEu3AHkxNTUVsbCwSEhJQ5/QZ/8gjj6BTp0546qmnypd755130LBhQ/z999/IyclBSUkJBg8eXN7y4KyzzipfNj4+HoWFheXrs8rYsWMx5LS4mzFjBhYuXIj//e9/uO+++8qXeeyxx3DRRRcBAHJzc/HCCy9gyZIlOPfccwEAZ5xxBn7++We88cYb6NmzJ2bMmIEzzjgD06ZNg8vlQosWLbBx40Y888wzfuytyMRuy0y4VQDOyQEKC+lxrVqe/XVyc1VxEylwzIx9hKWYCRc3k5wA4bSYOXKETmKXC6hf39ltAYsZY8xmDylYJjoa+OO7w2jUSA1498CtMX4FyV2ydu1aLF26FEk6lp7t27ejb9++uPDCC3HWWWehX79+6Nu3L6688kpUF01x/EQIEgCIjo5G586dsWXLFo9lOnfuXP548+bNKCgoKBc3gqKiInTs2BEAsGXLFpxzzjlwSTOc/D2VndJSVXyEwjLjRJ0Z4WKKj6eaIYpCp0pZGbmaIk3MGGUzFRbSb9IOA5WBwkL7+yKVlqrHRliJGbbMVES4mGrXpowvh2ExY4SoyuSF6GigLD4RJXEArHzE4np9paysDJdffrmu9aJu3bqIiorC4sWL8euvv+K7777DK6+8goceegirVq1CkyZNbN0Wl6aNbaL0m8tO+xC++eYb1Neo+bjTI6MS6tSwMEMeo+yOmQkXy4wcLwOQmElOprE60uJmSkupBAlQsc4MQEInSKe9YyxYAFxxBTB9OnDbbfat98gRVfyJY0OPkBbNA8JHzISTZSaMXEwAx8wEjFO1ZmJjY1EqpVB16tQJf/75JzIzM9G0aVOPmxATLpcL3bt3x5QpU7Bu3TrExsbi888/112fVVauXFn+uKSkBGvXrkXLli0Nl2/dujXi4uKwe/fuCtvZ8PRJ0bp1a4/1ar+nsiOES1QUULMmPQ5mBWAhZgoK1Ek52MjxMp9+SqXrxbkUabVm5CBfrWUGqJyupvfeIxH366/2rle4mNLTzbvEO+ZmOnjQ2aAu2TLj9IEVRsG/AIuZgHGqCnBmZiZWrVqFXbt24ejRoxgzZgyOHz+Oa665BqtXr8aOHTvw3Xff4cYbb0RpaSlWrVqFp556Cr/99ht2796Nzz77DEeOHEGrVq3K17dhwwZs3boVR48eRbHFWe3VV1/F559/jr/++gtjxozBiRMncOONNxoun5ycjAkTJuCee+7B7NmzsX37dqxbtw6vvvoqZs+eDQC47bbbsH37dowfPx5bt27Fhx9+iFmzZgW8zyIFMZnL8eHBtMzILp1QWUXkGjNXXUXfK+LGI80yI/YtoIoYt1t1wVS2jCZFAZYsocd2/zYr8TJAiIvmAeFTBTicLDNhVP0XYDETMELMhOqKVjBhwgRERUWhdevWSE9PR1FREX755ReUlpaiX79+aNu2Le666y6kpqbC7XYjJSUFP/74I/r374/mzZvj4YcfxvPPP49LTmdbjR49Gi1atEDnzp2Rnp6OX375xdJ2PP3003jmmWfQvn17/PTTT/jyyy9RSzd4SOXxxx/HI488gqlTp6JVq1bo168fvvrqq3J3V6NGjTBv3jx89dVXaN++PV5//XWPwObKjp6YCWYF4JgYdRIOlatJ62aSiTQxI/ZtbKxnbExlDQLetAk4fJgey0LODnwVMyHbt7Gx6sHqpKspHMVMmFhmOGYmQJyyzDRv3hwrVqyo8Ppnn32mu3yrVq2wcOFCw/Wlp6fju+++83k7WrVqZegC6tWrl278i8vlwp133ok777zTcL2XXXYZLrvsMo/XbrjhBp+3LxKRxYyIDQimZQYgV1N+vrNipmZNuuiNVDGj3bcJCcCJE5VPzPzwg/rYactMSPdt3bp04B44ALRvH8IvlgjHAGAWM5UD7s/E2E0wLDNWxMyhQ86ImTp1aBJr2xZYvjxyY2a08UiV1TITqJi59VaKuUlNpVip6tXV+z//pGXCUszUqwds2MCWGQGLmcpFZRUzTz31lKFr57zzzsOMGTNCvEVVh2BaZvQCgIHQZzSJAOCaNcl6IR4DkWeZMdq3lbEKcEkJCU6BP26mOXNon+Tnq5YYLadLYRnimJgBnBUz4WKZKS0F9u2jxyxmKgci4l40m9RkJUcst912W3n1YC3x8fGoX79+lU+hDhZCuCQnh9YyA4TeMpORQRPSgQPAgw/Sa5EmZiLZMvPTTxTvd8EF1pZfs8bz//FHqInPLFxIQdInTpDBQdzHxgLXXWe+DsfcTICzhfPCxTJz6BBNem63ul8chsVMgAjLjKJQxp5ZOmEkUaNGDdSoUcPpzaiS2G2ZKS5WY7qMxEyoC+fJbqa8PM+EiEgVM3oxM0D4ipmTJ4G+fen42LaNOq14Q7iYGjSgMiO+ihm5Jk/nzqo1zleqrGUmXMSMcDHVq+dMGXwdOJspQNxu1RpT2VxNjDPoxczk5flf3kJ2BXizzIQ6NTs9nQSbXEm2ssTMhLubafFiOjZKS4EPP7T2GSFmRGy+r24mvZo8/hDyonmAKmactMyES52ZMIuXAVjMBIzLVXnjZhhnEIJCtswoiv+TojzhGJWfD6WbqbBQ/Y3r1wPDhql9moDIs8wYxcyEu2Xm22/Vx++9R8eYGXl5apE8IWZ8PSbl5Y2EtRVCXmcGUN0pbJlhMVNZYTHD2IlsmYmPVy1//losxGQbF2fcIyiUYkYE/0ZFkXvjk0883480MROJMTNlZZ5i5q+/gN9/N//ML78ARUXkYhI9av0VM2bHohUcdTMdOOBcFeBwCQAOs1YGAIsZW2Axw9iJLGbc7sCvQr0F/wKhFTNy9d9Dhyq+H6liRrt/w9nN9McflEmUmAgMHEivvf+++WeEi+nCC9XfVlTk27xuVrzRF8Q5UVwcwoKlIl+8pMSZKsBlZeEjZsKs+i/AYsYWWMwwdiKLGfneX8uMlQnECTGTnq4fflBZYmbC2TIjrDIXXgjcdBM9/ugj8zFMT8wAvsXNeCsRYBVtI8+QEBPjbBXgU6c8fYHhIGbYMkNMnToVXbp0QXJyMjIyMjBw4EBs3brVcPlbb70VLpcLL774Yug20gJOVQHWY9euXXC5XFi/fj0AYNmyZXC5XDgp+1rDiHDfPifQihkRN1NZLDNyk0lRZ0R0BwcizzITiTEzCxbQ/SWXAP36UVbRoUPA99/rL3/iBLB2LT2+8ELPY8kXMWEk/HwlLk51v1aZjCbZKgPQgOBUeQwWM54sX74cY8aMwcqVK7F48WKUlJSgb9++yNUZtb/44gusWrUK9cTBFEaEs2WmW7duOHDgAFJTU4P6PSxK7MNuy0y4iRnZzSTEzMCBNLECkSdmIi2b6cQJQHRCueQSMjhcfTU9N3I1LVtG82bLlmo2rhj3nBAzLlcVrDUjxlZxIiuK/c2xrFBSov7+MBIzjiaIa3sFzZw5ExkZGVi7di3OP//88tf37duHsWPHYtGiRbj00ktDvZleCWcxExsbizreaoMzYUWwLDNmE0go68zouZnuvZcmqGbNIlfMREqdmcWLKfyidWu10u6IEcCrrwKff07Hnzj2BLKLSRAfT/+VL/OpXWIGoP2bm1sFLTP16gE7dtDj3Fx7dqYv7N9PB1BMjKdJ1WHCKmYm6/SfJRdrKysrw4gRIzBx4kS0adPG6zoKCwuRnZ3tcfOH3Nxcw1uB5uwtKMhFfn4usrMrLpuvuWzRW58/lJWV4ZlnnkHTpk0RFxeHRo0a4cknn6ywnNZiMmvWLKSlpeHrr79GixYtkJCQgCuvvBK5ubmYPXs2MjMzUb16dYwbNw6lkt/s/fffR+fOnZGcnIw6depg+PDhOHy6de6uXbvQu3dvAED16tXhcrkwatQoAPR/3HnnncjIyEC1atXQo0cPrFmzxvS3zZs3D23atEFcXBwyMzPx/PPPe7x/4MABXHrppYiPj0eTJk3w4YcfIjMzs9z9eOONN1ZoUllSUoI6dergnXfesbyPncJJy0wohIQQM2lp6rbVqaMKqtxc55JF/CHSYmZkF5Oga1egaVPa1i++qPgZIzEDOGOZAapg4TxhmalZU62x4MTBJVxM9esHlpJmM2GzJYqiYPz48ejRowfatm1b/vozzzyD6Oho0w7LMlOnTkVqamr5raGfZrCkpCTD25AhQzyWbd06A+efn4SOHSsue4k8YgDIzMyssIw/PPjgg3jmmWcwadIkbN68GR9++CFqW1TJeXl5ePnllzFnzhwsXLgQy5Ytw+DBg7FgwQIsWLAA7733Ht588018+umn5Z8pKirC448/jj/++ANffPEFdu7cWS5YGjZsiHnz5gEAtm7digMHDuCll14CANx3332YN28eZs+ejd9//x1NmzZFv379cPz4cd1tW7t2LYYOHYqrr74aGzduxOTJkzFp0iTMmjWrfJmRI0di//79WLZsGebNm4c333yzXFgBwM0334yFCxfigGQKXrBgAXJycgxbNIQTdltmwi0AWMTM1KtH9WUOH6bfGhtLrytK+AkAM7zFzISTm6msjNoIAED//urrLpfaQuC99zw/s28fpW673UCvXurr4nhySsw4UjgvHNxMaWmBDwqBEIbxMkAYtTMYO3YsNmzYgJ9//rn8tbVr1+Kll17C77//DpfFpkcPPvggxo8fX/48Ozvbb0ETrpw6dQovvfQSpk+fjuuvvx4AcOaZZ6JHjx7YtWuX188XFxdjxowZOPPMMwEAV155Jd577z0cOnQISUlJaN26NXr37o2lS5di2LBhAMjaITjjjDPw8ssvo2vXrsjJyUFSUlK5NS0jIwNpaWkAyAo1Y8YMzJo1q1zUvfXWW1i8eDH+97//YeLEiRW27YUXXsCFF16ISZMmAQCaN2+OzZs34//+7/8watQo/PXXX/j++++xZs0adO7cGQDw9ttvo1mzZuXr6NatG1q0aIH33nsP9913HwByYV511VV+i8dQ4nTMTLB7jMkxM243uZv+/JO6ZgtOnaro6ghXvMXMhJMwW7+eAn2TkoAePTzfu/ZaYPJkCgI+cECdt5csoftOnaiztUD8PifdTECI5/NwcDOlptKPP36cxYxEWFhmxo0bh/nz52Pp0qVoIOWt//TTTzh8+DAaNWqE6OhoREdH499//8W9996LTINGInFxcUhJSfG4+UNOTo7hTVghBLt3H8aPP+bg558rLvutXJkK5JLRLuMrW7ZsQWFhIS6Ubb4+kJCQUC5kAKB27drlFiP5NdnasW7dOgwYMACNGzdGcnIyep2+RNu9e7fh92zfvh3FxcXo3r17+WsxMTHo2rUrtmzZYvjb5OUBoHv37vjnn39QWlqKrVu3Ijo6Gp06dSp/v2nTpqguj7Ig68zMmTMBAIcPH8Y333zjIcjClbIydXxyIptJUYI/PsoxMwJtj55ISs+OpJgZ4WK68ELVEiZo2hQ45xw6BufMUV/XczEB7GYKOWyZMcVRMaMoCsaOHYvPPvsMS5YsQZMmTTzeHzFiBDZs2ID169eX3+rVq4eJEydi0aJFQd22xMREw1s1zaiVmpqI+PhExMXRvbxsvOas1Vufr2jX6SsxMTEez10ul+5rZacDF3Jzc9G3b18kJSXh/fffx5o1a/D5558DIPeTEaKrttaqpiiKoaVN7z25O7dRp27t6yNHjsSOHTuwYsUKvP/++8jMzMR5551nuK3hQn6+mm1pt2XG7LCJj1ebpAbb1STEzB9/AFddBbzzTkUxE0lBwN5iZsLJzSSurWQXk8yIEXQvXE2KYixmAnEzBVo0D3A4m+ngwdAHdsmWGRYzFXBUzIwZMwbvv/8+PvzwQyQnJ+PgwYM4ePBgedBszZo10bZtW49bTEwM6tSpgxYtWji56R7InbJDkdHUrFkzxMfH4wcxygSZv/76C0ePHsXTTz+N8847Dy1btvSw2gCUNQXAI2i4adOmiI2N9XAdFhcX47fffkOrVq10v6t169YeywPAr7/+iubNmyMqKgotW7ZESUkJ1q1bV/7+tm3bKqSE16xZEwMHDsTMmTMxc+ZM3HDDDX799lAjBIvLpU6OobDMuFyhiZspLVWLp+7aBXz6KbBuHSVGnPZOAogsMWMkFsPNzXT8OLByJT3WhPKVM3QoZWeuW0euv3/+ocr1sbGAxmDql5vJrqJ5gENiRq4CLIK/QgVbZkxxVMzMmDEDWVlZ6NWrF+rWrVt++/jjj53cLJ8JdbPJatWq4f7778d9992Hd999F9u3b8fKlSvxv//9Lyjf16hRI8TGxuKVV17Bjh07MH/+fDz++OMeyzRu3Bgulwtff/01jhw5gpycHCQmJuL222/HxIkTsXDhQmzevBmjR49GXl4ebhJlRzXce++9+OGHH/D444/j77//xuzZszF9+nRMmDABANCyZUv06dMHt9xyC1avXo1169bhlltuQXx8fAWLzs0334zZs2djy5Yt5bFF4Y4QM4mJaqJAKCoAA6ERMydOqJYncaEp5odatdTlIknMREo203ffkTGhTRvjeahWLVXofPCBapXp1s2z6i5QRd1MMTFARgY9DrWrSZwwTosZ0ZcpjFoZAGHgZtK7iSwZPXbt2oW77747ZNtolVDXmpk0aRLuvfdePPLII2jVqhWGDRtWwVpiF+np6Zg1axY++eQTtG7dGk8//TSee+45j2Xq16+PKVOm4IEHHkDt2rUxduxYAMDTTz+NIUOGYMSIEejUqRO2bduGRYsWVYhxEXTq1Alz587FnDlz0LZtWzzyyCN47LHHPI6Jd999F7Vr18b555+PQYMGYfTo0UhOTq7g/uvTpw/q1q2Lfv36hWWxRT2EYBFpykBoLDNAaMSMnJYtDldhuZfFDMfM2MOhQ+oFvXAxGVllBCKr6YMP1IrAeuF5TmczObZ/ncpoEn+kk26mwkK1oVqYWWbCJpsp0gm1mHG73XjooYfw0EMPVXhPjh/p1auXx/NRo0ZVEIuTJ0/G5MmTPV6TU6EB4JprrsE111xj+D0ACSyRhSSoVq0aXn75Zbz88su6v0O7fQAwZMiQCunvMnXr1sUCEckIYO/evTh8+DCaNm3qsVx+fj5OnjxpaAUKR7SZTPLjYGYzAaEpnCcH/4rqv8IyIwcEVwbLjGy5CHaGmBETJwJffQW8/rp+SrYel19Ownb3bvUiXE/MhEs2U8jFTL16FPAVasuMnpsp1D9+3z66r1bN8+ojDAiLbKbKQDhXAa5sLFmyBPPnz8fOnTvx66+/4uqrr0ZmZmZ51eiysjLs378fkyZNQmpqKq644gqHt9g6emImFBWAgdAUztOr/ivETO/egEhSjCQx463OTFkZdZcONX/+Se0JTp6k7xf1fLSxL1ri44Err6THZWUkcrt00V8OqGJ1ZgA1oynUlplwCACWu2U7oc5NYDFjE+HUbLKyU1xcjP/+979o06YNBg0ahPT0dCxbtqw8I2v37t2oX78+5s6di3feeQfR0ZFjgBSTuBOWmVC4mUTMZK1aFd1M99xDTQ+ByBIz3mJmAGdcTY88QhahIUMo2BoAzjuvYkq2HsLVBAA9e6rjm0y4uJlCHjYiDlgnLTNO/fgwDf4F2M1kG2yZCR39+vVDPzHr6ZCZmWmYwh3uBMMyE04BwMIyk5REAc6K4uleEq6uyhAzExNDmY6lpbSMQZhYUFizBvjsM9rHjz2mupasXmz17EkX33v36ruYgCruZgKqZgBwGIsZtszYhEjPZjHDBIKTMTNigvngA/Ui0G6EmGnUiGIJjxzxvOoX2xgplpmyMvodgP4E7dSE+/DDdH/dddQL8N9/6fkvv1CKtjfcbmDGDKoKbFTVwGk3k+NiJpRupoIC9UALBzcTi5nwpMyG4kdsmala2HHM6BHMmBlvYka4IvbtU600diPHzLjdnsXyvvkGeOIJehwpYkbML0D4iJllyygNOyaG2hN89x29Xq0aHUOvvGJtPZddRjE3qan671fJonmAM24mcXXhcpH5ksVMBaq0myk2NhZutxv79+9Heno6YmNjLfeA0iLmtqIi38yuTGShKAqKiopw5MgRuN3u8mKBduHNMuNPVoyVAGBFoUJpAI3V69YB//mPb99jBREzI7uWBKfbewGIHDEjT+R6+9cf60WgrFlDQnH0aKBJE4qdAYCLLqLMppdeAsaP90z/94cqWTQPUC0zogpwKDpHCxdTSgp9H4uZClRpMeN2u9GkSRMcOHAA+wNU2QUFNFBHR4dVV3QmSCQkJKBRo0Zw2/xnm1lmhEvD16taK5aZNWvUNNytW4ELLqCLQbsTFoRlZuNGypgZMEAtoR+JdWaESImK0g+SdWLCnTiR0qurV6djRnR+uesu+m///ht44w3gdB1Kv6mybqbatenEEFWARRG9YCIH/wIsZnSo0mIGIOtMo0aNUFJS4lGK31e2bQNuu41MsqtW2biBTNgRFRWF6Ohov614ZpiJGfG+r2LGimn/tdc8n2dn0zitZ0EJBCFm9uwB5s2j5oYC+bvEhWi4421ydmrCbdmS7n/7jfZ5cjJw/vnAAw8AN94IPP88MHZsYO6ecMlmCrmYiYmhg/XwYXI1hULMyMG/gDN56Xl5asBVmFX/BVjMAFAbLWqbLfpCRoYaZBcdrX+VxjDe0BMzUVE0cRQU0IWYr7WqvFlmjh8H5A4iMTFAcTGwfbu9YkZRVDEj3Egi/ACgCwGR/ROsAGQr5OVR9+jevcklY4Y3t0kom03+/DO56lq3Vl9bsoTue/em//W66yiO5tgx4PffqU2Bv1TZbCaAXE1CzHToEPzvk6v/As5YZoTpNjHRs5FamMAOEZuQ/f0nTgBffEFFIhnGF/TEjPzcH/eLNzEzaxYt06wZPReZedu2+f5dZuTkqMXjtH2ZALLcizHSyZiZjRvp9sEH3pf1NjmHqtlkSQlw003AWWfR2CP48Ue679mT7mNigLlz6cIrECEDOO9mcrI9UcgzmrRuJifqzMgupjArmAewZcY2oqNJNGdl0QAiKmgWFdEAwjBWMBIziYnk9vFn7PJmPRgxgibDqCjPOAq7xYywysTHqwXzZDEDUHbTsWMOTVCnERPuyZPeA669ufDssh4cOQLs3Al07ar//rvvUixMrVpqXZjSUuCnn+ixEDMAcPbZgW2LwGkx46hlJtQZTXL1X8AZJRfG8TIAW2ZsRaSZ/vKL+ppo1MYwVnDCMpOeDtx3H3DVVfS8uJjugyVm5FYGspsJoIwbQO1n5ARif5WWercQWY2ZCdTNNHQoiZC1ayu+V1hIriMAePBBNUtpwwaKfUpOBtq311/vypX+Vy0Xx5NVN1NxsfpddoqZggI1mzRkhLpwXjgEALOYqTqIWIaNG9XXPvzQmW1hIhMzywzg39jlawVgMeFs3+77d5khxEyNGqpI0Fpmnn6a7hXFuW7TsvA4ccJ8WW9WL7vcTDt20L3sQhK8/TbNM/XrA7ffrr6+fDnd9+ihH8M3YABw7rnA55/7t02+Wma8pbF7Q1GA+fPVps1yu4iAY5L27KGSyVYJdedsI8tMYWHoeuiwmKk6CMvM1q3qa0LAM4wV7LbMlJSohRy1YmbfPnI/fPghTRRy3ZGxY4ExY3z7Lm8IMZOaSq7X+PiKtU4SE1W3jlNxM76ImVBlM4kWE6LztUBRKM0aAO6/33M7RLzM6f6rFRDWmief9M8KFoiYiYvz/fuef54E2PXXe34/EOD+3bkT6NgRuOYaioq2QrhYZoDQWWdYzFQdhJjJyKBgyn/+AZ55xtltYiILuy0zcoVarZh56y2a8N54gwREVJT6Pffc49ls0A5EwbyGDWm79u+vGI/icqnb4FStGX/EjLeYmUAsB4qiCru1a1VRCFBxw40bSRzI/1dZWcXgXy133UX/+fr1/s3JvrqZZHenP/GjQj+Iujlut7oNAYmZzEwyXxUVkT/PSnMypwOA5Z3IYgYAixlbEWKmTx8KxpNraDCMNxRFncC1Fgt/LTPyRCNPuMXFwJtv0uM77lBfD2azSTlmRs5ckpkxQ/2NTllm5H0WqGXGDjdTfr7qSVAUYPFi9b2dO2ncGTjQs5Hl5s0USJ2QYFzJuWZNdV4SZSV8QbbMWLHsBBr827073cfGqvvDFsuXywXMnAk0bky+1dGjvf8g2c0UioAdrZtJVv2h8seymKk6iJgZcQUK0HH+00/eB0WGkd3fdllmxMQsOjgL5s+ncbh2bWDQIPV1IaJ276bjdudO377PDFnMGCELnEhwM1mtMxPIfKMVlrKracgQsqpo6+EIq8y559Lkb0TjxnQv+nL5gvjNZWVq0LgZgYqZBg3otxQVqfOqbRlN1atTsaXoaMpdf/118+VFFeDSUgpUstK9MxC0lhkgtEHA2dnqgRiGBfMAFjO2Iiwzspi57DLyWX/yiTPbxEQOstVFDm4E/LfMGLlBZsyg+5tu8pzshGXm5ZfpuP3oI9++zwwhZrZsoUl47tyKy8gFASNBzIQiZka7H777ztMYEBtLc6uMCP41cjEJMjPp3h8xIx9TVtxogYiZp5+mKtXiPBCZdramZ599thoXcM895H/TY+9eOjBE5d8331TVVbDQWmaA0NaaEb8vNTXwpl5BgsWMjQgx8/XXauXNXr3onrOaGG8IoZKQ4GlFAQK3zMgTz9atwA8/UMzBLbd4Li/EjHBZ2JmeLUT+/v2UOPL33xWXCYf+THbGzNjRaFJcEKen02R+6BAV5NywQd/DoSjeg38FQsz442aKi1PDNqzEzfgrZoqLSczceaf62j//0L3txol77qHGVoWFwGOPVXx/40YqD33ZZZ5tDEThpGDhtGUmzF1MAIsZW5FTW8UgcfXVdP/jj8EX70xkI67AtS4m+TV/Y2bkyVZY0C+9VHUzCMQxLO7tFDPCMiOuorU1ZgBPF1Qw4nasYGfMjJ2WmVq1qAEoQJbeTp0oLk/bx+qff6ihc2ys9wJ5ffsCTz2ljlO+4HL51p/JXzGzfDn9xtq1gWuvpdeCYpkB6EfNmkWpYdoS0EuXAuedR2mAOTmeB6vIFw8GcsEjp8SMaGXAYqZqIAYVlwto0oQeN2pEx7+iePa/YYJDWZl/JvNwwCiTCQjcMiNPIL16kftBrkkikJMlAHtrzQgxI0SKtsYMoFo35eVDTbjGzCQnAxdfTI8//pjmuDp1PD0PgGqVOfts77WFunWjQnu9e/u3baEQM6K2zuWXA4MHA//3f2qBx6BUAa5Rg0xB8obOmUM7PyuLBvSffwbOOEN9P5iWGVnVy3+2P4PCnj3+1aVhy0zVYvdu/deHD6d7djUFn0mTSEh+9ZVvnysro4FSNmWHGjMxY6dlZsAAYNky4JJLKi4v3DzCfbB/vz0XfoWF6sXlsWN0rydm4uPVAm/BvNg1w86YGTvdTCkpQL9+9FgU0Rs1quLyVuNl7MCXZpP+iBlFAb78kh4PHEhCfMIE8vQAIWhpUFZGJsRrrqHI4yuvpKClGjU8TYvBPFiFiyk+3jPAzVcx88svdHWtd9B4g8VM1ULEACiKp5i+8koaoNeto+BHhsaI77+3Py5i9Wq6l6swW+Hff6kS6iuvqM0QQ00wLDNWq/8KhJjJyVHjZsTEGQgiXsbtVi0uem4mAGjRgu596cZsJ8GoM2OHmyk5mYwBYj6JjQWGDfNcVlF8FzObNwPffONfwLUvYs3XYxGgGnZ799LxL3pOyQRdzDz2GPnsACrM8/HH6g+QK6IG0zKjF/wL+D4orFtH9++/rw6UVmExU7XYsEF9LK4+AZogxBXV/Pmh3aZw5aWXqA/P1Kn2rld0Kv/hB98+J2dWOmURsGKZOXWKYl5uuIFcAz//bL5OrWUmL4/GJbmYnoxcXkDUSbIjbkYImJo1ycrtcnnGT8qIJq1uh0ancIuZkS0zgOoKbNSo4vz277/0/0ZHU1q2FS65hOJZ//zT923zxc3kzSWnh3AxXXKJ+l2bNlEA+cmTIRAz48bRyfbmm8C0aZ4HpSxmQmGZ0RZm8rXOjFgPADzwgPWyz4cPA2vW0GMRPxGGcNdsmyguVidSgCYD2aX66KPAf/9rfYCp7MyaRfd2W6rEpCmyyawin+cHDzpzAaIVM/n5lBl39CjQujW9lpcHPPecGsvy+utUvNQIrZj5+WcS1m3b6luvZDFz1100kXboENDPAuDZyiAri8ZlvX5BgJr5GQmp2VZjZgJxM4n9kJJC3ydq/5w6VbGrt7DKdO7sWfHejMxMcpHv2qW6b6wSbDfTiRNUI2nAAPW1IUPICv7DDyEQMzVrAu+8o/+eMC1mZACzZwdpA6BaZozEjFXLjDzILV1KpnHR2dWM+++nbejQQa1cGIawZcYmCgqo87C4UpItMwDQpQsF2/lTxruysXmzasWys9aUNk1182brn5UnrVBVKNeiFTOjR1N19QceUAftnBx6/bLL6LmwgBuhnWyFNVxbl0Qgi5lrr6UgYTsuxoSYadiQtkkvLVsgxIw89oYSrZgxu4ANRQVgOQB40SL1ODl0qOJ+tJqSLWNH4bxgBQBPn07HzuDB6muyxTDoYsYMYZk5doxiaIKFOBG0Zjhf68yI9YgB5sEHvVtnfvlFvfJ87bWKNSPCCBYzNpGcTO7Vzp3puVbMyPjT1K0yIWd12SlmtOvy5WJJFjPeBEKw0IqZTZvo/qKLVOt2bi5dKN11Fz33Zt3WWmbE8kYuHr0q1nYg1idaGWjHZZmvv6Z7X+Oe7EKemEtLzeO6rMbMFBX539xYdjNdcQVZ19q1o9dEnyKBP8G/dhTOC2Y2U2qqZxFJPTETqvZEHtSuTZN7aWlwBw1vbiarP15YeMaPp0Fm7Vpg3jzj5UtK1F4nN90U9m4FFjM2I1JL9cTM8ePAbbeRiV90Mq5qKAplOQrMRJ+vaCf2996zvp/D0TIjfs9DD6mWFLGMeO5tDNVOtlYtM1lZ9F2//GJP9WphmZGL4hkhxmxHrrZR0WVi5mqyGjMjL+srcgCwy0WW/hEj6DW5tcG+feR+dLt98wYEImaC6WYySs2XxUyo2xN5EB2t+qPvvjt4flG7AoCFKGrenAQNQIOL0SD56qtkQhep6mEOixmb+PlnmljMrmyTkmhi2LyZXJZVkfXrPU3jR45QRVo7kMWM203nrNVaJbJLIxzETFmZuu21a6vjVnExXeULMXLsmHlfHK1lRogZI8tMWppqBdq5k+Jxrr7aOGDYKuK3bN9OLgORbquH2LZA4kwCQfu9ZmLGW8yMbLHxd8KV3UwCUW9m2TJ1G4SLqUMHc8uXFjvEjN2WmcOHKSSlS5eK+02ImX/+cdjNBABnnkn3n37qX+txK9hlmZHdVffeS1fef/+tupFkDhygOhcAZWlYuQpxGBYzNlBSQpU05VRTPYtDbCzFQABVs+ZMWZlaPr9vX7ovLqb00kAnS4DKPwiSk2mgN0r/1RJubqZjx1S3RHq6ZzBnbi6NQ//9L/Dii+buC1/dTFFRnu5/IawCLUQoxMyRI5QCb7Y+UX/GSvPCYOCLmPE2QbtcgcfNiAv+qVOBMWPoP2zTBqhfn77/p5/ofX/ry4iYmX//9d0FHiw309df03FdWlqxT1mzZnS/fbtnlp4jCDEDBC892+4A4LQ08lk+9BA9nzKl4h84cSIdeF26kIspAmAxYwNbttCxkJysXjUYuU9EAb3PPnOujoYT5OeTkPvtN3rerZsaS/bHH+p5FQh//aU+zs7W71tjRLi5mYToqFGDsjliY+keoLErKgp48kkq8mdWt8PXAGBAvQg7dkwdqwNNzxaWSjFm6hXMEwgB6pQrVmyjqLNjFtdlpXZKoBlNwjKzZQswcyb9ly6XWu5BuJr8Cf4FyFPy5JPA22/7HtcTLDeTSMkeOLDie40b0/Gfn6/WhAoLMROs9GyjAGBffWxaUXT77fTn791Lwb2CZcuolYPLFfZBvzIsZmzg99/pvmNHtV2HkZjp3p2uqrOzq04BvSNHqOCViDWLi6PML9ly+fzzFYMZfWXfPvWxotC5e/iwtUDScBIzycm0/d27A127qu/7UwVYa5m58krg+utV0a1HMGrNCDEjrAxmYkaEIZSVORMsL/aZSFYJxDIjvxeoZQagtGRRb0a4mhYupONcjCfnnefb+mNjycp37bXG6fJG+OJm0qtGrUduLrB4MT3WEzMxMVTc8tNP1RhFx8RMKFoa2OFmUpSK66lWjawyADXoysoic+iYMfTabbepGS0RAIsZG1i7lu7/8x/v2SButzpYO+XOCCXbtpEVZsUKEjEA9VWJj1fdGaKGxPXXBzYeaONj5swhU/ytt3r/rLbOjBOTqGyZOessisP69lv1fe3YtX8/8Ouv5h2PtZaDBx4gF3nLlsafCYaYEftXCAMz91+jRurjUDebVBR10q1fn+6NxIy8rJmYCTSuQ94H11yjPu7Th8aTzZtVt3Xbtp79rYJNMNxM331H+7VJEzoP9Lj9dhJ2jouZUFhm7AgAzs9X/bbyekaMoMHg+HEqYPXSS3RApaeTuS6CYDFjA0LMdOpkns0kEFelTlWaDRVr11I237ZtFGQoAhhFh16xr666imIADh2iYpv+CgltXZIzzqCr+xUrzOuaAJ4TVnGxvSnjVjGrACy/Lpb773/JevPRR8brtHo1LKMnZgJtOCnGYzHumllmhIgAAvsfliwBbr7Zt4lOdpd4s8wUFanHqhUx44+bSVE8LTOyIaB6dbUr9lNP0b2//Zj27AEWLFCtzFYJhptJuJgGDPBel8vxAGD5D5FNw3ZiZJnxJS9dnIBut+cAEx2tipZp04DJk+nxs8+qftYIgcVMgJSWUoYOQJYZK2KmXTua5OXshMrI3Lk04HfoQKL/6FE6P0TRSWGZyc2lCTkujgbU77/37/u053R0tBpX8O675p/VTlhOuJq8iRlxIaZNzzYTxbKYKSggK463iUcWM3bEzJSUeP438fHmx35MjPpbfYl7klEUCjb/3//UujVWkAWHsB4ZiRl5WTOxGIibKTfXU9xrA7eFq0lYJX2NlxG8+SZw6aXAW2/59jm7s5lKStQmsXouJsGRIyR6Vq2i546JmdRU9WAVpZntxo4AYFkQaRXioEEU6JubS7du3YCRIwPYYGdgMRMgW7fSiZSYSKnAQszk5xufYM88Q+6BIUNCt51O8MwzdGX9009qptGQIWrjVyFmjh8nc/Krr5IAslJhW0thoRowKgbLEyfUBrHvvms8MSqKOmGJ8cIJF6AsZm67DWjQgCZjgRA5WuuG2bbKbpDffiMLWdu25tshi5l27agKqxwf6CuymyQ2lkSCtyvuQFsabNyoWpN8WYfYX1FRavybNzHjcnk2M9YSiPVA3ndRURXnMyFmBP6KGZGebeay1MNuN1NZGY0Do0aZ18pZvZrm4Ndfp+eOFM0TNG9O98EQAHKsi5mbyZs528i6A9ABLOrIuN10sjvVGC0ALG/x/v37MWHCBGTrOLGzsrIwceJEHKrsfhMd6tShSrNPPEGDTUqKGkRnZ0G4SCUqiiwun35Kz4WLCahoxbrpJnI5+YMcLyO6Lp88SRVT09LIjG5U2ycnR83iED2QnLDMiEk3KYm2V2u1DtQyYyWTCfAUMzVrUjxgnz7WfoMeYhxNSKDtEZZMM4SY8bcS8WefqY99ERHyhCus7EZiRhaKZuIsEDEjjgm3m1yx2jnmP/9RLwpatDB335nhb60Zu91MsbEUFzRzpnkwsnB/CvGVl+dgZXURgBaMAOC8PPUqzcgyU1bmvbaFkSASXHABVRn94gugfXs/N9ZZLIuZF154AdnZ2UgRofQSqampOHXqFF544QVbNy4SqFGDBPndd9Nzl8uaq6myI1ImAXIbHT9Ok2ivXurrsmVGy8GDvpm85VoUQsycOEGTuBBQerWhAPU8j4lR3SqhFjNFRWp8npyaLbsVtJYZK2JGDgD2VmNGIKdm24Ecv+hyWXOvChEj4id8JRRixmoMiC+uGC3i2rF+fc9GtoKoKLVmk79WGcCzP5MvoiDYvZmMaNKEhJ34bxXFnlpVfiHiZnbssH/d4uSJiqrYOVRbfMrKevQsM4LrrgMuv9znTQwXLIuZhQsXYqSJGW3kyJH42hfndCXGm5j5/Xe6EopQAWyJa64hYfD112r7gquu8ixZYLSf9u8n98Z991kfWMVEnZamTvJiErr+err/5hv9AU8sV726GicRajeTnG6dmKj+HtmKorXM+OJm8tcyA1D9nvffB9asMf+cEUbJGGaIzDerFZxl/vnHMx3fHzFTrZp1MeMtuNoON5PONWQ5jz9Ox3ggtZoaNiShmZ9vbZ+vX0+tLkSYiB1ipqSEXJq//uo9Vio2VhVgAsfiZoRZ65tv7C8eJltUtOa/6GjVvyl+fGkpxT5oB04zN1MlwbKY2blzJxrJOZMaGjRogF2BlgmNMMrKgJdfppgQudiUNzGTkEDmUV/905GCotBAt2MH/dbPP6fXZRcTYGyZqVGDJtKTJ61PZvLkLyYhcf6efTZZZbZtUydJGTleRgiEUFtmhECJi6MxSk94GFlmjh/3tITJ6IkZq5YZIWbefJMyOOWeWr4gxExODrUykNPNjRDCzR83kzjeBP5kM9lpmbHDzWRmzWralI5v7eTuC3FxavaWt3GptJRqavXoATzyCL3mbQ5XFO/i76+/gHHj1KB9bwhXk7hAckzMiJLEe/bYn6LqzaKiDQIeM4bcXiKKWuDNzVQJsCxm4uPjTcXKrl27EG+H/TCC+Ptv6l7cr5+nEPZWa0ZMmFlZzvWfCSY7d9I5HRNDYuTUKbry0zZdNRJ91aqpA7O3lGrBK6/QfVRUxUnI5aIrV7lMv4yeZcYpMZOUROOOECdmlpkaNehq/OWXja9k5cnZqptJ/C85OfT5QGvNiPG4oICEhpUWNsISoU23t4JwMYnzzA43k56F0EqNGSCw1Gxhmdm4kf7nYGI1bkY+J4WQ8Pbbiou9p7HLxUetxJ+K41LE1jgmZuQKlHanZ3sTIbKY+fdf4I036LmcOSCvhy0zwNlnn4333nvP8P13330XXeVypVUAcfJ16OAZrObNMpOaqloIKmPM9K+/0v1//qNOLMOGVRygzGJmRIKA1SaUovppQoJ6vhpdUWsnfnGeB+JmKiyk0gz+ZlXotTJISfG8itVaZtxuCjwfN874atcfN1NqqjpJHTsWeK0ZIWZEHKOVIFUxdovPWmXfPkrXdbnomAN8ExF6Yqa0VL/qsq8xM4FYZnJzg9eUWTBxIrkTzznHfDnZ3SjivLztY/l9b2KmUyfzdQnEcSm8L46JGTk9b/Nme9ftTYTItWaee059XXvAWomZiXAsi5kJEyZg5syZmDBhgkfW0qFDh3Dvvfdi1qxZmDBhQlA2MlyRK//KeBMzLpe1eIdI5Zdf6L5zZ9XaqXUxAep+On684pWvCOK1apkR7qh69Sq6mQQLFlAJhccf93xdtsz462YaMAC4/37V7O4r2o7ZPXqoBdEEWsuMFWTT/oABlPIq9q0RLpdx4Tx/6r6IcVRYm6yIGfEf+jqBi4Dhbt3UYG5/Y2YSEtR+WHrCOJQxM4B3i1qgDBhALQ1EhXIjRH81GW9uJitp7L6Kmcsuo1IOIoXeMTHjdqt/st1ixlvAmRgU9u2j5loCra+QLTMqvXv3xquvvorp06ejXr16qF69OmrUqIF69erh1VdfxSuvvIILLrggmNsadvgrZoDKLWaEZSY6mgaxpk31ByhhmSkqqmjR8MUyI5diyMw0jnU4cYKqAf/vf54xTnLMjLDMZGdbGxxXrqTCmZddRs9ffNG/QFlZzLRu7VmbR6C1zAA0hv3yi7FrQLbM3Hsvpby2a+d9e2Qx06gR/ZcFBdZcRFrEfyMmNCudzMU55KulS1gCBw/2T0Ro063N4mZ8jZnxx80ki7lgixmr6IkZq5YZozT2sjJg3Tp6bFXMNG9OSQVifna01ow4UOzOaPImQoSYOXSIrh7bt6fB4J9/9NfDMTPErbfeiu3bt+O5557D8OHDcfXVV+P555/Htm3bcPvttwdrG8OSsjL1SkIrZrzFzACVt6VBdraaSSIH/uoNYAkJ6lWa1tXki2UmK0t1YTRrZuxmGjKEBNSePWqnYXm56tUp0FJMTlaE5uzZwPjxdEE2fDgdFzffrJrfreKt+i+gb5mZNImsOKI3j0xZmWoN8aWdAeB5DEdHq/EU/sTNiItLRaHjwMqkLM4PK8JHcPQosHw5PR40yD8xoxUoZmLGasxMIG6mUFpmcnLIeql3LAlKSlTRIQcc+yJm9Ni2jb6/WjXzvmF6ON7SAFB9t3v32rteqwHA1avTFdDy5fTHaAdcdjNVpH79+rjnnnvw6quv4rXXXsPdd9+NBg0aBGPbwppt2+iqqVo1oFUrz/d8aWlQ2YSyqIbtcpGl06zRo1lNnrPOotTsBx7w/p179qiPGzUyDtysVk1N0xZxcoBnzIzLZT0IWFHUUvmXXUZWmZo1gQ0bqAu4L1gRM3qWGbNaM3IauttN/4dV64BWkAcSNyPHvaSnW+vMLPozeatWLPPVV2Rx69CB6pAEW8yEIptJFjPCnRIsDhyglgajRxuXRPjzTxJxqamedW2KijytnVq87StxYdi+vW+du5csUccOR8WM8M3ZfXXqSwCw2XLsZmKMMDv5xARtZpl57DFyx+jFkkQqhw9TFd9ffqHBcMAAKvRlpnWNgoDr1KF2CFYqhO/erT6WU7NLSioOcLfcQvfffKOKINkyA1gXMxs20IVYfDzQuzdNNtOm0XuTJ1e09Johi5mxY2kylwUXoG+ZMXNXynEMotmn3OTXDK2YeeAB2mfCneYLQszExFivUOtPOwPZxQT4ZxHRxsFYETNWY2b8cTPJ3xtsy4yovJGXZzx21awJTJ1KRUKvuYYeC8yK1nkTM5ddBvz4o9ow0ypPPaVaCx0VM6I3jd1iwZtFRRx8cg2LH34g/9sTT6ivsZhhjLjiCuDnn9WWFjJCpO/Zo7o/KjvffUfWpm+/pfPr1VfJzSSEnRF2VEuWJ4k6dcwDN1u2pCrEZWVqvJy2L5PVeCYR3HzRReogfd11VJG1sJDS9q0ii5k9eyg2RXt17KtlRuyXqChVLHrLZBJoxUzPnkD//tY/LyPG47lz1Xgqbwgxk5VlXENH5tQpNcZIiJlAY2YAeywzgbiZxByUnh78xrRxcaqQN6o106ABCdvJk4FLLgHknA8zseZtXyUlAeedR1X1fUHOinZUzIhYg3//tbevgjfLjHBrTZ+ufu+BA9Q/Rg6645gZxoiEBGqEJpfnFzRoQBN6SYn3AlSO9ROxiaIicgf160cTapMmZJm54w7vzQQB8/RsEQMhV3PVQ+4bVLs2fa9ZerZwe739Nv1H/lpmZBeTwOUii8rAgSTorCLETHKyfvVfwH/LjC+tDARW4r6sIl9caiuyGyEm7t9+owtNbyxYQMdi8+Zqf61wiZkJxM0krB3vvGPtfAoUX3s0RUerlmkrYsbX2C1vhI2YadKE/qBTp+w5aQRmFpWSErXHRbt26gEifLObNtEEU1Sk/gFsmWF8we1WzflGroZNm8is62uwW7gxZAjwf/9Hj4cOpYJ5/fpZT+E1s8y8+CKJRW8dm/XqshilZwMUHHrllWoRMjlmBrBWa+bQIercC1CcgUxmJlmlmjQx324Z2TJjVA/GV8uMPzVmBFoxU1BAgaFPPeW7APennYEcO2RlbpBdTGJMD7eYmUCK5gXbKiMwEzOFhcAnn6j9mwoL6RwQVlCz9Gwz4bdvH3DPPcBHH/m+vWEjZgD1T7JaT8IKZm6mTz5R35f9xy1b0iR04gQNYnLQmllfjAiHxUyQEBWujcSMcCfs3h251pm8PNU6MW8exY0AFIBptYO8lcJ53sYGPUuG2SQUF0fjwJAhdFWptcxYqTXzxx+UifWf/6hl4I3YtMn8fUC/aJ6RZaagQA22FMucPFkxZsGfVgYCrZhxuciF9tBDvjcHFmLx/vspYNMK8uTtraVFQQHF8wCqiwkITMzYGTNjRzZTqOYgMzGzcSNdsHTuTM+PHKFaSGI/+OtmWr2aLlzERZEvyGLG0dTs6Gj1z9LrCOovRu4hRfGMcZB9sdWqqTvmzz/VdaSkeDbHq2T4LGZEfRntrWbNmqhfvz569uyJmTNnBmNbIwpvYkZMQgUFnhkLgHlWQDghttvtJmuHKJbXrZv1dciF87RYrTVzxx10Lw/43qoACwoK1ElffMaKm6lvX7ImmaWxKgq5tM46iyZyM4SYiY5WJz0jywygDtzVq1N69iuvVLSG+dPKQKAVM3FxaoCoL+nZxcXqRLZ4sfVeW76ImcWLaX80aKBOtIAqZgoLrZ9TwYiZCcTNJCyW777r+2f9QYgZPfe4qJ/UpQuJW+HSFfgrZnwtlicjGlYD+mNIyIiOVlXtn3/at14jy8y331IGgiglr1VybdrQ/aZNVSJeBvBDzDzyyCNwu9249NJLMWXKFEyePBmXXnop3G43xowZg+bNm+P222/HW2+9FYztjRi8iZn4eHXyld0Z06fTMffzz8HdPjuQrxpdLjW4s3t36+sQlhk9N5MQM/v2GVe9LS2lBnWA50Rt5mYSHDigVux1udT/w2pLg8REdRv1cLnU3+Wtr474fWLSjY+vGF8SF6davMTyLhdlxo0dW3GikC0HgbiZhOVQWLJ9ETPadgQmvWo9kMWMt/9B1DOSXUyAKiIA6y4esdwrr5C10e6YGV+ssHKdILNMITu58EJqaTBlSsX3RLE8IRhjYjyPJzM3k5mYEcVH/REzCQnqeet4zS6xIf42MdNSXGycci3SyETQppGY+fPPKlFjBgB8yOgnfv75ZzzxxBO47bbbPF5/44038N1332HevHlo164dXn75ZYwePdq2DY00vIkZgNwZ2dk0WIsicZ9+SsflN99QMbRwRpwjKSn0G3bsoMlEW4bfDDM3U40aNKkePUr7sWPHisscOqQKALmIl7eOxwBZkoRpOzVVFQrCzXT4MK1ba5nVe80IIQAKCihez6iGhhAn1apRVkdMTMWAT5eLrDPZ2dZM6rKb6bLLKN1bjHHeEGKmoIAm4cREslwvWeJbrRlZzDRrZv3YkIWc2SRVUgJ8+SU9ll1MgKf7Jy/PvIaPQEy6BQU0eV98MT3XOz59zWYCSJRYDYKVBbyouxNszjzTOH1fK2YAcrEKsemPZUZRAhMzAHV0f/VV+4OLfSY9nQYNb1kfVpFPHlnMFBbSVdT69ZRpsGhRxQGhbVu6+ikqqhJp2YAflplFixahj5w+cpoLL7wQixYtAgD0798fO+wu6xxhCDGza5dxNVi9TBRhobS7xUcwkC0zwirTtq1v1kxvqdneKgHLBfPkarFW3EwDBqhiSu4Xk55OwqasTD8+5N57qb6QsAiYIbsWNmwwXk7UU2nRguptGGXw6GU07dtHljxtnIMsZsaNo4wYeSIyIzFRtWBrC+f5YkWXRcA991iPpYqKUv8TMzfTjz/Sd6SnVxT/brc6efpqmdm/n2I5xPFhR8wM4JurSXY/e4vLCjZ5eer/3qWL+rq8Xf6ImQMH6Bxzu6212dBDiKBQWa8MEYrT18ZuRggxk5TkeRUUF0c9WfbtU+uAaA+sQYNokJg9m91MRtSoUQNfiQIbEl999RVqnD7zc3NzkRyq8PswpV49MoGWllKGjx5aMXPkiDpxRKqY8SVeBjC3zADeg4C1BfMEViwzMTFkVgc8B+KoKNVlpXVxKAowfz4JEyupsvLnRUyRHlYqAMvvyxdijzxC1pwPPvBcVhYzvqJtNgnQdwD0+61a0hcsoPuoKLX6slXEb23f3ngZkcU0YIC+tczXeBXZVdKwobrvjh2r6CKyapmJiVEzfvwVM/7U9/GXpUuBGTM8LxTWr6exrG5dTwEjP/bHzSTiZVq18nQL+kJYtDMA1PTF7Gz/Ute0eBMhKSkVKwALYmNVAcRuJn0mTZqE22+/HUuXLkXXrl3hcrmwevVqLFiwAK+//joAYPHixejZs6ftGxtJuFx0JbthA7lI9GIrzjqLah4J64QsYHbsoPPB20DpJLKYGTmSBlz5qs0K2s7ZWoFw3XXAOecYu9y8iRmzmBmA1v3JJ2QZ2bZNtT7UrUtC5MABT/fWX3+ROI2L86xvY4S8fWLg1sOqmNGzzBilZ4vJJS6OrDYZGb5NGLVq0cWfEDPnnEOF0r7/noSZnElixJw5dC+KGfpCjRp0XNxwg/77iuIZL6NHQgIJEasTnTwHNWxIwcXiuz78kLpKC6zGzIjtyMrybY6Tqx8Hu5WBzH//Sw1Ua9dWL/z1XExA4JYZMeb562ICVIuMXaEqfiMHhO3cqRY88hc9EVJURCdl/fokWIzEjAy7mfQZPXo0li9fjsTERHz22Wf49NNPkZCQgOXLl+Omm24CANx77734+OOPbd/YSMNb3MzDD9OkcN119FwWM2Vl9pYrCAaymGnXDpg4Ub+IoBnCMlNSol+6/oILqAWB0bggXz36apkB1CtmAJBj1o0ymkQqeu/e1mIw5O0zy8oS4uT552mCMCq4p2eZMSqcJyaQkhK6aPQ17kKvcN5LL5Ggs2JlURS1oqs4F3xB/FajlgZbt5I7qFo148qxvl61a8XMbbeprrGbblIbWcrLWhEz/qRnyyEToeyYrZeefdVVVMH5zjs9l734YtU95E/RvPvuo//wscf8314hZvzp6G4rN9ygFg7zp4mZFj3LzJYtlMIlVKY4wPXEzPTpVCdDHLSVXMz4bJkBgO7du6O7LykrlZhcE0XcpEkUgGrlYsZsWbfbjc2b5VExF7//rn/163a7ES+NoHl5eVAM0iRcLhcSpEtiX5bNz89HmUn1u+xsuipISfG+bKIU0VlQUIBSKVe2WjW6yt27l4J4zZbVEhOTAIDMOWlphcjNpf4RIt7j2DH1PE9ISIDrtOmnsLAQJSUlHjEx77xDKdRxcUDt2vEA3Dh4ECgqKkLx6cCnL76gZS+6SF1vfHw83KdnPHnZoiJPMZSXB5SWVkPUaX+IWLakRL3KF9YgqiWjLltcXIyioiLd30VjXRwOHYr2WFaITRGzlZ5On4mLi0P0aRN0SUkJCg2CDWjsi8XRozHly9arR8vqHcqxsbGIOa0OS0tLUVBQUB6UXbOm52diYmIQezooRiyrRRyKhw7FoLQ0FlFRQFlZGfJPz4wirqhzZxJsJSWe6y0rK0NcHC17/HjFbY6Ojkbc6R2qKAry8vI8lklPp0m4Rg3g6NFoFBbG4YorgB9/VNC0qbqsoniuOyoqCtWkWTs3N9fDXeVtWcG+fWJf0b7Iz/c8772NJ/6OEfXq5QFQ8M8/6rampFA7Czp/1GXbtctHq1Zl2LCBxJd2k8S5TH9vPtzusgrLqCUVrJ/38hjRsGEBgFKUltLFg7hAEsjnvRFm+9LsP/IgJQXuVq0Q/9dfZFr3sl6v/5EwtSYlwZWXR//R6fYFefXqQcnNVU3ZOTnlO7/8/zx+HPjjD+RnZqIMIEWtsz3yvvR3HE+0Wto7mCh+sG3bNuWhhx5SrrnmGuXQoUOKoijKt99+q2zatMmf1QWVrKwsBYCSlZUVlPUDMLyddVZ/BVCUiy6iZRMSEgyX7dmzp9K7t6IAipKcrChALcNlO3fu7LENjRs3Nly2devWHsu2bt3acNnGjRt7LNu5c2fDZWvVqqXcdx9t75VXKkrLlj0Nl01ISPBYb//+/U33m8yVV15puuz+/TkKTSeKcu2115sue/jw4fL13nHHHabLjhmzUwEUZcwYRZkwYYLpsvJx/+ijj5ouu3r16vJln332WdNlly5dWr7s9OnTTZcFvlaaN6dlZ86cabrs3Llzy9c7d+5cL+udqTz8MC379ddfmy47ffr08vUuXbrUdNlnn322fNnVq1d72YZHlS1baNlNmzaZLjthwoTy9e7cudN02TvuuKN82cOHD3vZhuuVdu3oOKtdO8d02SuvvNLjGDZbtn///h7LehsjZGrVCs4YUbeufWOEYOBARQGCM0b06WM+RuTk5CjesO0/atiQDpJx44LzH73+uqIASuvkZO//0bx5igIonaOiLP1HiqIoPXv69x8FC1/mb5/dTMuXL8dZZ52FVatWYd68ecg5bR/fsGEDHn30UV9XV6kRYtVq92ThZrr88uBsj92IK/9Nm9RaL6FGWFa0Af+BIsz6diUmCMyCJAMlWHU2/Gk1ow1GDhSrxfaCyYQJlK3neD2TICO7Xu3CjnhYI8KqqK3wIwYrgEf4ra0MdqIOQ6RUYQ0UX5XSOeecozz//POKoihKUlKSsn37dkVR6OqqXr16Pq3rqaeeUjp37qwkJSUp6enpyoABA5S//vrLY5lHH31UadGihZKQkKCkpaUpF154obJy5UrL3xFsy0xOTo7hbefOfAVQFLdbUQoKKi67bVuOAuQoLleOsmtXnoLTFgYS1DlKixb6683Ly/PYhtzcXMNtyM3N9XvZvLw80993zTW0vUlJigLkKd9/b7ysTH5+vsd7551H+2HmTP1l+/Sh96dPr7jeH38sUwBFOfNMRSkoKCh/fc8e+gyQoxw/Tq+VlZWVr1cse+mltMyLL6rr/PzzHGX06FIFUJRu3RSlsLBQycnJUX74IUe5+uoc5bHHPLehtLS0fL1i2ZycHOWtt2jd55+fo6Sm0uPVq0sqLPv77/ReamqOkpxMj9euzVFKStRli4qKlJycHGX0aHr/gQfU79+7N0cBihVAUfLz1WXvvJOW7dqV7kePpuWLi4vL11tcXGz4nz33XI4CFCnC0CAvu21bjhIfT+udM4deKyoqUhRFUU6eVJSkpBIFyFEuvJCWeeQRz3UXFhaWb0NJSYnu948cKf7DQuWzz2jZ0tLSCufO/v366y0tLVX696flXnml4voLCgrKly0rK1NOnVKPme3b1eUuuihHAQqU//1PUfbuVZTGjcuU99/PUdxuWnbGDPVziYk5Steu+crWreoxnJOTo/ToQe/Pnu25Dfn5+R7Hu/zeI4/QZ0aO1D/vzc7NQMaI33/PVQA6Fk+dylGefJK244or9MaTPMXlovdHjTI+788/n8aId99V35syhT43ZIj3McJsPPnnn/zy/f/QQxWXlc97I8y+y+w/8rgdParkiUG8WbPA/6M77lByACXn3nvV/X799YoCKLmTJ9Myp07RMoCSs3275/9ZXKwocXFKnnh//nyv+9LbmG/0HwULX+Zvn69lN27ciA91arinp6fjmFGxEAOWL1+OMWPGoEuXLigpKcFDDz2Evn37YvPmzeU+uObNm2P69Ok444wzkJ+fj2nTpqFv377Ytm0b0kMZ4m+Ama8wIYEsBjk55EJt1cpz2caNyeWpKGo7j8aNga5dASAR27fTVZJcA0X/e6yniegtO38+BRx36uQZkB/vJbJRWGZycoDY2Hh0724tDbiaZiHxN4ribNpl27ShDJpduzzf376dAhMBCv6Ni4srj4GIj1f3bVGRGhAsEMuKwNs6dWjd+fnA+PFqOv3OnRQLEhsbiwsuMA40FYhlAdVqlJkJ/PQTPV69Ws34EssKF3VSkhon0aSJ5xVnTEwMYmJiymP4iorUfZGQQOnZGRn0e8WyJRQ+VH5fv37F/RsdHV0eP6NFZKqI01pe9swzqW7MU09R8OaVV6rb+9ZbQE5OFFq3Tizf3vR0447ZUVFRuueRHPsgrENutxuJiYnlmWHt23vWF5Jxu91ISaH1lpaad+x2uVyIiVEXqFFDXV4cnydO0D78808XCgsTy/+3atVof+zaRSEJq1cDjz6qNk5MTEwsr2isKObbIe8HUUxu82b9z/gSp+DLGNGiBS176hTFW4n6SOecUzEjLSEhHikpFC+TnW3828gyE4/q1dVlRM+yrl31z3ur1KihLqsdI6ziy740XDYxkUpXnzpFG1JWFth/JOJb0tPVHX86ZibhjDPUH5qYqC4rf190NNCyJeLF5CIGORO8jfkyvvxHocBnN1NaWhoO6Nje161bh/o+pkssXLgQo0aNQps2bdC+fXvMnDkTu3fvxlpxFgMYPnw4+vTpgzPOOANt2rTBCy+8gOzsbGwwqEBWWFiI7Oxsj5tTuFzmGU3R0epAKfqetG5NA2ZyMk1CoUg3nDiRaiw1buybCV3etf/5j/8VOL0VzjOqNfPvv8ZNGd1uNQnALD1b22QyJoYmaTH5HDhAWSz+uDlEWnbjxur69NKz5eq/AIlXo8QDvWwml4vKz48Z45lZI1xa4t7XWiV62UwyEyfSftu8GXjvPXqtuFht3TB+vHqM+FOvy6w/k2j34a1Kti/ZTLILUN6P2sy4xERPK/+wYXSe5uWpqdyiu7R2fb5kM4nfLMRoqEhIoJT6n36i3yr3ZNJD/LdmmYN6mV+B9GSSkednxzNAxUlWXKxemfiLXkr1aTFTns0EmKdnyyW/K3k2k89iZvjw4bj//vtx8OBBuFwulJWV4ZdffsGECRMwcuTIgDYm63QuYg1tOPppioqK8OabbyI1NRXtDSppTZ06FampqeW3hvKf7gDe0rNFWq24SmndmiYnkYociuJ5ckqvLz2hZDHja7E8GauF87SpzUY1ZgRWqgCL98Sy0dFULVfWyu+8Q1aPZ5+FT711hHu7YUP1f96ypeJyQszExwPnnw+ce65xQT69OjNGiMm5dWvKGvW1wqo3MZOWBjz4ID1+9FH6vk8/pd+dkUE1WUR6caBiRrsNwRAzclzHww+rj/XS/GXhI4vQPn3oVlpKaez+bIdA7DuD4TCoDBtG+1ZYlQG6YNFD7B+z60atmDl5Us1e1mtT4guxser5MmtWYOsKGHkgCrQKvt7Jc+21VNRL7jlhJmbkk57FjCdPPvkkGjVqhPr16yMnJwetW7fG+eefj27duuFheQTwEUVRMH78ePTo0QNt27b1eO/rr79GUlISqlWrhmnTpmHx4sWoJUZaDQ8++CCysrLKb3vkQh8OYFXMiCsKIWJataL7YIuZ7GzPQUi4Q6x+VhBIpr7Vlgbbt3tepRrVmBFYqTWjtcwIMjPVMUT8F/ffr6ZmW0GIrUaN1OKgem1bhDBJT6eSEMuWGa9TzzID0EXgTz95VpsWE+4FF5Ag81Vw6jWb1DJ2LFkSd++mqrEvvKC+Xq1aYPW65Do+spg5dYoq0gLBEzNyB3a940ium6IVnhMmVHQNi+3wJRBWHBfi/HACYSQ/88yK54hAiC1fxIz4/xo3Dvz3uVzqfC5KFziGXBAo0FozeifPpEnUokC+SDerNXPLLerjSt7OwOeYmZiYGHzwwQd47LHHsG7dOpSVlaFjx45o5k9VLImxY8diw4YN+FnHNNC7d2+sX78eR48exVtvvYWhQ4di1apVyNCpJCXHTYQDVsWMmJiFmAmVZUar9XwRM7L75txz/d8Gb5aZ+vVpEMzPp8la7FNvlhlvVYBLStQJQ2+grlOHLo5efplcBvv3A1dc4e3XqIh926gRZcEsWqRv5bBa/RcwtsxMngy8/TbFr0yaRK/5UqFWDzHJFBeTgJAneEF8PH33Qw8BGzdSpdhq1ajYHGCPZaZWLc+r95UrKcbLSiFAf8WMPFeYiRm9fdu3r2qdEvjjZpJDJkLNX3+RqH73XXpu1tNLiF6zIrTaonl2uZgECQl0Tjje0kAeiAIVM1bbEJhZZsQ64uO9B19GOH4ns5555pk406i9qo+MGzcO8+fPx48//ogGDRpUeD8xMRFNmzZF06ZNcc4556BZs2b43//+hweFjTuM8SZm2ralTsKrVtFzYQUItZipXp0G6/Xr6QpLb+KSURR1Qn3rLVWU+YPc0kAPt5ssC+npnuXTrYoZI8uMLHL0xou6dcm1deQIcPPNRluvT3a2Oo40bKjGGxQVkQVKvhr1RcwYWWb0WhqICSQ7mwZ5X9sJJCTQLS+PRJjRMTFqFHD11WQdKi6mfSkmYDvEjAg2Flh1MYnfAPgeM2NVzOjFiblcFSv2+uNmErUMjQKcg8mSJRSDJTBrUyKOPbPfphXWOTk0B9spZgDgiSeAO+4AHOumI//xgbqZtBWAT5yg1+rV8zRBmYkZeR0lJfbWrwgzLP2y8ePHW17hC8LObAFFUTBu3Dh8/vnnWLZsGZoIW7yFzxlVLQ03hJjZs0e/19LEiTQod+tGV5niuBViZuvW4B6DQsycey4Jp1276Mq3b1/zzxUWqpVlhw0LbBuEZcYsGe7qqyu+5s3N5C1mRrxuVKPGqKWBFWSRmJTk2Y7h7789LVlCzPz5J33n/fcDd9+tv14jy4xeSwMxgdx1Fx1nBQXWmmPK1KpFovHoUaqirkd0NP3GFi0oEFi4pIqK1G3wR8wI4ab9rcJ66IuYseLekSdjb2LGqtVr3Trafn/cTEVFdO+EmBEtDVq1oppBZu0URFSA0TKKUtGS9cgjZM0TvzFQxP6dO5e2xzExc8stdKVy112BWWYUpaJl5pNPgFtvBS69VO2rAlgTM4cPA19+CQwZ4v82hTmWpsh169Z5PF+7di1KS0vR4nQww99//42oqCj8xyhCzIAxY8bgww8/xJdffonk5GQcPD0Sp6amIj4+Hrm5uXjyySdxxRVXoG7dujh27Bhee+017N27F1eJnNwwp1YtGsizsujY1oQDAVCtL3LgeePGqmtlxw79RpV2ILtCatYkMfPTT97FjDjPZH+1v3izzBhRty6ZwxXFPzeTUbyMwKjnkRWE1UhMimecATRoQMkIf/2lL2YKC+m7zIKMfbHMyJaG2rV9FzKAp5ixivgeubeQN0ufHsIyc+oUCcqoKPqvVq6k1+22zMgZU7KB2Fc3k+D994ERIygGc8QI69sBwKPpqhM5DELM7N/vPUBXiFwj77583Snvr6go+xrpylZHq0VKg0L9+mqDukDETE4OynP/xZWAyGTSei+siJmyMrpaqupiZunSpeWPX3jhBSQnJ2P27NmofvosP3HiBG644Qacd955Pn35jBkzAAC9NN0JZ86ciVGjRiEqKgp//fUXZs+ejaNHj6JmzZro0qULfvrpJ7SRZ/4wRqRn//YbnWR6YubPP+levnp3u+mq6PffSewES8yMHEnduxs1IiFTVGTuHxf88gvdx8Wpjfj8RY6ZKSvTX9+RI8C339L2CZfPl1+qE14gbiYjMWOHZUbU7UlMpMrOM2ZUTLeXxQxgnkLtj2UG8L9RobeMJjOEmElK8q9Kq/hvDx0iy/pjjwH9+qn9kkRPPzN8ETNycVV5cpSPIyEyrIiZ/v3p/9qwQV23VTHjclGIQ0mJf006A0X01MrKovPELGxD7AMjq5P8ul3iRYv8fznePVuou+PHve88I8TgFBOj7jS9tGxAHRT0Di75ikJMNJUUn6eh559/HlOnTi0XMgBQvXp1PPHEE3j++ed9WpeiKLq3UaNGAaCiPJ999hn27duHwsJC7N+/H19++SW6mDlwwxCzuJmdO2mCAyp2hg5F3EzTplR47uyzyV00Zw4wYID3zy1aRPf+XO1rEWKmrMw4I2LnTurULHfMEFYIUZxQi1U3UzDEjNYyAxjXyxHCRIxFZmImEMuMP9ghZvxNohBiRrgzV6xQ42W6d7cmon0RM+JCWJtdI46PkhJ1v5vFzAhq1ABuvJEeL1lifTvEd4ll5RT1UCFbW995x3xZMdeeOKFvXRX7KiqK5ubXXiMh+txz9mwr4Lm9jlpmsrOBadPUA8/fuBnZxSQG2UAsM4Ba/6OS4rOYyc7OxiGdymqHDx/GqVOnbNmoyoaZmElNVScdbYdsIWb0apM4zY8/0r0dpQvi4tTz0VvhvP37ye0AeBbM0xNV3iwz2hozWuxwM8kVlcUYpK33KH6PGIusWGZyc9XJV97WU6fUSVC+InbSMuPvMSKEm/idK1ao8TJWjcC+ZBEJUd2hg+frcpE8ccxYjZm5+24SXWIesRozIw+lTogZGYP6pOXIHcH1ltVasX77jWIB7axnKltmjh41L5QZVMrKKCBIHHD+upq0wb+Aat7zV8z8/bd9QUphiM9iZtCgQbjhhhvw6aefYu/evdi7dy8+/fRT3HTTTRg8eHAwtjHiMRMzsvlde0UYbMuMogDTpwOff666OBSFYjpEBWw9jhxRC9jZFZzoLT07LU2dkP/5hzKoxOFmNPkHGjNjp5sJAIS3dvt2TyEiLDNWxIxsgZInxuRkSpF+9VX1NafdTHrjsS/IvzUhgda3fDk9txIvIz4H+JaarRUoLldFYWzFzQSQx0EOU7BqmRH1jNxu52qnvPceicannzZfTt4H+/dXfF+7r+xOywbU/1kIP8esM6mpninQdlhmABqYjcSMWZ0ZcRIKn6W/JZIfeohUfjh0fDXAZzHz+uuv49JLL8V1112Hxo0bo3Hjxrj22mtxySWX4LXXXgvGNkY8ZmJGrmqr7ags0rS3bPGc/Ozi+HGqditr0Fdfpe996CHjzy1apAapGtQu9BlvhfMATzfN9u3GrQwE3txMVmNmjh/3DGK0gp6bSQRSlpaqFmPAM/7F7TYvIiZPHPLnXC5ywd1xhzq2RbqbKTpa/b2ikOmJE2QJsDoR+iJmxLGn5zryV8wAwL33qo/lEAYzxBzoZCbtddeRBdZb2QV5H+hV8Jf3VV6eaqUKhpgRF0WBlnjxG5fLnloz2iuB7GxVrGiLK1mpMyP+RH/iZkpKqAnbH38AL77o++dDhM9iJiEhAa+99hqOHTuGdevW4ffff8fx48fx2muv+dRUqyohxMz+/RWPN9nqonVnnHEGCer8fP3KsYEihH5Ghnr1d845dP/LL8YC6ttv1cf+ZKno4c0yA6iVgLdu9Z6WDVh3MxmJmerV1YssX3pWlZWpYkW2zMiBnPIFkhAl7dpRir5ZLIjbbT52CRRFFTPDh/s/cTgpZgD1SlsOnO/a1bq1whcx87//0b3ef20kZqz0Izv7bGqICXi6j8wQ1sAwqv9piLwPZJEukPfV77+TmK9Tx94sLfE/9+tHWciBlosICDuqAGur/yoK8N//Uuq3NkDQipupdWvgssuMBzszZN+hKN0chvidh5KYmIh27dqhffv2LGK8UKOGerWtjbSXhbJWzERHqxO4N1eTogDPPONbbxI960GHDnRunDypL+JLS9XgX8C+CtlW0rNly4y3gnmAZ88YPWHmLWbG5VIvaHxxNR0+TK5pl8uzyJ9cp0WOgxJiZsYMaxWYjTKa9u6lK+nt2z1d4zNmqNmivuK0mBHjtjgPAOsuJsA3MSOOB73t1YoZX6srC1eN1d5eouN6sLJ/7ETeRr3uMfK+EsVBzznHnuQBgfif4+KoYKOd6/YZO/ozad1MaWnAk08Cb7xRcVkrYub664GvvvJec0MPkboKUOOxMCXApFrGKkauJjPLDGA9bmbBAuCBB6ihoFWXiNwIURAdrdZA0ZtYjx+ngUhMMnZbZqy4maxaZuSLGj3zvjfLDOCfmBHbVq8eZW8I6tVTY6Tk0k2+VACWl9OOXY8/TsXC3n/fM57G327mgPNiRlhm5F5ZvvQBE5NccbGaFaWHoqgBqXquU63l0Bc3E6D2BbQaMyP2t9Vjwklk65G3mBkhZs4+295tMAsbCTnygLR7t39Bt74EnFmtAOwvQsw89phnKe4wg8VMiPAmZs46Sz+Y1qqYeftt9Xus1n3REzOAmimiJ2bS06n45LXX0nO7xIwVy0yPHuTimjvX05xtJGZiY9VBTs/V5C1mBlD/E18ymvQsXgAJGTFRylYvX8WMkWVG7IeDBz3jZQJJYBDbe+yY73FbdoqZQ4dofS6Xf2IGMM8kOnKErI6AvpgJJGZG3o68PE+rohHiPLDr/AomoiYOoC/65X3VrBm5DAPp5aaHfJ6PHw9cc4296/cJ4WaKjqaTxp8YAa1lZvdusvLoXalaqTOTlkaK/dAhc1VvtC2+nngOwGImROiJmdxcKlQHUB2K0aMrfs6KmNm9G5g/nx5/8YWnNcAMK2LGyCwuJtJQWmZq1QIuvpiuBMXEA5gHt5plNFmxzPiT0aSXySQQxchEd+uyMvWC6pxzACulmowsM8KKdOiQp5hJSfHsNu4LQmSWlfme7hpoajagihkRp9WunW/iKC5OdTmYWUVkS5+eqAwkZgZQRU9JCf0Gb+4mK0I7nBC/b8KEiu/JYubJJ6khqd3tBoSYKSykMi9z5hjHygWdsWPpasVbYz4ztBaVxx4j896zz1Zc1oplJi2NMjvq1PE9CPjbb0ld9+hBA7TcSiGMYDETIsRxLQd+/vUX3aenG2cFyWLGaAB8/XWabC64oGLhPTOMxMzZZ9NFxb59qtgCKHhRXGQIk3woLTOC3FzaRmGBsiJm9AY2bzEzgH9uJr0aM4IbbqD7o0fJYiJPsEeOWLN+eLPMaMVMzZr+Z8XExqr/sa+uJjss3EJYiKJzZ55JE5VVXC5rcTOymNGztgQaMyNbiLKyvFtnxH9sltkWTojt1Ytn8tWKFcj3FxWpFyCOVQJu0IAG4q5d6fk33/i+Dm0AsFHBPMBYzMj+9dRU1WLkT/G8tDRSinXrUilzveAoh2ExEyL0RLq2jYGeWGnalCainBz9TIGCAqq5AgADBwLvvgvMm2dtm156Cfj444oDUEIC8MILFC8mC4UvvqDYhaFD7RczViwzANUZ+eADYNIkdeI3EzNG6dmypcFuN5ORSASoT1xSEv3X27cbCxIzvFUB1rqZ/K0xI/A3bsZON5OYED/7DLjpJt8s5VaaPPoqZnydoGULEeC9EJ0olyAseeGOWUsD8Zqi+O7hsIosWAMxiNjKddfR/Zw5vtd20Jo1zcSMUcBQbq5qwk5LU1MCfREz8qSUnAyI/osLF1pfR4hgMRMixAl2+LAqBITrqHFjOkarV68oaGJj1c/quZrmzqVJpmFDmnSuv96aqwKguidDh+qfH+PGUSaffEW5YIH6W4IlZrxZZr74giyuoqhYXJz5NhhZZrKz1X1tt5vJzDLjcnlmZQkxI6xMVoSHt/5Mhw55Tir+1pgRhIOYEaSm0oTlTQzIWLHMnHmm+l/bXWcGoP9dXtasKCWgpnBHQswMoO6z776rGCIi9tWKFfR7vvzS/u+X/2NRSd0xMXPiBA1SCxdS1P/x4+rgaRWtWdOqZUaeQLT9nYSYWbvW+nb06EFxBxs30vNLLqF7FjNVl5QUzwq2gCpO2rcnl05WVsUJCvAsnqelSxeKtbnnHtXCIxfisws5JfuSS5xzMwkhIPZFnTrmaZhGMTPiebVq5nEPgbiZ9CwzJSXkVgQ8xYzAF8uM0Wdzcz3FW2WwzAAk+rt1o8crVlhfhxUx07+/2rjSF8uML5li8oWBNzEjzi+nWxlYReyzKVNUl6BA7KujR8li2KSJ/d+vZ5lxzM1UVEQVLF94gYo8AWQy9wXZMnPqlPrcTMyUlnpG+8uuKpcLuPBCer58ubXqjadOUYv6n39WB+iLL6b7778PnpnNT1jMhBCt+VOImY4d1QnK1/TsVq2AN98kMSPWf/y494nn33+Bl1+mKykjFi2iSsBHj1JK5YkTdF6cc4462NpVZ0ZYZk6c8Azu1SLqjYhsQW+Tv5GbyUq8DKBerR86ZC2epbBQ/Q/1LDP5+aoo3LRJFSRWXGYCIxd5UhJNJq+95mnVDlTMiHHMCTEjB+Oed54qZn791fo6rNaaMbO2BBozI28HYG5Z+vln1XoRKZYZsyrAYr8WF9Ox26aN/d8fVm6mWrVIPCgKcOml9No33/h2AsmWGbFDU1P11a1c500eFLTWnRYtaMIoLrYWx7NqFQ1MmZlqwaz//IcGhOxsEjphBIuZECKfZPn5aj2l1q3NmxpaTc9OSFAnUG8tOH77DbjrLs8u1FrGj6cq1j/9pGaT9O1LMTxiorLbzWRUE0YgLDMCb5O/kZvJSiaTvP6SEu/xPIA67lSrph/UnZys7jNZzAiE1cYMI8uMy0U97m6/3fN1J9xMhYWqoLLLMtOjh5rS64uYsdJscv9+9X1vYkZR/AtqlZf95x/jmij79jnbMdsfZAuVttaMHL/VpYtnPzq7kMNGhJvJn55qtiDXYKhRg8pvFxdTgKIVCgvVnZaWZtyTSRATo6awygeVXjrhwIF0//nn3rdDXDHKKdlRUWrhPbkUfBjAYiaEyGJm61YaFGvUoCtnq2JGuESPHAFuvJFEiYxcWM4Ms/RhgZyiLY7b/v3pXBPWTLvETEyMOnCbiQZtWxKrYkbrZrIqZmJi1HHJyuAoB/8aub/EPt+xQxUkqak0UVtJq7fSzkCMhfXq0QQSCP6IGVmQBjIha8VM164UX/Tvv/p9gPTwZpkpLaX/RFhLzGJmSkpov/sjZsR29OlDFxFGVnpR/ReITMuMVszI8Vt2F8sTiHPi5Ekaq/bs8czEDDliYDp8GBg5kh5bdTWJk8flogOgYUMykY8aZfwZvVoz2owogPo8jBlDQZHe0BMzgBo3w2Km6iKLGTmTSS6brydmmjenAfzECbVvzNtvAzNnVrwKl/sXmWEW1yEQYubTT9WYsYsvVl1MgL0VSq3EzbhclM3UuTM999cy40sdD18ymsyCfwUiNuPkSXXg797durXByDIDUJzg8uVqEGbHjv5VMJfxR8yI/ZuSEtiVuBAz1auThTw5WW06aTVuxpuYOXjQ07WpJ1ASE9X09hMnAouZueMOEjNGLs5IFzNGbiYgeGKmQQO60FIU4MEHyQDhLS4pqAjf7qFDVMEvKgpYvVqtx2GGOHmSk2ngb9kSeOIJ/SI+Ar0rHD0x0749MH06cP755ttQWqq6kbRi5uKLaQL66isvPyS0sJgJIbKYES4jYXUxEzPx8Wpfn82b6erw9dfp+dixnstaFTNm6cMCIWb27CHh9OijJB6EmElKstdkbDU9e/hwcuMCgcfM+CJmfLXMGCH3Gfr9d7r3RRSaWWaeeIL6MInqzYG0MhDIVYCtYke8DECWmIYNgdtuUzO+/u//SPhdfrm1dXgTM+I/E+vXEzMul6cwDiRmxlvsjixmKoObSW6uGSwx43ZTLbf//Y/O+bVr6YLnv//1dHOFDNkyk5GhBs6+9573zwp3lNYMbYaZmPHnJNy4kf64lJSKQU7p6VQfwcjt5RAsZkKI8OUeO6Za8MRx0qYNiQej40N2NX39NVkAatas2B32iivI+vfSS+bbYmXSbdRItTA0aABMnkyP7c5kEvhSOE9YqAJ1M1mpTmsmNLVYsczIDSeFxcsXMWNmmRHbKn5fVJT15oZGBOJmClTM1KtH+/Spp9TX+vQhl5xdnbO19b+MBIosZgKJmcnNpd8k9++TOXJEfRyJlhmtpUvs9/PO82y8ajcuF7net2yhJIXSUmDqVDJG/Phj8L5XF9kyA6iupvffN88k2LqVrkgACoADKLhuxw7zviR6tWaMSnCXlZH59oEHjEuDKwpNJpddFpwgpyDAYiaEJCWpV/k//0z3QqTcdhudcFq3kUAWM9On0+PRoyteeTduTBcBZpMpYE3MAPp9moIlZqxaZgDfxUw4WWb0umd/9JHaWdkbZpYZ+YIQoDpEgTbfc1LM2IFVMSNEn5E1K1AxI7Zjxw46T4VbRIs4toHIscyI/XDhhWRYkOdrMV/edVdotqVOHTXOtVo1Sobo2ZPGWCsZybYwfjwN1v/9Lz2//HI6GXbvNlZWikJVNYuKKC5FXKleey0VQlq61Pj7rLqZAFJ5gwYBzzxjrKg7dqSUug8+0H8/P5+umK+6yjz9NISwmAkxwtUk/n+r7QfEcmvWAD/8QGbV227zbxuKi9WJ2ZuY6diR7mXTcbDFjJ2WGdnNpFdPyoqY8aXWjBXLTNu2NJEB6nGQn2+9kaMVy4zY1ujowOOahJg5ccJ6j6dgi5kvvqDYE7n7uBHexIz4z8Tx4c0yc/SoGrzrT8xMcjIVw8zO1u9BKM4DsWwkIPZDmzbAlVd6BrKHop2BFmEFb9NG7Xn3xhvWE4oCplEjCvISg2R8PFUoBYwDgWfOJItJQgLVVxAZBGYF8wS+iJmYGNVHayWrSY+YGIo7kAMqHYbFTIgRYgaggV7bKdtoQhNiRlSivvxy41LnixaRS8hooHe7KeZg7lzvNUhuvJGutjp0UF9z2s1UUKBOllYtMyILReCPZcYuN1OtWsAtt1R83WoKtRXLjJi45dom/iKnzVtt3hdsMfPuu8CMGVS7yxt2u5lkUeuPm6mwUD2f9YJUX3lFXd5q01inEb9NG58iGjUD1t2CdiDG2R07qA7X0qXUXeCmm0K3DRUQrqZPPql4MB4+rAb4PvaYGhSYl6cOiL6KGbOTcNAguv/884rmQdGEz8w/HR1N/l4gbKoBs5gJMbKYEZlMAB3L9evTVbSeoBEZMAUF5HfWBv7KvP02FU9btkz//ago8ilfdZUa9GhE9eo0YYwZo74WrInKqptJuFBiY73HvCQkqBOCHDfjS8yMVTdTVpYq9LxZvLT1cgDrYsbMMqNdhx1X9tHRnlYJKwRbzPhSPM+bmLngAnVsB7y7mfwVM/J2iIwsPTETadV/AXU/HDxIveFE9fu9e1XDgrexxk6EZebECdICvXpR7G3Iwj+OHKFBWLiZAMoKatKETlzRj0Vwzz20sR07evrjxM5LSjK/evTFMgNQimN8PF19rV/v+d6CBSSmhPnYiDBL0WYxE2K0YkaQlkaunPx8fctEYqJqiXn/fbUytR5WM5r8xWnLjLjSy8gwb2UA0Pt6GU2+WGasupnEFX6NGp5FOfVQlIrb7o9lRnvxFAwxA/geN2MUe2gXspjxFuDsTcyMGQO8+CI91jaElBHHinC5xsb6NkHLDS/bt6fHemIm0voyAaoA3LSJ3Exz59LzVavUZayca3aRkKAmAzlSCTgvj8zjzz+vHqAul37NmYULgQ8/pIPprbc8W9zLLiazwc5qnRlBQoKaYaV1NYk4Gnmy0qNfP7pfvdq3VMcgwWImxMjHh5zxFhurTuZG7gwhfv7+2/y49iZmli2jVgbagntWcToAWOwfITK8oRcE7E+dmZwcfWuIwGpQNQC8+qp3IWKEsMyUlVU06yclAY8/rk6cdv1HvoqZQLJCrdCpE50zhw+rlbSNsNI120pch1bM+Jr2LlciNhIzGzeqoRWRaJkRVlCxj2QxE8qYGcDhhpPCf19U5FmYS3TSXryYdlJurpr1cffdaldqgRAz3gYVf1KzZVeTjFGxPC0NGlAAYFmZNX9vkGExE2LOPFN9rA3+NUsBfvdd9SrQW1sDb2Jm3jyyZM6b53179QgXy4zVyV+bni3HflgRM8nJ6lhhFjdjJV5GIGc0Caz2UDJqxSJ4+GFVgNl1NeyvZSZYYqZaNXXc91Y8z8wyU1BAIlRYQ3wRM75Oznpupu3bPeuwHDigrj+SLDNiX4gxKhzETLNmtM9DlsEkEx+vqlE5Pa1pUzIrlpWRNWbyZCpV3KgRuaW0WAn+BcxjZozMo5ddRlagEyfUATEnR1XY3sQMoFp3wiBuhsVMiElIoBoZKSlqFVuBkZjJyQHuvVftDabXPVtGxGMcOOB5USDwxYKgh9OWGX/FjDhf8/LUbBSrbhAhDsx6XvmyX7ViplUr61f6UVHqskaWIvHf6MXm+EO4iRnAetyMmZhZvZrmkSFD6LkVMSPOT3/FTE4O1R179NGKcRyRWP0XqHjs7ttH55hs/Q21mHnpJdrXcrxfSBEDlCxmANXV9OKLwLRp9HjGDP20w/POo1YGl11m/l3aOjMFBWpzNKNBrnp1MgXu3q0e3KtWqf09rBTFu+QSMpGGQQdtFjMOsGwZBYsLS4TASMy8+ipNIsIH7K21fVqaepWvN/la6ctkRrAtM1lZ5inAvooZbcyMXFDOatqyaAnwzjvGywRimTEq52CEWUbT3r2qG/Kcc3xbrxHhKGZE00m99GYZs0aTcpwTYC4oxXgv0ul9nZzF+SuOk8mTyesgZ5xFYvVfQN0XwnW6fz/Fz8iuvVCLmYQE7zF1QUUMUNpgu6FDSQDs20cH07BhxsG2551HRfQGDzb/Lu2AIMzQbrf5INeypWfgl1UXk+D88+nq8/33rS0fRFjMOIBRFo6emDl1isq3A8DEiXT/77/mxSABc1dTuFpm5H2irdgrE6ibSY6XsTrYCbf2F18YNzj0RSQ2aeL53NeJyyyj6amn1DYJdrQzAMJTzFx8MU2awmJphJllRitmrFhmBL7uWxEvt22bcQmGSLXMiP0mftexYxVrw4VazDiOMItq4wKqV6fqugANeiL6PBCMxExKirUo9dJSsuT4KmbsKGRlEyxmwog2bUjoyvVjXnmFBoZmzahIWHw8DRjerkanTychI4IJBfn5arn0cBMz0dHq5GfmagrUzeRLvIygbVv6b0pLKeFADyvNOwUpKZ7F0XwdD8wsM3JgtF21PcJRzCQmetZp2rpVvxipFTEjhLTZhCv/X96W1aNxYzrGCwpIhOXlAUuWUPVngdzKIJIsM0LYFRaqx9zZZ1PtN4ACg0NdFb+sjDKr2rVzKNlGRHmLPHWZhx6i4l0zZ5pnMvzyC0W4e6uyqx0QfEknfOYZ2oZZs6jmx913m6fLhiksZsKIG26gApCiO3t2NvDcc/T40UdpQBABxN5cTe3a0YWBtuiWiCdLSPA/ODSYE5WVIGC73Ey+pg3fcQfdv/lmRRdxWZnv7juRbSHW6QtmlhnZfenNgmcVX8SMogQ/NVvL33+TS23QIM+AWsCamJELtRqhPV98FTPR0apF7p9/gJ07ac645RbVohHplpmCAgr/+PRTSnAQddXsshD6gttNjZ83bnQoo2nYMPK1zZlT8b0OHaiqqei7oEd+PtCjBw363qKYjSwzVk/Ao0cpq+nyyymORxQ2iyBYzIQxL79ME2/LlsDVV9NrYgLcvt2/dcouJn/9ycGyzADeg4Dz81WrlNWmdXZYZgCaKGvXJhf4l196vnf4MAkct9v6dj38cMWrfauYWWZkq7LVDClv+CJmCgpUERWq3kx//UXHxldfkYVctlzKYkabDi/OB2EFMZt0ExM9S4D44zYR5++2beQKjo0lQbpzJ71es6Zn24NIQRYzN9xAAdUpKc60MpARrj1HxEydOmRu97eMs/Bnx8d7H6y0dWZ8ETMiRXvJEodSv+yBxUwYIq7Sunenq81HHlFNtPJgaEZuLsWN3XCDp3++a1dKZX3jDf+3L5hixptlZtEiGiAbNrSeqaONmfFXzMTGqn1ehPlcIFxM9ep5TnhmXH45XXgB1q1MAjPLjAg0BexpZwD4JmbEeOhyhc6dfsUVZNWsXZuuxMVxDqj7oLS0okVNiBmxjNmk63J5HjP+WBvkyTU6Wq01tWED3c+aRU0RgciyzIh9IcTL+vXUOHXNGnrutJjxNl6GJXKNGW9XnkZuJitXE82bUzplcTEFZhpVlwxzWMyEESdP0mQYF0fHVe/elHYqrDKAdTdTbCyVLZg1yzNgNSmJBJIYMH2lqEgt1OaEZebTT+n+yiutW5a0biZfCuZpueUWsnwsXeqZIu9vhphwK/hqQTGzzFx2mRq3YHcAcHa2d9eVGEetxh7axdln0+TZvj3t1169KMlCFnTyOK0oJE6HD1cnW2+TrnzMBGqZAfSL50ViBWCxL4qK6LfdcAPw4INUSkV+P9Q4WjgPIBPu9derA5cvWK0xAwTuZhLWmbfeMu6kHeawmAkjUlIoALCkRJ3kXC7PSduqmykmRk3/tbOtgRyPEAwzuJllprAQmD+fHl95pfV1GrmZ/InnaNhQTUSYMUN93ZfgX0FODvn0AXstM263asmzS8ykpanCxFswZSiCf41o2BD4+WcKRSgqAkaMoGwnsT9kMeNyAVOneqbFB1vMaN0eemImknszAdTKQLT7Eb/XacuMY2Jm9WqqeLp4se+fFVdIVsSMts6Mr2JGDGoAXRVEICxmwgi3W53Ubr1VPz1ZiBkrAe566dn/+x/F4uza5d82ioE2IcG6O8UXzCwz331HYqp+fd/qp9jlZhKIQODZs1Ux4Y9lRhZs6em+bYOZZUZRVOuZXZOI260KTW+uJifFDEBCb9484LbbKJvv3HO992cS+8ub+LPLMrN9O7l/hZjZsIEE8ZlnqudrJFlm5P0mx4GJ5s/hIGa89fAKCmYdRb3hj2UmP58OLF/7iXTtCrzwAgmvSDrwJFjMhBkiVuybbygeS0vDhrRMUZF6rBuhJ2amTaNWBmaVbM0IZrwMYG6ZEZbaIUN8c1+ICSgvj/ZboGLmwgtpUsrOVs3o/lhm6tdXf4eV8UpGWGbkflOCkhI1TsrOLJJIETMA7ddXXwU+/pjiMPXEzJEj9L+VlFgPVA00ZiYzky4C8vMpPVuImR07aMLdsUON64kky0x0tHpxI6dgi6xjp8TMmWfSdzdooC/8g46cnu3t6lOLP2IGoIPc13RCl4s6d48Y4dMmhhMsZsIMeaLQy9qLilLTO73FzeiJmXAtmCcQV3VaMVNUpGYQ+eJiAmhbhavuxInAYmYAmihFET3RMNIfy0xUFKWZHzzo+2AvYljefJNKQ8htK+Sqq3aKGatBwKFOyzZCFrx6zSZnzKDaL7fd5p+Y8WeCjo5WrRXbttHxPns2uRuFlU8I0Ui7QBb7o2tXMkiMHet/tWQ7tyknhzKkHant1qwZbURenveOqFquv55SHq2YoeUdnJvru5upEsBiJsx4/nk6/pYsMbY+WI2b0YqZ7Gx10vNXzAT7qtvIzfTDD/TddeqoPXms4nar23vyZGAxM4JRo0gobNhAWTP+WGYAEgi+xssAwM0301inKCSoWrUCPvvM08UE2Fc0T2wr4F3MBLtjtq8cPaoeT7LrVhb2oRIzQMU4jpEjKUxBa2WLVDHjdpNX5ZVXnE/NFtvjGFFRVHET8N3VNHgw8PjjQMeO3pd1uz3jZljMME5zyy1klejd23gZq+nZQszs20fBs3K1U3+vUpxyM33yCd0PGeJfJVE5CDhQNxNAouuaa+jxtGlqCwp/+135SlISZap9/z0dD/v3074ZOFCdJOPi7O1N46tlJlzEjHDrAFRwVSCLmVDFzADG569cMA8ImyrxltGmZ8uPnSiaFzboRXkHA7nWTLhdUYQAFjNhiLcJyGp6dno68OefZGaNiwu8wSQQOjeTbJkpLqaeSIDvLiaBnJ5th5gB1EBgEcsTH1+xeWiwufBCsg499BBN2vPnq0LY7qvhSBUzaWmqNeTTT9Xq8oFaZvydoLWWmaNHyV14//3qMomJoS//Hyhy4TxBOFhm5s8HOnVSa0SFnHbtaFCXe1V4IzubCieJaopWkLMCwsXXG0JYzEQgVt1MLheVFI+LowqpIq3ZXxcTEDrLzKlTaiDk0qUkQNLTqYmsP4hJ6NAhdYANVMx07gx06aI+D6SqciDEx1OBxHXrKHNH7De7r4YjVcwAqoAvLSUXXWmpc24mrWXmyBHKXpSJpOBfgdgfsmXG7qw6fygro3Nj3TqHNmDUKBrQXn/d+mfWr6dCSX37Wv+MLGbYzcREAvJgaDXd8Oqr1boo4SxmUlNVQSBcTcLFNHiw/1erYhKSL3Ts+A3COgOEzsVkRNu2VGNlxgyycPXqZe/6RWaKEAFGhKOYEeEE1apR6Y+nnlJrJsliJhRuJm337GbNKn5vpMXLAOZuJifFjLy/HUnPTk72zDaygi+ZTAJxkGdlqalbLGaYcCYzk+K98vLUWA0jVqwArrtOddfefjulZvtLsMVMVJQ6YRw/Tmmzn39Oz6+6yv/1inNaiJnUVHvM+MOGqdsbiEi0C7ebsnOOHFHTxu2idWu637TJfFIIZzFz6aV0/8gjdF+9Os0zVi0IdoiZxo3p2MvPpz5f0dFqjOiDD9J9JIqZcHUzieKhWVnWu747jj9iRgim/fvV1yLxQPITFjMRSGysagXw5mrav9+zwumhQ4E1RA22mAE842aWL6f7mjX9b8EAqJOQyI4M1MUkiI+nFFSAUlLDBbfbfpdXq1Y0CZ844TleaglHd70QM2edpboqe/akgHsgtDEzMTGe3bMBNUb0r7/ovrK4mcJBzMTH039+8cUO1ZoBqBle9+7A229bW17uy2QVIWZE/5qkpOBUNg1TWMxEKL5mNAlE4zd/CYWYkTOahItp0KDAzkutm8kuMQMAkycDa9dSLEZlplo11WQvgmj1CGfLTEEBWayys4Fly6gZIhDamBmg4vkrCsUKsR2JF9Th6mYCgB9/BL79Vq3xE3L27qVGe6J/iZXlAf8sM0LMhNPVRAhgMROhWBUzIvNJsGePbwHyWuQmgsFCWGaOHKHaKYD/WUwCMQkJi4KdYsbtpmyJqnARdNZZdG8mZsIxK1SuANygQUXLh9WYmaQk1T0ZyAStzWgSrhDhDo5ky0y4uZnCAl/Ts33pyyTQuplYzDCRgBAp3txM8fEVJ1nRBM4fhGUmmBOVEDNffEGCpnp14IILAlun9ryuYue5bQgLwoYN+u8rSnhbZrz1ZvI26bpcZO2MjqYO9/6ivRg57zxyP4ljPxItM+HqZgoLhJjZtIkCAb1hR8xMOJ2AIYDFTIRi1TJz8mTFc8cOMRMKN9OCBXQ/cKDas8pftJYYOy0zVQlvlpn8fPV4C6ex1JuY8WXS/e47citmZPi/PVrLTGoqBQNffTU9j0TLDBfNM+HMM+kgLCjwPmgDwGOPAZMmqSY7K1RxN1MVMIxXToSYEd1gjYI9f/+94mu//eb/94YyAFj0qAnUxQSwmLELIWa2bKF6NlqRKawybnd4VbA1EzOlpdT7C7AmZurXp1sgaMsruFwk4oWFKJItM+xm0sHtppNn1SpyNXnLwvCnwp8QM+EYgR8C2DITocjphnodpgV6wmXNGv/rLYTSMgPQFWufPoGvU3tes5jxj8xMGjOLilSrgowcU+VEAUEjzMSMPPmGyoKQmammZ8uZYaL2TSSLmXArmhc2BLutgTjIBeFkGg0BLGYilIQE1WdvFjcjxIxoziiqaovGiL5QUqJOBqGwzADAgAGUih4oWvFSxS5abMPtVmui6LmawjFeBtDvmi2QxUyoJt2YGM/u2QJxsVDZ3EwsZkBipkED8+6vigLcdx9Vv/T1ilNbmK+KDXIsZiIYK3Eza9fSvRhohADyJ0VbXDUCwR1sZcuMHS4mgC0zdmIWBByuFm4xmepZZsSEGxMT2n5I2rgZIDSWz2DBAcBeuP12ylJ69FHjZX75Bfi//6M2BuJksgqLGSZS8SZmjh9X61aIQUW4av0RM2KgrVbNHmuJEXXr0n1yMnDRRfasMzbW0wrLYsZ/zIKAwzEtGzB3Mzk14eqdv+KCIRItMxwz4wUrftdXX6X7a6/1XYxUcTHDAcARjLf0bGGVOfNMqtfy779Ut+mHH/wTM6GoMQPQlf+0aVQ+384YhurV1cmMxYz/mImZcHczmYmZUGfcVDbLDLuZfKC0tKIZ8MABausOAGPG+L5OrZgJt5MwyLBlJoLxZpkRYqZzZ2oSePbZar2WtWvVbCGrhKLGjODuu31rGGsFWcBUsYsWWxFiZtcuT9cjEJlixqkgVTPLTCSKGa2bqbRU7eDOYuY0U6YAtWsDr7xS8b0336TAxO7dgQ4dfF93FbfMsJiJYLyJGRH8+5//qK+1aUMDS3a2fjaKGZF81Qh4nttsmfGfmjXV2KtNmzzfi0Qx45T1QNvNWVEiOwBY62aSLTQsZk6jKMDhwxUzmoqKgNdfp8ei2ZuvsJhhIhXhZjp8uOIVMqCKmc6d1deio4GOHemxr66mSBczsoBhMRMYwjqjDQKOBDGjTRJxSsyI9Oy8PErPLiggawYQmeeY1s0ki5kqXzRPYBQ9//nnwMGDZEIfPNi/dbOYYSKV1FSgVi16rI2bOXqUYmQA6hsk06UL3VdVMZOYGHhF4aqOUdxMuIsZRQEKCz3fcypmRpueLc4voOK8FAlo3UziPjaWUvoZqLVm/vzTszS7203Fw2691f/sCq4zw0QyRq4mES/TrFnFY7qqi5kqdsESFLyJmXDbx7LVRetqcrKwmxwELLuYInHy17qZuGCeDk2aUGnswkJg61b19auuooPg/vv9XzcHADORjBAzWsuMnotJIMTMunVqgJ4VIl3MiAmWXUyBI4sZ2W0TrpaZmBjVGqcVM05m3MgXI5Ec/AsYu5lYzEi43cauJrc7sJ0li5lq1aqcb4/FTIQj4maMLDN6YqZpUxowCwrI2mmVSBczQsSwmAmcVq0o3uPECbWvHRC+dWYA4yBgJyddI8tMJGLkZmIxo0Fua3D8OPD++xV9n/4QG0tBkUD4mUZDgKNiZurUqejSpQuSk5ORkZGBgQMHYqtkeisuLsb999+Ps846C4mJiahXrx5GjhyJ/XIzkyqOkZvJzDLjdquv+9J0MlR1ZoJFixae94z/VKsGNG9Oj2VXU7haZgDvYsaJC9nKZJmR3UyKwmLGkHPPBXr1ohiZmTOBESOA/v3tWbewzoTjCRhkHBUzy5cvx5gxY7By5UosXrwYJSUl6Nu3L3JzcwEAeXl5+P333zFp0iT8/vvv+Oyzz/D333/jiiuucHKzwwo9MXP4MFXNdrnUzCUt/sTNhLLOTDDo14+a1r74otNbUjnQi5uJRDETDjEz27ap+y5SLTNCDJaVkfuaxYwBI0YAS5cCN98MvPYavXb11fasW4iZKmiZcbQC8MKFCz2ez5w5ExkZGVi7di3OP/98pKamYvHixR7LvPLKK+jatSt2796NRo0ahXJzwxIhZvbupcEjPl51MbVoYTwwBiJmIvXK0eUCunZ1eisqD2edBcydq4oZRYkMMaNtNunkpCunZwujdKSeX/L+y89nMeOVhQup30xaGjB8uD3rrMJiJqxiZrJOj4Q15LbJOsu4XC6kGfxZhYWFyM7O9rhVZmrWVAe/nTvp3szFJBBiZuNGz14qZkS6mGHsRWuZyctT66SEo5gxajbp5KQrp2f//jvdR+r5JTeDLihgMeOVJ5+k+xtvtC8Xn91MzqMoCsaPH48ePXqgbdu2ussUFBTggQcewPDhw5FicMZPnToVqamp5beGDRsGc7Mdx+Wq6GrSq/yrpWFDICODSh2sX2/tu1jMMDIiKWPzZnIrCKtMVFR41kkJx5gZQD1/hZiJVDeTy+WZ0eT0fg1r+vShRnkAddO2C3GQs2XGOcaOHYsNGzbgo48+0n2/uLgYV199NcrKyvCa8DPq8OCDDyIrK6v8tmfPnmBtctigTc82y2QSuFy+u5pYzDAyjRtTyYziYuDvvz1dTFYaBIeacIyZAdS4mYMH6T6Szy85o8np/RrWnHMO3WdmqgO4HbCbyVnGjRuH+fPnY+nSpWjQoEGF94uLizF06FDs3LkTixcvNrTKAEBcXBxSUlI8bpUdOT37wAFKlXW7vfcqYzHDBILbDQgj6saN4Z2WDYRnajZQcS6LVMsM4JnR5PR+DWsefBB49llg5Up718tixhkURcHYsWPx2WefYcmSJWjSpEmFZYSQ+eeff/D999+jZs2aDmxpeCO7mYRVpmVLumo2w5f07NJSICeHHrOYYQRy3Ew4B/8C4StmhGVGEMnnl56bicWMDomJwMSJ1EHbTsTVhTgxqxCOZjONGTMGH374Ib788kskJyfj4Gk7a2pqKuLj41FSUoIrr7wSv//+O77++muUlpaWL1OjRg3E+tvDopIhu5msuJgEwjLz119U48LsilBuZBnJgy1jLyJuZuNG9XGkihmnY2YElcEyw2LGIaZMoZTvxo2d3pKQ46hlZsaMGcjKykKvXr1Qt27d8tvHH38MANi7dy/mz5+PvXv3okOHDh7L/CqCp5jywXDXLmDFCnpsRcxkZACNGlFKrRBBRggXU2ysZ9YCU7WRu2dHqmXG6dgOkZ4tiOSLBXYzOYzbXSWFDOCwZUaRm7rokJmZ6XUZBqhblwaM/HxgyRJ6zYqYAcg6s3s3xc306mW8XKQXzGOCgxAz//5LhRqB8D1GwtXNFBtL88+OHfS8MogZtswwoSYsAoCZwHC51CDg4mIS56L9hzesBgFz8C+jR40aQL169FgYS8M19jBcxQzgGTcTyW4mjplhnILFTCVB9ru3aaMO3N5gMcMEirDOiMSMSLPMCDeTk/VQ5PM3ks8xdjMxTsFippIgLDOAdRcToBbW27ULOHLEeDkWM4wRIvBXiIRIEzPhMOlWFsuMnpuJi+YxoYDFTCVBvrIzq/yrJTVV7X5sFgTMYoYxQpsFymLGdyqLZUZ2MzkdWM1ULVjMVBLkwdAXywyguppWrzZehsUMYwSLmcARFxTR0dZdxOEIu5kYp3A0m4mxjxYt6D42VjX7W+Xss4EPPgBWrTJeRqTdsphhtLRqRanF4dxkEvB0gQgUJXxiZiZMoBpq4dgKwiqczcQ4BYuZSkLDhsCrrwLp6b4PHqJNyMqVNLjrDaZsmWGMiIsjy8KWLfQ8XMWMnmWmsFB97OSk63IB//d/zn2/XXA2E+MULGYqEXfc4d/n2renQej4cWqJoC2vDnCdGcacdu1UMRNJqdmylYYn3cBhywzjFBwzwyA2Vg0aFhWEtbBlhjFDjpsJV8FrJmaiooCYmNBvU2WDY2YYp2AxwwDwdDXpwWKGMSNSxUw4xMtUJtjNxDgFixkGAIsZJjA6dqT75OTwnbyEmMnPB8rK1MdA+G5zpMF1Zhin4JgZBoAqZjZsAHJzqUO9DIsZxoyGDSkjrnr18M3GkVOeCwroOYsZexH78dQpNbuN9y0TCtgywwAAGjSgW2kp8NtvFd9nMcN4Y/hw4JJLnN4KY+RJVbiaWMzYi7DCnDihvsb7lgkFLGaYcsxcTVxnhol0oqIojRxQxQzHzNiLEC6ymOF9y4QCFjNMOUZipqyMzMYAixkmstEGAbNlxl7Efjx+nO6rVQtftyNTuWAxw5SjLZ4nyMlRH4drpgrDWIHFTHARVhixf3m/MqGCxQxTTqdO1Bvm4EHg33/V10W8TEyMaqZnmEiExUxw0e5H3q9MqGAxw5QTH6+m2MquJjn4l03GTCSjFTMcM2MvLGYYp2Axw3igFzfDmUxMZUHbbJItM/aiFYW8X5lQwWKG8YDFDFOZYTdTcNHuR7Z4MaGCxQzjgRAzv/+umuBZzDCVBRYzwYXdTIxTsJhhPGjSBMjIAIqLgXXr6DWuMcNUFjhmJriwm4lxChYzjAcuV0VXE1tmmMoCW2aCS3Q03QS8X5lQwWKGqQCLGaaywmIm+Mj7kvcrEypYzDAVMBIzXDCPiXRYzAQf2dXE+5UJFSxmmAp06QK43cDu3cD+/WyZYSoPHDMTfNgywzgBixmmAklJwFln0eOVK1nMMJUHtswEHxYzjBOwmGF0kV1NLGaYygKLmeDDbibGCVjMMLqwmGEqIyxmgo+8L9l9x4QKFjOMLkLM/PYbcPQoPWYxw0Q6HDMTfNjNxDgBixlGl+bNgbQ0unL9+296jcUME+mwZSb4sJhhnIDFDKOL261aZwQsZphIR0yuLGaCB8fMME7AYoYxRCtmuM4ME+kIywx3zQ4ebJlhnIDFDGMIW2aYygbHzAQfFjOME7CYYQzp2lV9HBXFAxMT+chiRlHYMhMM2M3EOAGLGcaQ6tWBli3pcUoKNaFkmEhGFjPFxUBZGT3nSdc+2DLDOAGLGcaUc8+le3YxMZUBIWYKC4HcXPV1nnTtg8UM4wQsZhhTRNwMixmmMiDEDAAcP073LhcQG+vM9lRGZDcTxyIxoYLFDGPKwIFAhw7AyJFObwnDBI48uR47pr7GLlT7YMsM4wTRTm8AE95kZADr1jm9FQxjD243TbD5+aqY4QnXXljMME7AlhmGYaoUwtXEYiY4cDYT4wQsZhiGqVIIMSNiZjiuw17YMsM4AYsZhmGqFGyZCS5if3JgNRNKWMwwDFOlYDETXISlKz6eA6uZ0MFihmGYKoUQL+xmCg5i/7JIZEIJixmGYaoU2pgZnnTtpWZNz3uGCQWcms0wTJWC3UzBpVUr4PXXgTZtnN4SpirBYoZhmCoFi5ngc+utTm8BU9VgNxPDMFUKrZjhmBmGiXxYzDAMU6UQYiY7m+7ZMsMwkQ+LGYZhqhRys0mAxQzDVAZYzDAMU6VgMcMwlQ8WMwzDVCm0YoZjZhgm8mExwzBMlYItMwxT+WAxwzBMlYLFDMNUPljMMAxTpWAxwzCVDxYzDMNUKThmhmEqHyxmGIapUmgtMWyZYZjIh8UMwzBVCnYzMUzlg8UMwzBVChYzDFP5YDHDMEyVgmNmGKbywWKGYZgqBVtmGKby4aiYmTp1Krp06YLk5GRkZGRg4MCB2Lp1q8cyn332Gfr164datWrB5XJh/fr1zmwswzCVAhYzDFP5cFTMLF++HGPGjMHKlSuxePFilJSUoG/fvsjNzS1fJjc3F927d8fTTz/t4JYyDFNZYDHDMJWPaCe/fOHChR7PZ86ciYyMDKxduxbnn38+AGDEiBEAgF27doV68xiGqYTExQEuF6Ao9JxjZhgm8nFUzGjJysoCANSoUcPvdRQWFqKwsLD8eXZ2dsDbxTBM5cHlIuuMMACzZYZhIp+wCQBWFAXjx49Hjx490LZtW7/XM3XqVKSmppbfGjZsaONWMgxTGZBdTWyZYZjIJ2zEzNixY7FhwwZ89NFHAa3nwQcfRFZWVvltz549Nm0hwzCVBSFm4uIAd9iMggzD+EtYuJnGjRuH+fPn48cff0SDBg0CWldcXBzi4uJs2jKGYSojQsywVYZhKgeOihlFUTBu3Dh8/vnnWLZsGZo0aeLk5jAMU0UQYobjZRimcuComBkzZgw+/PBDfPnll0hOTsbBgwcBAKmpqYg/PcocP34cu3fvxv79+wGgvA5NnTp1UKdOHWc2nGGYiEaIGBYzDFM5cNRbPGPGDGRlZaFXr16oW7du+e3jjz8uX2b+/Pno2LEjLr30UgDA1VdfjY4dO+L11193arMZholw2DLDMJULx91M3hg1ahRGjRoV/I1hGKbKwDEzDFO54Dh+hmGqHGyZYZjKBYsZhmGqHCxmGKZywWKGYZgqB4sZhqlcsJhhGKbKwTEzDFO5YDHDMEyVgy0zDFO5YDHDMEyV4+KLgTPOAAYMcHpLGIaxg7BoZ8AwDBNKunQBtm93eisYhrELtswwDMMwDBPRsJhhGIZhGCaiYTHDMAzDMExEw2KGYRiGYZiIhsUMwzAMwzARDYsZhmEYhmEiGhYzDMMwDMNENCxmGIZhGIaJaFjMMAzDMAwT0bCYYRiGYRgmomExwzAMwzBMRMNihmEYhmGYiIbFDMMwDMMwEQ2LGYZhGIZhIppopzcg2CiKAgDIzs52eEsYhmEYhrGKmLfFPG5GpRczp06dAgA0bNjQ4S1hGIZhGMZXTp06hdTUVNNlXIoVyRPBlJWVYf/+/UhOTobL5QrZ92ZnZ6Nhw4bYs2cPUlJSQva9kQTvI3N4/3iH95F3eB+Zw/vHO07tI0VRcOrUKdSrVw9ut3lUTKW3zLjdbjRo0MCx709JSeETxAu8j8zh/eMd3kfe4X1kDu8f7zixj7xZZAQcAMwwDMMwTETDYoZhGIZhmIiGxUyQiIuLw6OPPoq4uDinNyVs4X1kDu8f7/A+8g7vI3N4/3gnEvZRpQ8AZhiGYRimcsOWGYZhGIZhIhoWMwzDMAzDRDQsZhiGYRiGiWhYzDAMwzAME9GwmDHhxx9/xOWXX4569erB5XLhiy++8Hj/0KFDGDVqFOrVq4eEhARcfPHF+OeffyqsZ8WKFbjggguQmJiItLQ09OrVC/n5+eXvnzhxAiNGjEBqaipSU1MxYsQInDx5Msi/LnAC3T+7du2Cy+XSvX3yySfly0Xq/gHsOYYOHjyIESNGoE6dOkhMTESnTp3w6aefeixT1ffR9u3bMWjQIKSnpyMlJQVDhw7FoUOHPJaJ1H00depUdOnSBcnJycjIyMDAgQOxdetWj2UURcHkyZNRr149xMfHo1evXvjzzz89liksLMS4ceNQq1YtJCYm4oorrsDevXs9lqnq++jNN99Er169kJKSApfLpfvbI3Ef2bF/jh8/jnHjxqFFixZISEhAo0aNcOeddyIrK8tjPU7tHxYzJuTm5qJ9+/aYPn16hfcURcHAgQOxY8cOfPnll1i3bh0aN26MPn36IDc3t3y5FStW4OKLL0bfvn2xevVqrFmzBmPHjvUozTx8+HCsX78eCxcuxMKFC7F+/XqMGDEiJL8xEALdPw0bNsSBAwc8blOmTEFiYiIuueSS8nVF6v4B7DmGRowYga1bt2L+/PnYuHEjBg8ejGHDhmHdunXly1TlfZSbm4u+ffvC5XJhyZIl+OWXX1BUVITLL78cZWVl5euK1H20fPlyjBkzBitXrsTixYtRUlKCvn37ehwjzz77LF544QVMnz4da9asQZ06dXDRRReV96YDgLvvvhuff/455syZg59//hk5OTm47LLLUFpaWr5MVd9HeXl5uPjii/Hf//7X8LsicR/ZsX/279+P/fv347nnnsPGjRsxa9YsLFy4EDfddJPHdzm2fxTGEgCUzz//vPz51q1bFQDKpk2byl8rKSlRatSoobz11lvlr5199tnKww8/bLjezZs3KwCUlStXlr+2YsUKBYDy119/2fsjgoi/+0dLhw4dlBtvvLH8eWXZP4ri/z5KTExU3n33XY911ahRQ3n77bcVReF9tGjRIsXtditZWVnlyxw/flwBoCxevFhRlMq1jw4fPqwAUJYvX64oiqKUlZUpderUUZ5++unyZQoKCpTU1FTl9ddfVxRFUU6ePKnExMQoc+bMKV9m3759itvtVhYuXKgoCu8jmaVLlyoAlBMnTni8Xln2UaD7RzB37lwlNjZWKS4uVhTF2f3Dlhk/KSwsBABUq1at/LWoqCjExsbi559/BgAcPnwYq1atQkZGBrp164batWujZ8+e5e8DZLlJTU3F2WefXf7aOeecg9TUVPz6668h+jX2Y2X/aFm7di3Wr1/vofQr6/4BrO+jHj164OOPP8bx48dRVlaGOXPmoLCwEL169QLA+6iwsBAul8ujoFe1atXgdrvLl6lM+0iY9Wv8f3v3HxN1/ccB/IlygncIdAQcdkamaRCIQCbYD7ZS0nLmZLY1mkUrLx31B1u62yh0rdAtYVJuNlMJS0ekNqRf6pD0j8uGHvOQCg7p3IybgexOPfE87vX9g6+feWLK6uT6wPOx3T/vz+ven8/7uYO97vNjp9cDALq6uuB0OpGfn6/UREREIC8vT1nbiRMncO3atYCayZMnIy0tTakZ6xkNx2jJKFj5uFwuREdHIzx88GceQ5kPm5l/6OGHH0ZycjLMZjP6+vrg9XqxYcMGOJ1OdHd3AwDOnDkDAFi3bh3eeOMN/PDDD8jKysIzzzyjXPN3Op1ISEgYMn9CQgKcTufILSjIhpPPzbZv346UlBTMmzdPGRut+QDDz6i2thY+nw9xcXGIiIiAyWTC/v37MW3aNADMKCcnBzqdDmvXroXH48Hly5fxzjvvwO/3KzWjJSMRQUlJCZ544gmkpaUBgHL8iYmJAbWJiYnKNqfTiQkTJuCee+65bc1Yzmg4RkNGwcqnt7cX77//PkwmkzIWynzYzPxDGo0Ge/fuRXt7O/R6PbRaLZqamrBo0SKMHz8eAJTr9SaTCUVFRcjMzERlZSVmzpyJHTt2KHOFhYUNmV9EbjmuFsPJ50ZXrlzB7t27h1x/BUZnPsDwMyotLUVfXx8OHz6M5uZmlJSUYPny5bDZbErNWM4oPj4edXV1OHDgAKKiohATEwOXy4WsrKyAHEdDRsXFxTh16hT27NkzZNvN6xjO2m6uYUZ3pvaMgpGP2+3G888/j9TUVJSVld12jtvNE0zhd3X2US47OxstLS1wuVzwer2Ij4/H3Llz8eijjwIAkpKSAACpqakB70tJScHZs2cBAAaDYchTFwDw119/DemS1eZO+dzo66+/hsfjwYoVKwLGR3M+wJ0z6uzsxCeffILW1lY88sgjAICMjAwcO3YMW7ZswdatW8d8RgCQn5+Pzs5O9PT0IDw8HLGxsTAYDJg6dSqA0fE5euutt1BfX4+jR4/CaDQq4waDAcDgt+Lr/3OAwcvc19dmMBjg9XrR19cXcHbm/PnzypnQsZ7RcKg9o2Dkc/HiRSxcuBBRUVHYv38/NBpNwDyhyodnZoIgJiYG8fHx6OjoQHNzM1544QUAwAMPPIDJkycPeQSuvb0dycnJAIDc3Fy4XC788ssvyvbjx4/D5XIFXG5Rs7/L50bbt2/HkiVLEB8fHzA+FvIB/j4jj8cDAAFPvwGD941cP/M31jO60b333ovY2Fg0Njbi/PnzWLJkCQB1ZyQiKC4uxr59+9DY2Kg0aNdNnToVBoMBhw4dUsa8Xi9++uknZW3Z2dnQaDQBNd3d3WhtbVVqxnpGw6HWjIKVj9vtRn5+PiZMmID6+vqAe9mAEOdzV28vVrmLFy+K1WoVq9UqAKSiokKsVqs4HA4RGbyT+8iRI9LZ2SnffPONJCcny7JlywLmqKyslOjoaKmrq5OOjg4pLS2VyMhIsdvtSs3ChQtl1qxZYrFYxGKxSHp6uixevHhE1/pPBCMfEZGOjg4JCwuT77///pb7UWs+Iv8+I6/XK9OnT5cnn3xSjh8/Lna7XT766CMJCwuTb7/9VqkbyxmJiOzYsUMsFovY7XbZtWuX6PV6KSkpCahRa0arVq2SmJgYaWpqku7ubuXl8XiUmg0bNkhMTIzs27dPbDabvPTSS5KUlCRut1upefPNN8VoNMrhw4fl5MmT8vTTT0tGRob4fD6lZqxn1N3dLVarVbZt2yYA5OjRo2K1WqW3t1epUWNGwcjH7XbL3LlzJT09Xex2e8A8/4XPEJuZ27j+eN7Nr1deeUVERDZv3ixGo1E0Go3cf//9UlpaKlevXh0yT3l5uRiNRtFqtZKbmyvHjh0L2N7b2yuFhYUyadIkmTRpkhQWFg55JPC/KFj5mM1mMRqNMjAwcMv9qDUfkeBk1N7eLsuWLZOEhATRarUya9asIY9qj/WM1q5dK4mJiaLRaOShhx6STZs2id/vD6hRa0a3ygaA7Ny5U6nx+/1SVlYmBoNBIiIi5KmnnhKbzRYwz5UrV6S4uFj0er1MnDhRFi9eLGfPng2oGesZlZWV3XEeNWYUjHz+7u8UgHR1dSl1ocon7P8LJSIiIlIl3jNDREREqsZmhoiIiFSNzQwRERGpGpsZIiIiUjU2M0RERKRqbGaIiIhI1djMEBERkaqxmSEiIiJVYzNDREREqsZmhoiIiFSNzQwRjQkDAwPKL40T0ejCZoaIRlxNTQ3i4uJw9erVgPGCggKsWLECAHDgwAFkZ2cjMjISDz74INavXw+fz6fUVlRUID09HTqdDlOmTMHq1atx6dIlZXt1dTViY2PR0NCA1NRUREREwOFwoKmpCY899hh0Oh1iY2Px+OOPw+FwjMzCieiuYDNDRCNu+fLlGBgYQH19vTLW09ODhoYGFBUV4ccff8TLL7+Mt99+G21tbfj0009RXV2NDz74QKkfN24cqqqq0Nrais8//xyNjY1Ys2ZNwH48Hg/Ky8vx2Wef4fTp09Dr9Vi6dCny8vJw6tQpWCwWrFy5EmFhYSO2diIKPv5qNhGFxOrVq/HHH3/gu+++AwBs3rwZVVVVsNvtyMvLw6JFi2A2m5X6L774AmvWrMGff/55y/nq6uqwatUq9PT0ABg8M1NUVISWlhZkZGQAAC5cuIC4uDg0NTUhLy/vLq+QiEYKmxkiCgmr1Yo5c+bA4XDgvvvuw+zZs1FQUIB3330XOp0Ofr8f48ePV+oHBgbQ39+Py5cvQ6vV4siRI/jwww/R1tYGt9sNn8+H/v5+XLp0CTqdDtXV1TCZTOjv7w8481JUVIQ9e/ZgwYIFmD9/Pl588UUkJSWFIgIiChJeZiKikMjMzERGRgZqampw8uRJ2Gw2vPrqqwAAv9+P9evXo6WlRXnZbDZ0dHQgMjISDocDzz33HNLS0rB3716cOHECW7ZsAQBcu3ZN2cfEiROHXELauXMnLBYL5s2bh9raWsyYMQM///zziK2biIIvPNQHQERj1+uvv47KykqcO3cO8+fPx5QpUwAAWVlZ+P333zF9+vRbvq+5uRk+nw+bNm3CuHGD38m++uqrYe83MzMTmZmZMJvNyM3Nxe7du5GTk/PvF0REIcEzM0QUMoWFhTh37hy2bduG1157TRl/7733UFNTg3Xr1uH06dP49ddfUVtbi9LSUgDAtGnT4PP58PHHH+PMmTPYtWsXtm7desf9dXV1wWw2w2KxwOFw4ODBg2hvb0dKSspdWyMR3X1sZogoZKKjo1FQUICoqCgsXbpUGX/22WfR0NCAQ4cOYc6cOcjJyUFFRQWSk5MBALNnz0ZFRQU2btyItLQ0fPnllygvL7/j/rRaLX777TcUFBRgxowZWLlyJYqLi2Eyme7WEoloBPAGYCIKqQULFiAlJQVVVVWhPhQiUik2M0QUEhcuXMDBgwdRWFiItrY2zJw5M9SHREQqxRuAiSgksrKy0NfXh40bN7KRIaJ/hWdmiIiISNV4AzARERGpGpsZIiIiUjU2M0RERKRqbGaIiIhI1djMEBERkaqxmSEiIiJVYzNDREREqsZmhoiIiFTtf32B8SVTVk6HAAAAAElFTkSuQmCC", -======= - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZbklEQVR4nO3deVyU1fcH8M+IgoiAOy6RuO/imlulFqVWpuZPy9xz+Vrihisq7om7klqZVraZWqktlkvmkvuKe+aCQsYiLiCIKPD8/jjNDCgqAwx35pnP+/V6Xj4z88zMUdQ5c++55xo0TdNAREREpBP5VAdARERElJuY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItKV/KoDyGtpaWn4999/4e7uDoPBoDocIiIiygJN03D79m2ULVsW+fI9fmzG4ZKbf//9F97e3qrDICIiomyIiIjAU0899dhrHC65cXd3ByB/OB4eHoqjISIioqyIj4+Ht7e36XP8cRwuuTFORXl4eDC5ISIisjNZKSlhQTERERHpCpMbIiIi0hUmN0RERKQrDldzk1Wpqam4f/++6jDIQgUKFICTk5PqMIiISCEmNw/QNA1RUVG4deuW6lAom4oUKYLSpUuzjxERkYNicvMAY2JTqlQpFCpUiB+QdkTTNNy5cwcxMTEAgDJlyiiOiIiIVGByk05qaqopsSlevLjqcCgbXF1dAQAxMTEoVaoUp6iIiBwQC4rTMdbYFCpUSHEklBPGnx9rpoiIHBOTm0xwKsq+8edHROTYmNwQERGRrjC5ISIiIl1hckOZ8vHxwaJFi5S/BhERkaW4WkonWrVqhXr16uVaMnHo0CG4ubnlymsREZED+eMPoFkz4L/Vqypw5MaBaJqGlJSULF1bsmRJrhojIiLLXLoEtGsHVK8OREcrC4PJTRYlJj76uHs369cmJWXtWkv06dMHO3fuREhICAwGAwwGAy5fvowdO3bAYDDgt99+Q8OGDeHi4oLdu3fj4sWL6NChA7y8vFC4cGE0btwYv//+e4bXfHBKyWAwYMWKFejUqRMKFSqEKlWq4KeffrIozvDwcHTo0AGFCxeGh4cHunbtiuh0f/mPHz+O1q1bw93dHR4eHmjYsCEOHz4MALhy5Qrat2+PokWLws3NDbVq1cKvv/5q2R8UERFZ15gxwL17ktyUKqUsDCY3WVS48KOPzp0zXluq1KOvbdcu47U+PplfZ4mQkBA0a9YMAwYMQGRkJCIjI+Ht7W16fNy4cZg1axbOnj2LunXrIiEhAa+88gq2bduGY8eOoW3btmjfvj3Cw8Mf+z5Tp05F165dceLECbzyyivo3r07bty4kaUY09LS0KFDB9y4cQM7d+7E1q1bcenSJbz55puma7p3746nnnoKhw4dwpEjRzBu3DgUKFAAADB48GAkJydj165dOHnyJGbPno3Clv5BERGR9ezcCfzwA5AvH7BgAaCwLQdrbnTA09MTzs7OKFSoEEqXLv3Q49OmTcNLL71kul2sWDH4+vqabk+fPh3r16/HTz/9BH9//0e+T58+fdCtWzcAwMyZM/HBBx/g4MGDaNu27RNj3LZtG06ePImwsDBT4vXll1+iVq1aOHToEBo3bozw8HCMHj0a1atXBwBUqVLF9Pzw8HB07twZderUAQBUrFjxie9JRER5JDUVGDFCzv/3P6BWLaXhMLnJooSERz/2YIf//7Y2ylS+B8bKLl/OdkhZ1qhRowy3ExISMGXKFGzcuBGRkZFISUlBUlLSE0du6tatazp3c3ODh4eHaR+nJzl79iy8vb0zjCjVrFkTRYoUwdmzZ9G4cWMEBASgf//++Oqrr+Dn54cuXbqgUqVKAIChQ4fi3XffxZYtW+Dn54fOnTtniIeIiBT64gvg2DHA0xOYOlV1NJyWyio3t0cfBQtm/doHi8cfdV3uxp7xBUeNGoX169dj5syZ+PPPPxEaGoo6derg3r17j30d4xSRkcFgQFpaWq7FOWXKFJw+fRqvvvoq/vjjD9SsWRPr168HAPTv3x+XLl1Cz549cfLkSTRq1AiLFy/OtfcmIqJsun0bGD9ezidNAkqWVBsPmNzohrOzM1JTU7N07Z49e9CnTx906tQJderUQenSpXHZykNINWrUQEREBCIiIkz3nTlzBrdu3ULNmjVN91WtWhUjRozAli1b8MYbb+Dzzz83Pebt7Y1BgwZh3bp1GDlyJJYvX27VmImIKAuCg2VlVOXKwGNKG/ISkxud8PHxwYEDB3D58mXExsY+dkSlSpUqWLduHUJDQ3H8+HG8/fbbuToCkxk/Pz/UqVMH3bt3x9GjR3Hw4EH06tULLVu2RKNGjZCUlAR/f3/s2LEDV65cwZ49e3Do0CHUqFEDADB8+HBs3rwZYWFhOHr0KLZv3256jIiIFLl8WYqHAWD+fMDZWWk4RkxudGLUqFFwcnJCzZo1UbJkycfWzyxYsABFixZF8+bN0b59e7Rp0wYNGjSwanwGgwE//vgjihYtiueffx5+fn6oWLEi1qxZAwBwcnLC9evX0atXL1StWhVdu3ZFu3btMPW/udvU1FQMHjwYNWrUQNu2bVG1alV8+OGHVo2ZiIieYOxYIDkZePFFoH171dGYGDRN01QHkZfi4+Ph6emJuLg4eHh4ZHjs7t27CAsLQ4UKFVDwwUIashv8OTqwLVvk2+MHHwDVqqmOhkjfdu8GnntOVsocOwZYeZHH4z6/H8SRGyLSh6Qk4J13JMHp2xew8lQrkUNLSwOGD5fzAQOsnthYiskNEenDhx8CV6/K+b59wJdfqo2HSM+++go4cgTw8ACmTVMdzUOY3BCR/YuLA2bOlPPmzeXXMWOAW7eUhUSkWwkJQGCgnE+cqHSbhUdhckNE9m/+fODGDdnP5vff5ddr16TnBhHlrtmzgchIoGJFYOhQ1dFkiskNEdm3mBjzUtQZM6RTprHB49KlwPHj6mIj0pvwcGDePDmfNw9wcVEbzyMwuSEi+/b++0BiItCoEfDGG3Kfnx/wf/8nRY/+/oBjLQolsp5x44C7d4FWrYCOHVVH80hMbojIfl25Anz8sZwHB2fchXjBAqBQIVmu+vXXauIj0pO9e4Fvv5V/ZwsXKt31+0mY3BCR/ZoyBbh3D3jhBRmtSc/bGwgKkvPRo6XomIiyJy3NvOt3v35AvXpKw3kSJjeUY61atcJwY78Dorxy5ox5uXdwcObXBAQAVavKvjdTpuRZaES6s2oVcPAgULgwMH266mieiMmNTlgjwejTpw862vCcKjm4iRPl22SnTsAzz2R+jbOzubh48WLg5Mm8i49ILxITpdYGACZMAEqXVhtPFjC5ISL7c/AgsH69tH2fMePx1778shQap6ayuJgoO+bOlQaZPj7mrsQ2jsmNDvTp0wc7d+5ESEgIDAYDDAYDLl++DAA4deoU2rVrh8KFC8PLyws9e/ZEbGys6bnff/896tSpA1dXVxQvXhx+fn5ITEzElClT8MUXX+DHH380veaOHTuyFM/NmzfRq1cvFC1aFIUKFUK7du1w/vx50+NXrlxB+/btUbRoUbi5uaFWrVr49ddfTc/t3r07SpYsCVdXV1SpUgWff/55rv1ZkU4YG4j16gXUrPnk6xculCXiu3ZJQSQRZc0//wBz5sj53LmAnezXl191ADZP04A7d9S8d6FCWapGDwkJwd9//43atWtj2n9tsEuWLIlbt27hhRdeQP/+/bFw4UIkJSVh7Nix6Nq1K/744w9ERkaiW7dumDNnDjp16oTbt2/jzz//hKZpGDVqFM6ePYv4+HhTclGsWLEshd2nTx+cP38eP/30Ezw8PDB27Fi88sorOHPmDAoUKIDBgwfj3r172LVrF9zc3HDmzBkULlwYABAUFIQzZ87gt99+Q4kSJXDhwgUkJSVl8w+QdOn334E//pApp6zW0Tz9tAynT5wIjBoFvPaatI0noscLDJR92557DujcWXU0Wcbk5knu3JECKhUSEgA3tyde5unpCWdnZxQqVAil082FLlmyBPXr18dMY1t6AJ999hm8vb3x999/IyEhASkpKXjjjTdQvnx5AECdOnVM17q6uiI5OTnDaz6JManZs2cPmv/XBv+bb76Bt7c3NmzYgC5duiA8PBydO3c2vVfFihVNzw8PD0f9+vXRqFEjAICPj0+W35scgKaZR20GDQL++3ubJaNGAStXAhcuyF44xkZkRJS5AwekjYIdLP1+kNJpqV27dqF9+/YoW7YsDAYDNmzY8Njrd+/ejRYtWqB48eJwdXVF9erVsXDhwrwJ1g4dP34c27dvR+HChU1H9erVAQAXL16Er68vXnzxRdSpUwddunTB8uXLcfPmzRy959mzZ5E/f340adLEdF/x4sVRrVo1nD17FgAwdOhQzJgxAy1atMDkyZNx4sQJ07XvvvsuVq9ejXr16mHMmDHYu3dvjuIhnVm3Djh8WJL+CRMse66LC/DBB3K+aBFw+nSuh0ekG5pmrq/p0wdo2FBlNBZTmtwkJibC19cXS5cuzdL1bm5u8Pf3x65du3D27FlMnDgREydOxCeffGK9IAsVkhEUFUehQjkKPSEhAe3bt0doaGiG4/z583j++efh5OSErVu34rfffkPNmjWxePFiVKtWDWFhYbn0h5e5/v3749KlS+jZsydOnjyJRo0aYfF/K1ratWuHK1euYMSIEfj333/x4osvYtSoUVaNh+xESopMKwGyxDs7m/W1awd06MDiYqInWb0a2L9fvki8/77qaCyn2QgA2vr16y1+XqdOnbQePXpk+fq4uDgNgBYXF/fQY0lJSdqZM2e0pKQki+NQ7aWXXtL8/f0z3Dd+/HitWrVq2v3797P0GikpKVq5cuW0+fPna5qmaQMGDNBee+21Jz6vZcuW2rBhwzRN07S///5bA6Dt2bPH9HhsbKzm6uqqfffdd5k+f9y4cVqdOnUyfezjjz/W3N3dsxS/kT3/HOkxPvtM0wBNK1ZM027dyv7rhIVpWsGC8lrffptr4RHpRmKipnl7y7+RGTNUR2PyuM/vB9n1aqljx45h7969aNmy5SOvSU5ORnx8fIZDj3x8fHDgwAFcvnwZsbGxSEtLw+DBg3Hjxg1069YNhw4dwsWLF7F582b07dsXqampOHDgAGbOnInDhw8jPDwc69atw7Vr11CjRg3Ta544cQLnzp1DbGws7t+//8Q4qlSpgg4dOmDAgAHYvXs3jh8/jh49eqBcuXLo0KEDAGD48OHYvHkzwsLCcPToUWzfvt30npMmTcKPP/6ICxcu4PTp0/jll19Mj5EDu3sXmDxZzsePBzw9s/9aPj7mup2RI4Hbt3McHpGuzJ8PRERIIX5AgOposicPkq0sgQUjN+XKldOcnZ21fPnyadOmTXvstZMnT9YAPHTobeTm3LlzWtOmTTVXV1cNgBYWFqZpmoykdOrUSStSpIjm6uqqVa9eXRs+fLiWlpamnTlzRmvTpo1WsmRJzcXFRatataq2ePFi02vGxMRoL730kla4cGENgLZ9+/ZM3zv9yI2madqNGze0nj17ap6enpqrq6vWpk0b7e+//zY97u/vr1WqVElzcXHRSpYsqfXs2VOLjY3VNE3Tpk+frtWoUUNzdXXVihUrpnXo0EG7dOmSRX8W9vxzpEdYuFC+RZYrp2l37uT89ZKSNK1iRXnN0aNz/npEevHPP5pWqJD821i9WnU0GVgycmPQNNuYdDYYDFi/fn2WOuKGhYUhISEB+/fvx7hx47BkyRJ069Yt02uTk5ORnJxsuh0fHw9vb2/ExcXB44GloHfv3kVYWBgqVKiAgnaylp8exp+jzty+DVSsCMTGAsuXA/37587r/vIL0L49kD8/cOIEwBFCIqB3b9nWpHlz2XTWhlZIxcfHw9PTM9PP7wfZ5VLwChUqAJBly9HR0ZgyZcojkxsXFxe4uLjkZXhElJsWLJDEpmpVWbWRW157TY5ffgGGDAG2brWp/8iJ8tzhw+b92hYtsut/D3ZdcwMAaWlpGUZmiEhHYmNl/h+Qzfry5/L3sZAQWSK+bRvw/fe5+9pE9iT90u9evYDGjZWGk1NKk5uEhATT8mRApptCQ0MRHh4OAAgMDESvXr1M1y9duhQ///wzzp8/j/Pnz+PTTz/FvHnz0KNHDxXhE5G1BQfLtFSDBsD//V/uv37FiuYNAQMCpAUDkSP67jtgzx5pQZKu8au9UjotdfjwYbRu3dp0O+C/quzevXtj5cqViIyMNCU6gIzSBAYGIiwsDPnz50elSpUwe/Zs/O9//8vz2InIyiIiAGMPrJkzZZNMaxg7Vobiw8Kkn0dwsHXeh8hWJSUBY8bI+dixQLlyauPJBTZTUJxXHleQZCxE9fHxgaurq6IIKaeSkpJw+fJlFhTbu/79gU8/BVq2BLZvt+78/08/SXO/AgWAkyeBatWs915EtmbmTOn4/dRTwLlzOW4gay2WFBTbfc1NbipQoAAA4I6qjTIpVxh/fsafJ9mhv/4CjLvBBwdbv7CxfXvglVeA+/eBoUPZuZgcR2SkeRpq9mybTWwsZZerpazFyckJRYoUQUxMDACgUKFCMNhxtbij0TQNd+7cQUxMDIoUKQInJyfVIVF2BQUBaWnA668DzZpZ//0MBiku/v13YMsWYP164I03rP++RKpNmAAkJgJNmwKPWHVsjzgt9QBN0xAVFYVbt27lfXCUK4oUKYLSpUszMbVXhw/LSg2DQfrP1K6dd+8dFATMmAF4ewNnz8q+OkR6dfQo0KiRjFTu2ycJjg3TfZ8bazIYDChTpgxKlSqVpe0GyLYUKFCAIzb2bvx4+bVHj7xNbADZluGrr4ArV2So3h43DCTKCk0DRoyQX7t3t/nExlIcuSEi27F9O/DCC1LYe+4c8F/DzjxlnJJydgZOnQKqVMn7GIis7YcfpL2Cq6v8W/P2Vh3RE7GgmIjsj6aZN7QcOFBNYgMAHTsCbdoA9+6xuJj06e5dYPRoOR892i4SG0sxuSEi2/Djj8CBA7JaY+JEdXEYDMAHH8jo0aZNEheRnoSESF+nsmXN/W10hskNEamXmiqrNgBpAV+6tNJwULUqMGqUnA8fDrA9BOlFVJS5lmzWLN0WzTO5ISL1vvkGOHMGKFrUPFyu2oQJMlx/5Yp8CBDpQVCQbGnSuLEUEusUkxsiUis5GZg0Sc7HjQOKFFEajombm+xIDgBz5gAXL6qNhyinQkOl6zcgu35ba0sTG6Df3xkR2YdPPpHRkTJlAH9/1dFk1Lkz4OcnCdiwYaqjIcq+9Eu/33oLaN5cdURWxeSGiNRJSJCmeYCM3tha63eDAVi8WIqLN24Efv5ZdURE2fPjj8COHUDBgg4xzcrkhojUWbQIiIkBKlUC+vVTHU3mqlcHAgLkfNgw2UGZyJ4kJ5sL5EeNAsqXVxtPHmByQ0RqXL8OzJ0r59Ony+iIrZo4UXZMDguT+hsie7J4sdSMlSkDjB2rOpo8weSGiNSYPRuIjwd8fYE331QdzeMVLgzMny/ns2ZJkkNkD2Ji5MsDIFuKFC6sNp48wuSGiPLe1avybRKQ/3DtYdVGly6yNcTdu9L7hsgeTJokXyIaNAB69VIdTZ6xg/9RiEh3pk2TJOHZZ4F27VRHkzUGA7BkCZA/P/DTT1JgTGTLTp4Eli+Xc50v/X6Q4/xOicg2nD9v7rURHCxJg72oUcM8ajN0qCRoRLbIuPQ7LU1GHZ97TnVEeYrJDRHlraAg2W7h1Vdl5MbeTJoke/JcumQuiCayNb/8AmzbBri4SH2bg2FyQ0R559gxYM0aOTfub2Nv3N2BefPkfOZM4PJlpeEQPeTePWDkSDkPCAAqVFAbjwJMbogo7xg3x+zWTVZJ2au33gJatpRpqREjVEdDlNHSpTL96+UFBAaqjkYJJjdElDd27QJ++00KcqdNUx1NzhiLi52cgA0bgE2bVEdEJGJjgalT5fz992Wk0QExuSEi69M08zfI/v2BypXVxpMbateWomIAGDJEusASqTZ5MhAXB9SrB/TpozoaZZjcEJH1bdwI7N0LuLpKQbFeTJkClC4NXLhgbvJHpMrp08DHH8v5woUysuigmNwQkXWlpQHjx8v50KGy0kgvPDzMK6ZmzADCw9XGQ45L06R4OC0NeOMNoFUr1REpxeSGiKzr22+lmZinpz73teneXXqIJCWZN9gkymu//QZs2QI4O3P/MzC5ISJrundP+sIAwJgxQNGiauOxhvTFxT/8AGzdqjoicjT375sT6+HDgUqVlIZjC5jcEJH1rFghze68vIBhw1RHYz116wL+/nI+ZIgkdUR55aOPgHPngJIlze0WHByTGyKyjsRE827EQUGAm5vaeKxt6lRJ4s6dk2JOorxw/boUtgNS9+XhoTQcW8HkhoisY/FiICpKuqMOGKA6Guvz9DTXOkyfDkREqI2HHMPUqcDNmzJ62K+f6mhsBpMbIsp9N2+a97OZNk2KHB1Bz55AixYyamVsf09kLWfPAh9+KOcOvvT7QUxuiCj3zZkD3Lolje66dVMdTd4xGKT1fb58wHffAb//rjoi0rORI2UT2g4dgBdeUB2NTWFyQ0S5KzISCAmR8/ffd7xvk76+wHvvyTmLi8laNm2S5d8FCnB3+kwwuSGi3DV9uvR8adYMaN9edTRqTJ8uK1f++suc6BHllpQU89LvoUOBKlXUxmODmNwQUe65eBFYvlzOg4NlmsYRFSlirjmaOhW4elVpOKQzy5ZJvU2JEsDEiaqjsUlMbogo90yaJN8q27QBWrZUHY1avXsDTZtKcfGoUaqjIb24edPcGHPaNEmk6SFMbogod5w4IVstAMDMmWpjsQX58klxscEArF4NbN+uOiLSg2nTgBs3gFq1HKPFQjYxuSGi3DFhgmze17Ur0KCB6mhsQ4MGwKBBcu7vL23yibLr3DnZ6gOQpd/586uNx4YxuSGinNuzB/jlF1kZZexKTGLGDKB4ceDMGWlsSJRdo0bJtO9rrwEvvaQ6GpvG5IaIckbTgMBAOX/nHaBqVbXx2JpixYBZs+R8yhRZKk9kqa1b5QtE/vzAvHmqo7F5TG6IKGc2bQL+/BNwcTEXOlJG77wDPPMMcPs2MHq06mjI3qRf+u3vD1SrpjYeO8DkhoiyLy3NPGrj7w889ZTaeGxV+uLib74Bdu1SHRHZkxUrgFOnZBSQXyCyhMkNEWXf2rXA8eOyE7ExyaHMNWoEDBwo5/7+8m2c6Elu3QKCguR86lSgaFGl4dgLJjdElD3375v/0x01Sopm6fHef1++fZ88KSM5RE8yYwYQGwvUqAH873+qo7EbTG6IKHs++wy4cEG2GRg+XHU09qF4cencDMj0QlSU2njItp0/D3zwgZwvWCD7SFGWMLkhIsslJUkzMUDav7u7q43HnvTrJ1NU8fHAmDGqoyFbNnq0jJC2awe0bas6GrvC5IaILLdkCfDvv0D58hwqt5STk7m4+KuvgN27VUdEtuiPP4Aff5S/L/Pnq47G7jC5ISLL3LplnlqZOlWWgJNlnnlGRnAAYPBgFhdTRqmpwIgRcv7ee1JvQxZhckNElpk3Tzbvq1kT6NFDdTT2KzhYVr6cOAF89JHqaMiWfPaZ/L0oWhSYPFl1NHaJyQ0RZV10tOxpA8gqDicntfHYsxIlZPUUIKvOoqPVxkO2IS5O9mkDJLHhKsRsYXJDRFk3YwZw545Mq3TsqDoa+zdwoGyuGRcHjBunOhqyBTNnAteuSRfi995THY3dYnJDRFkTFgYsWybnwcFSEEs54+Rk3uV55Upg3z6l4ZBiFy8CixbJ+fz5XPqdA0xuiChrpkyRZal+fsALL6iORj+aNQP69pXzwYOlmJQc05gxwL17wMsvA6+8ojoau8bkhoie7NQpWbYMyLA55a5Zs4AiRYBjx8yjY+RYduwA1q2TfcgWLODIaA4pTW527dqF9u3bo2zZsjAYDNiwYcNjr1+3bh1eeukllCxZEh4eHmjWrBk2b96cN8ESObKJEwFNAzp3Bho3Vh2N/pQqBUyfLucTJkjNBTmO1FTzrt+DBgG1aqmNRweUJjeJiYnw9fXF0izusbJr1y689NJL+PXXX3HkyBG0bt0a7du3x7Fjx6wcKZED279fmonly2f+AKbcN2gQUK+e9BHiJqSO5YsvZNTO01N6R1GOGTRN01QHAQAGgwHr169HRwtXYNSqVQtvvvkmJj1iG/jk5GQkJyebbsfHx8Pb2xtxcXHw8PDISchE+qdpUl+zYwfwzjvAp5+qjkjf9u4FWrSQ8337gKZN1cZD1nf7NlClirQCWLDA3LyPHhIfHw9PT88sfX7bdc1NWloabt++jWLFij3ymuDgYHh6epoOb2/vPIyQyM5t3SqJjbMzm4nlhebNgd695ZzFxY4hOFgSmypV5GdOucKuk5t58+YhISEBXbt2feQ1gYGBiIuLMx0RERF5GCGRHUtLA8aPl/P33gOeflptPI5i9myZnjh6FFi+XHU0ZE1hYTJaA0jnb2dntfHoiN0mN6tWrcLUqVOxdu1alCpV6pHXubi4wMPDI8NBRFnwww/AkSNA4cLmJIesz8vLvOP6+PFAbKzaeMh6xo4FkpOBF18E2rdXHY2u2GVys3r1avTv3x9r166Fn5+f6nCI9CclRVZIAcDIkUDJkmrjcTTvvQfUrSt7eDGx1Kc//wS++45Lv63E7pKbb7/9Fn379sW3336LV199VXU4RPq0ciXw99+yr41xiSrlnfz5zZ2LV6wADh1SGw/lrrQ0c+HwgAGSyFKuUprcJCQkIDQ0FKGhoQCAsLAwhIaGIjw8HIDUy/Tq1ct0/apVq9CrVy/Mnz8fTZo0QVRUFKKiohAXF6cifCJ9unvXvBx1wgSAU7lqPPec7LquaVJompamOiLKLV99JVO+Hh7mKUjKVUqTm8OHD6N+/fqoX78+ACAgIAD169c3LeuOjIw0JToA8MknnyAlJQWDBw9GmTJlTMewYcOUxE+kSx9+CPzzD+DtDbz7rupoHNucOYC7u4zccBm+PiQkmPsYBQVJA0fKdTbT5yavWLJOnsjhxMcDFSsC16/LdEi/fqojooULZWqweHGZKnxM6wuyA0FBwIwZQKVKwOnTgIuL6ojshsP0uSGiXDZ/viQ21aqZ+62QWv7+0o7/+nWZJiT7deWKLPkGgLlzmdhYEZMbIhIxMeaeGzNmSFErqVegAGDcombZMqnVIPs0bpzUtLVqBVjYjZ8sw+SGiMTMmVIP0LChbJBJtqNlS6BbNxYX27O9e4HVq2XJ98KFXPptZUxuiEiGyz/6SM6Dg/kfry2aN08aKh44IEv1yX6kpQHDh8t5v36yQSpZFZMbIpKl3/fuAa1bA2yMaZvKlgWmTJHzsWOlwR/Zh1WrZMWbu7tM+ZLVMbkhcnRnzgBffCHnM2dy1MaWDR0K1KwpWzIEBamOhrIiMVFqbQApCPfyUhuPg2ByQ+TogoJk2LxjR6BpU9XR0OMUKGDuXPzRR8CxY2rjoSebOxe4ehWoUAFgT7Y8w+SGyJEdOgSsWyejNRwutw+tWwNvvikJKYuLbVtEhDRiBOTXggXVxuNAmNwQOTJjp9SePaWXCtmHefMANzdg3z7gyy9VR0OPEhgIJCXJVhpcgZinmNwQOapt2+QoUMC8lxTZh6eeAv7bpgZjxgC3bikNhzKxfz/wzTdc+q0IkxsiR6Rp5lGbQYMAHx+l4VA2DB8OVK8OXLtmTnTINmiaeel3nz7SO4ryFJMbIke0fr3U27i5saW/vXJ2BhYvlvOlS4Hjx9XGQ2bffiv9iNzcgPffVx2NQ2JyQ+RoUlOBiRPlfMQILk21Z35+wP/9nxQV+/vLiAGpdeeOeen3+PFAmTJq43FQTG6IHM1XXwFnz8ru0qNGqY6GcmrBAqBQIWD3buDrr1VHQ/Pnyyqp8uXlywMpweSGyJEkJwOTJ8v5uHGAp6faeCjnvL3NI3GjRwNxcWrjcWRXrwKzZsn57NmAq6vaeBwYkxsiR/Lxx0B4uLTy9/dXHQ3lloAAoEoVIDravEUD5b3x42VaqnlzoGtX1dE4NCY3RI7i9m1zcePkyfxWqScuLubi4sWLgZMn1cbjiA4dMvccWrSIS78VY3JD5CgWLpRlw5UrA337qo6GclubNkCnTlIwzuLivJV+6XevXkDjxkrDISY3RI4hNla62gKyzUKBAmrjIetYuFBG5HbtkuXIlDfWrgX27pXC7pkzVUdDYHJD5BhmzZJpqXr1gC5dVEdD1lK+vLlv0ahRQHy82ngcQVISMHasnI8bB5QrpzYeAsDkhkj/IiLMO0nPnAnk4z97XRs1SqYeIyO5rUZeWLgQuHJFVq2NHKk6GvoP/5cj0rtp02QJ+PPPA23bqo6GrM3FBfjgAzkPCQFOn1Ybj55FRpqnoWbNkmkpsglMboj07Nw54PPP5Tw4mCs4HEW7dkCHDiwutrYJE4DERKBpU6BbN9XRUDpMboj0LChIPuBee016b5DjWLQIKFgQ2LEDWLNGdTT6c+QIsHKlnHPXb5vD5IZIr44cAb77Tv7T5eZ9jsfHx7zz+8iRUlBOuUPTZGsFTQO6d5eRG7IpTG6I9Gr8ePn17beBunXVxkJqjBkDVKwI/PsvMH266mj044cfgD//lGX3wcGqo6FMMLkh0qMdO4AtW4D8+blixpEVLChFxYBMnZw9qzYePbh7V5JGQH719lYbD2WKyQ2R3miaeTpi4ECgUiW18ZBar70mR0oKMGQIi4tzKiQECAuTfjajR6uOhh6ByQ2R3vz0E7B/vwyZG3eLJscWEiJLxLdtA77/XnU09isqyly/NmsW4OamNh56JCY3RHqSmmruUDtsGFCmjNp4yDZUrGjuohsQACQkqI3HXgUFSWF248ZSy0Y2i8kNkZ6sWiVN24oUMdcFEAGyNYCPD/DPP1w9lx2hocCnn8r5okXs9G3j+NMh0ot794BJk+R87FigaFG18ZBtcXWVD2UAmD9fGjxS1hh3/dY04K232DPKDjC5IdKLTz4BLl+WqaihQ1VHQ7bo9dele/H9+/J3hMXFWbNhA7Bzp6w+mzVLdTSUBUxuiPQgIQGYMUPOg4K4xw1lzmCQfaecnaVVwPr1qiOyfcnJshkpIL+WL682HsoSJjdEehASAkRHS+Fov36qoyFbVrmyuR5r+HDZG4kebfFi4NIlGRE1FmWTzWNyQ2TvbtwA5s6V8+nT5Vs50eMEBsoIRESEeVdrelhMjLmzc3AwULiw2ngoy5jcENm72bOBuDjZYuGtt1RHQ/agUCHpWAwA8+YB58+rjcdWTZoExMcDDRsCPXuqjoYswOSGyJ5dvSo1FIAs7+XyVMqqjh2BNm1klR2Lix924gSwfLmcL1zIf1t2hj8tIns2fbrsddOiBfDqq6qjIXtiLC4uUADYtAn48UfVEdkOTZNmh2lpQJcuwHPPqY6ILMTkhshenT8PrFgh58HB8mFFZImqVc0rgYYPB+7cURqOzfj5Z9mqwsVFpn3J7jC5IbJXkybJdgvt2vGbJWXfhAmys/WVK+zhAsg03ciRch4QAFSooDYeyhYmN0T2KDQUWL1azrnahXLCzQ1YsEDO58wBLl5UG49qS5cCFy4AXl6yqozsEpMbIntk3BzzrbeAevWUhkI60Lkz4OcnDeuGDVMdjTqxscDUqXI+cybg7q42Hso2JjdE9ubPP4FffwWcnIBp01RHQ3pgMEizugIFgI0bpebEEU2eLG0V6tUDevdWHQ3lAJMbInuiaeah8v79gSpV1MZD+lG9OjBihJwPGwYkJamNJ6+dOgV8/LGcL1woXx7IbjG5IbInv/4K7NkjG/gFBamOhvQmKAgoVw4IC5P6G0eRfun3G28ArVqpjohyiMkNkb1ISwPGj5fzIUPkQ4goNxUuDMyfL+ezZsmeSo7g11+BrVtl6xJHSup0jMkNkb1YvVq6pnp6AuPGqY6G9KprV+CFF6Q55PDhqqOxvvv3ZdQGkN9vpUpKw6HcweSGyB7cu2eehho9GihWTG08pF8GA7BkCZA/vxQWb9yoOiLr+vBD4O+/gVKlzKsQye4xuSGyB59+KlMEpUo59lJdyhs1aphHbYYOlVEcPbp+3bz0e8YMwMNDbTyUa5jcENm6O3dkDylARm8KF1YbDzmGSZOAsmUlqZ47V3U01jF1KnDzJlC3LvDOO6qjoVzE5IbI1i1eDERGAj4+wMCBqqMhR+HuDsybJ+czZwKXLysNJ9edPStTUgCXfusQkxsiW3bzpnm/n6lTZTUHUV556y2gZUuZljL2wNGLkSNlb7YOHaSAmnTFouQmJibmsY+npKTg4MGDWX69Xbt2oX379ihbtiwMBgM2bNjw2OsjIyPx9ttvo2rVqsiXLx+GO0IlPzm2uXOBW7eAWrWA7t1VR0OOxlhc7OQEbNgAbNqkOqLc8dtvchQooN8pNwdnUXJTpkyZDAlOnTp1EBERYbp9/fp1NGvWLMuvl5iYCF9fXyxdujRL1ycnJ6NkyZKYOHEifH19sx44kT2KjAQWLZLz99/nsDmpUbu2FBUD0l8pOVltPDl1/7551++hQ9nlW6fyW3KxpmkZbl++fBn3799/7DWP065dO7Rr1y7L1/v4+CAkJAQA8Nlnn2XpOcnJyUhO948xPj4+y+9HpNSMGdICv2lT4PXXVUdDjmzKFODbb2W37Pnzzc0k7dGyZVJvU6IEMHGi6mjISnK95sZgMOT2S+ZIcHAwPD09TYe3t7fqkIie7NIl4JNP5Dw4WKYHiFTx8DBP38yYAYSHq40nu27elM0xAVmBWKSI0nDIenRfUBwYGIi4uDjTkX4ajchmTZoEpKQAL7/MfW7INnTvDjz3nIwmGjv62ptp04AbN2SqrX9/1dGQFVk0LWUwGHD79m0ULFgQmqbBYDAgISHBNNVji1M+Li4ucHFxUR0GUdadPAmsWiXnM2eqjYXIyFhc3KAB8MMPshfTSy+pjirrzp2T+AFgwQLpwEy6ZXHNTdWqVTPcrl+/fobbtjYtRWR3JkyQXYq7dAEaNlQdDZFZ3brA4MHABx9IcfGJE/bTnmDUKBkNfe01+0rKKFssSm62b99urTiICAD27JH9fJyczF2JiWzJ1Kmyieu5c9L8buxY1RE92ZYtwC+/yGiNsTEh6ZpFyU3Lli1z9c0TEhJw4cIF0+2wsDCEhoaiWLFiePrppxEYGIirV6/iyy+/NF0TGhpqeu61a9cQGhoKZ2dn1KxZM1djI8pzmmZehdKnD1CtmtJwiDJVpAgwZ478HZ02DXj7bcCWF2qkpJhrhPz9+e/KQRg0C9Zup6SkIDU1NUMNS3R0ND7++GMkJibi9ddfx7PPPpvlN9+xYwdat2790P29e/fGypUr0adPH1y+fBk7duwwB5zJtFf58uVxOYutwePj4+Hp6Ym4uDh4cJM0siWbNgHt2gEuLsD587b9gUGOLS0NeP55GWns0gVYu1Z1RI/20UfAe+8BxYrJUvaiRVVHRNlkyee3RclN37594ezsjGXLlgEAbt++jVq1auHu3bsoU6YMzpw5gx9//BGvvPJKzn4HVsTkhmxSWprU14SGyrfM+fNVR0T0eMePS3FxWpoUF/v5qY7oYbduAZUry+7fS5ZIvRDZLUs+vy1aCr5nzx507tzZdPvLL79Eamoqzp8/j+PHjyMgIABz2cqayHLffSeJjbs7EBioOhqiJ/P1lRERQIqL791TG09mZsyQxKZmTeB//1MdDeUhi5Kbq1evokq6VtXbtm1D586d4enpCUCmk06fPp27ERLp3f37QFCQnI8aJZ1TiezB9OlAyZLAX38B/3WPtxnnz8uqLoBLvx2QRclNwYIFkZSUZLq9f/9+NGnSJMPjCQkJuRcdkSP4/HP5j7hkSf3tvEz6VqQIMHu2nE+dCly9qjScDEaPli8O7doBbdqojobymEXJTb169fDVV18BAP78809ER0fjhXRbxV+8eBFly5bN3QiJ9CwpST4UAFkp5e6uNh4iS/XuLfufJSbKyKMt2LYN+PFHaanA+jWHZFFyM2nSJISEhKBSpUpo06YN+vTpgzJlypgeX79+PVq0aJHrQRLp1tKlwL//Ak8/DQwapDoaIsvlyyd/jw0G6X+juh9aaqp5BPS994AaNdTGQ0pY3OfmyJEj2LJlC0qXLo0uXbpkeLxevXp45plncjVAIt2Ki5NNMQHZdblgQaXhEGVbgwaSnH/0kfSSCQ0FChRQE8unn8oWJkWLmjfJJIdj0VJwPeBScLIZQUGymqN6dfnPmAWPZM9u3ACqVpXVSfPnq9lcMy4OqFIFuHZNCpyHDs37GMhqrNbnZteuXVm67vnnn8/qS+Y5JjdkE6KjgUqVpE7hhx+AN95QHRFRzq1YAQwYILVj584B6coW8sTYsdI9uVo1+cKgavSIrMJqyU2+fPlMHYIf9TSDwYDU1FQLws1bTG7IJgwdCixeDDRuDBw4IPUKRPYuLQ1o1gw4eBDo3h34+uu8e++LF6Wfzb17wMaNgA03k6XssVoTv6JFi8Lb2xtBQUE4f/48bt68+dBx48aNHAVPpHuXLwMffyznM2cysSH9SF9c/M03QBZH+3PFmDGS2Lz8siz/JodmUXITGRmJ2bNnY9++fahTpw769euHvXv3wsPDA56enqaDiB5jyhTpv/Hii7bZsp4oJxo1kqkpQLY7uH/f+u+5Ywewbp0kVwsW8AsDWZbcODs7480338TmzZvx119/oW7duvD394e3tzcmTJiAlJQUa8VJpA+nTwPGXe5nzlQbC5G1zJwpG1WeOiUjOdaUfun3oEFArVrWfT+yCzleLRUWFoZ+/fph586duHbtGooVK5ZbsVkFa25IqU6dgA0b5Nd161RHQ2Q9n3wi+zl5eEhxcenS1nmfTz8F+vcHPD1l129uX6JbVqu5MUpOTsaqVavg5+eH2rVro0SJEti4caPNJzZESh04IIlNvnyyBJxIz/r1kymq+Hiph7GG27eBCRPkfPJkJjZkYlFyc/DgQbz77rsoXbo05s6di9dffx0RERFYu3Yt2rZta60Yieyfppl3++7VS1Z1EOmZk5O5uPirr4Ddu3P/PYKDpa1ClSpS30P0H4uXgj/99NPo3bs3GjZs+MjrXn/99VwJzho4LUVKbN0qqzicnYG//wbKl1cdEVHeGDBA+t/UrQscOZJ7zSrDwmRrheRk4KefgPbtc+d1yWZZtc/Nk7DPDdEDNE362Rw5AgwbBixapDoiorwTGyudi2/eBD74ABgyJHdet2tX4LvvZNXh1q1cIeUArFZzk5aW9sTj9u3bOQqeSHd++EESGzc32fmbyJGUKAG8/76cBwXJNFJO/fmnJDZc+k2PkK2C4swkJydjwYIFqFixYm69JJH9S0kBJk6U84AAoFQptfEQqTBwoGyuGRcHjBuXs9dKSwOGD5fzAQNkuovoARYlN8nJyQgMDESjRo3QvHlzbNiwAQDw2WefoUKFCli4cCFGGPsNEBHwxReyDLZ4cWDkSNXREKnh5AQsWSLnK1cC+/Zl/7W+/BI4elSWmE+blivhkf5YlNxMmjQJH330EXx8fHD58mV06dIFAwcOxKJFi7BgwQJcvnwZY8eOtVasRPbl7l3pRgzISil27yZH1qwZ0LevnA8eLM33LJWQYF51GBTEkVB6JIuSm++++w5ffvklvv/+e2zZsgWpqalISUnB8ePH8dZbb8HJyclacRLZn48+Av75B3jqKeC991RHQ6TerFlAkSLAsWPAsmXZe35UFFCpUu4VJpMuWZTc/PPPP6Yl4LVr14aLiwtGjBhh2imciP4TH28uopw8GXB1VRsPkS0oVQqYPl3OJ0wArl3L+nOvXAHmz5fzefMAF5fcj490w6LkJjU1Fc7Ozqbb+fPnR+HChXM9KCK7t2ABcP26LIHt00d1NES2Y9AgwNcXuHXLPMWUFePGyVRv69ZAhw5WC4/0weI+N+3atYPLfxnzzz//jBdeeAFubm4Zrltnw3vmsM8NWd21a0DFilIfsHYt0KWL6oiIbMuePcCzz8r5vn1A06aPv37vXqBFC1nyffQoUK+e1UMk22PJ57dFrSJ79+6d4XaPHj0sj45I72bOlMSmQQOgc2fV0RDZnhYtZBuSL7+U4uKDB2VFVWbSL/3u14+JDWVJjncFtzccuSGrCg+XfW7u3QM2bQLatFEdEZFtio6Wadv4eCm+HzQo8+u++koSIXd34Px5wMsrb+Mkm2H1XcGJ6BGmTpXEplUr2UuKiDLn5WUuLh4/XrZpeFBiornp34QJTGwoy5jcEOWWs2elQRkguxVzFSHR4733nnQYvnkz861J5swB/v0XqFBB9mUjyiImN0S5JShI6gNef/3JBZJEJDuEGzsXr1gBHDpkfiwiApg7V87nzgUKFsz7+MhuMbkhyg2HDskGmQaDub8NET3Zc88BPXoAmibFxWlpcn9gIJCUBDz/PPDGG2pjJLvD5IYoNxiH1Hv0AGrXVhsLkb2ZM0cKhg8dAj79FNi/H/jmG/mysHAhp3jJYkxuiHLqjz+A338HChSQgmIiskyZMuZ/O4GBgL+/nPfpIy0ViCzE5IYoJzTN3GX1f/+Twkcispy/P1CrlnT2PnIEcHPjFC9lG5MbopzYsEEakBUqBEycqDoaIvtVoACwdKn59vjxMqJDlA0WdSgmonRSU80JzfDh7MFBlFMtW8pozV9/ASNGqI6G7BiTG6Ls+vpr4MwZoGhRYPRo1dEQ6UNm/W6ILMRpKaLsSE4GJk2S83HjgCJFlIZDRERmTG6IsmPZMtlHqkwZ88oOIiKyCUxuiCx1+zYwY4acT54sxcRERGQzmNwQWWrRIuDaNaByZeCdd1RHQ0RED2ByQ2SJ69eBefPkfNo0Wb5KREQ2hckNkSVmzQLi4wFfX+DNN1VHQ0REmWByQ5RV//wDLF4s5zNnAvn4z4eIyBbxf2eirJo2TZaAP/ss0K6d6miIiOgRmNwQZcXffwOffSbnwcHcpZiIyIYxuSHKiqAg2W7h1Vdl5IaIiGwWkxuiJzl6FFi7Vs65SzERkc1jckP0JMa9bt5+W1ZJERGRTWNyQ/Q4O3cCmzcD+fNLQTEREdk8JjdEj6JpQGCgnPfvD1SqpDYeIiLKEiY3RI/y88/Avn2Aq6sUFBMRkV1gckOUmdRUYMIEOR86FChbVm08RESUZUqTm127dqF9+/YoW7YsDAYDNmzY8MTn7NixAw0aNICLiwsqV66MlStXWj1OckDffgucOgV4egJjx6qOhoiILKA0uUlMTISvry+WLl2apevDwsLw6quvonXr1ggNDcXw4cPRv39/bN682cqRkkO5dw+YNEnOx44FihZVGw8REVkkv8o3b9euHdpZ0Mb+448/RoUKFTB//nwAQI0aNbB7924sXLgQbdq0sVaY5GiWLwfCwgAvL5mSIiIiu2JXNTf79u2Dn59fhvvatGmDffv2PfI5ycnJiI+Pz3AQPVJiIjB9upwHBQFubmrjISIii9lVchMVFQUvL68M93l5eSE+Ph5JSUmZPic4OBienp6mw9vbOy9CJXsVEgJERwMVKgADBqiOhoiIskHptFReCAwMREBAgOl2fHy8dRKcGzekg2166TdXfHCjxew8lhuvwdd//GOrV8uv06YBzs4gIiL7Y1fJTenSpREdHZ3hvujoaHh4eMDV1TXT57i4uMDFxcX6wd27J51syf7Vrg1066Y6CiIiyia7Sm6aNWuGX3/9NcN9W7duRbNmzRRFlI6nJ/Dll+bbmvbk89y4Li/fyxGuc3IC3npLfiUiIrukNLlJSEjAhQsXTLfDwsIQGhqKYsWK4emnn0ZgYCCuXr2KL/9LGgYNGoQlS5ZgzJgxeOedd/DHH39g7dq12Lhxo6rfgpmrK9Czp+ooiIiIHJ7SguLDhw+jfv36qF+/PgAgICAA9evXx6T/eoxERkYiPDzcdH2FChWwceNGbN26Fb6+vpg/fz5WrFjBZeBERERkYtC0B8fo9S0+Ph6enp6Ii4uDh4eH6nCIiIgoCyz5/LarpeBERERET8LkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrNpHcLF26FD4+PihYsCCaNGmCgwcPPvLa+/fvY9q0aahUqRIKFiwIX19fbNq0KQ+jJSIiIlumPLlZs2YNAgICMHnyZBw9ehS+vr5o06YNYmJiMr1+4sSJWLZsGRYvXowzZ85g0KBB6NSpE44dO5bHkRMREZEtMmiapqkMoEmTJmjcuDGWLFkCAEhLS4O3tzeGDBmCcePGPXR92bJlMWHCBAwePNh0X+fOneHq6oqvv/76ie8XHx8PT09PxMXFwcPDI/d+I0RERGQ1lnx+Kx25uXfvHo4cOQI/Pz/Tffny5YOfnx/27duX6XOSk5NRsGDBDPe5urpi9+7dj7w+Pj4+w0FERET6pTS5iY2NRWpqKry8vDLc7+XlhaioqEyf06ZNGyxYsADnz59HWloatm7dinXr1iEyMjLT64ODg+Hp6Wk6vL29c/33QURERLZDec2NpUJCQlClShVUr14dzs7O8Pf3R9++fZEvX+a/lcDAQMTFxZmOiIgIq8WmaUCPHsC0acDmzcDNm1Z7KyIiInqE/CrfvESJEnByckJ0dHSG+6Ojo1G6dOlMn1OyZEls2LABd+/exfXr11G2bFmMGzcOFStWzPR6FxcXuLi45Hrsmbl6Ffjmm4z3Va0KPPMM0KQJ8MILQM2aeRIKERGRw1I6cuPs7IyGDRti27ZtpvvS0tKwbds2NGvW7LHPLViwIMqVK4eUlBT88MMP6NChg7XDfSJXVyAkBHj7baByZbnv77+Br78GhgwBPvnEfG1ioiRCFy7IiA8RERHlDqUjNwAQEBCA3r17o1GjRnjmmWewaNEiJCYmom/fvgCAXr16oVy5cggODgYAHDhwAFevXkW9evVw9epVTJkyBWlpaRgzZozK3wYAoHhxYOhQ8+3r14GDB+U4cABo3dr82OHDMoUFAMWKmUd3mjSR8+LF8zZ2IiIivVCe3Lz55pu4du0aJk2ahKioKNSrVw+bNm0yFRmHh4dnqKe5e/cuJk6ciEuXLqFw4cJ45ZVX8NVXX6FIkSKKfgePVrw40K6dHA9KSQGaNgWOHQNu3AA2bZLD6NNPgXfekfOkJMBgAB5YJEZERESZUN7nJq/ZWp+be/eA48dlZMc4wvP338D+/TKKAwCffQYMGgT4+mYc3alSBXhEHTUREZGuWPL5rXzkxtE5OwONG8thdOMGkP7ndvIkcP++TGUdPgwsXSr3Fykiz1u6VBIdIiIi4siN6nCyRNOAy5czju4cPQrcvSuPX7sGlCgh5yEhMupjrOGpX18KnYmIiOyZJZ/fTG7s1P37MqJz6hTQq5f5/pdeAn7/3Xw7f36gbl3zdNbbbwMFCuR9vERERDnB5OYx9JLcPMqff8px4IAc6VsIFSkiK7iMdTpr1siozjPPAI9oK0RERGQTWHPjwJ57Tg5AprMiIszTWZqWsQA5MBAIC5Pzp582Fyo3aQI0bAgUKpT38RMREeUUR24cVEoKMHCgJD1nzjzcSLBRI+DQIfPtS5eA8uUBJ6e8jZOIiAjgyA1lQf78ssQcAOLjZRWWsVj5wIGMq7fu3gWqV5c+O40aZVyOXrasmviJiIgehSM3lKnkZMC4JdeZM5LIJCY+fN1TTwHDhwMjR+ZpeERE5GA4ckM5ln6v0Zo1gbg4SXLSL0c/dQr455+MU1oXLwKdOmWs36lVi9NZRESUdzhyQ9mWkCD9dnx8pCAZkM1AjXtmGbm5SYFykyZAz55AnTp5HioREdk5LgV/DCY31nX9esal6IcOSRJktG6djOwAsq/W5s2S9DRqBLi7q4mZiIhsH6elSJnixYGOHeUAgNRU4K+/zNNZTZuar/35Z2DyZDk3GGT6K/10Vu3aUvhMRERkCY7ckDIbNgCrVknSc+XKw48fPy7dlQGp5cmfX6a/DIY8DZOIiGwAp6Ueg8mNbYqKkiTHWKx89qwkPMZC5D59gC++ALy8zCM7xumsIkVURk5ERHmByc1jMLmxD5qWcYSma1dg/XppPvigWrWkfse4Z9aDzyUiIvvHmhuyew8mJ2vXAklJksQYi5UPHjRvH5F+M9CXX5aePMbRnSZNZEUXEx4iIsfAkRuyazExQGQk4Osrt+/fBzw9JRFKr2RJmc5q0wYYMiTv4yQiopzhyA05jFKl5DDKnx8IDc3YbDA0FLh2Ddi4UTYONSY3mgb4+wM1asjojq8v4Oys4ndBRES5ickN6YrBAFStKkfPnnJfcrI54Slf3nztP/8AH35ovu3sDNSvDzRrBjRvDjz7LFCmTJ6GT0REuYDTUuSwoqKAZcvMNTw3bmR8fNgwYNEiOb97V7afqFuXvXeIiFTgtBRRFpQubW4iqGnSS+fAAWDfPmDvXhm5MTpwAGjVCihUSKawmjcHWrSQpoRFiyoJn4iIHoHJDRFkOqtyZTm6d3/48chIKVSOiwO2b5fDqGZN4IMPgBdfzLt4ifQoNRU4f162bKlRQ/alI8qOfKoDILIHb70l01anTgGffCJNBatUkcfOnJHEx2jtWuD114FZs4Bdu4A7d5SETGQ3/vhDRko9PSWpadxY9pqrXFn2okv/ZYIoKzhyQ5RF+fJJw8BatYABA+S+a9dkCsu4FB0Atm6VfbN+/llu588vhcrNm8vx6qv8RkqO5d494PRp4MgR4OhROUaPBjp3lscNBmDPHjl3dZXEJiZGpoovXjQvDgCALVuA8eOBOnXMR9260r2cyIjJDVEOlCwJdOiQ8b4hQyQB2rNHjshI2R390CEgJEQSImNys3+/NCCsWzdjI0Iie3f5MvD++5LInDwpPajS27fPnNw0agR8+SXQsCFQrZpsuxITI887eTLjhrtHjpiP9EqWlERnzhx5HXJsXC1FZEWaBoSHy+jO3r3A1avAunXmx198UYbkCxWSJoPpC5WLFVMXN1FWJCbKBrfGEZkWLYD+/eWxiAjZ6NaoaFGgQQM5GjaUv+PpWzNk1dWrUuB/8iRw4oT8euGC/FsDMm64u3ix1MMZR3eMIz2VKpn3rSP7wb2lHoPJDdmSrl1lGuvWrYcfa9ZMEiIiW5GUBHz8sTmZ+esvc1IBAB07yh5wgNw/fbqMYjZsKImMtbZAuXNHpr1OngR69DA34+zXD/jss4evd3WVhQBr1wIVK8p99+9z9NTWMbl5DCY3ZGvS0uRDwji6s2cP8PffQNu2wG+/ma9r3FiWrxtrdxo3lhEfotx2/brs43b0KFC4MPDee3J/Sgrg4ZFxe5OyZc2jMc8+C/j5qYk5M9euyeiOcYTn5ElJgozx374tvz9AupV/993Dozw1a/Lfma1gcvMYTG7IHsTGAjdvmldk/fsvUK5cxmvy5wfq1ZNE57XXgJdeyvMwSSe2bJGaMGOx7+XL5sdq1ZJVgkbjxklC0LChFMqXLp3n4eZIaipw6ZIsOX/lFfP9LVvK6sYHGdtEHDtmrpW7eVNWduXjeuM8xeTmMZjckD1KSZH/XPfsMY/u/Puv+fH33gOWLpXzu3dluXrz5rKKi0PtBMg00b//SvISHW2ujQEkgTlzJuP1lSrJiEzjxrKySe8SE+XPIP0oz8mTMvpTpkzGf29t2wJ//il/bulXbNWpI4XNZB1Mbh6DyQ3pgaZJwaZxKuuVV+Q/XEBut2gh566uUqjcooUkO02bAsWLq4ub8k54OHD4sCQzxhqZmBh5rFAhID7eXFQbGCjXGwt+69cHihRRFrpNiY6WIuYGDcz3Vaokoz+ZqV4dOHvWfPvSJUmOXF2tG6cjYHLzGExuSO/275dCzn37ZPj8QZ98Yu7Tc/++fMBxeN1+paXJB+jx48Abb5iLdjt0AH76KeO1Tk5SQ9KggeybxgQme1JTZYWWcXTHONpz6ZLUHaWf3qpcGQgLkynmB3vzVKjAf3uWYHLzGExuyFGkpQHnzmUsVDbebtZMrvn6a9kg1LgTurFQmU0GbVNqqhSbG2tjjEd8vDz+zz/m2qzgYCmQTb/8uk4dFsdaU2KiFGMbl8AnJwPe3jK1lZlnn5XpLaMDB2RUqEQJ68dqj5jcPAaTG3JksbFSCGmsw/H3N9fqGDk5mQuVx4wBnnoqz8MkSJ3V2bPyzd84pTF6NDBv3sPXurhIfdXy5eYeL2QbNA2IispYx2NctfX22+al6vfuyZeKlBQp0k6/Ysu4aqtgQbW/F9WY3DwGkxsis/v3ZTojfaHy1avmx//9V+oFAOCHH6TOp3lzSX6MvUQo5+7dkxVJ6Udjjh+X4vAdO2QlDwB88w0wcKDUxBhHZBo0kP2YWDhuX1JSZKTHuC9deDjQuvWja3neegv49ls5T0uTKcc6dRxrasuSz29uv0DkwAoUkNb3jRrJ9BRgLlQ+fdqc2ADAihXApk1yXrCgTF8ZOyo3a8ah9KxKSpJv88bpoTVrZO+kB7cnAGSPpago8+0uXeRDjt117V/+/Bk33H36adlH6/Ztc0PC9DU9deqYr710STYUBWS0p3btjCu2fH2lI7Qj48gNEWXJBx9IP5S9ex8uVHZ3l/uMH7qRkbKRoaN8o3yUhISM2xMcPSrLjZctk+65gNRZNG0qH0YNG2YckalUiX+GJMlwSop5dO7wYVkUcOaMjPo9aOJEWVQAADduAL/8IklPjRr2PbXFkRsiynVDh8qRliZFrcZprL17pS4n/WhCy5ZSRJm+UPmZZ8zdYPVI08wrlU6dkq01HtyewCh9T5n69WU1jTW3JyD7ZjBknHZs1Ej6XqWkSDPCB3vzpK+7OngQ6N1bzp2cgKpVM67YatZMn715OHJDRDmWfl+e+HiZzrpzJ+M1+fLJcHnXrtLl1p4ZtydIPyLTpQswc6Y8Hhtr/sBIvz2BcUSmXDkmMpQ3fv9dRnFOnsy8NcTKlebk59w5GZ01Tm/Z2ua9HLkhojyV/lulh4dsBHrihHkZ+t69UjB57Jh86zS6fx/o1cu8I3r9+rZbqHz7tnwIHD0KXLny8ONHjpjPS5SQDVFr17a/7QlIX/z85DB2qH6wN4+vr/narVtldNaobNmMq7batrWfUR6O3BBRnvjnH2ks+PTTQJMmct+hQ5LYGBUsKMmPsaNyixZ511E5/fYExhEZb2/zUnlNk2+yxh3cK1fO2EOmfn12fyb7tmED8OmnkvRklsDv3m3ufr59u3xpMU5v5cW0KpeCPwaTGyLbEREhy5uNozvXr2d8PDjYPIUVFyfX16yZu0W206fLe6ffnsCoQoWMS3PXrgVKlZKl8OzuS3oWHy+1Y+lHen7+2bzCa/hwICTEfL27e8ZVW+++m/vF8ExuHoPJDZFt0jQpjkzfUfnjj4HnnpPH16yRZdCeng8XKru7P/p109Jkia1xRCYuTlYrGTVqZJ5SSr89gXFExvhNlYjM1q6VZOfECWk2mb6VQdmyGftl5RYmN4/B5IbIPi1eLBs8JiZmvD9fPvmmuGKFJCOALH394w9JaI4dM29PAEh/kYQE6eoLAF99JbeN2xNwg0Miy9y/LysojSM8zs7AlCm5/z5Mbh6DyQ2R/UpJkf9AjUvQ9+411waEh0uNDCAjPGvWmJ9n3J7AOCLTvTv3WCKyN1wtRUS6lD+/FO7Wry/7YgEy/H34sDmxAYCOHaU2htsTEDkmjtwQERGRzbPk85uNvYmIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFZtIbpYuXQofHx8ULFgQTZo0wcGDBx97/aJFi1CtWjW4urrC29sbI0aMwN27d/MoWiIiIrJlypObNWvWICAgAJMnT8bRo0fh6+uLNm3aIObB7Xn/s2rVKowbNw6TJ0/G2bNn8emnn2LNmjUYP358HkdOREREtkh5h+ImTZqgcePGWLJkCQAgLS0N3t7eGDJkCMaNG/fQ9f7+/jh79iy2bdtmum/kyJE4cOAAdu/e/dD1ycnJSE5ONt2Oj4+Ht7c3OxQTERHZEbvpUHzv3j0cOXIEfn5+pvvy5csHPz8/7Nu3L9PnNG/eHEeOHDFNXV26dAm//vorXnnllUyvDw4Ohqenp+nwTr8BDREREemO0o0zY2NjkZqaCi8vrwz3e3l54a+//sr0OW+//TZiY2Px7LPPQtM0pKSkYNCgQY+clgoMDERAQIDptnHkhoiIiPRJec2NpXbs2IGZM2fiww8/xNGjR7Fu3Tps3LgR06dPz/R6FxcXeHh4ZDiIiIhIv5SO3JQoUQJOTk6Ijo7OcH90dDRKly6d6XOCgoLQs2dP9O/fHwBQp04dJCYmYuDAgZgwYQLy5bO7fI2IiIhykdLkxtnZGQ0bNsS2bdvQsWNHAFJQvG3bNvj7+2f6nDt37jyUwDg5OQEAslIbbbwmPj4+B5ETERFRXjJ+bmdpHZSm2OrVqzUXFxdt5cqV2pkzZ7SBAwdqRYoU0aKiojRN07SePXtq48aNM10/efJkzd3dXfv222+1S5cuaVu2bNEqVaqkde3aNUvvFxERoQHgwYMHDx48eNjhERER8cTPeqUjNwDw5ptv4tq1a5g0aRKioqJQr149bNq0yVRkHB4enmGkZuLEiTAYDJg4cSKuXr2KkiVLon379nj//fez9H5ly5ZFREQE3N3dYTAYcvX3YixWjoiIYG2PneLP0L7x52f/+DO0f9b6GWqahtu3b6Ns2bJPvFZ5nxs9sWQNPtkm/gztG39+9o8/Q/tnCz9DVt8SERGRrjC5ISIiIl1hcpOLXFxcMHnyZLi4uKgOhbKJP0P7xp+f/ePP0P7Zws+QNTdERESkKxy5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKk5tcsnTpUvj4+KBgwYJo0qQJDh48qDokssCuXbvQvn17lC1bFgaDARs2bFAdElkgODgYjRs3hru7O0qVKoWOHTvi3LlzqsMiC3z00UeoW7cuPDw84OHhgWbNmuG3335THRZl06xZs2AwGDB8+HAl78/kJhesWbMGAQEBmDx5Mo4ePQpfX1+0adMGMTExqkOjLEpMTISvry+WLl2qOhTKhp07d2Lw4MHYv38/tm7divv37+Pll19GYmKi6tAoi5566inMmjULR44cweHDh/HCCy+gQ4cOOH36tOrQyEKHDh3CsmXLULduXWUxcCl4LmjSpAkaN26MJUuWAJCdzb29vTFkyBCMGzdOcXRkKYPBgPXr15t2qif7c+3aNZQqVQo7d+7E888/rzocyqZixYph7ty56Nevn+pQKIsSEhLQoEEDfPjhh5gxYwbq1auHRYsW5XkcHLnJoXv37uHIkSPw8/Mz3ZcvXz74+flh3759CiMjclxxcXEA5MOR7E9qaipWr16NxMRENGvWTHU4ZIHBgwfj1VdfzfCZqILyXcHtXWxsLFJTU027mBt5eXnhr7/+UhQVkeNKS0vD8OHD0aJFC9SuXVt1OGSBkydPolmzZrh79y4KFy6M9evXo2bNmqrDoixavXo1jh49ikOHDqkOhckNEenL4MGDcerUKezevVt1KGShatWqITQ0FHFxcfj+++/Ru3dv7Ny5kwmOHYiIiMCwYcOwdetWFCxYUHU4TG5yqkSJEnByckJ0dHSG+6Ojo1G6dGlFURE5Jn9/f/zyyy/YtWsXnnrqKdXhkIWcnZ1RuXJlAEDDhg1x6NAhhISEYNmyZYojoyc5cuQIYmJi0KBBA9N9qamp2LVrF5YsWYLk5GQ4OTnlWTysuckhZ2dnNGzYENu2bTPdl5aWhm3btnGumCiPaJoGf39/rF+/Hn/88QcqVKigOiTKBWlpaUhOTlYdBmXBiy++iJMnTyI0NNR0NGrUCN27d0doaGieJjYAR25yRUBAAHr37o1GjRrhmWeewaJFi5CYmIi+ffuqDo2yKCEhARcuXDDdDgsLQ2hoKIoVK4ann35aYWSUFYMHD8aqVavw448/wt3dHVFRUQAAT09PuLq6Ko6OsiIwMBDt2rXD008/jdu3b2PVqlXYsWMHNm/erDo0ygJ3d/eHatzc3NxQvHhxJbVvTG5ywZtvvolr165h0qRJiIqKQr169bBp06aHiozJdh0+fBitW7c23Q4ICAAA9O7dGytXrlQUFWXVRx99BABo1apVhvs///xz9OnTJ+8DIovFxMSgV69eiIyMhKenJ+rWrYvNmzfjpZdeUh0a2SH2uSEiIiJdYc0NERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNEelOnz590LFjR9VhEJEiTG6IKFv69OkDg8Hw0NG2bVvVoSEkJMRmts0wGAzYsGGD6jCIHAr3liKibGvbti0+//zzDPe5uLgoigZITU2FwWCAp6enshiISD2O3BBRtrm4uKB06dIZjqJFi2LHjh1wdnbGn3/+abp2zpw5KFWqFKKjowHIJpf+/v7w9/eHp6cnSpQogaCgIKTf7i45ORmjRo1CuXLl4ObmhiZNmmDHjh2mx1euXIkiRYrgp59+Qs2aNeHi4oLw8PCHpqVatWqFIUOGYPjw4ShatCi8vLywfPlyJCYmom/fvnB3d0flypXx22+/Zfj9nTp1Cu3atUPhwoXh5eWFnj17IjY2NsPrDh06FGPGjEGxYsVQunRpTJkyxfS4j48PAKBTp04wGAym20RkXUxuiCjXtWrVCsOHD0fPnj0RFxeHY8eOISgoCCtWrICXl5fpui+++AL58+fHwYMHERISggULFmDFihWmx/39/bFv3z6sXr0aJ06cQJcuXdC2bVucP3/edM2dO3cwe/ZsrFixAqdPn0apUqUyjemLL75AiRIlcPDgQQwZMgTvvvsuunTpgubNm+Po0aN4+eWX0bNnT9y5cwcAcOvWLbzwwguoX78+Dh8+jE2bNiE6Ohpdu3Z96HXd3Nxw4MABzJkzB9OmTcPWrVsBAIcOHQIgu5NHRkaabhORlWlERNnQu3dvzcnJSXNzc8twvP/++5qmaVpycrJWr149rWvXrlrNmjW1AQMGZHh+y5YttRo1amhpaWmm+8aOHavVqFFD0zRNu3Lliubk5KRdvXo1w/NefPFFLTAwUNM0Tfv88881AFpoaOhDsXXo0CHDez377LOm2ykpKZqbm5vWs2dP032RkZEaAG3fvn2apmna9OnTtZdffjnD60ZERGgAtHPnzmX6upqmaY0bN9bGjh1rug1AW79+/SP+FInIGlhzQ0TZ1rp1a3z00UcZ7itWrBgAwNnZGd988w3q1q2L8uXLY+HChQ89v2nTpjAYDKbbzZo1w/z585GamoqTJ08iNTUVVatWzfCc5ORkFC9e3HTb2dkZdevWfWKs6a9xcnJC8eLFUadOHdN9xhGlmJgYAMDx48exfft2FC5c+KHXunjxoimuB9+7TJkyptcgIjWY3BBRtrm5uaFy5cqPfHzv3r0AgBs3buDGjRtwc3PL8msnJCTAyckJR44cgZOTU4bH0iccrq6uGRKkRylQoECG2waDIcN9xtdIS0szvX/79u0xe/bsh16rTJkyj31d42sQkRpMbojIKi5evIgRI0Zg+fLlWLNmDXr37o3ff/8d+fKZS/0OHDiQ4Tn79+9HlSpV4OTkhPr16yM1NRUxMTF47rnn8jp8NGjQAD/88AN8fHyQP3/2/6ssUKAAUlNTczEyInoSFhQTUbYlJycjKioqwxEbG4vU1FT06NEDbdq0Qd++ffH555/jxIkTmD9/fobnh4eHIyAgAOfOncO3336LxYsXY9iwYQCAqlWronv37ujVqxfWrVuHsLAwHDx4EMHBwdi4caPVf2+DBw/GjRs30K1bNxw6dAgXL17E5s2b0bdvX4uSFR8fH2zbtg1RUVG4efOmFSMmIiOO3BBRtm3atCnDFA0AVKtWDW+//TauXLmCX375BYBM43zyySfo1q0bXn75Zfj6+gIAevXqhaSkJDzzzDNwcnLCsGHDMHDgQNNrff7555gxYwZGjhyJq1evokSJEmjatClee+01q//eypYtiz179mDs2LF4+eWXkZycjPLly6Nt27YZRp+eZP78+QgICMDy5ctRrlw5XL582XpBExEAwKBp6ZpKEBHlkVatWqFevXpYtGiR6lCISGc4LUVERES6wuSGiIiIdIXTUkRERKQrHLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGu/D83ww6qVa1JtgAAAABJRU5ErkJggg==", ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3deXyM1/cH8M/IJiKLNbbY932J2qpobdEq2h+tatCi9a0gtce+VVTtay1FV0tr6aZKq/YtQVBRa0hKImJJiAhJnt8fp5NJCJLI5M4883m/Xs/LMzPPzByCOXPvuecaNE3TQERERKQTeVQHQERERJSTmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFXvVAeS2lJQUXL16Fa6urjAYDKrDISIiokzQNA137txBiRIlkCfP08dmbC65uXr1Kry8vFSHQURERNkQERGBUqVKPfUam0tuXF1dAcgfjpubm+JoiIiIKDPi4uLg5eWV+jn+NDaX3Binotzc3JjcEBERWZnMlJSwoJiIiIh0hckNERER6QqTGyIiItIVm6u5yazk5GQ8fPhQdRiURQ4ODrCzs1MdBhERKcTk5hGapiEqKgq3b99WHQplk4eHB4oVK8Y+RkRENorJzSOMiU3RokWRL18+fkBaEU3TcO/ePURHRwMAihcvrjgiIiJSgclNGsnJyamJTaFChVSHQ9ng7OwMAIiOjkbRokU5RUVEZINYUJyGscYmX758iiOh52H8+bFmiojINjG5yQCnoqwbf35ERLaNyQ0RERHpCpMbIiIi0hUmN5ShsmXLYu7cucpfg4iIKKu4WkonWrZsibp16+ZYMhEUFAQXF5cceS0iIrIhO3YATZoA/61eVYEjNzZE0zQkJSVl6toiRYpw1RgREWXNxYuAjw9QtSpw7ZqyMJjcZFJ8/JOP+/czf21CQuauzYrevXtj165dmDdvHgwGAwwGAy5duoSdO3fCYDDg999/h7e3N5ycnLBnzx5cuHABnTp1gqenJ/Lnz4+GDRvijz/+SPeaj04pGQwGrFixAl26dEG+fPlQqVIl/PTTT1mKMzw8HJ06dUL+/Pnh5uaGbt264Vqav/zHjx9Hq1at4OrqCjc3NzRo0ADBwcEAgMuXL6Njx44oUKAAXFxcUKNGDWzZsiVrf1BERGReI0YADx5IclO0qLIwmNxkUv78Tz7efDP9tUWLPvlaH5/015Ytm/F1WTFv3jw0adIE/fr1Q2RkJCIjI+Hl5ZX6+IgRIxAYGIjTp0+jdu3auHv3Ljp06IA//vgDx44dQ7t27dCxY0eEh4c/9X0mTZqEbt264cSJE+jQoQN69OiBmzdvZipGTdPQuXNn3Lx5E7t27cL27dtx4cIFvPXWW6nX9OjRA6VKlUJQUBCOHDmCUaNGwcHBAQAwYMAAJCYmYvfu3Th58iQ+/fRT5M/qHxQREZnPrl3Ahg1AnjzA7NmAwrYcrLnRAXd3dzg6OiJfvnwoVqzYY49PnjwZbdq0Sb1dqFAh1KlTJ/X21KlTsWnTJvz000/w8/N74vv07t0b3bt3BwBMmzYNCxYswOHDh9G+fftnxvjHH3/gxIkTCAsLS028vv76a9SoUQNBQUFo2LAhwsPDMXz4cFStWhUAUKlSpdTnh4eH480330StWrUAAOXLl3/mexIRUS5JTgY+/ljOP/wQqFFDaThMbjLp7t0nP/Zoh///tjbKUJ5HxsouXcp2SJnm7e2d7nZ8fDwmTZqEX375BVevXkVSUhISEhKeOXJTu3bt1HMXFxe4urqm7uP0LKdPn4aXl1e6EaXq1avDw8MDp0+fRsOGDTFkyBD07dsXX3/9NVq3bo2uXbuiQoUKAIBBgwbhf//7H7Zt24bWrVvjzTffTBcPEREp9OWXwLFjgLs7MGmS6mg4LZVZLi5PPvLmzfy1jxaPP+m6nI09/QsOHz4cGzZswCeffII9e/YgJCQEtWrVwoMHD576OsYpIiODwYCUlJRMxaBpWoadg9PeP3HiRJw6dQqvvvoqduzYgerVq2PTpk0AgL59++LixYvw9fXFyZMn4e3tjQULFmTqvYmIyIzu3AFGj5bz8eOBIkXUxgMmN7rh6OiI5OTkTF27Z88e9O7dG126dEGtWrVQrFgxXDLzEFL16tURHh6OiIiI1PtCQ0MRGxuLatWqpd5XuXJlfPzxx9i2bRveeOMNrFq1KvUxLy8v9O/fHxs3bsTQoUOxfPlys8ZMRESZEBgoK6MqVgSeUtqQm5jc6ETZsmVx6NAhXLp0CTExMU8dUalYsSI2btyIkJAQHD9+HO+8806mR2Cyq3Xr1qhduzZ69OiBo0eP4vDhw+jZsydatGgBb29vJCQkwM/PDzt37sTly5exb98+BAUFpSY+/v7++P333xEWFoajR49ix44d6ZIiIiJS4NIlKR4GgFmzAEdHpeEYMbnRiWHDhsHOzg7Vq1dHkSJFnlo/M2fOHBQoUABNmzZFx44d0a5dO9SvX9+s8RkMBmzevBkFChTASy+9hNatW6N8+fJYt24dAMDOzg43btxAz549UblyZXTr1g0+Pj6Y9N/cbXJyMgYMGIBq1aqhffv2qFKlChYvXmzWmImI6BlGjgQSE4FXXgE6dlQdTSqDpmma6iByU1xcHNzd3REbGws3N7d0j92/fx9hYWEoV64c8j5aSENWgz9HG7Ztm3x7nD8fqFJFdTRE+rZ3L9C8uayUOXYMMPMij6d9fj+KIzdEpA8JCcD770uC8957gJmnWolsWkoK4O8v5/36mT2xySomN0SkD4sXA1euyPmBA8BXX6mNh0jPvv4aOHIEcHMDJk9WHc1jmNwQkfWLjQWmTZPzpk3l1xEjgNu3lYVEpFt37wIBAXI+dqzSbRaehMkNEVm/WbOAmzdlP5s//pBfr1+XnhtElLM+/RSIjATKlwcGDVIdTYaY3BCRdYuONi1FnTpVOmUaGzwuWgQcP64uNiK9CQ8HZs6U85kzAScntfE8AZMbIrJun3wCxMcD3t7AG2/Ifa1bA//3f1L06OcH2NaiUCLzGTUKuH8faNkS6NxZdTRPxOSGiKzX5cvA55/LeWBg+l2IZ88G8uWT5arffKMmPiI92b8fWLNG/p3NmaN01+9nYXJDRNZr4kTgwQPg5ZdltCYtLy9g3Dg5Hz5cio6JKHtSUky7fvfpA9StqzScZ2FyQ8+tZcuW8Df2OyDKLaGhpuXegYEZXzNkCFC5sux7M3FiroVGpDvffQccPgzkzw9MmaI6mmdicqMT5kgwevfujc4WPKdKNm7sWPk22aUL8MILGV/j6GgqLl6wADh5MvfiI9KL+HiptQGAMWOAYsXUxpMJTG6IyPocPgxs2iRt36dOffq1bdtKoXFyMouLibLjs8+kQWbZsqauxBaOyY0O9O7dG7t27cK8efNgMBhgMBhw6dIlAEBoaCg6dOiA/Pnzw9PTE76+voiJiUl97g8//IBatWrB2dkZhQoVQuvWrREfH4+JEyfiyy+/xI8//pj6mjt37sxUPLdu3ULPnj1RoEAB5MuXDz4+Pjh37lzq45cvX0bHjh1RoEABuLi4oEaNGtiyZUvqc3v06IEiRYrA2dkZlSpVwqpVq3Lsz4p0wthArGdPoHr1Z18/Z44sEd+9WwoiiShz/v0XmDFDzj/7DLCS/frsVQdg8TQNuHdPzXvny5epavR58+bh7NmzqFmzJib/1wa7SJEiiIyMRIsWLdCvXz/Mnj0bCQkJGDlyJLp164YdO3YgMjIS3bt3x4wZM9ClSxfcuXMHe/bsgaZpGDZsGE6fPo24uLjU5KJgwYKZCrt37944d+4cfvrpJ7i5uWHkyJHo0KEDQkND4eDggAEDBuDBgwfYvXs3XFxcEBoaivz58wMAxo0bh9DQUPz2228oXLgwzp8/j4SEhGz+AZIu/fEHsGOHTDllto6mdGkZTh87Fhg2DHjtNWkbT0RPFxAg+7Y1bw68+abqaDKNyc2z3LsnBVQq3L0LuLg88zJ3d3c4OjoiX758KJZmLnTJkiWoX78+phnb0gNYuXIlvLy8cPbsWdy9exdJSUl44403UKZMGQBArVq1Uq91dnZGYmJiutd8FmNSs2/fPjT9rw3+t99+Cy8vL2zevBldu3ZFeHg43nzzzdT3Kl++fOrzw8PDUa9ePXh7ewMAypYtm+n3JhugaaZRm/79gf/+3mbKsGHA6tXA+fOyF46xERkRZezQIWmjYAVLvx+ldFpq9+7d6NixI0qUKAGDwYDNmzc/9fq9e/eiWbNmKFSoEJydnVG1alXMmTMnd4K1QkeOHMFff/2F/Pnzpx5Vq1YFAFy4cAF16tTBK6+8glq1aqFr165Yvnw5bt269Vzvefr0adjb26NRo0ap9xUqVAhVqlTB6dOnAQCDBg3C1KlT0axZM0yYMAEnTpxIvfZ///sf1q5di7p162LEiBHYv3//c8VDOrNxIxAcLEn/mDFZe66TEzB/vpzPnQucOpXj4RHphqaZ6mt69wYaNFAZTZYpTW7i4+NRp04dLFy4MFPXu7i4wM/PD7t378bp06cxduxYjB07FsuWLTNfkPnyyQiKiiNfvucKPSUlBR07dkRISEi649y5c3jppZdgZ2eH7du347fffkP16tWxYMECVKlSBWFhYdl+T+0JxZqapsHwX9bft29fXLx4Eb6+vjh58iS8vb2x4L8VLT4+Prh8+TL8/f1x9epVvPLKKxg2bFi24yEdSUqSaSVAlnhnZ7M+Hx+gUycWFxM9y9q1wMGD8kXik09UR5N1moUAoG3atCnLz+vSpYv27rvvZvr62NhYDYAWGxv72GMJCQlaaGiolpCQkOU4VGvTpo3m5+eX7r7Ro0drVapU0R4+fJip10hKStJKliypzZo1S9M0TevXr5/22muvPfN5LVq00AYPHqxpmqadPXtWA6Dt27cv9fGYmBjN2dlZ+/777zN8/qhRo7RatWpl+Njnn3+uubq6Zip+I2v+OdJTrFypaYCmFSyoabdvZ/91wsI0LW9eea01a3IsPCLdiI/XNC8v+TcydarqaFI97fP7UVa9WurYsWPYv38/WrRo8cRrEhMTERcXl+7Qo7Jly+LQoUO4dOkSYmJikJKSggEDBuDmzZvo3r07Dh8+jIsXL2Lbtm14//33kZycjEOHDmHatGkIDg5GeHg4Nm7ciOvXr6NatWqpr3nixAmcOXMGMTExePjw4TPjqFSpEjp16oR+/fph7969OH78ON59912ULFkSnTp1AgD4+/vj999/R1hYGI4ePYodO3akvuf48ePx448/4vz58zh16hR++eWX1MfIht2/D0yYIOejRwPu7tl/rbJlTXU7Q4cCd+48d3hEujJrFhARIYX4Q4aojiZ7ciHZyhRkYeSmZMmSmqOjo5YnTx5t8uTJT712woQJGoDHDr2N3Jw5c0Zr3Lix5uzsrAHQwsLCNE2TkZQuXbpoHh4emrOzs1a1alXN399fS0lJ0UJDQ7V27dppRYoU0ZycnLTKlStrCxYsSH3N6OhorU2bNlr+/Pk1ANpff/2V4XunHbnRNE27efOm5uvrq7m7u2vOzs5au3bttLNnz6Y+7ufnp1WoUEFzcnLSihQpovn6+moxMTGapmnalClTtGrVqmnOzs5awYIFtU6dOmkXL17M0p+FNf8c6QnmzJFvkSVLatq9e8//egkJmla+vLzm8OHP/3pEevHvv5qWL5/821i7VnU06WRl5MagaZYx6WwwGLBp06ZMdcQNCwvD3bt3cfDgQYwaNQoLFy5E9+7dM7w2MTERiYmJqbfj4uLg5eWF2NhYuD2yFPT+/fsICwtDuXLlkNdK1vLT4/hz1Jk7d4Dy5YGYGGD5cqBv35x53V9+ATp2BOztgRMnAI4QEgG9esm2Jk2byqazFrRCKi4uDu7u7hl+fj/KKpeClytXDoAsW7527RomTpz4xOTGyckJTk5OuRkeEeWk2bMlsalcWVZt5JTXXpPjl1+AgQOB7dst6j9yolwXHGzar23uXKv+92DVNTeArMJJOzJDRDoSEyPz/4Bs1mefw9/H5s2TJeJ//gn88EPOvjaRNUm79LtnT6BhQ6XhPC+lyc3du3dTlycDMt0UEhKC8PBwAEBAQAB69uyZev2iRYvw888/49y5czh37hxWrVqFmTNn4t1331URPhGZW2CgTEvVrw/83//l/OuXL2/aEHDIEGnBQGSLvv8e2LdPWpCkafxqrZROSwUHB6NVq1apt4f8V5Xdq1cvrF69GpGRkamJDiB9WwICAhAWFgZ7e3tUqFAB06dPx4cffpjrsRORmUVEAIsWyfm0abJJpjmMHClD8WFh0s8jMNA870NkqRISgBEj5HzkSKBkSbXx5ACLKSjOLU8rSDIWopYtWxbOzs6KIqTnlZCQgEuXLrGg2Nr17Qt88QXQogXw11/mnf//6Sdp7ufgAJw8CVSpYr73IrI006ZJx+9SpYAzZ567gay5ZKWg2OprbnKSg4MDAOCeqo0yKUcYf37GnydZoX/+AYy7wQcGmr+wsWNHoEMH4OFDYNAgdi4m2xEZaZqG+vRTi01sssoqV0uZi52dHTw8PBAdHQ0AyJcvX+qWAWT5NE3DvXv3EB0dDQ8PD9jZ2akOibJr3DggJQV4/XWgSRPzv5/BIMXFf/wBbNsGbNoEvPGG+d+XSLUxY4D4eKBxY+AJq46tEaelHqFpGqKionD79u3cD45yhIeHB4oVK8bE1FoFB8tKDYNB+s/UrJl77z1uHDB1KuDlBZw+LfvqEOnV0aOAt7eMVB44IAmOBdN9nxtzMhgMKF68OIoWLZqp7QbIsjg4OHDExtqNHi2/vvtu7iY2gGzL8PXXwOXLMlRvjRsGEmWGpgEffyy/9uhh8YlNVnHkhogsx19/AS+/LIW9Z84A/zXszFXGKSlHR+Dvv4FKlXI/BiJz27BB2is4O8u/NS8v1RE9EwuKicj6aJppQ8sPPlCT2ABA585Au3bAgwcsLiZ9un8fGD5czocPt4rEJquY3BCRZfjxR+DQIVmtMXasujgMBmD+fBk92rpV4iLSk3nzpK9TiRKm/jY6w+SGiNRLTpZVG4C0gC9WTGk4qFwZGDZMzv39AbaHIL2IijLVkk2frtuieSY3RKTet98CoaFAgQKm4XLVxoyR4frLl+VDgEgPxo2TLU0aNpRCYp1ickNEaiUmAuPHy/moUYCHh9JwUrm4yI7kADBjBnDhgtp4iJ5XSIh0/QZk129zbWliAfT7OyMi67BsmYyOFC8O+Pmpjia9N98EWreWBGzwYNXREGVf2qXfb78NNG2qOiKzYnJDROrcvStN8wAZvbG01u8GA7BggRQX//or8PPPqiMiyp4ffwR27gTy5rWJaVYmN0Skzty5QHQ0UKEC0KeP6mgyVrUqMGSInA8eLDsoE1mTxERTgfywYUCZMmrjyQVMbohIjRs3gM8+k/MpU2R0xFKNHSs7JoeFSf0NkTVZsEBqxooXB0aOVB1NrmByQ0RqfPopEBcH1KkDvPWW6mieLn9+YNYsOZ8+XZIcImsQHS1fHgDZUiR/frXx5BImN0SU+65ckW+TgPyHaw2rNrp2la0h7t+X3jdE1mD8ePkSUb8+0LOn6mhyjRX8j0JEujN5siQJL74I+PiojiZzDAZg4ULA3h746ScpMCayZCdPAsuXy7nOl34/ynZ+p0RkGc6dM/XaCAyUpMFaVKtmGrUZNEgSNCJLZFz6nZIio47Nm6uOKFcxuSGi3DVunGy38OqrMnJjbcaPlz15Ll40FUQTWZpffgH+/BNwcpL6NhvD5IaIcs+xY8C6dXJu3N/G2ri6AjNnyvm0acClS0rDIXrMgwfA0KFyPmQIUK6c2ngUYHJDRLnHuDlm9+6ySspavf020KKFTEt9/LHqaIjSW7RIpn89PYGAANXRKMHkhohyx+7dwG+/SUHu5Mmqo3k+xuJiOztg82Zg61bVERGJmBhg0iQ5/+QTGWm0QUxuiMj8NM30DbJvX6BiRbXx5ISaNaWoGAAGDpQusESqTZgAxMYCdesCvXurjkYZJjdEZH6//grs3w84O0tBsV5MnAgUKwacP29q8kekyqlTwOefy/mcOTKyaKOY3BCReaWkAKNHy/mgQbLSSC/c3EwrpqZOBcLD1cZDtkvTpHg4JQV44w2gZUvVESnF5IaIzGvNGmkm5u6uz31tevSQHiIJCaYNNoly22+/Adu2AY6O3P8MTG6IyJwePJC+MAAwYgRQoIDaeMwhbXHxhg3A9u2qIyJb8/ChKbH29wcqVFAajiVgckNE5rNihTS78/QEBg9WHY351K4N+PnJ+cCBktQR5ZYlS4AzZ4AiRUztFmwckxsiMo/4eNNuxOPGAS4uauMxt0mTJIk7c0aKOYlyw40bUtgOSN2Xm5vScCwFkxsiMo8FC4CoKOmO2q+f6mjMz93dVOswZQoQEaE2HrINkyYBt27J6GGfPqqjsRhMbogo5926ZdrPZvJkKXK0Bb6+QLNmMmplbH9PZC6nTwOLF8u5jS/9fhSTGyLKeTNmALdvS6O77t1VR5N7DAZpfZ8nD/D998Aff6iOiPRs6FDZhLZTJ+Dll1VHY1GY3BBRzoqMBObNk/NPPrG9b5N16gAffSTnLC4mc9m6VZZ/Ozhwd/oMMLkhopw1ZYr0fGnSBOjYUXU0akyZIitX/vnHlOgR5ZSkJNPS70GDgEqV1MZjgZjcEFHOuXABWL5czgMDZZrGFnl4mGqOJk0CrlxRGg7pzNKlUm9TuDAwdqzqaCwSkxsiyjnjx8u3ynbtgBYtVEejVq9eQOPGUlw8bJjqaEgvbt0yNcacPFkSaXoMkxsiyhknTshWCwAwbZraWCxBnjxSXGwwAGvXAn/9pToi0oPJk4GbN4EaNWyjxUI2MbkhopwxZoxs3tetG1C/vupoLEP9+kD//nLu5ydt8omy68wZ2eoDkKXf9vZq47FgTG6I6Pnt2wf88ousjDJ2JSYxdSpQqBAQGiqNDYmya9gwmfZ97TWgTRvV0Vg0JjdE9Hw0DQgIkPP33wcqV1Ybj6UpWBCYPl3OJ06UpfJEWbV9u3yBsLcHZs5UHY3FY3JDRM9n61Zgzx7AyclU6Ejpvf8+8MILwJ07wPDhqqMha5N26befH1Clitp4rACTGyLKvpQU06iNnx9QqpTaeCxV2uLib78Fdu9WHRFZkxUrgL//llFAfoHIFCY3RJR969cDx4/LTsTGJIcy5u0NfPCBnPv5ybdxome5fRsYN07OJ00CChRQGo61YHJDRNnz8KHpP91hw6Rolp7uk0/k2/fJkzKSQ/QsU6cCMTFAtWrAhx+qjsZqMLkhouxZuRI4f162GfD3Vx2NdShUSDo3AzK9EBWlNh6ybOfOAfPny/ns2bKPFGUKkxsiyrqEBGkmBkj7d1dXtfFYkz59ZIoqLg4YMUJ1NGTJhg+XEVIfH6B9e9XRWBUmN0SUdQsXAlevAmXKcKg8q+zsTMXFX38N7N2rOiKyRDt2AD/+KH9fZs1SHY3VYXJDRFlz+7ZpamXSJFkCTlnzwgsyggMAAwawuJjSS04GPv5Yzj/6SOptKEuY3BBR1sycKZv3Va8OvPuu6misV2CgrHw5cQJYskR1NGRJVq6UvxcFCgATJqiOxioxuSGizLt2Tfa0AWQVh52d2nisWeHCsnoKkFVn166pjYcsQ2ys7NMGSGLDVYjZwuSGiDJv6lTg3j2ZVuncWXU01u+DD2RzzdhYYNQo1dGQJZg2Dbh+XboQf/SR6misFpMbIsqcsDBg6VI5DwyUglh6PnZ2pl2eV68GDhxQGg4pduECMHeunM+axaXfz4HJDRFlzsSJsiy1dWvg5ZdVR6MfTZoA770n5wMGSDEp2aYRI4AHD4C2bYEOHVRHY9WY3BDRs/39tyxbBmTYnHLW9OmAhwdw7JhpdIxsy86dwMaNsg/Z7NkcGX1OSpOb3bt3o2PHjihRogQMBgM2b9781Os3btyINm3aoEiRInBzc0OTJk3w+++/506wRLZs7FhA04A33wQaNlQdjf4ULQpMmSLnY8ZIzQXZjuRk067f/fsDNWqojUcHlCY38fHxqFOnDhYa55yfYffu3WjTpg22bNmCI0eOoFWrVujYsSOOHTtm5kiJbNjBg9JMLE8e0wcw5bz+/YG6daWPEDchtS1ffimjdu7u0juKnptB0zRNdRAAYDAYsGnTJnTO4gqMGjVq4K233sL4J2wDn5iYiMTExNTbcXFx8PLyQmxsLNzc3J4nZCL90zSpr9m5E3j/feCLL1RHpG/79wPNmsn5gQNA48Zq4yHzu3MHqFRJWgHMnm1q3kePiYuLg7u7e6Y+v6265iYlJQV37txBwYIFn3hNYGAg3N3dUw8vL69cjJDIym3fLomNoyObieWGpk2BXr3knMXFtiEwUBKbSpXkZ045wqqTm1mzZiE+Ph7dunV74jUBAQGIjY1NPSIiInIxQiIrlpICjB4t5x99BJQurTYeW/HppzI9cfQosHy56mjInMLCZLQGkM7fjo5q49ERq01u1qxZg4kTJ2LdunUoWrToE69zcnKCm5tbuoOIMmHDBuDIESB/flOSQ+bn6WnacX30aCAmRm08ZD4jRwKJicArrwAdO6qORlesMrlZt24d+vTpg/Xr16N169aqwyHSn6QkWSEFAEOHAkWKqI3H1nz0EVC7tuzhxcRSn/bsAb7/nku/zcTqkps1a9agd+/e+O677/Dqq6+qDodIn1avBs6elX1tjEtUKffY25s6F69YAQQFqY2HclZKiqlwuF8/SWQpRylNbu7evYuQkBCEhIQAAMLCwhASEoLw8HAAUi/Ts2fP1OvXrFmDnj17YtasWWjcuDGioqIQFRWF2NhYFeET6dP9+6blqGPGAJzKVaN5c9l1XdOk0DQlRXVElFO+/lqmfN3cTFOQlKOUJjfBwcGoV68e6tWrBwAYMmQI6tWrl7qsOzIyMjXRAYClS5ciKSkJAwYMQPHixVOPwYMHK4mfSJcWLwb+/Rfw8gL+9z/V0di2GTMAV1cZueEyfH24e9fUx2jcOGngSDnOYvrc5JasrJMnsjlxcUD58sCNGzId0qeP6ohozhyZGixUSKYKn9L6gqzAuHHA1KlAhQrAqVOAk5PqiKyGzfS5IaIcNmuWJDZVqpj6rZBafn7Sjv/GDZkmJOt1+bIs+QaAzz5jYmNGTG6ISERHm3puTJ0qRa2knoMDsGiRnC9dKrUaZJ1GjZKatpYtgSx246esYXJDRGLaNKkHaNBANsgky9GiBdC9O4uLrdn+/cDatbLke84cLv02MyY3RCTD5UuWyHlgIP/jtUQzZ0pDxUOHZKk+WY+UFMDfX8779JENUsmsmNwQkSz9fvAAaNUKYGNMy1SiBDBxopyPHCkN/sg6fPedrHhzdZUpXzI7JjdEti40FPjySzmfNo2jNpZs0CCgenXZkmHcONXRUGbEx0utDSAF4Z6eauOxEUxuiGzduHEybN65M9C4sepo6GkcHEydi5csAY4dUxsPPdtnnwFXrgDlygHsyZZrmNwQ2bKgIGDjRhmt4XC5dWjVCnjrLUlIWVxs2SIipBEjIL/mzas2HhvC5IbIlhk7pfr6Si8Vsg4zZwIuLsCBA8BXX6mOhp4kIABISJCtNLgCMVcxuSGyVX/+KYeDg2kvKbIOpUoB/21TgxEjgNu3lYZDGTh4EPj2Wy79VoTJDZEt0jTTqE3//kDZskrDoWzw9weqVgWuXzclOmQZNM209Lt3b+kdRbmKyQ2RLdq0SeptXFzY0t9aOToCCxbI+aJFwPHjauMhkzVrpB+RiwvwySeqo7FJTG6IbE1yMjB2rJx//DGXplqz1q2B//s/KSr285MRA1Lr3j3T0u/Ro4HixdXGY6OY3BDZmq+/Bk6flt2lhw1THQ09r9mzgXz5gL17gW++UR0NzZolq6TKlJEvD6QEkxsiW5KYCEyYIOejRgHu7mrjoefn5WUaiRs+HIiNVRuPLbtyBZg+Xc4//RRwdlYbjw1jckNkSz7/HAgPl1b+fn6qo6GcMmQIUKkScO2aaYsGyn2jR8u0VNOmQLduqqOxaUxuiGzFnTum4sYJE/itUk+cnEzFxQsWACdPqo3HFgUFmXoOzZ3Lpd+KMbkhshVz5siy4YoVgffeUx0N5bR27YAuXaRgnMXFuSvt0u+ePYGGDZWGQ0xuiGxDTIx0tQVkmwUHB7XxkHnMmSMjcrt3y3Jkyh3r1wP790th97RpqqMhMLkhsg3Tp8u0VN26QNeuqqMhcylTxtS3aNgwIC5ObTy2ICEBGDlSzkeNAkqWVBsPAWByQ6R/ERGmnaSnTQPy8J+9rg0bJlOPkZHcViM3zJkDXL4sq9aGDlUdDf2H/8sR6d3kybIE/KWXgPbtVUdD5ubkBMyfL+fz5gGnTqmNR88iI03TUNOny7QUWQQmN0R6duYMsGqVnAcGcgWHrfDxATp1YnGxuY0ZA8THA40bA927q46G0mByQ6Rn48bJB9xrr0nvDbIdc+cCefMCO3cC69apjkZ/jhwBVq+Wc+76bXGY3BDp1ZEjwPffy3+63LzP9pQta9r5fehQKSinnKFpsrWCpgE9esjIDVkUJjdEejV6tPz6zjtA7dpqYyE1RowAypcHrl4FpkxRHY1+bNgA7Nkjy+4DA1VHQxlgckOkRzt3Atu2Afb2XDFjy/LmlaJiQKZOTp9WG48e3L8vSSMgv3p5qY2HMsTkhkhvNM00HfHBB0CFCmrjIbVee02OpCRg4EAWFz+vefOAsDDpZzN8uOpo6AmY3BDpzU8/AQcPypC5cbdosm3z5skS8T//BH74QXU01isqylS/Nn064OKiNh56IiY3RHqSnGzqUDt4MFC8uNp4yDKUL2/qojtkCHD3rtp4rNW4cVKY3bCh1LKRxWJyQ6Qn330nTds8PEx1AUSAbA1Qtizw779cPZcdISHAF1/I+dy57PRt4fjTIdKLBw+A8ePlfORIoEABtfGQZXF2lg9lAJg1Sxo8UuYYd/3WNODtt9kzygowuSHSi2XLgEuXZCpq0CDV0ZAlev116V788KH8HWFxceZs3gzs2iWrz6ZPVx0NZQKTGyI9uHsXmDpVzseN4x43lDGDQfadcnSUVgGbNqmOyPIlJspmpID8WqaM2ngoU5jcEOnBvHnAtWtSONqnj+poyJJVrGiqx/L3l72R6MkWLAAuXpQRUWNRNlk8JjdE1u7mTeCzz+R8yhT5Vk70NAEBMgIREWHa1ZoeFx1t6uwcGAjkz682Hso0JjdE1u7TT4HYWNli4e23VUdD1iBfPulYDAAzZwLnzqmNx1KNHw/ExQENGgC+vqqjoSxgckNkza5ckRoKQJb3cnkqZVbnzkC7drLKjsXFjztxAli+XM7nzOG/LSvDnxaRNZsyRfa6adYMePVV1dGQNTEWFzs4AFu3Aj/+qDoiy6Fp0uwwJQXo2hVo3lx1RJRFTG6IrNW5c8CKFXIeGCgfVkRZUbmyaSWQvz9w757ScCzGzz/LVhVOTjLtS1aHyQ2RtRo/XrZb8PHhN0vKvjFjZGfry5fZwwWQabqhQ+V8yBCgXDm18VC2MLkhskYhIcDatXLO1S70PFxcgNmz5XzGDODCBbXxqLZoEXD+PODpKavKyCoxuSGyRsbNMd9+G6hbV2kopANvvgm0bi0N6wYPVh2NOjExwKRJcj5tGuDqqjYeyjYmN0TWZs8eYMsWwM4OmDxZdTSkBwaDNKtzcAB+/VVqTmzRhAnSVqFuXaBXL9XR0HNgckNkTTTNNFTety9QqZLaeEg/qlYFPv5YzgcPBhIS1MaT2/7+G/j8czmfM0e+PJDVYnJDZE22bAH27ZMN/MaNUx0N6c24cUDJkkBYmNTf2Iq0S7/feANo2VJ1RPScmNwQWYuUFGD0aDkfOFA+hIhyUv78wKxZcj59uuypZAu2bAG2b5etS2wpqdMxJjdE1mLtWuma6u4OjBqlOhrSq27dgJdfluaQ/v6qozG/hw9l1AaQ32+FCkrDoZzB5IbIGjx4YJqGGj4cKFhQbTykXwYDsHAhYG8vhcW//qo6IvNavBg4exYoWtS0CpGsHpMbImvwxRcyRVC0qG0v1aXcUa2aadRm0CAZxdGjGzdMS7+nTgXc3NTGQzmGyQ2Rpbt3T/aQAmT0Jn9+tfGQbRg/HihRQpLqzz5THY15TJoE3LoF1K4NvP++6mgoBzG5IbJ0CxYAkZFA2bLABx+ojoZshasrMHOmnE+bBly6pDScHHf6tExJAVz6rUNMbogs2a1bpv1+Jk2S1RxEueXtt4EWLWRaytgDRy+GDpW92Tp1kgJq0pUsJTeHDx9GcnJy6m1N09I9npiYiPXr12f69Xbv3o2OHTuiRIkSMBgM2Lx581Ovj4yMxDvvvIMqVaogT5488LeFSn6ybZ99Bty+DdSoAfTooToasjXG4mI7O2DzZmDrVtUR5YzffpPDwUG/U242LkvJTZMmTXDjxo3U2+7u7riYpg/C7du30b1790y/Xnx8POrUqYOFCxdm6vrExEQUKVIEY8aMQZ06dTIfOJE1iowE5s6V808+4bA5qVGzphQVA9JfKTFRbTzP6+FD067fgwaxy7dO2Wfl4kdHah69/aT7nsTHxwc+Pj6Zvr5s2bKYN28eAGDlypWZek5iYiIS0/xjjIuLy/T7ESk1daq0wG/cGHj9ddXRkC2bOBFYs0Z2y541y9RM0hotXSr1NoULA2PHqo6GzCTHa24MBkNOv+RzCQwMhLu7e+rh5eWlOiSiZ7t4EVi2TM4DA2V6gEgVNzfT9M3UqUB4uNp4suvWLdkcE5AViB4eSsMh89F9QXFAQABiY2NTj4iICNUhET3b+PFAUhLQti33uSHL0KMH0Ly5jCYaO/pam8mTgZs3Zaqtb1/V0ZAZZWlaCgBCQ0MRFRUFQKag/vnnH9y9excAEBMTk7PR5QAnJyc4OTmpDoMo806eBL77Ts6nTVMbC5GRsbi4fn1gwwbZi6lNG9VRZd6ZMxI/AMyeLR2YSbey/NN95ZVX0tXVvPbaawBkOkrTNIubliKyOmPGyC7FXbsCDRqojobIpHZtYMAAYP58KS4+ccJ62hMMGyajoa+9Zl1JGWVLlpKbsLAwc8VBRACwb5/s52NnZ+pKTGRJJk2STVzPnJHmdyNHqo7o2bZtA375RUZrjI0JSdeylNyUKVMmR9/87t27OH/+fOrtsLAwhISEoGDBgihdujQCAgJw5coVfPXVV6nXhISEpD73+vXrCAkJgaOjI6pXr56jsRHlOk0zrULp3RuoUkVpOEQZ8vAAZsyQv6OTJwPvvANY8kKNpCRTjZCfH/9d2QiDloW12zdv3sS9e/dQqlSp1PtOnTqFmTNnIj4+Hp07d8Y777yT6TffuXMnWrVq9dj9vXr1wurVq9G7d29cunQJO3fuNAWcwbRXmTJlcCmTrcHj4uLg7u6O2NhYuHGTNLIkW7cCPj6AkxNw7pxlf2CQbUtJAV56SUYau3YFstC8NdctWQJ89BFQsKAsZS9QQHVElE1Z+fzOUnLTvXt3FC9eHLNnzwYAREdHo2rVqihRogQqVKiA3377DV988QV8fX2f73dgRkxuyCKlpEh9TUiIfMucNUt1RERPd/y4FBenpEhxcevWqiN63O3bQMWKsvv3woVSL0RWKyuf31laCn7w4EG8nqaZ2FdffYWCBQsiJCQEP/74I6ZNm4ZFixZlL2oiW/b995LYuLoCAQGqoyF6tjp1ZEQEkOLiBw/UxpORqVMlsaleHfjwQ9XRUC7KUnITFRWFcuXKpd7esWMHunTpAvv/ltS9/vrrOHfuXM5GSKR3Dx8C48bJ+bBh0jmVyBpMmQIUKQL88w/wX/d4i3HunKzqArj02wZlKblxc3PD7du3U28fPnwYjRs3Tr1tMBjSbXVARJmwapX8R1ykiP52XiZ98/AAPv1UzidNAq5cURpOOsOHyxcHHx+gXTvV0VAuy1Jy88ILL2D+/PlISUnBDz/8gDt37uDlNFvFnz17ltsbEGVFQoJ8KACyUsrVVW08RFnVq5fsfxYfLyOPluDPP4Eff5SWCqxfs0lZSm6mTJmCH3/8Ec7OznjrrbcwYsQIFEhTeb527Vq0aNEix4Mk0q1Fi4CrV4HSpYH+/VVHQ5R1efLI32ODQfrf/PWX2niSk00joB99BFSrpjYeUiJLq6UA4Pr169i/fz+KFSuGRo0apXvs119/RfXq1dPV5VgarpYiixEbC5QvL3vdrFwJvPee6oiIsu+jj2TZdfXqUhzv4KAmjmXLpHi4QAGZ7i1USE0clOPMthRcD5jckMUYN05Wc1StKvtJseCRrNnNm0DlyrI6adYsNZtrxsYClSoB169LgfOgQbkfA5mN2ZKbtJ2Cn6Znz56Zfclcx+SGLMK1a0CFClKnsGED8MYbqiMien4rVgD9+knt2JkzQPHiufv+I0dK9+QqVeQLg6rRIzILsyU3efLkQf78+WFvb48nPc1gMODmzZtZizgXMbkhizBoELBgAdCwIXDokNQrEFm7lBSgSRPg8GGgRw/gm29y770vXJApsQcPgF9/BTp0yL33plxhtiZ+1apVg6OjI3r27Ildu3bh1q1bjx2WnNgQWYRLl4DPP5fzadOY2JB+pC0u/vZbYPfu3HvvESMksWnbVpZ/k03LUnJz6tQp/Prrr0hISMBLL70Eb29vLFmyBHFxceaKj0h/Jk6U/huvvGKZLeuJnoe3t0xNAbLdwcOH5n/PnTuBjRsluZo9m18YKGvJDQA0atQIS5cuRWRkJAYNGoT169ejePHi6NGjBxv4ET3LqVOAsXZt2jS1sRCZy7RpslHl33/LSI45pV363b8/UKOGed+PrEKWkxsjZ2dn9OzZE5MmTcILL7yAtWvX4t69ezkZG5H+jB0LaBrQpQvwwguqoyEyj0KFgMBAOZ8wAYiKMt97rV4tS8/d3U0NMcnmZSu5uXLlCqZNm4ZKlSrh7bffRsOGDXHq1Kl0Df2I6BGHDgGbN8vQ+dSpqqMhMq8+fWSKKi5O6mHM4c4dYMwYOZ8wgfuyUaosJTfr16+Hj48PKlWqhKCgIMyaNQsRERGYMWMGqlataq4Yiayfppl2++7ZU1Z1EOmZnZ2puPjrr4G9e3P+PQIDpa1CpUpS30P0nywvBS9dujR69OgBT0/PJ143yIIbJ3EpOCmxfbus4nB0BM6eBcqUUR0RUe7o10/639SuDRw5knPNKsPCZGuFxETgp5+Ajh1z5nXJYpmtz03ZsmVheEYVusFgwMWLFzP7krmOyQ3lOk2TfjZHjgCDBwNz56qOiCj3xMRI5+Jbt4D584GBA3Pmdbt1A77/XlYdbt/OFVI2QOn2C1euXEHJkiVz8iVzFJMbynU//AB07Qq4uAAXLwJFi6qOiCh3LVkie0+5u0vn4qeM/GfKnj3ASy9J/dqxYzIqRLpntiZ+TxMVFYVBgwahYsWKOfWSRNYvKUlWSAGy1w4TG7JFH3wA1K8vez+NGvV8r5WSAvj7y3m/fkxsKENZSm5u376NHj16oEiRIihRogTmz5+PlJQUjB8/HuXLl8eBAwewcuVKc8VKZH2+/FK+qRYqBAwdqjoaIjXs7ICFC+V89WrgwIHsv9ZXXwFHjwJubsDkyTkSHulPlpKb0aNHY/fu3ejVqxcKFiyIjz/+GK+99hr27t2L3377DUFBQejevbu5YiWyLvfvSzdiQFZKubsrDYdIqSZNgPfek/MBA6T5XlbdvWtadThuHEdC6YmylNz8+uuvWLVqFWbOnImffvoJmqahcuXK2LFjB1q0aGGuGIms05IlwL//AqVKSb0Bka2bPh3w8JA6maVLs/f8qCigQoWcK0wmXcpScnP16lVU/68/R/ny5ZE3b1707dvXLIERWbW4OOCTT+R8wgTA2VltPESWoGhRYMoUOR8zBrh+PfPPvXwZmDVLzmfOBJyccj4+0o0sJTcpKSlwcHBIvW1nZwcXF5ccD4rI6s2eDdy4IUtge/dWHQ2R5ejfH6hTB7h92zTFlBmjRslUb6tWQKdOZguP9CHLTfx8fHzg9F/G/PPPP+Pll19+LMHZuHFjzkaZg7gUnMzu+nWgfHmpD1i/XpaBE5HJvn3Aiy/K+YEDQOPGT79+/36gWTPpZXP0KFC3rtlDJMuTlc/vLLWK7NWrV7rb7777btajI9K7adMksalfH3jzTdXREFmeZs1kG5KvvpLi4sOHZUVVRtIu/e7Th4kNZUqON/GzdBy5IbMKD5d9bh48ALZuBdq1Ux0RkWW6dk2mbePipPi+f/+Mr/v6a0mEXF2Bc+eevwEgWS0lTfyICMCkSZLYtGwpe0kRUcY8PU3FxaNHyzYNj4qPNzX9GzOGiQ1lGpMbopxy+rQ0KANkt2LudUP0dB99JB2Gb92SBOdRM2YAV68C5crJvmxEmcTkhiinjBsn9QGvv/7sAkkikh3CjZ2LV6wAgoJMj0VEAJ99JueffQbkzZv78ZHVYnJDlBOCgoANG2S0xtjfhoierXlz4N13AU2T4uKUFLk/IABISJANMt94Q22MZHWY3BDlBOOQ+rvvAjVrqo2FyNrMmCEFw0FBwBdfAAcPAt9+K18W5szhFC9lGZMboue1Ywfwxx+Ag4MUFBNR1hQvbvq3ExAA+PnJee/e0lKBKIuY3BA9D00zdVn98EMpfCSirPPzA2rUkM7eR44ALi6c4qVsY3JD9Dw2b5YGZPnyAWPHqo6GyHo5OACLFplujx4tIzpE2ZClDsVElEZysimh8fdnDw6i59WihYzW/PMP8PHHqqMhK8bkhii7vvkGCA0FChQAhg9XHQ2RPmTU74YoizgtRZQdiYnA+PFyPmoU4OGhNBwiIjJhckOUHUuXyj5SxYubVnYQEZFFYHJDlFV37gBTp8r5hAlSTExERBaDyQ1RVs2dC1y/DlSsCLz/vupoiIjoEUxuiLLixg1g5kw5nzxZlq8SEZFFYXJDlBXTpwNxcUCdOsBbb6mOhoiIMsDkhiiz/v0XWLBAzqdNA/Lwnw8RkSXi/85EmTV5siwBf/FFwMdHdTRERPQETG6IMuPsWWDlSjkPDOQuxUREFozJDVFmjBsn2y28+qqM3BARkcVickP0LEePAuvXyzl3KSYisnhMboiexbjXzTvvyCopIiKyaExuiJ5m1y7g998Be3spKCYiIovH5IboSTQNCAiQ8759gQoV1MZDRESZwuSG6El+/hk4cABwdpaCYiIisgpMbogykpwMjBkj54MGASVKqI2HiIgyTWlys3v3bnTs2BElSpSAwWDA5s2bn/mcXbt2oUGDBsibNy/Kly+Pzz//3PyBku1Zswb4+2/A3R0YOVJ1NERElAVKk5v4+HjUqVMHCxcuzNT1YWFh6NChA5o3b45jx45h9OjRGDRoEDZs2GDmSMmmPHgAjB8v5yNHAgUKqI2HiIiyxF7lm/v4+MAnC23sP//8c5QuXRpz584FAFSrVg3BwcGYOXMm3nzzTTNFSTZn+XIgLAzw9JQpKSIisipWVXNz4MABtG3bNt197dq1Q3BwMB4+fJjhcxITExEXF5fuIHqi+HhgyhQ5HzcOcHFRGw8REWWZVSU3UVFR8PT0THefp6cnkpKSEBMTk+FzAgMD4e7unnp4eXnlRqhkrebNA65dA8qVA/r1Ux0NERFlg9JpqewwPLJhoaZpGd5vFBAQgCFDhqTejouLM0+Cc/OmdLBNK21Mj8aXncdy4jX4+k9/bO1a+XXyZMDREUREZH2sKrkpVqwYoqKi0t0XHR0Ne3t7FCpUKMPnODk5wcnJyfzBPXggnWzJ+tWsCXTvrjoKIiLKJqtKbpo0aYKff/453X3btm2Dt7c3HBwcFEX1H3d34KuvTLf/G1F66nlOXJeb72UL19nZAW+/Lb8SEZFVUprc3L17F+fPn0+9HRYWhpCQEBQsWBClS5dGQEAArly5gq/+Sxr69++PhQsXYsiQIejXrx8OHDiAL774AmvWrFH1WzBxdgZ8fVVHQUREZPOUJjfBwcFo1apV6m1jbUyvXr2wevVqREZGIjw8PPXxcuXKYcuWLfj444+xaNEilChRAvPnz+cycCIiIkpl0LRHx+j1LS4uDu7u7oiNjYWbm5vqcIiIiCgTsvL5bVVLwYmIiIiehckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeUJzeLFy9GuXLlkDdvXjRo0AB79ux56vWLFi1CtWrV4OzsjCpVquCrr77KpUiJiIjIGtirfPN169bB398fixcvRrNmzbB06VL4+PggNDQUpUuXfuz6JUuWICAgAMuXL0fDhg1x+PBh9OvXDwUKFEDHjh0V/A6IiIjI0hg0TdNUvXmjRo1Qv359LFmyJPW+atWqoXPnzggMDHzs+qZNm6JZs2b47LPPUu/z9/dHcHAw9u7dm6n3jIuLg7u7O2JjY+Hm5vb8vwkiIiIyu6x8fiublnrw4AGOHDmCtm3bpru/bdu22L9/f4bPSUxMRN68edPd5+zsjMOHD+Phw4dPfE5cXFy6g4iIiPRLWXITExOD5ORkeHp6prvf09MTUVFRGT6nXbt2WLFiBY4cOQJN0xAcHIyVK1fi4cOHiImJyfA5gYGBcHd3Tz28vLxy/PdCRERElkN5QbHBYEh3W9O0x+4zGjduHHx8fNC4cWM4ODigU6dO6N27NwDAzs4uw+cEBAQgNjY29YiIiMjR+NPSNODdd4HJk4Hffwdu3TLbWxEREdETKCsoLly4MOzs7B4bpYmOjn5sNMfI2dkZK1euxNKlS3Ht2jUUL14cy5Ytg6urKwoXLpzhc5ycnODk5JTj8WfkyhXg22/T31e5MvDCC0CjRsDLLwPVq+dKKERERDZL2ciNo6MjGjRogO3bt6e7f/v27WjatOlTn+vg4IBSpUrBzs4Oa9euxWuvvYY8eZQPQsHZGZg3D3jnHaBiRbnv7Fngm2+AgQOBZctM18bHSyJ0/ryM+BAREVHOULoUfMiQIfD19YW3tzeaNGmCZcuWITw8HP379wcgU0pXrlxJ7WVz9uxZHD58GI0aNcKtW7cwe/Zs/P333/jyyy9V/jZSFSoEDBpkun3jBnD4sByHDgGtWpkeCw6WKSwAKFjQNLrTqJGcFyqUu7ETERHphdLk5q233sKNGzcwefJkREZGombNmtiyZQvKlCkDAIiMjER4eHjq9cnJyZg1axbOnDkDBwcHtGrVCvv370fZsmUV/Q6erlAhwMdHjkclJQGNGwPHjgE3bwJbt8ph9MUXwPvvy3lCAmAwAI8sFCMiIqIMKO1zo4Kl9bl58AA4flxGdowjPGfPAgcPyigOAKxcCfTvD9Spk350p1IlwAJm44iIiMwuK5/fSkduCHB0BBo2lMPo5k0g7c/t5Eng4UOZygoOBhYtkvs9POR5ixZJokNEREQcuVEdTqZoGnDpUvrRnaNHgfv35fHr1wHjYrF582TUx1jDU6+eFDoTERFZs6x8fjO5sVIPH8qIzt9/Az17mu5v0wb44w/TbXt7oHZt03TWO+8ADg65Hy8REdHzYHLzFHpJbp5kzx45Dh2S49o102MeHrKCy1ins26djOq88AJQrJiScImIiDKFNTc2rHlzOQCZzoqIME1naVr6AuSAACAsTM5LlzYVKjdqBDRoAOTLl/vxExERPS+O3NiopCTggw8k6QkNfbyRoLc3EBRkun3xIlCmDPCEXS6IiIjMiiM39Ez29rLEHADi4mQVlrFY+dCh9Ku37t8HqlaVPjve3umXo5cooSZ+IiKiJ+HIDWUoMREwbskVGiqJTHz849eVKgX4+wNDh+ZqeEREZGM4ckPPLe1eo9WrA7GxkuSkXY7+99/Av/+mn9K6cAHo0iV9/U6NGpzOIiKi3MORG8q2u3el307ZslKQDMhmoMY9s4xcXKRAuVEjwNcXqFUr10MlIiIrx6XgT8Hkxrxu3Ei/FD0oSJIgo40bZWQHkH21fv9dkh5vb8DVVU3MRERk+TgtRcoUKgR07iwHACQnA//8Y5rOatzYdO3PPwMTJsi5wSDTX2mns2rWlMJnIiKirODIDSmzeTPw3XeS9Fy+/Pjjx49Ld2VAanns7WX6y2DI1TCJiMgCcFrqKZjcWKaoKElyjMXKp09LwmMsRO7dG/jyS8DT0zSyY5zO8vBQGTkREeUGJjdPweTGOmha+hGabt2ATZuk+eCjatSQ+h3jnlmPPpeIiKwfa27I6j2anKxfDyQkSBJjLFY+fNi0fUTazUDbtpWePMbRnUaNZEUXEx4iItvAkRuyatHRQGQkUKeO3H74EHB3l0QorSJFZDqrXTtg4MDcj5OIiJ4PR27IZhQtKoeRvT0QEpK+2WBICHD9OvDrr7JxqDG50TTAzw+oVk1Gd+rUARwdVfwuiIgoJzG5IV0xGIDKleXw9ZX7EhNNCU+ZMqZr//0XWLzYdNvREahXD2jSBGjaFHjxRaB48VwNn4iIcgCnpchmRUUBS5eaanhu3kz/+ODBwNy5cn7/vmw/Ubs2e+8QEanAaSmiTChWzNREUNOkl86hQ8CBA8D+/TJyY3ToENCyJZAvn0xhNW0KNGsmTQkLFFASPhERPQGTGyLIdFbFinL06PH445GRUqgcGwv89ZccRtWrA/PnA6+8knvxEulRcjJw7pxs2VKtmuxLR5QdeVQHQGQN3n5bpq3+/htYtkyaClaqJI+FhkriY7R+PfD668D06cDu3cC9e0pCJrIaO3bISKm7uyQ1DRvKXnMVK8pedGm/TBBlBkduiDIpTx5pGFijBtCvn9x3/bpMYRmXogPA9u2yb9bPP8tte3spVG7aVI5XX+U3UrItDx4Ap04BR44AR4/KMXw48Oab8rjBAOzbJ+fOzpLYREfLVPGFC6bFAQCwbRswejRQq5bpqF1bupcTGTG5IXoORYoAnTqlv2/gQEmA9u2TIzJSdkcPCgLmzZOEyJjcHDwoDQhr107fiJDI2l26BHzyiSQyJ09KD6q0DhwwJTfe3sBXXwENGgBVqsi2K9HR8ryTJ9NvuHvkiOlIq0gRSXRmzJDXIdvG1VJEZqRpQHi4jO7s3w9cuQJs3Gh6/JVXZEg+Xz5pMpi2ULlgQXVxE2VGfLxscGsckWnWDOjbVx6LiJCNbo0KFADq15ejQQP5O562NUNmXbkiBf4nTwInTsiv58/LvzUg/Ya7CxZIPZxxdMc40lOhgmnfOrIe3FvqKZjckCXp1k2msW7ffvyxJk0kISKyFAkJwOefm5KZf/4xJRUA0Lmz7AEHyP1TpsgoZoMGksiYawuUe/dk2uvkSeDdd03NOPv0AVaufPx6Z2dZCLB+PVC+vNz38CFHTy0dk5unYHJDliYlRT4kjKM7+/YBZ88C7dsDv/1muq5hQ1m+bqzdadhQRnyIctqNG7KP29GjQP78wEcfyf1JSYCbW/rtTUqUMI3GvPgi0Lq1mpgzcv26jO4YR3hOnpQkyBj/nTvy+wOkW/n33z8+ylO9Ov+dWQomN0/B5IasQUwMcOuWaUXW1atAyZLpr7G3B+rWlUTntdeANm1yPUzSiW3bpCbMWOx76ZLpsRo1ZJWg0ahRkhA0aCCF8sWK5Xq4zyU5Gbh4UZacd+hgur9FC1nd+Chjm4hjx0y1crduycquPFxvnKuY3DwFkxuyRklJ8p/rvn2m0Z2rV02Pf/QRsGiRnN+/L8vVmzaVVVwcaidApomuXpXk5do1U20MIAlMaGj66ytUkBGZhg1lZZPexcfLn0HaUZ6TJ2X0p3jx9P/e2rcH9uyRP7e0K7Zq1ZLCZjIPJjdPweSG9EDTpGDTOJXVoYP8hwvI7WbN5NzZWQqVmzWTZKdxY6BQIXVxU+4JDweCgyWZMdbIREfLY/nyAXFxpqLagAC53ljwW68e4OGhLHSLcu2aFDHXr2+6r0IFGf3JSNWqwOnTptsXL0py5Oxs3jhtAZObp2ByQ3p38KAUch44IMPnj1q2zNSn5+FD+YDj8Lr1SkmRD9Djx4E33jAV7XbqBPz0U/pr7eykhqR+fdk3jQlM9iQnywot4+iOcbTn4kWpO0o7vVWxIhAWJlPMj/bmKVeO//aygsnNUzC5IVuRkgKcOZO+UNl4u0kTueabb2SDUONO6MZCZTYZtEzJyVJsbqyNMR5xcfL4v/+aarMCA6VANu3y61q1WBxrTvHxUoxtXAKfmAh4ecnUVkZefFGmt4wOHZJRocKFzR+rNWJy8xRMbsiWxcRIIaSxDsfPz1SrY2RnZypUHjECKFUq18MkSJ3V6dPyzd84pTF8ODBz5uPXOjlJfdXy5aYeL2QZNA2Iikpfx2NctfXOO6al6g8eyJeKpCQp0k67Ysu4aitvXrW/F9WY3DwFkxsik4cPZTojbaHylSumx69elXoBANiwQep8mjaV5MfYS4Se34MHsiIp7WjM8eNSHL5zp6zkAYBvvwU++EBqYowjMvXry35MLBy3LklJMtJj3JcuPBxo1erJtTxvvw2sWSPnKSky5Virlm1NbWXl85vbLxDZMAcHaX3v7S3TU4CpUPnUKVNiAwArVgBbt8p53rwyfWXsqNykCYfSMyshQb7NG6eH1q2TvZMe3Z4AkD2WoqJMt7t2lQ85dte1fvb26TfcLV1a9tG6c8fUkDBtTU+tWqZrL16UDUUBGe2pWTP9iq06daQjtC3jyA0RZcr8+dIPZf/+xwuVXV3lPuOHbmSkbGRoK98on+Tu3fTbExw9KsuNly6V7rmA1Fk0biwfRg0apB+RqVCBf4YkyXBSkml0LjhYFgWEhsqo36PGjpVFBQBw8ybwyy+S9FSrZt1TWxy5IaIcN2iQHCkpUtRqnMbav1/qctKOJrRoIUWUaQuVX3jB1A1WjzTNtFLp779la41HtycwSttTpl49WU1jzu0JyLoZDOmnHb29pe9VUpI0I3y0N0/auqvDh4FeveTczg6oXDn9iq0mTfTZm4cjN0T03NLuyxMXJ9NZ9+6lvyZPHhku79ZNutxaM+P2BGlHZLp2BaZNk8djYkwfGGm3JzCOyJQsyUSGcscff8gozsmTGbeGWL3alPycOSOjs8bpLUvbvJcjN0SUq9J+q3Rzk41AT5wwLUPfv18KJo8dk2+dRg8fAj17mnZEr1fPcguV79yRD4GjR4HLlx9//MgR03nhwrIhas2a1rc9AelL69ZyGDtUP9qbp04d07Xbt8vorFGJEulXbbVvbz2jPBy5IaJc8e+/0liwdGmgUSO5LyhIEhujvHkl+TF2VG7WLPc6KqfdnsA4IuPlZVoqr2nyTda4g3vFiul7yNSrx+7PZN02bwa++EKSnowS+L17Td3P//pLvrQYp7dyY1qVS8GfgskNkeWIiJDlzcbRnRs30j8eGGiawoqNleurV8/ZItspU+S9025PYFSuXPqluevXA0WLylJ4dvclPYuLk9qxtCM9P/9sWuHl7w/Mm2e63tU1/aqt//0v54vhmdw8BZMbIsukaVIcmbaj8uefA82by+Pr1skyaHf3xwuVXV2f/LopKbLE1jgiExsrq5WMvL1NU0pptycwjsgYv6kSkcn69ZLsnDghzSbTtjIoUSJ9v6ycwuTmKZjcEFmnBQtkg8f4+PT358kj3xRXrJBkBJClrzt2SEJz7JhpewJA+ovcvStdfQHg66/ltnF7Am5wSJQ1Dx/KCkrjCI+jIzBxYs6/D5Obp2ByQ2S9kpLkP1DjEvT9+021AeHhUiMDyAjPunWm5xm3JzCOyPTowT2WiKwNV0sRkS7Z20vhbr16si8WIMPfwcGmxAYAOneW2hhuT0BkmzhyQ0RERBYvK5/fbOxNREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4oT24WL16McuXKIW/evGjQoAH27Nnz1Ou//fZb1KlTB/ny5UPx4sXx3nvv4caju+0RERGRzVKa3Kxbtw7+/v4YM2YMjh07hubNm8PHxwfh4eEZXr9371707NkTffr0walTp/D9998jKCgIffv2zeXIiYiIyFIpTW5mz56NPn36oG/fvqhWrRrmzp0LLy8vLFmyJMPrDx48iLJly2LQoEEoV64cXnzxRXz44YcIDg5+4nskJiYiLi4u3UFERET6pSy5efDgAY4cOYK2bdumu79t27bYv39/hs9p2rQp/v33X2zZsgWapuHatWv44Ycf8Oqrrz7xfQIDA+Hu7p56eKXdgIaIiIh0R1lyExMTg+TkZHh6eqa739PTE1FRURk+p2nTpvj222/x1ltvwdHREcWKFYOHhwcWLFjwxPcJCAhAbGxs6hEREZGjvw8iIiKyLMoLig0GQ7rbmqY9dp9RaGgoBg0ahPHjx+PIkSPYunUrwsLC0L9//ye+vpOTE9zc3NIdREREpF/2qt64cOHCsLOze2yUJjo6+rHRHKPAwEA0a9YMw4cPBwDUrl0bLi4uaN68OaZOnYrixYubPW4iIiKybMqSG0dHRzRo0ADbt29Hly5dUu/fvn07OnXqlOFz7t27B3v79CHb2dkBkBGfzDBex8JiIiIi62H83M7U572m0Nq1azUHBwftiy++0EJDQzV/f3/NxcVFu3TpkqZpmjZq1CjN19c39fpVq1Zp9vb22uLFi7ULFy5oe/fu1by9vbUXXngh0+8ZERGhAeDBgwcPHjx4WOERERHxzM96ZSM3APDWW2/hxo0bmDx5MiIjI1GzZk1s2bIFZcqUAQBERkam63nTu3dv3LlzBwsXLsTQoUPh4eGBl19+GZ9++mmm37NEiRKIiIiAq6vrE2t7sisuLg5eXl6IiIhgbY+V4s/QuvHnZ/34M7R+5voZapqGO3fuoESJEs+81qBpmZzPoWeKi4uDu7s7YmNj+Y/SSvFnaN3487N+/BlaP0v4GSpfLUVERESUk5jcEBERka4wuclBTk5OmDBhApycnFSHQtnEn6F148/P+vFnaP0s4WfImhsiIiLSFY7cEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyU0OWbx4McqVK4e8efOiQYMG2LNnj+qQKAt2796Njh07okSJEjAYDNi8ebPqkCgLAgMD0bBhQ7i6uqJo0aLo3Lkzzpw5ozosyoIlS5agdu3acHNzg5ubG5o0aYLffvtNdViUTYGBgTAYDPD391fy/kxucsC6devg7++PMWPG4NixY2jevDl8fHzSbR1Bli0+Ph516tTBwoULVYdC2bBr1y4MGDAABw8exPbt25GUlIS2bdsiPj5edWiUSaVKlcL06dMRHByM4OBgvPzyy+jUqRNOnTqlOjTKoqCgICxbtgy1a9dWFgOXgueARo0aoX79+liyZEnqfdWqVUPnzp0RGBioMDLKDoPBgE2bNqFz586qQ6Fsun79OooWLYpdu3bhpZdeUh0OZVPBggXx2WefoU+fPqpDoUy6e/cu6tevj8WLF2Pq1KmoW7cu5s6dm+txcOTmOT148ABHjhxB27Zt093ftm1b7N+/X1FURLYtNjYWgHw4kvVJTk7G2rVrER8fjyZNmqgOh7JgwIABePXVV9G6dWulcSjdFVwPYmJikJycDE9Pz3T3e3p6IioqSlFURLZL0zQMGTIEL774ImrWrKk6HMqCkydPokmTJrh//z7y58+PTZs2oXr16qrDokxau3Ytjh49iqCgINWhMLnJKQaDId1tTdMeu4+IzM/Pzw8nTpzA3r17VYdCWVSlShWEhITg9u3b2LBhA3r16oVdu3YxwbECERERGDx4MLZt24a8efOqDofJzfMqXLgw7OzsHhuliY6Ofmw0h4jMa+DAgfjpp5+we/dulCpVSnU4lEWOjo6oWLEiAMDb2xtBQUGYN28eli5dqjgyepYjR44gOjoaDRo0SL0vOTkZu3fvxsKFC5GYmAg7O7tci4c1N8/J0dERDRo0wPbt29Pdv337djRt2lRRVES2RdM0+Pn5YePGjdixYwfKlSunOiTKAZqmITExUXUYlAmvvPIKTp48iZCQkNTD29sbPXr0QEhISK4mNgBHbnLEkCFD4OvrC29vbzRp0gTLli1DeHg4+vfvrzo0yqS7d+/i/PnzqbfDwsIQEhKCggULonTp0gojo8wYMGAAvvvuO/z4449wdXVNHUl1d3eHs7Oz4ugoM0aPHg0fHx94eXnhzp07WLt2LXbu3ImtW7eqDo0ywdXV9bEaNxcXFxQqVEhJ7RuTmxzw1ltv4caNG5g8eTIiIyNRs2ZNbNmyBWXKlFEdGmVScHAwWrVqlXp7yJAhAIBevXph9erViqKizDK2YWjZsmW6+1etWoXevXvnfkCUZdeuXYOvry8iIyPh7u6O2rVrY+vWrWjTpo3q0MgKsc8NERER6QprboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMbohId3r37o3OnTurDoOIFGFyQ0TZ0rt3bxgMhseO9u3bqw4N8+bNs5htMwwGAzZv3qw6DCKbwr2liCjb2rdvj1WrVqW7z8nJSVE0QHJyMgwGA9zd3ZXFQETqceSGiLLNyckJxYoVS3cUKFAAO3fuhKOjI/bs2ZN67axZs1C4cGFERkYCkE0u/fz84OfnBw8PDxQqVAhjx45F2u3uHjx4gBEjRqBkyZJwcXFBo0aNsHPnztTHV69eDQ8PD/zyyy+oXr06nJyccPny5cempVq2bImBAwfC398fBQoUgKenJ5YtW4b4+Hi89957cHV1RYUKFfDbb7+l+/2FhoaiQ4cOyJ8/Pzw9PeHr64uYmJh0rzto0CCMGDECBQsWRLFixTBx4sTUx8uWLQsA6NKlCwwGQ+ptIjIvJjdElONatmwJf39/+Pr6IjY2FsePH8eYMWOwfPlyFC9ePPW6L7/8Evb29jh06BDmz5+POXPmYMWKFamPv/fee9i3bx/Wrl2LEydOoGvXrmjfvj3OnTuXes29e/cQGBiIFStW4NSpUyhatGiGMX355ZcoXLgwDh8+jIEDB+J///sfunbtiqZNm+Lo0aNo164dfH19ce/ePQBAZGQkWrRogbp16yI4OBhbt27FtWvX0K1bt8de18XFBYcOHcKMGTMwefJkbN++HQAQFBQEQHYnj4yMTL1NRGamERFlQ69evTQ7OzvNxcUl3TF58mRN0zQtMTFRq1evntatWzetRo0aWt++fdM9v0WLFlq1atW0lJSU1PtGjhypVatWTdM0TTt//rxmMBi0K1eupHveK6+8ogUEBGiapmmrVq3SAGghISGPxdapU6d07/Xiiy+m3k5KStJcXFw0X1/f1PsiIyM1ANqBAwc0TdO0cePGaW3btk33uhERERoA7cyZMxm+rqZpWsOGDbWRI0em3gagbdq06Ql/ikRkDqy5IaJsa9WqFZYsWZLuvoIFCwIAHB0d8c0336B27dooU6YM5s6d+9jzGzduDIPBkHq7SZMmmDVrFpKTk3H06FFomobKlSune05iYiIKFSqUetvR0RG1a9d+Zqxpr7Gzs0OhQoVQq1at1Ps8PT0BANHR0QCAI0eO4K+//kL+/Pkfe60LFy6kxvXoexcvXjz1NYhIDSY3RJRtLi4uqFix4hMf379/PwDg5s2buHnzJlxcXDL92ikpKbCzs8ORI0dgZ2eX7rG0CYezs3O6BOlJHBwc0t02GAzp7jO+RkpKSuqvHTt2xKeffvrYa6WdWsvodY2vQURqMLkhIrO4cOECPv74Yyxfvhzr169Hz5498eeffyJPHlOp38GDB9M95+DBg6hUqRLs7OxQr149JCcnIzo6Gs2bN8/t8FG/fn1s2LABZcuWhb199v+rdHBwQHJycg5GRkTPwoJiIsq2xMREREVFpTtiYmKQnJwMX19ftG3bFu+99x5WrVqFv//+G7NmzUr3/IiICAwZMgRnzpzBmjVrsGDBAgwePBgAULlyZfTo0QM9e/bExo0bERYWhqCgIHz66afYsmWL2X9vAwYMwM2bN9G9e3ccPnwYFy9exLZt2/D+++9nKVkpW7Ys/vzzT0RFReHWrVtmjJiIjDhyQ0TZtnXr1nRTNABQpUoVvPPOO7h06RJ+/vlnAECxYsWwYsUKdOvWDW3atEHdunUBAD179kRCQgJeeOEF2NnZYeDAgfjggw9SX2vVqlWYOnUqhg4diitXrqBQoUJo0qQJOnToYPbfW4kSJbBv3z6MHDkS7dq1Q2JiIsqUKYP27dunG316llmzZmHIkCFYvnw5SpYsiUuXLpkvaCICABg0LU1TCSKiXNKyZUvUrVs3w0JjIqLnwWkpIiIi0hUmN0RERKQrnJYiIiIiXeHIDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdOX/AfewDez6rcttAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -603,54 +568,11 @@ "source": [ "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", - "# y_train\n", - "plt.plot(y_train.anchor_year, y_train.sel(i_interval=1), \"b\", label = \"y_train\")\n", - "plt.plot(y_train.anchor_year, model.predict(clusters_train), \"b--\", label = \"training_pred\")\n", - "plt.plot(y_train.anchor_year, np.repeat(target_clim, y_train.anchor_year.size), \"k--\", \n", - " label = \"climatology\")\n", - "# y_test\n", - "plt.plot(y_test.anchor_year, y_test.sel(i_interval=1), \"r\", label = \"y_test\")\n", - "plt.plot(y_test.anchor_year, prediction, \"r--\", label = \"test_pred\")\n", - "plt.plot(y_test.anchor_year, np.repeat(target_clim, y_test.anchor_year.size), \"k--\", \n", - " label = \"climatology\")\n", - "plt.xlabel(\"years\")\n", - "plt.ylabel(\"deg C\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Plot the RMSE for both training and testing for each fold" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYVUlEQVR4nO3deXiMZxcG8HuSSCQhsUcRQmvfib22UoTmo9RWElG02qitWlutVbRapZa0tBSlllrb0qJqry2EltgqxBLUllizvt8fp9mIyCQz88y8c/+ua67OTCYzh2jmzPOccx6DpmkaiIiIiHTCQXUARERERKbE5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuOKkOwNKSkpJw5coV5M2bFwaDQXU4RERElAWapuHu3bsoVqwYHBwyX5uxu+TmypUr8Pb2Vh0GERERZcPFixdRokSJTB9jd8lN3rx5AchfjoeHh+JoiIiIKCtiYmLg7e2d8j6eGbtLbpK3ojw8PJjcEBER2ZislJSwoJiIiIh0hckNERER6QqTGyIiItIVu6u5ISIi/UtMTER8fLzqMMhIzs7Oz2zzzgomN0REpBuapuHq1au4c+eO6lAoGxwcHFC6dGk4Ozvn6HmY3BARkW4kJzZFihSBm5sbh7XakOQhu1FRUShZsmSOfnZMboiISBcSExNTEpuCBQuqDoeyoXDhwrhy5QoSEhKQK1eubD8PC4qJiEgXkmts3NzcFEdC2ZW8HZWYmJij52FyQ0REusKtKNtlqp8dkxsiIiLSFSY3REREpCtMboiIiHTEx8cHM2bMUP4cKrFbypQuXADu3AGqV1cdCRER2YhmzZqhRo0aJksmDh48CHd3d5M8l61icmMq+/cDfn6Apydw+DCQP7/qiIiISCc0TUNiYiKcnJ79tl24cGELRGTduC1lKuXLA/nyAefPA717A5qmOiIiIvrP/ftPvzx6lPXHPnz47McaIygoCDt27MDMmTNhMBhgMBhw/vx5bN++HQaDAb/99ht8fX3h4uKCXbt24Z9//kH79u3h5eWFPHnyoE6dOti6dWu653x8S8lgMOCbb77Bq6++Cjc3N5QtWxYbNmwwKs7IyEi0b98eefLkgYeHB7p06YJr166lfP3o0aNo3rw58ubNCw8PD9SuXRuHDh0CAFy4cAH+/v7Inz8/3N3dUblyZWzcuNG4vygjMbkxlXz5gFWrAGdnYP16wIb3KomI9CZPnqdfOnVK/9giRZ7+WD+/9I/18XnyMcaYOXMmGjRogH79+iEqKgpRUVHw9vZO+foHH3yAKVOmIDw8HNWqVcO9e/fQtm1bbN26FUeOHEHr1q3h7++PyMjITF9nwoQJ6NKlC44dO4a2bduiR48euHXrVpZi1DQNHTp0wK1bt7Bjxw5s2bIF//zzD7p27ZrymB49eqBEiRI4ePAgQkNDMWLEiJQhfMHBwYiNjcXOnTvx119/4ZNPPkEeY/+ijMRtKVOqXRv44gsgOBj44AOgQQOgfn3VURERkZXy9PSEs7Mz3NzcULRo0Se+PnHiRLz88ssptwsWLIjqaeo6J02ahLVr12LDhg0YMGDAU18nKCgI3bt3BwBMnjwZs2bNwoEDB9CmTZtnxrh161YcO3YMERERKYnXkiVLULlyZRw8eBB16tRBZGQk3n//fVSoUAEAULZs2ZTvj4yMRKdOnVC1alUAQJkyZZ75mjnF5MbU3n4b2LkTWLEC6NIFOHIE4BhwIiKl7t17+tccHdPfvn796Y99/MDq8+ezHVKW+Pr6prt9//59TJgwAT///HPKMQUPHz585spNtWrVUq67u7sjb968uJ7ZHzSN8PBweHt7p1tRqlSpEvLly4fw8HDUqVMHQ4cORd++fbFkyRK0bNkSnTt3xvPPPw8AGDhwIN5++21s3rwZLVu2RKdOndLFYw7cljI1gwGYNw8oWxa4eBEIDASSklRHRURk19zdn37JnTvrj3V1ffZjTRt3+id8//33sXr1anz88cfYtWsXwsLCULVqVcTFxWX6PI+f02QwGJCUxfcmTdMynByc9v7x48fj+PHjaNeuHbZt24ZKlSph7dq1AIC+ffvi3LlzCAgIwF9//QVfX1/MmjUrS6+dXUxuzMHDA1i5EnBxATZuBKZNUx0RERFZKWdn5yyfpbRr1y4EBQXh1VdfRdWqVVG0aFGcN/PyUaVKlRAZGYmLFy+m3HfixAlER0ejYsWKKfeVK1cOQ4YMwebNm9GxY0csXLgw5Wve3t7o378/1qxZg/feew/z5883a8xMbsylRg0gOTMdPRrYvVtpOEREZJ18fHywf/9+nD9/Hjdu3Mh0ReWFF17AmjVrEBYWhqNHj+L111/P8gpMdrVs2RLVqlVDjx49cPjwYRw4cACBgYFo2rQpfH198fDhQwwYMADbt2/HhQsXsGfPHhw8eDAl8Rk8eDB+++03RERE4PDhw9i2bVu6pMgcmNyYU9++QI8eQGIi0LUr8O+/qiMiIiIrM2zYMDg6OqJSpUooXLhwpvUzX3zxBfLnz4+GDRvC398frVu3Rq1atcwan8FgwLp165A/f340adIELVu2RJkyZbBixQoAgKOjI27evInAwECUK1cOXbp0gZ+fHyZMmABATvgODg5GxYoV0aZNG5QvXx5z5841b8yaZl8DWWJiYuDp6Yno6Gh4eHiY/wXv3QPq1AFOngRatQI2bXqyIo2IiHLs0aNHiIiIQOnSpZH78UIasgmZ/QyNef/mu6y55ckj829cXYHNm4HJk1VHREREpGtMbiyhShUgeQlu3Djgjz/UxkNERKRjTG4sJShILklJwOuvA2nGVhMREZHpMLmxpDlzgMqVgatXJcHJYusfERERZR2TG0tyc5P6G3d3YNs2YOJE1RERERHpDpMbS6tYEfj6a7n+0UfAli1q4yEiItIZpcnNzp074e/vj2LFiqX00WcmKioKr7/+OsqXLw8HBwcMHjzYInGaXI8eQL9+gKbJ9StXVEdERESkG0qTm/v376N69eqYPXt2lh4fGxuLwoULY/To0elORbVJM2cC1avLYL/u3YGEBNURERER6YLSU8H9/Pzg5+eX5cf7+Phg5syZAIAFCxZk6XtiY2MRGxubcjsmJsa4IM3F1VXOn/L1lVPEx47lDBwiIrKoZs2aoUaNGpgxY4bqUExK9zU3U6ZMgaenZ8ol7ZHtypUrB3zzjVyfMkWmFxMRkV1p1qyZycssgoKC0KFDB5M+py3RfXIzcuRIREdHp1zSnmpqFbp0Ad55R64HBADWFh8REZGN0X1y4+LiAg8Pj3QXqzN9OlCrFnDzJtCtGxAfrzoiIiKygKCgIOzYsQMzZ86EwWCAwWDA+fPnAQAnTpxA27ZtkSdPHnh5eSEgIAA3btxI+d4ff/wRVatWhaurKwoWLIiWLVvi/v37GD9+PBYtWoT169enPOf27duzFM/t27cRGBiI/Pnzw83NDX5+fjhz5kzK1y9cuAB/f3/kz58f7u7uqFy5MjZu3JjyvT169EDhwoXh6uqKsmXLYuHChSb7uzKG0pob+o+Li8y/qVUL2LsXGDUKmDZNdVRERLZP04AHDyz/um5ugMHwzIfNnDkTp0+fRpUqVTDxv9lnhQsXRlRUFJo2bYp+/fph+vTpePjwIYYPH44uXbpg27ZtiIqKQvfu3fHpp5/i1Vdfxd27d7Fr1y5omoZhw4YhPDwcMTExKclFgQIFshR2UFAQzpw5gw0bNsDDwwPDhw9H27ZtceLECeTKlQvBwcGIi4vDzp074e7ujhMnTiBPnjwAgDFjxuDEiRPYtGkTChUqhLNnz+Lhw4fZ/AvMGSY31qJMGWDhQqBjR+Czz4AmTQB/f9VRERHZtgcP5ABjS7t3Twa2PoOnpyecnZ3h5uaGokWLptwfEhKCWrVqYXKaRpMFCxbA29sbp0+fxr1795CQkICOHTuiVKlSAICqVaumPNbV1RWxsbHpnvNZkpOaPXv2oGHDhgCApUuXwtvbG+vWrUPnzp0RGRmJTp06pbxWmTJlUr4/MjISNWvWhK+vLwBpAlJF6bbUvXv3EBYWhrCwMABAREQEwsLCEBkZCUDqZQIDA9N9T/Lj7927h3///RdhYWE4ceKEpUM3j1dfBQYNkuu9egH/LU0SEZF9CQ0NxR9//IE8efKkXCpUqAAA+Oeff1C9enW0aNECVatWRefOnTF//nzcvn07R68ZHh4OJycn1KtXL+W+ggULonz58ggPDwcADBw4EJMmTUKjRo0wbtw4HDt2LOWxb7/9NpYvX44aNWrggw8+wN69e3MUT04oTW4OHTqEmjVrombNmgCAoUOHombNmhg7diwAGdqXnOgkS358aGgoli1bhpo1a6Jt27YWj91sPv0UqFsXuH0b6NoViItTHRERke1yc5NVFEtf3NxyFHZSUhL8/f1TPtAnX86cOYMmTZrA0dERW7ZswaZNm1CpUiXMmjUL5cuXR0RERLZfU9O0p95v+G+LrW/fvjh37hwCAgLw119/wdfXF7NmzQIg410uXLiAwYMH48qVK2jRogWGDRuW7XhyRLMz0dHRGgAtOjpadShPFxGhafnzaxqgaYMGqY6GiMgmPHz4UDtx4oT28OFD1aEY5eWXX9YGDBiQ7r5Ro0Zp5cuX1+Lj47P0HAkJCVrx4sW1zz//XNM0TevXr5/2yiuvPPP7mjZtqg36733m9OnTGgBtz549KV+/ceOG5urqqq1atSrD7x8xYoRWtWrVDL/21VdfaXnz5s1S/Mky+xka8/6t+24pm+TjAyxaJNdnzgTWrFEaDhERmY+Pjw/279+P8+fP48aNG0hKSkJwcDBu3bqF7t2748CBAzh37hw2b96MN954A4mJidi/fz8mT56MQ4cOITIyEmvWrMG///6LihUrpjznsWPHcOrUKdy4cQPxWejCLVu2LNq3b49+/fph9+7dOHr0KHr27InixYujffv2AIDBgwfjt99+Q0REBA4fPoxt27alvObYsWOxfv16nD17FsePH8fPP/+c8jVLY3Jjrfz9geTlvDfeAP75R208RERkFsOGDYOjoyMqVaqEwoULIzIyEsWKFcOePXuQmJiI1q1bo0qVKhg0aBA8PT3h4OAADw8P7Ny5E23btkW5cuXw4Ycf4vPPP0+Z+t+vXz+UL18evr6+KFy4MPbs2ZOlWBYuXIjatWvjlVdeQYMGDaBpGjZu3IhcuXIBABITExEcHIyKFSuiTZs2KF++PObOnQsAcHZ2xsiRI1GtWrWUrbPly5eb5y/tGQya9pRNNp2KiYmBp6cnoqOjrXPmTVrx8UCzZtIeXqsWsGcPkDu36qiIiKzSo0ePEBERgdKlSyM3f1fapMx+hsa8f3PlxprlygWsWAEULAgcPgy8957qiIiIiKwekxtrV6IEsGSJXJ87V5IdIiIieiomN7bAzw8YOVKu9+sHnD6tNh4iIiIrxuTGVkycKFOL794FOncGFI20JiIisnZMbmyFkxPwww9A4cLAsWOpk4yJiCgdO+uT0RVT/eyY3NiSYsWAZcvkMLb584GlS1VHRERkNZLblR+oOCiTTCLuv6n8jo6OOXoeHpxpa1q2BMaMkW2qt96SFnFFQ5KIiKyJo6Mj8uXLh+vXrwMA3NzcUo4NIOuXlJSEf//9F25ubnByyll6wuTGFo0dC+zeDWzbJvU3+/dn6fRZIiK9Sz4FOznBIdvi4OCAkiVL5jgpZXJjixwdZXuqRg3g+HFgwABg4ULVURERKWcwGPDcc8+hSJEiWTpygKyLs7MzHBxyXjHD5MZWeXlJgXGLFsB33wFNmwJBQaqjIiKyCo6Ojjmu2yDbxYJiW9asGTBhglx/5x3g77+VhkNERGQNmNzYulGjgNatZe5N587AvXuqIyIiIlKKyY2tc3CQ4xmKFwdOngT69wc444GIiOwYkxs9KFwYWL5cCo2XLgW++UZ1RERERMowudGLF18EPv5Yrr/7LhAWpjQcIiIiVZjc6Mn77wPt2gGxsVJ/ExOjOiIiIiKLY3KjJw4OwKJFgLc3cPasnCDO+hsiIrIzTG70pmBBYOVKOWhz5UogJER1RERERBbF5EaP6tcHPv1Urg8ZAoSGqo2HiIjIgpjc6NXgwUCHDkBcnNTf3LmjOCAiIiLLYHKjVwYDsGAB4OMDREQAb7zB+hsiIrILTG70LH9+qbvJlQtYuxb48kvVEREREZkdkxu9q1MHmD5drg8bBuzfrzYeIiIiM2NyYw+Cg6XuJiEB6NIFuHVLdURERERmw+TGHhgMwPz5wPPPA5GRQFAQ62+IiEi3mNzYC09PYNUqwMUF+Okn4PPPVUdERERkFkxu7EnNmsDMmXJ9xAhgzx618RAREZkBkxt78+abQPfuQGIi0LUrcOOG6oiIiIhMismNvTEYgK+/BsqVAy5fBgICgKQk1VERERGZDJMbe5Q3r9Tf5M4N/PorMHWq6oiIiIhMhsmNvapWDZgzR66PGQPs2KE2HiIiIhNhcmPPevcGAgNlW6p7d+DaNdURERER5RiTG3tmMABz5wKVKgFRUUDPnlJoTEREZMOY3Ng7d3epv3FzA7ZuBSZNUh0RERFRjjC5IVm5+eoruT5hAvD772rjIcouTePxIkTE5Ib+ExAA9Okjbw6vvy7bVES2JCoKaNECKFRItluJyG4xuaFUs2YBVasC169LgXFCguqIiLJm61agRg3gjz8kQR80iBO4iewYkxtK5eoq9Td58khr+PjxqiMiylxiIjB2LNCqlSTlVasC/v6SmHfuDFy9qjpCIlKAyQ2lV768nCAOAJMnA7/9pjYeoqe5ckW2oT76SFZr3nwT2L8fWLYMqFxZtqm6dgXi41VHSkQWxuSGntStG9C/v7xh9OwJXLqkOiKi9DZvlm2oHTtkpXHZMjlWxNVVbq9ZI5O4d+6UQ2KJyK4wuaGMffGFnCJ+44bU3/DTL1mDhATgww+BNm2Af/8FqlcHQkPl32ha5coBixbJ9enTgZUrLR8rESnD5IYylju3vCF4eAC7d8sbCpFKydtQH38sq4pvvQX8+ackMhl59dXUVZs33gBOnLBcrESkFJMberoXXgAWLJDrn34K/Pyz2njIfv32m2xD7dwp204//CCzmVxdM/++jz4CXnoJuH8f6NgRiImxSLhEpBaTG8pcp07Au+/K9V69gMhItfGQfUlIAEaPTr8Ndfiw1IVlhZOTJEIlSgCnTskKjqaZN2Yie3f4MPDggdIQmNzQs02bBtSpI5Nfu3YF4uJUR0T24PJlWXWZPFluv/02sG8fULascc9TpAjw449ArlzA6tXA55+bPlYiEidPyv+3TZvKBxJFmNzQs7m4ACtWAPnyyZsLu0/I3H79Vbahdu2SrqcVK2TqcO7c2Xu+evWAL7+U68OHy7A/IjKtmzeBV14BoqPl/1UPD2WhMLmhrCldGvjuO7n+xRfAunUqoyG9SkgARo4E/PykU69mTVni7tIl58/91luytZqUJCuQHHFAZDrx8cBrrwH//AP4+Mg4BhcXZeEwuaGsa98eGDpUrgcFAefOKQ2HdObSJaB5c2DqVLn9zjvA3r1S2G4KBgMQEiIrQv/+KxOMucVKlHOaJrWZ27dLwf9PPwGFCysNickNGWfqVKB+fVl27NIFiI1VHRHpwaZNknTs3i3bUCtXAnPmZH8b6mlcXaXuJnmL9b33TPv8RPZo9mwZomkwSAF/lSqqI2JyQ0bKlUvqHwoUkOFpw4apjohsWXy81HC1bSv79bVqAUeOyKqKuZQpA3z/vVyfPTv1OhEZ77ffgMGD5fqnn0rNjRVgckPGK1kSWLJErs+eLYdtEhnr4kWgWTPgk0/k9rvvyjbU88+b/7XbtZMDNwE5k+rYMfO/JpHenDwp9WtJSUDv3la1EsrkhrKnbVvpOgGAPn2As2fVxkO25eefZRtq717pqPjxR+lmsmQB4tixMj/n4UMZ8HfnjuVem8jW3boF+PtLicKLL0o9m8GgOqoUTG4o+yZNkn/Ud+/KNsKjR6ojImsXHw988IH8Urx1C/D1lW2oTp0sH4ujI7B0qXR2/PMPEBgon0CJKHPJnVFnz1pFZ1RGmNxQ9jk5AcuXA4UKAWFhqfuuRBmJjJTBXtOmye2BA6WAuEwZdTEVKCAFxi4u0uExZYq6WIhsQXJn1B9/WE1nVEaY3FDOFC8un34NBqmW/+EH1RGRNfrpJ9mG+vNPwNNTEoqZM63j016tWjIgEADGjAE2b1YbD5E1s8LOqIwwuaGca9VKzv8BgH79pMiMCJDl62HDgP/9D7h9W47xOHJEalysyRtvyL9dTQNefx24cEF1RETWZ/Nmq+yMygiTGzKN8eNlANv9+1J/o/jQNLICFy4ATZqknuU0eLBsQ5UurTSsp/ryS6kBunlT6glYQ0aU6uRJmW1mhZ1RGWFyQ6bh6AgsWwZ4eQF//516kjjZpw0b5OiEfftkYN7atXJsh7Oz6sieLndu6doqWBA4dEhqgojI6jujMsLkhkynaFFJcBwcgAULgMWLVUdElhYXJ5/o2reXbai6dWUbqkMH1ZFlTalSUkdgMADz5wPffqs6IiK10nZGlSqVWoBv5ZjckGm99BIwbpxcf/tt4PhxtfGQ5Zw/DzRuDEyfLreHDJFTvX18VEZlvJdfljEHABAcLJO4iexRRp1RRYqojipLmNyQ6Y0eLW8QDx5I/c29e6ojInNbv162oQ4ckG2odeskybHmbajMjBghy/CxsfKp9eZN1RERWd7jnVFVq6qOKMuY3JDpOTrKeT3FigHh4XK6s6apjorMIS5OVmg6dJAJv/XqyTZU+/aqI8sZBwfZVn3+eVmR6tEDSExUHRWR5aTtjPrkE6vujMoIkxsyjyJFJNN3cJBzqBYsUB0RmVpEhBQXzpght997D9i50/a2oZ4mXz6ZvOrqKocDTpyoOiIiy0jbGRUUZJMHJDO5IfNp0iS1dmHAAB5OqCdr18o21MGDQP78si312We2uw31NNWqAfPmyfWJE+VMLCI9e7wz6quvrL4zKiNKk5udO3fC398fxYoVg8FgwLp16575PTt27EDt2rWRO3dulClTBl999ZX5A6XsGz4c8POTmSGdO8s5VGS74uJkqbpjR/nlV7++bEP973+qIzOfnj0lOQeAgAA5h4pIj+Lj5fe0jXVGZURpcnP//n1Ur14ds2fPztLjIyIi0LZtWzRu3BhHjhzBqFGjMHDgQKxevdrMkVK2JdculCgBnD4NvPkm629s1blzQKNGcmwCIEvVO3fKL0G9+/xzoEEDqSvq1IlDKkl/kjujtm2zuc6ojBg0zTreaQwGA9auXYsOmczDGD58ODZs2IDw8PCU+/r374+jR4/izz//zNLrxMTEwNPTE9HR0fDw8Mhp2JRVe/fKoYkJCTIAqn9/1RGRMdaskSMKoqPlsMlFi2yuwDDHLl+Wc6iuX5cTxL/7ziaX64kyNGuWDK40GGQIpxX+/23M+7dN1dz8+eefaNWqVbr7WrdujUOHDiE+Pj7D74mNjUVMTEy6CynQsGHqicuDBgGHD6uNh7ImNlZ+4XXqJIlNgwayDWWFv/jMrnhxYMUK6QZcvFhaZIn0wMY7ozJiU8nN1atX4eXlle4+Ly8vJCQk4MaNGxl+z5QpU+Dp6Zly8fb2tkSolJH33pNCtbg42deNjlYdEWUmeRtq1iy5/cEHwI4dQMmSauNSqVkzYOpUuT5wILB/v9JwiHIsbWdUr1422RmVEZtKbgDZvkoreVft8fuTjRw5EtHR0SmXixcvmj1GegqDQbYzSpWSN84+fVh/Y61+/FG6oUJDZRvq55/lE12uXKojU++992QlK3ks/fXrqiMiyp60nVGNGqUO7NMBm0puihYtiqtXr6a77/r163ByckLBggUz/B4XFxd4eHiku5BC+fMDK1fKm+Tq1TIBk6xHbKwUFXbuDMTEyHZiWBjQrp3qyKyHwQAsXAhUqABcugR06ya1ZES25PHOqDVrbLYzKiM2ldw0aNAAW7ZsSXff5s2b4evri1z8RGk76tYFpk2T6++9JyP7Sb1//pFkJjnhHD4c2L4d4Fbuk/LmlTeDPHnk3J0PP1QdEVHWaZpsq+qkMyojSpObe/fuISwsDGFhYQCk1TssLAyRkZEAZEspMDAw5fH9+/fHhQsXMHToUISHh2PBggX49ttvMUwne4R2ZeBAmZUSHy/7vbdvq47Ivq1aJZ1Ahw8DBQsCGzdKbQk/NDxdxYqpk7c/+UQGGxLZgjlzUofzLVtmU2dGZZmm0B9//KEBeOLSq1cvTdM0rVevXlrTpk3Tfc/27du1mjVras7OzpqPj48WEhJi1GtGR0drALTo6GgT/Sko2+7c0bQyZTQN0LT27TUtKUl1RPbn4UNNe/tt+RkAmvbii5p28aLqqGzL0KHyd5c3r6adOqU6GqLM/fabpjk4yL/ZTz9VHY1RjHn/tpo5N5bCOTdW5vBhaS+Oi5NBaUOHqo7Ifpw5I6tm/62cYuRIOWLAyUlpWDYnPh5o2VIGGlauDOzbJ0v9RNbm5EmZKh4dLZ1RCxfaVAGxbufckA7VqpV68OLw4UAWhzFSDq1YAdSuLYlNoULApk3A5MlMbLIjVy75+3zuOeD4caBvX3YBkvXRcWdURpjckHr9+wNdu0rHSdeuwM2bqiPSr0ePgLfflg6fu3eBxo0lwWnTRnVktq1oUalbcnKSROfLL1VHRJRK551RGWFyQ+oZDHLyctmywMWLMto+KUl1VPpz+rQsSScXEo4eLd0SxYurjkwfGjUCpk+X68OGAbt3q42HCLCLzqiMMLkh6+DhIZ98c+eWTp3kVnEyjR9+kG2oo0eBwoWBX38FJk3iNpSpDRgAdO8uq5CdOwNRUaojIntnD51RGWByQ9ajevXUUf+jRwO7dqmNRw8ePgTeegt4/XXg3j05vDQsDHjsjDYyEYMBmD8fqFIFuHpVtlmfcu4dkdk9fmaUv7/ScCyJyQ1Zlz59gJ49gcREqQvhaPvsO3VKtqHmzZM33Q8/BLZuBYoVUx2Zvrm7y/RtDw9J0IcPVx0R2aPkM6MSE3V1ZlRWMbkh62IwACEhMtr+yhUgIID1N9mxbBng6wscOybbUL/9Bnz0EbehLKVcOTk5HAC++EKKjIksxc46ozLC5IasT548Un/j6irLqpMnq47Idjx8CLz5JtCjh2xDNWsm21Avv6w6MvvTvr3MDgJkRfL4cbXxkH2ww86ojDC5IetUpYqs4ADAuHFyfg9l7uRJoF49qfkwGICxY7kNpdpHH8mAv/v35biRmBjVEZGe2WlnVEaY3JD16tUL6N1btqW6d5cCTcrY0qWyDfXXX/LLbPNmYMIEwNFRdWT2zdFRtgi9vaUVv3dvDvgj87HTzqiMMLkh6zZ7tqziXLsmHT+Jiaojsi4PHshE3J49ZXWgeXPZhmrZUnVklKxwYeDHHwFnZ9ki+Owz1RGRHm3ZktoZNXWqXXVGZYTJDVk3Nzepv3F3l62pCRNUR2Q9krehvv1WPqmNGye/4J57TnVk9Li6dVOnFo8YIdsGRKZy8qTU2SR3Rr3/vuqIlGNyQ9avQgVpZwZk8NzmzWrjsQZLlsg21N9/A15ektSMH89tKGv25ptAUJBss3brBly6pDoi0gN2RmWIyQ3ZhtdflzcHTZMtmCtXVEekxoMH0nkTGCjbUC+9JNtQLVqojoyexWAA5s4FatQA/v0XeO01IDZWdVRky9gZ9VRMbsh2zJghU4z//Vc++SYkqI7Isk6ckO2NBQvkjXLCBFnFKlpUdWSUVa6uMuAvf35g/35g6FDVEZGterwzasMGu+2MygiTG7Idrq5Sf5M3r0x+HTNGdUSWs3gxUKeOzEopWhT4/Xdp9eY2lO0pUwb4/vvUlZwlS1RHRLbo8c6oatVUR2RVmNyQbSlbVgpoAekI2LhRbTzmdv++tA/36iVbUi1byjZU8+aqI6OcaNtWklNAzv46elRtPGRb2Bn1TExuyPZ07gwEB8v1gADg4kW18ZhL8jbUd98BDg7AxIlymreXl+rIyBTGjgX8/GSqdMeOwO3bqiMiW3DqFDujsoDJDdmmzz8HateWTgE9nrz83XfSDXXihLR2//67bMNxG0o/HBxke8rHBzh3TorEeY4aZYadUVnG5IZsk4sLsHIl4OkJ/Pln6hk+tu7+/dTJzA8fyplQYWFyRhTpT4EC0uGSOzfw8888R42eLrkz6swZdkZlAZMbsl1lygALF8r1zz+XbgFb9vffUjS8eLF8qv/4Y9mGYgeEvtWsmXqO2tixcoI70eMGDZLOKHd3dkZlAZMbsm2vvppaWNerF3D+vMposkfTpL27bl0gPFwOuvzjD2DUKElySP+CglLnOL3+um3+OybzmTNHEmB2RmUZf3OS7fvkE0kM7twBunQB4uJUR5R19+5JUtanj2xDtW4t21BNmqiOjCztyy9l5e7WLRnw9+iR6ojIGmzZIqs2gHRG/e9/auOxEUxuyPY5O0v9Tf78wMGDttM98Ndf8ma2ZIms0EyeLK3thQurjoxUcHGRAzYLFgRCQ4F331UdEamWtjMqMNB2frdZASY3pA+lSkmtCiCfgFevVhtPZjRNZvXUrSsH3hUvDmzfLkXR3IaybyVLAsuXy7+Db76RC9mnxzuj5s1jZ5QR+JuU9OOVV1I/2bzxBvDPP2rjyci9ezKbp29f2XZo0wY4cgRo3Fh1ZGQtWraUA2IBYMAA4NAhtfGQ5bEzKseY3JC+fPwx0LAhEBMjvxysqW7h2DGZXbN0qcyrmToV+OUXbkPRk4YPB9q3l4M1X3sNuHlTdURkSeyMyjEmN6QvuXIBK1ZI3cKRI9ZxMKGmAfPnA/XqyR568jbU8OHchqKMOTgAixYBL7wAXLgA9OghdRekf+yMMgn+ZiX9KVFCJr8C8ktixQp1sdy9C/TsKW2+jx7JmUJhYcCLL6qLiWyDp6dsR7i6yuybCRNUR0Tmxs4ok2FyQ/rUpo3MiQGkvuX0acvHcPSobEMtWybbUJ98Avz0E1CokOVjIdtUtaqs+gHARx/JFGPSJ3ZGmRSTG9KvCROApk2liLdzZ5kjYwmaJp0N9epJUlWiBLBjB/DBB9yGIuP16JHaFt6zJ3D2rNp4yPTSdkY1bMjOKBPgb1rSLycnWTUpUkSKeQcONP9rxsTIhNm33pJi0HbtZBuqUSPzvzbp12efyZtedDTQqRPw4IHqiMhU4uNl+OiZMzIKYO1adkaZAJMb0rdixSTBMRhkZkhyLY45hIXJNtTy5bINNW2adDoULGi+1yT74OwMrFoFeHlJot6/v6wQku0bNAj4/XfpjPrpJ3ZGmQiTG9K/Fi3kQEJAVlROnDDt82sa8NVXQP368unL2xvYuRMYNozbUGQ6xYpJcbyjo0y1/uor1RFRTrEzymz4m5fsw5gxkuQ8eCD1N/fvm+Z5Y2KA7t2Bt9+WbahXXpEW9IYNTfP8RGk1bSqF6YB84t+3T208lH3sjDIrJjdkHxwdZXhe0aKychMcnPPnPHIEqF1bPk07OUldBLehyNyGDpXBfvHx8t/r11VHRMY6dUrqbNgZZTZMbsh+eHmlntuzaBGwcGH2nkfTZCm5fn3pXClZEti1C3jvPXY4kPkZDMCCBUCFCsDly0C3bkBCguqoKKuSO6Pu3GFnlBkxuSH70rQpMHGiXA8OlpO5jREdDXTtCrzzDhAXJ7+kjhyRRIfIUvLmlQF/efIAf/wBjB6tOiLKCnZGWQyTG7I/I0cCrVvL3JvOnWWKcFYcPizbUKtWyTbU9OnA+vVAgQLmjZcoIxUrpq4+fvqpJDtk3QYPZmeUhTC5Ifvj4CAt4cWLy973s9pqNU26Gho0kJPGS5UCdu8GhgzhcjKp9dprsh0KAEFB8u+ZrNOcOcDcueyMshAmN2SfChVKbatdtix1xP3joqNlGXnAANmGat9etqHq1bNsvERPM3WqbLfevQt07CgTucm6pO2MmjKFnVEWwOSG7FejRsDkyXJ94EAZwpfWoUNArVrAjz/KaeMzZsgeef78lo6U6OmcnCRRL1ZMOgH79uWAP2vyeGfUBx+ojsguMLkh+zZsmMymiY2V+puYGHljmDVLOhnOnQN8fIA9e+STF7ehyBp5eaXWgq1YAcycqToiAtgZpZBB0+wrxY+JiYGnpyeio6Ph4eGhOhyyBrduATVrApGRwKuvyi+f5OLMV1+Vttt8+ZSGSJQls2fLIZuOjtJF1bix6ojsV3w84OcnBcQlSwIHD7KAOIeMef/myg1RgQKpg/jWrpXEJlcu+fS7ejUTG7IdwcFyinhiomyFREWpjsh+sTNKKSY3RIDMqfnsM7leurRsQw0cyCVksi0GA/D110CVKsDVq5LgxMerjsr+sDNKOSY3RMkGDQL+/lsudeqojoYoe9zdZfXRw0NGFrCA1bLYGWUVmNwQpVW5MuDmpjoKopwpWxZYvFiuz5ghx46Q+Z0+zc4oK2FUcnPgwAEkJiam3H68Fjk2NhYrV640TWRERJR97dsDo0bJ9T59gOPH1cajd7dvS+clO6OsglHJTYMGDXDz5s2U256enjh37lzK7Tt37qB79+6mi46IiLJv4kSgZUvgwQMZ8BcdrToifYqPl1ESPDPKahiV3Dy+UpNRF7mddZYTEVkvR0fghx/kDff0aaB3bw74Mwd2Rlkdk9fcGLgMR0RkPQoVkinbzs6yojBtmuqI9GXuXHZGWSEWFBMR6V2dOjJ1GwBGjgS2bVMbj15s3SojIwB2RlkZJ2O/4cSJE7h69SoA2YI6efIk7v13UNuNGzdMGx0REZlGv37Avn3AwoVAt25AaCjg7a06Ktt1+rTU2bAzyioZdfyCg4MDDAZDhnU1yfcbDIZ0HVXWhscvEJHdevhQDoxNPtl+xw4WvmbH7dsy+PP0aaBBA1kJy51bdVS6Z8z7t1ErNxERETkKjIiIFHJ1lSNFatcG9u8HhgyRehHKuuTOqNOnUzujmNhYHaOSm1KlSpkrDiIisoTSpYGlS4F27YCQEFmBCAxUHZXteLwzystLdUSUAaMKim/duoVLly6lu+/48ePo3bs3unTpgmXLlpk0OCIiMgM/P2DcOLn+1ltAWJjScGxG2s6opUvZGWXFjEpugoODMX369JTb169fR+PGjXHw4EHExsYiKCgIS5YsMXmQRERkYmPGAG3bAo8eAZ06SR0JPd3jnVHt26uNhzJlVHKzb98+/C9Nq9vixYtRoEABhIWFYf369Zg8eTLmzJlj8iCJiMjEHByAJUtkm+rcOSAgAEhKUh2VdWJnlM0xKrm5evUqSpcunXJ727ZtePXVV+HkJKU7//vf/3DmzBnTRkhEROZRoIAUGOfODfzyC/Dxx6ojsj63bwP+/nJmVIMGwNdf88woG2BUcuPh4YE7d+6k3D5w4ADq16+fcttgMCA2NtZkwRERkZnVrAl89ZVcHzcO+PVXtfFYk/h4OeWbnVE2x6jkpm7duvjyyy+RlJSEH3/8EXfv3sVLL72U8vXTp0/Dm0OhiIhsS69eQP/+cu7U668D58+rjsg6DBkitTbsjLI5RiU3H330EdavXw9XV1d07doVH3zwAfLnz5/y9eXLl6Np06YmD5KIiMxsxgygbl3ZhunUSQqN7dncucCcOeyMslFGzbmpUaMGwsPDsXfvXhQtWhT16tVL9/Vu3bqhUqVKJg2QiIgswMUFWLVKBvwdPgwMGAB8843qqNRI2xk1eTI7o2yQUccv6AGPXyAiysTvvwOtWknn1Pz5QN++qiOyrNOn5WiKO3ekg2zRIhYQWwlj3r+NSm4WL16cpccFWvG0SyY3RETPMHWqnB7u7Azs3i2nitsDnhll1cyW3Dg4OCBPnjxwcnLK8PBMQDqmbt26ZVzEFsTkhojoGTQN6NgRWLdOuoRCQ4FChVRHZV7x8TLUcOtW+TMfOMACYitjzPu3UQXFFStWhLOzMwIDA7Fjxw7cvn37iYuxic3cuXNRunRp5M6dG7Vr18auXbsyffycOXNQsWJFuLq6onz58lleTSIioiwyGIDvvgPKlgUiI6WDKjFRdVTmlbYzasMGJjY2zqjk5vjx4/jll1/w8OFDNGnSBL6+vggJCUFMTEy2XnzFihUYPHgwRo8ejSNHjqBx48bw8/NDZGRkho8PCQnByJEjMX78eBw/fhwTJkxAcHAwfvrpp2y9PhERPYWnJ7BmDeDmBmzZAowfrzoi83m8M6p6ddURUQ5lu6D44cOHWLVqFRYuXIgDBw6gQ4cOWLBgAVxcXLL8HPXq1UOtWrUQEhKScl/FihXRoUMHTJky5YnHN2zYEI0aNcK0adNS7hs8eDAOHTqE3bt3Z+k1uS1FRGSEH36QlRtAVjT8/dXGY2pbtwJt2sjK1JQpwIgRqiOipzDbtlRarq6uCAwMxIQJE1C3bl0sX74cDx48yPL3x8XFITQ0FK1atUp3f6tWrbB3794Mvyc2Nha5HyvucnV1xYEDBxAfH//U74mJiUl3ISKiLOrePbUtOiAAOHtWbTymlPbMqIAAYPhw1RGRiWQrubl8+TImT56MsmXLolu3bqhTpw6OHz+ebqDfs9y4cQOJiYnwemxf08vLC1evXs3we1q3bo1vvvkGoaGh0DQNhw4dwoIFCxAfH48bN25k+D1TpkyBp6dnyoUTlImIjDRtGtCoERAdLYXGRnyQtVqPnxk1bx5bvnXEqORm5cqV8PPzQ9myZXHw4EF8/vnnuHjxIj799FNUqFAhWwEYHvvHpGnaE/clGzNmDPz8/FC/fn3kypUL7du3R1BQEADA0dExw+8ZOXIkoqOjUy4XL17MVpxERHbL2RlYuVKKbP/6C3jrLemoslU8M0r3jJpQ3K1bN5QsWRJDhgyBl5cXzp8/jzlz5jzxuIHJS5iZKFSoEBwdHZ9Ypbl+/foTqznJXF1dsWDBAnz99de4du0annvuOcybNw958+ZFoae0Kbq4uBhVB0RERBkoVkwSnJdeAr7/XubBBAerjip72Bmle0YVFPv4+Dx1VSXlCQ0GnDt3LkvPV69ePdSuXRtz585Nua9SpUpo3759hgXFGWnatCmKFy+OZcuWZenxLCgmIsqB6dOB994DcuUCduyQLR1bEhICvPOObEGtWQN06KA6IsoiY96/jVq5OZ+Fk2IvX76c5ecbOnQoAgIC4OvriwYNGmDevHmIjIxE//79AciW0uXLl1Nm2Zw+fRoHDhxAvXr1cPv2bUyfPh1///03Fi1aZMwfg4iIsmvIEGDfPjmH6rXX5BwqW1n52LoVePdduT55MhMbHTMqucnM1atXMXnyZMyfPx8PHz7M0vd07doVN2/exMSJExEVFYUqVapg48aNKFWqFAAgKioq3cybxMREfP755zh16hRy5cqF5s2bY+/evfDx8THVH4OIiDJjMADffgv8/TcQHg506yZzcJxM9nZiHuyMsitGbUvduXMHwcHB2Lx5M3LlyoURI0ZgwIABGD9+PD777DNUrlwZQ4cORffu3c0Zc45wW4qIyAROnpQzp+7dA95/H/j0U9URPR3PjNIFs825GTVqFHbu3IlevXqhQIECGDJkCF555RXs3r0bmzZtwsGDB606sSEiIhOpUEGOaACkVXz1aqXhPBU7o+ySUcnNL7/8goULF+Kzzz7Dhg0boGkaypUrh23btqFp06bmipGIiKxRp06yagMAQUGymmNt2Blll4xKbq5cuYJKlSoBAMqUKYPcuXOjb9++ZgmMiIhswOTJQLNmsj3VsaP811qEhMiZUYC0r/PMKLthVHKTlJSEXLlypdx2dHSEu7u7yYMiIiIb4eQELF8uc3DCw4E+faxjwF/azqgpU9gZZWeMKm/XNA1BQUEpQ/EePXqE/v37P5HgrFmzxnQREhGRdfPyAn78EWjaVAb91a8v20GqsDPK7hnVLdW7d+8sPW7hwoXZDsjc2C1FRGQmc+YAAwYAjo7SkdSkieVjSNsZVb8+8McfLCDWCWPev41KbvSAyQ0RkZloGhAYKPUtXl4y4K9YMcu9fkIC4OcnW1Le3sDBgywg1hGztYITERE9lcEAfP01UK0acO2atGDHx1vu9dN2Rv30ExMbO8bkhoiITMfNTWbeeHoCe/aktoqbW0gIMHu2XGdnlN1jckNERKb1wgvAf2cCYuZM4IcfzPt6v//OM6MoHSY3RERkev/7HzB6tFzv21fOojKHtJ1RPXsCI0aY53XIpjC5ISIi85gwAXj5ZeDBAxnwFx1t2ue/fRvw90/tkJo/X+p+yO4xuSEiIvNwdASWLZMznc6cAXr1ApKSTPPcCQmpZ0Z5ewPr1rHlm1IwuSEiIvMpVEgKjJ2dgfXrTXd6ODujKBNMboiIyLx8fVM7mUaPlgLgnGBnFD0DkxsiIjK/vn2BN96Qbalu3YCLF7P3POyMoixgckNEROZnMMhqS61awI0bwGuvAbGxxj3HmTPsjKIsYXJDRESW4eoq9TcFCgAHDgCDB2f9e2/fBl55hZ1RlCVMboiIyHJ8fIClSyUx+eor4Lvvnv097IwiIzG5ISIiy2rTRmbgAMDbbwNhYZk/Prkzys0N2LCBnVH0TExuiIjI8kaPBtq1Ax49kgF/t29n/LivvkrtjFq6FKhRw2Ihku1ickNERJbn4AAsWQKUKQNEREiB8OMD/rZtAwYMkOvsjCIjMLkhIiI18ueXAuPcuYGNG4FJk1K/duaMdFSxM4qygckNERGpU6MG8PXXcn38eGDTJuDOHZ4ZRTnC5IaIiNQKDJTCYk0DevQA2rcHTp1iZxRlG5MbIiJS74svgLp1ZbVm5052RlGOMLkhIiL1XFyAH38ECheWLajvv2dnFGWbk+oAiIiIAMg2VHi4HM9QvrzqaMiGMbkhIiLrUbCgXIhygNtSREREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREemK8uRm7ty5KF26NHLnzo3atWtj165dmT5+6dKlqF69Otzc3PDcc8+hd+/euHnzpoWiJSIiImunNLlZsWIFBg8ejNGjR+PIkSNo3Lgx/Pz8EBkZmeHjd+/ejcDAQPTp0wfHjx/HqlWrcPDgQfTt29fCkRMRkTls2wb88IPqKMjWKU1upk+fjj59+qBv376oWLEiZsyYAW9vb4SEhGT4+H379sHHxwcDBw5E6dKl8eKLL+Ktt97CoUOHLBw5ERGZUmwsMGgQ0KIFEBqaer+mAUlJ6uIi26QsuYmLi0NoaChatWqV7v5WrVph7969GX5Pw4YNcenSJWzcuBGapuHatWv48ccf0a5du6e+TmxsLGJiYtJdiIjIepw6BdSvD3z5pdx+8cXUr/3+O1CuHDBlChAVpSY+sj3KkpsbN24gMTERXl5e6e738vLC1atXM/yehg0bYunSpejatSucnZ1RtGhR5MuXD7NmzXrq60yZMgWenp4pF29vb5P+OYiIKHs0DfjuO6B2bSAsDChUCPj5Z6BDh9THLF4M/PMPMGoU4O0NvPoq8MsvQGKioqDJJigvKDYYDOlua5r2xH3JTpw4gYEDB2Ls2LEIDQ3Fr7/+ioiICPTv3/+pzz9y5EhER0enXC5evGjS+ImIyHgxMUDPnkDv3sD9+0Dz5sDRo8DjC/EhIcCCBUCDBpLQrFsHvPIK4OMDjBsn21lEj1OW3BQqVAiOjo5PrNJcv379idWcZFOmTEGjRo3w/vvvo1q1amjdujXmzp2LBQsWIOop65UuLi7w8PBIdyEiIrVu3ZIVGEdHYNIkYMsWoFixJx/n7i4J0N69wN9/A4MHAwUKAJcuAStXAs7OqY/VNIuFT1ZOWXLj7OyM2rVrY8uWLenu37JlCxo2bJjh9zx48AAODulDdnR0BCArPkREZL3S/pr28QG+/x7YsQMYPVqSnGepXBn44gvgyhXpqJo0CUhe6H/wAKhQAfjgA+D0abOETzZE6bbU0KFD8c0332DBggUIDw/HkCFDEBkZmbLNNHLkSAQGBqY83t/fH2vWrEFISAjOnTuHPXv2YODAgahbty6KZZTyExGRVbh+XbaTfv019b5XXgEaNTL+uVxcgG7dgE6dUu9bt06SmmnTgPLlgWbNJHl6+DCnkZMtclL54l27dsXNmzcxceJEREVFoUqVKti4cSNKlSoFAIiKiko38yYoKAh3797F7Nmz8d577yFfvnx46aWX8Mknn6j6IxAR0TNs3QoEBABXr8rW0tmzQK5cpn2Nzp1lC2v+fGDTJlkR2rEDePddee3335eCZLIPBs3O9nNiYmLg6emJ6Oho1t8QEZlRfDwwdizwySeyJVWpErBiBVClinlf99IlKUL+9lsg+fPx2bPA88+b93XJvIx5/1beLUVERPoTEQE0aQJMnSqJzZtvAgcPmj+xAYASJSSpOndOtsHGj0+f2PTqBfTrBxw4wCJkveLKDRERmdSlS1L8GxMDeHrKVlHnzqqjEteuSfKTkCC3q1UD+vaVtvT8+dXGRpnjyg0RESlTogTQsaPMpgkLs57EBgCKFJGpxz17ArlzA8eOAQMHSht6QICsLpHt48oNERHl2F9/AV5ekjwA0qXk5GT6wmFTun0bWLpUVpaOHZP7vvxSipDJ+nDlhoiILELTZIpw3bpAUFDqIZeurtad2ACyDTVggKwuHTgAvPWWrOgkW7QIeO014LffeNyDrVHaCk5ERLbr1i0pzF2zRm4bDDJML08etXEZy2AA6tSRS1ohIcD+/cDq1UCpUsAbb8ilRAk1cVLWceWGiIiMtns3UKOGJDa5cgHTpwM//WR7iU1m5s2TLap8+YALF+Qsq1KlZPjgTz+pjo4yw+SGiIiyLDFRjj1o2hS4eBF44QXgzz+BIUMAB529o1SrJjU4V67ItOOmTWXb7ZdfgLlzVUdHmdHZP0UiIjKnBw+A776TN/mePYHDh4HatVVHZV6urkCPHsD27cCpU3J+1cCBqV+/dAl4+WVg+XKeUm4t2C1FRERGOXgQCA8H0hz9Z9cmTpQtK0BOLA8MlFqkSpXUxqU3xrx/M7khIqKnio0Fhg+X7acBA1RHY50uXJDjHhYskFWcZA0byoDA7t1lpg7lDJObTDC5ISLKmtOn5fTtI0fkJO6ICOC551RHZb0SE6VtfP58KThOTATc3ICoKIBvNzlnzPs3W8HJ7iUkAMePy5yL8HA5D6d9e2kPJbJXixcD77wD3L8PFCokdTZMbDLn6Ai0bSuXqCj5O3v4MH1iExgok5tff12OpiDz4MoN2a2oKKBLFyA0VH4BpVW/PvDZZ0CjRmpiI1Ll7l1Jar7/Xm43by7XixVTG5cehIYCvr5y3c1Nfv/07SvbV/ww9WycUEz0n+vXpW1z3Dj5NPXee6lfK1QIOHQo9ZNVixYyoMvNDdi3T7pAiOxJXJxMGv7+e1mFmDQJ2LKFiY2plCkDfPGFFBond529+KKclP7FF8DNm6oj1A+u3JCuaJr8kti/X7aZzp9P//UqVeQMnGS//AI8/zxQrlzqjI6oKGDWLGD8eMDZWe7bvx8oWlQGeBHp2dSpMpn3hx9kRYFMT9PkA9T8+cCKFZLoAFKn88oramOzZiwozgSTG32Ij0+tk7lzR+ZOJKtQQWZRJKtYUcaq160L1KuXuixszGtVriwdEcHBwKhRsupDpAfXrwPR0UDZsnI7KUm2plgPYhkxMZJIbtgArF8vh40C8gErJgbo3ZsrZ8mY3GSCyY1tioiQTzoHDsjlyJHUOhl3d/nl7Ogot7/8Uj4J1a0rw8Vy+kv62jUp/tu2TW57eADvvy8TWd3dc/bcRCr9/rsM4itYUP6/cnNTHREB0uRQqpRMRnZ0BNq1k7k5bdqkJj/2iMlNJpjcWL/r1yV5ad069b527YCNG9M/ztMzdUVm5EjznmmjaVJ7MGKExAbINtXYsVIQaO2nHxOlFR8vdWhTp8q/7UqVZIvWx0d1ZATIz2fZMtm22rMn9f7ixWUlp08f+/xZMbnJBJMb63LvnhTuJq/IHDgg2z8AcPly6nLs1KnAunWpyUzdurKMbumzbJKSgJUrgdGjgXPn5L7ffwdeesmycRBl1/nzMlRu3z65/eabUqfGVRvrFB4OfPMNsGhRasHxW28BX32lNi4VmNxkgsmNOvHx0u6YvKw6eTIwZowkDGkZDFIns2QJUKuW5ePMiri41E9VS5emtnFGRgIlS6qNjehpVq2S7Y3oaFn5nD8f6NxZdVSUFbGxUpMzf7582Es+z+vgQfnA1bcvUL682hjNjclNJpjcWIamAWfPyv94aetktmyR1kdA2k0DAoASJVJXY5LrZGzxR3PjhrR61quX/pcPkTVISpIVxh07ZIjcsmX2ubWhN2+8ASxcKNcbN5bk9bXX5LBPvWFykwkmN+a1b5/s5R88CNy+/eTXv/gCGDxYrsfEyLaUXjoB1q2ToVzx8XK7a1eZE/LCC0rDIkpx6ZKcfzRyJOvE9OLXX4G5c6VmKnkV3NNTCsX79QOqV1cbnykxuckEk5ucu3tXJm0mr8p07w507Chf27dPPhUCchZNzZrpV2Wef97ydTKWFBEhRcZLl8rqlZOT1DSMGSMFyESWomlSl3HuHDBtmupoyNwuX5YVnG+/TZ3vVaqU/Pz18juXyU0mmNwY784dYPny1O2lEyfkF2eyt9+WTw4A8OiRTN2sUweoWjV1CJ69OXpUPh1v2iS38+WTQmn+kyNLuH1bajDWrJHbu3albgeTviUlSZPD/PmyNT58uNwfFwcMGyZjLerVs83jHpjcZILJzdMlJUmdzIEDQP780n4NSGu2l1f6x3p7p67GvPSS8YPx7MX27fLLpXbt1AQQkNOCk+fyEJnSnj3yBhYZKVtPn3wCDBqkn0/vlD2rV0stDiCT2vv1k62rAgXUxmUMJjeZYHKT6urV9C3YBw/KKg0AtGoF/PZb6mMDAqT4sG5dWZXhFkvWaZqsaCUX+B07BnToAEyYIG9CTHLIFBITgSlT5NiQxESp9Vq+nIXtJI4eBaZPl86qR4/kPhcXoFMnSXSaNrX+1RwmN5mw1+QmJkaKCStVkttJSbI6ExOT/nG5c0v7dcuW8uZLpterF7B4sVyvWlU6q/z8rP8XC1m3Tp1St6F69pSVwrx51cZE1ufOHakJnD9fEp5kf/8tx8xYMyY3mbCH5CYuTlYH0q7KnDwpbcpnz6Y+rlUrWb1JXo2pW1eWK9lFYV4PHsi5MVOmyLwRAGjSRLYP6tdXGxvZrtWrgaAgYM4cIDBQdTRk7TRNGkO++UaKjjdvTv3al1/KkNRWraxrZZnJTSb0ltxoWvpP/L16yVJ0XNyTjy1VSoqBkyeRsu5DrVu3ZNXmyy9lQBcgRaDz56uNi2xDbCxw+rSs/iW7fh0oUkRdTGSb0r6P3L4NPPec/PsqWVLm6PTubR3DSY15/2aJmY25ckWmVI4eDbz8stS+JL8xArKtFBcnRWJt2khb8k8/yQrN+fPpR6wzsVGrQAHg00+BM2fkl4eDg6ycET3L6dMycqFFCyAqKvV+JjaUHWk/IMfFyfEO+fNLUfr48VJv2bYtsHZt6hwva8eVGxuwbp3UaBw4ILMMHnfggGwrAbK8qGmyBcUaDtty4oTMAXJxkdsbNgB790q3Vf78amMj66Bp8rsgOBi4f19O816/HmjUSHVkpDePHkkN1/z50vWZbPp0YMgQNTFxWyoT1prcxMZKcVdy19LEibKNBMin++RZBQ4OUvSV3IZdpw7rZPQoIUF+rqdOSWIzciQwYIA+R6pT1ty9KzOlli6V282ayREmxYsrDYvswJkzMhxw6VJ5f0rult22TXYFOnaUXQNzY3KTCWtJbqKi5Jyl5ILfsLD0y30//AB06ybX//5b2rLr1JFOpjx5lIRMFqRpwM8/S1Jz/LjcV6KEdLAFBqYePkr24dAh+X3wzz+ynTxhAjBiBLeWybKSktLPS3rpJeCPP2SLPSBAagbNubXO5CYTKpKby5clgalcGShXTu5LO1ApWcGCqSsynTtbf1semV9ionw6HzMGuHhR7qtYUTpimjdXGxtZzptvyvZAyZJy4CW3oUg1TQM++ki6rZJ/NwHS8dmvnxzLY+qVZiY3mTB3cnPnjnzKSt5eOnBAioABOURx9Gi5fumS/PDTnrvk48M6GcrYo0cyt+Tjj6XLatMmKRgn+3D/PvDhh9IgwPorsiaJidJG/s03UieYkAC4u8vuhKnnLDG5yYQ5k5sTJzJebUnugnnzTSkEJMqu6GhgxQr5ZJScCP/4I1C+fPqWYLJtv/8uK3bffstjE8h2XL0KLFoks7zMMQSWyU0mzJncJCTIwYhFi6ZfkalZUzJZIlO7eVM64+7elT3vtIXoZHvi44Fx42T+kaYB8+ZJIktExr1/syzRhJycZCnO01N1JGQvYmOB1q2BVaukRXj5clkdHDUKKFRIdXRkjPPnZat63z65/eabQI8eSkMisllc8DQxJjZkScWKyUF4Bw5I50JcHPDFFzIvZ9IkqdUg67dqFVCjhiQ2np7yM/366/RDN4ko65jcEOlAnTrA1q0yMqBmTTkQdfz4jIc+knWZOBHo0kXqqerXl7EQnTurjorItjG5IdIJg0EOujt0SOYkjRuXOnoAkNWdpCR18VHG2rWTqdQjRwI7d0rXJBHlDGtuiHTGwSF1AGSyv/6SVYFateT08RYt1MRGUih8/HjqsLPatWU4HycNE5kOV26I7EB4uHTshYYCLVvKCs/hw6qjsj+3b8uWU+3awJEjqfczsSEyLSY3RHagSxdZHRg4UM4h27JF3mC7d5f7yfz27JGi4dWrZfXm2DHVERHpF5MbIjtRpAgwcyZw8qS0GBsM0jr+4ovSZUXmkZgonWtNmwKRkcALL8hp7716qY6MSL+Y3BDZmTJlZPrt4cNyhMMHHwDOzvI1TZOBgGQaly/LNuCYMZLk9Owpf+++vqojI9I3JjdEdqpGDTmjatCg1PvWrZPkZ+ZMGRBIObNyJbB9u9Q7LVoELFli+vN2iOhJTG6I7Fzas4u++w64cQMYPBioUEFWeNg+nn2DBsnl8GEgMFB1NET2g8kNEaVYvVrOM3ruOTkOICBA2sc3bZItK8rc6dPA66/LwYGAJI4zZqSfN0RE5sfkhohSODnJQY1nzwKTJ8tRAEePAm3bAu+8ozo667Z4sSSCP/wAjB6tOhoi+8bkhoie4OYmE3P/+QcYNkwm6Pr7q47KOiWfyN6rl5zl1ayZ/J0RkTpMbojoqQoWBKZNAyIiAD+/1Ps/+0xOrbb3s6tCQ2W15vvvZQvqo4/kjC8O5SNSi8kNET3Tc8/JXBwAuHcP+PhjYP58mdkyYoRM3rU3q1cDDRrIFp63N7BjB/Dhh4Cjo+rIiIjJDREZJU8e4OefZfjfo0dyVtXzz8sKz8OHqqOznPr1AQ8P4NVX5STvF19UHRERJWNyQ0RGa9RITrDesAGoXFlWbj74QLqCfv9ddXTmc/p06vXixeUE9tWrgQIF1MVERE9ickNE2WIwSJHx0aMyH8fbG4iKAkqUUB2Z6cXHA6NGyeyftWtT7/fxSd2uIyLrweSGiHLE0VE6hU6fBjZuBMqXT/3atGnArl3qYjOF8+eBJk2AKVNk1s/evaojIqJnYXJDRCaROzfQqlXq7ePHpdi4SRNZ4fn7b3WxZdeqVXJMxb59MvNn5UpJ2IjIujG5ISKzKFhQBgI6OkoBcrVqQFAQcOGC6sie7cED4K23gC5dgOhoKR4OCwM6d1YdGRFlBZMbIjKLokWBr76SFZzXXpMtnUWLpOh46FDgzh3VET7djh1yDIXBILU2O3dKfQ0R2QYmN0RkVuXLy/bO/v1A8+ZAXJwkOdbMzw8YMwbYskVm+uTKpToiIjIGkxsisoi6daVN/NdfgdmzgXz55H5Nk+QnPl5dbLdvA336AFeupN43cSLQooW6mIgo+5jcEJHFGAxA69ZA9+6p923YILUtlStLkmPp08f37JGi4QULgDfesOxrE5F5MLkhIqUePQIKFwbOnJEkp25dYNs2879uYqJsOTVtCkRGypTlSZPM/7pEZH5MbohIqa5d5fTx8ePlaIdDh2Q7qHVr4MgR87zmlSvAyy/LWVCJiUCPHsDhw4Cvr3lej4gsi8kNESmXNy8wbpwkOe++KwW8mzdL67ipt6mOHAGqVwf++ANwd5fi5u+/l3OiiEgfmNwQkdUoUgT48kvg5ElZTZk8OfV4g4cPgWvXcv4a5coBhQoBNWvKak1gYM6fk4isi/LkZu7cuShdujRy586N2rVrY1cms9qDgoJgMBieuFSuXNmCERORuZUpI6sp7dql3jdrltTFjBsHxMQY93wXLgBJSXLd3V06tv78UxIdItIfpcnNihUrMHjwYIwePRpHjhxB48aN4efnh8jIyAwfP3PmTERFRaVcLl68iAIFCqAzx4YS6ZqmSZHx/fvSov3887LCExv77O9dvFg6sT7/PPW+UqUAFxfzxUtEailNbqZPn44+ffqgb9++qFixImbMmAFvb2+EhIRk+HhPT08ULVo05XLo0CHcvn0bvXv3tnDkRGRJBgOwaZO0ipcrB9y4AQwaJKd0f/996qpMWnfvAgEBcqjn/fsykC+jxxGR/ihLbuLi4hAaGopWaU/aA9CqVSvszeKxu99++y1atmyJUqVKPfUxsbGxiImJSXchIttjMMgxDn//DXz9NfDcc3Jid0AA8P776R8bGgrUqiWJj4MD8NFHkhw5KN+IJyJLUPa/+o0bN5CYmAgvL69093t5eeHq1avP/P6oqChs2rQJffv2zfRxU6ZMgaenZ8rF29s7R3ETkVq5cgFvvgmcPSsFxwUKAMm/BpKS5NTuBg3k6yVLyrlQH34oB3gSkX1Q/jnGkNwK8R9N0564LyPfffcd8uXLhw4dOmT6uJEjRyI6OjrlcvHixZyES0RWws0NGDkSuHQJqFhR7tM0Ob07Ph7o2FGuN2qkMkoiUsFJ1QsXKlQIjo6OT6zSXL9+/YnVnMdpmoYFCxYgICAAzs7OmT7WxcUFLqwcJNItV9fU6zduAHv3AiEhwFtvpbaRE5F9UbZy4+zsjNq1a2PLli3p7t+yZQsaNmyY6ffu2LEDZ8+eRZ8+fcwZIhHZGC8vICIC6N+fiQ2RPVO2cgMAQ4cORUBAAHx9fdGgQQPMmzcPkZGR6N+/PwDZUrp8+TIWL16c7vu+/fZb1KtXD1WqVFERNhEREVkxpclN165dcfPmTUycOBFRUVGoUqUKNm7cmNL9FBUV9cTMm+joaKxevRozZ85UETIRERFZOYOmmfrkFusWExMDT09PREdHw4OHyRAREdkEY96/lXdLEREREZkSkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtKD85UIfkorZiYGMWREBERUVYlv29n5UhMu0tu7t69CwDw9vZWHAkREREZ6+7du/D09Mz0MXZ3KnhSUhKuXLmCvHnzwmAwmPS5Y2Ji4O3tjYsXL/LEcRvFn6Ft48/P9vFnaPvM9TPUNA13795FsWLF4OCQeVWN3a3cODg4oESJEmZ9DQ8PD/5PaeP4M7Rt/PnZPv4MbZ85fobPWrFJxoJiIiIi0hUmN0RERKQrTG5MyMXFBePGjYOLi4vqUCib+DO0bfz52T7+DG2fNfwM7a6gmIiIiPSNKzdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyYwI7d+6Ev78/ihUrBoPBgHXr1qkOiYwwZcoU1KlTB3nz5kWRIkXQoUMHnDp1SnVYZISQkBBUq1YtZWhYgwYNsGnTJtVhUTZNmTIFBoMBgwcPVh0KZdH48eNhMBjSXYoWLaosHiY3JnD//n1Ur14ds2fPVh0KZcOOHTsQHByMffv2YcuWLUhISECrVq1w//591aFRFpUoUQJTp07FoUOHcOjQIbz00kto3749jh8/rjo0MtLBgwcxb948VKtWTXUoZKTKlSsjKioq5fLXX38pi8Xujl8wBz8/P/j5+akOg7Lp119/TXd74cKFKFKkCEJDQ9GkSRNFUZEx/P39093++OOPERISgn379qFy5cqKoiJj3bt3Dz169MD8+fMxadIk1eGQkZycnJSu1qTFlRuix0RHRwMAChQooDgSyo7ExEQsX74c9+/fR4MGDVSHQ0YIDg5Gu3bt0LJlS9WhUDacOXMGxYoVQ+nSpdGtWzecO3dOWSxcuSFKQ9M0DB06FC+++CKqVKmiOhwywl9//YUGDRrg0aNHyJMnD9auXYtKlSqpDouyaPny5Th8+DAOHjyoOhTKhnr16mHx4sUoV64crl27hkmTJqFhw4Y4fvw4ChYsaPF4mNwQpTFgwAAcO3YMu3fvVh0KGal8+fIICwvDnTt3sHr1avTq1Qs7duxggmMDLl68iEGDBmHz5s3InTu36nAoG9KWZlStWhUNGjTA888/j0WLFmHo0KEWj4fJDdF/3n33XWzYsAE7d+5EiRIlVIdDRnJ2dsYLL7wAAPD19cXBgwcxc+ZMfP3114ojo2cJDQ3F9evXUbt27ZT7EhMTsXPnTsyePRuxsbFwdHRUGCEZy93dHVWrVsWZM2eUvD6TG7J7mqbh3Xffxdq1a7F9+3aULl1adUhkApqmITY2VnUYlAUtWrR4orOmd+/eqFChAoYPH87ExgbFxsYiPDwcjRs3VvL6TG5M4N69ezh79mzK7YiICISFhaFAgQIoWbKkwsgoK4KDg7Fs2TKsX78eefPmxdWrVwEAnp6ecHV1VRwdZcWoUaPg5+cHb29v3L17F8uXL8f27duf6IQj65Q3b94natzc3d1RsGBB1r7ZiGHDhsHf3x8lS5bE9evXMWnSJMTExKBXr15K4mFyYwKHDh1C8+bNU24n7y/26tUL3333naKoKKtCQkIAAM2aNUt3/8KFCxEUFGT5gMho165dQ0BAAKKiouDp6Ylq1arh119/xcsvv6w6NCK7cOnSJXTv3h03btxA4cKFUb9+fezbtw+lSpVSEo9B0zRNySsTERERmQHn3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BCRLjVr1gyDBw/O9DE+Pj6YMWOGReIhIsthckNEVisoKAgGg+GJS9qz3IiIHsezpYjIqrVp0wYLFy5Md1/hwoUVRUNEtoArN0Rk1VxcXFC0aNF0F0dHR+zYsQN169aFi4sLnnvuOYwYMQIJCQlPfZ7r16/D398frq6uKF26NJYuXWrBPwURWRJXbojI5ly+fBlt27ZFUFAQFi9ejJMnT6Jfv37InTs3xo8fn+H3BAUF4eLFi9i2bRucnZ0xcOBAXL9+3bKBE5FFMLkhIqv2888/I0+ePCm3/fz8UK5cOXh7e2P27NkwGAyoUKECrly5guHDh2Ps2LFwcEi/KH369Gls2rQJ+/btQ7169QAA3377LSpWrGjRPwsRWQaTGyKyas2bN0dISEjKbXd3dwQHB6NBgwYwGAwp9zdq1Aj37t3DpUuXULJkyXTPER4eDicnJ/j6+qbcV6FCBeTLl8/s8ROR5TG5ISKr5u7ujhdeeCHdfZqmpUtsku8D8MT9z/oaEekPC4qJyOZUqlQJe/fuTUlaAGDv3r3Imzcvihcv/sTjK1asiISEBBw6dCjlvlOnTuHOnTuWCJeILIzJDRHZnHfeeQcXL17Eu+++i5MnT2L9+vUYN24chg4d+kS9DQCUL18ebdq0Qb9+/bB//36Ehoaib9++cHV1VRA9EZkbkxsisjnFixfHxo0bceDAAVSvXh39+/dHnz598OGHHz71exYuXAhvb280bdoUHTt2xJtvvokiRYpYMGoishSDlnZdl4iIiMjGceWGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSlf8DJTV+h0OgioQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure()\n", - "xrange = np.arange(1, k_fold_splits + 1)\n", - "plt.plot(xrange, rmse_train, \"b--\", label = \"train loss\")\n", - "plt.plot(xrange, rmse_test, \"r\", label = \"test loss\")\n", + "plt.plot(range(k_fold_splits), rmse_train, \"b--\", label = \"train loss\")\n", + "plt.plot(range(k_fold_splits), rmse_test, \"r\", label = \"test loss\")\n", "ax = fig.gca()\n", - "ax.set_xticks(xrange)\n", - "plt.xlabel(\"Fold\")\n", + "ax.set_xticks(range(k_fold_splits))\n", + "plt.xlabel(\"Experiment\")\n", "plt.ylabel(\"RMSE\")\n", "plt.legend()\n", "plt.show()" @@ -673,7 +595,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.10.12" } }, "nbformat": 4, diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index aaa4abf..8638489 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -42,13 +42,23 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", - "import pandas as pd\n", "import sys\n", "import time as tt\n", "import wandb\n", @@ -57,16 +67,14 @@ "from s2spy import preprocess\n", "import torch\n", "from torch import nn\n", -<<<<<<< HEAD - "from torch import Tensor\n", - "import torch.nn.functional as f\n", - "from sklearn.metrics import mean_squared_error\n", -======= ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 "\n", "sys.path.append(\"../src/\")\n", "from transformer import Transformer\n", - "import utils" + "import utils\n", + "\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)" ] }, { @@ -79,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -94,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -114,7 +122,7 @@ ")" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -135,9 +143,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# URL of the dataset from zenodo\n", "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", @@ -151,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -164,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -184,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -216,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -304,7 +324,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -323,7 +343,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -345,7 +365,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -366,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -394,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -405,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -426,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -457,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -489,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -502,6 +522,9 @@ } ], "source": [ + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "hyperparameters = dict(\n", " epoch = 100,\n", " num_encoder_layers = 1,\n", @@ -517,27 +540,16 @@ " architecture = 'Transformer'\n", ")\n", "\n", - "# call weights & biases service\n", - "wandb.login()\n", - "\n", "# initialize weights & biases service\n", -<<<<<<< HEAD - "mode = 'disabled'\n", - "#mode = 'online' # <- uncomment this line to enable wandb\n", - "team = 'ai4s2s-demo' # <- your own team namehere\n", - "project = 'test-transformer' # <- your own project name here\n", - "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", -======= "#mode = 'online'\n", "mode = 'disabled'\n", "wandb.init(config=hyperparameters, project='test-transformer', entity='ai4s2s', mode=mode)\n", ->>>>>>> 513bb6d18fb4b7b816068f7e089bf7ca9b97b5c7 "config = wandb.config" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -562,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -667,7 +679,7 @@ "[]" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -692,7 +704,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -720,514 +732,514 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 504.417419\n", - "Epoch : 0 [8/36(22%)]\tLoss: 481.554626\n", - "Epoch : 0 [16/36(44%)]\tLoss: 440.580414\n", - "Epoch : 0 [24/36(67%)]\tLoss: 390.124756\n", - "Epoch : 0 [32/36(89%)]\tLoss: 332.210632\n", - "Epoch : 1 [0/36(0%)]\tLoss: 289.528412\n", - "Epoch : 1 [8/36(22%)]\tLoss: 257.728027\n", - "Epoch : 1 [16/36(44%)]\tLoss: 216.380157\n", - "Epoch : 1 [24/36(67%)]\tLoss: 167.973495\n", - "Epoch : 1 [32/36(89%)]\tLoss: 120.372284\n", - "Epoch : 2 [0/36(0%)]\tLoss: 90.872261\n", - "Epoch : 2 [8/36(22%)]\tLoss: 65.457787\n", - "Epoch : 2 [16/36(44%)]\tLoss: 40.697330\n", - "Epoch : 2 [24/36(67%)]\tLoss: 21.483221\n", - "Epoch : 2 [32/36(89%)]\tLoss: 6.529948\n", - "Epoch : 3 [0/36(0%)]\tLoss: 1.206500\n", - "Epoch : 3 [8/36(22%)]\tLoss: 0.687781\n", - "Epoch : 3 [16/36(44%)]\tLoss: 2.998277\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.987329\n", - "Epoch : 3 [32/36(89%)]\tLoss: 3.565853\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.699389\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.025244\n", - "Epoch : 4 [16/36(44%)]\tLoss: 4.401149\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.845250\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.474500\n", - "Epoch : 5 [0/36(0%)]\tLoss: 3.209382\n", - "Epoch : 5 [8/36(22%)]\tLoss: 1.684705\n", - "Epoch : 5 [16/36(44%)]\tLoss: 0.994581\n", - "Epoch : 5 [24/36(67%)]\tLoss: 2.556117\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.034164\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.357589\n", - "Epoch : 6 [8/36(22%)]\tLoss: 1.058167\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.865557\n", - "Epoch : 6 [24/36(67%)]\tLoss: 2.025237\n", - "Epoch : 6 [32/36(89%)]\tLoss: 2.140758\n", - "Epoch : 7 [0/36(0%)]\tLoss: 1.082307\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.421776\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.233879\n", - "Epoch : 7 [24/36(67%)]\tLoss: 0.486655\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.437750\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.339266\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.308987\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.768660\n", - "Epoch : 8 [24/36(67%)]\tLoss: 4.194781\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.504963\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.320599\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.259937\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.469363\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.071327\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.654265\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.803222\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.404058\n", - "Epoch : 10 [16/36(44%)]\tLoss: 1.292370\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.079007\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.574221\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.613949\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.395005\n", - "Epoch : 11 [16/36(44%)]\tLoss: 1.615045\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.581750\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.677510\n", - "Epoch : 12 [0/36(0%)]\tLoss: 1.763844\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.468983\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.662503\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.796030\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.600990\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.336408\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.407801\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.543317\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.597130\n", - "Epoch : 13 [32/36(89%)]\tLoss: 2.397425\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.184805\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.675718\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.878828\n", - "Epoch : 14 [24/36(67%)]\tLoss: 0.900206\n", - "Epoch : 14 [32/36(89%)]\tLoss: 0.956394\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.704332\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.245768\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.527425\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.118637\n", - "Epoch : 15 [32/36(89%)]\tLoss: 0.868841\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.833248\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.725273\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.040252\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.301875\n", - "Epoch : 16 [32/36(89%)]\tLoss: 2.164918\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.208012\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.594523\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.164420\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.823668\n", - "Epoch : 17 [32/36(89%)]\tLoss: 0.990730\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.349494\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.250528\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.132318\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.417893\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.262682\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.431553\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.404958\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.153886\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.345481\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.476871\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.971825\n", - "Epoch : 20 [8/36(22%)]\tLoss: 1.016705\n", - "Epoch : 20 [16/36(44%)]\tLoss: 1.103630\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.610470\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.511129\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.837285\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.202544\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.495228\n", - "Epoch : 21 [24/36(67%)]\tLoss: 1.169785\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.776069\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.718129\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.610703\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.315625\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.448975\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.525476\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.635257\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.691371\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.973099\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.843321\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.951698\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.980105\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.798944\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.654796\n", - "Epoch : 24 [24/36(67%)]\tLoss: 1.022153\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.926591\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.653805\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.745755\n", - "Epoch : 25 [16/36(44%)]\tLoss: 2.068602\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.275322\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.916981\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.158006\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.746286\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.647285\n", - "Epoch : 26 [24/36(67%)]\tLoss: 1.167545\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.300576\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.651581\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.565395\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.953556\n", - "Epoch : 27 [24/36(67%)]\tLoss: 1.186060\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.755135\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.305998\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.384388\n", - "Epoch : 28 [16/36(44%)]\tLoss: 1.103699\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.584833\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.475265\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.459300\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.805838\n", - "Epoch : 29 [16/36(44%)]\tLoss: 1.536069\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.233294\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.313479\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.368160\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.097128\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.704571\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.245161\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.287778\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.353239\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.272410\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.516679\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.552681\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.137205\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.363556\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.430274\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.837059\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.472932\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.109441\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.363579\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.308022\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.523387\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.413577\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.401421\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.563633\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.348965\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.593467\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.204020\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.312199\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.412257\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.406302\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.510305\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.205402\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.300478\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.704153\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.163868\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.216923\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.127081\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.103490\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.139092\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.372539\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.286804\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.137260\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.197125\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.794329\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.246719\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.313717\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.454852\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.292049\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.609774\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.129204\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.215503\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.295024\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.176593\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.132048\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.421546\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.094126\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.401490\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.054708\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.387006\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.279632\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.447589\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.147223\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.046608\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.429392\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.120486\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.199422\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.612947\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.138823\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.296780\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.138888\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.253189\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.152111\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.087302\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.274258\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.174377\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.388720\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.123839\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.939556\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.868173\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.300755\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.384589\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.414794\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.332090\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.215795\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.533553\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.382084\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.419386\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.327926\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.348447\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.280618\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.364157\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.131269\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.412282\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.198485\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.243350\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.133355\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.110422\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.078372\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.338200\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.263732\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.134390\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.031457\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.425466\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.344948\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.186010\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.246787\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.161385\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.339902\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.626405\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.396221\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.529879\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.123988\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.321269\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.757476\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.230176\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.290800\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.426909\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.341690\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.246653\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.206893\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.077049\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.275721\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.178632\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.730348\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.128692\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.325719\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.395235\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.112492\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.218841\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.253656\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.189109\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.401433\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.239186\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.327858\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.146645\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.158530\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.193426\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.143520\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.262486\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.185963\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.643456\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.080920\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.534508\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.202667\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.297622\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.399471\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.723287\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.488528\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.391099\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.107528\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.528716\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.275100\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.214783\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.664773\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.136599\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.410616\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.675595\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.166026\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.339289\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.132045\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.307121\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.130049\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.064537\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.233359\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.087467\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.477628\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.084841\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.052759\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.319040\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.115562\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.748135\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.076111\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.160890\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.191254\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.054834\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.345263\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.154582\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.315928\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.284619\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.128184\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.393054\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.204512\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.472911\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.380424\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.211061\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.129544\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.287740\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.085721\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.244290\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.752042\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.532834\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.456943\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.476216\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.299331\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.365154\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.429351\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.156394\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.226543\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.243290\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.389107\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.302440\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.432517\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.577647\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.075969\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.446935\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.687042\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.744450\n", - "Epoch : 70 [32/36(89%)]\tLoss: 1.045894\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.506082\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.179318\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.427212\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.617581\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.162726\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.053265\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.344303\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.824864\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.190921\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.290797\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.199437\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.134539\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.359102\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.237979\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.290194\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.103993\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.322977\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.145491\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.091969\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.638775\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.453037\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.258431\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.220592\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.311342\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.276829\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.359037\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.150304\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.241249\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.235449\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.073550\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.095723\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.071754\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.152485\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.257658\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.362001\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.058072\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.190440\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.427780\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.082199\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.167068\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.167164\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.449809\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.079832\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.464002\n", - "Epoch : 79 [32/36(89%)]\tLoss: 1.031308\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.310346\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.288376\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.755176\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.568007\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.334909\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.264970\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.234951\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.222037\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.569523\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.313097\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.084510\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.752172\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.828703\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.405721\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.397106\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.425377\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.028744\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.484454\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.077190\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.240606\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.129632\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.731134\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.313991\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.042769\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.397706\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.336631\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.150392\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.205707\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.477488\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.151618\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.045352\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.314651\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.749930\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.251543\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.308236\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.148437\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.144936\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.234076\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.086708\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.446849\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.071405\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.343527\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.226478\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.306314\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.572471\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.242089\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.110867\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.236891\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.438399\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.171542\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.372731\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.315232\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.297851\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.243758\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.625427\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.104583\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.138707\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.473046\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.033924\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.137557\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.060367\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.201168\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.395934\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.219546\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.207360\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.317021\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.159867\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.159414\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.688681\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.504473\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.060708\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.076919\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.170770\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.061262\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.072908\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.090459\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.041699\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.080005\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.093153\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.128190\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.169756\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.072348\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.032764\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.083853\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.047326\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.073878\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.102684\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.018334\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.060294\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.140633\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.136413\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.054343\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.029519\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.078752\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.073248\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.139704\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.048722\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.142784\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.035548\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.175439\n", - "--- 0.0648600975672404 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 506.288513\n", + "Epoch : 0 [8/36(22%)]\tLoss: 480.882629\n", + "Epoch : 0 [16/36(44%)]\tLoss: 442.111633\n", + "Epoch : 0 [24/36(67%)]\tLoss: 393.690186\n", + "Epoch : 0 [32/36(89%)]\tLoss: 336.929871\n", + "Epoch : 1 [0/36(0%)]\tLoss: 293.624023\n", + "Epoch : 1 [8/36(22%)]\tLoss: 264.280457\n", + "Epoch : 1 [16/36(44%)]\tLoss: 220.802582\n", + "Epoch : 1 [24/36(67%)]\tLoss: 174.945816\n", + "Epoch : 1 [32/36(89%)]\tLoss: 126.990173\n", + "Epoch : 2 [0/36(0%)]\tLoss: 96.945274\n", + "Epoch : 2 [8/36(22%)]\tLoss: 72.392868\n", + "Epoch : 2 [16/36(44%)]\tLoss: 45.645382\n", + "Epoch : 2 [24/36(67%)]\tLoss: 24.536964\n", + "Epoch : 2 [32/36(89%)]\tLoss: 9.549816\n", + "Epoch : 3 [0/36(0%)]\tLoss: 2.185776\n", + "Epoch : 3 [8/36(22%)]\tLoss: 0.664143\n", + "Epoch : 3 [16/36(44%)]\tLoss: 1.865931\n", + "Epoch : 3 [24/36(67%)]\tLoss: 12.184790\n", + "Epoch : 3 [32/36(89%)]\tLoss: 10.271686\n", + "Epoch : 4 [0/36(0%)]\tLoss: 12.655171\n", + "Epoch : 4 [8/36(22%)]\tLoss: 7.840872\n", + "Epoch : 4 [16/36(44%)]\tLoss: 2.946728\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.726549\n", + "Epoch : 4 [32/36(89%)]\tLoss: 3.392499\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.953744\n", + "Epoch : 5 [8/36(22%)]\tLoss: 2.609076\n", + "Epoch : 5 [16/36(44%)]\tLoss: 4.160960\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.378318\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.825573\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.155504\n", + "Epoch : 6 [8/36(22%)]\tLoss: 1.733736\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.440493\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.631983\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.634773\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.662487\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.612980\n", + "Epoch : 7 [16/36(44%)]\tLoss: 2.357862\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.898876\n", + "Epoch : 7 [32/36(89%)]\tLoss: 3.135081\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.506580\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.430499\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.125903\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.883283\n", + "Epoch : 8 [32/36(89%)]\tLoss: 2.156403\n", + "Epoch : 9 [0/36(0%)]\tLoss: 1.214713\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.418286\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.767805\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.203190\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.631625\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.410423\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.791678\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.888190\n", + "Epoch : 10 [24/36(67%)]\tLoss: 2.235648\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.250241\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.859174\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.669450\n", + "Epoch : 11 [16/36(44%)]\tLoss: 1.157634\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.686028\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.580044\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.854773\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.317646\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.904310\n", + "Epoch : 12 [24/36(67%)]\tLoss: 2.004745\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.851592\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.351876\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.865300\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.567187\n", + "Epoch : 13 [24/36(67%)]\tLoss: 19.535656\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.512537\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.482298\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.698655\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.904668\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.398644\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.905795\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.551823\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.761483\n", + "Epoch : 15 [16/36(44%)]\tLoss: 1.166809\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.928520\n", + "Epoch : 15 [32/36(89%)]\tLoss: 2.614235\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.625603\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.449200\n", + "Epoch : 16 [16/36(44%)]\tLoss: 1.275402\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.513879\n", + "Epoch : 16 [32/36(89%)]\tLoss: 2.886382\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.639693\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.562317\n", + "Epoch : 17 [16/36(44%)]\tLoss: 1.641831\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.750331\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.503120\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.502997\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.350194\n", + "Epoch : 18 [16/36(44%)]\tLoss: 2.553683\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.571282\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.332312\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.867609\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.827173\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.545723\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.145101\n", + "Epoch : 19 [32/36(89%)]\tLoss: 2.281080\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.498846\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.686224\n", + "Epoch : 20 [16/36(44%)]\tLoss: 1.281934\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.317553\n", + "Epoch : 20 [32/36(89%)]\tLoss: 2.048429\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.718626\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.344674\n", + "Epoch : 21 [16/36(44%)]\tLoss: 1.805239\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.761542\n", + "Epoch : 21 [32/36(89%)]\tLoss: 2.168238\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.554766\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.452126\n", + "Epoch : 22 [16/36(44%)]\tLoss: 1.020820\n", + "Epoch : 22 [24/36(67%)]\tLoss: 1.061687\n", + "Epoch : 22 [32/36(89%)]\tLoss: 2.321961\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.672471\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.270646\n", + "Epoch : 23 [16/36(44%)]\tLoss: 1.791718\n", + "Epoch : 23 [24/36(67%)]\tLoss: 1.500830\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.686144\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.710227\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.904980\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.857339\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.793677\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.478383\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.605092\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.634058\n", + "Epoch : 25 [16/36(44%)]\tLoss: 1.273583\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.200606\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.917290\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.649089\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.133817\n", + "Epoch : 26 [16/36(44%)]\tLoss: 1.968169\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.215914\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.737328\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.841222\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.436612\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.904064\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.400861\n", + "Epoch : 27 [32/36(89%)]\tLoss: 2.073082\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.630042\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.470796\n", + "Epoch : 28 [16/36(44%)]\tLoss: 1.328790\n", + "Epoch : 28 [24/36(67%)]\tLoss: 2.014283\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.425196\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.793072\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.454909\n", + "Epoch : 29 [16/36(44%)]\tLoss: 1.277652\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.969495\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.498101\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.961029\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.722560\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.930190\n", + "Epoch : 30 [24/36(67%)]\tLoss: 1.103357\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.513961\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.693312\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.457587\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.759752\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.973490\n", + "Epoch : 31 [32/36(89%)]\tLoss: 2.477153\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.748175\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.602801\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.675269\n", + "Epoch : 32 [24/36(67%)]\tLoss: 1.557212\n", + "Epoch : 32 [32/36(89%)]\tLoss: 2.126549\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.544363\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.684808\n", + "Epoch : 33 [16/36(44%)]\tLoss: 1.629571\n", + "Epoch : 33 [24/36(67%)]\tLoss: 1.270846\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.550725\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.322897\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.519688\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.639193\n", + "Epoch : 34 [24/36(67%)]\tLoss: 1.504702\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.790509\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.495434\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.314136\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.949226\n", + "Epoch : 35 [24/36(67%)]\tLoss: 1.318868\n", + "Epoch : 35 [32/36(89%)]\tLoss: 1.733057\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.317806\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.486717\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.923091\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.506555\n", + "Epoch : 36 [32/36(89%)]\tLoss: 1.455022\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.717310\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.617082\n", + "Epoch : 37 [16/36(44%)]\tLoss: 1.141389\n", + "Epoch : 37 [24/36(67%)]\tLoss: 1.330632\n", + "Epoch : 37 [32/36(89%)]\tLoss: 1.203163\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.431493\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.586900\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.785393\n", + "Epoch : 38 [24/36(67%)]\tLoss: 1.674906\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.312811\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.801077\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.648545\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.866263\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.808345\n", + "Epoch : 39 [32/36(89%)]\tLoss: 1.149895\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.373481\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.425000\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.702104\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.973041\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.955079\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.507935\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.610599\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.641439\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.624779\n", + "Epoch : 41 [32/36(89%)]\tLoss: 1.040448\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.519217\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.660326\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.860402\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.849528\n", + "Epoch : 42 [32/36(89%)]\tLoss: 1.380258\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.364194\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.385415\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.480986\n", + "Epoch : 43 [24/36(67%)]\tLoss: 1.580062\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.982637\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.134865\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.416096\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.468269\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.945390\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.746951\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.249265\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.264366\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.519599\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.633743\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.902503\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.526347\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.214518\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.203281\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.884957\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.385164\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.211916\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.639714\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.601463\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.679437\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.872297\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.323996\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.669297\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.409399\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.395883\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.229484\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.491477\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.715454\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.475574\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.510074\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.748042\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.243171\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.965991\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.891370\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.460753\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.332097\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.797704\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.596169\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.577800\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.281899\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.178084\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.459448\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.391562\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.616678\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.679317\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.215395\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.630188\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.445468\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.167564\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.359804\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.900341\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.644723\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.394837\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.512847\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.354758\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.414760\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.236479\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.798447\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.135716\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.084129\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.578379\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.864843\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.428818\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.213532\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.956470\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.639012\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.325826\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.815993\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.718356\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.291124\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.786189\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.325139\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.161412\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.065001\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.389233\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.137945\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.379550\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.339680\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.484449\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.189678\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.483047\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.529709\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.284432\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.153005\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.097822\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.147200\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.325960\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.303913\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.099939\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.347207\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.477277\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.229806\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.429058\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.301177\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.186964\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.274163\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.389898\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.090159\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.078048\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.245624\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.218807\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.308351\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.154591\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.303545\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.372813\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.219333\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.429220\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.333800\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.167216\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.089571\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.457341\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.618464\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.091554\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.110960\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.083160\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.235499\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.359852\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.709614\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.175773\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.269384\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.551928\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.489021\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.238376\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.853923\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.302385\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.978922\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.354770\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.296320\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.459848\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.149894\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.771522\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.650216\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.304323\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.562739\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.363791\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.514291\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.258998\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.509017\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.132292\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.240794\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.606044\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.269256\n", + "Epoch : 72 [8/36(22%)]\tLoss: 1.172725\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.654196\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.391358\n", + "Epoch : 72 [32/36(89%)]\tLoss: 1.035118\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.819709\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.425301\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.512377\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.898789\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.507210\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.213247\n", + "Epoch : 74 [8/36(22%)]\tLoss: 1.498713\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.666471\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.176403\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.913494\n", + "Epoch : 75 [0/36(0%)]\tLoss: 1.011625\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.051137\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.149667\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.084055\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.369974\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.349695\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.213109\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.190797\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.680883\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.126780\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.202069\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.522708\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.229130\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.193652\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.161229\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.178700\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.362007\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.110874\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.096787\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.362947\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.289360\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.121294\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.194621\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.246184\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.172720\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.204013\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.318917\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.212389\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.147694\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.140818\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.094828\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.120834\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.094614\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.501428\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.188465\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.436271\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.287587\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.093921\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.052513\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.273936\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.242681\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.197379\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.388335\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.086991\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.098031\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.215259\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.066958\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.117248\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.272121\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.196314\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.224682\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.251145\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.204288\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.092765\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.474862\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.293877\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.182487\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.106114\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.087559\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.283533\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.324256\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.767582\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.057250\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.286330\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.115046\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.285211\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.282969\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.154579\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.240497\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.391563\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.201680\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.058009\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.433691\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.050090\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.239721\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.302079\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.401616\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.253316\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.102305\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.791049\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.179025\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.127644\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.450296\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.436036\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.238472\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.452666\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.617693\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.073080\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.210897\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.489112\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.561874\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.246189\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.329986\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.030310\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.278912\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.189728\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.093273\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.231805\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.181126\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.241944\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.190990\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.098240\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.089967\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.084645\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.449748\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.098608\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.252927\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.184189\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.111730\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.365133\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.210667\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.153346\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.111157\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.144891\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.141351\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.278175\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.103703\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.151022\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.206378\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.472528\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.099299\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.299711\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.244982\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.179594\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.853592\n", + "--- 0.06143799622853597 minutes ---\n" ] } ], @@ -1292,12 +1304,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxy0lEQVR4nOzdd3hT5RcH8G+6Fx0gtAVK2XtP2aAoArKngEwBBWSIiggCIorg4ocoIDIcgMgUUEH2XrKRoexRyqale+T+/ji5GW26kyZNv5/nyZPk5ubmTVpIzz3nPa9GURQFRERERERERGR3nGw9ACIiIiIiIiIyj0E7ERERERERkZ1i0E5ERERERERkpxi0ExEREREREdkpBu1EREREREREdopBOxEREREREZGdYtBOREREREREZKcYtBMRERERERHZKQbtRERERERERHaKQTsRERERkYNq0aIFWrRokel9q1atat0B6ZQsWRIDBgzIldciyusYtBORiaVLl0Kj0UCj0WDfvn2pHlcUBSEhIdBoNHj55Zf126OiojBlyhRUrVoV3t7eKFSoEGrWrInRo0cjLCxMv9/UqVP1xzd3CQ8Pz5X3SURElFnqd+Pff/9t66HkWFhYGKZOnYqTJ0/aeigWU7JkSWg0GrRq1crs4wsXLtT/nZHyZ7hv3z60adMGxYoVg4eHB0qUKIH27dtj+fLlJvul97fL66+/brX3RgQALrYeABHZJw8PDyxfvhxNmjQx2b57927cunUL7u7u+m2JiYlo1qwZLly4gP79++PNN99EVFQU/vnnHyxfvhydO3dG0aJFTY4zb948+Pj4pHpdf39/q7wfIiKi/Oivv/4yuR8WFoYPP/wQJUuWRM2aNW0zKAAXL16Ek5Pl8oceHh7YuXMnwsPDERQUZPLYsmXL4OHhgbi4OJPtq1atQs+ePfVJhoCAAFy9ehV79uzBwoUL0bt3b5P9X3jhBfTr1y/Va5cvX95i74PIHAbtRGRW27ZtsWrVKsyZMwcuLob/KpYvX446dergwYMH+m3r16/HiRMnsGzZslRfcHFxcUhISEh1/G7duuGZZ56x3hsgIiLKx2JiYuDl5QU3NzdbD8Us45P/ltC4cWMcPXoUK1euxOjRo/Xbb926hb1796Jz585Ys2aNyXOmTp2KypUr49ChQ6k+p3v37qV6jfLly6Nv374WHTdRZrA8nojMeuWVV/Dw4UNs3bpVvy0hIQGrV69OFZhfvnwZgHxhpuTh4QFfX1/rDpaIiMgOnDhxAm3atIGvry98fHzw/PPP49ChQ6n2O336NJo3bw5PT08UL14c06dPx5IlS6DRaHDt2jX9fr/99hvatWuHokWLwt3dHWXKlMFHH32E5ORkk+Opc9GPHTuGZs2awcvLC++//77+MXVO+65du1CvXj0AwMCBA/Xl3UuXLjU53rlz59CyZUt4eXmhWLFimDVrlsnju3btgkajwa+//ooPP/wQxYoVQ4ECBdCtWzdEREQgPj4eY8aMQZEiReDj44OBAwciPj7e5Bjm5rQ/efIEY8eORcmSJeHu7o7ixYujX79+JomCtHh4eKBLly6pytpXrFiBgIAAtG7dOtVzLl++jHr16pk9sVGkSJEMX5MotzDTTkRmlSxZEg0bNsSKFSvQpk0bAMCff/6JiIgI9OrVC3PmzNHvGxoaCgD48ccfMWnSJGg0mgyP/+jRo1TbXFxcWB5PRER50j///IOmTZvC19cX7777LlxdXbFgwQK0aNECu3fvRoMGDQAAt2/fRsuWLaHRaDBhwgR4e3vj+++/N5t5Xrp0KXx8fPDWW2/Bx8cHO3bswOTJkxEZGYnPPvvMZN+HDx+iTZs26NWrF/r27YvAwMBUx6tUqRKmTZuGyZMnY+jQoWjatCkAoFGjRvp9Hj9+jJdeegldunRBjx49sHr1aowfPx7VqlXT/z2gmjFjBjw9PfHee+/h0qVL+Prrr+Hq6gonJyc8fvwYU6dOxaFDh7B06VKUKlUKkydPTvPzi4qKQtOmTXH+/HkMGjQItWvXxoMHD7BhwwbcunUrU9V5vXv3xosvvojLly+jTJkyAKRCsFu3bnB1dU21f2hoKLZv345bt26hePHiGR4/Li7O7AkEX19fu61oIAehEBEZWbJkiQJAOXr0qDJ37lylQIECSkxMjKIoitK9e3elZcuWiqIoSmhoqNKuXTtFURQlJiZGqVChggJACQ0NVQYMGKAsWrRIuXv3bqrjT5kyRQFg9lKhQoXce6NERESZZPzdmJZOnTopbm5uyuXLl/XbwsLClAIFCijNmjXTb3vzzTcVjUajnDhxQr/t4cOHSsGCBRUAytWrV/Xb1e9fY8OGDVO8vLyUuLg4/bbmzZsrAJT58+en2r958+ZK8+bN9fePHj2qAFCWLFlidl8Ayo8//qjfFh8frwQFBSldu3bVb9u5c6cCQKlataqSkJCg3/7KK68oGo1GadOmjclxGzZsqISGhppsCw0NVfr376+/P3nyZAWAsnbt2lTj0mq1qbalPFa7du2UpKQkJSgoSPnoo48URVGUc+fOKQCU3bt3m/0ZLlq0SAGguLm5KS1btlQ++OADZe/evUpycnKq10jrbxcAyooVK9IdH1FOsTyeiNLUo0cPxMbGYtOmTXj69Ck2bdqUqjQeADw9PXH48GG88847ACQzMHjwYAQHB+PNN99MVRIHAGvWrMHWrVtNLkuWLLH6eyIiIrK05ORk/PXXX+jUqRNKly6t3x4cHIzevXtj3759iIyMBABs3rwZDRs2NGkCV7BgQfTp0yfVcT09PfW3nz59igcPHqBp06aIiYnBhQsXTPZ1d3fHwIEDc/xefHx8TOZtu7m5oX79+rhy5Uqqffv162eSwW7QoAEURcGgQYNM9mvQoAFu3ryJpKSkNF93zZo1qFGjBjp37pzqscxU8AGAs7MzevTogRUrVgCQBnQhISH6ioKUBg0ahM2bN6NFixbYt28fPvroIzRt2hTlypXDgQMHUu3fsWPHVH+7bN26FS1btszU+Iiyi+XxRJSmwoULo1WrVli+fDliYmKQnJyMbt26md3Xz88Ps2bNwqxZs3D9+nVs374dn3/+OebOnQs/Pz9Mnz7dZP9mzZqxER0RETmE+/fvIyYmBhUqVEj1WKVKlaDVanHz5k1UqVIF169fR8OGDVPtV7Zs2VTb/vnnH0yaNAk7duzQB/2qiIgIk/vFihWzSIl28eLFUwXJAQEBOH36dKp9S5QoYXLfz88PABASEpJqu1arRUREBAoVKmT2dS9fvoyuXbvmZOgApER+zpw5OHXqFJYvX45evXqlG/S3bt0arVu3RkxMDI4dO4aVK1di/vz5ePnll3HhwgWTue3FixdPc1k5Imtipp2I0tW7d2/8+eefmD9/Ptq0aZOpOeehoaEYNGgQ9u/fD39/fyxbtsz6AyUiInIgT548QfPmzXHq1ClMmzYNGzduxNatWzFz5kwAgFarNdnfOCufE87Ozma3K4qS6X2zcgxLa9CgAcqUKYMxY8bg6tWrZisEzfHy8kLTpk0xd+5cTJo0CY8fP8aff/5p5dESZQ4z7USUrs6dO2PYsGE4dOgQVq5cmaXnBgQEoEyZMjh79qyVRkdERGR7hQsXhpeXFy5evJjqsQsXLsDJyUmffQ4NDcWlS5dS7Zdy265du/Dw4UOsXbsWzZo102+/evVqjsaa2VLz3GbJvxdeeeUVTJ8+HZUqVcrWWvR169YFANy5c8ci4yHKKWbaiShdPj4+mDdvHqZOnYr27dub3efUqVNmu6lev34d586dM1suSERE5CicnZ3x4osv4rfffjNZsu3u3btYvnw5mjRpol/+tHXr1jh48CBOnjyp3+/Ro0epqtLUbLVxdjohIQHffvttjsbq7e0NQDL59qRr1644deoU1q1bl+qxrGboX3vtNUyZMgVffPFFuvtt377d7PY//vgDAPj3C9kNZtqJKEP9+/dP9/GtW7diypQp6NChA5599ln4+PjgypUrWLx4MeLj4zF16tRUz1m9ejV8fHxSbX/hhRfMLlNDRERka4sXL8bmzZtTbR89ejSmT5+OrVu3okmTJhg+fDhcXFywYMECxMfHm6xz/u677+Lnn3/GCy+8gDfffFO/5FuJEiXw6NEjfSa8UaNGCAgIQP/+/TFq1ChoNBr89NNPOS4xL1OmDPz9/TF//nwUKFAA3t7eaNCgAUqVKpWj4+bUO++8g9WrV6N79+4YNGgQ6tSpg0ePHmHDhg2YP38+atSokeljhYaGmv3bI6WOHTuiVKlSaN++PcqUKYPo6Ghs27YNGzduRL169VIlK/7991/8/PPPqY4TGBiIF154IdPjI8oqBu1ElGNdu3bF06dP8ddff2HHjh149OgRAgICUL9+fYwbN85sV9U33njD7LF27tzJoJ2IiOzSvHnzzG4fMGAAqlSpgr1792LChAmYMWMGtFotGjRogJ9//lm/RjsgTdp27tyJUaNG4ZNPPkHhwoUxYsQIeHt7Y9SoUfDw8AAAFCpUCJs2bcK4ceMwadIkBAQEoG/fvnj++efRunXrbL8HV1dX/PDDD5gwYQJef/11JCUlYcmSJTYP2n18fLB3715MmTIF69atww8//IAiRYrg+eefz9Qa6tnx/fff47fffsOvv/6KsLAwKIqC0qVLY+LEiRg/fjxcXExDJbVbfErNmzdn0E5WpVFyoyMEERERERGlacyYMViwYAGioqLSbORGRPkT57QTEREREeWi2NhYk/sPHz7ETz/9hCZNmjBgJ6JUWB5PRERERJSLGjZsiBYtWqBSpUq4e/cuFi1ahMjISHzwwQe2HhoR2SEG7UREREREuaht27ZYvXo1vvvuO2g0GtSuXRuLFi0yWdqNiEjFOe1EREREREREdopz2omIiIiIiIjsFIN2IiIiIiIiIjvFOe0AtFotwsLCUKBAAWg0GlsPh4iI8jlFUfD06VMULVoUTk48v24J/K4nIiJ7k9nvewbtAMLCwhASEmLrYRAREZm4efMmihcvbuthOAR+1xMRkb3K6PueQTuAAgUKAJAPy9fX18ajISKi/C4yMhIhISH67yfKOX7XExGRvcns9z2DdkBfJufr68svciIishss47YcftcTEZG9yuj7nhPliIiIiIiIiOwUg3YiIiIiIiIiO8WgnYiIiIiIiMhOcU47EVEWJCcnIzEx0dbDIAfg6uoKZ2dnWw+DiIhSUBQFSUlJSE5OtvVQKI9zdnaGi4tLjnvUMGgnIsqkqKgo3Lp1C4qi2Hoo5AA0Gg2KFy8OHx8fWw+FiIh0EhIScOfOHcTExNh6KOQgvLy8EBwcDDc3t2wfg0E7EVEmJCcn49atW/Dy8kLhwoXZ1ZtyRFEU3L9/H7du3UK5cuWYcScisgNarRZXr16Fs7MzihYtCjc3N37fU7YpioKEhATcv38fV69eRbly5eDklL3Z6QzaiYgyITExEYqioHDhwvD09LT1cMgBFC5cGNeuXUNiYiKDdiIiO5CQkACtVouQkBB4eXnZejjkADw9PeHq6orr168jISEBHh4e2ToOG9EREWUBz7iTpfB3iYjIPmU3G0pkjiV+n/gbSURERERERGSnGLQTERERERER2SkG7URElCUlS5bE7NmzM73/rl27oNFo8OTJE6uNCQCWLl0Kf39/q74GERFRfsDvevvCoJ2IyEFpNJp0L1OnTs3WcY8ePYqhQ4dmev9GjRrhzp078PPzy9brERERkXn8rs8f2D2eiMhB3blzR3975cqVmDx5Mi5evKjfZrw+uKIoSE5OhotLxl8LhQsXztI43NzcEBQUlKXnEBERUcb4XZ8/MNNuQRcvAjVqAC1b2nokRGRtigJER9vmoiiZG2NQUJD+4ufnB41Go79/4cIFFChQAH/++Sfq1KkDd3d37Nu3D5cvX0bHjh0RGBgIHx8f1KtXD9u2bTM5bsqSOY1Gg++//x6dO3eGl5cXypUrhw0bNugfT1kyp5a2bdmyBZUqVYKPjw9eeuklkz88kpKSMGrUKPj7+6NQoUIYP348+vfvj06dOmXp5zRv3jyUKVMGbm5uqFChAn766Sejn6GCqVOnokSJEnB3d0fRokUxatQo/ePffvstypUrBw8PDwQGBqJbt25Zem1yTIoCtGoFhIYC4eG2Hg0RWRO/62fr7/O73rYYtFtQYiJw+jTwzz+2HgkRWVtMDODjY5tLTIzl3sd7772HTz/9FOfPn0f16tURFRWFtm3bYvv27Thx4gReeukltG/fHjdu3Ej3OB9++CF69OiB06dPo23btujTpw8ePXqUzucXg88//xw//fQT9uzZgxs3buDtt9/WPz5z5kwsW7YMS5Yswf79+xEZGYn169dn6b2tW7cOo0ePxrhx43D27FkMGzYMAwcOxM6dOwEAa9aswVdffYUFCxbgv//+w/r161GtWjUAwN9//41Ro0Zh2rRpuHjxIjZv3oxmzZpl6fXJMWk0wH//ATduAFeu2Ho0RGRN/K43xe96G1JIiYiIUAAoEREROTrOxYuKAiiKn59lxkVE9iM2NlY5d+6cEhsbqyiKokRFyb93W1yiorI+/iVLlih+Rv857dy5UwGgrF+/PsPnVqlSRfn666/190NDQ5WvvvpKfx+AMmnSJP39qKgoBYDy559/mrzW48eP9WMBoFy6dEn/nG+++UYJDAzU3w8MDFQ+++wz/f2kpCSlRIkSSseOHTP9Hhs1aqQMGTLEZJ/u3bsrbdu2VRRFUb744gulfPnySkJCQqpjrVmzRvH19VUiIyPTfL2cSvk7ZcxS30tkYMnPtGVL+bf4008WGBgR2Q1+1/O73hos8X3PTLsFubnJdWKibcdBRNbn5QVERdnm4uVlufdRt25dk/tRUVF4++23UalSJfj7+8PHxwfnz5/P8Ox79erV9be9vb3h6+uLe/fupbm/l5cXypQpo78fHBys3z8iIgJ3795F/fr19Y87OzujTp06WXpv58+fR+PGjU22NW7cGOfPnwcAdO/eHbGxsShdujSGDBmCdevWISkpCQDwwgsvIDQ0FKVLl8arr76KZcuWIcaSaQ/K00qXlmtm2okcG7/rTfG73nYYtFuQq6tcJyTYdhxEZH0aDeDtbZuLRmO59+Ht7W1y/+2338a6devwySefYO/evTh58iSqVauGhAz+Y3NV/wPUfz4aaLXaLO2vZHYCn4WEhITg4sWL+Pbbb+Hp6Ynhw4ejWbNmSExMRIECBXD8+HGsWLECwcHBmDx5MmrUqGH1pWwob2DQTpQ/8LveFL/rbYdBuwWpmfakpMw3jyAisif79+/HgAED0LlzZ1SrVg1BQUG4du1aro7Bz88PgYGBOHr0qH5bcnIyjh8/nqXjVKpUCfv37zfZtn//flSuXFl/39PTE+3bt8ecOXOwa9cuHDx4EGfOnAEAuLi4oFWrVpg1axZOnz6Na9euYceOHTl4Z+QoGLQTUV7G7/q8913PJd8syPhkUmKiIYgnIsorypUrh7Vr16J9+/bQaDT44IMP0j2Lbi1vvvkmZsyYgbJly6JixYr4+uuv8fjxY2iykHp455130KNHD9SqVQutWrXCxo0bsXbtWn2H3KVLlyI5ORkNGjSAl5cXfv75Z3h6eiI0NBSbNm3ClStX0KxZMwQEBOCPP/6AVqtFhQoVrPWWKQ9Rg/bLl207DiKi7OB3fd77rmfQbkHGQTqDdiLKi7788ksMGjQIjRo1wjPPPIPx48cjMjIy18cxfvx4hIeHo1+/fnB2dsbQoUPRunVrODs7Z/oYnTp1wv/+9z98/vnnGD16NEqVKoUlS5agRYsWAAB/f398+umneOutt5CcnIxq1aph48aNKFSoEPz9/bF27VpMnToVcXFxKFeuHFasWIEqVapY6R1TXqIG7WFhQGws4Olp2/EQEWUFv+vz3ne9RsntiQV2KDIyEn5+foiIiICvr2+2j2McqD96BAQEWGiARGRzcXFxuHr1KkqVKgUPDw9bDyff0Wq1qFSpEnr06IGPPvrI1sOxiPR+pyz1vUQGlvxMFQXw8wOePgXOnQMqVbLQIInIpvhdb1uO+F0PWOb7npl2C3Ix+jTZQZ6IKPuuX7+Ov/76C82bN0d8fDzmzp2Lq1evonfv3rYeGhE0GqBMGeDkSZnXzqCdiCjr+F2feWxEZ0EaDTvIExFZgpOTE5YuXYp69eqhcePGOHPmDLZt24ZKjI7ITrAZHRFRzvC7PvOYabcwNzfJsjPTTkSUfSEhIam6wRLZjXbtMPfIDRzBH7hyJcTWoyEiypP4XZ95zLRbGDPtREREDu70aQQ/OIsghDPTTkREVseg3cLURnQM2omIiBxUkSJyhXsM2omIyOoYtFuYmmlneTwREZGDShG0cx0eIiKyJgbtFsZMOxERkYPTBe2BuIeYGODuXRuPh4iIHBqDdgtjpp2IiMjB6YL2MgXuAWAHeSIisi4G7RbGTDsREZGD0wXtJb0YtBMRkfUxaLcwNWhnpp2IHEWLFi0wZswY/f2SJUti9uzZ6T5Ho9Fg/fr1OX5tSx0nPVOnTkXNmjWt+hrkYHRBe7ALg3Yicgz8rrdvDNotjEu+EZG9aN++PV566SWzj+3duxcajQanT5/O8nGPHj2KoUOH5nR4JtL6Mr1z5w7atGlj0dciyjFd0P6MlkE7EdkWv+vzB5sG7Xv27EH79u1RtGhRs2dYFEXB5MmTERwcDE9PT7Rq1Qr//fefyT6PHj1Cnz594OvrC39/fwwePBhRUVG5+C5MMdNORPZi8ODB2Lp1K27dupXqsSVLlqBu3bqoXr16lo9buHBheHl5WWKIGQoKCoK7u3uuvBZRpumCdt84Bu1EZFv8rs8fbBq0R0dHo0aNGvjmm2/MPj5r1izMmTMH8+fPx+HDh+Ht7Y3WrVsjLi5Ov0+fPn3wzz//YOvWrdi0aRP27Nlj8bNCWcFMO1E+oShAdLRtLplcX+rll19G4cKFsXTpUpPtUVFRWLVqFQYPHoyHDx/ilVdeQbFixeDl5YVq1aphxYoV6R43Zcncf//9h2bNmsHDwwOVK1fG1q1bUz1n/PjxKF++PLy8vFC6dGl88MEHSNSd3Vy6dCk+/PBDnDp1ChqNBhqNRj/mlCd0z5w5g+eeew6enp4oVKgQhg4danKidsCAAejUqRM+//xzBAcHo1ChQhgxYoT+tTJDq9Vi2rRpKF68ONzd3VGzZk1s3rxZ/3hCQgJGjhyJ4OBgeHh4IDQ0FDNmzAAgJ5unTp2KEiVKwN3dHUWLFsWoUaMy/dqURwQGAgA8Iu8BUBi0Ezkqftfr7/O73rbf9S5WPXoG2rRpk2YphKIomD17NiZNmoSOHTsCAH788UcEBgZi/fr16NWrF86fP4/Nmzfj6NGjqFu3LgDg66+/Rtu2bfH555+jaNGiufZeVMy0E+UTMTGAj49tXjsqCvD2znA3FxcX9OvXD0uXLsXEiROh0WgAAKtWrUJycjJeeeUVREVFoU6dOhg/fjx8fX3x+++/49VXX0WZMmVQv379DF9Dq9WiS5cuCAwMxOHDhxEREWEyJ05VoEABLF26FEWLFsWZM2cwZMgQFChQAO+++y569uyJs2fPYvPmzdi2bRsAwM/PL9UxoqOj0bp1azRs2BBHjx7FvXv38Nprr2HkyJEmf6zs3LkTwcHB2LlzJy5duoSePXuiZs2aGDJkSIbvBwD+97//4YsvvsCCBQtQq1YtLF68GB06dMA///yDcuXKYc6cOdiwYQN+/fVXlChRAjdv3sTNmzcBAGvWrMFXX32FX375BVWqVEF4eDhOnTqVqdelPKRwYQCAU3ISAvAYt28XRFwc4OFh43ERkWXxux4Av+vt4rtesRMAlHXr1unvX758WQGgnDhxwmS/Zs2aKaNGjVIURVEWLVqk+Pv7mzyemJioODs7K2vXrk3zteLi4pSIiAj95ebNmwoAJSIiIsfvo317RQEUZeHCHB+KiOxIbGyscu7cOSU2NlY2REXJP3ZbXKKiMj3u8+fPKwCUnTt36rc1bdpU6du3b5rPadeunTJu3Dj9/ebNmyujR4/W3w8NDVW++uorRVEUZcuWLYqLi4ty+/Zt/eN//vlnqv/TU/rss8+UOnXq6O9PmTJFqVGjRqr9jI/z3XffKQEBAUqU0fv//fffFScnJyU8PFxRFEXp37+/EhoaqiQlJen36d69u9KzZ880x5LytYsWLap8/PHHJvvUq1dPGT58uKIoivLmm28qzz33nKLValMd64svvlDKly+vJCQkpPl6qlS/U0YiIiIs9r1EwuKfqZ+fogBKba/zCqAo589b5rBEZDv8rh+tv8/vest81yuKZb7v7bYRXXh4OAAgUFeCpgoMDNQ/Fh4ejiK6eWUqFxcXFCxYUL+POTNmzICfn5/+EhISYrFxM9NOlE94eclZcFtcsjDHrGLFimjUqBEWL14MALh06RL27t2LwYMHAwCSk5Px0UcfoVq1aihYsCB8fHywZcsW3LhxI1PHP3/+PEJCQkwqmxo2bJhqv5UrV6Jx48YICgqCj48PJk2alOnXMH6tGjVqwNso89C4cWNotVpcvHhRv61KlSpwdnbW3w8ODsa9e/cy9RqRkZEICwtD48aNTbY3btwY58+fByBleSdPnkSFChUwatQo/PXXX/r9unfvjtjYWJQuXRpDhgzBunXrkJSUlKX3SXmE7u+PmkXld+vyZVsOhoisgt/1APhdbw/f9XYbtFvThAkTEBERob+opQ6WwDntRPmERiNla7a46ErfMmvw4MFYs2YNnj59iiVLlqBMmTJo3rw5AOCzzz7D//73P4wfPx47d+7EyZMn0bp1ayRY8D+xgwcPok+fPmjbti02bdqEEydOYOLEiRZ9DWOu6n/EOhqNBlqt1mLHr127Nq5evYqPPvoIsbGx6NGjB7p16wYACAkJwcWLF/Htt9/C09MTw4cPR7NmzbI0z44y9umnn0Kj0Zgtz8w1uqC9YiE2oyNyWPyuzzR+11v3u95ug/agoCAAwN27d0223717V/9YUFBQqjMqSUlJePTokX4fc9zd3eHr62tysRQ1086gnYjsRY8ePeDk5ITly5fjxx9/xKBBg/Rz3vbv34+OHTuib9++qFGjBkqXLo1///0308euVKkSbt68iTt37ui3HTp0yGSfAwcOIDQ0FBMnTkTdunVRrlw5XL9+3WQfNzc3JCcnZ/hap06dQnR0tH7b/v374eTkhAoVKmR6zOnx9fVF0aJFsX//fpPt+/fvR+XKlU3269mzJxYuXIiVK1dizZo1ePToEQDA09MT7du3x5w5c7Br1y4cPHgQZ86cscj4SJYhWrBgQba6IVuULmgv48OgnYhsj9/1mZcXv+vtNmgvVaoUgoKCsH37dv22yMhIHD58WF+O0bBhQzx58gTHjh3T77Njxw5otVo0aNAg18cMGDLtTKoQkb3w8fFBz549MWHCBNy5cwcDBgzQP1auXDls3boVBw4cwPnz5zFs2LBUJ0vT06pVK5QvXx79+/fHqVOnsHfvXkycONFkn3LlyuHGjRv45ZdfcPnyZcyZMwfr1q0z2adkyZK4evUqTp48iQcPHiA+Pj7Va/Xp0wceHh7o378/zp49i507d+LNN9/Eq6++mmoqVU688847mDlzJlauXImLFy/ivffew8mTJzF69GgAwJdffokVK1bgwoUL+Pfff7Fq1SoEBQXB398fS5cuxaJFi3D27FlcuXIFP//8Mzw9PREaGmqx8eVnUVFR6NOnDxYuXIiAgIB0942Pj0dkZKTJxaJ0QXuIO4N2IrI9ftdnTV77rrdp0B4VFYWTJ0/i5MmTAKD/Id64cUNf9jZ9+nRs2LABZ86cQb9+/VC0aFF06tQJgJyJeemllzBkyBAcOXIE+/fvx8iRI9GrVy+bdI4HmGknIvs0ePBgPH78GK1btzb5/3HSpEmoXbs2WrdujRYtWiAoKEj/f2xmODk5Yd26dYiNjUX9+vXx2muv4eOPPzbZp0OHDhg7dixGjhyJmjVr4sCBA/jggw9M9unatSteeukltGzZEoULFza7FI2Xlxe2bNmCR48eoV69eujWrRuef/55zJ07N2sfRgZGjRqFt956C+PGjUO1atWwefNmbNiwAeXKlQMg3XFnzZqFunXrol69erh27Rr++OMPODk5wd/fHwsXLkTjxo1RvXp1bNu2DRs3bkShQoUsOsb8asSIEWjXrh1atWqV4b7W7F8DQB+0BzoxaCci+8Dv+szLa9/1GkXJ5CKAVrBr1y60bNky1fb+/ftj6dKlUBQFU6ZMwXfffYcnT56gSZMm+Pbbb1G+fHn9vo8ePcLIkSOxceNGODk5oWvXrpgzZw58srA8Q2RkJPz8/BAREZHjUvnRo4E5c4D33wdS/C4TUR4WFxeHq1evolSpUvDguk5kAen9Tlnye8lR/PLLL/j4449x9OhReHh4oEWLFqhZs6bJOsLG4uPjTbI4kZGRCAkJsdxnOncu8OabeNq6K3y3rNb3q8riNFQisiP8ridrsMT3vU3XaW/RogXSO2eg0Wgwbdo0TJs2Lc19ChYsiOXLl1tjeNnCTDsREZFl3bx5E6NHj8bWrVsz/Ye0u7s73N3drTcoXabdO1oy7TExwKNHAIsqiIjI0ux2TntexTntRERElnXs2DHcu3cPtWvXhouLC1xcXLB7927MmTMHLi4uGTY2sgpd0O50/x7UlYkiInJ/GERE5Phsmml3RMy0ExERWdbzzz+fqivvwIEDUbFiRYwfP95krd5cowvace8e/PyA6GjgyZPcHwYRETk+Bu0WpgbtzLQTERFZRoECBVC1alWTbd7e3ihUqFCq7blG7WL8+DEKByUgLMyNmXYiIrIKlsdbmFoez0w7kWOyYe9OcjD8XcrjAgIAXYa/hNcDAMy0EzkK/v9MlmSJ3ydm2i2MmXYix6SW3yYkJMDT09PGoyFHkKA7u2uT0m4HsGvXLtsOwMkJKFwYCA9HCfe7AIoy006Ux7nqsm8xMTH8rieLiYmJAWD4/coOBu0Wxkw7kWNycXGBl5cX7t+/D1dXVzg5sVCJsk+r1eL+/fvw8vKCiwu/ivOsIkWA8HAUc5UO8sy0E+Vtzs7O8Pf3x7178m/ay8sLGq7jSNmkKApiYmJw7949+Pv75+gkPf9SsDBm2okck0ajQXBwMK5evYrr16/bejjkAJycnFCiRAn+QZiX6ZrRBTnLH/jMtBPlfUFBQQCgD9yJcsrf31//e5VdDNotjJl2Isfl5uaGcuXK6cuaiXLCzc2NFRt5nS5oL6Iw007kKNST9EWKFEEis3CUQ66urhaZBseg3cKYaSdybE5OTvDw8LD1MIjIHuiC9kLJzLQTORpnZ2f2HCG7wVP8FsZMOxERUT6hC9r9E5hpJyIi62HQbmFqpp1BOxERkYPTBe0F4hi0ExGR9TBotzA1087yeCIiIgenC9q9o1keT0RE1sOg3cKYaSciIsondEG7ZyQz7UREZD0M2i2MmXYiIqJ8Qhe0uz65B0Bhpp2IiKyCQbuFMdNORESUT+iCdqf4OPggCk+eAIpi2yEREZHjYdBuYcy0ExER5RPe3nIBUAT3kJwMxMTYeExERORwGLRbGDPtRERE+Ygu2x7sxHntRERkHQzaLUwN2plpJyIiygd0QXsp77sA2EGeiIgsj0G7hanl8cy0ExER5QO6oL2EOzPtRERkHQzaLYyZdiIionxEF7QXc+Va7UREZB0M2i3MONPODrJEREQOThe0B3FOOxERWQmDdgtTM+0AkJxsu3EQERFRLtAF7UXATDsREVkHg3YLUzPtAOe1ExEROTxd0F4omZl2IiKyDgbtFmacaee8diIiIgenC9r9E5lpJyIi62DQbmHMtBMREeUjuqDdN5aZdiIisg4G7Ram0QAuLnKbQTsREZGD0wXtXrEP4IRkBu1ERGRxDNqtQM22szyeiIjIwRUqBADQKAr8EMHyeCIisjgG7Vagzmtnpp2IiMjBuboCTvLnlDvimWknIiKLY9BuBcy0ExER5SMeHnKFOGbaiYjI4hi0WwEz7URERPmIu7tcMdNORERWwKDdCphpJyIiykd0QTsz7UREZA0M2q2AmXYiIqJ8RFce7454REfzpD0REVkWg3YrUIN2fmkTERHlA0aZdgCIjLTlYIiIyNEwaLcCtTyemXYiIqJ8QJdp93OPBwDOayciIoti0G4FzLQTERHlI7pMe0FvybRzXjsREVkSg3YrYKadiIgoH9Fl2gO8mGknIiLLY9BuBcy0ExER5SO6THuABzPtRERkeQzarYCZdiIionxEndPuwUw7ERFZHoN2K2CmnYiIKB/RZdr93JlpJyIiy2PQbgXMtBMREeUjuky7jxsz7UREZHkM2q1AzbQzaCciIsoHdJn2Aq4M2omIyPIYtFuBmmlneTwREVE+oAvafVxYHk9ERJbHoN0KmGknIiLKR3Tl8V4uzLQTEZHlMWi3AmbaiYiI8hFdpt1Lw0w7ERFZHoN2K2CmnYiIKB/RZdo9nZhpJyIiy2PQbgVc8o2IiCgf0WXaPcBMOxERWR6Ddivgkm9ERET5iC7T7g5m2omIyPIYtFsBM+1ERET5iC7T7qY1ZNoVxZYDIiIiR8Kg3QqYaSciIspHdJl2V0Uy7cnJQHS0LQdERESOhEG7FTDTTkRElI/oMu3OiXFwdpZNnNdORESWwqDdCphpJyIiykd0mXZNfDz8/WUT57UTEZGlMGi3AmbaiYiI8hFdph3x8fDzk5vMtBMRkaW42HoADuXRI+D331HhpBuAnsy0ExER5Qdq0B4Xx0w7ERFZHIN2S7p1C+jXD419A8GgnYiIKJ/QlccjPh5+ReQmM+1ERGQpLI+3JF1dvJNW6uJZHk9ERJQPMNNORERWZNdBe3JyMj744AOUKlUKnp6eKFOmDD766CMoRoufKoqCyZMnIzg4GJ6enmjVqhX+++8/2wxY14HOKUlS7My0ExER5QNGmXYG7UREZGl2HbTPnDkT8+bNw9y5c3H+/HnMnDkTs2bNwtdff63fZ9asWZgzZw7mz5+Pw4cPw9vbG61bt0ZcXFzuD1jNtCcz005ERJRvGGXa2YiOiIgsza7ntB84cAAdO3ZEu3btAAAlS5bEihUrcOTIEQCSZZ89ezYmTZqEjh07AgB+/PFHBAYGYv369ejVq5fZ48bHxyM+Pl5/PzIy0jIDZqadiIgo/2GmnYiIrMiuM+2NGjXC9u3b8e+//wIATp06hX379qFNmzYAgKtXryI8PBytWrXSP8fPzw8NGjTAwYMH0zzujBkz4Ofnp7+EhIRYZsC6TLtGUeCEZGbaiYiI8gM1056QAL8CWgDMtBMRkeXYdab9vffeQ2RkJCpWrAhnZ2ckJyfj448/Rp8+fQAA4eHhAIDAwECT5wUGBuofM2fChAl466239PcjIyMtE7jrMu0A4IYEJCR45vyYREREZN/UTDuAQgUSAHgw005ERBZj10H7r7/+imXLlmH58uWoUqUKTp48iTFjxqBo0aLo379/to/r7u4Od/WsuCXpMu2ABO2JiQzaiYiIHJ7R3xQBnnEAPJhpJyIii7HroP2dd97Be++9p5+bXq1aNVy/fh0zZsxA//79ERQUBAC4e/cugoOD9c+7e/cuatasmfsDNsq0uyKRc9qJiIjyA6OT9v6e0jOHmXYiIrIUu57THhMTAycn0yE6OztDq5X5YqVKlUJQUBC2b9+ufzwyMhKHDx9Gw4YNc3WsAAAnJ8DZGYCaac/9IRAREVEu02j02XY/DwnamWknIiJLsetMe/v27fHxxx+jRIkSqFKlCk6cOIEvv/wSgwYNAgBoNBqMGTMG06dPR7ly5VCqVCl88MEHKFq0KDp16mSbQbu5AbGxcEUiophpJyIiyh/c3YH4ePi5y5KzDNqJiMhS7Dpo//rrr/HBBx9g+PDhuHfvHooWLYphw4Zh8uTJ+n3effddREdHY+jQoXjy5AmaNGmCzZs3w8OoKUyucnUFYmOZaSciIspPPDyAyEh4aCTTHhsLKIok4YmIiHJCoyiKYutB2FpkZCT8/PwQEREBX1/fnB2scGHgwQNUxj+44l4ZcXGWGSMREeUfFv1eIgC58JmWKAHcvInIbUfg16oeACA+3mS6OxERkYnMfjfZ9Zz2PEnXjI6ZdiIionxEV+Hnjnj9pthYWw2GiIgcCYN2S9OdUndFIrRaIDnZxuMhIiIi69M1onPTxulL4hm0ExGRJTBotzSjTDsALvtGRESUH+gy7ZqEePUmg3YiIrIIBu2Wpsu0q0E7S+SJiIjyAV2mHXFx8PSUmwzaiYjIEhi0W5ou0+4KidaZaSciIsoH1PR6fDyDdiIisigG7Zamy7R7aJhpJyIiyjeMMu1eXnKTQTsREVkCg3ZL02XaPV2YaSciIso3mGknIiIrYdBuabpMu6czM+1ERET5hpppNwraY2JsNxwiInIcDNotTQ3amWknIiLKP9iIjoiIrIRBu6Wp5fHMtBMREVnEjBkzUK9ePRQoUABFihRBp06dcPHiRVsPyxTL44mIyEoYtFuaLtPu7sRMOxERkSXs3r0bI0aMwKFDh7B161YkJibixRdfRHR0tK2HZsBMOxERWYmLrQfgcJhpJyIisqjNmzeb3F+6dCmKFCmCY8eOoVmzZmafEx8fj/j4eP39yMhIq46RmXYiIrIWZtotTV3yzUmCdmbaiYiILCsiIgIAULBgwTT3mTFjBvz8/PSXkJAQ6w6KmXYiIrISBu2Wpsu0q+XxzLQTERFZjlarxZgxY9C4cWNUrVo1zf0mTJiAiIgI/eXmzZvWHRgz7UREZCUsj7c0ZtqJiIisZsSIETh79iz27duX7n7u7u5wV7PfucE40/6M3GTQTkRElsCg3dKYaSciIrKKkSNHYtOmTdizZw+KFy9u6+GYYqadiIishEG7peky7W4aZtqJiIgsQVEUvPnmm1i3bh127dqFUqVK2XpIqRll2r285CaDdiIisgQG7ZamLvmm4ZJvREREljBixAgsX74cv/32GwoUKIDw8HAAgJ+fHzzVtLatMdNORERWwkZ0lqYrj1cz7SyPJyIiypl58+YhIiICLVq0QHBwsP6ycuVKWw/NQM20M2gnIiILY6bd0vTl8cy0ExERWYKiKLYeQsa45BsREVkJM+2WpmbawUw7ERFRvmGmPD4mxnbDISIix8Gg3dLUTDvYiI6IiCjfYKadiIishEG7peky7a7gkm9ERET5BhvRERGRlTBotzQ1064w005ERJRvMNNORERWwqDd0phpJyIiyn+YaSciIith0G5puky7CzPtRETkYI4fP44zZ87o7//222/o1KkT3n//fSTk9y88ZtqJiMhKGLRbmi5od1WYaSciIscybNgw/PvvvwCAK1euoFevXvDy8sKqVavw7rvv2nh0NmacafeQJeoYtBMRkSUwaLc0XXk8M+1ERORo/v33X9SsWRMAsGrVKjRr1gzLly/H0qVLsWbNGtsOztbUTLuiwNNFztgnJcmFiIgoJxi0W5paHq9lpp2IiByLoijQarUAgG3btqFt27YAgJCQEDx48MCWQ7M9NdMOwMs5Xn+b2XYiIsopBu2Wpmbatcy0ExGRY6lbty6mT5+On376Cbt370a7du0AAFevXkVgYKCNR2djaqYdgIeGQTsREVkOg3ZL02XanXVBOzPtRETkKGbPno3jx49j5MiRmDhxIsqWLQsAWL16NRo1amTj0dmYkxPg4gIA0MTH6RPvDNqJiCinXGw9AIejy7Q768rjmWknIiJHUb16dZPu8arPPvsMzs7ONhiRnfHwAKKi9Mu+xcUxaCciopxjpt3S1Ex7MsvjiYjIsdy8eRO3bt3S3z9y5AjGjBmDH3/8Ea66k9b5mpll32JibDccIiJyDAzaLS1Fpp3l8URE5Ch69+6NnTt3AgDCw8Pxwgsv4MiRI5g4cSKmTZtm49HZAeNl37hWOxERWQiDdktjpp2IiBzU2bNnUb9+fQDAr7/+iqpVq+LAgQNYtmwZli5datvB2QMzmXYG7URElFMM2i1NF7Q7JTPTTkREjiUxMRHuusB027Zt6NChAwCgYsWKuHPnji2HZh+YaSciIitg0G5puvJ4pyRm2omIyLFUqVIF8+fPx969e7F161a89NJLAICwsDAUKlTIxqOzA8y0ExGRFTBotzRm2omIyEHNnDkTCxYsQIsWLfDKK6+gRo0aAIANGzboy+bzNWbaiYjICrjkm6XpMu0arRZOSEZCApfAISIix9CiRQs8ePAAkZGRCAgI0G8fOnQovLy8bDgyO8FMOxERWQGDdkvTZdoBwA0JSEz0tOFgiIiILMvZ2RlJSUnYt28fAKBChQooWbKkbQdlL5hpJyIiK2B5vKUZrVPrikTOaSciIocRHR2NQYMGITg4GM2aNUOzZs1QtGhRDB48GDFckNyQaY+Ph1p4wKCdiIhyikG7pRkF7ZJpt+FYiIiILOitt97C7t27sXHjRjx58gRPnjzBb7/9ht27d2PcuHG2Hp7tsTyeiIisgOXxlubsDDg5AVotM+1ERORQ1qxZg9WrV6NFixb6bW3btoWnpyd69OiBefPm2W5w9oDl8UREZAXMtFuDbl47M+1ERORIYmJiEBgYmGp7kSJFWB4PMNNORERWwaDdGnRBOzPtRETkSBo2bIgpU6YgLi5Ovy02NhYffvghGjZsaMOR2Qlm2omIyApYHm8NunntzLQTEZEj+d///ofWrVujePHi+jXaT506BQ8PD2zZssXGo7MDxpn2wnKTBQhERJRTDNqtgZl2IiJyQFWrVsV///2HZcuW4cKFCwCAV155BX369IGnJ5c4ZaadiIisgUG7NRhl2pOTAa1WetMRERHldV5eXhgyZIith2GfOKediIisgEG7NRg1ogOAxETD9zgREVFesmHDhkzv26FDByuOJA9gpp2IiKyAQbs16DLtrpAJ7QkJDNqJiChv6tSpU6b202g0SE5Otu5g7B0z7UREZAUM2q3BTKadiIgoL9JqtbYeQt7BTDsREVkBZ1pbg35OuyHTTkRERA5OzbQzaCciIgti0G4Nuky7pwsz7URERPmGmmmPi4OXl9xk0E5ERDnFoN0a1KDdmZl2IiKifIOZdiIisgK7D9pv376Nvn37olChQvD09ES1atXw999/6x9XFAWTJ09GcHAwPD090apVK/z33382HDH05fFezLQTERHlH2xER0REVmDXQfvjx4/RuHFjuLq64s8//8S5c+fwxRdfICAgQL/PrFmzMGfOHMyfPx+HDx+Gt7c3Wrdujbi4ONsNXJdp92CmnYiIKP8w04guIQHI7031iYgoZ+y6e/zMmTMREhKCJUuW6LeVKlVKf1tRFMyePRuTJk1Cx44dAQA//vgjAgMDsX79evTq1SvXxwxAn2n3dGamnYiIHMcff/wBZ2dntG7d2mT7li1boNVq0aZNGxuNzE6YybTr7sLb2zZDIiKivM+uM+0bNmxA3bp10b17dxQpUgS1atXCwoUL9Y9fvXoV4eHhaNWqlX6bn58fGjRogIMHD6Z53Pj4eERGRppcLErNtDtJ0M5MOxEROYL33nvP7FrsiqLgvffes8GI7IyZTDsAxMTYZjhEROQY7Dpov3LlCubNm4dy5cphy5YteOONNzBq1Cj88MMPAIDw8HAAQGBgoMnzAgMD9Y+ZM2PGDPj5+ekvISEhlh24LtPuriuPZ6adiIgcwX///YfKlSun2l6xYkVcunTJBiOyM0aZdicn/Tl8zmsnIqIcseugXavVonbt2vjkk09Qq1YtDB06FEOGDMH8+fNzdNwJEyYgIiJCf7l586aFRqyjZto1zLQTEZHj8PPzw5UrV1Jtv3TpErxZ/22SaQfAZnRERGQRdh20BwcHpzqjX6lSJdy4cQMAEBQUBAC4e/euyT53797VP2aOu7s7fH19TS4WlSLTzqCdiIgcQceOHTFmzBhcvnxZv+3SpUsYN24cOnToYMOR2QmjTDvAoJ2IiCzDroP2xo0b4+LFiybb/v33X4SGhgKQpnRBQUHYvn27/vHIyEgcPnwYDRs2zNWxmkiRaWd5PBEROYJZs2bB29sbFStWRKlSpVCqVClUqlQJhQoVwueff27r4dmemmlPTgaSkxm0ExGRRdh19/ixY8eiUaNG+OSTT9CjRw8cOXIE3333Hb777jsAgEajwZgxYzB9+nSUK1cOpUqVwgcffICiRYuiU6dOthu4Lmh3c2KmnYiIHIefnx8OHDiArVu34tSpU/D09ET16tXRrFkzWw/NPqiZdkDXjM4LAIN2IiLKGbsO2uvVq4d169ZhwoQJmDZtGkqVKoXZs2ejT58++n3effddREdHY+jQoXjy5AmaNGmCzZs3w0M9220Lank8mGknIiLHotFo8OKLL+LFF1+09VDsj/HfHnFx8PJi0E5ERDln10E7ALz88st4+eWX03xco9Fg2rRpmDZtWi6OKgPMtBMRkYOYM2cOhg4dCg8PD8yZMyfdfUeNGpVLo7JTLi6AkxOg1Zos+8agnYiIcsLug/Y8SZdpd2OmnYiI8rivvvoKffr0gYeHB7766qs099NoNAzaASmRj40F4uIYtBMRkUUwaLcGNdOuYaadiIjytqtXr5q9TWnw8JAonZl2IiKyELvuHp9nMdNORESUPxkt+8agnYiILCFbmfabN29Co9GgePHiAIAjR45g+fLlqFy5MoYOHWrRAeZJaqZdkaCdmXYiInIEiqJg9erV2LlzJ+7duwetVmvy+Nq1a200MjuiNqNjpp2IiCwkW5n23r17Y+fOnQCA8PBwvPDCCzhy5AgmTpxoXw3hbEWXaXeFpNiZaSciIkcwZswYvPrqq7h69Sp8fHzg5+dnciEw005ERBaXrUz72bNnUb9+fQDAr7/+iqpVq2L//v3466+/8Prrr2Py5MkWHWSeo8u0uzLTTkREDuSnn37C2rVr0bZtW1sPxX6ZybTHxNhuOERElPdlK9OemJgId92Z5G3btqFDhw4AgIoVK+LOnTuWG11epQbtzLQTEZED8fPzQ+nSpW09DPvGTDsREVlYtoL2KlWqYP78+di7dy+2bt2Kl156CQAQFhaGQoUKWXSAeZKuPN6FmXYiInIgU6dOxYcffohYRqFp45x2IiKysGyVx8+cOROdO3fGZ599hv79+6NGjRoAgA0bNujL5vM1XabdRWGmnYiIHEePHj2wYsUKFClSBCVLloSr7iS16vjx4zYamR1RM+0M2omIyEKyFbS3aNECDx48QGRkJAICAvTbhw4dCi8vL4sNLs9SM+1aZtqJiMhx9O/fH8eOHUPfvn0RGBgIjUZj6yHZHzXTzvJ4IiKykGwF7bGxsVAURR+wX79+HevWrUOlSpXQunVriw4wT0qRaWfQTkREjuD333/Hli1b0KRJE1sPxX4ZZdq9CshNBu1ERJQT2ZrT3rFjR/z4448AgCdPnqBBgwb44osv0KlTJ8ybN8+iA8yT1Ex7skTrLI8nIiJHEBISAl9fX1sPw76xER0REVlYtoL248ePo2nTpgCA1atXIzAwENevX8ePP/6IOXPmWHSAeZIu0+7M8ngiInIgX3zxBd59911cu3bN1kOxX2xER0REFpat8viYmBgUKCA1X3/99Re6dOkCJycnPPvss7h+/bpFB5gn6TLtzlo2oiMiIsfRt29fxMTEoEyZMvDy8krViO7Ro0c2GpkdYaadiIgsLFtBe9myZbF+/Xp07twZW7ZswdixYwEA9+7dY9kcYMi0JzPTTkREjmP27Nm2HoL9Y6adiIgsLFtB++TJk9G7d2+MHTsWzz33HBo2bAhAsu61atWy6ADzJF3Q7pTMTDsRETmO/v3723oI9o+ZdiIisrBsBe3dunVDkyZNcOfOHf0a7QDw/PPPo3PnzhYbXJ6llscz005ERA5Gq9Xi0qVLuHfvHrRarcljzZo1s9Go7Agz7UREZGHZCtoBICgoCEFBQbh16xYAoHjx4qhfv77FBpanMdNOREQO6NChQ+jduzeuX78ORVFMHtNoNEhOTrbRyOyImUx7TIzthkNERHlftrrHa7VaTJs2DX5+fggNDUVoaCj8/f3x0UcfpTrrni/pMu1OScy0ExGR43j99ddRt25dnD17Fo8ePcLjx4/1Fzah0zGTaY+PB/jnERERZVe2Mu0TJ07EokWL8Omnn6Jx48YAgH379mHq1KmIi4vDxx9/bNFB5jm6TLtGq4UTkhEf72zjAREREeXcf//9h9WrV6Ns2bK2Hor9MpNp192Fl5dthkRERHlbtoL2H374Ad9//z06dOig31a9enUUK1YMw4cPZ9ButASOKxIZtBMRkUNo0KABLl26xKA9PWYy7YDMa2fQTkRE2ZGtoP3Ro0eoWLFiqu0VK1ZkeRygz7QDgBsSEBfnYcPBEBERZd/p06f1t998802MGzcO4eHhqFatWqp12qtXr57bw7M/aqY9Ph4uLoCLC5CUxGZ0RESUfdkK2mvUqIG5c+dizpw5Jtvnzp3LL2zATKbdhmMhIiLKgZo1a0Kj0Zg0nhs0aJD+tvoYG9HpGJXHA5Jdj4xk0E5ERNmXraB91qxZaNeuHbZt26Zfo/3gwYO4efMm/vjjD4sOME9ydgacnACtFm5IYNBORER51tWrV209hLzFqDweADw9LRu0HzsGnDgBDB4MaDSWOSYREdm3bHWPb968Of7991907twZT548wZMnT9ClSxf8888/+Omnnyw9xrxJl213RaJ6sp2IiCjPUVeJCQ0NxfXr11GsWDGTbaGhoShWrBiuX79u66HahxSZdkuv1T5oEDBkCHD8uGWOR0RE9i9bQTsAFC1aFB9//DHWrFmDNWvWYPr06Xj8+DEWLVpkyfHlXbp57cy0ExGRo2jZsqXZ3jURERFo2bKl1V//m2++QcmSJeHh4YEGDRrgyJEjVn/NLDOTaQcsF7TfvCnXt29b5nhERGT/sh20UwZ0QbsrEpGcLE1oiIiI8jJ17npKDx8+hLe3t1Vfe+XKlXjrrbcwZcoUHD9+HDVq1EDr1q1x7949q75ullkx056UBDx5IrcfP8758YiIKG/I1px2ygRdebwbEgDICXcXftpERJQHdenSBYA0nRswYADc1cAUQHJyMk6fPo1GjRpZdQxffvklhgwZgoEDBwIA5s+fj99//x2LFy/Ge++9Z9XXzhIrZtofPwbUfoBq8E5ERI6PYaS1GGXaAfnutnISgoiIyCr8/PwASKa9QIEC8DRagNzNzQ3PPvsshgwZYrXXT0hIwLFjxzBhwgT9NicnJ7Rq1QoHDx40+5z4+HjEG81Pi4yMtNr4TKhBe0wMAMsG7Q8eGG4z005ElH9kKWhXz7Sn5QlP+xroMu0emgRAAee1ExFRnrVkyRIAQMmSJfH2229bvRQ+pQcPHiA5ORmBgYEm2wMDA3HhwgWzz5kxYwY+/PDD3BieqYIF5To6GoiPh6enVCUwaCciouzKUtCunmlP7/F+/frlaEAOQ5dp93FLAOLBDvJERJTnTZkyxdZDyLQJEybgrbfe0t+PjIxESEiI9V/Y31+Wfk1OBu7fh6dncQD6xHuOPHxouM2gnYgo/8hS0K6eaadM0GXavVwTgXhm2omIKG+qXbs2tm/fjoCAANSqVctsIzrVcSutQ/bMM8/A2dkZd+/eNdl+9+5dBAUFmX2Ou7u7ydz7XOPkBBQuDISHmwTtzLQTEVF2cU67tegy7V4uhkZ0REREeU3Hjh31wW+nTp1sMgY3NzfUqVMH27dv149Bq9Vi+/btGDlypE3GlC6ToF02MWgnIqLsYtBuLcaZdrA8noiI8ia1JD45ORktW7ZE9erV4e/vn+vjeOutt9C/f3/UrVsX9evXx+zZsxEdHa3vJm9XCheWawsH7cbl8WwjRESUfzBotxZm2omIyIE4OzvjxRdfxPnz520StPfs2RP379/H5MmTER4ejpo1a2Lz5s2pmtPZBaOg3ctLbjLTTkRE2cWg3Vp0Qbuni2HJNyIiorysatWquHLlCkqVKmWT1x85cqR9lsOnpAbt9+7BU9don0E7ERFll5OtB+Cw1PJ4Xaad5fFERJTXTZ8+HW+//TY2bdqEO3fuIDIy0uRCOkWKyLUVy+NjY5kQICLKL5hptxZdpt3DmZl2IiJyDG3btgUAdOjQwaSLvKIo0Gg0SE5OttXQ7IvxnPbactPSmXZAsu1pNM8nIiIHwqDdWnSZdk9nzmknIiLHsHPnTlsPIW+wUiM6Bu1ERPkTg3Zr0WfaWR5PRESOoXnz5rYeQt5ghaA9Kckwj93HB4iKYgd5IqL8gkG7tegy7R5OLI8nIiLHEhMTgxs3biAhIcFke/Xq1W00Ijtj3IjOQkG7ceO50qWB06fZjI6IKL9g0G4tuky7u4bl8URE5Bju37+PgQMH4s8//zT7OOe066hBe0QEvF0TALiZNJHLDrU0PiDAcHgG7URE+QO7x1uLLtPurmtEx/J4IiLK68aMGYMnT57g8OHD8PT0xObNm/HDDz+gXLly2LBhg62HZz8KFgSc5E+sWiEP4OYGXLoEHD2a/UOqQXuhQhK4AwzaiYjyCwbt1sJMOxEROZgdO3bgyy+/RN26deHk5ITQ0FD07dsXs2bNwowZM2w9PPvh5AQ88wwAoGDyfXTvLpvnzcv+IdVM/TPPAP7+cptBOxFR/sCg3Vp0QbubhnPaiYjIMURHR6OIbg3ygIAA3L9/HwBQrVo1HD9+3JZDsz9GzejeeENu/vJL9gNtNdP+zDPMtBMR5TcM2q1FLY8Hu8cTEZFjqFChAi5evAgAqFGjBhYsWIDbt29j/vz5CA4OtvHo7IxR0N6oEVCtmjSj++GH7B2OQTtROp4+BW7csPUoiKyGQbu1MNNOREQOZvTo0bhz5w4AYMqUKfjzzz9RokQJzJkzB5988omNR2dnjDrIazTA8OFyd/58QFGyfji1PN54TjuXfCPSeflloEwZYOtWW48kb4uNBbRaW4+CzGDQbi26TLsrOKediIgcQ9++fTFgwAAAQJ06dXD9+nUcPXoUN2/eRM+ePW07OHtjlGkHgD59ZH31ixeBnTuzfjhm2onSoCjAkSNAUpL8QwsLs/WI8qajR6VhxoQJth4JmcGg3VrUTLvC8ngiInJMXl5eqF27Np7RNV0jI7q5/2rQXqAA8Oqrsunbb7N+OOOgnY3oiIw8eGD4Q/v+feCVVySAp6z5/nsgIQFYscLWIyEzuE67tegz7SyPJyIix/DWW2+Z3a7RaODh4YGyZcuiY8eOKFiwYC6PzA6lyLQDwBtvSAf59eslGVikCHD3LhAdDZQrB2g0aR+OS74RpUGdy+7rK1n3PXuAKVOAjz+27bjykuRk4Lff5PbNm3IJCbHtmMgEg3Zr0WXaXZhpJyIiB3HixAkcP34cycnJqFChAgDg33//hbOzMypWrIhvv/0W48aNw759+1C5cmUbj9bGzATt1aoBjRsD+/cDlSoBUVGG6aOzZgHvvJP24YyXfGPQTmREDdorVgTGjQN69gQ++QRo2hR46SXbji2vOHRIziCqDh5k0G5nWB5vLWqmXWGmnYiIHEPHjh3RqlUrhIWF4dixYzh27Bhu3bqFF154Aa+88gpu376NZs2aYezYsbYequ2ZCdoBQP1oIiNN+z1l1D/L3Jz2qCggMdECYyXKy27elOsSJYAePQxdH199VcpYKGPr1pneP3DANuOgNDFotxY1065lIzoiInIMn332GT766CP4+vrqt/n5+WHq1KmYNWsWvLy8MHnyZBw7dsyGo7QTRt3jjXXtCvz9t1zu3DH8bXz6dNqHSkoyZNWN57QDQESE5YZMlCepmfYSJeT6yy+B0FA507Vli+3GlVcoiszZAeQ/KCDzQXt2lsKgbGHQbi26oN1Zl2lneTwREeV1ERERuJciCAWA+/fvIzIyEgDg7++PhISE3B6a/VGD9sePU6XD69SRS1AQUL26zGW/e9e0OtWYcRl8QADg4iKN7VI+RpQvqUG7Ws7t7g506ya31661zZjykrNngcuXAQ8P4MMPZduJE7L8W1ru3QO6dJHGHEeO5M4487k8FbR/+umn0Gg0GDNmjH5bXFwcRowYgUKFCsHHxwddu3bF3bS+9XKTrjzeJZmZdiIicgwdO3bEoEGDsG7dOty6dQu3bt3CunXrMHjwYHTq1AkAcOTIEZQvX962A7UHhQoZOsupE9LN8PYGypaV22ll29XSeDVgB9hBnkjPuDxe1aWLXG/aJB3RKW1qafyLLwKVKwPBwVLe8/ff5vf/4w9p0LFunfznNGYMM+65IM8E7UePHsWCBQtQvXp1k+1jx47Fxo0bsWrVKuzevRthYWHoov5DtSVdpt1JyzntRETkGBYsWIDnn38evXr1QmhoKEJDQ9GrVy88//zzmD9/PgCgYsWK+P777208Ujvg7CyBO5BqXntKNWrIdUZBu/HKemxGR6STsjweAJ59VkpZIiKAnTttM668Qg3aO3WSE42NGsn9lCXycXHAyJFAu3aSaa9SBfD0lKZ1Gzfm6pDzozwRtEdFRaFPnz5YuHAhAtRvKUiZ3qJFi/Dll1/iueeeQ506dbBkyRIcOHAAhw4dsuGIoc+0OyezezwRETkGHx8fLFy4EA8fPsSJEydw4sQJPHz4EN999x28vb0BADVr1kTNmjVtO1B7Ya4Z3a1b8kfxTz/pN6n5iFOnzB9GTdSr5wAABu1EACSLfueO3Dbudu7kJEEokHaJfEyMBJxffy3N6/buNb/fmTPA4MHA9esWG7bduHYNOHlSPq/27WVbWkH7O+8A33wjt0ePlkz86NFyf+JEWTaOrCZPBO0jRoxAu3bt0KpVK5Ptx44dQ2Jiosn2ihUrokSJEjh48GCax4uPj0dkZKTJxeLUOe0sjyciIgfj4+ODggULomDBgvDx8bH1cOyXuWZ0P/0kgcLw4frtzLQTZVNYmJRmu7sb/r2pOneW699+Mw0oHz4EWrWSxhCNGgGjRgHz5kmQHxZmeoyoKNm+eDHw9tvWfCe2oTaga9bM8B+McdCulr2HhwMLF8rtVauA2bNlDvy778pcnbNngeXLc3Hg+Y/dB+2//PILjh8/jhkzZqR6LDw8HG5ubvA3bqMKIDAwEOHh4Wkec8aMGfDz89NfQqyxDqEu0+6UxPJ4IiJyDFqtFtOmTYOfn5++PN7f3x8fffQRtMbrl5Ewl2lXmzZFRQHTpgEwZNrPnTO/hFt6QfuTJ5Ybbr51/jzw3HMSjFDeYtyEzilFWNOihQSUd+/KiTLV6NHA9u2y5mJgoJR7V6wIPHoEvPaa6fzst98GrlyR22vXGm47CuPSeFWtWnIS5MED4NIl2TZnjgQzzz5r6DAPyH9E48fL7cmTLdc/4M4doF8/4Mcfzc+XT0oy/MeYT9h10H7z5k2MHj0ay5Ytg4eHh8WOO2HCBEREROgvN9UGFpakzmlPYnk8ERE5hokTJ2Lu3Ln49NNP9eXxn3zyCb7++mt88MEHth6e/SlSRK7NBe0AsGAB8N9/CA0FfH0lYL9wIfVhWB6fSdlthjV6tMx77tXLZNoC5QHm5rOr3NwMJd9qifzGjcCyZRLg79kjweGmTcCaNRKo/vkn8N13su/mzfJvFADKl5cgf/Zsq76dXHX/PrBvn9w2Dtrd3YG6deX2gQNAZCTw7bdyf/x4Q4NN1ahR0rzu2jXDZ5dTkyfLv8X+/YGXXwZu35btWi2wcqU0zCtcWH5G+YRdB+3Hjh3DvXv3ULt2bbi4uMDFxQW7d+/GnDlz4OLigsDAQCQkJOBJitPMd+/eRVBQUJrHdXd3h6+vr8nF4nSZdk0yM+1EROQYfvjhB3z//fd44403UL16dVSvXh3Dhw/HwoULsXTpUlsPz/6kzLTfvi3lt87OktlNSgLefx8ajSHbbq5E3lymnd3jjSiKofN1yvLmjOzeDWzdKre1WgkSfvzR8mMk61ATb2lVzaol8uvWSVnK66/L/XHjgKZNDQFo5crAp5/K7bfeAo4elXnsgASlc+fK7cWLJSPvCFavlt/5OnVkXXtjDRvK9YEDUhYfESHVCB06pD6OlxegnrSdPh2Ijs7ZuB4+lBMrgCyX8ccfQNWqwMcfy1h79QL++08ez0ffO3YdtD///PM4c+YMTp48qb/UrVsXffr00d92dXXF9u3b9c+5ePEibty4gYbqL5ut6DLtmkTJtGu18t1MRESUVz169AgVK1ZMtb1ixYp45Ch/yFpSyqBdzbJXrSoZO41G/nA+fDjLQTsz7UaOH5fA+8IFCdIyW96oKMCkSXJ72DAJ6BQFGDAA+OEHqw2XLCi9TDsAtG4tHc6vXZOAMywMKFfOsB65sVGjgJYtpUFd48ayb/nywIwZMge+enUJSNXsuz04fdoQVGfVzz/Lde/eqR9T57Xv2QN89ZXcfued1FMQVK+9BpQuLVMR1IA7uxYtkjXia9WS7pz16skJl0mTpGlegQLybxQAtmzJNwGWXQftBQoUQNWqVU0u3t7eKFSoEKpWrQo/Pz8MHjwYb731Fnbu3Iljx45h4MCBaNiwIZ599lnbDl4N2pMMk9NYIk9ERHlZjRo1MFfNOBmZO3cuaqjd1MggZdB++LBc168v6xz37y/3330X1atJabe5DvIM2jPw66+G20eOAEOHZq5U/q+/pDzY3V0yhd9+Kw0CFQUYOFBKdPNaqeS8ecD770vPhLxMUaTXQEa9MjIK2r28gJdektt798qJssWLJZBPyclJMrfqXBUnJ6m68PKS540bJ/t9/bXtfy+iomQ8tWrJ73toKDB1aub/Q7hyRbLoTk6SuU5JTX5euCAVQkWLAn36pH08V1dgxAi5nZMS+aQkQ4f6UaOkAuLAAeCTT+SkwDvvAFevAt9/DxQsKMF8Os3HHYldB+2Z8dVXX+Hll19G165d0axZMwQFBWFtWks75CZdebxxQwZb//smIiLKiVmzZmHx4sWoXLkyBg8ejMGDB6Ny5cpYunQpPvvsM1sPz/6k7B6vZtrr15fradOkA/OePWge9TsA85l2zmlPh6IYgvbhw2XqwU8/AV9+mfHz1Cz78OFAsWISmM2dC7z5pjz+0UdAzZqGeb/2LjxcAqcZM6SM+Pjx9PdPTpYTFRcv5s74smLuXAnY1CxvWjIqjweALl0Mt0eMAJo0SXvfEiUkk+7iIqXeDRoYHuvVS4LXO3eAFSsyfg/WoNXKvPzKleV3XKuVMUVESPVAaKgEuBmdtFI7vT/3nDw/paAgCZJVY8fKya309OsnSctjx+SSHRs3yomYZ54xnExwcQEmTAAuXwZmzZL/CJ2dDSdjfv89e6+V1yikREREKACUiIgIyx00LExRAEVxdlacneXm7duWOzwRETkuq3wvWcjt27eV999/X+nSpYvSpUsXZeLEicrtPPAFZ5PP9PRp+QOgUCFFSUpSlAIF5P7p04Z93npLUQAloUsPRf7SVpR790wPExAg28+dM2w7cEC2lSqVO2/Fbh05Ih+El5eiREcrypw5ct/JSVFWrlSU+Hjzz1u7Vvbz9laUu3dNH9NqFeXXXxUlMFDR/1Bef11R4uKs/35yYt48w3gBRXF1VZTPP1eU5GTz+//wg+wXGKgod+7k7ljTo9UqSqVKMrZGjdLf188v9T+OlJ48UZTgYEWpXFlRnj7N3BgSE81v//RTeb2qVWWc1nb4sKI0bqwooaHyXjUaw8+3VClF+fNP+fmuWqUo1aoZHvvjj7SPqdUqSsWKst/SpWnv17ev7OPnpyiZ/X/zlVfkOcOGZeFNGmnRQp7//vsZ77tsmexbrVr2XisnLPizz+x3E4N2xUpf5Pfv6//h+HgmKYCiXL5sucMTEZHjsueg3ZybN28qQ4YMsfUw0mWTzzQ8XP4W0GgMAby3twTwqu3bZXuJEkqZMnJz2zbDw4mJhr/DjYP5c+dkm79/5ofz+LGitG+vKCtW5Pid2Y+335YPomdPua/VKsprrxk+NHd3RWnYUFFGj1aUL76QwPaHHySAAxRl4sS0j/3okemx3nsvV95StrVqZRhn586GcffqZX7/rl0N+7RokXagagnh4Yry8suKMmVKxvuePGkYl4uLokRFmd8vIsKwX0bBeGysXHLq8WNF8fGR19y61fw+J06k/VhW3LsnJxuMT8QAiuLmpijjx8tJKmPJyYbf1y5d0j7u33/LPh4e6QfjmzbJfp99lvkx79wpz/HxyfwJEpX6f6Szs6LcvJnx/g8eyMk5QFGuX8/aa2VXTIyiLFqkKLVqyQlDC2DQngVW+SI3+o8kOCA2w5OAREREqrwWtJ88eVJxcnKy9TDSZZPP1DjinjlTrps1M90nMlL/h+fgNrcVQFG+/NLw8L17hkMYx1R37hjOB6SVSE1JTcRWqJDzt2YXtFpFKVFC3tSaNYbt8fGKMmiQnNFIGfAYX/z8JDDPyIoVhhMAV65Y7e3kyMOHir6087//5LOZP9+w7cIF0/3j4w2VHy4umc9uZsedO4bMeXpBuGr8eNOfU1oB8Nmz8nhAgOXHnJ5hw+R1X3st9WOxsYpSsKA8vnNn9l9Dq1WUdu3kOJUqKcrBg/IzvHMn/YqPU6cMn3PKChLVmDGmJ7rSk/LEQGbGXa6cHH/hwqw9d8gQeV63bpl/TqNG8pz587P2Wll15YqivPOO4WcLKMrAgRY5dGa/m/L8nHa7pc5pB+DtxmXfiIiI8h0XF2mWBBjmXarz2VUFCkg3eQAvFDgEwLQZndqELiBADqdS57QrSuYbR6vTTC9elKWX87wjR2T+q7c30KaNYbubm3SgfvhQ3uxPP0lTqz59pLt869bSJXzhQsMHmZ6ePaV7eHw88O67WRtjVJS8jrXnxW/cKHPUq1cHypaV+fnDhslSeACwapXp/vv2AU+fAkWKGJa4++QTWV4ru/7+WzqHG/9ChoUBLVpIUzlAGo2l1zhMqwV++UVuBwbK9a5d5vfNqAmdtXTrJtfr18tnbmzLFsOScGPHpn4ckH5XGc05/9//5P8Md3dZl/zZZ4EKFWSueXpzy6tXl27rSUnmly5MSjJ8vuk1llN5eWW8jzGNRhrjAVlrSHf2rKGb/ahRmX9eu3Zynd68dkUBxowBBg3KejCm1UqDv7Jlgc8+k59tyZLAzJlyPxcxaLcWXfd4APBxk2Z07B5PRESUz6jN6Pbvl2vjxlYqXafm2vESzBg3ozPXOR6Qv9vVBtiZbUZn3BvqxInMPceuqYFohw5pdwMvXx7o21eCoJ9/BtauBTZvBnbsALp3z9zraDTS9MvJSZbo27074+fEx0uX8TJlJIhp21aWErOWNWvk2rjpGmB4jymDdjXIadMGeOUVQ+fvV18Frl/P+utfvw40by6fdVCQHHP1agnYL16URnHPPSf77tmT9nEOHpRjFShgWPs7rc/bVkF78+ZysufBg9QnY4xXMjh5MnXgfOoUULy4rHme1vs6ftxwcujLL2Wliax47TW5/v771CcHduyQhoWFCsnJK2vo31+Sl0ePGv6juXhRut2PHCknmNS13G/dAgYPBmrUkGXeatdOv1FgSmrQvn172oHWH3/Iv/8lSyRwz8zKEoCc2ezSRRr8abXACy8AGzYAly7Jz8e4M2husEheP4+zWsmcrllEk7J3FEBRdu2y7OGJiMgxsTze8mz2mTZpYlrqa27u5dKligIosXUa66esqqXw69bJ0xo2TP20okXlsb//zngYsbHSl0wdxuef5+hd5Y705lhrtYoSEiJvZt263BnPG2/I69WqZdqXIKX166VxWMpy/F9+sc64IiOldB9QlDNnTB97+NBQ/m5cIl+hgmz79Ve5HxenKHXryrZXX83a62u10ixBnSed8n2Hhkp58cKF5qeIGBsxQvbp109RLl0yNNQzV6Y9caI8Pnx41sZrCf37y2uPHm3YFhNjmO/eo4dcBwUZ5nbfuqUoxYqZfjbDhkmjPEWR/bZtM5SXd+qUvYZnERHSmBFQlH37TB/r10+2v/FGdt515vXsKa/Trp30MjA3L79pU9Pfly5dsj43Xas1fKabN6d+PDlZUWrWNH3tSZMyPu7Fi4YpHe7uirJkSdbGlQUsj7cHumy7t6tk2lkeT0REeVGXLl3SvYwdO9bWQ7RfaqYdkHJfc0tTPfssAMD9n2MI8E5AQoJhFS41024uqZOVZd/OnJGlp1V//52JsefUzZuG9eqyasECybamtbTW4cNyfB8fw9JP1vbhh4Cfn2QPly41v8/t21I+ff06EBwMzJ9vyJqqy2xZ2p9/yh+Z5coBVaqYPlawoGQIAUO2/fJl+QVzcTGUz7u7A7Nny+3ffjNZsjhDv/0m2VNXVynnOHpUMqoFC0qlw65dQKlSQLNmsv/hw+azoklJhkz1K6/IkmPFiskv7qFDqfe3VaYdMFQ0rF1ryNz++adMhyhRQjLsZcpIVnvmTJmK8PLL8vtRsaKhhHzBAlm+rW5dwN9fpmH8959k4xctkiqPrPL1BXr0kNvff2/Yfv68jBeQighrUt/f778DmzbJ++jQQZZXLFlSfr/27pXfg6ZNpcJizZqs/yw1GqliUV8rpTVrpOKhQAHg889l2/TpwOLFqffVaqUKZMQImWJw/rwsh7dnDzBgQNbGZQUM2q1JF7R7ucq3JMvjiYgoL/Lz80v3Ehoain79+tl6mPapSBHD7fr1zf8RXr48ULAgNHFx6FxaJrTv3CkPpVUeD8jf+ADw5Ekar/3okQRyAwboS+N9fOQ6u8soZ9qdO0ClShKMREVl/flr18ofTkOGSBCTkhrcdewoa93nhsKFgcmT5fb775tvDLBsmQSf9epJGe2wYVIuDEhQp853zqybNyV4S+95xqXx5n6/UpbIq8FNkyZyEkLVsKGUtkdGSrlxZjx9KuvaA8A77xgC0K+/ll/ec+ckSAPkdzEoSE4wHD2a+ljbtwP378vn/Pzz8l5atJDHzM1rt2XQ/sIL0kvh5k3DPyb1d7JHDzkJos55/vxz+T09eVL+P/jjDwnWd+2SzyQsTI6RnCzvpXdv4K+/DP0wskMtkf/1V/l57tkDNGok/xZr1dJPybGaFi3k9Tw9JVC/cEFO7nzzDXDligTE334rPQB279afuMwW43ntxqXvSUmGf69vvSXl+ZMmyf1hw+Tn88UXsm3IEDmh2ry5jCsyUsb/99+p+5DYitVy/XmI1UrmdB0GX617zqQCiYiIKD15rTw+L7DZZzppkqEs86OP0t6vbVtFAZQNrf6n333UKKn8BWRls5TUqtPvvkvjmOo6xhqNMrbPXQVQlKFDDcN5/NgSbzANP/5oeKH0llVLi1r6DihKnTqm661v3mwoq12/3nJjzoz4eEP58hdfmD6m1SpKlSrmfyhqie6CBabbz52TuQ+jRpmula7VSjm52uG9UCHpkJ2yLD82VpYRBGRNb3NSlsi/+GLaS3mpUwDMdUY3Z+xY2b90aSkPz4haNm7u34Jacm5c7v7dd2mX1JcqJY/t3Zu5sVpat26GrvvR0YaSdHUpMK1WUZo3N/wee3goyqFDpseIiZHS6xUrFOXGDcuNTas1TIHo1k3K0QFFefZZ07UjrSkpybrLCKqePjW8P+P/D5YskW0FCxqWttNqFaV37/RXlBgwQNa5z42xKyyPtw+6TLunC7vHExER5UvG5fHmmtCpdJmmNgGH8PrrsmnOHEn6ANksj1eb3ykKfPdKdvXFFw2Jz+PHMx5+thk32fr8c+DqVRw4IAn4DD19KhlMQMoJjh0zNCXbtEnKbOPigPbtpeQ4N7m5Gcrd58yRbJ7q5Engn38ky5qyyV3v3nJtXCKv1UpjrIMH5VhlykgG/+xZKfkdMkQ+iwIFZJrB669L1m/XLsMflVu3SlOv4sUlu2+OcYn80qWGrLVaVmysa1e5Xr/e9L2Zc+KENPgCJINqrhlgSmqJfMpmdLGxhtLtV14xbFcz7YcOyT4qrVaamAG2ybQDpiXyf/whjQZLlZJKA8DQwFCjkcvPP6f+P8DTU0qve/UyP3UmuzQaQ7Z99WopR+/aVRrRGf+fZE3OzqZLXliLjw/QqZPc7tQJGDhQpiV8+KFse+89mTIAyOeyeLFUhbRpI/8uR46U/19++w24e1ca1rVpkztjz4pcOYVg56x29l13lnhMk6NKdpYrJCKi/ImZdsuz2We6fLkhi5PemuBbt8o+JUsqiiKJnuBgw1PN/Q0xapQ89t57hm3ffSdJO0VRFKVGDf0B1mk6K4CiXL1qSBDOmmWpN2lG2bLyIkWKKAqgPGjRRQEUpUWLTDz3yBF5bmCgoRMfoCjvvmvIGHftapp9z00xMYryzDMyjlWrDNvV9a+7d0/9nBs39FUP+oyqmkX28VGU+vVTZ/3c3aVjYFycovzvf5IFVB9zcpLfFbUiYdSo9Me8eLGhAZj6e2auyVlCQubWGU9OVpQGDQxN1zLrzBl5jre3vJZK/XdSooQcW6XVGv4hGI8nLMzwOeRSRjSViAjD56lWUowfn3q/LVvkktvu3jWM7623TD9XR/P0qTQF1DUB11fiBAVlfa35XMZMuz1Q57S7sBEdERFRvqRmAStXTn9NcHW++7VrQHg42rSRhGvfvnKI5s1TPyVlpn3vXun/1Ls3cPOfSOk+p/OCsgXBAXEIDTUkAq3WjC4sTOZzazSShXR2RqFda9ESO3DwYMYJXP2a3pUqSeZMLT2YNUue3Lu3rDVttLxurvL0BN54Q25/9ZVcJyYasujm+juEhEiWWVFk3e3794Hx4+Wxjz6STPJvvwFVq8q2+vUlcz9unGTuR40C/v1Xsqc+PpJpvnbNUJGQ0fJ1HTtK5lBtMNeunfn5766usi9gyHybs2yZNJTz8TF8BplRubJk/qOjDaUeiYmyFjYgy385GYUnac1rV+ezFy1qu4yor6/MvQfkZwUYGsAZe/FFQ8O/3FSkiMwZX79e5m47OXDY5+MjjRT375f/N9RGYpMmZX2teTvlwD89O+DqCoDl8URERPlWo0bAvHnATz+lv5+vr6Hzt65TdsGC8rTr16VfVUopg/ZPPpFrRQH2fnZIAruSJRHlXwzeiMHAkjuh0QB16sh+Vgva1dL4mjWBxo31Ae5sjEFSfBIuXcrg+cZBOyABR+XKcnvAAOnMbevS1TfekL/zDhwAjhyRxmH37knpcVrrX6sl8suWScD++LGsTz1ypKG79smTcrbmwAHpMm6sSBFg4UJpknXnjpSYL14sjegyWtvauEQeMDTvMse47FurTf14VJSUHAPAxIkSOGeWk1PqEvnFi+WEROHCgLmVKNQzVsZTLtSTFbYqjVepnxUg0xtq1bLdWMxp0cJwEiY/aNhQpm3MmCEnvIYMsfWILIZBuzWlyLSzezwREVE+o9FIprh27Yz3VTs6HzyYqUMbd48/dgzYvNnw2MPf9smNJk3wd1B7AEB7bARgCNqvXMnccnFZpgZXugzp07c/xEMURHWcwVB8h9OnM3j+uXNyrQbqXl4SxO7YIZ3UnZ2tMOgsCg42zL3+6ivDSZnevfVJm1S6dZPHTp6UebOAnNAxPgHh7Cwnb9J7jxqNdGFv2lTm7xoHjulRs/GenobstTmtWsk8+tu3zXd5nzlTqilKlwbGjMncaxtTg/bduyXjrmbZP/hAXjcldawHDxr+mLZl53hjHToYMtg9emRviTayLHd3Oan0+ee2q8axAgbt1qT7T9vDmZl2IiIiyoC5oD0xUZoqmWGcaZ8xQ2537ixxT+UnuiZ0TZpgTYIE7dVvbgIUBQEBkhQErLT0mxq06zKke/8piCmQplCjMMe4at+8lJl2QJYma9nSvkp81azwqlVSggyYL41XFSpkuqb8a69Zf+ktYz17ymXmzPSbxnl4GDLx6nJyqmvXDOtdf/559pbbU4P2ffukiiI8XBq4DRtmfv/y5YHAQPlDeuZM4NQp4OpVecySzduyo0gRORni42MXa3mT47Kj//kckO7sjocT57QTERFRBtS1iv/+WzplL1oElC0r5cdLl6baPcBfwURMx6snx2HdGilj/ugjoHePJDTAYQBAQr3GWHrjOUTDC14PbkrAAyuWyN+9K2syazSSCYYkyJdDSsMr4iKu/30/7efHxwOXL8tt46DdHtWsKVng5GQZd5UqGZdH9+kj14UKAZ9+au0RmvLykl4A6rrq6TEukTde+/rddyXb3bKloWN3VtWsKWeWIiLkFxYAPv447ayoRiPZf0Cy8jVrAnPnyn1bZ9oB6Qp/966cXCCyEjvrZe9g1KBdl2lneTwRERGlqUIFqXl/8kRKj40z7EOHyjY1Swmg4tL30BSzgERgB5oAnTqjShVgeONT8FkUjcfwx8nHlRGV5ITdri+gbeJvwIYNQM2aqFsX+PVXK2Ta1Sx7tWoyjxrAzp3AYxREmH9lFH1yDh4nDgLoYP75//0n86h9faUE3d6NHWtokNavX8bl0d27Aw8eyAkac+v42Ys2bSSLfvmynFzw8ZHmeatWSbXD7NnZLwV3dpY5+H/+KY0Fa9WSCoD0fPaZrFV46JD0EHj6VLarZ59sycXF9j0WyOEx025Nank8M+1ERESUEScnQ7Y9PFwac335pQR6iYmS/VSz0DNnovCSWfqnvoPP8P77crtapJTGH0RDvPe+/Kl3vpwuSN4o89qz3EH+7l3g++8l07lrl4zHnBSl8Y8eSV8oAPB4rhEAoMzd/YiKSuN1jOez54X5wS+/LIFjQIC0+s+IkxMwYoR9BJvp8fExNNR7/33pXq9mxYcOBapXz9nxjU4+YebMjKc9BAcD06cD27bJfJCzZ6X7fG5OLyCyIZ4WsiZdpt3diXPaiYiIKBPefluCkk6dpKu4j4/M9b16VSLsl1+WudC67t0z8B7ewpdohINAwn4AjaE5IEH7fjTGkSNy2Ljn2wHnNXKMsDDUri0dv69dAx4+TCPpe/eulOX/9ptkONUy6Q8/lPLmF1+UDGm3boYAO0XQvmePPK1iRaBg+8bA2u/RCAfwzz9AgwZmXtPcfHZ75uQka+0lJMi8e0cybZpkxZOTpbmXm5ucSJoyJefH7txZTgC1bWva1T4z1GZ9RPkIg3Zr0mXa3TXsHk9ERESZ8PzzhrWfVV5eUtZer57MF3/7bQCAMuF9zPz2YxSOuI/XsEhKiBs1kgZfAA46NQF0K3ZVbB4IHKkva2v//jv8hgxBuXJSjX7sWIplpGNjpfz5k09gkhKvW1fWntu2TUql16yRy+TJEsg/eAD884/sq8uk7tghd597DjI2APVwFMuPx6NBA/fU7z+vBe2ANHVLr7FbXlW9eupGdJZSoYL8Djni50ZkBSyPtyY1065heTwRERHlQHCwlLZ7ecn911+H5uPp+PVXIHCWBPHYsEHWCw8LA1xcULB1Pf3T69SBLE8FSIC9bBnq1ZGIXl8in5QErFghafH335eAvU4d4JtvZF3so0eB5culdP/IEWD0aHnetGlyUdfdrlJFMrKQ+eyA9C1DuXKI8nwGHojHk50nzL9PNWhXl3sjx1WgAOeCE2US/6VYky7T7qZheTwRERHlUK1asl756dOyHrhGIxnyFysC+zpI0D54sOxbuzZ6v+aFNX8CzzwDhIZC1vResEDWuO7bF18W+wKR+BDuvzwCTv8JbNkiTfAAoHhxaUD2yiup5xs7OUnWv1492e+dd6RkulQpeVxXGn/3rkw9BnRLbWs0eFShEXxOboDH8f0AnjU9bnIycPGi3M5LmXYiIitjpt2adJl2N5bHExERkSXUqAG8+qrM6zX2zjtyffu2XDdujE6dZP32H37QTTkPDpZM9scfA76+CLx9AhvRAePODABWrpSAvWBBafh18aIsT2YUsP/8M9Crl6zUpff224aly9S1s3VBu9pUvXp1OXEAAE5NpEQ+5OYBk5XE9M+Pjwc8PKCUCEV4OFLvQ0SUDzFotyY10w5m2omIiMiKGjc2dJ7X3Xdykn51bdsa7eflJaXvly9DGTUaT5wCcAy1cbH7JMni37sHTJxoKMPXiYwEhg+X2H7BghSvPX68nAgAJMjXzWdXS+Ofe86wa+FOjQEA9RL2I/xOiohcVxqfWLoCWrd1RnCwJNynTDFMlSciyo8YtFuTLtPuqnBOOxEREVmRRmPItgMSxKfnmWeg+d9sTH3zEeriGGYV+EiWz0qZwddZvNiwNPbixWYy4O+/D/zyi0T1QUEAUjSh03FvVAcJcEUQ7uLS1qumx9AF7RsuVcbWrbLp4kWZLl+1KlCzpqzyRUSU3zBotyY1aNfNaWd5PBEREVlNx47AG29IplwXOGekfXu5/v13QKs1v09yMjBnjuH+xYvAwYNmdlSXfwNw65Z0pjdKvAtPT1wrKGuUP92yX785Lg44uEjWaD+ZUAk1a0qvu59+klXuXF2BU6eAJk2AX3/N1FsjInIYDNqtSVce76plpp2IiIiszNkZ+PZbmZOeSU2bAr6+0jTu6FHz+2zaJNPNAwKAHj1k2+LF6R9XzZTXrZt6+fKHFWReu8exA/pto0cDTv9Kpr1c+0o4dEj63PXtK03zw8KAl16S1eh69gQ++CDtkwxERI6GQbs16TLtLpzTTkRERHbIzU2CYUCaz5sze7ZcDxsGjBwpt1euNF3CPaW//pLr1q1TP+bUVEr3Q25Ipn3XLuC77xRUggTt/WZUgnuKJdyfeUZOHuiWqMf06UD37gzciSh/YNBuTSky7SyPJyIiInujlshv3Jj6sZMnJah2dpZGdE2aAGXLSsC+erX542m1hkz7iy+mfrxIJ8m0l4k7i6e3IjBkCFAUYfDFU3mhcuXMHtfZGfjsM+mG7+YGrF1reB0iIkfGoN2a1Ew7y+OJiIjITrVpI3PPz5wBrl83fex//5Prbt2AkBDpdzdokGxbtMj88U6cAB4+BAoUABo0SP14aIMgXNGUhhMUfNnjEC5dApoWlPnsKFtW//dTWvr1k6XnAGDPnky+SSKiPIxBuzXpMu3OWjaiIyIiIvtUqJCh2bxxtv3ePWD5crk9Zoxhe79+EuTv2wf8+2/q46ml8c89p/9TyISTE3CxoGTbuxx8G/vRCD8k95UHK1XK1JibNpXrvXvNP37kCLB0KbBqFfDHHxLcq93viYjyGgbt1qQ7U+xslGlPtUQKERERkY29/LJcq0H7w4fAqFFAQoJky42XgC9WTLLzALBkSepjqUG7udJ41d1KLQAA1XAWjXAQ7hH35IF27TI1XjVoP3IkdSVjWJg8PnCgNM5r1w5o3hx4/nn+HUZEeRODdmtKkWlXFCApyZYDIiIiIkpNnde+a5fMGy9XTprNAbIEe0pqifwPP5j+bRMVBezXreSWXtAe1aUf3sQcjPecgyeL1sgacmFhwGuvZWq85csDRYpIwJ6y6/3vv8vJhsKFJXivU0f+JDt6FPj770wdnojIrjBotyY1056UoN/EEnkiIiKyNxUrAmXKSLD77rvA48dA9erAtm1Ahw6p93/5ZQmK79wBFi40bN+zB0hMBEqVkuOlpe9AV0QPfBNt/3wT/oO6SCo/ODjT49VopCkekLpEftMmuR49Wsbz99/SaR7IeKk6IiJ7xKDdmnRBu1Nyon4Tm9ERERGRvdFoDM3dihQBvvsOOH5cSsrNcXMDJk+W25MmAY8eyW3j0niNJu3X8/eXALp58+yP2dy89thYOdEAGEr+AUNlwIoVsg8RUV7CoN2adOXxmsQEuLjIJgbtREREZI+mTAG2bAH++w8YMkSWWEvP668DVatKwK4G8JmZz24patC+fz+QnCy3d+0CYmKA4sWlUkDVsiUQGgpERADr1ll/bERElsSg3ZrUJUsSE+HuLjdZHk9ERET2yNVVgm1f38zt7+ICzJkjt+fNky7t589Ld/jnnrPeOFU1asiycpGRslwdYCiNf/ll00y/k5M0pgNYIk9EeQ+DdmtSg/b4eHh46G8SEREROYSWLWW+uFYL9Owp2xo0kPJ3a3NxARrJynHYu1ca/hoH7Sn17y/X27cD165Zf3xERJbCoN2avL3lOjpan2ln0E5ERESO5LPPAA8P6RwP5E5pvMp4XvuZM8CNG4Cnp/lMf8mShjn6S5fm1giJiHKOQbs1+fjIdVQUy+OJiIjIIYWGAu+9Z7hvq6BdXWP++eclcDdHbUi3dKlUBxAR5QUM2q3JKNPO8ngiIiJyVO++K+uh16sH1K+fe69bv77MRgwPBxYskG3mSuNVnTsDfn7A9evAzp25M0Yiopxi0G5NZjLtDNqJiIjI0Xh6AkePAkeOQL9iTm7w8JATBQBw86Zcpxe0e3oCvXvL7Q8/NJT0E+U3ycnA+PHAb7/ZeiSUGQzarUkN2hMS4O2aAIDl8URERFlx7do1DB48GKVKlYKnpyfKlCmDKVOmICEhwdZDoxTSW5fdmtQSeQCoVQsoViz9/UeOlOB9716gRQvg7l2rDo+sYNo0oGxZqZig7NmxA5g1C3j1VZ68ygsYtFuTWh4PwN81GgAz7URERFlx4cIFaLVaLFiwAP/88w+++uorzJ8/H++//76th0Z2wjhoTy/LrqpcWQKWZ54Bjh0DGjYELl603vjIsg4fBqZOBS5fBlatsvVo8q4LF+T66VNg2TLbjoUyxqDdmtzcZNFTAP4ucgqLQTsREVHmvfTSS1iyZAlefPFFlC5dGh06dMDbb7+NtWvX2npoZCcaNTJk+du1y9xznn0WOHgQKFMGuHpVjnH0qPXGSJaRlAS88YYs7wcABw7Ydjx52X//GW7Pm2f4TMk+MWi3Nl2JfAEnybSzPJ6IiChnIiIiULBgwXT3iY+PR2RkpMmFHJO/P/Dtt5J9zUoTvLJlJXBv0AB49AgYOFDm+VL2RERIQ0BrmjcPOHECcHaW+/v3561gMywMGDAA+PJLW48E+Pdfw+1Tp4BDh2w3FsoYg3Zr0wXtfs7MtBMREeXUpUuX8PXXX2PYsGHp7jdjxgz4+fnpLyEhIbk0QrKF118HpkzJ+rz6woWBP/8EAgKAf/4Bfvwx4+fcugV89x0wfTowahTwyiuy5J29B/zR0UC3bsDs2ZY/tqLINIXy5Q0NAS3tzh1g0iS5/fnnUtB67x5w5Yp1Xs/Sdu0CatcGfvgBGDcO2LTJtuNRg/by5eX6229tNxbKGIN2a1Mz7RoG7URERKr33nsPGo0m3csFddKlzu3bt/HSSy+he/fuGDJkSLrHnzBhAiIiIvSXm9aKJCjPCwgA1BYJkycDsbFp75uUJOvQDxsGfPAB8PXXwC+/ADNnSvBvz375BVizRgLfxETLHvvvv4EzZ2R+9NKllj22atw4IDJSVgt4801ZYhCQbLs9UxT5/Xj+eWl6WKCAbH/tNeDBA9uMKT7e0MTvs8/k+tdfbTceyhiDdmvTNaNTg3aWxxMREQHjxo3D+fPn072ULl1av39YWBhatmyJRo0a4bvvvsvw+O7u7vD19TW5EKVl5EggJESy6F9/nfZ+S5YA589LoD94sGTY27SRx77/PnfGml0rV8p1dDRw/Lhlj71uneH20qWWL1nfsQNYsQJwcgLmz5fy+MaN5TF7nteuKECfPvJ7otUC/foB165JM8S7d6VCxBbl/VeuyHh8fID27aUCICFBfr9Ve/fK2IcPl38T27ZxpQVbysWVNPMpXabdR8Pu8URERKrChQujcOHCmdr39u3baNmyJerUqYMlS5bAyYk5B7IsDw/go49kvvGMGZIFTdk2ISZGSvABuR49Wm6fPy9Z9k2bpIQ7ODhXh54p9+4B27cb7u/aJXP5LcU4aL9yRQK+Zs0sd/wFC+T69dclwASkeSBg35n2Y8fkZIOLC/DNN8CQITKF46ef5PNfs0Y6t/ftm7vjUpvQlSsn43njDRnbggXyu//eezIFJCUnJ2DtWqBjx9wdLzHTbn26oN1bYXk8ERFRVt2+fRstWrRAiRIl8Pnnn+P+/fsIDw9HuLU7XlG+07cvUK0a8OSJBO4p/e9/EpSXKiXBo6pSJcn6JifLfGV7tGaNZFZVu3db7tgXLsjF1VXmzAOWL5E/d06ujZf0U4P2f/6Rn5k9UqsbOncGhg419FyoXdtwAmjkSOv1AUhLyvnsr7wC+PnJMnqlShkC9gEDgPHjJUgPDpbfoT/+yN2xkmDQbm0pgnaWxxMREWXe1q1bcenSJWzfvh3FixdHcHCw/kJkSc7OwKefyu2vv5YARvXwoeGx6dMBd3fT5772mlx//719djNXg8feveV63z6Zn28J69fL9XPPGaoPfv0ViIqyzPGTkgxBZqVKhu2BgbJkn6LYZ+dzRZHPAQB69kz9+HvvyWoHERHAiBG5OzbjTDsgs3n79ZPbERGyfdcuKZf/9FP5Gasd78+cyd2xkmDQbm26oN1Ly0w7ERFRVg0YMACKopi9EFlamzZA8+by91qtWsAXX0jTtk8+kSZoNWsCvXqlfl737tJg7PJlCXbsSVgYsGeP3P74Y8moPn0KnDxpmeOrpfGdO0vFQdmyMm9+zRrLHP/aNZlv7ekJlChh+pg6r92WJfJLlsjvRMps/+HDwI0bEhC3bZv6eS4uUpHg5ARs3CjLruWWlJl2wNCf4YMPgNOn5d+BsapV5frsWfs8MeXoGLRbm64RnaeWc9qJiIiI7JlGI0FY/foS2L79NlC9OjB3rjw+c6YEWSl5exuy2PbWkG71agmyGjYESpaUpdmA1CcXbt+WcuisNKm7fRs4ckQ+t44d5XrAAHnMUiXy58/LdYUKqT97tUTeks3oIiOBadOkKWFGtFr5HVm50lCJoVKz7B06yAkHcypVkhM+gPxu5ZaUmXYAKFpUSt+nTZMeDymVLy9TIJ4+zf1yfmLQbn26TLtHMsvjiYiIiOxdqVLAwYPA4sWyjvuFC5Lpff554IUX0n6eWiK/Zg3w6FH2X//evew/15xffpFrtURbzaCmnNc+frzMyR82LPOZVLU0vmFDIChIbvfrJ8H7rl2WWUNdXfmxYsXUj6mZ9sOHLVfuP2uWzDcfOjTjfU+eNPys58wB1FYbWm36pfHGxo+X65Urc2fN+ehoOdkCmGbaM+LmJidOAMm2U+5i0G5tuqDdM4nl8URERER5gZMTMHCglBGPGSNrg8+ZY2gkZk6dOkCNGvK33rJlWX/NhAQJeAMDgQ8/zPbQTdy4IScgNBpDRrdFC7neu1ea5wGSOVWD+7//ludkhnFpvCokBGjVSm7/+GOOhg/AELQbz2dXVa4s5f7R0VLSrdqwAVi1KnuvpzZa27w544zytm2G27GxMo0CkM/v9m3A1xdo3Tr9Y9SqJftotcDnn2dvzFlx6ZJcFyyYeoWEjKgl8rk9rz02Vn4/Y2Nz93XtiV0H7TNmzEC9evVQoEABFClSBJ06dcLFixdN9omLi8OIESNQqFAh+Pj4oGvXrrhrT4sI6oJ290QG7URERER5ib8/8NVXUgJeuXL6+2o0hmz7hx9KZr5NGykbX7Qo/edGRMi+P/0k9z/+GEjxJ2+2qNneZs2k/BmQefkFCshrqoHunDmGAF69n5FHjwwl9sZBO2BaIp/T+c9qeby5TLuTk2T5AZnXrijA1KnymffsacgoZ9bdu8CJE3JbUaTaIj1q0K4ugbZggZwoURv/dexovtQ8pffek+vFi7O2FvratXJyKSvd883NZ8+satXkOrcz7TNmSId79aRIfmTXQfvu3bsxYsQIHDp0CFu3bkViYiJefPFFREdH6/cZO3YsNm7ciFWrVmH37t0ICwtDly5dbDjqFHRz2t2SZMwsjyciIiJyTH36SHb14UNgxw7J1m7YIKXWx46Zf87Nm0CTJrK/j48sB5aYCIwalfOAVw0ejUu0XVzk9QApkY+IMKyDrgZFq1dnPKd70yYJ9KtVky7uxjp3Bry8gOvXc5aVVZT0y+MBQ4n83r2yfJpapZCdrvJ//SXXrq5yvWiR6ckMY3Fx8pqAnGRp0UKqJT78UD4/IOPSeFXz5rJue3y8LC2YGadPSyC7dGnWgll1Pnt2gnbjZnS5accOud6+PXdf157YddC+efNmDBgwAFWqVEGNGjWwdOlS3LhxA8d0/+tFRERg0aJF+PLLL/Hcc8+hTp06WLJkCQ4cOIBD9rL2gy7T7pbATDsRERGRIwsIkOB89Wpg+XIJqNq0kdLnN95IHQBevAg8+6wEQcHBEgSuXCnzh//6C/jtt+yP5exZKXV3cgK6djV9TC2R37VLGuc9fSqVBOPHSwCZnAzMm5f+8deuleuUWXZAGq+pr6EGwtlx7x7w+LFUMaQVZKrN6FatAr79VvZV514fPpy119u8Wa5HjpTS8Zs3ga1bze974IAE7sHB8tlNny7bFy8G7tyRKo30eiAY02gM2fZvvpETKemJjZXGhwkJhudktheCmmk3bkKXWWrQfv685XoIAHKCqGJFOfmRUkKC4YTXsWP5NwFq10F7ShG63+CCugkYx44dQ2JiIlqpE2cAVKxYESVKlMDBdCbjxMfHIzIy0uRiNWrQHs+gnYiIiMjRlS0rQfIrrwD9+0u21tcXOHrUtLP8/fuyFFhYmAR9hw5J6XrZstKRHADGjs3+PF51Xe3OnYEiRUwfU5vR7dkDzJ4tt996SwJ8da31BQvSfu0bNyTTDhjmyqekBqzmgvbERMlIq0vRpUXNspcqlXaZef36gLOz3HZ1lbnPanO3rATtWq1hrJ06Aa++KrcXLjS/v5r1bdVKgu7GjeUEjapzZzn5klkdOsi8/chIYP789PcdPx745x/pf1CjBhATA3z2WeZeJyeZ9pIlpYg4Pt4wNz6ztNq0K0eWLZMTWF99JfsZO33aEKgbB/D5TZ4J2rVaLcaMGYPGjRujqu40T3h4ONzc3ODv72+yb2BgIMLV9o1mzJgxA35+fvpLSEiI9QauC9pd4tk9noiIiCi/CQ42ZGEnTJCMaGysBGlXrkhAunOn6Rrk778PFC8ua5SnFYwlJABvvgm8+KKcADB25w7w889y+513Uj+3dm0Jvh4/lixnYKCU9gMyrtBQKfFfscL8a8+dK9n4li0N2deUXnxRrvfsSR38//STzD3v3j39v43V+ezmmtCpfHwkyA4IkCZyPXpIqTkglQaZzQgfPw48eCDz/Rs2NPQn2LDB/DxzdT67Ue5Q/3MGMl8ar3JyMmTbZ86Un405f/wBfP213DYujf/mm8zNh89Jpt3JCahSRW5npUQ+JkZ+T+rVMz/dQK1mePgw9XFTFk9bcnm/vCTPBO0jRozA2bNn8Yva2jIHJkyYgIiICP3lpjUXG9TNaXeJ5zrtRERERPnRG29IFv3xYwmi+/WTYEQNNFNmwr29gS++kNszZqReOz0qCmjfXoLnrVulw72xr7+WbHaTJoYA1pirq2EuOCDBv5rJdnaW8nBA5lenzI5GRQHffSe3x45N+z1XqgQUKyZ/+6pzv1Vqd/1799LvtJ/RfHbVqlWy3JoaQFesKMF3TIxkpDNjyxa5fv55+XyqVpWpC0lJshSesceP5YSAur+qdm2pcBgzxjSYz6w+fSQofvw49brvgATlAwfK7VGjgJdekux+/fpyYmTWrPSP//ixnJgAshe0A9nrIL9ihZyAOXYs9coEMTGmvx87d5o+rgbtzzwj1wza7djIkSOxadMm7Ny5E8WLF9dvDwoKQkJCAp6kaJl49+5dBKmLRZrh7u4OX19fk4vV6DLtzrEsjyciIiLKj1xcDHPEf/xR5ry7usqSaWkFpN27SyY7Lk4ylG++KUHXw4cSEP71lzR7c3KS+fO//y7Pi4oyvNa4cWmPSZ1z7uUFvP666WODB8v206cNTcBUS5bInOty5YB27dI+vkZjyLYbl8jfvm0amH35Zdpl05nJtKuvZVyK7uQknxmQ+RJ5dT77Sy8Ztg0ZItfff286xl27pIxbPTFhbOxYKfNWS/azwtlZsuyAnDC5ccPwWEIC0KuXnOioWtWwn0YjVQuA/NzTKTbWl8YHB+tDlCzLagd5RZGTS6r1600f37vXMDcfSDtoHz5crg8cyHmDxrzIroN2RVEwcuRIrFu3Djt27ECpUqVMHq9Tpw5cXV2x3aiV4MWLF3Hjxg00VNd/sDWToF1heTwRERFRPvTss4YgEJDgV51bbo5GI/Ozu3eXAHHuXAmUn31WAtGCBSWgVrPdb7whDeWWLJElwMqVk2x8Wvr2lQDs44+BQoVMHwsIMCzb1q+fYem05GRDd/MxYyQ4To+5oP2XXyToql1bsuHnzhmy3CllNtNujlphcORIxvtGRBgywMbrqvfoIWP87z/T92CuNN5S2raV34v4eGDyZNmmKHJiZdcuCS1++cV0jv9LL8n7zSjbnpP57KqsdpA/eBA4edJwf/1606BbLY2vXl2ud+82lNDfvw9cviy333hDTnTduyfTSvIdxY698cYbip+fn7Jr1y7lzp07+ktMTIx+n9dff10pUaKEsmPHDuXvv/9WGjZsqDRs2DBLrxMREaEAUCIiIiz9FhQlIkJR5HdTcUes4udn+ZcgIiLHYtXvpXyKnynZg0ePFKV7d0WZNy9rz9u+XVGqVNH/SakUL64o587JY9HRilK6tGx//XVFKVVKbmf1NVJ6/FhRKleWY9WqpShPnyrK+vVyPyBAUaKiMj7G/fuKotHIc8LCZFutWobxjR0rt1u1Sv3cp08N7/fBg6yPXx1r1aoZ77tmjexboULqx4YPl8cKFFCUHTtkW/nysu2337I+rsw4fFiOr9EoyqlTijJjhtx3clKUP/4w/5zNm2UfDw9FCQ83v8/kybLPa69lf2x37hjGYhSSKaNHy+f377+m+/fuLft3764o7u5y+8wZw+PVqsm2n3+WzxhQlGPH5LGNG+V+pUpy/9ln5f6PP6Y/Rq1WLnlBZr+b7DpoB2D2smTJEv0+sbGxyvDhw5WAgADFy8tL6dy5s3Lnzp0svY5Vv8iTkvT/4xTEA8XDw/IvQUREjoUBpuXxM6W8LiFBUebMUZRXX1WU69dNH9u2zRDgAoryzDMSzOfUlSuKUriwHLN9e0Vp2lRujx+f+WPUqWMItM6dk9suLhKIX7smwR+gKCdPmj7v2DHZXrhw9sauBpcajaJERqa/75Ahsu/o0akfi4hQlBYt5HE3N0X56iu57eysKE+eZG9smdGjh7xOuXKGn+vcuWnvr9UqSr16st+nn5rf55VX5PFZs7I/Lq1Wfr+Mg+sjRwxjrFHDEMzfuaMorq6GfV9+WW5/9JE8HhZm+Bndv68o7drJ/c8/l8cnTpT7AwfK/XHjDCen0htf167yuWX0c7cHmf1usvvyeHOXAWq9DgAPDw988803ePToEaKjo7F27dp057PnOmdnff2KD6IQF5c/52EQERERUfa5usq89h9/NO00D0gztEGDDPeHD5c56TlVqpSsFe/uDmzcKPOPXVwMjeoyw7hEXm0616aNlOSHhgLdusm2r74yfV5m57OnJShIPidFMTSNM0dRzM9nV/n6An/+CXTpInOv1ekI9esDfn7ZG1tmfPKJ/MzVkvZRo4ARI9LeX6Mx9CZYuDD10mlAzjrHG79OyhL59983PH7qlGHZwIULpSHis8/KdIhOnWS7Oq9dnWZQq5Y0mmvZUu6r89rV+ezPPivXjRrJdXrN6JYvB9askc/txInsvEP7ZNdBu8PQzWv3gTSjS0y05WCIiIiIyNF8/rkEqQULph/cZVXDhnKiQNWjhyxHl1nGQfvy5XJbXV4OMDTLW75c1qxX5WQ+u6p+fblOrxndP/8AN2/KiYlmzczv4+EB/PorMGyYYZs15rMbK1PG8HNs104a9mWkZ0+Zg3/5ssx/N6YolpnTDph2kN+2TS5ubhKkazRyvXQpsGCB7Kee5GnfXh4/dkw+c3U+u/o7ogbte/bICRK1H4EatKsty86ckfXsU3r61HSJwzt3cvY+7QmD9tyQImhnB3kiIiIisqSAAOn2/u+/qZeQy6kePaQRXs2awJQpWXtuw4ayhN29e8DVq/JnsXGDvPr1ZWm6xETTJmo5zbQDGTeje/IE6N1bbrdqlX51grOzdGefMUOyxkaFv1Yza5ac7Fi7NnPd6L29pcEgYFiWT3XunAS6Gg1QunTOxqV2kD9zxrC2/BtvyNr2avO8QYOkgWHhwoZqiiJFDEsNrl9vCNpfeEGua9QA/P0l+F62TK69vQ1rwwcHS/WHopg/EfPxx6aBuvFJoLyOQXtu0K3V7g1Zq50d5ImIiIjI0vz8UneCt5QRI6TcOKtZWnd3w/JygJSZpwyO1fLq//3PUDptiUy7GrSbC/BiY+XkwZkzUkr/9dcZH0+jkSD12LGcB76Z4eoqAa3xcnYZUVcoWLdOuq8DUiqvls63bWvaeT471Ez71q3yWfj4GH6GH3wg0zXU6cBDh8rvgEotkf/iC1meztPTEMg7OxtWVFCXtKtf3/SERVol8v/+a6hGUMfHTDtljS7T7u/MTDsRERER5S9qJhUwLY1XtWkjS8gBssTc2bOG+dc5Cdrr1JGALywMuHXLsD0pSdY837dPTnRs2SIZXEdQqxZQt66Ul6vTGubPl/fq7Q18803OX0MNitV58+PGGao7nJ0lS168uIRAxlMKAKBjR7m+fl2umzc3DerVEvmLF+VaLY1XpRW0jx0r1Rpt2sjvEMBMO2WVGrS7SNDOTDsRERER5Rft2knWODQUeO458/vMmiUB3NOnEuQnJkoWNmXTvazw8jKUcqvZ9vh4yf5u2CDB4oYNhjXCHcXQoXK9cKEEx+PHy/1PP5WfQU75+hp+Ls88A7z1lunjgYEyVePiRSAkxPSxsmUNQT9gekIHMATtqrSC9kOHZD33+Hhg0SLgjz/kd2z2bKBoUdmHmXbKmhRBOzPtRERERJRflC0r88r37JHu8+a4ugIrVwLFiknZNABUqAA45TBaUZvRHTggzdHKlweWLJHj/vJL2s3n8rJevSSrfvGiNHmLipIS9OHDLfcaalO4SZMkiE8pIMAQPKeklsgDqYP2qlVNp3ioUxyMH/fxkfn5L7wg+772mjw2dqz8fIOD5T4z7ZQ1ujntvi4yp51BOxERERHlJzVrZpw1DwyUpmvqHO6cNKFTqUHfl18CAwcCN25IMLlypWnw6EgKFDA02Pv3X6koWLQo5ydAjH39tSyFN2pU1p/brZv0ByhZ0jTrDsgY1XntpUrJ74QxFxfDz3TnTiA6WnoSjBxpaJKoBu3MtFPW6DLtfk4sjyciIiIiSkv9+hJgFikiS5jllJoRBmQ5vM8+Ay5dMnQ0d1RqiTwgwWyFCpY9fuHCsq69RpP159aoAezeLZ3xzT1fXV0grWX1pk2Tn98nn0hzxLAwOYmgNjhUM/wREUBMTNbHZ4/SKFAhi9IF7QWcWB5PRERERJSevn0NS5flVKVKwJw5Ery9/ro0nssP6tSR5n6PHwNvv23r0aTWtGnaj/XvL4F3yvnsqkaNDHPbzfH1lX4IsbGSbS9TJmdjtQcM2nODLmj31TBoJyIiIiLKTW++aesR5D6NBvjqK1uPIns0GpmLn5PnFy0KXL7sOEE7y+Nzg25Ouw9YHk9ERERERGRNjtaMjkF7btBl2r3BRnRERERERETW5GjLvjFozw1q0K6wPJ6IiIiIiMiamGmnrNMF7V4Ky+OJiIiIiIisiZl2yjrdnHYvLTPtRERERERE1sRMO2WdLtPukcw57URERERERNakBu3MtFPmqUF7EsvjiYiIiIiIrInl8ZR1KYJ2ZtqJiIiIiIisQ820P34MxMbadiyWwKA9N+iCdrfEaAAKg3YiIiIiIiIr8fcHPDzkdni4TYdiEQzac4OuEZ0TFHgiluXxREREREREVqLROFYzOgbtucHLS3/TB1HMtBMREREREVmRI81rZ9CeG5yc9Nl2Bu1ERERERETWxUw7ZZ1uXrsPolgeT0REREREZEXMtFPW6TLt3ojG48c2HgsREREREZEDc6S12hm05xajTPuNGzYeCxERERERkQNTM+0sj6fMSxG0K4qNx0NEREREROSgmGmnrDMK2mNigIcPbTweIiIiIiIiB8VGdJR1ujntRX2jAYAl8kRERERERFailsc/eoQ8v3oXg/bcosu0F/OLAsCgnYiIiIiIyFoCAgB3d7md10vkGbTnFl3QHuQjQfv167YcDBERERERkePSaBxnXjuD9tyiC9qLeDHTTkREREREZG2OMq+dQXtu0c1pL+jBOe1ERERERETWps5rZ6adMkeXaQ9wYXk8ERERERGRtbE8nrJGF7QXcGJ5PBERERERkbWpmXaWx1Pm6IJ2L60E7XfvAnFxthwQERERERGR42KmnbJGN6fdNSEaXl6y6eZNG46HiIiIiIjIgVm6Ed333wNduwJr11rmeJnFoD236DLtmqgohIbKJpbIExERERERWYelG9Ht3CkB+8WLljleZjFozy26oB1RUShRQm4yaCciIiIiIrIONdP+4AHw9GnOj3f6tFxXr57zY2UFg/bcYiZoZwd5IiIiIiIi6yhUCChdWm5PnpyzYyUkABcuyO1q1XJ2rKxi0J5bdHPaER3N8ngiIiIiIiIr02iAb76R2//7H3DoUPaPdeECkJQE+PkBISGWGV9mMWjPLWqmPSYGocWTATBoJyIiIiIisqaXXgL69QMUBRg0CIiPz95xzpyR62rV5GRAbmLQnlvUoB1AySIxAFgeT0REREREZG1ffQUUKQKcPw98/HH2jmGr+ewAg/bc4+EBOMnHHVpI1mq/eRPQam05KCIiIiIiIsdWsKChTH7GDODUqawfwzjTntsYtOcWjUY/rz2oQDQ0GinNuH/fxuMiIiIiIiJycN26AV26yLz0wYOB5OSsPZ+Z9vxCVyLvGh+lXzOQ89qJiIiIiIis75tvAH9/4NgxQ+Y9Mx49Am7flttVq1plaOli0J6buOwbERERERGRTQQFAZ9+KrcnTTIE4hlRS+NDQwFfX+uMLT0M2nOTUdDOZd+IiIiIiIhy15AhwLPPAk+fAmPGZO45atBui9J4gEF77lLXajfKtDNoJyIiIiIiyh1OTsD8+YCzM7B6NfDHHxk/R53PbosmdACD9tylZtqjo1keT0REREREZAM1ahiy7CNHAjEx6e/PTHt+wvJ4IiIiIiIim5s6FQgJAa5eBUaNAmJjze+n1QJnz8ptZtrzAzON6Bi0ExERERER5S4fH2DuXLm9aBFQqRKwZg2gKKb7XbsGREUBbm5A+fK5PkwADNpzl5k57Q8eANHRthsSERERERFRftShg8xrDwmRacvdugGtWgGXLxv2UUvjK1cGXFxsM04G7bnJaE67v79huYCbN202IiIiIiIionyra1fgwgVg8mTAwwPYsQNo08Ywz11tQmer+ewAg/bcZVQeD8DiJfIHDwLnzlnmWERERERERPmBlxfw4YcSSxUrBvz3HzB+vDymZtptNZ8dcKCg/ZtvvkHJkiXh4eGBBg0a4MiRI7YeUmpq0P7/9u48SKr63P/4+5zeZt93FhnUq7gTRyeIt1IRbol6k2jMor+JGUxKCwWDmg1j3G5CsCpVxmhSWKYiSd0YMRjBLWgMGBO97AHUKKiRKAqzMcxMz9bLOd/fH4duaBhgZhjoHvi8qr41M2fpfs7T3fPMc7ZZvRr+9a8Ru4P8rl3wta/BRRd5e4B+/GNwnCN7TBERERERkRNJbS0sWuR9/4tfwMsvZ8aRdsuY/S+1H32efPJJvv71r/PII49QX1/Pgw8+yJIlS9i6dSsVFRWHXb+rq4vCwkI6OzspSJyzfjT83//BZz4D8TgEg7x05m18aeOd9Fp5fKp6J1PL3+U/cj8hEswnHCihO1BMvKiM2voK6i6wOPdcby/QvpYuhZtugubm1On/+Z/wv/9L8i71gxGNejdYOG5Eo9DSsjc5ubleAnNzvQtSbBssa+/XBMeBjg7Yvdsbvb0QCkF29t4RCHgjGPTOo8nL8x4nU/X3e7lw3b1xB4OQnz9w3NGot+2hkJevQODoxGWM93mIxby87vs6DMR1vdemvx8qK71/sHmwx/3nP+G552D5cgiHobgYioq8UVPjfTgmTPAuYnIc6OryRjjsxeS63gAvTwUF3tdQyDtbJrG860JpKZSVeaO83FtmIPG4t40Hi3uwHMd7X/b3793exPRo1MtnNOpN8/v3jvx8KCw8+HvVdaG9HZqaYOdO+OAD76Kuf/0LWlu9u6+cc443JkyAzk7vxhxtbd73/f17h9/v5SUxErkpLR36+ynxuu/7XIGAl+dg0MtnLLb3vRQKebvJa2qO/i81Y7z4HMd7fsfxfs8c4Wt8zOrSCUQ5FRGRwZozB375S+/PiZ07vVK/YwdUV4/s8wy2Nh0XTXt9fT0XXHABv9hz+z/XdRk3bhy33HIL8+bNO+z6x7SQv/023HYb/PnPAHRQhI1DAeGDrtJPiA85iY84iZ7ccgK2g89ysY1DV9giQoicwiBTLwnR0WFY+/coxGPkBqKUjwnSY3IJu7l0O9kUs5tKdyfl8Z3kR9votvJpccr4OFJGc6wEXyhAXqFNfqGPvAKbrJAhFHAJBQ0Bnwuug+U44Di4josTc3FiBifmggX+gI0vYOEP2tgBH1YwiBUMYAX9WB278bc2EWhvItTVSowAPeTSbXIJmzz688pxS8uxqysIVpbgGBsnbojHwe7tpmDXNgrbP6C4/QOyIh3E/NnEAznEAtlg2/idKD4ngt+JkNW3m+yeXUf3tdyPk5OHm5uPk1uAm1eIk1eAm1uAHY/iD7fj72zH7tqNFY1API7lenk0+QWY4lJMWZnXUEWjXkPW0wORCNg2xvaBz4+xLCwnjhWPYTlxr2FINGQ+H5bPh7EswPKW7erEbm3G6uwcMGbj8+EUlxEvqSCeX0ygaxf+1p34OtpTl/P7Mbn5uCWlmNIyKC3DKiwA28JiT68djWJ6ejE9PbDnq9XdDT3d2H093m87n88bto0Vj0EkgrWnMTbZ2ZgxY3Grx+CWVWLFo9h9PVi9PVjhLqzWVq9x3HMaifH5cKtqiFWOI1pQhsHCxcY1kPveJrJ2bDuKr/ahmYICnLJKnJIKMAZfeyt2eyt2ZwcAbnYObm4+bk4euC5WpB+rvw87FvFea78f49+zY8gYLON6eXLiWH29WJHI8GPz+bBKSrzm2ba91y0a9RrtXbu8z/dRZoqKvG3bt9FN7MywbSzbxjjO3kY8GsUabqmqrITiYozfD4EAxufHikaw9t1J4/N5O9+ys72vtr13R8i+TXliJHaKJHaQ7G/9ejj//GHnB9RgHkwkEqG+vp7NmzezceNGzjvvvEGvq5yKiMhg9fTA5MneafLgHXtoaTn88aWhOmGa9mg0Sk5ODk899RRXXnllcnpjYyMdHR0888wzB6wTiUSI7PNHb1dXF+PGjTt2hdwYeOEFr3l//31vkm3TXV7L7rxxBKI9ZPXtJqt3N6HedmxG9UuUVjH8NFOJwSKXHnLpIUR0UOvtppjdFNNDLln0k00f2fSRRT8BYgSIEWSAP9gzVIQgcfwEiRIgnu5wjoiDjQ/3kMv0E2IF03iOz/FvJlBEB0V0UEI7Y/mYk/iQk/iQcWwnSpAuCuiigG7yiBHwdgBgY+OSRzcFdJFPmCz6CZOfXN7FppRdlNNKGW34Sd+1KQ42UYJ73p0BDBZ+4viJEyA2qPc+wC5KaKaSbdTyPqfwL05mF6WcxlbO4Q3O4Q3G8jHtlNBGGW2U0UkhfWTTTxYRQgSJUcIuSveMMtooZdcR/T7rpIA2yuiiAD9xgkQJEsVPPLnNMQLk0MsYPhn09o609x9fwyn/78Ijegw1mAObO3cu7733HsuXL1fTLiIiR9Xq1TB1qrfv/rOf9W5QN9IGW5vSdNP6kdPW1objOFRWVqZMr6ysZMuWLQOus2DBAu67775jEd7ALAv++7/hv/4L1q6F0lKsk08mPxQif/9lYzH4+GPMtn/TsflDOre14+Ajjg/H+CgvM5QXRLwjPpGI99jBII4vyPrNAXo7ouRZPeSYbrKcXvpCRezOqqbVX80uu5yqvG7GZbdR5W+jIN5OT2ecjt0u4d0OPWGX/qhNJGrRH7GIOjbG8mFsH2bP0TB/yIc/aOMPWmAgFjXEIi7xqIsbc7DiMex4FCseoy+riN78KvqLq3CKyykpdCjP7qYsu4cCuojuaCO2sxVaWvCHd2Mnzlz3WTj+EO0Ftewqmsjuoon0ZJXij/cTiPfhj/ZiHJeoFSJigkRMkHa3iA8jVXzcW0Jn2Mbn885gz82FvGyHgO1gGa8tw3WTZ/T29UFfv0W3m4NrrOSBtcRZt4kDf8bsGa4hi36K/WFK/F0U2V0U2mHy3C7yTRf5bif9JkSbU0xLvISWWDF9ZO1po/wYLArpTDY2hXQSIUQPufSSQ4QQNi5+HIJ2HBuXftdrTBLr+3CSjZkPBwuTHGHyaaKKZirppBDwdg9auISIUOFrpybQSrW/lTK7nZZ4CR9Gq/koXk07JQSIkUMvBXYPRXYXRc4uSozXphXQhWHv7sY4/mTcPeTSRw7RYB7RYB7xUC6OsXFjDvGoixN1iJgA/WTRvycfFbQwlo8ZwydU0kw/Wd6ZGOTRTR6tlNNCBW2UEcdPJc2MYzunhrZTEWjHbxv8PoPPZ9hpjeFldxptfbnJO3/u+/Eb7q5Ky/JOaki8Bw6Yj0shnVTQQgUtjPE3Y7Bpdstpdr3mFqDYF6YkEKY4EAafn6idRcyXRdQKeUfe4zFs13vTxRybmGMTdWwcfMn89pJDP1nJ13QwgkRSGmhgT9vrjV2U0hmsIKcoSH7+3rPtI3t+xbxg772aJLGnOZGHWMzbK+0eYl+KjUMRHZTTip84Dr7k8Oa7yeH9nvPe2TECtFNClINcdjAgQxltjGM7+YSTOy4CxOgnK7njpZs8LExyh1wW/Vh7diwk3t8OvmRkDr6UnCU+i4l4HXy8OnEoccpgLV++nD//+c/88Y9/ZPny5ekOR0REjnOf/jT88IfwP/8Dl1yS3lhGfdM+HHfccQe333578ufEkfZjLhTyLj4/lEAAamuxamspvgSKB/nQPqB+GCHlAOXDWG908e0ZI8ECsveMw98/YSD7nnnrul5TZNsHv+R+/7N1kzsQ9ow9Zxgnm9N9l7Vtr+kMBGx8vmxsewww5oCYEs2a3x/E7w9iWUXJ5Vw3dedF4tJvY7y36z5n6x/yFKL9G0KfL59A4GQCAW9d1/WeIzESz+G63uPm5dWQk1ODbR/6nZ5oIvdtNB3He97Ezhpj9s7bN+eJ1yEY9D6ufn/qYyR25CRy77o2tl1MKFRMMHhayqXjicv3vddn6J+yxPr7nqXtOHtf78TY9+dEnIkcOk6IeLxmz0jdRtv2dmxlZQ05tJQYIxGveY/F9r4PEpd3u64PxynFcUrx+VIvt983n7FY6q0X/P69Z6RHvKtLyMryRijkxR6L7X09YzGwLAsox7LKk2feJ3ITjXoxJsZAn6PE9uy/c2b/ZWDvYyfGGWcOP4cysObmZm644QaWLVtGzv43dzmIgc6qExERGYp774VrroFTTklvHKO+aS8rK8Pn89G8353YmpubqaqqGnCdUChE6GA3ihI5xhIN02DvzbVvA3K0+Hze5b0DsW2vUTrSj1DiOQ72PCNloHuu+XzevcIG+bf/gBKvwWCbXMs6svv5JdYf6mMkmuJjwbL2NtMjze8/9Hsl0eDrrOfjjzGGmTNnMmvWLOrq6vj3v/89qPXSfladiIiMepYFkyalO4rj4F++BYNBzj//fFasWJGc5rouK1asYMqUKWmMTERERA5m3rx5WJZ1yLFlyxYefvhhwuEwd9xxx5Ae/4477qCzszM5tm/ffpS2RERE5Oga9UfaAW6//XYaGxupq6vjwgsv5MEHH6Snp4frr78+3aGJiIjIAL797W8zc+bMQy4zceJEVq5cyapVqw44Q66uro6GhgZ++9vfDriuzqoTEZHjxXHRtH/1q1+ltbWVu+++m6amJs477zxefPHFA25OJyIiIpmhvLyc8vLD39/hoYce4sc//nHy5x07dnDppZfy5JNPUl8/nLu3iIiIjC7HRdMOMGfOHObMmZPuMERERGQEjR8/PuXnvLw8AE4++WTGjh2bjpBERESOqVF/TbuIiIiIiIjI8eq4OdIuIiIix78JEyZg9v9ffCIiIscxHWkXERERERERyVBq2kVEREREREQylJp2ERERERERkQylpl1EREREREQkQ6lpFxEREREREclQatpFREREREREMpSadhEREREREZEMpaZdREREREREJEP50x1AJjDGANDV1ZXmSERERPbWo0R9kiOnWi8iIplmsPVeTTsQDocBGDduXJojERER2SscDlNYWJjuMI4LqvUiIpKpDlfvLaPd+Liuy44dO8jPz8eyrCN6rK6uLsaNG8f27dspKCgYoQiPf8rb0Clnw6O8DZ1yNjxHkjdjDOFwmJqaGmxbV7KNBNX69FPehk45Gx7lbXiUt6E70pwNtt7rSDtg2zZjx44d0ccsKCjQm30YlLehU86GR3kbOuVseIabNx1hH1mq9ZlDeRs65Wx4lLfhUd6G7khyNph6r933IiIiIiIiIhlKTbuIiIiIiIhIhlLTPsJCoRD33HMPoVAo3aGMKsrb0Clnw6O8DZ1yNjzK2/FLr+3wKG9Dp5wNj/I2PMrb0B2rnOlGdCIiIiIiIiIZSkfaRURERERERDKUmnYRERERERGRDKWmXURERERERCRDqWkXERERERERyVBq2kfQL3/5SyZMmEBWVhb19fWsXbs23SFllAULFnDBBReQn59PRUUFV155JVu3bk1Zpr+/n9mzZ1NaWkpeXh5XX301zc3NaYo489x///1YlsWtt96anKacDeyTTz7ha1/7GqWlpWRnZ3P22Wezfv365HxjDHfffTfV1dVkZ2czffp03nvvvTRGnH6O43DXXXdRW1tLdnY2J598Mj/60Y/Y936lJ3re/va3v/G5z32OmpoaLMti2bJlKfMHk5/29nYaGhooKCigqKiIb37zm3R3dx/DrZAjpXp/cKr1R061fvBU64dOtX5wMq7eGxkRixcvNsFg0Dz22GPmn//8p7nhhhtMUVGRaW5uTndoGePSSy81ixYtMm+99ZbZtGmTufzyy8348eNNd3d3cplZs2aZcePGmRUrVpj169ebT3/60+aiiy5KY9SZY+3atWbChAnmnHPOMXPnzk1OV84O1N7ebk466SQzc+ZMs2bNGvPBBx+Yl156ybz//vvJZe6//35TWFholi1bZjZv3mw+//nPm9raWtPX15fGyNNr/vz5prS01Dz//PNm27ZtZsmSJSYvL8/8/Oc/Ty5zouftT3/6k7nzzjvN008/bQCzdOnSlPmDyc+MGTPMueeea1avXm3+/ve/m1NOOcVce+21x3hLZLhU7w9Ntf7IqNYPnmr98KjWD06m1Xs17SPkwgsvNLNnz07+7DiOqampMQsWLEhjVJmtpaXFAObVV181xhjT0dFhAoGAWbJkSXKZd955xwBm1apV6QozI4TDYXPqqaeal19+2XzmM59JFnLlbGDf//73zcUXX3zQ+a7rmqqqKvPTn/40Oa2jo8OEQiHzxBNPHIsQM9IVV1xhvvGNb6RM++IXv2gaGhqMMcrb/vYv4oPJz9tvv20As27duuQyy5cvN5ZlmU8++eSYxS7Dp3o/NKr1g6daPzSq9cOjWj90mVDvdXr8CIhGo2zYsIHp06cnp9m2zfTp01m1alUaI8tsnZ2dAJSUlACwYcMGYrFYSh5PP/10xo8ff8Lncfbs2VxxxRUpuQHl7GCeffZZ6urq+PKXv0xFRQWTJ0/mV7/6VXL+tm3baGpqSslbYWEh9fX1J3TeLrroIlasWMG7774LwObNm3nttde47LLLAOXtcAaTn1WrVlFUVERdXV1ymenTp2PbNmvWrDnmMcvQqN4PnWr94KnWD41q/fCo1h+5dNR7/5GHLW1tbTiOQ2VlZcr0yspKtmzZkqaoMpvrutx6661MnTqVs846C4CmpiaCwSBFRUUpy1ZWVtLU1JSGKDPD4sWL+cc//sG6desOmKecDeyDDz5g4cKF3H777fzgBz9g3bp1fOtb3yIYDNLY2JjMzUCf2RM5b/PmzaOrq4vTTz8dn8+H4zjMnz+fhoYGAOXtMAaTn6amJioqKlLm+/1+SkpKlMNRQPV+aFTrB0+1fuhU64dHtf7IpaPeq2mXtJg9ezZvvfUWr732WrpDyWjbt29n7ty5vPzyy2RlZaU7nFHDdV3q6ur4yU9+AsDkyZN56623eOSRR2hsbExzdJnrD3/4A48//ji///3vOfPMM9m0aRO33norNTU1ypuIDJlq/eCo1g+Pav3wqNaPTjo9fgSUlZXh8/kOuItnc3MzVVVVaYoqc82ZM4fnn3+eV155hbFjxyanV1VVEY1G6ejoSFn+RM7jhg0baGlp4VOf+hR+vx+/38+rr77KQw89hN/vp7KyUjkbQHV1NWeccUbKtEmTJvHRRx8BJHOjz2yq7373u8ybN49rrrmGs88+m+uuu47bbruNBQsWAMrb4QwmP1VVVbS0tKTMj8fjtLe3K4ejgOr94KnWD55q/fCo1g+Pav2RS0e9V9M+AoLBIOeffz4rVqxITnNdlxUrVjBlypQ0RpZZjDHMmTOHpUuXsnLlSmpra1Pmn3/++QQCgZQ8bt26lY8++uiEzeO0adN488032bRpU3LU1dXR0NCQ/F45O9DUqVMP+BdD7777LieddBIAtbW1VFVVpeStq6uLNWvWnNB56+3txbZTy4LP58N1XUB5O5zB5GfKlCl0dHSwYcOG5DIrV67EdV3q6+uPecwyNKr3h6daP3Sq9cOjWj88qvVHLi31frh30ZNUixcvNqFQyPzmN78xb7/9trnxxhtNUVGRaWpqSndoGeOmm24yhYWF5q9//avZuXNncvT29iaXmTVrlhk/frxZuXKlWb9+vZkyZYqZMmVKGqPOPPveUdYY5Wwga9euNX6/38yfP9+899575vHHHzc5OTnmd7/7XXKZ+++/3xQVFZlnnnnGvPHGG+YLX/jCCffvTPbX2NhoxowZk/w3ME8//bQpKysz3/ve95LLnOh5C4fDZuPGjWbjxo0GMA888IDZuHGj+fDDD40xg8vPjBkzzOTJk82aNWvMa6+9Zk499VT9y7dRRPX+0FTrR4Zq/eGp1g+Pav3gZFq9V9M+gh5++GEzfvx4EwwGzYUXXmhWr16d7pAyCjDgWLRoUXKZvr4+c/PNN5vi4mKTk5NjrrrqKrNz5870BZ2B9i/kytnAnnvuOXPWWWeZUChkTj/9dPPoo4+mzHdd19x1112msrLShEIhM23aNLN169Y0RZsZurq6zNy5c8348eNNVlaWmThxornzzjtNJBJJLnOi5+2VV14Z8PdYY2OjMWZw+dm1a5e59tprTV5enikoKDDXX3+9CYfDadgaGS7V+4NTrR8ZqvWDo1o/dKr1g5Np9d4yxpihH58XERERERERkaNN17SLiIiIiIiIZCg17SIiIiIiIiIZSk27iIiIiIiISIZS0y4iIiIiIiKSodS0i4iIiIiIiGQoNe0iIiIiIiIiGUpNu4iIiIiIiEiGUtMuIiIiIiIikqHUtItI2lmWxbJly9IdhoiIiBwlqvUiw6emXeQEN3PmTCzLOmDMmDEj3aGJiIjICFCtFxnd/OkOQETSb8aMGSxatChlWigUSlM0IiIiMtJU60VGLx1pFxFCoRBVVVUpo7i4GPBOZ1u4cCGXXXYZ2dnZTJw4kaeeeipl/TfffJNLLrmE7OxsSktLufHGG+nu7k5Z5rHHHuPMM88kFApRXV3NnDlzUua3tbVx1VVXkZOTw6mnnsqzzz57dDdaRETkBKJaLzJ6qWkXkcO66667uPrqq9m8eTMNDQ1cc801vPPOOwD09PRw6aWXUlxczLp161iyZAl/+ctfUgr1woULmT17NjfeeCNvvvkmzz77LKecckrKc9x333185Stf4Y033uDyyy+noaGB9vb2Y7qdIiIiJyrVepEMZkTkhNbY2Gh8Pp/Jzc1NGfPnzzfGGAOYWbNmpaxTX19vbrrpJmOMMY8++qgpLi423d3dyfkvvPCCsW3bNDU1GWOMqampMXfeeedBYwDMD3/4w+TP3d3dBjDLly8fse0UERE5UanWi4xuuqZdRPjsZz/LwoULU6aVlJQkv58yZUrKvClTprBp0yYA3nnnHc4991xyc3OT86dOnYrrumzduhXLstixYwfTpk07ZAznnHNO8vvc3FwKCgpoaWkZ7iaJiIjIPlTrRUYvNe0iQm5u7gGnsI2U7OzsQS0XCARSfrYsC9d1j0ZIIiIiJxzVepHRS9e0i8hhrV69+oCfJ02aBMCkSZPYvHkzPT09yfmvv/46tm1z2mmnkZ+fz4QJE1ixYsUxjVlEREQGT7VeJHPpSLuIEIlEaGpqSpnm9/spKysDYMmSJdTV1XHxxRfz+OOPs3btWn79618D0NDQwD333ENjYyP33nsvra2t3HLLLVx33XVUVlYCcO+99zJr1iwqKiq47LLLCIfDvP7669xyyy3HdkNFREROUKr1IqOXmnYR4cUXX6S6ujpl2mmnncaWLVsA726vixcv5uabb6a6uponnniCM844A4CcnBxeeukl5s6dywUXXEBOTg5XX301DzzwQPKxGhsb6e/v52c/+xnf+c53KCsr40tf+tKx20AREZETnGq9yOhlGWNMuoMQkcxlWRZLly7lyiuvTHcoIiIichSo1otkNl3TLiIiIiIiIpKh1LSLiIiIiIiIZCidHi8iIiIiIiKSoXSkXURERERERCRDqWkXERERERERyVBq2kVEREREREQylJp2ERERERERkQylpl1EREREREQkQ6lpFxEREREREclQatpFREREREREMpSadhEREREREZEM9f8BzpoyBFYFNsoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACv0klEQVR4nOzdd3hT1RsH8G+692C1BUope+8hGwRk7yWCsgQHG1RANsqvDEVElCUCKiAbcbBBZE9ZsqGWMlpGaUtbOnN/f5zcjDbdN03Sfj/PkyfJvTf3noTQm/e+7zlHJUmSBCIiIiIiIiKyODbmbgARERERERERGcegnYiIiIiIiMhCMWgnIiIiIiIislAM2omIiIiIiIgsFIN2IiIiIiIiIgvFoJ2IiIiIiIjIQjFoJyIiIiIiIrJQDNqJiIiIiIiILBSDdiIiIiIiIiILxaCdiIiIiCifatmyJVq2bJnlbatVq2baBmmULl0agwcPzpNjEVk7Bu1EZGDt2rVQqVRQqVQ4duxYmvWSJMHf3x8qlQqdO3fWLo+JicHMmTNRrVo1uLq6onDhwqhVqxbGjh2LR48eabebNWuWdv/GbmFhYXnyPomIiLJKPjeeO3fO3E3JtUePHmHWrFm4ePGiuZuimNKlS0OlUqFNmzZG169atUr7OyP1v+GxY8fQoUMHlChRAk5OTihVqhS6dOmCDRs2GGyX0W+X999/32TvjQgA7MzdACKyTE5OTtiwYQOaNm1qsPzIkSN48OABHB0dtcuSkpLQvHlz3LhxA4MGDcLo0aMRExODf//9Fxs2bECPHj1QvHhxg/0sW7YMbm5uaY7r5eVlkvdDRERUEO3bt8/g+aNHjzB79myULl0atWrVMk+jANy8eRM2NsrlD52cnHD48GGEhYXB19fXYN369evh5OSE+Ph4g+VbtmxBv379tEkGb29vBAcH4++//8aqVavw1ltvGWzftm1bvPPOO2mOXaFCBcXeB5ExDNqJyKiOHTtiy5YtWLJkCezsdH8qNmzYgLp16+LZs2faZTt37sQ///yD9evXpznBxcfHIzExMc3+e/fujSJFipjuDRARERVgcXFxcHFxgYODg7mbYpT+xX8lNGnSBGfPnsWmTZswduxY7fIHDx7g6NGj6NGjB7Zt22bwmlmzZqFKlSo4depUms/pyZMnaY5RoUIFDBw4UNF2E2UFy+OJyKj+/fvj+fPn2L9/v3ZZYmIitm7dmiYwv3v3LgBxwkzNyckJHh4epm0sERGRBfjnn3/QoUMHeHh4wM3NDa1bt8apU6fSbHf58mW0aNECzs7OKFmyJD7//HOsWbMGKpUK//33n3a7X3/9FZ06dULx4sXh6OiIsmXL4rPPPkNKSorB/uS+6OfPn0fz5s3h4uKCTz/9VLtO7tP+119/oX79+gCAIUOGaMu7165da7C/a9euoVWrVnBxcUGJEiWwYMECg/V//fUXVCoVNm/ejNmzZ6NEiRJwd3dH7969ERUVhYSEBIwbNw7FihWDm5sbhgwZgoSEBIN9GOvTHhkZifHjx6N06dJwdHREyZIl8c477xgkCtLj5OSEnj17pilr37hxI7y9vdGuXbs0r7l79y7q169v9MJGsWLFMj0mUV5hpp2IjCpdujQaNWqEjRs3okOHDgCA3bt3IyoqCm+++SaWLFmi3TYgIAAA8OOPP2LatGlQqVSZ7j8iIiLNMjs7O5bHExGRVfr333/RrFkzeHh44JNPPoG9vT1WrFiBli1b4siRI2jYsCEA4OHDh2jVqhVUKhWmTJkCV1dXfP/990Yzz2vXroWbmxsmTJgANzc3HDp0CDNmzEB0dDQWLlxosO3z58/RoUMHvPnmmxg4cCB8fHzS7K9y5cqYM2cOZsyYgREjRqBZs2YAgMaNG2u3efHiBdq3b4+ePXuib9++2Lp1KyZNmoTq1atrfw/IgoKC4OzsjMmTJ+POnTv45ptvYG9vDxsbG7x48QKzZs3CqVOnsHbtWgQGBmLGjBnpfn4xMTFo1qwZrl+/jqFDh6JOnTp49uwZdu3ahQcPHmSpOu+tt97CG2+8gbt376Js2bIARIVg7969YW9vn2b7gIAAHDx4EA8ePEDJkiUz3X98fLzRCwgeHh4WW9FA+YRERKRnzZo1EgDp7Nmz0tKlSyV3d3cpLi5OkiRJ6tOnj9SqVStJkiQpICBA6tSpkyRJkhQXFydVrFhRAiAFBARIgwcPllavXi2Fh4en2f/MmTMlAEZvFStWzLs3SkRElEX658b0dO/eXXJwcJDu3r2rXfbo0SPJ3d1dat68uXbZ6NGjJZVKJf3zzz/aZc+fP5cKFSokAZCCg4O1y+Xzr7733ntPcnFxkeLj47XLWrRoIQGQli9fnmb7Fi1aSC1atNA+P3v2rARAWrNmjdFtAUg//vijdllCQoLk6+sr9erVS7vs8OHDEgCpWrVqUmJionZ5//79JZVKJXXo0MFgv40aNZICAgIMlgUEBEiDBg3SPp8xY4YEQNq+fXuadqnV6jTLUu+rU6dOUnJysuTr6yt99tlnkiRJ0rVr1yQA0pEjR4z+G65evVoCIDk4OEitWrWSpk+fLh09elRKSUlJc4z0frsAkDZu3Jhh+4hyi+XxRJSuvn374tWrV/j999/x8uVL/P7772lK4wHA2dkZp0+fxscffwxAZAaGDRsGPz8/jB49Ok1JHABs27YN+/fvN7itWbPG5O+JiIhIaSkpKdi3bx+6d++OMmXKaJf7+fnhrbfewrFjxxAdHQ0A2LNnDxo1amQwCFyhQoUwYMCANPt1dnbWPn758iWePXuGZs2aIS4uDjdu3DDY1tHREUOGDMn1e3FzczPot+3g4IAGDRrg3r17abZ95513DDLYDRs2hCRJGDp0qMF2DRs2RGhoKJKTk9M97rZt21CzZk306NEjzbqsVPABgK2tLfr27YuNGzcCEAPQ+fv7aysKUhs6dCj27NmDli1b4tixY/jss8/QrFkzlC9fHidOnEizfbdu3dL8dtm/fz9atWqVpfYR5RTL44koXUWLFkWbNm2wYcMGxMXFISUlBb179za6raenJxYsWIAFCxYgJCQEBw8exBdffIGlS5fC09MTn3/+ucH2zZs350B0RESULzx9+hRxcXGoWLFimnWVK1eGWq1GaGgoqlatipCQEDRq1CjNduXKlUuz7N9//8W0adNw6NAhbdAvi4qKMnheokQJRUq0S5YsmSZI9vb2xuXLl9NsW6pUKYPnnp6eAAB/f/80y9VqNaKiolC4cGGjx7179y569eqVm6YDECXyS5YswaVLl7Bhwwa8+eabGQb97dq1Q7t27RAXF4fz589j06ZNWL58OTp37owbN24Y9G0vWbJkutPKEZkSM+1ElKG33noLu3fvxvLly9GhQ4cs9TkPCAjA0KFDcfz4cXh5eWH9+vWmbygREVE+EhkZiRYtWuDSpUuYM2cOfvvtN+zfvx/z588HAKjVaoPt9bPyuWFra2t0uSRJWd42O/tQWsOGDVG2bFmMGzcOwcHBRisEjXFxcUGzZs2wdOlSTJs2DS9evMDu3btN3FqirGGmnYgy1KNHD7z33ns4deoUNm3alK3Xent7o2zZsrh69aqJWkdERGR+RYsWhYuLC27evJlm3Y0bN2BjY6PNPgcEBODOnTtptku97K+//sLz58+xfft2NG/eXLs8ODg4V23Naql5XlPy90L//v3x+eefo3Llyjmai75evXoAgMePHyvSHqLcYqadiDLk5uaGZcuWYdasWejSpYvRbS5dumR0NNWQkBBcu3bNaLkgERFRfmFra4s33ngDv/76q8GUbeHh4diwYQOaNm2qnf60Xbt2OHnyJC5evKjdLiIiIk1Vmpyt1s9OJyYm4rvvvstVW11dXQGITL4l6dWrFy5duoQdO3akWZfdDP27776LmTNn4ssvv8xwu4MHDxpd/ueffwIAf7+QxWCmnYgyNWjQoAzX79+/HzNnzkTXrl3x2muvwc3NDffu3cMPP/yAhIQEzJo1K81rtm7dCjc3tzTL27Zta3SaGiIiInP74YcfsGfPnjTLx44di88//xz79+9H06ZN8eGHH8LOzg4rVqxAQkKCwTznn3zyCX7++We0bdsWo0eP1k75VqpUKURERGgz4Y0bN4a3tzcGDRqEMWPGQKVS4aeffsp1iXnZsmXh5eWF5cuXw93dHa6urmjYsCECAwNztd/c+vjjj7F161b06dMHQ4cORd26dREREYFdu3Zh+fLlqFmzZpb3FRAQYPS3R2rdunVDYGAgunTpgrJlyyI2NhYHDhzAb7/9hvr166dJVty6dQs///xzmv34+Pigbdu2WW4fUXYxaCeiXOvVqxdevnyJffv24dChQ4iIiIC3tzcaNGiAiRMnGh1V9YMPPjC6r8OHDzNoJyIii7Rs2TKjywcPHoyqVavi6NGjmDJlCoKCgqBWq9GwYUP8/PPP2jnaATFI2+HDhzFmzBj873//Q9GiRTFy5Ei4urpizJgxcHJyAgAULlwYv//+OyZOnIhp06bB29sbAwcOROvWrdGuXbscvwd7e3usW7cOU6ZMwfvvv4/k5GSsWbPG7EG7m5sbjh49ipkzZ2LHjh1Yt24dihUrhtatW2dpDvWc+P777/Hrr79i8+bNePToESRJQpkyZTB16lRMmjQJdnaGoZI8WnxqLVq0YNBOJqWS8mJECCIiIiIiSte4ceOwYsUKxMTEpDuQGxEVTOzTTkRERESUh169emXw/Pnz5/jpp5/QtGlTBuxElAbL44mIiIiI8lCjRo3QsmVLVK5cGeHh4Vi9ejWio6Mxffp0czeNiCwQg3YiIiIiojzUsWNHbN26FStXroRKpUKdOnWwevVqg6ndiIhk7NNOREREREREZKHYp52IiIiIiIjIQjFoJyIiIiIiIrJQ7NMOQK1W49GjR3B3d4dKpTJ3c4iIqICTJAkvX75E8eLFYWPD6+sAMGvWLMyePdtgWcWKFXHjxo0svZ7neiIisjRZPd8zaAfw6NEj+Pv7m7sZREREBkJDQ1GyZElzN8NiVK1aFQcOHNA+t7PL+s8YnuuJiMhSZXa+Z9AOwN3dHYD4sDw8PMzcGiIiKuiio6Ph7++vPT+RYGdnB19f3xy9lud6IiKyNFk93zNoB7Rlch4eHjyRExGRxWAZt6Hbt2+jePHicHJyQqNGjRAUFIRSpUoZ3TYhIQEJCQna5y9fvgTAcz0REVmezM737ChHREREFq9hw4ZYu3Yt9uzZg2XLliE4OBjNmjXTBuOpBQUFwdPTU3tjaTwREVkrztMOUZbg6emJqKgoXn0nIiKz43kpc5GRkQgICMCiRYswbNiwNOtTZ9rlEkR+pkREZCmyer5neTwRERFZHS8vL1SoUAF37twxut7R0RGOjo553CoiIiLlMWgnIsqGlJQUJCUlmbsZlA/Y29vD1tbW3M2wWjExMbh79y7efvttczeFiPIZSZKQnJyMlJQUczeFrJytrS3s7OxyPUYNg3YioiyKiYnBgwcPwF5FpASVSoWSJUvCzc3N3E2xCh999BG6dOmCgIAAPHr0CDNnzoStrS369+9v7qYRUT6SmJiIx48fIy4uztxNoXzCxcUFfn5+cHBwyPE+GLQTEWVBSkoKHjx4ABcXFxQtWpSjelOuSJKEp0+f4sGDByhfvjwz7lnw4MED9O/fH8+fP0fRokXRtGlTnDp1CkWLFjV304gon1Cr1QgODoatrS2KFy8OBwcHnu8pxyRJQmJiIp4+fYrg4GCUL18eNjY5GweeQTsRURYkJSVBkiQULVoUzs7O5m4O5QNFixbFf//9h6SkJAbtWfDLL7+YuwlElM8lJiZCrVbD398fLi4u5m4O5QPOzs6wt7dHSEgIEhMT4eTklKP9cMo3IqJs4BV3Ugq/S0RElimn2VAiY5T4PvEbSURERERERGShGLQTERERERERWSgG7URElC2lS5fG4sWLs7z9X3/9BZVKhcjISJO1CQDWrl0LLy8vkx6DiIioIOC53rIwaCciyqdUKlWGt1mzZuVov2fPnsWIESOyvH3jxo3x+PFjeHp65uh4REREZBzP9QUDR48nIsqnHj9+rH28adMmzJgxAzdv3tQu058fXJIkpKSkwM4u89NCdqfYcnBwgK+vb7ZeQ0RERJnjub5gYKZdQTdvAjVrAi1bmrslRGRqkgTExprnJklZa6Ovr6/25unpCZVKpX1+48YNuLu7Y/fu3ahbty4cHR1x7Ngx3L17F926dYOPjw/c3NxQv359HDhwwGC/qUvmVCoVvv/+e/To0QMuLi4oX748du3apV2fumROLm3bu3cvKleuDDc3N7Rv397gh0dycjLGjBkDLy8vFC5cGJMmTcKgQYPQvXv3bP07LVu2DGXLloWDgwMqVqyIn376Se/fUMKsWbNQqlQpODo6onjx4hgzZox2/XfffYfy5cvDyckJPj4+6N27d7aOTfmTJAFt2gClSwN6X1kiyod4rl+sfc5zvXkxaFdQcjJw+TJw7Zq5W0JEphYXB7i5mecWF6fc+5g8eTLmzZuH69evo0aNGoiJiUHHjh1x8OBB/PPPP2jfvj26dOmC+/fvZ7if2bNno2/fvrh8+TI6duyIAQMGICIiIoPPLw5ffPEFfvrpJ/z999+4f/8+PvroI+36+fPnY/369VizZg2OHz+O6Oho7Ny5M1vvbceOHRg7diwmTpyIq1ev4r333sOQIUNw+PBhAMC2bdvw1VdfYcWKFbh9+zZ27tyJ6tWrAwDOnTuHMWPGYM6cObh58yb27NmD5s2bZ+v4lD+pVMCdO0BICPDff+ZuDRGZEs/1hniuNyOJpKioKAmAFBUVlav93LwpSYAkeXoq0y4ishyvXr2Srl27Jr169UqSJEmKiRH/381xi4nJfvvXrFkjeer9cTp8+LAEQNq5c2emr61atar0zTffaJ8HBARIX331lfY5AGnatGna5zExMRIAaffu3QbHevHihbYtAKQ7d+5oX/Ptt99KPj4+2uc+Pj7SwoULtc+Tk5OlUqVKSd26dcvye2zcuLE0fPhwg2369OkjdezYUZIkSfryyy+lChUqSImJiWn2tW3bNsnDw0OKjo5O93i5lfo7pU+p8xLpKPmZNm8u/i9u2KBAw4jIYvBcz3O9KShxvmemXUEODuI+MdG87SAi03NxAWJizHNzcVHufdSrV8/geUxMDD766CNUrlwZXl5ecHNzw/Xr1zO9+l6jRg3tY1dXV3h4eODJkyfpbu/i4oKyZctqn/v5+Wm3j4qKQnh4OBo0aKBdb2tri7p162brvV2/fh1NmjQxWNakSRNcv34dANCnTx+8evUKZcqUwfDhw7Fjxw4kJycDANq2bYuAgACUKVMGb7/9NtavX484JdMeZNVKlxb3ISFmbQYRmRjP9YZ4rjcfBu0KkoP2pCTztoOITE+lAlxdzXNTqZR7H66urgbPP/roI+zYsQP/+9//cPToUVy8eBHVq1dHYiZXI+3t7VN9Piqo1epsbS9ltQOfQvz9/XHz5k189913cHZ2xocffojmzZsjKSkJ7u7uuHDhAjZu3Ag/Pz/MmDEDNWvWNPlUNmQdAgLEPcvjifI3nusN8VxvPgzaFSR/L5OTgQy+v0REFuv48eMYPHgwevTogerVq8PX1xf/5XFk4unpCR8fH5w9e1a7LCUlBRcuXMjWfipXrozjx48bLDt+/DiqVKmife7s7IwuXbpgyZIl+Ouvv3Dy5ElcuXIFAGBnZ4c2bdpgwYIFuHz5Mv777z8cOnQoF++M8gtm2onImvFcb33nek75piA50w6IbLujo/naQkSUE+XLl8f27dvRpUsXqFQqTJ8+PcOr6KYyevRoBAUFoVy5cqhUqRK++eYbvHjxAqpspB4+/vhj9O3bF7Vr10abNm3w22+/Yfv27doRcteuXYuUlBQ0bNgQLi4u+Pnnn+Hs7IyAgAD8/vvvuHfvHpo3bw5vb2/8+eefUKvVqFixoqneMlkRZtqJyJrxXG9953oG7Qpi0E5E1m7RokUYOnQoGjdujCJFimDSpEmIjo7O83ZMmjQJYWFheOedd2Bra4sRI0agXbt2sLW1zfI+unfvjq+//hpffPEFxo4di8DAQKxZswYtNfNyenl5Yd68eZgwYQJSUlJQvXp1/PbbbyhcuDC8vLywfft2zJo1C/Hx8Shfvjw2btyIqlWrmugdkzXRz7RLkrJlrEREpsZzvfWd61VSXncssEDR0dHw9PREVFQUPDw8cryf5GRdifzz50ChQgo1kIjMLj4+HsHBwQgMDISTk5O5m1PgqNVqVK5cGX379sVnn31m7uYoIqPvlFLnJdJR8jNNTAScnETAHh4OFCumUCOJyKx4rjev/HiuB5Q53zPTriBbW3G1XZI4GB0RUW6EhIRg3759aNGiBRISErB06VIEBwfjrbfeMnfTiODgABQvDjx8KLLtDNqJiLKP5/qs40B0ClKpOO0bEZESbGxssHbtWtSvXx9NmjTBlStXcODAAVSuXNncTSMCwH7tRES5xXN91jHTrjB7eyAhgUE7EVFu+Pv7pxkNlsiSBAaoceKECiEh7NBORJQTPNdnHTPtCuNc7URERPlcYCB+/MUeZXCPmXYiIjI5Bu0KkweiY6adiIgon5Ik2EhqFMVTBu1ERGRyDNoVxj7tRERE+VzRouIOTxESYua2EBFRvsegXWEsjyciIsrn9IL2//4Ts8YQERGZCoN2hbE8noiIKJ8rUgSACNpjYoAXL8zcHiIiytcYtCuM5fFERET5nCbTXtrlKQBO+0ZERKbFoF1hLI8novymZcuWGDdunPZ56dKlsXjx4gxfo1KpsHPnzlwfW6n9ZGTWrFmoVauWSY9B+YwmaC+lCdrZr52IrB3P9ZaNQbvCWB5PRJaiS5cuaN++vdF1R48ehUqlwuXLl7O937Nnz2LEiBG5bZ6B9E6mjx8/RocOHRQ9FlGuaYL24nbMtBORefFcXzAwaFcYy+OJyFIMGzYM+/fvx4MHD9KsW7NmDerVq4caNWpke79FixaFi4uLEk3MlK+vLxwdHfPkWERZpgnai4CZdiIyL57rCwazBu1///03unTpguLFixsti5AkCTNmzICfnx+cnZ3Rpk0b3L5922CbiIgIDBgwAB4eHvDy8sKwYcMQExOTh+/CEMvjiQoISQJiY81zy+JQ1Z07d0bRokWxdu1ag+UxMTHYsmULhg0bhufPn6N///4oUaIEXFxcUL16dWzcuDHD/aYumbt9+zaaN28OJycnVKlSBfv370/zmkmTJqFChQpwcXFBmTJlMH36dCRp/lCuXbsWs2fPxqVLl6BSqaBSqbRtTn1uuHLlCl5//XU4OzujcOHCGDFihMHf/MGDB6N79+744osv4Ofnh8KFC2PkyJHaY2WFWq3GnDlzULJkSTg6OqJWrVrYs2ePdn1iYiJGjRoFPz8/ODk5ISAgAEFBQQDEeWvWrFkoVaoUHB0dUbx4cYwZMybLxyYroQnaPZOeAWCmnSjf4rle+5znevOe6+1MuvdMxMbGombNmhg6dCh69uyZZv2CBQuwZMkSrFu3DoGBgZg+fTratWuHa9euwcnJCQAwYMAAPH78GPv370dSUhKGDBmCESNGYMOGDXn9dgCwPJ6owIiLA9zczHPsmBjA1TXTzezs7PDOO+9g7dq1mDp1KlQqFQBgy5YtSElJQf/+/RETE4O6deti0qRJ8PDwwB9//IG3334bZcuWRYMGDTI9hlqtRs+ePeHj44PTp08jKirKoE+czN3dHWvXrkXx4sVx5coVDB8+HO7u7vjkk0/Qr18/XL16FXv27MGBAwcAAJ6enmn2ERsbi3bt2qFRo0Y4e/Ysnjx5gnfffRejRo0y+LFy+PBh+Pn54fDhw7hz5w769euHWrVqYfjw4Zm+HwD4+uuv8eWXX2LFihWoXbs2fvjhB3Tt2hX//vsvypcvjyVLlmDXrl3YvHkzSpUqhdDQUISGhgIAtm3bhq+++gq//PILqlatirCwMFy6dClLxyUrognaXWKZaSfK13iuB8BzvUWc6yULAUDasWOH9rlarZZ8fX2lhQsXapdFRkZKjo6O0saNGyVJkqRr165JAKSzZ89qt9m9e7ekUqmkhw8fZvnYUVFREgApKioq1++je3dJAiRp+fJc74qILMirV6+ka9euSa9evRILYmLEf3Zz3GJistzu69evSwCkw4cPa5c1a9ZMGjhwYLqv6dSpkzRx4kTt8xYtWkhjx47VPg8ICJC++uorSZIkae/evZKdnZ3B39zdu3en+Zue2sKFC6W6detqn8+cOVOqWbNmmu3097Ny5UrJ29tbitF7/3/88YdkY2MjhYWFSZIkSYMGDZICAgKk5ORk7TZ9+vSR+vXrl25bUh+7ePHi0ty5cw22qV+/vvThhx9KkiRJo0ePll5//XVJrVan2deXX34pVahQQUpMTEz3eLI03yk9Sp6XSFD0M42M1P5/dEKc5OWV+10SkfnxXD9W+5znemXO9ZKkzPneYvu0BwcHIywsDG3atNEu8/T0RMOGDXHy5EkAwMmTJ+Hl5YV69eppt2nTpg1sbGxw+vTpdPedkJCA6Ohog5tSWB5PVEC4uIir4Oa4ZaOPWaVKldC4cWP88MMPAIA7d+7g6NGjGDZsGAAgJSUFn332GapXr45ChQrBzc0Ne/fuxf3797O0/+vXr8Pf3x/FixfXLmvUqFGa7TZt2oQmTZrA19cXbm5umDZtWpaPoX+smjVrwlUv89CkSROo1WrcvHlTu6xq1aqwtbXVPvfz88OTJ0+ydIzo6Gg8evQITZo0MVjepEkTXL9+HYAoy7t48SIqVqyIMWPGYN++fdrt+vTpg1evXqFMmTIYPnw4duzYgeTk5Gy9T7ICHh7a0rqieIrISCAqyrxNIiIT4LkeAM/1lnCut9igPSwsDADg4+NjsNzHx0e7LiwsDMWKFTNYb2dnh0KFCmm3MSYoKAienp7am7+/v2LtZnk8UQGhUomyNXPcNKVvWTVs2DBs27YNL1++xJo1a1C2bFm0aNECALBw4UJ8/fXXmDRpEg4fPoyLFy+iXbt2SFTwj9jJkycxYMAAdOzYEb///jv++ecfTJ06VdFj6LOX/xBrqFQqqNVqxfZfp04dBAcH47PPPsOrV6/Qt29f9O7dGwDg7++Pmzdv4rvvvoOzszM+/PBDNG/ePFv97MgKqFTaEvnyXiyRJ8q3eK7PMp7rTXuut9ig3ZSmTJmCqKgo7U3un6AEjh5PRJamb9++sLGxwYYNG/Djjz9i6NCh2j5vx48fR7du3TBw4EDUrFkTZcqUwa1bt7K878qVKyM0NBSPHz/WLjt16pTBNidOnEBAQACmTp2KevXqoXz58ghJFeE4ODggJSUl02NdunQJsbGx2mXHjx+HjY0NKlasmOU2Z8TDwwPFixfH8ePHDZYfP34cVapUMdiuX79+WLVqFTZt2oRt27YhIiICAODs7IwuXbpgyZIl+Ouvv3Dy5ElcuXJFkfaRBdEE7VWKcNo3IjI/nuuzzhrP9WYdiC4jvr6+AIDw8HD4+flpl4eHh2vn9/P19U1TBpGcnIyIiAjt641xdHQ02bQCLI8nIkvj5uaGfv36YcqUKYiOjsbgwYO168qXL4+tW7fixIkT8Pb2xqJFixAeHm5w0spImzZtUKFCBQwaNAgLFy5EdHQ0pk6darBN+fLlcf/+ffzyyy+oX78+/vjjD+zYscNgm9KlSyM4OBgXL15EyZIl4e7unubv9IABAzBz5kwMGjQIs2bNwtOnTzF69Gi8/fbbaaqycuPjjz/GzJkzUbZsWdSqVQtr1qzBxYsXsX79egDAokWL4Ofnh9q1a8PGxgZbtmyBr68vvLy8sHbtWqSkpKBhw4ZwcXHBzz//DGdnZwQEBCjWPrIQzLQTkQXhuT57rO1cb7GZ9sDAQPj6+uLgwYPaZdHR0Th9+rS2D0WjRo0QGRmJ8+fPa7c5dOgQ1Go1GjZsmOdtBlgeT0SWadiwYXjx4gXatWtn0Cdt2rRpqFOnDtq1a4eWLVvC19cX3bt3z/J+bWxssGPHDrx69QoNGjTAu+++i7lz5xps07VrV4wfPx6jRo1CrVq1cOLECUyfPt1gm169eqF9+/Zo1aoVihYtanQqGhcXF+zduxcRERGoX78+evfujdatW2Pp0qXZ+zAyMWbMGEyYMAETJ05E9erVsWfPHuzatQvly5cHIEbHXbBgAerVq4f69evjv//+w59//gkbGxt4eXlh1apVaNKkCWrUqIEDBw7gt99+Q+HChRVtY0E3b948qFQqo6MX5xlN0B7gykw7EVkGnuuzztrO9SpJyuIkgCYQExODO3fuAABq166NRYsWoVWrVihUqBBKlSqF+fPnY968eQZTvl2+fNlgyrcOHTogPDwcy5cv1075Vq9evWxN+RYdHQ1PT09ERUXBw8MjV+9p4kRg0SJg0iRg3rxc7YqILEh8fDyCg4MRGBio/ftDlBsZfaeUPC/lN2fPnkXfvn3h4eGBVq1aGcwjnBHFP9MxY4BvvsG5NpNR/0AQevUCtm7N/W6JyHx4ridTUOJ8b9ZM+7lz51C7dm3Url0bADBhwgTUrl0bM2bMAAB88sknGD16NEaMGIH69esjJiYGe/bsMXiz69evR6VKldC6dWt07NgRTZs2xcqVK83yfgD2aSciIjKVmJgYDBgwAKtWrYK3t7d5G6PJtBcFM+1ERGRaZu3T3rJlS2SU6FepVJgzZw7mzJmT7jaFChXKVlbd1FgeT0REZBojR45Ep06d0KZNG3z++ecZbpuQkICEhATtcyWndwWgDdq9ktmnnYiITMtiB6KzVhyIjoiISHm//PILLly4gLNnz2Zp+6CgIMyePdt0DdIE7a5xImh/9gyIjRUzNRERESnJYgeis1bMtBMRESkrNDQUY8eOxfr167Pcz9SU07sC0AbtthFPYadJgbx4oewhiIiIAGbaFcc+7UT5mxnH7qR8ht+lrDt//jyePHmCOnXqaJelpKTg77//xtKlS5GQkABbW1uD15hyelcA2qBd9ewZPD2B588BpSvwicg8+PeZlKTE94lBu8JYHk+UP8kBQWJiIpydnc3cGsoPEjVXd1MHm5RW69atceXKFYNlQ4YMQaVKlTBp0iTzfIaaoB2RkSgcmITnz+0RFZX3zSAi5dhrSmbj4uJ4rifFxMXFAdB9v3KCQbvCWB5PlD/Z2dnBxcUFT58+hb29PWxs2LuIck6tVuPp06dwcXGBnR1PxZlxd3dHtWrVDJa5urqicOHCaZbnmUKFABsbQK1GKZdnuAU/Bu1EVs7W1hZeXl548uQJADFnuEqlMnOryFpJkoS4uDg8efIEXl5eubrAzF8KCmN5PFH+pFKp4Ofnh+DgYIRwmGhSgI2NDUqVKsUfhNbKxgYoXBh4+hT+Tk8B+LE8nigf8PX1BQBt4E6UW15eXtrvVU4xaFcYy+OJ8i8HBweUL19eW9ZMlBsODg6s2MiFv/76y9xNECXyT5+ihIMYQZ6ZdiLrJ1+kL1asGJL4g55yyd7eXpEuXAzaFcbyeKL8zcbGJsujVxNRPqfp1+5ry6CdKL+xtbXlmCNkMXiJX2EsjyciIiogNEF7MZUI2lkeT0REpsCgXWEsjyciIiogNEF7YTUz7UREZDoM2hXG8ngiIqICokgRAIB3MoN2IiIyHQbtCmN5PBERUQGhybR7JLI8noiITIdBu8JYHk9ERFRAaIJ2t1fMtBMRkekwaFcYy+OJiIgKCE3Q7hLLoJ2IiEyHQbvCWB5PRERUQGiCdseXzwCwPJ6IiEyDQbvCWB5PRERUQGiCdvvo51BBzUw7ERGZBIN2hbE8noiIqIDQjB6vUqtRCBEM2omIyCQYtCuMmXYiIqICwt4e8PICABTFUyQkAAkJ5m0SERHlPwzaFabfp12SzNsWIiIiMjFNiXxRcNo3IiIyDQbtCpPL4wEgOdl87SAiIqI8oAna/Z04gjwREZkGg3aFyZl2gCXyRERE+V6qoJ2ZdiIiUhqDdoXpZ9o5GB0REVE+pwnai9sx005ERKbBoF1hDNqJiIgKEM0I8r4M2omIyEQYtCtMpdIF7iyPJyIiyuc0mfZiHIiOiIhMhEG7CXCudiIiogJCE7QXUjPTTkREpsGg3QT0p30jIiKifEwTtHsnM2gnIiLTYNBuAnLQzvJ4IiKifE4TtHskPgPA8ngiIlIeg3YTYHk8ERFRAaEJ2t1ePQUgMdNORESKY9BuAiyPJyIiKiA0o8fbpiTBHS8ZtBMRkeIYtJsAy+OJiIgKCGdn3UO8Ynk8EREpjkG7CbA8noiIqIBQqQBHRwCAIxKYaSciIsUxaDcBlscTEREVIJqg3QnxzLQTEZHiGLSbAMvjiYiIChAnJwDMtBMRkWkwaDcBlscTEREVICyPJyIiE2LQbgIsjyciIipA9MrjX74E1Gozt4eIiPIVBu0mwPJ4IiKiAkSvPF6SgJgYM7eHiIjyFQbtJsDyeCIiogJEk2l3tU0AAJbIExGRohi0mwAz7URERAWIJmgv5BIPABxBnoiIFMWg3QTYp52IiKgA0ZTHezkz005ERMpj0G4CLI8nIiIqQDSZdi8nkWln0E5EREpi0G4CLI8nIiIqQDRBu4ejyLSzPJ6IiJTEoN0EmGknIiJS1rJly1CjRg14eHjAw8MDjRo1wu7du83dLEFTHu/uyPJ4IiJSHoN2E2CfdiIiImWVLFkS8+bNw/nz53Hu3Dm8/vrr6NatG/79919zN02XabdneTwRESnPztwNyI9YHk9ERKSsLl26GDyfO3culi1bhlOnTqFq1apmapWGJtPuZs/yeCIiUh6DdhNgeTwREZHppKSkYMuWLYiNjUWjRo2MbpOQkICEhATt82hTRtLyPO12LI8nIiLlsTzeBFgeT0REpLwrV67Azc0Njo6OeP/997Fjxw5UqVLF6LZBQUHw9PTU3vz9/U3XMDlot2V5PBERKY9BuwmwPJ6IiEh5FStWxMWLF3H69Gl88MEHGDRoEK5du2Z02ylTpiAqKkp7Cw0NNV3DNOXxzjYsjyciIuWxPN4EWB5PRESkPAcHB5QrVw4AULduXZw9exZff/01VqxYkWZbR0dHOGoy4CanOY6TDcvjiYhIecy0m4CDvQSAQTsREZEpqdVqg37rZqMJ2p3B8ngiIlIeM+1KunwZqFsXQ12LYQwesjyeiIhIIVOmTEGHDh1QqlQpvHz5Ehs2bMBff/2FvXv3mrtp2vJ4B7A8noiIlMegXUl2dkByMmxSRIqdmXYiIiJlPHnyBO+88w4eP34MT09P1KhRA3v37kXbtm3N3TRtpt1RzUw7EREpj0G7kjSd2W0ZtBMRESlq9erV5m5C+jRBu73EPu1ERKQ89mlXkmbYeJtkEa2zPJ6IiKgA0JTH26eIoD0xEbCErvZERJQ/MGhXkhy0p4honZl2IiKiAkCTabdNitcuYradiIiUwqBdSZryeBt1CmyQwqCdiIioINBk2lWJCXB3F4sYtBMRkVIsOmhPSUnB9OnTERgYCGdnZ5QtWxafffYZJEnSbiNJEmbMmAE/Pz84OzujTZs2uH37tnkarMm0A4A9klgeT0REVBDI88EnJMDDQzzkCPJERKQUiw7a58+fj2XLlmHp0qW4fv065s+fjwULFuCbb77RbrNgwQIsWbIEy5cvx+nTp+Hq6op27dohPj4+gz2bSKqgnZl2IiKiAkAO2uPj4ekpHjLTTkRESrHo0eNPnDiBbt26oVOnTgCA0qVLY+PGjThz5gwAkWVfvHgxpk2bhm7dugEAfvzxR/j4+GDnzp14880387bBmvJ4AHBAIoN2IiKigkBTHo+EBHj6iocM2omISCkWnWlv3LgxDh48iFu3bgEALl26hGPHjqFDhw4AgODgYISFhaFNmzba13h6eqJhw4Y4efJkuvtNSEhAdHS0wU0RtraAjfhIHZDI8ngiIqKCgOXxRERkQhadaZ88eTKio6NRqVIl2NraIiUlBXPnzsWAAQMAAGFhYQAAHx8fg9f5+Pho1xkTFBSE2bNnm6bRDg5AfDzL44mIiAoKlscTEZEJWXSmffPmzVi/fj02bNiACxcuYN26dfjiiy+wbt26XO13ypQpiIqK0t5CQ0MVajG0JfLMtBMRERUQ+uXxDNqJiEhhFp1p//jjjzF58mRt3/Tq1asjJCQEQUFBGDRoEHx9Rcex8PBw+Pn5aV8XHh6OWrVqpbtfR0dHOMpXxZWmGYyOfdqJiIgKCPk3RXIyPN1SANiyPJ6IiBRj0Zn2uLg42NgYNtHW1hZqtRoAEBgYCF9fXxw8eFC7Pjo6GqdPn0ajRo3ytK1amqCd5fFEREQFhF4ioJBrAgBm2omISDkWnWnv0qUL5s6di1KlSqFq1ar4559/sGjRIgwdOhQAoFKpMG7cOHz++ecoX748AgMDMX36dBQvXhzdu3c3T6NZHk9ERFSwyOXxkIN2FwbtRESkGIsO2r/55htMnz4dH374IZ48eYLixYvjvffew4wZM7TbfPLJJ4iNjcWIESMQGRmJpk2bYs+ePXDSO4HmKb3yeLUaSEkRg8oTERFRPmVnB6hUgCTByykeAEePJyIi5Vh00O7u7o7Fixdj8eLF6W6jUqkwZ84czJkzJ+8alhG98ngASEwEnJ3N2SAiIiIyKZVKlMjHx8PLmeXxRESkLIvu026V9MrjAbBEnoiIqCDQVPh5OjFoJyIiZTFoV5peeTwADkZHRERUEGgGo3O3Z3k8EREpi0G70jRBu6ONrjyeiIiI8jlNpt3dgZl2IiJSFoN2pWnK411sWR5PRERUYGgy7c42Imh/9cqcjSEiovyEQbvSNJl2Z1uWxxMRERUYmqDdURLl8cnJvHBPRETKYNCuNDlot2N5PBERUYGhKY93UiVoFzHbTkRESmDQrjRNebwzy+OJiIgKDk2m3V6dAJVKLGLQTkRESmDQrjRNpt3JhuXxREREBYYmaFclxMtJd8TFmbE9RESUbzBoV5octNuyPJ6IiKjAkCP1hAS4uIiHzLQTEZESGLQrTVMeL2faWR5PRERUAGgy7YiPh7OzeMhMOxERKYFBu9K087SzPJ6IiKjAkIN2ZtqJiEhhDNqVpg3aWR5PRERUYOiVx8uZdgbtRESkBAbtSpPL41UsjyciIiowWB5PREQmwqBdaXKmXcXyeCIiogKDA9EREZGJMGhXmiZod1CJFDsz7URERAWAXp92ZtqJiEhJDNqVpimPdwAz7URERAWGXnk8M+1ERKQkBu1K02baGbQTEREVGByIjoiITIRBu9LkoB0sjyciIiowWB5PREQmwqBdaZryeHuWxxMRERUcLI8nIiITYdCuNG2mnUE7ERFRgWGkPJ6ZdiIiUgKDdqVpgnZ7ieXxRERESggKCkL9+vXh7u6OYsWKoXv37rh586a5m2VIrzyemXYiIlISg3alyeXxEjPtRERESjhy5AhGjhyJU6dOYf/+/UhKSsIbb7yB2NhYczdNR688ngPRERGRkuzM3YB8R5Npt2PQTkREpIg9e/YYPF+7di2KFSuG8+fPo3nz5mZqVSosjyciIhNh0K40bdDO8ngiIiJTiIqKAgAUKlQo3W0SEhKQkJCgfR4dHW3aRnEgOiIiMhGWxytNLo9XM9NORET5y4ULF3DlyhXt819//RXdu3fHp59+isQ8OuGp1WqMGzcOTZo0QbVq1dLdLigoCJ6entqbv7+/aRvGTDsREZkIg3alyZl2Bu1ERJTPvPfee7h16xYA4N69e3jzzTfh4uKCLVu24JNPPsmTNowcORJXr17FL7/8kuF2U6ZMQVRUlPYWGhpq2oZxIDoiIjIRBu1K0wTttiyPJyKifObWrVuoVasWAGDLli1o3rw5NmzYgLVr12Lbtm0mP/6oUaPw+++/4/DhwyhZsmSG2zo6OsLDw8PgZlIciI6IiEyEQbvSNOXxtinMtBMRUf4iSRLUajUA4MCBA+jYsSMAwN/fH8+ePTPpcUeNGoUdO3bg0KFDCAwMNNmxcozl8UREZCIciE5pcqadQTsREeUz9erVw+eff442bdrgyJEjWLZsGQAgODgYPj4+JjvuyJEjsWHDBvz6669wd3dHWFgYAMDT0xPOcoRsbiyPJyIiE2GmXWly0K5meTwREeUvixcvxoULFzBq1ChMnToV5cqVAwBs3boVjRs3Ntlxly1bhqioKLRs2RJ+fn7a26ZNm0x2zGwzUh7PTDsRESmBmXalsTyeiIjyqRo1ahiMHi9buHAhbG1tTXZcSZJMtm/FyOXxajVcHJIB2DHTTkREimCmXWmaTLtNMoN2IiLKX0JDQ/HgwQPt8zNnzmDcuHH48ccfYa+5aF1gyZl2AM42Yn74xEQgJcVcDSIiovyCQbvS5KA9heXxRESUv7z11ls4fPgwACAsLAxt27bFmTNnMHXqVMyZM8fMrTMz/aBdFa99zGw7ERHlFoN2pWkyDTYpyVBBzUw7ERHlG1evXkWDBg0AAJs3b0a1atVw4sQJrF+/HmvXrjVv48zNzg7QdBGQM+0Ag3YiIso9Bu1K02TaAcAeScy0ExFRvpGUlARHTUb5wIED6Nq1KwCgUqVKePz4sTmbZhk0n41NYrw28c7B6IiIKLcYtCstVdDOTDsREeUXVatWxfLly3H06FHs378f7du3BwA8evQIhQsXNnPrLIDeXO2c9o2IiJTCoF1pegPxOCCRQTsREeUb8+fPx4oVK9CyZUv0798fNWvWBADs2rVLWzZfoOnN1S5P+8agnYiIcotTvinN1hZQqQBJggMSWR5PRET5RsuWLfHs2TNER0fD29tbu3zEiBFwkVPLBRnnaiciIhNg0K40lUqUyCcksDyeiIjyHVtbWyQnJ+PYsWMAgIoVK6J06dLmbZSlYHk8ERGZAMvjTUFTIs/yeCIiyk9iY2MxdOhQ+Pn5oXnz5mjevDmKFy+OYcOGIY4pZaPl8fxYiIgotxi0m4JmMDqWxxMRUX4yYcIEHDlyBL/99hsiIyMRGRmJX3/9FUeOHMHEiRPN3Tzz0yuPZ6adiIiUwvJ4U9AE7SyPJyKi/GTbtm3YunUrWrZsqV3WsWNHODs7o2/fvli2bJn5GmcJ9MrjORAdEREphZl2U2B5PBER5UNxcXHw8fFJs7xYsWIsjwdYHk9ERCbBoN0U9MrjU1IAtdrM7SEiIlJAo0aNMHPmTMTHx2uXvXr1CrNnz0ajRo3M2DILwfJ4IiIyAZbHm4JeeTwAJCXpzuNERETW6uuvv0a7du1QsmRJ7Rztly5dgpOTE/bu3Wvm1lkAI+XxzLQTEVFuMWg3Bb3yeABITGTQTkRE1q9atWq4ffs21q9fjxs3bgAA+vfvjwEDBsBZjlILMr3yeGbaiYhIKQzaTUGvPB4AR5AnIqJ8w8XFBcOHDzd3MyyTXnk8B6IjIiKlMGg3BW3QLqJ1DkZHRETWateuXVnetmvXriZsiRVgeTwREZkAg3ZT0JTHu9glAskM2omIyHp17949S9upVCqkpKSYtjGWTn8guqLiITPtRESUWwzaTUGTaZeDdpbHExGRtVJzCpSsY6adiIhMgFO+mYImaHeyZXk8ERFRgcGB6IiIyAQYtJuCpjze2VY3ejwRERHlcxyIjoiITIBBuyloMu1y0M7yeCIiogKA5fFERGQCDNpNQRO0O9qwPJ6IiKjAYHk8ERGZgMUH7Q8fPsTAgQNRuHBhODs7o3r16jh37px2vSRJmDFjBvz8/ODs7Iw2bdrg9u3bZmwxtOXxTjbMtBMRERUYRsrjmWknIqLcsuig/cWLF2jSpAns7e2xe/duXLt2DV9++SW8vb212yxYsABLlizB8uXLcfr0abi6uqJdu3aIj483X8Plgehs2KediIjyjz///BN79+5Ns3zv3r3YvXu3GVpkYfTK45lpJyIipVh00D5//nz4+/tjzZo1aNCgAQIDA/HGG2+gbNmyAESWffHixZg2bRq6deuGGjVq4Mcff8SjR4+wc+dO8zWc5fFERJQPTZ482ehc7JIkYfLkyWZokYXRK4/nQHRERKQUiw7ad+3ahXr16qFPnz4oVqwYateujVWrVmnXBwcHIywsDG3atNEu8/T0RMOGDXHy5Ml095uQkIDo6GiDm6I05fGOKpbHExFR/nH79m1UqVIlzfJKlSrhzp07ZmiRhdErj5cz7SyPJyKi3LLooP3evXtYtmwZypcvj7179+KDDz7AmDFjsG7dOgBAWFgYAMDHx8fgdT4+Ptp1xgQFBcHT01N78/f3V7bhcqZdxfJ4IiLKPzw9PXHv3r00y+/cuQNXV1cztMjCGBk9Pj4eUKvN1yQiIrJ+Fh20q9Vq1KlTB//73/9Qu3ZtjBgxAsOHD8fy5ctztd8pU6YgKipKewsNDVWoxRqaoN2B5fFERJSPdOvWDePGjcPdu3e1y+7cuYOJEyeia9euZmyZhTAyEJ3mKRERUY5ZdNDu5+eXpgyvcuXKuH//PgDA19cXABAeHm6wTXh4uHadMY6OjvDw8DC4KUoujwfL44mIKP9YsGABXF1dUalSJQQGBiIwMBCVK1dG4cKF8cUXX5i7eeZnJNMOsF87ERHljp25G5CRJk2a4ObNmwbLbt26hYCAAABAYGAgfH19cfDgQdSqVQsAEB0djdOnT+ODDz7I6+bqyJl2sDyeiIjyD09PT5w4cQL79+/HpUuX4OzsjBo1aqB58+bmbppl0BuIzs5OXMNPSmLQTkREuWPRQfv48ePRuHFj/O9//0Pfvn1x5swZrFy5EitXrgQAqFQqjBs3Dp9//jnKly+PwMBATJ8+HcWLF0f37t3N13A5aFexPJ6IiPIXlUqFN954A2+88Ya5m2J59MrjAcDFBYiK4mB0RESUOxYdtNevXx87duzAlClTMGfOHAQGBmLx4sUYMGCAdptPPvkEsbGxGDFiBCIjI9G0aVPs2bMHTnKJmjloyuMdWB5PRERWbsmSJRgxYgScnJywZMmSDLcdM2ZMHrXKQumVxwOAs7MI2plpJyKi3LDooB0AOnfujM6dO6e7XqVSYc6cOZgzZ04etioTmky7vcTyeCIism5fffUVBgwYACcnJ3z11VfpbqdSqRi065XHQ5Lg7KwCwEw7ERHljsUH7VZJDtrB8ngiIrJuwcHBRh/ntb///hsLFy7E+fPn8fjxY+zYscO8XeGMkYN2SQKSkuDiIn4PMNNORES5YdGjx1stTXm8nGlneTwREVHuxMbGombNmvj222/N3ZT06XfN0xtBnkE7ERHlRo4y7aGhoVCpVChZsiQA4MyZM9iwYQOqVKmCESNGKNpAq6TJtNuxPJ6IiPIRSZKwdetWHD58GE+ePIFarTZYv337dpMdu0OHDujQoYPJ9q8IOdMOAAkJcHFxB8DyeCIiyp0cZdrfeustHD58GAAQFhaGtm3b4syZM5g6dapl9S03F22fdpbHExFR/jFu3Di8/fbbCA4OhpubGzw9PQ1uliQhIQHR0dEGN5OzsQHsNPmQ+Hhm2omISBE5yrRfvXoVDRo0AABs3rwZ1apVw/Hjx7Fv3z68//77mDFjhqKNtDqa8ng7lscTEVE+8tNPP2H79u3o2LGjuZuSqaCgIMyePTvvD+zkBMTEGJTHM9NORES5kaNMe1JSEhw1JWAHDhxA165dAQCVKlXC48ePlWudtZLL41NYHk9ERPmHp6cnypQpY+5mZMmUKVMQFRWlvYWGhubNgfVGkHdxEQ+ZaSciotzIUdBetWpVLF++HEePHsX+/fvRvn17AMCjR49QuHBhRRtolTRBuy3L44mIKB+ZNWsWZs+ejVdWEIU6OjrCw8PD4JYn5MHoWB5PREQKyVF5/Pz589GjRw8sXLgQgwYNQs2aNQEAu3bt0pbNF2hyeXwKy+OJiCj/6Nu3LzZu3IhixYqhdOnSsNec72QXLlwwU8ssiJFMO8vjiYgoN3IUtLds2RLPnj1DdHQ0vL29tctHjBgBF/kMVZDJmXY1y+OJiCj/GDRoEM6fP4+BAwfCx8cHKpUqz44dExODO3fuaJ8HBwfj4sWLKFSoEEqVKpVn7ciUHLRrMu0uiMVbG/oB/l2A994zb9uIiMgq5Shof/XqFSRJ0gbsISEh2LFjBypXrox27dop2kCrpAnabVJEip2ZdiIiyg/++OMP7N27F02bNs3zY587dw6tWrXSPp8wYQIAcSFh7dq1ed6edMnl8ZqB6NphL6oE/wEsus2gnYiIciRHQXu3bt3Qs2dPvP/++4iMjETDhg1hb2+PZ8+eYdGiRfjggw+Ubqd10ZQL2nIgOiIiykf8/f3zrm94Ki1btoQkSWY5drakKo+vin/F8+fPzdcmIiKyajkaiO7ChQto1qwZAGDr1q3w8fFBSEgIfvzxRyxZskTRBloluTyeQTsREeUjX375JT755BP8999/5m6K5UpVHl8F18TzFy8Atdp87SIiIquVo0x7XFwc3N3dAQD79u1Dz549YWNjg9deew0hISGKNtAqyeXxySyPJyKi/GPgwIGIi4tD2bJl4eLikmYguoiICDO1zILolce7uOgF7Wo1EBUF6I0FRERElBU5CtrLlSuHnTt3okePHti7dy/Gjx8PAHjy5InZyuYsiuZHjOjTLiEhIe8G6iEiIjKVxYsXm7sJlk+/PN4pGZVwQ7fu+XMG7URElG05CtpnzJiBt956C+PHj8frr7+ORo0aARBZ99q1ayvaQKukybQDgD2SkJjokMHGRERE1mHQoEHmboLl0yuPL5J4D47Q6yPHSgQiIsqBHAXtvXv3RtOmTfH48WPtHO0A0Lp1a/To0UOxxlmtVEF7QgKDdiIiyh/UajXu3LmDJ0+eQJ2qj3bz5s3N1CoLolceXyT6X8N1HIyOiIhyIEdBOwD4+vrC19cXDx48AACULFkSDRo0UKxhVk2vj58DEpGQ4GrGxhARESnj1KlTeOuttxASEpJmJHeVSoWUlBQztcyC6JXHez2+ZriOmXYiIsqBHI0er1arMWfOHHh6eiIgIAABAQHw8vLCZ599luaqe4Fkp7sW4oBExMebsS1EREQKef/991GvXj1cvXoVERERePHihfbGQeg05Ex7fDw8QlMF7cy0ExFRDuQo0z516lSsXr0a8+bNQ5MmTQAAx44dw6xZsxAfH4+5c+cq2kiro1KJEvnERE15vLkbRERElHu3b9/G1q1bUa5cOXM3xXLpD0T3nyiPf2hTEiXUD5hpJyKiHMlR0L5u3Tp8//336Nq1q3ZZjRo1UKJECXz44YcM2gFRIp+YCAckIoqZdiIiygcaNmyIO3fuMGjPiBy0x8bCMViMHH9c1Qx9sZGZdiIiypEcBe0RERGoVKlSmuWVKlVieZzMwQGIjdX0aTd3Y4iIiHLm8uXL2sejR4/GxIkTERYWhurVq6eZp71GjRp53TzLI5fH37gBm8QExMEZZ1PqMGgnIqIcy1HQXrNmTSxduhRLliwxWL506VKesGWaEeTtkYSkJECtBmxyNIIAERGR+dSqVQsqlcpg4LmhQ4dqH8vrOBCdhpxpv3ABAHAdlfEERcUyJjaIiCgHchS0L1iwAJ06dcKBAwe0c7SfPHkSoaGh+PPPPxVtoNXSZB8cNPOzJiQAzs7mbBAREVH2BQcHm7sJ1kUO2iMjAQDXUAURKCSWWVim/fx5oGtXYN484O23zd0aIiJKT45yvy1atMCtW7fQo0cPREZGIjIyEj179sS///6Ln376Sek2WidNpl0/aCciIrI28iwxAQEBCAkJQYkSJQyWBQQEoESJEggJCTF3Uy2DXB6vcUNVBc9RWDyxsEz7gQPAo0fArl3mbgkREWUkx/O0Fy9ePM2Ac5cuXcLq1auxcuXKXDfM6umVxwMM2omIyPq1atUKjx8/RrFixQyWR0VFoVWrViyPB3SZdo07jlUREW+ZmfaXLw3viYjIMrGXtaloyuPd7EWmnXO1ExGRtZP7rqf2/PlzuLq6mqFFFihV0P6fi16mPSoKSE42Q6OMY9BORGQdcpxpp0xoMu2u9olAEjPtRERkvXr27AlADDo3ePBgOOoFpikpKbh8+TIaN25sruZZFv3yeCcnPHULxIsI3SB+ePECKFo079tlBIN2IiLrwKDdVDRBu4s9y+OJiMi6eXp6AhCZdnd3dzjrjazq4OCA1157DcOHDzdX8yyLfqa9UiU4JdgiBUCyqyfsYqNEv3YLCdpjYsQ9g3YiIsuWraBdvtKenkjNSKkEbXm8ix3L44mIyLqtWbMGAFC6dGl89NFHLIXPiH7QXrUqnK+Lh4nuhUXQbkH92uVgXQ7eiYjIMmUraJevtGe0/p133slVg/INOdNux9HjiYgof5g5c6a5m2D59Mvjq1SB83/iYYJrIbjgnkWNIM/yeCIi65CtoF2+0k5ZoAnane1YHk9ERNarTp06OHjwILy9vVG7dm2jA9HJLly4kIcts1D6mfYqVeDyl3j4yqUwvAGLzLQnJABJSdoiQSIisjDs024qmjOfsy3L44mIyHp169ZNO/Bc9+7dzdsYa6Cfaa9aFXL3/zhnMe1bcvhzfLUQ6NwZqFzZDO3To18W//IlUKiQ+dpCRETpY9BuKtpMO8vjiYjIeskl8SkpKWjVqhVq1KgBLy8v8zbKkrm7i3tnZyAwEC4u4mmMo5j27ezeCHxyCDh+HNi50zxNlOmXxTNoJyKyXAzaTUUTtDvZsDyeiIisn62tLd544w1cv36dQXtGAgKAOXOAwEDAzk6baY+xFxFx6EVRHn//vrkaqKMftHMwOiIiy8Wg3VQ05fFONiyPJyKi/KFatWq4d+8eAgMDzd0UyzZ9uvahHLRH24tMu6QZiO7JkzxvlYHkZMPfJhyMjojIctmYuwH5llweb8vyeCIiyh8+//xzfPTRR/j999/x+PFjREdHG9woLbk8PtJWBO2FITLtT54AkmSuVqXNrDNoJyKyXMy0m4omaHdgeTwREeUTHTt2BAB07drVYBR5SZKgUqmQkpJirqZZLDnTHgFRHl8IItOelARERQHm6mmQOkhn0E5EZLkYtJuKXB6vYnk8ERHlD4cPHzZ3E6yOnGk/cLEwRgEoqnoOVxcgNhYID2fQTkREmWPQbiqaTLujiuXxRESUP7Ro0cLcTbA6cqb96iORaS9qFwFfX+DuXVEiX7GiedqVOkjnQHRERJaLQbupyOXxKpbHExFR/hIXF4f79+8jMTHRYHmNGjXM1CLLJQftzyH6tDslxaBE0UTcvetg1sHo2KediMh6MGg3FU15vANYHk9ERPnD06dPMWTIEOzevdvoevZpT0suj4+CJ1JgA1uoUcYrAn/D16xBO8vjiYisB0ePNxVtpp3l8URElD+MGzcOkZGROH36NJydnbFnzx6sW7cO5cuXx65du8zdPIskZ9ol2CDe2RsAEOCmG0HeXBi0ExFZD2baTUUTtNuD5fFERJQ/HDp0CL/++ivq1asHGxsbBAQEoG3btvDw8EBQUBA6depk7iZaHDnTDgB2xQoBIc9R0plBOxERZR0z7aYil8dLLI8nIqL8ITY2FsWKFQMAeHt74+nTpwCA6tWr48KFC+ZsmsUqXx6wsQGaNgUc/US/dj9HMe1beLj52pW6TzsHoiMislwM2k1FzrRLLI8nIqL8oWLFirh58yYAoGbNmlixYgUePnyI5cuXw8/Pz8yts0zlygHXrgG//QagsAjai9laTqbd3d3wORERWR6Wx5uKJmi3k1geT0RE+cPYsWPx+PFjAMDMmTPRvn17rF+/Hg4ODli7dq15G2fBtNO6FRLTvhWCyLRbQtBevDhw8yaDdiIiS8ZMu6loyuPtWB5PRET5xMCBAzF48GAAQN26dRESEoKzZ88iNDQU/fr1M/nxv/32W5QuXRpOTk5o2LAhzpw5Y/JjKkqTafdMtpxMe/Hihs+JiMjyMGg3FTnTrmZ5PBER5U8uLi6oU6cOihQpYvJjbdq0CRMmTMDMmTNx4cIF1KxZE+3atcMTc0a+2aXJtLslikz7ixdAqqnu84zch13u1cCgnYjIcrE83lS0QTvL44mIKH+YMGGC0eUqlQpOTk4oV64cunXrhkKa4FRJixYtwvDhwzFkyBAAwPLly/HHH3/ghx9+wOTJkxU/nkloMu2OMc9hawukpABPnwIlSuR9U+QgXQ7aORAdEZHlYtBuKpryeFs1y+OJiCh/+Oeff3DhwgWkpKSgoqaj9q1bt2Bra4tKlSrhu+++w8SJE3Hs2DFUqVJFseMmJibi/PnzmDJlinaZjY0N2rRpg5MnTxp9TUJCAhL0rphHR0cr1p4c01zMUL2IQNGiQFiYKJE3Z9DO8ngiIsvH8nhT0WTabVNYHk9ERPlDt27d0KZNGzx69Ajnz5/H+fPn8eDBA7Rt2xb9+/fHw4cP0bx5c4wfP17R4z579gwpKSnw8fExWO7j44OwsDCjrwkKCoKnp6f25u/vr2ibckSTacfz59DMnGe2fu2pg/aEBCApyTxtISKijDFoNxVN0G6TwvJ4IiLKHxYuXIjPPvsMHh4e2mWenp6YNWsWFixYABcXF8yYMQPnz583YyuFKVOmICoqSnsLDQ01d5N0QXtEhNmD9tR92gFm24mILBWDdlORy+OTWR5PRET5Q1RUlNGB354+faotP/fy8kKiwqOrFSlSBLa2tggPDzdYHh4eDl9fX6OvcXR0hIeHh8HN7OS+/haUaff2BhwdxWP2ayciskwM2k1Fm2lneTwREeUP3bp1w9ChQ7Fjxw48ePAADx48wI4dOzBs2DB0794dAHDmzBlUqFBB0eM6ODigbt26OHjwoHaZWq3GwYMH0ahRI0WPZVJypj0+HiW84wCYP2h3dxc3/WVERGRZrCponzdvHlQqFcaNG6ddFh8fj5EjR6Jw4cJwc3NDr1690lyJNwtN0K5KZnk8ERHlDytWrEDr1q3x5ptvIiAgAAEBAXjzzTfRunVrLF++HABQqVIlfP/994ofe8KECVi1ahXWrVuH69ev44MPPkBsbKx2NHmr4OYG2IkxgEu5iWnfzPGTJTkZePVKPHZ3F80CGLQTEVkqqxk9/uzZs1ixYgVq1KhhsHz8+PH4448/sGXLFnh6emLUqFHo2bMnjh8/bqaWamjK422SWB5PRET5g5ubG1atWoWvvvoK9+7dAwCUKVMGbnLUB6BWrVomOXa/fv3w9OlTzJgxA2FhYahVqxb27NmTZnA6i6ZSiWx7eDhKOj8HUNIsmfbYWN1jZtqJiCyfVWTaY2JiMGDAAKxatQre3t7a5VFRUVi9ejUWLVqE119/HXXr1sWaNWtw4sQJnDp1yowthi7Trgnak5MBtdqcDSIiIlKGm5sbChUqhEKFChkE7KY2atQohISEICEhAadPn0bDhg3z7NiK0fRr97EXmXZzBO1ycG5nJ36uMGgnIrJsVhG0jxw5Ep06dUKbNm0Mlp8/fx5JSUkGyytVqoRSpUqlO28rIOZujY6ONrgpThO0I1k3fwpL5ImIyJqp1WrMmTMHnp6e2vJ4Ly8vfPbZZ1DzynTWaPq1F1E9B2DeoN3dXST/5aCdA9EREVkmiy+P/+WXX3DhwgWcPXs2zbqwsDA4ODjAy8vLYHlG87YCYu7W2bNnK91UQ5ryeFViIgAJgArx8YCzs2kPS0REZCpTp07F6tWrMW/ePDRp0gQAcOzYMcyaNQvx8fGYO3eumVtoBTSZdm9Jl2mXJBE85xX9oF3/npl2IiLLZNFBe2hoKMaOHYv9+/fDyclJsf1OmTIFEyZM0D6Pjo6Gv7+/YvsHoMu0A7BHMpJgz0w7ERFZtXXr1uH7779H165dtctq1KiBEiVK4MMPP2TQnhWaTLtHksi0JyQA0dGAp2feNUHOqMvBOgeiIyKybBZdHn/+/Hk8efIEderUgZ2dHezs7HDkyBEsWbIEdnZ28PHxQWJiIiIjIw1el9G8rUAezd2qF7S7O3LaNyIisn4RERGoVKlSmuWVKlVCRESEGVpkhTRBu0NMhDZYzusSeTk4l4/PTDsRkWWz6KC9devWuHLlCi5evKi91atXDwMGDNA+tre3N5i39ebNm7h//775523VlMcDgJuj6NfOEeSJiMia1axZE0uXLk2zfOnSpahZs6YZWmSFNOXxeP4cxYqJh+YK2lkeT0RkHSy6PN7d3R3VqlUzWObq6orChQtrlw8bNgwTJkxAoUKF4OHhgdGjR6NRo0Z47bXXzNFkHb2gnZl2IiLKDxYsWIBOnTrhwIED2ovjJ0+eRGhoKP78808zt85KaDLtePYMxYoB9+5ZTtDOgeiIiCyTRWfas+Krr75C586d0atXLzRv3hy+vr7Yvn27uZslRpTRBO6u9gzaiYjI+rVo0QK3bt1Cjx49EBkZicjISPTs2RM3b95Es2bNzN0861CqlLgPDjZbpj11n3Zm2omILJtFZ9qN+euvvwyeOzk54dtvv8W3335rngZlxN4eSEqCqwPL44mIKH8oXrx4mgHnHjx4gBEjRmDlypVmapUVqVBB3N++DZ+GagA2Zu/TzoHoiIgsm9Vn2i2aZjA6Nwdm2omIKP96/vw5Vq9ebe5mWIeAAHFRPyEBFZxDAQDh4XnbBPZpJyKyLgzaTUkTtLvYMWgnIiIiALa2QLlyAICy6tsALKdPO4N2IiLLxKDdlDR92l3sWR5PREREGpoSef9XtwBYTp92DkRHRGSZGLSbkibTzoHoiIiISEsTtPtEmSdo5zztRETWxeoGorMqmqDdmeXxRERkxXr27Jnh+sjIyLxpSH6hCdq9npg3aJeDdQ5ER0Rk2Ri0m5KmPN7ZluXxRERkvTw9PTNd/8477+RRa/KB8uUBAC4PRND+/DmQlKT92WBy6fVpT0jI23YQEVHWMGg3JQ5ER0RE+cCaNWvM3YT8RZNpt7kfDEdVIhIkBzx7Bvj55c3h0+vTDoiAvlChvGkHERFlDfu0m5JcHm/LoJ2IiIg0fH0BNzeo1GrU9b4HIG9L5FNn2u3tAUdH8ZiD0RERWR4G7aakqS9zYnk8ERERyVQqbba9jlve92tPPRAdwMHoiIgsGYN2U9Jk2p1smGknIiIiPZqgvapD3gbtKSlAXJx4rF8Wz8HoiIgsF4N2U2LQTkRERMZogvby6rwN2mNjdY/1g3Zm2omILBeDdlPSlMc72rA8noiIiPRogvaABBG0h4fnzWHloNzOTtePHWDQTkRkyRi0mxIz7URERGSMJmj3fSmC9oMHAUky/WH1+7OrVLrlctDOgeiIiCwPg3ZT0gTtDioG7URERKRHM1e7W/RjFHZ4iXPngBMnTH/Y1CPHy5hpJyKyXAzaTUlTHu+gYnk8ERER6fHyAooVAwCM6XAbALB4sekPm3qOdhmDdiIiy8Wg3ZQ0mXZHMNNOREREqWhK5Ac3EUH79u1ASIhpD5lepp2jxxMRWS4G7aYkl8czaCciIqLUNEF7qfhbaN0aUKuBb7817SGNzdEOMNNORGTJGLSbkqY83h4sjyciIqJUNEE7bt3CuHHi4apVph0MLrM+7RyIjojI8jBoNyVm2omIiCg9ekF7x45AuXJAZCTw44+6TSRJ2VHl2aediMj6MGg3JU3QbicxaCciIqJUNCPI49Yt2KgkjB0rnn79NbBvHzB6NBAYCHh4ANevK3NIjh5PRGR9GLSbklweL7E8noiIiFIpW1ZMlh4ZCTx7hkGDRIB+6xbQrh2wdKkYmC4mBvjtN2UOmV6fdg5ER2QB7t4FmjYFdu40d0vIwjBoNyU5065mpp2IiIhScXYGSpUSj2/dgrs7MGGCeOrnBwwfDvTrJ55fvarMIVkeTxbr/n0gJcXcrTCvL78Ejh8H5s0zd0ss26tXwMmTyvYdsnAM2k2JQTsRERFlRK9fOwBMnw6EhgIPHgArVwL9+4vVSgXtHIiOLNK+fUBAAPDJJ+ZuifkkJwPbtonH588DsbHmbY8lGz8eaNxY93kVAAzaTUlTHm/L8ngiIiIyRg7ab94EANjYACVLinsAqFZN3F+7Jn7T5xb7tFOO/fij+ELevq38vk+fFvfHjim/b2vx99/AkyficXKy7jMhQ8nJwObN4vHRo+ZtSx5i0G5KcqY9hZl2IiIiMiJVpj21wEDAxUX8hrh7N/eH4zztlGM//AD8+69yAyzoCwkR90p8ya2VHIjKClBAmi0nTwIvXojHSo3QaQUYtJuSJmi3ZdBORERExlSsKO41mfbUbGyAqlXFYyVK5NPr0y4H8QkJQFJS7o9D+dD9++I+ONh0+37+XAzMWNDol8b36CHuGbQb98cfusfXrpmvHXmMQbspaYJ2G7U4+yUnc3wNIiKi7Jo7dy4aN24MFxcXeHl5mbs5ypKD9jt30v2RIJfIKxG0Z1Yer79NanFxuoQoFTApKWKgBQD47z/l9y8H7UDBzLb/9Rfw7BlQpIgY2AIQGWVeQUvr9991jx8+BKKjzdeWPMSg3ZTkPu3JidpFzLYTERFlT2JiIvr06YMPPvjA3E1RXqlSgJMTkJiYbjAkB+1XruT+cOkF7fb2gKOjeGxsMDpJArp0EbPUHT+e+3aQlQkP1wWQSgftkmQYtN+5o+z+rYFcGt+rF1CzJuDtLa6S/fOPedtlaf77T3TRsLERnxFQYErkGbSbkibTrmLQTkRElGOzZ8/G+PHjUb16dXM3RXk2NkD58uJxOiXypsi0p+7TDmTcr/3PP4FDh0TClbNRFUD6QXVwsLJTbT1/LqbwkhW0THtSErB9u3jct6/4m9CkiXjOEnlDcml848ZA3bricVZK5B89MvwOWyEG7aakuWStSkyASiUWcQR5IiIi00tISEB0dLTBzWJl0q9dvlZx+3bufkeo1bpZpFJn2vWXpQ7a1Wpg6lTd899/B27cyHk7yArp94uIjRWBtlJSB1MFLdN++LD4PIsVA5o3F8uaNRP3DNoNyUF7585A5cricWaZ9pgYoFYtoFIl4MIFkzbPlBi0m5KLCwBAFRsLJyexiJl2IiIi0wsKCoKnp6f25u/vb+4mpS+ToN3XFyhUSATPuQmW9ad9Nha0y9n31EH75s3ApUuAhwfQqpVYtnhxzttBVih1YK1kiXxBD9r1S+Pt7MRjOWg/dkz8xyfxB+zQIfG4c2egShXxOLNM++bNwNOnopqjZ08xdoAVYtBuSvLZLzZW20+MQTsREREwefJkqFSqDG83chGhTpkyBVFRUdpbaGiogq1XWCZBu0qlTL92ORi3tYU2maDPWKY9KUk3LtbHHwOzZ4vH69aJ38GZUatFm7/9Fhg0KO2sVmQl8iJoL1VK3Bek8vjUpfGyunUBZ2eRgc+vZS3nzmWvZP3QIRFIBQSIgD2rmfZVq8S9ra2oGHnzTTE6uJVh0G5Krq7iXi9oZ3k8ERERMHHiRFy/fj3DW5kyZXK8f0dHR3h4eBjcLFYmQTugTL92/f7scrc9fXLQrj8Q3dq1IvFZtCgwdizQtClQr574PbNsWfrHCgkBBg4Ur6tRAxg1CvjxR+Ctt4AjR3L+HtKjVivbzTojSUnAkyd5cyyLIQdX8hdHyWnf5H2//rq4f/RIDMJWEKxaJeYc9/HRZdcBMS5Ww4bicX4skT98GGjQQFycyOoFVXnU+M6dxfdQzrQHBxuOiaDv6lXg1ClRwbB3r4jNDh4EPv009+8hjzFoNyU5aI+JYXk8ERGRnqJFi6JSpUoZ3hw0A7rme3LQ/vhxutMXKRG0pzdHuyx1pv3VK11mfepUsV6lAiZOFMu+/TZtMiIpCfjiC/F7ev16ICJC/Bxq2xZo2VIMZNenT9Z/p2dFSooo2w8IAHbvTrv+zBmgfXtgwYLcHysuTnQ7LlkSuHgx9/uzGnJgXbOmuDdFpr1WLUCe0vHePeX2bwpKlKyfPw+MHy8eT5okMsH6zN2vPTlZBMr6/WoycvIksHx55tPUJSYCI0eKq2zPngG9e2ceIEmSrj97p07ivmhRoHBhsS69C57ffy/uu3QBWrcGfvhBPF+4ENi0KWvvKzJSXKH87jtRKnToEHD5srjYkocYtJuSHLQnJcHVQXyBGbQTERFlz/3793Hx4kXcv38fKSkpuHjxIi5evIgYY3OTWSNPT5FpA4Bbt4xuIg9Glzpol6Ssxw/pTfcmk5dv2SJK2Zs1E9Mg+/sD772n265XL7HsyRMRmAPi9+sff4gs/Mcf64LbY8fEun37xPpatURZfc+eylUf7toF/P23uBDQsaO4qJCYKH5zTZ0KNGokkmzTp6c/B31WqNXiczl1SsQl332nTPutghxYywOlmao8vlw58diS+7X/739iurGsBn3GvHghgtXERKB7d2DcuLTbmDtoHzVKBLvvv5/5tuvXi+/GBx8AgweLK2npWbxYlLQXLSoG6zhzxvj713fpkvhj5OKiG1gDyLhfe3w88NNP4vHw4eK+b1/gk0/E43ffBR48yPi49++Lkeo//FBcaOjXTwT/NWsCixZl/FqlSSRFRUVJAKSoqChldxwfL0nifCo1rvJCAiRp3z5lD0FERPmPyc5LVmrQoEESgDS3w4cPZ3kfFv+ZNm8ufjP8/LPR1RER2p8UkvwWEhMl6bXXJCkgQJJCQjI/xI4d4vUNGhhfP2GC7hj6t3Xr0m77xRdiXdGiklSmjOH2hQtL0g8/SJJanfZ1wcGSVKiQ2G7IEOPbyNvNnClJp09n/r6aNBH7q1JF14a6dSWpRg3dcwcHcb95c+b7S8+nn4p9qFTi3t1dkmJicr4/q/Hype6D3LpV3FeurNz+/fzEPs+dk6R+/cTjL75Qbv9KUqslqUQJ0UYbG0n66afs7yMlRZI6dxb7KFNGkl68ML7dy5eSZGsrtkvvP7habZov4a5dun9zGxtJunUr/W2//jrtH41hw8T7TO3+fUlycRHbrF0rSbt36/5DrVljfP83b0pS06Zimy5dDNeNGCGWT5uW9nUbNoh1/v6SlJysW56UJP5wApLUo0f67+vSJUkqXlxsV7y4JPXqJf5OV6kiScWKSdLSpem/Nhuyem5i0C6Z8ESuVmv/s3Ws+UACJOm335Q9BBER5T8WH2BaIYv/TIcPFz8Op09PdxM5Vjh+XDxfuNAwSI2Ly/gQQ4fqgmVjbt+WpEGDJOnDDyVp3jzxm/fcOeOBdWSkCFr1f6eXKSNe+/Rpxu3Yv1/EAYAkffdd2vWJiZJUvbpuv/XriwsHr16l3fbUKbGNvb0kPXokSb/+qrsoAEhSkSIizvzoI/F8wICM25aetWt1+1y7VpLKltU9tio3bkjSs2fZe821a+LNenqKLwkgSc7O6V9xyQ69BJf05IkkTZ0qHr//fu73bQqXLxt+6VUqcYUqO+bNE691dJSkCxcy3rZePbGtsYsDCQmS1LGjiDXGjBH/KZUQFiauxgGS5OYm7ocOTbudWi3+XsmfxZgx4qqY/J971Ki035FevcS6pk1162bPFsucnCRpyxZxgUKtFv/hZ87UXXFzcpKk1BdqFy8W63r2TNu+118X62bOTLvu8mVJsrMT63fuTLv+4EFJ8vAQ66tWFRcbTIRBezaY9ESu+QfvX/em9gIlERFRRiw+wLRCFv+Zyqnrvn3T3aRdO7HJihWS9OCBJLm6GmaR3347/TgqKkqX4Dp6VJkmHzsmmr1/vyQ9f56918oXHBwcJOmffwzXff65Ll6Q3xsgSb6+4iKCvr59xbpBg3TLQkNFbPDOO5IUHi6WHT0qtvPyEhcFsuPvv8VFAUBk2yVJkubOFc+bN8/evszq4kURqDRsmL3X7d4t3myNGiLIljOj8oebG3fv6gIytVoEwIAktW2b+31nR0xM1i5CLFgg2te+vSR98IHuy7liRdaOc/SoLqhdtSrz7T/+WJfpvXlTt1ytlqSBAw0vIPj4iKtbubmYolaLCwGAuHL211/isZ2dKH8x1jZAkj77THfcn37SfUeGDpWk7dsl6coVcUUNEBcZLl/W7SclRXdM+ebqKrLZ8vP27cV3JbW9e8X6SpUMl9+5o7uo8t9/xt/r5Mlim5IlJSk6Wvf+lyzR/Ydv3lyUOZkQg/ZsMOmJXFPy816DCxKQbtUbERGRlsUHmFbI4j9TuRy1Zs10N5k4UWwyerQkvfmmeNy4sSQdOKCrol282PhrV64U6ytWVCZBmltqtah0ldv08qVYfv26LlD/+WcRF/7vf+J3tRy4y5XCwcG6+OfSpYyPl5ysSx4ePJj1dj58qIsdevfWVfyGhuqOnVHlsEUZNUoXBKUOwDKyYoV4TefO4rlc8nHqVO7bdPiw2FeFCuL533+L54GBud93Vp05I4LSt97K/D9Hq1aifUuWiG3HjtV9pocOZfzaiAhRqp3ZFTZ9T56ITC8gYorr18VyOeC0tRWZ+4oVde1o2VL3Hyq7vvtOVwUgB9Zt2ohlH3yg2275ct3xjJXLyN8ZY7fx49Nu/+KFJL37ruh2IWfA5f/wmzal/1mFhuouKiQk6JZPmaIL9tMTG6vr2zN2rPisO3XSHbtPH+PlPQpj0J4NJj2Rly8vSYD0caOjEiBJq1crfwgiIspfLD7AtEIW/5nevKkrOzbWF1TSlWj7+Ih7Gxtdlvqrr3S/4Y3FDg0bivULF5rsHWTbs2e6+G/wYPG25a6rHToY/k6PitKVzFevLp6PG5e9pOyQIboq3qxITNS1p0YN8RtfX4cOYt2UKRnv599/TVpdmzUJCWKwgYwCrfTIJesffiieyx/KL7/kvl3r1ol9tWkjnj96pPty6wdhpiT3G8noqpckiWysnIGVr9So1bovVq1ahn2n9anVutLwcuV0md2sCA/Xffl9fCRp0iRde+V+4AkJkjR/vq78ZsSIrO9fkkTQ/OWX4u8PIP6gyORsu4ODuIq1f7/uKuFnn6W/z23bJKl/f1Hi7+mpuxiT2d/gxETRJWP//sy3Vat1/XT+/Vcsi4oS/WIA0YaMyJl6Gxvd1TlHR91FmTzAoD0bTHoir1VLkgBpTpM9EiBJ336r/CGIiCh/sfgA0wpZ/GeamKjLMKUz6NS5c4YJq1GjdOv0q2WLFBEJKJncDdfOTpmKZiX99ZcuY921q64y1lhFa0iISLwBktS6ta677Z49WTvWzp1i+4CArP0elwfm8/Awnk2Xx2Tz8xNjWxlz4IB4fw4OomIgve1MTh6FUL516pT11779tnjNvHniufxFk5/nxmef6cqoJUn8w8j9OPKihCE+XhdQAiIoT2/0Q/kLVLas4fKnT3X7SK9/u5x5trdP28cjK54+FVU4+v+GxgLmw4d1pem//57xPpOSxFW/Dz7QfeaA6Iejf+FQrdZdqOnZU/QxAcT3IKuBrVot3oMpMtcNGoj2yH2Q5Sx7xYpZ6wvz1lu69165cuZlOwrL6rmJU76ZmmbaNzeVmJaGU74RERFRGvb2QNmy4nE6075VrizmSQfEbEmffaZbp1IBK1cCtWuLqY/79dNNl7x6tbjv2hUoViwbbfr7bzHH2ePHmW+bkiLmguvWTczvnEUtWgAzZojHu3aJ+6AgMed6aqVKiWmjXVyAgwfFvPNVqwJvvJG1Y7VtCzg7AyEhwJUrGW+7bZtuRqe1a4Hy5dNu06ULUKSI+Hj27k27PjwcGDhQTBWXmAh8+qmYfi71tH154scfxX27duL+0CHg1ausvVZ/SjYAKF1a3Csx7VvqfatUuv8HeTHt2+7dQFQUUKKE+P4mJYn/PMbm4N69W9y3b2+4vEgRMZ8gIOYYTD0V5b//AmPHisdBQUDdutlvZ5Ei4ktfu7Z4/t574liptWypm/t92DAxv6IsORlYtw4YOlTMzejuLva3bJmYo7FaNfFH5NdfARu9EFGl0r2/7dvFvOVNmog50OU/SJlRqcR7cHLK7jvPnP60b/fvA199JZ4vWCD+rmZm8WIx9/v48cC5c0CNGsq3UQEM2k1NE7S7q2IBMGgnIiKidFSsKO5v3jS62sVF/K4GxO9RLy/D9c7OYo51T0/gxAlg8mTDqYrffTcbbYmMBPr0EcFeZnMoAyLK3b5dRN7ZnL962jQRvAPAa6+JKZHTU7cusGGDLlaYMCHrcYOLiwjcARGXGKNWiznlhwwRzz/+GOjRw/i2Dg7A22+Lx/KFEf39DBoEhIWJCwurVol/r3PngDp1RGyUZ54/F1c7AGDhQhGgvnoFHDmStdenDqwDA8V9cHDu25Z634AuaL97N/f7z8zGjeK+Xz/xj1imjLgYMXSoyL3KJAnYs0c87tAh7X5GjRKvffxYfMayK1fExYD4eHHBRA6oc6JwYeD4ceDUKRFop/fFnztXfOnCw8Uc65IkXlevnphDfc0a4Px50SYXFzFP/KFDwOXLYj5zR8e0+2zbFqhfXzwODAR27DC+nTlUrizur18XFzLi48UflC5dsvb6okXF/49Fi8TnYanyKPNv0UxaMtejhyQB0oZm30mA8VkHiIiI9Fl8KbcVsorPVB6NefRo4+svX5ZeNm4rRRevKKlvpl86rF8JPWCAuC9Z0kh3W7VajChurIR05EjDUtwTJ9Jvd0qK4RxtVaqk2y8/PU+fivLxhw+ztv3mzaIKNrsjwa9eLZpYt27a4y9cqB2KSALEwNGZlbNfuaIbS2DGDN2sW/Pn64YouHpVLHv4UNcFwN7ecABt2cmTYqwzpUb4lyRJzCcNSFKdOuK5PL1get8zfcnJun7ccsf8gwd15ce5VamS2NeBA7pl8vx8Y8fmfv8ZeflS14f77Fmx7Nw53UiI+gNAyNPeOTqmPy+63F/C2VmS7t0TU5nJn52fn5hKLa9cuKA7dosWui+1t7eYAmHbNjF9X3b+n168KAaf0B/F3hL89pt4b/pjNuSkC4KZsE97Npj0RK7p97Oz6UIJEIM9EhERZcQqAkwrYxWf6fffix+cb7xhuPzFCzF6mjz4kzwyWgYTs8sjzcu3GTOMbCQPMPbaa4YDPp07p+sXK49g99pr6fdfladycnfXzW28Y0d2372hvXvFaOUXL+ZuP6mEheneWmioCJyHDDGcWs7dXYy5ltXpzOVp5wAxR/zHH+uGJ0g9q5daLUndu4t19esbXkh59Eg3yGD16tm+7pE+uc+vPMiafFWnTJnM+yQ/eKC7KiFfwUg9TVtOpdd/fdkysUwerd5Ufv5ZNzCc/vv49luxXKUSszpIkhikDch41EO1WpKaNdMF7vKXont38Y+b1+R5CeX3Mny4uDqV38jTu8m3gQPN3aJsYdCeDSY9kb/3niQB0r4msyTA+CwHRERE+qwiwLQyVvGZypOJBwTolm3erJurDBAVfPIox/LgXUYkJkpSkya63+tpZvj64w/DH7pNmogRrZOTxWjPgBig6dEj3YjUxkYLV6tF9AmI1Penn4rH9erlPKC7eVM3ylxgoC59rZDGjXUxq/5HULeuCLKzO1uWWi2SrHLSWL7162f8I3j4UDdu2ZdfimVJSSKzr//6X3/N9VsVU4QBhqMQ6o+CnlnW9MSJtN/JxETd6IG5CUafPdO9Wf0LUPv3i2Wp597Wl5KS+1EV5em9pk83XK5Wa3+/S66u4sJR27bi+aJFGe/z7FndeypcWJI2bjTfHItJSSKAbds2/cH18oPkZHEBSb6QlM5AnpaKQXs2mPRErhl69GijjyXAcIpDIiIiY6wiwLQyVvGZPnmii7JjYnRzMcsBzP79Yjt5SHIg/dGqJZEkrV/fSJVxSIhICcsXAeTRoJs1EyXBgMiYP34stp89WywrXTrt6M979ugyi0+eiJucZdy7N/ufQVxc2lGy+/RRNPCRS9cB8TH26ZNx9X9WJSWJf46yZSWpdu2MrzWsWqX72O7ckaRPPtFl+fv312Xic/225ZG0u3QxXN66tViuP7WXMb/8ovtu6CtVKvNuE5m5cEHso1gxw+X37onlDg7Gp1BLSBB9CGxsjE9dFx4u3l+TJumXsj97piuHuHYt7frERN1nVLKkrhTD2LapLV8usnSWNlVDflanju7CoZVh0J4NJj2Rz5ghSYB0ruGHmV0UJyIikiTJSgJMK2MVn6laLfqcymlfObL8+OO0c1bLU2U5OWWvhDwhQVfyXq+emPLq7FnDaa8ASfrmG91rYmIkqXhxsXzBAsP2yul8/VLCsWN1fWmzS85wFi0qSdu36wKrFSvSvo9z50SJ8/TpIq39/vsis5yJiAgRqE+caHxqOSVkFmyr1SLuBAz70W/ZkvvrHlrXr+v+3bZsMVyXlXJvSRL/3oAYHEGfXBawYUPO2ydPoVavnuHypCRdJYCxrOn77xt+V1eu1K179EhM2yWvS29auuXLxfpatdJvX0SE6Lcv7yurcwVS3jtyRATssbHmbkm2MWjPBpOeyDWXc6/WG2T0bx4REVFqVhFgWhmr+Uxfe00XJDg5SdL69ca3S0mRpA4dxHZFioigdf58kYW/eFGSjh2TpN27RbC2fbvIiP/9ty7g8fISGU3Z6dO6/ui1a6fNcK5Zo8vAT5okAq5t23QZUf0R5EJDdUHXsWOG+1GrRaS8ebMItlevFiXaarUoJZYrDeRoVQ4anZxEB/Tbt8VFjCJFDAM3+aZSSdKbb+pGf7Ngd+4Ydn3Wv+4xfrzxBHeWhIeLTvnyGAh+fuLijD65bN7BIeP+AKNGGc9gDhoklv/vfzlooMaSJWIfPXumXSdfyTh0yHC5PN+5SiWqB+QP74cfxEB55crpytoBcRHsxYu0+5cHZ5s/P+M23r6tq0p5772cvlOidDFozwaTnsg1I3bertVLAiSpVy/lD0FERPmL1QSYVsRqPlN5ZG9//8xHQH72TBekZPdmrMP0uXOSNGKE4aBgspQU3YBmqW/G+v7J76NYMVE10LixiED1++fr34oW1Q1KNnWq4XHlixOpqwEKFRL7fPddEdzLI7zJtypVxIhuNWuKCxETJ2atw7paLfp954FFi0RTmzQxHAn/4UNdRfaRI+m/fl6fc9I3RWZJEcM/EaPBDxokauzlz6BbNxF4pqZWi/EC0vsuyOTh7pctM1w+c6ZYPnx4Nt5tKvIo8ePGpV0n/5t/+61u2bFjuotBc+eK9zBmjC6I9/UVj0uXFu9Zzrin7rP+77+60Qiz0v/5zBlJevttw4tcRAph0J4NJj2Ra65M36/WXgJMPxAmERFZP6sJMK2I1XymDx6I0uWs9oeNjZWkffskKShI1HyXLSuGIC9XTpT+Nm0qAuZatSSpQgXRFzmn2dGXL8UI9+++K0nVqonAx9PTeI35nTu6waFS3+zsRCA/ZIgIuh0ddeuMzbP25InIFsvBWYcOItNvbD62ixclqXfv9C9WlC4tPq/UkpNFUPjRR7oLIWXLikzzn39mOFJ/bqjVknT8uPGq3g8+yLiC/f65cOk5vI2/z7p1Jenw4YwPLk/rN2JE+tvUqiW2+eMPw+Vy5UVm5fUZkYfdNza42+jRuvdSvry4GCEPrd+7t65MXa3WfVCA+LeTp6aTK0Hc3MR3SJLEOA2lS4vl7drlvO1ECsnquUklSZJk+tngLVt0dDQ8PT0RFRUFDw8PZXe+ZQvQty/CKzaD782/0bYtsG+fsocgIqL8xaTnpQKKn6kJREUBKhWQ3ucZHAzcvQskJupuAQFAzZqAk5Nuu4QE4Px54Pp1oFcvwMsr7b5u3AB27wa6dwcCAzNv29274vhyOPfsGfDpp0BIiFg/dChQt6445vXrwMWLwPPnGe/T0VF3c3cHSpUCSpcWt7JlxfuqVAmwt9e95tUr4L//gHv3RJvu3gUePRLv8803Mzzcf/8B5csDycnAqVNAw4aG6y/XfBs1Lv+Mm6iA39EZfmVc0G+oC2yrVAK6dQNsbDJ+P7t3Ax07Aj4+wMOHgK1t2m0KFwYiIoArV4Bq1XTL//oLaNVKNPDWrYyPk55GjcQb27YN6NnTcN0//wDvvANcvWq4vHp14MQJwM1Nt0ytBmbNAi5fBpYtA/z8xHJJAurXF9+tCROA2bOBli3F87JlxX6KFctZ24kUktVzE4N2mPhE/uefQKdOeBFYB4WCz6NZM+Dvv5U9BBER5S8MMJXHz5QQEyMC96VLRUCXmqcn0LmzuDDQpAlw+rQIbHfvBkJDs3YMBwegalXA2VlcNHj8OP1tv/oKGDcuw90NHQqsWSOa9dtvuuXqA4dg07Y11FBh6YBTmLy9AV69AsaMAb7+OmtNRWKiCNgjI0UQ3qKF4fqYGHFxAhAXaPT/34SEiIsVDg7iwkRmFwiMKVFCXMA4exaoV8/4NhERIrA/cQJ48EAE3gEBWT/G3r1A+/biQkvjxsDhw0CRIsDJk0C5ctlvM5HCGLRng0lP5EeOAC1b4mWJivB4eAMNGohzABERUXoYYCqPnylpHTsGzJ0L2NkBlSuLW5UqQJ06hllymSQBT58C8fGiKiAhQQS6ISEiHf7ff8DNmyJb//Jl2te7uwNlyojsbtmyIhBdvVqsW7QIGD8+3abevi2S92o1cOECULs2gIQExJarAdcHt7DSYSTejlyKP/8EevcWr1m+HHjvvSx+FkOGAGvXAh9+CHz7reG6a9fEBQgvL+DFC8N1ycmiWiIlRQTTJUpk8YAaiYni9ZIEhIebLuMtSSK7LmfMnJ1F4J66bIHITLJ6brLLwzZlW1BQELZv344bN27A2dkZjRs3xvz581GxYkXtNvHx8Zg4cSJ++eUXJCQkoF27dvjuu+/g4+NjxpbrcXUFANgnxAIQf+eJiIiIyEyaNhXZ86xSqYwHlU2bGj5Xq0UAf+mSCErLlBGl/IULi33IJEmUcH/+uSjbTkkBPvrI6KHLlxdV9Bs2iM23bQMwfz5cH9zCY/jixsC5cHYW1faffw5MmwaMGgXUqCGqzzPVt68I2rdtA5YsMSyRv39f3JcqlfZ1dnaAv794vzduZD9of/hQfA6OjkDRotl7bXaoVOICTbNmohpg40YG7GSVclDLkneOHDmCkSNH4tSpU9i/fz+SkpLwxhtvIDY2VrvN+PHj8dtvv2HLli04cuQIHj16hJ6p+8WYkyZot9UE7fHx5mwMEREREZmEjY0I1Hv0APr1E/2pixQxDNgB8XzOHGDGDPH844+ByZNFoG/E1KniJdu3Azd/vw3pf/8DAIzDYrz1gad2u08/FTF4crI4fGZd9AEArVuLTHp4uKhA0JdR0A6IDDYArFyZhQOlcv26bt+pPx+lNW0qLkrs2SP6+hNZIYsO2vfs2YPBgwejatWqqFmzJtauXYv79+/j/PnzAICoqCisXr0aixYtwuuvv466detizZo1OHHiBE6dOmXm1mtoBsqwjWemnYiIiIggAtXZs8UAagAwf77IAKceeA1AlYBYfNFwCzajD0p3rwlVQgL24g1cr9YXdesa7nLVKtFVOzQUGDRIJP8z5OAgLjIAwObNhuvu3BH36QXtEyaI+61bRf/9rJIk4LPPxGM58De1nj2Btm3z5lhEJmDRQXtqUVFRAIBChQoBAM6fP4+kpCS0adNGu02lSpVQqlQpnDx5Mt39JCQkIDo62uBmMppMu01SIuyQxKCdiIiIiISZM8VMQ4ULiz7xdeuKcu7ly0U/82bNgGLFMOFUX/TBVjimvMJN+6p4H8sxdJgqTZLaw0PsztER+OMP0WU+U336iPtt20SpPiCC8GXLxOMGDYy/rnp1oF07cWVg8WLDdZIkln39ddpB/zZtEoPLubrqLlrkI48fi7EIiJRkNUG7Wq3GuHHj0KRJE1TTTDkRFhYGBwcHeKWaGsTHxwdhYWHp7isoKAienp7am7+/v+kargnaAcAVsSyPJyIiIiKd3r1Fhr1zZ1EiP20a8MEHImg+dgyIiwMCA7G1/GTUxgVUSrqCh/aBGDjQ+O5q1dKNID95shh4PUOtWwPe3roSebVaDFAXEyMuGqR3IEDXF//778UAe7KlS8UAe+PGGQbmr14BkyaJx5MmAcWLZ9I46yKPe1ezZvaKD4gyYzVB+8iRI3H16lX88ssvud7XlClTEBUVpb2FZnUaj5xwcNAO6uGKWGbaiYiIiMiQry+wa5cYVb5ePaBDBxHU/vyzCOjv3kXgxiBcRG0AKnTrJrrLp2fECDGAXUqKuBawbp3xWe4AiN+q3buLx5s3A998I2Y/cnUV880Zm79d1rq1iFDj4kR1ACCy6BMn6raZM0cE9YDIvt+/D5QsabhNPhESIqatf/UKWL/e3K2h/MQqgvZRo0bh999/x+HDh1GyZEntcl9fXyQmJiIyMtJg+/DwcPj6+qa7P0dHR3h4eBjcTEal0mbbGbQTERERkVEqlZiY/exZ4M8/gXnzgAEDxLRrKhXq1hVJeRsbMUJ8ZrtauVJU2794AQweDLRpk0HZdt++AICX3/+C5I8ni2VffCGmqMvsQHK2fckSMSp8nz5AUpK4nzZNrHv/fTFKvWYQPcybB7i4ZPaJWJ1z53SP16/P4EJJDj19Kj5GxhMFj0UH7ZIkYdSoUdixYwcOHTqEwMBAg/V169aFvb09Dh48qF128+ZN3L9/H42yNM9FHtEL2lNSxKieRERERETZ8fPPYpa1Fi0y39bdHTh5UsTHTk7AoUOiG/qqVUY2bt0aMQ7ecE+MgF1SPK74tcXLt7I42Xu/fmLKt/BwMWL+gwdAhQoiuz5nDvDOOyLlL5fcN2gA9O+f4S4lCXjyJGuHtyT6QfuNG2KYguxITAR++EFc+0gtPl5ceBkyRATuVLBYdNA+cuRI/Pzzz9iwYQPc3d0RFhaGsLAwvHr1CgDg6emJYcOGYcKECTh8+DDOnz+PIUOGoFGjRnjttdfM3Ho9ekE7wKtjRERERJR9jo5ievSssrcXVfZXr4rB0xMSgNGj0waF9x/bY0tSdwBAJDzR8fFq1KmrgmbCpswPMm6cePz4MeDsLEaU9/DQDWmvN2g0Fi0S5QIZ+OEHwMdHFB7IY+NZg7Nnxb1cRJDdEvl164Bhw8QsdamH55o0Cbh8WTzO0r8L5SsWHbQvW7YMUVFRaNmyJfz8/LS3TZs2abf56quv0LlzZ/Tq1QvNmzeHr68vtm/fbsZWG8GgnYiIiIjMpGxZYO9eMa5cQoKYYU7f0qXAPGkSLnk1x4P566Hy98edOyJx7uwsLhbY2YlB7o0ObDd8OOCpmTN+xQqR0pc5OIggvm9fkXlv0iTT9sqZ5DVrgLffto4qVbVaF0x/8om437gxexcd5Mmv/vsP6NQJePlSPP/jD9H7QHbtWq6bS1ZGJUlK97awPtHR0fD09ERUVJRp+rc3bQocP47eqm3YJvXEw4f5brBMIiJSkMnPSwUQP1MiUSLfurUIwu/eFVXtMTEiex8ZCfz2mxi4LiJCxOHG8mBlyoiMr94EScKFCyLT3qlTrtr49KkYl0+tFhcKkpOBXr2ADRtE/G+pbt0CKlYUXRGePRNj7UVGis+8Vaus7aN2bVFSb2Mj3n+7dqJQoW5d8bm0aQMcOCAG+3/+HGmm/CPrk9Vzk0Vn2vMNzV81L7sYAMy0ExEREVHea9VK5JL0s+3r1ongsnx5oGNHsaxQITFt+8OHYuqy+/eBO3dEIHrvHjBlipGd16mT64AdEFlltVpMXbd9uwjUt20Tgbsl/4aW+7PXqiV++vfpI55ntUQ+MRH491/x+JdfRIn93r2iaOHpUzFI/5YtIlB/8cI6+/xTzjFozwuaoN3TnuXxRERERGQeKpVu2vSVK8WYcfKc7mPHpu1qXrw4ULq0yMSXLStmpAN0s8KZwq5d4r5bN6BLF/HcyQn4/Xfgxx9Nc0wlyEF7/fri/q23xP3WrWIQucz8+68YdN/bW8wSsGmT+PeIihJdFDZuBLy8RKUDwBL5goZBe17QBO0etiJoz8p/XCIiIiIipb3+ui7b3qWLmAbOywsYNCjz177xhiibB3SDwefEmTNAjx5pg/BXr0R2GQC6dhX37drpxrmz5AHY5EHo6tUT982bi8qEqChg924xIv6FC2I0f2MXPC5cEPe1aomLK507iwH5AgLExZLKlcX6KlXEPYP2goVBe16Qg3YbZtqJiIiIyHz0s+3ylGTDhwNubll7/RdfAKVKibL5yZOzd+yXL0VG/7XXgJ07gffeE9l+2aFDQFycCHZr19Ytr1pV3F+/nr3j5ZWUFF3QLWfabWx0M9t98okIvuvWFV0LevRIO7jeP/+I+zp1dMsGDRKD0unPkMegvWBi0J4XNEG7O4N2IiIiIjIzOdsOALa2wKhRWX+th4euTP7bb4GJE0WGPDN//ikCziVLRNa5cGFRfTpnjm4buTS+a1fDQdbkLLOlBu3Xr4uLDW5uYop62YAB4v7OHSA0VIQEjo6iT7qcmZfJQbv+xQpjGLQXTAza84ImaHezYXk8EREREZmXSgUEBYlB3oYNE5nz7GjTBvj0U/F40SKRHT5zJv3tz58XpfgPHgCBgcC+fcCvv4p1P/wA3LwpBp/TD9r1Vaok7p8+FaOmWxq5P3vduuIiiKxGDfE5v/++GJn/6VPde9u3T7ddSoqu6oFBOxnDoD0vyEE752knIiLKlv/++w/Dhg1DYGAgnJ2dUbZsWcycOROJiYnmbhqRVWvaVATAy5bl7PVz54rB4Xx9gRs3gEaNgJkzRRY9tZkzRVDeuTNw9SrQtq2Yrr1LFxGwTp8uAt+wMMDdHWjZ0vD1rq66CwuWmG2Xg3a5P7tMpRJdCJYtE+/d2VmMCwAYBu23b4tMvbOzmDYuI/IFjCdPxNRyVDAwaM8Lmk5CrioG7URERNlx48YNqNVqrFixAv/++y+++uorLF++HJ/KaT4iyjE3t7QjxmdHp05i1PO33hJB+Zw5wNq1htucPi2mcbO1FVl5FxfdurlzRWC7ZQswe7ZY1r69KCFPzZJL5FMPQpeRtm3F/enTYpA6QFcaX7OmYabeGDc30T8esMzPgkyDQXte0GTaXSUxxCbL44mIiLKmffv2WLNmDd544w2UKVMGXbt2xUcffYTt27ebu2lEBDGn+/r1wOefi+fjx4v53WUzZ4r7d94Rc8Hrq15d1+/7zz/FferSeJmlBu2JicClS+KxPAhdRgICRL/3lBTg8GGxLKv92WUskS94GLTnBU3Q7iIx005ERJRbUVFRKFSoUIbbJCQkIDo62uBGRKYzaRLQoIHIHr/3niiTP35cTOFmZwdMm2b8dbNnA/b24rGtLdCxo/HtLDVov3pV/Lb39tbNoZ6Z1CXy8sjz+iPHZ4RBe8HDoD0vaIJ2ZzWDdiIioty4c+cOvvnmG7z33nsZbhcUFARPT0/tzd/fP49aSFQw2dkBa9aIwe3++AP4+Wddln3IkPQD2jJlRJAPiLnN07seZ6lBu35/dv0R7zOiH7RLEjPtlDkG7XkhVdDO8ngiIiroJk+eDJVKleHtxo0bBq95+PAh2rdvjz59+mD48OEZ7n/KlCmIiorS3kJDQ035dogIIpiU54B/7z3g4EGRRZ86NePXBQWJ/vDffZf+NnLQHhICxMYq0lxFZKc/u6xlS3GR4+5d4MgRICJCPK9WLWuvZ9Be8NiZuwEFgiZod0pmpp2IiAgAJk6ciMGDB2e4TRm91NyjR4/QqlUrNG7cGCtXrsx0/46OjnA0NpoVEZnUxx8D27aJad4A4N13dQOnpcfNTYwgn5EiRcTt2TMxRVxWS8lNLSdBu7u7GG3/6FFg/nyxrGpV4wPwGSNfwHj0CIiMBLy8sn5ssk4M2vOCJmh3TGHQTkREBABFixZF0aJFs7Ttw4cP0apVK9StWxdr1qyBTW6GuyYik7KzEyPIy3OWKznRQ+XKItC9ft0ygvaXL4ErV8Tj117L3mvfeEO8lz17xPOslsYDgKcnUKKEGPDv+nVxAYDyN5718oIctCezPJ6IiCg7Hj58iJYtW6JUqVL44osv8PTpU4SFhSEsLMzcTSOidFSrJvp6nz0LlCyp3H7lDHOqnjMGkpKAHj2A118XQbUpnT0rproLCACKF8/ea+V+7bLsXoRgiXzBwkx7XtAE7XYpibBDEhIS7M3cICIiIuuwf/9+3LlzB3fu3EHJVL/+JUkyU6uIKDPVqyu/z6wMRjd3LrBzp3g8enTaeeOVdOKEuM9JprtuXTHi/IsX4nl2Mu2ACNr377e8gfnINJhpzwtubtqHrohleTwREVEWDR48GJIkGb0RUcFSqZK4Ty9QPX1aN188AKxbJ+aQN5WTJ8V9ToJ2W1ugdWvxWKUCatbM3uvlCxgFIdMeFwds2lSwq5UZtOcFBwfxPxMiaC/IXzgiIiIiopyQA9Xbt4HkZMN1sbHA228DKSlA//666eY++ECM0q40tVoXtDdunLN9yCXy5cuLwemyI3V5fGgoMHIk0K8fEBWVs/ZYqsWLgTffFFUUBRWD9rygUmlL5JlpJyIiIiLKPn9/wMVF9FtPHYh//LEI5kuUAL79Fpg2DWjWTPRr798fSExUti23bonSdmfn7GfJZQMGiNH1Fy7M/mvloD0kBBgzRgT+330HbN4MDBwoLirkF/JgfwcOGF9/+zbw889izvv8ikF7XtEL2i1pbkkiIiIiImtgY2O8RH73bmDZMvF47VrRV9zOTgRy3t5iwLgZM5Rti9yfvX59MRd9Tri4AKtWAV27Zv+1hQsDxYqJx998I2anatoUcHICfv8dmD07Z22yRPfvi/vz54FXr9Kuf/ttcfvjj7xtV15i0J5X9IL2R4/M3BYiIiIiIiuUejC6sDBgyBDxeOxYoE0b3balSgHffy8ef/klEBGhXDty059dKfI0c/XqAfv2AX//DaxcKZbNmaMbkM/ayUF7UpKYlUDf8+fAmTPi8d9/52278hKD9ryiF7Q/eGDmthARERERWSH9oD0lRZSCh4eLaeaCgtJu37MnUKOG6AOvZBArZ9pz2p9dCT/+KC4enDkDtG0reuS+/bYolwfEY2sfXT4pCQYJz+PHDdf/9ZeuLP7UqTxrVp5j0J5X9IL2sDDl+9UQEREREeV3+kF7UBBw8KAoM9+8WfQvN6ZvX3G/ebMybYiM1A0AJ2e7zcHTUxxfpTJc/sUXQIsWQEyMuGiRetA+a/LokWH//NRB+8GDusfnzokgPz9i0J5XNEG7p20sJAl4/NjM7SEiIiIisjJy0H7pkm6E+O++0y03pk8fcX/ggCinzi05o1uunK5fuSWxtwe2bAG8vIAbN9KWlFsTuTTeRhO1njhhGMQfOqR7/OoVcPVq3rUtLzFozyuaudpLesUAAEvkiYiIiIiyqVw5MchcUpII3gYNEreMVKgA1Kolyul37Mh9GyyhP3tmihYFXn9dPNYPbK1NaKi4b9RIVFJERAA3b4plDx+KxzY2QIMGYpmpS+STk80zSj2D9ryiybT7eYih4xm0ExERERFlj729CNwBMZL80qVZe52SJfKW0J89K/JD0C5n2suW1QXmcom8/L7q1gXatxePTR20L10qvn/Ll5v2OKkxaM8rmqC9mKsI2uWrRkRERERElHUffCAGl9uyRVvMmik5aD90CHj6NOfHTkkBTp8Wjy050w7ogvbjx8WUcNZIDtpLlQKaNBGP5aBd7s/eurVubAFTB+2//grcuwfEx5v2OKkxaM8rmqC9iAsz7UREREREOTVmjOjTXq1a1l9TtqzIyOa2RP7ff4GXL8XFguwc3xwqVQJ8fUWAaa0jq6cXtEuSLmh//XVdFv7WLWXGLTDm+XPdtHLdupnmGOlh0J5XNEF7IQcG7UREREREeU2JEnm5P3vDhoCtbe7bZEoqFdCqlXhsrSXyctDu76/Lpt++LbooPHgAODiIYL5wYTF2AaCbt11pf/whxlGoUQMIDDTNMdLDoD2vyKPH27M8noiIiIgor8mjyB8+DDx5kv3XJyQAv/wiHlt6f3aZtfdr18+0FyoEVKkinn/+ubhv1EhM+Qfognq5+4LSfv1V3Od1lh1g0J53NEG7u4qZdiIiIiKivBYYCNSvL7Kl27dn77WxsUCXLsBff4nsbu/eJmmi4uSg/dQp8R6UsmoVULs2EBKi3D5Ti44GoqLEY39/cS+XyO/ZI+5bt9Zt37ChuDdFV4BXr3THZNCen2mCdleI/y2PH4upKoiIiIiIKG/IJfITJoh+0IMHA0FBwJQpwJtvimUBAcDAgaLPtFoNvHgBtG0L7N8vftL/+acokbYGgYHi/SQnA8eOKbPPBw/EuAIXLwIbNyqzT2PkymRvb8DdXTyWg3aZfFECMMy068/lroSDB4G4OKBkSaBOHWX3nRV2eX/IAkoztKVDUgzs7MR/nMePRakHERERERGZ3oABwBdfAOHhwNmz4mbM+vXiVqoU4OQkBjjz9hYBuxwcWgOVSgS2a9aIbgHt2uV+n9Om6UZPP3cu9/sDREDs7CzaK9MvjZfpB+1ubroB6ACgenWxj8hI8e9VqZIybQMMS+P125hXGLTnFU2mXRUbixIlRCnJgwcM2omIiIiI8oqfn8jg3r0rRoK/dk0EeF5eIisdGAh4eADbtoksshw4+voC+/aJwNDatGolgnYl+rVfugT8+KPueXoXPbJj716gZ09xQWXlSt1y/UHoZGXLAsWKiTEJmjcH7O116+ztgXr1gKNHRYm8UkF7Sgqwa5d43L27MvvMLgbteUUTtCM2Fv7+uqCdiIiIiIjyjr29COgqVQJ69TK+TevWwKJFIsN68qQoBy9TJm/bqRR5BPnz50UW2ssrZ/uRJOCjj8R9p06i6uD+fRFAFyuWs31evy66LMTFAVu2AMuXAzaaDtzGMu1y5cAvvxivGnjtNV3QPnhwztqU2unT4j16egItWiizz+xin/a8ohe0lywpHjJoJyIiIiKyTE5OQL9+wOLF1huwA6IfdoUKop+3PM94TuzdCxw4IAbi++YboGJFsTynJfLPn4vB/aKjxfPISBHEy4wF7YC4mPL998CHH6bdpzwYXXZGkH/2TFfub4xcGt+xo2FmPy8xaM8rRoJ2TvtGRERERESmltnUb8nJInMeEWF8fUoK8PHH4vHo0bqR+IGcBe1JSWIKvrt3gdKldYO7nTih20aOlVIH7X5+wLBhgJ2RmnF5vIHLl7M2Wv7t22L//funv83OneLeXKXxAIP2vJOqPB5gpp2IiIiIiExPLpH/808xfZk+tRoYOlSUvDdtmnY9IKZ4u3pVDMY3dapYVq+euM9uv/aEBJElP3xYDCb3229Ahw5inX7Qnl6mPSMlSoibWg1cuJD59jt3ivf7++/G3/eNG2LMA3t7oH37rLdDaQza84octCcmwt8vGQCDdiIiIiIiMr3WrUWAfPs28MYbYho7QPRPHzkS+Okn8fz6dV1QLrtyRUyRBwAzZojAHdBl2s+eFfvJzMuXwJdfiq4G338v+qdv2ABUqwY0biy2OX5c3Kek6GIl/YHosqJ2bXF/6VLm28qVB8nJxi8+/PabuG/dWgxQaC4M2vOKHLQDKFVY1GqwPJ6IiIiIiEytcGHgjz/EYGrHjomR1x8+FCXvy5eLAHrkSLHtV1+JLDggAu0+fUQW+o03xIB8spo1AVtbMX3ew4eGx0tMFPO479wp9vfhh2K++I8+Ah49AooXF6PQd+kitm/USNzfvg08fSr2mZQkBqUrXjx777VmTXGfWdCemCgGrZPpZ/llBw+Ke3Nm2QGOHp93HB3Ft06tRgnPGACeePxYXNUx1h+DiIiIiIhIKc2biyC1XTtR6l6lim4QuO+/FyXyiYmiFH7wYNEv/L33gJs3Rcn5zz/rRnYHABcXkSW/dElkqeVxu9Rq0bf8n3/StqFCBWDSJDG9m6Ojbrm3t2jPtWtitH55NPoSJbIfK9WqJe4vXsx4u7NnDfu9pw7a9YN6eUwAc2GmPa+oVKImBUBRl1jY2YkvdFiYmdtFREREREQFQvXqIjitUEEXsH/9tQjYATEye5kyoj/5a68BmzaJoHnzZqBo0bT7MzYY3e7dImB3cAAaNBBTuk2aJLLu166JY+kH7DL9Evmc9GeXyUH7lSsiQZoeuTRenhngxAnDMv+zZ8VUdEWLAlWrZr8dSmLQnpc0JfK28bHaMg+WyBMRERERUV4pXVoExiNGAKtXG5a8u7mJsnWVSgzCBgDz5+sC6tSMDUb3zTfiftQoMfXapk3AvHlAt26inD49TZqI+xMn0h85PivKlBHvIyFBDCKXHjloHztWTO/3/Lnh9vL6li0NKwzMgUF7XuJc7UREREREZGZFigArVugy7PqaNAEmTxaPe/YExo9Pfz/6mXZJEqX0e/ca9pHPKvnCwNmzom87kP1B6AARYNeoIR6nVyL/6pWuHL59e9370C+Rl4N2c5fGAwza8xanfSMiIiIiIgs3dy5w6hTwyy8iAE9PtWqiDP7FC+DePeDbb8Xyzp11ZedZVb68uJiQkKAbtT0nmXYg88HoTpwQfdZLlhTHTT16vX5Qz6C9oGGmnYiIiIiILJxKBTRsKOYnz4iDg64P+aFDwNq14vHo0Tk7phw8P3ok7nMatGc2GJ1+Fl2lMizNB8RgeImJYiC88uVz1gYlMWjPS0aCdvZpJyIiIiIiayWXlk+fLqaIq1QJaNMmZ/uSg2dZbjPtWQnaAd2Uc9evAxERuvWtWmVcaZBXGLTnJWbaiYiIiIgoH5EHowsPF/ejRuU80E094F1Og/bq1UXf9idP0s7WFR2tGzivVStxX6QIULGieHzypGX1ZwcYtOctOWiPiWGfdiIiIiIisnpyph0A3N2Bd97J+b7q1dOV5Lu6Al5eOduPi4uY1g5Im20/ehRISQHKlTO8KCBfMNi7FzhzRjxm0F4QaeZplzPtFXEDHz74FCn3QszbLiIiIiIiohyoVEmXmxwyRATuOeXkBNStKx6XKpW70vT0SuTTy6LLQfvq1SKoDwwEAgJyfnwlMWjPS3rl8b7/7MZpNMRkKQjqTl2A+Hjzto2IiIiIiCibbG2Bt98GfH2BceNyvz+5X3tOS+Nl8mB0qUeQP3hQ3KcO2uXjxsUZX29ODNrzkhy0b9sG226d4YloAID9jSvAtGlmbFha9+4BK1eK6Q6IiIjMqWvXrihVqhScnJzg5+eHt99+G4/koYWJiMjsli0TI74HBuZ+X0OHiuz94MG524+xTHtwsC6Ib9nScPuKFQFvb91zBu0FlRy037sHqNXYVWwYemGrWPbll7i65BB27NBd3TGXR4/Elab33hMlLpJk3vYQEVHB1qpVK2zevBk3b97Etm3bcPfuXfTu3dvczSIiIj1KjbJepYoYxf3NN3O3HznTfuuWLr6SKwFefx3w8THc3sbGcCA8eZA6S8CgPS/Jl25sbIDFi/Fz8/+3d+/BUdX3/8ef55zdPbsJ5AKBhNQgoCh4rRWNQefXaWUq6tSq2FYn2mg7ZVCgqN+2YhUv06HYb2esrfrFr36rnfmWisVRpNRLbbC2WrlIBUQhWvWrVE0AI+S6t3M+vz9OdmEBJQmX3ZDXY+Yzuznn7O77vPfyzud8Pnv2IZ5gGotLpgNQOqeB7176KXV18K9/5SfERAIuvXTXWRYfewz+8z/zE4uIiAjADTfcwFlnncXRRx/N5MmTmTt3LitXriSVSuU7NBERKVBVVTBiBPg+bNwIy5YFLRSCe+/d920ynfYJE2DUqMMX6/4cMZ32+++/nzFjxhCNRqmtrWV15pR/hWTaNJg9G/78Z5gzh7HjgsNR32u7m7cYTw3/5n8i17FhQ3AChqVLD294xsB118GqVcGZGm++OVh+883wzDOHNxYREZF9aW1tZdGiRUyePJlw5hTD+5BIJGhra8tpIiIyeFjWrtH2f/wj6IYB/Md/BKP5+9LQEMw4njfvsITYa5YxA3/y82OPPcZ3vvMdHnjgAWpra7nnnntYsmQJTU1NjBw5cr+3b2tro7S0lJ07d1JSUnIYIg5s2QI//3nw3Y+vV65m/NWTsTyP92ITWdp9Hn/ma0yY/mVqv1LEiBHBkaKSkuBokecFlyUlwVGkgzEd5f77g99VtG14+mn42teCKfIPPQSlpcFPH2R+OkEkR+Zj5GDNi9rzvhOJ4HSig5Ux0NEBnZ3BB4Hj5DuiwpVMBh+OA/z1kq+6VMhuuukm7rvvPrq6ujjrrLNYvnw5w4cP/8zt77jjDu688869liunIiKDx49/DL/4RfAjXh0dwdng33hj17eW86239f6I6LTX1tZyxhlncN999wHg+z41NTXMnj2buXPn7vf2BfPP0b33wg03BD3yHh427zGWJo6nieP5iGpsfEKkCZHGwSMW9hg5LE1FuUfIdYj7Ebr9CHEvgrEdnJAVtLBFyAmmhDhO0JJJiCcg3g1vbvSx/RRf/1qSc85MgufhWSEe+d8Q72wJU1JicVRFnJCfIOLF8X1DRypKezpGeypK2grjRi3cqEU0ZhGxkrjpLlyvi0i6ixRhuq2ioBEjbRyMAQNYxhAKGcIhdruEUNgiFLawLDDJJCaRxEok8H2DZ0fwQxE8JwKOQ9jxCTs+IdvH9wzJhCGRCPp7BgvLsbPNNxa+H/xvbwxEojbRYodYsY1b5GBh8H3AGIwftMzGvg+ptEXKs0inreB62iKdhnQ6yGs0CtGYRSxGNn7LtrAcCy8NXtqQSgWXlgWObbDt4LZ22MFxQ9iREHbYIeU7JD2HlGfjYxMJG9yIwXXBjRjCIUM4bIiEDJaXJt2ZINWRwOsOOi+Z59qxDSHbx7F8QpaHg0c40UE43k6ou41QvBNTPARTVo4pL4eycpLhYhLhISRCxSTtKI6fyrbIjq0Uv7OBonc2UPzOBqxUkvjYE4iPP4nkcSfhVddguW6QDNcN9s0PXre2n8Y3Vs+rOETaOJBOYxJJSCaxO9ooeud1Yk3rcDevw/n0E9Ijq+kedyIdo0+gq3IshBws28K2LUKOoSicIuokce0UjmUgHMY4IXwnjPENfjKNSaXxk2kIh7BjUaxYFLvIxcHH8tKQSgVvivZ2aGsLWldX8IOhrrurRSLBskgkeL+2tgbtk08gkcCEwng9r8207ZKwY8StGN3EsGyLkO0RtjzCtoedSmAlE1iJOFYygZOOE0rFcdIJ7O5O2L4da/tW7GQCAOM4JCuqSVbWkB5WmX0czw5j2RZRK0nEShIxCRzLYGwH4wRvfCsSAdfFKopiuW5wjMXzdh0FzLwhMi2zLLNNIhH80kU8HrzYi4t3tUgkyN2eLZUKmmUF22Ry5zjBskyLx4Ncd3UF10OhnjdS8PrJ2ZaeuNNpTNrDdHRibWvBammBTz8Nthk9Go47Dn/8cVBahp3oDs6s2d0dPL87dsDOnUGzrOBxYrFdl5kWjQY5yLzBM/uTea1kPq8zcVkW/Nd/BWezOQAFU5cOoblz5/Lzn//8c7fZtGkTEyZMAGD79u20trby/vvvc+edd1JaWsry5cuxPuNgYSKRIJFIZP9ua2ujpqbmiM6piIjkWrQIrrxy199PPQUXXZS/ePY0aDrtyWSSoqIiHn/8cS6++OLs8oaGBnbs2MFTTz21120KupB/+mnwOwR//jNdS5+jaNsH+Y1HRET6ZPP/rmHClZMO6D4GQ6d927ZtfPLJJ5+7zbhx44hEInst//e//01NTQ3/+Mc/qKur69XjDYaciohIrjfegJNOCq5fdFHQaS8kva1NocMY0yGxfft2PM+jco/T/1VWVrJ58+Z93mbBggX7nDJXEMrL4bLL4LLLKPpvAx9/HJzysKkpuNy6tWcIOhgu93DY2eHwaZtD604HL+XjWkkiJHBNAmMMvmfw08GlZyz83QbVQqFg0CschlgRfGFMBDvaMxrmONmRpXhnmg+3+KTDMfxwFD8SxbYhSpwocSJ+N1YqRSppSKUMqaQh7bh4kRieW4QfiWGbNJFUF6FUF6FkFzYGLAjGSAy+b+Ht3rye2D2D8cmOcFpuBNsGK53C8lLYqSSk08G8g57bWo4djNZHekbqMeD5+F4wamhZYGcG7jCkkz6phE864eElvd1G9ei5tMncyLLAsUzP6LjJjpLbNjg2+AbSqWAkPZ3aNWKPH4xeBqPDYDkWtgXGsnpWW+AbjOeDF4zqWV6aEB625RPCwzJ+8Bz64PvBpWfsnmUWaSuEH3Ix4Qh+OIJvh4LBUz94eM+38YxN2jikjU23VUyHXUK7VUIXRbipDoakPmVI+lOGejsYanUwhE6K6MQlgUeIlBUmRZh2u5S3IiezyT2VpsgpdJsox8TfYHxiI+OTGxnubcM1cVwTJ2q68bFIESZpwngEsxnCVpowaUJWmrQVJmVFSFoucStGkz2R9XyRdeZU/s8fzcTIO5zivMEJvMkXzJZsPo2BtG/RlYoQ94PYDBZhUoRIEyaFIRjVTxE8doh09rUbJY6PTSqIhBRh2ijJti6Kstu7JIiQJEwqe2mwaGUYnzCcVoYRJ0oQRQqXBMVOgjK3m7JIF0ND3VgYEl6IRNoJGi5J2yVpRUng0ulFaUtG6fRcuonRalXQNWQkiZIROMVRhqVaGJnYQmVyC+XpbUTtJBE7hWunMJ5PW8JlZ1cw28ZgEXxKeIRIEyGJSwKXBFHiAD1rg+ZjY7LvSCu7zMfGwyFOlG5ixIniY1NEF8V0MoQOIiSDfQk+fYLnmkhPJoLvHWceP0ISGx8Lk21xonRRRBdFJHAJkc7GGSUevIche+nhELw7grhaqKSFSpqpwsFjPG9zHG9xHG8xhA66iWVbO0PZQRk7KWUnpQDE6CZKPOcycz3zWJnHy+xXkggeu76qkInthyPHHepKcUQYMWIEI0aM6Ndtfd8HyDkALyIisqfjj4ejjgom2f3qV/mOpv8GfKe9P26++WZuvPHG7N+ZkfaCY1lQXR20PX9IsIcDDOtpxxzCUKKH+P5lYPp/ey05Drhkv7czZv9ff//yXktGAGd97m2SyWBGeyrFrq8b2Lu+DpK5bsyuGd89s6yzs533PBn1Z8WamaNkTHC/meM8oVDu7OpQPz9lPS+IJxrd8/Gre1rtZ97WmGAWeDK571nlu+93MhnMes98FXz32fGWtWvfMve7+6z5zMGqzHa759j3d82Qz/Srdl+/Z053j3H3x7V7TpeaiTWVCu57yBAYOjRomZn5mZn7ngeuOxLXPRvX3XVahHg8yEvmud49tt33JXMwM3N8dPdZ8en0ruWZbTIHPjOtoqJ/z7ns26pVq1izZg3nnHMO5eXlvPPOO8ybN49jjjmm16PsIiIyOIVC8M9/Bv8bVFXlO5r+G/Cd9oqKChzHoaWlJWd5S0sLVZ/xzLiui+u6hyM8EdmHQ3G+Ogg6b0dKh8lxgk5/f1gWFBUFTWSgKyoq4oknnuD222+ns7OTUaNGMXXqVG699VbVchER2a9+TuoqKAO+0x6JRDj99NNpbGzMfqfd930aGxuZNWtWfoMTERGRA3LyySezYsWKfIchIiKSNwO+0w5w44030tDQwKRJkzjzzDO555576Ozs5Jprrsl3aCIiIiIiIiL9dkR02r/97W+zbds2brvtNpqbm/niF7/Is88+u9fJ6UREREREREQGkiOi0w4wa9YsTYcXERERERGRI4qd7wBEREREREREZN/UaRcREREREREpUOq0i4iIiIiIiBQoddpFRERERERECpQ67SIiIiIiIiIFSp12ERERERERkQKlTruIiIiIiIhIgVKnXURERERERKRAqdMuIiIiIiIiUqDUaRcREREREREpUKF8B1AIjDEAtLW15TkSERGRXfUoU5/kwKnWi4hIoeltvVenHWhvbwegpqYmz5GIiIjs0t7eTmlpab7DOCKo1ouISKHaX723jA7j4/s+H330EUOHDsWyrAO6r7a2NmpqatiyZQslJSUHKcIjn/LWd8pZ/yhvfaec9c+B5M0YQ3t7O9XV1di2vsl2MKjW55/y1nfKWf8ob/2jvPXdgeast/VeI+2AbdscddRRB/U+S0pK9GLvB+Wt75Sz/lHe+k4565/+5k0j7AeXan3hUN76TjnrH+Wtf5S3vjuQnPWm3uvwvYiIiIiIiEiBUqddREREREREpECp036Qua7L7bffjuu6+Q5lQFHe+k456x/lre+Us/5R3o5cem77R3nrO+Wsf5S3/lHe+u5w5UwnohMREREREREpUBppFxERERERESlQ6rSLiIiIiIiIFCh12kVEREREREQKlDrtIiIiIiIiIgVKnfaD6P7772fMmDFEo1Fqa2tZvXp1vkMqKAsWLOCMM85g6NChjBw5kosvvpimpqacbeLxODNnzmT48OEMGTKEadOm0dLSkqeIC89dd92FZVlcf/312WXK2b59+OGHXHnllQwfPpxYLMbJJ5/Mq6++ml1vjOG2225j1KhRxGIxpkyZwttvv53HiPPP8zzmzZvH2LFjicViHHPMMfz0pz9l9/OVDva8/e1vf+PrX/861dXVWJbF0qVLc9b3Jj+tra3U19dTUlJCWVkZ3/ve9+jo6DiMeyEHSvX+s6nWHzjV+t5Tre871freKbh6b+SgWLx4sYlEIubhhx82b7zxhvn+979vysrKTEtLS75DKxjnnXeeeeSRR8zGjRvNunXrzAUXXGBGjx5tOjo6stvMmDHD1NTUmMbGRvPqq6+as846y0yePDmPUReO1atXmzFjxphTTjnFzJkzJ7tcOdtba2urOfroo83VV19tVq1aZd59913z3HPPmX/961/Zbe666y5TWlpqli5datavX28uuugiM3bsWNPd3Z3HyPNr/vz5Zvjw4Wb58uXmvffeM0uWLDFDhgwxv/rVr7LbDPa8Pf300+aWW24xTzzxhAHMk08+mbO+N/mZOnWqOfXUU83KlSvN3//+d3PssceaK6644jDvifSX6v3nU60/MKr1vada3z+q9b1TaPVenfaD5MwzzzQzZ87M/u15nqmurjYLFizIY1SFbevWrQYwL774ojHGmB07dphwOGyWLFmS3WbTpk0GMK+88kq+wiwI7e3tZvz48eb55583X/7yl7OFXDnbt5tuusmcc845n7ne931TVVVlfvGLX2SX7dixw7iuax599NHDEWJBuvDCC813v/vdnGWXXnqpqa+vN8Yob3vas4j3Jj9vvvmmAcyaNWuy2zzzzDPGsizz4YcfHrbYpf9U7/tGtb73VOv7RrW+f1Tr+64Q6r2mxx8EyWSStWvXMmXKlOwy27aZMmUKr7zySh4jK2w7d+4EYNiwYQCsXbuWVCqVk8cJEyYwevToQZ/HmTNncuGFF+bkBpSzz7Js2TImTZrEN7/5TUaOHMlpp53GQw89lF3/3nvv0dzcnJO30tJSamtrB3XeJk+eTGNjI2+99RYA69ev56WXXuL8888HlLf96U1+XnnlFcrKypg0aVJ2mylTpmDbNqtWrTrsMUvfqN73nWp976nW941qff+o1h+4fNT70IGHLdu3b8fzPCorK3OWV1ZWsnnz5jxFVdh83+f666/n7LPP5qSTTgKgubmZSCRCWVlZzraVlZU0NzfnIcrCsHjxYv75z3+yZs2avdYpZ/v27rvvsnDhQm688UZ+8pOfsGbNGn7wgx8QiURoaGjI5mZf79nBnLe5c+fS1tbGhAkTcBwHz/OYP38+9fX1AMrbfvQmP83NzYwcOTJnfSgUYtiwYcrhAKB63zeq9b2nWt93qvX9o1p/4PJR79Vpl7yYOXMmGzdu5KWXXsp3KAVty5YtzJkzh+eff55oNJrvcAYM3/eZNGkSP/vZzwA47bTT2LhxIw888AANDQ15jq5w/eEPf2DRokX8/ve/58QTT2TdunVcf/31VFdXK28i0meq9b2jWt8/qvX9o1o/MGl6/EFQUVGB4zh7ncWzpaWFqqqqPEVVuGbNmsXy5ct54YUXOOqoo7LLq6qqSCaT7NixI2f7wZzHtWvXsnXrVr70pS8RCoUIhUK8+OKL/PrXvyYUClFZWamc7cOoUaM44YQTcpZNnDiRDz74ACCbG71nc/3oRz9i7ty5XH755Zx88slcddVV3HDDDSxYsABQ3vanN/mpqqpi69atOevT6TStra3K4QCget97qvW9p1rfP6r1/aNaf+DyUe/VaT8IIpEIp59+Oo2Njdllvu/T2NhIXV1dHiMrLMYYZs2axZNPPsmKFSsYO3ZszvrTTz+dcDick8empiY++OCDQZvHc889l9dff51169Zl26RJk6ivr89eV872dvbZZ+/1E0NvvfUWRx99NABjx46lqqoqJ29tbW2sWrVqUOetq6sL284tC47j4Ps+oLztT2/yU1dXx44dO1i7dm12mxUrVuD7PrW1tYc9Zukb1fv9U63vO9X6/lGt7x/V+gOXl3rf37PoSa7Fixcb13XNb3/7W/Pmm2+a6dOnm7KyMtPc3Jzv0ArGtddea0pLS81f//pX8/HHH2dbV1dXdpsZM2aY0aNHmxUrVphXX33V1NXVmbq6ujxGXXh2P6OsMcrZvqxevdqEQiEzf/588/bbb5tFixaZoqIi87vf/S67zV133WXKysrMU089ZTZs2GC+8Y1vDLqfM9lTQ0OD+cIXvpD9GZgnnnjCVFRUmB//+MfZbQZ73trb281rr71mXnvtNQOYu+++27z22mvm/fffN8b0Lj9Tp041p512mlm1apV56aWXzPjx4/WTbwOI6v3nU60/OFTr90+1vn9U63un0Oq9Ou0H0b333mtGjx5tIpGIOfPMM83KlSvzHVJBAfbZHnnkkew23d3d5rrrrjPl5eWmqKjIXHLJJebjjz/OX9AFaM9Crpzt2x//+Edz0kknGdd1zYQJE8yDDz6Ys973fTNv3jxTWVlpXNc15557rmlqaspTtIWhra3NzJkzx4wePdpEo1Ezbtw4c8stt5hEIpHdZrDn7YUXXtjn51hDQ4Mxpnf5+eSTT8wVV1xhhgwZYkpKSsw111xj2tvb87A30l+q959Ntf7gUK3vHdX6vlOt751Cq/eWMcb0fXxeRERERERERA41faddREREREREpECp0y4iIiIiIiJSoNRpFxERERERESlQ6rSLiIiIiIiIFCh12kVEREREREQKlDrtIiIiIiIiIgVKnXYRERERERGRAqVOu4iIiIiIiEiBUqddRPLOsiyWLl2a7zBERETkEFGtF+k/ddpFBrmrr74ay7L2alOnTs13aCIiInIQqNaLDGyhfAcgIvk3depUHnnkkZxlruvmKRoRERE52FTrRQYujbSLCK7rUlVVldPKy8uBYDrbwoULOf/884nFYowbN47HH3885/avv/46X/3qV4nFYgwfPpzp06fT0dGRs83DDz/MiSeeiOu6jBo1ilmzZuWs3759O5dccglFRUWMHz+eZcuWHdqdFhERGURU60UGLnXaRWS/5s2bx7Rp01i/fj319fVcfvnlbNq0CYDOzk7OO+88ysvLWbNmDUuWLOEvf/lLTqFeuHAhM2fOZPr06bz++ussW7aMY489Nucx7rzzTr71rW+xYcMGLrjgAurr62ltbT2s+ykiIjJYqdaLFDAjIoNaQ0ODcRzHFBcX57T58+cbY4wBzIwZM3JuU1tba6699lpjjDEPPvigKS8vNx0dHdn1f/rTn4xt26a5udkYY0x1dbW55ZZbPjMGwNx6663Zvzs6OgxgnnnmmYO2nyIiIoOVar3IwKbvtIsIX/nKV1i4cGHOsmHDhmWv19XV5ayrq6tj3bp1AGzatIlTTz2V4uLi7Pqzzz4b3/dpamrCsiw++ugjzj333M+N4ZRTTsleLy4upqSkhK1bt/Z3l0RERGQ3qvUiA5c67SJCcXHxXlPYDpZYLNar7cLhcM7flmXh+/6hCElERGTQUa0XGbj0nXYR2a+VK1fu9ffEiRMBmDhxIuvXr6ezszO7/uWXX8a2bY4//niGDh3KmDFjaGxsPKwxi4iISO+p1osULo20iwiJRILm5uacZaFQiIqKCgCWLFnCpEmTOOecc1i0aBGrV6/mN7/5DQD19fXcfvvtNDQ0cMcdd7Bt2zZmz57NVVddRWVlJQB33HEHM2bMYOTIkZx//vm0t7fz8ssvM3v27MO7oyIiIoOUar3IwKVOu4jw7LPPMmrUqJxlxx9/PJs3bwaCs70uXryY6667jlGjRvHoo49ywgknAFBUVMRzzz3HnDlzOOOMMygqKmLatGncfffd2ftqaGggHo/zy1/+kh/+8IdUVFRw2WWXHb4dFBERGeRU60UGLssYY/IdhIgULsuyePLJJ7n44ovzHYqIiIgcAqr1IoVN32kXERERERERKVDqtIuIiIiIiIgUKE2PFxERERERESlQGmkXERERERERKVDqtIuIiIiIiIgUKHXaRURERERERAqUOu0iIiIiIiIiBUqddhEREREREZECpU67iIiIiIiISIFSp11ERERERESkQKnTLiIiIiIiIlKg/j+z+/Mz2p2M+QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1331,12 +1343,24 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'Path' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[24], line 9\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# save the checkpoint model training\u001b[39;00m\n\u001b[1;32m 2\u001b[0m output_path \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m../models/\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m torch\u001b[39m.\u001b[39msave({\n\u001b[1;32m 5\u001b[0m \u001b[39m'\u001b[39m\u001b[39mepoch\u001b[39m\u001b[39m'\u001b[39m: epoch,\n\u001b[1;32m 6\u001b[0m \u001b[39m'\u001b[39m\u001b[39mmodel_state_dict\u001b[39m\u001b[39m'\u001b[39m: model\u001b[39m.\u001b[39mstate_dict(),\n\u001b[1;32m 7\u001b[0m \u001b[39m'\u001b[39m\u001b[39moptimizer_state_dict\u001b[39m\u001b[39m'\u001b[39m: optimizer\u001b[39m.\u001b[39mstate_dict(),\n\u001b[1;32m 8\u001b[0m \u001b[39m'\u001b[39m\u001b[39mloss\u001b[39m\u001b[39m'\u001b[39m: loss\u001b[39m.\u001b[39mitem()\n\u001b[0;32m----> 9\u001b[0m }, Path(output_path,\u001b[39m'\u001b[39m\u001b[39mtransformer_train_checkpoint.pt\u001b[39m\u001b[39m'\u001b[39m))\n", + "\u001b[0;31mNameError\u001b[0m: name 'Path' is not defined" + ] + } + ], "source": [ "# save the checkpoint model training\n", - "output_path = \"./\"\n", + "output_path = \"../models/\"\n", "\n", "torch.save({\n", " 'epoch': epoch,\n", @@ -1357,9 +1381,77 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c47e1fb378274dd387b9de1a49f2a38b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(Label(value='0.002 MB of 0.027 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.063496…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "

Run history:


testing_loss█▁█
train_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss1.87753
train_loss0.47083
validation_loss3.46838

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run vocal-fire-2 at: https://wandb.ai/ai4s2s/test-transformer/runs/vm4vj2j9
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230623_145035-vm4vj2j9/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", @@ -1384,51 +1476,7 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.216\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC+UlEQVR4nO3de1zUVeL/8fcwKiCXITRuikreSbt5S2nNvhnSRaVtc7sa1Tf7GphkrZe+a2lZqFu7ZlvaZRdrzbLvryhyN1ryQnnDslw1jdTQLAFLk1FMspnP74+JyRFQsIGZ4fN6Ph7zcD/nc+bMmVlt3nPO+ZyPxTAMQwAAACYR5OsOAAAANCfCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJVWvu6AP3I6ndq3b58iIiJksVh83R0AANAAhmHo8OHDSkhIUFBQ/eM7hJ867Nu3T4mJib7uBgAAOAN79+5Vx44d6z1P+KlDRESEJNeHFxkZ6ePeAACAhrDb7UpMTHR/j9eH8FOHmqmuyMhIwg8AAAHmdEtWWPAMAABMhfADAABMhfADAABMhTU/AAC/4XA4dPz4cV93A36qdevWslqtv7odwg8AwOcMw1B5ebkOHTrk667Az0VFRSkuLu5X7cNH+AEA+FxN8ImJiVHbtm3ZYBa1GIaho0ePav/+/ZKk+Pj4M26L8AMA8CmHw+EOPu3atfN1d+DHQkNDJUn79+9XTEzMGU+BseAZAOBTNWt82rZt6+OeIBDU/D35NWvDCD8AAL/AVBcawht/T5j2ai5Oh7RnrXSkQgqPlToPkYJ+/Yp1AADQOD4d+cnJydGAAQMUERGhmJgYpaenq6SkxKPOsGHDZLFYPB7/8z//c8p2DcPQQw89pPj4eIWGhmr48OHasWNHU76VU9uWL83rI710jfTGna4/5/VxlQMAgGbl0/BTVFSkzMxMrV+/XoWFhTp+/LhSU1NVVVXlUe+uu+5SWVmZ+zF37txTtjt37lzNnz9fCxcuVHFxscLCwjRixAgdO3asKd9O3bblS6+Plez7PMvtZa5yAhAA4DQyMjKUnp7uPh42bJiys7N/VZveaCNQ+XTaq6CgwON40aJFiomJ0caNGzV06FB3edu2bRUXF9egNg3D0Lx58/THP/5Ro0ePliS9/PLLio2N1VtvvaUbbrjBe2/gdJwOqWCKJKOunkqySAVTpV5XMwUGAF7gcBraUHpQ+w8fU0xEiAYmRcsa1HRriTIyMvTSSy9Jcm3A16lTJ40dO1YPPvigWrVquq/YN998U61bt25Q3VWrVumyyy7T999/r6ioqDNqo6XxqzU/lZWVkqTo6GiP8ldeeUWLFy9WXFycRo4cqenTp9d7VUBpaanKy8s1fPhwd5nNZtOgQYO0bt26OsNPdXW1qqur3cd2u90bb8e1xufkER8PhmT/xlUv6TfeeU0AMKmCrWWa+c42lVX+MsofbwvRwyOTldbnzPeEOZ20tDTl5uaqurpa//rXv5SZmanWrVtr2rRpHvV+/PFHtWnTxiuvefL3pK/aCFR+c7WX0+lUdna2UlJS1KdPH3f5TTfdpMWLF2vlypWaNm2a/vGPf+iWW26pt53y8nJJUmxsrEd5bGys+9zJcnJyZLPZ3I/ExEQvvCO5Fjd7sx4AoE4FW8s0fvEnHsFHksorj2n84k9UsLWsyV47ODhYcXFx6ty5s8aPH6/hw4crPz/fPVX12GOPKSEhQT179pQk7d27V2PGjFFUVJSio6M1evRo7d69292ew+HQpEmTFBUVpXbt2mny5MkyDM8ZhJOnrKqrqzVlyhQlJiYqODhY3bp109/+9jft3r1bl112mSTprLPOksViUUZGRp1tfP/99xo7dqzOOusstW3bVldeeaXHetlFixYpKipK7733nnr37q3w8HClpaWprOyXz3bVqlUaOHCgwsLCFBUVpZSUFO3Zs8dLn7T3+E34yczM1NatW/Xaa695lI8bN04jRoxQ3759dfPNN+vll19WXl6edu3a5bXXnjZtmiorK92PvXv3eqfh8NjT12lMPQBALQ6noZnvbKt3gYEkzXxnmxzOump4X2hoqH788UdJ0vLly1VSUqLCwkItW7ZMx48f14gRIxQREaEPP/xQa9ascYeImuc8+eSTWrRokf7+979r9erVOnjwoPLy8k75mmPHjtWrr76q+fPna/v27XruuecUHh6uxMREvfHGG5KkkpISlZWV6amnnqqzjYyMDH388cfKz8/XunXrZBiGrrrqKo/9dI4ePaonnnhC//jHP/TBBx/oq6++0gMPPCBJ+umnn5Senq5LL71Umzdv1rp16zRu3Di/3MLAL6a9srKytGzZMn3wwQfq2LHjKesOGjRIkrRz50517dq11vmatUEVFRUeW19XVFToggsuqLPN4OBgBQcHn2HvT6HzECkywbW4uc5/lhbX+c5DvP/aAGASG0oP1hrxOZEhqazymDaUHtTgrk23g7RhGFq+fLnee+89TZgwQd9++63CwsL04osvuqe7Fi9eLKfTqRdffNEdCnJzcxUVFaVVq1YpNTVV8+bN07Rp0/Tb3/5WkrRw4UK999579b7uF198oddff12FhYXuJR/nnHOO+3zN9FZMTIzHmp8T7dixQ/n5+VqzZo2GDHF9J73yyitKTEzUW2+9peuvv16Sa2PBhQsXur9/s7Ky9Mgjj0hyLRmprKzUNddc4z7fu3fvxn+QzcCnIz+GYSgrK0t5eXlasWKFkpKSTvucTZs2Sar/nh5JSUmKi4vT8uXL3WV2u13FxcUaPHiwV/rdYEFWKW3OzwcnJ9+fj9Nms9gZAH6F/YcbdiVvQ+s11rJlyxQeHq6QkBBdeeWV+v3vf68ZM2ZIkvr27euxzuc///mPdu7cqYiICIWHhys8PFzR0dE6duyYdu3apcrKSpWVlbl/6EtSq1at1L9//3pff9OmTbJarbr00kvP+D1s375drVq18njddu3aqWfPntq+fbu7rG3bth4DD/Hx8e57bUVHRysjI0MjRozQyJEj9dRTT3lMifkTn4afzMxMLV68WEuWLFFERITKy8tVXl6uH374QZK0a9cuPfroo9q4caN2796t/Px8jR07VkOHDtV5553nbqdXr17uIUGLxaLs7GzNmjVL+fn52rJli8aOHauEhASPywSbTfIoaczLUuRJYS0ywVWePKr5+wQALUhMRIhX6zXWZZddpk2bNmnHjh364Ycf9NJLLyksLEyS3H/WOHLkiPr166dNmzZ5PL744gvddNNNZ/T6Nfe7ag4nXx1msVg81iPl5uZq3bp1GjJkiJYuXaoePXpo/fr1zda/hvLptNeCBQskuRZdnSg3N1cZGRlq06aN3n//fc2bN09VVVVKTEzUddddpz/+8Y8e9UtKStxXiknS5MmTVVVVpXHjxunQoUO65JJLVFBQoJCQpvmLf1rJo1yXs7PDMwB43cCkaMXbQlReeay+BQaKs7kue28KYWFh6tatW4PqXnTRRVq6dKliYmIUGRlZZ534+HgVFxe7t3z56aeftHHjRl100UV11u/bt6+cTqeKioo8rnSuUTPy5HA46u1X79699dNPP6m4uNg97XXgwAGVlJQoOTm5Qe+txoUXXqgLL7xQ06ZN0+DBg7VkyRJdfPHFjWqjqfk0/Jy8ev1kiYmJKioqanQ7FotFjzzyiHse0i8EWbmcHQCagDXIoodHJmv84k9kkecKy5oFBw+PTG7S/X4a6uabb9af/vQnjR49Wo888og6duyoPXv26M0339TkyZPVsWNHTZw4UbNnz1b37t3Vq1cv/fnPf9ahQ4fqbbNLly667bbbdMcdd2j+/Pk6//zztWfPHu3fv19jxoxR586dZbFYtGzZMl111VUKDQ1VeHi4Rxvdu3fX6NGjddddd+m5555TRESEpk6dqg4dOrj3zDud0tJSPf/88xo1apQSEhJUUlKiHTt2aOzYsb/mI2sSfnO1FwAAZyqtT7wW3HKR4myeI/xxthAtuOWiJt3npzHatm2rDz74QJ06ddJvf/tb9e7dW3feeaeOHTvmHgm6//77deutt+q2227T4MGDFRERoWuvvfaU7S5YsEC/+93vdM8996hXr16666673HdL6NChg2bOnKmpU6cqNjZWWVlZdbaRm5urfv366ZprrtHgwYNlGIb+9a9/NXgjxLZt2+rzzz/Xddddpx49emjcuHHKzMzU3Xff3YhPqHlYjNMNv5iQ3W6XzWZTZWVlvcOSAADvOHbsmEpLS5WUlPSrlyc09w7PaH6n+vvS0O9vv7jUHQAAb7AGWZr0cna0DEx7AQAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AABgQjNmzNAFF1zg625o2LBhys7ObtbXJPwAAPArlJeXa+LEierWrZtCQkIUGxurlJQULViwQEePHvV1987YqlWrZLFYTnlfMV+292uwwzMAoOVwOqQ9a6UjFVJ4rNR5iOvG0k3kyy+/VEpKiqKiovT444+rb9++Cg4O1pYtW/T888+rQ4cOGjVqVJ3PPX78eIPvm+XPfvzxR/ed4wMFIz8AgJZhW740r4/00jXSG3e6/pzXx1XeRO655x61atVKH3/8scaMGaPevXvrnHPO0ejRo/XPf/5TI0eOdNe1WCxasGCBRo0apbCwMD322GOSXDcl7dq1q9q0aaOePXvqH//4h/s5u3fvlsVi0aZNm9xlhw4dksVi0apVqyT9MqKyfPly9e/fX23bttWQIUNUUlLi0dfZs2crNjZWERER7pup1mf37t267LLLJElnnXWWLBaLMjIyJLmmqbKyspSdna327dtrxIgRp+3nqdqTJKfTqcmTJys6OlpxcXGaMWNGQ/8vOCOEHwBA4NuWL70+VrLv8yy3l7nKmyAAHThwQP/+97+VmZmpsLCwOutYLJ43VZ0xY4auvfZabdmyRXfccYfy8vI0ceJE3X///dq6davuvvtu3X777Vq5cmWj+/O///u/evLJJ/Xxxx+rVatWuuOOO9znXn/9dc2YMUOPP/64Pv74Y8XHx+vZZ5+tt63ExES98cYbkqSSkhKVlZXpqaeecp9/6aWX1KZNG61Zs0YLFy48bd8a0l5YWJiKi4s1d+5cPfLIIyosLGz0Z9BQTHsBAAKb0yEVTJFk1HHSkGSRCqZKva726hTYzp07ZRiGevbs6VHevn1796hKZmam5syZ4z5300036fbbb3cf33jjjcrIyNA999wjSZo0aZLWr1+vJ554wj1S0lCPPfaYLr30UknS1KlTdfXVV+vYsWMKCQnRvHnzdOedd+rOO++UJM2aNUvvv/9+vaM/VqtV0dHRkqSYmBhFRUV5nO/evbvmzp3rPt69e/cp+3a69s477zw9/PDD7rb/+te/avny5briiisa9N4bi5EfAEBg27O29oiPB0Oyf+Oq1ww2bNigTZs26dxzz1V1dbXHuf79+3scb9++XSkpKR5lKSkp2r59e6Nf97zzznP/7/j4eEnS/v373a8zaNAgj/qDBw9u9GvU6Nev3xk/ty4n9l1y9b+m702BkR8AQGA7UuHdeg3UrVs3WSyWWmtrzjnnHElSaGhorefUNz1Wn6Ag1xiFYfwyqnX8+PE66564eLpmus3pdDbq9Rrq5PfRmH7W5eSF3xaLpcn6LjHyAwAIdOGx3q3XQO3atdMVV1yhv/71r6qqqjqjNnr37q01a9Z4lK1Zs0bJycmSpLPPPluSVFZW5j5/4qLixrxOcXGxR9n69etP+ZyaK7gcDsdp229IPxvTXlNj5AcAENg6D5EiE1yLm+tc92Nxne88xOsv/eyzzyolJUX9+/fXjBkzdN555ykoKEgfffSRPv/889NOD/3hD3/QmDFjdOGFF2r48OF655139Oabb+r999+X5Bo9uvjiizV79mwlJSVp//79+uMf/9jofk6cOFEZGRnq37+/UlJS9Morr+izzz5zj1LVpXPnzrJYLFq2bJmuuuoqhYaGKjw8vM66DelnY9praoz8AAACW5BVSqtZVGw56eTPx2mzm2S/n65du+rTTz/V8OHDNW3aNJ1//vnq37+/nn76aT3wwAN69NFHT/n89PR0PfXUU3riiSd07rnn6rnnnlNubq6GDRvmrvP3v/9dP/30k/r166fs7GzNmjWr0f38/e9/r+nTp2vy5Mnq16+f9uzZo/Hjx5/yOR06dNDMmTM1depUxcbGKisr65T1T9fPxrbXlCzGiRN0kCTZ7XbZbDZVVlYqMjLS190BgBbt2LFjKi0tVVJSkkJCQs68oW35rqu+Tlz8HNnBFXyS695oEIHnVH9fGvr9zbQXAKBlSB7lupy9GXd4RmAi/AAAWo4gq5T0G1/3An6ONT8AAMBUCD8AAMBUCD8AAL/A9TdoCG/8PSH8AAB8qmZ336NHj/q4JwgENX9PTt4VujFY8AwA8Cmr1aqoqCj3vZzatm1b627ogGEYOnr0qPbv36+oqChZrWd+FR/hBwDgc3FxcZLUpDezRMsQFRXl/vtypgg/AACfs1gsio+PV0xMTKNuiAlzad269a8a8alB+AEA+A2r1eqVLzfgVFjwDAAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIVNDvELp0Pas1Y6UiGFx0qdh0hBbDYGAGhZCD9w2ZYvFUyR7Pt+KYtMkNLmSMmjfNcvAAC8jGkvuILP62M9g48k2ctc5dvyfdMvAACaAOHH7JwO14iPjDpO/lxWMNVVDwCAFoDwY3Z71tYe8fFgSPZvXPUAAGgBfBp+cnJyNGDAAEVERCgmJkbp6ekqKSmps65hGLryyitlsVj01ltvnbLdjIwMWSwWj0daWloTvIMW4EiFd+sBAODnfBp+ioqKlJmZqfXr16uwsFDHjx9XamqqqqqqatWdN2+eLBZLg9tOS0tTWVmZ+/Hqq696s+stR3isd+sBAODnfHq1V0FBgcfxokWLFBMTo40bN2ro0KHu8k2bNunJJ5/Uxx9/rPj4+Aa1HRwcrLi4uAbVra6uVnV1tfvYbrc36HktQuchrqu67GWqe92PxXW+85Dm7hkAAE3Cr9b8VFZWSpKio6PdZUePHtVNN92kZ555psFhRpJWrVqlmJgY9ezZU+PHj9eBAwfqrZuTkyObzeZ+JCYmnvmbCDRBVtfl7JKkk0fWfj5Om81+PwCAFsNiGEZdP/ebndPp1KhRo3To0CGtXr3aXX733XfL4XDoxRdflCRZLBbl5eUpPT293rZee+01tW3bVklJSdq1a5cefPBBhYeHa926dbJaa3+J1zXyk5iYqMrKSkVGRnrvTfqzOvf56eAKPuzzAwDwhibeTNdut8tms532+9tvNjnMzMzU1q1bPYJPfn6+VqxYoU8//bRRbd1www3u/923b1+dd9556tq1q1atWqXLL7+8Vv3g4GAFBwefeedbguRRUq+r2eEZANA0/GgzXb+Y9srKytKyZcu0cuVKdezY0V2+YsUK7dq1S1FRUWrVqpVatXJlteuuu07Dhg1rcPvnnHOO2rdvr507d3q76y1LkFVK+o3U93euPwk+AABv8LPNdH068mMYhiZMmKC8vDytWrVKSUlJHuenTp2q//7v//Yo69u3r/7yl79o5MiRDX6dr7/+WgcOHGjwYmkAAOAlp91M1+LaTLfX1c32o9unIz+ZmZlavHixlixZooiICJWXl6u8vFw//PCDJCkuLk59+vTxeEhSp06dPIJSr169lJeXJ0k6cuSI/vCHP2j9+vXavXu3li9frtGjR6tbt24aMWJE879JAADMzA830/Vp+FmwYIEqKys1bNgwxcfHux9Lly5tVDslJSXuK8WsVqs2b96sUaNGqUePHrrzzjvVr18/ffjhh6zrAQCgufnhZro+n/byxnNOLAsNDdV77733q/oFAAC8xA830/WLBc8AAKCFqtlMt9ZecjUsrq1VmnEzXcIPAABoOn64mS7hBwAANK3kUdKYl6XIk666jkxwlTfzPj9+s8khAABowfxoM13CDwAAaB41m+n6uhu+7gAAAEBzIvwAAABTIfwAAABTYc0PAJwpp8MvFm8CaBzCDwCciW35rps1nnjPosgE134mzXzZLoDGYdoLABprW770+tjaN2u0l7nKt+X7pl8AGoTwAwCN4XS4RnxU170Jfy4rmOqqB8AvEX4AoDH2rK094uPBkOzfuOoB8EuEHwBojCMV3q0HoNkRfgCgMcJjvVsPQLMj/ABAY3Qe4rqqq9bdqWtYpMgOrnoA/BLhBwAaI8jqupxdUu0A9PNx2mz2+wH8GOEHABoreZQ05mUpMt6zPDLBVc4+P4BfY5NDADgTyaOkXlezwzMQgAg/AHCmgqxS0m983QsAjcS0FwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBWfhp+cnBwNGDBAERERiomJUXp6ukpKSuqsaxiGrrzySlksFr311lunbNcwDD300EOKj49XaGiohg8frh07djTBOwAAAIHGp+GnqKhImZmZWr9+vQoLC3X8+HGlpqaqqqqqVt158+bJYrE0qN25c+dq/vz5WrhwoYqLixUWFqYRI0bo2LFj3n4LAAAgwFgMwzB83Yka3377rWJiYlRUVKShQ4e6yzdt2qRrrrlGH3/8seLj45WXl6f09PQ62zAMQwkJCbr//vv1wAMPSJIqKysVGxurRYsW6YYbbqj1nOrqalVXV7uP7Xa7EhMTVVlZqcjISO++SQAA0CTsdrtsNttpv7/9as1PZWWlJCk6OtpddvToUd1000165plnFBcXd9o2SktLVV5eruHDh7vLbDabBg0apHXr1tX5nJycHNlsNvcjMTHxV74TAADgr/wm/DidTmVnZyslJUV9+vRxl993330aMmSIRo8e3aB2ysvLJUmxsbEe5bGxse5zJ5s2bZoqKyvdj717957huwAAAP6ula87UCMzM1Nbt27V6tWr3WX5+flasWKFPv300yZ97eDgYAUHBzfpawAAAP/gFyM/WVlZWrZsmVauXKmOHTu6y1esWKFdu3YpKipKrVq1UqtWrqx23XXXadiwYXW2VTM1VlFR4VFeUVHRoGkzAADQsvk0/BiGoaysLOXl5WnFihVKSkryOD916lRt3rxZmzZtcj8k6S9/+Ytyc3PrbDMpKUlxcXFavny5u8xut6u4uFiDBw9usvcCAAACg0+nvTIzM7VkyRK9/fbbioiIcK/JsdlsCg0NVVxcXJ2jNZ06dfIISr169VJOTo6uvfZaWSwWZWdna9asWerevbuSkpI0ffp0JSQk1HuFGAAAMA+fhp8FCxZIUq0prNzcXGVkZDS4nZKSEveVYpI0efJkVVVVady4cTp06JAuueQSFRQUKCQkxBvdBgAAAcyv9vnxFw3dJwAAAPiPgNznBwAAoKkRfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKm08nUHgMZwOA1tKD2o/YePKSYiRAOTomUNsvi6WwCAAEL4QcAo2Fqmme9sU1nlMXdZvC1ED49MVlqfeB/2DADQEP7yA5bwg4BQsLVM4xd/IuOk8vLKYxq/+BMtuOUiAhAA+DF/+gHLmh/4PYfT0Mx3ttUKPpLcZTPf2SaHs64aAABfq/kBe2LwkX75AVuwtaxZ+0P4gd/bUHqw1j+YExmSyiqPaUPpwebrFACgQfzxByzhB35v/+H6g8+Z1AMANB9//AHLmh/4vZiIEK/Wg/8sOgTQ8vnjD1jCD/zewKRoxdtCVF55rM5hU4ukOJvrCxyn50+LDgG0fP74A5ZpL/g9a5BFD49MluQKOieqOX54ZDIjFw3gb4sOAbR8NT9g6/svtEWuH2DN+QOW8IOAkNYnXgtuuUhxNs9fBnG2EC5zbyB/XHQIoOXzxx+wTHshYKT1idcVyXGsVTlDjVl0OLhru+brGIAWr+YH7MlT7nE+mnIn/CCgWIMsfDGfIX9cdIimx+J2+At/+gFL+AFMwh8XHaJpsbjdXAIh6PrLD1jCD2ASXDVnLtwSxlwIuo3DgmfAJPxx0SGaRsAtbnc6pNIPpS3/z/Wn0+HrHgUUruJsPMIPYCJcNWcO/rijbr225Uvz+kgvXSO9cafrz3l9XOU4rYALun6CaS/AZPxp0SGaRsAsbt+WL70+Vjr5q9te5iof87KUPMonXQsUJwbdIDk1MOhzxeiQ9itKG5y95FQQV3HWgfADmJC/LDpE0wiIxe1Oh1QwRbWCj/RzmUUqmCr1uloKsjZz5wJHTYAdEbRBD7d+WQmWX0bz9hnRmnl8rN5zDvR90PUzTHsBQAvjjzvq1rJnrWTfd4oKhmT/xlUP9YqJCNGIoA1a0Hqe4uQ5jRmng1rQep5GBG3gKs6TEH4AoIUJiMXtRyq8W8+kBna26ZE2/5Aknfx/Z83xzDb/0MDOtmbumX8j/ABAC+T3i9vDY71bz6Sse9cpVgdqBZ8aQRYpTgdk3buueTvm51jzg8DidLiGwY9UuP6j2HkI6wGAevj14vbOQ6TIBNfi5vp2nopMcNVD/RhBOyOEHwSObfmuBZInrhOITJDS5nBFCFAPv13cHmR1/dt9faxck3EnBqCfw1nabH7cnA4jaGeEaS8EhppLYk9eIFlzSSx7ggCBJ3mU63L2yJOm4CITuMy9oWpG0E61vD2yAyNoJ/lVIz/Hjh3T0qVLVVVVpSuuuELdu3f3Vr+AX3BJLNByJY9y/dtlOvvMMIJ2Rho88jNp0iRNmDDBffzjjz9q8ODBuuuuu/Tggw/qwgsv1Lp1jVtQlZOTowEDBigiIkIxMTFKT09XSUmJR527775bXbt2VWhoqM4++2yNHj1an3/++SnbzcjIkMVi8XikpaU1qm/wI1wSC7RsQVYp6TdS39+5/uSLunEYQWu0Boeff//737riiivcx6+88or27NmjHTt26Pvvv9f111+vWbNmNerFi4qKlJmZqfXr16uwsFDHjx9Xamqqqqqq3HX69eun3Nxcbd++Xe+9954Mw1BqaqocjlPf+yUtLU1lZWXux6uvvtqovsGPsKAPAE4teZSUvVW6bZl03d9cf2ZvIfjUo8HTXl999ZWSk5Pdx//+97/1u9/9Tp07d5YkTZw4UVdddVWjXrygoMDjeNGiRYqJidHGjRs1dOhQSdK4cePc57t06aJZs2bp/PPP1+7du9W1a9d62w4ODlZcXFyj+gM/xYI+ADi9mhE0nFaDR36CgoJkGL/MJa5fv14XX3yx+zgqKkrff//9r+pMZWWlJCk6uu5dR6uqqpSbm6ukpCQlJiaesq1Vq1YpJiZGPXv21Pjx43XgwIF661ZXV8tut3s84EdY0AcA8KIGh5/evXvrnXfekSR99tln+uqrr3TZZZe5z+/Zs0exsWf+y9vpdCo7O1spKSnq06ePx7lnn31W4eHhCg8P17vvvqvCwkK1adOm3rbS0tL08ssva/ny5ZozZ46Kiop05ZVX1jtVlpOTI5vN5n6cLlihmdUs6JNU7361LOgDADSQxThxOOcU8vLydMMNN+iSSy7RZ599pgEDBrjDkCRNmTJFpaWlev3118+oI+PHj9e7776r1atXq2PHjh7nKisrtX//fpWVlemJJ57QN998ozVr1igkpGH3Kvnyyy/VtWtXvf/++7r88strna+urlZ1dbX72G63KzExUZWVlYqMjDyj94MmUOc+Px1cwYd5bQAwPbvdLpvNdtrv7wav+bn22mv1r3/9S8uWLVNqaqrHlV+S1LZtW91zzz1n1NmsrCwtW7ZMH3zwQa3gI8k9ItO9e3ddfPHFOuuss5SXl6cbb7yxQe2fc845at++vXbu3Fln+AkODlZwcPAZ9R3NiEtiAQBe0ODw88gjj+iBBx6oMzxI0sMPP9zoFzcMQxMmTFBeXp5WrVqlpKSkBj3HMAyPkZrT+frrr3XgwAHFx/v4XjZ+zuE0/HMb/BOxoA8A8Cs1eNrLarWqrKxMMTExXnvxe+65R0uWLNHbb7+tnj17usttNptCQ0P15ZdfaunSpUpNTdXZZ5+tr7/+WrNnz9aaNWu0fft2d1969eqlnJwcXXvttTpy5Ihmzpyp6667TnFxcdq1a5cmT56sw4cPa8uWLQ0a4WnosFlLUrC1TDPf2aayymPusnhbiB4emez7GyACANAADf3+bvCC5wZmpEZZsGCBKisrNWzYMMXHx7sfS5culSSFhIToww8/1FVXXaVu3brp97//vSIiIrR27VqPEFZSUuK+UsxqtWrz5s0aNWqUevTooTvvvFP9+vXThx9+yNRWPQq2lmn84k88go8klVce0/jFn6hga5mPegYAgPc1eOQnKChIFRUVOvvss5u6Tz5nppEfh9PQJXNW1Ao+NSyS4mwhWj3lv/xvCgwAmovTwXrDAOD1Bc+S1KNHD1ksp/4CPHjwYGOahI9tKD1Yb/CRXHeJKas8pg2lB/3zztAA0NTqvNI0wbUFB1eaBqRGhZ+ZM2fKZrM1VV/gA/sP1x98zqQeADSWX19ssS3/55uGnjRJYi9zlXPvrIDUqPBzww03eHXBM3wvJqJheyU1tB4ANIZfX2zhdLhGfE4OPtLPZRapYKprCw6mwAJKgxc8n266C4FpYFK04m0hp7pxhOJtrl9iAOBNfn+xxZ61nlNdtRiS/RtXPQQUn17tBd+zBln08EjXDWvruXGEHh6Z7D9D0ABaBIfT0Mx3ttU7piJJM9/ZJofTh989Ryq8Ww9+o8Hhx+l0MuXVQqX1ideCWy5SnM1zaivOFqIFt1zk+6FnAC1OYy628JnwBt6vsqH14DcateYHZ86vF/TJFYCuSI7z6z4CaDkC4mKLzkNcV3XZy1T3uh+L63znIc3dM/xKhJ9m4NcL+k5gDbJwOTuAZhEQF1sEWV2Xs78+Vq6FACcGoJ9/GKbNZrFzAGrwtBfOjN8v6AMAHwiYiy2SR7kuZ4886YdqZAKXuQcwRn6a0OkW9FnkWtB3RXIc00sATKXmYovxiz+pb0zFfy62SB7lupydHZ5bDEZ+mlBALOgDAB8JpIstHArSOmey3nYM1jpnshx8fQY0Rn6aUEAs6AMAHwqEiy0CZd0mGo7w04QCYkEfAPiYP19sUbNu8+TlCzXrNv1thAoNw7hdEwqYBX0AgFoCYiNGnBHCTxNi92RzcjgNrdt1QG9v+kbrdh3gP4xAgGLdZsvFtFcTq1nQd/J8cRzzxS0SawOAloN1my0X4acZBMKCPvx6rA0wH3/fuR2/Dus2Wy7CTzPx5wV9+PXY08l8GOVr+WrWbZZXHqvv5haKY91mQGLND+AFrA0wF3ZuNwfWbbZchB/AC1gbYB5cAWQugbQRIxqOaS/AC1gbYB6NGeVjqrtlYN1my0P4AbyAtQHmwSifObFus2Vh2gvwAtYGmAejfEDgI/wAXsLaAHNg53Yg8DHtBXgRawNavppRvvGLP5FF8pjmZJQPCAwWwzC4JOEkdrtdNptNlZWVioyM9HV3AFPy9w0E2ecH8D8N/f5m5AeA3wmEYMEoHxC4GPmpAyM/gO/Ud5uQmkjB+ikA9Wno9zcLngH4DTYQBNAcCD8A/Aa3CQHQHAg/APwGGwgCaA6EHwB+gw0EATQHwg8Av8EGggCaA+EHgN/gNiEAmgPhB4Bf4TYhAJoamxwC8DtsIAigKRF+APgla5BFg7u283U3ALRATHsBAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABT8Wn4ycnJ0YABAxQREaGYmBilp6erpKTEo87dd9+trl27KjQ0VGeffbZGjx6tzz///JTtGoahhx56SPHx8QoNDdXw4cO1Y8eOpnwrAAAgQPg0/BQVFSkzM1Pr169XYWGhjh8/rtTUVFVVVbnr9OvXT7m5udq+fbvee+89GYah1NRUORyOetudO3eu5s+fr4ULF6q4uFhhYWEaMWKEjh071hxvCwAA+DGLYRiGrztR49tvv1VMTIyKioo0dOjQOuts3rxZ559/vnbu3KmuXbvWOm8YhhISEnT//ffrgQcekCRVVlYqNjZWixYt0g033HDaftjtdtlsNlVWVioyMvLXvSkAANAsGvr97VdrfiorKyVJ0dHRdZ6vqqpSbm6ukpKSlJiYWGed0tJSlZeXa/jw4e4ym82mQYMGad26dXU+p7q6Wna73eMBAABaJr8JP06nU9nZ2UpJSVGfPn08zj377LMKDw9XeHi43n33XRUWFqpNmzZ1tlNeXi5Jio2N9SiPjY11nztZTk6ObDab+1FfsAIAAIHPb8JPZmamtm7dqtdee63WuZtvvlmffvqpioqK1KNHD40ZM8ar63emTZumyspK92Pv3r1eaxsAAPgXv7ire1ZWlpYtW6YPPvhAHTt2rHW+ZkSme/fuuvjii3XWWWcpLy9PN954Y626cXFxkqSKigrFx8e7yysqKnTBBRfU+frBwcEKDg72zpsBAAB+zacjP4ZhKCsrS3l5eVqxYoWSkpIa9BzDMFRdXV3n+aSkJMXFxWn58uXuMrvdruLiYg0ePNhrfQcAAIHJp+EnMzNTixcv1pIlSxQREaHy8nKVl5frhx9+kCR9+eWXysnJ0caNG/XVV19p7dq1uv766xUaGqqrrrrK3U6vXr2Ul5cnSbJYLMrOztasWbOUn5+vLVu2aOzYsUpISFB6erov3iYAAPAjPp32WrBggSRp2LBhHuW5ubnKyMhQSEiIPvzwQ82bN0/ff/+9YmNjNXToUK1du1YxMTHu+iUlJe4rxSRp8uTJqqqq0rhx43To0CFdcsklKigoUEhISLO8LwAA4L/8ap8ff8E+PwAABJ6A3OcHAACgqRF+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqfj0xqZAi+R0SHvWSkcqpPBYqfMQKcjq614BAH5G+AG8aVu+VDBFsu/7pSwyQUqbIyWP8l2/AABuTHsB3rItX3p9rGfwkSR7mat8W75v+gUA8ED4AbzB6XCN+Mio4+TPZQVTXfUAAD5F+AG8Yc/a2iM+HgzJ/o2rHgDApwg/gDccqfBuPQBAkyH8AN4QHuvdegCAJkP4Abyh8xDXVV2y1FPBIkV2cNUDAPgU4QfwhiCr63J2SbUD0M/HabPZ7wcA/ADhB/CW5FHSmJelyHjP8sgEVzn7/ACAX2CTQ8CbkkdJva5mh2cA8GOEH8DbgqxS0m983QsAQD2Y9gIAAKbCyA8A/8QNYgE0EcIPAP/DDWIBNCGmvQD4F24QC6CJEX4A+A9uEAugGRB+APgPbhALoBkQfgD4D24QC6AZEH4A+A9uEAugGRB+APgPbhALoBkQfgD4D24QC6AZEH4A+BduEAugibHJIQD/ww1iATQhwg8A/8QNYgE0Eaa9AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqRB+AACAqXCpO2BGTgd76AAwLcIPYDbb8qWCKZJ93y9lkQmu20qwezIAE/DptFdOTo4GDBigiIgIxcTEKD09XSUlJe7zBw8e1IQJE9SzZ0+FhoaqU6dOuvfee1VZWXnKdjMyMmSxWDweaWlpTf12AP+3LV96faxn8JEke5mrfFu+b/oFAM3Ip+GnqKhImZmZWr9+vQoLC3X8+HGlpqaqqqpKkrRv3z7t27dPTzzxhLZu3apFixapoKBAd95552nbTktLU1lZmfvx6quvNvXbAfyb0+Ea8ZFRx8mfywqmuuoBQAvm02mvgoICj+NFixYpJiZGGzdu1NChQ9WnTx+98cYb7vNdu3bVY489pltuuUU//fSTWrWqv/vBwcGKi4trsr4DAWfP2tojPh4Myf6Nqx63lQDQgvnV1V4101nR0dGnrBMZGXnK4CNJq1atUkxMjHr27Knx48frwIED9datrq6W3W73eAAtzpEK79YDgADlN+HH6XQqOztbKSkp6tOnT511vvvuOz366KMaN27cKdtKS0vTyy+/rOXLl2vOnDkqKirSlVdeKYej7uH8nJwc2Ww29yMxMfFXvx/A74THerceAAQoi2EYdS0AaHbjx4/Xu+++q9WrV6tjx461ztvtdl1xxRWKjo5Wfn6+Wrdu3eC2v/zyS3Xt2lXvv/++Lr/88lrnq6urVV1d7fFaiYmJ7lEmoEVwOqR5fVyLm+tc92NxXfWVvYXL3gEEJLvdLpvNdtrvb78Y+cnKytKyZcu0cuXKOoPP4cOHlZaWpoiICOXl5TUq+EjSOeeco/bt22vnzp11ng8ODlZkZKTHA2hxgqyuy9klSZaTTv58nDab4AOgxfNp+DEMQ1lZWcrLy9OKFSuUlJRUq47dbldqaqratGmj/Px8hYSENPp1vv76ax04cEDx8fHe6DYQuJJHSWNeliJP+rcQmeAqZ58fACbg02mve+65R0uWLNHbb7+tnj17usttNptCQ0Pdwefo0aPKy8tTWFiYu87ZZ58tq9X1C7VXr17KycnRtddeqyNHjmjmzJm67rrrFBcXp127dmny5Mk6fPiwtmzZouDg4NP2q6HDZkDAYodnAC1QQ7+/fXqp+4IFCyRJw4YN8yjPzc1VRkaGPvnkExUXF0uSunXr5lGntLRUXbp0kSSVlJS4rxSzWq3avHmzXnrpJR06dEgJCQlKTU3Vo48+2qDgA5hCkJXL2QGYlt8sePYnjPwAABB4AmrBMwAAQHMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFPxafjJycnRgAEDFBERoZiYGKWnp6ukpMR9/uDBg5owYYJ69uyp0NBQderUSffee68qKytP2a5hGHrooYcUHx+v0NBQDR8+XDt27GjqtwMAAAKAT8NPUVGRMjMztX79ehUWFur48eNKTU1VVVWVJGnfvn3at2+fnnjiCW3dulWLFi1SQUGB7rzzzlO2O3fuXM2fP18LFy5UcXGxwsLCNGLECB07dqw53hYAAPBjFsMwDF93osa3336rmJgYFRUVaejQoXXW+b//+z/dcsstqqqqUqtWrWqdNwxDCQkJuv/++/XAAw9IkiorKxUbG6tFixbphhtuqPWc6upqVVdXu4/tdrsSExNVWVmpyMhIL707AADQlOx2u2w222m/v/1qzU/NdFZ0dPQp60RGRtYZfCSptLRU5eXlGj58uLvMZrNp0KBBWrduXZ3PycnJkc1mcz8SExN/xbsAAD/idEilH0pb/p/rT6fD1z0CfK7uBOEDTqdT2dnZSklJUZ8+feqs89133+nRRx/VuHHj6m2nvLxckhQbG+tRHhsb6z53smnTpmnSpEnu45qRHwAIaNvypYIpkn3fL2WRCVLaHCl5lO/6BfiY34SfzMxMbd26VatXr67zvN1u19VXX63k5GTNmDHDq68dHBys4OBgr7YJAD61LV96faykk1Y22Mtc5WNeJgDBtPxi2isrK0vLli3TypUr1bFjx1rnDx8+rLS0NEVERCgvL0+tW7eut624uDhJUkVFhUd5RUWF+xwAtGhOh2vE5+TgI/1SVjCVKTCYlk/Dj2EYysrKUl5enlasWKGkpKRadex2u1JTU9WmTRvl5+crJCTklG0mJSUpLi5Oy5cv92ijuLhYgwcP9vp7AAC/s2et51RXLYZk/8ZVDzAhn4afzMxMLV68WEuWLFFERITKy8tVXl6uH374QdIvwaeqqkp/+9vfZLfb3XUcjl9+sfTq1Ut5eXmSJIvFouzsbM2aNUv5+fnasmWLxo4dq4SEBKWnp/vibQJA8zpScfo6jakHtDA+XfOzYMECSdKwYcM8ynNzc5WRkaFPPvlExcXFkqRu3bp51CktLVWXLl0kSSUlJR4bH06ePFlVVVUaN26cDh06pEsuuUQFBQWnHTUCgBYhPPb0dRpTD2hh/GqfH3/R0H0CAMAvOR3SvD6uxc11rvuxuK76yt4iBVmbu3dAkwnIfX4AAF4QZHVdzi5Jspx08ufjtNkEH5gW4QcAWqLkUa7L2SPjPcsjE7jMHabnN/v8AAC8LHmU1Otq11VdRypca3w6D2HEB6ZH+AGAlizIKiX9xte9APwK014AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBU2OG5DjU3urfb7T7uCQAAaKia7+2a7/H6EH7qcPjwYUlSYmKij3sCAAAa6/Dhw7LZbPWetxini0cm5HQ6tW/fPkVERMhisXitXbvdrsTERO3du1eRkZFea9ds+By9g8/RO/gcvYPP0TvM/jkahqHDhw8rISFBQUH1r+xh5KcOQUFB6tixY5O1HxkZacq/lN7G5+gdfI7ewefoHXyO3mHmz/FUIz41WPAMAABMhfADAABMhfDTjIKDg/Xwww8rODjY110JaHyO3sHn6B18jt7B5+gdfI4Nw4JnAABgKoz8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8NKNnnnlGXbp0UUhIiAYNGqQNGzb4uksBJScnRwMGDFBERIRiYmKUnp6ukpISX3cr4M2ePVsWi0XZ2dm+7krA+eabb3TLLbeoXbt2Cg0NVd++ffXxxx/7ulsBxeFwaPr06UpKSlJoaKi6du2qRx999LT3ZjK7Dz74QCNHjlRCQoIsFoveeustj/OGYeihhx5SfHy8QkNDNXz4cO3YscM3nfVDhJ9msnTpUk2aNEkPP/ywPvnkE51//vkaMWKE9u/f7+uuBYyioiJlZmZq/fr1Kiws1PHjx5Wamqqqqipfdy1gffTRR3ruued03nnn+borAef7779XSkqKWrdurXfffVfbtm3Tk08+qbPOOsvXXQsoc+bM0YIFC/TXv/5V27dv15w5czR37lw9/fTTvu6aX6uqqtL555+vZ555ps7zc+fO1fz587Vw4UIVFxcrLCxMI0aM0LFjx5q5p37KQLMYOHCgkZmZ6T52OBxGQkKCkZOT48NeBbb9+/cbkoyioiJfdyUgHT582OjevbtRWFhoXHrppcbEiRN93aWAMmXKFOOSSy7xdTcC3tVXX23ccccdHmW//e1vjZtvvtlHPQo8koy8vDz3sdPpNOLi4ow//elP7rJDhw4ZwcHBxquvvuqDHvofRn6awY8//qiNGzdq+PDh7rKgoCANHz5c69at82HPAltlZaUkKTo62sc9CUyZmZm6+uqrPf5eouHy8/PVv39/XX/99YqJidGFF16oF154wdfdCjhDhgzR8uXL9cUXX0iS/vOf/2j16tW68sorfdyzwFVaWqry8nKPf9s2m02DBg3iO+dn3Ni0GXz33XdyOByKjY31KI+NjdXnn3/uo14FNqfTqezsbKWkpKhPnz6+7k7Aee211/TJJ5/oo48+8nVXAtaXX36pBQsWaNKkSXrwwQf10Ucf6d5771WbNm102223+bp7AWPq1Kmy2+3q1auXrFarHA6HHnvsMd18882+7lrAKi8vl6Q6v3Nqzpkd4QcBKTMzU1u3btXq1at93ZWAs3fvXk2cOFGFhYUKCQnxdXcCltPpVP/+/fX4449Lki688EJt3bpVCxcuJPw0wuuvv65XXnlFS5Ys0bnnnqtNmzYpOztbCQkJfI5oMkx7NYP27dvLarWqoqLCo7yiokJxcXE+6lXgysrK0rJly7Ry5Up17NjR190JOBs3btT+/ft10UUXqVWrVmrVqpWKioo0f/58tWrVSg6Hw9ddDAjx8fFKTk72KOvdu7e++uorH/UoMP3hD3/Q1KlTdcMNN6hv37669dZbdd999yknJ8fXXQtYNd8rfOfUj/DTDNq0aaN+/fpp+fLl7jKn06nly5dr8ODBPuxZYDEMQ1lZWcrLy9OKFSuUlJTk6y4FpMsvv1xbtmzRpk2b3I/+/fvr5ptv1qZNm2S1Wn3dxYCQkpJSa6uFL774Qp07d/ZRjwLT0aNHFRTk+VVktVrldDp91KPAl5SUpLi4OI/vHLvdruLiYr5zfsa0VzOZNGmSbrvtNvXv318DBw7UvHnzVFVVpdtvv93XXQsYmZmZWrJkid5++21FRES4565tNptCQ0N93LvAERERUWudVFhYmNq1a8f6qUa47777NGTIED3++OMaM2aMNmzYoOeff17PP/+8r7sWUEaOHKnHHntMnTp10rnnnqtPP/1Uf/7zn3XHHXf4umt+7ciRI9q5c6f7uLS0VJs2bVJ0dLQ6deqk7OxszZo1S927d1dSUpKmT5+uhIQEpaen+67T/sTXl5uZydNPP2106tTJaNOmjTFw4EBj/fr1vu5SQJFU5yM3N9fXXQt4XOp+Zt555x2jT58+RnBwsNGrVy/j+eef93WXAo7dbjcmTpxodOrUyQgJCTHOOecc43//93+N6upqX3fNr61cubLO/x7edttthmG4LnefPn26ERsbawQHBxuXX365UVJS4ttO+xGLYbCNJgAAMA/W/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAwnYyMDLb5B0yM8AOgSWRkZMhisdR6pKWl+bpreuqpp7Ro0SJfd0OSZLFY9NZbb/m6G4CpcGNTAE0mLS1Nubm5HmXBwcE+6o3kcDhksVhks9l81gcAvsfID4AmExwcrLi4OI/HWWedpVWrVqlNmzb68MMP3XXnzp2rmJgYVVRUSJKGDRumrKwsZWVlyWazqX379po+fbpOvB1hdXW1HnjgAXXo0EFhYWEaNGiQVq1a5T6/aNEiRUVFKT8/X8nJyQoODtZXX31Va9pr2LBhmjBhgrKzs3XWWWcpNjZWL7zwgqqqqnT77bcrIiJC3bp107vvvuvx/rZu3aorr7xS4eHhio2N1a233qrvvvvOo917771XkydPVnR0tOLi4jRjxgz3+S5dukiSrr32WlksFvcxgKZF+AHQ7IYNG6bs7Gzdeuutqqys1Keffqrp06frxRdfVGxsrLveSy+9pFatWmnDhg166qmn9Oc//1kvvvii+3xWVpbWrVun1157TZs3b9b111+vtLQ07dixw13n6NGjmjNnjl588UV99tlniomJqbNPL730ktq3b68NGzZowoQJGj9+vK6//noNGTJEn3zyiVJTU3Xrrbfq6NGjkqRDhw7pv/7rv3ThhRfq448/VkFBgSoqKjRmzJha7YaFham4uFhz587VI488osLCQknSRx99JEnKzc1VWVmZ+xhAE/PxXeUBtFC33XabYbVajbCwMI/HY489ZhiGYVRXVxsXXHCBMWbMGCM5Odm46667PJ5/6aWXGr179zacTqe7bMqUKUbv3r0NwzCMPXv2GFar1fjmm288nnf55Zcb06ZNMwzDMHJzcw1JxqZNm2r1bfTo0R6vdckll7iPf/rpJyMsLMy49dZb3WVlZWWGJGPdunWGYRjGo48+aqSmpnq0u3fvXkOSUVJSUme7hmEYAwYMMKZMmeI+lmTk5eXV8ykCaAqs+QHQZC677DItWLDAoyw6OlqS1KZNG73yyis677zz1LlzZ/3lL3+p9fyLL75YFovFfTx48GA9+eSTcjgc2rJlixwOh3r06OHxnOrqarVr18593KZNG5133nmn7euJdaxWq9q1a6e+ffu6y2pGpPbv3y9J+s9//qOVK1cqPDy8Vlu7du1y9+vk146Pj3e3AcA3CD8AmkxYWJi6detW7/m1a9dKkg4ePKiDBw8qLCyswW0fOXJEVqtVGzdulNVq9Th3YiAJDQ31CFD1ad26tcexxWLxKKtpw+l0ul9/5MiRmjNnTq224uPjT9luTRsAfIPwA8Andu3apfvuu08vvPCCli5dqttuu03vv/++goJ+WYpYXFzs8Zz169ere/fuslqtuvDCC+VwOLR//3795je/ae7u66KLLtIbb7yhLl26qFWrM/9PaevWreVwOLzYMwCnw4JnAE2murpa5eXlHo/vvvtODodDt9xyi0aMGKHbb79dubm52rx5s5588kmP53/11VeaNGmSSkpK9Oqrr+rpp5/WxIkTJUk9evTQzTffrLFjx+rNN99UaWmpNmzYoJycHP3zn/9s8veWmZmpgwcP6sYbb9RHH32kXbt26b333tPtt9/eqDDTpUsXLV++XOXl5fr++++bsMcAajDyA6DJFBQUeEwBSVLPnj110003ac+ePVq2bJkk1zTR888/rxtvvFGpqak6//zzJUljx47VDz/8oIEDB8pqtWrixIkaN26cu63c3FzNmjVL999/v7755hu1b99eF198sa655pomf28JCQlas2aNpkyZotTUVFVXV6tz585KS0vzGL06nSeffFKTJk3SCy+8oA4dOmj37t1N12kAkiSLYZywaQYA+Ilhw4bpggsu0Lx583zdFQAtDNNeAADAVAg/AADAVJj2AgAApsLIDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMJX/D2na3hU3k/8KAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", - "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, np.mean(test_y_torch.squeeze().numpy(), 1), label=\"Ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plot the predictions versus observations and climatology." - ] - }, - { - "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1448,19 +1496,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.861\n" + "The MSE of LSTM forecasts is 0.861\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxRUlEQVR4nOzdd3hTZfsH8G+a7r33oKULKBtahkAVBEQQBETWD1HcwAsCiigOEMWFAiqgoqAyVTZikdVSRltWGQLd0EFL96YrOb8/0lYrBZo26UnS7+e6cr1vk5OTOw+xzX2e+7kfiSAIAoiIiIiIiIhI4+mJHQARERERERERNQ2TeCIiIiIiIiItwSSeiIiIiIiISEswiSciIiIiIiLSEkziiYiIiIiIiLQEk3giIiIiIiIiLcEknoiIiIiIiEhLMIknIiIiIiIi0hL6YgegieRyOW7dugULCwtIJBKxwyEiIiIiIiIdJwgCSkpK4OrqCj29e8+3M4lvxK1bt+Dh4SF2GERERERERNTGpKWlwd3d/Z6PM4lvhIWFBQDF4FlaWoocDREREREREem64uJieHh41Oej98IkvhF1JfSWlpZM4omIiIiIiKjVPGhJNxvbEREREREREWkJJvFEREREREREWoJJPBEREREREZGW4Jp4IiIiIiKiZhIEATU1NZDJZGKHQhpOKpVCX1+/xduYM4knIiIiIiJqhqqqKmRmZqK8vFzsUEhLmJqawsXFBYaGhs0+B5N4IiIiIiIiJcnlcqSkpEAqlcLV1RWGhoYtnmEl3SUIAqqqqpCTk4OUlBT4+flBT695q9uZxBMRERERESmpqqoKcrkcHh4eMDU1FTsc0gImJiYwMDDAzZs3UVVVBWNj42adh43tiIiIiIiImqm5s6nUNqni88JPHBEREREREZGWYBJPREREREREpCVETeKXL1+O3r17w8LCAo6OjhgzZgzi4uIaHBMaGgqJRNLg9vLLL9/3vIIg4N1334WLiwtMTEwwZMgQJCQkqPOtEBERERER6ZR27dph5cqVYoehMuHh4ZBIJCgsLBQ7lBYRNYmPiIjAzJkzERUVhUOHDqG6uhpDhw5FWVlZg+NeeOEFZGZm1t8+/fTT+573008/xerVq7Fu3TpER0fDzMwMw4YNQ0VFhTrfDhERERERkVZIS0vDc889V99Z38vLC3PmzEFeXp7YoalEaGgo5s6d2+C+fv36ITMzE1ZWVuIEpSKidqcPCwtr8PPGjRvh6OiIc+fOYeDAgfX3m5qawtnZuUnnFAQBK1euxOLFizF69GgAwM8//wwnJyfs3r0bEydOVN0bEFlFtQx6EgkM9bkqgoiIiIiImiY5ORl9+/aFv78/tm7dCm9vb/z99994/fXX8eeffyIqKgq2tratHpdMJoNEIlFbs0BDQ8Mm55WaTKOyv6KiIgC46wOzefNm2NvbIygoCIsWLUJ5efk9z5GSkoKsrCwMGTKk/j4rKyuEhITg9OnTjT6nsrISxcXFDW7a4IP9VzF27UkkZpeKHQoRERERUZsnCALKq2pEuQmC0OQ4Z86cCUNDQ/z1118YNGgQPD098dhjj+Hw4cPIyMjA22+/XX9sSUkJJk2aBDMzM7i5ueGbb75p8H7ff/99eHp6wsjICK6urvjf//5X/3hlZSUWLFgANzc3mJmZISQkBOHh4fWPb9y4EdbW1ti7dy86duwIIyMjrF+/HsbGxneVvM+ZMwePPPIIACAvLw+TJk2Cm5sbTE1N0blzZ2zdurX+2OnTpyMiIgKrVq2qX5J948aNRsvpd+zYgU6dOsHIyAjt2rXDihUrGrxuu3bt8NFHH+G5556DhYUFPD098d1339U/XlVVhVmzZsHFxQXGxsbw8vLC8uXLm/xv0Rwas0+8XC7H3Llz0b9/fwQFBdXfP3nyZHh5ecHV1RWXLl3CwoULERcXh507dzZ6nqysLACAk5NTg/udnJzqH/uv5cuXY8mSJSp6J60jr7QSBy5noqC8GiO/isQ7IzticrAnJBKJ2KEREREREbVJd6pl6PjuQVFe++rSYTA1fHB6l5+fj4MHD+LDDz+EiYlJg8ecnZ0xZcoUbN++HWvWrAEAfPbZZ3jrrbewZMkSHDx4EHPmzIG/vz8effRR7NixA19++SW2bduGTp06ISsrCxcvXqw/36xZs3D16lVs27YNrq6u2LVrF4YPH47Lly/Dz88PAFBeXo5PPvkE69evh52dHdzd3fHuu+9ix44dmDFjBgDFDP327dvx4YcfAgAqKirQs2dPLFy4EJaWlvjjjz/wf//3f2jfvj2Cg4OxatUqxMfHIygoCEuXLgUAODg44MaNGw3e77lz5zBhwgS8//77ePrpp3Hq1Cm8+uqrsLOzw/Tp0+uPW7FiBT744AO89dZb+P333/HKK69g0KBBCAgIwOrVq7F37178+uuv8PT0RFpaGtLS0pT7x1OSxiTxM2fOxJUrV3DixIkG97/44ov1/79z585wcXHB4MGDkZSUhPbt26vktRctWoR58+bV/1xcXAwPDw+VnFtd7MyNEDZ3IBb8dhGRCbl4e9cVHLueg0/GdYaduZHY4RERERERkQZKSEiAIAjo0KFDo4936NABBQUFyMnJAQD0798fb775JgDA398fJ0+exJdffolHH30UqampcHZ2xpAhQ2BgYABPT08EBwcDAFJTU7FhwwakpqbC1dUVALBgwQKEhYVhw4YN+OijjwAA1dXVWLNmDbp27Vofw8SJE7Fly5b6JP7IkSMoLCzEuHHjAABubm5YsGBB/fGzZ8/GwYMH8euvvyI4OBhWVlYwNDR84LLsL774AoMHD8Y777xT//6uXr2Kzz77rEESP2LECLz66qsAgIULF+LLL7/EsWPHEBAQgNTUVPj5+eGhhx6CRCKBl5dXE/8lmk8jkvhZs2Zh//79OH78ONzd3e97bEhICAAgMTGx0SS+7h/p9u3bcHFxqb//9u3b6NatW6PnNDIygpGR9iW+TpbG+OnZYPx4MgWfhsXh8LXbGL6qECue6oqB/g5ih0dERERE1KaYGEhxdekw0V5bGU0tv+/bt+9dP9d1rH/qqaewcuVK+Pj4YPjw4RgxYgRGjRoFfX19XL58GTKZDP7+/g2eX1lZCTs7u/qfDQ0N0aVLlwbHTJkyBX369MGtW7fg6uqKzZs34/HHH4e1tTUAxcz8Rx99hF9//RUZGRmoqqpCZWUlTE1NlRqDa9eu1fdRq9O/f3+sXLkSMpkMUqliTP8dn0QigbOzM7KzswEoSvcfffRRBAQEYPjw4Rg5ciSGDh2qVBzKEnVNvCAImDVrFnbt2oWjR4/C29v7gc+JjY0FgAYJ+r95e3vD2dkZR44cqb+vuLgY0dHRd30AdYGengTPD/DB7pn94edojpySSkz7MQZL911FRbVM7PCIiIiIiNoMiUQCU0N9UW5NXVbr6+sLiUSCa9euNfr4tWvXYGNjAweHB08Kenh4IC4uDmvWrIGJiQleffVVDBw4ENXV1SgtLYVUKsW5c+cQGxtbf7t27RpWrVpVfw4TE5O7Yu/duzfat2+Pbdu24c6dO9i1axemTJlS//hnn32GVatWYeHChTh27BhiY2MxbNgwVFVVNWkMlGVgYNDgZ4lEArlcDgDo0aMHUlJS8MEHH+DOnTuYMGECxo8fr5Y46oiaxM+cORObNm3Cli1bYGFhgaysLGRlZeHOnTsAgKSkJHzwwQc4d+4cbty4gb1792LatGkYOHBgg6shgYGB2LVrFwDFgM6dOxfLli3D3r17cfnyZUybNg2urq4YM2aMGG+zVXR0tcS+2Q/hmb6K8o0fT6ZgzDcnEZdVInJkRERERESkKezs7PDoo49izZo19XlXnaysLGzevBlPP/10fWIdFRXV4JioqKgGpfgmJiYYNWoUVq9ejfDwcJw+fRqXL19G9+7dIZPJkJ2dDV9f3wa3pnSInzJlCjZv3ox9+/ZBT08Pjz/+eP1jJ0+exOjRozF16lR07doVPj4+iI+Pb/B8Q0NDyGT3n9Ts0KEDTp482eC+kydPwt/fv34WviksLS3x9NNP4/vvv8f27duxY8cO5OfnN/n5yhI1iV+7di2KiooQGhoKFxeX+tv27dsBKAb+8OHDGDp0KAIDAzF//nyMGzcO+/bta3CeuLi4+s72APDGG29g9uzZePHFF9G7d2+UlpYiLCwMxsbGrfr+WpuxgRRLRgfhx+m9YG9uiOtZJRj19QlsPJmiVLdKIiIiIiLSXV9//TUqKysxbNgwHD9+HGlpaQgLC8Ojjz4KNze3+gZygCKp/fTTTxEfH49vvvkGv/32G+bMmQNA0V3+hx9+wJUrV5CcnIxNmzbBxMQEXl5e8Pf3x5QpUzBt2jTs3LkTKSkpiImJwfLly/HHH388MMYpU6bg/Pnz+PDDDzF+/PgGy5/9/Pxw6NAhnDp1CteuXcNLL72E27dvN3h+u3btEB0djRs3biA3N7d+5vzf5s+fjyNHjuCDDz5AfHw8fvrpJ3z99dcN1ts/yBdffIGtW7fi+vXriI+Px2+//QZnZ+f60n91EHVN/IMSSw8PD0RERCh9HolEgqVLl9Z3ImxrHgl0wp9zBuL13y8iPC4H7++7ivD4HHw2viscLLRv7T8REREREamOn58fzp49i/feew8TJkxAfn4+nJ2dMWbMGLz33nsNtvyeP38+zp49iyVLlsDS0hJffPEFhg1TrPu3trbGxx9/jHnz5kEmk6Fz587Yt29f/Zr3DRs2YNmyZZg/fz4yMjJgb2+PPn36YOTIkQ+M0dfXF8HBwYiJialfg19n8eLFSE5OxrBhw2BqaooXX3wRY8aMaTCxu2DBAjzzzDPo2LEj7ty5g5SUlLteo0ePHvj111/x7rvv4oMPPoCLiwuWLl3aoKndg1hYWODTTz9FQkICpFIpevfujQMHDqhtr3sAkAicor1LcXExrKysUFRUBEtLS7HDaTZBEPDz6Zv48MA1VNXIYWdmiM+e6oJHAp0e/GQiIiIiIrqniooKpKSkwNvbW+crfkl17ve5aWoeKmo5PamXRCLBM/3aYd+shxDobIG8sio8t/Es3t1zhU3viIiIiIiItBCT+DYgwNkCu2f2x4yHFN3/fz59EyO/OoG/bxU94JlERERERESkSZjEtxHGBlK8M7IjfnouGA4WRkjMLsWT35zC+shkyOVcUUFERERERKQNmMS3MYP8HRA2ZwCGdHBClUyOZX9cw7QfY3C7uELs0IiIiIiIiOgBmMS3QXbmRvh+Wk98+GQQjA30cCIxF8NWHkfYlSyxQyMiIiIiIqL7YBLfRkkkEkwJ8cL+2QPQydUSheXVeHnTOSzaeQnlVTVih0dERERERESNYBLfxvk6mmPXq/3x0iAfSCTA1pg0jFx9ApfSC8UOjYiIiIiIiP6DSTzBUF8Pix7rgM0zQuBsaYzk3DKMXXMKa8ITIWPTOyIiIiIiIo3BJJ7q9fO1R9jcAXgsyBk1cgGfhsVh8vdRuFV4R+zQiIiIiIhIy0yfPh1jxoyp/zk0NBRz585t0TlVcQ5txySeGrA2NcSaKT3w6fguMDWUIjolH8NXHsf+S7fEDo2IiIiIiFRg+vTpkEgkkEgkMDQ0hK+vL5YuXYqaGvX2xtq5cyc++OCDJh0bHh4OiUSCwsLCZp9DVzGJp7tIJBJM6OWBA/8bgK4e1iiuqMGsLRcw/9eLKK1k0zsiIiIiIm03fPhwZGZmIiEhAfPnz8f777+Pzz777K7jqqqqVPaatra2sLCwEP0c2o5JPN1TO3sz/P5yX8x+xBd6EmDH+XSMWBWJ86kFYodGRERERKQzZHIBp5PysCc2A6eT8lqlL5WRkRGcnZ3h5eWFV155BUOGDMHevXvrS+A//PBDuLq6IiAgAACQlpaGCRMmwNraGra2thg9ejRu3Ljxz3uQyTBv3jxYW1vDzs4Ob7zxBgSh4fv4byl8ZWUlFi5cCA8PDxgZGcHX1xc//PADbty4gYcffhgAYGNjA4lEgunTpzd6joKCAkybNg02NjYwNTXFY489hoSEhPrHN27cCGtraxw8eBAdOnSAubl5/QWMOuHh4QgODoaZmRmsra3Rv39/3Lx5U0UjrXpM4um+DKR6mD80ANte7As3axOk5pfjqXWnsepwAmpkcrHDIyIiIiLSamFXMvHQJ0cx6fsozNkWi0nfR+GhT44i7Ermg5+sQiYmJvWz7keOHEFcXBwOHTqE/fv3o7q6GsOGDYOFhQUiIyNx8uTJ+mS47jkrVqzAxo0b8eOPP+LEiRPIz8/Hrl277vua06ZNw9atW7F69Wpcu3YN3377LczNzeHh4YEdO3YAAOLi4pCZmYlVq1Y1eo7p06fj7Nmz2Lt3L06fPg1BEDBixAhUV1fXH1NeXo7PP/8cv/zyC44fP47U1FQsWLAAAFBTU4MxY8Zg0KBBuHTpEk6fPo0XX3wREomkxWOqLvpiB0DaIdjbFgfmDMA7u69g78Vb+PJwPI4n5GDl093gYWsqdnhERERERFon7EomXtl0Hv+dd88qqsArm85j7dQeGB7kotYYBEHAkSNHcPDgQcyePRs5OTkwMzPD+vXrYWhoCADYtGkT5HI51q9fX5/cbtiwAdbW1ggPD8fQoUOxcuVKLFq0CGPHjgUArFu3DgcPHrzn68bHx+PXX3/FoUOHMGTIEACAj49P/eO2trYAAEdHR1hbWzd6joSEBOzduxcnT55Ev379AACbN2+Gh4cHdu/ejaeeegoAUF1djXXr1qF9+/YAgFmzZmHp0qUAgOLiYhQVFWHkyJH1j3fo0EH5gWxFnImnJrMyMcDqSd2x8uluMDfSx7mbBXhsVSR2XUgXOzQiIiIiIq0ikwtYsu/qXQk8gPr7luy7qrbS+v3798Pc3BzGxsZ47LHH8PTTT+P9998HAHTu3Lk+gQeAixcvIjExERYWFjA3N4e5uTlsbW1RUVGBpKQkFBUVITMzEyEhIfXP0dfXR69eve75+rGxsZBKpRg0aFCz38O1a9egr6/f4HXt7OwQEBCAa9eu1d9nampan6ADgIuLC7KzswEoLhZMnz4dw4YNw6hRo7Bq1aoGpfaaiEk8KW1Mdzf8OWcAenrZoLSyBq9tv4g52y6g6E71g59MRERERESISclHZlHFPR8XAGQWVSAmJV8tr//www8jNjYWCQkJuHPnDn766SeYmZkBQP3/1iktLUXPnj0RGxvb4BYfH4/Jkyc36/VNTExa/B6aysDAoMHPEomkwXr9DRs24PTp0+jXrx+2b98Of39/REVFtVp8ymIST83iYWuK7S/2wbxH/SHVk2BP7C2MWBWptl8yRERERES6JLvk3gl8c45TlpmZGXx9feHp6Ql9/fuvsu7RowcSEhLg6OgIX1/fBjcrKytYWVnBxcUF0dHR9c+pqanBuXPn7nnOzp07Qy6XIyIiotHH6yoBZDLZPc/RoUMH1NTUNHjdvLw8xMXFoWPHjvd9T//VvXt3LFq0CKdOnUJQUBC2bNmi1PNbE5N4ajZ9qR7+N9gPv73cF562psgovIOJ353Gir/iUM2md0RERERE9+RoYazS49RpypQpsLe3x+jRoxEZGYmUlBSEh4fjf//7H9LTFUtr58yZg48//hi7d+/G9evX8eqrr961x/u/tWvXDs888wyee+457N69u/6cv/76KwDAy8sLEokE+/fvR05ODkpLS+86h5+fH0aPHo0XXngBJ06cwMWLFzF16lS4ublh9OjRTXpvKSkpWLRoEU6fPo2bN2/ir7/+QkJCgkavi2cSTy3Ww9MGB+YMwLge7pALwFdHEzF+3WncyC0TOzQiIiIiIo0U7G0LFytj3KsHugSAi5Uxgr1tWzOsRpmamuL48ePw9PTE2LFj0aFDB8yYMQMVFRWwtLQEAMyfPx//93//h2eeeQZ9+/aFhYUFnnzyyfued+3atRg/fjxeffVVBAYG4oUXXkBZmSKHcHNzw5IlS/Dmm2/CyckJs2bNavQcGzZsQM+ePTFy5Ej07dsXgiDgwIEDd5XQ3++9Xb9+HePGjYO/vz9efPFFzJw5Ey+99JISI9S6JMJ/N+8jFBcXw8rKCkVFRfUfSmqafRdv4e1dl1FcUQNTQynef6ITnurprtFbNBARERERKauiogIpKSnw9vaGsXHzZsvrutMDaNDgru6bc2t0p6fWdb/PTVPzUM7Ek0qN6uqKP+cORIi3LcqrZHjj90uYueU8CsurxA6NiIiIiEijDA9ywdqpPeBs1TCZc7YyZgJP98R94knl3KxNsOWFPvj2eBK++CseBy5n4fzNQnzxdFf0a28vdnhERERERBpjeJALHu3ojJiUfGSXVMDRQlFCL9VjJSs1jkk8qYVUT4JXQ33xkK895myLRUpuGaasj8aLA30w/9EAGOqzCISIiIiICFB8d+7b3k7sMEhLMJMiteribo0//vcQJgV7QBCAbyOSMXbtSSRm391dkoiIiIiIiO6PSTypnamhPpaP7YJ1U3vC2tQAVzKKMfKrSGyOvgn2VSQiIiIiImo6JvHUaoYHOePg3IF4yNceFdVyvL3rCl74+RzySivFDo2IiIiIiEgrMImnVuVkaYyfnwvG4sc7wFCqh8PXbmP4qkgcj88ROzQiIiIiIiKNxySeWp2engTPD/DBrpn94OtojpySSkz7MQZL911FRbVM7PCIiIiIiIg0FpN4Ek0nVyvsm/UQpvX1AgD8eDIFY745ibisEpEjIyIiIiIi0kxM4klUJoZSLB0dhB+e6QU7M0NczyrBqK9PYOPJFDa9IyIiIiISiUQiwe7duwEAN27cgEQiQWxsrKgx3Yumx6dqTOJJIwzu4IQ/5w7AIH8HVNXI8f6+q3h24xnklLDpHRERERGRqmVlZWH27Nnw8fGBkZERPDw8MGrUKBw5cuSuYz08PJCZmYmgoCC1xtTWkvHmYhJPGsPRwhgbn+2N90d1hKG+HsLjcjB85XEcvX5b7NCIiIiIiNRGJpMhPDwcW7duRXh4OGQy9faJunHjBnr27ImjR4/is88+w+XLlxEWFoaHH34YM2fOvOt4qVQKZ2dn6OvrqzUuahom8aRRJBIJpvf3xr5ZDyHQ2QJ5ZVV4buNZvLvnCpveEREREZHO2blzJ9q1a4eHH34YkydPxsMPP4x27dph586danvNV199FRKJBDExMRg3bhz8/f3RqVMnzJs3D1FRUXcd/98Z8vDwcEgkEhw8eBDdu3eHiYkJHnnkEWRnZ+PPP/9Ehw4dYGlpicmTJ6O8vLz+PGFhYXjooYdgbW0NOzs7jBw5EklJSfWPe3t7AwC6d+8OiUSC0NBQAIBcLsfSpUvh7u4OIyMjdOvWDWFhYfd9jxEREQgODoaRkRFcXFzw5ptvoqampv7xkpISTJkyBWZmZnBxccGXX36J0NBQzJ07FwCwdOnSRisPunXrhnfeeadJ46wuTOJJIwU4W2D3zP54rr/iP+SfT9/EyK9O4O9bRSJHRkRERESkGjt37sT48eORnp7e4P6MjAyMHz9eLYl8fn4+wsLCMHPmTJiZmd31uLW1dZPP9f777+Prr7/GqVOnkJaWhgkTJmDlypXYsmUL/vjjD/z111/46quv6o8vKyvDvHnzcPbsWRw5cgR6enp48sknIZfLAQAxMTEAgMOHDyMzM7P+/a9atQorVqzA559/jkuXLmHYsGF44oknkJCQ0GhcGRkZGDFiBHr37o2LFy9i7dq1+OGHH7Bs2bL6Y+bNm4eTJ09i7969OHToECIjI3H+/Pn6x5977jlcu3YNZ86cqb/vwoULuHTpEp599tkmj5E6MIknjWVsIMW7ozrip+eC4WBhhMTsUjz5zSmsj0yGXM6md0RERESkvWQyGebMmdNoM+e6++bOnavy0vrExEQIgoDAwMAWn2vZsmXo378/unfvjhkzZiAiIgJr165F9+7dMWDAAIwfPx7Hjh2rP37cuHEYO3YsfH190a1bN/z444+4fPkyrl69CgBwcHAAANjZ2cHZ2Rm2trYAgM8//xwLFy7ExIkTERAQgE8++QTdunXDypUrG41rzZo18PDwwNdff43AwECMGTMGS5YswYoVKyCXy1FSUoKffvoJn3/+OQYPHoygoCBs2LChwVi7u7tj2LBh2LBhQ/19GzZswKBBg+Dj49PisWsJJvGk8Qb5OyBszgAM6eCEKpkcy/64hmk/xuB2cYXYoRERERERNUtkZORdM/D/JggC0tLSEBkZqdLXVeUOUF26dKn//05OTjA1NW2Q4Do5OSE7O7v+54SEBEyaNAk+Pj6wtLREu3btAACpqan3fI3i4mLcunUL/fv3b3B///79ce3atUafc+3aNfTt2xcSiaTB8aWlpUhPT0dycjKqq6sRHBxc/7iVlRUCAgIanOeFF17A1q1bUVFRgaqqKmzZsgXPPffcfUakdTCJJ61gZ26E76f1xIdPBsHYQA8nEnMxbOVxhF3JEjs0IiIiIiKlZWZmqvS4pvLz84NEIsH169dbfC4DA4P6/y+RSBr8XHdfXak8AIwaNQr5+fn4/vvvER0djejoaABAVVVVi2NRh1GjRsHIyAi7du3Cvn37UF1djfHjx4sdFpN40h4SiQRTQrywf/YAdHK1RGF5NV7edA6Ldl5CeVXNg09ARERERKQhXFxcVHpcU9na2mLYsGH45ptvUFZWdtfjhYWFKn29Onl5eYiLi8PixYsxePBgdOjQAQUFBQ2OMTQ0BIAGZe2WlpZwdXXFyZMnGxx78uRJdOzYsdHX6tChA06fPt2g6uDkyZOwsLCAu7s7fHx8YGBg0GC9e1FREeLj4xucR19fH8888ww2bNiADRs2YOLEiTAxMWneAKgQk3jSOr6O5tj1an+8NMgHEgmwNSYNI1efwKX0QrFDIyIiIiJqkgEDBsDd3b1Byfe/SSQSeHh4YMCAASp/7W+++QYymQzBwcHYsWMHEhIScO3aNaxevRp9+/ZV+esBgI2NDezs7PDdd98hMTERR48exbx58xoc4+joCBMTE4SFheH27dsoKlI0tX799dfxySefYPv27YiLi8Obb76J2NhYzJkzp9HXevXVV5GWlobZs2fj+vXr2LNnD9577z3MmzcPenp6sLCwwDPPPIPXX38dx44dw99//40ZM2ZAT0/vrn+P559/HkePHkVYWJhGlNIDTOJJSxnq62HRYx2weUYInC2NkZxbhrFrTmFNeCJkbHpHRERERBpOKpVi1apVAHBX4lj388qVKyGVSlX+2j4+Pjh//jwefvhhzJ8/H0FBQXj00Udx5MgRrF27VuWvBwB6enrYtm0bzp07h6CgILz22mv47LPPGhyjr6+P1atX49tvv4WrqytGjx4NAPjf//6HefPmYf78+ejcuTPCwsKwd+9e+Pn5Nfpabm5uOHDgAGJiYtC1a1e8/PLLmDFjBhYvXlx/zBdffIG+ffti5MiRGDJkCPr3748OHTrA2Ni4wbn8/PzQr18/BAYGIiQkRMWj0jwSQZWdDXREcXExrKysUFRUBEtLS7HDoQcoKKvCW7su48/a9fEh3rb48ulucLUWv9SFiIiIiHRTRUUFUlJS4O3tfVfip4ydO3dizpw5DZrceXh4YOXKlRg7dqwqQqUmKCsrg5ubG1asWIEZM2bU3y8IAvz8/PDqq6/eVTnQHPf73DQ1D9VvcRREIrMxM8SaKT3w29l0vL/vb0Sn5GP4yuP4aGxnjOziKnZ4RERERET3NHbsWIwePRqRkZHIzMyEi4sLBgwYoJYZePrHhQsXcP36dQQHB6OoqAhLly4FgPrZfwDIycnBtm3bkJWVJfre8P/GJJ50gkQiwYTeHujtbYu52y7gYnoRZm25gGPXc7BkdCeYG/GjTkRERESaSSqVIjQ0VOww2pzPP/8ccXFxMDQ0RM+ePREZGQl7e/v6xx0dHWFvb4/vvvsONjY2IkbaEDMb0ine9mb4/ZV+WHU4Ad+EJ2LH+XScuZGPlRO7oYen5vyHR0RERERE4unevTvOnTt332M0deU5G9uRzjGQ6mHBsABse6EP3KxNkJpfjqfWncaqwwmokckffAIiIiIiIiINxSSedFaIjx0OzBmAUV1dIZML+PJwPJ7+Lgpp+eVih0ZERERERNQsoibxy5cvR+/evWFhYQFHR0eMGTMGcXFxjR4rCAIee+wxSCQS7N69+77nnT59OiQSSYPb8OHD1fAOSNNZmRhg9cRu+PLprjA30se5mwV44usTyCqqEDs0IiIiItIBmlpyTZpJFZ8XUZP4iIgIzJw5E1FRUTh06BCqq6sxdOhQlJWV3XXsypUr79o/8X6GDx+OzMzM+tvWrVtVGTppEYlEgie7u+PPOQMQ4GSBgvJqvLXrMn/hEhEREVGzGRgYAADKy1nlSU1X93mp+/w0h6iN7cLCwhr8vHHjRjg6OuLcuXMYOHBg/f2xsbFYsWIFzp49CxcXlyad28jICM7OziqNl7Sbh60pVk/qjlFfncDR69nYcT4D43u6ix0WEREREWkhqVQKa2trZGdnAwBMTU2VmnSktkUQBJSXlyM7OxvW1tYt2kJQo7rTFxUVAQBsbW3r7ysvL8fkyZPxzTffKJWUh4eHw9HRETY2NnjkkUewbNky2NnZNXpsZWUlKisr638uLi5u5jsgTRfgbIE5Q/zw2cE4LNn3Nx7ytYezlbHYYRERERGRFqrLT+oSeaIHsba2bvFks0TQkJpiuVyOJ554AoWFhThx4kT9/S+99BJkMhnWr18PQFEavWvXLowZM+ae59q2bRtMTU3h7e2NpKQkvPXWWzA3N8fp06cbveLx/vvvY8mSJXfdX1RUBEtLy5a/OdIoNTI5xq09hYvpRXg4wAE/Tu/Nq6ZERERE1GwymQzV1dVih0EazsDA4L4z8MXFxbCysnpgHqoxSfwrr7yCP//8EydOnIC7u6LEee/evZg/fz4uXLgAc3NzAE1L4v8rOTkZ7du3x+HDhzF48OC7Hm9sJt7Dw4NJvA5LuF2Cx1efQJVMjk/Hd8GEXh5ih0RERERERG1YU5N4jdhibtasWdi/fz+OHTtWn8ADwNGjR5GUlARra2vo6+tDX19R/T9u3DiEhoY2+fw+Pj6wt7dHYmJio48bGRnB0tKywY10m5+TBeY+6gcA+GDfVWQW3RE5IiIiIiIiogcTNYkXBAGzZs3Crl27cPToUXh7ezd4/M0338SlS5cQGxtbfwOAL7/8Ehs2bGjy66SnpyMvL6/JTfGobXhxgA+6elijpLIGb+5gt3oiIiIiIl0kl+vW93xRk/iZM2di06ZN2LJlCywsLJCVlYWsrCzcuaOYFXV2dkZQUFCDGwB4eno2SPgDAwOxa9cuAEBpaSlef/11REVF4caNGzhy5AhGjx4NX19fDBs2rPXfJGksfakePh/fBYZSPUTE5+C3s+lih0RERERERCqUVVSBoSuP49h13Wk+KGoSv3btWhQVFSE0NBQuLi71t+3btyt1nri4uPrO9lKpFJcuXcITTzwBf39/zJgxAz179kRkZCSMjIzU8TZIi/k5WeC1R/0BAB/sv4pbhSyrJyIiIiLSBTUyOf639QISs0ux4lAcZDoyIy/qFnPNKV9u7Dn/vs/ExAQHDx5sUVzUtrwwwBthf2fhYloh3tx5GT89y271RERERETabsWheMTcyIe5kT6+ntQDUj3d+I6vEY3tiMSkL9XDiqe6wFBfD8fjc/Dr2TSxQyIiIiIiohY4dj0ba8OTAACfju+CdvZmIkekOkziiQD4Olpgfm1Z/bL911hWT0RERESkpW4V3sFrv8YCAJ7p64URnXWrwTmTeKJazw/wQXdPRbf6hTsusVs9EREREZGWqZbJMXvrBRSWV6OzmxXeeryD2CGpHJN4olpSPQk+G98Vhvp6iEzIxbYzLKsnIiIiItImnx+Mw7mbBbAw1sc3k3vASF8qdkgqxySe6F98Hc2xYKiirP7DP64hg2X1RERERERa4ci12/j2eDIA4LPxXeFpZypyROrBJJ7oP2Y85IMentYorazBmyyrJyIiIiLSeOkF5Zj360UAwLP922F4kLPIEakPk3ii/5DqSfDZU11hVFtWvzWGZfVERERERJqqqkaOWVsuoOhONbp6WGPRY7q3Dv7fmMQTNaK9gzkWDA0AAHz4x1WkF5SLHBERERERETXmk7DriE0rhKWxPr6e1B2G+rqd5ur2uyNqgece8kZPLxuUVcnw5o7LLKsnIiIiItIwB//Owg8nUgAAKyZ0g4etbq6D/zcm8UT3oOhW3wVG+no4kZiLLTGpYodERERERES10vLLseA3xTr4FwZ449GOTiJH1DqYxBPdh4+DOV4fpiir/+iPa0jLZ1k9EREREZHYKmtkmLnlPEoqatDD0xpvDA8UO6RWwySe6AGe7e+NXrVl9Qt3XIJczrJ6IiIiIiIxLT9wHZfSi2BtaoCvJveAgbTtpLZt550SNVNdt3pjAz2cSsrDZpbVExERERGJ5sDlTGw8dQMA8MWErnCzNhE3oFbGJJ6oCbztzfD6MEWJzvIDLKsnItI2a8IT0eODQ4jLKhE7FCIiaoGbeWVY+PslAMBLg3zwSGDbWAf/b0ziiZro2X7t0LudDcqrZHjjd5bVExFpi9LKGnxzNBH5ZVX49Wya2OEQEVEzVVTXroOvrEEvL5v6LaHbGibxRE2kpyfBZ+MVZfWnk/OwOfqm2CEREVET7I29hbIqGQAgIj5H5GiIiKi5PvzjGq5kFMPWzBBfTe7eptbB/1vbfNdEzdTO3gxv1JXV/3mdZfVERBpOEIQGF10Ts0uRXsDf3URE2mbfxVv4JUrx+/yLCV3hYtW21sH/G5N4IiVN79cOwe1sUV4lw+u/X2RZPRGRBotNK8Tft4phqK+HQGcLAEB4HGfjiYi0SUpuGRbtvAwAmPlwe4QGOIockbiYxBMpSU9Pgk/Hd4GJgRRRyfnYxLJ6IiKNtTlasaPIyC4uGNnFBQBL6omItElFtQyvbj6P0soahHjb4rUh/mKHJDom8UTN0M7eDAuHKxppLD9wHal5LM0kItI0ReXV2HfxFgBgSohX/czNqcRcVNXIxQyNiIiaaMm+q7iWWQw7M0OsntQd+m10Hfy/cQSImmla33YI8bbFnWqW1RMRaaId59NRWSNHoLMFenhao6OLJezNDVFWJcPZm/lih0dERA+wJzYDW2NSIZEAqyZ2h5OlsdghaQQm8UTNVNet3sRAiuiUfPx8+obYIRERUa1/N7Sb0scLEokEenoSDPR3AABEcF08EZFGS8wurV8HP/sRPzzkZy9yRJqDSTxRC3jameLNxxTd6j8Ji8PNvDKRIyIiIgCITslHUk4ZTA2lGNPNtf7+QXVJPNfFExFprDtVMszcfB7lVTL09bHDnMF+YoekUZjEE7XQ//XxQh+furL6SyyrJyLSAHUN7UZ3c4OFsUH9/QP9HCCRANezSpBZdEes8IiI6D7e3/s34m6XwN7cCKsmdYNUTyJ2SBqFSTxRC+npSfDpuK4wNZQiJiUfP7GsnohIVLmllQi7kgkAmBLi2eAxGzNDdHW3BgAc52w8EZHG2Xk+HdvPpkFPAqye2A2OFlwH/19M4olUoGFZ/XXcyGVZPRGRWH47m45qmYCuHtYIcrO66/HQAEVJPfeLJyLSLAm3S/D2risAgDmD/dHPl+vgG8MknkhFpoZ4oa+PHSqq5XiDZfVERKKQywVsialtaPefWfg6deviTyTkolrGreaIiDRBeVUNXt18HneqZXjI1x6zHvEVOySNxSSeSEX09CT4dHwXRVn9jXxsPHVD7JCIiNqcyMRcpOXfgaWxPkZ1cW30mC7u1rAxNUBJZQ0upBa2boBERNSod3b/jYTsUjhaGGHlRK6Dvx8m8UQq5GFrikUjOgAAPj14HSksqycialWboxSz8ON6usPEUNroMdJ/bTUXHpfdarEREVHjfj2bhh3n0xXr4Cd1h725kdghaTT9phx06dIlpU/csWNH6Os36fREOmVKsCf+vJyJU0l5eP23i9j+Ul9eSSQiagWZRXdw5LoiKb9XKX2dQf4O2BN7CxHxOXhjeGBrhEdERI2IyyrBu3sU6+DnDw1AHx87kSPSfE3Ksrt16waJRAJBaNoaXz09PcTHx8PHx6dFwRFpIz09CT4Z1wXDVx7H2ZsF2HAyBc8P4H8LRETqtv1MGmRyASHetvB1tLjvsXUz8X/fKkZ2SQW7HxMRiaCssgavbj6Himo5Bvk74JVB7cUOSSs0eao8OjoaDg4ODzxOEAQEBQW1KCgibVdXVr949xV8djAOjwQ6wsfBXOywiIh0Vo1Mjm0xaQCAKX28Hni8vbkROrtZ4XJGEY7H52J8T3d1h0hERP8iCALe3nUZSTllcLY0xhcTukKP1atN0qQkftCgQfD19YW1tXWTTjpw4ECYmJi0JC4irTclxBN/XsnEycQ8vP77JfzKsnoiIrU5ej0bWcUVsDMzxLBOTk16TmiAAy5nFCE8LptJPBFRK9t2Jg27Y29BqifBV5O7w47r4JusSY3tjh071uQEHgAOHDgAFxeX5sZEpBMkEkVZvZmhFOdqy+qJiEg9NkenAgCe6uUBI/3GG9r9V91Wc5EJuZBxW1AiolZz9VYx3tv7NwBgwdAA9G5nK3JE2kWp7vTFxcWQy+/eT1Umk6G4uFhlQRHpCncbU7z1uKJb/WcH45CUUypyREREuic1rxzHE3IAAJOD79/Q7t+6eVjD0lgfRXeqEZtWqKboiIjo30orazBry3lU1cjxcIADXhrI3lHKanISv2vXLvTq1QsVFRV3PVZRUYHevXtj3759Kg2OSBdMDvbEQ772qKyR4/XfLnK2h4hIxbaeSYUgKJrVedqZNvl5+lI9DPBTzMZHxOeoKzwiIqolCAIW7byM5NwyuFoZ44sJ3bgOvhmanMSvXbsWb7zxBkxN7/7jaGZmhoULF+Lrr79WaXBEukAikeCT8V1gbqSP86mF+PEEy+qJiFSlskaGX8/UNrR7wLZyjRkUUJvEc794IiK12xydin0Xb0FfT4KvJveAjZmh2CFppSYn8VeuXEFoaOg9Hx84cCAuX76sipiIdI6btQneri2r//wvltUTEanKwb9vI6+sCk6WRhgc6Kj08+vWxV/KKEJeaaWqwyMiolpXMoqwdP9VAMDC4YHo6WUjckTaq8lJfEFBAWpqau75eHV1NQoKClQSFJEumtjbAwP8FGX1C1hWT0SkEpujbgIAJvb2hL5UqVY/AAAnS2N0cLGEICga3BERkeoVV1RjZu06+CEdnPD8AG+xQ9JqTf5r165dO5w9e/aej589exZeXg/el5WorZJIJPh4nKKs/kJqIdZHJosdEhGRVkvMLkF0Sj70JMDEYI9mnye0tqQ+nCX1REQqJwgC3txxCTfzyuFmbYIVT3WFRMJ18C3R5CR+7NixePvtt3H79u27HsvKysLixYsxbtw4lQZHpGvcrE2wuLasfsWheCRml4gcERGR9qrbVm5wBye4WJk0+zx1JfXHE3IhZ5UUEZFK/Xz6Jg5czoKBVIJvpvSAlamB2CFpvSYn8W+++SYsLCzg5+eHV199FatWrcKqVavwyiuvwN/fH+bm5njzzTfVGSuRTni6twcG+jugqkaOBb9dYlk9EVEz3KmSYce5dADNa2j3bz29bGBupI/8sipczihSRXhERATgUnohlv2hWAe/6LEO6OZhLW5AOqLJSbyFhQVOnjyJqVOnYvv27Xjttdfw2muvYfv27Zg6dSpOnDgBCwsLdcZKpBMkEgk+HtsZFkb6iE0rxPcsqyciUtr+S7dQXFEDdxsTDKzdJq65DKR66O9rB4BbzRERqUrRHcU6+GqZgGGdnPBs/3Zih6QzlOoAY2VlhTVr1iA3Nxe3b99GVlYW8vLysGbNGtjYsLsgUVO5WpvgnZEdAQBfsKyeiEhpdaX0k0M8VbLHcGiAorM918UTEbWcIAh44/eLSMu/Aw9bE3w6nuvgVUn5Nq5QzCQ6ODjA0dGR/xhEzfRUL3eEBijK6uf/dgk1MrnYIRERaYUrGUWITSuEgVSCp3o2v6Hdv9Wti49NK0RheZVKzklE1FZtOHkDB/++DUOpHr6Z3ANWJlwHr0rNSuKJqOUkEgmWj+0MC2N9XEwrxPeRKWKHRESkFbbEKGbhh3VyhoOFkUrO6WptAn8nc8i51RwRUYvEphVi+Z/XAABvP94BXdytxQ1IB4maxC9fvhy9e/eGhYUFHB0dMWbMGMTFxTV6rCAIeOyxxyCRSLB79+77nlcQBLz77rtwcXGBiYkJhgwZgoSEBDW8A6KWcbH6p6z+y0PxSLjNsnoiovsprazBngsZAICpfVS7tW3dbDzXxRMRNU9heRVmblasg3+8swum9eUW5OogahIfERGBmTNnIioqCocOHUJ1dTWGDh2KsrKyu45duXJlk0v3P/30U6xevRrr1q1DdHQ0zMzMMGzYMFRUVKj6LRC12FM93fFwgAOqZHIs+O0iy+qJiO5j94UMlFXJ0N7BDCHetio9d926+Ij4HG41R0SkJEEQsOC3S8govAMvO1MsH9eZS6/VpEVJfEuT4rCwMEyfPh2dOnVC165dsXHjRqSmpuLcuXMNjouNjcWKFSvw448/PvCcgiBg5cqVWLx4MUaPHo0uXbrg559/xq1btx44g08kBkVZfRdFWX16Eb49zm71RESNEQShvqHdlBAvlX857NXOBqaGUuSUVOJaVrFKz01EpOvWR6bg8LXbMNRXrIO3NOY6eHVROomXy+X44IMP4ObmBnNzcyQnKxKOd955Bz/88EOLgikqUuzNamv7z5X18vJyTJ48Gd988w2cnZ0feI6UlBRkZWVhyJAh9fdZWVkhJCQEp0+fbvQ5lZWVKC4ubnAjak3OVsZ4t7asftXhBMRlsayeiOi/LqQV4lpmMYz09TCuh7vKz2+kL0W/9oqt5sLjWFJPRNRU524W4JOw6wCAd0d2RJCblcgR6Talk/hly5Zh48aN+PTTT2FoaFh/f1BQENavX9/sQORyOebOnYv+/fsjKCio/v7XXnsN/fr1w+jRo5t0nqysLACAk5NTg/udnJzqH/uv5cuXw8rKqv7m4aGaTrdEyhjf0x2PBDqiSibH67+zrJ6I6L82Rylm4Ud1dYWVqXpmeAbVldQziSciapKCsirM3nIeNXIBo7q6YkqIp9gh6Tylk/iff/4Z3333HaZMmQKpVFp/f9euXXH9+vVmBzJz5kxcuXIF27Ztq79v7969OHr0KFauXNns8zbFokWLUFRUVH9LS0tT6+sRNUYikeCjJxXd6i+xrJ6IqIHC8irsv3QLANT6BTG0trndudQCFFdUq+11iIh0gVwuYN6vsbhVVAFvezMsH8t18K1B6SQ+IyMDvr6+d90vl8tRXd28P3azZs3C/v37cezYMbi7/1Med/ToUSQlJcHa2hr6+vrQ19cHAIwbNw6hoaGNnquu5P727dsN7r99+/Y9y/GNjIxgaWnZ4EYkBmcrY7w/qhMAYOXheJbVExHV2nE+A5U1cnR0sUQ3D2u1vY6HrSl8HMwgkws4ya3miIju69vjyTgWlwOj2nXw5kb6YofUJiidxHfs2BGRkZF33f/777+je/fuSp1LEATMmjULu3btwtGjR+Ht7d3g8TfffBOXLl1CbGxs/Q0AvvzyS2zYsKHRc3p7e8PZ2RlHjhypv6+4uBjR0dHo27evUvERiWFsDzcMDnREtUzAgt8uoppl9UTUxika2t0EAEzp46n2WR5uNUdE9GBnbuTj878U24O//0QndHTlRGhrUfpSybvvvotnnnkGGRkZkMvl2LlzJ+Li4vDzzz9j//79Sp1r5syZ2LJlC/bs2QMLC4v6NetWVlYwMTGBs7Nzo7Pnnp6eDRL+wMBALF++HE8++SQkEgnmzp2LZcuWwc/PD97e3njnnXfg6uqKMWPGKPt2iVqdRCLBR2M749EvInA5owjfRiRh1iN+YodFRCSaqOR8JOeUwcxQitHd3NT+eqEBjthw8gbC43IgCAJLQ4mI/iOvtBKzt1yATC5gTDdXTOzNnmKtSemZ+NGjR2Pfvn04fPgwzMzM8O677+LatWvYt28fHn30UaXOtXbtWhQVFSE0NBQuLi71t+3btyt1nri4uPrO9gDwxhtvYPbs2XjxxRfRu3dvlJaWIiwsDMbGxkqdl0gsTpbGeP8JRVn9qiMJuM6tjoioDdtUOws/prtbq5RqhnjbwkhfD1nFFYi/Xar21yMi0iZyuYDXfr2IrOIKtHcww4dPch18a5MIgiCIHYSmKS4uhpWVFYqKirg+nkQjCAJe+PksDl/LRpCbJXa92h8GUqWvuxERabWckkr0XX4ENXIBB/43oNXKNadviEF4XA4WPRaIlwa1b5XXJCLSBt8cS8RnB+NgbKCHPTMfQoCzhdgh6Yym5qHNyggKCwuxfv16vPXWW8jPzwcAnD9/HhkZGc2LlojuUtet3srEAFcyirE2PEnskIiIWt2vZ9NQIxfQ3dO6Vddbcl08EdHdopLzsKJ2HfzS0UFM4EWidBJ/6dIl+Pv745NPPsFnn32GwsJCAMDOnTuxaNEiVcdH1KY5Whrj/Sc6AgC+OpqAa5ksqyeitkMmF7A1RrE3/JQQr1Z97dDa/eLP3MhHaWVNq742EZEmyimpxP+2XoBcAMb1cMeEXlwHLxalk/h58+Zh+vTpSEhIaLDGfMSIETh+/LhKgyMiYEw3Nwzp4MRu9UTU5hxPyEF6wR1YGutjZBeXVn1tb3szeNmZolom4FQit5ojorZNJhfw2vZYZJdUws/RHB+M6SR2SG2a0kn8mTNn8NJLL911v5ubW313eSJSHUW3+iBYmxrg71vFWHOMZfVE1DZsjlLMwo/v6QFjA2mrvz5L6omIFL4+mogTibkwMZBizZQeMDXkfvBiUjqJNzIyQnHx3SW98fHxcHBwUElQRNSQo4UxltR2q//qaAKu3mJZPRHptluFd3D0+m0AwOQQT1FiCA1QfK+p22qOiKgtOpWYi5VH4gEAy8YEwc+J6+DFpnQS/8QTT2Dp0qWorq4GoJglTE1NxcKFCzFu3DiVB0hECk90dcXQjk6okbOsnoh037YzaZALQB8fW/g6mosSQx8fOxhK9ZBReAdJOWWixEBEJKbskgr8b1ssBAGY0Msd43q6ix0SoRlJ/IoVK1BaWgpHR0fcuXMHgwYNgq+vLywsLPDhhx+qI0YiguKC2bInFWX1VzOL8c2xRLFDIiJSi2qZHNtEamj3b6aG+gjxsQUAhMdlixYHEZEYZHIBc7bGIre0EgFOFljyRJDYIVEtpZN4KysrHDp0CPv378fq1asxa9YsHDhwABERETAzM1NHjERU699l9V8fTcTft4pEjoiISPWOXMtGdkkl7M0NMayTs6ixcF08EbVVq44k4HRyHkwNpfhmSg+YGLZ+bxJqnFIdCaqrq2FiYoLY2Fj0798f/fv3V1dcRHQPT3R1xYHLmTj4920s+O0S9szsD0N9pa/HERFprM3RNwEAE3p5iP77LTTAAcv+uIbolHzcqZLxSywRtQmRCTn46mgCAGD52M6iLWuixin1l9HAwACenp6QyWTqioeIHkAikWDZmM6wMTXAtcxifM2yeiLSITfzyhCZkAuJBJgULE5Du39r72AON2sTVNXIEZWcJ3Y4RERqd7u4AnNr18FPCvbE6G5uYodE/6H05e23334bb731FvLz89URDxE1gYOFEZaMVqxLWnMsEVcyWFZPRLphS+1a+EH+DvCwNRU5GsWF00H1Xeq5Lp6IdFuNTI7ZWy8gr6wKHVws8d6ojmKHRI1QOon/+uuvcfz4cbi6uiIgIAA9evRocCOi1jGqiwuGd3Ku71ZfVcNu9USk3SprZPjtbDoAcRva/RfXxRNRW/Hl4XjEpOTD3Egfa6b0gLEBlxBpIqXWxAPAmDFj1BAGESmrrlt9zI18XM8qwddHEzBvaIDYYRERNVvYlSzkl1XBxcoYD9fOfmuC/r72MJBKcCOvHDdyy9DOno18iUj3hMdl45tjSQCAj8d1hjd/12kspZP49957Tx1xEFEz2JsbYenoTpi15QK+CU/C0E7OCHKzEjssIqJm2RytKKWf2NsT+lLNadhpbqSPXl62OJ2ch/C4bEy39xY7JCIilcosuoPXtscCAP6vjxdGdnEVNyC6L835C0lEzTKyiytGdHaGjGX1RKTFEm6XICYlH1I9CZ7u7SF2OHepWxfPknoi0jXVMjlmb7mAgvJqBLlZ4u3HO4gdEj2A0km8jY0NbG1t77rZ2dnBzc0NgwYNwoYNG9QRKxHdw9LRQbA1M8T1rJL67UCIiLRJ3Sz8kA6OcLYyFjmau4XWJvGnk/NQUc1deohId3z+VxzO3iyAhZE+vpnMdfDaQOkk/t1334Wenh4ef/xxLFmyBEuWLMHjjz8OPT09zJw5E/7+/njllVfw/fffqyNeImqEvbkRPqjrVh+ehMvp7FZPRNrjTpUMO85rXkO7fwtwsoCzpTEqquWISeEOPUSkG45cu41vI5IBAJ+O7wIvO66D1wZKr4k/ceIEli1bhpdffrnB/d9++y3++usv7NixA126dMHq1avxwgsvqCxQIrq/x7u44MBlF/xxORMLfruIvbP7w0ifV1KJSPPtu3gLJRU18LQ1xUO+9mKH0yiJRIJB/g7YfjYN4XE5GOivOY33iIiaI6PwDub/dhEAML1fOzzW2UXkiKiplJ6JP3jwIIYMGXLX/YMHD8bBgwcBACNGjEBycnLLoyMipSwd3Ql2ZoaIu12C1UdYVk9E2mFz9E0AwOQQT+jpSUSO5t7+WRfP/eKJSLsp1sGfR2F5Nbq6W2HRiECxQyIlKJ3E29raYt++fXfdv2/fPtja2gIAysrKYGFh0fLoiEgpduZG+GCMoqx+XUQyLqUXihsQEdEDXE4vwsX0IhhIJXiqp7vY4dxXf197SPUkSMopQ1p+udjhEBE126dh13E+tRCWxvr4enIPVm9qGaXL6d955x288sorOHbsGIKDgwEAZ86cwYEDB7Bu3ToAwKFDhzBo0CDVRkpETTKiswse7+KCPy4pyur3zX6Iv5iJSGNtiVHMwj8W5AI7cyORo7k/KxMD9PC0xpkbBYiIz8HUPpq5fp+I6H4OXb2N7yNTAACfPdUVHramIkdEylJ6Jv6FF15AREQEzMzMsHPnTuzcuROmpqaIiIjAjBkzAADz58/H9u3bVR4sETXNB6ODYG9uiPjbpVh1uPll9TK5gNNJedgTm4HTSXmQyQUVRklEbV1xRTX2xN4CAEwJ8RQ5mqYJDXAEAITHcas5ItI+afnlmP9rLABgxkPeGNbJWdyAqFmUnokHgP79+6N///6qjoWIVMTWzBDLxgTh5U3nsS4iCcM6OaOrh7VS5wi7kokl+64is6ii/j4XK2O8N6ojhgex8QkRtdyeCxkor5LB19Ecwd62YofTJIP8HfDZwTicSspFVY0chvpKz4cQEYmiqkaOWVsvoLiiBt08rLFweNtYBy+TC4hJyUd2SQUcLYwR7G0LqQb3X2mKZv3lSUpKwuLFizF58mRkZyuau/z555/4+++/VRocETXf8CAXjOrqCrkALPjtolL7GoddycQrm843SOABIKuoAq9sOo+wK5mqDpeI2hhBEOr3hp8S4gmJRDu+UHV0sYS9uRHKq2Q4e4NbzRGR9lj+5zVcTCuElYkBvp7cvU1chAy7komHPjmKSd9HYc62WEz6PgoPfXJU67/LKv0vFxERgc6dOyM6Oho7duxAaWkpAODixYt47733VB4gETXfkic6wd7cEAnZpVjVxG71MrmAJfuuorHC+br7luy7ytJ6ImqR86kFuJ5VAmMDPYztrtkN7f5NT0+x1RwAhMezpJ6ItEPYlUxsOHkDALDiqa5wt9H9dfC6PCmldBL/5ptvYtmyZTh06BAMDQ3r73/kkUcQFRWl0uCIqGUUZfWdAQDfRiQhNq3wgc+JScm/65fdvwkAMosqEJPCGSgiar7NUYpZ+FFdXGFlaiByNMqp32qO6+KJSAuk5pXj9d8vAQBeHOiDIR2dRI5I/XR9UkrpJP7y5ct48skn77rf0dERubm5KgmKiFRneJAznlCirD675N4JfHOOIyL6r4KyKuy/rJgBmaKFHd4H+NpDTwLE3S7BrcI7YodDRHRPlTUyzNxyHiUVNejpZYPXhwWIHVKr0PVJKaWTeGtra2Rm3l16cOHCBbi5uakkKCJSLUVZvRESs0vx5eH4+x7raGHcpHM29TiiB+EuCG3PjvPpqKqRI8jNEl3drcQOR2k2Zob1zUKPs6SeiDTYR39cw+WMItiYGuCrSd1hINX9dfCA7k9KKf2vOHHiRCxcuBBZWVmQSCSQy+U4efIkFixYgGnTpqkjRiJqIRszQ3z4ZBAA4PvjyTifWnDPY4O9beFiZYx7tZiSQNGlXls6SZNm09WGM3RvDRvaeWlNQ7v/CvXnVnNEpNn+uJSJn07fBAB88XQ3uFqbiBxR69H1SSmlk/iPPvoIgYGB8PDwQGlpKTp27IiBAweiX79+WLx4sTpiJCIVGNbJGWO6KcrqX79PWb1UT4L3RnUEgLsS+bqf3xvVUeu35iDx6XLDGbq300l5SMktg7mRPp7o6ip2OM1Wty7+ZGIuqmVykaMhImroRm4ZFu5QrIN/JbQ9Hg5wFDmi1qXrk1JKJ/GGhob4/vvvkZSUhP3792PTpk24fv06fvnlF0ilUnXESEQq8v4TneBgYYSknDJ8eejeZfXDg1ywdmoPOFs1vDrpbGWMtVN7cJ94ajFdbzhD91Y3C/9kdzeYGemLHE3zdXGzgq2ZIUoqa3D+5r2rm4iIWltFtQyvbj6P0soaBLezxfxH/cUOqdXp+qRUs/96enp6wtPTU5WxEJGaWZsa4qMnO+OFn8/i+8hkDAtyRg9Pm0aPHR7kgkc7OiMmJR/ZJRVwtFBcrdTWX3akWZRpONO3vV3rBUZqlV1SgYN/ZwEAJodo93cIPT0JBvjZY0/sLUTE5yDEh59TItIMH+y/iquZxbAzM8TqSd2h30bWwf9X3aTUkn1XG3zncLYyxnujOmr1pFSTkvh58+Y1+YRffPFFs4MhIvV7tKMTnuzuhl0XMrDgt4s48L8BMDZovIpGqidhAkVqoesNZ6hxv51NR41cQE8vG3RwsRQ7nBYLDXDAnthbCI/LwRvDA8UOh4gIe2IzsDk6FRIJ8OXT3e6qqmxrdHVSqklJ/IULFxr8fP78edTU1CAgQLFFQXx8PKRSKXr27Kn6CIlI5d4b1REnEnORnFOGLw7F460RHcQOidoYXW84Q3eTyQVsqW9op92z8HUG+jlAIgGuZhYju7gCjpa683mVyQWd+9JLpOuSckrx1s7LAIBZD/tioL+DyBFpBl2clGpSEn/s2LH6///FF1/AwsICP/30E2xsFGW4BQUFePbZZzFgwAD1RElEKmVtaojlT3bG83Vl9Z2c0dOr8bJ6InWoaziTVVTR6Lp4CRTlbtracIbudjw+BxmFd2BtaoARnbW3hPHf7MyN0NnNCpfSixARn4OnenmIHZJKhF3JvKv81EUHyk+JdMG9LrBVVMswc/N5lFXJ0MfHFnOHtL118G2J0gskVqxYgeXLl9cn8ABgY2ODZcuWYcWKFSoNjojUZ0hHJ4zt7gbhAd3qidRB1xvO0N02Ryu2ORrfw/2eS3i0UWjtTFe4juwXz10jiDTX/bZlfX/v37ieVQJ7c0Osntidfz91nNJJfHFxMXJy7v5DlZOTg5KSEpUERUSt471RneBoYYTk3DJ8fjBO7HCojeEuCG1HRuEdHL2eDQCYpCOl9HXqtpo7kZCLGi3fao67RhBprvtdYHt503lsO5MGiQRYNbG7Ti3tocYp3Z3+ySefxLPPPosVK1YgODgYABAdHY3XX38dY8eOVXmARKQ+VqYGWD62M2b8dBY/nEzB8CBn9GrH8mVqPbracIYa2haTCrkA9Gtvh/YO5mKHo1Jd3a1hZWKAojvVuJheiJ5e2vs7lLtGEGmmplxgA4DZD/uiv699a4VFIlJ6Jn7dunV47LHHMHnyZHh5ecHLywuTJ0/G8OHDsWbNGnXESERqNLiDE8b1cFeU1f9+CXeqWFZPrauu4czobm7o296OCbyOqZbJse1MGgBgSoiXyNGonr5UDw/5Kb40R8Rpd0k9d40g0kwPusBWJ8SbF9faCqWTeFNTU6xZswZ5eXm4cOECLly4gPz8fKxZswZmZmbqiJGI1OzdUR3hZGmElNwyfP4Xy+qJSHUOX72NnJJK2Jsb4dGOTmKHoxa6si6eu0a0XHpBOc6nFqBay5dWkGZp6oWz3LJKNUdCmkLpcvo6ZmZm6NKliypjISKRWJkY4OOxXfDsxjP4sbasvjfL6olIBTbXbiv3dG93GOorPXegFQbVJvGX0ouQW6q4YKGNuGtEy5RV1uCJr08iv6wKFkb66O9rj0EBDhjk7wBXaxOxwyMtxgts9F9N+ms6duxYFBcXN/mkU6ZMQXZ2drODIqLW93CgI8b3dK/vVs+yeiJqqZTcMpxIzIVEAkzsrVsN7f7N0dIYHV0sAQCRCdo7G89dI1pmd2wG8suqAAAllTUI+zsLi3ZeRr+Pj2LolxH48I+rOJmYi8oa/n0l5dRdYLvXf3kSKLaB5AW2tqNJSfyePXuQk5OD4uLiB96Kioqwb98+lJaWqjt2IlKxd0Z2hLOlMW7kleMzdqsnohbaGqOYhQ/1d4CHranI0ahXaG2Xem1fF89dI5pHEARsilJ83hc9Fog9M/vjtSH+6OFpDT0JEH+7FN9HpmDK+mh0W3IIMzaewS+nbyA1r1zkyEkbSPUkeHdkh0YrZOrwAlvb0qRyekEQ4O/vr+5YiEhkViYGWD6uM57dcAYbTinK6nlVl4iao6Jaht/O6m5Du/8a5O+ANeFJOJ6QC7lcgJ4Wf5nmrhHKO59aiGuZxTDU18OEXh6wMTNEVw9rzBnih8LyKkQm5CIiPgcR8TnIKanEkevZOHI9G8Df8LY3wyB/BwwKcEBfHzsYG0jFfjukAQRBwI28ckQl5yE6OQ9RyfmNHudiZYz3RnXkBbY2pklJ/LFjx5Q+sZubm9LPISLxPRzgiKd6uuO3c+l44/eLODBnAEwNm90+g4jaqLArWSgor4arlTEeDnQUOxy16+FlAwsjfeSXVeFyRhG6eliLHVKL1O0aQU2zOeomAGBkFxfYmBk2eMza1BCjurpiVFdXCIKAq5nFioQ+LgfnbhYgJbcMKbll2HjqBoz09RDiY4dB/g4IDXCAj70ZJBJePGkLBEFAcm5ZbdKej6jkPGSXNGxUZyjVQ1cPK7jbmKKLuxUCnS15ga2NatI380GDBqk7DiLSIItHdkRkQi5u5JXj07A4vP9EJ7FDIiItszlakdRMDPZsE18wDaR66O9rj7C/sxAel6P1STw1XUFZFfZfzgQATO1z/6oTiUSCTq5W6ORqhVdDfVFcUY1TiXm1SX02bhVV4Hh8Do7H5+CD/YC7jUltQu+Ivu3tYG7Ei+q6QhAEJGaXIiolvz5xzy39T9Kur4fuHtYI8bFDHx9b9PC0YaUGAWhBd3oi0l1WJgb4eFxnTN9wBhtP3cBjQc4I8eGMDBE1TVxWCc7cKIBUT4KJvT3EDqfVhAY4KJL4+GzMGeIndjjUSn4/l46qGjk6uliiu5IXbyyNDTA8yBnDg5zrk7qI+ByEx+UgJiUf6QV3sDk6FZujU2EglaCXly1CAxSl9wFOFpyl1yJyuYCE7FJEp+QhKjkPMSn5yC2tanCMkb4eenjaIMTHFn187NDNw5pJOzVK1CR++fLl2LlzJ65fvw4TExP069cPn3zyCQICAuqPeemll3D48GHcunUL5ubm9ccEBgbe87zTp0/HTz/91OC+YcOGISwsTG3vhUjXhAY44uleHth+Ng3zfr2IXa/2g6Mlty4hogfbUjsLP7SjU5v6vTGotrndxbRCFJRV3VVWTbpHLhfqq06m9vFqUVItkUjg52QBPycLPD/AB+VVNYhKzkN4nCKpT80vx+nkPJxOzsPyP6/D2dK4fi19f197WJkYqOptkQrI5QLibpfUr2ePuZFfv3tBHWMDPfT0skGItx36+Nihq4cVjPSZtNODiZrER0REYObMmejduzdqamrw1ltvYejQobh69SrMzMwAAD179sSUKVPg6emJ/Px8vP/++xg6dChSUlIgld77Qz58+HBs2LCh/mcjI+3cs5VITG+P7IDolDzcyCvHMxvOYPtLfWBpzC8JRHRv5VU12Hk+A0DbaGj3by5WJghwskDc7RJEJubiia6uYodEanYySbH0zNxIH6O7qfbf29RQH48EOuGRQCcAwI3cMoTHZSMiPgenk/OQVVyB7WfTsP1sGqR6EvTwtFYk9f6O6ORqqdXNFbWRXC7gWlZx/Xr2mBv5KCyvbnCMiYEUvdrZIMRbMdPexd0ahvpN2iyMqAGJIAj3262gVeXk5MDR0REREREYOHBgo8dcunQJXbt2RWJiItq3b9/oMdOnT0dhYSF2797drDiKi4thZWWFoqIiWFpaNuscRLoiNa8cY9eeQm5pJfr42GLjs8Es7SKie9p+JhULd1xGOztTHJ0f2uYSiY8OXMN3x5Mxroc7VkzoKnY4pGYv/XIWB/++jWl9vbB0dFCrvW5FtQwxKfn1He8Tsxtu7WxvboiBfopZ+gF+DrBlVYjKyeQCrmUWI6p2pv3MjXwU3WmYtJsaStGrnW190t7ZzYpJO91XU/PQZs3E19TUIDw8HElJSZg8eTIsLCxw69YtWFpawtzcvNlBFxUVAQBsbRvf0qqsrAwbNmyAt7c3PDzuv8YuPDwcjo6OsLGxwSOPPIJly5bBzq7xNb2VlZWorPynkURxcXEz3wGR7vG0M8XGZ3tj4ndRiErOx7xfY/HVpB5tolEVESlvc7Rir+zJIZ5tLoEHgFB/B3x3PBkR8Tlav9Uc3V9WUQUOX8sG8OCGdqpmbCDFQH8HDPR3wDsA0vLLcTxB0fH+ZGIuckursPNCBnZeyIBEAnRxt67veN/V3Zp/w5uhRibH1cyGM+0lFTUNjjEzlKK3t21tebwtgtysYCBl0k6qp/RM/M2bNzF8+HCkpqaisrIS8fHx8PHxwZw5c1BZWYl169Y1KxC5XI4nnngChYWFOHHiRIPH1qxZgzfeeANlZWUICAjAH3/8cc9ZeADYtm0bTE1N4e3tjaSkJLz11lswNzfH6dOnGy3Bf//997FkyZK77udMPNE/TiXmYvqGM6iSyTGtrxeWPNGJDXWIqIFL6YV44uuTMJTqIeqtwW1y9q+yRobuSw+hvEqG/bMfQpCbldghkZp8eSgeq44kILidLX59ua/Y4dSrqpHj3M2C2gZ52bieVdLgcSsTAwzws0dogCMG+tvD0aLt9K1QRo1Mjiu3imvXtOfh7I0ClFQ2TNotjPRrk3bFTHsnV0voM2mnFmjqTLzSSfyYMWNgYWGBH374AXZ2drh48SJ8fHwQHh6OF154AQkJCc0K+JVXXsGff/6JEydOwN3dvcFjRUVFyM7ORmZmJj7//HNkZGTg5MmTMDZu2i+d5ORktG/fHocPH8bgwYPveryxmXgPDw8m8UT/sf/SLczeegGCAMx/1B+zB7P7MhH9480dl7DtTBrGdHPFyondxQ5HNM//dBaHr93G68MCMPNhX7HDITWolsnx0CdHcbu4EqsmdsPobm5ih3RPt4sr6velj0zIQfF/Zo87ulgqOt77O6CHl02bnTmulslxOaOofqb97I18lFXJGhxjYayPkPqZdjt0dLVkVQOplNrK6SMjI3Hq1CkYGja8ut6uXTtkZGQoHymAWbNmYf/+/Th+/PhdCTwAWFlZwcrKCn5+fujTpw9sbGywa9cuTJo0qUnn9/Hxgb29PRITExtN4o2MjNj4jqgJRnZxRW5JJd7fdxUrDsXDwcIIE4M9xQ6LiDRAcUU19sTeAgBMaeXSYk0TGuCAw9duIyIuh0m8jjpy7TZuF1fCzswQw4OcxQ7nvpwsjTGhlwcm9PJAjUyOi+mFCI9TrKW/lF6Eq5nFuJpZjDXhSbAw0kd/X3sMqk3qXa1NxA5fbapq5LicUYio2qT93M0ClP8nabcyMUDwv2baO7gwaSfNoHQSL5fLIZPJ7ro/PT0dFhYWSp1LEATMnj0bu3btQnh4OLy9vZv0HEEQGsycP0h6ejry8vLg4uKiVHykW2RyATEp+cguqYCjhTGCvW35i7gZpvf3Rk5pJb45loS3dl2GnbkRHu3oJHZYRCSy3RcycKdaBn8nc/TyshE7HFEN8ldsNXcutQBFd6q59ZcO2hSl6P0wobeHVm0Jpi/VQ08vW/T0ssX8oQHILa1EZO1a+uMJucgvq0LY31kI+zsLAODvZF67lt4RvdrZaNV7/a/KGhkupRfVb/l27mYB7lQ3zGmsTQ0azLQHOluwrwVpJKWT+KFDh2LlypX47rvvACj2tCwtLcV7772HESNGKHWumTNnYsuWLdizZw8sLCyQlaX4hWFlZQUTExMkJydj+/btGDp0KBwcHJCeno6PP/4YJiYmDV4rMDAQy5cvx5NPPonS0lIsWbIE48aNg7OzM5KSkvDGG2/A19cXw4YNU/btko4Iu5KJJfuuIrOoov4+FytjvDeqI4YH8eKOshYMDUBOSSV+PZuOWVvOY/PzIejVrvGGlESk+wRBwObapGZKSMv2ytYFHramaO9ghqScMpxKzMVjnfl3Rpek5JbhRGIuJBJgspZXo9mbG+HJ7u54srs75HIBlzOK6jveX0gtQPztUsTfLsX3kSkwMZCiX3u72tJ7R3jamYod/n1V1sgQm1qI6BTFTPv51AJUVMsbHGNrZlibtNuiT3s7+DsyaSftoPSa+LS0NAwfPhyCICAhIQG9evVCQkIC7O3tcfz4cTg6Ojb9xe/xR37Dhg2YPn06bt26heeffx7nzp1DQUEBnJycMHDgQLz77rsICAhocJ6659y5cwdjxozBhQsXUFhYCFdXVwwdOhQffPABnJyaNlvILeZ0S9iVTLyy6Tz++0Gv+/StndqDiXwz1MjkeOmXczhyPRuWxvr4/ZV+8HdSrhqHiHTDmRv5eGrdaZgYSBH99mBYGnPmeem+q/jxZAqe7uWBT8Z3ETscUqFl+69i/YkUhAY4YOOzwWKHozaF5VU4kZiLiNrS++yShlWw3vZmin3pAxzQx9sOJobiztJXVMtwIbUQUcl5iE7Jw/nUQlTVNEza7cwM0cfHDiE+ivJ4XwdzJu2kUdTW2A5QbDG3fft2XLx4EaWlpejRowemTJkCExPdWDfDJF53yOQCHvrkaIMZ+H+TAHC2MsaJhY+wtL4Z7lTJMGV9FM6nFsLFyhg7Xumn0+vniKhxc7ddwO7YW0xY/+V4fA6m/RgDZ0tjnF70SJuvTtAVFdUyhHx0BEV3qrF+Wi8MaSPLyQRBwLXMkvqO9+duFqBG/k8KYaSvhxAfO0VS7++A9g5mav/MV1TLcP5mAaJqZ9pj0+5O2u3NjdDHxxYhPnbo62OL9g7m/G+RNJpakvjq6moEBgZi//796NChg0oC1URM4nXH6aQ8TPo+6oHHbX2hD/q2t2uFiHRPYXkVxq87jcTsUvg6muP3l/vC2rTtbStF1Fbll1Whz0dHUCWTY++s/ujibi12SBqholqGbkv/QkW1HGFzByDQmd8ndMHv59Kx4LeLcLM2wfE3Hm6zEwAlFdU4lZSnaJAXl41b/5kscbcxqU/o+/naw9xI6RW8dymvqsH5m4WITlFs+XYxrQhVsoZJu6OFUYOZdh979V9MIFIltXSnNzAwQEVF4zOaRJoou6Rpn9emHkd3szY1xM/PBWPsmlNIzC7FcxvPYPPzfUQvqyOi1vH7uTRUyeTo7GbFBP5fjA2k6Otjh2NxOQiPy2ESryM2Rd0EAEwK9mizCTwAWBgbYFgnZwzr5AxBEJCUU1rf8T46OR/pBXewOToVm6NTYSCVoJeXLQYFOCA0wAEBThZNSqzLKmtw7mZBbdKej0vphaiWNZx7dLY0rp9p7+Njh3Z2pkzaqU1Q+rLYzJkz8cknn2D9+vXQ12/5VTUidXK0MFbpcdQ4V2sT/DwjGOPXnsL51ELM2nIe3/5fT+i30b1midoKuVzAlui6hnba3eBLHQb5O+BYnKLz98uD2osdDrXQlYwixKYVQl9Pggm9Pe56vK3ugiORSODraAFfRws8P8AH5VU1iErOQ0RcDsLjc3Azrxynk/NwOjkPH/95HU6WRvUd7/v72tfv3lBaWYOzN/IRlZyP6JQ8XE4valCyDwCuVsYNZto9bZm0U9ukdBZ+5swZHDlyBH/99Rc6d+4MMzOzBo/v3LlTZcERtVSwty1crIyRVVRxV2M74J818cHe7KzeUv5OFvhxem9MWR+NI9ez8dauy/hkXBf+cSXSYaeS8nAjrxwWRvoY1dVV7HA0TmiAI7DvKs7ezEdpZY1KSopJPJtrL1gNC3K+6+I/d8H5h6mhPh4JdMIjgYp+ATdyy+rX0p9OzsPtYsXuNr+eTYdUT4LuHtaolgu4klEE2X+Sdjdrk/qkva+PHdxtTPi9ggjNSOKtra0xbtw4dcRCpHJSPQneG9URr2w6DwnQIJGv+xPw3qiObeJKeWvo1c4WX0/ugZd+OYtfz6bDwcIIrw8LFDssIlKTzdGK0uIne7jBjAnqXdrZm8HLzhQ388pxKjEXQzs5ix0SNVNJRTX2xGYAAKaGeDV47F674GQVVeCVTefb/C447ezN0M7eDM/0a4eKahnO3MivL71PzC7F2ZsF9cd62JrU79Ee4m0LD1vN3saOSCxK/8XdsGGDOuIgUpvhQS5YO7XHXVfIndvoFXJ1e7SjEz56sjPe3HkZ3xxLgoO5Eab39xY7LCJSsdvFFfjr6m0Air3hqXGh/g746fRNhMfnMInXYrsuZKC8SgZfR3P08fmnek8mF7Bk39VGq/0EKCYMluy7ikc7OnPCAIpeEQP8HDDAzwHvAEgvKMepxDzoSyUI8bGDG3e4IWoSXjanNmF4kAse7ejcJteqiWFisCdySiqx4lA8luy/CnsLI4zswlJbIl3y65k0yOQCerezQYCzhdjhaKzQAEf8dPomIuJyIAgCS4G1kCAI9Q3tpoR4Nvg3jEnJv+c2toAikc8sqkBMSj53wWmEu40pJvTmbDuRspRO4r29ve/7Byg5OblFAVHTtNXmKS0h1ZPwD2grmvWIL3JKK/Hz6ZuYt/0ibE0N0c/XXuywiEgFZHIBW2PqGtpxFv5++vjYwVBfDxmFd5CUUwpfR17w0DZnbhQg/nYpTAykGNvDvcFj3AWHiMSgdBI/d+7cBj9XV1fjwoULCAsLw+uvv66quOg+2DyFtIFEIsF7ozoht7QSBy5n4cVfzmHbi30Q5GYldmhE1ELhtftC25gaYHgQS8Tvx8RQihBvW0Qm5CI8LodJvBaqm4V/oqtrfSf1OtwFh4jEoHQSP2fOnEbv/+abb3D27NkWB0T3x+YppE2kehJ8MaEb8stiEJWcj+kbzmDnK/3gacfSOSJtVtel+6leHjA2kIocjeYb5O+AyIRcRMTn4PkBPmKHQ0rILa3En1cyAQBT+9xddcJdcIhIDCrbxPmxxx7Djh07VHU6asSDmqcAiuYp/92eg0hMxgZSfDetFzq4WCK3tBLTfoxGbmml2GERUTOlF5TjWFw2AGBSMPeGb4rQAEcAQHRyPsqrakSOhpTx69k0VMsEdHW3Qmf3uyvJ6nbBAf7Z9aYOd8EhInVRWRL/+++/w9aWVxnVSZnmKUSaxNLYAD892xvuNia4kVeOZzecQWklv8gSaaNtMWkQBOAhX3t425uJHY5WaO9gBjdrE1TJ5IhKzhM7HGoimVzAltqqkymNzMLXqdsFx9mqYcm8s5UxKyQfQCYXcDopD3tiM3A6KY8TUURNpHQ5fffu3Rs0thMEAVlZWcjJycGaNWtUGhw1xOYppM0cLY3x83PBGL/uNC5nFOHlX87hx+m9YaivsmuJRKRm1TI5tp1JA6Do0k1NI5FIEBrggM3RqQiPy8EjgU5ih0RNcDw+B+kFd2BprI9RD9hhhbvgKI89noiaT+kkfvTo0Q2SeD09PTg4OCA0NBSBgYEqDY4aYvMU0nY+DubYML03Jn0fhROJuVjw20WsfLob9Pglh0grHLp6G7mllXCwMMKQjkxElTHIX5HER8TniB0KNVFdQ7vxPT1gYvjg3g/cBafp2OOJqGWUTuLff/99NYRBTcHmKaQLunpYY+3Unpix8Qz2XrwFe3MjvDOyA/dOJtICm6MVSc3E3h4wkLKKRhn9fO1hIJXgZl45UnLLuBRBw6UXlONobe+Hyaw6UakH9XiSQNHj6dGOzqxkILoHpf8CS6VSZGdn33V/Xl4epFJ2qFUnNk8hXTHI3wGfP9UVAPDjyRR8ezxZ5IiI6EGSc0pxMjEPehJgIhvaKc3cSB+92ykuskfE3f09ijTL1phUCALQ18cOvo7mYoejU9jjiajllE7iBaHxhhOVlZUwNDRscUB0f2yeQrpiTHc3vD2iAwDg4z+vY8e5dJEjUg026SFdtTVG0eDr4QBHuFmbiByNdhrk7wAACGdJvUarqpFje23vh8a2laOWYY8nopZrcjn96tWrASias6xfvx7m5v9clZTJZDh+/DjXxLcSNk8hXfHCQB/klFbiu+PJeGPHJdiaGeLhQEexw2o2NukhXVVRLcNvtRfapvThLHxzhQY4Yvmf1xGVnIeKahmMDVjBqIkO/p2F3NIqOFgYYWgn9n5QNfZ4Imq5JifxX375JQDFTPy6desalM4bGhqiXbt2WLduneojpEaxeQrpijeHByKnpBK7LmTg1c3nseWFEHT3tBE7LKWxSQ/psgOXM1FYXg03axMM8te+C20yuaARF779nczhbGmMrOIKRKfk18/Mk2Zh7wf1Yo8nopZrchKfkpICAHj44Yexc+dO2Nho35dsItI8enoSfDq+C/LKqnA8PgfPbTyD317up1VrENmkh3Td5tq9sicFe2jdZ1iTKmTqtprbdiYN4XHZTOI1UGJ2CaKS86EnASax94Na1PV4emXTeUiABn872eOJqGmUvrx47NgxJvBEpFIGUj2sndIDXd2tUFBejWd+jEHWfZreaBo26SFddi2zGOduFkBfT4IJvTzEDkcpdRUy//3vs65CJuxKZqvHVJe4c6s5zbQpSnHB6pFAJ7iy94PasMcTUcsovcUcAKSnp2Pv3r1ITU1FVVVVg8e++OILlQRGRG2LmZE+fpzeG+PXnUZKbhme+TEGv77cF1YmBmKH9kBs0kO6bEvtLPzQTk5wtNSeNaqaWiHT388eUj0JknPKkJZfDg9b01Z7bbq/8qoa7Div6P0wlb0f1I49noiaT+kk/siRI3jiiSfg4+OD69evIygoCDdu3IAgCOjRo4c6YiSiNsLO3Ag/PxeMsWtPIe52CV746Sx+nhGs8c2f2KSHdFVZZQ12XcgAAEwJ0a4u3cpUyLRmjxlLYwP09LRBzI18hMfn4P/Y/Vxj7Lt4CyUVNfC0NcVAPy51aA3s8UTUPEqX0y9atAgLFizA5cuXYWxsjB07diAtLQ2DBg3CU089pY4YiagN8bA1xU/PBsPCSB8xN/IxZ9sFjd+mra5Jz73mDiRQrMFlkx7SNnsv3kJpZQ287c3Q10e7vmhrcoXMoIDaknruF69R6krpJ4d4Qo+zwUSkwZRO4q9du4Zp06YBAPT19XHnzh2Ym5tj6dKl+OSTT1QeIBG1PR1dLfHdtF4wlOrh4N+38c6eKxAEzU3k65r0ALgrkWeTHtJWgiBgU5SiS/fkYO1LajS5QqZuXfyppDxU1sha/fXpbhfTCnE5owiGUj081dNd7HCIiO5L6STezMysfh28i4sLkpKS6h/Lzc1VXWRE1Kb1bW+HlRO7QSJRrMlddSRB7JDui016SNdcSi/C37eKYaivh/FamNRocoVMJ1dLOFgYobxKhrM3Clr99eludResRnR2hp25kcjREBHdn9Jr4vv06YMTJ06gQ4cOGDFiBObPn4/Lly9j586d6NOnjzpiJKI2akRnFywdHYR3dl/BysMJsDc3wlQNXj/KJj3UGlprz/O6vbJHdnaBjZmhys+vbpq8jZVEIsEgfwf8fi4dEfE56O9r3+ox0D+Kyqux79ItANDovzFERHWUTuK/+OILlJaWAgCWLFmC0tJSbN++HX5+fuxMT0Qq9399vJBTXIHVRxPx7p4rsDc3wvAgZ7HDuic26SF1aq09z4vuVGPvRUVSM0WLu3TXVcj8d8ycRdon/t/qkvjwuGy8NaKDaHEQ8Pv5dFRUyxHobIGeXtxGmYg0n1JJvEwmQ3p6Orp06QJAUVq/bt06tQRGRFTntUf9kVNaia0xafjftgv45blghGhZky2ilqrb8/y/3SHq9jxX5bKNXf9Kanp4andSo6kVMgP87KEnAeJvl+JW4R3uSS4SQRDqq06m9PGCRMLKKSLSfEqtiZdKpRg6dCgKCrh+i4haj0QiwQejg/BoRydU1cjx/M9ncT2rWOywiFrNg/Y8BxR7nqtiJwdFUqPo0j0lxFMnkpq6CpnR3dzQt72d6Ak8AFibGqKbhzUAICI+R9xg2rDTSXlIzimDmaEUT3Z3EzscIqImUbqxXVBQEJKTk9URCxHRPelL9fDVpO7o3c4GJRU1eObHGKQXlIsdFlGrUGbP85Y6c6MACdmlMDWUYgyTGrUKDXAEAIRzqznRbKqdhR/d3Q3mRkqvMiUiEoXSSfyyZcuwYMEC7N+/H5mZmSguLm5wIyJSF2MDKdZP6w1/J3PcLq7EtB9jkF9WJXZYRGrXmnue15UWj+7mCgtjgxafj+6tbqu5k4l5qJbJRY6m7ckursBff98GAEwNYUM7ItIeSifxI0aMwMWLF/HEE0/A3d0dNjY2sLGxgbW1NWxstHvdHBFpPitTA/z0XDBcrYyRnFOGZzeeQXlVjdhhEalVa+15nldaiT8vZwEAJgczqVG3zm5WsDUzRGllDc7d5FLF1rbtTBpq5AJ6eFqjo6ul2OEQETWZ0nVDx44dU0ccRERN5mJlgp9nBGP8utO4mFaIVzefx/fTesFAqvR1SSKtULfneVZRRaPr4iVQdFxv6Z7nv59LR5VMjq7uVujsbtWic9GD6elJMNDPHrtjbyEiPgd92LCz1dTI5Ngao+j9wG3liEjbKJ3EDxo0SB1xEBEpxdfRAj880xtT1kchPC4HC3dcwoqnuupEEy6i/2qNPc/lcgFbYuoa2jGpaS2hAY7YHXtL8XtseKDY4bQZx+JykFlUARtTA4zoLN5Wg0REzdGsaavIyEhMnToV/fr1Q0ZGBgDgl19+wYkTJ1QaHBHR/fT0ssE3k3tAqifBzvMZ+DjsutghEalN3Z7nzlYNS+adrYxVsr3cyaRc3Mwrh4WxPkZ2ZVLTWgb42UMiAa5lFuN2cct7GlDTbIpS9H54qpcHjA2kIkdDRKQcpZP4HTt2YNiwYTAxMcH58+dRWVkJACgqKsJHH32k8gCJiO5ncAcnLB/bGQDwbUQyfjiRInJEROozPMgFJxY+gq0v9MGqid2w9YU+OLHwEZXsD1+X1Izr4Q5TQ3bpbi125kbo4qZYusCt5lpHal45jicoxnpysKfI0RARKa9Z3enXrVuH77//HgYG/3St7d+/P86fP6/S4IiImmJCLw+8PiwAAPDB/qvYE5shckRE6qOOPc+ziipw+Jpim7PJIUxqWtug2q3mmMS3js0xNyEIiiqIdvZmYodDRKQ0pZP4uLg4DBw48K77raysUFhYqIqYiIiU9mpoe0zv1w4AsOC3i4hM4JdhoqbafiYNMrmA4Ha28HeyEDucNqduq7nI+BzUcKs5taqskeG3s+kA2NCOiLSX0km8s7MzEhMT77r/xIkT8PHxUUlQRETKkkgkeHdkR4zs4oJqmYCXfzmHy+lFYodFpPFqZHJsO1Pb0K4PZ+HF0M3DGlYmBiiuqMHF9EKxw9Fpf17OQn5ZFVysjDE40FHscIiImkXpJP6FF17AnDlzEB0dDYlEglu3bmHz5s1YsGABXnnlFXXESETUJHp6EqyY0BX9fe1QViXD9A0xSMktEzssIo1W16Xb1swQw4OcxQ6nTZLqSTDAzx4AEB7HKiJ1quv9MLG3J/S5LSkRaSmlf3u9+eabmDx5MgYPHozS0lIMHDgQzz//PF566SXMnj1bHTESETWZkb4U66b2RCdXS+SVVWHaj9HILmHHZ6J72Rxd26W7pzuM9NmlWyyhtevimcSrz/WsYpy9WQCpngQTgz3EDoeIqNmUbj8rkUjw9ttv4/XXX0diYiJKS0vRsWNHmJubqyM+ugeZTIbIyEhkZmbCxcUFAwYMgFTKL1/3wzFTnraOmYWxATY+G4xxa08hNb8c0388g+0v9YGFscGDn9xC2jpmYuKYKUeV45WWX17fTG2SDnfp1obP2EB/xUz85Ywi5JZWwt7cSNR4tGHMlFU3Cz+0oxOcLI0fcLTydHHM1I1jpjyOmfJ0csyEFkhNTRVSU1NbcgqNVFRUJAAQioqKxA6lUTt27BDc3d0FAPU3d3d3YceOHWKHprE4ZsrThTFLySkVen7wl+C1cL8w6bvTQkV1jVpfTxfGrLVxzJSj6vH65M9rgtfC/cLU9VEqjlRzaNNnbMSq44LXwv3CjnNposahTWPWVCUV1ULHd/4UvBbuF04k5Kj8/Lo4ZurGMVMex0x52jZmTc1DlU7iq6urhcWLFwuWlpaCnp6eoKenJ1haWgpvv/22UFVV1eyANYkmJ/E7duwQJBJJgw8iAEEikQgSiURjP5Bi4pgpT5fG7FJaYf0Xt1c3nxNkMrlaXkeXxqy1cMyUo+rxqqyW1V/k+vNyppqiFpe2fcbqLqr8b+t50WLQtjFrql9O3xC8Fu4XHv7smCCXq/bvgK6OmTpxzJTHMVOeNo5ZU/NQiSAIQtPn7YFXXnkFO3fuxNKlS9G3b18AwOnTp/H+++9jzJgxWLt2rTKn00jFxcWwsrJCUVERLC0txQ6nnkwmQ7t27ZCent7o4xKJBO7u7khJSdH+EhEV4ZgpTxfH7ERCLp7dGINqmYDp/drhvVEdIZG0fG/tOro4ZurGMVOOOsZr/6VbmLXlApwsjXBi4SMw0LEmX9r4GYtJyceEb0/DxtQAZxc/Cqme6n5PNYU2jllTCIKAx1ZF4npWCRY/3gHPD1Ddbkq6OmbqxDFTHsdMedo6Zk3NQ5X+i71lyxZs3LgRL730Erp06YIuXbrgpZdewg8//IAtW7Yoda7ly5ejd+/esLCwgKOjI8aMGYO4uLgGx7z00kto3749TExM4ODggNGjR+P69ev3Pa8gCHj33Xfh4uICExMTDBkyBAkJCcq+VY0TGRl5zw8ioHjfaWlpiIyMbMWoNBvHTHm6OGYP+dljxYRuAICNp25gTXiSSs+vi2Ombhwz5ahjvDZHKbaVe7q3p84l8IB2fsZ6eFrDwlgfBeXVuJzR+ltkauOYNcX51AJczyqBkb4exvd0V+m5dXXM1IljpjyOmfJ0fcyU/qttZGSEdu3a3XW/t7c3DA0NlTpXREQEZs6ciaioKBw6dAjV1dUYOnQoysr+2RKqZ8+e2LBhA65du4aDBw9CEAQMHToUMpnsnuf99NNPsXr1aqxbtw7R0dEwMzPDsGHDUFGh3R2qMzMzVXpcW8AxU56ujtkTXV3x7siOAIDPDsbh1zNpKju3ro6ZOnHMlKPq8UrMLsXp5DzoSYCJvXWzS7c2fsb0pXp4yLduq7nsVn99bRyzpthUe8FqZBdXWJsq9131QXR1zNSJY6Y8jpnydH3MlE7iZ82ahQ8++ACVlZX191VWVuLDDz/ErFmzlDpXWFgYpk+fjk6dOqFr167YuHEjUlNTce7cufpjXnzxRQwcOBDt2rVDjx49sGzZMqSlpeHGjRuNnlMQBKxcuRKLFy/G6NGj0aVLF/z888+4desWdu/erezb1SguLi4qPa4t4JgpT5fH7LmHvPHyoPYAgEW7LuPItdsqOa8uj5m6cMyUo+rx2hqjSGoeCXSCq7VJs+PSZNr6GQsNcACA+l0DWpO2jtn95JdV4Y9Lii/pU/uofgcGXRwzdeOYKY9jpjxdHzOl18Q/+eSTOHLkCIyMjNC1a1cAwMWLF1FVVYXBgwc3OHbnzp1KBZOYmAg/Pz9cvnwZQUFBdz1eVlaGxYsXY8+ePbh+/XqjM//Jyclo3749Lly4gG7dutXfP2jQIHTr1g2rVq266zmVlZUNLkoUFxfDw8NDY9fEZ2RkoLF/Nk1d2yEmjpnydH3MBEHAgt8uYcf5dBgb6GHz8yHo6WXbonPq+pipA8dMOaocr4pqGUI+OoKiO9XY8GxvPFy7P7mu0dbPWGbRHfRdfhQSCXB+8aOwMVPtzPH9aOuY3c93x5Pw0YHr6ORqif2zH1JpPxRAN8dM3ThmyuOYKU9bx0xta+Ktra0xbtw4jBw5Eh4eHvDw8MDIkSMxduxYWFlZNbgpQy6XY+7cuejfv/9dCfyaNWtgbm4Oc3Nz/Pnnnzh06NA9S/ezsrIAAE5OTg3ud3Jyqn/sv5YvX94gbg8PzSwtlEql9Rch/vtHqO7nlStXatQHUWwcM+Xp+phJJBJ8PK4zHg5wQEW1HM9tPIuE2yUtOqeuj5k6cMyUo8rx+uNSJoruVMPdxgQD/RxUH6yG0NbPmIuVCQKdLSAIQGRibqu+traO2b3I5QI2RyuqTqb28VJ5Ag/o3pi1Bo6Z8jhmytP5MVNNM/yWe/nllwUvLy8hLe3uvVELCwuF+Ph4ISIiQhg1apTQo0cP4c6dO42e5+TJkwIA4datWw3uf+qpp4QJEyY0+pyKigqhqKio/paWlqaxW8wJQuP7HXp4eGjkNgmagmOmPF0fs7LKamH01ycEr4X7hT4fHRZuFZa3+Jy6PmbqwDFTjirG68lvFJ/7r48mqDFSzaGNn7GP/rgqeC3cL7y2/YIor6+NY9aYiLhswWvhfiHo3TChrLJara+lK2PWmjhmyuOYKU/bxkxtW8ypw6xZs7Bnzx4cP34c3t7e9z22qqoKNjY2WL9+PSZNmnTX480pp/8vTd1i7t9kMhkiIyORmZkJFxcXDBgwQHuvJLUSjpnydH3M8suqMH7dKSTnlMHP0Ry/vdy3xU2PdH3M1IFjppyWjNfVW8UYsToS+noSnF40GA4WRmqOVjNo22fsVFIuJn8fDXtzQ8S8NQR6rbzVHKB9Y9aYF38+i7+u3sYzfb2wZPTdyzRVTRfGrLVxzJTHMVOeNo1ZU/NQpZP4vLw8vPvuuzh27Biys7Mhl8sbPJ6fn9/kcwmCgNmzZ2PXrl0IDw+Hn5/fA59TWVkJGxsbrFmzBtOnT2/0nK6urliwYAHmz58PQDEYjo6O2LhxIyZOnPjA19CGJJ6IVCO9oBzj1p7C7eJK9PKywabnQ2BsoJm/2IlaavHuy9gUlYrHu7jgm8k9xA6H7qGqRo7uS/9CWZUM+2c/hCA35ZYokqK3QP+Pj0IuAH+9NhD+ThZih0RE9EBNzUP1lT3x//3f/yExMREzZsyAk5NTi9YXzZw5E1u2bMGePXtgYWFRv2bdysoKJiYmSE5Oxvbt2zF06FA4ODggPT0dH3/8MUxMTDBixIj68wQGBmL58uV48sknIZFIMHfuXCxbtgx+fn7w9vbGO++8A1dXV4wZM6bZsRKRbnK3McVPzwXjqXWncfZmAWZtuYB1U3tAXwf3zaa2rbSyBrvOZwAApoSovks3qY6hvh76+drj0NXbCI/LZhLfDFtj0iAXgGBvWybwRKRzlE7iIyMjceLEifrO9C2xdu1aAEBoaGiD+zds2IDp06fD2NgYkZGRWLlyJQoKCuDk5ISBAwfi1KlTcHT8p5tuXFwcioqK6n9+4403UFZWhhdffBGFhYV46KGHEBYWBmNj4xbHTES6J9DZEuun9cL//RiDw9duY/HuK1g+trNamiARiWVPbAbKqmTwsTdDXx87scOhBwgNcMChq7cREZ+DWY88uFKR/lEtk2NbzD8N7YiIdI3SSXxgYCDu3Lmjkhd/UCW/q6srDhw4oPR5JBIJli5diqVLl7YoPiJqO0J87PDVpO54ZdM5bDuTBgcLI8wfGiB2WEQqIQgCNkUpkprJIZ68QKUFBvkrdg44n1qIojvVsDIxEDki7XH46m1kl1TC3twQwzs5ix0OEZHKKV0vumbNGrz99tuIiIhAXl4eiouLG9yIiLTVsE7OWDamMwDgq6OJ+OX0DXEDIlKR2LRCXMsshqG+Hsb3dBc7HGoCdxtT+DqaQyYXcLKVt5rTdpuibwIAJvTygKE+l0YRke5p1j7xxcXFeOSRR+Do6AgbGxvY2NjA2toaNjY26oiRiKjVTA7xxNwhitLVd/f+jQOXM0WOiKjl6vbKHtnFpcU7MFDrqZuND4/LFjkS7ZGcU4qTiXmQSIBJwez9QES6Sely+ilTpsDAwABbtmxpcWM7IiJNNGewH3JKKrE5OhVzt8XC2tQA/drbix0WUbMUlVdj38VbAIApIVwfrE1CAxzww4kURMTnQBAEfudqgroLVg8HOMLD1lTkaIiI1EPpJP7KlSu4cOECAgK4VpSIdJNEIsHS0UHIK61C2N9ZeOnnc9j+Ul90dOWWk6R9dpxPR2WNHIHOFujhaS12OKSE3u1sYWIgxe3iSlzPKkEHF/4Oup+Kahl+P5cOAJjah7PwRKS7lC6n79WrF9LS0tQRCxGRxpDqSbByYjcEe9uipLIGz2yIQVp+udhhESlFEARsrl0fPKWPF2dytYyxgRR92yt2EgiPyxE5Gs237+ItFN2phpu1CQb5Oz74CUREWkrpJH727NmYM2cONm7ciHPnzuHSpUsNbkREusLYQIrvp/VCoLMFckoqMe3HGOSVVoodFlGTRafkIymnDKaGUozp5ip2ONQMdeviI+K5Lv5BNkX/swODVI8XrIhIdyldTv/0008DAJ577rn6+yQSSf1aLZlMprroiIhEZmVigJ+eC8bYNaeQkluG5zaewZYX+sDMSOlfn0Strm598JjubrAw5hZl2ig0QJHEn71RgJKKav473sOVjCJcTCuEgVSCCb08xA6HiEitlP4WmpKSoo44iIg0lpOlMX6eEYzxa0/hYnoRXt50Dj8805tbF5FGyy2tRNgVxe4Kk9mlW2t52ZmhnZ0pbuSV41RSHoZx3/NG1S0bGdbJGQ4WRiJHQ0SkXkp/A/Xy8rrvjYhIF7V3MMeP03vDxECKyIRcvPH7RcjlgthhEd3Tb2fTUS0T0M3DGkFuVmKHQy0QGqBY38118Y0rrqjG7guKHRim9uF3USLSfc2aRvrll1/Qv39/uLq64uZNxZXPlStXYs+ePSoNjohIk3T3tMGaqT2gryfB7thbWP7nNbFDImqUXC5gS0xtQ7sQzsJru0G1JfXHa7eao4Z2nc/AnWoZ/BzNEeJtK3Y4RERqp3QSv3btWsybNw8jRoxAYWFh/Rp4a2trrFy5UtXxERFplIcDHPHJuC4AgO8jU/Dd8SSRIyK6W2RiLtLy78DSWB8ju7Chnbbr420HQ309ZBTeQWJ2qdjhaBRBELAp6p8LVtyBgYjaAqWT+K+++grff/893n77bUil0vr7e/XqhcuXL6s0OCIiTTSupzsWPRYIAPjowHXsPJ8uckREDW2uTWrG9XSHiaH0AUeTpjMxlKKPj2KruYh4ltT/W0xKPhKyS2FiIMXYnu5ih0NE1CqUTuJTUlLQvXv3u+43MjJCWVmZSoIiItJ0Lw70wYyHvAEAb/x+CeFx3P6JNENm0R0cua74PLKUXnfUbTXHdfEN1W0rN7qbKyzZuZ+I2gilk3hvb2/ExsbedX9YWBg6dOigipiIiDSeRCLB2yM6YHQ3V9TIBby6+Txi0wrFDosI28+kQSYXEOJtC19HC7HDIRWp22ouJiUf5VU1IkejGXJK/tmBgQ3tiKgtaXISv3TpUpSXl2PevHmYOXMmtm/fDkEQEBMTgw8//BCLFi3CG2+8oc5YiYg0ip6eBJ+N74oBfvYor5LhuY1nkJzD9aoknhqZHNti0gAAU5jU6BQfezO425igSibH6aQ8scPRCL+eTUO1TEBX7sBARG1Mk5P4JUuWoLS0FM8//zw++eQTLF68GOXl5Zg8eTLWrl2LVatWYeLEieqMlYhI4xjq62Ht1J7o7GaF/LIqTPsxBtnFFWKHRW3U0evZyCqugJ2ZIYZ1chI7HFIhiURSPxvPknpAJhewpbaUfiqXjRBRG9PkJP7fW5pMmTIFCQkJKC0tRVZWFtLT0zFjxgy1BEhEpOnMjfSx4dneaGdnivSCO5j2YwyKK6rFDovaoM21Sc1TvTxgpM+GdrpmkH/tfvHx2W1+q7mI+GxkFN6BlYkBRnXlDgxE1LYotSb+v9t2mJqawtHRUaUBERFpI3tzI/z8XAjszY1wPasEQ784jlWHE3Cbs/LUSlLzynE8QTFDOzmYM5O6qF97OxhIJUjLv4OU3LbdTHhTlOKC1fie7jA24AUrImpblEri/f39YWtre98bEVFb5Wlnip+e6w1HCyNkFVfgy8Px6PfxUbz8yzmcSMiFXN62Z85IvbbEpEIQgIH+DvC0MxU7HFIDMyN99G6n+K7VlreaS8svx7E47sBARG2XvjIHL1myBFZWbBxCRHQvnVytELnwYYRdycKmqJs4c6MAYX9nIezvLHjbm2FysCfG93SHjZmh2KGSDqmskeG3s7UN7ZjU6LTQAAecSspDeFwOnu3vLXY4othae8Gqv68dfBzMxQ6HiKjVKZXET5w4keXzREQPYKQvxehubhjdzQ3Xs4qxJToVO89nICW3DB8euIbP/orDyM4umNLHCz08re9aqkSkrIN/30ZeWRWcLI0wOJB/p3VZaIAjPjpwHVHJeaiolrW5UvKqGjl+rb1gNTWEOzAQUdvU5HJ6fskkIlJeoLMllo4OQvRbg/HRk53R0cUSVTVy7LyQgXFrT2HE6hPYFHUTpZXc95mab3PUTQDAxN6e0JcqtVKOtIyfozlcrIxRWSNHVHLb22ou7O8s5JZWwdHCCEM6cgcGImqbmtWdnoiIlGNmpI/JIZ74438PYder/TC+pzuM9PVwLbMYi3dfQciHh/H2rsu4llksdqikZRKzSxCdkg89CTAx2EPscEjN/r3VXFtcF//PBSsPGPCCFRG1UU3+7SeXy1lKT0TUQhKJBN09bfD5U10R/dZgLH68A3zszVBWJcPm6FQ8tioS49aewq4L6aiolokdLmmBum3lBndwgouVicjRUGsY5F+bxLex/eITbv/7ghV7PxBR26XUmngiIlIda1NDPD/ABzMe8sbppDxsjk7Fwb+zcO5mAc7dLMDSfVfxVC8PTA72RDt7M7HDJQ10p0qGHefSAQBT+3B9cFvRz9ce+noSJOeWITWvvM3sRvDvC1au1rxgRURtF+uQiIhEJpFI0M/XHt9M6YFTbz6C+Y/6w9XKGAXl1fjueDJCPw/H//0QjbArWaiRycUOlzTI/ku3UFxRAw9bEwzwtRc7HGollsYG6OFlAwCIiM8WOZrWUV5VwwtWRES1mMQTEWkQR0tjzB7sh8iFj2D9tF4IDXCARAJEJuTi5U3n0P+To/jyUDyyiirEDpU0QN3M5ORgL+jpsQFtW1K3Lj68jZTU7429hZLKGnjZmfKCFRG1eUziiYg0kFRPgiEdnbDx2WAcf/1hvBLaHnZmhrhdXIlVRxLQ/5OjePHnszgenwO5nI1H26IrGUWITSuEgVSCp3q5ix0OtbK6dfGnkvJQWaPb/TMEQcCmaEVDu8nBnrxgRURtHpN4IiIN52FrioXDA3Fq0SNYPak7gr1tIZML+OvqbUz7MQYPrwjHtxFJyC+rEjtUakVbYhSz8MODXGBvbiRyNNTaOrpYwtHCCHeqZTiTUiB2OGp1Mb0IVzKKYaivh6d6cQcGIiIm8UREWsJIX4onurri15f64q/XBmJ6v3awMNLHzbxyLP/zOvp8dARzt13A2Rv53BZUx5VW1mDPhQwAwJQQduluiyQSyT9d6nV8Xfym2m3lHu/sAlszw/9v787jo67u/Y+/J9tk3yALIStb2GULS1ECLgRXVKyKpIJSbRUucm+V1m5QrQ/U4sPqr9bee4ugggtouUWqIGWJiBD2HcIWSEIIIeuEbGT5/v4ImXZMQJDMlryej8f8ke/3zDmfA4cwnznfc46TowEA5yOJBwA31CsqSPPu6afMX92iVyYN0ICuIbrY0Kj/25OvB/6yRbe/sUnvbzmlipo6Z4eKNlJZW6+vjxXp9bVHlf7XTFVebFD3iACNSAp3dmhwktQOsC6+rOqiPtubL0lKH8kXVgAgccQcALg1fx8vPZQSr4dS4rU3t0xLM09r5d58HSmo0G/+flDzvziiiYO6Kn1kvPrFhDg7XFyD4gu12n6qVNtPlWjHqRIdyLeo4Vv7HzxxUzeZTKwP7qhu6hEhD5N0rPCCzpRVq2s7PHbtk515qq1vVO/oIA2JD3N2OADgEkjiAaCduCEuVDfEhepXd/TVp7vytDTztE6cr9SH23L04bYcDY4PVfqIBN05sIt8vT2dHS7+jWEYyiut1rbsEm0/1fQ6cb6yRbmuoX5KSQzTsMRwjewWrh6RQU6IFq4ixN9bg+PDtPN0qTKyzuuRdra0wjAMfXDpBIb0kQl8YQUAl5DEA0A7E+LvrcdvTNJjoxO19WSJlmae1pqDBdqdU6bdOWV68R+H9MCQWD0yIl7dIgKdHW6H1NhoKOtchbafKtG27BLtOFWqAkvLYwN7RQUqJTFcw5PCNSwxvF3OtOL6jO0V0ZTEHy1sd0n8NyeKdbKoUgE+nrp3cFdnhwMALoMkHgDaKZPJpFHdO2lU9046X1GrZTty9UFmjs6UVeuvX2frr19na3SPTkofkaBb+0bJ25NtUuyltr5B+/PKte1UibZnl2jH6VJV1NTblPHyMGlAbIiGJ4YrJTFcwxLDFOrPJl64stTkCL229qg2Hy/WxfpG+Xi1n3/HzRva3TekqwLNfGQFgGb8RgSADiAiyKwZ43rop6ndlXG0UEu25mhDVqE2Hy/W5uPFigwy6+GUOD08PF4xzPZeN0tNnXaeLtWOUyXanl2qPXlluljfaFMmwMdTQxLClHIpaR8UFyo/H5Y54Nr0jwlRpwAfFVde1K6cUo3s1snZIbWJc5YafXnonKSmR+kBAP9CEg8AHYinh0k3947Szb2jlFdapQ+35ejj7bkqrKjVm+uP608bjuvm3lFKHxmvMT0j5OHBGtSrUWip0bZTTY/Fb8su0ZECi761B506B/poWEK4UpLCNTwxXH26BMmLpx9wnTw8TBrTK0Irdp/Rxqzz7SaJ/2hbrhoaDQ1LCFPv6GBnhwMALoUkHgA6qNgwfz2X1lvP3NJLXx4q0JKtp7X1ZIn+efic/nn4nOLC/fTI8AQ9OCxWnQLNzg7XZRiGoeyiyksb0DXtHn+6uKpFuYRO/pdm2Ztm25M6B7AxF+xibHJzEl+oX9ze29nhXLf6hkZ9uK1pQ7spHCsHAC2QxANAB+fj5aG7BsboroExOl5YoaWZOfpkZ55yS6r1yuojen3tUU3oH630kQlKSQzrcIlofUOjDp+tuDTT3pS4F12otSljMkl9ooMvbUDXlLRHBfs6KWJ0NDf1jJDJJB0pqNA5S43bj731RwpVYKlRmL+3bu/fxdnhAIDLIYkHAFj1iAzS3Lv7aU5ab322L19Lt57W3rxyrdybr5V789UrKlBTRiToviFdFezr7exw7aKmrkG7c8qsR73tOl2qyosNNmV8vDw0KDZUKUlNCfuQhLB2++cB1xce4KOBsaHam1umjKzzejAlztkhXZcll46Ve3BYHMdhAkArSOIBAC34+XjqwWFxenBYnPbnlWtp5mn9fU++jp67oLkrD+rlL45o4qAYpY9MUP+uIc4O97qUVV3UjkuPxW87VaIDZ8pV12C7oD3I10vDEsKs69kHxIbI7EVyAdcxtldEUxJ/1L2T+NPFlfrq6HlJandH5gFAWyGJBwBc0YDYEL0cO1DP39FHK3blaWlmjo4VXtBH23P10fZc3RAXqikj4nX3wBi32F39TFm1dlw6n337qRIdPXehRZmoYLP1fPaUxHAlRwWxyR9cWmpyhN5Yd0ybjp1XfUOj226a+MGlWfgxvSKU0CnAydEAgGsiiQcAXJUQP29NG52kqT9I1LbsEi3NzNEXB85qb26Z9uaW6ferDumBoXF6ZES8ekQGOjtcSVJjo6Hj5y80PRqf3bSe/UxZdYty3SMCrEe9DU8KV2yYX4db+w/3dkNsqEL9vVVWVac9uWUalhju7JCuWU1dg5btyJUkpTMLDwCXRRIPALgmJpNJI7p10ohunVR0oa+W7cjVB5k5yiut1jubs/XO5myN6tZJ6SMTdFvfKPl4OW5G8GJ9ow7kl1+aaS/VjtMlKquqsynj6WFS/5hgpSSGa9il3ePZfR/uztPDpJt6RuizvfnamHXeLZP4Lw6cVWlVnbqE+Orm3pHODgcAXBZJPADge+scaNbTY3vop2O6K+PYeS3delrrjxRqy8libTlZrM6BZj2cEqfJI+LVNdSvzduvrK3XrpzSpqPesku0O7dUNXWNNmX8vD01OD7UOss+KC5UAWb++0P7M7ZXUxKfcfS8nk1LdnY412zJ1qZH6ScPj3fb5QAA4Ah8igEAXDcPD5PGJUdqXHKkzpRV66NtOfpoe67OV9TqTxuO688bj2tccqTSRyZoTK8IeX7P9eVFF2ptZtkP5lvU0Gi7CV2Yv7eGJTZtQJeSFK5+McHyJiFABzCmV4Qkaf+Zcp2vqFVEkPs8YXL4rEU7T5fKy8Okh914Yz4AcASSeABAm+oa6qefjU/WrFt6au2hc1qy9bS+OVGsdUcKte5IoWLD/DR5eLweHBZ3xSTDMAzlllRrm3U9e4lOFlW22l7zBnTDk8LUrXMgm9ChQ4oIMqt/12AdOGPRpmPndf+QWGeHdNWWbD0tSRrfL0qRbn7OPQDYm1OT+Pnz5+tvf/ubjhw5Ij8/P/3gBz/QK6+8ouTkpkfASkpKNHfuXH355ZfKyclRRESE7r33Xr344osKCbn8kUbTpk3Tu+++a3MtLS1Nq1evtmt/AAD/4u3poTsGdNEdA7roxPkL+iAzR5/szFNeabX+sCZLf/znUaX1i1b6yASNSApXoyFlFVRYj3rbcapE5yy1NnWaTFJyVJCGJYZZN6KLscNj+oC7Su0VoQNnLNqY5T5J/IXaev3f7jOSpPQRCU6OBgBcn1OT+IyMDM2YMUMpKSmqr6/XL3/5S40fP16HDh1SQECA8vPzlZ+frwULFqhv3746ffq0fvrTnyo/P1+ffPLJFeueMGGCFi1aZP3ZbHafR8oAoL3pHhGo39zVV8+lJWvVvrNasvW09uSWadW+s1q176ziw/1VWnVRFTX1Nu/z9jRpYGyohiWGaXhiuIYlhCvE39tJvQBc39jkSL214YS+OnZeDY3G91664kgrdp9R5cUGdYsI0KjunZwdDgC4PKcm8d+eGV+8eLEiIyO1c+dOjRkzRv3799enn35qvd+9e3e99NJLSk9PV319vby8Lh++2WxWdHS03WIHAFw7X29PPTA0Vg8MjdWBM+Vampmjv+85o5ySKklSoNlLQxLCNDwxTMMSmzah8/V2/bPnAVcxOC5UQb5eKquq0768Mg2OD3N2SFdkGIaWXnqUfsqIBI52BICr4FJr4svLyyVJ4eGXPxalvLxcwcHBV0zgJWnjxo2KjIxUWFiYbr75Zv3+979Xp06tf7tbW1ur2tp/PbJpsVi+R/QAgGvRv2uI5t8/QM/f0VtbThSra6ifekcHsSs1cB28PD10U8/O+nx/gTZmnXf5JH7n6VIdKaiQr7eHHnCTx/8BwNlc5pNSY2OjZs+erdGjR6t///6tlikqKtKLL76oJ5988op1TZgwQe+9957WrVunV155RRkZGbr99tvV0NDQavn58+crJCTE+oqLY1dUAHCUYF9vpfWLVv+uISTwQBsY26vpjPWMo+edHMl3a97Q7u6BMSyVAYCrZDIMw/juYvb31FNP6YsvvtDXX3+t2NiW38RaLBbddtttCg8P18qVK+XtffW/6E+ePKnu3bvrn//8p2655ZYW91ubiY+Li7PO+gMAALiLgvIajZy/TiaTtPPXtyk8wMfZIbWq+EKtRs1fr4sNjfr7jNG6IS7U2SEBgFNZLBaFhIR8Zx7qElMeM2fO1KpVq7Rhw4ZWE/iKigpNmDBBQUFBWrFixTUl8JLUrVs3de7cWcePH2/1vtlsVnBwsM0LAADAHUWH+Kp3dJAMQ9p0zHVn4z/ZmaeLDY3q3zVYA2Mvf+oQAMCWU5N4wzA0c+ZMrVixQuvXr1dSUlKLMhaLRePHj5ePj49WrlwpX99rPzs0Ly9PxcXF6tKlS1uEDQAA4NJSkyMkSRlZrpnENzYa+mBbjqSmY+XY0A4Arp5Tk/gZM2ZoyZIl+uCDDxQUFKSCggIVFBSourpa0r8S+MrKSi1cuFAWi8Va5t/Xt/fu3VsrVqyQJF24cEHPPfectm7dqlOnTmndunWaOHGievToobS0NKf0EwAAwJGa18V/dey8GhtdYuWkjU3Hi3S6uEpBvl66Z1CMs8MBALfi1N3p3377bUnS2LFjba4vWrRI06ZN065du5SZmSlJ6tGjh02Z7OxsJSYmSpKysrKsO9t7enpq3759evfdd1VWVqaYmBiNHz9eL774ImfFAwCADmFoQpgCfDxVdOGiDuZbNMDFHldv3tBu0pBY+fu41GFJAODynPpb87v21Bs7dux3lvl2PX5+flqzZs11xwYAAOCufLw8NLpHZ3156Jw2ZhW6VBKfX1atdYfPSZKmjIh3cjQA4H5cYmM7AAAAtC3rungXO2ruo205ajSkEUnh6hkV5OxwAMDtkMQDAAC0Q2OTm9bF78opVXlVnZOjaVLX0KiPtudKktJHJjg5GgBwTyTxAAAA7VDXUD/1jAxUoyF9fbzI2eFIktYeOqfCilp1DjQrrV+0s8MBALdEEg8AANBOpfZqeqR+Y1ahkyNp0ryh3UMpsfLx4mMoAHwf/PYEAABop5ofqc84ev6qNgu2pxPnL+ibE8UymaTJw9nQDgC+L5J4AACAdiolKUx+3p4qrKjV4bMVTo1l6dYcSdLNyZGKDfN3aiwA4M5I4gEAANops5enftC9kyTn7lJffbFBn+xkQzsAaAsk8QAAAO1Y81FzzlwX/9m+fFlq6hUb5qcxl9bpAwC+H5J4AACAdmxsr6Z18TtPl6qixjlHzS29tKHdIyPi5elhckoMANBekMQDAAC0Y/Gd/JXUOUD1jYY2Hy92ePv788q1N69c3p4mPTgszuHtA0B7QxIPAADQzjUfNZdx1PGP1C/NbJqFv71/F3UONDu8fQBob0jiAQAA2rnmdfEZWY49as5SU6e/78mXJE0ZwbFyANAWSOIBAADauVHdOsns5aH88hodK7zgsHb/tjNP1XUN6hUVqOFJ4Q5rFwDaM5J4AACAds7X21Mju106ai7LMUfNGYahJZlNZ8NPGZEgk4kN7QCgLZDEAwAAdADN6+I3OmhdfGZ2iY4XXpCft6fuG9LVIW0CQEdAEg8AANABjL20Ln57dqkqa+vt3t6SS8fK3Ts4RsG+3nZvDwA6CpJ4AACADiCpc4Diwv10saFRW07Y96i58xW1WnOwQFLTo/QAgLZDEg8AANABmEwmje0VKUnKOGrfdfHLduSqrsHQoLhQ9e8aYte2AKCjIYkHAADoIP59Xby9jppraDT0waUN7dJHMgsPAG2NJB4AAKCDGNW9k3w8PZRbUq3sokq7tLExq1BnyqoV4uetuwZ2sUsbANCRkcQDAAB0EAFmL6UkhUmSNtrpqLnmDe1+ODRWvt6edmkDADoykngAAIAOpHld/EY7rIvPLamy1juFR+kBwC5I4gEAADqQ5qPmMk8Wq6auoU3r/mBbjgxDurFHZyV1DmjTugEATUjiAQAAOpAekYGKCfFVbX2jtpxsu6PmausbtGx7riQpfWR8m9ULALBFEg8AANCBmEwmpSZfOmquDdfFrz5QoOLKi4oKNuvWPlFtVi8AwBZJPAAAQAfTfNRcW54Xv3Rr07FyD6fEy8uTj5gAYC/8hgUAAOhgRvfoJC8Pk7KLKnW6+PqPmjt6rkLbTpXI08OkycN5lB4A7IkkHgAAoIMJ8vXW0ISmo+baYjZ+6aVj5W7pHanoEN/rrg8AcHkk8QAAAB3Q2DZaF19ZW6+/7TojSUrnWDkAsDuSeAAAgA6oeV38Nyeu76i5lXvzVVFbr4RO/rqxR+e2Cg8AcBkk8QAAAB1Qny5Bigwyq7quQTtOlX6vOgzD0JJLj9JPGREvDw9TW4YIAGgFSTwAAEAHZDKZrLPxG7MKv1cde3LLdDDfIh8vD/1waFxbhgcAuAySeAAAgA6qeV38xu+5ud2SS8fK3TWgi8ICfNosLgDA5ZHEAwAAdFA39uwsTw+TjhdeUF5p1TW9t6zqolbty5ckTWFDOwBwGJJ4AACADirEz1uD40IlXftRc5/szFNtfaP6dAnWkPjQtg8OANAqkngAAIAObGxy07r4azlqrrHR0NLMpkfp00fGy2RiQzsAcBSSeAAAgA4stVfTuvjNx4t0sb7xqt7zzYliZRdVKtDspXsHdbVneACAbyGJBwAA6MD6xQSrc6CPKi82aOfpqztqrvlYufsGd1WA2cue4QEAvoUkHgAAoAPz8DBpTM9LR80d/e6j5grKa7T28DlJUjob2gGAw5HEAwAAdHCp17Au/qPtOWpoNJSSGKbk6CB7hwYA+BaSeAAAgA7upp4RMpmkIwUVKiivuWy5+oZGfbQtVxKz8ADgLCTxAAAAHVx4gI9uiA2VJH11haPm1h0pVIGlRp0CfDShf7SDogMA/DuSeAAAAFiPmrvSuvjmDe1+OCxOZi9Ph8QFALBFEg8AAACl9mpK4jcdK1J9Q8uj5k4VVWrTsSKZTNIjw+MdHR4A4BKSeAAAAGhgbKjC/L1VUVOv3bllLe5/sC1HkjSmZ4TiO/k7ODoAQDOSeAAAAMjTw6Sbmo+ay7J9pL6mrkHLd7ChHQC4Aqcm8fPnz1dKSoqCgoIUGRmpe++9V1lZWdb7JSUl+o//+A8lJyfLz89P8fHxmjVrlsrLy69Yr2EY+u1vf6suXbrIz89Pt956q44dO2bv7gAAALi15nXxGd/a3O7z/WdVWlWnmBBf3dw70hmhAQAucWoSn5GRoRkzZmjr1q1au3at6urqNH78eFVWVkqS8vPzlZ+frwULFujAgQNavHixVq9erenTp1+x3ldffVVvvvmm/vKXvygzM1MBAQFKS0tTTc3lj0wBAADo6Jpn4g+csaiw4l+fm5o3tJs8PF6eHianxAYAaGIyDMNwdhDNzp8/r8jISGVkZGjMmDGtllm+fLnS09NVWVkpLy+vFvcNw1BMTIx+9rOf6dlnn5UklZeXKyoqSosXL9bDDz/8nXFYLBaFhISovLxcwcHB19cpAAAAN3L3//ta+8+U67Uf3qBJQ2N1KN+iO97cJC8Pk755/mZFBvk6O0QAaJeuNg91qTXxzY/Jh4eHX7FMcHBwqwm8JGVnZ6ugoEC33nqr9VpISIhGjBihLVu2tPqe2tpaWSwWmxcAAEBH1LxL/cZLj9QvyWyahU/rF00CDwAuwGWS+MbGRs2ePVujR49W//79Wy1TVFSkF198UU8++eRl6ykoKJAkRUVF2VyPioqy3vu2+fPnKyQkxPqKi4v7nr0AAABwb83r4jcdO6/y6jr93+4zkqQpIzlWDgBcgcsk8TNmzNCBAwf00UcftXrfYrHozjvvVN++fTVv3rw2bfv5559XeXm59ZWbm9um9QMAALiLQXGhCvb1UllVnX732UFVXWxQ94gAjerWydmhAQDkIkn8zJkztWrVKm3YsEGxsbEt7ldUVGjChAkKCgrSihUr5O3tfdm6oqOjJUnnzp2zuX7u3DnrvW8zm80KDg62eQEAAHREXp4e1g3u/rbr0iz8iASZTGxoBwCuwKlJvGEYmjlzplasWKH169crKSmpRRmLxaLx48fLx8dHK1eulK/vlddiJSUlKTo6WuvWrbOpIzMzU6NGjWrzPgAAALQ3qZceqZckX28PTRracpIFAOAcTk3iZ8yYoSVLluiDDz5QUFCQCgoKVFBQoOrqakn/SuArKyu1cOFCWSwWa5mGhgZrPb1799aKFSskSSaTSbNnz9bvf/97rVy5Uvv379ejjz6qmJgY3Xvvvc7oJgAAgFtp3txOku65IUYhfpd/ChIA4Fitb/HuIG+//bYkaezYsTbXFy1apGnTpmnXrl3KzMyUJPXo0cOmTHZ2thITEyVJWVlZ1p3tJWnOnDmqrKzUk08+qbKyMt14441avXr1d87iAwAAQIoK9tWIpHDtzinT1B8kOjscAMC/calz4l0F58QDAICOrqKmTmVVdYoL93d2KADQIVxtHurUmXgAAAC4piBfbwX58hg9ALgal9idHgAAAAAAfDeSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNeDk7AFdkGIYkyWKxODkSAAAAAEBH0Jx/Nuejl0MS34qKigpJUlxcnJMjAQAAAAB0JBUVFQoJCbnsfZPxXWl+B9TY2Kj8/HwFBQXJZDI5O5zLslgsiouLU25uroKDg50dDtopxhkcgXEGe2OMwREYZ3AExln7ZRiGKioqFBMTIw+Py698Zya+FR4eHoqNjXV2GFctODiYf8CwO8YZHIFxBntjjMERGGdwBMZZ+3SlGfhmbGwHAAAAAICbIIkHAAAAAMBNkMS7MbPZrLlz58psNjs7FLRjjDM4AuMM9sYYgyMwzuAIjDOwsR0AAAAAAG6CmXgAAAAAANwESTwAAAAAAG6CJB4AAAAAADdBEg8AAAAAgJsgiXey+fPnKyUlRUFBQYqMjNS9996rrKwsmzI1NTWaMWOGOnXqpMDAQE2aNEnnzp2zKTNr1iwNHTpUZrNZgwYNarWtffv26aabbpKvr6/i4uL06quv2qtbcCGOGmMbN27UxIkT1aVLFwUEBGjQoEFaunSpPbsGF+LI32XNjh8/rqCgIIWGhrZxb+CqHDnODMPQggUL1KtXL5nNZnXt2lUvvfSSvboGF+HIMbZmzRqNHDlSQUFBioiI0KRJk3Tq1Ck79QyupC3G2d69ezV58mTFxcXJz89Pffr00RtvvNGirY0bN2rIkCEym83q0aOHFi9ebO/uwQFI4p0sIyNDM2bM0NatW7V27VrV1dVp/PjxqqystJb5z//8T3322Wdavny5MjIylJ+fr/vvv79FXY8//rgeeuihVtuxWCwaP368EhIStHPnTv3hD3/QvHnz9D//8z926xtcg6PG2DfffKOBAwfq008/1b59+/TYY4/p0Ucf1apVq+zWN7gOR42zZnV1dZo8ebJuuummNu8LXJcjx9kzzzyjv/71r1qwYIGOHDmilStXavjw4XbpF1yHo8ZYdna2Jk6cqJtvvll79uzRmjVrVFRU1Go9aH/aYpzt3LlTkZGRWrJkiQ4ePKhf/epXev755/WnP/3JWiY7O1t33nmnxo0bpz179mj27Nn68Y9/rDVr1ji0v7ADAy6lsLDQkGRkZGQYhmEYZWVlhre3t7F8+XJrmcOHDxuSjC1btrR4/9y5c40bbrihxfU///nPRlhYmFFbW2u99vOf/9xITk5u+07ApdlrjLXmjjvuMB577LE2iRvuxd7jbM6cOUZ6erqxaNEiIyQkpK3Dh5uw1zg7dOiQ4eXlZRw5csRuscM92GuMLV++3PDy8jIaGhqs11auXGmYTCbj4sWLbd8RuLTrHWfNnn76aWPcuHHWn+fMmWP069fPpsxDDz1kpKWltXEP4GjMxLuY8vJySVJ4eLikpm/Z6urqdOutt1rL9O7dW/Hx8dqyZctV17tlyxaNGTNGPj4+1mtpaWnKyspSaWlpG0UPd2CvMXa5tprbQcdiz3G2fv16LV++XG+99VbbBQy3ZK9x9tlnn6lbt25atWqVkpKSlJiYqB//+McqKSlp2w7A5dlrjA0dOlQeHh5atGiRGhoaVF5ervfff1+33nqrvL2927YTcHltNc6+/blry5YtNnVITZ//r/fzHZyPJN6FNDY2avbs2Ro9erT69+8vSSooKJCPj0+LNZ9RUVEqKCi46roLCgoUFRXVoo7me+gY7DnGvm3ZsmXavn27HnvssesJGW7InuOsuLhY06ZN0+LFixUcHNyWYcPN2HOcnTx5UqdPn9by5cv13nvvafHixdq5c6ceeOCBtuwCXJw9x1hSUpK+/PJL/fKXv5TZbFZoaKjy8vK0bNmytuwC3EBbjbNvvvlGH3/8sZ588knrtct9/rdYLKqurm7bjsChvJwdAP5lxowZOnDggL7++mtnh4J2ylFjbMOGDXrsscf0v//7v+rXr59d24Lrsec4e+KJJ/TII49ozJgxbV433Is9x1ljY6Nqa2v13nvvqVevXpKkhQsXaujQocrKylJycnKbtwnXY88xVlBQoCeeeEJTp07V5MmTVVFRod/+9rd64IEHtHbtWplMpjZvE66pLcbZgQMHNHHiRM2dO1fjx49vw+jgqpiJdxEzZ87UqlWrtGHDBsXGxlqvR0dH6+LFiyorK7Mpf+7cOUVHR191/dHR0S12Tm3++Vrqgfuy9xhrlpGRobvvvluvv/66Hn300esNG27G3uNs/fr1WrBggby8vOTl5aXp06ervLxcXl5eeuedd9qqG3Bx9h5nXbp0kZeXlzWBl6Q+ffpIknJycq4veLgFe4+xt956SyEhIXr11Vc1ePBgjRkzRkuWLNG6deuUmZnZVt2Ai2uLcXbo0CHdcsstevLJJ/XrX//a5t7lPv8HBwfLz8+vbTsDhyKJdzLDMDRz5kytWLFC69evV1JSks39oUOHytvbW+vWrbNey8rKUk5OjkaNGnXV7YwaNUpfffWV6urqrNfWrl2r5ORkhYWFXX9H4LIcNcakpmNM7rzzTr3yyis2j3Oh/XPUONuyZYv27Nljfb3wwgsKCgrSnj17dN9997VZf+CaHDXORo8erfr6ep04ccJ67ejRo5KkhISE6+wFXJmjxlhVVZU8PGw/hnt6ekpqehIE7VtbjbODBw9q3Lhxmjp1aqtHYI4aNcqmDqnp8/+1fr6DC3LmrnowjKeeesoICQkxNm7caJw9e9b6qqqqspb56U9/asTHxxvr1683duzYYYwaNcoYNWqUTT3Hjh0zdu/ebfzkJz8xevXqZezevdvYvXu3dTf6srIyIyoqyvjRj35kHDhwwPjoo48Mf39/47//+78d2l84nqPG2Pr16w1/f3/j+eeft2mnuLjYof2FczhqnH0bu9N3LI4aZw0NDcaQIUOMMWPGGLt27TJ27NhhjBgxwrjtttsc2l84nqPG2Lp16wyTyWT87ne/M44ePWrs3LnTSEtLMxISEmzaQvvUFuNs//79RkREhJGenm5TR2FhobXMyZMnDX9/f+O5554zDh8+bLz11luGp6ensXr1aof2F22PJN7JJLX6WrRokbVMdXW18fTTTxthYWGGv7+/cd999xlnz561qSc1NbXVerKzs61l9u7da9x4442G2Ww2unbtarz88ssO6iWcyVFjbOrUqa3eT01NdVxn4TSO/F3270jiOxZHjrMzZ84Y999/vxEYGGhERUUZ06ZN40vJDsCRY+zDDz80Bg8ebAQEBBgRERHGPffcYxw+fNhBPYUztcU4mzt3bqt1JCQk2LS1YcMGY9CgQYaPj4/RrVs3mzbgvkyGYRjXMZEPAAAAAAAchDXxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAALiw4uJiRUZG6tSpUw5td/HixQoNDbVL3atXr9agQYPU2Nhol/oBAGjPSOIBAHBhL730kiZOnKjExMQW99LS0uTp6ant27c7PrDrMGHCBHl7e2vp0qWXLTN9+nQNGDBAFy9etLn++eefy8fHR7t27bJ3mAAAuCSSeAAAXFRVVZUWLlyo6dOnt7iXk5Ojb775RjNnztQ777zjhOi+n7q6OknStGnT9Oabb1623Ouvv66KigrNnTvXeq2srExPPPGEfvOb32jIkCF2iw0AAFdGEg8AgIv6/PPPZTabNXLkyBb3Fi1apLvuuktPPfWUPvzwQ1VXV9vcHzt2rGbNmqU5c+YoPDxc0dHRmjdvnk2ZsrIy/eQnP1FUVJR8fX3Vv39/rVq1yqbMmjVr1KdPHwUGBmrChAk6e/as9V5jY6NeeOEFxcbGymw2a9CgQVq9erX1/qlTp2QymfTxxx8rNTVVvr6+1tn3u+++Wzt27NCJEyda7XtwcLAWLVqk1157TZmZmZKk2bNnq2vXrnr++eeVm5urBx98UKGhoQoPD9fEiRNtlhxs375dt912mzp37qyQkBClpqa2mL03mUx6++23dc899yggIEAvvfTSZf4mAABwHSTxAAC4qE2bNmno0KEtrhuGoUWLFik9PV29e/dWjx499Mknn7Qo9+677yogIECZmZl69dVX9cILL2jt2rWSmhLw22+/XZs3b9aSJUt06NAhvfzyy/L09LS+v6qqSgsWLND777+vr776Sjk5OXr22Wet99944w299tprWrBggfbt26e0tDTdc889OnbsmE0cv/jFL/TMM8/o8OHDSktLkyTFx8crKipKmzZtumz/x40bp6efflpTp07V8uXLtWzZMr333nsyDENpaWkKCgrSpk2btHnzZuuXDM2P31dUVGjq1Kn6+uuvtXXrVvXs2VN33HGHKioqbNqYN2+e7rvvPu3fv1+PP/74d/2VAADgfAYAAHBJEydONB5//PEW17/88ksjIiLCqKurMwzDMF5//XUjNTXVpkxqaqpx44032lxLSUkxfv7znxuGYRhr1qwxPDw8jKysrFbbXrRokSHJOH78uPXaW2+9ZURFRVl/jomJMV566aUWbTz99NOGYRhGdna2Icn44x//2GobgwcPNubNm9fqvWZVVVVGcnKy4eHhYbz++uuGYRjG+++/byQnJxuNjY3WcrW1tYafn5+xZs2aVutpaGgwgoKCjM8++8x6TZIxe/bsK7YPAICrYSYeAAAXVV1dLV9f3xbX33nnHT300EPy8vKSJE2ePFmbN29u8Wj6wIEDbX7u0qWLCgsLJUl79uxRbGysevXqddn2/f391b1791bfb7FYlJ+fr9GjR9u8Z/To0Tp8+LDNtWHDhrVav5+fn6qqqi7bfnOZZ599Vv7+/nrmmWckSXv37tXx48cVFBSkwMBABQYGKjw8XDU1NdY/g3PnzumJJ55Qz549FRISouDgYF24cEE5OTlXFRsAAK7Ky9kBAACA1nXu3FmlpaU210pKSrRixQrV1dXp7bfftl5vaGjQO++8Y7Ou29vb2+a9JpPJeqybn5/fd7bf2vsNw7jmfgQEBLR6vaSkRBEREd/5fi8vL3l6espkMkmSLly4oKFDh7a6u31zfVOnTlVxcbHeeOMNJSQkyGw2a9SoUS12u79cbAAAuCpm4gEAcFGDBw/WoUOHbK4tXbpUsbGx2rt3r/bs2WN9vfbaa1q8eLEaGhququ6BAwcqLy9PR48e/V6xBQcHKyYmRps3b7a5vnnzZvXt2/c73988az548OBrbnvIkCE6duyYIiMj1aNHD5tXSEiINY5Zs2bpjjvuUL9+/WQ2m1VUVHTNbQEA4GpI4gEAcFFpaWk6ePCgzWz8woUL9cADD6h///42r+nTp6uoqMhmd/grSU1N1ZgxYzRp0iStXbtW2dnZ+uKLL676/ZL03HPP6ZVXXtHHH3+srKws/eIXv9CePXusj71fydatW62z49dqypQp6ty5syZOnKhNmzYpOztbGzdu1KxZs5SXlydJ6tmzp95//30dPnxYmZmZmjJlylU9fQAAgKsjiQcAwEUNGDBAQ4YM0bJlyyRJO3fu1N69ezVp0qQWZUNCQnTLLbdo4cKFV13/p59+qpSUFE2ePFl9+/bVnDlzrnomX5JmzZql//qv/9LPfvYzDRgwQKtXr9bKlSvVs2fP73zvhx9+qClTpsjf3/+q22vm7++vr776SvHx8br//vvVp08fTZ8+XTU1NQoODpbU9GVHaWmphgwZoh/96EeaNWuWIiMjr7ktAABcjcn4PovbAACAQ/zjH//Qc889pwMHDsjDo318915UVKTk5GTt2LFDSUlJzg4HAAC3wsZ2AAC4sDvvvFPHjh3TmTNnFBcX5+xw2sSpU6f05z//mQQeAIDvgZl4AAAAAADcRPt4Lg8AAAAAgA6AJB4AAAAAADdBEg8AAAAAgJsgiQcAAAAAwE2QxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAbuL/AxblKbT4boLyAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwAklEQVR4nOzdd3RU5dbH8e+k994bJEBCCb2LAjZALwiKBcFXsRfw6lXsFUSxC14FrwXQKwgqoIKKIr33KpBQAgRISCMJSUidef8IyTXSMiHJSfl91jprmXPOnNkTxszs8+xnPyaLxWJBREREREREROo8G6MDEBEREREREZHKURIvIiIiIiIiUk8oiRcRERERERGpJ5TEi4iIiIiIiNQTSuJFRERERERE6gkl8SIiIiIiIiL1hJJ4ERERERERkXpCSbyIiIiIiIhIPWFndAB1kdls5vjx47i7u2MymYwOR0RERERERBo4i8XCqVOnCAkJwcbm/OPtSuLP4fjx44SHhxsdhoiIiIiIiDQyiYmJhIWFnfe4kvhzcHd3B0p/eR4eHgZHIyIiIiIiIg1ddnY24eHh5fno+SiJP4eyEnoPDw8l8SIiIiIiIlJrLjalW43tREREREREROoJJfEiIiIiIiIi9YSSeBEREREREZF6QnPiRURERESkwbFYLBQXF1NSUmJ0KCIA2NraYmdnd8nLmCuJFxERERGRBqWwsJCkpCTy8vKMDkWkAhcXF4KDg3FwcKjyNZTEi4iIiIhIg2E2m0lISMDW1paQkBAcHBwueeRT5FJZLBYKCwtJTU0lISGBFi1aYGNTtdntSuJFRERERKTBKCwsxGw2Ex4ejouLi9HhiJRzdnbG3t6ew4cPU1hYiJOTU5Wuo8Z2IiIiIiLS4FR1lFOkJlXH+1LvbBEREREREZF6Qkm8iIiIiIiISD1haBI/YcIEunbtiru7OwEBAQwZMoS4uLgK5/Tt2xeTyVRhe+ihhy54XYvFwssvv0xwcDDOzs5cc8017Nu3ryZfioiIiIiISK1o2rQpEydONDqMarNs2TJMJhOZmZlGh1IvGJrEL1++nFGjRrFu3ToWLVpEUVER/fr1Izc3t8J5999/P0lJSeXb22+/fcHrvv3223z44Yd88sknrF+/HldXV/r3709+fn5NvhwREREREZFLkpiYyD333FPeWb9JkyY89thjpKenGx1atejbty+PP/54hX2XXXYZSUlJeHp6GhNUPWNod/qFCxdW+Hn69OkEBASwefNmevfuXb7fxcWFoKCgSl3TYrEwceJEXnzxRQYPHgzAV199RWBgID/88APDhg2rvhdgsPyiEmxMJhzsNCtCRERERKS+O3jwID179iQ6OppvvvmGyMhI/vzzT5566il+/fVX1q1bh4+PT63HVVJSgslkqrFmgQ4ODpXO96SOzYnPysoCOOuNOWPGDPz8/IiNjeW5554jLy/vvNdISEggOTmZa665pnyfp6cn3bt3Z+3ated8TEFBAdnZ2RW2+uC1Bbu5acpq9qfkGB2KiIiIiEidZLFYyCssNmSzWCxWxTpq1CgcHBz4/fff6dOnDxEREVx33XX88ccfHDt2jBdeeKH83FOnTnH77bfj6upKaGgoH3/8cYXX/OqrrxIREYGjoyMhISH885//LD9eUFDAmDFjCA0NxdXVle7du7Ns2bLy49OnT8fLy4uffvqJ1q1b4+joyOeff46Tk9NZJe+PPfYYV111FQDp6encfvvthIaG4uLiQtu2bfnmm2/Kzx05ciTLly9n0qRJ5VOlDx06dM5y+jlz5tCmTRscHR1p2rQp7733XoXnbdq0KW+88Qb33HMP7u7uRERE8Omnn5YfLywsZPTo0QQHB+Pk5ESTJk2YMGGCVf8edVWdWSfebDbz+OOP06tXL2JjY8v3Dx8+nCZNmhASEsKOHTt45plniIuLY+7cuee8TnJyMgCBgYEV9gcGBpYf+7sJEyYwduzYanoltSM9p4BfdiZxMq+Igf9eyUsDWzO8WwQmk8no0ERERERE6ozTRSW0fvk3Q55797j+uDhULuXKyMjgt99+4/XXX8fZ2bnCsaCgIEaMGMHs2bOZPHkyAO+88w7PP/88Y8eO5bfffuOxxx4jOjqaa6+9ljlz5vDBBx8wa9Ys2rRpQ3JyMtu3by+/3ujRo9m9ezezZs0iJCSEefPmMWDAAHbu3EmLFi0AyMvL46233uLzzz/H19eXsLAwXn75ZebMmcO9994LlI7Qz549m9dffx2A/Px8OnfuzDPPPIOHhwc///wz//d//0ezZs3o1q0bkyZNIj4+ntjYWMaNGweAv78/hw4dqvB6N2/ezK233sqrr77Kbbfdxpo1a3jkkUfw9fVl5MiR5ee99957vPbaazz//PN8//33PPzww/Tp04eYmBg+/PBDfvrpJ7799lsiIiJITEwkMTGx8v94dVidSeJHjRrFrl27WLVqVYX9DzzwQPl/t23bluDgYK6++moOHDhAs2bNquW5n3vuOZ544onyn7OzswkPD6+Wa9cUXzdHFj7emzHfbWflvjRemLeLpXtTeWtoW3zdHI0OT0RERERErLBv3z4sFgutWrU65/FWrVpx8uRJUlNTAejVqxfPPvssANHR0axevZoPPviAa6+9liNHjhAUFMQ111yDvb09ERERdOvWDYAjR44wbdo0jhw5QkhICABjxoxh4cKFTJs2jTfeeAOAoqIiJk+eTPv27ctjGDZsGDNnzixP4hcvXkxmZiZDhw4FIDQ0lDFjxpSf/+ijj/Lbb7/x7bff0q1bNzw9PXFwcLjodOn333+fq6++mpdeeqn89e3evZt33nmnQhJ//fXX88gjjwDwzDPP8MEHH7B06VJiYmI4cuQILVq04PLLL8dkMtGkSZNK/kvUfXUiiR89ejQLFixgxYoVhIWFXfDc7t27A7B///5zJvFlb4YTJ04QHBxcvv/EiRN06NDhnNd0dHTE0bH+Jb6BHk58eXc3pq5O4O2Fcfyx5wQDJmXy3i3t6R3tb3R4IiIiIiKGc7a3Zfe4/oY9t7UqW4Lfs2fPs34u61h/yy23MHHiRKKiohgwYADXX389gwYNws7Ojp07d1JSUkJ0dHSFxxcUFODr61v+s4ODA+3atatwzogRI+jRowfHjx8nJCSEGTNm8I9//AMvLy+gdGT+jTfe4Ntvv+XYsWMUFhZSUFCAi4uLVb+DPXv2lPc3K9OrVy8mTpxISUkJtralv9e/xmcymQgKCiIlJQUoLd2/9tpriYmJYcCAAQwcOJB+/fpZFUddZeiceIvFwujRo5k3bx5LliwhMjLyoo/Ztm0bQIUE/a8iIyMJCgpi8eLF5fuys7NZv379WW/0hsDGxsR9V0Txw6hetAhwI/VUAXdO3cC4+bvJLyoxOjwREREREUOZTCZcHOwM2ayZ6tq8eXNMJhN79uw55/E9e/bg7e2Nv//FB+vCw8OJi4tj8uTJODs788gjj9C7d2+KiorIycnB1taWzZs3s23btvJtz549TJo0qfwazs7OZ8XftWtXmjVrxqxZszh9+jTz5s1jxIgR5cffeecdJk2axDPPPMPSpUvZtm0b/fv3p7CwsNK/B2vY29tX+NlkMmE2mwHo1KkTCQkJvPbaa5w+fZpbb72Vm2++uUbiqG2GJvGjRo3i66+/ZubMmbi7u5OcnExycjKnT58G4MCBA7z22mts3ryZQ4cO8dNPP3HnnXfSu3fvCnddWrZsybx584DSf7jHH3+c8ePH89NPP7Fz507uvPNOQkJCGDJkiBEvs1a0DvFg/qOXc1fP0jKRqasTGPLxauKSTxkcmYiIiIiIXIyvry/XXnstkydPLs+HyiQnJzNjxgxuu+228sR63bp1Fc5Zt25dhVJ8Z2dnBg0axIcffsiyZctYu3YtO3fupGPHjpSUlJCSkkLz5s0rbJXpED9ixAhmzJjB/PnzsbGx4R//+Ef5sdWrVzN48GDuuOMO2rdvT1RUFPHx8RUe7+DgQEnJhQcbW7VqxerVqyvsW716NdHR0eWj8JXh4eHBbbfdxmeffcbs2bOZM2cOGRkZlX58XWVoEj9lyhSysrLo27cvwcHB5dvs2bOB0n/gP/74g379+tGyZUuefPJJhg4dyvz58ytcJy4urryzPcDTTz/No48+ygMPPEDXrl3Jyclh4cKFODk51errq21O9raMHRzL1JFd8HNzYG/yKQZ9tIrpqxOs7owpIiIiIiK166OPPqKgoID+/fuzYsUKEhMTWbhwIddeey2hoaHlDeSgNKl9++23iY+P5+OPP+a7777jscceA0q7y3/xxRfs2rWLgwcP8vXXX+Ps7EyTJk2Ijo5mxIgR3HnnncydO5eEhAQ2bNjAhAkT+Pnnny8a44gRI9iyZQuvv/46N998c4VpyS1atGDRokWsWbOGPXv28OCDD3LixIkKj2/atCnr16/n0KFDpKWllY+c/9WTTz7J4sWLee2114iPj+fLL7/ko48+qjDf/mLef/99vvnmG/bu3Ut8fDzfffcdQUFB5aX/9Zmhc+IvlliGh4ezfPlyq69jMpkYN25cecfDxuaqloH8+lhvnvp+O8viUnl1/m6Wxafyzs3t8Xevf3P/RUREREQagxYtWrBp0yZeeeUVbr31VjIyMggKCmLIkCG88sorFZbifvLJJ9m0aRNjx47Fw8OD999/n/79S+f+e3l58eabb/LEE09QUlJC27ZtmT9/fvmc92nTpjF+/HiefPJJjh07hp+fHz169GDgwIEXjbF58+Z069aNDRs2lM/BL/Piiy9y8OBB+vfvj4uLCw888ABDhgypMOA6ZswY7rrrLlq3bs3p06dJSEg46zk6derEt99+y8svv8xrr71GcHAw48aNq9DU7mLc3d15++232bdvH7a2tnTt2pVffvmlxta6r00mi4Zoz5KdnY2npydZWVl4eHgYHU6VWSwWvlp7mNd/2UNhsRlfVwfeuaUdV7UMvPiDRURERETqofz8fBISEoiMjGzwlbhS/1zo/VnZPLT+34aQ8zKZTNx1WVPmj76clkHupOcWcs/0Tbz84y41vRMREREREamHlMQ3AjFB7vwwqhf3Xl7a/f+rtYcZ+O9V/Hk86yKPFBERERERkbpESXwj4WRvy0sDW/PlPd3wd3dkf0oON368hs9XHsRs1owKERERERGR+kBJfCPTJ9qfhY9dwTWtAiksMTP+5z3cOXUDJ7LzjQ5NRERERERELkJJfCPk6+bIZ3d25vUbY3Gyt2HV/jT6T1zBwl3JRocmIiIiIiIiF6AkvpEymUyM6N6EBY9eQZsQDzLzinjo6808N3cHeYXFRocnIiIiIiIi56AkvpFrHuDGvEd68WCfKEwm+GZDIgM/XMWOo5lGhyYiIiIiIiJ/oyRecLCz4bnrWjHj3u4EeThxMC2XmyavYfKy/ZSo6Z2IiIiIiEidoSReyl3W3I+Fj1/BdbFBFJstvL0wjuGfreN45mmjQxMRERERkWoycuRIhgwZUv5z3759efzxxy/pmtVxDakcJfFSgZeLA5NHdOLtm9vh4mDL+oQMBkxcwYIdx40OTURERESkQRs5ciQmkwmTyYSDgwPNmzdn3LhxFBfXbM+quXPn8tprr1Xq3GXLlmEymcjMzKzyNWrKq6++SocOHc57PCEhgeHDhxMSEoKTkxNhYWEMHjyYvXv3Mn369PLf/fm2Q4cO8eqrr2IymRgwYMBZ13/nnXcwmUz07du35l4kSuLlHEwmE7d2CeeXf15B+3AvsvOLGT1zK09+u52cAjW9ExERERGpKQMGDCApKYl9+/bx5JNP8uqrr/LOO++cdV5hYWG1PaePjw/u7u6GX6MmFRUVce2115KVlcXcuXOJi4tj9uzZtG3blszMTG677TaSkpLKt549e3L//fdX2BceHg5AcHAwS5cu5ejRoxWeY+rUqURERNT4a1ESL+fV1M+V7x/qyaNXNcfGBHO2HOX6SSvZcuSk0aGJiIiIiNSoErOFtQfS+XHbMdYeSK+1XlGOjo4EBQXRpEkTHn74Ya655hp++umn8hL4119/nZCQEGJiYgBITEzk1ltvxcvLCx8fHwYPHsyhQ4f+9zpKSnjiiSfw8vLC19eXp59+Goul4mv5eyl8QUEBzzzzDOHh4Tg6OtK8eXO++OILDh06xJVXXgmAt7c3JpOJkSNHnvMaJ0+e5M4778Tb2xsXFxeuu+469u3bV358+vTpeHl58dtvv9GqVSvc3NzKb2CUWbZsGd26dcPV1RUvLy969erF4cOHq/R7/fPPPzlw4ACTJ0+mR48eNGnShF69ejF+/Hh69OiBs7MzQUFB5ZuDgwMuLi4V9tna2gIQEBBAv379+PLLL8uvv2bNGtLS0vjHP/5RpfisoSReLsje1oYn+8Uw64GehHo5cyQjj1s+WcukP/ZRXGI2OjwRERERkWq3cFcSl7+1hNs/W8djs7Zx+2fruPytJSzclXTxB1czZ2fn8lH3xYsXExcXx6JFi1iwYAFFRUX0798fd3d3Vq5cyerVq8uT4bLHvPfee0yfPp2pU6eyatUqMjIymDdv3gWf88477+Sbb77hww8/ZM+ePfznP//Bzc2N8PBw5syZA0BcXBxJSUlMmjTpnNcYOXIkmzZt4qeffmLt2rVYLBauv/56ioqKys/Jy8vj3Xff5b///S8rVqzgyJEjjBkzBoDi4mKGDBlCnz592LFjB2vXruWBBx7AZDJV6ffo7++PjY0N33//PSUlJVW6xl/dc889TJ8+vfznqVOnMmLECBwcHC752hejJF4qpVukD788dgU3tA+hxGzhgz/iue3TdSRm5BkdmoiIiIhItVm4K4mHv95CUlZ+hf3JWfk8/PWWWkvkLRYLf/zxB7/99htXXXUVAK6urnz++ee0adOGNm3aMHv2bMxmM59//jlt27alVatWTJs2jSNHjrBs2TIAJk6cyHPPPcdNN91Eq1at+OSTT/D09Dzv88bHx/Ptt98ydepUbrzxRqKiorj66qu57bbbsLW1xcfHBygdjQ4KCjrntfbt28dPP/3E559/zhVXXEH79u2ZMWMGx44d44cffig/r6ioiE8++YQuXbrQqVMnRo8ezeLFiwHIzs4mKyuLgQMH0qxZM1q1asVdd91V5XL10NBQPvzwQ15++WW8vb256qqreO211zh48GCVrjdw4ECys7NZsWIFubm5fPvtt9xzzz1Vupa1lMRLpXk62/Ph7R2ZeFsH3Bzt2Hz4JNdNWsm8rUcv/mARERERkTquxGxh7PzdnKtwvmzf2Pm7a7S0fsGCBbi5ueHk5MR1113HbbfdxquvvgpA27ZtK4z0bt++nf379+Pu7o6bmxtubm74+PiQn5/PgQMHyMrKIikpie7du5c/xs7Oji5dupz3+bdt24atrS19+vSp8mvYs2cPdnZ2FZ7X19eXmJgY9uzZU77PxcWFZs2alf8cHBxMSkoKUDrHfuTIkfTv359BgwYxadKk8lL7I0eOlL9eNzc33njjjUrFNWrUKJKTk5kxYwY9e/bku+++o02bNixatMjq12hvb88dd9zBtGnT+O6774iOjqZdu3ZWX6cq7GrlWaRBGdIxlM5NvHl89jY2Hz7Jv2ZvZ1lcKuMGx+LpbG90eCIiIiIiVbIhIeOsEfi/sgBJWflsSMigZzPfGonhyiuvZMqUKTg4OBASEoKd3f9SNldX1wrn5uTk0LlzZ2bMmHHWdfz9/av0/M7OzlV6XFXY21fMHUwmU4X5+tOmTeOf//wnCxcuZPbs2bz44ossWrSILl26sG3btvLzyqoDKsPd3Z1BgwYxaNAgxo8fT//+/Rk/fjzXXnut1fHfc889dO/enV27dtXaKDxoJF6qKNzHhdkP9OCJa6OxtTHx47bjXD9pJRsSMowOTURERESkSlJOnT+Br8p5VeHq6krz5s2JiIiokMCfS6dOndi3bx8BAQE0b968wubp6YmnpyfBwcGsX7++/DHFxcVs3rz5vNds27YtZrOZ5cuXn/N4WSXAheaVt2rViuLi4grPm56eTlxcHK1bt77ga/q7jh078txzz7FmzRpiY2OZOXMmdnZ2FV6rNUn8X5lMJlq2bElubm6VHl82rWHXrl0MHz68SteoCiXxUmV2tjb88+oWfPdQTyJ8XDiWeZphn67lvd/jKFLTOxERERGpZwLcnar1vJo2YsQI/Pz8GDx4MCtXriQhIYFly5bxz3/+s3z5s8cee4w333yTH374gb179/LII4+ctcb7XzVt2pS77rqLe+65hx9++KH8mt9++y0ATZo0wWQysWDBAlJTU8nJyTnrGi1atGDw4MHcf//9rFq1iu3bt3PHHXcQGhrK4MGDK/XaEhISeO6551i7di2HDx/m999/Z9++fbRq1eqCjzt9+jTbtm2rsB04cIBt27YxePBgvv/+e3bv3s3+/fv54osvmDp1aqVjOpclS5aQlJSEl5dXla9hLSXxcsk6RXjzy2NXMLRTGGYL/HvJfm7+ZC2H0qp2R0tERERExAjdIn0I9nTifP3PTUCwpxPdIqs28lvdXFxcWLFiBREREeWN6+69917y8/Px8PAA4Mknn+T//u//uOuuu+jZsyfu7u7ceOONF7zulClTuPnmm3nkkUdo2bIl999/f/lodWhoKGPHjuXZZ58lMDCQ0aNHn/Ma06ZNo3PnzgwcOJCePXtisVj45Zdfziqhv9Br27t3L0OHDiU6OpoHHniAUaNG8eCDD17wcfHx8XTs2LHC9uCDDxIWFkbTpk0ZO3Ys3bt3p1OnTkyaNImxY8fywgsvVCqmcylb/q42mSx/XyRQyM7OxtPTk6ysrPI3v1TO/O3HeWHeTrLzi3FxsOXVG9pwS+ewKi8FISIiIiJijfz8fBISEoiMjMTJyfoR87Lu9ECFBndl32an3NGJAbHBlx6oNEoXen9WNg/VSLxUq0HtQ/j18d50j/Qhr7CEp7/fwaiZW8jMKzQ6NBERERGRixoQG8yUOzoR5FkxwQrydFICL3WCutNLtQv1cmbm/T34z4oDvP97PL/sTGbL4Uzev609lzXzMzo8EREREZELGhAbzLWtg9iQkEHKqXwC3EtL6G1tVF0qxlMSLzXC1sbEI32bc3lzPx6btY2EtFxGfL6eB3pH8eS1MTjYqQhEREREROouWxtTjS0jJ3IplElJjWoX5sXP/7yc27uFY7HAf5Yf5KYpq9mfcnYXSxEREREREbkwJfFS41wc7JhwUzs+uaMzXi727DqWzcB/r2TG+sOor6KIiIiIiEjlKYmXWjMgNojfHu/N5c39yC8y88K8Xdz/1WbScwqMDk1ERERERKReUBIvtSrQw4mv7unGi/9ohYOtDX/sOcGASStZEZ9qdGgiIiIiIiJ1npJ4qXU2NibuuyKKeaMuo3mAG6mnCrhz6gbGzd9NflGJ0eGJiIiIiIjUWUrixTBtQjyZP/py7uzZBICpqxMY8vFq4pJPGRyZiIiIiIhI3aQkXgzl7GDLuMGxfHFXF3xdHdibfIpBH61i+uoENb0TEREREfkbk8nEDz/8AMChQ4cwmUxs27bN0JjOp67HV18piZc64epWgfz6+BX0ifansNjMq/N3c/f0jaSeUtM7EREREWk8kpOTefTRR4mKisLR0ZHw8HAGDRrE4sWLzzo3PDycpKQkYmNjazQmJeN1i5J4qTMC3J2YfndXXh3UGgc7G5bFpTJg4gqW7D1hdGgiIiIiIjXu0KFDdO7cmSVLlvDOO++wc+dOFi5cyJVXXsmoUaPOOt/W1pagoCDs7OwMiFaMoiRe6hSTycTIXpHMH305LYPcSc8t5J7pm3j5x11qeiciIiIiDdojjzyCyWRiw4YNDB06lOjoaNq0acMTTzzBunXrzjr/7yPky5Ytw2Qy8dtvv9GxY0ecnZ256qqrSElJ4ddff6VVq1Z4eHgwfPhw8vLyyq+zcOFCLr/8cry8vPD19WXgwIEcOHCg/HhkZCQAHTt2xGQy0bdvXwDMZjPjxo0jLCwMR0dHOnTowMKFCy/4GpcvX063bt1wdHQkODiYZ599luLi4vLjp06dYsSIEbi6uhIcHMwHH3xA3759efzxxwEYN27cOSsPOnTowEsvvVSp33N9pyRe6qSYIHd+GNWLe3qV/sH4au1hBv57FX8ezzI4MhERERGpTywWC7m5uYZs1vR4ysjIYOHChYwaNQpXV9ezjnt5eVX6Wq+++iofffQRa9asITExkVtvvZWJEycyc+ZMfv75Z37//Xf+/e9/l5+fm5vLE088waZNm1i8eDE2NjbceOONmM1mADZs2ADAH3/8QVJSEnPnzgVg0qRJvPfee7z77rvs2LGD/v37c8MNN7Bv375zxnXs2DGuv/56unbtyvbt25kyZQpffPEF48ePLz/niSeeYPXq1fz0008sWrSIlStXsmXLlvLj99xzD3v27GHjxo3l+7Zu3cqOHTu4++67K/07qs9UdyF1lpO9LS8Pak2fGH/GfLed/Sk53PjxGp4eEMM9vSKxsTEZHaKIiIiI1HF5eXm4ubkZ8tw5OTnnTMjPZf/+/VgsFlq2bHnJzzt+/Hh69eoFwL333stzzz3HgQMHiIqKAuDmm29m6dKlPPPMMwAMHTq0wuOnTp2Kv78/u3fvJjY2Fn9/fwB8fX0JCgoqP+/dd9/lmWeeYdiwYQC89dZbLF26lIkTJ/Lxxx+fFdfkyZMJDw/no48+wmQy0bJlS44fP84zzzzDyy+/TG5uLl9++SUzZ87k6quvBmDatGmEhISUXyMsLIz+/fszbdo0unbtWn5Onz59yl9fQ6eReKnz+kT7s/CxK7imVSCFJWbG/7yHO6du4ER2vtGhiYiIiIhUi+pcmaldu3bl/x0YGIiLi0uFBDcwMJCUlJTyn/ft28ftt99OVFQUHh4eNG3aFIAjR46c9zmys7M5fvx4+c2CMr169WLPnj3nfMyePXvo2bMnJpOpwvk5OTkcPXqUgwcPUlRURLdu3cqPe3p6EhMTU+E6999/P9988w35+fkUFhYyc+ZM7rnnngv8RhoWjcRLveDr5shnd3Zm5oYjvLZgN6v2p9F/4grevKkdA2KDLn4BEREREWmUXFxcyMnJMey5K6tFixaYTCb27t17yc9rb29f/t8mk6nCz2X7ykrlAQYNGkSTJk347LPPCAkJwWw2ExsbS2Fh4SXHUhMGDRqEo6Mj8+bNw8HBgaKiIm6++Wajw6o1SuKl3jCZTIzo3oTukb48Nmsrfx7P5qGvN3N7t3BeGtgaFwe9nUVERESkIpPJVOmSdiP5+PjQv39/Pv74Y/75z3+eFXNmZqZV8+IrKz09nbi4OD777DOuuOIKAFatWlXhHAcHBwBKSv7XaNrDw4OQkBBWr15Nnz59yvevXr26wkj6X7Vq1Yo5c+ZgsVjKR+NXr16Nu7s7YWFheHt7Y29vz8aNG4mIiAAgKyuL+Ph4evfuXX4dOzs77rrrLqZNm4aDgwPDhg3D2dm5Gn4b9YPK6aXeaR7gxrxHevFgnyhMJvhmQyIDP1zFjqOZRocmIiIiIlJlH3/8MSUlJXTr1o05c+awb98+9uzZw4cffkjPnj1r5Dm9vb3x9fXl008/Zf/+/SxZsoQnnniiwjkBAQE4OzuzcOFCTpw4QVZWabPpp556irfeeovZs2cTFxfHs88+y7Zt23jsscfO+VyPPPIIiYmJPProo+zdu5cff/yRV155hSeeeAIbGxvc3d256667eOqpp1i6dCl//vkn9957LzY2NhVK8AHuu+8+lixZwsKFCxtVKT0oiZd6ysHOhueua8WMe7sT5OHEwbRcbpq8hsnL9lNirr75RCIiIiIitSUqKootW7Zw5ZVX8uSTTxIbG8u1117L4sWLmTJlSo08p42NDbNmzWLz5s3Exsbyr3/9i3feeafCOXZ2dnz44Yf85z//ISQkhMGDBwPwz3/+kyeeeIInn3yStm3bsnDhQn766SdatGhxzucKDQ3ll19+YcOGDbRv356HHnqIe++9lxdffLH8nPfff5+ePXsycOBArrnmGnr16kWrVq1wcnKqcK0WLVpw2WWX0bJlS7p3717Nv5W6zWSpzg4KDUR2djaenp5kZWXh4eFhdDhyESdzC3l+3k5+3ZUMQPdIHz64rQMhXo2npEZERERESuXn55OQkEBkZORZiZ/UP7m5uYSGhvLee+9x7733lu+3WCy0aNGCRx555KzKgbrsQu/PyuahGomXes/b1YHJIzrx9tB2uDjYsj4hgwETV7Bgx3GjQxMRERERESts3bqVb775hgMHDrBlyxZGjBgBUD76D5CamspHH31EcnJyo1kb/q/UCUwaBJPJxK1dw+ka6cPjs7ay/WgWo2duZeneVMYOboObo97qIiIiIiL1wbvvvktcXBwODg507tyZlStX4ufnV348ICAAPz8/Pv30U7y9vQ2M1BjKbKRBifRz5fuHL2PSH/v4eNl+5mw5ysZDGUwc1oFOEY3vf3ARERERkfqkY8eObN68+YLnNPYZ4SqnlwbH3taGMf1jmHV/D0K9nDmSkcctn6xl0h/7KC4xX/wCIiIiIiIidZSSeGmwukf58stjVzCofQglZgsf/BHPbZ+uIzEjz+jQREREREREqsTQJH7ChAl07doVd3d3AgICGDJkCHFxcec812KxcN1112Eymfjhhx8ueN2RI0diMpkqbAMGDKiBVyB1naezPR8O68AHt7XHzdGOzYdPcsNHq0jOyjc6NBERERGpQY295Frqpup4XxqaxC9fvpxRo0axbt06Fi1aRFFREf369SM3N/escydOnIjJZKr0tQcMGEBSUlL59s0331Rn6FKPmEwmbuwYxq+PXUFMoDsn84p4ft5O/WEXERERaYDs7e0ByMtT9aXUPWXvy7L3aVUY2thu4cKFFX6ePn06AQEBbN68md69e5fv37ZtG++99x6bNm0iODi4Utd2dHQkKCioWuOV+i3cx4UPb+/IoH+vYsneFOZsOcbNncOMDktEREREqpGtrS1eXl6kpKQA4OLiYtVgoEhNsFgs5OXlkZKSgpeXF7a2tlW+Vp3qTp+VlQWAj49P+b68vDyGDx/Oxx9/bFVSvmzZMgICAvD29uaqq65i/Pjx+Pr6nvPcgoICCgoKyn/Ozs6u4iuQui4myJ3HrmnBO7/FMXb+n1ze3I8gTyejwxIRERGRalSWN5Ql8iJ1hZeX1yUPNpssdaSm2Gw2c8MNN5CZmcmqVavK9z/44IOUlJTw+eefA6Wl0fPmzWPIkCHnvdasWbNwcXEhMjKSAwcO8Pzzz+Pm5sbatWvPecfj1VdfZezYsWftz8rKwsPD49JfnNQpxSVmhk5Zw/ajWVwZ48/UkV11d1ZERESkASopKaGoqMjoMESA0hL6C43AZ2dn4+npedE8tM4k8Q8//DC//vorq1atIiystMT5p59+4sknn2Tr1q24ubkBlUvi/+7gwYM0a9aMP/74g6uvvvqs4+caiQ8PD1cS34DtO3GKf3y4isISM2/f3I5bu4QbHZKIiIiIiDRilU3i68QSc6NHj2bBggUsXbq0PIEHWLJkCQcOHMDLyws7Ozvs7Eqr/4cOHUrfvn0rff2oqCj8/PzYv3//OY87Ojri4eFRYZOGrUWgO49f2wKA1+bvJinrtMERiYiIiIiIXJyhSbzFYmH06NHMmzePJUuWEBkZWeH4s88+y44dO9i2bVv5BvDBBx8wbdq0Sj/P0aNHSU9Pr3RTPGkcHrgiivbhXpwqKObZOepWLyIiIiLSEJnNDet7vqFJ/KhRo/j666+ZOXMm7u7uJCcnk5yczOnTpaOiQUFBxMbGVtgAIiIiKiT8LVu2ZN68eQDk5OTw1FNPsW7dOg4dOsTixYsZPHgwzZs3p3///rX/IqXOsrO14d2b2+Fga8Py+FS+23TU6JBERERERKQaJWfl02/iCpbubThNDg1N4qdMmUJWVhZ9+/YlODi4fJs9e7ZV14mLiyvvbG9ra8uOHTu44YYbiI6O5t5776Vz586sXLkSR0fHmngZUo+1CHTnX9dGA/Dagt0cz1RZvYiIiIhIQ1BcYuaf32xlf0oO7y2Ko6SBjMgbusRcVcqXz/WYv+5zdnbmt99+u6S4pHG5/4pIFv6ZzPbETJ6du5Mv71a3ehERERGR+u69RfFsOJSBm6MdH93eCVubhvEdv040thMxkp2tDe/d0g4HOxtWxKfy7aZEo0MSEREREZFLsHRvClOWHQDg7Zvb0dTP1eCIqo+SeBGgeYA7T54pqx+/YI/K6kVERERE6qnjmaf517fbALirZxOub9uwGpwriRc5474rougYUdqt/pk5O9StXkRERESknikqMfPoN1vJzCuibagnz/+jldEhVTsl8SJn2NqYeOfm9jjY2bByXxqzNqqsXkRERESkPnn3tzg2Hz6Ju5MdHw/vhKOdrdEhVTsl8SJ/0TzAjTH9SsvqX/95D8dUVi8iIiIiUi8s3nOC/6w4CMA7N7cnwtfF4IhqhpJ4kb+59/IoOkV4kVNQzLMqqxcRERERqfOOnszjiW+3A3B3r6YMiA0yOKKaoyRe5G9sbUy8c0t7HM+U1X+zQWX1IiIiIiJ1VWGxmdEzt5J1uoj24V48d13Dmwf/V0riRc6hmb8bY/rFAPD6z7s5ejLP4IhERERERORc3lq4l22JmXg42fHR7R1xsGvYaW7DfnUil+CeyyPp3MSb3MISnp2zU2X1IiIiIiJ1zG9/JvPFqgQA3ru1A+E+DXMe/F8piRc5j9Ju9e1wtLNh1f40Zm44YnRIIiIiIiJyRmJGHmO+K50Hf/8VkVzbOtDgiGqHkniRC4jyd+Op/qVl9W/8vIfEDJXVi4iIiIgYraC4hFEzt3Aqv5hOEV48PaCl0SHVGiXxIhdxd69Iupwpq39mzg7MZpXVi4iIiIgYacIve9lxNAsvF3v+PbwT9raNJ7VtPK9UpIrKutU72duw5kA6M1RWLyIiIiJimF92JjF9zSEA3r+1PaFezsYGVMuUxItUQqSfK0/1Ly3RmfCLyupFROqbycv20+m1RcQlnzI6FBERuQSH03N55vsdADzYJ4qrWjaOefB/pSRepJLuvqwpXZt6k1dYwtPfq6xeRKS+yCko5uMl+8nILeTbTYlGhyMiIlWUX3RmHnxBMV2aeJcvCd3YKIkXqSQbGxPv3FxaVr/2YDoz1h82OiQREamEn7YdJ7ewBIDl8akGRyMiIlX1+s972HUsGx9XB/49vGOjmgf/V43zVYtUUVM/V54uK6v/da/K6kVE6jiLxVLhpuv+lByOntTfbhGR+mb+9uP8d13p3/P3b21PsGfjmgf/V0riRaw08rKmdGvqQ15hCU99v11l9SIiddi2xEz+PJ6Ng50NLYPcAVgWp9F4EZH6JCEtl+fm7gRg1JXN6BsTYHBExlISL2IlGxsTb9/cDmd7W9YdzOBrldWLiNRZM9aXrigysF0wA9sFAyqpFxGpT/KLSnhkxhZyCorpHunDv66JNjokwymJF6mCpn6uPDOgtJHGhF/2ciRdpZkiInVNVl4R87cfB2BE9yblIzdr9qdRWGw2MjQREamksfN3sycpG19XBz68vSN2jXQe/F/pNyBSRXf2bEr3SB9OF6msXkSkLpqz5SgFxWZaBrnTKcKL1sEe+Lk5kFtYwqbDGUaHJyIiF/HjtmN8s+EIJhNMGtaRQA8no0OqE5TEi1RRWbd6Z3tb1idk8NXaQ0aHJCIiZ/y1od2IHk0wmUzY2JjoHe0PwHLNixcRqdP2p+SUz4N/9KoWXN7Cz+CI6g4l8SKXIMLXhWevK+1W/9bCOA6n5xockYiIAKxPyOBAai4uDrYM6RBSvr9PWRKvefEiInXW6cISRs3YQl5hCT2jfHns6hZGh1SnKIkXuUT/16MJPaLKyup3qKxeRKQOKGtoN7hDKO5O9uX7e7fwx2SCvcmnSMo6bVR4IiJyAa/+9CdxJ07h5+bIpNs7YGtjMjqkOkVJvMglsrEx8fbQ9rg42LIhIYMvVVYvImKotJwCFu5KAmBE94gKx7xdHWgf5gXACo3Gi4jUOXO3HGX2pkRsTPDhsA4EuGse/N8piRepBhXL6vdyKE1l9SIiRvlu01GKSiy0D/ciNtTzrON9Y0pL6rVevIhI3bLvxClemLcLgMeujuay5poHfy5K4kWqyR3dm9Azypf8IjNPq6xeRMQQZrOFmRvONLT72yh8mbJ58av2pVFUoqXmRETqgrzCYh6ZsYXTRSVc3tyP0Vc1NzqkOktJvEg1sbEx8fbN7UrL6g9lMH3NIaNDEhFpdFbuTyMx4zQeTnYMahdyznPahXnh7WLPqYJith7JrN0ARUTknF764U/2peQQ4O7IxGGaB38hSuJFqlG4jwvPXd8KgLd/20uCyupFRGrVjHWlo/BDO4fh7GB7znNs/7LU3LK4lFqLTUREzu3bTYnM2XK0dB787R3xc3M0OqQ6za4yJ+3YscPqC7du3Ro7u0pdXqRBGdEtgl93JrHmQDpPfbed2Q/21J1EEZFakJR1msV7S5Py85XSl+kT7c+P246zPD6Vpwe0rI3wRETkHOKST/Hyj6Xz4J/sF0OPKF+DI6r7KpVld+jQAZPJhMVSuTm+NjY2xMfHExUVdUnBidRHNjYm3hrajgETV7Dp8EmmrU7gviv0/4KISE2bvTGRErOF7pE+NA9wv+C5ZSPxfx7PJuVUvrofi4gYILegmEdmbCa/yEyfaH8e7tPM6JDqhUoPla9fvx5/f/+LnmexWIiNjb2koETqu7Ky+hd/2MU7v8VxVcsAovzdjA5LRKTBKi4xM2tDIgAjejS56Pl+bo60DfVk57EsVsSncXPnsJoOUURE/sJisfDCvJ0cSM0lyMOJ929tj42qVyulUkl8nz59aN68OV5eXpW6aO/evXF2dr6UuETqvRHdI/h1VxKr96fz1Pc7+FZl9SIiNWbJ3hSSs/PxdXWgf5vASj2mb4w/O49lsSwuRUm8iEgtm7UxkR+2HcfWxsS/h3fEV/PgK61Sje2WLl1a6QQe4JdffiE4OLiqMYk0CCZTaVm9q4Mtm8+U1YuISM2Ysf4IALd0CcfR7twN7f6ubKm5lfvSKNGyoCIitWb38Wxe+elPAMb0i6FrUx+DI6pfrOpOn52djdl89nqqJSUlZGdnV1tQIg1FmLcLz/+jtFv9O7/FcSA1x+CIREQaniPpeazYlwrA8G4Xbmj3Vx3CvfBwsiPrdBHbEjNrKDoREfmrnIJiRs/cQmGxmStj/Hmwt3pHWavSSfy8efPo0qUL+fn5Zx3Lz8+na9euzJ8/v1qDE2kIhneL4PLmfhQUm3nqu+0a7RERqWbfbDyCxVLarC7C16XSj7OzteGKFqWj8cvjU2sqPBEROcNisfDc3J0cTMslxNOJ92/toHnwVVDpJH7KlCk8/fTTuLic/eHo6urKM888w0cffVStwYk0BCaTibduboebox1bjmQydZXK6kVEqktBcQnfbjzT0O4iy8qdS5+YM0m81osXEalxM9YfYf7249jZmPj38E54uzoYHVK9VOkkfteuXfTt2/e8x3v37s3OnTurIyaRBifUy5kXzpTVv/u7yupFRKrLb3+eID23kEAPR65uGWD148vmxe84lkV6TkF1hyciImfsOpbFuAW7AXhmQEs6N/E2OKL6q9JJ/MmTJykuLj7v8aKiIk6ePFktQYk0RMO6hnNFi9Ky+jEqqxcRqRYz1h0GYFjXCOxsrWr1A0CghxOtgj2wWEob3ImISPXLzi9i1Jl58Ne0CuS+KyKNDqleq/SnXdOmTdm0adN5j2/atIkmTS6+LqtIY2UymXhzaGlZ/dYjmXy+8qDRIYmI1Gv7U06xPiEDGxMM6xZe5ev0PVNSv0wl9SIi1c5isfDsnB0cTs8j1MuZ925pj8mkefCXotJJ/E033cQLL7zAiRMnzjqWnJzMiy++yNChQ6s1OJGGJtTLmRfPlNW/tyie/SmnDI5IRKT+KltW7upWgQR7Olf5OmUl9Sv2pWFWlZSISLX6au1hftmZjL2tiY9HdMLTxd7okOq9Sifxzz77LO7u7rRo0YJHHnmESZMmMWnSJB5++GGio6Nxc3Pj2WefrclYRRqE27qG0zvan8JiM2O+26GyehGRKjhdWMKczUeBqjW0+6vOTbxxc7QjI7eQnceyqiM8EREBdhzNZPzPpfPgn7uuFR3CvYwNqIGodBLv7u7O6tWrueOOO5g9ezb/+te/+Ne//sXs2bO54447WLVqFe7u7jUZq0iDYDKZePOmtrg72rEtMZPPVFYvImK1BTuOk51fTJi3M73PLBNXVfa2NvRq7gtoqTkRkeqSdbp0HnxRiYX+bQK5u1dTo0NqMKzqAOPp6cnkyZNJS0vjxIkTJCcnk56ezuTJk/H2VndBkcoK8XLmpYGtAXhfZfUiIlYrK6Uf3j2iWtYY7htT2tle8+JFRC6dxWLh6e+3k5hxmnAfZ96+WfPgq5P1bVwpHUn09/cnICBA/xgiVXRLlzD6xpSW1T/53Q6KS8xGhyQiUi/sOpbFtsRM7G1N3NK56g3t/qpsXvy2xEwy8wqr5ZoiIo3VtNWH+O3PEzjY2vDx8E54OmsefHWqUhIvIpfOZDIx4aa2uDvZsT0xk89WJhgdkohIvTBzQ+kofP82Qfi7O1bLNUO8nIkOdMOspeZERC7JtsRMJvy6B4AX/tGKdmFexgbUABmaxE+YMIGuXbvi7u5OQEAAQ4YMIS4u7pznWiwWrrvuOkwmEz/88MMFr2uxWHj55ZcJDg7G2dmZa665hn379tXAKxC5NMGe/yur/2BRPPtOqKxeRORCcgqK+XHrMQDu6FG9S9uWjcZrXryISNVk5hUyakbpPPh/tA3mzp5agrwmGJrEL1++nFGjRrFu3ToWLVpEUVER/fr1Izc396xzJ06cWOnS/bfffpsPP/yQTz75hPXr1+Pq6kr//v3Jz8+v7pcgcslu6RzGlTH+FJaYGfPddpXVi4hcwA9bj5FbWEIzf1e6R/pU67XL5sUvj0/VUnMiIlayWCyM+W4HxzJP08TXhQlD22rqdQ25pCT+UpPihQsXMnLkSNq0aUP79u2ZPn06R44cYfPmzRXO27ZtG++99x5Tp0696DUtFgsTJ07kxRdfZPDgwbRr146vvvqK48ePX3QEX8QIpWX17UrL6o9m8Z8V6lYvInIuFoulvKHdiO5Nqv3LYZem3rg42JJ6qoA9ydnVem0RkYbu85UJ/LHnBA52pfPgPZw0D76mWJ3Em81mXnvtNUJDQ3Fzc+PgwdKE46WXXuKLL764pGCyskrXZvXx+d+d9by8PIYPH87HH39MUFDQRa+RkJBAcnIy11xzTfk+T09Punfvztq1a8/5mIKCArKzsytsIrUpyNOJl8+U1U/6Yx9xySqrFxH5u62JmexJysbRzoahncKq/fqOdrZc1qx0qbllcSqpFxGprM2HT/LWwr0AvDywNbGhngZH1LBZncSPHz+e6dOn8/bbb+Pg4FC+PzY2ls8//7zKgZjNZh5//HF69epFbGxs+f5//etfXHbZZQwePLhS10lOTgYgMDCwwv7AwMDyY383YcIEPD09y7fw8OrpdCtijZs7h3FVywAKS8w89b3K6kVE/m7GutJR+EHtQ/B0qZkRnj5lJfVK4kVEKuVkbiGPztxCsdnCoPYhjOgeYXRIDZ7VSfxXX33Fp59+yogRI7C1tS3f3759e/bu3VvlQEaNGsWuXbuYNWtW+b6ffvqJJUuWMHHixCpftzKee+45srKyyrfExMQafT6RczGZTLxxY2m3+h0qqxcRqSAzr5AFO44D1OgXxL5nmtttPnKS7PyiGnseEZGGwGy28MS32zielU+knysTbtI8+NpgdRJ/7NgxmjdvftZ+s9lMUVHVPuxGjx7NggULWLp0KWFh/yuPW7JkCQcOHMDLyws7Ozvs7OwAGDp0KH379j3ntcpK7k+cOFFh/4kTJ85bju/o6IiHh0eFTcQIQZ5OvDqoDQAT/4hXWb2IyBlzthyjoNhM62APOoR71djzhPu4EOXvSonZwmotNScickH/WXGQpXGpOJ6ZB+/maGd0SI2C1Ul869atWbly5Vn7v//+ezp27GjVtSwWC6NHj2bevHksWbKEyMjICsefffZZduzYwbZt28o3gA8++IBp06ad85qRkZEEBQWxePHi8n3Z2dmsX7+enj17WhWfiBFu6hTK1S0DKCqxMOa77RSprF5EGrnShnaHARjRI6LGR3m01JyIyMVtPJTBu7+XLg/+6g1taB2igdDaYvWtkpdffpm77rqLY8eOYTabmTt3LnFxcXz11VcsWLDAqmuNGjWKmTNn8uOPP+Lu7l4+Z93T0xNnZ2eCgoLOOXoeERFRIeFv2bIlEyZM4MYbb8RkMvH4448zfvx4WrRoQWRkJC+99BIhISEMGTLE2pcrUutMJhNv3NSWa99fzs5jWfxn+QFGX9XC6LBERAyz7mAGB1NzcXWwZXCH0Bp/vr4xAUxbfYhlcalYLBaVhoqI/E16TgGPztxKidnCkA4hDOuqnmK1yeqR+MGDBzN//nz++OMPXF1defnll9mzZw/z58/n2muvtepaU6ZMISsri759+xIcHFy+zZ4926rrxMXFlXe2B3j66ad59NFHeeCBB+jatSs5OTksXLgQJycnq64rYpRADydevaG0rH7S4n3s1VJHItKIfX1mFH5Ix9BaKdXsHumDo50Nydn5xJ/IqfHnExGpT8xmC//6djvJ2fk083fl9Rs1D762mSwWi8XoIOqa7OxsPD09ycrK0vx4MYzFYuH+rzbxx54UYkM9mPdIL+xtrb7vJiJSr6WeKqDnhMUUmy388s8raq1cc+S0DSyLS+W561ryYJ9mtfKcIiL1wcdL9/POb3E42dvw46jLiQlyNzqkBqOyeWiVMoLMzEw+//xznn/+eTIyMgDYsmULx44dq1q0InKWsm71ns727DqWzZRlB4wOSUSk1n27KZFis4WOEV61Ot9S8+JFRM627mA6752ZBz9ucKwSeINYncTv2LGD6Oho3nrrLd555x0yMzMBmDt3Ls8991x1xyfSqAV4OPHqDa0B+PeSfexJUlm9iDQeJWYL32woXRt+RPcmtfrcfc+sF7/xUAY5BcW1+twiInVR6qkC/vnNVswWGNopjFu7aB68UaxO4p944glGjhzJvn37Kswxv/7661mxYkW1BiciMKRDKNe0ClS3ehFpdFbsS+XoydN4ONkxsF1wrT53pJ8rTXxdKCqxsGa/lpoTkcatxGzhX7O3kXKqgBYBbrw2pI3RITVqVifxGzdu5MEHHzxrf2hoaHl3eRGpPqXd6mPxcrHnz+PZTF6qsnoRaRxmrCsdhb+5czhO9ra1/vwqqRcRKfXRkv2s2p+Gs70tk0d0wsVB68Ebyeok3tHRkezss0t64+Pj8ff3r5agRKSiAHcnxp7pVv/vJfvYfVxl9SLSsB3PPM2SvScAGN49wpAY+saUfq8pW2pORKQxWrM/jYmL4wEYPySWFoGaB280q5P4G264gXHjxlFUVASUjhIeOXKEZ555hqFDh1Z7gCJS6ob2IfRrHUixWWX1ItLwzdqYiNkCPaJ8aB7gZkgMPaJ8cbC14VjmaQ6k5hoSg4iIkVJO5fPPWduwWODWLmEM7RxmdEhCFZL49957j5ycHAICAjh9+jR9+vShefPmuLu78/rrr9dEjCJC6Q2z8TeWltXvTsrm46X7jQ5JRKRGFJWYmWVQQ7u/cnGwo3uUDwDL4lIMi0NExAglZguPfbONtJwCYgLdGXtDrNEhyRlWJ/Genp4sWrSIBQsW8OGHHzJ69Gh++eUXli9fjqura03EKCJn/LWs/qMl+/nzeJbBEYmIVL/Fe1JIOVWAn5sD/dsEGRqL5sWLSGM1afE+1h5Mx8XBlo9HdMLZofZ7k8i5WdWRoKioCGdnZ7Zt20avXr3o1atXTcUlIudxQ/sQftmZxG9/nmDMdzv4cVQvHOysvh8nIlJnzVh/GIBbu4Qb/vetb4w/43/ew/qEDE4XluhLrIg0Civ3pfLvJfsAmHBTW8OmNcm5WfXJaG9vT0REBCUlJTUVj4hchMlkYvyQtni72LMnKZuPVFYvIg3I4fRcVu5Lw2SC27sZ09Dur5r5uxHq5UxhsZl1B9ONDkdEpMadyM7n8TPz4G/vFsHgDqFGhyR/Y/Xt7RdeeIHnn3+ejIyMmohHRCrB392RsYNL5yVNXrqfXcdUVi8iDcPMM3Ph+0T7E+7jYnA0pTdO+5R3qde8eBFp2IpLzDz6zVbScwtpFezBK4NaGx2SnIPVSfxHH33EihUrCAkJISYmhk6dOlXYRKR2DGoXzIA2QeXd6guL1a1eROq3guISvtt0FDC2od3faV68iDQWH/wRz4aEDNwc7Zg8ohNO9ppCVBdZNSceYMiQITUQhohYq6xb/YZDGexNPsVHS/bxRL8Yo8MSEamyhbuSycgtJNjTiSvPjH7XBb2a+2Fva+JQeh6H0nJp6qdGviLS8CyLS+HjpQcAeHNoWyL1t67OsjqJf+WVV2oiDhGpAj83R8YNbsPomVv5eNkB+rUJIjbU0+iwRESqZMb60lL6YV0jsLOtOw073Rzt6NLEh7UH01kWl8JIv0ijQxIRqVZJWaf51+xtAPxfjyYMbBdibEByQXXnE1JEqmRguxCubxtEicrqRaQe23fiFBsSMrC1MXFb13CjwzlL2bx4ldSLSENTVGLm0ZlbOZlXRGyoBy/8o5XRIclFWJ3Ee3t74+Pjc9bm6+tLaGgoffr0Ydq0aTURq4icx7jBsfi4OrA3+VT5ciAiIvVJ2Sj8Na0CCPJ0Mjias/U9k8SvPZhOfpFW6RGRhuPd3+PYdPgk7o52fDxc8+DrA6uT+JdffhkbGxv+8Y9/MHbsWMaOHcs//vEPbGxsGDVqFNHR0Tz88MN89tlnNRGviJyDn5sjr5V1q192gJ1H1a1eROqP04UlzNlS9xra/VVMoDtBHk7kF5nZkKAVekSkYVi85wT/WX4QgLdvbkcTX82Drw+snhO/atUqxo8fz0MPPVRh/3/+8x9+//135syZQ7t27fjwww+5//77qy1QEbmwf7QL5pedwfy8M4kx323np0d74WinO6kiUvfN336cU/nFRPi4cHlzP6PDOSeTyUSfaH9mb0pkWVwqvaPrTuM9EZGqOJZ5mie/2w7AyMuacl3bYIMjksqyeiT+t99+45prrjlr/9VXX81vv/0GwPXXX8/BgwcvPToRscq4wW3wdXUg7sQpPlyssnoRqR9mrD8MwPDuEdjYmAyO5vz+Ny9e68WLSP1WOg9+C5l5RbQP8+S561saHZJYweok3sfHh/nz55+1f/78+fj4+ACQm5uLu7v7pUcnIlbxdXPktSGlZfWfLD/IjqOZxgYkInIRO49msf1oFva2Jm7pHGZ0OBfUq7kftjYmDqTmkpiRZ3Q4IiJV9vbCvWw5komHkx0fDe+k6s16xupy+pdeeomHH36YpUuX0q1bNwA2btzIL7/8wieffALAokWL6NOnT/VGKiKVcn3bYP7RLpifd5SW1c9/9HL9YRaROmvmhtJR+Otig/F1czQ4mgvzdLanU4QXGw+dZHl8Knf0qJvz90VELmTR7hN8tjIBgHduaU+4j4vBEYm1rB6Jv//++1m+fDmurq7MnTuXuXPn4uLiwvLly7n33nsBePLJJ5k9e3a1BysilfPa4Fj83ByIP5HDpD+qXlZfYraw9kA6P247xtoD6ZSYLdUYpYg0dtn5Rfy47TgAI7pHGBxN5fSNCQBgWZyWmhOR+icxI48nv90GwL2XR9K/TZCxAUmVWD0SD9CrVy969epV3bGISDXxcXVg/JBYHvp6C58sP0D/NkG0D/ey6hoLdyUxdv5ukrLyy/cFezrxyqDWDIhV4xMRuXQ/bj1GXmEJzQPc6BbpY3Q4ldIn2p93fotjzYE0CovNONhZPR4iImKIwmIzo7/ZSnZ+MR3CvXhmQOOYB19itrAhIYOUU/kEuDvRLdIH2zrcf6UyqvTJc+DAAV588UWGDx9OSkppc5dff/2VP//8s1qDE5GqGxAbzKD2IZgtMOa77Vata7xwVxIPf72lQgIPkJyVz8Nfb2HhrqTqDldEGhmLxVK+NvyI7hGYTPXjC1XrYA/83BzJKyxh0yEtNSci9ceEX/ewPTETT2d7PhresVHchFy4K4nL31rC7Z+t47FZ27j9s3Vc/taSev9d1up/ueXLl9O2bVvWr1/PnDlzyMnJAWD79u288sor1R6giFTd2Bva4OfmwL6UHCZVslt9idnC2Pm7OVfhfNm+sfN3q7ReRC7JliMn2Zt8Cid7G27qWLcb2v2VjU3pUnMAy+JVUi8i9cPCXUlMW30IgPduaU+Yd8OfB9+QB6WsTuKfffZZxo8fz6JFi3BwcCjff9VVV7Fu3bpqDU5ELk1pWX1bAP6z/ADbEjMv+pgNCRln/bH7KwuQlJXPhgSNQIlI1c1YVzoKP6hdCJ4u9gZHY53ypeY0L15E6oEj6Xk89f0OAB7oHcU1rQMNjqjmNfRBKauT+J07d3LjjTeetT8gIIC0tLRqCUpEqs+A2CBusKKsPuXU+RP4qpwnIvJ3J3MLWbCzdARkRD3s8H5Fcz9sTBB34hTHM08bHY6IyHkVFJcwauYWTuUX07mJN0/1jzE6pFrR0AelrE7ivby8SEo6u/Rg69athIaGVktQIlK9SsvqHdmfksMHf8Rf8NwAd6dKXbOy54lcjFZBaHzmbDlKYbGZ2FAP2od5Gh2O1bxdHcqbha5QSb2I1GFv/LyHncey8Hax59+3d8TetuHPg4eGPyhl9b/isGHDeOaZZ0hOTsZkMmE2m1m9ejVjxozhzjvvrIkYReQSebs68PqNsQB8tuIgW46cPO+53SJ9CPZ04nwtpkyUdqmvL52kpW5rqA1n5PwqNrRrUm8a2v1d32gtNSciddvPO5L4cu1hAN6/rQMhXs4GR1R7GvqglNVJ/BtvvEHLli0JDw8nJyeH1q1b07t3by677DJefPHFmohRRKpB/zZBDOlQWlb/1AXK6m1tTLwyqDXAWYl82c+vDGpd75fmEOM15IYzcn5rD6STkJaLm6MdN7QPMTqcKiubF796fxpFJWaDoxERqehQWi7PzCmdB/9w32ZcGRNgcES1q6EPSlmdxDs4OPDZZ59x4MABFixYwNdff83evXv573//i62tbU3EKCLV5NUb2uDv7siB1Fw+WHT+svoBscFMuaMTQZ4V704GeTox5Y5OWideLllDbzgj51c2Cn9jx1BcHe0Mjqbq2oV64uPqwKmCYrYcPn91k4hIbcsvKuGRGVvIKSimW1Mfnrw22uiQal1DH5Sq8qdnREQEERER1RmLiNQwLxcH3rixLfd/tYnPVh6kf2wQnSK8z3nugNhgrm0dxIaEDFJO5RPgXnq3sr7+sZO6xZqGMz2b+dZeYFKjUk7l89ufyQAM716/v0PY2Ji4ooUfP247zvL4VLpH6X0qInXDawt2szspG19XBz68vSN2jWQe/N+VDUqNnb+7wneOIE8nXhnUul4PSlUqiX/iiScqfcH333+/ysGISM27tnUgN3YMZd7WY4z5bju//PMKnOzPXUVja2NSAiU1oqE3nJFz+27TUYrNFjo38aZVsIfR4VyyvjH+/LjtOMviUnl6QEujwxER4cdtx5ix/ggmE3xwW4ezqiobm4Y6KFWpJH7r1q0Vft6yZQvFxcXExJQuURAfH4+trS2dO3eu/ghFpNq9Mqg1q/ancTA1l/cXxfP89a2MDkkamYbecEbOVmK2MLO8oV39HoUv07uFPyYT7E7KJiU7nwCPhvN+LTFbGtyXXpGG7kBqDs/P3QnA6Cub0zva3+CI6oaGOChVqSR+6dKl5f/9/vvv4+7uzpdffom3d2kZ7smTJ7n77ru54ooraiZKEalWXi4OTLixLfeVldW3CaJzk3OX1YvUhLKGM8lZ+eecF2+itNytvjackbOtiE/lWOZpvFzsub5t/S1h/CtfN0fahnqy42gWy+NTuaVLuNEhVYuFu5LOKj8NbgDlpyINwflusOUXlTBqxhZyC0voEeXD49c0vnnwjYnVEyTee+89JkyYUJ7AA3h7ezN+/Hjee++9ag1ORGrONa0DualjKJaLdKsXqQkNveGMnG3G+tJljm7uFHbeKTz1Ud8zI13LGsh68Vo1QqTuutCyrK/+9Cd7k0/h5+bAh8M66vOzgbM6ic/OziY19ewPqtTUVE6dOlUtQYlI7XhlUBsC3B05mJbLu7/FGR2ONDJaBaHxOJZ5miV7UwC4vYGU0pcpW2pu1b40iuv5UnNaNUKk7rrQDbaHvt7CrI2JmEwwaVjHBjW1R87N6u70N954I3fffTfvvfce3bp1A2D9+vU89dRT3HTTTdUeoIjUHE8Xeybc1JZ7v9zEF6sTGBAbRJemKl+W2tNQG85IRbM2HMFsgcua+dLM383ocKpV+zAvPJ3tyTpdxPajmXRuUn//hmrVCJG6qTI32AAevbI5vZr71VZYYiCrR+I/+eQTrrvuOoYPH06TJk1o0qQJw4cPZ8CAAUyePLkmYhSRGnR1q0CGdgorLav/fgenC1VWL7WrrOHM4A6h9GzmqwS+gSkqMTNrYyIAI7o3MTia6mdna8PlLUq/NC+Pq98l9Vo1QqRuutgNtjLdI3VzrbGwOol3cXFh8uTJpKens3XrVrZu3UpGRgaTJ0/G1dW1JmIUkRr28qDWBHo4kpCWy7u/q6xeRKrPH7tPkHqqAD83R65tHWh0ODWiocyL16oRl+7oyTy2HDlJUT2fWiF1S2VvnKXlFtRwJFJXWF1OX8bV1ZV27dpVZywiYhBPZ3vevKkdd0/fyNQzZfVdVVYvItVgxpll5W7rGoaDndVjB/VCnzNJ/I6jWaTllN6wqI+0asSlyS0o5oaPVpORW4i7ox29mvvRJ8afPtH+hHg5Gx2e1GO6wSZ/V6lP05tuuons7OxKX3TEiBGkpKRUOSgRqX1Xtgzg5s5h5d3qVVYvIpcqIS2XVfvTMJlgWNeG1dDurwI8nGgd7AHAyn31dzReq0Zcmh+2HSMjtxCAUwXFLPwzmefm7uSyN5fQ74PlvP7zblbvT6OgWJ+vYp2yG2zn+z/PROkykLrB1nhUKon/8ccfSU1NJTs7+6JbVlYW8+fPJycnp6ZjF5Fq9tLA1gR5OHEoPY931K1eRC7RNxtKR+H7RvsT7uNicDQ1q++ZLvX1fV68Vo2oGovFwtfrSt/vz13Xkh9H9eJf10TTKcILGxPEn8jhs5UJjPh8PR3GLuLe6Rv579pDHEnPMzhyqQ9sbUy8PLDVOStkyugGW+NSqXJ6i8VCdHR0TcciIgbzdLZnwtC23D1tI9PWlJbV666uiFRFflEJ321quA3t/q5PtD+Tlx1gxb40zGYLNvX4y7RWjbDeliOZ7EnKxsHOhlu7hOPt6kD7cC8eu6YFmXmFrNyXxvL4VJbHp5J6qoDFe1NYvDcF+JNIP1f6RPvTJ8afnlG+ONnbGv1ypA6wWCwcSs9j3cF01h9MZ93BjHOeF+zpxCuDWusGWyNTqSR+6dKlVl84NDTU6seIiPGujAngls5hfLf5KE9/v51fHrsCF4cqt88QkUZq4a5kTuYVEeLpxJUtA4wOp8Z1auKNu6MdGbmF7DyWRftwL6NDuiRlq0ZI5cxYdxiAge2C8XZ1qHDMy8WBQe1DGNQ+BIvFwu6k7NKEPi6VzYdPkpCWS0JaLtPXHMLRzobuUb70ifanb4w/UX6umEy6edIYWCwWDqblnknaM1h3MJ2UUxUb1TnY2tA+3JMwbxfahXnSMshDN9gaqUp9M+/Tp09NxyEidciLA1uzcl8ah9LzeHthHK/e0MbokESknpmxvjSpGdYtolF8wbS3taFXcz8W/pnMsrjUep/ES+WdzC1kwc4kAO7oceGqE5PJRJsQT9qEePJI3+Zk5xexZn/6maQ+heNZ+ayIT2VFfCqvLYAwb+czCX0APZv54uaom+oNhcViYX9KDusSMsoT97ScvyXtdjZ0DPeie5QvPaJ86BThrUoNAS6hO72INFyezva8ObQtI6dtZPqaQ1wXG0T3KI3IiEjlxCWfYuOhk9jamBjWNdzocGpN3xj/0iQ+PoXHrmlhdDhSS77ffJTCYjOtgz3oaOXNGw8newbEBjEgNqg8qVsen8qyuFQ2JGRw9ORpZqw/woz1R7C3NdGliQ99Y0pL72MC3TVKX4+YzRb2peSwPiGddQfT2ZCQQVpOYYVzHO1s6BThTfcoH3pE+dIh3EtJu5yToUn8hAkTmDt3Lnv37sXZ2ZnLLruMt956i5iYmPJzHnzwQf744w+OHz+Om5tb+TktW7Y873VHjhzJl19+WWFf//79WbhwYY29FpGGpm9MALd1CWf2pkSe+HY78x65jAAPLV0iIhc388wofL/WgY3q70afM83ttidmcjK38Kyyaml4zGZLedXJHT2aXFJSbTKZaBHoTotAd+67Ioq8wmLWHUxnWVxpUn8kI4+1B9NZezCdCb/uJcjDqXwufa/mfng621fXy5JqYDZbiDtxqnw++4ZDGeWrF5RxsrehcxNvukf60iPKl/bhnjjaKWmXizM0iV++fDmjRo2ia9euFBcX8/zzz9OvXz92796Nq6srAJ07d2bEiBFERESQkZHBq6++Sr9+/UhISMDW9vxv8gEDBjBt2rTynx0d6+earSJGemFgK9YnpHMoPY+7pm1k9oM98HDSlwQROb+8wmLmbjkGNI6Gdn8V7OlMTKA7cSdOsXJ/Gje0DzE6JKlhqw+UTj1zc7RjcIfq/fd2cbDjqpaBXNUyEIBDabksi0theXwqaw+mk5ydz+xNiczelIitjYlOEV6lSX10AG1CPOp1c8X6yGy2sCc5u3w++4ZDGWTmFVU4x9neli5NvekeWTrS3i7MCwe7Si0WJlKByWKxXGi1glqVmppKQEAAy5cvp3fv3uc8Z8eOHbRv3579+/fTrFmzc54zcuRIMjMz+eGHH6oUR3Z2Np6enmRlZeHh4VGla4g0FEfS87hpyhrScgroEeXD9Lu7qbRLRM5r9sYjPDNnJ019XVjyZN9Gl0i88csePl1xkKGdwnjv1vZGhyM17MH/buK3P09wZ88mjBscW2vPm19UwoaEjPKO9/tTKi7t7OfmQO8WpaP0V7Twx0dVIdWuxGxhT1I2686MtG88lEHW6YpJu4uDLV2a+pQn7W1DPZW0ywVVNg+t0kh8cXExy5Yt48CBAwwfPhx3d3eOHz+Oh4cHbm5uVQ46KysLAB+fcy9plZuby7Rp04iMjCQ8/MJz7JYtW0ZAQADe3t5cddVVjB8/Hl/fc8/pLSgooKDgf40ksrOzq/gKRBqeCF8Xpt/dlWGfrmPdwQye+HYb/769U6NoVCUi1puxvnSt7OHdIxpdAg/QN9qfT1ccZHl8ar1fak4uLDkrnz/2pAAXb2hX3Zzsbekd7U/vaH9eAhIz8lixr7Tj/er9aaTlFDJ36zHmbj2GyQTtwrzKO963D/PSZ3gVFJeY2Z1UcaT9VH5xhXNcHWzpGulzpjzeh9hQT+xtlbRL9bN6JP7w4cMMGDCAI0eOUFBQQHx8PFFRUTz22GMUFBTwySefVCkQs9nMDTfcQGZmJqtWrapwbPLkyTz99NPk5uYSExPDzz//fN5ReIBZs2bh4uJCZGQkBw4c4Pnnn8fNzY21a9eeswT/1VdfZezYsWft10i8yP+s2Z/GyGkbKSwxc2fPJoy9oY0a6ohIBTuOZnLDR6txsLVh3fNXN8rRv4LiEjqOW0ReYQkLHr2c2FBPo0OSGvLBongmLd5Ht6Y+fPtQT6PDKVdYbGbz4ZNnGuSlsDf5VIXjns72XNHCj74xAfSO9iPAvfH0rbBGcYmZXcezz8xpT2fToZOcKqiYtLs72p1J2ktH2tuEeGCnpF0uQWVH4q1O4ocMGYK7uztffPEFvr6+bN++naioKJYtW8b999/Pvn37qhTwww8/zK+//sqqVasICwurcCwrK4uUlBSSkpJ49913OXbsGKtXr8bJqXJ/dA4ePEizZs34448/uPrqq886fq6R+PDwcCXxIn+zYMdxHv1mKxYLPHltNI9ere7LIvI/z87ZwayNiQzpEMLEYR2NDscw9325iT/2nOCp/jGMurK50eFIDSgqMXP5W0s4kV3ApGEdGNwh1OiQzutEdn75uvQr96WS/bfR49bBHqUd76P96dTEu9GOHBeVmNl5LKt8pH3ToQxyC0sqnOPuZEf38pF2X1qHeKiqQapVjZXTr1y5kjVr1uDgUPHuetOmTTl27Jj1kQKjR49mwYIFrFix4qwEHsDT0xNPT09atGhBjx498Pb2Zt68edx+++2Vun5UVBR+fn7s37//nEm8o6OjGt+JVMLAdiGknSrg1fm7eW9RPP7ujgzrFmF0WCJSB2TnF/HjtuMAjKjl0uK6pm+MP3/sOcHyuFQl8Q3U4j0nOJFdgK+rAwNig4wO54ICPZy4tUs4t3YJp7jEzPajmSyLK51Lv+NoFruTstmdlM3kZQdwd7SjV3M/+pxJ6kO8nI0Ov8YUFpvZeSyTdWeS9s2HT5L3t6Td09mebn8ZaW8VrKRd6gark3iz2UxJSclZ+48ePYq7u7tV17JYLDz66KPMmzePZcuWERkZWanHWCyWCiPnF3P06FHS09MJDg62Kj5pWErMFjYkZJByKp8Adye6RfroD3EVjOwVSWpOAR8vPcDz83bi6+bIta0DjQ5LRAz2w9ZjnC4qITrQjS5NvI0Ox1B9okuXmtt85CRZp4u09FcD9PW60t4Pt3YNr1dLgtnZ2tC5iQ+dm/jwZL8Y0nIKWHlmLv2KfWlk5Bay8M9kFv6ZDEB0oNuZufQBdGnqXa9e698VFJew42hW+ZJvmw+f5HRRxZzGy8W+wkh7yyB39bWQOsnqJL5fv35MnDiRTz/9FChd0zInJ4dXXnmF66+/3qprjRo1ipkzZ/Ljjz/i7u5OcnLpHwxPT0+cnZ05ePAgs2fPpl+/fvj7+3P06FHefPNNnJ2dKzxXy5YtmTBhAjfeeCM5OTmMHTuWoUOHEhQUxIEDB3j66adp3rw5/fv3t/blSgOxcFcSY+fvJikrv3xfsKcTrwxqzYBY3dyx1ph+MaSeKuDbTUcZPXMLM+7rTpem525IKSINn8ViYcaZpGZE90tbK7shCPdxoZm/KwdSc1mzP43r2upzpiFJSMtl1f40TCYYXs+r0fzcHLmxYxg3dgzDbLaw81hWecf7rUdOEn8ih/gTOXy2MgFne1sua+Z7pvQ+gAhfF6PDv6CC4hK2HclkfULpSPuWIyfJLzJXOMfH1eFM0u5Dj2a+RAcoaZf6weo58YmJiQwYMACLxcK+ffvo0qUL+/btw8/PjxUrVhAQEFD5Jz/Ph/y0adMYOXIkx48f57777mPz5s2cPHmSwMBAevfuzcsvv0xMTEyF65Q95vTp0wwZMoStW7eSmZlJSEgI/fr147XXXiMwsHKjhVpirmFZuCuJh7/ewt/f6GXvvil3dFIiXwXFJWYe/O9mFu9NwcPJju8fvozoQOuqcUSkYdh4KINbPlmLs70t61+4Gg8njTyPm7+bqasTuK1LOG/d3M7ocKQajV+wm89XJdA3xp/pd3czOpwak5lXyKr9aSw/U3qfcqpiFWykn2vpuvQx/vSI9MXZwdhR+vyiErYeyWTdwXTWJ6Sz5UgmhcUVk3ZfVwd6RPnSPaq0PL65v5uSdqlTaqyxHZQuMTd79my2b99OTk4OnTp1YsSIETg7N4x5M0riG44Ss4XL31pSYQT+r0xAkKcTq565SqX1VXC6sIQRn69jy5FMgj2dmPPwZQ16/pyInNvjs7byw7bjSlj/YkV8KndO3UCQhxNrn7uq0VcnNBT5RSV0f2MxWaeL+PzOLlzTSKaTWSwW9iSdKu94v/nwSYrN/0shHO1s6B7lW5rUR/vTzN+1xt/z+UUlbDl8knVnRtq3JZ6dtPu5OdIjyofuUb70jPKhmb+b/l+UOq1GkviioiJatmzJggULaNWqVbUEWhcpiW841h5I5/bP1l30vG/u70HPZr61EFHDk5lXyM2frGV/Sg7NA9z4/qGeeLk0vmWlRBqrjNxCeryxmMISMz+N7kW7MC+jQ6oT8otK6DDud/KLzCx8/ApaBun7REPw/eajjPluO6Fezqx4+spGOwBwKr+INQfSSxvkxaVw/G+DJWHezuUJ/WXN/XBztHoG71nyCovZcjiT9QmlS75tT8yisKRi0h7g7lhhpD3Kr+ZvJohUpxrpTm9vb09+/rlHNEXqopRTlXu/VvY8OZuXiwNf3dONmyavYX9KDvdM38iM+3oYXlYnIrXj+82JFJaYaRvqqQT+L5zsbekZ5cvSuFSWxaUqiW8gvl53GIDbu4U32gQewN3Jnv5tgujfJgiLxcKB1JzyjvfrD2Zw9ORpZqw/woz1R7C3NdGliQ99YvzpG+NPTKB7pRLr3IJiNh8+eSZpz2DH0UyKSiqOPQZ5OJWPtPeI8qWpr4uSdmkUrL4tNmrUKN566y0+//xz7Owu/a6aSE0KcHeq1vPk3EK8nPnq3m7cPGUNW45kMnrmFv7zf52xa6RrzYo0FmazhZnryxra1e8GXzWhT7Q/S+NKO38/1KeZ0eHIJdp1LIttiZnY2Zi4tWv4Wccb6yo4JpOJ5gHuNA9w574rosgrLGbdwXSWx6WyLD6Vw+l5rD2YztqD6bz5614CPRzLO973au5XvnpDTkExmw5lsO5gBusT0tl5NKtCyT5AiKdThZH2CB8l7dI4WZ2Fb9y4kcWLF/P777/Ttm1bXF1dKxyfO3dutQUncqm6RfoQ7OlEclb+WY3t4H9z4rtFqrP6pYoOdGfqyK6M+Hw9i/em8Py8nbw1tJ0+XEUasDUH0jmUnoe7ox2D2ocYHU6d0zcmAObvZtPhDHIKiqulpFiMM+PMDav+sUFn3fzXKjj/4+Jgx1UtA7mqZWm/gENpueVz6dceTOdEdunqNt9uOoqtjYmO4V4UmS3sOpZFyd+S9lAv5/KkvWeUL2HezvpeIUIVkngvLy+GDh1aE7GIVDtbGxOvDGrNw19vwQQVEvmyj4BXBrVuFHfKa0OXpj58NLwTD/53E99uOoq/uyNP9W9pdFgiUkNmrC8tLb6xUyiuSlDP0tTPlSa+LhxOz2PN/jT6tQkyOiSpolP5Rfy47RgAd3RvUuHY+VbBSc7K5+GvtzT6VXCa+rnS1M+Vuy5rSn5RCRsPZZSX3u9PyWHT4ZPl54b7OJev0d490odwn7q9jJ2IUaz+xJ02bVpNxCFSYwbEBjPljk5n3SEPaqR3yGvata0DeePGtjw7dycfLz2Av5sjI3tFGh2WiFSzE9n5/L77BFC6NrycW99of75ce5hl8alK4uuxeVuPkVdYQvMAN3pE/a96r8RsYez83ees9rNQOmAwdv5urm0dpAEDSntFXNHCnyta+PMScPRkHmv2p2Nna6J7lC+hWuFGpFJ021wahQGxwVzbOqhRzlUzwrBuEaSeKuC9RfGMXbAbP3dHBrZTqa1IQ/LtxkRKzBa6NvUmJsjd6HDqrL4xAXy59jDL41KxWCwqBa6HLBZLeUO7Ed0jKvwbbkjIOO8ytlCayCdl5bMhIUOr4JxDmLcLt3bVaLuItaxO4iMjIy/4AXTw4MFLCkgqp7E2T7kUtjYmfYDWotFXNSc1p4Cv1h7midnb8XFx4LLmfkaHJSLVoMRs4ZsNZQ3tNAp/IT2ifHGws+FY5mkOpObQPEA3POqbjYdOEn8iB2d7W27qFFbhmFbBEREjWJ3EP/744xV+LioqYuvWrSxcuJCnnnqquuKSC1DzFKkPTCYTrwxqQ1pOAb/sTOaB/25m1gM9iA31NDo0EblEy86sC+3tYs+AWJWIX4izgy3dI31YuS+NZXGpSuLrobJR+Bvah5R3Ui+jVXBExAhWJ/GPPfbYOfd//PHHbNq06ZIDkgtT8xSpT2xtTLx/awcycjew7mAGI6dtZO7DlxHhq9I5kfqsrEv3LV3CcbK3NTiauq9PtD8r96WxPD6V+66IMjocsUJaTgG/7koC4I4eZ1edaBUcETFCtS3ifN111zFnzpzqupycw8Wap0Bp85S/L88hYiQne1s+vbMLrYI9SMsp4M6p60nLKTA6LBGpoqMn81galwLA7d20Nnxl9I0JAGD9wQzyCosNjkas8e2mRIpKLLQP86Rt2NmVZGWr4MD/Vr0po1VwRKSmVFsS//333+Pjo7uMNcma5ikidYmHkz1f3t2VMG9nDqXncfe0jeQU6IusSH00a0MiFgtc3tyPSD9Xo8OpF5r5uxLq5UxhiZl1B9ONDkcqqcRsYeaZqpMR5xiFL1O2Ck6QZ8WS+SBPJ1VIXkSJ2cLaA+n8uO0Yaw+kayBKpJKsLqfv2LFjhcZ2FouF5ORkUlNTmTx5crUGJxWpeYrUZwEeTnx1Tzdu/mQtO49l8dB/NzN1ZFcc7KrtXqKI1LCiEjOzNiYCpV26pXJMJhN9Y/yZsf4Iy+JSuaploNEhSSWsiE/l6MnTeDjZMegiK6xoFRzrqceTSNVZncQPHjy4QhJvY2ODv78/ffv2pWXLltUanFSk5ilS30X5uzFtZFdu/2wdq/anMea77Uy8rQM2+pIjUi8s2n2CtJwC/N0duaa1ElFr9IkuTeKXx6caHYpUUllDu5s7h+PscPHeD1oFp/LU40nk0lidxL/66qs1EIZUhpqnSEPQPtyLKXd05t7pG/lp+3H83Bx5aWArrZ0sUg/MWF+a1AzrGo69raporHFZcz/sbU0cTs8jIS1XUxHquKMn81hypvfDcFWdVKuL9XgyUdrj6drWQapkEDkPqz+BbW1tSUlJOWt/eno6trbqUFuT1DxFGoo+0f68e0t7AKauTuA/Kw4aHJGIXMzB1BxW70/HxgTD1NDOam6OdnRtWnqTfXnc2d+jpG75ZsMRLBboGeVL8wA3o8NpUNTjSeTSWZ3EWyznbjhRUFCAg4PDJQckF6bmKdJQDOkYygvXtwLgzV/3MmfzUYMjqh5q0iMN1TcbSht8XRkTQKiXs8HR1E99ov0BWKaS+jqtsNjM7DO9H861rJxcGvV4Erl0lS6n//DDD4HS5iyff/45bm7/uytZUlLCihUrNCe+lqh5ijQU9/eOIjWngE9XHOTpOTvwcXXgypYBRodVZWrSIw1VflEJ35250Taih0bhq6pvTAATft3LuoPp5BeV4GSvCsa66Lc/k0nLKcTf3ZF+bdT7obqpx5PIpat0Ev/BBx8ApSPxn3zySYXSeQcHB5o2bconn3xS/RHKOal5ijQUzw5oSeqpAuZtPcYjM7Yw8/7udIzwNjosq6lJjzRkv+xMIjOviFAvZ/pE178bbSVmS5248R0d6EaQhxPJ2fmsT8goH5mXukW9H2qWejyJXLpKJ/EJCQkAXHnllcydOxdv7/r3JVtE6h4bGxNv39yO9NxCVsSncs/0jXz30GX1ag6imvRIQzfjzFrZt3cLr3fv4bpUIVO21NysjYksi0tREl8H7U85xbqDGdiY4Hb1fqgRZT2eHv56Cyao8NmpHk8ilWP17cWlS5cqgReRamVva8OUEZ1oH+bJybwi7pq6geQLNL2pa9SkRxqyPUnZbD58EjsbE7d2CTc6HKuUVcj8/f/PsgqZhbuSaj2mssRdS83VTV+vK71hdVXLQELU+6HGqMeTyKWxeok5gKNHj/LTTz9x5MgRCgsLKxx7//33qyUwEWlcXB3tmDqyKzd/spaEtFzumrqBbx/qiaezvdGhXZSa9EhDNvPMKHy/NoEEeNSfOap1tUKmVws/bG1MHEzNJTEjj3Afl1p7brmwvMJi5mwp7f1wh3o/1Dj1eBKpOquT+MWLF3PDDTcQFRXF3r17iY2N5dChQ1gsFjp16lQTMYpII+Hr5shX93TjpilriDtxivu/3MRX93ar882f1KRHGqrcgmLmbT0GwIju9atLtzUVMrXZY8bDyZ7OEd5sOJTBsvhU/k/dz+uM+duPcyq/mAgfF3q30FSH2qAeTyJVY3U5/XPPPceYMWPYuXMnTk5OzJkzh8TERPr06cMtt9xSEzGKSCMS7uPCl3d3w93Rjg2HMnhs1tY6v0xbWZOe840dmCidg6smPVLf/LT9ODkFxUT6udIzqn590a7LFTJ9Ys6U1Gu9+DqlrJR+ePcIbDQaLCJ1mNVJ/J49e7jzzjsBsLOz4/Tp07i5uTFu3Djeeuutag9QRBqf1iEefHpnFxxsbfjtzxO89OMuLJa6m8iXNekBzkrk1aRH6iuLxcLX60q7dA/vVv+SmrpcIVM2L37NgXQKiktq/fnlbNsTM9l5LAsHWxtu6RxmdDgiIhdkdRLv6upaPg8+ODiYAwcOlB9LS0urvshEpFHr2cyXicM6YDKVzsmdtHif0SFdkJr0SEOz42gWfx7PxsHOhpvrYVJTlytk2oR44O/uSF5hCZsOnaz155ezld2wur5tEL5ujgZHIyJyYVbPie/RowerVq2iVatWXH/99Tz55JPs3LmTuXPn0qNHj5qIUUQaqevbBjNucCwv/bCLiX/sw8/NkTvq8PxRNemR2lBba56XrZU9sG0w3q4O1X79mlaXl7EymUz0ifbn+81HWR6fSq/mfrUeg/xPVl4R83ccB6jTnzEiImWsTuLff/99cnJyABg7diw5OTnMnj2bFi1aqDO9iFS7/+vRhNTsfD5csp+Xf9yFn5sjA2KDjA7rvNSkR2pSba15nnW6iJ+2lyY1I+pxl+6yCpm//86CDFon/q/KkvhlcSk8f30rw+IQ+H7LUfKLzLQMcqdzEy2jLCJ1n1VJfElJCUePHqVdu3ZAaWn9J598UiOBiYiU+de10aTmFPDNhkT+OWsr/72nG93rWZMtkUtVtub537tDlK15Xp3TNub9JanpFFG/k5q6WiFzRQs/bEwQfyKH45mntSa5QSwWS3nVyYgeTTCZVDklInWfVXPibW1t6devHydPav6WiNQek8nEa4NjubZ1IIXFZu77ahN7k7ONDkuk1lxszXMoXfO8OlZyKE1qSrt0j+ge0SCSmrIKmcEdQunZzNfwBB7Ay8WBDuFeACyPTzU2mEZs7YF0Dqbm4upgy40dQ40OR0SkUqxubBcbG8vBgwdrIhYRkfOys7Xh37d3pGtTb07lF3PX1A0cPZlndFgitcKaNc8v1cZDJ9mXkoOLgy1DlNTUqL4xAQAs01Jzhvn6zCj84I6huDlaPctURMQQVifx48ePZ8yYMSxYsICkpCSys7MrbCIiNcXJ3pbP7+xKdKAbJ7ILuHPqBjJyC40OS6TG1eaa52WlxYM7hODuZH/J15PzK1tqbvX+dIpKzAZH0/ikZOfz+58nALijuxraiUj9YXUSf/3117N9+3ZuuOEGwsLC8Pb2xtvbGy8vL7y96/e8ORGp+zxd7Pnynm6EeDpxMDWXu6dvJK+w2OiwRGpUba15np5TwK87kwEY3k1JTU1rG+qJj6sDOQXFbD6sqYq1bdbGRIrNFjpFeNE6xMPocEREKs3quqGlS5fWRBwiIpUW7OnMV/d24+ZP1rI9MZNHZmzhszu7YG9r9X1JkXqhbM3z5Kz8c86LN1Hacf1S1zz/fvNRCkvMtA/zpG2Y5yVdSy7OxsZE7xZ+/LDtOMvjU+mhhp21prjEzDcbSns/aFk5EalvrE7i+/TpUxNxiIhYpXmAO1/c1ZURn69jWVwqz8zZwXu3tG8QTbhE/q421jw3my3M3FDW0E5JTW3pGxPAD9uOl/4dG9DS6HAajaVxqSRl5ePtYs/1bY1balBEpCqqNGy1cuVK7rjjDi677DKOHTsGwH//+19WrVpVrcGJiFxI5ybefDy8E7Y2JuZuOcabC/caHZJIjSlb8zzIs2LJfJCnU7UsL7f6QBqH0/Nwd7JjYHslNbXlihZ+mEywJymbE9mX3tNAKufrdaW9H27pEo6Tva3B0YiIWMfqJH7OnDn0798fZ2dntmzZQkFBAQBZWVm88cYb1R6giMiFXN0qkAk3tQXgP8sP8sWqBIMjEqk5A2KDWfXMVXxzfw8mDevAN/f3YNUzV1XL+vBlSc3QTmG4OKhLd23xdXOkXWjp1AUtNVc7jqTnsWJf6e96eLcIg6MREbFelbrTf/LJJ3z22WfY2/+va22vXr3YsmVLtQYnIlIZt3YJ56n+MQC8tmA3P247ZnBEIjWnJtY8T87K5489pcucDe+upKa29Tmz1JyS+NoxY8NhLJbSKoimfq5GhyMiYjWrk/i4uDh69+591n5PT08yMzOrIyYREas90rcZIy9rCsCY77azcp++DItU1uyNiZSYLXRr6kN0oLvR4TQ6ZUvNrYxPpVhLzdWoguISvtt0FFBDOxGpv6xO4oOCgti/f/9Z+1etWkVUVFS1BCUiYi2TycTLA1szsF0wRSUWHvrvZnYezTI6LJE6r7jEzKyNZxra9dAovBE6hHvh6WxPdn4x249mGh1Og/brzmQycgsJ9nTi6pYBRocjIlIlVifx999/P4899hjr16/HZDJx/PhxZsyYwZgxY3j44YdrIkYRkUqxsTHx3q3t6dXcl9zCEkZO20BCWq7RYYnUaWVdun1cHRgQG2R0OI2SrY2JK1r4AbAsTlVENams98OwrhHYaVlSEamnrP7r9eyzzzJ8+HCuvvpqcnJy6N27N/fddx8PPvggjz76aE3EKCJSaY52tnxyR2fahHiQnlvInVPXk3JKHZ9FzmfG+jNdujuH4WinLt1G6XtmXryS+JqzNzmbTYdPYmtjYli3cKPDERGpMquTeJPJxAsvvEBGRga7du1i3bp1pKam8tprr9VEfCIiVnN3smf63d2I8HEhMeM0I6du5FR+kdFhidQ5iRl55c3UbleXbkP1ji4did95LIu0nAKDo2mYykbh+7UOJNDD6SJni4jUXVWuI3JwcMDd3Z3g4GDc3NyqMyYRkUvm7+7IV/d0w8/Ngd1J2Tz4380UFJcYHZZInfLNhiPq0l1HBLg70SbEA4AV6lJf7XIKipm3pXTlEjW0E5H6zuokvri4mJdeeglPT0+aNm1K06ZN8fT05MUXX6SoSCNdIlJ3NPVzZdrIbrg62LLmQDpPfLsds9lidFgidUJhsZlvNyUCMKK7kpq6oKxLvZaaq34/bD1GbmEJUX6uXNbM1+hwREQuiZ21D3j00UeZO3cub7/9Nj179gRg7dq1vPrqq6SnpzNlypRqD1LOZrFYyMvLMzoMkTovytuOiUNb8dDXm5m/KQFPuxKev74VJtOlr60tUp/9ujOJlIxsAjwc6BHhSm6umkAarXu4Kx8V5rN0VyLZp1pga6O/U9XBYrEwfflezIX5DG3XRN+fRBoxFxeXhvEd0GIlDw8Pyy+//HLW/p9//tni4eFh1bXeeOMNS5cuXSxubm4Wf39/y+DBgy179+6tcM4DDzxgiYqKsjg5OVn8/PwsN9xwg2XPnj0XvK7ZbLa89NJLlqCgIIuTk5Pl6quvtsTHx1c6rqysLAtgycrKsur11KacnBwLoE2bNm3atGnTpk2bNm3aKrHl5OQYncZdUGXzUKvL6R0dHWnatOlZ+yMjI3FwcLDqWsuXL2fUqFGsW7eORYsWUVRURL9+/SqMBnTu3Jlp06axZ88efvvtNywWC/369aOk5PxzW99++20+/PBDPvnkE9avX4+rqyv9+/cnP18dqkVERERERKT+MlksFos1Dxg3bhx79+5l2rRpODo6AlBQUMC9995LixYteOWVV6ocTGpqKgEBASxfvpzevXuf85wdO3bQvn179u/fT7Nmzc46brFYCAkJ4cknn2TMmDEAZGVlERgYyPTp0xk2bNhF48jOzsbT05OsrCw8PDyq/HpqkkXl9CJV8t7vcXy+MgFbGxP/vr0DV7YMNDokkVr35q97+HLNYa5sGcDkEZ2MDkf+4vvNibz0w5+0D/dk1gM9jQ6n3svILeTKd5ZRWGJm1gPdaR/ubXRIImKgul5OX9k81Oo58Vu3bmXx4sWEhYXRvn17ALZv305hYSFXX301N910U/m5c+fOteraWVlZAPj4+JzzeG5uLtOmTSMyMpLw8HOv75mQkEBycjLXXHNN+T5PT0+6d+/O2rVrz5nEFxQUUFDwv+VcsrOzrYrbCCaTCVdXdRIWsdZLQzqSVWTLnC1HGfNDHDPu86Jzk3P/zRFpiPKLSvjpzwxsHJwY2SdGnyV1TL/2TXjllwPsSimgEHu8Xa2rcpSKZmxOptjWgbbhHvSMCa3TX95FRCrL6iTey8uLoUOHVth3voTaGmazmccff5xevXoRGxtb4djkyZN5+umnyc3NJSYmhkWLFp23dD85ORmAwMCKo2uBgYHlx/5uwoQJjB079pJfg4jUfSaTiTeHtiUjt4ClcancM30T3z/UkxaB7kaHJlIrft6RRNbpIsK8nendwt/ocORvgj2daRnkzt7kU6zcn8YN7UOMDqneMpstzFh/BChdVk4JvIg0FFYn8dOmTauJOBg1ahS7du1i1apVZx0bMWIE1157LUlJSbz77rvceuutrF69Gicnp2p57ueee44nnnii/Ofs7OxquTEhInWTva0NH4/oxPDP1rMtMZM7p25g7iOXEezpbHRoIjVuxvrDANzeLULdz+uoPtH+7E0+xbK4FCXxl2DV/jQOp+fh7mjH4A76PYpIw2F1Y7uaMHr0aBYsWMDSpUsJCws767inpyctWrSgd+/efP/99+zdu5d58+ad81pBQUEAnDhxosL+EydOlB/7O0dHRzw8PCpsItKwuTjYMXVkV6L8XUnKyufOLzaQmVdodFgiNWr38Wy2HMnEzsbErV10s7qu6hNTWiGxIj4Vs9mq1kXyF1+vK71hdVOnUFwcrB63EhGps6xO4tPT0xk1ahStW7fGz88PHx+fCps1LBYLo0ePZt68eSxZsoTIyMhKPcZisVSYw/5XkZGRBAUFsXjx4vJ92dnZrF+/vnxdexERAB9XB766pxuBHo7sS8nhvi83kV90/pUvROq7mRtKk5r+sUH4uzsaHI2cT5cmPrg62JKWU8jupLrfp6cuSso6zR97Sgd0RvRoYnA0IiLVy+rbkv/3f//H/v37uffeewkMDLyk+UWjRo1i5syZ/Pjjj7i7u5fPWff09MTZ2ZmDBw8ye/Zs+vXrh7+/P0ePHuXNN9/E2dmZ66+/vvw6LVu2ZMKECdx4442YTCYef/xxxo8fT4sWLYiMjOSll14iJCSEIUOGVDlWEWmYwrxd+PKebtzyyVo2HT7J6Jlb+eSOTtjZ1olCJZFqk1NQzLwtxwAY0T3C4GjkQhzsbLisuR+Ldp9gWVwKsaGeRodU73yzIRGzBbpF+hCtnici0sBYncSvXLmSVatWlXemvxRTpkwBoG/fvhX2T5s2jZEjR+Lk5MTKlSuZOHEiJ0+eJDAwkN69e7NmzRoCAgLKz4+LiyvvbA+UN8F74IEHyMzM5PLLL2fhwoXVNodeRBqWlkEefH5nF/5v6gb+2HOCF3/YxYSb2qoJkjQoP247Rm5hCVF+rvSM8jU6HLmIvjH+LNp9guXxqYy+qoXR4dQrRSVmZm34X0M7EZGGxuokvmXLlpw+fbpanvxiS9SHhITwyy+/WH0dk8nEuHHjGDdu3CXFJyKNR/coX/59e0ce/nozszYm4u/uyJP9YowOS6RaWCwWvl5XmtQM7x6hG1T1QJ/o0nnxW45kknW6CE9ne4Mjqj/+2H2ClFMF+Lk5MKDNufshiYjUZ1bXi06ePJkXXniB5cuXk56eTnZ2doVNRKS+6t8miPFD2gLw7yX7+e/aQ8YGJFJNtiVmsicpGwc7G27ufHYDWal7wrxdaB7gRonZwur9aUaHU698fWYFhlu7hONgp6lRItLwWP2XzcvLi+zsbK666ioCAgLw9vbG29sbLy8vvL29ayJGEZFaM7x7BI9fU1q6+vJPf/LLziSDIxK5dGVrZQ9sF4yXi4PB0UhllY3GL4tLMTiS+uNgag6r96djMpUuoygi0hBZXU4/YsQI7O3tmTlz5iU3thMRqYseu7oFqacKmLH+CI/P2oaXiz2XNfMzOiyRKsnKK2L+9uMAjOiu+cH1Sd8Yf75YlcDy+FQsFou+c1VC2Q2rK2MCCPdxMTgaEZGaYXUSv2vXLrZu3UpMjOaKikjDZDKZGDc4lvScQhb+mcyDX21m9oM9aR3iYXRoIlabs+UoBcVmWga50ynCy+hwxApdm/rgbG/LiewC9iafolWw/gZdSH5RCd9vPgrAHT00Ci8iDZfV5fRdunQhMTGxJmIREakzbG1MTBzWgW6RPpwqKOauaRtIzMgzOiwRq1gsFmacmR88okcTjeTWM072tvRsVrqSwLK4VIOjqfvmbz9O1ukiQr2c6RMdcPEHiIjUU1Yn8Y8++iiPPfYY06dPZ/PmzezYsaPCJiLSUDjZ2/LZnV1oGeRO6qkC7py6gfScAqPDEqm09QkZHEjNxcXBliEdQowOR6qgbF788njNi7+Yr9f/bwUGWxvdsBKRhsvqcvrbbrsNgHvuuad8n8lkKp+rVVJSUn3RiYgYzNPZni/v6cZNk9eQkJbLPdM3MvP+Hrg6Wv3nU6TWlc0PHtIxFHcnLVFWH/WNKU3iNx06yan8Iv07nseuY1lsT8zE3tbErV3CjQ5HRKRGWf0tNCEhoSbiEBGpswI9nPjq3m7cPGUN249m8dDXm/nirq5aukjqtLScAhbuKl1dYbi6dNdbTXxdaerrwqH0PNYcSKe/1j0/p7JpI/3bBOHv7mhwNCIiNcvqb6BNmjS54CYi0hA183dj6siuONvbsnJfGk9/vx2z2WJ0WCLn9d2moxSVWOgQ7kVsqKfR4cgl6BtTOr9b8+LPLTu/iB+2lq7AcEcPfRcVkYavSsNI//3vf+nVqxchISEcPlx653PixIn8+OOP1RqciEhd0jHCm8l3dMLOxsQP244z4dc9Rockck5ms4WZG840tOuuUfj6rs+ZkvoVZ5aak4rmbTnG6aISWgS40T3Sx+hwRERqnNVJ/JQpU3jiiSe4/vrryczMLJ8D7+XlxcSJE6s7PhGROuXKmADeGtoOgM9WJvDpigMGRyRytpX700jMOI2Hkx0D26mhXX3XI9IXBzsbjmWeZn9KjtHh1CkWi4Wv1/3vhpVWYBCRxsDqJP7f//43n332GS+88AK2trbl+7t06cLOnTurNTgRkbpoaOcwnruuJQBv/LKXuVuOGhyRSEUzziQ1QzuH4exge5Gzpa5zdrClR1TpUnPL41VS/1cbEjLYl5KDs70tN3UOMzocEZFaYXUSn5CQQMeOHc/a7+joSG5ubrUEJSJS1z3QO4p7L48E4Onvd7AsTss/Sd2QlHWaxXtL348qpW84ypaa07z4isqWlRvcIQQPde4XkUbC6iQ+MjKSbdu2nbV/4cKFtGrVqjpiEhGp80wmEy9c34rBHUIoNlt4ZMYWtiVmGh2WCLM3JlJittA90ofmAe5GhyPVpGypuQ0JGeQVFhscTd2Qeup/KzCooZ2INCaVTuLHjRtHXl4eTzzxBKNGjWL27NlYLBY2bNjA66+/znPPPcfTTz9dk7GKiNQpNjYm3rm5PVe08COvsIR7pm/kYKrmq4pxikvMzNqQCMAIJTUNSpSfK2HezhSWmFl7IN3ocOqEbzclUlRiob1WYBCRRqbSSfzYsWPJycnhvvvu46233uLFF18kLy+P4cOHM2XKFCZNmsSwYcNqMlYRkTrHwc6GKXd0pm2oJxm5hdw5dQMp2flGhyWN1JK9KSRn5+Pr6kD/NoFGhyPVyGQylY/Gq6QeSswWZp4ppb9D00ZEpJGpdBL/1yVNRowYwb59+8jJySE5OZmjR49y77331kiAIiJ1nZujHdPu7kpTXxeOnjzNnVM3kJ1fZHRY0gjNOJPU3NIlHEc7NbRraPpEn1kvPj6l0S81tzw+hWOZp/F0tmdQe63AICKNi1Vz4v++bIeLiwsBAQHVGpCISH3k5+bIV/d0x8/Nkb3Jp+j3/gom/bGPExqVl1pyJD2PFftKR2iHd9PIZEN0WTNf7G1NJGacJiGtcTcT/npd6Q2rmzuH4WSvG1Yi0rhYlcRHR0fj4+NzwU1EpLGK8HXhy3u6EuDuSHJ2Ph/8Ec9lby7hof9uZtW+NMzmxj1yJjVr5oYjWCzQO9qfCF8Xo8ORGuDqaEfXpqXftRrzUnOJGXksjdMKDCLSeNlZc/LYsWPx9FTjEBGR82kT4snKZ65k4a5kvl53mI2HTrLwz2QW/plMpJ8rw7tFcHPnMLxdHYwOVRqQguISvtt0pqGdkpoGrW+MP2sOpLMsLpW7e0UaHY4hvjlzw6pXc1+i/N2MDkdEpNZZlcQPGzZM5fMiIhfhaGfL4A6hDO4Qyt7kbGauP8LcLcdISMvl9V/28M7vcQxsG8yIHk3oFOF11lQlEWv99ucJ0nMLCfRw5OqW+pxuyPrGBPDGL3tZdzCd/KKSRldKXlhs5tszN6zu6K4VGESkcap0Ob2+ZIqIWK9lkAfjBsey/vmreePGtrQO9qCw2MzcrccYOmUN13+4iq/XHSanQOs+S9XNWHcYgGFdI7CztWqmnNQzLQLcCPZ0oqDYzLqDjW+puYV/JpOWU0iAuyPXtNYKDCLSOFWpO72IiFjH1dGO4d0j+PmflzPvkcu4uXMYjnY27EnK5sUfdtH99T94Yd5O9iRlGx2q1DP7U06xPiEDGxMM6xZudDhSw/661FxjnBf/vxtW4djrhpWINFKV/utnNptVSi8icolMJhMdI7x595b2rH/+al78Ryui/FzJLSxhxvojXDdpJUOnrGHe1qPkF5UYHa7UA2XLyl3dKpBgT2eDo5Ha0Cf6TBLfyNaL33firzes1PtBRBovq+bEi4hI9fFyceC+K6K49/JI1h5IZ8b6I/z2ZzKbD59k8+GTjJu/m1u6hDO8WwRN/VyNDlfqoNOFJczZfBSAO3pofnBjcVlzP+xsTBxMy+VIel6jWY3grzesQrx0w0pEGi/VIYmIGMxkMnFZcz8+HtGJNc9exZPXRhPi6cTJvCI+XXGQvu8u4/++WM/CXckUl5iNDlfqkAU7jpOdX0y4jzNXNPczOhypJR5O9nRq4g3A8vgUg6OpHXmFxbphJSJyhpJ4EZE6JMDDiUevbsHKZ67i8zu70DfGH5MJVu5L46GvN9PrrSV8sCie5Kx8o0OVOqBsZHJ4tybY2KgBbWNSNi9+WSMpqf9p23FOFRTTxNdFN6xEpNFTEi8iUgfZ2pi4pnUg0+/uxoqnruThvs3wdXXgRHYBkxbvo9dbS3jgq02siE/FbFbj0cZo17EstiVmYm9r4pYuYUaHI7WsbF78mgPpFBQ37P4ZFouFr9eXNrQb3i1CN6xEpNFTEi8iUseF+7jwzICWrHnuKj68vSPdIn0oMVv4ffcJ7py6gSvfW8Z/lh8gI7fQ6FClFs3cUDoKPyA2GD83R4OjkdrWOtiDAHdHTheVsDHhpNHh1KjtR7PYdSwbBzsbbumiFRhERJTEi4jUE452ttzQPoRvH+zJ7//qzcjLmuLuaMfh9Dwm/H97dx4fZXX3//892Sb7BlkIWdnCLltYihJwIbiiYlUkFZRqVbiR+67S2g2q9YdafFj91dr7vouggiJouYtUQcoSESHsO4QtkEAIIeuEbGS5vn+EjB0TECSzJa/n4zF/5LrOnPM5cAjzmXOdc744rOH/31rNXLJL208WcyxoG3ehpk7/2HVGkjRpGLt0t0cmk+nbXerb+Lr4RZeOlbuzXyeFB/g4ORoAcD6SeABwQz2igjTnnj7K/PUtenVCP/XrHKKL9Q36v915euCvm3X7mxv1weaTKq+udXaoaCUVNXX6+mih3lhzROl/y1TFxXp1jQjQsKRwZ4cGJ0ltB+viSysv6rM9eZKk9OF8YQUAEkfMAYBb8/fx0kMp8XooJV57cku1OPOUVuzJ0+H8cv32Hwc094vDGj+gs9KHx6tPTIizw8U1KLpQo20nS7TtZLG2nyzW/jyL6r+z/8ETN3WRycT64Pbqpm4R8jBJRwsu6ExplTq3wWPXPtlxWjV1DeoZHaRB8WHODgcAXAJJPAC0ETfEheqGuFD9+o7e+nTnaS3OPKXj5yv00dYcfbQ1RwPjQ5U+LEF39u8kX29PZ4eLf2MYhk6XVGlrdrG2nWx8HT9f0axc51A/pSSGaUhiuIZ3CVe3yCAnRAtXEeLvrYHxYdpxqkQZWef1SBtbWmEYhj68dAJD+vAEvrACgEtI4gGgjQnx99bjNybpsZGJ2nKiWIszT2n1gXztyinVrpxSvfTPg3pgUKweGRavLhGBzg63XWpoMJR1rlzbThZra3axtp8sUb6l+bGBPaIClZIYrqFJ4RqSGN4mZ1pxfUb3iGhM4o8UtLkk/pvjRTpRWKEAH0/dO7Czs8MBAJdBEg8AbZTJZNKIrh00omsHnS+v0dLtufowM0dnSqv0t6+z9bevszWyWwelD0vQrb2j5O3JNin2UlNXr32ny7T1ZLG2ZRdr+6kSlVfX2ZTx8jCpX2yIhiaGKyUxXEMSwxTqzyZeuLLU5Ai9vuaINh0r0sW6Bvl4tZ1/x00b2t03qLMCzXxkBYAm/EYEgHYgIsisaWO66anUrso4UqBFW3K0PqtAm44VadOxIkUGmfVwSpweHhqvGGZ7r5ululY7TpVo+8libcsu0e7TpbpY12BTJsDHU4MSwpRyKWkfEBcqPx+WOeDa9I0JUYcAHxVVXNTOnBIN79LB2SG1inOWan158JykxkfpAQDfIokHgHbE08Okm3tG6eaeUTpdUqmPtubo4225Kiiv0VvrjunP64/p5p5RSh8er1HdI+ThwRrUq1FgqdbWk42PxW/NLtbhfIu+swedOgb6aEhCuFKSwjU0MVy9OgXJi6cfcJ08PEwa1SNCy3ed0Yas820miV+yNVf1DYaGJISpZ3Sws8MBAJdCEg8A7VRsmL+eT+upZ2/poS8P5mvRllPacqJY/zp0Tv86dE5x4X56ZGiCHhwSqw6BZmeH6zIMw1B2YcWlDegad48/VVTZrFxCB/9Ls+yNs+1JHQPYmAt2MTq5KYkv0C9v7+nscK5bXX2DPtrauKHdJI6VA4BmSOIBoJ3z8fLQXf1jdFf/GB0rKNfizBx9suO0cour9Oqqw3pjzRGN6xut9OEJSkkMa3eJaF19gw6dLb80096YuBdeqLEpYzJJvaKDL21A15i0RwX7OilitDc3dY+QySQdzi/XOUu124+9dYcLlG+pVpi/t27v28nZ4QCAyyGJBwBYdYsM0uy7+2hWWk99tjdPi7ec0p7TZVqxJ08r9uSpR1SgJg1L0H2DOivY19vZ4dpFdW29duWUWo9623mqRBUX623K+Hh5aEBsqFKSGhP2QQlhbfbPA64vPMBH/WNDtSe3VBlZ5/VgSpyzQ7ouiy4dK/fgkDiOwwSAFpDEAwCa8fPx1IND4vTgkDjtO12mxZmn9I/deTpy7oJmrzigV744rPEDYpQ+PEF9O4c4O9zrUlp5UdsvPRa/9WSx9p8pU2297YL2IF8vDUkIs65n7xcbIrMXyQVcx+geEY1J/BH3TuJPFVXoqyPnJanNHZkHAK2FJB4AcEX9YkP0Smx/vXBHLy3feVqLM3N0tOCClmzL1ZJtubohLlSThsXr7v4xbrG7+pnSKm2/dD77tpPFOnLuQrMyUcFm6/nsKYnhSo4KYpM/uLTU5Ai9ufaoNh49r7r6BrfdNPHDS7Pwo3pEKKFDgJOjAQDXRBIPALgqIX7emjIySZN/lKit2cVanJmjL/af1Z7cUu3JLdUfVh7UA4Pj9MiweHWLDHR2uJKkhgZDx85faHw0PrtxPfuZ0qpm5bpGBFiPehuaFK7YML92t/Yf7u2G2FCF+nurtLJWu3NLNSQx3NkhXbPq2not3Z4rSUpnFh4ALoskHgBwTUwmk4Z16aBhXTqo8EJvLd2eqw8zc3S6pErvbsrWu5uyNaJLB6UPT9BtvaPk4+W4GcGLdQ3an1d2aaa9RNtPFau0stamjKeHSX1jgpWSGK4hl3aPZ/d9uDtPD5Nu6h6hz/bkaUPWebdM4r/Yf1YllbXqFOKrm3tGOjscAHBZJPEAgB+sY6BZz4zupqdGdVXG0fNavOWU1h0u0OYTRdp8okgdA816OCVOE4fFq3OoX6u3X1FTp505JY1HvWUXa1duiaprG2zK+Hl7amB8qHWWfUBcqALM/PeHtmd0j8YkPuPIeT2XluzscK7Zoi2Nj9JPHBrvtssBAMAR+BQDALhuHh4mjUmO1JjkSJ0prdKSrTlasi1X58tr9Of1x/SXDcc0JjlS6cMTNKpHhDx/4Prywgs1NrPsB/Isqm+w3YQuzN9bQxIbN6BLSQpXn5hgeZMQoB0Y1SNCkrTvTJnOl9coIsh9njA5dNaiHadK5OVh0sNuvDEfADgCSTwAoFV1DvXTz8cma8Yt3bXm4Dkt2nJK3xwv0trDBVp7uECxYX6aODReDw6Ju2KSYRiGcourtNW6nr1YJworWmyvaQO6oUlh6tIxkE3o0C5FBJnVt3Ow9p+xaOPR87p/UKyzQ7pqi7ackiSN7ROlSDc/5x4A7M2pSfzcuXP197//XYcPH5afn59+9KMf6dVXX1VycuMjYMXFxZo9e7a+/PJL5eTkKCIiQvfee69eeuklhYRc/kijKVOm6L333rO5lpaWplWrVtm1PwCAb3l7euiOfp10R79OOn7+gj7MzNEnO07rdEmV/rg6S3/61xGl9YlW+vAEDUsKV4MhZeWXW496236yWOcsNTZ1mkxSclSQhiSGWTeii7HDY/qAu0rtEaH9ZyzakOU+SfyFmjr9364zkqT0YQlOjgYAXJ9Tk/iMjAxNmzZNKSkpqqur069+9SuNHTtWBw8eVEBAgPLy8pSXl6d58+apd+/eOnXqlJ566inl5eXpk08+uWLd48aN04IFC6w/m83u80gZALQ1XSMC9du7euv5tGSt3HtWi7ac0u7cUq3ce1Yr955VfLi/Siovqry6zuZ93p4m9Y8N1ZDEMA1NDNeQhHCF+Hs7qReA6xudHKm31x/XV0fPq77B+MFLVxxp+a4zqrhYry4RARrRtYOzwwEAl+fUJP67M+MLFy5UZGSkduzYoVGjRqlv37769NNPrfe7du2ql19+Wenp6aqrq5OX1+XDN5vNio6OtlvsAIBr5+vtqQcGx+qBwbHaf6ZMizNz9I/dZ5RTXClJCjR7aVBCmIYmhmlIYuMmdL7ern/2POAqBsaFKsjXS6WVtdp7ulQD48OcHdIVGYahxZcepZ80LIGjHQHgKrjUmviysjJJUnj45Y9FKSsrU3Bw8BUTeEnasGGDIiMjFRYWpptvvll/+MMf1KFDy9/u1tTUqKbm20c2LRbLD4geAHAt+nYO0dz7++mFO3pq8/EidQ71U8/oIHalBq6Dl6eHbureUZ/vy9eGrPMun8TvOFWiw/nl8vX20ANu8vg/ADiby3xSamho0MyZMzVy5Ej17du3xTKFhYV66aWX9OSTT16xrnHjxun999/X2rVr9eqrryojI0O333676uvrWyw/d+5chYSEWF9xceyKCgCOEuzrrbQ+0erbOYQEHmgFo3s0nrGeceS8kyP5fk0b2t3dP4alMgBwlUyGYRjfX8z+nn76aX3xxRf6+uuvFRvb/JtYi8Wi2267TeHh4VqxYoW8va/+F/2JEyfUtWtX/etf/9Itt9zS7H5LM/FxcXHWWX8AAAB3kV9WreFz18pkknb85jaFB/g4O6QWFV2o0Yi563SxvkH/mDZSN8SFOjskAHAqi8WikJCQ781DXWLKY/r06Vq5cqXWr1/fYgJfXl6ucePGKSgoSMuXL7+mBF6SunTpoo4dO+rYsWMt3jebzQoODrZ5AQAAuKPoEF/1jA6SYUgbj7rubPwnO07rYn2D+nYOVv/Yy586BACw5dQk3jAMTZ8+XcuXL9e6deuUlJTUrIzFYtHYsWPl4+OjFStWyNf32s8OPX36tIqKitSpU6fWCBsAAMClpSZHSJIyslwziW9oMPTh1hxJjcfKsaEdAFw9pybx06ZN06JFi/Thhx8qKChI+fn5ys/PV1VVlaRvE/iKigrNnz9fFovFWubf17f37NlTy5cvlyRduHBBzz//vLZs2aKTJ09q7dq1Gj9+vLp166a0tDSn9BMAAMCRmtbFf3X0vBoaXGLlpI2Nxwp1qqhSQb5eumdAjLPDAQC34tTd6d955x1J0ujRo22uL1iwQFOmTNHOnTuVmZkpSerWrZtNmezsbCUmJkqSsrKyrDvbe3p6au/evXrvvfdUWlqqmJgYjR07Vi+99BJnxQMAgHZhcEKYAnw8VXjhog7kWdTPxR5Xb9rQbsKgWPn7uNRhSQDg8pz6W/P79tQbPXr095b5bj1+fn5avXr1dccGAADgrny8PDSyW0d9efCcNmQVuFQSn1dapbWHzkmSJg2Ld3I0AOB+XGJjOwAAALQu67p4FztqbsnWHDUY0rCkcHWPCnJ2OADgdkjiAQAA2qDRyY3r4nfmlKisstbJ0TSqrW/Qkm25kqT04QlOjgYA3BNJPAAAQBvUOdRP3SMD1WBIXx8rdHY4kqQ1B8+poLxGHQPNSusT7exwAMAtkcQDAAC0Uak9Gh+p35BV4ORIGjVtaPdQSqx8vPgYCgA/BL89AQAA2qimR+ozjpy/qs2C7en4+Qv65niRTCZp4lA2tAOAH4okHgAAoI1KSQqTn7enCsprdOhsuVNjWbwlR5J0c3KkYsP8nRoLALgzkngAAIA2yuzlqR917SDJubvUV12s1yc72NAOAFoDSTwAAEAb1nTUnDPXxX+2N0+W6jrFhvlp1KV1+gCAH4YkHgAAoA0b3aNxXfyOUyUqr3bOUXOLL21o98iweHl6mJwSAwC0FSTxAAAAbVh8B38ldQxQXYOhTceKHN7+vtNl2nO6TN6eJj04JM7h7QNAW0MSDwAA0MY1HTWXccTxj9Qvzmychb+9byd1DDQ7vH0AaGtI4gEAANq4pnXxGVmOPWrOUl2rf+zOkyRNGsaxcgDQGkjiAQAA2rgRXTrI7OWhvLJqHS244LB2/77jtKpq69UjKlBDk8Id1i4AtGUk8QAAAG2cr7enhne5dNRclmOOmjMMQ4syG8+GnzQsQSYTG9oBQGsgiQcAAGgHmtbFb3DQuvjM7GIdK7ggP29P3Teos0PaBID2gCQeAACgHRh9aV38tuwSVdTU2b29RZeOlbt3YIyCfb3t3h4AtBck8QAAAO1AUscAxYX76WJ9gzYft+9Rc+fLa7T6QL6kxkfpAQCthyQeAACgHTCZTBrdI1KSlHHEvuvil27PVW29oQFxoerbOcSubQFAe0MSDwAA0E78+7p4ex01V99g6MNLG9qlD2cWHgBaG0k8AABAOzGiawf5eHoot7hK2YUVdmljQ1aBzpRWKcTPW3f172SXNgCgPSOJBwAAaCcCzF5KSQqTJG2w01FzTRva/XhwrHy9Pe3SBgC0ZyTxAAAA7UjTuvgNdlgXn1tcaa13Eo/SA4BdkMQDAAC0I01HzWWeKFJ1bX2r1v3h1hwZhnRjt45K6hjQqnUDABqRxAMAALQj3SIDFRPiq5q6Bm0+0XpHzdXU1WvptlxJUvrw+FarFwBgiyQeAACgHTGZTEpNvnTUXCuui1+1P19FFRcVFWzWrb2iWq1eAIAtkngAAIB2pumoudY8L37xlsZj5R5OiZeXJx8xAcBe+A0LAADQzozs1kFeHiZlF1boVNH1HzV35Fy5tp4slqeHSROH8ig9ANgTSTwAAEA7E+TrrcEJjUfNtcZs/OJLx8rd0jNS0SG+110fAODySOIBAADaodGttC6+oqZOf995RpKUzrFyAGB3JPEAAADtUNO6+G+OX99Rcyv25Km8pk4JHfx1Y7eOrRUeAOAySOIBAADaoV6dghQZZFZVbb22nyz5QXUYhqFFlx6lnzQsXh4eptYMEQDQApJ4AACAdshkMlln4zdkFfygOnbnlupAnkU+Xh768eC41gwPAHAZJPEAAADtVNO6+A0/cHO7RZeOlburXyeFBfi0WlwAgMsjiQcAAGinbuzeUZ4eJh0ruKDTJZXX9N7SyotauTdPkjSJDe0AwGFI4gEAANqpED9vDYwLlXTtR819suO0auoa1KtTsAbFh7Z+cACAFpHEAwAAtGOjkxvXxV/LUXMNDYYWZzY+Sp8+PF4mExvaAYCjkMQDAAC0Y6k9GtfFbzpWqIt1DVf1nm+OFym7sEKBZi/dO6CzPcMDAHwHSTwAAEA71icmWB0DfVRxsV47Tl3dUXNNx8rdN7CzAsxe9gwPAPAdJPEAAADtmIeHSaO6Xzpq7sj3HzWXX1atNYfOSZLS2dAOAByOJB4AAKCdS72GdfFLtuWovsFQSmKYkqOD7B0aAOA7SOIBAADauZu6R8hkkg7nlyu/rPqy5erqG7Rka64kZuEBwFlI4gEAANq58AAf3RAbKkn66gpHza09XKB8S7U6BPhoXN9oB0UHAPh3JPEAAACwHjV3pXXxTRva/XhInMxeng6JCwBgiyQeAAAASu3RmMRvPFqouvrmR82dLKzQxqOFMpmkR4bGOzo8AMAlJPEAAABQ/9hQhfl7q7y6TrtyS5vd/3BrjiRpVPcIxXfwd3B0AIAmJPEAAACQp4dJNzUdNZdl+0h9dW29lm1nQzsAcAVOTeLnzp2rlJQUBQUFKTIyUvfee6+ysrKs94uLi/Uf//EfSk5Olp+fn+Lj4zVjxgyVlZVdsV7DMPS73/1OnTp1kp+fn2699VYdPXrU3t0BAABwa03r4jO+s7nd5/vOqqSyVjEhvrq5Z6QzQgMAXOLUJD4jI0PTpk3Tli1btGbNGtXW1mrs2LGqqKiQJOXl5SkvL0/z5s3T/v37tXDhQq1atUpTp069Yr2vvfaa3nrrLf31r39VZmamAgIClJaWpurqyx+ZAgAA0N41zcTvP2NRQfm3n5uaNrSbODRenh4mp8QGAGhkMgzDcHYQTc6fP6/IyEhlZGRo1KhRLZZZtmyZ0tPTVVFRIS8vr2b3DcNQTEyMfv7zn+u5556TJJWVlSkqKkoLFy7Uww8//L1xWCwWhYSEqKysTMHBwdfXKQAAADdy9///tfadKdPrP75BEwbH6mCeRXe8tVFeHiZ988LNigzydXaIANAmXW0e6lJr4psekw8PD79imeDg4BYTeEnKzs5Wfn6+br31Vuu1kJAQDRs2TJs3b27xPTU1NbJYLDYvAACA9qhpl/oNlx6pX5TZOAuf1ieaBB4AXIDLJPENDQ2aOXOmRo4cqb59+7ZYprCwUC+99JKefPLJy9aTn58vSYqKirK5HhUVZb33XXPnzlVISIj1FRcX9wN7AQAA4N6a1sVvPHpeZVW1+r9dZyRJk4ZzrBwAuAKXSeKnTZum/fv3a8mSJS3et1gsuvPOO9W7d2/NmTOnVdt+4YUXVFZWZn3l5ua2av0AAADuYkBcqIJ9vVRaWavff3ZAlRfr1TUiQCO6dHB2aAAAuUgSP336dK1cuVLr169XbGxss/vl5eUaN26cgoKCtHz5cnl7e1+2rujoaEnSuXPnbK6fO3fOeu+7zGazgoODbV4AAADtkZenh3WDu7/vvDQLPyxBJhMb2gGAK3BqEm8YhqZPn67ly5dr3bp1SkpKalbGYrFo7Nix8vHx0YoVK+Tre+W1WElJSYqOjtbatWtt6sjMzNSIESNavQ8AAABtTeqlR+olydfbQxMGN59kAQA4h1OT+GnTpmnRokX68MMPFRQUpPz8fOXn56uqqkrStwl8RUWF5s+fL4vFYi1TX19vradnz55avny5JMlkMmnmzJn6wx/+oBUrVmjfvn169NFHFRMTo3vvvdcZ3QQAAHArTZvbSdI9N8QoxO/yT0ECAByr5S3eHeSdd96RJI0ePdrm+oIFCzRlyhTt3LlTmZmZkqRu3brZlMnOzlZiYqIkKSsry7qzvSTNmjVLFRUVevLJJ1VaWqobb7xRq1at+t5ZfAAAAEhRwb4alhSuXTmlmvyjRGeHAwD4Ny51Tryr4Jx4AADQ3pVX16q0slZx4f7ODgUA2oWrzUOdOhMPAAAA1xTk660gXx6jBwBX4xK70wMAAAAAgO9HEg8AAAAAgJsgiQcAAAAAwE2QxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CS9nB+CKDMOQJFksFidHAgAAAABoD5ryz6Z89HJI4ltQXl4uSYqLi3NyJAAAAACA9qS8vFwhISGXvW8yvi/Nb4caGhqUl5enoKAgmUwmZ4dzWRaLRXFxccrNzVVwcLCzw0EbxTiDIzDOYG+MMTgC4wyOwDhruwzDUHl5uWJiYuThcfmV78zEt8DDw0OxsbHODuOqBQcH8w8Ydsc4gyMwzmBvjDE4AuMMjsA4a5uuNAPfhI3tAAAAAABwEyTxAAAAAAC4CZJ4N2Y2mzV79myZzWZnh4I2jHEGR2Ccwd4YY3AExhkcgXEGNrYDAAAAAMBNMBMPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPFONnfuXKWkpCgoKEiRkZG69957lZWVZVOmurpa06ZNU4cOHRQYGKgJEybo3LlzNmVmzJihwYMHy2w2a8CAAS22tXfvXt10003y9fVVXFycXnvtNXt1Cy7EUWNsw4YNGj9+vDp16qSAgAANGDBAixcvtmfX4EIc+busybFjxxQUFKTQ0NBW7g1clSPHmWEYmjdvnnr06CGz2azOnTvr5ZdftlfX4CIcOcZWr16t4cOHKygoSBEREZowYYJOnjxpp57BlbTGONuzZ48mTpyouLg4+fn5qVevXnrzzTebtbVhwwYNGjRIZrNZ3bp108KFC+3dPTgASbyTZWRkaNq0adqyZYvWrFmj2tpajR07VhUVFdYy//mf/6nPPvtMy5YtU0ZGhvLy8nT//fc3q+vxxx/XQw891GI7FotFY8eOVUJCgnbs2KE//vGPmjNnjv7nf/7Hbn2Da3DUGPvmm2/Uv39/ffrpp9q7d68ee+wxPfroo1q5cqXd+gbX4ahx1qS2tlYTJ07UTTfd1Op9gety5Dh79tln9be//U3z5s3T4cOHtWLFCg0dOtQu/YLrcNQYy87O1vjx43XzzTdr9+7dWr16tQoLC1usB21Pa4yzHTt2KDIyUosWLdKBAwf061//Wi+88IL+/Oc/W8tkZ2frzjvv1JgxY7R7927NnDlTP/3pT7V69WqH9hd2YMClFBQUGJKMjIwMwzAMo7S01PD29jaWLVtmLXPo0CFDkrF58+Zm7589e7Zxww03NLv+l7/8xQgLCzNqamqs137xi18YycnJrd8JuDR7jbGW3HHHHcZjjz3WKnHDvdh7nM2aNctIT083FixYYISEhLR2+HAT9hpnBw8eNLy8vIzDhw/bLXa4B3uNsWXLlhleXl5GfX299dqKFSsMk8lkXLx4sfU7Apd2veOsyTPPPGOMGTPG+vOsWbOMPn362JR56KGHjLS0tFbuARyNmXgXU1ZWJkkKDw+X1PgtW21trW699VZrmZ49eyo+Pl6bN2++6no3b96sUaNGycfHx3otLS1NWVlZKikpaaXo4Q7sNcYu11ZTO2hf7DnO1q1bp2XLluntt99uvYDhluw1zj777DN16dJFK1euVFJSkhITE/XTn/5UxcXFrdsBuDx7jbHBgwfLw8NDCxYsUH19vcrKyvTBBx/o1ltvlbe3d+t2Ai6vtcbZdz93bd682aYOqfHz//V+voPzkcS7kIaGBs2cOVMjR45U3759JUn5+fny8fFptuYzKipK+fn5V113fn6+oqKimtXRdA/tgz3H2HctXbpU27Zt02OPPXY9IcMN2XOcFRUVacqUKVq4cKGCg4NbM2y4GXuOsxMnTujUqVNatmyZ3n//fS1cuFA7duzQAw880JpdgIuz5xhLSkrSl19+qV/96lcym80KDQ3V6dOntXTp0tbsAtxAa42zb775Rh9//LGefPJJ67XLff63WCyqqqpq3Y7AobycHQC+NW3aNO3fv19ff/21s0NBG+WoMbZ+/Xo99thj+t///V/16dPHrm3B9dhznD3xxBN65JFHNGrUqFavG+7FnuOsoaFBNTU1ev/999WjRw9J0vz58zV48GBlZWUpOTm51duE67HnGMvPz9cTTzyhyZMna+LEiSovL9fvfvc7PfDAA1qzZo1MJlOrtwnX1BrjbP/+/Ro/frxmz56tsWPHtmJ0cFXMxLuI6dOna+XKlVq/fr1iY2Ot16Ojo3Xx4kWVlpbalD937pyio6Ovuv7o6OhmO6c2/Xwt9cB92XuMNcnIyNDdd9+tN954Q48++uj1hg03Y+9xtm7dOs2bN09eXl7y8vLS1KlTVVZWJi8vL7377rut1Q24OHuPs06dOsnLy8uawEtSr169JEk5OTnXFzzcgr3H2Ntvv62QkBC99tprGjhwoEaNGqVFixZp7dq1yszMbK1uwMW1xjg7ePCgbrnlFj355JP6zW9+Y3Pvcp//g4OD5efn17qdgUORxDuZYRiaPn26li9frnXr1ikpKcnm/uDBg+Xt7a21a9dar2VlZSknJ0cjRoy46nZGjBihr776SrW1tdZra9asUXJyssLCwq6/I3BZjhpjUuMxJnfeeadeffVVm8e50PY5apxt3rxZu3fvtr5efPFFBQUFaffu3brvvvtarT9wTY4aZyNHjlRdXZ2OHz9uvXbkyBFJUkJCwnX2Aq7MUWOssrJSHh62H8M9PT0lNT4JgrattcbZgQMHNGbMGE2ePLnFIzBHjBhhU4fU+Pn/Wj/fwQU5c1c9GMbTTz9thISEGBs2bDDOnj1rfVVWVlrLPPXUU0Z8fLyxbt06Y/v27caIESOMESNG2NRz9OhRY9euXcbPfvYzo0ePHsauXbuMXbt2WXejLy0tNaKiooyf/OQnxv79+40lS5YY/v7+xn//9387tL9wPEeNsXXr1hn+/v7GCy+8YNNOUVGRQ/sL53DUOPsudqdvXxw1zurr641BgwYZo0aNMnbu3Gls377dGDZsmHHbbbc5tL9wPEeNsbVr1xomk8n4/e9/bxw5csTYsWOHkZaWZiQkJNi0hbapNcbZvn37jIiICCM9Pd2mjoKCAmuZEydOGP7+/sbzzz9vHDp0yHj77bcNT09PY9WqVQ7tL1ofSbyTSWrxtWDBAmuZqqoq45lnnjHCwsIMf39/47777jPOnj1rU09qamqL9WRnZ1vL7Nmzx7jxxhsNs9lsdO7c2XjllVcc1Es4k6PG2OTJk1u8n5qa6rjOwmkc+bvs35HEty+OHGdnzpwx7r//fiMwMNCIiooypkyZwpeS7YAjx9hHH31kDBw40AgICDAiIiKMe+65xzh06JCDegpnao1xNnv27BbrSEhIsGlr/fr1xoABAwwfHx+jS5cuNm3AfZkMwzCuYyIfAAAAAAA4CGviAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAHBhRUVFioyM1MmTJx3a7sKFCxUaGmqXuletWqUBAwaooaHBLvUDANCWkcQDAODCXn75ZY0fP16JiYnN7qWlpcnT01Pbtm1zfGDXYdy4cfL29tbixYsvW2bq1Knq16+fLl68aHP9888/l4+Pj3bu3GnvMAEAcEkk8QAAuKjKykrNnz9fU6dObXYvJydH33zzjaZPn653333XCdH9MLW1tZKkKVOm6K233rpsuTfeeEPl5eWaPXu29VppaameeOIJ/fa3v9WgQYPsFhsAAK6MJB4AABf1+eefy2w2a/jw4c3uLViwQHfddZeefvppffTRR6qqqrK5P3r0aM2YMUOzZs1SeHi4oqOjNWfOHJsypaWl+tnPfqaoqCj5+vqqb9++WrlypU2Z1atXq1evXgoMDNS4ceN09uxZ672Ghga9+OKLio2Nldls1oABA7Rq1Srr/ZMnT8pkMunjjz9WamqqfH19rbPvd999t7Zv367jx4+32Pfg4GAtWLBAr7/+ujIzMyVJM2fOVOfOnfXCCy8oNzdXDz74oEJDQxUeHq7x48fbLDnYtm2bbrvtNnXs2FEhISFKTU1tNntvMpn0zjvv6J577lFAQIBefvnly/xNAADgOkjiAQBwURs3btTgwYObXTcMQwsWLFB6erp69uypbt266ZNPPmlW7r333lNAQIAyMzP12muv6cUXX9SaNWskNSbgt99+uzZt2qRFixbp4MGDeuWVV+Tp6Wl9f2VlpebNm6cPPvhAX331lXJycvTcc89Z77/55pt6/fXXNW/ePO3du1dpaWm65557dPToUZs4fvnLX+rZZ5/VoUOHlJaWJkmKj49XVFSUNm7ceNn+jxkzRs8884wmT56sZcuWaenSpXr//fdlGIbS0tIUFBSkjRs3atOmTdYvGZoevy8vL9fkyZP19ddfa8uWLerevbvuuOMOlZeX27QxZ84c3Xfffdq3b58ef/zx7/srAQDA+QwAAOCSxo8fbzz++OPNrn/55ZdGRESEUVtbaxiGYbzxxhtGamqqTZnU1FTjxhtvtLmWkpJi/OIXvzAMwzBWr15teHh4GFlZWS22vWDBAkOScezYMeu1t99+24iKirL+HBMTY7z88svN2njmmWcMwzCM7OxsQ5Lxpz/9qcU2Bg4caMyZM6fFe00qKyuN5ORkw8PDw3jjjTcMwzCMDz74wEhOTjYaGhqs5Wpqagw/Pz9j9erVLdZTX19vBAUFGZ999pn1miRj5syZV2wfAABXw0w8AAAuqqqqSr6+vs2uv/vuu3rooYfk5eUlSZo4caI2bdrU7NH0/v372/zcqVMnFRQUSJJ2796t2NhY9ejR47Lt+/v7q2vXri2+32KxKC8vTyNHjrR5z8iRI3Xo0CGba0OGDGmxfj8/P1VWVl62/aYyzz33nPz9/fXss89Kkvbs2aNjx44pKChIgYGBCgwMVHh4uKqrq61/BufOndMTTzyh7t27KyQkRMHBwbpw4YJycnKuKjYAAFyVl7MDAAAALevYsaNKSkpsrhUXF2v58uWqra3VO++8Y71eX1+vd99912Zdt7e3t817TSaT9Vg3Pz+/722/pfcbhnHN/QgICGjxenFxsSIiIr73/V5eXvL09JTJZJIkXbhwQYMHD25xd/um+iZPnqyioiK9+eabSkhIkNls1ogRI5rtdn+52AAAcFXMxAMA4KIGDhyogwcP2lxbvHixYmNjtWfPHu3evdv6ev3117Vw4ULV19dfVd39+/fX6dOndeTIkR8UW3BwsGJiYrRp0yab65s2bVLv3r2/9/1Ns+YDBw685rYHDRqko0ePKjIyUt26dbN5hYSEWOOYMWOG7rjjDvXp00dms1mFhYXX3BYAAK6GJB4AABeVlpamAwcO2MzGz58/Xw888ID69u1r85o6daoKCwttdoe/ktTUVI0aNUoTJkzQmjVrlJ2drS+++OKq3y9Jzz//vF599VV9/PHHysrK0i9/+Uvt3r3b+tj7lWzZssU6O36tJk2apI4dO2r8+PHauHGjsrOztWHDBs2YMUOnT5+WJHXv3l0ffPCBDh06pMzMTE2aNOmqnj4AAMDVkcQDAOCi+vXrp0GDBmnp0qWSpB07dmjPnj2aMGFCs7IhISG65ZZbNH/+/Kuu/9NPP1VKSoomTpyo3r17a9asWVc9ky9JM2bM0H/913/p5z//ufr166dVq1ZpxYoV6t69+/e+96OPPtKkSZPk7+9/1e018ff311dffaX4+Hjdf//96tWrl6ZOnarq6moFBwdLavyyo6SkRIMGDdJPfvITzZgxQ5GRkdfcFgAArsZk/JDFbQAAwCH++c9/6vnnn9f+/fvl4dE2vnsvLCxUcnKytm/frqSkJGeHAwCAW2FjOwAAXNidd96po0eP6syZM4qLi3N2OK3i5MmT+stf/kICDwDAD8BMPAAAAAAAbqJtPJcHAAAAAEA7QBIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALgJkngAAAAAANwESTwAAAAAAG6CJB4AAAAAADfx/wAduX1G5sbtFwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1470,16 +1519,19 @@ } ], "source": [ - "print(f\"The MSE loss is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\")\n", - "\n", + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", "\n", - "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", "fig, ax = plt.subplots(figsize=(12, 5))\n", "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", - "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", - "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", " label=\"Climatology\", c=\"black\")\n", "plt.xlabel(\"(Anchor) Year\")\n", "plt.ylabel(\"Temperature [degree C]\")\n",