diff --git a/.gitignore b/.gitignore index 431aa5d..80217ca 100644 --- a/.gitignore +++ b/.gitignore @@ -133,4 +133,8 @@ wandb models # vscode -.vscode \ No newline at end of file +.vscode + +# data +workflow/sst_daily_19* +workflow/t2m_daily_19* \ No newline at end of file diff --git a/README.md b/README.md index 0a5d57f..83808e3 100644 --- a/README.md +++ b/README.md @@ -31,7 +31,11 @@ Similarly, you can adapt this recipe to your deep learning workflow with a few c The tutorial notebooks include a case study in which we attempt to predict surface temperature over US using the SST over Pacific. We use processed ERA5 fields to perform data-driven forecasts. More details about the data can be found in this [README.md](./data/README.md). -Before playing with these notebooks, please make sure that you have all the dependent packages installed. You can simply install the dependencies by go to this repo and run the following command: +Before playing with these notebooks, please make sure that you have all the dependent packages installed. For example, create a new environment with Python >3.8 and <3.11. +```sh +conda create -n s2scookbook python=3.10 +``` +You can simply install the dependencies by going to this repo and run the following command: ```sh pip install . ``` diff --git a/setup.cfg b/setup.cfg index 7740343..b401ea0 100644 --- a/setup.cfg +++ b/setup.cfg @@ -19,6 +19,7 @@ install_requires = tqdm wandb xarray + s2spy [options.packages.find] include = src, src.* \ No newline at end of file diff --git a/workflow/comp_pred_ridge_and_LSTM.ipynb b/workflow/comp_pred_ridge_and_LSTM.ipynb index cdea5cd..c5f4fee 100644 --- a/workflow/comp_pred_ridge_and_LSTM.ipynb +++ b/workflow/comp_pred_ridge_and_LSTM.ipynb @@ -34,16 +34,16 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 178, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 1, + "execution_count": 178, "metadata": {}, "output_type": "execute_result" } @@ -51,17 +51,19 @@ "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import time as tt\n", "import wandb\n", "import urllib\n", "import xarray as xr\n", + "from pathlib import Path\n", "from s2spy import preprocess\n", "import torch\n", "from torch import nn\n", "from torch.autograd import Variable\n", "\n", "# for reproducibility \n", - "np.random.seed(1)\n", + "np.random.seed(3)\n", "torch.manual_seed(2)" ] }, @@ -87,46 +89,46 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 179, "metadata": {}, "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", "periods_of_interest = 8\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 180, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", + " anchor='07-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] }, - "execution_count": 3, + "execution_count": 180, "metadata": {}, "output_type": "execute_result" } @@ -147,9 +149,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 181, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# URL of the dataset from zenodo\n", "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", @@ -163,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 182, "metadata": {}, "outputs": [], "source": [ @@ -176,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 183, "metadata": {}, "outputs": [], "source": [ @@ -196,12 +210,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 184, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZ0lEQVR4nO3dd1xT1/sH8E+AsJcoiCiKAxW3OFHrVtyLqq20rrr3qtZaB2pdP3frrNZRt9bRarVVFAeuioqzWgdOhkqZQgjk/P7gy9UIKgGSXPTzfr18tcm9uc95DpeQJ/eccxVCCAEiIiIiIiIjMzF2A4iIiIiIiAAWJ0REREREJBMsToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGTBzNgNyC80Gg2ePn0KOzs7KBQKYzeHiIiIPmBCCMTHx8PNzQ0mJvwumT4eLE6y6enTp3B3dzd2M4iIiOgj8ujRIxQrVszYzSAyGBYn2WRnZwcg/U3C3t7eyK0hIiKiD1lcXBzc3d2lzx9EHwsWJ9mUMZTL3t6exQkREREZBIeS08eGgxiJiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgat1ERGRFiEEVCpVjl9vYWGR7RWGDBUrv8QxZCxD/Zw+tHx0iZWbOMnJyTl6HVF+x+KEiIi0qFQqdO3aNcev37lzJywtLWUVK7/EMWQsQ/2cPrR8dImVmzhqtTpHryPK71icEBFRli4+idf5Nd5Fc3bDuNBnun8Qq+qs1Pk1hsopJ/kA8s4J0D2vDy0fIGc54dF53V/jWl331xB9AFicEBHRW/kMmQ1TM/P37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRxD5ZTdfID8kxOQvbw+tHyA3Oe0aUB1WCjfP9VXpdbgi9WXchyHKL9jcUJERG9lamYOU/PsfcDOLROlBczM3z9UJjWXcQyVU3bzAfJPTkD28vrQ8gFyn5OF0gSWStNcHoXow8fVuoiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwGEBGRfB2fPxTJcdFQKEygtLKBd89v4OThhfiIBzi7chJU8TFQWtuiVt8puY51eHJ3JMc+/18sW9QdMhcFy1RB7JO7OPl/g5EcFw1zG3vUG7Eo17GOzR6AJCnWq7xCNszGk4tBSHz+FC0CNuc6zqGJXZD0X2SmnM4un4CHZw8iIfIROi4/AQd3z1zFedvP6fV8Wn2/E/ZuJXMVR2jScGxmb8Q+vgNTc0tYOTqj3vAFsC9aCs/+CcHZFd8gTa1CmioJUJgAzmVzHOttP6PXzz0zSxuYWVoDsMtxHEOdd+0WnUdUfApMFArYWZphqX9FVC/hgH8jEtBrTSieJ6TAwcoMq3pXzlUcovzOqFdOZs+ejVq1asHOzg4uLi7o1KkTbt26pbVPcnIyhg4dioIFC8LW1hZ+fn6IjIyUtoeGhuLzzz+Hu7s7rKys4OXlhSVLlmgdIzw8HD169EDZsmVhYmKCUaNGGSI9IqJ8z2fIHLSZsxutZ+9CudY9cW7VdwCA82uno3STT9FuwX54teuL82sCch2r0YTV6LwyGJ1WnERFv6E4MX8IAOD0ktEo16Y3Pv35Aip3G4ngxSNzHav+iPlZ5uVeuwWaT9kAm0JuuY4BAE0mrcsyJ49POqDtgoOwLeyeJ3He9nPK63wAwLPVl/Bb+zc6rzyF4j6tcWrxCABA8JJRqPrZaHRafgKt5v2G+PAwxMfH5zjO235Gr5975dv0RMzDW+850rsZ6rzbNLA6rsxohMvTG2KMb0n0XnsZADBww1UMaFwct+c0wYQ2pdF/3dVcxSHK74xanBw/fhxDhw7F2bNncfjwYajVarRs2RKJiYnSPqNHj8bvv/+OnTt34vjx43j69Cm6dOkibQ8JCYGLiws2bdqE69evY9KkSZg4cSJ+/PFHaR+VSgVnZ2d89913qFq1qkFzJCLKz8ytX30jrX4ZD0CB5NgXiL53HR4N2gFI/wCcFB2JVFVS7mLZOryKlRgHhUKBpJhneP7vZZRu1g0A4NGgAxKfP4U6OfFth8leLBv7V7H+lxcAuHjVhHVB11wd+3UWWeQEAK6V68PGuWiexcnq5wTkfT4KE1MUq9lMysPFqxYSIh/+b6MCqoQ4AEBq8ksoFAoolcocx8rqZ/TmuVesZjOkpSRrfW7QOY6BzjtH61d9EZuUCgUUiIpT4UJYLL7wST8X/GoWwZP/kpCoSs1xHKL8zqjDug4dOqT1eP369XBxcUFISAgaNmyI2NhYrF27Flu2bEHTpk0BAOvWrYOXlxfOnj2LunXrom/fvlrHKFWqFM6cOYPdu3dj2LBhAAAPDw/pasrPP/9sgMyIiD4cZ1Z8i6gb5wEAjb5ejpfREbAq4AwT0/Q/IQqFAtYFCyMtJTnXsY7PG4SI0JMAgBYzdyDx2RNYORXWimXjXBRpqtzHejMvfXkzJ30xVD6vu753JYr7tAEAfDJ2GY5M64GLG2YiOfYFHNw9YWlpmavjZ+fcMzW3RFJS7gpjQ513PX+6hGM3XwAA/hhdG4+ik1DE0QJmpiZSnGJOVkhK0cA8V5GI8i9ZzTmJjY0FADg5OQFIvyqiVqvRvHlzaZ/y5cujePHiOHPmDOrWrfvW42QcI6dUKhVUKpX0OC4uLlfHIyLKr3wGzwIA3DuxD5e3LUKVrsP0FqvR+JUAgH8Pb8WFtdPg3WuS3mK9mVfj8Sv0EufNnFrO3KmXOIbKJ0Po1gWIe3ofreekz8W4sn0RavaZgtJNu+K/h7fw29DGiHcvmKsYhjr3DHXebexfHQCw4dQjTNh5EzO6lNNLHKL8TDardWk0GowaNQr169dHpUqVAAAREREwNzeHo6Oj1r6FCxdGRERElsc5ffo0tm/fjgEDBuSqPbNnz4aDg4P0z909b8YFExHlV6UadkTUjb9h5VQYSf89gyYtfeiJEAIvX0TC1Dx335K/zrPF5wgPPQWbQm5Iio7UipX47AlMLfIuVkZeqviYPDtmVjJySo6L1mscQ+RzdecPCAvej5Yzd8LM0hrJsS/w4PQBlG7aFQBg51oC5rYOiI7Om1zfde6lpSTDysoqT+IY6rzr1cAdx/55gWIFrBAeo0JqmkaK8zg6CVbmsvl4RmRwsjn7hw4dimvXrmHbtm05Psa1a9fQsWNHTJ06FS1btsxVeyZOnIjY2Fjp36NHj3J1PCKi/EaTmoqk/55Jjx9fCIS5rQMs7QvCqaQXwk7tBwA8On8YVk4uMLPI+QdETaoaL1+8+tLpwekDsLB3gqWjMwqWqYK7genDocJO/QabQkWgtLTJcayUl/F4+V+U9Dgjr9fnHuSFlIRYvHwRLj3OyMnCrkCexnnbzymv88lwY+9K3Av6Fa1m75Hm1JjbOsLMwhpPL58AACTHvkBKQizs7e3fdai3etvP6M1z7/GFQJgqLWBjk7PzwVDnnTpNg6cxr4aE7b0YgYK25nCxN4d3CXtsOvMEAPDrhXAULWAJGwtZDWwhMihZnP3Dhg3D/v37ceLECRQrVkx63tXVFSkpKYiJidG6ehIZGQlXV+0Jfjdu3ECzZs0wYMAAfPfdd7luk4WFBSwsLHJ9HCKi/EqjSUXwD2ORpk6BwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgdLKBrX6TsW1PTkfRqRJS8Wx7/tAo1YBChNYOhRCi+nboFAoUH/EIpxYMBSh2xZCaW2HeiMX4/KmuTmOpX6ZgDMrJiItJTlTXufXBuDppRNIjn2BEwuGIzX5JVC0+fsPmoWUl3E4MXcQ0lKSMuUUvGQUHp0/jKToSPz5rR+UVjZwLJ6zIT7v+jm9ns+xuQOhtLSGfdHSOYoDAKmqZFxYGwC7Ih44OL49AMBEaYEOS4+gyaR1+PunKdCkpUKTmgI71xIoUCBnhdi7fkavn3tmltZwLJHzoVGGOu/UaQLdll+ESq2BiQngbGeB/aNqQaFQYFWvKui99jJm7b8DeyszrOpVBQH7buc4J6L8zqjFiRACw4cPx549exAUFISSJbXXX69RowaUSiUCAwPh5+cHALh16xYePnwIHx8fab/r16+jadOm6NWrF77//nuD5kBE9KEyM7dE43HLYGqe+Ysae7eSaPnafUDSUlSZ9tEploUVWszYDrMshoY5uHui/eK/pMepuZx4b1OoCHxnbM1yW+2vpkr/n5aiwqmlY3Mcx9bFHR1+CMxyW/2Ri7Uep6Yk49jM3jmK866f0+v5ALnPyczCEj1/D8/y51TUuzGKegcByF0+wLt/Rq+fe7nPxzDnnbW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHIfoQGLU4GTp0KLZs2YJ9+/bBzs5Omkfi4OAAKysrODg44KuvvsKYMWPg5OQEe3t7DB8+HD4+PtJk+GvXrqFp06bw9fXFmDFjpGOYmprC2dlZinX58mUAQEJCAp49e4bLly/D3NwcFSpUMGzSRERERESUJaMWJytWpA8BaNy4sdbz69atQ+/evQEAixYtgomJCfz8/KBSqeDr64vly18tkbhr1y48e/YMmzZtwqZNm6TnS5QogbCwMOlx9erVpf8PCQnBli1bMu1DRERERETGY/RhXe9jaWmJZcuWYdmyZVlunzZtGqZNm5YnsYiIiIiIyHhks1oXERERERF93FicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWTAzdgOIiEi+0lJT8nS/d9GoVUjN5n65YaicsptPxr65Ibef04eWT8Z+uaFSa/J0P6IPFYsTIiJ6qzPLJxos1vG5Aw0Sx1A5GSof4MP7OX1o+QDAF6svGSQOUX7H4oSIiLLkXdTOYLGqOisNEsdQORkqH+DD+zl9aPkAANxr6/4atTrv20GUDyiEEMLYjcgP4uLi4ODggNjYWNjb2xu7OUREeiOEgEqV8yEsFhYWUCgUsoqVX+IYMpahfk4fWj66xMpNnLi4OBQuXJifO+ijwysnRESkRaFQwNLS8oOK9aHF+RBjfWj55DZOSkru59MQ5UdcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJgk7FSWpqKjZu3IjIyEh9tYeIiIiIiD5SOhUnZmZmGDRoEJKTk/XVHiIiIiIi+kjpPKyrdu3auHz5sh6aQkREREREHzMzXV8wZMgQjBkzBo8ePUKNGjVgY2Ojtb1KlSp51jiij50QAiqVKsevt7CwgEKh+GDiGDIWc9J/HEPGMmRORESUcwohhNDlBSYmmS+2KBQKCCGgUCiQlpaWZ42Tk7i4ODg4OCA2Nhb29vbGbg59JJKTk9G1a9ccv37nzp2wtLT8YOIYMhZz0n8cQ8YyZE5EeYGfO+hjpfOVk/v37+ujHUT0DhefxOv8Gu+idjq/JvSZWufXVHVW6vyanOQDMKcMcs4pJ/kAhssJj87r/hr32rq/hoiIckTn4qREiRL6aAcRvYfPkNkwNTN/735pqSk4s3xijuM0mrAKJkqL9+6nUatwfO7AHMfJbj4Ac8qK3HLKbT6A4XLaNKA6LJTvn3KpUmvwxepLOY5DRES607k4yXDjxg08fPgQKSkpWs936NAh140iosxMzcxhav7+D265ZaK0gJn5+4evpOYyjqHyAZhTbnyIOVkoTWCpNM3lUYiISB90Lk7u3buHzp074+rVq9JcEwDSRMEPdc4JERERERHpl85LCY8cORIlS5ZEVFQUrK2tcf36dZw4cQI1a9ZEUFCQHppIREREREQfA52vnJw5cwZHjx5FoUKFYGJiAhMTEzRo0ACzZ8/GiBEjcOkSx+cSEREREZHudL5ykpaWBju79NVYChUqhKdPnwJInyh/69atvG0dERERERF9NHS+clKpUiWEhoaiZMmSqFOnDubNmwdzc3OsXr0apUqV0kcbiYiIiIjoI6BzcfLdd98hMTERADB9+nS0a9cOn3zyCQoWLIjt27fneQOJiIiIiOjjoHNx4uvrK/1/mTJl8M8//yA6OhoFChSQVuwiIiIiIiLSlc5zTjLcuXMHf/75J5KSkuDk5JSXbSIiIiIioo+QzsXJixcv0KxZM5QtWxZt2rRBeHg4AOCrr77C2LFj87yBRERERET0cdB5WNfo0aOhVCrx8OFDeHl5Sc93794dY8aMwYIFC/K0gURERESUtbS0NKjVamM3g+itlEolTE1Ns72/zsXJX3/9hT///BPFihXTet7T0xMPHjzQ9XBEREREpCMhBCIiIhATE2PsphC9l6OjI1xdXbM1P13n4iQxMRHW1taZno+OjoaFhYWuhyMiIiIiHWUUJi4uLrC2tuaiRCRLQgi8fPkSUVFRAIAiRYq89zU6FyeffPIJNm7ciBkzZgAAFAoFNBoN5s2bhyZNmuh6OCIiIiLSQVpamlSYFCxY0NjNIXonKysrAEBUVBRcXFzeO8RL5+Jk3rx5aNasGS5cuICUlBSMHz8e169fR3R0NIKDg3PWaiIiIiLKlow5JlmNZCGSo4xzVa1Wv7c40Xm1rkqVKuH27dto0KABOnbsiMTERHTp0gWXLl1C6dKlc9ZiIiIiItIJh3JRfqHLuarzlRMAcHBwwKRJk3LyUiIiIiIioizpfOXEw8MD06dPx6NHj/TRHiIiIiIi+kjpfOVk1KhRWL9+PaZPn44mTZrgq6++QufOnblSFxEREZGxLTDgUK+xwnCxjCwsLAwlS5bEpUuXUK1aNWM3J8c8PDwwatQojBo1ythNeSudr5yMGjUKly9fxvnz5+Hl5YXhw4ejSJEiGDZsGC5evKiPNhIRERFRPqZQKN75b9q0aUZt2969e9+5j7u7O8LDw1GpUqVsH3fatGn5upAxFp2Lkwze3t5YunQpnj59iqlTp2LNmjWoVasWqlWrhp9//hlCfDzVNBERERG9XXh4uPRv8eLFsLe313pu3LhxOh0vJSVFTy3NmqmpKVxdXWFmlqPp2rli6FyNLcfFiVqtxo4dO9ChQweMHTsWNWvWxJo1a+Dn54dvv/0W/v7+edlOIiIiIsqnXF1dpX8ODg5QKBTS48TERPj7+6Nw4cKwtbVFrVq1cOTIEa3Xe3h4YMaMGejZsyfs7e0xYMAAAMBPP/0Ed3d3WFtbo3Pnzli4cCEcHR21Xrtv3z54e3vD0tISpUqVQkBAAFJTU6XjAkDnzp2hUCikx28KCwuDQqHA5cuXAQBBQUFQKBQIDAxEzZo1YW1tjXr16uHWrVsAgPXr1yMgIAChoaHS1aH169cDAGJiYtCvXz84OzvD3t4eTZs2RWhoqBQr44rLmjVrULJkSVhaWmL16tVwc3ODRqPRalfHjh3Rt29fAMDdu3fRsWPHd/ZjfqBzcXLx4kWtoVwVK1bEtWvXcOrUKfTp0weTJ0/GkSNHsGfPHn20l4iIiIg+IAkJCWjTpg0CAwNx6dIltGrVCu3bt8fDhw+19ps/fz6qVq2KS5cuYfLkyQgODsagQYMwcuRIXL58GS1atMD333+v9ZqTJ0+iZ8+eGDlyJG7cuIFVq1Zh/fr10n5///03AGDdunUIDw+XHmfXpEmTsGDBAly4cAFmZmZSodC9e3eMHTsWFStWlK4Ode/eHQDQtWtXREVF4eDBgwgJCYG3tzeaNWuG6Oho6bh37tzBr7/+it27d+Py5cvo2rUrXrx4gWPHjkn7REdH49ChQ9IFgez2o9zpfG2qVq1aaNGiBVasWIFOnTpBqVRm2qdkyZL47LPP8qSBRERERPThqlq1KqpWrSo9njFjBvbs2YPffvsNw4YNk55v2rQpxo4dKz2eNGkSWrduLQ0JK1u2LE6fPo39+/dL+wQEBOCbb75Br169AAClSpXCjBkzMH78eEydOhXOzs4AAEdHR7i6uurc9u+//x6NGjUCAHzzzTdo27YtkpOTYWVlBVtbW5iZmWkd99SpUzh//jyioqKkxaTmz5+PvXv3YteuXdIVoZSUFGzcuFFqHwC0bt0aW7ZsQbNmzQAAu3btQqFChdCkSROd+lHudL5ycu/ePRw6dAhdu3bNsjABABsbG6xbty7XjSMiIiKiD1tCQgLGjRsHLy8vODo6wtbWFjdv3sz0jX/NmjW1Ht+6dQu1a9fWeu7Nx6GhoZg+fTpsbW2lf/3790d4eDhevnyZ67ZXqVJF+v8iRYoAAKKiot66f2hoKBISElCwYEGtNt2/fx93796V9itRooRWYQIA/v7++PXXX6FSqQAAmzdvxmeffQYTk/SP89ntR7nT+cpJiRIl9NEOIiIiIvoIjRs3DocPH8b8+fNRpkwZWFlZ4dNPP800EdzGxkbnYyckJCAgIABdunTJtM3S0jLHbc7w+hf1GXdBf3NeyJvtKVKkCIKCgjJte32uTFa5tm/fHkIIHDhwALVq1cLJkyexaNEiaXt2+1HuDL/kABERERHR/wQHB6N3797o3LkzgPQP8GFhYe99Xbly5TLNEXnzsbe3N27duoUyZcq89ThKpRJpaWm6N/w9zM3NMx3X29sbERERMDMze+vk+7extLREly5dsHnzZty5cwflypWDt7e3tD2n/Sg3LE6IiIiIyGg8PT2xe/dutG/fHgqFApMnT37n1YcMw4cPR8OGDbFw4UK0b98eR48excGDB6UrGAAwZcoUtGvXDsWLF8enn34KExMThIaG4tq1a5g5cyaA9BW7AgMDUb9+fVhYWKBAgQJ5kpeHhwfu37+Py5cvo1ixYrCzs0Pz5s3h4+ODTp06Yd68eShbtiyePn2KAwcOoHPnzpmGrr3J398f7dq1w/Xr1/HFF19obctpP8oNixMiIiKiD0U+vGv7woUL0bdvX9SrVw+FChXChAkTEBcX997X1a9fHytXrkRAQAC+++47+Pr6YvTo0fjxxx+lfXx9fbF//35Mnz4dc+fOhVKpRPny5dGvXz9pnwULFmDMmDH46aefULRo0Ty72uDn54fdu3ejSZMmiImJwbp169C7d2/88ccfmDRpEvr06YNnz57B1dUVDRs2ROHChd97zKZNm8LJyQm3bt1Cjx49tLbltB/lRqfiRK1Wo3z58ti/fz+8vLz01SYiIiIi+kD17t0bvXv3lh57eHjg6NGjWvsMHTpU6/HbCob+/fujf//+Wo/fHMLl6+sLX1/ft7anffv2aN++/Tvb7OHhoXWD8caNG2e64Xi1atW0nrOwsMCuXbsyHcvOzg5Lly7F0qVLs4w1bdo0TJs2LcttJiYmePr06VvbmNN+lBOdihOlUonk5OQ8Cz579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uVSdRkaGoo5c+bg1KlTeP78OTw8PKQ1r18XFBSEMWPG4Pr163B3d8d3332n9YtBJHfH5w9Fclw0FAoTKK1s4N3zGzh5eCE+4gHOrpwEVXwMlNa2qNV3Sq7iHJ7cHcmxz/8XxxZ1h8xFwTJVEPvkLk7+32Akx0XD3MYe9UYsev/B3uPY7AFIkmK9yilkw2w8uRiExOdP0er7nbB3K6mXnM4un4CHZw8iIfIROi4/AQd3z3yRk9Ck4djM3oh9fAem5pawcnRGveELYF+0FJ7duohzKydCnZQIhUKBGn2n5iofQ513gOHOvXaLziMqPgUmCgXsLM2w1L8iqpdwwL8RCei1JhTPE1LgYGWGVb0r5zonItKv+fPno0WLFrCxscHBgwexYcMGLF++3NjNolzQeVjX0KFDMXfuXKxZswZmZrkbFXb8+HEMHToUtWrVQmpqKr799lu0bNkSN27ckFYpGD16NA4cOICdO3fCwcEBw4YNQ5cuXRAcHAwACAkJgYuLCzZt2gR3d3ecPn0aAwYMgKmpqbSm8/3799G2bVsMGjQImzdvRmBgIPr164ciRYq8s5ImkhOfIXNg5VgIAPDo70CcW/UdWs/+FefXTkfpJp+iVKNOeHjuL5xfEwCrAs7vOdrbNZqwGtZO6cV/WPB+nJg/BJ1XnsLpJaNRrk1veLbsgfsn9yF48UhYF9R9TfjX1R8xH+Y29plycq/dAl7t+uDI9F65On6Gt+Xk8UkHVO46AgfGts6TOIDhcvJs9SVK+LSBQqHAjX2rcWrxCLSe9zsCp3+JT8YuQ1Hvxoh9fAcHJ3REgZIVAGS99Pv7GOq8Awx37m0aWB2uDumr9OwJCUfvtZcROr0RBm64igGNi6N3A3fs+vsp+q+7CjdHi1zlRET6df78ecybNw/x8fEoVaoUli5dqjVki/IfnauLv//+G4GBgfjrr79QuXLlTEud7d69O9vHOnTokNbj9evXw8XFBSEhIWjYsCFiY2Oxdu1abNmyBU2bNgWQfgdPLy8vnD17FnXr1pXuxJmhVKlSOHPmDHbv3i0VJytXrkTJkiWxYMECAICXlxdOnTqFRYsWsTihfMPc2k76f/XLeAAKJMe+QPS962jyzSoAgHvtFghZPwtKa1sAdlkf6H1xbB1exUmMg0KhQFLMMzz/9zJ8Z6f/fns06IAzP34NpY0dAMccZgTpQzzwKicAcPF694RAneNkkRMAuFaun6dxAMPkpDAxRbGazaQ8XLxq4dqvP0IVF43k2Oco6t0YAOBQrAzMbR2QHPMcKFwsR7EMdd4Bhjv3HK1fFWqxSalQQIGoOBUuhMXir3F1AAB+NYtg2KZrcLAyhe6LlxKRoezYscPYTaA8pnNx4ujoCD8/P320BbGxsQAAJycnAOlXRdRqNZo3by7tU758eRQvXhxnzpxB3bp133qcjGMAwJkzZ7SOAaSPPxw1atRb26JSqaSb3ADIlxOK6MNzZsW3iLpxHgDQ6OvleBkdAasCzjAxTf9VVigUsC5YGGkpuRt+eXzeIESEngQAtJi5A4nPnsDKqbBWHBvnokhT5X6Y55s56cubOemToXLKcH3vShT3aQNLh4KwdiqMe8f3oFSjznh26yLiHt/N9bA4Q513gOHOvZ4/XcKxmy8AAH+Mro1H0Uko4mgBM1MTKU4xJyskpWhYnBARGZDOxYm+7vyu0WgwatQo1K9fH5UqVQIAREREwNzcXOumNABQuHBhREREZHmc06dPY/v27Thw4ID0XERERKYVEAoXLoy4uDgkJSXBysoq03Fmz56NgICAXGZFlLd8Bs8CANw7sQ+Xty1Cla7D9BKn0fiVAIB/D2/FhbXT4N1rkl7iAJlzajx+hV7ivJlTy5k79RIHMFxOABC6dQHint5H6znp8zCaTd2MC2sDcGX7IhQoUR4uFWojOfZ5rmIY6rwDDHfubexfHQCw4dQjTNh5EzO6lHvPK4iIyBBMcvrCZ8+e4dSpUzh16hSePXuW64YMHToU165dw7Zt23J8jGvXrqFjx46YOnUqWrZsmav2TJw4EbGxsdK/R48e5ep4RHmpVMOOiLrxN6ycCiPpv2fQpKUCAIQQePkiEqbmub/rLQB4tvgc4aGnYFPIDUnRkVpxEp89galF3sQBXuWkio/Js2NmJSOn5LhovcYB9J/T1Z0/ICx4P1rO3AkzS2sAQMHSleE7axc6LT+BRhNWIyk6Akor2zyJZ6jzDjDcudergTuO/fMCxQpYITxGhdQ0jRTncXQSrMxz/GeSiIhyQOd33cTERPTt2xdFihRBw4YN0bBhQ7i5ueGrr77Cy5cvc9SIYcOGYf/+/Th27BiKFXs1LtrV1RUpKSmIiYnR2j8yMhKurtqTIW/cuIFmzZphwIAB+O6777S2ubq6IjIyMtMx7O3ts7xqAqQv/2Zvb6/1j8hYNKmpSPrv1ZcAjy8EwtzWAZb2BeFU0gthp/YDAB6dPwwrJxeYWWR9Xr8/jhovX7y6Kvng9AFY2DvB0tEZBctUwd3A9OFQYad+g02hIlBa5nzAS8rLeLz8LypTTq/PO8gLb8vJwi5vbrL1OkPlBAA39q7EvaBf0Wr2Hli8dvzXc731xwaYWVrDwt4pq0O8l6HOu/RYhjn31GkaPI15NSRs78UIFLQ1h4u9ObxL2GPTmScAgF8vhKNoAUvYWPB2YEREhqTzu+6YMWNw/Phx/P7776hfP30y6alTpzBixAiMHTsWK1Zkf/iCEALDhw/Hnj17EBQUhJIltcdF16hRA0qlEoGBgdI8l1u3buHhw4fw8fGR9rt+/TqaNm2KXr164fvvv88Ux8fHB3/88YfWc4cPH9Y6BpGcaTSpCP5hLNLUKVCYmMDCrgAajVsGhUKBWn2n4Oyq73DjtzVQWtmgVt+puLYnZ8OINGmpOPZ9H2jUKkBhAkuHQmgxfRsUCgXqj1iEEwuGInTbQiit7VBv5GJc3jQ3xzmpXybgzIqJSEtJzpTT+bUBeHrpBJJjX+DY3IFQWlrDvmjpPM8peMkoPDp/GEnRkfjzWz8orWzgWDznw3sMlVOqKhkX1gbArogHDo5PX5vfRGmBDkuP4NbBDbh7dCcgBByKl0Xjb3/G+VU5GxplqPMOMNy5p04T6Lb8IlRqDUxMAGc7C+wfVQsKhQKrelVB77WXMWv/HdhbmWFVryoI2Hc7xzkREZHudC5Ofv31V+zatQuNGzeWnmvTpg2srKzQrVs3nYqToUOHYsuWLdi3bx/s7OykeSQODg6wsrKCg4MDvvrqK4wZMwZOTk6wt7fH8OHD4ePjI02Gv3btGpo2bQpfX1+MGTNGOoapqSmcndOXtRw0aBB+/PFHjB8/Hn379sXRo0exY8cOrXkpRHJmZm6JxuOWwdQ887Km9m4l0TJgs/Q4LUWVaZ9sx7GwQosZ22GWxfAcB3dPtF/8l/Q4NZeTn20KFYHvjK1Zbqv9lfa9OdJSVDi1dGyO4rwrp/ojF2s9Tk1JxrGZvXMUBzBkTpbo+Xt4ljlV/2ICqn8xQXqcm5+Toc47wHDnnrW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHISLKrsaNG6NatWpYvHixsZuSY9OmTcPevXtx+fLlXB9L5+Lk5cuXmSaXA4CLi4vOw7oyCpnXCx0gfdJ9xg0SFy1aBBMTE/j5+WndhDHDrl278OzZM2zatAmbNm2Sni9RooR0F8ySJUviwIEDGD16NJYsWYJixYphzZo1XEaYiIiIPiiFpp0wWKzn0xrqtH/v3r2xYcMGAOk39i5evDh69uyJb7/9Ntf3zsvPdu/eDaUy+/eiCgsLQ8mSJXHp0iVUq1ZNfw0zEp3PBB8fH0ydOhUbN26EpWX6N1xJSUkICAjQeZiUEOK9+1haWmLZsmVYtmxZltunTZuGadOmvfc4jRs3xqVLl3RqHxERERHlnVatWmHdunVQqVT4448/MHToUCiVSkycODHTvikpKTA3Nzd4G4UQSEtLy/OC6W35vH77C0NTq9U6FUaGoPOE+CVLliA4OBjFihVDs2bN0KxZM+nO7EuWLNFHG4mIiIjoA2BhYQFXV1eUKFECgwcPRvPmzfHbb78BSL+y0qlTJ3z//fdwc3NDuXLpcwAfPXqEbt26wdHREU5OTujYsaM0OibDzz//jIoVK8LCwgJFihSRbsQdFhYGhUKhNdwoJiYGCoUCQUFBAICgoCAoFAocPHgQNWrUgIWFBU6dOoXQ0FA0adIEdnZ2sLe3R40aNXDhwgXpOL/++qsU08PDQ7rZdwYPDw/MmDEDPXv2hL29PQYMGJBlnzRu3Fjr3nseHh6YNWsW+vbtCzs7OxQvXhyrV6+WtmfM0a5evToUCoXWCKQ1a9bAy8sLlpaWKF++vNZoo4y+2L59Oxo1agRLS0usWLECVlZWOHjwoFab9uzZAzs7O2lU1IQJE1C2bFlYW1ujVKlSmDx5MtRqdZb55JbOJWGlSpXw77//YvPmzfjnn38AAJ9//jn8/f3fuvIVEREREdGbrKys8OLFC+lxYGAg7O3tcfjwYQDp3+z7+vrCx8cHJ0+ehJmZGWbOnIlWrVrhypUrMDc3x4oVKzBmzBjMmTMHrVu3RmxsLIKDg3VuyzfffIP58+ejVKlSKFCgABo2bIjq1atjxYoVMDU1xeXLl6WrDCEhIejWrRumTZuG7t274/Tp0xgyZAgKFiwoTU0AgPnz52PKlCmYOnXqW6JmbcGCBZgxYwa+/fZb7Nq1C4MHD0ajRo1Qrlw5nD9/HrVr18aRI0dQsWJF6WrM5s2bMWXKFPz444+oXr06Ll26hP79+8PGxga9evXSynPBggWoXr06LC0tcfLkSWzZsgWtW7eW9tm8eTM6deoEa+v0Zert7Oywfv16uLm54erVq+jfvz/s7Owwfvx4nfv5fXJ0vcra2hr9+/fP67YQERER0UdACIHAwED8+eefGD58uPS8jY0N1qxZI33g3rRpEzQaDdasWQOFQgEgfW6yo6MjgoKC0LJlS8ycORNjx47FyJEjpePUqlVL5zZNnz4dLVq0kB4/fPgQX3/9NcqXLw8A8PT0lLYtXLgQzZo1w+TJkwEAZcuWxY0bN/B///d/WsVJ06ZNMXas7ouftGnTBkOGDAGQftVi0aJFOHbsGMqVKyct+FSwYEGtW2tMnToVCxYsQJcuXQCkX2G5ceMGVq1apVWcjBo1StoHAPz9/fHll1/i5cuXsLa2RlxcHA4cOIA9e/ZI+7x+mw4PDw+MGzcO27Ztk09x8u+//+LYsWOIioqCRqPR2jZlypQ8aRgRERERfVj2798PW1tbqNVqaDQa9OjRQ2vucOXKlbXmZYSGhuLOnTuws7PTOk5ycjLu3r2LqKgoPH36FM2aNct122rWrKn1eMyYMejXrx9++eUXNG/eHF27dkXp0ulLwN+8eRMdO3bU2r9+/fpYvHgx0tLSYGpqmuUxs6tKlSrS/ysUCri6uiIqKuqt+ycmJuLu3bv46quvtC4gpKamwsFB+15bb7apTZs2UCqV+O233/DZZ5/h119/hb29PZo3by7ts337dixduhR3795FQkICUlNT9XYPQJ2Lk59++gmDBw9GoUKF4OrqKlWxQHrnsTghIiIioqw0adIEK1asgLm5Odzc3DJNOrex0b7BakJCAmrUqIHNmzfjTc7OzjAxeff06Yztry/C9La5Em/GnjZtGnr06IEDBw7g4MGDmDp1KrZt24bOnTu/M+a7jpldb05SVygUmS4IvC4hIQFA+uf0OnXqaG3LKJTe1iZzc3N8+umn2LJlCz777DNs2bIF3bt3l342Z86cgb+/PwICAuDr6wsHBwds27Yt0xybvKJzcTJz5kx8//33mDBhwvt3JiIiIiL6HxsbG5QpUybb+3t7e2P79u1wcXF56zf1Hh4eCAwMRJMmTTJtyxgCFR4ejurVqwOATvfiKFu2LMqWLYvRo0fj888/x7p169C5c2d4eXllmtcSHByMsmXLZioG8lrGlaW0tFf3YipcuDDc3Nxw7949+Pv763xMf39/tGjRAtevX8fRo0cxc+ZMadvp06dRokQJTJr06oa+Dx48yEUG76bzal3//fcfunbtqo+2EBERERFJ/P39UahQIXTs2BEnT57E/fv3ERQUhBEjRuDx48cA0q9wLFiwAEuXLsW///6Lixcv4ocffgCQPuG+bt26mDNnDm7evInjx49rzZ94m6SkJAwbNgxBQUF48OABgoOD8ffff8PLywsAMHbsWAQGBmLGjBm4ffs2NmzYgB9//BHjxo3TX2f8j4uLC6ysrHDo0CFERkYiNjYWABAQEIDZs2dj6dKluH37Nq5evYp169Zh4cKF7z1mw4YN4erqCn9/f5QsWVLr6ounpycePnyIbdu24e7du1i6dKnWfJS8pnNx0rVrV/z111/v35GIiIiIKBesra1x4sQJFC9eHF26dIGXlxe++uorJCcnS1dSevXqhcWLF2P58uWoWLEi2rVrh3///Vc6xs8//4zU1FTUqFEDo0aN0roq8DampqZ48eIFevbsibJly6Jbt25o3bo1AgICAKRf0dmxYwe2bduGSpUqYcqUKZg+fbrWZHh9MTMzw9KlS7Fq1Sq4ublJc1/69euHNWvWYN26dahcuTIaNWqE9evXS0sPv4tCocDnn3+O0NDQTFdeOnTogNGjR2PYsGGoVq0aTp8+LS0EoA/ZGta1dOlS6f/LlCmDyZMn4+zZs6hcuXKmMXEjRozI2xYSERERUbboetd2Q1q/fn2Otru6ukp3ln+bgQMHYuDAgVlu8/LywunTp7Wee30OSuPGjTPdGNzc3Bxbt259Z0w/Pz/4+fm9dfub92J5m4z7rbzrdW8ORevXrx/69euXab8ePXqgR48eWcbx8PB45w3Q586di7lz52a5bd68eZg3b57Wc6/fmyW7N0XPjmwVJ4sWLdJ6bGtri+PHj+P48eNazysUChYnRERERESUI9kqTu7fv6/vdhARERER0UdO5zknRERERERE+qBzceLn55fleLR58+ZxFS8iIiIiIsoxnYuTEydOoE2bNpmeb926NU6cOJEnjSIiIiIioo+PzsVJQkKCdPOX1ymVSsTFxeVJo4iIiIjo3d618hKRnOhyrupcnFSuXBnbt2/P9Py2bdtQoUIFXQ9HRERERDrIuI3Dy5cvjdwSouzJOFffvAVJVrK1WtfrJk+ejC5duuDu3bto2rQpACAwMBBbt27Fzp07dT0cEREREenA1NQUjo6OiIqKApB+o0KFQmHkVhFlJoTAy5cvERUVBUdHR5iamr73NToXJ+3bt8fevXsxa9Ys7Nq1C1ZWVqhSpQqOHDmCRo0a5ajhRERERJR9rq6uACAVKERy5ujoKJ2z76NzcQIAbdu2Rdu2bXPyUiIiIiLKJYVCgSJFisDFxQVqtdrYzSF6K6VSma0rJhlyVJwAQEpKCqKioqDRaLSeL168eE4PSUREREQ6MDU11emDH5Hc6Vyc/Pvvv+jbty9Onz6t9bwQAgqFAmlpaXnWOCIiIiIi+njoXJz07t0bZmZm2L9/P4oUKcIJWERERERElCd0Lk4uX76MkJAQlC9fXh/tISIiIiKij5TO9zmpUKECnj9/ro+2EBERERHRR0zn4mTu3LkYP348goKC8OLFC8TFxWn9IyIiIiIiygmdh3U1b94cANCsWTOt5zkhnoiIiIiIckPn4uTYsWP6aAcREREREX3kdC5O3nUX+GvXruWqMURERERE9PHK8U0YM8THx2Pr1q1Ys2YNQkJCOKyLSE/SUlPydL+30ahVSM3mfrmhSzuZU2Zyyym3+QCGy0ml1rx/Jx32IyKivJPj4uTEiRNYu3Ytfv31V7i5uaFLly5YtmxZXraNiF5zZvlEg8Q5PnegQeIYKh+AOeXGh5jTF6svGSQOERHpTqfiJCIiAuvXr8fatWsRFxeHbt26QaVSYe/evahQoYK+2kj00fMuameQOFWdlQaJY6h8AOaUGx9iTnCvbZg4RESUIwohhMjOju3bt8eJEyfQtm1b+Pv7o1WrVjA1NYVSqURoaOgHX5zExcXBwcEBsbGxsLe3N3Zz6CMhhIBKlfMhLBYWFlAoFB9MHEPGYk76j2PIWIbMiSgv8HMHfayyfeXk4MGDGDFiBAYPHgxPT099tomI/kehUMDS0pJxZByLOeWPWIbMiYiIci7bN2E8deoU4uPjUaNGDdSpUwc//vgj7xRPRERERER5JtvFSd26dfHTTz8hPDwcAwcOxLZt2+Dm5gaNRoPDhw8jPj5en+0kIiIiIqIPXLbnnGTl1q1bWLt2LX755RfExMSgRYsW+O233/KyfbLBsZ9ERERkKPzcQR+rbF85yUq5cuUwb948PH78GFu3bs2rNhERERER0UcoV1dOPib8BoOIiIgMhZ876GOVqysnREREREREeYXFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwG5DfJyckwNzfX6TUWFhZQKBTZ2lcIAZVKlZOm6RQrt3EMGetDy+lDPB/kFoeIiIjyJxYnOurZsyeUSqVOr9m5cycsLS2zta9KpULXrl1z0jSdYuU2jiFjfWg5fYjng9ziEBERUf7E4kRHoeEJMDHNfrd5F7XLWZxnap1fU9VZt6IJAC4+idf5NUDO8mJOOcsHyFlOcv4Z4dF53V/jXlv31xAREVG+wuJER7X7TYOlXYH37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRyfIbNhapa9oWq5zetjzSm3+QDZzym//Iw2DagOC+X7p72p1Bp8sfpSjuMQERFR/sHiREemZkqYmr//g1teMFFawMz8/UNYUnMZx9TMnDnlQnZyym0+gOFyMtTPyEJpAkulaS6PQkRERB8SrtZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC2bGDD579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uUoXLiwtM+IESMQHByMa9euwcvLC5cvX84Ua8eOHZg1axZu374NZ2dnDBs2DF9//XWO2n1s9gAkxT6HQmECpZUNvHt+AycPL8RHPMDZlZOgio+BmaUNzCytAdjlKAYAHJ7cHclSHFvUHTIXBctUQeyTuzj5f4ORHBcNcxt71BuxKMcx3pdTyIbZeHIxCInPn6LV9zth71YyV3HeltPZ5RPw8OxBJEQ+QsflJ+Dg7pkvchKaNByb2Ruxj+/A1NwSVo7OqDd8AeyLlsKzf0JwdsU3SFOrkKZKAhQmgHPZHMc6Pn8okuOi33neKa1tUavvlBzHAAx73rWcfxYRsSqYKBSwszTDUv+KqF7CAf9GJKDXmlA8T0iBnaUZ7CxNc/GbRERERPmFUYuT48ePY+jQoahVqxZSU1Px7bffomXLlrhx4wZsbGwAAKNHj8aBAwewc+dOODg4YNiwYejSpQuCg4O1jtW3b1+cO3cOV65cyRTn4MGD8Pf3xw8//ICWLVvi5s2b6N+/P6ysrDBs2DCd211/xHyY29gDAB79HYhzq75D69m/4vza6Sjd5FOUatQJYcEHcGH990AZ1xz0TLpGE1bD2im9CAsL3o8T84eg88pTOL1kNMq16Q3Plj1w/+Q+BC8eCeuCOY/zrpzca7eAV7s+ODK9V66On+FtOXl80gGVu47AgbGt8yQOYLicPFt9iRI+baBQKHBj32qcWjwCbf5vP4KXjIJ3z4ko7tMGiS/CsbNnNcSXKpLjOD5D5sDKsVCmfF4/7x6e+wvn1wTAqoBzjuMY8rzbMaQGHK2VAIA9IeHovfYyQqc3wsANVzGgcXH0buCOLWcfY8jGa/gk9/UqERERyZxRh3UdOnQIvXv3RsWKFVG1alWsX78eDx8+REhICAAgNjYWa9euxcKFC9G0aVPUqFED69atw+nTp3H27FnpOEuXLsXQoUNRqlSpLOP88ssv6NSpEwYNGoRSpUqhbdu2mDhxIubOnQshhM7tzvjACwDql/EAFEiOfYHoe9fh0aAdAKBYzWZIS0lGYmKizseX4tg6vIqTGAeFQoGkmGd4/u9llG7WDQDg0aADEp8/hTo553GArHMCABevmrn+AKoVJ4ucAMC1cn3YOBfNsziAYXJSmJiiWM1mUh4uXrWQEPnwfxsVUCXEAQBSk19CoVBAqVTmOJa59atrB28779xrt0BSdCRSVUk5j2PA8y6jMAGA2KRUKKBAVJwKF8Ji8YVP+vnQ2dsVyWpNrn6XiIiIKH8w6pWTN8XGxgIAnJycAAAhISFQq9Vo3ry5tE/58uVRvHhxnDlzBnXr1s3WcVUqFaytrbWes7KywuPHj/HgwQN4eHhk+RqVSiU9jouL09p+ZsW3iLpxHgDQ6OvleBkdAasCzjAxTe9ShUIBU3NLJCXl/EMiAByfNwgRoScBAC1m7kDisyewciqsFcfGuSjSVMm5igNkzklf3sxJnwyVU4bre1eiuE8bAMAnY5fhyLQeuLhhJpJjX8DB3ROWlpa5On52zjvrgoWRlpK788GQ513Pny7h2M0XAIA/RtfGo+gkFHG0gJmpiRTLUmmS698lIiIikj/ZTIjXaDQYNWoU6tevj0qVKgEAIiIiYG5uDkdHR619CxcujIiIiGwf29fXF7t370ZgYCA0Gg1u376NBQsWAADCw8OzfM3s2bPh4OAg/XN3d9fa7jN4Fjr+cASVuw7H5W25H3v/No3Gr0T3zdfh3fs7XFg7TW9xAOaUW6FbFyDu6X3U7JM+5+PK9kWo2WcKum+6hg7LghD7+A7i4+NzFeND/Blt7F8djxY2x8wu5TBh5029xiIiIiJ5k01xMnToUFy7dg3btm3L82P3798fw4YNQ7t27WBubo66devis88+AwCYmGTdBRMnTkRsbKz079GjR1nuV6phR0Td+BtWToWR9N8zaNJSAQBCCKSlJMPKyipPcvBs8TnCQ0/BppAbkqIjteIkPnsCU4vcfSP/uoycVPExeXbMrGTklBwXrdc4gP5zurrzB4QF70fLmTthZmmN5NgXeHD6AEo37QoAsHMtAXNbB0RH502u7zrvXr6IhKl53pwPhjzvejVwx7F/XqBYASuEx6iQmqaRYiWrNXn2u0RERETyJYviZNiwYdi/fz+OHTuGYsWKSc+7uroiJSUFMTExWvtHRkbC1TX7cwYUCgXmzp2LhIQEPHjwABEREahduzYAvHWeioWFBezt7bX+AUDKy3i8/C9K2u/xhUCY2zrA0r4gnEp6IezUful5U6WFNLFfV5pUNV6+eHV16MHpA7Cwd4KlozMKlqmCu4Hpw6HCTv0Gm0JFoLTMWZx35fT63IO88LacLOwK5GkcwHA5AcCNvStxL+hXtJq9Bxb/O765rSPMLKzx9PIJAEBy7AukJMRK55GuNKmpSPrvmfT4befdo/OHYeXkAjOLnH2QN+R5F/NSjaf/vRoWtvdiBAramsPF3hzeJeyx6cwTAMCeixGwVJrk+HeJiIiI8g+jzjkRQmD48OHYs2cPgoKCULKk9pKuNWrUgFKpRGBgIPz8/AAAt27dwsOHD+Hj46NzPFNTUxQtmj7JduvWrfDx8YGzs26rGqUmJeLM8olIS0mGwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgZmlNRxLlHv/Ad9Ck5aKY9/3gUatAhQmsHQohBbTt0GhUKD+iEU4sWAoQrcthNLaDvVGLsblTXNzHEv9MgFnVmSd0/m1AXh66QSSY1/g2NyBUFpaw75o6TzPKXjJKDw6fxhJ0ZH481s/KK1s4Fg85/1nqJxSVcm4sDYAdkU8cHB8ewCAidICHZYeQZNJ6/D3T1OgSUuFJjUFdq4lUKBAzgoxjSYVwT+MRZo65Z3nndLKBrX6TsW1PStyFseA511sUiq+XH0JSSkamJgAznYW2D+qFhQKBVb1qoLeay9j1v47sLM0RVX3nBV1RERElL8YtTgZOnQotmzZgn379sHOzk6aR+Lg4AArKys4ODjgq6++wpgxY+Dk5AR7e3sMHz4cPj4+WpPh79y5g4SEBERERCApKUm6z0mFChVgbm6O58+fY9euXWjcuDGSk5Oxbt067Ny5E8ePH9e5zdYFXeE7Y2uW2+zdSqJlwGYAQFqKCqeWjtX5+BnMLKzQYsZ2mGUxPMfB3RPtF/8lPU7N5eRnm0JF3ppT7a+maj3OTV7vyqn+yMVaj1NTknFsZu8cxQEMmZMlev4enmVORb0bo6h3EIDc52NmbonG45bB1Nwi07bXzzsgPZ8cxzHgeVeioBXOT/kky23litjizHcNAADJ6jR0XRaSq1hERESUPxi1OFmxIv3b3caNG2s9v27dOvTu3RsAsGjRIpiYmMDPz0/rJoyv69evn1ahUb16dQDA/fv3pZW4NmzYgHHjxkEIAR8fHwQFBUlDu4iIiIiIyPiMPqzrfSwtLbFs2TIsW7bsrfsEBQW98xiFChXCmTNndG0eEREREREZkCwmxBMREREREbE4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREsmBm7AbkN2mpaqSlqLKxX0quY2nUKqRmc7/c0KWtuc3rY80pt/kA2W9nfvkZqdSaPN2PiIiI8j8WJzo6v2YaTEwN023H5w40SJwzyycaJA7AnHLDUDkZKp8vVl8ySBwiIiLKP1ic6KhqEVsolUr9x3HWfwwA8C5qZ5A4AHPKDUPlZKh84F7bMHGIiIgoX1EIIYSxG5EfxMXFwcHBAZGRkbC3t9fptRYWFlAoFNnaVwgBlSrnw2WyGyu3cQwZ60PL6UM8H+QWh4gov8v43BEbG6vz5w6i/IxXTnRkaWkJS0tLvR1foVDo9fiGjmPIWMyJcYiIiCh/42pdREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDVurIpY8XluLg4I7eEiIiIPnQZnzd4xwf62LA4yab4+HgAgLu7u5FbQkRERB+L+Ph4ODg4GLsZRAbDmzBmk0ajwdOnT2FnZ8ebwOkgLi4O7u7uePToEW8ilYfYr/rDvtUf9q1+sF/1x5h9K4RAfHw83NzcYGLCUfj08eCVk2wyMTFBsWLFjN2MfMve3p5/NPWA/ao/7Fv9Yd/qB/tVf4zVt7xiQh8jluJERERERCQLLE6IiIiIiEgWWJyQXllYWGDq1KmwsLAwdlM+KOxX/WHf6g/7Vj/Yr/rDviUyPE6IJyIiIiIiWeCVEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUK58uTJE6jVamM344PFxfSIKAPfD4joY8DihHIkPDwcnTt3Rt++fXHmzBljN+eDERMTg7Zt2+L//u//AAAajcbILfpw/Pfff3jw4AEAIC0tzcit+bBERkZi8eLF2L17N27fvg2AH6TzwosXLzBkyBD89ttvANineen58+c4ffo07t27Z+ymENEbWJyQzg4cOABvb28IITBz5kyULl0aAP9w5oW//voLBw8exJw5cxAVFQVTU1MWKHlgzpw5KF68OCZNmgQAMDU1NXKLPhxTpkxB6dKlsX//fgwbNgy9evXCjRs3oFAo+J6QS3PnzsXKlSuxYcMGxMXFwcTEhH2aByZOnAgvLy+MGjUKlSpVwqJFi/DixQtjN4uI/ofFCelsy5Yt6N27N/bu3YtatWrBxsYGAKBQKIzcsvzv+PHj8Pf3h7e3N0aMGGHs5uR7KpUKo0aNwu7du/HJJ5/gwYMH2LNnDwBelcoLv/zyCw4cOIB9+/bhyJEj+OWXX6DRaKSrqXxPyJ3Q0FC0aNECMTExWL9+vbGbk+89ffoUXbt2xZEjR7Br1y7s2rUL48aNw5o1a3D69GljN4+I/ofFCb3Tm9/S3b59G6GhoejTpw+uXLmCtm3bon379ujUqRN2795tpFbmf6mpqQAAR0dHeHt7o2fPnjhw4ABOnDgBExP+muaEEAIWFhYoXbo0+vfvj7lz56JgwYLYtGkTv4XOI4cOHYKzszOaNWsGANJ/a9euLe3DPn6/N/soLS0NKpUKjo6OmDRpEtzd3bFv3z7cvHkTCoWCwxJ18HrfZvTf0qVL0ahRIxQvXhzTp09HYmIiIiMjM+1PRMbBTz30ViqVCi9fvtR6zt7eHnfu3MGVK1fwzTffoFy5cvjiiy9gZWWFzz//HEePHjVSa/OPjD9+r3/AMDMzAwAEBwejTJkyaNu2LZo3b44pU6ZACIHAwECkpKQYpb35ycuXL/Ho0SOkpKRI39oPHDgQ/fv3R+XKldG2bVs8efKE30LnQsYVp5SUFDg7OyM+Ph6XLl3Cixcv4Ofnh0ePHmHq1KmYO3cu0tLSePXkPVJSUrR+t4UQMDU1hYWFBW7fvg13d3d89tlnUKvV2LdvH1JSUhAVFWXEFucfKSkpWu+zlStXxrBhw+Dj4wMg/VwWQqBo0aLSec3zlcj4WJxQlmbMmIFGjRqhffv2+PrrrxEeHi5ta9GihTR2f+bMmRg4cCC2bt2KZs2aISAgAAC/fXqbBQsWoF+/fgC05z1oNBqkpqbCysoKJUqUgJOTE4YMGYKQkBCYmpoiMDAQKpXKWM3OFwICAlC9enX4+fmhWbNmuHXrFgBoXSHp2rUrypUrh99//x3//vsvFAoFh3dlw+rVq/HTTz8BSO9PjUYDc3NzdOnSBU5OTpgwYQJcXFwQExODVatWoVSpUli1ahUGDRoEgEPo3mbatGlo0KABOnbsiNWrV+O///6TPhzfunULJiYm8PDwQKtWrVC3bl2sWrUKlpaW2LVrF/v0PWbOnIlWrVqhY8eO+OGHH/DixQu4uLigYcOGANLPSRMTE0RFReHatWuoXLmykVtMRBJB9JorV64IHx8fUbFiRbFlyxYxevRoUaNGDeHn5yeEECI1NVV88803wtLSUowZM0YIIURycrIQQoi///5bWFlZiUePHhmt/XJ1/fp10b59e2FjYyMKFy4sdu7cKYRI78/X1atXT4SFhYk///xTuLq6igIFCoiCBQtKfZyWlmbwtsvd6dOnRc2aNUWlSpXE3r17xS+//CIaNmwoGjRooLWfRqMRQgjx22+/ifr164tvvvlG2pbRrxn7ULqLFy+Kxo0bC4VCIZo1ayYuXbokhNA+b9PS0sSqVatE27ZtxcuXL6Xn161bJwoXLiyioqIM3WzZU6vV4ssvvxRlypQRGzZsEJ9//rmoWLGiaNeunbRPeHi4aNGihRBCiD/++EM4OzsLW1tb0bBhQ6FSqYQQPF+zEhISImrWrCkqVqwo1q5dK7p37y6qV68uRo8eneX+v//+u/D09JTeY4nI+HjlhCRqtRp79uxBkSJFcPz4cXz++edYuHAhhg0bhrCwMNy/fx+mpqbo2rUrKlSogF27dgEALCwsAADXr19HqVKluEpPFk6fPg2FQoGff/4Zvr6+WLJkCVJSUmBqair11T///IPo6Gg0a9YMfn5+GDZsGHbs2IHChQtj4sSJRs5AvoKDg1GlShUEBwejY8eO+OKLL9C6dWsUKFBAmsvz+rfM7du3R506dRAcHIyjR49ix44dGDp0KAAO6XhdWloa9u/fj8KFC2PFihWIi4vDnj17oNFopPNWCAETExPcunULLi4usLKykl7/6NEjFC5cmN/wZ+HRo0f4+++/sXDhQvTs2RNbtmzBokWLEBgYiEWLFgEAQkJCcOXKFdSrVw/du3fHmDFjMG7cOGg0GuzYscPIGchTQkICtm7divLlyyM4OBh9+/bFtm3b0LZtW9y5cwcxMTGZXnPx4kXUqlVL+jsWHBzM+ZNERsbihCRCCFSsWBFDhgxBwYIFpQ8V5ubmeP78OQoWLAgA8Pb2xvjx45GQkIAvvvgCQUFB+Pfff7Ft2zbUr18fRYsW5Ye8/8koPLp3745x48ahW7du6Ny5M+Lj47Fw4UIArz44ly9fHm5ubmjSpAkuXbqESZMmoX79+vDz88OWLVukSdyULqNvhwwZgvHjx8Pe3h5A+uICR44cQZkyZXD27FkA6UORXp9I3KNHDyQlJaFdu3b44osvpBXn6BVTU1N06dIFI0aMwMCBA1G/fn0EBQXhyJEj0j4Zv+eRkZGIjo6WVjy6ffs2goKC0LRpUxQuXNgo7ZcztVqNW7duoWrVqtJzLVq0wOTJkxEQEIDHjx+jTp06cHJygqenJy5evIhvvvkGffr0gZmZGfbt24ekpCS+z75BCIGSJUti8ODBcHBwkL6ccHBwwK1bt6T3iNf9+eefaNasGZ48eYI2bdqgUaNGiI+PN3TTieh1xrtoQ3L0+jCBjKEuy5cvFw0aNBApKSnScA61Wi0OHz4sypYtK7y8vETBggVFt27dRFxcnFHanZ88f/5cjBkzRlSqVEmEhYUJIYRISkoSQggRFxeXaahGeHi4SEhIMHg786N9+/YJOzs7UblyZdGsWTPh5uYm/P39RUxMjLTP48ePxcCBA4VCoRB9+/YV0dHRRmxx/nH79m1Rt25dMXjwYPHff/8JIYRISUkRQghx9uxZUadOHeHk5CQ6duwo7OzshL+/v4iPjzdii+Xrxo0bolq1amLevHlaz8fGxoqSJUuKsWPHCiGEePToUaahnKdPn2a/vsObQw6FEOK7774T3bp1y7TvrVu3RIECBUTr1q2Fubm56Nixo3j+/LnB2kpEWePXsCQRQmT5Tdzp06dRo0YNKJVKabuJiQmaN2+O8+fPY/fu3Thz5gy2b98OOzs7Qzc7XxFCoGDBgujQoQMcHR0xe/ZsAIClpSUAwM7OTupj8b8rA66urvxm/y3EG8MHU1NTsXnzZly6dAmHDh3CwYMHsWXLFly8eFHaZ9++fTh+/DjOnj2LtWvXokCBAoZudr6j0Wjg6ekJPz8/XLhwAfv37wcAKJVKAECdOnWwZs0aLF68GLVr10ZQUBA2bdoEW1tbYzbbaN48L99UvHhxlCtXDufOnUNYWBiA9D62t7fHkCFDsHPnTiQnJ6NYsWLS1dKMY/r4+Hy0/fo+4n8rnWXIeC+9ePEivL29pX0y3Lt3DzExMYiLi8Px48exd+9eaYQAERkPi5OPSGRkJMLCwpCQkABA+006NTVVqzDJWMkkLS0NJ06cQOPGjQGkFyX37t2TVuxxcHBA+fLl4enpadBc5OTx48dYvHgx7t27ByBzv74uY1hRvXr10K5dOwQFBeHUqVMAIA1BysAhG0B4eDiuXLmC58+fZ9r25jkLAF26dEH79u1hamoKMzMzlC5dGk5OTrh06ZK0z5AhQ3Dz5k2te3F8jO7evYtp06bhzp07mba9ed5mDD0cNGgQChQogP3790sfqq9evQoAqFSpEr788kt8++230gfBj1FsbCwSEhKk94HX59xk9KuNjQ06deqEf//9V5o/klGEODg4wN7eHs+ePdM6Lt8PgLCwMPTs2TPLOTdZ/Q1TKBSIjY3FuXPnpOWDFQoFHjx4AACoUaMG/vzzT5w6dQp169Y1TBJE9F4sTj4SI0aMQMWKFaW7jx89elRamlYIATMzMwghMHnyZACv/lAGBwdDo9FIY3K7deuGMmXKIDw8nPMfALx48QLt2rXDhAkTcOTIEem+DhlFSEa/ZkxyzXisVCrRtm1bVKxYERMnTkSbNm1Qr1493Lx505jpyMqoUaNQrlw5+Pv7o1KlSvj111+lseBZnbNZ2b9/P0qVKgU/Pz9DNVv2hBAYPHgwPD09ER4ejmLFiknbMj5IZ/Ttb7/9Jj1OS0uDra0tvvrqK9y7dw9Lly5FmzZt0KxZs0wfpD9GQgiMGjUKjRo1QqtWrdCzZ0/Ex8fDxMQEarUawKt+3Lx5Mz777DPUq1cPe/bska5EAcDz58/h6OgINzc3Y6UiS1OnToWXlxcSExOhVCqlQi+jCHzzvTbj71NgYCAcHR3RsGFD6W9YrVq1EBkZCWdnZ7Ro0cI4CRHRW/HT5QdOo9Fg8ODBuHTpEg4cOIDly5ejQYMG6NevH3755RcA6d8krVmzBkWLFsWOHTukb5UA4MaNGyhVqhSWLFkCT09PxMfH4/79+yhSpIixUpIVKysrODo6wsvLC7t27ZK+Rc4YWrBmzRoUKVIEO3bswNOnTwG8+gbU2dkZkZGRCA4OhpWVFcLCwuDl5WWcRGTm559/xrFjx/D7779j27Zt6NChAyZPnoylS5cCePc5+/TpUzx8+BDTpk3DqFGj0K5dOxQtWpQryAHYunUrChUqhPPnz+P8+fPSfTMASCtvAen3NXFxccGuXbukFY4yzukmTZrg6dOnWLx4MUxNTRESEgJnZ2ej5CMXZ8+eRfXq1XHu3DnMmjULvr6+uHDhAvr37w/g1fC3n376CW5ubti4cSPUajVGjhyJChUqoHPnzhgyZAiGDx+OuXPnonv37lor+X3sLl++jMDAQGzfvh2//vorOnfuLN24NuP9NKv3WiB9FcTq1atj1qxZ8PT0RExMDEJCQrhQA5GcGWx2CxmcRqMRYWFholKlSmLTpk1a24oXLy68vLzExYsXxfXr10XTpk3FmjVrMt13o127dkKhUIhKlSqJP//805DNzxcuXrwo2rZtK+7duyeKFSsmAgICpMnXu3fvFtWqVcuyX0NDQ4Wnp6coU6aMOHXqlDGaLmudOnUSHTt21Hru66+/FlWqVBHHjx8Xt27dEk2aNMnUt48fPxZz5swRnp6eonLlyuLo0aMGbrm8+fr6Cg8PD/H06VMhhBBXr14Vf/75p7h79650j5KFCxcKS0tL8fPPP2c6bwMDA4VCoRCVK1cWwcHBBm+/HKWmporx48eLzz//XGui+vbt20XJkiVFRESEEEKIjRs3Cnd3d7F27VqhVqu1jjF//nwxYMAA4evrKwIDAw3a/vxg6NChonXr1kIIIYKDg8XIkSPF//3f/4lz584JIYQ4cuSIqFKlSpbvtbVr1xYKhUJ4eXnxbxhRPqEQgl/NfEhSU1Olb5SA9PHgNWvWxLVr16R5ISkpKWjWrBkiIyPRpEkTrFq1CikpKTA3N890rLVr18LW1hb+/v4GzUNu3uxX8b/FA+7fv4++ffvi2LFjGD9+PP766y9s3rwZnp6eMDc3h0qlktbPf11SUhIOHz6MDh06GDINWcvo06SkJHzxxRfw8PDAggULpO1XrlzBt99+K90hW61WS99IZ0hLS8PVq1cRGRkJX19fQ6cge1euXEHnzp3Ro0cP3Lx5EyEhIbC1tcWLFy/QqFEjbN26FUIIxMbGwtHRMdPr4+LisGnTJgwZMsTwjZexP//8E1ZWVtLdxwFgw4YNmDdvHs6ePSstFBIfH6+1aIh4yyIkH7OM+Y7Aqzl6/fv3R+nSpeHo6IiZM2eiadOmuHHjBiIiIvDNN99g5MiRSE5Olq4CZkhMTMSsWbNQoUKFj/5vGFF+wuLkAzJlyhRcu3YNRYsWxZAhQ1CmTBkolUpUr14dJUqUwLx581C2bFmMHj0aV69ehYeHB/755x+sW7fuo57Q/j5v9mvZsmWlIS7btm3DihUrcPz4cQBAhQoVYG1tjYsXL+KPP/5Aq1atMh2PH0he+fnnn+Hu7i6N+87om4EDB+LChQv4888/UahQIWn/pUuXYtOmTZgzZw6aNm1qrGbnC7Nnz0ZUVBTKly+PPn36SF8+jBgxAqtWrYKfnx/GjBkDc3Nz3Lx5E3379sWECRMwZcqULM/R1z80fsx2796N5s2bZ3nPDCD9A7WpqSkWLlyI3bt34+TJkwA4oT07pk+fjvv376NUqVIYMmQInJycoFAo0KNHD9y5cwdlypTBZ599hvbt20OhUGDUqFEICQnB5MmT0bJlS763En0ojHPBhvJSVFSUqF+/vqhcubKYNm2aKFu2rKhatapYuHChEEKIc+fOiUKFCglPT09hY2MjPD09xcOHD8XVq1eFhYWFuHv3rpEzkKf39asQQmzatEl88803Qggh9uzZI+zt7YWFhYUYN26csZqdL5w6dUp4e3tL9xrJGGaUMdzl/v37wtTUVGzcuFHrdbdv3xbu7u5i7969Bm9zfvHPP/+IChUqiMqVK4vu3buLAgUKiMaNG0vDB2NjY8W3334r7t27p/W6//u//xOOjo6ZhsVQumPHjoly5coJhUIhVq1a9db9Mu6t0bFjRzFhwgQhhMh07yLS9vDhQ+Ht7S0qV64shg4dKlxdXUXNmjXFtm3bhBDp99FRKpXCxsZG/PPPP9Lrbt++LapVqybWr19vrKYTkR7wa7APwNmzZxEdHY0DBw5g6tSpuHLlCpo0aYIffvgBJ0+eRO3atXHmzBksW7YMv//+O27fvg13d3ekpaXB3t4esbGxxk5Blt7VrxnL/966dQv79+9Hw4YN0bdvXwQEBKBOnTp49OgRbt++beQM5CkmJgbbt29HzZo18f333yMoKAhBQUEA0lfc0Wg08PDwQP/+/TFlyhStfvT09ERiYiKePHlipNbL34EDB+Dg4ICLFy9i27ZtuHHjBv777z8sXboUt2/fhr29PSZMmICSJUtqva5o0aIwNzfH9evXjdRy+bp58yZWrlyJ5s2bo3///vj+++8RHh6e5b4mJiZISkrCpUuXpCuCCoWCK/G9w9GjR6HRaHDy5En8+OOPuHPnDtzc3PDDDz/gypUrqFOnDrp37w4zMzOtZcU9PT3x7Nmzt/4siCh/YnHyAYiKikJCQoK0+oiFhQUGDRqESpUqYfz48QCAMmXKoEWLFmjSpIn0uh07dsDb2xvVq1c3Srvl7l39+vXXXwMAypUrh+joaJQrVw4XLlzAqFGjEBAQgJ07d+L48eNa9zigdNbW1ujUqRMGDRqEiRMnokyZMti6dStu3boF4NXwl8WLFyM1NRVTp06VisE//vgDRYsW1TqP6ZXU1FRcv34dLi4u0tBDV1dXTJo0CQ8fPsT69esBIMshSWfOnEHdunVRpUoVQzY5X3ByckKLFi0wdOhQzJ8/H2lpaVrzod508uRJmJiYoF69erhx4waaNGmCGjVqICIiwoCtzj/CwsKgVCqlm83a2Nhg7NixsLCwwNy5cwEAkydPhpmZGZYvX47Lly8DAI4fP45ixYqhbdu2xmo6EekBi5MPQEpKCgoXLozQ0FDpuXLlyqFPnz54+vSpdMMqIQTCwsJw8eJFDB48GKtXr8YXX3whbSNt7+rXx48f4/fff0fXrl1x7NgxrF69GqVKlQIANG7cGBs2bEDPnj05Rj8L5ubmaNq0qVQUT5s2DSEhITh06BBSUlKgUCigVqthYWGBTZs2ITY2Fr6+vmjVqhU6d+6M5s2bo1y5ckbOQp7MzMygUqmQlJQEjUYjTSju2rUratSogXPnzmndkPLhw4cICwvDsGHDsHfvXvTs2RMA3w/eVLhwYfTp0wdeXl6ws7PDjBkz8OOPP2q9NwCv+u3q1atwdXXFlClTUKVKFbi5uSEyMhKurq7GaL7sJScnw8zMDFFRUdJzDRs2RJs2bXD9+nUcOXIEZcuWxdq1a3H9+nU0b94cHTp0QJs2bVC/fn1UqFDBiK0nojxn3FFllBsZ45gfPHggnJycxOLFi0VKSoq0/cGDB6JDhw5iwIAB0r4HDhwQLVu2FPXq1ROXL182Srvl4m3jwLPTr+3btxcDBw7MdIyM8eYfu+yOsc/or379+ok6deqIM2fOZNrnxYsX4rfffhOLFy8WV69ezdN2fkgy5oocO3ZMmJiYiEuXLgkhXs3jCQoKEmXKlBE7duwQQqSP1x87dqxwdXUVPj4+4sqVK0Zpd37y+nldp04d0aFDh0zLAgshRJMmTYRCoRCffPKJCAkJMWQT85WM3/+bN28KhUIh9uzZo7X98uXLok6dOmL27NnSc2FhYWL79u1i9uzZfD8g+kBxtS6Zi4iIgEajQYECBWBlZSWtBANoL287bNgw7N+/H3v37kW1atWk1/v5+cHc3Bxbt24FkL6E7dOnT1G6dGmD5yIn8fHxsLW1lYYQiddWedG1XwVXiNGS3b59/XF4eDjq16+P7t27Y+LEibC3t5dW56FXkpKSYGVlleW2jL5MTk5Gq1atoFQqcfjwYa3+L1OmDHr27IkpU6YgKSkJ586dg0aj+ehXPstOv2bI6M+TJ0+icePG2Lt3L9q3b4+0tDRER0fD2dkZW7Zsga2tLZcKf01W75Ov9223bt1w584d/PXXX1or9NWtWxe1a9fG0qVL+V5L9JHgmBOZUqvVGDhwIHx8fNC+fXu0bt0aKpUKpqamUKvVACB9ELl06RKWLFmCtLQ0/Pjjj1p3ywagdb8CKyurj7owUavVGDRoENq0aYNPP/0UGzduBJA+zyE1NRWA7v3KP5bpstu3arUawcHB0uO0tDQUKVIEAwcOxO+//441a9agRYsW6Nu3LxITE42Wj5yo1WoMHjwYXbp0Qc+ePXH27FlpCFFKSgqAV30ZGxuLgIAAHD9+HCtXrpT2+++//2BjY4OCBQsCSH8vaNy48UddmGS3X1NTUxEZGQng1e/7J598gs8//xwBAQEIDAxE27ZtsXTpUqSmpqJHjx4ffWGiVqsxf/587NmzB4D2+2TGcEMzMzOkpKTgzp07mD9/Pv755x8sWrRIWqQlNTUVFhYWKFCgQKZjENEHzDgXbOhdHj9+LOrWrSuaNGkiTp8+LTZs2CBKlSolhg8frrXfkiVLhJ2dnbRs7a5du0Tt2rVFpUqVxJo1a8TIkSNFoUKFxJEjR4yRhuzcvXtXVK1aVTRq1Ej89ttvok+fPsLLy0sMGDBAaz/2q+507duJEydKdyTPGCrz8OFDYWZmJhQKhejUqZN49uyZwfOQo/DwcFG9enVRr149sWzZMlG1alVRtWpVMWfOHK39lixZIszNzaVlVWfOnClcXFxEv379xIkTJ8To0aNFyZIlxc2bN42Rhuzo0q8WFhZi3bp1mYYrnj59WigUCqFQKISvr6+Ijo42ZAqy9ccffwgvLy+hUCiEv7+/ePLkiRAi83DPJUuWCGtrazF37lwhhBCrV68WZcqUEb6+vmLfvn1i9OjRokiRIuL8+fMGz4GIjIfFiQxt3bpVVK1aVYSHh0vP9ezZU3z33XfS47FjxwonJyexadMmrXkOoaGhwt/fX/j6+gofH58sx/B/rH788UfRuHFjkZiYKIRI/0O5YsUKoVAoxK+//irS0tLEN998IwoUKMB+1ZGuffvmh5SdO3cKhUIhatWqJS5evGiMFGRr165domLFiuLx48dCCCFiYmLEtGnThKWlpbh27ZoQQoju3bsLNzc3sWHDBq2+Xbp0qfjkk09E5cqVRdWqVcW5c+eMkoMc6dKvGzdu1OrX1NRUsWHDBqFUKkWdOnV4zr4mISFB9OvXT4wYMULMnj1b1KxZU6xYsUJrH5VKJQYNGiRcXFzEL7/8ovVe+/vvv4s2bdoIHx8fUbNmTXH27FlDp0BERsbiRIZWrFghrK2tpcdPnz4V1apVEwsXLhQnTpwQQqTfIDAuLk7a580Pe7GxsYZpbD4yatQo0aBBAyHEq/5avny5UCgUonr16uLFixciKipKq+/Yr9mTk7593d9///3OG9t9jDI+sK1YsUK4ublpbQsPDxfNmjUTDRs2FEKk36Tu9b59/cNeWlpaphsufsxy068ZEhMTxeLFi3nOZkGj0Yjg4GDpZol+fn6iffv2IjQ0VGuf27dvv/WcFUKIiIgIwzSYiGSHc06M7Pz58wCgdT8MHx8fODo6ok6dOvj0009RvHhxODo64sCBA2jbti0CAgLg6OgIOzs76TVvjsXN6j4GH5Os+tXOzg6Wlpb4448/pP4KDg5GQEAAbty4gd9//x3Ozs7SWvsA+zUredW3r6tZsyYGDBig/8bL3K5du3DkyBGEh4dLy1CbmprC1dUVJ0+elPZzdXXFxIkTcebMGfz111+oU6cObG1tpe2vL2FtYmKS6YaLH5u86tcM1tbWGDlyJM9ZaPctkP6eWa9ePWm574EDB+Lx48fYs2ePNJ9HoVDA09NT6/30zWXXM+4vRUQfIWNXRx+rPXv2CDc3N+Hk5CTu378vhBBaS1Lev39fHDp0SFSoUEFs3LhRen7Lli3C2tpaPHr0yNBNzhey6leVSiWEEOLGjRuic+fOwsHBQXTv3l3Y2tqK2rVriydPnojPPvtMtGvXzogtlz/2rf5s3LhRuLi4iNq1awtnZ2dRv359sWvXLiGEEBcvXhQVKlQQc+bMkfpbiPRvljt06CC+/PJLYzVb9tiv+pNV3+7evVsIkX4V5PWrzkOGDBGNGjWS5ulld6lxIvo48cqJEWzevBmzZs1Cw4YNUaFCBcyZMwcAtJar9PDwQHR0NExNTfHll19K31L7+PhArVbjypUrRmm7nL2tX83NzSGEgJeXF5YsWYJFixahUKFC2LRpE86dOwc3NzckJyfDw8PDuAnIGPtWP1JTU7FkyRLMnj0bs2bNwsmTJ7F3716ULl0aa9euRVJSEqpXr44GDRpg9+7dOH36tPTawoULQ6lUSkuL0yvsV/15V9/+9NNPUKlUMDExgUKhkP5uDR8+HMnJydi3bx8SExMhhMDt27cBvFq5i4goA4sTA8p4Ey5TpgyaNWuGuXPnokOHDggKCkJQUJDWPkD6uvAmJiaIjIyULnn/8ccf8Pb2Ru3atQ3efrnSpV/d3d3Rp08f/Pjjj+jYsSOA9HvJPHr06KNeYvlt2Lf6lZiYiGfPnqFXr17o06cPzM3NUa9ePVSoUAFxcXHScrYBAQFQq9VYvXo1njx5Ir0+KSlJWmaVXmG/6s/7+jZj2XAgfaiWEALly5dH586dceHCBcyYMQO1atWCv7+/1n27iIgkRr1u85G4fft2psvYGUO4rl27Jjp06CDatGkjbcuYGHj48GHRqFEjUalSJbFy5UrRp08f4eTkJBYtWmSwtsuZrv365r5hYWHi8ePHwt/fX1SvXl08ePBA/43OJ9i3+vNm3166dEm6u3vG7/7mzZtFtWrVtIYb7dy5U3zyySeiRIkSYsGCBeLLL78ULi4u4uTJk4ZNQKbYr/qT0759ffvff/8tlEqlUCgUYsCAAZn2IyLKwCsnerRjxw6ULFkS7du3R926dfHzzz9L2zK+LapYsSI6deqEsLAwrFu3DsCricbNmzfHrFmzULJkSezZswfR0dE4ffo0Ro0aZfBc5CSn/Sr+NxkTSP9mdM2aNahSpQoePnyInTt3onjx4oZNRIbYt/rzZt+uXbsWAFCtWjWYmppCo9FIV0gPHDiAatWqwdzcXPqW/9NPP8XWrVvh6+uLkydP4sWLFzhx4gQaNGhgtJzkgP2qPznt2zevnqxcuRK1a9dGkyZNcOfOHaxatQrm5uZGyYmI8gFjV0cfqr/++kt4eHiIZcuWiUOHDokxY8YIpVIpVq9eLd18LuOb6MePH4uvvvpK1KpVS8THxwshhEhOTpaOlZaWJmJiYgyfhAzltl9TUlKkY12+fFkcP37c8EnIFPtWf97Vt0lJSUKI9KtPGo1GJCUliSpVqohffvnlrcfLeM3Hjv2qP3nZt6GhoWL79u2GbD4R5WMsTvJYxqXvgIAAUaNGDa0PbEOGDBE1a9aUVjR53f79+0XNmjXF1KlTRWhoqGjXrp14+PChwdotd+xX/WHf6k9O+vbJkyfCw8ND3L59WwiRPqRm9OjRhmt0PsB+1R/2LREZG4d15bGMezzcuHEDpUuXhlKphFqtBgDMnDkTlpaW2LdvHyIiIgC8mkzcpEkT1K5dG9OnT0eNGjWgVqvh4uJinCRkiP2qP+xb/dG1bwHgyJEjcHd3R5EiRTBy5EhUqFABDx48gFqt1ho+9zFjv+oP+5aIjM7IxVG+99dff4nhw4eLRYsWiXPnzknPr169WtjZ2UmTBjO+fVq9erUoW7asCAoKkvZNSEgQixYtEqampqJx48biypUrhk1Chtiv+sO+1Z+c9u2xY8eEEOnfWnft2lUUKFBAFCxYUFSsWFH8/fffBs9Dbtiv+sO+JSK5YXGSQ0+fPhXt2rUTLi4uwt/fX1SuXFk4ODhIb+63bt0SRYsWFZMnTxZCCK2VSVxdXbVW3Lp+/bqoU6eO1s0WP1bsV/1h3+pPXvVtYmKiaNeunShWrJjYtm2bwfOQG/ar/rBviUiuWJzkQGJioujVq5fo3r27uHfvnvR87dq1Re/evYUQQsTFxYmZM2cKKysraRx+xljeRo0aiX79+hm+4TLHftUf9q3+5HXfXrhwwYCtly/2q/6wb4lIzjjnJAesra1hYWGB3r17o2TJktKyiW3atMHNmzchhICdnR169OgBb29vdOvWDQ8ePIBCocDDhw8RFRWFTp06GTcJGWK/6g/7Vn/yum9r1KhhpEzkhf2qP+xbIpIzhRCcrZYTarUaSqUSAKS13v39/WFjY4PVq1dL+z158gSNGzdGamoqatasidOnT6N8+fLYsmULChcubKzmyxb7VX/Yt/rDvtUP9qv+sG+JSK5YnOShBg0aoH///ujVq5d0I0UTExPcuXMHISEhOHfuHKpWrYpevXoZuaX5C/tVf9i3+sO+1Q/2q/6wb4lIDlic5JF79+6hXr16OHDggHSJOyUlhXfBzSX2q/6wb/WHfasf7Ff9Yd8SkVxwzkkuZdR2p06dgq2trfSmHhAQgJEjRyIqKsqYzcu32K/6w77VH/atfrBf9Yd9S0RyY2bsBuR3GTesOn/+PPz8/HD48GEMGDAAL1++xC+//MKb0uUQ+1V/2Lf6w77VD/ar/rBviUhuOKwrDyQnJ6Ny5cq4e/cuzM3NERAQgAkTJhi7Wfke+1V/2Lf6w77VD/ar/rBviUhOWJzkkRYtWsDT0xMLFy6EpaWlsZvzwWC/6g/7Vn/Yt/rBftUf9i0RyQWLkzySlpYGU1NTYzfjg8N+1R/2rf6wb/WD/ao/7FsikgsWJ0REREREJAtcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiOg9evfuDYVCAYVCAaVSicKFC6NFixb4+eefodFosn2c9evXw9HRUX8NJSIiyudYnBARZUOrVq0QHh6OsLAwHDx4EE2aNMHIkSPRrl07pKamGrt5REREHwQWJ0RE2WBhYQFXV1cULVoU3t7e+Pbbb7Fv3z4cPHgQ69evBwAsXLgQlStXho2NDdzd3TFkyBAkJCQAAIKCgtCnTx/ExsZKV2GmTZsGAFCpVBg3bhyKFi0KGxsb1KlTB0FBQcZJlIiIyIhYnBAR5VDTpk1RtWpV7N69GwBgYmKCpUuX4vr169iwYQOOHj2K8ePHAwDq1auHxYsXw97eHuHh4QgPD8e4ceMAAMOGDcOZM2ewbds2XLlyBV27dkWrVq3w77//Gi03IiIiY1AIIYSxG0FEJGe9e/dGTEwM9u7dm2nbZ599hitXruDGjRuZtu3atQuDBg3C8+fPAaTPORk1ahRiYmKkfR4+fIhSpUrh4cOHcHNzk55v3rw5ateujVmzZuV5PkRERHJlZuwGEBHlZ0IIKBQKAMCRI0cwe/Zs/PPPP4iLi0NqaiqSk5Px8uVLWFtbZ/n6q1evIi0tDWXLltV6XqVSoWDBgnpvPxERkZywOCEiyoWbN2+iZMmSCAsLQ7t27TB48GB8//33cHJywqlTp/DVV18hJSXlrcVJQkICTE1NERISAlNTU61ttra2hkiBiIhINlicEBHl0NGjR3H16lWMHj0aISEh0Gg0WLBgAUxM0qfz7dixQ2t/c3NzpKWlaT1XvXp1pKWlISoqCp988onB2k5ERCRHLE6IiLJBpVIhIiICaWlpiIyMxKFDhzB79my0a9cOPXv2xLVr16BWq/HDDz+gffv2CA4OxsqVK7WO4eHhgYSEBAQGBqJq1aqwtrZG2bJl4e/vj549e2LBggWoXr06nj17hsDAQFSpUgVt27Y1UsZERESGx9W6iIiy4dChQyhSpAg8PDzQqlUrHDt2DEuXLsW+fftgamqKqlWrYuHChZg7dy4qVaqEzZs3Y/bs2VrHqFevHgYNGoTu3bvD2dkZ8+bNAwCsW7cOPXv2xNixY1GuXDl06tQJf//9N4oXL26MVImIiIyGq3UREREREZEs8MoJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAv/D2VWOFOnzY8MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -228,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 185, "metadata": {}, "outputs": [ { @@ -278,37 +292,37 @@ " \n", " \n", " 2021\n", - " [2020-04-01, 2020-05-01)\n", - " [2020-06-01, 2020-07-01)\n", - " [2020-08-01, 2020-09-01)\n", - " [2020-10-01, 2020-11-01)\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", - " [2019-04-01, 2019-05-01)\n", - " [2019-06-01, 2019-07-01)\n", - " [2019-08-01, 2019-09-01)\n", - " [2019-10-01, 2019-11-01)\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", - " [2018-04-01, 2018-05-01)\n", - " [2018-06-01, 2018-07-01)\n", - " [2018-08-01, 2018-09-01)\n", - " [2018-10-01, 2018-11-01)\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", @@ -319,27 +333,27 @@ "text/plain": [ "i_interval -8 -7 \\\n", "anchor_year \n", - "2021 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2020 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "2019 [2018-04-01, 2018-05-01) [2018-06-01, 2018-07-01) \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", "\n", "i_interval -6 -5 \\\n", "anchor_year \n", - "2021 [2020-08-01, 2020-09-01) [2020-10-01, 2020-11-01) \n", - "2020 [2019-08-01, 2019-09-01) [2019-10-01, 2019-11-01) \n", - "2019 [2018-08-01, 2018-09-01) [2018-10-01, 2018-11-01) \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -348,7 +362,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 185, "metadata": {}, "output_type": "execute_result" } @@ -367,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 186, "metadata": {}, "outputs": [], "source": [ @@ -391,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 187, "metadata": {}, "outputs": [], "source": [ @@ -412,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 188, "metadata": {}, "outputs": [], "source": [ @@ -430,7 +444,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 189, "metadata": {}, "outputs": [], "source": [ @@ -440,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 190, "metadata": {}, "outputs": [], "source": [ @@ -468,7 +482,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 191, "metadata": {}, "outputs": [], "source": [ @@ -496,7 +510,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 192, "metadata": {}, "outputs": [], "source": [ @@ -527,7 +541,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 193, "metadata": {}, "outputs": [], "source": [ @@ -581,14 +595,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 194, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -613,23 +627,11 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 195, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - } - ], + "outputs": [], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", - "# define hyperparameters and the \n", + "# define hyperparameters\n", "hyperparameters = dict(\n", " epoch = 150,\n", " input_dim = lat_precursor*lon_precursor,\n", @@ -642,10 +644,15 @@ " architecture = 'LSTM'\n", ")\n", "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "# initialize weights & biases service\n", - "#mode = 'online'\n", "mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-LSTM-ridge', entity='ai4s2s', mode=mode)\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team name here\n", + "project = 'comp-ridge-lstm' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, @@ -659,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 196, "metadata": {}, "outputs": [], "source": [ @@ -680,7 +687,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 197, "metadata": {}, "outputs": [ { @@ -714,7 +721,7 @@ "[]" ] }, - "execution_count": 19, + "execution_count": 197, "metadata": {}, "output_type": "execute_result" } @@ -747,1364 +754,1364 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 198, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 505.868927\n", - "Epoch : 0 [4/36(11%)]\tLoss: 452.809204\n", - "Epoch : 0 [8/36(22%)]\tLoss: 345.182434\n", - "Epoch : 0 [12/36(33%)]\tLoss: 244.612686\n", - "Epoch : 0 [16/36(44%)]\tLoss: 194.716461\n", - "Epoch : 0 [20/36(56%)]\tLoss: 144.448227\n", - "Epoch : 0 [24/36(67%)]\tLoss: 92.115929\n", - "Epoch : 0 [28/36(78%)]\tLoss: 186.740005\n", - "Epoch : 0 [32/36(89%)]\tLoss: 28.873085\n", - "Epoch : 1 [0/36(0%)]\tLoss: 7.791169\n", - "Epoch : 1 [4/36(11%)]\tLoss: 1.433643\n", - "Epoch : 1 [8/36(22%)]\tLoss: 0.459206\n", - "Epoch : 1 [12/36(33%)]\tLoss: 4.517264\n", - "Epoch : 1 [16/36(44%)]\tLoss: 8.117401\n", - "Epoch : 1 [20/36(56%)]\tLoss: 12.550220\n", - "Epoch : 1 [24/36(67%)]\tLoss: 19.369085\n", - "Epoch : 1 [28/36(78%)]\tLoss: 144.784576\n", - "Epoch : 1 [32/36(89%)]\tLoss: 26.871742\n", - "Epoch : 2 [0/36(0%)]\tLoss: 30.213608\n", - "Epoch : 2 [4/36(11%)]\tLoss: 28.394127\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.885115\n", - "Epoch : 2 [12/36(33%)]\tLoss: 16.847855\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.829281\n", - "Epoch : 2 [20/36(56%)]\tLoss: 5.078614\n", - "Epoch : 2 [24/36(67%)]\tLoss: 3.114647\n", - "Epoch : 2 [28/36(78%)]\tLoss: 2.412072\n", - "Epoch : 2 [32/36(89%)]\tLoss: 1.749253\n", - "Epoch : 3 [0/36(0%)]\tLoss: 0.249646\n", - "Epoch : 3 [4/36(11%)]\tLoss: 0.985059\n", - "Epoch : 3 [8/36(22%)]\tLoss: 2.914584\n", - "Epoch : 3 [12/36(33%)]\tLoss: 3.061846\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.956815\n", - "Epoch : 3 [20/36(56%)]\tLoss: 9.961458\n", - "Epoch : 3 [24/36(67%)]\tLoss: 8.052092\n", - "Epoch : 3 [28/36(78%)]\tLoss: 5.547617\n", - "Epoch : 3 [32/36(89%)]\tLoss: 5.837566\n", - "Epoch : 4 [0/36(0%)]\tLoss: 1.796307\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.487273\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.592918\n", - "Epoch : 4 [12/36(33%)]\tLoss: 0.505678\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.177660\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.934569\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.162263\n", - "Epoch : 4 [28/36(78%)]\tLoss: 1.891203\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.384902\n", - "Epoch : 5 [0/36(0%)]\tLoss: 2.416747\n", - "Epoch : 5 [4/36(11%)]\tLoss: 3.250417\n", - "Epoch : 5 [8/36(22%)]\tLoss: 1.535215\n", - "Epoch : 5 [12/36(33%)]\tLoss: 2.102344\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.213885\n", - "Epoch : 5 [20/36(56%)]\tLoss: 1.698686\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.289840\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.650280\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.773039\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.523278\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.844665\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.505700\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.361074\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.487744\n", - "Epoch : 6 [20/36(56%)]\tLoss: 3.001874\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.919618\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.523617\n", - "Epoch : 6 [32/36(89%)]\tLoss: 2.033085\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.230014\n", - "Epoch : 7 [4/36(11%)]\tLoss: 0.715810\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.483225\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.356363\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.918716\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.929919\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.174172\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.430676\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.769604\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.697093\n", - "Epoch : 8 [4/36(11%)]\tLoss: 1.082502\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.394569\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.468086\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.700455\n", - "Epoch : 8 [20/36(56%)]\tLoss: 1.946148\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.086986\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.324211\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.727469\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.425495\n", - "Epoch : 9 [4/36(11%)]\tLoss: 0.902846\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.346853\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.572478\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.836403\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.921503\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.088817\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.317592\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.723617\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.496810\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.982382\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.404747\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.400887\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.923654\n", - "Epoch : 10 [20/36(56%)]\tLoss: 2.071748\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.272049\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.324446\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.728342\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.289029\n", - "Epoch : 11 [4/36(11%)]\tLoss: 0.946272\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.405571\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.404457\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.908659\n", - "Epoch : 11 [20/36(56%)]\tLoss: 2.022605\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.239774\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.336871\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.723972\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.501567\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.994994\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.403743\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.408175\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.915480\n", - "Epoch : 12 [20/36(56%)]\tLoss: 2.054635\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.247475\n", - "Epoch : 12 [28/36(78%)]\tLoss: 1.327676\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.726546\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.460873\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.954353\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.406351\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.398019\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.857349\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.935332\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.157066\n", - "Epoch : 13 [28/36(78%)]\tLoss: 1.321208\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.693309\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.514711\n", - "Epoch : 14 [4/36(11%)]\tLoss: 1.021664\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.401726\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.434902\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.871525\n", - "Epoch : 14 [20/36(56%)]\tLoss: 2.085438\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.166548\n", - "Epoch : 14 [28/36(78%)]\tLoss: 1.319055\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.731804\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.419262\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.914709\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.401154\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.452206\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.791090\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.858875\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.051510\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.324856\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.724734\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.444260\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.947594\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.404545\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.410441\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.746452\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.754496\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.008835\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.331563\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.721272\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.442310\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.909099\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.372034\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.562995\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.773436\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.889671\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.137831\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.318743\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.508154\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.291329\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.788357\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.376943\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.493650\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.798847\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.850037\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.982550\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.331565\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.737868\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.351521\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.829106\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.299537\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.527907\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.645568\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.474883\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.836616\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.319750\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.736887\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.411557\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.903745\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.415566\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.373183\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.604230\n", - "Epoch : 20 [20/36(56%)]\tLoss: 2.122118\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.991165\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.328638\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.724847\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.499272\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.994358\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.404339\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.397249\n", - "Epoch : 21 [16/36(44%)]\tLoss: 1.111414\n", - "Epoch : 21 [20/36(56%)]\tLoss: 1.322230\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.753772\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.319483\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.747594\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.364894\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.799397\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.377647\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.505742\n", - "Epoch : 22 [16/36(44%)]\tLoss: 1.191379\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.385556\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.749409\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.322767\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.754161\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.374667\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.843083\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.403863\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.372814\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.691475\n", - "Epoch : 23 [20/36(56%)]\tLoss: 1.230959\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.690859\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.319582\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.744133\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.376114\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.820050\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.238674\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.348286\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.720515\n", - "Epoch : 24 [20/36(56%)]\tLoss: 1.298939\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.689298\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.332487\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.672423\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.331695\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.800276\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.453014\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.941776\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.660891\n", - "Epoch : 25 [20/36(56%)]\tLoss: 1.754490\n", - "Epoch : 25 [24/36(67%)]\tLoss: 1.167154\n", - "Epoch : 25 [28/36(78%)]\tLoss: 0.773134\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.473746\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.294903\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.925039\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.407648\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.393006\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.919096\n", - "Epoch : 26 [20/36(56%)]\tLoss: 2.053365\n", - "Epoch : 26 [24/36(67%)]\tLoss: 1.228329\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.735094\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.355983\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.551441\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.726935\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.381791\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.769962\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.580929\n", - "Epoch : 27 [20/36(56%)]\tLoss: 1.460432\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.705546\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.406020\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.862664\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.102308\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.857084\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.406836\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.443350\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.715727\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.965979\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.611315\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.344794\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.726779\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.406132\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.838300\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.466561\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.339639\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.659391\n", - "Epoch : 29 [20/36(56%)]\tLoss: 1.273315\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.486871\n", - "Epoch : 29 [28/36(78%)]\tLoss: 1.342458\n", - "Epoch : 29 [32/36(89%)]\tLoss: 1.792928\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.351461\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.850593\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.318539\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.372448\n", - "Epoch : 30 [16/36(44%)]\tLoss: 1.063122\n", - "Epoch : 30 [20/36(56%)]\tLoss: 1.984210\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.457488\n", - "Epoch : 30 [28/36(78%)]\tLoss: 1.319440\n", - "Epoch : 30 [32/36(89%)]\tLoss: 1.747633\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.374386\n", - "Epoch : 31 [4/36(11%)]\tLoss: 0.854999\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.308031\n", - "Epoch : 31 [12/36(33%)]\tLoss: 0.345826\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.294435\n", - "Epoch : 31 [20/36(56%)]\tLoss: 2.092935\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.426296\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.333133\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.784763\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.330256\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.832680\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.433625\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.362315\n", - "Epoch : 32 [16/36(44%)]\tLoss: 1.032565\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.699036\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.473904\n", - "Epoch : 32 [28/36(78%)]\tLoss: 1.320336\n", - "Epoch : 32 [32/36(89%)]\tLoss: 1.749421\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.609454\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.873893\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.416253\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.384187\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.445767\n", - "Epoch : 33 [20/36(56%)]\tLoss: 2.047354\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.597016\n", - "Epoch : 33 [28/36(78%)]\tLoss: 1.354282\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.727368\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.490947\n", - "Epoch : 34 [4/36(11%)]\tLoss: 1.028034\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.301150\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.361445\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.359778\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.780309\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.527170\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.387970\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.895122\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.255002\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.724450\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.282094\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.345860\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.551627\n", - "Epoch : 35 [20/36(56%)]\tLoss: 0.907181\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.427955\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.334642\n", - "Epoch : 35 [32/36(89%)]\tLoss: 1.800251\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.861659\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.740438\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.579319\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.355685\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.347218\n", - "Epoch : 36 [20/36(56%)]\tLoss: 0.934110\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.393477\n", - "Epoch : 36 [28/36(78%)]\tLoss: 1.323416\n", - "Epoch : 36 [32/36(89%)]\tLoss: 1.745268\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.274721\n", - "Epoch : 37 [4/36(11%)]\tLoss: 0.960473\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.373123\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.947425\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.161654\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.619886\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.380159\n", - "Epoch : 37 [28/36(78%)]\tLoss: 1.377837\n", - "Epoch : 37 [32/36(89%)]\tLoss: 1.933404\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.233311\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.600754\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.343902\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.736654\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.751583\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.684011\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.351800\n", - "Epoch : 38 [28/36(78%)]\tLoss: 1.391128\n", - "Epoch : 38 [32/36(89%)]\tLoss: 1.869545\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.280096\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.789606\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.314445\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.878178\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.588050\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.609332\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.347360\n", - "Epoch : 39 [28/36(78%)]\tLoss: 1.456646\n", - "Epoch : 39 [32/36(89%)]\tLoss: 2.049901\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.132291\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.693695\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.294127\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.794719\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.170253\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.822204\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.477801\n", - "Epoch : 40 [28/36(78%)]\tLoss: 1.321665\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.759653\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.339392\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.808571\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.285708\n", - "Epoch : 41 [12/36(33%)]\tLoss: 0.348385\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.335499\n", - "Epoch : 41 [20/36(56%)]\tLoss: 0.546088\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.370891\n", - "Epoch : 41 [28/36(78%)]\tLoss: 1.363673\n", - "Epoch : 41 [32/36(89%)]\tLoss: 1.854724\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.273581\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.719452\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.476761\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.343598\n", - "Epoch : 42 [16/36(44%)]\tLoss: 1.035865\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.429626\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.525539\n", - "Epoch : 42 [28/36(78%)]\tLoss: 1.320490\n", - "Epoch : 42 [32/36(89%)]\tLoss: 1.750692\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.345155\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.803219\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.479028\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.339847\n", - "Epoch : 43 [16/36(44%)]\tLoss: 1.121274\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.487049\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.388805\n", - "Epoch : 43 [28/36(78%)]\tLoss: 1.319610\n", - "Epoch : 43 [32/36(89%)]\tLoss: 1.747554\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.395405\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.885347\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.426154\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.357707\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.104895\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.379792\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.348632\n", - "Epoch : 44 [28/36(78%)]\tLoss: 1.348185\n", - "Epoch : 44 [32/36(89%)]\tLoss: 1.836718\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.280525\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.753140\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.431213\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.380724\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.114018\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.395712\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.336151\n", - "Epoch : 45 [28/36(78%)]\tLoss: 1.300567\n", - "Epoch : 45 [32/36(89%)]\tLoss: 1.749476\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.272692\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.675420\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.440002\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.362591\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.102963\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.277533\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.471455\n", - "Epoch : 46 [28/36(78%)]\tLoss: 1.344404\n", - "Epoch : 46 [32/36(89%)]\tLoss: 1.842715\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.265941\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.749575\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.496735\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.341810\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.101833\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.733381\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.515509\n", - "Epoch : 47 [28/36(78%)]\tLoss: 1.323838\n", - "Epoch : 47 [32/36(89%)]\tLoss: 1.793728\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.293635\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.763050\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.501461\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.339749\n", - "Epoch : 48 [16/36(44%)]\tLoss: 1.089632\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.411788\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.544856\n", - "Epoch : 48 [28/36(78%)]\tLoss: 1.321003\n", - "Epoch : 48 [32/36(89%)]\tLoss: 1.774300\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.312707\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.777943\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.494007\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.339702\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.124814\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.362475\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.582134\n", - "Epoch : 49 [28/36(78%)]\tLoss: 1.342342\n", - "Epoch : 49 [32/36(89%)]\tLoss: 1.824891\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.285838\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.776064\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.472203\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.346010\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.096625\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.340138\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.471772\n", - "Epoch : 50 [28/36(78%)]\tLoss: 1.338768\n", - "Epoch : 50 [32/36(89%)]\tLoss: 1.850932\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.250305\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.727430\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.534012\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.339628\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.260193\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.329007\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.505994\n", - "Epoch : 51 [28/36(78%)]\tLoss: 1.322017\n", - "Epoch : 51 [32/36(89%)]\tLoss: 1.783618\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.303167\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.768677\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.500960\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.339651\n", - "Epoch : 52 [16/36(44%)]\tLoss: 1.045214\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.501765\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.464626\n", - "Epoch : 52 [28/36(78%)]\tLoss: 1.321990\n", - "Epoch : 52 [32/36(89%)]\tLoss: 1.734326\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.416521\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.878101\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.442674\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.343617\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.102305\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.335679\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.394986\n", - "Epoch : 53 [28/36(78%)]\tLoss: 1.411011\n", - "Epoch : 53 [32/36(89%)]\tLoss: 1.968452\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.234290\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.715282\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.091444\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.339681\n", - "Epoch : 54 [16/36(44%)]\tLoss: 1.149960\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.441373\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.360616\n", - "Epoch : 54 [28/36(78%)]\tLoss: 1.476308\n", - "Epoch : 54 [32/36(89%)]\tLoss: 2.077668\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.228152\n", - "Epoch : 55 [4/36(11%)]\tLoss: 0.611676\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.521463\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.259324\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.212808\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.430828\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.321434\n", - "Epoch : 55 [28/36(78%)]\tLoss: 1.448545\n", - "Epoch : 55 [32/36(89%)]\tLoss: 1.936255\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.263300\n", - "Epoch : 56 [4/36(11%)]\tLoss: 0.752485\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.261454\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.230997\n", - "Epoch : 56 [16/36(44%)]\tLoss: 1.206819\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.326768\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.358422\n", - "Epoch : 56 [28/36(78%)]\tLoss: 1.494289\n", - "Epoch : 56 [32/36(89%)]\tLoss: 2.136947\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.233501\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.562453\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.061266\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.570469\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.479584\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.557943\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.734816\n", - "Epoch : 57 [28/36(78%)]\tLoss: 1.656065\n", - "Epoch : 57 [32/36(89%)]\tLoss: 2.192225\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.227400\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.733153\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.439279\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.417969\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.766179\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.445223\n", - "Epoch : 58 [24/36(67%)]\tLoss: 1.078274\n", - "Epoch : 58 [28/36(78%)]\tLoss: 1.392294\n", - "Epoch : 58 [32/36(89%)]\tLoss: 1.726504\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.331944\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.726690\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.666322\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.405058\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.247288\n", - "Epoch : 59 [20/36(56%)]\tLoss: 0.801042\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.379412\n", - "Epoch : 59 [28/36(78%)]\tLoss: 1.333986\n", - "Epoch : 59 [32/36(89%)]\tLoss: 1.759605\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.419672\n", - "Epoch : 60 [4/36(11%)]\tLoss: 0.949145\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.408957\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.381782\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.095300\n", - "Epoch : 60 [20/36(56%)]\tLoss: 0.542523\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.230977\n", - "Epoch : 60 [28/36(78%)]\tLoss: 1.338652\n", - "Epoch : 60 [32/36(89%)]\tLoss: 1.822799\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.286688\n", - "Epoch : 61 [4/36(11%)]\tLoss: 0.772019\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.481909\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.343274\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.093202\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.510063\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.432082\n", - "Epoch : 61 [28/36(78%)]\tLoss: 1.323312\n", - "Epoch : 61 [32/36(89%)]\tLoss: 1.788890\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.300590\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.761825\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.499046\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.339719\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.158962\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.525118\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.240851\n", - "Epoch : 62 [28/36(78%)]\tLoss: 1.320245\n", - "Epoch : 62 [32/36(89%)]\tLoss: 1.747907\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.399078\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.813433\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.457930\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.340610\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.022204\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.596082\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.186337\n", - "Epoch : 63 [28/36(78%)]\tLoss: 1.371887\n", - "Epoch : 63 [32/36(89%)]\tLoss: 1.846977\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.297797\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.776962\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.453006\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.349292\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.053277\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.478318\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.192861\n", - "Epoch : 64 [28/36(78%)]\tLoss: 1.350552\n", - "Epoch : 64 [32/36(89%)]\tLoss: 1.844639\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.277386\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.706085\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.500749\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.339769\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.030301\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.514067\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.190480\n", - "Epoch : 65 [28/36(78%)]\tLoss: 1.342904\n", - "Epoch : 65 [32/36(89%)]\tLoss: 1.814551\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.290288\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.763758\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.476402\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.340716\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.340393\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.490211\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.173064\n", - "Epoch : 66 [28/36(78%)]\tLoss: 1.363891\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.852997\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.284121\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.735974\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.477211\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.342463\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.083201\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.427549\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.215755\n", - "Epoch : 67 [28/36(78%)]\tLoss: 1.330377\n", - "Epoch : 67 [32/36(89%)]\tLoss: 1.801526\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.307043\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.733463\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.498010\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.339699\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.018530\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.486948\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.169463\n", - "Epoch : 68 [28/36(78%)]\tLoss: 1.362717\n", - "Epoch : 68 [32/36(89%)]\tLoss: 1.842225\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.295624\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.791121\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.449493\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.356063\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.056747\n", - "Epoch : 69 [20/36(56%)]\tLoss: 0.389450\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.217806\n", - "Epoch : 69 [28/36(78%)]\tLoss: 1.341950\n", - "Epoch : 69 [32/36(89%)]\tLoss: 1.846552\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.155576\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.687550\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.515612\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.339632\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.041704\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.436559\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.184901\n", - "Epoch : 70 [28/36(78%)]\tLoss: 1.352539\n", - "Epoch : 70 [32/36(89%)]\tLoss: 1.835621\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.291150\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.746810\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.487235\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.340164\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.040555\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.440026\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.175046\n", - "Epoch : 71 [28/36(78%)]\tLoss: 1.366766\n", - "Epoch : 71 [32/36(89%)]\tLoss: 1.857727\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.278999\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.735098\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.486831\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.340959\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.050514\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.421593\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.181140\n", - "Epoch : 72 [28/36(78%)]\tLoss: 1.361365\n", - "Epoch : 72 [32/36(89%)]\tLoss: 1.860167\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.096435\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.761748\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.459607\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.349717\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.088762\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.394844\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.187770\n", - "Epoch : 73 [28/36(78%)]\tLoss: 1.444084\n", - "Epoch : 73 [32/36(89%)]\tLoss: 1.884095\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.260504\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.682250\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.514732\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.339715\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.051906\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.411870\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.191557\n", - "Epoch : 74 [28/36(78%)]\tLoss: 1.353456\n", - "Epoch : 74 [32/36(89%)]\tLoss: 1.840459\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.286271\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.731543\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.496514\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.339752\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.043434\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.434196\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.172854\n", - "Epoch : 75 [28/36(78%)]\tLoss: 1.367064\n", - "Epoch : 75 [32/36(89%)]\tLoss: 1.861606\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.280985\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.737206\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.484154\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.341322\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.054471\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.415148\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.179682\n", - "Epoch : 76 [28/36(78%)]\tLoss: 1.365909\n", - "Epoch : 76 [32/36(89%)]\tLoss: 1.868003\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.273324\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.712269\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.495818\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.340381\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.229853\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.379780\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.237157\n", - "Epoch : 77 [28/36(78%)]\tLoss: 1.327940\n", - "Epoch : 77 [32/36(89%)]\tLoss: 1.795770\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.311732\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.744039\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.411218\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.343051\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.491373\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.542632\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.435091\n", - "Epoch : 78 [28/36(78%)]\tLoss: 1.536235\n", - "Epoch : 78 [32/36(89%)]\tLoss: 2.103830\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.131391\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.760100\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.279053\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.408707\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.169290\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.185491\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.275192\n", - "Epoch : 79 [28/36(78%)]\tLoss: 1.344708\n", - "Epoch : 79 [32/36(89%)]\tLoss: 1.914532\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.232785\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.696696\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.607709\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.341712\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.096961\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.206790\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.257552\n", - "Epoch : 80 [28/36(78%)]\tLoss: 1.325853\n", - "Epoch : 80 [32/36(89%)]\tLoss: 1.808537\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.287414\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.757018\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.517869\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.339620\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.095812\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.169370\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.202106\n", - "Epoch : 81 [28/36(78%)]\tLoss: 1.346745\n", - "Epoch : 81 [32/36(89%)]\tLoss: 1.838780\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.283566\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.773400\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.482525\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.344099\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.099332\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.203964\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.196728\n", - "Epoch : 82 [28/36(78%)]\tLoss: 1.369475\n", - "Epoch : 82 [32/36(89%)]\tLoss: 1.908694\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.247910\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.733551\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.509942\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.343572\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.105263\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.216924\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.233656\n", - "Epoch : 83 [28/36(78%)]\tLoss: 1.346812\n", - "Epoch : 83 [32/36(89%)]\tLoss: 1.878143\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.250888\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.726206\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.536519\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.339895\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.099461\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.207723\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.225708\n", - "Epoch : 84 [28/36(78%)]\tLoss: 1.345168\n", - "Epoch : 84 [32/36(89%)]\tLoss: 1.862167\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.260846\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.740270\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.518094\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.340486\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.099620\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.202651\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.213885\n", - "Epoch : 85 [28/36(78%)]\tLoss: 1.353786\n", - "Epoch : 85 [32/36(89%)]\tLoss: 1.878349\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.256532\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.739117\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.513680\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.341592\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.101862\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.204423\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.217721\n", - "Epoch : 86 [28/36(78%)]\tLoss: 1.351982\n", - "Epoch : 86 [32/36(89%)]\tLoss: 1.868376\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.162241\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.688119\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.596935\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.340751\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.117953\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.237344\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.334768\n", - "Epoch : 87 [28/36(78%)]\tLoss: 1.320325\n", - "Epoch : 87 [32/36(89%)]\tLoss: 1.803904\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.269173\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.764383\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.581742\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.344554\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.098826\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.392660\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.249078\n", - "Epoch : 88 [28/36(78%)]\tLoss: 1.319670\n", - "Epoch : 88 [32/36(89%)]\tLoss: 1.758652\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.365540\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.829773\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.475792\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.340042\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.099603\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.439212\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.207821\n", - "Epoch : 89 [28/36(78%)]\tLoss: 1.341189\n", - "Epoch : 89 [32/36(89%)]\tLoss: 1.803132\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.333087\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.835782\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.449225\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.349597\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.102136\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.381473\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.204768\n", - "Epoch : 90 [28/36(78%)]\tLoss: 1.349687\n", - "Epoch : 90 [32/36(89%)]\tLoss: 1.849835\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.279482\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.769997\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.485999\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.344110\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.114276\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.363005\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.243261\n", - "Epoch : 91 [28/36(78%)]\tLoss: 1.332608\n", - "Epoch : 91 [32/36(89%)]\tLoss: 1.819246\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.289535\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.762661\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.505216\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.340107\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.102342\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.349611\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.233417\n", - "Epoch : 92 [28/36(78%)]\tLoss: 1.331472\n", - "Epoch : 92 [32/36(89%)]\tLoss: 1.808716\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.304003\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.729718\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.521677\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.341758\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.105608\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.169243\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.163110\n", - "Epoch : 93 [28/36(78%)]\tLoss: 1.392903\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.904835\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.267198\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.781158\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.457405\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.358568\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.124686\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.227148\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.211126\n", - "Epoch : 94 [28/36(78%)]\tLoss: 1.386397\n", - "Epoch : 94 [32/36(89%)]\tLoss: 1.971749\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.233157\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.711671\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.535730\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.343544\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.122530\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.222827\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.364176\n", - "Epoch : 95 [28/36(78%)]\tLoss: 1.355385\n", - "Epoch : 95 [32/36(89%)]\tLoss: 1.935799\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.232947\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.664553\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.190651\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.347325\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.288300\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.703077\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.565004\n", - "Epoch : 96 [28/36(78%)]\tLoss: 1.268018\n", - "Epoch : 96 [32/36(89%)]\tLoss: 1.796919\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.445510\n", - "Epoch : 97 [4/36(11%)]\tLoss: 1.615897\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.414863\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.339707\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.335237\n", - "Epoch : 97 [20/36(56%)]\tLoss: 2.588415\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.494587\n", - "Epoch : 97 [28/36(78%)]\tLoss: 1.355083\n", - "Epoch : 97 [32/36(89%)]\tLoss: 1.759944\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.855938\n", - "Epoch : 98 [4/36(11%)]\tLoss: 1.202902\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.414261\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.339874\n", - "Epoch : 98 [16/36(44%)]\tLoss: 1.397464\n", - "Epoch : 98 [20/36(56%)]\tLoss: 2.685573\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.732715\n", - "Epoch : 98 [28/36(78%)]\tLoss: 1.385529\n", - "Epoch : 98 [32/36(89%)]\tLoss: 1.818341\n", - "Epoch : 99 [0/36(0%)]\tLoss: 1.078576\n", - "Epoch : 99 [4/36(11%)]\tLoss: 1.367623\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.405614\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.339986\n", - "Epoch : 99 [16/36(44%)]\tLoss: 1.487274\n", - "Epoch : 99 [20/36(56%)]\tLoss: 2.517620\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.521946\n", - "Epoch : 99 [28/36(78%)]\tLoss: 1.326511\n", - "Epoch : 99 [32/36(89%)]\tLoss: 1.740404\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.855810\n", - "Epoch : 100 [4/36(11%)]\tLoss: 1.298409\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.456272\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.502141\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.642042\n", - "Epoch : 100 [20/36(56%)]\tLoss: 1.250310\n", - "Epoch : 100 [24/36(67%)]\tLoss: 1.053737\n", - "Epoch : 100 [28/36(78%)]\tLoss: 1.552728\n", - "Epoch : 100 [32/36(89%)]\tLoss: 1.810406\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.601646\n", - "Epoch : 101 [4/36(11%)]\tLoss: 1.421792\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.488719\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.536362\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.935109\n", - "Epoch : 101 [20/36(56%)]\tLoss: 2.072074\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.462209\n", - "Epoch : 101 [28/36(78%)]\tLoss: 1.329150\n", - "Epoch : 101 [32/36(89%)]\tLoss: 1.778090\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.369899\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.861804\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.451668\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.344279\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.944787\n", - "Epoch : 102 [20/36(56%)]\tLoss: 1.943122\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.444941\n", - "Epoch : 102 [28/36(78%)]\tLoss: 1.382966\n", - "Epoch : 102 [32/36(89%)]\tLoss: 1.739462\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.628128\n", - "Epoch : 103 [4/36(11%)]\tLoss: 0.946007\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.494134\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.360619\n", - "Epoch : 103 [16/36(44%)]\tLoss: 1.452377\n", - "Epoch : 103 [20/36(56%)]\tLoss: 0.922644\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.430628\n", - "Epoch : 103 [28/36(78%)]\tLoss: 1.353728\n", - "Epoch : 103 [32/36(89%)]\tLoss: 1.764713\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.851432\n", - "Epoch : 104 [4/36(11%)]\tLoss: 1.177245\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.422009\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.342051\n", - "Epoch : 104 [16/36(44%)]\tLoss: 1.272308\n", - "Epoch : 104 [20/36(56%)]\tLoss: 0.996185\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.427671\n", - "Epoch : 104 [28/36(78%)]\tLoss: 1.303907\n", - "Epoch : 104 [32/36(89%)]\tLoss: 1.727776\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.818111\n", - "Epoch : 105 [4/36(11%)]\tLoss: 1.159888\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.288700\n", - "Epoch : 105 [12/36(33%)]\tLoss: 0.339398\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.280459\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.604270\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.536030\n", - "Epoch : 105 [28/36(78%)]\tLoss: 1.320953\n", - "Epoch : 105 [32/36(89%)]\tLoss: 1.824346\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.431491\n", - "Epoch : 106 [4/36(11%)]\tLoss: 1.026880\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.690378\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.408856\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.309510\n", - "Epoch : 106 [20/36(56%)]\tLoss: 1.183441\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.327204\n", - "Epoch : 106 [28/36(78%)]\tLoss: 1.504107\n", - "Epoch : 106 [32/36(89%)]\tLoss: 1.908097\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.369913\n", - "Epoch : 107 [4/36(11%)]\tLoss: 1.021298\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.836862\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.360729\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.728261\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.648691\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.371643\n", - "Epoch : 107 [28/36(78%)]\tLoss: 1.893952\n", - "Epoch : 107 [32/36(89%)]\tLoss: 2.333931\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.245825\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.851973\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.466234\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.496789\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.135288\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.491185\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.486259\n", - "Epoch : 108 [28/36(78%)]\tLoss: 1.355052\n", - "Epoch : 108 [32/36(89%)]\tLoss: 1.949944\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.232006\n", - "Epoch : 109 [4/36(11%)]\tLoss: 0.834402\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.590736\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.339676\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.105910\n", - "Epoch : 109 [20/36(56%)]\tLoss: 0.532389\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.542910\n", - "Epoch : 109 [28/36(78%)]\tLoss: 1.321758\n", - "Epoch : 109 [32/36(89%)]\tLoss: 1.828723\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.262562\n", - "Epoch : 110 [4/36(11%)]\tLoss: 0.722256\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.582159\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.342450\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.122106\n", - "Epoch : 110 [20/36(56%)]\tLoss: 0.719857\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.391320\n", - "Epoch : 110 [28/36(78%)]\tLoss: 1.323597\n", - "Epoch : 110 [32/36(89%)]\tLoss: 1.730762\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.445018\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.865001\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.474730\n", - "Epoch : 111 [12/36(33%)]\tLoss: 0.345506\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.156313\n", - "Epoch : 111 [20/36(56%)]\tLoss: 1.238474\n", - "Epoch : 111 [24/36(67%)]\tLoss: 1.242364\n", - "Epoch : 111 [28/36(78%)]\tLoss: 1.621951\n", - "Epoch : 111 [32/36(89%)]\tLoss: 2.295954\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.234959\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.714026\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.455711\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.419262\n", - "Epoch : 112 [16/36(44%)]\tLoss: 107.679787\n", - "Epoch : 112 [20/36(56%)]\tLoss: 1.695190\n", - "Epoch : 112 [24/36(67%)]\tLoss: 1.159147\n", - "Epoch : 112 [28/36(78%)]\tLoss: 1.738487\n", - "Epoch : 112 [32/36(89%)]\tLoss: 1.783019\n", - "Epoch : 113 [0/36(0%)]\tLoss: 1.037259\n", - "Epoch : 113 [4/36(11%)]\tLoss: 42.077614\n", - "Epoch : 113 [8/36(22%)]\tLoss: 9.878567\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.993058\n", - "Epoch : 113 [16/36(44%)]\tLoss: 3.474497\n", - "Epoch : 113 [20/36(56%)]\tLoss: 52.891251\n", - "Epoch : 113 [24/36(67%)]\tLoss: 7.039252\n", - "Epoch : 113 [28/36(78%)]\tLoss: 10.559747\n", - "Epoch : 113 [32/36(89%)]\tLoss: 7.512505\n", - "Epoch : 114 [0/36(0%)]\tLoss: 3.346862\n", - "Epoch : 114 [4/36(11%)]\tLoss: 1.051875\n", - "Epoch : 114 [8/36(22%)]\tLoss: 3.843843\n", - "Epoch : 114 [12/36(33%)]\tLoss: 3.514356\n", - "Epoch : 114 [16/36(44%)]\tLoss: 11.783563\n", - "Epoch : 114 [20/36(56%)]\tLoss: 10.607683\n", - "Epoch : 114 [24/36(67%)]\tLoss: 45.566887\n", - "Epoch : 114 [28/36(78%)]\tLoss: 5.277311\n", - "Epoch : 114 [32/36(89%)]\tLoss: 6.987385\n", - "Epoch : 115 [0/36(0%)]\tLoss: 11.867386\n", - "Epoch : 115 [4/36(11%)]\tLoss: 7.382057\n", - "Epoch : 115 [8/36(22%)]\tLoss: 1.756971\n", - "Epoch : 115 [12/36(33%)]\tLoss: 4.031797\n", - "Epoch : 115 [16/36(44%)]\tLoss: 1.568375\n", - "Epoch : 115 [20/36(56%)]\tLoss: 11.004314\n", - "Epoch : 115 [24/36(67%)]\tLoss: 1.341885\n", - "Epoch : 115 [28/36(78%)]\tLoss: 3.746224\n", - "Epoch : 115 [32/36(89%)]\tLoss: 3.196247\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.333178\n", - "Epoch : 116 [4/36(11%)]\tLoss: 2.676649\n", - "Epoch : 116 [8/36(22%)]\tLoss: 2.612855\n", - "Epoch : 116 [12/36(33%)]\tLoss: 5.082934\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.958132\n", - "Epoch : 116 [20/36(56%)]\tLoss: 1.860196\n", - "Epoch : 116 [24/36(67%)]\tLoss: 1.096822\n", - "Epoch : 116 [28/36(78%)]\tLoss: 2.553409\n", - "Epoch : 116 [32/36(89%)]\tLoss: 3.385683\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.121930\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.688391\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.265732\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.292842\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.677380\n", - "Epoch : 117 [20/36(56%)]\tLoss: 1.300677\n", - "Epoch : 117 [24/36(67%)]\tLoss: 2.066779\n", - "Epoch : 117 [28/36(78%)]\tLoss: 1.045409\n", - "Epoch : 117 [32/36(89%)]\tLoss: 2.254893\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.230135\n", - "Epoch : 118 [4/36(11%)]\tLoss: 1.128905\n", - "Epoch : 118 [8/36(22%)]\tLoss: 1.027342\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.349222\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.750840\n", - "Epoch : 118 [20/36(56%)]\tLoss: 0.747957\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.228183\n", - "Epoch : 118 [28/36(78%)]\tLoss: 1.416448\n", - "Epoch : 118 [32/36(89%)]\tLoss: 1.600921\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.320268\n", - "Epoch : 119 [4/36(11%)]\tLoss: 1.503850\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.073279\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.653241\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.449346\n", - "Epoch : 119 [20/36(56%)]\tLoss: 1.431417\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.320783\n", - "Epoch : 119 [28/36(78%)]\tLoss: 1.239929\n", - "Epoch : 119 [32/36(89%)]\tLoss: 2.468767\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.496580\n", - "Epoch : 120 [4/36(11%)]\tLoss: 1.329498\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.212545\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.401947\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.795469\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.227294\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.146377\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.797868\n", - "Epoch : 120 [32/36(89%)]\tLoss: 1.508107\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.373707\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.625583\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.294734\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.296944\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.512068\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.184261\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.518800\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.292019\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.913085\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.105474\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.362970\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.385958\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.842102\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.433981\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.255932\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.491283\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.458304\n", - "Epoch : 122 [32/36(89%)]\tLoss: 1.574129\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.641714\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.588053\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.408781\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.508579\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.354621\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.133906\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.281638\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.784268\n", - "Epoch : 123 [32/36(89%)]\tLoss: 1.092653\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.303241\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.659352\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.196398\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.404929\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.096755\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.178530\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.252993\n", - "Epoch : 124 [28/36(78%)]\tLoss: 0.560531\n", - "Epoch : 124 [32/36(89%)]\tLoss: 1.331570\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.450643\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.471208\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.241225\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.348469\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.667367\n", - "Epoch : 125 [20/36(56%)]\tLoss: 1.141148\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.134643\n", - "Epoch : 125 [28/36(78%)]\tLoss: 0.597573\n", - "Epoch : 125 [32/36(89%)]\tLoss: 1.033038\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.261483\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.501263\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.147147\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.315711\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.168286\n", - "Epoch : 126 [20/36(56%)]\tLoss: 0.233669\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.235317\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.458585\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.917091\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.204877\n", - "Epoch : 127 [4/36(11%)]\tLoss: 0.378307\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.133581\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.269956\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.165193\n", - "Epoch : 127 [20/36(56%)]\tLoss: 0.347857\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.240298\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.397952\n", - "Epoch : 127 [32/36(89%)]\tLoss: 1.013468\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.218075\n", - "Epoch : 128 [4/36(11%)]\tLoss: 0.427327\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.106589\n", - "Epoch : 128 [12/36(33%)]\tLoss: 0.262903\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.182383\n", - "Epoch : 128 [20/36(56%)]\tLoss: 0.373225\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.129266\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.372429\n", - "Epoch : 128 [32/36(89%)]\tLoss: 1.197997\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.095596\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.427785\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.422760\n", - "Epoch : 129 [12/36(33%)]\tLoss: 0.269683\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.064525\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.435171\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.099316\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.485027\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.494174\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.398091\n", - "Epoch : 130 [4/36(11%)]\tLoss: 0.261668\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.366371\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.349054\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.102390\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.064781\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.689252\n", - "Epoch : 130 [28/36(78%)]\tLoss: 0.579529\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.986484\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.421221\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.277819\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.076739\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.444298\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.259264\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.093930\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.312389\n", - "Epoch : 131 [28/36(78%)]\tLoss: 0.802015\n", - "Epoch : 131 [32/36(89%)]\tLoss: 1.190497\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.107920\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.727148\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.384293\n", - "Epoch : 132 [12/36(33%)]\tLoss: 0.240719\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.414718\n", - "Epoch : 132 [20/36(56%)]\tLoss: 0.154325\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.444278\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.450049\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.222543\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.331570\n", - "Epoch : 133 [4/36(11%)]\tLoss: 0.219660\n", - "Epoch : 133 [8/36(22%)]\tLoss: 1.179513\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.507278\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.332183\n", - "Epoch : 133 [20/36(56%)]\tLoss: 0.615503\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.685250\n", - "Epoch : 133 [28/36(78%)]\tLoss: 0.814147\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.681970\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.233180\n", - "Epoch : 134 [4/36(11%)]\tLoss: 0.201039\n", - "Epoch : 134 [8/36(22%)]\tLoss: 1.218483\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.683112\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.496025\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.166943\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.246609\n", - "Epoch : 134 [28/36(78%)]\tLoss: 0.649869\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.882147\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.950412\n", - "Epoch : 135 [4/36(11%)]\tLoss: 0.720058\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.293573\n", - "Epoch : 135 [12/36(33%)]\tLoss: 0.407930\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.310307\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.480428\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.100876\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.689427\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.472137\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.400257\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.872630\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.431947\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.868511\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.106388\n", - "Epoch : 136 [20/36(56%)]\tLoss: 0.196197\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.411208\n", - "Epoch : 136 [28/36(78%)]\tLoss: 2.043366\n", - "Epoch : 136 [32/36(89%)]\tLoss: 1.193917\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.358517\n", - "Epoch : 137 [4/36(11%)]\tLoss: 0.533059\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.251978\n", - "Epoch : 137 [12/36(33%)]\tLoss: 1.076772\n", - "Epoch : 137 [16/36(44%)]\tLoss: 1.465810\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.164098\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.195267\n", - "Epoch : 137 [28/36(78%)]\tLoss: 0.999646\n", - "Epoch : 137 [32/36(89%)]\tLoss: 1.600786\n", - "Epoch : 138 [0/36(0%)]\tLoss: 1.040351\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.316218\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.072007\n", - "Epoch : 138 [12/36(33%)]\tLoss: 0.320886\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.418012\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.440652\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.422802\n", - "Epoch : 138 [28/36(78%)]\tLoss: 0.769675\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.215521\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.115633\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.216503\n", - "Epoch : 139 [8/36(22%)]\tLoss: 1.387242\n", - "Epoch : 139 [12/36(33%)]\tLoss: 0.782575\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.566309\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.169618\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.321079\n", - "Epoch : 139 [28/36(78%)]\tLoss: 1.892269\n", - "Epoch : 139 [32/36(89%)]\tLoss: 1.578717\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.972915\n", - "Epoch : 140 [4/36(11%)]\tLoss: 0.357358\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.241630\n", - "Epoch : 140 [12/36(33%)]\tLoss: 1.979794\n", - "Epoch : 140 [16/36(44%)]\tLoss: 1.005613\n", - "Epoch : 140 [20/36(56%)]\tLoss: 2.075208\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.361093\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.700552\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.790920\n", - "Epoch : 141 [0/36(0%)]\tLoss: 1.033034\n", - "Epoch : 141 [4/36(11%)]\tLoss: 1.490320\n", - "Epoch : 141 [8/36(22%)]\tLoss: 1.694446\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.284531\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.684254\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.924268\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.852715\n", - "Epoch : 141 [28/36(78%)]\tLoss: 2.647202\n", - "Epoch : 141 [32/36(89%)]\tLoss: 2.387078\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.515756\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.645689\n", - "Epoch : 142 [8/36(22%)]\tLoss: 2.698315\n", - "Epoch : 142 [12/36(33%)]\tLoss: 2.020222\n", - "Epoch : 142 [16/36(44%)]\tLoss: 2.305176\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.251027\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.100128\n", - "Epoch : 142 [28/36(78%)]\tLoss: 1.517791\n", - "Epoch : 142 [32/36(89%)]\tLoss: 2.365940\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.627280\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.945482\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.548452\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.475816\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.632295\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.802314\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.869394\n", - "Epoch : 143 [28/36(78%)]\tLoss: 1.126444\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.794685\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.244318\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.433870\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.847268\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.564828\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.316582\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.440226\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.164335\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.768544\n", - "Epoch : 144 [32/36(89%)]\tLoss: 1.127977\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.730341\n", - "Epoch : 145 [4/36(11%)]\tLoss: 0.662882\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.428531\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.767850\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.671206\n", - "Epoch : 145 [20/36(56%)]\tLoss: 1.436890\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.333507\n", - "Epoch : 145 [28/36(78%)]\tLoss: 1.077127\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.513798\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.488236\n", - "Epoch : 146 [4/36(11%)]\tLoss: 1.707183\n", - "Epoch : 146 [8/36(22%)]\tLoss: 1.131946\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.337823\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.644723\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.432891\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.394648\n", - "Epoch : 146 [28/36(78%)]\tLoss: 1.821868\n", - "Epoch : 146 [32/36(89%)]\tLoss: 1.246490\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.463571\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.483670\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.736627\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.479373\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.696391\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.193805\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.501059\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.925222\n", - "Epoch : 147 [32/36(89%)]\tLoss: 1.307393\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.854597\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.545664\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.529505\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.441990\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.178986\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.571213\n", - "Epoch : 148 [24/36(67%)]\tLoss: 1.163178\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.965102\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.520753\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.142795\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.744774\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.818580\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.774485\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.585282\n", - "Epoch : 149 [20/36(56%)]\tLoss: 1.528380\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.171141\n", - "Epoch : 149 [28/36(78%)]\tLoss: 1.406376\n", - "Epoch : 149 [32/36(89%)]\tLoss: 1.642578\n", - "--- 0.24148858785629274 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 506.253204\n", + "Epoch : 0 [4/36(11%)]\tLoss: 460.902405\n", + "Epoch : 0 [8/36(22%)]\tLoss: 347.176453\n", + "Epoch : 0 [12/36(33%)]\tLoss: 293.676697\n", + "Epoch : 0 [16/36(44%)]\tLoss: 178.741714\n", + "Epoch : 0 [20/36(56%)]\tLoss: 130.735138\n", + "Epoch : 0 [24/36(67%)]\tLoss: 80.614594\n", + "Epoch : 0 [28/36(78%)]\tLoss: 43.781487\n", + "Epoch : 0 [32/36(89%)]\tLoss: 210.546402\n", + "Epoch : 1 [0/36(0%)]\tLoss: 5.412053\n", + "Epoch : 1 [4/36(11%)]\tLoss: 0.748258\n", + "Epoch : 1 [8/36(22%)]\tLoss: 0.744621\n", + "Epoch : 1 [12/36(33%)]\tLoss: 7.144383\n", + "Epoch : 1 [16/36(44%)]\tLoss: 10.724913\n", + "Epoch : 1 [20/36(56%)]\tLoss: 13.504992\n", + "Epoch : 1 [24/36(67%)]\tLoss: 19.828001\n", + "Epoch : 1 [28/36(78%)]\tLoss: 26.632847\n", + "Epoch : 1 [32/36(89%)]\tLoss: 23.814049\n", + "Epoch : 2 [0/36(0%)]\tLoss: 23.771826\n", + "Epoch : 2 [4/36(11%)]\tLoss: 18.704243\n", + "Epoch : 2 [8/36(22%)]\tLoss: 10.730898\n", + "Epoch : 2 [12/36(33%)]\tLoss: 9.185619\n", + "Epoch : 2 [16/36(44%)]\tLoss: 3.213631\n", + "Epoch : 2 [20/36(56%)]\tLoss: 1.662918\n", + "Epoch : 2 [24/36(67%)]\tLoss: 1.130406\n", + "Epoch : 2 [28/36(78%)]\tLoss: 1.742443\n", + "Epoch : 2 [32/36(89%)]\tLoss: 3.130788\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.218907\n", + "Epoch : 3 [4/36(11%)]\tLoss: 1.416911\n", + "Epoch : 3 [8/36(22%)]\tLoss: 3.335634\n", + "Epoch : 3 [12/36(33%)]\tLoss: 2.053994\n", + "Epoch : 3 [16/36(44%)]\tLoss: 5.014097\n", + "Epoch : 3 [20/36(56%)]\tLoss: 7.232190\n", + "Epoch : 3 [24/36(67%)]\tLoss: 3.900211\n", + "Epoch : 3 [28/36(78%)]\tLoss: 2.503218\n", + "Epoch : 3 [32/36(89%)]\tLoss: 2.942830\n", + "Epoch : 4 [0/36(0%)]\tLoss: 0.249588\n", + "Epoch : 4 [4/36(11%)]\tLoss: 0.536661\n", + "Epoch : 4 [8/36(22%)]\tLoss: 0.316498\n", + "Epoch : 4 [12/36(33%)]\tLoss: 0.368627\n", + "Epoch : 4 [16/36(44%)]\tLoss: 0.801114\n", + "Epoch : 4 [20/36(56%)]\tLoss: 1.570897\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.374769\n", + "Epoch : 4 [28/36(78%)]\tLoss: 2.227937\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.456325\n", + "Epoch : 5 [0/36(0%)]\tLoss: 5.060793\n", + "Epoch : 5 [4/36(11%)]\tLoss: 2.610439\n", + "Epoch : 5 [8/36(22%)]\tLoss: 1.061740\n", + "Epoch : 5 [12/36(33%)]\tLoss: 1.268814\n", + "Epoch : 5 [16/36(44%)]\tLoss: 0.818578\n", + "Epoch : 5 [20/36(56%)]\tLoss: 1.566892\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.102844\n", + "Epoch : 5 [28/36(78%)]\tLoss: 0.904148\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.613005\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.491851\n", + "Epoch : 6 [4/36(11%)]\tLoss: 0.791290\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.482874\n", + "Epoch : 6 [12/36(33%)]\tLoss: 0.325843\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.257907\n", + "Epoch : 6 [20/36(56%)]\tLoss: 2.482849\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.357918\n", + "Epoch : 6 [28/36(78%)]\tLoss: 0.939425\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.706733\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.470064\n", + "Epoch : 7 [4/36(11%)]\tLoss: 0.925060\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.371244\n", + "Epoch : 7 [12/36(33%)]\tLoss: 0.447862\n", + "Epoch : 7 [16/36(44%)]\tLoss: 2.056926\n", + "Epoch : 7 [20/36(56%)]\tLoss: 1.676597\n", + "Epoch : 7 [24/36(67%)]\tLoss: 0.794877\n", + "Epoch : 7 [28/36(78%)]\tLoss: 1.468608\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.832735\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.674352\n", + "Epoch : 8 [4/36(11%)]\tLoss: 1.266237\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.319283\n", + "Epoch : 8 [12/36(33%)]\tLoss: 0.541535\n", + "Epoch : 8 [16/36(44%)]\tLoss: 0.820091\n", + "Epoch : 8 [20/36(56%)]\tLoss: 2.518384\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.819052\n", + "Epoch : 8 [28/36(78%)]\tLoss: 1.407727\n", + "Epoch : 8 [32/36(89%)]\tLoss: 2.070285\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.262569\n", + "Epoch : 9 [4/36(11%)]\tLoss: 0.469396\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.109424\n", + "Epoch : 9 [12/36(33%)]\tLoss: 0.397742\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.008423\n", + "Epoch : 9 [20/36(56%)]\tLoss: 1.954215\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.178010\n", + "Epoch : 9 [28/36(78%)]\tLoss: 1.467255\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.748894\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.436716\n", + "Epoch : 10 [4/36(11%)]\tLoss: 0.692459\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.179323\n", + "Epoch : 10 [12/36(33%)]\tLoss: 0.466659\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.700358\n", + "Epoch : 10 [20/36(56%)]\tLoss: 1.479818\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.976322\n", + "Epoch : 10 [28/36(78%)]\tLoss: 1.375780\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.665394\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.415670\n", + "Epoch : 11 [4/36(11%)]\tLoss: 0.662969\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.153767\n", + "Epoch : 11 [12/36(33%)]\tLoss: 0.393444\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.709667\n", + "Epoch : 11 [20/36(56%)]\tLoss: 1.650595\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.086947\n", + "Epoch : 11 [28/36(78%)]\tLoss: 1.307991\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.409378\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.287346\n", + "Epoch : 12 [4/36(11%)]\tLoss: 0.574694\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.132654\n", + "Epoch : 12 [12/36(33%)]\tLoss: 0.325047\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.684265\n", + "Epoch : 12 [20/36(56%)]\tLoss: 1.571725\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.854450\n", + "Epoch : 12 [28/36(78%)]\tLoss: 1.145606\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.296147\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.340775\n", + "Epoch : 13 [4/36(11%)]\tLoss: 0.600708\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.136313\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.453118\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.717106\n", + "Epoch : 13 [20/36(56%)]\tLoss: 1.401793\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.042163\n", + "Epoch : 13 [28/36(78%)]\tLoss: 1.162036\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.037848\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.222098\n", + "Epoch : 14 [4/36(11%)]\tLoss: 0.479262\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.099346\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.487275\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.717381\n", + "Epoch : 14 [20/36(56%)]\tLoss: 1.458462\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.769191\n", + "Epoch : 14 [28/36(78%)]\tLoss: 1.012652\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.239755\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.293159\n", + "Epoch : 15 [4/36(11%)]\tLoss: 0.607477\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.047098\n", + "Epoch : 15 [12/36(33%)]\tLoss: 0.601275\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.613979\n", + "Epoch : 15 [20/36(56%)]\tLoss: 1.067756\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.921515\n", + "Epoch : 15 [28/36(78%)]\tLoss: 162.121109\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.232289\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.306235\n", + "Epoch : 16 [4/36(11%)]\tLoss: 0.406185\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.130557\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.342872\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.646884\n", + "Epoch : 16 [20/36(56%)]\tLoss: 1.350097\n", + "Epoch : 16 [24/36(67%)]\tLoss: 0.855544\n", + "Epoch : 16 [28/36(78%)]\tLoss: 1.709263\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.274891\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.569328\n", + "Epoch : 17 [4/36(11%)]\tLoss: 0.643974\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.050936\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.683309\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.644249\n", + "Epoch : 17 [20/36(56%)]\tLoss: 2.007683\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.566944\n", + "Epoch : 17 [28/36(78%)]\tLoss: 2.018664\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.334823\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.317406\n", + "Epoch : 18 [4/36(11%)]\tLoss: 0.573496\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.119140\n", + "Epoch : 18 [12/36(33%)]\tLoss: 0.567079\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.642173\n", + "Epoch : 18 [20/36(56%)]\tLoss: 1.106941\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.530857\n", + "Epoch : 18 [28/36(78%)]\tLoss: 0.456126\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.120647\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.197832\n", + "Epoch : 19 [4/36(11%)]\tLoss: 0.536572\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.024039\n", + "Epoch : 19 [12/36(33%)]\tLoss: 0.488379\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.650639\n", + "Epoch : 19 [20/36(56%)]\tLoss: 0.964098\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.478444\n", + "Epoch : 19 [28/36(78%)]\tLoss: 0.803429\n", + "Epoch : 19 [32/36(89%)]\tLoss: 0.757468\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.249769\n", + "Epoch : 20 [4/36(11%)]\tLoss: 0.845611\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.263252\n", + "Epoch : 20 [12/36(33%)]\tLoss: 1.142560\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.930385\n", + "Epoch : 20 [20/36(56%)]\tLoss: 0.724903\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.311578\n", + "Epoch : 20 [28/36(78%)]\tLoss: 0.679372\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.112038\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.150008\n", + "Epoch : 21 [4/36(11%)]\tLoss: 0.101327\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.062236\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.545105\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.654610\n", + "Epoch : 21 [20/36(56%)]\tLoss: 1.063778\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.417119\n", + "Epoch : 21 [28/36(78%)]\tLoss: 0.737832\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.005445\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.235569\n", + "Epoch : 22 [4/36(11%)]\tLoss: 0.137028\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.047480\n", + "Epoch : 22 [12/36(33%)]\tLoss: 0.417711\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.600202\n", + "Epoch : 22 [20/36(56%)]\tLoss: 1.373212\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.533923\n", + "Epoch : 22 [28/36(78%)]\tLoss: 0.479184\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.084643\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.138195\n", + "Epoch : 23 [4/36(11%)]\tLoss: 0.505956\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.242828\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.749005\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.755686\n", + "Epoch : 23 [20/36(56%)]\tLoss: 0.687998\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.246664\n", + "Epoch : 23 [28/36(78%)]\tLoss: 0.336150\n", + "Epoch : 23 [32/36(89%)]\tLoss: 0.890664\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.118931\n", + "Epoch : 24 [4/36(11%)]\tLoss: 0.170124\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.025654\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.556999\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.411331\n", + "Epoch : 24 [20/36(56%)]\tLoss: 1.048690\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.263080\n", + "Epoch : 24 [28/36(78%)]\tLoss: 0.397316\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.902095\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.100420\n", + "Epoch : 25 [4/36(11%)]\tLoss: 0.299723\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.046969\n", + "Epoch : 25 [12/36(33%)]\tLoss: 0.486272\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.546805\n", + "Epoch : 25 [20/36(56%)]\tLoss: 0.946094\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.319605\n", + "Epoch : 25 [28/36(78%)]\tLoss: 0.221041\n", + "Epoch : 25 [32/36(89%)]\tLoss: 0.622244\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.090774\n", + "Epoch : 26 [4/36(11%)]\tLoss: 0.225311\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.023461\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.598799\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.638063\n", + "Epoch : 26 [20/36(56%)]\tLoss: 0.734081\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.336795\n", + "Epoch : 26 [28/36(78%)]\tLoss: 0.161432\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.519571\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.055354\n", + "Epoch : 27 [4/36(11%)]\tLoss: 0.315078\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.032695\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.304411\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.429313\n", + "Epoch : 27 [20/36(56%)]\tLoss: 0.670855\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.223874\n", + "Epoch : 27 [28/36(78%)]\tLoss: 0.096372\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.442577\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.059600\n", + "Epoch : 28 [4/36(11%)]\tLoss: 0.211672\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.005840\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.225026\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.411765\n", + "Epoch : 28 [20/36(56%)]\tLoss: 0.609525\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.179022\n", + "Epoch : 28 [28/36(78%)]\tLoss: 0.100954\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.401543\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.053002\n", + "Epoch : 29 [4/36(11%)]\tLoss: 0.253042\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.032760\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.385629\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.470587\n", + "Epoch : 29 [20/36(56%)]\tLoss: 0.558026\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.382035\n", + "Epoch : 29 [28/36(78%)]\tLoss: 0.095259\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.499413\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.062289\n", + "Epoch : 30 [4/36(11%)]\tLoss: 0.218956\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.024757\n", + "Epoch : 30 [12/36(33%)]\tLoss: 0.360536\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.450123\n", + "Epoch : 30 [20/36(56%)]\tLoss: 0.430200\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.099528\n", + "Epoch : 30 [28/36(78%)]\tLoss: 0.065345\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.323082\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.021618\n", + "Epoch : 31 [4/36(11%)]\tLoss: 0.051878\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.014695\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.288947\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.293806\n", + "Epoch : 31 [20/36(56%)]\tLoss: 0.476934\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.091155\n", + "Epoch : 31 [28/36(78%)]\tLoss: 0.057827\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.252634\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.077214\n", + "Epoch : 32 [4/36(11%)]\tLoss: 0.089132\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.108042\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.290404\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.260178\n", + "Epoch : 32 [20/36(56%)]\tLoss: 0.586955\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.117893\n", + "Epoch : 32 [28/36(78%)]\tLoss: 0.132796\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.166074\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.029347\n", + "Epoch : 33 [4/36(11%)]\tLoss: 0.068154\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.097051\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.241436\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.414028\n", + "Epoch : 33 [20/36(56%)]\tLoss: 0.477919\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.156360\n", + "Epoch : 33 [28/36(78%)]\tLoss: 0.068574\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.489458\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.039483\n", + "Epoch : 34 [4/36(11%)]\tLoss: 0.104290\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.027518\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.281280\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.334133\n", + "Epoch : 34 [20/36(56%)]\tLoss: 0.286093\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.161606\n", + "Epoch : 34 [28/36(78%)]\tLoss: 0.055878\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.244046\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.022621\n", + "Epoch : 35 [4/36(11%)]\tLoss: 0.038350\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.098434\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.294715\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.223673\n", + "Epoch : 35 [20/36(56%)]\tLoss: 0.447094\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.065365\n", + "Epoch : 35 [28/36(78%)]\tLoss: 0.063699\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.128954\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.027052\n", + "Epoch : 36 [4/36(11%)]\tLoss: 0.114533\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.141185\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.268561\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.433334\n", + "Epoch : 36 [20/36(56%)]\tLoss: 0.354033\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.362726\n", + "Epoch : 36 [28/36(78%)]\tLoss: 0.086243\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.331907\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.071437\n", + "Epoch : 37 [4/36(11%)]\tLoss: 0.067369\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.054396\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.504052\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.460586\n", + "Epoch : 37 [20/36(56%)]\tLoss: 0.430205\n", + "Epoch : 37 [24/36(67%)]\tLoss: 1.945858\n", + "Epoch : 37 [28/36(78%)]\tLoss: 0.029698\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.279440\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.078871\n", + "Epoch : 38 [4/36(11%)]\tLoss: 0.225232\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.422833\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.587391\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.974295\n", + "Epoch : 38 [20/36(56%)]\tLoss: 1.259005\n", + "Epoch : 38 [24/36(67%)]\tLoss: 1.187464\n", + "Epoch : 38 [28/36(78%)]\tLoss: 0.448592\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.209086\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.500301\n", + "Epoch : 39 [4/36(11%)]\tLoss: 0.367923\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.060758\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.521755\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.803717\n", + "Epoch : 39 [20/36(56%)]\tLoss: 1.176471\n", + "Epoch : 39 [24/36(67%)]\tLoss: 1.156743\n", + "Epoch : 39 [28/36(78%)]\tLoss: 0.778955\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.732325\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.102499\n", + "Epoch : 40 [4/36(11%)]\tLoss: 0.099815\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.687909\n", + "Epoch : 40 [12/36(33%)]\tLoss: 1.915788\n", + "Epoch : 40 [16/36(44%)]\tLoss: 1.009312\n", + "Epoch : 40 [20/36(56%)]\tLoss: 0.504842\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.681319\n", + "Epoch : 40 [28/36(78%)]\tLoss: 0.396782\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.680996\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.398821\n", + "Epoch : 41 [4/36(11%)]\tLoss: 0.124198\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.074729\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.180139\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.233009\n", + "Epoch : 41 [20/36(56%)]\tLoss: 0.165416\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.715789\n", + "Epoch : 41 [28/36(78%)]\tLoss: 0.121776\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.668122\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.284105\n", + "Epoch : 42 [4/36(11%)]\tLoss: 0.080967\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.198853\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.274801\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.642742\n", + "Epoch : 42 [20/36(56%)]\tLoss: 0.586983\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.483698\n", + "Epoch : 42 [28/36(78%)]\tLoss: 0.145311\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.388276\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.262953\n", + "Epoch : 43 [4/36(11%)]\tLoss: 0.167837\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.025385\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.208954\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.548593\n", + "Epoch : 43 [20/36(56%)]\tLoss: 0.527186\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.393848\n", + "Epoch : 43 [28/36(78%)]\tLoss: 0.110200\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.200149\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.036351\n", + "Epoch : 44 [4/36(11%)]\tLoss: 0.137806\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.413478\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.370649\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.083914\n", + "Epoch : 44 [20/36(56%)]\tLoss: 0.564026\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.430954\n", + "Epoch : 44 [28/36(78%)]\tLoss: 0.234893\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.285551\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.080290\n", + "Epoch : 45 [4/36(11%)]\tLoss: 0.031265\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.033516\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.352272\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.266103\n", + "Epoch : 45 [20/36(56%)]\tLoss: 0.187139\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.507977\n", + "Epoch : 45 [28/36(78%)]\tLoss: 0.110415\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.118829\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.028963\n", + "Epoch : 46 [4/36(11%)]\tLoss: 0.161181\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.509685\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.230069\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.074094\n", + "Epoch : 46 [20/36(56%)]\tLoss: 0.232605\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.407399\n", + "Epoch : 46 [28/36(78%)]\tLoss: 0.069872\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.116301\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.158979\n", + "Epoch : 47 [4/36(11%)]\tLoss: 0.134198\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.155724\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.044550\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.138504\n", + "Epoch : 47 [20/36(56%)]\tLoss: 0.411191\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.309806\n", + "Epoch : 47 [28/36(78%)]\tLoss: 0.057210\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.113938\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.014707\n", + "Epoch : 48 [4/36(11%)]\tLoss: 0.255369\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.062400\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.796191\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.182202\n", + "Epoch : 48 [20/36(56%)]\tLoss: 0.166849\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.329566\n", + "Epoch : 48 [28/36(78%)]\tLoss: 0.156756\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.240300\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.167542\n", + "Epoch : 49 [4/36(11%)]\tLoss: 0.027897\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.181424\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.155569\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.187208\n", + "Epoch : 49 [20/36(56%)]\tLoss: 0.191062\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.434603\n", + "Epoch : 49 [28/36(78%)]\tLoss: 0.118187\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.127666\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.006532\n", + "Epoch : 50 [4/36(11%)]\tLoss: 0.009931\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.260848\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.160148\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.194179\n", + "Epoch : 50 [20/36(56%)]\tLoss: 0.259759\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.205414\n", + "Epoch : 50 [28/36(78%)]\tLoss: 0.038887\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.118897\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.164121\n", + "Epoch : 51 [4/36(11%)]\tLoss: 0.081178\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.099315\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.072126\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.043392\n", + "Epoch : 51 [20/36(56%)]\tLoss: 0.231936\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.117816\n", + "Epoch : 51 [28/36(78%)]\tLoss: 0.039198\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.196232\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.077942\n", + "Epoch : 52 [4/36(11%)]\tLoss: 0.019603\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.029921\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.249503\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.116644\n", + "Epoch : 52 [20/36(56%)]\tLoss: 0.183227\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.128274\n", + "Epoch : 52 [28/36(78%)]\tLoss: 0.017158\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.089993\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.004994\n", + "Epoch : 53 [4/36(11%)]\tLoss: 0.026188\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.169900\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.137267\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.047292\n", + "Epoch : 53 [20/36(56%)]\tLoss: 0.075372\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.229485\n", + "Epoch : 53 [28/36(78%)]\tLoss: 0.039357\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.067607\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.054369\n", + "Epoch : 54 [4/36(11%)]\tLoss: 0.074546\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.035754\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.150721\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.083241\n", + "Epoch : 54 [20/36(56%)]\tLoss: 0.140383\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.109975\n", + "Epoch : 54 [28/36(78%)]\tLoss: 0.012998\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.032162\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.009925\n", + "Epoch : 55 [4/36(11%)]\tLoss: 0.108467\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.011247\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.144899\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.061174\n", + "Epoch : 55 [20/36(56%)]\tLoss: 0.156759\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.086459\n", + "Epoch : 55 [28/36(78%)]\tLoss: 0.099452\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.098238\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.057272\n", + "Epoch : 56 [4/36(11%)]\tLoss: 0.028249\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.010880\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.104535\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.130396\n", + "Epoch : 56 [20/36(56%)]\tLoss: 0.040677\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.167725\n", + "Epoch : 56 [28/36(78%)]\tLoss: 0.066671\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.030228\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.041665\n", + "Epoch : 57 [4/36(11%)]\tLoss: 0.011636\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.158665\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.061332\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.074136\n", + "Epoch : 57 [20/36(56%)]\tLoss: 0.060196\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.128281\n", + "Epoch : 57 [28/36(78%)]\tLoss: 0.083816\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.063464\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.052109\n", + "Epoch : 58 [4/36(11%)]\tLoss: 0.054980\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.026843\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.117108\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.101506\n", + "Epoch : 58 [20/36(56%)]\tLoss: 0.212144\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.150426\n", + "Epoch : 58 [28/36(78%)]\tLoss: 0.050739\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.046941\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.043218\n", + "Epoch : 59 [4/36(11%)]\tLoss: 0.129434\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.031534\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.077064\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.175640\n", + "Epoch : 59 [20/36(56%)]\tLoss: 0.047728\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.082367\n", + "Epoch : 59 [28/36(78%)]\tLoss: 0.013607\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.085074\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.103003\n", + "Epoch : 60 [4/36(11%)]\tLoss: 0.052224\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.085032\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.016292\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.054939\n", + "Epoch : 60 [20/36(56%)]\tLoss: 0.050280\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.182439\n", + "Epoch : 60 [28/36(78%)]\tLoss: 0.069753\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.036221\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.014656\n", + "Epoch : 61 [4/36(11%)]\tLoss: 0.010945\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.123323\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.048453\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.050048\n", + "Epoch : 61 [20/36(56%)]\tLoss: 0.084667\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.087909\n", + "Epoch : 61 [28/36(78%)]\tLoss: 0.042712\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.061586\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.031249\n", + "Epoch : 62 [4/36(11%)]\tLoss: 0.074139\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.006327\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.008108\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.033184\n", + "Epoch : 62 [20/36(56%)]\tLoss: 0.124065\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.057760\n", + "Epoch : 62 [28/36(78%)]\tLoss: 0.031781\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.026651\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.010087\n", + "Epoch : 63 [4/36(11%)]\tLoss: 0.098889\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.009091\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.058954\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.066109\n", + "Epoch : 63 [20/36(56%)]\tLoss: 0.048226\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.074268\n", + "Epoch : 63 [28/36(78%)]\tLoss: 0.053960\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.065550\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.050128\n", + "Epoch : 64 [4/36(11%)]\tLoss: 0.006571\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.007639\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.007205\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.094372\n", + "Epoch : 64 [20/36(56%)]\tLoss: 0.026975\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.155497\n", + "Epoch : 64 [28/36(78%)]\tLoss: 0.018759\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.019661\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.000809\n", + "Epoch : 65 [4/36(11%)]\tLoss: 0.005971\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.061647\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.039291\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.051379\n", + "Epoch : 65 [20/36(56%)]\tLoss: 0.048297\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.081505\n", + "Epoch : 65 [28/36(78%)]\tLoss: 0.007329\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.018534\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.012639\n", + "Epoch : 66 [4/36(11%)]\tLoss: 0.024819\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.027003\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.015490\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.027188\n", + "Epoch : 66 [20/36(56%)]\tLoss: 0.055324\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.065316\n", + "Epoch : 66 [28/36(78%)]\tLoss: 0.040216\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.028610\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.019266\n", + "Epoch : 67 [4/36(11%)]\tLoss: 0.006832\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.003817\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.030086\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.092980\n", + "Epoch : 67 [20/36(56%)]\tLoss: 0.027223\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.085994\n", + "Epoch : 67 [28/36(78%)]\tLoss: 0.005632\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.018713\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.033993\n", + "Epoch : 68 [4/36(11%)]\tLoss: 0.023364\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.019478\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.014350\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.027154\n", + "Epoch : 68 [20/36(56%)]\tLoss: 0.033001\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.095871\n", + "Epoch : 68 [28/36(78%)]\tLoss: 0.020416\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.020234\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.006652\n", + "Epoch : 69 [4/36(11%)]\tLoss: 0.031881\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.001898\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.012139\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.036343\n", + "Epoch : 69 [20/36(56%)]\tLoss: 0.092595\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.068929\n", + "Epoch : 69 [28/36(78%)]\tLoss: 0.021780\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.010346\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.030370\n", + "Epoch : 70 [4/36(11%)]\tLoss: 0.053909\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.005442\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.009270\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.060041\n", + "Epoch : 70 [20/36(56%)]\tLoss: 0.049605\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.058340\n", + "Epoch : 70 [28/36(78%)]\tLoss: 0.026730\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.046976\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.021622\n", + "Epoch : 71 [4/36(11%)]\tLoss: 0.021870\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.016480\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.018765\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.038077\n", + "Epoch : 71 [20/36(56%)]\tLoss: 0.032522\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.054256\n", + "Epoch : 71 [28/36(78%)]\tLoss: 0.010717\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.018044\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.018884\n", + "Epoch : 72 [4/36(11%)]\tLoss: 0.003566\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.017747\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.008751\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.003732\n", + "Epoch : 72 [20/36(56%)]\tLoss: 0.015313\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.106952\n", + "Epoch : 72 [28/36(78%)]\tLoss: 0.044561\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.016322\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.026158\n", + "Epoch : 73 [4/36(11%)]\tLoss: 0.007161\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.063156\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.048873\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.028499\n", + "Epoch : 73 [20/36(56%)]\tLoss: 0.043310\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.044804\n", + "Epoch : 73 [28/36(78%)]\tLoss: 0.025726\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.002905\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.033039\n", + "Epoch : 74 [4/36(11%)]\tLoss: 0.031960\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.005513\n", + "Epoch : 74 [12/36(33%)]\tLoss: 0.007380\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.014528\n", + "Epoch : 74 [20/36(56%)]\tLoss: 0.058194\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.015462\n", + "Epoch : 74 [28/36(78%)]\tLoss: 0.026710\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.018382\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.013067\n", + "Epoch : 75 [4/36(11%)]\tLoss: 0.029270\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.012055\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.037531\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.070944\n", + "Epoch : 75 [20/36(56%)]\tLoss: 0.019141\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.016076\n", + "Epoch : 75 [28/36(78%)]\tLoss: 0.039669\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.040443\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.041922\n", + "Epoch : 76 [4/36(11%)]\tLoss: 0.015740\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.002811\n", + "Epoch : 76 [12/36(33%)]\tLoss: 0.007708\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.130680\n", + "Epoch : 76 [20/36(56%)]\tLoss: 0.035098\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.136663\n", + "Epoch : 76 [28/36(78%)]\tLoss: 0.060807\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.011094\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.001728\n", + "Epoch : 77 [4/36(11%)]\tLoss: 0.011471\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.089167\n", + "Epoch : 77 [12/36(33%)]\tLoss: 0.078577\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.007259\n", + "Epoch : 77 [20/36(56%)]\tLoss: 0.048903\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.038061\n", + "Epoch : 77 [28/36(78%)]\tLoss: 0.053143\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.034176\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.049357\n", + "Epoch : 78 [4/36(11%)]\tLoss: 0.013471\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.009318\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.021130\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.009979\n", + "Epoch : 78 [20/36(56%)]\tLoss: 0.089548\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.049293\n", + "Epoch : 78 [28/36(78%)]\tLoss: 0.029231\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.010770\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.003204\n", + "Epoch : 79 [4/36(11%)]\tLoss: 0.047518\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.012766\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.032709\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.088890\n", + "Epoch : 79 [20/36(56%)]\tLoss: 0.021922\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.014316\n", + "Epoch : 79 [28/36(78%)]\tLoss: 0.038254\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.033241\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.060068\n", + "Epoch : 80 [4/36(11%)]\tLoss: 0.010433\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.002113\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.010526\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.086736\n", + "Epoch : 80 [20/36(56%)]\tLoss: 0.015795\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.053965\n", + "Epoch : 80 [28/36(78%)]\tLoss: 0.015447\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.015597\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.014114\n", + "Epoch : 81 [4/36(11%)]\tLoss: 0.011226\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.077555\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.020359\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.040423\n", + "Epoch : 81 [20/36(56%)]\tLoss: 0.014186\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.060796\n", + "Epoch : 81 [28/36(78%)]\tLoss: 0.098217\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.035185\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.028576\n", + "Epoch : 82 [4/36(11%)]\tLoss: 0.009576\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.034584\n", + "Epoch : 82 [12/36(33%)]\tLoss: 0.028327\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.124545\n", + "Epoch : 82 [20/36(56%)]\tLoss: 0.080586\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.015497\n", + "Epoch : 82 [28/36(78%)]\tLoss: 0.012929\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.025445\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.054948\n", + "Epoch : 83 [4/36(11%)]\tLoss: 0.046828\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.003676\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.221500\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.045107\n", + "Epoch : 83 [20/36(56%)]\tLoss: 0.129102\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.097959\n", + "Epoch : 83 [28/36(78%)]\tLoss: 0.206496\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.060525\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.029312\n", + "Epoch : 84 [4/36(11%)]\tLoss: 0.064173\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.072909\n", + "Epoch : 84 [12/36(33%)]\tLoss: 0.508312\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.104812\n", + "Epoch : 84 [20/36(56%)]\tLoss: 0.055612\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.023398\n", + "Epoch : 84 [28/36(78%)]\tLoss: 0.062651\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.082578\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.123767\n", + "Epoch : 85 [4/36(11%)]\tLoss: 0.037933\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.299625\n", + "Epoch : 85 [12/36(33%)]\tLoss: 0.239910\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.418560\n", + "Epoch : 85 [20/36(56%)]\tLoss: 0.221687\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.292816\n", + "Epoch : 85 [28/36(78%)]\tLoss: 0.082767\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.014237\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.096090\n", + "Epoch : 86 [4/36(11%)]\tLoss: 0.193831\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.403055\n", + "Epoch : 86 [12/36(33%)]\tLoss: 0.375565\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.159821\n", + "Epoch : 86 [20/36(56%)]\tLoss: 0.030995\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.294489\n", + "Epoch : 86 [28/36(78%)]\tLoss: 0.418532\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.645209\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.318945\n", + "Epoch : 87 [4/36(11%)]\tLoss: 0.049834\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.274936\n", + "Epoch : 87 [12/36(33%)]\tLoss: 0.401003\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.491363\n", + "Epoch : 87 [20/36(56%)]\tLoss: 0.547275\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.076033\n", + "Epoch : 87 [28/36(78%)]\tLoss: 0.017618\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.097072\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.286551\n", + "Epoch : 88 [4/36(11%)]\tLoss: 0.600967\n", + "Epoch : 88 [8/36(22%)]\tLoss: 1.458258\n", + "Epoch : 88 [12/36(33%)]\tLoss: 0.345130\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.121254\n", + "Epoch : 88 [20/36(56%)]\tLoss: 0.608567\n", + "Epoch : 88 [24/36(67%)]\tLoss: 1.117395\n", + "Epoch : 88 [28/36(78%)]\tLoss: 1.330236\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.454643\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.193640\n", + "Epoch : 89 [4/36(11%)]\tLoss: 0.338900\n", + "Epoch : 89 [8/36(22%)]\tLoss: 2.400672\n", + "Epoch : 89 [12/36(33%)]\tLoss: 1.733737\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.485300\n", + "Epoch : 89 [20/36(56%)]\tLoss: 0.067996\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.266644\n", + "Epoch : 89 [28/36(78%)]\tLoss: 0.621732\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.895152\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.442894\n", + "Epoch : 90 [4/36(11%)]\tLoss: 0.229295\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.048027\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.291734\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.578574\n", + "Epoch : 90 [20/36(56%)]\tLoss: 0.706832\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.697539\n", + "Epoch : 90 [28/36(78%)]\tLoss: 0.270194\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.020030\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.063091\n", + "Epoch : 91 [4/36(11%)]\tLoss: 0.232640\n", + "Epoch : 91 [8/36(22%)]\tLoss: 1.341373\n", + "Epoch : 91 [12/36(33%)]\tLoss: 1.156435\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.579583\n", + "Epoch : 91 [20/36(56%)]\tLoss: 0.442662\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.767155\n", + "Epoch : 91 [28/36(78%)]\tLoss: 1.280817\n", + "Epoch : 91 [32/36(89%)]\tLoss: 1.210340\n", + "Epoch : 92 [0/36(0%)]\tLoss: 1.587707\n", + "Epoch : 92 [4/36(11%)]\tLoss: 0.431082\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.190863\n", + "Epoch : 92 [12/36(33%)]\tLoss: 1.058663\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.948559\n", + "Epoch : 92 [20/36(56%)]\tLoss: 1.588207\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.467622\n", + "Epoch : 92 [28/36(78%)]\tLoss: 0.162031\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.061248\n", + "Epoch : 93 [0/36(0%)]\tLoss: 1.002554\n", + "Epoch : 93 [4/36(11%)]\tLoss: 2.457258\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.742493\n", + "Epoch : 93 [12/36(33%)]\tLoss: 0.355845\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.790726\n", + "Epoch : 93 [20/36(56%)]\tLoss: 1.158437\n", + "Epoch : 93 [24/36(67%)]\tLoss: 1.603570\n", + "Epoch : 93 [28/36(78%)]\tLoss: 2.317739\n", + "Epoch : 93 [32/36(89%)]\tLoss: 1.050563\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.094547\n", + "Epoch : 94 [4/36(11%)]\tLoss: 0.284017\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.922509\n", + "Epoch : 94 [12/36(33%)]\tLoss: 1.722623\n", + "Epoch : 94 [16/36(44%)]\tLoss: 1.583202\n", + "Epoch : 94 [20/36(56%)]\tLoss: 0.678467\n", + "Epoch : 94 [24/36(67%)]\tLoss: 1.081480\n", + "Epoch : 94 [28/36(78%)]\tLoss: 0.194771\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.485145\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.206625\n", + "Epoch : 95 [4/36(11%)]\tLoss: 0.156031\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.185859\n", + "Epoch : 95 [12/36(33%)]\tLoss: 0.507159\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.681800\n", + "Epoch : 95 [20/36(56%)]\tLoss: 0.375758\n", + "Epoch : 95 [24/36(67%)]\tLoss: 1.310590\n", + "Epoch : 95 [28/36(78%)]\tLoss: 0.284491\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.149120\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.022800\n", + "Epoch : 96 [4/36(11%)]\tLoss: 0.098812\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.351643\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.256976\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.110145\n", + "Epoch : 96 [20/36(56%)]\tLoss: 0.382431\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.819071\n", + "Epoch : 96 [28/36(78%)]\tLoss: 0.098369\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.146612\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.018163\n", + "Epoch : 97 [4/36(11%)]\tLoss: 0.070637\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.138127\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.071191\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.069085\n", + "Epoch : 97 [20/36(56%)]\tLoss: 0.393753\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.719452\n", + "Epoch : 97 [28/36(78%)]\tLoss: 0.189512\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.132531\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.059551\n", + "Epoch : 98 [4/36(11%)]\tLoss: 0.142040\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.204825\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.059145\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.090941\n", + "Epoch : 98 [20/36(56%)]\tLoss: 0.339552\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.347569\n", + "Epoch : 98 [28/36(78%)]\tLoss: 0.137678\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.222269\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.152922\n", + "Epoch : 99 [4/36(11%)]\tLoss: 0.058461\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.082398\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.185954\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.195218\n", + "Epoch : 99 [20/36(56%)]\tLoss: 0.713628\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.191519\n", + "Epoch : 99 [28/36(78%)]\tLoss: 0.042053\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.093058\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.180418\n", + "Epoch : 100 [4/36(11%)]\tLoss: 0.372499\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.051689\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.376313\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.102542\n", + "Epoch : 100 [20/36(56%)]\tLoss: 0.412209\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.320818\n", + "Epoch : 100 [28/36(78%)]\tLoss: 0.498189\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.371949\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.098156\n", + "Epoch : 101 [4/36(11%)]\tLoss: 0.071554\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.208048\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.319775\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.161324\n", + "Epoch : 101 [20/36(56%)]\tLoss: 0.091876\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.295646\n", + "Epoch : 101 [28/36(78%)]\tLoss: 0.058079\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.065092\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.062900\n", + "Epoch : 102 [4/36(11%)]\tLoss: 0.080831\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.103076\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.051190\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.121835\n", + "Epoch : 102 [20/36(56%)]\tLoss: 0.035047\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.217320\n", + "Epoch : 102 [28/36(78%)]\tLoss: 0.100403\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.006583\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.029455\n", + "Epoch : 103 [4/36(11%)]\tLoss: 0.015840\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.064331\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.064453\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.088273\n", + "Epoch : 103 [20/36(56%)]\tLoss: 0.229750\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.136411\n", + "Epoch : 103 [28/36(78%)]\tLoss: 0.110149\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.015274\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.125090\n", + "Epoch : 104 [4/36(11%)]\tLoss: 0.112569\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.022466\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.042785\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.028290\n", + "Epoch : 104 [20/36(56%)]\tLoss: 0.341767\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.153362\n", + "Epoch : 104 [28/36(78%)]\tLoss: 0.168164\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.030814\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.014589\n", + "Epoch : 105 [4/36(11%)]\tLoss: 0.132141\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.110822\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.257005\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.109289\n", + "Epoch : 105 [20/36(56%)]\tLoss: 0.131181\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.061289\n", + "Epoch : 105 [28/36(78%)]\tLoss: 0.225857\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.177263\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.202877\n", + "Epoch : 106 [4/36(11%)]\tLoss: 0.011546\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.011662\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.237965\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.209000\n", + "Epoch : 106 [20/36(56%)]\tLoss: 0.089149\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.154248\n", + "Epoch : 106 [28/36(78%)]\tLoss: 0.036268\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.023461\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.057427\n", + "Epoch : 107 [4/36(11%)]\tLoss: 0.056115\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.473958\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.013499\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.110610\n", + "Epoch : 107 [20/36(56%)]\tLoss: 0.022933\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.379264\n", + "Epoch : 107 [28/36(78%)]\tLoss: 0.319003\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.222666\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.119405\n", + "Epoch : 108 [4/36(11%)]\tLoss: 0.016666\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.174814\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.205961\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.281657\n", + "Epoch : 108 [20/36(56%)]\tLoss: 0.337851\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.053482\n", + "Epoch : 108 [28/36(78%)]\tLoss: 0.041247\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.118849\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.212070\n", + "Epoch : 109 [4/36(11%)]\tLoss: 0.361608\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.034922\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.275924\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.082610\n", + "Epoch : 109 [20/36(56%)]\tLoss: 0.616978\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.415295\n", + "Epoch : 109 [28/36(78%)]\tLoss: 0.478778\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.121583\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.044095\n", + "Epoch : 110 [4/36(11%)]\tLoss: 0.190831\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.195188\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.590313\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.466319\n", + "Epoch : 110 [20/36(56%)]\tLoss: 0.023915\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.358943\n", + "Epoch : 110 [28/36(78%)]\tLoss: 0.337139\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.465906\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.557188\n", + "Epoch : 111 [4/36(11%)]\tLoss: 0.225138\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.120028\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.133798\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.365417\n", + "Epoch : 111 [20/36(56%)]\tLoss: 0.303740\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.715328\n", + "Epoch : 111 [28/36(78%)]\tLoss: 0.196875\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.067629\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.026257\n", + "Epoch : 112 [4/36(11%)]\tLoss: 0.143152\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.559690\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.282462\n", + "Epoch : 112 [16/36(44%)]\tLoss: 1.610202\n", + "Epoch : 112 [20/36(56%)]\tLoss: 0.038804\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.537446\n", + "Epoch : 112 [28/36(78%)]\tLoss: 0.522981\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.659231\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.411895\n", + "Epoch : 113 [4/36(11%)]\tLoss: 0.118564\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.072225\n", + "Epoch : 113 [12/36(33%)]\tLoss: 0.355751\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.270166\n", + "Epoch : 113 [20/36(56%)]\tLoss: 0.565129\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.385102\n", + "Epoch : 113 [28/36(78%)]\tLoss: 0.217509\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.152268\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.215111\n", + "Epoch : 114 [4/36(11%)]\tLoss: 0.841309\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.820539\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.522340\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.110692\n", + "Epoch : 114 [20/36(56%)]\tLoss: 0.680304\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.907340\n", + "Epoch : 114 [28/36(78%)]\tLoss: 0.897257\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.184456\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.213095\n", + "Epoch : 115 [4/36(11%)]\tLoss: 0.447343\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.351377\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.873462\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.432787\n", + "Epoch : 115 [20/36(56%)]\tLoss: 0.280614\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.262190\n", + "Epoch : 115 [28/36(78%)]\tLoss: 0.690147\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.289179\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.213759\n", + "Epoch : 116 [4/36(11%)]\tLoss: 0.126740\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.161862\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.392817\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.475456\n", + "Epoch : 116 [20/36(56%)]\tLoss: 0.709515\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.305578\n", + "Epoch : 116 [28/36(78%)]\tLoss: 0.684106\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.300216\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.351820\n", + "Epoch : 117 [4/36(11%)]\tLoss: 0.681093\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.638687\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.195692\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.244187\n", + "Epoch : 117 [20/36(56%)]\tLoss: 0.778306\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.495086\n", + "Epoch : 117 [28/36(78%)]\tLoss: 0.885813\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.104116\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.060028\n", + "Epoch : 118 [4/36(11%)]\tLoss: 0.429530\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.815812\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.333339\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.095256\n", + "Epoch : 118 [20/36(56%)]\tLoss: 0.336596\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.294469\n", + "Epoch : 118 [28/36(78%)]\tLoss: 0.681504\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.266233\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.125276\n", + "Epoch : 119 [4/36(11%)]\tLoss: 0.138902\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.463477\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.222490\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.167044\n", + "Epoch : 119 [20/36(56%)]\tLoss: 0.553772\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.224920\n", + "Epoch : 119 [28/36(78%)]\tLoss: 0.100105\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.294948\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.439457\n", + "Epoch : 120 [4/36(11%)]\tLoss: 0.587556\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.203716\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.193023\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.102177\n", + "Epoch : 120 [20/36(56%)]\tLoss: 0.794715\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.403284\n", + "Epoch : 120 [28/36(78%)]\tLoss: 0.651255\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.202771\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.065095\n", + "Epoch : 121 [4/36(11%)]\tLoss: 0.748719\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.839231\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.960712\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.270972\n", + "Epoch : 121 [20/36(56%)]\tLoss: 0.335473\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.373509\n", + "Epoch : 121 [28/36(78%)]\tLoss: 0.588890\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.780454\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.177262\n", + "Epoch : 122 [4/36(11%)]\tLoss: 0.024639\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.516328\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.528183\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.353953\n", + "Epoch : 122 [20/36(56%)]\tLoss: 0.207810\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.159342\n", + "Epoch : 122 [28/36(78%)]\tLoss: 0.238166\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.207007\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.177172\n", + "Epoch : 123 [4/36(11%)]\tLoss: 0.201061\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.296822\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.178444\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.168107\n", + "Epoch : 123 [20/36(56%)]\tLoss: 0.318168\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.251108\n", + "Epoch : 123 [28/36(78%)]\tLoss: 0.277393\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.120885\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.003149\n", + "Epoch : 124 [4/36(11%)]\tLoss: 0.190660\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.561729\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.199584\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.049625\n", + "Epoch : 124 [20/36(56%)]\tLoss: 0.588196\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.325892\n", + "Epoch : 124 [28/36(78%)]\tLoss: 0.264480\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.350180\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.187860\n", + "Epoch : 125 [4/36(11%)]\tLoss: 0.044700\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.244215\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.113055\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.499280\n", + "Epoch : 125 [20/36(56%)]\tLoss: 0.376683\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.192688\n", + "Epoch : 125 [28/36(78%)]\tLoss: 0.475990\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.167439\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.150521\n", + "Epoch : 126 [4/36(11%)]\tLoss: 0.674579\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.725140\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.911837\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.453074\n", + "Epoch : 126 [20/36(56%)]\tLoss: 0.744065\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.770269\n", + "Epoch : 126 [28/36(78%)]\tLoss: 0.987456\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.764677\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.214949\n", + "Epoch : 127 [4/36(11%)]\tLoss: 0.435029\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.800783\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.672624\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.341878\n", + "Epoch : 127 [20/36(56%)]\tLoss: 0.796726\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.425987\n", + "Epoch : 127 [28/36(78%)]\tLoss: 0.183704\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.287333\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.029028\n", + "Epoch : 128 [4/36(11%)]\tLoss: 0.014505\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.106183\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.310057\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.284194\n", + "Epoch : 128 [20/36(56%)]\tLoss: 0.328578\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.206202\n", + "Epoch : 128 [28/36(78%)]\tLoss: 0.059902\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.117519\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.064365\n", + "Epoch : 129 [4/36(11%)]\tLoss: 0.180039\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.391870\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.133589\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.232480\n", + "Epoch : 129 [20/36(56%)]\tLoss: 0.213122\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.141193\n", + "Epoch : 129 [28/36(78%)]\tLoss: 0.142637\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.076997\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.119398\n", + "Epoch : 130 [4/36(11%)]\tLoss: 0.030102\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.313670\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.238941\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.046464\n", + "Epoch : 130 [20/36(56%)]\tLoss: 0.093256\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.219240\n", + "Epoch : 130 [28/36(78%)]\tLoss: 0.040623\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.117268\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.145820\n", + "Epoch : 131 [4/36(11%)]\tLoss: 0.290570\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.063929\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.053726\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.127020\n", + "Epoch : 131 [20/36(56%)]\tLoss: 0.237310\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.070677\n", + "Epoch : 131 [28/36(78%)]\tLoss: 0.194483\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.026020\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.025214\n", + "Epoch : 132 [4/36(11%)]\tLoss: 0.094226\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.045045\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.699948\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.465790\n", + "Epoch : 132 [20/36(56%)]\tLoss: 0.198258\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.349449\n", + "Epoch : 132 [28/36(78%)]\tLoss: 0.644778\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.297318\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.165623\n", + "Epoch : 133 [4/36(11%)]\tLoss: 0.040356\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.186393\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.845973\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.558266\n", + "Epoch : 133 [20/36(56%)]\tLoss: 0.727727\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.126592\n", + "Epoch : 133 [28/36(78%)]\tLoss: 0.088078\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.085219\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.122611\n", + "Epoch : 134 [4/36(11%)]\tLoss: 0.102608\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.263440\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.035870\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.260264\n", + "Epoch : 134 [20/36(56%)]\tLoss: 0.623891\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.384641\n", + "Epoch : 134 [28/36(78%)]\tLoss: 0.191557\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.210969\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.036168\n", + "Epoch : 135 [4/36(11%)]\tLoss: 0.240559\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.745008\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.413358\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.673843\n", + "Epoch : 135 [20/36(56%)]\tLoss: 0.537171\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.540860\n", + "Epoch : 135 [28/36(78%)]\tLoss: 1.161916\n", + "Epoch : 135 [32/36(89%)]\tLoss: 1.083004\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.556653\n", + "Epoch : 136 [4/36(11%)]\tLoss: 0.060514\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.238417\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.494700\n", + "Epoch : 136 [16/36(44%)]\tLoss: 1.639770\n", + "Epoch : 136 [20/36(56%)]\tLoss: 1.656041\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.383328\n", + "Epoch : 136 [28/36(78%)]\tLoss: 0.156291\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.770658\n", + "Epoch : 137 [0/36(0%)]\tLoss: 1.517101\n", + "Epoch : 137 [4/36(11%)]\tLoss: 1.361725\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.238943\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.163507\n", + "Epoch : 137 [16/36(44%)]\tLoss: 1.036246\n", + "Epoch : 137 [20/36(56%)]\tLoss: 2.658661\n", + "Epoch : 137 [24/36(67%)]\tLoss: 1.395220\n", + "Epoch : 137 [28/36(78%)]\tLoss: 0.478440\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.308120\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.500586\n", + "Epoch : 138 [4/36(11%)]\tLoss: 2.104773\n", + "Epoch : 138 [8/36(22%)]\tLoss: 1.637633\n", + "Epoch : 138 [12/36(33%)]\tLoss: 1.793202\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.504744\n", + "Epoch : 138 [20/36(56%)]\tLoss: 1.680740\n", + "Epoch : 138 [24/36(67%)]\tLoss: 1.559327\n", + "Epoch : 138 [28/36(78%)]\tLoss: 1.628159\n", + "Epoch : 138 [32/36(89%)]\tLoss: 1.694589\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.219593\n", + "Epoch : 139 [4/36(11%)]\tLoss: 0.555289\n", + "Epoch : 139 [8/36(22%)]\tLoss: 1.209407\n", + "Epoch : 139 [12/36(33%)]\tLoss: 2.383899\n", + "Epoch : 139 [16/36(44%)]\tLoss: 1.408342\n", + "Epoch : 139 [20/36(56%)]\tLoss: 0.450214\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.438014\n", + "Epoch : 139 [28/36(78%)]\tLoss: 0.453934\n", + "Epoch : 139 [32/36(89%)]\tLoss: 1.444776\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.994853\n", + "Epoch : 140 [4/36(11%)]\tLoss: 0.441456\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.117624\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.605997\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.850923\n", + "Epoch : 140 [20/36(56%)]\tLoss: 0.608300\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.771678\n", + "Epoch : 140 [28/36(78%)]\tLoss: 0.279906\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.671098\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.189627\n", + "Epoch : 141 [4/36(11%)]\tLoss: 0.484443\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.764347\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.356374\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.314666\n", + "Epoch : 141 [20/36(56%)]\tLoss: 0.628811\n", + "Epoch : 141 [24/36(67%)]\tLoss: 1.149972\n", + "Epoch : 141 [28/36(78%)]\tLoss: 0.939379\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.975586\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.239842\n", + "Epoch : 142 [4/36(11%)]\tLoss: 0.134903\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.583294\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.465014\n", + "Epoch : 142 [16/36(44%)]\tLoss: 1.102543\n", + "Epoch : 142 [20/36(56%)]\tLoss: 1.113192\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.329958\n", + "Epoch : 142 [28/36(78%)]\tLoss: 0.664213\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.836566\n", + "Epoch : 143 [0/36(0%)]\tLoss: 1.807429\n", + "Epoch : 143 [4/36(11%)]\tLoss: 0.556531\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.009636\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.264482\n", + "Epoch : 143 [16/36(44%)]\tLoss: 1.291903\n", + "Epoch : 143 [20/36(56%)]\tLoss: 1.930230\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.814485\n", + "Epoch : 143 [28/36(78%)]\tLoss: 0.023151\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.510773\n", + "Epoch : 144 [0/36(0%)]\tLoss: 1.246313\n", + "Epoch : 144 [4/36(11%)]\tLoss: 1.165396\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.330529\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.448388\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.611518\n", + "Epoch : 144 [20/36(56%)]\tLoss: 1.591107\n", + "Epoch : 144 [24/36(67%)]\tLoss: 1.229581\n", + "Epoch : 144 [28/36(78%)]\tLoss: 0.462085\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.566715\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.228041\n", + "Epoch : 145 [4/36(11%)]\tLoss: 0.906393\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.424614\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.808381\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.334949\n", + "Epoch : 145 [20/36(56%)]\tLoss: 0.590098\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.321332\n", + "Epoch : 145 [28/36(78%)]\tLoss: 0.256068\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.563620\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.223013\n", + "Epoch : 146 [4/36(11%)]\tLoss: 0.078395\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.025426\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.290808\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.517837\n", + "Epoch : 146 [20/36(56%)]\tLoss: 0.279496\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.244702\n", + "Epoch : 146 [28/36(78%)]\tLoss: 0.179237\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.174549\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.271670\n", + "Epoch : 147 [4/36(11%)]\tLoss: 0.241825\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.589176\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.265680\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.280287\n", + "Epoch : 147 [20/36(56%)]\tLoss: 0.188931\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.243032\n", + "Epoch : 147 [28/36(78%)]\tLoss: 0.291146\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.160487\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.025905\n", + "Epoch : 148 [4/36(11%)]\tLoss: 0.145228\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.182854\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.096957\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.127001\n", + "Epoch : 148 [20/36(56%)]\tLoss: 0.198313\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.076908\n", + "Epoch : 148 [28/36(78%)]\tLoss: 0.034917\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.235786\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.092148\n", + "Epoch : 149 [4/36(11%)]\tLoss: 0.317933\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.024046\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.016109\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.208182\n", + "Epoch : 149 [20/36(56%)]\tLoss: 0.504517\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.132576\n", + "Epoch : 149 [28/36(78%)]\tLoss: 0.293377\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.032212\n", + "--- 0.08080296516418457 minutes ---\n" ] } ], @@ -2168,12 +2175,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 199, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBqElEQVR4nOzdd3hTZRsG8Dvde1Chg1GG7C3LiiwFEZWtKKIiojgqCDgRBUT8QFyIVEBFEAVFQBBRQEBARUBkyd6yyoa2dK/z/fH05CRt2iZtdu/fdfU6ycnpyZtSmtzneYdOURQFRERERERERGRXHo5uABEREREREVFFxEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBORERERERE5AAM5EREREREREQOwEBOREREROSCOnfujM6dO5t9bJMmTWzboAI1a9bE448/bpfnInJ1DOREFci8efOg0+mg0+nw559/FnlcURRUr14dOp0O9913n35/amoqxo8fjyZNmiAwMBARERFo0aIFXnjhBSQmJuqPmzBhgv78pr4uXLhgl9dJRERkLvW98Z9//nF0U8otMTEREyZMwO7dux3dFKupWbMmdDodunbtavLxzz//XP85o/C/4Z9//okePXqgatWq8PPzQ40aNdCzZ08sXLjQ6LiSPrs888wzNnttRADg5egGEJH9+fn5YeHChbj99tuN9m/atAlnz56Fr6+vfl9OTg46duyIQ4cOYfDgwRg+fDhSU1Oxf/9+LFy4EH379kVMTIzReWbOnImgoKAizxsWFmaT10NERFQR/frrr0b3ExMT8dZbb6FmzZpo0aKFYxoF4PDhw/DwsF7dz8/PDxs2bMCFCxcQFRVl9NiCBQvg5+eHzMxMo/2LFy/Ggw8+qC8ghIeH4+TJk/j999/x+eef4+GHHzY6vlu3bnjssceKPHe9evWs9jqITGEgJ6qA7rnnHixevBjTp0+Hl5f2Z2DhwoVo1aoVrly5ot+3fPly7Nq1CwsWLCjy5pWZmYns7Owi57///vtx00032e4FEBERVWDp6ekICAiAj4+Po5tikuGFfWto3749tm/fjkWLFuGFF17Q7z979iz++OMP9O3bF0uXLjX6ngkTJqBRo0bYunVrkZ/TpUuXijxHvXr18Mgjj1i13UTmYJd1ogpo4MCBuHr1KtauXavfl52djSVLlhQJ3cePHwcgb4aF+fn5ISQkxLaNJSIicgK7du1Cjx49EBISgqCgINx5553YunVrkeP+/fdfdOrUCf7+/qhWrRomTZqEuXPnQqfT4b///tMf9+OPP+Lee+9FTEwMfH19UadOHbz99tvIy8szOp869nvHjh3o2LEjAgIC8Prrr+sfU8eQb9y4EW3atAEADBkyRN/let68eUbnO3DgALp06YKAgABUrVoVU6dONXp848aN0Ol0+P777/HWW2+hatWqCA4Oxv3334/k5GRkZWVh5MiRqFKlCoKCgjBkyBBkZWUZncPUGPKkpCSMGjUKNWvWhK+vL6pVq4bHHnvMqAhQHD8/P/Tr169IV/Nvv/0W4eHh6N69e5HvOX78ONq0aWPyokWVKlVKfU4ie2GFnKgCqlmzJuLi4vDtt9+iR48eAIBVq1YhOTkZDz30EKZPn64/NjY2FgAwf/58vPHGG9DpdKWe/9q1a0X2eXl5scs6ERG5pP3796NDhw4ICQnBK6+8Am9vb8yePRudO3fGpk2b0K5dOwDAuXPn0KVLF+h0OowZMwaBgYH44osvTFaM582bh6CgIIwePRpBQUH47bffMG7cOKSkpOC9994zOvbq1avo0aMHHnroITzyyCOIjIwscr6GDRti4sSJGDduHIYNG4YOHToAAG677Tb9MdevX8fdd9+Nfv36YcCAAViyZAleffVVNG3aVP95QDV58mT4+/vjtddew7Fjx/DJJ5/A29sbHh4euH79OiZMmICtW7di3rx5qFWrFsaNG1fszy81NRUdOnTAwYMH8cQTT+CWW27BlStXsGLFCpw9e9asXnUPP/ww7rrrLhw/fhx16tQBID377r//fnh7exc5PjY2FuvXr8fZs2dRrVq1Us+fmZlp8uJASEiI0/ZEIDehEFGFMXfuXAWAsn37dmXGjBlKcHCwkp6eriiKojzwwANKly5dFEVRlNjYWOXee+9VFEVR0tPTlfr16ysAlNjYWOXxxx9X5syZo1y8eLHI+cePH68AMPlVv359+71QIiIiMxm+NxanT58+io+Pj3L8+HH9vsTERCU4OFjp2LGjft/w4cMVnU6n7Nq1S7/v6tWrSqVKlRQAysmTJ/X71fdfQ08//bQSEBCgZGZm6vd16tRJAaDMmjWryPGdOnVSOnXqpL+/fft2BYAyd+5ck8cCUObPn6/fl5WVpURFRSn9+/fX79uwYYMCQGnSpImSnZ2t3z9w4EBFp9MpPXr0MDpvXFycEhsba7QvNjZWGTx4sP7+uHHjFADKDz/8UKRd+fn5RfYVPte9996r5ObmKlFRUcrbb7+tKIqiHDhwQAGgbNq0yeS/4Zw5cxQAio+Pj9KlSxflzTffVP744w8lLy+vyHMU99kFgPLtt9+W2D6i8mKXdaIKasCAAcjIyMDKlStx48YNrFy5skh3dQDw9/fHtm3b8PLLLwOQK/pDhw5FdHQ0hg8fXqSbGgAsXboUa9euNfqaO3euzV8TERGRteXl5eHXX39Fnz59ULt2bf3+6OhoPPzww/jzzz+RkpICAFi9ejXi4uKMJlSrVKkSBg0aVOS8/v7++ts3btzAlStX0KFDB6Snp+PQoUNGx/r6+mLIkCHlfi1BQUFG46R9fHzQtm1bnDhxosixjz32mFHluV27dlAUBU888YTRce3atcOZM2eQm5tb7PMuXboUzZs3R9++fYs8Zk7POwDw9PTEgAED8O233wKQydyqV6+u7wlQ2BNPPIHVq1ejc+fO+PPPP/H222+jQ4cOqFu3Lv76668ix/fu3bvIZ5e1a9eiS5cuZrWPqKzYZZ2ogqpcuTK6du2KhQsXIj09HXl5ebj//vtNHhsaGoqpU6di6tSpOHXqFNavX4/3338fM2bMQGhoKCZNmmR0fMeOHTmpGxERuYXLly8jPT0d9evXL/JYw4YNkZ+fjzNnzqBx48Y4deoU4uLiihx38803F9m3f/9+vPHGG/jtt9/0gV6VnJxsdL9q1apW6TZdrVq1IgE4PDwc//77b5Fja9SoYXQ/NDQUAFC9evUi+/Pz85GcnIyIiAiTz3v8+HH079+/PE0HIN3Wp0+fjj179mDhwoV46KGHSgz03bt3R/fu3ZGeno4dO3Zg0aJFmDVrFu677z4cOnTIaCx5tWrVil1ajciWWCEnqsAefvhhrFq1CrNmzUKPHj3MGuMdGxuLJ554Aps3b0ZYWBgWLFhg+4YSERG5kaSkJHTq1Al79uzBxIkT8dNPP2Ht2rV49913AQD5+flGxxtW08vD09PT5H5FUcw+1pJzWFu7du1Qp04djBw5EidPnjTZs8+UgIAAdOjQATNmzMAbb7yB69evY9WqVTZuLZF5WCEnqsD69u2Lp59+Glu3bsWiRYss+t7w8HDUqVMH+/bts1HriIiIHK9y5coICAjA4cOHizx26NAheHh46KvGsbGxOHbsWJHjCu/buHEjrl69ih9++AEdO3bU7z958mS52mpu9297s+bnhYEDB2LSpElo2LBhmdZab926NQDg/PnzVmkPUXmxQk5UgQUFBWHmzJmYMGECevbsafKYPXv2mJx19NSpUzhw4IDJLnxERETuwtPTE3fddRd+/PFHo2XLLl68iIULF+L222/XLwHavXt3bNmyBbt379Yfd+3atSK9ydQqs2FVOTs7G59++mm52hoYGAhAKvDOpH///tizZw+WLVtW5DFLK+tPPvkkxo8fjw8++KDE49avX29y/y+//AIA/PxCToMVcqIKbvDgwSU+vnbtWowfPx69evXCrbfeiqCgIJw4cQJffvklsrKyMGHChCLfs2TJEgQFBRXZ361bN5NLtRARETnal19+idWrVxfZ/8ILL2DSpElYu3Ytbr/9djz33HPw8vLC7NmzkZWVZbSO9yuvvIJvvvkG3bp1w/Dhw/XLntWoUQPXrl3TV7Bvu+02hIeHY/DgwRgxYgR0Oh2+/vrrcnf7rlOnDsLCwjBr1iwEBwcjMDAQ7dq1Q61atcp13vJ6+eWXsWTJEjzwwAN44okn0KpVK1y7dg0rVqzArFmz0Lx5c7PPFRsba/KzR2G9e/dGrVq10LNnT9SpUwdpaWlYt24dfvrpJ7Rp06ZIIeLIkSP45ptvipwnMjIS3bp1M7t9RJZiICeiEvXv3x83btzAr7/+it9++w3Xrl1DeHg42rZtixdffNHk7KPPPvusyXNt2LCBgZyIiJzSzJkzTe5//PHH0bhxY/zxxx8YM2YMJk+ejPz8fLRr1w7ffPONfg1yQCY827BhA0aMGIH//e9/qFy5MuLj4xEYGIgRI0bAz88PABAREYGVK1fixRdfxBtvvIHw8HA88sgjuPPOO9G9e/cyvwZvb2989dVXGDNmDJ555hnk5uZi7ty5Dg/kQUFB+OOPPzB+/HgsW7YMX331FapUqYI777zTrDXCy+KLL77Ajz/+iO+//x6JiYlQFAW1a9fG2LFj8eqrr8LLyzgGqbOqF9apUycGcrIpnWKPGRiIiIiIiCqokSNHYvbs2UhNTS12UjQiqpg4hpyIiIiIyEoyMjKM7l+9ehVff/01br/9doZxIiqCXdaJiIiIiKwkLi4OnTt3RsOGDXHx4kXMmTMHKSkpePPNNx3dNCJyQgzkRERERERWcs8992DJkiX47LPPoNPpcMstt2DOnDlGy5sREak4hpyIiIiIiIjIATiGnIiIiIiIiMgBGMiJiIiIiIiIHMDtx5Dn5+cjMTERwcHB0Ol0jm4OERERFEXBjRs3EBMTAw8PXhsvL77XExGRszH3vd7tA3liYiKqV6/u6GYQEREVcebMGVSrVs3RzXB5fK8nIiJnVdp7vdsH8uDgYADygwgJCXFwa4iIiICUlBRUr15d/x5F5cP3eiIicjbmvte7fSBXu66FhITwTZqIiJwKu1dbB9/riYjIWZX2Xs+Ba0REROSSEhIS0KhRI7Rp08bRTSEiIioTBnIiIiJySfHx8Thw4AC2b9/u6KYQERGVCQM5ERERERERkQO4/RhyIiJzKYqC3Nxc5OXlObop5OI8PT3h5eXFMeJERE6G7/VkLdZ6r2cgJyICkJ2djfPnzyM9Pd3RTSE3ERAQgOjoaPj4+Di6KUREBL7Xk/VZ472egZyIKrz8/HycPHkSnp6eiImJgY+PDyubVGaKoiA7OxuXL1/GyZMnUbduXXh4cIQYEZEj8b2erMma7/UM5ERU4WVnZyM/Px/Vq1dHQECAo5tDbsDf3x/e3t44deoUsrOz4efn5+gmERFVaHyvJ2uz1ns9L9kTERVgFZOsib9Ptsdlz4jIUvzbTNZkjd8n/kYSERGRS+KyZ0RE5OoYyImIiIiIiIgcgIGciIj0atasiWnTppl9/MaNG6HT6ZCUlGSzNgHAvHnzEBYWZtPnICIiqij4fu88GMiJiFyQTqcr8WvChAllOu/27dsxbNgws4+/7bbbcP78eYSGhpbp+YiIiKh4fL93f5xlnYjIBZ0/f15/e9GiRRg3bhwOHz6s3xcUFKS/rSgK8vLy4OVV+p/8ypUrW9QOHx8fREVFWfQ9REREZB6+37s/Vsgt0KED0LQpcPKko1tCRLakKEBammO+FMW8NkZFRem/QkNDodPp9PcPHTqE4OBgrFq1Cq1atYKvry/+/PNPHD9+HL1790ZkZCSCgoLQpk0brFu3zui8hbuw6XQ6fPHFF+jbty8CAgJQt25drFixQv944S5salezNWvWoGHDhggKCsLdd99t9IEiNzcXI0aMQFhYGCIiIvDqq69i8ODB6NOnj0X/TjNnzkSdOnXg4+OD+vXr4+uvvzb4N1QwYcIE1KhRA76+voiJicGIESP0j3/66aeoW7cu/Pz8EBkZifvvv9+i5yb39eqr8l6/cKGjW0JEtuao93tz3+sBvt8D7v9+z0BugQMHgH37gMxMR7eEiGwpPR0ICnLMV3q69V7Ha6+9hilTpuDgwYNo1qwZUlNTcc8992D9+vXYtWsX7r77bvTs2ROnT58u8TxvvfUWBgwYgH///Rf33HMPBg0ahGvXrpXw80vH+++/j6+//hq///47Tp8+jZdeekn/+LvvvosFCxZg7ty52Lx5M1JSUrB8+XKLXtuyZcvwwgsv4MUXX8S+ffvw9NNPY8iQIdiwYQMAYOnSpfjoo48we/ZsHD16FMuXL0fTpk0BAP/88w9GjBiBiRMn4vDhw1i9ejU6duxo0fOT+zpzRt7rL11ydEuIyNYc9X5vzfd6gO/3Lv9+r7i55ORkBYCSnJxc7nPddJOiAIqyb58VGkZETiMjI0M5cOCAkpGRoSiKoqSmyv91R3ylplre/rlz5yqhoaH6+xs2bFAAKMuXLy/1exs3bqx88skn+vuxsbHKRx99pL8PQHnjjTf091NTUxUAyqpVq4ye6/r16/q2AFCOHTum/56EhAQlMjJSfz8yMlJ577339Pdzc3OVGjVqKL179zb7Nd52223KU089ZXTMAw88oNxzzz2KoijKBx98oNSrV0/Jzs4ucq6lS5cqISEhSkpKSrHPZw2Ff68MWfO9qSKbMWOG0rBhQ6VevXpW+3kOHiz/F999t/ztIyLnYepvsqPe78vyXq8ofL9XOdP7vTXe6x1eIT937hweeeQRREREwN/fH02bNsU///yjf1xRFIwbNw7R0dHw9/dH165dcfToUYe0VV33PS/PIU9PRHYSEACkpjrmKyDAeq+jdevWRvdTU1Px0ksvoWHDhggLC0NQUBAOHjxY6hXzZs2a6W8HBgYiJCQEl0ooHwYEBKBOnTr6+9HR0frjk5OTcfHiRbRt21b/uKenJ1q1amXRazt48CDat29vtK99+/Y4ePAgAOCBBx5ARkYGateujaeeegrLli1Dbm4uAKBbt26IjY1F7dq18eijj2LBggVIt3a5guzCFuuQe3vLNifHaqckIiflqPd7a77XA3y/d/X3e4cG8uvXr6N9+/bw9vbGqlWrcODAAXzwwQcIDw/XHzN16lRMnz4ds2bNwrZt2xAYGIju3bsj0wH9xj09ZZufb/enJiI70umAwEDHfOl01nsdgYGBRvdfeuklLFu2DP/73//wxx9/YPfu3WjatCmys7NLPI+3mlD0Px8d8kv4Q2jqeMWSAXNWUL16dRw+fBiffvop/P398dxzz6Fjx47IyclBcHAwdu7ciW+//RbR0dEYN24cmjdvbvOlXMg1+PjItpT/FkTkBhz1fm/N93qA7/eu/n7v0ED+7rvvonr16pg7dy7atm2LWrVq4a677tJfaVEUBdOmTcMbb7yB3r17o1mzZpg/fz4SExMtHn9gDWqFnIGciFzR5s2b8fjjj6Nv375o2rQpoqKi8N9//9m1DaGhoYiMjDSqaObl5WHnzp0Wnadhw4bYvHmz0b7NmzejUaNG+vv+/v7o2bMnpk+fjo0bN2LLli3Yu3cvAMDLywtdu3bF1KlT8e+//+K///7Db7/9Vo5XRu5CDeSskBORq+L7vWu93zt02bMVK1age/fueOCBB7Bp0yZUrVoVzz33HJ566ikAwMmTJ3HhwgV07dpV/z2hoaFo164dtmzZgoceeqjIObOyspCVlaW/n5KSYrX2MpATkSurW7cufvjhB/Ts2RM6nQ5vvvlmiVe+bWX48OGYPHkybr75ZjRo0ACffPIJrl+/Dp0FJYOXX34ZAwYMQMuWLdG1a1f89NNP+OGHH/SzyM6bNw95eXlo164dAgIC8M0338Df3x+xsbFYuXIlTpw4gY4dOyI8PBy//PIL8vPzUb9+fVu9ZHIhasGHFXIiclV8v3et93uHVshPnDiBmTNnom7dulizZg2effZZjBgxAl999RUA4MKFCwCAyMhIo++LjIzUP1bY5MmTERoaqv+qXr261drLQE5EruzDDz9EeHg4brvtNvTs2RPdu3fHLbfcYvd2vPrqqxg4cCAee+wxxMXFISgoCN27d4efn5/Z5+jTpw8+/vhjvP/++2jcuDFmz56NuXPnonPnzgCAsLAwfP7552jfvj2aNWuGdevW4aeffkJERATCwsLwww8/4I477kDDhg0xa9YsfPvtt2jcuLGNXjG5ElbIicjV8f3etd7vdYq9O/ob8PHxQevWrfHXX3/p940YMQLbt2/Hli1b8Ndff6F9+/ZITExEdHS0/pgBAwZAp9Nh0aJFRc5pqkJevXp1JCcnIyQkpFztrV1b1iDfsgW49dZynYqInEhmZiZOnjyJWrVqWfQmQdaRn5+Phg0bYsCAAXj77bcd3RyrKen3KiUlBaGhoVZ5byLr/jzfeguYMAF45hlg5kzrtI+IHI/v9Y7nju/31nivd2iX9ejoaKP+/4CME1i6dCkAICoqCgBw8eJFo0B+8eJFtGjRwuQ5fX194evra5P2skJORFR+p06dwq+//opOnTohKysLM2bMwMmTJ/Hwww87umlErJATEVkJ3+/N49Au6+3bt8fhw4eN9h05cgSxsbEAgFq1aiEqKgrr16/XP56SkoJt27YhLi7Orm0FGMiJiKzBw8MD8+bNQ5s2bdC+fXvs3bsX69atQ8OGDR3dNCKOIScishK+35vHoRXyUaNG4bbbbsP//vc/DBgwAH///Tc+++wzfPbZZwBk6vyRI0di0qRJqFu3LmrVqoU333wTMTEx6NOnj93by0BORFR+1atXLzJjKpGzYIWciMg6+H5vHocG8jZt2mDZsmUYM2YMJk6ciFq1amHatGkYNGiQ/phXXnkFaWlpGDZsGJKSknD77bdj9erVDhn7wUBORETkPBISEpCQkIC8vDyrnZMVciIisieHBnIAuO+++3DfffcV+7hOp8PEiRMxceJEO7bKNDWQW/F9n4iIiMooPj4e8fHx+olzrEGtkDOQExGRPTh0DLmr8fSULSvkRERE7kmtkLPLOhER2QMDuQXYZZ2IiMi9sUJORET2xEBuAQZyIiIi98YKORER2RMDuQUYyImIiNwbK+RERGRPDOQWYCAnInfTuXNnjBw5Un+/Zs2amDZtWonfo9PpsHz58nI/t7XOU5IJEyagRYsWNn0Oci+skBORO+L7vfNiILcAAzkROYuePXvi7rvvNvnYH3/8AZ1Oh3///dfi827fvh3Dhg0rb/OMFPcmef78efTo0cOqz0VUXqyQE5Ez4fu9+2MgtwADORE5i6FDh2Lt2rU4e/Zskcfmzp2L1q1bo1mzZhaft3LlyggICLBGE0sVFRUFX19fuzwXkblYISciZ8L3e/fHQG4BBnKiCkJRgLQ0x3wpillNvO+++1C5cmXMmzfPaH9qaioWL16MoUOH4urVqxg4cCCqVq2KgIAANG3aFN9++22J5y3che3o0aPo2LEj/Pz80KhRI6xdu7bI97z66quoV68eAgICULt2bbz55pvIKUgz8+bNw1tvvYU9e/ZAp9NBp9Pp21y4C9vevXtxxx13wN/fHxERERg2bBhSU1P1jz/++OPo06cP3n//fURHRyMiIgLx8fH65zJHfn4+Jk6ciGrVqsHX1xctWrTA6tWr9Y9nZ2fj+eefR3R0NPz8/BAbG4vJkycDABRFwYQJE1CjRg34+voiJiYGI0aMMPu5yTWwQk5UgTjq/d7M93qA7/cV4f3ey2ZndkMM5EQVRHo6EBTkmOdOTQUCA0s9zMvLC4899hjmzZuHsWPHQqfTAQAWL16MvLw8DBw4EKmpqWjVqhVeffVVhISE4Oeff8ajjz6KOnXqoG3btqU+R35+Pvr164fIyEhs27YNycnJRuPPVMHBwZg3bx5iYmKwd+9ePPXUUwgODsYrr7yCBx98EPv27cPq1auxbt06AEBoaGiRc6SlpaF79+6Ii4vD9u3bcenSJTz55JN4/vnnjT6EbNiwAdHR0diwYQOOHTuGBx98EC1atMBTTz1V6usBgI8//hgffPABZs+ejZYtW+LLL79Er169sH//ftStWxfTp0/HihUr8P3336NGjRo4c+YMzpw5AwBYunQpPvroI3z33Xdo3LgxLly4gD179pj1vOQ61EDOCjlRBeCo93sz3+sBvt9XiPd7xc0lJycrAJTk5ORyn6tzZ0UBFOXbb63QMCJyGhkZGcqBAweUjIwM2ZGaKv/ZHfGVmmp2uw8ePKgAUDZs2KDf16FDB+WRRx4p9nvuvfde5cUXX9Tf79Spk/LCCy/o78fGxiofffSRoiiKsmbNGsXLy0s5d+6c/vFVq1YpAJRly5YV+xzvvfee0qpVK/398ePHK82bNy9ynOF5PvvsMyU8PFxJNXj9P//8s+Lh4aFcuHBBURRFGTx4sBIbG6vk5ubqj3nggQeUBx98sNi2FH7umJgY5Z133jE6pk2bNspzzz2nKIqiDB8+XLnjjjuU/Pz8Iuf64IMPlHr16inZ2dnFPp+hIr9XBqz53lSRzZgxQ2nYsKFSr149q/089+6V/4qVK1uhgUTkNEz+TXbU+70F7/WKwvd7RXHe93trvNezy7oFPD1lywo5kZsLCJCr1474smA8V4MGDXDbbbfhyy+/BAAcO3YMf/zxB4YOHQoAyMvLw9tvv42mTZuiUqVKCAoKwpo1a3D69Gmzzn/w4EFUr14dMTEx+n1xcXFFjlu0aBHat2+PqKgoBAUF4Y033jD7OQyfq3nz5gg0qBi0b98e+fn5OHz4sH5f48aN4an+MQYQHR2NS5cumfUcKSkpSExMRPv27Y32t2/fHgcPHgQg3eR2796N+vXrY8SIEfj111/1xz3wwAPIyMhA7dq18dRTT2HZsmXIzc216HWSdcXHx+PAgQPYvn271c7JCjlRBeKo93sLx27z/d693+8ZyC3ALutEFYROJ13JHPFV0BXNXEOHDsXSpUtx48YNzJ07F3Xq1EGnTp0AAO+99x4+/vhjvPrqq9iwYQN2796N7t27I9uKg2O3bNmCQYMG4Z577sHKlSuxa9cujB071qrPYchbnXGrgE6nQ74V/yjfcsstOHnyJN5++21kZGRgwIABuP/++wEA1atXx+HDh/Hpp5/C398fzz33HDp27GjRmDZyfuqvGMeQE1UAjnq/t/C9HuD7vTu/3zOQW4CBnIiczYABA+Dh4YGFCxdi/vz5eOKJJ/TjyzZv3ozevXvjkUceQfPmzVG7dm0cOXLE7HM3bNgQZ86cwfnz5/X7tm7danTMX3/9hdjYWIwdOxatW7dG3bp1cerUKaNjfHx8kJeXV+pz7dmzB2lpafp9mzdvhoeHB+rXr292m0sSEhKCmJgYbN682Wj/5s2b0ahRI6PjHnzwQXz++edYtGgRli5dimvXrgEA/P390bNnT0yfPh0bN27Eli1bsHfvXqu0j5wDK+RE5Iz4fm8+V3u/56RuFmAgJyJnExQUhAcffBBjxoxBSkoKHn/8cf1jdevWxZIlS/DXX38hPDwcH374IS5evGj0ZlSSrl27ol69ehg8eDDee+89pKSkYOzYsUbH1K1bF6dPn8Z3332HNm3a4Oeff8ayZcuMjqlZsyZOnjyJ3bt3o1q1aggODi6y/MmgQYMwfvx4DB48GBMmTMDly5cxfPhwPProo4iMjCzbD8eEl19+GePHj0edOnXQokULzJ07F7t378aCBQsAAB9++CGio6PRsmVLeHh4YPHixYiKikJYWBjmzZuHvLw8tGvXDgEBAfjmm2/g7++P2NhYq7WPHM9w2TNFKVMhi4jI6vh+bxlXer9nhdwCDORE5IyGDh2K69evo3v37kbjv9544w3ccsst6N69Ozp37oyoqCj06dPH7PN6eHhg2bJlyMjIQNu2bfHkk0/inXfeMTqmV69eGDVqFJ5//nm0aNECf/31F958802jY/r374+7774bXbp0QeXKlU0uxRIQEIA1a9bg2rVraNOmDe6//37ceeedmDFjhmU/jFKMGDECo0ePxosvvoimTZti9erVWLFiBerWrQtAZpCdOnUqWrdujTZt2uC///7DL7/8Ag8PD4SFheHzzz9H+/bt0axZM6xbtw4//fQTIiIirNpGciy1Qg4AnCKAiJwJ3+/N50rv9zpFsWAhPBeUkpKC0NBQJCcnIyQkpFzn6tUL+Okn4PPPgSeftFIDicjhMjMzcfLkSdSqVQt+fn6Obg65iZJ+r6z53kTW/XmmpWmrIFmwMhEROTm+15MtWOO9nhVyC7BCTkRE5N4MK+Sc2I2IiGyNgdwCDORERETuzctgdh1O7EZERLbGQG4BBnIiIiL3ptNx6TMiIrIfBnILqIG8lNn8iYiIyIUZzrRORERkSwzkFvD0lC0r5ETuyc3nuCQ74++T61LHkbNCTuR++LeZrMkav08M5BZgl3Ui9+RdUA5LT093cEvInai/T+rvF7kOVsiJ3A/f68kWrPFe71X6IaRiICdyT56enggLC8OlS5cAyBqZOp3Owa0iV6UoCtLT03Hp0iWEhYXBU+1eRS6DFXIi98P3erIma77XM5BbgIGcyH1FRUUBgP6Nmqi8wsLC9L9X5FpYISdyT3yvJ2uzxns9A7kFGMiJ3JdOp0N0dDSqVKmCHH4Kp3Ly9vZmZdwOEhISkJCQgDwrz7bKCjmRe+J7PVmTtd7rGcgtwEBO5P48PT0ZpIhcRHx8POLj45GSkoLQ0FCrnVcN5Py8TuSe+F5PzoSTulmAgZyIiMj9cR1yIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gBrIrTx3DBERETkRVsiJiMheGMgtoM79wAo5ERGR+2KFnIiI7IWB3ALssk5EROT+uOwZERHZCwO5BRjIiYiI3J9aIWeXdSIisjUGcgswkBMREbk/VsiJiMheGMgtwEBORETk/lghJyIie2EgtwADORERkftjhZyIiOyFgdwCDORERETujxVyIiKyFwZyCzCQExERuT9WyImIyF4YyC3AQE5EROT+WCEnIiJ7YSC3gKenbBnIiYiI3Bcr5EREZC8M5BZQK+R5eY5tBxEREdkOK+RERGQvDOQWYJd1IiIi98cKORER2QsDuQUYyImIiNyfGshZISciIltjILcAAzkREZH7U7uss0JORES2xkBuAQZyIiIi98cKORER2QsDuQUYyImIiNwfK+RERGQvDg3kEyZMgE6nM/pq0KCB/vHMzEzEx8cjIiICQUFB6N+/Py5evOiw9jKQExEROY+EhAQ0atQIbdq0sep5OakbERHZi8Mr5I0bN8b58+f1X3/++af+sVGjRuGnn37C4sWLsWnTJiQmJqJfv34OaysDORERkfOIj4/HgQMHsH37dquel8ueERGRvXg5vAFeXoiKiiqyPzk5GXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvt3VQGciIiogqAFXIiIrIXh1fIjx49ipiYGNSuXRuDBg3C6dOnAQA7duxATk4Ounbtqj+2QYMGqFGjBrZs2VLs+bKyspCSkmL0ZS2enrJlICciInJfrJATEZG9ODSQt2vXDvPmzcPq1asxc+ZMnDx5Eh06dMCNGzdw4cIF+Pj4ICwszOh7IiMjceHChWLPOXnyZISGhuq/qlevbrX2qhXyvDyrnZKIiIicDCvkRERkLw7tst6jRw/97WbNmqFdu3aIjY3F999/D39//zKdc8yYMRg9erT+fkpKitVCObusExERuT9WyImIyF4c3mXdUFhYGOrVq4djx44hKioK2dnZSEpKMjrm4sWLJsecq3x9fRESEmL0ZS0M5ERERO6PFXIiIrIXpwrkqampOH78OKKjo9GqVSt4e3tj/fr1+scPHz6M06dPIy4uziHtYyAnIiJyf6yQExGRvTi0y/pLL72Enj17IjY2FomJiRg/fjw8PT0xcOBAhIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6ZYR1gICciIqoIWCEnIiJ7cWggP3v2LAYOHIirV6+icuXKuP3227F161ZUrlwZAPDRRx/Bw8MD/fv3R1ZWFrp3745PP/3UYe1lICciInJ/rJATEZG9ODSQf/fddyU+7ufnh4SEBCQkJNipRSVjICciInJ/rJATEZG9ONUYcmfHQE5EROT+WCEnIiJ7YSC3AAM5ERGR+2OFnIiI7IWB3AKenrJlICciInJfaiDPyQEUxbFtISIi98ZAbgG1Qp6X59h2EBERke2oXdYVhe/5RERkWwzkFmCXdSIiIvenVsgBjiMnIiLbYiC3AAM5ERGR+1Mr5ADHkRMRkW0xkFuAgZyIiMj9MZATEZG9MJBbgIGciIjI/Xl4aBO5sss6ERHZEgO5BRjIiYiIKgYufUZERPbAQG4BBnIiIqKKQe22zgo5ERHZEgO5BRjIiYiIKgZWyImIyB4YyC3AQE5ERFQxsEJORET2wEBuAXWCFwZyIiIi98YKORER2QMDuQXUCnlenmPbQURERLbFCjkREdkDA7kF2GWdiIioYmCFnIiI7IGB3AIM5ERERBUDK+RERGQPDOQWYCAnIiKqGFghJyIie2AgtwADORERUcXACjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMREdlG3759ER4ejvvvv9/RTQGgdVlnhZyIiGyJgdwCDORERES28cILL2D+/PmOboYeu6wTEZE9MJBbwNNTtgzkRERE1tW5c2cEBwc7uhl6nNSNiIjsgYHcAmqFPC/Pse0gIiJyJr///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8/fff9m+oBVghJyIie2AgtwC7rBMRERWVlpaG5s2bIyEhweTjixYtwujRozF+/Hjs3LkTzZs3R/fu3XHp0qUyPV9WVhZSUlKMvqyNFXIiIrIHBnILMJATEREV1aNHD0yaNAl9+/Y1+fiHH36Ip556CkOGDEGjRo0wa9YsBAQE4MsvvyzT802ePBmhoaH6r+rVq5en+SaxQk5ERPbAQG4BBnIiIiLLZGdnY8eOHejatat+n4eHB7p27YotW7aU6ZxjxoxBcnKy/uvMmTPWaq4eK+RERGQPXo5ugCthICciIrLMlStXkJeXh8jISKP9kZGROHTokP5+165dsWfPHqSlpaFatWpYvHgx4uLiTJ7T19cXvr6+Nm03K+RERGQPDOQWYCAnIiKyjXXr1jm6CUZYISciIntgl3ULMJATERFZ5qabboKnpycuXrxotP/ixYuIiopyUKtKxwo5ERHZAwO5BRjIiYiILOPj44NWrVph/fr1+n35+flYv359sV3SnQEr5EREZA/ssm4BBnIiIqKiUlNTcezYMf39kydPYvfu3ahUqRJq1KiB0aNHY/DgwWjdujXatm2LadOmIS0tDUOGDCnX8yYkJCAhIQF5eXnlfQlFsEJORET2wEBuAU9P2TKQExERaf755x906dJFf3/06NEAgMGDB2PevHl48MEHcfnyZYwbNw4XLlxAixYtsHr16iITvVkqPj4e8fHxSElJQWhoaLnOVRgr5EREZA8M5BbwMOjgn59vfJ+IiKii6ty5MxRFKfGY559/Hs8//7ydWlR+rJATEZE9MFJaoHAgJyIiIvfECjkREdkDA7kFGMiJiIgqBlbIiYjIHhjILcBATkREVDGogZwVciIisiUGcgswkBMRETmPhIQENGrUCG3atLH6udUu66yQExGRLTGQW4CBnIiIyHnEx8fjwIED2L59u9XPzS7rRERkDwzkFmAgJyIiqhg4qRsREdkDA7kFGMiJiIgqBlbIiYjIHhjILeDpqd1mICciInJfrJATEZE9MJBbgBVyIiKiioEVciIisgcGcgvodNrtvDzHtYOIiIhsixVyIiKyBwZyC6lVclbIiYiIHMuWy56xQk5ERPbAQG4hBnIiIiLnYMtlz1ghJyIie2AgtxADORERkftjhZyIiOzBaQL5lClToNPpMHLkSP2+zMxMxMfHIyIiAkFBQejfvz8uXrzouEaCgZyIiKgiYIWciIjswSkC+fbt2zF79mw0a9bMaP+oUaPw008/YfHixdi0aRMSExPRr18/B7VSMJATERG5P1bIiYjIHhweyFNTUzFo0CB8/vnnCA8P1+9PTk7GnDlz8OGHH+KOO+5Aq1atMHfuXPz111/YunWrw9rLQE5EROT+1ECenw/k5jq2LURE5L4cHsjj4+Nx7733omvXrkb7d+zYgZycHKP9DRo0QI0aNbBly5Ziz5eVlYWUlBSjL2tiICciInJ/oaHa7aQkhzWDiIjcnEMD+XfffYedO3di8uTJRR67cOECfHx8EBYWZrQ/MjISFy5cKPackydPRmhoqP6revXqVm2zp6dsGciJiMiZ7dy5E3v37tXf//HHH9GnTx+8/vrryGY/7FJ5eWmh/OpVx7aFiIjcl8MC+ZkzZ/DCCy9gwYIF8PPzs9p5x4wZg+TkZP3XmTNnrHZugBVyIiJyDU8//TSOHDkCADhx4gQeeughBAQEYPHixXjllVcc3DrrsOU65ABQqZJsGciJiMhWHBbId+zYgUuXLuGWW26Bl5cXvLy8sGnTJkyfPh1eXl6IjIxEdnY2kgr1E7t48SKioqKKPa+vry9CQkKMvqxJDeR5eVY9LRERkVUdOXIELVq0AAAsXrwYHTt2xMKFCzFv3jwsXbrUsY2zEluuQw4AERGyZSAnIiJb8XLUE995551GXekAYMiQIWjQoAFeffVVVK9eHd7e3li/fj369+8PADh8+DBOnz6NuLg4RzQZACvkRETkGhRFQX7Bm9W6detw3333AQCqV6+OK1euOLJpLkMN5NeuObYdRETkvhwWyIODg9GkSROjfYGBgYiIiNDvHzp0KEaPHo1KlSohJCQEw4cPR1xcHG699VZHNBkAAzkREbmG1q1bY9KkSejatSs2bdqEmTNnAgBOnjyJyMhIB7fONbBCTkREtuawQG6Ojz76CB4eHujfvz+ysrLQvXt3fPrppw5tEwM5ERG5gmnTpmHQoEFYvnw5xo4di5tvvhkAsGTJEtx2220Obp1r4BhyIiKyNacK5Bs3bjS67+fnh4SEBCQkJDimQSYwkBMRkSto1qxZkaFhAPDee+/BU10yhErECjkREdmaw9chdzUM5ERE5ArOnDmDs2fP6u///fffGDlyJObPnw9vb28Htsx1MJATEZGtMZBbiIGciIhcwcMPP4wNGzYAAC5cuIBu3brh77//xtixYzFx4kQHt841cFI3IiKyNQZyCzGQExGRK9i3bx/atm0LAPj+++/RpEkT/PXXX1iwYAHmzZvn2Ma5CI4hJyIiW2Mgt5A67I6BnIiInFlOTg58fX0ByLJnvXr1AgA0aNAA58+fd2TTXIOioNWnQzENLzCQExGRzTCQW4gVciIicgWNGzfGrFmz8Mcff2Dt2rW4++67AQCJiYmIUPtiu7iEhAQ0atQIbdq0sf7J9+9H5Z++xAuYjuQrOdY/PxERERjILaYG8rw8x7aDiIioJO+++y5mz56Nzp07Y+DAgWjevDkAYMWKFfqu7K4uPj4eBw4cwPbt261/8r/+0t/MzcxBRob1n4KIiMiplj1zBayQExGRK+jcuTOuXLmClJQUhIeH6/cPGzYMAQEBDmyZizAI5D7IxrVrAaha1YHtISIit8RAbiEGciIichWenp7Izc3Fn3/+CQCoX78+atas6dhGuYpCgfzqVTCQExGR1bHLuoUYyImIyBWkpaXhiSeeQHR0NDp27IiOHTsiJiYGQ4cORXp6uqOb59wuXwaOHtXfVQM5ERGRtTGQW4iBnIiIXMHo0aOxadMm/PTTT0hKSkJSUhJ+/PFHbNq0CS+++KKjm+fctmwxuuuNHK5FTkRENsEu6xZiICciIlewdOlSLFmyBJ07d9bvu+eee+Dv748BAwZg5syZjmucszPorg6wQk5ERLbDCrmFGMiJiMgVpKenIzIyssj+KlWqsMt6aRjIiYjIThjILcRATkREriAuLg7jx49HZmamfl9GRgbeeustxMXFObBlTi47G1CXUfP0BMBATkREtsMu6xYqeG9mICciIqf28ccfo3v37qhWrZp+DfI9e/bAz88Pa9ascXDrnNiuXUBmJhARAQQHA//9xzHkRERkMwzkFmKFnIiIXEGTJk1w9OhRLFiwAIcOHQIADBw4EIMGDYK/v7+DW+fE1O7qt90GHDkCgBVyIiKyHQZyC6mBPC/Pse0gIiIqTUBAAJ566ilHN8NmEhISkJCQgDxrvikbBvL//gPAQE5ERLbDQG4hVsiJiMhZrVixwuxje/XqZcOW2Ed8fDzi4+ORkpKC0NBQ65y0Vy/Axwe44w5gyRIAEsjPMZATEZENMJBbiIGciIicVZ8+fcw6TqfTWbeq7E4efVS+AMDbG4AEco4hJyJ7UhRgzhygQQPg9tsd3RqyJQZyCzGQExGRs8rnm5N1+fgAgH5SN0UBdDoHt4mIKoTffgOeegqoVQs4ccLRrSFb4rJnFmIgJyIiqiAKArkPspGbC6SkOLg9RFRhLF0q2//+A7KyHNoUsjEGcgsxkBMREVUQBYE8yDsbADixGxHZRX4+8OOPcltRgNOnHdsesi0GcgsxkBMREVUQBYE8LFACOceRE5E9bN8OJCZq90+edFxbyPYYyC3EQE5ERFRBFEzqFhaQA4AVciKyj+XLje8XrMBIboqB3EKenrJlICciInJzBRXyUH92WSci+1m2TLbR0bJlhdy9MZBbiBVyIiJyBb/88gvWrFlTZP+aNWuwatUqB7TIBTGQE5GdHToEHD4sf36eekr2sULu3hjILaQGci7fSkREzuy1114zuda4oih47bXXHNAiF1QQyIN9OYaciOxDrY7feSfQrJncZoXcvTGQW4gVciIicgVHjx5Fo0aNiuxv0KABjh075oAWuaCCMeRBvhxDTkT2sXatbHv1kjXIAVbI3R0DuYUYyImIyBWEhobixIkTRfYfO3YMgYGBDmiRCyqokAcULHuWnOzIxhBRRaD+nYmNBWrWlNsXLwLp6Q5rEtkYA7mFGMiJiMgV9O7dGyNHjsTx48f1+44dO4YXX3wRvXr1cmDLXEhBIPf3kECemurIxhBRRZAjHXLg7Q2EhwMhIXL/1CnHtYlsi4HcQgzkRETkCqZOnYrAwEA0aNAAtWrVQq1atdCwYUNERETg/fffd3TzXENBIPcrCOQ3bjiyMURUERgGcp1Oq5JzHLn78nJ0A1wNAzkREbmC0NBQ/PXXX1i7di327NkDf39/NGvWDB07dnR006wmISEBCQkJJievs4qCMeS+HvIJmYGciGzNMJADMo783385jtydMZBbiIGciIhchU6nw1133YW77rrL0U2xifj4eMTHxyMlJQWhoaHWf4KCCrmPjhVyIrKPwoGcFXL3x0BuIU9P2TKQExGRs5k+fTqGDRsGPz8/TJ8+vcRjR4wYYadWubCCQO4LBnIiso/cXNkaVsgBVsjdGQO5hVghJyIiZ/XRRx9h0KBB8PPzw0cffVTscTqdjoHcHAWB3FthICci+1Ar5F4FKY0VcvfHQG4hBnIiInJWJw0+sZ3kp7fyMxHIFUUmWiIisgVTY8gBVsjdGWdZt5AayG01fwwRERE5iYJPxF6KfELOzQWyshzZICJyd8WNIb96lb103FWZKuRnzpyBTqdDtWrVAAB///03Fi5ciEaNGmHYsGFWbaCzYYWciIhcgaIoWLJkCTZs2IBLly4hv9Ab1w8//OCglrmQggq5Z362fteNG4Cfn6MaRETurnAgDwkBKlUCrl2TKnnTpg5rGtlImSrkDz/8MDZs2AAAuHDhArp164a///4bY8eOxcSJE63aQGfDQE5ERK5g5MiRePTRR3Hy5EkEBQUhNDTU6IvMUBDIPXKy4e8vu1JTHdgeInJ7hQM5oFXJ2W3dPZWpQr5v3z60bdsWAPD999+jSZMm2Lx5M3799Vc888wzGDdunFUb6UwYyImIyBV8/fXX+OGHH3DPPfc4uimuqyCQIzsbwcFARga7jBKR7eTlyTwVgHEgr1UL2LmTgdxdlalCnpOTA19fXwDAunXr0KtXLwBAgwYNcP78eeu1zgkxkBMRkSsIDQ1F7dq1Hd0M16Z+Is7JQXCw3GQgJyJbUZc8A4wDeVSUbC9ftm97yD7KFMgbN26MWbNm4Y8//sDatWtx9913AwASExMRERFh1QY6GwZyIiJyBRMmTMBbb72FjIwMRzfFdRWqkAMM5ERkO2p3dcA4kFeqJNtr1+zbHrKPMnVZf/fdd9G3b1+89957GDx4MJo3bw4AWLFihb4ru7tiICciIlcwYMAAfPvtt6hSpQpq1qwJb8NPdwB27tzpoJa5EMNAXvCBmIGciGzFMJB7GaQ0NZBfvWrf9pB9lCmQd+7cGVeuXEFKSgrCw8P1+4cNG4aAgACrNc4ZeXrKloGciIic2eDBg7Fjxw488sgjiIyMhI6LZ1vOIJAHBclNBnIispXSAjkr5O6pTIE8IyMDiqLow/ipU6ewbNkyNGzYEN27d7dqA50NK+REROQKfv75Z6xZswa33367o5viutRAzjHkRGQHaiD38gIMr6EykLu3Mo0h7927N+bPnw8ASEpKQrt27fDBBx+gT58+mDlzplUb6GwYyImIyBVUr14dISEhjm6Ga1O7+XMMORHZgaklzwAGcndXpkC+c+dOdOjQAQCwZMkSREZG4tSpU5g/fz6mT59u1QY6GzWQ5+U5th1EREQl+eCDD/DKK6/gP66TU3ac1I2I7EidZZ2BvGIpUyBPT09HcME706+//op+/frBw8MDt956K06dOmX2eWbOnIlmzZohJCQEISEhiIuLw6pVq/SPZ2ZmIj4+HhEREQgKCkL//v1x8eLFsjTZalghJyIiV/DII49gw4YNqFOnDoKDg1GpUiWjLzKDiUCemuq45hCReyutQp6UxKKgOyrTGPKbb74Zy5cvR9++fbFmzRqMGjUKAHDp0iWLusdVq1YNU6ZMQd26daEoCr766iv07t0bu3btQuPGjTFq1Cj8/PPPWLx4MUJDQ/H888+jX79+2Lx5c1mabRUM5ERE5AqmTZvm6Ca4PlbIiciOigvkBnNoIykJcPNVpiucMgXycePG4eGHH8aoUaNwxx13IC4uDoBUy1u2bGn2eXr27Gl0/5133sHMmTOxdetWVKtWDXPmzMHChQtxxx13AADmzp2Lhg0bYuvWrbj11lvL0vRyYyAnIiJXMHjwYEc3wfWpn4rz8xESmAfAk4GciGzGcFI3Q97eQEgIkJIi3dYZyN1LmQL5/fffj9tvvx3nz5/Xr0EOAHfeeSf69u1bpobk5eVh8eLFSEtLQ1xcHHbs2IGcnBx07dpVf0yDBg1Qo0YNbNmypdhAnpWVhaysLP39lJSUMrWnOAzkRETkKvLz83Hs2DFcunQJ+YXeuDp27OigVrkQtUIOIMQ/BwzkRGRLxVXIAem2rgZyci9lCuQAEBUVhaioKJw9exaAdD9v27atxefZu3cv4uLikJmZiaCgICxbtgyNGjXC7t274ePjg7CwMKPjIyMjceHChWLPN3nyZLz11lsWt8NcDOREROQKtm7diocffhinTp2CoihGj+l0OuRxIGLpDAJ5qH82AD8GciKymdIC+X//MZC7ozJN6pafn4+JEyciNDQUsbGxiI2NRVhYGN5+++0iV+BLU79+fezevRvbtm3Ds88+i8GDB+PAgQNlaRYAYMyYMUhOTtZ/nTlzpsznMoWBnIiIXMEzzzyD1q1bY9++fbh27RquX7+u/7rGT3TmMfhUHOKXDYBjyInIdkoL5ABw9ar92kP2UaYK+dixYzFnzhxMmTIF7du3BwD8+eefmDBhAjIzM/HOO++YfS4fHx/cfPPNAIBWrVph+/bt+Pjjj/Hggw8iOzsbSUlJRlXyixcvIioqqtjz+fr6wtfXtywvyyyenrJlICciImd29OhRLFmyRP8e644SEhKQkJBgu2q/p6d85eUhyFc+KTOQE5GtFLfsGcClz9xZmSrkX331Fb744gs8++yzaNasGZo1a4bnnnsOn3/+OebNm1euBuXn5yMrKwutWrWCt7c31q9fr3/s8OHDOH36tH4SOUdghZyIiFxBu3btcOzYMUc3w6bi4+Nx4MABbN++3XZPUvDJOMiHFXIisi1zKuQM5O6nTBXya9euoUGDBkX2N2jQwKJucGPGjEGPHj1Qo0YN3LhxAwsXLsTGjRuxZs0ahIaGYujQoRg9ejQqVaqEkJAQDB8+HHFxcQ6bYR1gICciIuf177//6m8PHz4cL774Ii5cuICmTZvCu9AnvGbNmtm7ea7JxwfIzDQK5IoC6HQObhcRuR0G8oqpTIG8efPmmDFjBqZPn260f8aMGRa9wV+6dAmPPfYYzp8/j9DQUDRr1gxr1qxBt27dAAAfffQRPDw80L9/f2RlZaF79+749NNPy9Jkq2EgJyIiZ9WiRQvodDqjSdyeeOIJ/W31MU7qZoGCid3UQJ6fD2RmAv7+jmwUEbmj4pY9AxjI3VmZAvnUqVNx7733Yt26dfru41u2bMGZM2fwyy+/mH2eOXPmlPi4n5+ffnyYs1ADOT/HEBGRszl58qSjm+B+CgJ5gHeOfteNGwzkRGR9OTmAF3IQlXcJQFWjxxjI3VeZxpB36tQJR44cQd++fZGUlISkpCT069cP+/fvx9dff23tNjoVVsiJiMhZqSufxMbG4tSpU6hatarRvtjYWFStWhWnTp1ydFNdR0HfUY/cbAQGyi6OIyciW8jJAeZiCL7dXB3Yv9/oMQZy91XmdchjYmKKzKa+Z88ezJkzB5999lm5G+asGMiJiMgVdOnSBefPn0eVKlWM9icnJ6NLly7ssm4udS3y7GwEBwNpaQzkRGQbOTlAC+yFBxTg8GGgcWP9YxERsmUgdz9lqpBXZAzkRETkCtSx4oVdvXoVgWqpl0pXKJADDOREZBu5uUAQUuVOZqbRY6yQu68yV8grKgZyIiJyZv369QMgE7g9/vjj8PX11T+Wl5eHf//9F7fddpujmud6CgXyp/AZqk/9F7j9E061TkRWlZMDBCJN7hQTyK9flxziwbKq22AgtxADORERObPQ0FAAUiEPDg6Gv8HsYz4+Prj11lvx1FNPOap5rkcN5Dk5CAoC3sFYVF55BTj4HNCokWPbRkRuJSen+Ap5eLhs8/OBlBQgLMy+bSPbsSiQq1fdi5OUlFSetrgET0/ZMpATEZEzmjt3LgCgZs2aeOmll9g9vbzUBYELKuQhSJH7GRmOaxMRuaWcrHwEIF3uFArkvr5AYKDMY3H1KgO5O7EokKtX3Ut6/LHHHitXg5wdK+REROQKxo8f7+gmuAeDLuthgTnwhaxHjqwsx7WJiNxTRoZM6AYUCeSAdFtPS5Nx5HXq2LltZDMWBXL1qntFxkBORETO6pZbbsH69esRHh6Oli1bmpzUTbVz5047tsyFGQTyCL80bT8DORFZmS7d4G9MMYH8zBlO7OZuOIbcQgzkRETkrHr37q2fxK1Pnz6ObYy7MBhDHuGbqu1nICciK9OlGfyNKSaQAwzk7oaB3EJqIOfyrURE5GzUbup5eXno0qULmjVrhjAONCwfgzHk4T6skBOR7XhmMJBXRJww30KskBMRkbPz9PTEXXfdhevXrzu6Ka7PcAy5NyvkRGQ7Hhmld1kHGMjdDQO5hRjIiYjIFTRp0gQnTpxwdDNcn0EgD/U0+LCcne2Y9hCR2/LKLLlCHhEhWwZy98JAbiEGciIicgWTJk3CSy+9hJUrV+L8+fNISUkx+iIzGYwhD/FghZyIbMcjkxXyiohjyC3EQE5ERK7gnnvuAQD06tXLaLZ1RVGg0+mQx8lQzGO4DrkHx5ATke2UViFnIHdPDOQWYiAnIiJXsGHDBkc3wT0YdFkPVFghJyLb8WKFvEJiILeQp6dsGciJiMiZderUydFNcA8GgTzAkxVyIrId7yxWyCsiBnILsUJORESuJD09HadPn0Z2oUnImjVr5qAWuRiDQO7PdciJyIZ8ss0L5Fev2qlBZBcM5BZiICciIldw+fJlDBkyBKtWrTL5OMeQm8lgUjc/L61CrmRlQ1fMtxARlYV3tvld1hUF0PGPkFvgLOsWYiAnIiJXMHLkSCQlJWHbtm3w9/fH6tWr8dVXX6Fu3bpYsWKFo5vnOgwmdfPN0apXuWmskBORdfnkmFchz8sDbtywU6PI5lght5AayFlYICIiZ/bbb7/hxx9/ROvWreHh4YHY2Fh069YNISEhmDx5Mu69915HN9E1GHRZ9zYYQ56dmgVvBzWJiNyTT07JFXI/P7lGmJMDJCcDISF2bBzZDCvkFmKFnIiIXEFaWhqqVKkCAAgPD8fly5cBAE2bNsXOnTsd2TTXYhDIdWkGFfJUVsiJyLp8S6mQ63RAWJjcTkqyS5PIDhjILcRATkRErqB+/fo4fPgwAKB58+aYPXs2zp07h1mzZiE6OtrBrXMhBmPIkaZVr3LTGciJyLp8c0uukANaIE9Otn17yD7YZd1CDOREROQKXnjhBZw/fx4AMH78eNx9991YsGABfHx8MG/ePMc2zpUYjCE3/ICcz0BORFbml1tyhRwAQkNlywq5+2AgtxADORERuYJHHnlEf7tVq1Y4deoUDh06hBo1auCmm25yYMtcjEGXdcMKeX4mAzkRWZd/nkEgz8mRSas8PY2OYYXc/TCQW0j9P8FATkREriQgIAC33HKLo5vhegwDear2YVnJzC7mG4iIysYvL814R1YWEBBgtItjyN0PA7mFWCEnIiJXMHr0aJP7dTod/Pz8cPPNN6N3796opK6j42ArV67Eiy++iPz8fLz66qt48sknHd0kUcwYcoUVciKyMqMKOSDd1gsFcnZZdz8M5BZiICciIlewa9cu7Ny5E3l5eahfvz4A4MiRI/D09ESDBg3w6aef4sUXX8Sff/6JRo0aObStubm5GD16NDZs2IDQ0FC0atUKffv2RUREhEPbBaDYCjmyGMiJyLr88wtVyE2MI2eXdffDWdYtxEBORESuoHfv3ujatSsSExOxY8cO7NixA2fPnkW3bt0wcOBAnDt3Dh07dsSoUaMc3VT8/fffaNy4MapWrYqgoCD06NEDv/76q6ObJQwndTMM5NkM5ERkRYqCQMVEhbwQdll3PwzkFmIgJyIiV/Dee+/h7bffRkhIiH5faGgoJkyYgKlTpyIgIADjxo3Djh07yv1cv//+O3r27ImYmBjodDosX768yDEJCQmoWbMm/Pz80K5dO/z999/6xxITE1G1alX9/apVq+LcuXPlbpdVqBXyjAyjD8c6BnIisqbMTHhAAQDk+/jq9xXGLuvuh4HcQmogz8tzbDuIiIhKkpycjEuXLhXZf/nyZaSkpAAAwsLCkJ1d/snJ0tLS0Lx5cyQkJJh8fNGiRRg9ejTGjx+PnTt3onnz5ujevbvJ9jkdNZAX+vTrkcNATkRWZNADJy+0YG6PjIwih7HLuvthILcQK+REROQKevfujSeeeALLli3D2bNncfbsWSxbtgxDhw5Fnz59AEhX8Xr16pX7uXr06IFJkyahb9++Jh//8MMP8dRTT2HIkCFo1KgRZs2ahYCAAHz55ZcAgJiYGKOK+Llz5xATE1Ps82VlZSElJcXoy2bUQH79utFuj1zOsk5EVlQQyNPhDyUgUPaxy3qFwEBuIQZyIiJyBbNnz8add96Jhx56CLGxsYiNjcVDDz2EO++8E7NmzQIANGjQAF988YVN25GdnY0dO3aga9eu+n0eHh7o2rUrtmzZAgBo27Yt9u3bh3PnziE1NRWrVq1C9+7diz3n5MmTERoaqv+qXr267V6AOoa8UNc4z1xWyInIigpWcUhFEODnJ/vYZb1C4CzrFmIgJyIiVxAUFITPP/8cH330EU6cOAEAqF27NoKCgvTHtGjRwubtuHLlCvLy8hAZGWm0PzIyEocOHQIAeHl54YMPPkCXLl2Qn5+PV155pcQZ1seMGWO0rFtKSortQrlaIS+EgZyIrKqgQp6KIISVEMjZZd39MJBbiIGciIhcSVBQkH6tccMw7mx69eqFXr16mXWsr68vfH19bdyiAoUCeb7OAx5KPrzyGMiJyHqU1DToAKQhsMQKObusux92WbeQp6dsGciJiMiZ5efnY+LEiQgNDdV3WQ8LC8Pbb7+NfDu+id10003w9PTExYsXjfZfvHgRUVFRdmtHmRUK5NlBcnHDO5+BnIisJz9Fq5DrzOiynpVl8mFyQQzkFmKFnIiIXMHYsWMxY8YMTJkyBbt27cKuXbvwv//9D5988gnefPNNu7XDx8cHrVq1wvr16/X78vPzsX79esTFxdmtHWVWKJDnhhQEciWHHwaIyGryUmQMeRoCofMvPpAHBwM6ndxmt3X3wC7rFmIgJyIiV/DVV1/hiy++MOoG3qxZM1StWhXPPfcc3nnnHas9V2pqKo4dO6a/f/LkSezevRuVKlVCjRo1MHr0aAwePBitW7dG27ZtMW3aNKSlpWHIkCFWa4PNqJO6FcgLrQSoE8Ln5AD26jpPRG4tL9mgQu5f8HfHRCD38JAqeVKSfBWanqPiunBBfhjq1QoXwgq5hRjIiYjIFVy7dg0NGjQosr9Bgwa4du2aVZ/rn3/+QcuWLdGyZUsAwOjRo9GyZUuMGzcOAPDggw/i/fffx7hx49CiRQvs3r0bq1evLjLRm6USEhLQqFEjtGnTptyvoViFKuRKeCXtTha7rRORdSg3JJCnIRC6gOIr5ABnWi9i/XogOhoYO9bRLSkTBnILMZATEZEraN68OWbMmFFk/4wZM9C8eXOrPlfnzp2hKEqRr3nz5umPef7553Hq1ClkZWVh27ZtaNeuXbmfNz4+HgcOHMD27dvLfa5iFZ5lvRIDORFZX/4Ntct6EDxMdVlPSdHf5EzrhezaJdsdOxzbjjJil3ULGQZyRXHJXhFERFQBTJ06Fffeey/WrVunH6u9ZcsWnDlzBr/88ouDW+dCPD3lzV5R5G5oMLLhDR/kMJATkdWoFfJ0jyDAL1t2qoH8ww+BF18EVq4E7r3XvWdaP30aePhh4JFHgGeeMe971CsTVu79ZS+skFvIw+AnVvDeTERE5HQ6deqEI0eOoG/fvkhKSkJSUhL69euHw4cPo0OHDo5unuvQ6YzGkXuGBiILMm48L52BnIisQ0mVCnmGh4llz7Zske3q1QDcvMv6Sy8BmzcDn31m/ve4eCBnhdxChoE8P9/4PhERkTOJiYkpMnnb2bNnMWzYMHxmyYedis7HB8iWipV3WBDS4YtgpCIjKQvOu7I7EbkSJVUq5BleQYBfQdVPDeRq4Ny3D4Abd1nfsgVYvFhuW/LiXDyQM05aqHAgJyIiciVXr17FnDlzHN0M12IwjtwrLAjZkPsZydmOahERuZs0qZBneZqokKuBc/9+AG5aIVcUYPRo7b4lL079+SQlAXl51myVXTCQW4iBnIiIyDnYZZZ1wCiQ64ICka2TLuuZyeyyTkTWoUuTCnmmV1DRQK6G08uXgcuX3bNCvmQJsHUr4FXQgTs52fzxwYbh3QWvUjCQW8jTU7vNQE5EROQ4dpllHTCeaT0oCDkeEsizUhjIicg61ECe7V1ChRwA9u9HWBgQiFS02zoNOHfOru20SEYG0L07MGlS6cdOnixbtUqel6fvNVAqw5+PC3ZbZyC3ECvkREREFYzBpG4IDESuJwM5EVmXLr2gy7q3iQq5YeDctw+hocBITMOjO0ZpQdYZrV8P/PorkJBQ+rFnz8p20CDtb6651e6yBPL9+4H77gP++ce8422Ik7pZiIGciIicWb9+/Up8PMkFu/M5XKEKuRrIs28wkBORdXikS4W8SCDPyjJej3z/foR1BXpgldw/f97OLbXA33/L1py+9enpsg0MlFnrLl+WQF6tWunfW5ZA/vnnwM8/AxERwFdfmfc9NuLQCvnkyZPRpk0bBAcHo0qVKujTpw8OHz5sdExmZibi4+MRERGBoKAg9O/fHxcvXnRQixnIiYjIuYWGhpb4FRsbi8cee8zRzXQthoE8MBD5XnI/J5WBnIiswyNDKuRFuqwXDrP79yPCOwXtsE3uO/NA8m0FbczIAHJyij9OUeQYAPD3t2zWOkUpWyA/dEi2BTPXO5JDK+SbNm1CfHw82rRpg9zcXLz++uu46667cODAAQQGBgIARo0ahZ9//hmLFy9GaGgonn/+efTr1w+bN292SJsZyImIyJnNnTvX0U1wP4Uq5HleUiFnICcia/HMKBhD7hNUaiCvenQjvFAwm7izBnJF0SrkAHDjBlCpkuljc3K0YBUQYNm6bmlpxjOrmxvI1SLwgQPy/YYThdmZQwP56oLF7VXz5s1DlSpVsGPHDnTs2BHJycmYM2cOFi5ciDvuuAOAfNBo2LAhtm7diltvvdXubTYM5C44qz4RERFZqtAY8nzvgkCexmXPiMgKFAWemVIhz/UtpkJ+000SNq9dQ/S6r7XvddZAfvSocYU7Obn4QK52VwekQq4GcnMq5IVfvzmBPCMDOHVKbmdmAsePA/Xqlf59NuJUk7olF/xAKxX8Y+3YsQM5OTno2rWr/pgGDRqgRo0a2LJli8lzZGVlISUlxejLmnQ67TYr5ERERI7jiGXPEBQExUcCeW4aK+REZAVZWfDIl0pfjm+hCrkaSiMjgZtvBgAE/vqD/lsVZw3khtVxACgpk6nd1T085O+trQP5sWPGS6o5uNu60wTy/Px8jBw5Eu3bt0eTJk0AABcuXICPjw/C1H+UApGRkbhw4YLJ80yePNlorFz16tWt3la1Ss5ATkRE5DgOWfYsMFAfyPPSGciJyApSU/U38/wCpUoMGFfIQ0OBxo0BADrDEOIOgVytkPv7S/XTkjHkZQnkheYsw969pX+PDTlNII+Pj8e+ffvw3Xffles8Y8aMQXJysv7rzJkzVmqhhoGciIioAjEM5AEBgG9BIM9gICciKyhYbzsDfvD08TTdZd0gkAPAYV19AIAuK0tmYi/OtWvAlCnAd98ZV4VtTZ3QTVXShQO1Qh4QIFtbV8jVQK52fWaFHHj++eexcuVKbNiwAdUMpraPiopCdnZ2kSVaLl68iKioKJPn8vX1RUhIiNGXtTGQExERVSDqGPKAAMDDAzpfCej5DOREZA0FFfJUBMmfG1OBPCzMKJD/GthX+35TYTctDZg0CahVCxgzBhg4EHjySeMl1GwlKwvYvVtu16wpW3Mr5IBlk7oVDu2WBPKOHWVbkSvkiqLg+eefx7Jly/Dbb7+hVq1aRo+3atUK3t7eWL9+vX7f4cOHcfr0acTFxdm7uXrqJHwM5ERERBWAWiEPCgIA6Aoq5AoDORFZQ0GFPA2B8PKC6THkhSrk/1TqjhQEyx1TwfW554A335QgfPPNUlH88kugQwfgyhXbvRYA2LMHyM6WiehatCi+jSprVMjVCePMCeRHjsi2f3/ZHj1qnwsVxXBoII+Pj8c333yDhQsXIjg4GBcuXMCFCxeQUfCPEhoaiqFDh2L06NHYsGEDduzYgSFDhiAuLs4hM6yrWCEnIiKqQNRAXrAkq4d/QSDP4izrRGQFxVXIc3O1gBkaCtSvD9SpA9Spg/+i45CMgrHWpsLu/v2ynTRJKsKrV0to/ecfICHBtq9HHT/etq02HtySCnlZxpCrhd3SArmiaBXyzp3lZ5KfDxw8WPpz2YhDA/nMmTORnJyMzp07Izo6Wv+1aNEi/TEfffQR7rvvPvTv3x8dO3ZEVFQUfvjhhxLOansM5ERERBVIoQq5FshZISciKzCokBsFcgC4eFG2YWHyt2jPHmD3bgRW8i05kF++LNuuXSW8dOsGvPKK7Dt2zCYvQ08dP962LaAOHzZnlvXCXdbLGshLCmmXL8t5dTrpOVAwmbgjx5E7dB1yxYyJBfz8/JCQkIAEW1/JsQADORERUQVSqELuGSCBXMdATkTWUFAh1wfygmExAAB1ZSm1alzwdyg0FMUHckXRAnnlytp+dfUpG0x6bUStkLdrB2zebLqNhtQKeeEu6+aMIS8cyPPzgRs3tJ9XYWp1PDZWLgA0bQr8/rtDA7lTTOrmahjIiYiIHM9u65Crk7oVVMi9AiSg67IZyInICq5eBQBcQyX5c+Ppqf3dUSvkhQJmWFgJgTwtTas62zuQX7+ujdFu06ZsFXJLuqyrx1SpogX6krqtq4G8Xj3ZqhVyB07sxkBeBmogz8tzbDuIiIgqMruvQ64G8sCCCnkOAzkRWUFBFfwCovQ5XN9tvSyBXK2O+/np/24B0AL52bO2qyyqf4/r1AEiIiwbQ25qUrfSelQbzkJvzsRuaiCvL8vGOUOXdQbyMmCFnIiIqAIp1GXdO0gCuScDOZUkK0vCiT3XfibXVBC6LyKyaCA3DJwGSuyybthdXV1rGwCqVpX72dnApUvWa78hw+7qgFYhN2eW9cJjyLOzS5/93HCd9vIE8jNnzKvI2wADeRkwkBMREVUgwQVLCxV82FMDuS6Xs6xTCV59VSa1WrLE0S0hZ2cQyL3UGb4MJ3YDilTISwzkatg27K4OSDf46Gi5batu64YTugGWdVlXK+RBQVrgKm0ceXkDeViYLM8GAKdPl/xcNsJAXgYM5ERERBXI44/L7MQvvAAA8AmWQO6Va6JC/tdfwMmTdmwcOaX8fODbb+X2X385ti3Wpigy3paTGlpPSRVyVaFAHhJiRoW8SpWiz2XpOHJFMb9yrChFK+RlWfbMw0ML8qU9tyWBPCcHOHFCbquBHNC+7/r1kp/LRhjIy4CBnIiIqAKJigLefVfGRMIgkOdnGX8WOH0auP124L77HNBIcir//KNVKY8fd2xbrG3ePKBZMwk08+ZxUiVzZGYCO3Zo48ELKxhDbkkgN7vLemGWBvK33pLAunFj6ceeOiW/997eQIsWss+SLutqhRwwf+kzS8aQnz8va7t7e0v3fRUDuevx9JQtAzkREVHF4xssY8p9kaX/HAlAZhZWFFnjl+OGrSc9HcY/aBfw00/abXcL5Js2yfbUKWDIECAuTqtwOovcXOnVMn++Y9uxfj3QsqUMe2ndGmjVqmjPAkXRB3WTk7oBUg00nJwNdgzkmzdLG3/9tfRj1ep48+Za+83psl64Qg6YF8jz8y2rkKv7K1XSKqwAEB4uWwZy18EKORERUcWlVsh9kaUuHyzOn5dtdrYsO0Tll50NNGggFVlX+uC1cqV2+/hx12p7afbske2AARI0t28HVq8u3zlnzAAeeEDWj7aGH34A3nsPGDwY+Pxz65yzLN59F9i9Wy4QAMC5c8CKFcbHpKToQ3qxFfKQEOMAiVK6rBc3hhywPJCr4X7//tKPLTx+HNAq+1lZxQ9zKKlCXlJlPTVVu/hpTiBXA7d6nIqB3PUwkBMREVVcHv5aIDfK3WogB/TrClM5HTwoweHYMVmqyRmkpZX873v2rIQwnU66VWZlAYmJdmueTeXkAAcOyO0pU2R+BcC86mlx/vsPGDVKJr/78svytlDMm6fdfuYZYOlS65zXUocOyXblSuD11+X23LnGxxRUxzO8g5EJf9OBvFB3dXWXXcaQWxLIC48fB7RJMYHiq+SmKuTmrEWuvm5vb/l5WVIhN8RA7noYyImIiBwvISEBjRo1Qps2bez7xL5mBPIrV+zbJndluDbw0aOOa4ehW2+V+QSKq+b+/LNs4+KAmjXltrt0Wz98WHotBAfLa+vWTfavXVv2c/7vf1oFedas8g/3SEwE1qyR2336yAf2hx8Gdu4s33ktlZamhd527aR7PyBtO3dOO64gkCf7RQKA6UBeaMkzwDiQK5Z0Wa9RQ7bmBHJF0f6WnThR8tCE3FwZJw8YV8g9PbXu9sUF8sLLngHmdVk37K6u0zGQVyQM5ERERI4XHx+PAwcOYPv27fZ94oJA7oNsVshtzTCQHzvmuHaorl2TNiUnFx+y1e7q992nnwjQbQK52l29WTMJQJ07A15eEtYKv8akJBkzXasWcP/9wNSpRf9fnDqlVYy9vaWi/Pvv5WvjggXyIb19e6m633WXXET44YfynddS6gWkiAhZVuvmm4EOHaRthmPbCyZ0u+4bBQCmlz0zUSEPDi7nGPLERO1CSHFu3JCfHSDhXK34m7JvnwTr0FCgXj3jx0qb2E0N+pZO6lZ4jXYG8opDDeScVJKIiKgCKlQhv3RJ5m5ihdwGHFEh370beO010/MAGLZBDT2G0tOBdevktjsG8n//lW3z5rINDpaeAEDRKvm0aVKV/u8/6TL+6qtAo0bG67JPniyh8M47gSeekH2zZpW9fYqidVd//HGpzt59t9w/cqTs5y2LwutdA1qVfO5crSdAQYU8yaeECrmJQO7lBeQGyH5dZqbx+Gx1DLmpLuuRkfIk+fmlD6Uo/DuuDlcwZe9e2bZsWWS8e6kTu5VUIS9pDLka1tWfT3kDeUnrl9sQA3kZsEJORERUgflos6ynpcnn/q5dgfTjrJBbneG4VXsE8hs3gJ49ZTKuGTOKPm4Y6kwF8g0bZImrGjWAJk3cL5CrFXI1kANSgQaMA3lSkgRyAJg0SarjDRtKUHzgAenS3Lu3NmZ8/Hjg6afl9tKlWqC01D//SGj095fnAbRqrTME8gceAAID5XdZXZ++IJBf87YskAOALjREu6MG17Q0LeCaqpB7eGhLfpXWbb3w73hJ48jVJd0MlxNTlbYWuakKuSVjyE0FclNDH9QKuBrAVVz2zPUwkBMREVVgBhXyK1cKquMAPC+zQm5VqanAyZPa/fJ0WVcUmTjsySeLn+kZAN54Q5s87scfiz5eWiA37K6u0zkukG/bJq+3tDWc//lHZrF//XXzxm6bCuTqOPLfftO6QH/8sYSlxo2BMWOAl18Gdu2Sn6+Xl8zMvmKFTBLXpYt05W7ZUsZa5+QUnfjMXGrA79tXC2lqID961L4f3k0F8qAg7UKB2lPAnEBuYgw5AASFeuIGCsZnq+FU/b309S2yVJqeuRO7Ff47VlIgL6mbfGld1q0xhhzQgnV2tunx7uyy7j4YyImIiCowg0C+bq2C7GwgEKnwzTZYA40VctMURQKXOdTusWpCMVw+bPRoCXLmLi+3aJFUbOfMkVm3TYXP7duBTz7R7m/dqlX9VCUFckUxDuSAdQJ5Xp62xr05Dh0CuneX1zthQvHHZWQAjzwiwXHyZOCFF4yfQ1FkwrWmTWX27EuXZLyzTifVf1Xr1hKekpIk4CclAR99JI+NG6d9cPb1Bd5+W2bO//ZbYPZsCe4LFmjneuYZ2RrOkm4oPx/YskV6IRR24ID8+wLA0KHa/po15SJAerp9Z7s3FcgBoFMn2aoXNwrGkF/xtLxCbnKmdcPu6jqd6baZG8jV33E12Jc1kJdWIS9p2TNLxpAHBOh7MJnsfs5A7j4YyImIiCqwgkDuAQXrVktFMAoXjI9hIDetc2epWJqqlGVlAYMGAQkJcl/98N++vaSUrCypXt+4IUFu40bgl19Kf84bN4AXX9Tuz5sna1QbyskBhg2TEDpokIRMw4CtKimQ79kj7QsIkIsFAFC7tmyvXy/b+NSzZ4GOHSXUPfecFph37pSJ0jZuND7+2jXpcq/+fD/7rPju3xMmSGhUw9InnwDPPy8BMTtbxmKMHSvj+J99VsbWAzI5WWCgdh5PTxkDDkg1/N575fkbNZI2FnbzzcBDD8nPe8QIIDpae6xvXwnPhw7JRHGFvfEGcNttUkk3vMiRny9d3nNy5PWrP39AfnfUfwd7dVtXlOIDuXoxQ50foeCiz2VPmdSt3IG8pGCsMnemdfVct98u25Mni59pXa2ml1QhL8uyZyWNIS9cIS9tpnVzAnl5Z/kvAwbyMvD0lC0DORERUQVUEMgBIC1JZiCOxnnjY9yty/oPPwALF5bvHMnJMoP2f/+ZDtK//SbPMXq0Nps5IN2j1UB19KhUSNUPYeryVoWtWwesWiUBbeJEqYzWqQO8/748/tprwFdfye28PGDwYAmclSoBH34o45sB427rilLypG5qeO/aVQtTgYFa4LS0Sv7rr9KNWx1rPGuWhOiNG+XCxtKlcvFADTO5ucCAAdK1PzYWaNFCKo9qtVqVnw/8+af2s5g/H/jiC7n96afS3mrVZL+np4SknTu1arthd3WVOo5840atvRMnFp3cqzShoVr4U5ePU12+LBdiAJlcrlUrqbSnp0sX9z//lJ/3jBlFK8P2HkeemChDLjw9tV4SqkaNpH2XL0sYVwO5h+UV8pCQMgZySyvkjRrJTPGKIj0cSjrW0i7rilL2CnnhSd2A8gXy3Fzze91YEQN5GbBCTkREVIGpXSIh3dYBE4HcnSrkGRnAwIES/srT9drwe1esKPq4GsCzsyWYq/ebNJGqKiCB+I8/tO9Zs6ZoRWvPHhnXfM89EizVycWmT5dKeXy8fM/jj0uVdtgwCXZeXsDXX0tX31695HvWrtU+oJ8/b/xhvbhArnZXV5Wl2/rJk1LpvXJFQrkahidOlNemroGemKiF1AkTZEKDwED5+U6cKPtnzJCq98SJ8tq8vLTltwYNktc6dCjw3XfyXGpYDAqS1/Taa3KeLVtk26xZ0fY+8ohU0Z99Vn7Of/4J9O9v/us1dM89si180WbaNAnfzZpJlTw5WdYXDw+Xyr7681Grv4bsHcjV6nitWkZ/LwBI6FR/n/fu1QfySzoJ5CaXPStmDHmJFXJTM6yr1EB++nTJr0O9sHjTTTIfAFD8TOtl7bKek6MtXVXeMeRAyYG8uEndAgK0KyEO6LbOQF4GDOREREQVmJcX8iEVOF9koXp1oGGoBPLM6JpyjDtVyM+e1dYiLtyF2xKGk7L98ot2TpXhEmdz52pd1hs3BurW1c5hGMjPni0aEBYt0m5fuiRVr169tKD38cfS9VmnAz7/XCYC8/CQiwDqMU2bytjjzExtGbPCYc4wkF+8KOOsAe0cquIC+SefAP36yfOqFULD15CdDdx6q1Scx4+XL0BeT+/eWlV7yhRg8WIZ7w3IOOpmzeTCQPPmUqmtW1e+//Jl7QJG27ZamAeABx+USvilS8Dy5TIJ2913S48Fw3BnqkIeECDV9U8/BYYPl2EGZXXvvbLdsEG7AHL9uja+/6235LHXX5cZvbOz5d+pRQvpAm+KowJ54e7qKrXb+l9/6cfDX4SVKuTqEAVrVsgrV9YCeXHjyNVjb7rJdEMB04Hc8HffVIU8Pb34eScsCeTZ2fJ/wfAYlU7n0KXPGMjLgIGciIioAtPpkOelTezWpQvQoCCQX45sKse4U4VcnXUcKD2Qp6dLYFYrXoYMA3lKinRfN2QYyHfuBM6dk9uGgXz/fplBHNCCrmG3dUXRZq+ePx/46ScJoupkX4B0I377bekSHhkpH8bnztVmvwZkX+Fu62qYi42VrWEgX7VKnvuWW4ou+2QqkF+7JkF32TKpUkdHG09utnixbIcM0YLZ+PFSff7f/+Q1Dhki4TglRbqqK4rMIv/gg9prGDtWbqemymtdsEAuHmRmys8xIgJF3HSTvHa1ihsUBLz5pva4qUBuTQ0bysWQrCwZxgDI675xQy6U9OolVed33pFAeeSIXNRYvdqgvFyIswXypgV/J9SLPUFBuJEnYdQuY8jVQH75ctGLQYYMz9Wokdw2FcizsrSwbWmXdXXIhU5n3JtA/Z7ivs9wv2EPguICuVr51ulM/zwduPQZA3kZMJATERFVbIaBvHNnoJafBPLjAQWVr/T0kj/ouhLDKtqmTcVPzJSdDdxxh0xC1qFD0cq1GsjVyXgMu63n5WnHt2yp7a9RQz6Yq+Fw3ToJk5UryyRngHEg37dPurX7+gJ9+kiVeMIE01W7rl3l2OPHgcceK/q42m19xQp5bWqYU6u/165py3wV110dMB3Ily+X742OloCfnCzdva9dk8nMdu6Un1Pfvtr36HRSfR4zRoKnh4esl65q2NC44g1IBf7ll+Xr4EHp4l2litE8CGYZNgzo0UMmaTPVJdyadDrjbusHDmjDDsaONR6XrtPJxZqBA+WCQ3HUQH7iRNGeGbagBvIGDUw/rlbI1WEAUVH6XyVLlj0rc5f1SpW0n5d6UcAUw4na1Ar59u2yAoHhUBH1OE9P020tqcu64fhxw7H/Xl7a7O7FdVu3pEKu3g8L0/4GGXLgTOsM5GWg/h0wdfGXiIiI7CMhIQGNGjVCmzZt7P7c+d7GFXJ1DPn+7Hpalc5dquSGFfKcHBlXbcorr2jV6y1bJFjPnq09rgbyAQNk++OP2of6EyckaPv5SZdklRoC1Aq5mlpuv126UwNykUCtsi1dKtvu3YHg4NJfW3CwjPM1pWNHCcxXr0ooVwP5rbdqwUH9N961S7aGs3urTAVytVv988/La2/WTCrA06dr1fEuXUqucgIymVq/fhJCvvvOuMsvIMFj6lT5Kjxu1hI+PhKOFy8ufikta1K7rS9dKv8OSUkyiZupWdvNERMjP5u8POO17W3F3Aq5+vscGanvlW2XLus6nfTMAEpe892wQt6smTTu4kUgLk4q5jt2GB93002mJ/Izp0JuOH5cZWoc+bp18nfhpZe0ZQktCeSFu6urGMhdCyvkREREjhcfH48DBw5g+/btdn9uxUcCeWxUNmrWBCplSSDfezVG+8DnLoFcrZCrScFUt/WlS7Xq7OzZUuHMzpaKrloBUwP5M8/Ih+/Tp2W2bEDrBtuokVRi1ZnJ1UpijRoGSQVSgW/YULreZmVp3d/VQF7WCcUMeXkBTzwhtz/7TAvkDRtqXb0vX5aQp06OVXhGbUC7mHDunAT3y5dl8jVALk54eMiYdkB+hl9/LbcNu9AXR6eT7uuXLpmebM1VdekigfTyZfl/1Lat9IQwVdk0h05nv27rmZmykgBQfCC/+WbjXgplDOShoUASwuSOJV3WAZnUEJBhHYUnKATk/5U6eeBNN8nftT//BB59VP7/Hjok/y+Akpc8M2x/SRVycwP5t99Kr4kPPtDabU4gL25CNxUDuWthICciIqrYfINkrOMTg2SW9YAUCeQ7EqOhqN2j3WViN7VCrobcn382/hB09qwWXF95Rbo3r1wJREVJRX3nThnDfL5gJvqmTbVlstTx2YYzqnt5yXjpsDCtIurpqS19Bkgg1+mkEg7IGPHt2+U83t4yQ7k1DB0qz7N2rXZBoV49LXhcviyvPzdXnjcmpug5KlWSdbcBqYgvXSoh/pZbtK74/fpJ9+akJLk4Ubi7ekl0urIHVWfl76/923buLFVRU+PdLVGWQJ6SIhdUzP23AOT3RFEkJBbXbdzLSy7sqEoK5F5epsMqytFlHZD/h61aye+uqSUN1fN4eWnBuG1bmZvh00/lvnrhobSLACVN6qZWyAv37gC0oG0YyNW/I+rQCT8/47XsWSGvGBjIiYiIKjavQKlu9b0nC8jOhud1qYafzIpGVlBBcHDGCrnaLXryZK27bGnUCvlDD8kH68uXJfyqZs+WD9pt2gCTJsk+nU66dgMy3lTtrl2pknzwVSdMW7RIwothIAeAp5+WD8Zt22rPo1aag4JkRm1AgiwgVWL12DvvLF/3bEO1amkXD/Ly5MN/tWrGgVwNJTVqFB+M33tPliP76y+ZHRzQJl8D5PvUCdgACaGlVTjdXUKCrBX/yy/mDT8oTVkC+W+/ScBevtz82be3bpVtkyYld+9Xu60DRoG8yLJnYWHFnqdIl/W0NC3gmvP7o1bJ580r+pjhkmeFn79mTdlaGsiTk4suU1hShVy9uKl2wwdkqT8AmDlT5kXYtUsbaw4wkFcU6t9aBnIiIqIKSu1umpWlH8eYDW9cRQRSvAs+RDoqkB85IhVmw/GaGRkyGVj16sALL0goHDas6IdjU9RAXru2Nm57+XLZ5uZqM5i//LJxt/J27WS7datWXTasCPv5SdfTnTuLBnJT1EAeF6ellh49pGJnWG00p6u3JYYN027ffLNUZgwDuTomubix6ICEeHWmcvUDf+F2PvSQ9vNRx9lXZFWrymR7xVSHLVaWQG64EsA//5j3Pb/+Kttu3Uo+zjCQR0UVrZDXrSsXcQwvShVSpEKuBmNfX+OQWpyBA2V+gN275ctQSSFbDeSnTkkgKmnJM7WhgPy9KFjmTc9wUrfCqlWTrbriAqBVyGNipFdJ4YnzyhvIueyZa2CFnIiIqIIzDOQFHxCT/aMA6HBZKaiQO6LLemamdNeeOBF48UVt/6hRsl51crKMc/b0lMmcXn216Dm2bNECdHq69gG1WjUtRCYkABcuSPf18+flQ7ta9VapFfJt24oG8tBQmQUdkPW01Umw1EncTHn0UfnwPWpU0f379snSYzNnAoMHF3+OsujZU5uRWg11lgZyQNqtfn/btkWP9/KSLvwffaQNASDrKUsgN1zz3py5KvLytFnL1Z4VxTG8+GSqy3rlylINNlyNoBDDQK4YBvIqVcybfC8iQltN4PPPjR8rKWRXrSqBSL0gWVqFPDBQa0/hbuslTeqmLiGoDpvJydGq5Ybd1A2VNoa8uEDOZc9cCwM5ERFRBWcikGeEyQfE81mldFlXFOky/sADpidTKo9Jk7TA8eWXMmnav/9qH7a//loeV++/956EWNXJkzKrdY8e0k71g3BgoHSd7ddPuqbfuCFdrNVJnR5/3HgNYQBo3Vo+NJ05IzOhA1ogB7TgPGeOVM6Cg7X1kU1p2VK6qPboUfQxDw+p3j/zjPXHU3t7y9hvQFvyrCyB3MdHugY3awaMG2f6mEaNgJEji19Pm8pODeSJicUv3Wfoxg3pvaH6++/Sv2fHDgl0oaHy/6QkhbqsF1n2DJCu3iX8Phfpsr5nj9y2ZLjDM8/I9osvpOKtKilke3tr1etTp0oP5B4e2rCDwjOtW1IhV2dV9/Qs8lwpKQUdftRgnZ5uXI1nl3X3wkBORERUwanhMztbH8iVKlEAgJM3Ck3qNmYM8OSTWmVnwgTpMr5kiVSV1Q+NixcD8fHGQf7XX6Xr6rPPyprZJdm7V1uXul49+XT68ssS8PLzpRv0I4/IB5khQ7TlxdRQDUi31dxcqWgnJmqBvFo1qXB5eGizqc+dK1VpQF5fYUFBWuhQu/Gq3c4B6dIbHQ19abC0MbeO9PrrEsiGD5f7ZQnkgHS337NHW9aL7Cc8XKuqHjxY+vFbtsj/GzUQb9tW+hAP9ff8zjtLv6hStar8v/L0hFKrtulAXgp/fyDNUwK5LjNT/r8DWu8Tc9xxh8xqn50tQ11Upc2cbjiOvLRjgeJnWrekQq6OH4+K0gey9HS5XhYaKh2DjC5iGIZrNZBzlnX3wEBORERUwZmokHvHyof9I1cNKuRnzkhX8TlzpDv2008XfGqEVIS2bJFxso8/LoH500+1JbDy8iQAHjsGzJolSyg98YTsLywvD3jqKQnTvXvLRFje3hIQNmyQ9qphXaXO/H34sPahRu06Dki1Tx0/bli5josDHn5YwomiyId5tfpYmDqOXG2zYYXc01MuEKhKGj/uaB4eUvFU05KpSd3UgELOSx0Soc5ZUBJ1/Hi/fvK7evGiFgyLowby0rqrA3Lxad064PffkRsRqd9tSSDX6QBdaIi2IylJeqa89pplJ5kyRW7Pn6/9bEqresfGyva//8xbaq24mdbNqZCfPSt/awzHj0OuH7ZqJSNoAGDz5oLXY2o8OCvk7oWBnIiIqIIzEchD6ksgP3zVYFI3tas2IFUktRr99tsy/trbWyrjX32lVYfnzJFuoEuXSvfy8HDgvvvkA+ncudpa24beflsqeCEh8um0Th2tmzUAvPRS0cBYq5Y8f0aGFrwNx9fu2GFcITc0ZYpW0XrqqeJ/Tuo4cpVhIAeMx3s7cyAvTA0e585p3WnNqZCTY6mBXF33viTq+PG77tJ6epTUbT0lRS6wqd9jjvr1gdtu03cSASwL5AAQFOqJGyiYwC0gAFiwwPKTtG0rFx4URZvtv7SQbVghNyeQhxp0rTdkToU8LU1+vmqFPDoa+fnyZ/HQIa3Dkn4EkKlx5JYEcnMmu7QiBvIyUAO5qQvUREREVAGYCOSBdaIREQFcgcGkbmogHzFCKt9BQdKFfexYWdrq888liFerBmzcKN1Hc3KAd94B/vc/7Xt/+kkbdzxlivEHxrVrtap7QoL2IfaNN6SyffPNpitm3t5aQFYr4+ZUyNX7S5dKO0uaEdwwkIeGFl1LunFjWVMcAG6/vfjzOBs1eBw9Kv8WAQGlr/tMjqde9CmtQp6ZKRe4AJlTQZ3pvKRAvnGj9FCpW9fiizOGgdzS6QNCQ4GzKLhg9uGHxfdWKc0770jIWbFCXqfhsmemqIH8xAltmI21K+Tq3BWAXPgyqJAnJsouLy9t3rsSA3lpk7qpgTwvD0hNLf512AADeRmwQk5ERFTBGQbygmqbrnYtNGwIXIVBl3U1kHfrJlXslBQJ2mo1fPBgWaP78GH54K+O6/78cxlrHBQkgRyQbUCArLurdo09dw4YNEhC4bBhxl3AK1WS8+7dW/wSSOqSQYcOydbcCjkgk6u9/nrJk6jVr69Vxm6+2fQY8eXLZfKsW24p/jzOpnDwqFnTece/k8bcCvn27fJ/u0oVCdhqIC9ppnVLuqsXUp4KeWgoMAgL8NcLi4yX6LNUgwbytwQApk0zv0K+c6d2gbDwBTdDhmuRGyqpQg4Yd1s3qJCrU2rUqqWtenj5cqGJ3dRAnp9feiD399dK7XZe+oyBvAwYyImIiCo4NZCfOCGTenl4AO3aoVEj4AoKKkopKVJB1em06q+p0FarllYduv12oGtX7bFnn9U+QEZEaB+4p0yRoN2tm3wKbdFCm2zNkL+/rPddHMNAfu2aVhXz8JBlzdS1l0ua/bwkBT8XAEW7q6sqVZIZ1F1J4aohu6u7BjWQJyaWPFZY7a7esaP8n1UD+T//mO4im5MjS9YB5QrkHh5azjBXSAiwC7dgf+MB5b8oNHKkbBcv1mZcL20MuVodDw8vubyvnufCBeP9aoW8uECu9vgpVCE3XElRPXV2tkyOXySQp6Rowa24Sd10OoctfcZAXgYM5ERERBWcWklR1xxu0QIICUHDhkASwpAPgw/GLVpo3S7NMWGCbP38gNGjjR8bPVpKaBs3yuRNBw/KjMOLF5ccvItjGMjV6ni1alrJSV1mqKyBHNDWJ+/UqezncDbe3sb/ppzQzTWEhGi/yyVVyTdskK06nKJhQ7loduOG8bAO1eLFUsGNjCxTIC/LDOuq4oZml8ktt8hFiNxcrXJdXCCvXt34AkBpS62pF63UVQlU6vOY6rIOFFshNwzk/v7Sux0oKOwXDuTqNiBAu5hqioMmdmMgLwO1ZxYDORERUQWlfqhTZ9ju2BGALCOdD08kexp0i7Q0iLZvL2PG162TsG2oenWtW3p2NnDPPdK1vbjqc2lMBfJ69WTqYkOmuqyb69ln5cLB00+X/RzOyDCAsELuOgp1W3/uOel8Ur++/Df++etrcsELkLXtAan8qv8n1LHlKkUB3n9fbj//fJkujKkV8rIE8uJ6gpfZCy8Y3y+ui7ePj1a9BsoeyMtYIVe7rKt/+gwXPig2kBf3WlQM5K6DFXIiIiLHS0hIQKNGjdCmTRv7P3nhKktBJU0tLF/KMxhLWZbK8H33STA3ZdIk4P77ZQK3lSvLN5lY/fqyPX9eGx9bv75xIA8K0spwZaHTSfC3tC+us2Mgd00GE7slJsqKgteuyfWoP/4A1o1YIRXipk2NJ0hT/z8uW2Z8vo0bZV4Hf3+5+FQG5QnkxS3vXWa9e2s9PsLDS26U2m0dMD+QnzhhvL+kSd0A7WLgf/8Bly7JbYMKed26slVHkZgM5KWNH1cxkLsOBnIiIiLHi4+Px4EDB7C9pImWbKWYQF6tmuRX/cRuBo9ZTUyMdJF97rnyjxkNDdWq8OpUxYUr5NWqccIyUxjIXZNBhXzpUilwt24tubpSJeCOpIJlBe+/3/j71CX6fv5ZW30AAD74QLZDhpQ8qVkJrBHIrVYh9/QEhg+X25GRJR9rOFSjtEBeu7ZsL182nsW8tEnd1Aq5OnmcpyeUmyobdVk3fHpWyCsIBnIiIqIKzjCQN2ig/zSo00mVXD+xW9OmZf6Qbjdqt/XTp2Vbv76Me1c/8JRn/Lg7YyB3TWqFfP9+fP+93Hz4YenIMrhvCu5CwWzp/fsbf1+DBrJUYX4+8MUXsm/fPgnoOh0walSZm6QGckuXPANs0GUdAJ55Ri74vfNOycdZEshDQ7XAqw71AcyvkKuzvkdGIvGiJzIy5NqB2gQG8gqGgZyIiKiCUyd1A4pUwBs1Ai6j4NOhK0xkpgZyVb16MkOSur8848fdmZoAQkMtm7SPHEs/ruQSDv8pIU8thj9bfSV8kY3DugZIi21U9HufeUa2n38ufcTV+Rz69Cn7PA5wsi7rgITjhASgX7+Sj7MkkANaldyw27q5FXKVwQzrNWtqPzOzAnlxM6yr1Me57JnzYyAnIiKq4Awr5AUTuqkaNgRm4Rn8Xa1v0QmSnJFhIPf21saFqks9sfprmpoA+PNxLYGB+n+zRtiPuDitE8jNe5YAAL5X7sey5SaGafTtK//u58/LmPI9e2QOh+nTy9Ukp5ll3VKGY8gLLwVoiqmJ3UqrkFeqZDxRXqEZ1lUlBnJzx5Bz2TPXoQZyU8sQEhERUQVgGMhNVMj/QRs8fdMPxVbNli4FXn/d+HPf3r1SlDIcXpmVBfz1l40/cxgG8ptv1vrNvvmmNNLdZke3lmbNZKuus06uo6DbemPsxwMPFOxLS4Nu9WoAwFL0x/z5svrZ44/L/0sA0jNm6FC5vW+f9JletKjcvUicapZ1S1haITcVyEurkOt0xlXyQmuQF356o0CekiI/XHZZdz+skBMREVVwaiCvXt24SgStR+yhQ1L5+uADYOJELWh/8YV0kZ08WTLdmjXAG2/IEsDPPy8F98RE4NQp4LbbpBA3eLDMZ2QThoHccFbp2rVlDGl5ZnF3Z3feKf/IH3/s6JaQhW7ESiC/Fz/j/v4F/7FmzgQyMpBTvTb2oDnWrgXuuAP46itgxAhZdQsAMGyYNsnhlCkyrrycnK7Lurlq1NBul7XLemkVcsD4gkd0tH7JM3WGdcOnv3wZxkNIkpK05yu8jGRhderIChe33VbycVZWhqkDiIGciIiogrvtNvlwqY4pNVCrluT1zEz5bLdmjez/8kvgoYeAqVPlflgYcPasttQxID0zd+2S3uKZmcDVq7J/wQKgSxetOGdV1atLdSojQ1sGjczDn5dL+iXsYfTF+7gHq4AN86WXw5tvAgC8x7+OjvN1+P13yYghIcCFCxLMX38d8h987lypuo4caZX2ONUs65bw9ZV5Mg4dMr6YV5yyVMiBohXygpXniq2Qe3rKH9ikJBleoK4dHxdXcvvatwd++qmUF2F9rJCXAQM5ERFRBVezJnD8OPDyy0Ue8vTUctqaNXK/alWpeL/7rlS6n39eVk568kk5rkoVYMkSYP9+KVifOydhvFUr4MUX5Zjhw6WXrNV5eGgNNudDNZGL25raBOPxltwZMUKmWc/MBLp3B554At9+C3z7rVwwmzJFDpszx+Cz/+DBMqu6lZYDtEaX9aws+bK79etl1vSgoNKPNVyLXFHkhavjcUoK5AYVciXKjDHkgNY9fe1a+betXNlp/74xkJeBp6dsGciJiIjIlEYFEzT7+QHLl0sBadQoKSiNGCFzQAUFyWTNBw8CR4/KKku1a8uY8ccflyD+xx9SUe/eXQrYPXtqEzz//bdcDxg2DDhwwHQ7fvsNWLfOjAa/8gpw111A795W+gkQOa8zZ4CpeAWJtW6T/0y7dkmy/eILQKdDTIz0ZgkPl+ElwcGSITdtsk17rLHsGeCgbuuensaTrpUkNlYuYqSnS3JWq+NAyV3WDSrkV3xikJYm1xEN51NUA3l6esFp1UD+44+yvf12q11AsTaHBvLff/8dPXv2RExMDHQ6HZYvX270uKIoGDduHKKjo+Hv74+uXbviqDpowIFYISciIqKSjBgB3HOPFGfuu0/C94cfAmlpMuTY8HNhgwbGH6rDw6VH7PvvS9HIwwOYP196lv/3nwTw8HDpZfv++xLQmzcHxoyR86v27gW6dgW6dQOeekobqmnSwIFSzjdnpmQiF3fmDJAPT+x76SstCH70kcnJ2QIDpYAOaMuPW1t5KuSenlpx2iHd1i3h66uF65MntT9KOp3xRJmFGfy7HM+IASDZ3nD1yeBg7b7RxG6bN8u20OSbzsShgTwtLQ3NmzdHgn7qQmNTp07F9OnTMWvWLGzbtg2BgYHo3r07MjMz7dxSYwzkREREVJK4OODnn6UoY0jtZWepKlWkiPf++xLg8/MlKDz4IHDvvTJ53JQpEsDVJZT+9z9tIrgvvpA2ffedweRURBXUmTOyrdT2Zuly/c03wJAhxR6vDi1ZutR4Au7UVPl2w5URDO3bV/RCmSlqV3PDgGkJNXueOlW277crw27rhuPHS6peq4HcwwOHrkopvPACFjpdMTOtq4Gt8B9jJ+LQQN6jRw9MmjQJffv2LfKYoiiYNm0a3njjDfTu3RvNmjXD/PnzkZiYWKSSbm8M5ERERGRvERHSjf3AAeDYMeDSJQnYK1dKr8zQUGDrVin0HT4sqzEBwLRp8kF1zx4phFerJsWi4qppu3ZJsXzfPulq/957cvygQaaXXzt5UiZbfu450+f77Tf58Pzbb1b5MRCVS3a2TNIGFKw/fuut8stdQiBs1UpWRMjKAtq0kREe8fFATIxcBDM1t1turgxDmTJFeryU5L//ZGs4d5kl7rhDtitWaPs+/FAmDVfP7TTUmdYNK+QljR8HgMaNgdhYKHffjfUb5aqmqRUlTQZyQK5etmxZvnbbkNOOIT958iQuXLiArl276veFhoaiXbt22LJlS7Hfl5WVhZSUFKMva2MgJyIiIkfR6eSDtuGQy1695AM4AIwbJ5PGKYqMOX/hBQnZo0bJ0moeHsCff0pQL+zffyVw3H030LSpLOH2yity/MKFMm69sClTpOI4cybwyy9FH3/3XZn/7oMPrPLyicolMVH+b/j4mLdSFyD/56ZMkaHSx4/LRapPPwVu3JDHly0rerHq66+BI0fk9u7dJZ9fHZFb1jnH+vWT7Q8/SD5JTQUmTJAitAMmDS+Z4Uzr5ix5BkigPnYMH3ReiW++kV19+hQ9rNhAHhenH6C/fz/0k8I5C6cN5BcKLl1FRkYa7Y+MjNQ/ZsrkyZMRGhqq/6pevbrV28ZATkRERM5myBAZL56ZqU3k9sYbsq1aVQL7jh0yezQglXTD7reAdInPy5NqfHi4fIa9806pEAJFP9yry0GpnnvOuHtuUpJWGd+woZRx7ER2oHZXr1ZN+0xvjh49pFfK998DjzwCPPqo9CQJD5cV0AwvVmVnA2+9pd3fu7fkc5taV9sS3brJOPKzZ4F//pHeMerFguPHy3ZOmzFci9ycJc8KLPzeCy+/Ir0Y3n9f5qAsTA3kly7BOJAXdFe/fFnm3ujY0XRvH0dx2kBeVmPGjEFycrL+64z6v86K1P+8zvQPSURERBWbTgd89pkUkwD5wNq2bdHj7r8faNJEuqx/9JG2/+xZLayvXi0hIztbwv2oUbK/cCD/5BPpxtuqlXRbP3XKOIj88os2pj0jw3azVBOZS40GZanZBQcDDzwg1e/58+X/WLdu8phh75AvvpD/C+r/xf37iy/kKYpWSS9rIPfzk7kkABnn/tln2mNOF8jLUCG/dg144gm5PWqUthRkYcVWyAsmdPvzT7lgeP68c82l4bSBPCoqCgBw8eJFo/0XL17UP2aKr68vQkJCjL6sjRVyIiIickY1a0oYaNFCutWa4uGhheZp02S9c0CWYsvNBTp3Blq3ln3qsNoePWRCun37tDGpqanSbRcAxo4F1Dl6P/xQxqsD0pUX0CarMtWlncieyhPITenRQ7arVsk2IwOYNElu/+9/Mnl4WprkT1OuXpWeJIAMRSkrtdv6558bV+udNpCfPq3NQldKhfzECbnwFxkp1fHimAzkXl5SFocsKaky1W3999/l3+CZZ8x4HVbktIG8Vq1aiIqKwvr16/X7UlJSsG3bNsTFxTmwZQzkRERE5LweekjGjDdrVvwxffpIaL9xQ2aQ3rMHmD1bHnvppaLHV6oEtG8vt9Uq+RdfSJCoW1fGsN93n1Tf8/KAp5+W3qhqSHn5Zdn+/LM28zuRI1g7kN99t2x37AAuXgSmTpUKbGys/D9o1Ege//df09+vdlevXr30odQl6dFDwr86DKVNG9meOOFkmSUmRtZpzMuTKegBsyrkgATykoYZGAXyxo3lKmK3bvquCuoKaIDpQL5vn/y87F09d2ggT01Nxe7du7G7YKaDkydPYvfu3Th9+jR0Oh1GjhyJSZMmYcWKFdi7dy8ee+wxxMTEoI+pUfx2xEBORERErszDQ6p3ALB8uYTzlBSZxE2t+BXWs6dsV6yQqptaBXzpJW05t48/lm6927bJhYG0NBmr++qrssbyiRNaACFyBGsH8qgobQLv2bNl8jdAgrmvr0yOCBQ/jry848dVwcFA9+7a/bffluJwVpZzdc+GTicTT3h7a0m7lAq5ephhL3RTjAJ57dpShf/hBwAyt8aOHdqxpgL5wYOyVS+i2ItDA/k///yDli1bomXBb/Ho0aPRsmVLjBs3DgDwyiuvYPjw4Rg2bBjatGmD1NRUrF69Gn5+fo5stv5Nh4GciIiIXFWPHtJFU63wARKui6tAqYF80yaphl+9KmPHBw/WjomJASZPlttqJb1PHwkLnTrJ/cLd1hVFG2duysGDDPFkPdYO5IB2EWv8eAl+d9whY80B+wVyQHqoALIkWLduUqUHnLDbevPm2hU9wDaBHJA/SAW5cccOmRNDZSqQHzgg24YNS34ea3NoIO/cuTMURSnyNW/ePACATqfDxIkTceHCBWRmZmLdunWoV9b1AKyIFXIiIiJyBx06SLfy3bulkDRkSPHH1q8voSEnR9Ynr1pVquW+vsbHPfOM8WRyasfGe+6RbeFA/vjjsob6Rx8V/Wy1fLl0vW/TRhtn62rOnJEu+yWNfSX7sWUgB6Qq/ckn2vwLpQVydUI3a0Schx+WuSCWLpW8oo5Jd7pADsjMbB07yu3w8BIPLXMgN6B2Vw8Lky0r5C6OgZyIiIjcSfPmQN++WogojlolDwiQMB4TU/QYT0/puuvjI93V1c/camjZtEn7wPznnzJbdXo6MHq0hPaDB+Uz1vLlUmXMzZUZ4RcuLLltSUlauDHXpUvaBHTWcvAg8OOPwDffAPHxUq18/30J5T//bN3nIstkZABXrshtawbyW2/Vgt6IEcaBTg3kR4+aXvbPmhVyT09g+HBt/oibb5atUwZyT09ZQ+6114qfNr2ApYH8xg3pqm9IndDtwQdle+yY8XwWSUky9h8AGjQovfnWxEBeBgzkREREjpeQkIBGjRqhjTp7EdncqFHSLXb5cuCWW4o/rkULmSBpyxYZKgpIhb1FC+k2Ony4fBh+/XV5rG1b6Vm6Zo2EmbAwLYyrkzLPnm16QrhTp6Rd1arJc6jrnpcmLw/o0kVexz//lHzsX39J9/zCy7Zdvmy8DO6hQxLA+vSRdao//VReb9Wq8vgLL0iXZleWmyu9KdR1rl3J2bOyDQgotShrES8vqUw/8QQwYYLxY9HREiTz87UKrEpRrBvIC3PqCjkgs7RNnlxq9wBzA3lYmDa02LBKrihaIH/4YTkmI0ML4ID2b1OtGmCDRbpKxEBeBgzkREREjhcfH48DBw5g+/btjm5KhVGtGrB4sbb2cknq1pXjVTqdLMnk6QksWgQ89xzwxx/S5X3pUhnjeccdcv/GDQl+Dz8sSzj5+cks1YbLOQFyv0EDWb4tLU32ffmlea/lxx9lzGh+PjBnTsnHvv02sHMn8Pzz2ue/lStlQi91jXYAWLJEAnpUFNC1KzBwoFwgOHhQgtnx47IsnCubNg3o3x94801Ht8Ryht3VS+sNYqlHH5Xfo+Bg4/06XfHd1i9ckOUDPTxkDjJrc/pAbiZ1acbSArmHB3DTTXLbMJAfPSr3fX1lBbSaNWW/Ybd1R40fBxjIy4SBnIiIiMhyrVtrKx3NmiXb+HgJ7o0aAevXS0DZuxdYu1a6s990EzBggBz72WfauRQFeOUVqTi3aaOtu/7jj6a7BhtSFON12r/7rvjK9ZUr0hZAqv4//yzj6EeNks+CX34pXe4BbSK7t9+W71m4UKrwwcHaGPJ33tGCoSv68UfZbtzo0GaUiS3Gj5ujuECuVsdr1pQhHtamBvLC3bOdWW6u9FhJTtb2qRXyiIjSvz8yUraJido+tTreurWEcrUrv2Egd9T4cYCBvEzUQG7YRYmIiIiISvfmm9oY16AgGUJqyMsLaNJEKsxq99Nhw2T73XfaB/XffpMu5D4+Upl+8UWgRg0J9Or658XZvBnYulU+nEdGyvjRlStNH7t0qfFnvsmT5cKA+mE+LU1C+oULWgX/3nuLnmfgQJlELz1dLkK4SkAylJwswxAAuTihXohwFc4ayG3RXR3Qqu7JyVqodVanTskqD9WqyQU29f88YH6XdUD7WRquzKAG8vbtZWsqkLNC7mJYISciIiIqGx8fmfDslltkZnV1IqaS3HabVK7S02W1pLw8YOxYeeyZZySI63RaJX3RopLPp1bHH3tMm1l+/nzTx373nWxffFEC/JYtUpkHtArkd99pE7a1aSPd0wvT6WRMuY+PVNILFhVyKb/9pl2cyMsDdu1ybHss5ehAvnWr/K6oP0NbB/KAAO130dm7rffsCXzwAXDxotw3XDPckkCuDkc3nODx339l27q1bFkhdwMM5ERERERl17SpfOB+8knzjtfpgJEj5fb770sFfds2Wb5Y7QIPaDMor1ypjSkv7NAhmSFep5OQ/dhjsn/VKpl13dC5c9pEbiNGaOE9PV0++Kth/eeftVng1ZnoTWnSBJg4UW6/8IJUBV3JmjXG9wuP6Xd2jgrkzZtLME5JkZ4SDRoAM2bIcoOAdZY8K45Tz7ReIDdXq1C/+65sz5+XXiSKUr5ArijauRs3lm3hQJ6WBvz3n9xmhdxFMJATERER2deTT8qkcEFBEqoBCclRUdoxrVpJN9309OKXGFMnI+vVS2Zlb9hQqtq5ucC33xofu3ixfKBv316q8C+/rHWjnzxZnq9BA1liSZ3d/b77Sn4dL70kFf8bN4DBg4Hr1y37OTiKomiB/NZbZetq8yk6KpAHBAD798vFmEqVJAgOH679PG1VIQdcY2K3c+ek14CPD/Dss7IvPV3+j6Smyv9NoGyB/Nw5OY+XlxbEDQO5ogCHD8v9ypW1SeHsiYG8DNQ/xAzkRERERPah00ko//dfWa+8XTsJyIWPUbutFw7XgIwdX7JEiitvv63tHzxYtq+/Lt3Zc3JkVuavv5b9Dz0k29q1gQULpKu9um67+hgg419btCj5dXh6Al99JSFt0yY55+TJRSv6J04UP+73v/+AoUNllnp7OXZMntfbW+uyzwq5+cLD5WLQqVOyRJoaHL29tS7ttuAKgfzkSdnGxsoEiOpM9efPa/8HfH2lR0xp1J/rmTMS6tXqeN262sR5tWrJ/90bN+T/uSPHjwMM5GXCCjkRERGRY9SqJdXvrVtNz7o8cKBsly/XupEDUgl78UW5/cQTxiHo8ceBzp3lA/wrr0jVvUoVWerMw0PWXlc9+KB0n1eXzVK7yQNSHTdnOa2bbwZ++UW6sCclyYWA2FjgrbeAdevkPHXqSAW/8Nrn6elS3f/yS+ker3a1tTW1mtu+PdCpk9w+ftw+k4Xl5sp67uX5/pdeksnNPDwcE8hVQUFSHT94UHpVbNigrVNvC4YzrTsr9XdYXY5MHfd+/ry25FlEhHn/t266SaukHzumhW3DseG+vtLjpaRj7ImBvAwYyImIiIicU7NmWuV8yBCpigMy0du2bUBgoHF1HJB9v/0GzJ0rH+jVkNm0qVQzDbvFF9aggVTrAeCBB8xvZ6dOMob4668lNF29CkyYIGu8q93tr1yR2eZnzdLG0z77rDZbd3KyrNWek2P+85aVGsi7d5fAo3b7tWW39ePHZXm5iAjpUVC/PtCvn/w7paSU/L25ufL9a9ZImz/4QPZPnFh0rXBH8PCQJfHUmb9txZUq5KYCuSXjx1Vqlfzw4eLDtmG3dXVCN0dVyL0c87SujYGciIiIyHlNmSIzWC9fLlXkmBhtnOirr5oO2DqdVMr79JGg3KSJ+eNJly2T83fubFk7PT2BRx6Rbu9LlwJTp8r4+IEDpYo6ZYpMHPfss9KtvVkzmbDOwwOYM0cq9Vu2AE89pVX0c3OlChsdLa/VMDjPni3dfmNiJPw0aSIhV+3Kqygyc/ovv0jY9/GRivyWLVrw7t5dtm3bSpjZvl3bZy1XrshFla++Ml4e7sgR+Vq2TJaO69xZKp3Vqkmw7dBBXv+MGfLzMqzeBwbKzPaGvR0qAnXps/PngcxMwM/Pse0xRa2Q16olW8NArg4VtjSQb90qvyvFdUevUwdYv17+z6scVSFnIC8DBnIiIiIi5+XhIUurdewoIVWdOC0uTuu2XpywMMuDdXS06aXOzOXlJV3fDbu/A9Llvnlz6cp++rR8ARI2H39cgvcDD0hwNeXbb4Fp02SN9AkTjNdTN3zuyEipQl+/ro2zNqVDB2kPIBPhLVyojSNPT5eLGv7+Eqi//loez8mR2a0bNJCf0U03ybjpGzdk3Lyvr7wOHx/pln7mjFSxr1yR8/boIZP3NWkilcytW2Uc/+HDRdebv+kmOd+5c3Lfz0+CV6NGwPjx2izbFUlEhPx8U1Nl/Hr9+o5uUVEldVkPCJDb1q6Q9+ol/2+ysuR+aKhM0ugIDORlwEBORERE5NwCA4Fff5WZ0mNjJYxVr27eOFRnodMBr70mgXTjRul+Xbmy1iX//vslrP/yi0wm17atdMdOTZWwsWmTVM9V/fpJMD53Tqrb//4rwfjcOS3EBgRIxbtOHQnTOp0ElfbtJTCpP782bWS7ebNMcPfTTxL4/f3l+9SZsQFgzx7LX3uTJsBnn8lFFFW1atKl/403ZNm8HTuAxETpjr1qlRbiq1WTYQmPPqpVWCsqnU7+3fbtk+DrjIFc7bJuqkIeHi63yxLI//hDLjJ5eBRdWu7ee2X+huRk+apSRS7GOQIDeRl4FfzU1CsqREREROR8IiKAZ55xdCvKLyBAZpa/556ij40bJ1+FPfaYjJt+4w0JyQkJwKBBxhckFAU4e1bWX796VYJL+/bmzWbdsqWE3WvXZGiAKiNDtq1ayUzw1apJlfLIEXmey5clsIeEyEWT7Gy5gJCdLdVtX1+pio8cKZV0U3Q6oHVr+VLl5soFiKtXZZiCOa+hojAM5I6Ul1f0Akl2tnYxyFSFXB1eYkkgVy86qK+3dm3Tvw9+fvIVGWn+uW2BgbwM1JkZHf1LTURERERkiqenzBj/yCMSOkwFGp1OPteWZdbxgAAJ3L/8It3m1fCtjttWq52ABGRb8/IC7rzT9s/jitR/C7US7Qiffy49PZYtA+6+W9t/9qz0OjYMxoaBPDZWbptaUaE46rwJKkeNDTcXA3kZ1K0r29On5Sogr8ARERERkTOKibHduWfPLrovNNR2z0dlo1aeHVlMXLVKJpWbMME4kBvOsK723lAD+YUL2rJnllTIAwLkIpM6H4KzB3Iue1YGN92kjTFw5iUEiIiIiIioYitLID92TCbds5aLF2W7bZvxUnmFJ3QDtEB+/brMEQBYFsgB4zHjDORuSKfTquRHjji2LURERERERMWxtMv6gQMSaPv3t14bLlzQbickaLcLT+gGSOHT11duq2uEWxrIDSevYyB3U+pVl6NHHdsOIiIiIiKi4qjV50uXZHk6QCZ5W7/e9KpRv/0mE/7t3Gm9NhgG8u++k8n9ANMVcp1Oq5KrVfryVMgbNLDse+2NgbyMWCEnIiIiIiJnFx6uje0/dUpWiurUCejaFWjWTNarN1yj/p9/ZHv5snVWlUpN1S4ENG4s55wzR+6bCuSAFshVlgZyNYTXqiWz+TszBvKyuHYNj2wcijuxjhVyIiIiIiJyamrgPXkS+PtvbTb8/fuBhx+W9exVO3Zot9Ux3OWhVscDAoCXX5bbn34qk7yZ6rIOlD+Q33knMGoU8PHHlrfX3hjIy+Kdd1Bn45cYh4kM5ERERERE5NQMJ3b7/Xe53aMHMHq03J4/X7qpp6XJGHLV2bPlf251QreoKODBB2Xm/zNngDfe0AJ/SRVyHx/Lq9xeXsCHH9pnyb3yYiC31LVr+jUequEsLlwAUlIc3CYiIiIiIqJiqBVow0B+zz1SGff2lq7sJ04Ae/YYjyu3RiBXK+SRkbLeuDqp2wcfyDYgQFaxMmQYyCtV0pZEc0cM5Jb69FP97AIxSASg4NgxxzaJiIiIiIioOGoF+uhRYPNmud2xIxAUBMTFyf1167Tx4yprV8gBoE8f4xnca9UqGrgLB3J3xkBuifR0o4EIfshCJVzjxG5EREREROS01ED+669SWwwLA5o0kX1du8p23Tpt/Li3t2ytXSFXffKJNtFc4e7qAAM5FefLL4ErV+S3puA3IwaJHEdOREREREROS+2yrs523qED4FGQBNVA/ttvMuEbANxxh2xtUSEHJHAnJMhY7+7di34PAzkVlZMDvP++3H75ZaBaNQASyFkhJyIiIiIiZ1W4Ct2pk3a7TRsgOFimyjp0SPb17i1ba1bIDQM5AAwaJHNxDR9e9HsYyKmo5GSgdWv5TRoyRKYHBCvkRGR/S5dKt6+vv3Z0S4iIiMgVhIQYB9uOHbXbXl5Aly7a/ZgYCekAcO5c+Z9brZAbdllX+fub/p7KlQFPT7kdEVH+NjgzBnJz3XQTsGQJcPiw/OYYBHJWyInIXv75B3jkEeDSJWDSJFmihIiIiKg0apU8MBBo2dL4MbXbOiA1yILOwDh/HsjNLd/zFlchL4mHhxbgWSEnYyEhsi0I5FVxDtevA1evOrBNRFQhnD8vM5NmZsr9I0eAbdsc2iQiIiJyEWogb99equKGDAN5q1ZAlSpyTH6+FqjLQlFKrpCXRO22zkBOplWtCgCo4yer2bNKTkS2pCjAAw9I17GGDSWYA8BXXzm0WURW07dvX4SHh+P+++93dFOIiNzS7bfLtl+/oo81aKBVxdu2lQp1Qf2xXOPIU1K0QoKlgVztNt+8edmf3xUwkJdVwW9orI8E8j17HNkYInJ3Z87IuqFeXsBPPwHx8bL/u++0NzoiV/bCCy9g/vz5jm4GEZHbGj4c2L8fGDas6GM6HbBgATB1qjbruRrQzQ3kmZnAvHnS5b16deDUKa26HhwMBARY1t4ZM+Tzj7pOurtiIC+rgkAerUgg37LFkY0hInd3+LBs69YF6tSRyVeqVQOSkiSgE7m6zp07Izg42NHNICJyW15eQKNGEr5N6dhRFpNSH7ckkB89Kl3ihwyRtczPnpVJaE0teWYuT0+tDe6MgbysCgJ5cNoFeCCPgZyIbEoN5PXqydbTE3j0UbnNbutka7///jt69uyJmJgY6HQ6LF++vMgxCQkJqFmzJvz8/NCuXTv8rS5mS0RELsmSQP7zzxK+q1TR1jD/80+tQm5pd/WKhIG8rKpUATw84JGfhyq4hKNHgcuXHd0oInJX6jwV9etr+wYPlu3q1doVaCJbSEtLQ/PmzZGQkGDy8UWLFmH06NEYP348du7ciebNm6N79+64dOmS/pgWLVqgSZMmRb4SE//f3p3HR1Xf+x9/zWSSyb4RsrEjyCYisolo64IV6tWiVq1GTGl/etGoKNaqbdV6vYhLq1aloN6qvb2utOJaUIyK0soiGBZZFWQ1CQFC9m3m+/vjy0wYkkBYZ+H9fDzOYzLnnJn5fM6cmW8+c77ne7YfrzREROQQ+Ary9lz6bPVqe3v99fDgg/bvfQvywzlCfqJwHXwVaZXLZfes7dsZ1X07//guhwUL4OKLgx2YiESi/Y+Qgy3Ohw+HRYvgjTfsuWEix8LYsWMZO3Zsm8sff/xxrr/+eiZMmADAjBkzeP/993nhhRe4++67ASgqKjpq8dTX11NfX++/X1FRcdSeW0RErEM5Qu4ryPv1s6O0x8bag5Wff27nqyBvm46QH4m93dZ/2Nv+uv/vfwczGBGJZK0dIQe45hp7+8orxzceEZ+GhgaWLFnC6H2umeN0Ohk9ejRfHKPzuaZOnUpKSop/6tKlyzF5HRGRE9nhFuRutz1gAPDPf9pbdVlvmwryI7G3ID89y/bj0HnkInIs1NbakUoh8Ag5wJVX2kuTLFgAGzYc/9hEysrK8Hg8ZO3331ZWVhbFh3Dx2tGjR3PFFVfwz3/+k86dOx+wmL/nnnvYs2ePf9qyZcthxy8iIq3bt8u619v2emVldoLmAwe+S6zV1NhbHSFvmwryI7G3ID85yR4hX7QIGhuDGZCIRKJvvrHXIf95/Bt0/PzNgGU5Oc2Dp7z6ahCCEzlKPvroI3bs2EFNTQ1bt25l5AGuc+N2u0lOTg6YRETk6MrOtiOuNzYeeKws39Hxbt0gIcH+7SvIfXSEvG0qyI/E3oI8o347XVIq+GftOeyacEeQgxKRSLNuHZzMWl6suQrHlVfAfoNgXX21vX3lFVu4ixxPGRkZREVFUbLfyIIlJSVk65CIiEjYio5uPrK9f7f1hobmv/ftru4zcmTg5dXUHLRNBfmR6NQJAMf32/lN7kucwzwyX3lCwx2LyFG1di1M4EV7x+uFt98OWH7ZZRATA6tWwYoVQQhQTmgxMTEMGTKEwsJC/zyv10thYeEBj3KLiEjo83Vb//Zbe1tfbweRTUiAF16w81oryFNTYeDA5vs6Qt42FeRHYu8RcrZt4/KyGQA4jIF33gliUCISab5Z00Q++1xs/M3AbuupqXDRRfbvl18+fnHJiaOqqoqioiL/SOkbN26kqKiIzZs3AzB58mSef/55/vrXv7J69WpuvPFGqqur/aOuHyvTpk2jf//+DBs27Ji+jojIiapHD3s7fjzccQeMGgXPPANNTfDss3ZZawU5BHZbV0HeNhXkR8JXkK9YQccdq/2zPTPfbOMBIiKHLm3RB+RQTGNsop3x6aewa1fAOnl59vbPfwaNbyVH25dffsngwYMZPHgwYAvwwYMHc9999wFw1VVX8Yc//IH77ruP0047jaKiIubMmdNioLejraCggFWrVrF48eJj+joiIieqhx6yY9U0NMDjj8OSJZCebrujL1pkz6JrqyA/+2x7m5pqR16X1qkgPxK+gnzvSZv/dp9r739cCOXlwYlJRCKKMXDOBtsnrPyn19v+X01N8N57doXKStiyhUsvtedrVVXBTTdF6Lnku3fDmjWHltzOnbaL/74nu8khO+ecczDGtJheeukl/zo333wzmzZtor6+noULFzJixIjgBSwiIkfFSSfBRx/B++/D0KEwejQUFcEZZ9jlr7wCeztLtSjIf/Qj6NoVxo07nhGHHxXkR6JDB3vi5l67f/dHvqY/UZ5GKl97P4iBiUik2LV2Bxc2vgtA4i0T7AnjYLutb95sC/SuXXGOu4SXb5zPhVEfcc57d7D57GvaPlRujK3cS0vtOmVlx7dg3boV/vAH+I//gA8/PPC61dVw7bW2r1t6um3tCwraV5SXltr/GMaNgyuuaF+OVVXw9NMwaZLtiRCRv2yIiIi0n8MBP/4xLF4Mc+dCly7NRfYTT9jbjh1tabSv9HT47jt48cXjGW34cRgT2f9tVFRUkJKSwp49e47NZVF69LB72rBheBcs4i+593J9yX+z7KTLGPTNP2hstDuxa2eJPUpzwQXNJ2PIkamosH1lTjrp+GxTY+zRSJcL4uNbX/7dd5CRAUlJLZd7vbBxI6xcaSeHw15EulevYx76YTMmcIjMA6mrg88+g6+/tsNyxsbab+zBgyEzM3Ddyko7+KExdnu2NjU12X5Q27bZ5+rVy17jq73xtJZLWZm9htjmzbbvVEqKvUZHz56H95yHy+u1Fw5ftw48HhtbTg707g3duzf/0FdXx/fX3EHOrD+zLGYog+oXw/LlMGhQ8/Zdv77Nl2nq3A3Xp4X2M+LzySe2oF29uuUDcnJsIXrTTa3vw/ubP9++P+edZ1vithgDX34JH3wAc+bAv//dXOhGR8M//gEXX9z64/LyWr+e26RJ9r+AtvaHyko491zbt87n4oth5szW+81VVNgfCZ55xh6J9+nXD+66C6677vD3vVYc87bpBKPtKSJyfK1b13zNcYAf/ADmzQtePKGovW1TWBTk06ZN47HHHqO4uJhBgwbx9NNPM3z48HY99pg30hdeaI/wvPACTJjAgulfccZNp1NDHBf1/47qtVv5f46/8HPvX4jx1uONjoHbJ+O8fZI9erNhgy083G5wOqG2Fmpq7N8JCRAXZy/+V19vi5T0dFtEVFfbrpjV1c0FTHKy/WkqOdmuX1vb/Hw1NfYfzj17bAGQlmZP6Kirs/98VlTY12lqsv8gJyTY1xk0CAYMsLmuWGGnnBx7VK66Gl5/3XaddbttMdGzp40hLc0+V1mZnXbutLd1dXbduDi77sCBNvY5c2x/GKfTFiS+qVs3KC62hV5Rkc2/a1d7/uz8+fY1wPahOfNMOxz1ihX2Nfr1g5NPtsVzdLQ9jeDbb20xZoyd57uw4s6dNo6EBEhMtFNCgn3+3bvtY8vLbSEFthDq08fG16mT/ef/7bft+5mcbIuF66+3Mc+ZY4uRr7+222x/Z50FQ4bY3Fwu2LTJTnV1Nka32xb5mZk23g0b7PKqKvu+GmPjTUqy8VZX2/V8j3E4bOx79jTfOp32+hNZWfbxvn2ltta+ru/vxkZbHMbGNk8xMXad6mr73JmZdl9atsw+pjWZmfZxXq/d16qqDu/zFh9vC/Peve1+VlvbfKS3uNjmFhNjJ7fb3jocdn/ZubPt+Pr2hZ/8xBZwp58OHTvi9dq3vr7eruJyQVpSE9G7SuwPK2vW2NtOnex+3KePjSkqyj7A67Wx7dljc9661f4YsGyZHfixrasxuN227/nw4fbztWkTAI/1f5E7v/65fb96924e7rRbN3jpJfjb3+Bvf8NkZDCrZgyn7JnPyaynLj2H2D8/YT/3H34If/1r4OvFxLQ8cpyebvukZWU17ydZWfZ9zMiwn5nf/c5+ZsHuT2ecYT+bLpf9/J93nt2eH34IU6bYvPd19tn2e+DDD+1+/uqr9uj/vkXvE0/A5Mn2Od94w/6g+cYb8Mtf2uU33gi33WY/55s322J75UoavFHUL1xG0tovqUvKYPW1UzjtxUk46ursfwwPP2y3Mdjt+cYbcPvt8P33dl6vXvb75B//aP7MXnABPPec/V46ClRAHl3aniIix1+/fvbfIYD//E+YMSO48YSaiCnIX3/9da677jpmzJjBiBEjePLJJ5k5cyZr164lc/+jbq045o30t9/CwoX2QsAOBxhDcXxPsuu+a7HqFjrTha0tnyPENbjiMDhwN9UEO5QWypM6k1y1HafxBjsUAIzDYUfab0OTy82Ojv3ZkXUKidWldP9mbsjEfjRUpeSyreuZuN0QTw2JJd8Qv2Vdq+s2xSVinFE4PE3+yen1BKzTmJRGXYdORNXXEFfyHQ7vkW+rmowuVHfsjrOpgejqPSSWfIPT0xSwTqkzi3JvMjXEE4WHeGpIpoIO7MRJ2++vFwdVrlSiTBMJnsoDxlHlSmFd2ghiEmKIjzMkV24lpXQ90Q2Bn7OS6M78qvEhUm66lmem7S1W77oLHn3U/jj2+efNR8A9HnA62bDRwcRxxfxxxQUMZGWLGOd0m8jMgf9FZt90TurtpFf3JnplVZK16F2iHv5vXBvaPuq+LxMdjePkk+2PTQcTH29PJhszxvZ769IFmprwXHMtUTNfB6ApOY3aQWdgcjoRFRNF/Kv/g8PjYUHeU3x5xi14vfb3jnPWzGDAMzf6n3pXfCfSa7a13MYkcA6fsoShjIku5C3vxbg99keZqlNH0uCMJXrbdyTt2AjA94m9eP+sh6kbM44u3aNw11fQ7b1p9H7tv3A11lHnSmDDLU/Q//Hr27V9DkQF5NGl7Skicvzdc4/9jRvgySft8ShpFjEF+YgRIxg2bBjPPPMMYK9t2qVLF2655Rbuvvvugz4+GI101d0PkviIHXnWk9aBqgEjeOfkO3l+3Q/JXPw+U+rvoA/rKKMDG+hJHbHE0ICLJmqIp5Y4HBgSqCaOWhqJph43MTSQxm5SKaeKRHbSgSoSicJDNI2ksIcO7CSZCuqIpZa4gGkPKZSTihen/3nqiGU3aVSQTAMxNOEimkYSqCaTUk5nKSlUAFBOCssYRDbF9OIbAD7mPGZyBbXE0Zv1dOc70thNGrtpJJoyMthJB8rIoIwM6ojFTT0JVNOHtQxkBYlU8THnMZuxVJNAd74LmCpI5jN+wEJGkEQlXdmMhyjmcgHf0ouOlHIZb9KXNayiP8s5FTf19GM1PdmAm3pcNFFNAhvoyXd0p5FoomnEi5MddGQnHXBgSKSKRKpIoJokKmkkmnJS2U2a/9YXex/W0pmtdGIbTrzMZiwfMZoLmMv9PMAglrOBHsxmLPP4Ics5lW/ohQeXf1/JZRuXMotObCOdXcTQwGa6soluVJFINI3EUkcGZWRRgocoNtCTTXSjnFRqsT+WJFLlj7eaBDxE0YGdZFGy971L9b//5aQShYccvieLErw4A/aTffedBmKIoYFY6oilDjf1uKmnjliqSSAKD5mU0oGdrKEvXzMACOzWm0glvVmPA4MXJ1Uksp1cakho5dNjiMKDC1sg1xPrXxJNA935jt6spzfrSaaCahKoIZ4ddKSYbMpJxUUTbuqJoYEYGojCwy7SKSODErKoIy7gFVMoZyyzuYj3GcZi+tD6Dwg+TUSxlc6soS8b6UEXtjCQFXRjc6vrNxDNHlIoIYtv6MU39OJDfsSnnEMjMfutbTiZdZzDp5zBAlbRn2kUUEs8L70E+fl7V9u9257nfM01bZ7yUF8PD962kwEzbuYkvqWSJHbQkae4lS84s838nHgYwxx6s54sSsiihGyKyaKEjuygAzuJoYHXuYr/jnmQqo496OzdzNkNhSRRSbSjiS5NG/lB9Wy6Nn7LHmcqz8bcyh8aJ7HTpPs7pyQk2M4AZcVN/IlbmcCLxFHXIp6/cS3X8b/sv19dypv8J89yLp8QQyNeHHzO2czlAgwO0pK9LO1+GdvTBlBcbDvP9ORb7mEq1/G/xNDof6463DzEb3iUXwfscz69Wcf/8P/4AZ8z5yfTGfPWxDa3X3upgDw6pk2bxrRp0/B4PKxbt07bU0TkOFq4sHlwtw8+sL+7S7OIKMgbGhqIj4/n73//O+P2GZ4vPz+f8vJy3n777RaPqa+vp97XxxS7Ibp06XJ8G2nfucIZGbbb9z48Hli31lD8bTWu1ESio+38pia7LDa2ufe619s8eTyB910u+0+t02l7FTc0BE7GBE5eb3Pvda/XhpW49wpKDQ3Nz9Hitt5LcvE6opyGxp59SEx24nJBVEMtTm8TTXFJe7ez7ZHu6w3tctkjWfvf+uKorW3uYe9228fu2GHjq6uzrx0fbyeXqzl/3y3Ynra+U419Pa19va0djuaey77J623uve+bGhrsdvRNLpddNyHBTg5HYC/uujq7bZxOuywx0W7LmBj7fL4zCOJiDcneckobUtlT4SAqyvbiTUmxj93//dz3ffZ4bE6tTR6Pfd19J2h537cb7rvNfI89VpKTbY5ut30vS0pa9oTe//X3vd+eZQfK+XDv+/52Ou1ZFGeesoehaRvISqwmLaaa6NgoSEjAE5dIuTuL4qYMauvt58DhsPv+rl1QXd5IbM0uYqp24Y2KpjEumRpXMqUVsZSW2s+hb7/yTbW19qti0yZbQO//Wc/MtD3hTzvNHlh2HsYwnF99Zc/i8H0+k5LsflhTYzv4+KaNG+375duvfb39W9t+3kYPpTujDvrauWxjN2nU0sqYC/tISIBOHRvoVb2M/jWLSWzcjauxjmJHDh93/wWdToolLc3mX19vz1tbt85+p1wwfA8/7boIxykD8GTlkp5uz2DxXQQD7LZfvtz2TF+5Euq/2cJpW97Fm5yCJ7szDb36k9SzI5mZ+Iv37dubH5uRAT26ebmg8k0633oZQ4cf+XioKsiPLm1PEZHjz+uFU0+148N++61tL6VZe9smV5tLQkBZWRkej6fFdUyzsrJY4zthYT9Tp07lgQceOB7htc3pDBxEaR9RUdCvv4N+/ROPc1CHywn0bWV+XCvzpJkDSAt2EHJYUoDBLeZGAR32Tq2LBrL2TqFj8GA7HYzHY4v0hIT2FP5R1Nfb8dx8Qyvs/6OZ/bsT8fH2B4CkJPw/YjQ22tPr6+ps4WyHOogBhu2drAONKdjU5BsKIgW44IDROhx2OIxBg3xzugA3HXyjBHACPz3Ex4iIiEQup9MO81Rfr2L8SIR0QX447rnnHiZPnuy/7ztCLiIibYuKat/A6j5u97EfnP5APTpcEdd6iYiIhJ/09GBHEP5C+l+ajIwMoqKiKNlvNOKSkhKys7NbfYzb7cbd2iVtRERERERERELIkZ8IdwzFxMQwZMgQCgsL/fO8Xi+FhYWM9F2yRkRERERERCQMhfQRcoDJkyeTn5/P0KFDGT58OE8++STV1dVMmDAh2KGJiIiIiIiIHLaQL8ivuuoqduzYwX333UdxcTGnnXYac+bMaTHQm4iIiJxY9r3smYiISDgK6cueHQ26FIqIiIQatU1Hl7aniIiEmva2TSF9DrmIiIiIiIhIpFJBLiIiIiIiIhIEKshFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREwtK0adPo378/w4YNC3YoIiIih0UFuYiIiISlgoICVq1axeLFi4MdioiIyGFRQS4iIiIiIiISBK5gB3CsGWMAqKioCHIkIiIilq9N8rVRcmTU1ouISKhpb1sf8QV5ZWUlAF26dAlyJCIiIoEqKytJSUkJdhhhT229iIiEqoO19Q4T4T/Pe71etm/fTlJSEg6H44ieq6Kigi5durBlyxaSk5OPUoTBE0n5RFIuEFn5RFIuoHxCWTjlYoyhsrKS3NxcnE6dPXak1Na3TfmErkjKBSIrn0jKBSIrn3DKpb1tfcQfIXc6nXTu3PmoPmdycnLI7wCHIpLyiaRcILLyiaRcQPmEsnDJRUfGjx619QenfEJXJOUCkZVPJOUCkZVPuOTSnrZeP8uLiIiIiIiIBIEKchEREREREZEgUEF+CNxuN/fffz9utzvYoRwVkZRPJOUCkZVPJOUCyieURVIuEjyRth8pn9AVSblAZOUTSblAZOUTSbn4RPygbiIiIiIiIiKhSEfIRURERERERIJABbmIiIiIiIhIEKggFxEREREREQkCFeQiIiIiIiIiQaCC/BBMmzaN7t27Exsby4gRI1i0aFGwQzqoqVOnMmzYMJKSksjMzGTcuHGsXbs2YJ26ujoKCgro0KEDiYmJXH755ZSUlAQp4vZ7+OGHcTgc3Hbbbf554ZbLtm3buPbaa+nQoQNxcXEMHDiQL7/80r/cGMN9991HTk4OcXFxjB49mvXr1wcx4rZ5PB7uvfdeevToQVxcHCeddBIPPvgg+44bGar5fPbZZ1x88cXk5ubicDh46623Apa3J+5du3aRl5dHcnIyqamp/PKXv6Sqquo4ZtHsQPk0NjZy1113MXDgQBISEsjNzeW6665j+/btAc8RLvnsb+LEiTgcDp588smA+aGUj4Q2tfWhRW19aAnnth4iq71XWx85bb0K8nZ6/fXXmTx5Mvfffz9Lly5l0KBBXHjhhZSWlgY7tAOaN28eBQUFLFiwgLlz59LY2MiPfvQjqqur/evcfvvtvPvuu8ycOZN58+axfft2LrvssiBGfXCLFy/m2Wef5dRTTw2YH0657N69m1GjRhEdHc3s2bNZtWoVf/zjH0lLS/Ov8+ijj/LUU08xY8YMFi5cSEJCAhdeeCF1dXVBjLx1jzzyCNOnT+eZZ55h9erVPPLIIzz66KM8/fTT/nVCNZ/q6moGDRrEtGnTWl3enrjz8vL4+uuvmTt3Lu+99x6fffYZN9xww/FKIcCB8qmpqWHp0qXce++9LF26lDfffJO1a9dyySWXBKwXLvnsa9asWSxYsIDc3NwWy0IpHwldautDi9p6tfVHWyS192rrI6itN9Iuw4cPNwUFBf77Ho/H5ObmmqlTpwYxqkNXWlpqADNv3jxjjDHl5eUmOjrazJw507/O6tWrDWC++OKLYIV5QJWVlaZ3795m7ty55oc//KGZNGmSMSb8crnrrrvMWWed1eZyr9drsrOzzWOPPeafV15ebtxut3n11VePR4iH5KKLLjK/+MUvAuZddtllJi8vzxgTPvkAZtasWf777Yl71apVBjCLFy/2rzN79mzjcDjMtm3bjlvsrdk/n9YsWrTIAGbTpk3GmPDMZ+vWraZTp05m5cqVplu3buaJJ57wLwvlfCS0qK0PHWrrQ6tt9ImUtt6YyGrv1daHdj4HoyPk7dDQ0MCSJUsYPXq0f57T6WT06NF88cUXQYzs0O3ZsweA9PR0AJYsWUJjY2NAbn379qVr164hm1tBQQEXXXRRQMwQfrm88847DB06lCuuuILMzEwGDx7M888/71++ceNGiouLA/JJSUlhxIgRIZnPmWeeSWFhIevWrQNg2bJlzJ8/n7FjxwLhl49Pe+L+4osvSE1NZejQof51Ro8ejdPpZOHChcc95kO1Z88eHA4HqampQPjl4/V6GT9+PHfeeScDBgxosTzc8pHgUFsfWtTWh2bbGKltPUR+e6+2PnS5gh1AOCgrK8Pj8ZCVlRUwPysrizVr1gQpqkPn9Xq57bbbGDVqFKeccgoAxcXFxMTE+D+cPllZWRQXFwchygN77bXXWLp0KYsXL26xLNxy2bBhA9OnT2fy5Mn85je/YfHixdx6663ExMSQn5/vj7m1/S4U87n77rupqKigb9++REVF4fF4mDJlCnl5eQBhl49Pe+IuLi4mMzMzYLnL5SI9PT2kcwN7LuZdd93F1VdfTXJyMhB++TzyyCO4XC5uvfXWVpeHWz4SHGrrQ4fa+tDNJ1Lbeojs9l5tfejlsy8V5CeQgoICVq5cyfz584MdymHZsmULkyZNYu7cucTGxgY7nCPm9XoZOnQoDz30EACDBw9m5cqVzJgxg/z8/CBHd+jeeOMNXn75ZV555RUGDBhAUVERt912G7m5uWGZz4mgsbGRK6+8EmMM06dPD3Y4h2XJkiX86U9/YunSpTgcjmCHIxJ0autDi9p6CTa19aFPXdbbISMjg6ioqBYjeJaUlJCdnR2kqA7NzTffzHvvvccnn3xC586d/fOzs7NpaGigvLw8YP1QzG3JkiWUlpZy+umn43K5cLlczJs3j6eeegqXy0VWVlbY5AKQk5ND//79A+b169ePzZs3A/hjDpf97s477+Tuu+/mZz/7GQMHDmT8+PHcfvvtTJ06FQi/fHzaE3d2dnaLQZ+amprYtWtXyObma6A3bdrE3Llz/b+YQ3jl8/nnn1NaWkrXrl393wubNm3ijjvuoHv37kB45SPBo7Y+NKitx38/FPOJ1LYeIrO9V1sfmvnsTwV5O8TExDBkyBAKCwv987xeL4WFhYwcOTKIkR2cMYabb76ZWbNm8fHHH9OjR4+A5UOGDCE6Ojogt7Vr17J58+aQy+38889nxYoVFBUV+aehQ4eSl5fn/ztccgEYNWpUi8vSrFu3jm7dugHQo0cPsrOzA/KpqKhg4cKFIZlPTU0NTmfgV0pUVBRerxcIv3x82hP3yJEjKS8vZ8mSJf51Pv74Y7xeLyNGjDjuMR+Mr4Fev349H330ER06dAhYHk75jB8/nuXLlwd8L+Tm5nLnnXfywQcfAOGVjwSP2vrQoLY+tNvGSG3rIfLae7X1oZtPC8EdUy58vPbaa8btdpuXXnrJrFq1ytxwww0mNTXVFBcXBzu0A7rxxhtNSkqK+fTTT83333/vn2pqavzrTJw40XTt2tV8/PHH5ssvvzQjR440I0eODGLU7bfvyKvGhFcuixYtMi6Xy0yZMsWsX7/evPzyyyY+Pt783//9n3+dhx9+2KSmppq3337bLF++3PzkJz8xPXr0MLW1tUGMvHX5+fmmU6dO5r333jMbN240b775psnIyDC//vWv/euEaj6VlZXmq6++Ml999ZUBzOOPP26++uor/0ik7Yl7zJgxZvDgwWbhwoVm/vz5pnfv3ubqq68OuXwaGhrMJZdcYjp37myKiooCvhfq6+vDLp/W7D/yqjGhlY+ELrX1oUltfegI57bemMhq79XWR05br4L8EDz99NOma9euJiYmxgwfPtwsWLAg2CEdFNDq9OKLL/rXqa2tNTfddJNJS0sz8fHx5tJLLzXff/998II+BPs30uGWy7vvvmtOOeUU43a7Td++fc1zzz0XsNzr9Zp7773XZGVlGbfbbc4//3yzdu3aIEV7YBUVFWbSpEmma9euJjY21vTs2dP89re/DfjiD9V8Pvnkk1Y/J/n5+caY9sW9c+dOc/XVV5vExESTnJxsJkyYYCorK4OQzYHz2bhxY5vfC5988knY5dOa1hrpUMpHQpva+tCjtj50hHNbb0xktfdq6yOnrXcYY8zROdYuIiIiIiIiIu2lc8hFREREREREgkAFuYiIiIiIiEgQqCAXERERERERCQIV5CIiIiIiIiJBoIJcREREREREJAhUkIuIiIiIiIgEgQpyERERERERkSBQQS4iIiIiIiISBCrIReSYcjgcvPXWW8EOQ0RERI4htfcih0cFuUgE+/nPf47D4WgxjRkzJtihiYiIyFGi9l4kfLmCHYCIHFtjxozhxRdfDJjndruDFI2IiIgcC2rvRcKTjpCLRDi32012dnbAlJaWBtjuZdOnT2fs2LHExcXRs2dP/v73vwc8fsWKFZx33nnExcXRoUMHbrjhBqqqqgLWeeGFFxgwYABut5ucnBxuvvnmgOVlZWVceumlxMfH07t3b955551jm7SIiMgJRu29SHhSQS5ygrv33nu5/PLLWbZsGXl5efzsZz9j9erVAFRXV3PhhReSlpbG4sWLmTlzJh999FFAAzx9+nQKCgq44YYbWLFiBe+88w69evUKeI0HHniAK6+8kuXLl/PjH/+YvLw8du3adVzzFBEROZGpvRcJUUZEIlZ+fr6JiooyCQkJAdOUKVOMMcYAZuLEiQGPGTFihLnxxhuNMcY899xzJi0tzVRVVfmXv//++8bpdJri4mJjjDG5ubnmt7/9bZsxAOZ3v/ud/35VVZUBzOzZs49aniIiIicytfci4UvnkItEuHPPPZfp06cHzEtPT/f/PXLkyIBlI0eOpKioCIDVq1czaNAgEhIS/MtHjRqF1+tl7dq1OBwOtm/fzvnnn3/AGE499VT/3wkJCSQnJ1NaWnq4KYmIiMh+1N6LhCcV5CIRLiEhoUWXsqMlLi6uXetFR0cH3Hc4HHi93mMRkoiIyAlJ7b1IeNI55CInuAULFrS4369fPwD69evHsmXLqK6u9i//17/+hdPppE+fPiQlJdG9e3cKCwuPa8wiIiJyaNTei4QmHSEXiXD19fUUFxcHzHO5XGRkZAAwc+ZMhg4dyllnncXLL7/MokWL+Mtf/gJAXl4e999/P/n5+fz+979nx44d3HLLLYwfP56srCwAfv/73zNx4kQyMzMZO3YslZWV/Otf/+KWW245vomKiIicwNTei4QnFeQiEW7OnDnk5OQEzOvTpw9r1qwB7Iior732GjfddBM5OTm8+uqr9O/fH4D4+Hg++OADJk2axLBhw4iPj+fyyy/n8ccf9z9Xfn4+dXV1PPHEE/zqV78iIyODn/70p8cvQREREVF7LxKmHMYYE+wgRCQ4HA4Hs2bNYty4ccEORURERI4RtfcioUvnkIuIiIiIiIgEgQpyERERERERkSBQl3URERERERGRINARchEREREREZEgUEEuIiIiIiIiEgQqyEVERERERESCQAW5iIiIiIiISBCoIBcREREREREJAhXkIiIiIiIiIkGgglxEREREREQkCFSQi4iIiIiIiATB/wcBVOnh9eXmNwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOjUlEQVR4nOzdd3iT1fsG8Dtt6V7MljLKHmUUhIKILAEREFkiIigiil+tIuLkpwIiiuJGqzgQXDgAQVBEAQFlKXsPGbJLZbSltHS+vz8eTt+kTdukpHmT9P5cV6/MJqczud/nOeeYNE3TQERERERERERO5WX0AIiIiIiIiIjKIwZyIiIiIiIiIgMwkBMREREREREZgIGciIiIiIiIyAAM5EREREREREQGYCAnIiIiIiIiMgADOREREREREZEBGMiJiIiIiIiIDMBATkRERERERGQABnIiIiIiIjfUtWtXdO3a1eb7Nm/evGwHdFWdOnVw7733OuW5iNwdAzlROTJnzhyYTCaYTCasXbu20O2apqFWrVowmUy49dZb869PS0vDpEmT0Lx5cwQFBaFy5cpo1aoVHnvsMZw+fTr/fpMnT85/fGsfiYmJTvk6iYiIbKVeGzdv3mz0UK7Z6dOnMXnyZGzfvt3ooThMnTp1YDKZ0KNHD6u3f/LJJ/nvMwr+DNeuXYvevXujRo0a8Pf3R+3atdGvXz/MnTvX4n7FvXf53//+V2ZfGxEA+Bg9ACJyPn9/f8ydOxc33nijxfVr1qzByZMn4efnl39ddnY2OnfujP3792PkyJF49NFHkZaWhj179mDu3LkYOHAgoqKiLB7nww8/RHBwcKHnDQ8PL5Ovh4iIqDz67bffLC6fPn0aL774IurUqYNWrVoZMygABw4cgJeX4+p+/v7+WLVqFRITExEZGWlx29dffw1/f39cuXLF4vp58+Zh6NCh+QWEihUr4ujRo/jjjz/wySef4K677rK4f8+ePXHPPfcUeu5GjRo57OsgsoaBnKgc6tOnD+bNm4cZM2bAx0f/NzB37ly0adMG586dy79u0aJF2LZtG77++utCL15XrlxBVlZWoce//fbbUaVKlbL7AoiIiMqx9PR0BAYGwtfX1+ihWGV+YN8ROnbsiE2bNuG7777DY489ln/9yZMn8eeff2LgwIFYsGCBxedMnjwZMTEx2LhxY6HvU1JSUqHnaNSoEUaMGOHQcRPZgi3rROXQsGHDcP78eSxfvjz/uqysLMyfP79Q6D58+DAAeTEsyN/fH6GhoWU7WCIiIhewbds29O7dG6GhoQgODkb37t2xcePGQvfbuXMnunTpgoCAANSsWRNTp07F7NmzYTKZ8O+//+bf78cff0Tfvn0RFRUFPz8/1K9fHy+99BJyc3MtHk/N/d6yZQs6d+6MwMBA/N///V/+bWoO+erVqxEXFwcAGDVqVH7L9Zw5cyweb+/evejWrRsCAwNRo0YNTJ8+3eL21atXw2Qy4fvvv8eLL76IGjVqICQkBLfffjtSUlKQmZmJcePGoVq1aggODsaoUaOQmZlp8RjW5pAnJyfj8ccfR506deDn54eaNWvinnvusSgCFMXf3x+DBg0q1Gr+zTffoGLFiujVq1ehzzl8+DDi4uKsHrSoVq1aic9J5CyskBOVQ3Xq1EGHDh3wzTffoHfv3gCAX375BSkpKbjzzjsxY8aM/PtGR0cDAL744gs8//zzMJlMJT7+hQsXCl3n4+PDlnUiInJLe/bsQadOnRAaGoqnn34aFSpUwEcffYSuXbtizZo1aN++PQDg1KlT6NatG0wmEyZMmICgoCB8+umnVivGc+bMQXBwMMaPH4/g4GD8/vvvmDhxIlJTU/H6669b3Pf8+fPo3bs37rzzTowYMQIRERGFHq9p06aYMmUKJk6ciDFjxqBTp04AgBtuuCH/PhcvXsQtt9yCQYMG4Y477sD8+fPxzDPPoEWLFvnvB5Rp06YhICAAzz77LA4dOoT33nsPFSpUgJeXFy5evIjJkydj48aNmDNnDurWrYuJEycW+f1LS0tDp06dsG/fPtx333247rrrcO7cOSxevBgnT560qavurrvuws0334zDhw+jfv36AKSz7/bbb0eFChUK3T86OhorV67EyZMnUbNmzRIf/8qVK1YPDoSGhrpsJwJ5CI2Iyo3Zs2drALRNmzZp77//vhYSEqKlp6drmqZpQ4YM0bp166ZpmqZFR0drffv21TRN09LT07XGjRtrALTo6Gjt3nvv1WbNmqWdPXu20ONPmjRJA2D1o3Hjxs77QomIiGxk/tpYlAEDBmi+vr7a4cOH8687ffq0FhISonXu3Dn/ukcffVQzmUzatm3b8q87f/68VqlSJQ2AdvTo0fzr1euvuQcffFALDAzUrly5kn9dly5dNADazJkzC92/S5cuWpcuXfIvb9q0SQOgzZ492+p9AWhffPFF/nWZmZlaZGSkNnjw4PzrVq1apQHQmjdvrmVlZeVfP2zYMM1kMmm9e/e2eNwOHTpo0dHRFtdFR0drI0eOzL88ceJEDYD2ww8/FBpXXl5eoesKPlbfvn21nJwcLTIyUnvppZc0TdO0vXv3agC0NWvWWP0Zzpo1SwOg+fr6at26ddNeeOEF7c8//9Ryc3MLPUdR710AaN98802x4yO6VmxZJyqn7rjjDmRkZOCnn37CpUuX8NNPPxVqVweAgIAA/PXXX3jqqacAyBH90aNHo3r16nj00UcLtakBwIIFC7B8+XKLj9mzZ5f510RERORoubm5+O233zBgwADUq1cv//rq1avjrrvuwtq1a5GamgoAWLZsGTp06GCxoFqlSpUwfPjwQo8bEBCQf/7SpUs4d+4cOnXqhPT0dOzfv9/ivn5+fhg1atQ1fy3BwcEW86R9fX3Rrl07HDlypNB977nnHovKc/v27aFpGu677z6L+7Vv3x4nTpxATk5Okc+7YMECxMbGYuDAgYVus6XzDgC8vb1xxx134JtvvgEgi7nVqlUrvxOgoPvuuw/Lli1D165dsXbtWrz00kvo1KkTGjZsiPXr1xe6f//+/Qu9d1m+fDm6detm0/iISost60TlVNWqVdGjRw/MnTsX6enpyM3Nxe233271vmFhYZg+fTqmT5+OY8eOYeXKlXjjjTfw/vvvIywsDFOnTrW4f+fOnbmoGxEReYT//vsP6enpaNy4caHbmjZtiry8PJw4cQLNmjXDsWPH0KFDh0L3a9CgQaHr9uzZg+effx6///57fqBXUlJSLC7XqFHDIW3TNWvWLBSAK1asiJ07dxa6b+3atS0uh4WFAQBq1apV6Pq8vDykpKSgcuXKVp/38OHDGDx48LUMHYC0rc+YMQM7duzA3LlzceeddxYb6Hv16oVevXohPT0dW7ZswXfffYeZM2fi1ltvxf79+y3mktesWbPIrdWIyhIr5ETl2F133YVffvkFM2fORO/evW2a4x0dHY377rsP69atQ3h4OL7++uuyHygREZEHSU5ORpcuXbBjxw5MmTIFS5YswfLly/Haa68BAPLy8izub15Nvxbe3t5Wr9c0zeb72vMYjta+fXvUr18f48aNw9GjR6129lkTGBiITp064f3338fzzz+Pixcv4pdffinj0RLZhhVyonJs4MCBePDBB7Fx40Z89913dn1uxYoVUb9+fezevbuMRkdERGS8qlWrIjAwEAcOHCh02/79++Hl5ZVfNY6OjsahQ4cK3a/gdatXr8b58+fxww8/oHPnzvnXHz169JrGamv7t7M58v3CsGHDMHXqVDRt2rRUe623bdsWAHDmzBmHjIfoWrFCTlSOBQcH48MPP8TkyZPRr18/q/fZsWOH1VVHjx07hr1791pt4SMiIvIU3t7euPnmm/Hjjz9abFt29uxZzJ07FzfeeGP+FqC9evXChg0bsH379vz7XbhwoVA3maoym1eVs7Ky8MEHH1zTWIOCggBIBd6VDB48GDt27MDChQsL3WZvZf3+++/HpEmT8OabbxZ7v5UrV1q9funSpQDA9y/kMlghJyrnRo4cWezty5cvx6RJk3Dbbbfh+uuvR3BwMI4cOYLPPvsMmZmZmDx5cqHPmT9/PoKDgwtd37NnT6tbtRARERnts88+w7Jlywpd/9hjj2Hq1KlYvnw5brzxRjz88MPw8fHBRx99hMzMTIt9vJ9++ml89dVX6NmzJx599NH8bc9q166NCxcu5Fewb7jhBlSsWBEjR47E2LFjYTKZ8OWXX15z23f9+vURHh6OmTNnIiQkBEFBQWjfvj3q1q17TY97rZ566inMnz8fQ4YMwX333Yc2bdrgwoULWLx4MWbOnInY2FibHys6Otrqe4+C+vfvj7p166Jfv36oX78+Ll++jBUrVmDJkiWIi4srVIg4ePAgvvrqq0KPExERgZ49e9o8PiJ7MZATUbEGDx6MS5cu4bfffsPvv/+OCxcuoGLFimjXrh2eeOIJq6uPPvTQQ1Yfa9WqVQzkRETkkj788EOr1997771o1qwZ/vzzT0yYMAHTpk1DXl4e2rdvj6+++ip/D3JAFjxbtWoVxo4di1deeQVVq1ZFfHw8goKCMHbsWPj7+wMAKleujJ9++glPPPEEnn/+eVSsWBEjRoxA9+7d0atXr1J/DRUqVMDnn3+OCRMm4H//+x9ycnIwe/ZswwN5cHAw/vzzT0yaNAkLFy7E559/jmrVqqF79+427RFeGp9++il+/PFHfP/99zh9+jQ0TUO9evXw3HPP4ZlnnoGPj2UMUquqF9SlSxcGcipTJs0ZKzAQEREREZVT48aNw0cffYS0tLQiF0UjovKJc8iJiIiIiBwkIyPD4vL58+fx5Zdf4sYbb2QYJ6JC2LJOREREROQgHTp0QNeuXdG0aVOcPXsWs2bNQmpqKl544QWjh0ZELoiBnIiIiIjIQfr06YP58+fj448/hslkwnXXXYdZs2ZZbG9GRKRwDjkRERERERGRATiHnIiIiIiIiMgADOREREREREREBvD4OeR5eXk4ffo0QkJCYDKZjB4OERERNE3DpUuXEBUVBS8vHhu/VnytJyIiV2Pra73HB/LTp0+jVq1aRg+DiIiokBMnTqBmzZpGD8Pt8bWeiIhcVUmv9R4fyENCQgDINyI0NNTg0RAREQGpqamoVatW/msUXRu+1hMRkaux9bXe4wO5al0LDQ3lizQREbkUtlc7Bl/riYjIVZX0Ws+Ja0REREREREQGYCAnIiIit5SQkICYmBjExcUZPRQiIqJSYSAnIiIitxQfH4+9e/di06ZNRg+FiIioVDx+DjkRka00TUNOTg5yc3ONHgq5OW9vb/j4+HCOOBGRi+FrPTmKo17rGciJiABkZWXhzJkzSE9PN3oo5CECAwNRvXp1+Pr6Gj0UIiICX+vJ8RzxWs9ATkTlXl5eHo4ePQpvb29ERUXB19eXlU0qNU3TkJWVhf/++w9Hjx5Fw4YN4eXFGWJlISEhAQkJCax0EVGJ+FpPjuTI13oGciIq97KyspCXl4datWohMDDQ6OGQBwgICECFChVw7NgxZGVlwd/f3+gheaT4+HjEx8cjNTUVYWFhRg+HiFwYX+vJ0Rz1Ws9D9kREV7GKSY7E3yciItfD/83kSI74feJvJBEREREREZEBGMiJiIiIiIiIDMBATkRE+erUqYN33nnH5vuvXr0aJpMJycnJZTYmAJgzZw7Cw8PL9DnI/SQkJCAmJgZxcXFGD4WIyK3w9d51MJATEbkhk8lU7MfkyZNL9bibNm3CmDFjbL7/DTfcgDNnznBBLTJEfHw89u7di02bNhk9FCKiMsHXe8/HVdaJiNzQmTNn8s9/9913mDhxIg4cOJB/XXBwcP55TdOQm5sLH5+S/+VXrVrVrnH4+voiMjLSrs8hIiIi2/D13vOxQm6HTp2AFi2Ao0eNHgkRlSVNAy5fNuZD02wbY2RkZP5HWFgYTCZT/uX9+/cjJCQEv/zyC9q0aQM/Pz+sXbsWhw8fRv/+/REREYHg4GDExcVhxYoVFo9bsIXNZDLh008/xcCBAxEYGIiGDRti8eLF+bcXbGFTrWa//vormjZtiuDgYNxyyy0WbyhycnIwduxYhIeHo3LlynjmmWcwcuRIDBgwwK6f04cffoj69evD19cXjRs3xpdffmn2M9QwefJk1K5dG35+foiKisLYsWPzb//ggw/QsGFD+Pv7IyIiArfffrtdz02e6+mn5bV+7lyjR0JEZc2o13tbX+sBvt4Dnv96z0Buh717gd27gStXjB4JEZWl9HQgONiYj/R0x30dzz77LF599VXs27cPLVu2RFpaGvr06YOVK1di27ZtuOWWW9CvXz8cP3682Md58cUXcccdd2Dnzp3o06cPhg8fjgsXLhTz/UvHG2+8gS+//BJ//PEHjh8/jieffDL/9tdeew1ff/01Zs+ejXXr1iE1NRWLFi2y62tbuHAhHnvsMTzxxBPYvXs3HnzwQYwaNQqrVq0CACxYsABvv/02PvroI/zzzz9YtGgRWrRoAQDYvHkzxo4diylTpuDAgQNYtmwZOnfubNfzk+c6eVJe65OSjB4JEZU1o17vHflaD/D13u1f7zUPl5KSogHQUlJSrvmxqlTRNEDTdu92wMCIyGVkZGRoe/fu1TIyMjRN07S0NPlbN+IjLc3+8c+ePVsLCwvLv7xq1SoNgLZo0aISP7dZs2bae++9l385Ojpae/vtt/MvA9Cef/75/MtpaWkaAO2XX36xeK6LFy/mjwWAdujQofzPSUhI0CIiIvIvR0REaK+//nr+5ZycHK127dpa//79bf4ab7jhBu2BBx6wuM+QIUO0Pn36aJqmaW+++abWqFEjLSsrq9BjLViwQAsNDdVSU1OLfD5HKPh7Zc6Rr03k2O/nyJHyt/jaa9c+LiJyHdb+Jxv1el+a13pN4+u94kqv9454rWeF3A5q3/e8PGPHQURlKzAQSEsz5iMw0HFfR9u2bS0up6Wl4cknn0TTpk0RHh6O4OBg7Nu3r8Qj5i1btsw/HxQUhNDQUCQVUz4MDAxE/fr18y9Xr149//4pKSk4e/Ys2rVrl3+7t7c32rRpY9fXtm/fPnTs2NHiuo4dO2Lfvn0AgCFDhiAjIwP16tXDAw88gIULFyInJwcA0LNnT0RHR6NevXq4++678fXXXyPd0eUKcoqyWGW9QgU5zcpy2EMSkYsy6vXeka/1AF/v3f31noHcDgzkROWDyQQEBRnzYTI57usICgqyuPzkk09i4cKFeOWVV/Dnn39i+/btaNGiBbJKSB4VVELJ//6YkFfMP0Jr99fsmTDnALVq1cKBAwfwwQcfICAgAA8//DA6d+6M7OxshISEYOvWrfjmm29QvXp1TJw4EbGxsWW+lQs5Xlmssu7rK6cM5ESez6jXe0e+1gN8vXf313sGcjswkBORO1u3bh3uvfdeDBw4EC1atEBkZCT+/fdfp44hLCwMERERFgEqNzcXW7dutetxmjZtinXr1llct27dOsTExORfDggIQL9+/TBjxgysXr0aGzZswK5duwAAPj4+6NGjB6ZPn46dO3fi33//xe+//34NXxl5ChXIs7ONHQcRUWnx9d69Xu+57ZkdGMiJyJ01bNgQP/zwA/r16weTyYQXXnih2CPfZeXRRx/FtGnT0KBBAzRp0gTvvfceLl68CJMdJYOnnnoKd9xxB1q3bo0ePXpgyZIl+OGHH/JXkZ0zZw5yc3PRvn17BAYG4quvvkJAQACio6Px008/4ciRI+jcuTMqVqyIpUuXIi8vD40bNy6rL5ncCCvkROTu+HrvXq/3DOR2YCAnInf21ltv4b777sMNN9yAKlWq4JlnnkFqaqrTx/HMM88gMTER99xzD7y9vTFmzBj06tUL3t7eNj/GgAED8O677+KNN97AY489hrp162L27Nno2rUrACA8PByvvvoqxo8fj9zcXLRo0QJLlixB5cqVER4ejh9++AGTJ0/GlStX0LBhQ3zzzTdo1qxZGX3F5E4YyInI3fH13r1e702asxv9nSw1NRVhYWFISUlBaGjoNT1W3brAv/8CGzcC7ds7ZnxEZLwrV67g6NGjqFu3Lvz9/Y0eTrmTl5eHpk2b4o477sBLL71k9HAcprjfK0e+NpFjv59TpgCTJgFjxgAffeSgARKR4fhabzxPfL13xGs9K+R2YIWciOjaHTt2DL/99hu6dOmCzMxMvP/++zh69Cjuuusuo4dGxDnkREQOwtd723BRNzswkBMRXTsvLy/MmTMHcXFx6NixI3bt2oUVK1agadOmRg+N3ExZbHvGlnUiIsfg671tWCG3AwM5EdG1q1WrVqEVU4lKIz4+HvHx8fltgY7AQE5E5Bh8vbeN4RXyU6dOYcSIEahcuTICAgLQokULbN68Of92TdMwceJEVK9eHQEBAejRowf++ecfQ8bKQE5EROTZ1La6DOREROQMhgbyixcvomPHjqhQoQJ++eUX7N27F2+++SYqVqyYf5/p06djxowZmDlzJv766y8EBQWhV69euHLlitPHy0BORETk2VghJyIiZzK0Zf21115DrVq1MHv27Pzr6tatm39e0zS88847eP7559G/f38AwBdffIGIiAgsWrQId955p1PHy0BORETk2bioGxEROZOhFfLFixejbdu2GDJkCKpVq4bWrVvjk08+yb/96NGjSExMRI8ePfKvCwsLQ/v27bFhwwarj5mZmYnU1FSLD0dhICciIvJsrJATEZEzGRrIjxw5gg8//BANGzbEr7/+ioceeghjx47F559/DgBITEwEAERERFh8XkRERP5tBU2bNg1hYWH5H7Vq1XLYeBnIiYiIPBsDOREROZOhgTwvLw/XXXcdXnnlFbRu3RpjxozBAw88gJkzZ5b6MSdMmICUlJT8jxMnTjhsvAzkREREno2LuhERkTMZGsirV6+OmJgYi+uaNm2K48ePAwAiIyMBAGfPnrW4z9mzZ/NvK8jPzw+hoaEWH47CQE5EnqZr164YN25c/uU6dergnXfeKfZzTCYTFi1adM3P7ajHKc7kyZPRqlWrMn0OMk5Z7kPOOeRE5En4eu+6DA3kHTt2xIEDByyuO3jwIKKjowHIAm+RkZFYuXJl/u2pqan466+/0KFDB6eOFWAgJyLX0a9fP9xyyy1Wb/vzzz9hMpmwc+dOux9306ZNGDNmzLUOz0JRL5JnzpxB7969HfpcVL7Ex8dj79692LRpk8Meky3rRORK+Hrv+QwN5I8//jg2btyIV155BYcOHcLcuXPx8ccfIz4+HoAcTRk3bhymTp2KxYsXY9euXbjnnnsQFRWFAQMGOH28DORE5CpGjx6N5cuX4+TJk4Vumz17Ntq2bYuWLVva/bhVq1ZFYGCgI4ZYosjISPj5+TnluYhsxUBORK6Er/eez9BAHhcXh4ULF+Kbb75B8+bN8dJLL+Gdd97B8OHD8+/z9NNP49FHH8WYMWMQFxeHtLQ0LFu2DP7+/k4fLwM5UTmhacDly8Z8aJpNQ7z11ltRtWpVzJkzx+L6tLQ0zJs3D6NHj8b58+cxbNgw1KhRA4GBgWjRogW++eabYh+3YAvbP//8g86dO8Pf3x8xMTFYvnx5oc955pln0KhRIwQGBqJevXp44YUXkH2133fOnDl48cUXsWPHDphMJphMpvwxF2xh27VrF2666SYEBASgcuXKGDNmDNLS0vJvv/feezFgwAC88cYbqF69OipXroz4+Pj857JFXl4epkyZgpo1a8LPzw+tWrXCsmXL8m/PysrCI488gurVq8Pf3x/R0dGYNm0aANmKc/Lkyahduzb8/PwQFRWFsWPH2vzc5B44h5yoHDHq9d7G13qAr/fl4fXe0H3IAfklu/XWW4u83WQyYcqUKZgyZYoTR2UdAzlROZGeDgQHG/PcaWlAUFCJd/Px8cE999yDOXPm4LnnnoPJZAIAzJs3D7m5uRg2bBjS0tLQpk0bPPPMMwgNDcXPP/+Mu+++G/Xr10e7du1KfI68vDwMGjQIERER+Ouvv5CSkmIx/0wJCQnBnDlzEBUVhV27duGBBx5ASEgInn76aQwdOhS7d+/GsmXLsGLFCgCyfWVBly9fRq9evdChQwds2rQJSUlJuP/++/HII49YvAlZtWoVqlevjlWrVuHQoUMYOnQoWrVqhQceeKDErwcA3n33Xbz55pv46KOP0Lp1a3z22We47bbbsGfPHjRs2BAzZszA4sWL8f3336N27do4ceJE/uKgCxYswNtvv41vv/0WzZo1Q2JiInbs2GHT85L74BxyonLEqNd7G1/rAb7el4vXe83DpaSkaAC0lJSUa36szp01DdC07793wMCIyGVkZGRoe/fu1TIyMuSKtDT5YzfiIy3N5nHv27dPA6CtWrUq/7pOnTppI0aMKPJz+vbtqz3xxBP5l7t06aI99thj+Zejo6O1t99+W9M0Tfv11181Hx8f7dSpU/m3//LLLxoAbeHChUU+x+uvv661adMm//KkSZO02NjYQvczf5yPP/5Yq1ixopZm9vX//PPPmpeXl5aYmKhpmqaNHDlSi46O1nJycvLvM2TIEG3o0KFFjqXgc0dFRWkvv/yyxX3i4uK0hx9+WNM0TXv00Ue1m266ScvLyyv0WG+++abWqFEjLSsrq8jnM1fo98qMI1+byLHfz/375U8xPNwBAyMil2H1f7JRr/d2vNZrGl/vNc11X+8d8VpvaMu6u2GFnKicCAyUo9dGfNgxn6tJkya44YYb8NlnnwEADh06hD///BOjR48GAOTm5uKll15CixYtUKlSJQQHB+PXX3/N38miJPv27UOtWrUQFRWVf521BTW/++47dOzYEZGRkQgODsbzzz9v83OYP1dsbCyCzCoGHTt2RF5ensXin82aNYO3t3f+5erVqyMpKcmm50hNTcXp06fRsWNHi+s7duyIffv2AZA2ue3bt6Nx48YYO3Ysfvvtt/z7DRkyBBkZGahXrx4eeOABLFy4EDk5OXZ9neT6OIecqBwx6vXezrnbfL337Nd7BnI7MJATlRMmk7SSGfFxtRXNVqNHj8aCBQtw6dIlzJ49G/Xr10eXLl0AAK+//jreffddPPPMM1i1ahW2b9+OXr16IcuBSWPDhg0YPnw4+vTpg59++gnbtm3Dc88959DnMFdBTfC9ymQyIc+B/5Svu+46HD16FC+99BIyMjJwxx134PbbbwcA1KpVCwcOHMAHH3yAgIAAPPzww+jcubNdc9rI9XEOOVE5YtTrvZ2v9QBf7z359Z6B3A4M5ETkau644w54eXlh7ty5+OKLL3Dfffflzy9bt24d+vfvjxEjRiA2Nhb16tXDwYMHbX7spk2b4sSJEzhz5kz+dRs3brS4z/r16xEdHY3nnnsObdu2RcOGDXHs2DGL+/j6+iI3N7fE59qxYwcuX76cf926devg5eWFxo0b2zzm4oSGhiIqKgrr1q2zuH7dunWIiYmxuN/QoUPxySef4LvvvsOCBQtw4cIFAEBAQAD69euHGTNmYPXq1diwYQN27drlkPGRa1AV8pwcu9ZdIiIqU3y9t527vd4bvqibO2EgJyJXExwcjKFDh2LChAlITU3Fvffem39bw4YNMX/+fKxfvx4VK1bEW2+9hbNnz1q8GBWnR48eaNSoEUaOHInXX38dqampeO655yzu07BhQxw/fhzffvst4uLi8PPPP2PhwoUW96lTpw6OHj2K7du3o2bNmggJCSm0/cnw4cMxadIkjBw5EpMnT8Z///2HRx99FHfffTciIiJK982x4qmnnsKkSZNQv359tGrVCrNnz8b27dvx9ddfAwDeeustVK9eHa1bt4aXlxfmzZuHyMhIhIeHY86cOcjNzUX79u0RGBiIr776CgEBAYiOjnbY+Mh4KpADsrCb+WUiIqPw9d4+7vR6zwq5HRjIicgVjR49GhcvXkSvXr0s5n89//zzuO6669CrVy907doVkZGRGDBggM2P6+XlhYULFyIjIwPt2rXD/fffj5dfftniPrfddhsef/xxPPLII2jVqhXWr1+PF154weI+gwcPxi233IJu3bqhatWqVrdiCQwMxK+//ooLFy4gLi4Ot99+O7p3747333/fvm9GCcaOHYvx48fjiSeeQIsWLbBs2TIsXrwYDRs2BCAryE6fPh1t27ZFXFwc/v33XyxduhReXl4IDw/HJ598go4dO6Jly5ZYsWIFlixZgsqVKzt0jGQs8wDOtnUiciV8vbedO73emzTNsxuyUlNTERYWhpSUFISGhl7TY/XtCyxdCnz2GTBqlIMGSESGu3LlCo4ePYq6devC39/f6OGQhyju98qRr03lWUJCAhISEpCbm4uDBw865PuZk6PPIz9/HqhUyQEDJSLD8bWeyoIjXutZIbcDK+RERESuIz4+Hnv37sWmTZsc9phmi/pyL3IiIipzDOR2YCAnIiLybCYTtz4jIiLnYSC3AwM5ERGR52MgJyIiZ2EgtwMDORERkedjICciImdhILcDAzmRZ/PwNS7Jyfj75L7Uom4M5ESeh/+byZEc8fvEQG4HBnIiz1Th6rvv9PR0g0dCnkT9PqnfL3IfqkLORd2IPAdf66ksOOK13sdRgykPGMiJPJO3tzfCw8ORlJQEQPbINJlMBo+K3JWmaUhPT0dSUhLCw8Phbb5sN7kFtqwTeR6+1pMjOfK1noHcDiqQs9OFyPNERkYCQP4LNdG1Cg8Pz/+9IvfCQE7kmfhaT47miNd6BnI7qINorJATeR6TyYTq1aujWrVqyGafKl2jChUqsDLuxhjIiTwTX+vJkRz1Ws9Abge2rBN5Pm9vbwYponJOTQXk+3Uiz8TXenIlXNTNDgzkREREno8VciIichYGcjswkBMREXk+BnIiInIWBnI7MJATERF5PgZyIiJyFgZyOzCQExEReT7OISciImdhILcDAzkREZHrSEhIQExMDOLi4hz6uKyQExGRszCQ24GBnIiIyHXEx8dj79692LRpk0Mfl4GciIichYHcDgzkREREno+BnIiInIWB3A4M5ERERJ5PBXLOISciorLGQG4HBnIiIiLPpxZ1Y4WciIjKGgO5HRjIiYiIPB9b1omIyFkYyO3AQE5EROT5GMiJiMhZGMjtwEBORETk+TiHnIiInIWB3A4M5ERERJ6Pc8iJiMhZGMjtwEBORETk+diyTkREzsJAbgcGciIiIs/HQE5ERM7CQG4HBnIiIiLPx0BORETOwkBuBwZyIiIiz8dF3YiIyFkYyO3AQE5EROT5uKgbERE5CwO5HRjIiYiIPB9b1omIyFkYyO3AQE5EROT5GMiJiMhZGMjtwEBORETk+TiHnIiInIWB3A4M5ERERJ6Pc8iJiMhZGMjtwEBORETk+diyTkREzsJAbgcGciIiIs/HQE5ERM7CQG4HBnIiIiLPxznkRETkLAzkdmAgJyIiKhsDBw5ExYoVcfvttxs9FFbIiYjIaRjI7cBATkREVDYee+wxfPHFF0YPAwAXdSMiIudhILcDAzkREVHZ6Nq1K0JCQoweBgBWyImIyHkMDeSTJ0+GyWSy+GjSpEn+7VeuXEF8fDwqV66M4OBgDB48GGfPnjVsvAzkREREhf3xxx/o168foqKiYDKZsGjRokL3SUhIQJ06deDv74/27dvj77//dv5AbcQ55ERE5CyGV8ibNWuGM2fO5H+sXbs2/7bHH38cS5Yswbx587BmzRqcPn0agwYNMmysDORERESFXb58GbGxsUhISLB6+3fffYfx48dj0qRJ2Lp1K2JjY9GrVy8kJSWV6vkyMzORmppq8eFIrJATEZGz+Bg+AB8fREZGFro+JSUFs2bNwty5c3HTTTcBAGbPno2mTZti48aNuP766509VAZyIiIiK3r37o3evXsXeftbb72FBx54AKNGjQIAzJw5Ez///DM+++wzPPvss3Y/37Rp0/Diiy+WerwlMZ9DrmmAyVRmT0VEROWc4RXyf/75B1FRUahXrx6GDx+O48ePAwC2bNmC7Oxs9OjRI/++TZo0Qe3atbFhw4YiH68sj5ozkBMREdknKysLW7ZssXg99/LyQo8ePYp9PS/OhAkTkJKSkv9x4sQJRw0XgF4h1zQgN9ehD01ERGTB0EDevn17zJkzB8uWLcOHH36Io0ePolOnTrh06RISExPh6+uL8PBwi8+JiIhAYmJikY85bdo0hIWF5X/UqlXLYeNlICciIrLPuXPnkJubi4iICIvrC76e9+jRA0OGDMHSpUtRs2bNYsO6n58fQkNDLT4cSQVygPPIiYiobBnasm7e3tayZUu0b98e0dHR+P777xEQEFCqx5wwYQLGjx+ffzk1NdVhoZyBnIiIqGysWLHC6CHkMw/kWVlAKd+SEBERlcjwlnVz4eHhaNSoEQ4dOoTIyEhkZWUhOTnZ4j5nz561OudcKcuj5gzkRERE9qlSpQq8vb0L7ZJS0uu5LRISEhATE4O4uLhrepyC1BxygAu7ERFR2XKpQJ6WlobDhw+jevXqaNOmDSpUqICVK1fm337gwAEcP34cHTp0MGR8DORERET28fX1RZs2bSxez/Py8rBy5cprfj2Pj4/H3r17sWnTpmsdpgWTCfC52kPIQE5ERGXJ0Jb1J598Ev369UN0dDROnz6NSZMmwdvbG8OGDUNYWBhGjx6N8ePHo1KlSggNDcWjjz6KDh06GLLCOsBATkREZE1aWhoOHTqUf/no0aPYvn07KlWqhNq1a2P8+PEYOXIk2rZti3bt2uGdd97B5cuX81ddd0W+vkBODgM5ERGVLUMD+cmTJzFs2DCcP38eVatWxY033oiNGzeiatWqAIC3334bXl5eGDx4MDIzM9GrVy988MEHho2XgZyIiKiwzZs3o1u3bvmX1VouI0eOxJw5czB06FD8999/mDhxIhITE9GqVSssW7as0EJvrsTXF0hP56JuRERUtkyapmlGD6IspaamIiwsDCkpKdc8n3z+fGDIEKBTJ+CPPxw0QCIiKncc+dpEZfP9jIgAkpKAXbuA5s0d8pBERFSO2Pra5FJzyF0dK+RERESuo6wWdQP0hd3Ysk5ERGWJgdwODORERESuo6wWdQP0rc8YyImIqCwxkNuBgZyIiKh8UIGcc8iJiKgsMZDbgYGciIiofGCFnIiInIGB3A4M5EREROUD55ATEZEzMJDbgYGciIjIdZTlom6skBMRkTMwkNuBgZyIiMh1OGNRN84hJyKissRAbgcGciIiovKBFXIiInIGBnI7MJATERGVDwzkRETkDAzkdmAgJyIiKh+4qBsRETkDA7kdGMiJiIjKB84hJyIiZ2AgtwMDORERkevgKutEROTuGMjtwEBORETkOpyxyjoDORERlSUGcjswkBMREZUPnENORETOwEBuBwZyIiKi8oEVciIicgYGcjuoQK5pxo6DiIiIyhYXdSMiImdgILcDK+RERETlAyvkRETkDAzkdmAgJyIiKh8YyImIyBkYyO3AQE5EROQ6ynLbMy7qRkREzsBAbgcGciIiItfhjG3PXGkO+YwZwFNPcS0bIiJPwkBuBwZyIiKi8sEVW9YnTADeeAM4edLokRARkaMwkNvBZJJTBnIiIiLP5mqBXNOAjAw5r06JiMj9MZDbgRVyIiKi8sHV5pDn5uqt6q7URk9ERNeGgdwODORERETlg6vNITcfh6scJCAiomvHQG4HBnIiIqLywdVa1s3H4SoHCYiI6NoxkNuBgZyIiKh8cLVAzgo5EZFn8jF6AO6EgZyIiMh1JCQkICEhAbm5uQ5/bF+fPHyJexB4IBjATIc/vr3MAzkr5EREnoMVcjswkBMREbmOstyHvNKJHRiBrzEo6SOXWNbcvCrOCjkRkedgILcDAzkREVH5UG3vav3CpUuGjUNhhZyIyDMxkNuBgZyIiKh8qLRzlX7BxQI5K+RERJ6DgdwODORERETlQG4uwnb8oV9OTTVuLFdxlXUiIs/EQG4HL7PvlqYZNw4iIiIqQ9u3wyctRb/MCjkREZURBnI7mAdyVsmJiIg81OrVlpddIJCzQk5E5JkYyO3AQE5ERFQOrFpledkFWtZZISci8kwM5HZgICciIvJwOTnAn38CAI6jllznAhVyrrJOROSZGMjtwEBORETk4bZtA1JTkRcWjrW4Ua5zgQo59yEnIvJMDOR2YCAnIiLycFfnj+d06IxkhAMAcpNZISciorLBQG4HBnIiIiLXkZCQgJiYGMTFxTnuQa/OH69wczdc8Q0FAFw8xgo5ERGVDQZyOzCQExERuY74+Hjs3bsXmzZtctyDTpgAvPACTH16IygiBACQcooVciIiKhs+Rg/AnTCQExERebhOneQDQFitUOAEkH7G+Ao5V1knIvJMrJDbgYGciIio/KhSVyrkWReMr5BzH3IiIs/EQG4HBnIiIqLyI7KRzCHXUlghJyKissFAbgeTST/PQE5EROTZasVIhdw38xLS0owdC+eQExF5JgZyO6kqOQM5ERG5sq1bt2LXrl35l3/88UcMGDAA//d//4csllhtElZLKuShSMWePcaOhausExF5JgZyOzGQExGRO3jwwQdx8OBBAMCRI0dw5513IjAwEPPmzcPTTz9t8OjcRKgE8hBcwu7dxg6FFXIiIs/kMoH81Vdfhclkwrhx4/Kvu3LlCuLj41G5cmUEBwdj8ODBOHv2rHGDBAM5ERG5h4MHD6JVq1YAgHnz5qFz586YO3cu5syZgwULFhg7OHcRIi3roUjFrp2aoUNhhZyIyDO5RCDftGkTPvroI7Rs2dLi+scffxxLlizBvHnzsGbNGpw+fRqDBg0yaJSCgZyIiNyBpmnIu/pitWLFCvTp0wcAUKtWLZw7d87IobmPqxXyCsjBgZ2Zhg6FFXIiIs9keCBPS0vD8OHD8cknn6BixYr516ekpGDWrFl46623cNNNN6FNmzaYPXs21q9fj40bNxb5eJmZmUhNTbX4cCQGciIicgdt27bF1KlT8eWXX2LNmjXo27cvAODo0aOIiIgweHRuIjg4/+zx3cautM5V1omIPJPhgTw+Ph59+/ZFjx49LK7fsmULsrOzLa5v0qQJateujQ0bNhT5eNOmTUNYWFj+R61atRw6XgZyIiJyB++88w62bt2KRx55BM899xwaNGgAAJg/fz5uuOEGg0fnJry8oF0N5VfOXUJSknFD4T7kRESeycfIJ//222+xdetWbNq0qdBtiYmJ8PX1RXh4uMX1ERERSExMLPIxJ0yYgPHjx+dfTk1NdWgoZyAnIiJ30LJlS4tV1pXXX38d3t7eBozIPZlCQoC0NIQiFbt3AzfdZMw4WCEnIvJMhlXIT5w4gcceewxff/01/P39Hfa4fn5+CA0NtfhwJAZyIiJyBydOnMDJkyfzL//9998YN24cvvjiC1SoUMHAkbkZs5XWrRzfcBrOISci8kyGBfItW7YgKSkJ1113HXx8fODj44M1a9ZgxowZ8PHxQUREBLKyspCcnGzxeWfPnkVkZKQxgwYDORERuYe77roLq1atAiBdZz179sTff/+N5557DlOmTDF4dG7EbKX1AweMGwZXWSci8kyGBfLu3btj165d2L59e/5H27ZtMXz48PzzFSpUwMqVK/M/58CBAzh+/Dg6dOhg1LAZyImIyC3s3r0b7dq1AwB8//33aN68OdavX4+vv/4ac+bMMXZwDpKQkICYmBjExcWV3ZOYVcj/+6/snqYkrJATEXkmw+aQh4SEoHnz5hbXBQUFoXLlyvnXjx49GuPHj0elSpUQGhqKRx99FB06dMD1119vxJABMJATEZF7yM7Ohp+fHwDZ9uy2224DIAuknjlzxsihOUx8fDzi4+ORmpqKsLCwsnkSswr5P+fL5ilswQo5EZFnMnyV9eK8/fbbuPXWWzF48GB07twZkZGR+OGHHwwdEwM5ERG5g2bNmmHmzJn4888/sXz5ctxyyy0AgNOnT6Ny5coGj86NmFXIzxsYyFkhJyLyTIausl7Q6tWrLS77+/sjISEBCQkJxgzICgZyIiJyB6+99hoGDhyI119/HSNHjkRsbCwAYPHixfmt7GQDswr5uXPGDYOrrBMReSaXCuTugIGciIjcQdeuXXHu3DmkpqaiYsWK+dePGTMGgYGBBo7MzRSokGsaYDI5fxjch5yIyDMxkNuJgZyIiNyFt7c3cnJysHbtWgBA48aNUadOHWMH5W7MKuSZmcDly0BwsPOHwQo5EZFncuk55K6IgZyIiNzB5cuXcd9996F69ero3LkzOnfujKioKIwePRrp6elGD899XK2Qh3ldAgDD5pFzDjkRkWdiILcTAzkREbmD8ePHY82aNViyZAmSk5ORnJyMH3/8EWvWrMETTzxh9PDcx9UKeeUKqQCMC+RcZZ2IyDOxZd1ODOREROQOFixYgPnz56Nr16751/Xp0wcBAQG444478OGHHxo3OHdytUIe7i0VcqMWdmOFnIjIM7FCbicGciIicgfp6emIiIgodH21atXYsm6PqxXyMJPrVMhzc/k+hIjIUzCQ24mBnIiI3EGHDh0wadIkXLlyJf+6jIwMvPjii+jQoYOBI3MzVyvkwZrrzCG3dpmIiNwTW9btxEBORETu4N1330WvXr1Qs2bN/D3Id+zYAX9/f/z6668Gj86NXK2QB+VKhdwVWtYBqZj7+RkzFiIichwGcjsxkBMRkTto3rw5/vnnH3z99dfYv38/AGDYsGEYPnw4AgICDB6dG7laIffPvgRAw/nzBmxCjsILubFCTkTkGRjI7cRATkRE7iIwMBAPPPCA0cNwb1cr5N55OfDHFZw/b8zBDGsVciIicn8M5HZiICciIle1ePFim+972223leFIPEhwcP7ZEFzCuXPGBHJWyImIPBMDuZ0YyImIyFUNGDDApvuZTCbk5uaW7WA8hZeXhPK0NIQiFefPVzNkGKyQExF5JgZyOzGQExGRq8rji1PZCA0F0tIQgktcZZ2IiByK257ZiYGciIionLk6jzwUqYassq5pQE6OnFfvQ1ghJyLyDAzkdmIgJyIiKmeurrQegku4fBnIzHTu05tXw4OCCl9HRETui4HcTiqQa5qx4yAiIiInuVohDzfJXuTObls3D9+BgXLKCjkRkWdgILcTK+RERETlzNUKeWTQJQBwetu6efhWFXIGciIiz8BAbicGciIiIsf76aef0LhxYzRs2BCffvqp0cOxdLVCHhnoOhVytqwTEXkGrrJuJwZyIiJyB0uXLoW3tzd69eplcf2vv/6KvLw89O7d26CRFZaTk4Px48dj1apVCAsLQ5s2bTBw4EBUrlzZ6KGJqxXyKn5SIXd2IFfVcB8fwNfX8joiInJvrJDbiYGciIjcwbPPPmt1r3FN0/Dss88aMKKi/f3332jWrBlq1KiB4OBg9O7dG7/99pvRw9JdrZBXrpACwPkt66oa7uurB3JWyIk8gKYxVBADub0YyImIyB38888/iImJKXR9kyZNcOjQIYc+1x9//IF+/fohKioKJpMJixYtKnSfhIQE1KlTB/7+/mjfvj3+/vvv/NtOnz6NGjVq5F+uUaMGTp065dAxXpM6dQAAjdJ3ADCuZb1CBfkAWCEn8ggDBgCNGwOXLxs9EjIQA7mdGMiJiMgdhIWF4ciRI4WuP3ToEILUymAOcvnyZcTGxiIhIcHq7d999x3Gjx+PSZMmYevWrYiNjUWvXr2QlJRUqufLzMxEamqqxUeZ6tEDAFA/aT2CccmwlnVWyIk8iKYBS5cChw4BW7caPRrXl5PjsUciGcjtxEBORETuoH///hg3bhwOHz6cf92hQ4fwxBNP4LbbbnPoc/Xu3RtTp07FwIEDrd7+1ltv4YEHHsCoUaMQExODmTNnIjAwEJ999hkAICoqyqIifurUKURFRRX5fNOmTUNYWFj+R61atRz69RRSvz5Qrx588rLRBWsMa1lnhZzKraNHgTNnjB6FY126JCETAPbtM3Ysri4tDahdG+je3SNDGAO5nRjIiYjIHUyfPh1BQUFo0qQJ6tati7p166Jp06aoXLky3njjDaeNIysrC1u2bEGPq1VmAPDy8kKPHj2wYcMGAEC7du2we/dunDp1Cmlpafjll18KLUZnbsKECUhJScn/OHHiRJl/HejZU06w3NCWdVbIqdxJTQViY4GWLYH//jN6NI5j/o9k717jxuEO9uyRAzJr1wIrVhg9GofjKut2YiAnIiJ3EBYWhvXr12P58uXYsWMHAgIC0LJlS3Tu3Nmp4zh37hxyc3MRERFhcX1ERAT2798PAPDx8cGbb76Jbt26IS8vD08//XSxK6z7+fnBz8+vTMddyM03Ax99hJvxG74xsGWdFXIqd44elWrypUvAs88Cs2YZPSLHMA/krJAXz3xNkYQE+X/sQRjI7cRATkRE7sJkMuHmm2/GzW7w5uW2225zeCu9Q910EzQvLzTN248KiScAlHGbvBlWyKlcO3tWP//ZZ8D99wMdOhg3Hke5cEE/zwp58U6f1s8vWQL8+2/+YpuegIHcTgzkRETkqmbMmIExY8bA398fM2bMKPa+Y8eOdcqYqlSpAm9vb5w1f1MN4OzZs4iMjLymx05ISEBCQoLV7d0cLjwcGS3aIXDHRsQmLQdwX9k/51XWFnVjhZzKjQL/OxAfD2zaBHh7F/05ly8DvXoB3boBL71UtuMrLfMK+cmT0pofGmrceFyZeYVc04CZM4FXXzVuPA7GOeR2MpnklIGciIhczdtvv43LV7fPefvtt4v8eOedd5w2Jl9fX7Rp0wYrV67Mvy4vLw8rV65Eh2uscsXHx2Pv3r3YtGnTtQ7TJlp3mUfeMWN5/lpMzmBtUTdWyMltaRqQmWn7/VUg79kTCA8Htm0Dvvii+M/5809g3Trg3Xfl+VxRwcUork7hsdnmzUCDBsAPPzhuTK5KVcivv15OP/0UuHLFuPE4GAO5nVghJyIiV3X06NH8uddHjx4t8sPadmjXIi0tDdu3b8f27dvzn3v79u04fvw4AGD8+PH45JNP8Pnnn2Pfvn146KGHcPnyZYwaNcqh4yhrfv2k9b8nluPCOee9EbDWss4KObklTQO6dgX8/eWjZk1gwYLiP0cF8hYtgIcekvNXF4Qs0j//yOmlS4AzFn0sDfOWdcD+eeQJCcDhwxJOPZ2qkD/4oKy2fv48MG+esWNyIAZyOzGQExERWdq8eTNat26N1q1bA5AA3rp1a0ycOBEAMHToULzxxhuYOHEiWrVqhe3bt2PZsmWFFnpzdT4d2+MyAlEF53Fpy0GnPa+1Rd3KbYX8+HHXrXhSyf77D/jjDzmfmSlB6/PPi/8cFcgjIgC1xWFJq60fNPv7dNX52QUr5PaMU9OA5cvl/M6djhuTq1IV8tq1gdtvl/MetHd7qeaQnzhxAiaTCTVr1gQA/P3335g7dy5iYmIwZswYhw7Q1TCQExGRO9A0DfPnz8eqVauQlJSEvAIvXD84sM2xa9eu0EoISY888ggeeeQRhz2nISpUwDmf6gjKOYyME87bjJwV8qu++Qa46y6ZO/rMM0aPhkrj0CE5rVEDmDoVGDWq8BzxgswDeXCwnC8pkKsKOSBbZt1yS+nGW5ZUIK9XDzhyxL4K+YEDetX41Cl5rGJ2pnB76muNipLfHaDk3xs3UqoK+V133YVVq1YBABITE9GzZ0/8/fffeO655zBlyhSHDtDVMJATEZE7GDduHO6++24cPXoUwcHBCAsLs/jwBAkJCYiJiUFcXJzTnjPNtyIA4EpistOeU4Xvcj+H/O+/5fSvv4wdB5Xe4cNy2qgR0LSpnE9MLP5z1O0REUDVqnLeEyrkqmX9xhvl1J5xquq44slV8rQ0WfAOkDCuOqs8KJCXqkK+e/dutGvXDgDw/fffo3nz5li3bh1+++03/O9//8tvUfNEDOREROQOvvzyS/zwww/o06eP0UMpM/Hx8YiPj0dqaqrTDjJk+IUD6UD2f8lOeT5AD9/lfpV11bbqqnOCqWSqQt6ggWWw0jR95eSCzCvk/v5yPimp6OfIzASOHdMv79lzbWMuK6pCfuONskjd0aNARgYQEFDy51oL5N26OX6MrkD93QcHAyEh+u9Ncb8DbqZUFfLs7Gz4+fkBAFasWJG/b2iTJk1w5swZx43OBTGQExGROwgLC0O9evWMHobHyQoIBwDk/HfRac/JVdavUu8xT540dhxUeiqQ16+vB6vMTL0CWlBurl4NN6+QJycX/Udw5IjlG/W9e11z3QEVyGNigIoVZcwHbVibIjsbWL1azt96q5zu2FEmQ3QJKpBHRclptWpy6kEV8lIF8mbNmmHmzJn4888/sXz5ctxydV7G6dOn81d39VQM5ERE5A4mT56MF198ERkZGUYPxaNkB0vLunYx2WnPWa72IS8uOKlAfvasB38DPJxqWW/QQCrBISFyuahwdf68/qa7alWgUiX9zfi5ItZxUKG2RQvAx0dWWnfFgziqZb1yZb1935Z55H//LV9T5crAyJFynSe3rKv542ruuDqQc+4cnLr/ZBkqVSB/7bXX8NFHH6Fr164YNmwYYmNjAQCLFy/Ob2X3VAzkRETkDu644w5cvHgR1apVQ4sWLXDddddZfFDp5IaEy5nkZKc9Z7mpkJ8/D9Spo29tZU7T9EqZ+Xl3888/wM03A2vXGj0SY5i3rANAZKScFhXI1fVVqsgvv5eXnAeKnkeuAnmzZkDDhnLeGW3r+/bJvufffCP7oBd30Cg3V/8fUqmSVMkB2+aRq3b17t2BVq3k/J49toXTzExgzRr3mvZRsEJepYr8Hmha0QdlCtK0orswXECp5pB37doV586dQ2pqKipWrJh//ZgxYxAYGOiwwbkiBnIiInIHI0eOxJYtWzBixAhERETAVNT8TDeWkJCAhIQE5ObmOu9Jw8MBAN6pxrSse3SFfO1a2dZs4ULgww8tb7t0CUhP1y+fOCHh3d0kJEigSk0FNm40ejTOlZyst2nXry+nERFykKKkQG6+RWLVqjJ/uKg5xGqF9UaNJKTu2ydBt6xXWh8xwnIrrv79gUWLrN/34kW9G6RSJfsq5CqQ9+wpK7QHBQGXL8vBjiZNiv/cd9/VdyioUwe4807glVeKnr/vClQgVxVyb28J5UlJ8vuhDuoU56WXgClTgJ9/Bnr1KruxllKpAnlGRgY0TcsP48eOHcPChQvRtGlT9HLBL9KRGMiJiMgd/Pzzz/j1119xo1rB1wMZsaibqZK896lwOdkpzweUo33IVWXz3Dl5o+Vl1shZsCLuThU+c+Yrxe/fX3KA8iSqXd18+zIVtItaab2oQA6UXCFX1XHg2irkO3cCYWFAdHTR98nNBXbvlvOtWgHbtwObNhV9f9WuHhYmbfWNG8tl1UFQlIwMfZeBHj3kb6RFCzm4s2NHyb9Pu3bp5//9V7YQHDAAaN+++M8zkvmWZ0pERPEHZQpavlx+Rm+95ZKBvFQt6/3798cXX3wBAEhOTkb79u3x5ptvYsCAAfiw4BFND8NATkRE7qBWrVoIDQ01ehgex7tyOADANz3Zac9ZbirkKkjl5koF0VzBRYNdcU5wSbKzgW3b9Muff+6Yxz17FtiyxTGPpfzxh6z67UgF29WBkrewshbI1aJeJQXyRo2kbR0ofSA/dgyIi5NpBsU5cUL+KH19gcWL9bEX1b2jOgUqVZJTtQDnkSPFr6Nw7Jg8ZkiIfoCgZUs5tWUeuXreGTMkiAPAV1+V/HmOcOgQ8NxzJW9ZV1DBCjlg/8Ju6nd5+XLpwnExpQrkW7duRadOnQAA8+fPR0REBI4dO4YvvvgCM2bMcOgAXQ0DORERuYM333wTTz/9NP7991+jh+JRfKuFAwACMp3Xsl5uKuQHDujnC75pLxjIHVUhnzULuOcey3b4srJ7N3Dlin75yy+LDmy2unJFts2KiwM2bLi2x1J27AC6dJHKqwqXjuCoQF5chTwtTf9dadjQcm52waBry8rrv/8uf4AHDxYfJNXXVq8eUL26tIDn5hY9x1kFY7UYtpp+kZqqV8+tUf/P69TR28ztCeRqPHXrAmPGyPlvv7X/H8qRI/J3s3+/7Z8zcaK0x99/v33PVVSFHLAtkGdmWq4/cbWo7EpKFcjT09MRcnVVxN9++w2DBg2Cl5cXrr/+ehwz3/fPAzGQExGROxgxYgRWrVqF+vXrIyQkBJUqVbL4oNLxi5SW9aCsZKc9Z7mrkAOFw0/BlnVHVMg1TebTfvmlfDhCejpw333AJ58Uvk21q3fuLNtcnToFrFx5bc/31lsSBjUNeP996/f54gvgvff0EFiSJUvk9PJlqaJOn150eE1Pt73iab7CunItgdxau7KaP16linyPGzUqvNL6zp0y3zs4GJgzp/gxmy++V1yV3fxgg4+PPsaitoNWoVv9Lw4I0APnkSNFP4/KWebt8yqQ27L1mQrklSvLHPRq1eS6334r+XPNPfWU/M1Mn27756hW+8WL9d+xkpgv4GheIbcnkB8/bvn7O3u2ywW5Us0hb9CgARYtWoSBAwfi119/xeOPPw4ASEpK8vj2OAZyIiJyB++8847RQ/BIgVHhAIDg3GSnPWe5WGU9JcXyzXXBsKWCTaNGEtwdUSE/dUoPqXPmAA8+eO2P+dFH8ob/+++lgujnp9+mAvmNNwLNmwMffCBt60W1Qx88KJXdlBSphg4ZIsFNOXkSePll/fL8+cA77+hhEJCQprbGeuopYPBgef6mTYE2bfRtx8z9+quctmghc46feQaoWRO46y7L+2maVNJ37waWLZPzxTHfg1wpaZV1Nbfc1gq5+YJugBzBathQFkt78EEJwioYAhIM77236DGvW6ef37MH6NrV+v2srR6flFT03PiCFXJAquunT0sgj4uz/nnFBfITJ2Sqh9mC20U+b5UqcuBg2DBZ6O2rr4C+fYv+PHOJiXrnhK37n1+4YHmgYexYWSW+pMXAz5/Xjz5Wr65fr34fbJlDrroK6taVgw9Hjsgq+CX9vjpRqSrkEydOxJNPPok6deqgXbt26NChAwCplrdu3dqhA3Q1DOREROQORo4cWeyHJ0hISEBMTAziinrzWgaCaoQDAEK1FGi5znkzUC72IVdBSimqZV1tr+uICvn27fr5jRttW+G6OFlZwJtvyvnLlwtvbaYW+WrXTg/JP/xgfTumI0ckEA8cKIFx5EjL8A1IUE5PB264AWjbVp6/YMX322/lNCBAWnfnzgUefhjo1k1CecHOg5QUvfX9xx+Bq0U3qx0Ef/4JbN4sbfMDB1p2OFhzLS3r5itpFzeH3NqCbs2by+kvv0gY9/IC1NaPxc0n/u8/y2kUtlbIAT08FlUhLyqQA8VXyM1b1hXzBefMF20rKCtL/11TzztihJwuWmT5e5iYKF+DtYNUc+boW6zZut3a5s1yWru2HNz5919g2rSSP0/9flatqv/zA+ybQ67mj8fEyKryAPDZZyV/nhOVKpDffvvtOH78ODZv3oxf1VE0AN27d8fbb7/tsMG5IgZyIiJyF3l5eTh48CDWrl2LP/74w+LDE8THx2Pv3r3YVNxqxg4WWjscAOAFDVeSnLOvbbmokJsHH6DolnUVyM+elYBZlLw84KefgJtukjBqrSXXPJAD1hdZO3Om8AJzRZk7V5/vCgBLl+rn09L0QBcXJx8NG0qYVdtYmfvsMwlQ1asDVwtf+PRT/Qe/YYM8n8kk7ehq7/aPPtLfpGqaVOoBqdr//Tfw9NNSCa1SRcY6ZYrl865aJXOfGzaUiqIKZCtX6vtmK6ot39tbvkd9+xbdFn/5sh5OrQXyxETrbfH2ziE3X9BNeeEFmUbw/PPyPTtyRA9kxU21Xb/e8nJxe4TbG8gLtqwDtgVyaxVywLZ55Opn4+WVv30j2rSRFd6vXJHtBpWVK+VnMnu2tPsreXmW0zEyMwsfTLNGBfKOHaUiDwBvvGG5poI11uaPA/a1rJsfxBg1Ss7Pm2f7HuZOUKpADgCRkZFo3bo1Tp8+jZNXj1K2a9cOTTx8+wYGciIicgcbN25EgwYN0LRpU3Tu3Bldu3bN/+jWrZvRw3NbwVX8kQF/AEDayWSnPGe5mENesLpaVIW8RQvAX77/haq7SkYG0KkT0K+fBMwrVyTMFqQCeceOclpwkbXkZAkr9evrrcuaJu26335rGSDz8vT5tCpAmwfyrVvlPjVqSLgwmYDeveW2ggcLcnP1Svc77wBr1kgAOXtW9lEGgP/7PzkdNUqqvUOHSqX08GFgxQq5bcsWCXeBgcCtt8pBgNdekwMVP/wg9/n0U8vvvSq0qa2hGjeWymJ2tv7cgATKefPk/KJFEhAPHZIWaGtvklXIrFTJsqVaBasrVyyDn/qeqpZkW+eQq5+peYW8RQtZvO+ll2R80dFSqQXk9ywjo/DjAPrPvE0bOS2qQp6Xp8+PV89bVhVyFcjNK+SAbfPIzZ9TBRqTCRg+XM7/+KN+X7VYW3a25ToHv/8u4wsNtW8xORXI27aVbgpfX/mZF9XSr1ibPw7YF8hVhbxuXeD664HWreVn/sEHJX+uk5QqkOfl5WHKlCkICwtDdHQ0oqOjER4ejpdeegl5diTVDz/8EC1btkRoaChCQ0PRoUMH/PLLL/m3X7lyBfHx8ahcuTKCg4MxePBgnLV1efsywkBORETu4H//+x/atm2L3bt348KFC7h48WL+x4XiVvGlYnl5ASmmcABA2gnnrLReLlZZV6FQVcIKhi31xjwqSlpegaLnkS9dKtXNoCDgjjvkutWrC1dgVXh77jkJKadPW4bjzZslJF68KHs+z5wp873795dg99FH+n1/+kla3kNDJax7e0uoUWHAvF1dUaH3118tx7ZihVQGK1WS56pQQZ/n/MknEopWr5ZfiMmT5fqgIJmzDsiBgbw84Lvv5PKtt8rt5jp1kutzc6VyDMgYCgZyQOadA3qIB2TOcWYmEBsrlfGffpJOhOXLAWtbIFubPw7IwQK1J3nB9/gXLugHSFSLMqAH8osXLf8Qdu6Ulu0KFaQlvzjh4frzFvV7pKYc3H+/BNdz56wfBDh1SsKlj48e9MsikGdl6X8HBSvksbFyWlw4Nl/QzdwNNxT+XPPpG+YHllR1fMQICbeAbfPIzQO5yWR7oC6pQp6UVHIoK7gy/dNPy+X33nPO7go2KFUgf+655/D+++/j1VdfxbZt27Bt2za88soreO+99/DCCy/Y/Dg1a9bEq6++ii1btmDz5s246aab0L9/f+y5egTq8ccfx5IlSzBv3jysWbMGp0+fxqBBg0ozZIdhICciInfwzz//4JVXXkHTpk0RHh6OsLAwiw8qvUs+UuHLOJPslOfzqAp5aqr1VlEVyG+8UU7NK+RpafIBSNBRgbyoeeQ//SSnY8ZI1TsgQB7PvOU4NVWvarZrp1cJzedgq6Dh4yOB66GHJCx7e8v1Y8dKFXXjRiA+Xq57+GEJZarqrgpNakE38/UOunSRH+ixY5Ztv6qd+q679EXhRo+W02XLgMce07++WrX0z4uPl8dbuVLml6t29aFDrX+fXnlFAsq8eTK+w4flAEKFCpaLl6n33r/8IgFG04CPP9bHYDLJPO1XX5XrnnqqcBuztfnjSlHhTF2uVEk/EqUuqzfk5i3y6mfXr5+05BfHZNJDrbV55BkZeojs2VMPy9aq5Oprq1tXfleAa2tZP37c+hG3Eyfkex8QYLlwH6BXq3fvLnorPfV3V/B706KFnB45IlMLAMvtzJYulec9dUpvax8zxraDAID8HE+ckO+5WmvM1kBeVIVcff05OYWnUhRkXiEHgNtvl3B+7pz1aSoGKFUg//zzz/Hpp5/ioYceQsuWLdGyZUs8/PDD+OSTTzCnpO0DzPTr1w99+vRBw4YN0ahRI7z88ssIDg7Gxo0bkZKSglmzZuGtt97CTTfdhDZt2mD27NlYv349Nm7cWORjZmZmIjU11eLDkRjIiYjIHbRv3x6H1BtFcqh033AAwJXEZKc8nwrfrVa8gdpvPw4T8myvkP/zj/6G1GgZGVIha9TIMqhomh7IVZA1D+TqvsHBsiq4CqHWKpt5eXpr9a23SkBVj7lqlX4/FSJq1ZKK4bBhcnnFCr1arQL5hAn6ns29esl89yFDJDTddptsY3bypHxdTzwh91Pt6L/8ImNSK3ubV8iDgvQDEKoyfeGCtIADMu9ZadhQQnJenoQuf38Zl7nGjWXOLyDzc48fl++ZGktBLVoAd98t52+6SQ/9HTvq1WNAglfduvLz+/VXGd+ePRIM1YEMAHjkEalMZ2TIInTqIMr69dIqD+j7gpsraqV1a/PHATkgoqq86vckO1uq9kDxq6abU9Vsa/PIN2+Wx4yMlKCsxl1cIDc/2FCaCnlkpPxc8/KsHyQwnz+u9iBXGjSQz01P1w80FfWcBQN5tWryoWly0ConR/979PKSIL5zpxzAyc6W7orYWNtb1tWBjSZN9FX9r7VC7uenz4Mv7jEyMvTbVZu/j4/+d/rGG0UfwHCiUgXyCxcuWJ0r3qRJk1K3weXm5uLbb7/F5cuX0aFDB2zZsgXZ2dno0aOHxePXrl0bG9Tqj1ZMmzbNogJQy/zIoQMwkBMRkavauXNn/sejjz6KJ554AnPmzMGWLVssbttpy5w/N2DEKusAcMUvHACQnWRDy7qmSZgbPrzUbx6ys4FAXEab759Gla/eQRtssa1CfukS0L69zGl2hZL6zJlygODiRcu25jNnJLx5eeltsOatwapKpkJOcS3rmzZJSAsN1cOual82D+SqXb1VKzm97jp5k3/hgh6wVCBv00ba08+fl4Bdv75UsZs3l/tnZ0tA37RJDzt9+sjpypXS7n7smAQBNR9ZUVueqVb5uXPlZxUbq1cTlfvv188/9FDhkAJIVV21sQNywMB8q7SCXntNDhJcvgyoxR7N29UBCX+qSv6//+nnhw+XeeuKl5ccEAgJkUXnatSQYH7TTfK9a9tWOggKKqlCXjCQA4Xnkf/yi/zcIyKAW24p+us1pwK5tfCr5o937Chff7Nmcrk0gdzaYnXWArnJVHzbumq9LtiuDshBCrWafFH/34tqWQf0KvmuXXIALztbfm/U93LmTL1dXS0EqD5HbbdWFBXIzf9Pl7TdnaJ+NtbynC2hXn3PQkMt1y4YNUq+D0eOWE7FMEipAnlsbCzef//9Qte///77aKmOltho165dCA4Ohp+fH/73v/9h4cKFiImJQWJiInx9fRGujn5cFRERgcRiFgCYMGECUlJS8j9OOGKfSjMM5ERE5KpatWqF1q1bo1WrVhg8eDD27duH++67D3FxcRa3ecoWpUassg4AmYHyxi73fHLJd75wQd7Izp0rlc1SyM4GWmAXTFff2HfABtsq5Lt3yxvls2eL37LJGdLSLLc5+vBDfYVlVY2rW1dvTT13Tn+zpaqMKuSoN+fWWtaXLJHTW27R+/tVIF+9Wn/MgoHc11cPyxs3SihW82hVa26lSnplMjhYFsEaOFC+lu++kzf9SosW8rVkZMiBgIAAafMu8L42P/yuWiXPp8KOWg3a3ODBEiIrV5aW9KJMnCjVbm9vffX1okRGyte7ZIkEpqgovVvAnArhSUnyPXjoIeCttwrfLzpa9kNv2FCmBXzxhcw1799fvv/mLdqK+Urr5qxteaYUXGlddQaMGGHZ3l6c4lrW1QrrqruitIH8yhXZSs5cZqbeGl7w+1FcIC9qQTelpBbyolrWAT3M796t/943bixdJoAE8uxs+VtS0xnMt1sr7iCv+v/ctq1+na0V8qJWlbf1MQrOH1eCgvSuF/PV5Q3iU5pPmj59Ovr27YsVK1bk70G+YcMGnDhxAkvNJ/7boHHjxti+fTtSUlIwf/58jBw5EmvWrCnNsAAAfn5+8FPzbcoAAzkREbmqo67SmuzhcoLDAQDaxeSS72zeDrt2rd7maYesLKAVtudf7oh1mJk1tuRPNN+TeNu2whVXZ3r3XQlPDRrIF3T8uBykuO8+PZA3bqyHhdxcmRtaqZIeyFVFuLiWdTV/XAUJQIJAUJAcHNm1S4JLwUAOSHV+/XoJqC1bSgAxDx0F1atXdHXNZJK5qu++K3PFZ80qvKAZIM9TrZoE3Y4d5QDKddcBDzxQ+L7+/jLuvDzrVU7z5/70U+D99/UV6YtjMsn3y/x7VtD110vYPX8emDpV38fbmptvljnIy5dLUG7cWA4SqLn3BZWmQm6+F/l//+k/d1vb1YHiW9ZV8FZ/M+aBXNMsw521QB4QIL87KSny+2t+IEZ1E3t5WXYYAKWvkAMlt5AX1bIOWFbI1QGQJk30Tg/lxRctL8fGyvdv5075PS9I0ywXdFOKOghjLiVFP5hR2kBecP64ua5d5SChkw/oWlOqCnmXLl1w8OBBDBw4EMnJyUhOTsagQYOwZ88efPnll3Y9lq+vLxo0aIA2bdpg2rRpiI2NxbvvvovIyEhkZWUhucBE/bNnzyLS2pEyJ2EgJyIiV6V2PomOjsaxY8dQo0YNi+uio6NRo0YNHCtu710qUW5oOADAlCxtmppWuAiWz7z6plZttlN2NhALfSXjG7Ae2dnWO2EtmFfkt24t1XM7xMWLwOuvy/kXXwQefVTOv/OO5fzxRo2kbVyFFNWOXFTLesEK+YkT0mZuvqUYIBXTTp3k/KpV8g1VByvMA7narmzjRr1dvWXLwvN1bTV9umw99vvv1sM4IG8sVdv6xYsSEn/6SVYft6ZixeLDuDlbwritvLxkgbylS4sP4+b379VLVpx/8cWiwzhQdLBSYa24lvX//pPuhJwc6XBQlV5bFNWynpmph181RbdxY/k9uHDBcpyaVvSCder3tWDoVMHYfHE6xZYKeUmBvKhVz21tWVcV8qZN5bnUwYiePfW/o4LPWdRBgFOn5Pvl7a1X8AHbwrT6eitXLrxLAKAflLG28r1iXiEvSB0gOHRIP0hikFLvQx4VFYWXX34ZCxYswIIFCzB16lRcvHgRs2bNuqYB5eXlITMzE23atEGFChWw0mzvuwMHDuD48eP5VXkjMJATEZE76Natm9V1XVJSUrgP+bUKl5Z1r0vJAGRabJUqlgXpfOYHP9S8VDsVrJDXwknUxAnk5JTwic4I5JomFcC1a4te7fjFF+WIRfPmwJ13Sjt1UJB8wx57TN//uFEjOS3YjlxUy3pSkoQnRS3m1qFD4Sqg+TzyffvkmxoaavlG3XwbJ7VekXmIsJevr4TXgqGrIHXwICxM5kKrr7O8KCqcqZCngrM58znk334r50eMsO95VbA9ccLyjf2hQ3I5NFQfW2CgHpbNV+tPTJSF1Ly8Coc+VUAsuLCbtRXWlWtpWVfh+N9/rR8hLK5CrhatO3sW+PNPOa8ORvzf/8mBK2tTFEoK5OogZIsWlgeZ7AnkRR2AuNYKeaVK+r7xBlfJSx3IHWHChAn4448/8O+//2LXrl2YMGECVq9ejeHDhyMsLAyjR4/G+PHjsWrVKmzZsgWjRo1Chw4dcL36h2kABnIiInIHmqbBZKWyd/78eQRZqzaQzbwqhQMAKlxOBiALc+fk6GtiWTAP5MePF73ncTFys3LREvKGV6sk1a2OWFfyPHLzQL5jh+NXE54yRd7URkVJ5ax//8L3Wb1a2rYBqZJ7eUmVV7UWv/eeXmFUc7gLBnLzPcgBeU5V/X3kEWkjfustQG29a631WgXyxYv1kB0baxmWa9aUed+5ucA33+j3KWtDh8r3Ye1a66uQezprC3ydPCkHkUwmqcwWpKqj27bJgS6TSRbWs0dUlPz8s7Isq6wHDsipqoorqlJs/neltneLjtbXLFCKWmnd2oJuSlGBPCdH/99RVECtVEnvHrG2XkVxFfLgYP251SrtTZvK6V13yffZWveBCuS7dln//6KmIRdsZ7dlUbeSWvTtnUNujdr1QG1LaBBDA3lSUhLuueceNG7cGN27d8emTZvw66+/oufVP7y3334bt956KwYPHozOnTsjMjISPxi8Eh4DORERubJBgwZh0KBBMJlMuPfee/MvDxo0CP3790evXr1www03GD1Mt+ZdJRwA4J9+EdnZ8p6vIQ6ixaePyZtd862gCrbDlqJKHpV+CEFIR65fAPLuuBOAtK0Xu3D62bMSaE0mmc+anq63hjvC6dPASy9JVdzLS57njz8sK2WpqXrwfuABy9Wvn3tOAvywYcDLL0twV2+OC66gXbBCbh6+Pv1UgsITT0jgaNxY377LXOvWeuAAZMVzteWXOVX0URVGZwRyb285sGBPu7UnMQ9Wah6GmhPeoYMevs2p3xEVpG68sfBe1SXx8dE/x/zAmdqDu+COUmqVcNWJAejVcmv7q5cmkKtKbnKy5crlp09L4K1QofgOiuLa1otb1A3Q29YB+ZtW1ePiNGgg/18yMqxvt1ZUIFc/85QUfXHHgsq6Qg4wkAPArFmz8O+//yIzMxNJSUlYsWJFfhgHAH9/fyQkJODChQu4fPkyfvjhB0PnjwMM5ERE5NrUtp+apiEkJMRiK9DIyEiMGTMGX6n9eqlUfKtJy7p/ZjKOHQOezJmGg2iMzttnSDvqd9/p24wVbDMtxTzyRunbAQAZDVvCq4vM4VTzyHHxoryZLDihXFXI6tfX5/xeS9v6kSN6NRCQFcNzcoAbbpAVowcPluvNpy6OHy9ff926wJtvWj5e9eqyn/XcudISa/6G3XzBLqBwIAeAzz+Xudkq5EdHSzjftct6gPPxkdsOHJDHzciwvnCaeReml1f5DcnOpIJVerq+d7maxnDbbdY/RwVyZejQ0j23tZXWzSvk5u6Ug2FYsUKfF/7113JqbUGzogJ5cS3rgYF69di8Sq7+j9SuXfwUiKJayLOz5QAZYFsgr1vXtjUIittuLSlJn49ecO55eLjeUVBUoC6pRV/9nRf1+Zcu6Qc/bKmQl7goR9mxa5X1QWrLgyIUXIDNEzGQExGRK5t9dfufOnXq4Mknn2R7ehnwjwwHAARlJ2P7IWAU5Hu+LrAnOprWS0D95x9pcVVv9IcNkxV9C1bIz50Dxo2T6tvYsXqLrKoa+fuj8RWpdmU2jkVwR+luaIXtOHfgEHB3TynRd+wIvPGGHihVIG/eXNpY162TQG5evbeFpkk79RNPyJugv/6StuqPPpLbx46VN+733y/bXX35pextvXy5hHOTScJzSIjtz2nesp6WplerzQO5ySRt6N26SdAIDJTQXZzAQH2eelHMA3mjRsXv4U2OERQkH5cv6+Hq99/l1JZA7uUlK9qXhrWF3YoK5A0ayO/Hxo0yb/3mm+UAm7e39W3qigrkagX3oirdjRtL4P/7b30aR0nt24oK5AVb1lUw9fIqvPWeYn7wqWB3QEnPuWmTBHLzn4Oai968eeGDACaTBOqTJ+Vnbu3rsrVCnpRUeOV7QP+eVapkuSWhuVat5P9GUpL8DpT0/S0jdlXIzY+yW/uIjo7GPffcU1ZjdQkM5ERE5A4mTZrk8WE8ISEBMTExiFOtpE4SGBUOAAjNuYh/d6ehAWQO9B3ZX0NrdvVN7d69UoVVbdd33SWnO3fqlaq8PGDkSKmyjRsn7d1pacCrr8qbyHbtgPR0xGRvBwBkNWsF1KqFk6aa8EEuqg64QX/TuW6dtPdOmCCX1RvyFi1KVyHPy5NgMny4LLyWkyNV/2HDZLyJiRIoBg6U+/foIeHm4kWpnqvq8/jxhatjJTEP5Bs3yvmaNQtvEaWEhpYcxm3Vpo3+WM5oVyeh1gdYvBj47Tf5XWvQoOhgaN4F0bWr9ZXYbVFw6zNNKzqQA/rCcV99Jb/nANCvnz5+c9YC+ZUr0hkCFL3NnNpqTN3PfHxFVXoVtZp/wZ00VLu6tZXdFfMKuT2BXP2dFGyTL6pdXSmp5dzWQJ6RIdXwgtSBj+Ja7/399fEb2LZu138vddS9PGMgJyIiV3Xddddh5cqVqFixIlq3bm11UTdlq5HbYDlIfHw84uPjkZqairCiwloZCK4lLeuBSEfWhi3wgoZTiMLp7Kq4HB2D4L//kkCu3ugFBUm1vF49aUPduFGqa+++K9tI+frK/NAvvpAqc3q6fN6uXcDLL6N5znYAQG7zVgCAv3w6omb2d/A+/5+0t86bB3z2mez5PH267O1tXiFXwWLbNuuVJHOHDgHPPgusXKmvmu7jIyulv/++zK8dM0auHzNGbzv19pa525MmycEFTZNK+tSp9n+DzbczWrVKznfrVvrtx+wRECBVs82bGcidKT5efm+eekoPhrfdVvTPvFIluU3TSt+uDhSukCclye+9yWQ9yN1xh4xzyxa9HfvBB60/trVAvmyZHJCrWVOme1gzYADwzDPSJZCcLBVt9fdcUgVXfT2nT0ubeoUKcrm4FdaVhg3l7zkrS1/QzRZFtcmXFMiLW9jN/GBmUV9zUJCsAXDqlP4/1ZwK2CUdsG3XTn6ef/9t/8KADmLoHHJ3xEBORESuqn///vDz8wMADBgwAP379y/yg0ovtKbe/hi6Td507oCEtzMVr66SvXevZYXHZJK2cgCYOFFWKH/mGbn8zjuyUFRIiITxatWkKg0A06ejunYGeTBBay5BZZPfjQCA3OBQ2SbrxhslkPfpI29Qpk+3DOQxMfJGOyVFX+QIkDe9jz8uAXz+fOCVVyQMLVggQcDfX6rbv/8u87w//1w+LydHQroK5sqoUXpI8vGR9vXS7IVtXiE3D+TOMmEC0Lmz9UXfqGyMHSu/P3l5eqW1uP9T3t7yO1G7dunb1YHCc8hVdbxOHeu/u1Wryv7qgPytRkdbXwUe0AN5Sor8rQH6Fm1DhxZdqW7USP5mc3LkgN2ZM4Ba1Np8YURrqlWTv/W8PAmqSnErrCsVKgDt28t5NbfaFuoAivl2axcu6PtAdu5s/fOKq5Bf/XnkBgbj9U8rFr3Fo9oy0HyhPUUF8pK+FhdY2M1B/T3lBwM5ERG5qkmTJgEAcnNz0a1bN7Rs2RLhRc0XpFILDvdBKkIQikuoe1wC+T7fVkAW8E+FGDQELAO5qlr17i0h9a+/5AOQlu///U+C7JYtMvf6rrukPfvIEWDJEgDAITRAaMVgAMD84FEITkvE7R8NQpNWrfSBTZggb+A/+0zeqFSoIFWvChXkTfOWLdK2rlYb/+orORhQUI8esvJ569Z6hQ2Q4PHEE7JA29Chhdt0a9WS9t3Fi2ULMtUqby8VyI8fl3nFgHMD+aBB8kHOYzIBH34oHRp//ikV8JJ2g1ixQqrABbcbs0fBlvXi2tWVESP0APjAA3JwwJqwMAn1V65IqI6IyP97zl8grigDBsj/kIULpRKfnS0H9EoKl15e8jUdOiR/P6rFvaQV1pUFC+R7Yd6+XhK13drJk3IgsGNH+RlqmrS+FzWdQF2vFsgzd/XncdwUjaefMaF6VBHbzPfpI4s5Ll2qb68IyMEM1QVmS4UckK4YdbDRyVghtxMDORERuTpvb2/cfPPNuGi+bQ45jJcXkGKStvV2uesBAKZWUiHfnnW1Qn7ggL5KsqrC3XmnzPV+5RWZP3rbbfJmUrXlNmwIPPywtKiaTMB770ELDJTHRav8bJzrH4QXMBWpDQoE3htvlA/1JqVJEz1Qq3C8ZYt+f7VwVtu2Mne6aVNpm//tN3mTah7GlenT5aDBhx9a/+bMni2fr/YELw0VyFNS5A1ynTolz50l9+fnJ4Fw2DDg7bdLDkYm07WFcUAP5BcuyPoNRW15Zu6226QSHRQk00OKG5952/qSJVJVr19fX6ytKAMGyOkvv+h/a+PHl/jlALC+UJ0tLeuA/O21bWvb85grOI+8pHZ1oPgK+dVAfvCK/O8s2A2fr0cP+T916JDlto579khXQmhoyQs5Nm4s90tPN6xKzkBuJwZyIiJyB82bN8cR821zyKHSfMIBAAGQ1dCr9GgFANicVFtW887O1tut1Rtkk0mqfhMmyJvzH3+0vvWREh2NnGlvIBdeWIiB+flYnVrdh/zZZ/Xz5lUuVW387Tc51TR9fG+8IdWhvXulTbu4udpeXvImuKhV0ytVkkr6tcz3LrillTOr42SsqlVlKzxnLRIdGqqvOv7337ZVyAMDZVXx7duL3xMc0G+fNQv44AM5f+edJf99tG0r86MvX5YwXbdu8S385gpW/QHbWtavhfk8ck2TijVQ+kB+dbHKw7kSyNV0/UJCQvTnMG9bN58/Xtw2cYB0OKjV/OfOLf6+ZYSB3E4M5ERE5A6mTp2KJ598Ej/99BPOnDmD1NRUiw+6Num+4fnnM0wBqHZDAwDAP4e99AWR1JvCa9hKJ+PehxCIdHyLYfnFQHWanW3lE/r00d8cq1N1vckkbZwnT8o73LNnpaXWfKsvV+DnZ7lNEQM5laXBg+X0wQf1ec/FBXJAQm+DBiU/tnqc2bP1bcBKalcH5G9VVckBWUiuqNZ4a2MDLCvktrasl5Z5IF+9Wg5sBAcXvZI8UPyiblcPJhxDCYEc0FelVwcBANvnjytqO8jvviviH2vZYiC3EwM5ERG5gz59+mDHjh247bbbULNmTVSsWBEVK1ZEeHg4KlasaPTw3F6Gv/49PB7eEg0ay5vlw4cBrenVtnX1ZkG9QS6F7GwgC7JQn00VcpNJtiV79FHLRdeqVdOD908/6dXxjh0lALsa8yo5AznZaONGWdi/yEXArHnjDalGq3nXQMmB3FZvvinrNNx1lzzmPfdY7vddHHWgICzM+j7nRSmuZb2sK+S7dumdACNGFN1JA9jUsv4v6gCQ2T9qXbxC+vaV0zVr9O3PbF1hXenRQ/5HnjsnU3KcjIu62YmBnIiI3MEqFbioTGQFhgNX3+NerBWLNtFSwMrIAFJrxsBiE7ZrqJCrYo3JpBfIiq2QA/KGf8aMwtf36wds2CDt8gEBcp2rht2qVeXoRoMGsmAUkQ0ee0yyWKtWxRdnLYSHy0KIavX0kJCSW9FtVbGivmOCvbp2lVb3xo2LD7YFFVw5Hij7CnmjRnJgLy1NdmwAZLHK4qhAnpwMZGbKNmenTsmBwwIVck2TKeJWdyJs2FDm5R8+LNs19uyp70Fua4Xcx0cWqnzvPTmgqaruTsJAbicGciIicgddipu7R9csJzg8/3x2c1lwrU4deU94IsQskHt7F16N3A6qCm6+dpU6b7VCXpzbbpPty1aulHmwgOsGcrUXuauOj1zSoUNyun+/HYEckD2sH3pIFlBr1sw5e96XxGQqftG4ophXyDVNHqesA7mPj3zf1MrmHToUkZ7NVKwo7T7Z2TKNpkcPmTv+wgv5W7YdQzSCgyXn79tXxEOaTFIlnzFDAnVICJCbK/93a9Sw/WsYPlw+f9EiecLgYNs/9xqxZd1ODORERORO0tPTsX//fuzcudPig65NXpjesh5wvbxLVFNK9yJGv2ONGte0jY6qgpsveK7O2z3VMSZGFofKzAQuXpRVom1t6XS2vn3ljbWzFvcit5eWJoulA3owt8sbb8h2f9a6S9xJrVpympYmf+dA2besA5ZrVjz0UMn3N5n0Kvmbb+Yv5IaXXgLy8pAJXyQhAv36ydXFziO/7z5ZD+P336XSDdi3l7q6f/36str6jz/a97nXiIHcTgzkRETkDv777z/ceuutCAkJQbNmzdC6dWuLD0+QkJCAmJgYxBkRKq+uzJwHEyK6y2rmKpBvT6mbPy/7XHA0WrWS7lO7K9pwcIXcZNJXEwaATp2sb23mCsaMkW3PbrzR6JGQmzBfVPzw4VI8QGCgdJC46kEqWwUE6GswHD8uR+5SUuRyWVXIAT2QV64MDBli2+eoQP7xx3J600353QnHURsNG3vl78JWbCCPjZWpOP7++sEHe3+OJpO+uNvXX9v3udeIgdxODOREROQOxo0bh+TkZPz1118ICAjAsmXL8Pnnn6Nhw4ZYvHix0cNziPj4eOzduxebNm1y+nN7VQoHABwx1UeNJjK/UwXynXu8kVxd9jFetrc2duyQ9YZKs1aQQyvkAPLLTYDrt4O7QtswuQ3zKdOlqpB7EvN55CqgennpW7yVhTvvlO0V33xTgrEtVCDPzZUW9kWLgG++QZZvEH5Bb7RurW9aUWwgB6Tl/aef9Ofu2NH+r2H4cGl1b9lS2v2dhHPI7cRATkRE7uD333/Hjz/+iLZt28LLywvR0dHo2bMnQkNDMW3aNPRVK9NSqaTFdkTS3KpYVuVuPHL1vYEK5D//DPyMZhiOHTjpXQctYmTx4blz9QWBbWUtkJe6Qg4AnTvLG9+LF+UNLJGHMK+QHz8uMzNccQMBp6hdG9i8Wb4RQUFyXWSk7VunlUb16sC6dfZ9jgrkgOwMERICDB2KkfMG4tsFvnjNLJAfPCir5xc7A6h7d1lqf8cO+V9nr0aNgBMnSt673MEYyO2kfj5OPGhCRERkt8uXL6Pa1YWxKlasiP/++w+NGjVCixYtsFUtvEOl1nxAAzR6+SwefVCv4rZuLQEgMxP4vuZ4NAvMxj2fjkI3X1k4eNEi4PJl/f2xLay1rF9ThbxCBakiHT8OXHddKR6AyDWZB/K8PJmS7Kjdy9yOWtjt2DFZ4Q5w+srhNlGBPCgIGDs2/+rNO+QfXuvW8qUEBsrU7iNHJDMXKza25AXliuPkMA6wZd1urJATEZE7aNy4MQ4cOAAAiI2NxUcffYRTp05h5syZqO6oLX3KsUaNgPMXTHjpJf26GjWkEr53L7DoeBu0OvA9ojrVt1gryN7ZAg6vkAPSVnrnnaX8ZCLXZN6yDpTztnUVyP/9F1i4UM4PHGjYcIrUqZOcPvNM/oJzqan6z651a8le6sBKiW3rboqB3E4M5ERE5A4ee+wxnDlzBgAwadIk/PLLL6hduzZmzJiBV155xeDReQZr3Z8NG0qLpfn0Z5MJuOsuOT93rn3PUdwc8lIHciIPpCrk6oBVuQ7kag75b78Bp09LK3j37saOyZo+fWRp/Oefz79qxw45rVlTX4PO5nnkboot63ZiICciIncwYsSI/PNt2rTBsWPHsH//ftSuXRtVynKlXbJq2DDZzWfZMlljydbdh4pbZb1ULetEHkoF8htuAFavLueBXFXIU1PltG9f151QX7GixcU9e+S0RQv9Ok8P5KyQ24mBnIiI3FFgYCCuu+46hnGDNG0q7Zc5OcB339n+eSVVyM+dk7WbiMqz7GwpBAN6IZiB3IwrtqsXQYVuFcIBICbG8jZPwwq5nRjIiYjIHYwfP97q9SaTCf7+/mjQoAH69++PSpUqOXlk5dfddwPbtsl0yeuvt21NtZIq5AMGyMLGW7ZwjTYqv06dkvfmfn5SIQdKuRe5p6haVV9h0s8P6N3b6BHZTK1BZx7I1fn9+2VhbU/bEZGB3E4M5ERE5A62bduGrVu3Ijc3F42vrohz8OBBeHt7o0mTJvjggw/wxBNPYO3atYhR5QcqUw8/DCxZAqxaJe+P163Tt0orSnEV8h079F2GNm5kIKfyS7Wr16ol6zgAwNGjNmyT5alMJqmS//MP0LOnzCF3E9Yq5PXqSQa7dAk4e1Z2cPMkbFm3EwM5ERG5g/79+6NHjx44ffo0tmzZgi1btuDkyZPo2bMnhg0bhlOnTqFz5854/PHHjR5queHnJ1uftWoFJCUB3boB06fLQshFKW6V9eXL9esOHnTwYInciArk0dGy24Gfn4TxgiuvlyvNm8vpHXcYOw47pKXJNuAA0KSJfr2fn96F/88/zh9XWWMgtxMDORERuYPXX38dL730EkJDQ/OvCwsLw+TJkzF9+nQEBgZi4sSJ2LJli4GjLH9CQ2Vht/r1gZMnpX29bl3g2Wet37+4fcjN34tc3eGOqFxSwTs6Wt6r168vl8v1PPJ33wW+/x4wW+DT1an/Y1WrFl74UnU+2BPI9+wBkpMdMrQyxUBuJwZyIiJyBykpKUhKSip0/X///YfUqyvvhoeHI4t7ZzldRITM+Z45U6rkgFTKt20rfN/iKuTmGMipPFMVclVFVVNBynUgr1ULGDLErSZcW2tXVxo1klNbArmmAS+8IE0Ct9/uuPGVFQZyOzGQExGRO+jfvz/uu+8+LFy4ECdPnsTJkyexcOFCjB49GgMGDAAA/P3332ik3uWQU4WFAQ8+CPz+u2yJpmlSLS+ouAo5INNDAWl7v3KlzIZL5NLMW9YBBnJ3pQK5ebu6YmuFPCsLGDkSmDpVLrtDExgDuZ0YyImIyB189NFH6N69O+68805ER0cjOjoad955J7p3746ZM2cCAJo0aYJPP/3U4JHSyy9LyF6+HPjtN8vbSqqQjxsn4V7TGD6ofDl1Sg9w5i3rAAO5u7K2wrpiayAfMwb48kvA21suJye7fts6A7mdGMiJiMgdBAcH45NPPsH58+exbds2bNu2DefPn8fHH3+MoKAgAECrVq3QqlUrYwd6DRISEhATE4O4uDijh3JN6tYF4uPl/NNPAz//DMybJ1Xv4lZZr1JFKuRXF9Fn2zp5pNRUmdpx332W13frJi3Jy5bpgZwt6+6tuJZ1FcgPHZIDkNZkZsq0eQD44Qf5HwnoHRSuioHcTgzkRETkToKDg1GpUiVUqlQJwcHBRg/HoeLj47F3715s2rTJ6KFcs+efl0r3jh3ArbfKwshNm0rYACyr4t26ybY/zz8v4ZyBnDzZU08Bq1cDs2dL4ALk9J9/5P34kCFARoZMla5VS26vU0dOjx0rOryRa8nO1qvf1gJ5nTpS9U5PB06ftv4YmzbJ70K1akC/fvrvQXE7WbgCBnI7MZATEZE7yMvLw5QpUxAWFpbfsh4eHo6XXnoJeXwRczmVKwMJCUCLFkCbNjKH8soV4I8/5HbzCnnDhsCZM8Bjj8llBnLyVMuXAx9/rF9W61Sar1eZlian1avrB65q1pTT9HTg4sWyHydduyNHZKu6wED952euQgXpJgKKbltfs0ZOu3SRAzQM5B6KgZyIiNzBc889h/fffx+vvvpqfsv6K6+8gvfeew8vvPCC0cMjK4YPB3buBDZvBnbtAu6/X7/NPJAXpNbl86RAfvIk8N57wPnzRo+EjJKaCowebXnd2bOWpxUrSrcIoLerA0BAgN6urPa1JtdmvqCbVxEJtaR55KtXy2mXLnKqAjwDuYdhICciInfw+eef49NPP8VDDz2Eli1bomXLlnj44YfxySefYM6cOUYPj0rg4yOVwSlTJHSo7dGsMa+QF2zPfeMN4IMPym6cZeWFF4CxY2WO8M8/Gz0aMsIrr0iYrltX/x0vGMjr1gUWLpSDUvfcY/n5qn2dgfza5OQABw+Wfet/cfPHleICeVYWsH69nFeBnBVyD6W28mMgJyIiV3bhwgU0sbJ3TJMmTXDhwgUDRkT2MpkkmJ4/L/PKi9Kwodw3ORn47z/9+n37ZP5tfLweYNzF3r1ympgoX3u3bjJX+KGHpLWVPN/WrXL6f/+nVzrV77FqWa9WDbj+ejkY9dBDlp/PQO4YzzwjB0SWLi3b5yluyzOluEC+ebNMUahSBYiJkesYyD0UK+REROQOYmNj8f777xe6/v3330dsbKwBI6LSUsWAogQE6O265m3rakE4QJ+L7i5U6B40SL7+1auB+fOBmTOl6k+eT839jowEIiLkfMEKubreGgZyx9i1S05VO3hZ2b1bTm2pkB88WPg2NX+8c2c9r7lLIPcxegDuhoGciIjcwfTp09G3b1+sWLECHTp0AABs2LABJ06cwNKyLnWQ0zVuLCtKHzgAdOok1/36q377mjVSYXYHqanAuXNyfvZsYOJEYPt2YMUK4KuvZP9p8nwqkFesyEBuJNVQpQJzWfjiC2DbNslZbdsWfT8VyA8flhb1xx6T/xUJCZYLuilqX3q1F3l4eBkM3gFYIbcTAzkREbmDLl264ODBgxg4cCCSk5ORnJyMQYMG4cCBA+ikEht5jIIrrWdk6G9QAcvzrk5Vx6tUAUJDgdhYYORIYOBAud68LZ88FwO5a1CBXFXKHW3/fuDhh+X85Ml6iLamdm1Z4DIzUxbBnDlTOmc6dADWrpX7dO2q3z8oCKhaVc67cpWcFXI7MZATEZG7iIqKwssvv2xx3cmTJzFmzBh8bL6XELm9goH8jz9k27TKlWUO+u7dUklSK0+7MhXI69e3vL5aNTllIPd8eXlS0QQsV1JnIHc+dWDk1Ck5X7Gi4x47IwMYOhS4fBm46SZZL6A4Pj5AvXryf27+fLmuenX9f0alSrIQpLk6deR/xr//Aq1aOW7sjsQKuZ0YyImIyJ2dP38es2bNMnoY5GBqIaQNGyTIqPnjAwboCxz9+acRI7Pf4cNyWq+e5fWq0mW+BzV5pkuX9PfaxVXI1UEaa1QgP3mS79tLKzdXPzACAHv2OPbxv/hCtnqsVk2mo3h7l/w5aptHAHjxRZnO0r69XO7evfCWae4wj5yB3E4M5ERERORqbrxR3qieOweMH6/PH+/VS59T6S5t66raVVQgT02VllXyXKoq6+8vH6VpWa9RQxYEzMpy/66Kf/8FXn4ZSElx7vOah3HA8fPIjx6V02HDpNJti3bt5HTIENmFolo1YNUqCffvvlv4/gzkHoiBnIiIiFyNnx/w2WcSQGbPli2EvLyAHj30QO4uK62rCnnBlvXwcGlZBdw/YFHx1Lxl1R6tgvf58zIV4/x5y+utqVBBb3V397b1qVOB558HrGycUaYK7pDp6ECuFm+0ZyrNk09KAJ87V9+BIiAAuPtu66GegdwDMZATERGRK+rYUVYdVtq3l0DTubNc3r5d3mDPnw98+qnrvpcpqkLu5aW/cWcg92yqQl6pkpxWrqy3M+/bB2ia5e9DUTxlHrkKk9c67eSnn+TvytZuGfVzUBwdyNWBlcqVbf8cf39ZuM3HxpXQ3CGQc1E3OzGQExGRKxs0aFCxtycX7EEkj/Lyy8CSJVJl7t1brqteXbYL+ucfoFkzIDFRrj9wAHj9dePGak1OjmzfBhQO5IC0pyYmMpB7OvMV1gF5/121qvzsd+6U66pUKXnOca1awN9/u38gV3+zGzbIvG5b5lpb89ln0ib+44+W24MVRVXIfX2l9X/3bjkYoirT10oF8rJcbLJuXTl15UDOCrmdGMiJiMiVhYWFFfsRHR2Ne+65x+hhUhkJDASWLpW5lePG6derN9+JiUBIiJx/4w35cCUnTkgo9/WVOcAFcWG38qFgIAf09nQVyItb0E3xlAr5mTNympoK7N1b+sf5+285VQG/JCqQt2kjGej8eX3+viOUpkJuL7WNWkpK4TnxroIVcjsxkBMRkSubPXu20UMggzVqBEyZYnnduHHyRr5rV5mD+emnwNNPA089JcF32DAjRlqYalevW7fwasmAHshZIfds1gJ5ZCSwY4d8AMXPH1c8IZBnZlrO5V63DmjRwv7HOX1ati4D9IBfEvVzqFEDaNAAOHhQ9iNXc/OvlZpDXpaBPDBQDt4kJbnu1meGVsinTZuGuLg4hISEoFq1ahgwYAAOqA00r7py5Qri4+NRuXJlBAcHY/DgwTjryEMzdmIgJyIiInfTrJm8kX/5ZQk5Tz4pq7EDwBNPSDuqKyhqQTdFVUVZIfdstlTIPTWQX7mirz4OFK5Ir19f+HMyMgrP9y5o0yb9vL0VcvP9vR01j1zT9Mcvy5Z1wPXnkRsayNesWYP4+Hhs3LgRy5cvR3Z2Nm6++WZcvnw5/z6PP/44lixZgnnz5mHNmjU4ffp0ifPjyhIDOREREbk7kwmYNk3ml585A8ybZ/SIRFELuimskJcPxQVy9bP31EB+993y+799u1wuWM22Fsj79ZOuElUBt+ZaAnnFio4P5KmpMj0FKNsKOQDUri2nx4+X7fOUlqGBfNmyZbj33nvRrFkzxMbGYs6cOTh+/Di2bNkCAEhJScGsWbPw1ltv4aabbkKbNm0we/ZsrF+/Hhs3bjRkzAzkRERE5Al8fYH4eDn/zjtSsTIaAzkBxQfyoi5bo4LY6dOyGJo7UIG74Hzvxo3lQNrhw5ZV89OngZUrZY70smVFP656PEDmUl+5UvJYzCvkqk3eUYFctasHBsrK6WVJtdi7ameNSy3qlnJ1t/tKV/c42LJlC7Kzs9GjR4/8+zRp0gS1a9fGhg0brD5GZmYmUlNTLT4ciYGciIiIPMWYMbKH+ebN1itvzsaWdQIK70MOFA7gtizqFhEh22Pl5to+b9pI6ekSsAG9vVqNu0kTvUpt/rf6++/6+aK2M9M0ywo5YFuV3Hz7OfXce/Y45uCdMxZ0U1z9/4bLBPK8vDyMGzcOHTt2RPOrP/HExET4+voiPDzc4r4RERFILOK3aNq0aRarydZSvSoOYr7AiCscSSYiIvIEAwcORMWKFXH77bcbPZRypWpVYMQIOf/uu8aOBWCFnETBfciB0lXIvb311frdoW1d/f4DhQN5ZCRwww1yft06/X4rV+rniwrkhw5JVdzPD4iKkutsCeTmB0bU9/HyZduq6yVxxpZnCgO5jeLj47F79258++231/Q4EyZMQEpKSv7HCQf/9ZkHclbJiYiIHOOxxx7DF198YfQwyqXHHpPTBQvkjbtRLlzQtyVSewcX5OpvrMkxHNWyDrjXPHLzvz8VyFVwrl4d6NhRzqsKuaZZBvLjx60vXKaq461b698PewJ5pUpAcLC+/3lJC8jZwhkrrCuu/n/DJQL5I488gp9++gmrVq1CzZo186+PjIxEVlYWkgtsGnf27FlEFrHevp+fH0JDQy0+HImBnIiIyPG6du2KELVBNjlVixbAzTfL+5qBA4FLl4wZh6oORkQAQUHW76Mq5JcuyXZQ5JnKIpC76oJe5swDuVppXVXIq1fXK+SbN0u4PHRIDjT4+gKxsXKbtSq5mj/erp0+n9relnWTCVBNy44I5GxZ1xkayDVNwyOPPIKFCxfi999/R90Ch0PbtGmDChUqYKXZoZ8DBw7g+PHj6NChg7OHC4CBnIiIyp8//vgD/fr1Q1RUFEwmExYtWlToPgkJCahTpw78/f3Rvn17/G2+ghC5vE8/lTfqu3fLnuRGLIClApPaosia8HCZEwywbd1T5eXpnRLmgbxKFcv34bbMIQdcf8src+aBPDFRtjMzb1mvVw9o2xbIzgZefVWvjnfoANxyi5y3FshVhTwuTg/kJc2pN9+WTP0c1GmBWmmpGNGybuDO2cUyNJDHx8fjq6++wty5cxESEoLExEQkJiYiIyMDABAWFobRo0dj/PjxWLVqFbZs2YJRo0ahQ4cOuP766w0ZMwM5ERGVN5cvX0ZsbCwSEhKs3v7dd99h/PjxmDRpErZu3YrY2Fj06tULSWbliFatWqF58+aFPk6rFYzsUNYLuJZHtWoBP/4oqx3//DPw1FPOH4MK5MUt/2My6VVyV6120bVJTdXXaTIP5N7e+s8+PFyqwrZQ6xGYz892VWpRQ+X4ccuWdZMJePllufzBB8BXX8n57t2Bzp3lfMFAnp0NbN0q59u1k8cBSq6Qp6cDWVlyXs3ld9cKueqmSEuTr8vV+Bj55B9++CEAaVMzN3v2bNx7770AgLfffhteXl4YPHgwMjMz0atXL3zwwQdOHqmOgZyIiMqb3r17o3fv3kXe/tZbb+GBBx7AqFGjAAAzZ87Ezz//jM8++wzPPvssAGC72lTXAaZNm4YXX3zRYY9Hol07YM4c4M47gbfflkWcnnjCec+v5viqraqKUrWqVPdYIfdMKuwFBMgiZOYiIqTKaWu7OqCvR6BawF2ZqpCbTHJQ4sgRy0AOAD17Al26SPBWi7t17y6roHt5yeecPAmoWcAHDsgibKGhQIMGtresq+p4hQr6FBJ1gMTd5pCHhMjvUmam/N+Iji7757SH4S3r1j5UGAcAf39/JCQk4MKFC7h8+TJ++OGHIuePOwMDORERkS4rKwtbtmyx2KLUy8sLPXr0KHKL0mtV1gu4lmdDhwKvvSbnn3xSr8A5g/oxlrRBjqvPB6VrY23LM0UFcXsCuaqQHz3q2u/dMzP1LpG2beV082YgJ0fOq9978yo5IIutxcVJ4G7dWq4zr5Lv3y+nTZtKjrE1kJvP4zeZ9POA+7Wsm0yu/X/DJRZ1cycM5ERERLpz584hNzcXEQXeIRe3Rak1PXr0wJAhQ7B06VLUrFmz2DBf1gu4lndPPQU8/ricHzXKefuTqzBiS4UcYIXcU1lb0E0pTSCvVUva3TMzbVvIzCj//ivZIigIUDNzN26U0ypVLFv0O3YE+vaV8126SBVbnQcsA/mBA3LauLGc2jqH3HyFdcVdW9YB1w7khrasuyMGciIiIsdbsWKF0UOgq0wm4I03JCAsXCgLvqnVncuSrRVyBnLPZm0PckXtha3at23h4yMHeY4elXZutQ+3q1Hzx+vX19vsVSC39vUmJEiYHTdOv65zZ+CttwDz45mqQq4Cufkcck3Tq98FWQvk7tqyDrh2IGeF3E4M5ERERLoqVarA29sbZwssX1vcFqWOkpCQgJiYGMTFxZXp85RHXl7Agw/K+RUr9EW2ykpWll6xY8t6+VZchXzMGPmIj7fvMd1hHrmaP96ggb4yvArF1v6VRkcDn3+ut6kDwHXXyen+/TJvHChcIVfdBdnZxQdrawdG3LVlHdC/bldcaZ2B3E4M5ERERDpfX1+0adPGYovSvLw8rFy5ssy3KI2Pj8fevXuxSe3pQw51443SJnvihOV2TGXh9GkJ/b6+JW9nZV4h37tXqqaTJ5ft+Mh5igvk9eoBH30ENGpk32OqQO7KK61bC+SKrR0BNWvK9y0nR/42NE0P5E2ayKmfn/69La6F39pcfke1rKen6wcMWCFnILebeVsHAzkREZUHaWlp2L59e/5K6UePHsX27dtx/Oqk3/Hjx+OTTz7B559/jn379uGhhx7C5cuX81ddJ/cUFKS3qpf1jALVrl6zpmXxwxr1xvq//4Dnn5cwP2OGvvgVubfiAnlpmS/s5qrMA7k6gKDYGshNJqBVKzm/Y4dUg1NT5W+qQQP9frbMIy/LlnXVrl6hgixK5wwM5B5GvVAwkBMRUXmwefNmtG7dGq2v9kaOHz8erVu3xsSJEwEAQ4cOxRtvvIGJEyeiVatW2L59O5YtW1ZooTdyP927y2lZB3JbF3QD9Ar57t0yxx2QgFBGi/qTk5VFIHeHCrmaQ96ggVSiw8L02+yZ/RMbK6c7dujzx+vUsdxCzpa9yMsykJsv6FbUHHZHc+VAzkXdSsHLS8I4AzkREZUHXbt2hVbCJOJHHnkEjzzyiJNGRM7SowfwwgvAqlVAbq6sVl0WbF3QDdADeVqa5fU//wx06uTYcZHzlccKeU6OPrb69eW0Th0J1YB9i9ipCvn27bLVGaDPH1ds2frM2s9BtazbOodc04Bp04A9e2TOemAg8Morzp8/Drh2IGeFvBRYISciIjIeF3Ure23byv7GFy8C27ZZ3nb8OLBunWOex54KecE55s88I6c//+yYsZCxituHvLRUhfzUKdn+zNWcOCGB1c9Ppm0Alm3r9gRyaxVyNX9csSWQO6JCvn078NxzwNy5wLx5sgjdO+84f8szgIHc4zCQExERGY+LupU9Hx+ga1c5b962rmlA795Skb66tMA1sadCHham77vcvz/w9NPy3mz3bj3Yk/sqiwp51aqyJoKmAceOlXz/RYvkd0vNdS4LFy4A774L3HOPfABSyVc5w3xhN3ta1mNi5O8jORlYvlyuK6pCXto55GlpcgChJKdPy2nt2vquDcuXO3/LM0BfZT0pyfUyHAN5KTCQExERUXnRo4ecmgfynTv1VZwdMb/cnkBuMgHNmkn7/PPPS2BQi8+xSu6eZs0Chg2TBciK24e8tEwm++aRT5sGLF4MLFniuDEoSUkSwKOiZA/xL78E1q6V29q21e9nHsjtqZD7+uqt6nv2yGnBQG7LHHJrB0bM57WnpJQ8lv/+k9OmTYEpU+T89u3Avn1y3pkt6+q5cnMds4+6IzGQlwIDOREREZUXKpCvXQtcuiTnf/hBv90Rbev2tKwDEry3bdMDTN++cvrTT8Dq1bIfM5c0cB/PPQd8+61UjMuiQg7Yvhe5pumt3qrC60jvvSchPDNT9hB/+WXgk09kgcIPPtDvpwJ5UBAQEmLfc6h55Iqtc8jXrwfefluq39Yq5D4++lhsCbWqEl61qrSMq3HNny+nzqyQ+/rqv1NJSfK/7I03XKOFnYu6lQIDOREREZUXTZrIG/oDB4DZs4GxYy0D+dq1EmJKu1pyWpr+5t6WCjkg1cWoKP1y377AhAnAr78CS5fKdbt3S7hQ7e3kms6fl+25AJlfrCqvjg7kamG3kirkaqswoGwC+b//yun//R8wdWrRfzetW0sAbtnS/udQ88gBWQOiYMu7tUCuadKlcPy45fegYKdCxYoSZm0J5KpCrqrTN98sFXL183ZmIAfkoMDFixLCP/5Yft+SkoDp0507joJYIS8FBnIiIiLjcVE35zCZpLUWkDew+/dL2PXxkUWozp0DDh4s/eOrdvXQUMuWWHs0by5hPjdXLnt5SZVPbSVFrku1LwNSlVUbOhhVIT9wQD9fFoH81Ck5bdq0+INYtWvL9+aXX+x/DvNA3rhx4edRgfz8eSArS87v3at3qrz2mn5ftbJ6wcu2rLSuArnaGaFnT8vbndmyDugLu509C/z4o5y3ZU2BssZAXgoM5ERERMbjom7Oc889Uik7ehQYPVquu+kmoF07OX8tbev2zB8viskEvPkm0KcPsHIl0KaNXK/m0JLr2rtXTgMD9esCA6XF2JFsrZCXdSBXj1mjRsn3bdCgdAepCgbygipX1lvPN2+WUxX8vczSYWioHHgzZ89K6+Yt6wBw442Av7/lOJxJBfI1a/QDM+qggZEYyEuBgZyIiIjKk8BA4KGH5Pz69XI6aJC8wQb0RalKwxGBHACGDJG55TfdJCtNA3rYI9elDprcf79exXZ0dRxwvQq5LYG8tKpU0R/fWiA3mWQVeUC2JAOAZcvkdMoUfS90awvrqQq5PS3rKpD7+wOdO+u3OzuQq5XWv/5av84V5pAzkJcCAzkRERGVN/Hx+nxs9YZeBfJrqZDbu6CbLWwN5P/9xyq60dTPKDYWePZZOV8WYbVePVmZPzm5+FBuHsjPnHHs+/3UVFkzAbBcA6EsqO0KO3Swfvvw4XL63XfyPfnzT7k8ZAjwzTdSmVePYU4dLLGnZd28Nf3mm/XzRlXIzVeIZ4XcTalArua4EBEREXm66tWBu+6S8x07yjxU9Wb/4MHSV5ocVSE3Z2sgv/12WfmZlXTjqO99TIxMh0hIkA9HCwyU31ug+HnZ5oE8N9exgU1V3ENDgeBgxz2uNTNnAlu2SMeINT16SEA9d04WmMvKki6Chg2BuDhZ8O2zzwp/3rW0rAOuEcjNnTtnfJGVgbwUWCEnIiIyHhd1c75XXgFGjABef10uV6woC6oBeiu7vcqyQn7gAJCTY/0+GRlS2c/JAX7/3XHPTbZLTtZDatOmUsF++GHL/bgdqXdvOS0qkGdl6dVzNYfdkW3rzmhXV4KDZfu/ohaO8/EBhg6V8x9+KKe9e+v39/e3/rm2tqxnZemVaPNA3ry5TE/43/+MDeRqr/a8PH2LN6MwkJcCAzkREZHxuKib80VFyR7K11+vX6eqjkXNI09PB776Sm/VLUgtshUd7bhxRkcDAQGy13NR7cl79uirsvNXyBiqOl6zZulX2LdHnz5yunIlcOVK4dsPH5bfieBgoFkzuc5dA7ktVMeLcsstJX+OrS3rqjru7W25UrvJJPuuq4MAzmQeyAcOtNyX3EgM5KXAQE5EREQk1DxyNQe1oJEjgbvvlup6QRkZ+r7MqmLlCN7esn86UHQ7+o4d+vm//3bcc5PtzNvVnaFFCwnDGRnAH38Uvl21qzdqpIfmsgjkZT1/3Fbt2+sLuPn6At26lfw5trasq0BeubLlyu1GMg/kt96qX2Ygd0MM5ERERESiUyc53bIFuHTJ8ralS4H58+X8ihWFP/fAAVmTp1Ily7ZWR1AVTlsC+YEDlgs9kXOoBfWcFchNJr1tfenSwrerQN64sR6aHRnI7dnyzBlMJr1K3qmTbfPabW1ZL7jCuiuoU0emxsTGypaNamxGL+zGQF4KDOREREREIjpaFoPKzbVcbT09XVZmV7ZuLdy2vm+fnDZtWvRc19IqaWG37dv185omBxTIudTPRh08cYbi5pFbC+RnzjjuuV2tZR0Ann4aeP554L33bLu/rS3r1lZYN5qfH/DPP8CGDdJFwwq5G2MgJyIiItKp7ZFWr9avmzpV2tFr1ZIAkpsrb4TNmQdyRysYyI8dkznCgARwVSFXre1sW3c+Z7esA7K6uI+P7Aygfh+Usq6Qu2IgDw4GXnrJ9r9Be1vWXalCDkhrfkCAnFeBnBVyN8RATkRERKRTc09VID9xQl+J/b339NsLzjN3RiDft0+q882ayRZn//0nBwpSU+XN+T33yP24sJtzpaQAJ0/KeWcG8tBQfd2Dgm3rzmpZd5U55KWhWtaTk4vPQq7Ysl6QGhsr5G6IgZyIiMh43PbMdXTpIqebN8s88o8/lu3EOncG+vfX55k7M5DXrSstqhkZQM+ewOXL0jL/zTd6dTwmRl8lnhVy51I/+6goy1W4naFfPzl95x19tfXz5+UDkEXdHB3Ic3P19ndXqpDbS1XI8/KK3jkBcM2W9YJYIXdjDORERETG47ZnrqN2baBePQkdv/8OfPqpXP/II3KqAvnGjbIVGSCB/eBBOV8WgdzHRyqdgOwz7Ocn5+fM0eePt2olezV7eUm11pHzhal4ql29LH72JRkzRgL3kSPA22/LdVu3ymnNmkBQEFC9ulw+e7boveztkZQkfx9eXkBExLU/nlECAvS/peLa1l21Zd0cK+RujIGciIiIyJKaR/7ss0BiIhAZCQwYINc1aSKVsitX9MXTjhwBsrOBwEAJ9GVBtUJXrizbXFWoAGzbBnz7rVwfGytzaNX9eGzHedT+840aOf+5g4OB6dPl/NSpwLJlwPDhcll1TFStKgt/5eWVPrAdP653i6j54xERcrDIndmy0ro7tKyzQu7GGMiJiIiILKl54vv3y+kDD0gABmQF9YJt66pluXHjstun+JFHpF39p59km6PbbpPr1VzhVq3ktF07OWXbuvOo/efr1DHm+e+6C7jhBtkNoHdvCWXXXQd88IHc7u0tB5WA0retP/MM8OCDwIwZrrfl2bWwZaV1d2hZL1gh//tv+V8wYYJzx8FAXgoM5ERERESW1DxyQMLMmDGWtxcVyMuyZbljR+C334Drr5fLI0da3h4bK6dqGYK//iq7sZAlowO5ySQLDqrt9uLigBUrgEqV9Ptc6zxytc/6t9+65grrpWW+0vqsWbJKu6ZZ3scdWtZVhfz8eeli2LJFumTUGhPO4uYNE8ZgICciIiKyVKsWUL++bCXVr5/MxTWnAvnatTKXVlXS1bZjznDLLfImPClJxquChWpTXrdOFoFT2yJR2VGBvG5d48Zw3XXAJ59IEJs2DQgLs7z9WgK5pgFHj8r5TZv01nxPCOSqZX3GDH1nhZtvBtq3l/N5ee4RyCtXlgMymiah3HxtCWdihbwUGMiJiIiICnvwQQm5//d/hW9r1UreyKekSAhyRoW8oAoVgBEj5Hzr1vr1zZvLAYSMDGDNGueNp7zKzNRDrlEVcmX0aGlTLxjGgWsL5OfPW65C/v33lo/pztSBLBXGAekuUJKT5aAbIKHXVXl76+NLStIr4wzkboCBnIiIiKiwp56SFc2t7UTn4wNMnqzfb/duOe/sVbaffx4YN04W81JMJplHDAC//OLc8ZRHx49LVTIw0LXnGF9LIFfVcSU7W049oUKuAjkgnSaAZSBX1fHQUH1FdlelKviJicDOnXKegdwNMJATERER2e+RR2QhrbQ0WUzL2xto2NC5Y6hYUba6atHC8vo+feR06VLnjqc8Mp8/ruZwuyJHBPJGjSwXLfSEQF6/vpx26aIfwFq/Hrh8Wc67wwrrippHrqarBAbqX5+zMJCXAgM5ERGR8RISEhATE4M4a+VYckne3sBnn+lVs/r1AV9fY8ekdO8uLe2HDgH//GP0aDyb0Qu62coRgbxdO30HAvPHdGf/+5/sXLB0qWwZGB0NZGXJ+hCAe6ywrqiDBsuXy2nLlvJ/ypkYyEuBgZyIiMh48fHx2Lt3LzZx82i30rix3i5+ww3GjsVcSIi+8Bzb1suWuwVytUK6PdQ+63XrAnfcoV/vCRXygACgb1+pJptMQI8ecr1qW3eHBd0UVSFXOyw4u10dYCAvFQZyIiIiotJ74glpEX3nHaNHYolt687hLoFczY8+d06mWNhDVcjr1gUGDZLFw5o0sb54nLtTgVxVmd2xZV0tQsdA7iYYyImIiIhKz2SS6rirhRO1sNvq1fYHMLKduwTy8HDpnABkITp7mAfyKlVkT/L16117znxp3XSTnO7YIauVu2PLuhIb6/wxMJCXAgM5ERERkedp2lTmw2ZmAitXGj0az+UKe5DbwmSS3wcAOHbM9s/LzdXvr77GiAjL1ck9SbVqepD9/Xf3bFkH5OddcLFHZ2AgLwUGciIiIiLPYzIB/fvL+a+/NnYsnsqV9iC3ha2BfPx42c8+KUm+vuxs2eqvZs2yH6MrUG3rDz8M/PijnHeHQG4+xkaNgKAg54+BgbwUVKsJAzkRERGRZxk5Uk4XLQIuXjR0KB5JtX4HBcm8alenArmq6ltz8iTw7rvSlv7tt3q7enS081fsNsrQobJLwcWLQGqqXOfsLQ1Lw7xCbsT8cQDwMeZp3Rsr5ERERESeqXVraVvdtQv4/nvgwQeNHpFnUWHV1fcgV2ypkH/2mZ4LfvxRXxvB1VvyHSkuDjh7VrYNPHFCVmB3pV0UimJeITdi/jjACnmpMJATEREReSaTCbj3Xjk/Z46RI/FM7rKgm1JSIM/NBWbN0i+vWQNs2ybny1MgB2SOfFycrCp/yy3uccClUiU92xlVIWcgLwUGciIiIiLPNXy4tBpv3Ajs32/0aDyLuwVyNc6iAvmKFdKGHx4uc5Bzc/UDOeUtkLsjLy+gXTv5+bVvb9AYjHla98ZATkREROS5IiL0Pck//9zYsXgadwvkqkKuFmor6JNP5PTuu4HBg+V8SoqcMpC7h9Wr5feyUiVjnp+BvBQYyImIiIyXkJCAmJgYxMXFGT0U8kBqcbfPP5eVwckx3C2QV6sG+PnJ+/6TJy1vO3tWX1H8gQf0FfoVBnL34Oenz/s3gqGB/I8//kC/fv0QFRUFk8mERYsWWdyuaRomTpyI6tWrIyAgAD169MA///xjzGDNMJATEREZLz4+Hnv37sWmTZuMHgp5oFtvBaKigDNngNmzjR6N53C3QO7lBdSuLecLtq0vWADk5EjLc4sWMn86MlK/nYGcbGFoIL98+TJiY2ORkJBg9fbp06djxowZmDlzJv766y8EBQWhV69euHLlipNHaomBnIiIiMiz+fkBEybI+ZdfZpXcEfbulQMcJhNQv77Ro7FdUQu7rV0rp337yqmXF9Cvn5wPDHSPfbjJeIYG8t69e2Pq1KkYOHBgods0TcM777yD559/Hv3790fLli3xxRdf4PTp04Uq6c7GQE5ERETk+e6/H6hRQ1qVP/vM6NG4v9dfl9MBA2RFbndRVCDfsEFOO3TQr7v9djlt0cI9Vhkn47nsHPKjR48iMTERPXr0yL8uLCwM7du3xwb1229FZmYmUlNTLT4cjYGciIiIyPP5++tV8ldeYZX8Wpw8CXz9tZx/5hljx2Iva4E8MVHa700my9W5b74Z+OEHLgZItnPZQJ6YmAgAiIiIsLg+IiIi/zZrpk2bhrCwsPyPWrVqOXxsDORERERE5cPo0aySO8Lbb8sq5V26GLe9VGlZC+QbN8pps2ZAaKjl/QcOBBo3ds7YyP25bCAvrQkTJiAlJSX/48SJEw5/DgZyIiIiovKBVfJrd/Ei8PHHcv7pp40dS2lYC+TW2tWJSsNlA3nk1SUKz549a3H92bNn82+zxs/PD6GhoRYfjsZATkRERFR+mFfJZ80yejTuZ9YsIC1N5lX37m30aOynAvnx4/r7fwZychSXDeR169ZFZGQkVq5cmX9damoq/vrrL3Qw+DefgZyIiIio/PD3B/7v/+Q8q+T227VLTocNc8+FzmrUkPf/WVmy93h2NrB5s9zGQE7XytBAnpaWhu3bt2P79u0AZCG37du34/jx4zCZTBg3bhymTp2KxYsXY9euXbjnnnsQFRWFAQMGGDlsBnIiIiKickZVyU+dsr9KPmMG8OGHZTMud3DunJwWWBrKbVSoID97QNrWd+wAMjJkpfhGjYwdG7k/QwP55s2b0bp1a7Ru3RoAMH78eLRu3RoTJ04EADz99NN49NFHMWbMGMTFxSEtLQ3Lli2Dv7+/kcNmICciIiIqZ/z8LKvkV67Y9nlbtwKPPQY8/LDsw10eqUBepYqx47gW5vPIVbv69dfruYCotAz9FeratSs0TSv0MWfOHACAyWTClClTkJiYiCtXrmDFihVo5AKHoRjIiYiIiMqfoqrk//d/str2qVOFP+eTT/TzamGz8saTAvm77wLz5sl5tquTI/CYTikwkBMRERGVP+ZV8mnTpEr+xx9yfu/ewq3sly8Dc+fqlz//XFqdyxtPCOT9+0sG2LAB+PNPuY6BnByBgbwUGMiJiIiIyqfRo4GaNaUaPnOmtKIr33wDaJp+ed48IDUVqFdPKqzJyXp1tbzIypLvAQBUrmzsWK7FkCHAgQPy869QAYiMdL/91Mk1MZCXAgM5ERERUflkXiV/4glgzx4Jmr6+wP79/9/encdHVZ19AP/Nkkw2spCYDcIOQgSSsBpAq0AFVBDB9UWIWGvBoCCtirWA9hVxaZVWU3DXtlooyiYVFCP7GhPCYkJAzcuehCVkJeuc94+nN5NJQjZC7szk9/187ufO3GXmOZPJnPvcc+65thHFAVt39UcfBX79a3nc1rqtX7woc6MR8PfXNZSr1qMH8P77wJkzwOHDQLt2ekdEroAJeTMwISciItJfQkICIiMjMXjwYL1DoTbmkUeklVw7Fnz9deD22+Xx8uUyT0sDdu0CTCbg4YdlH5MJ2LlTkvi2Quuu3r69lN8VBAU5d2s/ORYm5M3AhJyIiEh/8fHxSEtLQ1JSkt6hUBtjsQD/vSkQRowA4uKABx6Q58uXA5WVtvXjxwNhYTJNmCDL4uKAEydaP249uML140TXEhPyZmBCTkRERNS2PfookJgI/Oc/cmx4552AlxeQmQncdhvwxReA2Qz87ne2fRYulHtXJycDAwYAmzbpF39rYUJOVD8m5M3AhJyIiIiobTMYgJEjAV9fee7tLSNxA8B338nx4mefAcOH2/aJipL7kg8cCFy4ANxxhyTwrowJOVH9mJA3AxNyIiIiIqpJ67ZuMMgtzu69t/Y2XboAO3YAN94IlJe7/qjrTMiJ6seEvBmYkBMRERFRTXfeCSxaBKxdCzz00JW38/AApk2Tx6tXt05semFCTlQ/JuTNwISciIiIiGoyGuWWaOPHN7yt1r19zx65p7mrYkJOVD8m5M3AhJyIiIiIrkZ4OBAbK4/XrtU3lmuJCTlR/ZiQNwMTciIiIiK6WnffLXNX7rbOhJyofkzIm4EJORERERFdLS0h37wZuHhR31iuFSbkRPVjQt4MTMiJiIiI6Gr16AH07QtUVgLr1+sdzbWhJeSBgfrGQeSomJA3AxNyIiIiImoJkybJ3BW7rV++DBQVyWO2kBPVjQl5MzAhJyIiIqKWcPvtMt+61fWOLS9ckLnJBPj56RsLkaNiQt4MWkKulL5xEBEREZFzGzAA8PICcnOBtDTb8gsXbK3Lzqr69eMGg76xEDkqJuTNwBZyIiIiImoJbm7AjTfK4+3bZX76tFxfPnKkczcAaS3k7K5OdGVMyJuBCTkRERERtZSbbpK5lpCvXAlcugTs2wekp+sW1lXjCOtEDWNC3gxMyImIiIiopWgJ+Y4dMv/iC9u6detaP56WwoScqGFMyJuBCTkRERERtZQbb5SBz06eBPbsAXbutK378kv94kpJAaZPB7Kymrc/E3KihjEhbwYm5ERERETUUry9ZXA3APjtb+W68e7d5fnu3cC5c/rEtXgx8PHHwEsvNW9/JuREDWNC3gyOlpCXlMg9LN95R+9IiIiIiKg5tG7ru3bJfMYMICZGkvOvvtInpowMma9cCVRUNH1/JuREDWNC3gyOlpBv3w6sXg28/LLekRARERFRc2gJuWbyZGD8eHmsx3XkVitw7Jg8zsmR+6Q3FRNyooYxIW8GR0vIT5+W+dmzjhMTERFRY508eRK33HILIiMj0b9/f6xcuVLvkIha3YgRtscDBgBdu9oS8m++AUpLWzeeU6ekF6Zm+fKmvwYTcqKGMSFvBkdNyMvLbT98REREzsJsNmPJkiVIS0vDN998gzlz5qCoqEjvsIhaVVAQ0KePPJ48WeYDBgDh4UBhIbBlS+vGc/SozM1mma9aBZSVNe01tOPSwMCWi4vI1TAhbwYjrHgQnyGw8LjeoQAAzpyp+zEREZEzCAsLQ3R0NAAgNDQUQUFBuHjxor5BEelg8WLgvvvk+nFAGoG0VvLVq1s3Fq27+m23ASEhwMWLwLffNryf1kCkFFvIiRqDCXkz9N38V3yGKfjNwcf1DgWAfRKutZYTERG1lG3btmH8+PEIDw+HwWDAmjVram2TkJCALl26wMPDA0OHDsW+ffua9V7JycmorKxERETEVUZN5HzuugtYsQJo3962bNIkma9a1byB1ZpLayHv00dOEgCN67b+1FPAddcBI0faurwzISe6MibkTVVcjKivXgEA9LiUrHMwonoSzhZyIiJqaUVFRYiKikJCQkKd61esWIG5c+di4cKFSElJQVRUFMaMGYOcnJyqbaKjo9G3b99a05lqFdfFixcxbdo0vPvuu/XGU1paivz8fLuJyFXdeqsk6OfOAdu2td77agl5r17A/ffL4zVr6u+2rhTw+efyWOti7+4O+PhcqyiJnB8T8qZ65x145mcDAALKsoELF3QOiC3kRER0bY0bNw4vvfQS7r777jrXv/HGG/j1r3+N6dOnIzIyEsuWLYOXlxc+/PDDqm1SU1Nx+PDhWlN4eDgASbInTpyIefPmYdiwYfXGs3jxYvj5+VVNbE0nV+bmBmj/eq053mH1hDw2VrqtFxTIfdGv5MQJIDtbrjufOROwWIDhwwGDoXViJnJGTMiborgYePVV+2Xp6frE8l+VlUBWlu05W8iJiKg1lZWVITk5GaNHj65aZjQaMXr0aOyu78i9GqUUHn74YYwcORJTp05tcPvnnnsOeXl5VdPJkyebHT+RM7j3XpmvWiXHfo1VXg5MmwY891zT3q+8HMjMlMc9e8q17L/8pTz/5psr77d3r8yjooC//Q3IzQW+/rpp703U1jAhb4p33gGys1F4XRckYqQsS0vTNaScHPsfZraQExFRazp//jwqKysREhJitzwkJARZ1c8Y12Pnzp1YsWIF1qxZg+joaERHR+PQoUNX3N5iscDX19duInJlI0cCAQFy3NeUbusbNwL/+AfwyitAU67syMyU40svLxnlHWhaQj50qMw9PaWFn4iujAl5Y1VrHf/x/j/gAKIAAJWH9E3Ia7aIs4WciIiczYgRI2C1WpGamlo19evXT++wiByGmxswcaI8bkq39X/8w/b48OHG71e9u7rW3VxLyJOTr3zFZs2EnIgaxoS8sUpLpb9Q797o/fI0nPaNBABkbdG3y7rWIu7paf+ciIioNQQFBcFkMiE7O9tueXZ2NkJDQ6/peyckJCAyMhKDBw++pu9D5Ai0buuffy4t5Q25dAlYt872/ODBxr+XlpD37GlbFhYG9OsnA7clJtbep7xcknWACTlRUzAhb6yAAOCtt4CDB+HRzg0xUyQhNx5Jg9WqX1hai/iAATI/d67+0S+JiIhakru7OwYOHIjEakfoVqsViYmJiI2NvabvHR8fj7S0NCQlJV3T9yFyBKNGAR07yrHejTcCGRn1b79ypbQnaeq5CqQW7R7kvXrZL7/tNpnX1W390CG5zZm/v30iT0T1Y0LeVP+9EGbCs30AAGEVp/DVcv1ut6Il5P36yW0lAODsWd3CISIiF1RYWFjVlRwAMjMzkZqaihMnTgAA5s6di/feew+ffPIJ0tPTMXPmTBQVFWH69Ok6Rk3kWtzdpWW6Wze5xjs2VtqKjh+ve/u//13m0dEyb04Lec2EvPp15EpJI1BenizTuqsPGSKDwBFR4/DfpZl8Owcg3ycMALBqUTqU0icOrYt6hw62QTd4HTkREbWk77//HjExMYiJiQEgCXhMTAwWLFgAALj//vvxpz/9CQsWLEB0dDRSU1OxcePGWgO9EdHV6dUL2LNHWshzc4EnnwS6dAGuvx6YMAF46ing008lOd6xQ67/XrxY9j10CLWOV0+dkpb3mtel19VlHQBuukluZXbyJLBgAdCpk7Ta79rF68eJmsusdwDOzBITCWw/C5WWhu3bh+Lmm1s/Bi35Dg+XpPz//o/XkRMRUcu65ZZboBo48zxr1izMmjWrlSIiaruuuw747jtg2TJg9Wpg505JoLUkurpRo2SEdjc3ack+eVKSaM1bb8lr5ebarlEvLpZEHajdQu7lJUn5t98CL71kWz5hAuDhIY+ZkBM1DVvIr4IlWq4jj0QaPvhAnxi0hLx6CzkTciIiags4qBu1VZ6e0hq+bZsM8Pb113Lf7zlzbF3UAWDGDOnq3ru3PK/ebV0pGSBOW15cLI+1xD4gAAgMrP3e99wj86AgYMkSYNAgGXVdO/4cMqSFCknURjAhvxqRtoT888+bdn/HlqL9+IWHs8s6ERG1LRzUjUiS5ttuA2bOBN58E9i/H8jOBg4cACZPlm3695d59YQ8NRX4+Wd5XFkp+wHS4g7YBgyu6bHHpIv6Tz8Bs2cDX34JdO4s67p1kxZ8Imo8JuRX478JeZRbGoqLgX//u3XfvrTUdh/IDh1kAthCTkRERNSWBQfbknCg7oT8iy/s99GuAd+6Vea33FL3axsMMqCcr688Dw0FNmwAhg0Dnn76qkMnanOYkF+NPjLSeoeK4/BCET76qHXfXhtN3WKRbkVsISciIiKimrSEXLv1mVK2gdy0dXv3ynItIf/FLxr/+n36SMv6jBktEy9RW8KE/Gpcdx0QFASDUrjduBG7djV8T8iWVH2EdYOBLeTURp05A1y+rHcULauyEkhIkCYHqp9SMuTwuXN6R0JE5LD69ZN5RobcK/yHH+RacXd34MUXZd3evcCRI3JNuocHrwUnai1MyK/WoEEAgJXWe7ARY7Dh1Sbc5PEqVR9hvfq8TbaQl5TUPbwoOY+yMuDjj4FXXgFeew345BO5LqM+S5fKmShfX2DwYOD55xtOzvfuBaZOBdata7HQW9yiRcCsWcDtt8sIPWVljd+3rAxYvhyYP9/1fwyUAh5/XPpOhobKUMLvvw9YrXpHRq2Eg7oRNU54ONC+vZzvTU+3DeY2Zoz8dBoMcj9z7fLL2FjpgUlE155BNXQfEyeXn58PPz8/5OXlwVe72KUlZWUBCxbA+uFHMFZWIA++uLBuF7qNv6Hl36uGJUtkhM377gNWrAAKC4F27WRdXp7t2h6XsGWL3Fjz0Udr30/j558lccnIAOLjgTfekFO+V+vYMaCiQm7uaWyBc1elpdJ9oVMnwFzjjoP5+cA//gEcPizlGzUKiIi48muVlcmklNSYNctrtco9S44dA7y9ZchV7X4kGqWAEyekjO7uMmmv5ekptXNNubnSGunhIcOrRkQA/v51x3jpksz9/Op+reqOHAEeeghITrZf/stfAmvWyH1WavriC7lHS82fsHHj5D4wNY8kKiqAl18G/vhHOSIBZP9XX5Xylpbapnbt5Mau9cnOBrZvl5Ny9W2bny/3lfnpJ/ketWsH/OY3tiFva9q2Dbj1VvukMjYW+PvfgR49rvw+BQXAn/8MvPOO/C4BgI8PsHChjLrj5lZ/eTZsANaule+mxSLx3XKLvGdDfz+NUnLvxcJCoG/fxu+Xni7/x926ydSYo0Cl5AfwL3+pve6RR4B33wVMpvpfo7IS+Owz+dvceKNcANlKP5zXvG5qY/h5EjXs1lvlcGrgQDk8yM+Xc9/TpslP9g8/yABxFy5Iq/mCBXpHTOTcGls3OUVCnpCQgNdffx1ZWVmIiorCW2+9hSGN7EfTWpV0xdGfkTZoKvoX7MJJcxd4H9qL9r2D8dORcpjyLqJLWKkcYHfqZEvusrKkJcvfXxIPrc95Iz3zDPCn16148/69mN3jP0D79hiyYCySivogPd2A3j0r5T3NZvsDY6WApCRg40ZJJMaPl4vQm0MpSQzd3W3vUV4uB+X5+XLAazDI+wQFyWOlgKIiSWhyciRJ/eknIDNTkrc+feSg3GiUe3C8/bYM4QnIgfqHHwL/8z/yfNcu4K67gPPnbTGNGCGJiY+PJCFlZdJqmp4uyc6+fZIsXr4syeovfylJXKdOEtuRI9LyumuXvJ6/vxysjxkjn5XVKjXYunVSnsBASeiKiiQR8faW1rrAQHmelyfJxpEjkhT6+QGjR0uSXFQkgwF88YVsW13PnpKYDxsmSeL581KGpCR5Le1f12yWmjQmRl4vI0NqWu3+Jdo2/fpJAh0SAly8KMlkTk7df1c/P7n5aPfukkB6eMhIMDt22JJZTf/+wM03SyJTWCjlSU62Dd3q5SXf7Y4dZa59Xu7ukkReuCAXsl2+LN/Du+6y3YulqEhee/1629mm4mK5v8sDD8jf9je/AebNkxupzpolrzNpEvDee3J0sX+/TLt22XpRDBsmLeU1y1LdvfcCr79uGzoWkNdet06S46+/lv1NJuDBByXp7d/fdnKkqEiSvT/8ofbn7OUl96eJi7NffuGCfC9OnZJ1kybJkVJenrzu734H/P738h3TKAWsWiXvr12vEhYm30FtyNyICGD6dJlqnjxQSk5KPPdc3Z9DRIScLHnkEfnNevNN+e3o3Vu+n507Az/+KJ9tUpKt63i/fsATT8hn4+NT+3VPnZLP8P335SSPxmSSz37JEvmu1iU3V3oAJCTI8w8+kCaef/5TTkBYrRLzRx/VPvmlSUmRIYn37bMtMxrl/65vXyAqChg7Vo5cW+KEXA1MIFsWP0+ihj31lPy0akJD5bDC319+4quPhbRlS9OuISei2lwmIV+xYgWmTZuGZcuWYejQoViyZAlWrlyJjIwMBAcHN7h/a1bS59LPo6j/jehS8ROOeMbgnHsHxORthg+Kqra57B+KUzEToCqt6L7r7zBV2Lqilkd0hcHbGwY3E4yXi2A4f14OxD095YDWZJKu2aWlgJ8f/q8kBKbc84jAKbs4ziMQ/l5lMBcXyAKjURKAsDA5uD5xQg6gNWazJLH9+klrcG6u3Avj2DE5WDeZ5AC3pMR+0loTtdcICpKE+dSpuhOdgABJ2nJymn7Nr8kk8aWmyvO77pJyHDwo7zVggBz8z57dcvefM5slCaqe2F4tk+nKSWDv3pL0790rScLVdrs1m+XERm7ula+vdXOTZLu0tPHdonv2lHKcP29/IuRqjR4tXda1E1O7dsmJkvx8+R+47jr5fv30k+2zmThREnetJXTTJuDOO69YllJLO5z+fQI6//4hmA7ul9FntNslWSy26cIFeQ8PD+COO+S9L1+Wlvfq36/u3SUejdksywoK7LuL9+oliTUAJCYCmzfL41tvlddWSk5IpadLIt+rl5zU8PGRExszZwLffCP7aDeU7dVL/raZmbaTH927S3f3SZPkM/nkEzlZoZ0QMBjkc/7Vr+Qk06lT8pm//76sf+ghoGtX+c4nJUmi3JTu8tpnYDbLb4QW7y23ADfdJPGeOCFly8y036d3b1vrOiB9K194Qf4G2dmA1YoSkzfOpZ5G8Lr3YCmT7b6e+DcEL5iJ/v3/+zX497/lhF1lpZQlJkZO8vn5yYmMH3+UE3MpKfK5+/rK9ywpyfY5VhccLL1WuneX6eab7YcubiYmkC2LnydRw06dkvOvHTvKz9qQIbYOaO+8YxuQzWKRdouaHeuIqGlcJiEfOnQoBg8ejLfffhsAYLVaERERgSeeeALz5s1rcP/WrqSPrc9A0PgbEYBLdstL4Q4DFNxRbrd8N26EEVYMRhKMaN6fotzDB24T7wRyc1G2aQvcrQ1cdwugxOSFpIAxiCg9hi4Fh5v1vvWp9PBChV8gDEYjDJXlcMupfS2r8vCENTgEKiQM1q7dgC5dYcrPheHoERhOHIdVGaAMJhR2j8LByS8iw9oTPT54DrcmvWb3OtuC7sYrff4Os78PRkUcxf9snwG/sxkwlJXCUFEG5W6B8vBERXA4CgfcjKLoETB3DIVnoBc8L56C26YNMG35FoaCfMBggGrni8p7HkDFw48CgYEwHD4I0/atMG/4Eoad2wGlYBgzRpKXoCBJ3i5fluTJ29vWSpybK8t8faX2699fTookJ0vL4IkTsr5dO0nMbr3V1ssgL0+GOf32W7mRqK+vvFfnznKt9IABtq7g587Ja6amyna9esmJla5dJeHWuqanpkpc2dlSyw4fLq+ldQ9WSno3lJTI9kePSoJUXCxTeLhcGtCtm+3Dz86W5Gb3bmn99/GRRComRmK0WCQxPX1ajgROnZJaXjuZ4+MjJ2p69ZLk2mhEZaWtU0PprmQETb8Tbuez7P7mlzxCsMXnTvwx6C3klXmiZ09p9A4NBUpWfomZiZPhpspx1twRh80x2FUSg/2IwQ6MwAUEISBAih4TA/S9vhxhEWaEhBrg7S0fmdexA2g3fzbcdm6t9b0tC++MS3dOhWHaVPgP6QW3g8lyhLNhQ+1eDmFhwLPPynXObm5QCrCWV0ItXgzTHxfCUMdJl/KgUBxb8hUu946p6gRRVqpgWLcWkR/Mhd+FzFr7VBjdsOumeThy93PwCPCExSLn4fLzgYJzJbg+bTWikz9AWFpirX0BQBkM+Oq2Jdg18En07Clfn8BAwMNaDO9tG+Dx2Qfw2rYRys0deROmIueOR3Bq288wb0uEpfAiLod3h6FXD3gMjUbI2Bh0DLwM0ycfwvDuMhiqn/yr/p5GI4p7RuPi6PuQOyEOhrBQuJkVPNOS4f/0r+GXmVrnfpoD6I+FeBFrMRGAHFT27y897KMy1+CJ3Q/CYi2p9zU2+j+Ab8a+gc43hsm/je9ZeP10CIa0H+C5fyd8dn0DY2GB/d/nhZfgtvD5el+3MZhAtix+nkRXJzVV6kRAWsa3bNEzGiLX4BIJeVlZGby8vPD5559j4sSJVcvj4uJw6dIlrF27ttY+paWlKK02EFR+fj4iIiJatZJO+dseFC96Exg4EJFzbkPlDf3x2XIjvl5XisicLbg5dy08VTG+7fIoMq4bgQsXgILjFxGUfRiqrBwmVKIYXjiPIOTBDx4oQTsUwIRKXIYnyuEGf1xCMHJghRFvJv8CkQPkNOaLzxZjzWsZKIQPLsEfFTDDAyXwQSHCcQYROIlSWLAB41AE6UbaE0dxE7bjemSgF46iAO2QimikIRIVMMMIKxQMuAxPlMADpbCgBB5VUxnc4YNCBOE8vFCMTHRFFkIB2LrJe6IYPfAjvFCMHAQjGyEohnddH1+Dbsd/MAT7cBD98T0G4QQ6N7xTC/FFHoywIs8QALNZWuRqTlrvVoPBll/X9bi+dQ091tS8RLeh54Dk3dp/ffX51Sy72teorLQ10tfsQOCOUnTCCQQgF94oQgaux1mE1y5YNcHIRiVMuIAgAHL+YdQoaYjdvLmxnSgURiERfZCOQFyABaXYiLHYjpugqo2HaTRKEu9mVuhsPo0+hiPIhy+OqR64oNqjokLKpM01UUjFMOyCCZUwQOEUOiIdffAjeqACdV/vbYAVnXACfXEYPfAjLiAQJ9AJ6eiDc2i4x1AXZGI6PsLD+BihyMIpdMT/oQv+jN/iK9xR777tcQHlcEMBmvI7qnA9MnA7vkIM9iMHIThtjMAP1t7YjdgrvpYZ5ZiLN3An1uMS/JGDYFTADC8Uw8sL+HHgA/C573ZYlQGbNsmBY4F93owAXMQApKAfDqEHfoQPCuGNIuQgGNtxE7bjJpxGx3qjd0MZRhh2IRJp6KJ+Rnf8BPXr32DSu2Ob8BnUjQlky0hISEBCQgIqKytx9OhRfp5EzVRRIef0L1+WK39eeEHviIicn0sk5GfOnEGHDh2wa9cuxMbGVi1/5plnsHXrVuzdu7fWPi+88AJe1O7fUI2zVNJWqyQmly/XnrRkpfrUsaNc7lh9/6NHpeExOFgaaQ8cANLSpPGupEQSiOuukxawggJp5MzNlX2Vss21JKm01L6Hes0EQ5s3Z1lDvbKNRmlw7dBBGmh79pSerWFhtli11zl/XhqKk5Ol16+7u63nbHGxfH5az+bi4toH8OR4PDykA4HJJI33gJzBv/lmucTXx0f+xgcPSiN9To6MsTZsmHQoKCmRkxLVu+VVVMil1SkpMv/xR7k0OitL/s/Ky23vVZO7u3RMsFrlMvyW/vX09pYDIqPR/iSM2Syt/+Hh8p4nT0pZIyLk/0EbhOf8eflul/53yAo/P5kqKqRjgjbl5gJGWBEUbERQkPweXHed7ffj6FE5aVFWJvt6eMhkNNpOKkRHy5UuoaHSa//YMfksf/yx4cHxAek8ERIiZdQ+8/Jyeb8uXaSDxQ03yN/YYpEhHqKjJc6aKivlfVNSpBOGNjah1ukDkN+MDh3kWkmLRcp6+LDsk5YmZdZ6rHt4yHptXMLqXn75ypfbNwUT8pbFz5Po6t1zj4yjmpRkay0nouZrswm5I7SQU+NpiX/NxF0pSU4slsYP1NxU2skPLY7qMdVcZrXakv+GJq0F+Eotwg2ta+hxzTib8rixre+NWdaS641GWxKlzT08Gh4Y/FpRSr6H5eXy2GiUkwLVB7OvrJSErazMPqEsL7dtr/WiuNIckPepqJATD65wixktka1+cq/6Y6tV/rf9/a/d/3ZLKS+3H07Aw0P+Rg0N3t4YTCBbFj9PoqtXVCRXwTV0kxEiapzG1k1XGH7WMQQFBcFkMiE7O9tueXZ2NkJDQ+vcx2KxwOIKR7VthMFgGwOqtf9sRqOMFUZUk8Hw327o9ZwQMJmkZZrsab1aXIGbm/QAICJqC7y97W/iQUSto+Xv5dKC3N3dMXDgQCQm2gYislqtSExMtGsxJyIiIiIiInI2Dt1CDgBz585FXFwcBg0ahCFDhmDJkiUoKirC9OnT9Q6NiIiIiIiIqNkcPiG///77ce7cOSxYsABZWVmIjo7Gxo0bERISondoRERERERERM3m8Ak5AMyaNQuzZs3SOwwiIiJyINVve0ZEROSMHPoaciIiIqIriY+PR1paGpKSkvQOhYiIqFmYkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5ERERERERkQ6YkBMRERERERHpgAk5EREROaWEhARERkZi8ODBeodCRETULEzIiYiIyCnFx8cjLS0NSUlJeodCRETULGa9A7jWlFIAgPz8fJ0jISIiElqdpNVRdHVY1xMRkaNpbF3v8gl5QUEBACAiIkLnSIiIiOwVFBTAz89P7zCcHut6IiJyVA3V9Qbl4qfnrVYrzpw5g3bt2sFgMFzVa+Xn5yMiIgInT56Er69vC0WoH1cqjyuVBXCt8rhSWQCWx5E5U1mUUigoKEB4eDiMRl49drVY118Zy+O4XKksgGuVx5XKArhWeZypLI2t612+hdxoNKJjx44t+pq+vr4O/wVoClcqjyuVBXCt8rhSWQCWx5E5S1nYMt5yWNc3jOVxXK5UFsC1yuNKZQFcqzzOUpbG1PU8LU9ERERERESkAybkRERERERERDpgQt4EFosFCxcuhMVi0TuUFuFK5XGlsgCuVR5XKgvA8jgyVyoL6cfVvkcsj+NypbIArlUeVyoL4FrlcaWyaFx+UDciIiIiIiIiR8QWciIiIiIiIiIdMCEnIiIiIiIi0gETciIiIiIiIiIdMCEnIiIiIiIi0gET8iZISEhAly5d4OHhgaFDh2Lfvn16h9SgxYsXY/DgwWjXrh2Cg4MxceJEZGRk2G1TUlKC+Ph4BAYGwsfHB5MnT0Z2drZOETfeK6+8AoPBgDlz5lQtc7aynD59Gg899BACAwPh6emJfv364fvvv69ar5TCggULEBYWBk9PT4wePRrHjh3TMeIrq6ysxPz589G1a1d4enqie/fu+N///V9UHzfSUcuzbds2jB8/HuHh4TAYDFizZo3d+sbEffHiRUyZMgW+vr7w9/fHr371KxQWFrZiKWzqK095eTmeffZZ9OvXD97e3ggPD8e0adNw5swZu9dwlvLUNGPGDBgMBixZssRuuSOVhxwb63rHwrresThzXQ+4Vn3Put516nom5I20YsUKzJ07FwsXLkRKSgqioqIwZswY5OTk6B1avbZu3Yr4+Hjs2bMHmzZtQnl5OW677TYUFRVVbfPUU0/hyy+/xMqVK7F161acOXMGkyZN0jHqhiUlJeGdd95B//797ZY7U1lyc3MxfPhwuLm5YcOGDUhLS8Of//xnBAQEVG3z2muv4a9//SuWLVuGvXv3wtvbG2PGjEFJSYmOkdft1VdfxdKlS/H2228jPT0dr776Kl577TW89dZbVds4anmKiooQFRWFhISEOtc3Ju4pU6bghx9+wKZNm7B+/Xps27YNjz32WGsVwU595SkuLkZKSgrmz5+PlJQUrFq1ChkZGZgwYYLdds5SnupWr16NPXv2IDw8vNY6RyoPOS7W9Y6FdT3r+pbmSvU963oXqusVNcqQIUNUfHx81fPKykoVHh6uFi9erGNUTZeTk6MAqK1btyqllLp06ZJyc3NTK1eurNomPT1dAVC7d+/WK8x6FRQUqJ49e6pNmzapX/ziF2r27NlKKecry7PPPqtGjBhxxfVWq1WFhoaq119/vWrZpUuXlMViUf/6179aI8QmueOOO9Qjjzxit2zSpElqypQpSinnKQ8AtXr16qrnjYk7LS1NAVBJSUlV22zYsEEZDAZ1+vTpVou9LjXLU5d9+/YpAOr48eNKKecsz6lTp1SHDh3U4cOHVefOndWbb75Ztc6Ry0OOhXW942Bd71h1o8ZV6nqlXKu+Z13v2OVpCFvIG6GsrAzJyckYPXp01TKj0YjRo0dj9+7dOkbWdHl5eQCA9u3bAwCSk5NRXl5uV7bevXujU6dODlu2+Ph43HHHHXYxA85XlnXr1mHQoEG49957ERwcjJiYGLz33ntV6zMzM5GVlWVXHj8/PwwdOtQhyzNs2DAkJibi6NGjAIADBw5gx44dGDduHADnK4+mMXHv3r0b/v7+GDRoUNU2o0ePhtFoxN69e1s95qbKy8uDwWCAv78/AOcrj9VqxdSpU/H000/jhhtuqLXe2cpD+mBd71hY1ztm3eiqdT3g+vU963rHZdY7AGdw/vx5VFZWIiQkxG55SEgIjhw5olNUTWe1WjFnzhwMHz4cffv2BQBkZWXB3d296p9TExISgqysLB2irN/y5cuRkpKCpKSkWuucrSw///wzli5dirlz5+L3v/89kpKS8OSTT8Ld3R1xcXFVMdf1vXPE8sybNw/5+fno3bs3TCYTKisrsWjRIkyZMgUAnK48msbEnZWVheDgYLv1ZrMZ7du3d+iyAXIt5rPPPosHH3wQvr6+AJyvPK+++irMZjOefPLJOtc7W3lIH6zrHQfresctj6vW9YBr1/es6x2vPNUxIW9D4uPjcfjwYezYsUPvUJrl5MmTmD17NjZt2gQPDw+9w7lqVqsVgwYNwssvvwwAiImJweHDh7Fs2TLExcXpHF3T/fvf/8ann36Kzz77DDfccANSU1MxZ84chIeHO2V52oLy8nLcd999UEph6dKleofTLMnJyfjLX/6ClJQUGAwGvcMh0h3resfCup70xrre8bHLeiMEBQXBZDLVGsEzOzsboaGhOkXVNLNmzcL69euxefNmdOzYsWp5aGgoysrKcOnSJbvtHbFsycnJyMnJwYABA2A2m2E2m7F161b89a9/hdlsRkhIiNOUBQDCwsIQGRlpt6xPnz44ceIEAFTF7Czfu6effhrz5s3DAw88gH79+mHq1Kl46qmnsHjxYgDOVx5NY+IODQ2tNehTRUUFLl686LBl0yro48ePY9OmTVVnzAHnKs/27duRk5ODTp06Vf0uHD9+HL/97W/RpUsXAM5VHtIP63rHwLoeVc8dsTyuWtcDrlnfs653zPLUxIS8Edzd3TFw4EAkJiZWLbNarUhMTERsbKyOkTVMKYVZs2Zh9erV+O6779C1a1e79QMHDoSbm5td2TIyMnDixAmHK9uoUaNw6NAhpKamVk2DBg3ClClTqh47S1kAYPjw4bVuS3P06FF07twZANC1a1eEhobalSc/Px979+51yPIUFxfDaLT/STGZTLBarQCcrzyaxsQdGxuLS5cuITk5uWqb7777DlarFUOHDm31mBuiVdDHjh3Dt99+i8DAQLv1zlSeqVOn4uDBg3a/C+Hh4Xj66afx9ddfA3Cu8pB+WNc7Btb1jl03umpdD7hefc+63nHLU4u+Y8o5j+XLlyuLxaI+/vhjlZaWph577DHl7++vsrKy9A6tXjNnzlR+fn5qy5Yt6uzZs1VTcXFx1TYzZsxQnTp1Ut999536/vvvVWxsrIqNjdUx6sarPvKqUs5Vln379imz2awWLVqkjh07pj799FPl5eWl/vnPf1Zt88orryh/f3+1du1adfDgQXXXXXeprl27qsuXL+sYed3i4uJUhw4d1Pr161VmZqZatWqVCgoKUs8880zVNo5anoKCArV//361f/9+BUC98cYbav/+/VUjkTYm7rFjx6qYmBi1d+9etWPHDtWzZ0/14IMPOlx5ysrK1IQJE1THjh1Vamqq3e9CaWmp05WnLjVHXlXKscpDjot1vWNiXe84nLmuV8q16nvW9a5T1zMhb4K33npLderUSbm7u6shQ4aoPXv26B1SgwDUOX300UdV21y+fFk9/vjjKiAgQHl5eam7775bnT17Vr+gm6BmJe1sZfnyyy9V3759lcViUb1791bvvvuu3Xqr1armz5+vQkJClMViUaNGjVIZGRk6RVu//Px8NXv2bNWpUyfl4eGhunXrpp5//nm7H35HLc/mzZvr/D+Ji4tTSjUu7gsXLqgHH3xQ+fj4KF9fXzV9+nRVUFCgQ2nqL09mZuYVfxc2b97sdOWpS12VtCOVhxwb63rHw7recThzXa+Ua9X3rOtdp643KKVUy7S1ExEREREREVFj8RpyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIiIiIiIiIh0wISciIiIiIiLSARNyIrqmDAYD1qxZo3cYREREdA2xvidqHibkRC7s4YcfhsFgqDWNHTtW79CIiIiohbC+J3JeZr0DIKJra+zYsfjoo4/sllksFp2iISIiomuB9T2Rc2ILOZGLs1gsCA0NtZsCAgIASPeypUuXYty4cfD09ES3bt3w+eef2+1/6NAhjBw5Ep6enggMDMRjjz2GwsJCu20+/PBD3HDDDbBYLAgLC8OsWbPs1p8/fx533303vLy80LNnT6xbt+7aFpqIiKiNYX1P5JyYkBO1cfPnz8fkyZNx4MABTJkyBQ888ADS09MBAEVFRRgzZgwCAgKQlJSElStX4ttvv7WrgJcuXYr4+Hg89thjOHToENatW4cePXrYvceLL76I++67DwcPHsTtt9+OKVOm4OLFi61aTiIioraM9T2Rg1JE5LLi4uKUyWRS3t7edtOiRYuUUkoBUDNmzLDbZ+jQoWrmzJlKKaXeffddFRAQoAoLC6vW/+c//1FGo1FlZWUppZQKDw9Xzz///BVjAKD+8Ic/VD0vLCxUANSGDRtarJxERERtGet7IufFa8iJXNytt96KpUuX2i1r37591ePY2Fi7dbGxsUhNTQUApKenIyoqCt7e3lXrhw8fDqvVioyMDBgMBpw5cwajRo2qN4b+/ftXPfb29oavry9ycnKaWyQiIiKqgfU9kXNiQk7k4ry9vWt1KWspnp6ejdrOzc3N7rnBYIDVar0WIREREbVJrO+JnBOvISdq4/bs2VPreZ8+fQAAffr0wYEDB1BUVFS1fufOnTAajbj++uvRrl07dOnSBYmJia0aMxERETUN63six8QWciIXV1paiqysLLtlZrMZQUFBAICVK1di0KBBGDFiBD799FPs27cPH3zwAQBgypQpWLhwIeLi4vDCCy/g3LlzeOKJJzB16lSEhIQAAF544QXMmDEDwcHBGDduHAoKCrBz50488cQTrVtQIiKiNoz1PZFzYkJO5OI2btyIsLAwu2XXX389jhw5AkBGRF2+fDkef/xxhIWF4V//+hciIyMBAF5eXvj6668xe/ZsDB48GF5eXpg8eTLeeOONqteKi4tDSUkJ3nzzTfzud79DUFAQ7rnnntYrIBEREbG+J3JSBqWU0jsIItKHwWDA6tWrMXHiRL1DISIiomuE9T2R4+I15EREREREREQ6YEJOREREREREpAN2WSciIiIiIiLSAVvIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB0zIiYiIiIiIiHTAhJyIiIiIiIhIB/8PwJjIr8Z2FWMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2216,7 +2223,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 200, "metadata": {}, "outputs": [], "source": [ @@ -2246,26 +2253,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Plot the predictions versus ground truth." + "Plot the predictions versus observations and climatology." + ] + }, + { + "cell_type": "code", + "execution_count": 201, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 202, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.319\n" + "The MSE loss is 0.291\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQIElEQVR4nO3de1xUdf4/8NdhkPswiDozoIgkphJq3lNapRWRMpVqtbtSfrM1MMlMtM3UtFA3N60t7LILtmrl/gpF2zBEobzhLVPSSAkvKRfzMiMgiDPn98fE6Mhw02HODOf13Mc82vM5n/nM+xzEefv5fM7nI4iiKIKIiIhIJlykDoCIiIjInpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQNwREajEWfPnoVSqYQgCFKHQ0RERE0giiIuX76MwMBAuLjU37/D5MeKs2fPIigoSOowiIiI6BacPn0anTp1qvc8kx8rlEolANPN8/X1lTgaIiIiagq9Xo+goCDz93h9mPxYUTvU5evry+SHiIjIyTQ2ZYUTnomIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWuMKzvRgNwMmdQHkp4KMBgocCLgqpoyIiIpIdSXt+kpOTMXDgQCiVSqjVasTGxqKgoMCiTmRkJARBsHj99a9/bbBdURTx+uuvIyAgAJ6enoiKisKxY8da8lIadiQDWB4OrHoQ+HKy6b/Lw03lREREZFeSJj+5ubmIj4/H7t27kZWVhZqaGkRHR6OiosKi3nPPPYfi4mLza+nSpQ22u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqqolL8e6IxnAuomA/qxlub7YVM4EiIiIyK4kHfbKzMy0OE5LS4Narcb+/fsxbNgwc7mXlxe0Wm2T2hRFEcuXL8drr72GcePGAQA+/fRTaDQarF+/Ho899pjtLqAxRgOQmQRAtBYpAAHInA30GM0hMCIiIjtxqAnPOp0OAODv729RvmbNGrRv3x7h4eGYM2cOKisr622jqKgIJSUliIqKMpepVCoMHjwYu3btsvqe6upq6PV6i5dNnNxZt8fHggjoz5jqERERkV04zIRno9GIxMREREREIDw83Fz+xBNPIDg4GIGBgTh06BCSkpJQUFCAr776ymo7JSUlAACNRmNRrtFozOdulpycjAULFtjoSm5QXmrbekRERHTbHCb5iY+PR35+PrZv325RPmXKFPP/79WrFwICAjBixAgUFhaia9euNvnsOXPmYMaMGeZjvV6PoKCg22/YR9N4nebUIyIiotvmEMNeCQkJ2LRpE7Zt24ZOnTo1WHfw4MEAgOPHj1s9Xzs3qLTUsjeltLS03nlD7u7u8PX1tXjZRPBQwDcQgFBPBQHw7WiqR0RERHYhafIjiiISEhKQnp6OrVu3IiQkpNH3HDx4EAAQEBBg9XxISAi0Wi2ys7PNZXq9Hnl5eRgyZIhN4m4yFwUQs+SPg5sToD+OYxZzsjMREZEdSZr8xMfHY/Xq1Vi7di2USiVKSkpQUlKCK1euAAAKCwuxcOFC7N+/HydOnEBGRgYmTpyIYcOGoXfv3uZ2evTogfT0dACAIAhITEzEokWLkJGRgcOHD2PixIkIDAxEbGys/S8ybCww4VPA96ZkzTfQVB421v4xERERyZikc35SUlIAmBYyvFFqairi4uLg5uaGLVu2YPny5aioqEBQUBAeeeQRvPbaaxb1CwoKzE+KAcCsWbNQUVGBKVOm4NKlS7j33nuRmZkJDw+PFr8mq8LGmh5n5wrPREREkhNEUbS2CI2s6fV6qFQq6HQ6283/ISIiohbV1O9vh5jwTERERGQvTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVXqQMgB2I0ACd3AuWlgI8GCB4KuCikjoqIiMimmPyQyZEMIDMJ0J+9XuYbCMQsAcLGShcXERGRjXHYi0yJz7qJlokPAOiLTeVHMqSJi4hum8EoYlfheWw4eAa7Cs/DYBSlDolIcuz5kTujwdTjA2t/IYoABCBzNtBjNIfAiJxMZn4xFmw8gmJdlbksQOWBeWPCEBMeIGFkRNJiz4/cndxZt8fHggjoz5jqEZHTyMwvxtTVBywSHwAo0VVh6uoDyMwvligyIulJmvwkJydj4MCBUCqVUKvViI2NRUFBgdW6oiji/vvvhyAIWL9+fYPtxsXFQRAEi1dMTEwLXEErUF5q23pEJDmDUcSCjUfq7c8FgAUbj3AIjGRL0uQnNzcX8fHx2L17N7KyslBTU4Po6GhUVFTUqbt8+XIIgtDktmNiYlBcXGx+ffbZZ7YMvfXw0di2HhFJbk/RhTo9PjcSARTrqrCn6IL9giJyIJLO+cnMzLQ4TktLg1qtxv79+zFs2DBz+cGDB7Fs2TLs27cPAQFNG6d2d3eHVqttUt3q6mpUV1ebj/V6fZPe1yoEDzU91aUvhvV5P4LpfPBQe0dGRLeo7HL9ic+t1CNqbRxqzo9OpwMA+Pv7m8sqKyvxxBNP4P33329yMgMAOTk5UKvV6N69O6ZOnYrz58/XWzc5ORkqlcr8CgoKuvWLcDYuCtPj7ACAm3vW/jiOWczJzkRORK30sGk9otZGEEXRIQZ9jUYjxo4di0uXLmH79u3m8ueffx4GgwGffPIJAEAQBKSnpyM2Nrbetj7//HN4eXkhJCQEhYWFePXVV+Hj44Ndu3ZBoaj7JW6t5ycoKAg6nQ6+vr62u0hHZnWdn46mxIfr/BA5FYNRxL1LtqJEV1Vffy60Kg9sT/ozFC5Nn05AdNtaeDFdvV4PlUrV6Pe3wzzqHh8fj/z8fIvEJyMjA1u3bsUPP/zQrLYee+wx8//v1asXevfuja5duyInJwcjRoyoU9/d3R3u7u63HnxrEDbW9Dg7V3gmcnoKFwHzxoRh6uoDEGA5oF2b6swbE8bEh+zLgRbTdYhhr4SEBGzatAnbtm1Dp06dzOVbt25FYWEh/Pz84OrqCldXU672yCOPIDIyssnt33HHHWjfvj2OHz9u69BbFxcFEPInoNdfTP9l4kPktGLCA5DyVD9oVZZDW1qVB1Ke6sd1fsi+HGwxXUmHvURRxLRp05Ceno6cnBx069bN4nxJSQl+//13i7JevXphxYoVGDNmDEJCQpr0Ob/99hs6d+6M9evXY+zYxrPLpnabERE5OoNRxJ6iCyi7XAW10gODQvzZ40P2ZTQAy8MbWFPujwdrEg/f9j+6nWLYKz4+HmvXrsWGDRugVCpRUlICAFCpVPD09IRWq7U6yblz584WiU+PHj2QnJyMhx56COXl5ViwYAEeeeQRaLVaFBYWYtasWQgNDcWoUaPsdm1ERI5A4SJgSNd2UodBctacxXRD/mSXkCQd9kpJSYFOp0NkZCQCAgLMry+++KJZ7RQUFJifFFMoFDh06BDGjh2LO++8E5MnT0b//v3x/fffc14PERGRvTngYrqS9vzcyoibtffcWObp6YnNmzffVlxERERkIw64mK7DPO1F1FpwjgUR0Q0ccDFdJj9ENsRdtImIblK7mO66iUB9iy/YeTFdh3jUnag14C7aRET1CBsLTPgU8L3pH4G+gaZyO6/zw54fIhtobBdtAaZdtEeGaTkERkTy5ECL6TL5IbKB5uyizceOiUi2ahfTlToMqQMgag24izYRkfNg8kNkA9xFm4jIeTD5IbKBQSH+CFB5oL7ZPAJMT30NCvG3Z1hERGQFkx8iG6jdRRtAnQSIu2i3YkYDUPQ9cPj/mf5rNEgdERE1ASc8E9lI7S7aN6/zo+U6P63TkQwgM8lyzyLfQNN6JnZ+bJeImkfSXd0dFXd1p9vBFZ5l4EjGHwu23fzX5x8/ZwnWLSEiJ9nVnag14i7arZzRYOrxaWhVp8zZpvVMJFi/hIgaxzk/RETNcXKn5VBXHSKgP2OqR0QOickPEVFzlJfath4R2R2THyKi5vDR2LYeEdkd5/wQETVH8FDTU136Ylif9yOYzgcPtXdkRA7PUR4IYfJDRNQcLgrT4+zrJsL0dNeNCdAff4nHLOZkZ6KbZOYX11kKJECipUA47EVE1FxhY02Ps/ve9Be2byAfcyeyIjO/GFNXH6izAXSJrgpTVx9AZn6xXeNhzw8R0a0IG2t6nP3kTtPkZh+NaaiLPT5EFgxGEQs2HmlocQgs2HgEI8O0dhsCY/JDRHSrXBRAyJ+kjoLIoe0pulCnx+dGIoBiXRX2FF2w2xppHPYiIiKiFlN2uf7E51bq2QKTHyIiImoxaqWHTevZApMfIiIiajGDQvwRoPJAfbN5BJie+hoU4m+3mJj8EBERUYtRuAiYNyYMAOokQLXH88aE2XW9HyY/RERE1KJiwgOQ8lQ/aFWWQ1talQdSnupn93V++LQXERERtbiY8ACMDNNyhWciIiKSD4WLYLfH2RvCYS8iIiKSFSY/REREJCsc9iIiImoFHGXHdGfA5IeIiMjJOdKO6c6Aw15EREROzNF2THcGTH6IiIicVGM7pgOmHdMNRms15IvJDxERkZNqzo7pdB2THyIiIifliDumOwMmP0RERE7KEXdMdwZMfoiIiJyUI+6Y7gyY/BARETkpR9wx3Rkw+SEiInJijrZjujPgIodEREROzpF2THcGTH6IiIhaAUfZMd0ZcNiLiIiIZIXJDxEREckKkx8iIiKSFUmTn+TkZAwcOBBKpRJqtRqxsbEoKCiwWlcURdx///0QBAHr169vsF1RFPH6668jICAAnp6eiIqKwrFjx1rgCoiIiMjZSJr85ObmIj4+Hrt370ZWVhZqamoQHR2NioqKOnWXL18OQWjarPWlS5fi3XffxcqVK5GXlwdvb2+MGjUKVVVc3puIiEjuBFEUHWar13PnzkGtViM3NxfDhg0zlx88eBAPPvgg9u3bh4CAAKSnpyM2NtZqG6IoIjAwEC+//DJmzpwJANDpdNBoNEhLS8Njjz1W5z3V1dWorq42H+v1egQFBUGn08HX19e2F0lEREQtQq/XQ6VSNfr97VBzfnQ6HQDA3//6MtyVlZV44okn8P7770Or1TbaRlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PcnJyVCpVOZXUFDQbV4JEREROSqHSX6MRiMSExMRERGB8PBwc/lLL72EoUOHYty4cU1qp6SkBACg0WgsyjUajfnczebMmQOdTmd+nT59+havgoiIiBydwyxyGB8fj/z8fGzfvt1clpGRga1bt+KHH35o0c92d3eHu7t7i34GEREROQaH6PlJSEjApk2bsG3bNnTq1MlcvnXrVhQWFsLPzw+urq5wdTXlao888ggiIyOttlU7NFZaWmpRXlpa2qRhMyIiImrdJE1+RFFEQkIC0tPTsXXrVoSEhFicnz17Ng4dOoSDBw+aXwDwzjvvIDU11WqbISEh0Gq1yM7ONpfp9Xrk5eVhyJAhLXYtRERE5BwkHfaKj4/H2rVrsWHDBiiVSvOcHJVKBU9PT2i1Wqu9NZ07d7ZIlHr06IHk5GQ89NBDEAQBiYmJWLRoEbp164aQkBDMnTsXgYGB9T4hRkRERPIhafKTkpICAHWGsFJTUxEXF9fkdgoKCsxPigHArFmzUFFRgSlTpuDSpUu49957kZmZCQ8PD1uETURERE7Modb5cRRNXSeAiIiIHIdTrvNDRERE1NKY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK65SB0DUHAajiD1FF1B2uQpqpQcGhfhD4SJIHRYRETkRJj/kNDLzi7Fg4xEU66rMZQEqD8wbE4aY8AAJIyMiImfCYS9yCpn5xZi6+oBF4gMAJboqTF19AJn5xRJFRi3FYBSxq/A8Nhw8g12F52EwilKHREStBHt+yOEZjCIWbDwCa199IgABwIKNRzAyTMshsFaCvXxE1JLY80MOb0/RhTo9PjcSARTrqrCn6IL9gqIWw14+ImppTH7I4ZVdrj/xuZV65Lga6+UDTL18HAIjotvB5IccnlrpYdN65LjYy0dE9sA5P3bCR7Rv3aAQfwSoPFCiq7LaIyAA0KpM95ScG3v5iMgemPzYASdv3h6Fi4B5Y8IwdfUBCIBFAlSbPs4bE8ZkshVgLx8R2QOHvVoYJ2/aRkx4AFKe6getyvJLT6vyQMpT/ZhEthK1vXz1pbECTP9wYC8fEd0O9vy0ID6ibVsx4QEYGabl8GErxl4+clScutC6MPlpQc2ZvDmkazv7BebEFC4C71UrV9vLd/NQsZZDxSQRTl1ofZj8tCBO3iS6NezlI0dRO3Xh5h782qkLHHZ3Tkx+WhAnbxLdOvbykdQ4daH14oTnFsTJm0REzovrTrVeTH5aUO3kTQB1EiBO3iQiMnHUTWw5daH14rBXC+PkTSKi+jnyZGJOXWi9mPzYASdvEhHVVTuZWIAR97j8DDUuoQx+2Kvr4RCTibm6fOvF5MdOOHmTHAnXLCGp1U4mjnbZg3ltPkWgcH3ezFnRH2/UTMSCjR6STibmulOtF5MfIplx5GEGko89RRfQ+/J3SGmzvM45LS7ggzbLMfUysKfobkn/4ehUUxeMBuDkTqC8FPDRAMFDAReF1FE5JEEURceYWeZA9Ho9VCoVdDodfH19pQ6HyGbqW7Ok9t+tUg8zkHxs+OEUBq4fDi0uwFrHiVEEStAOe2NzMK5vZ/sHeBOH7y09kgFkJgH6s9fLfAOBmCVA2Fjp4rKzpn5/82kvIplobM0SwLRmiaM8aUOtW2jlYQQK1hMfAHARgEDhPEIrD9s3sHrUTl0Yd3dHDOnazvESn3UTLRMfANAXm8qPZEgTlwNj8kNmjvq4KdkG1ywhR9JTWWnTerJlNJh6fBr6Z03mbFM9MuOcHwLAeSBywDVLyJG4KLU2rSdbJ3fW7fGxIAL6M6Z6IX+yW1iOjsmPnRiMBhwoO4BzlefQwasD+qn7QeEgE9GuzwMxQuFVBMH1MsRrSpToQhzicdMbGa5dxYHD/8E5/Sl08O2Mfr2ehsLVTeqwLDjqz9pyLRLLn7WhMgS1HcGOsmaJo97HGzHG2xA8FPANhKgvhhEiDni445xCgQ4GA/pVVcMFAgTfQFM9B+Cw97G81Px/DUCd+6iwUk9KjnIfmfzYwZaTW7B4z2KUVl7/w6fx0mD2oNmICo6SMLLr80AUyny4azbCpY3OfM5Yo0J16RjJHzettWV7Mhb/sgaliutxaH54B7PvfBJR986RMLLrHPlnXbtmyTnjvnp/1h1cBjjEmiWOfB9rMcbb5KIAYpYge9PzWNzOD6Wu17+ONNeuYfb5S4iKWewQTys59H300QAAtnh5YnG7tlbu40VEVV4x15OSI91HzvlpYVtObsGMnBkWP2wAKKssw4ycGdhycotEkZnsKbqAc8Z98Oi4GoKrzuKc4KqDR8fVOGfcJ/k8kC3bkzHj+BqU3vQntswFmHF8DbZsT5YmsBs4+s9a4SLg4XsvNPizfvjeC9InuQ5+HwHGaCtbvL0wQ9MepQrLBKdMocAMTXts8faSKLLrHP4+Bg/FlvYdMUNdz31Ut8eW9h0l70FztPt4W8lPVVUVVq1ahQ8++ADHjh2zVUythsFowOI9iyFamYhWW7ZkzxIYJJyIVqKvgLtmIwBAuOk7r/bYXbMRJfoKO0d2neHaVSz+ZY3pjt0UpPjH8ZJf1sBw7ar9g/uDM/ysDUYDNpd8CEGw/rMWBODbko8kj9EZ7iNjvH3XY0Q9v9eCA8XowPcRwGL/tg3//djOH1JOd3bE+9jk5GfGjBmYNm2a+fjq1asYMmQInnvuObz66qvo27cvdu3a1awPT05OxsCBA6FUKqFWqxEbG4uCggKLOs8//zy6du0KT09PdOjQAePGjcPPP//cYLtxcXEQBMHiFRMT06zYbOFA2YE6We6NRIgoqSzBgbIDdozKks74C1za6Op8GdYSBMCljQ464y/2DewGBw7/xzTUVU+QoiCgRCHgwOH/2Dmy65zhZ91YjAAcPkZnuI+MsWkYo20cKDuA0hp9w38/XtVJH6OD3ccmJz/ffvstRo4caT5es2YNTp48iWPHjuHixYsYP348Fi1a1KwPz83NRXx8PHbv3o2srCzU1NQgOjoaFRXXexn69++P1NRUHD16FJs3b4YoioiOjobB0HCGGBMTg+LiYvPrs88+a1ZstnCu8pxN67WE9n7VNq3XEs7pT9m0Xktwhp81Y7QNxmgbjNE2GOOtafKE51OnTiEsLMx8/O233+Ivf/kLgoODAQDTp0/HAw880KwPz8zMtDhOS0uDWq3G/v37MWzYMADAlClTzOe7dOmCRYsWoU+fPjhx4gS6du1ab9vu7u7QaqV9RLKDVweb1msJGm+1Teu1hA6+TVvdtan1WoIz/KwZo20wRttgjLbBGG9Nk3t+XFxccONOGLt378Y999xjPvbz88PFixdvKxidzjQJ09/f+tMmFRUVSE1NRUhICIKCghpsKycnB2q1Gt27d8fUqVNx/vz5eutWV1dDr9dbvGyhn7ofNF4aCLDeHSlAgNZLi37qfjb5vFtRG2NDJI+x19PQGEQI9ezEIogitAYR/Xo9befIrnOmnzVjvD2M0TYYo20wxlvT5OSnZ8+e2LjRNDH2p59+wqlTp3DfffeZz588eRIaza0/Smc0GpGYmIiIiAiEh4dbnPvggw/g4+MDHx8ffPPNN8jKyoKbW/1ru8TExODTTz9FdnY2lixZgtzcXNx///31DpUlJydDpVKZX40lVk2lcFFg9qDZAFDnh157nDQoSdK1ImpjFP74341qyySP0dUNs+980hTTTQlQ7XHSnU9Kut6PM/2sb4ypFmNsOsZoG4zRNhjjrWnyxqbp6el47LHHcO+99+Knn37CwIEDzckQACQlJaGoqAjr1q27pUCmTp2Kb775Btu3b0enTp0szul0OpSVlaG4uBhvv/02zpw5gx07dsDDo2mLsf3666/o2rUrtmzZghEjRtQ5X11djerq63Na9Ho9goKCbLaxqbW1DbReWiQNSpJ+jYg/OEWMVtb50RpEJDn4Oj8Odx8Zo00wRttgjLbBGE2aurFps3Z1z87OxqZNm6DVajFt2jR4eV1fg2HBggUYPnw4IiMjmx1sQkICNmzYgO+++w4hISEN1r169Sratm2LTz75BI8//niTP6NDhw5YtGgRnn/++UbrtsSu7o6yqmVDnCJGrvBsE4zRNhijbTBG22CMLZD8vPHGG5g5c6ZFwnO7RFHEtGnTkJ6ejpycHHTr1q3R91RXV6Nt27b44IMPEBcX16TP+e2339C5c2esX78eY8eObbR+SyQ/RERE1LKa+v3d5Dk/CxYsQHl5uU2CqxUfH4/Vq1dj7dq1UCqVKCkpQUlJCa5cuQLANFyVnJyM/fv349SpU9i5cyfGjx8PT09PiyfLevTogfT0dABAeXk5XnnlFezevRsnTpxAdnY2xo0bh9DQUIwaNcqm8RMREZHzafKj7s0YHWuylJQUAKgzVJaamoq4uDh4eHjg+++/x/Lly3Hx4kVoNBoMGzYMO3fuhFp9/dHrgoIC85NiCoUChw4dwqpVq3Dp0iUEBgYiOjoaCxcuhLu7u82vgYjky2AUsafoAsouV0Gt9MCgEH/JtwchosY1edjLxcUFpaWl6NBBurUC7IXDXkTUmMz8YizYeATFuipzWYDKA/PGhCEmPEDCyKhFGA3AyZ2m3dF9NKa9shxsPg21wJwfFxcXqFQqCPXtg/CHCxek3QDTFpj8EFFDMvOLMXX1gTo7FdX+7ZjyVD8mQK3JkQwgMwnQn71e5hsIxCwBwhqfR0r209Tv7yYPewGmeT8qleq2gyMiclYGo4gFG49Y2aIREGFKgBZsPIKRYVoOgbUGRzKAdROBm3/i+mJT+YRPmQA5oWYlP4899pjFXBsiIrnZU3TBYqjrZiKAYl0V9hRdwJCu7ewXGNme0WDq8Wko1c2cDfQYzSEwJ9Pkp70aG+4iIpKDssv1Jz63Uo8c2MmdlkNddYiA/oypHjmVJic/LfG0FxGRs1Erm7ayfFPrkQMrL228TnPqkcNo8rCX0WhsyTiIiJzCoBB/BKg8UKKrsjoYIgDQqkyPvZOT82nifpVNrUcOo8k9P0REBChcBMwbEwYAuHkyQO3xvDFhnOzcGgQPNT3VVc9u5IAA+HY01SOnwuSHiKiZYsIDkPJUP2hVlkNbWpUHH3NvTVwUpsfZAdSb6sYs5mRnJ9SsjU3lguv8EFFTcIVnmbC6zk9HU+LDx9wdSous80NERNcpXAQ+zi4HYWNNj7NzhedWg8kPERFRY1wUQMifpI6CbIRzfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhWJE1+kpOTMXDgQCiVSqjVasTGxqKgoMCizvPPP4+uXbvC09MTHTp0wLhx4/Dzzz832K4oinj99dcREBAAT09PREVF4dixYy15KUREROQkJE1+cnNzER8fj927dyMrKws1NTWIjo5GRUWFuU7//v2RmpqKo0ePYvPmzRBFEdHR0TAYDPW2u3TpUrz77rtYuXIl8vLy4O3tjVGjRqGqqsoel0VEREQOTBBFUZQ6iFrnzp2DWq1Gbm4uhg0bZrXOoUOH0KdPHxw/fhxdu3atc14URQQGBuLll1/GzJkzAQA6nQ4ajQZpaWl47LHHGo1Dr9dDpVJBp9PB19f39i6KiIiI7KKp398ONedHp9MBAPz9/a2er6ioQGpqKkJCQhAUFGS1TlFREUpKShAVFWUuU6lUGDx4MHbt2mX1PdXV1dDr9RYvIiIiap0cJvkxGo1ITExEREQEwsPDLc598MEH8PHxgY+PD7755htkZWXBzc3NajslJSUAAI1GY1Gu0WjM526WnJwMlUplftWXWBEREZHzc5jkJz4+Hvn5+fj888/rnHvyySfxww8/IDc3F3feeScmTJhg0/k7c+bMgU6nM79Onz5ts7aJiIjIsbhKHQAAJCQkYNOmTfjuu+/QqVOnOudre2S6deuGe+65B23btkV6ejoef/zxOnW1Wi0AoLS0FAEBAeby0tJS3H333VY/393dHe7u7ra5GCIiInJokvb8iKKIhIQEpKenY+vWrQgJCWnSe0RRRHV1tdXzISEh0Gq1yM7ONpfp9Xrk5eVhyJAhNoudiIiInJOkyU98fDxWr16NtWvXQqlUoqSkBCUlJbhy5QoA4Ndff0VycjL279+PU6dOYefOnRg/fjw8PT3xwAMPmNvp0aMH0tPTAQCCICAxMRGLFi1CRkYGDh8+jIkTJyIwMBCxsbFSXCYRERE5EEmHvVJSUgAAkZGRFuWpqamIi4uDh4cHvv/+eyxfvhwXL16ERqPBsGHDsHPnTqjVanP9goIC85NiADBr1ixUVFRgypQpuHTpEu69915kZmbCw8PDLtdFREREjsuh1vlxFFznh4iIyPk45To/RERERC2NyQ8RERHJCpMfIiIikhUmP0RERCQrTH6IiIhIVpj8EBERkaww+SEiIiJZYfJDREREssLkh4iIiGSFyQ8RERHJCpMfIiIikhVJNzYlapWMBuDkTqC8FPDRAMFDAReF1FEREdEfmPwQ2dKRDCAzCdCfvV7mGwjELAHCxkoXFxERmXHYi8hWjmQA6yZaJj4AoC82lR/JkCYuIiKywOSHyBaMBlOPD0QrJ/8oy5xtqkdERJJi8kNkCyd31u3xsSAC+jOmekREJCkmP0S2UF5q23pERNRimPwQ2YKPxrb1iIioxTD5IbKF4KGmp7og1FNBAHw7muoREZGkmPwQ2YKLwvQ4O4C6CdAfxzGLud4PEZEDYPJDZCthY4EJnwK+AZblvoGmcq7zQ0TkELjIIZEthY0FeozmCs9ERA6MyQ+RrbkogJA/SR0FERHVg8NeREREJCvs+SEix8QNYomohTD5ISLHww1iiagFcdiLiBwLN4glohbG5IeIHAc3iCUiO2DyQ0SOgxvEEpEdMPkhIsfBDWKJyA6Y/BCR4+AGsURkB0x+iMhxcINYIrIDJj9E5Di4QSwR2QGTHyJyLNwglohaGBc5JCLHww1iiagFMfkhIsfEDWKJqIVw2IuIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGs8FF3IjkyGriGDhHJFpMfIrk5kgFkJgH6s9fLfANN20pw9WQikgFJh72Sk5MxcOBAKJVKqNVqxMbGoqCgwHz+woULmDZtGrp37w5PT0907twZL774InQ6XYPtxsXFQRAEi1dMTExLXw6R4zuSAaybaJn4AIC+2FR+JEOauIiI7EjS5Cc3Nxfx8fHYvXs3srKyUFNTg+joaFRUVAAAzp49i7Nnz+Ltt99Gfn4+0tLSkJmZicmTJzfadkxMDIqLi82vzz77rKUvh8ixGQ2mHh+IVk7+UZY521SPiKgVk3TYKzMz0+I4LS0NarUa+/fvx7BhwxAeHo4vv/zSfL5r165488038dRTT+HatWtwda0/fHd3d2i12haLncjpnNxZt8fHggjoz5jqcVsJImrFHOppr9rhLH9//wbr+Pr6Npj4AEBOTg7UajW6d++OqVOn4vz58/XWra6uhl6vt3gRtTrlpbatR0TkpBwm+TEajUhMTERERATCw8Ot1vn999+xcOFCTJkypcG2YmJi8OmnnyI7OxtLlixBbm4u7r//fhgM1rvzk5OToVKpzK+goKDbvh4ih+OjsW09IiInJYiiaG0CgN1NnToV33zzDbZv345OnTrVOa/X6zFy5Ej4+/sjIyMDbdq0aXLbv/76K7p27YotW7ZgxIgRdc5XV1ejurra4rOCgoLMvUxErYLRACwPN01utjrvRzA99ZV4mI+9E5FT0uv1UKlUjX5/O8Sj7gkJCdi0aRO+++47q4nP5cuXERMTA6VSifT09GYlPgBwxx13oH379jh+/LjV5Mfd3R3u7u7NjttgMKCmpqbZ7yOSTPSyPyY9A5YJkPDH+SXA1RoATf9z3aZNGygUTJaIyHlImvyIoohp06YhPT0dOTk5CAkJqVNHr9dj1KhRcHd3R0ZGBjw8PJr9Ob/99hvOnz+PgIAAW4QNURRRUlKCS5cu2aQ9IrtRhADRacCVS4Dx2vVyF1fA0w9QeAFFRc1u1s/PD1qtFoIg2CpSIqIWI2nyEx8fj7Vr12LDhg1QKpUoKSkBAKhUKnh6ekKv1yM6OhqVlZVYvXq1xWTkDh06mP+12aNHDyQnJ+Ohhx5CeXk5FixYgEceeQRarRaFhYWYNWsWQkNDMWrUKJvEXZv4qNVqeHl58S98cj6iCNRUAoYaQNEGaOMF3MKfY1EUUVlZibKyMgCw2T8wiIhakqTJT0pKCgAgMjLSojw1NRVxcXE4cOAA8vLyAAChoaEWdYqKitClSxcAQEFBgflJMYVCgUOHDmHVqlW4dOkSAgMDER0djYULF97S0NbNDAaDOfFp167dbbdHJBlPTxs1Y2qnrKwMarWaQ2BE5PAkH/ZqSGRkZKN1bm7H09MTmzdvvu3Y6lM7x8fLy6vFPoPI2dT+PtTU1DD5ISKH5zCPujsbDnURXcffByJyJkx+iIiISFaY/JDNxcXFITY21nwcGRmJxMTE22rTFm0QEREBTH5k5cbd7t3c3BAaGoo33ngD165da/zNt+Grr77CwoULm1Q3JycHgiDUWUagOW0QERE1xCEWOZQjg1HEnqILKLtcBbXSA4NC/KFwafl5EzExMUhNTUV1dTX+97//IT4+Hm3atMGcOXMs6l29ehVubm42+cyG9mqzZxtEREQAe34kkZlfjHuXbMXjH+/G9M8P4vGPd+PeJVuRmV/c4p9du9t9cHAwpk6diqioKGRkZJiHqt58800EBgaie/fuAIDTp09jwoQJ8PPzg7+/P8aNG4cTJ06Y2zMYDJgxYwb8/PzQrl07zJo1q84TejcPWVVXVyMpKQlBQUFwd3dHaGgo/vWvf+HEiRO47777AABt27aFIAiIi4uz2sbFixcxceJEtG3bFl5eXrj//vtx7Ngx8/m0tDT4+flh8+bN6NmzJ3x8fBATE4Pi4uv3OCcnB4MGDYK3tzf8/PwQERGBkydP2uhOExGRo2LyY2eZ+cWYuvoAinVVFuUluipMXX3ALgnQjTw9PXH16lUAQHZ2NgoKCpCVlYVNmzahpqYGo0aNglKpxPfff48dO3aYk4ja9yxbtgxpaWn497//je3bt+PChQtIT09v8DMnTpyIzz77DO+++y6OHj2KDz/8ED4+PggKCsKXX34JwLR2U3FxMVasWGG1jbi4OOzbtw8ZGRnYtWsXRFHEAw88YLHdSGVlJd5++2385z//wXfffYdTp05h5syZAIBr164hNjYWw4cPx6FDh7Br1y5MmTKFTy0REckAh73syGAUsWDjEatbSoow7a60YOMRjAzTtvgQmCiKyM7OxubNmzFt2jScO3cO3t7e+OSTT8zDXatXr4bRaMQnn3xiTgpSU1Ph5+eHnJwcREdHY/ny5ZgzZw4efvhhAMDKlSsbXGfpl19+wbp165CVlYWoqCgApr3XatUOb6nVavj5+Vlt49ixY8jIyMCOHTswdOhQAMCaNWsQFBSE9evXY/z48QBMa86sXLkSXbt2BWDaQ+6NN94AYNo2RafT4cEHHzSf79mzZ/NvJBEROR32/NjRnqILdXp8biQCKNZVYU/RhRaLYdOmTfDx8YGHhwfuv/9+PProo5g/fz4AoFevXhbzfH788UccP34cSqUSPj4+8PHxgb+/P6qqqlBYWAidTofi4mIMHjzY/B5XV1cMGDCg3s8/ePAgFAoFhg8ffsvXcPToUbi6ulp8brt27dC9e3ccPXrUXObl5WVObADT1gu12zD4+/sjLi4Oo0aNwpgxY7BixQqLITEiImq92PNjR2WX6098bqXerbjvvvuQkpICNzc3BAYGwtX1+h8Bb29vi7rl5eXo378/1qxZU6edDh063NLne9poS4WmaNOmjcWxIAgW85FSU1Px4osvIjMzE1988QVee+01ZGVl4Z577rFbjEREZH/s+bEjtbJpO9I3td6t8Pb2RmhoKDp37myR+FjTr18/HDt2DGq1GqGhoRYvlUoFlUqFgIAA8/5rgGkuzf79++tts1evXjAajcjNzbV6vrbnyWAw1NtGz549ce3aNYvPPX/+PAoKChAWFtbgNd2sb9++mDNnDnbu3Inw8HCsXbu2We8nIiLnw+THjgaF+CNA5YH6ZvMIAAJUpsfeHcGTTz6J9u3bY9y4cfj+++9RVFSEnJwcvPjii/jtt98AANOnT8fixYuxfv16/Pzzz3jhhRfqrNFzoy5dumDSpEl49tlnsX79enOb69atAwAEBwdDEARs2rQJ586dQ3l5eZ02unXrhnHjxuG5557D9u3b8eOPP+Kpp55Cx44dMW7cuCZdW1FREebMmYNdu3bh5MmT+Pbbb3Hs2DHO+yEikgEmP3akcBEwb4ypZ+LmBKj2eN6YMLus99MUXl5e+O6779C5c2c8/PDD6NmzJyZPnoyqqir4+voCAF5++WU8/fTTmDRpEoYMGQKlUomHHnqowXZTUlLwl7/8BS+88AJ69OiB5557DhUVFQCAjh07YsGCBZg9ezY0Gg0SEhKstpGamor+/fvjwQcfxJAhQyCKIv73v//VGepq6Np+/vlnPPLII7jzzjsxZcoUxMfH4/nnn2/GHSIiImckiE3ZNl1m9Ho9VCoVdDqd+Uu+VlVVFYqKihASEgIPj1sbnsrML8aCjUcsJj8HqDwwb0wYYsIDbit2IinY4veCiOh2NfT9fSNOeJZATHgARoZpJVnhmYiISO6Y/EhE4SJgSNd2UodBREQkO5zzQ0RERLLC5IeIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhhzd//nzcfffdUoeByMhIJCYmSh0GERHdJiY/MlJSUoLp06cjNDQUHh4e0Gg0iIiIQEpKCiorK6UO75bl5ORAEIQGN1SVsj0iInIsXOFZKkYDcHInUF4K+GiA4KGAi6LFPu7XX39FREQE/Pz88NZbb6FXr15wd3fH4cOH8dFHH6Fjx44YO3as1ffW1NQ0ecNQR3b16lW4ublJHQYREUmMPT9SOJIBLA8HVj0IfDnZ9N/l4abyFvLCCy/A1dUV+/btw4QJE9CzZ0/ccccdGDduHL7++muMGTPGXFcQBKSkpGDs2LHw9vbGm2++CcC0G3vXrl3h5uaG7t274z//+Y/5PSdOnIAgCDh48KC57NKlSxAEATk5OQCu96hkZ2djwIAB8PLywtChQ1FQUGAR6+LFi6HRaKBUKs27yNfnxIkTuO+++wAAbdu2hSAIiIuLA2AapkpISEBiYiLat2+PUaNGNRpnQ+0BgNFoxKxZs+Dv7w+tVov58+c39UdAREQOgsmPvR3JANZNBPRnLcv1xabyFkiAzp8/j2+//Rbx8fHw9va2WkcQLDdVnT9/Ph566CEcPnwYzz77LNLT0zF9+nS8/PLLyM/Px/PPP49nnnkG27Zta3Y8f/vb37Bs2TLs27cPrq6uePbZZ83n1q1bh/nz5+Ott97Cvn37EBAQgA8++KDetoKCgvDll18CAAoKClBcXIwVK1aYz69atQpubm7YsWMHVq5c2WhsTWnP29sbeXl5WLp0Kd544w1kZWU1+x4QEZF0OOxlT0YDkJkEQLRyUgQgAJmzgR6jbToEdvz4cYiiiO7du1uUt2/f3tyrEh8fjyVLlpjPPfHEE3jmmWfMx48//jji4uLwwgsvAABmzJiB3bt34+233zb3lDTVm2++ieHDhwMAZs+ejdGjR6OqqgoeHh5Yvnw5Jk+ejMmTJwMAFi1ahC1bttTb+6NQKODv7w8AUKvV8PPzszjfrVs3LF261Hx84sSJBmNrrL3evXtj3rx55rb/+c9/Ijs7GyNHjmzStRMRkfTY82NPJ3fW7fGxIAL6M6Z6drBnzx4cPHgQd911F6qrqy3ODRgwwOL46NGjiIiIsCiLiIjA0aNHm/25vXv3Nv//gIAAAEBZWZn5cwYPHmxRf8iQIc3+jFr9+/e/5fdac2PsgCn+2tiJiMg5sOfHnspLbVuviUJDQyEIQp25NXfccQcAwNPTs8576hseq4+LiymPFsXrvVo1NTVW6944ebp2uM1oNDbr85rq5utoTpzW3DzxWxCEFoudiIhaBnt+7MlHY9t6TdSuXTuMHDkS//znP1FRUXFLbfTs2RM7duywKNuxYwfCwsIAAB06dAAAFBcXm8/fOKm4OZ+Tl5dnUbZ79+4G31P7BJfBYGi0/abE2Zz2iIjI+bDnx56ChwK+gabJzVbn/Qim88FDbf7RH3zwASIiIjBgwADMnz8fvXv3houLC/bu3Yuff/650eGhV155BRMmTEDfvn0RFRWFjRs34quvvsKWLVsAmHqP7rnnHixevBghISEoKyvDa6+91uw4p0+fjri4OAwYMAARERFYs2YNfvrpJ3MvlTXBwcEQBAGbNm3CAw88AE9PT/j4+Fit25Q4m9MeERE5H/b82JOLAoipnVQs3HTyj+OYxS2y3k/Xrl3xww8/ICoqCnPmzEGfPn0wYMAAvPfee5g5cyYWLlzY4PtjY2OxYsUKvP3227jrrrvw4YcfIjU1FZGRkeY6//73v3Ht2jX0798fiYmJWLRoUbPjfPTRRzF37lzMmjUL/fv3x8mTJzF16tQG39OxY0csWLAAs2fPhkajQUJCQoP1G4uzue0REZFzEcQbJz8QAECv10OlUkGn08HX19fiXFVVFYqKihASEgIPD49b+4AjGaanvm6c/Ozb0ZT4hFlfaJDIkdnk94KI6DY19P19Iw57SSFsrOlxdjuu8ExEREQmTH6k4qIAQv4kdRRERESywzk/REREJCtMfoiIiEhWmPwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx9yOiUlJRg5ciS8vb3h5+cndTg2k5OTA0EQcOnSJUnjmD9/Pu6++25JYyAiakmSJj/JyckYOHAglEol1Go1YmNjUVBQYD5/4cIFTJs2Dd27d4enpyc6d+6MF198ETqdrsF2RVHE66+/joCAAHh6eiIqKgrHjh1r6ctxaHFxcRAEAX/961/rnIuPj4cgCIiLi7N/YLfgnXfeQXFxMQ4ePIhffvlF6nDsShAErF+/3mHbIyJyBpImP7m5uYiPj8fu3buRlZWFmpoaREdHo6KiAgBw9uxZnD17Fm+//Tby8/ORlpaGzMxMTJ48ucF2ly5dinfffRcrV65EXl4evL29MWrUKFRVVdnjsprEYDRgb8le/O/X/2FvyV4YjIYW/8ygoCB8/vnnuHLlirmsqqoKa9euRefOnVv8822lsLAQ/fv3R7du3aBWq23W7tWrV23WlpRay3UQEbUY0YGUlZWJAMTc3Nx666xbt050c3MTa2pqrJ43Go2iVqsV//73v5vLLl26JLq7u4ufffaZ1fdUVVWJOp3O/Dp9+rQIQNTpdHXqXrlyRTxy5Ih45cqVZl7ddVknssQR60aI4Wnh5teIdSPErBNZt9xmYyZNmiSOGzdODA8PF1evXm0uX7Nmjdi7d29x3Lhx4qRJk8zlBoNBfOutt8QuXbqIHh4eYu/evcX//ve/5vPXrl0Tn332WfP5O++8U1y+fLnVz/z73/8uarVa0d/fX3zhhRfEq1evNhjrBx98IN5xxx1imzZtxDvvvFP89NNPzeeCg4NFAObXjTHfqKamRpw2bZqoUqlEf39/cdasWeLEiRPFcePGmesMHz5cjI+PF6dPny62a9dOjIyMFEVRFHNycsSBAweKbm5uolarFZOSkiz+vAUHB4vvvPOOxef16dNHnDdvnvkYgPjxxx+LsbGxoqenpxgaGipu2LDB4j1ff/212K1bN9HDw0OMjIwUU1NTRQDixYsXrV7TzdceHBwsiqIozps3T+zTp4/48ccfi126dBEFQWhSnI219+mnn4rBwcGir6+v+Oijj4p6vd5qXKJom98LIqLbpdPp6v3+vpFDzfmpHc7y9/dvsI6vry9cXa1vS1ZUVISSkhJERUWZy1QqFQYPHoxdu3ZZfU9ycjJUKpX5FRQUdBtX0bAtJ7dgRs4MlFaWWpSXVZZhRs4MbDm5pcU+GwCeffZZpKammo///e9/45lnnqlTLzk5GZ9++ilWrlyJn376CS+99BKeeuop5ObmAgCMRiM6deqE//73vzhy5Ahef/11vPrqq1i3bp1FO9u2bUNhYSG2bduGVatWIS0tDWlpafXGl56ejunTp+Pll19Gfn4+nn/+eTzzzDPYtm0bAGDv3r2IiYnBhAkTUFxcjBUrVlhtZ8mSJVizZg1SU1OxY8cO6PV6q8M7q1atgpubG3bs2IGVK1fizJkzeOCBBzBw4ED8+OOPSElJwb/+9S8sWrSosVtbx4IFCzBhwgQcOnQIDzzwAJ588klcuHABAHD69Gk8/PDDGDNmDA4ePIj/+7//w+zZsxtsb+/evQCA1NRUFBcXm48B4Pjx4/jyyy/x1Vdf4eDBg02Kr6H2CgsLsX79emzatAmbNm1Cbm4uFi9e3JzLJ0dhNABF3wOH/5/pv3boZSZyeHZKxhplMBjE0aNHixEREfXWOXfunNi5c2fx1VdfrbfOjh07RADi2bNnLcrHjx8vTpgwwep77NXzc81wrU6Pz42vXmm9xKh1UeI1w7Vmt92Y2l6YsrIy0d3dXTxx4oR44sQJ0cPDQzx37pxFz09VVZXo5eUl7ty506KNyZMni48//ni9nxEfHy8+8sgjFp8ZHBwsXrt2/XrGjx8vPvroo/W2MXToUPG5556zKBs/frz4wAMPmI9v7qWyRqPRWPT+Xbt2TezcuXOdnp++fftavO/VV18Vu3fvLhqNRnPZ+++/L/r4+IgGg0EUxab3/Lz22mvm4/LychGA+M0334iiKIpz5swRw8LCLNpISkpqsOentt309HSLsnnz5olt2rQRy8rKLMqbGqe19ry8vCx6el555RVx8ODB9cbFnh8H9dMGUVzWQxTn+V5/LethKidqhZra8+Mwu7rHx8cjPz8f27dvt3per9dj9OjRCAsLw/z582362e7u7nB3d7dpm9YcKDtQp8fnRiJElFSW4EDZAQzUDmyRGDp06IDRo0cjLS0Noihi9OjRaN++vUWd48ePo7KyEiNHjrQov3r1Kvr27Ws+fv/99/Hvf/8bp06dwpUrV3D16tU6TwndddddUCgU5uOAgAAcPny43viOHj2KKVOmWJRFRETU28NjjU6nQ2lpKQYNGmQuUygU6N+/P4xGo0Xd/v371/n8IUOGQBAEi88vLy/Hb7/91qy5Ub179zb/f29vb/j6+qKsrMz8OYMHD7aoP2TIkCa3fbPg4GB06NDhlt9/sy5dukCpVJqPAwICzLGTkziSAaybCNOo5g30xabyCZ8CYWMlCY1Iag6R/CQkJGDTpk347rvv0KlTpzrnL1++jJiYGCiVSqSnp6NNmzb1tqXVagEApaWlCAgIMJeXlpZK/vjuucpzNq13q5599lkkJCQAMCUwNysvLwcAfP311+jYsaPFudok8fPPP8fMmTOxbNkyDBkyBEqlEn//+9+Rl5dnUf/mn5UgCHUSECl5e3s3+z0uLi4QRcsvlJqamjr17Hnt1q6jqXFa4+g/N2qE0QBkJqFO4gP8USYAmbOBHqMBF4WVOkStm6RzfkRRREJCAtLT07F161aEhITUqaPX6xEdHQ03NzdkZGTAw8OjwTZDQkKg1WqRnZ1t0UZeXt5t/cvaFjp4Ne1f5k2td6tiYmJw9epV1NTUYNSoUXXOh4WFwd3dHadOnUJoaKjFq3Y+1I4dOzB06FC88MIL6Nu3L0JDQ1FYWHjbsfXs2RM7duywKNuxYwfCwsKa3IZKpYJGo7GYw2IwGHDgwIEmff6uXbsskoYdO3ZAqVSaE/MOHTqguLjYfF6v16OoqKjJ8dV+zp49eyzKdu/e3ej72rRpA4OhaXM2mhJnc9ojJ3JyJ6A/20AFEdCfMdUjkiFJk5/4+HisXr0aa9euhVKpRElJCUpKSsyPYtcmPhUVFfjXv/4FvV5vrnPjX9g9evRAeno6ANO/UBMTE7Fo0SJkZGTg8OHDmDhxIgIDAxEbGyvFZZr1U/eDxksDAYLV8wIEaL206Kfu16JxKBQKHD16FEeOHLEYkqqlVCoxc+ZMvPTSS1i1ahUKCwtx4MABvPfee1i1ahUAoFu3bti3bx82b96MX375BXPnzrVINm7VK6+8grS0NKSkpODYsWP4xz/+ga+++gozZ85sVjvTpk1DcnIyNmzYgIKCAkyfPh0XL160GM6y5oUXXsDp06cxbdo0/Pzzz9iwYQPmzZuHGTNmwMXF9Ovy5z//Gf/5z3/w/fff4/Dhw5g0aZLV+9iQv/71rzh27BheeeUVFBQUYO3atQ1OBK/VpUsXZGdno6SkBBcvXmywblPibE575ETK6x9ev6V6RK2MpMlPSkoKdDodIiMjERAQYH598cUXAIADBw4gLy8Phw8fRmhoqEWd06dPm9spKCiwWPhw1qxZmDZtGqZMmYKBAweivLwcmZmZjfYatTSFiwKzB5me6Lk5Aao9ThqUBIUduqF9fX3h6+tb7/mFCxdi7ty5SE5ORs+ePRETE4Ovv/7a3Dv3/PPP4+GHH8ajjz6KwYMH4/z583jhhRduO67Y2FisWLECb7/9Nu666y58+OGHSE1NRWRkZLPaSUpKwuOPP46JEydiyJAh8PHxwahRoxr9M9CxY0f873//w549e9CnTx/89a9/xeTJk/Haa6+Z68yZMwfDhw/Hgw8+iNGjRyM2NhZdu3ZtVnydO3fGl19+ifXr16NPnz5YuXIl3nrrrUbft2zZMmRlZSEoKMhi/pU1TYmzOe2RE/HR2LYeUSsjiDdPCiDo9XqoVCrzY/U3qqqqQlFREUJCQm45mdpycgsW71lsMflZ66VF0qAkRAVHNfBOulVGoxE9e/bEhAkTsHDhQqnDaXVs8XtBNmQ0AMvDTZObrc77EQDfQCDxMOf8UKvS0Pf3jRxiwrPcRAVH4b6g+3Cg7ADOVZ5DB68O6KfuZ5ceH7k4efIkvv32WwwfPhzV1dX45z//iaKiIjzxxBNSh0bU8lwUQMySP572EmCZAP3R6xyzmIkPyRaTH4koXBQt9jg7mZ50SktLw8yZMyGKIsLDw7Flyxb07NlT6tCI7CNsrOlx9swky8nPvoGmxIePuZOMMfmhVikoKKjOU2NEshM21vQ4+8mdpsnNPhogeCh7fEj2mPwQEbVmLgog5E9SR0HkUBxqby9nwnniRNfx94GInAmTn2aqXfm2srJS4kiIHEft70NDq68TETkKDns1k0KhgJ+fn3mfIy8vr0YXziNqrURRRGVlJcrKyuDn59fsxR6JiKTA5OcW1O4fxo0eiUz8/PzMvxdERI6Oyc8tEAQBAQEBUKvVTd4okqi1atOmDXt8iMipMPm5DQqFgn/pExERORlOeCYiIiJZYfJDREREssLkh4iIiGSFc36sqF2wTa/XSxwJERERNVXt93ZjC68y+bHi8uXLAEz7QxEREZFzuXz5MlQqVb3nBZHr0tdhNBpx9uxZKJVKmy5gqNfrERQUhNOnT8PX19dm7coN76Nt8D7aBu+jbfA+2obc76Moirh8+TICAwPh4lL/zB72/Fjh4uKCTp06tVj7vr6+svxDaWu8j7bB+2gbvI+2wftoG3K+jw31+NTihGciIiKSFSY/REREJCtMfuzI3d0d8+bNg7u7u9ShODXeR9vgfbQN3kfb4H20Dd7HpuGEZyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJjx29//776NKlCzw8PDB48GDs2bNH6pCcSnJyMgYOHAilUgm1Wo3Y2FgUFBRIHZbTW7x4MQRBQGJiotShOJ0zZ87gqaeeQrt27eDp6YlevXph3759UoflVAwGA+bOnYuQkBB4enqia9euWLhwYaN7M8ndd999hzFjxiAwMBCCIGD9+vUW50VRxOuvv46AgAB4enoiKioKx44dkyZYB8Tkx06++OILzJgxA/PmzcOBAwfQp08fjBo1CmVlZVKH5jRyc3MRHx+P3bt3IysrCzU1NYiOjkZFRYXUoTmtvXv34sMPP0Tv3r2lDsXpXLx4EREREWjTpg2++eYbHDlyBMuWLUPbtm2lDs2pLFmyBCkpKfjnP/+Jo0ePYsmSJVi6dCnee+89qUNzaBUVFejTpw/ef/99q+eXLl2Kd999FytXrkReXh68vb0xatQoVFVV2TlSByWSXQwaNEiMj483HxsMBjEwMFBMTk6WMCrnVlZWJgIQc3NzpQ7FKV2+fFns1q2bmJWVJQ4fPlycPn261CE5laSkJPHee++VOgynN3r0aPHZZ5+1KHv44YfFJ598UqKInA8AMT093XxsNBpFrVYr/v3vfzeXXbp0SXR3dxc/++wzCSJ0POz5sYOrV69i//79iIqKMpe5uLggKioKu3btkjAy56bT6QAA/v7+EkfinOLj4zF69GiLP5fUdBkZGRgwYADGjx8PtVqNvn374uOPP5Y6LKczdOhQZGdn45dffgEA/Pjjj9i+fTvuv/9+iSNzXkVFRSgpKbH43VapVBg8eDC/c/7AjU3t4Pfff4fBYIBGo7Eo12g0+PnnnyWKyrkZjUYkJiYiIiIC4eHhUofjdD7//HMcOHAAe/fulToUp/Xrr78iJSUFM2bMwKuvvoq9e/fixRdfhJubGyZNmiR1eE5j9uzZ0Ov16NGjBxQKBQwGA9588008+eSTUofmtEpKSgDA6ndO7Tm5Y/JDTik+Ph75+fnYvn271KE4ndOnT2P69OnIysqCh4eH1OE4LaPRiAEDBuCtt94CAPTt2xf5+flYuXIlk59mWLduHdasWYO1a9firrvuwsGDB5GYmIjAwEDeR2oxHPayg/bt20OhUKC0tNSivLS0FFqtVqKonFdCQgI2bdqEbdu2oVOnTlKH43T279+PsrIy9OvXD66urnB1dUVubi7effdduLq6wmAwSB2iUwgICEBYWJhFWc+ePXHq1CmJInJOr7zyCmbPno3HHnsMvXr1wtNPP42XXnoJycnJUofmtGq/V/idUz8mP3bg5uaG/v37Izs721xmNBqRnZ2NIUOGSBiZcxFFEQkJCUhPT8fWrVsREhIidUhOacSIETh8+DAOHjxofg0YMABPPvkkDh48CIVCIXWITiEiIqLOUgu//PILgoODJYrIOVVWVsLFxfKrSKFQwGg0ShSR8wsJCYFWq7X4ztHr9cjLy+N3zh847GUnM2bMwKRJkzBgwAAMGjQIy5cvR0VFBZ555hmpQ3Ma8fHxWLt2LTZs2AClUmkeu1apVPD09JQ4OuehVCrrzJPy9vZGu3btOH+qGV566SUMHToUb731FiZMmIA9e/bgo48+wkcffSR1aE5lzJgxePPNN9G5c2fcdddd+OGHH/CPf/wDzz77rNShObTy8nIcP37cfFxUVISDBw/C398fnTt3RmJiIhYtWoRu3bohJCQEc+fORWBgIGJjY6UL2pFI/biZnLz33nti586dRTc3N3HQoEHi7t27pQ7JqQCw+kpNTZU6NKfHR91vzcaNG8Xw8HDR3d1d7NGjh/jRRx9JHZLT0ev14vTp08XOnTuLHh4e4h133CH+7W9/E6urq6UOzaFt27bN6t+HkyZNEkXR9Lj73LlzRY1GI7q7u4sjRowQCwoKpA3agQiiyGU0iYiISD4454eIiIhkhckPERERyQqTHyIiIpIVJj9EREQkK0x+iIiISFaY/BAREZGsMPkhIiIiWWHyQ0RERLLC5IeIZCcuLo7L/BPJGJMfImoRcXFxEAShzismJkbq0LBixQqkpaVJHQYAQBAErF+/XuowiGSFG5sSUYuJiYlBamqqRZm7u7tE0QAGgwGCIEClUkkWAxFJjz0/RNRi3N3dodVqLV5t27ZFTk4O3Nzc8P3335vrLl26FGq1GqWlpQCAyMhIJCQkICEhASqVCu3bt8fcuXNx43aE1dXVmDlzJjp27Ahvb28MHjwYOTk55vNpaWnw8/NDRkYGwsLC4O7ujlOnTtUZ9oqMjMS0adOQmJiItm3bQqPR4OOPP0ZFRQWeeeYZKJVKhIaG4ptvvrG4vvz8fNx///3w8fGBRqPB008/jd9//92i3RdffBGzZs2Cv78/tFot5s+fbz7fpUsXAMBDDz0EQRDMx0TUspj8EJHdRUZGIjExEU8//TR0Oh1++OEHzJ07F5988gk0Go253qpVq+Dq6oo9e/ZgxYoV+Mc//oFPPvnEfD4hIQG7du3C559/jkOHDmH8+PGIiYnBsWPHzHUqKyuxZMkSfPLJJ/jpp5+gVqutxrRq1Sq0b98ee/bswbRp0zB16lSMHz8eQ4cOxYEDBxAdHY2nn34alZWVAIBLly7hz3/+M/r27Yt9+/YhMzMTpaWlmDBhQp12vb29kZeXh6VLl+KNN95AVlYWAGDv3r0AgNTUVBQXF5uPiaiFSbyrPBG1UpMmTRIVCoXo7e1t8XrzzTdFURTF6upq8e677xYnTJgghoWFic8995zF+4cPHy727NlTNBqN5rKkpCSxZ8+eoiiK4smTJ0WFQiGeOXPG4n0jRowQ58yZI4qiKKampooAxIMHD9aJbdy4cRafde+995qPr127Jnp7e4tPP/20uay4uFgEIO7atUsURVFcuHChGB0dbdHu6dOnRQBiQUGB1XZFURQHDhwoJiUlmY8BiOnp6fXcRSJqCZzzQ0Qt5r777kNKSopFmb+/PwDAzc0Na9asQe/evREcHIx33nmnzvvvueceCIJgPh4yZAiWLVsGg8GAw4cPw2Aw4M4777R4T3V1Ndq1a2c+dnNzQ+/evRuN9cY6CoUC7dq1Q69evcxltT1SZWVlAIAff/wR27Ztg4+PT522CgsLzXHd/NkBAQHmNohIGkx+iKjFeHt7IzQ0tN7zO3fuBABcuHABFy5cgLe3d5PbLi8vh0KhwP79+6FQKCzO3ZiQeHp6WiRQ9WnTpo3FsSAIFmW1bRiNRvPnjxkzBkuWLKnTVkBAQIPt1rZBRNJg8kNEkigsLMRLL72Ejz/+GF988QUmTZqELVu2wMXl+lTEvLw8i/fs3r0b3bp1g0KhQN++fWEwGFBWVoY//elP9g4f/fr1w5dffokuXbrA1fXW/ypt06YNDAaDDSMjosZwwjMRtZjq6mqUlJRYvH7//XcYDAY89dRTGDVqFJ555hmkpqbi0KFDWLZsmcX7T506hRkzZqCgoACfffYZ3nvvPUyfPh0AcOedd+LJJ5/ExIkT8dVXX6GoqAh79uxBcnIyvv766xa/tvj4eFy4cAGPP/449u7di8LCQmzevBnPPPNMs5KZLl26IDs7GyUlJbh48WILRkxEtdjzQ0QtJjMz02IICAC6d++OJ554AidPnsSmTZsAmIaJPvroIzz++OOIjo5Gnz59AAATJ07ElStXMGjQICgUCkyfPh1Tpkwxt5WamopFixbh5ZdfxpkzZ9C+fXvcc889ePDBB1v82gIDA7Fjxw4kJSUhOjoa1dXVCA4ORkxMjEXvVWOWLVuGGTNm4OOPP0bHjh1x4sSJlguaiAAAgijesGgGEZGDiIyMxN13343ly5dLHQoRtTIc9iIiIiJZYfJDREREssJhLyIiIpIV9vwQERGRrDD5ISIiIllh8kNERESywuSHiIiIZIXJDxEREckKkx8iIiKSFSY/REREJCtMfoiIiEhW/j8xLgdl6+NuxAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzDklEQVR4nOzdd3hTZfsH8G+a7r33oKWDUTa07FaZIggCIuuHKC4EBAFFFBEQxYUCKuAEfZkqG7XIaimjLVDKphs6aOmim67k/P4IjRQKNG3ak7Tfz3Xlet+enJzcOcQk93nu534kgiAIICIiIiIiIiKNpyN2AERERERERERUN0ziiYiIiIiIiLQEk3giIiIiIiIiLcEknoiIiIiIiEhLMIknIiIiIiIi0hJM4omIiIiIiIi0BJN4IiIiIiIiIi3BJJ6IiIiIiIhIS+iKHYAmksvluHnzJszMzCCRSMQOh4iIiIiIiJo5QRBQVFQEZ2dn6Og8fLydSXwtbt68CTc3N7HDICIiIiIiohYmNTUVrq6uD72fSXwtzMzMAChOnrm5ucjREBERERERUXNXWFgINzc3ZT76MEzia1FdQm9ubs4knoiIiIiIiJrM46Z0s7EdERERERERkZZgEk9ERERERESkJZjEExEREREREWkJzoknIiIiIiKqJ0EQUFVVBZlMJnYopOGkUil0dXUbvIw5k3giIiIiIqJ6qKioQEZGBkpLS8UOhbSEsbExnJycoK+vX+9jMIknIiIiIiJSkVwuR3JyMqRSKZydnaGvr9/gEVZqvgRBQEVFBbKzs5GcnAwfHx/o6NRvdjuTeCIiIiIiIhVVVFRALpfDzc0NxsbGYodDWsDIyAh6enq4ceMGKioqYGhoWK/jsLEdERERERFRPdV3NJVaJnW8X/iOIyIiIiIiItISTOKJiIiIiIiItISoSfyKFSvQo0cPmJmZwd7eHqNGjUJsbGyNfYKDgyGRSGrcXn/99UceVxAELF68GE5OTjAyMsLAgQMRHx/fmC+FiIiIiIioWWnVqhVWrVoldhhqExoaColEgvz8fLFDaRBRk/iwsDDMmDEDEREROHjwICorKzF48GCUlJTU2O+VV15BRkaG8vb5558/8riff/451qxZg/Xr1yMyMhImJiYYMmQIysrKGvPlEBERERERaYXU1FS89NJLys76Hh4emD17NnJzc8UOTS2Cg4MxZ86cGtt69+6NjIwMWFhYiBOUmojanT4kJKTG3xs3boS9vT3Onj2L/v37K7cbGxvD0dGxTscUBAGrVq3CokWLMHLkSADAb7/9BgcHB+zevRvjx49X3wsQWVmlDDoSCfR1OSuCiIiIiIjqJikpCb169YKvry+2bt0KT09PXL58GW+//Tb++ecfREREwNrausnjkslkkEgkjdYsUF9fv855pSbTqOyvoKAAAB54w2zevBm2trbw9/fHwoULUVpa+tBjJCcnIzMzEwMHDlRus7CwQGBgIE6dOlXrY8rLy1FYWFjjpg0+2n8Fo9edQEJWsdihEBERERG1eIIgoLSiSpSbIAh1jnPGjBnQ19fHv//+i6CgILi7u+Opp57CoUOHkJ6ejvfff1+5b1FRESZMmAATExO4uLjgu+++q/F6lyxZAnd3dxgYGMDZ2Rlvvvmm8v7y8nLMnz8fLi4uMDExQWBgIEJDQ5X3b9y4EZaWlti7dy/atWsHAwMD/PTTTzA0NHyg5H327Nl48sknAQC5ubmYMGECXFxcYGxsjA4dOmDr1q3KfadOnYqwsDCsXr1aOSX7+vXrtZbT79ixA+3bt4eBgQFatWqFlStX1njeVq1a4ZNPPsFLL70EMzMzuLu744cfflDeX1FRgZkzZ8LJyQmGhobw8PDAihUr6vxvUR8as068XC7HnDlz0KdPH/j7+yu3T5w4ER4eHnB2dsaFCxewYMECxMbGYufOnbUeJzMzEwDg4OBQY7uDg4PyvvutWLECS5cuVdMraRq5xeX4+2IGbpdWYvg34fhgeDtMDHCHRCIROzQiIiIiohbpTqUM7RYfEOW5rywbAmP9x6d3eXl5OHDgAD7++GMYGRnVuM/R0RGTJk3C9u3bsXbtWgDAF198gffeew9Lly7FgQMHMHv2bPj6+mLQoEHYsWMHvv76a2zbtg3t27dHZmYmzp8/rzzezJkzceXKFWzbtg3Ozs7YtWsXhg4diosXL8LHxwcAUFpais8++ww//fQTbGxs4OrqisWLF2PHjh2YNm0aAMUI/fbt2/Hxxx8DAMrKytCtWzcsWLAA5ubm+Ouvv/B///d/aN26NQICArB69WrExcXB398fy5YtAwDY2dnh+vXrNV7v2bNnMW7cOCxZsgTPP/88Tp48iTfeeAM2NjaYOnWqcr+VK1fio48+wnvvvYc///wT06dPR1BQEPz8/LBmzRrs3bsXv//+O9zd3ZGamorU1FTV/vFUpDFJ/IwZM3Dp0iUcP368xvZXX31V+f87dOgAJycnDBgwAImJiWjdurVannvhwoWYO3eu8u/CwkK4ubmp5diNxcbUACFz+mP+H+cRHp+D93ddwtFr2fhsTAfYmBqIHR4REREREWmg+Ph4CIKAtm3b1np/27Ztcfv2bWRnZwMA+vTpg3fffRcA4OvrixMnTuDrr7/GoEGDkJKSAkdHRwwcOBB6enpwd3dHQEAAACAlJQUbNmxASkoKnJ2dAQDz589HSEgINmzYgE8++QQAUFlZibVr16JTp07KGMaPH48tW7Yok/jDhw8jPz8fY8aMAQC4uLhg/vz5yv1nzZqFAwcO4Pfff0dAQAAsLCygr6//2GnZX331FQYMGIAPPvhA+fquXLmCL774okYSP2zYMLzxxhsAgAULFuDrr7/G0aNH4efnh5SUFPj4+KBv376QSCTw8PCo479E/WlEEj9z5kzs378fx44dg6ur6yP3DQwMBAAkJCTUmsRX/yPdunULTk5Oyu23bt1C586daz2mgYEBDAy0L/F1MDfEry8G4JcTyfg8JBaHrt7C0NX5WPlcJ/T3tRM7PCIiIiKiFsVIT4ory4aI9tyqqGv5fa9evR74u7pj/XPPPYdVq1bBy8sLQ4cOxbBhwzBixAjo6uri4sWLkMlk8PX1rfH48vJy2NjYKP/W19dHx44da+wzadIk9OzZEzdv3oSzszM2b96Mp59+GpaWlgAUI/OffPIJfv/9d6Snp6OiogLl5eUwNjZW6RxcvXpV2UetWp8+fbBq1SrIZDJIpYpzem98EokEjo6OyMrKAqAo3R80aBD8/PwwdOhQDB8+HIMHD1YpDlWJOideEATMnDkTu3btwpEjR+Dp6fnYx8TExABAjQT9Xp6ennB0dMThw4eV2woLCxEZGfnAG7A50NGR4OV+Xtg9ow987E2RXVSOKb9EYdm+KyirlIkdHhERERFRiyGRSGCsryvKra7Tar29vSGRSHD16tVa77969SqsrKxgZ/f4QUE3NzfExsZi7dq1MDIywhtvvIH+/fujsrISxcXFkEqlOHv2LGJiYpS3q1evYvXq1cpjGBkZPRB7jx490Lp1a2zbtg137tzBrl27MGnSJOX9X3zxBVavXo0FCxbg6NGjiImJwZAhQ1BRUVGnc6AqPT29Gn9LJBLI5XIAQNeuXZGcnIyPPvoId+7cwbhx4zB27NhGiaOaqEn8jBkzsGnTJmzZsgVmZmbIzMxEZmYm7ty5AwBITEzERx99hLNnz+L69evYu3cvpkyZgv79+9e4GtKmTRvs2rULgOKEzpkzB8uXL8fevXtx8eJFTJkyBc7Ozhg1apQYL7NJtHM2x75ZffFCL0X5xi8nkjHquxOIzSwSOTIiIiIiItIUNjY2GDRoENauXavMu6plZmZi8+bNeP7555WJdURERI19IiIiapTiGxkZYcSIEVizZg1CQ0Nx6tQpXLx4EV26dIFMJkNWVha8vb1r3OrSIX7SpEnYvHkz9u3bBx0dHTz99NPK+06cOIGRI0di8uTJ6NSpE7y8vBAXF1fj8fr6+pDJHj2o2bZtW5w4caLGthMnTsDX11c5Cl8X5ubmeP755/Hjjz9i+/bt2LFjB/Ly8ur8eFWJmsSvW7cOBQUFCA4OhpOTk/K2fft2AIoTf+jQIQwePBht2rTBvHnzMGbMGOzbt6/GcWJjY5Wd7QHgnXfewaxZs/Dqq6+iR48eKC4uRkhICAwNDZv09TU1Qz0plo70xy9Tu8PWVB/XMosw4tvj2HgiWaVulURERERE1Hx9++23KC8vx5AhQ3Ds2DGkpqYiJCQEgwYNgouLi7KBHKBIaj///HPExcXhu+++wx9//IHZs2cDUHSX//nnn3Hp0iUkJSVh06ZNMDIygoeHB3x9fTFp0iRMmTIFO3fuRHJyMqKiorBixQr89ddfj41x0qRJiI6Oxscff4yxY8fWmP7s4+ODgwcP4uTJk7h69Spee+013Lp1q8bjW7VqhcjISFy/fh05OTnKkfN7zZs3D4cPH8ZHH32EuLg4/Prrr/j2229rzLd/nK+++gpbt27FtWvXEBcXhz/++AOOjo7K0v/GIOqc+Mcllm5ubggLC1P5OBKJBMuWLVN2ImxpnmzjgH9m98fbf55HaGw2luy7gtC4bHwxthPszLRv7j8REREREamPj48Pzpw5gw8//BDjxo1DXl4eHB0dMWrUKHz44Yc1lvyeN28ezpw5g6VLl8Lc3BxfffUVhgxRzPu3tLTEp59+irlz50Imk6FDhw7Yt2+fcs77hg0bsHz5csybNw/p6emwtbVFz549MXz48MfG6O3tjYCAAERFRSnn4FdbtGgRkpKSMGTIEBgbG+PVV1/FqFGjagzszp8/Hy+88ALatWuHO3fuIDk5+YHn6Nq1K37//XcsXrwYH330EZycnLBs2bIaTe0ex8zMDJ9//jni4+MhlUrRo0cP/P3334221j0ASAQO0T6gsLAQFhYWKCgogLm5udjh1JsgCPjt1A18/PdVVFTJYWOijy+e64gn2zg8/sFERERERPRQZWVlSE5OhqenZ7Ov+CX1edT7pq55qKjl9NS4JBIJXujdCvtm9kUbRzPkllTgpY1nsHjPJTa9IyIiIiIi0kJM4lsAP0cz7J7RB9P6Krr//3bqBoZ/cxyXbxY85pFERERERESkSZjEtxCGelJ8MLwdfn0pAHZmBkjIKsaz353ET+FJkMs5o4KIiIiIiEgbMIlvYYJ87RAyux8GtnVAhUyO5X9dxZRfonCrsEzs0IiIiIiIiOgxmMS3QDamBvhxSjd8/Kw/DPV0cDwhB0NWHUPIpUyxQyMiIiIiIqJHYBLfQkkkEkwK9MD+Wf3Q3tkc+aWVeH3TWSzceQGlFVVih0dERERERES1YBLfwnnbm2LXG33wWpAXJBJga1Qqhq85jgtp+WKHRkRERERERPdhEk/Q19XBwqfaYvO0QDiaGyIppwSj157E2tAEyNj0joiIiIiISGMwiSel3t62CJnTD0/5O6JKLuDzkFhM/DECN/PviB0aERERERFpmalTp2LUqFHKv4ODgzFnzpwGHVMdx9B2TOKpBktjfayd1BWfj+0IY30pIpPzMHTVMey/cFPs0IiIiIiISA2mTp0KiUQCiUQCfX19eHt7Y9myZaiqatzeWDt37sRHH31Up31DQ0MhkUiQn59f72M0V0zi6QESiQTjurvh7zf7oZObJQrLqjBzyznM+/08isvZ9I6IiIiISNsNHToUGRkZiI+Px7x587BkyRJ88cUXD+xXUVGhtue0traGmZmZ6MfQdkzi6aFa2Zrgz9d7YdaT3tCRADui0zBsdTiiU26LHRoRERERUbMhkws4lZiLPTHpOJWY2yR9qQwMDODo6AgPDw9Mnz4dAwcOxN69e5Ul8B9//DGcnZ3h5+cHAEhNTcW4ceNgaWkJa2trjBw5EtevX//vNchkmDt3LiwtLWFjY4N33nkHglDzddxfCl9eXo4FCxbAzc0NBgYG8Pb2xs8//4zr16/jiSeeAABYWVlBIpFg6tSptR7j9u3bmDJlCqysrGBsbIynnnoK8fHxyvs3btwIS0tLHDhwAG3btoWpqanyAka10NBQBAQEwMTEBJaWlujTpw9u3LihpjOtfkzi6ZH0pDqYN9gP217tBRdLI6TkleK59aew+lA8qmRyscMjIiIiItJqIZcy0PezI5jwYwRmb4vBhB8j0PezIwi5lPH4B6uRkZGRctT98OHDiI2NxcGDB7F//35UVlZiyJAhMDMzQ3h4OE6cOKFMhqsfs3LlSmzcuBG//PILjh8/jry8POzateuRzzllyhRs3boVa9aswdWrV/H999/D1NQUbm5u2LFjBwAgNjYWGRkZWL16da3HmDp1Ks6cOYO9e/fi1KlTEAQBw4YNQ2VlpXKf0tJSfPnll/jf//6HY8eOISUlBfPnzwcAVFVVYdSoUQgKCsKFCxdw6tQpvPrqq5BIJA0+p41FV+wASDsEeFrj79n98MHuS9h7/ia+PhSHY/HZWPV8Z7hZG4sdHhERERGR1gm5lIHpm6Jx/7h7ZkEZpm+KxrrJXTHU36lRYxAEAYcPH8aBAwcwa9YsZGdnw8TEBD/99BP09fUBAJs2bYJcLsdPP/2kTG43bNgAS0tLhIaGYvDgwVi1ahUWLlyI0aNHAwDWr1+PAwcOPPR54+Li8Pvvv+PgwYMYOHAgAMDLy0t5v7W1NQDA3t4elpaWtR4jPj4ee/fuxYkTJ9C7d28AwObNm+Hm5obdu3fjueeeAwBUVlZi/fr1aN26NQBg5syZWLZsGQCgsLAQBQUFGD58uPL+tm3bqn4imxBH4qnOLIz0sGZCF6x6vjNMDXRx9sZtPLU6HLvOpYkdGhERERGRVpHJBSzdd+WBBB6ActvSfVcarbR+//79MDU1haGhIZ566ik8//zzWLJkCQCgQ4cOygQeAM6fP4+EhASYmZnB1NQUpqamsLa2RllZGRITE1FQUICMjAwEBgYqH6Orq4vu3bs/9PljYmIglUoRFBRU79dw9epV6Orq1nheGxsb+Pn54erVq8ptxsbGygQdAJycnJCVlQVAcbFg6tSpGDJkCEaMGIHVq1fXKLXXREziSWWjurjgn9n90M3DCsXlVXhr+3nM3nYOBXcqH/9gIiIiIiJCVHIeMgrKHnq/ACCjoAxRyXmN8vxPPPEEYmJiEB8fjzt37uDXX3+FiYkJACj/t1pxcTG6deuGmJiYGre4uDhMnDixXs9vZGTU4NdQV3p6ejX+lkgkNebrb9iwAadOnULv3r2xfft2+Pr6IiIiosniUxWTeKoXN2tjbH+1J+YO8oVUR4I9MTcxbHV4o33IEBERERE1J1lFD0/g67OfqkxMTODt7Q13d3fo6j56lnXXrl0RHx8Pe3t7eHt717hZWFjAwsICTk5OiIyMVD6mqqoKZ8+efegxO3ToALlcjrCwsFrvr64EkMlkDz1G27ZtUVVVVeN5c3NzERsbi3bt2j3yNd2vS5cuWLhwIU6ePAl/f39s2bJFpcc3JSbxVG+6Uh28OcAHf7zeC+7WxkjPv4PxP5zCyn9jUcmmd0RERERED2VvZqjW/RrTpEmTYGtri5EjRyI8PBzJyckIDQ3Fm2++ibQ0xdTa2bNn49NPP8Xu3btx7do1vPHGGw+s8X6vVq1a4YUXXsBLL72E3bt3K4/5+++/AwA8PDwgkUiwf/9+ZGdno7i4+IFj+Pj4YOTIkXjllVdw/PhxnD9/HpMnT4aLiwtGjhxZp9eWnJyMhQsX4tSpU7hx4wb+/fdfxMfHa/S8eCbx1GBd3a3w9+x+GNPVFXIB+OZIAsauP4XrOSVih0ZEREREpJECPK3hZGGIh/VAlwBwsjBEgKd1U4ZVK2NjYxw7dgzu7u4YPXo02rZti2nTpqGsrAzm5uYAgHnz5uH//u//8MILL6BXr14wMzPDs88++8jjrlu3DmPHjsUbb7yBNm3a4JVXXkFJiSKHcHFxwdKlS/Huu+/CwcEBM2fOrPUYGzZsQLdu3TB8+HD06tULgiDg77//fqCE/lGv7dq1axgzZgx8fX3x6quvYsaMGXjttddUOENNSyLcv3gfobCwEBYWFigoKFC+Kalu9p2/ifd3XURhWRWM9aVY8kx7PNfNVaOXaCAiIiIiUlVZWRmSk5Ph6ekJQ8P6jZZXd6cHUKPBXfUv56boTk9N61Hvm7rmoRyJJ7Ua0ckZ/8zpj0BPa5RWyPDOnxcwY0s08ksrxA6NiIiIiEijDPV3wrrJXeFoUTOZc7QwZAJPD8V14kntXCyNsOWVnvj+WCK++jcOf1/MRPSNfHz1fCf0bm0rdnhERERERBpjqL8TBrVzRFRyHrKKymBvpiihl+qwkpVqxySeGoVUR4I3gr3R19sWs7fFIDmnBJN+isSr/b0wb5Af9HVZBEJEREREBCh+O/dqbSN2GKQlmElRo+roaom/3uyLCQFuEATg+7AkjF53AglZD3aXJCIiIiIiokdjEk+NzlhfFytGd8T6yd1gaayHS+mFGP5NODZH3gD7KhIREREREdUdk3hqMkP9HXFgTn/09bZFWaUc7++6hFd+O4vc4nKxQyMiIiIiItIKTOKpSTmYG+K3lwKw6Om20Jfq4NDVWxi6OhzH4rLFDo2IiIiIiEjjMYmnJqejI8HL/bywa0ZveNubIruoHFN+icKyfVdQVikTOzwiIiIiIiKNxSSeRNPe2QL7ZvbFlF4eAIBfTiRj1HcnEJtZJHJkREREREREmolJPInKSF+KZSP98fML3WFjoo9rmUUY8e1xbDyRzKZ3REREREQikUgk2L17NwDg+vXrkEgkiImJETWmh9H0+NSNSTxphAFtHfDPnH4I8rVDRZUcS/ZdwYsbTyO7iE3viIiIiIjULTMzE7NmzYKXlxcMDAzg5uaGESNG4PDhww/s6+bmhoyMDPj7+zdqTC0tGa8vJvGkMezNDLHxxR5YMqId9HV1EBqbjaGrjuHItVtih0ZERERE1GhkMhlCQ0OxdetWhIaGQiZr3D5R169fR7du3XDkyBF88cUXuHjxIkJCQvDEE09gxowZD+wvlUrh6OgIXV3dRo2L6oZJPGkUiUSCqX08sW9mX7RxNENuSQVe2ngGi/dcYtM7IiIiImp2du7ciVatWuGJJ57AxIkT8cQTT6BVq1bYuXNnoz3nG2+8AYlEgqioKIwZMwa+vr5o37495s6di4iIiAf2v3+EPDQ0FBKJBAcOHECXLl1gZGSEJ598EllZWfjnn3/Qtm1bmJubY+LEiSgtLVUeJyQkBH379oWlpSVsbGwwfPhwJCYmKu/39PQEAHTp0gUSiQTBwcEAALlcjmXLlsHV1RUGBgbo3LkzQkJCHvkaw8LCEBAQAAMDAzg5OeHdd99FVVWV8v6ioiJMmjQJJiYmcHJywtdff43g4GDMmTMHALBs2bJaKw86d+6MDz74oE7nubEwiSeN5Odoht0z+uClPor/kH87dQPDvzmOyzcLRI6MiIiIiEg9du7cibFjxyItLa3G9vT0dIwdO7ZREvm8vDyEhIRgxowZMDExeeB+S0vLOh9ryZIl+Pbbb3Hy5EmkpqZi3LhxWLVqFbZs2YK//voL//77L7755hvl/iUlJZg7dy7OnDmDw4cPQ0dHB88++yzkcjkAICoqCgBw6NAhZGRkKF//6tWrsXLlSnz55Ze4cOEChgwZgmeeeQbx8fG1xpWeno5hw4ahR48eOH/+PNatW4eff/4Zy5cvV+4zd+5cnDhxAnv37sXBgwcRHh6O6Oho5f0vvfQSrl69itOnTyu3nTt3DhcuXMCLL75Y53PUGJjEk8Yy1JNi8Yh2+PWlANiZGSAhqxjPfncSP4UnQS5n0zsiIiIi0l4ymQyzZ8+utZlz9bY5c+aovbQ+ISEBgiCgTZs2DT7W8uXL0adPH3Tp0gXTpk1DWFgY1q1bhy5duqBfv34YO3Ysjh49qtx/zJgxGD16NLy9vdG5c2f88ssvuHjxIq5cuQIAsLOzAwDY2NjA0dER1tbWAIAvv/wSCxYswPjx4+Hn54fPPvsMnTt3xqpVq2qNa+3atXBzc8O3336LNm3aYNSoUVi6dClWrlwJuVyOoqIi/Prrr/jyyy8xYMAA+Pv7Y8OGDTXOtaurK4YMGYINGzYot23YsAFBQUHw8vJq8LlrCCbxpPGCfO0QMrsfBrZ1QIVMjuV/XcWUX6Jwq7BM7NCIiIiIiOolPDz8gRH4ewmCgNTUVISHh6v1edW5AlTHjh2V/9/BwQHGxsY1ElwHBwdkZWUp/46Pj8eECRPg5eUFc3NztGrVCgCQkpLy0OcoLCzEzZs30adPnxrb+/Tpg6tXr9b6mKtXr6JXr16QSCQ19i8uLkZaWhqSkpJQWVmJgIAA5f0WFhbw8/OrcZxXXnkFW7duRVlZGSoqKrBlyxa89NJLjzgjTYNJPGkFG1MD/DilGz5+1h+Gejo4npCDIauOIeRSptihERERERGpLCMjQ6371ZWPjw8kEgmuXbvW4GPp6ekp/79EIqnxd/W26lJ5ABgxYgTy8vLw448/IjIyEpGRkQCAioqKBsfSGEaMGAEDAwPs2rUL+/btQ2VlJcaOHSt2WEziSXtIJBJMCvTA/ln90N7ZHPmllXh901ks3HkBpRVVjz8AEREREZGGcHJyUut+dWVtbY0hQ4bgu+++Q0lJyQP35+fnq/X5quXm5iI2NhaLFi3CgAED0LZtW9y+fbvGPvr6+gBQo6zd3Nwczs7OOHHiRI19T5w4gXbt2tX6XG3btsWpU6dqVB2cOHECZmZmcHV1hZeXF/T09GrMdy8oKEBcXFyN4+jq6uKFF17Ahg0bsGHDBowfPx5GRkb1OwFqxCSetI63vSl2vdEHrwV5QSIBtkalYvia47iQli92aEREREREddKvXz+4urrWKPm+l0QigZubG/r166f25/7uu+8gk8kQEBCAHTt2ID4+HlevXsWaNWvQq1cvtT8fAFhZWcHGxgY//PADEhIScOTIEcydO7fGPvb29jAyMkJISAhu3bqFggJFU+u3334bn332GbZv347Y2Fi8++67iImJwezZs2t9rjfeeAOpqamYNWsWrl27hj179uDDDz/E3LlzoaOjAzMzM7zwwgt4++23cfToUVy+fBnTpk2Djo7OA/8eL7/8Mo4cOYKQkBCNKKUHmMSTltLX1cHCp9pi87RAOJobIimnBKPXnsTa0ATI2PSOiIiIiDScVCrF6tWrAeCBxLH671WrVkEqlar9ub28vBAdHY0nnngC8+bNg7+/PwYNGoTDhw9j3bp1an8+ANDR0cG2bdtw9uxZ+Pv746233sIXX3xRYx9dXV2sWbMG33//PZydnTFy5EgAwJtvvom5c+di3rx56NChA0JCQrB37174+PjU+lwuLi74+++/ERUVhU6dOuH111/HtGnTsGjRIuU+X331FXr16oXhw4dj4MCB6NOnD9q2bQtDQ8Max/Lx8UHv3r3Rpk0bBAYGqvms1I9EUGdng2aisLAQFhYWKCgogLm5udjh0GPcLqnAe7su4p+78+MDPa3x9fOd4WwpfqkLERERETVPZWVlSE5Ohqen5wOJnyp27tyJ2bNn12hy5+bmhlWrVmH06NHqCJXqoKSkBC4uLli5ciWmTZum3C4IAnx8fPDGG288UDlQH49639Q1D9VtcBREIrMy0cfaSV3xx5k0LNl3GZHJeRi66hg+Gd0Bwzs6ix0eEREREdFDjR49GiNHjkR4eDgyMjLg5OSEfv36NcoIPP3n3LlzuHbtGgICAlBQUIBly5YBgHL0HwCys7Oxbds2ZGZmir42/L2YxFOzIJFIMK6HG3p4WmPOtnM4n1aAmVvO4ei1bCwd2R6mBnyrExEREZFmkkqlCA4OFjuMFufLL79EbGws9PX10a1bN4SHh8PW1lZ5v729PWxtbfHDDz/AyspKxEhrYmZDzYqnrQn+nN4bqw/F47vQBOyITsPp63lYNb4zurprzn94REREREQkni5duuDs2bOP3EdTZ56zsR01O3pSHcwf4odtr/SEi6URUvJK8dz6U1h9KB5VMvnjD0BERERERKShmMRTsxXoZYO/Z/fDiE7OkMkFfH0oDs//EIHUvFKxQyMiIiIiIqoXUZP4FStWoEePHjAzM4O9vT1GjRqF2NjYWvcVBAFPPfUUJBIJdu/e/cjjTp06FRKJpMZt6NChjfAKSNNZGOlhzfjO+Pr5TjA10MXZG7fxzLfHkVlQJnZoRERERNQMaGrJNWkmdbxfRE3iw8LCMGPGDERERODgwYOorKzE4MGDUVJS8sC+q1atemD9xEcZOnQoMjIylLetW7eqM3TSIhKJBM92ccU/s/vBz8EMt0sr8d6ui/zAJSIiIqJ609PTAwCUlrLKk+qu+v1S/f6pD1Eb24WEhNT4e+PGjbC3t8fZs2fRv39/5faYmBisXLkSZ86cgZOTU52ObWBgAEdHR7XGS9rNzdoYayZ0wYhvjuPItSzsiE7H2G6uYodFRERERFpIKpXC0tISWVlZAABjY2OVBh2pZREEAaWlpcjKyoKlpWWDlhDUqO70BQUFAABra2vlttLSUkycOBHfffedSkl5aGgo7O3tYWVlhSeffBLLly+HjY1NrfuWl5ejvLxc+XdhYWE9XwFpOj9HM8we6IMvDsRi6b7L6OttC0cLQ7HDIiIiIiItVJ2fVCfyRI9jaWnZ4MFmiaAhNcVyuRzPPPMM8vPzcfz4ceX21157DTKZDD/99BMARWn0rl27MGrUqIcea9u2bTA2NoanpycSExPx3nvvwdTUFKdOnar1iseSJUuwdOnSB7YXFBTA3Ny84S+ONEqVTI4x607ifFoBnvCzwy9Te/CqKRERERHVm0wmQ2VlpdhhkIbT09N75Ah8YWEhLCwsHpuHakwSP336dPzzzz84fvw4XF0VJc579+7FvHnzcO7cOZiamgKoWxJ/v6SkJLRu3RqHDh3CgAEDHri/tpF4Nzc3JvHNWPytIjy95jgqZHJ8PrYjxnV3EzskIiIiIiJqweqaxGvEEnMzZ87E/v37cfToUWUCDwBHjhxBYmIiLC0toaurC11dRfX/mDFjEBwcXOfje3l5wdbWFgkJCbXeb2BgAHNz8xo3at58HMwwZ5APAOCjfVeQUXBH5IiIiIiIiIgeT9QkXhAEzJw5E7t27cKRI0fg6elZ4/53330XFy5cQExMjPIGAF9//TU2bNhQ5+dJS0tDbm5unZviUcvwaj8vdHKzRFF5Fd7dwW71RERERETNkVzevH7ni5rEz5gxA5s2bcKWLVtgZmaGzMxMZGZm4s4dxaioo6Mj/P39a9wAwN3dvUbC36ZNG+zatQsAUFxcjLfffhsRERG4fv06Dh8+jJEjR8Lb2xtDhgxp+hdJGktXqoMvx3aEvlQHYXHZ+ONMmtghERERERGRGmUWlGHwqmM4eq35NB8UNYlft24dCgoKEBwcDCcnJ+Vt+/btKh0nNjZW2dleKpXiwoULeOaZZ+Dr64tp06ahW7duCA8Ph4GBQWO8DNJiPg5meGuQLwDgo/1XcDOfZfVERERERM1BlUyON7eeQ0JWMVYejIWsmYzIi7rEXH3Kl2t7zL3bjIyMcODAgQbFRS3LK/08EXI5E+dT8/Huzov49UV2qyciIiIi0nYrD8Yh6noeTA108e2ErpDqNI/f+BrR2I5ITLpSHax8riP0dXVwLC4bv59JFTskIiIiIiJqgKPXsrAuNBEA8PnYjmhlayJyROrDJJ4IgLe9GebdLatfvv8qy+qJiIiIiLTUzfw7eOv3GADAC708MKxD82pwziSe6K6X+3mhi7uiW/2CHRfYrZ6IiIiISMtUyuSYtfUc8ksr0cHFAu893VbskNSOSTzRXVIdCb4Y2wn6ujoIj8/BttMsqyciIiIi0iZfHojF2Ru3YWaoi+8mdoWBrlTskNSOSTzRPbztTTF/sKKs/uO/riKdZfVERERERFrh8NVb+P5YEgDgi7Gd4G5jLHJEjYNJPNF9pvX1Qld3SxSXV+FdltUTEREREWm8tNulmPv7eQDAi31aYai/o8gRNR4m8UT3kepI8MVznWBwt6x+axTL6omIiIiINFVFlRwzt5xDwZ1KdHKzxMKnmt88+HsxiSeqRWs7U8wf7AcA+PivK0i7XSpyREREREREVJvPQq4hJjUf5oa6+HZCF+jrNu80t3m/OqIGeKmvJ7p5WKGkQoZ3d1xkWT0RERERkYY5cDkTPx9PBgCsHNcZbtbNcx78vZjEEz2Eolt9Rxjo6uB4Qg62RKWIHRIREREREd2VmleK+X8o5sG/0s8Tg9o5iBxR02AST/QIXnameHuIoqz+k7+uIjWPZfVERERERGIrr5JhxpZoFJVVoau7Jd4Z2kbskJoMk3iix3ixjye63y2rX7DjAuRyltUTEREREYlpxd/XcCGtAJbGevhmYlfoSVtOattyXilRPVV3qzfU08HJxFxsZlk9EREREZFo/r6YgY0nrwMAvhrXCS6WRuIG1MSYxBPVgaetCd4eoijRWfE3y+qJiLTN2tAEdP3oIGIzi8QOhYiIGuBGbgkW/HkBAPBakBeebNMy5sHfi0k8UR292LsVerSyQmmFDO/8ybJ6IiJtUVxehe+OJCCvpAK/n0kVOxwiIqqnssq78+DLq9Ddw0q5JHRLwySeqI50dCT4YqyirP5UUi42R94QOyQiIqqDvTE3UVIhAwCExWWLHA0REdXXx39dxaX0Qlib6OObiV1a1Dz4e7XMV01UT61sTfBOdVn9P9dYVk9EpOEEQahx0TUhqxhpt/nZTUSkbfadv4n/RSg+z78a1wlOFi1rHvy9mMQTqWhq71YIaGWN0goZ3v7zPMvqiYg0WExqPi7fLIS+rg7aOJoBAEJjORpPRKRNknNKsHDnRQDAjCdaI9jPXuSIxMUknkhFOjoSfD62I4z0pIhIysMmltUTEWmszZGKFUWGd3TC8I5OAFhST0SkTcoqZXhjczSKy6sQ6GmNtwb6ih2S6JjEE9VDK1sTLBiqaKSx4u9rSMllaSYRkaYpKK3EvvM3AQCTAj2UIzcnE3JQUSUXMzQiIqqjpfuu4GpGIWxM9LFmQhfottB58PfiGSCqpym9WiHQ0xp3KllWT0SkiXZEp6G8So42jmbo6m6Jdk7msDXVR0mFDGdu5IkdHhERPcaemHRsjUqBRAKsHt8FDuaGYoekEZjEE9VTdbd6Iz0pIpPz8Nup62KHREREd93b0G5STw9IJBLo6EjQ39cOABDGefFERBotIatYOQ9+1pM+6OtjK3JEmoNJPFEDuNsY492nFN3qPwuJxY3cEpEjIiIiAIhMzkNidgmM9aUY1dlZuT2oOonnvHgiIo11p0KGGZujUVohQy8vG8we4CN2SBqFSTxRA/1fTw/09Kouq7/AsnoiIg1Q3dBuZGcXmBnqKbf397GDRAJcyyxCRsEdscIjIqJHWLL3MmJvFcHW1ACrJ3SGVEcidkgahUk8UQPp6Ejw+ZhOMNaXIio5D7+yrJ6ISFQ5xeUIuZQBAJgU6F7jPisTfXRytQQAHONoPBGRxtkZnYbtZ1KhIwHWjO8MezPOg78fk3giNahZVn8N13NYVk9EJJY/zqShUiagk5sl/F0sHrg/2E9RUs/14omINEv8rSK8v+sSAGD2AF/09uY8+NowiSdSk8mBHujlZYOySjneYVk9EZEo5HIBW6LuNrS7bxS+WvW8+OPxOaiUcak5IiJNUFpRhTc2R+NOpQx9vW0x80lvsUPSWEziidRER0eCz8d2VJTVX8/DxpPXxQ6JiKjFCU/IQWreHZgb6mJER+da9+noagkrYz0UlVfhXEp+0wZIRES1+mD3ZcRnFcPezACrxnMe/KMwiSdSIzdrYywc1hYA8PmBa0hmWT0RUZPaHKEYhR/TzRVG+tJa95Hes9RcaGxWk8VGRES1+/1MKnZEpynmwU/oAltTA7FD0mi6ddnpwoULKh+4Xbt20NWt0+GJmpVJAe7452IGTibm4u0/zmP7a714JZGIqAlkFNzB4WuKpPxhpfTVgnztsCfmJsLisvHO0DZNER4REdUiNrMIi/co5sHPG+yHnl42Ikek+eqUZXfu3BkSiQSCULc5vjo6OoiLi4OXl1eDgiPSRjo6Enw2piOGrjqGMzduY8OJZLzcj/8tEBE1tu2nUyGTCwj0tIa3vdkj960eib98sxBZRWXsfkxEJIKS8iq8sfksyirlCPK1w/Sg1mKHpBXqPFQeGRkJOzu7x+4nCAL8/f0bFBSRtqsuq1+0+xK+OBCLJ9vYw8vOVOywiIiarSqZHNuiUgEAk3p6PHZ/W1MDdHCxwMX0AhyLy8HYbq6NHSIREd1DEAS8v+siErNL4GhuiK/GdYIOq1frpE5JfFBQELy9vWFpaVmng/bv3x9GRkYNiYtI600KdMc/lzJwIiEXb/95Ab+zrJ6IqNEcuZaFzMIy2JjoY0h7hzo9JtjPDhfTCxAam8UknoioiW07nYrdMTch1ZHgm4ldYMN58HVWp8Z2R48erXMCDwB///03nJyc6hsTUbMgkSjK6k30pTh7t6yeiIgax+bIFADAc93dYKBbe0O7+1UvNRcenwMZlwUlImoyV24W4sO9lwEA8wf7oUcra5Ej0i4qdacvLCyEXP7geqoymQyFhYVqC4qouXC1MsZ7Tyu61X9xIBaJ2cUiR0RE1Pyk5JbiWHw2AGBiwKMb2t2rs5slzA11UXCnEjGp+Y0UHRER3au4vAozt0SjokqOJ/zs8Fp/9o5SVZ2T+F27dqF79+4oKyt74L6ysjL06NED+/btU2twRM3BxAB39PW2RXmVHG//cZ6jPUREarb1dAoEQdGszt3GuM6P05XqoJ+PYjQ+LC67scIjIqK7BEHAwp0XkZRTAmcLQ3w1rjPnwddDnZP4devW4Z133oGx8YNfjiYmJliwYAG+/fZbtQZH1BxIJBJ8NrYjTA10EZ2Sj1+Os6yeiEhdyqtk+P303YZ2j1lWrjZBfneTeK4XT0TU6DZHpmDf+ZvQ1ZHgm4ldYWWiL3ZIWqnOSfylS5cQHBz80Pv79++PixcvqiMmombHxdII798tq//yX5bVExGpy4HLt5BbUgEHcwMMaGOv8uOr58VfSC9AbnG5usMjIqK7LqUXYNn+KwCABUPboJuHlcgRaa86J/G3b99GVVXVQ++vrKzE7du31RIUUXM0vocb+vkoyurns6yeiEgtNkfcAACM7+EOXalKrX4AAA7mhmjrZA5BUDS4IyIi9Sssq8SMu/PgB7Z1wMv9PMUOSavV+duuVatWOHPmzEPvP3PmDDw8Hr8uK1FLJZFI8OkYRVn9uZR8/BSeJHZIRERaLSGrCJHJedCRAOMD3Op9nOC7JfWhLKknIlI7QRDw7o4LuJFbChdLI6x8rhMkEs6Db4g6J/GjR4/G+++/j1u3bj1wX2ZmJhYtWoQxY8aoNTii5sbF0giL7pbVrzwYh4SsIpEjIiLSXtXLyg1o6wAnC6N6H6e6pP5YfA7krJIiIlKr307dwN8XM6EnleC7SV1hYawndkhar85J/LvvvgszMzP4+PjgjTfewOrVq7F69WpMnz4dvr6+MDU1xbvvvtuYsRI1C8/3cEN/XztUVMkx/48LLKsnIqqHOxUy7DibBqB+De3u1c3DCqYGusgrqcDF9AJ1hEdERAAupOVj+V+KefALn2qLzm6W4gbUTNQ5iTczM8OJEycwefJkbN++HW+99RbeeustbN++HZMnT8bx48dhZmbWmLESNQsSiQSfju4AMwNdxKTm40eW1RMRqWz/hZsoLKuCq5UR+t9dJq6+9KQ66ONtA4BLzRERqUvBHcU8+EqZgCHtHfBin1Zih9RsqNQBxsLCAmvXrkVOTg5u3bqFzMxM5ObmYu3atbCyYndBorpytjTCB8PbAQC+Ylk9EZHKqkvpJwa6q2WN4WA/RWd7zosnImo4QRDwzp/nkZp3B27WRvh8LOfBq5PqbVyhGEm0s7ODvb09/zGI6um57q4I9lOU1c/74wKqZHKxQyIi0gqX0gsQk5oPPakEz3Wrf0O7e1XPi49JzUd+aYVajklE1FJtOHEdBy7fgr5UB99N7AoLI86DV6d6JfFE1HASiQQrRneAmaEuzqfm48fwZLFDIiLSCluiFKPwQ9o7ws7MQC3HdLY0gq+DKeRcao6IqEFiUvOx4p+rAID3n26Ljq6W4gbUDImaxK9YsQI9evSAmZkZ7O3tMWrUKMTGxta6ryAIeOqppyCRSLB79+5HHlcQBCxevBhOTk4wMjLCwIEDER8f3wivgKhhnCz+K6v/+mAc4m+xrJ6I6FGKy6uw51w6AGByT/UubVs9Gs958URE9ZNfWoEZmxXz4J/u4IQpvbgEeWMQNYkPCwvDjBkzEBERgYMHD6KyshKDBw9GSUnJA/uuWrWqzqX7n3/+OdasWYP169cjMjISJiYmGDJkCMrKytT9Eoga7LlurnjCzw4VMjnm/3GeZfVERI+w+1w6SipkaG1ngkBPa7Ueu3pefFhcNpeaIyJSkSAImP/HBaTn34GHjTFWjOnAqdeNpEFJfEOT4pCQEEydOhXt27dHp06dsHHjRqSkpODs2bM19ouJicHKlSvxyy+/PPaYgiBg1apVWLRoEUaOHImOHTvit99+w82bNx87gk8kBkVZfUdFWX1aAb4/xm71RES1EQRB2dBuUqCH2n8cdm9lBWN9KbKLynE1s1CtxyYiau5+Ck/Goau3oK+rmAdvbsh58I1F5SReLpfjo48+gouLC0xNTZGUpEg4PvjgA/z8888NCqagQLE2q7X1f1fWS0tLMXHiRHz33XdwdHR87DGSk5ORmZmJgQMHKrdZWFggMDAQp06dqvUx5eXlKCwsrHEjakqOFoZYfLesfvWheMRmsqyeiOh+51LzcTWjEAa6OhjT1VXtxzfQlaJ3a8VSc6GxLKknIqqrszdu47OQawCAxcPbwd/FQuSImjeVk/jly5dj48aN+Pzzz6Gvr6/c7u/vj59++qnegcjlcsyZMwd9+vSBv7+/cvtbb72F3r17Y+TIkXU6TmZmJgDAwcGhxnYHBwflffdbsWIFLCwslDc3N/V0uiVSxdhurniyjT0qZHK8/SfL6omI7rc5QjEKP6KTMyyMG2eEJ6i6pJ5JPBFRndwuqcCsLdGokgsY0ckZkwLdxQ6p2VM5if/tt9/www8/YNKkSZBKpcrtnTp1wrVr1+odyIwZM3Dp0iVs27ZNuW3v3r04cuQIVq1aVe/j1sXChQtRUFCgvKWmpjbq8xHVRiKR4JNnFd3qL7CsnoiohvzSCuy/cBMAGvUHYvDd5nZnU26jsKyy0Z6HiKg5kMsFzP09BjcLyuBpa4IVozkPvimonMSnp6fD29v7ge1yuRyVlfX7sps5cyb279+Po0ePwtX1v/K4I0eOIDExEZaWltDV1YWuri4AYMyYMQgODq71WNUl97du3aqx/datWw8txzcwMIC5uXmNG5EYHC0MsWREewDAqkNxLKsnIrprR3Q6yqvkaOdkjs5ulo32PG7WxvCyM4FMLuAEl5ojInqk748l4WhsNgzuzoM3NdAVO6QWQeUkvl27dggPD39g+59//okuXbqodCxBEDBz5kzs2rULR44cgaenZ4373333XVy4cAExMTHKGwB8/fXX2LBhQ63H9PT0hKOjIw4fPqzcVlhYiMjISPTq1Uul+IjEMLqrCwa0sUelTMD8P86jkmX1RNTCKRra3QAATOrp3uijPFxqjojo8U5fz8OX/yqWB1/yTHu0c+ZAaFNR+VLJ4sWL8cILLyA9PR1yuRw7d+5EbGwsfvvtN+zfv1+lY82YMQNbtmzBnj17YGZmppyzbmFhASMjIzg6OtY6eu7u7l4j4W/Tpg1WrFiBZ599FhKJBHPmzMHy5cvh4+MDT09PfPDBB3B2dsaoUaNUfblETU4ikeCT0R0w6KswXEwvwPdhiZj5pI/YYRERiSYiKQ9J2SUw0ZdiZGeXRn++YD97bDhxHaGx2RAEgaWhRET3yS0ux6wt5yCTCxjV2Rnje7CnWFNSeSR+5MiR2LdvHw4dOgQTExMsXrwYV69exb59+zBo0CCVjrVu3ToUFBQgODgYTk5Oytv27dtVOk5sbKyysz0AvPPOO5g1axZeffVV9OjRA8XFxQgJCYGhoaFKxyUSi4O5IZY8oyirX304Hte41BERtWCb7o7Cj+ri0iSlmoGe1jDQ1UFmYRnibhU3+vMREWkTuVzAW7+fR2ZhGVrbmeDjZzkPvqlJBEEQxA5C0xQWFsLCwgIFBQWcH0+iEQQBr/x2BoeuZsHfxRy73ugDPanK192IiLRadlE5eq04jCq5gL/f7Ndk5ZpTN0QhNDYbC59qg9eCWjfJcxIRaYPvjibgiwOxMNTTwZ4ZfeHnaCZ2SM1GXfPQemUE+fn5+Omnn/Dee+8hLy8PABAdHY309PT6RUtED6juVm9hpIdL6YVYF5oodkhERE3u9zOpqJIL6OJu2aTzLTkvnojoQRFJuVh5dx78spH+TOBFonISf+HCBfj6+uKzzz7DF198gfz8fADAzp07sXDhQnXHR9Si2ZsbYskz7QAA3xyJx9UMltUTUcshkwvYGqVYG35SoEeTPnfw3fXiT1/PQ3F5VZM+NxGRJsouKsebW89BLgBjurpiXHfOgxeLykn83LlzMXXqVMTHx9eYYz5s2DAcO3ZMrcERETCqswsGtnVgt3oianGOxWcj7fYdmBvqYnhHpyZ9bk9bE3jYGKNSJuBkApeaI6KWTSYX8Nb2GGQVlcPH3hQfjWovdkgtmspJ/OnTp/Haa689sN3FxUXZXZ6I1EfRrd4flsZ6uHyzEGuPsqyeiFqGzRGKUfix3dxgqCdt8udnST0RkcK3RxJwPCEHRnpSrJ3UFcb6XA9eTCon8QYGBigsfLCkNy4uDnZ2dmoJiohqsjczxNK73eq/ORKPKzdZVk9EzdvN/Ds4cu0WAGBioLsoMQT7KX7XVC81R0TUEp1MyMGqw3EAgOWj/OHjwHnwYlM5iX/mmWewbNkyVFZWAlCMEqakpGDBggUYM2aM2gMkIoVnOjljcDsHVMlZVk9Ezd+206mQC0BPL2t425uKEkNPLxvoS3WQnn8HidklosRARCSmrKIyvLktBoIAjOvuijHdXMUOiVCPJH7lypUoLi6Gvb097ty5g6CgIHh7e8PMzAwff/xxY8RIRFBcMFv+rKKs/kpGIb47miB2SEREjaJSJsc2kRra3ctYXxeBXtYAgNDYLNHiICISg0wuYPbWGOQUl8PPwQxLn/EXOyS6S+Uk3sLCAgcPHsT+/fuxZs0azJw5E3///TfCwsJgYmLSGDES0V33ltV/eyQBl28WiBwREZH6Hb6ahayictia6mNIe0dRY+G8eCJqqVYfjseppFwY60vx3aSuMNJv+t4kVDuVOhJUVlbCyMgIMTEx6NOnD/r06dNYcRHRQzzTyRl/X8zAgcu3MP+PC9gzow/0dVW+HkdEpLE2R94AAIzr7ib651uwnx2W/3UVkcl5uFMh449YImoRwuOz8c2ReADAitEdRJvWRLVT6ZtRT08P7u7ukMlkjRUPET2GRCLB8lEdYGWsh6sZhfiWZfVE1IzcyC1BeHwOJBJgQoA4De3u1drOFC6WRqiokiMiKVfscIiIGt2twjLMuTsPfkKAO0Z2dhE7JLqPype333//fbz33nvIy8trjHiIqA7szAywdKRiXtLaowm4lM6yeiJqHrbcnQsf5GsHN2tjkaNRXDgNUnap57x4ImreqmRyzNp6DrklFWjrZI4PR7QTOySqhcpJ/Lfffotjx47B2dkZfn5+6Nq1a40bETWNER2dMLS9o7JbfUUVu9UTkXYrr5LhjzNpAMRtaHc/zosnopbi60NxiErOg6mBLtZO6gpDPU4h0kQqzYkHgFGjRjVCGESkqupu9VHX83AtswjfHonH3MF+YodFRFRvIZcykVdSAScLQzxxd/RbE/TxtoWeVILruaW4nlOCVrZs5EtEzU9obBa+O5oIAPh0TAd48rNOY6mcxH/44YeNEQcR1YOtqQGWjWyPmVvO4bvQRAxu7wh/FwuxwyIiqpfNkYpS+vE93KEr1ZyGnaYGuujuYY1TSbkIjc3CVFtPsUMiIlKrjII7eGt7DADg/3p6YHhHZ3EDokfSnG9IIqqX4R2dMayDI2QsqyciLRZ/qwhRyXmQ6kjwfA83scN5QPW8eJbUE1FzUymTY9aWc7hdWgl/F3O8/3RbsUOix1A5ibeysoK1tfUDNxsbG7i4uCAoKAgbNmxojFiJ6CGWjfSHtYk+rmUWKZcDISLSJtWj8APb2sPRwlDkaB4UfDeJP5WUi7JKrtJDRM3Hl//G4syN2zAz0MV3EzkPXhuonMQvXrwYOjo6ePrpp7F06VIsXboUTz/9NHR0dDBjxgz4+vpi+vTp+PHHHxsjXiKqha2pAT6q7lYfmoiLaexWT0Ta406FDDuiNa+h3b38HMzgaG6Isko5opK5Qg8RNQ+Hr97C92FJAIDPx3aEhw3nwWsDlefEHz9+HMuXL8frr79eY/v333+Pf//9Fzt27EDHjh2xZs0avPLKK2oLlIge7emOTvj7ohP+upiB+X+cx95ZfWCgyyupRKT59p2/iaKyKrhbG6Ovt63Y4dRKIpEgyNcO28+kIjQ2G/19NafxHhFRfaTn38G8P84DAKb2boWnOjiJHBHVlcoj8QcOHMDAgQMf2D5gwAAcOHAAADBs2DAkJSU1PDoiUsmyke1hY6KP2FtFWHOYZfVEpB02R94AAEwMdIeOjkTkaB7uv3nxXC+eiLSbYh58NPJLK9HJ1QILh7UROyRSgcpJvLW1Nfbt2/fA9n379sHa2hoAUFJSAjMzs4ZHR0QqsTE1wEejFGX168OScCEtX9yAiIge42JaAc6nFUBPKsFz3VzFDueR+njbQqojQWJ2CVLzSsUOh4io3j4PuYbolHyYG+ri24ldWb2pZVQup//ggw8wffp0HD16FAEBAQCA06dP4++//8b69esBAAcPHkRQUJB6IyWiOhnWwQlPd3TCXxcUZfX7ZvXlBzMRaawtUYpR+Kf8nWBjaiByNI9mYaSHru6WOH39NsLisjG5p2bO3yciepSDV27hx/BkAMAXz3WCm7WxyBGRqlQeiX/llVcQFhYGExMT7Ny5Ezt37oSxsTHCwsIwbdo0AMC8efOwfft2tQdLRHXz0Uh/2JrqI+5WMVYfYlk9EWmmwrJK7Im5CQCYFOgucjR1E+xnDwAIjeVSc0SkfVLzSjHv9xgAwLS+nhjS3lHcgKheVB6JB4A+ffqgT58+6o6FiNTE2kQfy0f54/VN0Vgflogh7R3Ryc1S7LCIiGrYcy4dpRUyeNubIsDTWuxw6iTI1w5fHIjFycQcVFTJoa+r8ngIEZEoKqrkmLn1HArLqtDZzRILhnIevLaq1zdPYmIiFi1ahIkTJyIrS9Hc5Z9//sHly5fVGhwR1d9QfyeM6OQMuQDM/+M81zUmIo0iCIJybfhJge6QSDS3od292jmZw9bUAKUVMpy5zqXmiEh7rPjnKs6n5sPCSA/fTuzCi5BaTOV/ubCwMHTo0AGRkZHYsWMHiouLAQDnz5/Hhx9+qPYAiaj+lj7THram+ojPKsZqdqsnIg0SnXIb1zKLYKing9FdNLuh3b10dBRLzQFAaBxL6olIO4RcysCGE9cBACuf6wRXK86D12YqJ/Hvvvsuli9fjoMHD0JfX1+5/cknn0RERIRagyOihlGU1XcAAHwfloiY1HxxAyIiumtzhGIUfkRHZ1gY64kcjWqUS81xXjwRaYGU3FK8/ecFAMCr/b0wsJ2DyBFRQ6mcxF+8eBHPPvvsA9vt7e2Rk5OjlqCISH2G+jviGZbVE5EGuV1Sgf0XMwAAk7Sww3s/b1voSIDYW0W4mX9H7HCIiB6qvEqGGVuiUVRWhW4eVnh7iJ/YIZEaqJzEW1paIiMj44Ht586dg4uLi1qCIiL1UpTVGyAhqxhfH4oTOxwiauF2RKehokoOfxdzdHK1EDsclVmZ6CubhR5jST0RabBP/rqKi+kFsDLWwzcTukBPynnwzYHK/4rjx4/HggULkJmZCYlEArlcjhMnTmD+/PmYMmVKY8RIRA1kZaKPj5/1BwD8eCwJ0Sm3RY6IiFqqmg3tPLSmod39gn251BwRaba/LmTg11M3AABfPd8ZzpZGIkdE6qJyEv/JJ5+gTZs2cHNzQ3FxMdq1a4f+/fujd+/eWLRoUWPESERqMKS9I0Z1VpTVv82yeiISyanEXCTnlMDUQBfPdHIWO5x6q54XfyIhB5UyucjREBHVdD2nBAt2KObBTw9ujSf87EWOiNRJ5SReX18fP/74IxITE7F//35s2rQJ165dw//+9z9IpdLGiJGI1GTJM+1hZ2aAxOwSfH2QZfVE1PSqR+Gf7eICEwNdkaOpv44uFrA20UdReRWib7C6iYg0R1mlDG9sjkZxeRUCWllj3iBfsUMiNav3pAh3d3cMGzYM48aNg4+PjzpjIqJGYmmsj0+eVXSr/zGcZfVE1LSyispw4HImAGBioLvI0TSMjo4E/XxsAQBhnBdPRBrko/1XcCWjEDYm+lgzoQt0OQ++2anTJfC5c+fW+YBfffVVvYMhosY3qJ0Dnu3igl3n0jH/j/P4+81+MNRjFQ0RNb4/zqShSi6gm4cV2jqZix1OgwX72WFPzE2ExmbjnaFtxA6HiAh7YtKxOTIFEgnw9fOd4WhhKHZI1AjqlMSfO3euxt/R0dGoqqqCn59iiYK4uDhIpVJ069ZN/RESkdp9OKIdjifkICm7BF8djMN7w9qKHRIRNXMyuYAtyoZ22j0KX62/jx0kEuBKRiGyCstgb84fy0QknsTsYry38yIAYOYT3ujvaydyRNRY6lRbcfToUeVtxIgRCAoKQlpaGqKjoxEdHY3U1FQ88cQTePrppxs7XiJSA0tjfay4p6z+LOdzElEjOxaXjfT8O7A01sOwDk5ih6MWNqYG6OCiWCKPJfVEJKayShlmbI5GSYUMPb2sMWcg58E3ZypPkFi5ciVWrFgBKysr5TYrKyssX74cK1euVGtwRNR4BrZzwOguLhDYrZ6ImsDmSMUyR2O7ujarKTzBd0e6QpnEE5GIluy9jGuZRbA11cea8V0g1dHO5TupblRO4gsLC5Gd/eAXVXZ2NoqKitQSFBE1jQ9HtIe9mQGSckrw5YFYscMhomYqPf8OjlzLAgBMaCal9NWql5o7Hp+DKi41R0Qi2HUuDdtOp0IiAVaP78KpPS2Aykn8s88+ixdffBE7d+5EWloa0tLSsGPHDkybNg2jR49ujBiJqJFYGOthxWhFWf3PJ5Jx5nqeyBERUXO0LSoFcgHo3doGre1MxQ5HrTq5WsLCSA8FdypxPi1f7HCIqIVJyCrCezsvAQDefNIHfbxtRY6ImoLKSfz69evx1FNPYeLEifDw8ICHhwcmTpyIoUOHYu3atY0RIxE1ogFtHTCmq6uirP7PC7hTwbJ6IlKfSpkc206nAgAmBXqIHI366Up10Ld6qblYltQTUdO5UyHDjM3ncKdShj7eNnhzAJf9bilUTuKNjY2xdu1a5Obm4ty5czh37hzy8vKwdu1amJiYNEaMRNTIFo9oBwdzAyTnlODLf1lWT0Tqc+jKLWQXlcPW1ACD2jmIHU6j4Lx4qpZ2uxTRKbdRyakV1AQW77mE2FtFsDMzwKrnOQ++JanTEnO1MTExQceOHdUZCxGJxMJID5+O7ogXN57GLyeSMdTfET1aWYsdFhE1A5vvLiv3fA9X6OuqPHagFYLuJvEX0gqQU6y4YEEtT0l5FZ759gTySipgZqCLPt62CPKzQ5CvHZwtjcQOj5qZP8+m4Y+zadCRAGvGd4GdGT93WpI6fZuOHj0ahYWFdT7opEmTkJWVVe+giKjpPdHGHmO7uSq71bOsnpqKTC7gVGIu9sSk41RiLmRyQeyQSE2Sc0pwPCEHEgkwvkfzamh3L3tzQ7RzMgcAhMdzNL6l2h2TjrySCgBAUXkVQi5nYuHOi+j96REM/joMH/91BScSclBexe9Xapi4W0VYtFuxHvxbA33Rq7WNyBFRU6vTSPyePXtq7UhfG0EQsG/fPnz00Uewt7dvUHBE1LQ+GN4Ox+NzcD23FF8ciMXiEe3EDomauZBLGVi67woyCsqU25wsDPHhiHYY6t881hJvybZGKUbhg33t4GZtLHI0jSvYzw5XMgoRFpuNZ7u4ih0ONTFBELApQvF+X/hUG/T0skFobDbC4rIQk5qPuFvFiLtVjB/Dk2GkJ0Xv1jYI9rNDkK893G2a938bpB6CICAlrxQRSbn4PiwJZZVy9POxxYwnvMUOjURQpyReEAT4+vo2dixEJDILIz2sGNMBL244jQ0nFWX1AZ4sq6fGEXIpA9M3ReP+cffMgjJM3xSNdZO7MpHXYmWVMvxxpvk2tLtfkK8d1oYm4lh8DuRyATqcm9qiRKfk42pGIfR1dTCuuxusTPTRyc0Sswf6IL+0AuHxOQiLy0ZYXDayi8px+FoWDl/LAnAZnrYmCPK1Q5CfHXp52cBQTyr2yyENIAgCrucqkvbIpFxEJOUhs/C/C94O5gb4+vnO/KxpoeqUxB89elTlA7u4uKj8GCIS3xN+9niumyv+OJuGd/48j79n94Oxfr3bZxDVSiYXsHTflQcSeAAQAEgALN13BYPaObJRj5YKuZSJ26WVcLYwxBNtmn9lXlcPK5gZ6CKvpAIX0wvQyc1S7JCoCW2OuAEAGN7RCVYm+jXuszTWx4hOzhjRyRmCICgqNuKyERabjbM3biM5pwTJOSXYePI6DHR1EOhlgyBfOwT72cHL1gQSCT8DWwJBEJCUU3I3ac9DRFIusorKa+yjL9VBZzdLBHpZ4/kebuy/0YLV6Zd5UFBQY8dBRBpk0fB2CL9bVv95SCyWPNNe7JComYlKzqtRQn8/AUBGQRmikvM4109LbY5UJDXjA9xbxIUYPakO+njbIuRyJkJjs5nEtyC3Syqw/2IGAGByz0dXnUgkErR3tkB7Zwu8EeyNwrJKnEzIvZvUZ+FmQRmOxWXjWFw2PtoPuFoZ3U3o7dGrtQ1MDXhRvbkQBAEJWcWISM5TJu45xfcl7bo66OJmiUAvG/T0skZXdytWahCABnSnJ6Lmy8JID5+O6YCpG05j48nreMrfEYFeTKRIfbKKHp7A12c/0iyxmUU4ff02pDoSjO/hJnY4TSbYz06RxMdlYfZArtfcUvx5Ng0VVXK0czJHFxUv3pgb6mGovyOG+jsqk7qwuGyExmYjKjkPabfvYHNkCjZHpkBPKkF3D2vFXHo/O/g5mHGUXovI5QLis4oRmZyLiKRcRCXnIae4osY+Bro66OpuhUAva/T0skFnN0sm7VQrUZP4FStWYOfOnbh27RqMjIzQu3dvfPbZZ/Dz81Pu89prr+HQoUO4efMmTE1Nlfu0adPmocedOnUqfv311xrbhgwZgpCQkEZ7LUTNTbCfPZ7v7obtZ1Ix9/fz2PVGb9ibG4odFjUT9mZ1ey/VdT/SLFvujsIPbufQoj43gvwUS82dT83H7ZKKB8qqqfmRywVl1cnknh4NSqolEgl8HMzg42CGl/t5obSiChFJuQiNVST1KXmlOJWUi1NJuVjxzzU4mhsq59L38baFhZGeul4WqYFcLiD2VpFyPnvU9Tzl6gXVDPV00M3DCoGeNujpZYNObhYw0GXSTo8nahIfFhaGGTNmoEePHqiqqsJ7772HwYMH48qVKzAxMQEAdOvWDZMmTYK7uzvy8vKwZMkSDB48GMnJyZBKH/4mHzp0KDZs2KD828CAc0aIVPX+8LaITM7F9dxSvLDhNLa/1hPmhvyRQA0X4GkNJwtDZBaU1TovXgLA0cKQjRW1UGlFFXZGpwNoGQ3t7uVkYQQ/BzPE3ipCeEIOnunkLHZI1MhOJCqmnpka6GJkZ/X+exvr6+LJNg54so0DAOB6TglCY7MQFpeNU0m5yCwsw/Yzqdh+JhVSHQm6ulsqknpfe7R3NmfDsyYmlwu4mlmonM8edT0P+aWVNfYx0pOieysrBHoqRto7ulpCX7dOK34T1SARBEFjFuTNzs6Gvb09wsLC0L9//1r3uXDhAjp16oSEhAS0bt261n2mTp2K/Px87N69u15xFBYWwsLCAgUFBTA3N6/XMYiai5TcUoxedxI5xeXo6WWNjS8GsLSL1KK6Oz2AGol89c9OdqfXTttPp2DBjotoZWOMI/OCW1wi8cnfV/HDsSSM6eqKleM6iR0ONbLX/ncGBy7fwpReHlg20r/JnresUoao5Dxlx/uErOIa99ua6qO/j2KUvp+PHaxZFaJ2MrmAqxmFiLg70n76eh4K7tRM2o31pejeylqZtHdwsWDSTo9U1zy0XiPxVVVVCA0NRWJiIiZOnAgzMzPcvHkT5ubmMDU1rXfQBQUFAABr69pHXkpKSrBhwwZ4enrCze3Rc+xCQ0Nhb28PKysrPPnkk1i+fDlsbGqf01teXo7y8v8aSRQWFtbzFRA1P+42xtj4Yg+M/yECEUl5mPt7DL6Z0LVFNKqixjXU3wnrJnd9YJ14R64Tr9U2RyrWyp4Y6N7iEngACPa1ww/HkhAWl82l5pq5zIIyHLqaBeDxDe3UzVBPiv6+dujva4cPAKTmleJYvKLj/YmEHOQUV2DnuXTsPJcOiQTo6Gqp7HjfydWS3+H1UCWT40pGzZH2orKqGvuY6EvRw9P6bnm8NfxdLKAnZdJO6qfySPyNGzcwdOhQpKSkoLy8HHFxcfDy8sLs2bNRXl6O9evX1ysQuVyOZ555Bvn5+Th+/HiN+9auXYt33nkHJSUl8PPzw19//fXQUXgA2LZtG4yNjeHp6YnExES89957MDU1xalTp2otwV+yZAmWLl36wHaOxBP952RCDqZuOI0KmRxTenlg6TPt2VCH1EImFxCVnIesojLYmylK6PkDUztdSMvHM9+egL5UBxHvDWiRo3/lVTJ0WXYQpRUy7J/VF/4uFmKHRI3k64NxWH04HgGtrPH7673EDkepokqOszdu322Ql4VrmUU17rcw0kM/H1sE+9mjv68te488RJVMjks3C+/Oac/Fmeu3UVReM2k3M9C9m7QrRtrbO5tDl0k7NUBdR+JVTuJHjRoFMzMz/Pzzz7CxscH58+fh5eWF0NBQvPLKK4iPj69XwNOnT8c///yD48ePw9XVtcZ9BQUFyMrKQkZGBr788kukp6fjxIkTMDSs24dOUlISWrdujUOHDmHAgAEP3F/bSLybmxuTeKL77L9wE7O2noMgAPMG+WLWAHZfJqL/vLvjAradTsWozs5YNb6L2OGI5uVfz+DQ1Vt4e4gfZjzhLXY41AgqZXL0/ewIbhWWY/X4zhjZ2UXskB7qVmGZcl368PhsFN43etzOyVzR8d7XDl09rFrsyHGlTI6L6QXKkfYz1/NQUiGrsY+ZoS4ClSPtNmjnbM6LzqRWjVZOHx4ejpMnT0Jfv+bV9VatWiE9PV31SAHMnDkT+/fvx7Fjxx5I4AHAwsICFhYW8PHxQc+ePWFlZYVdu3ZhwoQJdTq+l5cXbG1tkZCQUGsSb2BgwMZ3RHUwvKMzcorKsWTfFaw8GAc7MwOMD3AXOywi0gCFZZXYE3MTADCpiUuLNU2wnx0OXb2FsNhsJvHN1OGrt3CrsBw2JvoY6u8odjiP5GBuiHHd3TCuuxuqZHKcT8tHaKxiLv2FtAJcySjElYxCrA1NhJmBLvp42yLoblLvbGkkdviNpqJKjovp+Yi4m7SfvXEbpfcl7RZGegi4Z6S9rROTdtIMKifxcrkcMpnsge1paWkwMzNT6ViCIGDWrFnYtWsXQkND4enpWafHCIJQY+T8cdLS0pCbmwsnJ86vJGqoqX08kV1cju+OJuK9XRdhY2qAQe0cxA6LiES2+1w67lTK4Otgiu4eVmKHI6ogX8VSc2dTbqPgTiWX/mqGNkUoej+M6+GmVUuC6Up10M3DGt08rDFvsB9yissRfncu/bH4HOSVVCDkciZCLmcCAHwdTO/OpbdH91ZWWvVa71deJcOFtALlkm9nb9zGncqaOY2lsV6NkfY2jmYa19eCU9AIqEcSP3jwYKxatQo//PADAMWalsXFxfjwww8xbNgwlY41Y8YMbNmyBXv27IGZmRkyMxUfGBYWFjAyMkJSUhK2b9+OwYMHw87ODmlpafj0009hZGRU47natGmDFStW4Nlnn0VxcTGWLl2KMWPGwNHREYmJiXjnnXfg7e2NIUOGqPpyiagW8wf7IbuoHL+fScPMLdHY/HIgurfiUmBELZUgCNh8N6mZFNiwtbKbAzdrY7S2M0FidglOJuTgqQ4cRGhOknNKcDwhBxIJMFHLq9FsTQ3wbBdXPNvFFXK5gIvpBcqO9+dSbiPuVjHibhXjx/BkGOlJ0bu1zd3Se3u42xiLHf4jlVfJEJOSj8hkxUh7dMptlFXKa+xjbaJ/N2m3Rs/WNvC117yk/V4hlzIeaAbrxGawLZLKc+JTU1MxdOhQCIKA+Ph4dO/eHfHx8bC1tcWxY8dgb29f9yd/yJf8hg0bMHXqVNy8eRMvv/wyzp49i9u3b8PBwQH9+/fH4sWL4efnV+M41Y+5c+cORo0ahXPnziE/Px/Ozs4YPHgwPvroIzg41G20kEvMET1elUyO1/53FoevZcHcUBd/Tu8NXwfVqnGIqHk4fT0Pz60/BSM9KSLfHwBzQ448L9t3Bb+cSMbz3d3w2diOYodDarR8/xX8dDwZwX522PhigNjhNJr80gocT8hB2N3S+6yimlWwnrYminXp/ezQ09MGRvrijtKXVcpwLiUfEUm5iEzORXRKPiqqaibtNib66Ollg0AvRXm8t52pRift96pelvX+xI3LsjYvjdbYDlAsMbd9+3acP38excXF6Nq1KyZNmgQjo+Yxb4ZJPFHd3KmQYdJPEYhOyYeThSF2TO/drOfPEVHt5mw7h90xN5mw3uNYXDam/BIFR3NDnFr4ZIuvTmguyiplCPzkMAruVOKnKd0xsIVMJxMEAVczipQd78/euI0q+X8phIGuDgK9bBRJva8dWtuZNPp7vqxShugbtxFxd6Q9JvXBpN3W1AA9vawR6GWDXl7WaG1nqpX/LcrkAvp+dqTGCPy9JFAsz3p8wZMsrddyjZLEV1ZWok2bNti/fz/atm2rlkA1EZN4orrLL63A2PWnkJBVDG97U/z5ei9YGre8ZaWIWqq8kgr0/OQwKmRy7J3ZBx1dLcUOSSOUVcrQedm/KKuUI2ROP7Rx5O+J5uDPs2mY/8d5uFga4dg7T7TYhKmorBInE3MVDfJis3DzvuTS1cpImdD39raFqYHKM3gfUFpRhegb+YhMViz5dj61ABWymkm7vZlBjZF2L9vGv5jQFE4l5mLCjxGP3W/rKz3Rq7VNE0REjaVRutPr6emhrKz2K0BE1DJZGuvjt5cCMHrtSSRkFeOljaex+eWeopfVEVHT+PNsKipkcnRwsWACfw9DPSl6edngaGw2QmOzmcQ3E5sibgAAJgS4tdgEHgDMDPUwpL0jhrR3hCAISMwuVna8j0zKQ9rtO9gcmYLNkSnQk0rQ3cMaQX52CPazg5+DWZ0S65LyKpy9cftu0p6HC2n5qJTVHHt0NDdUjrT39LJBKxvjZpG03y+rqG75V133I+2n8mWxGTNm4LPPPsNPP/0EXd2GX1UjIu3nbGmE36YFYOy6k4hOycfMLdH4/v+6QbeFrjVL1FLI5QK2RFY3tNPuBl+NIcjXDkdjFZ2/Xw9qLXY41ECX0gsQk5oPXR0JxvVwEzscjSGRSOBtbwZvezO83M8LpRVViEjKRVhsNkLjsnEjtxSnknJxKikXn/5zDQ7mBsqO9328bZWrNxSXV+HM9TxEJOUhMjkXF9MKapTsA4CzhWGNkXZ36+aZtN/P3sxQrfuR9lM5Cz99+jQOHz6Mf//9Fx06dICJiUmN+3fu3Km24IhIe/g6mOGXqT0w6adIHL6Whfd2XcRnYzq2iC9XopbqZGIurueWwsxAFyM6OYsdjsYJ9rMH9l3BmRt5KC6vUktJMYln890LVkP8HZksPYKxvi6ebOOAJ9so+gVczylRzqU/lZSLW4WK1W1+P5MGqY4EXdwsUSkXcCm9ALL7knYXSyNl0t7LywauVkYt8ndFgKc1nCwMkVlQ9kBjO+C/OfEBnlwpqKVQ+dvE0tISY8aMaYxYiEjDqLoWafdW1vh2Yle89r8z+P1MGuzMDPD2kDZNGDERNaXNkYrS4me7usCECeoDWtmawMPGGDdyS3EyIQeD2zuKHRLVU1FZJfbEpAMAJgd6iByNdmlla4JWtiZ4oXcrlFXKcPp6nrL0PiGrGGdu3Fbu62ZtpFyjPdDTGm7Wmr2MXVOR6kjw4Yh2mL4pGhKgRiJf/avswxHtWvQUj5ZG5W/cDRs2NEYcRKRh6rsW6aB2Dvjk2Q54d+dFfHc0EXamBpjax7MpQiaiJnSrsAz/XrkFQLE2PNUu2NcOv566gdC4bCbxWmzXuXSUVsjgbW+Knl4c7awvQz0p+vnYoZ+PHT4AkHa7FCcTcqErlSDQywYuXOHmoYb6O2Hd5K4P/DZz5DrxLRIvmxPRAx62FmlmQRmmb4p+7Fqk4wPckV1UjpUH47B0/xXYmhlgeEeW2hI1J7+fToVMLqBHKyv4OZqJHY7GCvazx6+nbiAsNhuCILTIUmBtJwiCsqHdpEB3/huqkauVMcb14Gh7XQ31d8Kgdo4qVUlS86RyEu/p6fnID6+kpKQGBURE4pLJBSzdd6XWOVcCFGVbS/ddwaB2jo/80pj5pDeyi8vx26kbmLv9PKyN9dHb27axwiaiJiSTC9gaVd3QjqPwj9LTywb6ujpIz7+DxOxieNvzgoe2OX39NuJuFcNIT4rRXV3FDodaOKmOhMvIkepJ/Jw5c2r8XVlZiXPnziEkJARvv/22uuIiIpFEJefVKNO6nwAgo6AMUcl5j/wSkUgk+HBEe+QUl+Pvi5l49X9nse3VnvB3sWiEqImoKYXeXRfaylgPQ/1ZIv4oRvpSBHpaIzw+B6Gx2UzitVD1KPwznZyVndSJiMSkchI/e/bsWrd/9913OHPmTIMDIiJxqXMtUqmOBF+N64y8kihEJOVh6obT2Dm9N9xtWDpHpM2qu3Q/190NhnpSkaPRfEG+dgiPz0FYXDZe7ucldjikgpzicvxzKQMAMLknq06ISDOobRHnp556Cjt27FDX4YhIJOpei9RQT4ofpnRHWydz5BSXY8ovkcgpLm9IiEQkorTbpTgamwUAmBDAteHrItjPHgAQmZSH0ooqkaMhVfx+JhWVMgGdXC3QwZWVZESkGdSWxP/555+wtma3TiJtV70W6cNmu0ug6FKvylqk5oZ6+PXFHnC1MsL13FK8uOE0isv5Q5ZIG22LSoUgAH29beFpayJ2OFqhtZ0JXCyNUCGTIyIpV+xwqI5kcgFb7ladTOIoPBFpEJWT+C5duqBr167KW5cuXeDk5IT33nsP7733XmPESERNqHotUgAPJPINWYvU3twQv70UAGsTfVxML8Dr/zuLiip5wwMmoiZTKZNj2+lUAIou3VQ3EokEwX52AIDQ2GyRo6G6OhaXjbTbd2BuqIsRXGGFiDSIynPiR44cWaM7vY6ODuzs7BAcHIw2bdqoNTgiEkdjrUXqZWeKDVN7YMKPETiekIP5f5zHquc7Q4dLoxBphYNXbiGnuBx2ZgYY2M5B7HC0SpCvHTZHpiAsjkm8tqhuaDe2mxuM9Nn7gYg0h8pJ/JIlSxohDCLSNI21FmknN0usm9wN0zaext7zN2FraoAPhrflurtEWmBzpCKpGd/DDXpStc3IaxF6e9tCTyrBjdxSJOeUcCqChku7XYojd3s/TGTVCRFpGJW/gaVSKbKysh7YnpubC6mUVymJmpPqtUhHdnZBr9Y2DU7gqwX52uHL5zoBAH45kYzvjyWp5bhE1HiSsotxIiEXOhJgPBvaqczUQBc9Wil6iYTFPvg7ijTL1qgUCALQy8sG3vamYodDRFSDykm8IAi1bi8vL4e+vn6DAyKilmFUFxe8P6wtAODTf65hx9k0kSMi0g4yuYBTibnYE5OOU4m5kMlr/15Wt61RigZfT/jZw8XSqEmes7kJ8r07L54l9RqtokqO7Xd7P3BZOSLSRHUup1+zZg0ARXOWn376Caam/12VlMlkOHbsGOfEE5FKXunvhezicvxwLAnv7LgAaxN9PNHGXuywiDRWyKWMB3pVODWwV0VdlFXK8MfdC22TenIUvr6C/eyx4p9riEjKRVmlDIZ6rGDURAcuZyKnuAJ2ZgYY3J69H4hI89Q5if/6668BKEbi169fX6N0Xl9fH61atcL69evVHyERNWvvDm2D7KJy7DqXjjc2R2PLK4Ho4m4ldlhEGifkUgamb4rG/ePumQVlmL4pGusmd220RP7vixnIL62Ei6URgnx5oa2+fB1M4WhuiMzCMkQm5ylH5kmzsPcDEWm6OifxycnJAIAnnngCO3fuhJUVf2QTUcPp6Ejw+diOyC2pwLG4bLy08TT+eL035yAS3UMmF7B035UHEngAEKBY/nHpvisY1M5Rbb0r7rX57lrZEwLcGuX4LUX1UnPbTqciNDaLSbwGSsgqQkRSHnQkwAT2fiAiDaXy5cWjR48ygScitdKT6mDdpK7o5GqB26WVeOGXKGTeUy5M1NJFJefVKKG/nwAgo6AMUcl5an/uqxmFOHvjNnR1JBjX3U3tx29pqhN3LjWnmTZFKC5YPdnGAc7s/UBEGkrlJeYAIC0tDXv37kVKSgoqKipq3PfVV1+pJTAiallMDHTxy9QeGLv+FJJzSvDCL1H4/fVesDDSEzs0ItFlFdXtolZd91PFlruj8IPbO8De3FDtx29p+vjYQqojQVJ2CVLzSuFmbSx2SHRXaUUVdkQrej9MZu8HomZDJhfUvmSy2FRO4g8fPoxnnnkGXl5euHbtGvz9/XH9+nUIgoCuXbs2RoxE1ELYmBrgt5cCMHrdScTeKsIrv57Bb9MCtKr5U3P8oiDx2ZvVLXmu6351VVJehV3n0gEAkwLZpVsdzA310M3dClHX8xAal43/Y/dzjbHv/E0UlVXB3doY/X041YGoORCrIWxjU7mcfuHChZg/fz4uXrwIQ0ND7NixA6mpqQgKCsJzzz3XGDESUQviZm2MX18MgJmBLqKu52H2tnNNtoRWQ4VcykDfz45gwo8RmL0tBhN+jEDfz44g5FKG2KGRlgvwtIaThSEedjlIAsWPkgBPa7U+797zN1FcXgVPWxP08rJR67FbsiC/uyX1XC9eo1SX0k8MdIcOL74Sab3qhrD3T0erbgirzb/PVE7ir169iilTpgAAdHV1cefOHZiammLZsmX47LPP1B4gEbU87ZzN8cOU7tCX6uDA5Vv4YM8lCIJmJ/LN+YuCxCfVkeDDEe0A4IFEvvrvD0e0U2vVhyAI2BSh6NI9MYBJjTpVz4s/mZiL8iqZyNEQAJxPzcfF9ALoS3XwXDdXscMhogZ6XENYQNEQVlsGiu6nchJvYmKinAfv5OSExMRE5X05OTnqi4yIWrRerW2wanxnSCSKObmrD8eLHdJDNfcvCtIMQ/2dsG5yVzha1CyZd7QwbJTl5S6kFeDyzULo6+pgLJMatWrvbA47MwOUVshw5vptscMhQHnBalgHR9iYGtTrGDK5gFOJudgTk45Tibn8zCcSkZgNYZuCynPie/bsiePHj6Nt27YYNmwY5s2bh4sXL2Lnzp3o2bNnY8RIRC3UsA5OWDbSHx/svoRVh+Jha2qAyRo4f1SVL4perVmSTPU31N8Jg9o5Nknfheq1sod3cIKVib7aj9+SSSQSBPna4c+zaQiLy0Yfb1uxQ2rRCkorse/CTQCo93dMc513S6StxGwI2xRUHon/6quvEBgYCABYunQpBgwYgO3bt6NVq1b4+eef1R4gEbVs/9fTA28+6Q0AWLznEkIuZYoc0YOa+xcFaRapjgS9WttgZGcX9Gpt0ygJfMGdSuw9r0hqJrFLd6OoLqkP5bx40f0ZnYaySjnaOJqhm4fqyyhzOhWR5hGrIWxTUSmJl8lkSEtLg7u74gvdxMQE69evx4ULF7Bjxw54eGjeCBkRab+3BvliQoAb5ALw5rZziEzKFTukGpr7FwW1PLvuSWq6uque1NDj9fOxhY4EiLtVjJv5d8QOp8USBEFZdTKppwckEtUuinE6FZFmEqshbFNRKYmXSqUYPHgwbt/m/C0iajoSiQQfjfTHoHYOqKiS4+XfzuBaZqHYYSk19y8KalkUSY2iS/ekQHeVkxqqG0tjfXR2swQAhMVlixtMC3YqMRdJ2SUw0Zfi2S4uKj++uc+7JdJWYjSEbUoql9P7+/sjKSmpMWIhInooXakOvpnQBT1aWaGorAov/BKFtNulYocFoPl/UVDLcvr6bcRnFcNYX4pR9UhqqO6C/ewBsKReTJvujsKP7OICUwOVW0VxOhWRBmvqhrBNSeUkfvny5Zg/fz7279+PjIwMFBYW1rgRETUWQz0pfprSA74OprhVWI4pv0Qhr6RC7LAANO8vCmpZqkuLR3Z2hpmhnsjRNG/V8+JPJOSiUiYXOZqWJ6uwDP9evgUAmBxYvymhnE5FpNmG+jvh+IInsfWVnlg9vjO2vtITxxc8qfW/y1S+5Dhs2DAAwDPPPFOjxE4QBEgkEshkXO+UiBqPhbEefn0pAGPWnkRSdgle3HgaW18JhLG+6iMo6taUncOJGkNucTn+uahoHjkxgH1uGlsHFwtYm+gjr6QCZ2/cRk8vrl7RlLadTkWVXEBXd0u0czav1zGqp1NlFpTVOi9eAsXFXE6nIhJPdUPY5kTlX71Hjx5tjDiIiOrMycIIv00LwNj1p3A+NR9vbI7Gj1O6Q0+qcnGR2jXHLwpqOf48m4YKmRydXC3QwdVC7HCaPR0dCfr72GJ3zE2ExWUziW9CVTI5tkYpej80ZOnS6ulU0zdFQwLUSOQ5nYqIGovKSXxQUFBjxEFEpBJvezP8/EIPTPopAqGx2Viw4wJWPteJTbiI6kkuF7AlqrqhHUfhm0qwnz12x9xUfI4NbSN2OC3G0dhsZBSUwcpYD8M6NKystno61f3rxDtynXgiaiT1qj8NDw/H999/j6SkJPzxxx9wcXHB//73P3h6eqJv377qjpGIqFbdPKzw3cSuePV/Z7EzOh12ZgZY+FRbscMi0konEnNwI7cUZoa6GN6JSUdT6edjC4kEuJpRiFuFZXAw59zpprApQtH74bnubjDUkzb4eJxORURNSeXa0x07dmDIkCEwMjJCdHQ0ysvLAQAFBQX45JNP1B4gEdGjDGjrgBWjOwAAvg9Lws/Hk0WOiEg7VSc1Y7q6akSPiZbCxtQAHV0UUxe41FzTSMktxbF4xbmeGOCutuNWT6ca2dkFvVrbMIEnokZTr+7069evx48//gg9vf+61vbp0wfR0dFqDY6IqC7GdXfD20P8AAAf7b+CPTHpIkdEpF0yC8pw6KpimbOJgepLaqhugu4uNcckvmlsjroBQVBUQbSyNRE7HCIilamcxMfGxqJ///4PbLewsEB+fr46YiIiUtkbwa0xtXcrAMD8P84jPJ4/honqavvpVMjkAgJaWcPXwUzscFqc6qXmwuOyUcWl5hpVeZUMf5xJA9CwhnZERGJSOYl3dHREQkLCA9uPHz8OLy8vtQRFRKQqiUSCxcPbYXhHJ1TKBLz+v7O4mFYgdlhEGq9KJse203cb2vXkKLwYOrtZwsJID4VlVTifli92OM3aPxczkVdSAScLQwxoYy92OERE9aJyEv/KK69g9uzZiIyMhEQiwc2bN7F582bMnz8f06dPb4wYiYjqREdHgpXjOqGPtw1KKmSYuiEKyTklYodFpNGqu3Rbm+hjqL+j2OG0SFIdCfr52AIAQmNZRdSYqns/jO/hDl0NWJaUiKg+VP70evfddzFx4kQMGDAAxcXF6N+/P15++WW89tprmDVrVmPESERUZwa6Uqyf3A3tnc2RW1KBKb9EIquo7PEPJGqhNkfe7dLdzRUGug3v0k31E3x3XjyT+MZzLbMQZ27chlRHgvEBbmKHQ0RUbyq3n5VIJHj//ffx9ttvIyEhAcXFxWjXrh1MTU0bIz56CJlMhvDwcGRkZMDJyQn9+vWDVMofX4/Cc6Y6bT1nZoZ62PhiAMasO4mUvFJM/eU0tr/WE2aGeo9/cANp6zkTE8+ZatR5vlLzSpXN1CaosUu3ptGG91h/X8VI/MX0AuQUl8PW1EDUeLThnKmqehR+cDuHRlnKrzmes8bGc6Y6njPVNctzJjRASkqKkJKS0pBDaKSCggIBgFBQUCB2KLXasWOH4OrqKgBQ3lxdXYUdO3aIHZrG4jlTXXM4Z8nZxUK3j/4VPBbsFyb8cEooq6xq1OdrDuesqfGcqUbd5+uzf64KHgv2C5N/ilBzpJpDm95jw1YfEzwW7Bd2nE0VNQ5tOmd1VVRWKbT74B/BY8F+4Xh8ttqP3xzPWWPjOVMdz5nqtO2c1TUPVTmJr6ysFBYtWiSYm5sLOjo6go6OjmBubi68//77QkVFRb0D1iSanMTv2LFDkEgkNd6IAASJRCJIJBKNfUOKiedMdc3pnF1IzVf+cHtj81lBJpM3yvM0p3PWVHjOVKPu81VeKVNe5PrnYkYjRS0ubXuPVV9UeXNrtGgxaNs5q6v/nboueCzYLzzxxVFBLlfv90BzPWeNiedMdTxnqtPGc1bXPFQiCIJQ93F7YPr06di5cyeWLVuGXr16AQBOnTqFJUuWYNSoUVi3bp0qh9NIhYWFsLCwQEFBAczNzcUOR0kmk6FVq1ZIS0ur9X6JRAJXV1ckJydrf4mImvCcqa45nrPj8Tl4cWMUKmUCpvZuhQ9HtINEIlHb8ZvjOWtsPGeqaYzztf/CTczccg4O5gY4vuBJ6DWzJl/a+B6LSs7DuO9PwcpYD2cWDYJUR32fU3XxuHMGiQRuGnbO6kIQBDy1OhzXMouw6Om2eLmf+lZT0sb3mdh4zlTHc6Y6bT1ndc1DVf7G3rJlCzZu3IjXXnsNHTt2RMeOHfHaa6/h559/xpYtW1Q61ooVK9CjRw+YmZnB3t4eo0aNQmxsbI19XnvtNbRu3RpGRkaws7PDyJEjce3atUceVxAELF68GE5OTjAyMsLAgQMRHx+v6kvVOOHh4Q//YoXidaempiI8PLwJo9JsPGeqa47nrK+PLVaO6wwA2HjyOtaGJqr1+M3xnDU2njPVNMb52hyhWFbu+R7uzS6BB7TzPdbV3RJmhrq4XVqJi+lNv0Tm484ZNPCc1UV0ym1cyyyCga4OxnZzVeuxtfF9JjaeM9XxnKmuuZ8zlb+1DQwM0KpVqwe2e3p6Ql9fX6VjhYWFYcaMGYiIiMDBgwdRWVmJwYMHo6TkvyWhunXrhg0bNuDq1as4cOAABEHA4MGDIZPJHnrczz//HGvWrMH69esRGRkJExMTDBkyBGVl2t2hOiMjQ637tQQ8Z6prrufsmU7OWDy8HQDgiwOx+P10qtqO3VzPWWPiOVONus9XQlYxTiXlQkcCjO/RPLt0a+N7TFeqg77e1UvNZTX586en31Trfppi090LVsM7OsPSWLXfqo+jje8zsfGcqY7nTHXN/ZypnMTPnDkTH330EcrLy5XbysvL8fHHH2PmzJkqHSskJARTp05F+/bt0alTJ2zcuBEpKSk4e/ascp9XX30V/fv3R6tWrdC1a1csX74cqampuH79eq3HFAQBq1atwqJFizBy5Eh07NgRv/32G27evIndu3er+nI1ipOTk1r3awl4zlTXnM/ZS3098XpQawDAwl0XcfjqLbUctzmfs8bCc6YadZ+vrVGKpObJNg5wtjSqd1yaTFvfY8F+dgCgXDWgKeXDRK37aYK8kgr8dUHxI31yT/WvwKCt7zMx8ZypjudMdc39nKmcxJ87dw779++Hq6srBg4ciIEDB8LV1RX79u3D+fPnMXr0aOVNVQUFitIxa2vrWu8vKSnBhg0b4OnpCTe32kcOkpOTkZmZiYEDByq3WVhYIDAwEKdOnar1MeXl5SgsLKxx00T9+vWDq6vrQ+fySiQSuLm5oV+/fk0cmebiOVNdcz9nC4b6YUxXV8jkAmZsicbZG3kNPmZzP2eNgedMNeo8X2WVMvx5VlFiOKkRkhpNoa3vsf6+iiQ+JjUft0sqmvS5ndp0gdTM9pH7SM1s4dSmSxNF1HB/nk1FhUyO9s7m6Oxmqfbja+v7TEw8Z6rjOVNdcz9nKifxlpaWGDNmDIYPHw43Nze4ublh+PDhGD16NCwsLGrcVCGXyzFnzhz06dMH/v7+Ne5bu3YtTE1NYWpqin/++QcHDx58aOl+ZmYmAMDBwaHGdgcHB+V991uxYkWNuB92gUBsUqkUq1evBoAH3pDVf69atUqjmjOIjedMdc39nEkkEnw6pgOe8LNDWaUcL208g/hbRQ06ZnM/Z42B50w16jxff13IQMGdSrhaGaG/j536g9UQ2voec7IwQhtHMwgCEJ6Q07TPbWkC6wGvPnIf6wGvwslSO0bi5XIBmyMVVSeTe3qotaFpNW19n4mJ50x1PGeqa/bnrHGa46vu9ddfFzw8PITU1AfXRs3Pzxfi4uKEsLAwYcSIEULXrl2FO3fu1HqcEydOCACEmzdv1tj+3HPPCePGjav1MWVlZUJBQYHylpqaqrFLzAlC7esdurm5aeQyCZqC50x1zf2clZRXCiO/PS54LNgv9PzkkHAzv7TBx2zu56wx8JypRh3n69nvFO/7b4/EN2KkmkMb32Of/HVF8FiwX3hr+7kmfd4qmVzo+ckhwW7Ue4LUzLbGOZOa2Qp2o94Ten5ySKhqpKU61S0sNkvwWLBf8F8cIpSUVzbqc2nj+0xsPGeq4zlTnbads0ZbYq4xzJw5E3v27MGxY8fg6en5yH0rKipgZWWFn376CRMmTHjg/qSkJLRu3Rrnzp1D586dlduDgoLQuXNn5RWZR9HUJebuJZPJEB4ejoyMDDg5OaFfv37aeyWpifCcqa65n7O8kgqMXX8SSdkl8LE3xR+v92pw06Pmfs4aA8+Zahpyvq7cLMSwNeHQ1ZHg1MIBsDMzaORoNUNFZRV+/P0vJKWkwcvdFa+Mexr6erpih/VQJxNzMPHHSNia6iPqvYHQacKl5kIuZWD6pmgIchnK0i5DVnwbUlMrGLq2h0RHinWTu2Kov3bMIX31tzP498otvNDLA0tH+j/+AQ3EzzLV8ZypjudMddp0zuqah6qcxOfm5mLx4sU4evQosrKyIJfLa9yfl1f3+aWCIGDWrFnYtWsXQkND4ePj89jHlJeXw8rKCmvXrsXUqVNrPaazszPmz5+PefPmAVCcDHt7e2zcuBHjx49/7HNoQxJPROqRdrsUY9adxK3CcnT3sMKmlwNhqKeZH+xEDbVo90VsikjB0x2d8N3ErmKH0yRCLmVg6b4ryCj4b4UaJwtDfDiincYmoxVVcnRZ9i9KKmTYP6sv/F1Um6LYUNp4zu6XUXAHfT49ArkA/PtWf/g6mIkdEhHRY9U1D1X5MvT//d//ISEhAdOmTYODg0OD5hfNmDEDW7ZswZ49e2BmZqacs25hYQEjIyMkJSVh+/btGDx4MOzs7JCWloZPP/0URkZGGDZsmPI4bdq0wYoVK/Dss89CIpFgzpw5WL58OXx8fODp6YkPPvgAzs7OGDVqVL1jJaLmydXKGL++FIDn1p/CmRu3MXPLOayf3BW6zXDdbGrZisursCs6HQAwKbD5NrS7l3JU+b7tmQVlmL4pWmNHlfV1ddDb2xYHr9xCaGxWkyfxQ/2dMKidI6KS85BVVAZ7M0MEeFpD2oQVAQ21NSoVcgEI8LRmAk9EzY7KSXx4eDiOHz+OTp06NfjJ161bBwAIDg6usX3Dhg2YOnUqDA0NER4ejlWrVuH27dtwcHBA//79cfLkSdjb2yv3j42NVXa2B4B33nkHJSUlePXVV5Gfn4++ffsiJCQEhoaGDY6ZiJqfNo7m+GlKd/zfL1E4dPUWFu2+hBWjOzRKEyQiseyJSUdJhQxetibo5WUjdjiNTiYXsHTflQcSeEAxKVICYOm+KxjUzlEjk9NgPzscvHILYXHZmPnk4ysV1U2qI0Gv1tr5PqmUybEt6r+GdkREzY3KSXybNm1w584dtTz54yr5nZ2d8ffff6t8HIlEgmXLlmHZsmUNio+IWo5ALxt8M6ELpm86i22nU2FnZoB5g/3EDotILQRBwKYIRVIzMdC9RVygikrOq1EOfj8BQEZBGaKS8zQyWQ26u9RcdEo+Cu5UwsJIT+SItMehK7eQVVQOW1N9DG3vKHY4RERqp3K96Nq1a/H+++8jLCwMubm5WrG+OhFRXQxp74jlozoAAL45koD/nboubkBEahKTmo+rGYXQ19XB2G6uYofTJLKKHp7A12e/puZqZQxve1PI5AJONPFSc9puU+QNAMC47m7Q1+XUKCJqflQeibe0tERhYSGefPLJGtsFQYBEIoFMJlNbcETqJJMLWj2/j5rGxEB3ZBWVYdWheCzeexk2pgYY1kHz5swSqaJ6rezhHZ0avAKDtrA3q9sUurruJ4YgXzskZBUjNDaLn0N1lJRdjBMJuZBIgAkBLaP3AxG1PCon8ZMmTYKenh62bNnS4MZ2RE2lOXTapaYze4APsovKsTkyBXO2xcDSWA+9W9uKHRZRvRSUVmLf+ZsAgEmBLWd+cICnNZwsDJFZUFbrvHgJAEcLxQVdTRXsZ4efjycjLC5bOVhCj1Z9weoJP3u4WRuLHA0RUeNQOYm/dOkSzp07Bz8/zhUl7aCt3YlJPBKJBMtG+iO3uAIhlzPx2m9nsf21XmjnzCUnSfvsiE5DeZUcbRzN0NXdUuxwmoxUR4IPR7TD9E3RkAA1vgOqU+EPR7TT6IqsHq2sYaQnxa3CclzLLEJbJ34GPUpZpQx/nk0DAEzuyVF4Imq+VJ4o1L17d6SmpjZGLERq97juxICiO7FM/ugmi9TySHUkWDW+MwI8rVFUXoUXNkQhNa9U7LCIVCIIAjbfnR88qadHixvJHervhHWTu8LRombJvKOFoVZcwDXUkyqb7oXGZoscjebbd/4mCu5UwsXSCEG+9o9/ABGRllJ5JH7WrFmYPXs23n77bXTo0AF6ejW7pXbs2FFtwRE1lLZ3JyZxGepJ8eOU7nj++1O4llmEKb9E4c/Xe8HG1EDs0IjqJDI5D4nZJTDWl2JUZ2exwxGFtq95HuRrhyPXshAWl4Xpwa3FDkejbYr8bwUGbfn3JSKqD5WT+Oeffx4A8NJLLym3SSQSNrYjjaTt3YlJfBZGevj1pQCMXnsSyTkleGnjaWx5pSdMDFT++CRqctXzg0d1cYGZYctdokyb1zwP9lMsNXfm+m0UlVW26H/HR7mUXoDzqfnQk0owrrub2OEQETUqlX+FJicnN0YcpCJ2Wq+b5tCdmMTnYG6I36YFYOy6kzifVoDXN53Fzy/04NJFpNFyissRcikDADCRXbq1loeNCVrZGON6bilOJuZiCNc9r1X1tJEh7R1hZ8ZqKW3B37NE9aNyEu/h0XI622oqdlqvu+bQnZg0Q2s7U/wytQcm/hiJ8PgcvPPneXw1rjN0+GODNNQfZ9JQKRPQ2c0S/i4WYodDDRDsZ4+NJ68jNDabSXwtCssqsfucYgWGyT35O1Vb8PcsUf3Vaxjpf//7H/r06QNnZ2fcuKG48rlq1Srs2bNHrcHRg6o7rd8/z7u603r1qAspVHcnBv7rRlxNW7oTk+bo4m6FtZO7QldHgt0xN7Hin6tih0RUK7lcwJaouw3tAjkKr+2C7pbUH7u71BzVtCs6HXcqZfCxN0UgL8prBf6eJWoYlZP4devWYe7cuRg2bBjy8/OVc+AtLS2xatUqdcdH92Cn9frR9u7EpFme8LPHZ2MUDTx/DE/GD8cSRY6I6EHhCTlIzbsDc0NdDO/YMhvaNSc9PW2gr6uD9Pw7SMgqFjscjSIIAjZF/HfBqqWtwKCN+HuWqOFULqf/5ptv8OOPP2LUqFH49NNPldu7d++O+fPnqzU4qomd1utP27sTk2YZ080VOcXlWPHPNXzy9zXYmhpgdFdXscMiUtp8N6kZ080VRvpSkaOhhjLSl6Knlw2OxWUjLC4bPg5mYoekMaKS8xCfVQwjPSlGd+PnsDbg71mihlN5JD45ORldunR5YLuBgQFKSkrUEhTVjp3WG6a6O/HIzi7o1dqGCTw1yKv9vTCtrycA4J0/LyA0NkvkiIgUMgru4PA1xfuRpfTNR5CvoqSe68XXVL2s3MjOzjBn536twN+zRA2nchLv6emJmJiYB7aHhISgbdu26oiJHoKd1ok0h0QiwfvD2mJkZ2dUyQW8sTkaMan5YodFhO2nUyGTCwj0tIa3PUdsm4vqpeaikvNQWlElcjSaIbvovxUY2NBOe/D3LFHD1TmJX7ZsGUpLSzF37lzMmDED27dvhyAIiIqKwscff4yFCxfinXfeacxYW7zqTusPGz+WQNHVk53WiZqGjo4EX4zthH4+tiitkOGljaeRlM35qiSeKpkc26JSAQCTmNQ0K162JnC1MkKFTI5Tiblih6MRfj+TikqZgE5cgUGr8PcsUcPVOYlfunQpiouL8fLLL+Ozzz7DokWLUFpaiokTJ2LdunVYvXo1xo8f35ixtnjstE6kefR1dbBucjd0cLFAXkkFpvwShaxClgCSOI5cy0JmYRlsTPQxpL2D2OGQGkkkEuVoPEvqFc3RttwtpZ/MaSNahb9niRquzkn8vUuaTJo0CfHx8SguLkZmZibS0tIwbdq0RgmQamKndSLNY2qgiw0v9kArG2Ok3b6DKb9EobCsUuywqAXafDepea67Gwx02dCuuQnytQcAhMZltfil5sLispCefwcWRnoY0YkrMGgb/p4lahiVutPfv2yHsbExjI2N1RoQPR47rRNpHltTA/z2UiBGrzuJa5lFGPzVMUwIcMf4ADc4mHNeHzW+lNxSHItXjNBODODIZHPUu7UN9KQSpObdQXJOCbzsTMUOSTSbIhQXrMZ2c4WhHi9YaSP+niWqP5WSeF9f38euv5mXl9eggKhuqjutE5HmcLcxxq8v9cCLG04js7AMXx+Kw5oj8RjU1gGTe3qgd2sb6PDHCTWSLVEpEASgv68d3G14gb05MjHQRY9W1jiZmIuwuOwWm8Sn5pXiaCxXYGgO+HuWqH5USuKXLl0KCws2DiEiepj2zhYIX/AEQi5lYlPEDZy+fhshlzMRcjkTnrYmmBjgjrHdXGFloi92qNSMlFfJ8MeZuw3tmNQ0a8F+djiZmIvQ2Gy82MdT7HBEsfXuBas+3jYt9kIGEbVsKiXx48ePh729fWPFQkTULBjoSjGyswtGdnbBtcxCbIlMwc7odCTnlODjv6/ii39jMbyDEyb19EBXd8vHVjgRPc6By7eQW1IBB3MDDGjD7+nmLNjPHp/8fQ0RSbkoq5S1uFLyiio5fr97wWpyIFdgIKKWqc6N7fgjk4hIdW0czbFspD8i3xuAT57tgHZO5qiokmPnuXSMWXcSw9Ycx6aIGygu57rPVH+bI24AAMb3cIeutM5f7aSFfOxN4WRhiPIqOSKSWt5ScyGXM5FTXAF7MwMMbMcVGIioZapXd3oiIlKNiYEuJga64683+2LXG70xtpsrDHR1cDWjEIt2X0Lgx4fw/q6LuJpRKHaopGUSsooQmZwHHQkwPsBN7HCokd271FxYXMtbau6/C1Zu0OMFKyJqoer86SeXy1lKT0TUQBKJBF3crfDlc50Q+d4ALHq6LbxsTVBSIcPmyBQ8tTocY9adxK5zaSirlIkdLmmB6mXlBrR1gJOFkcjRUFMI8r2bxLew9eLjb917wYq9H4io5VJpTjwREamPpbE+Xu7nhWl9PXEqMRebI1Nw4HImzt64jbM3bmPZvit4rrsbJga4o5Wtidjhkga6UyHDjrNpAIDJPTk/uKXo7W0LXR0JknJKkJJb2mJWI7j3gpWzJS9YEVHLxTok+v/27jw+yvLe//97sk32DbIQsrKFXbawFCXgQlCruFWLpIJSrQoHOadqa3taPFp/VA8+PPqr9SxFUMEFtJwip4KUJSJLgLDJFrZAEkIIWSdkI8v9/SNk2jEBQTJb5vV8POaP3Pc11/W54CLMZ677ui4ATmYymfSDPt319vQR2vrLm/Xz2/opLsxfFbWN+u+vTmriwk36yaJsrTlQrKbmFmeHCxeyen+RLPVNSogM0E19ujs7HDhIqL+vRiRFSJKyjpY4ORrHqL3YxBdWAHAJSTwAuJDoUH/90y19tfkXN+tPj4zSxNQomUzS5mOlenJpjsa/ukFvrDuq4qp6Z4cKF9A2M/nw6CR5ebEBrSdpWxe/yUMeqV+1t0jVDU1K6hbIF1YAPB5JPAC4IG8vk24dGKMlj47WV89N0lMTe6tbkJ/OWRr05vpjGv/qBj3x/i59dfS8WlrYeNQTHThTpb0FlfL1NulHo+KdHQ4crG1d/NYTZWpo6tr7ZxiGoaXZrRvaPTw6kS+sAHg8kngAcHEJkYH6xZT+2vrCzXpr2nCNTolUc4uhLw+d0yPv7tCk1zfpv7JOqLzmorNDhQN9uKN1Fn7K4B7qHmx2cjRwtIE9QhUdYlZdY7N25lU4Oxy72ldYpQNnLPLz8dKPRnECAwCQxAOAmzD7eOvuG+K0/Gfj9OU/T9DMHyQrxOyj02W1WvDFEY39/9Zr3sd7tOtUOceCdnEXGpr0lz1nJEnTx7BLtycymUx/36W+i6+LX3rpWLk7h/RQZJCfk6MBAOcjiQcAN9QvJkQv3j1I2b++Ra/eP0RDeobpYnOL/ndvkR74z226/c3N+mDbKVXXNzo7VHSSmoYmfX2sVG+sO6rMP2Wr5mKzekcFaUxKpLNDg5Oke8C6+Mrai/p8X5EkKXMsX1gBgMQRcwDg1gL9fPRQWqIeSkvUvoJKLcs+rVX7inSkuFq/+ctBLfjiiKYO66nMsYkaFBfm7HBxDcouNGjnqQrtPFWuXafKdaDIouZv7X/w+E29ZDKxPthT3dQnSl4m6VjJBZ2prFPPLnjs2qc5hWpoalH/2BCNSIxwdjgA4BJI4gGgi7ghIVw3JITr13cM1Ge7C7Us+7ROnK/RRzvy9dGOfA1PDFfmmCTdObSH/H29nR0u/oFhGCqsqNOOvHLtPNX6OnG+pl25nuEBSkuO0KjkSI3tFak+0SFOiBauIizQV8MTI5RzukJZuef1cBdbWmEYhj68dAJD5tgkvrACgEtI4gGgiwkL9NVjN6bo0fHJ2n6yXMuyT2vtwWLtya/UnvxKvfx/h/TAiHg9PCZRvaKCnR2uR2ppMZR7rlo7T5VrR165dp2qULGl/bGB/WKClZYcqdEpkRqVHNklZ1pxfSb2i2pN4o+WdLkkfuuJMp0srVGQn7fuGd7T2eEAgMsgiQeALspkMmlc724a17ubzlc3aPmuAn2Yna8zlXX609d5+tPXeRrfp5syxyTp1oEx8vVmmxR7aWhq1jeFVdpxqlw788q163SFquubbMr4eJk0JD5Mo5MjlZYcqVHJEQoPZBMvXFl6apReX3dUW46X6WJTi/x8us6/47YN7e4d0VPBZj6yAkAbfiMCgAeICjFr9qQ+ejK9t7KOlmjp9nxtzC3RluNl2nK8TNEhZv04LUE/Hp2oOGZ7r5ulvlE5pyu061S5duZVaG9hpS42tdiUCfLz1oikCKVdStqHJYQrwI9lDrg2g+PC1C3IT2U1F7U7v0Jje3Vzdkid4pylXl8eOiep9VF6AMDfkcQDgAfx9jLp5v4xurl/jAoravXRjnx9srNAJdUNemvDcf1h43Hd3D9GmWMTNaFvlLy8WIN6NUos9dpxqvWx+B155TpSbNG39qBT92A/jUqKVFpKpEYnR2pAjxD58PQDrpOXl0kT+kVp5Z4z2pR7vssk8R/vKFBzi6FRSRHqHxvq7HAAwKWQxAOAh4qPCNRzGf31zC399OWhYi3dflrbT5brb4fP6W+HzykhMkAPj07Sg6Pi1S3Y7OxwXYZhGMorrbm0AV3r7vGny2rblUvqFnhplr11tj2lexAbc8EuJqa2JfEl+uXt/Z0dznVram7RRztaN7SbzrFyANAOSTwAeDg/Hy/9cGicfjg0TsdLqrUsO1+f5hSqoLxOr645ojfWHdWUwbHKHJuktOQIj0tEm5pbdPhs9aWZ9tbEvfRCg00Zk0kaEBt6aQO61qQ9JtTfSRHD09zUN0omk3SkuFrnLPVuP/Y2HClRsaVeEYG+un1wD2eHAwAuhyQeAGDVJzpE8+8apOcz+uvz/UVatv209hVWadW+Iq3aV6R+McGaPiZJ947oqVB/X2eHaxf1jc3ak19pPept9+kK1Vxstinj5+OlYfHhSktpTdhHJEV02T8PuL7IID8NjQ/XvoJKZeWe14NpCc4O6bosvXSs3IOjEjgOEwA6QBIPAGgnwM9bD45K0IOjEvRNYZWWZZ/WX/YW6ei5C5q/6qB+/8URTR0Wp8yxSRrcM8zZ4V6XytqL2nXpsfgdp8p14EyVGpttF7SH+PtoVFKEdT37kPgwmX1ILuA6JvaLak3ij7p3En+6rEZfHT0vSV3uyDwA6Cwk8QCAKxoSH6bfxw/VC3cM0MrdhVqWna9jJRf08c4CfbyzQDckhGv6mETdNTTOLXZXP1NZp12XzmffeapcR89daFcmJtRsPZ89LTlSqTEhbPIHl5aeGqU31x/T5mPn1dTc4rabJn54aRZ+Qr8oJXULcnI0AOCaSOIBAFclLMBXM8enaMYPkrUjr1zLsvP1xYGz2ldQqX0Flfrd6kN6YGSCHh6TqD7Rwc4OV5LU0mLo+PkLrY/G57WuZz9TWdeuXO+oIOtRb6NTIhUfEeBxa//h3m6ID1d4oK8qaxu1t6BSo5IjnR3SNatvbNbyXQWSpExm4QHgskjiAQDXxGQyaUyvbhrTq5tKLwzU8l0F+jA7X4UVdXp3S57e3ZKncb26KXNskm4bGCM/H8fNCF5satGBoqpLM+0V2nW6XJW1jTZlvL1MGhwXqrTkSI26tHs8u+/D3Xl7mXRT3yh9vq9Im3LPu2US/8WBs6qobVSPMH/d3D/a2eEAgMsiiQcAfG/dg816emIfPTmht7KOndey7ae14UiJtp0s07aTZeoebNaP0xI0bUyieoYHdHr7NQ1N2p1f0XrUW1659hRUqL6xxaZMgK+3hieGW2fZhyWEK8jMf3/oeib2a03is46e17MZqc4O55ot3d76KP200YluuxwAAByBTzEAgOvm5WXSpNRoTUqN1pnKOn28I18f7yzQ+eoG/WHjcf1x03FNSo1W5tgkTegXJe/vub689EKDzSz7wSKLmltsN6GLCPTVqOTWDejSUiI1KC5UviQE8AAT+kVJkr45U6Xz1Q2KCnGfJ0wOn7Uo53SFfLxM+rEbb8wHAI5AEg8A6FQ9wwP088mpmntLX607dE5Lt5/W1hNlWn+kROuPlCg+IkDTRifqwVEJV0wyDMNQQXmddljXs5frZGlNh+21bUA3OiVCvboHswkdPFJUiFmDe4bqwBmLNh87r/tGxDs7pKu2dPtpSdLkQTGKdvNz7gHA3pyaxC9YsEB//vOfdeTIEQUEBOgHP/iBXn31VaWmtj4CVl5ervnz5+vLL79Ufn6+oqKidM899+jll19WWNjljzSaOXOm3nvvPZtrGRkZWrNmjV37AwD4O19vL90xpIfuGNJDJ85f0IfZ+fo0p1CFFXX697W5+o+/HVXGoFhljk3SmJRItRhSbnG19ai3XafKdc7SYFOnySSlxoRoVHKEdSO6ODs8pg+4q/R+UTpwxqJNue6TxF9oaNL/7jkjScock+TkaADA9Tk1ic/KytLs2bOVlpampqYm/epXv9LkyZN16NAhBQUFqaioSEVFRVq4cKEGDhyo06dP68knn1RRUZE+/fTTK9Y9ZcoULV682Pqz2ew+j5QBQFfTOypYv/nhQD2XkarV+89q6fbT2ltQqdX7z2r1/rNKjAxURe1FVdc32bzP19ukofHhGpUcodHJkRqVFKmwQF8n9QJwfRNTo/X2xhP66th5NbcY33vpiiOt3HNGNReb1SsqSON6d3N2OADg8pyaxH97ZnzJkiWKjo5WTk6OJkyYoMGDB+uzzz6z3u/du7deeeUVZWZmqqmpST4+lw/fbDYrNjbWbrEDAK6dv6+3HhgZrwdGxuvAmSoty87XX/aeUX55rSQp2OyjEUkRGp0coVHJrZvQ+fu6/tnzgKsYnhCuEH8fVdY2an9hpYYnRjg7pCsyDEPLLj1KP31MEkc7AsBVcKk18VVVVZKkyMjLH4tSVVWl0NDQKybwkrRp0yZFR0crIiJCN998s373u9+pW7eOv91taGhQQ8PfH9m0WCzfI3oAwLUY3DNMC+4bohfu6K9tJ8rUMzxA/WND2JUauA4+3l66qW93/fWbYm3KPe/ySXzO6QodKa6Wv6+XHnCTx/8BwNlc5pNSS0uL5s2bp/Hjx2vw4MEdliktLdXLL7+sJ5544op1TZkyRe+//77Wr1+vV199VVlZWbr99tvV3NzcYfkFCxYoLCzM+kpIYFdUAHCUUH9fZQyK1eCeYSTwQCeY2K/1jPWso+edHMl3a9vQ7q6hcSyVAYCrZDIMw/juYvb31FNP6YsvvtDXX3+t+Pj238RaLBbddtttioyM1KpVq+Tre/W/6E+ePKnevXvrb3/7m2655ZZ29zuaiU9ISLDO+gMAALiL4qp6jV2wXiaTlPOvtykyyM/ZIXWo7EKDxi3YoIvNLfrL7PG6ISHc2SEBgFNZLBaFhYV9Zx7qElMec+bM0erVq7Vx48YOE/jq6mpNmTJFISEhWrly5TUl8JLUq1cvde/eXcePH+/wvtlsVmhoqM0LAADAHcWG+at/bIgMQ9p8zHVn4z/NKdTF5hYN7hmqofGXP3UIAGDLqUm8YRiaM2eOVq5cqQ0bNiglJaVdGYvFosmTJ8vPz0+rVq2Sv/+1nx1aWFiosrIy9ejRozPCBgAAcGnpqVGSpKxc10ziW1oMfbgjX1LrsXJsaAcAV8+pSfzs2bO1dOlSffjhhwoJCVFxcbGKi4tVV1cn6e8JfE1NjRYtWiSLxWIt84/r2/v376+VK1dKki5cuKDnnntO27dv16lTp7R+/XpNnTpVffr0UUZGhlP6CQAA4Eht6+K/OnZeLS0usXLSxubjpTpdVqsQfx/dPSzO2eEAgFtx6u7077zzjiRp4sSJNtcXL16smTNnavfu3crOzpYk9enTx6ZMXl6ekpOTJUm5ubnWne29vb21f/9+vffee6qsrFRcXJwmT56sl19+mbPiAQCARxiZFKEgP2+VXriog0UWDXGxx9XbNrS7f0S8Av1c6rAkAHB5Tv2t+V176k2cOPE7y3y7noCAAK1du/a6YwMAAHBXfj5eGt+nu748dE6bcktcKokvqqzT+sPnJEnTxyQ6ORoAcD8usbEdAAAAOpd1XbyLHTX38Y58tRjSmJRI9Y0JcXY4AOB2SOIBAAC6oImprevid+dXqKq20cnRtGpsbtHHOwskSZljk5wcDQC4J5J4AACALqhneID6RgerxZC+Pl7q7HAkSesOnVNJdYO6B5uVMSjW2eEAgFsiiQcAAOii0vu1PlK/KbfEyZG0atvQ7qG0ePn58DEUAL4PfnsCAAB0UW2P1GcdPX9VmwXb04nzF7T1RJlMJmnaaDa0A4DviyQeAACgi0pLiVCAr7dKqht0+Gy1U2NZtj1fknRzarTiIwKdGgsAuDOSeAAAgC7K7OOtH/TuJsm5u9TXXWzWpzlsaAcAnYEkHgAAoAtrO2rOmeviP99fJEt9k+IjAjTh0jp9AMD3QxIPAADQhU3s17ouPud0harrnXPU3LJLG9o9PCZR3l4mp8QAAF0FSTwAAEAXltgtUCndg9TUYmjL8TKHt/9NYZX2FVbJ19ukB0clOLx9AOhqSOIBAAC6uLaj5rKOOv6R+mXZrbPwtw/uoe7BZoe3DwBdDUk8AABAF9e2Lj4r17FHzVnqG/WXvUWSpOljOFYOADoDSTwAAEAXN65XN5l9vFRUVa9jJRcc1u6fcwpV19isfjHBGp0S6bB2AaArI4kHAADo4vx9vTW216Wj5nIdc9ScYRhamt16Nvz0MUkymdjQDgA6A0k8AACAB2hbF7/JQevis/PKdbzkggJ8vXXviJ4OaRMAPAFJPAAAgAeYeGld/M68CtU0NNm9vaWXjpW7Z3icQv197d4eAHgKkngAAAAPkNI9SAmRAbrY3KJtJ+x71Nz56gatPVgsqfVRegBA5yGJBwAA8AAmk0kT+0VLkrKO2ndd/PJdBWpsNjQsIVyDe4bZtS0A8DQk8QAAAB7iH9fF2+uoueYWQx9e2tAucyyz8ADQ2UjiAQAAPMS43t3k5+2lgvI65ZXW2KWNTbklOlNZp7AAX/1waA+7tAEAnowkHgAAwEMEmX2UlhIhSdpkp6Pm2ja0+9HIePn7etulDQDwZCTxAAAAHqRtXfwmO6yLLyivtdY7nUfpAcAuSOIBAAA8SNtRc9kny1Tf2NypdX+4I1+GId3Yp7tSugd1at0AgFYk8QAAAB6kT3Sw4sL81dDUom0nO++ouYamZi3fWSBJyhyb2Gn1AgBskcQDAAB4EJPJpPTUS0fNdeK6+DUHilVWc1ExoWbdOiCm0+oFANgiiQcAAPAwbUfNdeZ58cu2tx4r9+O0RPl48xETAOyF37AAAAAeZnyfbvLxMimvtEany67/qLmj56q141S5vL1MmjaaR+kBwJ5I4gEAADxMiL+vRia1HjXXGbPxyy4dK3dL/2jFhvlfd30AgMsjiQcAAPBAEztpXXxNQ5P+vPuMJCmTY+UAwO5I4gEAADxQ27r4rSeu76i5VfuKVN3QpKRugbqxT/fOCg8AcBkk8QAAAB5oQI8QRYeYVdfYrF2nKr5XHYZhaOmlR+mnj0mUl5epM0MEAHSAJB4AAMADmUwm62z8ptyS71XH3oJKHSyyyM/HSz8amdCZ4QEALoMkHgAAwEO1rYvf9D03t1t66Vi5Hw7poYggv06LCwBweSTxAAAAHurGvt3l7WXS8ZILKqyovab3VtZe1Or9RZKk6WxoBwAOQxIPAADgocICfDU8IVzStR8192lOoRqaWjSgR6hGJIZ3fnAAgA6RxAMAAHiwiamt6+Kv5ai5lhZDy7JbH6XPHJsok4kN7QDAUUjiAQAAPFh6v9Z18VuOl+piU8tVvWfriTLlldYo2Oyje4b1tGd4AIBvIYkHAADwYIPiQtU92E81F5uVc/rqjpprO1bu3uE9FWT2sWd4AIBvIYkHAADwYF5eJk3oe+mouaPffdRccVW91h0+J0nKZEM7AHA4kngAAAAPl34N6+I/3pmv5hZDackRSo0NsXdoAIBvIYkHAADwcDf1jZLJJB0prlZxVf1lyzU1t+jjHQWSmIUHAGchiQcAAPBwkUF+uiE+XJL01RWOmlt/pETFlnp1C/LTlMGxDooOAPCPSOIBAABgPWruSuvi2za0+9GoBJl9vB0SFwDAFkk8AAAAlN6vNYnffKxUTc3tj5o7VVqjzcdKZTJJD49OdHR4AIBLSOIBAACgofHhigj0VXV9k/YUVLa7/+GOfEnShL5RSuwW6ODoAABtSOIBAAAgby+Tbmo7ai7X9pH6+sZmrdjFhnYA4AqcmsQvWLBAaWlpCgkJUXR0tO655x7l5uZa75eXl+uf/umflJqaqoCAACUmJmru3Lmqqqq6Yr2GYei3v/2tevTooYCAAN166606duyYvbsDAADg1trWxWd9a3O7v35zVhW1jYoL89fN/aOdERoA4BKnJvFZWVmaPXu2tm/frnXr1qmxsVGTJ09WTU2NJKmoqEhFRUVauHChDhw4oCVLlmjNmjWaNWvWFet97bXX9NZbb+k///M/lZ2draCgIGVkZKi+/vJHpgAAAHi6tpn4A2csKqn+++emtg3tpo1OlLeXySmxAQBamQzDMJwdRJvz588rOjpaWVlZmjBhQodlVqxYoczMTNXU1MjHx6fdfcMwFBcXp5///Od69tlnJUlVVVWKiYnRkiVL9OMf//g747BYLAoLC1NVVZVCQ0Ovr1MAAABu5K7//2t9c6ZKr//oBt0/Ml6Hiiy6463N8vEyaesLNys6xN/ZIQJAl3S1eahLrYlve0w+MjLyimVCQ0M7TOAlKS8vT8XFxbr11lut18LCwjRmzBht27atw/c0NDTIYrHYvAAAADxR2y71my49Ur80u3UWPmNQLAk8ALgAl0niW1paNG/ePI0fP16DBw/usExpaalefvllPfHEE5etp7i4WJIUExNjcz0mJsZ679sWLFigsLAw6yshIeF79gIAAMC9ta2L33zsvKrqGvW/e85IkqaP5Vg5AHAFLpPEz549WwcOHNDHH3/c4X2LxaI777xTAwcO1Isvvtipbb/wwguqqqqyvgoKCjq1fgAAAHcxLCFcof4+qqxt1L99flC1F5vVOypI43p1c3ZoAAC5SBI/Z84crV69Whs3blR8fHy7+9XV1ZoyZYpCQkK0cuVK+fr6Xrau2NhYSdK5c+dsrp87d85679vMZrNCQ0NtXgAAAJ7Ix9vLusHdn3dfmoUfkySTiQ3tAMAVODWJNwxDc+bM0cqVK7VhwwalpKS0K2OxWDR58mT5+flp1apV8ve/8lqslJQUxcbGav369TZ1ZGdna9y4cZ3eBwAAgK4m/dIj9ZLk7+ul+0e2n2QBADiHU5P42bNna+nSpfrwww8VEhKi4uJiFRcXq66uTtLfE/iamhotWrRIFovFWqa5udlaT//+/bVy5UpJkslk0rx58/S73/1Oq1at0jfffKNHHnlEcXFxuueee5zRTQAAALfStrmdJN19Q5zCAi7/FCQAwLE63uLdQd555x1J0sSJE22uL168WDNnztTu3buVnZ0tSerTp49Nmby8PCUnJ0uScnNzrTvbS9Lzzz+vmpoaPfHEE6qsrNSNN96oNWvWfOcsPgAAAKSYUH+NSYnUnvxKzfhBsrPDAQD8A5c6J95VcE48AADwdNX1jaqsbVRCZKCzQwEAj3C1eahTZ+IBAADgmkL8fRXiz2P0AOBqXGJ3egAAAAAA8N1I4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA34ePsAFyRYRiSJIvF4uRIAAAAAACeoC3/bMtHL4ckvgPV1dWSpISEBCdHAgAAAADwJNXV1QoLC7vsfZPxXWm+B2ppaVFRUZFCQkJkMpmcHc5lWSwWJSQkqKCgQKGhoc4OB10U4wyOwDiDvTHG4AiMMzgC46zrMgxD1dXViouLk5fX5Ve+MxPfAS8vL8XHxzs7jKsWGhrKP2DYHeMMjsA4g70xxuAIjDM4AuOsa7rSDHwbNrYDAAAAAMBNkMQDAAAAAOAmSOLdmNls1vz582U2m50dCrowxhkcgXEGe2OMwREYZ3AExhnY2A4AAAAAADfBTDwAAAAAAG6CJB4AAAAAADdBEg8AAAAAgJsgiQcAAAAAwE2QxDvZggULlJaWppCQEEVHR+uee+5Rbm6uTZn6+nrNnj1b3bp1U3BwsO6//36dO3fOpszcuXM1cuRImc1mDRs2rMO29u/fr5tuukn+/v5KSEjQa6+9Zq9uwYU4aoxt2rRJU6dOVY8ePRQUFKRhw4Zp2bJl9uwaXIgjf5e1OX78uEJCQhQeHt7JvYGrcuQ4MwxDCxcuVL9+/WQ2m9WzZ0+98sor9uoaXIQjx9jatWs1duxYhYSEKCoqSvfff79OnTplp57BlXTGONu3b5+mTZumhIQEBQQEaMCAAXrzzTfbtbVp0yaNGDFCZrNZffr00ZIlS+zdPTgASbyTZWVlafbs2dq+fbvWrVunxsZGTZ48WTU1NdYy//zP/6zPP/9cK1asUFZWloqKinTfffe1q+uxxx7TQw891GE7FotFkydPVlJSknJycvTv//7vevHFF/Xf//3fdusbXIOjxtjWrVs1dOhQffbZZ9q/f78effRRPfLII1q9erXd+gbX4ahx1qaxsVHTpk3TTTfd1Ol9gety5Dh75pln9Kc//UkLFy7UkSNHtGrVKo0ePdou/YLrcNQYy8vL09SpU3XzzTdr7969Wrt2rUpLSzusB11PZ4yznJwcRUdHa+nSpTp48KB+/etf64UXXtAf/vAHa5m8vDzdeeedmjRpkvbu3at58+bppz/9qdauXevQ/sIODLiUkpISQ5KRlZVlGIZhVFZWGr6+vsaKFSusZQ4fPmxIMrZt29bu/fPnzzduuOGGdtf/+Mc/GhEREUZDQ4P12i9+8QsjNTW18zsBl2avMdaRO+64w3j00Uc7JW64F3uPs+eff97IzMw0Fi9ebISFhXV2+HAT9hpnhw4dMnx8fIwjR47YLXa4B3uNsRUrVhg+Pj5Gc3Oz9dqqVasMk8lkXLx4sfM7Apd2veOszdNPP21MmjTJ+vPzzz9vDBo0yKbMQw89ZGRkZHRyD+BozMS7mKqqKklSZGSkpNZv2RobG3Xrrbday/Tv31+JiYnatm3bVde7bds2TZgwQX5+ftZrGRkZys3NVUVFRSdFD3dgrzF2ubba2oFnsec427Bhg1asWKG333678wKGW7LXOPv888/Vq1cvrV69WikpKUpOTtZPf/pTlZeXd24H4PLsNcZGjhwpLy8vLV68WM3NzaqqqtIHH3ygW2+9Vb6+vp3bCbi8zhpn3/7ctW3bNps6pNbP/9f7+Q7ORxLvQlpaWjRv3jyNHz9egwcPliQVFxfLz8+v3ZrPmJgYFRcXX3XdxcXFiomJaVdH2z14BnuOsW9bvny5du7cqUcfffR6QoYbsuc4Kysr08yZM7VkyRKFhoZ2ZthwM/YcZydPntTp06e1YsUKvf/++1qyZIlycnL0wAMPdGYX4OLsOcZSUlL05Zdf6le/+pXMZrPCw8NVWFio5cuXd2YX4AY6a5xt3bpVn3zyiZ544gnrtct9/rdYLKqrq+vcjsChfJwdAP5u9uzZOnDggL7++mtnh4IuylFjbOPGjXr00Uf1P//zPxo0aJBd24Lrsec4e/zxx/Xwww9rwoQJnV433Is9x1lLS4saGhr0/vvvq1+/fpKkRYsWaeTIkcrNzVVqamqntwnXY88xVlxcrMcff1wzZszQtGnTVF1drd/+9rd64IEHtG7dOplMpk5vE66pM8bZgQMHNHXqVM2fP1+TJ0/uxOjgqpiJdxFz5szR6tWrtXHjRsXHx1uvx8bG6uLFi6qsrLQpf+7cOcXGxl51/bGxse12Tm37+Vrqgfuy9xhrk5WVpbvuuktvvPGGHnnkkesNG27G3uNsw4YNWrhwoXx8fOTj46NZs2apqqpKPj4+evfddzurG3Bx9h5nPXr0kI+PjzWBl6QBAwZIkvLz868veLgFe4+xt99+W2FhYXrttdc0fPhwTZgwQUuXLtX69euVnZ3dWd2Ai+uMcXbo0CHdcssteuKJJ/Sv//qvNvcu9/k/NDRUAQEBndsZOBRJvJMZhqE5c+Zo5cqV2rBhg1JSUmzujxw5Ur6+vlq/fr31Wm5urvLz8zVu3LirbmfcuHH66quv1NjYaL22bt06paamKiIi4vo7ApflqDEmtR5jcuedd+rVV1+1eZwLXZ+jxtm2bdu0d+9e6+ull15SSEiI9u7dq3vvvbfT+gPX5KhxNn78eDU1NenEiRPWa0ePHpUkJSUlXWcv4MocNcZqa2vl5WX7Mdzb21tS65Mg6No6a5wdPHhQkyZN0owZMzo8AnPcuHE2dUitn/+v9fMdXJAzd9WDYTz11FNGWFiYsWnTJuPs2bPWV21trbXMk08+aSQmJhobNmwwdu3aZYwbN84YN26cTT3Hjh0z9uzZY/zsZz8z+vXrZ+zZs8fYs2ePdTf6yspKIyYmxvjJT35iHDhwwPj444+NwMBA47/+678c2l84nqPG2IYNG4zAwEDjhRdesGmnrKzMof2FczhqnH0bu9N7FkeNs+bmZmPEiBHGhAkTjN27dxu7du0yxowZY9x2220O7S8cz1FjbP369YbJZDL+7d/+zTh69KiRk5NjZGRkGElJSTZtoWvqjHH2zTffGFFRUUZmZqZNHSUlJdYyJ0+eNAIDA43nnnvOOHz4sPH2228b3t7expo1axzaX3Q+kngnk9Tha/HixdYydXV1xtNPP21EREQYgYGBxr333mucPXvWpp709PQO68nLy7OW2bdvn3HjjTcaZrPZ6Nmzp/H73//eQb2EMzlqjM2YMaPD++np6Y7rLJzGkb/L/hFJvGdx5Dg7c+aMcd999xnBwcFGTEyMMXPmTL6U9ACOHGMfffSRMXz4cCMoKMiIiooy7r77buPw4cMO6imcqTPG2fz58zusIykpyaatjRs3GsOGDTP8/PyMXr162bQB92UyDMO4jol8AAAAAADgIKyJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAMCFlZWVKTo6WqdOnXJou0uWLFF4eLhd6l6zZo2GDRumlpYWu9QPAEBXRhIPAIALe+WVVzR16lQlJye3u5eRkSFvb2/t3LnT8YFdhylTpsjX11fLli27bJlZs2ZpyJAhunjxos31v/71r/Lz89Pu3bvtHSYAAC6JJB4AABdVW1urRYsWadasWe3u5efna+vWrZozZ47effddJ0T3/TQ2NkqSZs6cqbfeeuuy5d544w1VV1dr/vz51muVlZV6/PHH9Zvf/EYjRoywW2wAALgykngAAFzUX//6V5nNZo0dO7bdvcWLF+uHP/yhnnrqKX300Ueqq6uzuT9x4kTNnTtXzz//vCIjIxUbG6sXX3zRpkxlZaV+9rOfKSYmRv7+/ho8eLBWr15tU2bt2rUaMGCAgoODNWXKFJ09e9Z6r6WlRS+99JLi4+NlNps1bNgwrVmzxnr/1KlTMplM+uSTT5Seni5/f3/r7Ptdd92lXbt26cSJEx32PTQ0VIsXL9brr7+u7OxsSdK8efPUs2dPvfDCCyooKNCDDz6o8PBwRUZGaurUqTZLDnbu3KnbbrtN3bt3V1hYmNLT09vN3ptMJr3zzju6++67FRQUpFdeeeUyfxMAALgOkngAAFzU5s2bNXLkyHbXDcPQ4sWLlZmZqf79+6tPnz769NNP25V77733FBQUpOzsbL322mt66aWXtG7dOkmtCfjtt9+uLVu2aOnSpTp06JB+//vfy9vb2/r+2tpaLVy4UB988IG++uor5efn69lnn7Xef/PNN/X6669r4cKF2r9/vzIyMnT33Xfr2LFjNnH88pe/1DPPPKPDhw8rIyNDkpSYmKiYmBht3rz5sv2fNGmSnn76ac2YMUMrVqzQ8uXL9f7778swDGVkZCgkJESbN2/Wli1brF8ytD1+X11drRkzZujrr7/W9u3b1bdvX91xxx2qrq62aePFF1/Uvffeq2+++UaPPfbYd/2VAADgfAYAAHBJU6dONR577LF217/88ksjKirKaGxsNAzDMN544w0jPT3dpkx6erpx44032lxLS0szfvGLXxiGYRhr1641vLy8jNzc3A7bXrx4sSHJOH78uPXa22+/bcTExFh/jouLM1555ZV2bTz99NOGYRhGXl6eIcn4j//4jw7bGD58uPHiiy92eK9NbW2tkZqaanh5eRlvvPGGYRiG8cEHHxipqalGS0uLtVxDQ4MREBBgrF27tsN6mpubjZCQEOPzzz+3XpNkzJs374rtAwDgapiJBwDARdXV1cnf37/d9XfffVcPPfSQfHx8JEnTpk3Tli1b2j2aPnToUJufe/TooZKSEknS3r17FR8fr379+l22/cDAQPXu3bvD91ssFhUVFWn8+PE27xk/frwOHz5sc23UqFEd1h8QEKDa2trLtt9W5tlnn1VgYKCeeeYZSdK+fft0/PhxhYSEKDg4WMHBwYqMjFR9fb31z+DcuXN6/PHH1bdvX4WFhSk0NFQXLlxQfn7+VcUGAICr8nF2AAAAoGPdu3dXRUWFzbXy8nKtXLlSjY2Neuedd6zXm5ub9e6779qs6/b19bV5r8lksh7rFhAQ8J3td/R+wzCuuR9BQUEdXi8vL1dUVNR3vt/Hx0fe3t4ymUySpAsXLmjkyJEd7m7fVt+MGTNUVlamN998U0lJSTKbzRo3bly73e4vFxsAAK6KmXgAAFzU8OHDdejQIZtry5YtU3x8vPbt26e9e/daX6+//rqWLFmi5ubmq6p76NChKiws1NGjR79XbKGhoYqLi9OWLVtsrm/ZskUDBw78zve3zZoPHz78mtseMWKEjh07pujoaPXp08fmFRYWZo1j7ty5uuOOOzRo0CCZzWaVlpZec1sAALgakngAAFxURkaGDh48aDMbv2jRIj3wwAMaPHiwzWvWrFkqLS212R3+StLT0zVhwgTdf//9WrdunfLy8vTFF19c9fsl6bnnntOrr76qTz75RLm5ufrlL3+pvXv3Wh97v5Lt27dbZ8ev1fTp09W9e3dNnTpVmzdvVl5enjZt2qS5c+eqsLBQktS3b1998MEHOnz4sLKzszV9+vSrevoAAABXRxIPAICLGjJkiEaMGKHly5dLknJycrRv3z7df//97cqGhYXplltu0aJFi666/s8++0xpaWmaNm2aBg4cqOeff/6qZ/Ilae7cufqXf/kX/fznP9eQIUO0Zs0arVq1Sn379v3O93700UeaPn26AgMDr7q9NoGBgfrqq6+UmJio++67TwMGDNCsWbNUX1+v0NBQSa1fdlRUVGjEiBH6yU9+orlz5yo6Ovqa2wIAwNWYjO+zuA0AADjE//3f/+m5557TgQMH5OXVNb57Ly0tVWpqqnbt2qWUlBRnhwMAgFthYzsAAFzYnXfeqWPHjunMmTNKSEhwdjid4tSpU/rjH/9IAg8AwPfATDwAAAAAAG6iazyXBwAAAACAByCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICb+H/pV4+eGtrqUQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2273,17 +2300,19 @@ } ], "source": [ - "ground_truth = test_y_torch.squeeze().numpy()\n", - "\n", "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", - "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "\n", + "# target_series_sel = lilio.resample(calendar, target_field[\"t2m\"].sel(cluster=3))\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "ax.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions\")\n", + "ax.scatter(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] @@ -2310,12 +2339,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 203, "metadata": {}, "outputs": [], "source": [ "from s2spy import RGDR\n", - "from sklearn.linear_model import Ridge\n", + "from sklearn.linear_model import RidgeCV\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import KFold\n", "\n", @@ -2333,7 +2362,7 @@ "\n", "# prepare operator for dimensionality reduction\n", "target_intervals = 1\n", - "lag = 2" + "lag = 1" ] }, { @@ -2346,57 +2375,87 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 204, "metadata": {}, "outputs": [], "source": [ + "# suppress numpy warning\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", + "# cross-validation with Kfold\n", + "k_fold_splits = 5\n", + "kfold = KFold(n_splits=k_fold_splits)\n", + "cv = lilio.traintest.TrainTestSplit(kfold)\n", + "\n", + "# create lists for saving models and predictions\n", + "models = []\n", + "\n", + "rmse_train = []\n", + "rmse_test = []\n", + "train_test_splits = []\n", + "\n", + "# prepare operator for dimensionality reduction\n", + "target_intervals = 1\n", + "lags = list(np.arange(1, periods_of_interest + 1))\n", + "\n", + "RGDR_splits = []\n", "# cross validation based dimensionality reduction and model training\n", - "for x_train, x_test, y_train, y_test in cv.split(precursor_field_sel[:-test_samples],\n", - " y=target_series_sel[:-test_samples]):\n", - " # log train/test splits with anchor years\n", - " train_test_splits.append({\n", - " \"train\": x_train.anchor_year.values,\n", - " \"test\": x_test.anchor_year.values,\n", - " })\n", - " # fit dimensionality reduction operator RGDR\n", - " rgdr = RGDR(\n", - " target_intervals=target_intervals,\n", - " lag=lag,\n", - " eps_km=600,\n", - " alpha=0.05,\n", - " min_area_km2=0\n", - " )\n", - " rgdr.fit(x_train, y_train)\n", - " # save dimensionality reduction operator\n", - " RGDRs.append(rgdr)\n", - " # transform to train and test data\n", - " clusters_train = rgdr.transform(x_train)\n", - " clusters_test = rgdr.transform(x_test)\n", + "for split, (x_train, x_test, y_train, y_test) in enumerate(cv.split(precursor_field_sel, y=target_series_sel)):\n", + " clusters_train_lags = []\n", + " clusters_test_lags = []\n", + " RGDR_lags = []\n", + " for lag in lags:\n", + " # log train/test splits with anchor years\n", + " train_test_splits.append({\n", + " \"train\": x_train.anchor_year.values,\n", + " \"test\": x_test.anchor_year.values,\n", + " })\n", + " # RGDR\n", + " rgdr = RGDR(\n", + " target_intervals=target_intervals,\n", + " lag=lag,\n", + " eps_km=600,\n", + " alpha=0.05,\n", + " min_area_km2=0\n", + " )\n", + " # fit dimensionality reduction operator RGDR and transform\n", + " clusters_train_lag_xr = rgdr.fit_transform(x_train, y_train)\n", + " clusters_test_lag_xr = rgdr.transform(x_test)\n", + " # convert to numpy array, reshape and append\n", + " clusters_train_lag = clusters_train_lag_xr.to_numpy()\n", + " clusters_train_lag = clusters_train_lag.reshape(len(clusters_train_lag_xr.anchor_year),-1)\n", + " clusters_train_lags.append(clusters_train_lag)\n", + " clusters_test_lag = clusters_test_lag_xr.to_numpy()\n", + " clusters_test_lag = clusters_test_lag.reshape(len(clusters_test_lag_xr.anchor_year),-1)\n", + " clusters_test_lags.append(clusters_test_lag)\n", + " RGDR_lags.append(rgdr)\n", + " # concatenate lags\n", + " clusters_train = np.concatenate(clusters_train_lags, axis=1)\n", + " clusters_test = np.concatenate(clusters_test_lags, axis=1)\n", " # train model\n", - " ridge = Ridge(alpha=1.0)\n", - " model = ridge.fit(clusters_train.isel(i_interval=0), y_train.sel(i_interval=1))\n", + " ridge = RidgeCV(alphas=[0.005, 0.01, 0.1, 10, 25, 50])\n", + " model = ridge.fit(clusters_train, y_train.sel(i_interval=1))\n", " # save model\n", " models.append(model)\n", " # predict and save results\n", - " prediction = model.predict(clusters_test.isel(i_interval=0))\n", + " prediction = model.predict(clusters_test)\n", " # calculate and save rmse\n", " rmse_train.append(mean_squared_error(y_train.sel(i_interval=1),\n", - " model.predict(clusters_train.isel(i_interval=0))))\n", + " model.predict(clusters_train)))\n", " rmse_test.append(mean_squared_error(y_test.sel(i_interval=1),\n", - " prediction))" + " prediction))\n", + " RGDR_splits.append(RGDR_lags) " ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 205, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6ElEQVR4nO3de3zO9f/H8ce1sWFszueJcgg5k9Svg5JDJaovHeQUikYOyaFyiggp53NIKZWcihxyjOQ8OeY0Joch2WxjbPv8/ni3E8PGts91XXveb7fr1uf6XJ/r2mtbruu599FhWZaFiIiIiJvwsLsAERERkbSkcCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStZLG7gIwWGxvLqVOnyJUrFw6Hw+5yREREJAUsy+LSpUsULVoUD49bt81kunBz6tQp/P397S5DRERE7sCJEycoXrz4La/JdOEmV65cgPnh+Pr62lyNiIiIpERYWBj+/v7xn+O3kunCTVxXlK+vr8KNiIiIi0nJkBINKBYRERG3onAjIiIibkXhRkRERNxKphtzk1IxMTFcu3bN7jIklbJmzYqnp6fdZYiIiI0Ubq5jWRZnzpzh4sWLdpcidyh37twULlxY6xiJiGRSCjfXiQs2BQsWJEeOHPqAdCGWZREZGcnZs2cBKFKkiM0ViYiIHRRuEomJiYkPNvny5bO7HLkD2bNnB+Ds2bMULFhQXVQiIpmQBhQnEjfGJkeOHDZXIncj7venMVMiIpmTwk0y1BXl2vT7ExHJ3BRuRERExK0o3IiIiIhbUbiRZJUsWZLRo0fb/hoiIiKppdlSbuKJJ56gatWqaRYmtm7dio+PT5q8loiIZCKrV8NDD4GNk3PUcpOJWJZFdHR0iq4tUKCAZo2JiEjqHDoEzzwDlSrB6dO2laFwk0IRETe/XbmS8msvX07ZtanRpk0b1q1bx5gxY3A4HDgcDo4dO8batWtxOBz88ssv1KhRA29vbzZs2MCRI0do0qQJhQoVImfOnNSqVYtff/01yWte36XkcDiYPn06L7zwAjly5KBMmTIsXrw4VXUGBwfTpEkTcubMia+vL82bNyckJCT+8V27dlG3bl1y5cqFr68vNWrUYNu2bQAcP36cxo0bkydPHnx8fKhYsSJLly5N3Q9KRETST2wsdOgAUVFQujQULmxbKQo3KZQz581vL72U9NqCBW9+baNGSa8tWTL561JjzJgx1KlThw4dOnD69GlOnz6Nv79//ON9+vThk08+Yf/+/VSuXJnw8HCeeeYZVq1axc6dO2nYsCGNGzcmODj4ll9n0KBBNG/enD///JNnnnmGFi1acOHChRTVGBsbS5MmTbhw4QLr1q1j5cqVHD16lJdffjn+mhYtWlC8eHG2bt3K9u3b6dOnD1mzZgUgICCAqKgo1q9fz+7duxk+fDg5U/uDEhGR9PPFF7BunemOmjwZbFyWQ2Nu3ICfnx9eXl7kyJGDwskk5Y8++oinn346/n7evHmpUqVK/P3BgwezYMECFi9eTOfOnW/6ddq0acOrr74KwNChQxk7dixbtmyhYcOGt61x1apV7N69m6CgoPjgNXv2bCpWrMjWrVupVasWwcHBvPfee9x///0AlClTJv75wcHBvPTSS1SqVAmAe++997ZfU0REMsipU/Dee+Z4yBAoVcrWchRuUig8/OaPXb/C/39bGyXL47q2smPH7rikFKtZs2aS++Hh4QwcOJAlS5Zw+vRpoqOjuXz58m1bbipXrhx/7OPjg6+vb/w+Trezf/9+/P39k7QoVahQgdy5c7N//35q1apFjx49aN++PV999RX16tWjWbNm3HfffQC88847dOrUiRUrVlCvXj1eeumlJPWIiIiNunSB0FCoVQveecfuatQtlVI+Pje/ZcuW8mv/2/rottembe1JX7Bnz54sWLCAoUOH8ttvvxEYGEilSpW4evXqLV8nrosojsPhIDY2Ns3qHDhwIHv37uXZZ59l9erVVKhQgQULFgDQvn17jh49SsuWLdm9ezc1a9Zk3Lhxafa1RUTkDs2fb25ZssD06Tf+xW8DhRs34eXlRUxMTIqu3bhxI23atOGFF16gUqVKFC5cmGPp3IRUvnx5Tpw4wYkTJ+LP7du3j4sXL1KhQoX4c2XLlqV79+6sWLGCF198kZkzZ8Y/5u/vT8eOHZk/fz7vvvsu06ZNS9eaRUTkNi5ehLjhDL17g5O0qCvcuImSJUuyefNmjh07xvnz52/ZolKmTBnmz59PYGAgu3bt4rXXXkvTFpjk1KtXj0qVKtGiRQt27NjBli1baNWqFY8//jg1a9bk8uXLdO7cmbVr13L8+HE2btzI1q1bKV++PADdunVj+fLlBAUFsWPHDtasWRP/mIiI2KRXLzPlu2xZ+PBDu6uJp3DjJnr27ImnpycVKlSgQIECtxw/89lnn5EnTx4efvhhGjduTIMGDahevXq61udwOFi0aBF58uThscceo169etx777189913AHh6evLPP//QqlUrypYtS/PmzWnUqBGDBg0CICYmhoCAAMqXL0/Dhg0pW7YsEydOTNeaRUTkFtauhbgW9GnTbhyjYSOHZVmW3UVkpLCwMPz8/AgNDcXX1zfJY1euXCEoKIhSpUqRzYl+SZI6+j2KiKSzy5ehShWzaN9bb5mp3+nsVp/f11PLjYiIiKTO4MEm2BQtCsOH213NDRRuREREJOV27YIRI8zxxIng52dvPclQuBEREZGUiY6Gdu0gJgb+9z9o0sTuipKlcCMiIiIpM2YMbN8OuXODE681pnAjIiIit3f0KPTrZ44//dTWjTFvR+FGREREbs2yzKyoy5ehbl144w27K7olhRsRERG5tdmz4ddfzVo2U6fauuN3SijciIiIyM2FhED37uZ40CAoXdreelJA4Ubu2hNPPEG3bt3sLkNERNJD167w779QrRr06GF3NSmicOMm0iNgtGnThqZNm6bpa4qIiAv56Sf47juz0/f06WbnbxegcCMiIiI3CguDt982xz16QDrvQZiWFG7cQJs2bVi3bh1jxozB4XDgcDg4duwYAHv27KFRo0bkzJmTQoUK0bJlS86fPx//3Hnz5lGpUiWyZ89Ovnz5qFevHhEREQwcOJAvv/ySRYsWxb/m2rVrU1TPv//+S6tWrciTJw85cuSgUaNGHDp0KP7x48eP07hxY/LkyYOPjw8VK1Zk6dKl8c9t0aIFBQoUIHv27JQpU4aZM2em2c9KRERS6P334e+/4b77YOBAu6tJFddoX7KTZUFkpD1fO0eOFI1IHzNmDAcPHuSBBx7go48+AqBAgQJcvHiRJ598kvbt2/P5559z+fJlevfuTfPmzVm9ejWnT5/m1VdfZcSIEbzwwgtcunSJ3377Dcuy6NmzJ/v37ycsLCw+XOTNmzdFZbdp04ZDhw6xePFifH196d27N8888wz79u0ja9asBAQEcPXqVdavX4+Pjw/79u0jZ86cAPTr1499+/bxyy+/kD9/fg4fPszly5fv8AcoIiJ3ZONGs7UCmNlROXLYW08qKdzcTmQk/PfBm+HCw8HH57aX+fn54eXlRY4cOSicaFGl8ePHU61aNYYOHRp/bsaMGfj7+3Pw4EHCw8OJjo7mxRdf5J577gGgUqVK8ddmz56dqKioJK95O3GhZuPGjTz88MMAzJkzB39/fxYuXEizZs0IDg7mpZdeiv9a9957b/zzg4ODqVatGjVr1gSgZMmSKf7aIiKSBqKioEMH88f9G2/Ak0/aXVGqqVvKje3atYs1a9aQM2fO+Nv9998PwJEjR6hSpQpPPfUUlSpVolmzZkybNo1///33rr7m/v37yZIlC7Vr144/ly9fPsqVK8f+/fsBeOeddxgyZAiPPPIIAwYM4M8//4y/tlOnTsydO5eqVavSq1cvfv/997uqR0REUmnoUNi/HwoVgpEj7a7mjijc3E6OHKYFxY7bXTYDhoeH07hxYwIDA5PcDh06xGOPPYanpycrV67kl19+oUKFCowbN45y5coRFBSURj+85LVv356jR4/SsmVLdu/eTc2aNRn33x4ljRo14vjx43Tv3p1Tp07x1FNP0bNnz3StR0RE/rNnDwwbZo7HjYMUDkdwNgo3t+NwmK4hO26pWAHSy8uLmJiYJOeqV6/O3r17KVmyJKVLl05y8/mvu8vhcPDII48waNAgdu7ciZeXFwsWLLjpa95O+fLliY6OZvPmzfHn/vnnH/766y8qVKgQf87f35+OHTsyf/583n33XaZNmxb/WIECBWjdujVff/01o0ePZurUqamqQURE7kBMDLRvD9euwfPPm12/XZTCjZsoWbIkmzdv5tixY5w/f57Y2FgCAgK4cOECr776Klu3buXIkSMsX76ctm3bEhMTw+bNmxk6dCjbtm0jODiY+fPnc+7cOcqXLx//mn/++Sd//fUX58+f59q1a7eto0yZMjRp0oQOHTqwYcMGdu3axeuvv06xYsVo0qQJAN26dWP58uUEBQWxY8cO1qxZE/81+/fvz6JFizh8+DB79+7l559/jn9MRETS0cSJsHkz+PqaYyffYuFWFG7cRM+ePfH09KRChQoUKFCA4OBgihYtysaNG4mJiaF+/fpUqlSJbt26kTt3bjw8PPD19WX9+vU888wzlC1blg8//JBRo0bRqFEjADp06EC5cuWoWbMmBQoUYOPGjSmqZebMmdSoUYPnnnuOOnXqYFkWS5cuJWvWrADExMQQEBBA+fLladiwIWXLlmXif6Pyvby86Nu3L5UrV47vOps7d276/NBERMQ4fhz69jXHw4dDsWL21nOXHJZlWXYXkZHCwsLw8/MjNDQUX1/fJI9duXKFoKAgSpUqRbZs2WyqUO6Wfo8iIqlgWfDss/DLL/B//wfr1oGH87V93Orz+3rOV72IiIhknG+/NcHGywumTXPKYJNatn4H69evp3HjxhQtWhSHw8HChQtv+5yoqCg++OAD7rnnHry9vSlZsiQzZsxI/2JFRETczfnzZmNMgH794L/lQlydrYv4RUREUKVKFd544w1efPHFFD2nefPmhISE8MUXX1C6dGlOnz5NbGxsOlcqIiLihnr0MAGnUiXo1cvuatKMreGmUaNG8YNXU2LZsmWsW7eOo0ePxm8FoBVsRURE7sCyZfDVV2ZW1PTpplvKTbhUx9rixYupWbMmI0aMoFixYpQtW5aePXvecu+hqKgowsLCktxuJ5ONsXY7+v2JiNxGeDh07GiOu3aFBx+0t5405lJ7Sx09epQNGzaQLVs2FixYwPnz53n77bf5559/brpz9LBhwxg0aFCKXj9uqnJkZCTZs2dPs7olY0X+t9Fp3O9TRESu06+fmf59zz0weLDd1aQ5p5kK7nA4WLBgAU2bNr3pNfXr1+e3337jzJkz+Pn5ATB//nz+97//ERERkWwgiYqKIioqKv5+WFgY/v7+N51Kdvr0aS5evEjBggXJkSMHDhdexCizsSyLyMhIzp49S+7cuSlSpIjdJYmIOJ/Nm6FOHTMF/JdfoGFDuytKkdRMBXeplpsiRYpQrFix+GADZrl/y7L4+++/KVOmzA3P8fb2xtvbO8VfI24H7LNnz959wWKL3Llzp2oncxGRTOPq1YQdv19/3WWCTWq5VLh55JFH+OGHHwgPDydnzpwAHDx4EA8PD4oXL54mX8PhcFCkSBEKFiyYou0GxLlkzZoVT09Pu8sQEXFOI0fC7t2QPz98/rnd1aQbW8NNeHg4hw8fjr8fFBREYGAgefPmpUSJEvTt25eTJ08ye/ZsAF577TUGDx5M27ZtGTRoEOfPn+e9997jjTfeSPMxMp6envqQFBER93HgAHz0kTkeM8YEHDdl62ypbdu2Ua1aNapVqwZAjx49qFatGv379wfM+Jfg4OD463PmzMnKlSu5ePEiNWvWpEWLFjRu3JixY8faUr+IiIhLiI013VFXr0KjRvDqq3ZXlK6cZkBxRknNgCQRERG3MHkydOoEPj6wd6+ZJeVitLeUiIiIGCdPJqw+PHSoSwab1FK4ERERcVeWBW+/DZcuwUMPQUCA3RVlCIUbERERdzVvHixeDFmzmi0WMslEGYUbERERd3ThAnTubI779oWKFe2tJwMp3IiIiLij996Ds2fh/vvh/fftriZDKdyIiIi4m1WrYMaMhB2/U7FSvztQuBEREXEnkZHw1lvm+O234ZFH7K3HBgo3IiIi7mTgQDhyBIoXN1O/MyGFGxEREXexYweMGmWOJ02CTLpYrcKNiIiIO7h2Ddq1M1stvPwyPPec3RXZRuFGRETEHXz+OQQGQp48ZmPMTEzhRkRExNUdPgwDBpjjzz+HQoXsrcdmCjciIiKuzLLgzTfhyhWoVw9atbK7Itsp3IiIiLiyGTNgzRrInh2mTDFr22RyCjciIiKu6vRp6NnTHA8eDPfea289TkLhRkRExFW98w5cvAg1akDXrnZX4zQUbkRERFzRwoVm129PT7PFQpYsdlfkNBRuREREXE1oKAQEmONevaBqVVvLcTYKNyIiIq6md284dQrKlIF+/eyuxuko3IiIiLiS9evNrCiAadPMLClJQuFGRETEVVy5Ah06mOMOHeDxx+2tx0kp3IiIiLiKIUPg4EEoUgRGjLC7GqelcCMiIuIK/vwThg83xxMmQO7ctpbjzBRuREREnF1MDLRvD9HR8OKL8MILdlfk1BRuREREnN3YsbB1K/j5wbhxdlfj9BRuREREnFlQEHz4oTkeORKKFrW3HhegcCMiIuKsLAs6doTISDMzql07uytyCQo3IiIizurrr2HFCvD2NmvaeOhjOyX0UxIREXFGZ89Ct27meOBAsxqxpIjCjYiIiDPq1g0uXIAqVeDdd+2uxqUo3IiIiDibJUvg229NN9T06ZA1q90VuRSFGxEREWdy6RJ06mSOu3eHmjXtrccFKdyIiIg4kw8+gBMn4N574aOP7K7GJSnciIiIOItNm2D8eHM8ZQrkyGFvPS5K4UZERMQZREWZLRYsC9q0gXr17K7IZSnciIiIOINPPoF9+6BgQfj0U7urcWkKNyIiInbbtw8+/tgcjx0L+fLZW4+LU7gRERGxU2ys6Y66dg2eew6aN7e7IpencCMiImKnSZPMQOJcucyxw2F3RS5P4UZERMQuwcHQp485/uQTKF7c3nrchMKNiIiIHSzLLNYXHg4PP2x2/5Y0oXAjIiJih+++g6VLwctLO36nMf0kRUREMto//8A775jjDz6AChXsrcfNKNyIiIhktHffhXPnoGLFhDE3kmYUbkRERDLSihXw5ZdmVtT06aZbStKUwo2IiEhGiYiAt94yx126wEMP2VuPm1K4ERERySj9+8OxY1CiBAwZYnc1bkvhRkREJCNs3QqjR5vjyZPNon2SLhRuRERE0tu1a2aLhdhYaNECGjWyuyK3pnAjIiKS3j79FP7802yI+fnndlfj9mwNN+vXr6dx48YULVoUh8PBwoULU/zcjRs3kiVLFqpWrZpu9YmIiNy1v/6CQYPM8ejRUKCAreVkBraGm4iICKpUqcKECRNS9byLFy/SqlUrnnrqqXSqTEREJA3ExsKbb0JUFDRoYLqkJN1lsfOLN2rUiEZ30O/YsWNHXnvtNTw9PVPV2iMiIpKhpk+H9evBx8cMItaO3xnC5cbczJw5k6NHjzJgwIAUXR8VFUVYWFiSm4iISLo7dQree88cf/wxlCxpazmZiUuFm0OHDtGnTx++/vprsmRJWaPTsGHD8PPzi7/5+/unc5UiIiJA584QFgYPPmiOJcO4TLiJiYnhtddeY9CgQZQtWzbFz+vbty+hoaHxtxMnTqRjlSIiIsCPP8KCBZAli+ma8vS0u6JMxdYxN6lx6dIltm3bxs6dO+n8XwKOjY3FsiyyZMnCihUrePLJJ294nre3N97e3hldroiIZFb//pvQUtOnD1SqZG89mZDLhBtfX192796d5NzEiRNZvXo18+bNo1SpUjZVJiIikkivXnDmDJQrBx98YHc1mZKt4SY8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezYeHh488MADSZ5fsGBBsmXLdsN5ERERW6xZY7qhAKZNg2zZ7K0nk7I13Gzbto26devG3+/RowcArVu3ZtasWZw+fZrg4GC7yhMREUm5y5fNmjYAnTrBo4/aW08m5rAsy7K7iIwUFhaGn58foaGh+Pr62l2OiIi4iz59YPhwKFYM9u4FPz+7K3Irqfn8dpnZUiIiIk5r506zfxTAxIkKNjZTuBEREbkb0dFmx++YGGjWDJ5/3u6KMj2FGxERkbsxejTs2AF58sDYsXZXIyjciIiI3LkjR6B/f3M8ahQULmxvPQIo3IiIiNwZy4K33jKzpJ58Etq0sbsi+Y/CjYiIyJ2YNQtWrTJr2Uydqh2/nYjCjYiISGqdOQPvvmuOP/oI7rvP3nokCYUbERGR1Ora1ewhVb06dO9udzVyHYUbERGR1Fi8GL7/3uz0PX262flbnIrCjYiISEqFhcHbb5vjnj2hWjV765FkKdyIiIikVJ8+cPKkGWMzYIDd1chNKNyIiIikxIYNMGmSOZ42DbJnt7ceuSmFGxERkdu5cgU6dDDH7dpB3br21iO3pHAjIiJyO0OHwoEDZgXikSPtrkZuQ+FGRETkVnbvhmHDzPH48WYPKXFqCjciIiI3ExNjuqOio6FpU3jxRbsrkhRQuBEREbmZ8eNh82bw9TXH2mLBJSjciIiIJOfYMfjgA3M8YgQUK2ZrOZJyCjciIiLXsyzo2BEiIuCxxxJmSolLULgRERG53jffwPLl4O1tdvz20MelK9FvS0REJLFz58zGmAD9+0O5cvbWI6mmcCMiIpJY9+7wzz9QqRK8957d1cgdULgRERGJ88svMGeO6YaaPh2yZrW7IrkDCjciIiIA4eFmEDGYbqkHH7S3HrljCjciIiIAH34IwcFQsiQMHmx3NXIXFG5EREQ2b4axY83xlCng42NvPXJXFG5ERCRzu3oV2rc3a9u0agX169tdkdwlhRsREcnchg+HPXugQAH47DO7q5E0oHAjIiKZ1/79MGSIOR4zBvLls7ceSRMKNyIikjnFxpptFa5ehWefhVdesbsiSSMKNyIikjlNmQIbN0LOnDBxonb8diMKNyIikvn8/Tf07m2Ohw2DEiXsrUfSlMKNiIhkLpYFnTrBpUtQp445FreicCMiIpnLDz/Azz+brRWmTQNPT7srkjSmcCMiIpnHhQvQpYs5fv99qFjR3nokXSjciIhI5tGzJ5w9CxUqQN++dlcj6UThRkREModff4WZM82sqOnTwdvb7ooknSjciIiI+4uMhLfeMscBAWYgsbgthRsREXF/AwbA0aNQvDgMHWp3NZLOFG5ERMS9bd+esGfU5MmQK5e99Ui6U7gRERH3de2a2fE7NhZefdVssyBuT+FGRETc12efQWAg5M0Lo0fbXY1kEIUbERFxT4cOwcCB5vjzz6FgQVvLkYyjcCMiIu4nbsfvK1fg6aehZUu7K5IMpHAjIiLuZ8YMWLcOcuQwu39rx+9MReFGRETcy+nTZiVigCFDoFQpe+uRDKdwIyIi7qVLFwgNhVq14J137K5GbKBwIyIi7mPBAvjxR8iSRTt+Z2IKNyIi4h4uXjRbKwD06gVVqthajthH4UZERNxD795mvE3ZstCvn93ViI1SFW7Onj17y8ejo6PZsmVLil9v/fr1NG7cmKJFi+JwOFi4cOEtr58/fz5PP/00BQoUwNfXlzp16rB8+fIUfz0REXFT69bB1KnmeNo0yJbN3nrEVqkKN0WKFEkScCpVqsSJEyfi7//zzz/UScVOqxEREVSpUoUJEyak6Pr169fz9NNPs3TpUrZv307dunVp3LgxO3fuTPk3ISIi7uXKFbOmDZidvx97zN56xHZZUnOxZVlJ7h87doxr167d8ppbadSoEY0aNUrx9aOvWzp76NChLFq0iJ9++olq1aql+HVERMSNDB5sViMuUgSGD7e7GnECqQo3KeHIwIWSYmNjuXTpEnnz5r3pNVFRUURFRcXfDwsLy4jSREQkI+zaBSNGmOOJE8HPz956xCm49IDiTz/9lPDwcJo3b37Ta4YNG4afn1/8zd/fPwMrFBGRdBMdbXb8jo6Gl16Cpk3trkicRKrCjcPh4NKlS4SFhREaGorD4SA8PJywsLD4W0b55ptvGDRoEN9//z0Fb7EZWt++fQkNDY2/JR4jJCIiLmzsWNi2DXLnhnHj7K5GnEiqx9yULVs2yf3EY10sy8qQbqm5c+fSvn17fvjhB+rVq3fLa729vfH29k73mkREJAMdPQoffmiOP/3UjLcR+U+qws2aNWvSq44U+/bbb3njjTeYO3cuzz77rN3liIhIRrMs6NgRLl+GunXhjTfsrkicTKrCzeOPP56mXzw8PJzDhw/H3w8KCiIwMJC8efNSokQJ+vbty8mTJ5k9ezZguqJat27NmDFjqF27NmfOnAEge/bs+GkQmYhI5jB7Nqxcaday0Y7fkoxUjbmJjo5OMvMIICQkhEGDBtGrVy82bNiQqi++bds2qlWrFt+11aNHD6pVq0b//v0BOH36NMHBwfHXT506lejoaAICAihSpEj8rWvXrqn6uiIi4qJCQqB7d3M8cCCUKWNrOeKcHFYqFqZp27YtXl5eTJkyBYBLly5RsWJFrly5QpEiRdi3bx+LFi3imWeeSbeC71ZYWBh+fn6Ehobi6+trdzkiIpIar74Kc+dC1aqwZQtkzWp3RZJBUvP5naqWm40bN/LSSy/F3589ezYxMTEcOnSIXbt20aNHD0aOHHlnVYuIiNzKzz+bYOPpCV98oWAjN5WqcHPy5EnKJGoCXLVqFS+99FL8eJfWrVuzd+/etK1QRETk0iXo1Mkc9+gB1avbW484tVSFm2zZsnH58uX4+3/88Qe1a9dO8nh4eHjaVSciIgLQty/8/Tfce68ZayNyC6kKN1WrVuWrr74C4LfffiMkJIQnn3wy/vEjR45QtGjRtK1QREQyt40bzdYKYHb+zpHD3nrE6aVqKnj//v1p1KgR33//PadPn6ZNmzYUSbRw0oIFC3jkkUfSvEgREcmkoqLMjt+WBW3bwlNP2V2RuIBUr3Ozfft2VqxYQeHChWnWrFmSx6tWrcqDDz6YpgWKiEgmNmwY7N8PhQqZlYhFUiBVU8HdgaaCi4i4iL17oVo1uHYNvv8ervuDWjKX1Hx+p6rlZv369Sm67rHHHkvNy4qIiCQVE2N2/L52DZ5/Hv73P7srEheSqnDzxBNPxG+MebMGH4fDQUxMzN1XJiIimdfEifDHH5ArF0yYoC0WJFVSFW7y5MlDrly5aNOmDS1btiR//vzpVZeIiGRWwcFm6jfA8OFQvLi99YjLSdVU8NOnTzN8+HA2bdpEpUqVaNeuHb///ju+vr74+fnF30RERO6IZZnF+iIi4P/+D956y+6KxAWlKtx4eXnx8ssvs3z5cg4cOEDlypXp3Lkz/v7+fPDBB0RHR6dXnSIikhl89RUsXQpeXjBtGnik6mNKBEhluEmsRIkS9O/fn19//ZWyZcvyySefEBYWlpa1iYhIZhAdDQsWwBNPQOvW5ly/fnD//baWJa7rjsJNVFQU33zzDfXq1eOBBx4gf/78LFmyhLx586Z1fSIi4q4uXICRI6F0aXjxRVi3zmyK2bYt9Opld3XiwlI1oHjLli3MnDmTuXPnUrJkSdq2bcv333+vUCMiIim3dy+MGwezZ0PcfoX58pnxNZ06aQCx3LVULeLn4eFBiRIlaN26NTVq1Ljpdc8//3yaFJcetIifiIgNYmLMWJoxY2DVqoTzVapA167wyiuQPbt99YnTS83nd6rDze04+zo3CjciIhno4kWYORPGj4ejR805Dw944QV45x149FGtYSMpkm4rFMfGxt72msjIyNS8pIiIuKMDB0ygmTXLTOsGyJPHbIL59ttwzz22lifuLc3m2EVFRfHZZ59x7733ptVLioiIK4mNhV9+gYYNoXx5s7JwRARUrAhTp8Lff5tF+RRsJJ2lKtxERUXRt29fatasycMPP8zChQsBmDFjBqVKleLzzz+ne/fu6VGniIg4q0uXzADh+++HZ56B5ctNV1OTJmZ8ze7dpsUmRw67K5VMIlXdUv3792fKlCnUq1eP33//nWbNmtG2bVv++OMPPvvsM5o1a4anp2d61SoiIs7k8GHT9TRjhgk4AH5+0K4dBASAWvLFJqkKNz/88AOzZ8/m+eefZ8+ePVSuXJno6Gh27doVv6GmiIi4McuCX381s56WLjX3wbTavPMOtGwJOXPaW6NkeqkKN3///Xf8FPAHHngAb29vunfvrmAjIuLuwsPN1gjjxsH+/Qnnn33WhJp69bRVgjiNVIWbmJgYvLy8Ep6cJQs5ldBFRNxXUJAZGDx9OoSGmnO5cplVhDt3hjJl7K1PJBmpCjeWZdGmTRu8vb0BuHLlCh07dsTHxyfJdfPnz0+7CkVEJGNZFqxda7qeFi9O6HoqXRq6dIE2bUDrhIkTS1W4aR23odl/Xn/99TQtRkREbBQZCXPmwNixsGdPwvkGDUzXU8OG6noSl5CqcDNz5sz0qkNEROwSHAwTJ8K0aWYzSwAfH7NDd5cu2p1bXE6qwo2IiLgJy4ING0zX04IFZgE+gFKlTKBp2xZy57a1RJE7pXAjIpKZXLkC335rup4CAxPOP/WU6Xp69lnQemXi4hRuREQyg5MnYdIkmDIFzp8357JnN+vSdOkCDzxgb30iaUjhRkTEXVkWbNpkWml+/BGio835EiXMNO527SBvXntrFEkHCjciIu4mKgq+/96Emm3bEs4//rjpenr+eciit39xX/q/W0TEXZw5A5Mnm1tIiDnn7Q0tWpiup6pVbS1PJKMo3IiIuLqtW82sp++/h2vXzLlixeDtt+HNNyF/fnvrE8lgCjciIq7o6lUzjmbsWPjjj4TzDz8MXbvCCy9A1qz21SdiI4UbERFXcvYsTJ1qFt07fdqc8/KCV14xXU81a9pbn4gTULgREXEFO3earqdvvzWtNgCFC0OnTvDWW1CokL31iTgRhRsREWcVHW1WDx471qwmHOfBB03X0//+Z1ptRCQJhRsREWdz/jxMnw4TJsDff5tzWbJA8+ZmKnft2vbWJ+LkFG5ERJzFn3+aVpo5c8w2CQAFCkDHjuZWtKi99Ym4CIUbERE7xcTA4sUm1Kxdm3C+enXT9dS8OWTLZlt5Iq5I4UZExA7//gtffAHjx8Px4+acpye89JLpenr4YXA47K1RxEUp3IiIZKR9+0wrzVdfQWSkOZcvn1ls7+23oXhxe+sTcQMKNyIi6S0mBpYuNaHm118TzleubLqeXn3V7NAtImlC4UZEJL2EhsLMmTBuHBw9as55eEDTpqbr6bHH1PUkkg4UbkRE0tpff5lAM2sWRESYc7lzQ4cOpuupZEkbixNxfwo3IiJpITYWli83XU/LliWcr1jRtNK0aAE+PvbVJ5KJKNyIiNyNS5fgyy9NS83Bg+acwwGNG5tQ8+ST6noSyWAKNyIid+LwYTONe8YME3AAfH2hXTsICID77rO3PpFMTOFGRCSlLMvMdho7FpYsMfcBypUzO3K3bg05c9pbo4go3IiI3FZEhFmXZuxY2L8/4fwzz5iup6efNrOgRMQp2Pqvcf369TRu3JiiRYvicDhYuHDhbZ+zdu1aqlevjre3N6VLl2bWrFnpXqeIZFLHjkHPnmZhvU6dTLDJmdO00vz1l2m9adBAwUbEydj6LzIiIoIqVaowYcKEFF0fFBTEs88+S926dQkMDKRbt260b9+e5cuXp3OlIpJpWBasWQMvvGDGzYwaBRcvQunSMGYMnDxpWnDKlrW7UhG5CVu7pRo1akSjRo1SfP3kyZMpVaoUo0aNAqB8+fJs2LCBzz//nAYNGiT7nKioKKKiouLvh4WF3V3RIuKeIiPhm29McNm9O+F8/fqm66lRI7XQiLgIl/qXumnTJurVq5fkXIMGDdi0adNNnzNs2DD8/Pzib/7+/uldpoi4khMnoE8f8Pc3i+zt3g05cphuqL17zdo1zz6rYCPiQlzqX+uZM2coVKhQknOFChUiLCyMy5cvJ/ucvn37EhoaGn87ceJERpQqIs7MsuC336BZMyhVCoYPhwsXzMrBo0bB33/DxIlQoYLdlYrIHXD72VLe3t54e3vbXYaIOIMrV2DuXNP1tHNnwvknnzRdT889B56e9tUnImnCpcJN4cKFCQkJSXIuJCQEX19fsmtHXRG5mZMnYdIkmDIFzp8357Jlg5YtzcynSpXsrU9E0pRLhZs6deqwdOnSJOdWrlxJnTp1bKpIRJyWZcEff5hWmnnzIDranPf3NysIt28P+fLZW6OIpAtbw014eDiHDx+Ovx8UFERgYCB58+alRIkS9O3bl5MnTzJ79mwAOnbsyPjx4+nVqxdvvPEGq1ev5vvvv2fJkiV2fQsi4myiouCHH0yo2bo14fyjj0LXrtCkCWRxqb/rRCSVbP0Xvm3bNurWrRt/v0ePHgC0bt2aWbNmcfr0aYKDg+MfL1WqFEuWLKF79+6MGTOG4sWLM3369JtOAxeRTObHH02rTFz3tbc3vPaa6XqqVs3e2kQkwzgsK25zlMwhLCwMPz8/QkND8fX1tbscEUkr33xjxtDExkLRoibkdOgABQrYXZmIpIHUfH6rbVZEXN/XX5tNK2Nj4Y03YPJkyJrV7qpExCYutc6NiMgNZs+GVq1MsGnfHqZNU7ARyeQUbkTEdX35JbRpY2ZGvfmmmeqtlYRFMj29C4iIa5oxA9q2NcGmUyezjo2CjYigcCMirmj6dGjXzgSbgACYMEHBRkTi6d1ARFzL1KlmFhSYKd7jxoHDYW9NIuJUFG5ExHVMngxvvWWOu3aFMWMUbETkBgo3IuIaJk40Y2sAuneHzz9XsBGRZCnciIjzGz/ejK0B6NkTRo1SsBGRm1K4ERHnNmaMGVsD0KsXjBihYCMit6RwIyLO6/PPoVs3c9y3L3zyiYKNiNyWwo2IOKdRo+C/zXT54AP4+GMFGxFJEYUbEXE+I0easTUA/fvD4MEKNiKSYgo3IuJcPvnEjK0BGDgQBg1SsBGRVFG4ERHnMXSoGVsDJtQMGGBvPSLikhRuRMQ5DB5sxtYADBliuqNERO6Awo2I2G/QoIQwM3RoQsgREbkDWewuQEQyMcsy42o++sjcHz48YbyNiMgdUrgREXtYlmmtGTLE3E88Q0pE5C4o3IhIxrMs+PBD0wUFSde0ERG5Swo3IpKxLMvMiBo+3NxPvAqxiEgaULgRkYxjWdC7t+mCAhg7NmHfKBGRNKJwIyIZw7LMmJrPPjP3E+/0LSKShhRuRCT9WZYZUzN6tLk/cSJ06mRrSSLivhRuRCR9WZYZUzN2rLk/eTK89ZatJYmIe1O4EZH0Y1nwzjumCwpg6lTo0MHemkTE7SnciEj6iI2Fzp1h0iSz8eX06fDGG3ZXJSKZgMKNiKS92Fh4+22YMsUEmxkzoE0bu6sSkUxC4UZE0lZsLHTsCNOmmWAzaxa0amV3VSKSiSjciEjaiY2FN9+EL74ADw/48kt4/XW7qxKRTEbhRkTSRkyMGSw8c6YJNl99Ba+9ZndVIpIJKdyIyN2LiYF27UxLjYcHzJkDr7xid1Uikkkp3IjI3YmJgbZtTUuNpyd88w00b253VSKSiSnciMidi46G1q1NoPH0hLlz4X//s7sqEcnkFG5EgGvX4ORJOHUKfHygUCHInx+y6F/IzUVHm1lQ335rflDffQcvvmh3VSIiCjfi/iwL/v0XgoMTbk2bQvHi5vEJE8zG1JaV9HkOhwk4M2fCs8+ac3v2wM8/Q+HCJgDF3QoWhKxZM/Tbsld0tJkF9d13Jtj88IP5oYqIOAGFG3F5UVHw998mYOTKZc4tX242nz5xwoSZiIikz7nnnoRwky+fCTZeXlCsmLn2/Hkzq/ncOciePeF5v/8OffsmX0fevGY87XPPmfu7d8NPPyUNQXE3b++0/RlkqGvXoEULE2iyZjX/bdLE7qpEROIp3IjLOHgQli41YSUutAQHw5kz5vHFi6FxY3N88SKsWJH0+QULQokS5pY7d8L5556D06fN4x4e5lxMjAk4ISFw770J1953n+mJCQlJuJ09a66/cAFy5Ei4dtMm+OCD5L8XPz/4+uuEIPTnn6b+5IJQ4nBlu2vX4NVX4ccfTRqcNy/hhy4i4iQUbsRWUVFw/HjSsJL4NmYMNGxort2xA7p3T/51smc3gSZOnTpmxf+4MFO8+M1DQs6c5paYp2dCuEjsqafMLbHYWBNsQkJMi1Cc0qXNjgPXB6Fr1yA01IztibNpE/Trl3x9uXKZ8bpxQSgwEBYtSj4IXf99pKmrV8307gULTLCZPz+hv05ExIko3Ei6iY01H+bXB5YWLaBWLXPNggWmIeBmjhxJOK5QAZo1SwgsiW/58pkxMnFKlDCzkzOCh4cZm5M/f9LzTz5pbonFjf8JCTE1xilTxiwTkzgIhYSY8HfpUkJ3G5ggNHBg8rXkyGGGwcQFoZ07YeHC5INQrlxJf2a3dPWqmd69aJHpU1uwABo1SuGTRUQylsKN3LHw8IQWl/vvT2i1WL3aLFR74oRppbhemTIJ4aZECdOCUaKEef71oaVixYTnVa4M33+f/t9XenI4zNicvHmTnr9ZEAoLMyEnbnwQmJ91hw43BqHLlyEy8sYg9NFHydeSLZsZLhMXhHbsMI0xNwSh3FHkfrMZjp9+MsFm0SJo0ODufxgiIulE4UaSFRNjJsTEDXw9cADGj09ofTlxwnTFxBk/HgICzHG2bHD0qDn28ICiRZMGlmrVEp5Xp45pmUhxC0Im4nCYsTl+fknP161rbtcLDzchp0iRhHMVKpg9LK8PQuHhcOUK+PomXPvHH/Dxx0lf04sofuQlnmMJMV7Z8Fy8COrXZ9s2M+wmuRahvHkTxi6JiNhB4SYTu3jRzP65foBucLCZfTR6dEJguXDBTJm+np+fCSyJx7NUrgzr15vzRYveeoq0Qk3aSW7s0BNPmNv1IiNNyClcOOFcxYrm9x0XgP49fYVRx16kfvQvRJKdI58splL9egBs3gyffJJ8HVmymF6ruBahLVtuHoTy5TPjm0RE0pLCjRu6ds0sRpdcaGnZEl5+2Vy3b9+tx4MGBycclyljpkAnboHx97+xVQHMB+yjj6bt9yRpK0cOKFUq6bnHHzc3wDTrNG0Kh5djZc/OpS9+pnTThH6zBx4wawNd3yL077+mxS9PnoTX3bwZRoxIvg4PD9PLFReENm82XWXJBaECBbSoooikjN4qXIxlmRaXxIGlWjV4+GHz+Nat8NBDZjBvcipWTAg3JUtC1arJD9AtUSLpX/UFCsDQoen4jYnzuHzZrFuzciXkyIFjyRIKXdf8kyQIJXL1qhlEnnhwdZUq0K3bjUEobi2hxEFoyxYYNSr5shwOM10+Lgj98YcZg3V9CCpa1PxXrYIimZfCjZO5etVsA+Dtbd6kwYxfefvthJaY8PCkz+nVKyHcFCliPjCyZjUtK9cHlriBvGBef+fOjPm+xEVERppg8+uvZqT30qXw2GMpfrqXV9LBz2CentxLXLtmFknMly/hXLVq8O67Nwahc+fM/9eJB2Jv2QKff558HQUKwOzZCcsIXL1q/k0o8IhkDgo3NrlwwSzilniAbnCwWUzOskxgGT7cXOvlZVbcTaxAgYTAUqFCwvmiRU2XVKFCGtQpqRQZaRbkW73a9C0uXZqu/YtZsyYE+Dj/93/mdr24RRUTL75YvTq8917SEHTmjGk5Oncuacvj9Onw/vsmPFWrZp5bvTqUK6cxPyLuSOEmDUWHRhB01ifZsS7BwaY7aNAgc21kJHTtmvzrZMtm1jeJU6SIeXOOmyrt73/zBek8PJLOlhFJkYgI09+zdq0JNsuWwSOP2F1VvLhFFRO7WRC6fNnsAZZ4GYGdO83CiWvXmluc7NlNt9lXX5lFF0XEPTgs6/rtAt1bWFgYfn5+hIaG4pt4Huzdio7mWsWqzD9YkfcZylHuu+GSV14xGyiD+Uv01VeT7zrKn1/N55KBwsPNyPL1680iOcuWJfRzuolr12D/frOWT9wtMDBhz7HQ0IRp8X36mK074lp3qlc3MwATb60hIhkvNZ/fCjdpZd06rLp1cVgWV8nKkhKdWP9YP/KWzR8fWkqXNmFGxGlcumSCzW+/mU/35cvNiPRMICYGDh82oSfxhuZPPAHr1iW91sPDLJ5YvTpMnepk+32JZBKp+fx2ilEZEyZMoGTJkmTLlo3atWuzZcuWW14/evRoypUrR/bs2fH396d79+5cuXIlg6q9iccfxxEYiNWwIV5c44XgsXy++D76ZRlG6+aXqVtXwUaczKVLZguF334zc/pXrsw0wQZMV1e5ckmDDZid3X/80Wx62qiR6Q6LjTVLJ6xYYbqN47z9ttmV4pNPzGPnzmXotyAiN2PZbO7cuZaXl5c1Y8YMa+/evVaHDh2s3LlzWyEhIcleP2fOHMvb29uaM2eOFRQUZC1fvtwqUqSI1b179xR9vdDQUAuwQkND0/LbSGrlSsuqVs2yzNhgyype3LJmzrSs6Oj0+5oiqREaalkPP2z+/8yd27K2bLG7Iqd26pRl/fyzZX39ddLzxYol/DOPu/n7W9bzz1vWiBH21CrirlLz+W17t1Tt2rWpVasW48ePByA2NhZ/f3+6dOlCnz59bri+c+fO7N+/n1WrVsWfe/fdd9m8eTMbNmy44fqoqCiiEo3ODQsLw9/fP+27pa4XG2sG2Lz/fsJqeJUqmdXMGjTQoBqxT2iomSP9xx9mkZmVK6FGDburcjmWBatWJR3Hc+hQwuOPPAKJ35I6dDCzHOPG8ZQqpbcBkdRITbeUrbOlrl69yvbt2+nbt2/8OQ8PD+rVq8emTZuSfc7DDz/M119/zZYtW3jwwQc5evQoS5cupWXLlsleP2zYMAbFTVHKSB4eZvvrl14y+xYMGQK7d5t27qeeMiGnevWMr0syt4sXTbjessUEm19/1f+Hd8jhgHr1zC1OWBjs2mWCTuL1eyIi4IsvTCCK4+dnfvTVqpm3hGeeybjaRdydrS03p06dolixYvz+++/UqVMn/nyvXr1Yt24dmzdvTvZ5Y8eOpWfPnliWRXR0NB07dmTSpEnJXmtby831LlwwS/yOG2dWFAMTfoYMMUsFi6S3ixehfn2zjHXevCbYJN7FVNJNeDjMmZPQwvPnnwlvAwCtWpmxPmC2r3j3XTNFvXp1s46Vl5c9dYs4E5dpubkTa9euZejQoUycOJHatWtz+PBhunbtyuDBg+nXr98N13t7e+Mdt7W1nfLmhU8/hc6d4cMPzTvdnDlmI5133jHdV4nXoRdJS//+C08/Ddu3myaFVavMp6dkiJw54a23Eu5fu2YGKO/YYdbgSbyC84EDMHZswn0vL9OjHdedVbeuGQgtIjdna8vN1atXyZEjB/PmzaNpoikLrVu35uLFiyxatOiG5zz66KM89NBDjBw5Mv7c119/zZtvvkl4eDget1mWN92mgqfW9u1mGeLVq839PHnM9IyAgKTTMUTu1oULJtjs2GEWUVq1yizcIk4pKAgmTkxo5bl4MenjH30EcX/HhYSYoX3Vq5t94ux8SxNJby4zFdzLy4saNWokGRwcGxvLqlWrknRTJRYZGXlDgPH8b/10m8dGp06NGqZb4JdfzJ9l//4LPXuaxTTmzLn5zpciqfHPP2ZAx44dZjTrmjUKNk6uVCkYOdJk0AsXzN5y8+aZxt1GjZKur7hpE3TvbjYx9fODsmXNSujDh5tx4qGh9n0fIrZKx1lbKTJ37lzL29vbmjVrlrVv3z7rzTfftHLnzm2dOXPGsizLatmypdWnT5/46wcMGGDlypXL+vbbb62jR49aK1assO677z6refPmKfp6GTIVPLWioy1rxoyk80qrVbOsX3+1uzJxZefOWVaVKub/p4IFLWvPHrsrkjS2Zo1lNWlipp9fPyUdLOubbxKuPXLEsn76ybJOnrSs2Fi7Kha5c6n5/LZ9zM3LL7/MuXPn6N+/P2fOnKFq1aosW7aMQv9tJBMcHJykpebDDz/E4XDw4YcfcvLkSQoUKEDjxo35+OOP7foW7p6nJ7Rta/7kGjMGhg0zHfH16pkpu8OH669tSZ1z50yLze7dZhW61auT7rAqbuGJJ8wNzMaiO3cmnZqeeCLc/Plmo1GAggWTbi9RvbqZ16Cp6eIubF/nJqM5zZibWzl3zsyimjjRTJ1wOKB1axg8GIoXt7s6cXZnz5pgs2eP2Rp7zRrT3SmZ2qRJZlWK/fuT7/XesgVq1TLHhw+bt54yZbRrujgP7S11Cy4RbuIcPmwGGX//vbmfLRt062Z29vPzs7U0cVIhIfDkk2YqTpEiJthoao0kEhlpGvQSt/AcOGCGZ8XNZejYEaZMAR8fM1C5WrWEFp4KFSBrVlu/BcmkFG5uwaXCTZzNm0178m+/mfv58kH//uYdSAtgSJwzZ0yw2b8fihUzwaZMGburEhcQHQ1ZEg1S6NABvvnGBKHreXubxuVcucz9v/82b0naTFTSm8LNLbhkuAEzPvCnn6B3b/NnFsC995rxOc2aqbM8szt92gSbAwdM1+WaNWYbepE7FBMDBw8mtO7EjefJk8dMV49Trx6sXWtadBK38FStmhCARNKCws0tuGy4iRMdDTNmwIAB5i91gAcfNHNHE68EJpnHqVNmZbeDB83W82vWwH332V2VuCHLMq02BQsmnCtfPuHvrcQcDqhd20xXjxMZCTlypH+d4p5cZp0buQNZssCbb5od+gYNMp3iW7aYhS6ef96MtZDM4+RJM13m4EEoUcL8Ca1gI+nE4UgabMC85fz9NyxeDAMHQpMmJmNbllmZObGKFc2srBdfNPMjliwxjY4iaU0tN64uJMSEnKlTTTuyhwe0a2fOFSlid3WSnv7+27TYHD4M99xjgo32KRMnce6cWV05btjXxYtmF5rkPnEKF4bXXoNRoxLOxcaatzOROGq5yUwKFTJTxvfsgaZNzTvCtGlmvMWAAXDpkt0VSnoIDjatdYcPm0Czbp2CjTiVAgWSjmfPndssxL52LXz2Gbz+umnJ8fAwPeyJBy9HRJhWnypVzPJfAwbA3LkQGJj8IGeR66nlxt1s2GBmVv3xh7lfsKBpK27fXvM33cXx46bFJijIDCpfs8Z0SYm4oMhIs0t6rlwm7IAZvJx4AcLEHA6za3rc9oJXr5pxPfffb97uNLfCfWlA8S24fbgB0+47f75ZD+fwYXOubFn45BPTuqN//a7r2DETbI4dM2Nr1qwxAxxE3EhMjPlf/MCBpLf9+816PCNGJKy2vGeP2Z4PzEyu++83t/LlzX9r1ICiRW37ViQNKdzcQqYIN3GuXTNjcQYNMh3gYHbdGzky6e574hqCgkywOX7cdDuuWaMVqyXTOX/edGXlzWvub9hgFnAPCkp+PM/HH5tNR8EMU5syJSEAlSt346BncV4KN7eQqcJNnLAwE2hGjYLLl825l16CoUNNi444v6NHTbAJDja/s9WrzUJ9IgKYt7ZDhxJaeOJaez76CBo3NtcsXmxmcyXm75/Q0vP66wlbUIjzUbi5hUwZbuKcPGnG38yYYQYeZ8kCb71lVju+fn6nOI8jR8x077//Nn9qrl6tdnaRO7B1K0yfnhB8zp5N+vjcuWYAM8CqVabFJ657K+6/996r4Yt2Ubi5hUwdbuLs3WvG4/z8s7mfM6dZ+bh7d7NujjiPQ4dMi83Jk+addfVqTfEXSSMXLiQd0/PWWwnLRH32mRm4fL2sWU2v8KRJZsIimMZxgMz6kZJRFG5uQeEmkTVrzKi87dvN/SJFTBtumzZJN5oRexw8aILNqVNmbfvVq83UfxFJdydOmG39ru/mipuKvm2bGawMMG4cvPOO6Sm+fkDz/febhlbN47h7Cje3oHBzndhYs+v4++8nbBhTsSIMHw7PPKN/kXb56y8TbE6fNr+PVasUbERsFhtreocPHIBHH03YLLRXr4Sp6cnZuDFhDseOHWYm2P33mxYg7X2ccgo3t6BwcxNRUaaddfBg01YLZpzHiBEaYZfR9u83m2CeOWPmuP76q8ZEiTi5ixdvnLp+4IBZjePs2YTZXd27w+jR5tjT03SDJW7pefFFdW/djMLNLSjc3MbFi2Y9nNGjTeABeOUVM5/y3nvtrCxz2LfPBJuQEKhc2QSbAgXsrkpE7tDVq0lbZz791DSW798P4eE3Xh8SkvC3zNSpZlXmuO6t++83qz9k1m0pFG5uQeEmhYKDoV8/+Oors3hE1qwQEAAffgj58tldnXvasweeesr8mVe1KqxcCfnz212ViKQDyzLD6RKP6TlxAhYuTBgN0LhxwryPODlyJASdadMSdlm3LPcfRaBwcwsKN6kUGGhmUq1YYe77+UHfvmb0XFyHs9y93btNsDl3DqpVM8FGIVIkU1u8OOmg5kOHIDraPJYrF4SGJgSaZs1ubOWJ6+qK6xJzdQo3t6Bwc4dWrDCj5nbtMveLF4chQ8yqV56e9tbm6v780wSb8+fN9IsVK9zn3UhE0sy1a2bex/79ZhPSNm0SHqtQwZxPzj33mOfFBaHAQLORaYkSrtXFpXBzCwo3dyE2FubMgQ8+MO2nYMaFjBgBDRrYW5urCgyEevXMhjk1a5pgkyeP3VWJiIs5ffrGfbjiurqqVDFvNXGqVDF/U2XPbtYFTdzaU6FCwl5dzkbh5hYUbtLAlSswdqzZviE01Jx7+mkTcqpWtbU0l7Jzpwk2Fy6YGWkrVpg/p0RE0kh4uOntLlXK3LcsqF3bNMJfvXrj9RUqmHVe43z2mekCi+vmsnMYoMLNLSjcpKF//jGzqMaPN+2lDofppho82LSDys1t324C4b//mnea5cvNeCYRkQwQHZ105/W4lp7774cvvjDXWJaZlp54Vle+fAlB55FHknaNpTeFm1tQuEkHQUGmq+rbb819b28z4LhvX3WxJGfbNhNsLl6EOnVg2TItbCEiTufyZbO+a1z4OX486eONG5tBz2CC0KOPmtWYK1SAAQPSfvaWws0tKNyko23bzHYOa9ea+3nymKnjAQEm8IjZue/pp0133sMPwy+/KNiIiEuIjDS7wsS18pQtCy1amMdCQqBwYXNcsmTCgvdpSeHmFhRu0pllmQ/sXr0SOm5LljTjc15+2bWG5qe1zZuhfn2zy97//R8sXWo6s0VEXFxkpPm79sAB8zbfrVvafw2Fm1tQuMkgMTEwaxb0729WqgIzzXnkSLNnUmazaZOZUXbpkmm7XbrU7MYuIiIpkprP70z8Z7SkK09PaNfOtGEOGWJaKLZvN1sLPPusWY03s/j994Rg8/jjCjYiIulM4UbSl4+PGWx8+DB07gxZspgP9ypVTPg5edLuCtPXhg0JwaZuXViyRMFGRCSdKdxIxihYEMaNMxtD/u9/ZkHAGTOgTBkTfsLC7K4w7a1fDw0bmnmUTz1lNonx8bG7KhERt6dwIxmrTBn44QfTVfPII2au4dChcN99Zr2c5FaVckXr1kGjRhARYWZH/fRTwg53IiKSrhRuxB516sBvv5ktcMuVM/sqdekCFSvCvHlm1pWrWrMGnnnGTB+oXx8WLdImoyIiGUjhRuzjcECTJmZw8eTJUKiQGZvTrJkJPxs22F1h6q1aZQZMR0aaLikFGxGRDKdwI/bLkgXeegsOHTLLWubIYdaEefRRaNrULJzgCn79FZ57znS1PfMMLFgA2bLZXZWISKajcCPOI1cuGDjQtN689ZaZTr5oETzwAHTqBGfO2F3hza1YYdYiv3LFBJz58xVsRERsonAjzqdIEdNNtXu36baKiTH3S5eGQYOS7uLmDJYtg+efN8Hm+efNmCFtNyEiYhuFG3Fe5cubAcfr15udsyMiTMtO6dIwZYrZ1tZuS5eaABYVZbrQfvhBwUZExGYKN+L8Hn3UbF/w/fdmynhICHTsCJUqmW4ru2ZW/fwzvPCCmb7+4oumPi8ve2oREZF4CjfiGhwOM4tq3z4YOxby5zcDjZs2hccegz/+yNh6fvrJBJqrV+Gll2DuXMiaNWNrEBGRZCnciGvx8jLr4Rw+DO+/bwbtbthgpo43a2ZmXKW3RYtMoLl2zXzNb79VsBERcSIKN+Ka/Pzg449NmHnjDdOyM28eVKgA77wD586lz9ddsMBsH3HtGrzyCnzzjYKNiIiTUbgR11a8OHzxBezaZbY7iI42e1jdd5/Z1iEyMu2+1o8/QvPm5mu89hp89ZVZo0dERJyKwo24h0qVzMylX3+F6tXNLtwffGD2spoxw0wnvxs//AAvv2yCzeuvw+zZCjYiIk5K4Ubcy1NPwdatMGcO3HMPnDoF7dpB1aom/NzJzKrvvoNXXzUBqWVLmDXLLDAoIiJOSeFG3I+Hh+k2+usvGDUK8uQx+1c9+6wJP9u3p/y1vv3WvFZMDLRpAzNnKtiIiDg5hRtxX97e0KMHHDkC771n7q9ZAzVrQosWEBR06+fPmWO6oGJjzaDlL75QsBERcQEKN+L+8uSBESNMS87rr5tz33wD998P774LFy7c+JyvvoJWrUywad8epk0zLUIiIuL09G4tmcc995jQsmOH6Z66ehU++8zMrBo50uwNBfDll9C6tQk2b75ptnpQsBERcRl6x5bMp1o1WLnSbHhZuTJcvAi9ekG5ctC9O7RtawYed+wIkyYp2IiIuBi9a0vm5HBAgwamFWfWLLNeTnAwjB5tgs3bb8PEiQo2IiIuyCneuSdMmEDJkiXJli0btWvXZsuWLbe8/uLFiwQEBFCkSBG8vb0pW7YsS5cuzaBqxa14epouqIMH4ZNPoEQJ6N0bxo83AUhERFyO7auQfffdd/To0YPJkydTu3ZtRo8eTYMGDfjrr78oWLDgDddfvXqVp59+moIFCzJv3jyKFSvG8ePHyZ07d8YXL+4je3YTanr3trsSERG5Sw7LupNVzdJO7dq1qVWrFuPHjwcgNjYWf39/unTpQp8+fW64fvLkyYwcOZIDBw6Q9Q729AkLC8PPz4/Q0FB8fX3vun4RERFJf6n5/La1W+rq1ats376devXqxZ/z8PCgXr16bNq0KdnnLF68mDp16hAQEEChQoV44IEHGDp0KDE3WV4/KiqKsLCwJDcRERFxX7aGm/PnzxMTE0OhQoWSnC9UqBBnzpxJ9jlHjx5l3rx5xMTEsHTpUvr168eoUaMYMmRIstcPGzYMPz+/+Ju/v3+afx8iIiLiPJxiQHFqxMbGUrBgQaZOnUqNGjV4+eWX+eCDD5g8eXKy1/ft25fQ0ND424kTJzK4YhEREclItg4ozp8/P56enoSEhCQ5HxISQuHChZN9TpEiRciaNSueiZbBL1++PGfOnOHq1at4eXklud7b2xtvb++0L15ERESckq0tN15eXtSoUYNVq1bFn4uNjWXVqlXUqVMn2ec88sgjHD58mNjY2PhzBw8epEiRIjcEGxEREcl8bO+W6tGjB9OmTePLL79k//79dOrUiYiICNq2bQtAq1at6Nu3b/z1nTp14sKFC3Tt2pWDBw+yZMkShg4dSkBAgF3fgoiIiDgR29e5efnllzl37hz9+/fnzJkzVK1alWXLlsUPMg4ODsYj0Sqx/v7+LF++nO7du1O5cmWKFStG165d6a31SURERAQnWOcmo2mdGxEREdfjMuvciIiIiKQ1hRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW7F9KnhGi5scpg00RUREXEfc53ZKJnlnunBz6dIlAG2gKSIi4oIuXbqEn5/fLa/JdOvcxMbGcurUKXLlyoXD4UjT1w4LC8Pf358TJ05oDR0Xpd+ha9Pvz/Xpd+j60ut3aFkWly5domjRokkW901Opmu58fDwoHjx4un6NXx9ffWP0sXpd+ja9Ptzffodur70+B3ersUmjgYUi4iIiFtRuBERERG3onCThry9vRkwYADe3t52lyJ3SL9D16bfn+vT79D1OcPvMNMNKBYRERH3ppYbERERcSsKNyIiIuJWFG5ERETErSjciIiIiFtRuEkjEyZMoGTJkmTLlo3atWuzZcsWu0uSVFi/fj2NGzemaNGiOBwOFi5caHdJkgrDhg2jVq1a5MqVi4IFC9K0aVP++usvu8uSVJg0aRKVK1eOX/itTp06/PLLL3aXJXfok08+weFw0K1bN1u+vsJNGvjuu+/o0aMHAwYMYMeOHVSpUoUGDRpw9uxZu0uTFIqIiKBKlSpMmDDB7lLkDqxbt46AgAD++OMPVq5cybVr16hfvz4RERF2lyYpVLx4cT755BO2b9/Otm3bePLJJ2nSpAl79+61uzRJpa1btzJlyhQqV65sWw2aCp4GateuTa1atRg/fjxg9q/y9/enS5cu9OnTx+bqJLUcDgcLFiygadOmdpcid+jcuXMULFiQdevW8dhjj9ldjtyhvHnzMnLkSNq1a2d3KZJC4eHhVK9enYkTJzJkyBCqVq3K6NGjM7wOtdzcpatXr7J9+3bq1asXf87Dw4N69eqxadMmGysTybxCQ0MB8+EoricmJoa5c+cSERFBnTp17C5HUiEgIIBnn302yWeiHTLdxplp7fz588TExFCoUKEk5wsVKsSBAwdsqkok84qNjaVbt2488sgjPPDAA3aXI6mwe/du6tSpw5UrV8iZMycLFiygQoUKdpclKTR37lx27NjB1q1b7S5F4UZE3EtAQAB79uxhw4YNdpciqVSuXDkCAwMJDQ1l3rx5tG7dmnXr1inguIATJ07QtWtXVq5cSbZs2ewuR+HmbuXPnx9PT09CQkKSnA8JCaFw4cI2VSWSOXXu3Jmff/6Z9evXU7x4cbvLkVTy8vKidOnSANSoUYOtW7cyZswYpkyZYnNlcjvbt2/n7NmzVK9ePf5cTEwM69evZ/z48URFReHp6Zlh9WjMzV3y8vKiRo0arFq1Kv5cbGwsq1atUl+xSAaxLIvOnTuzYMECVq9eTalSpewuSdJAbGwsUVFRdpchKfDUU0+xe/duAgMD4281a9akRYsWBAYGZmiwAbXcpIkePXrQunVratasyYMPPsjo0aOJiIigbdu2dpcmKRQeHs7hw4fj7wcFBREYGEjevHkpUaKEjZVJSgQEBPDNN9+waNEicuXKxZkzZwDw8/Mje/bsNlcnKdG3b18aNWpEiRIluHTpEt988w1r165l+fLldpcmKZArV64bxrj5+PiQL18+W8a+KdykgZdffplz587Rv39/zpw5Q9WqVVm2bNkNg4zFeW3bto26devG3+/RowcArVu3ZtasWTZVJSk1adIkAJ544okk52fOnEmbNm0yviBJtbNnz9KqVStOnz6Nn58flStXZvny5Tz99NN2lyYuSOvciIiIiFvRmBsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRcTtt2rShadOmdpchIjZRuBGRO9KmTRscDscNt4YNG9pdGmPGjHGabTMcDgcLFy60uwyRTEV7S4nIHWvYsCEzZ85Mcs7b29umaiAmJgaHw4Gfn59tNYiI/dRyIyJ3zNvbm8KFCye55cmTh7Vr1+Ll5cVvv/0Wf+2IESMoWLAgISEhgNnksnPnznTu3Bk/Pz/y589Pv379SLzdXVRUFD179qRYsWL4+PhQu3Zt1q5dG//4rFmzyJ07N4sXL6ZChQp4e3sTHBx8Q7fUE088QZcuXejWrRt58uShUKFCTJs2jYiICNq2bUuuXLkoXbo0v/zyS5Lvb8+ePTRq1IicOXNSqFAhWrZsyfnz55O87jvvvEOvXr3ImzcvhQsXZuDAgfGPlyxZEoAXXngBh8MRf19E0pfCjYikuSeeeIJu3brRsmVLQkND2blzJ/369WP69OkUKlQo/rovv/ySLFmysGXLFsaMGcNnn33G9OnT4x/v3LkzmzZtYu7cufz55580a9aMhg0bcujQofhrIiMjGT58ONOnT2fv3r0ULFgw2Zq+/PJL8ufPz5YtW+jSpQudOnWiWbNmPPzww+zYsYP69evTsmVLIiMjAbh48SJPPvkk1apVY9u2bSxbtoyQkBCaN29+w+v6+PiwefNmRowYwUcffcTKlSsB2Lp1K2B2Jz99+nT8fRFJZ5aIyB1o3bq15enpafn4+CS5ffzxx5ZlWVZUVJRVtWpVq3nz5laFChWsDh06JHn+448/bpUvX96KjY2NP9e7d2+rfPnylmVZ1vHjxy1PT0/r5MmTSZ731FNPWX379rUsy7JmzpxpAVZgYOANtTVp0iTJ1/q///u/+PvR0dGWj4+P1bJly/hzp0+ftgBr06ZNlmVZ1uDBg6369esned0TJ05YgPXXX38l+7qWZVm1atWyevfuHX8fsBYsWHCTn6KIpAeNuRGRO1a3bl0mTZqU5FzevHkB8PLyYs6cOVSuXJl77rmHzz///IbnP/TQQzgcjvj7derUYdSoUcTExLB7925iYmIoW7ZskudERUWRL1+++PteXl5Urlz5trUmvsbT05N8+fJRqVKl+HNxLUpnz54FYNeuXaxZs4acOXPe8FpHjhyJr+v6r12kSJH41xAReyjciMgd8/HxoXTp0jd9/PfffwfgwoULXLhwAR8fnxS/dnh4OJ6enmzfvh1PT88kjyUOHNmzZ08SkG4ma9asSe47HI4k5+JeIzY2Nv7rN27cmOHDh9/wWkWKFLnl68a9hojYQ+FGRNLFkSNH6N69O9OmTeO7776jdevW/Prrr3h4JAz127x5c5Ln/PHHH5QpUwZPT0+qVatGTEwMZ8+e5dFHH83o8qlevTo//vgjJUuWJEuWO3+rzJo1KzExMWlYmYjcjgYUi8gdi4qK4syZM0lu58+fJyYmhtdff50GDRrQtm1bZs6cyZ9//smoUaOSPD84OJgePXrw119/8e233zJu3Di6du0KQNmyZWnRogWtWrVi/vz5BAUFsWXLFoYNG8aSJUvS/XsLCAjgwoULvPrqq2zdupUjR46wfPly2rZtm6qwUrJkSVatWsWZM2f4999/07FiEYmjlhsRuWPLli1L0kUDUK5cOV577TWOHz/Ozz//DJhunKlTp/Lqq69Sv359qlSpAkCrVq24fPkyDz74IJ6ennTt2pU333wz/rVmzpzJkCFDePfddzl58iT58+fnoYce4rnnnkv3761o0aJs3LiR3r17U79+faKiorjnnnto2LBhktan2xk1ahQ9evRg2rRpFCtWjGPHjqVf0SICgMOyEi0qISKSQZ544gmqVq3K6NGj7S5FRNyMuqVERETErSjciIiIiFtRt5SIiIi4FbXciIiIiFtRuBERERG3onAjIiIibkXhRkRERNyKwo2IiIi4FYUbERERcSsKNyIiIuJWFG5ERETErfw/Ib37BekjVmgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd6klEQVR4nO3de3zO5R/H8de9sZmxIcxpzofI+bSfQyFzLCFJklOpaEhLDjnLKUWEIkqlAx0cKueUU+QYkYgcpjDnzXFsu39/XG0zx417+96H9/PxuB/73vfu3fdnZvf93vW9rs9ls9vtdkRERETchJfVBYiIiIg4ksKNiIiIuBWFGxEREXErCjciIiLiVhRuRERExK0o3IiIiIhbUbgRERERt5LB6gLSW3x8PEeOHCFr1qzYbDaryxEREZEUsNvtnDt3jnz58uHldfuxGY8LN0eOHCE4ONjqMkREROQuHD58mAIFCtz2Ph4XbrJmzQqYf5yAgACLqxEREZGUiI6OJjg4OPF9/HY8LtwknIoKCAhQuBEREXExKZlSognFIiIi4lYUbkRERMStKNyIiIiIW/G4OTciIuL+4uLiuHr1qtVlSCr5+PjccZl3SijciIiI27Db7Rw7doyzZ89aXYrcBS8vL4oUKYKPj889PY7CjYiIuI2EYJM7d24yZ86sZq0uJKHJ7tGjRylYsOA9/ewUbkRExC3ExcUlBpv77rvP6nLkLuTKlYsjR44QGxtLxowZ7/pxNKFYRETcQsIcm8yZM1tcidythNNRcXFx9/Q4CjciIuJWdCrKdTnqZ6dwIyIiIm5F4UZERETcisKNiIiIGylcuDATJkyw/DGspNVSIteKioKsWcEBTaRERFKibt26VKxY0WFhYtOmTfj7+zvksVyVwo1Igs8+g/btTbipVAmqVIGqVc3HEiUUeETEMna7nbi4ODJkuPPbdq5cudKhIuemV2sRgEuXoG9fc3zuHKxeDe+8A+3awf33Q7ZsUKcOhIfD55/D7t0QH29pySKSMhcu3Ppy+XLK73vpUsrumxqdOnVi1apVTJw4EZvNhs1m4+DBg6xcuRKbzcbixYupUqUKvr6+rF27lr///pvmzZsTFBRElixZqFatGj/++GOyx7z+lJLNZmPGjBm0bNmSzJkzU6JECb777rtU1RkREUHz5s3JkiULAQEBPPnkk0RGRiZ+fvv27dSrV4+sWbMSEBBAlSpV2Lx5MwCHDh2iWbNmZM+eHX9/fx544AEWLVqUun+oVNLIjQjAe+/BkSNQsCDMnw/bt8OWLeaybVtS4Fm9OulrsmS5cYSnZEmN8Ig4mSxZbv25pk1h4cKk67lzw8WLN79vnTqwcmXS9cKF4eTJG+9nt6e8tokTJ/LXX39RtmxZhg8fDpiRl4MHDwLQr18/3n77bYoWLUr27Nk5fPgwTZs2ZeTIkfj6+vLpp5/SrFkz9uzZQ8GCBW/5PMOGDWPs2LG89dZbTJo0iXbt2nHo0CFy5Mhxxxrj4+MTg82qVauIjY0lLCyMNm3asPK/f5B27dpRqVIl3n//fby9vdm2bVtiE76wsDCuXLnC6tWr8ff3Z9euXWS53Q/FARRuRKKjYfRoczx0qAkslSpBp07mtthYM1KzZQts3pwUeM6fhzVrzCXBtYEn4VKyJHh7p/M3JSKuIDAwEB8fHzJnzkyePHlu+Pzw4cNp0KBB4vUcOXJQoUKFxOtvvPEG8+bN47vvvqN79+63fJ5OnTrRtm1bAEaNGsW7777Lxo0bady48R1rXLFiBTt27ODAgQMEBwcD8Omnn/LAAw+wadMmqlWrRkREBK+99hr3338/ACVKlEj8+oiICFq1akW5cuUAKFq06B2f814p3IhMmACnTkGpUmbOzfUyZICyZc2lY0dz27WB59oRnpsFHn//5IGnalUFHpF0dP78rT93/a/h8eO3vu/1g7L/Da6kqapVqya7fv78eYYOHcrChQs5evQosbGxXLp0iYiIiNs+Tvny5ROP/f39CQgI4Pjtvtlr/PnnnwQHBycGG4AyZcqQLVs2/vzzT6pVq0Z4eDhdunRh1qxZhIaG0rp1a4oVKwZAz5496datG8uWLSM0NJRWrVolqyctKNyIZzt1Ct5+2xwPH26CTErcLPDExd0YeH77zZyEX7vWXBJcH3iqVDHhSoFHxOFSs3Aore57t65f9dS7d2+WL1/O22+/TfHixfHz8+OJJ57gypUrt32c6/dpstlsxDtw3uDQoUN5+umnWbhwIYsXL2bIkCHMnj2bli1b0qVLFxo1asTChQtZtmwZo0ePZty4cfTo0cNhz389hRvxbG++aebTVKwITzxxb4/l7Q0PPGAuHTqY21IbeCpWTD7Co8Aj4vZ8fHxSvJfSL7/8QqdOnWjZsiVgRnIOpvEQUunSpTl8+DCHDx9OHL3ZtWsXZ8+epUyZMon3K1myJCVLluSVV16hbdu2zJw5M7HO4OBgunbtSteuXenfvz/Tp09XuBFJE0eOwKRJ5njkyLSZCHyrwLNnT1LY2bw5KfD88ou5JLg+8FSpYlZvKfCIuI3ChQuzYcMGDh48SJYsWW47ybdEiRLMnTuXZs2aYbPZGDRokENHYG4mNDSUcuXK0a5dOyZMmEBsbCwvvfQSderUoWrVqly6dInXXnuNJ554giJFivDPP/+wadMmWrVqBUCvXr1o0qQJJUuW5MyZM/z888+ULl06TWtWuBHPNXKkWQdaqxY0aZJ+z+vtDWXKmEvCHJ/rA8+1IzzXB57MmW8c4VHgEXFZvXv3pmPHjpQpU4ZLly5x4MCBW953/PjxPPvss9SsWZOcOXPSt29foqOj07Q+m83GggUL6NGjBw899BBeXl40btyYSf/9cejt7c2pU6fo0KEDkZGR5MyZk8cff5xhw4YBZofvsLAw/vnnHwICAmjcuDHvvPNO2tZst6dm0Zrri46OJjAwkKioKAICAqwuR6yyf7855RMba9Z21qljdUU3iouDv/66+QjP9a4PPAkjPCmdQyTiBi5fvsyBAwcoUqQImTJlsrocuQu3+xmm5v1br3zimYYNM8GmYUPnDDZgRmJKlzaXZ54xt10feBJGeM6fh3XrzCWBn9/NR3gUeETEzelVTjzPrl1mqwUwp6Zcyc0CT3z8jYFn61YTeNavN5cE1weeKlXMYynwiIgb0SuaeJ7Bg00gaNnSjGa4Oi8vMyJz//1muwhIfeCpUCH5CI8Cj4i4ML16iWfZvBm+/RZsNnjjDaurSTu3Cjx7994YeM6dg19/NZcE1weeKlXMBGgFHhFxAXqlEs8ycKD5+MwzZnm2J/HyMpOoS5WCp582t6Um8GTKdOMIjwKPiDghvSqJ51i9GpYuNW/GQ4daXY1zuFXg2bfvxsATHQ0bNphLgusDT8IIz3XdUEVE0pPCjXgGux0GDDDHXbpAOmzc5rK8vMzeVyVLwn8b7REfD3//nbRx6O0Cj6/vjYHngQcUeEQk3SjciGdYssRsdZApU9KpKUk5Ly8oUcJcrg8814/wREXBxo3mkkCBR0TSkcKNuL/4+KRRm+7dIX9+a+txF9cGnqeeMrfFx5sGideP8Nwq8JQvnzzwlC2rwCOSjurWrUvFihWZMGGC1aU4lMKNuL+5c02ju6xZoW9fq6txb15eULy4uVwfeK4d4dmyxQSeTZvMJYGPz81HeHx8rPl+RNJBWgSMTp06cfbsWebPn++wx3QlCjfi3mJjYdAgcxweDjlzWluPJ7o28LRpY26z228+wnP27M0Dz81GeBR4ROQW0mAbZBEn8tlnsHs35Mhhwo04B5sNihUzYWfsWFixAk6fNqu05syBPn2gfn3Ilg2uXDEhaNo0eOEFE26yZoVq1aBrV5g+3QSjK1es/q5EUq1Tp06sWrWKiRMnYrPZsNlsHDx4EICdO3fSpEkTsmTJQlBQEO3bt+fkyZOJX/vNN99Qrlw5/Pz8uO+++wgNDeXChQsMHTqUTz75hAULFiQ+5sqVK1NUz5kzZ+jQoQPZs2cnc+bMNGnShL179yZ+/tChQzRr1ozs2bPj7+/PAw88wKJFixK/tl27duTKlQs/Pz9KlCjBzJkzHfZvlRoauRH3FROTtOS7f3/QRqnOLSHwFCsGTz5pbrPb4cCB5CM8W7aYEZ7Nm80lgY8PlCsHdevCkCEmAIlns9vh4kVrnjtzZvN/+g4mTpzIX3/9RdmyZRk+fDgAuXLl4uzZszz88MN06dKFd955h0uXLtG3b1+efPJJfvrpJ44ePUrbtm0ZO3YsLVu25Ny5c6xZswa73U7v3r35888/iY6OTgwXOXLkSFHZnTp1Yu/evXz33XcEBATQt29fmjZtyq5du8iYMSNhYWFcuXKF1atX4+/vz65du8iSJQsAgwYNYteuXSxevJicOXOyb98+Ll26dJf/gPdG4Ubc14wZcOgQ5M0LYWFWVyN3w2Yzy/aLFr0x8Fw/h+fMmeSnuBYtMqvjxHNdvAj/vfGmu/Pnwd//jncLDAzEx8eHzJkzkydPnsTbJ0+eTKVKlRg1alTibR999BHBwcH89ddfnD9/ntjYWB5//HEKFSoEQLly5RLv6+fnR0xMTLLHvJOEUPPLL79Qs2ZNAD7//HOCg4OZP38+rVu3JiIiglatWiU+V9Fr2mpERERQqVIlqv63rU3hwoVT/NyOptNS4p4uXEjaXmHQILOdgLiHhMDTujWMGQPLl8OpU2YOz6xZZsTm55/NKa+rV62uVuSubN++nZ9//pksWbIkXu6//34A/v77bypUqED9+vUpV64crVu3Zvr06Zw5c+aenvPPP/8kQ4YMhISEJN523333UapUKf78808AevbsyYgRI6hVqxZDhgzh999/T7xvt27dmD17NhUrVqRPnz6sW7funuq5Fwo34p4mT4bISChSBJ57zupqJK3ZbOZn/cwz8P33ZsTmu+/g2WfNai3xTJkzmxEUKy6ZM99T6efPn6dZs2Zs27Yt2WXv3r089NBDeHt7s3z5chYvXkyZMmWYNGkSpUqV4sCBAw76x7u5Ll26sH//ftq3b8+OHTuoWrUqkyZNAqBJkyYcOnSIV155hSNHjlC/fn169+6dpvXcisKNuJ+oKHjzTXM8bJhW1XiaOnXgm2/MNhuffQY9e5pTWeJ5bDZzasiKSwrm2yTw8fEhLi4u2W2VK1fmjz/+oHDhwhQvXjzZxf+/0102m41atWoxbNgwfvvtN3x8fJg3b94tH/NOSpcuTWxsLBuu6Th+6tQp9uzZQ5kyZRJvCw4OpmvXrsydO5dXX32V6dOnJ34uV65cdOzYkc8++4wJEybwwQcfpKoGR1G4EfczbpyZf1GmTNJ+SeJZHnkEPv3UvMFMmQKDB1tdkcgtFS5cmA0bNnDw4EFOnjxJfHw8YWFhnD59mrZt27Jp0yb+/vtvli5dSufOnYmLi2PDhg2MGjWKzZs3ExERwdy5czlx4gSlS5dOfMzff/+dPXv2cPLkSa6m4BRtiRIlaN68Oc8//zxr165l+/btPPPMM+TPn5/mzZsD0KtXL5YuXcqBAwfYunUrP//8c+JzDh48mAULFrBv3z7++OMPfvjhh8TPpTeFG3Evx4/D+PHm+I03wNvb2nrEOm3bwnvvmeMRI0zoFXFCvXv3xtvbmzJlypArVy4iIiLIly8fv/zyC3FxcTRs2JBy5crRq1cvsmXLhpeXFwEBAaxevZqmTZtSsmRJBg4cyLhx42jSpAkAzz//PKVKlaJq1arkypWLX375JUW1zJw5kypVqvDoo49So0YN7HY7ixYtIuN/ncPj4uIICwujdOnSNG7cmJIlS/Lef79nPj4+9O/fn/LlyyeeOps9e3ba/KPdgc1u96zx2ujoaAIDA4mKiiJAS4PdT3g4vPOO6YWyaVOqhobFTY0ZY1oBgFlBpzlYbuvy5cscOHCAIkWKkEkr5VzS7X6GqXn/1siNuI9//kn6S33kSAUbMfr1M00BwTQB/Ppra+sRkTSncCPu4403TOO+hx6Chg2trkacyZgxJtjEx0O7dmaXeBFxWwo34h727YMPPzTHGrWR69lsZlQvoffN449DCucgiIjrUbgR9zB0KMTFQdOmULu21dWIM/L2NiuomjSBS5fMiqpt26yuSkTSgMKNuL4dO+CLL8zxiBHW1iLOzcfH9MB58EHTD6lhQ/jrL6urEgfzsHUybsVRPzuFG3F9gwaZJm2tW0OlSlZXI84uc2bTxbhyZThxAkJD4fBhq6sSB0hYrnzRqs0y5Z5duXIFAO97bOOhjTPFtW3YAAsWgJcX/LejrsgdBQaaScUPPgh79kCDBrB6NeTObXVlcg+8vb3Jli0bx48fByBz5szYNP/OZcTHx3PixAkyZ85Mhgz3Fk8UbsS1DRxoPnboAP9tKieSIrlymU03a9c2AadxY7PhZmCg1ZXJPUjYBTsh4Ihr8fLyomDBgvccStXET1zXTz9B/fqQMaOZN1G4sNUViSvau9cEnOPHzcelS+9500OxXlxcXIq2HBDn4uPjg5fXzWfMpOb9WyM34prsdhgwwBy/+KKCjdy9EiVg2TKz4ebatfDEEzB/vjZcdXHe3t73PG9DXJcmFItr+uEH+PVX8PNLCjkid6tCBVi40IzYLF4M7dub1gIi4pIUbsT1xMcnzbXp2RP+O8cuck9q1YK5c81pzq++gm7dzAihiLgchRtxPV99Bb//DgEBSXsGiThCo0amZ5KXF0yfDn37KuCIuCCFG3EtsbEweLA5fu01yJHD2nrE/TzxhAk2AG+9ZfalEhGXonAjruWTT8zqlly54OWXra5G3NWzz8K4ceb49dfh/fetrUdEUkXhRlzH5cswbJg57t8fsma1th5xb+HhSXO7wsKStvgQEaencCOuY9o00ya/QAEz2VMkrQ0fDt27m3k3HTqYVXoi4vQUbsQ1nD8PI0ea48GDIVMma+sRz2CzwcSJSUvDW7eGlSutrkpE7kDhRlzDu++aTQ6LFYNOnayuRjyJlxd8+CE89pg5NdqsGWzebHVVInIbCjfi/M6cgbFjzfHw4aYPiUh6ypgR5syBevXMKGLjxrBrl9VVicgtWBpuVq9eTbNmzciXLx82m4358+ff8WtWrlxJ5cqV8fX1pXjx4nz88cdpXqdY7K23ICoKypWDp56yuhrxVJkymR3oq1eHU6fMTuIHDlhdlYjchKXh5sKFC1SoUIEpU6ak6P4HDhzgkUceoV69emzbto1evXrRpUsXli5dmsaVimWOHTNzHgBGjDCnCESskjUrLFoEDzwAR46YgHP0qNVVich1nGZXcJvNxrx582jRosUt79O3b18WLlzIzp07E2976qmnOHv2LEuWLEnR82hXcBfz8stmvk316mYvKZvN6opETLCpXduM3JQrZyYZq6GkSJpKzfu3S/0ZvH79ekJDQ5Pd1qhRI9avX3/Lr4mJiSE6OjrZRVzEoUMwdao5HjVKwUacR7588OOPkDcv7NgBjzxi5uKIiFNwqXBz7NgxgoKCkt0WFBREdHQ0ly5duunXjB49msDAwMRLcHBwepQqjjB8OFy5Ag8/DPXrW12NSHJFi8KyZWbE5tdfoUULiImxuioRwcXCzd3o378/UVFRiZfDhw9bXZKkxJ49ZqsFSOpvI+JsypaFxYshSxZYsQLatjX7n4mIpVwq3OTJk4fIyMhkt0VGRhIQEICfn99Nv8bX15eAgIBkF3EBQ4aYpmnNmsH//md1NSK3Vr26WUXl6wvz5sHzz0N8vNVViXg0lwo3NWrUYMWKFcluW758OTVq1LCoIkkT27aZniJgVkiJOLuHHzb/Z7294eOPzb5UzrFWQ8QjWRpuzp8/z7Zt29i2bRtglnpv27aNiIgIwJxS6tChQ+L9u3btyv79++nTpw+7d+/mvffe46uvvuKVV16xonxJKwmbFbZtC+XLW1uLSEo1b26CDZj2BcOHW1qOiCezNNxs3ryZSpUqUalSJQDCw8OpVKkSgwcPBuDo0aOJQQegSJEiLFy4kOXLl1OhQgXGjRvHjBkzaNSokSX1SxpYtw4WLjR/ASfsAC7iKp55BiZNMsdDhyb1aBKRdOU0fW7Si/rcODG73bS3X7UKunSB6dOtrkjk7owYAYMGmeOZM7UfmogDuG2fG3FzP/5ogo2Pj9n5W8RVDRhg5t0APPecmWgsIulG4Uacg91u3hAAXnoJ1I9IXJnNBm+/Dc8+a1ZOPfWUCe8iki4UbsQ5LFgAmzaBvz/07291NSL3zmaDDz6AJ54wzShbtDDN/kQkzSnciPXi4pJWSPXqBblzW1qOiMN4e8Nnn0HDhnDhAjRpYrZrEJE0pXAj1vvyS/jjD8iWDXr3troaEcfy9YW5c6FmTTh71gSdffusrkrErSnciLWuXjXdiAH69DEBR8Td+PubFgcVKsCxYxAaCv/+a3VVIm5L4Uas9dFHsH+/ORXVs6fV1YiknWzZYOlSKFHC7HjfoAGcPGl1VSJuSeFGrHPpUlIX14EDzV+3Iu4sKAiWL4cCBeDPP6FxY4iOtroqEbejcCPWee89OHIEChaEF16wuhqR9FGokAk4OXPCli3w2GMm6IuIwyjciDWio2H0aHM8ZIiZdCniKe6/35yiCggwjSuffNLMPxMRh1C4EWtMmACnTkHJknDN5qgiHqNyZfj+e8iUCX74wWzREB9vdVUibkHhRtLfqVOmeyvAG29AhgzW1iNilYcegm+/Nb8DX3wB3bubbt0ick8UbiT9jR0L585BxYqme6uIJ2va1DT6s9ng/feTGlqKyF1TuJH0deQITJpkjkeMAC/9FxShTRuYOtUcjxoFb71lbT0iLk7vLJK+Ro40K0Nq1jR/sYqI8cIL8Oab5rhPH5g+3dp6RFyYwo2knwMHzEaCYP46tdmsrUfE2fTpA/36meMXX4Q5c6ytR8RFKdxI+hk2DGJjTWfWOnWsrkbEOY0aBV27monFzzwDixdbXZGIy1G4kfSxaxfMmmWOR460thYRZ2azweTJ0Lat+WOgVStYs8bqqkRcisKNpI/Bg00Pj5YtoVo1q6sRcW7e3vDJJ/DII2aO2qOPwtatVlcl4jIUbiTtbdliennYbKavjYjcWcaM8PXXphdOdLTZh2rPHqurEnEJCjeS9hL6drRrBw88YG0tIq7Ez890Ma5SBU6cMPPVIiKsrkrE6SncSNpavRqWLDEdWIcOtboaEdcTEGB+h+6/Hw4fNgEnMtLqqkScmsKNpB27HQYMMMddukCxYtbWI+KqcuY0O4kXKgR//QWNGsHZs1ZXJeK0FG4k7SxdCmvXmo0B1VJe5N4UKAA//ghBQbB9u5lkfPGi1VWJOCWFG0kb8fHw+uvmOCwM8ue3th4Rd1C8OCxbBtmywS+/wOOPw5UrVlcl4nQUbiRtzJ0Lv/0GWbIkdVwVkXtXvjwsWgSZM5vR0Weegbg4q6sScSoKN+J4cXEwaJA5fvVVM19ARBynRg2YPx98fMxy8RdfNHPcRARQuJG08NlnsHs35MgB4eFWVyPinho0gC+/BC8v+PBDeO01BRyR/yjciGPFxMCQIea4Xz+zjFVE0sbjj8OMGeZ43DizL5WIKNyIg82YAYcOQd68ZiKxiKStzp3hnXfM8cCBMGWKtfWIOAGFG3GcixdhxAhzPGiQmfAoImmvVy+zfxtA9+7m1LCIB1O4EceZPBmOHYPCheG556yuRsSzDB0KPXua406d4LvvrKxGxFIKN+IYUVEwZow5HjbMrOIQkfRjs5nTUx07mhWLTz4JP/9sdVUillC4EccYNw7OnIHSpc0GmSKS/ry8zLy3Fi3M5P7HHoONG62uSiTdKdzIvTtxImlC4xtvgLe3tfWIeLIMGcwS8fr14fx5aNIE/vjD6qpE0pXCjdy7MWPMi2iVKmZpqohYK1Mm0+QvJAROnzY9cfbvt7oqkXSjcCP35p9/kpaejhxpzvuLiPWyZDHbNJQtC0ePmoBz9KjVVYmkC4UbuTdvvGHO7T/0EDRsaHU1InKtHDnMRptFi5qRm4YNzUiOiJtTuJG7t28ffPSROdaojYhzypsXfvwR8uWDnTvNHJxz56yuSiRNKdzI3Rs6FGJjzYtl7dpWVyMit1KkiBnByZHDrJ5q0QIuX7a6KpE0o3Ajd2fHDvjiC3Oc0JVYRJzXAw/AkiVmLs5PP0HbtuaPExE3pHAjd2fQILMDcevWULmy1dWISEpUqwbffw++vmY11XPPQXy81VWJOJzCjaTexo2wYIFpGDZ8uNXViEhq1K0LX39t+lF9+qnZl8put7oqEYdSuJHUGzDAfOzQAe6/39paRCT1mjWDTz4xiwAmTTLz50TciMKNpM7PP5uVFxkzwpAhVlcjInerXTuz2S2YEdiELuMibkDhRlLObk8atXnhBbP7t4i4rpdeSloQEB6e1NpBxMUp3EjKLVwI69eDn19SyBER1/b669C7tzl+/nn49ltr6xFxAIUbSZn4+KRA07OnaQwmIq7PZoOxY6FLF/N73rat6Ykj4sIUbiRlvvoKfv8dAgKgTx+rqxERR7LZYOpU09rh6lVo2RLWrbO6KpG7pnAjdxYbC4MHm+PevU2XUxFxL97e8Nln0LgxXLwIjzwC27dbXZXIXVG4kTv75BPYuxdy5jQ9MUTEPfn4mDk3tWrB2bNmo829e62uSiTVFG7k9i5fhmHDzPHrr0PWrNbWIyJpK3Nm+OEHqFgRjh+H0FD45x+rqxJJFYUbub1p0+DwYcifH7p1s7oaEUkP2bLB0qVQsiRERECDBnDihNVViaSYwo3c2vnzMGqUOR48GDJlsrYeEUk/uXPD8uUQHAy7d5u5OFFRVlclkiIKN3Jr775rhqWLFYPOna2uRkTSW8GCJuDkygVbt8Jjj8GlS1ZXJXJHCjdyc2fOmN4XYFqzZ8xobT0iYo1SpcwpqoAAWL0anngCrlyxuiqR21K4kZt7+20zBF22LDz1lNXViIiVKlUyHcr9/GDRIujYEeLirK5K5JYUbuRGkZEwYYI5HjECvPTfRMTj1a4Nc+eaUdzZsyEszOw3J+KE9K4lNxo1yjTxql7dnGMXEQEzqfizz0xH42nTTHsIESekcCPJRUSYNuxgQo7NZm09IuJcnnzSBBuAMWPgzTetrUfkJhRuJLnhw81kwXr1oH59q6sREWf0/PPw1lvmuF+/pLAj4iQUbiTJnj3w8cfmeORIS0sRESfXu3fSaalu3cw8HBEnoXAjSYYMMSsgmjWDGjWsrkZEnN2IEfDSS2Zicfv2ZkWViBOwPNxMmTKFwoULkylTJkJCQti4ceMt73v16lWGDx9OsWLFyJQpExUqVGDJkiXpWK0b27YN5swxx2+8YWkpIuIibDaYNAmefhpiY00PnNWrra5KxNpwM2fOHMLDwxkyZAhbt26lQoUKNGrUiOPHj9/0/gMHDmTatGlMmjSJXbt20bVrV1q2bMlvv/2WzpW7oUGDzMennoIKFaytRURch5eXOZ3drJnZaPfRR2HLFqurEg9ns9uta1QQEhJCtWrVmDx5MgDx8fEEBwfTo0cP+vXrd8P98+XLx4ABAwgLC0u8rVWrVvj5+fHZZ5+l6Dmjo6MJDAwkKiqKgIAAx3wjrm7dOqhVC7y9Ydcus1meiEhqXLoETZrAqlWQMyesWQP33291VeJGUvP+bdnIzZUrV9iyZQuhoaFJxXh5ERoayvr162/6NTExMWS6bvNGPz8/1q5de8vniYmJITo6OtlFrmG3w4AB5rhzZwUbEbk7fn7w3XdQtSqcPAmhoXDwoNVViYeyLNycPHmSuLg4goKCkt0eFBTEsWPHbvo1jRo1Yvz48ezdu5f4+HiWL1/O3LlzOXr06C2fZ/To0QQGBiZegoODHfp9uLwVK2DlSvDxSTo1JSJyNwICYPFiKFMG/v0XGjSAW7yei6QlyycUp8bEiRMpUaIE999/Pz4+PnTv3p3OnTvjdZvtAfr3709UVFTi5fDhw+lYsZOz25Mv5SxY0Np6RMT15cwJy5ZB4cKwbx80amQ24hVJR5aFm5w5c+Lt7U1kZGSy2yMjI8mTJ89NvyZXrlzMnz+fCxcucOjQIXbv3k2WLFkoWrToLZ/H19eXgICAZBf5z4IFsGkT+PtD//5WVyMi7iJ/fli+HPLkgd9/h0cegQsXrK5KPIhl4cbHx4cqVaqwYsWKxNvi4+NZsWIFNe7QYyVTpkzkz5+f2NhYvv32W5o3b57W5bqfuDgYONAc9+oF150eFBG5J8WLmxGc7Nlh/Xpo2RJiYqyuSjyEpaelwsPDmT59Op988gl//vkn3bp148KFC3Tu3BmADh060P+aEYUNGzYwd+5c9u/fz5o1a2jcuDHx8fH06dPHqm/Bdc2eDX/8AdmymU6jIiKOVq4cLFpkRoeXL4d27Uw/HJE0lsHKJ2/Tpg0nTpxg8ODBHDt2jIoVK7JkyZLEScYRERHJ5tNcvnyZgQMHsn//frJkyULTpk2ZNWsW2bJls+g7cFFXr8Lgwea4Tx8TcERE0sL//gfz55tTU99+Cy+8ADNmmP44ImnE0j43VlCfG8wmd127Qu7csH+/+atKRCQtzZtnOhjHx8Mrr8C4cabDsUgKuUSfG7HIpUtJ2ysMGKBgIyLpo2VL+Ogjc/zOO2ZfKpE0onDjad5/3/SfCA6GF1+0uhoR8SQdO8LEieZ48GCzL5VIGlC48STR0TBqlDkeOhR8fS0tR0Q8UM+e5vUn4fjTTy0tR9yTwo0nmTABTp0yWyx06GB1NSLiqQYPNi0oAJ591vTcEnEghRtPceqUmcAHMHw4ZLB0oZyIeDKbzbwedepkem49+aTZCkbEQRRuPMXYsea0VIUK0Lq11dWIiKfz8oLp0+Hxx+HKFWjeHDZssLoqcRMKN57gyJGkiXsjR6q/hIg4hwwZ4IsvzAabFy5Akyawc6fVVYkb0LucJxg50iwBr1EDmja1uhoRkSS+vjB3rmn2d+YMNGwIf/9tdVXi4hRu3N2BA2boF8xKKTXNEhFnkyWL2aahXDk4ehRq1jRzcs6ft7oycVEKN+5u2DCz3UKDBlC3rtXViIjcXPbsZqPN0qXh+HGz512hQuY17PRpq6sTF6Nw487+/BNmzTLHI0daW4uIyJ3kyQPbtpm9p0qUMKFm6FATcl57zYzqiKSAwo07GzzY7OPSogVUq2Z1NSIid+bjA889Z/44mzPHrPA8fx7efhsKF4Zu3cyeeCK3oXDjrrZsgW++MXNsEvaSEhFxFd7epv/Nb7/BwoVQq5ZZMj51qmlE+swzWlklt6Rw464GDjQf27WDsmWtrUVE5G7ZbGaV59q1sHo1NGpkGv99/rmZgNyihfrjyA0UbtzRmjWwZInpIZGwh4uIiKt78EHz2rZ5MzzxhAk+CxaYZeShofDTT2C3W12lOAGFG3djt8Prr5vj556DYsWsrUdExNGqVIGvv4Zdu8wWDhkymO0b6tc3/bwWLDDzDcVjKdy4m6VLzfCtry8MGmR1NSIiaef++2HmTNi3D7p3h0yZzCmqFi2gfHlz6io21uoqxQIKN+4kPj5p1KZ7d8if39p6RETSQ6FCZouZgwehf38ICIA//jCTjkuWhGnT4PJlq6uUdJSqcHP8+PHbfj42NpaNGzfeU0FyD+bONSsLsmSBfv2srkZEJH0FBZlO7IcOmd5eOXOaLu1du0KRImY5+blzVlcp6SBV4SZv3rzJAk65cuU4fPhw4vVTp05Ro0YNx1UnKRcXl3QaKjzc/FKLiHiibNnMKPahQzBxIhQoAMeOmUaAhQqZhRanTlldpaShVIUb+3Wz0A8ePMjVq1dvex9JJ599Brt3Q44cJtyIiHi6zJmhZ0+zEeeHH5pTVGfOmC0dChUyWzwcOWJ1lZIGHD7nxqaNGdPflStJS7779YPAQEvLERFxKj4+8OyzZnXVV19BxYpw4YLZnLNIEXPaSl2P3YomFLuDGTPMRLo8eSAszOpqRESck7c3tG4NW7eaXchr1zZ/HE6bZvayatcOduywukpxgFSFG5vNxrlz54iOjiYqKgqbzcb58+eJjo5OvEg6u3gxaXuFQYPMMKyIiNyazQZNmpiGp6tXm+P4ePjiC7OEvHlzdT12cTZ7KibJeHl5JTvtZLfbb3o9Li7OsVU6UHR0NIGBgURFRREQEGB1Ofdu7Fjo29dsKLdnjxl+FRGR1PntNxg92uzJl/C2+PDDZmLyww+bQCSWSs37d6rCzapVq1J0vzp16qT0IdOdW4WbqChzvvjMGfj4Y+jY0eqKRERc25498OabMGtWUgPA6tVN/5zHHgMvzeawSpqFG3fgVuFmyBAYPhxKlzbnib29ra5IRMQ9RESYvjgzZsClS+a2MmVMyHnqKbPlg6SrNAs3sbGxxMXF4evrm3hbZGQkU6dO5cKFCzz22GPUrl377itPB24Tbk6cgKJF4fx5M4zaqpXVFYmIuJ/jx02vnMmTIWFeaZEi0KeP2dcqUyZLy/MkaRZuOnfujI+PD9OmTQPg3LlzPPDAA1y+fJm8efOya9cuFixYQNOmTe/tO0hDbhNuXn0Vxo83G8ht2qTzwSIiaSkqCt57D955x/xxCWaF6quvwosvQtas1tbnAVLz/p2qk4e//PILra4ZIfj000+Ji4tj7969bN++nfDwcN566627q1pS7p9/YMoUczxihIKNiEhaCww0p6QOHoR334Xg4ORdj4cMUddjJ5KqcPPvv/9SokSJxOsrVqygVatWBP7XNK5jx4788ccfjq1QbjRiBMTEwIMPQqNGVlcjIuI5MmeGHj3MTuQzZyZ1PR4+3IScV1+Ff/+1ukqPl6pwkylTJi4lTKwCfv31V0JCQpJ9/vz5846rTm60b59pIw5mYziN2oiIpD8fHzPnZtcu+PprqFTJdD0eP97Mh3zxRbPtg1giVeGmYsWKzJo1C4A1a9YQGRnJww8/nPj5v//+m3z58jm2Qklu6FCzPLFJEzNyIyIi1vH2hieegC1bYPFi87p85Qp88IEZ1Xn6aXU9tkCqws3gwYOZOHEixYoVo1GjRnTq1Im8efMmfn7evHnUqlXL4UXKf3buNB00wZyaEhER52CzQePGpuPxmjXQtKnpevzll6br8WOPwa+/Wl2lx0jVQv06deqwZcsWli1bRp48eWjdunWyz1esWJHq1as7tEC5xqBBpnPmE09A5cpWVyMiIjdTuzYsXGi6Ho8ZY05bff+9udSrZ7oe16+vaQVpSE38XMXGjRASYrpj7txpGveJiIjz++sv0/X400+Tuh5Xq2ZWXzVvrq7HKZRmfW5Wr16dovs99NBDKX3IdOey4aZBA/jxR7PFwscfW12NiIikVkQEjBsH06cn73rcr5/pepwxo7X1Obk0CzfXbpx5qy/Txplp4OefzcZtGTOafU+KFLG6IhERuVsnTiR1PY6KMrcVLmy6HnfurK7Ht5BmTfyyZ89OcHAwgwYNYu/evZw5c+aGy+nTp++peLmO3Q4DBpjjF15QsBERcXW5cplFIYcOmZ3Ic+UyzQFfesm8xr/1Fpw7Z3WVLi1V4ebo0aO8+eabrF+/nnLlyvHcc8+xbt06AgICCAwMTLyIAy1cCOvXg59fUsgRERHXFxhoTkkdPAiTJkHBgqbrcZ8+5njwYDh50uoqXVKqwo2Pjw9t2rRh6dKl7N69m/Lly9O9e3eCg4MZMGAAsQkTpcQx4uOTAk2PHnDNsnsREXETmTND9+6mSevHH0OpUnD2LLzxhul6HB6ursepdM+rpQ4cOMBzzz3HqlWrOHHiBDly5HBUbWnCpebczJljJpkFBMD+/XDffVZXJCIiaS0uDubPh1GjYOtWc1vGjKYjcp8+ULy4ldVZJs3m3CSIiYnhiy++IDQ0lLJly5IzZ04WLlzo9MHGpcTGmr42AL17K9iIiHgKb29o1Qo2b4YlS+Chh+DqVbPKqlQp0/X499+trtKppSrcbNy4kW7dupEnTx7eeustHnvsMQ4fPsxXX31F48aN06pGz/TJJ7B3L+TMCb16WV2NiIikN5vNbI68ahWsXQuPPJLU9bhCBWjWzMzJlBukeil4wYIF6dixI1WqVLnl/R577DGHFJcWXOK0VEwMlCgBhw+bngjh4VZXJCIizmDbNtP1+KuvzGpagLp1Tdfj0FC37nqcpn1u7kR9bhzg3Xfh5Zchf34zeuPnZ3VFIiLiTP76C8aONV2Pr141t1WtakKOm3Y9TrM5N/Hx8Xe8nNPa/Htz/jyMHGmOBw9WsBERkRuVLAkzZpjFJr16mfeKzZvh8cehbFmYNSsp9Hggh0W7mJgYxo8fT9GiRR31kJ7p3Xfh+HEoVsx0qhQREbmVAgXgnXdMQ8CBA03vnD//hA4dzPSG995L2urBg6Qq3MTExNC/f3+qVq1KzZo1mT9/PgAfffQRRYoU4Z133uGVV15Jizo9w5kzpjMlwLBh2mdERERSJlcu0xcnIsLMycmd2wSesDDT9XjsWIiOtrrKdJOqOTd9+/Zl2rRphIaGsm7dOk6cOEHnzp359ddfef3112ndujXe3t5pWe89c+o5NwMGmL4GZcuaSWNO/m8pIiJO6tIl+Ogj8wfzoUPmtmzZTEPYnj3NSlwXk2Zzbr7++ms+/fRTvvnmG5YtW0ZcXByxsbFs376dp556yumDjVOLjIQJE8zxiBEKNiIicvf8/Myozd69prXI/fcn73r8yivwzz9WV5lmUhVu/vnnn8Ql4GXLlsXX15dXXnklcadwuQejRsHFi1C9OjjxUnoREXEhGTOa+Td//AHffgtVqpj3mgkToGhReP55s+2Dm0lVuImLi8PHxyfxeoYMGciSJYvDi/I4EREwdao5HjnSrfsUiIiIBby8zEqqTZtg6VKoU8esppoxw3Q9btvWrboep7rPTZMmTfD19QXg+++/5+GHH8bf3z/Z/ebOnevYKh3IKefcdOkCH34I9erBihUKNyIikvbWrYPRo+GHH5Jue+QR0yunZk3r6rqFNGvi1zmFS5NnzpyZ0odMd04Xbv76C8qUMRulrVsHNWpYXZGIiHiS7duTuh7Hx5vb6tQxIadBA6f5gzvNwo07cLpw07YtzJ4Njz4K339vdTUiIuKp9u41S8Y/+SSpAWCVKibktGhhedfjNN8VXBxk+3YTbMCskBIREbFKiRJm5/H9+81qqsyZYcsWs0P5Aw8k3+rBySncWGngQPPxqafMDq8iIiJWK1AAxo83/XEGDTL9cXbvho4dTQCaMsXpux7rtJRV1q83E7a8vWHXLrNPiIiIiLOJjjYresePNz3ZwHRADg+Hbt0gnd5LdVrK2dnt5hwmQKdOCjYiIuK8AgKgTx84cMCM2hQqZPZA7NcPChY0ozsnTlhdZTIKN1ZYsQJWrgQfH7Pzt4iIiLPz84OXXjITjz/9FEqXhqgoM2e0UCGzO7mTdD1WuElv147adOtmUq+IiIiryJgR2reHnTth7lyoWtXMwZk40XQ97tLFBCALKdyktwULTIfIzJmhf3+rqxEREbk7Xl7QsiVs3AjLlplGtFevmqa0tWtburLK8nAzZcoUChcuTKZMmQgJCWHjxo23vf+ECRMoVaoUfn5+BAcH88orr3D58uV0qvYexcWZc5Nghu+CgiwtR0RE5J7ZbKbZ308/mWa0zZqZncczZrSspAyWPTMwZ84cwsPDmTp1KiEhIUyYMIFGjRqxZ88ecufOfcP9v/jiC/r168dHH31EzZo1+euvv+jUqRM2m43x48db8B2k0uzZZhgvWzbo3dvqakRERByrRg347jszBcNClo7cjB8/nueff57OnTtTpkwZpk6dSubMmfnoo49uev9169ZRq1Ytnn76aQoXLkzDhg1p27btHUd7nMLVq0mTh197DbJnt7YeERGRtGLxlg2WhZsrV66wZcsWQkNDk4rx8iI0NJT169ff9Gtq1qzJli1bEsPM/v37WbRoEU2bNr3l88TExBAdHZ3sYomZM03Xx9y5zXCdiIiIpAnLTkudPHmSuLg4gq6bdxIUFMTu3btv+jVPP/00J0+epHbt2tjtdmJjY+natSuvJ6w+uonRo0czbNgwh9aeapcuwfDh5njAAMiSxdp6RERE3JjlE4pTY+XKlYwaNYr33nuPrVu3MnfuXBYuXMgbb7xxy6/p378/UVFRiZfDhw+nY8X/ef99+PdfCA6GF19M/+cXERHxIJaN3OTMmRNvb28iE1o5/ycyMpI8efLc9GsGDRpE+/bt6dKlCwDlypXjwoULvPDCCwwYMACvm+xY6uvri6+vr+O/gZQ6dw5GjzbHQ4aAlbWIiIh4AMtGbnx8fKhSpQorVqxIvC0+Pp4VK1ZQo0aNm37NxYsXbwgw3t7eADjtFlkTJsDJk2azsY4dra5GRETE7Vm6FDw8PJyOHTtStWpVqlevzoQJE7hw4QKdO3cGoEOHDuTPn5/R/418NGvWjPHjx1OpUiVCQkLYt28fgwYNolmzZokhx6mcOgVvv22O33gDMlj6zy0iIuIRLH23bdOmDSdOnGDw4MEcO3aMihUrsmTJksRJxhEREclGagYOHIjNZmPgwIH8+++/5MqVi2bNmjFy5EirvoXbGzvW7KZaoQK0bm11NSIiIh7BZnfa8zlpIzVbpt+To0ehWDGzUur77+HRR9PuuURERNxcat6/XWq1lEsZOdIEmxo14JFHrK5GRETEYyjcpIUDB+CDD8zxqFGWd2oUERHxJAo3aWHYMLPdQmgo1K1rdTUiIiIeReHG0f78E2bNMsfOOtFZRETEjSncONrgwRAfDy1aQPXqVlcjIiLicRRuHGnLFvjmGzPH5jZbQoiIiEjaUbhxpIEDzcenn4ayZa2tRURExEMp3DjKmjWwZInpQjx0qNXViIiIeCztB+AogYFmdVSxYlC8uNXViIiIeCyFG0cpXx6WL4crV6yuRERExKPptJSj+fhYXYGIiIhHU7gRERERt6JwIyIiIm5F4UZERETcisKNiIiIuBWFGxEREXErCjciIiLiVhRuRETEcrGxya8PGgSbN1tTi7g+hRsREbFUdDTUqweTJpnrX3wBI0ZA7drw0UfW1iauSeFGREQsExUFjRrB2rUwZAicPAmPPAKPPQYxMfDcc9C1qzkWSSmFGxERscSZM9CgAfz6K2TPDj/+CDlzmq365s2DN94Amw2mTYM6deCff6yuWFyFwo2IiKS7U6fMXsObNsF998HPP0Plykmf9/KCgQNh4UITfDZsgCpVYNUq62oW16FwIyIi6erkSahfH7ZuhVy5TLCpUOHm923SxEwsrlABTpyAixfTt1ZxTdoVXERE0tX8+bB9OwQFwU8/QZkyt79/0aKwbh0sX27CjsidaORGRETSVZcuMH48rFx552CTIHNmaN486fr+/WYezr59aVKiuDiFGxERSXNHj8K5c0nXX3kF7r//7h8vLAxWr4aqVeGHH+69PnEvCjciIpKm/vnHjLI0bQrnzzvmMT/8EGrWNEvJmzWDoUMhPt4xjy2uT+HGgWJj4fRpuHRJv2QiIgCHDplgs3evCTmnTzvmcfPlMxORw8LM9WHDTG+cM2cc8/ji2jSh2IH++gseeCDpuq8v+PklXbp2hddeM587ftycd7728wmXTJkgJAQaNjT3jYmBRYtuvE/CcWAgZM2a/t+viMjtHDhgOg8fOmQmBf/8MxQs6LjH9/GByZOhWjXz+rpwoTlevhyKFHHc84jrUbhxoMuXk1+PiTGXs2fN9aiopM+dPQvff3/rx+rZMyncnDoFjz9+6/s++6wZogVzTjs4+MYAlHDcoAH07WvuGx8Pr7568/v5+UHhwlCrVtLz7NiRFNiuvZ+3dwr+cUTEo/z9twk2hw9DiRJmVVSBAmnzXB07Qvny5nUyRw7Imzdtnkdch8KNA1WuDFevmtNS114uXzYfr/2Fy5ULPvjgxvskXGrWTLqvzQY1atx4n4SLn1/SfS9dMiHq2iB1rfz5k44vX4YJE279/Tz+eFK4sdtNnwm7/cb7ZcgAjz5qOoomePBBiIu7MQj5+ZnVEb16Jd33ww+T7nv9JXv25JMOL1wwf61lzHjrukXEWnv3mmDz77/m93fFCnMaKS1VqmT64Vy+bF5zwLyuxMfr9cITKdw4WIYM5hTRnU4TZc8Ozz+fssfMm9f0eLiVawNHjhywZ8/NQ9Ply1CoUNJ9bTbo1+/m97t0KXlTrdhYyJ076XNXriT/3PWhZ8MGE/Ru5uGHk4eb11679Xny6tXNYyUoXdr8JejtfeNoU9my8O23Sfft1cs0C7vZyFRQkBnxSrB2rfnesmc3L5Jemo0mctdiYszvU5kyJtjkyZM+z3vffcmvDx5sfrfnzEm/GsQ52Oz2m/0t7r6io6MJDAwkKiqKgIAAq8txWXFx5gUsIRBlyJD8xWPp0luPYBUsCB06JN23Y0dzmu5mgaxSJfjmm6T75s5tupTeTOXKsGVL0vWiRc05/5spWdKEwATly5vTbmBawn/9NWTLlpp/ERG51o4d5o+I3Lmtef7jx83psOhoM2r0zTdmBFxcV2revxVuxKXc6jTepUtmPlBISNJ9P/3UjNzcLGTlzg1jxiTd94knzITwffvMfe6/3/TOKFYs/b9HEVe0Y4cZgX3oIasrSbJnD7RsCX/+aU5NvfsuvPiiGbUW16NwcxsKN3I727eb+UP//GOGuOfOda4XaxFntG2bGfG8fNmsiKpWzeqKkpw7Z05BJ4wAd+4MU6Ykn6soriE179+aWSByjQoVYONG8+J86hQ0bgyRkVZXJeK8tmwx8+hOnTJzbIoXt7qi5LJmha++grFjzVy6mTOhUaObL44Q96FwI3KdvHnNnjdPPAFvv23mDYjIjTZuNLt7nzkD//uf6S+TPbvVVd3IZjMLF5Ytg5w54YUXdGrK3em0lMgt2O3JXwAjIsypKn9/62oScRbr15uRzeho0zJi0SJwhZfUs2eTLxb45x/TIkNhx/nptJSIA1z7YnfmjGmA+NBDpneHiCfbscM0GY2ONr8TS5a4RrCB5MEmMtKMOLVunXxTT3F9CjciKXDokAk4W7ea3jtbt1pdkYh1SpUy82zq1TMjNlmyWF3R3dm40SwZ//Zb83u9e7fVFYmjKNyIpEDFiqaZYJkycOSI6cB8bUdmEU/i42Mm6f7wg2ufpm3WDNasMaeldu82AUe/1+5B4UYkhYoUMZ2iGzWCixfN9hRvvqlVF+IZli0ze9El/H/39YXMma2tyRFCQsyKrzp1zKmpxx+H/v1No1JxXQo3IqkQGGj+Wu3e3Vzv188sMRVxZ4sXw2OPwfjxSZv0upOgILPSKzzcXB8zBkaPtrYmuTcKNyKplCEDTJpkLsWKmaZgIu7q+++hRQuz3Urz5sm3TnEnGTPCuHHw5ZdmK5eePa2uSO6FloKL3INrdyAGs91DzpzW1SPiSPPmQZs2ZhPcVq3MG78n7LAdH5+0ea7dDqtWQd26lpYkaCm4SLq5Nth8/LHZqO/HHy0rR8RhvvkGnnzSBJs2bTwn2EBSsAGzH1W9evDSS3DlinU1Seoo3Ig4gN0Os2aZBmGNG8PUqVZXJHL3jhyBZ56B2Fh4+mn47DPPCTbXO3/e9Lx6/30z6Vh9rlyDwo2IA9hspt/HM8+YVRbdusErr2jFhbimfPnMHkzPPguffmrmmXmqAQPMvKNs2eDXX6FKFVi92uqq5E4UbkQcxNfXvBGMGGGuT5hgJmCq86m4isuXk47btjUro7y9ravHWTzyCGzeDOXKma7G9eub01WeNWPVtSjciDiQzWb+0vvqKzMfZ+FCqF07+ZuGiDP66CMoX16nXW6lWDGzn1bbtuZ0XXg47NpldVVyKx482CiSdlq3hkKFzMhNy5bJJx6LOJtp06BrV3P88ccmoMuN/P3h889NJ2ObDR54wOqK5Fa0FFwkDR0/DrlyJW3CGRNjTl+JOIspU5KaUr78MrzzjnbITq3du2H/fmja1OpK3JuWgos4idy5k94oLl40e1ING6Zz9eIcJk5MCja9eyvY3I3oaDM6++ijMHy46ZEj1lO4EUkn8+bBpk0wdCi0aweXLlldkXiyceOgVy9z3L+/2UZEwSb1fH1NHxy7HYYMMaeiz561uipRuBFJJ+3awfTpZlntl1/Cww+blRci6e3iRZgxwxwPGgQjRyrY3C1fX3jvPbN03tfX7D1XrRrs2GF1ZZ5N4UYkHXXpYnZXzp7d9MyoXl0vgpL+MmeGFSvM/mjDhyvYOEKnTvDLL2Yhwb598L//wezZVlfluRRuRNJZvXqwYYPZqiEiAmrWNG80ImnJbodt25Ku58uXNN9GHKNKFdMPJzTUjI69/77m4FhF4UbEAiVKmJGbevXAzw+KFrW6InFndjsMHGh2u/7sM6urcW85c8KSJaaZ51dfJd+nStKP/tlFLJIjByxdCmvWQJEiSbdrJZU4kt0OffvCqFHm+ORJqytyf97epldQUFDSbSNHmhFbSR8KNyIWypgRSpVKuv7999CkiVZbiGPY7fDqq/DWW+b6pElJK6Qk/cybZ0bOHnoIPvhAf8CkB4UbESdx6RK88IIZzalRw0xKFLlbdntSUz4w8z80x8YaoaHw+ONw5Qq8+KJZWKAtWdKWwo2Ik/Dzg8WLoUAB0/E0JES7D8vdiY+HsDAzUmOzmRYECdsrSPrLmhW++QbGjDFzcD76yDT0jIiwujL3pXAj4kQqVoSNG02fjNOnzV98H39sdVXiamw2s5+ZzWbeSLt0sboisdnM3KclS+C++8yqqipVtFIyrThFuJkyZQqFCxcmU6ZMhISEsHHjxlvet27duthsthsujzzySDpWLJJ28uaFlSvN5ptXr0LnztCvn87TS8rZbKYD8a+/mv4r4jwaNDDBpnJlM7k7OtrqityT5eFmzpw5hIeHM2TIELZu3UqFChVo1KgRx48fv+n9586dy9GjRxMvO3fuxNvbm9atW6dz5SJpJ3Nm0wBs4EBz/fx5NVqT24uLM/NrEuZy2GymSaQ4n8KFYe1ac6qqZUurq3FPlu8KHhISQrVq1Zg8eTIA8fHxBAcH06NHD/r163fHr58wYQKDBw/m6NGj+Pv73/D5mJgYYmJiEq9HR0cTHBysXcHFZSxbZrZqyJDB6krEWcXGQocOZluPFi1g7lyFYVfzzz/Qvj1MnZp8BaUkcZldwa9cucKWLVsIDQ1NvM3Ly4vQ0FDWr1+fosf48MMPeeqpp24abABGjx5NYGBg4iU4ONghtYukl4YNk4LN1avmTWzrVmtrEudx9So8/bQJNhkzmv8fCjaup2dPczq6WjWYP9/qalyfpeHm5MmTxMXFEXRtpyMgKCiIY8eO3fHrN27cyM6dO+lym9ly/fv3JyoqKvFy+PDhe65bxCpjxsCsWWalxbx5VlcjVrtyBdq0ga+/Bh8f+PZbneZwVe+/b/rgnDtnfoYDBphTjXJ3LJ9zcy8+/PBDypUrR/XbnFj29fUlICAg2UXEVfXsCY0bm31rHn8c3nxTE409VUwMPPGECbm+vuZjs2ZWVyV3KygIfvwxqcniqFHQtCmcOmVpWS7L0nCTM2dOvL29iYyMTHZ7ZGQkefLkue3XXrhwgdmzZ/Pcc8+lZYkiTiUw0HQx7tHDXO/XD5591vwFL56lc2fzfyFTJliwwLwRimvLmNFMCv/8c9P3atkyqFoV9u61ujLXY2m48fHxoUqVKqy4ZqF/fHw8K1asoEaNGrf92q+//pqYmBieeeaZtC5TxKlkyADvvguTJ5s9bD7+2Cwv1Z5BnqV7d/PX/g8/QKNGVlcjjvT002YZf9GiEBBgdnCX1LF8/UV4eDgdO3akatWqVK9enQkTJnDhwgU6d+4MQIcOHcifPz+jR49O9nUffvghLVq04L777rOibBHLhYVB8eLw5JNmgvGxY2ZHYvEMNWvC/v2mbYC4n/LlTT+c6GhIWC8TH29Wxvn4WFubK7A83LRp04YTJ04wePBgjh07RsWKFVmyZEniJOOIiAi8rtszfs+ePaxdu5Zly5ZZUbKI02jUCNavh3//hbJlra5G0tL582Yl1MCBpgEcKNi4u+zZzSXBmDGwcKGZQK7RnNuzvM9NekvNOnkRV7RmDfzxh/YScifnzpk5NWvXQpEisGePmZ8hnuPMGTNSe/o05MkDX31lVk16EpfpcyMijnXsmFlG2q2bWXWhpaSuLyrKjNCtXWsmlCf0sxHPkj07bNhgRmiPHTONPSdN0mrJW1G4EXEjQUEQHm6OJ06Exx7T3jWu7OxZ08Rx/Xrz5vbjj2a3ePFMxYubicZPPWXm3vTsaboaX7xodWXOR+FGxI3YbPD66+acvJ8fLFoEtWrBwYNWVyaplbAr/MaNZhfpFSvMsmDxbP7+8MUXZsm4t7dZNl6vnkZpr6dwI+KGnngCVq0y5+Z37jR/7adwRxNxEkOGwJYtZgXcTz9BpUpWVyTOwmYzp51XrIDcueG550zQkSQKNyJuqlo181d/xYpw/Lhp7y6uY8wYaN0afv7ZLAsWuV6dOrB7Nzz/fNJtR46YJeOeTuFGxI0FB5vVU/37w7RpVlcjd3LuXNIEUX9/syJGS/zldrJnT9oo9fRpqF3bLCqIirK2Lqsp3Ii4uSxZzD41fn7meny8WWVx6ZK1dUlyR49C9eowdKjVlYir2rTJjNx8950Zuf3jD6srso7CjYiHGTbMrLKoV88sKRXr/fsv1K1rTjHMnGl6moikVkLLgIIFzX5UISFm9M8TKdyIeJi6dZN6ZoSEwO+/W12RZzt82Myd+OsvKFTITAS/tiutSGpUrWomotevDxcuQJs28NprZum4J1G4EfEw9eqZYFOiBEREmKXiCxdaXZVnOnjQBJu//zadh1etMh9F7kXOnLBkCfTta66//bZZfedJFG5EPFCJEqYZWL16Zs+ixx4zTf/U7TT97N9vgs2BA1CsmAk2hQpZXZW4iwwZzIq7b76BcuXg1Vetrih9KdyIeKgcOWDpUujSxUwy7tPHjCBI+vjlFzNyVrKkCTbBwVZXJO6oVSv47Tfz+55g9Wrr6kkvlu8KLiLWyZgRPvgASpc2zcCKF7e6Is/Rvj14eZk9gvLmtboacWfXNvibPh1eeMH8UTN5Mvj6WldXWlK4EfFwNlvSflQJdu6ETJkUdhxt926zlUKuXOZ6u3bW1iOeJyrK/M7PmAHbt8O337rnqKFOS4lIMseOwSOPmJVUq1ZZXY372LnTzLFp0ABOnbK6GvFUvXubycY5cpi+OFWqmC7Y7kbhRkRukCeP6XbaoIHpuyL3Zvt2M3n7+HHzV7MmbouVGjaEzZvN1iwnTpgNWt9+273+XyrciEgyefLAypXw5JNw9So8+6xZUqr9au7O1q1mXs3Jk+av5BUrzFJdESsVKQLr1kGHDkkLCn77zeqqHEdzbkTkBn5+8OWXUKoUvPEGjB1rmsx99pnZ80hSZvNmM/p19qw5zbdkCWTLZnVVIoafH3z8sfm/GR0NlStbXZHj2Ox2dxqIurPo6GgCAwOJiooiICDA6nJEnN7nn5vRmytXzLYNEydaXZFr2LjRDP9HRUHNmrB4MeglR1zB33/Drl3QrJnVlSSXmvdvnZYSkdtq185MOKxTx+xLJSmTM6cJMw8+aEZsFGzEFVy8CI8/bhp7DhoEcXFWV3R3FG5E5I5q1jQBJ+GUit3uXufn00LRoqZZ2uLFkDWr1dWIpEzGjGb/OYARI+DRR83iAlejcCMiKWKzJR1PmmTOz48Z414rLO7Vzz/Dd98lXS9cWHOUxLVkzGhOPc+aZebkLFliNuPcts3qylJH4UZEUu3AAfOxf3/o3BliYqytxxn8+KPpD/TEE2YViogre+YZWL/erKo6cABq1DALClyFwo2IpNo775jW7d7e8MknZkXQyZNWV2WdpUvN5MtLl8wkYndadSKeq0IFs+KvcWO4fNmM2MbGWl1VyijciMhdCQuDhQvNRNk1a8xy0j//tLqq9LdokZl8efkyNG9u2tlnymR1VSKOkSMH/PADjBxp/m9ncJEGMgo3InLXGjVKGrrevx9q14YzZ6yuKv189x20aGGWyT/+OHz1lftuRCiey9sbXn8dChRIuu2tt5z79KvCjYjckzJlYMMGqFXLLB3Nnt3qitLH5s3QqpXp4vzkkzB7Nvj4WF2VSNpbvNh0NK5TB6ZMcc5FBWriJyIOcfWqGbJOWFUVGWl2wHaVYezUio83zQ2vXjXzjtz1+xS53vnz0KULzJljrnfoAFOnmtVVaUlN/EQk3WXMmBRsoqLMfkqPPWbauruThD8Hvbzgww/h008VbMSzZMlitmcZN86csvr0U9MLK2EVpTNQuBERh9u2zbzQLV5sXvQOHrS6IseYNcv8lZqwYsTb21xEPI3NBuHhsHw55MplfuerVjUrB52Bwo2IOFydOqY7b9688McfUL26mXjsymbOhI4dTa+PWbOsrkbEOdSrB1u2mN/x06edpyWEwo2IpImqVc3mkRUrwokT5kXwiy+sruruTJ9u5tfY7dCtmwk5ImIEB5s/ZubMMXvROQOFGxFJMwUKmB44zZubLsbt2sGMGVZXlTrvvw8vvGCOe/Y0q0O89Mopkoyvr1k16Cz0KyoiaSpLFpg71ywdLVDAbFHgKiZNgpdeMsfh4TBhQvI9tkTEOWkpuIikmzNnkvfBuXgRMme2rp7bOXwYSpY0nYf79DGbhCrYiFhHS8FFxCldG2w+/xxKl4bff7euntsJDoZ582DIEAUbEVejkRsRSXdxcWZzyd9/N6etZs92ntNVp06Z5oMi4lw0ciMiTs3bG37+2aygOn/eNPubMMH6Nu7DhkG5crB3r7V1iMi9UbgREUvkyGEafj3/vNnK4JVXzDLrq1fTvxa73eyLNXQoHD0Ky5alfw0i4jgKNyJimYwZYdo008bdZjPHTZumb8Cx26F/fxgxwlwfNw7CwtLv+UXE8RRuRMRSCW3cFywAf3/T6TRjxvR5brsdXnsN3nzTXJ840dQiIq5N272JiFNo1gy2b4ciRZJui49Pu4Z5drs5FTZxork+ZUpSTxsRcW0auRERp1GsWFKYuXzZTDieOTNtnuviRfjlF3M8bZqCjYg70ciNiDilDz80+9WsXg27d8Po0Y4dxfH3NxOHf/4ZHn/ccY8rItbTyI2IOKVu3WDwYHM8diy0agUXLtzbY8bFmRVaCbJnV7ARcUcKNyLilLy8TN+Zzz4zm/LNnw8PPgj//HN3jxcXB507Q+PG8O67Di1VRJyMwo2IOLV27eCnnyBXLvjtN7OaauvW1D1GbCx06ACzZpkGgkFBaVOriDgHhRsRcXo1a8LGjfDAAxATA6nZOeXqVROQvvgCMmSAOXOgTZu0q1VErKcJxSLiEgoXhnXrYN8+KF48ZV9z5Qq0bQtz55reOV9/Dc2bp2mZIuIENHIjIi4jIMBsuJlgyRJ49lkzmnO9+Hh48kkTbHx8zEcFGxHPoHAjIi4pOtqcbpo5E0JD4eTJ5J/38oKQEDMZecECePRRa+oUkfSncCMiLikgAL780nxcu9YEmT//TH6f/v1h1y6zQkpEPIfCjYi4rIYNYf16s2XD/v1QoYK5nDuXdJ+iRa2rT0SsoXAjIi6tTBnYsAFq1zYro37/XauhRDydwo2IuLxcueDHH+HFF6FkSRgwwOqKRMRKWgouIm7B1xemTrW6ChFxBhq5EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRERFxKwo3IiIi4lYsDzdTpkyhcOHCZMqUiZCQEDZu3Hjb+589e5awsDDy5s2Lr68vJUuWZNGiRelUrYiIiDg7S/vczJkzh/DwcKZOnUpISAgTJkygUaNG7Nmzh9y5c99w/ytXrtCgQQNy587NN998Q/78+Tl06BDZsmVL/+JFRETEKdnsdrvdqicPCQmhWrVqTJ48GYD4+HiCg4Pp0aMH/fr1u+H+U6dO5a233mL37t1kzJjxrp4zOjqawMBAoqKiCAgIuKf6RUREJH2k5v3bstNSV65cYcuWLYSGhiYV4+VFaGgo69evv+nXfPfdd9SoUYOwsDCCgoIoW7Yso0aNIi4u7pbPExMTQ3R0dLKLiIiIuC/Lws3JkyeJi4sjKCgo2e1BQUEcO3bspl+zf/9+vvnmG+Li4li0aBGDBg1i3LhxjBgx4pbPM3r0aAIDAxMvwcHBDv0+RERExLlYPqE4NeLj48mdOzcffPABVapUoU2bNgwYMICpt9lQpn///kRFRSVeDh8+nI4Vi4iISHqzbEJxzpw58fb2JjIyMtntkZGR5MmT56ZfkzdvXjJmzIi3t3fibaVLl+bYsWNcuXIFHx+fG77G19cXX19fxxYvIiIiTsuykRsfHx+qVKnCihUrEm+Lj49nxYoV1KhR46ZfU6tWLfbt20d8fHzibX/99Rd58+a9abARERERz2PpUvDw8HA6duxI1apVqV69OhMmTODChQt07twZgA4dOpA/f35Gjx4NQLdu3Zg8eTIvv/wyPXr0YO/evYwaNYqePXum+DkTFodpYrGIiIjrSHjfTtEib7vFJk2aZC9YsKDdx8fHXr16dfuvv/6a+Lk6derYO3bsmOz+69ats4eEhNh9fX3tRYsWtY8cOdIeGxub4uc7fPiwHdBFF1100UUXXVzwcvjw4Tu+11va58YK8fHxHDlyhKxZs2Kz2Rz62NHR0QQHB3P48GH10HFR+hm6Nv38XJ9+hq4vrX6Gdrudc+fOkS9fPry8bj+rxtLTUlbw8vKiQIECafocAQEB+qV0cfoZujb9/FyffoauLy1+hoGBgSm6n0stBRcRERG5E4UbERERcSsKNw7k6+vLkCFD1FfHheln6Nr083N9+hm6Pmf4GXrchGIRERFxbxq5EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsHmTJlCoULFyZTpkyEhISwceNGq0uSVFi9ejXNmjUjX7582Gw25s+fb3VJkgqjR4+mWrVqZM2aldy5c9OiRQv27NljdVmSCu+//z7ly5dPbPxWo0YNFi9ebHVZcpfGjBmDzWajV69eljy/wo0DzJkzh/DwcIYMGcLWrVupUKECjRo14vjx41aXJil04cIFKlSowJQpU6wuRe7CqlWrCAsL49dff2X58uVcvXqVhg0bcuHCBatLkxQqUKAAY8aMYcuWLWzevJmHH36Y5s2b88cff1hdmqTSpk2bmDZtGuXLl7esBi0Fd4CQkBCqVavG5MmTAbN/VXBwMD169KBfv34WVyepZbPZmDdvHi1atLC6FLlLJ06cIHfu3KxatYqHHnrI6nLkLuXIkYO33nqL5557zupSJIXOnz9P5cqVee+99xgxYgQVK1ZkwoQJ6V6HRm7u0ZUrV9iyZQuhoaGJt3l5eREaGsr69estrEzEc0VFRQHmzVFcT1xcHLNnz+bChQvUqFHD6nIkFcLCwnjkkUeSvSdaweM2znS0kydPEhcXR1BQULLbg4KC2L17t0VViXiu+Ph4evXqRa1atShbtqzV5Ugq7Nixgxo1anD58mWyZMnCvHnzKFOmjNVlSQrNnj2brVu3smnTJqtLUbgREfcSFhbGzp07Wbt2rdWlSCqVKlWKbdu2ERUVxTfffEPHjh1ZtWqVAo4LOHz4MC+//DLLly8nU6ZMVpejcHOvcubMibe3N5GRkcluj4yMJE+ePBZVJeKZunfvzg8//MDq1aspUKCA1eVIKvn4+FC8eHEAqlSpwqZNm5g4cSLTpk2zuDK5ky1btnD8+HEqV66ceFtcXByrV69m8uTJxMTE4O3tnW71aM7NPfLx8aFKlSqsWLEi8bb4+HhWrFihc8Ui6cRut9O9e3fmzZvHTz/9RJEiRawuSRwgPj6emJgYq8uQFKhfvz47duxg27ZtiZeqVavSrl07tm3blq7BBjRy4xDh4eF07NiRqlWrUr16dSZMmMCFCxfo3Lmz1aVJCp0/f559+/YlXj9w4ADbtm0jR44cFCxY0MLKJCXCwsL44osvWLBgAVmzZuXYsWMABAYG4ufnZ3F1khL9+/enSZMmFCxYkHPnzvHFF1+wcuVKli5danVpkgJZs2a9YY6bv78/9913nyVz3xRuHKBNmzacOHGCwYMHc+zYMSpWrMiSJUtumGQszmvz5s3Uq1cv8Xp4eDgAHTt25OOPP7aoKkmp999/H4C6desmu33mzJl06tQp/QuSVDt+/DgdOnTg6NGjBAYGUr58eZYuXUqDBg2sLk1ckPrciIiIiFvRnBsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3IrCjYiIiLgVhRsRcTudOnWiRYsWVpchIhZRuBGRu9KpUydsNtsNl8aNG1tdGhMnTnSabTNsNhvz58+3ugwRj6K9pUTkrjVu3JiZM2cmu83X19eiaiAuLg6bzUZgYKBlNYiI9TRyIyJ3zdfXlzx58iS7ZM+enZUrV+Lj48OaNWsS7zt27Fhy585NZGQkYDa57N69O927dycwMJCcOXMyaNAgrt3uLiYmht69e5M/f378/f0JCQlh5cqViZ//+OOPyZYtG9999x1lypTB19eXiIiIG05L1a1blx49etCrVy+yZ89OUFAQ06dP58KFC3Tu3JmsWbNSvHhxFi9enOz727lzJ02aNCFLliwEBQXRvn17Tp48mexxe/bsSZ8+fciRIwd58uRh6NChiZ8vXLgwAC1btsRmsyVeF5G0pXAjIg5Xt25devXqRfv27YmKiuK3335j0KBBzJgxg6CgoMT7ffLJJ2TIkIGNGzcyceJExo8fz4wZMxI/3717d9avX8/s2bP5/fffad26NY0bN2bv3r2J97l48SJvvvkmM2bM4I8//iB37tw3remTTz4hZ86cbNy4kR49etCtWzdat25NzZo12bp1Kw0bNqR9+/ZcvHgRgLNnz/Lwww9TqVIlNm/ezJIlS4iMjOTJJ5+84XH9/f3ZsGEDY8eOZfjw4SxfvhyATZs2AWZ38qNHjyZeF5E0ZhcRuQsdO3a0e3t72/39/ZNdRo4cabfb7faYmBh7xYoV7U8++aS9TJky9ueffz7Z19epU8deunRpe3x8fOJtffv2tZcuXdput9vthw4dsnt7e9v//fffZF9Xv359e//+/e12u90+c+ZMO2Dftm3bDbU1b9482XPVrl078XpsbKzd39/f3r59+8Tbjh49agfs69evt9vtdvsbb7xhb9iwYbLHPXz4sB2w79mz56aPa7fb7dWqVbP37ds38Tpgnzdv3i3+FUUkLWjOjYjctXr16vH+++8nuy1HjhwA+Pj48Pnnn1O+fHkKFSrEO++8c8PX/+9//8NmsyVer1GjBuPGjSMuLo4dO3YQFxdHyZIlk31NTEwM9913X+J1Hx8fypcvf8dar72Pt7c39913H+XKlUu8LWFE6fjx4wBs376dn3/+mSxZstzwWH///XdiXdc/d968eRMfQ0SsoXAjInfN39+f4sWL3/Lz69atA+D06dOcPn0af3//FD/2+fPn8fb2ZsuWLXh7eyf73LWBw8/PL1lAupWMGTMmu26z2ZLdlvAY8fHxic/frFkz3nzzzRseK2/evLd93ITHEBFrKNyISJr4+++/eeWVV5g+fTpz5syhY8eO/Pjjj3h5JU3127BhQ7Kv+fXXXylRogTe3t5UqlSJuLg4jh8/zoMPPpje5VO5cmW+/fZbChcuTIYMd/9SmTFjRuLi4hxYmYjciSYUi8hdi4mJ4dixY8kuJ0+eJC4ujmeeeYZGjRrRuXNnZs6cye+//864ceOSfX1ERATh4eHs2bOHL7/8kkmTJvHyyy8DULJkSdq1a0eHDh2YO3cuBw4cYOPGjYwePZqFCxem+fcWFhbG6dOnadu2LZs2beLvv/9m6dKldO7cOVVhpXDhwqxYsYJjx45x5syZNKxYRBJo5EZE7tqSJUuSnaIBKFWqFE8//TSHDh3ihx9+AMxpnA8++IC2bdvSsGFDKlSoAECHDh24dOkS1atXx9vbm5dffpkXXngh8bFmzpzJiBEjePXVV/n333/JmTMn//vf/3j00UfT/HvLly8fv/zyC3379qVhw4bExMRQqFAhGjdunGz06U7GjRtHeHg406dPJ3/+/Bw8eDDtihYRAGx2+zVNJURE0kndunWpWLEiEyZMsLoUEXEzOi0lIiIibkXhRkRERNyKTkuJiIiIW9HIjYiIiLgVhRsRERFxKwo3IiIi4lYUbkRERMStKNyIiIiIW1G4EREREbeicCMiIiJuReFGRERE3Mr/ASmUlieXXYK5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2428,14 +2487,19 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 206, "metadata": {}, "outputs": [], "source": [ - "# dimensionality reduction with the RGDR operator used by the best model\n", - "clusters_test = RGDRs[np.argmax(rmse_test)].transform(precursor_field_sel[-test_samples:])\n", - "# predict with the best model\n", - "predictions_baseline = models[np.argmax(rmse_test)].predict(clusters_test.isel(i_interval=0))" + "# best model\n", + "best_model = models[np.argmin(rmse_test)]\n", + "# clusters test best model\n", + "clusters_test = []\n", + "for i, lag in enumerate(lags):\n", + " clusters_test_lag = RGDR_splits[np.argmin(rmse_test)][i].transform(precursor_field_sel[-test_samples:])\n", + " clusters_test.append(clusters_test_lag.values.reshape(test_samples, -1))\n", + "clusters_test = np.concatenate(clusters_test, axis=1)\n", + "predictions_baseline = best_model.predict(clusters_test)" ] }, { @@ -2448,23 +2512,23 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 207, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE of LSTM forecasts is 1.276\n", - "The MSE of baseline ridge forecasts is 1.795\n", - "The MSE of mean of training data is 97.538\n" + "The MSE of LSTM forecasts is 1.164\n", + "The MSE of baseline ridge forecasts is 0.664\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkMElEQVR4nO3deVxU5f4H8M9h2LdBFGZAUUkNRdTcQ0rxioCZgXmzXUh/6VVQybwqlqlpol67aRvW9QZWWnlLlKxQNCH3ndRUVMSdxVxmFARh5vz+QCaHTdBhzgzzeb9e86pzzjPPfM9BnK/PKoiiKIKIiIjIglhJHQARERGRsTEBIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCyOtdQBmCKtVovLly/DxcUFgiBIHQ4RERHVgyiKuHnzJry9vWFlVXcbDxOgGly+fBk+Pj5Sh0FEREQP4MKFC2jVqlWdZZgA1cDFxQVAxQN0dXWVOBoiIiKqD7VaDR8fH933eF2YANWgstvL1dWVCRAREZGZqc/wFQ6CJiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOIwASIiIiKLw5WgjUmrAc7tBG4VAM4KoE0/wEomdVREREQWR9IWoISEBPTu3RsuLi7w9PREZGQksrOz9coEBwdDEAS91z/+8Y866xVFEe+88w68vLzg4OCAkJAQnDp1qjFv5f6OpQJLA4CVTwM/jKn479KAivNERERkVJImQJmZmYiJicHu3buRnp6OsrIyhIaGoqioSK/c66+/jry8PN1r8eLFdda7ePFifPjhh1i+fDn27NkDJycnhIWFoaSkpDFvp3bHUoE1owD1Zf3z6ryK80yCiIiIjErSLrC0tDS94+TkZHh6euLAgQPo37+/7ryjoyOUSmW96hRFEUuXLsXbb7+NiIgIAMCXX34JhUKBdevW4YUXXjDcDdSHVgOkTQcg1nBRBCAAaTOAjkPZHUZERGQkJjUIWqVSAQDc3d31zq9atQotWrRAQEAA4uPjUVxcXGsdubm5yM/PR0hIiO6cXC5H3759sWvXrhrfU1paCrVarfcymHM7q7f86BEB9aWKckRERGQUJjMIWqvVIi4uDkFBQQgICNCdf+mll9CmTRt4e3vj8OHDmD59OrKzs7F27doa68nPzwcAKBQKvfMKhUJ3raqEhATMnTvXQHdSxa0Cw5YjIiKih2YyCVBMTAyOHj2K7du3650fO3as7v+7dOkCLy8vDBo0CDk5OWjXrp1BPjs+Ph5TpkzRHavVavj4+Bikbjgr7l+mIeWIiIjooZlEF1hsbCw2bNiArVu3olWrVnWW7du3LwDg9OnTNV6vHCtUUKDfolJQUFDrOCI7Ozu4urrqvQymTT/A1RuAUEsBAXBtWVGOiIiIjELSBEgURcTGxiIlJQW//vorfH197/uerKwsAICXl1eN1319faFUKrFlyxbdObVajT179iAwMNAgcTeIlQwIX3T3oGoSdPc4fCEHQBMRERmRpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++DQDIycnBvHnzcODAAZw9exapqakYNWoU+vfvj65du+rq6dixI1JSUgAAgiAgLi4O8+fPR2pqKo4cOYJRo0bB29sbkZGRUtwm4P8MMPJLwLVK0ubqXXHe/xlp4iIiIrJQko4BSkxMBFCx2OG9kpKSEB0dDVtbW2zevBlLly5FUVERfHx8MGLECLz99tt65bOzs3UzyABg2rRpKCoqwtixY3Hjxg088cQTSEtLg729faPfU638n6mY6s6VoImIiCQniKJY0wI1Fk2tVkMul0OlUhl2PBARERE1moZ8f5vEIGgiIiIiY2ICRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkca6kDIBOj1QDndgK3CgBnBdCmH2AlkzoqIiIig2ICRH85lgqkTQfUl/865+oNhC8C/J+RLi4ieigarYi9uddQeLMEni726OPrDpmVIHVYRJJiAkQVjqUCa0YBEPXPq/Mqzo/8kkkQkRlKO5qHuT8eQ56qRHfOS26P2cP8ER7gJWFkRNLiGCCq6PZKm45qyQ/w17m0GRXliMhspB3Nw/ivD+olPwCQryrB+K8PIu1onkSREUlP0gQoISEBvXv3houLCzw9PREZGYns7Oway4qiiCFDhkAQBKxbt67OeqOjoyEIgt4rPDy8Ee6giTi3U7/bqxoRUF+qKEdEZkGjFTH3x2N1/bMGc388Bo22phJETZ+kCVBmZiZiYmKwe/dupKeno6ysDKGhoSgqKqpWdunSpRCE+vdZh4eHIy8vT/f65ptvDBl603KrwLDliEhye3OvVWv5uZcIIE9Vgr2514wXFJEJkXQMUFpamt5xcnIyPD09ceDAAfTv3193PisrC++//z72798PL6/69Vnb2dlBqVQaNN4my1lh2HJEJLnCm7UnPw9SjqipMakxQCqVCgDg7u6uO1dcXIyXXnoJn3zySYMSmoyMDHh6esLPzw/jx4/H1atXay1bWloKtVqt97IobfpVzPZCbS1sAuDasqIcEZkFTxd7g5YjMgitBsjdBhz5vuK/Eo4tNZlZYFqtFnFxcQgKCkJAQIDu/BtvvIF+/fohIiKi3nWFh4fj2Wefha+vL3JycjBz5kwMGTIEu3btgkxWfU2bhIQEzJ071yD3YZasZBVT3deMQkUSdO+YgLtJUfhCrgdEZEb6+LrDS26PfFVJjeOABABKecWUeCKjMLGlVgRRFE1iBNz48ePxyy+/YPv27WjVqhUAIDU1FW+++SYOHToEZ2dnAIAgCEhJSUFkZGS96z5z5gzatWuHzZs3Y9CgQdWul5aWorS0VHesVqvh4+MDlUoFV1fXh7sxc1LjH86WFckPp8ATmZ3KWWBAjf+sQeIrPTgVnoyjtqVWKv80GmipFbVaDblcXq/vb5NoAYqNjcWGDRvw22+/6ZIfAPj111+Rk5MDNzc3vfIjRozAk08+iYyMjHrV/8gjj6BFixY4ffp0jQmQnZ0d7OzsHuYWmgb/Z4COQ7kSNFETER7ghcRXelRbB0jJdYDImO671IpQsdRKx6FG/b6RNAESRRETJ05ESkoKMjIy4Ovrq3d9xowZ+L//+z+9c126dMEHH3yAYcOG1ftzLl68iKtXr9Z7ALVFs5IBvk9KHQURGUh4gBcG+yu5EjRJpyFLrRjx+0fSBCgmJgarV6/G+vXr4eLigvz8fACAXC6Hg4MDlEpljQOfW7durZcsdezYEQkJCRg+fDhu3bqFuXPnYsSIEVAqlcjJycG0adPQvn17hIWFGe3eiIhMhcxKQGC75lKHQZbKRJdakTQBSkxMBAAEBwfrnU9KSkJ0dHS968nOztbNIJPJZDh8+DBWrlyJGzduwNvbG6GhoZg3bx67uchouPcSEdFdJrrUiuRdYIZ4z73nHBwcsHHjxoeKi+hhcO8lIqJ7VC61os5DzeOAhIrrRl5qxaTWASIyd9x7iYioisqlVgBUX29OuqVWmAARGQj3XiIiqoX/MxVT3V2rtIK7ehtsCnxDmcQ0eKKmoCF7L3FAKhFZHBNbaoUJEJGBcO8lIqL7MKGlVpgAERkI916yUFqNyfyLlojqjwkQkYFw7yULZGJ7GxFR/XEQNJGByKwEzB7mD6DWeQ6YPcyf6wE1FZV7G1Vd4VadV3H+WKo0cRFRvTABIjKgyr2XlHL9bi6l3J4bTzYl993bCBV7G2k1xoyKiBqAXWBEBsa9lyyAie5tRET1xwSIqBFw76UmzkT3NiKi+mMCRETUUCa6txGRqTOlfRKZABERNZSJ7m1EZMpMbZ9EDoImImooE93biMhUmeI+iUyAiIgehAnubURkikx1n0R2gRERPSgT29uIyBSZ6j6JTICIiB6GCe1tRGSKTHWfRHaBERERUaMx1X0SmQARERFRo6ncJ7G2ye4CKmaDGXufRCZARERE1GhMdZ9EJkBERETUqExxn0QOgiYiIqJGZ2r7JDIBIiIiIqMwpX0SmQARERE1Aaa0z5Y5YAJERERk5kxtny1zwEHQREREZswU99kyB0yAiIiIzJSp7rNlDpgAERERmamG7LNF+pgAERERmSlT3WfLHDABIiIiMlOmus+WOWACREREZKZMdZ8tc8AEiIiIyEyZ6j5b5oAJEBERkRkzxX22zAEXQiQiIjJzprbPljlgAkRERNQEmNI+W+ZA0i6whIQE9O7dGy4uLvD09ERkZCSys7NrLCuKIoYMGQJBELBu3bo66xVFEe+88w68vLzg4OCAkJAQnDp1qhHugIiIiMyRpAlQZmYmYmJisHv3bqSnp6OsrAyhoaEoKiqqVnbp0qUQhPo15S1evBgffvghli9fjj179sDJyQlhYWEoKeE6CERERAQIoiiazPrYV65cgaenJzIzM9G/f3/d+aysLDz99NPYv38/vLy8kJKSgsjIyBrrEEUR3t7eePPNNzF16lQAgEqlgkKhQHJyMl544YX7xqFWqyGXy6FSqeDq6mqQeyMiIqLG1ZDvb5OaBaZSqQAA7u5/rVdQXFyMl156CZ988gmUSuV968jNzUV+fj5CQkJ05+RyOfr27Ytdu3bV+J7S0lKo1Wq9FxERETVdJpMAabVaxMXFISgoCAEBAbrzb7zxBvr164eIiIh61ZOfnw8AUCgUeucVCoXuWlUJCQmQy+W6l4+PzwPeBREREZkDk5kFFhMTg6NHj2L79u26c6mpqfj1119x6NChRv3s+Ph4TJkyRXesVquZBBERETVhJtECFBsbiw0bNmDr1q1o1aqV7vyvv/6KnJwcuLm5wdraGtbWFfnaiBEjEBwcXGNdld1kBQUFeucLCgpq7UKzs7ODq6ur3ouIiIiaLkkTIFEUERsbi5SUFPz666/w9fXVuz5jxgwcPnwYWVlZuhcAfPDBB0hKSqqxTl9fXyiVSmzZskV3Tq1WY8+ePQgMDGy0eyEiIiLzIWkXWExMDFavXo3169fDxcVFN0ZHLpfDwcEBSqWyxlab1q1b6yVLHTt2REJCAoYPHw5BEBAXF4f58+ejQ4cO8PX1xaxZs+Dt7V3rzDEiIiKyLJImQImJiQBQrTsrKSkJ0dHR9a4nOztbN4MMAKZNm4aioiKMHTsWN27cwBNPPIG0tDTY29vXUQsRERFZCpNaB8hUcB0gIiIi82O26wARERERGQMTICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhMgIiIiMjiMAEiIiIii8MEiIiIiCwOEyAiIiKyOEyAiIiIyOJIuhkq0YPQaEXszb2Gwpsl8HSxRx9fd8isBKnDIiIiM8IEiMxK2tE8zP3xGPJUJbpzXnJ7zB7mj/AALwkjIyIic8IuMDIbaUfzMP7rg3rJDwDkq0ow/uuDSDuaJ1FkRERkbpgAkVnQaEXM/fEYxBquVZ6b++MxaLQ1lSBzpdGK2JVzFeuzLmFXzlX+fInIYNgFRmZhb+61ai0/9xIB5KlKsDf3GgLbNTdeYNRo2N1JRI2JLUBkFgpv1p78PEg5Mm3s7iSixsYEyIjYnP/gPF3sDVqOTBe7O4nIGNgFZiRszn84fXzd4SW3R76qpMYvRgGAUl4xJZ7MG7s7icgY2AJkBGzOf3gyKwGzh/kDqEh27lV5PHuYP9cDagLY3UlExsAEqJGxOd9wwgO8kPhKDyjl+t1cSrk9El/pwZa0JoLdnWSKOISh6WEXWCNjc75hhQd4YbC/kitBN2Hs7iRTwyEMTRNbgBoZm/MNT2YlILBdc0Q81hKB7Zoz+Wli2N1JpoRDGJouJkCNjM35RA3H7k4yBRzC0LSxC6yRsTmf6MGwu9OymOImxxzC0LQxAWpklc35478+CAHQS4LYnE9Ut8ruTmra0o7mYV7qEfjc+h2euIFCuOGCczfMeqaLpK19HMLQtDEBMoLK5vyqg+iUHERHRBYu7Wge1q1ejv/ZfAlv22u685dL3fHu6lHAS/+Q7O9IDmFo2pgAGQmb88nUmGKXA1kWjVZExrov8KnN0mrXlLiGT22WYuY6Wwz2nynJn00OYWjamAAZEZvzyVRwWi+Zgr05VzCpbAUAoGp+YyUAWhGYVPZf7M15HYEdPI0en9kNYdBqgHM7gVsFgLMCaNMPsJJJHZXJ4iwwIgvDab1kKjRnd8BbuFYt+alkJQDewlVozu4wbmD3MJsZicdSgaUBwMqngR/GVPx3aUDFeaoRW4BID7tFmrb7TesVUDGtd7C/kj93anSewg2DlmssJj+E4VgqsGYUUPU3W51XcX7kl4D/M5KEZsqYABmRRqvBwcKDuFJ8BR6OHujh2QMyE2qeTDuahzk/HsWVsuMQrG9CLHeBh00nzBkWYDr/ygGgKb+Dg0e+whX1eXi4tkaPLq9CZm0rdVh6TPVnrT+tVwuZY67uZ60p9oUIK5Oa1muqz/FejPHBtXukHbC94v81AA7a2+GKTAYPjQY9Skohu7ec5LSwdjoDG+EKrB09ALgBkP4ZQqsB0qYDEGt5hgKQNgPoONQkusNM6c8iEyAj2XxuMxbuXYiC4gLdOYWjAjP6zEBImxAJI6uQdjQPseu/hJ3iRzjaqHTnb5bJEbt+GD7GKJNIgjZvT8DCk6tQIPvrX16KQx9gxqMvI+SJeAkj+4sp/6wrp+tauxyFneJHWN3zs9aWyVFaMAzlNwNMYlqvKT/HSozx4cjaBuG2gxLboMLiFs1QYP3XV5KivBzT/ryOJyGHQ9sgCaM07WeIczsB9WVsdnTAwubVn+GMq9cRor5UUc73SQkDNb3nyDFARrD53GZMyZii90MHgMLiQkzJmILN5zZLFFkFjVbErPRvYN/yawjWKr1rgrUK9i2/xqz0byRf7XTz9gRMOb0KBVX+1BZaAVNOr8Lm7QnSBHYPU/9Ze7rYw9rlaJ0/a2uXo5JP6zX15wgwRoOwkmFHUDSmKlqgQKbfClAok2GqogV2BEVL2nJh8s/wVgE2OzpgimfNz3CKZwtsdnSoGBgtIVN8jkyAGplGq8HCvQsh1jDqovLcor2LoNFqjB2azu4zV1DsshYAIFTp0q48LnZZi91nrhg5sr9oyu9g4clVFU+sSpDi3eNFJ1dBU37H+MHdZQ4/655t5HD02gCg9p+1o3IDeraRGzmyv5jDc2SMhqHRarAwb0vF73BNv9eCgEV5v0oWo1k8QycPLGzerO6/G5s3g8bJw/jB3WWqz1HSBCghIQG9e/eGi4sLPD09ERkZiezsbL0y48aNQ7t27eDg4AAPDw9ERETgxIkTddYbHR0NQRD0XuHh4Y15K7U6WHiwWsZ7LxEi8ovzcbDwoBGj0rc3fz+sbFTVvhArCQJgZaPC3vz9xg3sHgePfFXR7VVLkKIgIF8m4OCRr4wc2V/M4Wf9+5+HIMpu1PmzFq1v4Pc/Dxk3sHuYw3NkjIZx/xghaYxm8Qzt7Sq6ver6u9HaGgft7Ywc2V9M9TlKmgBlZmYiJiYGu3fvRnp6OsrKyhAaGoqioiJdmZ49eyIpKQnHjx/Hxo0bIYoiQkNDodHUnSmGh4cjLy9P9/rmm28a+3ZqdKW4fq0m9S3XGKysbxm0XGO4oj5v0HKNwRx+1ozRMBijYZh6jKYeHwBcKbl2/0INKNcYTPU5SjoIOi0tTe84OTkZnp6eOHDgAPr37w8AGDt2rO5627ZtMX/+fHTr1g1nz55Fu3a1zwyws7ODUqmsVxylpaUoLS3VHavV6obcRp08HOvX7Fjfco2hb+u2WJFdv3JS8XBtbdByjcEcftaM0TAYo2GYeoymHl9DPpsxVmdSY4BUqopBme7uNS8rXlRUhKSkJPj6+sLHx6fOujIyMuDp6Qk/Pz+MHz8eV69erbVsQkIC5HK57nW/uhuih2cPKBwVEFBz86QAAUpHJXp49jDYZzZUb2VPyG1aQKxljLMoAm42Huit7GncwO7Ro8urUGhECLUEKYgilBoRPbq8auTI/mIOP2vGaBj3xihoRfif0yLoDy38z2khaEWTi7EmjPH+TD0+gDE+DJNJgLRaLeLi4hAUFISAgAC9a59++imcnZ3h7OyMX375Benp6bC1rX3dl/DwcHz55ZfYsmULFi1ahMzMTAwZMqTWbrP4+HioVCrd68KFCwa7L5mVDDP6zACAaj/8yuPpfaZLuiaHzEqGOUFvVXQhV80vxIqu5dlBM6WN0doWMx59GQCqJUGVx9MffVnS9YDM5WfNGB9eZYx9srX45FMN5qzWYnKqFnNWVxz3ydaaTIyA6T/He2OqZAoxmnp8AGN8GIIo1vbvfuMaP348fvnlF2zfvh2tWrXSu6ZSqVBYWIi8vDwsWbIEly5dwo4dO2BvX7+pumfOnEG7du2wefNmDBo06L7l1Wo15HI5VCoVXF1dH+h+qqpp/QOloxLT+0yXfh2Ju2peo0GJGaYUYw3rACk1Iqab+DpA5vCzZowNo960CRcnTQYAvb/SK/9CbfXhMriGhho9rqpM/TkCph+jqccHMMZKDfn+NokEKDY2FuvXr8dvv/0GX1/fOsveuXMHzZo1w4oVK/Diiy/W+zM8PDwwf/58jBs37r5lGyMBAkxrBczamEWMXAnaIBjjgxM1GpweFILy/PyaCwgCrBUKtN+yGYJM+nhN9Tney9RjNPX4AMYINOz7W9JB0KIoYuLEiUhJSUFGRsZ9k5/K94iiqDdo+X4uXryIq1evwstL2pWMrUTA/5yI8isirD1EWEk3Jq1WMisZeit7Sx1GnWTWtujdfYzUYdTJLJ4jY3xgxfsP1J78AIAoojw/H8X7D8Cpbx/jBVYLU32O9zL1GE09PoAxNpSkCVBMTAxWr16N9evXw8XFBfl3/0KRy+VwcHDAmTNn8N133yE0NBQeHh64ePEiFi5cCAcHBzz11FO6ejp27IiEhAQMHz4ct27dwty5czFixAgolUrk5ORg2rRpaN++PcLCwqS6Vag3bULBggS9vzStlUooZsabRDM5EdVf+ZX6TdetbzkyA1pNxXYStwoAZwXQpp9J7K1FD07SBCgxMREAEBwcrHc+KSkJ0dHRsLe3x7Zt27B06VJcv34dCoUC/fv3x86dO+Hp6akrn52drZtBJpPJcPjwYaxcuRI3btyAt7c3QkNDMW/ePNjZSbMQlHrTJlyaHIeq06zKCwoqzi9byiSIyIxYe9Sv+ba+5cjEHUut2HBUffmvc67eQPgi7rJuxkxiDJCpMeQYIHMbK0BE91deVo49fZ+EW/GNGqfSagFcd3TD43u2wdqGe06btWOpwJpRqD5F9u7Q95FfMgkyIQ35/jaZafBNVUPGChCRedh3XoVPAiIgoCLZuZcWFV+NnwZEYN95VfU3k/nQaipafmrYw0p3Lm1GRTkyO0yAGhnHChA1PYU3S7DTuwvm94nCVXv9jWP/dHDD/D5R2OndBYU3SySKkAzi3E79bq9qREB9qaIcmR22zTYyjhUgano8XSrWINvp3QW7vTqj859n4F56E9fsXPBHi0egFaz0ypGZulX7Bp4PVI5MChOgRubYqyeslUqUFxRUGwQNQDcGyLGXdNtMEFHD9PF1h5fcHvmqEmgFKxzxaK93XQCglNujj2/N2/qQmXBWGLYcmRR2gTUyQSaDYubdFYqFKvug3D1WzIznAGgiMyKzEjB7mD8AVFnY/6/j2cP8IbOqee8jMhNt+lXM9qplDytAAFxbVpQjs8MEyAhcQ0PRctlSWCv0/5VgrVCgJafAE5ml8AAvJL7SA0q5fjeXUm6PxFd6IDxA2oVXyQCsZBVT3QHUmuqGL+R6QGaK0+Br0FhbYYgaTcWssCtXYO3hAcdePdnyQ2TmNFoRe3OvofBmCTxdKrq92PLTxNS4DlDLiuSHU+BNitntBWZqGisBIiIiM8WVoM2C2ewFRkREZBasZIDvk1JHQQbEMUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZnIdaCLGkpATfffcdioqKMHjwYHTo0MFQcRERERE1mnonQFOmTEFZWRk++ugjAMCdO3cQGBiIP/74A46Ojpg2bRrS09MRGBjYaMESERERGUK9u8A2bdqEwYMH645XrVqFc+fO4dSpU7h+/Tqee+45zJ8/v1GCJCIiIjKkeidA58+fh7+/v+5406ZN+Pvf/442bdpAEARMnjwZhw4dapQgiYiIiAyp3gmQlZUV7t04fvfu3Xj88cd1x25ubrh+/bphoyMiIiJqBPVOgDp16oQff/wRAPDHH3/g/PnzGDhwoO76uXPnoFAoDB8hERERkYHVexD0tGnT8MILL+Cnn37CH3/8gaeeegq+vr666z///DP69OnTKEESERERGVK9W4CGDx+On3/+GV27dsUbb7yB7777Tu+6o6MjJkyYYPAAiYiIiAxNEO8d2FOHd999F1OnToWjo2NjxyQ5tVoNuVwOlUoFV1dXqcMhIiKiemjI93e9W4Dmzp2LW7duPXRwRERERFKrdwJUz4YiIiIiIpPXoL3ABEForDiIiIiIjKZBe4E9+uij902Crl279lABERERETW2BiVAc+fOhVwub6xYiIiIiIyiQQnQCy+8AE9Pz8aKhYiIiMgo6j0GiON/iIiIqKngLDAiIiKyOPVOgLRarcG7vxISEtC7d2+4uLjA09MTkZGRyM7O1iszbtw4tGvXDg4ODvDw8EBERAROnDhRZ72iKOKdd96Bl5cXHBwcEBISglOnThk0diIiIjJfDZoGb2iZmZmIiYnB7t27kZ6ejrKyMoSGhqKoqEhXpmfPnkhKSsLx48exceNGiKKI0NBQaDSaWutdvHgxPvzwQyxfvhx79uyBk5MTwsLCUFJSYozbIiIiIhNX760wjOHKlSvw9PREZmYm+vfvX2OZw4cPo1u3bjh9+jTatWtX7booivD29sabb76JqVOnAgBUKhUUCgWSk5Pxwgsv3DcOboVh2kSNBsX7D6D8yhVYe3jAsVdPCDKZ1GEREZHEGvL93aBZYI1NpVIBANzd3Wu8XlRUhKSkJPj6+sLHx6fGMrm5ucjPz0dISIjunFwuR9++fbFr164aE6DS0lKUlpbqjtVq9cPcBjUi9aZNKFiQgPL8fN05a6USipnxcA0NlTAyItPFfzQQVSdpF9i9tFot4uLiEBQUhICAAL1rn376KZydneHs7IxffvkF6enpsLW1rbGe/LtfjAqFQu+8QqHQXasqISEBcrlc96otuSJpqTdtwqXJcXrJDwCUFxTg0uQ4qDdtkigyItOl3rQJpweF4HxUFC5PnYrzUVE4PSiEvy9k8UwmAYqJicHRo0fx7bffVrv28ssv49ChQ8jMzMSjjz6KkSNHGnQ8T3x8PFQqle514cIFg9VNhiFqNChYkADU1GN791zBggSIdYwNI7I0/EcDUe1MIgGKjY3Fhg0bsHXrVrRq1aradblcjg4dOqB///74/vvvceLECaSkpNRYl1KpBAAUFBTonS8oKNBdq8rOzg6urq56LzItxfsPVPtLXI8oojw/H8X7DxgvKCITxn80ENVN0gRIFEXExsYiJSUFv/76K3x9fev1HlEU9cbs3MvX1xdKpRJbtmzRnVOr1dizZw8CAwMNFjsZV/mVKwYtR9TU8R8NRHWTNAGKiYnB119/jdWrV8PFxQX5+fnIz8/H7du3AQBnzpxBQkICDhw4gPPnz2Pnzp147rnn4ODggKeeekpXT8eOHXUtQoIgIC4uDvPnz0dqaiqOHDmCUaNGwdvbG5GRkVLcJhmAtYeHQcsRNXX8RwNR3SSdBZaYmAgACA4O1juflJSE6Oho2NvbY9u2bVi6dCmuX78OhUKB/v37Y+fOnXqLMmZnZ+tmkAHAtGnTUFRUhLFjx+LGjRt44oknkJaWBnt7e6PcFxmeY6+esFYqUV5QUHOTviDAWqGAY6+exg+OyATxHw1EdTOpdYBMBdcBMk2VAzoB6CdBd/epa7lsKafCE90lajQ4PSjkvv9oaL9lM6fEU5PRkO9vkxgETVQfrqGhaLlsKayrLHFgrVAw+SGqQpDJoJgZf/egymbWd48VM+OZ/JDFYgtQDdgCZNq4qBtR/XHxULIkDfn+ZgJUAyZARNSU8B8NZCnMdisMIiIyPEEmg1PfPlKHQWRSOAaIiIiILA4TICIiIrI4TICIiIjI4nAMEFFj0GqAczuBWwWAswJo0w+w4qBTIiJTwQSI9HC2iAEcSwXSpgPqy3+dc/UGwhcB/s9IFxcREekwASIdrhdiAMdSgTWjAFRZXUKdV3F+5JdMgoiITADHABGAv7aZqLp7dHlBAS5NjoN60yaJIjMjWk1Fy0/V5Af461zajIpyREQkKSZABFGjQcGChJr3C7p7rmBBAkQNv7jrdG6nfrdXNSKgvlRRjoiIJMUEiCrG/FRp+dEjiijPz0fx/gPGC8oc3SowbDkiImo0TIAI5VeuGLScxXJW3L9MQ8oREVGjYQJEsPbwMGg5i9WmX8VsLwi1FBAA15YV5YiISFJMgAiOvXrCWqkEhFq+uAUB1kolHHv1NG5g5sZKVjHVHUD1JOjucfhCrgdERGQCmAARBJkMipnxdw+qfHHfPVbMjOd6QPXh/0zFVHdXL/3zrt6cAk9EZEIEUaxp6o9lU6vVkMvlUKlUcHV1lToco+E6QAbElaCJiIyuId/fTIBqYKkJEMCVoMnEMJEkogZoyPc3V4ImPYJMBqe+faQOg4hbihBRo+IYICIyPZVbilRdWLJyS5FjqdLERURNBhMgIjIt3FKEiIyACRARmRZuKUJERsAEiIhMC7cUISIjYAJERKaFW4oQkREwASIi08ItRYjICJgAEZFp4ZYiRGQETICIyPRwSxEiamRcCJGITJP/M0DHoVwJmogaBRMgIjJdVjLA90mpoyCiJohdYERERGRxmAARERGRxWEXGJGlMoOd1kWNBsX7D6D8yhVYe3jAsVdPCDLTipGIzBMTICJLZAY7ras3bULBggSU5+frzlkrlVDMjIdraKiEkZElYjLe9AiiKNa046BFU6vVkMvlUKlUcHV1lTocIsOq3Gm92majd9fYMYFp5upNm3BpchxQ9a8noSLGlsuWMgkio2Eybj4a8v0t6RighIQE9O7dGy4uLvD09ERkZCSys7N1169du4aJEyfCz88PDg4OaN26NSZNmgSVSlVnvdHR0RAEQe8VHh7e2LdDZPrMYKd1UaNBwYKE6skPoDtXsCABooa7wVPjq0zG701+AKC8oACXJsdBvWmTRJHRw5I0AcrMzERMTAx2796N9PR0lJWVITQ0FEVFRQCAy5cv4/Lly1iyZAmOHj2K5ORkpKWlYcyYMfetOzw8HHl5ebrXN99809i3Q2T6zGCn9eL9B6p92egRRZTn56N4/wHjBUUWicl40ybpGKC0tDS94+TkZHh6euLAgQPo378/AgIC8MMPP+iut2vXDu+99x5eeeUVlJeXw9q69vDt7OygVCrrFUdpaSlKS0t1x2q1uoF3QmQmzGCn9fIrVwxajuhBNSQZd+rbx3iBkUGY1DT4yq4td3f3Osu4urrWmfwAQEZGBjw9PeHn54fx48fj6tWrtZZNSEiAXC7XvXx8fB7sBohMnRnstG7t4WHQckQPisl402YyCZBWq0VcXByCgoIQEBBQY5k///wT8+bNw9ixY+usKzw8HF9++SW2bNmCRYsWITMzE0OGDIGmlmbK+Ph4qFQq3evChQsPfT9EJskMdlp37NUT1kqlbsBzNYIAa6USjr16GjcwsjhMxps2k5kFNn78ePzyyy/Yvn07WrVqVe26Wq3G4MGD4e7ujtTUVNjY2NS77jNnzqBdu3bYvHkzBg0adN/ynAVGTZpuFhigPxjaBGeBAfrjLzgLjIxI1GhwelAIygsKah4HJAiwVijQfstmTok3EWYzC6xSbGwsNmzYgK1bt9aY/Ny8eRPh4eFwcXFBSkpKg5IfAHjkkUfQokULnD592lAhE5kvM9hp3TU0FC2XLYW1Qr8rzlqhYPJDRiPIZFDMjL97UKVF8u6xYmY8kx8zJekgaFEUMXHiRKSkpCAjIwO+vr7VyqjVaoSFhcHOzg6pqamwt7dv8OdcvHgRV69ehZeX1/0LE1kCM9hp3TU0FC6DBnHxOZKUa2gosGxp9XWAFAquA2TmJO0CmzBhAlavXo3169fDz89Pd14ul8PBwQFqtRqhoaEoLi5GSkoKnJycdGU8PDwgu/sXYceOHZGQkIDhw4fj1q1bmDt3LkaMGAGlUomcnBxMmzYNN2/exJEjR2BnZ3ffuNgFRkRE9+JK0OahId/fkrYAJSYmAgCCg4P1ziclJSE6OhoHDx7Enj17AADt27fXK5Obm4u2bdsCALKzs3UzyGQyGQ4fPoyVK1fixo0b8Pb2RmhoKObNm1ev5IeIiIzP1BMMQSbjVPcmxmQGQZsStgARERkPt5ogQzG7QdBERGSZuNUESYUJEBERSYJbTZCUmAAREZEkuO8bSYkJEBERSYJbTZCUmAAREZEkuNUESYkJEBERSYL7vpGUmAAREZEkuNUESYkJEBERSYb7vpFUJF0JmoiIiPu+kRSYABERkeS41QQZG7vAiIiIyOIwASIiIiKLwwSIiIiILA4TICIiIrI4TICIiIjI4jABIiIiIovDBIiIiIgsDhMgIiIisjhcCJHIQokaDVfeJSKLxQSIqBGYenKh3rQJBQsSUJ6frztnrVRCMTOeey8RkUVgAkRkYKaeXKg3bcKlyXGAKOqdLy8oqDjPDSiJyAJwDBCRAVUmF/cmP8BfyYV60yaJIqsgajQoWJBQLfmpuFhxrmBBAkSNxsiREREZF1uAHoJGo0FZWZnUYZCJEDUaXF6xAlqlsuYCgoDLK1bAJihIsu6w4t8P444gAF5etZa5A+D6/gNw7Na1XnXa2NhAZkLde0RE9SGIYk3/FLRsarUacrkcKpUKrq6u1a6Looj8/HzcuHHD+MGRydKWlkJz9ep9y8maN4eVnZ0RIqpOe/s2NNev37ecrFkzWDk41LteNzc3KJVKCILwMOERET2U+31/34stQA+gMvnx9PSEo6Mj/9InAEC5Wo1yq/v3KlsrlbC+zy9mY9EUFaPM+v6/9jYtW0Hm5HjfcqIoori4GIWFhQAArzpaloiITAkToAbSaDS65Kd58+ZSh0MmRFOuwZ16JEC2jk6Q2dsbIaLqRDs7lP55BWIdXbeCjQ3s3JvVO7F3uNtSVFhYCE9PT3aHEZFZ4CDoBqoc8+PoeP9/HZNlsXJyhGBjU2cZwcYGVvVoWWksgiDAprYxSnfZPEBXVuXvA8fEEZG5YAL0gNjtRVU1VnJhaDK5HLY+PtWSNcHGBrY+PpDJ5Q2uU+p7IiJqKHaBERmQTC6HLYCy/Hy9bibBxgY2SuUDJReNQSaXw8rVFdqiYojlZRCsK1qmmMgQkaVgAkQGFx0djRs3bmDdunUAgODgYDz22GNYunTpA9dpiDqMxVySC0EQIHN2kjoMIiJJsAvMgkRHR0MQBAiCAFtbW7Rv3x7vvvsuysvLG/Vz165di3nz5tWrbEZGBgRBqLbEQEPqaCxz5szBY489Vuv13NxcvPTSS/D29oaDgwPadPTDiKgonLp4AStXrtQ9+9peZ8+exZw5cyAIAsLDw6vV/69//QuCICA4OLjxbpKIyEKwBUgiGq2IvbnXUHizBJ4u9ujj6w6ZVeO3EISHhyMpKQmlpaX4+eefERMTAxsbG8THx+uVu3PnDmxtbQ3yme7u7iZRR2MqKyvD4MGD4efnh7Vr18LLywsXL17EL7/8ghs3buD555/XS2qeffZZBAQE4N1339Wd8/DwAFAxlXzr1q24ePEiWrVqpbv+xRdfoHXr1sa7KSKiJowtQBJIO5qHJxb9ihf/sxuTv83Ci//ZjScW/Yq0o3mN/tl2dnZQKpVo06YNxo8fj5CQEKSmpiI6OhqRkZF477334O3tDT8/PwDAhQsXMHLkSLi5ucHd3R0RERE4e/asrj6NRoMpU6bAzc0NzZs3x7Rp01B1bc3g4GDExcXpjktLSzF9+nT4+PjAzs4O7du3x3//+1+cPXsWAwcOBAA0a1YxDTs6OrrGOq5fv45Ro0ahWbNmcHR0xJAhQ3Dq1Cnd9eTkZLi5uWHjxo3o1KkTnJ2dER4ejry8v55xRkYG+vTpAycnJ7i5uSEoKAjnzp17oOf6xx9/ICcnB59++ikef/xxtGnTBkFBQZg/fz4ef/xxODg4QKlU6l62trZwdHTUO1c5fdzT0xOhoaFYuXKlrv6dO3fizz//xNChQx8oPiIiUyBqNCjasxeqDT+haM9eSbfdYQJkZGlH8zD+64PIU5Xonc9XlWD81weNkgTdy8HBAXfu3AEAbNmyBdnZ2UhPT8eGDRtQVlaGsLAwuLi4YNu2bdixY4cukah8z/vvv4/k5GR88cUX2L59O65du4aUlJQ6P3PUqFH45ptv8OGHH+L48eP47LPP4OzsDB8fH/zwww8AgOzsbOTl5WHZsmU11hEdHY39+/cjNTUVu3btgiiKeOqpp/SmYRcXF2PJkiX46quv8Ntvv+H8+fOYOnUqAKC8vByRkZEYMGAADh8+jF27dmHs2LEPPE7Hw8MDVlZW+P7776ExwC/06NGjkZycrDv+4osv8PLLLxusVY6IyNjUmzbh9KAQnI+KwuWpU3E+KgqnB4VItkeipAlQQkICevfuDRcXF3h6eiIyMhLZ2dm669euXcPEiRPh5+cHBwcHtG7dGpMmTYJKpaqzXlEU8c4778DLywsODg4ICQnRax2QikYrYu6Px1DT3iOV5+b+eAwabePvTiKKIjZv3oyNGzfib3/7GwDAyckJK1asQOfOndG5c2d899130Gq1WLFiBbp06YJOnTohKSkJ58+fR0ZGBgBg6dKliI+Px7PPPotOnTph+fLlkNcx0+nkyZNYs2YNvvjiCwwfPhyPPPIIBg0ahOeffx4ymUzX1eXp6QmlUlljXadOnUJqaipWrFiBJ598Et26dcOqVatw6dIl3cBroKJbavny5ejVqxd69OiB2NhYbNmyBUDFcukqlQpPP/002rVrh06dOiEqKuqBu5hatmyJDz/8EO+88w6aNWuGv/3tb5g3bx7OnDnzQPU9/fTTUKvV+O2331BUVIQ1a9Zg9OjRD1QXEZHUTHGjaEkToMzMTMTExGD37t1IT09HWVkZQkNDUVRUBAC4fPkyLl++jCVLluDo0aNITk5GWloaxowZU2e9ixcvxocffojly5djz549cHJyQlhYGEpKSup8X2Pbm3utWsvPvUQAeaoS7M291mgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LUw/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eui0b3N3dER0djbCwMAwbNgzLli3TdY+dP39ed7/Ozs5YsGBBveKKiYlBfn4+Vq1ahcDAQPzvf/9D586dkZ6e3uB7tLGxwSuvvIKkpCT873//w6OPPoquXeu3OSkRkSkRNRoULEgAatp69O65ggUJRu8Ok3QQdFpamt5xcnIyPD09ceDAAfTv3x8BAQG6LhEAaNeuHd577z288sorKC8vh3UNexqJooilS5fi7bffRkREBADgyy+/hEKhwLp16/DCCy807k3VofBm/RKw+pZ7EAMHDkRiYiJsbW3h7e2t9wydnPSnRN+6dQs9e/bEqlWrqtVTOWC3oRwasMHmw7KputCfIOiNT0pKSsKkSZOQlpaG7777Dm+//TbS09PRq1cvZGVl6co1ZAC2i4sLhg0bhmHDhmH+/PkICwvD/PnzMXjw4AbHP3r0aPTt2xdHjx5l6w8Rma3i/QeqtfzoEUWU5+ejeP8BOPXtY7S4TGoMUGXXVl1fOJU7vNaU/AAVU5Hz8/MREhKiOyeXy9G3b1/s2rWrxveUlpZCrVbrvRqDp0v99n+qb7kH4eTkhPbt26N169a1PsNKPXr0wKlTp+Dp6Yn27dvrveRyOeRyOby8vLBnzx7de8rLy3HgwIFa6+zSpQu0Wi0yMzNrvF7ZAlXXOJpOnTqhvLxc73OvXr2K7Oxs+Pv713lPVXXv3h3x8fHYuXMnAgICsHr1alhbW+vd64POQBMEAR07dtS1aDZUZVfk0aNH8dJLLz1QHUQAAK0GyN0GHPm+4r9a6QaekuUpv3LFoOUMxWQSIK1Wi7i4OAQFBSEgIKDGMn/++SfmzZuHsWPH1lpP/t0sU6FQ6J1XKBS6a1UlJCTovtDlcjl8fHwe8C7q1sfXHV5ye9Q2zFYA4CWvmBJvCl5++WW0aNECERER2LZtG3Jzc5GRkYFJkybh4sWLAIDJkydj4cKFWLduHU6cOIEJEyZUW8PnXm3btkVUVBRGjx6NdevW6epcs2YNAKBNmzYQBAEbNmzAlStXcOvWrWp1dOjQAREREXj99dexfft2/P7773jllVfQsmVLXavf/eTm5iI+Ph67du3CuXPnsGnTJpw6dQqdOnWq8323b99GVlaW3isnJwdZWVmIiIjA999/j2PHjuH06dP473//iy+++KLeMdXk119/RV5eHtzc3B64DrJwx1KBpQHAyqeBH8ZU/HdpQMV5IiOwrmePQX3LGYrJJEAxMTE4evQovv322xqvq9VqDB06FP7+/roxK4YSHx8PlUqle124cMGg9VeSWQmYPayihaJqElR5PHuYv1HWA6oPR0dH/Pbbb2jdurVukPOYMWNQUlICV1dXAMCbb76JV199FVFRUQgMDISLiwuGDx9eZ72JiYn4+9//jgkTJqBjx454/fXXda0kLVu2xNy5czFjxgwoFArExsbWWEdSUhJ69uyJp59+GoGBgRBFET///HO1bq+67u3EiRMYMWIEHn30UYwdOxYxMTEYN25cne87efIkunfvrvcaN24cWrVqhbZt22Lu3Lno27cvevTogWXLlmHu3Ll466236hVTTSqn6BM9kGOpwJpRgPqy/nl1XsV5JkFkBI69esJaqQRqm2UrCLBWKuHYq6dR4xLEqou2SCA2Nhbr16/Hb7/9Bl9f32rXb968ibCwMDg6OmLDhg2wt6+9i+jMmTNo164dDh06pLdq74ABA/DYY4/VOq36Xmq1GnK5XNfddq+SkhLk5ubC19e3zjjqknY0D3N/PKY3INpLbo/Zw/wRHuD1QHUSSckQvxdkYFpNRUtP1eRHRwBcvYG4I4CVzKihkeWpnAUGQH8w9N2kqOWypXANDX34z6nj+7sqSQdBi6KIiRMnIiUlBRkZGTUmP2q1GmFhYbCzs0Nqaup9/3L19fWFUqnEli1bdAmQWq3Gnj17MH78+Ma4jQYLD/DCYH+lJCtBE5GFOLezjuQHAERAfaminO+TRguLLJNraCiwbCkKFiToDYi2ViigmBlvkOSnoSRNgGJiYrB69WqsX78eLi4uujE6crkcDg4OUKvVCA0NRXFxMb7++mu9AcoeHh66lXM7duyIhIQEDB8+HIIgIC4uDvPnz0eHDh3g6+uLWbNmwdvbG5GRkVLdajUyKwGB7ZpLHQYRNVW3CgxbjughuYaGwmXQoIpZYVeuwNrDA469ekKQSdMCKWkClJiYCADVNndMSkpCdHQ0Dh48qJvp0759e70yubm5aNu2LYCKVYPvXRxx2rRpKCoqwtixY3Hjxg088cQTSEtLY9M8EVkOZ8X9yzSkHJEBCDKZUae618UkxgCZmsYeA0TU1PD3wgTpxgDlATWuP88xQNT0NGQMkMnMAiMiIgOykgHhi+4e1DLvNHwhkx+yWEyAiIiaKv9ngJFfAq5VZpe6elec939GmriITICkY4CIiKiR+T8DdBxaMdvrVkHFmJ82/djyQxaPCRARUVNnJeNUd6Iq2AVGREREFocJEJm8OXPm6K3qLZXg4GDExcVJHQYRERkAEyALkp+fj8mTJ6N9+/awt7eHQqFAUFAQEhMTUVxcLHV4DywjIwOCINS5CauU9RERkenhGCCpaDVGHZR45swZBAUFwc3NDQsWLECXLl1gZ2eHI0eO4PPPP0fLli3xzDM1zwgpKyur9yajpuzOnTuwtbWVOgwiIjIBbAGSwrHUigXKVj4N/DCm4r9LAxp1Z+YJEybA2toa+/fvx8iRI9GpUyc88sgjiIiIwE8//YRhw4bpygqCgMTERDzzzDNwcnLCe++9B6Bi5e527drB1tYWfn5++Oqrr3TvOXv2LARBQFZWlu7cjRs3IAgCMjIyAPzVsrJlyxb06tULjo6O6NevH7Kzs/ViXbhwIRQKBVxcXHS7z9fm7NmzGDhwIACgWbNmEAQB0dHRACq6rGJjYxEXF4cWLVogLCzsvnHWVR8AaLVaTJs2De7u7lAqlZgzZ059fwRERGRCmAAZ27FUYM2o6psUqvMqzjdCEnT16lVs2rQJMTExcHJyqrGMIOgvlDZnzhwMHz4cR44cwejRo5GSkoLJkyfjzTffxNGjRzFu3Di89tpr2Lp1a4Pjeeutt/D+++9j//79sLa2xujRo3XX1qxZgzlz5mDBggXYv38/vLy88Omnn9Zal4+PD3744QcAFVui5OXlYdmyZbrrK1euhK2tLXbs2IHly5ffN7b61Ofk5IQ9e/Zg8eLFePfdd5Gent7gZ0BERNJiF5gxaTVA2nTUvCy9CEAA0mZUrNlhwO6w06dPQxRF+Pn56Z1v0aKFrnUlJiYGixYt0l176aWX8Nprr+mOX3zxRURHR2PChAkAgClTpmD37t1YsmSJrsWkvt577z0MGDAAADBjxgwMHToUJSUlsLe3x9KlSzFmzBiMGTMGADB//nxs3ry51lYgmUwGd3d3AICnpyfc3Nz0rnfo0AGLFy/WHZ89e7bO2O5XX9euXTF79mxd3R9//DG2bNmCwYMH1+veiYjINLAFyJjO7aze8qNHBNSXKsoZwd69e5GVlYXOnTujtLRU71qvXr30jo8fP46goCC9c0FBQTh+/HiDP7dr1666//fyqlihtrCwUPc5ffv21SsfGBjY4M+o1LNnzwd+b03ujR2oiL8ydiIiMh9sATKmWwWGLVdP7du3hyAI1cbaPPLIIwAABweHau+prausNlZWFbn0vXvrlpWV1Vj23gHVlV1vWq22QZ9XX1XvoyFx1qTqYHBBEBotdiIiajxsATImZ4Vhy9VT8+bNMXjwYHz88ccoKip6oDo6deqEHTt26J3bsWMH/P39AQAeHh4AgLy8PN31ewcaN+Rz9uzZo3du9+7ddb6ncmaXRqO5b/31ibMh9RERkXliC5AxtelXsQmhOg81jwMSKq636Wfwj/70008RFBSEXr16Yc6cOejatSusrKywb98+nDhx4r5dRf/85z8xcuRIdO/eHSEhIfjxxx+xdu1abN68GUBFK9Ljjz+OhQsXwtfXF4WFhXj77bcbHOfkyZMRHR2NXr16ISgoCKtWrcIff/yha62qSZs2bSAIAjZs2ICnnnoKDg4OcHZ2rrFsfeJsSH1ERGSe2AJkTFYyILxyoLFQ5eLd4/CFjbIeULt27XDo0CGEhIQgPj4e3bp1Q69evfDRRx9h6tSpmDdvXp3vj4yMxLJly7BkyRJ07twZn332GZKSkhAcHKwr88UXX6C8vBw9e/ZEXFwc5s+f3+A4n3/+ecyaNQvTpk1Dz549ce7cOYwfP77O97Rs2RJz587FjBkzoFAoEBsbW2f5+8XZ0PqIiMj8COK9gyEIAKBWqyGXy6FSqeDq6qp3raSkBLm5ufD19YW9vf2DfcCx1IrZYPcOiHZtWZH8+Ne8GCGRKTPI7wUR0UOq6/u7KnaBScH/mYqp7kZcCZqIiIj+wgRIKlYywPdJqaMgIiKySBwDRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVkcJkBERERkcZgAkdnJz8/H4MGD4eTkBDc3N6nDMZiMjAwIgoAbN25IGsecOXPw2GOPSRoDEVFjYwJkIaKjoyEIAv7xj39UuxYTEwNBEBAdHW38wB7ABx98gLy8PGRlZeHkyZNSh2NUgiBg3bp1JlsfEZG5YAIkEY1Wg335+/DzmZ+xL38fNFpNo3+mj48Pvv32W9y+fVt3rqSkBKtXr0br1q0b/fMNJScnBz179kSHDh3g6elpsHrv3LljsLqk1FTug4ioMTEBksDmc5sR9kMYRm8cjenbpmP0xtEI+yEMm89tbtTP7dGjB3x8fLB27VrdubVr16J169bo3r27XlmtVouEhAT4+vrCwcEB3bp1w/fff6+7rtFoMGbMGN11Pz8/LFu2TK+O6OhoREZGYsmSJfDy8kLz5s0RExODsrKyOuNMTExEu3btYGtrCz8/P3z11Ve6a23btsUPP/yAL7/8ss5Wq/LyckyaNAlubm5o3rw5pk+fjqioKERGRurKBAcHIzY2FnFxcWjRogXCwsIAAJmZmejTpw/s7Ozg5eWFGTNmoLy8XC+GpUuX6n3eY489hjlz5uiOBUHAihUrMHz4cDg6OqJDhw5ITU3Ve8/PP/+MRx99FA4ODhg4cCDOnj1b53Np27YtAGD48OEQBEF3XNlltWLFCr3NSO8XZ231Vfrqq6/Qtm1byOVyvPDCC7h582ad8RERmRMmQEa2+dxmTMmYgoLiAr3zhcWFmJIxpdGToNGjRyMpKUl3/MUXX+C1116rVi4hIQFffvklli9fjj/++ANvvPEGXnnlFWRmZgKoSJBatWqF//3vfzh27BjeeecdzJw5E2vWrNGrZ+vWrcjJycHWrVuxcuVKJCcnIzk5udb4UlJSMHnyZLz55ps4evQoxo0bh9deew1bt24FAOzbtw/h4eEYOXIk8vLyqiVdlRYtWoRVq1YhKSkJO3bsgFqtrrGrZ+XKlbC1tcWOHTuwfPlyXLp0CU899RR69+6N33//HYmJifjvf/+L+fPn3+/RVjN37lyMHDkShw8fxlNPPYWXX34Z165dAwBcuHABzz77LIYNG4asrCz83//9H2bMmFFnffv27QMAJCUlIS8vT3cMAKdPn8YPP/yAtWvXIisrq17x1VVfTk4O1q1bhw0bNmDDhg3IzMzEwoULG3L7RESmTaRqVCqVCEBUqVTVrt2+fVs8duyYePv27QbXW64pFwetGSQGJAfU+OqS3EUMWRMilmvKDXEbeqKiosSIiAixsLBQtLOzE8+ePSuePXtWtLe3F69cuSJGRESIUVFRoiiKYklJiejo6Cju3LlTr44xY8aIL774Yq2fERMTI44YMULvM9u0aSOWl/91P88995z4/PPP11pHv379xNdff13v3HPPPSc+9dRTuuN7Y62NQqEQ//Wvf+mOy8vLxdatW4sRERG6cwMGDBC7d++u976ZM2eKfn5+olar1Z375JNPRGdnZ1Gj0YiiKIpt2rQRP/jgA733devWTZw9e7buGID49ttv645v3bolAhB/+eUXURRFMT4+XvT399erY/r06SIA8fr167XeFwAxJSVF79zs2bNFGxsbsbCwUO98feOsqT5HR0dRrVbrzv3zn/8U+/btW2tcD/N7QURkKHV9f1fF3eCN6GDhwWotP/cSISK/OB8HCw+it7J3o8Tg4eGBoUOHIjk5GaIoYujQoWjRooVemdOnT6O4uBiDBw/WO3/nzh29rrJPPvkEX3zxBc6fP4/bt2/jzp071WYPde7cGTKZTHfs5eWFI0eO1Brf8ePHMXbsWL1zQUFBtbb01ESlUqGgoAB9+vTRnZPJZOjZsye0Wq1e2Z49e1b7/MDAQAiCoPf5t27dwsWLFxs0Vqpr1666/3dycoKrqysKCwt1n9O3b1+98oGBgfWuu6o2bdrAw8Pjgd9fVdu2beHi4qI79vLy0sVORNQUMAEyoivFVwxa7kGNHj0asbGxACqSmKpu3boFAPjpp5/QsmVLvWt2dnYAgG+//RZTp07F+++/j8DAQLi4uOBf//oX9uzZo1fexsZG71gQhGpJiJScnJwa/B4rKyuIoqh3rqZxTca895ruo75x1sTUf25ERA+LY4CMyMOxfv9Cr2+5BxUeHo47d+6grKxMN/D3Xv7+/rCzs8P58+fRvn17vZePjw8AYMeOHejXrx8mTJiA7t27o3379sjJyXno2Dp16oQdO3bonduxYwf8/f3rXYdcLodCodAb06LRaHDw4MF6ff6uXbv0EocdO3bAxcUFrVq1AlDRipaXl6e7rlarkZubW+/4Kj9n7969eud279593/fZ2NhAo6nfjMH6xNmQ+oiImhJJE6CEhAT07t0bLi4u8PT0RGRkJLKzs/XKfP755wgODoarq2u9F4mbM2cOBEHQe3Xs2LGR7qL+enj2gMJRAQFCjdcFCFA6KtHDs0ejxiGTyXD8+HEcO3ZMr3uqkouLC6ZOnYo33ngDK1euRE5ODg4ePIiPPvoIK1euBAB06NAB+/fvx8aNG3Hy5EnMmjVLL+F4UP/85z+RnJyMxMREnDp1Cv/+97+xdu1aTJ06tUH1TJw4EQkJCVi/fj2ys7MxefJkXL9+Xa9rqyYTJkzAhQsXMHHiRJw4cQLr16/H7NmzMWXKFFhZVfy6/O1vf8NXX32Fbdu24ciRI4iKiqrxOdblH//4B06dOoV//vOfyM7OxurVq+scHF6pbdu22LJlC/Lz83H9+vU6y9YnzobUR0TUlEiaAGVmZiImJga7d+9Geno6ysrKEBoaiqKiIl2Z4uJihIeHY+bMmQ2qu3PnzsjLy9O9tm/fbujwG0xmJcOMPhUzfaomQZXH0/tMh8yqYV+mD8LV1RWurq61Xp83bx5mzZqFhIQEdOrUCeHh4fjpp5/g6+sLABg3bhyeffZZPP/88+jbty+uXr2KCRMmPHRckZGRWLZsGZYsWYLOnTvjs88+Q1JSEoKDgxtUz/Tp0/Hiiy9i1KhRCAwMhLOzM8LCwnRTxGvTsmVL/Pzzz9i7dy+6deuGf/zjHxgzZgzefvttXZn4+HgMGDAATz/9NIYOHYrIyEi0a9euQfG1bt0aP/zwA9atW4du3bph+fLlWLBgwX3f9/777yM9PR0+Pj7Vli6oqj5xNqQ+IqKmRBCrDhKQ0JUrV+Dp6YnMzEz0799f71pGRgYGDhyI69ev33f7gzlz5mDdunX1ng5cWlqK0tJS3bFarYaPjw9UKlW1JKGkpAS5ubl666001OZzm7Fw70K9AdFKRyWm95mOkDYhD1Qn1U2r1aJTp04YOXIk5s2bJ3U4TY4hfi+IiB6WWq2GXC6v8fu7KpMaBK1SqQAA7u7uD13XqVOn4O3tDXt7ewQGBiIhIaHWGTwJCQmYO3fuQ39mfYW0CcFAn4E4WHgQV4qvwMPRAz08exil5cdSnDt3Dps2bcKAAQNQWlqKjz/+GLm5uXjppZekDo2IiEyAyQyC1mq1iIuLQ1BQEAICAh6qrr59+yI5ORlpaWlITExEbm4unnzyyVpXso2Pj4dKpdK9Lly48FCfXx8yKxl6K3vjqUeeQm9lbyY/BmZlZYXk5GT07t0bQUFBOHLkCDZv3oxOnTpJHRoREZkAk2kBiomJwdGjRw0yVmfIkCG6/+/atSv69u2LNm3aYM2aNRgzZky18nZ2drrp3dQ0+Pj4VJtNRkREVMkkEqDY2Fhs2LABv/32m26qsSG5ubnh0UcfxenTpw1eNxEREZkfSbvARFFEbGwsUlJS8Ouvv+pmGBnarVu3kJOTAy8vr0apn4iIiMyLpAlQTEwMvv76a6xevRouLi7Iz89Hfn4+bt++rSuTn5+PrKwsXevNkSNHkJWVpdtUEgAGDRqEjz/+WHc8depUZGZm4uzZs9i5cyeGDx8OmUyGF1980Xg3R0RERCZL0gQoMTERKpUKwcHB8PLy0r2+++47XZnly5eje/fueP311wEA/fv3R/fu3ZGamqork5OTgz///FN3fPHiRbz44ovw8/PDyJEj0bx5c+zevdugeyURERGR+TKpdYBMRV3rCHC9E6Lq+HtBRKagIesAmcw0eCIiIiJjYQJEBhcdHY3IyEjdcXBwMOLi4h6qTkPUYSyCIGDdunW1Xj979iwEQaj3SuVERGR4TIAsSHR0tG5zWFtbW7Rv3x7vvvsuysvLG/Vz165dW+/tJzIyMmrc9LYhdTSWezfZlclk8PHxwdixY/UG5ANAXl6e3lpURERkekxiHSBLJGo0KN5/AOVXrsDawwOOvXpCaOCO4g8iPDwcSUlJKC0txc8//4yYmBjY2NggPj5er9ydO3dga2trkM80xNYmhqjDEDp37ozNmzdDo9Hg+PHjGD16NFQqld7AfaVSKWGERERUH2wBkoB60yacHhSC81FRuDx1Ks5HReH0oBCoN21q9M+2s7ODUqlEmzZtMH78eISEhCA1NVXXbfXee+/B29sbfn5+AIALFy5g5MiRcHNzg7u7OyIiInD27FldfRqNBlOmTIGbmxuaN2+OadOmoeq4+qrdV6WlpZg+fTp8fHxgZ2eH9u3b47///S/Onj2LgQMHAgCaNWsGQRAQHR1dYx3Xr1/HqFGj0KxZMzg6OmLIkCE4deqU7npycjLc3NywceNGdOrUCc7OzggPD0deXp6uTEZGBvr06QMnJye4ubkhKCgI586dq/P5WVtbQ6lUomXLlggJCcFzzz2H9PR0vTJVu8D27t2L7t27w97eHr169cKhQ4eq1ZuamooOHTrA3t4eAwcOxMqVK6u1hG3fvh1PPvkkHBwc4OPjg0mTJqGoqKjOeImIqGZMgIxMvWkTLk2OQ3l+vt758oICXJocZ5Qk6F4ODg64c+cOAGDLli3Izs5Geno6NmzYgLKyMoSFhcHFxQXbtm3Djh07dIlE5Xvef/99JCcn44svvsD27dtx7do1pKSk1PmZo0aNwjfffIMPP/wQx48fx2effQZnZ2f4+Pjghx9+AABkZ2cjLy8Py5Ytq7GO6Oho7N+/H6mpqdi1axdEUcRTTz2FsrIyXZni4mIsWbIEX331FX777TecP38eU6dOBQCUl5cjMjISAwYMwOHDh7Fr1y6MHTsWgiDU+9mdPXsWGzdurLOl7NatW3j66afh7++PAwcOYM6cOboYKuXm5uLvf/87IiMj8fvvv2PcuHF466239Mrk5OQgPDwcI0aMwOHDh/Hdd99h+/btiI2NrXe8RNS0iRoNivbshWrDTyjasxeiRiN1SKZNpGpUKpUIQFSpVNWu3b59Wzx27Jh4+/btBterLS8XTw4IFo/5daz51bGTeHJAsKgtLzfEbVQTFRUlRkREVMSi1Yrp6eminZ2dOHXqVDEqKkpUKBRiaWmprvxXX30l+vn5iVqtVneutLRUdHBwEDdu3CiKoih6eXmJixcv1l0vKysTW7VqpfscURTFAQMGiJMnTxZFURSzs7NFAGJ6enqNMW7dulUEIF6/fl3v/L11nDx5UgQg7tixQ3f9zz//FB0cHMQ1a9aIoiiKSUlJIgDx9OnTujKffPKJqFAoRFEUxatXr4oAxIyMjHo8uQqzZ88WraysRCcnJ9He3l4EIAIQ//3vf+uVAyCmpKSIoiiKn332mdi8eXO9Py+JiYkiAPHQoUOiKIri9OnTxYCAAL063nrrLb3nMGbMGHHs2LF6ZbZt2yZaWVk90J9FQ3uY3wsieniqjRurfb+cHBAsqu7+XW0p6vr+rootQEZUvP9AtZYfPaKI8vx8FO8/0GgxbNiwAc7OzrC3t8eQIUPw/PPPY86cOQCALl266LVm/P777zh9+jRcXFzg7OwMZ2dnuLu7o6SkBDk5OVCpVMjLy0Pfvn1177G2tkavXr1q/fysrCzIZDIMGDDgge/h+PHjsLa21vvc5s2bw8/PD8ePH9edc3R0RLt27XTHXl5eKCwsBFAxpig6OhphYWEYNmwYli1bpuseO3/+vO5+nZ2dsWDBAl0dfn5+yMrKwr59+zB9+nSEhYVh4sSJdcbatWtXvbVxAgMD9cpkZ2ejd+/eeuf69Omjd/z7778jOTlZL66wsDBotVrk5ube95kRUdNlaj0L5oKDoI2o/MoVg5Z7EAMHDkRiYiJsbW3h7e0Na+u//gg4OTnplb116xZ69uyJVatWVavnQVfVdnBweKD3PQgbGxu9Y0EQ9MYnJSUlYdKkSUhLS8N3332Ht99+G+np6ejVq5feFPV7B2BXzp4DgIULF2Lo0KGYO3duo89Qu3XrFsaNG4dJkyZVu9a6detG/WwiMl2iRoOCBQlATWsaiyIgCChYkACXQYOMMtHGnLAFyIis65k01Lfcg3ByckL79u3RunVrveSnJj169MCpU6fg6emJ9u3b673kcjnkcjm8vLywZ88e3XvKy8tx4EDtLVhdunSBVqtFZmZmjdcrW6A0dfRdd+rUCeXl5Xqfe/XqVWRnZ8Pf37/Oe6qqe/fuiI+Px86dOxEQEIDVq1fD2tpa717rmoH29ttvY8mSJbh8+XKtsR4+fBglJSW6c7t379Yr4+fnh/379+ud27dvn95xjx49cOzYsWo/h/bt2xtsth4RmR9T6FkwV0yAjMixV09YK5VAbQNtBQHWSiUce/U0bmC1ePnll9GiRQtERERg27ZtyM3NRUZGBiZNmoSLFy8CACZPnoyFCxdi3bp1OHHiBCZMmFBtDZ97tW3bFlFRURg9ejTWrVunq3PNmjUAgDZt2kAQBGzYsAFXrlzBrVu3qtXRoUMHRERE4PXXX8f27dvx+++/45VXXkHLli0RERFRr3vLzc1FfHw8du3ahXPnzmHTpk04deoUOnXq1KBnFBgYiK5du+p1k93rpZdegiAIeP3113Hs2DH8/PPPWLJkiV6ZcePG4cSJE5g+fTpOnjyJNWvWIDk5GQB0g7KnT5+OnTt3IjY2FllZWTh16hTWr1/PQdBEFs4UehbMFRMgIxJkMihm3l1vp2oSdPdYMTPeZJopHR0d8dtvv6F169Z49tln0alTJ4wZMwYlJSW6PVbefPNNvPrqq4iKikJgYCBcXFwwfPjwOutNTEzE3//+d0yYMAEdO3bE66+/rpvO3bJlS8ydOxczZsyAQqGo9Qs+KSkJPXv2xNNPP43AwECIooiff/65WrdXXfd24sQJjBgxAo8++ijGjh2LmJgYjBs3rgFPqMIbb7yBFStW4MKFC9WuOTs748cff8SRI0fQvXt3vPXWW1i0aJFeGV9fX3z//fdYu3YtunbtisTERN0sMDs7OwBA165dkZmZiZMnT+LJJ59E9+7d8c4778Db27vB8RJR02EKPQvmipuh1qCxN0NVb9qEggUJes2W1kolFDPj4Roa+lCxU9Pw3nvvYfny5TUmVaaIm6ESSUPUaHB6UAjKCwpqHgckCLBWKNB+y2aT+cd1Y2rIZqgcBC0B19BQuAwaJMlK0GSaPv30U/Tu3RvNmzfHjh078K9//YvdW0R0X5U9C5cmx1X0JNybBJlgz4IpYQIkEUEmg1PfPvcvSBbh1KlTmD9/Pq5du4bWrVvjzTffrLY9CRFRTVxDQ4FlS6v3LCgU7FmoA7vAatDYXWBETQ1/L4ikJ9Uek6aEXWBEREQWhj0LDcNZYA+IDWdEf+HvAxGZGyZADVQ5zbq4uFjiSIhMR+XvQ32XISAikhq7wBpIJpPBzc1Nt6eUo6Njg3YQJ2pKRFFEcXExCgsL4ebmBpmFjTcgIvPFBOgBKJVKANAlQUSWzs3NTfd7QURkDpgAPQBBEODl5QVPT0+UlZVJHQ6RpGxsbNjyQ0RmhwnQQ5DJZPyLn4iIyAxxEDQRERFZHCZAREREZHGYABEREZHF4RigGlQu6qZWqyWOhIiIiOqr8nu7PouzMgGqwc2bNwEAPj4+EkdCREREDXXz5k3I5fI6y3Az1BpotVpcvnwZLi4uBl/kUK1Ww8fHBxcuXLjvRm1UOz5Hw+BzNAw+R8Pgc3x4lv4MRVHEzZs34e3tDSurukf5sAWoBlZWVmjVqlWjfoarq6tF/uE0ND5Hw+BzNAw+R8Pgc3x4lvwM79fyU4mDoImIiMjiMAEiIiIii8MEyMjs7Owwe/Zs2NnZSR2KWeNzNAw+R8PgczQMPseHx2dYfxwETURERBaHLUBERERkcZgAERERkcVhAkREREQWhwkQERERWRwmQEb0ySefoG3btrC3t0ffvn2xd+9eqUMyKwkJCejduzdcXFzg6emJyMhIZGdnSx2W2Vu4cCEEQUBcXJzUoZidS5cu4ZVXXkHz5s3h4OCALl26YP/+/VKHZVY0Gg1mzZoFX19fODg4oF27dpg3b1699nKyZL/99huGDRsGb29vCIKAdevW6V0XRRHvvPMOvLy84ODggJCQEJw6dUqaYE0UEyAj+e677zBlyhTMnj0bBw8eRLdu3RAWFobCwkKpQzMbmZmZiImJwe7du5Geno6ysjKEhoaiqKhI6tDM1r59+/DZZ5+ha9euUodidq5fv46goCDY2Njgl19+wbFjx/D++++jWbNmUodmVhYtWoTExER8/PHHOH78OBYtWoTFixfjo48+kjo0k1ZUVIRu3brhk08+qfH64sWL8eGHH2L58uXYs2cPnJycEBYWhpKSEiNHasJEMoo+ffqIMTExumONRiN6e3uLCQkJEkZl3goLC0UAYmZmptShmKWbN2+KHTp0ENPT08UBAwaIkydPljokszJ9+nTxiSeekDoMszd06FBx9OjReueeffZZ8eWXX5YoIvMDQExJSdEda7VaUalUiv/61790527cuCHa2dmJ33zzjQQRmia2ABnBnTt3cODAAYSEhOjOWVlZISQkBLt27ZIwMvOmUqkAAO7u7hJHYp5iYmIwdOhQvT+XVH+pqano1asXnnvuOXh6eqJ79+74z3/+I3VYZqdfv37YsmULTp48CQD4/fffsX37dgwZMkTiyMxXbm4u8vPz9X635XI5+vbty++ce3AzVCP4888/odFooFAo9M4rFAqcOHFCoqjMm1arRVxcHIKCghAQECB1OGbn22+/xcGDB7Fv3z6pQzFbZ86cQWJiIqZMmYKZM2di3759mDRpEmxtbREVFSV1eGZjxowZUKvV6NixI2QyGTQaDd577z28/PLLUodmtvLz8wGgxu+cymvEBIjMVExMDI4ePYrt27dLHYrZuXDhAiZPnoz09HTY29tLHY7Z0mq16NWrFxYsWAAA6N69O44ePYrly5czAWqANWvWYNWqVVi9ejU6d+6MrKwsxMXFwdvbm8+RGhW7wIygRYsWkMlkKCgo0DtfUFAApVIpUVTmKzY2Fhs2bMDWrVvRqlUrqcMxOwcOHEBhYSF69OgBa2trWFtbIzMzEx9++CGsra2h0WikDtEseHl5wd/fX+9cp06dcP78eYkiMk///Oc/MWPGDLzwwgvo0qULXn31VbzxxhtISEiQOjSzVfm9wu+cujEBMgJbW1v07NkTW7Zs0Z3TarXYsmULAgMDJYzMvIiiiNjYWKSkpODXX3+Fr6+v1CGZpUGDBuHIkSPIysrSvXr16oWXX34ZWVlZkMlkUodoFoKCgqotw3Dy5Em0adNGoojMU3FxMays9L+KZDIZtFqtRBGZP19fXyiVSr3vHLVajT179vA75x7sAjOSKVOmICoqCr169UKfPn2wdOlSFBUV4bXXXpM6NLMRExOD1atXY/369XBxcdH1Zcvlcjg4OEgcnflwcXGpNm7KyckJzZs353iqBnjjjTfQr18/LFiwACNHjsTevXvx+eef4/PPP5c6NLMybNgwvPfee2jdujU6d+6MQ4cO4d///jdGjx4tdWgm7datWzh9+rTuODc3F1lZWXB3d0fr1q0RFxeH+fPno0OHDvD19cWsWbPg7e2NyMhI6YI2NVJPQ7MkH330kdi6dWvR1tZW7NOnj7h7926pQzIrAGp8JSUlSR2a2eM0+Afz448/igEBAaKdnZ3YsWNH8fPPP5c6JLOjVqvFyZMni61btxbt7e3FRx55RHzrrbfE0tJSqUMzaVu3bq3x78OoqChRFCumws+aNUtUKBSinZ2dOGjQIDE7O1vaoE2MIIpcbpOIiIgsC8cAERERkcVhAkREREQWhwkQERERWRwmQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABGRxYmOjuaWAEQWjgkQETWK6OhoCIJQ7RUeHi51aFi2bBmSk5OlDgMAIAgC1q1bJ3UYRBaHm6ESUaMJDw9HUlKS3jk7OzuJogE0Gg0EQYBcLpcsBiIyDWwBIqJGY2dnB6VSqfdq1qwZMjIyYGtri23btunKLl68GJ6enigoKAAABAcHIzY2FrGxsZDL5WjRogVmzZqFe7cvLC0txdSpU9GyZUs4OTmhb9++yMjI0F1PTk6Gm5sbUlNT4e/vDzs7O5w/f75aF1hwcDAmTpyIuLg4NGvWDAqFAv/5z39QVFSE1157DS4uLmjfvj1++eUXvfs7evQohgwZAmdnZygUCrz66qv4888/9eqdNGkSpk2bBnd3dyiVSsyZM0d3vW3btgCA4cOHQxAE3TERNT4mQERkdMHBwYiLi8Orr74KlUqFQ4cOYdasWVixYgUUCoWu3MqVK2FtbY29e/di2bJl+Pe//40VK1borsfGxmLXrl349ttvcfjwYTz33HMIDw/HqVOndGWKi4uxaNEirFixAn/88Qc8PT1rjGnlypVo0aIF9u7di4kTJ2L8+PF47rnn0K9fPxw8eBChoaF49dVXUVxcDAC4ceMG/va3v6F79+7Yv38/0tLSUFBQgJEjR1ar18nJCXv27MHixYvx7rvvIj09HQCwb98+AEBSUhLy8vJ0x0RkBBLvRk9ETVRUVJQok8lEJycnvdd7770niqIolpaWio899pg4cuRI0d/fX3z99df13j9gwACxU6dOolar1Z2bPn262KlTJ1EURfHcuXOiTCYTL126pPe+QYMGifHx8aIoimJSUpIIQMzKyqoWW0REhN5nPfHEE7rj8vJy0cnJSXz11Vd15/Ly8kQA4q5du0RRFMV58+aJoaGhevVeuHBBBCBmZ2fXWK8oimLv3r3F6dOn644BiCkpKbU8RSJqLBwDRESNZuDAgUhMTNQ75+7uDgCwtbXFqlWr0LVrV7Rp0wYffPBBtfc//vjjEARBdxwYGIj3338fGo0GR44cgUajwaOPPqr3ntLSUjRv3lx3bGtri65du9431nvLyGQyNG/eHF26dNGdq2yZKiwsBAD8/vvv2Lp1K5ydnavVlZOTo4ur6md7eXnp6iAi6TABIqJG4+TkhPbt29d6fefOnQCAa9eu4dq1a3Bycqp33bdu3YJMJsOBAwcgk8n0rt2blDg4OOglUbWxsbHROxYEQe9cZR1arVb3+cOGDcOiRYuq1eXl5VVnvZV1EJF0mAARkSRycnLwxhtv4D//+Q++++47REVFYfPmzbCy+mto4p49e/Tes3v3bnTo0AEymQzdu3eHRqNBYWEhnnzySWOHjx49euCHH35A27ZtYW394H+V2tjYQKPRGDAyIqoPDoImokZTWlqK/Px8vdeff/4JjUaDV155BWFhYXjttdeQlJSEw4cP4/3339d7//nz5zFlyhRkZ2fjm2++wUcffYTJkycDAB599FG8/PLLGDVqFNauXYvc3Fzs3bsXCQkJ+Omnnxr93mJiYnDt2jW8+OKL2LdvH3JycrBx40a89tprDUpo2rZtiy1btiA/Px/Xr19vxIiJ6F5sASKiRpOWlqbXHQQAfn5+eOmll3Du3Dls2LABQEWX0eeff44XX3wRoaGh6NatGwBg1KhRuH37Nvr06QOZTIbJkydj7NixurqSkpIwf/58vPnmm7h06RJatGiBxx9/HE8//XSj35u3tzd27NiB6dOnIzQ0FKWlpWjTpg3Cw8P1WrHu5/3338eUKVPwn//8By1btsTZs2cbL2gi0hFE8Z5FNYiITERwcDAee+wxLF26VOpQiKgJYhcYERERWRwmQERERGRx2AVGREREFoctQERERGRxmAARERGRxWECRERERBaHCRARERFZHCZAREREZHGYABEREZHFYQJEREREFocJEBEREVmc/wcH7wnUSd3QtwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCVUlEQVR4nOzdd3RU5dYG8OfMpPfeO5BACB0SihRBIaI0UUTgQ6xXBK+o2CuIInpVbMC1gVxAQIoCShSBhJqEXgQSUkjvbVJImznfH5NEAgEyySRnyvNba1bMmZOTHcDM7PPud29BFEURRERERERERKTzZFIHQEREREREREStwySeiIiIiIiISE8wiSciIiIiIiLSE0ziiYiIiIiIiPQEk3giIiIiIiIiPcEknoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0hInUAegilUqF7Oxs2NraQhAEqcMhIiIiIiIiAyeKIsrLy+Hl5QWZ7Obr7UziW5CdnQ1fX1+pwyAiIiIiIiIjk5GRAR8fn5s+zyS+Bba2tgDUf3h2dnYSR0NERERERESGTqFQwNfXtykfvRkm8S1oLKG3s7NjEk9ERERERESd5nZbutnYjoiIiIiIiEhPMIknIiIiIiIi0hNM4omIiIiIiIj0BJN4IiIiIiIiIj3BJJ6IiIiIiIhITzCJJyIiIiIiItITTOKJiIiIiIiI9ASTeCIiIiIiIiI9wSSeiIiIiIiISE8wiSciIiIiIiLSE5Im8UuXLsWgQYNga2sLNzc3TJ48GQkJCc3OGTVqFARBaPZ4+umnb3ldURTx9ttvw9PTE5aWlrjrrrtw+fLljvxRiIiIiIiIiDqcpEl8TEwM5s2bh9jYWOzZswd1dXUYO3YsKisrm5335JNPIicnp+nx0Ucf3fK6H330Eb744gusWrUKcXFxsLa2xrhx41BdXd2RPw4RERERERFRhzKR8ptHRUU1+3zNmjVwc3PDiRMnMGLEiKbjVlZW8PDwaNU1RVHE8uXL8eabb2LSpEkAgLVr18Ld3R2//PILpk+frr0fQGLVdUrIBAFmJtwVQUREREREZAx0KvsrKysDADg5OTU7vn79eri4uCAsLAyvvfYaqqqqbnqN1NRU5Obm4q677mo6Zm9vj4iICBw9erTFr6mpqYFCoWj20Afv7bqA+1ceRlJ+hdShEBERERERUSeQdCX+WiqVCgsWLMCwYcMQFhbWdHzGjBnw9/eHl5cXzp49i1deeQUJCQnYtm1bi9fJzc0FALi7uzc77u7u3vTc9ZYuXYpFixZp6SfpHEUVNfj9XA5Kqupw35cH8dZ9oZgR7gdBEKQOjYiIiIiIiDqIIIqiKHUQADB37lzs3r0bhw4dgo+Pz03P27dvH8aMGYOkpCR06dLlhuePHDmCYcOGITs7G56enk3Hp02bBkEQsGnTphu+pqamBjU1NU2fKxQK+Pr6oqysDHZ2du38yTpOnqIaC38+g4OXCwEAd/Vwx7KpveBsYy5xZERERERERKQJhUIBe3v72+ahOlFOP3/+fOzatQv79++/ZQIPABEREQCApKSkFp9v3Dufl5fX7HheXt5N99Wbm5vDzs6u2UMfuNtZ4MdHw/HmvT1gJpfhr4t5iPz8IA4kFkgdGhEREREREXUASZN4URQxf/58bN++Hfv27UNgYOBtv+b06dMA0GyV/VqBgYHw8PDA3r17m44pFArExcVhyJAhWolbl8hkAp4YHoRf5g1DNzcbFJTXYPYP8Vi88wKq65RSh0dERERERERaJGkSP2/ePKxbtw4bNmyAra0tcnNzkZubi6tXrwIAkpOT8d577+HEiRO4cuUKduzYgdmzZ2PEiBHo3bt303W6d++O7du3AwAEQcCCBQuwZMkS7NixA+fOncPs2bPh5eWFyZMnS/FjdopQLzvsfPYOPDLEHwDww+FUTP76MBJyyyWOjIiIiIiIiLRF0j3xN2vCtnr1asyZMwcZGRmYNWsWzp8/j8rKSvj6+mLKlCl48803m5W8C4LQ9DWAeoX/nXfewTfffIPS0lLccccdWLFiBYKDg1sVV2v3IuiqfZfy8PKWsyisqIWZiQyv39MdjwwNYNM7IiIiIiIiHdXaPFRnGtvpEn1P4gGgoLwGL205g+gE9f74USGu+PiBPnC1ZdM7IiIiIiIiXaNXje1I+1xtzbF6ziAsmtgTZiYyRCcUIHL5Aey7lHf7LyYiIiIiIiKdxCTegAmCgEeGBmDn/DvQ3cMWRZW1eGzNcbz963k2vSMiIiIiItJDTOKNQIiHLX6ZNwyP36Hu/r/2aBru+/IQ/s4ukzgyIiIiIiIi0gSTeCNhYSrHW/eF4sfHwuFqa46k/ApM+foIvjuYApWKbRGIiIiIiIj0AZN4IzMy2BVRzw3HXT3cUatUYclvFzH7h3jkKaqlDo2IiIiIiIhug0m8EXK2Mce3swfg/SlhsDCV4VBSIcYtP4Co87lSh0ZERERERES3wCTeSAmCgJkR/tj17HD09LJDaVUdnl53Aq9tO4uq2nqpwyMiIiIiIqIWMIk3cl3dbLD9mWH418ggCALwU3wG7vviEM5mlkodGhEREREREV2HSTzBzESG1+7pgfWPR8DDzgIphZW4f8URrIhOgpJN74iIiIiIiHQGk3hqMrSrC6IWDMc9YR6oV4n4KCoBM76NRXbpValDIyIiIiIiIjCJp+s4WJlhxcz++OiB3rAykyMutRiRyw9g19lsqUMjIiIiIiIyekzi6QaCIGDaQF/8/u/h6OPrAEV1PeZvOIUXN59BRQ2b3hEREREREUmFSTzdVICLNbY8PQTPju4KmQBsPZmJ8Z8fxMn0EqlDIyIiIiIiMkpM4umWTOUyvDg2BBufGgJvB0ukF1fhwVVH8flfl1GvVEkdHhERERERkVFhEk+tEh7ohN+fG46JfbygVIn47K9EPPRNLDKKq6QOjYiIiIiIyGgwiadWs7c0xRcP98Pyh/rCxtwEJ9JKcM/nB7H9VKbUoRERERERERkFJvGkscn9vLH7ueEY4O+Iipp6PL/pDJ7beAplV+ukDo2IiIiIiMigMYmnNvF1ssKmpwbjhbuDIZcJ+PV0NsZ/fhDxqcVSh0ZERERERGSwmMRTm5nIZfj3mG74+ekh8HOyQlbpVUz/5ig++TMBdWx6R0REREREpHVM4qnd+vs54vfnhmNqfx+oRODLfUl4YNVRXCmslDo0IiIiIiIig8IknrTCxtwEn0zrgy8f7gc7CxOcySjF+C8OYvPxDIiiKHV4REREREREBoFJPGnVhD5e2L1gBCICnVBVq8TLW85i3oaTKK2qlTo0IiIiIiIivccknrTO28ESG54cjJcjQ2AiE/D7uVxELj+II8mFUodGRERERESk15jEU4eQywQ8M6ortj0zFIEu1shVVGPmd3FYuvsiauvZ9I6IiIiIiKgtmMRTh+rt44Df/n0HHg73hSgC/41Jwf0rDyMpv0Lq0IiIiIiIiPQOk3jqcFZmJlh6f2+smjUADlamOJ+lwH1fHsT6uDQ2vSMiIiIiItIAk3jqNJFhHvhjwQjc0dUF1XUqvLH9PJ5cewJFFTVSh0ZERERERKQXmMRTp3K3s8Dax8Lx5r09YCaX4a+LeYj8/CAOJBZIHRoREREREZHOYxJPnU4mE/DE8CBsnzcUXd1sUFBeg9k/xGPxzguorlNKHR4REREREZHOYhJPkunpZY+d8+/A7CH+AIAfDqdi8teHkZBbLnFkREREREREuolJPEnK0kyOxZPC8P0jA+FsbYZLueWY8NUhrDmcyqZ3RERERERE12ESTzphTA937F4wHCODXVFbr8K7Oy/g0TXHUFDOpndERERERESNmMSTznCztcCaRwfh3QmhMDORITqhAJHLD2DfpTypQyMiIiIiItIJTOJJpwiCgDnDArFz/h3o7mGLospaPLbmON7+9Tyb3hERERERkdFjEk86KcTDFr/MG4bHhgUCANYeTcN9Xx7C39llEkdGREREREQkHSbxpLMsTOV4e0IofnwsHK625kjKr8CUr4/gu4MpUKnY9I6IiIiIiIwPk3jSeSODXRH13HDc1cMdtUoVlvx2EbN/iEeeolrq0IiIiIiIiDoVk3jSC8425vh29gC8PyUMFqYyHEoqxLjlBxB1Plfq0IiIiIiIiDoNk3jSG4IgYGaEP3Y9Oxw9vexQWlWHp9edwGvbzqKqtl7q8IiIiIiIiDock3jSO13dbLD9mWH418ggCALwU3wG7vviEM5mlkodGhERERERUYdiEk96ycxEhtfu6YH1j0fAw84CKYWVuH/FEayIToKSTe+IiIiIiMhAMYknvTa0qwt2Pzcc94R5oF4l4qOoBMz4NhbZpVelDo2IiIiIiEjrmMST3nO0NsOKmf3x0dTesDKTIy61GJHLD2DX2WypQyMiIiIiItIqJvFkEARBwLRBvvjt38PRx8ceiup6zN9wCi9uPoOKGja9IyIiIiIiw8AkngxKoIs1tswdivl3doUgAFtPZmL85wdxMr1E6tCIiIiIiIjajUk8GRxTuQwLx4Vg45OD4e1gifTiKjy46ig+/+sy6pUqqcMjIiIiIiJqMybxZLAigpzx+3PDMaGPF5QqEZ/9lYiHvolFRnGV1KERERERERG1iaRJ/NKlSzFo0CDY2trCzc0NkydPRkJCQovniqKIe+65B4Ig4JdffrnldefMmQNBEJo9IiMjO+AnIF1nb2mKL6b3xWcP9YGNuQlOpJVg4leHkFtWLXVoREREREREGpM0iY+JicG8efMQGxuLPXv2oK6uDmPHjkVlZeUN5y5fvhyCILT62pGRkcjJyWl6/PTTT9oMnfSIIAiY0s8Hu58dihAnGUqq6vD6+hiISja8IyIiIiIi/WIi5TePiopq9vmaNWvg5uaGEydOYMSIEU3HT58+jU8++QTHjx+Hp6dnq65tbm4ODw8PrcZLeuzCDvhGvYIvKmSYgPexLx3Y+uGjeGDKg0DoRKmjIyIiIiIiahWd2hNfVlYGAHBycmo6VlVVhRkzZuDrr7/WKCmPjo6Gm5sbQkJCMHfuXBQVFd303JqaGigUimYPMiAXdgCbZwOKbITIMvGcyVYAwKLyCcjd9Jz6eSIiIiIiIj2gM0m8SqXCggULMGzYMISFhTUdf/755zF06FBMmjSp1deKjIzE2rVrsXfvXixbtgwxMTG45557oFQqWzx/6dKlsLe3b3r4+vq2++chHaFSAlGvABCbDv1Lvgt9hGSUwxqv1T0Ocfer6vOIiIiIiIh0nKTl9NeaN28ezp8/j0OHDjUd27FjB/bt24dTp05pdK3p06c3/XevXr3Qu3dvdOnSBdHR0RgzZswN57/22mt44YUXmj5XKBRM5A1F2hFAkd3skImgwn9MV+He2g+wX9UPP5fEY1raESBwuERBEhERERERtY5OrMTPnz8fu3btwv79++Hj49N0fN++fUhOToaDgwNMTExgYqK+5zB16lSMGjWq1dcPCgqCi4sLkpKSWnze3NwcdnZ2zR5kICryWjzcTZaFBSZbAADv1f8fcvJbPo+IiIiIiEiXSJrEi6KI+fPnY/v27di3bx8CAwObPf/qq6/i7NmzOH36dNMDAD777DOsXr261d8nMzMTRUVFrW6KRwbExv2mTz0l/w19hCSUwwqvHreBKIo3PZeIiIiIiPSTSmVY7/MlTeLnzZuHdevWYcOGDbC1tUVubi5yc3Nx9epVAICHhwfCwsKaPQDAz8+vWcLfvXt3bN++HQBQUVGBl156CbGxsbhy5Qr27t2LSZMmoWvXrhg3blzn/5AkLf+hgJ0XgBvHE6rL6r+BGeoRk6HEz8czOz8+IiIiIiLqMLll1Ri7/AD2X8qXOhStkTSJX7lyJcrKyjBq1Ch4eno2PTZt2qTRdRISEpo628vlcpw9exYTJ05EcHAwHn/8cQwYMAAHDx6Eubl5R/wYpMtkciByWcMn1yfyArrJsvB8f/X/Bu/tuoDs0qudGh4REREREXWMeqUK//7pFJLyK/DJngQoDWRFXhBZQ3wDhUIBe3t7lJWVcX+8obiwQ92l/tomd3beQOSHqA+5D1NXHcWZjFKMCHbFj48OgiDcuHJPRERERET6Y1nUJayMToaNuQl2PXsHAlyspQ7pllqbh+pMd3qiDhU6Eeh+r7pbfUWeeq+8/1BAJocJgE8e7I3xXxzCgcQCbD6egYcG+UkdMRERERERtdH+S/lYGZ0MAPjogd46n8BrQie60xN1CplcPUau1wPqjzJ501Nd3Wzx4t3BAIAluy6yrJ6IiIiISE9ll17F85tPAwAeGeKP8b0Mq8E5k3iiBk8MD0I/PweU19Tjla1n2a2eiIiIiEjP1ClVePanUyitqkMvb3u8fm8PqUPSOibxRA3kMgEfP9AHZiYyHLxciI3HMqQOiYiIiIiINPCfPxJwIq0EthYm+HpGf5ibyG//RXqGSTzRNbq62WDhWHVZ/fu/XUQWy+qJiIiIiPTC3ot5+O+BFADAxw/0gZ+zlcQRdQwm8UTXefyOIPT3c0BFTT1eZVk9EREREZHOyyypwgubzwAAHh0WgMgwD4kj6jhM4omuI5cJ+PjBPjBvKKv/KZ5l9UREREREuqq2XoX5G06h7God+vg64LV7DG8f/LWYxBO1oIurDRaODQEAvP/bBWSWVEkcERERERERtWRZ1CWcziiFnYUJvnq4H8xMDDvNNeyfjqgdHrsjEAP8HVFZq8SrW8+xrJ6IiIiISMf88Xcuvj+UCgD4ZFpf+DoZ5j74azGJJ7oJdbf63jA3keFQUiE2xKdLHRIRERERETXIKK7Cwp/V++CfHB6Iu0PdJY6oczCJJ7qFIFcbvDROXVb/wW8XkVHMsnoiIiIiIqnV1Csxb8NJlFfXo7+fA16O7C51SJ2GSTzRbTw6LBADG8rqX9l6FioVy+qJiIiIiKS09PdLOJtZBgcrU3w5oz9M5caT2hrPT0rURo3d6i1MZTiSXIT1LKsnIiIiIpLM7+dysObIFQDAp9P6wNvBUtqAOhmTeKJWCHSxxkvj1CU6S39nWT0Rkb5ZEZ2E/u/tQUJuudShEBFRO6QVVeKVLWcBAP8aGYTR3Y1jH/y1mMQTtdKjQwMwKMARVbVKvLyFZfVERPqioqYeX+9LQnFlLTYfz5A6HCIiaqPquoZ98DX1GOjv2DQS2tgwiSdqJZlMwMcPqMvqj6YUYX1cmtQhERFRK+w4nY3KWiUAICaxQOJoiIiord7/7SLOZyngZG2GL2f0M6p98Ncyzp+aqI0CXKzxcmNZ/e5LLKsnItJxoig2u+malF+BzBL+7iYi0jc7z2Tjf7Hq3+efTusDT3vj2gd/LSbxRBqaMzQA4QFOqKpV4qUtZ1hWT0Skw05nlOLvbAXMTGTo7mELAIhO4Go8EZE+SS2sxGvbzgEA5t3ZBaNC3CSOSFpM4ok0JJMJ+OiB3rA0lSM2pRjrDLmsXqUEUg8C57aoP6qUUkdERKSR9XHqiSL39fbEfb09AbCknohIn1TXKfHM+pOoqKlHRKATnr8rWOqQJMcknqgNAlys8UqkupHG0t8vIb3IAEszL+wAlocBP94HbH1c/XF5mPo4EZEeKKuqw84z2QCAmRH+TSs3R5IKUVuvkjI0IiJqpUU7L+BijgLO1mb44uF+MDHSffDX4p8AURvNHhKAiEAnXK0zwLL6CzuAzbMBRXbz44oc9XEm8kSkB7aezERNvQrdPWzR388BoZ52cLExQ2WtEsfTiqUOj4iIbuPX01n4KT4dggB8Pr0f3O0spA5JJzCJJ2qjxm71lqZyxKUWY+3RK1KHpB0qJRD1CoCWbko0HIt6laX1RKTTrm1oN3OwPwRBgEwmYESwKwAghvviiYh0WlJ+RdM++GdHd8Md3Vwkjkh3MIknagc/Zyu8eo+6W/2yqASkFVVKHJEWpB25cQW+GRFQZKnPIyLSUXGpxUguqISVmRyT+3o1HR/ZmMRzXzwRkc66WqvEvPUnUVWrxJAgZzw3ppvUIekUJvFE7fR/g/0xOKixrP6s/pfVV+Rp9zwiIgk0NrSb1NcbthamTcdHdHOFIACXcsuRU3ZVqvCIiOgW3t3xNxLyyuFiY47PH+4LuUyQOiSdwiSeqJ1kMgEfTe0DKzM54lOL8aO+l9XbuGv3PCKiTlZYUYOo8zkAgJkRfs2ec7Q2Qx8fBwDAAa7GExHpnG0nM7HpeAZkAvDF9L5ws+U++OsxiSfSguZl9ZdwpVCPy+r9hwJ2XgBudsdTAOy81ecREemgn49nok4poo+vA8K87W94flSIuqSe8+KJiHTL5bxyvLH9PADguTHBGNqV++BbwiSeSEtmRfhjSJAzqutUeFmfy+plciByWcMn1yfyDZ9Hfqg+j4hIx6hUIjbENzS0u24VvlHjvvhDlwtRp+SoOSIiXVBVW49n1p/E1Tol7ujqgvmju0odks5iEk+kJTKZgI8e6K0uq79SjDVHrkgdUtuFTgSmrQXsPJsft/NSHw+dKE1cRES3cTCpEBnFV2FnYYIJvb1aPKe3jwMcrUxRXlOPU+mlnRsgERG16K1f/sbl/Aq42Zpj+XTug78VJvFEWuTrZIXXxvcAAHz0xyWk6nNZfehEYMF54JFdwNTv1R8XnGMCT0Q6bX2sehV+6gAfWJq1XDEkv2bUXHRCfqfFRkRELdt8PANbT2aq98E/3A8uNuZSh6TTTFpz0tmzZzW+cGhoKExMWnV5IoMyM9wPu8/l4EhyEV76+Qw2/WuI/t5JlMmBwOFSR0FE1Co5ZVex95I6Kb9ZKX2jkcGu+PV0NmISC/ByZPfOCI+IiFqQkFuOt39V74N/cWwIBgc5SxyR7mtVlt23b18IggBRbN0eX5lMhsTERAQFBbUrOCJ9JJMJWDa1NyKXH8DxtBKsPpyKJ4bz/wUioo626VgGlCoREYFO6Opme8tzG1fi/85WIL+8mt2PiYgkUFlTj2fWn0B1nQojg10xd2QXqUPSC61eKo+Li4Orq+ttzxNFEWFhYe0KikjfNZbVv/nLeXz8RwJGd3dDkKuN1GERERmseqUKG+MzAAAzB/vf9nwXG3P08rbHuawyHEgsxAMDfDo6RCIiuoYoinhj+zkkF1TCw84Cn07rA5m+Vq92slYl8SNHjkTXrl3h4ODQqouOGDEClpaW7YmLSO/NjPDD7vM5OJxUhJe2nMVmfS6rJyLScfsu5SNXUQ1nazOM6+neqq8ZFeKKc1lliE7IZxJPRNTJNh7LwC+nsyGXCfhyRj84cx98q7Wqsd3+/ftbncADwO+//w5PT8/bn0hkwARBXVZvbSbHiYayeiIi6hjr49IBAA8O9IW5SetGYDaOmjt4uRBKfR0LSkSkhy5kK/DOjr8BAAvHhmBQgJPEEekXjbrTKxQKqFQ3zlNVKpVQKBRaC4rIUPg4WuH1e9Xd6j/+IwHJBRUSR0REZHjSi6pw4HIBAGBG+K0b2l2rr68D7CxMUHa1DqczSjsoOiIiulZFTT3mbziJ2noV7gxxxb9GsHeUplqdxG/fvh0DBw5EdXX1Dc9VV1dj0KBB2Llzp1aDIzIEM8L9cEdXF9TUq/DSz2e42kNEpGU/HUuHKKqb1fk5W7X660zkMgzvpl6Nj0ks6KjwiIiogSiKeG3bOaQUVsLL3gKfTuvLffBt0OokfuXKlXj55ZdhZXXji6O1tTVeeeUVfPXVV1oNjsgQCIKAZQ/0ho25CU6ml+KHQyyrJyLSlpp6JTYfa2hod5uxci0ZGdKQxHNePBFRh1sfl46dZ7JhIhPw5Yz+cLQ2kzokvdTqJP78+fMYNWrUTZ8fMWIEzp07p42YiAyOt4Ml3mgoq//PnyyrJyLSlj/+zkNRZS3c7cwxprubxl/fuC/+bFYZiipqtB0eERE1OJ9VhsW7LgAAXonsjgH+jhJHpL9ancSXlJSgvr7+ps/X1dWhpKREK0ERGaLpg3wxvJu6rH4hy+qJiLRifWwaAGD6ID+YyDVq9QMAcLezQA9PO4iiusEdERFpn6K6DvMa9sHf1cMdTwwPlDokvdbqV7uAgAAcP378ps8fP34c/v63n8tKZKwEQcCHU9Vl9afSS/HdwRSpQyIi0mtJ+eWISy2GTACmh/u2+TqjGkrqo1lST0SkdaIo4tWtZ5FWVAVvB0t88mAfCAL3wbdHq5P4+++/H2+88Qby8vJueC43Nxdvvvkmpk6dqtXgiAyNt4Ml3mwoq/9kTyKS8ssljoiISH81jpUb08MdnvaWbb5OY0n9gcuFULFKiohIq9YeTcPv53JhKhfw9cz+sLcylTokvdfqJP7VV1+Fra0tunXrhmeeeQaff/45Pv/8c8ydOxfBwcGwsbHBq6++2pGxEhmEhwb5YkSwK2rrVVj481mW1RMRtcHVWiW2nsgE0LaGdtca4O8IG3MTFFfW4lxWmTbCIyIiAGczS7HkN/U++Nfu6YG+vg7SBmQgWp3E29ra4vDhw5g1axY2bdqE559/Hs8//zw2bdqEWbNm4dChQ7C1te3IWIkMgiAI+PD+XrA1N8HpjFJ8y7J6IiKN7TqbDUV1PXwcLTGiYUxcW5nKZRjW1RkAR80REWlL2VX1Pvg6pYhxPd3x6LAAqUMyGBp1gLG3t8eKFStQWFiIvLw85ObmoqioCCtWrICjI7sLErWWl4Ml3rovFADwKcvqiYg01lhKPyPCTyszhkeFqDvbc188EVH7iaKIl7ecQUbxVfg6WeKjB7gPXps0b+MK9Uqiq6sr3Nzc+JdB1EYPDvTBqBB1Wf2LP59FvVIldUhERHrhfFYZTmeUwlQu4MEBbW9od63GffGnM0pRWlWrlWsSERmr1Yev4I+/82Aml+HrGf1hb8l98NrUpiSeiNpPEAQsvb8XbC1McCajFN8eTJU6JCIivbAhXr0KP66nB1xtzbVyTS8HSwS720DFUXNERO1yOqMUS3dfBAC8cW8P9PZxkDYgAyRpEr906VIMGjQItra2cHNzw+TJk5GQkNDiuaIo4p577oEgCPjll19ueV1RFPH222/D09MTlpaWuOuuu3D58uUO+AmI2sfT/p+y+s/2JOJyHsvqiYhupaKmHr+eygIAzBqs3dG2javx3BdPRNQ2pVW1mLdevQ/+3l6emD2EI8g7gqRJfExMDObNm4fY2Fjs2bMHdXV1GDt2LCorK284d/ny5a0u3f/oo4/wxRdfYNWqVYiLi4O1tTXGjRuH6upqbf8IRO324AAf3BniilqlCgt/PsOyeiKiW/jlVBYqa5Xo4mqNiEAnrV67cV98TGIBR80REWlIFEUs/Pksskqvwt/ZCkun9uLW6w7SriS+vUlxVFQU5syZg549e6JPnz5Ys2YN0tPTceLEiWbnnT59Gp988gl++OGH215TFEUsX74cb775JiZNmoTevXtj7dq1yM7Ovu0KPpEU1GX1vdVl9Zll+O8BdqsnImqJKIpNDe1mRvhr/c3hwABHWJnJUVBeg4u5Cq1em4jI0H13MBV/XcyDmYl6H7ydBffBdxSNk3iVSoX33nsP3t7esLGxQUqKOuF466238P3337crmLIy9WxWJ6d/7qxXVVVhxowZ+Prrr+Hh4XHba6SmpiI3Nxd33XVX0zF7e3tERETg6NGjLX5NTU0NFApFswdRZ/Kwt8DbDWX1n/91GQm5LKsnIrreqYxSXMxRwNxEhqn9fbR+fXMTOYZ2UY+ai05gST0RUWudSCvBsqhLAIC37wtFmLe9xBEZNo2T+CVLlmDNmjX46KOPYGZm1nQ8LCwM3333XZsDUalUWLBgAYYNG4awsLCm488//zyGDh2KSZMmteo6ubm5AAB3d/dmx93d3Zueu97SpUthb2/f9PD11U6n2w6lUgKpB4FzW9QfVUqpI6J2emCAD0Z3d0OtUoWXtrCsnojoeutj1avwE/p4wd6qY1Z4RjaW1DOJJyJqlZLKWjy74STqVSIm9PHCzAg/qUMyeBon8WvXrsU333yDmTNnQi6XNx3v06cPLl261OZA5s2bh/Pnz2Pjxo1Nx3bs2IF9+/Zh+fLlbb5ua7z22msoKytremRkZHTo92u3CzuA5WHAj/cBWx9Xf1wepj5OeksQBHwwRd2t/izL6omImimtqsWus9kA0KFvEEc1NLc7kV4CRXVdh30fIiJDoFKJeGHzaWSXVSPQxRpL7+c++M6gcRKflZWFrl273nBcpVKhrq5tL3bz58/Hrl27sH//fvj4/FMet2/fPiQnJ8PBwQEmJiYwMTEBAEydOhWjRo1q8VqNJfd5eXnNjufl5d20HN/c3Bx2dnbNHjrrwg5g82xAkd38uCJHfZyJvF7zsLfAuxN6AgCW/5XIsnoiogZbT2ahpl6FUE879PV16LDv4+tkhSBXayhVIg5z1BwR0S3990AK9icUwLxhH7yNuYnUIRkFjZP40NBQHDx48IbjW7ZsQb9+/TS6liiKmD9/PrZv3459+/YhMDCw2fOvvvoqzp49i9OnTzc9AOCzzz7D6tWrW7xmYGAgPDw8sHfv3qZjCoUCcXFxGDJkiEbx6RyVEoh6BUBLHXMbjkW9ytJ6PXd/f2+M6e6GOqWIhT+fQR3L6onIyKkb2qUBAGYO9uvwVR6OmiMiur1jV4rxnz/V48HfndgToV46vBBqYDS+VfL222/jkUceQVZWFlQqFbZt24aEhASsXbsWu3bt0uha8+bNw4YNG/Drr7/C1ta2ac+6vb09LC0t4eHh0eLquZ+fX7OEv3v37li6dCmmTJkCQRCwYMECLFmyBN26dUNgYCDeeusteHl5YfLkyZr+uLol7ciNK/DNiIAiS31e4PBOC4u0SxAEfHB/L9z9aQzOZZXhvzHJmD+6m9RhERFJJjalGCkFlbA2k2NSX+8O/36jQtyw+vAVRCcUQBRFloYSEV2nqKIGz244BaVKxOS+Xpg+SA96ihkQjVfiJ02ahJ07d+Kvv/6CtbU13n77bVy8eBE7d+7E3XffrdG1Vq5cibKyMowaNQqenp5Nj02bNml0nYSEhKbO9gDw8ssv49lnn8VTTz2FQYMGoaKiAlFRUbCwsNDoujqnIu/252hyHuksdzsLvDtRXVb/+d7LuMRRR0RkxNY1rMJP7ufdKaWaEYFOMDeRIVdRjcS8ig7/fkRE+kSlEvH85jPIVVSji6s13p/CffCdrU2vhMOHD8eePXva/c1FsaWycM2/5vpjgiBg8eLFWLx4cZtj00k27rc/R5PzSKdN6eeN38/l4K+L+Vj48xlsf2YYTOUa33cjItJrBeU1+OO8ulJvZoR/p3xPC1M5hnRxRnRCAaIT8hHiYdsp35eISB+sjEnGgcQCWJjKsGLmAFhzH3yna1NGUFpaiu+++w6vv/46iouLAQAnT55EVlaWVoOj6/gPBey8ANzsTpcA2HmrzyO919it3t7SFOezFFgZnSx1SEREnW7z8QzUq0T083Po1P2W3BdPRHSj2JQifNKwD37xpDDe5JSIxkn82bNnERwcjGXLluHjjz9GaWkpAGDbtm147bXXtB0fXUsmByKXNXxyfSLf8Hnkh+rzyCC42Vng3YmhAIAv913GxRyW1ROR8VCqRPwUr54N31mr8I1GNcyLP3alGBU19Z36vYmIdFFBeQ3+/dMpqERgan8fTBvIffBS0TiJf+GFFzBnzhxcvny52R7z8ePH48CBA1oNjloQOhGYthaw82x+3M5LfTx0ojRxUYeZ3Ncbd/VwZ7d6IjI6By4XILPkKuwsTHBfb8/bf4EWBbpYw9/ZCnVKEUeSOGqOiIybUiXi+U2nkV9eg25uNnhvck+pQzJqGifxx44dw7/+9a8bjnt7ezd1l6cOFjoRWHAeeGQXMPV79ccF55jAGyh1t/owOFiZ4u9sBVbsZ1k9ERmH9bHqVfgHBvjCwrTzq8xYUk9EpPbVviQcSiqEpakcK2b2h5UZ98FLSeMk3tzcHArFjSW9iYmJcHV11UpQ1AoyuXqMXK8H1B9ZQm/Q3GwtsKihW/2X+y7jQjbL6onIsGWXXsW+S+ppKzMi/CSJYVSI+n1N46g5IiJjdCSpEMv3JgIAlkwOQzd37oOXmsZJ/MSJE7F48WLU1dUBUK8Spqen45VXXsHUqVO1HiARqU3s44Wxoe6oV7GsnogM38ZjGVCJwOAgJ3R1s5EkhsFBzjCTy5BVehXJBZWSxEBEJKX88mr8e+NpiCIwbaAPpg7wkTokQhuS+E8++QQVFRVwc3PD1atXMXLkSHTt2hW2trZ4//33OyJGIoL6htmSKeqy+gs5Cny9P0nqkIiIOkSdUoWNEjW0u5aVmQkigpwAANEJ+ZLFQUQkBaVKxHM/nUZhRQ1C3G2xaGKY1CFRA42TeHt7e+zZswe7du3CF198gfnz5+P3339HTEwMrK2tOyJGImpwbVn9V/uS8Hd2mcQRERFp396L+cgvr4GLjRnG9fSQNBbuiyciY/X53ss4mlIEKzM5vp7ZH5Zm3L6rKzTqSFBXVwdLS0ucPn0aw4YNw7BhwzoqLiK6iYl9vPD7uRz88XceFv58Fr/OGwYzE43vxxER6az1cWkAgGkDfSX//TYqxBVLfruIuNRiXK1V8k0sERmFg5cL8OW+ywCApff3kmxbE7VMo1dGU1NT+Pn5QalUdlQ8RHQbgiBgyeRecLQyxcUcBb5iWT0RGZC0okocvFwIQQAeDpemod21urjawNvBErX1KsSmFEkdDhFRh8tTVGNBwz74h8P9MKmvt9Qh0XU0vr39xhtv4PXXX0dxcXFHxENEreBqa45Fk9T7klbsT8L5LJbVE5Fh2NCwF35ksCt8nawkjkZ943RkU5d67osnIsNWr1Th2Z9OoaiyFj087fDOhFCpQ6IWaJzEf/XVVzhw4AC8vLwQEhKC/v37N3sQUeeY0NsTkT09mrrV19azWz0R6beaeiV+Pp4JQNqGdtfjvngiMhaf/ZWI+NRi2JibYMXM/rAw5RYiXaTRnngAmDx5cgeEQUSaauxWH3+lGJdyy/HVvst4YWyI1GEREbVZ1PlcFFfWwtPeAnc2rH7rgmFdXWAqF3ClqApXCisR4MJGvkRkeKIT8vH1/mQAwIdTeyGQv+t0lsZJ/DvvvNMRcRBRG7jYmGPxpJ6Yv+EUvo5OxtieHgjztpc6LCKiNlkfpy6lnz7IDyZy3WnYaWNugoH+TjiaUoTohHzMcQmUOiQiIq3KKbuK5zedBgD832B/3NfbS9qA6JZ05xWSiNrkvt5eGN/LA0qW1RORHrucV4741GLIZQIeGuQrdTg3aNwXz5J6IjI0dUoVnt1wCiVVdQjztsMb9/aQOiS6DY2TeEdHRzg5Od3wcHZ2hre3N0aOHInVq1d3RKxEdBOLJ4XBydoMl3LLm8aBEBHpk8ZV+Lt6uMHD3kLiaG40qiGJP5pShOo6TukhIsPxnz8TcDytBLbmJvh6BvfB6wONk/i3334bMpkM9957LxYtWoRFixbh3nvvhUwmw7x58xAcHIy5c+fi22+/7Yh4iagFLjbmeK+xW310Ms5lsls9EemPq7VKbD2pew3trhXibgsPOwtU16kQn8oJPURkGPZezMN/Y1IAAB890Bv+ztwHrw803hN/6NAhLFmyBE8//XSz4//973/x559/YuvWrejduze++OILPPnkk1oLlIhu7d7envj9nCd+O5eDhT+fwY5nh8HchHdSiUj37TyTjfLqevg5WeGOri5Sh9MiQRAwMtgVm45nIDqhACOCdafxHhFRW2SVXsWLP58BAMwZGoB7enlKHBG1lsYr8X/88QfuuuuuG46PGTMGf/zxBwBg/PjxSElJaX90RKSRxZN6wtnaDAl55fhiL8vqiUg/rI9LAwDMiPCDTCZIHM3N/bMvnvPiiUi/qffBn0RpVR36+NjjtfHdpQ6JNKBxEu/k5ISdO3fecHznzp1wcnICAFRWVsLW1rb90RGRRpxtzPHeZHVZ/aqYFJzNLJU2ICKi2ziXWYYzmWUwlQt4cICP1OHc0rCuLpDLBCQXVCKjuErqcIiI2uyjqEs4mV4KOwsTfDWjP6s39YzG5fRvvfUW5s6di/379yM8PBwAcOzYMfz+++9YtWoVAGDPnj0YOXKkdiMlolYZ38sT9/b2xG9n1WX1O5+9g7+YiUhnbYhXr8LfE+YJZxtziaO5NXtLU/T3c8CxKyWISSzArMG6uX+fiOhW9lzIw7cHUwEAHz/YB75OVhJHRJrSeCX+ySefRExMDKytrbFt2zZs27YNVlZWiImJweOPPw4AePHFF7Fp0yatB0tErfPepDC42JghMa8Cn//Fsnoi0k2K6jr8ejobADAzwk/iaFpnVIgbACA6gaPmiEj/ZBRX4cXNpwEAj98RiHE9PaQNiNpE45V4ABg2bBiGDRum7ViISEucrM2wZHIYnl53EqtikjGupwf6+DpIHRYRUTO/nspCVa0SXd1sEB7oJHU4rTIy2BUf/5GAI8mFqK1XwcxE4/UQIiJJ1NarMP+nU1BU16OvrwNeieQ+eH3Vplee5ORkvPnmm5gxYwby89XNXXbv3o2///5bq8ERUdtFhnliQh8vqERg4c9nONeYiHSKKIpNs+FnRvhBEHS3od21Qj3t4GJjjqpaJY5f4ag5ItIfS3dfxJmMUthbmuKrGf14E1KPafw3FxMTg169eiEuLg5bt25FRUUFAODMmTN45513tB4gEbXdook94WJjhsv5Ffic3eqJSIecTC/BpdxyWJjKcH8/3W5ody2ZTD1qDgCiE1lST0T6Iep8DlYfvgIA+OTBPvBx5D54faZxEv/qq69iyZIl2LNnD8zMzJqOjx49GrGxsVoNjojaR11W3wsA8N+YZJzOKJU2ICKiButj1avwE3p7wd7KVOJoNNM0as6Q98WrlEDqQeDcFvVHFau5iPRVelEVXtpyFgDw1Igg3BXqLnFE1F4aJ/Hnzp3DlClTbjju5uaGwsJCrQRFRNoTGeaBiSyrJyIdUlJZi13ncgAAM/Www/vwri6QCUBCXjmyS69KHY72XdgBLA8DfrwP2Pq4+uPyMPVxItIrNfVKzNtwEuXV9Rjg74iXxoVIHRJpgcZJvIODA3Jycm44furUKXh7e2slKCLSLnVZvTmS8ivw2V+JUodDREZu68lM1NarEOZthz4+9lKHozFHa7OmZqEHDK2k/sIOYPNsQJHd/LgiR32ciTyRXvngt4s4l1UGRytTfPlwP5jKuQ/eEGj8tzh9+nS88soryM3NhSAIUKlUOHz4MBYuXIjZs2d3RIxE1E6O1mZ4f0oYAODbAyk4mV4icUREZKyaN7Tz15uGdtcbFWyAo+ZUSiDqFQBiC082HIt6laX1RFLSYKvLb2dz8OPRNADApw/1hZeDZWdFSR1M4yT+gw8+QPfu3eHr64uKigqEhoZixIgRGDp0KN58882OiJGItGBcTw9M7qsuq3+JZfVEJJGjyUVILayEjbkJJvbxkjqcNmvcF384qRB1SpXE0WhJ2pEbV+CbEQFFlvo8Iup8Gmx1uVJYiVe2qvfBzx3VBXeGuHV2tNSBNE7izczM8O233yI5ORm7du3CunXrcOnSJfzvf/+DXC7viBiJSEvendgTrrbmSC6oxGd7WFZPRJ2vcRV+Sj9vWJubSBxN2/X2toeTtRnKa+pxMs1Aqpsq8rR7HhFpjwZbXarrlHhm/UlU1NQjPMAJL94d3MnBUkdr86YIPz8/jB8/HtOmTUO3bt20GRMRdRAHKzN8MEXdrf7bgyyrJ6LOlV9ejT/+zgUAzIjwkzia9pHJBAzv5gIAiDGUffE2rexY3drziEg7NNzq8t6uC7iQo4CztRm+eLgfTLgP3uC06hb4Cy+80OoLfvrpp20Ohog63t2h7pjSzxvbT2Vh4c9n8Pu/h8PClFU0RNTxfj6eiXqViAH+jujhaSd1OO02KsQVv57ORnRCAV6O7C51OO3nPxSw81Kv7LWYLAjq5/2HdnZkRMZNg60uv5YFYX1cOgQB+OyhvvCwt+i0MKnztCqJP3XqVLPPT548ifr6eoSEqEcUJCYmQi6XY8CAAdqPkIi07p0JoTiUVIiUgkp8uicRr4/vIXVIRGTglCoRG5oa2un3KnyjEd1cIQjAhRwF8hXVcLPT8zfLMjkQuUxdmgsBzRP5hgaEkR+qzyOiztPKLSzJ2fl4/Y9KAMD8O7tiRLBrR0ZFEmpVbcX+/fubHhMmTMDIkSORmZmJkydP4uTJk8jIyMCdd96Je++9t6PjJSItcLAyw9JryupPGMp+TiLSWQcSC5BVehUOVqYY38tT6nC0wtnGHL281SPyDKakPnQiMG0tYHfd35Gdl/p46ERp4iIyZq3YwlItmmLeYStU1ioxOMgJC+7iPnhDpvEGiU8++QRLly6Fo6Nj0zFHR0csWbIEn3zyiVaDI6KOc1eoO+7v5w2R3eqJqBOsj1OPOXqgv49BbeEZ1bDSFW0oSTygTtQXnAce2QVM/V79ccE5JvBEUmnc6oKbjeQU8K7wDC4Vq+BiY4YvpveDXKaf4zupdTRO4hUKBQoKbnyhKigoQHl5uVaCIqLO8c6EnnCzNUdKYSX+80eC1OEQkYHKKr2KfZfyAQAPG0gpfaPGUXOHLhei3lBGzQHqkvnA4UCvB9QfWUJPJJ3GrS4AbkzkBWxXDsPG6ggIAvD59H76v7WHbkvjJH7KlCl49NFHsW3bNmRmZiIzMxNbt27F448/jvvvv78jYiSiDmJvZYql96vL6r8/nIrjV4oljoiIDNHG+HSoRGBoF2d0cbWROhyt6uPjAHtLU5RdrcOZzFKpwyEiQ3WTrS5JVn3xujgXAPDv0d0wrKuLFNFRJ9M4iV+1ahXuuecezJgxA/7+/vD398eMGTMQGRmJFStWdESMRNSBxvRwx9T+Puqy+i1ncbWWZfVEpD11ShU2HssAAMyM8Jc4Gu0zkctwR+OouQQDKqknIt1z3VaXqzN2Yp7pIlytFzCsqzP+PYZjv42Fxkm8lZUVVqxYgaKiIpw6dQqnTp1CcXExVqxYAWtr646IkYg62NsTQuFuZ47Uwkr850+W1ROR9vx1IQ8F5TVwsTHH3aGGOV/cIPfFU5tkllThZHoJ6gxpawXplmu2urx9xh4JeRVwtTXH8oe4D96YtGrEXEusra3Ru3dvbcZCRBKxtzTFh/f3xqNrjuGHw6mIDPPAoAAnqcMiIgOwvmGs3EODfGBmovHagV4Y2ZDEn80sQ2GF+oYFGZ/KmnpM/OowiitrYWtugmFdXTAyxBUjg13h5WApdXhkYLacyMTPJzIhE4AvpveDqy1/7xiTVr2a3n///VAoFK2+6MyZM5Gfn9/moIio893Z3Q0PDPBp6lbPsnrqLEqViKPJRfj1dBaOJhdBqRJv/0WkF1ILK3EoqRCCAEwfZFgN7a7lZmeBUE87AMDBy1yNN1a/nM5CcWUtAKC8ph5Rf+fitW3nMPTDfRj7WQze/+0CDicVoqaer6/UPol55Xjzl3MAgOfvCsaQLs4SR0SdrVUr8b/++muLHelbIooidu7ciffeew9ubm7tCo6IOtdb94Xi0OVCXCmqwsd/JODtCaFSh0QGLup8DhbtvICcsuqmY572FnhnQigiwwxjlrgx+ylevQo/KtgVvk5WEkfTsUaFuOJCjgIxCQWY0s9H6nCok4miiHWx6n/vr93THYODnBGdUICYxHyczihFYl4FEvMq8O3BVFiayjG0izNGhbhiZLAb/JwN+/8N0g5RFJFeXIXYlCL8NyYF1XUqDO/mgnl3dpU6NJJAq5J4URQRHBzc0bEQkcTsLU2xdGovPLr6GFYfUZfVhweyrF4jKiWQdgSoyANs3NWzXTmaqUVR53Mwd91JXL/unltWjbnrTmLlrP5M5PVYdZ0SPx833IZ21xsZ7IoV0ck4cLkQKpUIGfemGpWT6aW4mKOAmYkM0wb6wtHaDH18HfDcXd1QWlWLg5cLEZNYgJjEAhSU12DvpXzsvZQP4G8EulhjZLArRoa4YkiQMyxM+ZpB6vzrSpE6aY9LKUJsSjFyFf/c8Ha3M8dnD/Xl7xoj1aokfv/+/Rpf2NvbW+OvISLp3RnihgcH+ODnE5l4ecsZ/P7ccFiZtbl9hnG5sAOIegVQZP9zzM5LPds1dKJ0cekgpUrEop0XbkjgAUCEegruop0XcHeoBxv16Kmo87koqaqDl70F7uxu+JV5/f0dYWtuguLKWpzLKkMfXwepQ6JOtD42DQBwX29POFqbNXvOwcoME/p4YUIfL4iiqK7YSCxATEIBTqSVILWwEqmFlVhz5ArMTWSICHLGyGBXjApxRZCLNQSBvwONgSiKSCmsbEjaixGbUoT88ppm55jJZejr64CIICc8NMiX/TeMWKvemY8cObKj4yAiHfLmfaE42FBW/1FUAt6d2FPqkHTfhR3A5tnA9WmpIkd9fNpaJvLXiE8tblZCfz0RQE5ZNeJTi7nXT0+tj1MnNdPD/YziRoypXIZhXV0Q9XcuohMKmMQbkZLKWuw6lwMAmOVXApzbctNKLEEQ0NPLHj297PHMqK5QVNfhSFJRQ1Kfj+yyahxILMCBxAK8twvwcbRsSOjdMKSLM2zMeVPdUIiiiKT8CsSmFjcl7oUV1yXtJjL083VARJAzBgc5ob+fIys1CEA7utMTkeGytzTFh1N7Yc7qY1hz5AruCfNARBATqZtSKdUr8LdaV456Feh+L0vrG+SX3zyBb8t5pFsScstx7EoJ5DIB0wf5Sh1OpxkV4qpO4hPz8dxdnNdsLLacyERtvQqhJlnot/sldSkR0KpKLDsLU0SGeSAyzKMpqYtJLEB0QgHiU4uRWXIV6+PSsT4uHaZyAQP9ndR76UNcEeJuy1V6PaJSibicX4G41CLEphQhPrUYhRW1zc4xN5Ghv58jIoKcMDjIGX19HZi0U4skTeKXLl2Kbdu24dKlS7C0tMTQoUOxbNkyhISENJ3zr3/9C3/99Reys7NhY2PTdE737t1vet05c+bgxx9/bHZs3LhxiIqK6rCfhcjQjApxw0MDfbHpeAZe2HwG258ZCjc7C6nD0k1pR5qX0N9ABBRZ6vMCh3daWLrMzbZ1/5Zaex7plg0Nq/BjQ92N6vfGyBD1qLkzGaUoqay9oayaDI9KJWL9wQsABMzCbjTLqTWsxBIEAd3cbdHN3RZPDA9CVW09YlOKEJ2gTurTi6twNKUIR1OKsHT3JXjYWTTtpR/W1QX2lqYd9nOS5lQqEQl55U372eOvFDdNL2hkYSrDAH9HRAQ6Y3CQM/r42sPchEk73Z6kSXxMTAzmzZuHQYMGob6+Hq+//jrGjh2LCxcuwNraGgAwYMAAzJw5E35+figuLsa7776LsWPHIjU1FXL5zf+RR0ZGYvXq1U2fm5tzzwiRpt64rwfiUotwpagKj6w+hk3/Ggw7C75JuEFFnnbPMwLhgU7wtLdAbll1i/ULAgAPews2VtRDVbX12HYyC4BxNLS7lqe9JULcbZGQV46DSYWY2MdL6pCogx2+nI8r5QJsUIVJ8sPXPdu+SiwrMxOM7u6O0d3dAQBXCisRnZCPmMQCHE0pQq6iGpuOZ2DT8QzIZQL6+zmok/pgN/T0smPDs06mUom4mKto2s8ef6UYpVV1zc6xNJVjYIAjIgLVK+29fRxgZtKqid9EzUiaxF+/Mr5mzRq4ubnhxIkTGDFiBADgqaeeano+ICAAS5YsQZ8+fXDlyhV06dLlptc2NzeHh4dHxwROZCTsLEyx9rEI3L/yCC7mKPDU2uNY82g4S7uuZ+Ou3fOMgFwm4J0JoZi77iQENN+I0Pi2850JoUaxl9rQ7DyTjfKaegQ4W2GoEfYzGBniioS8csQkFDCJNwLr9p8GANwvPwRroaaFM7RXiRXgYo05LoGYMywQ1XVKxKcWN3W8T8qvwLErJTh2pQT/+TMRLjZmGNFNvUo/vJsrnFgVonVKlYiLOQrENqy0H7tSjLKrzZN2KzM5BgY4NSXtvbztmbSTVrQpia+vr0d0dDSSk5MxY8YM2NraIjs7G3Z2drCxsWlzMGVlZQAAJ6eWV14qKyuxevVqBAYGwtf31nvsoqOj4ebmBkdHR4wePRpLliyBs3PLbyZqampQU/PPL16FQtHGn4DI8Pg5W2HNo4Mw/ZtYxKYU44XNp/Hlw/2ZXF3Lf6h676MiBy3vixfUz/sP7ezIdFpkmCdWzup/w5x4D86J12vr49SzsmdE+BnlSuCoYFd8cyAFMYkFHDVn4HLLqvFXWh0AAbPke259spYrsSxM5RgR7IoRwa54C0BGcRUOXFZ3vD+cVIjCilpsO5WFbaeyIAhAbx+Hpo73fXwc+BreBvVKFS7kNF9pL6+ub3aOtZkcgwKdGsrjnRDmbQ9TOZN20j5BFMWW3nHeVFpaGiIjI5Geno6amhokJiYiKCgIzz33HGpqarBq1ao2BaJSqTBx4kSUlpbi0KFDzZ5bsWIFXn75ZVRWViIkJAS//fbbLVfhN27cCCsrKwQGBiI5ORmvv/46bGxscPTo0RZL8N99910sWrTohuNlZWWws7Nr089DZGiOJBVizupjqFWqMHuIPxZN7MmGOtdq6k4PtLiuzO70N6VUiYhPLUZ+eTXcbNUl9HyDqZ/OZpZi4leHYSaXIfb1MUa5+ldTr0S/xXtQVavErmfvQJi3vdQhUQf5bE8iPt97GeHCRWw2f+/WJz+yq9N6otTWq3AiraShQV4+LuWWN3ve3tIUw7u5YFSIG0YEu7D3yE3UK1U4n61o2NNehONXSlBe0zxptzU3aUja1SvtPb3sYMKkndpBoVDA3t7+tnmoxkn85MmTYWtri++//x7Ozs44c+YMgoKCEB0djSeffBKXL19uU8Bz587F7t27cejQIfj4+DR7rqysDPn5+cjJycF//vMfZGVl4fDhw7CwaN0vnZSUFHTp0gV//fUXxowZc8PzLa3E+/r6Moknus6us9l49qdTEEXgxbuD8ewYdl9upsU58d5A5IdM4MkovLr1LDYey8Dkvl5YPr2f1OFI5okfj+Ovi3l4aVwI5t3ZVepwqAPUKVW4Y9k+5Clq8LndOkyq3Y1bVmItOCfZdJI8RXXTXPqDlwuguG71ONTTTt3xPtgV/f0djXbluE6pwrmssqaV9uNXilFZq2x2jq2FCSKaVtqdEeplx5vOpFWtTeI1Lqc/ePAgjhw5AjOz5nfXAwICkJWVpXmkAObPn49du3bhwIEDNyTwAGBvbw97e3t069YNgwcPhqOjI7Zv346HH364VdcPCgqCi4sLkpKSWkzizc3N2fiOqBXu6+2FwvIavLvzAj7ZkwhXW3NMD/eTOizdETpR3bwo7Yi6dPImc4KJDJGiug6/nlbfwJo52Lga2l1vVIgr/rqYh5iEAibxBmrvxTzkKWrgbG2GyAkPA1t3Azfr8BH5oaSvA+52Fpg20BfTBvqiXqnCmcxSRCeo99KfzSzDhRwFLuQosCI6GbbmJhjW1QUjG5J6LwdLyeLuaLX1KpzLKkVsQ9J+Iq0EVdcl7faWpgi/ZqW9hyeTdtINGifxKpUKSqXyhuOZmZmwtbXV6FqiKOLZZ5/F9u3bER0djcDAwFZ9jSiKzVbObyczMxNFRUXw9OT+SqL2mjMsEAUVNfh6fzJe334OzjbmuDuUDduayOQcI0dG6ZdTWbhap0Swuw0G+jtKHY6kRgarR82dSC9B2dU6jv4yQOti1b0fpg3yhXmv7oB8bQuVWF46V4llIpdhgL8TBvg74cWxISisqMHBhr30By4XoriyFlF/5yLq71wAQLC7TcNeejcMDHDU6/FnNfVKnM0saxr5diKtBFfrmuc0DlamzVbau3vY6lxfC25BI6ANSfzYsWOxfPlyfPPNNwDUMy0rKirwzjvvYPz48Rpda968ediwYQN+/fVX2NraIjdX/QvD3t4elpaWSElJwaZNmzB27Fi4uroiMzMTH374ISwtLZt9r+7du2Pp0qWYMmUKKioqsGjRIkydOhUeHh5ITk7Gyy+/jK5du2LcuHGa/rhE1IKFY0NQUF6DzcczMX/DSax/IgIDAzgKjMhYiaKI9Q1JzcwIf6Pvl+HrZIUurtZILqjEkaRC3NOLiwiGJLWwEoeSCiEIwIzGajQ9rcRysTHHlH4+mNLPByqViHNZZU0d70+llyAxrwKJeRX49mAqLE3lGNrFuaH03g1+zlZSh39LNfVKnE4vRVyqeqX9ZHoJqutUzc5xsjZrSNqdMLiLM4LddC9pv1bU+ZwbmsF6shmsUdJ4T3xGRgYiIyMhiiIuX76MgQMH4vLly3BxccGBAwfg5ubW+m9+kxf51atXY86cOcjOzsYTTzyBEydOoKSkBO7u7hgxYgTefvtthISENLtO49dcvXoVkydPxqlTp1BaWgovLy+MHTsW7733HtzdW7da2Nq9CETGrF6pwr/+dwJ7L+XDzsIEW+YORbC7ZtU4RGQYjl0pxoOrjsLSVI64N8bAzoIrz4t3XsAPh1Px0EBfLHugt9ThkBYt2XUB3x1KxagQV6x5NFzqcDpMaVUtDiUVIqah9D6/vHkVbKCLtXoufYgrBgc6w9JM2hsW1XVKnEovRWxKEeJSi3AyvRS19c2TdmdrMwwOckZEkLo8vqurjU4n7deKOp+DuetO3tB5oTH6lbP6M5G/GZVSb26wdVhjO0A9Ym7Tpk04c+YMKioq0L9/f8ycOROWloaxb4ZJPFHrXK1VYuZ3sTiZXgpPewtsnTvUoPfPEVHLFmw8hV9OZzNhvcaBxALM/iEeHnYWOPraaKOvTjAU1XVKRHywF2VX6/Dd7IG4y0i2k4miiIs55U0d70+klaBe9U8KYW4iQ0SQszqpD3ZFF1frDv83X12nxMm0EsQ2rLSfzrgxaXexMcfgICdEBDljSJATurja6OX/i0qViDuW7Wu2An8tAerxrIdeGc3S+uu12HTYC4hcplNbXRp1SBJfV1eH7t27Y9euXejRo4dWAtVFTOKJWq+0qhYPrDqKpPwKdHWzwZanh8DByvjGShEZq+LKWgz+YC9qlSrsmD8MvX0cpA5JJ1TXKdF38Z+orlMhasFwdPfg+wlDsOVEJhb+fAbeDpY48PKdRpswlVfX4UhykbpBXkI+sq9LLn0cLZsS+qFdXWBjrvEO3htU1dbjZFop4lLVI9/OZJShVtk8aXezNW+20h7k0vE3EzrD0eQiPPxt7G3P++nJwRjSxbkTItITTeN/b1K/oIPjfzukO72pqSmqq1u+A0RExsnBygxrHwvH/SuOICm/Ao+tOYb1TwyWvKyOiDrHlhMZqFWq0Mvbngn8NSxM5RgS5Iz9CQWITihgEm8g1sWmAQAeDvc12gQeAGwtTDGupwfG9fSAKIpILqho6ngfl1KMzJKrWB+XjvVx6TCVCxjo74SRIa4YFeKKEHfbViXWlTX1OJFW0pC0F+NsZinqlM2TMQ87i6aV9sFBzghwtjKIpP16+eWty79ae55RUCnVK/Atjn4UAQhA1KvqXhY6Wlp/KxrfFps3bx6WLVuG7777DiYm7b+rRkT6z8vBEmsfD8cDK4/gZHop5m84if/+3wCYGOmsWSJjoVKJ2BDX2NCO4yavNzLYFfsT1J2/nx7ZRepwqJ3OZ5XhdEYpTGQCpg3ylTocnSEIArq62aKrmy2eGB6Eqtp6xKYUISahANGJBUgrqsLRlCIcTSnCh7svwd3OvKnj/bCuLk3TGypq6nH8SjFiU4oRl1qEc5llzUr2AcDL3qLZSrufk2Em7ddzs7XQ6nlGIe1I8xL6G4iAIkt9nh5OFdI4Cz927Bj27t2LP//8E7169YK1tXWz57dt26a14IhIfwS72+KHOYMw87s47L2Uj9e3n8Oyqb2N4sWVyFgdSS7ClaIq2JqbYEIfL6nD0TmjQtyAnRdwPK0YFTX1WikpJumsb7hhNS7Mg8nSLViZmWB0d3eM7q7uF3ClsLJpL/3RlCLkKdTTbTYfz4RcJqCfrwPqVCLOZ5VBeV3S7u1g2ZS0Dwlyho+jpVG+rwgPdIKnvQVyy6pbXFdu3BMfHshJQU0q8rR7no7R+NXEwcEBU6dO7YhYiEjHaDqLdGCAE76a0R//+t9xbD6eCVdbc7w0rnsnRkxEnWl9nLq0eEp/b1gzQb1BgIs1/J2tkFZUhSNJhRjb00PqkKiNyqvr8OvpLADArAh/iaPRLwEu1ghwscYjQwNQXafEsSvFTaX3SfkVOJ5W0nSur5Nl04z2iEAn+Drp9hi7ziKXCXhnQijmrjsJAc0LxBvflb0zIdSot3jcwKaVTSdbe56O0fgVd/Xq1R0RBxHpmLbOIr071B0fTOmFV7edw9f7k+FqY445wwI7I2Qi6kR5imr8eUG9gjGTSc1NjQp2xY9H0xCdWMAkXo9tP5WFqlolurrZYHAQVzvbysJUjuHdXDG8myveApBZUoUjSUUwkQuICHKGNyfc3FRkmCdWzup/w3szD86Jb5n/UHUXekUOWt4XL6if9x/a2ZFpBW+bE9ENbjaLNLesGnPXnbztLNLp4X4oKK/BJ3sSsWjXBbjYmuO+3iy1JTIkm49lQKkSMSjAESEetlKHo7NGhbjhx6NpiEkogCiKRlkKrO9EUWxqaDczwo9/h1rk42iFaYO42t5akWGeuDvUQ6MqSaMlk6vHyG2eDdysfiHyQ71sage0IYkPDAy85S+vlJSUdgVERNJSqkQs2nnhVr08sWjnBdwd6nHLF435o7uioKIGa4+m4YVNZ+BkZYahXV06Kmwi6kRKlYif4hsb2nEV/lYGBznDzESGrNKrSC6oQFc33vDQN8eulCAxrwKWpnLc399H6nDIyMllAsfItVboRPUYuRbnxH+oc+PlNKFxEr9gwYJmn9fV1eHUqVOIiorCSy+9pK24iEgi8anFzcq0ricCyCmrRnxq8S1fRARBwDsTeqKwoga/n8vFU/87gY1PDUaYt30HRE1EnSm6YS60o5UpIsNYIn4rlmZyRAQ64eDlQkQnFDCJ10ONq/AT+3g1dVInIj0ROlE9Ri7tiLqJnY27uoReT1fgG2mcxD/33HMtHv/6669x/PjxdgdERNLS5ixSuUzAp9P6orgyHrEpxZiz+hi2zR0KP2eWzhHps8Yu3Q8O9IWFqX6/EeoMI4NdcfByIWISC/DE8CCpwyENFFbUYPf5HADArMGsOiHSSzK5Xo6RuxWtDXG+5557sHXrVm1djogkou1ZpBamcnwzeyB6eNqhsKIGs3+IQ2FFTXtCJCIJZZZUYX9CPgDg4XDOhm+NUSFuAIC4lGJU1dZLHA1pYvPxDNQpRfTxsUcvH1aSEZFu0FoSv2XLFjg5sVsnkb5rnEV6s93uAtRd6jWZRWpnYYofHx0EH0dLXCmqwqOrj6Gihm9kifTRxvgMiCJwR1cXBLpYSx2OXujiag1vB0vUKlWITSmSOhxqJaVKxIaGqpOZXIUnIh2icRLfr18/9O/fv+nRr18/eHp64vXXX8frr7/eETESUSdqnEUK4IZEvj2zSN3sLLD2sXA4WZvhXFYZnv7fCdTWq9ofMBF1mjqlChuPZQBQd+mm1hEEAaNCXAEA0QkFEkdDrXUgsQCZJVdhZ2GCCZywQkQ6ROM98ZMmTWrWnV4mk8HV1RWjRo1C9+7dtRocEUmjo2aRBrnaYPWcQXj421gcSirEwp/PYPlDfSHjaBQivbDnQh4KK2rgamuOu0LdpQ5Hr4wMdsX6uHTEJDKJ1xeNDe0eGOALSzP2fiAi3aFxEv/uu+92QBhEpGs6ahZpH18HrJw1AI+vOYYdZ7LhYmOOt+7rwbm7RHpgfZw6qZk+yBemcq3tyDMKQ7u6wFQuIK2oCqmFldyKoOMyS6qwr6H3wwxWnXQcldLguoYTdQaNk3i5XI6cnBy4ubk1O15UVAQ3NzcolUqtBUdE0uqoWaQjg13xnwf7YMGm0/jhcCrc7Mzx9MguWv8+RKQ9KQUVOJxUBJkATGdDO43ZmJtgUIATjiQXISYhH4EugVKHRLfwU3w6RBEYEuSMrm42UodjmC7suMn87mV6Pb+bqDNofBtdFMUWj9fU1MDMzKzdARGRcZjczxtvjO8BAPhw9yVsPZEpcURE+kGpEnE0uQi/ns7C0eQiKFUtvy5r20/x6gZfd4a4wdvBslO+p6EZGdywL54l9Tqttl6FTQ29HzhWroNc2AFsnt08gQcARY76+IUd0sRFpCdavRL/xRdfAFA3Z/nuu+9gY/PPXUmlUokDBw5wTzwRaeTJEUEoqKjBNwdS8PLWs3CyNsOd3d1u/4VERirqfM4NvSo829mrojWq65T4ueFG28zBXIVvq1Ehbli6+xJiU4pQXaeEhSnLhnXRH3/norCiFq625hjbk70ftE6lVK/Ao6UbkCIAAYh6Feh+L0vriW6i1Un8Z599BkC9Er9q1SrI5f/8T2VmZoaAgACsWrVK+xESkUF7NbI7CsprsP1UFp5ZfxIbnoxAPz9HqcMi0jlR53Mwd93JG9725pZVY+66k1g5q3+HJfK/n8tBaVUdvB0sMTKYN9raKtjdBh52FshVVCMutbhpZZ50C3s/dLC0IzeuwDcjAoos9XmBwzstLCJ90uokPjU1FQBw5513Ytu2bXB05JtsImo/mUzARw/0RlFlLQ4kFuCxNcfw89NDuQeR6BpKlYhFOy/cat0Ki3ZewN2hHu1uPtmS9Q2zsh8O9+2Q6xuLxlFzG49lIDohn0m8DkrKL0dsSjFkAvAwez90jIo87Z5HZIQ0vr24f/9+JvBEpFWmchlWzuyPPj72KKmqwyM/xCP3mnJhImMXn1rcrIT+eiKAnLJqxKcWa/17X8xR4ERaCUxkAqYN9NX69Y1NY+LOUXO6aV2s+obV6O7u8GLvh45h08otCq09j8gIadydHgAyMzOxY8cOpKeno7a2ttlzn376qVYCIyLjYm1ugh/mDMIDq44itbASj/wQj81PD4G9panUoRFJLr+8dTe1WnueJjY0rMKP7ekONzsLrV/f2Azr5gK5TEBKQSUyiqvg62QldUjUoKq2HltPqns/zGLvh47jP1TdhV6Rg5b3xQvq5/2HdnZkZKCUKlHrI5OlpnESv3fvXkycOBFBQUG4dOkSwsLCcOXKFYiiiP79+3dEjERkJJxtzLH2sXDcv/IIEvLK8eSPx7H28XC9av5kiC8UJD0329Ylz609r7Uqa+qx/VQWAGBmBLt0a4OdhSkG+Dki/koxohML8H/sfq4zdp7JRnl1PfycrDCiG7c6dBiZXD1GbvNsqDcDXZvIN7xeRn7IpnakFVI1hO1oGpfTv/baa1i4cCHOnTsHCwsLbN26FRkZGRg5ciQefPDBjoiRiIyIr5MVfnw0HLbmJoi/UoznNp7qtBFa7RV1Pgd3LNuHh7+NxXMbT+Phb2Nxx7J9iDqfI3VopOfCA53gaW+Bm90OEqB+UxIe6KTV77vjTDYqauoR6GKNIUHOWr22MRsZ0lBSn5AvcSR0rcZS+hkRfpDx5mvHCp0ITFsL2F2XRNl5qY9zTjxpQWND2Ou3ozU2hNXn92caJ/EXL17E7NmzAQAmJia4evUqbGxssHjxYixbtkzrARKR8Qn1ssM3swfCTC7DH3/n4a1fz0MUdTuRN+QXCpKeXCbgnQmhAHBDIt/4+TsTQrVa9SGKItbFqrt0zwhnUqNNjfvijyQXoaZeKXE0BABnMkpxLqsMZnIZHhzgI3U4xiF0IrDgPPDILmDq9+qPC84xgSetuF1DWEDdEFZfFoqup3ESb21t3bQP3tPTE8nJyU3PFRYWai8yIjJqQ7o4Y/n0vhAE9Z7cz/deljqkmzL0FwrSDZFhnlg5qz887JuXzHvYW3TIeLmzmWX4O1sBMxMZHmBSo1U9vezgamuOqloljl8pkTocAppuWI3v5QFnG/M2XUOpEnE0uQi/ns7C0eQi/s5vDZlcPUau1wPqjyyhJy2RsiFsZ9B4T/zgwYNx6NAh9OjRA+PHj8eLL76Ic+fOYdu2bRg8eHBHxEhERmp8L08snhSGt345j+V/XYaLjTlm6eD+UU1eKIZ0YUkytV1kmCfuDvXolL4LjbOy7+vlCUdrM61f35gJgoCRwa7YciITMYkFGNbVReqQjFpZVR12nlXPLW/ra4yh7rsl0ldSNoTtDBqvxH/66aeIiIgAACxatAhjxozBpk2bEBAQgO+//17rARKRcfu/wf749+iuAIC3fz2PqPO5Ekd0I0N/oSDdIpcJGNLFGZP6emNIF+cOSeDLrtZhxxl1UjOTXbo7RGNJfTT3xUtuy8lMVNep0N3DFgP8NR+jzO1URLpHqoawnUWjJF6pVCIzMxN+fuoXdGtra6xatQpnz57F1q1b4e+veytkRKT/nr87GA+H+0IlAv/eeApxKUVSh9SMob9QkPHZfk1S099P86SGbm94NxfIBCAxrwLZpVelDsdoiaLYVHUyc7A/BEGzm2LcTkWkm6RqCNtZNEri5XI5xo4di5IS7t8ios4jCALemxSGu0PdUVuvwhNrj+NSrkLqsJoY+gsFGRd1UqPu0j0zwk/jpIZax8HKDH19HQAAMYkF0gZjxI4mFyGloBLWZnJM6eet8dcb+r5bIn0lRUPYzqRxOX1YWBhSUlI6IhYiopsykcvw5cP9MCjAEeXV9Xjkh3hkllRJHRYAw3+hIONy7EoJLudXwMpMjsltSGqo9UaFuAFgSb2U1jWswk/q5w0bc41bRXE7FZEO6+yGsJ1J4yR+yZIlWLhwIXbt2oWcnBwoFIpmDyKijmJhKsd3swch2N0GeYoazP4hHsWVtVKHBcCwXyjIuDSWFk/q6wVbC1OJozFsjfviDycVoU6pkjga45OvqMaff+cBAGZFtG1LKLdTEem2yDBPHHplNH56cjA+n94XPz05GIdeGa3378s0vuU4fvx4AMDEiRObldiJoghBEKBUct4pEXUceytT/PhYOKauOIKUgko8uuYYfnoyAlZmmq+gaFtndg4n6ghFFTXYfU7dPHJGOPvcdLRe3vZwsjZDcWUtTqSVYHAQp1d0po3HMlCvEtHfzwGhXnZtukbjdqrcsuoW98ULUN/M5XYqIuk0NoQ1JBq/692/f39HxEFE1Gqe9pZY+3g4Hlh1FGcySvHM+pP4dvZAmMo1Li7SOkN8oSDjseVEJmqVKvTxsUcvH3upwzF4MpmAEd1c8MvpbMQkFjCJ70T1ShV+ilf3fmjP6NLG7VRz152EADRL5Lmdiog6isZJ/MiRIzsiDiIijXR1s8X3jwzCzO9iEZ1QgFe2nsUnD/ZhEy6iNlKpRGyIb2xox1X4zjIqxA2/nM5W/x6L7C51OEZjf0IBcsqq4WhlivG92ldW27id6vo58R6cE09EHaRN9acHDx7Ef//7X6SkpODnn3+Gt7c3/ve//yEwMBB33HGHtmMkImrRAH9HfD2jP5763wlsO5kFV1tzvHZPD6nDItJLh5MLkVZUBVsLE9zXh0lHZxnezQWCAFzMUSBPUQ13O+6d7gzrYtW9Hx4c6AsLU3m7r8ftVETUmTSuPd26dSvGjRsHS0tLnDx5EjU1NQCAsrIyfPDBB1oPkIjoVsb0cMfS+3sBAP4bk4LvD6VKHBGRfmpMaqb299GJHhPGwtnGHL291VsXOGquc6QXVeHAZfWf9YxwP61dt3E71aS+3hjSxZkJPBF1mDZ1p1+1ahW+/fZbmJr+07V22LBhOHnypFaDIyJqjWkDffHSuBAAwHu7LuDX01kSR0SkX3LLqvHXRfWYsxkR2ktqqHVGNoyaYxLfOdbHp0EU1VUQAS7WUodDRKQxjZP4hIQEjBgx4obj9vb2KC0t1UZMREQae2ZUF8wZGgAAWPjzGRy8zDfDRK216VgGlCoR4QFOCHa3lToco9M4au5gYgHqOWquQ9XUK/Hz8UwA7WtoR0QkJY2TeA8PDyQlJd1w/NChQwgKCtJKUEREmhIEAW/fF4r7enuiTini6f+dwLnMMqnDItJ59UoVNh5raGg3mKvwUujr6wB7S1MoqutxJrNU6nAM2u5zuSiurIWnvQXGdHeTOhwiojbROIl/8skn8dxzzyEuLg6CICA7Oxvr16/HwoULMXfu3I6IkYioVWQyAZ9M64NhXZ1RWavEnNXxSC2slDosIp3W2KXbydoMkWEeUodjlOQyAcO7uQAAohNYRdSRGns/TB/kBxMdGEtKRNQWGv/2evXVVzFjxgyMGTMGFRUVGDFiBJ544gn861//wrPPPtsRMRIRtZq5iRyrZg1ATy87FFXWYvYPccgvr779FxIZqfVxDV26B/jA3KT9XbqpbUY17ItnEt9xLuUqcDytBHKZgOnhvlKHQ0TUZhon8YIg4I033kBxcTHOnz+P2NhYFBQU4L333uuI+IiINGZrYYo1j4bDz8kKGcVXMeeHYyivrpM6LCKdk1Fc1dRM7WEtdukmzY0IVq/En8sqQ2FFjcTRGKbGVfixoe4c5UdEeq3NdURmZmawtbWFp6cnbGxstBkTEVG7udqaY+1j4XCxMcOFHAX+9b8TqKlXSh0WkU75KT7dOLp0q5RA6kHg3Bb1R5Xu/S5ws7VATy87AMABdqnXuoqaemw/qZ5cwoZ2RKTvNE7i6+vr8dZbb8He3h4BAQEICAiAvb093nzzTdTVcaWLiHRHgIs1Vs8Jh7WZHEeSi/DC5jNQqUSpwyLSCbX1Kmw+ngEAmBlhwEnNhR3A8jDgx/uArY+rPy4PUx/XMY1d6nVh1JxSJeJochF+PZ2Fo8lFUOr5785fTmWhslaJIBdrDO3iLHU4RETtYqLpFzz77LPYtm0bPvroIwwZMgQAcPToUbz77rsoKirCypUrtR4k3UgURVRVVUkdBpHOC3I0wfKpPfD0uhPYeTwV9iZKvD6+BwRBkDo0IkntPpeD/GIF3OzMMNjPGpWVBtgE8uJvwLYnAVyXgBZmA+v+D7j/W6DHvZKE1pIIX2t8VVuN/eczoCjvBrlMmt9Te/7OxQe7LyK37J+yfg97c7x+Tw/c3VP/mh+Koog1MZegqq3G1N7+fP9EZMSsrKwM4z2gqCE7Ozvx999/v+H4b7/9JtrZ2Wl0rQ8++EAcOHCgaGNjI7q6uoqTJk0SL1261Oycp556SgwKChItLCxEFxcXceLEieLFixdveV2VSiW+9dZbooeHh2hhYSGOGTNGTExMbHVcZWVlIgCxrKxMo5+nM1VUVIhQvyvhgw8++OCDDz744IMPPvjg4zaPiooKqdO4W2ptHqpxOb25uTkCAgJuOB4YGAgzMzONrhUTE4N58+YhNjYWe/bsQV1dHcaOHdtsNWDAgAFYvXo1Ll68iD/++AOiKGLs2LFQKm++n+2jjz7CF198gVWrViEuLg7W1tYYN24cqqvZoZqIiIiIiIj0lyCKoqjJFyxevBiXLl3C6tWrYW5uDgCoqanB448/jm7duuGdd95pczAFBQVwc3NDTEwMRowY0eI5Z8+eRZ8+fZCUlIQuXbrc8LwoivDy8sKLL76IhQsXAgDKysrg7u6ONWvWYPr06beNQ6FQwN7eHmVlZbCzs2vzz9ORRJbTE7XJJ38m4LuDqZDLBHz5cF/c2d1d6pCIOt2Huy/ixyNpuLO7G1bM7C91OB3j/Hbg12duf96kFUDYlI6Pp5W2nMjAW7/8jT6+9tj41JBO/d5xKUWYs/rYbc9b8+ggRATpx77y4spa3PlxNGqVKmx8KgJ9fB2lDomIJKTr5fStzUM13hN/6tQp7N27Fz4+PujTpw8A4MyZM6itrcWYMWNw//33N527bds2ja5dVlYGAHBycmrx+crKSqxevRqBgYHw9W15vmdqaipyc3Nx1113NR2zt7dHREQEjh492mISX1NTg5qaf/Z9KRQKjeKWgiAIsLY24E7CRB3krcn9UFYnx9aTmVj4SwLWP+GAAf4t/84hMkTVdUrs+LsYMjMLzBkZYrivJW7+gFkr3qi5+QM69Gcwto8/3vk9Gefza1ALUzhaa1bl2B7lylLIzG4/eq1cKdebfzfrT+SiXm6GXr52GBLirdNv3omIWkvjJN7BwQFTp05tduxmCbUmVCoVFixYgGHDhiEsLKzZcytWrMDLL7+MyspKhISEYM+ePTct3c/NzQUAuLs3X11zd3dveu56S5cuxaJFi9r9MxCR7hMEAR9O7YXiyhrsTyjAY2uOY8vTQ9DN3Vbq0Ig6xW9nc1B2tQ4+jpYY0c1V6nA6jv9QwM4LUORAvRXyeoL6ef+hnR3ZLXnaW6K7hy0u5ZbjYFIhJvbx6rTv7WbbutnprT1PaiqViPVx6QDUY+WYwBORodA4iV+9enVHxIF58+bh/PnzOHTo0A3PzZw5E3fffTdycnLwn//8B9OmTcPhw4dhYaGdF5HXXnsNL7zwQtPnCoVCKzcmiEg3mcpl+Hpmf8z4Ng6nM0ox+4d4bHtmKDztLaUOjajDrY9LAwA8HO4nWffzTiGTA5HLgM2zAQhonsg3/NyRH6rP0zEjg11xKbcc0Qn5nZrEhwc6wdPeArll1Te77QEPewuEB+pH9dKhpEKkFVXB1twEk/p23p8jEVFH07ixXUeYP38+du3ahf3798PHx+eG5+3t7dGtWzeMGDECW7ZswaVLl7B9+/YWr+XhoR59kpeX1+x4Xl5e03PXMzc3h52dXbMHERk2KzMT/DBnEIJcrZFTVo3Z38ejtKpW6rCIOtSFbAVOppfCRCZg2kAjuFkdOhGYthainWezw6KdFzBtrfp5HTQyRF0hcSCxAKpOnM8ulwl4Z0IogKbbHE0aP39nQqje3PxZF6u+YXV/f29YmWm8bkVEpLM0TuKLioowb948hIaGwsXFBU5OTs0emhBFEfPnz8f27duxb98+BAYGtuprRFFstof9WoGBgfDw8MDevXubjikUCsTFxTXNtSciAgAnazOsfSwc7nbmuJxfgSd+PI7quptPviDSdxvi1UnNuDAPuNqaSxxN54hSDcId1Z9jeu2b+HftfEyvfRN3VC9HlGqQ1KHd1EB/J1ibyVFYUYsLOZ3bpycyzBMrZ/WHh33zakcPewusnNUfkWGeN/lK3ZJTdhV/XVQv6Mwc7C9xNERE2qXxbcn/+7//Q1JSEh5//HG4u7u3a3/RvHnzsGHDBvz666+wtbVt2rNub28PS0tLpKSkYNOmTRg7dixcXV2RmZmJDz/8EJaWlhg/fnzTdbp3746lS5diypQpEAQBCxYswJIlS9CtWzcEBgbirbfegpeXFyZPntzmWInIMPk4WuHHx8Lx4KqjOJ5WgvkbTmHVrP4wketEoRKR1lTU1GP7ySwAwMwIP4mj6RxR53Mwd91JiACyENp0XFDUYe66kzqblJqZyDC0qwv2XMhDdEI+wrztO/X7R4Z54u5QD8SnFiO/vBputuoSen1ZgQeAn+IzoBLVWwSC2fOEiAyMxkn8wYMHcejQoabO9O2xcuVKAMCoUaOaHV+9ejXmzJkDCwsLHDx4EMuXL0dJSQnc3d0xYsQIHDlyBG5ubk3nJyQkNHW2B9DUBO+pp55CaWkp7rjjDkRFRWltDz0RGZbuHnb4bvZA/N8P8fjrYh7e/OU8lt7fi02QyKD8ejoLlbVKBLlYY4iejAdrD6VKxKKdF1rc2y1CXR6+aOcF3B3qoZPJ6agQV+y5kIeYxALMH92t07+/XCZgSBf9/HdSp1RhY/w/De2IiAyNxkl89+7dcfXqVa1889uNqPfy8sLvv/+u8XUEQcDixYuxePHidsVHRMYjIsgZXz7cD3PXncDGYxlwtTXHi2NDpA6LSCtEUcS6WHVSMyPCzyhuUMWnFiOnrPqmz4sAcsqqEZ9arJPJ6shg9b74k+mlKLtaB3tLU4kj0h9/XchDfnkNXGzMENmz5X5IRET6TON60RUrVuCNN95ATEwMioqKoFAomj2IiPTVuJ4eWDK5FwDgy31J+N/RK9IGRKQlpzNKcTFHATMTGR4YcGMDWUOUX37zBL4t53U2H0crdHWzgVIl4nBSodTh6JV1DRMYpg30hZkJt0YRkeFp05x4hUKB0aNHNzsuiiIEQYBSyaZQpJuUKlGv9/dR55gR4Yf88mos/+sy3t7xN5xtzDG+l+7tmSXSROOs7Pt6e8LBykziaDqHIcw8HxnsiqT8CkQn5PP3UCulFFTgcFIRBEE9RpGIyBBpnMTPnDkTpqam2LBhQ7sb2xF1lqjzOVi080Kz0kpPewu8MyFUJ5sakbSeG9MNBeU1WB+XjgUbT8PByhRDu7hIHRZRm5RV1WHnmWwAwMwI49kfbAgzz0eFuOL7Q6mISSxoWiyhW2u8YXVniBt8nawkjoaIqGNonMSfP38ep06dQkgI94qSfri2O/G1csuqdbo7MUlHEAQsnhSGoopaRP2di3+tPYFN/xqCUC87qUMj0tjWk5moqVehu4ct+vs5SB1Op2mceT533UkIQLPXAH2ZeT4owAmWpnLkKWpwKbccPTz5O+hWquuU2HIiEwAwazBX4YnIcGm8UWjgwIHIyMjoiFiItO523YkBdXdiperWTRbJ+MhlApZP74vwQCeU19TjkdXxyCiukjosIo2Iooj1DfuDZw72N7qVXH2feW5hKm9quhedUCBxNLpv55lslF2tg7eDJUYGu93+C4iI9JTGK/HPPvssnnvuObz00kvo1asXTE2bd0vt3bu31oIjai99705M0rIwlePb2QPx0H+P4lJuOWb/EI8tTw+Bs4251KERtUpcajGSCyphZSbH5L5eUocjCX2feT4y2BX7LuUjJjEfc0d1kTocnbYu7p8JDPry90tE1BYaJ/EPPfQQAOCxxx5rOiYIAhvbkU7S9+7EJD17S1P8+Fg47l9xBKmFlXhszTFseHIwrM01/vVJ1Oka9wdP7ucNWwvjHVGmzzPPR4WoR80dv1KC8uo6o/57vJXzWWU4k1EKU7mAaQN9pQ6HiKhDafwuNDU1tSPiIA2x03rrGEJ3YpKeu50F1j4ejgdWHsGZzDI8ve4Evn9kEEcXkU4rrKhB1PkcAMAMdunWW/7O1ghwtsKVoiocSS7COM49b1HjtpFxPT3gastqKX3B97NEbaNxEu/vbzydbXUVO623niF0Jybd0MXVBj/MGYQZ38bh4OVCvLzlDD6d1hcyvtkgHfXz8UzUKUX09XVAmLe91OFQO4wKccOaI1cQnVDAJL4Fiuo6/HJKPYFh1mC+T9UXfD9L1HZtWkb63//+h2HDhsHLywtpaeo7n8uXL8evv/6q1eDoRo2d1q/f593Yab1x1YXUGrsTA/90I26kL92JSXf083PEiln9YSIT8MvpbCzdfVHqkIhapFKJ2BDf0NAugqvw+m5kQ0n9gYZRc9Tc9pNZuFqnRDc3G0Twprxe4PtZovbROIlfuXIlXnjhBYwfPx6lpaVNe+AdHBywfPlybcdH12Cn9bbR9+7EpFvuDHHDsqnqBp7fHkzFNweSJY6I6EYHkwqRUXwVdhYmuK+3cTa0MySDA51hZiJDVulVJOVXSB2OThFFEeti/7lhZWwTGPQR388StZ/G5fRffvklvv32W0yePBkffvhh0/GBAwdi4cKFWg2OmmOn9bbT9+7EpFumDvBBYUUNlu6+hA9+vwQXG3Pc399H6rCImqxvSGqmDvCBpZlc4miovSzN5Bgc5IwDiQWISSxAN3dbqUPSGfGpxbicXwFLUznuH8Dfw/qA72eJ2k/jlfjU1FT069fvhuPm5uaorKzUSlDUMnZab5/G7sST+npjSBdnJvDULk+NCMLjdwQCAF7echbRCfkSR0SkllN2FXsvqf89spTecIwMVpfUc158c41j5Sb19YIdO/frBb6fJWo/jZP4wMBAnD59+objUVFR6NGjhzZioptgp3Ui3SEIAt4Y3wOT+nqhXiXimfUncTqjVOqwiLDpWAaUKhERgU7o6sYVW0PROGouPrUYVbX1EkejGwrK/5nAwIZ2+oPvZ4nar9VJ/OLFi1FVVYUXXngB8+bNw6ZNmyCKIuLj4/H+++/jtddew8svv9yRsRq9xk7rN1s/FqDu6slO60SdQyYT8PEDfTC8mwuqapV4bM0xpBRwvypJp16pwsb4DADATCY1BiXIxRo+jpaoVapwNLlI6nB0wubjGahTiujDCQx6he9nidqv1Un8okWLUFFRgSeeeALLli3Dm2++iaqqKsyYMQMrV67E559/junTp3dkrEaPndaJdI+ZiQwrZw1AL297FFfWYvYP8chXsASQpLHvUj5yFdVwtjbDuJ7uUodDWiQIQtNqPEvq1c3RNjSU0s/ithG9wvezRO3X6iT+2pEmM2fOxOXLl1FRUYHc3FxkZmbi8ccf75AAqTl2WifSPTbmJlj96CAEOFshs+QqZv8QD0V1ndRhkRFa35DUPDjQF+YmbGhnaEYGuwEAohPzjX7UXExiPrJKr8Le0hQT+nACg77h+1mi9tGoO/31YzusrKxgZWWl1YDo9thpnUj3uNiYY+1jEbh/5RFcyi3H2E8P4OFwP0wP94W7Hff1UcdLL6rCgcvqFdoZ4VyZNERDuzjDVC4go/gqUgsrEeRqI3VIklkXq75h9cAAH1iY8oaVPuL7WaK20yiJDw4Ovu38zeLi4nYFRK3T2GmdiHSHn7MVfnxsEB5dfQy5imp89lcivth3GXf3cMeswf4Y2sUZMr45oQ6yIT4dogiMCHaFnzNvsBsia3MTDApwwpHkIsQkFhhtEp9RXIX9CZzAYAj4fpaobTRK4hctWgR7ezYOISK6mZ5e9jj4yp2IOp+LdbFpOHalBFF/5yLq71wEulhjRrgfHhjgA0drM6lDJQNSU6/Ez8cbGtoxqTFoo0JccSS5CNEJBXh0WKDU4Ujip4YbVsO6OhvtjQwiMm4aJfHTp0+Hm5tbR8VCRGQQzE3kmNTXG5P6euNSrgIb4tKx7WQWUgsr8f7vF/Hxnwm4r5cnZg72R38/h9tWOBHdzh9/56GoshbuduYY052v04ZsVIgbPvj9EmJTilBdpzS6UvLaehU2N9ywmhXBCQxEZJxa3diObzKJiDTX3cMOiyeFIe71MfhgSi+Eetqhtl6FbaeyMHXlEYz/4hDWxaahooZzn6nt1semAQCmD/KDibzVL+2kh7q52cDT3gI19SrEphjfqLmov3NRWFELN1tz3BXKCQxEZJza1J2eiIg0Y21ughkRfvjt33dg+zND8cAAH5ibyHAxR4E3fzmPiPf/whvbz+FijkLqUEnPJOWXIy61GDIBmB7uK3U41MGuHTUXk2h8o+b+uWHlC1PesCIiI9Xq334qlYql9ERE7SQIAvr5OeI/D/ZB3Otj8Oa9PRDkYo3KWiXWx6Xjns8PYurKI9h+KhPVdUqpwyU90DhWbkwPd3jaW0ocDXWGkcENSbyRzYu/nHftDSv2fiAi46XRnngiItIeByszPDE8CI/fEYijyUVYH5eOP/7OxYm0EpxIK8HinRfw4EBfzAj3Q4CLtdThkg66WqvE1hOZAIBZg7k/2FgM7eoCE5mAlMJKpBdVGc00gmtvWHk58IYVERkv1iEREUlMEAQM7eqCr2f2x5FXR+PFu4PhZW+Bkqo6fHMgBaP+E43/+z4OUedzUa9USR0u6ZBdZ7OhqK6Hr5Mlhnd1kToc6iR2Fqbo7+8IAIhJzJc4ms5RVVvPG1ZERA2YxBMR6RA3Ows8O6YbDr4yGt/NHohRIa4QBODg5UI8ve4Ehi3bh8/2JCK3rFrqUEkHNK5Mzgj3h0zGBrTGpHFffLSRlNTvOJ2N8pp6+Dtb8YYVERk9JvFERDpILhNwV6g71jwajgMv3Ym5o7rA2doMeYoafL73MoYt24en1h7HgcQCqFRsPGqMzmeV4XRGKUzlAh4c6CN1ONTJGvfFH0kuQk29YffPEEUR6+LUDe1mhPvxhhURGT0m8UREOs7XyQqvRHbHkddG44uH+yE80AlKlYg/L+Rh9g/xuPOTaPw3JhnFlbVSh0qdaEO8ehU+MswTLjbmEkdDnS3U0w5utua4WqfEsdQSqcPpUGcyy3A+SwEzExkeHMgJDERETOKJiPSEuYkcE/t4YfO/huDP50dgztAA2JqbIK2oCkt3X8LgD/ZiwcZTOH6lmGNBDVxFTT1+PZUFAJgZwS7dxkgQhH+61Bv4vvh1DWPl7u3lCSdrM4mjISKSHpN4IiI9FOxui3cn9kTcG2OwbGov9PK2R61ShV9OZ+OBVUdxz+cH8b+jV1BeXSd1qKQllTX1OHS5EJ/tScSs7+JQWatEF1drRAQ6SR0aSWSkEeyLL62qxc4z2QCAWYN5w4qICOCIOSIivWZlZoKHBvnhoUF+OJNRivVxadhxJhuXcsvx1q9/Y+nuS5jU1xuzBvuhp5e91OGSBooqanDsSgmOXSnG8SvFOJ+tgPK6/gdPDg+CIHB/sLEa3tUVMgG4nF+BrNKr8DbAsWtbTmSipl6F7h626O/nKHU4REQ6gUk8EZGB6OPrgD6+DnhjfCi2nszE+rg0JBdU4qf4dPwUn45+fg6YFeGPe3t7wsJULnW4dA1RFJFZchXxqcU4dkX9SC6ovOE8bwdLDApwxMAAJwwOckJXN1sJoiVdYW9lin5+jjiRVoKYhALMMLCtFaIoYkPDBIZZg/15w4qIqAGTeCIiA2NvZYrH7gjEo8MCEJtSjPVxafjj71ycSi/FqfRSvPfbBTzQ3wczIvwQ5GojdbhGSaUSkZBXjmNXihGfWozjV0qQq7hxbGCwuw0GBTghPNAJAwOcDHKlldpnVLCrOolPzDe4JP5IchFSCithbSbH5H7eUodDRKQzmMQTERkoQRAwpIszhnRxRkF5DTYfz8CGuHRklV7Fd4dS8d2hVAzr6oxZEf64K9QdpnK2SekoNfVKnMssQ/yVYhxLLcbxtBKUV9c3O8dEJqCXjz3CA5wwKMAJAwMc4WDFJl50ayNDXPHJnkQcTipCbb0KZiaG8/9xY0O7Kf29YWPOt6xERI34G7EdlEol6urYNIp0j6mpKeRylkvTP1xtzTHvzq54emQXxCTmY11sOvYn5ONwUhEOJxXBzdYc0wf5Ynq4H7w6e7VXpQTSjgAVeYCNO+A/FJDp979fRXUdTqSV4PiVYhxLLcHpzFLU1quanWNtJkd/f0cMakja+/o6wNJMv39u6nxhXvZwtjZDUWUtTqaXYHCQs9QhaUWeohp/XsgDoC6lJyKifzCJbwNRFJGbm4vS0lKpQyG6KQcHB3h4eHAPITUjlwkY3d0do7u7I7OkCj/Fp2PTsQzkl9fgi31J+Gp/EkZ3d8eswX4Y0c0VMlkH//u5sAOIegVQZP9zzM4LiFwGhE7s2O+tRfmKasRfUZfFx6cW41KuAtf1oIOLjRkG+jthUKATwgOc0MPTFiasfqB2kskEjAh2xfZTWYhOKDCYJH5jfAaUKhED/R3R3cNO6nCIiHSKIHKY8A0UCgXs7e1RVlYGO7sbXzhycnJQWloKNzc3WFlZMUkinSKKIqqqqpCfnw8HBwd4enpKHRLpuNp6Ff68kIt1sWmITSluOu7rZIkZ4f6YNtAHzjbm2v/GF3YAm2cDuP5lqOF36rS1OpnIi6KI1MLKhgZ06u7xaUVVN5zn72zVsMquXm0PdLHm6wV1iF9PZ+G5jafR3cMWUQtGSB1Ou9UrVbhj2X7kKqrx2UN9MKWfj9QhERF1itvloY24Eq8hpVLZlMA7OxvG3W4yPJaW6nLo/Px8uLm5sbSebsnMRIb7envhvt5eSMovx/q4dGw5kYmM4qtYFnUJn+1JRGSYB2YN9segAEftJKIqpXoF/oYEHg3HBCDqVaD7vZKX1tcrVbiYU96w0q5O3AsrapqdIwhADw+7hgZ06qTd3c5CoojJ2Azv5gpBAC7lliNPUa33//b2XcpHrqIajlamuCeMN6KJiK7HJF5DjXvgraysJI6E6NYa/43W1dUxiadW6+pmi3cm9MTL47pj59lsrI9Nw5nMMuw4k40dZ7IR7G6DmRH+mNLfG3YWpm3/RmlHmpfQ30AEFFnq8wKHt/37tEF1nRKn0kubRr2dTCtBZa2y2TlmJjL09XHAoEB1wt7f37F9fx5E7eBkbYbePg44k1GKmIQCTBvkK3VI7bKuYazctIG+HIdJRNQCJvFtxJJI0nX8N0rtYWkmx7SBvpg20BfnMsuwPi4Nv57ORmJeBd7Z8Tc+3H0Jk/p6YdZgf4R522v+DSrytHteO5RW1eJ4Q1l8/JVinM8qQ52yeYWArYUJBvo7Nu1n7+VjD3MTJhekO0YFu6qT+ET9TuLTiipxILEAAAxuZB4RkbYwiSciolvq5WOPD31647XxPbD9ZCbWx6Xjcn4FNh7LwMZjGejj64CZEX6Y0Nur9d3Vbdy1e54Gskqv4njDfPZjV4qRmFdxwznuduZN89kHBTghxN2245v8EbXDyBBXfL73Mg5eLkC9UqW3TRM3NKzCjwh2hb+ztcTREBHpJibxdIOAgAAsWLAACxYskDoUrYiOjsadd96JkpISODg4SB0Okd6ytzTFnGGBeGRoAOJTi7E+Lh27z+fgTEYpzmSUYsmuC3hggC9mRPihq5vNrS/mP1TdhV6Rg5b3xQvq5/2HtitmlUpEUkGFujQ+Vb2fPav06g3ndXG1bhr1Fh7oBB9HS1azkF7p4+MABytTlFbV4XRGKQYGOEkdksaq65TYfDwDADCLq/BERDfFJN7IZGRk4J133kFUVBQKCwvh6emJyZMn4+233zaIRn2jRo1C3759sXz58qZjQ4cORU5ODuzt21DyS0Q3EAQBEUHOiAhyRmFFKDYfz8CGuHRkllzFD4dT8cPhVAwJcsaswf64O9QdZiYtrAjK5OoxcptnQ92N/tpEviF5jvxQ46Z2tfUqnM8ua1hpL8HxtGKUVtU1O0cuExDmZYdBAU4Y2NA9vkO67xN1IrlMwPBurth5JhvRCQV6mcTvPp+Dkqo6eNpbYHR3N6nDISLSWUzijUhKSgqGDBmC4OBg/PTTTwgMDMTff/+Nl156Cbt370ZsbCycnDr/RV+pVEIQBMhkHVP6Z2ZmBg8Pjw65NpGxc7ExxzOjuuLpEV0Qc7kA62PTsO9SPo6mFOFoShFcbMwxfZAvHo7wg7eDZfMvDp2oHiPX4pz4D1s1Xq6yph4n00vUo95Si3EqowTVdapm51iaytHPz6Fplb2vrwOszfnyR4ZnVLA6iY9JLMDCcSFSh6OxdbHqUvqHw/30djsAEVFn4G9IIzJv3jyYmZnhzz//xMiRI+Hn54d77rkHf/31F7KysvDGG280nVteXo6HH34Y1tbW8Pb2xtdff930nCiKePfdd+Hn5wdzc3N4eXnh3//+d9PzNTU1WLhwIby9vWFtbY2IiAhER0c3Pb9mzRo4ODhgx44dCA0Nhbm5Ob777jtYWFigtLS0WczPPfccRo8eDQAoKirCww8/DG9vb1hZWaFXr1746aefms6dM2cOYmJi8Pnnn0MQBAiCgCtXriA6OhqCIDS79tatW9GzZ0+Ym5sjICAAn3zySbPvGxAQgA8++ACPPfYYbG1t4efnh2+++abp+draWsyfPx+enp6wsLCAv78/li5d2qa/FyJDIJMJuDPEDd89MggHXxmNZ0d3hautOQoravDV/iQMX7YPj685hv2X8qFUXbPqHjoRWHAeeGQXMPV79ccF526awBdW1CDqfA4W77yAiV8dQu9Ff+L/vo/HF3sv42hKEarrVHC0MsXdoe54Y3wP/DJvGM6+OxYbnhyM5+8OxrCuLkzgyWCNCHYFAJzLKkNBec1tztYtF3MUOJFWAhOZgOl63JiPiKgz8J1MO4miiKt1ytuf2AEsTeWt3rNZXFyMP/74A++//37TDPFGHh4emDlzJjZt2oQVK1YAAD7++GO8/vrrWLRoEf744w8899xzCA4Oxt13342tW7fis88+w8aNG9GzZ0/k5ubizJkzTdebP38+Lly4gI0bN8LLywvbt29HZGQkzp07h27dugEAqqqqsGzZMnz33XdwdnaGj48P3n77bWzduhWPP/44APUK/aZNm/D+++8DAKqrqzFgwAC88sorsLOzw2+//Yb/+7//Q5cuXRAeHo7PP/8ciYmJCAsLw+LFiwEArq6uuHLlSrOf98SJE5g2bRreffddPPTQQzhy5AieeeYZODs7Y86cOU3nffLJJ3jvvffw+uuvY8uWLZg7dy5GjhyJkJAQfPHFF9ixYwc2b94MPz8/ZGRkICMjo/V/eUQGzNvBEi+ODcG/x3TDngt5WBebhiPJRdh7KR97L+XDx9ESD4f7YdpAX7jamqtL5lsYIyeKIjKKryK+aT97MVIKK1v8fo0N6MIDHRHkYsMmdGSUXG3NEeZth/NZChy8XID7+/tIHVKrrYtNAwCM7ekONz2fc09E1NEkTeKXLl2Kbdu24dKlS7C0tMTQoUOxbNkyhISoS8CKi4vxzjvv4M8//0R6ejpcXV0xefJkvPfee7fc3zxnzhz8+OOPzY6NGzcOUVFRWv8ZrtYpEfr2H1q/bmtcWDwOVmat+yu8fPkyRFFEjx49Wny+R48eKCkpQUGBeqzLsGHD8OqrrwIAgoODcfjwYXz22We4++67kZ6eDg8PD9x1110wNTWFn58fwsPDAQDp6elYvXo10tPT4eXlBQBYuHAhoqKisHr1anzwwQcA1LPLV6xYgT59+jTFMH36dGzYsKEpid+7dy9KS0sxdepUAIC3tzcWLlzYdP6zzz6LP/74A5s3b0Z4eDjs7e1hZmYGKyurW5bPf/rppxgzZgzeeuutpp/vwoUL+Pjjj5sl8ePHj8czzzwDAHjllVfw2WefYf/+/QgJCUF6ejq6deuGO+64A4IgwN/fv1V/D0TGxFQuw/henhjfyxPJBRXYEJeOLScykVlyFR//kYDlfyViXE8PzBrsj4hAJ6hEICG3vGnU2/ErxchTNF9NFAQgxN0WAwMcmxrReV1fpk9kxEYGu+J8lgLRCfqTxFfU1OOXU1kAgFkRfD0lIrodSZP4mJgYzJs3D4MGDUJ9fT1ef/11jB07FhcuXIC1tTWys7ORnZ2N//znPwgNDUVaWhqefvppZGdnY8uWLbe8dmRkJFavXt30ubk5mxYB6pWt1hgyZMgNnzc2i3vwwQexfPlyBAUFITIyEuPHj8eECRNgYmKCc+fOQalUIjg4uNnX19TUNGucZ2Zmht69ezc7Z+bMmRg8eDCys7Ph5eWF9evX4957723qKK9UKvHBBx9g8+bNyMrKQm1tLWpqamBlZaXRn8HFixcxadKkZseGDRuG5cuXQ6lUQi5XN9K6Nj5BEODh4YH8/HwA6htFd999N0JCQhAZGYn77rsPY8eO1SgOImPSxdUGb90XipfGhWDX2Rysi03D6YxS7Dqbg11nc+DnZIWSqlqUV9c3+zpTuYDePg4YGOCI8AAnDPR3gr2VqUQ/BZHuGxXihq/3J+PA5QIoVSLkelCVsv1UFiprlQhytcaQLvrfZJeIqKNJmsRfvzK+Zs0auLm54cSJExgxYgTCwsKwdevWpue7dOmC999/H7NmzUJ9fT1MTG4evrm5eac0M7M0lePC4nEd/n1u9r1bq2vXrhAEARcvXsSUKVNueP7ixYtwdHSEq6vrba/l6+uLhIQE/PXXX9izZw+eeeYZfPzxx4iJiUFFRQXkcjlOnDjRlAw3srH5Z+SUpeWN45sGDRqELl26YOPGjZg7dy62b9+ONWvWND3/8ccf4/PPP8fy5cvRq1cvWFtbY8GCBaitrW31n4MmTE2bJwqCIEClUjfM6t+/P1JTU7F792789ddfmDZtGu66667b3lwiMnYWpnI8MMAHDwzwwfmsMqyPS8evp7OQXlwFALAxN0F/f0eEBzhiYIC6CZ2FBr/riIxdP18H2FqYoLSqDmczS9HPz1HqkG5JFEWsbyilnxnhz9GOREStoFN74svKygDglh3Sy8rKYGdnd8sEHlDPBndzc4OjoyNGjx6NJUuW3HSEWk1NDWpq/inZVCgUrY5ZEIRWl7RLydnZGXfffTdWrFiB559/vtm++NzcXKxfvx6zZ89uevGMjY1t9vWxsbHNSvEtLS0xYcIETJgwAfPmzUP37t1x7tw59OvXD0qlEvn/3969x+V8//8Df1ydrk5XJTqfRAclpnJqjbKZmEOMz8wyNX3wmYgPG/rNx2l8zDCH78z2GWpzGjYsfXxqLUqSEIVJxUoO5ayDRHW9f3+0rrnWQdJ1SI/77Xbd9rne79f7dbi8PlzP63W6dQv9+tVd4/osQUFB2L59O2xtbaGhoYGhQ4fK7qWkpCAwMBDjx48HAEilUuTk5MDd3V2WRkdHB9XVje9R4ObmhpSUFLlrKSkpcHFxqfPDQ2OMjIwwduxYjB07FmPGjMHgwYNx7949lezwT9QaedgYY/nb3RDxVhekXr4LGxM9dLGUcFdqohegpamBfs4dcPBcERKzb6t9EJ9+5T4uFpVCV1sDY1rJ9H8iIlVTm29KUqkUM2fOhK+vLzw8POpNc+fOHXz66aeYPHlyo3kNHjwY33//PRISErBixQokJSVhyJAhDQZ3y5cvh7GxsexlZ/dy7or65Zdf4vHjxwgICMCRI0dw9epVxMbG4s0334SNjY1sAzmgJqj9/PPPkZOTgw0bNmDPnj2YMWMGgJoZE5s3b8b58+fx+++/Y9u2bdDT04ODgwNcXFwQFBSECRMmYO/evcjLy8OJEyewfPly/Pe//31mHYOCgnD69GksW7YMY8aMkVsG4ezsjPj4eBw7dgxZWVmYMmUKbt68Kfd8x44dkZaWhvz8fNy5c0c2cv602bNnIyEhAZ9++ilycnLw3Xff4csvv5Rbb/8sX3zxBXbu3ImLFy8iJycHe/bsgaWlpWzqPxE1nZGuNgK6WsLDxpgBPFEL8HepOWM9Kee2imvybLUb2g3vbs2lMkRETaQ235bCwsJw/vx5/PDDD/XeLykpwdChQ+Hu7o5FixY1mte7776LESNGoFu3bhg5ciRiYmJw8uRJuWPOnhYREYHi4mLZ62XdZdzZ2RmnTp1Cp06d8M4776Bz586YPHkyBgwYgNTUVLkR5NmzZ+PUqVPw9PTE0qVL8cUXXyAgoGbZgImJCb799lv4+vqie/fu+PXXX3HgwAHZTIfIyEhMmDABs2fPhqurK0aOHImTJ0/C3t7+mXV0cnJC7969cfbsWQQFBcndmz9/Pry8vBAQEAB/f39YWlpi5MiRcmk++ugjaGpqwt3dHWZmZigoKKhThpeXF3bv3o0ffvgBHh4eWLBgAZYsWSK3qd2zSCQSfP755+jZsyd69eqF/Px8HDx4UGFn3RMRETVV7VFzmdce4N5DxSw5awl3yx7j4LkiAMD4vtzQjoioqURCU3c6U6Bp06bh559/xpEjR+Do6FjnfmlpKQICAqCvr4+YmBjo6j7/0SNmZmZYunQppkyZ8sy0JSUlMDY2lk3df1pFRQXy8vLg6OjYrHoQKQv7KtFLSloNXDkGlN0EDC0Ah1drjukjesrgtUdwsagU697tgcAeNqquTr2+SbqM5f+7CA8bIxyY9hrXwxNRm9dYHPo0lS7mFgQB06dPx759+5CYmFhvAF9SUoKAgACIxWJER0c3Kxi5du0a7t69Cysrq5aoNhERkWpciAZi5wIlN/68ZmQNDF4BuI9QXb1I7fi5muFiUSmSsm+rZRAvlQrYcaJmttx4bmhHRPRcVDr3NywsDNu2bcOOHTsgkUhQVFSEoqIiPHr0CEBNAD9o0CA8fPgQmzdvRklJiSzN0+vbu3Tpgn379gEAysrK8PHHH+P48ePIz89HQkICAgMD4eTkJJsOTkRE1OpciAZ2T5AP4AGgpLDm+oVo1dSL1FLtuvgjubchlap80mUdyZfu4Mrdckh0tTCih7Wqq0NE1KqoNIjfuHEjiouL4e/vDysrK9lr165dAIDTp08jLS0N586dg5OTk1yap9etZ2dny3a219TUxNmzZzFixAi4uLggNDQU3t7eSE5O5lnxRETUOkmra0bgUV8w9se12Hk16YgAeDu0g4GOJu6UPcFvN5p+6o6y1G5oN9rLtlWc8kNEpE5UPp2+Mf7+/s9M89d89PT0EBcX98J1IyIiUhtXjtUdgZcjACXXa9I5Pv/xnvTy0dHSgK9TB/xy4SYSs2+hm62xqqskc+PBIyRk1ZwuE9Tn2ZveEhGRPG6lTUREpO7Kbj47zfOkozbBz7Vml3p1O2ruhxMFkApAH0dTOFtIVF0dIqJWh0E8ERGRujO0aNl01Cb4u9asiz9dcB/F5ZUqrk2NymopfjhZsySSx8oRETUPg3giIiJ15/BqzS70aGgHbxFgZFOTjugPNiZ6cDY3hFQAjl66o+rqAADiL9zErdLH6GAoRkBXS1VXh4ioVWIQT0REpO40NGuOkQNQN5D/4/3gz3hePNXh51IzpT4x+5aKa1KjdkO7sb1soaPFr6FERM3Bvz2JiIhaA/cRwDvfA0ZW8teNrGuu85x4qkftlPqknNtN2ixYkS7fLsOxy3chEgHjenNDOyKi5uKZHtTiQkJC8ODBA+zfvx9AzSkDPXr0wNq1a5udZ0vkQUTU6rmPALoMrdmFvuxmzRp4h1c5Ak8N6uXYDnramrhV+hhZhaVwtzZSWV22Hy8AALzuag7bdvoqqwcRUWvHkfg2JCQkBCKRCCKRCDo6OnBycsKSJUtQVVWl0HL37t2LTz/9tElpExMTIRKJ8ODBg2bnoSiLFi1Cjx49Gryfl5eH9957D9bW1tDV1YWtrS0CAwNx8eJFREVFyT77hl75+flYtGgRRCIRBg8eXCf/lStXQiQSwd/fX3GNJCL1p6FZc4xctzE1/2UAT40Qa2ni1c7tAah2l/pHT6rxYzo3tCMiagkM4lWkWiog9fJd/JxxHamX76JaqpwpboMHD0ZhYSFyc3Mxe/ZsLFq0CCtXrqyT7smTJy1WpqmpKSSSFztCpiXyUKTKykq8+eabKC4uxt69e5GdnY1du3ahW7duePDgAcaOHYvCwkLZy8fHB5MmTZK7ZmdnBwCwsrLC4cOHce3aNbkytmzZAnt7Tj8kIqLnU3vUnCrXxR84ewMlFVWwbaeH/n+s0yciouZhEK8CsecL8dqKQxj37XHM+CED4749jtdWHELs+UKFly0Wi2FpaQkHBwd8+OGHGDhwIKKjoxESEoKRI0di2bJlsLa2hqurKwDg6tWreOedd2BiYgJTU1MEBgYiPz9fll91dTVmzZoFExMTtG/fHnPmzKmz5s7f3x8zZ86UvX/8+DHmzp0LOzs7iMViODk5YfPmzcjPz8eAAQMAAO3atYNIJEJISEi9edy/fx8TJkxAu3btoK+vjyFDhiA3N1d2PyoqCiYmJoiLi4ObmxsMDQ1lP2DUSkxMRO/evWFgYAATExP4+vriypUrzfpcf/vtN1y+fBlfffUV+vbtCwcHB/j6+mLp0qXo27cv9PT0YGlpKXvp6OhAX19f7pqmZs1omrm5OQYNGoTvvvtOlv+xY8dw584dDB06tFn1IyKitsvfpWZdfPqV+yitUM1Rc9v/2NDuvT720NRo6JQFIiJqCgbxShZ7vhAfbjuNwuIKuetFxRX4cNtppQTyT9PT05ONuickJCA7Oxvx8fGIiYlBZWUlAgICIJFIkJycjJSUFFkwXPvM6tWrERUVhS1btuDo0aO4d+8e9u3b12iZEyZMwM6dO7F+/XpkZWXhm2++gaGhIezs7PDTTz8BALKzs1FYWIh169bVm0dISAhOnTqF6OhopKamQhAEvPXWW6is/PPLSXl5OVatWoWtW7fiyJEjKCgowEcffQQAqKqqwsiRI+Hn54ezZ88iNTUVkydPhkjUvC8WZmZm0NDQwI8//ojq6upm5fG0iRMnIioqSvZ+y5YtCAoKgo6OzgvnTUREbYt9e304djBAlVRAyqW7Si//3LViZF4rhramCO/0tFN6+URELxsG8UpULRWw+MAF1Ddxvvba4gMXlDK1XhAE/Prrr4iLi8Prr78OADAwMMCmTZvQtWtXdO3aFbt27YJUKsWmTZvQrVs3uLm5ITIyEgUFBUhMTAQArF27FhEREXj77bfh5uaGr7/+GsbGxg2Wm5OTg927d2PLli0YNWoUOnXqhDfeeANjx46FpqYmTE1NAdSMRltaWtabV25uLqKjo7Fp0yb069cPr7zyCrZv347r16/LNtMDaqa4f/311+jZsye8vLwwbdo0JCQkAABKSkpQXFyMYcOGoXPnznBzc0NwcHCzp6vb2Nhg/fr1WLBgAdq1a4fXX38dn376KX7//fdm5Tds2DCUlJTgyJEjePjwIXbv3o2JEyc2Ky8iIqLao+aScpQ/pX57Ws0o/BAPK3QwFCu9fCKilw2DeCU6kXevzgj80wQAhcUVOJF3T2F1iImJgaGhIXR1dTFkyBCMHTsWixYtAgB069ZNbqQ3MzMTly5dgkQigaGhIQwNDWFqaoqKigpcvnwZxcXFKCwsRJ8+fWTPaGlpoWfPng2Wn5GRAU1NTfj5+TW7DVlZWdDS0pIrt3379nB1dUVWVpbsmr6+Pjp37ix7b2VlhVu3ar68mJqaIiQkBAEBARg+fDjWrVsnm2pfUFAga6+hoSH+/e9/N6leYWFhKCoqwvbt2+Hj44M9e/aga9euiI+Pf+42amtrY/z48YiMjMSePXvg4uKC7t27P3c+REREwJ/r4pOylXvUXElFJX7OuAEACOrDfV2IiFoCj5hTolulDQfwzUnXHAMGDMDGjRuho6MDa2traGn92QUMDAzk0paVlcHb2xvbt2+vk4+ZWfM2pdHT02vWc82hra0t914kEsl9cYmMjER4eDhiY2Oxa9cuzJ8/H/Hx8ejZsycyMjJk6WpnBzSFRCLB8OHDMXz4cCxduhQBAQFYunQp3nzzzeeu/8SJE9GnTx+cP3+eo/BERPRCfDq1h1hLAzeKK5B7qwwuFsrZLHZv+jU8qqyGi4Uhejs2/d9TIiJqGEfilchcotui6ZrDwMAATk5OsLe3lwvg6+Pl5YXc3FyYm5vDyclJ7mVsbAxjY2NYWVkhLS1N9kxVVRXS09MbzLNbt26QSqVISkqq937tTIDG1pW7ubmhqqpKrty7d+8iOzsb7u7ujbbprzw9PREREYFjx47Bw8MDO3bsgJaWllxbnyeIf5pIJEKXLl3w8OHDZj1fu6zh/PnzeO+995qVBxEREQDoamuib6c/jprLVs5Rc4IgYFtazdnwQX0cmr3vDBERyWMQr0S9HU1hZayLhv4JEwGwMtZVm1+qg4KC0KFDBwQGBiI5ORl5eXlITExEeHi47PizGTNm4LPPPsP+/ftx8eJFTJ06tc4Z70/r2LEjgoODMXHiROzfv1+W5+7duwEADg41/8jHxMTg9u3bKCsrq5OHs7MzAgMDMWnSJBw9ehSZmZkYP348bGxsEBgY2KS25eXlISIiAqmpqbhy5Qp++eUX5Obmws3NrdHnHj16hIyMDLnX5cuXkZGRgcDAQPz444+4cOECLl26hM2bN2PLli1NrlN9Dh06hMLCQpiYmDQ7DyIiIuDPdfGJSloXn5Z3D5dulUFPWxOjvGyUUiYRUVvAIF6JNDVEWDi8ZqT4r4F87fuFw93V5ugVfX19HDlyBPb29rKN60JDQ1FRUQEjIyMAwOzZs/H+++8jODgYPj4+kEgkGDVqVKP5bty4EWPGjMHUqVPRpUsXTJo0STZabWNjg8WLF2PevHmwsLDAtGnT6s0jMjIS3t7eGDZsGHx8fCAIAg4ePFhnCn1jbbt48SJGjx4NFxcXTJ48GWFhYZgyZUqjz+Xk5MDT01PuNWXKFNja2qJjx45YvHgx+vTpAy8vL6xbtw6LFy/GJ5980qQ61af2+DsiIqIX5f/HuviTeffx8HGVwsvb9sexciM9rWGk27R/n4mI6NlEgjJ3N2klSkpKYGxsjOLiYlmwWquiogJ5eXlwdHSErm7zpr3Hni/E4gMX5Da5szLWxcLh7hjsYfVCdSeq1RJ9lYiIXh6CIKD/ysO4eu8RNk3oiYHuFgor63bpY7z6WQIqqwXETH8NHjYNn1xDREQ1GotDn8aN7VRgsIcV3nS3xIm8e7hVWgFzSc0UenUZgSciIqKXj0gkgr+LObYev4KknNsKDeJ3n7qKymoBPexMGMATEbUwBvEqoqkhgk/n9qquBhEREbUhfi5m2Hr8ChJzbkEQBIVsNlctFbDjjw3txvd1aPH8iYjaOq6JJyIiImojfDq3h46mBq7ee4S8O807PeVZErNv4fqDRzDW08aw7lwmSETU0hjEExEREbURBmIt9HJsBwBIVNBRc7Ub2v3N2xa62poKKYOIqC1jEE9ERETUhvi7mAMAEnNaPoi/eq9clm8Qp9ITESkEg3giIiKiNqT2qLm03++iorK6RfPecaIAggC85tQBjh0MWjRvIiKqwSCeiIiIqA1xMjeEtbEuHldJkfr73RbL93FVNXafvAoAGN/XvsXyJSIieQziiYiIiNoQkUgEP9eaKfVJLbguPvZ8Ee4+fAILIzEGuinu+DoioraOQTwRERFRG+PnUjOlPqkF18VvP15zrNy7veyhpcmvmEREisK/YUmOSCTC/v37AQD5+fkQiUTIyMhQaZ0aou71IyIiUle+Tu2hpSFC3p2HuHL3xY+ay7lZihP596CpIcK43pxKT0SkSAzi25iioiJMnz4dnTp1glgshp2dHYYPH46EhIQ6ae3s7FBYWAgPDw+F1onBOBERkXJJdLXh7VBz1FxLjMZv/+NYuTe6mMPSWPeF8yMiooYxiG9D8vPz4e3tjUOHDmHlypU4d+4cYmNjMWDAAISFhdVJr6mpCUtLS2hpaamgtkRERKRI/i20Lv7h4yrsPX0dADCex8oRESkcg/gXJAgCHj58qJKXIAjPVdepU6dCJBLhxIkTGD16NFxcXNC1a1fMmjULx48fr5P+ryPkiYmJEIlEiIuLg6enJ/T09PD666/j1q1b+N///gc3NzcYGRnhvffeQ3l5uSyf2NhYvPbaazAxMUH79u0xbNgwXL58WXbf0dERAODp6QmRSAR/f38AgFQqxZIlS2BrawuxWIwePXogNja20TYmJSWhd+/eEIvFsLKywrx581BVVSW7X1paiqCgIBgYGMDKygpr1qyBv78/Zs6cCQBYsmRJvTMPevTogX/9619N+pyJiIhag9p18ccuv9hRc9GZN1D6uAoO7fXxmlOHlqoeERE1gEH8CyovL4ehoaFKXk8Hys9y7949xMbGIiwsDAYGdc9tNTExaXJeixYtwpdffoljx47h6tWreOedd7B27Vrs2LED//3vf/HLL7/g//7v/2TpHz58iFmzZuHUqVNISEiAhoYGRo0aBalUCgA4ceIEAODXX39FYWEh9u7dCwBYt24dVq9ejVWrVuHs2bMICAjAiBEjkJubW2+9rl+/jrfeegu9evVCZmYmNm7ciM2bN2Pp0qWyNLNmzUJKSgqio6MRHx+P5ORknD59WnZ/4sSJyMrKwsmTJ2XXzpw5g7Nnz+KDDz5o8mdERESk7tysJDCXiPGoshqn8u83Kw9BELDtj6n0QX3soaEhaskqEhFRPThPuo24dOkSBEFAly5dXjivpUuXwtfXFwAQGhqKiIgIXL58GZ06dQIAjBkzBocPH8bcuXMBAKNHj5Z7fsuWLTAzM8OFCxfg4eEBM7OakYD27dvD0tJSlm7VqlWYO3cu3n33XQDAihUrcPjwYaxduxYbNmyoU6+vvvoKdnZ2+PLLLyESidClSxfcuHEDc+fOxYIFC/Dw4UN899132LFjB9544w0AQGRkJKytrWV52NraIiAgAJGRkejVq5csjZ+fn6x9RERELwORSAQ/FzPsSb+GxOxbeM35+UfRM64+wG83SqCjpYG/edspoJZERPRXDOJfkL6+PsrKylRWdlM979T7xnTv3l32vy0sLKCvry8X4FpYWMhG1wEgNzcXCxYsQFpaGu7cuSMbgS8oKGhw07ySkhLcuHFD9mNBLV9fX2RmZtb7TFZWFnx8fCASieTSl5WV4dq1a7h//z4qKyvRu3dv2X1jY2O4urrK5TNp0iRMnDgRX3zxBTQ0NLBjxw6sWbPmWR8LERFRq+Pval4TxOfcxvxmPL/tj2PlhnWzQjsDnZatHBER1YtB/AsSiUT1Tk9XN87OzhCJRLh48eIL56WtrS373yKRSO597bXaQB0Ahg8fDgcHB3z77bewtraGVCqFh4cHnjx58sJ1UYThw4dDLBZj37590NHRQWVlJcaMGaPqahEREbW415w7QFNDhEu3ynDtfjls2zV9gOBB+RPEnL0BAAjihnZERErDNfFthKmpKQICArBhwwY8fFj3PNgHDx4opNy7d+8iOzsb8+fPxxtvvAE3Nzfcvy+/7k5Hp+aX++rqPzfVMTIygrW1NVJSUuTSpqSkwN3dvd6y3NzckJqaKjfrICUlBRKJBLa2tujUqRO0tbXl1rsXFxcjJydHLh8tLS0EBwcjMjISkZGRePfdd6Gnp9e8D4CIiEiNGetpw9POBMDzHzX3Y/o1PK6Sws3KCF72Ji1fOSIiqheD+DZkw4YNqK6uRu/evfHTTz8hNzcXWVlZWL9+PXx8fBRSZrt27dC+fXv85z//waVLl3Do0CHMmjVLLo25uTn09PQQGxuLmzdvori4GADw8ccfY8WKFdi1axeys7Mxb948ZGRkYMaMGfWWNXXqVFy9ehXTp0/HxYsX8fPPP2PhwoWYNWsWNDQ0IJFIEBwcjI8//hiHDx/Gb7/9htDQUGhoaMhNwQeAv//97zh06BBiY2MxceJEhXw2RERE6sDftWZvmuc5ak4qFbA9rWYq/fi+9nX+HSUiIsVhEN+GdOrUCadPn8aAAQMwe/ZseHh44M0330RCQgI2btyokDI1NDTwww8/ID09HR4eHvjnP/+JlStXyqXR0tLC+vXr8c0338Da2hqBgYEAgPDwcMyaNQuzZ89Gt27dEBsbi+joaDg7O9dblo2NDQ4ePIgTJ07glVdewT/+8Q+EhoZi/vw/V/l98cUX8PHxwbBhwzBw4ED4+vrCzc0Nurq6cnk5Ozvj1VdfRZcuXdCnT58W/lSIiIjUh59LzXnxKZfu4EmV9Bmpaxy7fBd5dx7CUKyFkT1sFFk9IiL6C5HQkjuevSRKSkpgbGyM4uJiGBkZyd2rqKhAXl4eHB0d6wR+1Po8fPgQNjY2WL16NUJDQ2XXBUGAs7Mzpk6dWmfmQGvBvkpERE0hlQro/e9fcafsCXZO6gufzu2f+cw/tqYj9rcivN/XAZ+OrH+TWiIiej6NxaFP40g8tSlnzpzBzp07cfnyZZw+fRpBQUEAIBv9B4Dbt2/jyy+/RFFREc+GJyKil56Ghgj9nWum1Cfm3Hpm+qLiCsRn3QQAjOeGdkRESsfd6anNWbVqFbKzs6GjowNvb28kJyejQ4c/z8Y1NzdHhw4d8J///Aft2rVTYU2JiIiUw8/VDHvPXEdS9m1EDHFrNO0PJwtQLRXQq2M7uFpKlFRDIiKqxSCe2hRPT0+kp6c3moYrTIiIqK3p52wGkQi4WFSKouIKWBrXvwyrqlqKH05cBcBReCIiVeF0eiIiIqI2ztRAB6/YmgAAjjRy1FzCxVsoKqlAewMdDPawVFLtiIjoaQziiYiIiEh21Fxj6+K3Hb8CAPhbTzuItTSVUi8iIpLHIJ6IiIiI4OdSE8Qn595BVXXdo+by7zxEcu4diETAe73tlV09IiL6A4N4IiIiIkJ3WxO009dGaUUVzlx9UOf+jhMFAID+zmawb6+v5NoREVEtBvFEREREBE0NEfrVHjWXLT+lvqKyGntOcUM7IiJ1oNIgfvny5ejVqxckEgnMzc0xcuRIZGdny+7fu3cP06dPh6urK/T09GBvb4/w8HAUFxc3mq8gCFiwYAGsrKygp6eHgQMHIjc3V9HNoT+EhIRg5MiRsvf+/v6YOXPmC+XZEnkoi0gkwv79+xu8n5+fD5FIhIyMDKXViYiIqClq18Un/WVzu4PnCnG/vBLWxrp4vYu5KqpGRER/UGkQn5SUhLCwMBw/fhzx8fGorKzEoEGD8PDhQwDAjRs3cOPGDaxatQrnz59HVFQUYmNjERoa2mi+n3/+OdavX4+vv/4aaWlpMDAwQEBAACoqKpTRLLUVEhICkUgEkUgEHR0dODk5YcmSJaiqqlJouXv37sWnn37apLSJiYkQiUR48OBBs/NQlEWLFsk+P01NTdjZ2WHy5Mm4d++eXLrCwkIMGTJERbUkIiJqvtqR+PPXS3Cr9M/vTbUb2o3rbQ9NDZFK6kZERDVUek58bGys3PuoqCiYm5sjPT0d/fv3h4eHB3766SfZ/c6dO2PZsmUYP348qqqqoKVVt/qCIGDt2rWYP38+AgMDAQDff/89LCwssH//frz77ruKbZSaGzx4MCIjI/H48WMcPHgQYWFh0NbWRkREhFy6J0+eQEdHp0XKNDU1VYs8WkLXrl3x66+/orq6GllZWZg4cSKKi4uxa9cuWRpLSx65Q0RErZOZRIxuNsY4d70YyTl3MNrbFhdulOB0wQNoaYgwtredqqtIRNTmqdWa+Npp8o0FbMXFxTAyMqo3gAeAvLw8FBUVYeDAgbJrxsbG6NOnD1JTU+t95vHjxygpKZF7KZy0GshLBs79WPNfabXiywQgFothaWkJBwcHfPjhhxg4cCCio6NlU+CXLVsGa2truLq6AgCuXr2Kd955ByYmJjA1NUVgYCDy8/Nl+VVXV2PWrFkwMTFB+/btMWfOHAiCIFfmX6fCP378GHPnzoWdnR3EYjGcnJywefNm5OfnY8CAAQCAdu3aQSQSISQkpN487t+/jwkTJqBdu3bQ19fHkCFD5JZMREVFwcTEBHFxcXBzc4OhoSEGDx6MwsJCWZrExET07t0bBgYGMDExga+vL65cudLo56elpQVLS0vY2Nhg4MCB+Nvf/ob4+Hi5NH+dTn/ixAl4enpCV1cXPXv2xJkzZ+rkGx0dDWdnZ+jq6mLAgAH47rvv6sxIOHr0KPr16wc9PT3Y2dkhPDxcNmuFiIiopdTuUp/4x5T6bWk1/zYGdLWEuURXZfUiIqIaahPES6VSzJw5E76+vvDw8Kg3zZ07d/Dpp59i8uTJDeZTVFQEALCwsJC7bmFhIbv3V8uXL4exsbHsZWen4F+ZL0QDaz2A74YBP4XW/HetR811JdPT08OTJ08AAAkJCcjOzkZ8fDxiYmJQWVmJgIAASCQSJCcnIyUlRRYM1z6zevVqREVFYcuWLTh69Cju3buHffv2NVrmhAkTsHPnTqxfvx5ZWVn45ptvYGhoCDs7O9nMi+zsbBQWFmLdunX15hESEoJTp04hOjoaqampEAQBb731FiorK2VpysvLsWrVKmzduhVHjhxBQUEBPvroIwBAVVUVRo4cCT8/P5w9exapqamYPHkyRKKmTxHMz89HXFxcozMWysrKMGzYMLi7uyM9PR2LFi2S1aFWXl4exowZg5EjRyIzMxNTpkzBJ598Ipfm8uXLGDx4MEaPHo2zZ89i165dOHr0KKZNm9bk+hIRETVF7br45NzbKH5Uif1nrgMAgvryWDkiInWg0un0TwsLC8P58+dx9OjReu+XlJRg6NChcHd3x6JFi1q07IiICMyaNUuuLIUF8heigd0TAMiPVqOksOb6O98D7iMUU/ZTBEFAQkIC4uLiMH36dNy+fRsGBgbYtGmTLCjdtm0bpFIpNm3aJAtuIyMjYWJigsTERAwaNAhr165FREQE3n77bQDA119/jbi4uAbLzcnJwe7duxEfHy+bLdGpUyfZ/dpZGObm5jAxMak3j9zcXERHRyMlJQWvvvoqAGD79u2ws7PD/v378be//Q0AUFlZia+//hqdO3cGAEybNg1LliwBUPNnXFxcjGHDhsnuu7m5PfNzO3fuHAwNDVFdXS3bY+GLL75oMP2OHTsglUqxefNm6OrqomvXrrh27Ro+/PBDWZpvvvkGrq6uWLlyJQDA1dUV58+fx7Jly2Rpli9fjqCgINlsBGdnZ6xfvx5+fn7YuHEjdHU5MkJERC2jh50JjHS18KC8EosP/IbyJ9XobGYAn07tVV01IiKCmozET5s2DTExMTh8+DBsbW3r3C8tLcXgwYMhkUiwb98+aGtrN5hX7Xrkmzdvyl2/efNmg2uVxWIxjIyM5F4KIa0GYueiTgAP/Hktdp5Cp9bHxMTA0NAQurq6GDJkCMaOHSv7UaRbt25yo8qZmZm4dOkSJBIJDA0NYWhoCFNTU1RUVODy5csoLi5GYWEh+vTpI3tGS0sLPXv2bLD8jIwMaGpqws/Pr9ltyMrKgpaWlly57du3h6urK7KysmTX9PX1ZQE6AFhZWeHWrZojc0xNTRESEoKAgAAMHz4c69atk021LygokLXX0NAQ//73v2V5uLq6IiMjAydPnsTcuXMREBCA6dOnN1rX7t27ywXZPj4+cmmys7PRq1cvuWu9e/eWe5+ZmYmoqCi5egUEBEAqlSIvL++ZnxkREVFTaWlqyDa423v6j1H4Pg7PNVuNiIgUR6Uj8YIgYPr06di3bx8SExPh6OhYJ01JSQkCAgIgFosRHR39zBFHR0dHWFpaIiEhAT169JDlkZaWJjf6qRJXjgElNxpJIAAl12vSOfZTSBUGDBiAjRs3QkdHB9bW1nJ7CxgYGMilLSsrg7e3N7Zv314nHzMzs2aVr6en16znmuOvP/aIRCK59fqRkZEIDw9HbGwsdu3ahfnz5yM+Ph49e/aUO/7t6T0aanf1B4DPPvsMQ4cOxeLFixW+c35ZWRmmTJmC8PDwOvfs7Tm9kYiIWpafqxn+e67mx21dbQ2M9q47yEJERKqh0pH4sLAwbNu2DTt27IBEIkFRURGKiorw6NEjADXBd+2Rc5s3b0ZJSYksTXX1n6PVXbp0ka3DFolEmDlzJpYuXYro6GicO3cOEyZMgLW1tdzZ5SpRdvPZaZ4nXTMYGBjAyckJ9vb2DW4OWMvLywu5ubkwNzeHk5OT3Kt2/wArKyukpaXJnqmqqkJ6enqDeXbr1g1SqRRJSUn13q+dCfD0n+9fubm5oaqqSq7cu3fvIjs7G+7u7o226a88PT0RERGBY8eOwcPDAzt27ICWlpZcWxvbaHH+/PlYtWoVbtyo/8cZNzc3nD17Vu54w+PHj8ulcXV1xalTp+SunTx5Uu69l5cXLly4UOfPwcnJqcVOESAiIqpVu7kdAIx4xRrGeg3PgiQiIuVSaRC/ceNGFBcXw9/fH1ZWVrJX7XFdp0+fRlpaGs6dOwcnJye5NFevXpXlk52dLdvZHgDmzJmD6dOnY/LkyejVqxfKysoQGxur+nXDhhbPTvM86RQsKCgIHTp0QGBgIJKTk5GXl4fExESEh4fj2rVrAIAZM2bgs88+w/79+3Hx4kVMnTq1zhnvT+vYsSOCg4MxceJE7N+/X5bn7t27AQAODjXT9WJiYnD79m2UlZXVycPZ2RmBgYGYNGkSjh49iszMTIwfPx42NjayYwWfJS8vDxEREUhNTcWVK1fwyy+/IDc3t0nr4p/m4+OD7t27y025f9p7770HkUiESZMm4cKFCzh48CBWrVoll2bKlCm4ePEi5s6dK9szICoqCgBkUxfnzp2LY8eOYdq0acjIyEBubi5+/vlnbmxHREQKYWGkiz6OptDR1EDwqx1VXR0iInqKSoN4QRDqfT19rFhDaTp27CiXT+0zQE3gs2TJEhQVFaGiogK//vorXFxclNu4+ji8ChhZA2hoTZkIMLKpSacG9PX1ceTIEdjb2+Ptt9+Gm5sbQkNDUVFRIds3YPbs2Xj//fcRHBwMHx8fSCQSjBo1qtF8N27ciDFjxmDq1Kno0qULJk2aJDsqzcbGBosXL8a8efNgYWHRYJAaGRkJb29vDBs2DD4+PhAEAQcPHmx0v4S/tu3ixYsYPXo0XFxcMHnyZISFhWHKlCnP8QnV+Oc//4lNmzbJ/bBUy9DQEAcOHMC5c+fg6emJTz75BCtWrJBL4+joiB9//BF79+5F9+7dsXHjRtnu9GKxGADQvXt3JCUlIScnB/369YOnpycWLFgAa2vr564vERFRU2wK7omE2X7oam2s6qoQEdFTRMJfD/UmlJSUwNjYWHYm/dMqKiqQl5cHR0fH5o3sy3anB+Q3uPsjsFfS7vSk3pYtW4avv/663h8GmuqF+yoRERERESlNY3Ho09Rid/o2xX1ETaBuZCV/3ciaAXwb9tVXX+HkyZP4/fffsXXrVqxcuRLBwcGqrhYREREREakZtTknvk1xHwF0GVqzC33ZzZo18A6vAhqaqq4ZqUhubi6WLl2Ke/fuwd7eHrNnz0ZERISqq0VERERERGqGQbyqaGgq7Bg5an3WrFmDNWvWqLoaRERERESk5jidnoiIiIiIiKiVYBBPRERERERE1EowiG8mbupP6o59lIiIiIjo5cMg/jnVnkNeXl6u4poQNa62j9b2WSIiIiIiav24sd1z0tTUhImJCW7dugUA0NfXh0gkUnGtiP4kCALKy8tx69YtmJiYQFOTpx4QEREREb0sGMQ3g6WlJQDIAnkidWRiYiLrq0RERERE9HJgEN8MIpEIVlZWMDc3R2VlpaqrQ1SHtrY2R+CJiIiIiF5CDOJfgKamJgMlIiIiIiIiUhpubEdERERERETUSjCIJyIiIiIiImolGMQTERERERERtRJcE18PQRAAACUlJSquCREREREREbUFtfFnbTzaEAbx9SgtLQUA2NnZqbgmRERERERE1JaUlpbC2Ni4wfsi4VlhfhsklUpx48YNSCQSiEQiVVenQSUlJbCzs8PVq1dhZGSk6urQS4r9jJSB/YwUjX2MlIH9jJSB/ezlJQgCSktLYW1tDQ2Nhle+cyS+HhoaGrC1tVV1NZrMyMiI/wcmhWM/I2VgPyNFYx8jZWA/I2VgP3s5NTYCX4sb2xERERERERG1EgziiYiIiIiIiFoJBvGtmFgsxsKFCyEWi1VdFXqJsZ+RMrCfkaKxj5EysJ+RMrCfETe2IyIiIiIiImolOBJPRERERERE1EowiCciIiIiIiJqJRjEExEREREREbUSDOKJiIiIiIiIWgkG8Sq2fPly9OrVCxKJBObm5hg5ciSys7Pl0lRUVCAsLAzt27eHoaEhRo8ejZs3b8qlCQ8Ph7e3N8RiMXr06FFvWWfPnkW/fv2gq6sLOzs7fP7554pqFqkRZfWxxMREBAYGwsrKCgYGBujRowe2b9+uyKaRGlHm32W1Ll26BIlEAhMTkxZuDakrZfYzQRCwatUquLi4QCwWw8bGBsuWLVNU00hNKLOPxcXFoW/fvpBIJDAzM8Po0aORn5+voJaROmmJfpaZmYlx48bBzs4Oenp6cHNzw7p16+qUlZiYCC8vL4jFYjg5OSEqKkrRzSMlYBCvYklJSQgLC8Px48cRHx+PyspKDBo0CA8fPpSl+ec//4kDBw5gz549SEpKwo0bN/D222/XyWvixIkYO3ZsveWUlJRg0KBBcHBwQHp6OlauXIlFixbhP//5j8LaRupBWX3s2LFj6N69O3766SecPXsWH3zwASZMmICYmBiFtY3Uh7L6Wa3KykqMGzcO/fr1a/G2kPpSZj+bMWMGNm3ahFWrVuHixYuIjo5G7969FdIuUh/K6mN5eXkIDAzE66+/joyMDMTFxeHOnTv15kMvn5boZ+np6TA3N8e2bdvw22+/4ZNPPkFERAS+/PJLWZq8vDwMHToUAwYMQEZGBmbOnIm///3viIuLU2p7SQEEUiu3bt0SAAhJSUmCIAjCgwcPBG1tbWHPnj2yNFlZWQIAITU1tc7zCxcuFF555ZU617/66iuhXbt2wuPHj2XX5s6dK7i6urZ8I0itKaqP1eett94SPvjggxapN7Uuiu5nc+bMEcaPHy9ERkYKxsbGLV19aiUU1c8uXLggaGlpCRcvXlRY3al1UFQf27Nnj6ClpSVUV1fLrkVHRwsikUh48uRJyzeE1NqL9rNaU6dOFQYMGCB7P2fOHKFr165yacaOHSsEBAS0cAtI2TgSr2aKi4sBAKampgBqfmWrrKzEwIEDZWm6dOkCe3t7pKamNjnf1NRU9O/fHzo6OrJrAQEByM7Oxv3791uo9tQaKKqPNVRWbTnUtiiynx06dAh79uzBhg0bWq7C1Copqp8dOHAAnTp1QkxMDBwdHdGxY0f8/e9/x71791q2AaT2FNXHvL29oaGhgcjISFRXV6O4uBhbt27FwIEDoa2t3bKNILXXUv3sr9+7UlNT5fIAar7/v+j3O1I9BvFqRCqVYubMmfD19YWHhwcAoKioCDo6OnXWfFpYWKCoqKjJeRcVFcHCwqJOHrX3qG1QZB/7q927d+PkyZP44IMPXqTK1Aopsp/dvXsXISEhiIqKgpGRUUtWm1oZRfaz33//HVeuXMGePXvw/fffIyoqCunp6RgzZkxLNoHUnCL7mKOjI3755Rf8v//3/yAWi2FiYoJr165h9+7dLdkEagVaqp8dO3YMu3btwuTJk2XXGvr+X1JSgkePHrVsQ0iptFRdAfpTWFgYzp8/j6NHj6q6KvSSUlYfO3z4MD744AN8++236Nq1q0LLIvWjyH42adIkvPfee+jfv3+L502tiyL7mVQqxePHj/H999/DxcUFALB582Z4e3sjOzsbrq6uLV4mqR9F9rGioiJMmjQJwcHBGDduHEpLS7FgwQKMGTMG8fHxEIlELV4mqaeW6Gfnz59HYGAgFi5ciEGDBrVg7UhdcSReTUybNg0xMTE4fPgwbG1tZdctLS3x5MkTPHjwQC79zZs3YWlp2eT8LS0t6+ycWvv+efKh1kvRfaxWUlIShg8fjjVr1mDChAkvWm1qZRTdzw4dOoRVq1ZBS0sLWlpaCA0NRXFxMbS0tLBly5aWagapOUX3MysrK2hpackCeABwc3MDABQUFLxY5alVUHQf27BhA4yNjfH555/D09MT/fv3x7Zt25CQkIC0tLSWagapuZboZxcuXMAbb7yByZMnY/78+XL3Gvr+b2RkBD09vZZtDCkVg3gVEwQB06ZNw759+3Do0CE4OjrK3ff29oa2tjYSEhJk17Kzs1FQUAAfH58ml+Pj44MjR46gsrJSdi0+Ph6urq5o167dizeE1Jay+hhQc4zJ0KFDsWLFCrnpXPTyU1Y/S01NRUZGhuy1ZMkSSCQSZGRkYNSoUS3WHlJPyupnvr6+qKqqwuXLl2XXcnJyAAAODg4v2ApSZ8rqY+Xl5dDQkP8arqmpCaBmJgi93Fqqn/32228YMGAAgoOD6z0C08fHRy4PoOb7//N+vyM1pMpd9UgQPvzwQ8HY2FhITEwUCgsLZa/y8nJZmn/84x+Cvb29cOjQIeHUqVOCj4+P4OPjI5dPbm6ucObMGWHKlCmCi4uLcObMGeHMmTOy3egfPHggWFhYCO+//75w/vx54YcffhD09fWFb775RqntJeVTVh87dOiQoK+vL0RERMiVc/fuXaW2l1RDWf3sr7g7fduirH5WXV0teHl5Cf379xdOnz4tnDp1SujTp4/w5ptvKrW9pHzK6mMJCQmCSCQSFi9eLOTk5Ajp6elCQECA4ODgIFcWvZxaop+dO3dOMDMzE8aPHy+Xx61bt2Rpfv/9d0FfX1/4+OOPhaysLGHDhg2CpqamEBsbq9T2UstjEK9iAOp9RUZGytI8evRImDp1qtCuXTtBX19fGDVqlFBYWCiXj5+fX7355OXlydJkZmYKr732miAWiwUbGxvhs88+U1IrSZWU1ceCg4Prve/n56e8xpLKKPPvsqcxiG9blNnPrl+/Lrz99tuCoaGhYGFhIYSEhPBHyTZAmX1s586dgqenp2BgYCCYmZkJI0aMELKyspTUUlKlluhnCxcurDcPBwcHubIOHz4s9OjRQ9DR0RE6deokVwa1XiJBEIQXGMgnIiIiIiIiIiXhmngiIiIiIiKiVoJBPBEREREREVErwSCeiIiIiIiIqJVgEE9ERERERETUSjCIJyIiIiIiImolGMQTERERERERtRIM4omIiIiIiIhaCQbxRERERERERK0Eg3giIiI1dvfuXZibmyM/P1+p5UZFRcHExEQhecfGxqJHjx6QSqUKyZ+IiOhlxiCeiIhIjS1btgyBgYHo2LFjnXsBAQHQ1NTEyZMnlV+xFzB48GBoa2tj+/btDaYJDQ1Ft27d8OTJE7nrBw8ehI6ODk6fPq3oahIREaklBvFERERqqry8HJs3b0ZoaGidewUFBTh27BimTZuGLVu2qKB2zVNZWQkACAkJwfr16xtMt2bNGpSWlmLhwoWyaw8ePMCkSZPwr3/9C15eXgqrGxERkTpjEE9ERKSmDh48CLFYjL59+9a5FxkZiWHDhuHDDz/Ezp078ejRI7n7/v7+CA8Px5w5c2BqagpLS0ssWrRILs2DBw8wZcoUWFhYQFdXFx4eHoiJiZFLExcXBzc3NxgaGmLw4MEoLCyU3ZNKpViyZAlsbW0hFovRo0cPxMbGyu7n5+dDJBJh165d8PPzg66urmz0ffjw4Th16hQuX75cb9uNjIwQGRmJ1atXIy0tDQAwc+ZM2NjYICIiAlevXsU777wDExMTmJqaIjAwUG7JwcmTJ/Hmm2+iQ4cOMDY2hp+fX53Re5FIhI0bN2LEiBEwMDDAsmXLGviTICIiUh8M4omIiNRUcnIyvL2961wXBAGRkZEYP348unTpAicnJ/z444910n333XcwMDBAWloaPv/8cyxZsgTx8fEAagLwIUOGICUlBdu2bcOFCxfw2WefQVNTU/Z8eXk5Vq1aha1bt+LIkSMoKCjARx99JLu/bt06rF69GqtWrcLZs2cREBCAESNGIDc3V64e8+bNw4wZM5CVlYWAgAAAgL29PSwsLJCcnNxg+wcMGICpU6ciODgYe/bswe7du/H9999DEAQEBARAIpEgOTkZKSkpsh8Zaqffl5aWIjg4GEePHsXx48fh7OyMt956C6WlpXJlLFq0CKNGjcK5c+cwceLEZ/2REBERqZ5AREREaikwMFCYOHFineu//PKLYGZmJlRWVgqCIAhr1qwR/Pz85NL4+fkJr732mty1Xr16CXPnzhUEQRDi4uIEDQ0NITs7u96yIyMjBQDCpUuXZNc2bNggWFhYyN5bW1sLy5Ytq1PG1KlTBUEQhLy8PAGAsHbt2nrL8PT0FBYtWlTvvVrl5eWCq6uroKGhIaxZs0YQBEHYunWr4OrqKkilUlm6x48fC3p6ekJcXFy9+VRXVwsSiUQ4cOCA7BoAYebMmY2WT0REpG44Ek9ERKSmHj16BF1d3TrXt2zZgrFjx0JLSwsAMG7cOKSkpNSZmt69e3e591ZWVrh16xYAICMjA7a2tnBxcWmwfH19fXTu3Lne50tKSnDjxg34+vrKPePr64usrCy5az179qw3fz09PZSXlzdYfm2ajz76CPr6+pgxYwYAIDMzE5cuXYJEIoGhoSEMDQ1hamqKiooK2Wdw8+ZNTJo0Cc7OzjA2NoaRkRHKyspQUFDQpLoRERGpKy1VV4CIiIjq16FDB9y/f1/u2r1797Bv3z5UVlZi48aNsuvV1dXYsmWL3LpubW1tuWdFIpHsWDc9Pb1nll/f84IgPHc7DAwM6r1+7949mJmZPfN5LS0taGpqQiQSAQDKysrg7e1d7+72tfkFBwfj7t27WLduHRwcHCAWi+Hj41Nnt/uG6kZERKSuOBJPRESkpjw9PXHhwgW5a9u3b4etrS0yMzORkZEhe61evRpRUVGorq5uUt7du3fHtWvXkJOT06y6GRkZwdraGikpKXLXU1JS4O7u/szna0fNPT09n7tsLy8v5ObmwtzcHE5OTnIvY2NjWT3Cw8Px1ltvoWvXrhCLxbhz585zl0VERKRuGMQTERGpqYCAAPz2229yo/GbN2/GmDFj4OHhIfcKDQ3FnTt35HaHb4yfnx/69++P0aNHIz4+Hnl5efjf//7X5OcB4OOPP8aKFSuwa9cuZGdnY968ecjIyJBNe2/M8ePHZaPjzysoKAgdOnRAYGAgkpOTkZeXh8TERISHh+PatWsAAGdnZ2zduhVZWVlIS0tDUFBQk2YfEBERqTsG8URERGqqW7du8PLywu7duwEA6enpyMzMxOjRo+ukNTY2xhtvvIHNmzc3Of+ffvoJvXr1wrhx4+Du7o45c+Y0eSQfAMLDwzFr1izMnj0b3bp1Q2xsLKKjo+Hs7PzMZ3fu3ImgoCDo6+s3ubxa+vr6OHLkCOzt7fH222/Dzc0NoaGhqKiogJGREYCaHzvu378PLy8vvP/++wgPD4e5uflzl0VERKRuREJzFrcRERGRUvz3v//Fxx9/jPPnz0ND4+X47f3OnTtwdXXFqVOn4OjoqOrqEBERtSrc2I6IiEiNDR06FLm5ubh+/Trs7OxUXZ0WkZ+fj6+++ooBPBERUTNwJJ6IiIiIiIiolXg55uURERERERERtQEM4omIiIiIiIhaCQbxRERERERERK0Eg3giIiIiIiKiVoJBPBEREREREVErwSCeiIiIiIiIqJVgEE9ERERERETUSjCIJyIiIiIiImolGMQTERERERERtRL/HzFQTWC+A7iMAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2479,19 +2543,29 @@ " f\"The MSE of baseline ridge forecasts is {mean_squared_error(ground_truth, predictions_baseline):.3f}\"\n", ")\n", "print(\n", - " f\"The MSE of mean of training data is {mean_squared_error(ground_truth, [target_series_sel[:-test_samples].mean()] * len(instances)):.3f}\"\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", ")\n", "\n", - "fig = plt.figure()\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", - "plt.scatter(instances, ground_truth, label=\"Ground truth\")\n", - "plt.scatter(instances, [ground_truth.mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.scatter(instances, predictions_baseline, label=\"Predictions-Ridge\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.scatter(ground_truth.anchor_year, predictions_baseline, label=\"Predictions-Ridge\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/workflow/pred_temperature_LSTM.ipynb b/workflow/pred_temperature_LSTM.ipynb index c3269e8..6638b82 100644 --- a/workflow/pred_temperature_LSTM.ipynb +++ b/workflow/pred_temperature_LSTM.ipynb @@ -1,2426 +1,2066 @@ { - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Predict 2 meter temperature with sea surface temperature using LSTM\n", - "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", - "We will predict temperature in US at seasonal time scales using ERA5 dataset with LSTM network.
\n", - "\n", - "\"usecase\"" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This recipe includes the following steps:\n", - "- Define a calendar (`lilio`)\n", - "- Download/load input data (`era5cli`) (test data, accessible via `era5cli`)\n", - "- Map the calendar to the data (`lilio`)\n", - "- Train-validate-test split (60%/20%/20%)\n", - "- Preprocessing based on the training set (`s2spy`)\n", - "- Resample data to the calendar (`lilio`)\n", - "- Create LSTM model (`torch`)\n", - "- Specify hyper-parameters (`wandb`)\n", - "- Train model (`torch`)\n", - "- Evaludate model" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The workflow is illustrated below:\n", - "\n", - "\"Transformer\"" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import lilio\n", - "import numpy as np\n", - "import time as tt\n", - "import wandb\n", - "import sys\n", - "import urllib\n", - "import xarray as xr\n", - "from pathlib import Path\n", - "from s2spy import preprocess\n", - "import torch\n", - "from torch import nn\n", - "from torch.autograd import Variable\n", - "\n", - "# import utils function to check the statistics of parameters\n", - "sys.path.append(\"../src/\")\n", - "import utils\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Define a calendar with `lilio` to specify time range for targets and precursors." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\")\n", - "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", - "# add precursor periods\n", - "periods_of_interest = 4\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Calendar(\n", - " anchor='08-01',\n", - " allow_overlap=False,\n", - " mapping=None,\n", - " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", - " ]\n", - ")" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# check calendar\n", - "calendar" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Load test data SST and (clustered) T2M\n", - "For the sake of batch size, we use 61 years (1961-2021) of data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# URL of the dataset from zenodo\n", - "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", - "t2m_url = \"https://zenodo.org/record/8186914/files/t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", - "sst_field = \"sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", - "t2m_field = \"t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", - "\n", - "urllib.request.urlretrieve(sst_url, sst_field)\n", - "urllib.request.urlretrieve(t2m_url, t2m_field)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# load data\n", - "precursor_field = xr.open_dataset(sst_field)\n", - "precursor_field = precursor_field.sel(time=slice(\"19610101\",\"20211231\"))\n", - "target_field = xr.open_dataset(t2m_field)\n", - "target_field = target_field.sel(time=slice(\"19610101\",\"20211231\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert Klevin to Celcius\n", - "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", - "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Map the calendar to the data\n", - "After mapping the calendar to the field, we can visualize our calendar by calling the `visualize` method." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# map calendar to data\n", - "calendar.map_to_data(precursor_field)\n", - "calendar.visualize(show_length=True)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also, we can get a list of all intervals by running the following line. There, you will find the intervals `-1` and `1`, which corresponds to the creation of a precursor interval (negative integer(s)) and a target interval (positive integer(s)), respectively.
\n", - "\n", - "For more information about the definition of intervals, and how `lilio` works, please check the [README](https://github.com/AI4S2S/lilio) of `lilio`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
i_interval-4-3-2-11
anchor_year
2021[2020-12-01, 2021-01-01)[2021-02-01, 2021-03-01)[2021-04-01, 2021-05-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-12-01, 2020-01-01)[2020-02-01, 2020-03-01)[2020-04-01, 2020-05-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-12-01, 2019-01-01)[2019-02-01, 2019-03-01)[2019-04-01, 2019-05-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", - "
" - ], - "text/plain": [ - "i_interval -4 -3 \\\n", - "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", - "\n", - "i_interval -2 -1 \\\n", - "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", - "\n", - "i_interval 1 \n", - "anchor_year \n", - "2021 [2021-08-01, 2021-08-31) \n", - "2020 [2020-08-01, 2020-08-31) \n", - "2019 [2019-08-01, 2019-08-31) " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "calendar.show()[:3]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Train-validate-test split based on the anchor years (60%/20%/20% split)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# get 60% of instance as training\n", - "years = sorted(calendar.get_intervals().index)\n", - "train_samples = round(len(years) * 0.6)\n", - "test_samples = round(len(years) * 0.2)\n", - "start_year = years[0]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fit preprocessor with training samples and preprocess data\n", - "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", - "\n", - "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# create preprocessor\n", - "preprocessor = preprocess.Preprocessor(\n", - " rolling_window_size=25,\n", - " detrend=\"linear\",\n", - " subtract_climatology=True,\n", - ")\n", - "\n", - "# fit preprocessor with training data\n", - "preprocessor.fit(\n", - " precursor_field.sel(\n", - " time=slice(str(start_year), str(start_year + train_samples - 1))\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# preprocess the whole precursor field\n", - "precursor_field_prep = preprocessor.transform(precursor_field)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Resample data to the calendar" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "precursor_field_resample = lilio.resample(calendar, precursor_field_prep)\n", - "target_field_resample = lilio.resample(calendar, target_field)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# select variables and intervals\n", - "precursor_field_sel = precursor_field_resample['sst']\n", - "target_series_sel = target_field_resample['t2m'].sel(cluster=3)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to convert our data to `torch.Tensor`." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# slice and reshape input desired by transformer\n", - "sequence_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", - "lat_precursor = len(precursor_field_sel.latitude)\n", - "lon_precursor = len(precursor_field_sel.longitude)\n", - "\n", - "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", - "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", - "\n", - "X_torch = X_torch.view(-1, sequence_precursor, lat_precursor*lon_precursor)\n", - "\n", - "# turn nan to 0.0\n", - "X_torch = torch.nan_to_num(X_torch, 0.0)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We split our data into train/cross-validate/test sets." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# train/validate/test split and use pytorch dataloader\n", - "train_X_torch = X_torch[:train_samples]\n", - "train_y_torch = y_torch[:train_samples]\n", - "\n", - "valid_X_torch = X_torch[train_samples:train_samples + test_samples]\n", - "valid_y_torch = y_torch[train_samples:train_samples + test_samples]\n", - "\n", - "test_X_torch = X_torch[-test_samples:]\n", - "test_y_torch = y_torch[-test_samples:]\n", - "\n", - "# pytorch train and test sets\n", - "train_set = torch.utils.data.TensorDataset(train_X_torch, train_y_torch)\n", - "valid_set = torch.utils.data.TensorDataset(valid_X_torch, valid_y_torch)\n", - "test_set = torch.utils.data.TensorDataset(test_X_torch, test_y_torch)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Build LSTM model\n", - "Build a LSTM model with `nn.LSTM` module.\n", - "\n", - "The architecture of the autoencoder used here is shown in the figure below.\n", - "\n", - "\"LSTM\"\n", - "\n", - "(source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "class LSTM(nn.Module):\n", - " def __init__(self, input_dim, hidden_dim, output_dim=1,\n", - " batch_size=1, num_layers=1, dropout=0.1):\n", - " \"\"\"\n", - " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", - " Expected input timeseries dimension [batch_size, sequence, channels]\n", - " \"\"\"\n", - " super().__init__()\n", - " self.hidden_dim = hidden_dim\n", - " self.batch_size = batch_size\n", - " self.num_layers = num_layers\n", - " # Define the LSTM layer\n", - " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", - " num_layers = num_layers, batch_first = True, dropout = dropout)\n", - "\n", - " # Define the output layer\n", - " self.linear = nn.Linear(hidden_dim, output_dim)\n", - " \n", - " def init_hidden(self):\n", - " \"\"\"Initialize hidden state with random values.\"\"\"\n", - " return (torch.randn(self.num_layers, self.batch_size, self.hidden_dim),\n", - " torch.randn(self.num_layers, self.batch_size, self.hidden_dim))\n", - " \n", - " def forward(self, input):\n", - " (h_0, c_0) = self.init_hidden()\n", - " x, _ = self.lstm(input, (h_0, c_0))\n", - " x = self.linear(x)\n", - " \n", - " return x" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Hyper-parameter tuning with W&B\n", - "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Print system info." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pytorch version 2.0.1+cu117\n", - "Is CUDA available? False\n", - "Device to be used for computation: cpu\n" - ] - } - ], - "source": [ - "print (\"Pytorch version {}\".format(torch.__version__))\n", - "use_cuda = torch.cuda.is_available()\n", - "print(\"Is CUDA available? {}\".format(use_cuda))\n", - "# use GPU if possible\n", - "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", - "print(\"Device to be used for computation: {}\".format(device))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define hyperparameters, initialize config for wandb and syncronize training information with W&B server." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230630_150821-8t0sok9n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run cool-aardvark-22 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-LSTM" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", - "# define hyperparameters and the \n", - "hyperparameters = dict(\n", - " epoch = 150,\n", - " input_dim = lat_precursor*lon_precursor,\n", - " hidden_dim = lat_precursor*lon_precursor*2,\n", - " output_dim = 1,\n", - " batch_size = 4, \n", - " num_layers = 2,\n", - " dropout = 0.0,\n", - " learning_rate = 0.02,\n", - " dataset = 'Weather',\n", - " architecture = 'LSTM'\n", - ")\n", - "\n", - "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-LSTM', entity='ai4s2s', mode=mode)\n", - "config = wandb.config" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create data loaders with chosen batch size. " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# create data loader and use batch \n", - "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = False)\n", - "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = False)\n", - "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = False)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize and train model\n", - "Create model using specified hyperparameter. Initialize model and choose loss function and optimizer." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model details:\n", - " LSTM(\n", - " (lstm): LSTM(65, 130, num_layers=2, batch_first=True, dropout=0.1)\n", - " (linear): Linear(in_features=130, out_features=1, bias=True)\n", - ")\n", - "Optimizer details:\n", - " Adam (\n", - "Parameter Group 0\n", - " amsgrad: False\n", - " betas: (0.9, 0.999)\n", - " capturable: False\n", - " differentiable: False\n", - " eps: 1e-08\n", - " foreach: None\n", - " fused: None\n", - " lr: 0.02\n", - " maximize: False\n", - " weight_decay: 0\n", - ")\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Initialize model\n", - "model = LSTM(input_dim = config[\"input_dim\"],\n", - " hidden_dim = config[\"hidden_dim\"],\n", - " output_dim = config[\"output_dim\"], \n", - " batch_size = config[\"batch_size\"], \n", - " num_layers = config[\"num_layers\"]\n", - ")\n", - "# Specify loss function\n", - "criterion = nn.MSELoss()\n", - "# Choose optimizer\n", - "optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)\n", - "# Print model and optimizer details\n", - "print('Model details:\\n', model)\n", - "print('Optimizer details:\\n',optimizer)\n", - "wandb.watch(model)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "238811\n" - ] - } - ], - "source": [ - "# display the total number of parameters\n", - "utils.total_num_param(model)\n", - "# for more details about the trainable parameter in each layer\n", - "#utils.param_trainable(model)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Start the training and cross validation loop." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 505.148438\n", - "Epoch : 0 [4/36(11%)]\tLoss: 481.187561\n", - "Epoch : 0 [8/36(22%)]\tLoss: 462.044128\n", - "Epoch : 0 [12/36(33%)]\tLoss: 366.548370\n", - "Epoch : 0 [16/36(44%)]\tLoss: 251.130753\n", - "Epoch : 0 [20/36(56%)]\tLoss: 152.641785\n", - "Epoch : 0 [24/36(67%)]\tLoss: 95.135040\n", - "Epoch : 0 [28/36(78%)]\tLoss: 50.719940\n", - "Epoch : 0 [32/36(89%)]\tLoss: 26.814919\n", - "Epoch : 1 [0/36(0%)]\tLoss: 5.588141\n", - "Epoch : 1 [4/36(11%)]\tLoss: 0.466125\n", - "Epoch : 1 [8/36(22%)]\tLoss: 2.091524\n", - "Epoch : 1 [12/36(33%)]\tLoss: 10.221073\n", - "Epoch : 1 [16/36(44%)]\tLoss: 13.921244\n", - "Epoch : 1 [20/36(56%)]\tLoss: 17.117250\n", - "Epoch : 1 [24/36(67%)]\tLoss: 21.652094\n", - "Epoch : 1 [28/36(78%)]\tLoss: 55.376251\n", - "Epoch : 1 [32/36(89%)]\tLoss: 19.449644\n", - "Epoch : 2 [0/36(0%)]\tLoss: 25.598974\n", - "Epoch : 2 [4/36(11%)]\tLoss: 20.395477\n", - "Epoch : 2 [8/36(22%)]\tLoss: 8.120663\n", - "Epoch : 2 [12/36(33%)]\tLoss: 9.420777\n", - "Epoch : 2 [16/36(44%)]\tLoss: 3.597255\n", - "Epoch : 2 [20/36(56%)]\tLoss: 1.684239\n", - "Epoch : 2 [24/36(67%)]\tLoss: 1.133056\n", - "Epoch : 2 [28/36(78%)]\tLoss: 1.853996\n", - "Epoch : 2 [32/36(89%)]\tLoss: 3.960218\n", - "Epoch : 3 [0/36(0%)]\tLoss: 5.782211\n", - "Epoch : 3 [4/36(11%)]\tLoss: 2.609937\n", - "Epoch : 3 [8/36(22%)]\tLoss: 4.698177\n", - "Epoch : 3 [12/36(33%)]\tLoss: 3.696248\n", - "Epoch : 3 [16/36(44%)]\tLoss: 6.770689\n", - "Epoch : 3 [20/36(56%)]\tLoss: 7.983230\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.530883\n", - "Epoch : 3 [28/36(78%)]\tLoss: 2.614764\n", - "Epoch : 3 [32/36(89%)]\tLoss: 2.655967\n", - "Epoch : 4 [0/36(0%)]\tLoss: 0.273827\n", - "Epoch : 4 [4/36(11%)]\tLoss: 1.573417\n", - "Epoch : 4 [8/36(22%)]\tLoss: 0.460414\n", - "Epoch : 4 [12/36(33%)]\tLoss: 1.230751\n", - "Epoch : 4 [16/36(44%)]\tLoss: 1.158980\n", - "Epoch : 4 [20/36(56%)]\tLoss: 1.895503\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.891235\n", - "Epoch : 4 [28/36(78%)]\tLoss: 2.686343\n", - "Epoch : 4 [32/36(89%)]\tLoss: 2.884769\n", - "Epoch : 5 [0/36(0%)]\tLoss: 1.899021\n", - "Epoch : 5 [4/36(11%)]\tLoss: 2.124950\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.508926\n", - "Epoch : 5 [12/36(33%)]\tLoss: 0.603784\n", - "Epoch : 5 [16/36(44%)]\tLoss: 0.967377\n", - "Epoch : 5 [20/36(56%)]\tLoss: 2.262344\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.447259\n", - "Epoch : 5 [28/36(78%)]\tLoss: 1.585567\n", - "Epoch : 5 [32/36(89%)]\tLoss: 2.005277\n", - "Epoch : 6 [0/36(0%)]\tLoss: 0.267711\n", - "Epoch : 6 [4/36(11%)]\tLoss: 0.692746\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.934087\n", - "Epoch : 6 [12/36(33%)]\tLoss: 0.330126\n", - "Epoch : 6 [16/36(44%)]\tLoss: 1.182773\n", - "Epoch : 6 [20/36(56%)]\tLoss: 2.099797\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.140517\n", - "Epoch : 6 [28/36(78%)]\tLoss: 1.404310\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.768536\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.887577\n", - "Epoch : 7 [4/36(11%)]\tLoss: 1.446585\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.324149\n", - "Epoch : 7 [12/36(33%)]\tLoss: 0.659936\n", - "Epoch : 7 [16/36(44%)]\tLoss: 0.752861\n", - "Epoch : 7 [20/36(56%)]\tLoss: 1.832946\n", - "Epoch : 7 [24/36(67%)]\tLoss: 0.966665\n", - "Epoch : 7 [28/36(78%)]\tLoss: 1.335188\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.858761\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.365670\n", - "Epoch : 8 [4/36(11%)]\tLoss: 0.659925\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.393722\n", - "Epoch : 8 [12/36(33%)]\tLoss: 0.327984\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.932140\n", - "Epoch : 8 [20/36(56%)]\tLoss: 2.097388\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.133661\n", - "Epoch : 8 [28/36(78%)]\tLoss: 1.769539\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.693012\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.408563\n", - "Epoch : 9 [4/36(11%)]\tLoss: 1.068734\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.322112\n", - "Epoch : 9 [12/36(33%)]\tLoss: 0.574979\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.661888\n", - "Epoch : 9 [20/36(56%)]\tLoss: 1.520240\n", - "Epoch : 9 [24/36(67%)]\tLoss: 0.980948\n", - "Epoch : 9 [28/36(78%)]\tLoss: 1.352848\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.580777\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.412241\n", - "Epoch : 10 [4/36(11%)]\tLoss: 0.963011\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.150706\n", - "Epoch : 10 [12/36(33%)]\tLoss: 0.400519\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.670630\n", - "Epoch : 10 [20/36(56%)]\tLoss: 1.628976\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.973781\n", - "Epoch : 10 [28/36(78%)]\tLoss: 1.203155\n", - "Epoch : 10 [32/36(89%)]\tLoss: 0.967892\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.318564\n", - "Epoch : 11 [4/36(11%)]\tLoss: 5.368523\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.196310\n", - "Epoch : 11 [12/36(33%)]\tLoss: 0.619376\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.729584\n", - "Epoch : 11 [20/36(56%)]\tLoss: 1.388925\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.936926\n", - "Epoch : 11 [28/36(78%)]\tLoss: 1.305025\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.281577\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.387617\n", - "Epoch : 12 [4/36(11%)]\tLoss: 0.665237\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.156064\n", - "Epoch : 12 [12/36(33%)]\tLoss: 0.390973\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.640283\n", - "Epoch : 12 [20/36(56%)]\tLoss: 1.553416\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.959071\n", - "Epoch : 12 [28/36(78%)]\tLoss: 0.905930\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.281052\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.266963\n", - "Epoch : 13 [4/36(11%)]\tLoss: 0.626828\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.223715\n", - "Epoch : 13 [12/36(33%)]\tLoss: 0.459082\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.696827\n", - "Epoch : 13 [20/36(56%)]\tLoss: 1.533000\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.027120\n", - "Epoch : 13 [28/36(78%)]\tLoss: 0.941354\n", - "Epoch : 13 [32/36(89%)]\tLoss: 0.892558\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.189570\n", - "Epoch : 14 [4/36(11%)]\tLoss: 0.549811\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.171009\n", - "Epoch : 14 [12/36(33%)]\tLoss: 0.383958\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.663104\n", - "Epoch : 14 [20/36(56%)]\tLoss: 1.451902\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.117269\n", - "Epoch : 14 [28/36(78%)]\tLoss: 0.990990\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.136361\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.182192\n", - "Epoch : 15 [4/36(11%)]\tLoss: 0.527077\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.267449\n", - "Epoch : 15 [12/36(33%)]\tLoss: 0.324529\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.635805\n", - "Epoch : 15 [20/36(56%)]\tLoss: 1.173936\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.965765\n", - "Epoch : 15 [28/36(78%)]\tLoss: 1.132812\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.357028\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.151217\n", - "Epoch : 16 [4/36(11%)]\tLoss: 0.507627\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.520277\n", - "Epoch : 16 [12/36(33%)]\tLoss: 0.614567\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.414361\n", - "Epoch : 16 [20/36(56%)]\tLoss: 1.368334\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.846762\n", - "Epoch : 16 [28/36(78%)]\tLoss: 1.016679\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.598533\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.244999\n", - "Epoch : 17 [4/36(11%)]\tLoss: 0.491022\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.267225\n", - "Epoch : 17 [12/36(33%)]\tLoss: 0.516404\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.575029\n", - "Epoch : 17 [20/36(56%)]\tLoss: 1.294104\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.212664\n", - "Epoch : 17 [28/36(78%)]\tLoss: 1.505179\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.012760\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.260495\n", - "Epoch : 18 [4/36(11%)]\tLoss: 0.649487\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.184152\n", - "Epoch : 18 [12/36(33%)]\tLoss: 0.503276\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.407428\n", - "Epoch : 18 [20/36(56%)]\tLoss: 1.148067\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.489842\n", - "Epoch : 18 [28/36(78%)]\tLoss: 1.198951\n", - "Epoch : 18 [32/36(89%)]\tLoss: 0.763963\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.304600\n", - "Epoch : 19 [4/36(11%)]\tLoss: 0.641902\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.236052\n", - "Epoch : 19 [12/36(33%)]\tLoss: 0.573888\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.327249\n", - "Epoch : 19 [20/36(56%)]\tLoss: 1.418954\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.489770\n", - "Epoch : 19 [28/36(78%)]\tLoss: 1.170379\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.280859\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.500501\n", - "Epoch : 20 [4/36(11%)]\tLoss: 0.742929\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.251100\n", - "Epoch : 20 [12/36(33%)]\tLoss: 0.474908\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.542650\n", - "Epoch : 20 [20/36(56%)]\tLoss: 1.045166\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.458625\n", - "Epoch : 20 [28/36(78%)]\tLoss: 1.095053\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.790924\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.154021\n", - "Epoch : 21 [4/36(11%)]\tLoss: 0.496545\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.297880\n", - "Epoch : 21 [12/36(33%)]\tLoss: 0.246268\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.252153\n", - "Epoch : 21 [20/36(56%)]\tLoss: 0.928596\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.527373\n", - "Epoch : 21 [28/36(78%)]\tLoss: 1.072787\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.504416\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.239585\n", - "Epoch : 22 [4/36(11%)]\tLoss: 0.576861\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.306901\n", - "Epoch : 22 [12/36(33%)]\tLoss: 0.159370\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.313108\n", - "Epoch : 22 [20/36(56%)]\tLoss: 1.031682\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.519940\n", - "Epoch : 22 [28/36(78%)]\tLoss: 1.341585\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.593542\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.179223\n", - "Epoch : 23 [4/36(11%)]\tLoss: 0.574387\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.132475\n", - "Epoch : 23 [12/36(33%)]\tLoss: 0.213038\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.284739\n", - "Epoch : 23 [20/36(56%)]\tLoss: 0.824717\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.472143\n", - "Epoch : 23 [28/36(78%)]\tLoss: 1.159807\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.444330\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.254970\n", - "Epoch : 24 [4/36(11%)]\tLoss: 0.568621\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.216534\n", - "Epoch : 24 [12/36(33%)]\tLoss: 0.196348\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.252408\n", - "Epoch : 24 [20/36(56%)]\tLoss: 0.889114\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.317530\n", - "Epoch : 24 [28/36(78%)]\tLoss: 1.121642\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.377160\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.162609\n", - "Epoch : 25 [4/36(11%)]\tLoss: 0.370015\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.117949\n", - "Epoch : 25 [12/36(33%)]\tLoss: 0.226949\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.236665\n", - "Epoch : 25 [20/36(56%)]\tLoss: 0.679455\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.281173\n", - "Epoch : 25 [28/36(78%)]\tLoss: 1.085547\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.261526\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.160689\n", - "Epoch : 26 [4/36(11%)]\tLoss: 0.468562\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.062409\n", - "Epoch : 26 [12/36(33%)]\tLoss: 0.670255\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.209688\n", - "Epoch : 26 [20/36(56%)]\tLoss: 0.820774\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.266793\n", - "Epoch : 26 [28/36(78%)]\tLoss: 0.984641\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.463211\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.215550\n", - "Epoch : 27 [4/36(11%)]\tLoss: 0.658540\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.727886\n", - "Epoch : 27 [12/36(33%)]\tLoss: 0.198605\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.206882\n", - "Epoch : 27 [20/36(56%)]\tLoss: 0.661130\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.223412\n", - "Epoch : 27 [28/36(78%)]\tLoss: 1.314858\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.314786\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.142954\n", - "Epoch : 28 [4/36(11%)]\tLoss: 0.204232\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.326274\n", - "Epoch : 28 [12/36(33%)]\tLoss: 0.421265\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.307062\n", - "Epoch : 28 [20/36(56%)]\tLoss: 0.861256\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.288486\n", - "Epoch : 28 [28/36(78%)]\tLoss: 1.405098\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.186949\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.125017\n", - "Epoch : 29 [4/36(11%)]\tLoss: 0.711308\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.184895\n", - "Epoch : 29 [12/36(33%)]\tLoss: 0.532898\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.158151\n", - "Epoch : 29 [20/36(56%)]\tLoss: 1.113483\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.180697\n", - "Epoch : 29 [28/36(78%)]\tLoss: 0.692520\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.173185\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.212938\n", - "Epoch : 30 [4/36(11%)]\tLoss: 0.491663\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.157977\n", - "Epoch : 30 [12/36(33%)]\tLoss: 0.073204\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.399520\n", - "Epoch : 30 [20/36(56%)]\tLoss: 0.732387\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.268429\n", - "Epoch : 30 [28/36(78%)]\tLoss: 0.683909\n", - "Epoch : 30 [32/36(89%)]\tLoss: 19.948956\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.072119\n", - "Epoch : 31 [4/36(11%)]\tLoss: 1.214102\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.839894\n", - "Epoch : 31 [12/36(33%)]\tLoss: 1.223127\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.823768\n", - "Epoch : 31 [20/36(56%)]\tLoss: 0.567715\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.420821\n", - "Epoch : 31 [28/36(78%)]\tLoss: 1.014955\n", - "Epoch : 31 [32/36(89%)]\tLoss: 1.617566\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.431339\n", - "Epoch : 32 [4/36(11%)]\tLoss: 0.768887\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.470974\n", - "Epoch : 32 [12/36(33%)]\tLoss: 0.334018\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.237348\n", - "Epoch : 32 [20/36(56%)]\tLoss: 0.940603\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.886216\n", - "Epoch : 32 [28/36(78%)]\tLoss: 0.167170\n", - "Epoch : 32 [32/36(89%)]\tLoss: 2.265817\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.859351\n", - "Epoch : 33 [4/36(11%)]\tLoss: 0.509233\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.366048\n", - "Epoch : 33 [12/36(33%)]\tLoss: 0.688142\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.757897\n", - "Epoch : 33 [20/36(56%)]\tLoss: 1.583678\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.766269\n", - "Epoch : 33 [28/36(78%)]\tLoss: 0.530918\n", - "Epoch : 33 [32/36(89%)]\tLoss: 1.014384\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.243347\n", - "Epoch : 34 [4/36(11%)]\tLoss: 0.916030\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.680216\n", - "Epoch : 34 [12/36(33%)]\tLoss: 0.500579\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.168039\n", - "Epoch : 34 [20/36(56%)]\tLoss: 0.467304\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.092526\n", - "Epoch : 34 [28/36(78%)]\tLoss: 1.247370\n", - "Epoch : 34 [32/36(89%)]\tLoss: 1.299630\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.234113\n", - "Epoch : 35 [4/36(11%)]\tLoss: 0.786768\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.139753\n", - "Epoch : 35 [12/36(33%)]\tLoss: 0.369672\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.555399\n", - "Epoch : 35 [20/36(56%)]\tLoss: 1.242628\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.533303\n", - "Epoch : 35 [28/36(78%)]\tLoss: 1.543690\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.974949\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.218838\n", - "Epoch : 36 [4/36(11%)]\tLoss: 0.926816\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.664061\n", - "Epoch : 36 [12/36(33%)]\tLoss: 0.288672\n", - "Epoch : 36 [16/36(44%)]\tLoss: 1.286678\n", - "Epoch : 36 [20/36(56%)]\tLoss: 1.387703\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.272284\n", - "Epoch : 36 [28/36(78%)]\tLoss: 6.353126\n", - "Epoch : 36 [32/36(89%)]\tLoss: 1.238589\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.930272\n", - "Epoch : 37 [4/36(11%)]\tLoss: 1.390698\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.641488\n", - "Epoch : 37 [12/36(33%)]\tLoss: 0.343006\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.449105\n", - "Epoch : 37 [20/36(56%)]\tLoss: 0.811063\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.622566\n", - "Epoch : 37 [28/36(78%)]\tLoss: 1.277533\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.757840\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.443750\n", - "Epoch : 38 [4/36(11%)]\tLoss: 0.794250\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.200156\n", - "Epoch : 38 [12/36(33%)]\tLoss: 0.349072\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.323256\n", - "Epoch : 38 [20/36(56%)]\tLoss: 0.569961\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.794085\n", - "Epoch : 38 [28/36(78%)]\tLoss: 1.055390\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.414999\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.175185\n", - "Epoch : 39 [4/36(11%)]\tLoss: 0.851548\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.420405\n", - "Epoch : 39 [12/36(33%)]\tLoss: 0.372467\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.708261\n", - "Epoch : 39 [20/36(56%)]\tLoss: 0.600883\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.328008\n", - "Epoch : 39 [28/36(78%)]\tLoss: 0.884630\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.379709\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.171745\n", - "Epoch : 40 [4/36(11%)]\tLoss: 0.684769\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.154164\n", - "Epoch : 40 [12/36(33%)]\tLoss: 0.347881\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.329897\n", - "Epoch : 40 [20/36(56%)]\tLoss: 0.748771\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.217129\n", - "Epoch : 40 [28/36(78%)]\tLoss: 0.134441\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.384551\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.201660\n", - "Epoch : 41 [4/36(11%)]\tLoss: 0.634147\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.488421\n", - "Epoch : 41 [12/36(33%)]\tLoss: 1.124412\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.172175\n", - "Epoch : 41 [20/36(56%)]\tLoss: 1.340690\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.302503\n", - "Epoch : 41 [28/36(78%)]\tLoss: 0.861084\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.288902\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.190286\n", - "Epoch : 42 [4/36(11%)]\tLoss: 0.618529\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.356948\n", - "Epoch : 42 [12/36(33%)]\tLoss: 0.353008\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.072380\n", - "Epoch : 42 [20/36(56%)]\tLoss: 0.419466\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.234878\n", - "Epoch : 42 [28/36(78%)]\tLoss: 1.129360\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.123113\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.054506\n", - "Epoch : 43 [4/36(11%)]\tLoss: 0.357096\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.250214\n", - "Epoch : 43 [12/36(33%)]\tLoss: 0.433666\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.101008\n", - "Epoch : 43 [20/36(56%)]\tLoss: 0.244675\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.275862\n", - "Epoch : 43 [28/36(78%)]\tLoss: 0.779114\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.165625\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.146699\n", - "Epoch : 44 [4/36(11%)]\tLoss: 0.442961\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.158242\n", - "Epoch : 44 [12/36(33%)]\tLoss: 0.225024\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.161809\n", - "Epoch : 44 [20/36(56%)]\tLoss: 0.686248\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.287028\n", - "Epoch : 44 [28/36(78%)]\tLoss: 0.702109\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.107372\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.185690\n", - "Epoch : 45 [4/36(11%)]\tLoss: 0.732336\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.133776\n", - "Epoch : 45 [12/36(33%)]\tLoss: 0.439040\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.187590\n", - "Epoch : 45 [20/36(56%)]\tLoss: 0.513467\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.089012\n", - "Epoch : 45 [28/36(78%)]\tLoss: 0.192713\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.037176\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.210400\n", - "Epoch : 46 [4/36(11%)]\tLoss: 0.416780\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.165280\n", - "Epoch : 46 [12/36(33%)]\tLoss: 0.053342\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.012009\n", - "Epoch : 46 [20/36(56%)]\tLoss: 0.568222\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.175414\n", - "Epoch : 46 [28/36(78%)]\tLoss: 0.853642\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.203973\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.262228\n", - "Epoch : 47 [4/36(11%)]\tLoss: 0.504034\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.252107\n", - "Epoch : 47 [12/36(33%)]\tLoss: 0.025600\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.199611\n", - "Epoch : 47 [20/36(56%)]\tLoss: 0.553687\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.307200\n", - "Epoch : 47 [28/36(78%)]\tLoss: 0.234742\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.235293\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.092998\n", - "Epoch : 48 [4/36(11%)]\tLoss: 0.488977\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.134274\n", - "Epoch : 48 [12/36(33%)]\tLoss: 0.851267\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.422727\n", - "Epoch : 48 [20/36(56%)]\tLoss: 0.608971\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.271737\n", - "Epoch : 48 [28/36(78%)]\tLoss: 0.454775\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.063672\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.325508\n", - "Epoch : 49 [4/36(11%)]\tLoss: 0.403339\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.243075\n", - "Epoch : 49 [12/36(33%)]\tLoss: 0.156796\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.136313\n", - "Epoch : 49 [20/36(56%)]\tLoss: 0.076903\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.099951\n", - "Epoch : 49 [28/36(78%)]\tLoss: 0.108966\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.245688\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.348731\n", - "Epoch : 50 [4/36(11%)]\tLoss: 0.446839\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.197771\n", - "Epoch : 50 [12/36(33%)]\tLoss: 0.372488\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.103378\n", - "Epoch : 50 [20/36(56%)]\tLoss: 0.343731\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.233521\n", - "Epoch : 50 [28/36(78%)]\tLoss: 0.372527\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.043850\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.550775\n", - "Epoch : 51 [4/36(11%)]\tLoss: 0.451025\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.119609\n", - "Epoch : 51 [12/36(33%)]\tLoss: 0.134784\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.188572\n", - "Epoch : 51 [20/36(56%)]\tLoss: 0.366579\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.192190\n", - "Epoch : 51 [28/36(78%)]\tLoss: 0.380612\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.111332\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.163350\n", - "Epoch : 52 [4/36(11%)]\tLoss: 0.356627\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.216677\n", - "Epoch : 52 [12/36(33%)]\tLoss: 0.406206\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.297715\n", - "Epoch : 52 [20/36(56%)]\tLoss: 0.141578\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.116860\n", - "Epoch : 52 [28/36(78%)]\tLoss: 0.530331\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.170246\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.381275\n", - "Epoch : 53 [4/36(11%)]\tLoss: 0.348139\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.335541\n", - "Epoch : 53 [12/36(33%)]\tLoss: 0.124847\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.258001\n", - "Epoch : 53 [20/36(56%)]\tLoss: 0.178782\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.238619\n", - "Epoch : 53 [28/36(78%)]\tLoss: 0.415877\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.100437\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.081156\n", - "Epoch : 54 [4/36(11%)]\tLoss: 0.386368\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.837409\n", - "Epoch : 54 [12/36(33%)]\tLoss: 0.666803\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.089787\n", - "Epoch : 54 [20/36(56%)]\tLoss: 0.189060\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.296038\n", - "Epoch : 54 [28/36(78%)]\tLoss: 0.160360\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.486605\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.624062\n", - "Epoch : 55 [4/36(11%)]\tLoss: 1.032569\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.285151\n", - "Epoch : 55 [12/36(33%)]\tLoss: 0.336291\n", - "Epoch : 55 [16/36(44%)]\tLoss: 1.106069\n", - "Epoch : 55 [20/36(56%)]\tLoss: 0.381215\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.471293\n", - "Epoch : 55 [28/36(78%)]\tLoss: 0.367933\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.213155\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.468724\n", - "Epoch : 56 [4/36(11%)]\tLoss: 1.033065\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.111104\n", - "Epoch : 56 [12/36(33%)]\tLoss: 0.382226\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.079845\n", - "Epoch : 56 [20/36(56%)]\tLoss: 0.159520\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.116626\n", - "Epoch : 56 [28/36(78%)]\tLoss: 1.039907\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.234875\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.088747\n", - "Epoch : 57 [4/36(11%)]\tLoss: 0.504149\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.089694\n", - "Epoch : 57 [12/36(33%)]\tLoss: 0.109227\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.514877\n", - "Epoch : 57 [20/36(56%)]\tLoss: 0.648686\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.396564\n", - "Epoch : 57 [28/36(78%)]\tLoss: 0.345732\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.112680\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.200984\n", - "Epoch : 58 [4/36(11%)]\tLoss: 0.433660\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.135068\n", - "Epoch : 58 [12/36(33%)]\tLoss: 0.410227\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.132842\n", - "Epoch : 58 [20/36(56%)]\tLoss: 0.241061\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.383544\n", - "Epoch : 58 [28/36(78%)]\tLoss: 1.599551\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.079575\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.190714\n", - "Epoch : 59 [4/36(11%)]\tLoss: 0.442133\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.556801\n", - "Epoch : 59 [12/36(33%)]\tLoss: 0.338196\n", - "Epoch : 59 [16/36(44%)]\tLoss: 1.168757\n", - "Epoch : 59 [20/36(56%)]\tLoss: 1.749450\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.656083\n", - "Epoch : 59 [28/36(78%)]\tLoss: 1.078569\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.550618\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.987723\n", - "Epoch : 60 [4/36(11%)]\tLoss: 1.151033\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.093100\n", - "Epoch : 60 [12/36(33%)]\tLoss: 0.137183\n", - "Epoch : 60 [16/36(44%)]\tLoss: 1.042699\n", - "Epoch : 60 [20/36(56%)]\tLoss: 2.272436\n", - "Epoch : 60 [24/36(67%)]\tLoss: 1.140916\n", - "Epoch : 60 [28/36(78%)]\tLoss: 0.506850\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.981858\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.414156\n", - "Epoch : 61 [4/36(11%)]\tLoss: 1.475227\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.790442\n", - "Epoch : 61 [12/36(33%)]\tLoss: 0.959055\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.687017\n", - "Epoch : 61 [20/36(56%)]\tLoss: 0.991804\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.540736\n", - "Epoch : 61 [28/36(78%)]\tLoss: 0.234528\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.786315\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.291553\n", - "Epoch : 62 [4/36(11%)]\tLoss: 0.551487\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.035087\n", - "Epoch : 62 [12/36(33%)]\tLoss: 0.514566\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.426550\n", - "Epoch : 62 [20/36(56%)]\tLoss: 0.731959\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.342878\n", - "Epoch : 62 [28/36(78%)]\tLoss: 0.198309\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.266847\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.395846\n", - "Epoch : 63 [4/36(11%)]\tLoss: 0.347448\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.104253\n", - "Epoch : 63 [12/36(33%)]\tLoss: 0.464699\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.743897\n", - "Epoch : 63 [20/36(56%)]\tLoss: 0.562298\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.348697\n", - "Epoch : 63 [28/36(78%)]\tLoss: 0.081006\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.267587\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.403919\n", - "Epoch : 64 [4/36(11%)]\tLoss: 0.583187\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.034230\n", - "Epoch : 64 [12/36(33%)]\tLoss: 0.050419\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.518728\n", - "Epoch : 64 [20/36(56%)]\tLoss: 0.858394\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.227439\n", - "Epoch : 64 [28/36(78%)]\tLoss: 0.271283\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.535153\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.340800\n", - "Epoch : 65 [4/36(11%)]\tLoss: 0.950589\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.207805\n", - "Epoch : 65 [12/36(33%)]\tLoss: 0.075296\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.121557\n", - "Epoch : 65 [20/36(56%)]\tLoss: 0.743605\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.310311\n", - "Epoch : 65 [28/36(78%)]\tLoss: 0.039568\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.241201\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.220189\n", - "Epoch : 66 [4/36(11%)]\tLoss: 0.986661\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.429216\n", - "Epoch : 66 [12/36(33%)]\tLoss: 0.190286\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.342904\n", - "Epoch : 66 [20/36(56%)]\tLoss: 0.475970\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.163098\n", - "Epoch : 66 [28/36(78%)]\tLoss: 0.199488\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.848465\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.485472\n", - "Epoch : 67 [4/36(11%)]\tLoss: 0.500362\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.077705\n", - "Epoch : 67 [12/36(33%)]\tLoss: 0.037596\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.107943\n", - "Epoch : 67 [20/36(56%)]\tLoss: 0.325441\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.418580\n", - "Epoch : 67 [28/36(78%)]\tLoss: 0.657075\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.121216\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.140856\n", - "Epoch : 68 [4/36(11%)]\tLoss: 0.551161\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.013699\n", - "Epoch : 68 [12/36(33%)]\tLoss: 0.771003\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.240587\n", - "Epoch : 68 [20/36(56%)]\tLoss: 0.679748\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.792342\n", - "Epoch : 68 [28/36(78%)]\tLoss: 0.306854\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.203654\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.400457\n", - "Epoch : 69 [4/36(11%)]\tLoss: 0.839640\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.168603\n", - "Epoch : 69 [12/36(33%)]\tLoss: 0.108740\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.308156\n", - "Epoch : 69 [20/36(56%)]\tLoss: 1.052503\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.403796\n", - "Epoch : 69 [28/36(78%)]\tLoss: 0.120811\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.132655\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.366187\n", - "Epoch : 70 [4/36(11%)]\tLoss: 0.963034\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.330540\n", - "Epoch : 70 [12/36(33%)]\tLoss: 0.316742\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.400366\n", - "Epoch : 70 [20/36(56%)]\tLoss: 0.674161\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.219539\n", - "Epoch : 70 [28/36(78%)]\tLoss: 0.631030\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.089863\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.318906\n", - "Epoch : 71 [4/36(11%)]\tLoss: 0.768939\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.174508\n", - "Epoch : 71 [12/36(33%)]\tLoss: 0.426376\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.412015\n", - "Epoch : 71 [20/36(56%)]\tLoss: 0.379367\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.217094\n", - "Epoch : 71 [28/36(78%)]\tLoss: 0.393932\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.260534\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.327018\n", - "Epoch : 72 [4/36(11%)]\tLoss: 0.485621\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.088836\n", - "Epoch : 72 [12/36(33%)]\tLoss: 0.098148\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.857462\n", - "Epoch : 72 [20/36(56%)]\tLoss: 0.504475\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.126964\n", - "Epoch : 72 [28/36(78%)]\tLoss: 0.510952\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.107330\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.302419\n", - "Epoch : 73 [4/36(11%)]\tLoss: 0.391586\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.210357\n", - "Epoch : 73 [12/36(33%)]\tLoss: 0.076893\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.454856\n", - "Epoch : 73 [20/36(56%)]\tLoss: 0.395524\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.151184\n", - "Epoch : 73 [28/36(78%)]\tLoss: 0.263772\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.064785\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.342791\n", - "Epoch : 74 [4/36(11%)]\tLoss: 0.852182\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.161477\n", - "Epoch : 74 [12/36(33%)]\tLoss: 0.256317\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.293542\n", - "Epoch : 74 [20/36(56%)]\tLoss: 0.757781\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.185360\n", - "Epoch : 74 [28/36(78%)]\tLoss: 0.131448\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.751071\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.251350\n", - "Epoch : 75 [4/36(11%)]\tLoss: 0.752285\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.331330\n", - "Epoch : 75 [12/36(33%)]\tLoss: 0.066289\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.216346\n", - "Epoch : 75 [20/36(56%)]\tLoss: 0.365823\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.100306\n", - "Epoch : 75 [28/36(78%)]\tLoss: 0.170005\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.091758\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.142475\n", - "Epoch : 76 [4/36(11%)]\tLoss: 0.423894\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.255001\n", - "Epoch : 76 [12/36(33%)]\tLoss: 0.117551\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.117521\n", - "Epoch : 76 [20/36(56%)]\tLoss: 0.288481\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.090718\n", - "Epoch : 76 [28/36(78%)]\tLoss: 0.708676\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.289311\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.066839\n", - "Epoch : 77 [4/36(11%)]\tLoss: 0.388720\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.172362\n", - "Epoch : 77 [12/36(33%)]\tLoss: 0.131603\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.078004\n", - "Epoch : 77 [20/36(56%)]\tLoss: 0.184629\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.170910\n", - "Epoch : 77 [28/36(78%)]\tLoss: 0.422732\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.123110\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.085224\n", - "Epoch : 78 [4/36(11%)]\tLoss: 0.271152\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.096152\n", - "Epoch : 78 [12/36(33%)]\tLoss: 0.165972\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.178150\n", - "Epoch : 78 [20/36(56%)]\tLoss: 0.089388\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.157062\n", - "Epoch : 78 [28/36(78%)]\tLoss: 0.516113\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.128400\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.387980\n", - "Epoch : 79 [4/36(11%)]\tLoss: 0.231512\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.177240\n", - "Epoch : 79 [12/36(33%)]\tLoss: 0.040197\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.169139\n", - "Epoch : 79 [20/36(56%)]\tLoss: 0.216605\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.048632\n", - "Epoch : 79 [28/36(78%)]\tLoss: 0.339666\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.040378\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.201622\n", - "Epoch : 80 [4/36(11%)]\tLoss: 0.464308\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.083405\n", - "Epoch : 80 [12/36(33%)]\tLoss: 0.248514\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.005458\n", - "Epoch : 80 [20/36(56%)]\tLoss: 0.205395\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.033503\n", - "Epoch : 80 [28/36(78%)]\tLoss: 0.094527\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.075376\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.049962\n", - "Epoch : 81 [4/36(11%)]\tLoss: 0.562263\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.069180\n", - "Epoch : 81 [12/36(33%)]\tLoss: 0.043206\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.044344\n", - "Epoch : 81 [20/36(56%)]\tLoss: 0.210113\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.016055\n", - "Epoch : 81 [28/36(78%)]\tLoss: 0.604758\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.165790\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.196803\n", - "Epoch : 82 [4/36(11%)]\tLoss: 0.572601\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.059269\n", - "Epoch : 82 [12/36(33%)]\tLoss: 0.058224\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.160307\n", - "Epoch : 82 [20/36(56%)]\tLoss: 0.384265\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.091639\n", - "Epoch : 82 [28/36(78%)]\tLoss: 0.141055\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.324417\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.089226\n", - "Epoch : 83 [4/36(11%)]\tLoss: 0.346364\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.345324\n", - "Epoch : 83 [12/36(33%)]\tLoss: 0.261385\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.697991\n", - "Epoch : 83 [20/36(56%)]\tLoss: 0.180457\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.007168\n", - "Epoch : 83 [28/36(78%)]\tLoss: 0.042873\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.282469\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.356585\n", - "Epoch : 84 [4/36(11%)]\tLoss: 0.287864\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.075103\n", - "Epoch : 84 [12/36(33%)]\tLoss: 0.117800\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.154776\n", - "Epoch : 84 [20/36(56%)]\tLoss: 0.101845\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.214729\n", - "Epoch : 84 [28/36(78%)]\tLoss: 0.496741\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.086333\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.299150\n", - "Epoch : 85 [4/36(11%)]\tLoss: 0.428410\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.540416\n", - "Epoch : 85 [12/36(33%)]\tLoss: 0.259992\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.244744\n", - "Epoch : 85 [20/36(56%)]\tLoss: 0.281234\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.175025\n", - "Epoch : 85 [28/36(78%)]\tLoss: 0.391115\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.582699\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.364494\n", - "Epoch : 86 [4/36(11%)]\tLoss: 0.625559\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.159026\n", - "Epoch : 86 [12/36(33%)]\tLoss: 0.125137\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.621458\n", - "Epoch : 86 [20/36(56%)]\tLoss: 0.554957\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.067801\n", - "Epoch : 86 [28/36(78%)]\tLoss: 0.140771\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.144510\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.291078\n", - "Epoch : 87 [4/36(11%)]\tLoss: 0.918951\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.272629\n", - "Epoch : 87 [12/36(33%)]\tLoss: 0.133226\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.158878\n", - "Epoch : 87 [20/36(56%)]\tLoss: 0.540778\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.251610\n", - "Epoch : 87 [28/36(78%)]\tLoss: 0.600893\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.426465\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.119330\n", - "Epoch : 88 [4/36(11%)]\tLoss: 0.440438\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.143525\n", - "Epoch : 88 [12/36(33%)]\tLoss: 0.581278\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.548583\n", - "Epoch : 88 [20/36(56%)]\tLoss: 0.101318\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.284670\n", - "Epoch : 88 [28/36(78%)]\tLoss: 0.173301\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.567535\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.591789\n", - "Epoch : 89 [4/36(11%)]\tLoss: 0.746135\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.236921\n", - "Epoch : 89 [12/36(33%)]\tLoss: 0.190889\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.548965\n", - "Epoch : 89 [20/36(56%)]\tLoss: 0.085313\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.580343\n", - "Epoch : 89 [28/36(78%)]\tLoss: 0.184932\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.236142\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.139232\n", - "Epoch : 90 [4/36(11%)]\tLoss: 0.273177\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.857480\n", - "Epoch : 90 [12/36(33%)]\tLoss: 0.582873\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.166760\n", - "Epoch : 90 [20/36(56%)]\tLoss: 0.186883\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.240635\n", - "Epoch : 90 [28/36(78%)]\tLoss: 0.518828\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.454759\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.634324\n", - "Epoch : 91 [4/36(11%)]\tLoss: 0.249185\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.313072\n", - "Epoch : 91 [12/36(33%)]\tLoss: 0.636360\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.429538\n", - "Epoch : 91 [20/36(56%)]\tLoss: 0.586264\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.177217\n", - "Epoch : 91 [28/36(78%)]\tLoss: 0.249414\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.328144\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.699569\n", - "Epoch : 92 [4/36(11%)]\tLoss: 0.786770\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.056814\n", - "Epoch : 92 [12/36(33%)]\tLoss: 0.031136\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.161279\n", - "Epoch : 92 [20/36(56%)]\tLoss: 0.701188\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.457922\n", - "Epoch : 92 [28/36(78%)]\tLoss: 0.605793\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.055673\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.179404\n", - "Epoch : 93 [4/36(11%)]\tLoss: 0.821694\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.204717\n", - "Epoch : 93 [12/36(33%)]\tLoss: 0.299077\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.417725\n", - "Epoch : 93 [20/36(56%)]\tLoss: 0.197114\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.317608\n", - "Epoch : 93 [28/36(78%)]\tLoss: 0.327102\n", - "Epoch : 93 [32/36(89%)]\tLoss: 1.064498\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.512139\n", - "Epoch : 94 [4/36(11%)]\tLoss: 0.238621\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.092972\n", - "Epoch : 94 [12/36(33%)]\tLoss: 0.249808\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.355105\n", - "Epoch : 94 [20/36(56%)]\tLoss: 0.205945\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.651016\n", - "Epoch : 94 [28/36(78%)]\tLoss: 0.578657\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.149530\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.475559\n", - "Epoch : 95 [4/36(11%)]\tLoss: 0.620163\n", - "Epoch : 95 [8/36(22%)]\tLoss: 1.275573\n", - "Epoch : 95 [12/36(33%)]\tLoss: 0.194408\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.116959\n", - "Epoch : 95 [20/36(56%)]\tLoss: 0.268944\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.823027\n", - "Epoch : 95 [28/36(78%)]\tLoss: 0.536795\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.138851\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.147528\n", - "Epoch : 96 [4/36(11%)]\tLoss: 0.367619\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.502290\n", - "Epoch : 96 [12/36(33%)]\tLoss: 0.277322\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.314263\n", - "Epoch : 96 [20/36(56%)]\tLoss: 0.493367\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.279780\n", - "Epoch : 96 [28/36(78%)]\tLoss: 0.076003\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.201008\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.373112\n", - "Epoch : 97 [4/36(11%)]\tLoss: 0.418882\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.096935\n", - "Epoch : 97 [12/36(33%)]\tLoss: 0.142398\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.292992\n", - "Epoch : 97 [20/36(56%)]\tLoss: 0.492764\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.136633\n", - "Epoch : 97 [28/36(78%)]\tLoss: 0.125291\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.049241\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.257102\n", - "Epoch : 98 [4/36(11%)]\tLoss: 0.595618\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.244193\n", - "Epoch : 98 [12/36(33%)]\tLoss: 0.274328\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.045561\n", - "Epoch : 98 [20/36(56%)]\tLoss: 0.369388\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.119866\n", - "Epoch : 98 [28/36(78%)]\tLoss: 0.430298\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.165205\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.442106\n", - "Epoch : 99 [4/36(11%)]\tLoss: 0.319470\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.116928\n", - "Epoch : 99 [12/36(33%)]\tLoss: 0.516852\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.767723\n", - "Epoch : 99 [20/36(56%)]\tLoss: 0.102293\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.164339\n", - "Epoch : 99 [28/36(78%)]\tLoss: 0.173098\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.777830\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.586682\n", - "Epoch : 100 [4/36(11%)]\tLoss: 0.340665\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.147469\n", - "Epoch : 100 [12/36(33%)]\tLoss: 0.182332\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.283462\n", - "Epoch : 100 [20/36(56%)]\tLoss: 0.207662\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.497050\n", - "Epoch : 100 [28/36(78%)]\tLoss: 0.165086\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.117203\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.083228\n", - "Epoch : 101 [4/36(11%)]\tLoss: 0.546391\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.431156\n", - "Epoch : 101 [12/36(33%)]\tLoss: 0.398226\n", - "Epoch : 101 [16/36(44%)]\tLoss: 1.288929\n", - "Epoch : 101 [20/36(56%)]\tLoss: 0.640342\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.401745\n", - "Epoch : 101 [28/36(78%)]\tLoss: 0.407061\n", - "Epoch : 101 [32/36(89%)]\tLoss: 1.305236\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.803203\n", - "Epoch : 102 [4/36(11%)]\tLoss: 0.803634\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.246378\n", - "Epoch : 102 [12/36(33%)]\tLoss: 0.677488\n", - "Epoch : 102 [16/36(44%)]\tLoss: 1.857794\n", - "Epoch : 102 [20/36(56%)]\tLoss: 1.637340\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.607095\n", - "Epoch : 102 [28/36(78%)]\tLoss: 0.254901\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.450059\n", - "Epoch : 103 [0/36(0%)]\tLoss: 1.180508\n", - "Epoch : 103 [4/36(11%)]\tLoss: 1.737358\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.399888\n", - "Epoch : 103 [12/36(33%)]\tLoss: 0.145695\n", - "Epoch : 103 [16/36(44%)]\tLoss: 1.078226\n", - "Epoch : 103 [20/36(56%)]\tLoss: 2.185148\n", - "Epoch : 103 [24/36(67%)]\tLoss: 1.145702\n", - "Epoch : 103 [28/36(78%)]\tLoss: 0.967929\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.555476\n", - "Epoch : 104 [0/36(0%)]\tLoss: 1.243436\n", - "Epoch : 104 [4/36(11%)]\tLoss: 1.967332\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.957190\n", - "Epoch : 104 [12/36(33%)]\tLoss: 0.382028\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.336646\n", - "Epoch : 104 [20/36(56%)]\tLoss: 1.186655\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.802149\n", - "Epoch : 104 [28/36(78%)]\tLoss: 0.526138\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.238018\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.150440\n", - "Epoch : 105 [4/36(11%)]\tLoss: 0.649219\n", - "Epoch : 105 [8/36(22%)]\tLoss: 1.940693\n", - "Epoch : 105 [12/36(33%)]\tLoss: 1.726291\n", - "Epoch : 105 [16/36(44%)]\tLoss: 1.048240\n", - "Epoch : 105 [20/36(56%)]\tLoss: 0.640212\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.224103\n", - "Epoch : 105 [28/36(78%)]\tLoss: 0.495840\n", - "Epoch : 105 [32/36(89%)]\tLoss: 2.218499\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.800397\n", - "Epoch : 106 [4/36(11%)]\tLoss: 0.318850\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.186796\n", - "Epoch : 106 [12/36(33%)]\tLoss: 0.328822\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.880447\n", - "Epoch : 106 [20/36(56%)]\tLoss: 0.526012\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.372196\n", - "Epoch : 106 [28/36(78%)]\tLoss: 0.545029\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.210318\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.627842\n", - "Epoch : 107 [4/36(11%)]\tLoss: 0.713033\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.506655\n", - "Epoch : 107 [12/36(33%)]\tLoss: 0.069775\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.258880\n", - "Epoch : 107 [20/36(56%)]\tLoss: 0.485790\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.434654\n", - "Epoch : 107 [28/36(78%)]\tLoss: 0.986387\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.479963\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.096445\n", - "Epoch : 108 [4/36(11%)]\tLoss: 0.286673\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.381003\n", - "Epoch : 108 [12/36(33%)]\tLoss: 0.614597\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.450621\n", - "Epoch : 108 [20/36(56%)]\tLoss: 0.669061\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.096559\n", - "Epoch : 108 [28/36(78%)]\tLoss: 0.275418\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.804102\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.838495\n", - "Epoch : 109 [4/36(11%)]\tLoss: 1.215745\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.062430\n", - "Epoch : 109 [12/36(33%)]\tLoss: 0.159007\n", - "Epoch : 109 [16/36(44%)]\tLoss: 1.296312\n", - "Epoch : 109 [20/36(56%)]\tLoss: 2.450544\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.601764\n", - "Epoch : 109 [28/36(78%)]\tLoss: 0.213653\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.523616\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.794437\n", - "Epoch : 110 [4/36(11%)]\tLoss: 1.870096\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.811448\n", - "Epoch : 110 [12/36(33%)]\tLoss: 0.082044\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.358022\n", - "Epoch : 110 [20/36(56%)]\tLoss: 1.638812\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.672341\n", - "Epoch : 110 [28/36(78%)]\tLoss: 0.718325\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.167818\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.562024\n", - "Epoch : 111 [4/36(11%)]\tLoss: 0.820200\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.834176\n", - "Epoch : 111 [12/36(33%)]\tLoss: 1.139762\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.326634\n", - "Epoch : 111 [20/36(56%)]\tLoss: 0.946186\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.598871\n", - "Epoch : 111 [28/36(78%)]\tLoss: 0.794655\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.416314\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.327260\n", - "Epoch : 112 [4/36(11%)]\tLoss: 0.519059\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.187847\n", - "Epoch : 112 [12/36(33%)]\tLoss: 0.433497\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.343210\n", - "Epoch : 112 [20/36(56%)]\tLoss: 0.408844\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.119463\n", - "Epoch : 112 [28/36(78%)]\tLoss: 0.447131\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.275187\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.434932\n", - "Epoch : 113 [4/36(11%)]\tLoss: 0.267949\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.038561\n", - "Epoch : 113 [12/36(33%)]\tLoss: 0.204059\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.241844\n", - "Epoch : 113 [20/36(56%)]\tLoss: 0.217105\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.291218\n", - "Epoch : 113 [28/36(78%)]\tLoss: 0.281015\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.333592\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.141699\n", - "Epoch : 114 [4/36(11%)]\tLoss: 0.247860\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.084436\n", - "Epoch : 114 [12/36(33%)]\tLoss: 0.329118\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.193044\n", - "Epoch : 114 [20/36(56%)]\tLoss: 0.250687\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.232723\n", - "Epoch : 114 [28/36(78%)]\tLoss: 0.878178\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.440108\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.100904\n", - "Epoch : 115 [4/36(11%)]\tLoss: 0.374544\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.009168\n", - "Epoch : 115 [12/36(33%)]\tLoss: 0.017287\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.069933\n", - "Epoch : 115 [20/36(56%)]\tLoss: 0.550595\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.016625\n", - "Epoch : 115 [28/36(78%)]\tLoss: 0.102405\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.142739\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.151976\n", - "Epoch : 116 [4/36(11%)]\tLoss: 0.267868\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.548577\n", - "Epoch : 116 [12/36(33%)]\tLoss: 0.053482\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.043041\n", - "Epoch : 116 [20/36(56%)]\tLoss: 0.148280\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.047300\n", - "Epoch : 116 [28/36(78%)]\tLoss: 0.034180\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.058306\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.317567\n", - "Epoch : 117 [4/36(11%)]\tLoss: 0.199254\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.029637\n", - "Epoch : 117 [12/36(33%)]\tLoss: 0.087505\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.356819\n", - "Epoch : 117 [20/36(56%)]\tLoss: 0.124659\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.187283\n", - "Epoch : 117 [28/36(78%)]\tLoss: 0.085256\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.185519\n", - "Epoch : 118 [0/36(0%)]\tLoss: 1.665215\n", - "Epoch : 118 [4/36(11%)]\tLoss: 0.085111\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.010460\n", - "Epoch : 118 [12/36(33%)]\tLoss: 0.127448\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.181292\n", - "Epoch : 118 [20/36(56%)]\tLoss: 1.402862\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.157969\n", - "Epoch : 118 [28/36(78%)]\tLoss: 0.158897\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.145005\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.174923\n", - "Epoch : 119 [4/36(11%)]\tLoss: 0.194443\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.035642\n", - "Epoch : 119 [12/36(33%)]\tLoss: 0.058165\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.118919\n", - "Epoch : 119 [20/36(56%)]\tLoss: 0.179913\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.262855\n", - "Epoch : 119 [28/36(78%)]\tLoss: 0.503860\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.425094\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.145393\n", - "Epoch : 120 [4/36(11%)]\tLoss: 0.149935\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.342409\n", - "Epoch : 120 [12/36(33%)]\tLoss: 0.069583\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.189382\n", - "Epoch : 120 [20/36(56%)]\tLoss: 0.493422\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.024969\n", - "Epoch : 120 [28/36(78%)]\tLoss: 0.103296\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.103516\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.326754\n", - "Epoch : 121 [4/36(11%)]\tLoss: 0.450237\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.060618\n", - "Epoch : 121 [12/36(33%)]\tLoss: 0.100700\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.117357\n", - "Epoch : 121 [20/36(56%)]\tLoss: 0.558369\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.164942\n", - "Epoch : 121 [28/36(78%)]\tLoss: 0.278770\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.117040\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.197312\n", - "Epoch : 122 [4/36(11%)]\tLoss: 0.513615\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.308748\n", - "Epoch : 122 [12/36(33%)]\tLoss: 0.199831\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.065613\n", - "Epoch : 122 [20/36(56%)]\tLoss: 0.187940\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.066833\n", - "Epoch : 122 [28/36(78%)]\tLoss: 0.310203\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.452692\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.502539\n", - "Epoch : 123 [4/36(11%)]\tLoss: 0.451618\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.149488\n", - "Epoch : 123 [12/36(33%)]\tLoss: 0.219420\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.589294\n", - "Epoch : 123 [20/36(56%)]\tLoss: 0.229330\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.112291\n", - "Epoch : 123 [28/36(78%)]\tLoss: 0.193194\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.156191\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.353021\n", - "Epoch : 124 [4/36(11%)]\tLoss: 0.679400\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.770952\n", - "Epoch : 124 [12/36(33%)]\tLoss: 0.099951\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.170315\n", - "Epoch : 124 [20/36(56%)]\tLoss: 0.484753\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.590766\n", - "Epoch : 124 [28/36(78%)]\tLoss: 1.056039\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.291728\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.014179\n", - "Epoch : 125 [4/36(11%)]\tLoss: 0.666761\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.898730\n", - "Epoch : 125 [12/36(33%)]\tLoss: 0.839078\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.133622\n", - "Epoch : 125 [20/36(56%)]\tLoss: 0.296906\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.522242\n", - "Epoch : 125 [28/36(78%)]\tLoss: 1.357634\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.483945\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.249091\n", - "Epoch : 126 [4/36(11%)]\tLoss: 0.298418\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.117557\n", - "Epoch : 126 [12/36(33%)]\tLoss: 0.204880\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.587431\n", - "Epoch : 126 [20/36(56%)]\tLoss: 1.187847\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.372977\n", - "Epoch : 126 [28/36(78%)]\tLoss: 0.206767\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.171439\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.644328\n", - "Epoch : 127 [4/36(11%)]\tLoss: 2.266160\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.580379\n", - "Epoch : 127 [12/36(33%)]\tLoss: 0.135999\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.512999\n", - "Epoch : 127 [20/36(56%)]\tLoss: 1.872483\n", - "Epoch : 127 [24/36(67%)]\tLoss: 1.238966\n", - "Epoch : 127 [28/36(78%)]\tLoss: 0.521182\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.259993\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.265112\n", - "Epoch : 128 [4/36(11%)]\tLoss: 1.502435\n", - "Epoch : 128 [8/36(22%)]\tLoss: 1.752910\n", - "Epoch : 128 [12/36(33%)]\tLoss: 1.213190\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.182892\n", - "Epoch : 128 [20/36(56%)]\tLoss: 1.473798\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.285437\n", - "Epoch : 128 [28/36(78%)]\tLoss: 0.903030\n", - "Epoch : 128 [32/36(89%)]\tLoss: 1.723643\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.712713\n", - "Epoch : 129 [4/36(11%)]\tLoss: 0.479779\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.786888\n", - "Epoch : 129 [12/36(33%)]\tLoss: 1.123224\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.927045\n", - "Epoch : 129 [20/36(56%)]\tLoss: 0.342439\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.093316\n", - "Epoch : 129 [28/36(78%)]\tLoss: 0.230954\n", - "Epoch : 129 [32/36(89%)]\tLoss: 1.265112\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.735851\n", - "Epoch : 130 [4/36(11%)]\tLoss: 1.008205\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.474685\n", - "Epoch : 130 [12/36(33%)]\tLoss: 0.268080\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.550381\n", - "Epoch : 130 [20/36(56%)]\tLoss: 0.850722\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.801836\n", - "Epoch : 130 [28/36(78%)]\tLoss: 1.241949\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.450840\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.125799\n", - "Epoch : 131 [4/36(11%)]\tLoss: 0.547972\n", - "Epoch : 131 [8/36(22%)]\tLoss: 2.403544\n", - "Epoch : 131 [12/36(33%)]\tLoss: 0.906547\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.386849\n", - "Epoch : 131 [20/36(56%)]\tLoss: 0.363257\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.881987\n", - "Epoch : 131 [28/36(78%)]\tLoss: 1.516602\n", - "Epoch : 131 [32/36(89%)]\tLoss: 1.657330\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.553499\n", - "Epoch : 132 [4/36(11%)]\tLoss: 0.270250\n", - "Epoch : 132 [8/36(22%)]\tLoss: 1.147920\n", - "Epoch : 132 [12/36(33%)]\tLoss: 1.012349\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.965370\n", - "Epoch : 132 [20/36(56%)]\tLoss: 1.128829\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.132303\n", - "Epoch : 132 [28/36(78%)]\tLoss: 0.443447\n", - "Epoch : 132 [32/36(89%)]\tLoss: 1.139149\n", - "Epoch : 133 [0/36(0%)]\tLoss: 2.019506\n", - "Epoch : 133 [4/36(11%)]\tLoss: 1.483567\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.222766\n", - "Epoch : 133 [12/36(33%)]\tLoss: 0.479214\n", - "Epoch : 133 [16/36(44%)]\tLoss: 1.252902\n", - "Epoch : 133 [20/36(56%)]\tLoss: 2.039283\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.835975\n", - "Epoch : 133 [28/36(78%)]\tLoss: 1.013910\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.484830\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.873319\n", - "Epoch : 134 [4/36(11%)]\tLoss: 2.239208\n", - "Epoch : 134 [8/36(22%)]\tLoss: 1.142551\n", - "Epoch : 134 [12/36(33%)]\tLoss: 0.698097\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.395490\n", - "Epoch : 134 [20/36(56%)]\tLoss: 0.630927\n", - "Epoch : 134 [24/36(67%)]\tLoss: 2.416898\n", - "Epoch : 134 [28/36(78%)]\tLoss: 1.961826\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.963865\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.513699\n", - "Epoch : 135 [4/36(11%)]\tLoss: 1.159483\n", - "Epoch : 135 [8/36(22%)]\tLoss: 1.378969\n", - "Epoch : 135 [12/36(33%)]\tLoss: 1.816255\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.669326\n", - "Epoch : 135 [20/36(56%)]\tLoss: 0.399843\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.242482\n", - "Epoch : 135 [28/36(78%)]\tLoss: 0.449311\n", - "Epoch : 135 [32/36(89%)]\tLoss: 1.769494\n", - "Epoch : 136 [0/36(0%)]\tLoss: 1.712812\n", - "Epoch : 136 [4/36(11%)]\tLoss: 0.357971\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.150119\n", - "Epoch : 136 [12/36(33%)]\tLoss: 0.545350\n", - "Epoch : 136 [16/36(44%)]\tLoss: 1.334263\n", - "Epoch : 136 [20/36(56%)]\tLoss: 1.960453\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.963578\n", - "Epoch : 136 [28/36(78%)]\tLoss: 0.330901\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.297327\n", - "Epoch : 137 [0/36(0%)]\tLoss: 2.078467\n", - "Epoch : 137 [4/36(11%)]\tLoss: 2.584589\n", - "Epoch : 137 [8/36(22%)]\tLoss: 2.093008\n", - "Epoch : 137 [12/36(33%)]\tLoss: 0.218757\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.139294\n", - "Epoch : 137 [20/36(56%)]\tLoss: 0.793414\n", - "Epoch : 137 [24/36(67%)]\tLoss: 2.099733\n", - "Epoch : 137 [28/36(78%)]\tLoss: 2.589034\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.720929\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.317908\n", - "Epoch : 138 [4/36(11%)]\tLoss: 0.666286\n", - "Epoch : 138 [8/36(22%)]\tLoss: 2.043915\n", - "Epoch : 138 [12/36(33%)]\tLoss: 1.559101\n", - "Epoch : 138 [16/36(44%)]\tLoss: 1.181897\n", - "Epoch : 138 [20/36(56%)]\tLoss: 0.792096\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.428118\n", - "Epoch : 138 [28/36(78%)]\tLoss: 1.314481\n", - "Epoch : 138 [32/36(89%)]\tLoss: 1.589546\n", - "Epoch : 139 [0/36(0%)]\tLoss: 1.632950\n", - "Epoch : 139 [4/36(11%)]\tLoss: 0.499525\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.559933\n", - "Epoch : 139 [12/36(33%)]\tLoss: 1.184841\n", - "Epoch : 139 [16/36(44%)]\tLoss: 1.278426\n", - "Epoch : 139 [20/36(56%)]\tLoss: 0.974399\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.395211\n", - "Epoch : 139 [28/36(78%)]\tLoss: 0.073856\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.585635\n", - "Epoch : 140 [0/36(0%)]\tLoss: 1.202225\n", - "Epoch : 140 [4/36(11%)]\tLoss: 1.409314\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.254555\n", - "Epoch : 140 [12/36(33%)]\tLoss: 0.191000\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.255447\n", - "Epoch : 140 [20/36(56%)]\tLoss: 0.781477\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.367237\n", - "Epoch : 140 [28/36(78%)]\tLoss: 0.354671\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.152837\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.193786\n", - "Epoch : 141 [4/36(11%)]\tLoss: 0.526449\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.141756\n", - "Epoch : 141 [12/36(33%)]\tLoss: 0.421991\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.213014\n", - "Epoch : 141 [20/36(56%)]\tLoss: 0.204618\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.598376\n", - "Epoch : 141 [28/36(78%)]\tLoss: 0.236039\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.416823\n", - "Epoch : 142 [0/36(0%)]\tLoss: 1.078028\n", - "Epoch : 142 [4/36(11%)]\tLoss: 0.915580\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.561300\n", - "Epoch : 142 [12/36(33%)]\tLoss: 0.203219\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.573979\n", - "Epoch : 142 [20/36(56%)]\tLoss: 0.322530\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.309427\n", - "Epoch : 142 [28/36(78%)]\tLoss: 0.163867\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.075040\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.242410\n", - "Epoch : 143 [4/36(11%)]\tLoss: 0.312566\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.509524\n", - "Epoch : 143 [12/36(33%)]\tLoss: 0.126450\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.726203\n", - "Epoch : 143 [20/36(56%)]\tLoss: 0.135466\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.099054\n", - "Epoch : 143 [28/36(78%)]\tLoss: 0.439739\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.803386\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.256622\n", - "Epoch : 144 [4/36(11%)]\tLoss: 0.951811\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.360674\n", - "Epoch : 144 [12/36(33%)]\tLoss: 0.391882\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.858808\n", - "Epoch : 144 [20/36(56%)]\tLoss: 0.519849\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.635749\n", - "Epoch : 144 [28/36(78%)]\tLoss: 0.867352\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.480857\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.963310\n", - "Epoch : 145 [4/36(11%)]\tLoss: 1.298752\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.179455\n", - "Epoch : 145 [12/36(33%)]\tLoss: 0.038442\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.435327\n", - "Epoch : 145 [20/36(56%)]\tLoss: 0.476076\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.304078\n", - "Epoch : 145 [28/36(78%)]\tLoss: 1.038557\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.654183\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.204737\n", - "Epoch : 146 [4/36(11%)]\tLoss: 0.970392\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.515129\n", - "Epoch : 146 [12/36(33%)]\tLoss: 0.710956\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.466451\n", - "Epoch : 146 [20/36(56%)]\tLoss: 0.115085\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.297739\n", - "Epoch : 146 [28/36(78%)]\tLoss: 1.263527\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.274987\n", - "Epoch : 147 [0/36(0%)]\tLoss: 1.063654\n", - "Epoch : 147 [4/36(11%)]\tLoss: 0.266227\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.040175\n", - "Epoch : 147 [12/36(33%)]\tLoss: 0.386203\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.858166\n", - "Epoch : 147 [20/36(56%)]\tLoss: 0.287465\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.364928\n", - "Epoch : 147 [28/36(78%)]\tLoss: 0.894572\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.207129\n", - "Epoch : 148 [0/36(0%)]\tLoss: 1.035094\n", - "Epoch : 148 [4/36(11%)]\tLoss: 0.792202\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.573911\n", - "Epoch : 148 [12/36(33%)]\tLoss: 0.181461\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.474999\n", - "Epoch : 148 [20/36(56%)]\tLoss: 0.434514\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.521438\n", - "Epoch : 148 [28/36(78%)]\tLoss: 0.437689\n", - "Epoch : 148 [32/36(89%)]\tLoss: 1.160885\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.215505\n", - "Epoch : 149 [4/36(11%)]\tLoss: 0.336407\n", - "Epoch : 149 [8/36(22%)]\tLoss: 1.062175\n", - "Epoch : 149 [12/36(33%)]\tLoss: 0.169331\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.302514\n", - "Epoch : 149 [20/36(56%)]\tLoss: 0.457066\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.534421\n", - "Epoch : 149 [28/36(78%)]\tLoss: 1.031029\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.598749\n", - "--- 0.16259276469548542 minutes ---\n" - ] - } - ], - "source": [ - "# calculate the time for the code execution\n", - "start_time = tt.time()\n", - "\n", - "# switch model into training mode\n", - "model.train()\n", - "\n", - "hist_train = []\n", - "hist_valid = []\n", - "for epoch in range(config.epoch):\n", - " # training loop\n", - " # switch model into train mode\n", - " model.train()\n", - " hist_train_step = 0\n", - " for batch_idx, (X_batch, y_batch) in enumerate(train_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " # note: decoder input is the last instance of encoder input\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch) # we only need the last instance from output sequence\n", - " loss.backward()\n", - " optimizer.step()\n", - " wandb.log({'train_loss': loss.item()})\n", - " print(f'Epoch : {epoch} [{batch_idx*len(X_batch)}/{len(train_loader.dataset)}'\n", - " f'({100.* batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item():.6f}')\n", - " hist_train_step += loss.item()\n", - "\n", - " hist_train.append(hist_train_step / len(train_loader.dataset))\n", - "\n", - " # cross-validation loop\n", - " # switch model into evaluation mode\n", - " model.eval()\n", - " hist_valid_step = 0\n", - "\n", - " for batch_idx, (X_batch, y_batch) in enumerate(valid_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " with torch.no_grad():\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", - " wandb.log({'validation_loss': loss.item()})\n", - " hist_valid_step += loss.item()\n", - "\n", - " hist_valid.append(hist_valid_step / len(valid_loader.dataset))\n", - "\n", - "print (f\"--- {(tt.time() - start_time)/60} minutes ---\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's check the training loss and validation loss." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADW4UlEQVR4nOzdd3gUVdsG8HvTe6ElhBIQkRC6NJFeFFHpoGJD4JX31SgK2PhUQEVRsCIRLAg2LIAgWCgiICBIR3qR0HtJQnqb74+TszNbs7vZzZbcv+vKNZvNlsmm7NzzPOccnaIoCoiIiIiIiIioQvm5eweIiIiIiIiIKiMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiIiI3YCAnIiIiIiIicgMGciIiIiIiL9StWzd069bN5ts2bdrUtTtUql69enjkkUcq5LmIvB0DOVElMm/ePOh0Ouh0OmzYsMHk64qioE6dOtDpdLj77rv112dlZWHSpElo2rQpwsPDUbVqVbRs2RJPPfUUzp49q7/d5MmT9Y9v7uP8+fMV8n0SERHZSr43btu2zd27Um5nz57F5MmTsWvXLnfvitPUq1cPOp0OvXr1Mvv1Tz/9VH+cYfwz3LBhA/r06YNatWohJCQEdevWRd++fTF//nyD21k7dvnf//7nsu+NCAAC3L0DRFTxQkJCMH/+fHTq1Mng+nXr1uH06dMIDg7WX1dYWIguXbrg4MGDGD58OJ588klkZWVh3759mD9/PgYOHIiEhASDx5k1axYiIiJMnjcmJsYl3w8REVFltHLlSoPPz549i1deeQX16tVDy5Yt3bNTAA4dOgQ/P+fV/UJCQrBmzRqcP38e8fHxBl/75ptvEBISgry8PIPrFyxYgHvvvVdfQIiNjUVaWhr+/PNPfPrpp7j//vsNbn/bbbfh4YcfNnnum266yWnfB5E5DOREldCdd96JBQsWYMaMGQgIUP8NzJ8/H61bt8bly5f11y1ZsgQ7d+7EN998Y/LmlZeXh4KCApPHHzJkCKpVq+a6b4CIiKgSy8nJQVhYGIKCgty9K2ZpT+w7Q8eOHbF161Z8//33eOqpp/TXnz59GuvXr8fAgQOxaNEig/tMnjwZycnJ2Lx5s8nrdPHiRZPnuOmmm/Dggw86db+JbMGWdaJKaNiwYbhy5QpWrVqlv66goAALFy40Cd3//vsvAPFmaCwkJARRUVGu3VkiIiIPsHPnTvTp0wdRUVGIiIhAz549sXnzZpPb/fPPP+jatStCQ0NRu3ZtTJkyBXPnzoVOp8Px48f1t/vpp59w1113ISEhAcHBwWjQoAFee+01FBcXGzyeHPu9fft2dOnSBWFhYfi///s//dfkGPK1a9eibdu2AIARI0boW67nzZtn8Hj79+9H9+7dERYWhlq1amHatGkGX1+7di10Oh1++OEHvPLKK6hVqxYiIyMxZMgQZGRkID8/H08//TRq1KiBiIgIjBgxAvn5+QaPYW4MeXp6OsaOHYt69eohODgYtWvXxsMPP2xQBLAkJCQEgwYNMmk1//bbbxEbG4vevXub3Offf/9F27ZtzZ60qFGjRpnPSVRRWCEnqoTq1auHDh064Ntvv0WfPn0AAL/99hsyMjJw3333YcaMGfrbJiYmAgC+/PJLvPTSS9DpdGU+/tWrV02uCwgIYMs6ERF5pX379qFz586IiorCc889h8DAQHz88cfo1q0b1q1bh/bt2wMAzpw5g+7du0On02HChAkIDw/HZ599ZrZiPG/ePERERGDcuHGIiIjAH3/8gYkTJyIzMxPTp083uO2VK1fQp08f3HfffXjwwQcRFxdn8niNGzfGq6++iokTJ2L06NHo3LkzAODWW2/V3+batWu44447MGjQINxzzz1YuHAhnn/+eTRr1kx/PCBNnToVoaGheOGFF3D06FF8+OGHCAwMhJ+fH65du4bJkydj8+bNmDdvHurXr4+JEydafP2ysrLQuXNnHDhwACNHjsTNN9+My5cvY+nSpTh9+rRNXXX3338/br/9dvz7779o0KABANHZN2TIEAQGBprcPjExEatXr8bp06dRu3btMh8/Ly/P7MmBqKgoj+1EIB+hEFGlMXfuXAWAsnXrVmXmzJlKZGSkkpOToyiKogwdOlTp3r27oiiKkpiYqNx1112KoihKTk6O0qhRIwWAkpiYqDzyyCPKnDlzlAsXLpg8/qRJkxQAZj8aNWpUcd8oERGRjbTvjZYMGDBACQoKUv7991/9dWfPnlUiIyOVLl266K978sknFZ1Op+zcuVN/3ZUrV5QqVaooAJS0tDT99fL9V+u///2vEhYWpuTl5emv69q1qwJAmT17tsntu3btqnTt2lX/+datWxUAyty5c83eFoDy5Zdf6q/Lz89X4uPjlcGDB+uvW7NmjQJAadq0qVJQUKC/ftiwYYpOp1P69Olj8LgdOnRQEhMTDa5LTExUhg8frv984sSJCgDlxx9/NNmvkpISk+uMH+uuu+5SioqKlPj4eOW1115TFEVR9u/frwBQ1q1bZ/ZnOGfOHAWAEhQUpHTv3l15+eWXlfXr1yvFxcUmz2Hp2AWA8u2331rdP6LyYss6USV1zz33IDc3Fz///DOuX7+On3/+2aRdHQBCQ0Px999/49lnnwUgzuiPGjUKNWvWxJNPPmnSpgYAixYtwqpVqww+5s6d6/LviYiIyNmKi4uxcuVKDBgwADfccIP++po1a+L+++/Hhg0bkJmZCQBYvnw5OnToYDChWpUqVfDAAw+YPG5oaKj+8vXr13H58mV07twZOTk5OHjwoMFtg4ODMWLEiHJ/LxEREQbjpIOCgtCuXTscO3bM5LYPP/ywQeW5ffv2UBQFI0eONLhd+/btcerUKRQVFVl83kWLFqFFixYYOHCgydds6bwDAH9/f9xzzz349ttvAYjJ3OrUqaPvBDA2cuRILF++HN26dcOGDRvw2muvoXPnzmjYsCH++usvk9v379/f5Nhl1apV6N69u037R+QotqwTVVLVq1dHr169MH/+fOTk5KC4uBhDhgwxe9vo6GhMmzYN06ZNw4kTJ7B69Wq8/fbbmDlzJqKjozFlyhSD23fp0oWTuhERkU+4dOkScnJy0KhRI5OvNW7cGCUlJTh16hSaNGmCEydOoEOHDia3u/HGG02u27dvH1566SX88ccf+kAvZWRkGHxeq1Ytp7RN165d2yQAx8bG4p9//jG5bd26dQ0+j46OBgDUqVPH5PqSkhJkZGSgatWqZp/333//xeDBg8uz6wBE2/qMGTOwe/duzJ8/H/fdd5/VQN+7d2/07t0bOTk52L59O77//nvMnj0bd999Nw4ePGgwlrx27doWl1YjciVWyIkqsfvvvx+//fYbZs+ejT59+tg0xjsxMREjR47Exo0bERMTg2+++cb1O0pERORD0tPT0bVrV+zevRuvvvoqli1bhlWrVuGtt94CAJSUlBjcXltNLw9/f3+z1yuKYvNt7XkMZ2vfvj0aNGiAp59+GmlpaWY7+8wJCwtD586dMXPmTLz00ku4du0afvvtNxfvLZFtWCEnqsQGDhyI//73v9i8eTO+//57u+4bGxuLBg0aYO/evS7aOyIiIverXr06wsLCcOjQIZOvHTx4EH5+fvqqcWJiIo4ePWpyO+Pr1q5diytXruDHH39Ely5d9NenpaWVa19tbf+uaM48Xhg2bBimTJmCxo0bO7TWeps2bQAA586dc8r+EJUXK+RElVhERARmzZqFyZMno2/fvmZvs3v3brOzjp44cQL79+8328JHRETkK/z9/XH77bfjp59+Mli27MKFC5g/fz46deqkXwK0d+/e2LRpE3bt2qW/3dWrV026yWSVWVtVLigowEcffVSufQ0PDwcgKvCeZPDgwdi9ezcWL15s8jV7K+v/+c9/MGnSJLzzzjtWb7d69Wqz1//6668AwOMX8hiskBNVcsOHD7f69VWrVmHSpEno168fbrnlFkRERODYsWP4/PPPkZ+fj8mTJ5vcZ+HChYiIiDC5/rbbbjO7VAsREZG7ff7551i+fLnJ9U899RSmTJmCVatWoVOnTnj88ccREBCAjz/+GPn5+QbreD/33HP4+uuvcdttt+HJJ5/UL3tWt25dXL16VV/BvvXWWxEbG4vhw4djzJgx0Ol0+Oqrr8rd9t2gQQPExMRg9uzZiIyMRHh4ONq3b4/69euX63HL69lnn8XChQsxdOhQjBw5Eq1bt8bVq1exdOlSzJ49Gy1atLD5sRITE80eexjr378/6tevj759+6JBgwbIzs7G77//jmXLlqFt27YmhYjDhw/j66+/NnmcuLg43HbbbTbvH5G9GMiJyKrBgwfj+vXrWLlyJf744w9cvXoVsbGxaNeuHcaPH2929tHHHnvM7GOtWbOGgZyIiDzSrFmzzF7/yCOPoEmTJli/fj0mTJiAqVOnoqSkBO3bt8fXX3+tX4McEBOerVmzBmPGjMEbb7yB6tWrIyUlBeHh4RgzZgxCQkIAAFWrVsXPP/+M8ePH46WXXkJsbCwefPBB9OzZE71793b4ewgMDMQXX3yBCRMm4H//+x+Kioowd+5ctwfyiIgIrF+/HpMmTcLixYvxxRdfoEaNGujZs6dNa4Q74rPPPsNPP/2EH374AWfPnoWiKLjhhhvw4osv4vnnn0dAgGEMkrOqG+vatSsDObmUTqmIGRiIiIiIiCqpp59+Gh9//DGysrIsTopGRJUTx5ATERERETlJbm6uwedXrlzBV199hU6dOjGME5EJtqwTERERETlJhw4d0K1bNzRu3BgXLlzAnDlzkJmZiZdfftndu0ZEHoiBnIiIiIjISe68804sXLgQn3zyCXQ6HW6++WbMmTPHYHkzIiKJY8iJiIiIiIiI3IBjyImIiIiIiIjcgIGciIiIiIiIyA18fgx5SUkJzp49i8jISOh0OnfvDhERERRFwfXr15GQkAA/P54bLy++1xMRkaex9b3e5wP52bNnUadOHXfvBhERkYlTp06hdu3a7t4Nr8f3eiIi8lRlvdf7fCCPjIwEIF6IqKgoN+8NERERkJmZiTp16ujfo6h8+F5PRESextb3ep8P5LJ1LSoqim/SRETkUdhe7Rx8ryciIk9V1ns9B64RERGRV0pNTUVycjLatm3r7l0hIiJyCAM5EREReaWUlBTs378fW7dudfeuEBEROYSBnIiIiIiIiMgNfH4MORGRrRRFQVFREYqLi929K+Tl/P39ERAQwDHiREQehu/15CzOeq9nICciAlBQUIBz584hJyfH3btCPiIsLAw1a9ZEUFCQu3eFiIjA93pyPme81zOQE1GlV1JSgrS0NPj7+yMhIQFBQUGsbJLDFEVBQUEBLl26hLS0NDRs2BB+fhwhRkTkTnyvJ2dy5ns9AzkRVXoFBQUoKSlBnTp1EBYW5u7dIR8QGhqKwMBAnDhxAgUFBQgJCXH3Lvmk1NRUpKamsvWUiMrE93pyNme91/OUPRFRKVYxyZn4++R6nGWdiOzF/83kTM74feJvJBEREREREZEbMJATERERERERuQEDORER6dWrVw/vv/++zbdfu3YtdDod0tPTXbZPADBv3jzExMS49DmIiIgqC77few4GciIiL6TT6ax+TJ482aHH3bp1K0aPHm3z7W+99VacO3cO0dHRDj0fERERWcb3e9/HWdaJiLzQuXPn9Je///57TJw4EYcOHdJfFxERob+sKAqKi4sREFD2v/zq1avbtR9BQUGIj4+36z5EzsJZ1onI1/H93vexQm6Hzp2BZs2AtDR37wkRuZKiANnZ7vlQFNv2MT4+Xv8RHR0NnU6n//zgwYOIjIzEb7/9htatWyM4OBgbNmzAv//+i/79+yMuLg4RERFo27Ytfv/9d4PHNW5h0+l0+OyzzzBw4ECEhYWhYcOGWLp0qf7rxi1sstVsxYoVaNy4MSIiInDHHXcYHFAUFRVhzJgxiImJQdWqVfH8889j+PDhGDBggF0/p1mzZqFBgwYICgpCo0aN8NVXX2l+hgomT56MunXrIjg4GAkJCRgzZoz+6x999BEaNmyIkJAQxMXFYciQIXY9N3kGV8yy/vzz4r1+/nynPSQReSh3vd/b+l4P8P0e8P33ewZyO+zfD+zdC+TluXtPiMiVcnKAiAj3fOTkOO/7eOGFF/Dmm2/iwIEDaN68ObKysnDnnXdi9erV2LlzJ+644w707dsXJ0+etPo4r7zyCu655x78888/uPPOO/HAAw/g6tWrVl6/HLz99tv46quv8Oeff+LkyZN45pln9F9/66238M0332Du3LnYuHEjMjMzsWTJEru+t8WLF+Opp57C+PHjsXfvXvz3v//FiBEjsGbNGgDAokWL8N577+Hjjz/GkSNHsGTJEjRr1gwAsG3bNowZMwavvvoqDh06hOXLl6NLly52PT/5rlOnxHv9xYvu3hMicjV3vd87870e4Pu917/fKz4uIyNDAaBkZGSU+7GqVVMUQFH27nXCjhGRx8jNzVX279+v5ObmKoqiKFlZ4m/dHR9ZWfbv/9y5c5Xo6Gj952vWrFEAKEuWLCnzvk2aNFE+/PBD/eeJiYnKe++9p/8cgPLSSy/pP8/KylIAKL/99pvBc127dk2/LwCUo0eP6u+TmpqqxMXF6T+Pi4tTpk+frv+8qKhIqVu3rtK/f3+bv8dbb71VefTRRw1uM3ToUOXOO+9UFEVR3nnnHeWmm25SCgoKTB5r0aJFSlRUlJKZmWnx+ZzB+PdKy5nvTeTc1/Phh8Xf4rRpTtgxIvIY5v4nu+v93pH3ekXh+73kSe/3znivZ4XcDnLd95IS9+4HEblWWBiQleWej7Aw530fbdq0Mfg8KysLzzzzDBo3boyYmBhERETgwIEDZZ4xb968uf5yeHg4oqKicNFK+TAsLAwNGjTQf16zZk397TMyMnDhwgW0a9dO/3V/f3+0bt3aru/twIED6Nixo8F1HTt2xIEDBwAAQ4cORW5uLm644QY8+uijWLx4MYqKigAAt912GxITE3HDDTfgoYcewjfffIMcZ5cryGsFBoptYaF794OIXM9d7/fOfK8H+H7v7e/3DOR2YCAnqhx0OiA83D0fOp3zvo/w8HCDz5955hksXrwYb7zxBtavX49du3ahWbNmKCgosPo4gTKh6F8fHUqs/CM0d3vFngFzTlCnTh0cOnQIH330EUJDQ/H444+jS5cuKCwsRGRkJHbs2IFvv/0WNWvWxMSJE9GiRQuXL+VC3oGBnKjycNf7vTPf6wG+33v7+z0DuR0YyInIm23cuBGPPPIIBg4ciGbNmiE+Ph7Hjx+v0H2Ijo5GXFycwSRcxcXF2LFjh12P07hxY2zcuNHguo0bNyI5OVn/eWhoKPr27YsZM2Zg7dq12LRpE/bs2QMACAgIQK9evTBt2jT8888/OH78OP74449yfGfkKxjIicjb8f3eu97vueyZHRjIicibNWzYED/++CP69u0LnU6Hl19+2eqZb1d58sknMXXqVNx4441ISkrChx9+iGvXrkFnR8ng2WefxT333INWrVqhV69eWLZsGX788Uf9LLLz5s1DcXEx2rdvj7CwMHz99dcIDQ1FYmIifv75Zxw7dgxdunRBbGwsfv31V5SUlKBRo0au+pbJRVyx7BkDORF5O77fe9f7PQO5HRjIicibvfvuuxg5ciRuvfVWVKtWDc8//zwyMzMrfD+ef/55nD9/Hg8//DD8/f0xevRo9O7dG/7+/jY/xoABA/DBBx/g7bffxlNPPYX69etj7ty56NatGwAgJiYGb775JsaNG4fi4mI0a9YMy5YtQ9WqVRETE4Mff/wRkydPRl5eHho2bIhvv/0WTZo0cdF3TK6SkpKClJQUZGZmIjo62imPyUBORN6O7/fe9X6vUyq60b+CyTfpjIwMREVFleux6tcHjh8HNm8G2rd3zv4Rkfvl5eUhLS0N9evXR0hIiLt3p9IpKSlB48aNcc899+C1115z9+44jbXfK2e+N5FzX8+XXwamTAGeeAL48EMn7SARuR3f693PF9/vnfFezwq5HVghJyIqvxMnTmDlypXo2rUr8vPzMXPmTKSlpeH+++93964RsUJOROQkfL+3DSd1swMDORFR+fn5+WHevHlo27YtOnbsiD179uD3339H48aN3b1rRAzkREROwvd727BCbgcGciKi8qtTp47JjKlEnoKBnIjIOfh+bxtWyO3AQE5EROTbGMiJiKgiMZDbgYGciIjItzGQExFRRWIgtwMDORERkW9jICcioorEQG4HBnIiIiLPkZqaiuTkZLRt29Zpj8lATkREFYmB3A4M5ERERJ4jJSUF+/fvx9atW532mAzkRERUkRjI7cBATkRE5NtkIC8ocO9+EBFR5cBAbgcGciLyNd26dcPTTz+t/7xevXp4//33rd5Hp9NhyZIl5X5uZz2ONZMnT0bLli1d+hzkW1ghJyJfxPd7z8VAbgcGciLyFH379sUdd9xh9mvr16+HTqfDP//8Y/fjbt26FaNHjy7v7hmw9CZ57tw59OnTx6nPRVReDORE5En4fu/7GMjtwEBORJ5i1KhRWLVqFU6fPm3ytblz56JNmzZo3ry53Y9bvXp1hIWFOWMXyxQfH4/g4OAKeS4iWzGQE5En4fu972MgtwMDOVEloShAdrZ7PhTFpl28++67Ub16dcybN8/g+qysLCxYsACjRo3ClStXMGzYMNSqVQthYWFo1qwZvv32W6uPa9zCduTIEXTp0gUhISFITk7GqlWrTO7z/PPP46abbkJYWBhuuOEGvPzyyygsTTPz5s3DK6+8gt27d0On00Gn0+n32biFbc+ePejRowdCQ0NRtWpVjB49GllZWfqvP/LIIxgwYADefvtt1KxZE1WrVkVKSor+uWxRUlKCV199FbVr10ZwcDBatmyJ5cuX679eUFCAJ554AjVr1kRISAgSExMxdepUAICiKJg8eTLq1q2L4OBgJCQkYMyYMTY/N3kHBnKiSsRd7/c2vtcDfL+vDO/3AS57ZB/EQE5USeTkABER7nnurCwgPLzMmwUEBODhhx/GvHnz8OKLL0Kn0wEAFixYgOLiYgwbNgxZWVlo3bo1nn/+eURFReGXX37BQw89hAYNGqBdu3ZlPkdJSQkGDRqEuLg4/P3338jIyDAYfyZFRkZi3rx5SEhIwJ49e/Doo48iMjISzz33HO69917s3bsXy5cvx++//w4AiI6ONnmM7Oxs9O7dGx06dMDWrVtx8eJF/Oc//8ETTzxhcBCyZs0a1KxZE2vWrMHRo0dx7733omXLlnj00UfL/H4A4IMPPsA777yDjz/+GK1atcLnn3+Ofv36Yd++fWjYsCFmzJiBpUuX4ocffkDdunVx6tQpnDp1CgCwaNEivPfee/juu+/QpEkTnD9/Hrt377bpecl7BAWJLQM5USXgrvd7G9/rAb7fV4r3e8XHZWRkKACUjIyMcj9Wly6KAijKDz84YceIyGPk5uYq+/fvV3Jzc8UVWVnij90dH1lZNu/3gQMHFADKmjVr9Nd17txZefDBBy3e56677lLGjx+v/7xr167KU089pf88MTFRee+99xRFUZQVK1YoAQEBypkzZ/Rf/+233xQAyuLFiy0+x/Tp05XWrVvrP580aZLSokULk9tpH+eTTz5RYmNjlSzN9//LL78ofn5+yvnz5xVFUZThw4criYmJSlFRkf42Q4cOVe69916L+2L83AkJCcrrr79ucJu2bdsqjz/+uKIoivLkk08qPXr0UEpKSkwe65133lFuuukmpaCgwOLzaZn8Xmk4872JnPt6bt4s/hTr1XPCjhGRxzD7P9ld7/d2vNcrCt/vFcVz3++d8V7PlnU7sEJOVEmEhYmz1+74sGM8V1JSEm699VZ8/vnnAICjR49i/fr1GDVqFACguLgYr732Gpo1a4YqVaogIiICK1aswMmTJ216/AMHDqBOnTpISEjQX9ehQweT233//ffo2LEj4uPjERERgZdeesnm59A+V4sWLRCuqRh07NgRJSUlOHTokP66Jk2awN/fX/95zZo1cfHiRZueIzMzE2fPnkXHjh0Nru/YsSMOHDgAQLTJ7dq1C40aNcKYMWOwcuVK/e2GDh2K3Nxc3HDDDXj00UexePFiFBUV2fV9kudjyzpRJeKu93s7x27z/d633+8ZyO3AQE5USeh0opXMHR+lrWi2GjVqFBYtWoTr169j7ty5aNCgAbp27QoAmD59Oj744AM8//zzWLNmDXbt2oXevXujwIkLLG/atAkPPPAA7rzzTvz888/YuXMnXnzxRac+h1agTEuldDodSpz4T/nmm29GWloaXnvtNeTm5uKee+7BkCFDAAB16tTBoUOH8NFHHyE0NBSPP/44unTpYteYNnKu1NRUJCcno23btk57TAZyokrEXe/3dr7XA3y/9+X3ewZyOzCQE5Gnueeee+Dn54f58+fjyy+/xMiRI/XjyzZu3Ij+/fvjwQcfRIsWLXDDDTfg8OHDNj9248aNcerUKZw7d05/3ebNmw1u89dffyExMREvvvgi2rRpg4YNG+LEiRMGtwkKCkJxcXGZz7V7925kZ2frr9u4cSP8/PzQqFEjm/fZmqioKCQkJGDjxo0G12/cuBHJyckGt7v33nvx6aef4vvvv8eiRYtw9epVAEBoaCj69u2LGTNmYO3atdi0aRP27NnjlP0j+6WkpGD//v3YunWr0x6TgZyIPBHf723nbe/3nNTNDgzkRORpIiIicO+992LChAnIzMzEI488ov9aw4YNsXDhQvz111+IjY3Fu+++iwsXLhi8GVnTq1cv3HTTTRg+fDimT5+OzMxMvPjiiwa3adiwIU6ePInvvvsObdu2xS+//ILFixcb3KZevXpIS0vDrl27ULt2bURGRposf/LAAw9g0qRJGD58OCZPnoxLly7hySefxEMPPYS4uDjHXhwznn32WUyaNAkNGjRAy5YtMXfuXOzatQvffPMNAODdd99FzZo10apVK/j5+WHBggWIj49HTEwM5s2bh+LiYrRv3x5hYWH4+uuvERoaisTERKftH7kfAzkReSK+39vHm97vWSG3AwM5EXmiUaNG4dq1a+jdu7fB+K+XXnoJN998M3r37o1u3bohPj4eAwYMsPlx/fz8sHjxYuTm5qJdu3b4z3/+g9dff93gNv369cPYsWPxxBNPoGXLlvjrr7/w8ssvG9xm8ODBuOOOO9C9e3dUr17d7FIsYWFhWLFiBa5evYq2bdtiyJAh6NmzJ2bOnGnfi1GGMWPGYNy4cRg/fjyaNWuG5cuXY+nSpWjYsCEAMYPstGnT0KZNG7Rt2xbHjx/Hr7/+Cj8/P8TExODTTz9Fx44d0bx5c/z+++9YtmwZqlat6tR9JPdiICciT8X3e9t50/u9TlHsWAjPC2VmZiI6OhoZGRmIiooq12PddRfw66/A558DI0Y4aQeJyO3y8vKQlpaG+vXrIyQkxN27Qz7C2u+VM9+byLmv57lzQEKCOAlfRuclEXkRvteTKzjjvZ4VcjuwQk5EROTbZIW8pITv90RE5HpuD+RnzpzBgw8+iKpVqyI0NBTNmjXDtm3b9F9XFAUTJ05EzZo1ERoail69euHIkSNu2VcGciIiIt+mndiXbetERORqbg3k165dQ8eOHREYGIjffvsN+/fvxzvvvIPY2Fj9baZNm4YZM2Zg9uzZ+PvvvxEeHo7evXsjLy+vwveXgZyIiMi3MZATEVFFcuss62+99Rbq1KmDuXPn6q+rX7++/rKiKHj//ffx0ksvoX///gCAL7/8EnFxcViyZAnuu+++Ct1fBnIiIiLfxkBOREQVya0V8qVLl6JNmzYYOnQoatSogVatWuHTTz/Vfz0tLQ3nz59Hr1699NdFR0ejffv22LRpk9nHzM/PR2ZmpsGHszCQE/k2H5/jkioYf5+8U4CmVMFATuR7+L+ZnMkZv09uDeTHjh3DrFmz0LBhQ6xYsQKPPfYYxowZgy+++AIAcP78eQAwWZMuLi5O/zVjU6dORXR0tP6jTp06TttfBnIi3xRYWhLLyclx856QL5G/T4Hakit5PJ1ODeUM5ES+g+/15ArOeK93a8t6SUkJ2rRpgzfeeAMA0KpVK+zduxezZ8/G8OHDHXrMCRMmYNy4cfrPMzMznRbKGciJfJO/vz9iYmJw8eJFAGKNTJ1O5+a9Im+lKApycnJw8eJFxMTEwN/f3927RHYKDASKihjIiXwJ3+vJmZz5Xu/WQF6zZk0kJycbXNe4cWMsWrQIABAfHw8AuHDhAmrWrKm/zYULF9CyZUuzjxkcHIzg4GCX7C8DOZHvkv9v5Bs1UXnFxMTof6/IuwQGArm5DOREvobv9eRsznivd2sg79ixIw4dOmRw3eHDh5GYmAhATPAWHx+P1atX6wN4ZmYm/v77bzz22GMVvbsM5EQ+TKfToWbNmqhRowYKeRRO5RQYGMjKeAVITU1FamoqiouLnfq4svOwoMCpD0tEbsb3enImZ73XuzWQjx07FrfeeiveeOMN3HPPPdiyZQs++eQTfPLJJwDEH83TTz+NKVOmoGHDhqhfvz5efvllJCQkYMCAARW+v/L1ZiAn8l3+/v4MUkReIiUlBSkpKcjMzER0dLTTHlcGch6vE/kmvteTJ3FrIG/bti0WL16MCRMm4NVXX0X9+vXx/vvv44EHHtDf5rnnnkN2djZGjx6N9PR0dOrUCcuXL0dISEiF7y8r5ERERL6PgZyIiCqKWwM5ANx99924++67LX5dp9Ph1VdfxauvvlqBe2UeAzkREZHvYyAnIqKK4tZlz7wNAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL4vKEhsGciJiMjVGMjtIAO5k1dXISIiIg/CCjkREVUUBnI7sEJORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIi38dATkREFYWB3A4M5ERERL6PgZyIiCoKA7kdGMiJiIh8HwM5ERFVFAZyOzCQExER+T4GciIiqigM5HZgICciIvJ9DORERFRRGMjtwEBORETk+xjIiYioojCQ24GBnIiIyPcxkBMRUUVhILcDAzkREZHvYyAnIqKKwkBuBwZyIiIiz5Gamork5GS0bdvWqY/LQE5ERBWFgdwODORERESeIyUlBfv378fWrVud+rgykBcUOPVhiYiITDCQ24GBnIiIyPexQk5ERBWFgdwODORERES+j4GciIgqCgO5HRjIiYiIfB8DORERVRQGcjswkBMREfk+BnIiIqooDOR2YCAnIiLyfQzkRERUURjI7cBATkRE5PsYyImIqKIwkNuBgZyIiMj3BQWJLQM5ERG5GgO5HRjIiYiIfB8r5EREVFEYyO3AQE5EROT7GMiJiKiiMJDbgYGciIjI9zGQExFRRWEgtwMDORERke9jICcioorCQG4HBnIiIiLfx0BOREQVhYHcDgzkREREvo+BnIiIKgoDuR0YyImIiHwfAzkREVUUBnI7MJATERH5PgZyIiKqKAzkdmAgJyIi8n0mgfzqVWDaNODMGbftExER+SYGcjswkBMREfk+k0A+Zw7w/PPAe++5bZ+IiMg3MZDbgYGciIjI95kE8osXxTYjwy37Q0REvouB3A4M5ERERL7PJJBnZYltUZFb9oeIiHwXA7kdGMiJiIh8n0kgz842uoKIiMg5GMjtwEBORETk+2QgLygovYIVciIichEGcjswkBMREfk+bYVcUcBATkRELsNAbgcGciIiIt8nAzkAFBdDbVlnICciIidjILcDAzkREZHv0wbywkKoFXKOISciIidjILcDAzkREZHvMwnkrJATEZGLuDWQT548GTqdzuAjKSlJ//W8vDykpKSgatWqiIiIwODBg3HhwgW37S8DORERkWsMHDgQsbGxGDJkiLt3xXKFnIGciIiczO0V8iZNmuDcuXP6jw0bNui/NnbsWCxbtgwLFizAunXrcPbsWQwaNMht+8pATkRE5BpPPfUUvvzyS3fvBgDA31+9zEBORESuFOD2HQgIQHx8vMn1GRkZmDNnDubPn48ePXoAAObOnYvGjRtj8+bNuOWWWyp6VxnIiYiIXKRbt25Yu3atu3cDAKDTiSp5YSFQmF8C5OSIL3AMOREROZnbK+RHjhxBQkICbrjhBjzwwAM4efIkAGD79u0oLCxEr1699LdNSkpC3bp1sWnTJouPl5+fj8zMTIMPZ2EgJyIiMvXnn3+ib9++SEhIgE6nw5IlS0xuk5qainr16iEkJATt27fHli1bKn5H7RAUJLZF13NL1z4DK+REROR0bg3k7du3x7x587B8+XLMmjULaWlp6Ny5M65fv47z588jKCgIMTExBveJi4vD+fPnLT7m1KlTER0drf+oU6eO0/aXgZyIiMhUdnY2WrRogdTUVLNf//777zFu3DhMmjQJO3bsQIsWLdC7d29cvHixgvfUdnIceXFmtnolAzkRETmZW1vW+/Tpo7/cvHlztG/fHomJifjhhx8QGhrq0GNOmDAB48aN03+emZnptFDOQE5ERGSqT58+Bu/pxt599108+uijGDFiBABg9uzZ+OWXX/D555/jhRdesPv58vPzkZ+fr//cmd1wkj6QZ2SpV7JlnYiInMztLetaMTExuOmmm3D06FHEx8ejoKAA6enpBre5cOGC2THnUnBwMKKiogw+nIWBnIiIyD4FBQXYvn27wRA0Pz8/9OrVy+oQNGtc2Q0nyUBekqkJ5KyQExGRk3lUIM/KysK///6LmjVronXr1ggMDMTq1av1Xz906BBOnjyJDh06uGX/GMiJiIjsc/nyZRQXFyMuLs7geuMhaL169cLQoUPx66+/onbt2lbD+oQJE5CRkaH/OHXqlNP3WwZyJYst60RE5DpubVl/5pln0LdvXyQmJuLs2bOYNGkS/P39MWzYMERHR2PUqFEYN24cqlSpgqioKDz55JPo0KGDW2ZYBxjIiYiIXOX333+3+bbBwcEIDg524d5oKuTXWSEnIiLXcWsgP336NIYNG4YrV66gevXq6NSpEzZv3ozq1asDAN577z34+flh8ODByM/PR+/evfHRRx+5bX8ZyImIiOxTrVo1+Pv748KFCwbXlzUEzd1kIMd1jiEnIiLXcWsg/+6776x+PSQkBKmpqRZnba1oDORERET2CQoKQuvWrbF69WoMGDAAAFBSUoLVq1fjiSeecO/OWcGWdSIiqghuDeTehoGciIjIVFZWFo4ePar/PC0tDbt27UKVKlVQt25djBs3DsOHD0ebNm3Qrl07vP/++8jOztbPuu4oedK+uLi4vN+CCRnIddlsWSciItdhILcDAzkREZGpbdu2oXv37vrP5fKjw4cPx7x583Dvvffi0qVLmDhxIs6fP4+WLVti+fLlJhO92SslJQUpKSnIzMxEdHR0uR7LmL5lPZsVciIich0GcjswkBMREZnq1q0bFEWxepsnnnjCo1vUjekr5DkcQ05ERK7jUcueeToGciIiospBBnI/tqwTEZELMZDbgYGciIioctAH8ly2rBMRkeswkNuBgZyIiMhzpKamIjk5GW3btnX6Y+sDubZlvaSEBwFERORUDOR2YCAnIiLyHCkpKdi/fz+2bt3q9MeWgdw/N8vwC6ySExGREzGQ24GBnIiIqHLQB/L8bMMvMJATEZETMZDbgYGciIiocpCBPCCPFXIiInIdBnI7MJATERFVDvpAblwh59JnRETkRAzkdmAgJyIiqhxkIA/MZ4WciIhch4HcDgzkRERElQMDORERVQQGcjswkBMREXmOilj2LKiQk7oREZHrMJDbQQZyRREfRERE5D6uX/ZMQWABx5ATEZHrMJDbwU/zajGQExER+a6gICAUufBD6Ru+LJmzQk5ERE7EQG4HbSBn2zoREZHvCgwEIqAZPx4dLbYM5ERE5EQM5HZgICciIqocDAJ5eLgomQMM5ERE5FQM5HZgICciIqocAgOBcJSOHw8PBwICxGWOISciIicKcPcOeBMGciIiosrBoEIeEaF+gRVyIiJyIlbI7cBATkRE5DlcveyZQcs6J3UjIiIXYCC3AwM5ERGR53D1smf6lvWICLVlnYGciIiciIHcDgzkRERElYNJhZxjyImIyAUYyO3AQE5ERFQ5sEJOREQVgYHcDgzkRERElYPJpG4cQ05ERC7AQG4HnU69zEBORETku9iyTkREFYGB3A46nRrKGciJiIh8F1vWiYioIjCQ20m2rTOQExER+S6LFXIGciIiciIGcjsxkBMRkTfYsWMH9uzZo//8p59+woABA/B///d/KCgocOOeOU+FrUPOMeREROQiDOR2YiAnIiJv8N///heHDx8GABw7dgz33XcfwsLCsGDBAjz33HNu3jvncMs65BxDTkRETsRAbicGciIi8gaHDx9Gy5YtAQALFixAly5dMH/+fMybNw+LFi1y7855AbasExFRRWAgtxMDOREReQNFUVBS+mb1+++/48477wQA1KlTB5cvX3bnrnkFTupGREQVgYHcTgzkRETkDdq0aYMpU6bgq6++wrp163DXXXcBANLS0hAXF+fmvfN8JhVyjiEnIiIXYCC3EwM5ERF5g/fffx87duzAE088gRdffBE33ngjAGDhwoW49dZb3bx3ns9kUjeOISciIhcIcPcOeBsGciIi8gbNmzc3mGVdmj59Ovz9/d2wR96FLetERFQRWCG3EwM5ERF5g1OnTuH06dP6z7ds2YKnn34aX375JQJl+zVZxJZ1IiKqCAzkdmIgJyIib3D//fdjzZo1AIDz58/jtttuw5YtW/Diiy/i1VdfdfPeeb7AAIXLnhERkcsxkNuJgZyIiLzB3r170a5dOwDADz/8gKZNm+Kvv/7CN998g3nz5rl357xAUHEu/KAAAJQwLntGRESuwUBuJwZyIiLyBoWFhQgODgYglj3r168fACApKQnnzp1z5655hfCrpwAAeQhGNhjIiYjINRjI7cRATkRE3qBJkyaYPXs21q9fj1WrVuGOO+4AAJw9exZVq1Z18945R2pqKpKTk9G2bVunP3bY9vUAgC1oh0tX/DiGnIiIXIKB3E4M5ERE5A3eeustfPzxx+jWrRuGDRuGFi1aAACWLl2qb2X3dikpKdi/fz+2bt3q9MfWbRCBfD064+JFcAw5ERG5BJc9sxMDOREReYNu3brh8uXLyMzMRGxsrP760aNHIywszI175iU2bAAgAnmLS2DLOhERuQQDuZ0YyImIyFv4+/ujqKgIG0rDZaNGjVCvXj337pQ3OHsWOHYMxfDDX7gV92gr5AzkRETkRB7Tsv7mm29Cp9Ph6aef1l+Xl5eHlJQUVK1aFRERERg8eDAuXLjgvp0EAzkREXmH7OxsjBw5EjVr1kSXLl3QpUsXJCQkYNSoUcjJyXH37nm29aJd/VSVFriOKFy6BI4hJyIil/CIQL5161Z8/PHHaN68ucH1Y8eOxbJly7BgwQKsW7cOZ8+exaBBg9y0lwIDOREReYNx48Zh3bp1WLZsGdLT05Geno6ffvoJ69atw/jx4929e55NBvJ6nQGAY8iJiMhl3B7Is7Ky8MADD+DTTz81GOOWkZGBOXPm4N1330WPHj3QunVrzJ07F3/99Rc2b97stv1lICciIm+waNEizJkzB3369EFUVBSioqJw55134tNPP8XChQvdvXuerTSQX00WgfwSx5ATEZGLuD2Qp6Sk4K677kKvXr0Mrt++fTsKCwsNrk9KSkLdunWxadMmi4+Xn5+PzMxMgw9nYiAnIiJvkJOTg7i4OJPra9SowZZ1a9LTgT17AAC5bcxUyBnIiYjIidwayL/77jvs2LEDU6dONfna+fPnERQUhJiYGIPr4+LicP78eYuPOXXqVERHR+s/6tSp49R99vcXWwZyIiLyZB06dMCkSZOQl5envy43NxevvPIKOnTo4MY983AbNwKKAjRsiKiG4oQGx5ATEZGruG2W9VOnTuGpp57CqlWrEBIS4rTHnTBhAsaNG6f/PDMz06mhnBVyIiLyBh988AF69+6N2rVr69cg3717N0JCQrBixQo3750HK21XR6dOqF5dXOQYciIichW3BfLt27fj4sWLuPnmm/XXFRcX488//8TMmTOxYsUKFBQUID093aBKfuHCBcTHx1t83ODgYAQHB7tsvxnIiYjIGzRt2hRHjhzBN998g4MHDwIAhg0bhgceeAChoaFu3jsPJofFde6MGjXExUuXAMU/ADqAFXIiInIqtwXynj17Yk/pGC1pxIgRSEpKwvPPP486deogMDAQq1evxuDBgwEAhw4dwsmTJ93aasdATkRE3iIsLAyPPvqou3fDuyxfDmzdCjRujOrh4qr8fCC3KBBhAAM5ERE5ldsCeWRkJJo2bWpwXXh4OKpWraq/ftSoURg3bhyqVKmCqKgoPPnkk+jQoQNuueUWd+wyAAZyIiLyXEuXLrX5tv369XPhnnix0FCgSxcAQBiA8HAgOxvIzAkQgZwt60RE5ERuC+S2eO+99+Dn54fBgwcjPz8fvXv3xkcffeTWfWIgJyIiTzVgwACbbqfT6VBcXOzanakAqampSE1Nden3Ur26COTpWQGIB1ghJyIip/KoQL527VqDz0NCQvRvtp6CgZyIiDxVSSV7c0pJSUFKSgoyMzMRHR3tkueoUQM4fhzIyOayZ0RE5HxuX4fc2zCQExERVR5ypvWr17nsGREROR8DuZ0YyImIiCoPOdP6tetc9oyIiJyPgdxODORERESVh75CnsmWdSIicj4GcjsxkBMREVUeskJ+JYOBnIiInI+B3E4M5ERERJWHrJBfzuAYciIicj4GcjsxkBMRkTf49ddfsWLFCpPrV6xYgd9++80Ne+SdZIX80jWOISciIudjILcTAzkREXmDF154wez63Iqi4IUXXnDDHnknGcgvp7NlnYiInI+B3E4M5ERE5A2OHDmC5ORkk+uTkpJw9OhRN+yRd5It6/oKOQM5ERE5EQO5nRjIiYjIG0RHR+PYsWMm1x89ehTh4eFu2CPvJAN5ThHHkBMRkfMxkNuJgZyIiLxB//798fTTT+Pff//VX3f06FGMHz8e/fr1c+OeeZeQECAyEigCx5ATEZHzMZDbiYGciIi8wbRp0xAeHo6kpCTUr18f9evXR+PGjVG1alW8/fbb7t49r1KjhiaQs0JOREROFODuHfA2DOREROQNoqOj8ddff2HVqlXYvXs3QkND0bx5c3Tp0sXdu+Z1qlcH0v5lyzoRETkfA7mdGMiJiMhb6HQ63H777bj99tvdvSterUYN4Ig8ZCopER9+bDIkIqLyYyC3EwM5ERF5qhkzZmD06NEICQnBjBkzrN52zJgxFbRX3q96dU3LOiCq5EFB7tshIiLyGQzkdmIgJyIiT/Xee+/hgQceQEhICN577z2Lt9PpdAzkdjAYQw4wkBMRkdMwkNuJgZyIiDxVWlqa2ctUPjVqAIUIVK/gOHIiInISDoCyEwM5ERFR5RIfb1Qh59JnRETkJA5VyE+dOgWdTofatWsDALZs2YL58+cjOTkZo0ePduoOehoGciIi8gaKomDhwoVYs2YNLl68iBKjN64ff/zRTXvmPKmpqUhNTUVxcbFLnycuDijR1jBYISciIidxqEJ+//33Y82aNQCA8+fP47bbbsOWLVvw4osv4tVXX3XqDnoaBnIiIvIGTz/9NB566CGkpaUhIiIC0dHRBh++ICUlBfv378fWrVtd+jxxcQCgQyHXIiciIidzqEK+d+9etGvXDgDwww8/oGnTpti4cSNWrlyJ//3vf5g4caJTd9KTMJATEZE3+Oqrr/Djjz/izjvvdPeueD0RyMU48kAUMZATEZHTOFQhLywsRHBwMADg999/R79+/QAASUlJOHfunPP2zgMxkBMRkTeIjo7GDTfc4O7d8AmxsUBgoGYcOceQExGRkzgUyJs0aYLZs2dj/fr1WLVqFe644w4AwNmzZ1G1alWn7qCnYSAnIiJvMHnyZLzyyivIzc119654PT8/o6XPWCEnIiIncahl/a233sLAgQMxffp0DB8+HC1atAAALF26VN/K7qsYyImIyBvcc889+Pbbb1GjRg3Uq1cPgYGBBl/fsWOHm/bMO8XFAUVnGMiJiMi5HArk3bp1w+XLl5GZmYnY2Fj99aNHj0ZYWJjTds4TMZATEZE3GD58OLZv344HH3wQcXFx0Ol07t4lrxYfr1mLnIGciIicxKFAnpubC0VR9GH8xIkTWLx4MRo3bozevXs7dQc9DQM5ERF5g19++QUrVqxAp06d3L0rPiEujmPIiYjI+RwaQ96/f398+eWXAID09HS0b98e77zzDgYMGIBZs2Y5dQc9DQM5ERF5gzp16iAqKsrdu+EzDAI5K+REROQkDgXyHTt2oHPnzgCAhQsXIi4uDidOnMCXX36JGTNmOHUHPQ0DOREReYN33nkHzz33HI4fP+7uXfEJcXFsWSciIudzqGU9JycHkZGRAICVK1di0KBB8PPzwy233IITJ044dQc9DQM5ERF5gwcffBA5OTlo0KABwsLCTCZ1u3r1qpv2zDvFx7NlnYiInM+hQH7jjTdiyZIlGDhwIFasWIGxY8cCAC5evOjz7XEM5ERE5A3ef/99d++CT2HLOhERuYJDgXzixIm4//77MXbsWPTo0QMdOnQAIKrlrVq1cuoOehoZyIuL3bsfRERE1gwfPtzdu+BT4uKAHAZyIiJyMocC+ZAhQ9CpUyecO3dOvwY5APTs2RMDBw502s55IlbIiYjIW5SUlODo0aO4ePEiSozeuLp06eKmvfJO8fHAodIx5IW5RQgs4/ZERES2cCiQA0B8fDzi4+Nx+vRpAEDt2rXRrl07p+2Yp2IgJyIib7B582bcf//9OHHiBBRFMfiaTqdDMVu97BIbCxTrAgAFyLhciGru3iEiIvIJDs2yXlJSgldffRXR0dFITExEYmIiYmJi8Nprr5mcgfc1DOREROQN/ve//6FNmzbYu3cvrl69imvXruk/OKGb/XQ6wC9Q1DEyrrBlnYiInMOhCvmLL76IOXPm4M0330THjh0BABs2bMDkyZORl5eH119/3ak76UkYyImIyBscOXIECxcuxI033ujuXfEZ/sEBQAGQeZWBnIiInMOhQP7FF1/gs88+Q79+/fTXNW/eHLVq1cLjjz/OQE5ERORm7du3x9GjRxnIncgvJBC4zkBORETO41Agv3r1KpKSkkyuT0pK8vk2OAZyIiLyVP/884/+8pNPPonx48fj/PnzaNasmck65M2bN6/o3fN6ASHisCnrGtchJyJyquJiIDcXiIhw955UOIcCeYsWLTBz5kzMmDHD4PqZM2f6/Bs8AzkREXmqli1bQqfTGUziNnLkSP1l+TVO6uaYwFBx2JSdwQo5EZFT9esHrF8PHDsGVKtc02Y6FMinTZuGu+66C7///rt+DfJNmzbh1KlT+PXXX526g56GgZyIiDxVWlqau3fBpwWFlVbI0xnIiYicRlGANWtEhfzgQaBTJ3fvUYVyaJb1rl274vDhwxg4cCDS09ORnp6OQYMGYd++ffjqq6+cvY8ehYGciIg8lVz5JDExESdOnECtWrUMrktMTEStWrVw4sQJd++qVwoKF23/OZkM5ERETnPligjjAJCZ6d59cQOH1yFPSEgwmbxt9+7dmDNnDj755JNy75inYiAnIiJv0L17d5w7dw41atQwuD4jIwPdu3dny7oDgsPFYVNuJseQExEBAEaMAPbuBTZsAIKDHXuMU6fUy5UwkDtUIa/MGMiJiMgbyLHixq5cuYLw8HA37JH3C40oDeTXWSEnIkJREfDVV8C2bcCePY4/zsmT6uVKGMgdrpA7w6xZszBr1iwcP34cANCkSRNMnDgRffr0AQDk5eVh/Pjx+O6775Cfn4/evXvjo48+QlxcnNv2mYGciIg82aBBgwCICdweeeQRBGsqFsXFxfjnn39w6623umv3vFpIlGhZL8wrQn6+48UgIiKfcPq0mB1dXm7TxrHHYYXcfWrXro0333wT27dvx7Zt29CjRw/0798f+/btAwCMHTsWy5Ytw4IFC7Bu3TqcPXtWf6DhLgzkRETkyaKjoxEdHQ1FURAZGan/PDo6GvHx8Rg9ejS+/vprd++mVwoundQtEIW4eNHNO0NE5G7a+Ui0odperJDbrqwwnJ6ebteT9+3b1+Dz119/HbNmzcLmzZtRu3ZtzJkzB/Pnz0ePHj0AAHPnzkXjxo2xefNm3HLLLXY9l7MwkBMRkSebO3cuAKBevXp45pln2J7uRLpAcdgUgCJcuQLUqePmHSIicidnBXJWyG2nPctu7iMxMREPP/ywQztSXFyM7777DtnZ2ejQoQO2b9+OwsJC9OrVS3+bpKQk1K1bF5s2bbL4OPn5+cjMzDT4cCYGciIi8gaTJk3yqjD+888/o1GjRmjYsCE+++wzd++OeQFqIL9+3c37QkTkbtpAfvq044/DCrnt5Fl3Z9qzZw86dOiAvLw8REREYPHixUhOTsauXbsQFBSEmJgYg9vHxcXh/PnzFh9v6tSpeOWVV5y+nxIDOREReaqbb74Zq1evRmxsLFq1amV2Ujdpx44dFbhn1hUVFWHcuHFYs2YNoqOj0bp1awwcOBBVq1Z1964ZChRjyANQVBmPGYmIDLFC7hRundQNABo1aoRdu3YhIyMDCxcuxPDhw7Fu3TqHH2/ChAkYN26c/vPMzEzUcWJPGQM5ERF5qv79++sncRswYIB7d8YOW7ZsQZMmTVCrVi0AQJ8+fbBy5UoMGzbMzXtmJEAdQ84KORFVeqUTcwNwvEJeVAScOaN+zkBe8YKCgnDjjTcCAFq3bo2tW7figw8+wL333ouCggKkp6cbVMkvXLiA+Ph4i48XHBxsMKOsszGQExGRp5o0aRIAMQyse/fuaN68uUmnmSv8+eefmD59OrZv345z585h8eLFJicEUlNTMX36dJw/fx4tWrTAhx9+iHbt2gEAzp49qw/jAFCrVi2c0R6geQq2rBMRqbQV8jNnREDys3PO8HPnDINVJQzkHrcOeUlJCfLz89G6dWsEBgZi9erV+q8dOnQIJ0+eRIcOHdy2fwzkRETk6fz9/XH77bfj2rVrFfJ82dnZaNGiBVJTU81+/fvvv8e4ceMwadIk7NixAy1atEDv3r1x0dumKmcgJyISSkoMx34XFgIXLtj/ONrHACplIHdrhXzChAno06cP6tati+vXr2P+/PlYu3YtVqxYgejoaIwaNQrjxo1DlSpVEBUVhSeffBIdOnRw2wzrAAM5ERF5h6ZNm+LYsWOoX7++y5+rT58+6NOnj8Wvv/vuu3j00UcxYsQIAMDs2bPxyy+/4PPPP8cLL7yAhIQEg4r4mTNn9NVzc/Lz85Gfn6//3NkTuFqkGUPOQE5EldqFC0BBAeDvD1SrJj4/fRqoWdO+x5HjxyMigKysShnI3Vohv3jxIh5++GE0atQIPXv2xNatW7FixQrcdtttAID33nsPd999NwYPHowuXbogPj4eP/74ozt3mYGciIi8wpQpU/DMM8/g559/xrlz51y6Aok1BQUF2L59u8GqKX5+fujVq5d+1ZR27dph7969OHPmDLKysvDbb7+hd+/eFh9z6tSpBqu8OHOuGKs4hpyISJDt6rVqAfXqicuOTOwmK+RNmohtJQzkbq2Qz5kzx+rXQ0JCkJqaarEFzh0YyImIyBvceeedAIB+/foZzLauKAp0Oh2Ki4srZD8uX76M4uJixMXFGVwfFxeHgwcPAgACAgLwzjvvoHv37igpKcFzzz1ndYZ1V0/gahFb1omIBDmhW2IiEBcH/P23Y4Fc3qdpU/EY1687Nhbdi7l9Ujdvw0BORETeYM2aNe7eBbv069cP/fr1s+m2rp7A1SIGciLyNenpwJtvAg88ADRrZvv9ZIU8MRGoXl1cdmSmdeMKOSBa16Oi7H8sL8VAbicGciIi8gZdu3Z19y4AAKpVqwZ/f39cMJrsp6xVUzwSx5ATka/5+mvgrbeAQ4eAxYttv58M5PXqAbGx4nJ5KuQNG4r/sYWFom2dgZwsYSAnIiJvkpOTg5MnT6KgoMDg+ubNm1fI8wcFBaF169ZYvXq1fim0kpISrF69Gk888USF7IPTcAw5EfmaQ4fEdt8+++6nrZBHR4vL5RlDXreuCOFXrlS6ceQM5HZiICciIm9w6dIljBgxAr/99pvZrztzDHlWVhaOHj2q/zwtLQ27du1ClSpVULduXYwbNw7Dhw9HmzZt0K5dO7z//vvIzs7Wz7ruKDnPTEWNh2fLOhH5HPm/+99/gfx8wNbhQNox5JGR4rK9Les5OSKAA5U6kFee0fJOwkBORETe4Omnn0Z6ejr+/vtvhIaGYvny5fjiiy/QsGFDLF261KnPtW3bNrRq1QqtWrUCAIwbNw6tWrXCxIkTAQD33nsv3n77bUycOBEtW7bErl27sHz5cpOJ3uyVkpKC/fv3Y+vWreX+HmzClnUi8jX//iu2JSXAkSO23UdRDCvktWuLy2fOAPacINUueRYdrbapuzKQz5kDDB8ODBoEDBkC7N/vuueyESvkdmIgJyIib/DHH3/gp59+Qps2beDn54fExETcdtttiIqKwtSpU3HXXXc57bm6desGRVGs3uaJJ57wvhZ1Y5qW9UpWwCEiX1RUBKSlqZ8fPChmOy/L1atAdra4XLeuOFnp7y/C+PnzYik0W8hAXrcuoNO5PpBfugT85z+G18XHAzNnuub5bMQKuZ0YyImIyBtkZ2ejRo0aAIDY2FhcunQJANCsWTPs2LHDnbvmvdiyTkS+5NQpEcqlAwdsu5+sjsfHAyEhIownJIjr7Glbl+PH5bKVrg7k58+LbWQkcO+94rLRhKPuwEBuJwZyIiLyBo0aNcKh0sl6WrRogY8//hhnzpzB7NmzUbNmTTfvnZfSBPKcHPs6M4mIPI5m7g8AokJuC227uiTb1u2Z2O3sWbGVFXVXB/KrV8U2IQEYOFBcLj1Z7U5sWbcTAzkREXmDp556CufOnQMATJo0CXfccQe++eYbBAUFYd68ee7dOSep8EndNGPIAbFUrpxcmIjI68jx4yEhQF6e7RVy7YRuUp06wKZN9lXIZRgu7eZyeSCXE8hVqQJUqyYuX77smueyAwO5nRjIiYjIGzz44IP6y61bt8aJEydw8OBB1K1bF9XkgYiXS0lJQUpKCjIzMxFdEcm4tEIehEIAwPXrDOREHqe4WLRQu0thITB9OtCpE9Cli/v2wxayQt6jB/Drr2IJtJISNfBYItu8ZZs64FiFXAby6tXF1t5A/tRTYl++/lr//9kqWSGvWlV9Tg+okLNl3U4M5ERE5I3CwsJw8803+0wYdwsZyP1EhZzjyIk8zDPPiMqndqKyijZ3LvDiiyIsejpZIb/9dtEBlJNjW6DOyhJbGaABdRy4PYFcVqcdCeQ5OcCMGcD33wO2rrShrZDL57xyxe3BjhVyOzGQExGRNxg3bpzZ63U6HUJCQnDjjTeif//+qFKlSgXvmReTs6z7FQElDOREHmflSiA9XVR7U1Lsv//Fi6J66miFXVGADz8Ul+UEYp5MVsgbNQIaNhRLgB08aNiKbo785xcRoV4XHy+2Fy/a/vyyOi1PFNsTyLXBf80aoEOHsu+jrZBXrSouFxeL3xk3vhcykNuJgZyIiLzBzp07sWPHDhQXF6NRo0YAgMOHD8Pf3x9JSUn46KOPMH78eGzYsAHJyclu3lsvUTqGPFDHCrlF6enA9u1A9+5lt70SOZv8o3RkJYk9e4CWLYGHHgIcnWdj7Vpg715x+coVEdB1Oscey9UURa2Q33gjkJQkAvmBA0Dv3tbvKyvk2kAux+/Y84+xPC3rxoH8//6v7PtoK+RBQWKfMzLEfrgxkPM/pZ0YyImIyBv0798fvXr1wtmzZ7F9+3Zs374dp0+fxm233YZhw4bhzJkz6NKlC8aOHevuXfUesmVdp44hJyPjxwO9egG//OLuPaHKSAY5RwL5P/+IA/w//3T8+WV1HBBjyeVa3Z7o3DkgN1d0AyQmAo0bi+ttmWndXCC3d/y3olhuWc/IKPv+csk0ANi4EcjPL/s+2go5oFbm3TyOnIHcTgzkRETkDaZPn47XXnsNUZoxftHR0Zg8eTKmTZuGsLAwTJw4Edu3b3fjXpZPamoqkpOT0bZt24p5Qs2yZwADuVmy4ia3RBVFUdQwuHevbQFNS4bAkydFmLbXiRPATz+Jy7IqLgOgJ5J/o4mJovsnKUl8bstM6zKQR0aq19kbyLOy1J9ReVvWc3OBLVvKvo+2Qg6oJwLcPNM6A7mdGMiJiMgbZGRk4KKZsXyXLl1CZunBTkxMDAoKCip615wmJSUF+/fvx1ZbJ/QpLwbysslQY0uFi8iZ8vOBIvG3iaIitXXcVjIEFher62zb46OPREDo1UsdT+3JgVyOH2/QQGydVSG39W9fVqVDQ4HwcMPHsDeQA6JtvSzGFXIPmWmdgdxODOREROQN+vfvj5EjR2Lx4sU4ffo0Tp8+jcWLF2PUqFEYMGAAAGDLli246aab3Luj3kSuQ64wkFskD8bT0926G1QJGYc4e9vWtUHy2DH7n3/xYrF97DG1Aisrsp5IO34cEBO7AWJStrJOJFgL5Pn5tnUnGLerax/DnkDerp3Y2hLIjSvkHrIWOQO5nRjIiYjIG3z88cfo2bMn7rvvPiQmJiIxMRH33XcfevbsidmzZwMAkpKS8Nlnn7l5T71IaYXcX+EYcmN//lk6qTQr5OQs+fnAzp2iFd0WxiHO3uE42vvbO+SipEStqrdurVZgvalCHhGhLl126JD1+5oL5Nr2dVv+ORrPsA4YBvKyfu4ykD/8sNhu2gTk5Vm+vaKwQu4rGMiJiMgbRERE4NNPP8WVK1ewc+dO7Ny5E1euXMEnn3yC8NL2wJYtW6Jly5bu3VFvog/kokJu61BJX7dzJ9C1KzD8YYUVcnKe8eOBm28Gli2z7fbGIbA8FXJ7A/mFC0BBgQgKCQlqBdaTA7lxhRwA4uLEtqzKvrllzwICgLAwcdmWf47GM6wDaiAvKRHrjFuiKOqkbrfdJoYI5OeLUG5JTo5auTeukDOQexcGciIi8iYRERGoUqUKqlSpggjtwRPZr7Rl3a/ETMu6rVU8HyQLVRfScsT4W4CBnMpv3z6xXbvWttvLEBgaKrb//GPf5GzlCeSyOl6rlvg/UVEt645MPicZV8gB21rGi4vFJGqAYSC39f6SuZb18HB1Qjxrj5Gers5gX7u2WGYRsN62Lk+OBAaq+81J3bwTAzkREXmDkpISvPrqq4iOjta3rMfExOC1115DCd/EHFNaIfdTSqBDiRrIX39dVMXS0ty3b26k7xLVBhq2rFN5yTC7a5dtt5cBrkkTsb50fr5tM4Yb3x+wfwy5rNYmJoptRVTIV60SwXL4cOvVZHOys9WTZnXrqtfLtcSthWHtUm7GgdyW+0vmWtZ1OttCvTwLWLWqqMp37Cg+t/a7oh0/LkM/W9a9EwM5ERF5gxdffBEzZ87Em2++qW9Zf+ONN/Dhhx/i5ZdfdvfueafSQA6Imdb1gXzJEjGAeuNGt+yWu8lA7p+lCeGskFN5aQO5LR0o8g8yOhpo1Upctqdt3bhCbk/Xi6yQy3BbEWPI164VbfJffikCqT0nBGUADQ42v3SZtRNqcvy4v7+4v5Y9FXJzLeu2PoYM5HLMe61aYmtmZRE9+fskfzYAW9a9FQM5ERF5gy+++AKfffYZHnvsMTRv3hzNmzfH448/jk8//RTz5s1z9+45hbvWIQeMAvm1a2LryeNFXUgG8oBczQG0rwXyy5eBd95x+4F7paEoaoC6dg04fbrs+8gAFxUlxp4D9gVybQDMzrYe7oxZqpC7smVdu3+7dgFt2gCHD9t2X/l7XKOGWi0GbAvD2jXItfe19f6SuZZ1Wx/DOJDXqCG21n5m8v+z/Nlon5st696FgZyIiLzB1atXkZSUZHJ9UlISrvpIcKzwdchLx5ADFgK53FYyMpBHw6hl3ZfG1c+cCTzzDDBoEA8CK4J2Ai7AtrZ1GeAiI9VAbs9M68ZVYXvGkRtXyCuiZV2Gz5deEt/v1avAwIFqYLblvjLISra0nJubYV2q6Aq5fL1tCeTWKuQ5Ofa3/TsRA7mdGMiJiMgbtGjRAjNnzjS5fubMmWjRooUb9sgHaCrkgSgUgbykRK0G+8iJDnuZDeTFxYZjTb2dDAAbNohwTq5lXLG0J5BHRQGNG4vLtrZxK5oVAho2FFt7xpHLQC4r5BXRsi4DbatWwC+/ADVrAvv3AyNGlH0yzFIgt6Vl3dwM68b3d3QMua2PITsSjCvk2dmWg7W5CnlkJBAUZLg/bsBAbicGciIi8gbTpk3D559/juTkZIwaNQqjRo1CcnIy5s2bh+nTp7t797yTn3rYpK+QZ2aqBwUM5IZf8KWJ3bStxy+8oM5QbaykBHj6aeCbbypkt3yWcav37t1l30cGxagoIDZWXLb1dzA3V10hQFbX7amQu7NlvUYNsezXokWii2fhQmDGDNvu60h12lkVcme2rEdGquPZLQVrcxVync4j2tYZyO3EQE5ERN6ga9euOHz4MAYOHIj09HSkp6dj0KBBOHToEDp37uzu3fNOOp2+Sq4P5No2dbasG37Bl8aRy4P5qCgR3kaONF+F/Osv4IMPgFGj3D4u1asZB1l7W9ZjYsTlnBwx8VlZZHDX6YDmzcVlWwN5ZqbpjOXalnV7h25s3Ajcey/Qtq2oer/wgvnbGVe5O3QApk0Tlz/91PpzaMeQazmrZb2sEyEFBeptnBHIdbqy29bNVcgBj5jYjYHcTgzkRETkLRISEvD6669j0aJFWLRoEaZMmYKSkhKMHj3a3bvmvUrHkQegCIWFQMEFTQhnhdzwC74UyOXP9r33xO/A+vXA8eOmtzt3Tmzz84E5cyps93yODORNm4rtv/+WXXXVtqzLUAfYViXX3leuy21ry7qsjlepooZUGfoKC+0fuvHMM8APPwDbtonVGz77zPQ2eXlqR4A20A4cKLaHD1tfo7w8LevOqJDLk1X+/urJE1sfo6REneRPBnJAfR0sBXJzFXLt/RjIvQcDORERebMrV65gDoOC40or5IEQB7u5Z1khr1Qt661bi/ZgwHwF/MIF9fJHH6lt0GQf+Xo3agTUri0u//OP9ftoW9b9/dVgZ8uJIfm7Gh2tBnJbK+TGE7oBYm1s2UJtb9v6mTNi++qr6v2Nq/wyPAYEGAbaunVFUC4stDysAig7kLu6ZV3+7VStajAUyKbHuHRJvB46nbrcGVD+Cjlb1r0HAzkREVElVhrII4KLAAB551ght6tC/v77wPjxnncglZ0tZlD/8kvTr2mX4KpSxfoM2tpAfvIk8PPPzt/XykAb2Fq2FJfLGkeubVkH1KBqSyCX99UG8vPnbatuG0/oBoiw6MhM64qihu3771cnkjQOmdpArV16TKdTJ7Tbt8/y81gaQ15Rs6xbmmHdlseQ7eo1axqsfFFmIGeF3HcwkBMREXmGCl+HHBCVLwA1wsRBqUHL+rVrvrXUl41sDuSKAkyYALz7LrBli/N3oDyWLwcWLwbeesv0a1lZQJE4AYOqVdUJw8x1RMhALsPKhx+Wf98qI214kqtClDWOXNt2DtgXyGWFXE4IJ3/GtrStG0/oJjkSyLOz1d/nuDjxAYiTA1qWKtwA0KSJ2O7fb/l5LI0ht6dlXZ740LIl0Guf33iGde0+WHoM4xnWJUcr5Azk3oeBnIiIyDNU+DrkgP6gr06IOHgruqQJZY6MF/UBcrlofSAPDRVb44P6vDw1bKxc6ZwnP3BAhKdx48r3OAcPiq25g3kZDkNCxAkZWyrkTz4pDhpXr7YejMg8bSCXFfKyArm2ZR1Qw6G9LesAcMMNYmtLIDfXsg44tvSZDIUhIUB4uDo8wjiQW6swJyeLraUKuaKU3bKen2+4DryWM5Y9szTDuvYxLJ0UMJ7QTZLfi7lgrSjqz8G4Qu4BLesBZd+EtBjIiYjIkw0aNMjq19N9aaItdyg96KsdKIJXyRWjKum1a+YPVH2YSYW8bl3g0CHTIKT9fOVKYOJEyw+6ejUwa5ZocZdjiM3ZskXswO+/O7DnGjKQX7kixn37+6tfM251lYHcWoW8bVugTx+xPvSyZWpIqqzS04FffwWGDFHXfbZGvubVqqmznu/dK4KVtkVbyxkt6zIMJiQA27dbrrZqlVUht2cMubaVXKcTbdmAcyvkmZnqmHRLM5wDInjLcfBarm5Zl9+TnCDRmLkJ3bT3M/czu35d7XJhhdz7MZATEZEni46OtvqRmJiIhx9+2N276b1KD/pq+pce9BmHsko4jtwkkMtgYlzh0n6+ebPlCtj+/cCAAWJd5bLW85ZhR06E5ahDh8RWUUx/ptrx44DazmzuZy3DQFwc0KqVuGxuNvbK5q23gAceAF580bbba0+CJCSIy3l5Yhkzc0pKTCvkjrSsywq5Pe3m5saQ2/sYknEruaUKubVALk/+HDqkhlBz942IULtZJH9/UZkHLP99OjOQm2tZr19fbE+cMD8ponwt5MkKyVogN+5y0fKAZc9YIbcTAzkREXmyuXPnunsXfFvpmM4aEAd9unQGchnIo1B6EC6DiXEQ0h7gFxcDf/yhLtOkvc3AgepBf1lBW77eV6+K9cGNA4YtFEWtkAPiwFwbFIxbXW2pkNeoAdSrJy4zkKvt03PmiNnDy/o5aSd1Cw8Xk3cVFoqfhQyMWtnZ6vwNjgRy7aRugO1hurAQOHtWXDZuWS9PIJdVW0da1uvWFaEzJ0fMtJ6UZPh1a2EeEK9fdrblUG1LIM/JEScDAixETWst67VqifsVFooquXGHjKXv3Vogt9Surn0czrLuPRjIiYiIKrHSg77qJSJ4+WeaaVl3tawsYMwYoCLHzlthtmUdsN6yDpiOI1cUYPhwsYayVFYg17YDy2Bkr3Pn1OoqYFopM25Zt1Qhz8pSK7hxcWqlLy2t7H3IyXH9hICHD4uZ5A8ccO3zmCPH/V67BixYUPbtta+5LTOWy5+fv78a9h2d1A2wPUyfPi1+bsHBpgFX/r7Y07JuayC3Fqr9/NQqubm2dUsTukllTcxmLZBrJ3rT/k1Z2gdzgTwgQG1HN/e3Y+l71wZy478l4y4XLbkPV6+a7yioAAzkdtIulVcJJ1IlIiKq3EoP+qoUiYPCwKzSAC7HHFdEhfzjj8Xs3c8+W77HuXQJ6N8f+O67cj1MXh4QjDwEo3RcqgzkllrWZdVsxQrDg6nt24GffhJjjCdMENfZWiEH1LGl9pLt6pKlQC4P5i2FNVkdDw0VYUVWyE+csH7QuH+/eMwnnrB71+3yzjuWZ5J3NRnIAWD2bOu3LShQw5xxV4Klvy/t+HE5xrwiWta1E7oZj213pEJuvByZI4EcsD6xmy0VcsCxlvWgINEWDlhvW7cWyAHrJ7Ms3Vd+Xlhouu/WKuTakO6mDicGcjtpAzmr5ERERJVM6UFsTIE4qA3KKQ3ksk27Iirk69eL7bZt5sdY2uqDD4ClS4GnnhIHsQ7Ky1Or4yXQqS2mllrWO3cWLchpacC//6pfl5XxW24RY8iBsqve2gNoR8eRa9vVAdPWVeODeUvLnslAHhcnwlnt2uLAMS/PcH1yY1u3ihmtv//etQeXO3aI7bZt1m93/Tpw993OC+45OepJDX9/YNMm62uKy9fbz08N1bYGcu2kZOWZ1M3WMG1pQjd7HkPL3jHklgKttYndyrpvWePArS17pr2/taXT5N+YuTHkgOVAbm2G+JAQdZ+M29atVcgDAtTrbZnEzwUYyO3EQE5ERFSJlY4hj8wTB24huaWhrEEDsXV1haWkBNiwQVzOzjYNk7YqKgLmzROXL14UM2A7SBvIs/0i1YNbSy3rtWsDHTuKy9q2de3kWHIir3PnrB9waduBnRXIy2pZL6tCLteODgoS42EB6+PI5fNdueL4z7MshYXAnj3i8oEDaqgyZ/58MTv8K6+U60SNnqyOR0SIlnnAepVcvt6xsWrnia0t644GcuMKubW15rXkCSP5c9ZyVcu6opTddl6eCnlZLevWlj0Dyg70JSXWx5ADlgP59euWZ4gHLC99Zq1CDqh/s9ZOnLkQA7mdGMiJiIgqsdIDvvDsi/BDMcIK0sX1MpC7ukJ+6JDhAf6WLdZvf/y4YbuwtGKFYYAtx2SA2kCeqYtWD+gttaxHRwO33y4u//GH+nVtII+PFwddRUXWZz92RoVctqxbWv7IUsu68c9aO8O6ZMvEbtqKvDzZ4mwHD6rrSpeUADt3Wr6tnNk+N9f67WylXTf6scfE5a+/VicfMGZ8AgSwr2VdkoHcWqXW+P72tqyb+5lLzpjUTT5udrZ6EiU7W/xsAMuhWlbIzc20XlaYt7VC7mggv3xZdPbodPZXyOXrHR5uOls6YHliN2sVcoCB3NswkBMREVVipQfK/iVFqIuT8FNKDwZuuEFsy1MhLymxXrkE1HZ1ydrEbleuAC1bAm3amC4X9dlnYnvHHWL7yy+2tWvu2wfcequYKbu0eqoN5BmIVoNQbq5azQIMA/nNN4vL2oqwNpAHBKgHydaCtjMr5J06ia2tLeu5uWowAkwr5IBtgVx7AsD45+ssxsHaUtv6iROG++CMEwTaQN6tmwhTWVmWx/xrZ1iXXN2y7uikbtpZ9Y1pH8PWiaeMq9cREWrwlVVyeZvQUPMzzgPibygsTPz9aYeFmHsOY9ZazouL1f8llgJ5WRV2+Xdeq5blNektBfKyxp5bCuSskPsWBnIiIiLPkJqaiuTkZLRt27binjQ4WH+g3wiisloSHKK2WJenQj5hgjiIN559XEsGJLmUkbUK+Q8/iIPqixdF4JbOnweWLROX334baNdOVNG++UZsf/zR8hjf554TY4AnTQJuvRXKwUMGgfxaSbRhKNIe1MtgFBMD3HijuPzvv+oBlfF4XPmaWhpHXlBgeALDXCBftEi0yK9bZ/4xcnLUgCADeVkt61FRaiu19udtLpx5SoVcBnIZgCydyJk/3/BzZwdyna7s8CNfb231tKJb1uXzZWernQXm2FIhLyws+0SbZC5wGreta29jPJGc5OcHNG4sLhuPIy9rDLm1QK09sedohVz+LZgbdy/JQH7mjOFJvbJOJlgK5PJzSxX5yhzIp06dirZt2yIyMhI1atTAgAEDcMhopsu8vDykpKSgatWqiIiIwODBg3HBTS8WoP7/BRjIiYiI3CklJQX79+/H1ope/qv0oK9HgjhmuZAfi437LSyFZavCQuDTT8V23DjLk7XJ6uXYsWL7zz+WW3+//lq9/MMP6uUvvhCP36GDaG195BFx/YcfAq1aAYMHq5Oqae3ZI8aay8m2tm0D2rdD9ZLz+kCerkSjoNhfbR3WhiFt6JFV8Lw8cdCtKIYVckAdl2up8m188sPc7ebNE9cvXmz+MY4cEdsqVdQAU1Yg1+nUsGcukGvDmQwWtlbIjx93fLZ4a2QgHzxYbM1VyBVF/Z0ZOVJsN24s/7JC2kAO2B7IndWynp1tfSx8cbG4DaCGyehoNexaO8lmrUIeFiZO4Fnbby1tK7q5QH7unNiWFUqlhg3F1tEKublALU8s+Pmps6nbc39A/VuQJ6vMiYsTHQAlJYZDbhytkMuTevIkn7nnAypnIF+3bh1SUlKwefNmrFq1CoWFhbj99tuRLf8oAIwdOxbLli3DggULsG7dOpw9exaD5IQQbsAKORERUSVXetD3dB/R6nwVsXjmDQvjim3155/qffftU8fxap0+LQ5m/fyAYcNEtaew0Hw1+9gx4K+/1M9/+UUcTBcUAJ98Iq77z3/E9r77RHBISwP27hXXHT+uhhTp7bfFdvBgEc4bNIAuMxNdsc6gZf36dZivTmoDeUCAGlaPHhWBRT6fXDZNHjxbCuTGk2WdPWt6cCaD59Gj5h9DtqsnJZkfQ15crH4P2vGn5gJieVvWAwPF1tlVckUBdu0Sl+XP/MgR08rx7t2imhocDEydKrYXL1p+7WxVkYFcWyG31Klh6b6AWh3287O83ryWtQq5Leuna8nfg+Bgw+qzcYXc1kAuh9EcO6Zep51QzZGWde34cUvV+XIG8qtXgR49dbgWU/p1bdu6oxVyBnLLli9fjkceeQRNmjRBixYtMG/ePJw8eRLbt28HAGRkZGDOnDl499130aNHD7Ru3Rpz587FX3/9hc2bN7tlnxnIiYiIKrnSg7egY6Ut69GxuIpyVshlBVcewE+cKFplr1wRa3NnZalBrWVLUQls1058bq5DQLYe9+wp2sNzc4GffwZSU8UBeo0awD33iNvExgJjxoiK19ixaijRHgifOqU+5rPPijbw7t0BAE2x1zSQm5vYTQZA+TVZwTtyRK2Ox8WplTdZIbfUsi5f68REEQ6MJ4A7e1YNMWUF8kaN1EB++bJaFU5PVy+bC+RlVchtWYtcBqQePcTW2YE8LU38HIKCxJJz8kRI6fG2njwJdPfd4vdDDgUp7/7IQC5PtFRUIA8IUIOttbZ1ed+QEMMxzWU9Z3Fx2ROkycewZaZ1bdjUhl1LgdxSlVgyNw776lU1wFhq37bWsl7WDOtAuQP5qlXAmjXA7ozSr2v335EKufw/CjCQ2yKj9J92ldJf3u3bt6OwsBC9evXS3yYpKQl169bFpk2bzD5Gfn4+MjMzDT6ciYGciIiokpMHfaVhLjguFldReuCdkSEO1OfPF0H3t9/KfrySEjWQf/yxOGg8cUIE3tq1Rft448YiTAPqWGcZmIzHkWtbjx96SA3eH38sJmMDgNdfNzyofustMT703XfV8d3aytr774vA2727+rxNm4oN9iLGTxxv2VQhl18rfZ7rO49ix2KjdnWg7Aq5DEpxceYngNO2ZaelmR8GIIdKJiWpASU/X60EygP5qCi1gg2Yr56aq5Zq1yI3XksaEB0O8jUaOFBsnT2xm2xXb9pUfA/y52fctr5mjdjK3xf5e1aeQK4o6twAskJuaW1tydwa1Y6MIQdsG0duPKGbrc+pDbeWAqI8qWBPhdz4sSyNIXekQi5/R2NjDX+ftWxpWbe0BnlZ9wfKDOTy/Nv+HDMnFGytkGtPzMlW/6AgzrJelpKSEjz99NPo2LEjmpb+gz9//jyCgoIQI/+YSsXFxeG8hT/iqVOnIjo6Wv9RR/7xO4n2hBUDORERUSUkD/pKD/RCEmKRjhj16+npwJdfiu348WUfMGzdKo5CIyJEdXLyZHH9pk0iyIWHi3Z1GYw6dxZbGayMK+Tbt4ugGRoqQt6994rr164V+9SiBTBihOF9dDr1IMf4QF6ObwfEpG6SJpBX8bfQsq6tkBtPnFVaId+96Ai+nGImkJdVIdcuZWRuvLm2AlxQYH5s9oEDYpuUJF7n0FDxuXZtcPkcWsZhLS9P/f60gTwwUIRywHzbunx8Pz+gb19xec8e2yYis5UM5K1aiW2bNmJr/Hsjv2cZlGQg37jR8efOyFBDXEWPIQdsC+TGS55JZa1FLve/alVRjTdHfg+2rGBgayC3t2X9+HH1f5At97W1Zb2s+5sL5Nq5IiwEcpmfj8FMIC+rQi6v177e2nZ1S2328nfy4sXyz5ngAI8J5CkpKdi7dy++++67cj3OhAkTkJGRof84ZW7tzXLQvl8xkBMREVVCRuNFoxNjUYRAZKI0DFy9qoadAwcsTygGcSyx/aXSr991l2ibHTEC+N//xHbTJnGQ+H//J8JdSAjQpYu4vQzkBw8aHjzL6nj//uLguFkz0ZItvfee4Sy1xowD+dGjogIZHq6uHw7oA3kD/IsEnTiKzkSUYcu6DEIlJaaBvLRCXi39KBJhJZCXVSGvWtX8bY0rwMZt69evi/ALiGEAgOk4ckvLJRmHNRkAgoLUEChZG0cun6dKFREYGjYUgcCZQzMtBXLj10d+rzL83nqr2B46ZH0teGvkcXiVKuq60eUJ5Dk55icxNNeyDri2Qm5t/Lgk28a1VWpL7A3kZbWs164t/s4LCtRQakt13ZYKuaOB/MoVda4IC0VTuatpMpBr/25srZDLtc61D2ipXV17v8LC8q2U4SCPCORPPPEEfv75Z6xZswa15VlEAPHx8SgoKEC60R/RhQsXEC9/OY0EBwcjKirK4MPZZNs6AzkREVElZHQwGJUYi/BwqG3rO3YYHsRPmWJadVm1Cpg8GXvfWIrI338U18mW5YAAYNYs4PPPgVtuEUHm9ddFoNy1S33+GjXUsCfbnIuKAFncePBBsdXp1MuDBunHfltkHMj37RPbJk0Mx+7VqIHCmGrwg4LWRX8DsNKynpWlvgZGLeuJhUdRD8fFddqqmTyAvnLFfAizViFXFLVCLoOL8WzTmzaJg/bERHV8s3YcufY5jAO5cVjTzrZtXIWzFsjl88jnTU62fFtHGQdyuQb8iRPq82uXkNOut96kibjsaNu68YRugGOBPCpK/d0zF5ic0bJuXCEvK5Bbm2FdatBAbG2ZGM9S2HS0ZT0gQD3BJavMtlTIrY0htyeQm6uwy9/rhAR1BnojskKe5kiFvGpV8fenKOrvkXxAa4E8JET9vt3Qtu7WQK4oCp544gksXrwYf/zxB+rLs0ilWrdujcDAQKxevVp/3aFDh3Dy5El06NChondXj4GciIioEjM6mNVViUXTpsA1ObGbXEe8YUNRVd61SywXJs2ZA9xxB/DKK2j+cn/chCPIRxDQp4/1561b17DSDQD9+qmPCQCrV4sDymrVDKvZzz8PLFggWunLIgO5PBCWM6/LcCbpdMiuL6rksSUitFhsWZdbWeUHgHr1oAQEIBR56IDSuYG0FfLYWPW28qBay1qF/MwZ8Tr4+6tLuBmHoj//FNuuXdXr5LhlW1vWZTi0Fs6sLX0mn0c+b82aYmtpfLW9Ll8Wr51OBzRvLq6LjjYdcy9fSz8/w2AqX5uff3bs+e0N5CUl5rsSypr13BUt686okMv5GIxPBplTVoX8wgXx+tjasg6YVuhtqa7LQF1QYHoirLwVchuWPDOpkF+4IDojFKXskxEBAabDBGypkANuHUfu1kCekpKCr7/+GvPnz0dkZCTOnz+P8+fPI7d0Db7o6GiMGjUK48aNw5o1a7B9+3aMGDECHTp0wC233OK2/WYgJyIiqsSMD8BjY9G8uaZCLgN5jx7A44+Ly+PHAzNnivHh//mPOIjo0gUXqjdBMfwwDyNQFOZAV9/o0WK7bJk48JTt6vfeazhpU2AgMGSIOEFQFm2FXFEMK+RGrtdtavC5ySzrMghpZ1iXFeSAABTVrgcAiEfpQbA2kOt01id207ZYGwdy2Y7dpIlo2QdMQ5EM5HIIAGDasm6pQm4cDq2FM3sq5GVNeGYv+fgxMYYhylJrfmysYRfE0KFiu2iRmOzOXtYCeXa2GvCk9HT1ALusrgQtd7Ss21MhP3as7OBgKZDLxy8uFj9PWyvkgOnJNbmVJ37M0f6eGIdqWwK5tQp76d9AXnw9i6Mg5Lm3dMQiHdHq/TIy1PXkrZ1QkL9fMogzkFs3a9YsZGRkoFu3bqhZs6b+4/vvv9ff5r333sPdd9+NwYMHo0uXLoiPj8ePP/7oxr1mICciIqrUjA+EY2PRrJmmQi4nD2vbFhg3TlTtDh0CnnwSeOUV8bXnngPWrsULd+1FMPLxP8y2ad4nE02aAB07ioP1Dz9Ux6vLFnVH1KkjKstyZnArgfxaLQuB3DgIGc+wXionoaHhA2oDOWB9YjdzLevytZft6m3amG8bzssD/hZt9lYDuaUx5JZa1u0N5MYVcmcHckvt2PL5jFvzjTsBOncWQSYjA1i+3P7nNxfIIyLUyfOMw4/cj8hIwyXItPtmLiCXp2XdlRXyxERRtc3Lszw5oWQpkAcGqj+vZ54RoTQszL4KuQzicoK+9u0t38ffX+00MA7V5V32rPRvYPaKemjVyvQcT06OYTONQdu6fL0jI9XOGXPkcopySUP5uls7CQFU3kCuKIrZj0ceeUR/m5CQEKSmpuLq1avIzs7Gjz/+aHH8eEVhICciIqrEoqMNw0JpINdXyKU2bUTA2rpVVMb79BEH6G+/LZYZ0+lw+jRQDDFDs7mubJv8979iO22aqDo2aGD9gLssgYHqmOqDB8U64YDZQH6lZhkVcuOWdaPQk17tRvW+fjGmgcqWCrm5lnVZIW/d2rBtWI5j37JFtOTGx6tfB2wfQ248qZutgdx46TVLFXKHfxmMWKr+WjrxYBzI/f3VWfodmXjZXCDX6QzbsLUsvd7afTMOyEVFIskBjrWsu7JCrh3HXVbburVWdBkmv/pKbKdPtzgG24C22+XcObHV6cTcFNZYGgduT8t6Vpbp73vpDOv7suvhzBlg/37DL8tf+7AwMdXBIZQO0dm9u+zx41LjxmIrV1Bghdw3MZATERFVYjqd4UGzcYUcEBUcOUFXo0bApEliHPnx46J9vZR2Ja6yCmgWDRkiAqI8MHnwQcvL+9hKHsgvXy4CT1SUunyXxsXqhiE9A9GiMGapQm4UyC9GqWH4uJJouuKQtQq5uZb1jAxxUkJbIa9XTxy8ZWerB9vadnXta2XvGHJbKuR16oigWFCgjseXPK1Cbi4I33ef2C5dqs6QbStzgRywHH7kBHTGnRKA5YAsq7ZA+QK5KyrkgHrCp6yJ3awFTm0x8r//BR57zPpjSdoKuayON2tm+r0as1Tltmcdcu3tpdIK+QmIn+/u3YZf1hazW7QANqF0zrC//rJ97DwDeeXAQE5EROR+qampSE5ORlu5/FdFMgrkVasCRZGa0NaypeEYbjMURc0rQDmKoqGhwPDh6ucPPODgA2nIQL5smdgmJ5sN+df9Y3AKalDXL3tmPKmbDERGLeunQ9WW9eNKounEzNaWPtOGyKgodXz8//4nwk1AgJjILChIrfjLUGRu/Dhg/7JncsyztUDu7w/IyYjl80rWxpDbux5yejrw6KOAdmhnWYG8rAo5IIZeNGggqtBLlxp+LSfH8skD7S+4fP0lS+Hnl1/E9o47TB/PUkCWoTE42LRq7MqWdVsq5IA6ZMJahTwnR63ymwvkssuic2dgxgzbT7jJv+MzZ4A//hCX5fry1lgaB25LhTw4WO0g0t5fUVB87DgA4DjqATAN5NoJ0Vu2BP5C6dJ7mzapr7c9FfLcXPVnz0DuWxjIiYiI3C8lJQX79+/HVrnmd0UyCuQAEFFXE2ZsOEkgi7lSubqUH39cVK3uvFMdQ1ke8kBeVpnMtKsDYmjsXoi29YLgCJTA37BlXbZ0WwiGx/zUCvkJJJq+BpZa1vPz1RevShURUGR4lxPbPfaYOtZUW6UsLBQVN6DsQF5Wy3pJiTjgl+PszVV2tc8jl6eTjCvkMhQUFFgPkeY89RTw2WdieIRkKWza2poPiNdWVsmN29Z79RJhe8EC0/tduiR+TtqfjWQu/OTmqqHxrrtMH6+sCrm5qm15Wtblzzgjw7T1WlGcWyGXvwdBQea/j5deEm3qP/1kOrbemqpV1fD8ww9i27Fj2fcrT8u69v7aQH71KvxzxP2vhosTNGVVyHehJXJ1oeJnLpfeK+sESFKS2F68qP5dhoaW3RXAQO5dGMiJiIgqOXnwFhysn6CqSgO1ZX3l1TYYMsR0jKSWtl0dKGcgb9hQhFY5qVt5yUAuNW1q9mb5+WogLwoTB7zXr0Md85qZKQ7qLQTyo0X1UAR/ABYCuaWWdXPLdMnKWFKSGB4wY4Z6e22VcudOEea162xLloKqceU4JEQMdAVE1fviRfG5pRMxnTuL7fr1hpVv4wp5SIgaBO1pW1+6VF3STj4mYDls2lMhB4Bhw8T2t99EcAZERXfzZnGC47771BMh0p49YlunjmmINBd+1qwRj12njvnft7Iq5MbfI1C+Crn8OSiK+WAqXwdnVMi17djmqt9164oJ3WJjTb9mjU6n/i3L32V7ArkjFXIL9887eBwAcBY18ezL4kTZrl2Gfw7aCnmzZkCxLhBblNK/Kdk9UVaFPCJCHSIhl85OSCi7q4CB3LswkBMREVVy8iBcc4Acn6yGmae/aYNFi4C+fS1nAeNA7vAYcsnczNSOMg7kNlTIiyM0gTwqSj3APXLEYsv6+SuB+vbVE0g0fQ20FXLtkbu5Zbo+/lgE03/+MV3TXVYpDx1SK8hduhgu8QWoQTUzU3wjsgpvrnIsf/ay8ti1q+XXv1078bXz59Vgpl1XWT4vYDqx25UrwKxZagA0duWKOrEfoHYlAJZb1u2pkANiyEK1aiJ8y66JAwfUn0lJCfDww8D8+ep9ZBjSrvMuyd8N7UkHGbjuust8eHIkkGsnFywuFhPUDR9u+Ltk6aRFUJAaPI2fUwbo8PCylxI0nlTw6lXg1VcNv3dbJyxzhPZvuXZt0+ED5lhqWbdllnVAfS1PntRfteWH4wCAc8H1MGaMGFFy7Zr5eTRq1hT/zho00LSty/8htswuL0/OaQN5WbSB3N7hIuXEQO4ABnIiIqJKzkwgv7GDOJi+jggoDRuhdm0xqfHDD5s/ZpDDawPEJOtOm1jbKeRkUJKVQL4cd+Bi9I240kOsWa2fY+umm8T28GGLwfDyZeAdjMc6v274Hb1MX4PatUXVODfXsN3AXEU3Lk6cATE3dl9WKRcuFFXe0FBg4kTT28XEiDHfgKiyA+Jzc+2u8rnlOPtevUxvI4WEqNVzOY78+nV1XWVzgVwGttdeE0MSXn/d/GOPHy9uK39meXniA7B9UreyKuQ6nRiPD6h9xnKCuq5dxfAARQEmTFDDjAxDPXuaPp5xNVJRDAO5OWW1rFurkGdlAWvXipMnX35p+LzydTYXhi09p63jxwH155KRIU58PPOMmOTxrbfU28h9sOXx7KX9W+7Y0bbx5+VtWZcdIePH63/HTq4XM6wH3lgPoaFqZ7m2bV1bIQdE27o+kEu2nLSQgVy2udsTyPPzzS/Z5kIM5A5gICciIqrk5MGbJsDU79sUx4Y8h7TnZmPfQX8sWSKKbMuWGR57S7Iy1KKF2HpUIK9SRT0oj4mxuIZvXh5wEXGY/ugRXHlyMgAzgfzIEYvB8NIlYDYew7Ot1yADMaavQXCwOv56xQr1+rIqusZklVKGxS+/FOsqGfPzU8PqyJFie889ppV0QD0ZI0PKbbdZ3wdt2zqgVkXDwtT2d8A0kO/aJbbm1gE/c0ZtFf/mG3U/ZTXRljHkimLb6ykD+T//iK0cn9usGfDOOyKknTwplpRLT1eXnjMXyI2XPdu/XyyJFRIC9Ohh/vkthWP5h6Q9qSFpv++PP1YvHzsmthcvitZ7Pz+7Znbfs9rG8eOAOPkjh17s3Al8/724rJ1xXy4tqF2Cz1m0FXJb2tUBm1rWrRaR33hD/P2fOQOMGAHs349Wh74FAIQ0rgdATNoGmA/k8t9N06bAZhgt0WZPhVx2ldgSyMPC1BMNFdy2zkDuAAZyIiKiSu6uu4B+/YBx49TrdDrcsOAtNH/rAfj5iSWwZ84UX3r5ZbXTV5I5QhZOL1zwoGML7djTJk0sVtVkITYkRJ2LymyF3ELLusykMuuZPSnRu7fYrlypXldWRdfYDTeole/XXxdLxVkiw2pOjliybvZs87fTPneNGhbH2etZCuTGFT/jQH7woNju2KEGZ+nTT0UrdpcuYiZ3GyfT04fXoiJxG1teT+NALgNl06YidN59t/h8wQJg3Trxy3zTTWaXyzOpkMvqePfuhicntCwFcpnomjUzvU9goNpSrp1fQQZyuTU3zt3Cc2ZnA5+8JvY7J9LGirYM2q+/rs6mfviw+vVDh8RW/s04k7ZCbssM60CZs6z/vjkCkZGi4cSsiAjRjRAcDPz8M9CkCZrkbEMBAhF432AA6olIeb4JMF2hrGlT4DKq42SwZqJKWyrksvwu2RLIAbeNI2cgdwADORERUSVXpYqY8XjQIKs3+89/RG4vLhbdvFoykLduLfJuUZHhfFxupw3kFpgL5FlZpYXoMlrWi4rU3GhTIF+3Tq14WZpszZLwcGDePOCDD0x/EMbkAX94uFhCzFwrtPFz9+pVdiuwbBf+91+RPOQP27iyqw3k6emG7dWyDRwQ7e6ffiouP/642MqqvXEgN/4egoPVH9ilS7a9ntqWdUVRK+Ty92OoGLKAhQuB338Xl81VxwE1+GRliYAq2/4ttatr9y0zU231l/sDqCVXY/IkUFGRep1xIDeeM8H4OTWBfNs2IKZQVMhP5asV8ueeEwHSZOk+QB0ysW6det3Jk+rvswznjRqZ34/ykNXi2FjzJy3MMdeyXlKin1Ph7Y8jkZ0t/gVa1KIF8O67+k9/Qj800+1Drb6t9V8G1B+fdoUybYUcAP4s0rSt21Mhlyx0+JhgIPceDORERERkC50OePNNcezw00/qkEZAHUNer56aAcs9sZsz3XmnqBr27WvxJuYCeUlJaRHQXIVcE8ivXhW5TqdTM53Z7z85WbT85uWp1WVL64Nb8+CDwJgxZQfnnj3FNzRvnnhuS7QzXlsbPy5FR6spZP16yxVyGR7On1crp5IMuoCYwO7sWREiBg403KeyKuSAeiLg1Ck1GFp7PZOTxS/ylSviZyon7JI/vD59xEmMEyeAL74Q11kK5JGR6pJ069eLPww/P3H2yhJtd4X8fSooUOcWkK+ttfvJdcrLEcg3bQLiIALb/ss19Lvz3nviHMXmzWYeR9uKHhCgVu2PHhVn6+SSaK6okN9wA7BokahUywkrymKuZV1W9gH8uVO0dh8/bv7u586VrmD32GPAokXYNeNPDMBPKL6hob4RQf64jh4V52XkyTjtCmU33ih+ZH8WawK5uaEJxqpXNzy5xAq572EgJyIiIls1bgyMGiUuP/usOoxZVsjr1FEzmEeNIx81Shwpy1ZkM7SBPDxczbrXr0NUBXU6cVAvvzFNOJJ5NDZWXaXI7Pev06lVcjmO3N6WdXu8+KJIWNba2o2f25ZADqht67/9VnaF/Nw5tV29dGk9rFql/gLNmiW2o0ap7daOBHJZnfX3t9wNIPdBBka5HnlCgvqc2rb169fFz617d/OPpdOp4WfKFLHt00f9RTAnIED9PuTP/+BBEcqjosSZLXO0gfw//xFbWwO58esJEchrQFTIt5yMQ0mJ6LiXBXjjjnoAaoUcECe4ZOn38GFxQiQ/X/wMbZkB3RGDBgG33lr27ST5fe/ZI+YEUBT9pIKFASHIhfh9tBTIR4wQ52LWrNUBgwZha4j4vdeeb6hRQ/yqK4p4Gu34cfl/JCBA/P9cj9K/m7g49aSKNTqdYZWcgdz3MJATERGRPSZPFnll82YxlFWuqgWI4q88XvSoQA6Yn7FcQxvIdTp1TqTr1yEOnGVIkiFSEwy1S3DLExJZWeq8UQaMA7m9k7rZy5aDfhnIGzWyHiS17rtPbOfPVwfPWhtDLgP50KHiZ3H8uAiRBw+K9nWdDhg9Wr2vcYC0NKmb9nllFb5KlbK7B2TbulzezHjcvPYkRqtW1k+YyPAj20a034clxhVr2e/cooXlfZeBvHZt0SUBOFwhVxTDCvmxrBrYs8dweLrZQK6tkI8aZdg9Ik+I3HijOs+Bu3XuLNrb09PFLPp9+ohWHwCvh74OQLzWZ8+K8yFaigJs3Cgu//GH2Mpv0bgBQDuxm/H4calpU+AgGmPJvd+qE+LZgoHctzGQExERkT0SEtT536ZPV9vVY2JEiPXICrkNtIEcMDOxW8OGhnfQBEPtEtyRkWoXr9nXoFcvcQC2b59oLXBlhdxWt90mAuozz9h+n1tvFQGnsBDKt2LW6aJYCxXyy5dF6RAQEw106CAuf/utOnfB3Xcbzg6uDeQFBeoPyFzlW1bItYG8LDKQy4RlPL/AnXeqk7JZaleXtDOUJySI+5bFWiAv63nuvVcNxmfOiNfGnkB+5AjSH/8/tLn0KxIgfkkvIA7LlomGB8lsIG/cWFS/W7USJ5dkMj10yHJadafgYHGi5O67xeu0YgXg7489T32GV66PQ7Vq4m++pMRwHXFAjGSQJ9X+/lts5a+Y8RB5+WNbvdp0hnVJnvP5we8+82vaWyIDeUSE+o+pLAzk3oOBnIiIiOz1xBOiBXPzZvUAXk5ALQ9CPWoMuQ3KDOTakBEaalBxNx5CLYtYZl+DKlXU6ej/7//ExGjyendp0EAEQtkGbav/+z8AgK60a2DfBaMKedWqaqVUlhqTktRl1eSU/bVrAx9+aHhfbSDXTshlLpAbV8ht6TaQgVwyrpCHhYnXIzAQGDbM+mPJEw+AqBrbMr5Z/rxlB4DsMrA0oRsAvPCCGIYwcaL4HuUv6cGDIpgDZQfy3buBDh0QO3sqfsVdaAixTNlF1MDbbxsMrzaZCB+A+N3/919RXg8IMKyQW0qr7hYVBSxZIl67Ro2AJUsw5ZwYe/PAA+p5IOO2de1qblu2iLxk6ZzDPfeIxoaFC8Uwd8ByINc+rk3kHW3tXgEYyL0JAzkRERHZKz5enbNq2jSxlceKPlsh1x6BGy15pm1ZB2x4DeQM3F99pU4o5qqWdVe67TZk3NRG/+mmo0YVcj8/NRjIycuSkgzHqVerJsaTG6+dLV9jbSCPiDDfCi0r5DJR2XJyw7gSbW4G/vfeE/vdqpX1x5Lfo05n+0kNbcVaUWyrkDdsKMapR0UZLue3Zo14jMhIy79H8vlOnQKuXMH5mEY4D7HfxWEROIU6+pdZ/g2YrZADIojLoRDmWtY9qUIu+fuL1+7gQWR3vxtLloirH3lEHY1y4oThXbTBOSNDzLknz58Zf4s336zOr/Hnn2JrrmUdEOdPtJPrl6lnT3Hy6/33bb9P797iJI3cmQrCQO4ABnIiIiJyhBwmK6vDxhVynw7kRuOYtS3rgA2vwdixYhmlRx4B2rcHBgywXhn1VDodljb5P/2nq3ZW1w+x19NWj8PCxC9KmzYiTMbEiBZi47WWAbVCnp5ufUI3QD0TIg9obQnkdeoYPp65Wej9/CyvJa4lK8J33237ZGZyH69cUZeO8/OzujSfCRnI5Yz1N9xgefy5Nqj37o1BdbahFs5gzeR18Nv0F8Lj1FZoOXzeYiDXkkM5rlwBtm4Vlz0xkGucOydGQUREiD87GcitVcgBMey7qEg0CdSqZfq4b7xheK7OuEJet654zsJC4MgRO3bY319MRHf77bbfJzxcnBEoY+4MZ2MgdwADORERETnittsMi5oykHvspG5lyM8XWxnIZY48cKD0BjYEcpsr5BERIpTPnavOjmfrMk4eZuap/tiAjkhHNNZcTNYv6a2nTSWNGomDz4AAURFOSxOlRXO0LetyQjdLM6cbz+5uS7eBTqe2rScm2j4215z77hOTw8kl0mwhU+DXXwN//SUuJyWps9DbQgZyuSa4pXZ1QJxwuPdeYOxYZM1fir/3RaAE/mg4qgt0zZvpmxaqVgX69xeXbQrk4eHqH79sv/fwQC53U/6KldWyLofrf/212DZsqGYorerV1Yn2AdMKuU6nVsnllAq+hoHcAQzkRERE5Ag/P8PuXHMVcpNqqQczrpDLydCXLSu9Qd266pJcNrase9s4enulpwPbdvihJ1ajT4tzuIYq+OUXoxtpK+TascURESavowFzY8jLqpBLto7Hl4HcePy4vQICxDhz7XruZfnf/0SV/tgxICVFXGetXd0cGcCzsw0/N8ffXyzx9u672Lo7CCUl4m9W/t3KSfOHDxfLeAG2BfLcXJierDL+eXgYOXpC/vqZq5AXFakn40aONPy6tfMN//0v0KmTOHdkrunF4XHkXoKB3AEM5EREROSoESPUIb3ywF7mr4ICGytsHkIGcjk09s47xXHSrl2lw7z9/dVSWRkt697aJWCvtWvFMWT9RsF4aLSo7P76q9GNtIHcXGu6JfYEckcq5IBYOiwuDnj4Ydv3y1miooDPPhOX5S+QvcMWjAO4tUCusWmT2MrJ7gHRbZ+WJlYEM54A3pIffhAF8t+OaRJqo0ZlLznnZsYVcnNjyP/9V3TNhIaqJyska3PWBQSIJdLOnTP9tQQYyMkMBnIiIiJyVK1aYsLnnj1FVQgQgVYe0NsTSPfsEfnEXVV14wp59epiZS9ArZIrpeNlS6Jsa1n39Qr56tVi27OnutLXxo1q4AHgnkBua4X8llvEGun33GP7fjnT7bcbrlnuaIXc0ucWbNsmtu3bG15fr54Ycmw835wl69eLr688rgnkHt6uDphWyGXL+unTojIOqIG5SRPxumhXtivrWwwMtDz1AFvWyQQDORERkfulpqYiOTkZbeVyWF5k4kQxp5T2ANTeid0URSxH/eijhusgVyTjQA6oM8kvXSq2qy6J2bY3n1En7lIU05Z1bQusLx9j/fGH2PbsKb7n5GSguFhMmq5X3kCena2uv2UpkMfEGM6+7k0z1r/9tkh4sbFAu3b23Tcx0bAabWMg37lTbC1NHi9f+uJizaSGZsjf+zNhakI96ud9gTw+XoxGKS5W1yKXgbxpU/ESa3805TnnIOcOTEtT563wJQzkDmAgJyIicr+UlBTs378fW+UsxV5Otq9PmaIuj2zNjh3A0aPispyfqiIVF6vLEJkL5GvWACtXAkP+GodhmI/Xs57S3+b6ddGeD6iF2sRE0bqal6ce4Puac+fEMlA6HdCtm7hOVskN2ta1gVzOyG0LbfiWvcSWJnXz8zMM4e5c091ekZHiD+DYMfvGoAOiHUX+sel0pkvHmXHtmjoW2lKHfGioOrectbZ1Gcjvm6gm1E/W3oTi4jJ3w62MW9b9/NSXTv6qaQM5YNhNUJ5AHh8vfuQlJeoSar6EgdwBDORERETkbM89J8aW/vmn6MJ9/XUgNRX48ktxoGt83LFggXp548aK3VfAsFKlDeSNGomD78JCYOBA4Doi8R2GYc22SH0Il6EkLEztEggIUIuVdi1v5EXWrBHbm29W82/nzmJrMD42OVkkkFtusW0JMcnfXw3gMkFaqpADhhOJeVMgB8Qfi7UJ7qxp0EBsa9dWJ0CwYtcusU1MtP4yaVdls0QO1QhLrgeldJWAVSdvwldflbkbbmVcIQdMZ1o3DuS33CK21aqV79dLpzNcut3XMJA7gIGciIiInK1HD1H0u/lmcUD/0kvAE0+IGZybNRPZKSVFjNdUFDE5lLRtW8W3csp2dcAwkANA375im5MjxpHGxoqZpXfsENcbjx+XZDHYVwO5DCzayqGcndsgxFWpIlLO2rX2P4ksYdoSyLXjyL2pZb285JkfJ7WrS7ZM7CZPRlWrGQjdK69gb+vh2I0WePFF8ffiqcwFcu0wk7w89e+2WTOx7d4deP55cWKxvBjIyQADOREREbnCTTeJ5ZWnTQMeeggYMkS0NoeFiYP8jz4Sw2e3bxfjKcPCRI7KzxfXAcCSJaIytXu3a/dVBnJ/f9PlwGXbOiAOxrt0EZfXrxdb4xnWJV8+6AaAixfFVrvMuHwNTKqqVarYVL01IQO57Pu3pUIeECCWVKss5Lh8G8fnOyuQa+dOqFYNwP/9H27cMA91E/1w9izwwQc27Y5bGLesA4YzrR86JIaxxMaqv99+fmIGemfM/ydnaffF/w0M5A4wCOTZ2b475R8RERFVuOBg4NlnRav6ggWizTk9HfjwQ/H1SZNEOzsgll2SLc8bN4pjk2eeAf7+W6xKJcd4u4K5Cd2kTp2AMWOAV14BBg9W91EGcnlQLavDkq9XyC9cEFvt7NMykF+/7qQuB+3sYoDlMeTaJ69a1eOX3XKq0aOB6dNFG4oNnBXIs7LUn7F86UNCgBdeEJdXrrRpd9yirAq5XI2uWTPX/CrJk3WHDjn/sd2NgdwBBoF81CigeXPARyaUISIiIs8TGCja1e+4Q0yGtmSJuP6ee4COHcXljRtFh7Oc9Oiff4D33nPdPlkL5H5+oto3caL4XAbyDRtETvz4Y/H5XXcZ3q8yBvLoaHWyc2tjj21mPMmZLRVybxs/Xl7R0eLMlZzczYrcXODgQXG5vIFcVsdDQsQQeEl2zjvl5+8i5irkcgz5hg3AzJni8rPPuub5fbl7hoHcAQaBXJ6m8cUp/4iIiMhj6HTAJ5+Iub4AcUDfp48ayP/6S3wdUIPt5Mmitd0VrAVyY61aifb6a9fESYLDh0Xhdvhww9vJ/T52TF3b2JfIlnVtZ4BOpw7floGtXOwJ5NoKOZm1Z484iVStGlCrlvXbypexrEBerZphFVnez5MDubUKuezEmTxZdO24gvzfcPGiui++goHcAQaBPDNTfOLJszAQERGRT6hTB3j/fXF52DARcm++WbS5X7qkTvT27bdi7HlurpgYzhVk660tgTwwEOjQQVyWXcKjRpkOW65TR3wvhYXAyZPO21dPoCjmK+SAlXHkjjCeedxaIL/5ZrEtq/RbiWnb1ctqxS6rQm5p7gRtIFcUx/bTlRTFfCCvWVP8bQPAgAHAyy+7bh+iotSx6b7WQcNA7gCDQH79uvgkN9dt+0NERESVx8iR4oBUtogGBwNt24rLiiIyVuvWwOzZ4rpff1WDgDPZUyEH1Lb1/HwRbMydKPDzA268UVz2tdbU69fV18w4kLu0Qm5tDHmnTmLRe3mWh0zIQC7PXVhja8u68eoC8uefn++ZNb7cXOiXLNT+evn7ixNsQ4eKOS/8XJwsfbVtnYHcAWYDuSf+9RAREZFPuvFGwwm4Zds6ADz6qNjK9cABdQZ2Z7I3kMuZ1gGxLJqlFad8dRy5rI5HRJguLS4rphXesg4ACQmuT1JezNYJ3QDbA7lxhTwiQq00e2LbuqyO+/ubdrVMnCg6c+RQGldy1cRuhw8DW7Y49zHtwb8+B8j/WUphkfpuxEBOREREbtKpk9iGhQH3369e37q12LoykNu6Mlf79kBQkLg8Zozl2/lqIDc3flxyasu6NpAHBzu2dBoBEPMY/POPuOzKQK6dR8ATA7mc0C0mxr2T8buiQl5SAvTqJU5quqvyzkDuABnI/XOuq1eyZZ2IiIjc5I47gLFjgc8/N+xQrohAbmuFPCwM+PprMft6jx6Wb2dLIJ83T3y/JSW2PbcnsDR+HHBhy3pZ1XGyKi1N/J6HhalDKayRgdxSqJZDR4xb1gHPDuTmxo+7g72BXFHEGunffy+G+JhbVvDIEeDUKXHy5ccfnbev9ghwz9N6N7OBnBVyIiIicpOAAODdd02vl4F82zbnP6e9gRwQY03LIg+6rQXyZ54RweX++9Xx857OWiB3Wcu6tfHjVCYZoOPjbevq11bIFcW0mmypQg4wkNuiUSOxPXzY/OurdfWqqHrLJesA8Tf42muGt9u8Wb28ZIm6JnxFYoXcAfIPMiCXFXIiIiLyXHIiqlOnnD+xmyOB3BayQn78uDqRlFZurhpaXLWkmyu4pWWdFfJyka3nti7TLm9XWAhkZ5t+3VsC+cWLQLt2wJQp4nNza5C7Q/36Yhx7djZw7pz1265fL8K4vz+QlCSumzFD/V6kTZvUy3//LeY4rGgM5A4wG8hZISciIiIPExVlOrHbzJlihvPyrvPtqkBes6ZYY7242HzgPntWvXz8uHOf25UqrGVdW8ZkIC8XewN5WJg6T4K5ceTe0rL+6afA1q3qSg2eUiEPChKhHCh7Yjf5v2HgQGDfPqBZM7Fa9QcfGN5OVsjlz23pUqftrs0YyB3AMeRERETkLbTjyI8fB556CkhNBX77rXyP66pArtOp43XNta1rK1jeVCF3S8s6A3m52BvIdTrrE7t5Q4VcUYAvvhCXz54V465lIHd3hRywfRz5iRNim5gosptcI/3994GMDHE5KwvYs0dcfuwxsV2yxJl7axsGcgfIQB6Ym6leyQo5EREReSBtIE9NVSdCW7SofI/rqkAOAMnJYvvCC6ZVcE+skGdnl12xk4HcWsu6UwJ5YKBoMQAYyMtJhmMZlm0hb2scyIuL1es8OZBv2qSeCJOTomlnWXc3OaTl33+t304G8nr1xHbwYPF/JSMD+PBDcd3WreL/YZ06wOOPi+v++EM9AVFRGMgdwDHkRERE5C1kIN+0SbSiSkuXirGujnJlIH/pJdG6vm+fGMv611/q1zwxkN9/vxinKtesNkeOIbfWsp6VZX4maLvJUiYndSsXeyvk2tsaB3I50RtgPuB7SiCX1XEpLc1zWtYBoHZtsS1rrLf835CYKLbaKvk774ifh2xXv+UWUXlPThZDecrbPWQvBnIH6CvkeRxDTkRERJ5NTux2/ryoDjVsKMawXrsGrF3r+OO6ukK+ZYtY+/nSJWDAAPXkgfZA/PhxNeS4099/i+2aNZZvY61lPTpaTD4FOHliN1bIy8WZgVx2P8TEiCYGY54QyHNzge++E5dlJ0damudM6gYAtWqJbVmBXNuyLg0dCjRtKk4wTJliGMgB8X8GABYvdtbe2oaB3AH6CjkDOREREXk47cRuADBmjHrgaeu6u6dPm1ajXRnIAVEJW79ePP6lS8DJk+J6bYU8L08Nuu6SlaXuw44d5m+TlycmlALMB3I/PxetRc5AXi7lDeTr1wOPPCJCtrXx44BnBPKffhK/p4mJwD33iOs8rUIuA/np05Zvk5Wlvo7aQO7vL6rjgJjcUp6Q7NBBbAcMAIKD1ZNjFYWB3AFmK+RsWSciIiIPJdvWo6NFQBg0SHy+eLEY22rNhQtA8+aisnT0qHq9bK12VSAHxFDoG24Ql+VzG1fG3N22rp1YzlIgl+3qQUGWM7JTA5lMIXXqOOHBvNuJE8D06eoJEXuUJ5AfOwYMGSJawGfP9o5A/tVXYvvww+rfnTaQe1qF3FJ3jKyOx8SY/r3dfjvQp4/ouMnMFN0KrVqJr7VpI35O337rkl23yK2B/M8//0Tfvn2RkJAAnU6HJUbT2imKgokTJ6JmzZoIDQ1Fr169cMTcdJsVjC3rRERE5E3uvltsx44FIiKAHj3EgeqFC4br8Jrz0kuiZTU7G/jf/9SDYFdXyCU547qcxElWyIODxdbdgfzYMfXyoUPm15/WTuim05l/HKdO7DZ9uug9HjjQCQ/m3V55BXjuOWDuXPvvW55A/vnn6omYNWusL3mmvV96evmXJHTU7t1ie9dd6vJi2pZ1T6qQ5+WZrikumWtX13r7bbUK3qqV+j9MpxP/HyuaWwN5dnY2WrRogdTUVLNfnzZtGmbMmIHZs2fj77//Rnh4OHr37o08+Q7gJjKQB7FCTkRERF5g2DARXCdOFJ8HBQH9+onLr78O7N9v/n47dwJz5qj3Wb1araJVVCBv0EBsjx4VJwNkhbxtW7F199Jn2kBeUgL884/pbayNH5ecGsjj4oB77zU/WLmS2btXbMualduc8gRybefJxo3q762lCrn2OSwFTVcqLhbzTACisUIbyD2pZT0kRO0msDSO3HiGdWPJycB//ysu9+zp1N1ziFsDeZ8+fTBlyhQMNHP2TlEUvP/++3jppZfQv39/NG/eHF9++SXOnj1rUkmvaPoKeT4r5EREROT5dDpRLdJWZ4cPF9vly4EmTYAuXdQqHiDC79ixYjtsmKg0AsC4cSI0uqNCnp6uPq8c9+nuCrlx0DM307q1Jc8kT2hZ9kWWhjqUpbhYDaL2LHumDdb33w/Ex4vf2Z9/FtdZCuSBgeqk+O74Hbh0SXzPfn7i91QG8itXPKtlHTCd2O3UKaBrV2DZMvG58Qzr5rz/vlhp4sUXXbWXtvPYMeRpaWk4f/48evXqpb8uOjoa7du3xyYrvVX5+fnIzMw0+HA2sxXyoqLyrR1CREREVIF69gRWrhQTGfn7iwmo5s9Xv75kCbBuHRAaCrz5JjB+PNCsmThAHz1arUXI1nFX0VbIZbt6lSpA48bisrsDuayQx8eLrblx5NaWPJOcWiEnAOJ3VVab7Q3k2iq1PUE0IUFso6LEBGLduonP5e+FpZZ1wL0nZeTfVlwcEBAg9t+4M8ATKuSAaSD/+mvgzz+BV18Vn5fVsg6IEyB9+4p5KtzNYwP5+dKeiTij/1xxcXH6r5kzdepUREdH6z/quGAyC30gzzcK+2xbJyIiIi9y221iYrc33hCfr1qlfu3jj8V27Figbl1xADtnjmhdX7xYtOECFVchP3ZMnVk5IcGwpdadZCCXE+VZq5C7I5CvXQts3+7cx/QW2qmnrM3KbY5sV4+KEgHVVh07Au++KzpP4uOB7t0Nv26pQg64N5CfOye2NWuq18m/MUCcmHP1yTdbGQfygwfFdscOcSKlrJZ1T+OxgdxREyZMQEZGhv7j1KlTTn8ONZBfN/wCAzkREZFDBg4ciNjYWAwZMsTdu1Ip3X672K5dCxQUANevq2tqP/SQeru2bYFZs8TlkhKxdXUgr1tXVPDz8oCtW8V1CQnqwfaJE+q+VLTiYvWEwNChYrtnj3gNtexpWXdmIP/nHzGBX48elXN0pTaQnz9f9ooCWo6MHwfEsJCxY9UhFT16GH7dlkBuvIa5ra5fF8uVLVpk/31lhVxW+AHDQO4p1XHAdOkzGchLSkSl3JaWdU/isYE8vrTv54LR4pIXLlzQf82c4OBgREVFGXw4mwzkwcaBvDL+pyMiInKCp556Cl9++aW7d6PSat5ctNJmZ4tZ11etEqHyxhuBRo0MbztypFjLXHJ1IA8MVMP3n3+Kba1aYp1yf3+xn1aaJ13q7Fnx/AEBQKdOorW5sBDYt8/wdva0rNtSHT11CujdG/j9d+u3e+cdMQdAZqYYnuDr9u8HPvtMXQlAG8iLi+1bs97RQG6sQQPxuyq5smX999+BBQvEEBN7mQvk2gqzJwZyufSZDOQA8Ouv6v8DBvJyql+/PuLj47F69Wr9dZmZmfj777/RQZ5ychN9hbyAgZyIiMgZunXrhsjISHfvRqXl5yfa1wER3JYuFZf79jW/TNfbb4sW7Vq1xLhyV5Nt63/9JbYJCSIEy6DjrnHksl09MVHsj1zP2Lht3dkt67NmiZ/T229bvs3p04ZzAixebP0x09Mtr6PuDU6fFhMTPvqoOoGa8WrJ9rStOyuQ63SGbeuubFmX+6ydnNFWZVXIPWVCN8AwkJ8/b7jG/Pffi214uH2T8bmTWwN5VlYWdu3ahV27dgEQE7nt2rULJ0+ehE6nw9NPP40pU6Zg6dKl2LNnDx5++GEkJCRgwIAB7tzt0kCuIFgGcjmwhC3rRETkg/7880/07dsXCQkJ0Ol0Zlc7SU1NRb169RASEoL27dtjy5YtFb+jVC4ykK9YAfzyi7gsl0YzFhgo2mJPnqyYA3U5sZtc41sekLt7HLkM5HL/br5ZbI2DrbNb1uX4/QMH1OuuXgXatweefBLIzwdmzBBzDsvG0mXLrM8//NBDQOvW3jnevKhIrAQgg6wcbmEcyO2Z2M1ZgRyouECekSG2jgx78KaWdXki7swZtTou/7bka2C8qoQns2OKAufbtm0bumt+Q8eNGwcAGD58OObNm4fnnnsO2dnZGD16NNLT09GpUycsX74cIa7ujSqDnx8Qilz4KaUDlmrUEL/FrJATEZEPys7ORosWLTBy5EgMkjNXaXz//fcYN24cZs+ejfbt2+P9999H7969cejQIdQoPUpq2bIlioqKTO67cuVKJGiPAG2Qn5+P/Px8/eeuWFGlMpKBXAaymBgxQZU1fhVU2pEVckn+ysiWWndVyOWSZzfcILayQq4N5EVFasCypUKelSUCtaUJtAoLAXm+6+RJcfuICDGJ2JYt4mPHDnX97dmzRdX40iUxk77xmGZJVvV37hTB3B0URUwc2KYN0LKl9dulporv8dZbxT5v2KB+fcMGcRsZyJOSRHBzR4UcECsa+PmJn1N0tOXblTeQy+XJsrNFnTA01Pb7ljWpmydWyC9fBnbvFpfbtRM/39I6r9e0qwNuDuTdunWDIgd5mKHT6fDqq6/iVTmHvYfw8wMioWlXr15dBHJWyImIyAf16dMHffr0sfj1d999F48++ihGjBgBAJg9ezZ++eUXfP7553jhhRcAQN8N5wxTp07FK3JRbHKaWrWA5GQxDhcA+vQRlXBPICvQkjwgd3cglxVyGchlkN25UwTnwEAR2hVFjLW3Vh2NjhZj4ouLRSDTnqeSjyUfW67FDgCHDonnlcEEUFv7k5LEsIN+/UTQXbzYfCAvLFQD2cmTtn//zrZqlTh5cOONwOHD5iucigKMGyfWkQbU1QAAYPp04NlnxQmJ48fVVuYuXUQgd6RC7oy257p1gZ9+EoHcWtXWWRVyQIRVexab8qYx5FWqiBNW+fnAH3+I65KSgJtuUgO5t8ywDnjwGHJPZhDIIyLUBexYISciokqmoKAA27dvR69evfTX+fn5oVevXti0aZNLnrMiVlSprGSVHBBBzlNYqpDLCp6sVFc040DesKEILnl5YrZ1ANi8WWzbtBGB2xI/P7UaK1uOi4uBp54CwsLUmbNlu7ok29b/+Udsx40TwQQAXnpJPK4c7blkiTrhmdbZs+pM9XLJKHeQk/YdPWrabp6TI37Ojz6qhvEHHwRuuUUsxTduHPDMMyL8FheLtakBEUrlCR17ArkMxc6okAPA3Xera5Jb4uxAbquiInVYhTaQh4SoFXNPCuQ6nXpSbt06sU1KMjzZ5E0VcgZyBxgE8shItR+EFXIiIqpkLl++jOLiYsQZ9eLGxcXhvB1TX/fq1QtDhw7Fr7/+itq1a1sN8xWxokplJQN5QABwxx3u3Rctbeusn5/a+t2kidju3m0+aJbl44/FcmWaERB2kScCZODz8xPjuAE1iMvtLbeU/Xiygn74sDisHDpUHQv+1lvia7L6LacwkoFcVsiHDhVVwj17gAceENf16iVqSKdPmx8jrj2n5c4KufbP/rffxDYvT7Qjh4eLEzNz5ojXed484KuvxH3y8sSM8oCY7R4QXwfESRI55thay3pBAfDCC6KtH3Buy7qtnNWyDtgXyC9eFCdk/P1NZ4GXf3ue1LIOqIFcdkEkJQGdO6snvRjIfZxJIA8LE5dZISciInLI77//jkuXLiEnJwenT592+4oqldVttwEPPwy88YZnHYCHhqqhKj5ePehu2lS0cl+9an/buqIA//d/wMKFplVnW2RmqqFHe8JABvK//xZbGcjl9dbIEw1Dh4pwvnixqP4GBIg12HftUvdVTrh34IAYH37unKgcNm0qXq+mTdXHDQkRQxAAYOZM0+fVhnB3BfLiYnVsPCDGxAOiM0CuPx8aKoZVLFoEDB+u3lbbBt65s9jK7oWGDQ1n5bZk4UJx0uPJJ8Xn7g7kjpxgcrRCLtvVtX9bUpcuYivnR/AU8mcqJSUBUVFA//7i992WE2CegoHcAX5+QBRKT8cwkBMRUSVWrVo1+Pv744LRAr8XLlxAvJzembxGUBDwxRdiHK6nkVVobUttcLBYQx0Atm2z7/GOH1dDlz3rU0tyZveqVQ0n6tIG8uxstXXdloDw0ktAhw7iJENOjnjclSvFEnMA8OKLIngHBIhZ0QERyGW7eoMGohJuzpNPiuD6xRfADz8Yfk1bIT91Sm1fd7WsLDV47tsnPpeBcO1a0SXw6afi80mTxOu5b5/agm+ODOSStkIu1602R05qt2+f6JhwZyDPz3csVjhaITc3oZv0xhvi78PSZIDuog3k1aqpr90334gTDBxD7uPYsk5ERCQEBQWhdevWWL16tf66kpISrF692uVV7tTUVCQnJ6Nt27YufR7yDHIcuXFlrE0bsbV3uS7t7S9etH9/jNvVJRnIDx0Cfv9dVH5r1VJDoTU9e4qW9PR00Tq9dy/QtSswerT4+q+/iu3NN6tLrB09qn4v8uSEOZ07i44AQDyetqNAWxUvLBRrO7va+vXiMHrSJPG5bFfv1k28Vnl5wCefiDHCfn7Af/5j2zJWjRsbdnc0bKiexMnJMQytWrLlv6hIhHJ3BPKICHXyPkfa1stbITe34IVOZ325PnfR/h9ISlIvh4R4VnePLRjIHcCWdSIiqkyysrKwa9cu/UzpaWlp2LVrF06WHsWPGzcOn3766f+3d+fxTVVpH8B/SdOkC91rN2jZBISyyjaIM4ogm8vgMqJWBJeXQYuCKOIGuAyjqK8yIoI67iOIqCDgiwwgiyI7FIGWgohspS3QfV9y3j8eb5O0paQLvUn4fT+ffG5yc5Ock6Q5fe455zn45JNPkJKSgoceegiFhYVVWdcvlsTERCQnJ2OHNp6VPJoWgHbp4rhfy2xe3x5y++MbEpAfOCBbLYGaJizMdvLgrbdkW9/hs35+MhdaC+IHDbIljgNkObrYWJlXXVEBfPON7O/Ro+7nnTlTeuBzc4G777b1hFfPi9gcw9a1tcLffFOG/2sB+YABtuH1Tz8t25EjnTuhAcj/6do8ckACcl9fW2B9vmHr9lnqd+8GsrPlenMG5AZD4+aR2wfkZ844/7i6AnJXZf99sA/I3RED8gZgDzkREV1Kdu7ciV69eqHXH5MIp0yZgl69emHGjBkAgNGjR+P111/HjBkz0LNnTyQlJeH777+vkeiNqDEefFCGbz/3nON++x7y+sy7bWwPuba8Um1za7Vecm1JpsbOZzUaJbu4ZuBACd60QESbr15XDzkgva8LF0rAv2WLbai7FoBrPdDNkWldC4wLCiQjem0BufavtTZCwFnasHWDwTa/v67EbhkZjt+BDRts36XmDMgBW0Benx5uQMp7MXrIXdX5esjdEQPyBnAIyAMD2UNOREQe7dprr4VSqsblYy2NMYCJEyfi2LFjKC0txbZt29DfmQxWRPVgNkvSOe3fLk18vNyXk2NL5HUhSjVdQN6zZ837qgfgTZFgatw4CahNJgnIARmebe9CPeSAzK3VZnlovcJaD3m3brJtjh5y+57q11+XzPKAvFeDB9uyyMfE2AJ0Zw0eLNv4eBnCDNSd2M2+dxywnUhp0UK+W81Jyw6uvR/OKiyU6REaBuTugwF5A7CHnIiIiMg1mM22QHTnTpl7/OCDMhT6fH7/3TYkGah/UrfcXFvwX1sQbH8+ymSyDbdvjKgoYM0a4Lvv5DrgGJAHBDi/1JN2EiEpSQI5bb60NtS7OXvIAVuCvE6dpEc6MNBWlvvvtwXnzrrySsnSvmSJbZ99YrfqtIBcmw6hJTlr7t5xwPZd2b27fo+rPje+IUnd3Ckgj46WmAyoeWLK3dTz600A55ATERERuZI+fWRprF27JJnaBx9Itu6777YtJWZP6x339pYkZvXtIdeGesfG2oYY2+vRQzLAl5bK9eq9+g11zTWOt+0Dke7dbQHKhWgnEZKSbL3jAQHN20Ou9cr262db7sx+JMG8ecDixcCTTzbs+YcNc7yt9ajWNmRdC8jvuAN4+WXbuvTuFJDbD1cHGtZDXluWdVdlNsva82fPOuZXcEfsIW8A9pATERHpj1nWSaMldlu5UgIqQIbvLlpU+/FaQjdtrnF9A/K6hqsDEixogdXFXA+5ekDuLK3ce/fagu+4OLkAFz8gLyuzveezZtn22y/M0KUL8MILkriuKTgzZL13b9tJCUDfgHz/ftuJgZ9+ksR2dX0uWkBuscj27FnncirYn5Bypx5yAJg8GfjHP/QuReMxIG8A9pATERHpj1nWSaMldktJkSHrAQFy+9NPaz9e6yEfOVK2hYVycdaFAnJAhs0HBwP33OP889ZX+/a24dzOzB/XdOkij8vOlmXWAOnt14a8X+wh69oQabNZ5nvfdJME3sOHX7zXPN+Q9dJS4OBBud6jh2OSPj0C8rg4ed2KCgnKAVl/ftUq4LPPzv84bci61ltcXg7k51/49TIyJHA3mWQ9b2p+DMgbwGgEApEnNxiQExEREemqSxdb8i6TSdbr9vYG9uwB9u2T/T//DKxe7ZjQbdAgW49ifZaJciYgv/9+CXgvZg+5t3fDeuItFlvv+ooVso2Lk6AckOAuL6/JilmDFhTHxEgm9K+/lsDQ2TnwDXG+IespKRL8BgdL0G7/meoRkBsMjsPWc3OBzZvldl3fUa2HPDraFpo48522H67u7JQHalp82xuAQ9aJiIiIXIe3t23Y+mOPSUKwG2+U2599Bnz5pQxPHz5cEq5lZ0vvbNeutjnmziZ2Ky+39VzWFZA3l6++kjW969NDDtjKrs1Vjo2VZGrBwXK7+trkTUkLyLUg2du76Yamn4/WQ37unON8a224eo8eEgzr3UMOOAbka9bYsqfXNS9c6yEPCrL1dDszj9wdM6x7GgbkDcAh60RERESuZd484NVXgRdflNv33ivb994DEhIAq1UCLm2GQ7duEpRHRMhtZ+eRHzwoc6ADA2UJMb3FxgLXXlv/x1U/maD1jjfHsHU9gsCQEBniD9h6nAHHgByQ74W2HrteAbl2cmn3bhmqrqkrwNZOMgQH1y8g1xIU2i8jRs2LAXkDsIeciIiIyLX06AFMnWobuj5ypARUubkyJPmee4AjR4C//U3u13rQawvIlQKSk4EPP5SEWvbsh6u78xDf6j3qWkK35kjsVr2HvLloWeo3brTtqx6Qt2gBdOwo12vLoN8ctB7yvXtl+oXGmYC8Pj3kpaXA/Ply/ZZbGlZWajw3/hnRD3vIiYiI9Mcs61QXsxkYN06u33Yb8NFHQNu2Mnz97Flg5ky5r3pAvnix7IuPBx54QIa6T5hg+zfPmfnj7qB6QK71kGsB+bFjUuft22V0QVNylYC8pMQ2YsL+87zvPplTrWXhb27t2skIjNJSID3dtr+ph6wvWiTP37IlMHp0o4pMjcCAvAG8VAX88EdvOHvIiYiIdMEs63Qhs2YBmzZJkK1lIwek51Mbllw9IJ87VwIZX1+Zbw4A774rvZbPPSeJ4QD3D8jDw23zqgHbdW3I+tq1Mny7f3/g88+b9rX1Dsh37pQM5KtXy7ZlS8fPc9o0KWOHDs1bPo3R6DiXPT5ets4OWb/ssgsfrxTwxhty/dFHZR4/6YMBeQNYygtsNwIDHXvInVnwj4iIiIguOh8f6eX08jr/MfZJ3ZSyJWzbsgXYulUC05gYIDVVAvwDB+T++iZRc0VaHSIibEP9tR7ynTuB336T61u2NO3r6hWQt24t8/4rKyXr/uLFsn/06JrTD7QTNnrRhq0DtnwIhYXn7/+rrYe8rizra9bICgT+/sD48Y0uLjUCA/IGsJTJcPVyg7esG6H1kFutknqTiIiIiNyCfQ/5iRPS02gy2ZYFGzxYApc5c2To+vXXy9bde8gBWx204eqAbf40YOulTU5uutdUynHZs+am9ZL/3/8By5fLdVccrm0fkI8ebRvhce5c7cfXJ6mbUpIAEZBpGVpmfdIHA/IGMJdKQF5sCpAdWg85wHnkRERERG7EPiDXesc7dZI56JrQUGDSJEmA9d//ytadE7pphg6V7YABtn09ewKffCLzrN9/X/Y1NiBPTZVe2JMnJXDUenn1yOytZaRfsEB6nNu2BVwxDcW110qCuWuvlZ79CwXZziZ1U0qWBly3ToL8yZObuOBUb6YLH0LVaT3kxV4BCARk0oXRKD3kRUU8zURERETkJuwD8n375Hq3bvqVpzn95S+yBJk2bB+Qodr2Q6QBGfp85oxtbnJ9/f3vEuArZQsAQ0Jsg0ybk9ZDXlYm29Gj9R+eXptWrYCjR23vUXi4JGA7X0BuP2RdO1lU/VilgGeeAf71L7n93ntyQoL05QHn9pqfuSQPAFCk9ZAbDLZeciZ2IyIiInIbWkB+5oxtCaxLJSAHJJv4+Xr7/f1ta62npDTs+ffssWU1X75cpgUA+q173aaN4xB9VxyurgkPl89Auw5cuIe8riHrn30GvPKKXH/nHckmT/pjQN4AlhL5xhcZA2w7ufQZERFRs+KyZ9QUtF5fq9UWOHbtql95XE2XLrJt6LD1OXNs1zMzga++kut6BeQGg62XvGNH90nOV1dAXlEBFPyRczooyPadzsqSBHaapUtlO3Uq8NBDF6+sVD8MyOtLKcT/uAAAkFzR0ZZUnUufERERNSsue0ZNwdtb5ogDMnwbuLR6yC+kMQH56dOy1jUAdO8u24ULZatHQjfN/ffLv+7TprnmcPXa1BWQ5+XZrgcF2b7PSgHZ2bb7kpJkO3LkRSkiNRAD8vpatgyhe9ahBBZMK5qBo0f/2M8eciIiIiK3pA1bBySRlrYWNzUuIH/nHVmA6KqrgBkzZJ+eCd00gwbJv+z3369fGeqrroBcG67u5ycnmLy9bSmttKXPsrOB33+X6+4yKuBSwYC8PoqLgSlTAACLWz2Bo2iHDRv+uI895ERERERuyT4gj4/3jAzqTaWhAXlxsWQyBySr9/DhtrXOAX0DcndUV0Bun9DtfMdr+RHatJGEeuQ6+HNTH6+/LqeWWrbE73c9DQC2gJw95ERERERuyT7LOIerO9LWYz992nH484V88okEg61bA6NGSXKy66+33c+AvH6c6SGvLSDXesi14era2vPkOhiQO+vUKeDll+X666/j6mGS8nD9epmfUdVDzoCciIiIyK3Y95AzIHcUGChLcAHOZ1qvrJR+LAB4/HFZ7xoAbrnFdgwD8vpxJiC3X3m5Y0fZbt0qWwbkrosBubOio4F584DbbwdGj8aAATI/4+RJ4LffwGXPiIiIiNwUA/K61XfY+tdfA0eOAGFhjvO0b7pJgnMvLyAurunL6cnqO2RdS9y2cqVsGZC7LgbkzjIaZbG+JUsAgwF+fkD//nLXhg1gDzkRERGRm7IPyLnkWU31CciVAl59Va5PnGhbRxuQoHLFCuDLL20BJjnHPiCvWuXpD7X1kA8bJic+UlKAgwdtnx0DctfDgLwRrr1WtuvXgz3kRERERG5KC8gjI21rOJNNfQLyH34Adu2SvqqJE2veP3w4cOutTVu+S4EWkJeWAoWFjvfV1kMeHAz8+c9y/bXXJNt9cDBHJrgiBuSNMGiQbDdsAJQvk7oRERE1p3nz5qFLly7o27ev3kUhN3f11UDbtsADD+hdEtekBeT79gFlZXUfO3eubB94gL3gTcnPz5alvvqw9dqSugHAjTfK9tNPZduzp/usu34pYUDeCH/6E2A2S7637FIue0ZERNScEhMTkZycjB07duhdFHJzERGSE2jWLL1L4pri4wGLBUhLA664Ali0CLBaax5XUfHHyFEA48Y1axE9nsFw/nnktQ1ZB2wBeUWFbDlc3TUxIG8EPz9g4EC5viuZPeRERERE5HmCg4H//AeIigKOHgXuvhu4/HI5gXH6tO24pCQgL096ahn8Nb3qS5lpahuyDkim9fbtbbd79bpoRaNGYEDeSFOmyHbTDvaQExEREZFnuv124NdfgZdeksDv6FHgueeA7t1ltCgAbNwo26uvloRi1LQu1ENePSA3GGy95ABPkrgqBuSNdMMNkm09p5w95ERERETkufz9JQhPSwM++UTm3Z89C3z+udyvBeTXXKNfGT3Z+QJyrYe8+pB1wBaQm80y3YBcDwPyRjIYgBdfBIohPeTFWQzIiYgASOaf6muz1JdSwMKFwM8/N02ZiIio0fz8gHvvBZ56Sm4vXAhUVgI//ii3tZWIqGlpKwA420MOSBLqyZOBN9+UoJxcDwPyJnD99UBsR+khP5bCIetERPjvf4HoaFlzJSurYc+hFPDII0BCAnDddTI+koiIXMbttwPe3sDevcDixdJTGxDAucoXS2095KdPA0eOyPXWrWs+xstLgvGHH7745aOGYUDeBAwG4LYx0kOefaoIu3bpXCAioqaQkgK88079A+pFi2SMXFYWsHkzMHhwzQw0F6KUJOmYN09ul5baknZcLEVFQEYGkJ7O6UdERE4IDQVGjJDrTzwh24EDAZNJvzJ5stoC8oULJeP9VVdxjXF3xYC8iXTtKz3kPijGAw8A5eU6F8gVHT4M7N6tdynoUqQU8O9/A2+8IRPf6is7W9LLVh8j5qysLGD1amD2bODxx4EDBxr2PM2lsFDGIXbvDiQmSorWN96QoPhCFiyQHu3ycuDmm4HISEm7O2iQBLrOqKgAJk0C5syR208/Laf4ly2TnvcLOXlSHvPSS9Jt48yw+Y8+kv90oqKkZ/+yy4DPPnOuvEREl7C775atlm2d88cvntoCcq2pGjOm+ctDTUR5uNzcXAVA5ebmXtwX2rRJKUAdNnZUgFL//KdSKiNDqXvvVSohQam0tIv7+i7q/feVatVKqRVjFiur2awUoNTLLytltdY8+OhRpX79VanKyvM/odWqVF6eUiUlF35xq1WpnJzaX6s+ioqU2rdPqfLymvdVVir18cdKjRun1BNPKPX663JsbU6eVGruXKU+/VSpzZuVyspqXLk8hdXq3OepSU5WavBgpdq3V+rRR5X68ccLf2cef1y+e4BSRqNSI0YotW2bc6/3++9Kdewoj23RQqnp05XKznbusenpSj32mFI+PrbX155n+XLnnsO+HmvXKvX22/I9eucdKVt1BQVKPfecUn36KHXNNUqNGqXUffcpNWWK/O39/LNSFRXnf51ly5SKi7OVNSrKdr1zZ6UOHz7/YxcutB37yCPyuRw8qFRMjOzr1En+DuqSlaXU0KG255k/X/ZPmiS3r7hCqbKy2h9bWqrUK68o5e/v+H63bSt/d+f7LXjtNcfjDQbb9ZkzG/8bUotma5suEXw/ifRTWOj4s7tli94l8lzr1sl73KWL3N67V26bzUqdO6dv2agmZ9smg1KNzbhz8c2bNw+vvfYa0tPT0aNHD8ydOxf9+vVz6rF5eXkICgpCbm4uAgMDL14hd+0C+vSB1cuE+ZXjscv0J7xpegJBJZkAgLKAUOTPmgvT5W1gOLAfXjnnYI4OgykyDAazt/yGWa1yUQqq0ooTJxROHSlFB58TCC/4XZZUCw8HwsJkwo7BYLsoJRNIkpJk7Yn4eKBvX6BzZ+mhCgmR02knT8r9J09Kb1VQENCmjTxnbi5w7pz0IJ44IcdHR8v4l6Ag6R2zWmXNhCFDZH9SErBnj+35cnMlY4SPDw7kx+G55f1wOQ5jNqbBCLuv2oMPAnPnAj4+QGYmMHUq8Omncl+LFkDPnii9ahB+tAyBuTAb/U9+DcumNVKmigrA1xe44w7gf/4H+NOfHNfWUApYswZ45hn5XLp3B8aPB4YOlYwjRUXA/v1S9qIiWZvjuuvkPSgult7Qw4eB1FRg7Vp5ruJiWXBz+nQ5FWwwAMnJMiHnp58cvwtGI/DQQ9I716IFcOwY8Pbb0nNo38Po5SXv4513yjij1q0Bi8V2f2oq8NZbUobWrYEePaSuQ4fKBC1APo/ycsfH2SsrAwoK5FJRIelQDQa5r7gYWLlSMrBs2SKfQ8+eQL9+Uq5+/eTYnByZGLZ7N/D77zKkVytP585ATIxc4uJs5VBKjispkc/Y1xcIDLS9dlmZ1G/RIknNevy4fLfj4uTU+rhx8rlpz5WbK+VbvlzSu1bvqe3RQxZDHTnS9hraY6dMsfW09uol31ft/X/6aflMvb2lV9jf3/HxBw7I+52WJsdoQ1+Cg2Vs3qOP2j4Le0lJwLvvSgpabSnEyy8H+vSRv63Nm+V1nn1Wvsfx8fK9qaiQ76j956kUsGmTfJ+rJzYzmSSrzrhx8l04cgSYOVP+HusSHg4MHy7DyocOlTIeOiS94CtWyDGtW8vf6MiRUo9nnpHPNCQE+Ppr6fG2t3q1PF9Fhbwvc+bY3ssjR+Rv7Phx6W1ftUq+i3+MaawstyJrcwoqlq5A8JL34Xv6Nyg/Pxg+/RS47TYAQFFaDoydO8In7wxyL2uPvOGjEZxwAwKu7CDZhT74QMp/7Ji85lVXST21v19A/taff15+G1u0ALZtA957D/j4Y7l/6lQZxaCUfDavvCL7hw6VOg0f3mTr+DRb2+Th5s2bh3nz5qGyshKHDh3i+0mkkzFjZCCZv7/8G+XtrXeJPNMvv8i/PBER0iRPnQq8/jpw663SNJNrcbatd/mAfPHixbj33nuxYMEC9O/fH3PmzMGSJUuQmpqKiIiICz6+2f7pKS2Vf9Y2bHDYvQ9dUQYzeoNDtd9GIgpjOmJq2mMwwooKgwlpQZ0RWnQSLcqyoQwGVHqZYapwYlisHWU0oiI8CtbQcJRVGGEtKEZQemrTFt5kkkADkH/IKytt9/n5SWButcqc21WrpFwWC1BeDoPVWnVoYbf+MLbwg/nEEXidPO5YD4MBuZYI5BuDUWS1oFPJL7XX12xGSd8/w5ifC+9fU2AsKkRlUAgqI2MAAMaCfBiKCmAszIeh2tyJ8pg4FIz4G1SlQuA3H8GUl33eKqs2bSSA/f57GIqdSFZoNEqQFRYmwZ22BofG21uGAVut0opc4Kenok17GEtLYDibWaMeZdcNR/mY+2FatQLe3y2FsbBA9nfqiorLYmA1+8DrXAbMx3+FV/Y5AEDO7HdROnY8vH8/DL9XZ8Lnm0XyOi2CYCwthrG8DCowEIaePeVE1P79wMGD8lnHxwPffw9s3w41YwYMfww5L/YPw5nA9igvVSgvs6KizApzeSE6qkNVZU3y6Y9/eL+IlFbXY9hwAwb/pRw9/z0RLb97r+qYSv9AVCoDzEW5sMKADP92SAvuAr/KfMTm7EOLEqmD1eKDyiHD4OVngfF0Ws2TQZo2bSQw9/UFsrOhsrJRnJaF8kO/I2DbGhjzcs/7vitvb5ROfALZic+hUPmhsFDOW5UfP41u00ch5PB2WI1eKA2NhtHHjEqrAWUFZfDPT4e3KsdX3nfhQZ//IL6bEb16SfxeVgZ4px1D4teDEF1sS8xWYTDBoKzwgtWhDMcRi1u9liO3bU8EBMg5naQkYGjxMnyOBPjDcX53JYxVz1EcHIVTj8yG39/HwKoMyD5VhMCP30Krj1+CV4ntcaV+wbAU5dg+p7tm4/AtT8JstmWhDfn63+j70UPwssrfflF4LAqmzETE0w+c9/1zFgPypsX3k0hfmzbJedo77pBz7XRxpKUBLVvKv1yffioB+enTwNKlwKhRepeOqvOYgLx///7o27cv3n77bQCA1WpFbGwsHnnkETylrbVgp7S0FKV2vWd5eXmIjY1tnkZaKWDjRpS/MAteP27A7j9Pwpq//AO/HfNC71X/wN2ZbyIXQdiPrkhHFEKRhXCchQkVsMIIK4xQMFRtYTTCx9+EgwWtcES1RRH8EIZzVY8xQDlcTiAWSeiJU2iJ7vgFfbATbXEUEchEKLJwFuE4iVY4hZY4hZY4jWiEIButcQyhyEI2QpCNEJxGNI4jDucQhiikozWOwR+FKIUF3ijHQGzGX7AJfijGCbTCLvTGEbRHBiKRjRB4oxx+KEInpGJo8HbElf2KA7fPRL8vp6K4xIAbsQLvYTyiYZtPugc9MQELsAu90Qmp6I9tGIK1GOK1HmVGHywpH4VlGIVfcTlyEIzu+AX/g/dxB75ECxTW+ChKYME7eBgLMAHDsBoP4AO0xxGUwxtlMOMQOmIPeqEMZgzCelyJ3VU9+KUw4wja4zA6YBd64zuvvyI7tD3GFb2Dh4teQ7iyTdz5Fn/FZONbOGmMqxqscFXZeryNiYhHMgCgDN7Yhv54ETOwFkMASK/h5TiMO/EFbsFSdEJqjSDDCgNW4kZ8hPsQjrPoiSQMxX/RAb/W+6tZCjMMUDDDMbA9ijZYjpuxBQOQhhhcid24Cj9jJP7P4X3dj3gswygcQXucM0bgcsMRdLPuRTscQUukIVqdqjVIKjNYYFEljqMj7D6jTZah+NpvDH72vgYR1nS0q0jFDXlfYKR1RY2y5iIQp9ASb+Ix/BsPVr2PoTiHaZiNRzAXviip8TrF8MFEvI0P4RhE3Y4lmI+HEI5zdb53G4yDcJfpK5xTobBaAVRW4g4sxguYed7PogzeWIpb8C7+jvUYVFVWG4V78SnuwX8wAFtq/Q5Xf75/40H8A8/hNOTEi9kMXFm2FdPwCq7EbpQY/VDqHYANgTfjw9AnUAzfqoE3GRlAfr48lwnluMb0M26xfIfrS79Dx4pkVMALx41tsFv1wnT1Ig6ic63l8EEx/o0HkYCFtd6/EjfgVnyDctS+rkpLnMQyjEIf1Mx8WQILfjJfh80hN+GDwjtxoiCkxjGtWwM3XluA2L0r0SN1MeKLdyIWMhrgV7TH63gCn2AsSv5YhtJeK5zAi5iBwViHOJwAAOSjBb7FX/Eh7sd6XFdrmTvgEP6OdzEOHyMMWVh98zwM+7bxqWoZQDYtvp9E+vvtNxmU6e+vd0k8V0UFEBvrmJIlNFSCci5p5no8IiAvKyuDn58fvvrqK4yyO+0zduxY5OTk4Ntvv63xmOeffx4vvPBCjf3N3khXVNRIMVlZoQCDAUaj/JNcUCD/JNd2adlSRlz6+MjtNWvkh66y0vGijXC1vw7ICPOgIBlhm5kpI9F9fGR0rckkHfpFRTKs6MwZeQ0fH7koJSONa7uUlsoffKClFCHmQpT4hVaNri0vl0tFhWxHjJCR2toPxLFj0qF37hyQnaUQWngCrc5JwqXt4SORcc4Eg0FGkoaGAjfdJB20BoPUfe1aGfn622/yHJWVQGVZJQxnMmHKTIN/yTlEXKYQFalwyLcHfjkTjdOn5X2+EH8UwIQKFMMXZTDDaDTAZJKePXtmlCICmSiCH4rgV+s//gDghQpcYTwMr8tCYYq+DCazEbm5QF6ejL7WEjgbjVLfdm0VrupwBr2jTiGmRR7CLfnIjemM497tceKEjLLetQvIzFDojBT82boRmYZIpBjjcdZwGaLUacQgDZXwQgFaoNAYIFuDXCoM3vBRxbi+8nuMqvgK3oZyfOU/Dj/5D0NZpZfDZwwAvijCSPwfumI/vsdw7PPtDxgMdSSeVojGaXRCKkKRhcPogEPoiFL4AFDwQQnCcRaRyIAVRpxALM4iHDUDVRGGs+iFPchGCDIRgUxEoNLkAx8f+Uyqfy5eXkBL42kMNGyGv6EYfsZiZCEMh9Xl+FW1R75qUfV3ogkIAFqH5qOd9VccPBOG0yXBaIuj6IU9iEQG9qMr9qAXTiO6RjkNBqBD2wr8LWIj4sKLEB5hRFi4QbaXGZHXridOlEYgJ0cGDISFyQj91atldgAgfxeVlUBJfjmicw8iOs4b7fqGoePlVgSdSkbgyWQUeQXgVGg3/Gq6AjsP+GLPHttaow0RGip/8/a/+iHIQj4CUAHH8YVeXvJPlZ9fzW1c+RGUZeYgJ7MMZm+F7n0t6DnQHxF/7oSwcAMqKiSX2t69MlrcYpHO+tatgfbtFLxVGdKPFCLrVDFaxRnRMd4bbboFwOQvPyZKyaj733+XmQSFhTL4Qvs90OTmAim7i/HblgwcyIvF7ye8cPy4/NacOiV/X6Gh8jdWXCy/Bb6+QNfos+je4ihOBHVFkfKt+u3UfsO05dNDQ6WH32oFSnJK0Of41+j+9I247f5aFnqtJwaQTYvvJxFdKjIyZLbVu+9KW/fkkzLbilyPRwTkaWlpaNmyJX7++WcMGDCgav+TTz6JjRs3Ytu2bTUeo2sPObkkq1UC4NJS+6xNtqDE21tOUmhbLy/5Rx6Qx2gnNIxGOcb+orF/Th8fCQB8fByDB3vaSYu6jtGDUhKMFBdLcF5RIUGJnywiUHUSx2q1pS7QAhhtW1Fhq1Nd2/PdFxAgAWxgoARJpaXyuZjNtmO04Fr7rOrzHmqpGuzPlyklwVphodS7rEyet/rFIANXEBRke0+ak3ayTBtG7u0twW5FhaRXOHtW3hetrNolLEwCWh8f+ZzS0mRGgXYCzWJxDLr9/W1pKtyV/fvgihhANi2+n0R0qamokJmSnTtzmTlX5Wzb5HEfn8VigeV8Ca7okqT1QrdoUf/HWiwyNCg2tmnLZDK55o+nwSB1Pt+fkJ9f8wai53ufvLwanltLC67tGQxyIqC2/GyuxGCQHl7fWgZmOJFSA4AE2q1by8WTNVHuNSIiIpdkMgHduuldCmoKLr0OeXh4OLy8vJCRkeGwPyMjA1FRUTqVioiIiIiIiKjxXDogN5vN6N27N9atW1e1z2q1Yt26dQ5D2ImIiIiIiIjcjQsOmnU0ZcoUjB07Fn369EG/fv0wZ84cFBYW4r777tO7aEREREREREQN5vIB+ejRo3HmzBnMmDED6enp6NmzJ77//ntERkbqXTQiIiIiIiKiBnP5gBwAJk6ciIkTJ+pdDCIiIiIiIqIm49JzyImIiIiIiIg8FQNyIiIiIiIiIh0wICciIiIiIiLSAQNyIiIickvz5s1Dly5d0LdvX72LQkRE1CAMyImIiMgtJSYmIjk5GTt27NC7KERERA3CgJyIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHRg0rsAF5tSCgCQl5enc0mIiIiE1iZpbRQ1Dtt6IiJyNc629R4fkOfn5wMAYmNjdS4JERGRo/z8fAQFBeldDLfHtp6IiFzVhdp6g/Lw0/NWqxVpaWkICAiAwWBo1HPl5eUhNjYWJ06cQGBgYBOVUD+eVB9PqgvgWfXxpLoArI8rc6e6KKWQn5+PmJgYGI2cPdZYbOvPj/VxXZ5UF8Cz6uNJdQE8qz7uVBdn23qP7yE3Go1o1apVkz5nYGCgy38B6sOT6uNJdQE8qz6eVBeA9XFl7lIX9ow3Hbb1F8b6uC5PqgvgWfXxpLoAnlUfd6mLM209T8sTERERERER6YABOREREREREZEOGJDXg8ViwcyZM2GxWPQuSpPwpPp4Ul0Az6qPJ9UFYH1cmSfVhfTjad8j1sd1eVJdAM+qjyfVBfCs+nhSXTQen9SNiIiIiIiIyBWxh5yIiIiIiIhIBwzIiYiIiIiIiHTAgJyIiIiIiIhIBwzIiYiIiIiIiHTAgLwe5s2bhzZt2sDHxwf9+/fH9u3b9S7SBb388svo27cvAgICEBERgVGjRiE1NdXhmJKSEiQmJiIsLAwtWrTAbbfdhoyMDJ1K7LxXXnkFBoMBkydPrtrnbnU5deoU7rnnHoSFhcHX1xfdunXDzp07q+5XSmHGjBmIjo6Gr68vhgwZgsOHD+tY4vOrrKzE9OnT0bZtW/j6+qJ9+/Z46aWXYJ830lXrs2nTJtx0002IiYmBwWDAsmXLHO53ptxZWVlISEhAYGAggoOD8cADD6CgoKAZa2FTV33Ky8sxbdo0dOvWDf7+/oiJicG9996LtLQ0h+dwl/pUN2HCBBgMBsyZM8dhvyvVh1wb23rXwrbetbhzWw94VnvPtt5z2noG5E5avHgxpkyZgpkzZ2L37t3o0aMHhg0bhszMTL2LVqeNGzciMTERW7duxZo1a1BeXo6hQ4eisLCw6pjHHnsMK1aswJIlS7Bx40akpaXh1ltv1bHUF7Zjxw68++676N69u8N+d6pLdnY2Bg4cCG9vb6xatQrJycn43//9X4SEhFQd8+qrr+Ktt97CggULsG3bNvj7+2PYsGEoKSnRseS1mz17NubPn4+3334bKSkpmD17Nl599VXMnTu36hhXrU9hYSF69OiBefPm1Xq/M+VOSEjAgQMHsGbNGqxcuRKbNm3C+PHjm6sKDuqqT1FREXbv3o3p06dj9+7d+Oabb5Camoqbb77Z4Th3qY+9pUuXYuvWrYiJialxnyvVh1wX23rXwraebX1T86T2nm29B7X1ipzSr18/lZiYWHW7srJSxcTEqJdfflnHUtVfZmamAqA2btyolFIqJydHeXt7qyVLllQdk5KSogCoLVu26FXMOuXn56sOHTqoNWvWqGuuuUZNmjRJKeV+dZk2bZq6+uqrz3u/1WpVUVFR6rXXXqval5OToywWi1q0aFFzFLFebrjhBnX//fc77Lv11ltVQkKCUsp96gNALV26tOq2M+VOTk5WANSOHTuqjlm1apUyGAzq1KlTzVb22lSvT222b9+uAKhjx44ppdyzPidPnlQtW7ZU+/fvV61bt1Zvvvlm1X2uXB9yLWzrXQfbetdqGzWe0tYr5VntPdt6167PhbCH3AllZWXYtWsXhgwZUrXPaDRiyJAh2LJli44lq7/c3FwAQGhoKABg165dKC8vd6jbFVdcgbi4OJetW2JiIm644QaHMgPuV5fly5ejT58++Nvf/oaIiAj06tUL77//ftX9R48eRXp6ukN9goKC0L9/f5esz1VXXYV169bh0KFDAIC9e/fip59+wogRIwC4X300zpR7y5YtCA4ORp8+faqOGTJkCIxGI7Zt29bsZa6v3NxcGAwGBAcHA3C/+litVowZMwZTp05FfHx8jfvdrT6kD7b1roVtvWu2jZ7a1gOe396zrXddJr0L4A7Onj2LyspKREZGOuyPjIzEwYMHdSpV/VmtVkyePBkDBw5E165dAQDp6ekwm81Vf5yayMhIpKen61DKun3xxRfYvXs3duzYUeM+d6vLb7/9hvnz52PKlCl45plnsGPHDjz66KMwm80YO3ZsVZlr+965Yn2eeuop5OXl4YorroCXlxcqKysxa9YsJCQkAIDb1UfjTLnT09MRERHhcL/JZEJoaKhL1w2QuZjTpk3DXXfdhcDAQADuV5/Zs2fDZDLh0UcfrfV+d6sP6YNtvetgW++69fHUth7w7Paebb3r1cceA/JLSGJiIvbv34+ffvpJ76I0yIkTJzBp0iSsWbMGPj4+ehen0axWK/r06YN//vOfAIBevXph//79WLBgAcaOHatz6ervyy+/xOeff46FCxciPj4eSUlJmDx5MmJiYtyyPpeC8vJy3HHHHVBKYf78+XoXp0F27dqFf/3rX9i9ezcMBoPexSHSHdt618K2nvTGtt71cci6E8LDw+Hl5VUjg2dGRgaioqJ0KlX9TJw4EStXrsT69evRqlWrqv1RUVEoKytDTk6Ow/GuWLddu3YhMzMTV155JUwmE0wmEzZu3Ii33noLJpMJkZGRblMXAIiOjkaXLl0c9nXu3BnHjx8HgKoyu8v3burUqXjqqadw5513olu3bhgzZgwee+wxvPzyywDcrz4aZ8odFRVVI+lTRUUFsrKyXLZuWgN97NgxrFmzpuqMOeBe9fnxxx+RmZmJuLi4qt+FY8eO4fHHH0ebNm0AuFd9SD9s610D23pU3XbF+nhqWw94ZnvPtt4161MdA3InmM1m9O7dG+vWravaZ7VasW7dOgwYMEDHkl2YUgoTJ07E0qVL8cMPP6Bt27YO9/fu3Rve3t4OdUtNTcXx48ddrm6DBw/Gvn37kJSUVHXp06cPEhISqq67S10AYODAgTWWpTl06BBat24NAGjbti2ioqIc6pOXl4dt27a5ZH2KiopgNDr+pHh5ecFqtQJwv/ponCn3gAEDkJOTg127dlUd88MPP8BqtaJ///7NXuYL0Rrow4cPY+3atQgLC3O4353qM2bMGPzyyy8OvwsxMTGYOnUqVq9eDcC96kP6YVvvGtjWu3bb6KltPeB57T3betetTw365pRzH1988YWyWCzq448/VsnJyWr8+PEqODhYpaen6120Oj300EMqKChIbdiwQZ0+fbrqUlRUVHXMhAkTVFxcnPrhhx/Uzp071YABA9SAAQN0LLXz7DOvKuVeddm+fbsymUxq1qxZ6vDhw+rzzz9Xfn5+6j//+U/VMa+88ooKDg5W3377rfrll1/UX//6V9W2bVtVXFysY8lrN3bsWNWyZUu1cuVKdfToUfXNN9+o8PBw9eSTT1Yd46r1yc/PV3v27FF79uxRANQbb7yh9uzZU5WJ1JlyDx8+XPXq1Utt27ZN/fTTT6pDhw7qrrvucrn6lJWVqZtvvlm1atVKJSUlOfwulJaWul19alM986pSrlUfcl1s610T23rX4c5tvVKe1d6zrfectp4BeT3MnTtXxcXFKbPZrPr166e2bt2qd5EuCECtl48++qjqmOLiYvXwww+rkJAQ5efnp2655RZ1+vRp/QpdD9UbaXery4oVK1TXrl2VxWJRV1xxhXrvvfcc7rdarWr69OkqMjJSWSwWNXjwYJWamqpTaeuWl5enJk2apOLi4pSPj49q166devbZZx1++F21PuvXr6/172Ts2LFKKefKfe7cOXXXXXepFi1aqMDAQHXfffep/Px8HWpTd32OHj163t+F9evXu119alNbI+1K9SHXxrbe9bCtdx3u3NYr5VntPdt6z2nrDUop1TR97URERERERETkLM4hJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJ6KLymAwYNmyZXoXg4iIiC4itvdEDcOAnMiDjRs3DgaDocZl+PDheheNiIiImgjbeyL3ZdK7AER0cQ0fPhwfffSRwz6LxaJTaYiIiOhiYHtP5J7YQ07k4SwWC6KiohwuISEhAGR42fz58zFixAj4+vqiXbt2+Oqrrxwev2/fPlx33XXw9fVFWFgYxo8fj4KCAodjPvzwQ8THx8NisSA6OhoTJ050uP/s2bO45ZZb4Ofnhw4dOmD58uUXt9JERESXGLb3RO6JATnRJW769Om47bbbsHfvXiQkJODOO+9ESkoKAKCwsBDDhg1DSEgIduzYgSVLlmDt2rUODfD8+fORmJiI8ePHY9++fVi+fDkuv/xyh9d44YUXcMcdd+CXX37ByJEjkZCQgKysrGatJxER0aWM7T2Ri1JE5LHGjh2rvLy8lL+/v8Nl1qxZSimlAKgJEyY4PKZ///7qoYceUkop9d5776mQkBBVUFBQdf93332njEajSk9PV0opFRMTo5599tnzlgGAeu6556puFxQUKABq1apVTVZPIiKiSxnbeyL3xTnkRB5u0KBBmD9/vsO+0NDQqusDBgxwuG/AgAFISkoCAKSkpKBHjx7w9/evun/gwIGwWq1ITU2FwWBAWloaBg8eXGcZunfvXnXd398fgYGByMzMbGiViIiIqBq290TuiQE5kYfz9/evMaSsqfj6+jp1nLe3t8Ntg8EAq9V6MYpERER0SWJ7T+SeOIec6BK3devWGrc7d+4MAOjcuTP27t2LwsLCqvs3b94Mo9GITp06ISAgAG3atMG6deuatcxERERUP2zviVwTe8iJPFxpaSnS09Md9plMJoSHhwMAlixZgj59+uDqq6/G559/ju3bt+ODDz4AACQkJGDmzJkYO3Ysnn/+eZw5cwaPPPIIxowZg8jISADA888/jwkTJiAiIgIjRoxAfn4+Nm/ejEceeaR5K0pERHQJY3tP5J4YkBN5uO+//x7R0dEO+zp16oSDBw8CkIyoX3zxBR5++GFER0dj0aJF6NKlCwDAz88Pq1evxqRJk9C3b1/4+fnhtttuwxtvvFH1XGPHjkVJSQnefPNNPPHEEwgPD8ftt9/efBUkIiIitvdEbsqglFJ6F4KI9GEwGLB06VKMGjVK76IQERHRRcL2nsh1cQ45ERERERERkQ4YkBMRERERERHpgEPWiYiIiIiIiHTAHnIiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItIBA3IiIiIiIiIiHTAgJyIiIiIiItLB/wOVqnFl03JwxgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "fig = plt.figure(figsize=(12, 5))\n", - "fig.add_subplot(1, 2, 1)\n", - "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", - "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", - "plt.xlabel('Epoch')\n", - "plt.ylabel('Loss')\n", - "plt.title(\"MSE\")\n", - "plt.legend()\n", - "\n", - "fig.add_subplot(1, 2, 2)\n", - "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", - "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", - "plt.xlabel('Epoch')\n", - "plt.ylabel('Logarithmic loss')\n", - "plt.title(\"Logarithmic MSE\")\n", - "plt.legend()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# save the checkpoint model training if necessary\n", - "output_path = \"./\"\n", - "\n", - "torch.save({\n", - " 'epoch': epoch,\n", - " 'model_state_dict': model.state_dict(),\n", - " 'optimizer_state_dict': optimizer.state_dict(),\n", - " 'loss': loss.item()\n", - " }, Path(output_path,'lstm_train_checkpoint.pt'))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Evaluate model\n", - "Now we can evaluate our model with testing set and compare the predictions with the ground truth." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "726b75ee653e40049d95a790a0ffb6ec", - "version_major": 2, - "version_minor": 0 + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predict 2 meter temperature with sea surface temperature using LSTM\n", + "This notebook serves as an example of a basic workflow of data driven forecasting using deep learning with `s2spy` & `lilio` packages.
\n", + "We will predict temperature in US at seasonal time scales using ERA5 dataset with LSTM network.
\n", + "\n", + "\"usecase\"" + ] }, - "text/plain": [ - "VBox(children=(Label(value='0.002 MB of 0.002 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss▁▃█
train_loss█▁▂▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁
validation_loss█▂▂▂▂▂▂▂▂▂▂▂▁▁▂▂▁▁▁▁▂▂▂▂▂▂▃▂▂▂▂▂▂▁▃▁▂▃▁▁

Run summary:


testing_loss1.52785
train_loss0.59875
validation_loss0.95168

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run cool-aardvark-22 at: https://wandb.ai/ai4s2s/test-LSTM/runs/8t0sok9n
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230630_150821-8t0sok9n/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# switch model into evaluation mode\n", - "model.eval()\n", - "hist_test = []\n", - "predictions = []\n", - "hist_test_step = 0\n", - "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", - " var_X_batch = Variable(X_batch).to(device)\n", - " var_y_batch = Variable(y_batch).to(device)\n", - " optimizer.zero_grad()\n", - " with torch.no_grad():\n", - " output = model(var_X_batch)\n", - " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", - " wandb.log({'testing_loss': loss.item()})\n", - " predictions.append(output.squeeze().cpu().detach().numpy()[:,-1])\n", - " hist_test_step += loss.item()\n", - "\n", - "hist_test.append(hist_test_step / len(test_loader.dataset))\n", - "# call wandb finish to stop logging\n", - "wandb.finish()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plot the predictions versus ground truth." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The MSE loss is 0.342\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP4UlEQVR4nO3dfVyT5f4H8M+YyuMYom4DRSSfCTWfQ0rpRECaSnU0S1PSX3oMTDIT7ZepaaGeLKtTWMdzQDMrf8cw8hSGKOQT+EAcNYyU8OEoA/NhUxTE7f79MZlOBg4d3Bv35/167WX3dV+79t0S9+V6lAmCIICIiIhIIlzEDoCIiIioKTH5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCktxA7AERmNRpw5cwYKhQIymUzscIiIiMgGgiDg0qVL8Pf3h4tL3f07TH6sOHPmDAICAsQOg4iIiO7CqVOn0KFDhzrvM/mxQqFQADB9eN7e3iJHQ0RERLbQ6/UICAgwf4/XhcmPFTVDXd7e3kx+iIiInMydpqxwwjMRERFJCpMfIiIikhQmP0RERCQpnPNDROQEDAYDqqurxQ6DSFQtW7aEXC6/53aY/BAROTBBEKDVanHx4kWxQyFyCD4+PtBoNPe0Dx+THyIiB1aT+KhUKnh4eHDjVZIsQRBw5coVlJeXAwD8/Pzuui0mP0REDspgMJgTnzZt2ogdDpHo3N3dAQDl5eVQqVR3PQTGCc9ERA6qZo6Ph4eHyJEQOY6an4d7mQPH5IeIyMFxqIvoJnv8PHDYq6kYDcCJ3cDlMsBLDQQOAVzufcY6ERERNYyoPT9JSUkYOHAgFAoFVCoVYmJiUFRUZFEnPDwcMpnM4vGXv/yl3nYFQcCbb74JPz8/uLu7IyIiAkePHm3Mt1K/wnRgZQiw5glg4xTTnytDTOVERETUpERNfnJychAXF4fc3FxkZmaiuroakZGRqKiosKj34osvorS01PxYvnx5ve0uX74cH374IVatWoW8vDx4enoiKioKlZWVjfl2rCtMBzZMBPRnLMv1paZyJkBERHctNjYWMTEx5uvw8HAkJCTcU5v2aIMcm6jDXhkZGRbXqampUKlUOHDgAIYOHWou9/DwgEajsalNQRCwcuVKvPHGGxg9ejQAYO3atVCr1di0aRPGjRtnvzdwJ0YDkJEIQLAWKQAZkDEX6DGCQ2BE1GgMRgF7S86j/FIlVAo3DAryhdylcecRxcbGYs2aNQBMG9N17NgREydOxOuvv44WLRrvq+ebb75By5YtbaqbnZ2NRx55BBcuXICPj89dtUHOyaHm/Oh0OgCAr6+vRfkXX3yBdevWQaPRYOTIkZg/f36dqx9KSkqg1WoRERFhLlMqlRg8eDD27NljNfmpqqpCVVWV+Vqv19vj7Zjm+Nze42NBAPSnTfWCHrbPaxIR3SLjcCkWfVeIUt3Nnm8/pRsWjAxGdMjd75Nii+joaKSkpKCqqgrff/894uLi0LJlS8ybN8+i3rVr19CqVSu7vObt3x9itUGOzWFWexmNRiQkJCAsLAwhISHm8ueeew7r1q3D9u3bMW/ePHz++eeYMGFCne1otVoAgFqttihXq9Xme7dLSkqCUqk0PwICAuzwjmCa3GzPekREDZBxuBTT1+VbJD4AoNVVYvq6fGQcLm3U13d1dYVGo0FgYCCmT5+OiIgIpKenm4eq3n77bfj7+6N79+4AgFOnTmHs2LHw8fGBr68vRo8ejePHj5vbMxgMmDVrFnx8fNCmTRvMmTMHgmDZs377kFVVVRUSExMREBAAV1dXdOnSBf/4xz9w/PhxPPLIIwCA1q1bQyaTITY21mobFy5cwMSJE9G6dWt4eHjg8ccft5hHmpqaCh8fH2zZsgU9e/aEl5cXoqOjUVp68/PNzs7GoEGD4OnpCR8fH4SFheHEiRN2+qSpoRwm+YmLi8Phw4fx1VdfWZRPnToVUVFR6NWrF8aPH4+1a9ciLS0NxcXFdnvtefPmQafTmR+nTp2yT8Ne6jvXaUg9IiIbGYwCFn1XWOegOwAs+q4QBqO1Go3D3d0d165dAwBkZWWhqKgImZmZ2Lx5M6qrqxEVFQWFQoEdO3Zg165d5iSi5jkrVqxAamoq/vnPf2Lnzp04f/480tLS6n3NiRMn4ssvv8SHH36II0eO4NNPP4WXlxcCAgKwceNGAEBRURFKS0vxwQcfWG0jNjYW+/fvR3p6Ovbs2QNBEDB8+HCLfWauXLmCd999F59//jl++uknnDx5ErNnzwYAXL9+HTExMRg2bBgOHjyIPXv2YOrUqdzCQEQOMewVHx+PzZs346effkKHDh3qrTt48GAAwLFjx9C5c+da92vmBpWVlVlsfV1WVoYHHnjAapuurq5wdXW9y+jrETgE8PY3TW62+k+QzHQ/cIj9X5uIJG1vyflaPT63EgCU6iqxt+Q8Qjs37u7RgiAgKysLW7ZswYwZM3D27Fl4enpi9erV5uGudevWwWg0YvXq1eakICUlBT4+PsjOzkZkZCRWrlyJefPm4amnngIArFq1Clu2bKnzdX/77Tds2LABmZmZ5qkQ9913n/l+zfCWSqWymPNzq6NHjyI9PR27du3CkCGmf6u/+OILBAQEYNOmTRgzZgwA04Z7q1atMn8vxcfH46233gJgmkqh0+nwxBNPmO/37Nmz4R8k2Y2oPT+CICA+Ph5paWnYtm0bgoKC7vicgoICAHWf6REUFASNRoOsrCxzmV6vR15eHkJDQ+0St81c5ED0shsXt2f4N66jl3KyMxHZXfkl21a32lrvbmzevBleXl5wc3PD448/jmeeeQYLFy4EAPTq1ctins9//vMfHDt2DAqFAl5eXvDy8oKvry8qKytRXFwMnU6H0tJS8y/AANCiRQsMGDCgztcvKCiAXC7HsGHD7vo9HDlyBC1atLB43TZt2qB79+44cuSIuczDw8PiF3I/Pz/zGVS+vr6IjY1FVFQURo4ciQ8++MBiSIyanqjJT1xcHNatW4f169dDoVBAq9VCq9Xi6tWrAIDi4mIsXrwYBw4cwPHjx5Geno6JEydi6NCh6N27t7mdHj16mLs+ZTIZEhISsGTJEqSnp+PQoUOYOHEi/P39LZZDNpngUcDYtYD3bcmat7+pPHhU08dERM2eSuFm13p345FHHkFBQQGOHj2Kq1evYs2aNfD09AQA8581Ll++jP79+6OgoMDi8dtvv+G55567q9evOQeqKdy+Okwmk1nMR0pJScGePXswZMgQfP311+jWrRtyc3ObLD6yJOqwV3JyMgDT5LJbpaSkIDY2Fq1atcLWrVuxcuVKVFRUICAgAE8//TTeeOMNi/pFRUXmlWIAMGfOHFRUVGDq1Km4ePEiHnroIWRkZMDNrfF+yOsVPMq0nJ07PBNRExkU5As/pRu0usq6Bt2hUZqWvTcWT09PdOnSxaa6/fr1w9dffw2VSgVvb2+rdfz8/JCXl2feCuX69es4cOAA+vXrZ7V+r169YDQakZOTY7ECuEZNz5PBYKgzrp49e+L69evIy8szD3udO3cORUVFCA4Otum91ejbty/69u2LefPmITQ0FOvXr8eDDz7YoDbIPkRNfm6fpX+7gIAA5OTkNLgdmUyGt956yzze6hBc5FzOTkRNRu4iw4KRwZi+Lh8yWM46rBmEXzAyuNH3+7HV+PHj8de//hWjR4/GW2+9hQ4dOuDEiRP45ptvMGfOHHTo0AEzZ87E0qVL0bVrV/To0QPvvfceLl68WGebnTp1wqRJkzB58mR8+OGH6NOnD06cOIHy8nKMHTsWgYGBkMlk2Lx5M4YPHw53d3d4eXlZtNG1a1eMHj0aL774Ij799FMoFArMnTsX7du3N+8ldyclJSX47LPPMGrUKPj7+6OoqAhHjx7FxIkT7+Ujo3vgMKu9iIjIvqJD/JA8oR80Ssteb43SDckT+jX6Pj8N4eHhgZ9++gkdO3bEU089hZ49e2LKlCmorKw09wS9+uqreP755zFp0iSEhoZCoVDgySefrLfd5ORk/PnPf8ZLL72EHj164MUXXzSfItC+fXssWrQIc+fOhVqtRnx8vNU2UlJS0L9/fzzxxBMIDQ2FIAj4/vvvbd4I0cPDA7/++iuefvppdOvWDVOnTkVcXBymTZvWgE+I7Ekm3Kn7RYL0ej2USiV0Ol2d3a9ERI2tsrISJSUlCAoKuqdhezF2eCZqLPX9XNj6/e0QS92JiKjxyF1kjb6cnciZcNiLiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERHTDwoUL8cADD4gdBsLDw5GQkCB2GM0Wkx8iIrI7rVaLmTNnokuXLnBzc4NarUZYWBiSk5Nx5coVscO7a9nZ2ZDJZPWeKSZme2Qb7vBMRNTcGQ3Aid3A5TLASw0EDjEdttxIfv/9d4SFhcHHxwfvvPMOevXqBVdXVxw6dAifffYZ2rdvj1GjRll9bnV1tc1nZjmya9eumU+NJ8fDnh8iouasMB1YGQKseQLYOMX058oQU3kjeemll9CiRQvs378fY8eORc+ePXHfffdh9OjR+Pe//42RI0ea68pkMiQnJ2PUqFHw9PTE22+/DcB0IGnnzp3RqlUrdO/eHZ9//rn5OcePH4dMJkNBQYG57OLFi5DJZMjOzgZws0clKysLAwYMgIeHB4YMGYKioiKLWJcuXQq1Wg2FQmE+SLUux48fxyOPPAIAaN26NWQyGWJjYwGYhqni4+ORkJCAtm3bIioq6o5x1tceABiNRsyZMwe+vr7QaDRYuHChrf8L6A6Y/BARNVeF6cCGiYD+jGW5vtRU3ggJ0Llz5/Djjz8iLi4Onp6eVuvIZJaHqi5cuBBPPvkkDh06hMmTJyMtLQ0zZ87Eq6++isOHD2PatGl44YUXsH379gbH87//+79YsWIF9u/fjxYtWmDy5Mnmexs2bMDChQvxzjvvYP/+/fDz88Mnn3xSZ1sBAQHYuHEjAKCoqAilpaX44IMPzPfXrFmDVq1aYdeuXVi1atUdY7OlPU9PT+Tl5WH58uV46623kJmZ2eDPgGrjsBcRUXNkNAAZiQAEKzcFADIgYy7QY4Rdh8COHTsGQRDQvXt3i/K2bduae1Xi4uKwbNky873nnnsOL7zwgvn62WefRWxsLF566SUAwKxZs5Cbm4t3333X3FNiq7fffhvDhg0DAMydOxcjRoxAZWUl3NzcsHLlSkyZMgVTpkwBACxZsgRbt26ts/dHLpfD19cXAKBSqeDj42Nxv2vXrli+fLn5+vjx4/XGdqf2evfujQULFpjb/tvf/oasrCw89thjNr13qht7foiImqMTu2v3+FgQAP1pU70msHfvXhQUFOD+++9HVVWVxb0BAwZYXB85cgRhYWEWZWFhYThy5EiDX7d3797m//bz8wMAlJeXm19n8ODBFvVDQ0Mb/Bo1+vfvf9fPtebW2AFT/DWx071hzw8RUXN0ucy+9WzUpUsXyGSyWnNr7rvvPgCAu7t7refUNTxWFxcX0+/tgnCzV6u6utpq3VsnT9cMtxmNxga9nq1ufx8NidOa2yd+y2SyRotdatjzQ0TUHHmp7VvPRm3atMFjjz2Gv/3tb6ioqLirNnr27Ildu3ZZlO3atQvBwcEAgHbt2gEASktLzfdvnVTckNfJy8uzKMvNza33OTUruAwGwx3btyXOhrRH9sOeHyKi5ihwCODtb5rcbHXej8x0P3CI3V/6k08+QVhYGAYMGICFCxeid+/ecHFxwb59+/Drr7/ecXjotddew9ixY9G3b19ERETgu+++wzfffIOtW7cCMPUePfjgg1i6dCmCgoJQXl6ON954o8Fxzpw5E7GxsRgwYADCwsLwxRdf4JdffjH3UlkTGBgImUyGzZs3Y/jw4XB3d4eXl5fVurbE2ZD2yH7Y80NE1By5yIHomknFsttu3riOXtoo+/107twZP//8MyIiIjBv3jz06dMHAwYMwEcffYTZs2dj8eLF9T4/JiYGH3zwAd59913cf//9+PTTT5GSkoLw8HBznX/+85+4fv06+vfvj4SEBCxZsqTBcT7zzDOYP38+5syZg/79++PEiROYPn16vc9p3749Fi1ahLlz50KtViM+Pr7e+neKs6HtkX3IhFsHIwkAoNfroVQqodPp4O3tLXY4RCRRlZWVKCkpQVBQENzc3O6ukcJ006qvWyc/e7c3JT7B1jcaJHJk9f1c2Pr9zWEvIqLmLHiUaTl7E+7wTOTomPwQETV3LnIg6GGxoyByGJzzQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiKqg1arxWOPPQZPT0/4+PiIHY7dZGdnQyaT4eLFi6LGsXDhQjzwwANN/rpMfoiIyK5iY2Mhk8nwl7/8pda9uLg4yGQyxMbGNn1gd+H9999HaWkpCgoK8Ntvv4kdTpOSyWTYtGmTw7Z3L5j8EBE1cwajAfu0+/D9799jn3YfDEZDo79mQEAAvvrqK1y9etVcVllZifXr16Njx46N/vr2UlxcjP79+6Nr165QqVR2a/fatWt2a0tMzvo+mPwQETVjW09sRdTGKEzeMhmJOxIxectkRG2MwtYTWxv1dfv164eAgAB888035rJvvvkGHTt2RN++fS3qGo1GJCUlISgoCO7u7ujTpw/+9a9/me8bDAZMmTLFfL979+744IMPLNqIjY1FTEwM3n33Xfj5+aFNmzaIi4tDdXV1vXEmJyejc+fOaNWqFbp3747PP//cfK9Tp07YuHEj1q5dW29v1fXr1/Hyyy/Dx8cHbdq0QWJiIiZNmoSYmBhznfDwcMTHxyMhIQFt27ZFVFQUACAnJweDBg2Cq6sr/Pz8MHfuXFy/ft0ihpUrV1q83gMPPICFCxear2UyGVavXo0nn3wSHh4e6Nq1K9LT0y2e8/3336Nbt25wd3fHI488guPHj9f7uXTq1AkA8OSTT0Imk5mva4apVq9ebXGw6J3irKu9Gp9//jk6deoEpVKJcePG4dKlS/XGd6+Y/BARNVNbT2zFrOxZKLtSZlFefqUcs7JnNXoCNHnyZKSkpJiv//nPf+KFF16oVS8pKQlr167FqlWr8Msvv+CVV17BhAkTkJOTA8CUHHXo0AH/93//h8LCQrz55pt4/fXXsWHDBot2tm/fjuLiYmzfvh1r1qxBamoqUlNT64wvLS0NM2fOxKuvvorDhw9j2rRpeOGFF7B9+3YAwL59+xAdHY2xY8eitLS0VsJVY9myZfjiiy+QkpKCXbt2Qa/XWx3eWbNmDVq1aoVdu3Zh1apVOH36NIYPH46BAwfiP//5D5KTk/GPf/wDS5YsudNHW8uiRYswduxYHDx4EMOHD8f48eNx/vx5AMCpU6fw1FNPYeTIkSgoKMD//M//YO7cufW2t2/fPgBASkoKSktLzdcAcOzYMWzcuBHffPMNCgoKbIqvvvaKi4uxadMmbN68GZs3b0ZOTg6WLl3akLffcALVotPpBACCTqcTOxQikrCrV68KhYWFwtWrVxv83OuG68KjGx4VQlJDrD56pfYSIjZECNcN1+0e96RJk4TRo0cL5eXlgqurq3D8+HHh+PHjgpubm3D27Flh9OjRwqRJkwRBEITKykrBw8ND2L17t0UbU6ZMEZ599tk6XyMuLk54+umnLV4zMDBQuH795vsZM2aM8Mwzz9TZxpAhQ4QXX3zRomzMmDHC8OHDzde3xloXtVot/PWvfzVfX79+XejYsaMwevRoc9mwYcOEvn37Wjzv9ddfF7p37y4YjUZz2ccffyx4eXkJBoNBEARBCAwMFN5//32L5/Xp00dYsGCB+RqA8MYbb5ivL1++LAAQfvjhB0EQBGHevHlCcHCwRRuJiYkCAOHChQt1vi8AQlpamkXZggULhJYtWwrl5eUW5bbGaa09Dw8PQa/Xm8tee+01YfDgwXXGVd/Pha3f3zzVnYioGcovz6/V43MrAQK0V7TIL8/HQM3ARomhXbt2GDFiBFJTUyEIAkaMGIG2bdta1Dl27BiuXLmCxx57zKL82rVrFsNjH3/8Mf75z3/i5MmTuHr1Kq5du1ZrldD9998PuVxuvvbz88OhQ4fqjO/IkSOYOnWqRVlYWFidPTzW6HQ6lJWVYdCgQeYyuVyO/v37w2g0WtTt379/rdcPDQ2FTCazeP3Lly/jv//9b4PmRvXu3dv8356envD29kZ5ebn5dQYPHmxRPzQ01Oa2bxcYGIh27drd9fNv16lTJygUCvO1n5+fOfbGwuSHiKgZOnvlrF3r3a3JkycjPj4egCmBud3ly5cBAP/+97/Rvn17i3uurq4AgK+++gqzZ8/GihUrEBoaCoVCgb/+9a/Iy8uzqN+yZUuLa5lMVisBEZOnp2eDn+Pi4gJTp8lN1uYxNeV7t/Y+bI3TGjH+v3HODxFRM9TOw7bfzG2td7eio6Nx7do1VFdXmyf53io4OBiurq44efIkunTpYvEICAgAAOzatQtDhgzBSy+9hL59+6JLly4oLi6+59h69uyJXbt2WZTt2rULwcHBNrehVCqhVqst5rAYDAbk5+fb9Pp79uyxSBp27doFhUKBDh06ADD1npWWlprv6/V6lJSU2Bxfzevs3bvXoiw3N/eOz2vZsiUMBttWBtoSZ0Paa2xMfugmowEo2QEc+pfpzyZYDktEjaOfqh/UHmrIILN6XwYZNB4a9FP1a9Q45HI5jhw5gsLCQoshqRoKhQKzZ8/GK6+8gjVr1qC4uBj5+fn46KOPsGbNGgBA165dsX//fmzZsgW//fYb5s+fb5Fs3K3XXnsNqampSE5OxtGjR/Hee+/hm2++wezZsxvUzowZM5CUlIRvv/0WRUVFmDlzJi5cuGAxnGXNSy+9hFOnTmHGjBn49ddf8e2332LBggWYNWsWXFxMX89/+tOf8Pnnn2PHjh04dOgQJk2aZPVzrM9f/vIXHD16FK+99hqKioqwfv36eieC1+jUqROysrKg1Wpx4cKFeuvaEmdD2mtsTH7IpDAdWBkCrHkC2DjF9OfKEFM5ETkduYsccweZVvTcngDVXCcOSoTcpWFfpHfD29sb3t7edd5fvHgx5s+fj6SkJPTs2RPR0dH497//jaCgIADAtGnT8NRTT+GZZ57B4MGDce7cObz00kv3HFdMTAw++OADvPvuu7j//vvx6aefIiUlBeHh4Q1qJzExEc8++ywmTpyI0NBQeHl5ISoqyrwMvC7t27fH999/j71796JPnz74y1/+gilTpuCNN94w15k3bx6GDRuGJ554AiNGjEBMTAw6d+7coPg6duyIjRs3YtOmTejTpw9WrVqFd955547PW7FiBTIzMxEQEFBre4Lb2RJnQ9prbDLh9kE6gl6vh1KphE6nq/cHttkoTAc2TARw+1+FG/9gjl0LBI9q6qiIJK+yshIlJSUW+6k01NYTW7F071KLyc8aDw0SByUiIjDCXqHSLYxGI3r27ImxY8di8eLFYofT7NT3c2Hr9zcnPEud0QBkJKJ24oMbZTIgYy7QYwTQBL8hEpF9RQRG4JGAR5Bfno+zV86inUc79FP1a5IeH6k4ceIEfvzxRwwbNgxVVVX429/+hpKSEjz33HNih0Z1YPIjdSd2A/oz9VQQAP1pU72gh5ssLCKyH7mLvNGWs5NppVNqaipmz54NQRAQEhKCrVu3omfPnmKHRnUQdc5PUlISBg4cCIVCAZVKhZiYGBQVFVmtKwgCHn/8cZsORqs5VO/WR3R0dCO8g2bgct37gNxVPSIiiQkICMCuXbug0+mg1+uxe/duDB06VOywqB6iJj85OTmIi4tDbm4uMjMzUV1djcjISFRUVNSqu3LlyjvOnL9VdHQ0SktLzY8vv/zSnqE3H15q+9YjIiJycKIOe2VkZFhcp6amQqVS4cCBAxZZc0FBAVasWIH9+/fDz8/PprZdXV2h0WhsqltVVYWqqirztV6vt+l5zULgEMDbH9CXwvq8H5npfuCQpo6MiG7guhSim+zx8+BQS911Oh0AwNfX11x25coVPPfcc/j4449tTmYAIDs7GyqVCt27d8f06dNx7ty5OusmJSVBqVSaHzUba0mCixyIXnbj4vaetRvX0Us52ZlIBDU73165ckXkSIgcR83Pw+07QzeEwyx1NxqNGDVqFC5evIidO3eay6dNmwaDwYDVq1cDMG17nZaWhpiYmDrb+uqrr+Dh4YGgoCAUFxfj9ddfh5eXF/bs2WN1cyhrPT8BAQHSWeoOmJa7ZyRaTn72bm9KfLjMnUg0paWluHjxIlQqFTw8PBo0/E/kcAQBqL4CGKoBeUugpQdg499pQRBw5coVlJeXw8fHx+pIkNMtdY+Li8Phw4ctEp/09HRs27YNP//8c4PaGjdunPm/e/Xqhd69e6Nz587Izs7Go48+Wqu+q6ur+QwZyQoeZVrOfmK3aXKzl9o01MUeHyJR1fR4N/ZBj0SNrvoKcPUiYLx+s8ylBeDuY0qCbOTj49OgkSBrHCL5iY+Px+bNm/HTTz+ZzzMBgG3btqG4uBg+Pj4W9Z9++mk8/PDDyM7Otqn9++67D23btsWxY8esJj90g4ucy9mJHIxMJoOfnx9UKpXNB0USOZxj24Afre0pVzO9YhnQ5U93bKZly5YNPt7DGlGTH0EQMGPGDKSlpSE7O9u8lXmNuXPn4n/+538synr16oX3338fI0eOtPl1/vvf/+LcuXM2T5YmInI0crncLv/oEzU5owH48VXgcl17ysmAH2cDwYeabLRB1AnPcXFxWLduHdavXw+FQgGtVgutVourV68CMHX3hoSEWDwA0zkltyZKPXr0QFpaGgDg8uXLeO2115Cbm4vjx48jKysLo0ePRpcuXayeKExERESNqCGb6TYRUZOf5ORk6HQ6hIeHw8/Pz/z4+uuvG9ROUVGReaWYXC7HwYMHMWrUKHTr1g1TpkxB//79sWPHDs7rISIiamoOuJmu6MNe9njOrWXu7u7YsmXLPcVFREREduKAm+k61D4/RERE1MzUbKZbay+5GjLT1ipNuJkukx8iIiJqPA64mS6THyIiImpcwaOAsWsB79tWXXv7m8qbeDNdh9jnh4iIiJo5B9pMl8kPERERNQ0H2UyXw15EREQkKUx+iIiISFKY/BAREZGkcM4PEdHdMhocYvImETUMkx8iortRmA5kJFqeWeTtb9rPpImX7RJRw3DYi4iooQrTgQ0Tax/WqC81lRemixMXEdmEyQ8RUUMYDaYeH1g7m/BGWcZcUz0ickhMfoiIGuLE7to9PhYEQH/aVI+IHBKTHyKihrhcZt96RNTkmPwQETWEl9q+9YioyTH5ISJqiMAhplVdtU6nriEDvNub6hGRQ2LyQ0TUEC5y03J2ALUToBvX0Uu53w+RA2PyQ0TUUMGjgLFrAW8/y3Jvf1M59/khcmjc5JCI6G4EjwJ6jOAOz0ROiMkPEdHdcpEDQQ+LHQURNRCHvYiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPwQERGRpDD5ISIiIklh8kNERESSwuSHiIiIJIXJDxEREUkKkx8iIiKSFCY/REREJCmiJj9JSUkYOHAgFAoFVCoVYmJiUFRUZLWuIAh4/PHHIZPJsGnTpnrbFQQBb775Jvz8/ODu7o6IiAgcPXq0Ed4BERERORtRk5+cnBzExcUhNzcXmZmZqK6uRmRkJCoqKmrVXblyJWQymU3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlfZ+C0RERORkZIIgCGIHUePs2bNQqVTIycnB0KFDzeUFBQV44oknsH//fvj5+SEtLQ0xMTFW2xAEAf7+/nj11Vcxe/ZsAIBOp4NarUZqairGjRtX6zlVVVWoqqoyX+v1egQEBECn08Hb29u+b5KIiIgahV6vh1KpvOP3t0PN+dHpdAAAX19fc9mVK1fw3HPP4eOPP4ZGo7ljGyUlJdBqtYiIiDCXKZVKDB48GHv27LH6nKSkJCiVSvMjICDgHt8JEREROSqHSX6MRiMSEhIQFhaGkJAQc/krr7yCIUOGYPTo0Ta1o9VqAQBqtdqiXK1Wm+/dbt68edDpdObHqVOn7vJdEBERkaNrIXYANeLi4nD48GHs3LnTXJaeno5t27bh559/btTXdnV1haura6O+BhERETkGh+j5iY+Px+bNm7F9+3Z06NDBXL5t2zYUFxfDx8cHLVq0QIsWplzt6aefRnh4uNW2aobGysrKLMrLyspsGjYjIiKi5k3U5EcQBMTHxyMtLQ3btm1DUFCQxf25c+fi4MGDKCgoMD8A4P3330dKSorVNoOCgqDRaJCVlWUu0+v1yMvLQ2hoaKO9FyIiInIOog57xcXFYf369fj222+hUCjMc3KUSiXc3d2h0Wis9tZ07NjRIlHq0aMHkpKS8OSTT0ImkyEhIQFLlixB165dERQUhPnz58Pf37/OFWJEREQkHaImP8nJyQBQawgrJSUFsbGxNrdTVFRkXikGAHPmzEFFRQWmTp2Kixcv4qGHHkJGRgbc3NzsETYRERE5MYfa58dR2LpPABERETkOp9znh4iIiKixMfkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iIiISFKY/BAREZGktBA7ACIikjijATixG7hcBnipgcAhgItc7KioGWPyQ0RE4ilMBzISAf2Zm2Xe/kD0MiB4lHhxUbPGYS8iIhJHYTqwYaJl4gMA+lJTeWG6OHE5K6MBKNkBHPqX6U+jQeyIHBZ7foiIqOkZDaYeHwhWbgoAZEDGXKDHCA6B2YI9aA3Cnh8iImp6J3bX7vGxIAD606Z6VD/2oDUYkx8iImp6l8vsW0+q7tiDBlMPGofALDD5ISKipueltm89qWIP2l3hnJ8mYjAakF+ej7NXzqKdRzv0U/WD3MHGsZ0ixuvXkH/oc5zVn0Q7747o1+t5yFu0EjssC07xOTJGu2CM9yBwiGlOir4UBgjId3PFWbkc7QwG9Kusghwy0/3AIWJHCsCBP8dbesYMgJXPsXY9MTnK58jkpwlsPbEVS/cuRdmVm3/51B5qzB00FxGBESJGdpNTxLgzCUt/+wJlcpm5TP3z+5jbbTwiHponYmQ3OcXnyBjtgjHeIxc5EL0MWzdPw9I2PihrcfPrSH39Ouaeu4iI6KUOMdnZoT/HGz1jWz3csbRNayuf4wVEXLnqED1ojvQ5ygRBsDZQKGl6vR5KpRI6nQ7e3t731NbWE1sxK3sWhNvGY2UwfYG/F/6e6D88ThHjziTMOvaFKULZzeRHduOv73tdxE+AnOJzZIx2wRjtwxTjKxAEofbPtUyG98Lfd5AYHfhzNBqw9ZNemOXlUve/j5eNiHjpkKiJZFN9jrZ+f9/TnJ/KykqsWbMGn3zyCY4ePXovTTVLBqMBS/curfU/G4C5bNneZTCIOBHNKWK8fg1Lf6ud+ACAcON62W9fwHD9WtMHd4NTfI6M0S4Yo33cjBF1/FzLHChGB/4cASz1bV3/v49tfCHmdGdH/BxtTn5mzZqFGTNmmK+vXbuG0NBQvPjii3j99dfRt29f7Nmzp0EvnpSUhIEDB0KhUEClUiEmJgZFRUUWdaZNm4bOnTvD3d0d7dq1w+jRo/Hrr7/W225sbCxkMpnFIzo6ukGx2UN+eb5F997tBAjQXtEivzy/CaOy5BQxHvrcNNR12w92DUEmg1YuQ/6hz5s4spuc4nNkjHbBGO2DMdpHfnk+yqr19f/7eE0nfowO9jnanPz8+OOPeOyxx8zXX3zxBU6cOIGjR4/iwoULGDNmDJYsWdKgF8/JyUFcXBxyc3ORmZmJ6upqREZGoqKiwlynf//+SElJwZEjR7BlyxYIgoDIyEgYDPVniNHR0SgtLTU/vvzyywbFZg9nr5y1a73G4BQx6k/atV5jcIrPkTHaBWO0D8ZoH4zx7tg84fnkyZMIDg42X//444/485//jMDAQADAzJkzMXz48Aa9eEZGhsV1amoqVCoVDhw4gKFDhwIApk6dar7fqVMnLFmyBH369MHx48fRuXPnOtt2dXWFRqNpUDz21s6jnV3rNQaniNG7o13rNQan+BwZo10wRvtgjPbBGO+OzT0/Li4uuHVudG5uLh588EHztY+PDy5cuHBPweh0OgCAr6+v1fsVFRVISUlBUFAQAgIC6m0rOzsbKpUK3bt3x/Tp03Hu3Lk661ZVVUGv11s87KGfqh/UHmrzhK7bySCDxkODfqp+dnm9u+EUMfZ6HmqDYJ68dzuZIEBjENCv1/NNHNlNTvE5Mka7YIz2wRjtgzHeHZuTn549e+K7774DAPzyyy84efIkHnnkEfP9EydOQK2++6V0RqMRCQkJCAsLQ0hIiMW9Tz75BF5eXvDy8sIPP/yAzMxMtGpV994u0dHRWLt2LbKysrBs2TLk5OTg8ccfr3OoLCkpCUql0vy4U2JlK7mLHHMHzQWAWv/Ta64TByWKuleEU8TYohXmdhtvium2BKjmOrHbeFH3+3GKz5Ex2gVjtA/GaB+M8e7YvNQ9LS0N48aNw0MPPYRffvkFAwcONCdDAJCYmIiSkhJs2LDhrgKZPn06fvjhB+zcuRMdOnSwuKfT6VBeXo7S0lK8++67OH36NHbt2gU3Nzeb2v7999/RuXNnbN26FY8++mit+1VVVaiqqjJf6/V6BAQE2GWpO2B9bwONhwaJgxJFX8ZZwylitLLPj8YgINHB9/lxuM+RMdoFY7QPxmgfjNHE1qXuDdrnJysrC5s3b4ZGo8GMGTPg4eFhvrdo0SIMGzYM4eHhDQ42Pj4e3377LX766ScEBQXVW/fatWto3bo1Vq9ejWeffdbm12jXrh2WLFmCadOm3bGuPff5qeEou1rWxyli5A7PdsEY7YMx2gdjtA/G2AjJz1tvvYXZs2dbJDz3ShAEzJgxA2lpacjOzkbXrl3v+Jyqqiq0bt0an3zyCWJjY216nf/+97/o2LEjNm3ahFGjRt2xfmMkP0RERNS47L7J4aJFi3D58mW7BFcjLi4O69atw/r166FQKKDVaqHVanH16lUApuGqpKQkHDhwACdPnsTu3bsxZswYuLu7W6ws69GjB9LS0gAAly9fxmuvvYbc3FwcP34cWVlZGD16NLp06YKoqCi7xk9ERETOx+bkpzFOwUhOToZOp0N4eDj8/PzMj6+//hoA4Obmhh07dmD48OHo0qULnnnmGSgUCuzevRsqlcrcTlFRkXmlmFwux8GDBzFq1Ch069YNU6ZMQf/+/bFjxw64urra/T0QERGRc7F52MvFxQVlZWVo1068vQKaCoe9iIjIgtEAnNhtOh3dS206bd7B5tOQ7d/fDTrVvVu3bpDVsYV2jfPnzzekSSIiIsdWmA5kJAL6MzfLvP2B6GVA8J3nkZLjaVDys2jRIiiVysaKhYiIyLEUpgMbJgK3H8qpLzWVj13LBMgJNSj5GTdunMVcGyIiombLaDD1+Fg5jdxUJgMy5gI9RnAIzMnYPOH5TsNdREREzcqJ3ZZDXbUIgP60qR45FVFXexERETmsy2V3rtOQeuQwbB72MhqNjRkHERGRY/Gy8bxKW+uRw7C554eIiEhSAoeYVnXVcRo5IAO825vqkVNh8kNERGSNi9y0nB1A7QToxnX0Uk52dkJMfoiIiOoSPMq0nN3bz7Lc25/L3J1Yg5a6ExERSU7wKNNydu7w3Gww+SEiasYMRgF7S86j/FIlVAo3DAryhdyFW5c0mIscCHpY7CjITpj8EBE1UxmHS7Hou0KU6irNZX5KNywYGYzoEL96nknUvHHODxFRM5RxuBTT1+VbJD4AoNVVYvq6fGQcLhUpMiLxMfkhImpmDEYBi74rrPNQBgBY9F0hDEZuXkvSxOSHiKiZ2VtyvlaPz60EAKW6SuwtOd90QRE5ECY/RETNTPmluhOfu6lH1Nww+SEiamZUCje71iNqbrjaq4lwuSkRNZVBQb7wU7pBq6u0Ou9HBkCjNP07RCRFTH6aAJebElFTkrvIsGBkMKavy4cMsEiAan7lWjAymL+AkWRx2KuROdNyU4NRwJ7ic/i24DT2FJ/jShAiJxYd4ofkCf2gUVoObWmUbkie0I+/eJGkseenEd1puakMpuWmjwVrRP8NjL1TRM1PdIgfHgvWcMid6Dbs+WlEzrLc1Jl6p4ioYeQuMoR2boPRD7RHaOc2THyIwOSnUTnDclNuhkZERFLD5KcROcNyU2fpnSIiIrIXJj+NqGa5aV2dzDKY5tWIudzUGXqniIiI7InJTyOqWW4KoFYC5CjLTZ2hd4qIiMiemPw0MkdfbuoMvVNERET2xKXuTcCRl5tyMzQiIpIamSAIXMZzG71eD6VSCZ1OB29vb7HDaRLc54eIiJydrd/f7PkhAI7dO0VERGRPTH7IrGYzNCIiouaMyQ85FYNRYO8UERHdEyY/5DQ4L4mIiOyBS93JKfD8MSIishcmP+TweP4YERHZE5Mfcng8f4yIiOyJyQ85PJ4/RkRE9sTkhxwezx8jIiJ7YvJDDo/njxERkT0x+SGHV3P+GIBaCRDPHyMiooZi8kNOITrED8kT+kGjtBza0ijdkDyhH/f5ISIim3GTQ3IaPH+MiIjsgckPORWeP0ZERPeKw15EREQkKaImP0lJSRg4cCAUCgVUKhViYmJQVFRkUWfatGno3Lkz3N3d0a5dO4wePRq//vprve0KgoA333wTfn5+cHd3R0REBI4ePdqYb4WIiIichKjJT05ODuLi4pCbm4vMzExUV1cjMjISFRUV5jr9+/dHSkoKjhw5gi1btkAQBERGRsJgMNTZ7vLly/Hhhx9i1apVyMvLg6enJ6KiolBZyU3wiIiIpE4mCILDHIh09uxZqFQq5OTkYOjQoVbrHDx4EH369MGxY8fQuXPnWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG3TEOvV4PpVIJnU4Hb2/ve3tTRERE1CRs/f52qDk/Op0OAODra32zuoqKCqSkpCAoKAgBAQFW65SUlECr1SIiIsJcplQqMXjwYOzZs8fqc6qqqqDX6y0eRERE1Dw5TPJjNBqRkJCAsLAwhISEWNz75JNP4OXlBS8vL/zwww/IzMxEq1atrLaj1WoBAGq12qJcrVab790uKSkJSqXS/KgrsSIiIiLn5zDJT1xcHA4fPoyvvvqq1r3x48fj559/Rk5ODrp164axY8fadf7OvHnzoNPpzI9Tp07ZrW0iIiJyLA6xz098fDw2b96Mn376CR06dKh1v6ZHpmvXrnjwwQfRunVrpKWl4dlnn61VV6PRAADKysrg53dz19+ysjI88MADVl/f1dUVrq6u9nkzRERE5NBE7fkRBAHx8fFIS0vDtm3bEBQUZNNzBEFAVVWV1ftBQUHQaDTIysoyl+n1euTl5SE0NNRusRMREZFzEjX5iYuLw7p167B+/XooFApotVpotVpcvXoVAPD7778jKSkJBw4cwMmTJ7F7926MGTMG7u7uGD58uLmdHj16IC0tDQAgk8mQkJCAJUuWID09HYcOHcLEiRPh7++PmJgYMd4mERERORBRh72Sk5MBAOHh4RblKSkpiI2NhZubG3bs2IGVK1fiwoULUKvVGDp0KHbv3g2VSmWuX1RUZF4pBgBz5sxBRUUFpk6diosXL+Khhx5CRkYG3NwsD8UkIiIi6XGofX4cBff5ISIicj5Ouc8PERERUWNj8kNERESSwuSHiIiIJIXJDxEREUmKQ2xySERE5MgMRgF7S86j/FIlVAo3DAryhdxFJnZYdJeY/BAREdUj43ApFn1XiFLdzWOV/JRuWDAyGNEhfvU8kxwVh72IiIjqkHG4FNPX5VskPgCg1VVi+rp8ZBwuFSkyuhdMfoiIiKwwGAUs+q4Q1jbDqylb9F0hDEZul+dsmPwQERFZsbfkfK0en1sJAEp1ldhbcr7pgiK7YPJDRERkRfmluhOfu6lHjoPJDxERkRUqhW3nQdpajxwHV3sR2ZvRAJzYDVwuA7zUQOAQwEUudlQWuGyX6M4GBfnCT+kGra7S6rwfGQCN0vTzQ86FyQ+RPRWmAxmJgP7MzTJvfyB6GRA8Sry4bsFlu0S2kbvIsGBkMKavy4cMsEiAan5VWDAymL84OCEOexHZS2E6sGEihFsTHwCCvhTYMNF0X2RctkvUMNEhfkie0A8apeXQlkbphuQJ/fgLg5OSCYLANXq30ev1UCqV0Ol08Pb2FjsccgZGA7AyBIL+DKz9DihABpm3P5BwSLQhMINRwEPLttW5eqWmC39n4p/4myzRbThU7Bxs/f7msBeRPZzYDdSR+ACADAKgP22qF/Rwk4ZWoyHLdkM7t2m6wIicgNxFxp+LZoTDXkR2YLyktWu9xsBlu0REJkx+iOzgyCUPu9ZrDFy2S47KYBSwp/gcvi04jT3F57hjMjU6DnsR2cExj15oLfhCg/OwNg3AKABatMExj164v+nDA8Blu+SYuPqQxMCeHyI7UHl7YlH1RACmROdWNdeLqp+HytuziSO7qWbZLoBac5O4bJfEwNWHJBYmP0R2MCjIFwcVQ/FSdQK0sOw50aINXqpOwEHFUNF7VbhslxwFDw0lMXHYi8gObm6GVonMqgEY6PIrVLiIcvhgn7EHjHBBsoP0qkSH+OGxYA2X7ZKouPqQxMTkh8hOanpVFn1XiFxdsLncEecvcNkuiY2rD0lMTH6I7Ii9KkS24epDEhOTHyI7Y6+KnTjBAbF097j6kMTE5IeIHI8THBBL94aHhpKYuNqLiBzLjQNicdsBsXCgA2LJPrj6kMTCg02t4MGmRCK5cUBsrcTHTGbqARLxgFiyPx4aSvbCg02JyPncOCC2buIfEEv2x3ly1NQ47EVEjuNymX3rERFZweSHiByHl9q+9YiIrGDyQ0SOI3AIrrprap2PVsMoAFfdNaZl70REd4nJDxE5DANcbDggdiIM/KeLiO4B/wUhIoext+Q8vrr8AKbXcUDs9OoEfHX5AewtOS9ShETUHHC1FxE5jJpznLYYByGzagAG3XJA7N4bB8TeWo+I6G4w+SEih3HrOU5GuCDXGHzHekREDcVhLyJyGDXnPdW1vZ0MgB/PeyKie8Tkh4gcRs15TwBqJUA874mI7IXJDxE5FJ73RESNjXN+iMjhRIf44bFgDc97IqJGweSHiBwSz3sian4c5RBbJj9ERETU6DIOl2LRd4Uo1d3cqsJP6YYFI4ObfDibc36IpMhoAEp2AIf+ZfrTaBA7IiJqxjIOl2L6unyLxAcAtLpKTF+Xj4zDpU0aD3t+iKSmMB3ISAT0Z26WefsD0cuA4FHixUVEzZLBKGDRd4WwdmSfANNKzkXfFeKxYE2TDYGJ2vOTlJSEgQMHQqFQQKVSISYmBkVFReb758+fx4wZM9C9e3e4u7ujY8eOePnll6HT6eptNzY2FjKZzOIRHR3d2G+HyPEVpgMbJlomPgCgLzWVF6aLExcRNVt7S87X6vG5lQCgVFfZpMfWiJr85OTkIC4uDrm5ucjMzER1dTUiIyNRUVEBADhz5gzOnDmDd999F4cPH0ZqaioyMjIwZcqUO7YdHR2N0tJS8+PLL79s7LdD5NiMBlOPT52/fwHImMshMCKyK1uPo2nKY2tEHfbKyMiwuE5NTYVKpcKBAwcwdOhQhISEYOPGjeb7nTt3xttvv40JEybg+vXraNGi7vBdXV2h0WgaLXYip3Nid+0eHwsCoD9tqhf0cJOF5cwcZeUKkSOz9Tiapjy2xqHm/NQMZ/n61r11vU6ng7e3d72JDwBkZ2dDpVKhdevW+NOf/oQlS5agTRvry2arqqpQVVVlvtbr9XcRPZGDu1xm33oS50grV4gcWc2xNVpdpdV+ZxlMm5g25bE1DrPay2g0IiEhAWFhYQgJCbFa548//sDixYsxderUetuKjo7G2rVrkZWVhWXLliEnJwePP/44DAbr3flJSUlQKpXmR0BAwD2/HyKH46W2bz0Jc7SVK0SOzBGPrZEJgmAtEWty06dPxw8//ICdO3eiQ4cOte7r9Xo89thj8PX1RXp6Olq2bGlz27///js6d+6MrVu34tFHH61131rPT0BAgLmXiahZMBqAlSGmyc11/f7l7Q8kHAJc5E0dndMwGAU8tGxbnRM4a36L3Zn4Jw6BEd2iKXpL9Xo9lErlHb+/HWLYKz4+Hps3b8ZPP/1kNfG5dOkSoqOjoVAokJaW1qDEBwDuu+8+tG3bFseOHbOa/Li6usLV1fWu4ydyCi5y03L2DRNh+oq+NQG68SUdvZSJzx00ZOUKd6gmusmRjq0RNfkRBAEzZsxAWloasrOzERQUVKuOXq9HVFQUXF1dkZ6eDje3hk+I+u9//4tz587Bz4/j8CRxwaOAsWvr2OdnKff5sYEjrlwhchaOcmyNqMlPXFwc1q9fj2+//RYKhQJarRYAoFQq4e7uDr1ej8jISFy5cgXr1q2DXq83T0Zu164d5HLTb6g9evRAUlISnnzySVy+fBmLFi3C008/DY1Gg+LiYsyZMwddunRBVFSUaO+VyGEEjwJ6jDCt6rpcZprjEziEPT42csSVK0TUMKImP8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFReaVYnK5HAcPHsSaNWtw8eJF+Pv7IzIyEosXL+bQFlENFzmXs98lR1y5QkQN4zATnh2JrROmiEiaalZ7AVZnTiF5Qj8udycSga3f3w6z1J2IyFlEh/gheUI/aJSWQ1sapRsTHxKNwShgT/E5fFtwGnuKz8FgZN9GXRxitRcRkbNxpJUrRNx0s2E47GUFh72IiMhZ1AzD3v5lLsVhWA57ERERNXMGo4BF3xXWd1wxFn1XyCGw2zD5ISIiclIN2XSTbmLyQ0RE5KS46ebdYfJDRETkpLjp5t1h8kNEROSkajbdrGuNoQymVV/cdNMSkx8iIiInJXeRYcHIYAColQDVXC8YGcwtGG7D5IeIiMiJcdPNhuMmh0RERE6Om242DJMfIiKiZkDuIkNo5zZih+EUOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREkiJq8pOUlISBAwdCoVBApVIhJiYGRUVF5vvnz5/HjBkz0L17d7i7u6Njx454+eWXodPp6m1XEAS8+eab8PPzg7u7OyIiInD06NHGfjtERETkBERNfnJychAXF4fc3FxkZmaiuroakZGRqKioAACcOXMGZ86cwbvvvovDhw8jNTUVGRkZmDJlSr3tLl++HB9++CFWrVqFvLw8eHp6IioqCpWVlU3xtoiIiMiByQRBEMQOosbZs2ehUqmQk5ODoUOHWq3zf//3f5gwYQIqKirQokWLWvcFQYC/vz9effVVzJ49GwCg0+mgVquRmpqKcePG1XpOVVUVqqqqzNd6vR4BAQHQ6XTw9va207sjIiKixqTX66FUKu/4/e1Qc35qhrN8fX3rrePt7W018QGAkpISaLVaREREmMuUSiUGDx6MPXv2WH1OUlISlEql+REQEHAP74KIyIEYDUDJDuDQv0x/Gg1iR0QkOusZhAiMRiMSEhIQFhaGkJAQq3X++OMPLF68GFOnTq2zHa1WCwBQq9UW5Wq12nzvdvPmzcOsWbPM1zU9P0RETq0wHchIBPRnbpZ5+wPRy4DgUeLFRSQyh0l+4uLicPjwYezcudPqfb1ejxEjRiA4OBgLFy6062u7urrC1dXVrm0SEYmqMB3YMBHAbTMb9KWm8rFrmQCRZDnEsFd8fDw2b96M7du3o0OHDrXuX7p0CdHR0VAoFEhLS0PLli3rbEuj0QAAysrKLMrLysrM94iImjWjwdTjc3viA9wsy5jLITCSLFGTH0EQEB8fj7S0NGzbtg1BQUG16uj1ekRGRqJVq1ZIT0+Hm5tbvW0GBQVBo9EgKyvLoo28vDyEhoba/T0QETmcE7sth7pqEQD9aVM9IgkSNfmJi4vDunXrsH79eigUCmi1Wmi1Wly9ehXAzcSnoqIC//jHP6DX6811DIabv7H06NEDaWlpAACZTIaEhAQsWbIE6enpOHToECZOnAh/f3/ExMSI8TaJiJrW5bI712lIPaJmRtQ5P8nJyQCA8PBwi/KUlBTExsYiPz8feXl5AIAuXbpY1CkpKUGnTp0AAEVFRRYbH86ZMwcVFRWYOnUqLl68iIceeggZGRl37DUiImoWvNR3rtOQekTNjEPt8+MobN0ngIjIIRkNwMoQ0+Rmq/N+ZKZVXwmHABd5U0dH1Giccp8fIiKyAxe5aTk7AEB2280b19FLmfiQZDH5ISJqjoJHmZaze/tZlnv7c5k7SZ7D7PNDRER2FjwK6DHCtKrrcplpjk/gEPb4kOQx+SEias5c5EDQw2JHQeRQOOxFREREksLkh4iIiCSFyQ8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksIdnq2oOeher9eLHAkRERHZquZ7u+Z7vC5Mfqy4dOkSACAgIEDkSIiIiKihLl26BKVSWed9mXCn9EiCjEYjzpw5A4VCAZlMZrd29Xo9AgICcOrUKXh7e9utXanh52gf/Bztg5+jffBztA+pf46CIODSpUvw9/eHi0vdM3vY82OFi4sLOnTo0Gjte3t7S/Ivpb3xc7QPfo72wc/RPvg52oeUP8f6enxqcMIzERERSQqTHyIiIpIUJj9NyNXVFQsWLICrq6vYoTg1fo72wc/RPvg52gc/R/vg52gbTngmIiIiSWHPDxEREUkKkx8iIiKSFCY/REREJClMfoiIiEhSmPw0oY8//hidOnWCm5sbBg8ejL1794odklNJSkrCwIEDoVAooFKpEBMTg6KiIrHDcnpLly6FTCZDQkKC2KE4ndOnT2PChAlo06YN3N3d0atXL+zfv1/ssJyKwWDA/PnzERQUBHd3d3Tu3BmLFy++49lMUvfTTz9h5MiR8Pf3h0wmw6ZNmyzuC4KAN998E35+fnB3d0dERASOHj0qTrAOiMlPE/n6668xa9YsLFiwAPn5+ejTpw+ioqJQXl4udmhOIycnB3FxccjNzUVmZiaqq6sRGRmJiooKsUNzWvv27cOnn36K3r17ix2K07lw4QLCwsLQsmVL/PDDDygsLMSKFSvQunVrsUNzKsuWLUNycjL+9re/4ciRI1i2bBmWL1+Ojz76SOzQHFpFRQX69OmDjz/+2Or95cuX48MPP8SqVauQl5cHT09PREVFobKysokjdVACNYlBgwYJcXFx5muDwSD4+/sLSUlJIkbl3MrLywUAQk5OjtihOKVLly4JXbt2FTIzM4Vhw4YJM2fOFDskp5KYmCg89NBDYofh9EaMGCFMnjzZouypp54Sxo8fL1JEzgeAkJaWZr42Go2CRqMR/vrXv5rLLl68KLi6ugpffvmlCBE6Hvb8NIFr167hwIEDiIiIMJe5uLggIiICe/bsETEy56bT6QAAvr6+IkfinOLi4jBixAiLv5dku/T0dAwYMABjxoyBSqVC37598fe//13ssJzOkCFDkJWVhd9++w0A8J///Ac7d+7E448/LnJkzqukpARardbiZ1upVGLw4MH8zrmBB5s2gT/++AMGgwFqtdqiXK1W49dffxUpKudmNBqRkJCAsLAwhISEiB2O0/nqq6+Qn5+Pffv2iR2K0/r999+RnJyMWbNm4fXXX8e+ffvw8ssvo1WrVpg0aZLY4TmNuXPnQq/Xo0ePHpDL5TAYDHj77bcxfvx4sUNzWlqtFgCsfufU3JM6Jj/klOLi4nD48GHs3LlT7FCczqlTpzBz5kxkZmbCzc1N7HCcltFoxIABA/DOO+8AAPr27YvDhw9j1apVTH4aYMOGDfjiiy+wfv163H///SgoKEBCQgL8/f35OVKj4bBXE2jbti3kcjnKysosysvKyqDRaESKynnFx8dj8+bN2L59Ozp06CB2OE7nwIEDKC8vR79+/dCiRQu0aNECOTk5+PDDD9GiRQsYDAaxQ3QKfn5+CA4Otijr2bMnTp48KVJEzum1117D3LlzMW7cOPTq1QvPP/88XnnlFSQlJYkdmtOq+V7hd07dmPw0gVatWqF///7IysoylxmNRmRlZSE0NFTEyJyLIAiIj49HWloatm3bhqCgILFDckqPPvooDh06hIKCAvNjwIABGD9+PAoKCiCXy8UO0SmEhYXV2mrht99+Q2BgoEgROacrV67AxcXyq0gul8NoNIoUkfMLCgqCRqOx+M7R6/XIy8vjd84NHPZqIrNmzcKkSZMwYMAADBo0CCtXrkRFRQVeeOEFsUNzGnFxcVi/fj2+/fZbKBQK89i1UqmEu7u7yNE5D4VCUWuelKenJ9q0acP5Uw3wyiuvYMiQIXjnnXcwduxY7N27F5999hk+++wzsUNzKiNHjsTbb7+Njh074v7778fPP/+M9957D5MnTxY7NId2+fJlHDt2zHxdUlKCgoIC+Pr6omPHjkhISMCSJUvQtWtXBAUFYf78+fD390dMTIx4QTsSsZebSclHH30kdOzYUWjVqpUwaNAgITc3V+yQnAoAq4+UlBSxQ3N6XOp+d7777jshJCREcHV1FXr06CF89tlnYofkdPR6vTBz5kyhY8eOgpubm3DfffcJ//u//ytUVVWJHZpD2759u9V/DydNmiQIgmm5+/z58wW1Wi24uroKjz76qFBUVCRu0A5EJgjcRpOIiIikg3N+iIiISFKY/BAREZGkMPkhIiIiSWHyQ0RERJLC5IeIiIgkhckPERERSQqTHyIiIpIUJj9EREQkKUx+iEhyYmNjuc0/kYQx+SGiRhEbGwuZTFbrER0dLXZo+OCDD5Camip2GAAAmUyGTZs2iR0GkaTwYFMiajTR0dFISUmxKHN1dRUpGsBgMEAmk0GpVIoWAxGJjz0/RNRoXF1dodFoLB6tW7dGdnY2WrVqhR07dpjrLl++HCqVCmVlZQCA8PBwxMfHIz4+HkqlEm3btsX8+fNx63GEVVVVmD17Ntq3bw9PT08MHjwY2dnZ5vupqanw8fFBeno6goOD4erqipMnT9Ya9goPD8eMGTOQkJCA1q1bQ61W4+9//zsqKirwwgsvQKFQoEuXLvjhhx8s3t/hw4fx+OOPw8vLC2q1Gs8//zz++OMPi3ZffvllzJkzB76+vtBoNFi4cKH5fqdOnQAATz75JGQymfmaiBoXkx8ianLh4eFISEjA888/D51Oh59//hnz58/H6tWroVarzfXWrFmDFi1aYO/evfjggw/w3nvvYfXq1eb78fHx2LNnD7766iscPHgQY8aMQXR0NI4ePWquc+XKFSxbtgyrV6/GL7/8ApVKZTWmNWvWoG3btti7dy9mzJiB6dOnY8yYMRgyZAjy8/MRGRmJ559/HleuXAEAXLx4EX/605/Qt29f7N+/HxkZGSgrK8PYsWNrtevp6Ym8vDwsX74cb731FjIzMwEA+/btAwCkpKSgtLTUfE1EjUzkU+WJqJmaNGmSIJfLBU9PT4vH22+/LQiCIFRVVQkPPPCAMHbsWCE4OFh48cUXLZ4/bNgwoWfPnoLRaDSXJSYmCj179hQEQRBOnDghyOVy4fTp0xbPe/TRR4V58+YJgiAIKSkpAgChoKCgVmyjR4+2eK2HHnrIfH39+nXB09NTeP75581lpaWlAgBhz549giAIwuLFi4XIyEiLdk+dOiUAEIqKiqy2KwiCMHDgQCExMdF8DUBIS0ur41MkosbAOT9E1GgeeeQRJCcnW5T5+voCAFq1aoUvvvgCvXv3RmBgIN5///1az3/wwQchk8nM16GhoVixYgUMBgMOHToEg8GAbt26WTynqqoKbdq0MV+3atUKvXv3vmOst9aRy+Vo06YNevXqZS6r6ZEqLy8HAPznP//B9u3b4eXlVaut4uJic1y3v7afn5+5DSISB5MfImo0np6e6NKlS533d+/eDQA4f/48zp8/D09PT5vbvnz5MuRyOQ4cOAC5XG5x79aExN3d3SKBqkvLli0trmUymUVZTRtGo9H8+iNHjsSyZctqteXn51dvuzVtEJE4mPwQkSiKi4vxyiuv4O9//zu+/vprTJo0CVu3boWLy82piHl5eRbPyc3NRdeuXSGXy9G3b18YDAaUl5fj4Ycfburw0a9fP2zcuBGdOnVCixZ3/09py5YtYTAY7BgZEd0JJzwTUaOpqqqCVqu1ePzxxx8wGAyYMGECoqKi8MILLyAlJQUHDx7EihUrLJ5/8uRJzJo1C0VFRfjyyy/x0UcfYebMmQCAbt26Yfz48Zg4cSK++eYblJSUYO/evUhKSsK///3vRn9vcXFxOH/+PJ599lns27cPxcXF2LJlC1544YUGJTOdOnVCVlYWtFotLly40IgRE1EN9vwQUaPJyMiwGAICgO7du+O5557DiRMnsHnzZgCmYaLPPvsMzz77LCIjI9GnTx8AwMSJE3H16lUMGjQIcrkcM2fOxNSpU81tpaSkYMmSJXj11Vdx+vRptG3bFg8++CCeeOKJRn9v/v7+2LVrFxITExEZGYmqqioEBgYiOjraovfqTlasWIFZs2bh73//O9q3b4/jx483XtBEBACQCcItm2YQETmI8PBwPPDAA1i5cqXYoRBRM8NhLyIiIpIUJj9EREQkKRz2IiIiIklhzw8RERFJCpMfIiIikhQmP0RERCQpTH6IiIhIUpj8EBERkaQw+SEiIiJJYfJDREREksLkh4iIiCTl/wEBGwLOjtlfZAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This recipe includes the following steps:\n", + "- Define a calendar (`lilio`)\n", + "- Download/load input data (`era5cli`) (test data, accessible via `era5cli`)\n", + "- Map the calendar to the data (`lilio`)\n", + "- Train-validate-test split (60%/20%/20%)\n", + "- Preprocessing based on the training set (`s2spy`)\n", + "- Resample data to the calendar (`lilio`)\n", + "- Create LSTM model (`torch`)\n", + "- Specify hyper-parameters (`wandb`)\n", + "- Train model (`torch`)\n", + "- Evaludate model" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The workflow is illustrated below:\n", + "\n", + "\"Transformer\"" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import lilio\n", + "import numpy as np\n", + "import pandas as pd\n", + "import time as tt\n", + "import wandb\n", + "import sys\n", + "import urllib\n", + "import xarray as xr\n", + "from pathlib import Path\n", + "from s2spy import preprocess\n", + "import torch\n", + "from torch import nn\n", + "from torch.autograd import Variable\n", + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# import utils function to check the statistics of parameters\n", + "sys.path.append(\"../src/\")\n", + "import utils\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a calendar with `lilio` to specify time range for targets and precursors." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "# create custom calendar based on the time of interest\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", + "# add target periods\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", + "# add precursor periods\n", + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Calendar(\n", + " anchor='07-01',\n", + " allow_overlap=True,\n", + " mapping=None,\n", + " intervals=[\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", + " ]\n", + ")" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check calendar\n", + "calendar" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Load test data SST and (clustered) T2M\n", + "For the sake of batch size, we use 61 years (1961-2021) of data." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# URL of the dataset from zenodo\n", + "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", + "t2m_url = \"https://zenodo.org/record/8186914/files/t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", + "sst_field = \"sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", + "t2m_field = \"t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc\"\n", + "\n", + "urllib.request.urlretrieve(sst_url, sst_field)\n", + "urllib.request.urlretrieve(t2m_url, t2m_field)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "# load data\n", + "precursor_field = xr.open_dataset(sst_field)\n", + "precursor_field = precursor_field.sel(time=slice(\"19610101\",\"20211231\"))\n", + "target_field = xr.open_dataset(t2m_field)\n", + "target_field = target_field.sel(time=slice(\"19610101\",\"20211231\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert Klevin to Celcius\n", + "precursor_field[\"sst\"] = precursor_field[\"sst\"] - 273.15\n", + "target_field[\"t2m\"] = target_field[\"t2m\"] - 273.15" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Map the calendar to the data\n", + "After mapping the calendar to the field, we can visualize our calendar by calling the `visualize` method." + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrx0lEQVR4nO3dd1hUR9sG8HvpHQQpoih2ib33XrA3oiaSV42999dEjQVr9LUSezRqYu8ajUZFsWCLKFiDFUVpitLbssz3Bx+rK6gsu7IHuH/X5ZXs2TPzzOwAu8+emTkyIYQAERERERGRjunpugFEREREREQAkxMiIiIiIpIIJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSYKDrBuQX6enpCA0NhaWlJWQyma6bQ0RERAWYEAJxcXFwdnaGnh6/S6bCg8lJDoWGhsLFxUXXzSAiIqJCJCQkBCVKlNB1M4jyDJOTHLK0tASQ8UfCyspKx60hIiKigiw2NhYuLi7Kzx9EhQWTkxzKnMplZWXF5ISIiIjyBKeSU2HDSYxERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwN26iIiIsiGEQEpKisZljY2Nc7XjkqZ15La8rtuuq35nR9P4mkhOTta4DqL8iMkJERFRNlJSUtCrV69clVUoFPD39wcA1KlTJ1d3+Na0jtyW13XbddXv7OzduxcmJiZqldHk5+Z9crlc4zqI8iMmJ0RERJ9w42Wc2mVEejpiktNgVKw8br1WQCZT5KIOBWJTBfSKOCMgNB5Q9xv8XLZB07iaxNZGfG289gBQ3d4wV+WUQq5pVt6ppmblifIpJidERESf0XDkQugbGOX4/NSkOBz/0QMA0HTKOhgaq/ftOwDIE2JwcHhTAED94QvUriO3bdA0riaxtRFf09c+XZ6Cc4uGqVXmY7YNrQljQ/Wu3KTI0/HdhptaiU+UHzE5ISIi+gx9AyPoGxnn/Hz5uzUH+oZGMDBS/wO+IvXdmgN142vSBk3jahJbG/E1fe3T1Dr704wN9WBiqK/FGokKPu7WRUREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQDXTeAiIgoPzi7cCiSYl5DJtODoak5avX7EbaubogLf4Yr66YjJS4ahmYWaDBsHkyLOGQpf2JqTyS9jfj/8hZoMHIR7MpVw5U1P+D5leOIjwhBtzXnYVe2qlrx/bcuxMsbvkh4HYr28/eiiGulLGUVqck4/fMQRD8Pgr6RCUxt7NFozFJYFS+DV//648raH6GQp0CRmoLSLXpoNfan+h7z8jEu/G8EkmPfwMjcCk0nrYZZ0WI6jW/pXDrbOjTRbskVhMekQE8mg6WJAbw9K6NmKWs8DI9H/42BeB2fCmtTA2wZXANlHcy0Hp8oP9HplZOFCxeibt26sLS0hIODA7p3746goCCVc5KTkzFq1CjY2dnBwsICHh4eiIiIUD4fGBiIb7/9Fi4uLjA1NYWbmxtWrlypUkdYWBj69u2LChUqQE9PD+PHj8+L7hERUQHSeOwSdPz5ADos3IeKHfrh6vqfAADXNs1B2ZZfo/PSo3DrPBBX/v/4h1pO34we6/zQfe0FVPYYhfNLRgIAXJt2Raelx2Hh6JKr+C712qLNzK0wL+r8yfIVO/aHx6Z/0GPdRZRs2AEXV4wFAPitHI/q30xA9zXn0XnZCdw/vBHpijStxv5Y3y+tnICKHQfg69+uo2rvcbiwdNQX6bum8TW1Z2Rt3JrbHAFzmmGie2kM2BQAABi29TaGtiiJBz+3xA8dy2LAxoAvEp8oP9FpcnLu3DmMGjUKV65cwalTpyCXy9GuXTskJCQoz5kwYQL+/PNP7N27F+fOnUNoaCh69uypfN7f3x8ODg7Ytm0b7t69i+nTp2Pq1KlYtWqV8pyUlBTY29vjp59+QvXq1fO0j0REVDAYmVsp/1+eGAdAhuSYKLx5cheuTToDyPiwnBgVjvjIF1nKG1tYvyufEAuZTAYAcKraGOb2xXMVHwAc3OrAzM7pk2X1jUzgUq+dMqaDW13ERzzPeFImQ0p8bEa9yQnQMzCETKb68UCT2ED2fU+KfoXXDwNQtnVvAIBrk65IePUScWHBWu27uvFjQ59+tj512ZgZKv8/JikNMsgQGZuC68Ex+K5hxth71CmGkDfJeByZ8LFqiAoFnU7rOnHihMrjLVu2wMHBAf7+/mjWrBliYmKwadMm7NixA61atQIAbN68GW5ubrhy5QoaNGiAgQMHqtRRpkwZXL58GQcOHMDo0aMBAK6ursqrKb/99lse9IyIiAqiy2unIfLeNQBA8/+uQeKbcJgWsYeefsbbqUwmg5ldMSS+ici2/LnFwxEeeAEA0HbeHo3j59bdQ+tQsmFHAEDTSatxenZf3Ng6D8kxUag3bB5u/rFI67E/7HvCq5cwtXVUee3M7Usg4XVotuXzLP6rl2rXnRP9fr2Js/ejAAB/TaiHkDdJKGZjDAN9PWX8knYmCHmT/EXiE+UXklpzEhMTAwCwtbUFkHFVRC6Xo02bNspzKlWqhJIlS+Ly5cto0KDBR+vJrCO3UlJSkJKSonwcGxurUX1ERJT/NRyxAADw5PxhBOxajmq9RqtVvvmUdQCAh6d24vqm2Wg3b69G8VtMWatWeQAI3LkUsaFP0eHn5QCAW7uXo873M1G2VS/EhgXjr0kdka5IyzK1QtPYH/a9Vv/papXXdXxN/T6kJgBg68UQ/LD3Pub2rJin8YnyC8ns1pWeno7x48ejcePGqFKlCgAgPDwcRkZGsLGxUTnX0dER4eHh2dZz6dIl7N69G0OHDtWoPQsXLoS1tbXyn4vLp+cCExFR4VGmWTdE3vsHpraOSHr7SrlGQwiBxKgwmNk6frJ8+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTMyQHBOFZ5eOoWyrXgAAq2KuKFqhBtLT5FqPnSmz7+ZFnZH0JkLltUt49eKz60e+ePwcTLHTRP8mLjj7bxRKFDFFWHQK0hTpyvjPo5LhYmvyReMTSZ1kkpNRo0bhzp072LVrV67ruHPnDrp164ZZs2ahXbt2GrVn6tSpiImJUf4LCQnRqD4iIsq/UhPjkPg2Uvn4xXUfGFlYw8TKDral3RB88SgAIOTaKZjZOsLCoYRK+ZT4GCRGhSkfP7t0DMZWtjC2LKJRfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnAEhNiNUodupH+m5iYw+7ctXw2CdjelvwxSMwK+oMy2KuquU1jP+x1/5j8a20vFtXdKIcoW/fTdU6dCMcdhZGcLAyQq1SVth2OWMa2f7rYShha4KyDuZajU+U30hiWtfo0aNx9OhRnD9/HiVKvPuD7uTkhNTUVERHR6tcPYmIiICTk+oCuHv37qF169YYOnQofvop+51S1GFsbAxjY2ON6yEiovxPnhiPy2unQpGaDJmeHowti6D55NWQyWSoO3Amrqz/CfeObIShqTnqD52btXxCDM7M+x6K1CRApgcT66JoO2cXZDIZ/FaOR8i1U0h6E4G/p3nA0NQCvbbcUC2fFI+r66dnG//aJi+E3jyP5JgonF00DIam5uiy7C+V8gmvQ3Ftw0+wLOaK41O6AAD0DI3R1fs0Wk7fjH9+nYl0RRqEIg2VOn2Pe4c3qPT9ovekXMdOTYzDxf+NyLbvjccux/mloxC4axkMzSzRdNIqfEjd+O5zVb/k/NRrn5P4mopJlKPXGn8kpaZDTw+wtzTG0fF1IZPJsL5/NQzYFIAFRx/BytQAmwdy0x4inSYnQgiMGTMGBw8ehK+vL0qXVv22onbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz5+dpH4iIqOAzL1oM7nN3ZvuclXNptPParnIsNUF1naKFY0l0/cUn2/KNx634fHy7j8evN2jW58sXdcbAv99m+1zxWi1QvJav8nFKfLRKcmJu76xRbAuHEh/tu7VLeXRZcVLlWEp8tGrb1YyvzmufXfy0VO0uSC9V1AzXZjbN9rmKxSxw+acmKseS5QqtxifKb3SanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4bKxfB37txBq1at4O7ujokTJyrr0NfXh729vTJWQEAAACA+Ph6vXr1CQEAAjIyM8NVXX+Vtp4mIiIiIKFs6TU7Wrs3YaaNFixYqxzdv3owBAwYAAJYvXw49PT14eHggJSUF7u7uWLPm3RaC+/btw6tXr7Bt2zZs27ZNebxUqVIIDg5WPq5Zs6by//39/bFjx44s5xARERERke7ofFrX55iYmGD16tVYvXp1ts/Pnj0bs2fP1kosIiIiIiLSHcns1kVERERERIUbkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJBrpuABERkdQp0lJzfb5Cnoo0PfW/C0yXp6jUp5eqXh25bYOmcTWJrY34mr7278fXVIo8PU/KEBUkTE6IiIg+4/KaqWqdL9LffcC8sHg4ZDL1Y4p0hfL/r66bBnUryW0bNI2rSWxtxNfGa68t3224qbvgRPkUkxMiIqJPqFXcUu0yCoUC/mEGwNunqFa2DvRyceVEodCD/zMZkBCGGm7F1a4jt23QNK4msbURXxuvvVa41NOsvFyunXYQ5TMyIYTQdSPyg9jYWFhbWyMmJgZWVla6bg4REX1hQgikpORuis/7ZY2NjSHLzdUHDevIbXldt11X/c6OpvE1ERsbC0dHR37uoEKHV06IiIiyIZPJYGJikuvypqamGrdB0zpyW17XbddVv7VB05+bTKmp6q1zIioouFsXERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgS1kpO0tDT8/vvviIiI+FLtISIiIiKiQkqt5MTAwADDhw9HcnLyl2oPEREREREVUmpP66pXrx4CAgK+QFOIiIiIiKgwM1C3wMiRIzFx4kSEhISgdu3aMDc3V3m+WrVqWmscEemWEAIpKSlaKW9sbAyZTMbyeRRbW3VoK74mNGk7ERHlLzIhhFCngJ5e1ostMpkMQgjIZDIoFAqtNU5KYmNjYW1tjZiYGFhZWem6OUR5Ijk5Gb169cp1eYVCAX9/fwBAnTp1sv37wfJfJra26gCAvXv3wsTERO1ymv78aBqfKD/j5w4qrNS+cvL06dMv0Q4ikrAbL+NyVU6kpyMmOQ1Gxcrj1msFZDL1vrwQ6QrEpgroFXFGQGg8oO6Vi3wcX9PYmsbPVN3eUO0yWYRcy31Zl3qaxycionxD7eSkVKlSX6IdRCRxDUcuhL6BkVplUpPicPxHDwBA0ynrYGis3rff8oQYHBzeFABQf/gCtcvn5/iaxtY0fro8BecWDVM75sdsG1oTxoY5v3KTIk/Hdxtuai0+ERHlD2onJ5nu3buH58+fIzU1VeV4165dNW4UEUmPvoER9I2M1Ssjf7feQN/QCAZG6n3AVqS+2xmwsMXXNLam8dPUjvZpxoZ6MDHU13KtRERU0KidnDx58gQ9evTA7du3lWtNACgXKxbUNSdERERERPRlqb06cty4cShdujQiIyNhZmaGu3fv4vz586hTpw58fX2/QBOJiIiIiKgwUPvKyeXLl3HmzBkULVoUenp60NPTQ5MmTbBw4UKMHTsWN29yjjAREREREalP7SsnCoUClpaWAICiRYsiNDQUQMZC+aCgIO22joiIiIiICg21r5xUqVIFgYGBKF26NOrXr4/FixfDyMgIGzZsQJkyZb5EG4mIiIiIqBBQOzn56aefkJCQAACYM2cOOnfujKZNm8LOzg67d+/WegOJiIiIiKhwUDs5cXd3V/5/uXLl8O+//+LNmzcoUqSIcscuIiIiIiIidam95iTTo0eP8PfffyMpKQm2trbabBMRERERERVCaicnUVFRaN26NSpUqICOHTsiLCwMADBo0CBMmjRJ6w0kIiIiIqLCQe1pXRMmTIChoSGeP38ONzc35fE+ffpg4sSJWLp0qVYbSERERETZUygUkMvlum4G0UcZGhpCX18/x+ernZycPHkSf//9N0qUKKFyvHz58nj27Jm61RERERGRmoQQCA8PR3R0tK6bQvRZNjY2cHJyytH6dLWTk4SEBJiZmWU5/ubNGxgbG6tbHRERERGpKTMxcXBwgJmZGTclIkkSQiAxMRGRkZEAgGLFin22jNrJSdOmTfH7779j7ty5AACZTIb09HQsXrwYLVu2VLc6IiIiIlKDQqFQJiZ2dna6bg7RJ5mamgIAIiMj4eDg8NkpXmonJ4sXL0br1q1x/fp1pKamYsqUKbh79y7evHkDPz+/3LWaiIiIiHIkc41JdjNZiKQo82dVLpd/NjlRe7euKlWq4MGDB2jSpAm6deuGhIQE9OzZEzdv3kTZsmVz12IiIiIiUgunclF+oc7PqtpXTgDA2toa06dPz01RIiIiIiKibKl95cTV1RVz5sxBSEjIl2gPEREREREVUmpfORk/fjy2bNmCOXPmoGXLlhg0aBB69OjBnbqIiIiIdG1pHk71miTyLpaOBQcHo3Tp0rh58yZq1Kih6+bkmqurK8aPH4/x48fruikfpfaVk/HjxyMgIADXrl2Dm5sbxowZg2LFimH06NG4cePGl2gjEREREeVjMpnsk/9mz56t07YdOnTok+e4uLggLCwMVapUyXG9s2fPzteJjK6onZxkqlWrFry9vREaGopZs2Zh48aNqFu3LmrUqIHffvsNQhSebJqIiIiIPi4sLEz5b8WKFbCyslI5NnnyZLXqS01N/UItzZ6+vj6cnJxgYJCr5doayeu+6lqukxO5XI49e/aga9eumDRpEurUqYONGzfCw8MD06ZNg6enpzbbSURERET5lJOTk/KftbU1ZDKZ8nFCQgI8PT3h6OgICwsL1K1bF6dPn1Yp7+rqirlz56Jfv36wsrLC0KFDAQC//vorXFxcYGZmhh49emDZsmWwsbFRKXv48GHUqlULJiYmKFOmDLy8vJCWlqasFwB69OgBmUymfPyh4OBgyGQyBAQEAAB8fX0hk8ng4+ODOnXqwMzMDI0aNUJQUBAAYMuWLfDy8kJgYKDy6tCWLVsAANHR0Rg8eDDs7e1hZWWFVq1aITAwUBkr84rLxo0bUbp0aZiYmGDDhg1wdnZGenq6Sru6deuGgQMHAgAeP36Mbt26ffJ1zA/UTk5u3LihMpWrcuXKuHPnDi5evIjvv/8eM2bMwOnTp3Hw4MEv0V4iIiIiKkDi4+PRsWNH+Pj44ObNm2jfvj26dOmC58+fq5y3ZMkSVK9eHTdv3sSMGTPg5+eH4cOHY9y4cQgICEDbtm0xf/58lTIXLlxAv379MG7cONy7dw/r16/Hli1blOf9888/AIDNmzcjLCxM+Tinpk+fjqVLl+L69eswMDBQJgp9+vTBpEmTULlyZeXVoT59+gAAevXqhcjISBw/fhz+/v6oVasWWrdujTdv3ijrffToEfbv348DBw4gICAAvXr1QlRUFM6ePas8582bNzhx4oTygkBOX0epU/vaVN26ddG2bVusXbsW3bt3h6GhYZZzSpcujW+++UYrDSQiIiKigqt69eqoXr268vHcuXNx8OBBHDlyBKNHj1Yeb9WqFSZNmqR8PH36dHTo0EE5JaxChQq4dOkSjh49qjzHy8sLP/74I/r37w8AKFOmDObOnYspU6Zg1qxZsLe3BwDY2NjAyclJ7bbPnz8fzZs3BwD8+OOP6NSpE5KTk2FqagoLCwsYGBio1Hvx4kVcu3YNkZGRys2klixZgkOHDmHfvn3KK0Kpqan4/fffle0DgA4dOmDHjh1o3bo1AGDfvn0oWrQoWrZsqdbrKHVqXzl58uQJTpw4gV69emWbmACAubk5Nm/erHHjiIiIiKhgi4+Px+TJk+Hm5gYbGxtYWFjg/v37Wb7xr1OnjsrjoKAg1KtXT+XYh48DAwMxZ84cWFhYKP8NGTIEYWFhSExM1Ljt1apVU/5/sWLFAACRkZEfPT8wMBDx8fGws7NTadPTp0/x+PFj5XmlSpVSSUwAwNPTE/v370dKSgoAYPv27fjmm2+gp5fxcT6nr6PUqX3lpFSpUl+iHURERERUCE2ePBmnTp3CkiVLUK5cOZiamuLrr7/OshDc3Nxc7brj4+Ph5eWFnj17ZnnOxMQk123O9P4X9Zl3Qf9wXciH7SlWrBh8fX2zPPf+Wpns+tqlSxcIIXDs2DHUrVsXFy5cwPLly5XP5/R1lLq833KAiIiIiOj/+fn5YcCAAejRoweAjA/wwcHBny1XsWLFLGtEPnxcq1YtBAUFoVy5ch+tx9DQEAqFQv2Gf4aRkVGWemvVqoXw8HAYGBh8dPH9x5iYmKBnz57Yvn07Hj16hIoVK6JWrVrK53P7OkoNkxMiIiIi0pny5cvjwIED6NKlC2QyGWbMmPHJqw+ZxowZg2bNmmHZsmXo0qULzpw5g+PHjyuvYADAzJkz0blzZ5QsWRJff/019PT0EBgYiDt37mDevHkAMnbs8vHxQePGjWFsbIwiRYpopV+urq54+vQpAgICUKJECVhaWqJNmzZo2LAhunfvjsWLF6NChQoIDQ3FsWPH0KNHjyxT1z7k6emJzp074+7du/juu+9Unsvt6yg1TE6IiIiICop8eNf2ZcuWYeDAgWjUqBGKFi2KH374AbGxsZ8t17hxY6xbtw5eXl746aef4O7ujgkTJmDVqlXKc9zd3XH06FHMmTMHixYtgqGhISpVqoTBgwcrz1m6dCkmTpyIX3/9FcWLF9fa1QYPDw8cOHAALVu2RHR0NDZv3owBAwbgr7/+wvTp0/H999/j1atXcHJyQrNmzeDo6PjZOlu1agVbW1sEBQWhb9++Ks/l9nWUGrWSE7lcjkqVKuHo0aNwc3P7Um0iIiIiogJqwIABGDBggPKxq6srzpw5o3LOqFGjVB5/LGEYMmQIhgwZovL4wylc7u7ucHd3/2h7unTpgi5dunyyza6urio3GG/RokWWG47XqFFD5ZixsTH27duXpS5LS0t4e3vD29s721izZ8/G7Nmzs31OT08PoaGhH21jbl9HKVErOTE0NERycrLWgi9cuBAHDhzAv//+C1NTUzRq1AiLFi1CxYoVleckJydj0qRJ2LVrF1JSUuDu7o41a9Yos8vAwED8/PPPuHjxIl6/fg1XV1flntfv8/X1xcSJE3H37l24uLjgp59+UvnFIKKcObtwKJJiXkMm04OhqTlq9fsRtq5uiAt/hivrpiMlLhqGZhZoMGweTIs4ZCl/YmpPJL2N+P/yFmgwchHsylXDlTU/4PmV44iPCEG3NedhV7aqWvH9ty7Eyxu+SHgdivbz96KIa6UsZdNSk+G7YBCinwdB38gEpjb2aDRmKayKl8GroBu4um4q5EkJkMlkqDdsPuzKVdNa7E/1PeblY1z43wgkx76BkbkVmk5aDbOixbTad3XjWzqXzrYOTbRbcgXhMSnQk8lgaWIAb8/KqFnKGg/D49F/YyBex6fC2tQAWwbXQFkHM63HJ6KCZ8mSJWjbti3Mzc1x/PhxbN26FWvWrNF1s0gDak/rGjVqFBYtWoSNGzfCwECzWWHnzp3DqFGjULduXaSlpWHatGlo164d7t27p9ylYMKECTh27Bj27t0La2trjB49Gj179oSfnx8AwN/fHw4ODti2bRtcXFxw6dIlDB06FPr6+so9nZ8+fYpOnTph+PDh2L59O3x8fDB48GAUK1bsk5k0EWXVeOwSGJlbAQBC/vHB1fU/ocPC/bi2aQ7KtvwaZZp3x/OrJ3Fl/U9o+eOGLOVbTt8MYwtrAECw31GcXzISPdZdhGvTrqjaayyOTeqQq/gu9drCrfP3OD2n/yfLV+zYHyXqtoVMJsO9wxtwccVYdFj8J3zm/AdNJ61G8VotEPPiEU782B2dV6reWVfT2B/r+6WVE1Cx4wCUb9cXTy8cxoWlo+C+8IDW+65O/I5L//pkXbmxZ2Rt2Jhl7Gxz0D8MAzYFIHBOcwzbehtDW5TEgCYu2PdPKAZsDMCFaY20Hp+ICp5r165h8eLFiIuLQ5kyZeDt7a0yZYvyH7Wzi3/++Qc+Pj44efIkqlatmmWrswMHsr6hfsyJEydUHm/ZsgUODg7w9/dHs2bNEBMTg02bNmHHjh1o1aoVgIw7eLq5ueHKlSto0KCB8k6cmcqUKYPLly/jwIEDyuRk3bp1KF26NJYuXQoAcHNzw8WLF7F8+XImJ0RqyvxwDADyxDgAMiTHROHNk7to+eN6AIBLvbbw37oA8ZEvspTP/HAMAPKEWOXCRaeqjXMdHwAc3D69iBAADIxM4FKvnfKxg1td3Nm/Cimxb5Ac8xrFa7UAAFiXKAcjC2uE3vTVWmwg+74nRb/C64cBymTEtUlXXFk9BXFhwVnK52X82NCnOapTHZmJCQDEJKVBBhkiY1NwPTgGJyfXBwB41CmG0dvu4nFkgtbjE1HBs2fPHl03gbRM7eTExsYGHh4eX6ItiImJAQDY2toCyLgqIpfL0aZNG+U5lSpVQsmSJXH58mU0aNDgo/Vk1gEAly9fVqkDyJh/OH78+I+2JSUlRXmTGwD5ckER0Zdyee00RN67BgBo/t81SHwTDtMi9tDTz/iTIpPJYGZXDIlvIrItf27xcIQHXgAAtJ2n/hvLh/Fz6+6hdSjZsCNMrO1gZuuIJ+cOokzzHngVdAMxLx4hIZvkStPYH/Y94dVLmNo6qrx25vYlkPA6+znFeRb/1Uu1686Jfr/exNn7UQCAvybUQ8ibJBSzMYaBvp4yfkk7E4S80d4UYiIiyj/UTk6+1J3f09PTMX78eDRu3BhVqlQBAISHh8PIyEjlpjQA4OjoiPDw8GzruXTpEnbv3o1jx44pj4WHh2fZAcHR0RGxsbFISkqCqalplnoWLlwILy8vDXtFVDA1HLEAAPDk/GEE7FqOar1Gq1W++ZR1AICHp3bi+qbZaDdvr0bxW0xZq1Z5AAjcuRSxoU/R4eeMG1i1nrUd1zd54dbu5ShSqhIcKzeATF9f67E/7Hut/tPVKq/r+Jr6fUhNAMDWiyH4Ye99zO1Z8TMliIioMNHLbcFXr17h4sWLuHjxIl69eqVxQ0aNGoU7d+5g165dua7jzp076NatG2bNmoV27dp9vsAnTJ06FTExMcp/ISEhGtVHVBCVadYNkff+gamtI5LevkK6Ig0AIIRAYlQYzGw/vS1i+bbfIizwIpJj32gUPyUuWq1yt/f+gmC/o2g3by8MTDIWXtuVrQr3BfvQfc15NP9hAxKjwmHjUkHrsTNl9t28qDOS3kSovHYJr17AvKjzJ8t/8fj2xXNVb071b+KCs/9GoUQRU4RFpyBNka6M/zwqGS62mt+5mYiI8h+1k5OEhAQMHDgQxYoVQ7NmzdCsWTM4Oztj0KBBSExMzFUjRo8ejaNHj+Ls2bMoUaKE8riTkxNSU1MRHR2tcn5ERAScnJxUjt27dw+tW7fG0KFD8dNPP6k85+TkhIgI1eklERERsLKyyvaqCZCx/ZuVlZXKP6LCLjUhFolvI5WPX1z3gZGFNUys7GBb2g3BF48CAEKunYKZrSMsHEqolE+Jj0FiVJjy8bNLx2BsZQtjy5zd8Opj8Y3eW0vxOXf2r8YT3/1ov/CgyhqMxKh3V2OD/toKAxMzOFZ9tyg7NTFOo9ipH+m7iY097MpVw2OfjOltwRePwKyoMyyLuaqW17Dv6sa30vJuXdGJcoS+fTdV69CNcNhZGMHBygi1Sllh2+WMaWT7r4ehhK0JyjqYf6wqIiIqwNSe1jVx4kScO3cOf/75Jxo3zljAevHiRYwdOxaTJk3C2rU5n2IghMCYMWNw8OBB+Pr6onRp1TfD2rVrw9DQED4+Psp1LkFBQXj+/DkaNmyoPO/u3bto1aoV+vfvj/nz52eJ07BhQ/z1l+rOM6dOnVKpg4g+T54Yj4vek6BITYZMTw/GlkXQfPJqyGQy1B04E1fW/4R7RzbC0NQc9YfOzVo+IQZn5n0PRWoSINODiXVRtJ2zCzKZDH4rxyPk2ikkvYnA39M8YGhqga6rzuQ4/rVNXgi9eR7JMVE4u2gYDE3N4T5X9UpswquXuLbhJ1gWc8XxKRl72usZGqOr92kEHd+Kx2f2AkLAumQFtJ75h8pdhuVJ8bi6fnqOY3dZpvo3JzUxDhf/NyLbvjceuxznl45C4K5lMDSzRNNJq/Ahdfuu7fiaiklKw3823ERSajr09AB7S2McHV8XMpkM6/tXw4BNAVhw9BGsTA2weWB1rccnIqL8Qe3kZP/+/di3bx9atGihPNaxY0eYmpqid+/eaiUno0aNwo4dO3D48GFYWloq15FYW1vD1NQU1tbWGDRoECZOnAhbW1tYWVlhzJgxaNiwoXIx/J07d9CqVSu4u7tj4sSJyjr09fVhb28PABg+fDhWrVqFKVOmYODAgThz5gz27Nmjsi6FiD7P3N4Z7nN3ZvuclXNptPParnIsNUF1IwkLx5Lo+otPtuUbj1uR5VhKfHSO49cbNCvLsQ/jm9sXx8C/32ZbvuZ3P6Dmdz98NL65XTG1Yn/IwqHER/tu7VIeXVac/GhsQP2+axo/LVW7C9JL2Zni2sym2T5XsZgFLv/UROVYslyh1fhERFLVokUL1KhRAytWrNB1U3Jt9uzZOHToEAICAjSuS+3kJDExMcvicgBwcHBQe1pXZiLzfqIDZCy6z7xB4vLly6GnpwcPDw+VmzBm2rdvH169eoVt27Zh27ZtyuOlSpVS3gWzdOnSOHbsGCZMmICVK1eiRIkS2LhxI7cRJiIiogKl6OzzeRbr9exmap0/YMAAbN26FUDGjb1LliyJfv36Ydq0aRrfOy8/O3DgAAwNDT9/4v8LDg5G6dKlcfPmTdSoUePLNUxH1P5JaNiwIWbNmoXff/8dJiYZCxaTkpLg5eWl9jQpIcRnzzExMcHq1auxevXqbJ+fPXs2Zs+e/dl6WrRogZs3b6rVPiIiIiLSnvbt22Pz5s1ISUnBX3/9hVGjRsHQ0BBTp07Ncm5qaiqMjIzyvI1CCCgUCq0nTB/rz/u3v8hrcrlcrcQoL6i9IH7lypXw8/NDiRIl0Lp1a7Ru3Vp5Z/aVK1d+iTYSERERUQFgbGwMJycnlCpVCiNGjECbNm1w5MgRABlXVrp374758+fD2dkZFStmbDUeEhKC3r17w8bGBra2tujWrZtydkym3377DZUrV4axsTGKFSumvBF3cHAwZDKZynSj6OhoyGQy+Pr6AgB8fX0hk8lw/Phx1K5dG8bGxrh48SICAwPRsmVLWFpawsrKCrVr18b169eV9ezfv18Z09XVVXmz70yurq6YO3cu+vXrBysrKwwdOjTb16RFixYq995zdXXFggULMHDgQFhaWqJkyZLYsGGD8vnMNdo1a9aETCZTmYG0ceNGuLm5wcTEBJUqVVKZbZT5WuzevRvNmzeHiYkJ1q5dC1NTUxw/flylTQcPHoSlpaVyVtQPP/yAChUqwMzMDGXKlMGMGTMgl8uz7Y+m1E4Jq1SpgocPH2L79u34999/AQDffvstPD09P7rzFRERERHRh0xNTREVFaV87OPjAysrK5w6dQpAxjf77u7uaNiwIS5cuAADAwPMmzcP7du3x61bt2BkZIS1a9di4sSJ+Pnnn9GhQwfExMTAz89P7bb8+OOPWLJkCcqUKYMiRYqgWbNmqFmzJtauXQt9fX0EBAQorzL4+/ujd+/emD17Nvr06YNLly5h5MiRsLOzUy5NAIAlS5Zg5syZmDXr82sD37d06VLMnTsX06ZNw759+zBixAg0b94cFStWxLVr11CvXj2cPn0alStXVl6N2b59O2bOnIlVq1ahZs2auHnzJoYMGQJzc3P0799fpZ9Lly5FzZo1YWJiggsXLmDHjh3o0KGD8pzt27eje/fuMDPL2G7f0tISW7ZsgbOzM27fvo0hQ4bA0tISU6ZMUft1/pxcXa8yMzPDkCFDtN0WIiIiIioEhBDw8fHB33//jTFjxiiPm5ubY+PGjcoP3Nu2bUN6ejo2btyo3EFx8+bNsLGxga+vL9q1a4d58+Zh0qRJGDdunLKeunXrqt2mOXPmoG3btsrHz58/x3//+19UqlQJAFC+fHnlc8uWLUPr1q0xY8YMAECFChVw7949/O9//1NJTlq1aoVJkyap3ZaOHTti5MiRADKuWixfvhxnz55FxYoVlRs+2dnZqdxaY9asWVi6dCl69uwJIOMKy71797B+/XqV5GT8+PHKcwDA09MT//nPf5CYmAgzMzPExsbi2LFjOHjwoPKc92/T4erqismTJ2PXrl3SSU4ePnyIs2fPIjIyEunp6SrPzZw5UysNIyIiIqKC5ejRo7CwsIBcLkd6ejr69u2rsna4atWqKusyAgMD8ejRI1haWqrUk5ycjMePHyMyMhKhoaFo3bq1xm2rU6eOyuOJEydi8ODB+OOPP9CmTRv06tULZcuWBQDcv38f3bp1Uzm/cePGWLFiBRQKBfT19bOtM6eqVaum/H+ZTAYnJydERkZ+9PyEhAQ8fvwYgwYNUrmAkJaWBmtr1fthfdimjh07wtDQEEeOHME333yD/fv3w8rKCm3atFGes3v3bnh7e+Px48eIj49HWlraF7sHoNrJya+//ooRI0agaNGicHJyUrkPgEwmY3JCRERERNlq2bIl1q5dCyMjIzg7O2dZdG5urnoD1vj4eNSuXRvbt6tuVQ8A9vb20NP79PLpzOff34TpY2slPow9e/Zs9O3bF8eOHcPx48cxa9Ys7Nq1Cz169PhkzE/VmVMfLlKXyWRZLgi8Lz4+HkDG5/T69eurPJeZKH2sTUZGRvj666+xY8cOfPPNN9ixYwf69OmjHJvLly/D09MTXl5ecHd3h7W1NXbt2pVljY22qJ2czJs3D/Pnz8cPP/zw+ZOJiIiIiP6fubk5ypUrl+Pza9Wqhd27d8PBweGj39S7urrCx8cHLVu2zPJc5hSosLAw1KxZEwDUuhdHhQoVUKFCBUyYMAHffvstNm/ejB49esDNzS3LuhY/Pz9UqFAhSzKgbZlXlhSKd/eDcnR0hLOzM548eQJPT0+16/T09ETbtm1x9+5dnDlzBvPmzVM+d+nSJZQqVQrTp09XHnv27JkGPfg0tXfrevv2LXr16vUl2kJEREREpOTp6YmiRYuiW7duuHDhAp4+fQpfX1+MHTsWL168AJBxhWPp0qXw9vbGw4cPcePGDfzyyy8AMhbcN2jQAD///DPu37+Pc+fOqayf+JikpCSMHj0avr6+ePbsGfz8/PDPP//Azc0NADBp0iT4+Phg7ty5ePDgAbZu3YpVq1Zh8uTJX+7F+H8ODg4wNTXFiRMnEBERgZiYGACAl5cXFi5cCG9vbzx48AC3b9/G5s2bsWzZss/W2axZMzg5OcHT0xOlS5dWufpSvnx5PH/+HLt27cLjx4/h7e2tsh5F29ROTnr16oWTJ09+/kQiIiIiIg2YmZnh/PnzKFmyJHr27Ak3NzcMGjQIycnJyisp/fv3x4oVK7BmzRpUrlwZnTt3xsOHD5V1/Pbbb0hLS0Pt2rUxfvx4lasCH6Ovr4+oqCj069cPFSpUQO/evdGhQwd4eXkByLiis2fPHuzatQtVqlTBzJkzMWfOHJXF8F+KgYEBvL29sX79ejg7OyvXvgwePBgbN27E5s2bUbVqVTRv3hxbtmxRbj38KTKZDN9++y0CAwOzXHnp2rUrJkyYgNGjR6NGjRq4dOmSciOALyFH07q8vb2V/1+uXDnMmDEDV65cQdWqVbPMiRs7dqx2W0hEREREOaLuXdvz0pYtW3L1vJOTk/LO8h8zbNgwDBs2LNvn3NzccOnSJZVj769BadGiRZYbgxsZGWHnzp2fjOnh4QEPD4+PPv/hvVg+JvN+K58q9+FUtMGDB2Pw4MFZzuvbty/69u2bbRxXV9dP3gB90aJFWLRoUbbPLV68GIsXL1Y59v69WXJ6U/ScyFFysnz5cpXHFhYWOHfuHM6dO6dyXCaTMTkhIiIiIqJcyVFy8vTp0y/dDiIiIiIiKuTUXnNCRERERET0JaidnHh4eGQ7H23x4sXcxYuIiIiIiHJN7eTk/Pnz6NixY5bjHTp0wPnz57XSKCIiIiIiKnzUTk7i4+OVN395n6GhIWJjY7XSKCIiIiL6tE/tvEQkJer8rKqdnFStWhW7d+/OcnzXrl346quv1K2OiIiIiNSQeRuHxMREHbeEKGcyf1Y/vAVJdnK0W9f7ZsyYgZ49e+Lx48do1aoVAMDHxwc7d+7E3r171a2OiIiIiNSgr68PGxsbREZGAsi4UaFMJtNxq4iyEkIgMTERkZGRsLGxgb6+/mfLqJ2cdOnSBYcOHcKCBQuwb98+mJqaolq1ajh9+jSaN2+eq4YTERERUc45OTkBgDJBIZIyGxsb5c/s56idnABAp06d0KlTp9wUJSIiIiINyWQyFCtWDA4ODpDL5bpuDtFHGRoa5uiKSaZcJScAkJqaisjISKSnp6scL1myZG6rJCIiIiI16Ovrq/XBj0jq1E5OHj58iIEDB+LSpUsqx4UQkMlkUCgUWmscEREREREVHmonJwMGDICBgQGOHj2KYsWKcQEWERERERFphdrJSUBAAPz9/VGpUqUv0R4iIiIiIiqk1L7PyVdffYXXr19/ibYQEREREVEhpnZysmjRIkyZMgW+vr6IiopCbGysyj8iIiIiIqLcUHtaV5s2bQAArVu3VjnOBfFERERERKQJtZOTs2fPfol2EBERERFRIad2cvKpu8DfuXNHo8YQEREREVHhleubMGaKi4vDzp07sXHjRvj7+3NaF1EBpUhL1aiMQp6KND31lrmly1NU6tJLVa98fo6vaWxtxteGFHn650/S4HwiIioYcp2cnD9/Hps2bcL+/fvh7OyMnj17YvXq1dpsGxFJyOU1U9UuI9LffcC8sHg41L0tkkh/92XH1XXToG4F+Tm+prE1ja9t3224qbvgRESUb6iVnISHh2PLli3YtGkTYmNj0bt3b6SkpODQoUP46quvvlQbiUjHahW3zFU5hUIB/zAD4O1TVCtbB3pqXrlQKPTg/0wGJIShhlvxXJTPv/E1ja1pfK1yqaebuERElO/IhBAiJyd26dIF58+fR6dOneDp6Yn27dtDX18fhoaGCAwMLPDJSWxsLKytrRETEwMrKytdN4coTwghkJKS++k975c3NjaGTN0rD4W4vKaxtVWHtuJrQpO2E+VX/NxBhVWOr5wcP34cY8eOxYgRI1C+fPkv2SYikgiZTAYTExON6jA1NWV5HcXWVh25pY2fHyIiKlxyfI3/4sWLiIuLQ+3atVG/fn2sWrWKd4onIiIiIiKtyXFy0qBBA/z6668ICwvDsGHDsGvXLjg7OyM9PR2nTp1CXFzcl2wnEREREREVcDlec5KdoKAgbNq0CX/88Qeio6PRtm1bHDlyRJvtkwzO/SQiIqK8ws8dVFhptHVLxYoVsXjxYrx48QI7d+7UVpuIiIiIiKgQ0ujKSWHCbzCIiIgor/BzBxVWOtr0noiIiIiISBWTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCTBQNcNyG+Sk5NhZGSkVhkhBFJSUgAAxsbGkMlkeVpekzp03XZdl3+fpvE1pWn7iYiIiKSOyYma+vXrB0NDQ7XKKBQK+Pv7AwDq1KkDPT31LlhpWl6TOnTddl2Xf9/evXthYmKiVpmUlBT06tUr1zE1jU9ERESUnzA5UVNgWDz09NV72UR6OmKS02BUrDxuvVZAJlOoWV6B2FQBvSLOCAiNB3Jz5SSXbdA0tq77rmn8TNXt1UtIswi5pll5l3qalSciIiLKB5ic5ELDkQuhb5DzqV2pSXE4/qMHAKDplHUwNFbv2295QgwODm8KAKg/fIHa5TVpg6axdd13TeOny1NwbtEwtcp8zLahNWFsqN6VmxR5Or7bcFMr8YmIiIikjslJLugbGEHfyDjn58vfrTnQNzSCgZF6H5AVqcm5jq1pGzSNreu+axo/Ta2zP83YUA8mhvparJGIiIioYOFuXUREREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJJgoMvgCxcuxIEDB/Dvv//C1NQUjRo1wqJFi1CxYkXlOcnJyZg0aRJ27dqFlJQUuLu7Y82aNXB0dFSeM3bsWPj5+eHOnTtwc3NDQEBAllh79uzBggUL8ODBA9jb22P06NH473//m+u2n104FEkxryGT6cHQ1By1+v0IW1c3xIU/w5V105ESFw1DMws0GDYPpkUcspQ/MbUnkt5G/H95CzQYuQh25arhypof8PzKccRHhKDbmvOwK1tVrfj+Wxfi5Q1fJLwORfv5e1HEtVKWsorUZJz+eQiinwdB38gEpjb2aDRmKayKl8Grf/1xZe2PUMhToEhNQekWPbQa+1N9j3n5GBf+NwLJsW9gZG6FppNWw6xoMZ3Gt3QunW0dmmi35ArCY1KgJ5PB0sQA3p6VUbOUNR6Gx6P/xkC8jk+FtakBtgyugbIOZlqPT0RERCRVOk1Ozp07h1GjRqFu3bpIS0vDtGnT0K5dO9y7dw/m5uYAgAkTJuDYsWPYu3cvrK2tMXr0aPTs2RN+fn4qdQ0cOBBXr17FrVu3ssQ5fvw4PD098csvv6Bdu3a4f/8+hgwZAlNTU4wePTpXbW88dgmMzK0AACH/+ODq+p/QYeF+XNs0B2Vbfo0yzbvj+dWTuLL+J7T8cUOW8i2nb4axhTUAINjvKM4vGYke6y7CtWlXVO01FscmdchVfJd6beHW+XucntP/k+UrduyPEnXbQiaT4d7hDbi4Yiw6/u8o/FaOR61+U1GyYUekxL7FvkF1IUS6yiU2TWN/rO+XVk5AxY4DUL5dXzy9cBgXlo6C+8IDWu+7OvE7Lv3rk3Xlxp6RtWFjZggAOOgfhgGbAhA4pzmGbb2NoS1KYkATF+z7JxQDNgbgwrRGWo9PREREJFU6ndZ14sQJDBgwAJUrV0b16tWxZcsWPH/+HP7+/gCAmJgYbNq0CcuWLUOrVq1Qu3ZtbN68GZcuXcKVK1eU9Xh7e2PUqFEoU6ZMtnH++OMPdO/eHcOHD0eZMmXQqVMnTJ06FYsWLYIQIldtz/xwDADyxDgAMiTHROHNk7twbdIZAOBSry0So8IRH/kiS/nMD8cAIE+IhUwmAwA4VW0Mc/viuYoPAA5udWBm5/TJsvpGJnCp104Z08GtLuIjnmc8KZMhJT42o97kBOgZGEImU/0x0SQ2kH3fk6Jf4fXDAJRt3RsA4NqkKxJevURcWLBW+65u/NjQp5+tT12ZiQkAxCSlQQYZImNTcD04Bt81zBh7jzrFEPImGY8jE7Qen4iIiEiqdHrl5EMxMTEAAFtbWwCAv78/5HI52rRpozynUqVKKFmyJC5fvowGDRrkqN6UlBSYmalOjzE1NcWLFy/w7NkzuLq6ZlsmJSVF+Tg2NjbLOZfXTkPkvWsAgOb/XYPEN+EwLWIPPf2Ml1Umk8HMrhgS30Rk265zi4cjPPACAKDtvD056sun4ufW3UPrULJhRwBA00mrcXp2X9zYOg/JMVGoN2webv6xSOuxP+x7wquXMLV1VHntzO1LIOF1aLbl8yz+q5dq150T/X69ibP3owAAf02oh5A3SShmYwwDfT1l/JJ2Jgh5k/xF4hMRERFJkWQWxKenp2P8+PFo3LgxqlSpAgAIDw+HkZERbGxsVM51dHREeHh4jut2d3fHgQMH4OPjg/T0dDx48ABLly4FAISFhWVbZuHChbC2tlb+c3FxyXJOwxEL0O2X06jaawwCdi3PcXsyNZ+yDn2230WtAT/h+qbZapfXND4ABO5citjQp6jz/UwAwK3dy1Hn+5nos+0Oemy4jMAdS5GuSNN6bF33XdP4mvp9SE2ELGuDeT0r4oe99/M8PhEREZEUSSY5GTVqFO7cuYNdu3Zpve4hQ4Zg9OjR6Ny5M4yMjNCgQQN88803AAA9vexfgqlTpyImJkb5LyQk5KP1l2nWDZH3/oGprSOS3r5SfpgXQiAxKgxmto4fLQsA5dt+i7DAi0iOfZOr/mXGT4mLVqvc7b2/INjvKNrN2wsDEzMkx0Th2aVjKNuqFwDAqpgrilaogfQ0udZjZ8rsu3lRZyS9iVB57RJevYB5UedPlv/i8XMwxU4T/Zu44Oy/UShRxBRh0SlIU6Qr4z+PSoaLrckXjU9EREQkJZJITkaPHo2jR4/i7NmzKFGihPK4k5MTUlNTER0drXJ+REQEnJw+v7Ygk0wmw6JFixAfH49nz54hPDwc9erVA4CPrlMxNjaGlZWVyr9MqYlxSHwbqXz84roPjCysYWJlB9vSbgi+eBQAEHLtFMxsHWHhUEKl7pT4GCRGvbti8+zSMRhb2cLYskiO+pOaEJttfKP31lJ8zp39q/HEdz/aLzyoXINhZGEDA2MzhAacBwAkx0Th9cNA5VQnbcT+WN9NbOxhV64aHvtkTG8LvngEZkWdYVnMVat9Vze+lZZ364pOlCP07bupWoduhMPOwggOVkaoVcoK2y5nTCPbfz0MJWxNUNbBXKvxiYiIiKRMp2tOhBAYM2YMDh48CF9fX5QurfpBsHbt2jA0NISPjw88PDwAAEFBQXj+/DkaNmyodjx9fX0UL57xTfjOnTvRsGFD2Nvbq12PPDEel9dOhSI1GTI9PRhbFkHzyashk8lQd+BMXFn/E+4d2QhDU3PUHzo3a/mEGJyZ9z0UqUmATA8m1kXRds4uyGQy+K0cj5Brp5D0JgJ/T/OAoakFuq46kyX+Re9J2ca/tskLoTfPIzkmCmcXDYOhqTm6LFPdcSrhdSiubfgJlsVccXxKFwCAnqExunqfRsvpm/HPrzORrkiDUKShUqfvce/whlzHdp+reiXsU31vPHY5zi8dhcBdy2BoZommk1Zl+9rrMr6mYhLl6LXGH0mp6dDTA+wtjXF0fF3IZDKs718NAzYFYMHRR7AyNcDmgdW1Hp+IiIhIynSanIwaNQo7duzA4cOHYWlpqVxHYm1tDVNTU1hbW2PQoEGYOHEibG1tYWVlhTFjxqBhw4Yqi+EfPXqE+Ph4hIeHIykpSXmfk6+++gpGRkZ4/fo19u3bhxYtWiA5ORmbN2/G3r17ce7cuVy127xoMbjP3Zntc1bOpdHOa7vKsdQE1cX0Fo4l0fUXn2zLNx63IsuxlPho1fj2zh+NX2/QrI+0+r3yRZ0x8O+32T5XvFYLFK/lqxL7/eRE3djq9N3apTy6rDipckzTvmsaPy1VuwvSSxU1w7WZTbN9rmIxC1z+qYnKsWS5QqvxiYiIiKRMp8nJ2rVrAQAtWrRQOb5582YMGDAAALB8+XLo6enBw8ND5SaM7xs8eLBKolGzZk0AwNOnT5U7cW3duhWTJ0+GEAINGzaEr6+vcmoXERERERHpns6ndX2OiYkJVq9ejdWrV3/0HF9f30/WUbRoUVy+fFnd5hERERERUR6SxIJ4IiIiIiIiJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSEiIiIiIgkgckJERERERFJApMTIiIiIiKSBCYnREREREQkCUxOiIiIiIhIEpicEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLA5ISIiIiIiCSByQkREREREUkCkxMiIiIiIpIEJidERERERCQJTE6IiIiIiEgSDHTdgPxIkZaa6/MV8lSk6amXE6bLU1Tq0ktVP6fMbRs0ja3rvmszvqZS5Ol5UoaIiIgov2JykguX10xV63yR/u4D5oXFwyGTqRdPpCuU/3913TSoXYEGbdA0tq77rml8bfpuw03dBSciIiLKB5icqKl6MQsYGhqqVUahUMA/zAB4+xTVytaBnprf3isUevB/JgMSwlDDrbja5TVpg6axdd13TeNrjUs93cQlIiIiykdkQgih60bkB7GxsbC2tkZERASsrKzUKiuEQEpKxvQgY2NjyNT99l/D8prUoeu267r8+zSNrylN209ERPlH5ueOmJgYtT93EOVnvHKiJhMTE5iYmKhdztTUVKO4mpbXpA5dt13X5TUhk8ly9fNCREREVBhxty4iIiIiIpIEJidERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJ4G5dOZS543JsbKyOW0JEREQFXebnDd7xgQobJic5FBcXBwBwcXHRcUuIiIiosIiLi4O1tbWum0GUZ3gTxhxKT09HaGgoLC0teSM8LYqNjYWLiwtCQkJ4kymJ4hhJG8dH+jhG0ibV8RFCIC4uDs7OztDT4yx8Kjx45SSH9PT0UKJECV03o8CysrKS1JsCZcUxkjaOj/RxjKRNiuPDKyZUGDEVJyIiIiIiSWByQkREREREksDkhHTK2NgYs2bNgrGxsa6bQh/BMZI2jo/0cYykjeNDJC1cEE9ERERERJLAKydERERERCQJTE6IiIiIiEgSmJwQEREREZEkMDkhIiIiIiJJYHJCRERERESSwOSE8gQ3hSOigo5/54iINMfkhL6I6OhodOrUCf/73/8AAOnp6TpuEX3o7du3ePbsGQBAoVDouDWUnYiICKxYsQIHDhzAgwcPAPADsJRERUVh5MiROHLkCACOjRS9fv0aly5dwpMnT3TdFCLKISYn9EWcPHkSx48fx88//4zIyEjo6+szQZGQn3/+GSVLlsT06dMBAPr6+jpuEX1o5syZKFu2LI4ePYrRo0ejf//+uHfvHmQyGT8ES8SiRYuwbt06bN26FbGxsdDT0+PYSMjUqVPh5uaG8ePHo0qVKli+fDmioqJ03Swi+gwmJ/RFnDt3Dp6enqhVqxbGjh2r6+bQ/0tJScH48eNx4MABNG3aFM+ePcPBgwcB8OqWlPzxxx84duwYDh8+jNOnT+OPP/5Aeno6Ll++DACQyWQ6biEBQGBgINq2bYvo6Ghs2bJF182h/xcaGopevXrh9OnT2LdvH/bt24fJkydj48aNuHTpkq6bR0SfweSEtCotLQ0AYGNjg1q1aqFfv344duwYzp8/Dz09/rjpkhACxsbGKFu2LIYMGYJFixbBzs4O27Zt47e+EnPixAnY29ujdevWAKD8b7169ZTncKzyzoevtUKhQEpKCmxsbDB9+nS4uLjg8OHDuH//PmQyGadJ6sD7Y5Q5Dt7e3mjevDlKliyJOXPmICEhAREREVnOJyJp4adFyrXMP+7vvxEbGBgAAPz8/FCuXDl06tQJbdq0wcyZMyGEgI+PD1JTU3XS3sIoMTERISEhSE1NVX7bPmzYMAwZMgRVq1ZFp06d8PLlS37rKwGZV65SU1Nhb2+PuLg43Lx5E1FRUfDw8EBISAhmzZqFRYsWQaFQ8OpJHklNTVX5myWEgL6+PoyNjfHgwQO4uLjgm2++gVwux+HDh5GamorIyEgdtrjwSU1NVXkfqlq1KkaPHo2GDRsCyPjdEkKgePHiyt8z/v4QSReTE8qVpUuXYvDgwQBU1yukp6cjLS0NpqamKFWqFGxtbTFy5Ej4+/tDX18fPj4+SElJ0VWzCxUvLy/UrFkTHh4eaN26NYKCggBA5QpJr169ULFiRfz55594+PAhZDIZp3floQ0bNuDXX38FkDEu6enpMDIyQs+ePWFra4sffvgBDg4OiI6Oxvr161GmTBmsX78ew4cPB8CpeF/a7Nmz0aRJE3Tr1g0bNmzA27dvlR9qg4KCoKenB1dXV7Rv3x4NGjTA+vXrYWJign379nFs8si8efPQvn17dOvWDb/88guioqLg4OCAZs2aAcj4HdHT00NkZCTu3LmDqlWr6rjFRPRZgkgNd+/eFV26dBHm5ubC0dFR7N27VwghRFpamsp5jRo1EsHBweLvv/8WTk5OokiRIsLOzk4kJycLIYRQKBR53vbC4tKlS6JOnTqiSpUq4tChQ+KPP/4QzZo1E02aNFE5Lz09XQghxJEjR0Tjxo3Fjz/+qHwuc3wyzyHtunHjhmjRooWQyWSidevW4ubNm0II1d8jhUIh1q9fLzp16iQSExOVxzdv3iwcHR1FZGRkXje70JDL5eI///mPKFeunNi6dav49ttvReXKlUXnzp2V54SFhYm2bdsKIYT466+/hL29vbCwsBDNmjUTKSkpQgj+/nxJ/v7+ok6dOqJy5cpi06ZNok+fPqJmzZpiwoQJ2Z7/559/ivLlyyvfg4hIunjlhNRy6dIlyGQy/Pbbb3B3d8fKlSuRmpoKfX195bfx//77L968eYPWrVvDw8MDo0ePxp49e+Do6IipU6fquAcFn5+fH6pVqwY/Pz9069YN3333HTp06IAiRYoo1wS9/61uly5dUL9+ffj5+eHMmTPYs2cPRo0aBYBTH74EhUKBo0ePwtHREWvXrkVsbCwOHjyI9PR05e+REAJ6enoICgqCg4MDTE1NleVDQkLg6OjIb+a/oJCQEPzzzz9YtmwZ+vXrhx07dmD58uXw8fHB8uXLAQD+/v64desWGjVqhD59+mDixImYPHky0tPTsWfPHh33oGCLj4/Hzp07UalSJfj5+WHgwIHYtWsXOnXqhEePHiE6OjpLmRs3bqBu3bowNjYGkPF38sCBA3ncciLKCSYnlCOZiUefPn0wefJk9O7dGz169EBcXByWLVsG4N0H3kqVKsHZ2RktW7bEzZs3MX36dDRu3BgeHh7YsWOHcvE1aVfmGI0cORJTpkyBlZUVgIxNCk6fPo1y5crhypUrADKmEL2/cLdv375ISkpC586d8d1338Hc3Fw3nSgE9PX10bNnT4wdOxbDhg1D48aN4evri9OnTyvPyUwKIyIi8ObNG+UOQw8ePICvry9atWoFR0dHnbS/MJDL5QgKCkL16tWVx9q2bYsZM2bAy8sLL168QP369WFra4vy5cvjxo0b+PHHH/H999/DwMAAhw8fRlJSEpP7L0QIgdKlS2PEiBGwtrZWfulibW2NoKAg5d++9/39999o3bo1Xr58iY4dO6J58+aIi4vL66YTUU7o8rIN5W+vX78WEydOFFWqVBHBwcFCCCGSkpKEEELExsZmmdIQFhYm4uPj87ydhdnhw4eFpaWlqFq1qmjdurVwdnYWnp6eIjo6WnnOixcvxLBhw4RMJhMDBw4Ub9680WGLC58HDx6IBg0aiBEjRoi3b98KIYRITU0VQghx5coVUb9+fWFrayu6desmLC0thaenp4iLi9Nhiwu+e/fuiRo1aojFixerHI+JiRGlS5cWkyZNEkIIERISkmWK6qVLlzg+eeDDKZBCCPHTTz+J3r17Zzk3KChIFClSRHTo0EEYGRmJbt26idevX+dZW4lIPfz6mnJFCAE7Ozt07doVNjY2WLhwIQDAxMQEAGBpaan81lD8/zf6Tk5O/Eb+CxMfbI+ZlpaG7du34+bNmzhx4gSOHz+OHTt24MaNG8pzDh8+jHPnzuHKlSvYtGkTihQpktfNLrTS09NRvnx5eHh44Pr16zh69CgAwNDQEABQv359bNy4EStWrEC9evXg6+uLbdu2wcLCQpfNzvc+/D35UMmSJVGxYkVcvXoVwcHBADLGysrKCiNHjsTevXuRnJyMEiVKKK8CZ9bZsGFDjs8XJv5/x7RMme81N27cQK1atZTnZHry5Amio6MRGxuLc+fO4dChQ7Czs8vbRhNRjjE5IaUXL15gxYoVePLkCQDVP+6Zl80zZU4HatSoETp37gxfX19cvHgRAJRThzJxaoP2hIWF4datW3j9+nWW59LS0rK81j179kSXLl2gr68PAwMDlC1bFra2trh586bynJEjR+L+/fsq99Cg3Hv8+DFmz56NR48eZXnuw9+jzKmQw4cPR5EiRXD06FHlh+Hbt28DAKpUqYL//Oc/mDZtmvKDF+VeTEwM4uPjlX/f3l+7kzk+5ubm6N69Ox4+fKhcP5KZhFhbW8PKygqvXr1SqZd/57QnODgY/fr1y3btzod/59LT0yGTyRATE4OrV68qtw+WyWR49uwZAKB27dr4+++/cfHiRTRo0CBvOkFEucbkhAAAUVFR6Ny5M3744QecPn1aeR+FzCTEwMAAQgjlYtDMx4aGhujUqRMqV66MqVOnomPHjmjUqBHu37+vy+4USOPHj0fFihXh6emJKlWqYP/+/co500II5ZjMmDHjo3UcPXoUZcqUgYeHR141u9AQQmDEiBEoX748wsLCUKJECeVzmR+AM8foyJEjyscKhQIWFhYYNGgQnjx5Am9vb3Ts2BGtW7fO8gGYck8IgfHjx6N58+Zo3749+vXrh7i4OOjp6UEulwN4Nx7bt2/HN998g0aNGuHgwYPKK1oA8Pr1a9jY2MDZ2VlXXSnQZs2aBTc3NyQkJMDQ0FCZMGYmkx++F2UmjT4+PrCxsUGzZs3w8uVL9O7dG3Xr1kVERATs7e3Rtm1b3XSIiNTG5IQAAKamprCxsYGbmxv27dun/NY289L5xo0bUaxYMezZswehoaEA3n1TaG9vj4iICPj5+cHU1BTBwcFwc3PTTUcKqN9++w1nz57Fn3/+iV27dqFr166YMWMGvL29AWSMxcaNG1G8eHHs2bNH+Y0hAISGhuL58+eYPXs2xo8fj86dO6N48eK8Q7IW7dy5E0WLFsW1a9dw7do15f0uACh33gIy7mvi4OCAffv2KXcUyvwda9myJUJDQ7FixQro6+vD398f9vb2OulPQXPlyhXUrFkTV69exYIFC+Du7o7r169jyJAhAN5No/v111/h7OyM33//HXK5HOPGjcNXX32FHj16YOTIkRgzZgwWLVqEPn36qOxQSNoREBAAHx8f7N69G/v370ePHj2UN/bNfL/J7r0IyNglsmbNmliwYAHKly+P6Oho+Pv7c+MIovwoT1e4kGTduHFDdOrUSTx58kSUKFFCeHl5KRdNHzhwQNSoUUNs3Lgxy/1MAgMDRfny5UW5cuXExYsXddH0QqF79+6iW7duKsf++9//imrVqolz586JoKAg0bJlyyxj9OLFC/Hzzz+L8uXLi6pVq4ozZ87kccsLB3d3d+Hq6ipCQ0OFEELcvn1b/P333+Lx48fKe5QsW7ZMmJiYiN9++y3L75GPj4+QyWSiatWqws/PL8/bX5ClpaWJKVOmiG+//VZlofru3btF6dKlRXh4uBBCiN9//124uLiITZs2CblcrlLHkiVLxNChQ4W7u7vw8fHJ0/YXJqNGjRIdOnQQQgjh5+cnxo0bJ/73v/+Jq1evCiGEOH36tKhWrVq270X16tUTMplMuLm5ib///jvP205E2iMTgl/9FCZpaWnKb6KAjG91ZTIZnj59ioEDB+Ls2bOYMmUKTp48ie3bt6N8+fIwMjJCSkqKcn/49yUlJeHUqVPo2rVrXnajUMgcm6SkJHz33XdwdXXF0qVLlc/funUL06ZNU96RWi6XK78BzqRQKHD79m1ERETA3d09r7tQaNy6dQs9evRA3759cf/+ffj7+8PCwgJRUVFo3rw5du7cCSEEYmJiYGNjk6V8bGwstm3bhpEjR+Z94wuBv//+G6ampsq7hgPA1q1bsXjxYly5cgWWlpYAgLi4OOX/A+9+B0n7Mu/cDrxbwzhkyBCULVsWNjY2mDdvHlq1aoV79+4hPDwcP/74I8aNG4fk5GTlVclMCQkJWLBgAb766it4enrmeV+ISLs4rasQmTlzJnr37o0xY8bg/v37ynUlAHD16lXlvPjFixcjNTUV/fv3h4mJCU6cOJFtYiKEgKmpKRMTLfrtt99w6tQpABnTGDJf46JFi8LX11dlIXy1atXQrl07PH/+HGfOnMmSmAAZU4Zq1KjBxESLFi5ciAkTJmD9+vVITU0FkDEWnTp1wuLFi2FkZIS9e/di+/btWL58OY4cOYI5c+ZAJpPB2to6S33v7wJFmjtw4ABiY2NVjrm7uysTk8wPwlFRUShSpAgsLCyU07PeT0wALnL/UubMmYNBgwZh7ty5iIqKgp6eHvT19ZGcnIzDhw/Dz88P69evx7Zt23Dz5k306dMH+/btw8mTJ2FiYpJlOp25uTnmz5/PxISogGByUgi8evUKTZo0waFDh1C9enWcPHkS3377rXK9ApDxht2oUSMAwKFDh/Dy5UvcuXMHkyZNQvv27bOtl2/c2uPn54fatWtj8ODB2LVrF8LCwgC8+yA1depUBAYG4vjx4yrlOnTogPDwcN5MLA8EBQWhcuXK2LlzJ8LCwjB16lS4u7vDz88PADBv3jxMnjwZ8+fPR506dVCtWjX06dMHXl5eWL58ucqXAe/jDUm1w9fXF5UqVcLXX3+NXbt2ffS8zDE4f/48mjRpwr9jeSgkJAS1a9fGvn37YG5ujjVr1qB9+/bKXbnGjRuHgIAAHDlyBBUrVlSOzahRoxAfH6/8u8gxIyrY+K5YCFy5cgVv3rzBsWPHMGvWLNy6dQstW7bEL7/8otz+NygoCEePHkWzZs0wcOBAeHl5oX79+ggJCcGDBw903IOCLTo6Grt370adOnUwf/58+Pr6wtfXF0DGzjTp6elwdXXFkCFDMHPmTJXxKF++PBISEvDy5Usdtb7wOHbsGKytrXHjxg3s2rUL9+7dw9u3b+Ht7Y0HDx7AysoKP/zwA0qXLq1Srnjx4jAyMsLdu3d11PKC7/79+1i3bh3atGmDIUOGYP78+coPsh/S09NDUlISbt68qdzBSSaTcYfBPHDmzBmkp6fjwoULWLVqFR49egRnZ2f88ssvuHXrFurXr48+ffrAwMBA5Spx+fLl8erVq4+OKREVLExOCoHIyEjEx8crdy0xNjbG8OHDUaVKFfz3v/8FAFSsWBFv3rxBxYoVcf36dYwfPx5eXl7Yu3cvzp07p3IvANIuMzMzdO/eHcOHD8fUqVNRrlw57Ny5E0FBQQDefUu4YsUKpKWlYdasWcqk8q+//kLx4sXRsmVLnbW/MEhLS8Pdu3fh4OCg3F3LyckJ06dPx/Pnz7FlyxYAgJWVVZayly9fRoMGDVCtWrW8bHKhYmtri7Zt22LUqFFYsmQJFAqFyvqsD124cAF6enpo1KgR7t27h5YtW6J27doIDw/Pw1YXPsHBwTA0NFTejNfc3ByTJk2CsbExFi1aBACYMWMGDAwMsGbNGgQEBAAAzp07hxIlSqBTp066ajoR5SEmJ4VAamoqHB0dERgYqDxWsWJFfP/993jx4gX+/PNP9OrVC2fPnsWGDRtQpkwZAECLFi2wdetW9OvXj1NPviAjIyO0atUKNWvWBADMnj0b/v7+OHHiBFJTUyGTySCXy2FsbIxt27YhJiYG7u7uaN++PXr06IE2bdqgYsWKOu5FwWZgYICUlBQkJSUhPT1dOd2uV69eqF27Nq5evapyY8vnz58jODgYo0ePxqFDh9CvXz8An78zOeWOo6Mjvv/+e7i5ucHS0hJz587FqlWrVP7mAe9e/9u3b8PJyQkzZ85EtWrV4OzsjIiICDg5Oemi+YVGcnIyDAwMEBkZqTzWrFkzdOzYEXfv3sXp06dRoUIFbNq0CXfv3kWbNm3QtWtXdOzYEY0bN8ZXX32lw9YTUZ7RzSZhpE3p6emfPP7s2TNha2srVqxYIVJTU5XPP3v2THTp0kUMGzYsSx0KheLLNbgQ+tgYfSjzdR88eLCoX7++uHz5cpZzoqKixJEjR8SKFSvE7du3tdpOyipzy9KzZ88KPT09cfPmTSGEUG436+vrK8qVKyf27NkjhBDiwYMHYtKkScLJyUk0bNhQ3Lp1SyftLoze/z2rX7++6Nq1a5ZtgYUQomXLlkImk4mmTZsKf3//vGxioZT5d+3+/ftCJpOJgwcPqjwfEBAg6tevLxYuXKg8FhwcLHbv3i0WLlzIv3NEhQy3Es7n4uLiYGFhoZz6I97b+vL9bYNHjx6No0eP4tChQ6hRo4ayvIeHB4yMjJRbnXKhofbldIzefxwWFobGjRujT58+mDp1KqysrPDo0SOUK1dOJ30o6JKSkmBqaprtc5ljkpycjPbt28PQ0BCnTp1SGcdy5cqhX79+mDlzJpKSkpS737Vq1Sovu1Fg5WR8MmWOy4ULF9CiRQscOnQIXbp0gUKhwJs3b2Bvb48dO3bAwsKCOw1+Adm9j7w/Rr1798ajR49w8uRJFC1aVHlOgwYNUK9ePXh7e/O9iKiQ41ydfEoul2P48OHo2LEjvv76a/z+++8AMtYnpKWlAYDyA9XNmzexcuVKKBQKrFq1SuXu4QCU913gm4F25XSM5HK5cscnAwMDKBQKFCtWDMOGDcOff/6JjRs3om3bthg4cCASEhJ01p+CSC6XY8SIEejZsyf69euHK1euKKf+ZG4TnDkmMTEx8PLywrlz57Bu3TrleW/fvoW5uTns7OwAAKampmjRogUTEy3I6fikpaUhIiICwLu/Y02bNsW3334LLy8v+Pj4oFOnTvD29kZaWhr69u3LxERL5HI5lixZgoMHDwJQfR/JnP5oYGCA1NRUPHr0CEuWLMG///6L5cuXIyYmBkBG8mJsbIwiRYpkqYOICh8mJ/nQkydPULduXfz777+YMmUKrK2t8fPPP2PYsGEAoPyGytvbGw4ODtixYwf09fWxYsUK3L59G507d8amTZswfvx4nD9/Hl9//bUuu1MgqTNGdnZ2OHbsGJKSkgC821q2b9++CAoKwuTJk2FhYYEDBw4oF5KS5sLDw1G/fn3cunULXbp0wa1btzB8+HAsXrwYQMZaICBjjMzMzHDixAk0b94cs2bNwqxZszBs2DBcuHABc+fORVxcHFq3bq3L7hQ46oyPhYUFjh8/nmVNz6hRo3Djxg3lrlwTJ05UucpCmjl+/DiqV6+OKVOmYP/+/QgNDQXwbm1P5uYR3t7eKFKkCA4cOICSJUti5cqV2LNnD/r06YMjR45gypQpePjwITp37qyzvhCRhOhiLhlpZtWqVaJFixYiISFBCJExz3rt2rVCJpOJ/fv3C4VCIX788UdRpEgRsW3bNpX1I4GBgcLT01O4u7uLhg0bZrumgTSn7hh9uCZl7969QiaTibp164obN27oogsF3r59+0TlypXFixcvhBBCREdHi9mzZwsTExNx584dIYQQffr0Ec7OzmLr1q0qY+Tt7S2aNm0qqlatKqpXry6uXr2qkz4UZOqMz++//64yPmlpaWLr1q3C0NBQ1K9fn79DX0B8fLwYPHiwGDt2rFi4cKGoU6eOWLt2rco5KSkpYvjw4cLBwUH88ccfKu9Ff/75p+jYsaNo2LChqFOnjrhy5Uped4GIJIprTvKhCRMm4Pr167hw4YJybu7atWsxatQo1KhRA6dPn4ZCoYCxsbFya1PxwRze2NjYbLc9Je3IzRi97/r167hx4waGDh2qg9YXbOnp6dDT08O6deswd+5clXvEhIeH47vvvoNcLse5c+dw9epVuLm5Kccos2zm/z979izLfU1IM5qMT6bExET8+uuvMDU15e/QFyKEwOXLl2FnZ4eKFSvi66+/RmpqKubNm6fcNlsIgUePHsHR0THb3yEAiIiIUG5zT0QEcFqX5F27dg0AVO4zYmlpCRMTE/z111/KhMPPzw9eXl64d+8e/vzzT9jb26tMAfpwDi8TE+3R1hi9r06dOvxQpUX79u3D6dOnERYWpvxgpK+vDycnJ1y4cEF5npOTE6ZOnYrLly/j5MmTqF+/PiwsLJTPv/+hSk9Pj4mJlmhrfDKZmZlh3Lhx/B3SovfHCMh4T2nUqJFyG/Nhw4bhxYsXOHjwoHJal0wmQ/ny5VXebz7clp6JCRF9iMmJRB06dAjFixdHhw4dEBwcDD09PeUC0G+//RaWlpbo27cvvvnmG1haWuLhw4cYNGgQevTogX379gF4N9+XvgyOkfT98ccfcHR0xP/+9z/07dsXvXr1wv79+wFkJIDJycm4dOmSctwAoEqVKujQoQO2bdsGIOuHKdIejo/0ZTdGmYvf09PTlYlI27Zt0bBhQ5w9exZnzpwBwPv6EFHu8K+6BG3fvh0LFixAs2bN8NVXX+Hnn38GkLEAVAgBNzc3rFy5EsuXL0fRokWxbds2XL16Fc7OzkhOToarq6tuO1AIcIykLS0tDStXrsTChQuxYMECXLhwAYcOHULZsmWxadMmJCUloWbNmmjSpAkOHDiAS5cuKcs6OjrC0NCQieMXxPGRvk+N0a+//oqUlBTo6elBJpMprxqPGTMGycnJOHz4MBISEiCEwIMHDwC827mLiOhzmJxISOYf73LlyqF169ZYtGgRunbtCl9fX/j6+qqc4+Ligu+//x6rVq1Ct27dAGTMxw4JCUHZsmV10v7CgGOUPyQkJODVq1fo378/vv/+exgZGaFRo0b46quvEBsbq/wm3svLC3K5HBs2bFBZ25CUlKTc1pS0j+MjfZ8bo8zt0IGMq1dCCFSqVAk9evTA9evXMXfuXNStWxeenp5QKBRMJoko53SxCp9UPXjwIMtuTZl3Nb5z547o2rWr6Nixo/K5D88NDg4WL168EJ6enqJmzZri2bNnX77RhQzHSPo+HKObN28q7+6euUvQ9u3bRY0aNURKSoryvL1794qmTZuKUqVKiaVLl4r//Oc/wsHBQVy4cCFvO1DAcXykL7dj9P7z//zzjzA0NBQymUwMHTo0y3lERJ/DKyc6tGfPHpQuXRpdunRBgwYN8Ntvvymfy/yWqXLlyujevTuCg4OxefNmAKrzeJOSkrBx40ZUq1YNz58/x969e1GyZMm87UgBxjGSvg/HaNOmTQCAGjVqQF9fX2V3oGPHjqFGjRowMjJSfjv/9ddfY+fOnXB3d8eFCxcQFRWF8+fPo0mTJjrrU0HC8ZG+3I7Rh1dP1q1bh3r16qFly5Z49OgR1q9fr7wfDRFRjuk6OyqsTp48KVxdXcXq1avFiRMnxMSJE4WhoaHYsGGDSExMFEK8+2b+xYsXYtCgQaJu3boiLi5OCCFEamqqsq6AgABx7ty5vO9EAccxkr5PjVFSUpIQIuMqVnp6ukhKShLVqlUTf/zxx0fryyxD2sHxkT5tjlFgYKDYvXt3XjafiAogJid5LPOSuZeXl6hdu7bKB9iRI0eKOnXqiAMHDmQpd/ToUVGnTh0xa9YsERgYKDp37iyeP3+eZ+0uTDhG0pebMXr58qVwdXUVDx48EEJkTGGZMGFC3jW6EOH4SB/HiIikitO68ljmPS/u3buHsmXLwtDQEHK5HAAwb948mJiY4PDhwwgPDwfwbnF1y5YtUa9ePcyZMwe1a9eGXC6Hg4ODbjpRwHGMpE/dMQKA06dPw8XFBcWKFcO4cePw1Vdf4dmzZ5DL5dzyVMs4PtLHMSIiqWJy8oWdOnUKY8eOxYoVK5Q36wOA1q1b4/jx41AoFMo3hSJFiqBfv364fPkygoKCAGSsa0hISMCGDRuwfv16NG/eHDdu3MCJEydgbGysq24VKBwj6cvtGP37778AMtYAHT16FHfu3IGrqyt8fHxw+fJl7N+/H4aGhlluUkrq4fhIH8eIiPINXV62KchCQ0NF586dhYODg/D09BRVq1YV1tbW4urVq0IIIYKCgkTx4sXFjBkzhBBCZUcTJycnsXz5cuXju3fvivr164vff/89T/tQ0HGMpE9bY5SQkCA6d+4sSpQoIXbt2pXn/SioOD7SxzEiovyGyckXkJCQIPr37y/69Okjnjx5ojxer149MWDAACGEELGxsWLevHnC1NRUuS4hcw5w8+bNxeDBg/O+4YUIx0j6tD1G169fz8PWF3wcH+njGBFRfsRpXV+AmZkZjI2NMWDAAJQuXVq53WLHjh1x//59CCFgaWmJvn37olatWujduzeePXsGmUyG58+fIzIyEt27d9dtJwo4jpH0aXuMateuraOeFEwcH+njGBFRfiQTgqvYvgS5XA5DQ0MAUO4R7+npCXNzc2zYsEF53suXL9GiRQukpaWhTp06uHTpEipVqoQdO3bA0dFRV80vFDhG0scxkjaOj/RxjIgov2FykoeaNGmCIUOGoH///khPTweQceOqR48ewd/fH1evXkX16tXRv39/Hbe08OIYSR/HSNo4PtLHMSIiKWNykkeePHmCRo0a4dixY8pL46mpqbx7roRwjKSPYyRtHB/p4xgRkdRxzckXlpn7Xbx4ERYWFso3Ay8vL4wbNw6RkZG6bB6BY5QfcIykjeMjfRwjIsovDHTdgIIuc+/3a9euwcPDA6dOncLQoUORmJiIP/74gzfpkwCOkfRxjKSN4yN9HCMiyi84rSsPJCcno2rVqnj8+DGMjIzg5eWFH374QdfNovdwjKSPYyRtHB/p4xgRUX7A5CSPtG3bFuXLl8eyZctgYmKi6+ZQNjhG0scxkjaOj/RxjIhI6pic5BGFQgF9fX1dN4M+gWMkfRwjaeP4SB/HiIikjskJERERERFJAnfrIiIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEi+owBAwZAJpNBJpPB0NAQjo6OaNu2LX777Tekp6fnuJ4tW7bAxsbmyzWUiIgon2NyQkSUA+3bt0dYWBiCg4Nx/PhxtGzZEuPGjUPnzp2Rlpam6+YREREVCExOiIhywNjYGE5OTihevDhq1aqFadOm4fDhwzh+/Di2bNkCAFi2bBmqVq0Kc3NzuLi4YOTIkYiPjwcA+Pr64vvvv0dMTIzyKszs2bMBACkpKZg8eTKKFy8Oc3Nz1K9fH76+vrrpKBERkQ4xOSEiyqVWrVqhevXqOHDgAABAT08P3t7euHv3LrZu3YozZ85gypQpAIBGjRphxYoVsLKyQlhYGMLCwjB58mQAwOjRo3H58mXs2rULt27dQq9evdC+fXs8fPhQZ30jIiLSBZkQQui6EUREUjZgwABER0fj0KFDWZ775ptvcOvWLdy7dy/Lc/v27cPw4cPx+vVrABlrTsaPH4/o6GjlOc+fP0eZMmXw/PlzODs7K4+3adMG9erVw4IFC7TeHyIiIqky0HUDiIjyMyEEZDIZAOD06dNYuHAh/v33X8TGxiItLQ3JyclITEyEmZlZtuVv374NhUKBChUqqBxPSUmBnZ3dF28/ERGRlDA5ISLSwP3791G6dGkEBwejc+fOGDFiBObPnw9bW1tcvHgRgwYNQmpq6keTk/j4eOjr68Pf3x/6+voqz1lYWORFF4iIiCSDyQkRUS6dOXMGt2/fxoQJE+Dv74/09HQsXboUenoZy/n27Nmjcr6RkREUCoXKsZo1a0KhUCAyMhJNmzbNs7YTERFJEZMTIqIcSElJQXh4OBQKBSIiInDixAksXLgQnTt3Rr9+/XDnzh3I5XL88ssv6NKlC/z8/LBu3TqVOlxdXREfHw8fHx9Ur14dZmZmqFChAjw9PdGvXz8sXboUNWvWxKtXr+Dj44Nq1aqhU6dOOuoxERFR3uNuXUREOXDixAkUK1YMrq6uaN++Pc6ePQtvb28cPnwY+vr6qF69OpYtW4ZFixahSpUq2L59OxYuXKhSR6NGjTB8+HD06dMH9vb2WLx4MQBg8+bN6NevHyZNmoSKFSuie/fu+Oeff1CyZElddJWIiEhnuFsXERERERFJAq+cEBERERGRJDA5ISIiIiIiSWByQkREREREksDkhIiIiIiIJIHJCRERERERSQKTEyIiIiIikgQmJ0REREREJAlMToiIiIiISBKYnBARERERkSQwOSEiIiIiIklgckJERERERJLwf0qPreEu6HvcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# map calendar to data\n", + "calendar.map_to_data(precursor_field)\n", + "calendar.visualize(show_length=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we can get a list of all intervals by running the following line. There, you will find the intervals `-1` and `1`, which corresponds to the creation of a precursor interval (negative integer(s)) and a target interval (positive integer(s)), respectively.
\n", + "\n", + "For more information about the definition of intervals, and how `lilio` works, please check the [README](https://github.com/AI4S2S/lilio) of `lilio`." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
i_interval-8-7-6-5-4-3-2-11
anchor_year
2021[2020-11-01, 2020-12-01)[2020-12-01, 2021-01-01)[2021-01-01, 2021-02-01)[2021-02-01, 2021-03-01)[2021-03-01, 2021-04-01)[2021-04-01, 2021-05-01)[2021-05-01, 2021-06-01)[2021-06-01, 2021-07-01)[2021-08-01, 2021-08-31)
2020[2019-11-01, 2019-12-01)[2019-12-01, 2020-01-01)[2020-01-01, 2020-02-01)[2020-02-01, 2020-03-01)[2020-03-01, 2020-04-01)[2020-04-01, 2020-05-01)[2020-05-01, 2020-06-01)[2020-06-01, 2020-07-01)[2020-08-01, 2020-08-31)
2019[2018-11-01, 2018-12-01)[2018-12-01, 2019-01-01)[2019-01-01, 2019-02-01)[2019-02-01, 2019-03-01)[2019-03-01, 2019-04-01)[2019-04-01, 2019-05-01)[2019-05-01, 2019-06-01)[2019-06-01, 2019-07-01)[2019-08-01, 2019-08-31)
\n", + "
" + ], + "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", + "i_interval -4 -3 \\\n", + "anchor_year \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", + "\n", + "i_interval -2 -1 \\\n", + "anchor_year \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", + "\n", + "i_interval 1 \n", + "anchor_year \n", + "2021 [2021-08-01, 2021-08-31) \n", + "2020 [2020-08-01, 2020-08-31) \n", + "2019 [2019-08-01, 2019-08-31) " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calendar.show()[:3]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Train-validate-test split based on the anchor years (60%/20%/20% split)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "# get 60% of instance as training\n", + "years = sorted(calendar.get_intervals().index)\n", + "train_samples = round(len(years) * 0.6)\n", + "test_samples = round(len(years) * 0.2)\n", + "start_year = years[0]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fit preprocessor with training samples and preprocess data\n", + "In this step, we remove trend and take anomalies for the precursor field. Note that here we use raw daily data for detrending and taking anomalies.
\n", + "\n", + "In general, there are many \"flavors\" of preprocessing, like when to perform this operation, and in which order do we want to preprocess the data. To improve the transparency and reproducibility of our work, we think it is necessary to standardize these steps. To stick to the best practices, we suggest to preprocess your data in the following way." + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [], + "source": [ + "# create preprocessor\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=\"linear\",\n", + " subtract_climatology=True,\n", + ")\n", + "\n", + "# fit preprocessor with training data\n", + "preprocessor.fit(\n", + " precursor_field.sel(\n", + " time=slice(str(start_year), str(start_year + train_samples - 1))\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "# preprocess the whole precursor field\n", + "precursor_field_prep = preprocessor.transform(precursor_field)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Resample data to the calendar" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "precursor_field_resample = lilio.resample(calendar, precursor_field_prep)\n", + "target_field_resample = lilio.resample(calendar, target_field)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "# select variables and intervals\n", + "precursor_field_sel = precursor_field_resample['sst']\n", + "# selecting 1-d timeseries of cluster 3 for target\n", + "target_series_sel = target_field_resample['t2m'].sel(cluster=3) " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to convert our data to `torch.Tensor`." + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "# slice and reshape input desired by LSTM (samples, lags, space)\n", + "sequence_lags_precursor = len(precursor_field_sel.i_interval) - 1 # we only take precursor parts of i intervals\n", + "lat_precursor = len(precursor_field_sel.latitude)\n", + "lon_precursor = len(precursor_field_sel.longitude)\n", + "\n", + "X_torch = torch.from_numpy(precursor_field_sel[:,:-1,:,:].data).type(torch.FloatTensor)\n", + "y_torch = torch.from_numpy(target_series_sel[:,-1].data).type(torch.FloatTensor)\n", + "\n", + "# shape (samples, lags, space)\n", + "X_torch = X_torch.view(-1, sequence_lags_precursor, lat_precursor*lon_precursor)\n", + "\n", + "# turn nan to 0.0\n", + "X_torch = torch.nan_to_num(X_torch, 0.0)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We split our data into train/cross-validate/test sets." + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "# train/validate/test split and use pytorch dataloader\n", + "train_X_torch = X_torch[:train_samples]\n", + "train_y_torch = y_torch[:train_samples]\n", + "\n", + "valid_X_torch = X_torch[train_samples:train_samples + test_samples]\n", + "valid_y_torch = y_torch[train_samples:train_samples + test_samples]\n", + "\n", + "test_X_torch = X_torch[-test_samples:]\n", + "test_y_torch = y_torch[-test_samples:]\n", + "\n", + "# pytorch train and test sets\n", + "train_set = torch.utils.data.TensorDataset(train_X_torch, train_y_torch)\n", + "valid_set = torch.utils.data.TensorDataset(valid_X_torch, valid_y_torch)\n", + "test_set = torch.utils.data.TensorDataset(test_X_torch, test_y_torch)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Build LSTM model\n", + "Build a LSTM model with `nn.LSTM` module.\n", + "\n", + "The architecture of the autoencoder used here is shown in the figure below.\n", + "\n", + "\"LSTM\"\n", + "\n", + "(source of image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(nn.Module):\n", + " def __init__(self, input_dim, hidden_dim, output_dim=1,\n", + " batch_size=1, num_layers=1, dropout=0.1):\n", + " \"\"\"\n", + " Initialize the LSTM model in Pytorch and specify the basic model structure.\n", + " Expected input timeseries dimension [batch_size, sequence, channels]\n", + "\n", + " args:\n", + " input_dim: The number of expected features in the input x\n", + " hidden_dim: The number of features in the hidden state h\n", + " output_dim: The number of output features h\n", + " num_layers: Number of recurrent layers. E.g., setting num_layers=2 would \n", + " mean stacking two LSTMs together to form a stacked LSTM, with the second \n", + " LSTM taking in outputs of the first LSTM and computing the final results. \n", + " Default: 1\n", + " \"\"\"\n", + " super().__init__()\n", + " self.hidden_dim = hidden_dim\n", + " self.batch_size = batch_size \n", + " self.num_layers = num_layers\n", + " # Define the LSTM layer\n", + " self.lstm = nn.LSTM(input_size = input_dim, hidden_size = hidden_dim,\n", + " num_layers = num_layers, batch_first = True, dropout = dropout)\n", + "\n", + " # Define the output layer\n", + " self.linear = nn.Linear(hidden_dim, output_dim)\n", + " \n", + " def init_hidden(self):\n", + " \"\"\"Initialize hidden state with random values.\"\"\"\n", + " return (torch.randn(self.num_layers, self.batch_size, self.hidden_dim),\n", + " torch.randn(self.num_layers, self.batch_size, self.hidden_dim))\n", + " \n", + " def forward(self, input):\n", + " (h_0, c_0) = self.init_hidden()\n", + " x, _ = self.lstm(input, (h_0, c_0))\n", + " x = self.linear(x)\n", + " \n", + " return x" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print system info." + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pytorch version 2.0.1\n", + "Is CUDA available? False\n", + "Device to be used for computation: cpu\n" + ] + } + ], + "source": [ + "print (\"Pytorch version {}\".format(torch.__version__))\n", + "use_cuda = torch.cuda.is_available()\n", + "print(\"Is CUDA available? {}\".format(use_cuda))\n", + "# use GPU if possible\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", + "print(\"Device to be used for computation: {}\".format(device))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Hyper-parameter tuning with W&B\n", + "We use Weight&Biases to monitor the training process. It is very simple to integrate it into our workflow and more information about how to set it up can be found at https://docs.wandb.ai/quickstart.
\n", + "\n", + "You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "wandb version 0.15.8 is available! To upgrade, please run:\n", + " $ pip install wandb --upgrade" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.15.4" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/semv/surfdrive/Scripts/escience/cookbook/workflow/wandb/run-20230815_150902-fh7xdmqd" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run dry-shape-17 to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/ai4s2s-demo/test-LSTM" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/ai4s2s-demo/test-LSTM/runs/fh7xdmqd" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# define hyperparameters and the \n", + "hyperparameters = dict(\n", + " epoch = 150,\n", + " input_dim = lat_precursor*lon_precursor,\n", + " hidden_dim = lat_precursor*lon_precursor*2,\n", + " output_dim = 1,\n", + " batch_size = 6, \n", + " num_layers = 2,\n", + " dropout = 0.0,\n", + " learning_rate = 0.02,\n", + " dataset = 'Weather',\n", + " architecture = 'LSTM'\n", + ")\n", + "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", + "# initialize weights & biases service\n", + "mode = 'disabled'\n", + "mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-LSTM' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", + "config = wandb.config" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create data loaders with chosen batch size. " + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "# create data loader and use batch \n", + "train_loader = torch.utils.data.DataLoader(train_set, batch_size = config.batch_size, shuffle = True)\n", + "valid_loader = torch.utils.data.DataLoader(valid_set, batch_size = config.batch_size, shuffle = True)\n", + "test_loader = torch.utils.data.DataLoader(test_set, batch_size = config.batch_size, shuffle = True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize and train model\n", + "Create model using specified hyperparameter. Initialize model and choose loss function and optimizer." + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model details:\n", + " LSTM(\n", + " (lstm): LSTM(65, 130, num_layers=2, batch_first=True, dropout=0.1)\n", + " (linear): Linear(in_features=130, out_features=1, bias=True)\n", + ")\n", + "Optimizer details:\n", + " Adam (\n", + "Parameter Group 0\n", + " amsgrad: False\n", + " betas: (0.9, 0.999)\n", + " capturable: False\n", + " differentiable: False\n", + " eps: 1e-08\n", + " foreach: None\n", + " fused: None\n", + " lr: 0.02\n", + " maximize: False\n", + " weight_decay: 0\n", + ")\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Initialize model\n", + "model = LSTM(input_dim = config[\"input_dim\"],\n", + " hidden_dim = config[\"hidden_dim\"],\n", + " output_dim = config[\"output_dim\"], \n", + " batch_size = config[\"batch_size\"], \n", + " num_layers = config[\"num_layers\"]\n", + ")\n", + "# Specify loss function\n", + "criterion = nn.MSELoss()\n", + "# Choose optimizer\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)\n", + "# Print model and optimizer details\n", + "print('Model details:\\n', model)\n", + "print('Optimizer details:\\n',optimizer)\n", + "wandb.watch(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "238811\n" + ] + } + ], + "source": [ + "# display the total number of parameters\n", + "utils.total_num_param(model)\n", + "# for more details about the trainable parameter in each layer\n", + "#utils.param_trainable(model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start the training and cross validation loop." + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0 [0/36(0%)]\tLoss: 516.528259\n", + "Epoch : 0 [6/36(17%)]\tLoss: 493.644196\n", + "Epoch : 0 [12/36(33%)]\tLoss: 309.414124\n", + "Epoch : 0 [18/36(50%)]\tLoss: 244.629639\n", + "Epoch : 0 [24/36(67%)]\tLoss: 221.758804\n", + "Epoch : 0 [30/36(83%)]\tLoss: 116.422852\n", + "Epoch : 1 [0/36(0%)]\tLoss: 68.948174\n", + "Epoch : 1 [6/36(17%)]\tLoss: 41.374641\n", + "Epoch : 1 [12/36(33%)]\tLoss: 28.808563\n", + "Epoch : 1 [18/36(50%)]\tLoss: 9.308384\n", + "Epoch : 1 [24/36(67%)]\tLoss: 2.922521\n", + "Epoch : 1 [30/36(83%)]\tLoss: 1.122476\n", + "Epoch : 2 [0/36(0%)]\tLoss: 116.638184\n", + "Epoch : 2 [6/36(17%)]\tLoss: 13.724627\n", + "Epoch : 2 [12/36(33%)]\tLoss: 18.838598\n", + "Epoch : 2 [18/36(50%)]\tLoss: 17.926105\n", + "Epoch : 2 [24/36(67%)]\tLoss: 26.309319\n", + "Epoch : 2 [30/36(83%)]\tLoss: 20.750399\n", + "Epoch : 3 [0/36(0%)]\tLoss: 18.211731\n", + "Epoch : 3 [6/36(17%)]\tLoss: 14.880689\n", + "Epoch : 3 [12/36(33%)]\tLoss: 11.606751\n", + "Epoch : 3 [18/36(50%)]\tLoss: 6.439905\n", + "Epoch : 3 [24/36(67%)]\tLoss: 8.875995\n", + "Epoch : 3 [30/36(83%)]\tLoss: 4.185455\n", + "Epoch : 4 [0/36(0%)]\tLoss: 1.051760\n", + "Epoch : 4 [6/36(17%)]\tLoss: 1.442731\n", + "Epoch : 4 [12/36(33%)]\tLoss: 2.496709\n", + "Epoch : 4 [18/36(50%)]\tLoss: 0.768737\n", + "Epoch : 4 [24/36(67%)]\tLoss: 0.946671\n", + "Epoch : 4 [30/36(83%)]\tLoss: 3.218945\n", + "Epoch : 5 [0/36(0%)]\tLoss: 6.234029\n", + "Epoch : 5 [6/36(17%)]\tLoss: 3.201366\n", + "Epoch : 5 [12/36(33%)]\tLoss: 1.873161\n", + "Epoch : 5 [18/36(50%)]\tLoss: 3.825061\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.931075\n", + "Epoch : 5 [30/36(83%)]\tLoss: 1.693661\n", + "Epoch : 6 [0/36(0%)]\tLoss: 2.324636\n", + "Epoch : 6 [6/36(17%)]\tLoss: 2.397951\n", + "Epoch : 6 [12/36(33%)]\tLoss: 1.893287\n", + "Epoch : 6 [18/36(50%)]\tLoss: 0.454697\n", + "Epoch : 6 [24/36(67%)]\tLoss: 0.467605\n", + "Epoch : 6 [30/36(83%)]\tLoss: 0.381001\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.539064\n", + "Epoch : 7 [6/36(17%)]\tLoss: 1.890634\n", + "Epoch : 7 [12/36(33%)]\tLoss: 1.339070\n", + "Epoch : 7 [18/36(50%)]\tLoss: 2.234175\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.684829\n", + "Epoch : 7 [30/36(83%)]\tLoss: 1.125388\n", + "Epoch : 8 [0/36(0%)]\tLoss: 1.900899\n", + "Epoch : 8 [6/36(17%)]\tLoss: 1.828272\n", + "Epoch : 8 [12/36(33%)]\tLoss: 1.580706\n", + "Epoch : 8 [18/36(50%)]\tLoss: 1.083183\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.200776\n", + "Epoch : 8 [30/36(83%)]\tLoss: 0.339798\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.267858\n", + "Epoch : 9 [6/36(17%)]\tLoss: 0.379382\n", + "Epoch : 9 [12/36(33%)]\tLoss: 1.278743\n", + "Epoch : 9 [18/36(50%)]\tLoss: 0.836766\n", + "Epoch : 9 [24/36(67%)]\tLoss: 2.466715\n", + "Epoch : 9 [30/36(83%)]\tLoss: 1.716142\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.400726\n", + "Epoch : 10 [6/36(17%)]\tLoss: 0.401261\n", + "Epoch : 10 [12/36(33%)]\tLoss: 2.837988\n", + "Epoch : 10 [18/36(50%)]\tLoss: 0.417636\n", + "Epoch : 10 [24/36(67%)]\tLoss: 0.920130\n", + "Epoch : 10 [30/36(83%)]\tLoss: 1.602870\n", + "Epoch : 11 [0/36(0%)]\tLoss: 1.309004\n", + "Epoch : 11 [6/36(17%)]\tLoss: 0.151987\n", + "Epoch : 11 [12/36(33%)]\tLoss: 1.359560\n", + "Epoch : 11 [18/36(50%)]\tLoss: 1.303441\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.295403\n", + "Epoch : 11 [30/36(83%)]\tLoss: 1.382628\n", + "Epoch : 12 [0/36(0%)]\tLoss: 1.168896\n", + "Epoch : 12 [6/36(17%)]\tLoss: 1.369395\n", + "Epoch : 12 [12/36(33%)]\tLoss: 1.545065\n", + "Epoch : 12 [18/36(50%)]\tLoss: 0.580785\n", + "Epoch : 12 [24/36(67%)]\tLoss: 0.182766\n", + "Epoch : 12 [30/36(83%)]\tLoss: 1.148893\n", + "Epoch : 13 [0/36(0%)]\tLoss: 1.633968\n", + "Epoch : 13 [6/36(17%)]\tLoss: 1.488160\n", + "Epoch : 13 [12/36(33%)]\tLoss: 0.226085\n", + "Epoch : 13 [18/36(50%)]\tLoss: 1.706136\n", + "Epoch : 13 [24/36(67%)]\tLoss: 0.422177\n", + "Epoch : 13 [30/36(83%)]\tLoss: 0.330229\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.949657\n", + "Epoch : 14 [6/36(17%)]\tLoss: 0.580374\n", + "Epoch : 14 [12/36(33%)]\tLoss: 0.927473\n", + "Epoch : 14 [18/36(50%)]\tLoss: 1.959393\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.352005\n", + "Epoch : 14 [30/36(83%)]\tLoss: 0.225588\n", + "Epoch : 15 [0/36(0%)]\tLoss: 1.296610\n", + "Epoch : 15 [6/36(17%)]\tLoss: 0.229849\n", + "Epoch : 15 [12/36(33%)]\tLoss: 1.977288\n", + "Epoch : 15 [18/36(50%)]\tLoss: 1.222303\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.370004\n", + "Epoch : 15 [30/36(83%)]\tLoss: 0.417258\n", + "Epoch : 16 [0/36(0%)]\tLoss: 1.781260\n", + "Epoch : 16 [6/36(17%)]\tLoss: 0.654886\n", + "Epoch : 16 [12/36(33%)]\tLoss: 0.394193\n", + "Epoch : 16 [18/36(50%)]\tLoss: 1.166058\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.165968\n", + "Epoch : 16 [30/36(83%)]\tLoss: 0.553601\n", + "Epoch : 17 [0/36(0%)]\tLoss: 2.482478\n", + "Epoch : 17 [6/36(17%)]\tLoss: 0.265560\n", + "Epoch : 17 [12/36(33%)]\tLoss: 0.980500\n", + "Epoch : 17 [18/36(50%)]\tLoss: 0.264857\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.461799\n", + "Epoch : 17 [30/36(83%)]\tLoss: 0.640123\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.559402\n", + "Epoch : 18 [6/36(17%)]\tLoss: 0.973921\n", + "Epoch : 18 [12/36(33%)]\tLoss: 1.157495\n", + "Epoch : 18 [18/36(50%)]\tLoss: 0.349703\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.901509\n", + "Epoch : 18 [30/36(83%)]\tLoss: 1.027236\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.447277\n", + "Epoch : 19 [6/36(17%)]\tLoss: 0.830845\n", + "Epoch : 19 [12/36(33%)]\tLoss: 1.187034\n", + "Epoch : 19 [18/36(50%)]\tLoss: 0.384522\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.084943\n", + "Epoch : 19 [30/36(83%)]\tLoss: 0.442460\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.897299\n", + "Epoch : 20 [6/36(17%)]\tLoss: 0.755689\n", + "Epoch : 20 [12/36(33%)]\tLoss: 0.472379\n", + "Epoch : 20 [18/36(50%)]\tLoss: 0.490551\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.136415\n", + "Epoch : 20 [30/36(83%)]\tLoss: 0.711152\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.197751\n", + "Epoch : 21 [6/36(17%)]\tLoss: 0.411152\n", + "Epoch : 21 [12/36(33%)]\tLoss: 0.528997\n", + "Epoch : 21 [18/36(50%)]\tLoss: 0.504573\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.004126\n", + "Epoch : 21 [30/36(83%)]\tLoss: 1.608831\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.178852\n", + "Epoch : 22 [6/36(17%)]\tLoss: 0.480259\n", + "Epoch : 22 [12/36(33%)]\tLoss: 1.195150\n", + "Epoch : 22 [18/36(50%)]\tLoss: 0.091800\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.907932\n", + "Epoch : 22 [30/36(83%)]\tLoss: 0.767417\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.430879\n", + "Epoch : 23 [6/36(17%)]\tLoss: 1.672636\n", + "Epoch : 23 [12/36(33%)]\tLoss: 0.489114\n", + "Epoch : 23 [18/36(50%)]\tLoss: 0.536694\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.122730\n", + "Epoch : 23 [30/36(83%)]\tLoss: 0.708865\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.309483\n", + "Epoch : 24 [6/36(17%)]\tLoss: 0.777648\n", + "Epoch : 24 [12/36(33%)]\tLoss: 0.449275\n", + "Epoch : 24 [18/36(50%)]\tLoss: 0.501902\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.294374\n", + "Epoch : 24 [30/36(83%)]\tLoss: 1.187251\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.790861\n", + "Epoch : 25 [6/36(17%)]\tLoss: 0.631538\n", + "Epoch : 25 [12/36(33%)]\tLoss: 1.005407\n", + "Epoch : 25 [18/36(50%)]\tLoss: 0.669365\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.376691\n", + "Epoch : 25 [30/36(83%)]\tLoss: 0.297374\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.403546\n", + "Epoch : 26 [6/36(17%)]\tLoss: 1.206046\n", + "Epoch : 26 [12/36(33%)]\tLoss: 0.385522\n", + "Epoch : 26 [18/36(50%)]\tLoss: 0.129889\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.440866\n", + "Epoch : 26 [30/36(83%)]\tLoss: 0.701802\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.070548\n", + "Epoch : 27 [6/36(17%)]\tLoss: 0.617127\n", + "Epoch : 27 [12/36(33%)]\tLoss: 0.665235\n", + "Epoch : 27 [18/36(50%)]\tLoss: 0.360384\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.271670\n", + "Epoch : 27 [30/36(83%)]\tLoss: 0.354018\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.680938\n", + "Epoch : 28 [6/36(17%)]\tLoss: 0.248818\n", + "Epoch : 28 [12/36(33%)]\tLoss: 0.514232\n", + "Epoch : 28 [18/36(50%)]\tLoss: 0.492709\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.354993\n", + "Epoch : 28 [30/36(83%)]\tLoss: 0.542415\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.929637\n", + "Epoch : 29 [6/36(17%)]\tLoss: 0.537237\n", + "Epoch : 29 [12/36(33%)]\tLoss: 0.405150\n", + "Epoch : 29 [18/36(50%)]\tLoss: 0.610814\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.134008\n", + "Epoch : 29 [30/36(83%)]\tLoss: 0.173096\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.443617\n", + "Epoch : 30 [6/36(17%)]\tLoss: 0.190090\n", + "Epoch : 30 [12/36(33%)]\tLoss: 1.051087\n", + "Epoch : 30 [18/36(50%)]\tLoss: 0.156531\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.172341\n", + "Epoch : 30 [30/36(83%)]\tLoss: 0.607138\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.675803\n", + "Epoch : 31 [6/36(17%)]\tLoss: 0.383659\n", + "Epoch : 31 [12/36(33%)]\tLoss: 0.854909\n", + "Epoch : 31 [18/36(50%)]\tLoss: 0.224671\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.103603\n", + "Epoch : 31 [30/36(83%)]\tLoss: 0.485713\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.211679\n", + "Epoch : 32 [6/36(17%)]\tLoss: 0.343030\n", + "Epoch : 32 [12/36(33%)]\tLoss: 0.201261\n", + "Epoch : 32 [18/36(50%)]\tLoss: 0.674630\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.160821\n", + "Epoch : 32 [30/36(83%)]\tLoss: 0.778926\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.267954\n", + "Epoch : 33 [6/36(17%)]\tLoss: 0.658938\n", + "Epoch : 33 [12/36(33%)]\tLoss: 0.702804\n", + "Epoch : 33 [18/36(50%)]\tLoss: 0.486097\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.383082\n", + "Epoch : 33 [30/36(83%)]\tLoss: 0.202792\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.605238\n", + "Epoch : 34 [6/36(17%)]\tLoss: 0.258349\n", + "Epoch : 34 [12/36(33%)]\tLoss: 0.143604\n", + "Epoch : 34 [18/36(50%)]\tLoss: 0.699042\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.173236\n", + "Epoch : 34 [30/36(83%)]\tLoss: 0.373154\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.603755\n", + "Epoch : 35 [6/36(17%)]\tLoss: 0.229070\n", + "Epoch : 35 [12/36(33%)]\tLoss: 0.276144\n", + "Epoch : 35 [18/36(50%)]\tLoss: 0.343710\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.425285\n", + "Epoch : 35 [30/36(83%)]\tLoss: 0.395606\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.275225\n", + "Epoch : 36 [6/36(17%)]\tLoss: 0.302472\n", + "Epoch : 36 [12/36(33%)]\tLoss: 0.769961\n", + "Epoch : 36 [18/36(50%)]\tLoss: 0.194864\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.249271\n", + "Epoch : 36 [30/36(83%)]\tLoss: 0.173123\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.178454\n", + "Epoch : 37 [6/36(17%)]\tLoss: 0.478488\n", + "Epoch : 37 [12/36(33%)]\tLoss: 0.338690\n", + "Epoch : 37 [18/36(50%)]\tLoss: 0.291107\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.828552\n", + "Epoch : 37 [30/36(83%)]\tLoss: 0.195684\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.400808\n", + "Epoch : 38 [6/36(17%)]\tLoss: 0.444077\n", + "Epoch : 38 [12/36(33%)]\tLoss: 0.293709\n", + "Epoch : 38 [18/36(50%)]\tLoss: 0.111199\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.577450\n", + "Epoch : 38 [30/36(83%)]\tLoss: 0.586312\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.259011\n", + "Epoch : 39 [6/36(17%)]\tLoss: 0.038859\n", + "Epoch : 39 [12/36(33%)]\tLoss: 0.984449\n", + "Epoch : 39 [18/36(50%)]\tLoss: 0.249646\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.346607\n", + "Epoch : 39 [30/36(83%)]\tLoss: 0.410170\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.378226\n", + "Epoch : 40 [6/36(17%)]\tLoss: 0.286662\n", + "Epoch : 40 [12/36(33%)]\tLoss: 0.323225\n", + "Epoch : 40 [18/36(50%)]\tLoss: 0.226514\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.402541\n", + "Epoch : 40 [30/36(83%)]\tLoss: 0.200133\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.254956\n", + "Epoch : 41 [6/36(17%)]\tLoss: 0.101516\n", + "Epoch : 41 [12/36(33%)]\tLoss: 0.150805\n", + "Epoch : 41 [18/36(50%)]\tLoss: 0.363133\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.701897\n", + "Epoch : 41 [30/36(83%)]\tLoss: 0.379300\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.682549\n", + "Epoch : 42 [6/36(17%)]\tLoss: 0.212808\n", + "Epoch : 42 [12/36(33%)]\tLoss: 0.368408\n", + "Epoch : 42 [18/36(50%)]\tLoss: 0.466276\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.258903\n", + "Epoch : 42 [30/36(83%)]\tLoss: 0.194381\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.300274\n", + "Epoch : 43 [6/36(17%)]\tLoss: 0.375221\n", + "Epoch : 43 [12/36(33%)]\tLoss: 0.389522\n", + "Epoch : 43 [18/36(50%)]\tLoss: 0.699092\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.198897\n", + "Epoch : 43 [30/36(83%)]\tLoss: 0.531829\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.057890\n", + "Epoch : 44 [6/36(17%)]\tLoss: 0.546469\n", + "Epoch : 44 [12/36(33%)]\tLoss: 0.764858\n", + "Epoch : 44 [18/36(50%)]\tLoss: 0.557032\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.240198\n", + "Epoch : 44 [30/36(83%)]\tLoss: 0.343167\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.474389\n", + "Epoch : 45 [6/36(17%)]\tLoss: 0.348931\n", + "Epoch : 45 [12/36(33%)]\tLoss: 0.201976\n", + "Epoch : 45 [18/36(50%)]\tLoss: 0.242682\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.421929\n", + "Epoch : 45 [30/36(83%)]\tLoss: 0.183847\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.085930\n", + "Epoch : 46 [6/36(17%)]\tLoss: 0.086074\n", + "Epoch : 46 [12/36(33%)]\tLoss: 0.261842\n", + "Epoch : 46 [18/36(50%)]\tLoss: 0.288911\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.272918\n", + "Epoch : 46 [30/36(83%)]\tLoss: 0.838976\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.133252\n", + "Epoch : 47 [6/36(17%)]\tLoss: 0.211231\n", + "Epoch : 47 [12/36(33%)]\tLoss: 0.250015\n", + "Epoch : 47 [18/36(50%)]\tLoss: 0.295242\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.365185\n", + "Epoch : 47 [30/36(83%)]\tLoss: 0.357987\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.215357\n", + "Epoch : 48 [6/36(17%)]\tLoss: 0.009172\n", + "Epoch : 48 [12/36(33%)]\tLoss: 0.258865\n", + "Epoch : 48 [18/36(50%)]\tLoss: 0.249907\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.278797\n", + "Epoch : 48 [30/36(83%)]\tLoss: 0.361466\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.160715\n", + "Epoch : 49 [6/36(17%)]\tLoss: 0.128147\n", + "Epoch : 49 [12/36(33%)]\tLoss: 0.191254\n", + "Epoch : 49 [18/36(50%)]\tLoss: 0.324773\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.243476\n", + "Epoch : 49 [30/36(83%)]\tLoss: 0.569911\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.099596\n", + "Epoch : 50 [6/36(17%)]\tLoss: 0.397075\n", + "Epoch : 50 [12/36(33%)]\tLoss: 0.283573\n", + "Epoch : 50 [18/36(50%)]\tLoss: 0.119007\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.290386\n", + "Epoch : 50 [30/36(83%)]\tLoss: 0.114752\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.269920\n", + "Epoch : 51 [6/36(17%)]\tLoss: 0.083404\n", + "Epoch : 51 [12/36(33%)]\tLoss: 0.097491\n", + "Epoch : 51 [18/36(50%)]\tLoss: 0.249201\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.608813\n", + "Epoch : 51 [30/36(83%)]\tLoss: 0.740791\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.023241\n", + "Epoch : 52 [6/36(17%)]\tLoss: 0.108144\n", + "Epoch : 52 [12/36(33%)]\tLoss: 0.507702\n", + "Epoch : 52 [18/36(50%)]\tLoss: 0.262222\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.145016\n", + "Epoch : 52 [30/36(83%)]\tLoss: 0.586246\n", + "Epoch : 53 [0/36(0%)]\tLoss: 1.085643\n", + "Epoch : 53 [6/36(17%)]\tLoss: 0.205110\n", + "Epoch : 53 [12/36(33%)]\tLoss: 0.895370\n", + "Epoch : 53 [18/36(50%)]\tLoss: 0.409061\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.718132\n", + "Epoch : 53 [30/36(83%)]\tLoss: 0.091833\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.076207\n", + "Epoch : 54 [6/36(17%)]\tLoss: 0.395567\n", + "Epoch : 54 [12/36(33%)]\tLoss: 0.561963\n", + "Epoch : 54 [18/36(50%)]\tLoss: 0.446378\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.380219\n", + "Epoch : 54 [30/36(83%)]\tLoss: 0.094934\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.435205\n", + "Epoch : 55 [6/36(17%)]\tLoss: 0.143462\n", + "Epoch : 55 [12/36(33%)]\tLoss: 0.091203\n", + "Epoch : 55 [18/36(50%)]\tLoss: 0.203511\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.605771\n", + "Epoch : 55 [30/36(83%)]\tLoss: 0.344020\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.189467\n", + "Epoch : 56 [6/36(17%)]\tLoss: 0.356118\n", + "Epoch : 56 [12/36(33%)]\tLoss: 0.153569\n", + "Epoch : 56 [18/36(50%)]\tLoss: 0.235099\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.486784\n", + "Epoch : 56 [30/36(83%)]\tLoss: 0.103804\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.153700\n", + "Epoch : 57 [6/36(17%)]\tLoss: 0.356951\n", + "Epoch : 57 [12/36(33%)]\tLoss: 0.176532\n", + "Epoch : 57 [18/36(50%)]\tLoss: 0.429583\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.196846\n", + "Epoch : 57 [30/36(83%)]\tLoss: 0.196656\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.075515\n", + "Epoch : 58 [6/36(17%)]\tLoss: 0.225036\n", + "Epoch : 58 [12/36(33%)]\tLoss: 0.269354\n", + "Epoch : 58 [18/36(50%)]\tLoss: 0.302932\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.109417\n", + "Epoch : 58 [30/36(83%)]\tLoss: 0.333395\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.352131\n", + "Epoch : 59 [6/36(17%)]\tLoss: 0.752487\n", + "Epoch : 59 [12/36(33%)]\tLoss: 0.289071\n", + "Epoch : 59 [18/36(50%)]\tLoss: 0.039652\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.116225\n", + "Epoch : 59 [30/36(83%)]\tLoss: 0.080902\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.272397\n", + "Epoch : 60 [6/36(17%)]\tLoss: 0.097903\n", + "Epoch : 60 [12/36(33%)]\tLoss: 0.157691\n", + "Epoch : 60 [18/36(50%)]\tLoss: 0.533456\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.083062\n", + "Epoch : 60 [30/36(83%)]\tLoss: 0.230806\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.222781\n", + "Epoch : 61 [6/36(17%)]\tLoss: 0.364903\n", + "Epoch : 61 [12/36(33%)]\tLoss: 0.384747\n", + "Epoch : 61 [18/36(50%)]\tLoss: 0.155332\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.435321\n", + "Epoch : 61 [30/36(83%)]\tLoss: 0.145292\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.103781\n", + "Epoch : 62 [6/36(17%)]\tLoss: 0.306506\n", + "Epoch : 62 [12/36(33%)]\tLoss: 0.153479\n", + "Epoch : 62 [18/36(50%)]\tLoss: 0.337080\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.251309\n", + "Epoch : 62 [30/36(83%)]\tLoss: 0.242955\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.087441\n", + "Epoch : 63 [6/36(17%)]\tLoss: 0.115906\n", + "Epoch : 63 [12/36(33%)]\tLoss: 0.372951\n", + "Epoch : 63 [18/36(50%)]\tLoss: 0.185549\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.131421\n", + "Epoch : 63 [30/36(83%)]\tLoss: 0.619966\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.233455\n", + "Epoch : 64 [6/36(17%)]\tLoss: 0.161063\n", + "Epoch : 64 [12/36(33%)]\tLoss: 0.131513\n", + "Epoch : 64 [18/36(50%)]\tLoss: 0.061368\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.340880\n", + "Epoch : 64 [30/36(83%)]\tLoss: 0.302182\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.462188\n", + "Epoch : 65 [6/36(17%)]\tLoss: 0.256910\n", + "Epoch : 65 [12/36(33%)]\tLoss: 0.139457\n", + "Epoch : 65 [18/36(50%)]\tLoss: 0.075599\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.359870\n", + "Epoch : 65 [30/36(83%)]\tLoss: 0.113247\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.313677\n", + "Epoch : 66 [6/36(17%)]\tLoss: 0.158622\n", + "Epoch : 66 [12/36(33%)]\tLoss: 0.537946\n", + "Epoch : 66 [18/36(50%)]\tLoss: 0.149310\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.125288\n", + "Epoch : 66 [30/36(83%)]\tLoss: 0.086708\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.071125\n", + "Epoch : 67 [6/36(17%)]\tLoss: 0.218499\n", + "Epoch : 67 [12/36(33%)]\tLoss: 0.146712\n", + "Epoch : 67 [18/36(50%)]\tLoss: 0.196738\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.132106\n", + "Epoch : 67 [30/36(83%)]\tLoss: 0.536286\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.310024\n", + "Epoch : 68 [6/36(17%)]\tLoss: 0.054234\n", + "Epoch : 68 [12/36(33%)]\tLoss: 0.181129\n", + "Epoch : 68 [18/36(50%)]\tLoss: 0.118671\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.150839\n", + "Epoch : 68 [30/36(83%)]\tLoss: 0.139774\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.187910\n", + "Epoch : 69 [6/36(17%)]\tLoss: 0.621686\n", + "Epoch : 69 [12/36(33%)]\tLoss: 0.084671\n", + "Epoch : 69 [18/36(50%)]\tLoss: 0.164249\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.172852\n", + "Epoch : 69 [30/36(83%)]\tLoss: 0.073985\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.174874\n", + "Epoch : 70 [6/36(17%)]\tLoss: 0.197621\n", + "Epoch : 70 [12/36(33%)]\tLoss: 0.116429\n", + "Epoch : 70 [18/36(50%)]\tLoss: 0.620843\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.261749\n", + "Epoch : 70 [30/36(83%)]\tLoss: 0.138441\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.074517\n", + "Epoch : 71 [6/36(17%)]\tLoss: 0.244431\n", + "Epoch : 71 [12/36(33%)]\tLoss: 0.066475\n", + "Epoch : 71 [18/36(50%)]\tLoss: 0.408789\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.065595\n", + "Epoch : 71 [30/36(83%)]\tLoss: 0.228927\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.292318\n", + "Epoch : 72 [6/36(17%)]\tLoss: 0.146810\n", + "Epoch : 72 [12/36(33%)]\tLoss: 0.394246\n", + "Epoch : 72 [18/36(50%)]\tLoss: 0.190826\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.134544\n", + "Epoch : 72 [30/36(83%)]\tLoss: 0.065008\n", + "Epoch : 73 [0/36(0%)]\tLoss: 3.369841\n", + "Epoch : 73 [6/36(17%)]\tLoss: 0.049753\n", + "Epoch : 73 [12/36(33%)]\tLoss: 0.134656\n", + "Epoch : 73 [18/36(50%)]\tLoss: 1.645666\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.606362\n", + "Epoch : 73 [30/36(83%)]\tLoss: 0.623104\n", + "Epoch : 74 [0/36(0%)]\tLoss: 12.719373\n", + "Epoch : 74 [6/36(17%)]\tLoss: 0.099318\n", + "Epoch : 74 [12/36(33%)]\tLoss: 102.835365\n", + "Epoch : 74 [18/36(50%)]\tLoss: 67.283539\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.199630\n", + "Epoch : 74 [30/36(83%)]\tLoss: 31.779831\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.467689\n", + "Epoch : 75 [6/36(17%)]\tLoss: 0.926636\n", + "Epoch : 75 [12/36(33%)]\tLoss: 0.168478\n", + "Epoch : 75 [18/36(50%)]\tLoss: 2.949016\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.591696\n", + "Epoch : 75 [30/36(83%)]\tLoss: 1.064394\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.972614\n", + "Epoch : 76 [6/36(17%)]\tLoss: 0.669377\n", + "Epoch : 76 [12/36(33%)]\tLoss: 1.131222\n", + "Epoch : 76 [18/36(50%)]\tLoss: 0.861548\n", + "Epoch : 76 [24/36(67%)]\tLoss: 35.605019\n", + "Epoch : 76 [30/36(83%)]\tLoss: 0.215892\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.526098\n", + "Epoch : 77 [6/36(17%)]\tLoss: 0.923627\n", + "Epoch : 77 [12/36(33%)]\tLoss: 1.203469\n", + "Epoch : 77 [18/36(50%)]\tLoss: 3.352507\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.845145\n", + "Epoch : 77 [30/36(83%)]\tLoss: 1.802333\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.232007\n", + "Epoch : 78 [6/36(17%)]\tLoss: 0.300379\n", + "Epoch : 78 [12/36(33%)]\tLoss: 0.951327\n", + "Epoch : 78 [18/36(50%)]\tLoss: 3.375023\n", + "Epoch : 78 [24/36(67%)]\tLoss: 1.218309\n", + "Epoch : 78 [30/36(83%)]\tLoss: 1.156554\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.234493\n", + "Epoch : 79 [6/36(17%)]\tLoss: 0.246628\n", + "Epoch : 79 [12/36(33%)]\tLoss: 0.647008\n", + "Epoch : 79 [18/36(50%)]\tLoss: 0.432790\n", + "Epoch : 79 [24/36(67%)]\tLoss: 1.182180\n", + "Epoch : 79 [30/36(83%)]\tLoss: 12.006156\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.949562\n", + "Epoch : 80 [6/36(17%)]\tLoss: 0.314957\n", + "Epoch : 80 [12/36(33%)]\tLoss: 0.810043\n", + "Epoch : 80 [18/36(50%)]\tLoss: 2.196857\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.983161\n", + "Epoch : 80 [30/36(83%)]\tLoss: 0.596102\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.859142\n", + "Epoch : 81 [6/36(17%)]\tLoss: 61.319912\n", + "Epoch : 81 [12/36(33%)]\tLoss: 0.484783\n", + "Epoch : 81 [18/36(50%)]\tLoss: 110.458710\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.639279\n", + "Epoch : 81 [30/36(83%)]\tLoss: 2.228316\n", + "Epoch : 82 [0/36(0%)]\tLoss: 5.809715\n", + "Epoch : 82 [6/36(17%)]\tLoss: 3.203912\n", + "Epoch : 82 [12/36(33%)]\tLoss: 1.216486\n", + "Epoch : 82 [18/36(50%)]\tLoss: 0.564137\n", + "Epoch : 82 [24/36(67%)]\tLoss: 1.842664\n", + "Epoch : 82 [30/36(83%)]\tLoss: 1.111481\n", + "Epoch : 83 [0/36(0%)]\tLoss: 1.170580\n", + "Epoch : 83 [6/36(17%)]\tLoss: 4.031375\n", + "Epoch : 83 [12/36(33%)]\tLoss: 0.696435\n", + "Epoch : 83 [18/36(50%)]\tLoss: 1.082865\n", + "Epoch : 83 [24/36(67%)]\tLoss: 2.158972\n", + "Epoch : 83 [30/36(83%)]\tLoss: 0.572473\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.922986\n", + "Epoch : 84 [6/36(17%)]\tLoss: 0.838192\n", + "Epoch : 84 [12/36(33%)]\tLoss: 1.868088\n", + "Epoch : 84 [18/36(50%)]\tLoss: 73.240532\n", + "Epoch : 84 [24/36(67%)]\tLoss: 3.658828\n", + "Epoch : 84 [30/36(83%)]\tLoss: 0.390205\n", + "Epoch : 85 [0/36(0%)]\tLoss: 1.976658\n", + "Epoch : 85 [6/36(17%)]\tLoss: 1.225062\n", + "Epoch : 85 [12/36(33%)]\tLoss: 266.889801\n", + "Epoch : 85 [18/36(50%)]\tLoss: 0.902017\n", + "Epoch : 85 [24/36(67%)]\tLoss: 3.669490\n", + "Epoch : 85 [30/36(83%)]\tLoss: 127.617928\n", + "Epoch : 86 [0/36(0%)]\tLoss: 1.092226\n", + "Epoch : 86 [6/36(17%)]\tLoss: 67.933434\n", + "Epoch : 86 [12/36(33%)]\tLoss: 1.672033\n", + "Epoch : 86 [18/36(50%)]\tLoss: 42.726612\n", + "Epoch : 86 [24/36(67%)]\tLoss: 7.241706\n", + "Epoch : 86 [30/36(83%)]\tLoss: 2.562827\n", + "Epoch : 87 [0/36(0%)]\tLoss: 1.797821\n", + "Epoch : 87 [6/36(17%)]\tLoss: 2.229503\n", + "Epoch : 87 [12/36(33%)]\tLoss: 1.964905\n", + "Epoch : 87 [18/36(50%)]\tLoss: 6.147216\n", + "Epoch : 87 [24/36(67%)]\tLoss: 6.479892\n", + "Epoch : 87 [30/36(83%)]\tLoss: 2.875613\n", + "Epoch : 88 [0/36(0%)]\tLoss: 8.414809\n", + "Epoch : 88 [6/36(17%)]\tLoss: 3.974190\n", + "Epoch : 88 [12/36(33%)]\tLoss: 3.360028\n", + "Epoch : 88 [18/36(50%)]\tLoss: 7.482008\n", + "Epoch : 88 [24/36(67%)]\tLoss: 2.242666\n", + "Epoch : 88 [30/36(83%)]\tLoss: 1.671168\n", + "Epoch : 89 [0/36(0%)]\tLoss: 1.606203\n", + "Epoch : 89 [6/36(17%)]\tLoss: 1.699688\n", + "Epoch : 89 [12/36(33%)]\tLoss: 2.770833\n", + "Epoch : 89 [18/36(50%)]\tLoss: 0.933833\n", + "Epoch : 89 [24/36(67%)]\tLoss: 3.556570\n", + "Epoch : 89 [30/36(83%)]\tLoss: 0.604366\n", + "Epoch : 90 [0/36(0%)]\tLoss: 1.927208\n", + "Epoch : 90 [6/36(17%)]\tLoss: 1.239066\n", + "Epoch : 90 [12/36(33%)]\tLoss: 0.722313\n", + "Epoch : 90 [18/36(50%)]\tLoss: 0.806551\n", + "Epoch : 90 [24/36(67%)]\tLoss: 1.883615\n", + "Epoch : 90 [30/36(83%)]\tLoss: 0.220522\n", + "Epoch : 91 [0/36(0%)]\tLoss: 1.029199\n", + "Epoch : 91 [6/36(17%)]\tLoss: 1.531538\n", + "Epoch : 91 [12/36(33%)]\tLoss: 1.759547\n", + "Epoch : 91 [18/36(50%)]\tLoss: 0.881549\n", + "Epoch : 91 [24/36(67%)]\tLoss: 1.689017\n", + "Epoch : 91 [30/36(83%)]\tLoss: 0.562529\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.676592\n", + "Epoch : 92 [6/36(17%)]\tLoss: 1.124748\n", + "Epoch : 92 [12/36(33%)]\tLoss: 1.120721\n", + "Epoch : 92 [18/36(50%)]\tLoss: 0.872815\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.522370\n", + "Epoch : 92 [30/36(83%)]\tLoss: 0.618109\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.213659\n", + "Epoch : 93 [6/36(17%)]\tLoss: 2.170986\n", + "Epoch : 93 [12/36(33%)]\tLoss: 2.248702\n", + "Epoch : 93 [18/36(50%)]\tLoss: 2.239091\n", + "Epoch : 93 [24/36(67%)]\tLoss: 2.697868\n", + "Epoch : 93 [30/36(83%)]\tLoss: 1.131321\n", + "Epoch : 94 [0/36(0%)]\tLoss: 1.076946\n", + "Epoch : 94 [6/36(17%)]\tLoss: 2.555366\n", + "Epoch : 94 [12/36(33%)]\tLoss: 0.873257\n", + "Epoch : 94 [18/36(50%)]\tLoss: 1.220926\n", + "Epoch : 94 [24/36(67%)]\tLoss: 1.589047\n", + "Epoch : 94 [30/36(83%)]\tLoss: 1.679684\n", + "Epoch : 95 [0/36(0%)]\tLoss: 1.891107\n", + "Epoch : 95 [6/36(17%)]\tLoss: 0.663794\n", + "Epoch : 95 [12/36(33%)]\tLoss: 2.673156\n", + "Epoch : 95 [18/36(50%)]\tLoss: 1.529525\n", + "Epoch : 95 [24/36(67%)]\tLoss: 1.825976\n", + "Epoch : 95 [30/36(83%)]\tLoss: 0.922602\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.705357\n", + "Epoch : 96 [6/36(17%)]\tLoss: 1.641641\n", + "Epoch : 96 [12/36(33%)]\tLoss: 0.964518\n", + "Epoch : 96 [18/36(50%)]\tLoss: 0.668384\n", + "Epoch : 96 [24/36(67%)]\tLoss: 4.322579\n", + "Epoch : 96 [30/36(83%)]\tLoss: 0.529233\n", + "Epoch : 97 [0/36(0%)]\tLoss: 3.278654\n", + "Epoch : 97 [6/36(17%)]\tLoss: 0.730294\n", + "Epoch : 97 [12/36(33%)]\tLoss: 0.354096\n", + "Epoch : 97 [18/36(50%)]\tLoss: 0.798599\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.914651\n", + "Epoch : 97 [30/36(83%)]\tLoss: 0.243752\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.792792\n", + "Epoch : 98 [6/36(17%)]\tLoss: 0.675701\n", + "Epoch : 98 [12/36(33%)]\tLoss: 0.093855\n", + "Epoch : 98 [18/36(50%)]\tLoss: 0.468604\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.776354\n", + "Epoch : 98 [30/36(83%)]\tLoss: 0.389371\n", + "Epoch : 99 [0/36(0%)]\tLoss: 1.688394\n", + "Epoch : 99 [6/36(17%)]\tLoss: 0.263404\n", + "Epoch : 99 [12/36(33%)]\tLoss: 0.167605\n", + "Epoch : 99 [18/36(50%)]\tLoss: 0.588965\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.973092\n", + "Epoch : 99 [30/36(83%)]\tLoss: 0.398584\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.384865\n", + "Epoch : 100 [6/36(17%)]\tLoss: 1.563835\n", + "Epoch : 100 [12/36(33%)]\tLoss: 0.557181\n", + "Epoch : 100 [18/36(50%)]\tLoss: 0.689081\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.286379\n", + "Epoch : 100 [30/36(83%)]\tLoss: 0.870730\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.680938\n", + "Epoch : 101 [6/36(17%)]\tLoss: 0.442050\n", + "Epoch : 101 [12/36(33%)]\tLoss: 0.933344\n", + "Epoch : 101 [18/36(50%)]\tLoss: 0.218322\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.317497\n", + "Epoch : 101 [30/36(83%)]\tLoss: 0.426083\n", + "Epoch : 102 [0/36(0%)]\tLoss: 1.109933\n", + "Epoch : 102 [6/36(17%)]\tLoss: 0.158786\n", + "Epoch : 102 [12/36(33%)]\tLoss: 0.379553\n", + "Epoch : 102 [18/36(50%)]\tLoss: 0.178328\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.149858\n", + "Epoch : 102 [30/36(83%)]\tLoss: 0.607439\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.230417\n", + "Epoch : 103 [6/36(17%)]\tLoss: 0.362516\n", + "Epoch : 103 [12/36(33%)]\tLoss: 0.140880\n", + "Epoch : 103 [18/36(50%)]\tLoss: 0.396187\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.076652\n", + "Epoch : 103 [30/36(83%)]\tLoss: 0.332667\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.310046\n", + "Epoch : 104 [6/36(17%)]\tLoss: 0.812822\n", + "Epoch : 104 [12/36(33%)]\tLoss: 0.236418\n", + "Epoch : 104 [18/36(50%)]\tLoss: 0.434578\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.239052\n", + "Epoch : 104 [30/36(83%)]\tLoss: 0.118270\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.597732\n", + "Epoch : 105 [6/36(17%)]\tLoss: 0.531988\n", + "Epoch : 105 [12/36(33%)]\tLoss: 0.664510\n", + "Epoch : 105 [18/36(50%)]\tLoss: 0.279040\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.696525\n", + "Epoch : 105 [30/36(83%)]\tLoss: 0.142167\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.597683\n", + "Epoch : 106 [6/36(17%)]\tLoss: 0.294101\n", + "Epoch : 106 [12/36(33%)]\tLoss: 0.103234\n", + "Epoch : 106 [18/36(50%)]\tLoss: 0.855245\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.121444\n", + "Epoch : 106 [30/36(83%)]\tLoss: 0.478951\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.389475\n", + "Epoch : 107 [6/36(17%)]\tLoss: 1.087856\n", + "Epoch : 107 [12/36(33%)]\tLoss: 0.195425\n", + "Epoch : 107 [18/36(50%)]\tLoss: 0.173625\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.043061\n", + "Epoch : 107 [30/36(83%)]\tLoss: 0.352717\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.179039\n", + "Epoch : 108 [6/36(17%)]\tLoss: 0.536110\n", + "Epoch : 108 [12/36(33%)]\tLoss: 0.283813\n", + "Epoch : 108 [18/36(50%)]\tLoss: 0.090871\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.312659\n", + "Epoch : 108 [30/36(83%)]\tLoss: 0.106891\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.154622\n", + "Epoch : 109 [6/36(17%)]\tLoss: 0.392797\n", + "Epoch : 109 [12/36(33%)]\tLoss: 0.578963\n", + "Epoch : 109 [18/36(50%)]\tLoss: 0.591535\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.115368\n", + "Epoch : 109 [30/36(83%)]\tLoss: 0.509420\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.768169\n", + "Epoch : 110 [6/36(17%)]\tLoss: 0.118197\n", + "Epoch : 110 [12/36(33%)]\tLoss: 0.394091\n", + "Epoch : 110 [18/36(50%)]\tLoss: 0.080976\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.180286\n", + "Epoch : 110 [30/36(83%)]\tLoss: 0.123542\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.172618\n", + "Epoch : 111 [6/36(17%)]\tLoss: 0.218067\n", + "Epoch : 111 [12/36(33%)]\tLoss: 0.141147\n", + "Epoch : 111 [18/36(50%)]\tLoss: 0.460004\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.193006\n", + "Epoch : 111 [30/36(83%)]\tLoss: 0.145130\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.488930\n", + "Epoch : 112 [6/36(17%)]\tLoss: 0.179750\n", + "Epoch : 112 [12/36(33%)]\tLoss: 0.245076\n", + "Epoch : 112 [18/36(50%)]\tLoss: 0.114840\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.320025\n", + "Epoch : 112 [30/36(83%)]\tLoss: 0.295626\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.759944\n", + "Epoch : 113 [6/36(17%)]\tLoss: 0.064492\n", + "Epoch : 113 [12/36(33%)]\tLoss: 1.199525\n", + "Epoch : 113 [18/36(50%)]\tLoss: 0.259818\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.272911\n", + "Epoch : 113 [30/36(83%)]\tLoss: 0.296827\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.159150\n", + "Epoch : 114 [6/36(17%)]\tLoss: 0.091708\n", + "Epoch : 114 [12/36(33%)]\tLoss: 0.138736\n", + "Epoch : 114 [18/36(50%)]\tLoss: 0.122963\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.344788\n", + "Epoch : 114 [30/36(83%)]\tLoss: 0.112649\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.180079\n", + "Epoch : 115 [6/36(17%)]\tLoss: 0.227955\n", + "Epoch : 115 [12/36(33%)]\tLoss: 0.376193\n", + "Epoch : 115 [18/36(50%)]\tLoss: 0.350139\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.659816\n", + "Epoch : 115 [30/36(83%)]\tLoss: 0.144657\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.210013\n", + "Epoch : 116 [6/36(17%)]\tLoss: 0.571910\n", + "Epoch : 116 [12/36(33%)]\tLoss: 0.220492\n", + "Epoch : 116 [18/36(50%)]\tLoss: 2.272974\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.722035\n", + "Epoch : 116 [30/36(83%)]\tLoss: 0.232504\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.062753\n", + "Epoch : 117 [6/36(17%)]\tLoss: 0.064161\n", + "Epoch : 117 [12/36(33%)]\tLoss: 0.071717\n", + "Epoch : 117 [18/36(50%)]\tLoss: 0.172628\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.219890\n", + "Epoch : 117 [30/36(83%)]\tLoss: 0.534218\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.354081\n", + "Epoch : 118 [6/36(17%)]\tLoss: 0.426698\n", + "Epoch : 118 [12/36(33%)]\tLoss: 0.174897\n", + "Epoch : 118 [18/36(50%)]\tLoss: 0.340198\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.174137\n", + "Epoch : 118 [30/36(83%)]\tLoss: 0.196453\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.177256\n", + "Epoch : 119 [6/36(17%)]\tLoss: 0.352865\n", + "Epoch : 119 [12/36(33%)]\tLoss: 0.135174\n", + "Epoch : 119 [18/36(50%)]\tLoss: 0.159987\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.842922\n", + "Epoch : 119 [30/36(83%)]\tLoss: 0.261793\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.385063\n", + "Epoch : 120 [6/36(17%)]\tLoss: 0.107991\n", + "Epoch : 120 [12/36(33%)]\tLoss: 0.332020\n", + "Epoch : 120 [18/36(50%)]\tLoss: 0.560043\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.270980\n", + "Epoch : 120 [30/36(83%)]\tLoss: 0.403778\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.192637\n", + "Epoch : 121 [6/36(17%)]\tLoss: 0.151545\n", + "Epoch : 121 [12/36(33%)]\tLoss: 0.120354\n", + "Epoch : 121 [18/36(50%)]\tLoss: 0.319577\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.415029\n", + "Epoch : 121 [30/36(83%)]\tLoss: 0.388238\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.132614\n", + "Epoch : 122 [6/36(17%)]\tLoss: 0.090033\n", + "Epoch : 122 [12/36(33%)]\tLoss: 0.322347\n", + "Epoch : 122 [18/36(50%)]\tLoss: 0.154459\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.809650\n", + "Epoch : 122 [30/36(83%)]\tLoss: 0.269429\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.245376\n", + "Epoch : 123 [6/36(17%)]\tLoss: 0.119164\n", + "Epoch : 123 [12/36(33%)]\tLoss: 0.387067\n", + "Epoch : 123 [18/36(50%)]\tLoss: 0.165872\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.041171\n", + "Epoch : 123 [30/36(83%)]\tLoss: 0.138812\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.054688\n", + "Epoch : 124 [6/36(17%)]\tLoss: 0.159392\n", + "Epoch : 124 [12/36(33%)]\tLoss: 0.166988\n", + "Epoch : 124 [18/36(50%)]\tLoss: 0.326587\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.375290\n", + "Epoch : 124 [30/36(83%)]\tLoss: 0.531928\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.300878\n", + "Epoch : 125 [6/36(17%)]\tLoss: 0.087902\n", + "Epoch : 125 [12/36(33%)]\tLoss: 0.154143\n", + "Epoch : 125 [18/36(50%)]\tLoss: 0.125778\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.249460\n", + "Epoch : 125 [30/36(83%)]\tLoss: 0.133553\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.041772\n", + "Epoch : 126 [6/36(17%)]\tLoss: 0.204622\n", + "Epoch : 126 [12/36(33%)]\tLoss: 0.140386\n", + "Epoch : 126 [18/36(50%)]\tLoss: 0.180318\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.090402\n", + "Epoch : 126 [30/36(83%)]\tLoss: 0.201399\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.405775\n", + "Epoch : 127 [6/36(17%)]\tLoss: 0.108344\n", + "Epoch : 127 [12/36(33%)]\tLoss: 0.450601\n", + "Epoch : 127 [18/36(50%)]\tLoss: 0.216860\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.128336\n", + "Epoch : 127 [30/36(83%)]\tLoss: 0.167995\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.202221\n", + "Epoch : 128 [6/36(17%)]\tLoss: 0.186202\n", + "Epoch : 128 [12/36(33%)]\tLoss: 0.529513\n", + "Epoch : 128 [18/36(50%)]\tLoss: 0.164291\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.105880\n", + "Epoch : 128 [30/36(83%)]\tLoss: 0.245320\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.138535\n", + "Epoch : 129 [6/36(17%)]\tLoss: 0.161283\n", + "Epoch : 129 [12/36(33%)]\tLoss: 0.154673\n", + "Epoch : 129 [18/36(50%)]\tLoss: 0.084565\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.206926\n", + "Epoch : 129 [30/36(83%)]\tLoss: 0.225562\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.245667\n", + "Epoch : 130 [6/36(17%)]\tLoss: 0.084159\n", + "Epoch : 130 [12/36(33%)]\tLoss: 0.062941\n", + "Epoch : 130 [18/36(50%)]\tLoss: 0.054142\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.390961\n", + "Epoch : 130 [30/36(83%)]\tLoss: 0.116688\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.136555\n", + "Epoch : 131 [6/36(17%)]\tLoss: 0.284964\n", + "Epoch : 131 [12/36(33%)]\tLoss: 0.362835\n", + "Epoch : 131 [18/36(50%)]\tLoss: 0.186836\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.278055\n", + "Epoch : 131 [30/36(83%)]\tLoss: 0.102143\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.050786\n", + "Epoch : 132 [6/36(17%)]\tLoss: 0.231531\n", + "Epoch : 132 [12/36(33%)]\tLoss: 0.083026\n", + "Epoch : 132 [18/36(50%)]\tLoss: 0.400751\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.268667\n", + "Epoch : 132 [30/36(83%)]\tLoss: 0.205448\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.094088\n", + "Epoch : 133 [6/36(17%)]\tLoss: 0.192220\n", + "Epoch : 133 [12/36(33%)]\tLoss: 0.167280\n", + "Epoch : 133 [18/36(50%)]\tLoss: 0.135429\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.217528\n", + "Epoch : 133 [30/36(83%)]\tLoss: 0.447770\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.271674\n", + "Epoch : 134 [6/36(17%)]\tLoss: 0.530523\n", + "Epoch : 134 [12/36(33%)]\tLoss: 0.021405\n", + "Epoch : 134 [18/36(50%)]\tLoss: 0.361863\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.186222\n", + "Epoch : 134 [30/36(83%)]\tLoss: 0.189936\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.459656\n", + "Epoch : 135 [6/36(17%)]\tLoss: 0.107108\n", + "Epoch : 135 [12/36(33%)]\tLoss: 0.116203\n", + "Epoch : 135 [18/36(50%)]\tLoss: 0.195681\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.179724\n", + "Epoch : 135 [30/36(83%)]\tLoss: 0.162040\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.011443\n", + "Epoch : 136 [6/36(17%)]\tLoss: 0.041357\n", + "Epoch : 136 [12/36(33%)]\tLoss: 0.162508\n", + "Epoch : 136 [18/36(50%)]\tLoss: 0.099451\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.121898\n", + "Epoch : 136 [30/36(83%)]\tLoss: 0.541782\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.152728\n", + "Epoch : 137 [6/36(17%)]\tLoss: 0.130085\n", + "Epoch : 137 [12/36(33%)]\tLoss: 0.256350\n", + "Epoch : 137 [18/36(50%)]\tLoss: 0.257110\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.332473\n", + "Epoch : 137 [30/36(83%)]\tLoss: 0.032539\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.125433\n", + "Epoch : 138 [6/36(17%)]\tLoss: 0.166761\n", + "Epoch : 138 [12/36(33%)]\tLoss: 0.093310\n", + "Epoch : 138 [18/36(50%)]\tLoss: 0.085774\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.109534\n", + "Epoch : 138 [30/36(83%)]\tLoss: 0.156493\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.145761\n", + "Epoch : 139 [6/36(17%)]\tLoss: 0.161404\n", + "Epoch : 139 [12/36(33%)]\tLoss: 0.335532\n", + "Epoch : 139 [18/36(50%)]\tLoss: 0.166434\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.058041\n", + "Epoch : 139 [30/36(83%)]\tLoss: 0.204345\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.199551\n", + "Epoch : 140 [6/36(17%)]\tLoss: 0.062383\n", + "Epoch : 140 [12/36(33%)]\tLoss: 0.125405\n", + "Epoch : 140 [18/36(50%)]\tLoss: 0.144914\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.148058\n", + "Epoch : 140 [30/36(83%)]\tLoss: 0.150687\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.118983\n", + "Epoch : 141 [6/36(17%)]\tLoss: 1.023777\n", + "Epoch : 141 [12/36(33%)]\tLoss: 0.209858\n", + "Epoch : 141 [18/36(50%)]\tLoss: 0.150454\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.137919\n", + "Epoch : 141 [30/36(83%)]\tLoss: 0.100986\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.133646\n", + "Epoch : 142 [6/36(17%)]\tLoss: 0.174662\n", + "Epoch : 142 [12/36(33%)]\tLoss: 0.083238\n", + "Epoch : 142 [18/36(50%)]\tLoss: 0.172380\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.097094\n", + "Epoch : 142 [30/36(83%)]\tLoss: 0.060915\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.366261\n", + "Epoch : 143 [6/36(17%)]\tLoss: 0.227913\n", + "Epoch : 143 [12/36(33%)]\tLoss: 0.236050\n", + "Epoch : 143 [18/36(50%)]\tLoss: 0.117458\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.497034\n", + "Epoch : 143 [30/36(83%)]\tLoss: 0.027992\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.053335\n", + "Epoch : 144 [6/36(17%)]\tLoss: 0.203574\n", + "Epoch : 144 [12/36(33%)]\tLoss: 0.270039\n", + "Epoch : 144 [18/36(50%)]\tLoss: 0.133844\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.084505\n", + "Epoch : 144 [30/36(83%)]\tLoss: 0.331770\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.053721\n", + "Epoch : 145 [6/36(17%)]\tLoss: 0.165064\n", + "Epoch : 145 [12/36(33%)]\tLoss: 0.121223\n", + "Epoch : 145 [18/36(50%)]\tLoss: 0.087087\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.351447\n", + "Epoch : 145 [30/36(83%)]\tLoss: 0.389364\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.171402\n", + "Epoch : 146 [6/36(17%)]\tLoss: 0.127015\n", + "Epoch : 146 [12/36(33%)]\tLoss: 0.094621\n", + "Epoch : 146 [18/36(50%)]\tLoss: 0.195566\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.616622\n", + "Epoch : 146 [30/36(83%)]\tLoss: 0.075825\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.206116\n", + "Epoch : 147 [6/36(17%)]\tLoss: 0.018409\n", + "Epoch : 147 [12/36(33%)]\tLoss: 0.083936\n", + "Epoch : 147 [18/36(50%)]\tLoss: 0.104666\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.191175\n", + "Epoch : 147 [30/36(83%)]\tLoss: 0.070275\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.227934\n", + "Epoch : 148 [6/36(17%)]\tLoss: 0.185090\n", + "Epoch : 148 [12/36(33%)]\tLoss: 0.190087\n", + "Epoch : 148 [18/36(50%)]\tLoss: 0.148435\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.328254\n", + "Epoch : 148 [30/36(83%)]\tLoss: 0.264559\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.080325\n", + "Epoch : 149 [6/36(17%)]\tLoss: 0.091150\n", + "Epoch : 149 [12/36(33%)]\tLoss: 0.066419\n", + "Epoch : 149 [18/36(50%)]\tLoss: 0.554178\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.133934\n", + "Epoch : 149 [30/36(83%)]\tLoss: 0.054944\n", + "--- 0.06382423639297485 minutes ---\n" + ] + } + ], + "source": [ + "# calculate the time for the code execution\n", + "start_time = tt.time()\n", + "\n", + "# switch model into training mode\n", + "model.train()\n", + "\n", + "hist_train = []\n", + "hist_valid = []\n", + "for epoch in range(config.epoch):\n", + " # training loop\n", + " # switch model into train mode\n", + " model.train()\n", + " hist_train_step = 0\n", + " for batch_idx, (X_batch, y_batch) in enumerate(train_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " # note: decoder input is the last instance of encoder input\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch) # we only need the last instance from output sequence\n", + " loss.backward()\n", + " optimizer.step()\n", + " wandb.log({'train_loss': loss.item()})\n", + " print(f'Epoch : {epoch} [{batch_idx*len(X_batch)}/{len(train_loader.dataset)}'\n", + " f'({100.* batch_idx / len(train_loader):.0f}%)]\\tLoss: {loss.item():.6f}')\n", + " hist_train_step += loss.item()\n", + "\n", + " hist_train.append(hist_train_step / len(train_loader.dataset))\n", + "\n", + " # cross-validation loop\n", + " # switch model into evaluation mode\n", + " model.eval()\n", + " hist_valid_step = 0\n", + "\n", + " for batch_idx, (X_batch, y_batch) in enumerate(valid_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'validation_loss': loss.item()})\n", + " hist_valid_step += loss.item()\n", + "\n", + " hist_valid.append(hist_valid_step / len(valid_loader.dataset))\n", + "\n", + "print (f\"--- {(tt.time() - start_time)/60} minutes ---\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's check the training loss and validation loss." + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADalUlEQVR4nOzdd3iTVf8G8DtNR1q6mC2zDFllKiAisgREVGQpiAuUH+hrARVcvCqgorgHWsVXEURBZSqooICIgKDIkj0E2WWVtnSPPL8/Tk6eJ6tN2qRZ9+e6eiVN0ienpTS5n+/3nKNTFEUBEREREREREVWqEG8PgIiIiIiIiCgYMZATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREREReQEDOREREREREZEXMJATEREREfmhnj17omfPnk4/tnXr1p4dkEnDhg0xatSoSnkuIn/HQE4URObOnQudTgedToeNGzfa3K8oCurXrw+dTofbbrvNfHt2djamTp2K1q1bo0qVKqhevTrat2+PRx99FGfOnDE/btq0aebj2/tIS0urlO+TiIjIWfK18a+//vL2UCrszJkzmDZtGnbu3OntobhNw4YNodPp0KdPH7v3f/LJJ+b3Gdb/hhs3bkT//v1Rt25dGAwGNGjQAAMGDMCCBQssHlfae5eHH37YY98bEQCEensARFT5DAYDFixYgBtuuMHi9vXr1+PUqVOIiIgw31ZUVITu3bvjwIEDGDlyJMaPH4/s7Gzs3bsXCxYswODBg1GnTh2L43z00UeIjo62ed74+HiPfD9ERETB6Oeff7b4/MyZM3jhhRfQsGFDtG/f3juDAnDw4EGEhLiv7mcwGLBu3TqkpaUhMTHR4r758+fDYDAgPz/f4vZFixZh+PDh5gJC1apVcezYMfz222/45JNPcPfdd1s8vm/fvrj//vttnrtZs2Zu+z6I7GEgJwpCt9xyCxYtWoSZM2ciNFT9M7BgwQJ06NABFy9eNN/27bffYseOHZg/f77Ni1d+fj4KCwttjn/HHXegRo0anvsGiIiIglhubi6ioqIQHh7u7aHYpT2x7w5du3bF1q1b8c033+DRRx81337q1Cls2LABgwcPxpIlSyy+Ztq0aUhOTsaWLVtsfk7nz5+3eY5mzZrh3nvvdeu4iZzBlnWiIDRixAhcunQJq1evNt9WWFiIxYsX24Tuf/75B4B4MbRmMBgQGxvr2cESERH5gB07dqB///6IjY1FdHQ0evfujS1bttg87u+//0aPHj0QGRmJevXqYfr06ZgzZw50Oh3+/fdf8+O+++473HrrrahTpw4iIiLQpEkTvPTSSygpKbE4npz7vW3bNnTv3h1RUVH473//a75PziH/9ddf0alTJwDAAw88YG65njt3rsXx9u3bh169eiEqKgp169bF66+/bnH/r7/+Cp1Oh4ULF+KFF15A3bp1ERMTgzvuuAOZmZkoKCjAY489hlq1aiE6OhoPPPAACgoKLI5hbw55RkYGHn/8cTRs2BARERGoV68e7r//fosigCMGgwFDhgyxaTX/6quvULVqVfTr18/ma/755x906tTJ7kmLWrVqlfmcRJWFFXKiINSwYUN06dIFX331Ffr37w8AWLlyJTIzM3HXXXdh5syZ5scmJSUBAObNm4fnnnsOOp2uzOOnp6fb3BYaGsqWdSIi8kt79+5Ft27dEBsbi6eeegphYWH4+OOP0bNnT6xfvx6dO3cGAJw+fRq9evWCTqfD5MmTUaVKFXz66ad2K8Zz585FdHQ0Jk6ciOjoaPzyyy+YMmUKsrKy8MYbb1g89tKlS+jfvz/uuusu3HvvvUhISLA5XsuWLfHiiy9iypQpGDt2LLp16wYAuP76682PuXz5Mm6++WYMGTIEw4YNw+LFi/H000+jTZs25vcD0owZMxAZGYlnnnkGR44cwfvvv4+wsDCEhITg8uXLmDZtGrZs2YK5c+eiUaNGmDJlisOfX3Z2Nrp164b9+/fjwQcfxDXXXIOLFy9i+fLlOHXqlFNddXfffTduuukm/PPPP2jSpAkA0dl3xx13ICwszObxSUlJWLt2LU6dOoV69eqVefz8/Hy7JwdiY2N9thOBAoRCREFjzpw5CgBl69atygcffKDExMQoubm5iqIoyp133qn06tVLURRFSUpKUm699VZFURQlNzdXad68uQJASUpKUkaNGqXMnj1bOXfunM3xp06dqgCw+9G8efPK+0aJiIicpH1tdGTQoEFKeHi48s8//5hvO3PmjBITE6N0797dfNv48eMVnU6n7Nixw3zbpUuXlGrVqikAlGPHjplvl6+/Wg899JASFRWl5Ofnm2/r0aOHAkCZNWuWzeN79Oih9OjRw/z51q1bFQDKnDlz7D4WgDJv3jzzbQUFBUpiYqIydOhQ823r1q1TACitW7dWCgsLzbePGDFC0el0Sv/+/S2O26VLFyUpKcnitqSkJGXkyJHmz6dMmaIAUJYuXWozLqPRaHOb9bFuvfVWpbi4WElMTFReeuklRVEUZd++fQoAZf369Xb/DWfPnq0AUMLDw5VevXopzz//vLJhwwalpKTE5jkcvXcBoHz11Veljo+ootiyThSkhg0bhry8PHz//fe4cuUKvv/+e5t2dQCIjIzEH3/8gSeffBKAOKM/evRo1K5dG+PHj7dpUwOAJUuWYPXq1RYfc+bM8fj3RERE5G4lJSX4+eefMWjQIDRu3Nh8e+3atXH33Xdj48aNyMrKAgCsWrUKXbp0sVhQrVq1arjnnntsjhsZGWm+fuXKFVy8eBHdunVDbm4uDhw4YPHYiIgIPPDAAxX+XqKjoy3mSYeHh+Paa6/F0aNHbR57//33W1SeO3fuDEVR8OCDD1o8rnPnzjh58iSKi4sdPu+SJUvQrl07DB482OY+ZzrvAECv12PYsGH46quvAIjF3OrXr2/uBLD24IMPYtWqVejZsyc2btyIl156Cd26dUPTpk3x+++/2zx+4MCBNu9dVq9ejV69ejk1PqLyYss6UZCqWbMm+vTpgwULFiA3NxclJSW444477D42Li4Or7/+Ol5//XUcP34ca9euxZtvvokPPvgAcXFxmD59usXju3fvzkXdiIgoIFy4cAG5ublo3ry5zX0tW7aE0WjEyZMn0apVKxw/fhxdunSxedxVV11lc9vevXvx3HPP4ZdffjEHeikzM9Pi87p167qlbbpevXo2Abhq1ar4+++/bR7boEEDi8/j4uIAAPXr17e53Wg0IjMzE9WrV7f7vP/88w+GDh1akaEDEG3rM2fOxK5du7BgwQLcddddpQb6fv36oV+/fsjNzcW2bdvwzTffYNasWbjttttw4MABi7nk9erVc7i1GpEnsUJOFMTuvvturFy5ErNmzUL//v2dmuOdlJSEBx98EJs2bUJ8fDzmz5/v+YESEREFkIyMDPTo0QO7du3Ciy++iBUrVmD16tV47bXXAABGo9Hi8dpqekXo9Xq7tyuK4vRjXTmGu3Xu3BlNmjTBY489hmPHjtnt7LMnKioK3bp1wwcffIDnnnsOly9fxsqVKz08WiLnsEJOFMQGDx6Mhx56CFu2bME333zj0tdWrVoVTZo0wZ49ezw0OiIiIu+rWbMmoqKicPDgQZv7Dhw4gJCQEHPVOCkpCUeOHLF5nPVtv/76Ky5duoSlS5eie/fu5tuPHTtWobE62/5d2dz5fmHEiBGYPn06WrZsWa691jt27AgAOHv2rFvGQ1RRrJATBbHo6Gh89NFHmDZtGgYMGGD3Mbt27bK76ujx48exb98+uy18REREgUKv1+Omm27Cd999Z7Ft2blz57BgwQLccMMN5i1A+/Xrh82bN2Pnzp3mx6Wnp9t0k8kqs7aqXFhYiA8//LBCY61SpQoAUYH3JUOHDsWuXbuwbNkym/tcraz/3//9H6ZOnYq33nqr1MetXbvW7u0//vgjAPD9C/kMVsiJgtzIkSNLvX/16tWYOnUqbr/9dlx33XWIjo7G0aNH8dlnn6GgoADTpk2z+ZrFixcjOjra5va+ffva3aqFiIjI2z777DOsWrXK5vZHH30U06dPx+rVq3HDDTfgkUceQWhoKD7++GMUFBRY7OP91FNP4csvv0Tfvn0xfvx487ZnDRo0QHp6urmCff3116Nq1aoYOXIkJkyYAJ1Ohy+++KLCbd9NmjRBfHw8Zs2ahZiYGFSpUgWdO3dGo0aNKnTcinryySexePFi3HnnnXjwwQfRoUMHpKenY/ny5Zg1axbatWvn9LGSkpLsvvewNnDgQDRq1AgDBgxAkyZNkJOTgzVr1mDFihXo1KmTTSHi0KFD+PLLL22Ok5CQgL59+zo9PiJXMZATUamGDh2KK1eu4Oeff8Yvv/yC9PR0VK1aFddeey0mTZpkd/XR//znP3aPtW7dOgZyIiLySR999JHd20eNGoVWrVphw4YNmDx5MmbMmAGj0YjOnTvjyy+/NO9BDogFz9atW4cJEybglVdeQc2aNZGSkoIqVapgwoQJMBgMAIDq1avj+++/x6RJk/Dcc8+hatWquPfee9G7d2/069ev3N9DWFgYPv/8c0yePBkPP/wwiouLMWfOHK8H8ujoaGzYsAFTp07FsmXL8Pnnn6NWrVro3bu3U3uEl8enn36K7777DgsXLsSZM2egKAoaN26MZ599Fk8//TRCQy1jkFxV3VqPHj0YyMmjdEplrMBARERERBSkHnvsMXz88cfIzs52uCgaEQUnziEnIiIiInKTvLw8i88vXbqEL774AjfccAPDOBHZYMs6EREREZGbdOnSBT179kTLli1x7tw5zJ49G1lZWXj++ee9PTQi8kEM5EREREREbnLLLbdg8eLF+N///gedTodrrrkGs2fPttjejIhI4hxyIiIiIiIiIi/gHHIiIiIiIiIiL2AgJyIiIiIiIvKCgJ9DbjQacebMGcTExECn03l7OERERFAUBVeuXEGdOnUQEsJz4xXF13oiIvI1zr7WB3wgP3PmDOrXr+/tYRAREdk4efIk6tWr5+1h+D2+1hMRka8q67U+4AN5TEwMAPGDiI2N9fJoiIiIgKysLNSvX9/8GkUVw9d6IiLyNc6+1gd8IJeta7GxsXyRJiIin8L2avfgaz0REfmqsl7rOXGNiIiIiIiIyAsYyImIiIiIiIi8gIGciIiI/FJqaiqSk5PRqVMnbw+FiIioXHSKoijeHoQnZWVlIS4uDpmZmZxXRkSlUhQFxcXFKCkp8fZQyM/p9XqEhoY6nDfG1yb34s+TiJzF13pyF3e91gf8om5ERM4oLCzE2bNnkZub6+2hUICIiopC7dq1ER4e7u2hEBER+FpP7ueO13oGciIKekajEceOHYNer0edOnUQHh7O1a+p3BRFQWFhIS5cuIBjx46hadOmCAnhDDEiIm/iaz25kztf6xnIiSjoFRYWwmg0on79+oiKivL2cCgAREZGIiwsDMePH0dhYSEMBoO3h0REFNT4Wk/u5q7Xep6yJyIyYRWT3Im/T0REvod/m8md3PH7xN9IIiIiIiIiIi9gICciIiK/xG3PiIjI3zGQExGRWcOGDfHuu+86/fhff/0VOp0OGRkZHhsTAMydOxfx8fEefQ7yPykpKdi3bx+2bt3q7aEQEfkVvt77DgZyIiI/pNPpSv2YNm1auY67detWjB071unHX3/99Th79izi4uLK9XxERETkGF/vAx9XWSci8kNnz541X//mm28wZcoUHDx40HxbdHS0+bqiKCgpKUFoaNl/8mvWrOnSOMLDw5GYmOjS1xAREZFz+Hof+Fghd0G3bkCbNsCxY94eCRF5kqIAOTne+VAU58aYmJho/oiLi4NOpzN/fuDAAcTExGDlypXo0KEDIiIisHHjRvzzzz8YOHAgEhISEB0djU6dOmHNmjUWx7VuYdPpdPj0008xePBgREVFoWnTpli+fLn5fusWNtlq9tNPP6Fly5aIjo7GzTffbPGGori4GBMmTEB8fDyqV6+Op59+GiNHjsSgQYNc+nf66KOP0KRJE4SHh6N58+b44osvNP+GCqZNm4YGDRogIiICderUwYQJE8z3f/jhh2jatCkMBgMSEhJwxx13uPTcFLieekq81i9Y4O2REJGneev13tnXeoCv90Dgv94zkLtg3z5gzx4gP9/bIyEiT8rNBaKjvfORm+u+7+OZZ57Bq6++iv3796Nt27bIzs7GLbfcgrVr12LHjh24+eabMWDAAJw4caLU47zwwgsYNmwY/v77b9xyyy245557kJ6eXsrPLxdvvvkmvvjiC/z22284ceIEnnjiCfP9r732GubPn485c+Zg06ZNyMrKwrfffuvS97Zs2TI8+uijmDRpEvbs2YOHHnoIDzzwANatWwcAWLJkCd555x18/PHHOHz4ML799lu0adMGAPDXX39hwoQJePHFF3Hw4EGsWrUK3bt3d+n5KXCdOiVe68+f9/ZIiMjTvPV6787XeoCv937/eq8EuMzMTAWAkpmZWeFj1aihKICi7NnjhoERkc/Iy8tT9u3bp+Tl5SmKoijZ2eL/ujc+srNdH/+cOXOUuLg48+fr1q1TACjffvttmV/bqlUr5f333zd/npSUpLzzzjvmzwEozz33nPnz7OxsBYCycuVKi+e6fPmyeSwAlCNHjpi/JjU1VUlISDB/npCQoLzxxhvmz4uLi5UGDRooAwcOdPp7vP7665UxY8ZYPObOO+9UbrnlFkVRFOWtt95SmjVrphQWFtoca8mSJUpsbKySlZXl8Pncwfr3Ssudr03k3p/nyJHi/+Lrr1d8XETkO+z9TfbW6315XusVha/3ki+93rvjtZ4VchfIfd+NRu+Og4g8KyoKyM72zkdUlPu+j44dO1p8np2djSeeeAItW7ZEfHw8oqOjsX///jLPmLdt29Z8vUqVKoiNjcX5UsqHUVFRaNKkifnz2rVrmx+fmZmJc+fO4dprrzXfr9fr0aFDB5e+t/3796Nr164Wt3Xt2hX79+8HANx5553Iy8tD48aNMWbMGCxbtgzFxcUAgL59+yIpKQmNGzfGfffdh/nz5yPX3eUK8lvh4eKysNC74yAiz/PW6707X+sBvt77++s9A7kLGMiJgoNOB1Sp4p0Pnc5930eVKlUsPn/iiSewbNkyvPLKK9iwYQN27tyJNm3aoLCM5BEWFmb189HBWMofQnuPV1yZMOcG9evXx8GDB/Hhhx8iMjISjzzyCLp3746ioiLExMRg+/bt+Oqrr1C7dm1MmTIF7dq18/hWLuR+ntiHnIGcKHh46/Xena/1AF/v/f31noHcBQzkROTPNm3ahFGjRmHw4MFo06YNEhMT8e+//1bqGOLi4pCQkGCxb3RJSQm2b9/u0nFatmyJTZs2Wdy2adMmJCcnmz+PjIzEgAEDMHPmTPz666/YvHkzdu/eDQAIDQ1Fnz598Prrr+Pvv//Gv//+i19++aUC3xl5gyf2IWcgJyJ/x9d7/3q957ZnLmAgJyJ/1rRpUyxduhQDBgyATqfD888/X+qZb08ZP348ZsyYgauuugotWrTA+++/j8uXL0PnQsngySefxLBhw3D11VejT58+WLFiBZYuXWpeRXbu3LkoKSlB586dERUVhS+//BKRkZFISkrC999/j6NHj6J79+6oWrUqfvzxRxiNRjRv3txT3zL5EQZyIvJ3fL33r9d7BnIXyEBeUuLdcRARlcfbb7+NBx98ENdffz1q1KiBp59+GllZWZU+jqeffhppaWm4//77odfrMXbsWPTr1w96vd7pYwwaNAjvvfce3nzzTTz66KNo1KgR5syZg549ewIA4uPj8eqrr2LixIkoKSlBmzZtsGLFClSvXh3x8fFYunQppk2bhvz8fDRt2hRfffUVWrVq5aHvmPwJAzkR+Tu+3vvX671OqexG/0qWlZWFuLg4ZGZmIjY2tkLHatxY7EG+eTNw3XVuGiAReV1+fj6OHTuGRo0awWAweHs4QcdoNKJly5YYNmwYXnrpJW8Px21K+71y52sTuffnOX068PzzwNixwMcfu2mAROR1fK33vkB8vXfHaz0r5C5gyzoRUcUdP34cP//8M3r06IGCggJ88MEHOHbsGO6++25vD42IFXIiIjfh671zuKibCxjIiYgqLiQkBHPnzkWnTp3QtWtX7N69G2vWrEHLli29PTQiBnIiIjfh671zWCF3AQM5EVHF1a9f32bFVCJfwUBOROQefL13DivkLmAgJyIiCmwM5EREVJkYyF3AQE5EROQ7UlNTkZycjE6dOrntmGFh4pKBnIiIKgMDuQsYyImIiHxHSkoK9u3bh61bt7rtmKyQExFRZWIgdwEDORERUWBjICciosrk1UA+bdo06HQ6i48WLVqY78/Pz0dKSgqqV6+O6OhoDB06FOfOnfPaeBnIiYiIAhsDORERVSavV8hbtWqFs2fPmj82btxovu/xxx/HihUrsGjRIqxfvx5nzpzBkCFDvDZWBnIiIqLAxkBORESVyeuBPDQ0FImJieaPGjVqAAAyMzMxe/ZsvP3227jxxhvRoUMHzJkzB7///ju2bNnilbEykBNRoOnZsycee+wx8+cNGzbEu+++W+rX6HQ6fPvttxV+bncdpzTTpk1D+/btPfocFFhkIC8q8u44iIjcia/3vsvrgfzw4cOoU6cOGjdujHvuuQcnTpwAAGzbtg1FRUXo06eP+bEtWrRAgwYNsHnzZofHKygoQFZWlsWHuzCQE5GvGDBgAG6++Wa7923YsAE6nQ5///23y8fdunUrxo4dW9HhWXD0Inn27Fn079/frc9FVFGskBORL+HrfeDzaiDv3Lkz5s6di1WrVuGjjz7CsWPH0K1bN1y5cgVpaWkIDw9HfHy8xdckJCQgLS3N4TFnzJiBuLg480f9+vXdNl4GciLyFaNHj8bq1atx6tQpm/vmzJmDjh07om3bti4ft2bNmoiKinLHEMuUmJiIiIiISnkuImcxkBORL+HrfeDzaiDv378/7rzzTrRt2xb9+vXDjz/+iIyMDCxcuLDcx5w8eTIyMzPNHydPnnTbeBnIiYKEogA5Od75UBSnhnjbbbehZs2amDt3rsXt2dnZWLRoEUaPHo1Lly5hxIgRqFu3LqKiotCmTRt89dVXpR7XuoXt8OHD6N69OwwGA5KTk7F69Wqbr3n66afRrFkzREVFoXHjxnj++edRZOr3nTt3Ll544QXs2rXLvHinHLN1C9vu3btx4403IjIyEtWrV8fYsWORnZ1tvn/UqFEYNGgQ3nzzTdSuXRvVq1dHSkqK+bmcYTQa8eKLL6JevXqIiIhA+/btsWrVKvP9hYWFGDduHGrXrg2DwYCkpCTMmDEDAKAoCqZNm4YGDRogIiICderUwYQJE5x+bvIPDOREQcRbr/dOvtYDfL0Phtf7UI8duRzi4+PRrFkzHDlyBH379kVhYSEyMjIsquTnzp1DYmKiw2NERER47AwMAzlRkMjNBaKjvfPc2dlAlSplPiw0NBT3338/5s6di2effRY6nQ4AsGjRIpSUlGDEiBHIzs5Ghw4d8PTTTyM2NhY//PAD7rvvPjRp0gTXXnttmc9hNBoxZMgQJCQk4I8//kBmZqbF/DMpJiYGc+fORZ06dbB7926MGTMGMTExeOqppzB8+HDs2bMHq1atwpo1awAAcXFxNsfIyclBv3790KVLF2zduhXnz5/H//3f/2HcuHEWb0LWrVuH2rVrY926dThy5AiGDx+O9u3bY8yYMWV+PwDw3nvv4a233sLHH3+Mq6++Gp999hluv/127N27F02bNsXMmTOxfPlyLFy4EA0aNMDJkyfNJ3aXLFmCd955B19//TVatWqFtLQ07Nq1y6nnJf/BQE4URLz1eu/kaz3A1/ugeL1XfMiVK1eUqlWrKu+9956SkZGhhIWFKYsXLzbff+DAAQWAsnnzZqePmZmZqQBQMjMzKzy+Hj0UBVCUb76p8KGIyIfk5eUp+/btU/Ly8sQN2dniP7s3PrKznR73/v37FQDKunXrzLd169ZNuffeex1+za233qpMmjTJ/HmPHj2URx991Px5UlKS8s477yiKoig//fSTEhoaqpw+fdp8/8qVKxUAyrJlyxw+xxtvvKF06NDB/PnUqVOVdu3a2TxOe5z//e9/StWqVZVszff/ww8/KCEhIUpaWpqiKIoycuRIJSkpSSkuLjY/5s4771SGDx/ucCzWz12nTh3l5ZdftnhMp06dlEceeURRFEUZP368cuONNypGo9HmWG+99ZbSrFkzpbCw0OHzadn8Xmm487WJ3PvzPHJE/FeMiXHDwIjIZ9j9m+yt13sXXusVha/3iuK7r/fueK33aoX8iSeewIABA5CUlIQzZ85g6tSp0Ov1GDFiBOLi4jB69GhMnDgR1apVQ2xsLMaPH48uXbrguuuu88p4WSEnChJRUeLstbee20ktWrTA9ddfj88++ww9e/bEkSNHsGHDBrz44osAgJKSErzyyitYuHAhTp8+jcLCQhQUFDg9Z2z//v2oX78+6tSpY76tS5cuNo/75ptvMHPmTPzzzz/Izs5GcXExYmNjnf4+5HO1a9cOVTQVg65du8JoNOLgwYNISEgAILbK1Ov15sfUrl0bu3fvduo5srKycObMGXTt2tXi9q5du5rPfI8aNQp9+/ZF8+bNcfPNN+O2227DTTfdBAC488478e6776Jx48a4+eabccstt2DAgAEIDfWpZjOqIFbIiYKIt17vXZy7zdf7wH699+oc8lOnTmHEiBFo3rw5hg0bhurVq2PLli2oWbMmAOCdd97BbbfdhqFDh6J79+5ITEzE0qVLvTZeBnKiIKHTiVYyb3yYWtGcNXr0aCxZsgRXrlzBnDlz0KRJE/To0QMA8MYbb+C9997D008/jXXr1mHnzp3o168fCt2YNDZv3ox77rkHt9xyC77//nvs2LEDzz77rFufQyssLMzic51OB6Mb/yhfc801OHbsGF566SXk5eVh2LBhuOOOOwAA9evXx8GDB/Hhhx8iMjISjzzyCLp37+7SnDbyfdpA7sI0TyLyR956vXfxtR7g630gv957NZB//fXXOHPmDAoKCnDq1Cl8/fXXaNKkifl+g8GA1NRUpKenIycnB0uXLi11/rinMZATka8ZNmwYQkJCsGDBAsybNw8PPvigeX7Zpk2bMHDgQNx7771o164dGjdujEOHDjl97JYtW+LkyZM4e/as+bYtW7ZYPOb3339HUlISnn32WXTs2BFNmzbF8ePHLR4THh6OkpKSMp9r165dyMnJMd+2adMmhISEoHnz5k6PuTSxsbGoU6cONm3aZHH7pk2bkJycbPG44cOH45NPPsE333yDJUuWID09HQAQGRmJAQMGYObMmfj111+xefNmp8/Yk/ulpqYiOTkZnTp1ctsxZSBXFKCMX1siokrD13vn+dvrPfvsXCC7JvgCTUS+Ijo6GsOHD8fkyZORlZWFUaNGme9r2rQpFi9ejN9//x1Vq1bF22+/jXPnzlm8GJWmT58+aNasGUaOHIk33ngDWVlZePbZZy0e07RpU5w4cQJff/01OnXqhB9++AHLli2zeEzDhg1x7Ngx7Ny5E/Xq1UNMTIzN4pv33HMPpk6dipEjR2LatGm4cOECxo8fj/vuu8/cvuYOTz75JKZOnYomTZqgffv2mDNnDnbu3In58+cDAN5++23Url0bV199NUJCQrBo0SIkJiYiPj4ec+fORUlJCTp37oyoqCh8+eWXiIyMRFJSktvGR65JSUlBSkoKsrKy7C4eVB4ykAOiSs4ZCUTkC/h67xp/er33aoXc37BCTkS+aPTo0bh8+TL69etnMf/rueeewzXXXIN+/fqhZ8+eSExMxKBBg5w+bkhICJYtW4a8vDxce+21+L//+z+8/PLLFo+5/fbb8fjjj2PcuHFo3749fv/9dzz//PMWjxk6dChuvvlm9OrVCzVr1rS7FUtUVBR++uknpKeno1OnTrjjjjvQu3dvfPDBB679MMowYcIETJw4EZMmTUKbNm2watUqLF++HE2bNgUgVpB9/fXX0bFjR3Tq1An//vsvfvzxR4SEhCA+Ph6ffPIJunbtirZt22LNmjVYsWIFqlev7tYxkndZB3IiIl/B13vn+dPrvU5RAnuGlDxrnpmZ6fKiA9YGDAC+/x749FNg9Gg3DZCIvC4/Px/Hjh1Do0aNYDAYvD0cChCl/V6587WJ3PvzVBT1BPy5c0CtWm4YIBF5HV/ryRPc8VrPCrkLWCEnIiIKbDodV1onIqLKw0DuAgZyIiKiwCcX92UgJyIiT2MgdwEDORERUeBjhZyIiCoLA7kLGMiJiIgCHwM5ERFVFgZyFzCQEwW2AF/jkioZf5/8FwM5UeDi32ZyJ3f8PjGQu4CBnCgwhZkmjObm5np5JBRI5O+T/P0i/yEDeVGRd8dBRO7D13ryBHe81oe6azDBgIGcKDDp9XrEx8fj/PnzAMQemTqdzsujIn+lKApyc3Nx/vx5xMfHQ6/Xe3tI5CJWyIkCD1/ryZ3c+VrPQO4CBnKiwJWYmAgA5hdqooqKj483/16Rf2EgJwpMfK0nd3PHaz0DuQsYyIkCl06nQ+3atVGrVi0UsU+VKigsLIyVcT/GQE4UmPhaT+7krtd6BnIXMJATBT69Xs8gRRTkGMiJAhtf68mXcFE3FzCQExERBT4GciIiqiwM5C5gICciIgp8DORERFRZGMhdwEBOREQU+BjIiYiosjCQu4CBnIiIKPAxkBMRUWVhIHcBAzkREZHvSE1NRXJyMjp16uTW4zKQExFRZWEgdwEDORERke9ISUnBvn37sHXrVrcel4GciIgqCwO5C+TuCCUl3h0HEREReQ4DORERVRYGchewQk5ERBT4GMiJiKiyMJC7gIGciIgo8DGQExFRZWEgdwEDORERUeALCxOXDORERORpDOQuYCAnIiIKfKyQExFRZWEgdwEDORERUeBjICciosrCQO4CBnIiIqLAJwN5UZF3x0FERIGPgdwFDORERESBjxVyIiKqLKHeHoA/YSAnIiIKcAcPIunEOdRBExQW1vX2aIiIKMCxQu4CBnIiIqIAN2UKhrzbA0OwlBVyIiLyOAZyFzCQExERBTjTnmehKGYgJyIij2MgdwEDORERUYALFbP5GMiJiKgyMJC7gIGciIgowJkCeRiKGMiJiMjjGMhdwEBOREQU4NiyTkRElYiB3AUM5ERERAGOLetEleP0aeDOO4HffvP2SIi8itueuYCBnIiIKMCxZZ2ocixcCCxeLN5gd+/u7dEQeQ0r5C5gICciIgpwrJATVY5z58RlTo53x0HkZQzkLmAgJyIiCnCcQ05UOS5cEJd5ed4dB5GXMZC7gIGciIgowLFlnahyMJATAWAgdwkDORERUYBjyzpR5WAgJwLAQO4SvV5clpR4dxxERETkIWxZJ6ocDOREABjIXcIKORERUYBjhZyocly8KC4ZyCnIMZC7gIGciIgowGnmkBcVeXksRIGqsBDIzAQAGHMZyCm4MZC7gIGciIjIMwYPHoyqVavijjvu8O5ANC3rRiOnqRF5hKyOAyjMZCCn4MZA7gIGciIiIs949NFHMW/ePG8Pw6JlHQDb1ok8Qc4fBxBWzEBOwY2B3AUM5ERERJ7Rs2dPxMTEeHsYFi3rAAM5kUdoArleKQHnh1AwYyB3AQM5ERGRrd9++w0DBgxAnTp1oNPp8O2339o8JjU1FQ0bNoTBYEDnzp3x559/Vv5AncEKOZHnaQI5AC7sRkGNgdwFDORERES2cnJy0K5dO6Smptq9/5tvvsHEiRMxdepUbN++He3atUO/fv1w/vz5Sh6pE0xzyMN0DOREHsNATmQW6u0B+BMGciIiIlv9+/dH//79Hd7/9ttvY8yYMXjggQcAALNmzcIPP/yAzz77DM8884zLz1dQUICCggLz51lZWa4P2hFThTxcVwwoDOREHsFATmTGCrkLGMiJiIhcU1hYiG3btqFPnz7m20JCQtCnTx9s3ry5XMecMWMG4uLizB/169d313DVQB7COeREHsNATmTGQO4CBnIiIiLXXLx4ESUlJUhISLC4PSEhAWlpaebP+/TpgzvvvBM//vgj6tWrV2pYnzx5MjIzM80fJ0+edN+A2bJO5HlWgdyYw0BOwYst6y5gICciIvKMNWvWOP3YiIgIREREeGYg5lXWGciJPMYqkOdfzkOUl4ZC5G2skLuAgZyIiMg1NWrUgF6vx7lz5yxuP3fuHBITE700qlLIQK5jyzqRx1gF8rx0VsgpeDGQu4CBnIiIyDXh4eHo0KED1q5da77NaDRi7dq16NKlS4WOnZqaiuTkZHTq1Kmiw1SZAzkr5EQeYwrkOaa6eP5lBnIKXmxZdwEDORERka3s7GwcOXLE/PmxY8ewc+dOVKtWDQ0aNMDEiRMxcuRIdOzYEddeey3effdd5OTkmFddL6+UlBSkpKQgKysLcXFxFf02BNMccu5DTuQhJSVAejoA4AQaoCUOoCCDgZyCFwO5CxjIiYiIbP3111/o1auX+fOJEycCAEaOHIm5c+di+PDhuHDhAqZMmYK0tDS0b98eq1atslnozSeYKuQM5EQecukSoCgAgFOoh5Y4gMJMBnIKXj7Tsv7qq69Cp9PhscceM9+Wn5+PlJQUVK9eHdHR0Rg6dKjNHLTKxEBORERkq2fPnlAUxeZj7ty55seMGzcOx48fR0FBAf744w907tzZewMujXlRN84hJ/IIU7v6ZV01ZCMaAFCYxUBOwcsnAvnWrVvx8ccfo23btha3P/7441ixYgUWLVqE9evX48yZMxgyZIiXRslATkREFPBky7rCCjmRR5gC+QVdTeQhEgBQzEBOQczrgTw7Oxv33HMPPvnkE1StWtV8e2ZmJmbPno23334bN954Izp06IA5c+bg999/x5YtW7wyVgZyIiIi3+HJRd30bFkn8gwZyBVNIL/CQE7By+uBPCUlBbfeeiv69Oljcfu2bdtQVFRkcXuLFi3QoEEDbN682eHxCgoKkJWVZfHhLnq9uGQgJyIi8r6UlBTs27cPW7dudd9B5RxyRbSsFxW579BEBHMgP6cJ5MYcBnIKXl5d1O3rr7/G9u3b7b6QpqWlITw8HPHx8Ra3JyQkIC0tzeExZ8yYgRdeeMHdQwWgVshLSjxyeCIiIvI2U8u6ni3rRJ4hK+RgICcCvFghP3nyJB599FHMnz8fBoPBbcedPHkyMjMzzR8nT55027HZsk5ERBTgZMs6AzmRZ9gJ5EouAzkFL68F8m3btuH8+fO45pprEBoaitDQUKxfvx4zZ85EaGgoEhISUFhYiIyMDIuvO3fuHBITEx0eNyIiArGxsRYf7sJATkREFOBkIDdylXUij7ATyJHPQE7By2st671798bu3bstbnvggQfQokULPP3006hfvz7CwsKwdu1aDB06FABw8OBBnDhxAl26dPHGkBnIiYiIAp15DnkxAAWFhTrvjoco0GgCeS2cBwDoGMgpiHktkMfExKB169YWt1WpUgXVq1c33z569GhMnDgR1apVQ2xsLMaPH48uXbrguuuu88aQGciJiIh8SGpqKlJTU1HizsVdTHPIASAERhQW6t13bCKyCOQxuAIACGEgpyDm1UXdyvLOO+8gJCQEQ4cORUFBAfr164cPP/zQa+NhICciIvIdKSkpSElJQVZWFuLi4txz0FD1rVEoihnIidxNE8hr4ywAQF/IQE7By6cC+a+//mrxucFgMJ/99gUM5ERERAFOE8jDUITCwggvDoYowCgKcPEiAOAiapjnkOuL8r05KiKv8vo+5P6EgZyIiCjAaVrWRYXci2MhCjSFheb9g68gxhzIQ4tZIafgxUDuAgZyIiKiAKdXW9QZyIncLF+thOfDABhEIA9nIKcgxkDuAgZyIiKiABcSYn7BFy3rXh4PUSDRBPJChCOymimQlzCQU/BiIHcBAzkREVEQkFufmSrkFy4AU6YA//7r3WERedK33wKjRgG5uR58ElMgLw4zANAhqroI5BFKHhTFg89L5MMYyF3AQE5EROQ7UlNTkZycjE6dOrn3wKZ55DKQv/8+8NJLwDvvuPdpiHzJjBnA558Dv/3mwSeRgTzUAACoUkME8kjkIY9FcgpSDOQuYCAnIiLyHSkpKdi3bx+2bt3q3gNbVch37RI3mxaHJgpIsps835MLnstArheBPLqmGsivXPHg8xL5MAZyFzCQExERBQFTIJdzyHfvFjdnZ3txTEQeVlxseekRpkBeZArk+mgZyPNxJYs96xScGMhdwEBOREQUBDQt6+npwLFj4mYGcgpklRnIC02BPDQm0nxXziXuRU7BiYHcBQzkREREQUDTsi6r4wDYUksBrahIXFZKINeJQB4Wqwby3EucRE7BiYHcBQzkREREQUDTsq5dcZoVcgpkMojLYO4RpkBeECICeUSVUBRD/H9jIKdgxUDuAgZyIiKiIKBpWddihZwCWWW2rBdABPKoKKBAL6rkBRkM5BScGMhdoNeLSwZyIiKiAKZpWddihZwCWWUG8nxTII+MBApNgTz/MgM5BScGchewQk5EROQ7PLYPuYNAfuUKoHAhaApQ7ppDPmsWkJwMnDxp586CAgBAvhIBQARyuSc5K+QUrBjIXSADuaLwBZmIiMjbPL0PeRgsJ9OWlJjzBFHAcdcc8q+/BvbvB377zc6dpgp5nqK2rJeEiQp5URYDOQUnBnIXhGh+WqySExERBSirOeT166t3sW2dApW7WtZLDfamQJ5rVFvWi8MZyCm4MZC7gIGciIgoCFi1rLdrJyp5ABd2o8DlrpZ1+fWFhXbutBPIjREikBdfYSCn4MRA7gIGciIioiBg1bLeujUQHS3uYoWcApGiiCkZQMUDuQz2pQXyHKPasq4YRCAvyWYgp+DEQO4CBnIiIqIgYNWyrg3krJBTIJJhHKicCnlOsVohhymQG3MYyCk4MZC7gIGciIgoCFi1rLduDcTEiLtYIadApA3hFV3UTX59aXPIs7WBPEoEciWXgZyCU6i3B+BPGMiJiIiCgCmQR4UWIdoAtGjBCjkFNm14rowK+ZVitWW92BTIkcdATsGJFXIXMJATEREFAVMgn/RoMdasASIiWCGnwKYN4ZURyOW2Z5GRQEgVEch1+QzkFJxYIXcBAzkREVEQMM0hb9a4GOgsbuKibhTI3BnInVnULR9qhTw/hoGcghsr5C5gICciIvIdqampSE5ORqdOndx7YFOFXJtMZIWcLesUiNw5h9yZCnk+DAgJEee+wkyBPKSAgZyCEwO5CxjIiYiIfEdKSgr27duHrVu3uvfAMpBrkgkr5BTI3DmH3NkKeWQkoNMBobEikIcW5UFRKvbcRP6IgdwFOp16nYGciIgoQJla1rXJhIu6USCr7Dnk+TAgKkrcFB4nAnmEkoeCgoo9N5E/YiB3kaySM5ATEREFqFJa1lkhp0DkjUAeaVpcPcIUyCORxxNeFJQYyF3EQE5ERBTgSmlZZ2CgQOStlnVAXWU9Enk84UVBiYHcRQzkREREAc5Oyzor5BTIPLGom93j2GlZl8mcFXIKVgzkLmIgJyIiCnB2Wta5qBsFMne1rBuN6ntkZyvkDOQU7BjIXcRATkRE/mD79u3YvXu3+fPvvvsOgwYNwn//+18U2n2nTGbc9oyCjLsCufZryxPI87jzGQUhBnIX6fXikoGciIh82UMPPYRDhw4BAI4ePYq77roLUVFRWLRoEZ566ikvj87HcdszCjLumkPuSiC317LOQE7BiIHcRayQExGRPzh06BDat28PAFi0aBG6d++OBQsWYO7cuViyZIl3B+fruO0ZBRl3Vci1wd4mkCtKmRVy091EQYWB3EUM5ERE5A8URYHR9GK1Zs0a3HLLLQCA+vXr4+LFi94cmu/jtmcUZNy1qFupFfKiIhHKwZZ1Ii0GchfJQF5S4t1xEBERlaZjx46YPn06vvjiC6xfvx633norAODYsWNISEjw8uh8XCkt6zk5PClPgadSKuQFBepVRNhtWWeFnIIRA7mLWCEnIiJ/8O6772L79u0YN24cnn32WVx11VUAgMWLF+P666/38uh8XCnbngEilBMFkkqZQ65J2wWIYIWcyCTU2wPwNwzkRETkD9q2bWuxyrr0xhtvQC9XKPVzqampSE1NRYm729bstKwbDOI9gNEo2ta1AZ3I33lilXWb1ndTIC8KCYdiDLEJ5KEoQX52MRhPKNiwQu4iBnIiIvIHJ0+exKlTp8yf//nnn3jssccwb948hMkKsJ9LSUnBvn37sHXrVvce2E4g1+m49RkFLnfNIS+1ZV0Gcr0BAGxa1gGgJJslcgo+DOQuYiAnIiJ/cPfdd2PdunUAgLS0NPTt2xd//vknnn32Wbz44oteHp2PszOHHODWZxS4KmUfcqtAbs7hBoP69VcYyCn4MJC7iIGciIj8wZ49e3DttdcCABYuXIjWrVvj999/x/z58zF37lzvDs7X2ZlDDnDrMwpc7ppD7kyFvEBnFch1OhSFituMOQzkFHwYyF3EQE5ERP6gqKgIERERAMS2Z7fffjsAoEWLFjh79qw3h+b77LSsA9z6jAJXZVbIC3VWLesAisNEOmcgp2DEQO4iBnIiIvIHrVq1wqxZs7BhwwasXr0aN998MwDgzJkzqF69updH5+PKaFlnhZwCTWUG8nzrCjnUQK7kMpBT8GEgdxEDORER+YPXXnsNH3/8MXr27IkRI0agXbt2AIDly5ebW9nJAQct66yQU6DSnnty56JuiqK5UwZy2AZyYzhb1il4cV8BFzGQExGRP+jZsycuXryIrKwsVK1a1Xz72LFjEaXtFSVbDlrWWSGnQOWJCrn83LypgymQ5yl2WtYjxdkufS7/c1HwYSB3EQM5ERH5C71ej+LiYmzcuBEA0Lx5czRs2NC7g/IHDlrWWSGnQOWuQG5dXS8qchzILVrWq8QBAMJyM8v/5ER+ii3rLmIgJyIif5CTk4MHH3wQtWvXRvfu3dG9e3fUqVMHo0ePRm5urreH59vKWGWdgZwCjacq5BbzyE2BPNdop2U92hTI8xjIKfgwkLuIgZyIiPzBxIkTsX79eqxYsQIZGRnIyMjAd999h/Xr12PSpEneHp5vY8s6BRl3zSF3JZBrW9aNMSKQG/Izyv/kRH6KLesuYiAnIiJ/sGTJEixevBg9e/Y033bLLbcgMjISw4YNw0cffeS9wfk6bntGQcZTLev2AnlOiW2FXImPBwAY8lkhp+DDCrmLGMiJiMgf5ObmIiEhweb2WrVqsWW9LNz2jIKMNoQbjeV/n1velnXEiQp5ZBEDOQUfBnIXMZATEZE/6NKlC6ZOnYp805tgAMjLy8MLL7yALl26eHFkfoDbnlGQsQ7SJSXlO44zFXK57VlEhHpXSLwI5FGFDOQUfNiy7iIGciIi8gfvvfce+vXrh3r16pn3IN+1axcMBgN++uknL4/Ox3EOOQUZ6yBtsV2ZC5ypkNsL5Prq8QCA6OIM15+UyM8xkLtIrxeXDOREROTLWrdujcOHD2P+/Pk4cOAAAGDEiBG45557EGnRK0o2uO0ZBRnrIF1UZNVSXs7jlBbItYFfX01UyKNLWCGn4MNA7iJWyImIyF9ERUVhzJgx3h6G/+G2ZxRkrIN0eRd2c7ZlPSIC0OnUu0Kri0Aeo2TCaFTfbxMFAwZyFzGQExGRr1q+fLnTj7399ts9OJLKkZqaitTUVJSUd8KrI2xZpyBjr2W9POxV2s2sArlWWA0RyOORgYKC8lXnifwVA7mLZCB392s/ERFRRQ0aNMipx+l0OveHWC9ISUlBSkoKsrKyEGdapdktrAP5iRPA9OmoOuxRAK1YIaeA440KuVZEQjwAIA6ZyMtjIKfgwkDuIlbIiYjIVxn54uQe1nPI580DPvkEVREB4H0UFoqgER7utRESuVWple0KHMcikBcUiAtEwGCwfJxsWY9FFs7lKQB0IAoWnKHhIgZyIiKiAGc9hzwjAwAQXphjfgir5BRI3FUhd3ZRN+sKudyHXA8j8i/yPxcFF68G8o8++ght27ZFbGwsYmNj0aVLF6xcudJ8f35+PlJSUlC9enVER0dj6NChOHfunBdHzEBOREQU8GSFvKQEUBQgNxcAEFJcaA4SnEdOgcRdc8jL27KOyEgUmRp3iy5klO/JifyUVwN5vXr18Oqrr2Lbtm3466+/cOONN2LgwIHYu3cvAODxxx/HihUrsGjRIqxfvx5nzpzBkCFDvDlkBnIiIqJAF6qZ0VdcDOSYKuOFhVxpnQKS1yvkOh2yQuIBAEUXufUZBRevziEfMGCAxecvv/wyPvroI2zZsgX16tXD7NmzsWDBAtx4440AgDlz5qBly5bYsmULrrvuOm8MmYGciIgo0Gk3SC4uNlfIUVhoXmzKlC2IAoJ1kA755zBQtyYQH+/SccpdIQeQrY9DdeNFlKQzkFNw8Zk55CUlJfj666+Rk5ODLl26YNu2bSgqKkKfPn3Mj2nRogUaNGiAzZs3OzxOQUEBsrKyLD7ciYGciIgowDmqkBcUmBejYiCnQKIN5PVwEi0GtwDKsTViuSvkAHJCxTxy42UGcgouXg/ku3fvRnR0NCIiIvDwww9j2bJlSE5ORlpaGsLDwxFvdWYuISEBaWlpDo83Y8YMxMXFmT/q16/v1vEykBMRkT/48ccf8dNPP9nc/tNPP1ms10J2lNKyzkBOgUhb2W6EY9AZjcCePS4fp7z7kANATlg8AMCYnuHy8xL5M68H8ubNm2Pnzp34448/8J///AcjR47Evn37yn28yZMnIzMz0/xx8uRJN46WgZyIiPzDM888Y3evcUVR8Mwzz3hhRH5Er1evFxVZtKwzkFMg0gbpKJh+3y9fdnn/s4q0rOeFiwo5Mlkhp+Di9X3Iw8PDcdVVVwEAOnTogK1bt+K9997D8OHDUVhYiIyMDIsq+blz55CYmOjweBEREYiw97/cTRjIiYjIHxw+fBjJyck2t7do0QJHjhzxwoj8iE4nquTFxayQU1CwG8gBID0dSEgo13EA1wJ5fgQDOQUnr1fIrRmNRhQUFKBDhw4ICwvD2rVrzfcdPHgQJ06cQJcuXbw2PgZyIiLyB3FxcTh69KjN7UeOHEGVKlW8MCI/I9vWrRZ1YyCnQOQwkF+86NJxKlIhLzSIQK67wkBOwcWrFfLJkyejf//+aNCgAa5cuYIFCxbg119/xU8//YS4uDiMHj0aEydORLVq1RAbG4vx48ejS5cuXlthHWAgJyIi/zBw4EA89thjWLZsGZo0aQJAhPFJkybh9nIs1hR0ZCAvKmKFnAKeNkhbBPILF1w6jsMKeXExYJpC4yiQF0TGAwBCr2S49JxE/s6rgfz8+fO4//77cfbsWcTFxaFt27b46aef0LdvXwDAO++8g5CQEAwdOhQFBQXo168fPvzwQ28OmYGciIj8wuuvv46bb74ZLVq0QL169QAAp06dQrdu3fDmm296eXR+QG59xpZ1CgLuqpDL44SFiZBvDuSa/zCOAnlRlKiQ67NZIafg4tVAPnv27FLvNxgMSE1NRWpqaiWNqGwM5ERE5A/i4uLw+++/Y/Xq1di1axciIyPRtm1bdO/e3dtD8w+yQl5YCOTlievc9owClLtb1iMjHQfyAkTYDeTFVUQgD8tlIKfg4vVF3fwNAzkREfkLnU6Hm266CTfddJO3h+J/ZCC/ckW9jRVyClAySIeEAFHGilfIo6KArCzbQF4cEgajUW8/kMfEAwDCczNcek4if8dA7iIGciIi8lUzZ87E2LFjYTAYMHPmzFIfO2HChEoalZ+SLevaFZ8ZyClAySBtMABRueWfQy6DvVw30jw33fQfpkhvAIywG8iVGFEhD89nhZyCCwO5i+TWpAzkRETka9555x3cc889MBgMeOeddxw+TqfTMZCXRVbIGcgpCMhAHhlpFcgrUCEHbCvkRXoDUATz/yMtJVYEckMBAzkFFwZyF7FCTkREvurYsWN2r1M5MJBTELEI5G5Y1E1WyK0DeWGI+A9kr0KOOBHIIxnIKcj43D7kvo6BnIiIKAjYC+RFRTBEKAAYyCmwyNZyg6Fi257J4ziqkJcayOPjAQCRxVfMW6QRBYNyVchPnjwJnU5n3kblzz//xIIFC5CcnIyxY8e6dYC+hoGciIj8gaIoWLx4MdatW4fz58/DaPXCtXTpUi+NzE/Ym0MOoEpYIYAIBnIKKBZzyN1QIXcUyAt0jgO5vlqc+klWFlC1qkvPTeSvylUhv/vuu7Fu3ToAQFpaGvr27Ys///wTzz77LF588UW3DtDXyEDOE3dEROTLHnvsMdx33304duwYoqOjERcXZ/FBZZAV8qwsi5ujQkXCYCCnQOKulvWyKuSlBfLw6HDkwTQnJJNt6xQ8ylUh37NnD6699loAwMKFC9G6dWts2rQJP//8Mx5++GFMmTLFrYP0JayQExGRP/jiiy+wdOlS3HLLLd4ein+y17IOBnIKTA4DeV4ekJurJmwnj+MwkMNxII+MBDIRh0jkM5BTUClXhbyoqAgRpv9Ja9aswe233w4AaNGiBc6ePeu+0fkgBnIiIvIHcXFxaNy4sbeH4b9ky3pGhsXNkXoGcgo8DueQAy7NI3e4qFtBgbiAyA+OAnkG4sUnVv/viAJZuQJ5q1atMGvWLGzYsAGrV6/GzTffDAA4c+YMqlev7tYB+hoGciIi8gfTpk3DCy+8gLy8PG8PxT+xZZ2ChKKoUzHtBnIX2tbLalnPK6VCbjCICjkAVsgpqJQrkL/22mv4+OOP0bNnT4wYMQLt2rUDACxfvtzcyh6oGMiJiMgfDBs2DJcvX0atWrXQpk0bXHPNNRYfvub7779H8+bN0bRpU3z66afeHo7DlnVDCAM5BRbtukgWLeum/wMl55wP5NYt6zKgmwO5UnbLOgAGcgoq5ZpD3rNnT1y8eBFZWVmoqlkBcezYsYhyco6Jv2IgJyIifzBy5Ehs27YN9957LxISEqDT6bw9JIeKi4sxceJErFu3DnFxcejQoQMGDx7s3a47R3PI9aL1loGcAoU5NMMqkNetCxw/jjGDLmDkaqBHD+eP5Wgf8jxj6RVyc8s6AzkFkXIF8ry8PCiKYg7jx48fx7Jly9CyZUv069fPrQP0NQzkRETkD3744Qf89NNPuOGGG7w9lDL9+eefaNWqFerWrQsA6N+/P37++WeMGDHCe4NysO2ZRYU8LQ2oWRPQ6yt5cETuI6vaAGCIUNRAnpQEHD+O2KKL2LzZuUBe1qJuuc5WyDmHnIJIuVrWBw4ciHnz5gEAMjIy0LlzZ7z11lsYNGgQPvroI7cO0NcwkBMRkT+oX78+YmNjK+W5fvvtNwwYMAB16tSBTqfDt99+a/OY1NRUNGzYEAaDAZ07d8aff/5pvu/MmTPmMA4AdevWxenTpytj6I45qJBHmAL5VVnbgTp1gIcfruyREbmVNpBHRxQhFKYe9gYNAAA1cBG5uXa+sJRjOaqQ55ZRIWfLOgWjcgXy7du3o1u3bgCAxYsXIyEhAcePH8e8efMwc+ZMtw7Q1zCQExGRP3jrrbfw1FNP4d9///X4c+Xk5KBdu3ZITU21e/8333yDiRMnYurUqdi+fTvatWuHfv364fz58x4fW7nJQK6dYAvAoBMJo2HuPrEalubEApE/sgjkIZrkXY5ALlvWIyPFpU0gL3GuQm7MYCCn4FGulvXc3FzExMQAAH7++WcMGTIEISEhuO6663D8+HG3DtDXMJATEZE/uPfee5Gbm4smTZogKioKYbIF2yQ9Pd1tz9W/f3/079/f4f1vv/02xowZgwceeAAAMGvWLPzwww/47LPP8Mwzz6BOnToWFfHTp0+XukhsQUEBCkzbKAFAltVK6G5h9fOSIkyBPKTQNIn8zBn3PzdRJZIhWq9X54+X6PTQ16kDAKiJC9idYwTuvhcIDwfmzAEcrEnhsGXdtNtDThmBXM4hN6ZnlK9qSOSHyhXIr7rqKnz77bcYPHgwfvrpJzz++OMAgPPnz1dae5y3MJATEZE/ePfdd709BABAYWEhtm3bhsmTJ5tvCwkJQZ8+fbB582YAwLXXXos9e/bg9OnTiIuLw8qVK/H88887POaMGTPwwgsveHbgofbfIoVDJIzQItN2chcvij2W7SUMIj8gQ3RoKBCpiEBeGBqFyJo1AYgKec2T24EfvhIPfPFFc/XcmsNF3S5fBgBcNIr1p8pqWTdeZoWcgke5AvmUKVNw99134/HHH8eNN96ILl26ABDV8quvvtqtA/Q1DOREROQPRo4c6e0hAAAuXryIkpISJCQkWNyekJCAAwcOAABCQ0Px1ltvoVevXjAajXjqqadKXWF98uTJmDhxovnzrKws1K9f370DdxTIlQLTpWaZ9bQ0sQAWkR+SgTwsDDAYNYG8Rg0AIpC3/Hel+gU7dzoM5A4r5Ka9zC9CHNNgsP1avR7I0ccBJYDClnUKIuUK5HfccQduuOEGnD171rwHOQD07t0bgwcPdtvgfBEDORER+Quj0YgjR47g/PnzMFq9cHXv3t1Lo7Lv9ttvx+233+7UYyMiIhDh6Yq0g5Z1WSE3QBPIz5xhICe/pa2Qy0BeoI8SOwhAtKy3ObNK/YKdOwEH/1etF3UrKRHvmUMuXACgBnJH/31zwqsCeYDusvum1BD5unIFcgBITExEYmIiTp06BQCoV69eqfO9AgUDORER+YMtW7bg7rvvxvHjx6EoisV9Op0OJVaLlXlKjRo1oNfrce7cOYvbz507h8TExEoZQ7lYV8hDQ4HiYoQpDgI5kZ+SbeY2gVxTIa9++ZL6BTt22D2OoqhrIMoKuTx+hFWFPDzc/lhyImsAeUBI+sVyfjdE/qdc6yUYjUa8+OKLiIuLQ1JSEpKSkhAfH4+XXnrJ5gx8oGEgJyIif/Dwww+jY8eO2LNnD9LT03H58mXzhzsXdCtLeHg4OnTogLVr15pvMxqNWLt2rXnKm0+yDuRVxdzXkOJC0drLQE4Bwm6FPCQKME0bCYECPYxq18jOnaUeB7AM5IWFMLesX0BNhIc7XBMOOVGiKh+addnygEQBrFwV8meffRazZ8/Gq6++iq5duwIANm7ciGnTpiE/Px8vv/yyWwfpS/R6cclATkREvuzw4cNYvHgxrrrqKo8/V3Z2No4cOWL+/NixY9i5cyeqVauGBg0aYOLEiRg5ciQ6duyIa6+9Fu+++y5ycnLMq66XV2pqKlJTUz1T7bcXyC9cAAoLYTAAkXJRN4CBnPyadg55RIkI5Pn6KCA8HJmIQxxM87nvvVessP7vv0BGBhAfb3EcWWkHrAJ5Rq55lfWLqFHq+ocFUVVhhA4hUID0dKBWrYp9c0R+oFyB/PPPP8enn35qMderbdu2qFu3Lh555JGADuSskBMRkT/o3Lkzjhw5UimB/K+//kKvXr3Mn8sF10aOHIm5c+di+PDhuHDhAqZMmYK0tDS0b98eq1atslnozVUpKSlISUlBVlYW4uLiKnQsG9ZzyGX4MAVywxVNhfzsWfc+N1El0lbIw4tNgTxEJOqLqKEG8hEjgF9+AY4fB3btAnr0sHscQMwRDwkR75dL0sT8cWNYOLKLolGjlEAeHhWKy6iK6kgXVXUGcgoC5Qrk6enpaNGihc3tLVq0qNQ2OG9gICciIl/1999/m6+PHz8ekyZNQlpaGtq0aWOzD3nbtm3d9rw9e/a0madubdy4cRg3bpzbntPjHLSsmwM5W9YpQGjnkIfLCrkuCooCXEANNME/yNNFIrJbN6B9exHId+4sNZCHhYl54vn5QMk50a5eHF8DuKArtUJuMIiTANWRLjpSiIJAuQJ5u3bt8MEHH2DmzJkWt3/wwQdufYH3RQzkRETkq9q3bw+dTmcRjh988EHzdXlfZS7q5rccBfKCAgZyCijaCnmEqUKep4tCQYGY8w0AG/S9cJPBAFx9NfDdd3bnkWtb1kNC1EBuPC8CeVFcTeCC4xXWASAyUjxncxwyzzsnCnTlCuSvv/46br31VqxZs8a8IMvmzZtx8uRJ/Pjjj24doK9hICciIl917Ngxbw8hcJTVss5ATgFCO4c8TBPI8/OBXWiHAfge3yjDcBMgKuSA3UCuPY5Op66krlwQwbogtvQtzwC1Qg6AgZyCRrlWWe/RowcOHTqEwYMHIyMjAxkZGRgyZAj27t2LL774wt1j9CkykLOwQEREvkbufJKUlITjx4+jbt26FrclJSWhbt26OH78uLeH6hapqalITk5Gp06d3H9wbYU8IkJdpUou6gbNom6XL5sXrSLyNxYt60WWgfxlPIuO2IrPSu4X731lIN+717R8uv3jAJqtzS6ZAnl02YE8MpKBnIJPuQI5ANSpUwcvv/wylixZgiVLlmD69Om4fPkyZs+e7c7x+RxWyImIyB/06tXL7roumZmZFguw+bOUlBTs27cPW7dudf/BtYE8KkpNF/Yq5AAXdiO/pW1ZDy0WJ5ZyTYE8H5HYho4AdOKcU4MGolukqAjYv9/hcQD1v4zuopgLnudkIJdt8pcOXMALLwBXrlT0OyTybeUO5MGKgZyIiPyBnCtu7dKlS6hSpYoXRuRntIG8SpWyAznb1slPWbSsF4oKeS5EINfKzYXoRZdV8h07HB4HUP/LhKSLSneuaY9xZ1vWd665iGnTgMWLXf2OiPxLueaQBzMGciIi8mVDhgwBIBZwGzVqFCI0735LSkrw999/4/rrr/fW8PyHdg55aRVyubcTAzn5KW1lO8zUsp6rOAjkgFjY7ddfbeaRO2pZ15sCeU6Uay3rcjG4tDSXvh0iv8NA7iIGciIi8mVyP25FURATE4PIyEjzfeHh4bjuuuswZswYbw3PfziqkFuvst6gAfDvvwzk5Le0QTo0X6TunNICudz6+MgRi/utK+TyMjTDFMgNzi3qdtQUyKsaxdddvuzCN0Pkh1wK5PKsuyMZGRkVGYtfYCAnIiJfNmfOHABAw4YN8cQTT7A9vbycbVlv0oSBnPyatkKuL3QikDdqJC6tdnVwVCEPzRBzyK9EuDaHvCbE1zGQU6BzKZDLs+6l3X///fdXaEC+joGciIj8wdSpU709BI9LTU1FamqqZ/ZUt25ZlymisBCGGM0q6zKcMJCTn9JWtkML1EBuvXGAOZA3biwujx0DFEXMK4fjRd3Cs0SlOzNcBG2DwfFYtHPIa4AVcgoOLgVyedY9mDGQExGRr7rmmmuwdu1aVK1aFVdffbXdRd2k7du3V+LIPCMlJQUpKSnIysoqs2jgMmcr5DKccJV18lP2KuTZxlIq5A0aiDfEeXnAuXNAYqLFcbSLuulgRPiVSwCAzDDX5pBXQS4ikYuMjKiKfYNEPo5zyF3EQE5ERL5q4MCB5kXcBg0a5N3B+LvStj2LUGBAgfhcBnJWyMlPaVvN9flOBPKwMKB+feD4cVElNwVyey3rcchEiFF0sGToqwMoO5BfQQwKEYZwFKE6LuHyZQZyCmwM5C5iICciIl8l29RLSkrQq1cvtG3bFvHx8d4dlL/StqxbVcijwwrU+xjIyc9pK+QhBY4DuUULe6NGIpAfPQp06WJxHG2FXLadIyYGuSUiiZe1qBugwwXURF2cQU1cwOXL9cv/zRH5Ae5D7iIGciIi8nV6vR433XQTLnPyZfmVssp6Fb0mqTRpIi6zsoDs7MobH5GbaIN0iDMVcsDuwm72KuRyYTbUrIkC03mssirkgOU8cv4Zo0DHQO4iBnIiIvIHrVu3xtGjR709DP9VSst6tF6UCo26EKBqVSA6WtzHeeTkh7RBWgbyKyVlBHLZGaL5G2NvUTdzhbxGDfPxyq6QWwbyzEy+76bAxkDuIgZyIiLyB9OnT8cTTzyB77//HmfPnkVWVpbFB5XBukKuWWU9KkQki8IQg1hhuk4dcR/b1skPmYO0XkFInkjdWcWuV8jt7UOuDeTOVMjlua0rEWJF9hq4CEUBMjNd+Y6I/AvnkLuIgZyIiPzBLbfcAgC4/fbbLVZbVxQFOp3OM1uFVbJK3fZMUyHXBnIDACQkAIcOiRWnifyMDNLy9xooXyC3v6iba4H8+uuBe+8Fks/VAFYDdUIvAMVi67OqVV38xoj8BAO5i/R6cclATkREvmzdunXeHoLHeWvbM4sKOQDExIjLnBz3joGoEshAHqmoiftKcaRzLesnT4okHhZW+qJuNWqg4IS4WtYc8i++ADDNFMjDL5oDuUOnTwN33QWMHw8MG1bat0rkkxjIXcQKORER+YMePXp4ewj+rZRAHqkTSaVAJwJ5emE0qgEoyshGGIj8i6xsR0Ek7nxEoAR6ywAOq0CekCDSc14ecOIE0KRJ2Yu6HRZXSwvkZjXEHPKEUBHoSw3kixYBGzeKMwHOBvLDh4HHHwcmTwa6dnXua4g8hIHcRQzkRETkT3Jzc3HixAkUFhZa3N62bVsvjchPOGpZLyhAJMSibvkQS0Jv2RuNWwAc3pGN5EoeJlFFycq2wSgSdy7Evt9XrojbY2LEdYtArtMBDRsC+/eLhd2aNClzUTdnWtbNaoo55LVMgT4jo5TH7tkjLtPTnTiwyVdfAT/8AMTFMZCT1zGQu4iBnIiI/MGFCxfwwAMPYOXKlXbvD4Q55B5VSoXcAFEhzxczyHEhT6xEVXCR256R/zHPIYdlIJe7+FWrZieQA6Jtff9+8zzyMlvWXQnkpgp5NcWJCnl5AvkFU+X+1Cnnv4bIQ7jKuosYyImIyB889thjyMjIwB9//IHIyEisWrUKn3/+OZo2bYrly5d7e3i+r5RtzyIUEcjzFBHIL5oCeUkWAzn5H+sKeZ6p80MbyAHRnW7BamE3ey3rFQ3kcUVlBHJFAfbuFdddCeQXTeNiICcfwAq5ixjIiYjIH/zyyy/47rvv0LFjR4SEhCApKQl9+/ZFbGwsZsyYgVtvvdXbQ/RtpWx7pg3khYXAxQK5VxMDOfkfGaStW9atA7lNhVwGctNe5Pa2PbOYQ16OQB5TcBGAgsuXdfYfd+KEOtCcHKCgwLknuHRJXJ46JUK9zsHxiSoBK+QukoGcnX5EROTLcnJyUKtWLQBA1apVccHUotmmTRts377dm0PzD47mkBuNiCgWq6nnKgZcuABkQwRyXQ4DOfmfsuaQOwzkcqV1BxVyg74I8TBtIF7OCrleKUE8MhxXyGW7ulRqb7uGrJAXFqrXibyEgdxFrJATEZE/aN68OQ4ePAgAaNeuHT7++GOcPn0as2bNQu3atb08OvdITU1FcnIyOnXq5P6DO5pDDiAiX4SMHGMkzp9XA3lILgM5+R+blnWdk4HcQYVc/teJKRRV6BKEAPHx5kBuMDgxqIgI83aCNXBRzdmXLgGvvqq2p1sHcmfb1rUhnG3r5GUM5C5iICciIn/w6KOP4uzZswCAqVOnYuXKlWjQoAFmzpyJV155xcujc4+UlBTs27cPW7dudf/BSwnk4XkikOeWGCwCeWg+Azn5HxmkI0pM257pXGxZv3QJuHLFpmVdBvKcsHhAr3etQg6Yq+QWgfz998VWZZMmic+tA7lsRS+L9nGnT9veryhlLO1O5D4M5C5iICciIn9w7733YtSoUQCADh064Pjx49i6dStOnjyJ4cOHe3dw/iBSLGwFvV60rGta2MPysgAAeTDgzBk1kIcVMJCT/5Gt5uHFpgp5iJOBPDbWHJrx9982LetRRnGA3NBYAHA9kJu2PrMI5MePi8tvvxXt5nJBN8mZCnluruU3Y69C/thjQPXqgCdO9hFZYSB3EQM5ERH5o6ioKFxzzTWoId9AU+ni4oA33wQ++ECEcZ3OHMpDc0Ugz4dBrCllCuQRRQzk5H+sK+QFpkAuV1V3GMgBoF8/cTl/vk2F3FBiWmshxLQtYDkr5DVxQQ3kcruyjAzg55+BffvE582aiUtnArl1Fd1eIN+0SbzZX7bMycESlR9XWXcRAzkREfmDiRMn2r1dp9PBYDDgqquuwsCBA1FNvtsmW7ItVoqIAIqKoM+xH8gNJQzk5H9kkJYV8nx9lMX9pQbykSOB+fOBr7+Gcu/bAAzmCnmk6f+DDOT5YnMC5wO5aVHKWjivdo/LQA6IueQFBaKbpUMH4NAh9wXyc+fE5YYN6m2KIo5fvbqT3wCRcxjIXcRATkRE/mDHjh3Yvn07SkpK0Lx5cwDAoUOHoNfr0aJFC3z44YeYNGkSNm7ciOTkZC+P1k+Y5pHrrsiW9UiLQB5lzOYOSuR3rFvWZYVckoG8qEiEd+3yCrjxRqBePeDUKbQ4vALAneb7ZcdIji4aiiI6zAHXA3kCziEjw7Q7mTaQb9okLlu1UlvnnQnk1quqWwdyRQHOnxfX//xTnEkwGES3zIQJwJdfAvfc4+Q3UQ5btwKrVwNPPmm524M/OXZM/OyGDeMfRCewZd1FDOREROQPBg4ciD59+uDMmTPYtm0btm3bhlOnTqFv374YMWIETp8+je7du+Pxxx/39lD9h1zYLVMs6mZdIY9GNvLzFG+NjqhczK3mRaZA7qBCDqht7GZ6PXDffQCATvs/F8cxZUgZyHNRxRzGARcCeUKCuMA5lJSYVn2XgVwbVFu1UgfpSoVcnjmwDuSZmerZg8JCEZAVBUhNFbd99JGT30A5jR8PPPss8Msvnn0eTxo7FrjrLmDNGm+PxC8wkLuIgZyIiPzBG2+8gZdeegmxsbHm2+Li4jBt2jS8/vrriIqKwpQpU7Bt2zYvjtLPyECepbasnzypBnI9jLh8Nt9boyMqF3MglxXyUMtAHh+vXrduW583D3jl9EgAQPKJVaiFczYV8mxdtHn+OOB6IK+tE+3jGWfz1JXm7rhDfVzr1q4Fclkhl51Bp06JwC3JdnXpt9/E4nGmbSTx+++AaQcLjzh0SFx68jk87fBhcfnXX94dh5/waiCfMWMGOnXqhJiYGNSqVQuDBg0y75kq5efnIyUlBdWrV0d0dDSGDh2Kc9b/USoRAzkREfmDzMxMnJdtlxoXLlxAlilQxsfHo1BbuqLS2amQ5+UBuVADzJWznEdO/sUcyAtF2i6yCuSRkWKjAcA2kD/5JPDsvObIadMZeqUE92C+uXgdXmgK5EoFA3mIeN9/5aimOj56tPq48gbydu3EZU6O+f80ANtAvmEDsGiR+rmieG6xt8xMmFewM69k52cUBUhLE9etV8Enu7wayNevX4+UlBRs2bIFq1evRlFREW666Sbk5OSYH/P4449jxYoVWLRoEdavX48zZ85gyJAhXhszAzkREfmDgQMH4sEHH8SyZctw6tQpnDp1CsuWLcPo0aMxaNAgAMCff/6JZnJ1Yj+UmpqK5ORkdOrUqXKe0E6FHACM0CPHFMqz0xjIyb+YtysztawXWgVyg8F+IC8pUTvIT/UUbesDsMJcIZfbAF7RBPLQUPW9dJlMgbwWREDOPWF6spo1gR49gMaNgehosaCbXGjNmX3I5WPq11eDvLZtXZ7IrFpVXP7+O7Bwobh+9dXicskS576HCxeA776zrMCX5t9/1evOnFzwRRkZ6pL61vvEk11eDeSrVq3CqFGj0KpVK7Rr1w5z587FiRMnzO1zmZmZmD17Nt5++23ceOON6NChA+bMmYPff/8dW7Zs8cqYGciJiMgffPzxx+jduzfuuusuJCUlISkpCXfddRd69+6NWbNmAQBatGiBTz/91MsjLb+UlBTs27cPWytrr2BZ2jOlkjxEmu/K04u29exzOTZfRuTLZIU8tNB+II+IsB/IL11Sc+b5eHFirzou2QTyLGO061ueAeZAHl9yCXoUo/CUJpCHhopF3f7+W3xengp5jRpiQTrAMpDLCnn37mL7wytXgAMHRGV+9mxx36+/Wq747sgzzwCDBgGffFL2YwGxGJrkrxVyWR0HxM9N/oKRQz41hzzT1C4it2DZtm0bioqK0KdPH/NjWrRogQYNGmDz5s12j1FQUICsrCyLD3diICciIn8QHR2NTz75BJcuXcKOHTuwY8cOXLp0Cf/73/9QpUoVAED79u3Rvn177w7Un8gKuYmskBsMQGG4COR5F1khJ/9iHciLwtRAHhoqPiJN5560gVybRy+XiLUqYpFl07KeXhjt+pZngKh6h4QgBApq4gKKz2oCOQAkJgKNGonr5Qnk1auXHshr1wa6dlVvv+kmUSG/+moRBL77ruzn+vtvcTl/ftmPBSwDub9WyLVz3wsKgH/+8d5Y/ITPBHKj0YjHHnsMXbt2RevWrQEAaWlpCA8PR7x2NQkACQkJSNOefdGYMWMG4uLizB/169d36zj1ejletx6WiIjII6Kjo1GtWjVUq1YN0dHR3h6Of3MQyGvVUgN5/gUGcvIvMpBHZIpW7ZwIdVl1g/gVt1sh1wbyi4VqIJcV8mid6BZJL4rGkSOm53AlkOv15u3MEnAOxnNWgVxLBvIrV9QefEdky3pZFfKEBKBbN/X2O+8Ul0OHiktn2tZPnhSXGzZYVo4dCYSWdevvk/PIy+QzgTwlJQV79uzB119/XaHjTJ48GZmZmeaPk/I/gpuwQk5ERP7AaDTixRdfRFxcnLllPT4+Hi+99BKMfBErHweBvGZNoCRCdB0UppcRyI8fLzswEFWioiJAByMiLohQejGqgfk+60Cu3fZMG8gvFGgq5KGijz0k17SoG6Kxfbt4nEuBHLDY+kx/yTS3214g1xbvymr1drZlPSFBtK0Dol399tvFdRnI1641rycBQPTva+eKFxSox1IUYOnS0scFBEbLuvXq8P40j9xodH6+vxv5RCAfN24cvv/+e6xbtw715H8MAImJiSgsLERGRobF48+dO4fExES7x4qIiEBsbKzFhzsxkBMRkT949tln8cEHH+DVV181t6y/8soreP/99/H88897e3j+qZQKeUmkqJAXXS4lkH/7LdCwITBjhocGSOS64mKgJi4gpKgQ0OmQEVXHfJ+zFfLz+eL9dihKEKGY+tOz1UAud1esSCAPvWx6wlq1bB+n16uhvKzKclkt63JRt4QEoEsX4LnngP/9T13krUUL0SpfVCQWfJMefFCcLJAVYuv9zRcvLn1cQGC1rMt/bH+qkP/4I1ClCjB4cKU+rVcDuaIoGDduHJYtW4ZffvkFjeQ8EJMOHTogLCwMa9euNd928OBBnDhxAl26dKns4QJgICciIv/w+eef49NPP8V//vMftG3bFm3btsUjjzyCTz75BHPnzvX28PxTKYFcqSICeUlWKYH8m2/E5YYNHhkeUXkUFwP1YeoorV0buvAw831OB/KcKurXFJqqxqZAnoMq5gq5PJ7TzCutn0fElVJa1gHn5pHn5anfhLZCfvq0+hhthVynA156CRg1yvI4spV940ZxmZ0NfPmlaIeX/79ll648UbB+vRr27VEU51rW33wTuOsu4PHHgffes9yyzRfIExI33CAu/alCfvKk+B2p5KAXWqnPZiUlJQULFizAd999h5iYGPO88Li4OERGRiIuLg6jR4/GxIkTUa1aNcTGxmL8+PHo0qULrrvuOq+MmYGciIj8QXp6Olq0aGFze4sWLZDur5UXb7Mq78lV1mvVgth+CYDiKJAriliZGVDfqBP5gKIiTSCvX988BxxwPpCnZ4QgRx+DKiVXEFWcBSDBokJuXTR1mqZCHpXtRCA/erT0rc/kfaGhQGxs6S3r9irxUrduwLx5avj+7Td1Mv7hw+LyxAlx2bGjaD/ftk3sX/7QQ47Hlq35+5GRIQKHdp+4o0fF5u9aX30lnt/qhKHXyH/sPn1EW/+hQ0Bhoe+MrzQn1f8HlcmrFfKPPvoImZmZ6NmzJ2rXrm3++EaeQQbwzjvv4LbbbsPQoUPRvXt3JCYmYqkzczA8hIGciIj8Qbt27fDBBx/Y3P7BBx+gXbt2XhhRACilQh4Sa1owL9tBID94UK0cnTzplXmKRPYUFwMNYAqP9eubV0kHnA/kGRlAjl60rUcUWFbIs6EuJlmRQB6dX0Ygl3uRl3bCUduurtOpgTwjQ4w3J0d8aJ7bLlkh/+MPMVd8zRr1PrmCnTbcyQXh3n0XeOEFsQ3alSuWx5Tt6vL7MBot56gDwE8/icsWLUQwj48XY3j2WcdjrWzy71zHjuKkR3GxCOX+IBgDuaIodj9GadpCDAYDUlNTkZ6ejpycHCxdutTh/PHKwEBORET+4PXXX8dnn32G5ORkjB49GqNHj0ZycjLmzp2LN954w9vD80+lLOqmjxOhQ5frIJDL6jggUo2/LthEAceiZd2qQi63O3MmkGeHiEBu3bJeGOaeQF61qJRF3QDnWta1K6wDQEyMCI2ACGOypdxgEPc50qyZOBNXUAD89ZdlILeukDdoANxxhzgBcOAAMG0aMHYsMGGC5TFlIG/RQv3BW/+dkIH8vvuA118H5swRn7/5JvDDD47H62579wIjRgC7d9veJyvkdeoArVqpj/cHwRjI/ZEM5CUl3h0HERFRaXr06IFDhw5h8ODByMjIQEZGBoYMGYKDBw+im3YrH3JeKRXysKoidOgdBfJ16yw/Z9s6+YjSArmskJe1D7k2kEcUZInKlenBtZtWPJA3wAlEG00VZUet5M4Ecm2FXGrWTFzu2WM7f9wRnU6dI714sWUwtVchb9IEWLEC+O9/gQceELfPmwfs369+nZw/3qiR/e+lsFC0gANAv37ictAg4NFHxfX776+cE33Z2eJ5v/7atjJfUKCOITERMG1l7TfzyBnI/QMr5ERE5C/q1KmDl19+GUuWLMGSJUswffp0GI1GjB071ttD80+lBPLw6iJ0hBXYCeTa+ePyGAzk5CPcMYf88mUgW6cJ5JoHJrWqQCA3he+mEFVnJTTUcoszLUeBfM0aoGdPMW1Eu+WZ1KGDuNy2zTKQl0We2Jw1S1w2aSIu09JEO/oJdRoAAODWW4GXXwY++wwYOFCEialT1ePJCnnDhuqK7trvZfNmEYZr1gSuvlq9/fXXgaZNxWNXr7Y/VndWEh97TD3psGqV5UkA2a4eHi6+h7Iq5EVFwMKFtu370vz54t+urD3cFUWc3CgsdPa7sGU0qmsJMJD7NgZyIiLyZ5cuXcLs2bO9PQz/ZBXICyDSRa1aQGQNETrCi7Jt3yPs3y9aYQ0GoHdvcRsDOfkI6wq5M3PIjUY12wJiYepMRQTy8PwsdS2FkBA0a6surV7eCnkoRKA0VqvhuHJtCuQHN6db5s/33xcrnL/2mm3LOmA/kJe2oJskA3m+aZu3IUPU4/7zj/p/vEED26996SXxfSxaBOzYIW6TgVxbIdeGXdmuftNNlgu9hYcDt9wirq9fb/tcx44BjRuLkwAVtWQJMHu2GHutWiJQf/uter9sV09MFI+RFfI//hCPtTZ3LjB8uFgx3tqVK8C4ceJ7+uqr0sf1ww9AcjJw3XW2280568IFEeh1OqBu3fIdo5wYyF3EQE5EROQbUlNTkZycjE6dOlXOE2rSRHGoAYAIBjVrAgZTII9Gts06TObqeNeuahWNgZw8ad8+4PnnRVIuhaIAKClGHZwRN5RRIZeHy8iwLbpeLBSBPEwbyKOj0bqNGqDLWyGXCmIczB8HzCH23x3pmD9fc/vBg+Jy2TLgjOn71Lasl7dC3q6deXcFAGJV8aZN1WPJPwT2qq1t2oitywDx7wRYBnJ7FXIZyGW7ulaPHuLSOpAXFIgF5U6cAL7/Xl0Jvjzy89UV4p9+Wp0D//XX6mNkJbt2bXHZpYv4NzxzRuzlbu3AAXH53Xe2v1Cffip+0QCY981zZPNmcbljB3DttWJef1m++UacVJFb18m/yYmJsDgrVQkYyF3EQE5EROQbUlJSsG/fPmzdurVynlBTIS8JE0klJkaElvBqaiCX7yHN5PzxXr3UN+fuCuS5ueWvCGllZACV9XMkz5swAZg+XcxTLkVJCVAbZ6GHUbSDJyQ41bIu29VjYoC4OHH9UrGpQp5nGchl1zJQjkAeFqZWiwFciSw7kFdDOswbNhUViWo1IH7H5U5N2gp569bieS5fBv78U9zmTCAPDRWBExB/G264AbjqKvH5L7+oY6pSxf7Xv/ACoNeL6u6nnwLHj4vbGza0bb8/f14NpTfdZHssWa3fu9dyLsGkSeLkACDCi6xgl8ehQ6LDID5ejH34cHH72rXqc8rjy0AeFaW25b/wgm1rujwBcvGiZYguKgLeflv9vKxAfvSouAwLE2Po0cPxyu65ucCYMeKEyMaN6pQDL80fBxjIXabtEOGOJUREREFEG8jD1fnjAMyVsmhkW66rpChq1apnT/cH8jvuEBW1iq5i/OCDorIk91Um/1VQAGzaJK5rFw2zQzt/XKlTF9DrXQrkNWuqU7qzIAJ5qDaQV6mCRo3U47gcyAGLcHw5tJRWclOIrY5L+PlnU7f3sWOWVWE5cG2FPDxcVKwBddE0ZwI5AHTvLi6vv178kGSFXAby0sJd06Zqdfyhh8S/m14vvsa6ZV3ODW/f3v7YatRQv4fffhOXCxcCqaniulyVT85rLw8Zeps2FT+zq64S3QUlJaKVHVAr5NodscaMEV9z4QLw1luWx5SBHAB+/FG9/vXX4kSj7BQ4cEDdjs4eedLlk09EJ1JuLjBjhu3jCgvFv9mnn6q3yQX5GMj9hzaQs0pORES+ZsiQIaV+PG5vrh45RxPIjaUEcosK+aVLagjo0EF9s1faG+PcXFHhuf/+0sezfz+wcqUIHD//7Pz3Ya2gQCzOBABbtpT/OOQbtm5V5zXLLbgAUZ18/30gM9N8k3b+uFJP/G46M4e8tEAelmtZIdfrgZYtxacVDeTnFMcV8sIYEbKrIR3FxaapzbJKKgOppK2QA2rbuuzJdzaQjxsHPPywGjRlhVwGU3vzx7WmTBHbh8lQUb++qLxbt6zLLht77eqSbFv/9Vfx7y//1k+eDMhpPdoTgTk5sG3nKYUM5I0bq7fJKrlsSbCukAPiF+qVV8T1N9+0XKDNXiBXFLFQHQA89ZQ4ltEI7NrleGwykF99tfpv8eWXtn9nv/9edAzEx6uhfP9+cWbKSwu6AQzkLmMgJyIiXxYXF1fqR1JSEu4vK+iRfZpAHlk1ErffLjpCATgO5PJNXq1aIt3IN+inTjl+I7FwoahyffFF6e3on32mXndmzqQjW7eqQUQb4Mg/aecRy9WwAbGo2YQJYqVvk+JisaUYAOgaiCBS0Qq53iqQA+raXvI4LtGE49MFjgN5OkRVOR6Z0KMYCxfCPH/8XKdbodSpoz7YUSC385ylio8HPvoIuOYa8bmskEtlhTudTvw/lq3vMtBbt6zLefDa1dWtaeeR/+9/Yt52/fqiZdy6M0dRgM6dxSromhM0ZpcuiQUotW3j2jnu0rBh6nOeOmW/Qg4AQ4eKkwI5ObCY4K8N5H/9Jb7+q6/ENmnR0eJkh/zZOmpbz8hQf06NG4vvq1cv8cttXZGX+7Y/9JDYfi46WoTxQ4e8WiEPLfshpMVATkREvmyOfMNB7qcJ5PoqBnz3neY+Ry3rMlDXqycu69QRbyaKisS8UOs3rgDw8cfq9V9+sV8pLywEPv9c/bwigVwuOgcwkAcCbSA/elQEk9BQ9XdEzpOGZYVcZzpZ5Mw+5DKQ16oluqwBTct6jm0gf/xxcc7n7rvL8f1oFnY7luM4kF8orgr5vykeGVizpgbSqxxENQAf/9YSXVrVRd8z74kHaFvWAdtA7swq6/bIQC2VVSEHxA95+XLRYi0DrqyQyz8m8sSK9fG1ZPv87t1i/QBA7BMeEWHbmXP2rDrNZcUK4N57LY/18cfib8/evcDEieI2exXypCQxf33DBvH3yF6FHBAnHnr3Fif/5H7rJSXqUv3164tAPHu2qKIDwJNPihMeHTqIefZyLrw1Oa6EBHWRvcmTRVfBJ58Azz0nzhydPatW4R94QPwdbt1adAXt3s2WdX/CQE5ERBSktP22MqlIpjeCBhQg65Jme5/Tp8WlDOShoeqbVXvzyP/+27JtXM5FtbZihUhFMlgcOuRa+6kWA3ngKCoCfv9d/by4WA1he/aIy127zAshaeeQl7dCLrOjuUJuJ5BffbXY4atZs3J8T5pq9eHLjgP5pcxQZJrG0LWFaFvfu1RUlg+iOabuHaY+2DqQt2lj+Y07WyG3Fh9vWX13NtzVqCGquZ07i8+1FfLsbLXyLHdpsKdWLbH1FyD+gZKSRPAE1BMD8m+OdsGzxYstj2M0iiALiAq23CrOXiAHgP/7P3E5e7a6ir11IAfUv4Hyb+LFi+K5dDr1hMBzz4m/Yx07ilANlF0hl+3q2nH16SOCfF6eWuX/4gvxfNdfDzRvLm6T8+4ZyP0LAzkREVGQ0u5D7iCQA0DOec3iQ9YVcqD0hd3kG2H5+F9+sb+KrNxLfswYtYW0rJWI7SkstAxwp0+rqYv8z/btoi24WjWgRQtx2+HDotIqg1BGhvn30noPcqDiLesh2VnqAlzabcHKSxOO/8mu5XBtr4sX1bb1ob1EC/NVigieHe9uji24DnN0D+LskBT1LIIUEaH21WvncJeHtm3dmQq5PdpF3WTgrFFD/WE7ItvWAVEdl3+zrCvk2hNvq1ZZrn6+Zo1axQbEFnpGo3qbtmUdEAtLxsaKlnYZyO11/si/afJvomxXr1EDuP129XEGgwjPcjEDGcj37lXXRtCSJwq0Jyt0OuC//xXXX3tNVPxl95g8SQGogXzXLvX/BwO572MgJyIiClKlBfLwcBSHiDeQeRdz8Omn4j3qma0uBPLcXPFGFAA++EC8IT15Un1DLp08qS7C9uCDopoElK9tXc4fr1FDDQHaecfkuj//tJ37X1xcvu15XP0a2a7evbtajj582HYVftMCWfYCeWmLusmlBuwF8iuIAQCE5FyxqZBXiCaQX0BNhxsUXLoEXISoTt/S6l/UrpKF2hCV5cc+bIY77gzBg8psdN76gc2W1wDUtvVatSzf8LtK21Ze3nCnXdTNmXZ1qU8fcdmwITBypHp7aRXyggLLFc7lSUFp715Roc/PV1eB14qKspyLoNPZ7zBwFMgTEsT8cjlN4I031JNJ8utq1hQt7nJFdO1JQ/n30bp7YPBgseieooi56AcOiLEO03RKyED+66/i+KGh9k8meBgDuYsYyImIiIKUNpBbr9oMoChChI+0I9mYNEkUndJ3md581q2rPtBRIF+0SCyw1LgxMGCAutCTddv6kiXiTWb37qIaV5FALtvVe/ZUK3tsWy+//fvFv1u/fmqYzs8H2rUTgc/ZN49ZWSJQ16gB3Hor8Oqrtns42yMDeY8e6r/nkSNqu7okA3lOARJwXtzmRIW8qEhkodIq5Lps25b1CrEK5I42KLh4EVgPUSGu8dsyHP7etBBaYiJ0cbH47DPxfdg7xwVADeTlbVeX5M9dpxNrRpSHPDmWm6ueTHEmkA8aJAL1ypWWf6/k35yLF8Ux5f9xGYLltmXnzpmWp4e63/nevWoVun59yzM20ujR6vUaNew/Rv4NTEsTv0jaQK7XA999J6rYjzxi+XU6nVol37pVhOzoaLH4G2C/ZV1+3cyZwNNPq7fJar4kA7lsu6hTR10UoRIxkLtI+2/EQE5ERBRESquQAyiJFOFjx8ZsZGWJ2yIuulAh//JLcfl//ycqADfeKD6XeyNLcgukW28Vl3JLo61bSx9/UZHtbQzk7rVxo3iDuG+fugjVypXi8x071JWqy7Junfh3SE8X1cvJk4H33iv9a0pKxPMD6skaQBxHBvIqVcTl33+LS1O1Mg8G87xqe4G8alX113b16jICeV6euhiZOwK5KcgVhBhwGVUdBvJLl4BvYNqG6/vvUeXQDnHdNF84OlosKg6ohVYLQ4aIUC7nRJeXDM516tgPps6IixOBElD/XzsTyENCxPi1FWZA/CPJf/tTp9QK+WOPicsffxRB/dNPRdtE585iOzZA/O7K31vr0Ct16CBOOgGOK8y1aolfLkURoVwGcnlS4LrrgFGj7HcnyED+1FNib3VFUVvQHVXIAfEznDFDVN1bthQLxWlVr245390L7eoAA7nLWCEnIiIKUmUEcmOkeMMbjWzzbYnFTgby3Fyx1RkgggEgViUGRDiTbzpKStQqqAzs8s3qv/+qqxZrFRaK/dmqVFH33pW3b9okrmsrqgzk5afdK3nRInEpK3mAbaXaEfnvcvvtYloCYDnX354dO0RlPS5OhCMZ4I4cURPo4MEW4ww5LX4Hz+jrmwOgNpDLRhCdTuxcBYg1wOwt6iZb1gGoq23LEFgRdesCM2fiy16fQUFIqYH8L3RERrVG4v/Tu++KO+QCXlCnidsN5AkJosvEukLrqu7dRQCWJ8zKIyREPdMhV8V3JpA7otOpbev//quG2LvuEu3tOTli5b3nnhO3jxmjnr3QVsgdBXKdDhg7Vly33vpNCglRq+SnTllWyMsiuxdyctTq6Pr14sSP/DvqaME7nQ544glxYkH+AmjJKjnAQO4v5MkqgIGciIgoqJS2yjoAVFG3PuvXD7ixYxZiZDgvq2X9t99EQG7QQJ37e+21osf2wgW1bXXHDtHWHhen7kkcF6d+jfXWQCdOiIDw9tuiQi7bUQHL+ePJyQzk7qAN5AsXijbzFSvU21wN5EOGiD2TAREWS5tT/sMP4rJXLxFa5L/n0aNqRfyee8Tl4cNAbi7CD4nxnA1VFx+zN4ccUAP50qXiVxWwrJAXIVxU2gF1cS93VMgBYPx4nO8tKrbHj9t/iDgXpcPxa01zhPfvF5eapd21i2p7TN26YktD7faF5SHb1s+bphRUJJAD6t+dTZvEP2B4uPh7I/9hDx0SZ2MefBC47z5RUQZEcJZVeusF3bQefhiYN892728t7TxyVwJ5ly7iF7NKFdFx0rix+B4++0wEsqio8k81YCD3PzqdGsoZyImIiIJIGRXykFgRPmKQjddfB25tJ6rjOeFVLSuF8k3fmTOiPRQAfv5ZXN50k/pGIzxc7PELiD5hQG1X797dch6dbFvXziO/dEm0nv7xh5qytIFQvsm+/npRvWIgrxijUQ3kOp2oRE6ZYrkytDOBPD9f/Xfs2hVo21YEpQsX4LA8DIg5uAAwcKC4rFdPnEQqLhYrq4eEiKkJNWuKse7ZgxpLZgEA1le5xXwYey3rgPg1qV1bXU8rKkp8aBf+lm3rbg/kELt4AY5/BHJ3rvS+wy3v0FTIKyWQA+VvVdeyXum9ooFcVsjlFJirrhJ/QyZOFJ0Tzz0nznbMni3+9kRHi+q59mscVcgB8ft1333q19gjT0yePu1aIK9TR3QK7N0L9O0L3GL6fU1NVcelrZq6goHcP8m2dQZyIiKiIFLGom5VEkX4ePi+bLRtC9zQUATyU6hr+cCEBPGG3WhUW3tl4JYLKUm33SYuP/pItKvLQN6rl+Xj5MJu2nnkzz0n5mo2b67ubX78OMwT3GV4lJV2GcjT0pxbQIws/fuv+LlFRIjFtQC1bVqeMHEmkG/bJqp/tWqJNlyDQYRywPE6ASdOiO6JkBC1VTokxLKNt2lTcSw51/fddxF1dC+yUQVL4x80P8xRIA8JUTveAZHrAQeBPF1sO+bOQC7zZFmBPKxTe8u2aTst60eO+MHufrJCDogfsvbz8pBh848/xKX8GdWpI9oeXnrJdhE6ua+5PKlUWiB3Rnkr5ADQvr16Vkb+jsu57aXtz14WBnL/xEBOREQUhMqokOtM4aNnB9Gm3jpeBPKjhfXMW9wCEG8k5BvLn38W1cQ9e0SFR84bl0aNEpWyI0dEC/SGDeJ2OX9ckiuyf/+9aJHevl1tmf3f/8Q8c/lmW7a/79wpLtu3F5dxcWrK4tZnrpM/z1atLLeBAkTYAcTWS7Lf2xHZrt61q1r1K2sl/eXLxeX116v/hoBlMJVpVAZy09z2zzES+YZ488McBXJALFIt2QvkV3SxFo/3RCA/eVK8B1+wAHjnHfV+uXxC9Ro6YLipSh4aatFmnZAgZmgoitrR7rO0Afyqq8pfAZZk2JRdOZpWfofkPHKptJZ1Z1QkkGv16GF5UrQigbxlSzXcMZD7DwZyIiKiIFRGIDeHD9OWT1HpskJez7xem9nDD4vLZ59Vtxzq2NG2ChYdDYwfL65PmCCOXb26ZVUHEPPNH3hAVNGHDQPuvVekjhEjRHs7oAayPXtEKJTBXAZyQG2LPXxYJJ4mTcQCT5s3l28f7WAiOw7atRMttXKvsHbtROdDbKwIQ2VNCdAGcqmslfSt29UlbZuz/PeX1XaTDzDOIoQ7mkMOiBkUMojLy5gY9b1xdojnAnmdOuJ55FII994ruq0PHVK78gHTYvH33Sd+/t27W5xh0OkqsW29orQt6xVtVwfUMxqSo8XXtLSBPDpanM2oCBnIT55U58aXJ5BHRlqelKxI5T4yEkhJEV1HVv83KgsDeTnIPzolJd4dBxEREVUiFwO53FLKbiAfP168IT53TmzlA9i2q2sfGxmplgB79LDdGkinE5XwAQNEe+n+/WLe+htvqI/RJpH9+0WyiYtTq/WA+iZ96VKxt/DRo2Jl9uuvF+FGfm8k5nQPHw6sWiU+13YcREWp/d333y/+fUpd4ttEUdTV1O0F8r/+sq0IZWSo29dZB/LSKuQALlxzEw6gpUUgL61CHhqqduPL3a10OrVK7slAHhqqTkF+8EH1/NCBA+oua4DpnFazZiKpaxcxNPGbQG5dIa8o6+qvqxXyiszTluQ/4J49apCS2565SruKfUUq5IDYr/yXX9wz978cGMjLgRVyIiIi70tNTUVycjI6ybDiaRUI5N9/L4rhzz9v6gYPDxcrnwPq/ExHgbxGDcu9ka3nj0uhocDXX6tBbupUy9XdtRVybXjUvsmWAe6bb8S4brwRGDlSnBDYuFFU9lkpF95/X0wjeOAB8bPSVsgB4IMPxB5hjz4qPtf+/B05dEiceDEY1O3sADGX12AQ8/8PHxYdDvPmiSD+3XeiRNyypW3V014gb9nS/Lt89NYJAOB0IAfEr9X996tbWANqIM/xYCAH1CJvZqZ625Ej6rmq+HjN+OvWFeV7K86cF/EJ7q6QWwdyZyrk2v3MK9quDqgVcrmORdWqln9XXSEXdgMqHsi9jIHcFWfOAEePIlxXBICBnIiIyJtSUlKwb98+bHXUxutuZW17Zh3ITRPHz+rq4tQp4JVXgOnTRXf5li0Abr0V+T36AQCKI6OB665z/NyTJqmrqlvPM9eKigLWrBFV1ieesLxPGwhleNS2qwOWb9Lr1hXBfO5c4KefxPPPn2+5l3mwUhR1n/G0NLHVk9yPS7a9xseLLaXkv5szgVy2q3fqZBlUwsLUxff++gsYN06cKOnVS6wzANhWxwF1fmxMjBrqwsOBTz4BXnwRZ9r1Nx9eKiuQ160LfP65ZXevOZDrrQK5O/Yh19A2c8gf5+HD6oJu1auXfYygrZBHRqot51WqiCXzy6Jdab2iC7oB4jm1JwDLu1UZIH4Z/vtfsW+8O34+XhRa9kPILDkZyMxEo+iDuIxmDORERETBpIxV1h1VyB95pR7qHRVfsmmTWES7d29g5EgdNm15D9+hH77HMIwuCYedowpJScCyZWL1ark/sCMGg7rIm1ZysngzfOGCCNiARfuy+TGACJFff62+ge/WTZxRePpp0ULfqZNtmA8m+/aJXmnphRfEZVKS7XZVkiuB/IYbbO/r2FHM5Z8xQ8z/1+nERO7z50XoHjbM9mtq1xbTD6pVs0za998PAChaKD51VCHXnoMqjTmQh3o2kMtf/VtuAe68UzQnHDmiBnJnpjjLLuy0NFFZr+i0aI9xdyAHRJX84kVx4s3Z9vO2bcUOAs5U1MsSFibmOsjdJSoSyAHg5ZcrPiYfwEDuCtNfJUNIAQBWyImIiIKKKy3rubnmrZ9ue7gebosXd+XkiKLpTz+JncyA5rhK/y9K8oCQOaLY49CAARUbf1SUaO08ckQESsA2VLdpI1qxGzWyDYVPPCFWef/+ezE3ff78io3H36SnqyFp8WJx2aePCMcyYFif4NCSgfzoUfGLYC+syi2p7J1QkVMz5GJ8//2vWL19zx5RsXe0IJW9yrmJXHDb3qJu4eG2SxU4IgN5njaQR0S4fU7uo4+KTDlkCPD33+I2bcu6MxXymBjx633smPjR9ezp1iG6jzyxEx1d/nnW1ho0ENvjOTN/XHrlFfG7dc897hlD3bruC+QBgi3rrjAF8kgdAzkREVHQ0evVhFJWIJf7nFWpIhZOg/rp8uXA2LGiA3nxYnWr6jffVAOSx8hQCIgUJiviWuPGWS6YJIWEAA89JK7LQB8s5s0Tae/ZZ8Xnsl393nuBJ59UH1daIK9ZUwQrR3tu5eaqt3foYHu/dq2Erl2BadPUZcPLuTq0vUAur9v7FXdEZsdcbSB38/xxQITpkSMtO/BPnBCzSgHnAjngJ/PIr75a/P8cNarii6lJck92610aStOqlTjxExtb9mOdIeeRAwzkJqyQu8J0ZjxCJ/aPZCAnIiIKMuHhYgGvsgK5qV0d9erZvJkOD1e3CAdEDps2TVTslixRt1D2iDZt1JWnk5Od70mWZGXt0CERLN0VFHyd3P/9lVfEP+DevaL6e/vt4vNXXhFlWu1CbPa0bi1Wc96zR91bXNq1S7y5TExU94zXatZMLLKVkSG6E0Ir/jZerieo/TUoTyCXFfL8MM0iah4I5Fq1aomnyM5Wt2d3tv28TRtgxQq12cAnxcS4f4BPPSW6ZDz6R6YMDOQ2WCF3hWxZZ4WciIgoOMm29dICeVaWZSAvQ1SUutX4a6/ZLmLu1vcb2gp5eeaAN2okElturtoFEAxkCRYQZ08A0a5etapoe1i2DHjxxbKnFZS2otj27eLSUagPCRGh/cgRy9XNKiAvT1xql0SQ4dyV6d/mlvUwz1bItXQ6dVrzli3i0tkKuVxwPC3N/ePyadWri/YcTddOpdPu/MBADoCB3DWmv1ARYCAnIiIKSnIuZ82atvfJVHL0KJCSIq5r33yWYtw4Ecx37BA7i50/L3LXsGHidrctbK5tVS1PIA8LU1dbPnRIvf3PP8We6oFKBnJt5fqOO9TrN9wg9rSTK6o7UtrCbtu2iUt77epSeLhbF0qzF8ivvlosljZlivPHMVfIwysvkANq2/r58+LS2Qq5/G8sv44qESvkNhjIXcGWdSIiouC2cKFo+ZYbImu1bCnmE0dFAVeuiNucqJADonD13/+K6//7n8i8LVuKqcoFBaKC7pbu1auuUqv8pc13Lo1sWz94UFz+8QfQubP7Fn3yRTKQf/ml+IepVQsYPNj145QWyMuqkHuAvUAeGgp89pm6m5ozZCAviPBOIJecrZAzkHuR9m+iuxar83MM5K5gyzoREVFwu/pqx6tWh4QAr78OnDwptuO56Sax6JeTnn0WWLdOTC3OyRELbvXvL7aazs8Xh8rNFYvAXXUV8OGH5Rh/WBjw3HNimWp7W2s5Qy4MJSvka9aIyw0bgKKi8h3TlxUVqcmtdWvRxvDvv463NyuNXETvzBnzKvwAxD+wPONSWoXczewF8vLo3FkU7pt3qtxAbr0TFwO5H2CF3AYXdXMFW9aJiIioLNWqiXK3LHm7oGdPUXBeuVJUHbt2FTsEtWkD7NwpCvNyz+UnnxRd0y4XmZ5/3uVxWdAu7AaoW3UVFopVwsu54nelKSkB1q8Hrr3WudAoJxqHhYnE5+xeYPbExor538ePiwDerZu4ffducQamRg2nuyrcwV2BvGlTcX4hPD0W+Mx0o5v3ILfHukLuasv6lSviZ1DR759cUK+eWLAOEAsYEivkLmGFnIiIiDwsJETsOta1q/i8dm3gk0/E9UuXRFBv3FhUy197zQsD1LasK4oayAG17dobPvhAnAw4caL0x339NdC7t/MnTGS7eu3aFQvjkr22de388Upcud5dgRwwzYSI9Y+W9bg4dYv0CxfcOyYqg8Egumk2bHBtKf8AxkDuCs4hJyIiIi8YPBh4/31g0iSRg1NTxe0ffigq6JVKtqwfOwYcPmzZ9+vNQP7hh6LS/OWXpT9uxw5xKefAl8Xegm4VYW8TbC/MHwfcG8jNB5IL21VCIE9MtCzEOxvIdTq2rXtVu3blX8MiADGQu4It60SVo6BAVA6s9/4hIgpi48YBb74pgkS/fkCXLmLq8auvVvJAEhNF2DIaga++srzPXiA/cQL4z3/KrlxXREGBODkAiH2+S3PsmLh0Nol5KpA7qpBXIrcHcp1OrZJXQiDX6dQqeXS05X7qZWEgJ1/BQO4KBnKiyjFxopgw+fPP3h4JEZFP0umAl14S12fNEkH98uVKfHJZJf/iC3HZq5e43LnT9g3SjBlikHLAnnDokJiDDQCbNomA7oi3A7ncek6eeC4sVKvl/l4hByo1kAPqwm7OVsclBnLyFQzkrjC1rIeDLetEHnXggLg8csS74yAi8mE33ihWYS8sFAu81asnplFXCjmP/J9/xOX994tUl5OjVqqlrVvF5e+/e2482mpzfj6wZYvjx2oDuTOdWO4O5M2bi7buy5fFfIM9e8RK7lWrAg0buuc5nBQIgVxWyBnIyV8xkLuCFXKiypGZKS7lOwUiIrKh0wFLlwKffirWMsvNFQ1Gp09XwpPLQC516aLOCdW2rRcUAH//La7v2wdkZHhmPNb7eq9bZ/9xly+rYygudm487g7kBoNa1t2zR237v+66Sl3QDVBfZqOi3HhQGcgrYZV1QGwLD7j+z8NATr6CgdwVpkAerjCQE3lUVpa4ZCAnIiqVwQCMHi06xbt3F4XW996rhCeWLeuAWPa9aVO13VobyHfvttybvLTKdUXIPbxlO7ijeeSyOi45k8bcHcgBdR75xo3Axx+L6+PGue/4TvJIhXzYMFG27tHDjQd17M47xWyIV15x7esYyMlXMJC7Qq6yzgo5kWexQk5E5BKdDnjqKXF91iz1z6jHaCvk114rtgOzF8j/+svy6zzVti4r5BMmiMstW0TLgDVfC+RvvSU2w27dWsw/qGQeCeQTJohpC0lJbjyoY5GRwHPPqedinMVATr6CgdwVpgp5mGkOeUmJNwdDFMBYIScicln//kCrViLfyaJrSYmH3q9oA3nnzuJSBvIdO9S52TKQJyaKS08E8txc4OhRcf3224H69UVVftMm28e6Gsjz84H0dHHdE4FcnjR48slKb1cHPBTI/QQDOfkKBnJXyDnkbFkn8pzCQvEGCGAgJyJyQUiIyHUA8M47Yp21atWAFi0st7x2i5gYoG5dcV0G8latgLAwMU/7+HFxmwzk//mPuPzjD+fOEGzcCDz8MDB3LpCWVvpj9+8XJwBq1hQpS674bq9t3dVALjd5NxhEa767yEAOiNX47rrLfcd2AQM5Azl5HwO5KziHnMjzZHUcYCAnInLRiBEiJ6eliR3JsrLEhhVdugDLlrn5yWbOBCZNAm6+WXweHq72DW/eLP6Gy1by++8XIT4723YBNi1FEXu49ewpyvwPPADUrg3cdBNw8qT9r5HHkyH3xhvF5ZIltgFcfi43rL5wofTvUduu7s4K9lVXqWN4/HHztMjKxkBuu9i+ogBTpohlEv791ytDoyDDQO4K0x/LMG57RuQ52kBub/4fERE5FB4OvP++6B6fMAFYvRro3VvsRjZkiLqgt1sMGSLCs16v3nbTTeLy7beBXbtENbxWLTGf+LrrxH322tYVRdw+aJAo85eUiKDfsaO4f/VqsYr7d9/Zfq0M5K1aicubbxYrfR8+DCQnixW/5B7lMpDL9vqyyqOemD8OiJ/Zs8+KFvuxY917bCcpSnAH8po1xWVRkeWaC6++Kn5lDh0CVqzwzticcfq0+NWRmxiQ/2IgdwUr5ESep31VZIWciMhlgwcD27aJ1db79AFWrQLGjBH3vfaah5/88cfFHlp//QW8+KK4rWNHUV2+/nrxuXUgX7BAlCO7dgWWLxdt7x9+CPz4o9jD/NAhcYzLl0Vgf/55y5KmXGFdVsgTEsSibr16iSlQU6YA774rvkaWPGWbvb1AnpsrTiYAngvkgPg+vvuu0vbrtlZQoF4PxkAeGSmaNgD112D2bOC//1Ufs39/5Y/LWfPmAZ98IhpVyL8xkLuCgZzI89iyTkTkVqGhouoXHi5yptvnk2vVqqVu37VypbiUVW5tIFcU8TFtGnDPPaKaXaWKaG3/808x51y2iDdtKhZomzRJfD59ugj+MpRbt6wDYnPqtWvVkwLz54s+/vx8Mdm+Qwdxu71A/p//AO3bA19+6dlA7mXal9hgDOSAZdv633+rzQrt24tLXw7k586JS4/vqEAex0DuClPLOgM5kQexQk4UlAYPHoyqVavijjvu8PZQAlK1asCtt4rrX3whLs+cAQYOFAVqt3riCRGuJRnIO3cWIfvoUVER798feOEFcd/TT4vA/PnnahrSCg8X7fGpqeLz994TQX7NGnVuuWxZl3Q6Ea71erFR+9q14vZ69dQF6awDeUYG8PXX4vr06eqxAziQ6/WiKSEYaQP58uXivf1NN6m7FPhyIL90SVxmZ3t3HFRxDOSukNueKZxDTuQxrJATBaVHH30U8+bN8/YwAtp994nL+fPFFO0xY0QI+c9/RDe429SsqVbJAbUaHRcngrfBICriP/0kqtWzZokSvjOt2488IlZeDwkRE+L79hW3161rfxX0GjWAHj3E9bfeEpeNGjleYnvxYrHbBwAcPKjOWQ/gQB6s1XHA8tdgwwZxfcAA0WABiCq0W/9vuJEM5Dk53h0HVRwDuStky7qRFXIij2EgJwpKPXv2RIyc0EkeccstQNWqojI+ZoyYog2IP7vvvSeuFxeLwvDSpRV8sieeABo2BLp1swyzM2aI9LNgATBqFPDDD8BDD7l27JEjgZ9/Bu68U3xDgJgs78jQoeJy505xqQ3kly6pC74B4mwFIKrogLq4KAN5QJK/BmfOqEsbdOsm5pbLXwFfrZIzkAcOBnJXmCvkDOREHsOWdSKf89tvv2HAgAGoU6cOdDodvv32W5vHpKamomHDhjAYDOjcuTP+/PPPyh8olSoiAhg+XFyfM0dc9uwpLt99V3RrT5gg1hq7+271DX+51KghFmNbv972vpgYsT/bnDnqlmmu6t0bWLhQbFu2f7+osjsyeLDllmWNGoke/hDT2+CLF8XliRPAr7+K6999Z5lUGcgDkgzkq1eL1u+4OHUpAlkl9/VAzpZ1/8dA7gq57Rlb1ok8R1MhN+YykBP5gpycHLRr1w6pcv6ulW+++QYTJ07E1KlTsX37drRr1w79+vXDeU07cPv27dG6dWubjzNy0SwXFBQUICsry+KDnCPb1gExVXvVKrEzWGam6P7+6CNxX0GBmM5dIWFh7t272x69HmjRQrTBO1K7tljBXWrUSHxdjRric/l7KveE69FDbIv2f/+nfg0DeUCSgXzLFnF5ww3qLn6+HsjleSRWyP0fA7krZIWcLetEnqOpkBdfYSAn8gX9+/fH9OnTMXjwYLv3v/322xgzZgweeOABJCcnY9asWYiKisJnn31mfszOnTuxZ88em4865Qg6M2bMQFxcnPmjfv365f7egk2XLiKIR0YCn30m3tpMmSLu++svcXnDDeJy1izL3cX8mmxbB4DGjcWl9Txy2a5+773ictIkUc1v1kzdHyuAMJCrvwJSt27qdV8O5MXF6tslBnL/x0DuCgZyIs/TVLpCixjIiXxdYWEhtm3bhj6aObwhISHo06cPNm/e7JHnnDx5MjIzM80fJ+VK2FQmnQ747Tex0PnVV4vb7rhDVMkBURReuVLkz8OHgV9+8d5Y3WrIEPV6kybismZNcXnhgtgLbvdu0Q0pV/pPShJ7nG/aZHGooiJ1ark/k99DMAfyhATLz7t3V6/7ciBPT1evs2Xd/4V6ewB+RbasM5ATeY6mQh5iLBHvfIJ1PxYiP3Dx4kWUlJQgweqdbUJCAg4cOOD0cfr06YNdu3YhJycH9erVw6JFi9ClSxe7j42IiECE6SQ5uS4mxrLgq9eL1dY3bhRzx8PCRGv7hx+KKnnv3iLAR0Sou4X5nQYNgE8+EfuQJyaK27QV8lWrxPW+fS1Xa7fTfdG9O3DsGPDPP5a7u/kbVsgtK+SRkeqGAIAayP/9V/ysfOnnpF3fobhYbAxgiinkhxjIXcFtz4g8z3ouaF4eAzlREFizZo23hxDUmjRRC8cA8PDDIpB/+y1w7bXA1q1iHbQjR9SFzf2Odk44YBnIt20T10tbrR3iHLGcb3zwoJhq7q8YyC0DeefOlqG2Zk3xO5+eLv6t27ev9OE5ZL3gYk4OA7k/82rLelmrtiqKgilTpqB27dqIjIxEnz59cPjwYe8MFjAH8tASVsiJPEa7yjrAldaJfFyNGjWg1+tx7tw5i9vPnTuHRFmJJL/Tpo1YB624WIRxQASTxYu9Oy63kmns1Cl1E+obbyz1S7StwqdPe2hclYSB3HKxfW27OiCmd/hq27pc0E1i27p/82ogL2vV1tdffx0zZ87ErFmz8Mcff6BKlSro168f8vPzK3mkJqZArocRehQzkBN5gr0KORH5rPDwcHTo0AFr164132Y0GrF27VqHLefukpqaiuTkZHTq1MmjzxOsZs4UU6/ffRd4+mlx25dfenVI7iUD+cqVYkJ1zZrqnlcOaIMQA7n/0+vVXwPtgm6SrwZyexVy8l9ebVnv378/+vfvb/c+RVHw7rvv4rnnnsPAgQMBAPPmzUNCQgK+/fZb3HXXXZU5VEHTCxKOQhiN7PgncjsGciKfk52djSNHjpg/P3bsGHbu3Ilq1aqhQYMGmDhxIkaOHImOHTvi2muvxbvvvoucnBw88MADHh1XSkoKUlJSkJWVhbi4OI8+VzC65hpgyRJx/eRJ4PXXxYJwJ06IKdl+TyaxCxfE5Y03quVSB+RDAQbyQPHaa8D27UCvXrb3MZBTZfDZVdaPHTuGtLQ0i1Vb4+Li0Llz51JXbfXo3qSaBWQiUMAKOZG7KQoUU8t6ifzzFAhL2RL5ub/++gtXX301rjYtyz1x4kRcffXVmGLaL2v48OF48803MWXKFLRv3x47d+7EqlWrbBZ6I/9Vv77YnhsAFizw7ljcxnrPq969y/wSVsgDz/33iy4Quf+4lr8Ecras+zefDeRpaWkAYHfVVnmfPR7dmzQ0VEwoAQM5kUfk50NXXAwAuADTdjSskBN5Xc+ePaEois3H3LlzzY8ZN24cjh8/joKCAvzxxx/o3Lmz9wZMHnHPPeLyyy8DZH9y60BexvxxgIE82MiF3PbtE50hpcnOFssRVAZWyAOLzwby8vLo3qQ6nbltPQIFKClx36GJCOYF3YzQ4SJqiNsYyImIfMIdd4i3QXv3An//7e3RuIE2kCclAY0bl/klbFkPLrVri1Z2RQHmzSv9scOGAVddJbazd5c//7T/e2a9qBsDuX/z2UAuV2Z1ddXWiIgIxMbGWny4laltXcwhd++hiYKeaYpJFmKRA9PmrgzkROQAF3WrXPHxwG23ieu33w785z/A6tVeHVLFxMSo6wP17m3ugiwNK+TBZ9QocTl3ruPOkMJCYM0aoKAA+Pxz9zzvP/8A110HDBpkex9b1gOLzwbyRo0aITEx0WLV1qysLPzxxx8eX7W1VKZAzpZ1Ig8wVcizEIs8mN4hMJATkQMpKSnYt28ftsp9ucjjxo8Xb4VOnABmzQJuugl46y31/vPngV9/9ZOWdp1OrZI7MX8csAzkGRn+vcwJA7lzhg4FoqNFQN640f5j9u4Ve9QDwMKF7vn937dPHOfoUdv7ZCCvXl1cskLu37wayLOzs7Fz507s3LkTgLpq64kTJ6DT6fDYY49h+vTpWL58OXbv3o37778fderUwSB7p4oqCwM5keeYKuSZiDMHcmMOAzkRka/o2VOE7uXLxWJYAPDEE8CnnwLffAO0aCFafOfMUb9m9WqgaVNRQfQ5Tz8NDB4MmHb0KYu2ZR3w7yo5A7lzqlQR7eiAqJLbs2OHev3kSWDLloo/r/zdysqyDfgykCcliUsGcv/m1UBe1qqtTz31FMaPH4+xY8eiU6dOyM7OxqpVq2AwGLw3aFNrE1vWiTxA07IuA3lhJgM5EZEviY0FBgwQ4eTJJ8VtY8YAd90FXL4sPn/3XREiFAWYOBE4ckRsL+Vzxo0Dli4VqcsJ1nN3GciDg2xbX7jQfvjdvt3y82++qfhzyt+t4mLRCi8pihrI5faDDOT+zauBvKxVW3U6HV588UWkpaUhPz8fa9asQbNmzbw5ZFbIiTzJ1LKurZAXZDCQExH5Ip1OhOwxY8Tnej3wzDMi4O3eDWzaJKrje/aI+9etA9LTvTded5AVcrlEEQN5cLjhBqBJEzFXe+lS2/tlhfyuu8TlokWocE7Qrtiu3cU5MxPmhaVlIOcccv/ms3PIfRYDOZHn2KuQZzGQExH5Kp0O+OgjsTf59u3AjBnq9mipqcDbb6uPLSkBVqzw3FiOHxcnCCZMAIYPB+bPd+/xFUWtkLdtKy4ra5srT2Agd55Opy6utm2b5X0lJYBp9i2eeQaIiwPOnHE839xZ2pM92kAuq+NRUZxDHigYyF2l2faMgZzIzexUyIsYyInIAa6y7hv0emDECDWkPvKIuFy0CPjpJyAkRJ1vvmSJZ8agKGLxrWeeAd5/X7QWP/QQ3LpFbW4ukJ8vrsv9qVkhDx4NG4pL6x2VDx8WvxtRUUDr1mJJAqDibetlBfIaNdSZFgzk/o2B3FXc9ozIc+xUyIuvMJATkX1cZd03XX010KWLGoYHDxYLvwHAzz8DV66U/vUFBcDjjwP16onKuzM2bhSVS4NBrNNWpYoIKQcOlP/7sCbb1Q0GQM6gZCAPHvXri0vrQC7nj7drp56cAsTChkeOlP/5ygrk1auL1d8Btqz7OwZyV7Flnchz7Gx7VpLNQE5E5G9klRwAJk0SlcOrrhJh+8cfHX/d4cMizL/7rggk99wDvPNO2c8nH3P//cCrrwLXXCM+t24vrgjZrl6jBlC3rrjOQB48HAVyOX9c/s717Qv06SN+vqNH284lP35crCVYWljPzja/JQJgGcjl72H16qyQBwoGclcxkBN5Drc9IyIKCHfeKebc/uc/ImDrdKKlHBCtvH//DXz/vdjLWzp9GujUSQSc6tXVBbImTgSmTnX8XEePAt9+K64/+qi47NBBXDKQO8ZA7hoZyM+dAwoL1dtlhdy0aRR0OuCTT0RY/u034MMPLY+Tmio+3nzT8XNZ/145qpAzkAcGBnJXcdszIs+x07Ku5DKQExH5m4gIYNkyyzAyZIi4XLZMtPcOGKBuJwWIbdQyM0U1fdcu0a7+6qvivpdeEvuf2/PBB2IO+U03AcnJ4raOHcXlX3+573uSLes1a6qB/OxZ985Tr0wykEdFeXcc/qJGDfF7rShqYFYU2wo5IOaby23+nnkGOHFCve/wYXG5e7fj53I2kLNlPTAwkLuKFXIiz7GzqBtyc704ICIicpdOndQqYny8uFy+XIQVRQG+/FLcNmmSCLw6nZgP3qaNuH/9ettjZmUBn34qrj/+uHq7rJDv3Om+wKytkCcmisXqSkocnyjwZUVF6s+FFXLn6HRiXQNAbVs/fhy4fBkICwNatbJ8/H/+A1x3naheaxczPHpUXO7ZI36v7WGFPLgwkLuKgZzIcywq5OKUvS6PFXIiokCg0wF//CEqzenpwI03ikDy6aeitfzAAREOZSVd6tVLXK5bZ3vM1FSxSFyLFqJCLjVrJqqHubnuW9hNG8hDQ4GEBPG5P7ata19aGcidZz2PXFbHW7c2N9GahYQAvXuL64cOiUtFUQN5VpbjbfOsf6e0CyFylfXAw0DuKm57RuQ5mgp5WKx4h6ArYCAnIvu47Zn/CQsTQUKnA8aOFbfNni3a1QFg4EAgNtbyaxwF8owM4PXXxfXnnhMBSAoJUavx7mpb17asA/49j1wGcp3OXGsiJ1gH8l27xKXcBs+aXI1fBvKLFy3by/fssf91pVXItYu6sWU9MDCQu4rbnhF5jqZCHllNBHI9AzkROcBtz/zb4MEi3J45A3z0kbjt3nttH9ejhwiOBw6IOdvSm2+KUN6qlboAnJacR17ehd0UBZg8WV3BXVshBwIjkBsM4mdLzrEO5HIeeJs29h9vHchldVxyFMhl5bxBA3FZVst6bq7j9vd//xUVfHv/t8g3MJC7ii3rRJ5hNFoE8io1TIG8iIGciCgQhYcDDzwgrhuNIpxr286lqlXVCuSvv4rLc+fE1mgAMH262P/ZWkVXWj90SCwqN2mSCEGyQh5IgZzt6q6RgVwGZmcD+alToq3cOpDv3Wv/6+TvlFyksKxAriiW0xCkixeBfv3E88yfL+a7k+9hIHcVAzmRZ+TkmE/vZiIO0TXFu4RQBnIiooA1Zox6/a67REu7PdZt66+8Il42OnUSbe72yEC+YwdQXOz62GR4kgvKyQq5dcu6o3nAvoyBvHy0FfLcXHUvcUeBvFo18QGIx8rfKXlbWS3rLVuKS0eBXLtCvnXbek4OcNttanUeALZssf985F0M5K7itmdEnmGaP16EUOTDgNgE8S4hrJiBnIgoUF11FTBsmGidlnPK7ZGB/NdfgR9+AN5/X3z+8suOW67lwm55eeVb2O3/27vv8Kiq/A3g752ZZNIbIUAIVZAOIk2EtdFE7F0RWN1dFgVFXNtvWRR3175rR1zLuruuiuLKLqKoiAgiVXoNKL2EFkJ6mzm/P745uXcmCZkJSabwfp4nz51MPSeZmXvfe9ru3eblb7+t2mW9c2fZzp5dv+udNwYG8rqxBvKtW+VkTWoqkJZW82N0K/nOnWYgHzVKtlu3Vl0FoLwcyMqSy96BvKjI/N81aSI9Q/T/0Htit8mTZRLFlBTgoovkumXLfK8rNR4Gcn+xhZyoYeju6kYiAANJLWQPE+liICciCmf//rd0Qe/eveb7/OIXMlHbzp3ALbdIEBo/Hhg2rObH2Gzm2tDPPed/KLd2L16wwHN2a0Ba5keOlIB09dWh1XWdgbxudCA/fhzQU1f06HH6cfjWceT6PTV0qJyEKiryPPEDyGfB7Zaw3aGDXKcDuV5iLzLSnPywupnWjx8H3ntPLn/yCXD77XJ5+XLf60qNh4HcX5ZAXl/rWhIRzECuZA+TnC5HCU43AzkRUTiLiKg6s7q3xEQzXBcUSIufbiU/Hd2y/t570tp4zTW+d1+3BqUdO8xJs5o0ka3dDnz4oYzzPXRInru42LfnDjQG8rpJSjID8Jdfyram7uqaNZD//LNc7tjRHB/u3W1dn9hp0ULmTwDMQG6d6V+fBNDlsXZZ/9e/gNJSGbZx6aXAwIFy/cqVVVvkKfAYyP3FZc+IGkblkmdyVNYko6KFHGXcexARUeWazm3aSKuf97rP1Zk2DZg1S8bS2u3A3LnAf/7j2+vpQG5t/UxK8hznnpgIfPaZhPQ1a4CPP/btuQONgbxuDMNsJf/mG9n6Gsg3bTLnG2jf3uwR4h3I9X0yMswTVd4t5NYu8nrpM91CrhTw5ptyWQ8D6dYNiI+X0K5fb9EiYN6805edGgcDub+47BlRw8jOlg1kppPUVpajhOqmDiWisx7XIT+7PPggMHWqBCE9sVpt7Hbp4v7ZZ7JWOQA8/3zNS0RZ6UB++eXmddW9bvv2wKRJctnXsB9oDOR1pwN5YaFsTzfUAjAD+bp18r6LiZFAXVMg1y3kLVuagbywUNomdAu5NZB7d1n//nsgM1Ouv+02uc5uBwYMkMvLlklL/fDhwLXXms8ZimbPNk8+hDIGcn9xDDlRw7AEcpvNbCEHAFc+AzkRVcV1yM8uqamyxJkeV+uviRNl3O6aNcCSJae/b06O/ADAXXd5lqE6N94o26++8pwR2xf5+fIan3/u3+POhA6TDOT+04Fc69bt9PfX71d9Eqh9e2lp9yWQx8eb1+flmS3k1hND3l3WdUC9/XbPx194oWyXLQOeeEKGbrhcZjf6UONyAWPHAr/9bWifVAAYyP3nFciVMr/UiMLV0aPmZDYNpmJxzGykIC4OiE+0oQTSH7HgOAM5ERGdmaZNgV/+Ui4///zp76tbx9PSZB1nh0N+rymQd+sGdOoElJT4H6z/+U/g3Xelld2Xlvv6wBbyurMG8nbtPENvdWJjzSXyAOCcc2SrA3lmpoz31qyB3Ok0h2bk5tbeZf3ECRnOAVRdtUCPI//iC1mTXNu79/TlD1YnT5pzNui/S6hiIPeX17JnkybJuKFt2wJcLqIGUlIiBxrnnYeG7RVS0UJ+EsmIjZWdUCFkgc2ibAZyIiI6cw88IK2Tn38uS05ZrVhhLjelA7kOXP37y+81dZU3DLOVXAei6mRlSVCyHjd+/bVs9+yRcNYYGMjrzhrIaxs/rulu64C0kAMyRjwpSVqqN240b9djyHWIt44jr63L+sKFctzWvbtM6GZ1wQWyzc72PJ6zBvLc3MZ7D54pvQwhUNmmE7IYyP3lNcv6Rx/J2ZmVKwNcLqIGcuSIfOkdOFA571rDsHRZj42Vg5tiQ44UCk8wkBMR0Znr2FHGzQLAyy+b1y9aJC2IN98sv1sDOQBcdZVsO3Wq+bl1IP/iC88Zr62eeQZ46y1gyhT5vaxMXlv74gufq3JGGMjrrr4CuWHIcn6ArHMPSEv5jz/KZT0LuzWQn67LekGBGab79au6FFtSkvmchmG+p62B/IYbZDUCf5cIDAQG8rOZJZBv325249VnVInCjfVLrkG/8LwCOQCU2uVIoTib40KIiKh+3HuvbHWjCgD8/e+yXbpUWiH1etE6kD/wgIw710G6Or16SXfk4mJg/vzq76Nbw7/5RgLFqlUyNlhjIA9+1kBe24RuWnWBHDBXDtCBfNkyOZnTtKm8n4DaW8h1l/X8fFlazfv1rC66SLY33ywrDwBmIHe75fWVMtdYbwhKyeSM06ad2RAN67hxBvKzjWXZM2v3kiNHAlQeogZWkZOrXK53ljHkVQL5SbaQExFR/bj4YqB1a+n19dln0rI4Z47cppR0+/VuIY+MlNZM65Jn3qzd1p94AvjTn+T59cqdBw6YXdVdLpmRfcEC+V2vsb5kiRnQ9WzZZ+rnn2WddCsG8rqrrxZyALjsMtl+/720jusTNsOHA7aKlFZdC3lNXdZrC+TTpwPPPgvMnCnLBwJmID90yJwXS5+Qagg7dgBPPSUTNOrPWV2whfxsZln2zHpWhy3kFK4au4VcjyEHgDKHHCmU5DCQExFR/bDZgNGj5fJ77wH/+5+5ZBQgoUgHBWt48sWtt8p2yxbgsceAq68GZsyQ63T41mbNMq+7+25pXS8rkxMCc+ZIa+aQIWagr4t9+6SlddAgz3HDDOR1FxcH3HmndPnu3Nm3x+iAbBhA27bm9d27S7guLJThr199JdePGGHeRwfyU6dqn2W9tkDerBnw8MNAcrJnIFfK8+RPTTOvr1kDrF9/uprWTq/fDsiJiLqqKZCXlFQ9ARXsGMj9ZemybsVATuEqEF3Wdfer8gg5Uig9xUBORET1Z8wY2c6fD7z6qlzWs1B//bVMsAaYLeS+Ou884IcfgOeeA664Qq57+WUJw7r1c9w42S5ebM5BNGyYef+33wZ+/Wu5fPAgsHatf2WwevttOdmwZ4/nWGEG8jPz978Dc+fK+t6+6NgRuO8+6TURFWVebxhmK/msWeb/etgw8z46kB8+bA6xqK7L+p49slSfYfi2NGDr1rLNy5PH1RbIc3Jk6bTeveVEk7WnsD+sJ6YaIpDfdJPUTZ+cCAUM5P5iIKezTH0Gcre7hjP9SlU7htwVKUcKZbkM5EREVH+6dJFZqMvLZXZ1AHj9dTnMO3hQgo/NVnXNaV9ceCHw0EPAxx/LRFq7dsms7jqI/OY3ch+lZJ/YsaO0VupA/vnnnkPErOPRc3I8g8jplJcD77xj/r5pk3mZgbxxGYacmJk6teptOpDr9cN79QKaNzdv14Fch+SYGLNVHDAvr1sn2zZtPEN/TWJizJb2vXtrD+S7dpnLs332mZTzgw9qfx2r8nLPSQyXLvXv8VY1jSFfu1Y+V999V/fnbmwM5P6yLHsGmG94BnIKV9aDgjMJ5EpJ60OPHvKF7KGoqPJb3hrI3U45UnDlM5ATUVUzZsxA165d0a9fv0AXhULQ2LHm5b59pXVbz3oNSBg/3Zjx2sTGAnfdJZcnT5aJgPUSarprO2C2hl58sRmQY2OlazEAfPmlbAsLpYzNmkkr4A8/nH5SrHnzPLvuWls0GciDh57YTR8bWburA+Y65z/9JFvvpff0MVNOjmxr6q5eHWu3dWsgP3Kk6koBen30Dh3MMs+b5/trATKDfG6uWafMzLqvIV5dC7lSZlA/0671jYmB3F9eLeT6Q5OTY3YjIQon1hB+JpO6nTols8lu22ausen9xC6bAwWIrdy5qCgGciKq2cSJE7F161asbsgpgSls3Xqr2eVYjym3dhX2t7t6de65R1pH9Zj0yy6TkH/TTeakXfo1o6OB666Ty6+/DkyaJJdXrpTd5PvvS3Byu2Wt88GD5aSCbrX0pltcmzSRLQN5cGrf3nNc+fDhnrd7t5Bbu6sDZpd1rT4COVB1Yjd97Natm7lSQU2TDu7fL2Hd+4SR7iUyfLg5Q31dW8mrC+R5eebnwZ9AXlRkrpwVCAzk/qoI5A64YIMLV1xReRVnWqewVF9d1q1di6qcDa0I5AXOFACG2RWLgZyIiBpIWhrw6KPSfVy3llvDUH0E8nPOMbuiW5+/eXNZ9unaa4HLLzdvf/ttaQkdO1Za6Lt1M8ef63XT779fxpg7HMC//w2MGiWtjlZ79pgt63/8o2wZyIOX7rYeEyMnWqx0INc5wzuQW7uvA3UL5JmZ5hwD+jrvbus6kGdkAJ06yeUdO6rvpaEnvXvhBc/r9YRuQ4eavVHqOo68ukBuPdbcuNH3CREvvlg+74EK5Qzk/qrosg5IK/mgQeY4D3Zbp3DUmIE8PzIFgLlzMWLkSEEVMpATEVH9+/Ofpet3iux+0LOnGXjqI5ADZmsi4Bn4p0+X2dSt432joyXEayNHyvbxx2Xm9rg4edxbb0kLZGyshJxLL5XZpbV33pGgNGQIcP31ct3OneayVgzkweXaa2U7apTZ0KfpQK7V1GVd02HZFzp8L1wo75fERHNyQ+9ArrusZ2RIq77dLt3aDx/2vJ9S0iMSkDHzW7fK5fx8YPlyuTxsmBnI67OF3HqsWVBQ/Vh4l8vzJILLJbPH5+WZkyw2NgZyf1k+JU0TStGli4zlARjIKTw1SiCveOJchxwR6e5XlYG8iIGciIgans0G3HGHXL700vp5zmHDpOv6737nGbZ9oVvP9YzRd94poQmQYZPffSdLWK1d6zl7tW6JHDtWjlObNpWWdh2OGMiDy1VXyYmht96qept3IG+ILuu66/m555rv0ZpayFu2lPZJfcLKu9v6/v0SbgE5STRunCznt2SJbNu2lUCvewKsW1d1vHptSkrM1wCqD+RA1W7rJ05IrxPdIwGQNiG9JGCgxp0zkPvLMrvHiEtKYLOxhZzCW31N6mYN4TW1kJ+yJQMwz/ba4mIAAAYDORERNZJnn5VWP++uw3Vls8la5H/5i4wn98fgwZZeY4Znazsgk9FdeaVc1mHC5TK7p/fvL4/r2VN+1zOtM5AHnwsvNE+2WNUWyK0t5E6nfysD6ECudepUcyC3tpADZvD3Xl5syxbzfsnJMpFb587m/AjDhsl7slUreX2Xy2w595X3SgPFxfKe9g7kGzZ4/v7gg3IC4bvvzJMA1sd437+xMJD7yzCgKrqt/+VJ6RukAznHkFM4qq9J3Xzpsn7S8Oyybo+XIwWjhIGciIgah8PhuexUIDmdZmveqFGyRJq3886TrV726qefpGt6dLR5fx3IN26U1kAdRhjIg58/XdY7dPB9bXTA90CulLR8A9JCru8LVG0h14F84EDgtdfksl4yLTXVXHkAqPs4ch3ImzY1J0c8edI81tR/A2uL97ffAv/4h/m7zm3WY9JAtZA7AvOyoc1wOoHSUiREyTR+bCGncOV2m8toAA0/hjxbeQbyiIpAbmcgJyKis9T06RIwnnmm+tt1INdhQm979jSDiTWQf/KJBPLExLqts06Ny58u6/50VweApCRZgkx3/+7USbqTAzLJW1mZdA7OzZUx2YAZyGtrIe/WDbj9dil/cTFw/vnSzd3aS+Sii2RiQuva5L7QgTwtTVrYs7M9A/mAAcCyZeZnoagI+O1vPZ/jyBE5+WA9Jt25U+rpPS6/obGFvC70OPISzxZyBnIKN3l55rgaQL6QfZ2x0psvY8iPu70CeUJFIC9jICciorPT+efL5G81TdalA/muXbLEqO5226uXeZ8ePWS7YQPwxBNyecoUmdWbglttgdzpNFuJ/Q3khuHZSt6pE5CeLs/pcpmt4rq7enKyeYxWWwt5t26yvfJK4MYbJeh7D9kYOlS2K1aYvTby8yU8f/FFzeXWx5SpqVImwDOQX3aZvNahQ3LMOX269BxJTzfLpXOb9fhUKXNYR2NiIK8LBnI6S+gu6papEzxazP3hSwv5MZd8q+qzvZGJEsgjygrr9qJERERhLiUFaN1aLm/YYLYK6qAOAF27Smg7cUImdktMBCZPbuySUl3Ex3v+7t1l3TCqhmR/WAN5hw7yPtGt5LrbunVCN02/1u7d5trf1okDdfA9nXbt5LXKy2XSN0CW/nvzTZmhvSbWLuvWQK6PL9u1k7oAwIsvAs8/L5dff90cxlFdl3UgMOPIGcjrQi99xkBOYU53UU9NNUNyXbut+xLIj5R6tpBHJetAXlTtOpdERETk2W29ukAeHe3ZejplinRXpuAXG+vZsuwdyAHzf3kmgbx1a7PHhPc4cu8J3QCgRQs5NnS5pHcGAOzbJ12+IyPNQFwb3UquVwb46CPZ7tpV/RrngBnIa2ohb9rUfP8/84w8z29+A1xzjbk6lncgd1QM5A7EOHIG8rrQLeSlVceQMzRQONHhOznZ8wuvLqyB/Ngxz67wOpAfLvEM5EktJJA7VREnTSQiIqpB796y/eormSHeMMxu6poeR87W8dBis5mt5AkJnuvWa08/LSdZLrjA/+dv21a21jDvHcirayE3jKrjyDdvNp/L2rvydIYMke033wB79kj3dUCGSVqPOU+dMsex+xPIAZnl/cUX5bL3ctU6kOu/HQN5qPDqsq7/sUVFnmviEYU6/UWYkmJ+4dVlpnWlPAN5eblXsK/45air+jHk0SiqsvwGEdGMGTPQtWtX9OvXL9BFIQooHT6+/FK2HTtWXZ961CjZPv44W8dDjR5HXl3rOACMHg288II5ltwfN98MDB8ugV6rKZBbW8gBM5DrceTe48d9oVcR2LQJeOUVz9t275btyZPS4q7Duy+B/Pzz5XJkJDBrlnls6b06ln7MsGFmOeo6X1JdMZDXhVeX9ZgY88wVu61TOLG2kKekeF7nj/z8yo9L5Zldj27retkzeK5DrtdjYSAnoupMnDgRW7duxerVqwNdFKKA0oFc9z6ztg5qY8ZIkLEGLwoNOpB7T+hWH9q0kZ4VI0ea1+lAvm2bbKvrsg6Yreq6hbwugTw11ezhUVMgX7NG3rsrV0q3eGvw1oH84EFpHNXXDxsGTJsG/Pe/nhMc1tRlffBgOewsKKi6BntDYyCvC68u6wDHkVN40q3hZ9plXX9xRkebE89UBvKyMumXBCAbKbDbzXNeDORERES1a9PGs9W7ukBuGECTJo1VIqpPtbWQ17cLLpDW9u3bJQBX12UdqJ8WcsAcR+5yyVJ9w4fL7zqQb99u3veHH6pvIdcnBSIjpaHUbgf++EfPEw1AzV3WW7QAuneXy409sRsDeV14dVkHGMgpPNXXGHLrmUx9drcykFumbc9BEuLiLJOXWAL5Tz/5/7pERERnA8PwDOHVBXIKXQ3ZQl6dlBRg4EC5PH9+zV3WrS3kbrfZol7XQA5Iy7YehVSXQN60adXl1aysXdbLyszjWuu488YeR85AXhcM5HSWqK9ArsN3Wlo1gbziCV1xCXDBYXZXByrHgsQjD/t2loCIiIiqx0Aevho7kAPAFVfI9tNPZbk8oGoLuXUJsXvvlS7jTqfZ5d1XgwebvSNvuUWWLQP8C+Q6g9XWi0C3kBcWyiRygPQGSEkxPzdsIQ8FXmPIgaoTBBCFg/qa1O20LeQVT1gW5zmhGwAgPR1lTZrBAReSdqzy/4WJiIjOEnocblqaeVxK4aFLF9nqmfIbgw7kCxbINjraPBbUEhLMEPv667Lt3Fm6i/sjJgZ47DHg6quBm24yA7leTs0ayNevN0cNWwO5Vlsgj4szjzU3bjQfY7PJRHA9etRt+bgz4WjclwsTHENOZwlrC7n+cj3TLuv6zKR3IC+OkUCuzwIDkD5HF10EzJmNXqcW49SpXyAx0f/XJyIiCnejRgF9+wLXXXf6LrsUeh5/HLj1VjOYN4ZevWRc9eHD8ntGRvXvq8WLgblzgc8+kyXLxo+v2+tNnWpe1oF8zx5Z7kxPKte0qXlMGRMjP/4GckCORXftkhnVAbOx6IILzJDemNhCXhfWLutHjgCLFjGQU1iyTup2JrOs+9JCfkLJC3ivmxox5GIAwMVYzIndiIiIatCkCbB6NfD73we6JFTf7Haga9fGPdFiGGYrOVC1u7qWkADccQfw0UfA3r3APfec+Wu3aiV1Li0FvvtOrmve3FyaDJDWcaDugRwwA3ljTZZXEwbyurB2WR8zBrjsMnQ9vBAAAzmFl0aZ1K0ikB8ulhfQ60ZWuugiAMCFWIZdmWX+vzgRERER+c0ayL0ndGtIDoeEckAmlQOkK/ygQeZ9agrkvoyz1w2p3i3kgcJAXhe6hfz4ceDbbwEA7X6SARZ79phrQBKFOu9A3gc/4uOt3YB58/x6ntMG8ooX2X1KWsj79PF6cLduyItMQSwKUfj9mjrUgoiIiIj8NXSohGOg5hbyhqK7rVsD+eDB5u06kCckePYc8KeFXK/gw0AeinQg//prWTAPQNOfliE2Vhr7Nm8OYNmI6onLJeN2AHNStyl4EeeWbQWmTPHrzFN1gbxyAsSKFvL9hSkwDBmz5MFmw4H20koes3pxHWtDRERERP5ISKjsqIj27Rv3tXUg37dPtp07y3Jq3muy22xAUpL5OH8CuVKyZSAPRTqQ68X2ANjW/IhLBkl32opGc6KQduqU+UWVnAwkx5djJCpOU/70E/D55z4/V3WB/NSpioUKKgJ5NlLQubPXLOsVCvrIOPKMXQzkRERERI1l5kyZVG7MmMZ9XR3INT17u14fXbeQA57d1n0J5N6rEHAMeSjSY8itiopwcydZtI6BnMKB7q4eEyNv+aTty5ECywDyF1/0+bmsgTwpyez+dOwYKgP5SSRX7a5eIWKoBPJuJ5cC5eV+1IKIiIiI6urcc4Hp02XZs8ZUXSAHgNtvl7bRSy4xb/M3kOsWco0t5KFIt5AD0k/iggsAAJc4lwMAsr7dCve9k80+FkQhyDp+HAAcX0qL+CJcAmW3A4sWYVyv9cjJdgPLltU421thofwA5jqPHuPIKx6XjZSqE7pVaDGiJ3KQiHiVh5KV6+uhdkREREQUrKyBPDranORt7FggLw+49lrz9jNtIWcgD0XWQN63b+UUhBkHliMpCfhLwQTYXnsFuPxycxAuUYjxDuR6Irc3MR67zr8RAPDrjfeirGtPmfayc2dZiNKLbh13OoH4eLmsv/hO7jgGZGYCAI4jtcZA3rS5HcvtvwAA5H7g34RyRERERBRarIG8Uydp0NEiIjzvW9l45PAcT14T7xZydlkPRdYu68OGVQ5msK1Yjl+dtwYX4Xu5bds24Oab2cWWQpIO5CkpkOUDtmxBOez4CiPw0MEpAIBfYCmaHtkidzx6FLjmGuDOOz1ORFm7q+tZMNPSAANudHp6HJCdjW3ojFXoj969qy+LYQAr0q+X8vztKcwctwJTp/KjRURERBSOmjcHoqLksu6uXhMdyFNTfVurnV3Ww4G1hXzYMKB/f/nv79mD+w4/CgDYlDRYBt9+/TVOjp1szo5FFCIqhnbLl1zFBG5bEgfhJFIw59AAfIhbccDIwO/xJGa9fAR4+GH5HPzjH0CPHsDChQDM5c2sZx/T0oAH8AIyNs6HKzIKN+NjtOnorJw5szpb+v0Sn+AG2F1luOpfN+Ktp47inntq+WhlZgLvvWf2mffFsWNS9ooVFIiIiIiocRkG0LatXPY1kPva0h0bC8TFyeXISJz2+LMxhEQgnzFjBtq2bYuoqCgMGDAAq1atCmyBdCCPiZHx4wkJQPfuAIDWmd8AACYUvYT3r3gfbhhI/vB1rLr2ydqfl6GdgohHl/WK7uobWo2qvP2p7h/ig2f242n8Hn9+Mw3qmWeB778HzjkH2L8fGDoUuYOvQMbMqbgRs5HepKTysYOLFuBp/B8AYMEVL2EzetTYXV07v4+BO/EutqEzMnAQ/8EN+OKtA3j66YrC3nuvLGJ+xx3As88Cw4fLN/jYsdKl3pc5HRYskDU1hg4FBgyQsfFWhw8D990H3HQT8OqrwLp1wFdfAc8/D0ybBnz8scxA770kXHWf7X37gJUrgZyc2ssFSK+Dt94CPvjAryXngkppqZT/7bflbxlqdu8GiosDXQoiIqKzgu452b//6e/nbyAHzFbytDTfWtUbkiOwL1+7jz76CA888ADeeOMNDBgwAC+99BJGjBiBzMxMpAWqf4E+XTNqlBnOBw4ENm0CACyP+AWWlfTBsk/6YCVewiuYjP5zp+GTIU3Q6qm7Jei4XOiSuxItN86HY/2PwPr10iR5xRUSIC6+WIK+3S7XHzgAHDwoP1lZ8u7p2FHKkpIi983NlSC0f78c7B84IH09evaUEwZJSTIrgmEARUXmbFuFhXJdx47mFIr5+cCOHcD27bKNjAQGD5ZPhNMJlJVJf+HISCljoN/JwUgp8+/idku3759/lv9Dixbyd8zKkhbZFi3k7++o5SNZUgLs3Sv/X5dLBtTExcljres/WJWWyuvs3y//z23b5HG/+AVw4YVy25o1wPHj8j7p3VvKtvsErsEGPLj4HWDPVwCAnzpdCWyWp504EbjtNuDPfwa2bAHeeQcYPnwQtj+/ASd/8zBuOfE6En6Yj56Yj9kA9v3YA1j3T2DzZvx6zl2woxyzbTdjwuLxAFDjDOvalCnAuefGIyHpU+C6/vhF/lLswLn459RxyP3zp0goqmiKX7vWfJBhyN9n/Xrkd+mLD/q/DHTpguQ2CUjdtQqpW75DTO4RFDdrA6e9HOd8/ToMHZ7XrJEgf9ll8ney2YAXXpDPBgB88knNhY2Pl79j69byN9+8WfYWV14p80785z8S/vVrNW9uDrCPjJT7pqSYC8CfPClhX7f0z5wJvPGG1G/JEinrli3SI6C4WK6PiJD3WlIS0KaNnGjo0EE++ydPyk92ttSnTx8ZbtC+vfz9Vq+Wx7dqJXsspeT9lpMj75eTJ2VAV58+8t5esEDKkZUl9ykrA1q2lMdnZMg2O1tOlOgTI4YhJz3OPVf2oG3bAiNGyHt5/37p2bB+vfwN9WfjxAn5OX5ctjExUgb9ni0ulv9Ty5bymdq4Efj6a9k6nfL9lpQkdUpNlVPk0dHyGTl0SE4SFBTI3ygyEjj/fHn+NWukPN9/D3z0kQxFoqAwY8YMzJgxAy72aCEiCjuvvw5MmCCHrKfTrZtse/Tw/bmbNZPD8kCPHwcAQ6ngbpYdMGAA+vXrh9deew0A4Ha70apVK9x777149NFHa318bm4uEhMTcerUKSTUZ3+E9eulJVAfRL/7LnDXXQCAly76FFOWXIekJDluTv/b47jouz/CDQPrcR5csKMt9qApjtf6MuWww4HGOdBwGzbkpLRHRFkR4nMPVn8fmx0AYHObZVKGAXeEE25HJFzRcShu2QFFrTvBcNjhPHEIjrxsuJKborxFBtwpTYHoaBjOSCDnJGxHsoCiQrhTUqGaNIUR5YTNULDbFGyGGw6bApSC26XgLnfL1qWg3AqGcgMGYBiGnBTQPw47jIrLhtsF49BB2A7tB8rKUZ6UivKkVBhxsbDFOGGPiYI9xglHTCTsRw7BtusnGCezgW7dYPQ5XwJRfr7nj8sFV2Q0isvsiNi5FY6Na4B9+1Bmj0IJnHAU58OZewz2/FyouDiohEQYOSdh1NZt2umUFt127SScOJ1Q+QVQp07B2LsHxu7dckKmpo9scrI8R2GhGUz0yZf6cOedeLjJO3j+LwYSEqQocXHAgw8Cf/1r1btfELUefYqXogc24Xp8Ku93u72yK/i8uFtxQ/4/UAo5qbVokecSFqe1bp20VC9dWnnVNnTG87ZH0dK9Dz2xEXsdHbC023g4Iu34/eprcT7W+fTU79h+g7k9puLh0j/hwu1/NwN6hQMZA7Cn6yicc3AJUnevQlnTdJSc2xNGUiJif1oPx9aNMEpKanh2T+60ZrAdPeJjpQHVuTOwfz+MggKfH+MP5XDAaOiB+S1aSMheubL62zMyTv8+DyTDAP7wB+CPfzzjp2qwfdNZin9PIqKzl1LSLnHuudWvTl2dG24APv1U2gK+/LJhyuXrvimoA3lpaSliYmLwySef4FrL3Pbjxo1DTk4O/ve//1V5TElJCUosB8O5ublo1apVw++k9+2TMHXOOdg3dz3e+8COsWMrpuhXCj+NvBcdvprh8ZAcJGI+RmIxLsZ6nIcSOHEbPsTt+AAZ8AzER9EUB9ESB9ESR9AMzZGFDvgJrbAfMTAD13E0wX60qvyJRx56YiO6YBucKPV4znLYUYBYFCIGTpR4rjFd8ZqZ6IRMdEI88nARlqAFsur373YWKYYTu9Ae8chDCxyGAy4cRxMcQ1O0wn7EwbeQVYAY7DPaoNRwwg43kpGNlu4Dp31MKSJwxJ6OXY5zkWnrgkhXMS4s+w7nqh3IRyw22HrjuC0N3dyb0MG9EwBQiGgcRgu4r70BHZ/5FdCpE2bNklbxqVOlZRyQMeJ33CGNs4cPS+aeOBH4v/+T3Pzb3wJ5u45iRe970H7df+RBDz8M9dTTyNxpw/z5cu7gvvv87GihFNR/PsXxJ17DIvtQTNr9II7lOqu9awwK8WHb/0O/4iWIOXUYscUnsDe+O7Y1uxRH49oj4dR+xOUdxgcFV+O9whsrH9cJ23EJvkN/rEJLHMR7GIMPcDvUaUb7OFCGztiO3liHDBxAJjphM7qjDfbiaszF+ViL73AJ3savsRvtkYBT6GLbAYdbvrecKEEyTiIZJ5GCbDS1ZcNpL8ccXIfF5YPQUu3HDEzEVZiHQkRjpTEQ62MGYk1xd2x0dUUe4mFAIRKlSEIOmtqy0T3qJ3Qs3YJWrt3IU3HIRgpOIhnZSEEZIjAEC3EZvoUTpTiOJliOgXDDhja2/UjDUZQrO8qVHblIxDF7MxTZ4tDFvQXnuGSG/A32PvjGGIqf0QGnjCS4DTtaqgNoiQPIcO9HhtqPaBRiVsRY/Mv5G5TYopGuDuKS8m+QprKQqo6hR/k6DCxbggjICYFlERdjUdRIpLmz0Nb1Ewwo5NiaIMfeBNn2VOTYmyDZnY0eJT+ic9lGAECxEY0IdymalR9AHApwAin4IWooNsQPQmkJYC8uQLw7B2k4iqY4hhgUIhpFcMGBLFs6DhvpKIpIgDsyColGLrrmr0K30rU4aGuFT6PvwOeJt+OXf8jAhAl+vE9rwABZv/j3JCIif9xzjzScjhkD/OtfDfMaYRHIDx06hJYtW2LZsmUYWDGTOQA8/PDDWLx4MVZW08Iyffp0PPHEE1Wub5Sd9N690nXcuhieppR0ezx2TFoIk5Kg+g/A8VMRKC6Wm60/KC2FkZ8HVViEnIimyClyorBQHqp/ystlq4pLYMvNQUlEHEocsZXXV7lfaRlQXAx3uRvFthiUqgjzPmUKsflHkJa9DcWIxoHYTshzJHs83lWukFRwEOUuA4WIQYnLAaO8DLbyUtjKSmB3lSKmNAetinagTXEm3ArIMtKRjRQklx9Di/L9iHedRJS7CBGqBHm2JJyIaI5iWwySXceR4joKu7sMLrcNLmXA5Tbghg0KsoVhwDAMGDYDyjCglAEFAwbcsCsXbHBVbm3KDRtcUDBwxGiBg7ZWKLdFItU4gSY4Dqe7CJGuYjjcJYhCMaJQjKNIw050RA6S0AOb0BvrEINC5CPO48cNG6JQDCdK8DPOwY/oi53oiOS4MrRuWoxcVyy2n2iKgwWJiEM+EnEKeYjHzzgHblT0MIALNrhRDlm3wYAb7bAbXbANbbAXbbEHDpSjALHIQzz2oTV2oT12ox2OoSkAz+QajUKcg59hg1v+N3DCgIIdLuQhHifQpNoQmYgc5CG+slwAEIMCxMbZcPUt0bjzTum1rbndwK5d0jmkuvDsdsuPted9UZF0KOnfT8G+4Et5M115pa+fKp+VlUmv49hY6cm8f7/0VD5yRF5OjzQB4DmcwKv8u3bJR/XHH6X3dmmp9HJOSJAOCBER0gkhK0ueW3dIyM+vusqh0ym9COLi5OWKi+XvUVwsow+q43TWfJsWHaVwbuIRZB5LQbHb81Rw06ZAly5AYqL0PM/y8RxaHPKQiuPYg7bwfn+d7jF2uHAKSb69SC3ikYsBWImf0AF70K72B9RIIR55KECsx3u7PvzlL8Dvfnfmz8MAWb/49yQiIn+8+aY0Gj3/vPT2bAhnbSAPWAs51Tul5GSA7pHeEMPU9WuUlEhO1IFSX67uOrtdwllcnPxeUiItvN5vr9LSihMhynwO/VPbdS6XhNrISAmA+jpruay/67+N9W+kL7tcUpbSUnnOiAjPHz082FrXNm3M6QTId+XlMrza4ZD3h/c6mVZutwRz/RMTIyNg7HbztqIi+SkpMf9f8fHmzKDl5XLi4dQpc8i5vg2Q/+2BA3KywOmUn6go2Toc5nvO+4SgUvK6+flSjqgoc/qJkhLPH0BeMyZGPgd6j1Ldc1Y58ejD/fx9Lr0GaWKilO/ECalHXJz87SIjq35+9OdanzQpKJATPHFxcoLHWu+MDCA9/czfKwyQ9Yt/TyIi8ofbLdMqde4sxwANwdd9U1BP6paamgq73Y4jRzzHWB45cgTNmzev9jFOpxNOZ/XdVim06HmpGuM1zuR1agquvo5hofDhcPg+OYjNJiE2Jsa/27xfr91pGpINo2LYTB0kJdXtccGmTZtAl4CIiIiCjc1mTgYXaEG97FlkZCT69OmDhRXrGQMyqdvChQs9WsyJiIiIiIiIQk1Qt5ADwAMPPIBx48ahb9++6N+/P1566SUUFBTgzjvvDHTRiIiIiIiIiOos6AP5LbfcgmPHjuGxxx5DVlYWzjvvPHz55ZdopldzJyIiIiIiIgpBQR/IAWDSpEmYNGlSoItBREREREREVG+Cegw5ERERERERUbhiICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAAZyIiIiIiIiogBgICciIiIiIiIKAEegC9DQlFIAgNzc3ACXhIiISOh9kt5H0Znhvp6IiIKNr/v6sA/keXl5AIBWrVoFuCRERESe8vLykJiYGOhihDzu64mIKFjVtq83VJifnne73Th06BDi4+NhGMYZPVdubi5atWqF/fv3IyEhoZ5KGDjhVJ9wqgsQXvUJp7oArE8wC6W6KKWQl5eH9PR02GwcPXamuK+vGesTvMKpLkB41Sec6gKEV31CqS6+7uvDvoXcZrMhIyOjXp8zISEh6N8A/gin+oRTXYDwqk841QVgfYJZqNSFLeP1h/v62rE+wSuc6gKEV33CqS5AeNUnVOriy76ep+WJiIiIiIiIAoCBnIiIiIiIiCgAGMj94HQ68fjjj8PpdAa6KPUinOoTTnUBwqs+4VQXgPUJZuFUFwqccHsfsT7BK5zqAoRXfcKpLkB41Sec6qKF/aRuRERERERERMGILeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOR+mDFjBtq2bYuoqCgMGDAAq1atCnSRavX000+jX79+iI+PR1paGq699lpkZmZ63Ke4uBgTJ05EkyZNEBcXhxtuuAFHjhwJUIl998wzz8AwDNx///2V14VaXQ4ePIg77rgDTZo0QXR0NHr06IEff/yx8nalFB577DG0aNEC0dHRGDp0KHbu3BnAEtfM5XJh2rRpaNeuHaKjo3HOOefgT3/6E6zzRgZrfZYsWYKrrroK6enpMAwD//3vfz1u96Xc2dnZGD16NBISEpCUlIRf/epXyM/Pb8RamE5Xn7KyMjzyyCPo0aMHYmNjkZ6ejrFjx+LQoUMezxEq9fE2YcIEGIaBl156yeP6YKoPBTfu64ML9/XBJZT39UB47e+5rw+ffT0DuY8++ugjPPDAA3j88cexdu1a9OrVCyNGjMDRo0cDXbTTWrx4MSZOnIgVK1ZgwYIFKCsrw/Dhw1FQUFB5nylTpuCzzz7D7NmzsXjxYhw6dAjXX399AEtdu9WrV+Nvf/sbevbs6XF9KNXl5MmTGDRoECIiIjB//nxs3boVf/3rX5GcnFx5n+eeew6vvPIK3njjDaxcuRKxsbEYMWIEiouLA1jy6j377LOYOXMmXnvtNWzbtg3PPvssnnvuObz66quV9wnW+hQUFKBXr16YMWNGtbf7Uu7Ro0djy5YtWLBgAebNm4clS5Zg/PjxjVUFD6erT2FhIdauXYtp06Zh7dq1+PTTT5GZmYmrr77a436hUh+rOXPmYMWKFUhPT69yWzDVh4IX9/XBhft67uvrWzjt77mvD6N9vSKf9O/fX02cOLHyd5fLpdLT09XTTz8dwFL57+jRowqAWrx4sVJKqZycHBUREaFmz55deZ9t27YpAGr58uWBKuZp5eXlqY4dO6oFCxaoiy++WE2ePFkpFXp1eeSRR9TgwYNrvN3tdqvmzZur559/vvK6nJwc5XQ61YcfftgYRfTLqFGj1F133eVx3fXXX69Gjx6tlAqd+gBQc+bMqfzdl3Jv3bpVAVCrV6+uvM/8+fOVYRjq4MGDjVb26njXpzqrVq1SANTevXuVUqFZnwMHDqiWLVuqzZs3qzZt2qgXX3yx8rZgrg8FF+7rgwf39cG1b9TCZV+vVHjt77mvD+761IYt5D4oLS3FmjVrMHTo0MrrbDYbhg4diuXLlwewZP47deoUACAlJQUAsGbNGpSVlXnUrXPnzmjdunXQ1m3ixIkYNWqUR5mB0KvL3Llz0bdvX9x0001IS0tD79698dZbb1Xevnv3bmRlZXnUJzExEQMGDAjK+lx44YVYuHAhduzYAQDYsGEDli5dipEjRwIIvfpovpR7+fLlSEpKQt++fSvvM3ToUNhsNqxcubLRy+yvU6dOwTAMJCUlAQi9+rjdbowZMwYPPfQQunXrVuX2UKsPBQb39cGF+/rg3DeG674eCP/9Pff1wcsR6AKEguPHj8PlcqFZs2Ye1zdr1gzbt28PUKn853a7cf/992PQoEHo3r07ACArKwuRkZGVH06tWbNmyMrKCkApT2/WrFlYu3YtVq9eXeW2UKvLrl27MHPmTDzwwAP4/e9/j9WrV+O+++5DZGQkxo0bV1nm6t53wVifRx99FLm5uejcuTPsdjtcLheefPJJjB49GgBCrj6aL+XOyspCWlqax+0OhwMpKSlBXTdAxmI+8sgjuO2225CQkAAg9Orz7LPPwuFw4L777qv29lCrDwUG9/XBg/v64K1PuO7rgfDe33NfH3z1sWIgP4tMnDgRmzdvxtKlSwNdlDrZv38/Jk+ejAULFiAqKirQxTljbrcbffv2xVNPPQUA6N27NzZv3ow33ngD48aNC3Dp/Pfxxx/j/fffxwcffIBu3bph/fr1uP/++5Genh6S9TkblJWV4eabb4ZSCjNnzgx0cepkzZo1ePnll7F27VoYhhHo4hAFHPf1wYX7ego07uuDH7us+yA1NRV2u73KDJ5HjhxB8+bNA1Qq/0yaNAnz5s3DokWLkJGRUXl98+bNUVpaipycHI/7B2Pd1qxZg6NHj+L888+Hw+GAw+HA4sWL8corr8DhcKBZs2YhUxcAaNGiBbp27epxXZcuXbBv3z4AqCxzqLzvHnroITz66KO49dZb0aNHD4wZMwZTpkzB008/DSD06qP5Uu7mzZtXmfSpvLwc2dnZQVs3vYPeu3cvFixYUHnGHAit+nz//fc4evQoWrduXfm9sHfvXvzud79D27ZtAYRWfShwuK8PDtzXo/L3YKxPuO7rgfDc33NfH5z18cZA7oPIyEj06dMHCxcurLzO7XZj4cKFGDhwYABLVjulFCZNmoQ5c+bg22+/Rbt27Txu79OnDyIiIjzqlpmZiX379gVd3YYMGYJNmzZh/fr1lT99+/bF6NGjKy+HSl0AYNCgQVWWpdmxYwfatGkDAGjXrh2aN2/uUZ/c3FysXLkyKOtTWFgIm83zK8Vut8PtdgMIvfpovpR74MCByMnJwZo1ayrv8+2338LtdmPAgAGNXuba6B30zp078c0336BJkyYet4dSfcaMGYONGzd6fC+kp6fjoYcewldffQUgtOpDgcN9fXDgvj64943huq8Hwm9/z3198NanisDOKRc6Zs2apZxOp/rHP/6htm7dqsaPH6+SkpJUVlZWoIt2WnfffbdKTExU3333nTp8+HDlT2FhYeV9JkyYoFq3bq2+/fZb9eOPP6qBAweqgQMHBrDUvrPOvKpUaNVl1apVyuFwqCeffFLt3LlTvf/++yomJkb9+9//rrzPM888o5KSktT//vc/tXHjRnXNNdeodu3aqaKiogCWvHrjxo1TLVu2VPPmzVO7d+9Wn376qUpNTVUPP/xw5X2CtT55eXlq3bp1at26dQqAeuGFF9S6desqZyL1pdyXX3656t27t1q5cqVaunSp6tixo7rtttuCrj6lpaXq6quvVhkZGWr9+vUe3wslJSUhV5/qeM+8qlRw1YeCF/f1wYn7+uARyvt6pcJrf899ffjs6xnI/fDqq6+q1q1bq8jISNW/f3+1YsWKQBepVgCq/Xn33Xcr71NUVKTuuecelZycrGJiYtR1112nDh8+HLhC+8F7Jx1qdfnss89U9+7dldPpVJ07d1Zvvvmmx+1ut1tNmzZNNWvWTDmdTjVkyBCVmZkZoNKeXm5urpo8ebJq3bq1ioqKUu3bt1dTp071+OIP1vosWrSo2s/JuHHjlFK+lfvEiRPqtttuU3FxcSohIUHdeeedKi8vLwC1OX19du/eXeP3wqJFi0KuPtWpbicdTPWh4MZ9ffDhvj54hPK+Xqnw2t9zXx8++3pDKaXqp62diIiIiIiIiHzFMeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADORE1KAMw8B///vfQBeDiIiIGhD390R1w0BOFMZ++ctfwjCMKj+XX355oItGRERE9YT7e6LQ5Qh0AYioYV1++eV49913Pa5zOp0BKg0RERE1BO7viUITW8iJwpzT6UTz5s09fpKTkwFI97KZM2di5MiRiI6ORvv27fHJJ594PH7Tpk247LLLEB0djSZNmmD8+PHIz8/3uM/f//53dOvWDU6nEy1atMCkSZM8bj9+/Diuu+46xMTEoGPHjpg7d27DVpqIiOgsw/09UWhiICc6y02bNg033HADNmzYgNGjR+PWW2/Ftm3bAAAFBQUYMWIEkpOTsXr1asyePRvffPONxw545syZmDhxIsaPH49NmzZh7ty56NChg8drPPHEE7j55puxceNGXHHFFRg9ejSys7MbtZ5ERERnM+7viYKUIqKwNW7cOGW321VsbKzHz5NPPqmUUgqAmjBhgsdjBgwYoO6++26llFJvvvmmSk5OVvn5+ZW3f/7558pms6msrCyllFLp6elq6tSpNZYBgPrDH/5Q+Xt+fr4CoObPn19v9SQiIjqbcX9PFLo4hpwozF166aWYOXOmx3UpKSmVlwcOHOhx28CBA7F+/XoAwLZt29CrVy/ExsZW3j5o0CC43W5kZmbCMAwcOnQIQ4YMOW0ZevbsWXk5NjYWCQkJOHr0aF2rRERERF64vycKTQzkRGEuNja2Spey+hIdHe3T/SIiIjx+NwwDbre7IYpERER0VuL+nig0cQw50VluxYoVVX7v0qULAKBLly7YsGEDCgoKKm//4YcfYLPZ0KlTJ8THx6Nt27ZYuHBho5aZiIiI/MP9PVFwYgs5UZgrKSlBVlaWx3UOhwOpqakAgNmzZ6Nv374YPHgw3n//faxatQrvvPMOAGD06NF4/PHHMW7cOEyfPh3Hjh3DvffeizFjxqBZs2YAgOnTp2PChAlIS0vDyJEjkZeXhx9++AH33ntv41aUiIjoLMb9PVFoYiAnCnNffvklWrRo4XFdp06dsH37dgAyI+qsWbNwzz33oEWLFvjwww/RtWtXAEBMTAy++uorTJ48Gf369UNMTAxuuOEGvPDCC5XPNW7cOBQXF+PFF1/Egw8+iNTUVNx4442NV0EiIiLi/p4oRBlKKRXoQhBRYBiGgTlz5uDaa68NdFGIiIiogXB/TxS8OIaciIiIiIiIKAAYyImIiIiIiIgCgF3WiYiIiIiIiAKALeREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQADOREREREREREAcBATkRERERERBQA/w8MYkGK21uQ2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig = plt.figure(figsize=(12, 5))\n", + "fig.add_subplot(1, 2, 1)\n", + "plt.plot(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.plot(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.title(\"MSE\")\n", + "plt.legend()\n", + "\n", + "fig.add_subplot(1, 2, 2)\n", + "plt.semilogy(np.asarray(hist_train), 'b', label=\"Training loss\")\n", + "plt.semilogy(np.asarray(hist_valid), 'r', label=\"Validation loss\")\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Logarithmic loss')\n", + "plt.title(\"Logarithmic MSE\")\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [], + "source": [ + "# save the checkpoint model training if necessary\n", + "output_path = \"./\"\n", + "\n", + "torch.save({\n", + " 'epoch': epoch,\n", + " 'model_state_dict': model.state_dict(),\n", + " 'optimizer_state_dict': optimizer.state_dict(),\n", + " 'loss': loss.item()\n", + " }, Path(output_path,'lstm_train_checkpoint.pt'))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Evaluate model\n", + "Now we can evaluate our model with testing set and compare the predictions with the ground truth." + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "

Run history:


testing_loss█▁
train_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss▃▂▂▁▂▂▂▂▁▁▁▁▁▁▂▂▂▂▂▂█▃█▃▂▂▃▃▂▃▂▂▁▂▂▂▃▂▂▃

Run summary:


testing_loss1.43589
train_loss0.05494
validation_loss2.15114

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run dry-shape-17 at: https://wandb.ai/ai4s2s-demo/test-LSTM/runs/fh7xdmqd
Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230815_150902-fh7xdmqd/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# switch model into evaluation mode\n", + "model.eval()\n", + "hist_test = []\n", + "predictions = []\n", + "hist_test_step = 0\n", + "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", + " var_X_batch = Variable(X_batch).to(device)\n", + " var_y_batch = Variable(y_batch).to(device)\n", + " optimizer.zero_grad()\n", + " with torch.no_grad():\n", + " output = model(var_X_batch)\n", + " loss = criterion(output[:,-1,:].squeeze(), var_y_batch)\n", + " wandb.log({'testing_loss': loss.item()})\n", + " predictions.append(output.squeeze().cpu().detach().numpy()[:,-1])\n", + " hist_test_step += loss.item()\n", + "\n", + "hist_test.append(hist_test_step / len(test_loader.dataset))\n", + "# call wandb finish to stop logging\n", + "wandb.finish()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus observations and climatology." + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE of LSTM forecasts is 2.108\n", + "The MSE of climatology is 1.033\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzYklEQVR4nOzdd3RU1frG8e+k995JAgmQ0DuEooCigCiCgorgTxGvehUs194FRLl2sIDXAugVBBVQQQWR3nsVSCgBEkhIIwlJSJ35/RHINYKQCQkn5fmsNWuZM2fOPBNiMu/sd+9tslgsFkRERERERESkxrMxOoCIiIiIiIiIVIyKeBEREREREZFaQkW8iIiIiIiISC2hIl5ERERERESkllARLyIiIiIiIlJLqIgXERERERERqSVUxIuIiIiIiIjUEiriRURERERERGoJO6MD1ERms5kTJ07g7u6OyWQyOo6IiIiIiIjUcRaLhdOnTxMSEoKNzd+Pt6uIv4ATJ04QFhZmdAwRERERERGpZxISEggNDf3b+1XEX4C7uztQ+s3z8PAwOI2IiIiIiIjUddnZ2YSFhZXVo39HRfwFnGuh9/DwUBEvIiIiIiIiV8ylpnRrYTsRERERERGRWkJFvIiIiIiIiEgtoSJeREREREREpJbQnHgREREREalzLBYLxcXFlJSUGB1FBABbW1vs7OwuextzFfEiIiIiIlKnFBYWkpSURF5entFRRMpxcXEhODgYBweHSl9DRbyIiIiIiNQZZrOZ+Ph4bG1tCQkJwcHB4bJHPkUul8ViobCwkNTUVOLj42natCk2NpWb3a4iXkRERERE6ozCwkLMZjNhYWG4uLgYHUekjLOzM/b29hw9epTCwkKcnJwqdR0tbCciIiIiInVOZUc5RapTVfxc6idbREREREREpJZQES8iIiIiIiJSSxhaxE+cOJHOnTvj7u5OQEAAgwcPJjY2ttw5vXv3xmQylbv985//vOh1LRYLr7zyCsHBwTg7O3Pddddx4MCB6nwpIiIiIiIiV0SjRo2YNGmS0TGqzIoVKzCZTGRmZhodpVYwtIhfuXIlo0ePZsOGDSxZsoSioiL69u1Lbm5uufPuv/9+kpKSym5vvfXWRa/71ltv8cEHH/DJJ5+wceNGXF1d6devH/n5+dX5ckRERERERC5LQkICo0aNKltZv2HDhjz22GOkp6cbHa1K9O7dm8cff7zcse7du5OUlISnp6cxoWoZQ1enX7RoUbmvZ8yYQUBAAFu3bqVnz55lx11cXAgKCqrQNS0WC5MmTeKll15i0KBBAHz11VcEBgbyww8/MGzYsKp7AQbLLyrBxmTCwU6zIkREREREarvDhw/TrVs3oqKi+Oabb4iIiOCPP/7g6aef5tdff2XDhg34+Phc8VwlJSWYTKZqWyzQwcGhwvWe1LA58VlZWQDn/WDOnDkTPz8/WrVqxfPPP09eXt7fXiM+Pp7k5GSuu+66smOenp7ExMSwfv36Cz6moKCA7Ozscrfa4LWFe7l16loOpuQYHUVEREREpEayWCzkFRYbcrNYLFZlHT16NA4ODvz222/06tWL8PBwbrjhBn7//XeOHz/Oiy++WHbu6dOnufPOO3F1daVBgwZ8/PHH5V7z2LFjCQ8Px9HRkZCQEB599NGy+wsKCnjqqado0KABrq6uxMTEsGLFirL7Z8yYgZeXFz/99BMtWrTA0dGRzz//HCcnp/Na3h977DGuvfZaANLT07nzzjtp0KABLi4utG7dmm+++abs3JEjR7Jy5UomT55cNlX6yJEjF2ynnzt3Li1btsTR0ZFGjRrx7rvvlnveRo0a8cYbbzBq1Cjc3d0JDw/n008/Lbu/sLCQMWPGEBwcjJOTEw0bNmTixIlW/XvUVDVmn3iz2czjjz9Ojx49aNWqVdnx4cOH07BhQ0JCQti1axfPPvsssbGxzJs374LXSU5OBiAwMLDc8cDAwLL7/mrixImMGzeuil7JlZGeU8Avu5M4lVfETR+u5uWbWjC8Szgmk8noaCIiIiIiNcaZohJavLLYkOfeO74fLg4VK7kyMjJYvHgxr7/+Os7OzuXuCwoKYsSIEcyZM4cpU6YA8Pbbb/PCCy8wbtw4Fi9ezGOPPUZUVBTXX389c+fO5f3332f27Nm0bNmS5ORkdu7cWXa9MWPGsHfvXmbPnk1ISAjz58+nf//+7N69m6ZNmwKQl5fHm2++yeeff46vry+hoaG88sorzJ07l/vuuw8oHaGfM2cOr7/+OgD5+fl07NiRZ599Fg8PD37++Wf+7//+j8aNG9OlSxcmT55MXFwcrVq1Yvz48QD4+/tz5MiRcq9369at3H777YwdO5Y77riDdevW8fDDD+Pr68vIkSPLznv33Xd57bXXeOGFF/j+++956KGH6NWrF9HR0XzwwQf89NNPfPvtt4SHh5OQkEBCQkLF//FqsBpTxI8ePZo9e/awZs2acscfeOCBsv9u3bo1wcHB9OnTh0OHDtG4ceMqee7nn3+eJ554ouzr7OxswsLCquTa1cXXzZFFj/fkqe92svpAGi/O38Py/am8OaQ1vm6ORscTERERERErHDhwAIvFQvPmzS94f/PmzTl16hSpqakA9OjRg+eeew6AqKgo1q5dy/vvv8/111/PsWPHCAoK4rrrrsPe3p7w8HC6dOkCwLFjx5g+fTrHjh0jJCQEgKeeeopFixYxffp03njjDQCKioqYMmUKbdu2LcswbNgwZs2aVVbEL126lMzMTIYMGQJAgwYNeOqpp8rOf+SRR1i8eDHffvstXbp0wdPTEwcHh0tOl37vvffo06cPL7/8ctnr27t3L2+//Xa5In7AgAE8/PDDADz77LO8//77LF++nOjoaI4dO0bTpk256qqrMJlMNGzYsIL/EjVfjSjix4wZw8KFC1m1ahWhoaEXPTcmJgaAgwcPXrCIP/fDcPLkSYKDg8uOnzx5knbt2l3wmo6Ojjg61r7CN9DDiS/v7cK0tfG8tSiW3/edpP/kTN69rS09o/yNjiciIiIiYjhne1v2ju9n2HNbq6It+N26dTvv63Mr1t92221MmjSJyMhI+vfvz4ABAxg4cCB2dnbs3r2bkpISoqKiyj2+oKAAX1/fsq8dHBxo06ZNuXNGjBhB165dOXHiBCEhIcycOZMbb7wRLy8voHRk/o033uDbb7/l+PHjFBYWUlBQgIuLi1Xfg3379pWtb3ZOjx49mDRpEiUlJdjaln5f/5zPZDIRFBRESkoKUNq6f/311xMdHU3//v256aab6Nu3r1U5aipD58RbLBbGjBnD/PnzWbZsGREREZd8zI4dOwDKFeh/FhERQVBQEEuXLi07lp2dzcaNG8/7Qa8LbGxM/OPqSH4Y3YOmAW6kni7g7mmbGL9gL/lFJUbHExERERExlMlkwsXBzpCbNVNdmzRpgslkYt++fRe8f9++fXh7e+Pvf+nBurCwMGJjY5kyZQrOzs48/PDD9OzZk6KiInJycrC1tWXr1q3s2LGj7LZv3z4mT55cdg1nZ+fz8nfu3JnGjRsze/Zszpw5w/z58xkxYkTZ/W+//TaTJ0/m2WefZfny5ezYsYN+/fpRWFhY4e+DNezt7ct9bTKZMJvNAHTo0IH4+Hhee+01zpw5w+23387QoUOrJceVZmgRP3r0aL7++mtmzZqFu7s7ycnJJCcnc+bMGQAOHTrEa6+9xtatWzly5Ag//fQTd999Nz179iz3qUuzZs2YP38+UPoP9/jjjzNhwgR++ukndu/ezd13301ISAiDBw824mVeES1CPFjwyFXc0620TWTa2ngGf7yW2OTTBicTEREREZFL8fX15frrr2fKlCll9dA5ycnJzJw5kzvuuKOssN6wYUO5czZs2FCuFd/Z2ZmBAwfywQcfsGLFCtavX8/u3btp3749JSUlpKSk0KRJk3K3iqwQP2LECGbOnMmCBQuwsbHhxhtvLLtv7dq1DBo0iLvuuou2bdsSGRlJXFxcucc7ODhQUnLxwcbmzZuzdu3acsfWrl1LVFRU2Sh8RXh4eHDHHXfw2WefMWfOHObOnUtGRkaFH19TGVrET506laysLHr37k1wcHDZbc6cOUDpP/Dvv/9O3759adasGU8++SRDhgxhwYIF5a4TGxtbtrI9wDPPPMMjjzzCAw88QOfOncnJyWHRokU4OTld0dd3pTnZ2zJuUCumjeyEn5sD+5NPM/CjNcxYG2/1ypgiIiIiInJlffTRRxQUFNCvXz9WrVpFQkICixYt4vrrr6dBgwZlC8hBaVH71ltvERcXx8cff8x3333HY489BpSuLv/FF1+wZ88eDh8+zNdff42zszMNGzYkKiqKESNGcPfddzNv3jzi4+PZtGkTEydO5Oeff75kxhEjRrBt2zZef/11hg4dWm5actOmTVmyZAnr1q1j3759PPjgg5w8ebLc4xs1asTGjRs5cuQIaWlpZSPnf/bkk0+ydOlSXnvtNeLi4vjyyy/56KOPys23v5T33nuPb775hv379xMXF8d3331HUFBQWet/bWbonPhLFZZhYWGsXLnS6uuYTCbGjx9ftuJhfXNts0B+fawnT3+/kxWxqYxdsJcVcam8PbQt/u61b+6/iIiIiEh90LRpU7Zs2cKrr77K7bffTkZGBkFBQQwePJhXX3213FbcTz75JFu2bGHcuHF4eHjw3nvv0a9f6dx/Ly8v/v3vf/PEE09QUlJC69atWbBgQdmc9+nTpzNhwgSefPJJjh8/jp+fH127duWmm266ZMYmTZrQpUsXNm3aVDYH/5yXXnqJw4cP069fP1xcXHjggQcYPHhwuQHXp556invuuYcWLVpw5swZ4uPjz3uODh068O233/LKK6/w2muvERwczPjx48stancp7u7uvPXWWxw4cABbW1s6d+7ML7/8Um173V9JJouGaM+TnZ2Np6cnWVlZeHh4GB2n0iwWC1+tP8rrv+yjsNiMr6sDb9/WhmubBV76wSIiIiIitVB+fj7x8fFERETU+U5cqX0u9vNZ0Tq09n8MIX/LZDJxT/dGLBhzFc2C3EnPLWTUjC288uMeLXonIiIiIiJSC6mIrweig9z5YXQP7ruqdPX/r9Yf5aYP1/DHiaxLPFJERERERERqEhXx9YSTvS0v39SCL0d1wd/dkYMpOdzy8To+X30Ys1kzKkRERERERGoDFfH1TK8ofxY9djXXNQ+ksMTMhJ/3cfe0TZzMzjc6moiIiIiIiFyCivh6yNfNkc/u7sjrt7TCyd6GNQfT6DdpFYv2JBsdTURERERERC5CRXw9ZTKZGBHTkIWPXE3LEA8y84r459dbeX7eLvIKi42OJyIiIiIiIhegIr6eaxLgxvyHe/Bgr0hMJvhmUwI3fbCGXYmZRkcTERERERGRv1ARLzjY2fD8Dc2ZeV8MQR5OHE7L5dYp65iy4iAlWvRORERERESkxlARL2W6N/Fj0eNXc0OrIIrNFt5aFMvwzzZwIvOM0dFERERERKSKjBw5ksGDB5d93bt3bx5//PHLumZVXEMqRkW8lOPl4sCUER14a2gbXBxs2RifQf9Jq1i464TR0URERERE6rSRI0diMpkwmUw4ODjQpEkTxo8fT3Fx9a5ZNW/ePF577bUKnbtixQpMJhOZmZmVvkZ1GTt2LO3atfvb++Pj4xk+fDghISE4OTkRGhrKoEGD2L9/PzNmzCj73v/d7ciRI4wdOxaTyUT//v3Pu/7bb7+NyWSid+/e1fciUREvF2Aymbi9Uxi/PHo1bcO8yM4vZsys7Tz57U5yCrTonYiIiIhIdenfvz9JSUkcOHCAJ598krFjx/L222+fd15hYWGVPaePjw/u7u6GX6M6FRUVcf3115OVlcW8efOIjY1lzpw5tG7dmszMTO644w6SkpLKbt26deP+++8vdywsLAyA4OBgli9fTmJiYrnnmDZtGuHh4dX+WlTEy99q5OfK9//sxiPXNsHGBHO3JTJg8mq2HTtldDQRERERkWpVYraw/lA6P+44zvpD6VdsrShHR0eCgoJo2LAhDz30ENdddx0//fRTWQv866+/TkhICNHR0QAkJCRw++234+XlhY+PD4MGDeLIkSP/ex0lJTzxxBN4eXnh6+vLM888g8VS/rX8tRW+oKCAZ599lrCwMBwdHWnSpAlffPEFR44c4ZprrgHA29sbk8nEyJEjL3iNU6dOcffdd+Pt7Y2Liws33HADBw4cKLt/xowZeHl5sXjxYpo3b46bm1vZBxjnrFixgi5duuDq6oqXlxc9evTg6NGjlfq+/vHHHxw6dIgpU6bQtWtXGjZsSI8ePZgwYQJdu3bF2dmZoKCgspuDgwMuLi7ljtna2gIQEBBA3759+fLLL8uuv27dOtLS0rjxxhsrlc8aKuLlouxtbXiybzSzH+hGAy9njmXkcdsn65n8+wGKS8xGxxMRERERqXKL9iRx1ZvLuPOzDTw2ewd3fraBq95cxqI9SZd+cBVzdnYuG3VfunQpsbGxLFmyhIULF1JUVES/fv1wd3dn9erVrF27tqwYPveYd999lxkzZjBt2jTWrFlDRkYG8+fPv+hz3n333XzzzTd88MEH7Nu3j//85z+4ubkRFhbG3LlzAYiNjSUpKYnJkydf8BojR45ky5Yt/PTTT6xfvx6LxcKAAQMoKioqOycvL4933nmH//73v6xatYpjx47x1FNPAVBcXMzgwYPp1asXu3btYv369TzwwAOYTKZKfR/9/f2xsbHh+++/p6SkpFLX+LNRo0YxY8aMsq+nTZvGiBEjcHBwuOxrX4qKeKmQLhE+/PLY1dzcNoQSs4X3f4/jjk83kJCRZ3Q0EREREZEqs2hPEg99vY2krPxyx5Oz8nno621XrJC3WCz8/vvvLF68mGuvvRYAV1dXPv/8c1q2bEnLli2ZM2cOZrOZzz//nNatW9O8eXOmT5/OsWPHWLFiBQCTJk3i+eef59Zbb6V58+Z88skneHp6/u3zxsXF8e233zJt2jRuueUWIiMj6dOnD3fccQe2trb4+PgApaPRQUFBF7zWgQMH+Omnn/j888+5+uqradu2LTNnzuT48eP88MMPZecVFRXxySef0KlTJzp06MCYMWNYunQpANnZ2WRlZXHTTTfRuHFjmjdvzj333FPpdvUGDRrwwQcf8Morr+Dt7c21117La6+9xuHDhyt1vZtuuons7GxWrVpFbm4u3377LaNGjarUtaylIl4qzNPZng/ubM+kO9rh5mjH1qOnuGHyauZvT7z0g0VEREREargSs4VxC/Zyocb5c8fGLdhbra31CxcuxM3NDScnJ2644QbuuOMOxo4dC0Dr1q3LjfTu3LmTgwcP4u7ujpubG25ubvj4+JCfn8+hQ4fIysoiKSmJmJiYssfY2dnRqVOnv33+HTt2YGtrS69evSr9Gvbt24ednV255/X19SU6Opp9+/aVHXNxcaFx48ZlXwcHB5OSkgKUzrEfOXIk/fr1Y+DAgUyePLms1f7YsWNlr9fNzY033nijQrlGjx5NcnIyM2fOpFu3bnz33Xe0bNmSJUuWWP0a7e3tueuuu5g+fTrfffcdUVFRtGnTxurrVIbdFXkWqVMGt29Ax4bePD5nB1uPnuJfc3ayIjaV8YNa4elsb3Q8EREREZFK2RSfcd4I/J9ZgKSsfDbFZ9CtsW+1ZLjmmmuYOnUqDg4OhISEYGf3v5LN1dW13Lk5OTl07NiRmTNnnncdf3//Sj2/s7NzpR5XGfb25WsHk8lUbr7+9OnTefTRR1m0aBFz5szhpZdeYsmSJXTq1IkdO3aUnXeuO6Ai3N3dGThwIAMHDmTChAn069ePCRMmcP3111udf9SoUcTExLBnz54rNgoPGomXSgrzcWHOA1154voobG1M/LjjBAMmr2ZTfIbR0UREREREKiXl9N8X8JU5rzJcXV1p0qQJ4eHh5Qr4C+nQoQMHDhwgICCAJk2alLt5enri6elJcHAwGzduLHtMcXExW7du/dtrtm7dGrPZzMqVKy94/7lOgIvNK2/evDnFxcXlnjc9PZ3Y2FhatGhx0df0V+3bt+f5559n3bp1tGrVilmzZmFnZ1futVpTxP+ZyWSiWbNm5ObmVurx56Y17Nmzh+HDh1fqGpWhIl4qzc7Whkf7NOW7f3Yj3MeF45lnGPbpet79LZYiLXonIiIiIrVMgLtTlZ5X3UaMGIGfnx+DBg1i9erVxMfHs2LFCh599NGy7c8ee+wx/v3vf/PDDz+wf/9+Hn744fP2eP+zRo0acc899zBq1Ch++OGHsmt+++23ADRs2BCTycTChQtJTU0lJyfnvGs0bdqUQYMGcf/997NmzRp27tzJXXfdRYMGDRg0aFCFXlt8fDzPP/8869ev5+jRo/z2228cOHCA5s2bX/RxZ86cYceOHeVuhw4dYseOHQwaNIjvv/+evXv3cvDgQb744gumTZtW4UwXsmzZMpKSkvDy8qr0NaylIl4uW4dwb3557GqGdAjFbIEPlx1k6CfrOZJWuU+0RERERESM0CXCh2BPJ/5u/XMTEOzpRJeIyo38VjUXFxdWrVpFeHh42cJ19913H/n5+Xh4eADw5JNP8n//93/cc889dOvWDXd3d2655ZaLXnfq1KkMHTqUhx9+mGbNmnH//feXjVY3aNCAcePG8dxzzxEYGMiYMWMueI3p06fTsWNHbrrpJrp164bFYuGXX345r4X+Yq9t//79DBkyhKioKB544AFGjx7Ngw8+eNHHxcXF0b59+3K3Bx98kNDQUBo1asS4ceOIiYmhQ4cOTJ48mXHjxvHiiy9WKNOFnNv+7koyWf66SaCQnZ2Np6cnWVlZZT/8UjELdp7gxfm7yc4vxsXBlrE3t+S2jqGV3gpCRERERMQa+fn5xMfHExERgZOT9SPm51anB8otcHfu3ezUuzrQv1Xw5QeVeuliP58VrUM1Ei9VamDbEH59vCcxET7kFZbwzPe7GD1rG5l5hUZHExERERG5pP6tgpl6VweCPMsXWEGeTirgpUbQ6vRS5Rp4OTPr/q78Z9Uh3vstjl92J7PtaCbv3dGW7o39jI4nIiIiInJR/VsFc32LIDbFZ5ByOp8A99IWelsbdZeK8VTES7WwtTHxcO8mXNXEj8dm7yA+LZcRn2/kgZ6RPHl9NA52agIRERERkZrL1sZUbdvIiVwOVVJSrdqEevHzo1dxZ5cwLBb4z8rD3Dp1LQdTzl/FUkRERERERC5ORbxUOxcHOybe2oZP7uqIl4s9e45nc9OHq5m58ShaV1FERERERKTiVMTLFdO/VRCLH+/JVU38yC8y8+L8Pdz/1VbScwqMjiYiIiIiIlIrqIiXKyrQw4mvRnXhpRub42Brw+/7TtJ/8mpWxaUaHU1ERERERKTGUxEvV5yNjYl/XB3J/NHdaRLgRurpAu6etonxC/aSX1RidDwREREREZEaS0W8GKZliCcLxlzF3d0aAjBtbTyDP15LbPJpg5OJiIiIiIjUTCrixVDODraMH9SKL+7phK+rA/uTTzPwozXMWBuvRe9ERERERP7CZDLxww8/AHDkyBFMJhM7duwwNNPfqen5aisV8VIj9GkeyK+PX02vKH8Ki82MXbCXe2dsJvW0Fr0TERERkfojOTmZRx55hMjISBwdHQkLC2PgwIEsXbr0vHPDwsJISkqiVatW1ZpJxXjNoiJeaowAdydm3NuZsQNb4GBnw4rYVPpPWsWy/SeNjiYiIiIiUu2OHDlCx44dWbZsGW+//Ta7d+9m0aJFXHPNNYwePfq8821tbQkKCsLOzs6AtGIUFfFSo5hMJkb2iGDBmKtoFuROem4ho2Zs4ZUf92jROxERERGp0x5++GFMJhObNm1iyJAhREVF0bJlS5544gk2bNhw3vl/HSFfsWIFJpOJxYsX0759e5ydnbn22mtJSUnh119/pXnz5nh4eDB8+HDy8vLKrrNo0SKuuuoqvLy88PX15aabbuLQoUNl90dERADQvn17TCYTvXv3BsBsNjN+/HhCQ0NxdHSkXbt2LFq06KKvceXKlXTp0gVHR0eCg4N57rnnKC4uLrv/9OnTjBgxAldXV4KDg3n//ffp3bs3jz/+OADjx4+/YOdBu3btePnllyv0fa7tVMRLjRQd5M4Po3swqkfpL4yv1h/lpg/X8MeJLIOTiYiIiEhtYrFYyM3NNeRmzRpPGRkZLFq0iNGjR+Pq6nre/V5eXhW+1tixY/noo49Yt24dCQkJ3H777UyaNIlZs2bx888/89tvv/Hhhx+WnZ+bm8sTTzzBli1bWLp0KTY2Ntxyyy2YzWYANm3aBMDvv/9OUlIS8+bNA2Dy5Mm8++67vPPOO+zatYt+/fpx8803c+DAgQvmOn78OAMGDKBz587s3LmTqVOn8sUXXzBhwoSyc5544gnWrl3LTz/9xJIlS1i9ejXbtm0ru3/UqFHs27ePzZs3lx3bvn07u3bt4t57763w96g2U9+F1FhO9ra8MrAFvaL9eeq7nRxMyeGWj9fxTP9oRvWIwMbGZHREEREREanh8vLycHNzM+S5c3JyLliQX8jBgwexWCw0a9bssp93woQJ9OjRA4D77ruP559/nkOHDhEZGQnA0KFDWb58Oc8++ywAQ4YMKff4adOm4e/vz969e2nVqhX+/v4A+Pr6EhQUVHbeO++8w7PPPsuwYcMAePPNN1m+fDmTJk3i448/Pi/XlClTCAsL46OPPsJkMtGsWTNOnDjBs88+yyuvvEJubi5ffvkls2bNok+fPgBMnz6dkJCQsmuEhobSr18/pk+fTufOncvO6dWrV9nrq+s0Ei81Xq8ofxY9djXXNQ+ksMTMhJ/3cfe0TZzMzjc6moiIiIhIlajKnZnatGlT9t+BgYG4uLiUK3ADAwNJSUkp+/rAgQPceeedREZG4uHhQaNGjQA4duzY3z5HdnY2J06cKPuw4JwePXqwb9++Cz5m3759dOvWDZPJVO78nJwcEhMTOXz4MEVFRXTp0qXsfk9PT6Kjo8td5/777+ebb74hPz+fwsJCZs2axahRoy7yHalbNBIvtYKvmyOf3d2RWZuO8drCvaw5mEa/Sav4961t6N8q6NIXEBEREZF6ycXFhZycHMOeu6KaNm2KyWRi//79l/289vb2Zf9tMpnKfX3u2LlWeYCBAwfSsGFDPvvsM0JCQjCbzbRq1YrCwsLLzlIdBg4ciKOjI/Pnz8fBwYGioiKGDh1qdKwrRkW81Bomk4kRMQ2JifDlsdnb+eNENv/8eit3dgnj5Zta4OKgH2cRERERKc9kMlW4pd1IPj4+9OvXj48//phHH330vMyZmZlWzYuvqPT0dGJjY/nss8+4+uqrAVizZk25cxwcHAAoKfnfQtMeHh6EhISwdu1aevXqVXZ87dq15UbS/6x58+bMnTsXi8VSNhq/du1a3N3dCQ0NxdvbG3t7ezZv3kx4eDgAWVlZxMXF0bNnz7Lr2NnZcc899zB9+nQcHBwYNmwYzs7OVfDdqB3UTi+1TpMAN+Y/3IMHe0ViMsE3mxK46YM17ErMNDqaiIiIiEilffzxx5SUlNClSxfmzp3LgQMH2LdvHx988AHdunWrluf09vbG19eXTz/9lIMHD7Js2TKeeOKJcucEBATg7OzMokWLOHnyJFlZpYtNP/3007z55pvMmTOH2NhYnnvuOXbs2MFjjz12wed6+OGHSUhI4JFHHmH//v38+OOPvPrqqzzxxBPY2Njg7u7OPffcw9NPP83y5cv5448/uO+++7CxsSnXgg/wj3/8g2XLlrFo0aJ61UoPKuKllnKws+H5G5oz874YgjycOJyWy61T1jFlxUFKzFU3n0hERERE5EqJjIxk27ZtXHPNNTz55JO0atWK66+/nqVLlzJ16tRqeU4bGxtmz57N1q1badWqFf/61794++23y51jZ2fHBx98wH/+8x9CQkIYNGgQAI8++ihPPPEETz75JK1bt2bRokX89NNPNG3a9ILP1aBBA3755Rc2bdpE27Zt+ec//8l9993HSy+9VHbOe++9R7du3bjpppu47rrr6NGjB82bN8fJyanctZo2bUr37t1p1qwZMTExVfxdqdlMlqpcQaGOyM7OxtPTk6ysLDw8PIyOI5dwKreQF+bv5tc9yQDERPjw/h3tCPGqPy01IiIiIlIqPz+f+Ph4IiIiziv8pPbJzc2lQYMGvPvuu9x3331lxy0WC02bNuXhhx8+r3OgJrvYz2dF61CNxEut5+3qwJQRHXhrSBtcHGzZGJ9B/0mrWLjrhNHRRERERETECtu3b+ebb77h0KFDbNu2jREjRgCUjf4DpKam8tFHH5GcnFxv9ob/M60EJnWCyWTi9s5hdI7w4fHZ29mZmMWYWdtZvj+VcYNa4uaoH3URERERkdrgnXfeITY2FgcHBzp27Mjq1avx8/Mruz8gIAA/Pz8+/fRTvL29DUxqDFU2UqdE+Lny/UPdmfz7AT5ecZC52xLZfCSDScPa0SG8/v0PLiIiIiJSm7Rv356tW7de9Jz6PiNc7fRS59jb2vBUv2hm39+VBl7OHMvI47ZP1jP59wMUl5gvfQEREREREZEaSkW81Fkxkb788tjVDGwbQonZwvu/x3HHpxtIyMgzOpqIiIiIiEilGFrET5w4kc6dO+Pu7k5AQACDBw8mNjb2gudaLBZuuOEGTCYTP/zww0WvO3LkSEwmU7lb//79q+EVSE3n6WzPB8Pa8f4dbXFztGPr0VPc/NEakrPyjY4mIiIiItWovrdcS81UFT+XhhbxK1euZPTo0WzYsIElS5ZQVFRE3759yc3NPe/cSZMmYTKZKnzt/v37k5SUVHb75ptvqjK61CImk4lb2ofy62NXEx3ozqm8Il6Yv1u/2EVERETqIHt7ewDy8tR9KTXPuZ/Lcz+nlWHownaLFi0q9/WMGTMICAhg69at9OzZs+z4jh07ePfdd9myZQvBwcEVurajoyNBQUFVmldqtzAfFz64sz0DP1zDsv0pzN12nKEdQ42OJSIiIiJVyNbWFi8vL1JSUgBwcXGxajBQpDpYLBby8vJISUnBy8sLW1vbSl+rRq1On5WVBYCPj0/Zsby8PIYPH87HH39sVVG+YsUKAgIC8Pb25tprr2XChAn4+vpe8NyCggIKCgrKvs7Ozq7kK5CaLjrInceua8rbi2MZt+APrmriR5Cnk9GxRERERKQKnasbzhXyIjWFl5fXZQ82myw1pKfYbDZz8803k5mZyZo1a8qOP/jgg5SUlPD5558Dpa3R8+fPZ/DgwX97rdmzZ+Pi4kJERASHDh3ihRdewM3NjfXr11/wE4+xY8cybty4845nZWXh4eFx+S9OapTiEjNDpq5jZ2IW10T7M21kZ306KyIiIlIHlZSUUFRUZHQMEaC0hf5iI/DZ2dl4enpesg6tMUX8Qw89xK+//sqaNWsIDS1tcf7pp5948skn2b59O25ubkDFivi/Onz4MI0bN+b333+nT58+591/oZH4sLAwFfF12IGTp7nxgzUUlph5a2gbbu8UZnQkERERERGpxypaxNeILebGjBnDwoULWb58eVkBD7Bs2TIOHTqEl5cXdnZ22NmVdv8PGTKE3r17V/j6kZGR+Pn5cfDgwQve7+joiIeHR7mb1G1NA915/PqmALy2YC9JWWcMTiQiIiIiInJphhbxFouFMWPGMH/+fJYtW0ZERES5+5977jl27drFjh07ym4A77//PtOnT6/w8yQmJpKenl7hRfGkfnjg6kjahnlxuqCY5+ZqtXoRERERkbrIbK5b7/MNLeJHjx7N119/zaxZs3B3dyc5OZnk5GTOnCkdFQ0KCqJVq1blbgDh4eHlCv5mzZoxf/58AHJycnj66afZsGEDR44cYenSpQwaNIgmTZrQr1+/K/8ipcays7XhnaFtcLC1YWVcKt9tSTQ6koiIiIiIVKHkrHz6TlrF8v11Z5FDQ4v4qVOnkpWVRe/evQkODi67zZkzx6rrxMbGlq1sb2try65du7j55puJiorivvvuo2PHjqxevRpHR8fqeBlSizUNdOdf10cB8NrCvZzIVFu9iIiIiEhdUFxi5tFvtnMwJYd3l8RSUkdG5A3dYq4y7csXesyfjzk7O7N48eLLyiX1y/1XR7Doj2R2JmTy3LzdfHmvVqsXEREREant3l0Sx6YjGbg52vHRnR2wtakb7/FrxMJ2Ikays7Xh3dva4GBnw6q4VL7dkmB0JBERERERuQzL96cwdcUhAN4a2oZGfq4GJ6o6KuJFgCYB7jx5tq1+wsJ9aqsXEREREamlTmSe4V/f7gDgnm4NGdC6bi1wriJe5Kx/XB1J+/DS1eqfnbtLq9WLiIiIiNQyRSVmHvlmO5l5RbRu4MkLNzY3OlKVUxEvcpatjYm3h7bFwc6G1QfSmL1ZbfUiIiIiIrXJO4tj2Xr0FO5Odnw8vAOOdrZGR6pyKuJF/qRJgBtP9S1tq3/9530cV1u9iIiIiEitsHTfSf6z6jAAbw9tS7ivi8GJqoeKeJG/uO+qSDqEe5FTUMxzaqsXEREREanxEk/l8cS3OwG4t0cj+rcKMjhR9VERL/IXtjYm3r6tLY5n2+q/2aS2ehERERGRmqqw2MyYWdvJOlNE2zAvnr+h7s2D/zMV8SIX0Njfjaf6RgPw+s97STyVZ3AiERERERG5kDcX7WdHQiYeTnZ8dGd7HOzqdplbt1+dyGUYdVUEHRt6k1tYwnNzd6utXkRERESkhln8RzJfrIkH4N3b2xHmUzfnwf+ZiniRv1G6Wn0bHO1sWHMwjVmbjhkdSUREREREzkrIyOOp70rnwd9/dQTXtwg0ONGVoSJe5CIi/d14ul9pW/0bP+8jIUNt9SIiIiIiRisoLmH0rG2czi+mQ7gXz/RvZnSkK0ZFvMgl3Nsjgk5n2+qfnbsLs1lt9SIiIiIiRpr4y352JWbh5WLPh8M7YG9bf0rb+vNKRSrp3Gr1TvY2rDuUzky11YuIiIiIGOaX3UnMWHcEgPdub0sDL2djA11hKuJFKiDCz5Wn+5W26Ez8RW31IiK1zZQVB+nw2hJik08bHUVERC7D0fRcnv1+FwAP9ork2mb1Yx78n6mIF6mge7s3onMjb/IKS3jme7XVi4jUFjkFxXy87CAZuYV8uyXB6DgiIlJJ+UVn58EXFNOpoXfZltD1jYp4kQqysTHx9tDStvr1h9OZufGo0ZFERKQCftpxgtzCEgBWxqUanEZERCrr9Z/3sed4Nj6uDnw4vH29mgf/Z/XzVYtUUiM/V54511b/63611YuI1HAWi6Xch64HU3JIPKXf3SIitc2CnSf474bS3+fv3d6WYM/6NQ/+z1TEi1hpZPdGdGnkQ15hCU9/v1Nt9SIiNdiOhEz+OJGNg50NzYLcAVgRq9F4EZHaJD4tl+fn7QZg9DWN6R0dYHAiY6mIF7GSjY2Jt4a2wdnelg2HM/habfUiIjXWzI2lO4rc1CaYm9oEA2qpFxGpTfKLSnh45jZyCoqJifDhX9dFGR3JcCriRSqhkZ8rz/YvXUhj4i/7OZau1kwRkZomK6+IBTtPADAipmHZyM26g2kUFpuNjCYiIhU0bsFe9iVl4+vqwAd3tseuns6D/zN9B0Qq6e5ujYiJ8OFMkdrqRURqornbEikoNtMsyJ0O4V60CPbAz82B3MISthzNMDqeiIhcwo87jvPNpmOYTDB5WHsCPZyMjlQjqIgXqaRzq9U729uyMT6Dr9YfMTqSiIic9ecF7UZ0bYjJZMLGxkTPKH8AVmpevIhIjXYwJadsHvwj1zblqqZ+BieqOVTEi1yGcF8XnruhdLX6NxfFcjQ91+BEIiICsDE+g0Opubg42DK4XUjZ8V7ninjNixcRqbHOFJYweuY28gpL6Bbpy2N9mhodqUZRES9ymf6va0O6Rp5rq9+ltnoRkRrg3IJ2g9o1wN3Jvux4z6b+mEywP/k0SVlnjIonIiIXMfanP4g9eRo/N0cm39kOWxuT0ZFqFBXxIpfJxsbEW0Pa4uJgy6b4DL5UW72IiKHScgpYtCcJgBEx4eXu83Z1oG2oFwCrNBovIlLjzNuWyJwtCdiY4INh7Qhw1zz4v1IRL1IFyrfV7+dImtrqRUSM8t2WRIpKLLQN86JVA8/z7u8dXdpSr/3iRURqlgMnT/Pi/D0APNYniu5NNA/+QlTEi1SRu2Ia0i3Sl/wiM8+orV5ExBBms4VZm84uaPeXUfhzzs2LX3MgjaISbTUnIlIT5BUW8/DMbZwpKuGqJn6MubaJ0ZFqLBXxIlXExsbEW0PblLbVH8lgxrojRkcSEal3Vh9MIyHjDB5OdgxsE3LBc9qEeuHtYs/pgmK2H8u8sgFFROSCXv7hDw6k5BDg7sikYZoHfzEq4kWqUJiPC88PaA7AW4v3E6+2ehGRK2rmhtJR+CEdQ3F2sL3gObZ/2mpuRWzKFcsmIiIX9u2WBOZuSyydB39ne/zcHI2OVKPZVeSkXbt2WX3hFi1aYGdXocuL1CkjuoTz6+4k1h1K5+nvdjLnwW76JFFE5ApIyjrD0v2lRfnftdKf0yvKnx93nGBlXCrP9G92JeKJiMgFxCaf5pUfS+fBP9k3mq6RvgYnqvkqVGW3a9cOk8mExVKxOb42NjbExcURGRl5WeFEaiMbGxNvDmlD/0mr2HL0FNPXxvOPq/X/gohIdZuzOYESs4WYCB+aBLhf9NxzI/F/nMgm5XS+Vj8WETFAbkExD8/cSn6RmV5R/jzUq7HRkWqFCg+Vb9y4EX9//0ueZ7FYaNWq1WWFEqntzrXVv/TDHt5eHMu1zQKI9HczOpaISJ1VXGJm9qYEAEZ0bXjJ8/3cHGndwJPdx7NYFZfG0I6h1R1RRET+xGKx8OL83RxKzSXIw4n3bm+LjbpXK6RCRXyvXr1o0qQJXl5eFbpoz549cXZ2vpxcIrXeiJhwft2TxNqD6Tz9/S6+VVu9iEi1WbY/heTsfHxdHejXMrBCj+kd7c/u41msiE1RES8icoXN3pzADztOYGtj4sPh7fHVPPgKq9DCdsuXL69wAQ/wyy+/EBwcXNlMInWCyVTaVu/qYMvWs231IiJSPWZuPAbAbZ3CcLS78IJ2f3Vuq7nVB9Io0bagIiJXzN4T2bz60x8APNU3ms6NfAxOVLtYtTp9dnY2ZvP5+6mWlJSQnZ1dZaFE6opQbxdeuLF0tfq3F8dyKDXH4EQiInXPsfQ8Vh1IBWB4l4svaPdn7cK88HCyI+tMETsSMqspnYiI/FlOQTFjZm2jsNjMNdH+PNhTa0dZq8JF/Pz58+nUqRP5+fnn3Zefn0/nzp1ZsGBBlYYTqQuGdwnnqiZ+FBSbefq7nRrtERGpYt9sPobFUrpYXbivS4UfZ2drw9VNS0fjV8alVlc8ERE5y2Kx8Py83RxOyyXE04n3bm+nefCVUOEifurUqTzzzDO4uJz/x9HV1ZVnn32Wjz76qErDidQFJpOJN4e2wc3Rjm3HMpm2Rm31IiJVpaC4hG83n13Q7hLbyl1Ir+izRbz2ixcRqXYzNx5jwc4T2NmY+HB4B7xdHYyOVCtVuIjfs2cPvXv3/tv7e/bsye7du6sik0id08DLmRfPttW/85va6kVEqsriP06SnltIoIcjfZoFWP34c/Pidx3PIj2noKrjiYjIWXuOZzF+4V4Anu3fjI4NvQ1OVHtVuIg/deoUxcXFf3t/UVERp06dqpJQInXRsM5hXN20tK3+KbXVi4hUiZkbjgIwrHM4drZWLfUDQKCHE82DPbBYShe4ExGRqpedX8Tos/Pgr2seyD+ujjA6Uq1W4b92jRo1YsuWLX97/5YtW2jY8NL7sorUVyaTiX8PKW2r334sk89XHzY6kohIrXYw5TQb4zOwMcGwLmGVvk7vsy31K9RSLyJS5SwWC8/N3cXR9DwaeDnz7m1tMZk0D/5yVLiIv/XWW3nxxRc5efLkefclJyfz0ksvMWTIkCoNJ1LXNPBy5qWzbfXvLonjYMppgxOJiNRe57aV69M8kGBP50pf51xL/aoDaZjVJSUiUqW+Wn+UX3YnY29r4uMRHfB0sTc6Uq1X4SL+ueeew93dnaZNm/Lwww8zefJkJk+ezEMPPURUVBRubm4899xz1ZlVpE64o3MYPaP8KSw289R3u9RWLyJSCWcKS5i7NRGo3IJ2f9axoTdujnZk5Bay+3hWVcQTERFgV2ImE34unQf//A3NaRfmZWygOqLCRby7uztr167lrrvuYs6cOfzrX//iX//6F3PmzOGuu+5izZo1uLu7V2dWkTrBZDLx71tb4+5ox46ETD5TW72IiNUW7jpBdn4xod7O9Dy7TVxl2dva0KOJL6Ct5kREqkrWmdJ58EUlFvq1DOTeHo2MjlRnWLUCjKenJ1OmTCEtLY2TJ0+SnJxMeno6U6ZMwdtbqwuKVFSIlzMv39QCgPfUVi8iYrVzrfTDY8KrZI/h3tGlK9trXryIyOWzWCw88/1OEjLOEObjzFtDNQ++Klm/jCulI4n+/v4EBAToH0Okkm7rFErv6NK2+ie/20VxidnoSCIitcKe41nsSMjE3tbEbR0rv6Ddn52bF78jIZPMvMIquaaISH01fe0RFv9xEgdbGz4e3gFPZ82Dr0qVKuJF5PKZTCYm3toadyc7diZk8tnqeKMjiYjUCrM2lY7C92sZhL+7Y5VcM8TLmahAN8zaak5E5LLsSMhk4q/7AHjxxua0CfUyNlAdZGgRP3HiRDp37oy7uzsBAQEMHjyY2NjYC55rsVi44YYbMJlM/PDDDxe9rsVi4ZVXXiE4OBhnZ2euu+46Dhw4UA2vQOTyBHv+r63+/SVxHDiptnoRkYvJKSjmx+3HAbira9VubXtuNF7z4kVEKiczr5DRM0vnwd/YOpi7u2kL8upgaBG/cuVKRo8ezYYNG1iyZAlFRUX07duX3Nzc886dNGlShVv333rrLT744AM++eQTNm7ciKurK/369SM/P7+qX4LIZbutYyjXRPtTWGLmqe92qq1eROQifth+nNzCEhr7uxIT4VOl1z43L35lXKq2mhMRsZLFYuGp73ZxPPMMDX1dmDiktaZeV5PLKuIvtyhetGgRI0eOpGXLlrRt25YZM2Zw7Ngxtm7dWu68HTt28O677zJt2rRLXtNisTBp0iReeuklBg0aRJs2bfjqq684ceLEJUfwRYxQ2lbfprStPjGL/6zSavUiIhdisVjKFrQbEdOwyt8cdmrkjYuDLamnC9iXnF2l1xYRqes+Xx3P7/tO4mBXOg/ew0nz4KuL1UW82Wzmtddeo0GDBri5uXH4cGnB8fLLL/PFF19cVpisrNK9WX18/vfJel5eHsOHD+fjjz8mKCjokteIj48nOTmZ6667ruyYp6cnMTExrF+//oKPKSgoIDs7u9xN5EoK8nTilbNt9ZN/P0BsstrqRUT+antCJvuSsnG0s2FIh9Aqv76jnS3dG5duNbciVi31IiIVtfXoKd5ctB+AV25qQasGngYnqtusLuInTJjAjBkzeOutt3BwcCg73qpVKz7//PNKBzGbzTz++OP06NGDVq1alR3/17/+Rffu3Rk0aFCFrpOcnAxAYGBgueOBgYFl9/3VxIkT8fT0LLuFhVXNSrci1hjaMZRrmwVQWGLm6e/VVi8i8lczN5SOwg9sG4KnS/WM8PQ611KvIl5EpEJO5RbyyKxtFJstDGwbwoiYcKMj1XlWF/FfffUVn376KSNGjMDW1rbseNu2bdm/f3+lg4wePZo9e/Ywe/bssmM//fQTy5YtY9KkSZW+bkU8//zzZGVlld0SEhKq9flELsRkMvHGLaWr1e9SW72ISDmZeYUs3HUCoFrfIPY+u7jd1mOnyM4vqrbnERGpC8xmC098u4MTWflE+Lky8VbNg78SrC7ijx8/TpMmTc47bjabKSqq3B+7MWPGsHDhQpYvX05o6P/a45YtW8ahQ4fw8vLCzs4OOzs7AIYMGULv3r0veK1zLfcnT54sd/zkyZN/247v6OiIh4dHuZuIEYI8nRg7sCUAk36PU1u9iMhZc7cdp6DYTItgD9qFeVXb84T5uBDp70qJ2cJabTUnInJR/1l1mOWxqTienQfv5mhndKR6weoivkWLFqxevfq8499//z3t27e36loWi4UxY8Ywf/58li1bRkRERLn7n3vuOXbt2sWOHTvKbgDvv/8+06dPv+A1IyIiCAoKYunSpWXHsrOz2bhxI926dbMqn4gRbu3QgD7NAigqsfDUdzspUlu9iNRzpQvaHQVgRNfwah/l0VZzIiKXtvlIBu/8Vro9+NibW9IiRAOhV4rVH5W88sor3HPPPRw/fhyz2cy8efOIjY3lq6++YuHChVZda/To0cyaNYsff/wRd3f3sjnrnp6eODs7ExQUdMHR8/Dw8HIFf7NmzZg4cSK33HILJpOJxx9/nAkTJtC0aVMiIiJ4+eWXCQkJYfDgwda+XJErzmQy8catrbn+vZXsPp7Ff1YeYsy1TY2OJSJimA2HMzicmourgy2D2jWo9ufrHR3A9LVHWBGbisViUWuoiMhfpOcU8Mis7ZSYLQxuF8KwzlpT7EqyeiR+0KBBLFiwgN9//x1XV1deeeUV9u3bx4IFC7j++uututbUqVPJysqid+/eBAcHl93mzJlj1XViY2PLVrYHeOaZZ3jkkUd44IEH6Ny5Mzk5OSxatAgnJyerritilEAPJ8beXNpWP3npAfZrqyMRqce+PjsKP7h9gyvSqhkT4YOjnQ3J2fnEncyp9ucTEalNzGYL//p2J8nZ+TT2d+X1WzQP/kozWSwWi9Ehaprs7Gw8PT3JysrS/HgxjMVi4f6vtvD7vhRaNfBg/sM9sLe1+nM3EZFaLfV0Ad0mLqXYbOGXR6++Yu2aI6dvYkVsKs/f0IwHezW+Is8pIlIbfLz8IG8vjsXJ3oYfR19FdJC70ZHqjIrWoZWqCDIzM/n888954YUXyMjIAGDbtm0cP368cmlF5DznVqv3dLZnz/Fspq44ZHQkEZEr7tstCRSbLbQP97qi8y01L15E5HwbDqfz7tl58OMHtVIBbxCri/hdu3YRFRXFm2++ydtvv01mZiYA8+bN4/nnn6/qfCL1WoCHE2NvbgHAh8sOsC9JbfUiUn+UmC18s6l0b/gRMQ2v6HP3Prtf/OYjGeQUFF/R5xYRqYlSTxfw6DfbMVtgSIdQbu+kefBGsbqIf+KJJxg5ciQHDhwoN8d8wIABrFq1qkrDiQgMbteA65oHarV6Eal3Vh1IJfHUGTyc7LipTfAVfe4IP1ca+rpQVGJh3UFtNSci9VuJ2cK/5uwg5XQBTQPceG1wS6Mj1WtWF/GbN2/mwQcfPO94gwYNylaXF5GqU7pafSu8XOz540Q2U5arrV5E6oeZG0pH4Yd2DMPJ3vaKP79a6kVESn207CBrDqbhbG/LlBEdcHHQfvBGsrqId3R0JDv7/JbeuLg4/P39qySUiJQX4O7EuLOr1X+47AB7T6itXkTqthOZZ1i2/yQAw2PCDcnQO7r0fc25reZEROqjdQfTmLQ0DoAJg1vRNFDz4I1mdRF/8803M378eIqKioDSUcJjx47x7LPPMmTIkCoPKCKlbm4bQt8WgRSb1VYvInXf7M0JmC3QNdKHJgFuhmToGumLg60NxzPPcCg115AMIiJGSjmdz6Ozd2CxwO2dQhnSMdToSEIlivh3332XnJwcAgICOHPmDL169aJJkya4u7vz+uuvV0dGEaH0A7MJt5S21e9Nyubj5QeNjiQiUi2KSszMNmhBuz9zcbAjJtIHgBWxKYblEBExQonZwmPf7CAtp4DoQHfG3dzK6EhyltVFvKenJ0uWLGHhwoV88MEHjBkzhl9++YWVK1fi6upaHRlF5Kw/t9V/tOwgf5zIMjiRiEjVW7ovhZTTBfi5OdCvZZChWTQvXkTqq8lLD7D+cDouDrZ8PKIDzg5Xfm0SuTCrViQoKirC2dmZHTt20KNHD3r06FFduUTkb9zcNoRfdiex+I+TPPXdLn4c3QMHO6s/jxMRqbFmbjwKwO2dwgz//dY72p8JP+9jY3wGZwpL9CZWROqF1QdS+XDZAQAm3trasGlNcmFW/WW0t7cnPDyckpKS6sojIpdgMpmYMLg13i727EvK5iO11YtIHXI0PZfVB9IwmeDOLsYsaPdnjf3daODlTGGxmQ2H042OIyJS7U5m5/P42Xnwd3YJZ1C7BkZHkr+w+uPtF198kRdeeIGMjIzqyCMiFeDv7si4QaXzkqYsP8ie42qrF5G6YdbZufC9ovwJ83ExOE3pB6e9ylap17x4EanbikvMPPLNdtJzC2ke7MGrA1sYHUkuwOoi/qOPPmLVqlWEhIQQHR1Nhw4dyt1E5MoY2CaY/i2DylarLyzWavUiUrsVFJfw3ZZEwNgF7f5K8+JFpL54//c4NsVn4OZox5QRHXCy1xSimsiqOfEAgwcProYYImKtc6vVbzqSwf7k03y07ABP9I02OpaISKUt2pNMRm4hwZ5OXHN29Lsm6NHED3tbE0fS8ziSlksjPy3kKyJ1z4rYFD5efgiAfw9pTYR+19VYVhfxr776anXkEJFK8HNzZPygloyZtZ2PVxyib8sgWjXwNDqWiEilzNxY2ko/rHM4drY1Z8FON0c7OjX0Yf3hdFbEpjDSL8LoSCIiVSop6wz/mrMDgP/r2pCb2oQYG0guqub8hRSRSrmpTQgDWgdRorZ6EanFDpw8zab4DGxtTNzROczoOOc5Ny9eLfUiUtcUlZh5ZNZ2TuUV0aqBBy/e2NzoSHIJVhfx3t7e+Pj4nHfz9fWlQYMG9OrVi+nTp1dHVhH5G+MHtcLH1YH9yafLtgMREalNzo3CX9c8gCBPJ4PTnK/32SJ+/eF08ou0S4+I1B3v/BbLlqOncHe04+PhmgdfG1hdxL/yyivY2Nhw4403Mm7cOMaNG8eNN96IjY0No0ePJioqioceeojPPvusOvKKyAX4uTny2rnV6lccYneiVqsXkdrjTGEJc7fVvAXt/iw60J0gDyfyi8xsitcOPSJSNyzdd5L/rDwMwFtD29DQV/PgawOr58SvWbOGCRMm8M9//rPc8f/85z/89ttvzJ07lzZt2vDBBx9w//33V1lQEbm4G9sE88vuYH7encRT3+3kp0d64GinT1JFpOZbsPMEp/OLCfdx4aomfkbHuSCTyUSvKH/mbElgRWwqPaNqzsJ7IiKVcTzzDE9+txOAkd0bcUPrYIMTSUVZPRK/ePFirrvuuvOO9+nTh8WLFwMwYMAADh8+fPnpRMQq4we1xNfVgdiTp/lgqdrqRaR2mLnxKADDY8KxsTEZnObv/W9evPaLF5HarXQe/DYy84poG+rJ8wOaGR1JrGB1Ee/j48OCBQvOO75gwQJ8fHwAyM3Nxd3d/fLTiYhVfN0ceW1waVv9JysPsysx09hAIiKXsDsxi52JWdjbmritY6jRcS6qRxM/bG1MHErNJSEjz+g4IiKV9tai/Ww7lomHkx0fDe+g7s1axup2+pdffpmHHnqI5cuX06VLFwA2b97ML7/8wieffALAkiVL6NWrV9UmFZEKGdA6mBvbBPPzrtK2+gWPXKVfzCJSY83aVDoKf0OrYHzdHA1Oc3GezvZ0CPdi85FTrIxL5a6uNXP+vojIxSzZe5LPVscD8PZtbQnzcTE4kVjL6pH4+++/n5UrV+Lq6sq8efOYN28eLi4urFy5kvvuuw+AJ598kjlz5lR5WBGpmNcGtcLPzYG4kzlM/l1t9SJSM2XnF/HjjhMAjIgJNzhNxfSODgBgRay2mhOR2ichI48nv90BwH1XRdCvZZCxgaRSrB6JB+jRowc9evSo6iwiUkV8XB2YMLgV//x6G5+sPES/lkG0DfMyOpaISDk/bj9OXmEJTQLc6BLhY3ScCukV5c/bi2NZdyiNwmIzDnZWj4eIiBiisNjMmG+2k51fTLswL57tr3nwtVWl/vIcOnSIl156ieHDh5OSUrq4y6+//soff/xRpeFEpPL6twpmYNsQzBZ46rud2tdYRGoUi8VStjf8iJhwTKaau6Ddn7UI9sDPzZG8whK2HNFWcyJSe0z8dR87EzLxdLbno+Ht9SFkLWb1v9zKlStp3bo1GzduZO7cueTk5ACwc+dOXn311SoPKCKVN+7mlvi5OXAgJYfJWq1eRGqQbcdOsT/5NE72NtzavmYvaPdnNjalW80BrIhTS72I1A6L9iQxfe0RAN69rS2h3poHX5tZXcQ/99xzTJgwgSVLluDg4FB2/Nprr2XDhg1VGk5ELk9pW31rAP6z8hA7EjKNDSQictbMDaWj8APbhODpYm9wGuuUbTWnefEiUgscS8/j6e93AfBAz0iuaxFocCK5XFYX8bt37+aWW24573hAQABpaWlVEkpEqk7/VkHcrLZ6EalBTuUWsnB3EgAjauEK71c38cPGBLEnT3Mi84zRcURE/lZBcQmjZ23jdH4xHRt683S/aKMjSRWwuoj38vIiKSnpvOPbt2+nQYMGVRJKRKpWaVu9IwdTcnj/9zij44hIPTd3WyKFxWZaNfCgbain0XGs5u3qULZY6Cq11ItIDfbGz/vYfTwLbxd7PryzPfa2mgdfF1j9rzhs2DCeffZZkpOTMZlMmM1m1q5dy1NPPcXdd99dHRlF5DJ5uzrw+i2tAPhs1WG2HTtlcCIRqa/KL2jXsNYsaPdXvaO01ZyI1Gw/70riy/VHAXjvjnaEeDkbnEiqitVF/BtvvEGzZs0ICwsjJyeHFi1a0LNnT7p3785LL71UHRlFpAr0axnE4HalbfVPq61eRAyy/lA68Wm5uDnacXPbEKPjVNq5efFrD6ZRVGI2OI2ISHlH0nJ5dm7pPPiHejfmmugAgxNJVbK6iHdwcOCzzz7j0KFDLFy4kK+//pr9+/fz3//+F1tb2+rIKCJVZOzNLfF3d+RQai7vL1FbvYhceedG4W9p3wBXRzuD01Remwae+Lg6cLqgmG1H1d0kIjVHflEJD8/cRk5BMV0a+fDk9VFGR5IqVulJEeHh4QwYMIDbb7+dpk2bVmUmEakmXi4OvHFL6Wr1n61WW72IXFkpp/NZ/EcyAMNjwg1Oc3lsbExc3dQPgJWaFy8iNchrC/eyNykbX1cHPrizPXaaB1/nVOgj8CeeeKLCF3zvvfcqHUZEqt/1LQK5pX0D5m8/zlPf7eSXR6/GyV5dNCJS/b7bkkix2ULHht40D/YwOs5l6x3tz487TrAiNpVn+jczOo6ICD/uOM7MjccwmeD9O9oR5OlkdCSpBhUq4rdv317u623btlFcXEx0dOkWBXFxcdja2tKxY8eqTygiVe7VgS1YczCNw6m5vLckjhcGNDc6kojUcSVmC7PKFrSr3aPw5/Rs6o/JBHuTsknJzifAQ2+WRcQ4h1JzeGHebgDGXNOEnlH+BieS6lKh3orly5eX3QYOHEivXr1ITExk27ZtbNu2jYSEBK655hpuvPHG6s4rIlXAy8WBiX9qq9+q+ZwiUs1WxaVyPPMMXi72DGgdbHScKuHr5kjrBqVb5KmlXkSMlF9UwuiZ28gtLKFrpA+PX6d58HWZ1RMk3n33XSZOnIi3t3fZMW9vbyZMmMC7775bpeFEpPpc1yKQW9s3wKLV6kXkCpi5sXSbo6EdQuvUFJ7eZ0e6VqiIFxEDjf3pD/Ynn8bPzYEPhrXH1qZ2bt8pFWN1EZ+dnU1q6vl/qFJTUzl9+nSVhBKRK+PVgS0JcHfkcFou7yyONTqOiNRRxzPPsGx/CgB31pFW+nPObTW35kAaxdpqTkQMMH97IrM3J2AyweRh7TW1px6wuoi/5ZZbuPfee5k3bx6JiYkkJiYyd+5c7rvvPm699dbqyCgi1cTTxZ6Jt5a21X+xNp4tRzIMTiQiddHsTccwW6B7Y18a+7sZHadKtQ31wtPZnqwzRexMzDQ6jojUMwdTTvPCvD0APHptU3o08TM4kVwJVhfxn3zyCTfccAPDhw+nYcOGNGzYkOHDh9O/f3+mTJlSHRlFpBr1aR7IkA6hpW313+/iTKHa6kWk6hSVmJm9OQGAETENDU5T9exsbbjq3FZzsWqpF5Er50xhCaNnbudMUQk9mvjyaB9t+11fWF3Eu7i4MGXKFNLT09m+fTvbt28nIyODKVOm4OrqWh0ZRaSavTKwBYEejsSn5fLOb2qrF5Gq8/vek6SeLsDPzZHrWwQaHadaaF68nJN4Ko9tx05RpKkVcgW88uMeYk+ext/dkUl3aB58fVKhLeYuxNXVlTZt2lRlFhExiKezPf++tQ33ztjMtLXx9G8VROdGPkbHEpE6YObZbeXu6ByKg53VYwe1Qq+zRfyuxCzScko/sJD6J7egmJs/WktGbiHujnb0aOJHr2h/ekX5E+LlbHQ8qWO+35rId1sTsTHBB8Pa4++u3zv1SYX+mt56661kZ2dX+KIjRowgJSWl0qFE5Mq7plkAQzuGlq1Wr7Z6Eblc8Wm5rDmYhskEwzrXrQXt/izAw4kWwR4ArD6g0fj66ocdx8nILQTgdEExi/5I5vl5u+n+72X0fX8lr/+8l7UH0ygo1t9XuTxxJ0/z0g+l+8H/67ooujX2NTiRXGkVGon/8ccfL7gi/YVYLBYWLFjAa6+9RkBAwGWFE5Er6+WbWrDmQBpH0vN4e3EsrwxsYXQkEanFvtlUOgrfO8qfMB8Xg9NUr97R/uxNymZlbCq3tA81Oo5cYRaLha83lP68P39DM7pG+rIiNpWVcSnsSMgk7mQOcSdz+Gx1PM72tnRv7EvvaH96RQUQ7lu3/9+QqmGxWDiWkceGw+n8Z+Vh8ovMXN3Uj9HXNDE6mhigQkW8xWIhKiqqurOIiME8ne2ZOKQ1907fzPR1pW31XSLUVi8i1ssvKuG7LXV3Qbu/6hXlz5QVh1h1IA2z2YKN5qbWK9uOZbIvKRsHOxtu7xSGt6sDbcO8eOy6pmTmFbL6QBor41JZGZdK6ukClu5PYen+FOAPIvxc6RXlT69of7pF+uJkb2v0y5EawGKxcCS9tGjfeDidDYczSM7OL7s/0MOR9+9op9819VSFivjly5dbfeEGDRpY/RgRMd410QHc1jGU77Ym8sz3O/nlsatxcaj08hkiUk8t2pPMqbwiQjyduKZZ3e/M69DQG3dHOzJyC9l9PIu2YV5GR5IraOaGowDc1CYYb1eHcvd5uTgwsG0IA9uGYLFYSjs24lJZGZvK1qOniE/LJT4tlxnrjuBoZ0NMpC+9ovzpHe1PpJ8rJpOKtPrAYrFwOC33bNGewYbD6aScLih3joOtDe3CvIiJ9OGOzmFaf6Meq9A78169elV3DhGpQV66qQWrz7bVv7UolrE3tzQ6kojUMjM3lhY1w7qE14sVk+1tbejRxI9FfySzIjZVRXw9ciq3kIW7kwC4q+vFu05MJhMtQzxpGeLJw72bkJ1fxLqD6WeL+hROZOWzKi6VVXGpvLYQQr2dzxb0AXRr7Iuboz5UryssFgsHU3LYEJ9RVrin5fylaLezoX2YFzGRvnSN9KFDuLc6NQS4jNXpRaTu8nS2599DWjNy+mZmrDvCDa2CiInUoikiUjGxyafZfOQUtjYmhnUOMzrOFdM72r+0iI9L4bHrtF9zffH91kQKi820CPagvZUf3ng42dO/VRD9WwWVFXUr41JZEZvKpvgMEk+dYebGY8zceAx7WxOdGvqUzqWP9ic60F2j9LWI2WzhQEoOG+PT2XA4nU3xGaTlFJY7x9HOhg7h3sRE+tA10pd2YV4q2uWCDC3iJ06cyLx589i/fz/Ozs50796dN998k+jo6LJzHnzwQX7//XdOnDiBm5tb2TnNmjX72+uOHDmSL7/8styxfv36sWjRomp7LSJ1Te/oAO7oFMacLQk88e1O5j/cnQAPJ6NjiUgtMOvsKHzfFoH16vdGr+jSreZ2JmRyKrfwvLZqqXvMZktZ18ldXRteVlFtMploGuhO00B3/nF1JHmFxWw4nM6K2NKi/lhGHusPp7P+cDoTf91PkIdT2Vz6Hk388HS2r6qXJVXAbLYQe/J02Xz2TUcyynYvOMfJ3oaODb2JifCla6QvbcM8cbRT0S6XZmgRv3LlSkaPHk3nzp0pLi7mhRdeoG/fvuzduxdXV1cAOnbsyIgRIwgPDycjI4OxY8fSt29f4uPjsbX9+x/y/v37M3369LKvHR01Z0TEWi/e1JyN8ekcSc/jnumbmfNgVzyc9CZBRP5eXmEx87YdB+rHgnZ/FuzpTHSgO7EnT7P6YBo3tw0xOpJUs7WHSqeeuTnaMahd1f57uzjYcW2zQK5tFgjAkbRcVsSmsDIulfWH00nOzmfOlgTmbEnA1sZEh3Cv0qI+KoCWIR5a8OwKM5st7EvOLpvPvulIBpl5ReXOcba3pVMjb2IiSkfa24R64WBXoR2/RcoxWSwWi9EhzklNTSUgIICVK1fSs2fPC56za9cu2rZty8GDB2ncuPEFzxk5ciSZmZn88MMPlcqRnZ2Np6cnWVlZeHh4VOoaInXFsfQ8bp26jrScArpG+jDj3i5q7RKRvzVn8zGenbubRr4uLHuyd70rJN74ZR+frjrMkA6hvHt7W6PjSDV78L9bWPzHSe7u1pDxg1pdsefNLyphU3xG2Yr3B1Nyyt3v5+ZAz6alo/RXN/XHR10hVa7EbGFfUjYbzo60bz6SQdaZ8kW7i4MtnRr5lBXtrRt4qmiXi6poHVqpkfji4mJWrFjBoUOHGD58OO7u7pw4cQIPDw/c3NwqHTorKwsAH58Lb2mVm5vL9OnTiYiIICzs4nPsVqxYQUBAAN7e3lx77bVMmDABX98Lz+ktKCigoOB/C0lkZ2dX8hWI1D3hvi7MuLczwz7dwIbDGTzx7Q4+vLNDvVioSkSsN3Nj6V7Zw2PC610BD9A7yp9PVx1mZVyqtpqr45Kz8vl9Xwpw6QXtqpqTvS09o/zpGeXPy0BCRh6rDpSueL/2YBppOYXM236ceduPYzJBm1CvshXv24Z66W94JRSXmNmbVH6k/XR+cblzXB1s6Rzhc7Y93odWDTyxt1XRLlXP6pH4o0eP0r9/f44dO0ZBQQFxcXFERkby2GOPUVBQwCeffFKpIGazmZtvvpnMzEzWrFlT7r4pU6bwzDPPkJubS3R0ND///PPfjsIDzJ49GxcXFyIiIjh06BAvvPACbm5urF+//oIt+GPHjmXcuHHnHddIvMj/rDuYxsjpmyksMXN3t4aMu7mlFtQRkXJ2JWZy80drcbC1YcMLferl6F9BcQntxy8hr7CEhY9cRasGnkZHkmry/pI4Ji89QJdGPnz7z25GxylTWGxm69FTZxfIS2F/8uly93s623N1Uz96RwfQM8qPAPf6s26FNYpLzOw5kX12Tns6W46c4nRB+aLd3dHubNFeOtLeMsQDOxXtchkqOhJvdRE/ePBg3N3d+eKLL/D19WXnzp1ERkayYsUK7r//fg4cOFCpwA899BC//vora9asITQ0tNx9WVlZpKSkkJSUxDvvvMPx48dZu3YtTk4V+6Vz+PBhGjduzO+//06fPn3Ou/9CI/FhYWEq4kX+YuGuEzzyzXYsFnjy+ige6aPVl0Xkf56bu4vZmxMY3C6EScPaGx3HMP/4cgu/7zvJ0/2iGX1NE6PjSDUoKjFz1ZvLOJldwORh7RjUroHRkf7Wyez8sn3pVx9IJfsvo8ctgj1KV7yP8qdDQ+96O3JcVGJm9/GsspH2LUcyyC0sKXeOu5MdMWUj7b60CPFQV4NUqWprp1+9ejXr1q3DwaH8p+uNGjXi+PHj1icFxowZw8KFC1m1atV5BTyAp6cnnp6eNG3alK5du+Lt7c38+fO58847K3T9yMhI/Pz8OHjw4AWLeEdHRy18J1IBN7UJIe10AWMX7OXdJXH4uzsyrEu40bFEpAbIzi/ixx0nABhxhVuLa5re0f78vu8kK2NTVcTXUUv3neRkdgG+rg70bxVkdJyLCvRw4vZOYdzeKYziEjM7EzNZEVs6l35XYhZ7k7LZm5TNlBWHcHe0o0cTP3qdLepDvJyNjl9tCovN7D6eyYazRfvWo6fI+0vR7ulsT5c/jbQ3D1bRLjWD1UW82WympKTkvOOJiYm4u7tbdS2LxcIjjzzC/PnzWbFiBRERERV6jMViKTdyfimJiYmkp6cTHBxsVT4ROd/IHhGk5hTw8fJDvDB/N75ujlzfItDoWCJisB+2H+dMUQlRgW50auhtdBxD9Yoq3Wpu67FTZJ0p0tZfddDXG0rXfri9c1it2hLMztaGjg196NjQhyf7RpOWU8Dqs3PpVx1IIyO3kEV/JLPoj2QAogLdzs6lD6BTI+9a9Vr/qqC4hF2JWWVbvm09eoozReVrGi8X+3Ij7c2C3LWuhdRIVhfxffv2ZdKkSXz66adA6Z6WOTk5vPrqqwwYMMCqa40ePZpZs2bx448/4u7uTnJy6S8MT09PnJ2dOXz4MHPmzKFv3774+/uTmJjIv//9b5ydncs9V7NmzZg4cSK33HILOTk5jBs3jiFDhhAUFMShQ4d45plnaNKkCf369bP25YrIBTzVN5rU0wV8uyWRMbO2MfMfMXRqdOEFKUWk7rNYLMw8W9SMiLm8vbLrgjAfFxr7u3IoNZd1B9O4obUGEeqS+LRc1hxMw2SC4bW8G83PzZFb2odyS/tQzGYLu49nla14v/3YKeJO5hB3MofPVsfjbG9L98a+Z1vvAwj3dTE6/kUVFJew41gmG+NLR9q3HTtFfpG53Dk+rg5ni3Yfujb2JSpARbvUDlYX8e+88w79+/enRYsW5OfnM3z4cA4cOICfnx/ffPONVdeaOnUqAL179y53fPr06YwcORInJydWr17NpEmTOHXqFIGBgfTs2ZN169YREBBQdn5sbGzZyva2trbs2rWLL7/8kszMTEJCQujbty+vvfaaWuZFqojJZOKNW1qTnlPI0v0pjJqxme8f6k5UoHXdOCJSN2w5eorYk6dxtrfllg41d27wldQrKoBDqfGsiE1VEV/HzNxwFCjtuAjzqdmFrDVsbEy0DfOibZgXj/ZpSmZeIWsOprHybOt9yukClu5PYen+FOAPIvxcS/elj/ana4Qvzg7GjtLnF5Ww/VgmGw6nszE+nW3HMiksLl+0+7o60DXSl5jI0vb4Jv5uKtqlVqrUPvHFxcXMmTOHnTt3kpOTQ4cOHRgxYgTOznVj3oz2iRepmDOFJYz4fAPbjmUS7OnE3Ie61+n5cyJyYY/P3s4PO05wR6cw3hzaxug4NcKquFTunraJIA8n1j9/bb3vTqgr8otKiHljKVlnivj87k5cV0+mk1ksFvYlnS5b8X7r0VMUm/9XQjja2RAT6Vta1Ef509jftdp/5vOLSth29BQbzo6070g4v2j3c3Oka6QPMZG+dIv0obG/m/5flBqtWlanLyoqolmzZixcuJDmzZtXSdCaSEW8SMVl5hUy9JP1HEzJoUmAG9//sxteLvVvWymR+iojt5CubyylsMTMT2N60CbUy+hINUJ+UQntxv9GfpGZRY9fTbMgvZ+oC77fmshT3+2kgZczq565pt4ucnY6v4h1h9JLF8iLTeFEVn65+0O9ncsK+u5N/HBztLr59zx5hcVsO5rJxvjSLd92JmRRWFK+aA9wdyw30h7pV/0fJohUpWpZnd7e3p78/PxLnygi9YaXiwNfjerCrVPWcTAlh1EzNjPzH10Nb6sTkSvj+60JFJaYad3AUwX8nzjZ29It0pflsamsiE1VEV9HfH22lf7OLmH1toAHcHeyp1/LIPq1DMJisXAoNadsxfuNhzNIPHWGmRuPMXPjMextTXRq6EOvaH96R/sTHeheocI6t6CYrUdPnS3aM9iVmElRSfmxxyAPp7KR9q6RvjTydVHRLvWC1e30b7zxBnFxcXz++efY2V3+p2o1kUbiRawXd/I0Q6euIzu/mD7NAvjP/3XErp7uNStSX5jNFq59dwVH0vP4962tteXkX8xYG8/YBXvpFunLNw90NTqOXKY9x7O46cM12NmYWPf8tQS4OxkdqUbKKyxmw+F0VsamsiIulaPpeeXuD/RwLFvxvkcTv7LdG3IKitlyJIMNhzPYGJ/O7sSsci37ACGeTuVG2sN9VLRL3VJt+8Rv3ryZpUuX8ttvv9G6dWtcXV3L3T9v3jzr04pIrRcV6M60kZ0Z8flGlu5P4YX5u3lzSBv9cRWpw9YdSudIeh7ujnYMbBtidJwap3d0ACzYy5ajGeQUFFdJS7EYZ+bG0h0Y+rUKUgF/ES4OdlzbLJBrm5WuF3AkLbdsLv36w+mczC7d3ebbLYnY2phoH+ZFkdnCnuNZlPylaG/g5VxWtHeL9CXU21nvK0SoRBHv5eXFkCFDqiOLiNRynRr58NHwDjz43y18uyURf3dHnu7XzOhYIlJNZm4sbS2+pUMDXFWgnqeRnysNfV04mp7HuoNp9G0ZZHQkqaTT+UX8uOM4AHfFNDQ4Te3SyM+VRn6u3NO9EflFJWw+klHWen8wJYctR0+VnRvm41y2R3tMhE+dWv1fpCpZ/Rd3+vTp1ZFDROqI61sE8sYtrXlu3m4+Xn4IfzdHRvaIMDqWiFSxk9n5/Lb3JFC6N7xcWO8of75cf5QVcakq4mux+duPk1dYQpMAN7pG+hgdp9Zysrfl6qb+XN3Un5eBxFN5rDuYjp2tiZhIXxpohxuRCtGEVRGpcsO6hPPk9VEAjFu4l4W7ThicSESq2rebEygxW+jcyJvoIHej49RYvaMDAFgZm0oldvWVGsBisZQtaDciJlzt3FUo1NuF2zuHcWuHUBXwIlaweiQ+IiLior+8Dh8+fFmBRKRuGHNtE1JzCvhq/VGemLMTHxcHujfxMzqWiFSBErOFbzaVzg/WKPzFdY30xcHOhuOZZziUmkOTAH3gUdtsPnKKuJM5ONvbcmuHUKPjiIhYX8Q//vjj5b4uKipi+/btLFq0iKeffrqqcolILWcymXh1YEvScgr4ZXcyD/x3K7Mf6EqrBp5GRxORy7Ti7L7Q3i729G+lFvGLcXawJSbCh9UH0lgRm6oivhY6Nwp/c9uQspXURUSMZHUR/9hjj13w+Mcff8yWLVsuO5CI1B22Nibeu70dGbmb2HA4g5HTNzPvoe6E+2qhGpHa7Nwq3bd1CsPJ3tbgNDVfryh/Vh9IY2VcKv+4OtLoOGKFtJwCft2TBMBdXdV1IiI1Q5XNib/hhhuYO3duVV1OROoIJ3tbPr27E82DPUjLKeDuaRtJyykwOpaIVFLiqTyWx6YAcKf2ha+Qc/PiNx7OIK+w2OA0Yo1vtyRQVGKhbagnrUPVSSYiNUOVFfHff/89Pj5arVNEzufhZM+X93Ym1NuZI+l53Dt9MzkFeiMrUhvN3pSAxQJXNfEjws/V6Di1QmN/Vxp4OVNYYmbD4XSj40gFlZgtzDrbdTJCo/AiUoNY3U7fvn37cgvbWSwWkpOTSU1NZcqUKVUaTkTqjgAPJ74a1YWhn6xn9/Es/vnfrUwb2RkHO22SIVJbFJWYmb05AShdpVsqxmQy0Tvan5kbj7EiNpVrmwUaHUkqYFVcKomnzuDhZMfANiFGxxERKWN1ET9o0KByRbyNjQ3+/v707t2bZs2aVWk4EalbIv3dmD6yM3d+toE1B9N46rudTLqjHTY22q5HpDZYsvckaTkF+Ls7cl0LFaLW6BVVWsSvjEs1OopU0LkF7YZ2DMPZQWs/iEjNYXURP3bs2GqIISL1RdswL6be1ZH7Zmzmp50n8HNz5OWbmmvfXZFaYObG0qJmWOcw7G3VRWON7k38sLc1cTQ9j/i0XE1FqOEST+Wx7OzaD8PVdSIiNYzVf4FtbW1JSUk573h6ejq2tvqUUkQurVeUP+/c1haAaWvj+c+qwwYnEpFLOZyaw9qD6diYYJgWtLOam6MdnRuVrh20Mvb891FSs3yz6RgWC3SL9KVJgJvRcUREyrG6iLdYLBc8XlBQgIODw2UHEpH6YXD7Brw4oDkA//51P3O3JhqcSEQu5ptNpQt8XRMdQAMvZ4PT1E69ovwBWKGW+hqtsNjMnLNrP2hbORGpiSrcTv/BBx8ApYuzfP7557i5/e9TyZKSElatWqU58SJilft7RpKaU8Cnqw7zzNxd+Lg6cE2zAKNjichf5BeV8N3ZD9pGdNUofGX1jg5g4q/72XA4nfyiEpzs1cFYEy3+I5m0nEL83R3p21JrP4hIzVPhIv79998HSkfiP/nkk3Kt8w4ODjRq1IhPPvmk6hOKSJ32XP9mpJ4uYP724zw8cxuz7o+hfbi30bFE5E9+2Z1EZl4RDbyc6RWlD9oqKyrQjSAPJ5Kz89kYn1E2Mi81i9Z+EJGarsJFfHx8PADXXHMN8+bNw9tbb7JF5PLZ2Jh4a2gb0nMLWRWXyqgZm/nun901B1GkBpl5dq/sO7uEYavdJCrt3FZzszcnsCI2RUV8DXQw5TQbDmdgY4I7tfaDiNRQVn+8uHz5chXwIlKl7G1tmDqiA21DPTmVV8Q90zaRnJVvdCwRAfYlZbP16CnsbEzc3inM6Di13rnCXVvN1Uxfbyj9wOraZoGEaO0HEamhrN5iDiAxMZGffvqJY8eOUVhYWO6+9957r0qCiUj94upox7SRnRn6yXri03K5Z9omvv1nNzyd7Y2OJlKvzTo7Ct+3ZSABHk4Gp6n9ejT1w9bGxOHUXBIy8gjzcTE6kpyVV1jM3G2laz/cpbUfRKQGs7qIX7p0KTfffDORkZHs37+fVq1aceTIESwWCx06dKiOjCJST/i6OfLVqC7cOnUdsSdPc/+XW/jqvi5a/EnEILkFxczffhyAETFapbsqeDjZ0zHcm01HMlgRl8r/afXzGmPBzhOczi8m3MeFnk011UFEai6r2+mff/55nnrqKXbv3o2TkxNz584lISGBXr16cdttt1VHRhGpR8J8XPjy3i64O9qx6UgGj83eTon5wltbikj1+mnnCXIKionwc6VbpK/RceqMXtFnW+q1X3yNcq6VfnhMODZa+0FEajCri/h9+/Zx9913A2BnZ8eZM2dwc3Nj/PjxvPnmm1UeUETqnxYhHnx6dyccbG1Y/MdJXv5xDxaLCnmRK8lisfD1htJVuod3UVFTlc7Ni193KJ2C4hKD0wjAzoRMdh/PwsHWhts6hhodR0Tkoqwu4l1dXcvmwQcHB3Po0KGy+9LS0qoumYjUa90a+zJpWDtMptI5uZOXHjA6kki9sisxiz9OZONgZ8NQFTVVqmWIB/7ujuQVlrDlyCmj4wiUfWA1oHUQvm6OBqcREbk4q4v4rl27smbNGgAGDBjAk08+yeuvv86oUaPo2rVrlQcUkfprQOtgxg9qBcCk3w+UvckSkep3bq/sm1oH4+3qYHCausVkMmmV+hokK6+IBbtOAHCX1igQkVrA6iL+vffeIyYmBoBx48bRp08f5syZQ6NGjfjiiy+qPKCI1G//17Uhj17bBIBXftzDoj3JBicSqfuyzhTx087SomaEVumuFueK+BWaF2+477clkl9kplmQOx0bahtlEan5rFqdvqSkhMTERNq0aQOUttZ/8skn1RJMROScf10fRWpOAd9sSuDR2dv576guxGiRLZFqM/9PRU2HcBU11eHqpn7YmCDuZA4nMs9oT3KDWCyWsq6TEV0bYjJp7QcRqfmsGom3tbWlb9++nDql+VsicuWYTCZeG9SK61sEUlhs5h9fbWF/crbRsUTqpNKipnSV7hEx4SpqqomXiwPtwrwAtdQbaf2hdA6n5uLqYMst7RsYHUdEpEKsbqdv1aoVhw8fro4sIiJ/y87Whg/vbE/nRt6czi/mnmmbSDyVZ3QskTpn85FTHEjJwcXBlsEqaqpV7+gAQC31Rvr67Cj8oPYNcHO0qkFVRMQwVhfxEyZM4KmnnmLhwoUkJSWRnZ1d7iYiUl2c7G35/O7ORAW6cTK7gLunbSIjt9DoWCJ1yrnW4kHtQnB3sjc4Td12bl782oPpFJWYDU5T/6Rk5/PbHycBuCtGC9qJSO1hdRE/YMAAdu7cyc0330xoaCje3t54e3vj5eWFt7fmzYlI9fJ0sefLUV0I8XTicGou987YTF5hsdGxROqE9JwCft1dunjk8C4qaqpb6wae+Lg6kFNQzNajmqp4pc3enECx2UKHcC9ahHgYHUdEpMKs7htavnx5deQQEamwYE9nvrqvC0M/Wc/OhEwenrmNz+7uhL2t1Z9LisiffL81kcISM21DPWkd6ml0nDrPxsZEz6Z+/LDjBCvjUumqBTuvmOISM99sKl37QdvKiUhtY3UR36tXr+rIISJilSYB7nxxT2dGfL6BFbGpPDt3F+/e1laLcIlUktlsYdamcwvaqai5UnpHB/DDjhOlv8f6NzM6Tr2xPDaVpKx8vF3sGdA62Og4IiJWqdSw1erVq7nrrrvo3r07x48fB+C///0va9asqdJwIiIX07GhNx8P74CtjYl5247z70X7jY4kUmutPZTG0fQ83J3suKmtipor5eqmfphMsC8pm5PZ+UbHqTe+3lC69sNtncJwsrc1OI2IiHWsLuLnzp1Lv379cHZ2Ztu2bRQUFACQlZXFG2+8UeUBRUQupk/zQCbe2hqA/6w8zBdr4g1OJFI7nStqhnQIxcVBq3RfKb5ujrRpUDp1QVvNXRnH0vNYdaD0ez28S7jBaURErFep1ek/+eQTPvvsM+zt/7dqbY8ePdi2bVuVhhMRqYjbO4XxdL9oAF5buJcfdxw3OJFI7ZKclc/v+0q3ORseo6LmSut1dqs5FfFXxsxNR7FYSrsgGvm5Gh1HRMRqVhfxsbGx9OzZ87zjnp6eZGZmVkUmERGrPdy7MSO7NwLgqe92svqA3gyLVNSczQmUmC10aeRDVKC70XHqnXNbza2OS6VYW81Vq4LiEr7bkghoQbuaoMRsYf2hdH7ccZz1h9IpMVuMjiRSK1jdLxcUFMTBgwdp1KhRueNr1qwhMjKyqnKJiFjFZDLxyk0tSMspYOGuJP75363MfqCbVtgWuYTiEjOzN59d0K6rRuGN0C7MC09ne7LOFLEzMZOODX2MjlRn/bo7mYzcQoI9nejTLMDoOPXaoj1JjFuwl6Ss/60FEezpxKsDW9C/ldblELkYq0fi77//fh577DE2btyIyWTixIkTzJw5k6eeeoqHHnqoOjKKiFSIjY2Jd29vS48mvuQWljBy+ibi03KNjiVSo51bpdvH1YH+rYKMjlMv2dqYuLqpHwArYtVFVJ3Orf0wrHM4dtqW1DCL9iTx0NfbyhXwUDq156Gvt7FoT5JByURqB6t/ez333HMMHz6cPn36kJOTQ8+ePfnHP/7Bgw8+yCOPPFIdGUVEKszRzpZP7upIyxAP0nMLuXvaRlJOa8Vnkb8zc+PZVbo7huJop1W6jdL77Lx4FfHVZ39yNluOnsLWxsSwLmFGx6m3SswWxi3Yy4Ua588dG7dgr1rrRS7C6iLeZDLx4osvkpGRwZ49e9iwYQOpqam89tpr1ZFPRMRq7k72zLi3C+E+LiRknGHktM2czi8yOpZIjZOQkVe2mNqdWqXbUD2jSkfidx/PIi2nwOA0ddO5Ufi+LQIJ9HAyOE39tSk+47wR+D+zAElZ+WyKz7hyoURqmUr3ETk4OODu7k5wcDBubm5VmUlE5LL5uzvy1agu+Lk5sDcpmwf/u5WC4hKjY4nUKN9sOqZVumuIAHcnWoZ4ALBKq9RXuZyCYuZvK925RAvaGaui3XHqohP5e1YX8cXFxbz88st4enrSqFEjGjVqhKenJy+99BJFRRrpEpGao5GfK9NHdsHVwZZ1h9J54tudmNWeJwJAYbGZb7ckADAiRkVNTXBulXptNVf1fth+nNzCEiL9XOne2NfoOPVagHvFuiAqep5IfWT16vSPPPII8+bN46233qJbt24ArF+/nrFjx5Kens7UqVOrPKScz2KxkJeXZ3QMkRov0tuOSUOa88+vt7JgSzyediW8MKA5JpPJ6Ggihvp1dxIpGdkEeDjQNdyV3FwtAmm0mDBXPirMZ/meBLJPN8XWRr+nqoLFYmHGyv2YC/MZ0qah3j8ZrGWAIwHOFk5mFVxwXrwJCPR0pGWAo34vSZVzcXGpG+8BLVby8PCw/PLLL+cd//nnny0eHh5WXeuNN96wdOrUyeLm5mbx9/e3DBo0yLJ///5y5zzwwAOWyMhIi5OTk8XPz89y8803W/bt23fR65rNZsvLL79sCQoKsjg5OVn69OljiYuLq3CurKwsC2DJysqy6vVcSTk5ORZKpw3ppptuuummm2666aabbrrpdolbTk6O0WXcRVW0DrW6nd7R0fG8PeIBIiIicHBwsOpaK1euZPTo0WzYsIElS5ZQVFRE3759y33q1rFjR6ZPn86+fftYvHgxFouFvn37UlLy93Nb33rrLT744AM++eQTNm7ciKurK/369SM/X3NrREREREREpPYyWSwWizUPGD9+PPv372f69Ok4OjoCUFBQwH333UfTpk159dVXKx0mNTWVgIAAVq5cSc+ePS94zq5du2jbti0HDx6kcePG591vsVgICQnhySef5KmnngIgKyuLwMBAZsyYwbBhwy6ZIzs7G09PT7KysvDw8Kj066lOFrXTi1TKu7/F8vnqeGxtTHx4ZzuuaRZodCSRK+7fv+7jy3VHuaZZAFNGdDA6jvzJ91sTePmHP2gb5snsB7oZHafWy8gt5Jq3V1BYYmb2AzG0DfM2OpL8SYnZwpYjGaTmFODv5kinRj6aRiLVqqa301e0DrV6Tvz27dtZunQpoaGhtG3bFoCdO3dSWFhInz59uPXWW8vOnTdvnlXXzsrKAsDHx+eC9+fm5jJ9+nQiIiIIC7vw/p7x8fEkJydz3XXXlR3z9PQkJiaG9evXX7CILygooKDgf9u5ZGdnW5XbCCaTCVdXrSQsYq2XB7cnq8iWudsSeeqHWGb+w4uODS/8O0ekLsovKuGnPzKwcXBiZK9o/S2pYfq2bcirvxxiT0oBhdjj7Wpdl6OUN3NrMsW2DrQO86BbdIMa/ea9vrq2tXa5ErGW1UW8l5cXQ4YMKXfs7wpqa5jNZh5//HF69OhBq1atyt03ZcoUnnnmGXJzc4mOjmbJkiV/27qfnJwMQGBg+dG1wMDAsvv+auLEiYwbN+6yX4OI1Hwmk4l/D2lNRm4By2NTGTVjC9//sxtNA92NjiZyRfy8K4msM0WEejvTs6m/0XHkL4I9nWkW5M7+5NOsPpjGzW1DjI5Ua5nNFmZuPAaUbiunAl5E6gqri/jp06dXRw5Gjx7Nnj17WLNmzXn3jRgxguuvv56kpCTeeecdbr/9dtauXYuTU9VsPfH888/zxBNPlH2dnZ1dJR9MiEjNZG9rw8cjOjD8s43sSMjk7mmbmPdwd4I9nY2OJlLtZm48CsCdXcLVtlpD9YryZ3/yaVbEpqiIvwxrDqZxND0Pd0c7BrXT91FE6g6rF7arDmPGjGHhwoUsX76c0NDQ8+739PSkadOm9OzZk++//579+/czf/78C14rKCgIgJMnT5Y7fvLkybL7/srR0REPD49yNxGp21wc7Jg2sjOR/q4kZeVz9xebyMwrNDqWSLXaeyKbbccysbMxcXsnfVhdU/WKLu2QWBWXitls1dJF8idfbyj9wOrWDg1wcbB63EpEpMayuohPT09n9OjRtGjRAj8/P3x8fMrdrGGxWBgzZgzz589n2bJlREREVOgxFoul3Bz2P4uIiCAoKIilS5eWHcvOzmbjxo1l+9qLiAD4uDrw1aguBHo4ciAlh398uYX8or/f+UKktpu1qbSo6dcqCH93R4PTyN/p1NAHVwdb0nIK2ZtU89fpqYmSss7w+77SAZ0RXRsanEZEpGpZ/bHk//3f/3Hw4EHuu+8+AgMDL2t+0ejRo5k1axY//vgj7u7uZXPWPT09cXZ25vDhw8yZM4e+ffvi7+9PYmIi//73v3F2dmbAgAFl12nWrBkTJ07klltuwWQy8fjjjzNhwgSaNm1KREQEL7/8MiEhIQwePLjSWUWkbgr1duHLUV247ZP1bDl6ijGztvPJXR2ws60RjUoiVSanoJj5244DMCIm3OA0cjEOdjZ0b+LHkr0nWRGbQqsGnkZHqnW+2ZSA2QJdInyI0ponIlLHWF3Er169mjVr1pStTH85pk6dCkDv3r3LHZ8+fTojR47EycmJ1atXM2nSJE6dOkVgYCA9e/Zk3bp1BAQElJ0fGxtbtrI9ULYI3gMPPEBmZiZXXXUVixYtqrI59CJStzQL8uDzuzvxf9M28fu+k7z0wx4m3tpaiyBJnfLjjuPkFpYQ6edKt0hfo+PIJfSO9mfJ3pOsjEtlzLVNjY5TqxSVmJm96X8L2omI1DVWF/HNmjXjzJkzVfLkl9qiPiQkhF9++cXq65hMJsaPH8/48eMvK5+I1B8xkb58eGd7Hvp6K7M3J+Dv7siTfaONjiVSJSwWC19vKC1qhseE6wOqWqBXVOm8+G3HMsk6U4Sns73BiWqP3/eeJOV0AX5uDvRveeH1kEREajOr+0WnTJnCiy++yMqVK0lPTyc7O7vcTUSkturXMogJg1sD8OGyg/x3/RFjA4lUkR0JmexLysbBzoahHc9fQFZqnlBvF5oEuFFitrD2YJrRcWqVr8/uwHB7pzAc7DQ1SkTqHqt/s3l5eZGdnc21115LQEAA3t7eeHt74+Xlhbe3d3VkFBG5YobHhPP4daWtq6/89Ae/7E4yOJHI5Tu3V/ZNbYLxcnEwOI1U1LnR+BWxKQYnqT0Op+aw9mA6JlPpNooiInWR1e30I0aMwN7enlmzZl32wnYiIjXRY32aknq6gJkbj/H47B14udjTvbGf0bFEKiUrr4gFO08AMCJG84Nrk97R/nyxJp6VcalYLJYr+p6rxGxhU3wGKafzCXB3okuED7Y2Nf8937kPrK6JDiDMx8XgNCIi1cPqIn7Pnj1s376d6GjNFRWRuslkMjF+UCvScwpZ9EcyD361lTkPdqNFiIfR0USsNndbIgXFZpoFudMh3MvoOGKFzo18cLa35WR2AfuTT9M8+Mr8Dlq0J4lxC/aSlJVfdizY04lXB7agf6vgK5KhMvKLSvh+ayIAd3XVKLyI1F1Wt9N36tSJhISE6sgiIlJj2NqYmDSsHV0ifDhdUMw90zeRkJFndCwRq1gsFmaenR88omtDdc/VMk72tnRrXLqTwIrY1CvynIv2JPHQ19vKFfAAyVn5PPT1NhbtqblTjBbsPEHWmSIaeDnTKyrg0g8QEamlrC7iH3nkER577DFmzJjB1q1b2bVrV7mbiEhd4WRvy2d3d6JZkDuppwu4e9om0nMKjI4lUmEb4zM4lJqLi4Mtg9uFGB1HKuHcvPiVcdU/L77EbGHcgr1caO+gc8fGLdhLifniuwsZ5euN/9uBoTa0/ouIVJbV7fR33HEHAKNGjSo7ZjKZyuZqlZSUVF06ERGDeTrb8+WoLtw6ZR3xabmMmrGZWfd3xdXR6l+fIlfcufnBg9s3wN1JW5TVRr2jS4v4LUdOcTq/qFr/HTfFZ5w3Av9nFiApK59N8RllHQI1xZ7jWexMyMTe1sTtncKMjiMiUq2sfhcaHx9fHTlERGqsQA8nvrqvC0OnrmNnYhb//HorX9zTWVsXSY2WllNQ1vo8XKt011oNfV1p5OvCkfQ81h1Kp1817nuecvrvC/jKnHclnZs20q9lEP7ujganERGpXla/A23YsOFFbyIidVFjfzemjeyMs70tqw+k8cz3OzHX0JZSEYDvtiRSVGKhXZgXrRp4Gh1HLkPv6NL53dU9Lz7A3alKz7tSsvOL+GF76Q4Md3XVe1ERqfsqNYz03//+lx49ehASEsLRo6WffE6aNIkff/yxSsOJiNQk7cO9mXJXB+xsTPyw4wQTf91ndCSRCzKbLczadHZBuxiNwtd2vc621K86u9VcdekS4UOwpxN/N5vcROkq9V0ifKotQ2XM33acM0UlNA1wI6aGZRMRqQ5WF/FTp07liSeeYMCAAWRmZpbNgffy8mLSpElVnU9EpEa5JjqAN4e0AeCz1fF8uuqQwYlEzrf6YBoJGWfwcLLjpjZa0K626xrhi4OdDcczz3AwJafansfWxsSrA1sAnFfIn/v61YEtatSicRaLha83/O8DK+3AICL1gdVF/Icffshnn33Giy++iK2tbdnxTp06sXv37ioNJyJSEw3pGMrzNzQD4I1f9jNvW6LBiUTKm3m2qBnSMRRnB9tLnC01nbODLV0jSxeSWxlXvS31/VsFM/WuDgR5lm+ZD/J0YupdHWrcPvGb4jM4kJKDs70tt3YMNTqOiMgVUamF7dq3b3/ecUdHR3Jzc6sklIhITfdAz0hSThfwxZp4nvl+Fz6uDmXzVkWMlJR1hqX7S7cjUyt93dEryp9VcamsiE3lH1dHVutz9W8VzPUtgtgUn0HK6XwC3Etb6GvSCPw557aVG9QuBA/twCAi9YTVI/ERERHs2LHjvOOLFi2iefPmVZFJRKTGM5lMvDigOYPahVBstvDwzG3sSMg0OpYIczYnUGK2EBPhQ5MAd6PjSBU5t9XcpvgM8gqLq/35bG1MdGvsy6B2DejW2LdGFvCpp/+3A4MWtBOR+qTCRfz48ePJy8vjiSeeYPTo0cyZMweLxcKmTZt4/fXXef7553nmmWeqM6uISI1iY2Pi7aFtubqpH3mFJYyasZnDqdU3X1XkUopLzMzelADACBU1dUqknyuh3s4UlphZfyjd6Dg1wrdbEigqsdBWOzCISD1T4SJ+3Lhx5OTk8I9//IM333yTl156iby8PIYPH87UqVOZPHkyw4YNq86sIiI1joOdDVPv6kjrBp5k5BZy97RNpGTXvD2UpX5Ytj+F5Ox8fF0d6Ncy0Og4UoVMJlPZaHx1bzVXG5SYLcw620p/l6aNiEg9U+Ei/s9bmowYMYIDBw6Qk5NDcnIyiYmJ3HfffdUSUESkpnNztGP6vZ1p5OtC4qkz3D1tE9n5RUbHknpo5tmi5rZOYTjaaUG7uqZX1Nn94uNSqnWrudpgZVwKxzPP4Olsz8C22oFBROoXq+bE/3XbDhcXFwICtJCTiIifmyNfjYrBz82R/cmn6fveKib/foCTGpWXK+RYeh6rDpSO0A7vopHJuqh7Y1/sbU0kZJwhPq1+Lyb89YbSD6yGdgzFyV4fWIlI/WJVER8VFYWPj89FbyIi9VW4rwtfjupMgLsjydn5vP97HN3/vYx//ncraw6kYTbX75EzqV6zNh3DYoGeUf6E+7oYHUeqgaujHZ0blb7Xqu6t5mqyhIw8lsdqBwYRqb+s2mJu3LhxeHpq4RARkb/TMsST1c9ew6I9yXy94Sibj5xi0R/JLPojmQg/V4Z3CWdox1C8XR2Mjip1SEFxCd9tObugnYqaOq13tD/rDqWzIjaVe3tEGB3HEN+c/cCqRxNfIv3djI4jInLFWVXEDxs2TO3zIiKX4Ghny6B2DRjUrgH7k7OZtfEY87YdJz4tl9d/2cfbv8VyU+tgRnRtSIdwr/OmKolYa/EfJ0nPLSTQw5E+zfR3ui7rHR3AG7/sZ8PhdPKLSupdK3lhsZlvz35gdVeMdmAQkfqpwu30epMpImK9ZkEejB/Uio0v9OGNW1rTItiDwmIz87YfZ8jUdQz4YA1fbzhKTkH17/ssddfMDUcBGNY5HDtbq2bKSS3TNMCNYE8nCorNbDhc/7aaW/RHMmk5hQS4O3JdC+3AICL1U6VWpxcREeu4OtoxPCacnx+9ivkPd2dox1Ac7WzYl5TNSz/sIeb133lx/m72JWUbHVVqmYMpp9kYn4GNCYZ1CTM6jlSzP281Vx/nxf/vA6sw7PWBlYjUUxX+7Wc2m9VKLyJymUwmE+3DvXnntrZsfKEPL93YnEg/V3ILS5i58Rg3TF7NkKnrmL89kfyiEqPjSi1wblu5Ps0DCfZ0NjiNXAm9os4W8fVsv/gDJ//8gZXWfhCR+suqOfEiIlJ1vFwc+MfVkdx3VQTrD6Uzc+MxFv+RzNajp9h69BTjF+zltk5hDO8STiM/V6PjSg10prCEuVsTAbirq+YH1xfdm/hhZ2PicFoux9Lz6s1uBH/+wCrESx9YiUj9pSJeRKQKlZgtbIrPIOV0PgHuTnSJ8MHW5uJriphMJro38aN7Ez9SsvOZszmBbzYd40RWPp+uOsynqw5zdVM/RsQ05LrmAZrzLGUW7jpBdn4xYT7OXN3Ez+g4coV4ONnToaE3m+IzWBmXwv91a2R0pGqXV1isD6xERM5SES8iUkUW7Uli3IK9JGXllx0L9nTi1YEt6N8quELXCPBw4pE+TXn4miYs35/C1xuPsjIuldUH0lh9II1AD0eGdQ7nzi7hBHk6VddLkVri3Mjk8C4NsbnEh0VSt/SO9mdTfAYrYlPrRRH/044TnC4opqGviz6wEpF6T8M5IiJVYNGeJB76elu5Ah4gOSufh77exqI9SVZdz9bGxHUtAplxbxdWPX0ND/VujK+rAyezC5i89AA93lzGA19tYVVcKmazFh6tj/Ycz2JHQib2tiZu6xRqdBy5ws7Ni193KJ2C4rq9fobFYuHrjaUL2g3vEq4PrESk3lMRL/VGidnC+kPp/LjjOOsPpVOiwkeqSInZwrgFe7nQT9S5Y+MW7K30z1yYjwvP9m/Guuev5YM729MlwocSs4Xf9p7k7mmbuObdFfxn5SEycgsr/Rqk9pm1qXQUvn+rYPzcHA1OI1dai2APAtwdOVNUwub4U0bHqVY7E7PYczwbBzsbbuukHRhERNROL/VCVbQ5i/ydTfEZ543A/5kFSMrKZ1N8Bt0a+1b6eRztbLm5bQg3tw0h7uRpZm08xtytiRxNz2Pir/t597c4BrQO4q6uDenY0BuTSaNVdVVOQTE/bj8OwIgYrdJdH5lMJnpF+fPd1kRWxqVwVdO622L+9dlt5W5sHYyPq4PBaUREjKeReKnzqrrNWeSvUk7/fQFfmfMqIirQnbE3t2Tji314c0hrWjfwpLDEzA87TjD0k/Xc8P/t3XlY1Ne9P/D3sA3bMICy7y6giEZBVKoBNVGoqdHENImRRhMbG6PXeG8TU7thFh9jap40+TX13tsabURjNKk3ahOMVcElLIqiIoob+yL7DLIzc35/AJNMAEWZnffreeYPvnPm+/18xyPMZ87nnPPhSexML0Rja4fOrknG1dTWiVPXa/DBkWtI/HsmmtpVGOnhhKkh7sYOjYwkrnu/+FQL3mquobkdBy+UAwASp/ELKyIigCPxZOHuVeYsQVeZ85xw73uuIE7UH0/ZwBaYG2i7++FoZ4NnogPxTHQgLpQ0YFdmEQ5cKMfVykb84avL2PTNVSyY6IfEaYEY5yvX+fVJf2rvtOFMYT3OFNbhbGEdcsuVvaZkvPTwCFZcDGEPj/KAlQS4XnUHZQ0t8LPAbde+yC5FW6caY7xliAx0M3Y4REQmgUk8WTRDlTnT0DYlxB0+cntUKlr7/MJIAsBb3rXdnD49FOCKhwJc8bt54fjyXCl2ZRbhZnUTPssqxmdZxZgU6IrEqUF4bIIP7G2t9RoL3R8hBErrW5BVUIczhV2Pm9VNvdr5uTogOtgNk4PdMW2EO0Z5yowQLZkKuaMtJgW6IbuoHmn51XjOwqZWCCGwu3sHhsRpQfzCioioG5N4smjGKHOmocfaSoKk+eFYmXwOEkArke/5yJk0P9xg1R5yR1u8OCMEL0wPRsatOuzKLMLhy5U4X9yA88UNePtfeXgq0h/PTQ3ECA9ng8RE2tRqgfzbjThTWIesgjqcLaxHpbL376FQL2dEB7tjSog7Jge7W+RIKw3OzFCPriT+WpXFJfHf3azFrZomONlZY+EkP2OHQ0RkMpjEk0UzZpkzDS0JET7YmhjZawFFbyMuoCiRSBAzchhiRg5DdWMb9p4twe7MYpQ1tODvpwrw91MFmD5qGBKnBuHRcC/YWnOZFH1p61ThUqkCWYV1OFNQh7NF9Whs7dRqY2MlwXh/OaYEuyM62B2Tg93g6shFvOju4sI88P6Razh9oxbtnWrY2VjO/+OeBe2eiPSDs5QfWYmIevA3Ilk0UylzpqEhIcIHc8K9kVVQh6rGVnjKuvqWKay34CGTYtWsUXg5biTSrlUhOaMYx/OrcPpGLU7fqIWnTIpnowPw7JRA+HK0d9CUrR3ILqrH2cI6nCmoR05pA9o71VptnOysERnkhujupH1igCsc7DjNge5PhK8cw5zsUNvUjnPF9Zg2wjKmht1WtuLbvNsAukrpiYjoe0ziyaKZWpkzWT5rK4lJr69gbSXB7DFemD3GC6X1zfgsqxifnylBVWMbPjp2A385fgOzx3ghcVogYkd7wIr/NwakStmKrMKusvisgjpcrVTiR2vQYbizHSYHuSM6xB1Tgt0x1kcGG1Y/0CBZWUkQG+qB/efLkJpfbTFJ/J6sEqjUApOD3DDG28XY4RARmRSJEKKvAcohTalUQi6XQ6FQwMWFfzgsAfeJJ+pfe6ca3+ZVIjmjCBm36jTHA9wd8NyUIDw92R/DnKVGjNC0CCFQUNPUvQBd1+rxRbXNvdoFDXPsHmXvGm0PGe7EhblIL77KKcOre3IwxluGlLWxxg5n0DpVaszYfByVylZ88MxDeGKSv7FDIiIyiIHmoUzi+8Ak3jKp1MIky5yJTMmNqkbsyizGF9mlmjnbdtZWSIjwRuK0IEQHuw25RLRTpcaVisbukfauxL3mTptWG4kEGOvt0r0AXVfS7uXCtTbIMOqa2hH1zhEIAWT+9hGz73vfXq7Eip3ZcHO0Rfr6R7ibBhENGQPNQ1lOT0OGqZc5E5mCUZ4yJM0fh3XxY3DwYjl2ZRThQqkCBy6U48CFcoR6OWPJ1CA8EekHF3tbY4erF60dKpwvbtBs9XauqB5N7SqtNnY2Vpjo74rokK6EPTLIzWLfDzJ97k52mODvigslDUjLr8bT0QHGDmlQkru3lXt6cgATeCKiPjCJJyKiXhzsrPH05AA8PTkAl0oV2JVZhK9yynHt9h0kHbiMd7+5igUTfZE4LQgRfnJjhzsoDc3tONtdFp9VWIfcMgU6VNpFajJ7G0wOctPMZx/vL4fUhskFmY6ZoR5dSfw1807ii2qbcOJaNQBY3JZ5RES6wiSeiIjuary/HO/6T8D6eWOx/1wpdmUW43rVHew5U4I9Z0rwUIArlkwNxPwJvmaxunpZQwvOdu/PfqawDtdu3+nVxstFqtmfPTrYHWFeMi7yRyYtLswDHx69jpPXq9GpUpvtoom7u0fhY0M9EDTMycjREBGZJibxREQ0IHIHWyybHoKlPwlGVkEddmUW45vcClwoacCFkga8cygPT0UF4LmpgRjl6WzscAEAarXAjeo7XaXxBV3z2csaWnq1G+nhpNnqbUqIO/zdHIbc3H8ybw/5u8LV0RYNzR3IKWnA5GDz2zq1tUOFvWdLAACJHIUnIuoXk3giIrovEokEU0cMw9QRw1BzJxx7z5Zgd2YxSutb8MnpAnxyugAxI4YhcVoQ5oR7wc7GcCOC7Z1q5JYrukfa63G2qA4NzR1abaytJIjwdUF0sDsmd68ez9X3ydxZW0nw8GgPHLxQjtT8arNM4r/JrUB9cwd85PaYPcbT2OEQEZksJvFERPTAhjtL8crMUXg5diTSrldjV0YRjl2tQvqtWqTfqsVwZymejQ7A4qmB8HN10Pn1m9o6ca64vmurt4I6nC+pR2uHWquNg601JgW6akbZJwa4wknKP39keWaGdiXxadeq8Vp8mLHDuW/JGV2l9IunBJrtdAAiIkPgpxgiIho0KysJZoV5YlaYJ8oaWrAnqxh7zpSgurENfzl+A39NvYFZYZ5InBaE2FCPB97eseZOm9Yo++VyJVRq7UXo3BxtMTm4awG66BB3jPN1gS0TAhoCYkM9AACXyhSobmyDh8x8KkyuVCiRXVQPGysJnjXjhfmIiAyBSTwREemUn6sDfj03DGseGY0jebeRnFGE727W4ujVKhy9WgV/NwcsnhKIpycH3DXJEEKgpK4FWZr57HW4VdPU5/V6FqCbEuKGEcOduQgdDUkeMiki/FyQW6bEyevVeDLS39ghDVhyRhEAYO44L3ia+T73RET6ZtQkftOmTfjnP/+Jq1evwsHBAT/5yU+wefNmhIV1lYDV1dUhKSkJ3377LYqLi+Hh4YGFCxfi7bffhlze/5ZGy5Ytwz/+8Q+tY/Hx8UhJSdHr/RAR0fdsra0wb7wP5o33wc3qO9idWYwvsktRWt+CPx3Ox5//fQ3x47yROC0IU0PcoRZAfmWjZqu3s4V1uK1s0zqnRAKEeckwOdhNsxCdrx7K9InMVVyoB3LLlEjNN58k/k5bJ/7vfBkAIHFqkJGjISIyfUZN4tPS0rBq1SpER0ejs7MTv/3tbzF37lzk5eXByckJ5eXlKC8vx5YtWxAeHo6ioiK8/PLLKC8vxxdffHHXcyckJGD79u2an6VS8ykpIyKyNCM9nPGHn4Xj9fgwHLpYgeSMIuSUNODQxQoculiBQHdH1De3o7G1U+t1ttYSTPB3xeRgN0wJdsfkIHfIHW2NdBdEpm9mmCc+Pn4TJ65XQ6UWDzx1xZD2ny9DU7sKIzycEDNymLHDISIyeUZN4n88Mr5jxw54enoiOzsbsbGxiIiIwJdffql5fuTIkdi4cSMSExPR2dkJG5v+w5dKpfD29tZb7EREdP/sba3xVJQ/noryR26ZArsyi/FVThmK65oBAM5SG0QGuWFKsBsmB3ctQmdva/p7zxOZikkBrpDZ26ChuQMXSxswKdDN2CHdlRACu7pL6ZdMDeLWjkT3oFILZBXUoaqxFZ4ye0wJcTeLL+uMyRLfM5OaE69QKAAA7u79b4uiUCjg4uJy1wQeAFJTU+Hp6Qk3NzfMnj0b77zzDoYN6/vb3ba2NrS1fV+yqVQqHyB6IiK6HxF+cmx6cjzWzxuD9Ju18HN1wBhvGVelJhoEG2srPDx6OL6+VInU/GqTT+Kzi+pxtbIR9rZWeMpMyv+JjCUltwJvHsxDhaJVc8xHbo+k+eFIiPAxYmSmy1LfM5P5pKRWq7F27VpMnz4dERERfbapqanB22+/jRUrVtz1XAkJCfj0009x9OhRbN68GWlpafjpT38KlUrVZ/tNmzZBLpdrHgEBXBWViMhQXOxtET/OGxF+cibwRDowM7Rrj/W0a9VGjuTeeha0mz/Bl1NliO4iJbcCK5PPaSWjAFCpaMXK5HNIya0wUmSmy5LfM4kQQty7mf6tXLkS33zzDU6dOgV//97fxCqVSsyZMwfu7u44cOAAbG0H/ov+1q1bGDlyJP7973/jkUce6fV8XyPxAQEBmlF/IiIiMl+WWEp5N5WKVkzbdBQSCZD9+zlwd7Izdkh9qr3ThphNx9CuUuOrVdPxUICrsUMiMkkqtcCMzcd6JaM9JAC85fY49cZsi/7ddj/M9T1TKpWQy+X3zENNopx+9erVOHToEE6cONFnAt/Y2IiEhATIZDLs37//vhJ4ABgxYgSGDx+OGzdu9JnES6VSLnxHRERkgSy1lPJuvOX2GOMtw9XKRpy8Xo0FE/2MHVKfvsguRbtKjQg/F0zw73/XIaKhLqugrt9kFAAEgApFK7IK6rg4ZDdLf8+MWrcohMDq1auxf/9+HDt2DCEhIb3aKJVKzJ07F3Z2djhw4ADs7e9/79DS0lLU1tbCx8cy/1gTERFRb5ZcSnkvcWEeAIC0fNMsqVerBXZnFQPo2lbOEha0U6kF0m/W4qucMqTfrIVKbRLFrmQBqhr7T0YfpN1QYOnvmVGT+FWrViE5ORm7d++GTCZDZWUlKisr0dLSAuD7BL6pqQnbtm2DUqnUtPnh/PYxY8Zg//79AIA7d+7g9ddfR0ZGBgoLC3H06FEsWLAAo0aNQnx8vFHuk4iIiAxLpRZ482Ae+kqjeo69eTDPYhOtnnnxJ65XQ22C93jyRg2Kapshs7fB4xN9jR3OoKXkVmDG5mNY/LcMvLonB4v/loEZm49Z9BdFZDiesoENYg603VBg6e+ZUZP4rVu3QqFQYObMmfDx8dE8Pv/8cwDAuXPnkJmZiUuXLmHUqFFabUpKSjTnyc/P16xsb21tjYsXL+Lxxx9HaGgoli9fjqioKJw8eZIl80REREPE/ZRSWqKoIDc42Vmj5k47Lpeb3q47PQvaLYr0h6OdSczufGBDueKDDGNKiDt85Pbor15Fgq5pQlNC+t/ha6ix9PfMqL8177Wm3syZM+/Z5sfncXBwwOHDhwcdGxEREZkvSy+lvBc7GytMHzUc3+bdRmp+Fcab0Jzz8oYWHL1yGwCwZGqgkaMZnHtVfEjQVfExJ9zbpBbPIvNibSVB0vxwrEw+Bwmg1d96elXS/HD2sR+w9PeMe/kQERGRxbH0UsqB0MyLN7Gt5vZkFUMtgKkh7hjtJTN2OIMy1Cs+yHASInywNTES3nLt31necntsTYy02IU6B8OS3zPzrl8iIiIi6kNPKWWlorXPUdKe7YXMtZRyIGaGdc2LP1dcD0Vzh0nsw96hUmPPma4pkYnTgowczeAN9YoPMqyECB/MCfceUltmDpalvmdM4omIiMjiWHop5UD4uTpgtKczrlfdwakbNXhsgvFHnY7k3UZVYxuGO0sRP87b2OEMGis+yNCsrSRmuSWaMVnie8ZyeiIiIrJIllxKOVBxoV0l9an5VUaOpEvPgnbPRPvDzsb8P4Za+uJZRGSaOBJPREREFstSSykHamaYJ/5+qgBp16ohhDDqfuw3q+/gu5u1kEiAxVPMe0G7Hqz4ICJjYBJPRERGpVKLIZtgkWFYYinlQEWHuMHB1hpVjW24UtGIcF8Xo8WyK6MYADA7zBP+bo5Gi0PXeio+3jyYp7XInbfcHknzw4dExQcRGRaTeCIiMpqU3IpeH3x9+MGXSGekNtb4ychhOHq1CmnXqo2WxLe0q/BFtuUsaPdjQ73ig4gMy/wnIxERkVlKya3AyuRzvbZnqlS0YmXyOaTkVhgpMiLL0rPVnDHnxR+8WA5layf83RwQ2z1P39L0VHwsmOiHmJHDmMATkd4wiSciIoNTqQXePJjX59ZfPcfePJgHlbqvFkObSi2QfrMWX+WUIf1mLd8juqeZoV1bzWUX1aOxtcMoMezqXtDuuamBTG6JiAaJ5fRERGRwWQV1vUbgf0gAqFC0IqugbsjOZe4Lpx/Qgwgc5oiQ4U4oqGnC6Ru1SIgw7NZul0oVuFCqgK21BE9PDjDotYmILBFH4omIyOCqGvtP4B+k3VDA6Qc0GD1bzaVdM3xJ/a7MrlH4n0b4YLiz1ODXJyKyNEziiYjI4Dxl9vdudB/tLB2nH9Bg9cyLT8vv2mrOUJStHfgqpxwAsGSqZWwrR0RkbEziiYjI4KaEuMNHbo/+ZsZK0FUmPiXE3ZBhmaz7mX5A1JeYEcMgtbFCuaIV16vuGOy6/8wuRUuHCqFezvz/TESkI0ziiYjI4KytJEiaHw4AvRL5np+T5odzAaxunH5Ag2Vva41pI7rWl0jLrzbINYUQSM7s2ht+ydQgSCT8/0xEpAtM4omIyCgSInywNTES3nLtknlvuT22JkZyobYf4PQD0oWeefGpBpoXn1lQhxtVd+Bga40nIv0Mck0ioqGAq9MTEZHRJET4YE64N7IK6lDV2ApPWVcJPUfgtfVMP6hUtPY5L16Cri8/WK5MdzMzzANvHQLOFNSjqa0TTlL9fgxM7t5WbuEkX7jY2+r1WkREQwlH4omIyKisrSSIGTkMCyb6IWbkMCbwfeD0A9KFkOFOCHB3QLtKjfSbtXq9VnVjGw5frgTQVUpPRES6wySeiIjIDHD6AQ2WRCLBzFBPAEDaNf3Oi997tgQdKoGJAa6I8JPr9VpEREMNy+mJiIjMBKcf0GDFhXpgZ0YRUq9VQQihl8XmVGqB3d0L2iVO4yg8EZGuMYknIiIyIz3TD4geRMzIYbCztkJJXQsKapowwsNZ59dIza9CWUML5A62+NkEVogQEekay+mJiIiIhggnqQ2iQ9wAAKl62mquZ0G7n0f5w97WWi/XICIaypjEExEREQ0hPfPiU/UwL76krllz3iUspSci0gsm8UTUL5VaIP1mLb7KKUP6zVqo1H1tbkVEROZkZljXfvGZt2rR2qHS6bl3ZxVDCGDGqOEIGe6k03MTEVEXzoknoj6l5FbgzYN5qFC0ao75yO2RND+cq2ATEZmxUZ7O8JXbo1zRivRbtZgV5qmT87Z1qrD3TAkAIHFaoE7OSUREvXEknoh6ScmtwMrkc1oJPABUKlqxMvkcUnIrjBQZERENlkQiQVx34p6mw3nxKbmVqG1qh5eLFI+O9dLZeYmISBuTeCLSolILvHkwD30Vzvcce/NgHkvriYjMWFxoV0m9LveL35XRta3cs9GBsLHmR0wiIn3hb1gi0pJVUNdrBP6HBIAKRSuyCuoMFxQREenU9FHDYGMlQUFNE4pqmwZ9vmu3G5FVWAdrKwkWT2EpPRGRPjGJJyItVY39J/AP0o6IiEyPzN4WUUFdW83pYjR+V/e2co+M8YS33H7Q5yMiov4xiSciLZ6ygX34Gmg7IiIyTTN1NC++qa0T/zxXBgBI5LZyRER6xySeiLRMCXGHj9wekn6el6BrlfopIe6GDIuIiHSsZ178dzcHt9XcgQvlaGzrRNAwR8wYNVxX4RERUT+YxBORFmsrCZLmhwNAr0S+5+ek+eGwtuovzSciInMw1kcGT5kULR0qnC2sf6BzCCGQ3F1Kv2RqIKz4t4GISO+YxBNRLwkRPtiaGNlrXqO33B5bEyO5TzwRkQWQSCSa0fjU/KoHOkdOSQMulythZ2OFn0cF6DI8IiLqh42xAyAi05QQ4YM54d7IKqhDVWMrPGVdJfQcgScishwzwzyxL7sUqdeq8fsHeH1y97ZyPxvvAzcnO90GR0REfWIST0T9sraSIGbkMGOHQUREejJj9HBYW0lwo+oOSuub4e/mOODXNjS349DFcgDAEi5oR0RkMCynJyIiIhqi5A62mBTgCuD+t5r7IrsUbZ1qjPVxQWSgq+6DIyKiPjGJJyIiIhrCZoZ1zYu/n63m1GqBXZldpfSJ0wIhkXCqFRGRoTCJJyIiIhrC4kK79os/faMG7Z3qAb3mu5u1KKhpgrPUBgsn+ukzPCIi+hEm8URERERD2DhfFwx3tkNTuwrZRQPbaq5nW7knJvnBScolloiIDIlJPBEREdEQZmUlQezo7q3mrt17q7lKRSuOXLkNAEjkgnZERAbHJJ6IiIhoiIu7j3nxe84UQ6UWiA52Q5i3TN+hERHRjzCJJyIiIhriHh7tAYkEuFrZiEpFa7/tOlVq7MkqAcBReCIiY2EST0RERDTEuTvZ4SF/VwDAibtsNXf0ahUqla0Y5mSHhAhvA0VHREQ/xCSeiIiIiDRbzd1tXnzPgnY/nxwAqY21QeIiIiJtTOKJiIiICHGhXUn8yes16FT13mqusKYJJ6/XQCIBnpsSaOjwiIioG5N4IiIiIsIEf1e4OdqisbUT50saej2/O6sYABA72gOBwxwNHB0REfVgEm+mVGqB9Ju1+CqnDOk3a6FSC2OHRERERGbM2kqCh3u2msvXLqlv7VBh31kuaEdEZAqMmsRv2rQJ0dHRkMlk8PT0xMKFC5Gfn695vq6uDv/xH/+BsLAwODg4IDAwEGvWrIFCobjreYUQ+OMf/wgfHx84ODjg0UcfxfXr1/V9OwaTkluBGZuPYfHfMvDqnhws/lsGZmw+hpTcCmOHRkRERGasZ1582o8Wt/v6UgXqmzvgK7fH7DGexgiNiIi6GTWJT0tLw6pVq5CRkYEjR46go6MDc+fORVNTEwCgvLwc5eXl2LJlC3Jzc7Fjxw6kpKRg+fLldz3ve++9h48++gj//d//jczMTDg5OSE+Ph6trf1vmWIuUnIrsDL5HCp+tP1LpaIVK5PPMZEnIiKiB9YzEp9bpkRV4/efNXoWtFs8JRDWVhKjxEZERF0kQgiTqcOurq6Gp6cn0tLSEBsb22ebffv2ITExEU1NTbCxsen1vBACvr6++PWvf43XXnsNAKBQKODl5YUdO3bg2WefvWccSqUScrkcCoUCLi4ug7spHVKpBWZsPtYrge8hAeAtt8epN2bzDywRERE9kPn/7xQulSnw/s8fwqIof+SVKzHvo5OwsZLgu/Wz4SmzN3aIREQWaaB5qEnNie8pk3d3d79rGxcXlz4TeAAoKChAZWUlHn30Uc0xuVyOqVOnIj09vc/XtLW1QalUaj1MUVZBXb8JPAAIABWKVmQV1BkuKCIiIrIoPavUp3aX1Cdndo3Cx4/zZgJPRGQCTCaJV6vVWLt2LaZPn46IiIg+29TU1ODtt9/GihUr+j1PZWUlAMDLy0vruJeXl+a5H9u0aRPkcrnmERAQ8IB3oV8/LGvTRTsiIiKiH+uZF3/yejUULR34v/NlAIAl07itHBGRKTCZJH7VqlXIzc3Fnj17+nxeqVTiscceQ3h4ODZs2KDTa69fvx4KhULzKCkp0en5dWWg337zW3IiIiJ6UBMDXOFib4OG5g68efAymttVGOnhhJgRw4wdGhERwUSS+NWrV+PQoUM4fvw4/P39ez3f2NiIhIQEyGQy7N+/H7a2tv2ey9vbGwBw+/ZtreO3b9/WPPdjUqkULi4uWg9TNCXEHT5ye/Q3210CwEdujykh/U9HICIiIrobG2srzQJ3/zzXPQo/NQgSCdfbISIyBUZN4oUQWL16Nfbv349jx44hJCSkVxulUom5c+fCzs4OBw4cgL393UeZQ0JC4O3tjaNHj2qdIzMzEzExMTq/B0OytpIgaX44APRK5Ht+TpofzkXtiIiIaFDiukvqAcDe1gqLonoPshARkXEYNYlftWoVkpOTsXv3bshkMlRWVqKyshItLS0Avk/gm5qasG3bNiiVSk0blUqlOc+YMWOwf/9+AIBEIsHatWvxzjvv4MCBA7h06RKef/55+Pr6YuHChca4TZ1KiPDB1sRIeMu1v8zwlttja2IkEiJ8jBQZERERWYqexe0A4PGHfCF36L8KkoiIDKvvJd4NZOvWrQCAmTNnah3fvn07li1bhnPnziEzMxMAMGrUKK02BQUFCA4OBgDk5+drVrYHgHXr1qGpqQkrVqxAQ0MDZsyYgZSUlHuO4puLhAgfzAn3RlZBHaoaW+Ep6yqh5wg8ERER6YKXiz2mhrjjfHEDlv4k2NjhEBHRD5jUPvGmwlT3iSciIiIylMbWDjQ0dyDA3dHYoRARDQkDzUONOhJPRERERKZJZm8LmT3L6ImITI1JrE5PRERERERERPfGJJ6IiIiIiIjITDCJJyIiIiIiIjITTOKJiIiIiIiIzASTeCIiIiIiIiIzwSSeiIiIiIiIyEwwiSciIiIiIiIyE0ziiYiIiIiIiMwEk3giIiIiIiIiM8EknoiIiIiIiMhMMIknIiIiIiIiMhNM4omIiIiIiIjMBJN4IiIiIiIiIjPBJJ6IiIiIiIjITNgYOwBTJIQAACiVSiNHQkRERERERENBT/7Zk4/2h0l8HxobGwEAAQEBRo6EiIiIiIiIhpLGxkbI5fJ+n5eIe6X5Q5BarUZ5eTlkMhkkEomxw+mXUqlEQEAASkpK4OLiYuxwyEKxn5EhsJ+RvrGPkSGwn5EhsJ9ZLiEEGhsb4evrCyur/me+cyS+D1ZWVvD39zd2GAPm4uLC/8Ckd+xnZAjsZ6Rv7GNkCOxnZAjsZ5bpbiPwPbiwHREREREREZGZYBJPREREREREZCaYxJsxqVSKpKQkSKVSY4dCFoz9jAyB/Yz0jX2MDIH9jAyB/Yy4sB0RERERERGRmeBIPBEREREREZGZYBJPREREREREZCaYxBMRERERERGZCSbxRERERERERGaCSbyRbdq0CdHR0ZDJZPD09MTChQuRn5+v1aa1tRWrVq3CsGHD4OzsjEWLFuH27dtabdasWYOoqChIpVJMnDixz2tdvHgRDz/8MOzt7REQEID33ntPX7dFJsRQfSw1NRULFiyAj48PnJycMHHiROzatUuft0YmxJC/y3rcuHEDMpkMrq6uOr4bMlWG7GdCCGzZsgWhoaGQSqXw8/PDxo0b9XVrZCIM2ccOHz6MadOmQSaTwcPDA4sWLUJhYaGe7oxMiS762YULF7B48WIEBATAwcEBY8eOxYcfftjrWqmpqYiMjIRUKsWoUaOwY8cOfd8eGQCTeCNLS0vDqlWrkJGRgSNHjqCjowNz585FU1OTps1//ud/4uDBg9i3bx/S0tJQXl6OJ598ste5XnzxRTzzzDN9XkepVGLu3LkICgpCdnY2/vSnP2HDhg343//9X73dG5kGQ/Wx7777DhMmTMCXX36Jixcv4oUXXsDzzz+PQ4cO6e3eyHQYqp/16OjowOLFi/Hwww/r/F7IdBmyn7366qv4+9//ji1btuDq1as4cOAApkyZopf7ItNhqD5WUFCABQsWYPbs2cjJycHhw4dRU1PT53nI8uiin2VnZ8PT0xPJycm4fPkyfve732H9+vX4y1/+omlTUFCAxx57DLNmzUJOTg7Wrl2LX/7ylzh8+LBB75f0QJBJqaqqEgBEWlqaEEKIhoYGYWtrK/bt26dpc+XKFQFApKen93p9UlKSeOihh3od/+tf/yrc3NxEW1ub5tgbb7whwsLCdH8TZNL01cf6Mm/ePPHCCy/oJG4yL/ruZ+vWrROJiYli+/btQi6X6zp8MhP66md5eXnCxsZGXL16VW+xk3nQVx/bt2+fsLGxESqVSnPswIEDQiKRiPb2dt3fCJm0wfazHq+88oqYNWuW5ud169aJcePGabV55plnRHx8vI7vgAyNI/EmRqFQAADc3d0BdH3L1tHRgUcffVTTZsyYMQgMDER6evqAz5ueno7Y2FjY2dlpjsXHxyM/Px/19fU6ip7Mgb76WH/X6rkODS367GfHjh3Dvn378PHHH+suYDJL+upnBw8exIgRI3Do0CGEhIQgODgYv/zlL1FXV6fbGyCTp68+FhUVBSsrK2zfvh0qlQoKhQI7d+7Eo48+CltbW93eBJk8XfWzH3/uSk9P1zoH0PX5f7Cf78j4mMSbELVajbVr12L69OmIiIgAAFRWVsLOzq7XnE8vLy9UVlYO+NyVlZXw8vLqdY6e52ho0Gcf+7G9e/fizJkzeOGFFwYTMpkhffaz2tpaLFu2DDt27ICLi4suwyYzo89+duvWLRQVFWHfvn349NNPsWPHDmRnZ+Opp57S5S2QidNnHwsJCcG3336L3/72t5BKpXB1dUVpaSn27t2ry1sgM6Crfvbdd9/h888/x4oVKzTH+vv8r1Qq0dLSotsbIYOyMXYA9L1Vq1YhNzcXp06dMnYoZKEM1ceOHz+OF154AX/7298wbtw4vV6LTI8++9lLL72E5557DrGxsTo/N5kXffYztVqNtrY2fPrppwgNDQUAbNu2DVFRUcjPz0dYWJjOr0mmR599rLKyEi+99BKWLl2KxYsXo7GxEX/84x/x1FNP4ciRI5BIJDq/JpkmXfSz3NxcLFiwAElJSZg7d64OoyNTxZF4E7F69WocOnQIx48fh7+/v+a4t7c32tvb0dDQoNX+9u3b8Pb2HvD5vb29e62c2vPz/ZyHzJe++1iPtLQ0zJ8/Hx988AGef/75wYZNZkbf/ezYsWPYsmULbGxsYGNjg+XLl0OhUMDGxgaffPKJrm6DTJy++5mPjw9sbGw0CTwAjB07FgBQXFw8uODJLOi7j3388ceQy+V47733MGnSJMTGxiI5ORlHjx5FZmamrm6DTJwu+lleXh4eeeQRrFixAr///e+1nuvv87+LiwscHBx0ezNkUEzijUwIgdWrV2P//v04duwYQkJCtJ6PioqCra0tjh49qjmWn5+P4uJixMTEDPg6MTExOHHiBDo6OjTHjhw5grCwMLi5uQ3+RshkGaqPAV3bmDz22GPYvHmzVjkXWT5D9bP09HTk5ORoHm+99RZkMhlycnLwxBNP6Ox+yDQZqp9Nnz4dnZ2duHnzpubYtWvXAABBQUGDvAsyZYbqY83NzbCy0v4Ybm1tDaCrEoQsm6762eXLlzFr1iwsXbq0zy0wY2JitM4BdH3+v9/Pd2SCjLmqHgmxcuVKIZfLRWpqqqioqNA8mpubNW1efvllERgYKI4dOybOnj0rYmJiRExMjNZ5rl+/Ls6fPy9+9atfidDQUHH+/Hlx/vx5zWr0DQ0NwsvLS/ziF78Qubm5Ys+ePcLR0VH8z//8j0HvlwzPUH3s2LFjwtHRUaxfv17rOrW1tQa9XzIOQ/WzH+Pq9EOLofqZSqUSkZGRIjY2Vpw7d06cPXtWTJ06VcyZM8eg90uGZ6g+dvToUSGRSMSbb74prl27JrKzs0V8fLwICgrSuhZZJl30s0uXLgkPDw+RmJiodY6qqipNm1u3bglHR0fx+uuviytXroiPP/5YWFtbi5SUFIPeL+kek3gjA9DnY/v27Zo2LS0t4pVXXhFubm7C0dFRPPHEE6KiokLrPHFxcX2ep6CgQNPmwoULYsaMGUIqlQo/Pz/x7rvvGuguyZgM1ceWLl3a5/NxcXGGu1kyGkP+LvshJvFDiyH7WVlZmXjyySeFs7Oz8PLyEsuWLeOXkkOAIfvYZ599JiZNmiScnJyEh4eHePzxx8WVK1cMdKdkTLroZ0lJSX2eIygoSOtax48fFxMnThR2dnZixIgRWtcg8yURQohBDOQTERERERERkYFwTjwRERERERGRmWAST0RERERERGQmmMQTERERERERmQkm8URERERERERmgkk8ERERERERkZlgEk9ERERERERkJpjEExEREREREZkJJvFEREREREREZoJJPBERkQmrra2Fp6cnCgsLDXrdHTt2wNXVVS/nTklJwcSJE6FWq/VyfiIiIkvGJJ6IiMiEbdy4EQsWLEBwcHCv5+Lj42FtbY0zZ84YPrBBSEhIgK2tLXbt2tVvm+XLl2P8+PFob2/XOv7111/Dzs4O586d03eYREREJolJPBERkYlqbm7Gtm3bsHz58l7PFRcX47vvvsPq1avxySefGCG6B9PR0QEAWLZsGT766KN+233wwQdobGxEUlKS5lhDQwNeeukl/OEPf0BkZKTeYiMiIjJlTOKJiIhM1Ndffw2pVIpp06b1em779u342c9+hpUrV+Kzzz5DS0uL1vMzZ87EmjVrsG7dOri7u8Pb2xsbNmzQatPQ0IBf/epX8PLygr29PSIiInDo0CGtNocPH8bYsWPh7OyMhIQEVFRUaJ5Tq9V466234O/vD6lUiokTJyIlJUXzfGFhISQSCT7//HPExcXB3t5eM/o+f/58nD17Fjdv3uzz3l1cXLB9+3a8//77yMzMBACsXbsWfn5+WL9+PUpKSvD000/D1dUV7u7uWLBggdaUgzNnzmDOnDkYPnw45HI54uLieo3eSyQSbN26FY8//jicnJywcePGfv4liIiITAeTeCIiIhN18uRJREVF9TouhMD27duRmJiIMWPGYNSoUfjiiy96tfvHP/4BJycnZGZm4r333sNbb72FI0eOAOhKwH/605/i9OnTSE5ORl5eHt59911YW1trXt/c3IwtW7Zg586dOHHiBIqLi/Haa69pnv/www/x/vvvY8uWLbh48SLi4+Px+OOP4/r161px/OY3v8Grr76KK1euID4+HgAQGBgILy8vnDx5st/7nzVrFl555RUsXboU+/btw969e/Hpp59CCIH4+HjIZDKcPHkSp0+f1nzJ0FN+39jYiKVLl+LUqVPIyMjA6NGjMW/ePDQ2NmpdY8OGDXjiiSdw6dIlvPjii/f6JyEiIjI+QURERCZpwYIF4sUXX+x1/NtvvxUeHh6io6NDCCHEBx98IOLi4rTaxMXFiRkzZmgdi46OFm+88YYQQojDhw8LKysrkZ+f3+e1t2/fLgCIGzduaI59/PHHwsvLS/Ozr6+v2LhxY69rvPLKK0IIIQoKCgQA8ec//7nPa0yaNEls2LChz+d6NDc3i7CwMGFlZSU++OADIYQQO3fuFGFhYUKtVmvatbW1CQcHB3H48OE+z6NSqYRMJhMHDx7UHAMg1q5de9frExERmRqOxBMREZmolpYW2Nvb9zr+ySef4JlnnoGNjQ0AYPHixTh9+nSv0vQJEyZo/ezj44OqqioAQE5ODvz9/REaGtrv9R0dHTFy5Mg+X69UKlFeXo7p06drvWb69Om4cuWK1rHJkyf3eX4HBwc0Nzf3e/2eNq+99hocHR3x6quvAgAuXLiAGzduQCaTwdnZGc7OznB3d0dra6vmPbh9+zZeeukljB49GnK5HC4uLrhz5w6Ki4sHFBsREZGpsjF2AERERNS34cOHo76+XutYXV0d9u/fj46ODmzdulVzXKVS4ZNPPtGa121ra6v1WolEotnWzcHB4Z7X7+v1Qoj7vg8nJ6c+j9fV1cHDw+Oer7exsYG1tTUkEgkA4M6dO4iKiupzdfue8y1duhS1tbX48MMPERQUBKlUipiYmF6r3fcXGxERkaniSDwREZGJmjRpEvLy8rSO7dq1C/7+/rhw4QJycnI0j/fffx87duyASqUa0LknTJiA0tJSXLt27YFic3Fxga+vL06fPq11/PTp0wgPD7/n63tGzSdNmnTf146MjMT169fh6emJUaNGaT3kcrkmjjVr1mDevHkYN24cpFIpampq7vtaREREpoZJPBERkYmKj4/H5cuXtUbjt23bhqeeegoRERFaj+XLl6OmpkZrdfi7iYuLQ2xsLBYtWoQjR46goKAA33zzzYBfDwCvv/46Nm/ejM8//xz5+fn4zW9+g5ycHE3Z+91kZGRoRsfv15IlSzB8+HAsWLAAJ0+eREFBAVJTU7FmzRqUlpYCAEaPHo2dO3fiypUryMzMxJIlSwZUfUBERGTqmMQTERGZqPHjxyMyMhJ79+4FAGRnZ+PChQtYtGhRr7ZyuRyPPPIItm3bNuDzf/nll4iOjsbixYsRHh6OdevWDXgkHwDWrFmD//qv/8Kvf/1rjB8/HikpKThw4ABGjx59z9d+9tlnWLJkCRwdHQd8vR6Ojo44ceIEAgMD8eSTT2Ls2LFYvnw5Wltb4eLiAqDry476+npERkbiF7/4BdasWQNPT8/7vhYREZGpkYgHmdxGREREBvGvf/0Lr7/+OnJzc2FlZRnfvdfU1CAsLAxnz55FSEiIscMhIiIyK1zYjoiIyIQ99thjuH79OsrKyhAQEGDscHSisLAQf/3rX5nAExERPQCOxBMRERERERGZCcuoyyMiIiIiIiIaApjEExEREREREZkJJvFEREREREREZoJJPBEREREREZGZYBJPREREREREZCaYxBMRERERERGZCSbxRERERERERGaCSTwRERERERGRmWAST0RERERERGQm/j89DQWJOmGq7QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", + "\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", + "plt.legend()\n", + "plt.show()" + ] + } ], - "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", - "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, test_y_torch.squeeze().numpy(), label=\"Ground truth\")\n", - "plt.scatter(instances, [test_y_torch.squeeze().numpy().mean()] * len(instances), label=\"Mean of ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", - "plt.legend()\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "s2spy", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 + "metadata": { + "kernelspec": { + "display_name": "s2spy", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "orig_nbformat": 4 }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/workflow/pred_temperature_autoencoder.ipynb b/workflow/pred_temperature_autoencoder.ipynb index efbad68..850d40c 100644 --- a/workflow/pred_temperature_autoencoder.ipynb +++ b/workflow/pred_temperature_autoencoder.ipynb @@ -42,12 +42,24 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 99, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", + "import pandas as pd\n", "import sys\n", "import time as tt\n", "import wandb\n", @@ -59,10 +71,14 @@ "from torch import nn\n", "from torch import Tensor\n", "import torch.nn.functional as f\n", + "from sklearn.metrics import mean_squared_error\n", "\n", "sys.path.append(\"../src/\")\n", "from autoencoder import Transformer\n", - "import utils" + "import utils\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)" ] }, { @@ -75,42 +91,46 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ "# create custom calendar based on the time of interest\n", - "calendar = lilio.Calendar(anchor=\"08-01\", allow_overlap=True)\n", + "calendar = lilio.Calendar(anchor=\"07-01\", allow_overlap=True)\n", "# add target periods\n", - "calendar.add_intervals(\"target\", length=\"30d\")\n", + "calendar.add_intervals(\"target\", length=\"30d\", gap=\"1M\")\n", "# add precursor periods\n", - "periods_of_interest = 4\n", - "calendar.add_intervals(\"precursor\", \"1M\", gap=\"1M\", n=periods_of_interest)" + "periods_of_interest = 8\n", + "calendar.add_intervals(\"precursor\", \"1M\", n=periods_of_interest)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 101, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Calendar(\n", - " anchor='08-01',\n", + " anchor='07-01',\n", " allow_overlap=True,\n", " mapping=None,\n", " intervals=[\n", - " Interval(role='target', length='30d', gap='0d'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M'),\n", - " Interval(role='precursor', length='1M', gap='1M')\n", + " Interval(role='target', length='30d', gap='1M'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d'),\n", + " Interval(role='precursor', length='1M', gap='0d')\n", " ]\n", ")" ] }, - "execution_count": 3, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -131,9 +151,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 102, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# URL of the dataset from zenodo\n", "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", @@ -147,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -160,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 104, "metadata": {}, "outputs": [], "source": [ @@ -180,12 +212,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnm0lEQVR4nO3dd1RU19oG8OfQOwhSRFGsiL33joq9Rk0kV41dses1MVZsRK8txB6Nmti7BqNRUSyIGlGwBlsQC0VReof9/cHHiSNYBgZmkOe3FiuZU/Z+z9kyzDtnF0kIIUBERERERKRmWuoOgIiIiIiICGByQkREREREGoLJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEHXUHUFRkZmbixYsXMDU1hSRJ6g6HiIiIPmNCCMTFxcHe3h5aWvwumYoPJief6MWLF3BwcFB3GERERFSMPH36FGXKlFF3GESFhsnJJzI1NQWQ9SZhZmam5miIiIjocxYbGwsHBwf58wdRccHk5BNld+UyMzNjckJERESFgl3JqbhhJ0YiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCJyti4iIKJ+EEEhJSVFZefr6+krP0qSqGPJStyrrZwxZkpOT810GUVHE5ISIiCifUlJS0K9fP5WVt2/fPhgYGKglhrzUrcr6GUOWtLS0fJdBVBQxOSEiIlKR68/j8l1GvdL5W3Qv6GXeP9TWttbNV91A/u9Bfq8fyN89AFRzH/D0av7Ot6ub/xiIiiAmJ0RERCrUdKwntHX0lD4vIz0V/mtnqCSG1t9ugJau/icfn5mWgnNLRqmkbiBv90CV1w8ofw8A1d+H7SPrQl9XueG9KWmZ+HrjDZXFQFTUMDkhIiJSIW0dPWjrKfehWNW0dPWho/fpXZLSVVx/UbwHgOrvg76uFgx0tVVcKtHnjbN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBF01B0AERHR5+is50gkxbyCJGlB19AY9QZ9B0tHZwRs88Tz675IePUCnRbtQwnHqgVSf3pqMnwXD0N0aDC09QxgaGGNZuOXw6x0Bbz8OwCX132HjLQUZKSmoKJL/wKJ4X33IC78CS6vn4mUuGjoGpmgyaiFMLFxKJAYTszog6Q3Ef8fgwmajF0Cq0q1EPP8ES78bwySY19Dz9gMLaeugal9+QKJoeOyywiPSYGWJMHUQAdebtVRt5w5HoTHY/CmILyKT4W5oQ62Dq+DijZGBRIDUVGh1icnnp6eaNiwIUxNTWFjY4NevXohODhY4Zjk5GS4u7vDysoKJiYm6Nu3LyIiIuT9QUFB+Oqrr+Dg4ABDQ0M4Ozvjxx9/VCgjLCwMAwcORJUqVaClpYVJkyYVxuUREVEx1nzCMnT54SA6e+6HU+dBuLJhFgDAoVEHtJ+zDcYl7Qs8Bqcug9F381/ovf4iyjbtjIurJgAA/H6chNpfTkavtefRbcUJ3D20DmmJ8Sqv/3334Orm+ajY9gt0W+4N525Dcfn/txeEtjO3oPd6P/RadwHV+7rj/LKxAIBLP06GU5ch+OKXa6jZfyIuLHcvsBj2jq2PmwtaI3B+K0xxLY8hmwMBAKO23cLINmVx/4e2+LZLRQzZFFhgMRAVFWpNTs6dOwd3d3dcvnwZp06dQlpaGjp27IiEhAT5mMmTJ+P333/Hvn37cO7cObx48QJ9+vSR9wcEBMDGxgbbt2/HnTt3MHPmTMyYMQOrV6+Wj0lJSYG1tTVmzZqF2rVrF+o1EhFR8aRnbCb/f1piHAAJAGDj3ABGVnYFXr+OngEcGnWEJGXX2xDxEaFZOyUJKfGxWbElJ0BLRw9aOroqjyG3e5AcE4XXj+/AsUU3AFnJWmJUOOIinqq8fgDQNzH/N4aEWEiShKTol3j1IFB+YuTYogcSXj5H7It/CiQGC6N/721MUjokSIiMTcG1kBh83bQ0AKBvg1J4+joZjyIT3lcMUbGg1m5dJ06cUHi9detW2NjYICAgAK1atUJMTAw2b96MnTt3ol27dgCALVu2wNnZGZcvX0aTJk0wdOhQhTIqVKgAf39/HDx4EOPGjQMAODo6yk9Tfvnll0K4MiIiIsB/3feIvHsVAND6v2vVGsudw+tRtmkXAEDLqWtwet5AXN+2EMkxUWjivgShl/4okHrfvQeJr8NhWMIaWtpZH0EkSYKRVSkkRoUXSP0AcG7paIQHXQAAdFi4Fwkvn8PQ0lYhBmPrMkh4+bzAYhj08w2cvRcFAPhjciM8fZ2EUhb60NHWkmMoa2WAp6+TCywGoqJAo8acxMTEAAAsLS0BZD0VSUtLQ/v27eVjqlatirJly8Lf3x9NmjR5bznZZeRVSkoKUlJS5NexsbH5Ko+IiIqfpmMWAwAenz+CwN0r0Wb6OrXEEbRrOWJf/IPOP6wEANzcsxINvpmDiu36ITYsBH9M6wqzUuUBlFB53e/eg1r9xqm8jo9pPX09AODBqV24tnke6g2eWegx/DqiLgBg28Wn+HbfPSzo41ToMRAVBRozW1dmZiYmTZqE5s2bo0aNGgCA8PBw6OnpwcLCQuFYW1tbhIfn/g3LpUuXsGfPHowcOTJf8Xh6esLc3Fz+cXAomIF6RET0+avQqici7/6FlLjoQq/71r6fEOLnjY4L90HHwAjJMVF4cukYKrbrBwAwK+UIa6d6SIl/U6BxZN8DQ0tbJL15icyMdACAEAKJUWGF0tWtcoevEBZ0EcYl7ZH0OkIhhoSXz2BsXbrAYxjcwgFn/45CmRKGCItOQXpGphxDaFQyHCwNCjwGIk2mMcmJu7s7bt++jd27d+e5jNu3b6Nnz56YO3cuOnbsmK94ZsyYgZiYGPnn6dOC6QtLRESfn9SEWCS+iZRfP7vmAz0Tc+i9Nf6hMNw+sAaPfQ+gk+cheeyFnokFdPSN8CLwPAAgOSYKL4OvQ9fQVKV1v+8eGJhZwbK8M0IuegMAnl49BSNLW5jaqv5LwJT4GCRGhcmvn1w6Bn0zSxhYWMOqUi088tkLAAi5eBRGJe1hVgCzdUUnpuHFm3+7ah2+Hg4rEz3YmOmhXjkzbPfP6kp24FoYylgaoKKNscpjICpKNKJb17hx4+Dt7Y3z58+jTJky8nY7OzukpqYiOjpa4elJREQE7OwUv2G5e/cuXFxcMHLkSMyalf9ZP/T19aGvr5/vcoiIqPhJS4zHRa+pyEhNhqSlBX3TEmg9bQ0kScLVzR54ceM8kmOicHbJKOgaGqP7CtWP90h4+RxXN86CaSlHHJ/eHQCgpauPHl6n0XbmFvz18xxkZqRDZKSjWs8RiLh9WaX1f+geNBw6B5c3zMLdo5uga2iMxiMXqLRuOYaEGJxZ+A0yUpMASQsG5iXRYf5uSJKE5hNW4vxydwTtXgFdI1O0nLr64wXmQUxiGvqtDUBSaia0tABrU314T2oISZKwYXAtDNkciMXeD2FmqIMtQzlpD5FakxMhBMaPH49Dhw7B19cX5csrfmNRv3596OrqwsfHB3379gUABAcHIzQ0FE2bNpWPu3PnDtq1a4fBgwdj0aJFhXoNRERE7zK2tofrgl257ms0bG4hxVAaQ//MvatW6XptULqer/w6PTVZ5cnJh+6BmX15dPTYobAtIzUl12Pzw8S2LHr85JPrPnOHyui+6qTCtvRU1Q9GL1fSCFfntMx1n1MpE/jPaqGwLTktQ+UxEBUlak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2lQfD3759G+3atYOrqyumTJkil6GtrQ1ra2u5rsDAQABAfHw8Xr58icDAQOjp6aFatWqFe9FERERERJQrtSYn69ZlzVrSpk0bhe1btmzBkCFDAAArV66ElpYW+vbti5SUFLi6umLt2n+nY9y/fz9evnyJ7du3Y/v27fL2cuXKISQkRH5dt25d+f8DAgKwc+fOHMcQEREREZH6qL1b18cYGBhgzZo1WLNmTa77582bh3nz5qmkLiIiIiIiUh+Nma2LiIiIiIiKNyYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRtBRdwBERESfk4z01EI9LzeZaSlIV/J4VcrLtajy+gHl70H2OaqUkpZZKOcQfU6YnBAREamQ/9oZ6g4B55aMUmv9vAdZvt54Q90hEBU5TE6IiIhUpF5pU3WHgNrWumqtn/fg/zk0yt/5aWmqiYOoiJGEEELdQRQFsbGxMDc3R0xMDMzMzNQdDhERaRAhBFJSVNclSF9fH5IkqSWGvNStyvoZQ5bY2FjY2trycwcVO3xyQkRElE+SJMHAwKBYx6Du+j+3GFJTVTsGh6io4GxdRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGUCo5SU9Px6+//oqIiIiCioeIiIiIiIoppZITHR0djB49GsnJyQUVDxERERERFVNKd+tq1KgRAgMDCyAUIiIiIiIqznSUPWHs2LGYMmUKnj59ivr168PY2Fhhf61atVQWHBFpJiEEUlJSVFaevr4+JElSWwx5qZ8xqL7+vMZARESfD0kIIZQ5QUsr58MWSZIghIAkScjIyFBZcJokNjYW5ubmiImJgZmZmbrDIVKr5ORk9OvXT2Xl7du3DwYGBmqLIS/1MwbV15/XGIg+R/zcQcWV0k9O/vnnn4KIg4iKoOvP4/JdRr3Spvk6P+hlWr7Or22tm6/zgfzfh/zeA0AD7sPTq/k7HwAcGuW/DCIiKtKUTk7KlStXEHEQURHVdKwntHX0lD4vIz0V/mtnqCSG1t9ugJauvlLnZKal4NySUSqpH8jbfVDlPQDUfx+2j6wLfV3lZ6hPScvE1xtvqCQGIiIq2pROTrLdvXsXoaGhSE1NVdjeo0ePfAdFREWHto4etPWU+0Csalq6+tDRU64rULqKY+B9APR1tWCgq63CEomIqLhROjl5/PgxevfujVu3bsljTQDIAxg/1zEnRERERERUsJR+/j5x4kSUL18ekZGRMDIywp07d3D+/Hk0aNAAvr6+BRAiEREREREVB0o/OfH398eZM2dQsmRJaGlpQUtLCy1atICnpycmTJiAGzfYb5iIiIiIiJSn9JOTjIwMmJpmzSxTsmRJvHjxAkDWQPng4GDVRkdERERERMWG0k9OatSogaCgIJQvXx6NGzfG0qVLoaenh40bN6JChQoFESMRERERERUDSicns2bNQkJCAgBg/vz56NatG1q2bAkrKyvs2bNH5QESEREREVHxoHRy4urqKv9/pUqV8Pfff+P169coUaKEPGMXERERERGRspRfLev/PXz4EH/++SeSkpJgaWmpypiIiIiIiKgYUjo5iYqKgouLC6pUqYIuXbogLCwMADBs2DBMnTpV5QESEREREVHxoHS3rsmTJ0NXVxehoaFwdnaWtw8YMABTpkzB8uXLVRogEREREeUuIyMDaWlp6g6D6L10dXWhra39yccrnZycPHkSf/75J8qUKaOwvXLlynjy5ImyxRERERGRkoQQCA8PR3R0tLpDIfooCwsL2NnZfdL4dKWTk4SEBBgZGeXY/vr1a+jr6ytbHBEREREpKTsxsbGxgZGRESclIo0khEBiYiIiIyMBAKVKlfroOUonJy1btsSvv/6KBQsWAAAkSUJmZiaWLl2Ktm3bKlscERERESkhIyNDTkysrKzUHQ7RBxkaGgIAIiMjYWNj89EuXkonJ0uXLoWLiwuuXbuG1NRUTJ8+HXfu3MHr16/h5+eXt6iJiIiI6JNkjzHJrScLkSbK/realpb20eRE6dm6atSogfv376NFixbo2bMnEhIS0KdPH9y4cQMVK1bMW8REREREpBR25aKiQpl/q0o/OQEAc3NzzJw5My+nEhERERER5UrpJyeOjo6YP38+nj59WhDxEBERERFRMaX0k5NJkyZh69atmD9/Ptq2bYthw4ahd+/enKmLiIiISN2WF2JXr6mi8OpSs5CQEJQvXx43btxAnTp11B1Onjk6OmLSpEmYNGmSukN5L6WfnEyaNAmBgYG4evUqnJ2dMX78eJQqVQrjxo3D9evXCyJGIiIiIirCJEn64M+8efPUGtvhw4c/eIyDgwPCwsJQo0aNTy533rx5RTqRURelk5Ns9erVg5eXF168eIG5c+di06ZNaNiwIerUqYNffvkFQhSfbJqIiIiI3i8sLEz+WbVqFczMzBS2TZs2TanyUlNTCyjS3Glra8POzg46Onkarp0vhX2t6pbn5CQtLQ179+5Fjx49MHXqVDRo0ACbNm1C37598f3338PNzU2VcRIRERFREWVnZyf/mJubQ5Ik+XVCQgLc3Nxga2sLExMTNGzYEKdPn1Y439HREQsWLMCgQYNgZmaGkSNHAgB+/vlnODg4wMjICL1798aKFStgYWGhcO6RI0dQr149GBgYoEKFCvDw8EB6erpcLgD07t0bkiTJr98VEhICSZIQGBgIAPD19YUkSfDx8UGDBg1gZGSEZs2aITg4GACwdetWeHh4ICgoSH46tHXrVgBAdHQ0hg8fDmtra5iZmaFdu3YICgqS68p+4rJp0yaUL18eBgYG2LhxI+zt7ZGZmakQV8+ePTF06FAAwKNHj9CzZ88P3seiQOnk5Pr16wpduapXr47bt2/j4sWL+OabbzB79mycPn0ahw4dKoh4iYiIiOgzEh8fjy5dusDHxwc3btxAp06d0L17d4SGhioct2zZMtSuXRs3btzA7Nmz4efnh9GjR2PixIkIDAxEhw4dsGjRIoVzLly4gEGDBmHixIm4e/cuNmzYgK1bt8rH/fXXXwCALVu2ICwsTH79qWbOnInly5fj2rVr0NHRkROFAQMGYOrUqahevbr8dGjAgAEAgH79+iEyMhLHjx9HQEAA6tWrBxcXF7x+/Vou9+HDhzhw4AAOHjyIwMBA9OvXD1FRUTh79qx8zOvXr3HixAn5gcCn3kdNp/SzqYYNG6JDhw5Yt24devXqBV1d3RzHlC9fHl9++aVKAiQiIiKiz1ft2rVRu3Zt+fWCBQtw6NAhHD16FOPGjZO3t2vXDlOnTpVfz5w5E507d5a7hFWpUgWXLl2Ct7e3fIyHhwe+++47DB48GABQoUIFLFiwANOnT8fcuXNhbW0NALCwsICdnZ3SsS9atAitW7cGAHz33Xfo2rUrkpOTYWhoCBMTE+jo6CiUe/HiRVy9ehWRkZHyZFLLli3D4cOHsX//fvmJUGpqKn799Vc5PgDo3Lkzdu7cCRcXFwDA/v37UbJkSbRt21ap+6jplH5y8vjxY5w4cQL9+vXLNTEBAGNjY2zZsiXfwRERERHR5y0+Ph7Tpk2Ds7MzLCwsYGJignv37uX4xr9BgwYKr4ODg9GoUSOFbe++DgoKwvz582FiYiL/jBgxAmFhYUhMTMx37LVq1ZL/v1SpUgCAyMjI9x4fFBSE+Ph4WFlZKcT0zz//4NGjR/Jx5cqVU0hMAMDNzQ0HDhxASkoKAGDHjh348ssvoaWV9XH+U++jplP6yUm5cuUKIg4iIiIiKoamTZuGU6dOYdmyZahUqRIMDQ3xxRdf5BgIbmxsrHTZ8fHx8PDwQJ8+fXLsMzAwyHPM2d7+oj57FfR3x4W8G0+pUqXg6+ubY9/bY2Vyu9bu3btDCIFjx46hYcOGuHDhAlauXCnv/9T7qOkKf8oBIiIiIqL/5+fnhyFDhqB3794Asj7Ah4SEfPQ8JyenHGNE3n1dr149BAcHo1KlSu8tR1dXFxkZGcoH/hF6eno5yq1Xrx7Cw8Oho6Pz3sH372NgYIA+ffpgx44dePjwIZycnFCvXj15f17vo6ZhckJEREREalO5cmUcPHgQ3bt3hyRJmD179gefPmQbP348WrVqhRUrVqB79+44c+YMjh8/Lj/BAIA5c+agW7duKFu2LL744gtoaWkhKCgIt2/fxsKFCwFkzdjl4+OD5s2bQ19fHyVKlFDJdTk6OuKff/5BYGAgypQpA1NTU7Rv3x5NmzZFr169sHTpUlSpUgUvXrzAsWPH0Lt37xxd197l5uaGbt264c6dO/j6668V9uX1PmoaJidEREREn4siuGr7ihUrMHToUDRr1gwlS5bEt99+i9jY2I+e17x5c6xfvx4eHh6YNWsWXF1dMXnyZKxevVo+xtXVFd7e3pg/fz6WLFkCXV1dVK1aFcOHD5ePWb58OaZMmYKff/4ZpUuXVtnThr59++LgwYNo27YtoqOjsWXLFgwZMgR//PEHZs6ciW+++QYvX76EnZ0dWrVqBVtb24+W2a5dO1haWiI4OBgDBw5U2JfX+6hplEpO0tLSULVqVXh7e8PZ2bmgYiIiIiKiz9SQIUMwZMgQ+bWjoyPOnDmjcIy7u7vC6/clDCNGjMCIESMUXr/bhcvV1RWurq7vjad79+7o3r37B2N2dHRUWGC8TZs2ORYcr1OnjsI2fX197N+/P0dZpqam8PLygpeXV651zZs3D/Pmzct1n5aWFl68ePHeGPN6HzWJUsmJrq4ukpOTVVa5p6cnDh48iL///huGhoZo1qwZlixZAicnJ/mY5ORkTJ06Fbt370ZKSgpcXV2xdu1aObsMCgrCDz/8gIsXL+LVq1dwdHSU57x+m6+vL6ZMmYI7d+7AwcEBs2bNUvjFIKL8Oes5EkkxryBJWtA1NEa9Qd/B0tEZAds88fy6LxJevUCnRftQwrFqgdSfnpoM38XDEB0aDG09AxhaWKPZ+OUwK10BL4Ov48r6GUhLSoAkSWg0ahFsqjX6eKF58L77EBf+BJfXz0RKXDR0jUzQZNRCmNg4qLz+EzP6IOlNxP/Xb4ImY5fAqlItxDx/hAv/G4Pk2NfQMzZDy6lrUMKxYL5k6rjsMsJjUqAlSTA10IGXW3XULWeOB+HxGLwpCK/iU2FuqIOtw+ugemnTAomBiIqHZcuWoUOHDjA2Nsbx48exbds2rF27Vt1hUT4o3a3L3d0dS5YswaZNm6Cjk79eYefOnYO7uzsaNmyI9PR0fP/99+jYsSPu3r0rz1IwefJkHDt2DPv27YO5uTnGjRuHPn36wM/PDwAQEBAAGxsbbN++HQ4ODrh06RJGjhwJbW1teU7nf/75B127dsXo0aOxY8cO+Pj4YPjw4ShVqtQHM2ki+nTNJyyDnrEZAODpXz64smEWOnsegEOjDnDu9g1Ozx9c4DE4dRmMMg07QJIk3D2yERdXTUDnpb/DZ/5/0HLqGpSu1wYxzx7ixHe90HPdhQKJ4X334erm+ajY9gtUaN0LoVdO4vKGWWg/e5vK6287cwv0TcwBACF+3ji/bCx6r7+ISz9OhlOXIajccSD+uXAEF5a7o8dPZz5SWt7sHVsfFkZZM9gcCgjDkM2BCJrfGqO23cLINmUxpIUD9v/1AkM2BeKvuS0LJAYiKh6uXr2KpUuXIi4uDhUqVICXl5dCly0qepTOLv766y/4+Pjg5MmTqFmzZo6pzg4ePPjJZZ04cULh9datW2FjY4OAgAC0atUKMTEx2Lx5M3bu3Il27doByFrB09nZGZcvX0aTJk3klTizVahQAf7+/jh48KCcnKxfvx7ly5fH8uXLAQDOzs64ePEiVq5cyeSESEWyP5ADQFpiHICsAYk2zh8e3KcqOnoGcGjUUX5t49wQtw+sRkrsayTHvELpem0AAOZlKkHPxBzPAwrmg3lu9yE5JgqvH99B2+82AAAcGnVAwLbFiIt4qvL6sxMTAEhLiIUkSUiKfolXDwLh6pn1/uzYogcur5mO2OePYWRtr/IYshMTAIhJSocECZGxKbgWEoOT0xoDAPo2KIVx2+/gYUQCyljmfzpPIiqe9u7dq+4QSMWUTk4sLCzQt2/fgogFMTExAABLS0sAWU9F0tLS0L59e/mYqlWromzZsvD390eTJk3eW052GQDg7++vUAaQ1f9w0qRJ740lJSVFXuQGQJEcUERU2PzXfY/Iu1cBAK3/q97H6ncOr0fZpl1gYG4FI0tbPD53CBVa98bL4OuIefYQCZGqTwyyvXsfEl+Hw7CENbS0s95yJUmCkVUpJEaFF0j955aORnhQ1pOhDgv3IuHlcxha2irUb2xdBvEvnxVIcgIAg36+gbP3ogAAf0xuhKevk1DKQh862lpyDGWtDBAalcTkhIiIZEonJwW18ntmZiYmTZqE5s2bo0aNGgCA8PBw6OnpKSxKAwC2trYID8/9j/qlS5ewZ88eHDt2TN4WHh6eYwYEW1tbxMbGIikpCYaGhjnK8fT0hIeHRz6viqh4aTpmMQDg8fkjCNy9Em2mr1NLHEG7liP2xT/o/EPW4lQuc3fg2mYP3NyzEiXKVYVt9SaQtApussJ370OtfuMKrK7ctJ6+HgDw4NQuXNs8D/UGzyzU+gHg1xF1AQDbLj7Ft/vuYUEfp4+cQUREBGjl9cSXL1/i4sWLuHjxIl6+fJnvQNzd3XH79m3s3r07z2Xcvn0bPXv2xNy5c9GxY8ePn/ABM2bMQExMjPzz9GnBfctK9Lmp0KonIu/+hZS46EKv+9a+nxDi542OC/dBx8AIAGBVsSZcF+9Hr7Xn0frbjUiMCodFuYL/sJx9HwwtbZH05iUyM9IBAEIIJEaFwcjKrkDrr9zhK4QFXYRxSXskvY5QqD/h5TOYWJcp0PoBYHALB5z9OwplShgiLDoF6RmZcgyhUckoa5XzyyEiIiq+lE5OEhISMHToUJQqVQqtWrVCq1atYG9vj2HDhiExMTFPQYwbNw7e3t44e/YsypT594+lnZ0dUlNTER0drXB8REQE7OwU/6jfvXsXLi4uGDlyJGbNmqWwz87ODhERETnKMDMzy/WpCZA1/ZuZmZnCDxHlLjUhFolvIuXXz675QM/EHHpvjX8oDLcPrMFj3wPo5HlIYezF292ngv/YBh0DI9jVaqHy+t93HwzMrGBZ3hkhF70BAE+vnoKRpS1MbVU7W1dqfAwSo8Lk108uHYO+mSUMLKxhVakWHvlk9c0OuXgURiXtYVa6gkrrB4DoxDS8ePPvrI6Hr4fDykQPNmZ6qFfODNv9nwMADlwLQxlLA1SyNX5fUUREVAwp3a9hypQpOHfuHH7//Xc0b94cAHDx4kVMmDABU6dOxbp1n96NQwiB8ePH49ChQ/D19UX58uUV9tevXx+6urrw8fGRx7kEBwcjNDQUTZs2lY+7c+cO2rVrh8GDB2PRokU56mnatCn++OMPhW2nTp1SKIOI8i4tMR4XvaYiIzUZkpYW9E1LoPW0NZAkCVc3e+DFjfNIjonC2SWjoGtojO4r/vh4oUpKePkcVzfOgmkpRxyfnjVfvZauPnp4nUbw8W14dGYfIATMy1aBy5zfFFYQVpUP3YeGQ+fg8oZZuHt0E3QNjdF45AKV15+aGIvzS0YjIzUJkLRgYF4SHebvhiRJaD5hJc4vd0fQ7hXQNTJFy6mrP15gHsQkpqHf2gAkpWZCSwuwNtWH96SGkCQJGwbXwpDNgVjs/RBmhjrYMrR2gcRARERFl9LJyYEDB7B//360adNG3talSxcYGhqif//+SiUn7u7u2LlzJ44cOQJTU1N5HIm5uTkMDQ1hbm6OYcOGYcqUKbC0tISZmRnGjx+Ppk2byoPhb9++jXbt2sHV1RVTpkyRy9DW1oa1tTUAYPTo0Vi9ejWmT5+OoUOH4syZM9i7d6/CuBQiyjtja3u4LtiV675Gw+YWUgylMfTPN7nuq/v1t6j79bcK29JTVbdm078xvP8+mNmXR0ePHQrbMlJTcj02r0xsHNDjJ59c95k7VEb3VSdVWl9uypU0wtU5uU8P7FTKBP6zVP/EioioKGvTpg3q1KmDVatWqTuUPJs3bx4OHz6MwMDAfJeldHKSmJiYY3A5ANjY2CjdrSs7kXk70QGyBt1nL5C4cuVKaGlpoW/fvgqLMGbbv38/Xr58ie3bt2P79u3y9nLlysmrYJYvXx7Hjh3D5MmT8eOPP6JMmTLYtGkTpxEmIiKiz0rJeecLra5X81opdfyQIUOwbVvW+k66urooW7YsBg0ahO+//z7fa+cVZQcPHoSuru7HD/x/ISEhKF++PG7cuIE6deoUXGBqovS/hKZNm2Lu3Ln49ddfYWCQNf1jUlISPDw8lO4mJYT46DEGBgZYs2YN1qxZk+v+efPmYd68eR8tp02bNrhx44ZS8RERERGR6nTq1AlbtmxBSkoK/vjjD7i7u0NXVxczZszIcWxqair09PQKPUYhBDIyMlSeML3vet5e/qKwpaWlKZUYFQalB8T/+OOP8PPzQ5kyZeDi4gIXFxd5ZfYff/yxIGIkIiIios+Avr4+7OzsUK5cOYwZMwbt27fH0aNHAWQ9WenVqxcWLVoEe3t7ODllzar49OlT9O/fHxYWFrC0tETPnj3l3jHZfvnlF1SvXh36+vooVaqUvBB3SEgIJElS6G4UHR0NSZLg6+sLAPD19YUkSTh+/Djq168PfX19XLx4EUFBQWjbti1MTU1hZmaG+vXr49q1a3I5Bw4ckOt0dHSUF/vO5ujoiAULFmDQoEEwMzPDyJEjc70nbdq0UVh7z9HREYsXL8bQoUNhamqKsmXLYuPGjfL+7DHadevWhSRJCj2QNm3aBGdnZxgYGKBq1aoKvY2y78WePXvQunVrGBgYYN26dTA0NMTx48cVYjp06BBMTU3lXlHffvstqlSpAiMjI1SoUAGzZ89GWlparteTX0qnhDVq1MCDBw+wY8cO/P333wCAr776Cm5ubu+d+YqIiIiI6F2GhoaIioqSX/v4+MDMzAynTp0CkPXNvqurK5o2bYoLFy5AR0cHCxcuRKdOnXDz5k3o6elh3bp1mDJlCn744Qd07twZMTEx8PPzUzqW7777DsuWLUOFChVQokQJtGrVCnXr1sW6deugra2NwMBA+SlDQEAA+vfvj3nz5mHAgAG4dOkSxo4dCysrK3loAgAsW7YMc+bMwdy5yo2/XL58ORYsWIDvv/8e+/fvx5gxY9C6dWs4OTnh6tWraNSoEU6fPo3q1avLT2N27NiBOXPmYPXq1ahbty5u3LiBESNGwNjYGIMHD1a4zuXLl6Nu3bowMDDAhQsXsHPnTnTu3Fk+ZseOHejVqxeMjLKm5Dc1NcXWrVthb2+PW7duYcSIETA1NcX06dOVvs8fk6fnVUZGRhgxYoSqYyEiIiKiYkAIAR8fH/z5558YP368vN3Y2BibNm2SP3Bv374dmZmZ2LRpkzzL4pYtW2BhYQFfX1907NgRCxcuxNSpUzFx4kS5nIYNGyod0/z589GhQwf5dWhoKP773/+iatWqAIDKlSvL+1asWAEXFxfMnj0bAFClShXcvXsX//vf/xSSk3bt2mHq1KlKx9KlSxeMHTsWQNZTi5UrV+Ls2bNwcnKSJ3yysrJSWFpj7ty5WL58Ofr06QMg6wnL3bt3sWHDBoXkZNKkSfIxAODm5ob//Oc/SExMhJGREWJjY3Hs2DEcOnRIPubtZTocHR0xbdo07N69W3OSkwcPHuDs2bOIjIxEZmamwr45c+aoJDAiIiIi+rx4e3vDxMQEaWlpyMzMxMCBAxXGDtesWVNhXEZQUBAePnwIU1NThXKSk5Px6NEjREZG4sWLF3Bxccl3bA0aNFB4PWXKFAwfPhy//fYb2rdvj379+qFixYoAgHv37qFnz54Kxzdv3hyrVq1CRkYGtLW1cy3zU9WqVUv+f0mSYGdnh8jIyPcen5CQgEePHmHYsGEKDxDS09Nhbq645ti7MXXp0gW6uro4evQovvzySxw4cABmZmZo3769fMyePXvg5eWFR48eIT4+Hunp6QW2BqDSycnPP/+MMWPGoGTJkrCzs1NYK0CSJCYnRERERJSrtm3bYt26ddDT04O9vX2OQefGxooLs8bHx6N+/frYsUNxKnYAsLa2hpbWh4dPZ+9/exKm942VeLfuefPmYeDAgTh27BiOHz+OuXPnYvfu3ejdu/cH6/xQmZ/q3UHqkiTleCDwtvj4eABZn9MbN26ssC87UXpfTHp6evjiiy+wc+dOfPnll9i5cycGDBggt42/vz/c3Nzg4eEBV1dXmJubY/fu3TnG2KiK0snJwoULsWjRInz77bcfP5iIiIiI6P8ZGxujUqVKn3x8vXr1sGfPHtjY2Lz3m3pHR0f4+Pigbdu2OfZld4EKCwtD3bp1AUCptTiqVKmCKlWqYPLkyfjqq6+wZcsW9O7dG87OzjnGtfj5+aFKlSo5kgFVy36ylJGRIW+ztbWFvb09Hj9+DDc3N6XLdHNzQ4cOHXDnzh2cOXMGCxculPddunQJ5cqVw8yZM+VtT548yccVfJjSs3W9efMG/fr1K4hYiIiIiIhkbm5uKFmyJHr27IkLFy7gn3/+ga+vLyZMmIBnz54ByHrCsXz5cnh5eeHBgwe4fv06fvrpJwBZA+6bNGmCH374Affu3cO5c+cUxk+8T1JSEsaNGwdfX188efIEfn5++Ouvv+Ds7AwAmDp1Knx8fLBgwQLcv38f27Ztw+rVqzFt2rSCuxn/z8bGBoaGhjhx4gQiIiIQExMDAPDw8ICnpye8vLxw//593Lp1C1u2bMGKFSs+WmarVq1gZ2cHNzc3lC9fXuHpS+XKlREaGordu3fj0aNH8PLyUhiPompKJyf9+vXDyZMFv8owERERERVvRkZGOH/+PMqWLYs+ffrA2dkZw4YNQ3JysvwkZfDgwVi1ahXWrl2L6tWro1u3bnjw4IFcxi+//IL09HTUr18fkyZNUngq8D7a2tqIiorCoEGDUKVKFfTv3x+dO3eGh4cHgKwnOnv37sXu3btRo0YNzJkzB/Pnz1cYDF9QdHR04OXlhQ0bNsDe3l4e+zJ8+HBs2rQJW7ZsQc2aNdG6dWts3bpVnnr4QyRJwldffYWgoKAcT1569OiByZMnY9y4cahTpw4uXbokTwRQED6pW5eXl5f8/5UqVcLs2bNx+fJl1KxZM0efuAkTJqg2QiIiIiL6JMqu2l6Ytm7dmqf9dnZ28sry7zNq1CiMGjUq133Ozs64dOmSwra3x6C0adMmx8Lgenp62LVr1wfr7Nu3L/r27fve/e+uxfI+2eutfOi8d7uiDR8+HMOHD89x3MCBAzFw4MBc63F0dPzgAuhLlizBkiVLct23dOlSLF26VGHb22uzfOqi6J/ik5KTlStXKrw2MTHBuXPncO7cOYXtkiQxOSEiIiIiojz5pOTkn3/+Keg4iIiIiIiomFN6zAkREREREVFBUDo56du3b6790ZYuXcpZvIiIiIiIKM+UTk7Onz+PLl265NjeuXNnnD9/XiVBERERERFR8aN0chIfHy8v/vI2XV1dxMbGqiQoIiIiIvqwD828RKRJlPm3qnRyUrNmTezZsyfH9t27d6NatWrKFkdERERESshexiExMVHNkRB9mux/q+8uQZKbT5qt622zZ89Gnz598OjRI7Rr1w4A4OPjg127dmHfvn3KFkdEREREStDW1oaFhQUiIyMBZC1UKEmSmqMiykkIgcTERERGRsLCwgLa2tofPUfp5KR79+44fPgwFi9ejP3798PQ0BC1atXC6dOn0bp16zwFTkRERESfzs7ODgDkBIVIk1lYWMj/Zj9G6eQEALp27YquXbvm5VQiIiIiyidJklCqVCnY2NggLS1N3eEQvZeuru4nPTHJlqfkBABSU1MRGRmJzMxMhe1ly5bNa5FEREREpARtbW2lPvgRaTqlk5MHDx5g6NChuHTpksJ2IQQkSUJGRobKgiMiIiIiouJD6eRkyJAh0NHRgbe3N0qVKsUBWEREREREpBJKJyeBgYEICAhA1apVCyIeIiIiIiIqppRe56RatWp49epVQcRCRERERETFmNLJyZIlSzB9+nT4+voiKioKsbGxCj9ERERERER5oXS3rvbt2wMAXFxcFLZzQDwREREREeWH0snJ2bNnCyIOIiIiIiIq5pROTj60Cvzt27fzFQwRERERERVfeV6EMVtcXBx27dqFTZs2ISAggN26iIqZjPTUQj0vN5lpKUjPwzmqlJfrUeU9ANR/H1LSMj9+kArPIyKiz0+ek5Pz589j8+bNOHDgAOzt7dGnTx+sWbNGlbERURHgv3aGukPAuSWj1B0C7wOArzfeUGv9RERU9CmVnISHh2Pr1q3YvHkzYmNj0b9/f6SkpODw4cOoVq1aQcVIRBqqXmlTdYeA2ta66g6B9wEAHBqpt34iIvosSEII8SkHdu/eHefPn0fXrl3h5uaGTp06QVtbG7q6uggKCvrsk5PY2FiYm5sjJiYGZmZm6g6HSK2EEEhJUV13IH19fUiSpLYY8lI/Y1B9/XmNgehzxM8dVFx98pOT48ePY8KECRgzZgwqV65ckDERkYaTJAkGBgaMgTGovX4iIvq8fPIijBcvXkRcXBzq16+Pxo0bY/Xq1VwpnoiIiIiIVOaTk5MmTZrg559/RlhYGEaNGoXdu3fD3t4emZmZOHXqFOLi4goyTiIiIiIi+sx98piT3AQHB2Pz5s347bffEB0djQ4dOuDo0aOqjE9jsO8nERERFRZ+7qDi6pOfnOTGyckJS5cuxbNnz7Br1y5VxURERERERMVQvp6cFCf8BoOIiIgKCz93UHGVrycnREREREREqsLkhIiIiIiINAKTEyIiIiIi0ghMToiIiIiISCMwOSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgj6Kg7gKImOTkZenp6+SpDX18fkiQpfZ4QAikpKfmqWxPqL8oxqLL+vMZARERE9LlicqKkQYMGQVdXN19l7Nu3DwYGBkqfl5KSgn79+uWrbk2ovyjHoMr68xoDERER0eeKyYmSgsLioaWd99tWr7Rp/mN4mZbnc2tb5y+xAoDrz+Pydb667wGggvvw9Gr+zgcAh0b5L4OIiIjoM8LkJA+ajvWEto5yXbsy0lPhv3aGymJo/e0GaOnqf/LxmWkpOLdklMrqL4r3AFDtfdg+si70dZUftpWSlomvN95QSQxEREREnxMmJ3mgraMHbT3lPhSrmpauPnT0Pr07ULqK6y+K9wBQ7X3Q19WCga62CkskIiIiKt44WxcREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBB11Vu7p6YmDBw/i77//hqGhIZo1a4YlS5bAyclJPiY5ORlTp07F7t27kZKSAldXV6xduxa2trbyMRMmTICfnx9u374NZ2dnBAYG5qhr7969WLx4Me7fvw9ra2uMGzcO//3vf/MV/1nPkUiKeQVJ0oKuoTHqDfoOlo7OCNjmiefXfZHw6gU6LdqHEo5V81VPbjJSk+G7eBiiQ4OhrWcAQwtrNBu/HGalK+Dl3wG4vO47ZKSlICM1BZU7DkS1XqNUHgPw/nsQF/4El9fPREpcNHSNTNBk1EKY2DiovP4TM/og6U3E/9dvgiZjl8CqUi3EPH+EC/8bg+TY19AzNkPLqWtQwtFZ5fUDQMdllxEekwItSYKpgQ683KqjbjlzPAiPx+BNQXgVnwpzQx1sHV4H1UubFkgMRERERJ8DtSYn586dg7u7Oxo2bIj09HR8//336NixI+7evQtjY2MAwOTJk3Hs2DHs27cP5ubmGDduHPr06QM/Pz+FsoYOHYorV67g5s2bOeo5fvw43Nzc8NNPP6Fjx464d+8eRowYAUNDQ4wbNy7P8TefsAx6xmYAgKd/+eDKhlno7HkADo06wLnbNzg9f3Cey/4UTl0Go0zDDpAkCXePbMTFVRPQ5X/e8PtxEuoNmoGyTbsgJfYNDgxvBPt6bQokhvfdg6ub56Ni2y9QoXUvhF45icsbZqH97G0qr7/tzC3QNzEHAIT4eeP8srHovf4iLv04GU5dhqByx4H458IRXFjujh4/nVF5/QCwd2x9WBjpAgAOBYRhyOZABM1vjVHbbmFkm7IY0sIB+/96gSGbAvHX3JYFEgMRERHR50Ct3bpOnDiBIUOGoHr16qhduza2bt2K0NBQBAQEAABiYmKwefNmrFixAu3atUP9+vWxZcsWXLp0CZcvX5bL8fLygru7OypUqJBrPb/99ht69eqF0aNHo0KFCujatStmzJiBJUuWQAiR5/izP5QDQFpiHAAJAGDj3ABGVnZ5LvdTaOsZwKFRR0hSdp0NER8RmrVTkpASH5sVV3ICtHT1oG9aokDiyO0eJMdE4fXjO3Bs0Q0A4NCoAxKjwhEX8VTl9WcnJgCQlhALSZKQFP0Srx4EoqJLfwCAY4seSHj5HLHPH6u8fgByYgIAMUnpkCAhMjYF10Ji8HXT0gCAvg1K4enrZDyMSCiQGIiIiIg+B2p9cvKumJgYAIClpSUAICAgAGlpaWjfvr18TNWqVVG2bFn4+/ujSZMmn1RuSkoKjIyMFLYZGhri2bNnePLkCRwdHXM9JyUlRX4dGxuba9n+675H5N2rAIDW/137SfEUhDuH16Ns0y4AgJZT1+D0vIG4vm0hkmOi0GzCShiWsCmwut+9B4mvw2FYwhpa2ln/vCRJgpFVKSRGhRdI/eeWjkZ40AUAQIeFe5Hw8jkMLW0V6je2LoP4l89gZG1fIDEM+vkGzt6LAgD8MbkRnr5OQikLfehoa8kxlLUyQGhUEspYGhRIDERERERFncYMiM/MzMSkSZPQvHlz1KhRAwAQHh4OPT09WFhYKBxra2uL8PBP/6Dr6uqKgwcPwsfHB5mZmbh//z6WL18OAAgLC8v1HE9PT5ibm8s/Dg65j5doOmYxev50GjX7jUfg7pWfHJMqBe1ajtgX/6DBN3MAADf3rESDb+ZgwPbb6L3RH9e3LkB0aHCB1a/ue9B6+noM2HEH9YbMwrXN8wq9fgD4dURdPF3RHgv7OOHbfffUEgMRERFRUacxyYm7uztu376N3bt3q7zsESNGYNy4cejWrRv09PTQpEkTfPnllwAALa3cb8GMGTMQExMj/zx9+uEuSRVa9UTk3b+QEhet6vA/6Na+nxDi542OC/dBx8AIyTFReHLpGCq26wcAMCvlCGvnhoi891eBx5J9DwwtbZH05iUyM9IBAEIIJEaFFXhXt8odvkJY0EUYl7RH0usIhfoTXj6DiXWZAq0fAAa3cMDZv6NQpoQhwqJTkJ6RKccQGpWMslaGBR4DERERUVGlEcnJuHHj4O3tjbNnz6JMmX8/QNrZ2SE1NRXR0dEKx0dERMDO7tM/6EqShCVLliA+Ph5PnjxBeHg4GjVqBADvHaeir68PMzMzhZ+3pSbEIvFNpPz62TUf6JmYQ++tMRAF7faBNXjsewCdPA/JYy/0TCygo2+EF4HnAQDJMVF4+fc1lCin+hnD3ncPDMysYFneGSEXvQEAT6+egpGlLUxtVTtbV2p8DBKj/n3y9eTSMeibWcLAwhpWlWrhkc9eAEDIxaMwKmkPs9K5t3V+RCem4cWbZPn14evhsDLRg42ZHuqVM8N2/+cAgAPXwlDG0gCVbI1VHgMRERHR50KtY06EEBg/fjwOHToEX19flC9fXmF//fr1oaurCx8fH/Tt2xcAEBwcjNDQUDRt2lTp+rS1tVG6dNYA5V27dqFp06awtrbOU+xpifG46DUVGanJkLS0oG9aAq2nrYEkSbi62QMvbpxHckwUzi4ZBV1DY3T54VCe6nmfhFcvcHXjLJiWcsTx6d0BAFq6+ujhdRptZ27BXz/PQWZGOkRGOqr3HgPrqg1UWj/w4XvQcOgcXN4wC3ePboKuoTEaj1yg8vpTE2NxfsloZKQmAZIWDMxLosP83ZAkCc0nrMT55e4I2r0CukamaDl1tcrrB4CYxDT0WxuApNRMaGkB1qb68J7UEJIkYcPgWhiyORCLvR/CzFAHW4bWLpAYiIiIiD4Xak1O3N3dsXPnThw5cgSmpqbyOBJzc3MYGhrC3Nwcw4YNw5QpU2BpaQkzMzOMHz8eTZs2VRgM//DhQ8THxyM8PBxJSUnyOifVqlWDnp4eXr16hf3796NNmzZITk7Gli1bsG/fPpw7dy7PsRtb28N1wa5c9zUaNjfHtozUlFyOzDvjkvYY+uebXPeVrtcGpev5KmxLT03O9dh8xfCBe2BmXx4dPXYobFP1PTCxcUCPn3xy3WfuUBndV51UaX25KVfSCFfn5D49sFMpE/jPalHgMRARERF9LtSanKxbtw4A0KZNG4XtW7ZswZAhQwAAK1euhJaWFvr27auwCOPbhg8frpBo1K1bFwDwzz//yDNxbdu2DdOmTYMQAk2bNoWvr6/ctYuIiIiIiNRP7d26PsbAwABr1qzBmjVr3nuMr6/vB8soWbIk/P39lQ2PiIiIiIgKkUYMiCciIiIiImJyQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUZgckJERERERBqByQkREREREWkEJidERERERKQRmJwQEREREZFGYHJCREREREQagckJERERERFpBCYnRERERESkEZicEBERERGRRmByQkREREREGoHJCRERERERaQQddQdQFGWkpxbKOR+SmZaCdCWPV6WieA+yz1GVlLTMQj2PiIiI6HPH5CQP/NfOUHcIOLdklFrr5z0Avt54Q631ExEREX1umJwoqXYpE+jq6qo3Bmv11l+vtKla6wfUfw/g0Ei99RMRERF9hiQhhFB3EEVBbGwszM3NERERATMzs3yVpa+vD0mSlD5PCIGUlPx3S1J3/UU5BlXWn9cYiIjo85f9uSMmJibfnzuIihI+OVGSgYEBDAwM1FK3JElqq1sT6teEGNRdPxEREdHnjLN1ERERERGRRmByQkREREREGoHJCRERERERaQQmJ0REREREpBGYnBARERERkUbgbF2fKHvG5djYWDVHQkRERJ+77M8bXPGBihsmJ58oLi4OAODg4KDmSIiIiKi4iIuLg7m5ubrDICo0XITxE2VmZuLFixcwNTXlonnvERsbCwcHBzx9+pQLRmk4tlXRwvYqWtheRYcmt5UQAnFxcbC3t4eWFnvhU/HBJyefSEtLC2XKlFF3GEWCmZmZxr3JU+7YVkUL26toYXsVHZraVnxiQsURU3EiIiIiItIITE6IiIiIiEgjMDkhldHX18fcuXOhr6+v7lDoI9hWRQvbq2hhexUdbCsizcMB8UREREREpBH45ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTUhoneCMi4nshEVFBYHJCHxUdHY2uXbvif//7HwAgMzNTzRHR+7x58wZPnjwBAGRkZKg5GvqYiIgIrFq1CgcPHsT9+/cB8AOvJouKisLYsWNx9OhRAGwrTfbq1StcunQJjx8/VncoRKQkJif0USdPnsTx48fxww8/IDIyEtra2kxQNNAPP/yAsmXLYubMmQAAbW1tNUdEHzJnzhxUrFgR3t7eGDduHAYPHoy7d+9CkiR+6NVQS5Yswfr167Ft2zbExsZCS0uLbaWBZsyYAWdnZ0yaNAk1atTAypUrERUVpe6wiOgTMTmhjzp37hzc3NxQr149TJgwQd3h0DtSUlIwadIkHDx4EC1btsSTJ09w6NAhAHzKpal+++03HDt2DEeOHMHp06fx22+/ITMzE/7+/gAASZLUHCHlJigoCB06dEB0dDS2bt2q7nDoHS9evEC/fv1w+vRp7N+/H/v378e0adOwadMmXLp0Sd3hEdEnYnJC75Weng4AsLCwQL169TBo0CAcO3YM58+fh5YW/+loAiEE9PX1UbFiRYwYMQJLliyBlZUVtm/fzm92NdiJEydgbW0NFxcXAJD/26hRI/kYtpv6vHvvMzIykJKSAgsLC8ycORMODg44cuQI7t27B0mS2IVSjd5uq+z28PLyQuvWrVG2bFnMnz8fCQkJiIiIyHE8EWkmfsIkAP++Yb/9R1ZHRwcA4Ofnh0qVKqFr165o37495syZAyEEfHx8kJqaqpZ4i7PExEQ8ffoUqamp8jfso0aNwogRI1CzZk107doVz58/5ze7Gib7KVZqaiqsra0RFxeHGzduICoqCn379sXTp08xd+5cLFmyBBkZGXx6oiapqakK72tCCGhra0NfXx/379+Hg4MDvvzyS6SlpeHIkSNITU1FZGSkGiMuvlJTUxX+ZtWsWRPjxo1D06ZNAWT9zgkhULp0afn3j79XRJqPyQlh+fLlGD58OADFcQqZmZlIT0+HoaEhypUrB0tLS4wdOxYBAQHQ1taGj48PUlJS1BV2seTh4YG6deuib9++cHFxQXBwMAAoPCHp168fnJyc8Pvvv+PBgweQJIndu9Rk48aN+PnnnwFktVFmZib09PTQp08fWFpa4ttvv4WNjQ2io6OxYcMGVKhQARs2bMDo0aMBsFteYZs3bx5atGiBnj17YuPGjXjz5o38YTY4OBhaWlpwdHREp06d0KRJE2zYsAEGBgbYv38/26qQLVy4EJ06dULPnj3x008/ISoqCjY2NmjVqhWArN8dLS0tREZG4vbt26hZs6aaIyaiTyao2Lpz547o3r27MDY2Fra2tmLfvn1CCCHS09MVjmvWrJkICQkRf/75p7CzsxMlSpQQVlZWIjk5WQghREZGRqHHXtxcunRJNGjQQNSoUUMcPnxY/Pbbb6JVq1aiRYsWCsdlZmYKIYQ4evSoaN68ufjuu+/kfdntlH0MFZzr16+LNm3aCEmShIuLi7hx44YQQvF3KyMjQ2zYsEF07dpVJCYmytu3bNkibG1tRWRkZGGHXWylpaWJ//znP6JSpUpi27Zt4quvvhLVq1cX3bp1k48JCwsTHTp0EEII8ccffwhra2thYmIiWrVqJVJSUoQQ/N0qDAEBAaJBgwaievXqYvPmzWLAgAGibt26YvLkybke//vvv4vKlSvLf6+ISPPxyUkxdunSJUiShF9++QWurq748ccfkZqaCm1tbflb+L///huvX7+Gi4sL+vbti3HjxmHv3r2wtbXFjBkz1HwFxYefnx9q1aoFPz8/9OzZE19//TU6d+6MEiVKyGOD3v7mtnv37mjcuDH8/Pxw5swZ7N27F+7u7gDYraGgZWRkwNvbG7a2tli3bh1iY2Nx6NAhZGZmyr9bQghoaWkhODgYNjY2MDQ0lM9/+vQpbG1t+U18IXr69Cn++usvrFixAoMGDcLOnTuxcuVK+Pj4YOXKlQCAgIAA3Lx5E82aNcOAAQMwZcoUTJs2DZmZmdi7d6+ar6B4iI+Px65du1C1alX4+flh6NCh2L17N7p27YqHDx8iOjo6xznXr19Hw4YNoa+vDyDrvfTgwYOFHDkRKYPJSTGUnXgMGDAA06ZNQ//+/dG7d2/ExcVhxYoVAP79oFu1alXY29ujbdu2uHHjBmbOnInmzZujb9++2LlzpzzomgpGdluNHTsW06dPh5mZGYCsyQpOnz6NSpUq4fLlywCyug29PTh34MCBSEpKQrdu3fD111/D2NhYPRdRzGhra6NPnz6YMGECRo0ahebNm8PX1xenT5+Wj8lOECMiIvD69Wt5JqH79+/D19cX7dq1g62trVriL47S0tIQHByM2rVry9s6dOiA2bNnw8PDA8+ePUPjxo1haWmJypUr4/r16/juu+/wzTffQEdHB0eOHEFSUhIT/wImhED58uUxZswYmJuby1/MmJubIzg4WH5/fNuff/4JFxcXPH/+HF26dEHr1q0RFxdX2KETkTLU+diGNMerV6/ElClTRI0aNURISIgQQoikpCQhhBCxsbE5uiuEhYWJ+Pj4Qo+ThDhy5IgwNTUVNWvWFC4uLsLe3l64ubmJ6Oho+Zhnz56JUaNGCUmSxNChQ8Xr16/VGHHxdv/+fdGkSRMxZswY8ebNGyGEEKmpqUIIIS5fviwaN24sLC0tRc+ePYWpqalwc3MTcXFxaoy4+Ll7966oU6eOWLp0qcL2mJgYUb58eTF16lQhhBBPnz7N0Y310qVLbK9C9G7XSCGEmDVrlujfv3+OY4ODg0WJEiVE586dhZ6enujZs6d49epVocVKRHnDr7wJQghYWVmhR48esLCwgKenJwDAwMAAAGBqaip/Iyj+/5t8Ozs7fhNfSMQ7U1+mp6djx44duHHjBk6cOIHjx49j586duH79unzMkSNHcO7cOVy+fBmbN29GiRIlCjtsQtYTyMqVK6Nv3764du0avL29AQC6uroAgMaNG2PTpk1YtWoVGjVqBF9fX2zfvh0mJibqDPuz8+7v0LvKli0LJycnXLlyBSEhIQCy2s7MzAxjx47Fvn37kJycjDJlyshPirPLbNq0KdurkIj/nzktW/bfpevXr6NevXryMdkeP36M6OhoxMbG4ty5czh8+DCsrKwKN2giUhqTk8/Us2fPsGrVKjx+/BiA4ht29qPwbNndgJo1a4Zu3brB19cXFy9eBAC5y1A2dltQvbCwMNy8eROvXr3KsS89PT3HPe/Tpw+6d+8ObW1t6OjooGLFirC0tMSNGzfkY8aOHYt79+4prJtBqvHo0SPMmzcPDx8+zLHv3d+t7O6Ro0ePRokSJeDt7S1/+L116xYAoEaNGvjPf/6D77//Xv6ARaoTExOD+Ph4+T3w7bE82e1lbGyMXr164cGDB/L4kewkxNzcHGZmZnj58qVCuXwvVL2QkBAMGjQo1zE8774XZmZmQpIkxMTE4MqVK/L0wZIk4cmTJwCA+vXr488//8TFixfRpEmTwrkIIso3JiefoaioKHTr1g3ffvstTp8+La+ZkJ2E6OjoQAghD/TMfq2rq4uuXbuievXqmDFjBrp06YJmzZrh3r176rycz9qkSZPg5OQENzc31KhRAwcOHJD7Qwsh5LaZPXv2e8vw9vZGhQoV0Ldv38IKu1gSQmDMmDGoXLkywsLCUKZMGXlf9gfe7PY6evSo/DojIwMmJiYYNmwYHj9+DC8vL3Tp0gUuLi45PvCS6gghMGnSJLRu3RqdOnXCoEGDEBcXBy0tLaSlpQH4t3127NiBL7/8Es2aNcOhQ4fkJ1wA8OrVK1hYWMDe3l5dl1IszJ07F87OzkhISICurq6cOGYnle/+3cpOHn18fGBhYYFWrVrh+fPn6N+/Pxo2bIiIiAhYW1ujQ4cO6rkgIsozJiefIUNDQ1hYWMDZ2Rn79++Xv6HNfhy+adMmlCpVCnv37sWLFy8A/PstoLW1NSIiIuDn5wdDQ0OEhITA2dlZPRfymfvll19w9uxZ/P7779i9ezd69OiB2bNnw8vLC0BWm2zatAmlS5fG3r175W8DAeDFixcIDQ3FvHnzMGnSJHTr1g2lS5fm6scFZNeuXShZsiSuXr2Kq1evyutbAJBn3gKy1jWxsbHB/v375ZmDsn/v2rZtixcvXmDVqlXQ1tZGQEAArK2t1XI9n7vLly+jbt26uHLlChYvXgxXV1dcu3YNI0aMAPBvt7qff/4Z9vb2+PXXX5GWloaJEyeiWrVq6N27N8aOHYvx48djyZIlGDBggMIshqRagYGB8PHxwZ49e3DgwAH07t1bXgQ4+29Tbn+3gKwZJevWrYvFixejcuXKiI6ORkBAACeUICrKCnWECxWK69evi65du4rHjx+LMmXKCA8PD3mw9MGDB0WdOnXEpk2bcqxnEhQUJCpXriwqVaokLl68qI7Qi5VevXqJnj17Kmz773//K2rVqiXOnTsngoODRdu2bXO01bNnz8QPP/wgKleuLGrWrCnOnDlTyJEXP66ursLR0VG8ePFCCCHErVu3xJ9//ikePXokr1GyYsUKYWBgIH755Zccv1s+Pj5CkiRRs2ZN4efnV+jxFyfp6eli+vTp4quvvlIYqL5nzx5Rvnx5ER4eLoQQ4tdffxUODg5i8+bNIi0tTaGMZcuWiZEjRwpXV1fh4+NTqPEXR+7u7qJz585CCCH8/PzExIkTxf/+9z9x5coVIYQQp0+fFrVq1cr171ajRo2EJEnC2dlZ/Pnnn4UeOxGpniQEvwoqqtLT0+Vvl4Csb3AlScI///yDoUOH4uzZs5g+fTpOnjyJHTt2oHLlytDT00NKSoo85/vbkpKScOrUKfTo0aMwL6NYyW6jpKQkfP3113B0dMTy5cvl/Tdv3sT3338vrzqdlpYmf8ubLSMjA7du3UJERARcXV0L+xKKpZs3b6J3794YOHAg7t27h4CAAJiYmCAqKgqtW7fGrl27IIRATEwMLCwscpwfGxuL7du3Y+zYsYUffDH0559/wtDQUF4tHAC2bduGpUuX4vLlyzA1NQUAxMXFyf8P/Pv7SQUne+V24N/xjiNGjEDFihVhYWGBhQsXol27drh79y7Cw8Px3XffYeLEiUhOTpafVmZLSEjA4sWLUa1aNbi5uRX6tRBRwWC3riJqzpw56N+/P8aPH4979+7J40oA4MqVK3If+KVLlyI1NRWDBw+GgYEBTpw4kWtiIoSAoaEhE5MC8Msvv+DUqVMAsrooZN/rkiVLwtfXV2EgfK1atdCxY0eEhobizJkzORITIKubUJ06dZiYFBBPT09MnjwZGzZsQGpqKoCsdunatSuWLl0KPT097Nu3Dzt27MDKlStx9OhRzJ8/H5IkwdzcPEd5b8/6RKp38OBBxMbGKmxzdXWVE5PsD8BRUVEoUaIETExM5O5ZbycmAAe5F7T58+dj2LBhWLBgAaKioqClpQVtbW0kJyfjyJEj8PPzw4YNG7B9+3bcuHEDAwYMwP79+3Hy5EkYGBjk6FZnbGyMRYsWMTEh+swwOSliXr58iRYtWuDw4cOoXbs2Tp48ia+++koepwBk/TFu1qwZAODw4cN4/vw5bt++jalTp6JTp065lss/yqrn5+eH+vXrY/jw4di9ezfCwsIA/PthacaMGQgKCsLx48cVzuvcuTPCw8O5UFghCw4ORvXq1bFr1y6EhYVhxowZcHV1hZ+fHwBg4cKFmDZtGhYtWoQGDRqgVq1aGDBgADw8PLBy5UqFLwjexkVKC4avry+qVq2KL774Art3737vcdltcv78ebRo0YLvdWrw9OlT1K9fH/v374exsTHWrl2LTp06ybNyTZw4EYGBgTh69CicnJzkNnJ3d0d8fLz83sm2Iyoe+FeziLl8+TJev36NY8eOYe7cubh58ybatm2Ln376SZ7+Nzg4GN7e3mjVqhWGDh0KDw8PNG7cGE+fPsX9+/fVfAXFQ3R0NPbs2YMGDRpg0aJF8PX1ha+vL4CsWWcyMzPh6OiIESNGYM6cOQrtUrlyZSQkJOD58+dqir54OnbsGMzNzXH9+nXs3r0bd+/exZs3b+Dl5YX79+/DzMwM3377LcqXL69wXunSpaGnp4c7d+6oKfLi5969e1i/fj3at2+PESNGYNGiRfIH2HdpaWkhKSkJN27ckGdukiSJsxAWojNnziAzMxMXLlzA6tWr8fDhQ9jb2+Onn37CzZs30bhxYwwYMAA6OjoKT5IrV66Mly9fvrdtiejzxOSkiImMjER8fLw8E4m+vj5Gjx6NGjVq4L///S8AwMnJCa9fv4aTkxOuXbuGSZMmwcPDA/v27cO5c+cU5vmngmFkZIRevXph9OjRmDFjBipVqoRdu3YhODgYwL/fAK5atQrp6emYO3eunFz+8ccfKF26NNq2bau2+Iub9PR03LlzBzY2NvLsWnZ2dpg5cyZCQ0OxdetWAICZmVmOc/39/dGkSRPUqlWrMEMu1iwtLdGhQwe4u7tj2bJlyMjIUBi79a4LFy5AS0sLzZo1w927d9G2bVvUr18f4eHhhRh18RUSEgJdXV154V5jY2NMnToV+vr6WLJkCQBg9uzZ0NHRwdq1axEYGAgAOHfuHMqUKYOuXbuqK3QiUgMmJ0VMamoqbG1tERQUJG9zcnLCN998g2fPnuH3339Hv379cPbsWWzcuBEVKlQAALRp0wbbtm3DoEGD2M2kEOjp6aFdu3aoW7cuAGDevHkICAjAiRMnkJqaCkmSkJaWBn19fWzfvh0xMTFwdXVFp06d0Lt3b7Rv3x5OTk5qvoriQ0dHBykpKUhKSkJmZqbc9a5fv36oX78+rly5orDIZWhoKEJCQjBu3DgcPnwYgwYNAvDxlchJNWxtbfHNN9/A2dkZpqamWLBgAVavXq3wvgj82x63bt2CnZ0d5syZg1q1asHe3h4RERGws7NTR/jFTnJyMnR0dBAZGSlva9WqFbp06YI7d+7g9OnTqFKlCjZv3ow7d+6gffv26NGjB7p06YLmzZujWrVqaoyeiAqdeiYJo/fJzMz84PYnT54IS0tLsWrVKpGamirvf/LkiejevbsYNWpUjjIyMjIKLuBi7H1t9a7s+z98+HDRuHFj4e/vn+OYqKgocfToUbFq1Spx69YtlcZJH5Y9NenZs2eFlpaWuHHjhhBCyNPL+vr6ikqVKom9e/cKIYS4f/++mDp1qrCzsxNNmzYVN2/eVEvcpPg72LhxY9GjR48c0wILIUTbtm2FJEmiZcuWIiAgoDBDLNay3/vu3bsnJEkShw4dUtgfGBgoGjduLDw9PeVtISEhYs+ePcLT05PvhUTFFKcS1iBxcXEwMTGRu/yIt6a1fHva4HHjxsHb2xuHDx9GnTp15PP79u0LPT09eVpTDh4sOJ/aVm+/DgsLQ/PmzTFgwADMmDEDZmZmePjwISpVqqSWayhOkpKSYGhomOu+7PZJTk5Gp06doKuri1OnTim0aaVKlTBo0CDMmTMHSUlJ8ox47dq1K8zLKDY+pb2yZbfThQsX0KZNGxw+fBjdu3dHRkYGXr9+DWtra+zcuRMmJiacjbAA5fY35+226t+/Px4+fIiTJ0+iZMmS8jFNmjRBo0aN4OXlxb9bRASA3bo0QlpaGkaPHo0uXbrgiy++wK+//goga1xCeno6AMgfnm7cuIEff/wRGRkZWL16tcKq4QDkNRb4Bl8wPrWt0tLS5FmedHR0kJGRgVKlSmHUqFH4/fffsWnTJnTo0AFDhw5FQkKC2q7nc5eWloYxY8agT58+GDRoEC5fvix39cmeJji7fWJiYuDh4YFz585h/fr18nFv3ryBsbExrKysAACGhoZo06YNE5MC8KntlZ6ejoiICAD/vte1bNkSX331FTw8PODj44OuXbvCy8sL6enpGDhwIBMTFUtLS8OyZctw6NAhAIp/c7K7Rero6CA1NRUPHz7EsmXL8Pfff2PlypWIiYkBkJW86Ovro0SJEjnKIKLii8mJmj1+/BgNGzbE33//jenTp8Pc3Bw//PADRo0aBQDyt05eXl6wsbHBzp07oa2tjVWrVuHWrVvo1q0bNm/ejEmTJuH8+fP44osv1Hk5nzVl2srKygrHjh1DUlISgH+nkx04cCCCg4Mxbdo0mJiY4ODBg/IgUVKt8PBwNG7cGDdv3kT37t1x8+ZNjB49GkuXLgWQNS4IyGovIyMjnDhxAq1bt8bcuXMxd+5cjBo1ChcuXMCCBQsQFxcHFxcXdV7OZ0+Z9jIxMcHx48dzjPFxd3fH9evX5Vm5pkyZovCUhVTj+PHjqF27NqZPn44DBw7gxYsXAP4d45M9qYSXlxdKlCiBgwcPomzZsvjxxx+xd+9eDBgwAEePHsX06dPx4MEDdOvWTW3XQkQaSB19yehfq1evFm3atBEJCQlCiKw+1OvWrROSJIkDBw6IjIwM8d1334kSJUqI7du3K4wfCQoKEm5ubsLV1VU0bdo017EMpDrKttW7Y1L27dsnJEkSDRs2FNevX1fHJRQr+/fvF9WrVxfPnj0TQggRHR0t5s2bJwwMDMTt27eFEEIMGDBA2Nvbi23btim0l5eXl2jZsqWoWbOmqF27trhy5YparqE4Uaa9fv31V4X2Sk9PF9u2bRO6urqicePG/P0qQPHx8WL48OFiwoQJwtPTUzRo0ECsW7dO4ZiUlBQxevRoYWNjI3777TeFv1u///676NKli2jatKlo0KCBuHz5cmFfAhFpOI45UbPJkyfj2rVruHDhgtzfdt26dXB3d0edOnVw+vRpZGRkQF9fX57GVLzTLzc2NjbXKU5JtfLSVm+7du0arl+/jpEjR6oh+uIjMzMTWlpaWL9+PRYsWKCwXkx4eDi+/vprpKWl4dy5c7hy5QqcnZ3l9so+N/v/nzx5kmNdE1Kt/LRXtsTERPz8888wNDTk71cBE0LA398fVlZWcHJywhdffIHU1FQsXLhQnk5bCIGHDx/C1tY2198tAIiIiJCnxCciehu7dRWiq1evAoDCOiOmpqYwMDDAH3/8ISccfn5+8PDwwN27d/H777/D2tpaoevPu/1ymZionqra6m0NGjTgB6cCsn//fpw+fRphYWHyByBtbW3Y2dnhwoUL8nF2dnaYMWMG/P39cfLkSTRu3BgmJiby/rc/PGlpaTExKSCqaq9sRkZGmDhxIn+/CsDbbQVk/f1p1qyZPNX5qFGj8OzZMxw6dEju1iVJEipXrqzwt+ndKeyZmBDR+zA5KQSHDx9G6dKl0blzZ4SEhEBLS0se3PnVV1/B1NQUAwcOxJdffglTU1M8ePAAw4YNQ+/evbF//34A//bhpYLFtipafvvtN9ja2uJ///sfBg4ciH79+uHAgQMAspLB5ORkXLp0SW5DAKhRowY6d+6M7du3A8j5oYkKDtur6MitrbIHv2dmZsqJSIcOHdC0aVOcPXsWZ86cAcD1fogof/guX8B27NiBxYsXo1WrVqhWrRp++OEHAFmDO4UQcHZ2xo8//oiVK1eiZMmS2L59O65cuQJ7e3skJyfD0dFRvRdQjLCtio709HT8+OOP8PT0xOLFi3HhwgUcPnwYFStWxObNm5GUlIS6deuiRYsWOHjwIC5duiSfa2trC11dXSaRhYjtVXR8qK1+/vlnpKSkQEtLC5IkyU+Wx48fj+TkZBw5cgQJCQkQQuD+/fsA/p25i4joUzE5KSDZb8iVKlWCi4sLlixZgh49esDX1xe+vr4Kxzg4OOCbb77B6tWr0bNnTwBZfa2fPn2KihUrqiX+4oRtVfQkJCTg5cuXGDx4ML755hvo6emhWbNmqFatGmJjY+Vv3j08PJCWloaNGzcqjGVISkqSpy+lgsf2Kjo+1lbZU6YDWU+xhBCoWrUqevfujWvXrmHBggVo2LAh3NzckJGRwaSSiJSnjlH4n7P79+/nmKUpe8Xi27dvix49eoguXbrI+949NiQkRDx79ky4ubmJunXriidPnhR80MUU26poebe9bty4Ia/unj0b0I4dO0SdOnVESkqKfNy+fftEy5YtRbly5cTy5cvFf/7zH2FjYyMuXLhQuBdQzLC9io68ttXb+//66y+hq6srJEkSI0eOzHEcEdGn4pMTFdm7dy/Kly+P7t27o0mTJvjll1/kfdnfHFWvXh29evVCSEgItmzZAkCxb25SUhI2bdqEWrVqITQ0FPv27UPZsmUL90KKAbZV0fJue23evBkAUKdOHWhrayvMAnTs2DHUqVMHenp68rfxX3zxBXbt2gVXV1dcuHABUVFROH/+PFq0aKG2a/qcsb2Kjry21btPT9avX49GjRqhbdu2ePjwITZs2CCvS0NEpDR1Z0efg5MnTwpHR0exZs0aceLECTFlyhShq6srNm7cKBITE4UQ/34j/+zZMzFs2DDRsGFDERcXJ4QQIjU1VS4rMDBQnDt3rvAvophgWxUtH2qvpKQkIUTWE63MzEyRlJQkatWqJX777bf3lpd9DhUMtlfRocq2CgoKEnv27CnM8InoM8bkJB+yH4N7eHiI+vXrK3xwHTt2rGjQoIE4ePBgjvO8vb1FgwYNxNy5c0VQUJDo1q2bCA0NLbS4iyO2VdGSl/Z6/vy5cHR0FPfv3xdCZHVVmTx5cuEFXYyxvYoOthURaTp268qH7LUu7t69i4oVK0JXVxdpaWkAgIULF8LAwABHjhxBeHg4gH8HVbdt2xaNGjXC/PnzUb9+faSlpcHGxkY9F1FMsK2KFmXbCwBOnz4NBwcHlCpVChMnTkS1atXw5MkTpKWlcWrTAsb2KjrYVkSk6ZicKOHUqVOYMGECVq1aJS/SBwAuLi44fvw4MjIy5Df6EiVKYNCgQfD390dwcDCArPEMCQkJ2LhxIzZs2IDWrVvj+vXrOHHiBPT19dV1WZ8ltlXRktf2+vvvvwFkjQfy9vbG7du34ejoCB8fH/j7++PAgQPQ1dXNsXAp5Q/bq+hgWxFRkaPOxzZFxYsXL0S3bt2EjY2NcHNzEzVr1hTm5ubiypUrQgghgoODRenSpcXs2bOFEEJhlhI7OzuxcuVK+fWdO3dE48aNxa+//lqo11BcsK2KFlW1V0JCgujWrZsoU6aM2L17d6FfR3HB9io62FZEVFQxOfmIhIQEMXjwYDFgwADx+PFjeXujRo3EkCFDhBBCxMbGioULFwpDQ0N5PEJ2v97WrVuL4cOHF37gxRDbqmhRdXtdu3atEKMvftheRQfbioiKMnbr+ggjIyPo6+tjyJAhKF++vDyFYpcuXXDv3j0IIWBqaoqBAweiXr166N+/P548eQJJkhAaGorIyEj06tVLvRdRTLCtihZVt1f9+vXVdCXFA9ur6GBbEVFRJgnB0Wwfk5aWBl1dXQCQ5313c3ODsbExNm7cKB/3/PlztGnTBunp6WjQoAEuXbqEqlWrYufOnbC1tVVX+MUK26poYXsVLWyvooNtRURFFZOTPGrRogVGjBiBwYMHIzMzE0DWYlQPHz5EQEAArly5gtq1a2Pw4MFqjpTYVkUL26toYXsVHWwrIioKmJzkwePHj9GsWTMcO3ZMftydmprKFXE1ENuqaGF7FS1sr6KDbUVERQXHnCghO4+7ePEiTExM5Dd4Dw8PTJw4EZGRkeoMj97Ctipa2F5FC9ur6GBbEVFRo6PuAIqS7Pncr169ir59++LUqVMYOXIkEhMT8dtvv3FxPg3Ctipa2F5FC9ur6GBbEVFRw25dSkpOTkbNmjXx6NEj6OnpwcPDA99++626w6JcsK2KFrZX0cL2KjrYVkRUlDA5yYMOHTqgcuXKWLFiBQwMDNQdDn0A26poYXsVLWyvooNtRURFBZOTPMjIyIC2tra6w6BPwLYqWtheRQvbq+hgWxFRUcHkhIiIiIiINAJn6yIiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISL6iCFDhkCSJEiSBF1dXdja2qJDhw745ZdfkJmZ+cnlbN26FRYWFgUXKBERURHH5ISI6BN06tQJYWFhCAkJwfHjx9G2bVtMnDgR3bp1Q3p6urrDIyIi+iwwOSEi+gT6+vqws7ND6dKlUa9ePXz//fc4cuQIjh8/jq1btwIAVqxYgZo1a8LY2BgODg4YO3Ys4uPjAQC+vr745ptvEBMTIz+FmTdvHgAgJSUF06ZNQ+nSpWFsbIzGjRvD19dXPRdKRESkRkxOiIjyqF27dqhduzYOHjwIANDS0oKXlxfu3LmDbdu24cyZM5g+fToAoFmzZli1ahXMzMwQFhaGsLAwTJs2DQAwbtw4+Pv7Y/fu3bh58yb69euHTp064cGDB2q7NiIiInWQhBBC3UEQEWmyIUOGIDo6GocPH86x78svv8TNmzdx9+7dHPv279+P0aNH49WrVwCyxpxMmjQJ0dHR8jGhoaGoUKECQkNDYW9vL29v3749GjVqhMWLF6v8eoiIiDSVjroDICIqyoQQkCQJAHD69Gl4enri77//RmxsLNLT05GcnIzExEQYGRnlev6tW7eQkZGBKlWqKGxPSUmBlZVVgcdPRESkSZicEBHlw71791C+fHmEhISgW7duGDNmDBYtWgRLS0tcvHgRw4YNQ2pq6nuTk/j4eGhrayMgIADa2toK+0xMTArjEoiIiDQGkxMiojw6c+YMbt26hcmTJyMgIACZmZlYvnw5tLSyhvPt3btX4Xg9PT1kZGQobKtbty4yMjIQGRmJli1bFlrsREREmojJCRHRJ0hJSUF4eDgyMjIQERGBEydOwNPTE926dcOgQYNw+/ZtpKWl4aeffkL37t3h5+eH9evXK5Th6OiI+Ph4+Pj4oHbt2jAyMkKVKlXg5uaGQYMGYfny5ahbty5evnwJHx8f1KpVC127dlXTFRMRERU+ztZFRPQJTpw4gVKlSsHR0RGdOnXC2bNn4eXlhSNHjkBbWxu1a9fGihUrsGTJEtSoUQM7duyAp6enQhnNmjXD6NGjMWDAAFhbW2Pp0qUAgC1btmDQoEGYOnUqnJyc0KtXL/z1118oW7asOi6ViIhIbThbFxERERERaQQ+OSEiIiIiIo3A5ISIiIiIiDQCkxMiIiIiItIITE6IiIiIiEgjMDkhIiIiIiKNwOSEiIiIiIg0ApMTIiIiIiLSCExOiIiIiIhIIzA5ISIiIiIijcDkhIiIiIiINAKTEyIiIiIi0gj/B6eEVkmjq9zVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3dd1gUV9sG8HuW3lFEsGCwYG8o2GJQEwuxR2OJGmM09kiM5rPERCUWgkajsbcIsfdojLHEgr2BvQU7Cogi0mFh93x/8LK6gsrCwg5w/67LS3ZmzjnP2cOw8+yUIwkhBIiIiIiIiAxMYegAiIiIiIiIACYnREREREQkE0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHY0AEUFmq1GuHh4bCxsYEkSYYOh4iIiIowIQTi4+NRtmxZKBT8LpmKDyYnORQeHg4XFxdDh0FERETFSFhYGMqXL2/oMIgKDJOTHLKxsQGQ8UfC1tbWwNEQERFRURYXFwcXFxfN8QdRccHkJIcyL+WytbVlckJEREQFgpeSU3HDixiJiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywBviiYiIsiGEQGpqql7Km5mZ6XxjsyHLF+a29VWHvtrPrZSUlDyVJyqsmJwQERFlIzU1FT169Mh1eZVKheDgYACAh4eHzhPpGbJ8YW5bX3UAwJYtW2Bubq5zubz+7gBAWlpansoTFVZMToiIiN4i5HF8rsoJtRqxKekwLeOGy89UkCSVjuVViFMKKEqUxcXwBEDXsxd5aL8wt53X9jPVczTRuUwWYWdzX9bZPe/tExVCTE6IiIjeoekIPxgZm+pURpkcj38mdAcAfDBuKUzMdPsGPi0xFjuGfQAAaDxsps7l89J+YW47r+2r01IR5D9U5zbfZO0Qd5iZ5PzMTWqaGv2WX9Bb+0SFDZMTIiKidzAyNoWRqZluZdJe3nNgZGIKY1PdDrJVypf3HBR0+4W57by2n65za29nZqKAuYmRnmslKrr4tC4iIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZMDZ0AERERIXBYb8hSI59BklSwMTCCg37T0QJ1+pIiY3GqaWTkPAkDEYmpvAc+CMcqzXIUn7vxG5Ijnnyv/LWaDJyFhwq18GlDXMQ+u9GxD2+g9ZT16NCE2+dY7i2cwXuHduF+MgH8BqzAOUatNAqp1Km4N+fB+PFw1swNrOARQknNPOZCxvnCnj23wWcWjweKmUKVMpUuLXtg2rtv9BLu+/qe/KLpzg6azjiI+5BYWKKZj5zUcK1ht76nZv2S1V1f+P7n1ttfzmNyNhUKCQJNubGWNCvFupXsENUXCr6r7iIO1GJMDMxwtL+deBR0U7v7RMVJgZNTvz8/LB9+3bcvHkTFhYWaNasGfz9/VGtWjXNNkII+Pr6Yvny5YiJiUHjxo2xaNEi1KpVCwDw/PlzTJkyBfv370dYWBhKlSqFrl27Ytq0abCze7mDz5gxA3///TcuXrwIU1NTvHjxoqC7S0REhdj7Pr/A1MoWAPDo/EGcWTEZ3jM24+KmeShVpS5ajV+K6DtXcXz+GHT6dU+W8q0mrYaZdcbn0oOTf+P43K/RZVEQyri3QMUW3XD811G5jsGpVmNUaOKNsysmv7FstfZfoLxnG0iShOs7l+PE/NHw9tuO4/O+QYPPJ6BC0/ZIjYvBtq8awblOM721+7a+n1/lC8caHmg3cyue3grBoelfoPPCw3rtt67tf7L81Fvryo3NIxrC3tIEAPBnSCQGrrqEEF8vTNhyE00q22Pv2MY4d/cFPl0cjGvTvfTePlFhYtDLuoKCgjBy5EicPn0aBw4cQHp6Otq2bYvExETNNrNmzcLcuXOxcOFCnDt3Ds7OzmjTpg3i4+MBAOHh4QgPD8cvv/yCK1euICAgAHv37sWgQYO02lIqlejRoweGDx9eoH0kIqKiIfPgGACUSQmQJAkAEHZ6H9za9AYAOFSuDXM7Bzy9dSFL+cyDYwBQJsYBUsZHcOnqHrAtWzFPMZSqUhc2Ti5vLGdkag6XRm0125eu4Yn4iPua9akJcQCAtJREKExMYWptr5d2M72p7/eO/okanb4CADhWawAL+9J4euO83vqdm/ajrp99Z326ykxMACA2KQ0KRUb8m8+FY+SHrgAAz0r2cLI1xcnbMXpvn6gwMeiZk71792q9Xr16NUqXLo3g4GB4eXlBCIF58+Zh0qRJ6NatGwAgMDAQTk5OWL9+PYYOHYratWtj27ZtmjoqV66MGTNmoF+/fkhPT4excUYXfX19AQABAQEF0zkiIipyTi35XnPw2nL8UqTGv4AQAua2JTXbWDmWRVJ0BEq8Vy1L+aBZwxB56RgAoO2MrXqJITeu/blMc/nYB2MX4d+pfRASOB0psdF4/5tfYVHCUe/tvt73lLjnEEINC/tSmm2snSog8dnjbMsXWPtPH+lcd070X3EBh29EAwD2jm2M6AQl1ELA0dZMs41rKUuEPU/Jl/aJCgtZ3XMSGxsLAChZMuOP/L179xAZGYm2bdtqtjEzM0OLFi1w8uRJDB069I312NraahKT3EhNTUVqaqrmdVxcXK7rIiKioqHp8JkAgLtHd+LC+jloOtwP+N+3+BpCvLF8i3EZB9WhBzbg3MrJaDt9S55jaDluiU7lL22Yg7jwu3jfZy4A4MqW3+D51U+o1OITxEXcxz//1xF2Lm56b/f1vnuNWwYJr713ePN7Z+j28+qPwRn3sgQeD8P/bbqONUPcs7T/ll8domJDNk/rEkJgzJgxaN68OWrXrg0AiIyMBAA4OTlpbevk5KRZ97ro6GhMmzbtjYlLTvn5+cHOzk7zz8Xl3aeNiYioeKjk1QVR189pXqfEPdf8nPgsApYOZd5a3q3NZ4i4dFyrXG5jSI1/keMyV7YswP0Tu9F2+hYYm1siJTYaD07+jUotPgEA2JZxhWN1Dzy9FaLXdl+V2fdMyS+eaX5OeBIGq1Ll3lo+39t3LJ+renPqi+YuOHwzWvP6adzLL0IfRCfBpaR5vrZPJHeySU6+/vprXL58GRs2bMiyTpJe/2ZBZFkGZJzd6NChA2rWrIkpU6bkKZ6JEyciNjZW8y8sLCxP9RERUeGVlpyApJgozeuwcwdham0HU2s7VGjUBqEHNgIAou9cRUrsMzhW037ikzIpHknREZrX90/shpltSZjZlMh5DElvjiEnrm5bhLtHtsHbb4fmHgxTa3sYmZgh4vIJAEBKbDSe3jgH+wpVc9T3nHhb3129uuDGXysBAE9vhSA55gkca3jotd+6tl+6ZqMc1ZtTcclpCI95eanWjuAIOFiboqSVCXp4lsGiQ/cBAOfuvkBkbCqaVcn57wRRUSSLy7pGjRqFXbt24ejRoyhf/uU3Fs7OzgAyzqCUKfPyW6ioqKgsZ1Pi4+Ph7e0Na2tr7NixAyYmJsgLMzMzmJmZvXtDIiIq8tKSEnBy8QSolCmQFAqY2ZRAi+8WQZIk1PvsW5xe/D3+GtMBCmMTNB0+Ewoj7Y/XtMQ4HJs1DCplMiApYG5XCm1+2ghJknBp41zc+GsVUmKf4dickTAyNUeXRUFQvHZpsjI5AcfnfZttDNd2rkTogQ1IjY/B6WU/wMjEFB/98LumbOKzcJxd/gNsyrjin3GdAAAKEzN0/u1ftJq0GmeXTYJalQ6hSkftT0fBoUq9l7EnJ+L00ok5btd75hat/r+t756DpiJo1jBs/bIhFMam8Bq3LMt7p2u/9d1+XsUmp6PvsgtIVqqhUACONmbYPdoTkiTBv0cNfL7iAtzGH4KpsQJrBrvD2Eg23xsTGYRBkxMhBEaNGoUdO3bgyJEjqFhR+2klFStWhLOzMw4cOAB394xvoZRKJYKCguDv76/ZLi4uDu3atYOZmRl27doFc3OeEiUiIv2xdHBGu2lZz+wDgIVdKbSauPyt5a0cy6HzgoPZrqvXewzq9R6TZXlqwgvtOt4SQ60uX6FWl6+0likTX94raVWqLAbuy/4pUOUatES5Bkfe2LZlSSed2s3S9lv6blGiNLz9tr+xbUD3fue1/XSlfm9IdylpgbOTP8h2nZOdGfZ/10RrWUqaSq/tExU2Bk1ORo4cifXr12Pnzp2wsbHR3EdiZ2cHCwsLSJKE0aNHY+bMmXBzc4ObmxtmzpwJS0tL9OnTB0DGGZO2bdsiKSkJa9euRVxcnObmdUdHRxgZGQEAHj58iOfPn+Phw4dQqVS4ePEiAKBKlSqwtrYu+M4TEREREZEWgyYnS5ZkPGmjZcuWWstXr16NAQMGAADGjRuH5ORkjBgxQjMJ4/79+2FjYwMACA4OxpkzZwBkJBqvunfvHlxdXQEAkydPRmBgoGZd5pmYw4cPZ2mfiIiIiIgKnsEv63oXSZIwdepUTJ06Ndv1LVu2zFE9AQEBnOOEiIiIiEjGeNcVERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC8aGDoCIiEjuVOnKPJVRpSmRrtDt+0B1WqpWXQqlbuXz0n5hbluf7etDapo6X7cnKmqYnBAREb3DqcUTdS4j1C8PMo/NGgZJ0rW8SvPzmaXfQ9cK8tJ+YW47r+3rW7/lFwzXOFEhxOSEiIjoLRqUs8lVOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dIo92XT0vQXB1EhIgkhhKGDKAzi4uJgZ2eH2NhY2NraGjocIiLKZ0IIpKbm/hKfV8ubmZlB0vXsgwHLF+a29VWHvtrPrbi4ODg5OfG4g4odnjkhIiLKhiRJMDc3z1MdFhYWhbZ8YW5bX3Xklj5+d5RK3e9zIioK+LQuIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAs6JSfp6ekIDAxEZGRkfsVDRERERETFlE7JibGxMYYPH47U1NT8ioeIiIiIiIopnS/raty4MS5evJgPoRARERERUXFmrGuBESNGYMyYMQgLC0PDhg1hZWWltb5u3bp6C46IDE8Ikeuzpa+WNTMzgyRJBVo+r3UYOn5Dl39VXtvPi7zGTkREhYckhBC6FFAosp5skSQJQghIkgSVSqW34OQkLi4OdnZ2iI2Nha2traHDISowKSkp6NGjR67KqlQqBAcHAwA8PDyy/fuRn+XzWoeh4zd0+Vdt2bIF5ubmOpXJy+9OXtsmKux43EHFlc5nTu7du5cfcRCRzIU8jte5jFCrEZuSDtMybrj8TAVJ0u3LC6FWIU4poChRFhfDE4DcnDnJQwx5bd/Q/c9r+5nqOZrkqpxG2Nncl3VplLe2iYioUNE5OXnvvffyIw4iKgSajvCDkbFpjrdXJsfjnwndAQAfjFsKEzPdvv1OS4zFjmEfAAAaD5upc/m8xpDX9g3d/7y2r05LRZD/UJ3KvMnaIe4wM8n5mZvUNDX6Lb+gl7aJiKjw0Dk5yXT9+nU8fPgQSqVSa3nnzp3zHBQRyZORsSmMTM1yvn3ay/sNjExMYWyq28GxSpmS67b1EUNe2zd0//PafrpOW7+dmYkC5iZGeqyRiIiKIp2Tk7t37+KTTz7BlStXNPeaANDcrFhU7zkhIiIiIqL8pfPdkd988w0qVqyIJ0+ewNLSEteuXcPRo0fh4eGBI0eO5EOIRERERERUHOh85uTUqVM4dOgQHB0doVAooFAo0Lx5c/j5+cHHxwcXLvAaYSIiIiIi0p3OZ05UKhWsra0BAKVKlUJ4eDiAjBvlb926pd/oiIiIiIio2ND5zEnt2rVx+fJlVKpUCY0bN8asWbNgamqK5cuXo1KlSvkRIxERERERFQM6Jyc//PADEhMTAQDTp09Hx44d8cEHH8DBwQGbNm3Se4BERERERFQ86JyctGvXTvNzpUqVcP36dTx//hwlSpTQPLGLiIiIiIhIVzrfc5Lp9u3b2LdvH5KTk1GyZEl9xkRERERERMWQzslJdHQ0PvroI1StWhXt27dHREQEAOCrr77C2LFj9R4gEREREREVDzpf1vXtt9/CxMQEDx8+RI0aNTTLe/XqhW+//RZz5szRa4BERERElD2VSoW0tDRDh0H0VqamplAocnZOROfkZP/+/di3bx/Kly+vtdzNzQ0PHjzQtToiIiIi0pEQApGRkXjx4oWhQyF6J4VCgYoVK8LU1PSd2+qcnCQmJsLS0jLL8mfPnsHMzEzX6oiIiIhIR5mJSenSpWFpacmHEpFsqdVqhIeHIyIiAhUqVHjn76rOyYmXlxf++OMPTJs2DQAgSRLUajVmz56NVq1a5S5qIiIiIsoRlUqlSUwcHBwMHQ7ROzk6OiI8PBzp6ekwMTF567Y6JyezZ89Gy5Ytcf78eSiVSowbNw7Xrl3D8+fPceLEiVwHTURERETvlnmPSXZXshDJUeblXCqV6p3Jic5P66pZsyYuX76MRo0aoU2bNkhMTES3bt1w4cIFVK5cOXcRExEREZFOeCkXFRa6/K7qfOYEAJydneHr65ubokRERERERNnS+cyJq6srfvrpJ4SFheVHPEREREREVEzpfOZk7NixCAgIwE8//YRWrVph0KBB+OSTT/ikLiIiIiJDm1PAl3qNFQXbnoFJkoQdO3aga9euhg4l11q2bIn69etj3rx5hg4lWzqfORk1ahSCg4MRHByMmjVrwsfHB2XKlMHXX3+NkJCQ/IiRiIiIiAo5SZLe+m/AgAEGi83V1TVHB+sRERH4+OOPc1xvQEAA7O3tcx9YMaRzcpKpXr16mD9/Ph4/fowpU6Zg5cqV8PT0RL169fD7779DiOKVSRMRERHRm0VERGj+zZs3D7a2tlrL5s+fr1N9SqUynyJ9M2dnZ4NcLaRSqaBWqwu8XUPIdXKSlpaGzZs3o3Pnzhg7diw8PDywcuVK9OzZE5MmTULfvn31GScRERERFWLOzs6af3Z2dpAkSfPaxMQEw4YNQ/ny5WFpaYk6depgw4YNWuVbtmyJr7/+GmPGjEGpUqXQpk0bAMCuXbvg5uYGCwsLtGrVCoGBgZAkCS9evNCUPXnyJLy8vGBhYQEXFxf4+PggMTFRU++DBw/w7bffas7ivIkkSfjzzz8BAPfv34ckSdi+fTtatWoFS0tL1KtXD6dOnQIAHDlyBF9++SViY2M19U6dOhUANNNxlCtXDlZWVmjcuDGOHDmiaSfzjMvu3btRs2ZNmJmZYcWKFTA3N9fqFwD4+PigRYsWAIDo6Gh89tlnb30f5U7n5CQkJASjRo1CmTJlMGrUKNSqVQtXr17F8ePH8eWXX2LSpEnYtWsXduzYkR/xEhEREVERk5KSgoYNG2L37t24evUqhgwZgs8//xxnzpzR2i4wMBDGxsY4ceIEli1bhvv37+PTTz9F165dcfHiRQwdOhSTJk3SKnPlyhW0a9cO3bp1w+XLl7Fp0yYcP34cX3/9NQBg+/btKF++PH766SfNWRxdTJo0Cd999x0uXryIqlWr4rPPPkN6ejqaNWuW5QzRd999BwD48ssvceLECWzcuBGXL19Gjx494O3tjdDQUE29SUlJ8PPzw8qVK3Ht2jX069cP9vb22LZtm2YblUqFzZs3a04K5PR9lDOdb4j39PREmzZtsGTJEnTt2jXbiVRq1qyJ3r176yVAIiIiIiraypUrpzlwBzLucd67dy+2bNmCxo0ba5ZXqVIFs2bN0ryeMGECqlWrhtmzZwMAqlWrhqtXr2LGjBmabWbPno0+ffpg9OjRAAA3Nzf89ttvaNGiBZYsWYKSJUvCyMgINjY2cHZ21jn27777Dh06dAAA+Pr6olatWrh9+zaqV6+udYYo0507d7BhwwY8evQIZcuW1dSxd+9erF69GjNnzgSQcZXS4sWLUa9ePU3ZXr16Yf369Rg0aBAA4ODBg4iJiUGPHj10eh/lTOfk5O7du3jvvffeuo2VlRVWr16d66CIiIiIqPhQqVT4+eefsWnTJjx+/BipqalITU2FlZWV1nYeHh5ar2/dugVPT0+tZY0aNdJ6HRwcjNu3b2PdunWaZUIIqNVq3Lt3DzVq1MhT7HXr1tX8XKZMGQBAVFQUqlevnu32ISEhEEKgatWqWstTU1Ph4OCgeW1qaqpVNwD07dsXTZs2RXh4OMqWLYt169ahffv2KFGiBICcv49ypnNy8q7EhIiIiIhIF3PmzMGvv/6KefPmoU6dOrCyssLo0aOz3PT++kG2ECLLPSKvP5RJrVZj6NCh8PHxydJuhQoV8hz7q1cRZcbytpvX1Wo1jIyMEBwcDCMjI6111tbWmp8tLCyy9K1Ro0aoXLkyNm7ciOHDh2PHjh1aJwRy+j7KWa5miCciIiIi0pdjx46hS5cu6NevH4CMA/jQ0NB3ntWoXr069uzZo7Xs/PnzWq8bNGiAa9euoUqVKm+sx9TUFCqVKpfRv1l29bq7u0OlUiEqKgoffPCBznX26dMH69atQ/ny5aFQKDSXlAG5fx/lJNdP6yIiIiIi0ocqVargwIEDOHnyJG7cuIGhQ4ciMjLyneWGDh2KmzdvYvz48fjvv/+wefNmBAQEAHh5FmP8+PE4deoURo4ciYsXLyI0NBS7du3CqFGjNPW4urri6NGjePz4MZ49e6a3frm6uiIhIQEHDx7Es2fPkJSUhKpVq6Jv377o378/tm/fjnv37uHcuXPw9/fPkmhlp2/fvggJCcGMGTPw6aefwtzcXLMut++jnPDMCREREVFRUUhnbP/xxx9x7949tGvXDpaWlhgyZAi6du2K2NjYt5arWLEitm7dirFjx2L+/Plo2rQpJk2ahOHDh2vmI6lbty6CgoIwadIkfPDBBxBCoHLlyujVq5emnp9++glDhw5F5cqVkZqaqrf5+po1a4Zhw4ahV69eiI6OxpQpUzB16lSsXr0a06dPx9ixY/H48WM4ODigadOmaN++/TvrdHNzg6enJ86dO5dl4sjcvo9yolNykpaWhmrVqmmeuUxEREREpKsBAwZozQhfsmRJzfwhb/LqPCCv6ty5Mzp37qx5PWPGDJQvX17rjIKnpyf279//xrqbNGmCS5cuvTPuV5MWV1fXLEmMvb19lmVLlizBkiVLtJaZmJjA19cXvr6+2bbz+vvzurNnz2a7PC/vo1zolJyYmJggNTX1rZPT6MLPzw/bt2/HzZs3YWFhgWbNmsHf3x/VqlXTbCOEgK+vL5YvX46YmBg0btwYixYtQq1atQAAz58/x5QpU7B//36EhYWhVKlS6Nq1K6ZNmwY7OztNPTExMfDx8cGuXbsAZPwiL1iwAPb29nrpC1FxcdhvCJJjn0GSFDCxsELD/hNRwrU6UmKjcWrpJCQ8CYORiSk8B/4Iu/JZr+/dO7EbkmOe/K+8NZqMnAWHynVwacMchP67EXGP76D11PWo0MRbp/av7VyBe8d2IT7yAbzGLEC5Bi2ylFUpU/Dvz4Px4uEtGJtZwKKEE5r5zIWNcwU8vRWCM0snIi05AZKkQKOhM+BQpa5e239b/5NfPMXRWcMRH3EPChNTNPOZixKuWa8Rzkv7urTtXLtptvHnRdtfTiMyNhUKSYKNuTEW9KuF+hXsEBWXiv4rLuJOVCLMTIywtH8deFS0e3eFREQAFi9eDE9PTzg4OODEiROYPXu2Zg4TKnx0vqxr1KhR8Pf3x8qVK2FsnLerwoKCgjBy5Eh4enoiPT0dkyZNQtu2bXH9+nXN0xhmzZqFuXPnIiAgAFWrVsX06dPRpk0b3Lp1CzY2NggPD0d4eDh++eUX1KxZEw8ePMCwYcMQHh6OrVu3atrq06cPHj16hL179wKAZlKav/76K099ICpu3vf5BaZWtgCAR+cP4syKyfCesRkXN81DqSp10Wr8UkTfuYrj88eg3fSNWcq3mrQaZtYZB54PTv6N43O/RpdFQSjj3gIVW3TD8V9HZSmTk/adajVGhSbeOLti8lvLV2v/Bcp7toEkSbi+czlOzB+NdjO34eBPn6PF/y1Fmfof4MXD/7Bv4ifo+NtBvbf/pv6fX+ULxxoeaDdzK57eCsGh6V+g88LDem1fl7Z7BFx4az9yY/OIhrC3zHiqzZ8hkRi46hJCfL0wYctNNKlsj71jG+Pc3Rf4dHEwrk330nv7RFQ0hYaGYvr06Xj+/DkqVKiAsWPHYuLEiYYOi3JJ5+zizJkzOHjwIPbv3695RNmrtm/fnuO6MhOFTKtXr0bp0qURHBwMLy8vCCEwb948TJo0Cd26dQOQMTOok5MT1q9fj6FDh6J27dpaM2VWrlwZM2bMQL9+/ZCeng5jY2PcuHEDe/fuxenTpzUT0KxYsQJNmzbFrVu3tM7UENHbZR4YA4AyKUFzJjXs9D50mpexTztUrg1zOwdE376cpXzmwTEAKBPjACnjuRylq3tk2VaX9ktlc5bjdUam5nBp1FbzunQNT1zbsRSpcc+RGh+DMvUznppiX6EqTK3tEH7hiF7bB97c/3tH/0SPwIsAAMdqDWBhXxpPb5zPUj4v7evS9pOrp+FYI2djklOZiQkAxCalQaHIiH3zuXDcm/UhAMCzkj2cbE1x8naMXtsmoqLr119/xa+//mroMEhPdE5O7O3t0b179/yIRXOzTsmSJQEA9+7dQ2RkJNq2fXkwYWZmhhYtWuDkyZMYOnToG+uxtbXVnNk5deoU7OzstGbGbNKkCezs7HDy5Mlsk5PMSWsyxcXF5b2DREXEqSXfI+p6xvWuLccvRWr8CwghYG5bUrONlWNZJD1/km35oFnDEHnpGACg7Yyt2W6jS/u5de3PZajQxBvmdg6wsHfE/WO74PpBZ0TdPI/Yx3eQGPUoX9p/vf8pcc8hhBoW9qU021g7VUDis8d6bz+nbSdEPdJ7cgIA/VdcwOEb0QCAvWMbIzpBCbUQcLQ102zjWsoSYc9T9N42ERHJn87JSX7N/C6EwJgxY9C8eXPUrl0bADSPPnNyctLa1snJCQ8ePMi2nujoaEybNk0rcYmMjETp0qWzbFu6dOk3Pl7Nz8/vjTcpERV3TYfPBADcPboTF9bPQdPhfsDr96K95UknLcZlHFCHHtiAcysno+30LXlqv+W4Je8okdWlDXMQF34X7/vMBQC0nroO51ZNxaWNc1DCtSacajWB4g2Xrua1/df77zVuGSS8fi/fm9+/vLSf17bz6o/B7gCAwONh+L9N17FmiHuW9vX0kBwiIiqEcj3PydOnT3H8+HGcOHECT58+zXMgX3/9NS5fvowNGzZkWZfdzJ/Z3ZQfFxeHDh06oGbNmpgyZcpb63hbPQAwceJExMbGav6FhYXp0h2iYqGSVxdEXT+neZ0S91zzc+KzCFiWdMqumIZbm88Qcem4VrnctJ8a/0Kncle2LMD9E7vRdvoWGJtbAgBKVqqNdjO2osuiIHj93xIkRUfCrrxbvrSfKbP/mZJfvHy2fsKTMFiVKpdv7b+rbevS5XWuUxdfNHfB4ZvRmtdP416eqX4QnQSXkubZFSMioiJO5+QkMTERAwcORJkyZeDl5YUPPvgAZcuWxaBBg5CUlJSrIEaNGoVdu3bh8OHDKF/+5Qeis7MzAGQ5uxEVFZXlbEp8fDy8vb1hbW2NHTt2wMTERKueJ0+yXl7y9OnTLPVkMjMzg62trdY/ouIuLTkBSTFRmtdh5w7C1NoOptZ2qNCoDUIPZNwAH33nKlJin2V52pUyMQ5J0RGa1/dP7IaZbUmY2ZTIWftJb24/p65uW4S7R7bB22+H1j0Yr16CdmtPIIzNLeFUp5le239b/129uuDGXysBAE9vhSA55kmWy6ry0r4yKV6ntp1qN8lRn3IqLjkN4TEvL9XaERwBB2tTlLQyQQ/PMlh06D4A4NzdF4iMTUWzKjn7nSAioqJF58u6xowZg6CgIPz11194//33AQDHjx+Hj48Pxo4dm+U5zm8jhMCoUaOwY8cOHDlyBBUrVtRaX7FiRTg7O+PAgQNwd8+4FECpVCIoKAj+/v6a7eLi4tCuXTuYmZlh165dWs+1BoCmTZsiNjYWZ8+eRaNGjQBk3NgfGxuLZs20Dz6I6M3SkhJwcvEEqJQpkBQKmNmUQIvvFkGSJNT77FucXvw9/hrTAQpjEzQdPhMKI+0/McrEOBya9gVUymRAUsDcrhTa/LQRkiTh0sa5uPHXKqTEPsOxOSNhZGqOj2ft0i6fnIDj877Ntv1rO1ci9MAGpMbH4PSyH2BkYgrvmVu0Ykh8Fo6zy3+ATRlX/DOuEwBAYWKGzr/9i1t7AnDn0BZACNhVqIqPJq/JcmZV1/Y/+uH3HPffc9BUBM0ahq1fNoTC2BRe45Zlff/y0H5aYhyOzRqmU9tqVXruf1leE5ucjr7LLiBZqYZCATjamGH3aE9IkgT/HjXw+YoLcBt/CKbGCqwZ7A5jo1yf2CciokJM5+Rk27Zt2Lp1K1q2bKlZ1r59e1hYWKBnz546JScjR47E+vXrsXPnTtjY2GjOkNjZ2cHCwgKSJGH06NGYOXMm3Nzc4ObmhpkzZ8LS0hJ9+vQBkHHGpG3btkhKSsLatWsRFxenuXnd0dERRkZGqFGjBry9vTF48GAsW7YMQMajhDt27MgndRHpwNLBGe2mZb30EgAs7Eqh1cTlWsuUidoPkrAuXR6dF2R9PC8A1Os9BvV6j9FalprwQuu11Vvar9XlK9Tq8lWW5a/GYFWqLAbuy/4pUO79xsO933i9tq9L/y1KlIa3n/bTDvXZvpVjOZ3a1jeXkhY4O/mDbNc52Zlh/3faZ2pS0lT5Gg8RkZwMGDAAL168eOcEinIWEBCA0aNH48WLF3mqR+fkJCkpKdtLoUqXLq3zZV2ZicyriQ6QcdN95qyY48aNQ3JyMkaMGKGZhHH//v2wsbEBAAQHB+PMmTMAgCpVtCd8u3fvHlxdXQEA69atg4+Pj+bJX507d8bChQt1ipeIiIhIzkpNPVqg7T2bqtucRAMGDEBgYCAAwNjYGC4uLujWrRt8fX2zTE9RnMyfPz/LzPLvIkkSduzYga5du+ZPUAaic3LStGlTTJkyBX/88Yfm8qnk5GT4+vqiaVPdZhTOySBIkoSpU6di6tSp2a5v2bJljuopWbIk1q5dq1N8RERERKRf3t7eWL16NdLS0nDs2DF89dVXSExMzPbqm7S0NK37iAtSfrStVCphamqaZbmdXc7vndQ3Q77H2dH5ot758+fj5MmTKF++PD766CO0bt0aLi4uOHnyJObPn58fMRIRERFREWFmZgZnZ2e4uLigT58+6Nu3r+ZypqlTp6J+/fr4/fffUalSJZiZmUEIgdjYWAwZMgSlS5eGra0tPvzwQ1y6dEmr3l27dsHDwwPm5uYoVaqUZgJvIOPL7tcvmbK3t0dAQAAA4P79+5AkCZs3b0bLli1hbm6OtWvX4sGDB+jUqRNKlCgBKysr1KpVC3v27NHUERQUhEaNGsHMzAxlypTBhAkTkJ7+8n69li1b4uuvv8aYMWNQqlQptGnTJtv3ZMCAAVpnQFq2bAkfHx+MGzcOJUuWhLOzs9YX9ZlXBn3yySeQJEnzGgD++usvNGzYEObm5qhUqRJ8fX21YpIkCUuXLkWXLl1gZWWFn376CeXLl8fSpdrzZoWEhECSJNy9excAMHfuXM0E7C4uLhgxYgQSEhKy7U9e6Jyc1K5dG6GhofDz80P9+vVRt25d/PzzzwgNDUWtWrX0HiARERERFV0WFhZIS0vTvL59+zY2b96Mbdu24eLFiwCADh06IDIyEnv27EFwcDAaNGiAjz76CM+fZzyK/u+//0a3bt3QoUMHXLhwAQcPHoSHh+4TyY4fPx4+Pj64ceMG2rVrh5EjRyI1NRVHjx7FlStX4O/vD2trawDA48eP0b59e3h6euLSpUtYsmQJVq1ahenTp2vVGRgYCGNjY5w4cUJz73NOBAYGwsrKCmfOnMGsWbPw008/4cCBAwCAc+cyHuO/evVqREREaF7v27cP/fr1g4+PD65fv45ly5YhICAAM2bM0Kp7ypQp6NKlC65cuYKvvvoKvXv3xrp167S2Wb9+PZo2bYpKlSoBABQKBX777TdcvXoVgYGBOHToEMaNG6fDu5szOl/WBWT8Eg0ePFjfsRARERFRMXL27FmsX78eH330kWaZUqnEmjVr4OjoCAA4dOgQrly5gqioKJiZmQEAfvnlF/z555/YunUrhgwZghkzZqB3795aE2jXq1dP53hGjx6tdcbl4cOH6N69O+rUqQMAmgN1AFi8eDFcXFywcOFCSJKE6tWrIzw8HOPHj8fkyZOhUGScA6hSpQpmzZqlcyx169bVzNvn5uaGhQsX4uDBg2jTpo3mvbG3t9dMvQEAM2bMwIQJE/DFF19o4p02bRrGjRunNQdgnz59MHDgQM3rvn37Yu7cuXjw4AHee+89qNVqbNy4Ed9//73We5OpYsWKmDZtGoYPH47Fixfr3Le3yVVy8t9//+HIkSOIioqCWq3WWjd58mS9BEZERERERc/u3bthbW2N9PR0pKWloUuXLliwYIFm/Xvvvac5+AYyHn6UkJAABwcHrXqSk5Nx584dAMDFixf18sX562dbfHx8MHz4cOzfvx+tW7dG9+7dUbduxhxeN27cQNOmTbUeO//+++8jISEBjx49QoUKFbKtM6cy28lUpkwZREVFvWHrDMHBwTh37pzWmRKVSoWUlBQkJSXB0tIy25jc3d1RvXp1bNiwARMmTEBQUBCioqLQs2dPzTaHDx/GzJkzcf36dcTFxSE9PR0pKSlITEzU68MMdE5OVqxYgeHDh6NUqVJwdnbWGhBJkpicEBEREdEbtWrVCkuWLIGJiQnKli2b5Wbs1w901Wo1ypQpgyNHjmSpy97eHkDGVT1vI0lSlgcovXop2Zva/uqrr9CuXTv8/fff2L9/P/z8/DBnzhyMGjUKQogs82FltvHq8tweuL/+vkiSlOWkwOvUajV8fX21zv5kenUewOxi6tu3L9avX48JEyZg/fr1aNeuHUqVKgUAePDgAdq3b49hw4Zh2rRpKFmyJI4fP45BgwZl+z7mhc7JyfTp0zFjxgyMHz/+3RsTEREREb3Cysoqy/QPb9OgQQNERkbC2NhY68bvV9WtWxcHDx7El19+me16R0dHREREaF6HhobmeAoMFxcXDBs2DMOGDcPEiROxYsUKjBo1CjVr1sS2bdu0kpSTJ0/CxsYG5cqVy3H/csvExAQqlfacUA0aNMCtW7d0en8z9enTBz/88AOCg4OxdetWraennT9/Hunp6ZgzZ47mcrXNmzfnrQNvoPMN8TExMejRo0d+xEJEREREpKV169Zo2rQpunbtin379uH+/fs4efIkfvjhB5w/fx5Axg3eGzZswJQpU3Djxg1cuXJF6z6PDz/8EAsXLkRISAjOnz+PYcOG5ejxuaNHj8a+fftw7949hISE4NChQ6hRowYAYMSIEQgLC8OoUaNw8+ZN7Ny5E1OmTMGYMWM0B/D5ydXVFQcPHkRkZCRiYjImGJ48eTL++OMPTJ06FdeuXcONGzewadMm/PDDD++sr2LFimjWrBkGDRqE9PR0dOnSRbOucuXKSE9Px4IFC3D37l2sWbMmy9O99EXnd65Hjx7Yv39/fsRCRERERKRFkiTs2bMHXl5eGDhwIKpWrYrevXvj/v37monBW7ZsiS1btmDXrl2oX78+PvzwQ80k3QAwZ84cuLi4wMvLC3369MF3332nuf/ibVQqFUaOHIkaNWrA29sb1apV09wAXq5cOezZswdnz55FvXr1MGzYMAwaNChHiYA+zJkzBwcOHICLiwvc3d0BAO3atcPu3btx4MABeHp6okmTJpg7dy7ee++9HNXZt29fXLp0Cd26ddO6VK5+/fqYO3cu/P39Ubt2baxbtw5+fn750q8cXdb122+/aX6uUqUKfvzxR5w+fRp16tTJknX6+PjoN0IiIiIiyhFdZ2wvaJnzirzJmybetrGxwW+//aZ1TPq6bt26ZXuvBQCULVsW+/bt01r24sULzc+urq7ZTur96o362WnRogXOnj37xvXZ3SeTndffl+zKvT5PS6dOndCpU6cs27Vr1w7t2rV7Y1tvm7x8xIgRGDFiRLbrvv32W3z77bdayz7//HPNzwMGDMCAAQPeWHdO5Sg5+fXXX7VeW1tbIygoCEFBQVrLJUlickJERERERLmSo+Tk3r17+R0HEREREREVc/l/tw4REREREVEO6JycfPrpp/j555+zLJ89ezaf4kVERERERLmmc3ISFBSEDh06ZFnu7e2No0eP6iUoIiIiInq7t93YTCQnuvyu6pycJCQkwNTUNMtyExMTxMXF6VodEREREekg80mpOZ1EkMjQlEolAMDIyOid2+o8Q3zt2rWxadMmTJ48WWv5xo0bUbNmTV2rIyIiIiIdGBkZwd7eHlFRUQAAS0tLzQzlRHKjVqvx9OlTWFpawtj43amHzsnJjz/+iO7du+POnTv48MMPAQAHDx7Ehg0bsGXLFt0jJiIiIiKdODs7A4AmQSGSM4VCgQoVKuQoidY5OencuTP+/PNPzJw5E1u3boWFhQXq1q2Lf//9Fy1atMhVwERERESUc5IkoUyZMihdujTS0tIMHQ7RW5mamkKhyNndJDonJwDQoUOHbG+KJyIiIqKCY2RklKPr+IkKi1wlJ0DGjS1RUVFQq9VayytUqJDnoIiIiIiIqPjROTkJDQ3FwIEDcfLkSa3lQghIkgSVSqW34IiIiIiIqPjQOTkZMGAAjI2NsXv3bpQpU4ZPhyAiIiIiIr3QOTm5ePEigoODUb169fyIh4iIiIiIiimdJ2GsWbMmnj17lh+xEBERERFRMaZzcuLv749x48bhyJEjiI6ORlxcnNY/IiIiIiKi3ND5sq7WrVsDAD766COt5bwhnoiIiIiI8kLn5OTw4cP5EQcRERERERVzOicnb5sF/uLFi3mJhYhkTpWuzPX2qjQl0nM4O2wmdVqqVl0Kpc5XouYphry2b+j+67P9vEpNU797ozxsT0RERUOuJ2HMFBsbi3Xr1mHlypW4dOkSL+siKsJOLZ6o0/bilUlaj80aBl2fPC7UL/+enFn6PXSuII8x5LV9Q/c/r+3rU7/lFwzXOBERFRq5Tk4OHTqE33//Hdu3b8d7772H7t27Y9WqVfqMjYhkpEE5G53LqFQqBEcYAzH3ULeyBxQ6fnOvUikQ/EACEiNQv0Y5ncvnNYa8tm/o/ue1fb1xaWSYdomIqNDRKTl59OgRAgIC8PvvvyMxMRE9e/ZEWloatm3bhpo1a+ZXjERkQGZmZtiyZUuuygohkJqaqqlH10lb81o+r3UYOn5Dl3+VmZlZrsrk9ncnr20TEVHhlOPkpH379jh+/Dg6duyIBQsWwNvbG0ZGRli6dGl+xkdEBiZJEszNzXNd3sLCIk/t57V8XuswdPyGLp8Xef3dISKi4ifHycn+/fvh4+OD4cOHw83NLT9jIiIiIiKiYijHFyAfO3YM8fHx8PDwQOPGjbFw4UI8ffo0P2MjIiIiIqJiJMfJSdOmTbFixQpERERg6NCh2LhxI8qVKwe1Wo0DBw4gPj4+P+MkIiIiIqIiThJCiNwWvnXrFlatWoU1a9bgxYsXaNOmDXbt2qXP+GQjLi4OdnZ2iI2Nha2traHDISIioiKMxx1UXOXpuZLVqlXDrFmz8OjRI2zYsEFfMRERERERUTGUpzMnxQm/wSAiIqKCwuMOKq4MNCMXERERERGRNiYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyYKxoQMobFJSUmBqaqpzOSEEUlNTAQBmZmaQJKnQlC/MbeurDn21nxd5iZ2IiIioMGByoqP+/fvDxMRE53IqlQrBwcEAAA8PDygUup20MmT5wty2vuoAgC1btsDc3FzncqmpqejRo0eu2tRH+0RERESFBZMTHV2KSIDCSPe3TajViE1Jh2kZN1x+poIkqXQsr0KcUkBRoiwuhicAup69yEP7hbntvLafqZ6j7glpFmFnc1/WpVHe2yciIiKSOSYnudB0hB+MjHW7tEuZHI9/JnQHAHwwbilMzHT7BjwtMRY7hn0AAGg8bKbO5fPSfmFuO6/tq9NSEeQ/VOc232TtEHeYmeT8zE1qmhr9ll/QW/tEREREcsbkJBeMjE1hZGqmW5m0l/ccGJmYwthUt4NslTLFYO0X5rbz2n66zq29nZmJAuYmRnqulYiIiKho4NO6iIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZMHYkI37+flh+/btuHnzJiwsLNCsWTP4+/ujWrVqmm2EEPD19cXy5csRExODxo0bY9GiRahVq5Zmm+XLl2P9+vUICQlBfHw8YmJiYG9vr9VWSEgIxo8fj3PnzsHIyAjdu3fH3LlzYW1tnavYD/sNQXLsM0iSAiYWVmjYfyJKuFZHSmw0Ti2dhIQnYTAyMYXnwB/hWK1BlvJ7J3ZDcsyT/5W3RpORs+BQuQ4ubZiD0H83Iu7xHbSeuh4VmnjrHMO1nStw79guxEc+gNeYBSjXoIVWOZUyBf/+PBgvHt6CsZkFLEo4oZnPXNg4V8Cz/y7g1OLxUClToFKmwq1tH1Rr/4Ve2n1X35NfPMXRWcMRH3EPChNTNPOZixKuNfTW79y0X6qq+xvf/9xq+8tpRMamQiFJsDE3xoJ+tVC/gh2i4lLRf8VF3IlKhJmJEZb2rwOPinZ6b5+IiIhIrgyanAQFBWHkyJHw9PREeno6Jk2ahLZt2+L69euwsrICAMyaNQtz585FQEAAqlatiunTp6NNmza4desWbGxsAABJSUnw9vaGt7c3Jk6cmKWd8PBwtG7dGr169cLChQsRFxeH0aNHY8CAAdi6dWuuYn/f5xeYWtkCAB6dP4gzKybDe8ZmXNw0D6Wq1EWr8UsRfecqjs8fg06/7slSvtWk1TCzzjjwfHDybxyf+zW6LApCGfcWqNiiG47/OirXMTjVaowKTbxxdsXkN5at1v4LlPdsA0mScH3ncpyYPxrefttxfN43aPD5BFRo2h6pcTHY9lUjONdpprd239b386t84VjDA+1mbsXTWyE4NP0LdF54WK/91rX9T5afemtdubF5REPYW5oAAP4MicTAVZcQ4uuFCVtuoklle+wd2xjn7r7Ap4uDcW26l97bJyIiIpIrgyYne/fu1Xq9evVqlC5dGsHBwfDy8oIQAvPmzcOkSZPQrVs3AEBgYCCcnJywfv16DB06FAAwevRoAMCRI0eybWf37t0wMTHBokWLoFBkXMm2aNEiuLu74/bt26hSpYrOsWceHAOAMikBkiQBAMJO70OneRn9cqhcG+Z2Dnh66wJKvFdNq3zmwTEAKBPjACkjrtLVPfIcQ6kqdd9azsjUHC6N2mpel67hiWs7lmpepybEAQDSUhKhMDGFqbW9XtrN9Ka+3zv6J3oEXgQAOFZrAAv70nh643yW8gXZftT1szmqUxeZiQkAxCalQaHIiH/zuXDcm/UhAMCzkj2cbE1x8naM3tsnIiIikiuDJievi42NBQCULFkSAHDv3j1ERkaibduXB9JmZmZo0aIFTp48qUlO3iU1NRWmpqaaxAQALCwsAADHjx/PNjlJTU1Famqq5nVcXFyWbU4t+V5z8Npy/FKkxr+AEALmtiU121g5lkVSdESW5AQAgmYNQ+SlYwCAtjNydwbn9Rhy49qfyzSXj30wdhH+ndoHIYHTkRIbjfe/+RUWJRz13u7rfU+Jew4h1LCwL6XZxtqpAhKfPc62fIG1//SRznXnRP8VF3D4RjQAYO/YxohOUEItBBxtzTTbuJayRNjzlHxpn4iIiEiOZHNDvBACY8aMQfPmzVG7dm0AQGRkJADAyclJa1snJyfNupz48MMPERkZidmzZ0OpVCImJgbff/89ACAiIiLbMn5+frCzs9P8c3FxybJN0+Ez0WXBv6jTYxQurJ+TsfB/3+K/0rE3xtVi3FL0WncNDQb8gHMr334p0ptkG4MOLm2Yg7jwu2g44AcAwJUtv8Hzq5/Qa+1VfLL8FIIDpiPu8R29t5td3yW89t7hze+dodvPqz8GuyNsbmtM71YN/7fperbtv+VXh4iIiKhIkk1y8vXXX+Py5cvYsGFDlnWS9PpBm8iy7G1q1aqFwMBAzJkzB5aWlnB2dkalSpXg5OQEIyOjbMtMnDgRsbGxmn9hYWFvrL+SVxdEXT+neZ0S91zzc+KzCFg6lHlrfG5tPkPEpeNa5XSVGUNq/Iscl7myZQHun9iNttO3wNjcEimx0Xhw8m9UavEJAMC2jCscq3vg6a0Qvbb7qsy+Z0p+8Uzzc8KTMFiVKvfW8vnevmP5XNWbU180d8Hhm9Ga10/jXp6texCdBJeS5vnaPhEREZGcyCI5GTVqFHbt2oXDhw+jfPmXB4POzs4AkOUsSVRUVJazKe/Sp08fREZG4vHjx4iOjsbUqVPx9OlTVKxYMdvtzczMYGtrq/UvU1pyApJiojSvw84dhKm1HUyt7VChURuEHtgIAIi+cxUpsc/gWE37iU/KpHgkRb88Y3P/xG6Y2ZaEmU2JHPcnLenNMeTE1W2LcPfINnj77dDcg2FqbQ8jEzNEXD4BAEiJjcbTG+dgX6FqjvqeE2/ru6tXF9z4ayUA4OmtECTHPIFjDe17cPLab13bL12zUY7qzam45DSEx7y8VGtHcAQcrE1R0soEPTzLYNGh+wCAc3dfIDI2Fc2q5Px3goiIiKiwM+g9J0IIjBo1Cjt27MCRI0eyJAoVK1aEs7MzDhw4AHf3jAN8pVKJoKAg+Pv756rNzKTm999/h7m5Odq0aaNzHWlJCTi5eAJUyhRICgXMbEqgxXeLIEkS6n32LU4v/h5/jekAhbEJmg6fCYWR9tuclhiHY7OGQaVMBiQFzO1Koc1PGyFJEi5tnIsbf61CSuwzHJszEkam5uiyKAgKY+06lMkJOD7v22xjuLZzJUIPbEBqfAxOL/sBRiam+OiH3zVlE5+F4+zyH2BTxhX/jOsEAFCYmKHzb/+i1aTVOLtsEtSqdAhVOmp/OgoOVeq9jD05EaeXTsxxu94zt2j1/2199xw0FUGzhmHrlw2hMDaF17hlWd47Xfut7/bzKjY5HX2XXUCyUg2FAnC0McPu0Z6QJAn+PWrg8xUX4Db+EEyNFVgz2B3GRrL4/oCIiIioQBg0ORk5ciTWr1+PnTt3wsbGRnOGxM7ODhYWFpAkCaNHj8bMmTPh5uYGNzc3zJw5E5aWlujTp4+mnsjISERGRuL27dsAgCtXrsDGxgYVKlTQ3Fy/cOFCNGvWDNbW1jhw4AD+7//+Dz///HOW+VBywtLBGe2mZb38DAAs7Eqh1cTlby1v5VgOnRcczHZdvd5jUK/3mCzLUxNeaNfxlhhqdfkKtbp8pbVMmfjyhn6rUmUxcF/2T4Eq16AlyjU48sa2LUs66dRulrbf0neLEqXh7bf9jW0Duvc7r+2nK/V7Q7pLSQucnfxBtuuc7Myw/7smWstS0lR6bZ+IiIhIzgyanCxZsgQA0LJlS63lq1evxoABAwAA48aNQ3JyMkaMGKGZhHH//v2aOU4AYOnSpfD19dW89vLyylLP2bNnMWXKFCQkJKB69epYtmwZPv/88/zrHBERERER6cTgl3W9iyRJmDp1KqZOnfrGbd61HgD++OMPHaMjIiIiIqKCxAvaiYiIiIhIFpicEBERERGRLDA5ISIiIiIiWWByQkREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFpicEBERERGRLDA5ISIiIiIiWTA2dACFkSpdmacyqjQl0hW65YXqtFStuhRK3crnpf3C3LY+29eH1DR1vm5PREREVJgxOcmFU4sn6lxGqF8eZB6bNQySpGt5lebnM0u/h64V5KX9wtx2XtvXt37LLxiucSIiIiKZY3Kio3plrGFiYqJzOZVKheAIYyDmHupW9oBCxzMnKpUCwQ8kIDEC9WuUy0X53LdfmNvOa/t65dLIMO0SERERFRKSEEIYOojCIC4uDnZ2dnjy5AlsbW11Li+EQGpqxiVCZmZmkHQ9+2DA8oW5bX3Voa/28yIvsRMRUeGSedwRGxubq+MOosKKZ050ZG5uDnNz81yVtbCwyFPbhixfmNvWVx25JUlSrn9niIiIiIoTPq2LiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFvi0rhzKfOJyXFycgSMhIiKioi7zeIMzPlBxw+Qkh+Lj4wEALi4uBo6EiIiIiov4+HjY2dkZOgyiAsNJGHNIrVYjPDwcNjY2nAhPz+Li4uDi4oKwsDBONCVDHB/54xjJG8dH/uQ4RkIIxMfHo2zZslAoeBU+FR88c5JDCoUC5cuXN3QYRZqtra1sPhQoK46P/HGM5I3jI39yGyOeMaHiiKk4ERERERHJApMTIiIiIiKSBSYnZHBmZmaYMmUKzMzMDB0KZYPjI38cI3nj+Mgfx4hIPnhDPBERERERyQLPnBARERERkSwwOSEiIiIiIllgckJERERERLLA5ISIiIiIiGSByQkREREREckCkxMiIiIiIpIFJieUr6KioqBSqQwdBlGhlZCQYOgQ6B34d46ISH+YnJDeCSGgVCoxZMgQtGvXDqdOnTJ0SJSNJ0+e4O+//wanOpKniIgI9O3bF5999hkGDRqEkJAQQ4dEr+DfOfmLjIzETz/9hMWLF2PPnj2GDoeIcojJCemdJEmIiorCrl278PTpUxw6dAixsbEAwANhmVi4cCHKli2LTp064dq1a4YOh16zdu1a1K5dG0qlEh9//DEOHToEf39/REZGGjo0+h/+nZO3adOmoUqVKjh79iwCAgLwySefYP369QA4PkRyx+SE8kVaWho6duyIzz//HGvXrsXp06cBZHygk+EIIbBnzx78+eefmDVrFtzd3eHr6wu1Wm3o0Oh/VCoV/vjjD4wZMwZbtmzBiBEj4O/vj6CgIFhYWBg6PHoF/87Jj0qlgr+/P/bs2YPNmzdj9+7dOHjwIMaMGYOJEycC4PgQyR2TE8oXjx49wuXLl+Hn5wcrKyts2LBB860iGY4kSXBycsLnn3+OoUOH4tdff8W2bduwb98+Q4dG/3PlyhXcvXsXZcuW1SxLSkpC9+7duQ/JDP/OyY+RkRGUSiU+/PBDeHt7AwBsbGzQokULGBsb486dOwaOkIjehckJ5ZpSqURycnK26x49eoSaNWsCACZMmICjR49iw4YNGDJkCCIiIgoyzGItPj4eR48exe3btzXLGjZsiC+++ALW1tbw8vJCjx49MGnSJMTHxxsw0uLp1X0o8+xVzZo14eDggFWrVmH58uXo2bMnBg4ciAsXLqBu3boYPXo0oqKiDBl2sRIXF4fTp0/j8ePHWdbx75zhJSYmIjQ0FHFxcZpl3333HWbMmAGFQqG5hOv58+cwNzdH5cqVDRUqEeUQkxPKFX9/f9SpUwdHjx7VWp55gBUXF4cXL14AAHr16gVjY2P4+Pjg/PnzkCSJ1/wWgGnTpqFy5coYM2YM6tati7lz52p9gGeOlZ+fH27evImAgAADRVo8vb4PKRQKpKenw9TUFPPnz0fPnj2xc+dO3LlzB2fPnsXevXsxb948nD17FosXLzZw9MWDn58fXFxcMHjwYNSsWRPz58/XSlL4d86wpk2bhjp16qBnz56oX7++5qb3zMsf1Wq15hKuU6dOwd3dHUDG5XhEJF9MTkgnz58/x/Dhw7F+/XpERkZi+fLlePbsmWa9QpHxK/Xw4UO0a9cO//77L8qXL4/k5GTY2Nigb9++KFWqFK/5zUd3795F27ZtsWXLFqxZswa7du3ChAkT8PPPP2udHckcq0qVKmHs2LGYMWMGHj16BCDjMqLExESDxF/UvW0fMjIyAgA0adIEPj4+SE1NxcCBA+Hh4QFbW1sMGDAANjY2ePLkCQ+w8tk///yDNWvWIDAwELt27cL48eOxYsUKTJ48WbPN/fv3+XfOAB48eIAuXbpg06ZNWLhwIebMmQMvLy989dVXePLkiWY7hUKh2U/OnDmDhg0bAgBMTEwA8MZ4IrlickI6iY2Nha2tLfz8/PD3339jx44d+PfffzXfwmf+b2RkhJEjR6Jbt24YMmQIwsLC0K9fPwQGBuL48eOG7EKR9/jxYzRr1gw7duxAu3btULZsWXz11VewtbV9Y5kJEybA3Nwcs2fPxpo1a9CuXTs+ejOfvG0fevVg9sGDB7h9+zYaN26sWZaUlIS4uDhUqFBBc4BF+WPv3r0wNzdH165dUbFiRXz//fcYNmwYTpw4gaVLl2q249+5gnf69Gm8ePECW7duRfv27fHhhx8iICAAiYmJOHv2rNa2JiYmCAsLw/3799GtWzcAGWPbp08fPHjwwBDhE9G7CCIdpKeniwcPHmhe9+zZU9StW1fcu3dPa7tdu3YJf39/8d9//2mWRUVFiRo1aoigoKCCCrdYUiqVIiwsTOv1J598Ipo3by6mTZsm/vvvP6FSqYQQQvO/EEJMmTJFSJIkTE1NxcSJEws87uIip/uQEEK4u7uLFi1aiDVr1oiQkBDRsWNHUatWLXHp0qUCjLj4UalUYvjw4aJ3794iJSVFszw8PFwMHTpU1KtXTyQlJYl///1XzJw5k3/nCoharRZCCPH8+XOxZcsWrXWRkZGiWrVqYv/+/VnKrV27Vnz00UciLCxMfPzxx8LY2FiMHTu2QGImIt0xOaFcyfyQiI6OFiYmJsLPz0/rQzw9PV1r+8zXqampBRckiRs3bghLS0vh6ekpJk+eLOrXry+aNm0qVq1apdkmISFBjBw5UkiSJAYNGiRiYmIMF3Ax8rZ9KHN/uXXrlmjYsKGoVq2aqFSpkujZs6d4/vy5wWIuDjLHxc/PT7i4uGT7xYu7u7sICAjQ2l4I/p0rCK++30K8/ILl+vXrwsHBQStRzNy2f//+QpIkYWJiIjp06CCePXtWcAETkc54WRflmHjl+lxJkpCeno6SJUti0qRJmDt3Lm7cuKFZn3k/Q2aZzGvpTU1NCzDi4ke8dg21i4sL9u3bh9OnT8PX1xdnzpyBvb09zp49C6VSCQB49uwZbGxscOzYMaxcuRL29vYGiLxoSUlJyXZ5TvchIyMjpKeno2rVqvj333/x999/4+DBg9i0aRNKlChRIH0orjIvTR09ejRiY2Oxbt06rfUtW7aEiYmJ5mlcr16Kx79z+hMVFaXTPSFHjx5FxYoV4ebmlqWcsbExateujbNnz2L37t1wcHDQd7hEpEdMTkgjIiICPXr0wObNmwFkTGaVKT09XfMhnLk88/WUKVNgamqKJUuWICYmBgcOHMDatWu1tiH9CAsLw9atWxESEqK50TPzg/jVMUpPTwcAWFpaonnz5lAoFFCr1TA1NUVCQgIiIyM1B1Dvvfce/Pz88P777xugR0XLvXv3UK9ePcycOTPLOl33oczZrO3t7VG5cmW4uroWTCeKuIiICJw6dQr379/Psi49PV2TYJibm2Py5Mnw9/fH+fPnNdvY2NhAqVQiLCysoEIuVu7du4fOnTtj/PjxuH79uta6t+1Dx44dg5eXl2bZlStXcPXqVQDA/PnzcfnyZdSvX7+AekFEecHkhDRWrVqFbdu24ddff0VSUhKMjIw03yIaGxtDCIHx48dj48aNUKvVMDIy0nxALFiwAKtWrUKLFi3Qrl07zpmRDyZOnIiqVatizpw5aNasGYYPH467d+9CkiSo1WqtMdq0aVOWG6wVCgXOnj0LSZIwePBgA/ak6BFCYNiwYahatSqqVq0KHx+fLNvoug8lJCQUdDeKvNGjR6NOnTr45ptvUKtWLSxevFhr0sRXx2jt2rUYO3YsqlatigkTJmgeEBESEgIhBLp27WqgXhQ9mV+w/PHHH2jYsCEsLCwwcuRIlCpVSmt9dvsQkPGQieDgYLRr1w4RERHo2bMn6tWrh4cPHwIArK2tDdArIsotJiekcfLkSfTq1Qumpqbw9/fXWhcYGIhSpUph//79qFu3ruayLSMjIzx+/BinT5+GWq1GrVq18PDhQ4wYMcIQXSiyzpw5g507d2Lr1q04fPgwVqxYgdDQUHz++ecAMhKPwMBAODg4ZBmjGzdu4MqVK5g8eTLat2+PmjVrolWrVobsTpFy+/ZtODg44Pjx4zh79iy2bNmiOah6Ffchw3n48CE6d+6Ms2fPYteuXdi8eTNGjBiBJUuWaD3d6dUxqlWrFgBgzZo1sLW1xSeffIJ27drhgw8+QI0aNXimUY8yv2DZsGEDfvzxR2zatAkeHh6wsbHRrAeAgICALPuQJEkIDQ3FixcvsGPHDlSuXBmxsbG4f/8+OnToYMhuEVEuGRs6ACp4Qgitb9TT09NhbGyMMmXKoFOnTpoDrN69e6NGjRqIj4/Ho0ePMH36dAwZMkRz2QOQMcP1L7/8gj/++AOHDh1Cy5YtDdCjou/PP/+ESqXSfNh+/vnnqFKlCtq2bYu5c+dizJgxuH//PmbOnInBgwdrjdHJkyexaNEiGBsbY/Pmzfjwww8N1Y0i49V9yMTEBGXLlkXz5s3h7u6OkydPYtu2bXBwcECDBg3QvHlzWFtb4969e5gxY0aW8eE+lP+uXr0KS0tLLFiwQDPXxezZs7F27VrExMQAABISEhAWFqY1RkII1KhRAwEBAThz5gz+++8/TJ48mYmJHrz+OXTkyBHcuXMHo0aNwsmTJ+Hv74/U1FRUqVIF/fr1Q5MmTfDgwYNsP4dOnz6NJ0+eICQkBDt37kSbNm0M0SUi0hNJ6HLHGRV6ycnJUCgUMDMzA6D9AVG3bl1s3LgRSUlJGDduHOrUqYPZs2cjNDQU1atX1/oweNWTJ0/g5ORUYH0o6jLHRK1Wa75d//XXXxEQEIBTp07B0tJSs91PP/2E+fPnIyIiQjOmr9ejVCpx8eJFNGrUqMD7UhS9vg+p1Wr8+eef+PTTT9G2bVvcvHkTHh4euH37Np4+fYo2bdogICDgrXVyH9KvzN/9zC9ewsPDcf/+fTRr1gxAxpipVCo0bdoUY8aMQZ8+fTTLM/c5yj+v70NAxtnhDh06YOXKlZgxYwZat24Nc3NzHDp0CFeuXMH169fh7OysVU/mOMfHx2Pbtm0YMGBAAfeEiPID/woXIxMnTkTz5s3RsWNH/Pbbb4iLi9McBD9+/BhWVlZwdXWFh4cHOnXqhPXr18Pc3BwHDx7Uujn+dTyo0p+5c+dqbqZ+9SDJzs4OJiYmOHjwoGaZJEn44osvYGVlhblz5wJ4+aShzPVAxpODmJjoR3b7kEKhQKtWrfD5558jISEBu3btwrp163Dx4kVMnToVp0+fxpIlSwBoj8+ruA/pz6v7UOY9CmXLltVKTBQKBSIiInDr1i3Url1bU5aJSf7Lbh8CMhKN+vXrY+bMmahfvz5mzJiBKVOmYPfu3ShXrhy+//57ANoPapEkCUII2NjYMDEhKkL4l7gYUCqV6NGjB3bt2oVx48ahbNmyWLZsmebbQoVCARsbG5iYmECSJOzYsQPTp09HWloa6tatCx8fH5iamur0WEfSzblz59CqVSt899132L59O06dOgUAmidyffrpp0hNTcXevXsRFRWlKVemTBm0bt0aoaGhUKlUPLjKJ2/ahz777DMAQIkSJTBx4kTMmzcPderU0cze3r17d7i5ueHixYscn3z2pn3o9b9bmWNw8uRJVKxYUSs5ycS/dfr3pn2od+/eADLO3Nva2uL8+fNo1KgRFAoFVCoVbGxs8O2332L//v1ISEjIcgafT4QkKnr4SVkM3LlzB5cuXcK8efPQq1cvBAYGYvny5Th06BBmz54NADh//jxu376NRo0aYeDAgfj+++8xa9YsSJKExYsXA+AHdn7at28fSpUqhd9//13zP5BxP0NaWhpsbW0xbNgw/Pvvv9i5c6emnJmZGUJDQ6FQKN542R3l3Zv2ocOHD2v2oerVq8PDwwOSJEGhUEAIgZIlS+LmzZscnwLwpn0ocyxeFxwcjKZNm2qSlcOHD+Ovv/4CwAPe/PCmfejIkSP4+eefYWlpicGDB6NkyZLYsmULgJfzxoSGhsLNze2NY0lERUx+zvBI8hAcHCwkSRLR0dFCCO0ZkO3t7cXdu3dFWlqaqFmzphgyZIhmRuTw8HDRs2dP4eXlpTX7O+lP5lg8ePBAnDx5UgiRMS6NGzcWmzdvFkIIkZaWptm+T58+on79+mLZsmUiJiZGBAcHiwYNGoiNGzcWfPDFyNv2oRIlSmjNSv2qf/75R3h6eooTJ04UWKzFTU72ocxZxDOlp6cLd3d3sWnTJnH37l3x4YcfClNTU7Fp06aCDb4Yeds+ZGdnJ+7cuSOEEGLq1KnCwcFB/Pjjj+K///4TN2/eFC1atBA//fSTwWInooLF5KQYuHDhgqhVq5ZYsGCBEOLlh4JSqRSurq5i9OjRQgghnjx5olmX6dq1a0xMCtidO3dE165dRdeuXcXz58+FEEKkpqZq1k2ePFkYGRmJhg0bCgsLCzFo0CChVCoNGXKR97Z9qGLFimLs2LFCiIyD4CtXrohDhw6JoUOHCjs7OzFhwgSRnp5usNiLo+z2oVcTlEuXLgkbGxvx8ccfC2NjY9GrVy8RFxdnqHCLhXftQ5mfQ5GRkWL58uXC3t5e1K5dW9jY2Igvv/ySn0NExQgv6yoCxDtOc7/33ntwc3PD8ePHERERoXmKjYmJCUaNGqWZsK906dKayxky66xZs2aWp0CR7t41Rq9uV6lSJXTq1AkRERGapzxlzuZeqVIl+Pr64tKlS/D19UVISAhWrlypuceBcicv+9DXX3+NDRs2aG60DgkJwbRp0/Dff/8hKCgIfn5+vKRLD/K6D716v09oaCgSEhKQmpqKc+fOYePGjZo5NSh/vGsfyvwccnJywuDBg3Ht2jWsXLkSISEh+P333/k5RFSMMDkp5J4+fYqkpCTN61efBpSeng4g42bdTp064ebNm9i8eTOAjKfYABlPgSpZsiTCwsK06uU11/qTkzHKlPkkmk8//RQ1a9bE7t27ERoaCiBjZurM8rVq1UKHDh1QvXr1/A6/yIuKikJ8fLzmdW72oRIlSuDBgwcAMm6CX7FiBQ4dOoR69eoVVDeKtJyMUaa37UPnz58HADRu3BgHDx7EwYMHUb9+/XyOvujLHI/snuqo6+dQZhJatmxZNG7cGFWqVCmILhCRjDA5KaTS0tIwZMgQvP/+++jUqRO+/PJLxMTEaH07aGxsjJSUFGzcuBEDBw5E/fr1sWnTJhw+fFizzaNHj+Do6Ij33nvPEN0o0nI6RmlpaQgMDNS8VqvVsLW1RY8ePaBWq+Hr64uPPvoIHh4eWcpT7qWnp2PQoEFo1KgRWrdujb59+yI6OjrX+1DFihUBAFZWVqhcuXKB96coyukY5XQfatSoEaKjo1G+fHm0atXKUN0qMtLS0jBixAgMHToUgPbZqcyERdfPIX4xRkQ8yimEYmJi0L59e9y+fRurV6/GZ599hkuXLqFjx464deuWZrvffvsN5cqVw8aNGwEAY8aMQaVKleDt7a35QJkzZw569eoFgE/j0iddxsjZ2Rl//fWXZqbqzA/4WrVqISwsDOvXr0fp0qURERGBEiVKGKQ/RU16ejoGDBiA69evIzAwEJ999hkuX76Mrl274saNG5rtuA8Zji5jpMs+5ODgYJD+FDVnzpxB69atsXXrVgQGBuLEiROQJElz9iRzDLgPEZHODHSvC+XB3r17Re3atcXNmzc1y65fvy4UCoXw8fERMTExYvXq1aJChQpi3bp1WjeCqtVqMXPmTDF48GDRvn17PkUon+g6Rq8/iODgwYPC2tpa1K9fX5w/f76gwy/yHj58KNzc3MSaNWs0yyIiIkS5cuXEqFGjxPPnz7kPGZiuY8R9qGDNmzdPDBo0SOzZs0d069ZNNG7cOMs2ixcvFhUrVuQ+REQ6YXJSCAUGBgp7e3utZSdOnBAlS5YUbm5u4u+//xZqtVokJCRobfP6hzfln9yOUaZnz56J9evXF0SoxdKFCxeEhYWFCA0NFUIIzZOAFi5cKNzc3MRff/0l1Gq1SExM1CrHfajg5HaMMnEfyh+Z+0BYWJi4du2aECLjyxhHR0excuVKIcTLpwumpaXxc4iIdMbLumRuz549ALRPdbu4uMDBwQH+/v6aZStXrsSgQYOgVquxc+dOSJIECwsLrbp4LW/+0OcYZdbj4OCgmX2c8mb58uVYsWIFjh49qlnm5uYGZ2dnrF27FsDLS1BGjhwJOzs7bNu2DampqbC0tNSqi/tQ/tDnGAHch/Qtc3yCgoI0+0C5cuVQs2ZNAICHhwd69+4NX19fqFQqmJqaQq1Ww9jYGFZWVlp1cR8ioncybG5Eb7J7925Rrlw5IUmS5pR35lwJz58/F7NnzxaSJIlmzZoJa2trUbt2bZGWliYWLFggypUrZ8jQiw2OkbytX79elC5dWjRt2lTUr19fODo6iunTpwshhIiNjRXjx48Xbm5u4smTJ0IIIZKTk4UQQqxZs0bY2dlpXlP+4RjJ29vG5/W5e86cOSPc3NzEd999J4TIOvElEVFOMTmRoWPHjglvb2/x9ddfi48//lh4eHhku11QUJBYsGCB2L9/v2bZzz//LJo3by5evHhRUOEWSxwjeVu3bp2oV6+eWLp0qRBCiMePH4sFCxYIKysrERsbK4QQ4sCBA8LT01OMGDFCCPHycpPDhw+L0qVLi0uXLhkm+GKCYyRvbxuf7CasTExMFLNnzxZ2dnbiwYMHQoiMccocSyKinOJlXTIi/ndZkJOTE9q2bYsxY8Zg2rRpuH79OlatWgVA+/n+Xl5e+Prrr9GmTRsAgFKpxOnTp+Hu7g47O7uC70AxwDGSt8zxSUtLQ+PGjdG/f38AGXMmuLu7o1y5crh+/ToAoHnz5ujTpw8CAwOxY8cOpKWlAQBOnDiBmjVrok6dOobpRBHHMZK3nIzPq09Ly2RpaYkuXbrA3d0dPXr0gIeHB7p3747nz58XaPxEVAQYNDUiIYQQwcHBWb5FzzxlnpaWJsaOHSscHR01N4S+7ubNm+K///4T/fv3FxUrVhSnTp3K95iLG46RvAUHB4uYmBjN6xcvXmS57OTixYvC2dlZPH/+XLMsLi5OjBs3TtjY2IgWLVqIHj16CAsLC7Fo0SIhBG/e1SeOkbzldnxedeXKFVG3bl0hSZIYMWKE5sZ4IiJd8MyJAW3btg0uLi7o2bMn6tatiylTpiAyMhJAxs2fQggYGxtj5MiRMDc3x6RJkwBkfQ7833//jY8//hj379/Hvn370KRJkwLvS1HFMZK3V8enXr16mDx5Mp48eQI7OzsYGRlpncU6dOgQKleujBIlSkCpVAIAbGxs4O/vj99//x0tW7aEg4MDQkJCMGLECAC8eVcfOEbyltfxyXT8+HF07NgRlpaWCA0NxaJFi2BqalrQ3SGiosCwuVHxde7cOVG9enUxb948cenSJbF48WLh6Ogohg8fLqKjo4UQL7+ZV6vVYvHixcLY2FjcvXtXCJHxqMbM637Dw8NFcHCwYTpShHGM5C0n46NSqURaWpoQQohPPvlEjBw50pAhFzscI3nT5/iEh4fzjDAR6QWTkwKWeQnCkiVLRPny5bVuFly4cKFo0qSJmDZtWpZy0dHRolmzZqJLly4iODhYtG3bVqxZs4ZPRMkHHCN503V8VCqVUKvVonLlymL37t1CCCFu3bolevfuLR4+fFiwwRcTHCN54/gQkZzxsq4ClnkJwr1791C1alUYGxtr1g0YMAANGzbEP//8g2vXrgEAVCoVAKBkyZIYPHgwdu3aBU9PT5iamqJ79+6aZ/+T/nCM5E3X8VEoFDh37hwsLS3RoEEDjB49GnXr1kV0dDRKly5tkD4UdRwjeeP4EJGc8agpnx04cAA+Pj6YP38+zp49q1n+/vvv4+TJk5r7F1QqFaysrNClSxdIkoT9+/cDAIyMjKBUKrF48WIMGjQIXl5euHz5Mv76669sJ/Aj3XGM5C2v4wNkTJR59epVVKtWDQcOHMCJEyewf/9+mJmZFXh/iiKOkbxxfIioMGFykk8iIiLQqVMn9OvXD8+fP8eqVavQtm1bzQdD27Zt4erqqplBPPObrDZt2kChUOD27duaumJiYvDff/9h9erVOHLkCGrVqlXwHSqCOEbyps/xMTExQalSpRAQEIBr166hYcOGBd+hIohjJG8cHyIqlAx9XVlRlJiYKL744gvRq1cvzc3RQgjh6ekpBgwYIITIuJH6jz/+EAqFQjO7eKa+ffuKVq1aFWjMxQ3HSN70MT4tW7bUvI6KiiqYwIsRjpG8cXyIqLDimZN8YGlpCTMzMwwYMAAVK1ZEeno6AKBjx46ayauMjIzQs2dPdOnSBV999RWCgoIghEBkZCRCQ0PRt29fQ3ahyOMYyZs+xqdfv36a+hwdHQ3Sj6KMYyRvHB8iKqwkIV6bkIH0Ii0tDSYmJgAy5ryQJAmff/45LCwssHz5cs2ylJQUfPzxx7h+/Trq16+Pq1evokKFCti8eTNcXFwM3IuijWMkbxwf+eMYyRvHh4gKIyYnBcjLywsDBw7EgAEDIISAWq2GkZERnjx5gsuXL+PcuXNwdXVFnz59DB1qscUxkjeOj/xxjOSN40NEcsfkpIDcvXsXzZo1w99//625kVCpVHIGXRnhGMkbx0f+OEbyxvEhosKA95zks8zc7/jx47C2ttZ8IPj6+uKbb75BVFSUIcMjcIzkjuMjfxwjeeP4EFFhYvzuTSgvMh/NePbsWXTv3h0HDhzAkCFDkJSUhDVr1nACKxngGMkbx0f+OEbyxvEhosKEl3UVgJSUFNSpUwd37tyBqakpfH19MX78eEOHRa/gGMkbx0f+OEbyxvEhosKCyUkBadOmDdzc3DB37lyYm5sbOhzKBsdI3jg+8scxkjeODxEVBkxOCohKpYKRkZGhw6C34BjJG8dH/jhG8sbxIaLCgMkJERERERHJAp/WRUREREREssDkhIiIiIiIZIHJCRERERERyQKTEyIiIiIikgUmJ0REREREJAtMToiIiIiISBaYnBARERERkSwwOSEiyoEBAwZAkiRIkgQTExM4OTmhTZs2+P3336FWq3NcT0BAAOzt7fMvUCIiokKMyQkRUQ55e3sjIiIC9+/fxz///INWrVrhm2++QceOHZGenm7o8IiIiAo9JidERDlkZmYGZ2dnlCtXDg0aNMD333+PnTt34p9//kFAQAAAYO7cuahTpw6srKzg4uKCESNGICEhAQBw5MgRfPnll4iNjdWchZk6dSoAQKlUYty4cShXrhysrKzQuHFjHDlyxDAdJSIiMhAmJ0REefDhhx+iXr162L59OwBAoVDgt99+w9WrVxEYGIhDhw5h3LhxAIBmzZph3rx5sLW1RUREBCIiIvDdd98BAL788kucOHECGzduxOXLl9GjRw94e3sjNDTUYH0jIiIqaJIQQhg6CCIiuRswYABevHiBP//8M8u63r174/Lly7h+/XqWdVu2bMHw4cPx7NkzABn3nIwePRovXrzQbHPnzh24ubnh0aNHKFu2rGZ569at0ahRI8ycOVPv/SEiIpIjY0MHQERU2AkhIEkSAODw4cOYOXMmrl+/jri4OKSnpyMlJQWJiYmwsrLKtnxISAiEEKhatarW8tTUVDg4OOR7/ERERHLB5ISIKI9u3LiBihUr4sGDB2jfvj2GDRuGadOmoWTJkjh+/DgGDRqEtLS0N5ZXq9UwMjJCcHAwjIyMtNZZW1vnd/hERESyweSEiCgPDh06hCtXruDbb7/F+fPnkZ6ejjlz5kChyLilb/PmzVrbm5qaQqVSaS1zd3eHSqVCVFQUPvjggwKLnYiISG6YnBAR5VBqaioiIyOhUqnw5MkT7N27F35+fujYsSP69++PK1euID09HQsWLECnTp1w4sQJLF26VKsOV1dXJCQk4ODBg6hXrx4sLS1RtWpV9O3bF/3798ecOXPg7u6OZ8+e4dChQ6hTpw7at29voB4TEREVLD6ti4goh/bu3YsyZcrA1dUV3t7eOHz4MH777Tfs3LkTRkZGqF+/PubOnQt/f3/Url0b69atg5+fn1YdzZo1w7Bhw9CrVy84Ojpi1qxZAIDVq1ejf//+GDt2LKpVq4bOnTvjzJkzcHFxMURXiYiIDIJP6yIiIiIiIlngmRMiIiIiIpIFJidERERERCQLTE6IiIiIiEgWmJwQEREREZEsMDkhIiIiIiJZYHJCRERERESywOSEiIiIiIhkgckJERERERHJApMTIiIiIiKSBSYnREREREQkC0xOiIiIiIhIFv4fsX39WEf9RfQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -212,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -236,6 +268,10 @@ " \n", " \n", " i_interval\n", + " -8\n", + " -7\n", + " -6\n", + " -5\n", " -4\n", " -3\n", " -2\n", @@ -249,30 +285,46 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " 2021\n", + " [2020-11-01, 2020-12-01)\n", " [2020-12-01, 2021-01-01)\n", + " [2021-01-01, 2021-02-01)\n", " [2021-02-01, 2021-03-01)\n", + " [2021-03-01, 2021-04-01)\n", " [2021-04-01, 2021-05-01)\n", + " [2021-05-01, 2021-06-01)\n", " [2021-06-01, 2021-07-01)\n", " [2021-08-01, 2021-08-31)\n", " \n", " \n", " 2020\n", + " [2019-11-01, 2019-12-01)\n", " [2019-12-01, 2020-01-01)\n", + " [2020-01-01, 2020-02-01)\n", " [2020-02-01, 2020-03-01)\n", + " [2020-03-01, 2020-04-01)\n", " [2020-04-01, 2020-05-01)\n", + " [2020-05-01, 2020-06-01)\n", " [2020-06-01, 2020-07-01)\n", " [2020-08-01, 2020-08-31)\n", " \n", " \n", " 2019\n", + " [2018-11-01, 2018-12-01)\n", " [2018-12-01, 2019-01-01)\n", + " [2019-01-01, 2019-02-01)\n", " [2019-02-01, 2019-03-01)\n", + " [2019-03-01, 2019-04-01)\n", " [2019-04-01, 2019-05-01)\n", + " [2019-05-01, 2019-06-01)\n", " [2019-06-01, 2019-07-01)\n", " [2019-08-01, 2019-08-31)\n", " \n", @@ -281,17 +333,29 @@ "" ], "text/plain": [ + "i_interval -8 -7 \\\n", + "anchor_year \n", + "2021 [2020-11-01, 2020-12-01) [2020-12-01, 2021-01-01) \n", + "2020 [2019-11-01, 2019-12-01) [2019-12-01, 2020-01-01) \n", + "2019 [2018-11-01, 2018-12-01) [2018-12-01, 2019-01-01) \n", + "\n", + "i_interval -6 -5 \\\n", + "anchor_year \n", + "2021 [2021-01-01, 2021-02-01) [2021-02-01, 2021-03-01) \n", + "2020 [2020-01-01, 2020-02-01) [2020-02-01, 2020-03-01) \n", + "2019 [2019-01-01, 2019-02-01) [2019-02-01, 2019-03-01) \n", + "\n", "i_interval -4 -3 \\\n", "anchor_year \n", - "2021 [2020-12-01, 2021-01-01) [2021-02-01, 2021-03-01) \n", - "2020 [2019-12-01, 2020-01-01) [2020-02-01, 2020-03-01) \n", - "2019 [2018-12-01, 2019-01-01) [2019-02-01, 2019-03-01) \n", + "2021 [2021-03-01, 2021-04-01) [2021-04-01, 2021-05-01) \n", + "2020 [2020-03-01, 2020-04-01) [2020-04-01, 2020-05-01) \n", + "2019 [2019-03-01, 2019-04-01) [2019-04-01, 2019-05-01) \n", "\n", "i_interval -2 -1 \\\n", "anchor_year \n", - "2021 [2021-04-01, 2021-05-01) [2021-06-01, 2021-07-01) \n", - "2020 [2020-04-01, 2020-05-01) [2020-06-01, 2020-07-01) \n", - "2019 [2019-04-01, 2019-05-01) [2019-06-01, 2019-07-01) \n", + "2021 [2021-05-01, 2021-06-01) [2021-06-01, 2021-07-01) \n", + "2020 [2020-05-01, 2020-06-01) [2020-06-01, 2020-07-01) \n", + "2019 [2019-05-01, 2019-06-01) [2019-06-01, 2019-07-01) \n", "\n", "i_interval 1 \n", "anchor_year \n", @@ -300,7 +364,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -319,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -341,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -362,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -380,7 +444,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -390,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -401,7 +465,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -421,7 +485,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -452,14 +516,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 114, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -479,87 +543,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define hyperparameters and initialize config for wandb." + "Define hyperparameters and track your runs with Weights and Biases (wandb) service. You'll need an account, a team, and a project if you'll want to track runs online. Otherwise, you can simply run the code by setting mode = 'disabled' (W&B will not be active). " ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 115, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" - ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230623_144958-ze31innr" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run clear-gorge-3 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-autoencoder" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-autoencoder/runs/ze31innr" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# call weights & biases service\n", - "wandb.login()\n", - "\n", "hyperparameters = dict(\n", " epoch = 150,\n", " num_encoder_layers = 1,\n", @@ -575,16 +567,21 @@ " architecture = 'Transformer'\n", ")\n", "\n", + "# call weights & biases service\n", + "wandb.login()\n", + "\n", "# initialize weights & biases service\n", - "mode = 'online'\n", - "#mode = 'disabled'\n", - "wandb.init(config=hyperparameters, project='test-autoencoder', entity='ai4s2s', mode=mode)\n", + "mode = 'disabled'\n", + "# mode = 'online' # <- uncomment this line to enable wandb\n", + "team = 'ai4s2s-demo' # <- your own team namehere\n", + "project = 'test-autoencoder' # <- your own project name here\n", + "wandb.init(config=hyperparameters, project=project, entity=team, mode=mode)\n", "config = wandb.config" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ @@ -609,7 +606,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -675,7 +672,7 @@ "[]" ] }, - "execution_count": 18, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -700,7 +697,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -728,764 +725,764 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 119, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 541.216675\n", - "Epoch : 0 [8/36(22%)]\tLoss: 372.463257\n", - "Epoch : 0 [16/36(44%)]\tLoss: 311.742798\n", - "Epoch : 0 [24/36(67%)]\tLoss: 269.896881\n", - "Epoch : 0 [32/36(89%)]\tLoss: 218.248810\n", - "Epoch : 1 [0/36(0%)]\tLoss: 179.946609\n", - "Epoch : 1 [8/36(22%)]\tLoss: 150.188629\n", - "Epoch : 1 [16/36(44%)]\tLoss: 118.381966\n", - "Epoch : 1 [24/36(67%)]\tLoss: 83.189682\n", - "Epoch : 1 [32/36(89%)]\tLoss: 50.084595\n", - "Epoch : 2 [0/36(0%)]\tLoss: 32.328728\n", - "Epoch : 2 [8/36(22%)]\tLoss: 18.110308\n", - "Epoch : 2 [16/36(44%)]\tLoss: 8.016559\n", - "Epoch : 2 [24/36(67%)]\tLoss: 2.474893\n", - "Epoch : 2 [32/36(89%)]\tLoss: 2.393358\n", - "Epoch : 3 [0/36(0%)]\tLoss: 3.284974\n", - "Epoch : 3 [8/36(22%)]\tLoss: 5.560195\n", - "Epoch : 3 [16/36(44%)]\tLoss: 8.409901\n", - "Epoch : 3 [24/36(67%)]\tLoss: 10.086982\n", - "Epoch : 3 [32/36(89%)]\tLoss: 8.864871\n", - "Epoch : 4 [0/36(0%)]\tLoss: 7.792433\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.915362\n", - "Epoch : 4 [16/36(44%)]\tLoss: 0.917453\n", - "Epoch : 4 [24/36(67%)]\tLoss: 3.928596\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.894675\n", - "Epoch : 5 [0/36(0%)]\tLoss: 0.691974\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.857225\n", - "Epoch : 5 [16/36(44%)]\tLoss: 1.241071\n", - "Epoch : 5 [24/36(67%)]\tLoss: 1.330382\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.884715\n", - "Epoch : 6 [0/36(0%)]\tLoss: 1.636225\n", - "Epoch : 6 [8/36(22%)]\tLoss: 0.723160\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.826412\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.093073\n", - "Epoch : 6 [32/36(89%)]\tLoss: 1.707489\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.269681\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.491391\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.295755\n", - "Epoch : 7 [24/36(67%)]\tLoss: 1.733817\n", - "Epoch : 7 [32/36(89%)]\tLoss: 1.789469\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.386416\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.341573\n", - "Epoch : 8 [16/36(44%)]\tLoss: 1.138120\n", - "Epoch : 8 [24/36(67%)]\tLoss: 1.249920\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.827636\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.664209\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.447931\n", - "Epoch : 9 [16/36(44%)]\tLoss: 1.145177\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.095599\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.822225\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.427189\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.491902\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.933871\n", - "Epoch : 10 [24/36(67%)]\tLoss: 1.138529\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.872352\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.460773\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.520807\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.784851\n", - "Epoch : 11 [24/36(67%)]\tLoss: 1.113303\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.644507\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.435244\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.416872\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.948044\n", - "Epoch : 12 [24/36(67%)]\tLoss: 1.132804\n", - "Epoch : 12 [32/36(89%)]\tLoss: 1.596077\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.358088\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.381118\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.931934\n", - "Epoch : 13 [24/36(67%)]\tLoss: 1.082265\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.482515\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.629727\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.306449\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.905534\n", - "Epoch : 14 [24/36(67%)]\tLoss: 1.272481\n", - "Epoch : 14 [32/36(89%)]\tLoss: 1.684866\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.457737\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.445701\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.903659\n", - "Epoch : 15 [24/36(67%)]\tLoss: 1.270124\n", - "Epoch : 15 [32/36(89%)]\tLoss: 1.781919\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.469775\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.356240\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.916117\n", - "Epoch : 16 [24/36(67%)]\tLoss: 1.339794\n", - "Epoch : 16 [32/36(89%)]\tLoss: 1.519456\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.622190\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.493773\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.791172\n", - "Epoch : 17 [24/36(67%)]\tLoss: 1.283159\n", - "Epoch : 17 [32/36(89%)]\tLoss: 1.623535\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.365303\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.208351\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.787075\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.932445\n", - "Epoch : 18 [32/36(89%)]\tLoss: 1.716154\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.416628\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.417500\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.953316\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.872090\n", - "Epoch : 19 [32/36(89%)]\tLoss: 1.492597\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.515885\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.302691\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.967424\n", - "Epoch : 20 [24/36(67%)]\tLoss: 1.027460\n", - "Epoch : 20 [32/36(89%)]\tLoss: 1.765638\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.541161\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.248560\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.935115\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.987096\n", - "Epoch : 21 [32/36(89%)]\tLoss: 1.433187\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.447987\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.472928\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.717649\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.716006\n", - "Epoch : 22 [32/36(89%)]\tLoss: 1.427337\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.504845\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.298365\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.886021\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.884795\n", - "Epoch : 23 [32/36(89%)]\tLoss: 1.619280\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.411408\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.296022\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.970702\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.653332\n", - "Epoch : 24 [32/36(89%)]\tLoss: 1.311742\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.388399\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.336000\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.883631\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.755074\n", - "Epoch : 25 [32/36(89%)]\tLoss: 1.516615\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.323514\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.297856\n", - "Epoch : 26 [16/36(44%)]\tLoss: 1.210429\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.293790\n", - "Epoch : 26 [32/36(89%)]\tLoss: 1.219159\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.540436\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.390810\n", - "Epoch : 27 [16/36(44%)]\tLoss: 1.090009\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.509291\n", - "Epoch : 27 [32/36(89%)]\tLoss: 1.338627\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.390286\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.478726\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.887393\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.365262\n", - "Epoch : 28 [32/36(89%)]\tLoss: 1.115665\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.458086\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.312295\n", - "Epoch : 29 [16/36(44%)]\tLoss: 1.142823\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.457661\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.974813\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.470369\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.335175\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.738867\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.294043\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.905344\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.392974\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.490405\n", - "Epoch : 31 [16/36(44%)]\tLoss: 1.111357\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.377593\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.719874\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.357076\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.297911\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.477689\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.484403\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.841330\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.339447\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.265898\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.677046\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.445825\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.770480\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.388840\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.511289\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.911979\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.348144\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.875994\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.371368\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.359988\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.799647\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.558390\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.578227\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.276555\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.339674\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.695427\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.391352\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.653624\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.292756\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.172401\n", - "Epoch : 37 [16/36(44%)]\tLoss: 1.018906\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.297300\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.590415\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.356787\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.326823\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.436051\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.506713\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.816568\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.437991\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.403067\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.356810\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.557380\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.487023\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.210397\n", - "Epoch : 40 [8/36(22%)]\tLoss: 0.278202\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.472461\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.375055\n", - "Epoch : 40 [32/36(89%)]\tLoss: 0.396197\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.291317\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.352984\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.588180\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.251341\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.367773\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.499722\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.236385\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.340980\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.516522\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.129800\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.237869\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.073700\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.109997\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.402983\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.227278\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.333813\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.168749\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.197237\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.385935\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.144716\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.233937\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.173382\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.334855\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.139161\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.093227\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.225221\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.462397\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.012123\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.268755\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.093079\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.135769\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.130330\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.048600\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.302103\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.179291\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.203552\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.270936\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.052788\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.262503\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.008751\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.102244\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.109133\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.145420\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.262328\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.079507\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.047305\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.040127\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.256827\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.159077\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.087569\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.207496\n", - "Epoch : 51 [8/36(22%)]\tLoss: 0.165961\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.293109\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.111410\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.052562\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.047893\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.127481\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.086027\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.111488\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.190006\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.213329\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.152304\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.195969\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.252908\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.133211\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.212453\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.285137\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.038173\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.458509\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.368229\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.158178\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.645823\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.306397\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.289743\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.112454\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.633461\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.107223\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.380145\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.108391\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.196207\n", - "Epoch : 57 [0/36(0%)]\tLoss: 1.101857\n", - "Epoch : 57 [8/36(22%)]\tLoss: 1.049977\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.399197\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.781938\n", - "Epoch : 57 [32/36(89%)]\tLoss: 1.348178\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.278211\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.430482\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.570131\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.321804\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.595418\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.316053\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.239389\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.254973\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.264362\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.452063\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.290053\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.176844\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.320263\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.235300\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.339196\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.115637\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.249379\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.281833\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.241623\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.315301\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.194464\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.218149\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.150943\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.169594\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.475779\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.138744\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.241365\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.236964\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.226969\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.358091\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.081558\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.219290\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.133819\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.144687\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.173827\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.073536\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.170127\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.201148\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.244045\n", - "Epoch : 65 [32/36(89%)]\tLoss: 0.097265\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.147697\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.280904\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.090755\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.149697\n", - "Epoch : 66 [32/36(89%)]\tLoss: 0.098561\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.049476\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.311009\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.015644\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.046731\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.239608\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.106274\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.160677\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.033371\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.168071\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.212426\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.079138\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.246454\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.067158\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.233357\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.217183\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.069212\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.146886\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.087745\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.053598\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.125170\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.093005\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.139315\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.141534\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.040081\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.179946\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.098925\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.092422\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.185684\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.147706\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.119041\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.056176\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.176125\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.106780\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.103024\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.034529\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.153144\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.129176\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.118329\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.044209\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.076424\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.073848\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.125681\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.039618\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.029977\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.207782\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.023384\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.136556\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.193569\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.032104\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.066320\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.073674\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.219207\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.099452\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.140827\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.025776\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.046584\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.152300\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.049067\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.098103\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.211856\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.035970\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.142106\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.191532\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.088300\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.050837\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.206382\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.073510\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.080327\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.041483\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.100533\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.026807\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.194391\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.101643\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.010090\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.395808\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.063395\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.147265\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.206970\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.082032\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.249874\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.068278\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.262697\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.041307\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.247910\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.084219\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.057175\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.254035\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.062086\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.101665\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.143167\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.152569\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.116719\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.200850\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.140120\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.056359\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.072830\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.052341\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.130750\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.025637\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.117669\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.081578\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.218741\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.142211\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.042854\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.328880\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.089676\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.184939\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.096419\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.039460\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.016206\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.031430\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.072926\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.043438\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.055044\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.084085\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.051438\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.163799\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.096610\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.021141\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.051110\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.249322\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.076720\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.045858\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.052160\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.046225\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.015984\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.089279\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.068036\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.024702\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.049682\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.008792\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.034245\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.105702\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.009552\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.070001\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.037535\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.041684\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.010694\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.084721\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.009930\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.036149\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.065707\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.061920\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.082191\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.030147\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.017542\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.061619\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.033791\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.080878\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.018274\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.040446\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.025190\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.102350\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.024543\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.036418\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.029245\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.050001\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.049536\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.025373\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.042934\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.029761\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.044818\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.032136\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.069991\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.019095\n", - "Epoch : 100 [0/36(0%)]\tLoss: 0.051803\n", - "Epoch : 100 [8/36(22%)]\tLoss: 0.037791\n", - "Epoch : 100 [16/36(44%)]\tLoss: 0.063464\n", - "Epoch : 100 [24/36(67%)]\tLoss: 0.064291\n", - "Epoch : 100 [32/36(89%)]\tLoss: 0.125718\n", - "Epoch : 101 [0/36(0%)]\tLoss: 0.012501\n", - "Epoch : 101 [8/36(22%)]\tLoss: 0.047244\n", - "Epoch : 101 [16/36(44%)]\tLoss: 0.023361\n", - "Epoch : 101 [24/36(67%)]\tLoss: 0.019202\n", - "Epoch : 101 [32/36(89%)]\tLoss: 0.062802\n", - "Epoch : 102 [0/36(0%)]\tLoss: 0.054783\n", - "Epoch : 102 [8/36(22%)]\tLoss: 0.095024\n", - "Epoch : 102 [16/36(44%)]\tLoss: 0.016610\n", - "Epoch : 102 [24/36(67%)]\tLoss: 0.037319\n", - "Epoch : 102 [32/36(89%)]\tLoss: 0.014645\n", - "Epoch : 103 [0/36(0%)]\tLoss: 0.002118\n", - "Epoch : 103 [8/36(22%)]\tLoss: 0.095011\n", - "Epoch : 103 [16/36(44%)]\tLoss: 0.032820\n", - "Epoch : 103 [24/36(67%)]\tLoss: 0.032570\n", - "Epoch : 103 [32/36(89%)]\tLoss: 0.035309\n", - "Epoch : 104 [0/36(0%)]\tLoss: 0.056849\n", - "Epoch : 104 [8/36(22%)]\tLoss: 0.067593\n", - "Epoch : 104 [16/36(44%)]\tLoss: 0.100215\n", - "Epoch : 104 [24/36(67%)]\tLoss: 0.013066\n", - "Epoch : 104 [32/36(89%)]\tLoss: 0.024940\n", - "Epoch : 105 [0/36(0%)]\tLoss: 0.083619\n", - "Epoch : 105 [8/36(22%)]\tLoss: 0.031679\n", - "Epoch : 105 [16/36(44%)]\tLoss: 0.028986\n", - "Epoch : 105 [24/36(67%)]\tLoss: 0.024054\n", - "Epoch : 105 [32/36(89%)]\tLoss: 0.013077\n", - "Epoch : 106 [0/36(0%)]\tLoss: 0.049917\n", - "Epoch : 106 [8/36(22%)]\tLoss: 0.089619\n", - "Epoch : 106 [16/36(44%)]\tLoss: 0.030046\n", - "Epoch : 106 [24/36(67%)]\tLoss: 0.073138\n", - "Epoch : 106 [32/36(89%)]\tLoss: 0.021436\n", - "Epoch : 107 [0/36(0%)]\tLoss: 0.016525\n", - "Epoch : 107 [8/36(22%)]\tLoss: 0.082073\n", - "Epoch : 107 [16/36(44%)]\tLoss: 0.005117\n", - "Epoch : 107 [24/36(67%)]\tLoss: 0.013319\n", - "Epoch : 107 [32/36(89%)]\tLoss: 0.031002\n", - "Epoch : 108 [0/36(0%)]\tLoss: 0.007939\n", - "Epoch : 108 [8/36(22%)]\tLoss: 0.183094\n", - "Epoch : 108 [16/36(44%)]\tLoss: 0.054382\n", - "Epoch : 108 [24/36(67%)]\tLoss: 0.004845\n", - "Epoch : 108 [32/36(89%)]\tLoss: 0.157076\n", - "Epoch : 109 [0/36(0%)]\tLoss: 0.078293\n", - "Epoch : 109 [8/36(22%)]\tLoss: 0.065076\n", - "Epoch : 109 [16/36(44%)]\tLoss: 0.128163\n", - "Epoch : 109 [24/36(67%)]\tLoss: 0.036073\n", - "Epoch : 109 [32/36(89%)]\tLoss: 0.067588\n", - "Epoch : 110 [0/36(0%)]\tLoss: 0.035304\n", - "Epoch : 110 [8/36(22%)]\tLoss: 0.214726\n", - "Epoch : 110 [16/36(44%)]\tLoss: 0.035644\n", - "Epoch : 110 [24/36(67%)]\tLoss: 0.154826\n", - "Epoch : 110 [32/36(89%)]\tLoss: 0.053674\n", - "Epoch : 111 [0/36(0%)]\tLoss: 0.021976\n", - "Epoch : 111 [8/36(22%)]\tLoss: 0.339147\n", - "Epoch : 111 [16/36(44%)]\tLoss: 0.035353\n", - "Epoch : 111 [24/36(67%)]\tLoss: 0.186452\n", - "Epoch : 111 [32/36(89%)]\tLoss: 0.123911\n", - "Epoch : 112 [0/36(0%)]\tLoss: 0.075428\n", - "Epoch : 112 [8/36(22%)]\tLoss: 0.053511\n", - "Epoch : 112 [16/36(44%)]\tLoss: 0.215588\n", - "Epoch : 112 [24/36(67%)]\tLoss: 0.040826\n", - "Epoch : 112 [32/36(89%)]\tLoss: 0.038436\n", - "Epoch : 113 [0/36(0%)]\tLoss: 0.151798\n", - "Epoch : 113 [8/36(22%)]\tLoss: 0.181479\n", - "Epoch : 113 [16/36(44%)]\tLoss: 0.038506\n", - "Epoch : 113 [24/36(67%)]\tLoss: 0.103296\n", - "Epoch : 113 [32/36(89%)]\tLoss: 0.143493\n", - "Epoch : 114 [0/36(0%)]\tLoss: 0.045379\n", - "Epoch : 114 [8/36(22%)]\tLoss: 0.311960\n", - "Epoch : 114 [16/36(44%)]\tLoss: 0.054292\n", - "Epoch : 114 [24/36(67%)]\tLoss: 0.098189\n", - "Epoch : 114 [32/36(89%)]\tLoss: 0.210574\n", - "Epoch : 115 [0/36(0%)]\tLoss: 0.042058\n", - "Epoch : 115 [8/36(22%)]\tLoss: 0.119325\n", - "Epoch : 115 [16/36(44%)]\tLoss: 0.070137\n", - "Epoch : 115 [24/36(67%)]\tLoss: 0.070119\n", - "Epoch : 115 [32/36(89%)]\tLoss: 0.093155\n", - "Epoch : 116 [0/36(0%)]\tLoss: 0.051780\n", - "Epoch : 116 [8/36(22%)]\tLoss: 0.117982\n", - "Epoch : 116 [16/36(44%)]\tLoss: 0.024356\n", - "Epoch : 116 [24/36(67%)]\tLoss: 0.068099\n", - "Epoch : 116 [32/36(89%)]\tLoss: 0.078059\n", - "Epoch : 117 [0/36(0%)]\tLoss: 0.059857\n", - "Epoch : 117 [8/36(22%)]\tLoss: 0.072933\n", - "Epoch : 117 [16/36(44%)]\tLoss: 0.094853\n", - "Epoch : 117 [24/36(67%)]\tLoss: 0.011835\n", - "Epoch : 117 [32/36(89%)]\tLoss: 0.011542\n", - "Epoch : 118 [0/36(0%)]\tLoss: 0.107981\n", - "Epoch : 118 [8/36(22%)]\tLoss: 0.025622\n", - "Epoch : 118 [16/36(44%)]\tLoss: 0.040330\n", - "Epoch : 118 [24/36(67%)]\tLoss: 0.015960\n", - "Epoch : 118 [32/36(89%)]\tLoss: 0.022070\n", - "Epoch : 119 [0/36(0%)]\tLoss: 0.005884\n", - "Epoch : 119 [8/36(22%)]\tLoss: 0.038325\n", - "Epoch : 119 [16/36(44%)]\tLoss: 0.006309\n", - "Epoch : 119 [24/36(67%)]\tLoss: 0.058548\n", - "Epoch : 119 [32/36(89%)]\tLoss: 0.076782\n", - "Epoch : 120 [0/36(0%)]\tLoss: 0.007531\n", - "Epoch : 120 [8/36(22%)]\tLoss: 0.128264\n", - "Epoch : 120 [16/36(44%)]\tLoss: 0.012115\n", - "Epoch : 120 [24/36(67%)]\tLoss: 0.037781\n", - "Epoch : 120 [32/36(89%)]\tLoss: 0.101377\n", - "Epoch : 121 [0/36(0%)]\tLoss: 0.031116\n", - "Epoch : 121 [8/36(22%)]\tLoss: 0.056723\n", - "Epoch : 121 [16/36(44%)]\tLoss: 0.104950\n", - "Epoch : 121 [24/36(67%)]\tLoss: 0.021562\n", - "Epoch : 121 [32/36(89%)]\tLoss: 0.075588\n", - "Epoch : 122 [0/36(0%)]\tLoss: 0.060054\n", - "Epoch : 122 [8/36(22%)]\tLoss: 0.024013\n", - "Epoch : 122 [16/36(44%)]\tLoss: 0.073479\n", - "Epoch : 122 [24/36(67%)]\tLoss: 0.078773\n", - "Epoch : 122 [32/36(89%)]\tLoss: 0.019911\n", - "Epoch : 123 [0/36(0%)]\tLoss: 0.043748\n", - "Epoch : 123 [8/36(22%)]\tLoss: 0.249664\n", - "Epoch : 123 [16/36(44%)]\tLoss: 0.026390\n", - "Epoch : 123 [24/36(67%)]\tLoss: 0.163119\n", - "Epoch : 123 [32/36(89%)]\tLoss: 0.060042\n", - "Epoch : 124 [0/36(0%)]\tLoss: 0.068596\n", - "Epoch : 124 [8/36(22%)]\tLoss: 0.194896\n", - "Epoch : 124 [16/36(44%)]\tLoss: 0.122795\n", - "Epoch : 124 [24/36(67%)]\tLoss: 0.127159\n", - "Epoch : 124 [32/36(89%)]\tLoss: 0.045278\n", - "Epoch : 125 [0/36(0%)]\tLoss: 0.167913\n", - "Epoch : 125 [8/36(22%)]\tLoss: 0.053188\n", - "Epoch : 125 [16/36(44%)]\tLoss: 0.057347\n", - "Epoch : 125 [24/36(67%)]\tLoss: 0.045813\n", - "Epoch : 125 [32/36(89%)]\tLoss: 0.036833\n", - "Epoch : 126 [0/36(0%)]\tLoss: 0.111922\n", - "Epoch : 126 [8/36(22%)]\tLoss: 0.119135\n", - "Epoch : 126 [16/36(44%)]\tLoss: 0.105036\n", - "Epoch : 126 [24/36(67%)]\tLoss: 0.043624\n", - "Epoch : 126 [32/36(89%)]\tLoss: 0.051447\n", - "Epoch : 127 [0/36(0%)]\tLoss: 0.044073\n", - "Epoch : 127 [8/36(22%)]\tLoss: 0.115727\n", - "Epoch : 127 [16/36(44%)]\tLoss: 0.046751\n", - "Epoch : 127 [24/36(67%)]\tLoss: 0.067133\n", - "Epoch : 127 [32/36(89%)]\tLoss: 0.233611\n", - "Epoch : 128 [0/36(0%)]\tLoss: 0.062298\n", - "Epoch : 128 [8/36(22%)]\tLoss: 0.136207\n", - "Epoch : 128 [16/36(44%)]\tLoss: 0.095411\n", - "Epoch : 128 [24/36(67%)]\tLoss: 0.048249\n", - "Epoch : 128 [32/36(89%)]\tLoss: 0.108854\n", - "Epoch : 129 [0/36(0%)]\tLoss: 0.122710\n", - "Epoch : 129 [8/36(22%)]\tLoss: 0.068460\n", - "Epoch : 129 [16/36(44%)]\tLoss: 0.079570\n", - "Epoch : 129 [24/36(67%)]\tLoss: 0.080867\n", - "Epoch : 129 [32/36(89%)]\tLoss: 0.020799\n", - "Epoch : 130 [0/36(0%)]\tLoss: 0.006218\n", - "Epoch : 130 [8/36(22%)]\tLoss: 0.302558\n", - "Epoch : 130 [16/36(44%)]\tLoss: 0.009904\n", - "Epoch : 130 [24/36(67%)]\tLoss: 0.059585\n", - "Epoch : 130 [32/36(89%)]\tLoss: 0.068753\n", - "Epoch : 131 [0/36(0%)]\tLoss: 0.127319\n", - "Epoch : 131 [8/36(22%)]\tLoss: 0.066899\n", - "Epoch : 131 [16/36(44%)]\tLoss: 0.181372\n", - "Epoch : 131 [24/36(67%)]\tLoss: 0.031047\n", - "Epoch : 131 [32/36(89%)]\tLoss: 0.061843\n", - "Epoch : 132 [0/36(0%)]\tLoss: 0.215610\n", - "Epoch : 132 [8/36(22%)]\tLoss: 0.060278\n", - "Epoch : 132 [16/36(44%)]\tLoss: 0.076904\n", - "Epoch : 132 [24/36(67%)]\tLoss: 0.092089\n", - "Epoch : 132 [32/36(89%)]\tLoss: 0.072276\n", - "Epoch : 133 [0/36(0%)]\tLoss: 0.045909\n", - "Epoch : 133 [8/36(22%)]\tLoss: 0.188941\n", - "Epoch : 133 [16/36(44%)]\tLoss: 0.011950\n", - "Epoch : 133 [24/36(67%)]\tLoss: 0.089004\n", - "Epoch : 133 [32/36(89%)]\tLoss: 0.112781\n", - "Epoch : 134 [0/36(0%)]\tLoss: 0.010586\n", - "Epoch : 134 [8/36(22%)]\tLoss: 0.132176\n", - "Epoch : 134 [16/36(44%)]\tLoss: 0.032573\n", - "Epoch : 134 [24/36(67%)]\tLoss: 0.013117\n", - "Epoch : 134 [32/36(89%)]\tLoss: 0.034493\n", - "Epoch : 135 [0/36(0%)]\tLoss: 0.035670\n", - "Epoch : 135 [8/36(22%)]\tLoss: 0.041419\n", - "Epoch : 135 [16/36(44%)]\tLoss: 0.011501\n", - "Epoch : 135 [24/36(67%)]\tLoss: 0.046226\n", - "Epoch : 135 [32/36(89%)]\tLoss: 0.012849\n", - "Epoch : 136 [0/36(0%)]\tLoss: 0.004978\n", - "Epoch : 136 [8/36(22%)]\tLoss: 0.042741\n", - "Epoch : 136 [16/36(44%)]\tLoss: 0.029500\n", - "Epoch : 136 [24/36(67%)]\tLoss: 0.014241\n", - "Epoch : 136 [32/36(89%)]\tLoss: 0.003887\n", - "Epoch : 137 [0/36(0%)]\tLoss: 0.049683\n", - "Epoch : 137 [8/36(22%)]\tLoss: 0.010458\n", - "Epoch : 137 [16/36(44%)]\tLoss: 0.009967\n", - "Epoch : 137 [24/36(67%)]\tLoss: 0.022414\n", - "Epoch : 137 [32/36(89%)]\tLoss: 0.028405\n", - "Epoch : 138 [0/36(0%)]\tLoss: 0.010606\n", - "Epoch : 138 [8/36(22%)]\tLoss: 0.075091\n", - "Epoch : 138 [16/36(44%)]\tLoss: 0.057027\n", - "Epoch : 138 [24/36(67%)]\tLoss: 0.017411\n", - "Epoch : 138 [32/36(89%)]\tLoss: 0.086091\n", - "Epoch : 139 [0/36(0%)]\tLoss: 0.027665\n", - "Epoch : 139 [8/36(22%)]\tLoss: 0.060709\n", - "Epoch : 139 [16/36(44%)]\tLoss: 0.023060\n", - "Epoch : 139 [24/36(67%)]\tLoss: 0.012547\n", - "Epoch : 139 [32/36(89%)]\tLoss: 0.010077\n", - "Epoch : 140 [0/36(0%)]\tLoss: 0.019467\n", - "Epoch : 140 [8/36(22%)]\tLoss: 0.109039\n", - "Epoch : 140 [16/36(44%)]\tLoss: 0.005581\n", - "Epoch : 140 [24/36(67%)]\tLoss: 0.055565\n", - "Epoch : 140 [32/36(89%)]\tLoss: 0.017230\n", - "Epoch : 141 [0/36(0%)]\tLoss: 0.042831\n", - "Epoch : 141 [8/36(22%)]\tLoss: 0.093298\n", - "Epoch : 141 [16/36(44%)]\tLoss: 0.016111\n", - "Epoch : 141 [24/36(67%)]\tLoss: 0.041922\n", - "Epoch : 141 [32/36(89%)]\tLoss: 0.022894\n", - "Epoch : 142 [0/36(0%)]\tLoss: 0.086113\n", - "Epoch : 142 [8/36(22%)]\tLoss: 0.035045\n", - "Epoch : 142 [16/36(44%)]\tLoss: 0.032294\n", - "Epoch : 142 [24/36(67%)]\tLoss: 0.034180\n", - "Epoch : 142 [32/36(89%)]\tLoss: 0.015215\n", - "Epoch : 143 [0/36(0%)]\tLoss: 0.043998\n", - "Epoch : 143 [8/36(22%)]\tLoss: 0.094201\n", - "Epoch : 143 [16/36(44%)]\tLoss: 0.063414\n", - "Epoch : 143 [24/36(67%)]\tLoss: 0.036211\n", - "Epoch : 143 [32/36(89%)]\tLoss: 0.008663\n", - "Epoch : 144 [0/36(0%)]\tLoss: 0.005006\n", - "Epoch : 144 [8/36(22%)]\tLoss: 0.100268\n", - "Epoch : 144 [16/36(44%)]\tLoss: 0.038128\n", - "Epoch : 144 [24/36(67%)]\tLoss: 0.031280\n", - "Epoch : 144 [32/36(89%)]\tLoss: 0.099242\n", - "Epoch : 145 [0/36(0%)]\tLoss: 0.020143\n", - "Epoch : 145 [8/36(22%)]\tLoss: 0.107985\n", - "Epoch : 145 [16/36(44%)]\tLoss: 0.114500\n", - "Epoch : 145 [24/36(67%)]\tLoss: 0.023308\n", - "Epoch : 145 [32/36(89%)]\tLoss: 0.054647\n", - "Epoch : 146 [0/36(0%)]\tLoss: 0.008002\n", - "Epoch : 146 [8/36(22%)]\tLoss: 0.037215\n", - "Epoch : 146 [16/36(44%)]\tLoss: 0.040919\n", - "Epoch : 146 [24/36(67%)]\tLoss: 0.021440\n", - "Epoch : 146 [32/36(89%)]\tLoss: 0.009456\n", - "Epoch : 147 [0/36(0%)]\tLoss: 0.021814\n", - "Epoch : 147 [8/36(22%)]\tLoss: 0.076972\n", - "Epoch : 147 [16/36(44%)]\tLoss: 0.026827\n", - "Epoch : 147 [24/36(67%)]\tLoss: 0.030531\n", - "Epoch : 147 [32/36(89%)]\tLoss: 0.050185\n", - "Epoch : 148 [0/36(0%)]\tLoss: 0.015440\n", - "Epoch : 148 [8/36(22%)]\tLoss: 0.078629\n", - "Epoch : 148 [16/36(44%)]\tLoss: 0.011867\n", - "Epoch : 148 [24/36(67%)]\tLoss: 0.073098\n", - "Epoch : 148 [32/36(89%)]\tLoss: 0.022489\n", - "Epoch : 149 [0/36(0%)]\tLoss: 0.093717\n", - "Epoch : 149 [8/36(22%)]\tLoss: 0.007622\n", - "Epoch : 149 [16/36(44%)]\tLoss: 0.033272\n", - "Epoch : 149 [24/36(67%)]\tLoss: 0.131271\n", - "Epoch : 149 [32/36(89%)]\tLoss: 0.077427\n", - "--- 0.5099315802256267 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 498.465942\n", + "Epoch : 0 [8/36(22%)]\tLoss: 396.591125\n", + "Epoch : 0 [16/36(44%)]\tLoss: 342.367188\n", + "Epoch : 0 [24/36(67%)]\tLoss: 292.723633\n", + "Epoch : 0 [32/36(89%)]\tLoss: 240.742172\n", + "Epoch : 1 [0/36(0%)]\tLoss: 200.513672\n", + "Epoch : 1 [8/36(22%)]\tLoss: 171.574829\n", + "Epoch : 1 [16/36(44%)]\tLoss: 136.309921\n", + "Epoch : 1 [24/36(67%)]\tLoss: 99.565331\n", + "Epoch : 1 [32/36(89%)]\tLoss: 64.782127\n", + "Epoch : 2 [0/36(0%)]\tLoss: 42.542572\n", + "Epoch : 2 [8/36(22%)]\tLoss: 27.024628\n", + "Epoch : 2 [16/36(44%)]\tLoss: 14.084803\n", + "Epoch : 2 [24/36(67%)]\tLoss: 4.608022\n", + "Epoch : 2 [32/36(89%)]\tLoss: 1.703398\n", + "Epoch : 3 [0/36(0%)]\tLoss: 1.771523\n", + "Epoch : 3 [8/36(22%)]\tLoss: 3.976899\n", + "Epoch : 3 [16/36(44%)]\tLoss: 6.606761\n", + "Epoch : 3 [24/36(67%)]\tLoss: 9.038103\n", + "Epoch : 3 [32/36(89%)]\tLoss: 10.554676\n", + "Epoch : 4 [0/36(0%)]\tLoss: 11.127979\n", + "Epoch : 4 [8/36(22%)]\tLoss: 4.584048\n", + "Epoch : 4 [16/36(44%)]\tLoss: 1.072801\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.202619\n", + "Epoch : 4 [32/36(89%)]\tLoss: 2.454965\n", + "Epoch : 5 [0/36(0%)]\tLoss: 0.871697\n", + "Epoch : 5 [8/36(22%)]\tLoss: 2.885219\n", + "Epoch : 5 [16/36(44%)]\tLoss: 3.538662\n", + "Epoch : 5 [24/36(67%)]\tLoss: 2.196210\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.855278\n", + "Epoch : 6 [0/36(0%)]\tLoss: 0.474646\n", + "Epoch : 6 [8/36(22%)]\tLoss: 0.709006\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.125959\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.411158\n", + "Epoch : 6 [32/36(89%)]\tLoss: 2.225983\n", + "Epoch : 7 [0/36(0%)]\tLoss: 1.248317\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.391478\n", + "Epoch : 7 [16/36(44%)]\tLoss: 0.996695\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.532873\n", + "Epoch : 7 [32/36(89%)]\tLoss: 1.895214\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.223050\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.586095\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.131278\n", + "Epoch : 8 [24/36(67%)]\tLoss: 1.047360\n", + "Epoch : 8 [32/36(89%)]\tLoss: 1.769035\n", + "Epoch : 9 [0/36(0%)]\tLoss: 0.463254\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.448671\n", + "Epoch : 9 [16/36(44%)]\tLoss: 0.848117\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.168776\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.882771\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.463574\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.349940\n", + "Epoch : 10 [16/36(44%)]\tLoss: 1.094482\n", + "Epoch : 10 [24/36(67%)]\tLoss: 1.347443\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.678146\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.278244\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.430040\n", + "Epoch : 11 [16/36(44%)]\tLoss: 0.834275\n", + "Epoch : 11 [24/36(67%)]\tLoss: 1.110529\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.758548\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.666826\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.511530\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.876517\n", + "Epoch : 12 [24/36(67%)]\tLoss: 1.269902\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.495202\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.321890\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.365229\n", + "Epoch : 13 [16/36(44%)]\tLoss: 1.030877\n", + "Epoch : 13 [24/36(67%)]\tLoss: 1.120981\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.666209\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.506027\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.411680\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.934161\n", + "Epoch : 14 [24/36(67%)]\tLoss: 0.931598\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.559381\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.462070\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.218398\n", + "Epoch : 15 [16/36(44%)]\tLoss: 0.951118\n", + "Epoch : 15 [24/36(67%)]\tLoss: 1.225085\n", + "Epoch : 15 [32/36(89%)]\tLoss: 1.762151\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.493757\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.347340\n", + "Epoch : 16 [16/36(44%)]\tLoss: 0.859490\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.129076\n", + "Epoch : 16 [32/36(89%)]\tLoss: 1.534853\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.319218\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.393084\n", + "Epoch : 17 [16/36(44%)]\tLoss: 0.762041\n", + "Epoch : 17 [24/36(67%)]\tLoss: 0.998985\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.791939\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.337561\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.401867\n", + "Epoch : 18 [16/36(44%)]\tLoss: 0.679504\n", + "Epoch : 18 [24/36(67%)]\tLoss: 0.926042\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.649994\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.420557\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.439425\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.838788\n", + "Epoch : 19 [24/36(67%)]\tLoss: 0.939638\n", + "Epoch : 19 [32/36(89%)]\tLoss: 1.620312\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.484760\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.253122\n", + "Epoch : 20 [16/36(44%)]\tLoss: 0.675508\n", + "Epoch : 20 [24/36(67%)]\tLoss: 0.839949\n", + "Epoch : 20 [32/36(89%)]\tLoss: 1.739386\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.316432\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.199918\n", + "Epoch : 21 [16/36(44%)]\tLoss: 0.454996\n", + "Epoch : 21 [24/36(67%)]\tLoss: 0.757614\n", + "Epoch : 21 [32/36(89%)]\tLoss: 1.576970\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.331070\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.169740\n", + "Epoch : 22 [16/36(44%)]\tLoss: 0.482030\n", + "Epoch : 22 [24/36(67%)]\tLoss: 0.547438\n", + "Epoch : 22 [32/36(89%)]\tLoss: 1.167602\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.206746\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.259180\n", + "Epoch : 23 [16/36(44%)]\tLoss: 0.389581\n", + "Epoch : 23 [24/36(67%)]\tLoss: 0.430423\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.098307\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.164005\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.327840\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.253118\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.328490\n", + "Epoch : 24 [32/36(89%)]\tLoss: 0.765978\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.147702\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.467551\n", + "Epoch : 25 [16/36(44%)]\tLoss: 0.215626\n", + "Epoch : 25 [24/36(67%)]\tLoss: 0.405444\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.088265\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.229313\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.292561\n", + "Epoch : 26 [16/36(44%)]\tLoss: 0.284516\n", + "Epoch : 26 [24/36(67%)]\tLoss: 0.422559\n", + "Epoch : 26 [32/36(89%)]\tLoss: 0.848718\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.108235\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.225959\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.158690\n", + "Epoch : 27 [24/36(67%)]\tLoss: 0.347318\n", + "Epoch : 27 [32/36(89%)]\tLoss: 0.747895\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.104262\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.086381\n", + "Epoch : 28 [16/36(44%)]\tLoss: 0.204398\n", + "Epoch : 28 [24/36(67%)]\tLoss: 0.213052\n", + "Epoch : 28 [32/36(89%)]\tLoss: 0.744899\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.062580\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.013871\n", + "Epoch : 29 [16/36(44%)]\tLoss: 0.150691\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.114291\n", + "Epoch : 29 [32/36(89%)]\tLoss: 0.404894\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.065304\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.069535\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.141703\n", + "Epoch : 30 [24/36(67%)]\tLoss: 0.188128\n", + "Epoch : 30 [32/36(89%)]\tLoss: 0.463515\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.037126\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.055910\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.155965\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.071759\n", + "Epoch : 31 [32/36(89%)]\tLoss: 0.396185\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.041042\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.059201\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.111584\n", + "Epoch : 32 [24/36(67%)]\tLoss: 0.120064\n", + "Epoch : 32 [32/36(89%)]\tLoss: 0.373817\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.009088\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.042156\n", + "Epoch : 33 [16/36(44%)]\tLoss: 0.072548\n", + "Epoch : 33 [24/36(67%)]\tLoss: 0.072916\n", + "Epoch : 33 [32/36(89%)]\tLoss: 0.102719\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.033844\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.026913\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.099951\n", + "Epoch : 34 [24/36(67%)]\tLoss: 0.069801\n", + "Epoch : 34 [32/36(89%)]\tLoss: 0.166564\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.038485\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.017442\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.036168\n", + "Epoch : 35 [24/36(67%)]\tLoss: 0.035265\n", + "Epoch : 35 [32/36(89%)]\tLoss: 0.165607\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.007053\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.067841\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.221159\n", + "Epoch : 36 [24/36(67%)]\tLoss: 0.048890\n", + "Epoch : 36 [32/36(89%)]\tLoss: 0.149592\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.031605\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.059947\n", + "Epoch : 37 [16/36(44%)]\tLoss: 0.126093\n", + "Epoch : 37 [24/36(67%)]\tLoss: 0.171457\n", + "Epoch : 37 [32/36(89%)]\tLoss: 0.047286\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.057825\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.044621\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.317380\n", + "Epoch : 38 [24/36(67%)]\tLoss: 0.032038\n", + "Epoch : 38 [32/36(89%)]\tLoss: 0.130548\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.036164\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.029053\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.175825\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.012318\n", + "Epoch : 39 [32/36(89%)]\tLoss: 0.298550\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.115395\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.072737\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.157977\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.266155\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.105890\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.101254\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.069831\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.136563\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.091814\n", + "Epoch : 41 [32/36(89%)]\tLoss: 0.289170\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.076170\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.027150\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.094307\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.216206\n", + "Epoch : 42 [32/36(89%)]\tLoss: 0.107411\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.026411\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.089602\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.070877\n", + "Epoch : 43 [24/36(67%)]\tLoss: 0.089721\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.026658\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.078175\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.055470\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.281724\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.108501\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.048622\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.052299\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.006211\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.081729\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.179483\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.091907\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.022553\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.132015\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.194891\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.031771\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.125103\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.184654\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.025901\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.051296\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.087738\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.053716\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.041074\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.045978\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.271925\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.088732\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.134611\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.087949\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.022975\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.083305\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.114814\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.061549\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.030172\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.135649\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.195419\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.058638\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.188626\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.289974\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.055023\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.044802\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.224354\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.167561\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.025721\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.070347\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.133864\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.027991\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.114634\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.053178\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.061965\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.017643\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.048995\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.110756\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.040940\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.045881\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.097332\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.038228\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.007046\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.086137\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.070097\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.010695\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.095522\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.075421\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.052085\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.065717\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.082152\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.018721\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.018400\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.049522\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.016776\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.031486\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.027662\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.042384\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.042221\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.017778\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.069183\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.053108\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.012433\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.057023\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.037573\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.042147\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.042609\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.072206\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.061381\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.011509\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.072146\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.003073\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.015526\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.010017\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.075825\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.052086\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.030191\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.025197\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.040883\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.004280\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.018754\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.006329\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.035650\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.044605\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.027110\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.004116\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.017941\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.021035\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.053046\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.039625\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.017799\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.030920\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.023225\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.058187\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.031869\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.022329\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.009843\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.014379\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.008207\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.095971\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.026601\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.054091\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.008720\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.012156\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.021286\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.026616\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.010510\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.006848\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.034059\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.002644\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.013511\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.023949\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.010329\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.008967\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.006437\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.012253\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.014939\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.023222\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.030088\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.028112\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.034380\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.012746\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.050581\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.014405\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.016338\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.005654\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.006169\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.049619\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.005909\n", + "Epoch : 72 [8/36(22%)]\tLoss: 0.013595\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.018520\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.009003\n", + "Epoch : 72 [32/36(89%)]\tLoss: 0.006375\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.020438\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.018165\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.024184\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.016328\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.003064\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.010983\n", + "Epoch : 74 [8/36(22%)]\tLoss: 0.034650\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.007742\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.009576\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.061754\n", + "Epoch : 75 [0/36(0%)]\tLoss: 0.064914\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.021992\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.031733\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.020834\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.026222\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.050471\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.023255\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.017060\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.034878\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.064182\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.031848\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.030227\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.089845\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.018304\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.039431\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.045399\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.004456\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.007254\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.048386\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.010565\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.014958\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.094453\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.005889\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.021258\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.054840\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.056275\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.017234\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.051948\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.061923\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.028589\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.074236\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.126720\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.033792\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.080789\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.129728\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.010782\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.020901\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.171721\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.050375\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.148151\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.069507\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.054044\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.113737\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.191077\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.046529\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.010907\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.178664\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.140063\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.020853\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.080153\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.053588\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.021130\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.026665\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.089935\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.009724\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.054783\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.062000\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.049274\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.072003\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.056384\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.018033\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.034764\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.050641\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.032271\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.071423\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.077045\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.005553\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.024617\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.204803\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.030263\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.040154\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.099791\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.029133\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.016286\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.166929\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.088182\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.047976\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.055756\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.047950\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.031022\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.066972\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.070877\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.073479\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.148307\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.155081\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.066756\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.085689\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.187199\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.031053\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.090385\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.198091\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.052522\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.025253\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.289778\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.127757\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.050005\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.288369\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.232602\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.018226\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.241231\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.283641\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.027505\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.100916\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.185150\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.076808\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.011132\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.202945\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.197144\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.051944\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.222508\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.259178\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.053769\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.229076\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.108656\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.120962\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.006037\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.234002\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.237718\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.041133\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.124790\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.511420\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.033493\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.124959\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.175142\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.037616\n", + "Epoch : 100 [0/36(0%)]\tLoss: 0.053390\n", + "Epoch : 100 [8/36(22%)]\tLoss: 0.172249\n", + "Epoch : 100 [16/36(44%)]\tLoss: 0.231145\n", + "Epoch : 100 [24/36(67%)]\tLoss: 0.130431\n", + "Epoch : 100 [32/36(89%)]\tLoss: 0.228968\n", + "Epoch : 101 [0/36(0%)]\tLoss: 0.227438\n", + "Epoch : 101 [8/36(22%)]\tLoss: 0.115614\n", + "Epoch : 101 [16/36(44%)]\tLoss: 0.226967\n", + "Epoch : 101 [24/36(67%)]\tLoss: 0.057544\n", + "Epoch : 101 [32/36(89%)]\tLoss: 0.055181\n", + "Epoch : 102 [0/36(0%)]\tLoss: 0.090819\n", + "Epoch : 102 [8/36(22%)]\tLoss: 0.049605\n", + "Epoch : 102 [16/36(44%)]\tLoss: 0.073145\n", + "Epoch : 102 [24/36(67%)]\tLoss: 0.030798\n", + "Epoch : 102 [32/36(89%)]\tLoss: 0.088554\n", + "Epoch : 103 [0/36(0%)]\tLoss: 0.083407\n", + "Epoch : 103 [8/36(22%)]\tLoss: 0.007137\n", + "Epoch : 103 [16/36(44%)]\tLoss: 0.253704\n", + "Epoch : 103 [24/36(67%)]\tLoss: 0.148343\n", + "Epoch : 103 [32/36(89%)]\tLoss: 0.034150\n", + "Epoch : 104 [0/36(0%)]\tLoss: 0.116590\n", + "Epoch : 104 [8/36(22%)]\tLoss: 0.145375\n", + "Epoch : 104 [16/36(44%)]\tLoss: 0.024420\n", + "Epoch : 104 [24/36(67%)]\tLoss: 0.209265\n", + "Epoch : 104 [32/36(89%)]\tLoss: 0.360293\n", + "Epoch : 105 [0/36(0%)]\tLoss: 0.058020\n", + "Epoch : 105 [8/36(22%)]\tLoss: 0.188751\n", + "Epoch : 105 [16/36(44%)]\tLoss: 0.316962\n", + "Epoch : 105 [24/36(67%)]\tLoss: 0.089220\n", + "Epoch : 105 [32/36(89%)]\tLoss: 0.078423\n", + "Epoch : 106 [0/36(0%)]\tLoss: 0.192076\n", + "Epoch : 106 [8/36(22%)]\tLoss: 0.345154\n", + "Epoch : 106 [16/36(44%)]\tLoss: 0.254030\n", + "Epoch : 106 [24/36(67%)]\tLoss: 0.676103\n", + "Epoch : 106 [32/36(89%)]\tLoss: 0.171828\n", + "Epoch : 107 [0/36(0%)]\tLoss: 0.040675\n", + "Epoch : 107 [8/36(22%)]\tLoss: 0.421917\n", + "Epoch : 107 [16/36(44%)]\tLoss: 0.044996\n", + "Epoch : 107 [24/36(67%)]\tLoss: 0.418566\n", + "Epoch : 107 [32/36(89%)]\tLoss: 0.965645\n", + "Epoch : 108 [0/36(0%)]\tLoss: 0.143208\n", + "Epoch : 108 [8/36(22%)]\tLoss: 0.359013\n", + "Epoch : 108 [16/36(44%)]\tLoss: 0.063624\n", + "Epoch : 108 [24/36(67%)]\tLoss: 0.524550\n", + "Epoch : 108 [32/36(89%)]\tLoss: 0.219951\n", + "Epoch : 109 [0/36(0%)]\tLoss: 0.170740\n", + "Epoch : 109 [8/36(22%)]\tLoss: 0.267654\n", + "Epoch : 109 [16/36(44%)]\tLoss: 0.518493\n", + "Epoch : 109 [24/36(67%)]\tLoss: 0.014536\n", + "Epoch : 109 [32/36(89%)]\tLoss: 0.167054\n", + "Epoch : 110 [0/36(0%)]\tLoss: 0.153607\n", + "Epoch : 110 [8/36(22%)]\tLoss: 0.053445\n", + "Epoch : 110 [16/36(44%)]\tLoss: 0.304338\n", + "Epoch : 110 [24/36(67%)]\tLoss: 0.574945\n", + "Epoch : 110 [32/36(89%)]\tLoss: 0.176445\n", + "Epoch : 111 [0/36(0%)]\tLoss: 0.084453\n", + "Epoch : 111 [8/36(22%)]\tLoss: 0.046030\n", + "Epoch : 111 [16/36(44%)]\tLoss: 0.206315\n", + "Epoch : 111 [24/36(67%)]\tLoss: 0.055557\n", + "Epoch : 111 [32/36(89%)]\tLoss: 0.066555\n", + "Epoch : 112 [0/36(0%)]\tLoss: 0.085624\n", + "Epoch : 112 [8/36(22%)]\tLoss: 0.128727\n", + "Epoch : 112 [16/36(44%)]\tLoss: 0.036197\n", + "Epoch : 112 [24/36(67%)]\tLoss: 0.078925\n", + "Epoch : 112 [32/36(89%)]\tLoss: 0.055318\n", + "Epoch : 113 [0/36(0%)]\tLoss: 0.079125\n", + "Epoch : 113 [8/36(22%)]\tLoss: 0.039115\n", + "Epoch : 113 [16/36(44%)]\tLoss: 0.016887\n", + "Epoch : 113 [24/36(67%)]\tLoss: 0.215468\n", + "Epoch : 113 [32/36(89%)]\tLoss: 0.015628\n", + "Epoch : 114 [0/36(0%)]\tLoss: 0.072089\n", + "Epoch : 114 [8/36(22%)]\tLoss: 0.034152\n", + "Epoch : 114 [16/36(44%)]\tLoss: 0.166113\n", + "Epoch : 114 [24/36(67%)]\tLoss: 0.029084\n", + "Epoch : 114 [32/36(89%)]\tLoss: 0.051001\n", + "Epoch : 115 [0/36(0%)]\tLoss: 0.134022\n", + "Epoch : 115 [8/36(22%)]\tLoss: 0.074209\n", + "Epoch : 115 [16/36(44%)]\tLoss: 0.116683\n", + "Epoch : 115 [24/36(67%)]\tLoss: 0.155051\n", + "Epoch : 115 [32/36(89%)]\tLoss: 0.111560\n", + "Epoch : 116 [0/36(0%)]\tLoss: 0.059707\n", + "Epoch : 116 [8/36(22%)]\tLoss: 0.352683\n", + "Epoch : 116 [16/36(44%)]\tLoss: 0.187180\n", + "Epoch : 116 [24/36(67%)]\tLoss: 0.100144\n", + "Epoch : 116 [32/36(89%)]\tLoss: 0.332521\n", + "Epoch : 117 [0/36(0%)]\tLoss: 0.203934\n", + "Epoch : 117 [8/36(22%)]\tLoss: 0.010037\n", + "Epoch : 117 [16/36(44%)]\tLoss: 0.131537\n", + "Epoch : 117 [24/36(67%)]\tLoss: 0.229531\n", + "Epoch : 117 [32/36(89%)]\tLoss: 0.012884\n", + "Epoch : 118 [0/36(0%)]\tLoss: 0.062966\n", + "Epoch : 118 [8/36(22%)]\tLoss: 0.248968\n", + "Epoch : 118 [16/36(44%)]\tLoss: 0.193995\n", + "Epoch : 118 [24/36(67%)]\tLoss: 0.050740\n", + "Epoch : 118 [32/36(89%)]\tLoss: 0.332583\n", + "Epoch : 119 [0/36(0%)]\tLoss: 0.098094\n", + "Epoch : 119 [8/36(22%)]\tLoss: 0.029512\n", + "Epoch : 119 [16/36(44%)]\tLoss: 0.298129\n", + "Epoch : 119 [24/36(67%)]\tLoss: 0.101798\n", + "Epoch : 119 [32/36(89%)]\tLoss: 0.040026\n", + "Epoch : 120 [0/36(0%)]\tLoss: 0.090045\n", + "Epoch : 120 [8/36(22%)]\tLoss: 0.160848\n", + "Epoch : 120 [16/36(44%)]\tLoss: 0.048863\n", + "Epoch : 120 [24/36(67%)]\tLoss: 0.198334\n", + "Epoch : 120 [32/36(89%)]\tLoss: 0.198368\n", + "Epoch : 121 [0/36(0%)]\tLoss: 0.155471\n", + "Epoch : 121 [8/36(22%)]\tLoss: 0.114694\n", + "Epoch : 121 [16/36(44%)]\tLoss: 0.513598\n", + "Epoch : 121 [24/36(67%)]\tLoss: 0.123758\n", + "Epoch : 121 [32/36(89%)]\tLoss: 0.072116\n", + "Epoch : 122 [0/36(0%)]\tLoss: 0.189216\n", + "Epoch : 122 [8/36(22%)]\tLoss: 0.070787\n", + "Epoch : 122 [16/36(44%)]\tLoss: 0.182104\n", + "Epoch : 122 [24/36(67%)]\tLoss: 0.075330\n", + "Epoch : 122 [32/36(89%)]\tLoss: 0.020740\n", + "Epoch : 123 [0/36(0%)]\tLoss: 0.018320\n", + "Epoch : 123 [8/36(22%)]\tLoss: 0.057574\n", + "Epoch : 123 [16/36(44%)]\tLoss: 0.230162\n", + "Epoch : 123 [24/36(67%)]\tLoss: 0.027181\n", + "Epoch : 123 [32/36(89%)]\tLoss: 0.170325\n", + "Epoch : 124 [0/36(0%)]\tLoss: 0.071373\n", + "Epoch : 124 [8/36(22%)]\tLoss: 0.039867\n", + "Epoch : 124 [16/36(44%)]\tLoss: 0.148021\n", + "Epoch : 124 [24/36(67%)]\tLoss: 0.058429\n", + "Epoch : 124 [32/36(89%)]\tLoss: 0.064890\n", + "Epoch : 125 [0/36(0%)]\tLoss: 0.060083\n", + "Epoch : 125 [8/36(22%)]\tLoss: 0.078922\n", + "Epoch : 125 [16/36(44%)]\tLoss: 0.033592\n", + "Epoch : 125 [24/36(67%)]\tLoss: 0.136540\n", + "Epoch : 125 [32/36(89%)]\tLoss: 0.046919\n", + "Epoch : 126 [0/36(0%)]\tLoss: 0.154215\n", + "Epoch : 126 [8/36(22%)]\tLoss: 0.027824\n", + "Epoch : 126 [16/36(44%)]\tLoss: 0.058273\n", + "Epoch : 126 [24/36(67%)]\tLoss: 0.138773\n", + "Epoch : 126 [32/36(89%)]\tLoss: 0.001192\n", + "Epoch : 127 [0/36(0%)]\tLoss: 0.035190\n", + "Epoch : 127 [8/36(22%)]\tLoss: 0.096801\n", + "Epoch : 127 [16/36(44%)]\tLoss: 0.117461\n", + "Epoch : 127 [24/36(67%)]\tLoss: 0.025115\n", + "Epoch : 127 [32/36(89%)]\tLoss: 0.096758\n", + "Epoch : 128 [0/36(0%)]\tLoss: 0.105773\n", + "Epoch : 128 [8/36(22%)]\tLoss: 0.020279\n", + "Epoch : 128 [16/36(44%)]\tLoss: 0.070434\n", + "Epoch : 128 [24/36(67%)]\tLoss: 0.104038\n", + "Epoch : 128 [32/36(89%)]\tLoss: 0.020863\n", + "Epoch : 129 [0/36(0%)]\tLoss: 0.091947\n", + "Epoch : 129 [8/36(22%)]\tLoss: 0.044923\n", + "Epoch : 129 [16/36(44%)]\tLoss: 0.038661\n", + "Epoch : 129 [24/36(67%)]\tLoss: 0.051862\n", + "Epoch : 129 [32/36(89%)]\tLoss: 0.073353\n", + "Epoch : 130 [0/36(0%)]\tLoss: 0.100629\n", + "Epoch : 130 [8/36(22%)]\tLoss: 0.013606\n", + "Epoch : 130 [16/36(44%)]\tLoss: 0.098244\n", + "Epoch : 130 [24/36(67%)]\tLoss: 0.024387\n", + "Epoch : 130 [32/36(89%)]\tLoss: 0.027153\n", + "Epoch : 131 [0/36(0%)]\tLoss: 0.111275\n", + "Epoch : 131 [8/36(22%)]\tLoss: 0.125642\n", + "Epoch : 131 [16/36(44%)]\tLoss: 0.006807\n", + "Epoch : 131 [24/36(67%)]\tLoss: 0.061652\n", + "Epoch : 131 [32/36(89%)]\tLoss: 0.024928\n", + "Epoch : 132 [0/36(0%)]\tLoss: 0.035391\n", + "Epoch : 132 [8/36(22%)]\tLoss: 0.039955\n", + "Epoch : 132 [16/36(44%)]\tLoss: 0.005344\n", + "Epoch : 132 [24/36(67%)]\tLoss: 0.037422\n", + "Epoch : 132 [32/36(89%)]\tLoss: 0.044620\n", + "Epoch : 133 [0/36(0%)]\tLoss: 0.072225\n", + "Epoch : 133 [8/36(22%)]\tLoss: 0.007113\n", + "Epoch : 133 [16/36(44%)]\tLoss: 0.004914\n", + "Epoch : 133 [24/36(67%)]\tLoss: 0.081317\n", + "Epoch : 133 [32/36(89%)]\tLoss: 0.056659\n", + "Epoch : 134 [0/36(0%)]\tLoss: 0.100679\n", + "Epoch : 134 [8/36(22%)]\tLoss: 0.009015\n", + "Epoch : 134 [16/36(44%)]\tLoss: 0.006333\n", + "Epoch : 134 [24/36(67%)]\tLoss: 0.049024\n", + "Epoch : 134 [32/36(89%)]\tLoss: 0.029390\n", + "Epoch : 135 [0/36(0%)]\tLoss: 0.070769\n", + "Epoch : 135 [8/36(22%)]\tLoss: 0.017542\n", + "Epoch : 135 [16/36(44%)]\tLoss: 0.010062\n", + "Epoch : 135 [24/36(67%)]\tLoss: 0.029891\n", + "Epoch : 135 [32/36(89%)]\tLoss: 0.014959\n", + "Epoch : 136 [0/36(0%)]\tLoss: 0.046186\n", + "Epoch : 136 [8/36(22%)]\tLoss: 0.008259\n", + "Epoch : 136 [16/36(44%)]\tLoss: 0.011713\n", + "Epoch : 136 [24/36(67%)]\tLoss: 0.109458\n", + "Epoch : 136 [32/36(89%)]\tLoss: 0.021408\n", + "Epoch : 137 [0/36(0%)]\tLoss: 0.051914\n", + "Epoch : 137 [8/36(22%)]\tLoss: 0.048931\n", + "Epoch : 137 [16/36(44%)]\tLoss: 0.006168\n", + "Epoch : 137 [24/36(67%)]\tLoss: 0.096591\n", + "Epoch : 137 [32/36(89%)]\tLoss: 0.004635\n", + "Epoch : 138 [0/36(0%)]\tLoss: 0.081627\n", + "Epoch : 138 [8/36(22%)]\tLoss: 0.056935\n", + "Epoch : 138 [16/36(44%)]\tLoss: 0.012284\n", + "Epoch : 138 [24/36(67%)]\tLoss: 0.022663\n", + "Epoch : 138 [32/36(89%)]\tLoss: 0.042094\n", + "Epoch : 139 [0/36(0%)]\tLoss: 0.130895\n", + "Epoch : 139 [8/36(22%)]\tLoss: 0.012255\n", + "Epoch : 139 [16/36(44%)]\tLoss: 0.034246\n", + "Epoch : 139 [24/36(67%)]\tLoss: 0.070623\n", + "Epoch : 139 [32/36(89%)]\tLoss: 0.003458\n", + "Epoch : 140 [0/36(0%)]\tLoss: 0.097751\n", + "Epoch : 140 [8/36(22%)]\tLoss: 0.089657\n", + "Epoch : 140 [16/36(44%)]\tLoss: 0.032072\n", + "Epoch : 140 [24/36(67%)]\tLoss: 0.058146\n", + "Epoch : 140 [32/36(89%)]\tLoss: 0.116066\n", + "Epoch : 141 [0/36(0%)]\tLoss: 0.039885\n", + "Epoch : 141 [8/36(22%)]\tLoss: 0.054360\n", + "Epoch : 141 [16/36(44%)]\tLoss: 0.014351\n", + "Epoch : 141 [24/36(67%)]\tLoss: 0.038088\n", + "Epoch : 141 [32/36(89%)]\tLoss: 0.010929\n", + "Epoch : 142 [0/36(0%)]\tLoss: 0.039814\n", + "Epoch : 142 [8/36(22%)]\tLoss: 0.005909\n", + "Epoch : 142 [16/36(44%)]\tLoss: 0.018548\n", + "Epoch : 142 [24/36(67%)]\tLoss: 0.031954\n", + "Epoch : 142 [32/36(89%)]\tLoss: 0.008730\n", + "Epoch : 143 [0/36(0%)]\tLoss: 0.025960\n", + "Epoch : 143 [8/36(22%)]\tLoss: 0.025219\n", + "Epoch : 143 [16/36(44%)]\tLoss: 0.003331\n", + "Epoch : 143 [24/36(67%)]\tLoss: 0.022451\n", + "Epoch : 143 [32/36(89%)]\tLoss: 0.004331\n", + "Epoch : 144 [0/36(0%)]\tLoss: 0.066973\n", + "Epoch : 144 [8/36(22%)]\tLoss: 0.019133\n", + "Epoch : 144 [16/36(44%)]\tLoss: 0.009011\n", + "Epoch : 144 [24/36(67%)]\tLoss: 0.010337\n", + "Epoch : 144 [32/36(89%)]\tLoss: 0.069278\n", + "Epoch : 145 [0/36(0%)]\tLoss: 0.031961\n", + "Epoch : 145 [8/36(22%)]\tLoss: 0.025324\n", + "Epoch : 145 [16/36(44%)]\tLoss: 0.025091\n", + "Epoch : 145 [24/36(67%)]\tLoss: 0.059933\n", + "Epoch : 145 [32/36(89%)]\tLoss: 0.032740\n", + "Epoch : 146 [0/36(0%)]\tLoss: 0.015920\n", + "Epoch : 146 [8/36(22%)]\tLoss: 0.011236\n", + "Epoch : 146 [16/36(44%)]\tLoss: 0.036356\n", + "Epoch : 146 [24/36(67%)]\tLoss: 0.021760\n", + "Epoch : 146 [32/36(89%)]\tLoss: 0.008992\n", + "Epoch : 147 [0/36(0%)]\tLoss: 0.070552\n", + "Epoch : 147 [8/36(22%)]\tLoss: 0.017617\n", + "Epoch : 147 [16/36(44%)]\tLoss: 0.002389\n", + "Epoch : 147 [24/36(67%)]\tLoss: 0.035667\n", + "Epoch : 147 [32/36(89%)]\tLoss: 0.029870\n", + "Epoch : 148 [0/36(0%)]\tLoss: 0.047817\n", + "Epoch : 148 [8/36(22%)]\tLoss: 0.058648\n", + "Epoch : 148 [16/36(44%)]\tLoss: 0.008709\n", + "Epoch : 148 [24/36(67%)]\tLoss: 0.005495\n", + "Epoch : 148 [32/36(89%)]\tLoss: 0.048692\n", + "Epoch : 149 [0/36(0%)]\tLoss: 0.125410\n", + "Epoch : 149 [8/36(22%)]\tLoss: 0.029666\n", + "Epoch : 149 [16/36(44%)]\tLoss: 0.015359\n", + "Epoch : 149 [24/36(67%)]\tLoss: 0.021925\n", + "Epoch : 149 [32/36(89%)]\tLoss: 0.034226\n", + "--- 0.04978280067443848 minutes ---\n" ] } ], @@ -1549,12 +1546,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAHWCAYAAAD+cEOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmPUlEQVR4nOzdd3hT1R8G8Dfp3pQCLaOUvfeUDYJMZYMIKEvQnwxZioiyFUWWiLJEQGTJHspeMgXZe++92tI9cn5/nN6MLpo26U3T9/M8eW5yc5OcpIXbN98zNEIIASIiIiIiIiLKVFq1G0BERERERESUHTGQExEREREREamAgZyIiIiIiIhIBQzkRERERERERCpgICciIiIiIiJSAQM5ERERERERkQoYyImIiIiIiIhUwEBOREREREREpAIGciIiIiIiIiIVMJATEREREWVBDRs2RMOGDdN8bLly5azboASFChVCz549M+W1iLI6BnKibGTRokXQaDTQaDQ4cOBAkvuFEAgMDIRGo8Hbb7+t3x8WFoYxY8agXLly8PDwgJ+fHypVqoRPP/0UDx480B83duxY/fMnd3n06FGmvE8iIqK0Us6N//33n9pNybAHDx5g7NixOHXqlNpNsZhChQpBo9GgSZMmyd4/f/58/d8ZiX+GBw4cQIsWLZA/f364urqiYMGCeOedd7Bs2TKT41L72+Xjjz+22nsjAgBHtRtARJnP1dUVy5YtQ926dU3279u3D/fu3YOLi4t+X2xsLOrXr49Lly6hR48eGDhwIMLCwnD+/HksW7YM7dq1Q758+UyeZ/bs2fD09Ezyujly5LDK+yEiIsqOtm/fbnL7wYMHGDduHAoVKoRKlSqp0ygAly9fhlZrubqfq6sr9uzZg0ePHiEgIMDkvqVLl8LV1RVRUVEm+1etWoV3331XX0Dw9fXFzZs38c8//2D+/Pno2rWryfFvvfUWPvjggySvXaJECYu9D6LkMJATZUMtW7bEqlWrMHPmTDg6Gv4bWLZsGapWrYpnz57p961fvx4nT57E0qVLk5y8oqKiEBMTk+T5O3bsiFy5clnvDRAREWVjERERcHd3h7Ozs9pNSZbxF/uWUKdOHRw7dgwrV67Ep59+qt9/79497N+/H+3atcOaNWtMHjN27FiUKVMGR44cSfI5PXnyJMlrlChRAt27d7dou4nSgl3WibKh9957D8+fP8eOHTv0+2JiYrB69eokofv69esA5MkwMVdXV3h7e1u3sURERDbg5MmTaNGiBby9veHp6YnGjRvjyJEjSY47c+YMGjRoADc3NxQoUAATJ07EwoULodFocOvWLf1xGzZsQKtWrZAvXz64uLigaNGimDBhAuLj402eTxn7ffz4cdSvXx/u7u748ssv9fcpY8j37t2L6tWrAwB69eql73K9aNEik+e7cOECGjVqBHd3d+TPnx+TJ082uX/v3r3QaDT4888/MW7cOOTPnx9eXl7o2LEjQkJCEB0djcGDByNPnjzw9PREr169EB0dbfIcyY0hDw4OxpAhQ1CoUCG4uLigQIEC+OCDD0yKAClxdXVF+/btk3Q1X758OXx9fdGsWbMkj7l+/TqqV6+e7JcWefLkee1rEmUWVsiJsqFChQqhVq1aWL58OVq0aAEA2LJlC0JCQtClSxfMnDlTf2xQUBAA4Pfff8dXX30FjUbz2ud/8eJFkn2Ojo7ssk5ERFnS+fPnUa9ePXh7e+Pzzz+Hk5MT5s6di4YNG2Lfvn2oWbMmAOD+/fto1KgRNBoNRo4cCQ8PD/z666/JVowXLVoET09PDB06FJ6enti9ezdGjx6N0NBQ/PDDDybHPn/+HC1atECXLl3QvXt3+Pv7J3m+0qVLY/z48Rg9ejT69euHevXqAQBq166tP+bly5do3rw52rdvj86dO2P16tUYMWIEypcvr/97QDFp0iS4ubnhiy++wLVr1/DTTz/ByckJWq0WL1++xNixY3HkyBEsWrQIhQsXxujRo1P8/MLCwlCvXj1cvHgRvXv3RpUqVfDs2TNs3LgR9+7dS1Ovuq5du6Jp06a4fv06ihYtCkD27OvYsSOcnJySHB8UFIRdu3bh3r17KFCgwGufPyoqKtkvB7y9vW22JwLZCUFE2cbChQsFAHHs2DExa9Ys4eXlJSIiIoQQQnTq1Ek0atRICCFEUFCQaNWqlRBCiIiICFGyZEkBQAQFBYmePXuKBQsWiMePHyd5/jFjxggAyV5KliyZeW+UiIgojYzPjSlp27atcHZ2FtevX9fve/DggfDy8hL169fX7xs4cKDQaDTi5MmT+n3Pnz8XOXPmFADEzZs39fuV86+xjz76SLi7u4uoqCj9vgYNGggAYs6cOUmOb9CggWjQoIH+9rFjxwQAsXDhwmSPBSB+//13/b7o6GgREBAgOnTooN+3Z88eAUCUK1dOxMTE6Pe/9957QqPRiBYtWpg8b61atURQUJDJvqCgINGjRw/97dGjRwsAYu3atUnapdPpkuxL/FytWrUScXFxIiAgQEyYMEEIIcSFCxcEALFv375kf4YLFiwQAISzs7No1KiR+Prrr8X+/ftFfHx8ktdI6W8XAGL58uWpto8oo9hlnSib6ty5MyIjI7F582a8evUKmzdvTtJdHQDc3Nzw77//4rPPPgMgv9Hv06cP8ubNi4EDBybppgYAa9aswY4dO0wuCxcutPp7IiIisrT4+Hhs374dbdu2RZEiRfT78+bNi65du+LAgQMIDQ0FAGzduhW1atUymVAtZ86c6NatW5LndXNz019/9eoVnj17hnr16iEiIgKXLl0yOdbFxQW9evXK8Hvx9PQ0GSft7OyMGjVq4MaNG0mO/eCDD0wqzzVr1oQQAr179zY5rmbNmrh79y7i4uJSfN01a9agYsWKaNeuXZL70tLzDgAcHBzQuXNnLF++HICczC0wMFDfEyCx3r17Y+vWrWjYsCEOHDiACRMmoF69eihevDgOHTqU5Pg2bdok+dtlx44daNSoUZraR5Re7LJOlE3lzp0bTZo0wbJlyxAREYH4+Hh07Ngx2WN9fHwwefJkTJ48Gbdv38auXbswZcoUzJo1Cz4+Ppg4caLJ8fXr1+ekbkREZBeePn2KiIgIlCxZMsl9pUuXhk6nw927d1G2bFncvn0btWrVSnJcsWLFkuw7f/48vvrqK+zevVsf6BUhISEmt/Pnz2+RbtMFChRIEoB9fX1x5syZJMcWLFjQ5LaPjw8AIDAwMMl+nU6HkJAQ+Pn5Jfu6169fR4cOHTLSdACy2/rMmTNx+vRpLFu2DF26dEk10Ddr1gzNmjVDREQEjh8/jpUrV2LOnDl4++23cenSJZOx5AUKFEhxaTUia2KFnCgb69q1K7Zs2YI5c+agRYsWaRrjHRQUhN69e+PgwYPIkSMHli5dav2GEhER2ZHg4GA0aNAAp0+fxvjx47Fp0ybs2LED33//PQBAp9OZHG9cTc8IBweHZPcLIdJ8rDnPYWk1a9ZE0aJFMXjwYNy8eTPZnn3JcXd3R7169TBr1ix89dVXePnyJbZs2WLl1hKlDSvkRNlYu3bt8NFHH+HIkSNYuXKlWY/19fVF0aJFce7cOSu1joiISH25c+eGu7s7Ll++nOS+S5cuQavV6qvGQUFBuHbtWpLjEu/bu3cvnj9/jrVr16J+/fr6/Tdv3sxQW9Pa/TuzWfLvhffeew8TJ05E6dKl07XWerVq1QAADx8+tEh7iDKKFXKibMzT0xOzZ8/G2LFj8c477yR7zOnTp5OddfT27du4cOFCsl34iIiI7IWDgwOaNm2KDRs2mCxb9vjxYyxbtgx169bVLwHarFkzHD58GKdOndIf9+LFiyS9yZQqs3FVOSYmBr/88kuG2urh4QFAVuBtSYcOHXD69GmsW7cuyX3mVtY//PBDjBkzBlOnTk31uF27diW7/++//wYA/v1CNoMVcqJsrkePHqnev2PHDowZMwatW7fGG2+8AU9PT9y4cQO//fYboqOjMXbs2CSPWb16NTw9PZPsf+utt5JdqoWIiEhtv/32G7Zu3Zpk/6effoqJEydix44dqFu3Lj755BM4Ojpi7ty5iI6ONlnH+/PPP8cff/yBt956CwMHDtQve1awYEG8ePFCX8GuXbs2fH190aNHDwwaNAgajQZLlizJcLfvokWLIkeOHJgzZw68vLzg4eGBmjVronDhwhl63oz67LPPsHr1anTq1Am9e/dG1apV8eLFC2zcuBFz5sxBxYoV0/xcQUFByf7tkVibNm1QuHBhvPPOOyhatCjCw8Oxc+dObNq0CdWrV09SiLhy5Qr++OOPJM/j7++Pt956K83tIzIXAzkRpapDhw549eoVtm/fjt27d+PFixfw9fVFjRo1MGzYsGRnH/3f//6X7HPt2bOHgZyIiGzS7Nmzk93fs2dPlC1bFvv378fIkSMxadIk6HQ61KxZE3/88Yd+DXJATni2Z88eDBo0CN9++y1y586N/v37w8PDA4MGDYKrqysAwM/PD5s3b8awYcPw1VdfwdfXF927d0fjxo3RrFmzdL8HJycnLF68GCNHjsTHH3+MuLg4LFy4UPVA7unpif3792PMmDFYt24dFi9ejDx58qBx48ZpWiM8PX799Vds2LABf/75Jx48eAAhBIoUKYJRo0ZhxIgRcHQ0jUHKrOqJNWjQgIGcrEojMmMGBiIiIiKibGrw4MGYO3cuwsLCUpwUjYiyJ44hJyIiIiKykMjISJPbz58/x5IlS1C3bl2GcSJKgl3WiYiIiIgspFatWmjYsCFKly6Nx48fY8GCBQgNDcXXX3+tdtOIyAYxkBMRERERWUjLli2xevVqzJs3DxqNBlWqVMGCBQtMljcjIlJwDDkRERERERGRCjiGnIiIiIiIiEgFDOREREREREREKrD7MeQ6nQ4PHjyAl5cXNBqN2s0hIiKCEAKvXr1Cvnz5oNXyu/GM4rmeiIhsTVrP9XYfyB88eIDAwEC1m0FERJTE3bt3UaBAAbWbkeXxXE9ERLbqded6uw/kXl5eAOQH4e3trXJriIiIgNDQUAQGBurPUZQxPNcTEZGtSeu53u4DudJ1zdvbmydpIiKyKexebRk81xMRka163bmeA9eIiIiIiIiIVMBATkRERERERKQCBnIiIiIiIiIiFdj9GHIiorQSQiAuLg7x8fFqN4WyOAcHBzg6OnKMOBGRjeG5nizFUud6BnIiIgAxMTF4+PAhIiIi1G4K2Ql3d3fkzZsXzs7OajeFiIjAcz1ZniXO9QzkRJTt6XQ63Lx5Ew4ODsiXLx+cnZ1Z2aR0E0IgJiYGT58+xc2bN1G8eHFotRwhRkSkJp7ryZIsea5nICeibC8mJgY6nQ6BgYFwd3dXuzlkB9zc3ODk5ITbt28jJiYGrq6uajeJiChb47meLM1S53p+ZU9ElIBVTLIk/j4REdke/t9MlmSJ3yf+RhIRERERERGpgIGciIiIiIiISAUM5EREpFeoUCHMmDEjzcfv3bsXGo0GwcHBVmsTACxatAg5cuSw6msQERFlFzzf2w4GciKiLEij0aR6GTt2bLqe99ixY+jXr1+aj69duzYePnwIHx+fdL0eERERpYzne/vHWdaJiLKghw8f6q+vXLkSo0ePxuXLl/X7PD099deFEIiPj4ej4+v/y8+dO7dZ7XB2dkZAQIBZjyEiIqK04fne/rFCboZ69YBy5YCbN9VuCRFZkxBAeLg6FyHS1saAgAD9xcfHBxqNRn/70qVL8PLywpYtW1C1alW4uLjgwIEDuH79Otq0aQN/f394enqievXq2Llzp8nzJu7CptFo8Ouvv6Jdu3Zwd3dH8eLFsXHjRv39ibuwKV3Ntm3bhtKlS8PT0xPNmzc3+YMiLi4OgwYNQo4cOeDn54cRI0agR48eaNu2rVk/p9mzZ6No0aJwdnZGyZIlsWTJEqOfocDYsWNRsGBBuLi4IF++fBg0aJD+/l9++QXFixeHq6sr/P390bFjR7Nem+zX558DZcsCK1ao3RIisja1zvdpPdcDPN8D9n++ZyA3w4ULwPnzQGSk2i0hImuKiAA8PdW5RERY7n188cUX+O6773Dx4kVUqFABYWFhaNmyJXbt2oWTJ0+iefPmeOedd3Dnzp1Un2fcuHHo3Lkzzpw5g5YtW6Jbt2548eJFKp9fBKZMmYIlS5bgn3/+wZ07dzB8+HD9/d9//z2WLl2KhQsX4uDBgwgNDcX69evNem/r1q3Dp59+imHDhuHcuXP46KOP0KtXL+zZswcAsGbNGkyfPh1z587F1atXsX79epQvXx4A8N9//2HQoEEYP348Ll++jK1bt6J+/fpmvT7ZrwcP5Pn+3j21W0JE1qbW+d6S53qA5/ssf74Xdi4kJEQAECEhIRl+rty5hQCEOHPGAg0jIpsRGRkpLly4ICIjI4UQQoSFyX/ralzCwsxv/8KFC4WPj4/+9p49ewQAsX79+tc+tmzZsuKnn37S3w4KChLTp0/X3wYgvvrqK/3tsLAwAUBs2bLF5LVevnypbwsAce3aNf1jfv75Z+Hv76+/7e/vL3744Qf97bi4OFGwYEHRpk2bNL/H2rVri759+5oc06lTJ9GyZUshhBBTp04VJUqUEDExMUmea82aNcLb21uEhoam+HqWkPj3ypglz01k2c9z4ED5b/HLLy3QMCKyGcn9n6zW+T4953oheL5X2NL53hLnelbIzeDgILfx8eq2g4isy90dCAtT5+Lubrn3Ua1aNZPbYWFhGD58OEqXLo0cOXLA09MTFy9efO035hUqVNBf9/DwgLe3N548eZLi8e7u7ihatKj+dt68efXHh4SE4PHjx6hRo4b+fgcHB1StWtWs93bx4kXUqVPHZF+dOnVw8eJFAECnTp0QGRmJIkWKoG/fvli3bh3i4uIAAG+99RaCgoJQpEgRvP/++1i6dCkiLF2uoCzL11duX75Utx1EZH1qne8tea4HeL7P6ud7BnIzaBM+LZ1O3XYQkXVpNICHhzoXjcZy78PDw8Pk9vDhw7Fu3Tp8++232L9/P06dOoXy5csjJiYm1edxcnJK9PlooEvlP8LkjhfmDJizgMDAQFy+fBm//PIL3Nzc8Mknn6B+/fqIjY2Fl5cXTpw4geXLlyNv3rwYPXo0KlasaPWlXChrYCAnyj7UOt9b8lwP8Hyf1c/3DORmYIWciLKygwcPomfPnmjXrh3Kly+PgIAA3Lp1K1Pb4OPjA39/fxw7dky/Lz4+HidOnDDreUqXLo2DBw+a7Dt48CDKlCmjv+3m5oZ33nkHM2fOxN69e3H48GGcPXsWAODo6IgmTZpg8uTJOHPmDG7duoXdu3dn4J2RvWAgJ6Ksjuf7rHW+57JnZmAgJ6KsrHjx4li7di3eeecdaDQafP3116l+820tAwcOxKRJk1CsWDGUKlUKP/30E16+fAmNGSWDzz77DJ07d0blypXRpEkTbNq0CWvXrtXPIrto0SLEx8ejZs2acHd3xx9//AE3NzcEBQVh8+bNuHHjBurXrw9fX1/8/fff0Ol0KFmypLXeMmUhSiBPZR4jIiKbxvN91jrfM5CbgYGciLKyadOmoXfv3qhduzZy5cqFESNGIDQ0NNPbMWLECDx69AgffPABHBwc0K9fPzRr1gwOyn+yadC2bVv8+OOPmDJlCj799FMULlwYCxcuRMOGDQEAOXLkwHfffYehQ4ciPj4e5cuXx6ZNm+Dn54ccOXJg7dq1GDt2LKKiolC8eHEsX74cZcuWtdI7pqyEFXIiyup4vs9a53uNyOyO/pksNDQUPj4+CAkJgbe3d4aeq2RJ4MoVYN8+wBZnzCei9ImKisLNmzdRuHBhuLq6qt2cbEen06F06dLo3LkzJkyYoHZzLCa13ytLnpvIsp/n+fNAuXKAnx/w7JmFGkhEquO5Xn32eL63xLmeFXIzsEJORJRxt2/fxvbt29GgQQNER0dj1qxZuHnzJrp27ap204j0FfLgYLlAkaUnXyIiyi54vk8bVSd1i4+Px9dff43ChQvDzc0NRYsWxYQJE0xm5xNCYPTo0cibNy/c3NzQpEkTXL16VZX2MpATEWWcVqvFokWLUL16ddSpUwdnz57Fzp07Ubp0abWbRqQP5PHxwKtX6raFiCgr4/k+bVStkH///feYPXs2Fi9ejLJly+K///5Dr1694OPjg0GDBgEAJk+ejJkzZ2Lx4sUoXLgwvv76azRr1gwXLlzI9O4mDORERBkXGBiYZMZUIlvh5ga4uADR0XIcOUcUEBGlD8/3aaNqhfzQoUNo06YNWrVqhUKFCqFjx45o2rQpjh49CkBWx2fMmIGvvvoKbdq0QYUKFfD777/jwYMHWL9+faa3VwnkXIeciIjIfnGmdSIiyiyqBvLatWtj165duHLlCgDg9OnTOHDgAFq0aAEAuHnzJh49eoQmTZroH+Pj44OaNWvi8OHDyT5ndHQ0QkNDTS6Wok34tFghJyIiso7vvvsOGo0GgwcPVq0NnGmdiIgyi6pd1r/44guEhoaiVKlScHBwQHx8PL755ht069YNAPDo0SMAgL+/v8nj/P399fclNmnSJIwbN84q7WWXdSIiIus5duwY5s6diwoVKqjajpw55ZaBnIiIrE3VCvmff/6JpUuXYtmyZThx4gQWL16MKVOmYPHixel+zpEjRyIkJER/uXv3rsXay0BORERkHWFhYejWrRvmz58PX6VEnQJr9oYDWCEnIqLMo2og/+yzz/DFF1+gS5cuKF++PN5//30MGTIEkyZNAgAEBAQAAB4/fmzyuMePH+vvS8zFxQXe3t4mF0thICciIrKO/v37o1WrVibD1FIyadIk+Pj46C+BgYEWbQsDORERZRZVA3lERAS0WtMmODg4QJcwa1rhwoUREBCAXbt26e8PDQ3Fv//+i1q1amVqW2Xb5JaBnIiIyHJWrFiBEydO6L+Qfx1r9obDhg149+oEVMMxTupGRERWp2ogf+edd/DNN9/gr7/+wq1bt7Bu3TpMmzYN7dq1AwD9pC4TJ07Exo0bcfbsWXzwwQfIly8f2rZtm+ntZSAnInvTsGFDk8mzChUqhBkzZqT6GI1GY5GVLiz1PKkZO3YsKlWqZNXXoIy5e/cuPv30UyxdujTNy5laszccli9HqyOjUQuHWSEnIrvB873tUnVSt59++glff/01PvnkEzx58gT58uXDRx99hNGjR+uP+fzzzxEeHo5+/fohODgYdevWxdatWzN9DXKAgZyIbMc777yD2NhYbN26Ncl9+/fvR/369XH69GmzJ8c6duwYPDw8LNVMAPIkuX79epw6dcpk/8OHD187Vpjs3/Hjx/HkyRNUqVJFvy8+Ph7//PMPZs2ahejoaDgoJ+DMkPD774kwXGcgJyKV8Xxv/1QN5F5eXpgxY0aq385oNBqMHz8e48ePz7yGpYDrkBORrejTpw86dOiAe/fuoUCBAib3LVy4ENWqVUvXTNW5c+e2VBNfK6W5QCh7ady4Mc6ePWuyr1evXihVqhRGjBiRuWEc0AdyD4SzQk5EquP53v6p2mU9q+E65ETZhBBAeLg6FyHS1MS3334buXPnxqJFi0z2h4WFYdWqVejTpw+eP3+O9957D/nz54e7uzvKly+P5cuXp/q8ibuwXb16FfXr14erqyvKlCmDHTt2JHnMiBEjUKJECbi7u6NIkSL4+uuvERsbCwBYtGgRxo0bh9OnT0Oj0UCj0ejbnLgL29mzZ/Hmm2/Czc0Nfn5+6NevH8LCwvT39+zZE23btsWUKVOQN29e+Pn5oX///vrXSgudTofx48ejQIECcHFxQaVKlUyqDjExMRgwYADy5s0LV1dXBAUF6cc1CyEwduxYFCxYEC4uLsiXLx8GDRqU5tem5Hl5eaFcuXImFw8PD/j5+aFcuXKZ3yBPTwAM5ETZglrn+zSe6wGe77PD+V7VCnlWwy7rRNlERIT+j/JMFxamr9ClxtHRER988AEWLVqEUaNGQaPRAABWrVqF+Ph4vPfeewgLC0PVqlUxYsQIeHt746+//sL777+PokWLokaNGq99DZ1Oh/bt28Pf3x///vsvQkJCTMafKby8vLBo0SLky5cPZ8+eRd++feHl5YXPP/8c7777Ls6dO4etW7di586dAAAfH58kzxEeHo5mzZqhVq1aOHbsGJ48eYIPP/wQAwYMMPkjZM+ePcibNy/27NmDa9eu4d1330WlSpXQt2/f174fAPjxxx8xdepUzJ07F5UrV8Zvv/2G1q1b4/z58yhevDhmzpyJjRs34s8//0TBggVx9+5d/YRha9aswfTp07FixQqULVsWjx49wunTp9P0upSFGHVZZyAnsnNqne/TeK4HeL7PFud7YedCQkIEABESEpLh52rXTghAiF9+sUDDiMhmREZGigsXLojIyEi5IyxM/mNX4xIWluZ2X7x4UQAQe/bs0e+rV6+e6N69e4qPadWqlRg2bJj+doMGDcSnn36qvx0UFCSmT58uhBBi27ZtwtHRUdy/f19//5YtWwQAsW7duhRf44cffhBVq1bV3x4zZoyoWLFikuOMn2fevHnC19dXhBm9/7/++ktotVrx6NEjIYQQPXr0EEFBQSIuLk5/TKdOncS7776bYlsSv3a+fPnEN998Y3JM9erVxSeffCKEEGLgwIHizTffFDqdLslzTZ06VZQoUULExMSk+HrGkvxeGbHkuYks/HlOny4EIJahi/D1zfjTEZFtSPb/ZLXO92ac64Xg+V4I2z3fW+Jczy7rZmCFnCibcHeX316rcXF3T3MzS5Uqhdq1a+O3334DAFy7dg379+9Hnz59AMiJsSZMmIDy5csjZ86c8PT0xLZt23Dnzp00Pf/FixcRGBiIfPny6fclt+TkypUrUadOHQQEBMDT0xNfffVVml/D+LUqVqxoMsFMnTp1oNPpcPnyZf2+smXLmowpzps3L548eZKm1wgNDcWDBw9Qp04dk/116tTBxYsXAchucqdOnULJkiUxaNAgbN++XX9cp06dEBkZiSJFiqBv375Yt24d4uLizHqflAUYdVkPDua8MUR2Ta3zvRnneoDne8C+z/cM5GZgICfKJjQa2ZVMjUtCV7S06tOnD9asWYNXr15h4cKFKFq0KBo0aAAA+OGHH/Djjz9ixIgR2LNnD06dOoVmzZohJibGYh/V4cOH0a1bN7Rs2RKbN2/GyZMnMWrUKIu+hjEnJyeT2xqNBjoLJqYqVarg5s2bmDBhAiIjI9G5c2d07NgRABAYGIjLly/jl19+gZubGz755BPUr1/frDFtlAUYdVkXAggNVbk9RGQ9ap3vzTzXAzzf2/P5noHcDAzkRGRrOnfuDK1Wi2XLluH3339H79699ePLDh48iDZt2qB79+6oWLEiihQpgitXrqT5uUuXLo27d+/i4cOH+n1HjhwxOebQoUMICgrCqFGjUK1aNRQvXhy3b982OcbZ2Rnxr/mPs3Tp0jh9+jTCw8P1+w4ePAitVouSJUumuc2p8fb2Rr58+XDw4EGT/QcPHkSZMmVMjnv33Xcxf/58rFy5EmvWrMGLFy8AAG5ubnjnnXcwc+ZM7N27F4cPH04yQzhlcQmB3Esjfxc5jpyIbAHP92mX1c73nNTNDAzkRGRrPD098e6772LkyJEIDQ1Fz5499fcVL14cq1evxqFDh+Dr64tp06bh8ePHJiej1DRp0gQlSpRAjx498MMPPyA0NBSjRo0yOaZ48eK4c+cOVqxYgerVq+Ovv/7CunXrTI4pVKgQbt68iVOnTqFAgQLw8vKCi4uLyTHdunXDmDFj0KNHD4wdOxZPnz7FwIED8f7778Pf3z99H04yPvvsM4wZMwZFixZFpUqVsHDhQpw6dQpLly4FAEybNg158+ZF5cqVodVqsWrVKgQEBCBHjhxYtGgR4uPjUbNmTbi7u+OPP/6Am5sbgoKCLNY+sgFKIHcIB+JkIC9cWOU2EVG2x/O9ebLS+Z4VcjNwHXIiskV9+vTBy5cv0axZM5PxX1999RWqVKmCZs2aoWHDhggICEDbtm3T/LxarRbr1q1DZGQkatSogQ8//BDffPONyTGtW7fGkCFDMGDAAFSqVAmHDh3C119/bXJMhw4d0Lx5czRq1Ai5c+dOdikWd3d3bNu2DS9evED16tXRsWNHNG7cGLNmzTLvw3iNQYMGYejQoRg2bBjKly+PrVu3YuPGjShevDgAOYPs5MmTUa1aNVSvXh23bt3C33//Da1Wixw5cmD+/PmoU6cOKlSogJ07d2LTpk3w8/OzaBtJZQljyL00cgkeVsiJyFbwfJ92Wel8rxHCjIXwsqDQ0FD4+PggJCQE3t7eGXquDz8EFiwAvvkG+PJLCzWQiFQXFRWFmzdvonDhwnB1dVW7OWQnUvu9suS5iSz8eZ47B5Qvj2DHXPCNe4o//wQ6dbJMO4lIPTzXkzVY4lzPCrkZtAmfFrusExER2amELutuOo4hJyIi62MgNwPHkBMREdm5hC7rLrpIaBHPQE5ERFbFQG4GBnIiIiI7Z7Q2rjsiGMiJiMiqGMjNwEBORERk59zc9GsEeyCcgZyIiKyKgdwMDORE9s3O57ikTMbfpyxKo9FXyT0QjoQlaYnITvD/ZrIkS/w+MZCbgYGcyD45OTkBACIiIlRuCdkT5fdJ+f2iLCQhkHsijBVyIjvBcz1ZgyXO9Y6Wakx2wEBOZJ8cHByQI0cOPHnyBIBcI1OT0GWVyFxCCERERODJkyfIkSMHHJSTB2UdRhVyBnIi+8BzPVmSJc/1DORmUD5nnU7ddhCR5QUEBACA/kRNlFE5cuTQ/15RFpMw07oHwvGIgZzIbvBcT5ZmiXM9A7kZuA45kf3SaDTImzcv8uTJg9jYWLWbQ1mck5MTK+NZGbusE9klnuvJkix1rmcgNwO7rBPZPwcHBwYpouzOqMt6SIjsGaflrDtEdoPnerIlPL2YgYGciIgoGzDqsi4EEB2tcnuIiMhuMZCbgYGciIgoGzDqsg4AUVFqNoaIiOwZA7kZGMiJiIiyASWQa8IBMJATEZH1MJCbgYGciIgoG0josu7jwEBORETWxUBuBgZyIiKibCChQu7NQE5ERFbGQG4GrkNORESUDSiBXMsx5EREZF0M5GZghZyIiCgbUMaQa1khJyIi62IgN4OyBikDORERkR1LGEPOSd2IiMjaGMjNwAo5ERFRNsBlz4iIKJMwkJuBgZyIiCgbSAjk7oIVciIisi4GcjMwkBMREWUDCV3WlUAeHa1mY4iIyJ4xkJuBgZyIiCgbUCrkOnZZJyIi62IgNwMDORERUTaQEMhd49llnYiIrIuB3Axch5yIiCgbSOiyzkBORETWxkBuBlbIiYiIsoGECrmjLhZOiGEgJyIiq2EgNwPXISciIsoGEgI5AHggnIGciIishoHcDKyQExERZQPOzoCTEwAGciIisi4GcjMwkBMREWUTCVVyBnIiIrImBnIzMJATERFlEwmB3BNhDORERGQ1DORmYCAnIiLKJhJmWmeFnIiIrImB3AwM5ERERNkEu6wTEVEmYCA3A9chJyIiyibYZZ2IiDIBA7kZWCEnIiLKJowq5NHRKreFiIjsFgO5GRjIiYiIsgmOISciokzAQG4GbcKnxUBORERk59hlnYiIMgEDuRlYISciIsomOKkbERFlAgZyMzCQExERZRPssk5ERJmAgdwMDORERETZBLusExFRJmAgNwMDORERUTbBLutERJQJGMjNwEBORESUTbDLOhERZQIGcjMogVynU7cdREREZGWskBMRUSZgIDcDK+RERETZRKIx5EKo3B4iIrJLDORmYCAnIiLKJoy6rANATIyajSEiInvFQG4GbcKnxUBORERk54y6rANgt3UiIrIKBnIzsEJORESUTRh1WQeA6Gg1G0NERPaKgdwMDORERETZRKIu66yQExGRNTCQm0EJ5ABnWiciIrJrJl3WBQM5ERFZBQO5GYwDOavkREREdszNDQCghYATYhnIiYjIKhjIzcAKORERUTbh7Ky/6oJoBnIiIrIKBnIzsEJORESUTRgFcmfEMJATEZFVMJCbgYGciIgom3Bw0J/4GciJiMhaGMjNoDX6tBjIiYiI7FxClZxd1omIyFoYyM3ACjkREVE2khDIWSEnIiJrYSA3AwM5ERFRNsJATkREVsZAbgaNRl4ABnIiIiK75+ICgIGciIish4HcTEqVnIGciIjIMiZNmoTq1avDy8sLefLkQdu2bXH58mW1m2Uyhjw6WuW2EBGRXWIgN5MSyLkOORERkWXs27cP/fv3x5EjR7Bjxw7ExsaiadOmCA8PV7dh7LJORERW5qh2A7IaVsiJiIgsa+vWrSa3Fy1ahDx58uD48eOoX7++Sq0Cu6wTEZHVMZCbiYGciIjIukJCQgAAOXPmTPb+6OhoRBv1IQ8NDbVOQ7jsGRERWRm7rJuJgZyIiMh6dDodBg8ejDp16qBcuXLJHjNp0iT4+PjoL4GBgdZpDLusExGRlTGQm0mb8IkxkBMREVle//79ce7cOaxYsSLFY0aOHImQkBD95e7du9ZpDAM5ERFZGbusm4kVciIiIusYMGAANm/ejH/++QcFChRI8TgXFxe4JIzvtiqOISciIitjIDcTAzkREZFlCSEwcOBArFu3Dnv37kXhwoXVbpJkNIY8goGciIisgIHcTAzkREREltW/f38sW7YMGzZsgJeXFx49egQA8PHxgZubm3oNM+qy/oKBnIiIrIBjyM3EdciJiIgsa/bs2QgJCUHDhg2RN29e/WXlypXqNoxd1omIyMpUD+T3799H9+7d4efnBzc3N5QvXx7//fef/n4hBEaPHo28efPCzc0NTZo0wdWrV1VrLyvkREREliWESPbSs2dPdRvGZc+IiMjKVA3kL1++RJ06deDk5IQtW7bgwoULmDp1Knx9ffXHTJ48GTNnzsScOXPw77//wsPDA82aNUOUSmdGBnIiIqJsgrOsExGRlak6hvz7779HYGAgFi5cqN9nPJGLEAIzZszAV199hTZt2gAAfv/9d/j7+2P9+vXo0qVLkueMjo5GdHS0/nZoaKhF28xATkRElE0YBXKjPy2IiIgsRtUK+caNG1GtWjV06tQJefLkQeXKlTF//nz9/Tdv3sSjR4/QpEkT/T4fHx/UrFkThw8fTvY5J02aBB8fH/0lMDDQom3mOuRERETZBMeQExGRlakayG/cuIHZs2ejePHi2LZtG/73v/9h0KBBWLx4MQDoZ1n19/c3eZy/v7/+vsRGjhyJkJAQ/eXu3bsWbTMr5ERERNkEx5ATEZGVqdplXafToVq1avj2228BAJUrV8a5c+cwZ84c9OjRI13P6eLiApeEb7StgYGciIgom+AYciIisjJVK+R58+ZFmTJlTPaVLl0ad+7cAQAEBAQAAB4/fmxyzOPHj/X3ZTYGciIiomyCXdaJiMjKVA3kderUweXLl032XblyBUFBQQDkBG8BAQHYtWuX/v7Q0FD8+++/qFWrVqa2VcFATkRElE2wyzoREVmZql3WhwwZgtq1a+Pbb79F586dcfToUcybNw/z5s0DAGg0GgwePBgTJ05E8eLFUbhwYXz99dfIly8f2rZtq0qblUCu06ny8kRERJRZ2GWdiIisTNVAXr16daxbtw4jR47E+PHjUbhwYcyYMQPdunXTH/P5558jPDwc/fr1Q3BwMOrWrYutW7fC1dVVlTazQk5ERJRNGAXy+HggLg5wVPUvJyIisjeqn1befvttvP322yner9FoMH78eIwfPz4TW5UyBnIiIqJswmgMOQBERQGenmo2iIiI7I2qY8izIgZyIiKibMJoDDkAdlsnIiKLYyA3kzbhE2MgJyIisnNKINcYKuRERESWxEBuJlbIiYiIsomELuuuDORERGQlDORmYiAnIiLKJhIq5K4a2WU9OlrNxhARkT1iIDcTAzkREVE2wS7rRERkZQzkZuI65ERERNmEsuwZAzkREVkJA7mZWCEnIiLKJpJZ9oyIiMiSGMjNxEBORESUTSgVcsFlz4iIyDoYyM3EQE5ERJRNKIGcFXIiIrISBnIzcR1yIiKibCKhy7qTjoGciIisg4HcTKyQExERZRMJFXIndlknIiIrYSA3EwM5ERFRNpEQyB1EPLSIZyAnIiKLYyA3EwM5ERFRNpEQyAHACbEM5EREZHEM5GbiOuRERETZRMIYckBO7MZATkRElsZAbiZWyImIiLIJJyf9VRdEM5ATEZHFMZCbiYGciIgom9BqAUdHALJCHh2tcnuIiMjuMJCbiYGciIjs1YkTJ3D27Fn97Q0bNqBt27b48ssvERMTo2LLVJTQbd0ZMYiMVLktRERkdxjIzcRATkRE9uqjjz7ClStXAAA3btxAly5d4O7ujlWrVuHzzz9XuXUqSZjYzQXRuH1b5bYQEZHdYSA3kzbhE2MgJyIie3PlyhVUqlQJALBq1SrUr18fy5Ytw6JFi7BmzRp1G6eWhEDujBicPKlyW4iIyO4wkJuJFXIiIrJXQgjoEpYR2blzJ1q2bAkACAwMxLNnz9RsmnqMAvm9e0B2/RiIiMg6GMjNxEBORET2qlq1apg4cSKWLFmCffv2oVWrVgCAmzdvwt/fX+XWqSRhDHnh/HIM/enTajaGiIjsDQO5mbgOORER2asZM2bgxIkTGDBgAEaNGoVixYoBAFavXo3atWur3DqVJFTIyxSRU6yfOqViW4iIyO44qt2ArIYVciIislcVKlQwmWVd8cMPP8BBOQFmNwmBvGThGGA/AzkREVkWK+RmYiAnIiJ7dffuXdy7d09/++jRoxg8eDB+//13ODk5qdgyFSV0WS8WJLusc2I3IiKyJAZyMzGQExGRveratSv27NkDAHj06BHeeustHD16FKNGjcL48eNVbp1KEirkRfPLLuuXLoHrkRMRkcUwkJuJgZyIiOzVuXPnUKNGDQDAn3/+iXLlyuHQoUNYunQpFi1apG7j1JIQyHN6xiBXLnn+P39e5TYREZHdYCA3E9chJyIiexUbGwuXhC7aO3fuROvWrQEApUqVwsOHD9VsmnoSArkmNgYJS7RzHDkREVkMA7k55s1DtQPTkQMvGciJiMjulC1bFnPmzMH+/fuxY8cONG/eHADw4MED+Pn5qdw6lSR8QYEYBnIiIrI8BnJzjByJhhuGwh+PGciJiMjufP/995g7dy4aNmyI9957DxUrVgQAbNy4Ud+VPdtJqJAjOlofyDmxGxERWQqXPTOHo/y4HBHHdciJiMjuNGzYEM+ePUNoaCh8fX31+/v16wd3d3cVW6YiJZAbVchPnwZ0OsMwNiIiovRiIDdHwoxujohjhZyIiOySg4MD4uLicODAAQBAyZIlUahQIXUbpSajLuslSwKurkB4OHDzJlC0qLpNIyKirI/f7ZrDqELOQE5ERPYmPDwcvXv3Rt68eVG/fn3Ur18f+fLlQ58+fRAREaF289Rh1GXd0REoWFDeNFqunYiIKN0YyM2REMgdEM9ATkREdmfo0KHYt28fNm3ahODgYAQHB2PDhg3Yt28fhg0bpnbz1GHUZR0AAgLkzUePVGoPERHZFXZZNwcr5EREZMfWrFmD1atXo2HDhvp9LVu2hJubGzp37ozZs2er1zi1MJATEZEVsUJuDgZyIiKyYxEREfD390+yP0+ePNm3y7rRGHKAgZyIiCyLgdwcDORERGTHatWqhTFjxiAqKkq/LzIyEuPGjUOtWrVUbJmKjMaQAwzkRERkWeyybg6jWdajGciJiMjO/Pjjj2jWrBkKFCigX4P89OnTcHV1xbZt21RunUrYZZ2IiKyIgdwcnNSNiIjsWLly5XD16lUsXboUly5dAgC899576NatG9zc3FRunUrYZZ2IiKyIgdwcRl3WdTqV20JERGQF7u7u6Nu3r9rNsB2JuqznzStvPnyoUnuIiMiuMJCbg2PIiYjIzmzcuDHNx7Zu3dqKLbFRKXRZf/oUiI/Xj2YjIiJKFwZyczCQExGRnWnbtm2ajtNoNIjPjie/RIE8975VGKO5gHG60Xj6VKMP6EREROnBWdbNYTSpW3b8m4SIiOyPTqdL0yVbhnEgyRhyh0EDMFaMRVmc5zhyIiLKMAZyc3BSNyIiouzFeAx5fLzsqw4gP+4zkBMRUYYxkJuDXdaJiIiyF+Mu6y9fAkIAAPzxmIGciIgyjIHcHAzkRERE2Ytxl/Xnz/W7A/CIM60TEVGGMZCbg4GciIgoezHusp4okLNCTkREGcVAbg6jSd24DjkREVE2YNxl3SiQs8s6ERFZAgO5OTipGxER2bG///4b27ZtS7J/27Zt2LJliwotsgEpBHJWyImIyBIYyM3BLutERGTHvvjii2SXNxNC4IsvvlChRTbAeAz5s2f63QzkRERkCQzk5mAgJyIiO3b16lWUKVMmyf5SpUrh2rVrKrTIBqQwhpxd1omIyBIYyM3BQE5ERHbMx8cHN27cSLL/2rVr8PDwUKFFNiCFLuu58ByRoTGIiFCpXUREZBcYyM1hNKkbAzkREdmbNm3aYPDgwbh+/bp+37Vr1zBs2DC0bt3a6q//888/o1ChQnB1dUXNmjVx9OhRq7/ma6Ww7BkA5METVsmJiChDGMjNwUndiIjIjk2ePBkeHh4oVaoUChcujMKFC6N06dLw8/PDlClTrPraK1euxNChQzFmzBicOHECFStWRLNmzfDkyROrvu5rKRVynQ5I1BZ2WyciooxyVLsBWQq7rBMRkR3z8fHBoUOHsGPHDpw+fRpubm6oUKEC6tevb/XXnjZtGvr27YtevXoBAObMmYO//voLv/32m7oTyimBHAAePDC5ixO7ERFRRjGQm8MokHMdciIiskcajQZNmzZF06ZNM+01Y2JicPz4cYwcOVK/T6vVokmTJjh8+HCS46OjoxEdHa2/HRoaar3GGQfyhw/lNm9e4OFDVsiJiCjDGMjNwQo5ERHZmZkzZ6Jfv35wdXXFzJkzUz120KBBVmnDs2fPEB8fD39/f5P9/v7+uHTpUpLjJ02ahHHjxlmlLUk4ORmuR0bKbdmywMOHrJATEVGGMZCbg5O6ERGRnZk+fTq6desGV1dXTJ8+PcXjNBqN1QK5uUaOHImhQ4fqb4eGhiIwMNA6L6bRyCp5TIxhX5kywM6dCMAjnH1onZclIqLsgYHcHKyQExGRnbl582ay1zNTrly54ODggMePH5vsf/z4MQICApIc7+LiAhdl9vPMYBzIXVyAIkUAyEndtjOQExFRBnCWdXNwlnUiIiKLc3Z2RtWqVbFr1y79Pp1Oh127dqFWrVoqtiyBcfj385NjyCEndUu0EhoREZFZ0lUhv3v3LjQaDQoUKAAAOHr0KJYtW4YyZcqgX79+Fm2gTTGqkANyBRQtv9IgIiI7IYTA6tWrsWfPHjx58gS6RDOYrl271mqvPXToUPTo0QPVqlVDjRo1MGPGDISHh+tnXVeV8cRufn5Awlj3ADxCcLA6TSIiIvuQrkDetWtX9OvXD++//z4ePXqEt956C2XLlsXSpUvx6NEjjB492tLttA2JAnl8PAM5ERHZj8GDB2Pu3Llo1KgR/P39odFoMu213333XTx9+hSjR4/Go0ePUKlSJWzdujXJRG+qSBzIE7rR++MxXr5UqU1ERGQX0hXIz507hxo1agAA/vzzT5QrVw4HDx7E9u3b8fHHH9tvIDea1A2Qgdx48lUiIqKsbMmSJVi7di1atmypyusPGDAAAwYMUOW1U2UcyHPl0gfyHAhB1MtIAG7qtIuIiLK8dNV3Y2Nj9ZOp7Ny5E61btwYAlCpVCg8f2vHsJsl0WSciIrIXPj4+KJIwYRkZSTyG3NsbImFfjpjH+tXQiIiIzJWuQF62bFnMmTMH+/fvx44dO9C8eXMAwIMHD+Dn52fRBtoUo0ndAHBiNyIisitjx47FuHHjEMmEaSpxl3WNxqTbOseRExFReqWry/r333+Pdu3a4YcffkCPHj1QsWJFAMDGjRv1XdntUjJjyImIiOxF586dsXz5cuTJkweFChWCU6JxWSdOnFCpZSpLHMgBaAICgNu39RO7JUy8TkREZJZ0BfKGDRvi2bNnCA0Nha+vr35/v3794O7ubrHG2RwGciIismM9evTA8ePH0b1790yf1M2mJe6yDpjMtM6J3YiIKL3SFcgjIyMhhNCH8du3b2PdunUoXbo0mjVrZtEG2pRkJnUjIiKyF3/99Re2bduGunXrqt0U25JMhZxd1omIyBLSNYa8TZs2+P333wEAwcHBqFmzJqZOnYq2bdti9uzZFm2gTWGFnIiI7FhgYCC8vb3VbobtSSWQs0JOREQZka5AfuLECdSrVw8AsHr1avj7++P27dv4/fffMXPmTIs20KYogVzDSd2IiMj+TJ06FZ9//jlu3bqldlNsy2sCOSvkRESUXunqsh4REQEvLy8AwPbt29G+fXtotVq88cYbuH37tkUbaFMSArkTK+RERGSHunfvjoiICBQtWhTu7u5JJnV78eKFSi1TWXJjyBMCeV48xMXgzG8SERHZh3QF8mLFimH9+vVo164dtm3bhiFDhgAAnjx5Yt9d3fQV8jhAMJATEZF9mTFjhtpNsE1KhVyrBXLkkNcTplXPi4fssk5EROmWrkA+evRodO3aFUOGDMGbb76JWrVqAZDV8sqVK1u0gTYl0aRuOp2ajSEiIrKsHj16qN0E26QEcl9f/d8CyJdPbvAAwS8FAM5IT0RE5ktXIO/YsSPq1q2Lhw8f6tcgB4DGjRujXbt2FmuczWGXdSIisnM6nQ7Xrl3DkydPoEv0zXP9+vVVapXKlC7rSnd1QN9l3RmxiHv8HECuzG8XERFleema1A0AAgICULlyZTx48AD37t0DANSoUQOlSpVK1/N999130Gg0GDx4sH5fVFQU+vfvDz8/P3h6eqJDhw54/PhxepuccQmB3IGTuhERkR06cuQIihUrhtKlS6N+/fpo2LCh/tKoUSO1m6cepUJuHMidnRHlnRsA4PT0gQqNIiIie5CuQK7T6TB+/Hj4+PggKCgIQUFByJEjByZMmJDk2/S0OHbsGObOnYsKFSqY7B8yZAg2bdqEVatWYd++fXjw4AHat2+fniZbBpc9IyIiO/bxxx+jWrVqOHfuHF68eIGXL1/qL9l2Qjcg+UAOIMZPdlt3efEws1tERER2Il1d1keNGoUFCxbgu+++Q506dQAABw4cwNixYxEVFYVvvvkmzc8VFhaGbt26Yf78+Zg4caJ+f0hICBYsWIBly5bhzTffBAAsXLgQpUuXxpEjR/DGG2+kp+kZw0BORER27OrVq1i9ejWKFSumdlNsSwqBPD4gH3DzNNyDWSEnIqL0SVeFfPHixfj111/xv//9DxUqVECFChXwySefYP78+Vi0aJFZz9W/f3+0atUKTZo0Mdl//PhxxMbGmuwvVaoUChYsiMOHD6f4fNHR0QgNDTW5WEyiSd0YyImIyJ7UrFkT165dU7sZtqdpUyAwEGjb1mS3JmFiN+8wBnIiIkqfdFXIX7x4kexY8VKlSpnVpW3FihU4ceIEjh07luS+R48ewdnZGTmU5UUS+Pv749GjRyk+56RJkzBu3Lg0t8EsrJATEZGdOXPmjP76wIEDMWzYMDx69Ajly5dPsg554qFl2UbdusCdO0l2OwbKpc9yRj2ATidXRSMiIjJHugJ5xYoVMWvWLMycOdNk/6xZs9J8sr579y4+/fRT7NixA66urulpRrJGjhyJoUOH6m+HhoYiMDDQMk+uTOoGTupGRET2oVKlStBoNBBC6Pf17t1bf125T6PRIJ4nPhMuhWWFPC8e4NUrwMdH5QaRbVm5Evj6a7m152WBiShD0hXIJ0+ejFatWmHnzp36NcgPHz6Mu3fv4u+//07Tcxw/fhxPnjxBlSpV9Pvi4+Pxzz//YNasWdi2bRtiYmIQHBxsUiV//PgxAhKWGkmOi4sLXJTlSSwtUYWc65ATEVFWd/PmTbWbkGU5BRmtRR7MQE6JLF4MXL0KrF3LQE5EKUpX56oGDRrgypUraNeuHYKDgxEcHIz27dvj/PnzWLJkSZqeo3Hjxjh79ixOnTqlv1SrVg3dunXTX3dycsKuXbv0j7l8+TLu3Lmj/xIg0ykVcsEu60REZB+U1VKCgoJw+/Zt5M+f32RfUFAQ8ufPj9u3b6vdVNuTzxDIX75UuS1ke65ckVvOy0BEqUhXhRwA8uXLl2Q29dOnT2PBggWYN2/eax/v5eWFcuXKmezz8PCAn5+ffn+fPn0wdOhQ5MyZE97e3hg4cCBq1aqlzgzrACd1IyIiu9aoUSM8fPgQefLkMdkfEhKCRo0asct6YvmULusPcf2FDumsc5A9iokBlN4nV6+q2xYismnpDuSZYfr06dBqtejQoQOio6PRrFkz/PLLL+o1iBVyIiKyY8pY8cSeP38ODw8PFVpk4/z9oYMGjohHxO2nAPzVbhHZihs3DGMbr14FhACS+bdFRGRTgXzv3r0mt11dXfHzzz/j559/VqdBiXFSNyIiskPt27cHICdw69mzp8lcLPHx8Thz5gxq166tVvNsl6Mjgl38kTP6EWJvPwADOekp3dUBIDQUePYMyJ1bvfYQkc1i3ypzsEJORER2yMfHBz4+PhBCwMvLS3/bx8cHAQEB6NevH/744w+1m2mTQtzl0me6+w9VbglZ1dy5MlB7egJ+fkCzZkBsrOF+nQ6IjDTcNg7kALutE1GKzKqQK9+gpyQ4ODgjbbF9+gq5DhroEB/P7zOIiCjrW7hwIQCgUKFCGD58OLunmyHMOx/w8iQ0jx6o3RRKjU4HTJkiQ/OXXwJOTml/7JQpwGefGW6HhwPbtwNnzgBVq8p9H30ELF8OnDgBlCiRNJBfuwZYqpdJfDywYwfw119At26AWnMrEZFFmJUojb8xT+4SFBSEDz74wFptVV/CpG6A7LbOCjkREdmTMWPGMIybKcpXTuzm/JSB3GbFxwN9+gAjRgBjxwLvvgtER7/+cVFRwFdfGcL4F18A168DNWrI25cvG47duFEG9XXrTO9T1sKzRIVcpwOmTQMKFwZatABmzQIaNZKvTURZllkVcuUb9GzL0fBxOSIOOp0Z364SERHZoCpVqmDXrl3w9fVF5cqVk53UTXHixIlMbFnWEJtbBnKXFwzkNikuDujRA1i2TBZWHBxkaG7XDvjwQ+DRI7mveXMgKEg+5vZtefyPPwKPH8t9EycCo0bJ6xUrAkePApcuydvPnwNPnsjr+/bJ4K9UyJs1A/78M+NLn4WEAB98YAjfOXPKYH78ONC+PTB/PtCrV8Zeg4hUYVOTutk8o0DOCjkREdmDNm3a6Cdxa9u2rbqNyYLiA2Qg9wxlIM9UV64ADx4ADRumftykSTJcOzrKLuU5cgCtWwNbtsiLsfLlgeBg4O5dw76CBYHx42WoV5QsKbdKFfziRcN9Bw4AL1/KoA8ALVvKQJ6RCvmlS0DbtvL1XFyA6dNl+HZ0BPr2BRYtAnr3BiIigP790/866XHhgvwy4nU/ByJKEQO5ORJVyBnIiYgoqxszZgwAOZt6o0aNUKFCBeTIkUPdRmUh2vwykPuEM5BnqlatZPfxq1eBokWTP0YIYPFief3nn4GOHeX17duBkSNlV/aAADkD+sGDwNmz8n4HB9kt/X//A7p0STrevFQpuVUq5MaB/NUrYNUqeT1PHqBaNXk9vUuf/f038N57cqb2AgVkdV95TgD47Tc5ydzUqcCAAXJfekP5gQPyM+jTB3B2Tv3Y+Hjgu++AMWPk9SVLgO7d0/e6RNkcA7k5jMaQM5ATEZE9cXBwQNOmTXHx4kUGcjM4BclAnjOKgTzThIQYuoCfOpVyID97VoZ2V1ega1fD/rp1gf37TY999gzYvVt2BX/jDTmbekqUCvmVK3Jc94ULpvf/+qvcligh26bRmL/0mRDADz/IcetCyDavWSNDvjGNRh7n6Ah8/70M5aGhwOefG/5ujYuTxxn9HWvi/n1g+HBgxQp5+6+/gNWr5eeWnHv35Odp/Bl+9BFQqRJQrlza3h8gK+uXLgHVqwNubml/HGUNOh2g5QTYacFPyRxarf6bTQZyIiKyN+XKlcONGzfUbkaW4lJYLnvmF/dYBh+yPuPJ1BLPZm5szRq5bdYs9YANALlyAZ07A02avP7YQoVkBTkqCrhzx1AhL1FCbo8dk9uSJWWoDQyUt9PabT0yEnj/fTkWXQigXz9g166kYVyh0ciu+SNGyNtffgnUqwds2wYMGiTfW+nSsheAsZgYYPJk2c4VK+TfuS4uMpC/846cpC6xXbuAypVlGPf0BBYuBN56S3aX79hR9hBITUiI/NKgYEHA3x9o0MDw+LS4fVsOIUjLZykEcP68rOT36GHo0ZCasDD5OEo/nU4OqQgIAHbuVLs15lu/Pu2/jxbCQG6uhG7rDORERGRvJk6ciOHDh2Pz5s14+PAhQkNDTS6UlFeRPIiHFg7QQTx+gjlzsubfoFmKcSA3vp6YEsg7dLDs6zs6AsWLy+uXLhkq5B9/bHqcEtCLFZPbtEzsdv8+UL8+sHSprGj//DMwZ87ru5AroXzePMDLCzh8WE5U99NPMgRfvSqfd/hw+dw//SQnpxsxQgbvWrWA//6TId7DQ/4S169v6MYfGiq7pzdtKiv9lSvL3gk9e8rny59f/izefz/lL6Z27ZLj9H/+WY7T12jkcICDB4FOnUzXdU/OqVOy98KYMXK5ufXrkz9OCNm1v2xZWbEfORL4/Xe57FzinhHG5s6VPSRatzbvy7W4OODhQ+DkSTkvwcKFstdCaq+V2PPnwNq1wM2baX+MsZUrgaFD5c/d0l8oxMWZzqvwOuPGyXkNnj4F2rQBDh1K2+NiY+W/p4cP07YKgrEHD+TyhP/9Z97jEps7V074+Pbb5rchI4SdCwkJEQBESEiIZZ7QzU0IQBTELTF/vmWekoiIsheLn5ssRKPR6C9arVZ/UW7bKjU/z+fPhbiHfEIA4u/xxwQghLu73E9W8uWXQsjYIcQbbyR/zKVL8n5HRyFevLB8G9q3l88/YYKhLY8fC+HhYbi9bp089qOP5O2vvkr9OQ8fFiIgQB7r5yfE7t3pa9udO0K0bCmEg4MQbdsKsWmTED17GtplfMmTR4hFi4SIjzc8/tAhIXx9DZ/fe+8JkSOH4TG9ewsREWH6mocOCeHsLO/v00cInc70/qlTDY8vWlSIzZuFCA0VYv9+IVxd5f7u3ZM+TrFrlxBeXvI45XjlMUOGyMvIkUJMnChEw4aG+11chGjRQohq1Qy3E79fnU6IceNMP5cRIwz3h4cLceyYEH/8IcQPPwixbZts+9mz8rMwbk/iS9OmQvz3X8o/qyNHhOjSxfDZOTvL35Pw8LT9rIUQYu9eIbRaw2uWKiXEjz8KERaW9udIycWLQlSoIJ93+fLXH//nn4Z2lC4ttz4+Qpw4kfrjzp0TonBhw2M1GtOfQUqePRPis89MfwadOglx+XLKj4mJkb+v33wjf3+WLJH7fvvN8BzDh6f8u2iGtJ6bGMjNlfCfQRFcE3PmWOYpiYgoe7HVQL53795UL7ZKzc8zLk6Io5B/7PfyXav/e+677zK9KdlHhw6GP5x9fZP/w/mbb+T9zZpZpw3KlwJVq8qtv7/c/9ZbhradPy/3/fCDvN2lS8rPt2iRIZSVKyfEjRsZb2N0tOntdeuEaNxYiCZN5BcKX38txMuXyT/2wQMZ5o3DZalSqYeytWsNwdA40CxdaniOjz8W4tUr08dt3iy/PADksYkdOyaDNCDD9tOnQgwenHIIVkL7V18JofyfEB5u+n6KFZM/lzFjhHjzTcN+42NmzxZi6FDTL1mUi9Je5aLVyi9TKlWSXwC0ayeEk5Ph/p9/Nn1PL18K0a+f6XPkz2+4XqiQEGfOpPxZK548ESKf/EJQlC8vvw1UnsPPT4jRo+UXBzqd/H3Yvl2I77+XX4QYfykhhDxm2zb5b+enn+R/YsbPFxQkRFRUym3ZudNw/NCh8jOvW9fw7+POneQft3WrEN7ehi9MjL9c2LQp6fE6nfyyqmtXw++F8vup0cjrTk5CrF6d9LEHDwoRGJj055k/v+GxgwZZJIwLwUCuZ/GTdMI3hiVwSfzyi2WekoiIshdbDeRZldqf5+9OvYQAxCSM0P8tmS9f0jxEFlK2rOkf00+eJD2mShV537x51mnD4sWmbWjUSO6fONFQ4VPCy/r1hvCenN27TQNhaKh12mwunU6IVauE6NxZiDVrkga45CxYYHgv5coJMXasIZgOGZLy45SeBoUKmYa+p0+FKFhQ3teihRCRkYb7tmyRVdQvvpDbTz+V1fkhQ4S4dSvpa8TFyUq4cbXfuCL700/yuGHDkt6fO7cQ9esL0bGjbKMSwjt2FOLAAfnciV2/LsS77xqeY+5c+Z/CvHmGnhCAEB98IMTx4/LzXrPG8H5z5ky9uh4fLz8TJYyGhckvIH75RYgiRUzbHxhoCL3KJW9e2XNi0iT5hUHFisl/udG4sTwWEGLWrKTt0OmEmDHD8CVF8+ZCxMbK+4KD5RcFgPyyInHVftYsQwCvX19WvOPjDT+DfPlMe7jcuye/ZDNuX5UqQvz1l2zHmTOGL8UcHIRYtszQxpkzZY8P5bNt315W1/39Tb8wslAYF4KBXM/iJ+lcuYQARBmc0/+7JSIiMofaAfJ1wsPDxcWLF8Xp06dNLrZK7c9zSM5FQgDiMGqKyZMNf7v+8YcqzbFvcXGGSrLSTXX/ftNj7t41BKbHj63Tjn//NQ0Fn3xiur9sWcOx587Jfd7eyf+x37GjvL9797SFXlv3yy9Jq8qdO6f+3sLDDZXeadPkvrg4Wc1XKtopVfPN9eqVDKBNmgjRo4fs3m1cjY6NNbxuvXpC/P130p/bvXtp+93S6WS1OLkqeMmSQuzbl/QxL14IUaOG4Xfm0KHkn3v2bMO/g8TV9NhYIVaskIHduDu3v78Qb78tu5EnF749PGRPjg4dZHf7adPkz+Hnn+X9AQGm3eljYuSXIMrj33/f9EsTIeSXI7lzy/vbt5ehOzZWiAEDDI/r1cv0G8yICCFKlJD3de0qv7T68UfDlymurnIoyNGjSX82cXGGIRoajRA1a8oArrxWp06mX3pFRsru6j//bPF/fwzkCSx+kk74RqsCTokZMyzzlERElL2oHSBT8uTJE9GqVSuT8ePGF1ul9ufZovRNIQARCwcR9eyVvrd0lSoWLbaQEEJcu2b4g7xxY3l9wQLTY9askfsrV7ZeO4KDTYOMceVw0yZDd3UhZMVXCUVnz5o+z5MnhgryqVPWa29me/lSdo0uUkSId95JGtKSM3++oXq5a5cQrVrJ2+7uaeu+bUmxsULcvGmZ59LphBg40PC7EhAgxPTpqX8mISHyywAlRCfuNfHqlRz/D4jXBpLwcNlV/fBhQ+CMjpZfNIwbJ78IatRIXk9p8ovoaNllHRDi22/lewoJkaFd+fJrypSU/8M7cMDwRZoS/JXA/P33yT/u4EFDN3LjS/Xqcmx7auLjkw4JcHWVXzBk4n/KDOQJLH6SLlBACEBUxnExdaplnpKIiLIXtQNkSrp27Srq1Kkjjh07Jjw8PMT27dvFkiVLRMmSJcXmzZvVbl6K1P48O3US4iaC5B9927aJZ8/0c8CKPXtUaZL9+usv+cGWL2+osH3+uekxo0bJ/X36WLctxt2Od+1K/di335bHTZxoun/aNLk/pe7s2UlsrGEiMOWi1aZtMjFbp9PJCuwvvySdEC8l4eGyZwAgx7obUyahK1ZMVqkzg/GkZ0WKCFG8uOELk+TGeie2erWhu7/yuLVrU3/MhAnyC5qSJeVY/8mTDd3hX0enk8MaVqwQ4uRJ8ybKs5C0npu47Jm5uOwZERHZqd27d2PatGmoVq0atFotgoKC0L17d0yePBmTJk1Su3k2a/ZswL15A3lj7174+cnVoABg9Gj516eCS5VnkLKWdKlScv1sIOnSZydPym3lytZtS6lShutlyqR+bOvWcrthg2GfEMCCBfJ6nz6WbVtW5OgolwsD5JJv778PnDkDdOmibrssQaMBPvkE+N//ADe3tD3G3V0uZQfIJb0ePpTXnzwxfE7ffCOXjssM778v13N3cgJu3JBL6eXJA+zbJ5cJe50OHeSybmFh8t/o3btyibHUfPWVXBLu0iW5bN5nn+mz2GtpNHLpv3ffBSpVkp+njWIgNxcDORER2anw8HDkyZMHAODr64unT58CAMqXL48TJ06o2TSb5ucH5OncUN7Ytw8A8OWXgKurXIr4r7/kXX/8Afj6AsOGmYb09NLpgOnTgd695TLR2YISyEuWVD+QK6+fIwfg75/k7qVLgcKFgePHAbzzjtx57JhcM1m5fv68/EV57z3rtjWraNVKfmA3bsi1w8uWVbtF6urQAahZU64VP24c8OqVXFc9LAyoVg3o2DHz2uLoKNcXf/EC2LgRGDsW+Pdf2Q5zeHjIgJwzpxUamTUxkJvLwQEAAzkREdmfkiVL4nJCuKlYsSLmzp2L+/fvY86cOcibN6/KrbNxDRIq5MeOAeHhKFAA+PRTueuLL4C9e2VwDgsDpk0DJk5M+1PfvZs0wD97BrRsCQwdCixcCMyYYYk3kQUo4du4Qn79uqHrwaNHspKo0QAVK1q3LUqFvHRp+XqJLFgA3LoFbN4MICBABisA2LTJcAAgQ1eOHNZta1ZSpQpQsKDarbANGo2hGj5vngyxv/0mb3//PaBVIcp5esovmMaMAQoVyvzXt0MM5OZihZyIiOzUp59+iocJ3SLHjBmDLVu2oGDBgpg5cya+/fZblVtn4woXBgoUAGJjgcOHAQAjRsiK+PnzQNOm8i6l4Dd6tPz7+nW+/lpmk2bNZM4UAli/XhZ/t20z/D0+c6Ysotk94y7rBQrI7r+xsbIrLGCojpcsKStx1tSxo/wiZujQJHcJASidSu7fT9jZpo3cbtwov6FRghW7q1Nq6tWTXbuFkF88FS0qu7C/+abaLSMLYSA3V0Igd0A8AzkREdmV7t27o2fC4OeqVavi9u3bOHbsGO7evYt3331X3cbZOo0GaNhQXk/otu7rK7uuAzIzVq0KHD0KjBol9330kfxbe/ly4MgRmdO2boX+74tDh+QQUQDYsUMWfBs0kH+b37sHlCghe/cWKSKHWSr5DrBMl3ib8/KlHD8LyDev1cotAFy5IreZ1V0dkF8I7N2bbLfh69eBkBB5Xemhrh9HvmuXrIrHxcnxrcrvDVFKFi8G1qyRXfmvXZPjXshuMJCby6hCrtOp3BYiIiIrcnd3R5UqVZArVy61m5I1KN3Wt27Vd6EeMAAoVw4oVkwGbnd3YMIEYPhwOQruwAGga1egVi1ZQG3RAnjrLRnoevSQwbp1axnGnz6VY9JdXGSoP35cDsX87DP5slOmyK7sPXrIwnGhQrIyP2uWnQR0pbt6/vyAl5e8rgRy5T4lkFepkrltS8R4ygV9hbxMGVndjI6W43Br1JDjDZLp7k5kwssLaN9e9sQhu5PGaepIj13WiYjITg1NpustAGg0Gri6uqJYsWJo06YNcnIynuQ1bSr/TvjvP1kBXb4cru7uOHNGTsCWMA2NfljokCHAr78CS5bI/J47N3DhArBnj+xxHR8vi7CLF8t5v775RhaIv/wSCAoyvGyPHnI455078u/1sDC5//ZtedmxQ/bonjIlC2W/48fljHWRkfKDiIszlJqNZzdPPLGbkoQzo0KeiuPHDdf1FXKNRn7rMm2a/MGuX5/2GbeJyG4xkJuLgZyIiOzUyZMnceLECcTHx6NkQtC5cuUKHBwcUKpUKfzyyy8YNmwYDhw4gDKvW+YpOypYEPjzTzlj9saNQOPGQPfu0OTKBYcnT+TY8kuXgEaNgKFDkS9/foweLceTAwCEwOUz0ejQzRXnz8tdCxYY5vuaMCH5l3VzkxPIjRolw3ixYsCcOTLE79olw/q0afJLgWnTDKH86lW5WlHPnnLiZpsRGir75d+9m/z91asbrpcuLbfbtsl+/DduyNs2FMifPAFiYgBnZ8gP2tkZ6NUL4ESJRAQGcvNxlnUiIrJTSvV74cKF8Pb2BgCEhITgww8/RN26ddG3b1907doVQ4YMwbZt21RurY1q1w7YuVPOQnzkiLwkdvKk7Ef+9ttyoLlWK9PxyZMo+eoVTjdqgg2lPoC2Qnk0dXoObAqT/c9LlJD91ZMxYABw+jQQGChXR1LmM6tTR07w/dFHcib2gAA52Rwgvwi4ckUG9u7d5WPTJT5eLsb+xhvmL4GUnOHDZRgvXNiw7rCDg9x6eMh+/Yq335ZfhNy+LZfMAmT3ARV7cRhP6KZ4+DChV0OuXIa1pYmIAGiEsItRRSkKDQ2Fj48PQkJC9H9cZEjjxsDu3XgPyxAw+D1Mn57xpyQiouzF4ucmC8mfPz927NiRpPp9/vx5NG3aFPfv38eJEyfQtGlTPHv2TKVWJmWTn+fly8DPP8v+yk+fyqWC3nhDBuv58+VgcHM5OMgxyGXKmF5KlpSD01MxaxYwcKA87PJlOSN76dKGseUffywzdbr8/LP8RiBPHlmhzsjs5tu3yynlATlhmjIuPzUHDsjjlMl92rYF1q1Lfxsy6OZNOdGek5PM3w8fygn6atVSrUlEpIK0nptYITcXZ1knIiI7FRISgidPniQJ5E+fPkVoaCgAIEeOHIiJiVGjeVlLyZJyLbLkvP++TGiHD8u+zLGxsjxdpYrsf758uby8fAn4+cl9yrTdV67Iy/r1hufTaGQ12TiklysnZ3xL6NnXvz+wYgVw8KCskDs7yzBesqQM6AsWyPXSjcemp0lEhGFR9SdPgB9/NEwtb66QEODDD+X1AQPSFsYBoG5duT7cuHHyto1M6Fa+vOzQ8PCh0cRuRESJMJCbi2PIiYjITrVp0wa9e/fG1KlTUT1hnO6xY8cwfPhwtG3bFgBw9OhRlFBmtqb0q11bXpIzZoy8GBNCJrsLF5Jenj+XlekbN4DNmw2PyZlTTjRXrhw0QmBFNRfUO9gJy5YV0k8wt2iRHHu+e7fsST1njpnvY/Zs4NEjOWA9KgqYPFmW23PmlG1zd5e9Al5HCNmv/u5dWV7+7jvz2vHVV7Kivm+fnKZeRcr48apV5XcqAAM5EaWMgdxcDORERGSn5s6diyFDhqBLly6IS1i2y9HRET169MD0hDFapUqVwq+//qpmM7MnjQbIl09emjQxve/p06Qh/fhxubTWihX6wwoAuOQwBqPjx2Ba/FA0buyEN94Axo6VgXzBAlnddXcHunSRuTpVr14ZgvOsWbJHwJkzslodHw/MnSv/bhowQA5Y9/VN+bl++w1YuVJW9JcuNb/bu6Oj7O5+967s1q8iJZBXqSLn8AOMZlonIkqEY8jN1b49sG4dPsZs6Pp+jHnzMv6URESUvdjkmGcjYWFhuJEwW3WRIkXg6empcotSZ+ufpyri4oB//5Vroj98KAP9+fOymzyA58gJz1yucHFzALp2xdsnJ+Cv7U76hzs5AY8fp5Ch4+KAU6eAX36R62gXLy6/BNi6VU5mlxw/P2DtWqB+/aT3Xbwoy8mRkTLgK7POZUFCyKH0z54BR4/KJexGjAC6dQP++EPt1hFRZuIYcmsxqpBHskJORER2yNPTU7/WuK2HcUqBo6OcYr1OHcM+IYDff0fckOHwe/kMUObl+/57bKh1EEdW/YmXrnnx2Weysrt2LdCnT8Lj/vhDBu6LF+WdkZGG5x03Tr5eq1ZyPPeBA3JG+HnzZDf2IUPk4957Dzh71nQG9Jcv5ZrtkZGyq/lnn2XGp2M1d+/KMO7oKMeQX7ki97NCTkQp0ardgCyHk7oREZGd0ul0GD9+PHx8fBAUFISgoCDkyJEDEyZMgE6ZwZqyLo0G6NEDjndvyb7pJ07IoO3tDYfDB1Dnw9J4+/t6WO3SFUMwDTt+uyvL5G+/DXzwAbBsmVyyLTJSLo7esqXs596li+H5N26UM5yfPi0nZWvWDPjvPzl73IMHcnY5RUyMDOMXLwL58wO//y6XgMvClGXQixSRw+rz55e3OYaciFLCCrm5OIaciIjs1KhRo7BgwQJ89913qJNQWT1w4ADGjh2LqKgofPPNNyq3kCzCwwOoXFler1wZqFFDBuOzZ4EDB1AWwDQsBw4Ng66IB7QR4XK68GHD5LGlSwPFiiUfnn195bJjxtzdgSVL5LpfK1bIoF61qpyRfc8ewMsL+PtvuUh6Fvf8udzmyiW3+fLJ7f37sqOBRqNOu4jIdjGQm4uBnIiI7NTixYvx66+/onXr1vp9FSpUQP78+fHJJ58wkNur4sXlTGT//QfcuQPcvImTk7agYuh+aCPCEV+uAkbkX4o7V8vhjzFyyTSzVa8uJ3sbOxb43/8M+x0cgFWrgAoVLPVuVPXihdz6+cmtUiEPD5dz4HGKAyJKjIHcXAnrhDCQExGRvXnx4gVKlSqVZH+pUqXwQkkaZJ+cnGQFu1YtAMAhry/QasADdCh8Amfcm+Cfba4A5Eptgwen8zW+/BI4cgT45x85jjxPHrn4ebNmlnkPNkCpkCvD5D08AB8fucT6/fsM5ESUVNYeqKMGVsiJiMhOVaxYEbNmzUqyf9asWahYsaIKLSK1dOoEPHHIh1k338Y/R13hlDAB+7hxhtAZFyeDZpo5OQFbtshy8d27sirfqZPF266mxBVywNBtnRO7EVFyGMjNxUndiIjITk2ePBm//fYbypQpgz59+qBPnz4oU6YMFi1ahB9++EHt5lEmypPHsNy5n59cLa1CBSA4WIbyAwfkPG0BAXION5ISV8gBTuxGRKljIDeXUYWcE84SEZE9adCgAa5cuYJ27dohODgYwcHBaN++PS5fvox69eqp3TzKZN99JydX37tXzsE2fbrc//PPcjnxGzfkqmadOskJ2MkQyJOrkDOQE1FyOIbcXOyyTkREdixfvnxJJm+7d+8e+vXrh3nz5qnUKlJDpUrA4sWG22++CbRpA2zYIG/36AHodHIC9e7d5Wpoffqo0lSbkVyXdaVCzi7rRJQcBnJzcVI3IiLKZp4/f44FCxYwkBNmz5bd1Fu0kOFcp5MTl82ZA3z4IRARAQwcqHYr1cMu60RkLnZZNxcr5ERERBZz69Yt9OnTB4ULF4abmxuKFi2KMWPGICYmRu2mUTLy5pXhu00beVurBX75BRg6VN4eNAj4/vuUHx8TA0RHW7+dakltUjcGciJKDivk5jKa1C0uTuW2EBERZXGXLl2CTqfD3LlzUaxYMZw7dw59+/ZFeHg4pkyZonbzKA00GmDKFFkpnzBBrmRWuDDQubPpcRERclW1p0+B06eB3LnVaa+1CJF6hZxd1okoOayQm8uoQh4bq3JbiIiIsrjmzZtj4cKFaNq0KYoUKYLWrVtj+PDhWLt2rdpNIzNoNMD48cBnn8nbX36JJH8njRoFnDkDPHwITJ2a+W20trAww3tObgz5w4dg70oiSoIVcnMZBXL2piMiInvQvn37VO8PDg7OnIYkCAkJQU7jEmMi0dHRiDbq9xwaGpoZzaI0GD1aTgR3/TqwYAHw8cdy/4EDwI8/Go6bNQsYPhzIlUuddlqD0l3dxQVwdzfsDwgAXF3ljPQ3bwLFiqnTPiKyTayQm8toUjcGciIisgc+Pj6pXoKCgvDBBx9kSluuXbuGn376CR999FGKx0yaNMmkfYGBgZnSNno9T0/gq6/k9fHjZTf18HCgd2/ZpbtnT6ByZblv2jRVm2pxxt3VNRrDfgcHoFQpef3ChcxvFxHZNlbIzcUKORER2ZmFCxda/Dm/+OILfJ/a7F4ALl68iFJKUgFw//59NG/eHJ06dULfvn1TfNzIkSMxVJlFDLJCzlBuO/r1k2H71i2gaVMZQl++lJObTZ8u1zVv1w746Sdg2DDT7t1ZWXITuinKlAFOnZKfRevWmdosIrJxDOTmMprUjYGciIgoecOGDUPPnj1TPaZIkSL66w8ePECjRo1Qu3bt1y6v5uLiAhcXF0s0k6zAxQUYN06uU37woNyXLx+wfDmQI4ecob1iRTmx2/TpwMSJqjbXYpKb0E1RpozcskJORIkxkJuLFXIiIqLXyp07N3KncRrt+/fvo1GjRqhatSoWLlwIrZYj6rK6bt1k4A4LA959F2jQQD/qDxqNHGveoQMwc6askvv6qtteS1ACeUoVcoCBnIiSYiA3FwM5ERGRxdy/fx8NGzZEUFAQpkyZgqdPn+rvCwgIULFllBEODqnPpN62LVC+PHD2LDBjhqyoZ3Wv67IOABcvAjqdXL+diAjgpG7m46RuREREFrNjxw5cu3YNu3btQoECBZA3b179heyXViur5ICcfT2TJ/K3itS6rBctCjg7y0nu7tzJ3HYRkW1jIDcXK+REREQW07NnTwghkr2QfWvfHihXDggJMV0SLatKrcu6oyNQsqS8zm7rRGSMgdxcnNSNiIiIKMO0WuDrr+X1qVOB7t2B//1PzkJeuDDg4wNs365uG82hdFlPrkIOcBw5ESWPY8jNlahCLoTpWpNERERElDYdOsgq+blzwNKlSe/v1Qs4f17Ozm7rUquQAwzkRJQ8BnJzGQVyAIiLA5yc1GwQERERUdbk4ABs3Qps2SK7roeGArlzA2XLAh99BFy9Cnz2GTB/vtotfb3UJnUDGMiJKHkM5OYymtQNAGJiGMiJiIiI0it/fuDDD5PuX7AAqF8f+PVXuXRakyaZ3zZzpDapG2AayNnDkogUHENurkQV8uhoNRtDREREZJ/q1QMGDJDXP/pILhdmq3Q64OVLeT2lCnmxYvLPyFevgPv3M69tRGTbGMjNZTSpGwBO7EZERERkJZMmAV5ewI0bwKlTarcmZSEhhi8MUqqQOzsDxYvL6+y2TkQKBnJzJQRyJ42hyzoRERERWZ6nJ9Cwoby+a5eqTUmV0l3dwwNwcUn5OI4jJ6LEGMjNxUBORERElGkaN5bbnTsN+95/X67rfemSOm1K7HVLninKlpXbQ4es2x4iyjoYyM2VMKmbExjIiYiIiKxNmcxt/345d8/Fi8AffwBXrgBvvilnYlfb65Y8U7RpI7fr1wNPn1q1SUSURTCQm0uZ1I0VciIiIiKrK1MGCAgAIiOBI0eA334z3PfwoQzlN26o1z4g7YG8ShWgenUgNhZYtMjqzSKiLICB3Fz6WdY5qRsRERGRtWk0MnQDcr3y33+X1+fNA0qXBu7dAz79VL32AWnvsg7IGeMBYO5c2545nogyBwO5uRIte8ZATkRERGRdSrf1n34CnjwB/P2Bnj2BxYvl/sOH5dremenmTaBCBdmmtFbIAaBLF8DbG7h+Hdi927ptJCLbx0BuLgZyIiIiokylTOwWESG3H3wAODkB5cvL6X2eP8/8tb1XrgTOnpXV+b/+kvvSUiH38JCT0gHAnDnWax8RZQ0M5OZKmNTNgYGciIiIKFMULGhYwxsAevWSW1dX2W0dAE6fztw2nTkjt0IAx4/L62mpkAOGbusbNgCPH1u+bUSUdTCQm4sVciIiIqJMp1TJa9UyhHAAqFhRbk+dytz2KF8AuLsb9qU1kJcvD1SrBsTFGarrRJQ9MZCbKyGQawUndSMiIiLKLMOHA61aAdOnm+6vVEluM7NCHhUFXL4sr69aBbi4yOv+/ml/jrffllvjQC4EJ3ojym4YyM3FCjkRERFRpitaFNi8GahZ03S/UiHPzEB+4QIQHy/HjLdoIbueDxtmqOKnRatWcrt9u1xfHQA++wzw8pJrrRNR9sBAbq6EQO4gGMiJiIiI1KYE8qtXgfDwzHlNJfxXrCiXZWvWDJgyRU40l1ZVqsiKelgYsH+/XL7txx/lxHUbN1qn3URkexjIzaVM6ibiAQj9N5pERERElPny5AHy5pXdvc+ezZzXNA7k6aXVGqrkf/0FzJolx5QDwMmTGWsfEWUdDOTmSqiQA4AD4lkhJyIiIlJZZk/spgTyChUy9jxKIF+/Hpg717CfgZwo+2AgNxcDOREREZFNycxx5EIYljzLSIUcAN56S3Zzv3ULCA4G8uWT+69elV3Zicj+MZCbyyiQOyKOgZyIiIhIZZk50/r9+8CLF3IUY5kyGXsuLy+gfn3D7VGjDN3vM3tddSJSBwO5uRjIiYiIiGyKUqk+c0ZO7LZpk2FZMktTgnKpUoCra8afT1n+zNcX6NEDqFxZ3ma3daLsQdVAPmnSJFSvXh1eXl7IkycP2rZti8uJ/veMiopC//794efnB09PT3To0AGPHz9WqcXQT+oGMJATERER2YLixWU4Dg8HAgKA1q3lEmTx8YZjbt0Crl3L+Gsp3dUzOn5c0asX0LkzMG8e4OHBQE6U3agayPft24f+/fvjyJEj2LFjB2JjY9G0aVOEG61ZMWTIEGzatAmrVq3Cvn378ODBA7Rv3169RmsNHxkDOREREZH6HB0NVXJl7PX9+8ChQ4Z91asD1aoBISEZey1LzLBuzMcHWLkS6NhR3mYgJ8peHF9/iPVs3brV5PaiRYuQJ08eHD9+HPXr10dISAgWLFiAZcuW4c033wQALFy4EKVLl8aRI0fwxhtvZH6jNRr5v35cHAM5ERERkY2YMUMG25YtgYULgeXL5Xre9eoBGzYAz57J4w4fBpo3T//rWDqQJ6YE8nPngJgYwNnZOq9DRLbBpsaQhyR8ZZkzZ04AwPHjxxEbG4smTZrojylVqhQKFiyIw4cPJ/sc0dHRCA0NNblYXMI4cs6yTkRERGQb3ngDmD5dzlzerp3ct2GDnCBt6VLDcUrVPD3Cw4ErV+R1awXywoVl1Tw2FrhwwTqvQUS2w2YCuU6nw+DBg1GnTh2UK1cOAPDo0SM4OzsjR44cJsf6+/vj0aNHyT7PpEmT4OPjo78EBgZavrEJgZwVciIiIiLb07y5rCxfvQrs3w9s32647+DB9D/vqVOATieXJ8ubN8PNTJZGY5g1nt3WieyfzQTy/v3749y5c1ixYkWGnmfkyJEICQnRX+7evWuhFhpJmNiNgZyIiIjI9nh5AY0ayesffignd8uTR97+918gLi59z/vff3JbrVrG25gajiMnyj5sIpAPGDAAmzdvxp49e1CgQAH9/oCAAMTExCA4ONjk+MePHyMgICDZ53JxcYG3t7fJxeJYISciIiKyaW3ayO3Vq3I7YoTsCh4ebpgp3VxKIK9aNePtSw0DOVH2oWogF0JgwIABWLduHXbv3o3ChQub3F+1alU4OTlh165d+n2XL1/GnTt3UKtWrcxurgEDOREREZFNa93acF2rBd57D1D+fEzvOPLjx+XW2hXyKlXk9sQJIDrauq9FROpSNZD3798ff/zxB5YtWwYvLy88evQIjx49QmRkJADAx8cHffr0wdChQ7Fnzx4cP34cvXr1Qq1atdSZYV3BSd2IiIiIbFr+/Ibg/Oabcsx37drydnoC+atXwKVL8rq1K+RlygD+/kBERMYmoaOsQwi1W0BqUTWQz549GyEhIWjYsCHy5s2rv6xcuVJ/zPTp0/H222+jQ4cOqF+/PgICArB27VoVWw2TCjm/tSQiIiKyTcOGATlyyO7qAFCnjtymZ2K3kydlaCpQQIZla9JqgaZN5fVEqwSTHbpwAcidG5g8We2WkBpU77Ke3KVnz576Y1xdXfHzzz/jxYsXCA8Px9q1a1McP55pOKkbERERkc3r0gV4+RJQVtCtUUP+GXfnDnDvnnnPlVnd1RXKWunbtmXO65F6tmwBnj+Xy/RR9mMTk7plORxDTkRERJTleHoa1g83tyt4Zs2wrnjrLbkE2unTwMOHmfOapA5l4sEUVnUmO8dAnh4M5ERERERZkjKOfP1688btZtYM64rcuQ2vZbyOOtkf40DOseTZDwN5enBSNyIiIqIsqUMHuV2+HJg6NW2PCQ0FrlyR1zMrkANAs2ZyazyOnIHN/ii/WxERQFiYum2hzMdAnh6skBMRERFlSQ0bAlOmyOuffQYsXfr6x5w4IbdBQbJynVmUceQ7dgA7dwKlSwPly8tx8WQfIiJM5zNgt/Xsh4E8PTipGxEREVGWNWwYMGSIvP7++3K89ooVSPbvushIYP58eT0zq+MAULMm4O0tJ/x66y257Nr58/KLBLIP16+b3mYgz34YyNODFXIiIiKiLG3KFKBfP9kFfOdO4L33gDZtTLuE//efDOHLlsnb776buW10cjLMEA8AnTrJid4WLJBttjfBwXKMv9KDITtQuqsrOIFf9sNAnh4M5ERERERZmlYLzJ0L3LgBfP014OYmx2qvWCHvP3ECqFsXuHgRCAgANm0COnfO/HaOHg107w7s3Qv8+SfQv7/c37cvEB6e+e1Jj2fPgFmzXj8+eu9e4PBhYObMTGmWTVAmdFOwQp79MJCnByd1IyIiIrILhQsD48cDo0bJ28OHA/fvy/AdHS0r1OfOAW+/rU77KlYEliwBGjSQt7/9FihYELh1S4Z1W7NqFfDOO8DTp4Z9o0YBAwfKoQKpuX1bbu/elUMFsgMGcmIgTw9WyImIiIjsyrBhQNGiwIMHQKVKcmxvUBCwciXg56d26wy8vIA5c+T1mTPluHJbIYQc3755s+xWr+zbskVeX7w49cB5547heuKx1fZK6bJerpzcMpBnPwzk6ZFoUjcuP0FERESUtbm6Aj/+KK8/eybrLytXAjlzqtuu5LRoIavQcXFycjohgKgo2S181CjZBf+nn2SFPzOdPWuocv/1l9xeuSIr3oBsT2rd0Y0DeeLKsb1S3mf9+nLLQJ79MJCnh1GFXAggPl7l9hARERFRhrVqBbRtK6//8IOc5dxWTZ0qJ33bulWG3DfekN3Cv/0WmDgRGDRIrrWemTZuNFw/dEguz7Zjh7ydI4fc/vKLXNc9OdktkIeGAo8fy+v16smtcSCPiwMOHgS+/BLo2pUTvtkrBvL0MArkQPJLZBARERFR1rN8uaz0Dh6sdktSV7y4oY2DBwOnT8s10gcOBKpXl/tPncrcNm3aZLiu0wHbtxsC+WefAaVKASEhwLx5yT8+uwVy5T3myQOULCmvK4H85UugWDE5seCkSfL38tdf1WknWRcDeXoYTeoGZH53ICIiIiKyDldXw3heW/fVV3IGeAB4800ZymfOlMu5AcCFC5nXlocPgaNH5fXu3eV2wwZgzx55vWlTw/rpU6YAx46ZPj4qyrQ6nJ0CefHihp/j48ey9+3+/bL7v7u7/CIDyD7j6rMbBvL0YIWciIiIiFTm7Q0cOACsXy+r0Xnzyv1lysjtxYuZ15bNm+W2Rg2gTx95feVK4NUrOQ6/cmWgWzegRAkZOmvVkuPdlcLWvXumz5edAnmJErJ3g0YjexY8ewacOSPva98eGDNGXr9xQ512knUxkKdHQiB3dWAgJyIiIiL1FC0KtGmjn3MYAFC6tNzeu5d0vPbz50DLlnLMuSV7eSrjx1u3BurUkV8W6HRyX+PGsn0uLnJMdJcusgr87beGsKl0V/f3l9sHD7LOOuvppcywXry4jBe5c8vbjx4ZAnmFCnJpPgC4eTPz20jWx0CeHgn/47kwkBMRERGRjfH1NXSBNl4W7fZtOSZ5yxbg33+Bkyct83rh4cDOnfJ669ZysrmmTQ33v/WW4XquXHI89PTp8rayJJoSyCtWNMxsf+2aZdpnq4y7rAOGn5lxIK9YEShSRF6/f1927Sf7wkCeHgkVcgZyIiIiIrJFSpVc6bZ+7ZrsJm4c0M+ft8xr7d0rg2KhQobx9y1bGu43DuSKDh0MbYiKMiyXFhRkCKj23m3duMs6YAjkN24Y7qtQQX6J4ekpl7dTPieyHwzk6ZEQyJ0d5KRuDOREREREZEsSB/LvvpMTr5UpA3TuLPedO2eZ1/r3X7lt2FCOgwbkOun+/nJfoUJJH1OggAya8fFyVnulQl6wYPYI5M+fAy9eyOvFismtMgfA7t2yu3/u3PIz1GgMVfKsNo780SMgLEztVtg2BvL0YIWciIiIiGyYMrHbhQuysrp1q7w9bZqhYp3WCrkQcqz3Rx8Bly8nvV+ZMV1Zbg2QYfvWLTnZXHI0GqBKFXn9xInsF8iV95Y/v5xJHTBUyJXu/xUqGL7gyIxAHhVluvRcYuHh5o3rv3xZznHQqJFhPgFKioE8PZQKuZaBnIiIiIhsj3GF/Px5Of7Y1RWoX9/QrTytgfzaNWD8eLl+eJkyQM+ecp1sQIb1//6T16tVM32cq6scT54SBnJDd3XAEMiDg+W2QgXDfUogt9bEblevyuXVihY1LFVnLDxc/lyqVgUiI9P2nNOnAxER8vfjr78s2157wkCeHgmTujGQExEREZEtUgL5jRtyWTRAVird3AzV8wcPDME6Nfv3y627u6x0Ll5sWFP89m25TJeTk5yAzBxKIP/vP0Mgzy5jyI1nWFcogVxhHMiVmdatUSE/cwaoV0/+LOPigP/9L2m+OXlSDnm4fBn49dfXP+fz58DvvxtuT55s2TbbEwby9GCFnIiIiIhsWEAAkCOHDNCzZ8t9zZvLrbc3EBgor6elSq4E8k8/BVatktc3bJDjv5XqePnyclkzcyiB/ORJ2V1ao5FduJWQ+vhx0mXb7EXiGdaB1AO5tbqs37wJNGggP+uKFeWY9cuXgalTTY87fdpw/bvvXj/b+7x5spJeooT8subAAeDQIcu23V4wkKdHQiB34qRuRERERGSDNBpDlfzBA7lVAjlgXrd1JZDXqyfXPPfxkVXxo0eTHz+eVkWKyOcSQt7Omxdwdpb7lDW57XXps9S6rAOAVmvoyQCYBnLl87KENWtkF/kKFeRs+VOmyP0TJsg5ABTKMmyA/H1auDDl54yNBWbNktdHjQLef19e/+EHy7XbnjCQp4dSIdewQk5EREREtkkJ5IAMdMbV2LJl5fZ1gfzBA+D6dRnwa9eW1c4WLeR9mzenPH48LYwndgPk+HGFPXdbF+L1XdZLlpRj8BXKTPWvXsnu4JZy757cNmsme1R06yZnxo+MBD7/3HCcUiFv0EBuJ00CoqMN9z9+LNeg79wZ6NNH/t4EBADvvgsMHy6P2bAh+UkBszsG8vRQKuTssk5ERERENsq4wtq8uWHGbiDtgVypjleqJCvXAPD223K7cSNw/Li8np4KOWAayIOCDNftOZA/fiyXAtNqDZVvQH6+Srd/4+7qgAzn+fPL65bstn7/vtwWKCC3Go2hu/qmTTJ0K0vTAcCMGbInw927wKJFhueZMkUev2oVsGSJ3PfJJ/L9lC4tv8QRwjCfARkwkKeHMqkbK+REREREZKOMK+TG3dUBQyB/3Vrkxt3VjZ9Lq5WPDQmRYVF5PnNlxwq58p6CgkzH3Ws0hrXIEwdywDozrSuBXAn7AFC5shxLHhUFHD4se0hERMifc/nywIgR8rjJk+UkcFFRhi7sH38MfPAB0L27nHNAobyfhw8t13Z7wUCeHkqFPCGQG3fXICIiIiKyBco61m5ucoZ1Y0r1/MkTOR68f385k3fisJdcIPfzk93XFZUr6/88Nlt2DOTJdVdXKPtq1kx6nzVmWle6rCsVckD+zrz5pry+e7ehu3q5crIu+eGH8nfgxg05Bn31atmNPjBQjh1fvFhWyb29Dc/p7y+3jx5Zru32goE8PRL+x3HUcFI3IiIiIrJNBQrIsLR5M+DpaXqfh4ch4H3yCfDLL3ISr++/NxwTHGzoqmwcyAFDt3Ug/d3VATmpmdK27BLIk5vQTfHrr8DatYZAbMzSM63Hxxsq1sYVcgBo3Fhud+82TOimLGvn4QEMHCivf/edYRb/fv30HYmTUMbHP35smbbbEwby9EhUIWcgJyIiyrjo6GhUqlQJGo0Gp06dUrs5RHahffvkwx1g6GauLGUGyOrmkyfy+sGDctxv8eKGCqfCOJCnZ0I3hVYL9Owpq6vGVfdixeT22TP5xYAxnQ6YM0eGQUvOOJ5ZklvyTFGwINCunel4f4WlA/mTJ7LLuVabdMk15Xfm33/l7wFgus78gAFyXfpTp+RyZg4OcjK3lCi/PwzkSTGQpwcDORERkcV9/vnnyJcvn9rNIMo2jMd9d+kiK91RUbJaDshZsYGk1XFAdnmvWFGOK1Zm3k6vn34Cbt8GcuUy7PPyMoRE4yp5cLAMrP/7HzBypAyEWU1qXdZTY+lArowfDwhIOuSgcGF5iYsD9uyR+4wDuZ+frIgr2rY1jH9PDrusp4yBPD0S+mI4goGciIjIErZs2YLt27djirIILhFZXa1acluunOwqPWyYvP3zz8DEicD8+fJ2u3ZJH6vRADt3yondjLuap1dyFeHE3dZv3QKqVpWzuyv++Sfjr50Zjh8HLl6U1X1lbfXkuqynRgnkd+8a1pbPCGX8eOLu6orEPSsSTzQ3dKghyH/8ceqvpXy58vIls1NiDOTpoYwhZyAnIiLKsMePH6Nv375YsmQJ3N3dX3t8dHQ0QkNDTS5EZL7WrYGtW+XEbR4eQIcOcubvZ8+Ar7+Wx0ycaNo93ViuXEDRotZrX+JAPnmyrA4XKiTXywYMk87ZsufPgTp15OR3v/8ueyE4Opou85YWAQFAjRpy7Hffvhnvrp94ybPEjAN5UJBcp9xYYCCwciXw44+GMecp8fU1hHdlSARJDOTpkfDb5MBJ3YiIiDJECIGePXvi448/RrU0DkSdNGkSfHx89JfAwEArt5LIPmk0QLNmhqDl6AgMGWK4/8svgVGjVGkagKSBfO9euZ0+3VCR3b/f9seRnz8vV2WKjgZ69ZL7ihQxf2Z6jQb47TfA2Rn4+2/DUmPpZU6F3Li7urH27YFBg5Lv4WBMqwXy5JHX2W3dFAN5erBCTkRElKovvvgCGo0m1culS5fw008/4dWrVxg5cmSan3vkyJEICQnRX+7evWvFd0KUvfTtC7z7LvDNN7I6riYlkF+7JquqFy/K2/XqyfHuLi5yv63PxH75ctJ95nZXV5Qta/i5DB4M3LmT7ma9tkIeEGBYHi+lQG4OzrSevHSuGJjNuboCAFziIgAwkBMRESU2bNgw9OzZM9VjihQpgt27d+Pw4cNwcXExua9atWro1q0bFi9enORxLi4uSY4nIstwdwdWrFC7FZJxhXzfPnm9fHk5oRggu2/v3y8v6Q24mUEJ5B9+CFy6BBw4ILuvp9fQocD69XJ281Gj5Jrf6fG6CjkgQ/+ECfJLmoziTOvJYyBPj4R+Pa4xIQAYyImIiBLLnTs3cufO/drjZs6ciYlGZbgHDx6gWbNmWLlyJWrWrGnNJhKRjVOWPnvxAli3Tl43ntG9Xj1DIE9tya30iI0FnJws81zKrOqVKwMzZshx+02bpv/5HBxkt/2aNeWSdT/+COTMaf7zvK5CDsgeE337pq+diXGm9eSxy3p6JARyt6hgAAzkRERE6VWwYEGUK1dOfymRUOYqWrQoCqT2VyIR2T13d0P1du1auU0cyAHLT+z2xRfyz/2zZy3zfEqFvGRJw+R5Xl4Ze87q1WU38uho4I8/zH+8EIZAnlqF3JJYIU8eA3l6JARyl8iXABjIiYiIiIisQem2Hh0tt/XrG+6rXVtOFnbjhiFcZpQQsgt4RARw+HDGny821rBueMmSGX8+hUZjWAd83jzzJ7YLCQHCw+X1zArkWWEMufJ7lpkYyNMjIZA7x4TDEbEM5ERERBZSqFAhCCFQqVIltZtCRDZACeSAnGBMmakbALy9AeW/CktVyW/cMKzx/fRpxp/v5k0gLk5W+/Ply/jzGevWDXBzk7O4Hzli3mOVLzB8fWXbMkNmd1m/fx8IDk778Zcvyy8NBg/O3Jn7GcjTw8fHcBUhDORERERERFZgHMiNu6srlG7r//xjmdczDvaWWC9b6a5eooSs5luSj49hsrX58817bFomdLO0zOyy/s8/QOHCQK5cslfF1Kmvr37/+qsM8DduvH4ZN0tiIE8PR0f9wI8cCFalawMRERERkb17XSBv0kRu//xTdjPPKONgb4kKufH4cWtQJlxbsUJ2Q0+rtEzoZmmZ1WU9IgLo3VsOF4iPl1+yDB+e+uoB0dHAokXyuqUmsUsrBvL0Sui2ngPBrJATEREREVnB6wJ5ixayEvr8efqX/zJmXCG3RCBXZli3ViCvVQsoWhSIjAQOHkz749SskL98ad2x2qNGAdevyy8bzpwB3npL7lfec3LWrweePZOfR4sW1mtbchjI0yshkPviJQM5EREREZEVlC4N9OwJfPaZocJqzMEB+PRTeX3aNECnS3pMWivnDx8C164ZbluyQm6tddI1GuCNN+T148fT/jg1KuS+vrKjMWCZ4QDJOXRILgMHyG785csb1nx//jzlx82bJ7d9+hjamFkYyNOLFXIiIiIiIqvSaoGFC4HJk1M+pndvOZ76yhXg779N75s+HfD0BLZsef1rKdVxNze5zQpd1gGgalW5NSeQq1Eh12ozPrHb8eNAy5bAhQvJ3//553JCtp49gebN5T4/P7lNKZBfuwbs3i2/3OjdO33tyggG8vTy9QXAQE5EREREpCYvL8MSYNOmmd63c6cMaMo65qlRxo8rQe7pU/Nn2759GwgKksEuJMQwXtpaFXIAqFZNbm29Qg5kfGK3Tz+VX65MmJD0vvh4w2fw5ZeG/Tlzyu2LF8k/56+/ym3z5vJnl9kYyNOLFXIiIiIiIpswcKDsvr5nD3DunGH/nTtym5Y1xZUKefv2chsba95EaQDwzTfyNRcuBEaOlPsCAuQSbdZSubKs7t67l7agGx8P3L0rr2dmhRzIWCA/fdowTv6vv5KOQ795E4iKAlxdgSJFDPtTq5DHxRkmc1O+1MlsDOTpxUBORERERGQTAgMNk74pVVIhZMUakF2cUwvXL18CZ8/K62+9BXh4yOvmdFu/f98Q7gBg9my5tWZ3dUB2yVdeI3GVPD5efjEwdiwQFibH2H/4oawWu7vLCfEykzIPQHq6rP/8s+H6q1eym7mx8+fltlQp+eWMIrUK+e7d8ssBPz+gVSvz22QJDOTpxUndiIiIiIhsRrFicnvjhtyGhMjgBshw/u+/KT/28GF5TIkSsoqbO7fcn1wgf/DAMHu6sSlTZFW9bl259rXC2oEcSHkc+datwHffAePGAeXKAZ07yy8NHByA33/Xr+ScadJbIX/5EvjjD3m9ShW5TTwMQQnkZcua7k+tQr58udx27gw4OZnXJkthIE8vVsiJiIiIiGyG0k355k25VbqrK5Ru61FRcgZu47CthDkl7OXJI7eJA/mLF0ClSjJkN2oEbNokQ/jTp4aZur/6Cli82BB2MyOQK+PI//vPdP/vv8utg4PsLbBmjezevmQJ0KGD9duVWHoD+aJFcmm38uXlFwwAsGGD7AGgeF0gf/HCdBb+qChDqH/vPfPaY0kM5OnFSd2IiIiIiGyG0v1aqZAr3dUVR47I7ddfy/HCo0cb7rt0SW5LlZLblCrk339v2Ld3L9C6tQze1arJ5dWqVgWaNgUKFQJWrwY6dgS6d7fEu0tdchXy4GAZWpW2DhsmJ3FbvFi9AJqeLus6HfDLL/J6//5Aw4ayNvr0qVzmTKHMvJ44kCtd1nU6IDTUsP/vv+XtwECgTh1z3oVlMZCnFyvkREREREQ2QwnkiSvkyszZR47ILuzz58vbR48aHqsE8tKl5Ta5QH7/PjBzprw+d65cG93PT04uprzWqFGyAg3IYL5qlaHabk3KxG737xvC7urVsm1ly8rAOWWKnMzt/fet356UpKdCfuCAXJrM2xvo1k12LX/nHXmfUuGOjzf8DBMHchcXw5wAxt3Wly2T2/fek0uyqYWBPL04hpyIiIiIyGYoXdYfPJDdkZWQ3KqVXFs8OFh2J1cmdzt/Xs6yLQRw8aLcl7hC/uSJ4fknTJDPW6cO0LevXBv96VMZFleskOG7bVtrv8vkJTex25IlcvvBB4YvCdSWnkC+YoXctm8v36dyHQDWrZM/vxs35M/GzU32Tkgs8cRuISHA5s3yuprd1QEG8vQzqpDrdKbjF4iIiIiIKHPlzGkYt33rlqHLetGiQPXq8vpPPxmOj46WYfrpUzlpmEYDFC8u70tcIb961bBe9aRJhoCr0cjnf/dd2T1dzeBrvB75rVtyXXWNBujaVb02JaZ0WQ8OlrO+v05cnKz0A0CXLob9TZvKWeJv35Y9H1KaYV2ReGK3DRvkz790aaBixXS9FYthIE8vo0AOgFVyIiIiIiIVaTSmE7spFfKCBYE33pDXhZBV1jJl5O0zZwzV8cKFZYUVSBrIZ8+WBbgWLYB69az/XtJDGUf+3XeGNjZuLMeN2wpfX/nzAGRX9NfZs0f+DHLlAt5807Df3V1+AQLINd9TmtBNkTiQK70IWrVSv/cAA3l6JUzq5oYouCAqycL0RERERESUuYwndjMeQ16rluGYnj2B2rXl9bNnk07oBiQN5CdOyK1xldbWtGwpewhERgL37sl9vXur26bENBqgSRN5fefO1x+/cqXcduiQdFmyXr3kdsUKw+zyKQXyxF3W796V2+S6t2c2R7UbkGV5eUFoNNAIAR+EICbGVe0WERERERFla0ogv3xZjiUHZEW2YEE5cZdOBwwYAGzfLu87c8awVrkyoRtguuyZEPI4QC67ZatKlJBjs69flz0EhDBMfmZLmjQBfvsN2LUr9eNiYuQybUDyX4TUry9/3jdvGmaTT2uFXAnkgYHmtd0aGMjTS6uFxscHCA5OmNjNX+0WERERERFla0qX9f37ZSB1cZHVbq1WVls1Gjn52cOH8rgzZ6Dv6ZpShfzBAznG3MHBNLTbIjc3oFw5ebFVStfzU6fk56t81olt3y7HmufNm/wwAa1W9nYYM0b+rIHXV8htMZCzy3pGcOkzIiIiIiKboVTIT5+WW6UyDsgxxx06yOtKpfvWLcN44uQCeXQ0cPCgvF6iBODKTrEZ5u9v+Pz37En5uD//lNtOnZKfqA0AevQwjAFPaYZ1wFAhf/FC/kyVWd5tYXw9A3lGJIwjZyAnIiIiIlKfUiFXKqbKBGKJ+fkB+fLJ68+eya1x9dvDwzDB2+7dcmvL3dWzmteNIxfCMKygXbuUnycoyFBxL1065fXEjbusK0MZXF3lZHFqYyDPCFbIiYiIiIhsRuIKaUqBHAAqVDBcz5XLENoUSpVcCeTGx1PGvC6QX7woq9hubqYT8iVnyBBZJW/ePOVjjCd1U7qrFyig/gzrAAN5xjCQExERERHZDDc3w1rXgKygpsQ4YCc3NlwJ5Fevyi0r5JZTvz7g6CgnZLtxI+n9ypcgdevKeQBS06qVnBNg3LiUjzGukNvS+HGAgTxjEgK5nNRN3aYQEREREZGh2zqQeoXcOGAbjx9XKDOtK1ghtxxPT8Pa8MnNtq7sM157PDX+/jLgp8R4UjcGcnvCCjkRERERkU1RJnYD0t5lPbUKOSDX906t2k7ma9xYbv/5x3R/fDywd6+8ntZA/jpKhTwkRE7kB9jGhG4AA3nGcFI3IiIiIiKbktYKealShqpqchVy40BevrxtjDe2J1WqyO3Zs6b7T52Sy515exuOyaiE2AbAsKY8K+T2wKhCHhWlblOIiIiIiMi0Qp5a6HJ2lsug5c9v6D5tLHEgJ8tSPtOLF4HYWMN+Zfx4gwapd0M3h6Mj4OMjrzOQ2xOjMeQ//WRYXoGIiIiIiNRRtKjcBgS8ft3wFSuA27dNK6gKBnLrCgqSY8ljYgwT5wGGQK50abcUpdt6eLjcMpDbg4RAnlMTjJ07gTlz1G0OEREREVF2V7s28OGHwLffpu14B4fk9xsHck7oZnlaLVCunLx+7pzcxsQYxpRbavy4QpnYTcEx5PYg4au0ormCAQDDhwPXr6vYHiIiIiKibM7REZg/H+jVK2PPYxzIleBIlqX0PFDGkR89CkREyM++bFnLvpbxOvPu7sn3ilADA3lGGI0hb9RI/vL07s2u60REREREWV3JknJ29WrVbCe82Rvliw4lkG/fLrdvvikr6JZkHMgDA21nkj4G8oxICOSa4GD8tkDA3V12sVi2TN1mERERERFRxvj6AjdvAvv3q90S+5W4Qr5tm9w2a2b51zLusm4r48cBBvKMSQjkiI1FIc1tXPF7AwvQG58P1+HVK1VbRkREREREGeTn9/qJ4Sj9lEB+4wZw5w5w7Ji83bSp5V/LuEJuK+PHAQbyjPHwMMwC0b078t/9F72xED0fTcLEieo2jYiIiIiIyJblyiVnwweAH3+UQ3/LlZNL0VkaK+T2SKMxDCg5eFA/0GECvsbZqdtx/ryKbSMiIiIiIrJxSpV8/ny5tUZ3dSDpGHJbkSUC+c8//4xChQrB1dUVNWvWxNGjR9VukoHSbR0Axo8H+vaFFgJL4t/DZ43+w7VrqrWMiIiIiIjIpikTuylDfrNbIHdUuwGvs3LlSgwdOhRz5sxBzZo1MWPGDDRr1gyXL19Gnjx51G6eIZDXqAGMGAHExSH22En4nfoPfz+tjjUVuyN64RfQFSuBkAgneHrK7hI5c8oe77Yyu59dEAK4dQv491/A2xuoVSvplJhCAM+fA1evAteuAQ8eAGFhQHg44OQkfyhubvJYnU4en9o2IkI+PipKPkajAYoVAxo3lms1/PefnOkvPl7+b1OgALBrF7BuHRAaCrz9NtCpE1C1quF1FTqdbOvz50BkpHyNqCjT6yld4uLkgCd3d8PFzc1w3dERiI2Vx2m1cuiFo6PcOjjI9sbEANHRhq1WK5/Tzc2w1WoN9yd3cXKS05N6ehq2bm5yv4ODPCYy0nBR2h4fLz8DV9eUL4D8uYWHy59DeLhsi6Oj6cXBwbr/0Kz93Ikvjo7y/bu4mG6dnOT98fHyjBYSIi+hoYafc+KLg0Py+43vB+RzKj+XuDjDJT5evm7OnPLfmvK7Ex8vf3/j4+XPNCLCcAkPl8+Z0s/VxUU+NjbWcImJMVzX6eTvkbe3PDZxe4xvJ0erTfo7Api+nvI6jo7y/cXEGNpfogRQuLD1fuZERETZjFIhB+SfAnXrWud1jLus29IYco0Qtr1IV82aNVG9enXMmjULAKDT6RAYGIiBAwfiiy++eO3jQ0ND4ePjg5CQEHh7e1u+gbNnAwsXAn/8If9QA4AnTxD5yTC4rflDf1g8tLiLQETAHfFwQBwcodM4QOPgAB208m9XoYFGo4FGC/1W/rEv/+AXRluh0ehvA/L66/Ynt0+j1ci/yR200DhqoXXQIk5oERPngNh4LbROWjg6aaFx0EJotNBpHODorIWzqxYOjoAmNhaauFg4Ig5Omlg4IRZaXRwcdHKrjY+FVsQj3tkdsa6eEE4u0Gg1+myhLGcQp3FEHBwhHByhcXSExkELRxELRxELB51hq42PhSZebrVx8rpDfIw85tkjOD55qP/MhUaD2MIlIXLmhNbDDQ6vQqC5fhWakBDL/x5YQKyXL3Q5/KCNjYYmOhIOoS+hUYIpUVq4uMgvOch6pk4Fhg7N8NNY/dyUzfDzJCLKuv77D6heXV5v1gzYutU6r3P9uqybAUBwMODjY53XUaT13GTTFfKYmBgcP34cI0eO1O/TarVo0qQJDh8+nOxjoqOjEW30B2loaKh1G/m//8mLsTx54LZ6CZ5t/RTX3xuFcsEH4IEIFMJt0+MEgMRFHAFAZ8X22rlYOOIkKsMHISgprsD5xiXgRtLj7qIArqI47iIQofBGJNzhiDh4acLghkjoNFoIaKCDFkjYCmj0+0XC7QiNO8LhiSi4Ii5eAwcRi6o4jkbYAz+8wD3kx140RATcUR5nURg3cRQ1sA7t8AI50R5r8Q42ISdewunVS+DVyyRtfQFfRMAdUXBFFFwRCTdEwRXRcEW0xnCJSrgdpXFFPBzgiii4iwi4IwKuiIS7iIAbIuAuIuCEWMRqnBAPR2g1OjggXl6E/LooHo6I0TgjFs6I1rggFs7QQMBVRMIFUXAVkXAVUdAiHjEaF0TDBTEaF8TABTEaZ8TABdEaFziJWHiIMHiKV/qtC6LgJGLhgDjEaFwQBTdEatwQpXFDFNwQq3FK+NwBF0TDVUTBBVFwEVFwM3p9AIjQeCBS64EojTsitB6I1Tjr34OjiIMD4uAgkq+UJlvXNrfY/ZqvM5O9W6TtPg0EIAQ0QgAQ0GrkxRFxcBbRcBFRcEGM6eON/u+LggvCtN4I0/ogTuOU8FuccBE6aBGvv258n0bIrYOIhwY6aCD0XyDGQX5xFq9xTPiNcYQTYpBD9wKeIsykKQnPjmiNKyI17ojUuCMqYSuggTMS3kPiS8J7ioET4jROiNU4I07jpL8IaOGmC4OXLgTOIgaxCe3RwQFxGqVtjojXOBh9OWmgFTo4IA5aEQ/HhN8PDYR8fjghNuF1dNDCUcTBEbGIhTMiEn7Pnp7NiYap/9iJiIjIDGXKyEKdENbrrg7IbuolSsiJ5Kwdxs1h04H82bNniI+Ph7+/v8l+f39/XLp0KdnHTJo0CePGjcuM5r1WrubVkOvlNgidAB4/kt2p/9/evQdHVd5/HP+czW6WJBISkuYmRNAychEpEmFSnOm0MAXq1ButlUlpajvDAImCtBRbi9jpUIRO1WqdWB1r/yiVlo5YoINODBSLwyUmXAUj8yuDFAgRMeQCue15fn+su7BJCAkGztnD+zVzZnfPOdl8P5vNfvPsnuektVWmI6TW5g411ofUVN8hn2WUmGgUSDDhIy3bP7/sMAq1R/5Cv+gyslx0O/LHu7HD6yO3u91f4T/yjR3+Pm1tRh2tttrbjNpbbQV8IQ1ItJXot9Xeaqv1vC27w5Zlhw9DjazraDdSICDjD6hNAbV2+NVqBxTyBRSy/OqwwtdtYynQcV6B1iYldLQqZFuyjWSHIuXYSvSFFPCF5DMdUnv40NM2E1CrCajNDqj186XNBNSuC5etdkDn2gNqbgvoTEeq9iWMV2tCsnw+KUt1Ghvao4SWZgXtczqnZB3WCP2fblGLOh0eHmE6XV4hS7Yy9KlOK1M+n6WcnPBR6XfcIY0cKc2/JXxE7fbt92reDqOGY2eVUHtcvrOf6Zw9QI0dSTodStfJji/pfEfg0t/IfPFaHXXFj3fk+WxJ18tBBN38rC3ZSlSbBqgl/OaFWnReSTqrQWpTMPzmXn+9wXeZn5Ff7bJkFFJC9I2sS9XdE0v25wNpqxdfay7s14sae3S5r/38ebZqtBiQAwDQj5KTw4epV1VJ99579b5PYqL0wQcXjtB1C1cPyK/Ez3/+cy266HDChoYGDXV41r7ls6Tc3PCi8J+pAz5fvuRkYZ6XJSn8TwwjU6EvNyU8chlx8YSOzpM7Ot8OBC4sfr9PgcCXFAj0/EtfWCiFnxFpny/di0yNjUz7vvgyclR7d7Veqv5I1s5Lf02H7o/7ubiurj8jK3rb7mbA2d1EnEs9Fj09Vt09Jldy2+frfjr45dYHAuGj0P3+8FTs5uZw3gvTvH3y+cKvJpEp25HH5OJp3JeamNTT+s71Ra5HLrs+VoFu1sXuG7ne3brIzzMU8nWbobPw11mXvL8rud6b/fLzu9YCAAC+mA0bwqfAudpzu/0uHP26sKQLMjMzlZCQoFOnTsWsP3XqlHIi/7Cuk2AwqGAweC3KQxwJBsNLvIqcay2eMwAAAADdGTTIXYeRX0su+8A+VmJioiZMmKCKioroOtu2VVFRocLwR4sAAAAAAMQlV39CLkmLFi1ScXGxCgoKNHHiRD333HNqbm7Www8/7HRpAAAAAABcMdcPyL/3ve/pk08+0ZNPPqna2lp95Stf0VtvvdXlRG8AAAAAAMQT1w/IJam0tFSlpaVOlwEAAAAAQL9x9RxyAAAAAAC8igE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADvA7XcDVZoyRJDU0NDhcCQAAYZGeFOlR+GLo9QAAt+ltr/f8gLyxsVGSNHToUIcrAQAgVmNjowYNGuR0GXGPXg8AcKvL9XrLePztedu2deLECQ0cOFCWZX2h+2poaNDQoUN17Ngxpaam9lOFzvFSHi9lkbyVx0tZJPK4WTxlMcaosbFReXl58vmYPfZF0esvjTzu5aUskrfyeCmL5K088ZSlt73e85+Q+3w+DRkypF/vMzU11fVPgL7wUh4vZZG8lcdLWSTyuFm8ZOGT8f5Dr7888riXl7JI3srjpSySt/LES5be9HrelgcAAAAAwAEMyAEAAAAAcAAD8j4IBoNatmyZgsGg06X0Cy/l8VIWyVt5vJRFIo+beSkLnOO15xF53MtLWSRv5fFSFslbebyUJcLzJ3UDAAAAAMCN+IQcAAAAAAAHMCAHAAAAAMABDMgBAAAAAHAAA3IAAAAAABzAgLwPXnzxRQ0bNkwDBgzQpEmTtGvXLqdLuqwVK1bozjvv1MCBA5WVlaX77rtPNTU1Mfu0tLSopKREGRkZuuGGGzRz5kydOnXKoYp77+mnn5ZlWVq4cGF0XbxlOX78uL7//e8rIyNDSUlJGjt2rN5///3odmOMnnzySeXm5iopKUlTp07V4cOHHaz40kKhkJYuXarhw4crKSlJt9xyi37961/r4vNGujXPu+++q29/+9vKy8uTZVl68803Y7b3pu4zZ86oqKhIqampSktL049//GM1NTVdwxQX9JSnvb1dS5Ys0dixY5WSkqK8vDz94Ac/0IkTJ2LuI17ydDZ37lxZlqXnnnsuZr2b8sDd6PXuQq93l3ju9ZK3+j293ju9ngF5L/3tb3/TokWLtGzZMlVXV2vcuHGaNm2a6urqnC6tR1u3blVJSYl27Nih8vJytbe365vf/Kaam5uj+zz22GPasGGD1q5dq61bt+rEiRN64IEHHKz68iorK/XHP/5Rt99+e8z6eMry2WefafLkyQoEAtq0aZMOHjyo3/3ud0pPT4/us2rVKj3//PN66aWXtHPnTqWkpGjatGlqaWlxsPLurVy5UmVlZfrDH/6gQ4cOaeXKlVq1apVeeOGF6D5uzdPc3Kxx48bpxRdf7HZ7b+ouKirSBx98oPLycm3cuFHvvvuu5syZc60ixOgpz7lz51RdXa2lS5equrpab7zxhmpqanTPPffE7BcveS62bt067dixQ3l5eV22uSkP3Ite7y70enp9f/NSv6fXe6jXG/TKxIkTTUlJSfR2KBQyeXl5ZsWKFQ5W1Xd1dXVGktm6dasxxpj6+noTCATM2rVro/scOnTISDLbt293qsweNTY2mhEjRpjy8nLzta99zSxYsMAYE39ZlixZYu66665Lbrdt2+Tk5Jjf/va30XX19fUmGAya119//VqU2Cd33323+dGPfhSz7oEHHjBFRUXGmPjJI8msW7cuers3dR88eNBIMpWVldF9Nm3aZCzLMsePH79mtXenc57u7Nq1y0gyR48eNcbEZ57//e9/5sYbbzQHDhwwN910k3n22Wej29ycB+5Cr3cPer27emOEV3q9Md7q9/R6d+e5HD4h74W2tjZVVVVp6tSp0XU+n09Tp07V9u3bHays786ePStJGjx4sCSpqqpK7e3tMdlGjhyp/Px812YrKSnR3XffHVOzFH9Z1q9fr4KCAn33u99VVlaWxo8fr1deeSW6/ciRI6qtrY3JM2jQIE2aNMmVeb761a+qoqJCH330kSRp79692rZtm2bMmCEp/vJE9Kbu7du3Ky0tTQUFBdF9pk6dKp/Pp507d17zmvvq7NmzsixLaWlpkuIvj23bmj17thYvXqwxY8Z02R5veeAMer270Ovd2Ru92usl7/d7er17+Z0uIB6cPn1aoVBI2dnZMeuzs7P14YcfOlRV39m2rYULF2ry5Mm67bbbJEm1tbVKTEyM/nJGZGdnq7a21oEqe7ZmzRpVV1ersrKyy7Z4y/Lf//5XZWVlWrRokX7xi1+osrJSjz76qBITE1VcXBytubvnnRvzPP7442poaNDIkSOVkJCgUCik5cuXq6ioSJLiLk9Eb+qura1VVlZWzHa/36/Bgwe7OpsUnou5ZMkSzZo1S6mpqZLiL8/KlSvl9/v16KOPdrs93vLAGfR696DXuzePV3u95O1+T693X56LMSC/jpSUlOjAgQPatm2b06VckWPHjmnBggUqLy/XgAEDnC7nC7NtWwUFBfrNb34jSRo/frwOHDigl156ScXFxQ5X13d///vftXr1av31r3/VmDFjtGfPHi1cuFB5eXlxmed60N7ergcffFDGGJWVlTldzhWpqqrS73//e1VXV8uyLKfLARxHr3cXej2cRq93Pw5Z74XMzEwlJCR0OYPnqVOnlJOT41BVfVNaWqqNGzdqy5YtGjJkSHR9Tk6O2traVF9fH7O/G7NVVVWprq5Od9xxh/x+v/x+v7Zu3arnn39efr9f2dnZcZNFknJzczV69OiYdaNGjdLHH38sSdGa4+V5t3jxYj3++ON66KGHNHbsWM2ePVuPPfaYVqxYISn+8kT0pu6cnJwuJ33q6OjQmTNnXJst0qCPHj2q8vLy6DvmUnzl+c9//qO6ujrl5+dHXxeOHj2qn/zkJxo2bJik+MoD59Dr3YFer+htN+bxaq+XvNnv6fXuzNMZA/JeSExM1IQJE1RRURFdZ9u2KioqVFhY6GBll2eMUWlpqdatW6fNmzdr+PDhMdsnTJigQCAQk62mpkYff/yx67JNmTJF+/fv1549e6JLQUGBioqKotfjJYskTZ48ucu/pfnoo4900003SZKGDx+unJycmDwNDQ3auXOnK/OcO3dOPl/sS0pCQoJs25YUf3kielN3YWGh6uvrVVVVFd1n8+bNsm1bkyZNuuY1X06kQR8+fFjvvPOOMjIyYrbHU57Zs2dr3759Ma8LeXl5Wrx4sd5++21J8ZUHzqHXuwO93t290au9XvJev6fXuzdPF86eUy5+rFmzxgSDQfPnP//ZHDx40MyZM8ekpaWZ2tpap0vr0bx588ygQYPMv//9b3Py5Mnocu7cueg+c+fONfn5+Wbz5s3m/fffN4WFhaawsNDBqnvv4jOvGhNfWXbt2mX8fr9Zvny5OXz4sFm9erVJTk42f/nLX6L7PP300yYtLc3885//NPv27TP33nuvGT58uDl//ryDlXevuLjY3HjjjWbjxo3myJEj5o033jCZmZnmZz/7WXQft+ZpbGw0u3fvNrt37zaSzDPPPGN2794dPRNpb+qePn26GT9+vNm5c6fZtm2bGTFihJk1a5br8rS1tZl77rnHDBkyxOzZsyfmdaG1tTXu8nSn85lXjXFXHrgXvd6d6PXuEc+93hhv9Xt6vXd6PQPyPnjhhRdMfn6+SUxMNBMnTjQ7duxwuqTLktTt8tprr0X3OX/+vJk/f75JT083ycnJ5v777zcnT550rug+6Nyk4y3Lhg0bzG233WaCwaAZOXKkefnll2O227Ztli5darKzs00wGDRTpkwxNTU1DlXbs4aGBrNgwQKTn59vBgwYYG6++WbzxBNPxLzwuzXPli1buv09KS4uNsb0ru5PP/3UzJo1y9xwww0mNTXVPPzww6axsdGBND3nOXLkyCVfF7Zs2RJ3ebrTXZN2Ux64G73efej17hHPvd4Yb/V7er13er1ljDH981k7AAAAAADoLeaQAwAAAADgAAbkAAAAAAA4gAE5AAAAAAAOYEAOAAAAAIADGJADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAO4qizL0ptvvul0GQAA4Cqi3wNXhgE54GE//OEPZVlWl2X69OlOlwYAAPoJ/R6IX36nCwBwdU2fPl2vvfZazLpgMOhQNQAA4Gqg3wPxiU/IAY8LBoPKycmJWdLT0yWFDy8rKyvTjBkzlJSUpJtvvln/+Mc/Yr5+//79+sY3vqGkpCRlZGRozpw5ampqitnnT3/6k8aMGaNgMKjc3FyVlpbGbD99+rTuv/9+JScna8SIEVq/fv3VDQ0AwHWGfg/EJwbkwHVu6dKlmjlzpvbu3auioiI99NBDOnTokCSpublZ06ZNU3p6uiorK7V27Vq98847MQ24rKxMJSUlmjNnjvbv36/169fry1/+csz3+NWvfqUHH3xQ+/bt07e+9S0VFRXpzJkz1zQnAADXM/o94FIGgGcVFxebhIQEk5KSErMsX77cGGOMJDN37tyYr5k0aZKZN2+eMcaYl19+2aSnp5umpqbo9n/961/G5/OZ2tpaY4wxeXl55oknnrhkDZLML3/5y+jtpqYmI8ls2rSp33ICAHA9o98D8Ys55IDHff3rX1dZWVnMusGDB0evFxYWxmwrLCzUnj17JEmHDh3SuHHjlJKSEt0+efJk2batmpoaWZalEydOaMqUKT3WcPvtt0evp6SkKDU1VXV1dVcaCQAAdEK/B+ITA3LA41JSUrocUtZfkpKSerVfIBCIuW1ZlmzbvholAQBwXaLfA/GJOeTAdW7Hjh1dbo8aNUqSNGrUKO3du1fNzc3R7e+99558Pp9uvfVWDRw4UMOGDVNFRcU1rRkAAPQN/R5wJz4hBzyutbVVtbW1Mev8fr8yMzMlSWvXrlVBQYHuuusurV69Wrt27dKrr74qSSoqKtKyZctUXFysp556Sp988okeeeQRzZ49W9nZ2ZKkp556SnPnzlVWVpZmzJihxsZGvffee3rkkUeubVAAAK5j9HsgPjEgBzzurbfeUm5ubsy6W2+9VR9++KGk8BlR16xZo/nz5ys3N1evv/66Ro8eLUlKTk7W22+/rQULFujOO+9UcnKyZs6cqWeeeSZ6X8XFxWppadGzzz6rn/70p8rMzNR3vvOdaxcQAADQ74E4ZRljjNNFAHCGZVlat26d7rvvPqdLAQAAVwn9HnAv5pADAAAAAOAABuQAAAAAADiAQ9YBAAAAAHAAn5ADAAAAAOAABuQAAAAAADiAATkAAAAAAA5gQA4AAAAAgAMYkAMAAAAA4AAG5AAAAAAAOIABOQAAAAAADmBADgAAAACAA/4f5vRQbrowtTkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAAHUCAYAAABceomrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh60lEQVR4nOzdd3hT1R8G8Dfdu0CBDih77ymyq8gQZchPhgxBlgioiBNRqCigKIKKoiBLkaEMQVGWDEFQ9hSZBcooZbZ0j5zfH6c3N2nT0rRJb5q8n+fJc5Ob25uTknLz3u855+qEEAJEREREREREVORctG4AERERERERkbNiKCciIiIiIiLSCEM5ERERERERkUYYyomIiIiIiIg0wlBOREREREREpBGGciIiIiIiIiKNMJQTERERERERaYShnIiIiIiIiEgjDOVEREREREREGmEoJ3Iiixcvhk6ng06nw44dO3I8L4RAtWrVoNPpEBERYVh/+/ZtTJgwAXXq1IGvry8CAwNRq1YtDBo0CMeOHTO7f3M3c69JRESkJeXYdeDAAa2bYrEhQ4agUqVKJuumTZuGn3/+Oce2Rfk+IyMjodPprLKvgn53Afj9hYoPN60bQERFz9/fHwsWLMhx8Nq5cyfOnz8Pf39/w7qEhAQ8/PDDSEhIwOuvv46GDRsiOTkZZ86cwZo1a3DkyBE0aNDAZD+LFi1CrVq1crxunTp1bPJ+iIiInNG7776Ll19+2WTdtGnT8PTTT6Nnz57aNArA8OHD0aVLF6vu05LvLgC/v1DxwlBO5IT69u2LH374AV9++SUCAgIM6xcsWICWLVsiPj7esO6nn37CuXPnsG3bNjzyyCMm+xk/fjz0en2O/derVw/NmjWz3RsgIiJyYklJSfDx8UHVqlW1bopZ5cuXR/ny5a26T0u+uwD8/kLFC7uvEzmhZ555BgCwfPlyw7q4uDisXr0aQ4cONdn29u3bAIDQ0FCz+3Jx4X8jRETk+Hbv3o0OHTrA398fPj4+aNWqFTZs2GB2u5YtW8LLywvlypXDu+++i2+//RY6nQ4XL140bLdy5Up06tQJoaGh8Pb2Ru3atfHWW28hMTHRZH9DhgyBn58fjh8/jk6dOsHf3x8dOnQwPGfcfV2n0yExMRFLliwxdL3OXlm+f/8+XnjhBZQuXRpBQUHo1asXrl27ZrJNpUqV8OSTT+LXX39F48aNDe379ddfAcju3rVr14avry8eeuihHF3ic+u+vmzZMrRs2RJ+fn7w8/NDo0aNsGDBggf+7gHLvrsA/P5CxQs/jUROKCAgAE8//TQWLlxoWLd8+XK4uLigb9++Jtu2bNkSAPDss8/i559/Nhzk8pKZmYmMjAyTW2ZmpnXfBBERURHZuXMnHn30UcTFxWHBggVYvnw5/P390a1bN6xcudKw3bFjx9CxY0ckJSVhyZIl+Prrr3Ho0CFMnTo1xz7Pnj2Lrl27YsGCBdi4cSPGjRuHH3/8Ed26dcuxbVpaGrp3745HH30U69atw3vvvWe2nXv37oW3tze6du2KvXv3Yu/evfjqq69Mthk+fDjc3d2xbNkyzJgxAzt27MDAgQNz7Ovo0aOYMGEC3nzzTaxZswaBgYHo1asXJk+ejG+//RbTpk3DDz/8gLi4ODz55JNITk7O83c4adIkDBgwAGFhYVi8eDHWrl2LwYMH49KlS3n+nMKS7y4Av79QMSOIyGksWrRIABD79+8X27dvFwDEiRMnhBBCNG/eXAwZMkQIIUTdunVF+/btDT83ZcoU4eHhIQAIAKJy5cpi1KhR4ujRo2b3b+7m6upaZO+TiIgov4yPjbl5+OGHRdmyZcX9+/cN6zIyMkS9evVE+fLlhV6vF0II0bt3b+Hr6ytu3rxp2C4zM1PUqVNHABBRUVFm96/X60V6errYuXOnAGByfB08eLAAIBYuXJjj5wYPHiwqVqxoss7X11cMHjw41/c5evRok/UzZswQAMT169cN6ypWrCi8vb3FlStXDOuOHDkiAIjQ0FCRmJhoWP/zzz8LAGL9+vWGdZMnTxbGMePChQvC1dVVDBgwwOz7z0tBv7sIwe8vVHywUk7kpNq3b4+qVati4cKFOH78OPbv32+2+xcgJ5K5fPkyFi5ciOeffx5+fn74+uuv0bRpU5NuZIrvvvsO+/fvN7n9888/tn5LREREVpeYmIh//vkHTz/9NPz8/AzrXV1dMWjQIFy5cgWnT58GoFbUS5cubdjOxcUFffr0ybHfCxcuoH///ggJCYGrqyvc3d3Rvn17AMCpU6dybP+///3PKu+ne/fuJo+Vyc6yV6wbNWqEcuXKGR7Xrl0bABAREQEfH58c6/OqeG/ZsgWZmZkYM2ZModpuyXcXgN9fqPjgRG9ETkqn0+G5557D559/jpSUFNSoUQNt27bNdfvg4GA899xzeO655wAAf/75Jx5//HG8/PLLhnFeitq1a3OiFCIicgh3796FEMLs2OSwsDAA6vjl27dvIzg4OMd22dclJCSgbdu28PLywgcffIAaNWrAx8cH0dHR6NWrV46u4D4+PiaTmxVGUFCQyWNPT08AyPGapUqVMnns4eGR5/qUlJRcX/PmzZsAUOjJ3yz97gLw+wsVD6yUEzmxIUOG4NatW/j6668NB6v8ateuHTp16oSbN28iNjbWRi0kIiLSVsmSJeHi4oLr16/neE6ZIE2pjAcFBeHGjRs5touJiTF5vG3bNly7dg0LFy7E8OHD0a5dOzRr1izHZb0U1rrmt1bKlCkDALhy5Uqh91WY7y4Av7+QfWIoJ3Ji5cqVw+uvv45u3bph8ODBZre5ceOG2cuGZGZm4uzZs/Dx8UGJEiVs3FIiIiJt+Pr6okWLFlizZo1JNVmv12Pp0qUoX748atSoAUB2r962bRtu3bplst1PP/1ksk8lZCtVasU333xT6PZ6eno+cNK1otapUye4urpi7ty5hd5Xfr67APz+QsULu68TObkPP/wwz+e///57fPPNN+jfvz+aN2+OwMBAXLlyBd9++y1OnjyJSZMmGbquKU6cOIGMjIwc+6patarhbDkREZE92bZtm8klyxRdu3bF9OnT0bFjRzzyyCN47bXX4OHhga+++gonTpzA8uXLDSF74sSJ+OWXX9ChQwdMnDgR3t7e+Prrrw2XOVMuw9WqVSuULFkSo0aNwuTJk+Hu7o4ffvgBR48eLfT7qF+/Pnbs2IFffvkFoaGh8Pf3R82aNQu938KoVKkS3n77bbz//vtITk7GM888g8DAQPz777+4detWrrPJ5+ZB310Afn+h4oWhnIjy9MQTTyAmJga//fYb5s6di7t378Lf3x8NGjTA999/b/YyKrl1J5s/fz6GDx9u6yYTERFZ7M033zS7PioqylABnzx5MoYMGQK9Xo+GDRti/fr1ePLJJw3bNmzYEFu2bMFrr72GZ599FiVLlsSgQYPQvn17vPnmmwgMDAQgu7lv2LABr776KgYOHAhfX1/06NEDK1euRJMmTQr1Pj777DOMGTMG/fr1Q1JSEtq3b48dO3YUap/WMGXKFFSvXh1ffPEFBgwYADc3N1SvXh0vvfSSTV6P31+oONEJIYTWjSAiIiIiclSdOnXCxYsXcebMGa2bQkR2iJVyIiIiIiIrGT9+PBo3bozw8HDcuXMHP/zwA7Zs2YIFCxZo3TQislMM5UREREREVpKZmYlJkyYhJiYGOp0OderUybW7NBERwO7rRERERERERJrhJdGIiIiIiIiINMJQTkRERERERKQRhnIiIiIiIiIijTj8RG96vR7Xrl2Dv78/dDqd1s0hIiKCEAL3799HWFgYXFx4fryweKwnIiJ7Y8mx3uFD+bVr1xAeHq51M4iIiHKIjo5G+fLltW5GscdjPRER2av8HOsdPpT7+/sDkL+MgIAAjVtDREQExMfHIzw83HCMosLhsZ6IiOyNJcd6hw/lSje2gIAAHqiJiMiusKu1dfBYT0RE9io/x3oOZCMiIiIiIiLSCEM5ERERERERkUYYyomIiIiIiIg04vBjyomI8ksIgYyMDGRmZmrdFCrmXF1d4ebmxjHjRER2hsd6shZrHusZyomIAKSlpeH69etISkrSuinkIHx8fBAaGgoPDw+tm0JEROCxnqzPWsd6hnIicnp6vR5RUVFwdXVFWFgYPDw8WOGkAhNCIC0tDTdv3kRUVBSqV68OFxeOFiMi0hKP9WRN1j7WM5QTkdNLS0uDXq9HeHg4fHx8tG4OOQBvb2+4u7vj0qVLSEtLg5eXl9ZNIiJyajzWk7VZ81jPU/dERFlYzSRr4ueJiMj+8P9msiZrfZ74qSQiIiIiIiLSCEM5ERERERERkUYYyomIyCAiIgLjxo3L9/YXL16ETqfDkSNHbNYmANixYwd0Oh3u3btn09chIiJyBjze2xdO9EZEVAw9aMbYwYMHY/HixRbvd82aNXB3d8/39uHh4bh+/TpKly5t8WsRERFR3ni8dw4M5URExdD169cN91euXIlJkybh9OnThnXe3t4m26enp+fr4FuqVCmL2uHq6oqQkBCLfoaIiIjyh8d758Du6xbo2xeoVw/YvVvrlhCRLQkBJCZqcxMif20MCQkx3AIDA6HT6QyPU1JSUKJECfz444+IiIiAl5cXli5ditu3b+OZZ55B+fLl4ePjg/r162P58uUm+83ena1SpUqYNm0ahg4dCn9/f1SoUAHz5s0zPJ+9O5vS7eyPP/5As2bN4OPjg1atWpl8gQCADz74AGXLloW/vz+GDx+Ot956C40aNbLo32n16tWoW7cuPD09UalSJcycOdPk+a+++grVq1eHl5cXgoOD8fTTTxueW7VqFerXrw9vb28EBQXhscceQ2JiokWvT45p1iygfn0g28eJiBwQj/fjDI95vNcWQ7kFzp0DTp4E4uO1bgkR2VJSEuDnp80tKcl67+PNN9/ESy+9hFOnTqFz585ISUlB06ZN8euvv+LEiRMYOXIkBg0ahH/++SfP/cycORPNmjXD4cOHMXr0aLzwwgv477//8vyZiRMnYubMmThw4ADc3NwwdOhQw3M//PADpk6dio8++ggHDx5EhQoVMHfuXIve28GDB9GnTx/069cPx48fR2RkJN59911DF74DBw7gpZdewpQpU3D69Gls3LgR7dq1AyCrDs888wyGDh2KU6dOYceOHejVqxdEfr8hkUO7cwc4cQKIitK6JURkazzem+LxXkPCwcXFxQkAIi4urtD7at5cCECI9eut0DAishvJycni33//FcnJyUIIIRIS5N+6FreEBMvbv2jRIhEYGGh4HBUVJQCI2bNnP/Bnu3btKl599VXD4/bt24uXX37Z8LhixYpi4MCBhsd6vV6ULVtWzJ071+S1Dh8+LIQQYvv27QKA2Lp1q+FnNmzYIAAYfr8tWrQQY8aMMWlH69atRcOGDXNtp7Lfu3fvCiGE6N+/v+jYsaPJNq+//rqoU6eOEEKI1atXi4CAABEfH59jXwcPHhQAxMWLF3N9PWvI/rkyZs1jE1n39zl7tvxb7NvXCg0jIrth7v9kHu9fNjzm8b5grHWsZ6XcAq6ucpmZqW07iMi2fHyAhARtbj4+1nsfzZo1M3mcmZmJqVOnokGDBggKCoKfnx82b96My5cv57mfBg0aGO4r3eZiY2Pz/TOhoaEAYPiZ06dP46GHHjLZPvvjBzl16hRat25tsq5169Y4e/YsMjMz0bFjR1SsWBFVqlTBoEGD8MMPPyApqyzRsGFDdOjQAfXr10fv3r0xf/583L1716LXJ8elzGF065a27SAi2+Px3hSP99phKLcAQzmRc9DpAF9fbW4PmGTVIr6+viaPZ86ciVmzZuGNN97Atm3bcOTIEXTu3BlpaWl57if7hDE6nQ56vT7fP6PMHGv8M9lnkxUWdiUTQuS5D39/fxw6dAjLly9HaGgoJk2ahIYNG+LevXtwdXXFli1b8Pvvv6NOnTr44osvULNmTUSxvzKBoZzImfB4b4rHe+0wlFuAoZyIirNdu3ahR48eGDhwIBo2bIgqVarg7NmzRd6OmjVrYt++fSbrDhw4YNE+6tSpg93ZZt3cs2cPatSoAdes/6zd3Nzw2GOPYcaMGTh27BguXryIbdu2AZBfElq3bo333nsPhw8fhoeHB9auXVuId0WOgqGciIo7Hu+L3/Gel0SzAEM5ERVn1apVw+rVq7Fnzx6ULFkSn376KWJiYlC7du0ibceLL76IESNGoFmzZmjVqhVWrlyJY8eOoUqVKvnex6uvvormzZvj/fffR9++fbF3717MmTMHX331FQDg119/xYULF9CuXTuULFkSv/32G/R6PWrWrIl//vkHf/zxBzp16oSyZcvin3/+wc2bN4v890D2yTiUC2HdahYRUVHg8b74He8Zyi3AUE5Exdm7776LqKgodO7cGT4+Phg5ciR69uyJuLi4Im3HgAEDcOHCBbz22mtISUlBnz59MGTIkBxn0/PSpEkT/Pjjj5g0aRLef/99hIaGYsqUKRgyZAgAoESJElizZg0iIyORkpKC6tWrY/ny5ahbty5OnTqFP//8E7Nnz0Z8fDwqVqyImTNn4vHHH7fRO6biRAnlqanyskV+ftq2h4jIUjzeF7/jvU5Y2rG/mImPj0dgYCDi4uIQEBBQqH116QJs2gQsXgwMHmyd9hGR9lJSUhAVFYXKlSvDy8tL6+Y4pY4dOyIkJATff/+91k2xmrw+V9Y8NpF1f59CyAmYUlLkZdEqVbJOG4lIWzzW2wdHO95b61jPSrkFWCknIiq8pKQkfP311+jcuTNcXV2xfPlybN26FVu2bNG6aUTQ6WS1/MoV2YWdoZyIqGB4vM8/hnILuGX9tjIytG0HEVFxptPp8Ntvv+GDDz5AamoqatasidWrV+Oxxx7TumlEAExDORERFQyP9/nHUG4BVsqJiArP29sbW7du1boZRLniDOxERIXH433+8ZJoFmAoJyIicnwM5UREVJQYyi3AUE5ERGRb06dPh06nw7hx4zRrA0M5EREVJYZyCzCUExER2c7+/fsxb948NGjQQNN2MJQTEVFRYii3AEM5ERGRbSQkJGDAgAGYP38+SpYsqV1DIiPx1kcl8D7eYSgnIqIiwVBuAYZyIiIi2xgzZgyeeOKJfM3Km5qaivj4eJOb1ej18EyOQwncYygnIqIiwdnXLcBQTkREZH0rVqzAoUOHsH///nxtP336dLz33nu2aYy/v1zgPkM5EREVCVbKLcBQTkSOJiIiwmRCrUqVKmH27Nl5/oxOp8PPP/9c6Ne21n7yEhkZiUaNGtn0NahwoqOj8fLLL2Pp0qXw8vLK189MmDABcXFxhlt0dLT1GpQVygMQz1BORA6Dx3v7xlBuAYZyIrIX3bp1y7Wb7969e6HT6XDo0CGL97t//36MHDmysM0zkduB8vr163j88cet+lpU/Bw8eBCxsbFo2rQp3Nzc4Obmhp07d+Lzzz+Hm5sbMs0cdD09PREQEGBys5qsfSmVciGst2siIkvxeO8c2H3dAgzlRGQvhg0bhl69euHSpUuoWLGiyXMLFy5Eo0aN0KRJE4v3W6ZMGWs18YFCQkKK7LXIfnXo0AHHjx83Wffcc8+hVq1aePPNN+GqHHyLilH39cxMIC4OKFGiaJtARKTg8d45sFJuAYZyIichBJCYqM0tn2W5J598EmXLlsXixYtN1iclJWHlypUYNmwYbt++jWeeeQbly5eHj48P6tevj+XLl+e53+zd2c6ePYt27drBy8sLderUwZYtW3L8zJtvvokaNWrAx8cHVapUwbvvvov09HQAwOLFi/Hee+/h6NGj0Ol00Ol0hjZn7852/PhxPProo/D29kZQUBBGjhyJhIQEw/NDhgxBz5498cknnyA0NBRBQUEYM2aM4bXyQ6/XY8qUKShfvjw8PT3RqFEjbNy40fB8Wloaxo4di9DQUHh5eaFSpUqYPn264fnIyEhUqFABnp6eCAsLw0svvZTv1ybz/P39Ua9ePZObr68vgoKCUK9evaJvUFalvIROTh7HLuxEDozHe8NjHu+1Pd6zUm4BhnIiJ5GUBPj5afPaCQmAr+8DN3Nzc8Ozzz6LxYsXY9KkSdDpdACAn376CWlpaRgwYACSkpLQtGlTvPnmmwgICMCGDRswaNAgVKlSBS1atHjga+j1evTq1QulS5fG33//jfj4eJPxaAp/f38sXrwYYWFhOH78OEaMGAF/f3+88cYb6Nu3L06cOIGNGzdi69atAIDAwMAc+0hKSkKXLl3w8MMPY//+/YiNjcXw4cMxduxYky8i27dvR2hoKLZv345z586hb9++aNSoEUaMGPHA9wMAn332GWbOnIlvvvkGjRs3xsKFC9G9e3ecPHkS1atXx+eff47169fjxx9/RIUKFRAdHW0Yr7xq1SrMmjULK1asQN26dRETE4OjR4/m63WpGFHGlLvcBzJlKK9WTeM2EZFt8HgPgMd7uzjeCwcXFxcnAIi4uLhC7+v114UAhBg/3goNIyK7kZycLP7991+RnJwsVyQkyD92LW4JCflu96lTpwQAsW3bNsO6du3aiWeeeSbXn+natat49dVXDY/bt28vXn75ZcPjihUrilmzZgkhhNi0aZNwdXUV0dHRhud///13AUCsXbs219eYMWOGaNq0qeHx5MmTRcOGDXNsZ7yfefPmiZIlS4oEo/e/YcMG4eLiImJiYoQQQgwePFhUrFhRZGRkGLbp3bu36Nu3b65tyf7aYWFhYurUqSbbNG/eXIwePVoIIcSLL74oHn30UaHX63Psa+bMmaJGjRoiLS0t19czluNzZcSaxyay8u/zzBkhAHHfxV8AQvzyS+F3SUTaM/t/Mo/3Qgge77Oz5HhvrWM9K+UWYKWcyEn4+Mgz2Fq9dj7VqlULrVq1wsKFC/HII4/g/Pnz2LVrFzZv3gwAyMzMxIcffoiVK1fi6tWrSE1NRWpqKnzzcWYeAE6dOoUKFSqgfPnyhnUtW7bMsd2qVaswe/ZsnDt3DgkJCcjIyLB44q1Tp06hYcOGJm1r3bo19Ho9Tp8+jeDgYABA3bp1TcYYh4aG5hiPnJv4+Hhcu3YNrVu3NlnfunVrwxnwIUOGoGPHjqhZsya6dOmCJ598Ep06dQIA9O7dG7Nnz0aVKlXQpUsXdO3aFd26dYObGw+lDiXrs+ujTwAgcOuWTtv2EJHt8HgPgMd7ezjeazqmPCMjA++88w4qV64Mb29vVKlSBVOmTIFerzdsI4RAZGQkwsLC4O3tjYiICJw8eVKT9jKUEzkJnU52KdPiprMsAAwbNgyrV69GfHw8Fi1ahIoVK6JDhw4AgJkzZ2LWrFl44403sG3bNhw5cgSdO3dGWlpavvYtzIx302Vr399//41+/frh8ccfx6+//orDhw9j4sSJ+X4N49fKvm9zr+nu7p7jOeNjRn5kfx3j127SpAmioqLw/vvvIzk5GX369MHTTz8NAAgPD8fp06fx5ZdfwtvbG6NHj0a7du0sGuNGxUBW93UXCPgikWPKiRwZj/cAeLy3h+O9pqH8o48+wtdff405c+bg1KlTmDFjBj7++GN88cUXhm1mzJiBTz/9FHPmzMH+/fsREhKCjh074v79+0XeXoZyIrI3ffr0gaurK5YtW4YlS5bgueeeMxxwdu3ahR49emDgwIFo2LAhqlSpgrNnz+Z733Xq1MHly5dx7do1w7q9e/eabPPXX3+hYsWKmDhxIpo1a4bq1avj0qVLJtt4eHiYvaxV9tc6cuQIEhMTTfbt4uKCGjVq5LvNeQkICEBYWBh2795tsn7Pnj2oXbu2yXZ9+/bF/PnzsXLlSqxevRp37twBAHh7e6N79+74/PPPsWPHDuzduzffZ+6pmPD2NhzwAxCP27c1bg8REXi8t0RxPN5r2udu79696NGjB5544gkAchbA5cuX48CBAwDk2YzZs2dj4sSJ6NWrFwBgyZIlCA4OxrJly/D8888XaXsZyonI3vj5+aFv3754++23ERcXhyFDhhieq1atGlavXo09e/agZMmS+PTTTxETE2NyQMrLY489hpo1a+LZZ5/FzJkzER8fj4kTJ5psU61aNVy+fBkrVqxA8+bNsWHDBqxdu9Zkm0qVKiEqKgpHjhxB+fLl4e/vD09PT5NtBgwYgMmTJ2Pw4MGIjIzEzZs38eKLL2LQoEGGrmzW8Prrr2Py5MmoWrUqGjVqhEWLFuHIkSP44YcfAACzZs1CaGgoGjVqBBcXF/z0008ICQlBiRIlsHjxYmRmZqJFixbw8fHB999/D29v7xyXqKFiTqeT1fJ79wzXKici0hqP95Ypbsd7TSvlbdq0wR9//IEzZ84AAI4ePYrdu3eja9euAICoqCjExMQY+vcDgKenJ9q3b489e/aY3Wdqairi4+NNbtaiDCNgKCciezJs2DDcvXsXjz32GCpUqGBY/+6776JJkybo3LkzIiIiEBISgp49e+Z7vy4uLli7di1SU1Px0EMPYfjw4Zg6darJNj169MArr7yCsWPHolGjRtizZw/effddk23+97//oUuXLnjkkUdQpkwZs5dp8fHxwaZNm3Dnzh00b94cTz/9NDp06IA5c+ZY9st4gJdeegmvvvoqXn31VdSvXx8bN27E+vXrUb16dQDyS89HH32EZs2aoXnz5rh48SJ+++03uLi4oESJEpg/fz5at26NBg0a4I8//sAvv/yCoKAgq7aR7IAyAzviGcqJyG7weJ9/xe14rxPmBhEUESEE3n77bXz00UdwdXVFZmYmpk6digkTJgCQXQxat26Nq1evIiwszPBzI0eOxKVLl7Bp06Yc+4yMjMR7772XY31cXJzFExFk99FHwFtvAUOGAIsWFWpXRGRHUlJSEBUVhcqVK8PLy0vr5pCDyOtzFR8fj8DAQKscm8gGv8969YCTJ/Eo/kB6m0exa1fhd0lE2uKxnmzBWsd6TSvlK1euxNKlS7Fs2TIcOnQIS5YswSeffIIlS5aYbJfXIP3sJkyYgLi4OMNNud6cNSjd1zMyrLZLIiIisjdZlXJ2XycioqKg6Zjy119/HW+99Rb69esHAKhfvz4uXbqE6dOnY/DgwQgJCQEAxMTEIDQ01PBzsbGxuY458PT0zDF2wVo4ppyIiMgJZFU02H2diIiKgqaV8qSkJLi4mDbB1dXVMN195cqVERISgi1bthieT0tLw86dO9GqVasibatsm1wylBMRETkwo0r5nTs87hMRkW1pWinv1q0bpk6digoVKqBu3bo4fPgwPv30UwwdOhSA7LY+btw4TJs2DdWrV0f16tUxbdo0+Pj4oH///kXeXoZyIiIiJ2A00ZteD9y7B3A+PyIishVNQ/kXX3yBd999F6NHj0ZsbCzCwsLw/PPPY9KkSYZt3njjDSQnJ2P06NG4e/cuWrRogc2bN8M/64BZlBjKiRybhvNekgPi56kYy+q+HuR+H0gH7txhKCdyFPy/mazJWp8nTUO5v78/Zs+ejdmzZ+e6jU6nQ2RkJCIjI4usXblhKCdyTO7u7gDkkBpvb2+NW0OOIikpCYD6+aJiJOvEf0k3GcqTkzVuDxEVGo/1ZAvWOtZrGsqLG4ZyIsfk6uqKEiVKIDY2FoC8hmZuV3ggehAhBJKSkhAbG4sSJUrAVTl4UPGRVSkv4RIPgKGcyBHwWE/WZO1jPUO5BRjKiRyXcrUH5WBNVFglSpQwfK6omFHGlLvcBwBkFUKIqJjjsZ6szVrHeoZyCzCUEzkunU6H0NBQlC1bFunp6Vo3h4o5d3d3VsiLM6OJ3gBWyokcBY/1ZE3WPNYzlFuAoZzI8bm6ujJMETm7rO7r/kJWyhnKiRwLj/VkbzS9Tnlxw1BORETkBLIq5X6ClXIiIrI9hnILMJQTERE5gaxKuU8mK+VERGR7DOUWYCgnIiJyAlmVciWUc6I3IiKyJYZyCzCUExEROYGsUO6dcR+AYKWciIhsiqHcAgzlRERETiCr+7qL0MMHSQzlRERkUwzlFmAoJyIicgI+PoCL/IoUgHiGciIisimGcgu4ZV1AjqGciIjIgel0hi7s/rjPUE5ERDbFUG4BVsqJiIichFEo50RvRERkSwzlFmAoJyIichJZoZzd14mIyNYYyi2ghPKMDG3bQURERDaWNdkbu68TEZGtMZRbgJVyIiIiJ8FKORERFRGGcgswlBMRETkJVsqJiKiIMJRbgKGciIjISXD2dSIiKiIM5RZgKCciInISRt3XOfs6ERHZEkO5BRjKiYiInAS7rxMRURFhKLcAQzkREZGT4ERvRERURBjKLcBQTkRE5CQ4ppyIiIoIQ7kFGMqJiIicBLuvExFREWEotwBDORERkZMw6r6emspjPxER2Q5DuQUYyomIiJyEUaUcAFJStGwMERE5MoZyCzCUExEROQmjSjkAdmEnIiKbYSi3gBLKhZA3IiIiclBGE70BDOVERGQ7DOUWUEI5wGo5ERGRQzPpvi4YyomIyGYYyi3AUE5EROQksirlbsiEN5KRlKRxe4iIyGExlFvAzU29z1BORETkwHx9AZ0OAC+LRkREtsVQbgFWyomIiJyEi4sM5mAoJyIi22IotwBDORERkRNxd5cLpDOUExGRzTCUW4ChnIiIyIl4eABgKCciIttiKLeAi9Fvi6GciIjIwbFSTkRERYCh3AI6nRrMMzK0bQsRERHZmFEo5+zrRERkKwzlFlK6sLNSTkRE5OBYKScioiLAUG4hhnIiIiInwVBORERFgKHcQgzlREREToKhnIiIigBDuYUYyomIiJwEQzkRERUBhnILMZQTERE5iaxQ7oE0TvRGREQ2w1BuIYZyIiIiJ8FKORERFQGGcgsxlBMRETkJhnIiIioCDOUWYignIiJyEh4eABjKiYjIthjKLcRQTkRE5CRYKScioiLAUG4hhnIiIiInYRTKOdEbERHZCkO5hRjKiYiInAQr5UREVAQYyi3EUE5EROQkGMqJiKgIMJRbyM1NLhnKiYiIrGP69Olo3rw5/P39UbZsWfTs2ROnT5/WulkM5UREVCQYyi3ESjkREZF17dy5E2PGjMHff/+NLVu2ICMjA506dUJiYqK2DWMoJyKiIuCmdQOKG4ZyIiIi69q4caPJ40WLFqFs2bI4ePAg2rVrp1GrYAjlHkhjKCciIpthKLcQQzkREZFtxcXFAQBKlSpl9vnU1FSkpqYaHsfHx9umIZx9nYiIigC7r1uIoZyIiMh2hBAYP3482rRpg3r16pndZvr06QgMDDTcwsPDbdMYDw8AMpSnp/PYT0REtsFQbiGGciIiItsZO3Ysjh07huXLl+e6zYQJExAXF2e4RUdH26YxRpVyAOzCTkRENsHu6xZSQnlGhrbtICIicjQvvvgi1q9fjz///BPly5fPdTtPT094enravkFmQrmfn+1floiInAtDuYVYKSciIrIuIQRefPFFrF27Fjt27EDlypW1bpKUFco9XdIBPSvlRERkGwzlFmIoJyIisq4xY8Zg2bJlWLduHfz9/RETEwMACAwMhLe3t3YNywrl3q4ylHOyNyIisgWOKbcQQzkREZF1zZ07F3FxcYiIiEBoaKjhtnLlSm0blhXKvVw5ppyIiGyHlXILMZQTERFZlxBC6yaYZ9x9HQzlRERkG6yUW4ihnIiIyEkooZyVciIisiGGcgsxlBMRETkJpfu6Lg0AQzkREdkGQ7mFGMqJiIicRFYo98jqvs6J3oiIyBYYyi3EUE5EROQkPDzkQsfu60REZDsM5RZiKCciInISSqUcDOVERGQ7DOUWYignIiJyElmh3J2VciIisiGGcgsxlBMRETkJJZQLhnIiIrIdhnILuWVd2Z2hnIiIyMFlhXI3dl8nIiIbYii3ECvlRERETiJbpZyzrxMRkS0wlFuIoZyIiMhJZIVyV3ZfJyIiG2IotxBDORERkZNQuq8zlBMRkQ0xlFuIoZyIiMhJKJXyzDQADOVERGQbmofyq1evYuDAgQgKCoKPjw8aNWqEgwcPGp4XQiAyMhJhYWHw9vZGREQETp48qVl7GcqJiIichBLK9ayUExGR7Wgayu/evYvWrVvD3d0dv//+O/7991/MnDkTJUqUMGwzY8YMfPrpp5gzZw7279+PkJAQdOzYEffv39ekzQzlRERETsLDA4AayuPitGwMERE5KjctX/yjjz5CeHg4Fi1aZFhXqVIlw30hBGbPno2JEyeiV69eAIAlS5YgODgYy5Ytw/PPP1/UTWYoJyIichZZlXKXTBnKb97UsjFEROSoNK2Ur1+/Hs2aNUPv3r1RtmxZNG7cGPPnzzc8HxUVhZiYGHTq1MmwztPTE+3bt8eePXvM7jM1NRXx8fEmN2tSQnlGhlV3S0RERPZGCeUZ6QAEYmO1bQ4RETkmTUP5hQsXMHfuXFSvXh2bNm3CqFGj8NJLL+G7774DAMTExAAAgoODTX4uODjY8Fx206dPR2BgoOEWHh5u1TazUk5EROQkskI5ALgiE7dv86Q8ERFZn6ahXK/Xo0mTJpg2bRoaN26M559/HiNGjMDcuXNNttPpdCaPhRA51ikmTJiAuLg4wy06OtqqbWYoJyIichJGodwD6RACuHVLw/YQEZFD0jSUh4aGok6dOibrateujcuXLwMAQkJCACBHVTw2NjZH9Vzh6emJgIAAk5s1MZQTERE5CaNQHhIkx5WzCzsREVmbpqG8devWOH36tMm6M2fOoGLFigCAypUrIyQkBFu2bDE8n5aWhp07d6JVq1ZF2lYFQzkREZGTMArloaUZyomIyDY0nX39lVdeQatWrTBt2jT06dMH+/btw7x58zBv3jwAstv6uHHjMG3aNFSvXh3Vq1fHtGnT4OPjg/79+2vSZoZyIiIiJ+HqCuh0gBCslBMRkc1oGsqbN2+OtWvXYsKECZgyZQoqV66M2bNnY8CAAYZt3njjDSQnJ2P06NG4e/cuWrRogc2bN8Pf31+TNjOUExERORF3dyAtDSGl0gAwlBMRkfVpGsoB4Mknn8STTz6Z6/M6nQ6RkZGIjIwsukblgaGciIjIiWSF8uBSrJQTEZFtaDqmvDhiKCciInIiHh4AgDIlGMqJiMg2GMot5JbVt4ChnIiIyAlkTfZWmqGciIhshKHcQqyUExEROREllAcwlBMRkW0wlFuIoZyIiMiJZIXyIIZyIiKyEYZyCzGUExEROZGsUF7Kn6GciIhsg6HcQgzlRERETiQrlJf0k6E8MVHeiIiIrIWh3EIM5URE5KgOHTqE48ePGx6vW7cOPXv2xNtvv420tDQNW6ahrFDu454OT0+56uZNDdtDREQOh6HcEu3bo89wf3TAVoZyIiJyOM8//zzOnDkDALhw4QL69esHHx8f/PTTT3jjjTc0bp1GskK5LiMdZcvKVezCTkRE1sRQbomkJLinJMADaQzlRETkcM6cOYNGjRoBAH766Se0a9cOy5Ytw+LFi7F69WptG6eVrFCOtDQEB8u7DOVERGRNDOWWyLpIuRsyGMqJiMjhCCGg1+sBAFu3bkXXrl0BAOHh4bh165aWTdOOEsrTWSknIiLbYCi3RNaAcoZyIiJyRM2aNcMHH3yA77//Hjt37sQTTzwBAIiKikKwUiZ2Nh4ecslQTkRENsJQbgmjSnlGhsZtISIisrLZs2fj0KFDGDt2LCZOnIhq1aoBAFatWoVWrVpp3DqNZKuUuyEdKReuadsmIiJyKG5aN6BYyQrlrshkpZyIiBxOgwYNTGZfV3z88cdwVS4/4myyhfIlGIx+81cA404Adepo2zYiInIIrJRbgmPKiYjIgUVHR+PKlSuGx/v27cO4cePw3XffwV0Jp84mWyivhxNwgQCOHdO2XURE5DAYyi3BUE5ERA6sf//+2L59OwAgJiYGHTt2xL59+/D2229jypQpGrdOI9lCuQ+S5OM7d7RrExERORSGckswlBMRkQM7ceIEHnroIQDAjz/+iHr16mHPnj2Gy6I5JYZyIiKyMYZyS3D2dSIicmDp6enw9PQEIC+J1r17dwBArVq1cP36dS2bpp1cQrm4zVBORETWwVBuCVbKiYjIgdWtWxdff/01du3ahS1btqBLly4AgGvXriEoKEjj1mnEKJSXKaOG8tQYhnIiIrIOhnJLcPZ1IiJyYB999BG++eYbRERE4JlnnkHDhg0BAOvXrzd0a3c6SihPS4OHLh0eSAcApN9gKCciIuvgJdEswUo5ERE5sIiICNy6dQvx8fEoWbKkYf3IkSPh4+OjYcs05OEhl+npQHKyYbX+JkM5ERFZB0O5JRjKiYjIwbm6uiIjIwO7d++GTqdDjRo1UKlSJa2bpR2j7utISjKsFpzojYiIrITd1y3Bid6IiMiBJSYmYujQoQgNDUW7du3Qtm1bhIWFYdiwYUgyCqROJZdQ7hrHUE5ERNbBUG4JVsqJiMiBjR8/Hjt37sQvv/yCe/fu4d69e1i3bh127tyJV199VevmaSOXUO6VdAcQQqNGERGRI2H3dUtwojciInJgq1evxqpVqxAREWFY17VrV3h7e6NPnz6YO3eudo3TSi6h3F2kA4mJgJ+fRg0jIiJHwUq5JVgpJyIiB5aUlITg4OAc68uWLcvu69lCOQBkcrI3IiKyAoZySzCUExGRA2vZsiUmT56MlJQUw7rk5GS89957aNmypYYt01AeoTzmX4ZyIiIqPHZftwRDORERObDPPvsMXbp0Qfny5dGwYUPodDocOXIEXl5e2LRpk9bN00Yeofzq8Tso94QGbSIiIofCUG4Jzr5OREQOrF69ejh79iyWLl2K//77D0II9OvXDwMGDIC3t7fWzdNGHqH85mlWyomIqPAYyi3BSjkRETk4b29vjBgxQutm2A8llKel5Qjl96IYyomIqPAYyi1hNPu6EPJKKDqdxm0iIiIqhPXr1+d72+7du9uwJXbKw0MuzVTKk6IZyomIqPAYyi1hVCkHgMxMwyoiIqJiqWfPnvnaTqfTIdMZu4nl0X09/QZDORERFR4jpSWyhfKMDIZyIiIq3vR6vdZNsG95hHKPxDu4fx/w99egXURE5DB4STRLGE30BoDjyomIiByduVBeogQAoBTu4MwZbZpFRESOg6HcEma6rxMREZEDMxfKy5cHIEP56dMatYuIiBwGQ7kljCZ6AxjKiYiIHB5DORER2RhDuSVYKSciIrKZr776CpUrV4aXlxeaNm2KXbt2ad0khnIiIrI5hnJLMJQTERHZxMqVKzFu3DhMnDgRhw8fRtu2bfH444/j8uXL2jaMoZyIiGyModwSWaHcnaGciIgc0G+//YZNmzblWL9p0yb8/vvvNn3tTz/9FMOGDcPw4cNRu3ZtzJ49G+Hh4Zg7d65NX/eB8gjlPkjG1XPJEEKjthERkUNgKLdE1uzr7jqGciIicjxvvfWW2WuRCyHw1ltv2ex109LScPDgQXTq1MlkfadOnbBnz54c26empiI+Pt7kZjNKKE9LU0N5SAiEckWWhLu4w8uVExFRITCUW0Lpvs5QTkREDujs2bOoU6dOjvW1atXCuXPnbPa6t27dQmZmJoKDg03WBwcHIyYmJsf206dPR2BgoOEWHh5us7bBw0MujSvlvr7QlSwJQHZhj4qy3csTEZHjYyi3hGFMOWdfJyIixxMYGIgLFy7kWH/u3Dn4+vra/PV1Op3JYyFEjnUAMGHCBMTFxRlu0dHRtmuUue7rPj5AqVIAGMqJiKjwGMotwUo5ERE5sO7du2PcuHE4f/68Yd25c+fw6quvonv37jZ73dKlS8PV1TVHVTw2NjZH9RwAPD09ERAQYHKzGYZyIiKyMYZyS3CiNyIicmAff/wxfH19UatWLVSuXBmVK1dG7dq1ERQUhE8++cRmr+vh4YGmTZtiy5YtJuu3bNmCVq1a2ex184WhnIiIbMxN6wYUK8qkLgzlRETkgAIDA7Fnzx5s2bIFR48ehbe3Nxo0aIB27drZ/LXHjx+PQYMGoVmzZmjZsiXmzZuHy5cvY9SoUTZ/7TwpoVwIIDFR3s8Wyk8wlBMRUSEwlFuC3deJiMjB6XQ6dOrUKcdM6LbWt29f3L59G1OmTMH169dRr149/Pbbb6hYsWKRtiMHJZQbY6WciIisiKHcElmh3JUTvRERkYP4/PPPMXLkSHh5eeHzzz/Pc9uXXnrJpm0ZPXo0Ro8ebdPXsJi5UO7tbRLKL14E9HrAhYMCiYioABjKLWGYfZ2VciIicgyzZs3CgAED4OXlhVmzZuW6nU6ns3kot0vZQ7m7u7xlhfIg3R2kpQHXrwPlymnQPiIiKvYYyi3BUE5ERA4myqjvdRT7YeeUNZ+MgY+PXGaF8lDPO0AKEBXFUE5ERAXDjlaWYCgnIiJyLjqdabU8WygPdrsDABxXTkREBVagSnl0dDR0Oh3Kly8PANi3bx+WLVuGOnXqYOTIkVZtoF3JOlvuKhjKiYjI8QghsGrVKmzfvh2xsbHQ6/Umz69Zs0ajlmnMw0NeEg3IEcpLgqGciIgKp0CV8v79+2P79u0AgJiYGHTs2BH79u3D22+/jSlTpli1gXYlW6U8I0PLxhAREVnXyy+/jEGDBiEqKgp+fn4IDAw0uTktc5XykiUBAH7pdwEwlBMRUcEVqFJ+4sQJPPTQQwCAH3/8EfXq1cNff/2FzZs3Y9SoUZg0aZJVG2k3OPs6ERE5sKVLl2LNmjXo2rWr1k2xL+ZCeYkSAACv1Hi4IBNRUa45f46IiCgfClQpT09Ph6enJwBg69at6N69OwCgVq1auH79uvVaZ2+UUM7u60RE5IACAwNRpUoVrZthf/KolANAIOJYKSciogIrUCivW7cuvv76a+zatQtbtmxBly5dAADXrl1DUFCQVRtoV5Tu6wzlRETkgCIjI/Hee+8hOTlZ66bYF3Oh3N0d8PUFAJTEXVy5og47JyIiskSBuq9/9NFHeOqpp/Dxxx9j8ODBaNiwIQBg/fr1hm7tDkmZ6I2zrxMRkQPq3bs3li9fjrJly6JSpUpwz3aN7kOHDmnUMo2ZC+WA7MKemIhgj3u4kAZcvgxUrVrkrSMiomKuQKE8IiICt27dQnx8PEoadd8aOXIkfIwPVo6G3deJiMiBDRkyBAcPHsTAgQMRHBwMnU6ndZPsQ26hvGRJ4OpV1Aq+i73RcrI3hnIiIrJUgUJ5cnIyhBCGQH7p0iWsXbsWtWvXRufOna3aQLuSFcpdIKCDHpmZvMw7ERE5jg0bNmDTpk1o06aN1k2xL3mFcgDVgu4C0ZyBnYiICqZAqbJHjx747rvvAAD37t1DixYtMHPmTPTs2RNz5861agPtipt6DsMVmayUExGRQwkPD0dAQIDWzbA/eXVfB1C5hLws2oULRdgmIiJyGAUK5YcOHULbtm0BAKtWrUJwcDAuXbqE7777Dp9//rlVG2hXjEK5GzIYyomIyKHMnDkTb7zxBi5evKh1U+zLAyrl5f3uAQDOny/CNhERkcMoUPf1pKQk+Pv7AwA2b96MXr16wcXFBQ8//DAuXbpk1QbaFYZyIiJyYAMHDkRSUhKqVq0KHx+fHBO93blzR6OWaczDQ71vJpSHeMpKOUM5EREVRIFCebVq1fDzzz/jqaeewqZNm/DKK68AAGJjYx2721vW7OsAQzkRETme2bNna90E+/SA7utBLmooFwLg/HhERGSJAoXySZMmoX///njllVfw6KOPomXLlgBk1bxx48ZWbaBdMQrlHFNORESOZvDgwVo3wT49oPt6gLgHAIiLA+7cAYKCirBtRERU7BUolD/99NNo06YNrl+/brhGOQB06NABTz31lNUaZ3dcXORNr2elnIiIHJJer8e5c+cQGxsLvV5v8ly7du00apXGHhDK3eLvIjQUuH5dVssZyomIyBIFCuUAEBISgpCQEFy5cgU6nQ7lypXDQw89ZM222Sc3NyAtjaGciIgczt9//43+/fvj0qVLEEKYPKfT6ZDprAe+B3Rfx927qFpVDeXO8HWIiIisp0Czr+v1ekyZMgWBgYGoWLEiKlSogBIlSuD999/PcVbd4WRN9sZQTkREjmbUqFFo1qwZTpw4gTt37uDu3buGm9NO8gY8sFKOe/dQtaq8y8neiIjIUgWqlE+cOBELFizAhx9+iNatW0MIgb/++guRkZFISUnB1KlTrd1O+5E1rpyhnIiIHM3Zs2exatUqVKtWTeum2JcHhfKsSjnAUE5ERJYrUChfsmQJvv32W3Tv3t2wrmHDhihXrhxGjx7t2KGclXIiInJQLVq0wLlz5xjKs8tP9/UqAoCOoZyIiCxWoFB+584d1KpVK8f6WrVqOX73tqxQztnXiYjIERw7dsxw/8UXX8Srr76KmJgY1K9fP8d1yhs0aFDUzbMPD6qUZ2aielgiAD+GciIisliBQnnDhg0xZ84cfP755ybr58yZ4/gHbFbKiYjIgTRq1Ag6nc5kYrehQ4ca7ivPOfVEbx4e6n3jUO7jIwN7ejqqlroLwA/XrgHJyYC3d5G3koiIiqkChfIZM2bgiSeewNatW9GyZUvodDrs2bMH0dHR+O2336zdRvvCUE5ERA4kKipK6ybYv9wq5Tqd7MJ+8yZK4i4CAsIRHw9cuADUrVvkrSQiomKqQLOvt2/fHmfOnMFTTz2Fe/fu4c6dO+jVqxdOnjyJRYsWFagh06dPh06nw7hx4wzrhBCIjIxEWFgYvL29ERERgZMnTxZo/1ZjFMozMrRtChERUWFVrFjRcLt06RLKlStnsq5ixYooV64cLl26pHVTtZNbKAcMXdh1cZyBnYiICqZAoRwAwsLCMHXqVKxevRpr1qzBBx98gLt372LJkiUW72v//v2YN29ejq7vM2bMwKeffoo5c+Zg//79CAkJQceOHXH//v2CNrvwOPs6ERE5qEceecTs3DBxcXF45JFHNGiRnTAO5V5eps9xBnYiIiqkAodya0lISMCAAQMwf/58lFQObJBV8tmzZ2PixIno1asX6tWrhyVLliApKQnLli3TrsGc6I2IiByUMnY8u9u3b8PX11eDFtkJJZR7ewMu2b46Gc/AzlBOREQFUKAx5dY0ZswYPPHEE3jsscfwwQcfGNZHRUUhJiYGnTp1Mqzz9PRE+/btsWfPHjz//PNm95eamorU1FTD4/j4eOs2mGPKiYjIwfTq1QuAnNRtyJAh8PT0NDyXmZmJY8eOoVWrVlo1T3tKKM/edR1QK+X32H2diIgKRtNQvmLFChw6dAj79+/P8VxMTAwAIDg42GR9cHBwnuPapk+fjvfee8+6DTXGUE5ERA4mMDAQgKyU+/v7w9to6nAPDw88/PDDGDFihFbN015+Qvndu6iaNQqPoZzICc2ZA8ycCWzaBNSooXVrqJixKJQrZ9Jzc+/evXzvKzo6Gi+//DI2b94Mr+zjs4xk70aXW9c6xYQJEzB+/HjD4/j4eISHh+e7XQ/EUE5ERA5GmaS1UqVKeO2115y7q7o5eYVyM93XL1wA5s0Dhg/P2dudiBzUggXAxYsM5VQgFoVy5Ux6Xs8/++yz+drXwYMHERsbi6ZNmxrWZWZm4s8//8ScOXNw+vRpALJiHhoaatgmNjY2R/XcmKenp0m3O6vjRG9EROSgJk+erHUT7FM+u69XqAB07Ahs2QI8/zywcCGwYgVQqVKRtZSItJCRAZw6Je9HR2vbFiqWLArlBb3cmTkdOnTA8ePHTdY999xzqFWrFt58801UqVIFISEh2LJlCxo3bgwASEtLw86dO/HRRx9ZrR0WY6WciIgcSJMmTfDHH3+gZMmSaNy4cZ690Q4dOlSELbMj+ey+rtMBv/0me7FOmgT88w8wbhzw889F1VAi0sT584Ayp5UWoXzNGmDdOuCLL4CAgKJ/fSo0zcaU+/v7o169eibrfH19ERQUZFg/btw4TJs2DdWrV0f16tUxbdo0+Pj4oH///lo0WeLs60RE5EB69Ohh6GHWs2dPbRtjr5Rhdua69Rt1Xwfk14Rx44CICKBxYxnSb98GgoKKoqFEpAnjQmNRh/I9e4C+fWW1vlEj4JVXivb1ySo0n309L2+88QaSk5MxevRo3L17Fy1atMDmzZvh7++vXaNYKSciIgeidFnPzMxEREQEGjRoYHKJUgLQuTPQtSswalTO54wq5cYaNZK3I0eAlSuB0aNt3Ugi0syJE+r9ogzlMTFA794ykAPyPxuG8mLJrkL5jh07TB7rdDpERkYiMjJSk/aYxVBOREQOyNXVFZ07d8apU6cYyrMLDgY2bDD/nNGYcgBAZiZw7hxw8iRmVr6Gvkf6YunSMgzlRI7MOJRfvSr/H8iah8pm0tNlhfzaNaB6ddmF/p9/5GRznMii2OGcoJbiRG9EROSg6tevjwsXLmjdjOLFuPt6WhrQsCFQqxbwv//h0bUvYhbGY+9emdOJyEEZd1/PzASuX7f9a65bB/z5J+DvD/zyC9C+vVy/apXtX5usjqHcUqyUExGRg5o6dSpee+01/Prrr7h+/Tri4+NNbmSGUilPTpZfkk+elBPD1a8PAOjl+jO8kIylS9UfEULOyzRpEnD/vgZt1tKmTcB774FfoshhJCerZ938/OSyKLqw//WXXA4eDNSsCfTpIx//+KPtX5uszq66rxcLnOiNiIgcVJcuXQAA3bt3N5mFXQgBnU6HTB74cgoMBHQ6mbS/+EKue/FF4JNPgEqV4HP5MrpgI5YseQqNGsk546ZOBXbvlptGRwNWvLiNfbt8GejVC0hKkrPgde+udYtUQgBLlgAVKgCPPqp1a6g4+e8/QK+XsznWqiXDcnQ00LKlbV93/365fOghuezVCxgzRq6/cAGoUsW2r09WxVBuKVbKiYjIQW3fvl3rJhQ/Li7yEkRxccCuXXLdoEEyqD/9NPDpp+jv+iN+vvgUnnpK/TFvbyAlBVi8WH6X7tZNztK+e7fMqxUqmL6MEDK8Hz0qC81Kr/liZfx4GcgBYNs2+wrlS5YAzz0n/y1v3zZ83yMHdekS8MILQOXKwPDh8o+uoJSu6/XqAaGh8r6tK+UZGYByiUollJctCzzyCPDHH8BPPwFvvmnbNpBV8X8cSzGUExGRg2qvjEkky5QsKUM5IL+YN2wo7/fpA3z6KZ5y/wV9n0jGheveuHFDXi7tgw+Azz+XBfURI4B33wUmT5Z5EJBFtn795MTKgYFy4vfvv5fP7dwpe4EHBxf5Oy24LVuA1avVx9u2md8uMxNITJTXhM8rGCckyAmuatQofNuuXpXXsQOA+Hjg2DGgSZPC75e0c/++7LkSGipPthhTJkj75x/5+KuvgFatgPXrC3btQmWSt/r15ecWsH0oP3lSdpsPCJCTvCn69JGh/McfGcoLQgjgo4+A1q2Btm2L9KU5ptxSDOVEROTgkpKS8N9//+HYsWMmN8qF8Wz1AwfKKjkgK1gVKsAtJRErBv+OfftkgW7JEiA8HHh/ikDt2sCNG8DYsTKQh4TIH9+7F3j5ZaBcOdkL9fvv5VyzpUrJanmbNjLj/vwz8Pff8rukxfR6YMECmfLNEUI2TrncUn4IIWd/1uvVdcnJsks/APTvL5fHjwM3b5r+7P37MmAEBspx+f7+wIoV5l/nmWfUrsKFIQQwcqR6UgUo/D5JO0LIy4LVqgVMnCir4MqVERTvvisDeYkSMsR6eMhrfc+eXbDXVEJ5vXryDxuQQzVsad8+uWzeXPbWUTz1lPwP5NAhebIpu1u35Amy5GTbtq84Sk+XZ0gnTAB69sz5/5ONMZRbirOvExGRg7p58yaefPJJ+Pv7o27dumjcuLHJjXKh9CXX6dTQqTzu3VveN558afdu4LHH4BVSAlvaf4AAjxT4+gJfvH8P0Sv34OqZRHz2mSzeKbm4TBlg61aZJSpVkvNKPf20/A7esqWssiuio4Hp0+UljHMlhDwTMHy4LN2/847p5Gt//y3HVoeEyJL8s8/KLrE3bsjnL1yQM9X16QMcPizXxcfLL7OVK8uJpz7+WDakShXg9Gm5n6++kuEFyHky4IcfgKgo9XFCggzz2UPV1avyEnVKn/7C+P574LffZDBT/u327CncPkkbf/4pq5v9+sleFIA8OaRM4AAAmzfLSiggT0itXKl2Qfn2WxnMLGXcfV0J5baulBuHcmNlygAPPyzvG1/GcelSoFkz2cW9UyfT/6es6fRpeSUKa7t8Wf5fNWaMZScJ8ysuDnjiCfmZcHEBpkyRv8uiJBxcXFycACDi4uKss8MRI4QAxES8L7p2tc4uiYjIuVj92GQl/fv3F61atRL79u0Tvr6+YvPmzeL7778XNWvWFL/++qvWzcuV5r/PXr2EAIR45JGcz/3zj3zO01M+37y5fGx0S6tYVaRGdBTCzU2u8/ERom9fIb7/Xlz77bD47pskceWKussrV4R4+mkhWrQw3d26dUKcPy9EhQrycdu2Quj1ubR5woQc7RBt2gjxzDNyx9mfM76Fh5s+dnUVYvx4IerWzf1nypcXYssW+dovvijXjR6ttkevF6J+fbn+44+FiI0VonZt+fjll03b/umn6n5LlhQiNbXg/3aNGsn9TJ0qxLZt6vuj4iMpSYgePdTPhJeXEJGRQgwcKB+/9prcLjNTiIoV5boXXlB/PjVViOBguf6nnyx77bt31de9d0+Igwfl/eBg67y3mzeFuHMn5/qGDeXrrFmT87mpU+Vz3brJx//9Z/q3qNPJ5dq11mmjYscOIVxc5N9tcrJ19pmaKsQHHwjh7a22/623rLNvRUqKEA8/rP7f+8svVtu1JccmhnJLvfCCEICYhEjRqZN1dklERM5F8xCZi5CQEPHPP/8IIYTw9/cXp0+fFkIIsW7dOtG6dWstm5YnzX+fs2bJL6Pmvszp9ULUrGn6pdjNTYiRI4WYP1+I0FDT50qWNB9qfXyECAqS+xo4UIgvvhDihx+EWLBAfNfxO1EasSIgQGZf4x9btsxMez/8UN3gm2/kRj4+pj/o4iLE0KFCXLggxM6dQrzyigzNyhd6nU6ITp2E6NnT9OdCQ4XYvl2Ib7+VIb9VKyG++06ItDT19deskdvWrq2u27VLrvP2lkFHCCE2b1ZD/4kT6rYPPWT6mhs2FOzf7fp19b3ExgqRkCBfCxDi8uWC7ZNM3b4t/203bhRi06bCnUDJzVdfqX9XL7wgxNWrcv1338n1zZvLx3//LR/7+wuRmGi6j4kT5XMdOsjHd+4I8fPPDw6Xv/9ueiInNlb9XKakFO59Xb0q/z8IDhYiKkpdb/w5NT5bpzhyRP1bSkqSJ7WU93btmhBvvy0flysnRHx84dqoSE8Xol499b1PnJj39klJ8rPxIMqJFUCIBg3U+7kF58xMIaZMkf8RBgYK4e4uRNOmcvvczlBmZTtRooQQBw48uE0WYCg3YvUDddbZ3Sl4x/B3S0REZAnNQ2Qu/P39RVTWl7+KFSuK3bt3CyGEuHDhgvD29tawZXmzi9/n/fu5P3f9uhCrVwuxfLkQS5eafsGOj5eV308+EeLMGfnFcf9+Wd1r00aIUqXyrlpn3dLhKn7BE+JlzBKvlFshPnt6pwjGdREWqjdtmnEg/+gjdf2//woxaZIQM2cKsWKFEOfOmX8vd+4I8ccfpqF17VohKlUSon17NRDl5fZtNdxfvy7XPfOMfDxsmOm2Suh/9FH5uzl/Xj1p0Lu3vD9o0INf05wlS+TPN22qrmvaVK5bsaJg+3RkV6/Kk0EjRwrRubM88ZKXxEQhQkJMP6stW8pQmR9Hjwrx7rtCXLqU+zbGPSxmzTJ97tIl9aROfLwQb74pH/ftm3M/Fy+qn8kFC2RgBeRJpVu35Dbnz8vA999/8nFystqbY+RItT1eXnLd+fP5e5+5efZZ9ffWqJF6IkE5gRUamvvvRDk79+OPMpwC8gSCEDIQV6livhdKQX3+udpLQTlBcvSo+W1v3RKiRg25zdtvy/ZER8u2PPaYegLuxx/Vf7/vvpPv66WX1ACdddLYICFB7bVk7ta4sewFVKaMENWqCTFjhhBffln4k3t5YCg3YvUD9SuvCAGIaXhLRERYZ5dERORc7CJEmtGsWTOxceNGIYQQPXr0EIMGDRJXrlwRb7zxhqhSpYrGrcudvf4+rUKvl19iL1wQ4uRJ+cU6MlKIJ56QX2CffFINkmZut1BKnKsQIStXr7+uPvfee9ZvpyWUbuPLlwsREyMrWoDs/mvs/HnZ9R+QJyqUrrmPPaaGE3//gnWXVU4EGFf1lK71L75o2b7OnpUnOc6csbwdxcGtW2oXb+PbmDGySmrO0qVqL49GjeS/EyBEx455V5FTUoR45x11OEelSrn3XDDXw8JYpUry+Y0b1R4ry5eb39eTT5r/O6pZU37/9/BQe7Ps3atWnIODTau+1avL9Tt2mH+dK1eE6NdPntzKjVLVV15POZmg16vDN3r0yP3nR41SgzsgQ3hmpvr8xo3qyS1lWEl2//4reyGMGiVE167y/52DB3P+rcfGypAMCPH110I89ZTaQyEjw3TbtDQhIiJMf7/lyqm/WyVwr1ypnpB8913151NT1eE1np7y/7RDh4SYPVut1Ht4yB5AZ87Ik4tvvmna/d3cbdKk3H+XhcBQbsTqB+rXXhMCEDPwmmjb1jq7JCIi52KvIXLp0qVi0aJFQgghDh06JMqUKSNcXFyEl5eXWGHHlUN7/X0Wqf/+E/pJk4Xo00eIdu2EqFJF6JXKX/abtQN5QWQVOUSdOmpAb9HC/LYLF6ptV7rZL1ggQ4ZSEcw+Pnb7dvnFfNMm054JiowMORwAEOLPP9X1K1bkrJ4/SEyM2g6dTo7l/fvv/P+8lvR6GTBjYvLebuhQNSC//bYMQ8rnq1Mn89Xvjh3l85GR8vHevUL4+sp1Tz0lK6TZ3bqlVr6VEy6ArGwePSqHbLz0khB//SW379/ffA8LxeDB6usB8uRPbv9P/Pqr+rqDB8v5ILKPByldWv0cKl3Is4/rfvRRuf6778y/jtKW3IYE6fXqGOfBg+XnUzlB0aqV+vfywQfmfz77ewHkPA3ZPfecfC4wUIhTp0yfO3/eNCgb32rXVqvgiYlqb5ZGjeTf1dWrQgQEyHWvvmoa4pWu4n5+Qnz2mdojAZD/bynvW7k1aWI69EUIeVKjfXvzbStTRv1sGLt6VYh584RYtUqeWFiwQO0O37VrzpMHVsJQbsTqB+q33hICEJ9inGjVyjq7JCIi51JcQmRiYqI4ePCguHnzptZNyVNx+X0WNX1ikhjS6LAYjnnicMNnZSXJ3JdzLWzYkPMLdW4VTCFkt3plO3d3dfKr8ePlut691W3//FNWAI33nT3A7Nsn1wcEmH7pv3xZrnd1zTkk4dSpnIEuJUV2yVYqfMrrubnJ7rfWkJ4uxO7dQhw+bL0xwELISq3S9oAA2R3dXI+HP/9U35dx4Fm7Vj1JolRxFZcvq6H9wgV1/datathr0EBWYxXGVdSyZWWAunxZrXYb39zd5WdZ6WGR21jgBQtMf65Ll9x/H3q9nOdh3Tp13ZUrahDesEGefOjUSd1fnz4596OcCJg6NedzO3eqP+vpaX6M/Q8/yOd9fdXhIN9+m/MzvXlz7u8lKUmtDnt6ql3wjSUny/cGCFG1qpxUTjFmjFxfvbqsNH/2mQzfyr+3t7cccqNUp11c5GdUofSSUP72bt5UT+zodEKsXy+3i4uTXd+VE2NJSepJC09P2TvIHL1ennho2FB2mX/sMdmea9dy/52Y28eZM7n39LAChnIjVj9Qv/OOEID4DC/mekKXiIgoLwyR1sXfZ+6WL5ffb8PCchacNJWZKbvhvveerCgeOPDgLvDvvpszCB04oH75/+Yb2Y1YmR2+bl1ZiVdCsvFkce+/r1ZQs1N+fts2dZ0yZtbdXU6YNWWKHMOsBAhljOt//6nrXFyEWLy4UL8msXevWhlVbqVKyWplRIRsg6WTp+3Zo1Zzs986dZLzH9y9K/89YmPV3+GIETn3ZVzFNT7hM22aWv3MbutWGbqVinNkpPzdPf+8WkU1/re6cEG9pECjRvIqBsZtfuih3N/ruXOm237zjWW/K3NSU+WVAx59VIgbN3I+n5UVxKhRpuszM4Vo1sy0PVkTa5pQLqnw/vum66Oj5cmpFi3ka5vraWBM6Y4/eHDu29y4oZ70iIiQFePYWDXQZ+9if+uWnE/A+D0EB5vvim98lQSlxwMgw3NeMjJk7xjjkJ8XS4fOFCGGciNWP1BHRgoBiC/xgmjWzDq7JCIi52KvIfKVV14xexs/frx4++23xcKFC8Xt/MyYW8Ts9fdpD1JTZY9OwPzVk4qdI0dyVrCVsb06nZzMSanwKVVl5XJZ7durX+Bbt849pPXrJ5978kl5JuPQody78irhe9Mm9eczMoQYPlx9ftAgGTDS02Vo//lneSJi/ny5PH1atkuvl5XhX3+VodZ4Znt/f7XrdPZb9epyArbhw+UEWh06mHbJV1y9KuciUH7Ow0OOnY+OlpNeKWP3lfdkPCN/mTK5z5atTJbl4iLbbnzFgQULzP/M9euyupn9veh05mfWTkxUX1+vN3wfF4AQWUNuzNLr1S7SOp06saAtzZsnX++JJ0zXK9Vjf3+1m3b2yenOnFF7apgL/JY4eVJOQPegyRdPnlSHFUyaJG+APIFgLvBmZMhtXFzkv2Fev9PJk9V/pwYN8h+0HQRDuRGrH6g/+EAIQHyDEaJxY+vskoiInIu9hsiIiAgREBAgfH19RZMmTUTjxo2Fn5+fCAwMFC1atBAlSpQQJUuWFCdz61KoEXv9fdqLrJF3omNHrVtiI3q9WmVVqtnG3ZkvXlQrf0uWyOqkMh744sWc+/vrLzWE/+9/asDs3l0G6Fmz5HjcZ56RF4w37u5s3CZl3LxyU17T3K1s2dwvhzdkiBrQ4uJkFXnbNlm9Nzf5mnLr0kWeUBBCVowrV1bbMWxYzvf+339yvHatWqb7qVBBTgyW1+9fGZ8MqNfQ9vHJu7t9ZqY8KdG5s/q7mTEj9+2z27BB9rR4UPdjZUK/ohp3qlwmrUEDdV1GhnqN9GnT1J4ExsMuhFBPNjz+eNG0VaGcMNDpZE8F4MHDL+7ff3CVWq+XJ2YWLLBpN3F7xVBuxOoH6qxLiSzAcyZ/a0RERPllryFy1qxZolevXibtiouLE08//bSYPXu2SExMFD169BCdOnXSsJU52evv015ERanDex11cnCRkSEn/dLpZFjNTpm13fhWq1bu+9uwwbQ6Xq6c+XG5D/LPP3IsrXJSwMdHTiLXsaOsxLdubfo6bm5ynG7//vI754OumxwXJ8SECfLyeePGySr8qFFql3LlxIJyabKqVU3HcefmyhU5o3x+Z7VPTpbB3Ph1Bw7M388KIcccHz6c/+0tsXOnHL/x88+22X92J0/K9+/np/7+fvtNrgsKkt3Ot2+Xj8uXV39Or5c9HQAhvv++aNpqbMQI9d+ualWbTX7mTBjKjVj9QP3xx0IAYgkGibp1rbNLIiJyLvYaIsPCwsxWwU+cOCHCwsKEEEIcPHhQBAUFFXXT8mSvv0970rWr/K49frzWLbGx3CYlTElRJ6UKCJBjp43HjJuzfr2suut0D972QeLj5XWzjS9LpUhOluO8Dx3K+1Jhljh7VogBA9SzMYCc1dySibAK4to1Wb1+8knZBmeUnq6OgV+4UK7r3Vs+fukl+TghQe0doFzubf9++djb27oT+uVXUpI68/28eUX/+g7IkmOTC8gybm5ygQxkZmrcFiIiIiuKi4tDbGxsjvU3b95EfHw8AKBEiRJIS0sr6qZRIY0dK5dz5wJXr2rbFpsqXdr8ek9PYM8e4L//gLt3gU2bgEceyXtf3boBR48C+/c/eNsH8fcHKlQAXMx89fbyAlq2BBo3lu20hmrVgKVLgSNHgD59gP/9D9ixAwgNtc7+cxMaCkyaBPzyi2yDM3JzA8aMkfc/+wy4fRtYt04+HjpULn19gYYN5f09e+Ry2TK57NFDfl6Kmre3/Ixs2AAMH170r+/kGMotlRXKXZHJUE5ERA6lR48eGDp0KNauXYsrV67g6tWrWLt2LYYNG4aePXsCAPbt24caNWpo21CyWJcuQJs2QHIyMHmy1q3RiL8/ULOm+WCcm9q1gaZNbdcmW2vQAFi5Eli1CihVSuvWOI/hw2XIPXoUeOEFIC1NnnRRgjgAtGoll3v3ApmZwIoV8nH//kXfXkWpUkDXroBOp10bnBRDuaWMKuUZGRq3hYiIyIq++eYbdOjQAf369UPFihVRoUIF9OvXDx06dMDXX38NAKhVqxa+/fZbjVtKltLpgBkz5P1Fi4ATJ7RtD5FDK1UKePZZef+nn+TyuedMt1FC+Y4dwIABwPXrQMmSQOfORdZMsh8M5ZYyCuXp6Rq3hYiIyIr8/Pwwf/583L59G4cPH8ahQ4dw+/ZtzJs3D76+vgCARo0aoVGjRto2lAqkZUvZi1mvB956K/ftVq8G1q4tunYROaSXXlLve3jkrIC3bCmXR4/K3gxubsAXX8htyekwlFvK1RUAQzkRETkuPz8/lCpVCqVLl4afn5/WzSErmjZNfvffsEHesouJkUOQ+/SRQ6+JqIDq1AE6dpT3u3cHgoJMn69YUR3jX6YMsG2brJiTU2Iot5RRpZzz3BARkSPR6/WYMmUKAgMDDd3XS5Qogffffx96vd4mr3nx4kUMGzYMlStXhre3N6pWrYrJkydzMjkbqVFDLeA995wM4cZ27ZKV9IwM4Nixom8fkUP54gtg8GDgo49yPqeMKenbV04m2LZt0beP7Iab1g0odowmeuP3BSIiciQTJ07EggUL8OGHH6J169YQQuCvv/5CZGQkUlJSMHXqVKu/5n///Qe9Xo9vvvkG1apVw4kTJzBixAgkJibik08+sfrrETB1KvDHH7LX7ODBwO+/q3Of7dqlbnfsGNC+vTZtJHIINWsCixfn/vzAgfJGTo+h3FIcU05ERA5qyZIl+Pbbb9G9e3fDuoYNG6JcuXIYPXq0TUJ5ly5d0KVLF8PjKlWq4PTp05g7dy5DuY14ecmrLzVrBmzeDMyeDYwfL58zDuVHj2rSPCKHIAQnMaf8Y/d1S2Xrvi6Exu0hIiKykjt37qBWrVo51teqVQt37twpsnbExcWhVB6Xb0pNTUV8fLzJjSxTpw4wa5a8/957QFISEBdnGsTZfZ3IcqmpQN268spizAmUXwzlljIK5QB4rXIiInIYDRs2xJw5c3KsnzNnDhoaX1/Xhs6fP48vvvgCo0aNynWb6dOnIzAw0HALDw8vkrY5mhEjgEqVgPh4Odv6nj0yRChz+504we85RJY6fx74919g40bg77+1bg0VFwzlljKafR0Ax5UTEZHDmDFjBhYuXIg6depg2LBhGD58OOrUqYPFixfj448/tmhfkZGR0Ol0ed4OHDhg8jPXrl1Dly5d0Lt3bwwfPjzXfU+YMAFxcXGGW3R0dIHer7NzcZFjygF57XKl63qvXoCPD5CcDJw9q137iIqjhAT1/sKF2rWDiheOKbdUtkp5Wpo8cBERERV37du3x5kzZ/Dll1/iv//+gxACvXr1wujRoxEWFmbRvsaOHYt+/frluU2lSpUM969du4ZHHnkELVu2xLx58/L8OU9PT3h6elrUHjJv8GDZfX3bNuDSJbmufXvg9Gngn39kF3YzIxqIKBfGoXzFCjlMhFeWpAdhKLeU0ezrADjZGxEROZSwsLAcE7pFR0dj6NChWGhB2ad06dIoXbp0vra9evUqHnnkETRt2hSLFi2Ciws78hWVypWBRx4Btm8Hzp2T69q2lYH8n3/kGPM+fbRtI1Fxcv++ej8hAVi1ChgyRLPmUDHBo56lzFTKiYiIHNmdO3ewZMkSm+z72rVriIiIQHh4OD755BPcvHkTMTExiMl+AW2ymeeeU+8HBwPVqgENGsjHnIGdyDLGlXKAXdgpfxjKLZUVyt11DOVERESFtXnzZpw7dw7btm1D+fLlERoaarhR0ejVC/D3l/fbtpWXcVLm9eMM7ESWUUJ58+Zy3oZdu4AzZ7RtE9k/hnJLZU30poRydl8nIiIquCFDhkAIYfZGRcPXFxg6VN7v0UMulUp5dDRQhFfDIyr2lFBesybQpYu8v3Kldu2h4oGh3FLsvk5EREQO5uOPgYMHgQED5OOAADneHGC1nMgSyphyPz/gscfk/ePHtWsPFQ+c6M1S2SZ6YygnIqLirlevXnk+f+/evaJpCGnG3R1o0sR0XYMGQFQUcPgwEBGhSbOIih2lUu7vr1654NQp7dpDxQNDuaWyVcrZfZ2IiIq7wMDABz7/7LPPFlFryF40aQKsWwe88QZw8iTw9ttAlSpat4rIvimh3M9PDeVnzgCZmYZRsEQ5MJRbit3XiYjIwSxatEjrJpAdevllYPduYMsWYMECYPVq4MQJoFw5rVtGZL+Mu69XrAh4eQEpKcDFi0DVqpo2jewYx5RbipVyIiIicgKBgcDmzcBffwE1agD37gFr1mjdKiL7Zlwpd3GRE74BwH//adcmsn8M5ZbK6nfiKlgpJyIiIsfXqhUwYoS8/+uv2raFyN4ZjykHOK6c8oeh3FLsvk5ERERO5skn5XLHDrV7LhHlZNx9HVBDOSvllBeGcktlhXIXIWdfZ/d1IiIicnQ1a8rxsGlpcow5EZln3H0dAGrXlkuGcsoLQ7mlDJdE00MHPSvlRERE5PB0OqBbN3mfXdiJcpdb93WGcsoLQ7ml3NQJ612RyVBORERETkHpwr5hA6DXa9sWInuVvVJevbo8qXX7NnDzpnbtIvvGUG4powsMuiGD3deJiIjIKbRtK6t/sbHAgQNat4bI/giRc0y5j4+8NBrAajnljqHcUkaVcjdksFJORERETsHDA+jcWd7/5Rdt20Jkj9LSgAw5F7QhlAMcV04PxlBuKXZfJyIiIieldGHfuFHbdhDZI6XrOmAaynMbV/7RR0CbNkBcnO3bRvaNodxS7L5ORERETqp9e7k8cgRITta0KUR2R+m67uVlUscze63y5GRgyhTgr7+AP/4oujaSfWIot5SLi7yB3deJiIjIuVSsCISGyi66HFdOZCr7JG8Kc5XyrVuBpCR5PyrK9m0j+8ZQXhBZp74YyomIiMiZ6HRAy5by/p492raFyN5kvxyaQhlTfvEikJgo7//8s/r8xYs2bhjZPYbygsjqws7u60RERORsWrWSy717tW0Hkb3JrVJeujRQqZKcnX3xYiAzE1i/Xn2eoZwYyguClXIiIiJyUkqlfO9eGTIAOS6WM0uTs8t+OTSFTge89pq8/9FHwI4dwK1b6vMM5cRQXhBZodwVmayUExERkVNp0gRwd5fXK79wAdi/X17D/LHHAL1e69YRaSe3SjkADBsm52OIjgaGD5frHnpILi9eVE9wkXNiKC8IVsqJiIjISXl5AU2byvt79wLTpslAcfWq6ezSRM4mtzHlgPy7eeMNeV+pjL/0kvpzt2/bvHlkxxjKC4KhnIiIiJyY0oV94ULTCat27dKkOUR2Ibfu64qRI4GyZeV9T0+gRw9ZPQfYhd3ZMZQXBCd6IyIiIiemTPa2fbtcurvLJUM5ObO8uq8DgI8P8Prr8n7XrnK7SpXkY4Zy58ZQXhCslBMREZETUyrlivffl0uGcnJmDwrlADB+PLBmDfDNN/IxQzkBDOUFYzTRG0M5EREROZty5YDwcHm/Y0dg7Fj59Sg6Grh0Sdu2EWklrzHlChcX4KmngDJl5GOGcgIYygvGqFLO7utERETkjAYNAnx9ZZXc11fOyg6wWk7O60Fjys1RQnlUlNWbQ8UIQ3lBsPs6ERERObmpU4F794AWLeTjtm3lkqGcnFV+uq9nV7myXLJS7twYyguCoZyIiIhI+UoEgKGcKD/d17Mz7r7Oa5U7L4byguDs60REREQm2rSRy1OngFu3tG0LkRYK0n29QgW5TEqyzt/NL78AR44Ufj9UtBjKC4KVciIiIiITQUFAnTry/u7d2raFqCikpMjZ1Ddvlo8L0n3d0xMIC5P3C9uFff9+oHt3oGfPwu2Hih5DeUEYzb7OSjkRERGR1L69XP70k7btICoKCxYAs2YBr74qHxcklAPWm+xt9Wq5vHQJuHmzcPuiosVQXhCslBMRERHlMHy4XK5cydmkyfH98INcnj0LZGaq3dctGVMOWG+yt59/Vu+fPFm4fVHRYigvCIZyIiIiohyaNAE6dZIB5eOPrbPPmzd57XOyP+fPA3v3yvupqUB0dOEr5YUJ5f/9B5w+rT4+caLg+6Kix1BeEJzojYiIiMisCRPkcuFCICam8Pt79FGgfn3g+vXC74ucR0KCHPNtK8uWmT4+dgzQ6+V9LUL5unWmjxnKixeG8oJgpZyIiIjIrPbtgZYtZfVw1qzC7evmTRku7t8Htm2zTvvI8V2+DFSrBjRuDGRkWH//Qqhd17285PLQIfV5X1/L9leQMeXnzwPlywPjxsn2KKFcuQoCQ3nxwlBeEEYTvTGUExEREal0OrVaPncukJxc8H0Zj4v988/CtYucQ2YmMGgQcOOG7NK9Z4/1X+PQIdlV3MsLGDxYrjt4UC59fAydavNNuSxadHT+r1W+Zg1w9Srw2WfA888Df/8t17/9tlyeOMHrnhcnDOUFYVQpZ/d1IiIiIlNPPCEvkXb/vgxGBcVQTpb6+GPTz4rx5Gf5lZEhQ+3588CdOznDrVIl794daNZM3lcq5ZZ2XQdkxRsAEhOBe/fy9zPKSQAAmD9ftrF5czncw9UViIuToZ2KB01D+fTp09G8eXP4+/ujbNmy6NmzJ04bz1AAQAiByMhIhIWFwdvbGxERETip9XSC7L5ORERElCsXF6BWLXm/MKH833/V+//9B8TGFq5d5NgOHgTefVfef+opuVy3Lv8V4/R0YNEi+dmtX192gQ8KAh5+WFbgFb/8Ipf9+wM1asj7167JZUFCuY+PfB1AVsvz48ABuezeXV3Xs6e87rnSJq0jE+WfpqF8586dGDNmDP7++29s2bIFGRkZ6NSpExITEw3bzJgxA59++inmzJmD/fv3IyQkBB07dsR95ZoDWmAoJyIiIsqTEsqz1Vsskj1U7N5d8H2R4/vkE1nl/t//gO++k93LL1zI3/jqP/4AatcGhg6VFXIfH3Vs+L59wJUr8n5Ghjr2u2lTNQArLL0cmiI8XC7zE8rv3pVtBORJhA8+kFXy556T6+rVk0tz7/vWLXZrt0eahvKNGzdiyJAhqFu3Lho2bIhFixbh8uXLOJjVH0MIgdmzZ2PixIno1asX6tWrhyVLliApKQnLsk95WJSMZl/X603PnBERERERULOmXFojlLdoIZdF1YWdwxOLpzNn5PLZZ2XFumNH+Vjpwn7/fs5x2zdvyjHZjz0mg27ZsrIL/I0bcgb36tXldsrM6Neuye/+7u5AaCgQHGwaxAtSKQcsC+VKV/kqVYBSpYCJE+WJg9BQuT63UP7JJ0CZMsC0aQVrI9mOXY0pj4uLAwCUKlUKABAVFYWYmBh06tTJsI2npyfat2+PPbnM2pCamor4+HiTm9UZVcoB/sdNRERElF1hu6/Hxsqqnk4HjBwp1+3aZZ225WXhQsDbG/jqK9u/FlmXEpwrV5bLHj3kct06GVDr1JGTqlWqBDzzjKx0BwcD8+bJ7caMAc6dA157TQ3X2S9XdumSXIaHyzqdTmdaLS+KUK50XVfGs2dnLpSvWAG8/rq8/8cfBWsj2Y7dhHIhBMaPH482bdqgXtYnKSbr4pbBwcEm2wYHBxuey2769OkIDAw03MKVT7g1Gc2+DjCUExEREWWnVMrPnFGv32wJZTx55cpA587y/pEjcgIrRUoK8MorwPLlhWqqiVmzZCX0pZeK5iQAWUd8vJyUDVCDdLduMjQfPCgvFaZ0Qb98WYbUQ4dk1bxJE2D7dmDOnJzdz7OHcmWprAeKPpQrk7w1bWr++bp15fLkSfm3t2uXOks8oPYoIPthN6F87NixOHbsGJab+V9Vp9OZPBZC5FinmDBhAuLi4gy36PzOlmCJbJVyjisnIiIiMlW5svzKlJSU9yzQhw7JMJSaarpe6bpepw5QrhxQtaoMGMadJSdPBmbPlgHaGo4fV6uLmZlAnz7A9evW2TfZljLOOyhIDdZlywKtW8v7cXEymEdHA5s3A++/D3z/vfz3PXgQiIgwv9/cKuUVK6rbGIfyohhT/qBKedWqcsK35GT5N/L44zKvKCe3rl6VXfPJfthFKH/xxRexfv16bN++HeWVawIACAkJAYAcVfHY2Ngc1XOFp6cnAgICTG5WlxXK3RnKiYiIiMxyd5ezVwPmu7AnJMgqd/PmwIsv5hznqoRyperXtq1cKl1v9+2TY2QB2c391q3Ct1mpDXXqJLsAx8TIbs6cGMv+Ze+6rlAqxD17yjBevrwca/7OO8DAgUBW3MiVpaHc1pXy27fVExBNmpjfxs1NTloHyEngEhOBDh2AtWuB0qXl+rNnC9ZOsg1NQ7kQAmPHjsWaNWuwbds2VM72V1S5cmWEhIRgy5YthnVpaWnYuXMnWrVqVdTNVWVN9ObpyjHlRERERLnJbbK3s2dl6J09W+3aPneu7I6uULqvK6H8scfkcuZMWRkfOtS0W3xhJpQDZPBesULeHzoUWL1aVht37izcZd2oaChB1bhbOQAMGyYD9Zo1cq4AS+Wn+7oyGRxQ+FB+5UreJ4GUSd6qVQNKlMh9uwYN5NLTE/j0U3lCwtvbdFgJ2Q9NQ/mYMWOwdOlSLFu2DP7+/oiJiUFMTAySk5MByG7r48aNw7Rp07B27VqcOHECQ4YMgY+PD/r3769dw7Mq5R4urJQTERER5cZcKL92TVaiL12SwebXX2UguXkTML64TvZKeb9+ciIuAPjiC/l8mTJqF97ChvJ//pHBztdXjkWuUUOtRB4+XLh9k+3lVinX6WRVO5eRrw+khO/oaHk5NHOVcmuE8nLlZBtTU+XfQm4e1HVd8c47csK6w4dljxSXrNSnVPUL+/dC1qVpKJ87dy7i4uIQERGB0NBQw23lypWGbd544w2MGzcOo0ePRrNmzXD16lVs3rwZ/gUdsGENSih3lRO9MZQTERER5ZR9BvZ794AuXWSAqlZNBuEnnpDd1wFZORfCdOZ1ZR+urnLs+e+/y0s/6XTA118DLVuavkZBKScEevaU16gGgMaN5ZKh3P7lVikvrJAQwMNDzjEQHS0nicv+OiVKyPHrQMHHlHt4yJngAfU1zHnQJG+K6tXlpd2UbuwKJZSzUm5f3LR8cZGPATo6nQ6RkZGIjIy0fYPySxlT7sLu60RERES5Ma6UCwH07y8nUwsJkd1plSAzfDjw3nvyuW3bDCMFUbmyGpAVXbrIQHHjhpzQSpmI7UGVv/h4OY49LCzncxkZwI8/yvvGnTEZyouP3CrlheXiIqviZ88Cf/8tK9kuLrKybaxmTXkyqTDTWYWHy3kMoqPNV8L1etkG4MGV8tzkNqSEtGUXE70VO1mh3JPd14mIiIhypQSA6Gg5ydTvv8uK4MaNpuGpZElgyBB5f+hQ9brkStf17Pz8ZCA3fo28QoYQckx6tWrqZbGMbdokQ35QkJwETGEcyjnZm/0SQq2UWzuUA2pVfOdOuSxXTk5kaOydd+QQiyefLPjrVKggl7lN9rZ5s5w5PTAQeOihgr2GcaWcn2n7wVBeEFmnb90ZyomIiIhyFRSkzvasBO2xY4GGDXNu+/LL8ivW5cvqzNDt2j34NZTu7efP59578cABYP9+eYko40uqKebPl8tnnzUNW/XqyVrMnTv5u1QVmXfqlDzB8csvttn/nTvA/fvyvvFYb2vJHsrNdZHv1EnO3q983gviQTOwf/WVXD73XM4eJPlVrZoc+hEfLyv7ZB8YygtCGVOuY/d1IiIiorwolezbt+XY24kTzW9XvboMPQsXAj//LLvpjh//4P2XKycnZ8vIAC5cML/NDz+o948fN33u2jU52RwAjBhh+pynp7xOOsAu7IWxeDFw5AgwYYJtqrNK1/WQkILNsP4gSghX5i2wRfAH8g7lFy+qn9MXXij4a3h6qu+HXdjtB0N5QWQbU85KOREREZF5SigHZCgrVSr3bVu3llXAHj2AFi3UGaPzotPlPaN0RoZ6qTMAOHHC9PlFi+QkXm3a5JwUC+C4cmtQZtI/eVKGc2uz1SRviuz71SKUf/ONPKHRsaPpddELgpdFsz8M5QWhhHIdZ18nIiIiyosSdMPD1VnWrS37LO/R0bICDsiJ427cULc1DuV6PfDtt/J+9iq5gqG88JRrzgPA999bf/+2muRNkT2U2yr85xbKU1PVz+no0YV/HV4Wzf4wlBeEIZSz+zoRERFRXp57Tk7itnKlbboWA6aTvd24IcesV64sZ1RXuq4//bRcnj8PJCbK+1u3ykBXogTQu7f5fTOUF05iolrJBuS464wM676GLSd5A4q+Un7tGhAXB3TvLj+bgYHyEoHlyxduIjkFL4tmfxjKCyJbKGelnIiIiMi8oCDZRVy5nrgtGIfyWbOAu3fl97N+/dSu6+PGyUuwCSEnHgPk+HUAGDgw9xMGjRrJZXS0DEZkGeV3HRQkbzExwB9/WPc1lEq5rSrYyrXKFbZ8HTc3OZyie3c5MV5cnKyUA8CbbxpiSKGw+7r9YSgviKzZ191YKSciIiLSnNJ9/fhx4Msv5f1HHpEBPC1NhqhWreRs6sp2aWnAb7/JxwMH5r7vgAD18muslltO6bpev748SQJYvwu7rSvlyrXKFUpF29pcXYGwMHn/zz/llQA2bJDv79YteeUCa1Aq5efPW7/XAhUMQ3lBKJVysFJOREREpLXq1eUyPh5ISAAaNJBd06dNk8Fm3Dg5IZwSyk+cAHbvlpfRKlsWaN487/2zC3v+paebVmCVSd7q1gUGDZL3166V/07WIITtK+XG+w4JAby8bPc6xoH/yy+Brl3lawcFWe81ypeXPUPS02XPEqUST9phKC+IrFDuxoneiIiIiDTn6wtUqKA+fvttWd2cMEGGv5dfluvr15fLEydkBRIAHn/8wbO8N2kil998wy6/D/Lxx7J79JIl8rESyuvUAR56SIbOpCTg0KHCvc7vvwODB8t/6+RkedLF+DNgbUoot2XwB+QJJQB4/vncJx8sLBcX4LHH5P033pD/Xrt22ea1KH8YygtCCeVg93UiIiIie6CMk61RQ53UDTAdC2zcfV0J5U888eB9Dx4sA9+FC/JSbVu3WqfNjujvv+Vy/ny5VLqv160rg7MyFODKlcK9zvjxwHffAR9+KB+XK2f6b21tSrurVLHdawCyd8fGjeowDFtZtQqYOxcIDQUuXbLOrO5UcAzlBZEtlLNSTkREVHipqalo1KgRdDodjtjiYsbk0Lp1k2NyP/zQMP1PDnXryuX163JSODc3oFOnB+87LAzYt09OVnfvnqyu83JS5imXovvrL+DsWXW8t/K7L19eLgsTyvV6eYIEkLPmt24NvPNOwfeXH0OGyDHdb71l29cpUQLo3Dn3z7C1eHgAo0YBBw/KxydPyuEcpA2G8oJQJnpjKCciIrKaN954A2HKLEdEFnrxRdlV/amnct/G39+0+3GbNvJyU/kRHAxs3y4DYEaGHBdNOSmhHACmTpXLsmWB0qXlfWuE8mvX5PdvNzd5ibXdu2V3b1sKDga++EIdAuEoQkPlkAIhCj+kgAqOobwgsirlruy+TkREZBW///47Nm/ejE8++UTrplAxlp8JuIxDVX66rhvz9AT695f3N2607GedQWamvE68YulSuaxTR11njVCuVN8rVLB9RdkZNGsml/v3a9sOZ8ZQXhDsvk5ERGQ1N27cwIgRI/D999/Dx8fngdunpqYiPj7e5EaUX8q4csDyUA4AXbrI5V9/ydneSRUbK7uW63TycaacE9nQdR1QZxe3Rii31SXQnI1y9YEDB7RtR34cOiTb+8svWrfEuhjKC0KplAvOvk5ERFQYQggMGTIEo0aNQjOlXPMA06dPR2BgoOEWbquLBpNDathQLitXVq9vbokqVeQl2DIygD/+sG7bijul63poqJwQT2Ecyi2tlAshhyS0a6d+52Yoty5rV8qFkHMvWJteL2ekP3AAWLzY+vvXEkN5QbD7OhERUZ4iIyOh0+nyvB04cABffPEF4uPjMWHChHzve8KECYiLizPcoqOjbfhOyNE89RTw2mvAwoVqRddSSrVc6cKelATs2CHDiDNTQnlYmJyATWGu+3pMTP4KW0ePAj//LC/ZdeyYXMdQbl1KKL9wAbh9u/D7mzIFKFUK2LKl8PsytnSpOu795k3r7ltrDOUFYaiUs/s6ERGROWPHjsWpU6fyvNWrVw/btm3D33//DU9PT7i5uaFatWoAgGbNmmHw4MFm9+3p6YmAgACTG1F+eXjIa2lHRBR8H8ahPC1NXvP5kUeAZcus0sRiy7hS/r//yfsuLqaV8tKl5b+BEHIW/AdZtUq9z1BuGyVLAln/9eLgQSAxEejYEXj2WVmdttT69fLfd+9e67UxMREwPnfraKHcTesGFEtZM0q46mWJnJVyIiIiU6VLl0ZpZbrlPHz++ef44IMPDI+vXbuGzp07Y+XKlWhh3P+VyI60by8nfbt8WV4TXQkfa9YAAwZo2zYtKSE7LEzOcr9smQxnxv8VuLjIa4pHRcku7BUr5r4/IYCfflIfM5TbTrNmwLlzsgv7wYPA1q1yfatW8tJp+ZWaChw/Lu/HxFivfZ98Ik/6+PnJqywwlJNhak+3zFQArJQTEREVVIUKFUwe+/n5AQCqVq2K8ko/VyI74+srxzhv2WI64dTWrbJY4+6uXdu0ZNx9HQCeecb8duXLq6E8LydOAGfOqI+PHZPfu5WfYyi3nubNgRUrgM2b5ZABxeuvA127ypnu8+P4cbVgaa1QnpYmQzkATJ8uL394546cSNBRZt9n9/WC8PcHAHim3gfAUE5ERETkbJQu7ADw5puyGhwfb90uu8VN9lCem/xO9qZ0XVfC99GjsneCEICPj7z+OVmHMgP7n38CcXFAgwaySp6QIK8Bn9/5EoxncLdWKD9zRrbD31+9Hr0Q1hn/bi8Yygsi6yy+e1oCAMHu60RERFZSqVIlCCHQqFEjrZtClKfeveVY3G7dgA8+ADp3luud+frltgrlb78tu73fuQPs3i3XVapU8In6KKfGjeXvWDF9OrBggRymsXGjDO0vvfTgKw4cPKjet1YoP3lSLuvWlb1QSpWSjx2pCztDeUFkhXIXfSa8kMJKOREREZGTCQ+X1+Vet07OAZx9RvaUFGDtWlnhcxbGE73lJT/XKv/3X3lzd5cnQGrWlOvXrZNLdl23Lj8/oHZteb9tW+Dxx+UlAz/5RJ78OHgQ+OILefJJ+Xc2J3ul3BpXJDAO5QBQpoxcMpQ7O19fw10/JDCUExERETkhNze1Wtupk1wePixDy9NPA716yYqjM8jIkCcpAOtUyn/+WS47dQICA9Xry2/aJJcM5dY3YoQ8YTJ7tvq5HjtWjv9ftkxOypeZaTpE46235MztFy/KE1EnTqjPJScD9+8Xvl0M5WSeq6scyALAH/fZfZ2IiIjIyZUtCzRtKu936wZs2CDvO8sY8xs3ZFXU1VUNTbnJTyhXJht75BG5bNBALpOT5ZKh3PpeflmO2W/SxHR9xYpy0r7HH5eP//5bLjMygC+/BM6fB2bMkBPxZWTIf/+sKbis0oVdCeXK9e4ZykmV9UljpZyIiIiIALUL+6FD6rpjx6zThdfeGXddd3lAwlBC+bVrMsSZc+6cXNaoIZdKKFcwlBc95SqV//wjl4cPq8MzFi0Cfv9d3m/aFAgJkfcLG8pTU9XPAivllFPWuHJ/3GcoJyIiIiJDJREAXnhBVo1v3857DK6jyO8kb4DsVeDmBuj15kObEMDZs/J+tWpyyVCuvYcflssDB+Rlz3buVJ9LSQE+/FDeb9bMeqH8zBnZZT4gQF7fHmAoJ2NGlXJ2XyciIiKihx8G+vYFhgwBPv9cnZzs2LG8fy4hQVYEizNLQrmrq7qduS7ssbFyLLJOB1SpIteVLy9nu1cwlBe9GjXk+P7kZDl2XAnlLVvKZUqKXFozlBuPJ1fGuTOUk4qVciIiIiIy4uoKrFghu/K6uanV3bxC+Y0bcnKt7t2Lpo22cv26XD5o5nVFXuPKle7KFSrIS3IBMpApv8+SJWU4pKLl4gI89JC8v2cPsGuXvP/pp6YnSazZfT37JG8AQzkZY6WciIiIiPKQn1D+11/AvXvA5s3Fu5u7JZVyIO/Loild16tXN12v/D5ZJdeO0oV9/nwgLk5GombNgFdekeuDg2U3c4ZyyzCUFxQr5URERESUh/yEcuNLSG3dmr/9CgF8+60aWOyBpaE8r0p5bqG8VSu5VC6PRkVPmexNmR2/dWvZK2TECBnMv/xS9moorqH81CltJmZ0K/qXdBCcfZ2IiIiI8qCE8v/+k2PGla7YxoxD+ZYtwLPPPni/K1fKENS2LfDnn9Zpa2FZM5Qr3deVSd4UvXvLbutKtZaKnhLKFe3by6WXl+zGrrBGKE9JyTnzOqCG8lu35GSBD5rtP78uXpSXXataVZ4MMPf3aiuslBdUVqWc3deJiIiIyJzy5YESJeRlv06dktXFSpWAmTPVbbJXyvNTpVu1Si7//dearS2cgnZf/+cfIDHR9LncKuWurnKGe+MJ36holS4tQ6tCCeXZWSOUnzkjQ3eJEqZzFZQuLZeZmXLoh7WsXSuX5csXbSAHGMoLjt3XiYiIiCgPxpOTHTsGvPoqcOmS7OILyOr5mTPyvpubDDDGId2c5GT1etC3bwPx8bZpuyXS09WuxPmd6K1DBxngL14EXnxRXW98ObTsoZzsg9JTwcdHjic3RwnlsbEyPBeEuZnXARmYAwLkfWt2YV+zRi7/9z/r7TO/GMoLit3XiYiIiOgBlFD+xRfAH3/I+1FRwNWrwOnTMrCUKCFDKiC7sOdlyxYgKUl9HBVl9SZbTKmGursDQUH5+5kSJYBly2TX40WLgKVL5frYWHmJOBcXTuhmr9q0kcu2beW/uTllysggnZkpTx4VhLnx5Mb7B6wXymNi5KSLANCzp3X2aQmG8oIyqpSz+zoRERERmaNMSnbggOn6XbvUqni9ekDHjvL+g0L5zz+bPraHUK6cbKhc2bLxve3bA5MmyfujRgEXLqhVcuPLoZF9GToU+OQTYM6c3Ldxd1e7mRe0C/v27XLZpEnO56wdytetk700HnpIHVpRlBjKCyrbJdG0mKWPiIiIiOybUikHAF9f4Jln5P3cQvnOnbJbuzkZGcD69fJ+uXJyeeGC9dtsCSFkQAOAYcMs//l33gHatZPjyj/8kF3XiwMPDzkUI/tEfNllH1ceFSXHiOfHzZvA3r3y/hNP5Hze2qF89Wq57NXLOvuzFEN5QRlVygGwWk5EREREORiPhx03Th2vmj2U168vr/GcnAzs2WN+X7t3y67ApUoB/fvLdUVVKf/mG6B7d2DAAGDsWODgQbn+999lN2N/f+D55y3fr6srMHWqvP/dd+p7f1DgI/tnHMq//RaoUkWeeMmPDRvkCZ8mTdSZ+o1ZM5TfuaNW5bUK5bwkWkEZVcoBGco9PLRsEBERERHZG19fWUE+cQJ47TW1Cn7ihFpBrFdPBvcOHeQ46507gUcekc8lJADz5skq+Y4dcl23bmoluSgq5ZcvA2PGmE7YtXChrNp//LF8PHKkvFxZQbRuLS+19c8/cr8AK+WOQAnl16/LeQMAYO5c4K23HjzMQekR0q2b+eetGcp//VX+fdWvr93njqG8oLJVytPS5H+6RERERETG5s83fVy9uuymrQQKZSKrhx6SofzwYXXbuXOBN94w/fmePQ31oSKplH/5pQzkTZvKSvmvvwLbtsluxWlpcub4l18u+P51Otkduk8ftXszQ3nxp4TyVavkpIaAvC79n38CERE5t1euOZ6SAmzaJNd1725+39YM5cqs61pVyQF2Xy+4bJVyzsBORERERPnRtq16PyREnRBLmdDq0CH1eWVG6JYtgaeekpcPe/JJdWbyqCjbzm2UmKieVJg0CXjlFeC334AePdTvv888U/jJsZ56ynS2dXZfL/6UUK5McujqKpc//GC6XXo6MHCgDNobNsiu5ElJct6Exo3N79taoTw1Fdi6Vd7v0aNw+yoMhvKC4phyIiIiIioA41Ber556X5mp/coVGTaEkF26AdlNfM0a4PPPZWU6PFyGnJSUgs9unR9LlwJ378rxwMqEW56ewE8/Ac8+K8fBT5xY+Ndxc5OBH+Dl0ByFEsoVytwBq1apwzgyMmQg/+EHOba7Vy/gvffkc927m16f3Ji1Qvnu3fLEU0gI0KhR4fZVGAzlBZVVKfdBMlyQyUo5EREREeVLbqE8IEDttn34sLyWeUyMDN/ZK4bu7mp12lbjyoWQJwEAWaFXKp3K6y9ZIscL16xpndcbOlSOq3/hBV4OzREYh/L69eWcCuXKAffuyd4WqanAc88BP/4oP0/t2sneF8qJqNzGkwP5C+VHj8p9r1kjL9uXkZFzm99/l8suXXI/AVAUGMoLKqtSDqiXRSMiIiIiepAqVYDQUHnfOJQDavg+fBjYt0/er18f8PExvx/AduPKN20C/v1Xfu197jnz21gzyPj6yq7EeV3/mooP41A+YoQ8qaNcEnDqVKBOHdkTw9VVhuetW+UwBkB+FpTJDs0xDuXmhm/cuCHnaOjbV17x4LHHgC++yLndxo1y+fjjlr8/a2IoLyhPT8PpQj8ksFJORERERPmi08ku361a5RzHqowrNw7lDz1kfj9KF29bVMovXQKGDJH3hw0r+Mzq5LwqVJAndPz9ZRd1QE4UCMhL6l24IIP76tVy8kJ3d2DFCmDKFNmd3csr930roTwtDbh/P+fze/bI5wID1ZNXxhMoAkB0tLycn4uLDO1a4uzrBaXTyU/YvXvwx32GciIiIiLKtzFj5C07pVJ+6BAQGyvv5xbK81spF8KyinZ8vJxM7sYNOc72gw/y/7NECj8/OVGhuztQsqRc17Ah0LGjXP/667JLu1EHZHh4AO++++B9+/jIW1KSrJYHBJg+r0wu9/TTwKOPypMBly+bbqNUyR9+GChVqmDv0VoYygvDzw+4d4/d14mIiIjIKpRQfvasHFMOFK5S3rGjHPe9fz/g7Z37ditWAJMny86gCQky6IeGAr/8YhqaiCzRoIHpY51OjuPW6R58rfIHKVdO/p0sW5YzyO/fL5fNm8uKPZAzlBuPJ9cau68XhtFl0VgpJyIiIqLCKlMGKF9e3k9KkmNr69Qxv+2DKuUJCXKc7smT6qXVzMnIkFXLM2eA48fl/nx8ZCBX2kJkLa6uhQ/kAPDmm3I5aRKwbp26Xgi1Um4cyq9ckddCB+SVs5RLoTGUF3dGl0VjKCciIiIia1DGlQNA06ams54bUyrlV66ol5gydv26en/nztxfb8MGuY/SpeXkbqtWyYDetKnlbScqKsOGqUNABg4ETpyQ98+fl5fx8/SUkySGhcmTAOnpckgGAOzdK8eily5tH59zhvLCMKqUs/s6EREREVmD8eXPcuu6Dsiquq+vrAxm75oLmIbyHTty389XX8nl0KFAp05ytupy5SxqMpEmZs2Ss7QnJMjPL6B2XW/USI5nd3NTP8/K34ly2bWICOtU7QvLDppQjLFSTkRERERWZlwpzyuU63R5jyu/dk29v28fkJws7yckABcvyvvnzgGbN8t9Pf98oZpNVOTc3YHly+UEcfv3ywkSjceTK7KPKz99Wi7r1i26tuaFobwwOKaciIiIiKzMOJQbBwtzataUyyNHcj5nXClPSwP+/ltW1R9/XIb5QYOADz+Uz3fpoo5RJypOgoNl7w4AmD9fDeXNmqnbZA/l//0nl8rfj9Y4+3phGFXK2X2diIiIiKyhfHk5m7ReD1SsmPe2bdrI6zzv3KlOfKUwDuWA7MKemQns3i0fL12qPjd6dKGbTaSZESNkxfyHH+RnHMi7Uq6E8lq1iq6NeWEoLwxWyomIiIjIBqZMyd92ERFyuXu3nEXdzejbvRLKq1WT3dR37pQTXAFAjx6yC/vRo7JC/vjj1mo5UdGLiFA/54CsnRpXwY1D+a1bwO3b8nGNGkXazFyx+3phsFJORERERBqqXx8oUULOJH34sOlzSih/5hm53L0b2LJFzuY+e7bs5rt2rbqOqLjS6YCRI9XH2a9aYBzKlfHk4eFyokR7wFBeGFmhnJVyIiIiItKCqyvQtq28n/2yZ0oob9cOCAlRu/X27QtUqiQnyerZk2PJyTEMHiw/00DOuRjCw+Xy8mX767oOMJQXTlb3dX/cR3y8xm0hIiIiIqekdGHPftkzJZSHhqrbAMDrrxdBo4iKWNmywJAh8v4TT5g+p1TKb91Se5QwlDsKo0r5rl0at4WIiIiInFL79nK5a5daDU9JAe7elfdDQ9Ux4127yus3EzmiL78ELl0yPQkFyCEeWdENW7fKpb3MvA4wlBeOUaV8506wCzsRERERFblGjYCAACA+Xk7cBqhVck9PoGRJefmz9euBZcs0ayaRzbm7q1VxYzqdul4ZU85KuaPIOt0S6JqApCR1NksiIiIioqJiPK5c6cKuhPKQEBlIdDqgWzcgMFCTJhJpLntYZyh3FFmV8tKe9wGoXSGIiIiIiIqS0oVdmexNCeVhYdq0h8jeGIdyPz/7+ttgKC8MozHlAEM5EREREWnDeFy5Xm86yRsRmYbymjVl7xF7wVBeGFmVco+0BAAC+/YB9+5p2iIiIiIickKNGwPe3nJyt9OnGcqJsjMO5fbUdR1gKC+crEq5LiMD9aqlop7+KA5+d1LjRhERERGRs3F3V6/NvHcvQzlRdtkr5faEobwwlHn1AfRtdh5/42G0ebUFcOOGho0iIiIiImf08MNyyVBOlBMr5Y7K1VX2EwLQL3EBvJECz4xE6D/7QuOGEREREZGzadlSLv/+m6GcKLty5dRx5KyUO5qsanmV3UsMq5JmfgV9fIJWLSIiIiIiJ6SE8pMngfPn5X2GciLJwwN4/XWgXz+gXj2tW2OKobywsiZ7c7l7B8LFBZcRDr+0u1jddQGE0LhtREREROQ0goOBypUBIYCErPqQPV32iUhrH30ELF8OuNhZCraz5hRDRuPKdR06IOa5twEAzf+ahaHPZhj+QyQiIiIisjWlWg4Abm5A6dLatYWI8qdYhPKvvvoKlStXhpeXF5o2bYpdu3Zp3SRVVqUcANC/Px76cjCS/cugEi7Ba+l8NGkCHDqkXfOIiIiIyHkYh/LgYPurCBJRTnb/Z7py5UqMGzcOEydOxOHDh9G2bVs8/vjjuHz5stZNk5RKuacn0KsX4O0N7wmvAADmYjSeOzsBzZtmomNHYMUK4N9/gXPngGvXgPR0DdtNREVDCODiReDSpaJ/7bQ0ecFadtkhInIaxqGc48mJigc3rRvwIJ9++imGDRuG4cOHAwBmz56NTZs2Ye7cuZg+fbrGrYNaKe/WDQgIkPdffx24dQv49FNMwIfojZ+g2ypQeusteCANLtAjA264grK47RaMNFcfIGsmwKwFdDph8lh9XphZJ9erT2Td1WWtz7EOcHUVcHEBXF0AF9espQvg6iLg4grT57LakpEBZGTK9e7ugJurgM5FzmKo0wEuOkDnArhA7lvnYtp+XW6D7DMyZGi4f1/OZl++vDyKuGV9PFNSgHv3gLg4IDNTrnNxkdsqNx8fuf3du/J3r9MBQUHy5u0tZ3ZwdZWvlZmZ9WYyAL1e/pybW9abynrNuDi5r3v35DI+Xvb/Cg8HQkLk/tzd5baZmaY3reh0D97G2oSQwS89XS7T0uTvwNVV/R1lv2Vmyt/vvXvq79/VNefNeD2Q++tk/3nlcUqKfJ24OPlzyr+58hkICpID7UqUkJ89Zdu4OPl51Onkfnx8gJIl5XZuRv9lKr9vvV7eMjNzLhMTgePH5XsFkBZWCddqPYrk0uFw8feFm7cbvDIS4ZmRAI+0BHikJsBVn46MUmWQHhQK+HjD0yUD7rp0uCRm/Y3cvy8/j0obs/9+b9wALlwALl+WvyeFr6/87Co3X1/13yE9XbYZALy85N9M9qW3t/z3vn9fvi9l+4LS6eTfsUvWfyJCAKmp8t9NCPU5Fxf572C8bXq63DY1Vb7H1FT1M+fhIU+SenjIbZV/H+Ob8m+U2y2v5/v2BSZMKNx7JyKyoQYN5H/ZyckM5UTFhV2H8rS0NBw8eBBvvfWWyfpOnTphz549Zn8mNTUVqamphsfx8fE2bSN69pTXnXj9dXWdmxswcybw0EPAsGGolng+x495Ig2VcRGVMy4CGbZtYrFzPufvyy5cuADs26d1K6gYSoUHXKCHx7WLqHRt4QO3dwfgbe1GJCbKvy17/fsqJvZ7tEZzZnIismPu7kDz5sCffzKUExUXdh3Kb926hczMTAQHB5usDw4ORkxMjNmfmT59Ot57772iaJ40YIC8mdO3L9CmDXDwoKzKlS4tq046HfQpaYg7G4v4szeQliCrWULAMGO7EICALttjAEbrDY+V+8p645/J2t74caYeSEsFUtN0SE3Lum98S9OZPE5LA/RCB19fWTRMTVULdRmZOkPhWVmmZ8C4nm/C3Ho9XJAAPyTADz5IQnlcQQhi4AI9BHRIgwfuoiTiEIiMrI+sGzLgjWSTmzvScRclcRtBAIDSuIVSuAMvpMADaXBFJjLghky4GpZ6uMAVmXBDBtyQAXekwwV6xCEQd1HScEuAH0rjFirgMsrgJtyRDg/If7dMuJrsM7f3bkvGPSKKWho8kA53wzIDbobfpXLzQJrhvh4uhn/PTLjCDRlZv8FMk/vGN+V1lFs63JEJV5Ntsu8nFZ6IQyDiEYA0eCADbob2CehQGrcQhmsIRBziEYA4BBpuCfCDDgKuyIQPklASd1EC9+ACveF3LXutCOjhYvgsGS8z4Yo0eOBf1MEp1IYH0tDFZxeeLLEbAZl34ZGWAGSkI17vh7gMP9zL8MO9TD9kwA1lcBNhuA4PpGZ9Mt2QAD/EIwD34Y/78EcC5NAZ49+zO9JxB6VwHlVxCRVxDyWQCF94IhXBuIFQXEcIYhCCGPggCfdQAnEIRCo8oYcLdBDwQgq8kWxYGt8HYHjtTLgW+DOj/B6Vm/K3ngIvQ1tcoIcL9HBFpuG+ckuHO1LhabilKSc9kAZPpBqWALL9pHpT/q0sfb5ttXA0L8wfDBFREXj8cRnKGzXSuiVElB92HcoVumzdcoUQOdYpJkyYgPHjxxsex8fHIzw83Kbty1O5cvKWjQuAkjWqoWTRt8jm9HrZAzUtTZ4E0OvVpXLf+Ga8Lvvz2Z8zZtwbPnvPeGs/Z+v9F9VzufVwz6vnu6U/k9v67L2QjXsmK72XzZ5UsnC9cS/nvO4bL83J65KGuT2X188EBnogNPRx6HSP57qNXi//btzd5e9F+VtKTFRvxj3S888dgB+Aqhb/ZF6/++zrsm+ffT/5XVfQkRgF+TlLf4ZVJyIqDl57DXjySaBOHa1bQkT5YdehvHTp0nB1dc1RFY+Njc1RPVd4enrC09OzKJpHuXBxkRV1Hx+tW0JUvLi4yM40xo+Vv6UyZbRrFxERFS9ubkC9elq3gojyy65nX/fw8EDTpk2xZcsWk/VbtmxBq1atNGoVERERERERkXXYdaUcAMaPH49BgwahWbNmaNmyJebNm4fLly9j1KhRWjeNiIiIiIiIqFDsPpT37dsXt2/fxpQpU3D9+nXUq1cPv/32GypWrKh104iIiIiIiIgKxa67rytGjx6NixcvIjU1FQcPHkS7du20bhIRERFZ0YYNG9CiRQt4e3ujdOnS6NWrl9ZNIiIiKhJ2XyknIiIix7Z69WqMGDEC06ZNw6OPPgohBI4fP651s4iIiIoEQzkRERFpJiMjAy+//DI+/vhjDBs2zLC+Zs2aGraKiIio6BSL7utERETkmA4dOoSrV6/CxcUFjRs3RmhoKB5//HGcPHky159JTU1FfHy8yY2IiKi4YignIiIizVy4cAEAEBkZiXfeeQe//vorSpYsifbt2+POnTtmf2b69OkIDAw03MLDw4uyyURERFbFUE5ERERWFxkZCZ1Ol+ftwIED0Ov1AICJEyfif//7H5o2bYpFixZBp9Php59+MrvvCRMmIC4uznCLjo4uyrdGRERkVRxTTkRERFY3duxY9OvXL89tKlWqhPv37wMA6tSpY1jv6emJKlWq4PLly2Z/ztPTE56entZrLBERkYYYyomIiMjqSpcujdKlSz9wu6ZNm8LT0xOnT59GmzZtAADp6em4ePEiKlasaOtmEhERaY6hnIiIiDQTEBCAUaNGYfLkyQgPD0fFihXx8ccfAwB69+6tceuIiIhsj6GciIiINPXxxx/Dzc0NgwYNQnJyMlq0aIFt27ahZMmSWjeNiIjI5nRCCKF1I2wpPj4egYGBiIuLQ0BAgNbNISIi4rHJyvj7JCIie2PJscnhK+XKOQdew5SIiOyFckxy8PPiRYbHeiIisjeWHOsdPpQrs7ryGqZERGRv7t+/j8DAQK2bUezxWE9ERPYqP8d6h+++rtfrce3aNfj7+0On0xVqX/Hx8QgPD0d0dLRDdI9zpPfjSO8F4PuxZ470XgDHej/F6b0IIXD//n2EhYXBxcVF6+YUe9Y81gPF67P0II70XgDHej+O9F4Ax3o/jvReAL4frVhyrHf4SrmLiwvKly9v1X0GBATY9QfAUo70fhzpvQB8P/bMkd4L4Fjvp7i8F1bIrccWx3qg+HyW8sOR3gvgWO/Hkd4L4Fjvx5HeC8D3o4X8Hut5ep6IiIiIiIhIIwzlRERERERERBphKLeAp6cnJk+eDE9PT62bYhWO9H4c6b0AfD/2zJHeC+BY78eR3gtpy5E+S470XgDHej+O9F4Ax3o//2/v7mOqLP8wgF8HDhzgjAhhcjgyFZZFgJKBNYOytBioMctyGiKtPwwDhCzChU5yM9QW9kLibOY/2nBs6KimBmYkNoPxIqgkbpHmCyOXKS/Ji+f7+8P5/HoE9eiS53kO12c7Gzz3DX6vMc+1m/OCK2UBmMcIXP6N3oiIiIiIiIj0io+UExEREREREWmEh3IiIiIiIiIijfBQTkRERERERKQRHsqJiIiIiIiINMJD+V3YvHkzQkND4eXlhZiYGBw6dEjrke6osLAQ06ZNg6+vL8aOHYt58+bh5MmTqj0igoKCAtjtdnh7e+PZZ5/F8ePHNZrYeYWFhTCZTMjJyVGuGS3LuXPnsHjxYgQEBMDHxwePPfYY6uvrlXUj5RkcHMSqVasQGhoKb29vhIWFYe3atXA4HMoeveb56aef8OKLL8Jut8NkMmHPnj2qdWfm7uvrQ1ZWFgIDA2G1WpGcnIyzZ8+OYIr/u12egYEB5OXlYfLkybBarbDb7ViyZAnOnz+v+h5GyXOzN998EyaTCZ988onqup7ykL6x6/WFXa8vRu56wLX6nl3vWl3PQ7mTdu3ahZycHOTn56OxsRFPP/00kpKScObMGa1Hu63q6mpkZGTgyJEjqKysxODgIBISEtDT06Ps2bhxI4qKilBcXIy6ujrYbDa88MIL6Orq0nDy26urq8PWrVsxZcoU1XUjZbl06RLi4uLg4eGBvXv34sSJE/j444/x4IMPKnuMlGfDhg3YsmULiouL0draio0bN+Kjjz7C559/ruzRa56enh5ER0ejuLh42HVn5s7JycHu3btRWlqKmpoadHd3Y+7cubh27dpIxVDcLk9vby8aGhqwevVqNDQ0oLy8HG1tbUhOTlbtM0qef9uzZw9++eUX2O32IWt6ykP6xa7XF3a9/vIYuesB1+p7dr2Ldb2QU5544glJT09XXQsPD5eVK1dqNNG96ezsFABSXV0tIiIOh0NsNpusX79e2XP16lXx8/OTLVu2aDXmbXV1dcmkSZOksrJSZsyYIdnZ2SJivCx5eXkSHx9/y3Wj5ZkzZ4688cYbqmsvv/yyLF68WESMkweA7N69W/ncmbn//vtv8fDwkNLSUmXPuXPnxM3NTfbt2zdisw/n5jzDqa2tFQBy+vRpETFmnrNnz8q4cePk2LFjMmHCBNm0aZOypuc8pC/sev1g1+szj6t0vYhr9T27Xt95nMFHyp3Q39+P+vp6JCQkqK4nJCTg559/1miqe3P58mUAwJgxYwAA7e3t6OjoUGWzWCyYMWOGbrNlZGRgzpw5eP7551XXjZaloqICsbGxePXVVzF27FhMnToVX375pbJutDzx8fE4cOAA2traAABHjx5FTU0NZs+eDcB4eW5wZu76+noMDAyo9tjtdkRFRek62w2XL1+GyWRSHrkxWh6Hw4HU1FTk5uYiMjJyyLrR8pA22PX6wq7XZx5X7XrA9fueXa9vZq0HMIKLFy/i2rVrCAoKUl0PCgpCR0eHRlPdPRHBihUrEB8fj6ioKABQ5h8u2+nTp0d8xjspLS1FQ0MD6urqhqwZLctvv/2GkpISrFixAu+//z5qa2uxfPlyWCwWLFmyxHB58vLycPnyZYSHh8Pd3R3Xrl3DunXrsGjRIgDG+/nc4MzcHR0d8PT0hL+//5A9er+PuHr1KlauXInXXnsNDzzwAADj5dmwYQPMZjOWL18+7LrR8pA22PX6wa7Xbx5X7XrAtfueXa+/PDfjofwumEwm1eciMuSanmVmZqK5uRk1NTVD1oyQ7Y8//kB2dja+//57eHl53XKfEbIA13/jFxsbiw8//BAAMHXqVBw/fhwlJSVYsmSJss8oeXbt2oUdO3bg66+/RmRkJJqampCTkwO73Y60tDRln1Hy3Oxe5tZ7toGBASxcuBAOhwObN2++43495qmvr8enn36KhoaGu55Nj3lIe0a9j7qBXa8v7Prr9JpnOK7W9+x6/eUZDp++7oTAwEC4u7sP+S1LZ2fnkN+m6VVWVhYqKipw8OBBhISEKNdtNhsAGCJbfX09Ojs7ERMTA7PZDLPZjOrqanz22Wcwm83KvEbIAgDBwcGIiIhQXXv00UeVNxQy0s8GAHJzc7Fy5UosXLgQkydPRmpqKt5++20UFhYCMF6eG5yZ22azob+/H5cuXbrlHr0ZGBjAggUL0N7ejsrKSuU354Cx8hw6dAidnZ0YP368cr9w+vRpvPPOO5g4cSIAY+Uh7bDr9YFdf51e87hq1wOu2ffsen3mGQ4P5U7w9PRETEwMKisrVdcrKyvx1FNPaTSVc0QEmZmZKC8vxw8//IDQ0FDVemhoKGw2mypbf38/qqurdZdt1qxZaGlpQVNTk3KLjY1FSkoKmpqaEBYWZpgsABAXFzfkT9a0tbVhwoQJAIz1swGuv9Onm5v6LsXd3V35MylGy3ODM3PHxMTAw8NDtefChQs4duyYLrPdKOlTp06hqqoKAQEBqnUj5UlNTUVzc7PqfsFutyM3Nxf79+8HYKw8pB12vT6w6/Wdx1W7HnC9vmfX6zfPsEbyXeWMrLS0VDw8PGTbtm1y4sQJycnJEavVKr///rvWo93WsmXLxM/PT3788Ue5cOGCcuvt7VX2rF+/Xvz8/KS8vFxaWlpk0aJFEhwcLFeuXNFwcuf8+x1ZRYyVpba2Vsxms6xbt05OnTolO3fuFB8fH9mxY4eyx0h50tLSZNy4cfLtt99Ke3u7lJeXS2BgoLz33nvKHr3m6erqksbGRmlsbBQAUlRUJI2Njco7lDozd3p6uoSEhEhVVZU0NDTIzJkzJTo6WgYHB3WVZ2BgQJKTkyUkJESamppU9wt9fX2GyzOcm9+RVURfeUi/2PX6xK7XDyN3vYhr9T273rW6nofyu/DFF1/IhAkTxNPTUx5//HHlT43oGYBhb9u3b1f2OBwOWbNmjdhsNrFYLPLMM89IS0uLdkPfhZuL2mhZvvnmG4mKihKLxSLh4eGydetW1bqR8ly5ckWys7Nl/Pjx4uXlJWFhYZKfn6+689drnoMHDw77/yQtLU1EnJv7n3/+kczMTBkzZox4e3vL3Llz5cyZMxqkuX2e9vb2W94vHDx40HB5hjNcUespD+kbu15/2PX6YeSuF3GtvmfXu1bXm0RE/pvH3ImIiIiIiIjobvA15UREREREREQa4aGciIiIiIiISCM8lBMRERERERFphIdyIiIiIiIiIo3wUE5ERERERESkER7KiYiIiIiIiDTCQzkRERERERGRRngoJyIiIiIiItIID+VEdN+ZTCbs2bNH6zGIiIjoPmHXE907HsqJXNzrr78Ok8k05JaYmKj1aERERPQfYNcTGZtZ6wGI6P5LTEzE9u3bVdcsFotG0xAREdF/jV1PZFx8pJxoFLBYLLDZbKqbv78/gOtPNyspKUFSUhK8vb0RGhqKsrIy1de3tLRg5syZ8Pb2RkBAAJYuXYru7m7Vnq+++gqRkZGwWCwIDg5GZmamav3ixYt46aWX4OPjg0mTJqGiouL+hiYiIhpF2PVExsVDORFh9erVmD9/Po4ePYrFixdj0aJFaG1tBQD09vYiMTER/v7+qKurQ1lZGaqqqlRFXFJSgoyMDCxduhQtLS2oqKjAQw89pPo3PvjgAyxYsADNzc2YPXs2UlJS8Ndff41oTiIiotGKXU+kY0JELi0tLU3c3d3FarWqbmvXrhUREQCSnp6u+ponn3xSli1bJiIiW7duFX9/f+nu7lbWv/vuO3Fzc5OOjg4REbHb7ZKfn3/LGQDIqlWrlM+7u7vFZDLJ3r17/7OcREREoxW7nsjY+JpyolHgueeeQ0lJieramDFjlI+nT5+uWps+fTqampoAAK2trYiOjobValXW4+Li4HA4cPLkSZhMJpw/fx6zZs267QxTpkxRPrZarfD19UVnZ+e9RiIiIqJ/YdcTGRcP5USjgNVqHfIUszsxmUwAABFRPh5uj7e3t1Pfz8PDY8jXOhyOu5qJiIiIhseuJzIuvqaciHDkyJEhn4eHhwMAIiIi0NTUhJ6eHmX98OHDcHNzw8MPPwxfX19MnDgRBw4cGNGZiYiIyHnseiL94iPlRKNAX18fOjo6VNfMZjMCAwMBAGVlZYiNjUV8fDx27tyJ2tpabNu2DQCQkpKCNWvWIC0tDQUFBfjzzz+RlZWF1NRUBAUFAQAKCgqQnp6OsWPHIikpCV1dXTh8+DCysrJGNigREdEoxa4nMi4eyolGgX379iE4OFh17ZFHHsGvv/4K4Pq7pZaWluKtt96CzWbDzp07ERERAQDw8fHB/v37kZ2djWnTpsHHxwfz589HUVGR8r3S0tJw9epVbNq0Ce+++y4CAwPxyiuvjFxAIiKiUY5dT2RcJhERrYcgIu2YTCbs3r0b8+bN03oUIiIiug/Y9UT6xteUExEREREREWmEh3IiIiIiIiIijfDp60REREREREQa4SPlRERERERERBrhoZyIiIiIiIhIIzyUExEREREREWmEh3IiIiIiIiIijfBQTkRERERERKQRHsqJiIiIiIiINMJDOREREREREZFGeCgnIiIiIiIi0sj/AAJT2LWmNCMYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1588,12 +1585,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "# save the checkpoint model training\n", - "output_path = \"../models/\"\n", + "output_path = \"./\"\n", "\n", "torch.save({\n", " 'epoch': epoch,\n", @@ -1614,82 +1611,15 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 122, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Waiting for W&B process to finish... (success)." - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c1bdee8769fa4b9593d2aee441370864", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(Label(value='0.002 MB of 0.002 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "

Run history:


testing_loss█▇▁
train_loss█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
validation_loss█▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

Run summary:


testing_loss0.29413
train_loss0.07743
validation_loss0.5721

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run clear-gorge-3 at: https://wandb.ai/ai4s2s/test-autoencoder/runs/ze31innr
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Find logs at: ./wandb/run-20230623_144958-ze31innr/logs" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# switch model into evaluation mode\n", "model.eval()\n", "hist_test = []\n", "predictions = []\n", + "observed = []\n", "hist_test_step = 0\n", "for batch_idx, (X_batch, y_batch) in enumerate(test_loader):\n", " var_X_batch = torch.autograd.Variable(X_batch).to(device)\n", @@ -1700,6 +1630,7 @@ " loss = criterion(output.squeeze(), var_y_batch)\n", " wandb.log({'testing_loss': loss.item()})\n", " predictions.append(output.squeeze().cpu().detach().numpy())\n", + " observed.append(var_y_batch.cpu().detach().numpy())\n", " hist_test_step += loss.item()\n", "\n", "hist_test.append(hist_test_step / len(test_loader.dataset))\n", @@ -1707,23 +1638,52 @@ "wandb.finish()" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the predictions versus observations and climatology." + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 125, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.303\n" + "The MSE of LSTM forecasts is 1.633\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFmUlEQVR4nO3de1yUdd7/8fcwKiCHUXSHg6IhmkrYQU1TW7M7Qzp4aNu8O5hR/XJvA5OsTHdvM8uW8q57re4Nt9rFWrPDfbe46G60ZkJ5wtJMyWLV8LAJWpozikE2c/3+ICZHQEEHZobr9Xw85mFzXd+55nNN4ry5vofLYhiGIQAAAJMI8XcBAAAArYnwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATKWdvwsIRG63W/v371dUVJQsFou/ywEAAE1gGIaOHj2qhIQEhYQ0fn2H8NOA/fv3KzEx0d9lAACAs7Bv3z5179690f2EnwZERUVJqv3woqOj/VwNAABoCqfTqcTERM/3eGMIPw2o6+qKjo4m/AAAEGTONGSFAc8AAMBUCD8AAMBUCD8AAMBUGPMDAAgYLpdLJ06c8HcZCFDt27eX1Wo95+MQfgAAfmcYhiorK3XkyBF/l4IA16lTJ8XFxZ3TOnyEHwCA39UFH7vdro4dO7LALOoxDEPHjx/XwYMHJUnx8fFnfSzCDwDAr1wulyf4dOnSxd/lIICFh4dLkg4ePCi73X7WXWAMeAYA+FXdGJ+OHTv6uRIEg7q/J+cyNozwAwAICHR1oSl88feEbi8AOEsut6GN5Yd18Gi17FFhGpIUI2sIX+BAoCP8AMBZKCyt0Lzl21XhqPZsi7eFae7YFKWnnv1ATAAtj24vAGimwtIKTV2y2Sv4SFKlo1pTl2xWYWmFnypDW5WRkaEJEyZ4no8aNUrZ2dnndExfHCNYEX4AoBlcbkPzlm+X0cC+um3zlm+Xy91QC7Q0l9vQ+l2H9NctX2n9rkMt/v8hIyNDFotFFotFHTp0UO/evfXYY4/phx9+aNH3/ctf/qLHH3+8SW2LiopksVjqraHUnGO0NXR7AUAzbCw/XO+Kz8kMSRWOam0sP6xhyUzbbk3+6opMT09XXl6eampq9Pe//12ZmZlq3769Zs+e7dXu+++/V4cOHXzynjExMQFxjGDFlR8AaIaDRxsPPmfTDr7hz67I0NBQxcXFqWfPnpo6dapGjx6tgoICT1fVE088oYSEBPXt21eStG/fPk2cOFGdOnVSTEyMxo8fr927d3uO53K5NGPGDHXq1EldunTRzJkzZRjeV7BO7bKqqanRww8/rMTERIWGhqp379764x//qN27d+vKK6+UJHXu3FkWi0UZGRkNHuPbb7/V5MmT1blzZ3Xs2FHXXHONduzY4dm/ePFiderUSe+++6769++vyMhIpaenq6Lip8+2qKhIQ4YMUUREhDp16qQRI0Zoz549PvqkfYfwAwDNYI8K82k7nLtA64oMDw/X999/L0latWqVysrKtHLlSq1YsUInTpzQmDFjFBUVpQ8//FBr1671hIi61zzzzDNavHix/vSnP2nNmjU6fPiw8vPzT/uekydP1uuvv67nnntOn3/+uf7whz8oMjJSiYmJevvttyVJZWVlqqio0LPPPtvgMTIyMvTxxx+roKBA69evl2EYuvbaa73W0zl+/Liefvpp/fnPf9YHH3ygvXv36sEHH5Qk/fDDD5owYYKuuOIKbd26VevXr9eUKVMCcgkDur0AoBmGJMUo3hamSkd1g1+2Fklxttpp72gdgdIVaRiGVq1apXfffVfTpk3T119/rYiICL388sue7q4lS5bI7Xbr5Zdf9oSCvLw8derUSUVFRUpLS9PChQs1e/Zs/eIXv5AkLVq0SO+++26j7/vPf/5Tb731llauXKnRo0dLknr16uXZX9e9Zbfb1alTpwaPsWPHDhUUFGjt2rUaPny4JOm1115TYmKili1bpptuuklS7cKCixYtUnJysiQpKytLjz32mCTJ6XTK4XDo+uuv9+zv379/8z/IVsCVHwBoBmuIRXPHpkiqDTonq3s+d2wK6/20In93Ra5YsUKRkZEKCwvTNddco3//93/Xo48+KkkaMGCA1zifTz/9VDt37lRUVJQiIyMVGRmpmJgYVVdXa9euXXI4HKqoqNDQoUM9r2nXrp0GDx7c6Ptv2bJFVqtVV1xxxVmfw+eff6527dp5vW+XLl3Ut29fff75555tHTt29AQbqfb+WnX32oqJiVFGRobGjBmjsWPH6tlnn/XqEgskhB8AaKb01HjlThqoOJt311acLUy5kwayzk8r83dX5JVXXqktW7Zox44d+u677/TKK68oIiJCkjx/1jl27JgGDRqkLVu2eD3++c9/6tZbbz2r96+731VraN++vddzi8XiNR4pLy9P69ev1/Dhw/Xmm2/q/PPP14YNG1qtvqai2wsAzkJ6aryuToljhecA4O+uyIiICPXu3btJbQcOHKg333xTdrtd0dHRDbaJj49XSUmJRo4cKal2LM2mTZs0cODABtsPGDBAbrdbxcXFnm6vk9VdeXK5XI3W1b9/f/3www8qKSnxdHsdOnRIZWVlSklJadK51bnkkkt0ySWXaPbs2Ro2bJiWLl2qyy67rFnHaGlc+QGAs2QNsWhYcheNv7ibhiV3Ifj4STB1Rd52223q2rWrxo8frw8//FDl5eUqKirSfffdp3/961+SpOnTp+vJJ5/UsmXL9MUXX+jee++tt0bPyc477zzdcccduuuuu7Rs2TLPMd966y1JUs+ePWWxWLRixQp9/fXXOnbsWL1j9OnTR+PHj9c999yjNWvW6NNPP9WkSZPUrVs3jR8/vknnVl5ertmzZ2v9+vXas2eP/vGPf2jHjh0BOe6H8AMACHrB0hXZsWNHffDBB+rRo4d+8YtfqH///rr77rtVXV3tuRL0wAMP6Pbbb9cdd9yhYcOGKSoqSjfccMNpj5ubm6tf/vKXuvfee9WvXz/dc889qqqqkiR169ZN8+bN06xZsxQbG6usrKwGj5GXl6dBgwbp+uuv17Bhw2QYhv7+97/X6+o63bl98cUXuvHGG3X++edrypQpyszM1K9+9atmfEKtw2KcungA5HQ6ZbPZ5HA4Gr0sCQDwjerqapWXlyspKUlhYec2LoebzbZ9p/v70tTvb8b8AADajLquSOB06PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAMCEHn30UV188cX+LkOjRo1SdnZ2q74n4QcAgHNQWVmp6dOnq3fv3goLC1NsbKxGjBih3NxcHT9+3N/lnbWioiJZLJbT3lfMn8c7F6zwDABoO9wuac866dgBKTJW6jlcCrG22Nt9+eWXGjFihDp16qTf/va3GjBggEJDQ7Vt2za9+OKL6tatm8aNG9fga0+cONHk+2YFsu+//95z5/hgwZWf1uJ2SeUfStv+r/ZPt8vfFQFA27K9QFqYKr1yvfT23bV/Lkyt3d5C7r33XrVr104ff/yxJk6cqP79+6tXr14aP368/va3v2ns2LGethaLRbm5uRo3bpwiIiL0xBNPSKq9KWlycrI6dOigvn376s9//rPnNbt375bFYtGWLVs8244cOSKLxaKioiJJP11RWbVqlQYPHqyOHTtq+PDhKisr86r1ySefVGxsrKKiojw3U23M7t27deWVV0qSOnfuLIvFooyMDEm13VRZWVnKzs5W165dNWbMmDPWebrjSZLb7dbMmTMVExOjuLg4Pfroo039X3BW/Bp+cnJydOmllyoqKkp2u10TJkyo9z9r1KhRslgsXo//+I//OO1xDcPQI488ovj4eIWHh2v06NHasWNHS57K6fnhBxIATGV7gfTWZMm533u7s6J2ewv8e3vo0CH94x//UGZmpiIiIhpsY7F431T10Ucf1Q033KBt27bprrvuUn5+vqZPn64HHnhApaWl+tWvfqU777xTq1evbnY9v/nNb/TMM8/o448/Vrt27XTXXXd59r311lt69NFH9dvf/lYff/yx4uPj9cILLzR6rMTERL399tuSpLKyMlVUVOjZZ5/17H/llVfUoUMHrV27VosWLTpjbU05XkREhEpKSrRgwQI99thjWrlyZbM/g6bya/gpLi5WZmamNmzYoJUrV+rEiRNKS0tTVVWVV7t77rlHFRUVnseCBQtOe9wFCxboueee06JFi1RSUqKIiAiNGTPmtCm3xfjhBxIATMXtkgoflmQ0sPPHbYWzfH7FfefOnTIMQ3379vXa3rVrV0VGRioyMlIPP/yw175bb71Vd955p3r16qUePXro6aefVkZGhu69916df/75mjFjhn7xi1/o6aefbnY9TzzxhK644gqlpKRo1qxZWrduned7b+HChbr77rt19913q2/fvpo/f75SUlIaPZbValVMTIwkyW63Ky4uTjabzbO/T58+WrBggfr27Vvv/M/meBdeeKHmzp2rPn36aPLkyRo8eLBWrVrV7M+gqfwafgoLC5WRkaELLrhAF110kRYvXqy9e/dq06ZNXu06duyouLg4z+N0t6k3DEMLFy7Uf/7nf2r8+PG68MIL9eqrr2r//v1atmxZC5/RKfz0AwkAprJnXf1fML0YkvOr2natYOPGjdqyZYsuuOAC1dTUeO0bPHiw1/PPP/9cI0aM8No2YsQIff75581+3wsvvNDz3/Hx8ZKkgwcPet5n6NChXu2HDRvW7PeoM2jQoLN+bUNOrl2qrb+u9pYQUGN+HA6HJHnSYZ3XXntNXbt2VWpqqmbPnn3a0fPl5eWqrKzU6NGjPdtsNpuGDh2q9evXN/iampoaOZ1Or4dPBNgPJAC0SccO+LZdE/Xu3VsWi6XecI1evXqpd+/eCg8Pr/eaxrrHGhMSUvs1bRg//RJ94sSJBtuePHi6rrvN7XY36/2a6tTzaE6dDTl14LfFYmmx2qUACj9ut1vZ2dkaMWKEUlNTPdtvvfVWLVmyRKtXr9bs2bP15z//WZMmTWr0OJWVlZKk2NhYr+2xsbGefafKycmRzWbzPBITE31wRvLbDyQAmEpk7JnbNKddE3Xp0kVXX321/ud//qfecI2m6t+/v9auXeu1be3atZ4uqZ/97GeSpIqKCs/+kwcVN+d9SkpKvLZt2LDhtK+pm8Hlcp25d6IpdTbneC0tYKa6Z2ZmqrS0VGvWrPHaPmXKFM9/DxgwQPHx8brqqqu0a9cuJScn++S9Z8+erRkzZnieO51O3wQgP/1AAoCp9BwuRSfUjqVscJiBpXZ/z+E+f+sXXnhBI0aM0ODBg/Xoo4/qwgsvVEhIiD766CN98cUXZ+weeuihhzRx4kRdcsklGj16tJYvX66//OUveu+99yRJ4eHhuuyyy/Tkk08qKSlJBw8e1H/+5382u87p06crIyNDgwcP1ogRI/Taa6/ps88+U69evRp9Tc+ePWWxWLRixQpde+21Cg8PV2RkZINtm1Jnc47X0gLiyk9WVpZWrFih1atXq3v37qdtW9dnuXPnzgb3x8XFSZIOHPC+mnLgwAHPvlOFhoYqOjra6+ETdT+QsjTSwCJFd2uRH0gAMI0Qq5T+1I9PTv339sfn6U+2yHo/ycnJ+uSTTzR69GjNnj1bF110kQYPHqznn39eDz74oB5//PHTvn7ChAl69tln9fTTT+uCCy7QH/7wB+Xl5WnUqFGeNn/605/0ww8/aNCgQcrOztb8+fObXee///u/a86cOZo5c6YGDRqkPXv2aOrUqad9Tbdu3TRv3jzNmjVLsbGxysrKOm37M9XZ3OO1JItxcgddKzMMQ9OmTVN+fr6KiorUp0+fM75m7dq1uvzyy/Xpp5/WGyBVd8yEhAQ9+OCDeuCBByTVXsmx2+1avHixbr755jO+h9PplM1mk8PhOPcgVDfbq7a6k3b8+AM58VUppeEFsADADKqrq1VeXq6kpCSFhYWd/YG2F9ROMjl5rGV0t9rgw7+zbcbp/r409fvbr91emZmZWrp0qf76178qKirKMybHZrMpPDxcu3bt0tKlS3XttdeqS5cu2rp1q+6//36NHDnSK/j069dPOTk5uuGGG2SxWDyJs0+fPkpKStKcOXOUkJCgCRMmtP5JpoyrDTj1fiAT+IEEAF9KGSf1u65VV3hGcPJr+MnNzZUkr8t7kpSXl6eMjAx16NBB7733nhYuXKiqqiolJibqxhtvrNePWFZW5pkpJkkzZ85UVVWVpkyZoiNHjujyyy9XYWHhuf1GcS74gQSA1hFilZJ+7u8qEOD82u0VqHza7QUAOC2fdXvBFHzR7RUQA54BAABaC+EHABAQ6IhAU/ji7wnhBwDgV3Wr+55u9X6gTt3fk1NXhW6OgFnkEABgTlarVZ06dfLcy6ljx4717oYOGIah48eP6+DBg+rUqZOs1rOfNET4AQD4Xd0itC15M0u0DZ06dWp00eKmIvwAAPzOYrEoPj5edru9WTfEhLm0b9/+nK741CH8AAAChtVq9cmXG3A6DHgGAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACm0s7fBQDN4XIb2lh+WAePVsseFaYhSTGyhlj8XRYAIIgQfhA0CksrNG/5dlU4qj3b4m1hmjs2Remp8X6sDAAQTOj2QlAoLK3Q1CWbvYKPJFU6qjV1yWYVllb4qTIAQLAh/CDgudyG5i3fLqOBfXXb5i3fLpe7oRYAAHgj/CDgbSw/XO+Kz8kMSRWOam0sP9x6RQEAghbhBwHv4NHGg8/ZtAMAmBvhBwHPHhXm03YAAHMj/CDgDUmKUbwtTI1NaLeodtbXkKSY1iwLABCkCD8IeNYQi+aOTZGkegGo7vncsSms9wMAaBLCD4JCemq8cicNVJzNu2srzham3EkDWecHANBkLHKIoJGeGq+rU+JY4RkAcE4IPwgq1hCLhiV38XcZAIAgRrcXAAAwFa784Cdul7RnnXTsgBQZK/UcLoVY/V0VAAA+RfhBre0FUuHDknP/T9uiE6T0p6SUcf6rCwAAH6PbC7XB563J3sFHkpwVtdu3F/inLgAAWgDhx+zcrtorPqe7bWjhrNp2AAC0AX4NPzk5Obr00ksVFRUlu92uCRMmqKysrMG2hmHommuukcVi0bJly0573IyMDFksFq9Henp6C5xBG7BnXf0rPl4MyflVbTsAANoAv4af4uJiZWZmasOGDVq5cqVOnDihtLQ0VVVV1Wu7cOFCWSxNX88lPT1dFRUVnsfrr7/uy9LbjmMHfNsOAIAA59cBz4WFhV7PFy9eLLvdrk2bNmnkyJGe7Vu2bNEzzzyjjz/+WPHxTVvJNzQ0VHFxcT6tt02KjPVtOwAAAlxAjflxOBySpJiYn25Qefz4cd166636/e9/36wwU1RUJLvdrr59+2rq1Kk6dOhQo21ramrkdDq9HqbRc3jtrK7T3TY0ulttOwAA2oCACT9ut1vZ2dkaMWKEUlNTPdvvv/9+DR8+XOPHj2/ysdLT0/Xqq69q1apVeuqpp1RcXKxrrrlGLlfDg3ZzcnJks9k8j8TExHM+n6ARYq2dzi6p0duGpj/Jej8AgHPndknlH0rb/q/2Tz9NprEYhtHQNJ9WN3XqVL3zzjtas2aNunfvLkkqKCjQAw88oE8++USRkZGSJIvFovz8fE2YMKHJx/7yyy+VnJys9957T1dddVW9/TU1NaqpqfE8dzqdSkxMlMPhUHR09LmdWLBocJ2fbrXBh3V+AADnqhXWk3M6nbLZbGf8/g6IRQ6zsrK0YsUKffDBB57gI0nvv/++du3apU6dOnm1v/HGG/Xzn/9cRUVFTTp+r1691LVrV+3cubPB8BMaGqrQ0NBzOYXglzJO6ncdKzwDAHyvbj25U5dVqVtPbuKrrfqLtl/Dj2EYmjZtmvLz81VUVKSkpCSv/bNmzdL/+3//z2vbgAED9Lvf/U5jx45t8vv861//0qFDh5o8WNq0QqxS0s/9XQUAoC0543pyltr15Ppd12q/cPt1zE9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nSYqLi1NqaqrXQ5J69OjhFZT69eun/Px8SdKxY8f00EMPacOGDdq9e7dWrVql8ePHq3fv3hozZkzrnyQAAGYWgOvJ+TX85ObmyuFwaNSoUYqPj/c83nzzzWYdp6yszDNTzGq1auvWrRo3bpzOP/983X333Ro0aJA+/PBDurYAAGhtAbienN+7vXzxmpO3hYeH69133z2nugAAgI8E4HpyATPVHQAAtEEBuJ4c4QcAALScAFxPjvADAABaVsq42uns0afMuo5OaPVp7lKArPMDAADauABaT47wAwAAWkeArCdHtxcAADAVwg8AADAVur0A4Gy5XQExfgFA8xB+AOBstMIdqgG0DLq9AKC56u5Qfer9iuruUL29wD91AWgSwg88XG5D63cd0l+3fKX1uw7J5W7+7UeANu+Md6hW7R2q3a7WrApAM9DtBUlSYWmF5i3frgpHtWdbvC1Mc8emKD01/jSvBEymOXeoDoApvQDq48oPVFhaoalLNnsFH0mqdFRr6pLNKiyt8FNlQAAKwDtUA2gewo/JudyG5i3ffroL+Jq3fDtdYECdALxDNYDmIfyY3Mbyw/Wu+JzMkFThqNbG8sOtVxQQyALwDtUAmofwY3IHjzYefM6mHdDmBeAdqgE0D+HH5OxRYT5tB5hCgN2hGkDzMNvL5IYkxSjeFqZKR3WD434skuJsYRqSFNPapQGBLYDuUA2gebjyY3LWEIvmjk2R1OgFfM0dmyJrSGPjGwATq7tD9YBf1v5J8AGCAuEHSk+NV+6kgYqzeXdtxdnClDtpIOv8AADaFLq9IKk2AF2dEqeN5Yd18Gi17FG1XV1c8QEAtDWEH3hYQywaltzF32UAANCi6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwiKHANCGudwGK7cDpyD8AEAbVVhaoXnLt6vCUe3ZFm8L09yxKdyzD6ZGtxcAtEGFpRWaumSzV/CRpEpHtaYu2azC0go/VQb4H+EHANoYl9vQvOXbZTSwr27bvOXb5XI31AJo+wg/ANDGbCw/XO+Kz8kMSRWOam0sP9x6RQEBhPADAG3MwaONB5+zaQe0NYQfAGhj7FFhPm0HtDWEHwBoY4YkxSjeFqbGJrRbVDvra0hSTGuWBQQMwg8AtDHWEIvmjk2RpHoBqO753LEprPcD0yL8AEAblJ4ar9xJAxVn8+7airOFKXfSQNb5gamxyCEAtFHpqfG6OiWOFZ6BU/j1yk9OTo4uvfRSRUVFyW63a8KECSorK2uwrWEYuuaaa2SxWLRs2bLTHtcwDD3yyCOKj49XeHi4Ro8erR07drTAGQBAYLOGWDQsuYvGX9xNw5K7EHwA+Tn8FBcXKzMzUxs2bNDKlSt14sQJpaWlqaqqql7bhQsXymJp2g/tggUL9Nxzz2nRokUqKSlRRESExowZo+pqpnUCAGB2FsMwAmaJz6+//lp2u13FxcUaOXKkZ/uWLVt0/fXX6+OPP1Z8fLzy8/M1YcKEBo9hGIYSEhL0wAMP6MEHH5QkORwOxcbGavHixbr55pvrvaampkY1NTWe506nU4mJiXI4HIqOjvbtSQIAgBbhdDpls9nO+P0dUAOeHQ6HJCkm5qfpl8ePH9ett96q3//+94qLizvjMcrLy1VZWanRo0d7ttlsNg0dOlTr169v8DU5OTmy2WyeR2Ji4jmeCQAACFQBE37cbreys7M1YsQIpaamerbff//9Gj58uMaPH9+k41RWVkqSYmNjvbbHxsZ69p1q9uzZcjgcnse+ffvO8iwAAECgC5jZXpmZmSotLdWaNWs82woKCvT+++/rk08+adH3Dg0NVWhoaIu+BwAACAwBceUnKytLK1as0OrVq9W9e3fP9vfff1+7du1Sp06d1K5dO7VrV5vVbrzxRo0aNarBY9V1jR04cMBr+4EDB5rUbQYAANo2v4YfwzCUlZWl/Px8vf/++0pKSvLaP2vWLG3dulVbtmzxPCTpd7/7nfLy8ho8ZlJSkuLi4rRq1SrPNqfTqZKSEg0bNqzFzgUAAAQHv3Z7ZWZmaunSpfrrX/+qqKgoz5gcm82m8PBwxcXFNXi1pkePHl5BqV+/fsrJydENN9wgi8Wi7OxszZ8/X3369FFSUpLmzJmjhISERmeIAQAA8/Br+MnNzZWkel1YeXl5ysjIaPJxysrKPDPFJGnmzJmqqqrSlClTdOTIEV1++eUqLCxUWBh3MAYAwOwCap2fQNHUdQIAAEDgCMp1fgAAAFoa4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJhKO38XAAAwN5fb0Mbywzp4tFr2qDANSYqRNcTi77LQhhF+AAB+U1haoXnLt6vCUe3ZFm8L09yxKUpPjfdjZWjL6PYCAPhFYWmFpi7Z7BV8JKnSUa2pSzarsLTCT5WhrSP8AABancttaN7y7TIa2Fe3bd7y7XK5G2oBnBvCDwCg1W0sP1zvis/JDEkVjmptLD/cekXBNAg/AIBWd/Bo48HnbNoBzUH4AQC0OntUmE/bAc1B+AEAtLohSTGKt4WpsQntFtXO+hqSFNOaZcEkCD8AgFZnDbFo7tgUSaoXgOqezx2bwno/aBGEHwCAX6Snxit30kDF2by7tuJsYcqdNJB1ftBiWOQQAOA36anxujoljhWe0arOKfxUV1frzTffVFVVla6++mr16dPHV3UBAEzCGmLRsOQu/i4DJtLk8DNjxgydOHFCzz//vCTp+++/17Bhw/TZZ5+pY8eOmjlzplauXKlhw4a1WLEAAADnqsljfv7xj3/o6quv9jx/7bXXtGfPHu3YsUPffvutbrrpJs2fP79FigQAAPCVJoefvXv3KiUlxfP8H//4h375y1+qZ8+eslgsmj59uj755JMWKRIA0Ia5XVL5h9K2/6v90+3yd0Vo45rc7RUSEiLD+OkeKxs2bNCcOXM8zzt16qRvv/3Wt9UBANq27QVS4cOSc/9P26ITpPSnpJRx/qsLbVqTr/z0799fy5cvlyR99tln2rt3r6688krP/j179ig2Ntb3FQIA2qbtBdJbk72DjyQ5K2q3by/wT11o85p85WfmzJm6+eab9be//U2fffaZrr32WiUlJXn2//3vf9eQIUNapEgAQBvjdtVe8Wn0vu4WqXCW1O86KcTaysUFKbdL2rNOOnZAioyVeg4PuM/O5TYCYlmDJoefG264QX//+9+1YsUKpaWladq0aV77O3bsqHvvvdfnBQIA2qA96+pf8fFiSM6vatsl/bzVygpaQdB9WFhaoXnLt6vC8dPNauNtYZo7NqXVF7S0GCcP5DmNxx57TA8++KA6duzY0jX5ndPplM1mk8PhUHR0tL/LAYC2Z9v/SW/ffeZ2N/5RGvDLlq8nmNV1H9a7ivbjFZWJr/o9ABWWVmjqks2NVeizFb2b+v3d5DE/8+bN07Fjx865MAAAFNnEMaJNbWdWZ+w+VG33oR9n0LnchuYt3366CjVv+Xa53E26FuMTTQ4/TbxABLQspsQCbUPP4bXdMqe7r3t0t9p2aFxzug/9ZGP5Ya+urlMZkioc1dpYfrjVamrW7S0sFu61Aj8Kgj5tAE0UYq392X1rsmoD0Mm/YP/4XZP+ZMAN2A04xw74tl0LOHi08eBzNu18oVnh5/zzzz9jADp8uPWSG0yksT7tuimxAdCnDaCZUsbV/uw2+EvNk/xMN0UQdB/ao8J82s4XmhV+5s2bJ5vN1lK1AA1jSizQdqWMq/3ZDfAp2gGrrvvQWaGG/4201O73Y/fhkKQYxdvCVOmobqxCxdlqp723lmaFn5tvvll2u91nb56Tk6O//OUv+uKLLxQeHq7hw4frqaeeUt++fT1tfvWrX+m9997T/v37FRkZ6WnTr1+/Ro+bkZGhV155xWvbmDFjVFhY6LPa0YqYEgu0bSFWfnbPVhB0H1pDLJo7NkVTl2xurELNHZvSquv9NHnAc0uM9ykuLlZmZqY2bNiglStX6sSJE0pLS1NVVZWnzaBBg5SXl6fPP/9c7777rgzDUFpamlyu0w90TU9PV0VFhefx+uuv+7x+tJIg6NMGAL+p6z6MPmWqeHRCwAwJSE+NV+6kgYqzeXdtxdnCfDbNvTmavM5PSEiIKisrfXrl51Rff/217Ha7iouLNXLkyAbbbN26VRdddJF27typ5OTkBttkZGToyJEjWrZsWZPet6amRjU1NZ7nTqdTiYmJrPMTKMo/lF65/szt7ljBb48AzIsVnpu8zk+Tu73cbrdPCjsdh8MhSYqJabjfr6qqSnl5eUpKSlJiYuJpj1VUVCS73a7OnTvr3/7t3zR//nx16dKlwbY5OTmaN2/euRWPlhMEfdoA4HdB0H1oDbFoWHLD38WtqclXflqa2+3WuHHjdOTIEa1Zs8Zr3wsvvKCZM2eqqqpKffv21d/+9rdGr/pI0htvvKGOHTsqKSlJu3bt0q9//WtFRkZq/fr1slrrp2Cu/AQBz2wvqcEe4wC5tAsA8J+mXvkJmPAzdepUvfPOO1qzZo26d+/utc/hcOjgwYOqqKjQ008/ra+++kpr165VWFjTpsV9+eWXSk5O1nvvvaerrrrqjO25vUWAanCdn25MiQUASGqBbq+WlJWVpRUrVuiDDz6oF3wkyWazyWazqU+fPrrsssvUuXNn5efn65ZbbmnS8Xv16qWuXbtq586dTQo/CFBMiQUA+IBfw49hGJo2bZry8/NVVFSkpKSkJr3GMAyvbqoz+de//qVDhw4pPr51R5OjBQRBnzYAILA1eap7S8jMzNSSJUu0dOlSRUVFqbKyUpWVlfruu+8k1XZX5eTkaNOmTdq7d6/WrVunm266SeHh4br22ms9x+nXr5/y8/MlSceOHdNDDz2kDRs2aPfu3Vq1apXGjx+v3r17a8yYMX45TwBAcHO5Da3fdUh/3fKV1u861Ko34YTv+fXKT25uriRp1KhRXtvz8vKUkZGhsLAwffjhh1q4cKG+/fZbxcbGauTIkVq3bp3XlPuysjLPTDGr1aqtW7fqlVde0ZEjR5SQkKC0tDQ9/vjjCg0NbbVzAwC0DYWlFXq8YJsSj30qu47ooDppX+RFmjNuQKuvTwPfCJgBz4GEAc8AAKk2+CxbukiPtH9VCZaf7l2534jRYycma8Kt/0EACiBN/f72a7cXAACByuU2VLTsT3qh/ULFyfum3XE6rBfaL1TRsj/RBRaECD8AADRg466vdd+JlyVJpy5CXPf8vhN/1MZdX7dyZThXhB8AABrg2r1WCZbD9YJPnRCLlGA5JNfuta1bGM4Z4QcAgAbYLUd82g6Bg/ADAEADkns1fhuls2mHwEH4AQCgAdbzRui78Dg1Np7ZbUjfhcfJet6I1i0M54zwA5gQC7YBTRBiVfjY/5LFYpH7lF1uSRaLReFj/4tb7AShgLi3F4DWU1haoXnLt6vCUe3ZFm8L09yxKaxXApwqZZwsE1+td1NlS3Q3WbipctBikcMGsMgh2qrC0gpNXbJZp/7Q101myZ00kAAENMTt4qbKQSCo7uoOoOW53IbmLd9eL/hIkqHaADRv+XZdnRIna2NzewGz4qbKbQpjfgCT2Fh+2Kur61SGpApHtTaWH260DQC0BYQfwCQOHm08+JxNOwAIVoQfwCTsUWE+bQcAwYrwA5jEkKQYxdvC1NhoHotqZ30NSYppzbIAoNURfgCTsIZYNHdsiiTVC0B1z+eOTWGwM4A2j/ADmEh6arxyJw1UnM27ayvOFsY0dwCmwVR3wGTSU+N1dUqcNpYf1sGj1bJH1XZ1ccUHgFkQfgATsoZYNCy5i7/LAAC/oNsLAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCoscAghILrfBKtQAWgThB0DAKSyt0Lzl21XhqPZsi7eFae7YFO4/BuCc0e0FIKAUllZo6pLNXsFHkiod1Zq6ZLMKSyv8VBmAtoLwAyBguNyG5i3fLqOBfXXb5i3fLpe7oRYA0DSEHwABY2P54XpXfE5mSKpwVGtj+eHWKwpAm0P4ARAwDh5tPPicTTsAaAjhB0DAsEeF+bQdADSE8AMgYAxJilG8LUyNTWi3qHbW15CkmNYsC0AbQ/gBEDCsIRbNHZsiSfUCUN3zuWNTWO8HwDkh/AAIKOmp8cqdNFBxNu+urThbmHInDWSdHwDnjEUOAR9jZeJzl54ar6tT4vgcAbQIwg/gQ6xM7DvWEIuGJXfxdxkA2iC6vQAfYWViAAgOhB/AB1iZGACCh1/DT05Oji699FJFRUXJbrdrwoQJKisr82rzq1/9SsnJyQoPD9fPfvYzjR8/Xl988cVpj2sYhh555BHFx8crPDxco0eP1o4dO1ryVGByrEwMAMHDr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVnjaDBg1SXl6ePv/8c7377rsyDENpaWlyuVyNHnfBggV67rnntGjRIpWUlCgiIkJjxoxRdTWrwqJlsDIxAAQPi2EYAXMd/uuvv5bdbldxcbFGjhzZYJutW7fqoosu0s6dO5WcnFxvv2EYSkhI0AMPPKAHH3xQkuRwOBQbG6vFixfr5ptvrveampoa1dTUeJ47nU4lJibK4XAoOjraR2eHtmz9rkO65aUNZ2z3+j2XMYgXQItgpmnt97fNZjvj93dAzfZyOBySpJiYhldvraqqUl5enpKSkpSYmNhgm/LyclVWVmr06NGebTabTUOHDtX69esbDD85OTmaN2+eD84AZlW3MnGlo7rBcT8W1a5Tw8rEAFoCM02bJ2AGPLvdbmVnZ2vEiBFKTU312vfCCy8oMjJSkZGReuedd7Ry5Up16NChweNUVlZKkmJjY722x8bGevadavbs2XI4HJ7Hvn37fHBGMBNWJgbgL8w0bb6ACT+ZmZkqLS3VG2+8UW/fbbfdpk8++UTFxcU6//zzNXHiRJ+O3wkNDVV0dLTXA2guViYG0NqYaXp2AqLbKysrSytWrNAHH3yg7t2719tvs9lks9nUp08fXXbZZercubPy8/N1yy231GsbFxcnSTpw4IDi43/6sjlw4IAuvvjiFjsHQGJlYgCtqzkzTRlv+BO/XvkxDENZWVnKz8/X+++/r6SkpCa9xjAMrwHKJ0tKSlJcXJxWrVrl2eZ0OlVSUqJhw4b5rHagMXUrE4+/uJuGJXch+ABoMcw0PTt+DT+ZmZlasmSJli5dqqioKFVWVqqyslLfffedJOnLL79UTk6ONm3apL1792rdunW66aabFB4ermuvvdZznH79+ik/P1+SZLFYlJ2drfnz56ugoEDbtm3T5MmTlZCQoAkTJvjjNAEAaBH2qLAzN2pGO7Pwa7dXbm6uJGnUqFFe2/Py8pSRkaGwsDB9+OGHWrhwob799lvFxsZq5MiRWrdunex2u6d9WVmZZ6aYJM2cOVNVVVWaMmWKjhw5ossvv1yFhYUKC+N/PgCg7WCm6dkJqHV+AkVT1wkAAMDf6mZ7SfIKQHUd7maacNHU7++Ame0FAACaj5mmzRcQs70AAMDZY6Zp8xB+AABoA+pmmuLM6PYCAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmQvgBAACmwlR3wNfcLmnPOunYASkyVuo5XAqx+rsqAMCPCD+AL20vkAoflpz7f9oWnSClPyWljPNfXQAAD7q9AF/ZXiC9Ndk7+EiSs6J2+/YC/9QFAPBC+AF8we2qveLT4H2Vf9xWOKu2HQDArwg/gC/sWVf/io8XQ3J+VdsOAOBXhB/AF44d8G07AECLIfwAvhAZ69t2AIAWQ/gBfKHn8NpZXbI00sAiRXerbQcA8CvCD+ALIdba6eyS6gegH5+nP8l6PwAQAAg/gK+kjJMmvipFx3tvj06o3c46PwAQEFjkEPCllHFSv+tY4RkAAhjhB/C1EKuU9HN/VwEAaAThB0Bg4h5pAFoI4QdA4OEeaQBaEAOeAQQW7pEGoIURfgAEDu6RBqAVEH4ABA7ukQagFRB+AAQO7pEGoBUw4LmVuNyGNpYf1sGj1bJHhWlIUoysIY3dCgEwKe6RBqAVEH5aQWFpheYt364KR7VnW7wtTHPHpig9Nf40rwRMpu4eac4KNTzux1K7n3ukATgHdHu1sMLSCk1dstkr+EhSpaNaU5dsVmFphZ8qAwIQ90gD0AoIPy3I5TY0b/n2081b0bzl2+VyN9QCMCnukQaghdHt1YI2lh+ud8XnZIakCke1NpYf1rDkLq1XGBDouEcagBZE+GlBB482HnzOph1gKtwjDUALodurBdmjwnzaDgAAnDvCTwsakhSjeFtYvWGbdSyqnfU1JCmmNcsCAMDUCD8tyBpi0dyxKZIanbeiuWNTWO8HAIBWRPhpYemp8cqdNFBxNu+urThbmHInDWSdHwAAWhkDnltBemq8rk6JY4VnBA63i5lUAEyL8NNKrCEWprMjMGwvqL1z+sk3EI1OqF1ckDV0AJgA3V6AmWwvkN6aXP/O6c6K2u3bC/xTFwC0Ir+Gn5ycHF166aWKioqS3W7XhAkTVFZW5tl/+PBhTZs2TX379lV4eLh69Oih++67Tw6H47THzcjIkMVi8Xqkp6e39OkAgc3tqr3ic7o1xwtn1bYDgDbMr+GnuLhYmZmZ2rBhg1auXKkTJ04oLS1NVVVVkqT9+/dr//79evrpp1VaWqrFixersLBQd9999xmPnZ6eroqKCs/j9ddfb+nTAQLbnnX1r/h4MSTnV7XtAKAN8+uYn8LCQq/nixcvlt1u16ZNmzRy5Eilpqbq7bff9uxPTk7WE088oUmTJumHH35Qu3aNlx8aGqq4uLgm1VFTU6OamhrPc6fT2cwzAYLAsQO+bQcAQSqgxvzUdWfFxDS+6J/D4VB0dPRpg48kFRUVyW63q2/fvpo6daoOHTrUaNucnBzZbDbPIzEx8exOAAhkkbG+bQcAQcpiGEZA3FLc7XZr3LhxOnLkiNasWdNgm2+++UaDBg3SpEmT9MQTTzR6rDfeeEMdO3ZUUlKSdu3apV//+teKjIzU+vXrZbXWn87b0JWfxMRET9AC2gS3S1qYWju4ucFxP5baWV/Z25j2DiAoOZ1O2Wy2M35/B0z4mTp1qt555x2tWbNG3bt3r7ff6XTq6quvVkxMjAoKCtS+ffsmH/vLL79UcnKy3nvvPV111VVnbN/UDw8IOnWzvSR5B6Af15ya+CrT3QEEraZ+fwdEt1dWVpZWrFih1atXNxh8jh49qvT0dEVFRSk/P79ZwUeSevXqpa5du2rnzp2+KhkITinjagNO9Ckri0cnEHwAmIZfBzwbhqFp06YpPz9fRUVFSkpKqtfG6XRqzJgxCg0NVUFBgcLCmn8H9H/96186dOiQ4uO5lQSglHFSv+tY4RmAafn1yk9mZqaWLFmipUuXKioqSpWVlaqsrNR3330nqTb41E19/+Mf/yin0+lp43L9tBZJv379lJ+fL0k6duyYHnroIW3YsEG7d+/WqlWrNH78ePXu3Vtjxozxy3kCASfEKiX9XBrwy9o/CT4ATMSvV35yc3MlSaNGjfLanpeXp4yMDG3evFklJSWSpN69e3u1KS8v13nnnSdJKisr88wUs1qt2rp1q1555RUdOXJECQkJSktL0+OPP67Q0NCWPSEAABDwAmbAcyBhwDMAAMEnqAY8AwAAtBbCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBXCDwAAMBW/hp+cnBxdeumlioqKkt1u14QJE1RWVubZf/jwYU2bNk19+/ZVeHi4evToofvuu08Oh+O0xzUMQ4888oji4+MVHh6u0aNHa8eOHS19OgAAIAj4NfwUFxcrMzNTGzZs0MqVK3XixAmlpaWpqqpKkrR//37t379fTz/9tEpLS7V48WIVFhbq7rvvPu1xFyxYoOeee06LFi1SSUmJIiIiNGbMGFVXV7fGaQEAgABmMQzD8HcRdb7++mvZ7XYVFxdr5MiRDbb53//9X02aNElVVVVq165dvf2GYSghIUEPPPCAHnzwQUmSw+FQbGysFi9erJtvvvmMdTidTtlsNjkcDkVHR5/bSQEAgFbR1O/vgBrzU9edFRMTc9o20dHRDQYfSSovL1dlZaVGjx7t2Waz2TR06FCtX7++wdfU1NTI6XR6PQCgTXC7pPIPpW3/V/un2+XvigC/azhB+IHb7VZ2drZGjBih1NTUBtt88803evzxxzVlypRGj1NZWSlJio2N9doeGxvr2XeqnJwczZs37ywrB4AAtb1AKnxYcu7/aVt0gpT+lJQyzn91AX4WMFd+MjMzVVpaqjfeeKPB/U6nU9ddd51SUlL06KOP+vS9Z8+eLYfD4Xns27fPp8cHgFa3vUB6a7J38JEkZ0Xt9u0F/qkLCAABEX6ysrK0YsUKrV69Wt27d6+3/+jRo0pPT1dUVJTy8/PVvn37Ro8VFxcnSTpw4IDX9gMHDnj2nSo0NFTR0dFeDwAIWm5X7RUfNTSk88dthbPoAoNp+TX8GIahrKws5efn6/3331dSUlK9Nk6nU2lpaerQoYMKCgoUFhZ22mMmJSUpLi5Oq1at8jpGSUmJhg0b5vNzAICAs2dd/Ss+XgzJ+VVtO8CE/Bp+MjMztWTJEi1dulRRUVGqrKxUZWWlvvvuO0k/BZ+qqir98Y9/lNPp9LRxuX76jaVfv37Kz8+XJFksFmVnZ2v+/PkqKCjQtm3bNHnyZCUkJGjChAn+OE0AaF3HDpy5TXPaAW2MXwc85+bmSpJGjRrltT0vL08ZGRnavHmzSkpKJEm9e/f2alNeXq7zzjtPklRWVua18OHMmTNVVVWlKVOm6MiRI7r88stVWFh4xqtGANAmRMaeuU1z2gFtTECt8xMoWOcHQFBzu6SFqbWDmxsc92OpnfWVvU0KsbZ2dUCLCcp1fgAAPhBirZ3OLkmynLLzx+fpTxJ8YFqEHwBoi1LGSRNflaLjvbdHJ9RuZ50fmFjALHIIAPCxlHFSv+tqZ3UdO1A7xqfncK74wPQIPwDQloVYpaSf+7sKIKDQ7QUAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8AMAAEyFFZ4bUHeje6fT6edKAABAU9V9b9d9jzeG8NOAo0ePSpISExP9XAkAAGiuo0ePymazNbrfYpwpHpmQ2+3W/v37FRUVJYvF4rPjOp1OJSYmat++fYqOjvbZcc2Gz9E3+Bx9g8/RN/gcfcPsn6NhGDp69KgSEhIUEtL4yB6u/DQgJCRE3bt3b7HjR0dHm/Ivpa/xOfoGn6Nv8Dn6Bp+jb5j5czzdFZ86DHgGAACmQvgBAACmQvhpRaGhoZo7d65CQ0P9XUpQ43P0DT5H3+Bz9A0+R9/gc2waBjwDAABT4coPAAAwFcIPAAAwFcIPAAAwFcIPAAAwFcJPK/r973+v8847T2FhYRo6dKg2btzo75KCSk5Oji699FJFRUXJbrdrwoQJKisr83dZQe/JJ5+UxWJRdna2v0sJOl999ZUmTZqkLl26KDw8XAMGDNDHH3/s77KCisvl0pw5c5SUlKTw8HAlJyfr8ccfP+O9mczugw8+0NixY5WQkCCLxaJly5Z57TcMQ4888oji4+MVHh6u0aNHa8eOHf4pNgARflrJm2++qRkzZmju3LnavHmzLrroIo0ZM0YHDx70d2lBo7i4WJmZmdqwYYNWrlypEydOKC0tTVVVVf4uLWh99NFH+sMf/qALL7zQ36UEnW+//VYjRoxQ+/bt9c4772j79u165pln1LlzZ3+XFlSeeuop5ebm6n/+53/0+eef66mnntKCBQv0/PPP+7u0gFZVVaWLLrpIv//97xvcv2DBAj333HNatGiRSkpKFBERoTFjxqi6urqVKw1QBlrFkCFDjMzMTM9zl8tlJCQkGDk5OX6sKrgdPHjQkGQUFxf7u5SgdPToUaNPnz7GypUrjSuuuMKYPn26v0sKKg8//LBx+eWX+7uMoHfdddcZd911l9e2X/ziF8Ztt93mp4qCjyQjPz/f89ztdhtxcXHGf/3Xf3m2HTlyxAgNDTVef/11P1QYeLjy0wq+//57bdq0SaNHj/ZsCwkJ0ejRo7V+/Xo/VhbcHA6HJCkmJsbPlQSnzMxMXXfddV5/L9F0BQUFGjx4sG666SbZ7XZdcskleumll/xdVtAZPny4Vq1apX/+85+SpE8//VRr1qzRNddc4+fKgld5ebkqKyu9frZtNpuGDh3Kd86PuLFpK/jmm2/kcrkUGxvrtT02NlZffPGFn6oKbm63W9nZ2RoxYoRSU1P9XU7QeeONN7R582Z99NFH/i4laH355ZfKzc3VjBkz9Otf/1offfSR7rvvPnXo0EF33HGHv8sLGrNmzZLT6VS/fv1ktVrlcrn0xBNP6LbbbvN3aUGrsrJSkhr8zqnbZ3aEHwSlzMxMlZaWas2aNf4uJejs27dP06dP18qVKxUWFubvcoKW2+3W4MGD9dvf/laSdMkll6i0tFSLFi0i/DTDW2+9pddee01Lly7VBRdcoC1btig7O1sJCQl8jmgxdHu1gq5du8pqterAgQNe2w8cOKC4uDg/VRW8srKytGLFCq1evVrdu3f3dzlBZ9OmTTp48KAGDhyodu3aqV27diouLtZzzz2ndu3ayeVy+bvEoBAfH6+UlBSvbf3799fevXv9VFFweuihhzRr1izdfPPNGjBggG6//Xbdf//9ysnJ8XdpQavue4XvnMYRflpBhw4dNGjQIK1atcqzze12a9WqVRo2bJgfKwsuhmEoKytL+fn5ev/995WUlOTvkoLSVVddpW3btmnLli2ex+DBg3Xbbbdpy5Ytslqt/i4xKIwYMaLeUgv//Oc/1bNnTz9VFJyOHz+ukBDvryKr1Sq32+2nioJfUlKS4uLivL5znE6nSkpK+M75Ed1erWTGjBm64447NHjwYA0ZMkQLFy5UVVWV7rzzTn+XFjQyMzO1dOlS/fWvf1VUVJSn79pmsyk8PNzP1QWPqKioeuOkIiIi1KVLF8ZPNcP999+v4cOH67e//a0mTpyojRs36sUXX9SLL77o79KCytixY/XEE0+oR48euuCCC/TJJ5/ov//7v3XXXXf5u7SAduzYMe3cudPzvLy8XFu2bFFMTIx69Oih7OxszZ8/X3369FFSUpLmzJmjhIQETZgwwX9FBxJ/Tzczk+eff97o0aOH0aFDB2PIkCHGhg0b/F1SUJHU4CMvL8/fpQU9prqfneXLlxupqalGaGio0a9fP+PFF1/0d0lBx+l0GtOnTzd69OhhhIWFGb169TJ+85vfGDU1Nf4uLaCtXr26wX8P77jjDsMwaqe7z5kzx4iNjTVCQ0ONq666yigrK/Nv0QHEYhgsowkAAMyDMT8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8ATCcjI4Nl/gETI/wAaBEZGRmyWCz1Hunp6f4uTc8++6wWL17s7zIkSRaLRcuWLfN3GYCpcGNTAC0mPT1deXl5XttCQ0P9VI3kcrlksVhks9n8VgMA/+PKD4AWExoaqri4OK9H586dVVRUpA4dOujDDz/0tF2wYIHsdrsOHDggSRo1apSysrKUlZUlm82mrl27as6cOTr5doQ1NTV68MEH1a1bN0VERGjo0KEqKiry7F+8eLE6deqkgoICpaSkKDQ0VHv37q3X7TVq1ChNmzZN2dnZ6ty5s2JjY/XSSy+pqqpKd955p6KiotS7d2+98847XudXWlqqa665RpGRkYqNjdXtt9+ub775xuu49913n2bOnKmYmBjFxcXp0Ucf9ew/77zzJEk33HCDLBaL5zmAlkX4AdDqRo0apezsbN1+++1yOBz65JNPNGfOHL388suKjY31tHvllVfUrl07bdy4Uc8++6z++7//Wy+//LJnf1ZWltavX6833nhDW7du1U033aT09HTt2LHD0+b48eN66qmn9PLLL+uzzz6T3W5vsKZXXnlFXbt21caNGzVt2jRNnTpVN910k4YPH67NmzcrLS1Nt99+u44fPy5JOnLkiP7t3/5Nl1xyiT7++GMVFhbqwIEDmjhxYr3jRkREqKSkRAsWLNBjjz2mlStXSpI++ugjSVJeXp4qKio8zwG0MD/fVR5AG3XHHXcYVqvViIiI8Ho88cQThmEYRk1NjXHxxRcbEydONFJSUox77rnH6/VXXHGF0b9/f8Ptdnu2Pfzww0b//v0NwzCMPXv2GFar1fjqq6+8XnfVVVcZs2fPNgzDMPLy8gxJxpYtW+rVNn78eK/3uvzyyz3Pf/jhByMiIsK4/fbbPdsqKioMScb69esNwzCMxx9/3EhLS/M67r59+wxJRllZWYPHNQzDuPTSS42HH37Y81ySkZ+f38inCKAlMOYHQIu58sorlZub67UtJiZGktShQwe99tpruvDCC9WzZ0/97ne/q/f6yy67TBaLxfN82LBheuaZZ+RyubRt2za5XC6df/75Xq+pqalRly5dPM87dOigCy+88Iy1ntzGarWqS5cuGjBggGdb3RWpgwcPSpI+/fRTrV69WpGRkfWOtWvXLk9dp753fHy85xgA/IPwA6DFREREqHfv3o3uX7dunSTp8OHDOnz4sCIiIpp87GPHjslqtWrTpk2yWq1e+04OJOHh4V4BqjHt27f3em6xWLy21R3D7XZ73n/s2LF66qmn6h0rPj7+tMetOwYA/yD8APCLXbt26f7779dLL72kN998U3fccYfee+89hYT8NBSxpKTE6zUbNmxQnz59ZLVadckll8jlcungwYP6+c9/3trla+DAgXr77bd13nnnqV27s/+ntH379nK5XD6sDMCZMOAZQIupqalRZWWl1+Obb76Ry+XSpEmTNGbMGN15553Ky8vT1q1b9cwzz3i9fu/evZoxY4bKysr0+uuv6/nnn9f06dMlSeeff75uu+02TZ48WX/5y19UXl6ujRs3KicnR3/7299a/NwyMzN1+PBh3XLLLfroo4+0a9cuvfvuu7rzzjubFWbOO+88rVq1SpWVlfr2229bsGIAdbjyA6DFFBYWenUBSVLfvn116623as+ePVqxYoWk2m6iF198UbfccovS0tJ00UUXSZImT56s7777TkOGDJHVatX06dM1ZcoUz7Hy8vI0f/58PfDAA/rqq6/UtWtXXXbZZbr++utb/NwSEhK0du1aPfzww0pLS1NNTY169uyp9PR0r6tXZ/LMM89oxowZeumll9StWzft3r275YoGIEmyGMZJi2YAQIAYNWqULr74Yi1cuNDfpQBoY+j2AgAApkL4AQAApkK3FwAAMBWu/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFMh/AAAAFP5/8WsQxoSnpCUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAHACAYAAAABT1O3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvFUlEQVR4nOzdd1yVZRsH8N85h70OS/YQBFQEFRTcO3eOhlquXGWuhmVly6zMrMxRaWYFvu7KnXuiJoqL4QAVQZAhCHLY65zn/QM5STg4CDxw+H0/n+fzxnOec5/rIC+c67mv+74kgiAIICIiIiIiIqIGQSp2AERERERERERUdUzkiYiIiIiIiBoQJvJEREREREREDQgTeSIiIiIiIqIGhIk8ERERERERUQPCRJ6IiIiIiIioAWEiT0RERERERNSAMJEnIiIiIiIiakB0xA6gPlKpVEhOToapqSkkEonY4RAREREREZGWEwQBOTk5cHBwgFT6+Dl3JvIPkZycDGdnZ7HDICIiIiIiokYmMTERTk5Oj72GifxDmJqaAij7BpqZmYkcDREREREREWm77OxsODs7q/PRx2Ei/xDl5fRmZmZM5ImIiIiIiKjOVGV5Nze7IyIiIiIiImpAmMgTERERERERNSBM5ImIiIiIiIgaEK6RJyIiIiIirSMIAkpLS6FUKsUOhUhNV1cXMpnsqcdhIk9ERERERFqluLgYKSkpyM/PFzsUogokEgmcnJxgYmLyVOMwkSciIiIiIq2hUqkQFxcHmUwGBwcH6OnpVWkXcKLaJggC0tPTcfv2bXh6ej7VzDwTeSIiIiIi0hrFxcVQqVRwdnaGkZGR2OEQVdCkSRPEx8ejpKTkqRJ5bnZHRERERERaRyplqkP1T01Vh/Cnm4iIiIiIiKgBETWRX7hwIQICAmBqagobGxsMHz4cMTExFa6ZMGECJBJJhaNjx46PHTc4OLjScyQSCQoLC2vz7RBpHaVKQGhsBnaEJyE0NgNKlSB2SEREREREjZ6oa+RDQkIwY8YMBAQEoLS0FB999BH69euHK1euwNjYWH3dgAEDEBQUpP5aT0/viWObmZlVuilgYGBQc8ETabl9l1Iwf9cVpCj+vQFmLzfAvCHeGOBjL2JkRERERI1b06ZN8dZbb+Gtt94SO5QacezYMfTq1Qv37t2Dubm52OE0CKLOyO/btw8TJkxAq1at0KZNGwQFBSEhIQHnz5+vcJ2+vj7s7OzUh6Wl5RPHlkgkFZ5jZ2dXW2+DSOvsu5SCaesuVEjiASBVUYhp6y5g36UUkSIjIiIi0m6JiYmYPHmyesd9V1dXvPnmm8jIyBA7tBrRs2fPSjcgOnfujJSUFMjlcnGCaoDq1Rp5hUIBAJUS9WPHjsHGxgZeXl549dVXkZaW9sSxcnNz4erqCicnJzz77LO4ePFircRMpG2UKgHzd13Bw4roy8/N33WFZfZERERENezmzZto3749rl27ho0bN+LGjRv4+eefcfjwYXTq1AmZmZmixKVUKqFSqWptfD09PdjZ2bFNoAbqTSIvCAJmz56Nrl27wsfHR31+4MCBWL9+PY4cOYLFixfj7Nmz6N27N4qKih45VosWLRAcHIydO3di48aNMDAwQJcuXXD9+vWHXl9UVITs7OwKB1FjFRaXWWkm/kECgBRFIcLixPlDQkRERKQpQRCQX1xa54cgaDbxMWPGDOjp6eHAgQPo0aMHXFxcMHDgQBw6dAhJSUn46KOP1Nfm5ORg9OjRMDExgYODA3744YcKY3322WdwcXGBvr4+HBwc8MYbb6gfKy4uxnvvvQdHR0cYGxujQ4cOOHbsmPrx4OBgmJub4++//4a3tzf09fWxevVqGBgYICsrq8LrvPHGG+jRowcAICMjAy+//DKcnJxgZGQEX19fbNy4UX3thAkTEBISgmXLlqn3MYuPj8exY8cgkUgqjL1lyxa0atUK+vr6aNq0KRYvXlzhdZs2bYqvvvoKkyZNgqmpKVxcXPDLL79UeI8zZ86Evb09DAwM0LRpUyxcuFCjf4/6rN70kZ85cyYiIyNx8uTJCudHjRql/m8fHx+0b98erq6u2L17N55//vmHjtWxY8cKG+J16dIF/v7++OGHH7B8+fJK1y9cuBDz58+voXdC1LCl5VRtU8iqXkdEREQktoISJbw/3V/nr3vl8/4w0qtaypWZmYn9+/djwYIFMDQ0rPCYnZ0dxowZg82bN2PFihUAgG+//RYffvghPvvsM+zfvx9vv/02WrRogb59++Kvv/7CkiVLsGnTJrRq1QqpqamIiIhQjzdx4kTEx8dj06ZNcHBwwLZt2zBgwABERUXB09MTAJCfn4+FCxfi119/hZWVFZycnDBv3jxs2bIFkydPBlA2U//HH3/g888/BwAUFhaiXbt2eP/992FmZobdu3dj3LhxcHd3R4cOHbBs2TJcu3YNPj4+6ueU91V/0Pnz5zFy5Eh89tlnGDVqFE6dOoXp06fDysoKEyZMUF+3ePFifPHFF/jwww/x119/Ydq0aejevTtatGiB5cuXY+fOnfjjjz/g4uKCxMREJCYmVv0fr56rF4n8rFmzsHPnThw/fhxOTk6Pvdbe3h6urq6PnF1/GKlUioCAgEc+Z+7cuZg9e7b66+zsbDg7O1d5fCJtYmNatU0hq3odERERET3Z9evXIQgCWrZs+dDHW7ZsiXv37iE9PR1A2WTlBx98AADw8vLCP//8gyVLlqBv375ISEiAnZ0dnnnmGejq6sLFxQWBgYEAgNjYWGzcuBG3b9+Gg4MDAODdd9/Fvn37EBQUhK+++goAUFJSghUrVqBNmzbqGEaNGoUNGzaoE/nDhw/j3r17GDFiBADA0dER7777rvr6WbNmYd++ffjzzz/RoUMHyOVy6OnpwcjI6LF7mH3//ffo06cPPvnkE/X7u3LlCr799tsKifygQYMwffp0AMD777+PJUuW4NixY2jRogUSEhLg6emJrl27QiKRwNXVtYr/Eg2DqIm8IAiYNWsWtm3bhmPHjsHNze2Jz8nIyEBiYiLs7au+a7YgCAgPD4evr+9DH9fX14e+vn6VxyPSZoFulrCXGyBVUfjQdfISAHZyAwS6PXnTSSIiIqL6wFBXhiuf9xfldWtKeZl++TryTp06VXi8U6dOWLp0KQBgxIgRWLp0Kdzd3TFgwAAMGjQIQ4YMgY6ODi5cuABBEODl5VXh+UVFRbCyslJ/raenh9atW1e4ZsyYMejUqROSk5Ph4OCA9evXY9CgQbCwsABQNkP/9ddfY/PmzUhKSkJRURGKiooqdCSriqtXr2LYsGEVznXp0gVLly6FUqmETFb2fX0wvvLNzsv3U5swYQL69u2L5s2bY8CAAXj22WfRr18/jeKoz0RN5GfMmIENGzZgx44dMDU1RWpqKgBALpfD0NAQubm5+Oyzz/DCCy/A3t4e8fHx+PDDD2FtbY3nnntOPc748ePh6OioXvMwf/58dOzYEZ6ensjOzsby5csRHh6On376SZT3SdSQyKQSzBvijWnrLkACVEjmy7cfmTfEGzIpNyMhIiKihkEikVS5xF0sHh4ekEgkuHLlCoYPH17p8ejoaFhYWMDa2vqRY5Qn+c7OzoiJicHBgwdx6NAhTJ8+Hd9++y1CQkKgUqkgk8lw/vx5dUJczsTERP3fhoaGlTafCwwMRLNmzbBp0yZMmzYN27Ztq9AmfPHixViyZAmWLl0KX19fGBsb46233kJxcbFG3wtBECq99sP2G9DV1a30/ss35fP390dcXBz27t2LQ4cOYeTIkXjmmWfw119/aRRLfSXqT/PKlSsBlLUgeFBQUBAmTJgAmUyGqKgo/O9//0NWVhbs7e3Rq1cvbN68GaampurrExISIJX+u29fVlYWXnvtNaSmpkIul8PPzw/Hjx9Xl5MQ0eMN8LHHyrH+lfrI27GPPBEREVGtsLKyQt++fbFixQq8/fbbFdbJp6amYv369Rg/frw6wT19+nSF558+fRotWrRQf21oaIihQ4di6NChmDFjBlq0aIGoqCj4+flBqVQiLS0N3bp10zjO0aNHY/369XBycoJUKsXgwYPVj504cQLDhg3D2LFjAQAqlQrXr1+vsFxAT08PSqXysa/h7e1dae+0U6dOwcvLq9LNh8cxMzPDqFGjMGrUKLz44osYMGAAMjMzq9TOvL4TvbT+cQwNDbF//5M3pXhwh0UAWLJkCZYsWfI0oRE1egN87NHX2w5hcZlIyymEjWlZOT1n4omIiIhqx48//ojOnTujf//++PLLL+Hm5obLly9jzpw5cHR0xIIFC9TX/vPPP/jmm28wfPhwHDx4EH/++Sd2794NoGzXeaVSiQ4dOsDIyAhr166FoaEhXF1dYWVlhTFjxmD8+PFYvHgx/Pz8cPfuXRw5cgS+vr4YNGjQY2McM2YM5s+fjwULFuDFF1+EgcG/+yZ5eHhgy5YtOHXqFCwsLPD9998jNTW1QiLftGlTnDlzBvHx8TAxMXloUv3OO+8gICAAX3zxBUaNGoXQ0FD8+OOP6o3+qmLJkiWwt7dH27ZtIZVK8eeff8LOzg7m5uZVHqM+qzft54io/pFJJejUzArD2jqiUzMrJvFEREREtcjT0xPnzp1Ds2bNMGrUKDRr1gyvvfYaevXqhdDQ0ApJ7zvvvIPz58/Dz88PX3zxBRYvXoz+/cv2ATA3N8fq1avRpUsXtG7dGocPH8auXbvUa+CDgoIwfvx4vPPOO2jevDmGDh2KM2fOVGnDb09PTwQEBCAyMhJjxoyp8Ngnn3wCf39/9O/fHz179oSdnV2lZQLvvvsuZDIZvL290aRJEyQkJFR6DX9/f/zxxx/YtGkTfHx88Omnn+Lzzz+vsNHdk5iYmGDRokVo3749AgICEB8fjz179lSo5G7IJIKmzQ0bgezsbMjlcigUCpiZmYkdDhERERERVVFhYSHi4uLg5uZWYbaYqD543M+nJnmodtyOICIiIiIiImokmMgTERERERERNSBM5ImIiIiIiIgaECbyRERERERERA0IE3kiIiIiIiKiBoSJPBEREREREVEDwkSeiIiIiIiIqAFhIk9ERERERETUgDCRJyIiIiIiakQ+++wztG3bVv31hAkTMHz48KcasybGoKpjIk9ERERERFQPTJgwARKJBBKJBLq6unB3d8e7776LvLy8Wn3dZcuWITg4uErXxsfHQyKRIDw8vNpj1Jbg4GCYm5s/8vG0tDRMnToVLi4u0NfXh52dHfr374/Q0FAcO3ZM/b1/1BEcHKy+zsLCAoWFhRXGDwsLU19b23Rq/RWIiIiIiIioSgYMGICgoCCUlJTgxIkTmDJlCvLy8rBy5coK15WUlEBXV7dGXlMul9eLMWrbCy+8gJKSEqxZswbu7u64c+cODh8+jMzMTPTt2xcpKSnqa998801kZ2cjKChIfU4ul+PMmTMAAFNTU2zbtg0vv/yy+vHff/8dLi4uSEhIqPX3whl5IiIiIiKi/1CqBITGZmBHeBJCYzOgVAl18rrlM8XOzs4YPXo0xowZg+3bt6vL4X///Xe4u7tDX18fgiBAoVDgtddeg42NDczMzNC7d29ERERUGPPrr7+Gra0tTE1NMXny5Eozyf8ti1epVFi0aBE8PDygr68PFxcXLFiwAADg5uYGAPDz84NEIkHPnj0fOkZRURHeeOMN2NjYwMDAAF27dsXZs2fVj5fPbB8+fBjt27eHkZEROnfujJiYGPU1ERER6NWrF0xNTWFmZoZ27drh3Llz1fq+ZmVl4eTJk1i0aBF69eoFV1dXBAYGYu7cuRg8eDD09PRgZ2enPgwNDdX/Fg+eK/fKK6/g999/V39dUFCATZs24ZVXXqlWfJpiIk9ERERERPSAfZdS0HXREby8+jTe3BSOl1efRtdFR7DvUsqTn1zDDA0NUVJSAgC4ceMG/vjjD2zZskVd2j548GCkpqZiz549OH/+PPz9/dGnTx9kZmYCAP744w/MmzcPCxYswLlz52Bvb48VK1Y89jXnzp2LRYsW4ZNPPsGVK1ewYcMG2NraAigrHweAQ4cOISUlBVu3bn3oGO+99x62bNmCNWvW4MKFC/Dw8ED//v3VcZX76KOPsHjxYpw7dw46OjqYNGmS+rExY8bAyckJZ8+exfnz5/HBBx9UuwrBxMQEJiYm2L59O4qKiqo1xoPGjRuHEydOqGfft2zZgqZNm8Lf3/+px64KJvJERERERET37buUgmnrLiBFUXHWOlVRiGnrLtRpMh8WFoYNGzagT58+AIDi4mKsXbsWfn5+aN26NY4ePYqoqCj8+eefaN++PTw9PfHdd9/B3Nwcf/31FwBg6dKlmDRpEqZMmYLmzZvjyy+/hLe39yNfMycnB8uWLcM333yDV155Bc2aNUPXrl0xZcoUAECTJk0AAFZWVrCzs4OlpWWlMcqXAnz77bcYOHAgvL29sXr1ahgaGuK3336rcO2CBQvQo0cPeHt744MPPsCpU6fUFQMJCQl45pln0KJFC3h6emLEiBFo06ZNtb6XOjo6CA4Oxpo1a2Bubo4uXbrgww8/RGRkZLXGs7GxwcCBA9X7Avz+++8VbkLUNibyREREREREKCunn7/rCh5WRF9+bv6uK7VaZv/333/DxMQEBgYG6NSpE7p3744ffvgBAODq6qpOpAHg/PnzyM3NhZWVlXrG2cTEBHFxcYiNjQUAXL16FZ06darwGv/9+kFXr15FUVGR+uZBdcTGxqKkpARdunRRn9PV1UVgYCCuXr1a4drWrVur/9ve3h5A2aZ0ADB79mxMmTIFzzzzDL7++mv1ewJQ4f2+/vrrVYrrhRdeQHJyMnbu3In+/fvj2LFj8Pf3r/YmfZMmTUJwcDBu3ryJ0NBQjBkzplrjVAc3uyMiIiIiIgIQFpdZaSb+QQKAFEUhwuIy0amZVa3E0KtXL6xcuRK6urpwcHCoUEpubGxc4VqVSgV7e3scO3as0jiP2739cR5cB15dglB2o+O/u7cLglDp3IPvr/wxlUoFoKxN3ujRo7F7927s3bsX8+bNw6ZNm/Dcc89V2DXfzMysyrEZGBigb9++6Nu3Lz799FNMmTIF8+bNw4QJEzR5iwCAQYMGYerUqZg8eTKGDBkCK6va+Zl4GM7IExERERERAUjLeXQSX53rqsPY2BgeHh5wdXV94npwf39/pKamQkdHBx4eHhUOa2trAEDLli1x+vTpCs/779cP8vT0hKGhIQ4fPvzQx/X09AAASqXykWN4eHhAT08PJ0+eVJ8rKSnBuXPn0LJly8e+p//y8vLC22+/jQMHDuD5559X7yL/4Hu1sbHRaMwHeXt7V7u9n0wmw7hx43Ds2LE6LasHOCNPREREREQEALAxNajR62rbM888g06dOmH48OFYtGgRmjdvjuTkZOzZswfDhw9H+/bt8eabb+KVV15B+/bt0bVrV6xfvx6XL1+Gu7v7Q8c0MDDA+++/j/feew96enro0qUL0tPTcfnyZUyePBk2NjYwNDTEvn374OTkBAMDg0qt54yNjTFt2jTMmTMHlpaWcHFxwTfffIP8/HxMnjy5Su+toKAAc+bMwYsvvgg3Nzfcvn0bZ8+exQsvvPDY5ymVyko97vX09GBra4sRI0Zg0qRJaN26NUxNTXHu3Dl88803GDZsWJViepgvvvgCc+bMqdPZeICJPBEREREREQAg0M0S9nIDpCoKH7pOXgLATm6AQLfKG7yJQSKRYM+ePfjoo48wadIkpKenw87ODt27d1fvMj9q1CjExsbi/fffR2FhIV544QVMmzYN+/fvf+S4n3zyCXR0dPDpp58iOTkZ9vb26nXoOjo6WL58OT7//HN8+umn6Nat20NL+7/++muoVCqMGzcOOTk5aN++Pfbv3w8LC4sqvTeZTIaMjAyMHz8ed+7cgbW1NZ5//nnMnz//sc/Lzc2Fn59fhXOurq6IiYlBhw4dsGTJEvUafmdnZ7z66qv48MMPqxTTw+jp6amrH+qSRChfwEBq2dnZkMvlUCgUGq23ICIiIiIicRUWFiIuLg5ubm4wMNB85rx813oAFZL58pXdK8f6Y4CP/dMHSo3S434+NclDuUaeiIiIiIjovgE+9lg51h928opJlp3cgEk81RssrSciIiIiInrAAB979PW2Q1hcJtJyCmFjWlZOL5NKnvxkojrARJ6IiIiIiOg/ZFJJrbWYI3paLK0nIiIiIiIiakCYyBMRERERERE1IEzkiYiIiIiIiBoQJvJEREREREREDQgTeSIiIiIiIqIGhIk8ERERERERUQPCRJ6IiIiIiKiBkEgk2L59OwAgPj4eEokE4eHhosb0KPU9voaMiTwREREREVE9kZqailmzZsHd3R36+vpwdnbGkCFDcPjw4UrXOjs7IyUlBT4+PrUaExPy+kdH7ACIiIiIiIioLGHu0qULzM3N8c0336B169YoKSnB/v37MWPGDERHR1e4XiaTwc7OTqRoSUyckSciIiIiIqoHpk+fDolEgrCwMLz44ovw8vJCq1atMHv2bJw+fbrS9f+dKT927BgkEgn2798PPz8/GBoaonfv3khLS8PevXvRsmVLmJmZ4eWXX0Z+fr56nH379qFr164wNzeHlZUVnn32WcTGxqofd3NzAwD4+flBIpGgZ8+eAACVSoXPP/8cTk5O0NfXR9u2bbFv377HvseQkBAEBgZCX18f9vb2+OCDD1BaWqp+PCcnB2PGjIGxsTHs7e2xZMkS9OzZE2+99RYA4PPPP4evr2+lcdu1a4dPP/20St9nbcBEnoiIiIiItJogCMjLy6vzQxCEKseYmZmJffv2YcaMGTA2Nq70uLm5eZXH+uyzz/Djjz/i1KlTSExMxMiRI7F06VJs2LABu3fvxsGDB/HDDz+or8/Ly8Ps2bNx9uxZHD58GFKpFM899xxUKhUAICwsDABw6NAhpKSkYOvWrQCAZcuWYfHixfjuu+8QGRmJ/v37Y+jQobh+/fpD40pKSsKgQYMQEBCAiIgIrFy5Er/99hu+/PJL9TWzZ8/GP//8g507d+LgwYM4ceIELly4oH580qRJuHLlCs6ePas+FxkZiYsXL2LChAlV/h41dCytJyIiIiIirZafnw8TE5M6f93c3NyHJuUPc+PGDQiCgBYtWjz163755Zfo0qULAGDy5MmYO3cuYmNj4e7uDgB48cUXcfToUbz//vsAgBdeeKHC83/77TfY2NjgypUr8PHxQZMmTQAAVlZWFUr5v/vuO7z//vt46aWXAACLFi3C0aNHsXTpUvz000+V4lqxYgWcnZ3x448/QiKRoEWLFkhOTsb777+PTz/9FHl5eVizZg02bNiAPn36AACCgoLg4OCgHsPJyQn9+/dHUFAQAgIC1Nf06NFD/f4aA87IExERERERiax89l4ikTz1WK1bt1b/t62tLYyMjCokuba2tkhLS1N/HRsbi9GjR8Pd3R1mZmbqUvqEhIRHvkZ2djaSk5PVNwzKdenSBVevXn3oc65evYpOnTpVeI9dunRBbm4ubt++jZs3b6KkpASBgYHqx+VyOZo3b15hnFdffRUbN25EYWEhSkpKsH79ekyaNOlx3xKtwxl5IiIiIiLSakZGRsjNzRXldavK09MTEokEV69exfDhw5/qdXV1ddX/LZFIKnxdfq68bB4AhgwZAmdnZ6xevRoODg5QqVTw8fFBcXHxE1/rvzceBEF45M2Ihz324A2MR93M+O8ShSFDhkBfXx/btm2Dvr4+ioqKKlUVaDtRZ+QXLlyIgIAAmJqawsbGBsOHD0dMTEyFayZMmACJRFLh6Nix4xPH3rJlC7y9vaGvrw9vb29s27attt4GERERERHVYxKJBMbGxnV+aDK7bmlpif79++Onn35CXl5epcezsrJq8Dvyr4yMDFy9ehUff/wx+vTpg5YtW+LevXsVrtHT0wMAKJVK9TkzMzM4ODjg5MmTFa49deoUWrZs+dDX8vb2xqlTpyok5qdOnYKpqSkcHR3RrFkz6OrqqtfkA2Uz//9dc6+jo4NXXnkFQUFBCAoKwksvvaTRTRNtIGoiHxISghkzZuD06dM4ePAgSktL0a9fv0o/uAMGDEBKSor62LNnz2PHDQ0NxahRozBu3DhERERg3LhxGDlyJM6cOVObb4eIiIiIiKjaVqxYAaVSicDAQGzZsgXXr1/H1atXsXz5cnTq1KlWXtPCwgJWVlb45ZdfcOPGDRw5cgSzZ8+ucI2NjQ0MDQ2xb98+3LlzBwqFAgAwZ84cLFq0CJs3b0ZMTAw++OADhIeH480333zoa02fPh2JiYmYNWsWoqOjsWPHDsybNw+zZ8+GVCqFqakpXnnlFcyZMwdHjx7F5cuXMWnSJEil0ko3RaZMmYIjR45g7969ja6sHhC5tP6/rQmCgoJgY2OD8+fPo3v37urz+vr6GvVHXLp0Kfr27Yu5c+cCAObOnYuQkBAsXboUGzdurJng6wFBEBCdmoOW9mZih0JERERERE/Jzc0NFy5cwIIFC/DOO+8gJSUFTZo0Qbt27bBy5cpaeU2pVIpNmzbhjTfegI+PD5o3b47ly5erW8wBZTPgy5cvx+eff45PP/0U3bp1w7Fjx/DGG28gOzsb77zzDtLS0uDt7Y2dO3fC09Pzoa/l6OiIPXv2YM6cOWjTpg0sLS0xefJkfPzxx+prvv/+e7z++ut49tlnYWZmhvfeew+JiYkwMDCoMJanpyc6d+6MjIwMdOjQoVa+N/WZRNCkJ0Itu3HjBjw9PREVFQUfHx8AZaX127dvh56eHszNzdGjRw8sWLAANjY2jxzHxcUFb7/9Nt5++231uSVLlmDp0qW4detWpeuLiopQVFSk/jo7OxvOzs5QKBQwM6u/SfKO8CS8uSkco9o744OBLWBhrCd2SEREREREoiosLERcXBzc3NwqJX/U8OTl5cHR0RGLFy/G5MmT1efLd/ifOnVqpQqC+uxxP5/Z2dmQy+VVykPrza71giBg9uzZ6Nq1qzqJB4CBAwdi/fr1OHLkCBYvXoyzZ8+id+/eFRLv/0pNTYWtrW2Fc7a2tkhNTX3o9QsXLoRcLlcfzs7ONfOmatnVlBwAwOZziei9+Bj+OJsIlare3JchIiIiIiLSyMWLF7Fx40bExsbiwoULGDNmDABg2LBh6mvS0tLw/fffIykpCRMnThQrVFHVm13rZ86cicjIyEqbJYwaNUr93z4+Pmjfvj1cXV2xe/duPP/8848cT5PdE+fOnVvhLk75jHx998HAFujT0gYfb7uEmDs5eG9LJDafS8SXw31Ybk9ERERERA3Sd999h5iYGOjp6aFdu3Y4ceIErK2t1Y/b2trC2toav/zyCywsLESMVDz1IpGfNWsWdu7ciePHj8PJyemx19rb28PV1bXSzoUPsrOzqzT7npaWVmmWvpy+vj709fU1D7weCGhqib/f6Irgf+Kx5NA1nL91D8/+cBITOzfFW329YKJfL/6JiYiIiIiInsjPzw/nz59/7DX1aHW4aEQtrRcEATNnzsTWrVtx5MgRuLm5PfE5GRkZSExMhL29/SOv6dSpEw4ePFjh3IEDB9C5c+enjrk+0pVJ8Wp3dxya3QMDWtlBqRLw68k4PLM4BHujUviDTkREREREpEVETeRnzJiBdevWYcOGDTA1NUVqaipSU1NRUFAAAMjNzcW7776L0NBQxMfH49ixYxgyZAisra3x3HPPqccZP368eod6AHjzzTdx4MABLFq0CNHR0Vi0aBEOHTqEt956q67fYp1yMDfEz+PaIWhCAFwsjZCaXYhp6y9gQtBZ3Mqo3IuSiIiIiIiIGh5RE/mVK1dCoVCgZ8+esLe3Vx+bN28GAMhkMkRFRWHYsGHw8vLCK6+8Ai8vL4SGhsLU1FQ9TkJCAlJSUtRfd+7cGZs2bUJQUBBat26N4OBgbN68udG0JejVwgYH3u6ON3p7QE8mRci1dPRbchzLD19HUalS7PCIiIiIiGodq1KpPqqpn8t61X6uvtBk2//6LjY9F5/uuIR/bmQAANysjfHFMB909bR+wjOJiIiIiBoepVKJa9euwcbGBlZWVmKHQ1SBQqFAcnIyPDw8oKurW+ExTfJQJvIPoU2JPFB212dXZAq++PsK0nPK2vYNaeOAjwe3hK0Ze2sSERERkXZJSUlBVlYWbGxsYGRk9MjuVUR1SaVSITk5Gbq6unBxcan0c8lE/ilpWyJfLruwBN8fuIb/hcZDJQAm+jp4p58XxnV0hY5M1FUWREREREQ1RhAEpKamIisrS+xQiCqQSqVwc3ODnp5epceYyD8lbU3ky11KUuCj7ZcQkZgFAGjlYIYvh/vAz6Vx9mAkIiIiIu2kVCpRUlIidhhEanp6epBKHz6JykT+KWl7Ig8ASpWAjWEJ+GZfNLILSyGRAC8HuuD9/i0gN9J98gBERERERERUY5jIP6XGkMiXu5tbhK/2XMXWC0kAACtjPcwd1BIv+DtyLREREWkNpUpAWFwm0nIKYWNqgEA3S8ik/DtHRET1BxP5p9SYEvlyp29m4OPtl3AjLRcAEOhmiS+H+8DL1vQJzyQiIqrf9l1KwfxdV5CiKFSfs5cbYN4QbwzwsRcxMiIion8xkX9KjTGRB4DiUhV+OxmHZYevobBEBR2pBJO7ueHNPp4w0tMROzwiIiKN7buUgmnrLuC/H3bK5+JXjvVnMk9ERPWCJnkotyonNT0dKab1bIZDs3ugr7ctSlUCVoXcRN/vj+PA5VSxwyMiItKIUiVg/q4rlZJ4AOpz83ddgVLFOQ0iImpYmMhTJU4WRlg9vj1+Hd8ejuaGSMoqwGtrz2PKmrNIzMwXOzwiIqIqCYvLrFBO/18CgBRFIcLiMusuKCIiohrARJ4e6RlvWxyc3R3TejaDjlSCQ1fT0HdJCH46egPFpSqxwyMiInqstJxHJ/HVuY6IiKi+YCJPj2Wkp4P3B7TA3je7oaO7JQpLVPh2fwwGLjuOU7F3xQ6PiIjokWxMDWr0OiIiovqCiTxViaetKTa+2hFLRrWBtYkeYtPzMHr1Gby9ORzpOUVih0dERFRJoJsl7OUGeFSTOQnKdq8PdLOsy7CIiIieGhN5qjKJRILn/JxweHZPjO3oAokE2HYxCb0XH8Pa0HhuFkRERPWKTCrBvCHeAFApmS//et4Qb/aTJyKiBoft5x6isbaf01REYhY+3n4JUUkKAEBrJzm+HO6D1k7m4gZGRET0APaRJyKihoB95J8SE/mqU6oErDt9C9/tj0FOUSkkEmBcR1e806855Ia6YodHREQEoOzvVVhcJtJyCmFjWlZOz5l4IiKqT5jIPyUm8ppLyynEgt1XsSM8GQBgbaKPjwe3xLC2DpBI+EGJiIiIiIjocTTJQ7lGnmqEjakBlr3kh/VTOsC9iTHu5hbhrc3hGPPrGdxIyxU7PCIiIiIiIq3BRJ5qVBcPa+x9sxve7ecFfR0pTsVmYOCy4/h2fzQKipVih0dERERERNTgsbT+IVhaXzMSMvIxb+clHI1JBwA4WRhi/tBW6NPSVpR4uD6SiIiIiIjqK66Rf0pM5GuOIAjYf/kO5u+6rN4tuJ+3LeYNbQVHc8M6i4M7FhMRERERUX3GRP4pMZGveXlFpVh++Dp+OxmHUpUAQ10Z3nrGE5O6ukFXVrsrPPZdSsG0dRfw3x/08rn4lWP9mcwTERH9ByvZiIjqFhP5p8REvvbEpObg4+1ROBt/DwDgZWuCL4f7ItDNslZeT6kS0HXRkQoz8Q+SALCTG+Dk+7354YSIiOg+VrIREdU97lpP9VZzO1Nsfq0Tvn2xNSyN9XDtTi5GrgrFO39EICO3qMZfLywu85FJPAAIAFIUhQiLy6zx1yYiImqIyivZ/vv3M1VRiGnrLmDfpRSRIiMionJM5KnOSaUSjGjvjMOze+DlQGcAwJYLt9F7cQg2nEmASlVzRSJpOY9O4qtzHRERkTZTqgTM33Wl0nI0AOpz83ddgbIG/1YTEZHmmMiTaCyM9bDw+dbYOr0zWtqbQVFQgg+3ReH5ladwKUlRI69hY2pQo9cRERFpM1ayERE1DEzkSXT+LhbYNbMLPnnWG8Z6MoQnZmHojycxf9dl5BSWPNXYgW6WsJcb4FGr3yUoW/NXW2v0iYiIGhJWshERNQxM5Kle0JFJMbmrGw6/0xODW9tDJQBB/8Sjz+IQ7IpIRnX3ZJRJJZg3xBsAKiXz5V/PG+LNje6IiIjASjYiooaCiTzVK3ZyA/w02h//mxSIplZGSMspwqyNFzH+9zDE3c2r1pgDfOyxcqw/7OQVP3TYyQ3Yeo6IiOgBrGQjImoY2H7uIdh+rn4oLFHi55BYrDgWi+JSFfRkUrzesxmm92wGA12ZxuOxHy4REdGTle9aD6DCpnflfzF5E5yIqHawj/xTYiJfv8TdzcOnOy7hxPW7AABXKyN8PswHPbyaiBwZERGRdmIfeSKiusdE/ikxka9/BEHAnqhUfP73ZdzJLus3P8jXDp8+26pSyTwRERE9PVayERHVLSbyT4mJfP2VU1iCJQevI/hUHFQCYKwnw9t9vTChc1PoyLjlAxERERERNUxM5J8SE/n673KyAp9sv4QLCVkAgBZ2pljwnA/auXLzHSIiIiIiang0yUM5hUkNUisHOf56vTO+ft4X5ka6iE7NwQsrQ/HBlkjcyysWOzwiIiIiIqJaw0SeGiypVIKXAl1weHYPjGjnBADYdDYRvRcfwx9nE6FSsdiEiIiIiIi0D0vrH4Kl9Q3T2fhMfLztEmLu5AAA2rta4MvnfNDCjv+GRERERERUv7G0nhqlgKaW+PuNrvhwUAsY6clw7tY9DF5+Egt2X0FuUanY4REREREREdUIJvKkVXRlUrzWvRkOze6BAa3soFQJWH0iDs8sDsHeqBSwAIWIiIiIiBq6KpXW79y5U+OB+/btC0NDw8des3DhQmzduhXR0dEwNDRE586dsWjRIjRv3vyh10+dOhW//PILlixZgrfeeuuR4wYHB2PixImVzhcUFMDA4Mk9x1larz2ORqfh052XkJhZAADo2bwJPh/qAxcrI5EjIyIiIiIi+pcmeahOVQYcPny4RgFIJBJcv34d7u7uj70uJCQEM2bMQEBAAEpLS/HRRx+hX79+uHLlCoyNjStcu337dpw5cwYODg5VisHMzAwxMTEVzlUliSft0quFDQ4264Gfjt7AzyGxOBaTjr5LQvDzuHbo1dxG7PCIiIiIiIg0VqVEHgBSU1NhY1O1xMfU1LRK1+3bt6/C10FBQbCxscH58+fRvXt39fmkpCTMnDkT+/fvx+DBg6s0tkQigZ2dXZWuJe1moCvDO/2aY7ifIz7aFoXTNzPx5saL+HtWN87MExERERFRg1OlNfKvvPLKE8vkHzR27NhqlaQrFAoAgKWlpfqcSqXCuHHjMGfOHLRq1arKY+Xm5sLV1RVOTk549tlncfHiRY3jIe3SrIkJ1kwKRFtnc2QXluL1dedRWKIUOywiIiIiIiKNVCmRDwoKqvIsOwCsXLkS1tbWGgUiCAJmz56Nrl27wsfHR31+0aJF0NHRwRtvvFHlsVq0aIHg4GDs3LkTGzduhIGBAbp06YLr168/9PqioiJkZ2dXOEg76evIsGKMPyyN9XAlJRsfb7/EDfCIiIiIiKhBqfKu9UqlEpGRkSgoKKj0WH5+PiIjI6FSqaodyMyZMxEZGYmNGzeqz50/fx7Lli1DcHAwJBJJlcfq2LEjxo4dizZt2qBbt274448/4OXlhR9++OGh1y9cuBByuVx9ODs7V/t9UP3nYG6IH172g1QC/HX+NjadTRQ7JCIiIiIioiqrciK/du1aTJo0CXp6epUe09fXx6RJk7Bhw4ZqBTFr1izs3LkTR48ehZOTk/r8iRMnkJaWBhcXF+jo6EBHRwe3bt3CO++8g6ZNm1Z5fKlUioCAgEfOyM+dOxcKhUJ9JCYysdN2XTys8U6/su4I83ZcRuTtLHEDIiIiIiIiqqIqJ/K//fYb3n33XchkskqPyWQyvPfee/jll180enFBEDBz5kxs3boVR44cgZubW4XHx40bh8jISISHh6sPBwcHzJkzB/v379fodcLDw2Fvb//Qx/X19WFmZlbhIO03rUczPNPSFsVKFaatu4B7ecVih0RERERERDVMqRK0bjltlXetj4mJQceOHR/5eEBAAK5evarRi8+YMQMbNmzAjh07YGpqitTUVACAXC6HoaEhrKysYGVlVeE5urq6sLOzq9Brfvz48XB0dMTChQsBAPPnz0fHjh3h6emJ7OxsLF++HOHh4fjpp580io+0m1QqweKRbTD0x5O4lZGPNzeHI2hCAGTSqi/jICIiIiKi+ksQBHywJRJGejJ8OqSV1nzWr/KMfF5e3mM3gcvJyUF+fr5GL75y5UooFAr07NkT9vb26mPz5s0ajZOQkICUlBT111lZWXjttdfQsmVL9OvXD0lJSTh+/DgCAwM1Gpe0n9xQFz+PbQcDXSmOX0vHssMPX35BREREREQNz/LDN/Dn+dtYe/oWIrRoOW2VZ+Q9PT1x6tQptG7d+qGPnzx5Ep6enhq9eHXKG+Lj4yudO3bsWIWvlyxZgiVLlmg8NjVOLe3NsGC4L975MwLLD1+Hn7M5erWwETssIiIiIiJ6Cn+dv40lh64BAD4f5gN/FwuRI6o5VZ6RHz16ND7++GNERkZWeiwiIgKffvopRo8eXaPBEdWVF9o5YUwHFwDAW5vDkZipWXUJERERERHVHyev38UHW8py12k9m2FsR1eRI6pZEqGK0+IlJSXo168fTp48iWeeeQYtWrSARCLB1atXcejQIXTp0gUHDx6Erq5ubcdc67KzsyGXy6FQKLjxXSNSVKrEyFWnEZGYBR9HM/z1emcY6Fbe3JGIiIiIiOqvqynZGPFzKHKLSjG0jQOWjmoLaQNYG69JHlrlGXldXV0cOHAACxYsQEpKCn755Rf8/PPPSElJwYIFC3DgwAGtSOKp8dLXkWHFGH9YGOniUlI25u24LHZIRERERESkgRRFASYGnUVuUSk6uFni2xGtG0QSr6kqz8g3JpyRb9xOXE/H+N/DIAjAohd8MSrAReyQiIiIiIjoCXIKSzDi51BEp+bAw8YEW17vDLlRw5lsrpUZeaLGoptnE7zT1wsA8MmOy4i6rRA5IiIiIiIiepwSpQrT1l1AdGoOrE30ETQhoEEl8ZpiIk/0ENN7eqBPCxsUl6owbf15ZOUXix0SERERERE9hCAImLs1Cidv3IWRngxBEwLgbGkkdli1iok80UNIpRJ8P7ItXCyNcPteAd7eHA6ViqtQiIiIiIjqm2WHr+Ov87chlQA/jfaHr5Nc7JBqHRN5okeQG+li5Vh/6OtIcTQmHT8cuSF2SERERERE9IA/zyVi6aHrAIAvh/uiVwsbkSOqG9VO5IuLixETE4PS0tKajIeoXmnlIMeXw30AAEsPX8OxmDSRIyIiIiIiIqBsk+q5W6MAANN7NsPoDo1nk2qNE/n8/HxMnjwZRkZGaNWqFRISEgAAb7zxBr7++usaD5BIbCPaO+PlQBcIAvDW5nAkZuaLHRIRERERUaN2JTkb09ZdQKlKwLC2Dni3X3OxQ6pTGifyc+fORUREBI4dOwYDAwP1+WeeeQabN2+u0eCI6ot5Q7zR2kmOrPwSTF9/AYUlSrFDIiIiDaVlF6K4VCV2GERE9JRSFAWYFPxvr/hvXtTOXvGPo3Eiv337dvz444/o2rUrJJJ/v1ne3t6IjY2t0eCI6gsDXRlWjPGHuZEuopIUmL/ritghERGRBv65cRedvj6iLsEkIqKGKbuwBBODziI1uxCeNib4ZVx76OvIxA6rzmmcyKenp8PGpvIGAnl5eRUSeyJt42RhhGUv+UEiATaGJeDPc4lih0RERFW05OA1KFUCdkUmI6ewROxwiIioGopLVZh+v1d8E1N9BE3U7l7xj6NxIh8QEIDdu3ervy5P3levXo1OnTrVXGRE9VAPryZ4q48XAODj7ZdwOVkhckRERPQkZ+Mzce7WPQBlHwKPRHPjUiKihuZhveKdLLS7V/zj6Gj6hIULF2LAgAG4cuUKSktLsWzZMly+fBmhoaEICQmpjRiJ6pVZvT0QnngPR2PS8fq68/h7ZrdGeyeQiKghWHG0rH2osZ4MecVK7IlKwbC2jiJHRUREmlh66Dq2XLgNmVSCn8b4w8dR+3vFP47GM/KdO3fGP//8g/z8fDRr1gwHDhyAra0tQkND0a5du9qIkahekUolWDKqLZwsDJGYWYC3/wiHSiWIHRYRET3EleRsHI1Jh1QCfDeiDQDgWEw68orYPpeIqKH441wilh0u6xX/xTAf9GreOHrFP47GM/IA4OvrizVr1tR0LEQNhrmRHn4e2w7PrzyFI9Fp+OnoDczq4yl2WERE9B8rQ8o24h3ka48BPnZoamWE+Ix8HIlOw5A2DiJHR0RET3L8Wjo+vL9R6YxejatX/ONoPCMPALGxsfj4448xevRopKWVrTPbt28fLl++XKPBEdVnPo5yfDnMBwDw/aFrOHE9XeSIiIjoQfF387A7MhkAMK1nM0gkEgzytQcA7L2UImZoRERUBZeTFZi27nyj7RX/OBon8iEhIfD19cWZM2ewZcsW5ObmAgAiIyMxb968Gg+QqD4bGeCMUe2dIQjAGxsvIimrQOyQiIjovlXHb0IlAD2bN0Erh7K1lOWJ/NHodOQXs7yeiKi+Ss4q6xWfV6xER/eyXvHskvYvjRP5Dz74AF9++SUOHjwIPT099flevXohNDS0RoMjagjmD2sFH0cz3MsvwfR151FUqhQ7JCKiRu9OdiG2nL8NAJje00N9vpWDGZwtDVFQokRIDCupiIjqo/Je8Xeyi+BpY4JVjbRX/ONonMhHRUXhueeeq3S+SZMmyMjIqJGgiBoSA10ZVo5pB7mhLiJuK/D5ritih0RE1Oj9djIOxUoV2rtaINDNUn3+wfL63VEsryciqm+KS1WYtu48Yu7kwMZUH8GTAiE3ZIeo/9I4kTc3N0dKSuU/fBcvXoSjI1u5UOPkbGmEpS+1hUQCrD+ToJ4FIiKiuqfIL8H607cAANN7Nav0+CCfskT+SHQaCktYRUVEVF8IgoAPtkbinxsZMNKT4fcJAXA0NxQ7rHpJ40R+9OjReP/995GamgqJRAKVSoV//vkH7777LsaPH18bMRI1CL2a2+CN3mU713+4LQpXkrNFjoiIqHFaExqPvGIlWtiZPrRFUWsnORzNDZFfrETINZbXExHVF0sOXsPWC0nsFV8FGifyCxYsgIuLCxwdHZGbmwtvb290794dnTt3xscff1wbMRI1GG/28UQPryYoKlVh2vrzUBSUiB0SEVGjkl9ciqB/4gD8u1P9f5WV19sBAPawvJ6IqF7YfDYBy4/cAAB8OZy94p9Eo0ReEAQkJydj9erVuH79Ov744w+sW7cO0dHRWLt2LWQybkBAjZtUKsHSUW3haG6IWxn5eOePCKhUgthhERE1GpvCEnEvvwQulkYYfH8t/MMMvP/Y4assryciElvItXR8uO0SAGBmLw+8HMhe8U+icSLv6emJpKQkuLu748UXX8TIkSPh6elZW/ERNTgWxnpYOdYfejIpDl29g5UhsWKHRETUKBSXqvDriZsAgKk93KEje/THnLZO5rCXGyC3qBQnr9+tqxCJiOg/LicrMH3deShVAp73c8Q7/bzEDqlB0CiRl0ql8PT05O70RE/Q2skc84e1AgAsPhCDf27wQyIRUW3bEZ6EZEUhmpjq4wV/p8deK5VKMMCH5fVERGJKyirAxKCyXvGd3K3w9QvsFV9VGq+R/+abbzBnzhxcunSpNuIh0hovBThjRDsnqARg1saLSM4qEDskIiKtpVIJ+Pl+BdTkrm4w0H3ycr/y0vuDV++gqJTl9UREdUlRUIKJQWFIyymCl60Jfh7XDno6GqenjZbG36mxY8ciLCwMbdq0gaGhISwtLSscRFRGIpHgi+E+aOVghsy8Ykxff4EfFImIasmBK6mITc+DmYEOxnSo2tpKfxcL2JjqI6ewFKdusNqQiKiulPeKv3YnFzam+giayF7xmtLR9AlLly6thTCItJOBrgwrx7TDsz+cQHhiFhbsvorPh/mIHRYRkVYRBAErjpXNxo/v1BSmBlX7MCiVSjDQxw5rQm9hT1QKerXgDslERLVNEAR8sCUSp2IzYMxe8dWmcSL/yiuv1EYcRFrLxcoIS19qi0nB5/C/0Fvwd7HAcD9HscMiItIa/9zIQORtBQx0pZjYpalGzx3ka481obdw4ModfKVUQfcxG+QREdHT+/7gNWy9WNYrfsXYduwVX00a/7XKzs5+6JGTk4Pi4uLaiJGowevdwhazensAAD7YGono1GyRIyIi0h4rjpX1HX4pwAVWJvoaPbd9U0tYm+hDUVCCU7Esryciqk2bwhLww/1e8V8954MeXk1Ejqjh0jiRNzc3h4WFRaXD3NwchoaGcHV1xbx586BSqWojXqIG661nvNDN0xqFJSq8vvY8sgtLxA6JiKjBC0/MwqnYDOhIJXi1u7vGz5dJJRjgYwsA2Mvd64mIas2xmDR8tL1sw/Q3entgVAB7xT8NjRP54OBgODg44MMPP8T27duxbds2fPjhh3B0dMTKlSvx2muvYfny5fj6669rI16iBksmlWDZS35wNDdEfEY+3v0jAoIgiB0WEVGDtuJo2czOsLaO1V5jOej+7vX7L6eiRMmJCCKimnYpSYEZ6y+oe8W/3Ze94p+Wxmvk16xZg8WLF2PkyJHqc0OHDoWvry9WrVqFw4cPw8XFBQsWLMCHH35Yo8ESNXSWxnpYMcYfI34OxYErd/BzyE1M69lM7LCIiBqk63dycODKHUgkwLSems/GlwtsagkrYz1k5BXjzM1MdPW0rsEoiYgat6SsAkwKLusV37kZe8XXFI1n5ENDQ+Hn51fpvJ+fH0JDQwEAXbt2RUJCwtNHR6SF2jibY95QbwDAt/ujcerGXZEjIiJqmFbe7xvfz9sWHjam1R5HRyZFv1Z2AIA9l1heT0RUUx7sFd/c1pS94muQxt9FJycn/Pbbb5XO//bbb3B2dgYAZGRkwMLC4umjI9JSowNd8IK/E1QCMGvjRaQqCsUOiYioQbl9Lx87w5MBANN7ejz1eIPLy+svpaKU5fVERE+tqFSJqWvP4dqdXNia6SNoYgDMqtgelJ5M49L67777DiNGjMDevXsREBAAiUSCs2fPIjo6Gn/99RcA4OzZsxg1alSNB0ukLSQSCb4c7oPLyQpEp+Zg+vrz2PRaJ96hJCKqol9PxKFUJaCLhxXaOJs/9Xgd3C1hYaSLjLxihMVnonMzltcTEVWXIAh4/69InL6Zqe4V78Be8TVK46xh6NChiImJwcCBA5GZmYm7d+9i4MCBiI6OxrPPPgsAmDZtGr7//vsaD5ZImxjqybBqXDuYGujgQkIWvtpzVeyQiIgahIzcImw6W7aEryZm4wFAVyZFP++y8vq9Uak1MiYRUWO1+MA1bA9Phkwqwcqx7dDKgb3ia1q1pv+aNm2Kr7/+Glu3bsW2bduwcOFCNG3aVONxFi5ciICAAJiamsLGxgbDhw9HTEzMI6+fOnUqJBIJli5d+sSxt2zZAm9vb+jr68Pb2xvbtm3TOD6i2uZqZYwlI9sCAIJPxWNHeJK4ARERNQBB/8SjsESF1k5ydG5mVWPjDvS9n8hfSoVSxa4iRETVsTEsAT/e7yiy8DlfdGev+FpRrUT+xIkTGDt2LDp37oykpLLEY+3atTh58qRG44SEhGDGjBk4ffo0Dh48iNLSUvTr1w95eXmVrt2+fTvOnDkDBweHJ44bGhqKUaNGYdy4cYiIiMC4ceMwcuRInDlzRqP4iOrCM962mNGrbOf6D7ZEISY1R+SIiIjqr5zCEqwJjQcATO/ZrEZ3Pu7iYQ25oS7u5hbhXHxmjY1LRNRYHI1Jw8flveL7eGJkgLPIEWkvjRP5LVu2oH///jA0NMSFCxdQVFQEAMjJycFXX32l0Vj79u3DhAkT0KpVK7Rp0wZBQUFISEjA+fPnK1yXlJSEmTNnYv369dDVffIGCUuXLkXfvn0xd+5ctGjRAnPnzkWfPn2qNJNPJIbZfZujq4c1CkqUmLbuPHIKS8QOiYioXlp/JgE5haVo1sRYXQpfU3RlUvT1tgVQNitPRERVV6FXvL8j3n7GU+yQtJrGifyXX36Jn3/+GatXr66QVHfu3BkXLlx4qmAUCgUAwNLSUn1OpVJh3LhxmDNnDlq1alWlcUJDQ9GvX78K5/r3749Tp0499PqioiJkZ2dXOIjqkkwqwbKX2sJBboCbd/Mw589ICALLOomIHlRYosRvJ+MAAK/3aAaptOb7EA9Sl9enQMXyeiKiKrl9Lx8Tg88iv1iJLh5W+Pp59oqvbRon8jExMejevXul82ZmZsjKyqp2IIIgYPbs2ejatSt8fHzU5xctWgQdHR288cYbVR4rNTUVtra2Fc7Z2toiNfXhd9cXLlwIuVyuPsrb6BHVJSsTffw0xh+6Mgn2XU7F6hM3xQ6JiKhe+ev8baTnFMFBboBhbR1r5TW6eFjD1EAHd7KLcCHhXq28BhGRNlHkl2BC0Fmk5xShhZ0pVo5lr/i6oPF32N7eHjdu3Kh0/uTJk3B3d692IDNnzkRkZCQ2btyoPnf+/HksW7YMwcHBGt/R+e/1giA8coy5c+dCoVCoj8TERM3fAFEN8HOxwKfPegMAFu2LwembGSJHRERUP5QqVVh1PBYA8Gp391r7kKivI0PflmWTAXu4ez0R0WMVlSoxdd053EjLhZ2ZAXvF1yGN/wpOnToVb775Js6cOQOJRILk5GSsX78e7777LqZPn16tIGbNmoWdO3fi6NGjcHJyUp8/ceIE0tLS4OLiAh0dHejo6ODWrVt45513HrtLvp2dXaXZ97S0tEqz9OX09fVhZmZW4SASy9iOrnjOzxFKlYCZGy7iTnah2CEREYlud1QKEjMLYGmsh5cCXGr1tQb62gNgeT0R0eMIgoD37veKN9HXwe8TAmAvZ6/4uqJxIv/ee+9h+PDh6NWrF3Jzc9G9e3dMmTIFU6dOxcyZMzUaSxAEzJw5E1u3bsWRI0fg5uZW4fFx48YhMjIS4eHh6sPBwQFz5szB/v37Hzlup06dcPDgwQrnDhw4gM6dO2sUH5EYJBIJvnrOFy3sTHE3twgz1l9AiVIldlhERKIRBAErj5XNxk/s3BSGerJafb1untYw0ddBiqIQ4bezavW1iIgaqu8OxGBHeDJ0pBKsGOMPbwdOhtYlneo8acGCBfjoo49w5coVqFQqeHt7w8TERONxZsyYgQ0bNmDHjh0wNTVVz6LL5XIYGhrCysoKVlYV+8Pq6urCzs4OzZs3V58bP348HB0dsXDhQgDAm2++ie7du2PRokUYNmwYduzYgUOHDmncHo9ILIZ6Mqwc2w5DfziJc7fu4as9VzFvSNU2eyQi0jZHotMQnZoDYz0ZxndqWuuvZ6ArQ5+WNtgRnoy9USnwd7Go9dckImpINpxJwE9Hy26wfvU8e8WLodoLzIyMjNC+fXsEBgZWK4kHgJUrV0KhUKBnz56wt7dXH5s3b9ZonISEBKSkpKi/7ty5MzZt2oSgoCC0bt0awcHB2Lx5Mzp06FCtOInE4GZtjMUj2wAAgv6Jx66IZJEjIiKqe4IgYMX92fixHV0hN6qbtZcDfcrK6/dEpbKLCBHRA45Gp+GTHWW94t/s44mR7blRuBgkQhX+Oj3//PNVHnDr1q1PFVB9kJ2dDblcDoVCwfXyJLpF+6Kx8lgsjPRk2DGjCzxtTcUOiYiozoTFZWLkqlDo6Uhx8r1esDEzqJPXLSxRwv+Lg8gvVmLHjC5o42xeJ69LRFSfRd1WYNQvocgvVuLFdk749kW2matJmuShVZqRf7A1m5mZGQ4fPoxz586pHz9//jwOHz4MuVz+dJETUSXv9PVCJ3cr5Bcr8fq688gtKhU7JCKiOrPiWFmnnBfbOdVZEg+Uldf3bmEDANhzKeUJVxMRab/EzHxMWlPWK76bpzUWPu/LJF5EVUrkg4KC1IetrS1GjhyJuLg4bN26FVu3bsXNmzfx0ksvwdraurbjJWp0dGRS/DDaD3ZmBohNz8N7f0WwzJOIGoXLyQoci0mHVAJM7V79FrfVNah893qW1xNRI6fIL8HE4H97xa8Y4w9dGXvFi0nj7/7vv/+Od999FzLZvzvGymQyzJ49G7///nuNBkdEZaxN9PHTGH/oyiTYE5WK307GiR0SEVGtK9+pfnBrB7haGdf56/ds3gQGulIkZObjcnJ2nb8+EVF9UFSqxGtrK/aKN2WveNFpnMiXlpbi6tWrlc5fvXoVKhVbZBHVlnauFvh4sDcAYOHeaJy5mSFyREREtSf+bh72RJWVtE/r0UyUGIz0dP4tr49ieT0RNT4qlYA5f0biTFxZr/igiewVX19onMhPnDgRkyZNwnfffYeTJ0/i5MmT+O677zBlyhRMnDixNmIkovvGd3LFsLYOUKoEzNx4EWnZhWKHRERUK1Ydj4VKAHo1byJqb+J/d69PYXk9ETU63x2Iwc6Isl7xK8f6o6U9NwKvLzTuI//dd9/Bzs4OS5YsUbd8s7e3x3vvvYd33nmnxgMkon9JJBIsfN4X0Sk5iLmTg5kbLmL9qx24RomItMqd7EJsOZ8EAJjey0PUWHq3sIG+jhTxGfmITs3hh1giajTWn7mlbv+58HlfdPNkr/j6RONP/1KpFO+99x6SkpKQlZWFrKwsJCUl4b333quwbp6IaoeRng5WjvWHib4OwuIzsWhvtNghERHVqF9P3ESxUoWAphYIaGopaizG+jro2bzswyvL64mosTh89Q4+2V7WK/6tZzwxgr3i652nmsYzMzNjn3UiEbg3McF3I1oDAH49GYfdkfxwSUTaISu/GOvPJAAApvcUdza+XPnu9btZXk9EjUDk7SzM3HARKgEY0c4Jb/bxFDskeogqJfL+/v64d+9elQft2rUrkpKSqh0UET3ZAB97dTum9/6KwI20HJEjIiJ6emtO3UJ+sRIt7c3UM+Fi693CBno6UtxMz8P1tFyxwyEiqjWJmfmYFHwOBSVlveK/Yq/4eqtKa+TDw8MREREBS8uqlbeFh4ejqKjoqQIjoieb0785Im5n4fTNTLy+7gJ2zOgCY32Nt74gIqoX8otLEXyqrL3mtJ7N6s2HR1MDXXT3bIJDV+9gd2QKvPqaih0SEVGNU+SXYEJQGO7msld8Q1DlT/x9+vSpcjlZffnDS6TtdGRS/PCyP5794QRupOXi/S2R+OFlP/5/kIgapI1hibiXXwJXKyMM8rETO5wKBvna4dDVO9h7KQVv9/USOxwiohpVVKrEq2vPITY9D/ZyAwRPDGSv+HquSol8XFycxgM7OTlp/Bwi0lwTU32sGOOPUatO4+/IFPi7WGBSVzexwyIi0khxqQq/nrgJAJjavRl06tksUJ+WttCVSXDtTi5upOXAw4az8kSkHVQqAe/+GYmwuEyY3u8Vbyc3EDsseoIqJfKurq61HQcRPYV2rpb4aHBLzN91BV/tuYrWTnK0F3mnZyIiTWwPT0KKohA2pvp4oZ2j2OFUIjfURVcPaxyNSceeqFS80YeJPBFph2/2x2DX/V7xP49rhxZ23My8Iahft7uJqNomdG6KZ1vbo1QlYPr6C0jLKRQ7JCKiKlGqBPwcUtareEo3N+jr1M92tuW717MNHRFpi7Wnb6l//y56oTW6eFiLHBFVFRN5Ii0hkUiw6IXW8LQxQVpOEWZtuIhSpUrssIiInujA5VTcTM+DmYEORneov1WAfb1toSOVIDo1BzfTuXs9ETVsh6/ewbwdZb3iZ/f1wgvtuDS6IWEiT6RFjPV1sHJsOxjryXAmLhPf7I8ROyQioscSBAErjpXNBr3SuSlM6nHnDXMjPXS+P1u191KqyNEQEVXfg73iR7Z3wqzeHmKHRBpiIk+kZTxsTPDtiDYAgF+O38S+SywBJaL66+SNu4hKUsBAV4oJnZuKHc4TDfYt202f5fVE1FCV9Yo/q+4Vv+A59opviKqVyGdlZeHXX3/F3LlzkZmZCQC4cOECkpKSajQ4IqqeQb72eLVb2c717/4ZiViWgBJRPbXiaNls/EsBLrAy0Rc5mifr620HmVSCy8nZuJWRJ3Y4REQaycovvt8rvhgt7c3YK74B0/hfLTIyEl5eXli0aBG+++47ZGVlAQC2bduGuXPn1nR8RFRN7w9ogUA3S+QWlWLauvPILy4VOyQiogouJtxD6M0M6EgleLW7u9jhVImlsR46uVsBYHk9ETUshSVKvPa/8+pe8UETAtgrvgHTOJGfPXs2JkyYgOvXr8PA4N/+ggMHDsTx48drNDgiqj4dmRQ/vuyHJqb6uHYnFx9siYIgCGKHRUSkVr42frifIxzNDUWOpuq4ez0RNTRlveIjEBZf1is+eGIge8U3cBon8mfPnsXUqVMrnXd0dERqKu9ME9UnNmYG+Gm0P2RSCXZGJGPNqXixQyIiAgBcu5ODg1fuQCIBXu/RTOxwNNKvlS2kEiDytgKJmflih0NE9ESL9kfj78gU6MokWDWuHZrbmYodEj0ljRN5AwMDZGdnVzofExODJk2a1EhQRFRzAt0sMXdgCwDAl7uv4vytTJEjIiICfr4/G9/f2w4eNiYiR6MZaxN9dHArK6/fx/J6Iqrn1obGY1XITQBlveI7s1e8VtA4kR82bBg+//xzlJSUACjrXZ2QkIAPPvgAL7zwQo0HSERPb3JXNwxubY9SlYDp6y/gbm6R2CERUSN2+14+dkQkAwCm92pYs/HlBrUuK6/fzfJ6IqrHDl25g3k7LwMA3unrhef92SteW2icyH/33XdIT0+HjY0NCgoK0KNHD3h4eMDU1BQLFiyojRiJ6ClJJBIseqE1mjUxxp3sIszacBGlSpXYYRFRI7X6+E0oVQK6elijtZO52OFUS/9WtpBIgPDELCRlFYgdDhFRJRGJWZi1saxX/Kj2zpjJXvFaReNE3szMDCdPnsSWLVvw9ddfY+bMmdizZw9CQkJgbGxcGzESUQ0w0dfBqnHtYKwnQ+jNDHx34JrYIRFRI3Q3twibziYCAKb3bJiz8QBgY2qAgKaWAFheT0T1T0JGPiavKesV392rCb58zoe94rWMjiYXl5aWwsDAAOHh4ejduzd69+5dW3ERUS3wsDHFohdbY+aGi/g5JBZ+Lubo38pO7LCIqBEJ+icORaUqtHE2R6dmVmKH81QG+dghLC4Te6JSMLmrm9jhEBEBAO7lFWNCcFmveG/2itdaGv2L6ujowNXVFUqlsrbiIaJa9mxrB0zqUvaB890/IhB3N0/kiIioscgpLMH/Qm8BAKb1aNbgZ4cG3m9Dd/7WPaQqCkWOhojofq/4tedwMz0PDnIDBE0MgIm+RnO31EBofGvm448/xty5c5GZyZ2viRqquYNaIKCpBXKKSvH62vPILy4VOyQiagTWnU5ATmEpPGxM0M/bVuxwnpqtmQHau1oAAPZd4qZ3RCQulUrAO39G4Gz8PZga6CB4UiBszdgrXltpnMgvX74cJ06cgIODA5o3bw5/f/8KBxHVf7oyKX4a7Q9rE33E3MnBR9suQRAEscMiIi1WWKLEbyfjAJT1jZdKG/ZsfLnyWfk9XCdPRCJbtC8au8t7xY9tBy9b9orXZhrXWQwfPrwWwiCiumZjZoCfRvth9K9nsO1iEvxdzDGuU1Oxw6JGSKkSEBaXibScQtiYGiDQzRIyLUny6F9/nr+Nu7lFcDQ3xLC2DmKHU2MG+tjhi7+v4Gx8JtKyC2HD2S8iEsH/QuOx6nhZr/hvXmSv+MZA40R+3rx5tREHEYmgg7sVPhjQAgv2XMXnf19BK0c5/F0sxA6LGpF9l1Iwf9cVpDywvtheboB5Q7wxwMdexMioJpUqVfjleCwA4NVublq16ZKDuSH8XMxxMSEL+y+n8oYoEdW5g1fu4LP7veLf7eeF5/zYK74x0J6/pERULVO6uWGgjx1KlAJmrL+AjNwisUOiRmLfpRRMW3ehQhIPAKmKQkxbd4FrjrXI35EpSMwsgJWxHkYFuIgdTo0bdP+m054oltcTUd0KT8zCrI0XoBKAlwKcMaMXe8U3Fhon8lKpFDKZ7JEH1R2lSkBobAZ2hCchNDYDShXXOJPmJBIJvnmxNdybGCNFUYg3Nl3kzxLVOqVKwPxdV/Cwn7Tyc/N3XeHPohZQqQSsPFY2Gz+xS1MY6mnfZ4WBvmVtPM/EZeAub4Y2aiqVgOSsAv7uojqRkJGPycFnUViiQg+vJvhyOHvFNyYal9Zv27atwtclJSW4ePEi1qxZg/nz59dYYPR4LEelmmRqoIufx7bDsB//wT83MrD4QAzeG9BC7LBIi4XFZVaaiX+QACBFUYiwuMwG32u8sTsSnYaYOzkw0dfR2rJzJwsjtHGSI+K2Avsvp2JMB1exQyKRLDl0DT8cuQFTfR20b2qBDu5WCHSzhK+jXKuWlJD47uUVY0JQGDLyitHKwQw/jfGHDn/GGhWNE/lhw4ZVOvfiiy+iVatW2Lx5MyZPnlwjgdGjlZej/vdeb3k56sqx/kzmSWNetqZY9GJrvLHxIlYci4WfiwX6akF7KKqf0nKq1nO7qtdR/SQIAlYcuwEAGNPRBXJDXZEjqj0Dfe0RcVuBvVFM5BurzLxi/HqirDNDTlEpjsak42hMOgDAUFcGf1dzdHArS+zbOpvDQFf7qlOobhSWKPHq/87h5t08OJob4vcJ7BXfGNXYv3iHDh3w6quv1tRw9AhPKkeVoKwcta+3HXd9Jo0NbeOAC7fuIfhUPGb/EY5dM7uiqbWx2GGRFrIxrdrO3lW9juqnsLhMXEjIgp6OFJO7uokdTq0a5GOPr/dGI/RmBjLzimFprCd2SFTHgv+JQ0GJEj6OZlj4XGucictAWFwmwuIzkZVfgn9uZOCfGxkAAD2ZFG2c5erE3t/VgokYPZIgCEjIzEd4YhbCE7Nw6kYGYu7kwNRAB0ETA9grvpGqkd8YBQUF+OGHH+DkxB0SaxvLUam2fTioJaKSFDh/6x5eX3ce26Z30co1rSSuQDdL2MsNkKoofOiNSQkAO3lZKzpquFbcXxs/op2T1t+UcbEygo+jGS4lZePA5VS8FKh9m/rRo+UUliD4VDwAYEZPD/g6yeHrJMeUbu5QqQRcT8tFWFwGzsRl4kxcJtJzinA2/h7Oxt8DjgIyqQQ+DmZlpfhNLRHQ1BJyI+2tYKHHu5dXjPDbWYi4n7hHJGbhXn5JhWv0daRYNY694hszjRN5CwuLCpsoCIKAnJwcGBkZYd26dTUaHFXGclSqbXo6Uvw02h/P/nAC0ak5+Gh7FBaPaMPNU6hGyaQSzBvijWnrLkACVEjmy3/S5g3xZmVRA3YpSYGQa+mQSoCp3ZuJHU6dGOhjj0tJ2dhziYl8Y7P+TAKyC0vRrIkx+reyq/CYVCpBcztTNLczxbhOTSEIAuIz8v9N7G9mIimrABG3FYi4rcAvx29CIgFa2Jmhg5slAt3KEvsmpvoivTuqTUWlSlxJzlbPtkckZiE+I7/SdXoyKbwdzNDW2Rxtnc3RqZkVZ+IbOY0T+SVLllT4QC+VStGkSRN06NABFhaa9Z9euHAhtm7diujoaBgaGqJz585YtGgRmjdvrr7ms88+w6ZNm5CYmAg9PT20a9cOCxYsQIcOHR45bnBwMCZOnFjpfEFBAQwMGvYPPMtRqS7YyQ3ww8v+GPPraWy9kAR/FwuM7cg1n1SzBvjYY+VY/0obd9px406tsDKkbDZ+SBsHuFgZiRxN3Rjka49v98fg1I27yMovhrkRy+sbg8ISpXpt/LSeHpA+4QakRCKBm7Ux3KyN1e0Yb9/Lx9n4TITdn7G/mZ6HqynZuJqSrZ7pd29ijA5uVurk3sHcsFbfF9U8lUpAfEZehaT9Sko2SpSVa9PcrY3R5n7S3tbZHC3sTaGvwwpJ+pfGiXzv3r3h7Oz80Nm5hIQEuLhU/Q50SEgIZsyYgYCAAJSWluKjjz5Cv379cOXKFRgbl63L9fLywo8//gh3d3cUFBRgyZIl6NevH27cuIEmTZo8cmwzMzPExMRUONfQk3iA5ahUdzo1s8J7A1rg673RmL/rMlwsjdDd69H/nyOqjgE+9ujrbYewuEyk5RTCxrTs9xdn4hu2uLt52BuVAgB4vUfjmI0HADdrY7S0N8PVlGwcuHIHI9s7ix0S1YE/zyXibm4RHM0NMaytQ7XGcLIwgpOFEZ7zK1ummpZTiLNx99Sz9tGpObiZnoeb6XnYGJYAAHC2NERg038Te1crI1bP1TMZuUXqhP3i/f/NLiytdJ2lsZ46YW/jbI42TnLeCKQnkgiCoFGjS5lMhpSUFNjY2FQ4n5GRARsbGyiVymoHk56eDhsbG4SEhKB79+4PvSY7OxtyuRyHDh1Cnz59HnpNcHAw3nrrLWRlZVUrjvLXUCgUMDMzq9YYtal813rg4eWo3LWeaoogCJix4QL2RKVCTybFD6P9KpUMEhH91wdbIrHpbCJ6t7DB7xMCxA6nTv1w+DoWH7yGXs2bIGhioNjhUC0rUarQ89tjSMoqwOfDWmF8LbVYzMovxtn4fxP7S0kK/LdVva2ZPgLvb57Xwc0SnjYmTOzrUGGJEpeTFbiYcH+2/XYWEjMLKl2nryOFj6NcnbT7OZvDycKQ/1YEQLM8VOMZ+Ufl/bm5uU89461QKAAAlpYPn00uLi7GL7/8ArlcjjZt2jx2rNzcXLi6ukKpVKJt27b44osv4Ofn91Tx1RcsR6W6IpFIsHSUH4CL2BOViunrL+D7kW0wrK2j2KERUT2VqijElgu3AQDTezae2fhyA33tsfjgNZy8cReKghKtbrlHwM7wZCRlFcDaRK9WKzDMjfTQ19tW3RY2t6gU52/dT+xvZiLidhbuZBdhV0QydkUkAyib5Q1oaoHA++X4Le3NWO1UQ1QqATfv5lZI2qNTclD637srADxsTNDGyRxtXcqS9uZ2ptBlv3eqAVVO5GfPng2g7IP9p59+CiOjf9e7KZVKnDlzBm3btq12IIIgYPbs2ejatSt8fHwqPPb333/jpZdeQn5+Puzt7XHw4EFYW1s/cqwWLVogODgYvr6+yM7OxrJly9ClSxdERETA09Oz0vVFRUUoKipSf52dnV3t91FXWI5KdUVPR4rlL/nBUDcKWy7cxlubw5FfrMTL3MiJiB7i1xM3UaIUENjUEu2bNr5lXh42Jmhua4qYOzk4dOUOXmjHjj7aSqUSsOLYDQDA5K7uddoX3kRfBz28mqDH/SVvhSVKXEzIur/GPgMXEu4hM68Y+y/fwf7LdwAApvo6aH8/sQ90s0RrJzkTyipKyylEeEJZwh6emIXIRAVyiiqXyFub6KOtszn8XMrK5H2d5DAz4M08qh1VLq3v1asXgLJ17Z06dYKe3r/rNvT09NC0aVO8++67D02Uq2LGjBnYvXs3Tp48WamNXV5eHlJSUnD37l2sXr0aR44cwZkzZyqV9z+KSqWCv78/unfvjuXLl1d6/LPPPsP8+fMrna+vpfVEYlCpBMzbeRlrT98CAHzyrLfW94UmIs3cyytGl0VHkF+sRNDEAPRqXrW/09pm6aFrWHroOp5paYNfX2lcSwsak32XUvD6ugswNdDBqQ96w7QeJWzFpSpEJSnUif25+HvI/U/iaagrg7+redk6e3dLtHU2r9ObEfVVfnEpom4r1El7RKICSVmVS+QNdWXwdZSjrYu5esbdQW7AEnl6KpqU1mu8Rn7ixIlYtmxZjSa4s2bNwvbt23H8+HG4uT05MfD09MSkSZMwd+7cKr/Gq6++itu3b2Pv3r2VHnvYjLyzszMTeaL/EAQBX++LxqqQmwCAd/p6YWZvD/7RIiIA/yaw3vZm2P1G10b7u+HanRz0W3IcejIpzn/yTL1K8KhmCIKAoT/+g6gkBWb28sC7/Zs/+UkiUqoEXE3JxumbGQiLy0RYfCay/tOXXE8mRRtn+f019lbwd7WAib7Gq3AbFKVKwPW0HHW/9vBEBa7dyYHyPyXyEgngZWOqXtfe1tkcXrYm0GFFA9WwWl0jHxQUVO3A/ksQBMyaNQvbtm3DsWPHqpTElz/vwcS7KteHh4fD19f3oY/r6+tDX5+9OYmeRCKR4IMBLWCsp4PvD17D4oPXkFesxPsDmjfaD+xEVCavqFTdJmtaz2aN+neCl60pPGxMcCMtF4evpmG4H/cV0TYnrt9FVJICBrpSTOzSVOxwnkgmlcDHUQ4fRzmmdHOHSiXgRnouzty838s+LhPpOUU4G38PZ+Pv4aejsWXPcTBTJ/YBTS0hN2rYN6VSFYUIT7yn3kE+6rYCecWVN+q2MzOokLT7Osm1/qYGNTzV+ok8e/Ys/vzzTyQkJKC4uLjCY1u3bq3yODNmzMCGDRuwY8cOmJqaIjU1FQAgl8thaGiIvLw8LFiwAEOHDoW9vT0yMjKwYsUK3L59GyNGjFCPM378eDg6OmLhwoUAgPnz56Njx47w9PREdnY2li9fjvDwcPz000/VebtE9ACJRII3+njCSE+GL3dfxc8hscgvLsVnQ1o9sXcuEWmvTWcTkZVfgqZWRhjky01XB/nYYfmRG9gTlcJEXgv9dLRsbfzLgS6wMml4k0FSqQRetqbwsjXFuE5NIQgCbmXk48z9XfHD4jJx+14BIm4rEHFbgdUn4iCRAM1tTdHBzRId3MsS+yam9fe95xaVIvJ2WWl8eOI9hCeWbQj4X8Z6Mvg6ydHW2ULdAs5O3vBbVpP20ziR37RpE8aPH49+/frh4MGD6NevH65fv47U1FQ899xzGo21cuVKAEDPnj0rnA8KCsKECRMgk8kQHR2NNWvW4O7du7CyskJAQABOnDiBVq1aqa9PSEiAVPpvaUtWVhZee+01pKamQi6Xw8/PD8ePH0dgINvAENWUKd3cYaSng4+2R+F/obeQX6zE18/7ssyMqBEqLlXh1xNlS26m9mjGjVdRtnv98iM3cOxaOnKLSjmbp0XOxZfNYOvKJHi1m7vY4dQIiUSCptbGaGptjFEBZZvZJmUVICwu4/46+0zcTM9DdGoOolNzsCa0bL8c9ybGZYn9/Q30HMwNRYm/VKlCzJ2cCkn79bRc/HcBsVQCNLczu5+wlyXvHjYm/J1FDZLGa+Rbt26NqVOnYsaMGTA1NUVERATc3NwwdepU2NvbP3TTuIamvveRJ6pPtl9Mwjt/RkCpEjDY1x5LRrWFng6TeaLG5I+ziXhvSyRszfRx/L1e0NfhhlmCIKD34hDE3c3D8pf9MLSNg9ghUQ2ZFHwWR6LTMKq9Mxa92FrscOpMek5R2fr6+7P20ak5la5xsjBEoJslOt5P7F2tjGp8mY0gCEhWlO0iH554DxGJCkQlKVBQUrlE3tHc8H6JfFnS7uNoBiM93lSj+qtW18jHxsZi8ODBAMrWlufl5UEikeDtt99G7969tSKRJ6KqG+7nCANdGd7YeBG7o1JQUKLEijH+3PmWqJFQqgT8HBILAJjS1Z1J/H0SiQSDfO3w09FY7I1KYSKvJS4nK3AkOg1SCfB6z2Zih1OnmpjqY3BrewxuXbZ0Jiu/GGfj76ln7S8lZ+P2vQLcvpeErReSAAC2Zvrqdncd3Czh0cRE42V42YUliFTPtCsQnpiFu7mVS+RN9XXQ2ll+f7bdAm2c5bAxZYk8aS+NE3lLS0vk5JTdgXN0dMSlS5fg6+uLrKws5Ofn13iARFT/DfCxw+pX2mPq2nM4Ep2GScFnsXp8exizlJRI6+2/nIqbd/MgN9TFyx1cxA6nXhnoY4+fjsbiaEwa8otLOROoBVYeK7tpNcjXHm7WxiJHIy5zIz309bZFX29bAGVr0s/f+jexj0hU4E52EXZFJGNXRDIAwMJIF4Fulgh0s0IHN0u0tDerUNZeolQhOiUH4bez1DPusel5lV5bRypBC3tTddLe1lkOd2vNbxIQNWQa/0Xp1q0bDh48CF9fX4wcORJvvvkmjhw5goMHD6JPnz61ESMRNQA9vJpgzcRATAo+i1OxGRj32xkETQyE3LBh73BLRI8mCAJWHCvb9OuVTq5cB/4frRzM4GJphITMfByLSecmgA1c3N087IlKAQBM7+khcjT1j4m+Dnp4NUEPryYAgMISJS4mZN1vd5eB87fu4V5+CfZfvoP9l+8AKJtFb9/UAs6WRricnI1LSQoUlaoqje1saVg2y+4kh5+LOVo5yFn5R42exmvkMzMzUVhYCAcHB6hUKnz33Xc4efIkPDw88Mknn8DCwqK2Yq0zXCNPVH3hiVl45fcwKApK0MrBDP+bFNggd/Qloic7fi0d438Pg6GuDP980BuWxnpih1TvfL03Gj+HxGJwa3v8NNpf7HDoKXywJRKbziaidwsb/D4hQOxwGpziUhWikhTqdfbn4u8hp6i00nVyQ92ytm9OcrR1MUdrJ3NY83MENRKa5KEaJfKlpaVYv349+vfvDzs7u6cOtL5iIk/0dK6mZGPcb2dwN7cYHjYmWD+lA2zNuE6NSNu89EsoTt/MxMQuTTFvSKsnP6ERirydhaE//gMjPRnOf9wXhnqcRWyIUhQF6P7NUZQoBWyZ1gntXC3FDqnBU6oEXE3Jxpm4TKQqCuDtYIY2TuZwszau8Q3yiBoKTfJQjbaW1tHRwbRp01BUVHmDCSKici3tzbB5aifYyw1wIy0XI34ORWIm99Ag0iYXEu7h9E3tasFVG3wd5XCyMER+sRIh19LFDoeqafXxOJQoBXRws2QSX0NkUgl8HOWY3NUNHw32xnN+TnBvYsIknqiKNO4R1aFDB1y8eLE2YiEiLdKsiQn+mNpJvT505KpQ3EzPFTssIqohK46Wbfo1vK2jaL2jG4Ky3evL1saXr6+mhiUjtwgbwxIAADN6cW08EdUPGify06dPxzvvvIMff/wRoaGhiIyMrHAQEZVztjTCn693goeNCVIUhRi56jSiU7PFDouInlJMag4OXb0DSSNswVUdA33KliMevnoHhQ/pdU31W/CpeBSUKOHrKEc3T2uxwyEiAlCNXetHjRoFAHjjjTfU5yQSCQRBgEQigVLJP1BE9C9bMwNsfq0jxv0Whisp2Ri16jT+NykQbZzNxQ6NiKqpvG/8gFZ2aNbERORo6r+2zuZwkBsgWVGIE9fvqtt1Uf2XU1iC4FPxAIAZvZqx7JuI6g2NZ+Tj4uIqHTdv3lT/LxHRf1mZ6GPjax3h52IORUEJxvx6BmduZogdFhFVQ2JmPnbe7wnNFlxVI5FIMJDl9Q3SutMJyCksRbMmxujnrb0bPRNRw6NxIu/q6vrYg4joYeSGulg3uQM6uVsht6gUrwSFceMnogZo9YmbUKoEdPO0hq+TXOxwGoxBvmVJ4KErd1BUyurFhqCwRInfTpZNUk3v6QGplLPxRFR/aJzIA8DatWvRpUsXODg44NatWwCApUuXYseOHTUaHBFpF2N9HQRNDEDvFjYoLFHh1TXnsP9yqthhEVEVpecUYfPZRADANK6N14ifswVszfSRU1SKf27cFTscqoI/ziXibm4xHM0NMbStg9jhEBFVoHEiv3LlSsyePRuDBg1CVlaWek28ubk5li5dWtPxEZGWMdCV4eex7TDY1x7FShWmr7+AHeFJYodFRFUQ9E8cikpVaOtsjk7uVmKH06BIpRIM9Ckrr98dyRuY9V2JUoVVIWWz8VN7uENXVq25LyKiWqPxb6UffvgBq1evxkcffQSZTKY+3759e0RFRdVocESknfR0pFj2Ulu84O8EpUrAW5vD1a19iKh+yi4swdrQsiq86T256Vd1lLehO3glFcWlKpGjocfZEZ6MpKwCWJvoYWR7Z7HDISKqpFqb3fn5+VU6r6+vj7y8vBoJioi0n45Mim9fbI1xHV0hCMDcrVH47WSc2GER0SOsO30LOUWl8LQxwTMtuet6dbRztUATU31kF5biVCzL6+srpUrAimM3AACTu7rDQFf2hGcQEdU9jRN5Nzc3hIeHVzq/d+9eeHt710RMRNRISKUSfD6sFab2cAcAfPH3Ffxw+DoEQRA5MiJ6UGGJEr/fv9H2eo9m3PSrmmRSCQa0Ktv0bm8Uy+vrqwOXU3EzPQ+mBjoY29FF7HCIiB5K4z7yc+bMwYwZM1BYWAhBEBAWFoaNGzdi4cKF+PXXX2sjRiLSYhKJBB8MaAETPR0sPngNiw9eQ25xKT4Y0IKlu0T1xJ/c9KvGDPK1x9rTt7D/Siq+VPpw7XU9IwgCfro/Gz+hc1OYGuiKHJF2U6oEhMVlIi2nEDamBgh0s4SMNwqJqkTjRH7ixIkoLS3Fe++9h/z8fIwePRqOjo5YtmwZXnrppdqIkYi0nEQiwaw+njDUk+HL3VexKuQmCoqV+GxIK878EYmsVKnCquNlm3691p2bfj2tQDdLWBnrISOvGKdvZqCbZxOxQ6IHHL9+F5eSsmGoK8PELm5ih6PV9l1KwfxdV5CiKFSfs5cbYN4Qbwy4vzEkET1atf4av/rqq7h16xbS0tKQmpqKxMRETJ48uaZjI6JGZko3d3z1nC8kEuB/obfw3pZIlCq5IRSRmHZFJuP2vQJYGXPTr5ogk0rQ36esvH4Py+vrnZ+Ols3GvxzoAktjPZGj0V77LqVg2roLFZJ4AEhVFGLaugvYdylFpMiIGo5q31ZPS0vD1atXce3aNaSnp9dkTETUiI3u4IIlI9tCJpXgr/O38eamcO7uTCQSlUrAymOxAIBJXd1gqMdNv2rC4Pu71++/nMqblfXIufhMhMVlQlcmwavdORtfW5QqAfN3XcHDdsMpPzd/1xUoVdwvh+hxNE7ks7OzMW7cODg4OKBHjx7o3r07HBwcMHbsWCgUitqIkYgameF+jvhptD/0ZFLsjkrB6+vOo7BEKXZYRI3O4eg0XLuTCxN9HYzt6Cp2OFqjg5slLIx0kZlXjLC4TLHDoftW3L9p9YK/E+zlhiJHo73C4jIrzcQ/SACQoijk/zeInkDjRH7KlCk4c+YMdu/ejaysLCgUCvz99984d+4cXn311dqIkYgaoQE+dlj9SnsY6EpxJDoNE4POIq+oVOywiBoNQfi3BdfYjq6QG3LTr5qiI5Oi//3d6/ewhLheuJyswJHoNEglwNQezcQOR6ul5Tw6ia/OdUSNlcaJ/O7du/H777+jf//+MDMzg6mpKfr374/Vq1dj9+7dtREjETVSPbyaYM3EQJjo6yD0ZgbG/XYGioISscN6LKVKQGhsBnaEJyE0NoOlgdRgnYnLxMWELOjpSDGpa1Oxw9E6g+6X1++7dIe/J+qB8iUkg1s7wM3aWORotJuNqUGNXkfUWGm8a72VlRXkcnml83K5HBYWFjUSFBFRuQ7uVlg3pQNe+T0MFxKy8PIvp7F2ciCsTPTFDq0S7sBL2qS8zHhkeyd+oK4FnZpZQW6oi7u5RTgbn4mO7lZih9Ro3UzPxe6ossqI6T05G1/bAt0sYS83QKqi8KHr5CUA7ORlreiI6NE0npH/+OOPMXv2bKSk/FsKlpqaijlz5uCTTz6p0eCIiACgrbM5Nr3WEdYmeriSko1Rv5zGnez6VXLHHXhJm1xKUuD4tXTIpBJM7c7EpjboyqTo520LANgbxd8PYloVchOCAPRpYYOW9mZih6P1ZFIJ5g3xBlCWtD+o/Ot5Q7zZT57oCTRO5FeuXInTp0/D1dUVHh4e8PDwgIuLC06dOoVVq1bB399ffRAR1ZSW9mbYPLUT7OUGuJGWixE/hyIxM1/ssABwB17SPuVlxkNa28PZ0kjkaLRXeXn93kupUPH3gyiSswqw9eJtAMD0Xh4iR9N4DPCxx8qx/rCTV6z2sZMbYOVYf1axEVWBxqX1w4cPr4UwiIierFkTE/wxtRPG/HoGCZn5GLkqFOumdECzJiaixqXJDrydmrF8luq3m+m56g3YXmeZca3q4mENUwMdpOUU4XzCPQQ0ZSlxXVt94iZKlAI6uluinSuXiNalAT726Otth7C4TKTlFMLGtKycnjPxRFWjcSI/b9682oiDiKhKnC2N8OfrZcn8jbRcjFoVirWTO4haDskdeEmbPFhm3MKOZca1SU9Hir7etth6IQl7olKYyNexjNwibAxLAADM4Gy8KGRSCW9wE1WTxqX1D8rNzUV2dnaFg4iottmaGWDzax3RysEMd3OL8dIvpxGemCVaPNyBl7RFiuLBMmPOxteFQT7lu9ezvL6uBf0Tj8ISFXwd5ejqYS12OEREGtE4kY+Li8PgwYNhbGys3qnewsIC5ubm3LWeiOqMlYk+NrzaEf4u5lAUlGDsr2dw5maGKLGU78D7qGJACcp2r+cOvFTf/XoiDiVKAYFulmjnyp/XutDNyxom+jpIURTioog3JBub7MISrAmNBwDM6NUMEgnLuYmoYdE4kR8zZgzu3buH33//HYcPH8aRI0dw5MgRHD16FEeOHKmNGImIHkpuqIu1kzugk7sVcotK8UpQGEKupdd5HNyBl7TBvbxidZkxW3DVHX0dGZ5paQOAu9fXpXWnbyGnsBTNmhijn7ed2OEQEWlM4zXykZGROH/+PJo3b14b8RARacRYXwdBEwMwff0FHIlOw6trzuGH0X7o36puP5iV78D73z7yduwjTw1E8Kl45Bcr0crBDD28mogdTqMy0Nce28OTsfdSKj4a3JKzw7WsoFiJ307EAQCm9/SAlDdZiagB0jiRDwgIQGJiIhN5Iqo3DHRl+HlsO7y9ORy7o1Iwff0FLB7RBsP9HOs0Du7ASw1VXlEpgk/FAwCm9WSZcV3r4dUExnoyJGUVIOK2Am2dzcUOSav9cS4RGXnFcDQ3xNC2DmKHQ0RULRon8r/++itef/11JCUlwcfHB7q6uhUeb926dY0FR0RUVXo6Uix7qS0MdGXYcuE23v4jHPnFSozu4FKncXAHXmqINoYlQFFQAjdrYwxk9UidM9CVoXdLW+yKSMbeqBQm8rWouFSFVSGxAIDXe7hDV/ZU+z4TEYlG40Q+PT0dsbGxmDhxovqcRCKBIAiQSCRQKpU1GiARUVXpyKT49sXWMNKTYe3pW/hwWxTyi0sxpZu72KER1VtFpUr8er/MeGp3d1aQiGSQjx12RSRjz6UUfDCwBasiasmO8CQkKwphbaKPEe2dxQ6HiKjaNE7kJ02aBD8/P2zcuBG2trb8Q0NE9YpUKsHnw1rBSF+GVSE38eXuq8gvVmJWbw/+viJ6iO0Xk5CaXQhbM30851+3y1HoXz2b28BQV4bEzAJcSsqGr5Nc7JC0jlIlYOX92fgp3dxgoCsTOSIiourTOJG/desWdu7cCQ8Pj9qIh4joqUkkEnwwoAVM9HSw+OA1fH/wGvKKS/HBAM5yET1IqRLwc8hNAMCr3dyhr8PERiyGejL0bmGD3VEp2HMphYl8LThwORU30/NgZqCDMXW87IqIqKZpvDCod+/eiIiIqI1YiIhqjEQiwaw+nvh4cEsAwKqQm/h0x2WoVILIkRHVH/supSLubh7MjXTxciATG7EN9C3rtrE3KgWCwN9VNUkQBPx07AYAYELnpjA10H3CM4iI6jeNZ+SHDBmCt99+G1FRUfD19a202d3QoUNrLDh6PEEQkJ+fL3YYRPXay/62kKmK8dnOy1hzPAaK7Fx8MbwVdLjBETVygiBg+f4oqIoL8VJnR6C0CHmlRWKH1agFOhlDV1WMmymFOB+bipb2ZmKHpDVOXE9HZFwaDHVlGNHWBnl5eWKHREQiMDIy0p7qTEFDEonkkYdUKtVorK+++kpo3769YGJiIjRp0kQYNmyYEB0dXeGaefPmCc2bNxeMjIwEc3NzoU+fPsLp06efOPZff/0ltGzZUtDT0xNatmwpbN26tcpxKRQKAYCgUCg0ej91LTc3VwDAgwcPHjx48ODBgwcPHjyecOTm5oqdwj2WJnmoxlNSKpXqkYemO9aHhIRgxowZOH36NA4ePIjS0lL069evwl1SLy8v/Pjjj4iKisLJkyfRtGlT9OvXD+np6Y8cNzQ0FKNGjcK4ceMQERGBcePGYeTIkThz5oymb5eIiIiIiIioXpEIQvUXYRUWFsLAwKDGgklPT4eNjQ1CQkLQvXv3h16TnZ0NuVyOQ4cOoU+fPg+9ZtSoUcjOzsbevXvV5wYMGAALCwts3LjxiXGUv4ZCoYCZWf0taxNYWk+ksRPX0/HGxosoLFGhg5slfhrjD2N9jVcZETVoFxPuYfTqM9CVSXDg7e6wkxuKHRLdl1tUii5fH0FxqQo7ZnaBl62p2CE1eFPXnsPxa3cxor0jPh/mK3Y4RCSi+l5ar0keqvGnV6VSia+++go///wz7ty5g2vXrsHd3R2ffPIJmjZtismTJ1c7cIVCAQCwtLR86OPFxcX45ZdfIJfL0aZNm0eOExoairfffrvCuf79+2Pp0qUPvb6oqAhFRf+uC8zOztYwcnFIJBIYGxuLHQZRgzKgrTHWmpli8ppzOJuUj9c3XULQxEDIDbnxETUewWFXINUzwAvtndDMwVrscOgBxsZALx9nHLxyB0djs+Hnbid2SA3a5WQFTsbnQkffALP6+fJzExFpDY1L6xcsWIDg4GB888030NPTU5/39fXFr7/+Wu1ABEHA7Nmz0bVrV/j4+FR47O+//4aJiQkMDAywZMkSHDx4ENbWj/7gkZqaCltb2wrnbG1tkZqa+tDrFy5cCLlcrj6cnZ2r/T6IqP7r4G6F9VM6QG6oiwsJWXj5l9PIyOUmX9Q4xKTm4NDVNEgkwNQezcQOhx5i0AO719PTWXGsrG/8s60d0NSaSTwRaQ+NE/n//e9/+OWXXzBmzBjIZP/2m23dujWio6OrHcjMmTMRGRn50NL3Xr16ITw8HKdOncKAAQMwcuRIpKWlPXa8/5ZMCILwyDKKuXPnQqFQqI/ExMRqvw8iahjaOJtj02sdYW2ihysp2Rj1y2mkKgrFDouo1v0cUpbYDPSxQ7MmJiJHQw/Tp6Ut9GRSXE/LxfU7OWKH02DdTM/Fnvs3Q6b15E0rItIuGifySUlJ8PDwqHRepVKhpKSkWkHMmjULO3fuxNGjR+Hk5FTpcWNjY3h4eKBjx4747bffoKOjg99+++2R49nZ2VWafU9LS6s0S19OX18fZmZmFQ4i0n4t7c3wx9ROsJcb4EZaLkauCkViJvedIO2VmJmPnRHJAIDpPSv/Laf6wcxAF908yyoP90Q9vJqQnuznkFgIAtCnhQ1b+RGR1tE4kW/VqhVOnDhR6fyff/4JPz8/jcYSBAEzZ87E1q1bceTIEbi5uVX5eQ+uaf+vTp064eDBgxXOHThwAJ07d9YoPiLSfu5NTPDH1E5wsTRCQmY+Rq4KRWx6rthhEdWKX47fhFIloJunNXwc5WKHQ48x0NceALD3EsvrqyMpqwBbLyQBAKb34k0rItI+Vd7sbtKkSVi2bBnmzZuHcePGISkpCSqVClu3bkVMTAz+97//4e+//9boxWfMmIENGzZgx44dMDU1Vc+iy+VyGBoaIi8vDwsWLMDQoUNhb2+PjIwMrFixArdv38aIESPU44wfPx6Ojo5YuHAhAODNN99E9+7dsWjRIgwbNgw7duzAoUOHcPLkSY3iI6LGwdnSCH++3gljfj2DG2m5GLUqFGsnd+AMDmmV9Jwi/HGubOkYZ+Prv74tbaEjlSA6NQex6blcBqGh1cdvolQloKO7Jdq5WogdDhFRjavyjPyaNWtQUFCAIUOGYPPmzdizZw8kEgk+/fRTXL16Fbt27ULfvn01evGVK1dCoVCgZ8+esLe3Vx+bN28GAMhkMkRHR+OFF16Al5cXnn32WaSnp+PEiRNo1aqVepyEhASkpPx7x7pz587YtGkTgoKC0Lp1awQHB2Pz5s3o0KGDRvERUeNha2aAza91RCsHM9zNLcZLv5xGeGKW2GER1Zjf/4lDUakKfi7m6Oj+8O4wVH/IjXTRxaOsvJ6b3mnmbm4RNp1NAADM4Gw8EWmpKveRl0qlSE1NhY2NTW3HJLqG0keeiGqeoqAEE4PCcCEhC8Z6Mvw+IQAd3K3EDovoqWQXlqDLwiPIKSrF6vHt0df74XvGUP3yx9lEvLclEt72ZtjzZjexw2kwvt0fjZ+OxqK1kxw7ZnSp1z2jiYgepEkeqtEaef4iJCJtJzfUxdrJHdDJ3Qp5xUq8EhSGkGvpYodF9FTWht5CTlEpvGxN0KeF9t+Q1xZ9vW0hk0pwJSUb8XfzxA6nQcguLMH/Tt0CULaEhJ9diUhbaZTIe3l5wdLS8rEHEVFDZ6yvg6CJAejdwgaFJSpMWXMW+y5x52hqmApLlAj6Jw5AWQsuqZSJTUNhYayHzs3KKoL28ndQlZTftPKwMUE/Vp4QkRar8mZ3ADB//nzI5dzlloi0n4GuDD+PbYe3N4djd1QKZmy4gMUj2mC4n6PYoRFp5I9zibibWwxHc0M829pB7HBIQ4N87XHi+l3siUphL/QnKChW4veTZTetpvOmFRFpOY0S+ZdeeqlRrJEnIgIAPR0plr3UFga6Mmy5cBtv/xGO/GIlRndwETs0oiopUaqwKuQmAGBqD3foyjTuOksi6+dti4+2RSEqSYHEzHw4WxqJHVK99ce5RGTkFcPJwhBD2vCmFRFptyr/RecaIyJqjHRkUnz7YmuM7+QKQQA+3BaFX0/cFDssoirZFZGMpKwCWJvoYWR7Z7HDoWqwMtFHR/fy8nruXv8oxaUqrAqJBQBM7dGMN62ISOtV+bdcFTe3JyLSOlKpBPOHtsLrPcrKWr/cfRXLD1/n70Wq11QqASuPlSU2E7u4wUBXJnJEVF2DfO0BALujuE7+UXaEJyFZUQhrE32MaOckdjhERLWuyom8SqViWT0RNVoSiQTvD2iOd/p6AQC+P3gNX++NZjJP9dbh6DRcT8uFqb4OxnVyFTscegr9W9lBIgEiErNw+16+2OHUO0qVgJX3Z+Nf7cabVkTUOLDuiIioiiQSCWb18cTHg1sCAFYdv4lPd1yGSsVknuoXQRCw4tgNAMDYTq4wM9AVOSJ6Gk1M9RHYtKwzEDtoVLb/cipupufBzEAHYzryphURNQ5M5ImINDSlmzsWPu8LiQRYe/oW5vwViVKlSuywiNRO38zExYQs6OtIMamLm9jhUA0Y3LqsvH5PFNfJP0gQBPx0tOym1YQubjDR12gfZyKiBouJPBFRNbwc6IKlo9pCJpVgy4XbeGPTRRSXMpmn+qF8Nn5ke2c0MdUXORqqCeXl9RcSspCiKBA7nHoj5Fo6Lidnw0hPhomdm4odDhFRnWEiT0RUTcPaOmLFGH/oyaTYE5WKqWvPobBEKXZY1MhF3VbgxPW7kEkleK27u9jhUA2xNTNAe1cLACyvf9CKo2Vr40cHusDCWE/UWJQqAaGxGdgRnoTQ2AwoueyKiGoRE3kioqfQv5UdVr/SHga6UhyNScfEoLPILSoVOyxqxFaGlM3GD23jwJ7jWmagD8vrHxQWl4mw+EzoyaSY0k3cm1b7LqWg66IjeHn1aby5KRwvrz6NrouOYB9bBhKJTltvsjGRJyJ6Sj28mmDNxECY6Osg9GYGxv12Bor8ErHDokYoNj0Xe+/P1k7r2UzkaKimDfS1AwCcu3UPd7ILRY5GfOVLSF5o5wg7uYFocey7lIJp6y4gRVHx3yRVUYhp6y4wmScSkTbfZGMiT0RUAzq4W2H9lA6QG+riYkIWnl/5D9aevoXMvGKxQ6NGZFVILAQBeKalLbxsTcUOh2qYvdwQ/i7mEISyndobs0tJChyLSYdUAkztLt5NK6VKwPxdV/Cw+b3yc/N3XdGaGUCihkTbb7IxkSciqiFtnM2x6bWOsDbRQ2x6Hj7ZfgmBCw5hYlAYtl9MQh5L7qkWpSgKsO1iEgDOxmuzQb4srweAlcfK1sY/29oBTa2NRYsjLC6zUpLwIAFAiqIQYXGZdRcUETWKm2xM5ImIalBLezPsf6s7Ph7cEr6OcpSqBByNScdbm8PR/stDeGPjRRy+eoc73FONW308DiVKAR3cLNHu/qZopH0G3k/kw+IykZ5TJHI04ohNz8We+zNpYt+0Ssup2hKHql5HRDWjMdxkY7NNIqIaZmWijynd3DGlmzti03OxMzwZO8KTEJ+Rj50RydgZkQxzI10M8rXHsDYOCGhqCalUInbY1IBl5hVjY1gCAGB6Lw+Ro6Ha5GhuiDbO5ohIzML+y6kY29FV7JDq3M/HypeQ2KClvZmosdiYVm1tflWvI6Ka0RhusnFGnoioFjVrYoK3+3rh6Ls9sXNmF0zu6gYbU31k5Zdgw5kEjPrlNLosOoKFe67icrICgtBwS7xIPMGn4lFQokQrBzN097QWOxyqZYN8yja929vA13dWR1LWv0tI6sNNq0A3S9jLDfCoW7ESAPZyAwS6WdZlWESNXmO4ycZEnoioDkgkErR2Mscnz3ojdG4fbJjSAaPaO8PUQAcpikKsOn4Tg5efRN8lx/HD4eu4lZEndsjUQOQVlWLNqXgAwPSeHpBIWN2h7crXyYfGZiAjt3GV168+fhOlKgGd3K3g7yL+EhKZVIJ5Q7wBoFIyX/71vCHekLHqiqhONYabbEzkiYjqmEwqQWcPayx6sTXOffwMVo1rh8G+9tDXkeJGWi4WH7yGHt8ew/Cf/kHQP3ENuuyLat/GsAQoCkrgbm2MAfdnakm7OVsawddRDpUAHLhyR+xw6szd3CJsOlu2hGRGPZiNLzfAxx4rx/pXaoFnJzfAyrH+GOBjL1JkRI1XY7jJxjXyREQi0teRoX8rO/RvZYecwhIcuHwHOyKScfJ6OsITsxCemIUv/r6CLh7WGNrGAf197GBmoCt22FRPFJUqsfrETQDA1B7uDfoDCWlmoK8dopIU2BOVgpcDXcQOp04E/ROHwhIV2jjJ0cXDSuxwKhjgY4++3nYIi8tEWk4hbEzLZvr4/0ki8ZTfZJu/60qFje/s5AaYN8S7wd9kkwhckFlJdnY25HI5FAoFzMzE3USFiBqn9Jwi7I5Mxo6IZFxMyFKf19ORok8LGwxr64CezW1goCsTL0gS3aawBHywNQp2ZgY4/l4v6Omw0K6xiL+bh/+3d+dxUVf7/8BfMyzDNjMIOKwuBG4IivuCKXYVl1T6VbfNLFtumZr1uPVtudnDuvfbT+1XWVnaZlpat+WbpRli9BVBE9wHQRRBx4VNkGVmZJ1hzu8PZGouuKDMyuv5eMyjB2fOnM/7PDoOnzfnfM5JfGsX3KQSHHxlCnr4eto7JKvSNRqQsHwn9E1GfDxvBKYN5uoTIro+LSbhNH9k60weyhl5IiIH1FMuw/yESMxPiMS5qnpszSnBT+pSFFVcwva8cmzPK4dc5o7psSFIjg/HuKhAh/2lRNbRYhL4OLN1Nv7xWyOZxHczfYN8EROqQH6ZDmn5F3DPqF72DsmqNmadhb7JiH4qP0wdFGzvcIjIibhJJRgX5VireLoCE3kiIgfXO9AHi2/rh0WTo3G8TI8tOSX4WV2KUm0jvj9UjO8PFaOnXIZZQ0KRHB+OoRFKbnjWDWzPK4PmYh38fTy6zdJqsjQzLgT5ZTqk5JW5dCLf0NyCz/doAAALJ0fxuE4iIjCRJyJyGhKJBDFhCsSEKfDitIE4eLYGW9Ql+CW3DJX6Jqz//QzW/34GfQJ9kDw0DHPiwxGt8rN32NTF6puNOFaqwwc7iwAA88f3ha+Mv867oxlxoXjr15P4vegitPUGKH1cc/+Mbw+cQ1VdMyJ6eGP2kDB7h0NE5BD4m5+IyAlJpRKMjgzA6MgALJs9GHuKKrFFXYpfj13A2ap6vL+zCO/vLMLgMAXuiA/HrKGhCFV62zts6qRGQwuOl+mQW6LF0WItcou1KKzQw3R5dxsfTzc8PK6vXWMk+4nq6YeBIXKcKNcj7fgF3D0iwt4hdblmowmfXH6EZMGkKLi78RESIiKAiTwRkdPzdJfitoHBuG1gMOqbjUjLv4Ct6lJknKzEsVIdjpXq8H+3H8eYyAAkx4djRmwI/H1ce2MsZ2RoMaGgXH85aa/F0WItCsr1MJra70kbrJAhLtwfj98a6fKbnNHVzYgNxYlyPbbnlrlkIv+TugSl2kb0lMtcsn9EneVMG7eRdXHX+g5w13oicgU1dc1IySvDFnUp9muqzeUebhJM6t+68/2UQcHw9uTO97bWYhIoqriEo8W1yC3RIqdYi+NlOjQbTe3qBvh6YkiEEkMi/DEkXIm4CCWCFV4dtErdUeEFPaauyoSnmxQHX53iUsdTtpgEpr6TgdMX6/CPmQPxxMQoe4dEZFepeWXtjlILdZGj1KhVZ/JQJvIdYCJPRK6mpLYB23JKsUVdivwynbncx7P1HPs58WGYEB0EDy5b7XImk4Cmqg65xa3L448W1+JYqQ4NhpZ2dRVe7hgS4Y+4CCWGhCsxpJc/wpRe3LyQrmrqOxkorLiEVfcOxf8Z5jqz1r8cLcOirw9D6e2B31+6DX7cC4K6sdS8Mjy16TD+M3Fr++2w9sHhTOZdAI+fIyIiC+H+3nhyUhSenBSFwgt6bL2c1J+rrsePR0rw45ESBPh64va4UCTHh2F47x7cGfoGCCFQXNOAnOJac+KeV6KFvsnYrq6vpxtiw5UYEqFE3OXZ9j6BPkzaqdNmxIWi8H8LkZJb7jKJvBACH6a3buj48Pi+TOKpW2sxCbz+c367JB4ABFqT+dd/zsfUmBAus+9G+K1IRNTN9AuW47mkAfj71P5Qn6/FFnUpth0txcVLzdiYfRYbs88i3N8bc+LDkBwfhoEhXJnUESEEynWN5ln2o8Va5JZoUVtvaFfXy0OKwWFKxF1O3IdEKBEZ5McbLuoSM+NC8P7/FiLjZCUuNRldIunddbIS+WU6+Hi64ZHxfe0dDpFd7ddUWyyn/08CQJm2Efs11S55Xjp1zPm/6YmI6IZIJBIM690Dw3r3wNLbByHrdBV+OlKKHcfKUVLbgLW7TmHtrlMYECzHnPgwzBkahl4BPvYO224q9U3ILam9nLi3vi5eampXz8NNgkGhitaEPbx1mXw/lR932yarGRAsxy09fXG6sg7/e/wCkuPD7R3STVtzeTb+gdG9uaEjdXsV+isn8TdSj1wDE3kiIoK7mxS39uuJW/v1xBuGWOw8UYEt6hKkn6hEwQU9/t+OAvy/HQUY0acHkuPDMDMuFEF+MnuHbTU1dc3ILdFa7CDf0WyIm1SC/sFy8yZ0QyP80T/EDzJ3biBItiORSDAzNhQfpBdhe2650yfy+zXVOHCmBp5uUjx+6y32DofI7lTy69vg9HrrkWtgIk9ERBa8PNwwMy4UM+NCoW0wYEdeObbklGDvqSocOluDQ2dr8PrP+ZgQHYTk+DAkDQ5x6qW8+kZDa9JerMXRy/89V13frp5EAkT39DNvRBcX4Y/BYQp4eTBpJ/ubEReCD9KLkF5QgbomI3yd+N9k27Pxd42IQIiSiQnR6MgAhCq9UK5t7PA5eQmAEGXrUXTUfTjvtzwREVmd0tsD94zqhXtG9cIFXSO2HS3DVnUJcoq1yDhZiYyTlfDyyMVfBgUjeWgYJg3o6dCz0fXNRuSX6v54rr1Ei9OVdR3WjQzyNT/THheuxOBwpVP/wYJcW0yoAn0CfXC2qh7pBRWYNSTM3iHdkLyS1u8WqQRYMImz8URA6+qvZbNj8NSmw5AAFsl8204ry2bHcN+VbobHz3WAx88REV2d5mIdtqpLsUVdgtMX/0iEFV7umBkXijnxYRgTGWjXm4pGQwtOlOuRW/zHc+2FFXqYOvitF+7v/cdZ7RFKxIYpofRxnfO4qXtYmXoCa3edwu1xofhw7nB7h3NDFn51CCm55UiOD8N79w2zdzhEDoXnyLs+niN/k5jIExFdHyEEjpXqsEVdgq05pbig+2PztxCFF2YPDUVyfDgGhymseqyaocWEgnL95WfatcgtqUVBuR6Glva/4oIVMsSF+5t3j48LVyLQhZ/3p+4jt1iL2R/sgbeHGw6/OhXeno67OqYjpyovYco7GRACSH32Vp6YQdSBFpPAfk01KvSNUMlbl9NzJt518Bx5IiKyCYlEgthwJWLDlXhpxiDs11Rja04JfjlahnJdIz7drcGnuzW4pacvkoeGY058GCKDfG/qmi0mgaKKSzhaXGtO3PPLdGg2mtrVDfD1vLx7/OWz2iOUCFbwmVtyTbHhCkT08EZxTQMyTlY43QzdR7tOQQhgyqBgJvFEV+AmlfCIOQJg5xn55cuXY/PmzThx4gS8vb0xfvx4rFy5EgMGDAAAGAwGLF26FCkpKTh9+jSUSiWmTJmCFStWICzsys9+bdiwAY888ki78oaGBnh5XfsGjjPyREQ3p8nYgsyTF7FFXYLfjl9Ao+GPJHtohBJz4sMxe0goVNdIqk0mgTNVdcgt0SLnfOtMe16JDg2GlnZ1FV7uGBLh/6fN6JQI9/e26koAIkezPOU4Ps48jdlDw7D6fudZml5S24BJb6bDaBLYvHA8hvfuYe+QiIhszmlm5DMyMrBo0SKMGjUKRqMRr7zyCpKSkpCfnw9fX1/U19fj8OHDePXVVzF06FDU1NTg2WefxZw5c3Dw4MGrtq1QKFBQUGBRdj1JPBER3TyZuxumxgRjakwwLjUZkZZfji3qUuwuvIicYi1yirV445d8jIsKRPLQcEyLDYHCyx3FNQ2tz7OX1OLoeS3ySrTQNxnbte/r6YbB4UoMjbg80x6uRJ9AHybt1O3NiAvFx5mnsfP4BTQaWpzmVIVPM0/DaBIYHxXIJJ6I6Do41DPylZWVUKlUyMjIwMSJEzusc+DAAYwePRpnz55F7969O6yzYcMGPPvss6itrb2hODgjT0RkHVWXmpCSW4Yt6lIcPFtjLvd0k8JX5oaaekO7z8jcpRgcpjBvRDckQonIID8+E0jUASEEJqxMR0ltAz6ZNwJJg0PsHdI1XbzUhIQVO9FkNOGrx8cgITrI3iEREdmF08zI/yetVgsACAi48hmIWq0WEokE/v7+V23r0qVL6NOnD1paWhAfH49//etfGDbMeZaYERG5okA/GeaN64t54/rifHU9fj5aii1HSlFwQY/mehM83CQYFKowH/s2JMIf/VR+cHeT2jt0IqcgkUgwIzYEn+3RICW3zCkS+c/3aNBkNGFoL3+M57O/RETXxWFm5IUQSE5ORk1NDXbv3t1hncbGRkyYMAEDBw7Epk2brthWdnY2ioqKEBcXB51Oh/feew8pKSnIyclBv3792tVvampCU9MfOy3rdDr06tWLM/JERDZSVKFHQ7MJ/UP8HPoceiJncOhsDe5auxd+MnccenWKQ/+b0jYYMGHFTuibjE6zgoCIyFqcckZ+8eLFOHr0KPbs2dPh+waDAffddx9MJhPWrFlz1bbGjh2LsWPHmn9OSEjA8OHDsXr1arz//vvt6i9fvhyvv/76zXWAiIhuWLRKbu8QiFzGsF7+CFF4oVzXiD2FF/GXQcH2DumKNmWfhb7JiP7BfpjiwHESETkah1ir+PTTT2Pr1q1IT09HREREu/cNBgPuueceaDQapKWldXqWXCqVYtSoUSgsLOzw/Zdffhlardb8On/+/A31g4iIiMjepFIJZsS1zmz/kltm52iurKG5Bev2aAAACxOjIeW+F0RE182uibwQAosXL8bmzZuxc+dOREZGtqvTlsQXFhbit99+Q2Bg55+dEkJArVYjNLTj81RlMhkUCoXFi4iIiMhZzYxrvedJy7+AZqPpGrXt45sD51Bd14xeAd6YNcS5zrwnIrI3uy6tX7RoEb7++mts2bIFcrkc5eXlAAClUglvb28YjUbcfffdOHz4MLZt24aWlhZznYCAAHh6egIAHnroIYSHh2P58uUAgNdffx1jx45Fv379oNPp8P7770OtVuPDDz+0T0eJiIiIbGhE7x5QyWWo0Dfh91MXMXmAyt4hWWg2mvBJ5mkAwJMTo7ihJRFRJ9n1W3Pt2rXQarVITExEaGio+fXtt98CAIqLi7F161YUFxcjPj7eos7evXvN7Zw7dw5lZX8sHautrcUTTzyBQYMGISkpCSUlJcjMzMTo0aNt3kciIiIiW5NKJZge27q8PuWo4y2v/+lICcq0jegpl+HuEe0fqyQioqtzmF3rHQnPkSciIiJnl326Cvd9kg2ltwcOLp0CDweZ9W4xCUx5JwOai3X4x8yBeGJilL1DIiJyCJ3JQx3jG52IiIiIutSovgEI8vOEtsGArFNV9g7HbHteGTQX66D09sADY/rYOxwiIqfERJ6IiIjIBblJJZh2+Vz27XmOsbxeCIEP008BAOaP7ws/mcOchExE5FSYyBMRERG5qNsv716/49gFGFvsv3v9roJKHC/TwcfTDfPH97V3OERETouJPBEREZGLGh0ZgABfT1TXNWOfptre4eDD9CIAwNwxvdHD19PO0RAROS8m8kREREQuyt1NimmDgwEAKbn2XV6/X1ONg2dr4OkmxeO33mLXWIiInB0TeSIiIiIXNtO8vL4cLSb7HVbUNht/98gIBCu87BYHEZErYCJPRERE5MLG3hIIfx8PXLzUjP12Wl6fV6JFxslKSCXAAh43R0R005jIExEREbkwDzcpkmJal9fba/f6NbtaZ+PnDA1D70Afu8RARORKmMgTERERubgZl5fXb8+z/fL6oopL2J5XDgB4KjHaptcmInJVTOSJiIiIXFxCVBAUXu6o1Dfh0Nkam177o4xTEAKYGhOMASFym16biMhVMZEnIiIicnGe7lJMjQkBYNvd64tr6vHTkRIAwMJEPhtPRNRVmMgTERERdQMz41oT+dS8cphstLz+08zTMJoEEqIDMax3D5tck4ioO2AiT0RERNQNTOgXBLnMHeW6Rhw5b/3l9ZX6Jnxz4DwAYBGfjSci6lJM5ImIiIi6AZm7G6Zc3r0+Jbfc6tf7/HcNmowmxPfyx7ioQKtfj4ioO2EiT0RE5GRaTAJZp6qwRV2CrFNVNt+FnJzXjNjW5fXbc8sghPXGjbbBgI1ZZwG0PhsvkUisdi0iou7I3d4BEBER0fVLzSvD6z/no0zbaC4LVXph2ewYTI8NtWNk5Awm9u8JX083lGoboT5fa7Xn1jdmncGlJiP6B/thyqBgq1yDiKg744w8ERGRk0jNK8NTmw5bJPEAUK5txFObDiM1z3a7kZNz8vJww18uJ9ZtZ7t3tfpmIz7//QwAYGFiNKRSzsYTEXU1JvJEREROoMUk8PrP+ehoMXRb2es/53OZPV1T2+71KVZaXv/N/vOormtGrwBvzBrCVSJERNbARJ6IiMgJ7NdUt5uJ/zMBoEzbiP2aatsFRU4pcYAKPp5uKK5pQG6Jtkvbbjaa8EnmaQDAgklRcHfjrSYRkTXw25WIiMgJVOivnMTfSD3qvrw83DB5oApA1+9e/+ORYpTrGqGSy3DX8IgubZuIiP7ARJ6IiMgJqOReXVqPureZlzdG3J7XdcvrW0wCH2W0zsb/7dZb4OXh1iXtEhFRe0zkiYiInMDoyACEKr1wpW3DJGjdvX50ZIAtwyInNXlgT3h5SHG2qh7HSnVd0ub2vDJoLtZB6e2BB8b07pI2iYioY0zkiYiInICbVIJls2MAoF0y3/bzstkxcOMO4XQdfDzdMXlA6/L67V1w2oEQAh+mnwIAPJLQF74ynnBMRGRNTOSJiIicxPTYUKx9cDhClJbL50OUXlj74HCeI0+dMiOudbyk5Jbf9PL6XQWVOF6mg4+nG+aP79sF0RER0dXwz6VEREROZHpsKKbGhGC/phoV+kao5K3L6TkTT51120AVPN2l0FysQ8EFPQaGKG6oHSEEPkgvAgA8OLYP/H08uzJMIiLqABN5IiIiJ+MmlWBcVKC9wyAn5ydzR2L/nvg1/wJSjpbdcCK/X1ONQ2dr4OkmxeMTIrs4SiIi6giX1hMRERF1UzPbltfn3fgxdB/uan02/q8jI6BS8NQEIiJbYCJPRERE1E3dNkgFTzcpiiouofCCvtOfzy3WIvNkJdykEjw5McoKERIRUUeYyBMRERF1UwovD0zsHwQA+CW387vXr9nV+mz8nKFh6B3o06WxERHRlTGRJyIiIurGZlw+7WB7bueW1xdV6JF6rPUzTyVyNp6IyJaYyBMRERF1Y1NiguHhJkHBBT2KKi5d9+fW7joNIYCkmGD0D5ZbMUIiIvpPTOSJiIiIujGltwcmRLcur99+ncvrz1fX4yd1CQBg4eRoq8VGREQdYyJPRERE1M3N6OTu9Z/uPo0Wk0BCdCDie/lbMTIiIuoIE3kiIiKibi4pJhjuUgmOl+mguVh31boV+kZ8c+A8AGBRImfjiYjsgYk8ERERUTfn7+OJcVGBAICUayyv/3zPGTQbTYjv5W/+DBER2RYTeSIiIiLC7ZeX12/Pu3Iir603YFP2WQDAosnRkEgkNomNiIgsMZEnIiIiIiQNDoGbVIK8Eh3OVdV3WOfLrDO41GTEgGA5/jJQZeMIiYioDRN5IiIiIkKAryfG3hIAoONZ+fpmIz7/XQMAWDg5ClIpZ+OJiOyFiTwRERERAQBmtu1e38Fz8t/sP4+aegN6B/iYl+ETEZF92DWRX758OUaNGgW5XA6VSoU77rgDBQUF5vcNBgNefPFFxMXFwdfXF2FhYXjooYdQWlp6zbZ/+OEHxMTEQCaTISYmBj/++KM1u0JERETk9JJiQiCVADnFWhTX/LG8vtlowieZpwEACyZFwd2Nc0FERPZk12/hjIwMLFq0CNnZ2UhLS4PRaERSUhLq6lqPPamvr8fhw4fx6quv4vDhw9i8eTNOnjyJOXPmXLXdrKws3HvvvZg3bx5ycnIwb9483HPPPdi3b58tukVERETklHrKZRgd2bq8PvVPZ8r/eKQY5bpGqOQy3DUi3F7hERHRZRIhhLB3EG0qKyuhUqmQkZGBiRMndljnwIEDGD16NM6ePYvevXt3WOfee++FTqfD9u3bzWXTp09Hjx498O9///uaceh0OiiVSmi1WigUihvrDBEREZET2ph1Bq9uOYZhvf3x48IEtJgE/vL2LpypqsfS2wfh8VtvsXeIREQuqTN5qEOti9JqtQCAgICAq9aRSCTw9/e/Yp2srCwkJSVZlE2bNg179+7tsH5TUxN0Op3Fi4iIiKg7mjY4BBIJcORcLUprG5CSW4YzVfXw9/HA/aM7nkQhIiLbcphEXgiBv//975gwYQJiY2M7rNPY2IiXXnoJDzzwwFX/QlFeXo7g4GCLsuDgYJSXl3dYf/ny5VAqleZXr169brwjRERERE5MpfDCqD5tu9eX48P0IgDAI+Mj4Stzt2doRER0mcMk8osXL8bRo0evuPTdYDDgvvvug8lkwpo1a67ZnkRieSSKEKJdWZuXX34ZWq3W/Dp//nznO0BERETkImbEhQAAVu8sxIlyPXw93fDw+D52joqIiNo4RCL/9NNPY+vWrUhPT0dERES79w0GA+655x5oNBqkpaVd83mBkJCQdrPvFRUV7Wbp28hkMigUCosXERERUXc1I7b1eLnaegMA4MGxfeDv42nPkIiI6E/smsgLIbB48WJs3rwZO3fuRGRkZLs6bUl8YWEhfvvtNwQGBl6z3XHjxiEtLc2i7Ndff8X48eO7LHYiIiIiVxWi9MKIPj0AAJ7uUjw2of09GhER2Y9dH3RatGgRvv76a2zZsgVyudw8i65UKuHt7Q2j0Yi7774bhw8fxrZt29DS0mKuExAQAE/P1r8MP/TQQwgPD8fy5csBAM888wwmTpyIlStXIjk5GVu2bMFvv/2GPXv22KejRERERE7mnpEROHS2BvPG9oFK4WXvcIiI6E/sevzclZ5ZX79+PebPn48zZ850OEsPAOnp6UhMTAQAJCYmom/fvtiwYYP5/f/5n//B0qVLcfr0aURFReGNN97AnXfeeV1x8fg5IiIi6u6EEDh54RKiVX5wk3Z8z0ZERF2nM3moQ50j7yiYyBMREREREZEtOe058kRERERERER0dUzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JEnoiIiIiIiMiJMJEnIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIifCRJ6IiIiIiIjIiTCRJyIiIiIiInIiTOSJiIiIiIiInAgTeSIiIiIiIiInwkSeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJyIu70DcERCCACATqezcyRERERERETUHbTln2356NUwke+AXq8HAPTq1cvOkRAREREREVF3otfroVQqr1pHIq4n3e9mTCYTSktLIZfLIZFI7B3OVel0OvTq1Qvnz5+HQqGwdzjkgjjGyBY4zsgWOM7I2jjGyBY4zlyXEAJ6vR5hYWGQSq/+FDxn5DsglUoRERFh7zA6RaFQ8B8yWRXHGNkCxxnZAscZWRvHGNkCx5lrutZMfBtudkdERERERETkRJjIExERERERETkRJvJOTiaTYdmyZZDJZPYOhVwUxxjZAscZ2QLHGVkbxxjZAscZAdzsjoiIiIiIiMipcEaeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JE3s6WL1+OUaNGQS6XQ6VS4Y477kBBQYFFHSEEXnvtNYSFhcHb2xuJiYk4duyYRZ1PPvkEiYmJUCgUkEgkqK2tbXetmpoazJs3D0qlEkqlEvPmzeuwHrkeW42zM2fO4LHHHkNkZCS8vb0RFRWFZcuWobm52dpdJDuz5XdZm6amJsTHx0MikUCtVluhV+RobD3OfvnlF4wZMwbe3t4ICgrCnXfeaa2ukQOx5Tg7efIkkpOTERQUBIVCgYSEBKSnp1uze+QAumKMVVdX4+mnn8aAAQPg4+OD3r17Y8mSJdBqtRbt8P7fdTGRt7OMjAwsWrQI2dnZSEtLg9FoRFJSEurq6sx13nzzTbzzzjv44IMPcODAAYSEhGDq1KnQ6/XmOvX19Zg+fTr+8Y9/XPFaDzzwANRqNVJTU5Gamgq1Wo158+ZZtX/kGGw1zk6cOAGTyYSPP/4Yx44dw6pVq/DRRx9ddVySa7Dld1mbF154AWFhYVbpDzkmW46zH374AfPmzcMjjzyCnJwc/P7773jggQes2j9yDLYcZ7fffjuMRiN27tyJQ4cOIT4+HrNmzUJ5eblV+0j21RVjrLS0FKWlpXjrrbeQm5uLDRs2IDU1FY899pjFtXj/78IEOZSKigoBQGRkZAghhDCZTCIkJESsWLHCXKexsVEolUrx0Ucftft8enq6ACBqamosyvPz8wUAkZ2dbS7LysoSAMSJEyes0xlyWNYaZx158803RWRkZJfFTs7B2mMsJSVFDBw4UBw7dkwAEEeOHLFGN8jBWWucGQwGER4eLj777DOrxk/OwVrjrLKyUgAQmZmZ5jKdTicAiN9++806nSGHdLNjrM13330nPD09hcFgEELw/t/VcUbewbQthwkICAAAaDQalJeXIykpyVxHJpNh0qRJ2Lt373W3m5WVBaVSiTFjxpjLxo4dC6VS2al2yDVYa5xd6Vpt16Huw5pj7MKFC/jb3/6GjRs3wsfHp+uCJqdjrXF2+PBhlJSUQCqVYtiwYQgNDcWMGTPaLZ2m7sFa4ywwMBCDBg3Cl19+ibq6OhiNRnz88ccIDg7GiBEjurYT5NC6aoxptVooFAq4u7sD4P2/q2Mi70CEEPj73/+OCRMmIDY2FgDMS6uCg4Mt6gYHB3dq2VV5eTlUKlW7cpVKxeVb3Yw1x9l/OnXqFFavXo0FCxbceMDkdKw5xoQQmD9/PhYsWICRI0d2XdDkdKw5zk6fPg0AeO2117B06VJs27YNPXr0wKRJk1BdXd1FPSBnYM1xJpFIkJaWhiNHjkAul8PLywurVq1Camoq/P39u6wP5Ni6aoxVVVXhX//6F5588klzGe//XZu7vQOgPyxevBhHjx7Fnj172r0nkUgsfhZCtCu7lo7q30g75NysPc7alJaWYvr06fjrX/+Kxx9//IbaIOdkzTG2evVq6HQ6vPzyyzcdJzk3a44zk8kEAHjllVdw1113AQDWr1+PiIgIfP/99xY3yuTarDnOhBBYuHAhVCoVdu/eDW9vb3z22WeYNWsWDhw4gNDQ0JuOnxxfV4wxnU6H22+/HTExMVi2bNlV27haO+RcOCPvIJ5++mls3boV6enpiIiIMJeHhIQAQLu/mlVUVLT7K93VhISE4MKFC+3KKysrO9UOOTdrj7M2paWlmDx5MsaNG4dPPvnk5oImp2LtMbZz505kZ2dDJpPB3d0d0dHRAICRI0fi4Ycf7oIekDOw9jhrS6BiYmLMZTKZDLfccgvOnTt3M6GTE7HF99m2bdvwzTffICEhAcOHD8eaNWvg7e2NL774oms6QQ6tK8aYXq/H9OnT4efnhx9//BEeHh4W7fD+33UxkbczIQQWL16MzZs3Y+fOnYiMjLR4PzIyEiEhIUhLSzOXNTc3IyMjA+PHj7/u64wbNw5arRb79+83l+3btw9arbZT7ZBzstU4A4CSkhIkJiZi+PDhWL9+PaRSfs10B7YaY++//z5ycnKgVquhVquRkpICAPj222/xxhtvdE1nyGHZapyNGDECMpnM4jgog8GAM2fOoE+fPjffEXJothpn9fX1ANDu96RUKjWvCiHX1FVjTKfTISkpCZ6enti6dSu8vLws2uH9v4uz5c561N5TTz0llEql2LVrlygrKzO/6uvrzXVWrFghlEql2Lx5s8jNzRX333+/CA0NFTqdzlynrKxMHDlyRHz66afmHVCPHDkiqqqqzHWmT58uhgwZIrKyskRWVpaIi4sTs2bNsml/yT5sNc5KSkpEdHS0uO2220RxcbHFtci12fK77M80Gg13re9GbDnOnnnmGREeHi527NghTpw4IR577DGhUqlEdXW1TftMtmercVZZWSkCAwPFnXfeKdRqtSgoKBDPP/+88PDwEGq12ub9JtvpijGm0+nEmDFjRFxcnCgqKrJox2g0mtvh/b/rYiJvZwA6fK1fv95cx2QyiWXLlomQkBAhk8nExIkTRW5urkU7y5Ytu2Y7VVVVYu7cuUIulwu5XC7mzp17XceHkfOz1Thbv379Fa9Frs2W32V/xkS+e7HlOGtubhbPPfecUKlUQi6XiylTpoi8vDwb9ZTsyZbj7MCBAyIpKUkEBAQIuVwuxo4dK1JSUmzUU7KXrhhjbccadvTSaDTmerz/d10SIYTo/Dw+EREREREREdkDH14lIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIifCRJ6IiIiIiIjIiTCRJyIiIiIiInIiTOSJiIiIiIiInAgTeSIiIiIiIiInwkSeiIiIiIiIyIkwkSciInJwVVVVUKlUOHPmjE2vu2HDBvj7+1ul7W3btmHYsGEwmUxWaZ+IiMiVMZEnIiJycMuXL8fs2bPRt2/fdu8lJSXBzc0N2dnZtg/sJsyaNQsSiQRff/31Fes89thjiIuLQ3Nzs0V5SkoKPDw8cPDgQWuHSURE5JCYyBMRETmwhoYGrFu3Do8//ni7986dO4esrCwsXrwY69ats0N0N8ZgMAAAHnnkEaxevfqK9d59913o9XosW7bMXFZbW4snnngCr7zyCkaOHGm12IiIiBwZE3kiIiIHtn37dri7u2PcuHHt3lu/fj1mzZqFp556Ct9++y3q6uos3k9MTMSSJUvwwgsvICAgACEhIXjttdcs6rQlxsHBwfDy8kJsbCy2bdtmUWfHjh0YNGgQ/Pz8MH36dJSVlZnfM5lM+Oc//4mIiAjIZDLEx8cjNTXV/P6ZM2cgkUjw3XffITExEV5eXti0aRMAYM6cOdi/fz9Onz7dYd/lcjk2bNiAt99+G/v27QMAPPvsswgNDcXSpUtRUlKCe++9Fz169EBgYCCSk5MtHj84cOAApk6diqCgICiVSkyaNAmHDx+2uIZEIsFHH32E5ORk+Pr64r//+7+v8H+CiIjIcTCRJyIicmCZmZkdzjwLIbB+/Xo8+OCDGDhwIPr374/vvvuuXb0vvvgCvr6+2LdvH958803885//RFpaGoDWJHzGjBnYu3cvNm3ahPz8fKxYsQJubm7mz9fX1+Ott97Cxo0bkZmZiXPnzuH55583v//ee+/h7bffxltvvYWjR49i2rRpmDNnDgoLCy3iePHFF7FkyRIcP34c06ZNAwD06dMHKpUKu3fvvmL/ExMTsXDhQjz88MP4/vvv8d133+HLL79Ec3MzJk+eDD8/P2RmZmLPnj3mPzS0LcXX6/V4+OGHsXv3bmRnZ6Nfv36YOXMm9Hq9xTWWLVuG5ORk5Obm4tFHH73W/xIiIiL7E0REROSwkpOTxaOPPtqu/NdffxU9e/YUBoNBCCHEqlWrREJCgkWdSZMmiQkTJliUjRo1Srz44otCCCF27NghpFKpKCgo6PDa69evFwBEUVGRuezDDz8UwcHB5p/DwsLEG2+80e4aCxcuFEIIodFoBADx7rvvdniNYcOGiddee63D99rU19eLgQMHCqlUKlatWiWEEGLdunViwIABwmQymes1NTUJb29vsWPHjg7bMRqNQi6Xi59//tlcBkA8++yzV70+ERGRo+GMPBERkQNraGiAl5dXu/J169bh3nvvhbu7OwDg/vvvx759+1BQUGBRb8iQIRY/h4aGoqKiAgCgVqsRERGB/v37X/H6Pj4+iIqK6vDzOp0OpaWlSEhIsPhMQkICjh8/blF2pefZvb29UV9ff8Xrt9V57rnn4OPjg2eeeQYAcOjQIRQVFUEul8PPzw9+fn4ICAhAY2MjTp06BQCoqKjAggUL0L9/fyiVSiiVSly6dAnnzp27rtiIiIgclbu9AyAiIqIrCwoKQk1NjUVZdXU1fvrpJxgMBqxdu9Zc3tLSgs8//xwrV640l3l4eFh8ViKRmI988/b2vub1O/q8EKJd2Z8JIdqV+fr6dth+dXU1evbsec043N3d4ebmZm7XZDJhxIgR+Oqrr9rVbWtv/vz5qKysxLvvvos+ffpAJpNh3Lhx7XbBv1JsREREjooz8kRERA5s2LBhyM/Ptyj76quvEBERgZycHKjVavPr3XffxRdffAGj0XhdbQ8ZMgTFxcU4efLkDcWmUCgQFhaGPXv2WJTv3bsXgwYNuubn22bPhw0b1ulrDx8+HIWFhVCpVIiOjrZ4KZVKAMDu3buxZMkSzJw5E4MHD4ZMJsPFixc7fS0iIiJHw0SeiIjIgU2bNg3Hjh2zmJVft24d7r77bsTGxlq8Hn30UdTW1uKXX365rrYnTZqEiRMn4q677kJaWho0Gg22b99usev8tfzXf/0XVq5ciW+//RYFBQV46aWXoFarzUvgryY7O9s8S95Zc+fORVBQEJKTk7F7925oNBpkZGTgmWeeQXFxMQAgOjoaGzduxPHjx7Fv3z7MnTv3ulYhEBEROTom8kRERA4sLi4OI0eONO9If+jQIeTk5OCuu+5qV1culyMpKalTZ8r/8MMPGDVqFO6//37ExMTghRdeQEtLy3V/fsmSJXjuuefw3HPPIS4uDqmpqdi6dSv69et3zc/++9//xty5c+Hj43Pd12vj4+ODzMxM9O7dG3feeScGDRqERx99FA0NDVAoFACAzz//HDU1NRg2bBjmzZuHJUuWQKVSdfpaREREjkYi/vNBNyIiInIoKSkpeP7555GXlwep1DX+Bl9ZWYmBAwfi4MGDiIyMtHc4REREToWb3RERETm4mTNnorCwECUlJejVq5e9w+kSGo0Ga9asYRJPRER0AzgjT0REREREROREXGN9HhEREREREVE3wUSeiIiIiIiIyIkwkSciIiIiIiJyIkzkiYiIiIiIiJwIE3kiIiIiIiIiJ8JEnoiIiIiIiMiJMJEnIiIiIiIiciJM5ImIiIiIiIicCBN5IiIiIiIiIify/wFoDoMGiENzlwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1731,14 +1691,22 @@ } ], "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", + "\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, test_y_torch.numpy(), label=\"Ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] @@ -1760,7 +1728,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.9.16" }, "orig_nbformat": 4 }, diff --git a/workflow/pred_temperature_ridge.ipynb b/workflow/pred_temperature_ridge.ipynb index a129dc2..8221d4f 100644 --- a/workflow/pred_temperature_ridge.ipynb +++ b/workflow/pred_temperature_ridge.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +50,9 @@ "from s2spy import RGDR\n", "from sklearn.linear_model import Ridge\n", "from sklearn.metrics import mean_squared_error\n", - "from sklearn.model_selection import KFold" + "from sklearn.model_selection import KFold\n", + "# for reproducibility \n", + "np.random.seed(1)" ] }, { @@ -63,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ @@ -78,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -102,7 +104,7 @@ ")" ] }, - "execution_count": 3, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -123,17 +125,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", - " )" + " )" ] }, - "execution_count": 4, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -151,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -182,12 +184,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxZ0lEQVR4nO3dd1xT1/sH8E+AsJcoiCiKAxW3OFHrVtyLqq20rrr3qtZaB2pdP3frrNZRt9bRarVVFAeuioqzWgdOhkqZQgjk/P7gy9UIKgGSXPTzfr18tcm9uc95DpeQJ/eccxVCCAEiIiIiIiIjMzF2A4iIiIiIiAAWJ0REREREJBMsToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGTBzNgNyC80Gg2ePn0KOzs7KBQKYzeHiIiIPmBCCMTHx8PNzQ0mJvwumT4eLE6y6enTp3B3dzd2M4iIiOgj8ujRIxQrVszYzSAyGBYn2WRnZwcg/U3C3t7eyK0hIiKiD1lcXBzc3d2lzx9EHwsWJ9mUMZTL3t6exQkREREZBIeS08eGgxiJiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgat1ERGRFiEEVCpVjl9vYWGR7RWGDBUrv8QxZCxD/Zw+tHx0iZWbOMnJyTl6HVF+x+KEiIi0qFQqdO3aNcev37lzJywtLWUVK7/EMWQsQ/2cPrR8dImVmzhqtTpHryPK71icEBFRli4+idf5Nd5Fc3bDuNBnun8Qq+qs1Pk1hsopJ/kA8s4J0D2vDy0fIGc54dF53V/jWl331xB9AFicEBHRW/kMmQ1TM/P37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRxD5ZTdfID8kxOQvbw+tHyA3Oe0aUB1WCjfP9VXpdbgi9WXchyHKL9jcUJERG9lamYOU/PsfcDOLROlBczM3z9UJjWXcQyVU3bzAfJPTkD28vrQ8gFyn5OF0gSWStNcHoXow8fVuoiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwGEBGRfB2fPxTJcdFQKEygtLKBd89v4OThhfiIBzi7chJU8TFQWtuiVt8puY51eHJ3JMc+/18sW9QdMhcFy1RB7JO7OPl/g5EcFw1zG3vUG7Eo17GOzR6AJCnWq7xCNszGk4tBSHz+FC0CNuc6zqGJXZD0X2SmnM4un4CHZw8iIfIROi4/AQd3z1zFedvP6fV8Wn2/E/ZuJXMVR2jScGxmb8Q+vgNTc0tYOTqj3vAFsC9aCs/+CcHZFd8gTa1CmioJUJgAzmVzHOttP6PXzz0zSxuYWVoDsMtxHEOdd+0WnUdUfApMFArYWZphqX9FVC/hgH8jEtBrTSieJ6TAwcoMq3pXzlUcovzOqFdOZs+ejVq1asHOzg4uLi7o1KkTbt26pbVPcnIyhg4dioIFC8LW1hZ+fn6IjIyUtoeGhuLzzz+Hu7s7rKys4OXlhSVLlmgdIzw8HD169EDZsmVhYmKCUaNGGSI9IqJ8z2fIHLSZsxutZ+9CudY9cW7VdwCA82uno3STT9FuwX54teuL82sCch2r0YTV6LwyGJ1WnERFv6E4MX8IAOD0ktEo16Y3Pv35Aip3G4ngxSNzHav+iPlZ5uVeuwWaT9kAm0JuuY4BAE0mrcsyJ49POqDtgoOwLeyeJ3He9nPK63wAwLPVl/Bb+zc6rzyF4j6tcWrxCABA8JJRqPrZaHRafgKt5v2G+PAwxMfH5zjO235Gr5975dv0RMzDW+850rsZ6rzbNLA6rsxohMvTG2KMb0n0XnsZADBww1UMaFwct+c0wYQ2pdF/3dVcxSHK74xanBw/fhxDhw7F2bNncfjwYajVarRs2RKJiYnSPqNHj8bvv/+OnTt34vjx43j69Cm6dOkibQ8JCYGLiws2bdqE69evY9KkSZg4cSJ+/PFHaR+VSgVnZ2d89913qFq1qkFzJCLKz8ytX30jrX4ZD0CB5NgXiL53HR4N2gFI/wCcFB2JVFVS7mLZOryKlRgHhUKBpJhneP7vZZRu1g0A4NGgAxKfP4U6OfFth8leLBv7V7H+lxcAuHjVhHVB11wd+3UWWeQEAK6V68PGuWiexcnq5wTkfT4KE1MUq9lMysPFqxYSIh/+b6MCqoQ4AEBq8ksoFAoolcocx8rqZ/TmuVesZjOkpSRrfW7QOY6BzjtH61d9EZuUCgUUiIpT4UJYLL7wST8X/GoWwZP/kpCoSs1xHKL8zqjDug4dOqT1eP369XBxcUFISAgaNmyI2NhYrF27Flu2bEHTpk0BAOvWrYOXlxfOnj2LunXrom/fvlrHKFWqFM6cOYPdu3dj2LBhAAAPDw/pasrPP/9sgMyIiD4cZ1Z8i6gb5wEAjb5ejpfREbAq4AwT0/Q/IQqFAtYFCyMtJTnXsY7PG4SI0JMAgBYzdyDx2RNYORXWimXjXBRpqtzHejMvfXkzJ30xVD6vu753JYr7tAEAfDJ2GY5M64GLG2YiOfYFHNw9YWlpmavjZ+fcMzW3RFJS7gpjQ513PX+6hGM3XwAA/hhdG4+ik1DE0QJmpiZSnGJOVkhK0cA8V5GI8i9ZzTmJjY0FADg5OQFIvyqiVqvRvHlzaZ/y5cujePHiOHPmDOrWrfvW42QcI6dUKhVUKpX0OC4uLlfHIyLKr3wGzwIA3DuxD5e3LUKVrsP0FqvR+JUAgH8Pb8WFtdPg3WuS3mK9mVfj8Sv0EufNnFrO3KmXOIbKJ0Po1gWIe3ofreekz8W4sn0RavaZgtJNu+K/h7fw29DGiHcvmKsYhjr3DHXebexfHQCw4dQjTNh5EzO6lNNLHKL8TDardWk0GowaNQr169dHpUqVAAAREREwNzeHo6Oj1r6FCxdGRERElsc5ffo0tm/fjgEDBuSqPbNnz4aDg4P0z909b8YFExHlV6UadkTUjb9h5VQYSf89gyYtfeiJEAIvX0TC1Dx335K/zrPF5wgPPQWbQm5Iio7UipX47AlMLfIuVkZeqviYPDtmVjJySo6L1mscQ+RzdecPCAvej5Yzd8LM0hrJsS/w4PQBlG7aFQBg51oC5rYOiI7Om1zfde6lpSTDysoqT+IY6rzr1cAdx/55gWIFrBAeo0JqmkaK8zg6CVbmsvl4RmRwsjn7hw4dimvXrmHbtm05Psa1a9fQsWNHTJ06FS1btsxVeyZOnIjY2Fjp36NHj3J1PCKi/EaTmoqk/55Jjx9fCIS5rQMs7QvCqaQXwk7tBwA8On8YVk4uMLPI+QdETaoaL1+8+tLpwekDsLB3gqWjMwqWqYK7genDocJO/QabQkWgtLTJcayUl/F4+V+U9Dgjr9fnHuSFlIRYvHwRLj3OyMnCrkCexnnbzymv88lwY+9K3Av6Fa1m75Hm1JjbOsLMwhpPL58AACTHvkBKQizs7e3fdai3etvP6M1z7/GFQJgqLWBjk7PzwVDnnTpNg6cxr4aE7b0YgYK25nCxN4d3CXtsOvMEAPDrhXAULWAJGwtZDWwhMihZnP3Dhg3D/v37ceLECRQrVkx63tXVFSkpKYiJidG6ehIZGQlXV+0Jfjdu3ECzZs0wYMAAfPfdd7luk4WFBSwsLHJ9HCKi/EqjSUXwD2ORpk6BwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgdLKBrX6TsW1PTkfRqRJS8Wx7/tAo1YBChNYOhRCi+nboFAoUH/EIpxYMBSh2xZCaW2HeiMX4/KmuTmOpX6ZgDMrJiItJTlTXufXBuDppRNIjn2BEwuGIzX5JVC0+fsPmoWUl3E4MXcQ0lKSMuUUvGQUHp0/jKToSPz5rR+UVjZwLJ6zIT7v+jm9ns+xuQOhtLSGfdHSOYoDAKmqZFxYGwC7Ih44OL49AMBEaYEOS4+gyaR1+PunKdCkpUKTmgI71xIoUCBnhdi7fkavn3tmltZwLJHzoVGGOu/UaQLdll+ESq2BiQngbGeB/aNqQaFQYFWvKui99jJm7b8DeyszrOpVBQH7buc4J6L8zqjFiRACw4cPx549exAUFISSJbXXX69RowaUSiUCAwPh5+cHALh16xYePnwIHx8fab/r16+jadOm6NWrF77//nuD5kBE9KEyM7dE43HLYGqe+Ysae7eSaPnafUDSUlSZ9tEploUVWszYDrMshoY5uHui/eK/pMepuZx4b1OoCHxnbM1yW+2vpkr/n5aiwqmlY3Mcx9bFHR1+CMxyW/2Ri7Uep6Yk49jM3jmK866f0+v5ALnPyczCEj1/D8/y51TUuzGKegcByF0+wLt/Rq+fe7nPxzDnnbW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHIfoQGLU4GTp0KLZs2YJ9+/bBzs5Omkfi4OAAKysrODg44KuvvsKYMWPg5OQEe3t7DB8+HD4+PtJk+GvXrqFp06bw9fXFmDFjpGOYmprC2dlZinX58mUAQEJCAp49e4bLly/D3NwcFSpUMGzSRERERESUJaMWJytWpA8BaNy4sdbz69atQ+/evQEAixYtgomJCfz8/KBSqeDr64vly18tkbhr1y48e/YMmzZtwqZNm6TnS5QogbCwMOlx9erVpf8PCQnBli1bMu1DRERERETGY/RhXe9jaWmJZcuWYdmyZVlunzZtGqZNm5YnsYiIiIiIyHhks1oXERERERF93FicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWTAzdgOIiEi+0lJT8nS/d9GoVUjN5n65YaicsptPxr65Ibef04eWT8Z+uaFSa/J0P6IPFYsTIiJ6qzPLJxos1vG5Aw0Sx1A5GSof4MP7OX1o+QDAF6svGSQOUX7H4oSIiLLkXdTOYLGqOisNEsdQORkqH+DD+zl9aPkAANxr6/4atTrv20GUDyiEEMLYjcgP4uLi4ODggNjYWNjb2xu7OUREeiOEgEqV8yEsFhYWUCgUsoqVX+IYMpahfk4fWj66xMpNnLi4OBQuXJifO+ijwysnRESkRaFQwNLS8oOK9aHF+RBjfWj55DZOSkru59MQ5UdcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJgk7FSWpqKjZu3IjIyEh9tYeIiIiIiD5SOhUnZmZmGDRoEJKTk/XVHiIiIiIi+kjpPKyrdu3auHz5sh6aQkREREREHzMzXV8wZMgQjBkzBo8ePUKNGjVgY2Ojtb1KlSp51jiij50QAiqVKsevt7CwgEKh+GDiGDIWc9J/HEPGMmRORESUcwohhNDlBSYmmS+2KBQKCCGgUCiQlpaWZ42Tk7i4ODg4OCA2Nhb29vbGbg59JJKTk9G1a9ccv37nzp2wtLT8YOIYMhZz0n8cQ8YyZE5EeYGfO+hjpfOVk/v37+ujHUT0DhefxOv8Gu+idjq/JvSZWufXVHVW6vyanOQDMKcMcs4pJ/kAhssJj87r/hr32rq/hoiIckTn4qREiRL6aAcRvYfPkNkwNTN/735pqSk4s3xijuM0mrAKJkqL9+6nUatwfO7AHMfJbj4Ac8qK3HLKbT6A4XLaNKA6LJTvn3KpUmvwxepLOY5DRES607k4yXDjxg08fPgQKSkpWs936NAh140iosxMzcxhav7+D265ZaK0gJn5+4evpOYyjqHyAZhTbnyIOVkoTWCpNM3lUYiISB90Lk7u3buHzp074+rVq9JcEwDSRMEPdc4JERERERHpl85LCY8cORIlS5ZEVFQUrK2tcf36dZw4cQI1a9ZEUFCQHppIREREREQfA52vnJw5cwZHjx5FoUKFYGJiAhMTEzRo0ACzZ8/GiBEjcOkSx+cSEREREZHudL5ykpaWBju79NVYChUqhKdPnwJInyh/69atvG0dERERERF9NHS+clKpUiWEhoaiZMmSqFOnDubNmwdzc3OsXr0apUqV0kcbiYiIiIjoI6BzcfLdd98hMTERADB9+nS0a9cOn3zyCQoWLIjt27fneQOJiIiIiOjjoHNx4uvrK/1/mTJl8M8//yA6OhoFChSQVuwiIiIiIiLSlc5zTjLcuXMHf/75J5KSkuDk5JSXbSIiIiIioo+QzsXJixcv0KxZM5QtWxZt2rRBeHg4AOCrr77C2LFj87yBRERERET0cdB5WNfo0aOhVCrx8OFDeHl5Sc93794dY8aMwYIFC/K0gURERESUtbS0NKjVamM3g+itlEolTE1Ns72/zsXJX3/9hT///BPFihXTet7T0xMPHjzQ9XBEREREpCMhBCIiIhATE2PsphC9l6OjI1xdXbM1P13n4iQxMRHW1taZno+OjoaFhYWuhyMiIiIiHWUUJi4uLrC2tuaiRCRLQgi8fPkSUVFRAIAiRYq89zU6FyeffPIJNm7ciBkzZgAAFAoFNBoN5s2bhyZNmuh6OCIiIiLSQVpamlSYFCxY0NjNIXonKysrAEBUVBRcXFzeO8RL5+Jk3rx5aNasGS5cuICUlBSMHz8e169fR3R0NIKDg3PWaiIiIiLKlow5JlmNZCGSo4xzVa1Wv7c40Xm1rkqVKuH27dto0KABOnbsiMTERHTp0gWXLl1C6dKlc9ZiIiIiItIJh3JRfqHLuarzlRMAcHBwwKRJk3LyUiIiIiIioizpfOXEw8MD06dPx6NHj/TRHiIiIiIi+kjpfOVk1KhRWL9+PaZPn44mTZrgq6++QufOnblSFxEREZGxLTDgUK+xwnCxjCwsLAwlS5bEpUuXUK1aNWM3J8c8PDwwatQojBo1ythNeSudr5yMGjUKly9fxvnz5+Hl5YXhw4ejSJEiGDZsGC5evKiPNhIRERFRPqZQKN75b9q0aUZt2969e9+5j7u7O8LDw1GpUqVsH3fatGn5upAxFp2Lkwze3t5YunQpnj59iqlTp2LNmjWoVasWqlWrhp9//hlCfDzVNBERERG9XXh4uPRv8eLFsLe313pu3LhxOh0vJSVFTy3NmqmpKVxdXWFmlqPp2rli6FyNLcfFiVqtxo4dO9ChQweMHTsWNWvWxJo1a+Dn54dvv/0W/v7+edlOIiIiIsqnXF1dpX8ODg5QKBTS48TERPj7+6Nw4cKwtbVFrVq1cOTIEa3Xe3h4YMaMGejZsyfs7e0xYMAAAMBPP/0Ed3d3WFtbo3Pnzli4cCEcHR21Xrtv3z54e3vD0tISpUqVQkBAAFJTU6XjAkDnzp2hUCikx28KCwuDQqHA5cuXAQBBQUFQKBQIDAxEzZo1YW1tjXr16uHWrVsAgPXr1yMgIAChoaHS1aH169cDAGJiYtCvXz84OzvD3t4eTZs2RWhoqBQr44rLmjVrULJkSVhaWmL16tVwc3ODRqPRalfHjh3Rt29fAMDdu3fRsWPHd/ZjfqBzcXLx4kWtoVwVK1bEtWvXcOrUKfTp0weTJ0/GkSNHsGfPHn20l4iIiIg+IAkJCWjTpg0CAwNx6dIltGrVCu3bt8fDhw+19ps/fz6qVq2KS5cuYfLkyQgODsagQYMwcuRIXL58GS1atMD333+v9ZqTJ0+iZ8+eGDlyJG7cuIFVq1Zh/fr10n5///03AGDdunUIDw+XHmfXpEmTsGDBAly4cAFmZmZSodC9e3eMHTsWFStWlK4Ode/eHQDQtWtXREVF4eDBgwgJCYG3tzeaNWuG6Oho6bh37tzBr7/+it27d+Py5cvo2rUrXrx4gWPHjkn7REdH49ChQ9IFgez2o9zpfG2qVq1aaNGiBVasWIFOnTpBqVRm2qdkyZL47LPP8qSBRERERPThqlq1KqpWrSo9njFjBvbs2YPffvsNw4YNk55v2rQpxo4dKz2eNGkSWrduLQ0JK1u2LE6fPo39+/dL+wQEBOCbb75Br169AAClSpXCjBkzMH78eEydOhXOzs4AAEdHR7i6uurc9u+//x6NGjUCAHzzzTdo27YtkpOTYWVlBVtbW5iZmWkd99SpUzh//jyioqKkxaTmz5+PvXv3YteuXdIVoZSUFGzcuFFqHwC0bt0aW7ZsQbNmzQAAu3btQqFChdCkSROd+lHudL5ycu/ePRw6dAhdu3bNsjABABsbG6xbty7XjSMiIiKiD1tCQgLGjRsHLy8vODo6wtbWFjdv3sz0jX/NmjW1Ht+6dQu1a9fWeu7Nx6GhoZg+fTpsbW2lf/3790d4eDhevnyZ67ZXqVJF+v8iRYoAAKKiot66f2hoKBISElCwYEGtNt2/fx93796V9itRooRWYQIA/v7++PXXX6FSqQAAmzdvxmeffQYTk/SP89ntR7nT+cpJiRIl9NEOIiIiIvoIjRs3DocPH8b8+fNRpkwZWFlZ4dNPP800EdzGxkbnYyckJCAgIABdunTJtM3S0jLHbc7w+hf1GXdBf3NeyJvtKVKkCIKCgjJte32uTFa5tm/fHkIIHDhwALVq1cLJkyexaNEiaXt2+1HuDL/kABERERHR/wQHB6N3797o3LkzgPQP8GFhYe99Xbly5TLNEXnzsbe3N27duoUyZcq89ThKpRJpaWm6N/w9zM3NMx3X29sbERERMDMze+vk+7extLREly5dsHnzZty5cwflypWDt7e3tD2n/Sg3LE6IiIiIyGg8PT2xe/dutG/fHgqFApMnT37n1YcMw4cPR8OGDbFw4UK0b98eR48excGDB6UrGAAwZcoUtGvXDsWLF8enn34KExMThIaG4tq1a5g5cyaA9BW7AgMDUb9+fVhYWKBAgQJ5kpeHhwfu37+Py5cvo1ixYrCzs0Pz5s3h4+ODTp06Yd68eShbtiyePn2KAwcOoHPnzpmGrr3J398f7dq1w/Xr1/HFF19obctpP8oNixMiIiKiD0U+vGv7woUL0bdvX9SrVw+FChXChAkTEBcX997X1a9fHytXrkRAQAC+++47+Pr6YvTo0fjxxx+lfXx9fbF//35Mnz4dc+fOhVKpRPny5dGvXz9pnwULFmDMmDH46aefULRo0Ty72uDn54fdu3ejSZMmiImJwbp169C7d2/88ccfmDRpEvr06YNnz57B1dUVDRs2ROHChd97zKZNm8LJyQm3bt1Cjx49tLbltB/lRqfiRK1Wo3z58ti/fz+8vLz01SYiIiIi+kD17t0bvXv3lh57eHjg6NGjWvsMHTpU6/HbCob+/fujf//+Wo/fHMLl6+sLX1/ft7anffv2aN++/Tvb7OHhoXWD8caNG2e64Xi1atW0nrOwsMCuXbsyHcvOzg5Lly7F0qVLs4w1bdo0TJs2LcttJiYmePr06VvbmNN+lBOdihOlUonk5OQ8Cz579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uVSdRkaGoo5c+bg1KlTeP78OTw8PKQ1r18XFBSEMWPG4Pr163B3d8d3332n9YtBJHfH5w9Fclw0FAoTKK1s4N3zGzh5eCE+4gHOrpwEVXwMlNa2qNV3Sq7iHJ7cHcmxz/8XxxZ1h8xFwTJVEPvkLk7+32Akx0XD3MYe9UYsev/B3uPY7AFIkmK9yilkw2w8uRiExOdP0er7nbB3K6mXnM4un4CHZw8iIfIROi4/AQd3z3yRk9Ck4djM3oh9fAem5pawcnRGveELYF+0FJ7duohzKydCnZQIhUKBGn2n5iofQ513gOHOvXaLziMqPgUmCgXsLM2w1L8iqpdwwL8RCei1JhTPE1LgYGWGVb0r5zonItKv+fPno0WLFrCxscHBgwexYcMGLF++3NjNolzQeVjX0KFDMXfuXKxZswZmZrkbFXb8+HEMHToUtWrVQmpqKr799lu0bNkSN27ckFYpGD16NA4cOICdO3fCwcEBw4YNQ5cuXRAcHAwACAkJgYuLCzZt2gR3d3ecPn0aAwYMgKmpqbSm8/3799G2bVsMGjQImzdvRmBgIPr164ciRYq8s5ImkhOfIXNg5VgIAPDo70CcW/UdWs/+FefXTkfpJp+iVKNOeHjuL5xfEwCrAs7vOdrbNZqwGtZO6cV/WPB+nJg/BJ1XnsLpJaNRrk1veLbsgfsn9yF48UhYF9R9TfjX1R8xH+Y29plycq/dAl7t+uDI9F65On6Gt+Xk8UkHVO46AgfGts6TOIDhcvJs9SVK+LSBQqHAjX2rcWrxCLSe9zsCp3+JT8YuQ1Hvxoh9fAcHJ3REgZIVAGS99Pv7GOq8Awx37m0aWB2uDumr9OwJCUfvtZcROr0RBm64igGNi6N3A3fs+vsp+q+7CjdHi1zlRET6df78ecybNw/x8fEoVaoUli5dqjVki/IfnauLv//+G4GBgfjrr79QuXLlTEud7d69O9vHOnTokNbj9evXw8XFBSEhIWjYsCFiY2Oxdu1abNmyBU2bNgWQfgdPLy8vnD17FnXr1pXuxJmhVKlSOHPmDHbv3i0VJytXrkTJkiWxYMECAICXlxdOnTqFRYsWsTihfMPc2k76f/XLeAAKJMe+QPS962jyzSoAgHvtFghZPwtKa1sAdlkf6H1xbB1exUmMg0KhQFLMMzz/9zJ8Z6f/fns06IAzP34NpY0dAMccZgTpQzzwKicAcPF694RAneNkkRMAuFaun6dxAMPkpDAxRbGazaQ8XLxq4dqvP0IVF43k2Oco6t0YAOBQrAzMbR2QHPMcKFwsR7EMdd4Bhjv3HK1fFWqxSalQQIGoOBUuhMXir3F1AAB+NYtg2KZrcLAyhe6LlxKRoezYscPYTaA8pnNx4ujoCD8/P320BbGxsQAAJycnAOlXRdRqNZo3by7tU758eRQvXhxnzpxB3bp133qcjGMAwJkzZ7SOAaSPPxw1atRb26JSqaSb3ADIlxOK6MNzZsW3iLpxHgDQ6OvleBkdAasCzjAxTf9VVigUsC5YGGkpuRt+eXzeIESEngQAtJi5A4nPnsDKqbBWHBvnokhT5X6Y55s56cubOemToXLKcH3vShT3aQNLh4KwdiqMe8f3oFSjznh26yLiHt/N9bA4Q513gOHOvZ4/XcKxmy8AAH+Mro1H0Uko4mgBM1MTKU4xJyskpWhYnBARGZDOxYm+7vyu0WgwatQo1K9fH5UqVQIAREREwNzcXOumNABQuHBhREREZHmc06dPY/v27Thw4ID0XERERKYVEAoXLoy4uDgkJSXBysoq03Fmz56NgICAXGZFlLd8Bs8CANw7sQ+Xty1Cla7D9BKn0fiVAIB/D2/FhbXT4N1rkl7iAJlzajx+hV7ivJlTy5k79RIHMFxOABC6dQHint5H6znp8zCaTd2MC2sDcGX7IhQoUR4uFWojOfZ5rmIY6rwDDHfubexfHQCw4dQjTNh5EzO6lHvPK4iIyBBMcvrCZ8+e4dSpUzh16hSePXuW64YMHToU165dw7Zt23J8jGvXrqFjx46YOnUqWrZsmav2TJw4EbGxsdK/R48e5ep4RHmpVMOOiLrxN6ycCiPpv2fQpKUCAIQQePkiEqbmub/rLQB4tvgc4aGnYFPIDUnRkVpxEp89galF3sQBXuWkio/Js2NmJSOn5LhovcYB9J/T1Z0/ICx4P1rO3AkzS2sAQMHSleE7axc6LT+BRhNWIyk6Akor2zyJZ6jzDjDcudergTuO/fMCxQpYITxGhdQ0jRTncXQSrMxz/GeSiIhyQOd33cTERPTt2xdFihRBw4YN0bBhQ7i5ueGrr77Cy5cvc9SIYcOGYf/+/Th27BiKFXs1LtrV1RUpKSmIiYnR2j8yMhKurtqTIW/cuIFmzZphwIAB+O6777S2ubq6IjIyMtMx7O3ts7xqAqQv/2Zvb6/1j8hYNKmpSPrv1ZcAjy8EwtzWAZb2BeFU0gthp/YDAB6dPwwrJxeYWWR9Xr8/jhovX7y6Kvng9AFY2DvB0tEZBctUwd3A9OFQYad+g02hIlBa5nzAS8rLeLz8LypTTq/PO8gLb8vJwi5vbrL1OkPlBAA39q7EvaBf0Wr2Hli8dvzXc731xwaYWVrDwt4pq0O8l6HOu/RYhjn31GkaPI15NSRs78UIFLQ1h4u9ObxL2GPTmScAgF8vhKNoAUvYWPB2YEREhqTzu+6YMWNw/Phx/P7776hfP30y6alTpzBixAiMHTsWK1Zkf/iCEALDhw/Hnj17EBQUhJIltcdF16hRA0qlEoGBgdI8l1u3buHhw4fw8fGR9rt+/TqaNm2KXr164fvvv88Ux8fHB3/88YfWc4cPH9Y6BpGcaTSpCP5hLNLUKVCYmMDCrgAajVsGhUKBWn2n4Oyq73DjtzVQWtmgVt+puLYnZ8OINGmpOPZ9H2jUKkBhAkuHQmgxfRsUCgXqj1iEEwuGInTbQiit7VBv5GJc3jQ3xzmpXybgzIqJSEtJzpTT+bUBeHrpBJJjX+DY3IFQWlrDvmjpPM8peMkoPDp/GEnRkfjzWz8orWzgWDznw3sMlVOqKhkX1gbArogHDo5PX5vfRGmBDkuP4NbBDbh7dCcgBByKl0Xjb3/G+VU5GxplqPMOMNy5p04T6Lb8IlRqDUxMAGc7C+wfVQsKhQKrelVB77WXMWv/HdhbmWFVryoI2Hc7xzkREZHudC5Ofv31V+zatQuNGzeWnmvTpg2srKzQrVs3nYqToUOHYsuWLdi3bx/s7OykeSQODg6wsrKCg4MDvvrqK4wZMwZOTk6wt7fH8OHD4ePjI02Gv3btGpo2bQpfX1+MGTNGOoapqSmcndOXtRw0aBB+/PFHjB8/Hn379sXRo0exY8cOrXkpRHJmZm6JxuOWwdQ887Km9m4l0TJgs/Q4LUWVaZ9sx7GwQosZ22GWxfAcB3dPtF/8l/Q4NZeTn20KFYHvjK1Zbqv9lfa9OdJSVDi1dGyO4rwrp/ojF2s9Tk1JxrGZvXMUBzBkTpbo+Xt4ljlV/2ICqn8xQXqcm5+Toc47wHDnnrW5KQ6Mrg1LpWmmbeWK2OLMdw2kx8nqtBzHISLKrsaNG6NatWpYvHixsZuSY9OmTcPevXtx+fLlXB9L5+Lk5cuXmSaXA4CLi4vOw7oyCpnXCx0gfdJ9xg0SFy1aBBMTE/j5+WndhDHDrl278OzZM2zatAmbNm2Sni9RooR0F8ySJUviwIEDGD16NJYsWYJixYphzZo1XEaYiIiIPiiFpp0wWKzn0xrqtH/v3r2xYcMGAOk39i5evDh69uyJb7/9Ntf3zsvPdu/eDaUy+/eiCgsLQ8mSJXHp0iVUq1ZNfw0zEp3PBB8fH0ydOhUbN26EpWX6N1xJSUkICAjQeZiUEOK9+1haWmLZsmVYtmxZltunTZuGadOmvfc4jRs3xqVLl3RqHxERERHlnVatWmHdunVQqVT4448/MHToUCiVSkycODHTvikpKTA3Nzd4G4UQSEtLy/OC6W35vH77C0NTq9U6FUaGoPOE+CVLliA4OBjFihVDs2bN0KxZM+nO7EuWLNFHG4mIiIjoA2BhYQFXV1eUKFECgwcPRvPmzfHbb78BSL+y0qlTJ3z//fdwc3NDuXLpcwAfPXqEbt26wdHREU5OTujYsaM0OibDzz//jIoVK8LCwgJFihSRbsQdFhYGhUKhNdwoJiYGCoUCQUFBAICgoCAoFAocPHgQNWrUgIWFBU6dOoXQ0FA0adIEdnZ2sLe3R40aNXDhwgXpOL/++qsU08PDQ7rZdwYPDw/MmDEDPXv2hL29PQYMGJBlnzRu3Fjr3nseHh6YNWsW+vbtCzs7OxQvXhyrV6+WtmfM0a5evToUCoXWCKQ1a9bAy8sLlpaWKF++vNZoo4y+2L59Oxo1agRLS0usWLECVlZWOHjwoFab9uzZAzs7O2lU1IQJE1C2bFlYW1ujVKlSmDx5MtRqdZb55JbOJWGlSpXw77//YvPmzfjnn38AAJ9//jn8/f3fuvIVEREREdGbrKys8OLFC+lxYGAg7O3tcfjwYQDp3+z7+vrCx8cHJ0+ehJmZGWbOnIlWrVrhypUrMDc3x4oVKzBmzBjMmTMHrVu3RmxsLIKDg3VuyzfffIP58+ejVKlSKFCgABo2bIjq1atjxYoVMDU1xeXLl6WrDCEhIejWrRumTZuG7t274/Tp0xgyZAgKFiwoTU0AgPnz52PKlCmYOnXqW6JmbcGCBZgxYwa+/fZb7Nq1C4MHD0ajRo1Qrlw5nD9/HrVr18aRI0dQsWJF6WrM5s2bMWXKFPz444+oXr06Ll26hP79+8PGxga9evXSynPBggWoXr06LC0tcfLkSWzZsgWtW7eW9tm8eTM6deoEa+v0Zert7Oywfv16uLm54erVq+jfvz/s7Owwfvx4nfv5fXJ0vcra2hr9+/fP67YQERER0UdACIHAwED8+eefGD58uPS8jY0N1qxZI33g3rRpEzQaDdasWQOFQgEgfW6yo6MjgoKC0LJlS8ycORNjx47FyJEjpePUqlVL5zZNnz4dLVq0kB4/fPgQX3/9NcqXLw8A8PT0lLYtXLgQzZo1w+TJkwEAZcuWxY0bN/B///d/WsVJ06ZNMXas7ouftGnTBkOGDAGQftVi0aJFOHbsGMqVKyct+FSwYEGtW2tMnToVCxYsQJcuXQCkX2G5ceMGVq1apVWcjBo1StoHAPz9/fHll1/i5cuXsLa2RlxcHA4cOIA9e/ZI+7x+mw4PDw+MGzcO27Ztk09x8u+//+LYsWOIioqCRqPR2jZlypQ8aRgRERERfVj2798PW1tbqNVqaDQa9OjRQ2vucOXKlbXmZYSGhuLOnTuws7PTOk5ycjLu3r2LqKgoPH36FM2aNct122rWrKn1eMyYMejXrx9++eUXNG/eHF27dkXp0ulLwN+8eRMdO3bU2r9+/fpYvHgx0tLSYGpqmuUxs6tKlSrS/ysUCri6uiIqKuqt+ycmJuLu3bv46quvtC4gpKamwsFB+15bb7apTZs2UCqV+O233/DZZ5/h119/hb29PZo3by7ts337dixduhR3795FQkICUlNT9XYPQJ2Lk59++gmDBw9GoUKF4OrqKlWxQHrnsTghIiIioqw0adIEK1asgLm5Odzc3DJNOrex0b7BakJCAmrUqIHNmzfjTc7OzjAxeff06Yztry/C9La5Em/GnjZtGnr06IEDBw7g4MGDmDp1KrZt24bOnTu/M+a7jpldb05SVygUmS4IvC4hIQFA+uf0OnXqaG3LKJTe1iZzc3N8+umn2LJlCz777DNs2bIF3bt3l342Z86cgb+/PwICAuDr6wsHBwds27Yt0xybvKJzcTJz5kx8//33mDBhwvt3JiIiIiL6HxsbG5QpUybb+3t7e2P79u1wcXF56zf1Hh4eCAwMRJMmTTJtyxgCFR4ejurVqwOATvfiKFu2LMqWLYvRo0fj888/x7p169C5c2d4eXllmtcSHByMsmXLZioG8lrGlaW0tFf3YipcuDDc3Nxw7949+Pv763xMf39/tGjRAtevX8fRo0cxc+ZMadvp06dRokQJTJr06oa+Dx48yEUG76bzal3//fcfunbtqo+2EBERERFJ/P39UahQIXTs2BEnT57E/fv3ERQUhBEjRuDx48cA0q9wLFiwAEuXLsW///6Lixcv4ocffgCQPuG+bt26mDNnDm7evInjx49rzZ94m6SkJAwbNgxBQUF48OABgoOD8ffff8PLywsAMHbsWAQGBmLGjBm4ffs2NmzYgB9//BHjxo3TX2f8j4uLC6ysrHDo0CFERkYiNjYWABAQEIDZs2dj6dKluH37Nq5evYp169Zh4cKF7z1mw4YN4erqCn9/f5QsWVLr6ounpycePnyIbdu24e7du1i6dKnWfJS8pnNx0rVrV/z111/v35GIiIiIKBesra1x4sQJFC9eHF26dIGXlxe++uorJCcnS1dSevXqhcWLF2P58uWoWLEi2rVrh3///Vc6xs8//4zU1FTUqFEDo0aN0roq8DampqZ48eIFevbsibJly6Jbt25o3bo1AgICAKRf0dmxYwe2bduGSpUqYcqUKZg+fbrWZHh9MTMzw9KlS7Fq1Sq4ublJc1/69euHNWvWYN26dahcuTIaNWqE9evXS0sPv4tCocDnn3+O0NDQTFdeOnTogNGjR2PYsGGoVq0aTp8+LS0EoA/ZGta1dOlS6f/LlCmDyZMn4+zZs6hcuXKmMXEjRozI2xYSERERUbboetd2Q1q/fn2Otru6ukp3ln+bgQMHYuDAgVlu8/LywunTp7Wee30OSuPGjTPdGNzc3Bxbt259Z0w/Pz/4+fm9dfub92J5m4z7rbzrdW8ORevXrx/69euXab8ePXqgR48eWcbx8PB45w3Q586di7lz52a5bd68eZg3b57Wc6/fmyW7N0XPjmwVJ4sWLdJ6bGtri+PHj+P48eNazysUChYnRERERESUI9kqTu7fv6/vdhARERER0UdO5zknRERERERE+qBzceLn55fleLR58+ZxFS8iIiIiIsoxnYuTEydOoE2bNpmeb926NU6cOJEnjSIiIiIioo+PzsVJQkKCdPOX1ymVSsTFxeVJo4iIiIjo3d618hKRnOhyrupcnFSuXBnbt2/P9Py2bdtQoUIFXQ9HRERERDrIuI3Dy5cvjdwSouzJOFffvAVJVrK1WtfrJk+ejC5duuDu3bto2rQpACAwMBBbt27Fzp07dT0cEREREenA1NQUjo6OiIqKApB+o0KFQmHkVhFlJoTAy5cvERUVBUdHR5iamr73NToXJ+3bt8fevXsxa9Ys7Nq1C1ZWVqhSpQqOHDmCRo0a5ajhRERERJR9rq6uACAVKERy5ujoKJ2z76NzcQIAbdu2Rdu2bXPyUiIiIiLKJYVCgSJFisDFxQVqtdrYzSF6K6VSma0rJhlyVJwAQEpKCqKioqDRaLSeL168eE4PSUREREQ6MDU11emDH5Hc6Vyc/Pvvv+jbty9Onz6t9bwQAgqFAmlpaXnWOCIiIiIi+njoXJz07t0bZmZm2L9/P4oUKcIJWERERERElCd0Lk4uX76MkJAQlC9fXh/tISIiIiKij5TO9zmpUKECnj9/ro+2EBERERHRR0zn4mTu3LkYP348goKC8OLFC8TFxWn9IyIiIiIiygmdh3U1b94cANCsWTOt5zkhnoiIiIiIckPn4uTYsWP6aAcREREREX3kdC5O3nUX+GvXruWqMURERERE9PHK8U0YM8THx2Pr1q1Ys2YNQkJCOKyLSE/SUlPydL+30ahVSM3mfrmhSzuZU2Zyyym3+QCGy0ml1rx/Jx32IyKivJPj4uTEiRNYu3Ytfv31V7i5uaFLly5YtmxZXraNiF5zZvlEg8Q5PnegQeIYKh+AOeXGh5jTF6svGSQOERHpTqfiJCIiAuvXr8fatWsRFxeHbt26QaVSYe/evahQoYK+2kj00fMuameQOFWdlQaJY6h8AOaUGx9iTnCvbZg4RESUIwohhMjOju3bt8eJEyfQtm1b+Pv7o1WrVjA1NYVSqURoaOgHX5zExcXBwcEBsbGxsLe3N3Zz6CMhhIBKlfMhLBYWFlAoFB9MHEPGYk76j2PIWIbMiSgv8HMHfayyfeXk4MGDGDFiBAYPHgxPT099tomI/kehUMDS0pJxZByLOeWPWIbMiYiIci7bN2E8deoU4uPjUaNGDdSpUwc//vgj7xRPRERERER5JtvFSd26dfHTTz8hPDwcAwcOxLZt2+Dm5gaNRoPDhw8jPj5en+0kIiIiIqIPXLbnnGTl1q1bWLt2LX755RfExMSgRYsW+O233/KyfbLBsZ9ERERkKPzcQR+rbF85yUq5cuUwb948PH78GFu3bs2rNhERERER0UcoV1dOPib8BoOIiIgMhZ876GOVqysnREREREREeYXFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLJgZuwG5DfJyckwNzfX6TUWFhZQKBTZ2lcIAZVKlZOm6RQrt3EMGetDy+lDPB/kFoeIiIjyJxYnOurZsyeUSqVOr9m5cycsLS2zta9KpULXrl1z0jSdYuU2jiFjfWg5fYjng9ziEBERUf7E4kRHoeEJMDHNfrd5F7XLWZxnap1fU9VZt6IJAC4+idf5NUDO8mJOOcsHyFlOcv4Z4dF53V/jXlv31xAREVG+wuJER7X7TYOlXYH37peWmoIzyyfmKlajCatgorR4734atQrH5w7McRyfIbNhapa9oWq5zetjzSm3+QDZzym//Iw2DagOC+X7p72p1Bp8sfpSjuMQERFR/sHiREemZkqYmr//g1teMFFawMz8/UNYUnMZx9TMnDnlQnZyym0+gOFyMtTPyEJpAkulaS6PQkRERB8SrtZFRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkC2bGDD579mzs3r0b//zzD6ysrFCvXj3MnTsX5cqVk/ZJTk7G2LFjsW3bNqhUKvj6+mL58uUoXLiwtM+IESMQHByMa9euwcvLC5cvX84Ua8eOHZg1axZu374NZ2dnDBs2DF9//XWO2n1s9gAkxT6HQmECpZUNvHt+AycPL8RHPMDZlZOgio+BmaUNzCytAdjlKAYAHJ7cHclSHFvUHTIXBctUQeyTuzj5f4ORHBcNcxt71BuxKMcx3pdTyIbZeHIxCInPn6LV9zth71YyV3HeltPZ5RPw8OxBJEQ+QsflJ+Dg7pkvchKaNByb2Ruxj+/A1NwSVo7OqDd8AeyLlsKzf0JwdsU3SFOrkKZKAhQmgHPZHMc6Pn8okuOi33neKa1tUavvlBzHAAx73rWcfxYRsSqYKBSwszTDUv+KqF7CAf9GJKDXmlA8T0iBnaUZ7CxNc/GbRERERPmFUYuT48ePY+jQoahVqxZSU1Px7bffomXLlrhx4wZsbGwAAKNHj8aBAwewc+dOODg4YNiwYejSpQuCg4O1jtW3b1+cO3cOV65cyRTn4MGD8Pf3xw8//ICWLVvi5s2b6N+/P6ysrDBs2DCd211/xHyY29gDAB79HYhzq75D69m/4vza6Sjd5FOUatQJYcEHcGH990AZ1xz0TLpGE1bD2im9CAsL3o8T84eg88pTOL1kNMq16Q3Plj1w/+Q+BC8eCeuCOY/zrpzca7eAV7s+ODK9V66On+FtOXl80gGVu47AgbGt8yQOYLicPFt9iRI+baBQKHBj32qcWjwCbf5vP4KXjIJ3z4ko7tMGiS/CsbNnNcSXKpLjOD5D5sDKsVCmfF4/7x6e+wvn1wTAqoBzjuMY8rzbMaQGHK2VAIA9IeHovfYyQqc3wsANVzGgcXH0buCOLWcfY8jGa/gk9/UqERERyZxRh3UdOnQIvXv3RsWKFVG1alWsX78eDx8+REhICAAgNjYWa9euxcKFC9G0aVPUqFED69atw+nTp3H27FnpOEuXLsXQoUNRqlSpLOP88ssv6NSpEwYNGoRSpUqhbdu2mDhxIubOnQshhM7tzvjACwDql/EAFEiOfYHoe9fh0aAdAKBYzWZIS0lGYmKizseX4tg6vIqTGAeFQoGkmGd4/u9llG7WDQDg0aADEp8/hTo553GArHMCABevmrn+AKoVJ4ucAMC1cn3YOBfNsziAYXJSmJiiWM1mUh4uXrWQEPnwfxsVUCXEAQBSk19CoVBAqVTmOJa59atrB28779xrt0BSdCRSVUk5j2PA8y6jMAGA2KRUKKBAVJwKF8Ji8YVP+vnQ2dsVyWpNrn6XiIiIKH8w6pWTN8XGxgIAnJycAAAhISFQq9Vo3ry5tE/58uVRvHhxnDlzBnXr1s3WcVUqFaytrbWes7KywuPHj/HgwQN4eHhk+RqVSiU9jouL09p+ZsW3iLpxHgDQ6OvleBkdAasCzjAxTe9ShUIBU3NLJCXl/EMiAByfNwgRoScBAC1m7kDisyewciqsFcfGuSjSVMm5igNkzklf3sxJnwyVU4bre1eiuE8bAMAnY5fhyLQeuLhhJpJjX8DB3ROWlpa5On52zjvrgoWRlpK788GQ513Pny7h2M0XAIA/RtfGo+gkFHG0gJmpiRTLUmmS698lIiIikj/ZTIjXaDQYNWoU6tevj0qVKgEAIiIiYG5uDkdHR619CxcujIiIiGwf29fXF7t370ZgYCA0Gg1u376NBQsWAADCw8OzfM3s2bPh4OAg/XN3d9fa7jN4Fjr+cASVuw7H5W25H3v/No3Gr0T3zdfh3fs7XFg7TW9xAOaUW6FbFyDu6X3U7JM+5+PK9kWo2WcKum+6hg7LghD7+A7i4+NzFeND/Blt7F8djxY2x8wu5TBh5029xiIiIiJ5k01xMnToUFy7dg3btm3L82P3798fw4YNQ7t27WBubo66devis88+AwCYmGTdBRMnTkRsbKz079GjR1nuV6phR0Td+BtWToWR9N8zaNJSAQBCCKSlJMPKyipPcvBs8TnCQ0/BppAbkqIjteIkPnsCU4vcfSP/uoycVPExeXbMrGTklBwXrdc4gP5zurrzB4QF70fLmTthZmmN5NgXeHD6AEo37QoAsHMtAXNbB0RH502u7zrvXr6IhKl53pwPhjzvejVwx7F/XqBYASuEx6iQmqaRYiWrNXn2u0RERETyJYviZNiwYdi/fz+OHTuGYsWKSc+7uroiJSUFMTExWvtHRkbC1TX7cwYUCgXmzp2LhIQEPHjwABEREahduzYAvHWeioWFBezt7bX+AUDKy3i8/C9K2u/xhUCY2zrA0r4gnEp6IezUful5U6WFNLFfV5pUNV6+eHV16MHpA7Cwd4KlozMKlqmCu4Hpw6HCTv0Gm0JFoLTMWZx35fT63IO88LacLOwK5GkcwHA5AcCNvStxL+hXtJq9Bxb/O765rSPMLKzx9PIJAEBy7AukJMRK55GuNKmpSPrvmfT4befdo/OHYeXkAjOLnH2QN+R5F/NSjaf/vRoWtvdiBAramsPF3hzeJeyx6cwTAMCeixGwVJrk+HeJiIiI8g+jzjkRQmD48OHYs2cPgoKCULKk9pKuNWrUgFKpRGBgIPz8/AAAt27dwsOHD+Hj46NzPFNTUxQtmj7JduvWrfDx8YGzs26rGqUmJeLM8olIS0mGwsQEFnYF0GjcMigUCtTqOwVnV32HG7+tgZmlNRxLlHv/Ad9Ck5aKY9/3gUatAhQmsHQohBbTt0GhUKD+iEU4sWAoQrcthNLaDvVGLsblTXNzHEv9MgFnVmSd0/m1AXh66QSSY1/g2NyBUFpaw75o6TzPKXjJKDw6fxhJ0ZH481s/KK1s4Fg85/1nqJxSVcm4sDYAdkU8cHB8ewCAidICHZYeQZNJ6/D3T1OgSUuFJjUFdq4lUKBAzgoxjSYVwT+MRZo65Z3nndLKBrX6TsW1PStyFseA511sUiq+XH0JSSkamJgAznYW2D+qFhQKBVb1qoLeay9j1v47sLM0RVX3nBV1RERElL8YtTgZOnQotmzZgn379sHOzk6aR+Lg4AArKys4ODjgq6++wpgxY+Dk5AR7e3sMHz4cPj4+WpPh79y5g4SEBERERCApKUm6z0mFChVgbm6O58+fY9euXWjcuDGSk5Oxbt067Ny5E8ePH9e5zdYFXeE7Y2uW2+zdSqJlwGYAQFqKCqeWjtX5+BnMLKzQYsZ2mGUxPMfB3RPtF/8lPU7N5eRnm0JF3ppT7a+maj3OTV7vyqn+yMVaj1NTknFsZu8cxQEMmZMlev4enmVORb0bo6h3EIDc52NmbonG45bB1Nwi07bXzzsgPZ8cxzHgeVeioBXOT/kky23litjizHcNAADJ6jR0XRaSq1hERESUPxi1OFmxIv3b3caNG2s9v27dOvTu3RsAsGjRIpiYmMDPz0/rJoyv69evn1ahUb16dQDA/fv3pZW4NmzYgHHjxkEIAR8fHwQFBUlDu4iIiIiIyPiMPqzrfSwtLbFs2TIsW7bsrfsEBQW98xiFChXCmTNndG0eEREREREZkCwmxBMREREREbE4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUJERERERLLA4oSIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiIiIiIhkgcUJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREsmBm7AbkN2mpaqSlqLKxX0quY2nUKqRmc7/c0KWtuc3rY80pt/kA2W9nfvkZqdSaPN2PiIiI8j8WJzo6v2YaTEwN023H5w40SJwzyycaJA7AnHLDUDkZKp8vVl8ySBwiIiLKP1ic6KhqEVsolUr9x3HWfwwA8C5qZ5A4AHPKDUPlZKh84F7bMHGIiIgoX1EIIYSxG5EfxMXFwcHBAZGRkbC3t9fptRYWFlAoFNnaVwgBlSrnw2WyGyu3cQwZ60PL6UM8H+QWh4gov8v43BEbG6vz5w6i/IxXTnRkaWkJS0tLvR1foVDo9fiGjmPIWMyJcYiIiCh/42pdREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDVurIpY8XluLg4I7eEiIiIPnQZnzd4xwf62LA4yab4+HgAgLu7u5FbQkRERB+L+Ph4ODg4GLsZRAbDmzBmk0ajwdOnT2FnZ8ebwOkgLi4O7u7uePToEW8ilYfYr/rDvtUf9q1+sF/1x5h9K4RAfHw83NzcYGLCUfj08eCVk2wyMTFBsWLFjN2MfMve3p5/NPWA/ao/7Fv9Yd/qB/tVf4zVt7xiQh8jluJERERERCQLLE6IiIiIiEgWWJyQXllYWGDq1KmwsLAwdlM+KOxX/WHf6g/7Vj/Yr/rDviUyPE6IJyIiIiIiWeCVEyIiIiIikgUWJ0REREREJAssToiIiIiISBZYnBARERERkSywOCEiIiIiIllgcUK58uTJE6jVamM344PFxfSIKAPfD4joY8DihHIkPDwcnTt3Rt++fXHmzBljN+eDERMTg7Zt2+L//u//AAAajcbILfpw/Pfff3jw4AEAIC0tzcit+bBERkZi8eLF2L17N27fvg2AH6TzwosXLzBkyBD89ttvANineen58+c4ffo07t27Z+ymENEbWJyQzg4cOABvb28IITBz5kyULl0aAP9w5oW//voLBw8exJw5cxAVFQVTU1MWKHlgzpw5KF68OCZNmgQAMDU1NXKLPhxTpkxB6dKlsX//fgwbNgy9evXCjRs3oFAo+J6QS3PnzsXKlSuxYcMGxMXFwcTEhH2aByZOnAgvLy+MGjUKlSpVwqJFi/DixQtjN4uI/ofFCelsy5Yt6N27N/bu3YtatWrBxsYGAKBQKIzcsvzv+PHj8Pf3h7e3N0aMGGHs5uR7KpUKo0aNwu7du/HJJ5/gwYMH2LNnDwBelcoLv/zyCw4cOIB9+/bhyJEj+OWXX6DRaKSrqXxPyJ3Q0FC0aNECMTExWL9+vbGbk+89ffoUXbt2xZEjR7Br1y7s2rUL48aNw5o1a3D69GljN4+I/ofFCb3Tm9/S3b59G6GhoejTpw+uXLmCtm3bon379ujUqRN2795tpFbmf6mpqQAAR0dHeHt7o2fPnjhw4ABOnDgBExP+muaEEAIWFhYoXbo0+vfvj7lz56JgwYLYtGkTv4XOI4cOHYKzszOaNWsGANJ/a9euLe3DPn6/N/soLS0NKpUKjo6OmDRpEtzd3bFv3z7cvHkTCoWCwxJ18HrfZvTf0qVL0ahRIxQvXhzTp09HYmIiIiMjM+1PRMbBTz30ViqVCi9fvtR6zt7eHnfu3MGVK1fwzTffoFy5cvjiiy9gZWWFzz//HEePHjVSa/OPjD9+r3/AMDMzAwAEBwejTJkyaNu2LZo3b44pU6ZACIHAwECkpKQYpb35ycuXL/Ho0SOkpKRI39oPHDgQ/fv3R+XKldG2bVs8efKE30LnQsYVp5SUFDg7OyM+Ph6XLl3Cixcv4Ofnh0ePHmHq1KmYO3cu0tLSePXkPVJSUrR+t4UQMDU1hYWFBW7fvg13d3d89tlnUKvV2LdvH1JSUhAVFWXEFucfKSkpWu+zlStXxrBhw+Dj4wMg/VwWQqBo0aLSec3zlcj4WJxQlmbMmIFGjRqhffv2+PrrrxEeHi5ta9GihTR2f+bMmRg4cCC2bt2KZs2aISAgAAC/fXqbBQsWoF+/fgC05z1oNBqkpqbCysoKJUqUgJOTE4YMGYKQkBCYmpoiMDAQKpXKWM3OFwICAlC9enX4+fmhWbNmuHXrFgBoXSHp2rUrypUrh99//x3//vsvFAoFh3dlw+rVq/HTTz8BSO9PjUYDc3NzdOnSBU5OTpgwYQJcXFwQExODVatWoVSpUli1ahUGDRoEgEPo3mbatGlo0KABOnbsiNWrV+O///6TPhzfunULJiYm8PDwQKtWrVC3bl2sWrUKlpaW2LVrF/v0PWbOnIlWrVqhY8eO+OGHH/DixQu4uLigYcOGANLPSRMTE0RFReHatWuoXLmykVtMRBJB9JorV64IHx8fUbFiRbFlyxYxevRoUaNGDeHn5yeEECI1NVV88803wtLSUowZM0YIIURycrIQQoi///5bWFlZiUePHhmt/XJ1/fp10b59e2FjYyMKFy4sdu7cKYRI78/X1atXT4SFhYk///xTuLq6igIFCoiCBQtKfZyWlmbwtsvd6dOnRc2aNUWlSpXE3r17xS+//CIaNmwoGjRooLWfRqMRQgjx22+/ifr164tvvvlG2pbRrxn7ULqLFy+Kxo0bC4VCIZo1ayYuXbokhNA+b9PS0sSqVatE27ZtxcuXL6Xn161bJwoXLiyioqIM3WzZU6vV4ssvvxRlypQRGzZsEJ9//rmoWLGiaNeunbRPeHi4aNGihRBCiD/++EM4OzsLW1tb0bBhQ6FSqYQQPF+zEhISImrWrCkqVqwo1q5dK7p37y6qV68uRo8eneX+v//+u/D09JTeY4nI+HjlhCRqtRp79uxBkSJFcPz4cXz++edYuHAhhg0bhrCwMNy/fx+mpqbo2rUrKlSogF27dgEALCwsAADXr19HqVKluEpPFk6fPg2FQoGff/4Zvr6+WLJkCVJSUmBqair11T///IPo6Gg0a9YMfn5+GDZsGHbs2IHChQtj4sSJRs5AvoKDg1GlShUEBwejY8eO+OKLL9C6dWsUKFBAmsvz+rfM7du3R506dRAcHIyjR49ix44dGDp0KAAO6XhdWloa9u/fj8KFC2PFihWIi4vDnj17oNFopPNWCAETExPcunULLi4usLKykl7/6NEjFC5cmN/wZ+HRo0f4+++/sXDhQvTs2RNbtmzBokWLEBgYiEWLFgEAQkJCcOXKFdSrVw/du3fHmDFjMG7cOGg0GuzYscPIGchTQkICtm7divLlyyM4OBh9+/bFtm3b0LZtW9y5cwcxMTGZXnPx4kXUqlVL+jsWHBzM+ZNERsbihCRCCFSsWBFDhgxBwYIFpQ8V5ubmeP78OQoWLAgA8Pb2xvjx45GQkIAvvvgCQUFB+Pfff7Ft2zbUr18fRYsW5Ye8/8koPLp3745x48ahW7du6Ny5M+Lj47Fw4UIArz44ly9fHm5ubmjSpAkuXbqESZMmoX79+vDz88OWLVukSdyULqNvhwwZgvHjx8Pe3h5A+uICR44cQZkyZXD27FkA6UORXp9I3KNHDyQlJaFdu3b44osvpBXn6BVTU1N06dIFI0aMwMCBA1G/fn0EBQXhyJEj0j4Zv+eRkZGIjo6WVjy6ffs2goKC0LRpUxQuXNgo7ZcztVqNW7duoWrVqtJzLVq0wOTJkxEQEIDHjx+jTp06cHJygqenJy5evIhvvvkGffr0gZmZGfbt24ekpCS+z75BCIGSJUti8ODBcHBwkL6ccHBwwK1bt6T3iNf9+eefaNasGZ48eYI2bdqgUaNGiI+PN3TTieh1xrtoQ3L0+jCBjKEuy5cvFw0aNBApKSnScA61Wi0OHz4sypYtK7y8vETBggVFt27dRFxcnFHanZ88f/5cjBkzRlSqVEmEhYUJIYRISkoSQggRFxeXaahGeHi4SEhIMHg786N9+/YJOzs7UblyZdGsWTPh5uYm/P39RUxMjLTP48ePxcCBA4VCoRB9+/YV0dHRRmxx/nH79m1Rt25dMXjwYPHff/8JIYRISUkRQghx9uxZUadOHeHk5CQ6duwo7OzshL+/v4iPjzdii+Xrxo0bolq1amLevHlaz8fGxoqSJUuKsWPHCiGEePToUaahnKdPn2a/vsObQw6FEOK7774T3bp1y7TvrVu3RIECBUTr1q2Fubm56Nixo3j+/LnB2kpEWePXsCQRQmT5Tdzp06dRo0YNKJVKabuJiQmaN2+O8+fPY/fu3Thz5gy2b98OOzs7Qzc7XxFCoGDBgujQoQMcHR0xe/ZsAIClpSUAwM7OTupj8b8rA66urvxm/y3EG8MHU1NTsXnzZly6dAmHDh3CwYMHsWXLFly8eFHaZ9++fTh+/DjOnj2LtWvXokCBAoZudr6j0Wjg6ekJPz8/XLhwAfv37wcAKJVKAECdOnWwZs0aLF68GLVr10ZQUBA2bdoEW1tbYzbbaN48L99UvHhxlCtXDufOnUNYWBiA9D62t7fHkCFDsHPnTiQnJ6NYsWLS1dKMY/r4+Hy0/fo+4n8rnWXIeC+9ePEivL29pX0y3Lt3DzExMYiLi8Px48exd+9eaYQAERkPi5OPSGRkJMLCwpCQkABA+006NTVVqzDJWMkkLS0NJ06cQOPGjQGkFyX37t2TVuxxcHBA+fLl4enpadBc5OTx48dYvHgx7t27ByBzv74uY1hRvXr10K5dOwQFBeHUqVMAIA1BysAhG0B4eDiuXLmC58+fZ9r25jkLAF26dEH79u1hamoKMzMzlC5dGk5OTrh06ZK0z5AhQ3Dz5k2te3F8jO7evYtp06bhzp07mba9ed5mDD0cNGgQChQogP3790sfqq9evQoAqFSpEr788kt8++230gfBj1FsbCwSEhKk94HX59xk9KuNjQ06deqEf//9V5o/klGEODg4wN7eHs+ePdM6Lt8PgLCwMPTs2TPLOTdZ/Q1TKBSIjY3FuXPnpOWDFQoFHjx4AACoUaMG/vzzT5w6dQp169Y1TBJE9F4sTj4SI0aMQMWKFaW7jx89elRamlYIATMzMwghMHnyZACv/lAGBwdDo9FIY3K7deuGMmXKIDw8nPMfALx48QLt2rXDhAkTcOTIEem+DhlFSEa/ZkxyzXisVCrRtm1bVKxYERMnTkSbNm1Qr1493Lx505jpyMqoUaNQrlw5+Pv7o1KlSvj111+lseBZnbNZ2b9/P0qVKgU/Pz9DNVv2hBAYPHgwPD09ER4ejmLFiknbMj5IZ/Ttb7/9Jj1OS0uDra0tvvrqK9y7dw9Lly5FmzZt0KxZs0wfpD9GQgiMGjUKjRo1QqtWrdCzZ0/Ex8fDxMQEarUawKt+3Lx5Mz777DPUq1cPe/bska5EAcDz58/h6OgINzc3Y6UiS1OnToWXlxcSExOhVCqlQi+jCHzzvTbj71NgYCAcHR3RsGFD6W9YrVq1EBkZCWdnZ7Ro0cI4CRHRW/HT5QdOo9Fg8ODBuHTpEg4cOIDly5ejQYMG6NevH3755RcA6d8krVmzBkWLFsWOHTukb5UA4MaNGyhVqhSWLFkCT09PxMfH4/79+yhSpIixUpIVKysrODo6wsvLC7t27ZK+Rc4YWrBmzRoUKVIEO3bswNOnTwG8+gbU2dkZkZGRCA4OhpWVFcLCwuDl5WWcRGTm559/xrFjx/D7779j27Zt6NChAyZPnoylS5cCePc5+/TpUzx8+BDTpk3DqFGj0K5dOxQtWpQryAHYunUrChUqhPPnz+P8+fPSfTMASCtvAen3NXFxccGuXbukFY4yzukmTZrg6dOnWLx4MUxNTRESEgJnZ2ej5CMXZ8+eRfXq1XHu3DnMmjULvr6+uHDhAvr37w/g1fC3n376CW5ubti4cSPUajVGjhyJChUqoHPnzhgyZAiGDx+OuXPnonv37lor+X3sLl++jMDAQGzfvh2//vorOnfuLN24NuP9NKv3WiB9FcTq1atj1qxZ8PT0RExMDEJCQrhQA5GcGWx2CxmcRqMRYWFholKlSmLTpk1a24oXLy68vLzExYsXxfXr10XTpk3FmjVrMt13o127dkKhUIhKlSqJP//805DNzxcuXrwo2rZtK+7duyeKFSsmAgICpMnXu3fvFtWqVcuyX0NDQ4Wnp6coU6aMOHXqlDGaLmudOnUSHTt21Hru66+/FlWqVBHHjx8Xt27dEk2aNMnUt48fPxZz5swRnp6eonLlyuLo0aMGbrm8+fr6Cg8PD/H06VMhhBBXr14Vf/75p7h79650j5KFCxcKS0tL8fPPP2c6bwMDA4VCoRCVK1cWwcHBBm+/HKWmporx48eLzz//XGui+vbt20XJkiVFRESEEEKIjRs3Cnd3d7F27VqhVqu1jjF//nwxYMAA4evrKwIDAw3a/vxg6NChonXr1kIIIYKDg8XIkSPF//3f/4lz584JIYQ4cuSIqFKlSpbvtbVr1xYKhUJ4eXnxbxhRPqEQgl/NfEhSU1Olb5SA9PHgNWvWxLVr16R5ISkpKWjWrBkiIyPRpEkTrFq1CikpKTA3N890rLVr18LW1hb+/v4GzUNu3uxX8b/FA+7fv4++ffvi2LFjGD9+PP766y9s3rwZnp6eMDc3h0qlktbPf11SUhIOHz6MDh06GDINWcvo06SkJHzxxRfw8PDAggULpO1XrlzBt99+K90hW61WS99IZ0hLS8PVq1cRGRkJX19fQ6cge1euXEHnzp3Ro0cP3Lx5EyEhIbC1tcWLFy/QqFEjbN26FUIIxMbGwtHRMdPr4+LisGnTJgwZMsTwjZexP//8E1ZWVtLdxwFgw4YNmDdvHs6ePSstFBIfH6+1aIh4yyIkH7OM+Y7Aqzl6/fv3R+nSpeHo6IiZM2eiadOmuHHjBiIiIvDNN99g5MiRSE5Olq4CZkhMTMSsWbNQoUKFj/5vGFF+wuLkAzJlyhRcu3YNRYsWxZAhQ1CmTBkolUpUr14dJUqUwLx581C2bFmMHj0aV69ehYeHB/755x+sW7fuo57Q/j5v9mvZsmWlIS7btm3DihUrcPz4cQBAhQoVYG1tjYsXL+KPP/5Aq1atMh2PH0he+fnnn+Hu7i6N+87om4EDB+LChQv4888/UahQIWn/pUuXYtOmTZgzZw6aNm1qrGbnC7Nnz0ZUVBTKly+PPn36SF8+jBgxAqtWrYKfnx/GjBkDc3Nz3Lx5E3379sWECRMwZcqULM/R1z80fsx2796N5s2bZ3nPDCD9A7WpqSkWLlyI3bt34+TJkwA4oT07pk+fjvv376NUqVIYMmQInJycoFAo0KNHD9y5cwdlypTBZ599hvbt20OhUGDUqFEICQnB5MmT0bJlS763En0ojHPBhvJSVFSUqF+/vqhcubKYNm2aKFu2rKhatapYuHChEEKIc+fOiUKFCglPT09hY2MjPD09xcOHD8XVq1eFhYWFuHv3rpEzkKf39asQQmzatEl88803Qggh9uzZI+zt7YWFhYUYN26csZqdL5w6dUp4e3tL9xrJGGaUMdzl/v37wtTUVGzcuFHrdbdv3xbu7u5i7969Bm9zfvHPP/+IChUqiMqVK4vu3buLAgUKiMaNG0vDB2NjY8W3334r7t27p/W6//u//xOOjo6ZhsVQumPHjoly5coJhUIhVq1a9db9Mu6t0bFjRzFhwgQhhMh07yLS9vDhQ+Ht7S0qV64shg4dKlxdXUXNmjXFtm3bhBDp99FRKpXCxsZG/PPPP9Lrbt++LapVqybWr19vrKYTkR7wa7APwNmzZxEdHY0DBw5g6tSpuHLlCpo0aYIffvgBJ0+eRO3atXHmzBksW7YMv//+O27fvg13d3ekpaXB3t4esbGxxk5Blt7VrxnL/966dQv79+9Hw4YN0bdvXwQEBKBOnTp49OgRbt++beQM5CkmJgbbt29HzZo18f333yMoKAhBQUEA0lfc0Wg08PDwQP/+/TFlyhStfvT09ERiYiKePHlipNbL34EDB+Dg4ICLFy9i27ZtuHHjBv777z8sXboUt2/fhr29PSZMmICSJUtqva5o0aIwNzfH9evXjdRy+bp58yZWrlyJ5s2bo3///vj+++8RHh6e5b4mJiZISkrCpUuXpCuCCoWCK/G9w9GjR6HRaHDy5En8+OOPuHPnDtzc3PDDDz/gypUrqFOnDrp37w4zMzOtZcU9PT3x7Nmzt/4siCh/YnHyAYiKikJCQoK0+oiFhQUGDRqESpUqYfz48QCAMmXKoEWLFmjSpIn0uh07dsDb2xvVq1c3Srvl7l39+vXXXwMAypUrh+joaJQrVw4XLlzAqFGjEBAQgJ07d+L48eNa9zigdNbW1ujUqRMGDRqEiRMnokyZMti6dStu3boF4NXwl8WLFyM1NRVTp06VisE//vgDRYsW1TqP6ZXU1FRcv34dLi4u0tBDV1dXTJo0CQ8fPsT69esBIMshSWfOnEHdunVRpUoVQzY5X3ByckKLFi0wdOhQzJ8/H2lpaVrzod508uRJmJiYoF69erhx4waaNGmCGjVqICIiwoCtzj/CwsKgVCqlm83a2Nhg7NixsLCwwNy5cwEAkydPhpmZGZYvX47Lly8DAI4fP45ixYqhbdu2xmo6EekBi5MPQEpKCgoXLozQ0FDpuXLlyqFPnz54+vSpdMMqIQTCwsJw8eJFDB48GKtXr8YXX3whbSNt7+rXx48f4/fff0fXrl1x7NgxrF69GqVKlQIANG7cGBs2bEDPnj05Rj8L5ubmaNq0qVQUT5s2DSEhITh06BBSUlKgUCigVqthYWGBTZs2ITY2Fr6+vmjVqhU6d+6M5s2bo1y5ckbOQp7MzMygUqmQlJQEjUYjTSju2rUratSogXPnzmndkPLhw4cICwvDsGHDsHfvXvTs2RMA3w/eVLhwYfTp0wdeXl6ws7PDjBkz8OOPP2q9NwCv+u3q1atwdXXFlClTUKVKFbi5uSEyMhKurq7GaL7sJScnw8zMDFFRUdJzDRs2RJs2bXD9+nUcOXIEZcuWxdq1a3H9+nU0b94cHTp0QJs2bVC/fn1UqFDBiK0nojxn3FFllBsZ45gfPHggnJycxOLFi0VKSoq0/cGDB6JDhw5iwIAB0r4HDhwQLVu2FPXq1ROXL182Srvl4m3jwLPTr+3btxcDBw7MdIyM8eYfu+yOsc/or379+ok6deqIM2fOZNrnxYsX4rfffhOLFy8WV69ezdN2fkgy5oocO3ZMmJiYiEuXLgkhXs3jCQoKEmXKlBE7duwQQqSP1x87dqxwdXUVPj4+4sqVK0Zpd37y+nldp04d0aFDh0zLAgshRJMmTYRCoRCffPKJCAkJMWQT85WM3/+bN28KhUIh9uzZo7X98uXLok6dOmL27NnSc2FhYWL79u1i9uzZfD8g+kBxtS6Zi4iIgEajQYECBWBlZSWtBANoL287bNgw7N+/H3v37kW1atWk1/v5+cHc3Bxbt24FkL6E7dOnT1G6dGmD5yIn8fHxsLW1lYYQiddWedG1XwVXiNGS3b59/XF4eDjq16+P7t27Y+LEibC3t5dW56FXkpKSYGVlleW2jL5MTk5Gq1atoFQqcfjwYa3+L1OmDHr27IkpU6YgKSkJ586dg0aj+ehXPstOv2bI6M+TJ0+icePG2Lt3L9q3b4+0tDRER0fD2dkZW7Zsga2tLZcKf01W75Ov9223bt1w584d/PXXX1or9NWtWxe1a9fG0qVL+V5L9JHgmBOZUqvVGDhwIHx8fNC+fXu0bt0aKpUKpqamUKvVACB9ELl06RKWLFmCtLQ0/Pjjj1p3ywagdb8CKyurj7owUavVGDRoENq0aYNPP/0UGzduBJA+zyE1NRWA7v3KP5bpstu3arUawcHB0uO0tDQUKVIEAwcOxO+//441a9agRYsW6Nu3LxITE42Wj5yo1WoMHjwYXbp0Qc+ePXH27FlpCFFKSgqAV30ZGxuLgIAAHD9+HCtXrpT2+++//2BjY4OCBQsCSH8vaNy48UddmGS3X1NTUxEZGQng1e/7J598gs8//xwBAQEIDAxE27ZtsXTpUqSmpqJHjx4ffWGiVqsxf/587NmzB4D2+2TGcEMzMzOkpKTgzp07mD9/Pv755x8sWrRIWqQlNTUVFhYWKFCgQKZjENEHzDgXbOhdHj9+LOrWrSuaNGkiTp8+LTZs2CBKlSolhg8frrXfkiVLhJ2dnbRs7a5du0Tt2rVFpUqVxJo1a8TIkSNFoUKFxJEjR4yRhuzcvXtXVK1aVTRq1Ej89ttvok+fPsLLy0sMGDBAaz/2q+507duJEydKdyTPGCrz8OFDYWZmJhQKhejUqZN49uyZwfOQo/DwcFG9enVRr149sWzZMlG1alVRtWpVMWfOHK39lixZIszNzaVlVWfOnClcXFxEv379xIkTJ8To0aNFyZIlxc2bN42Rhuzo0q8WFhZi3bp1mYYrnj59WigUCqFQKISvr6+Ijo42ZAqy9ccffwgvLy+hUCiEv7+/ePLkiRAi83DPJUuWCGtrazF37lwhhBCrV68WZcqUEb6+vmLfvn1i9OjRokiRIuL8+fMGz4GIjIfFiQxt3bpVVK1aVYSHh0vP9ezZU3z33XfS47FjxwonJyexadMmrXkOoaGhwt/fX/j6+gofH58sx/B/rH788UfRuHFjkZiYKIRI/0O5YsUKoVAoxK+//irS0tLEN998IwoUKMB+1ZGuffvmh5SdO3cKhUIhatWqJS5evGiMFGRr165domLFiuLx48dCCCFiYmLEtGnThKWlpbh27ZoQQoju3bsLNzc3sWHDBq2+Xbp0qfjkk09E5cqVRdWqVcW5c+eMkoMc6dKvGzdu1OrX1NRUsWHDBqFUKkWdOnV4zr4mISFB9OvXT4wYMULMnj1b1KxZU6xYsUJrH5VKJQYNGiRcXFzEL7/8ovVe+/vvv4s2bdoIHx8fUbNmTXH27FlDp0BERsbiRIZWrFghrK2tpcdPnz4V1apVEwsXLhQnTpwQQqTfIDAuLk7a580Pe7GxsYZpbD4yatQo0aBBAyHEq/5avny5UCgUonr16uLFixciKipKq+/Yr9mTk7593d9///3OG9t9jDI+sK1YsUK4ublpbQsPDxfNmjUTDRs2FEKk36Tu9b59/cNeWlpaphsufsxy068ZEhMTxeLFi3nOZkGj0Yjg4GDpZol+fn6iffv2IjQ0VGuf27dvv/WcFUKIiIgIwzSYiGSHc06M7Pz58wCgdT8MHx8fODo6ok6dOvj0009RvHhxODo64sCBA2jbti0CAgLg6OgIOzs76TVvjsXN6j4GH5Os+tXOzg6Wlpb4448/pP4KDg5GQEAAbty4gd9//x3Ozs7SWvsA+zUredW3r6tZsyYGDBig/8bL3K5du3DkyBGEh4dLy1CbmprC1dUVJ0+elPZzdXXFxIkTcebMGfz111+oU6cObG1tpe2vL2FtYmKS6YaLH5u86tcM1tbWGDlyJM9ZaPctkP6eWa9ePWm574EDB+Lx48fYs2ePNJ9HoVDA09NT6/30zWXXM+4vRUQfIWNXRx+rPXv2CDc3N+Hk5CTu378vhBBaS1Lev39fHDp0SFSoUEFs3LhRen7Lli3C2tpaPHr0yNBNzhey6leVSiWEEOLGjRuic+fOwsHBQXTv3l3Y2tqK2rVriydPnojPPvtMtGvXzogtlz/2rf5s3LhRuLi4iNq1awtnZ2dRv359sWvXLiGEEBcvXhQVKlQQc+bMkfpbiPRvljt06CC+/PJLYzVb9tiv+pNV3+7evVsIkX4V5PWrzkOGDBGNGjWS5ulld6lxIvo48cqJEWzevBmzZs1Cw4YNUaFCBcyZMwcAtJar9PDwQHR0NExNTfHll19K31L7+PhArVbjypUrRmm7nL2tX83NzSGEgJeXF5YsWYJFixahUKFC2LRpE86dOwc3NzckJyfDw8PDuAnIGPtWP1JTU7FkyRLMnj0bs2bNwsmTJ7F3716ULl0aa9euRVJSEqpXr44GDRpg9+7dOH36tPTawoULQ6lUSkuL0yvsV/15V9/+9NNPUKlUMDExgUKhkP5uDR8+HMnJydi3bx8SExMhhMDt27cBvFq5i4goA4sTA8p4Ey5TpgyaNWuGuXPnokOHDggKCkJQUJDWPkD6uvAmJiaIjIyULnn/8ccf8Pb2Ru3atQ3efrnSpV/d3d3Rp08f/Pjjj+jYsSOA9HvJPHr06KNeYvlt2Lf6lZiYiGfPnqFXr17o06cPzM3NUa9ePVSoUAFxcXHScrYBAQFQq9VYvXo1njx5Ir0+KSlJWmaVXmG/6s/7+jZj2XAgfaiWEALly5dH586dceHCBcyYMQO1atWCv7+/1n27iIgkRr1u85G4fft2psvYGUO4rl27Jjp06CDatGkjbcuYGHj48GHRqFEjUalSJbFy5UrRp08f4eTkJBYtWmSwtsuZrv365r5hYWHi8ePHwt/fX1SvXl08ePBA/43OJ9i3+vNm3166dEm6u3vG7/7mzZtFtWrVtIYb7dy5U3zyySeiRIkSYsGCBeLLL78ULi4u4uTJk4ZNQKbYr/qT0759ffvff/8tlEqlUCgUYsCAAZn2IyLKwCsnerRjxw6ULFkS7du3R926dfHzzz9L2zK+LapYsSI6deqEsLAwrFu3DsCricbNmzfHrFmzULJkSezZswfR0dE4ffo0Ro0aZfBc5CSn/Sr+NxkTSP9mdM2aNahSpQoePnyInTt3onjx4oZNRIbYt/rzZt+uXbsWAFCtWjWYmppCo9FIV0gPHDiAatWqwdzcXPqW/9NPP8XWrVvh6+uLkydP4sWLFzhx4gQaNGhgtJzkgP2qPznt2zevnqxcuRK1a9dGkyZNcOfOHaxatQrm5uZGyYmI8gFjV0cfqr/++kt4eHiIZcuWiUOHDokxY8YIpVIpVq9eLd18LuOb6MePH4uvvvpK1KpVS8THxwshhEhOTpaOlZaWJmJiYgyfhAzltl9TUlKkY12+fFkcP37c8EnIFPtWf97Vt0lJSUKI9KtPGo1GJCUliSpVqohffvnlrcfLeM3Hjv2qP3nZt6GhoWL79u2GbD4R5WMsTvJYxqXvgIAAUaNGDa0PbEOGDBE1a9aUVjR53f79+0XNmjXF1KlTRWhoqGjXrp14+PChwdotd+xX/WHf6k9O+vbJkyfCw8ND3L59WwiRPqRm9OjRhmt0PsB+1R/2LREZG4d15bGMezzcuHEDpUuXhlKphFqtBgDMnDkTlpaW2LdvHyIiIgC8mkzcpEkT1K5dG9OnT0eNGjWgVqvh4uJinCRkiP2qP+xb/dG1bwHgyJEjcHd3R5EiRTBy5EhUqFABDx48gFqt1ho+9zFjv+oP+5aIjM7IxVG+99dff4nhw4eLRYsWiXPnzknPr169WtjZ2UmTBjO+fVq9erUoW7asCAoKkvZNSEgQixYtEqampqJx48biypUrhk1Chtiv+sO+1Z+c9u2xY8eEEOnfWnft2lUUKFBAFCxYUFSsWFH8/fffBs9Dbtiv+sO+JSK5YXGSQ0+fPhXt2rUTLi4uwt/fX1SuXFk4ODhIb+63bt0SRYsWFZMnTxZCCK2VSVxdXbVW3Lp+/bqoU6eO1s0WP1bsV/1h3+pPXvVtYmKiaNeunShWrJjYtm2bwfOQG/ar/rBviUiuWJzkQGJioujVq5fo3r27uHfvnvR87dq1Re/evYUQQsTFxYmZM2cKKysraRx+xljeRo0aiX79+hm+4TLHftUf9q3+5HXfXrhwwYCtly/2q/6wb4lIzjjnJAesra1hYWGB3r17o2TJktKyiW3atMHNmzchhICdnR169OgBb29vdOvWDQ8ePIBCocDDhw8RFRWFTp06GTcJGWK/6g/7Vn/yum9r1KhhpEzkhf2qP+xbIpIzhRCcrZYTarUaSqUSAKS13v39/WFjY4PVq1dL+z158gSNGzdGamoqatasidOnT6N8+fLYsmULChcubKzmyxb7VX/Yt/rDvtUP9qv+sG+JSK5YnOShBg0aoH///ujVq5d0I0UTExPcuXMHISEhOHfuHKpWrYpevXoZuaX5C/tVf9i3+sO+1Q/2q/6wb4lIDlic5JF79+6hXr16OHDggHSJOyUlhXfBzSX2q/6wb/WHfasf7Ff9Yd8SkVxwzkkuZdR2p06dgq2trfSmHhAQgJEjRyIqKsqYzcu32K/6w77VH/atfrBf9Yd9S0RyY2bsBuR3GTesOn/+PPz8/HD48GEMGDAAL1++xC+//MKb0uUQ+1V/2Lf6w77VD/ar/rBviUhuOKwrDyQnJ6Ny5cq4e/cuzM3NERAQgAkTJhi7Wfke+1V/2Lf6w77VD/ar/rBviUhOWJzkkRYtWsDT0xMLFy6EpaWlsZvzwWC/6g/7Vn/Yt/rBftUf9i0RyQWLkzySlpYGU1NTYzfjg8N+1R/2rf6wb/WD/ao/7FsikgsWJ0REREREJAtcrYuIiIiIiGSBxQkREREREckCixMiIiIiIpIFFidERERERCQLLE6IiIiIiEgWWJwQEREREZEssDghIiIiIiJZYHFCRERERESywOKEiOg9evfuDYVCAYVCAaVSicKFC6NFixb4+eefodFosn2c9evXw9HRUX8NJSIiyudYnBARZUOrVq0QHh6OsLAwHDx4EE2aNMHIkSPRrl07pKamGrt5REREHwQWJ0RE2WBhYQFXV1cULVoU3t7e+Pbbb7Fv3z4cPHgQ69evBwAsXLgQlStXho2NDdzd3TFkyBAkJCQAAIKCgtCnTx/ExsZKV2GmTZsGAFCpVBg3bhyKFi0KGxsb1KlTB0FBQcZJlIiIyIhYnBAR5VDTpk1RtWpV7N69GwBgYmKCpUuX4vr169iwYQOOHj2K8ePHAwDq1auHxYsXw97eHuHh4QgPD8e4ceMAAMOGDcOZM2ewbds2XLlyBV27dkWrVq3w77//Gi03IiIiY1AIIYSxG0FEJGe9e/dGTEwM9u7dm2nbZ599hitXruDGjRuZtu3atQuDBg3C8+fPAaTPORk1ahRiYmKkfR4+fIhSpUrh4cOHcHNzk55v3rw5ateujVmzZuV5PkRERHJlZuwGEBHlZ0IIKBQKAMCRI0cwe/Zs/PPPP4iLi0NqaiqSk5Px8uVLWFtbZ/n6q1evIi0tDWXLltV6XqVSoWDBgnpvPxERkZywOCEiyoWbN2+iZMmSCAsLQ7t27TB48GB8//33cHJywqlTp/DVV18hJSXlrcVJQkICTE1NERISAlNTU61ttra2hkiBiIhINlicEBHl0NGjR3H16lWMHj0aISEh0Gg0WLBgAUxM0qfz7dixQ2t/c3NzpKWlaT1XvXp1pKWlISoqCp988onB2k5ERCRHLE6IiLJBpVIhIiICaWlpiIyMxKFDhzB79my0a9cOPXv2xLVr16BWq/HDDz+gffv2CA4OxsqVK7WO4eHhgYSEBAQGBqJq1aqwtrZG2bJl4e/vj549e2LBggWoXr06nj17hsDAQFSpUgVt27Y1UsZERESGx9W6iIiy4dChQyhSpAg8PDzQqlUrHDt2DEuXLsW+fftgamqKqlWrYuHChZg7dy4qVaqEzZs3Y/bs2VrHqFevHgYNGoTu3bvD2dkZ8+bNAwCsW7cOPXv2xNixY1GuXDl06tQJf//9N4oXL26MVImIiIyGq3UREREREZEs8MoJERERERHJAosTIiIiIiKSBRYnREREREQkCyxOiIiIiIhIFlicEBERERGRLLA4ISIiIiIiWWBxQkREREREssDihIiIiIiIZIHFCRERERERyQKLEyIiIiIikgUWJ0REREREJAv/D2VWOFOnzY8MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAF1CAYAAADycJV8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr5klEQVR4nO3dd1gUV9sG8HsW2KWDIIoFOxas2DUGNYli7NFXTWyxJNboazSvJSYqNoKJRmONJWrsPdZYYsHYFWIvwY4KooAUkQV2z/cHH6MroCywyyD377q44szOzDnP4WSZZ+acGUkIIUBERERERJTHVHldASIiIiIiIoDJCRERERERKQSTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkWwzOsK5Bd6vR6PHj2Cg4MDJEnK6+oQERHRO0wIgbi4OBQvXhwqFa8lU8HB5CSLHj16BA8Pj7yuBhERERUgoaGhKFmyZF5Xg8hsmJxkkYODA4DULwlHR8c8rg0RERG9y2JjY+Hh4SGffxAVFExOsihtKJejoyOTEyIiIjILDiWngoaDGImIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrACfFERGRACAGtVpvt/TUaTZYn8ZqrrJyWY86y3rWY3sX+YI5yEhMTs7UfUX7H5ISIiAxotVp06dIl2/tv2rQJ1tbWiiorp+WYs6x3LaZ3sT+Yo5zk5ORs7UeU3zE5ISKiDAU/jDN6n9olsvdOhgtPjD8Rq+lmZfQ+2YkJyF5cjCl78QDm63vm+h0h9Izx+7h7G78P0TuAyQkREWWq0RB/WFiq37qdLiUJJxeMy1FZTcf8CpWV5q3b6ZO1CAwYmO1yshoTkPO4CmpMOY0HMF/fM9fvaPUAb2is3j7VV5usR8/F/2S7HKL8jskJERFlysJSDQv120/ccoPKSgNL9duHyqTksBzGlDNZiSmn8QDmi8lcvyONlQrWVhY5PArRu49P6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEy7yuABERKdth/wF4EfMUkqSClY0d6vQeh0JlKiMxJhInF41H/ONQqCwtYWXrCMAh2+Uc+L4bEuVy7NFw6Ay4lq+OF8+e4OiMwYgLuwOVlRoNBv9gspiubF+CO3/vQFz4PfiMnAv3ag1zVE5mMV1YNxMhf61H7MNb+GjSWhSv3SxfxCT0Ohye2gcxD27CUmMDm0JF0Xj4LDi4l8LTf//ByQVjoEtKhE77ApBUgFvFbJcV+NNQJMZGvbHfWVipUbvX2GyXAZi337X86RTCY7RQSRIcrC0xt2dV1CrlhIhYLXovOY9bEc+htlTB2cYyB/8nEeVveZqc+Pv7Y+vWrbh+/TpsbGzQuHFjBAQEoFKlSvI2Qgj4+flh8eLFiI6ORoMGDTB//nxUrVoVABAVFYWJEydi//79CA0NReHChdGxY0dMmTIFTk5O8nGmTZuG3bt34/z581Cr1Xj27Jm5wyUiypfeG/4T1HaOAIAH5w7i9JIJaDVtI85vmI3CFWqg+ZhFeHI9GId/GAC9Z/Fsl9N0zGLYuhQFANw7sRvHZn2FDvMDcW6ZH9yq1IXv9M14ciMYh6b0RqGyXiaJqWjVBijVsBXOLJmQo+OnySymYt5NUbZpJxz7eViulAOYLybPVr1QulFrSJKEq9sX4/icEWjlvxXHZv8XtXuNRalGrfE8MgybetdCXLli2S6n0ZAfYONcOF08r/a7yFuXcWzO13DyyH4SZM5+t3FIHTjbWgEA/ggOR79lFxDs54Oxm66jYXln7B3VAMdCItHyx9NoUk6fo7KI8qs8HdYVGBiIoUOH4tSpUzhw4ABSUlLQsmVLPH/+XN5mxowZmDVrFubNm4ezZ8/C3d0dLVq0QFxcHADg0aNHePToEX766SdcunQJK1aswN69e9G/f3+DspKSktClSxcMHjzYrDESEeV3aSe8AJCUEA9JkgAAoaf2wbPFpwAAl3JVobJSIyoqKvvl2L+8oJT0PDb1yjuAO0f/QJV2XwAA3CrVhrWzG7Rxz7JdDpB5TIUr1IBDUY8cHdugnExiKlK5LhyLl821cgDzxCSpLFCy7ofysYtUqYe4sLvy59r4WABASmICJEmClZVVtstS2768d5BZv3MtXw3Wji5Iio/Jfjlm7HdpiQkAxCQkQ6VKjWnj2UcY+kEZAEDdMs5QW6p4EZUKrDy9c7J3716D5eXLl6NIkSIICgqCj48PhBCYPXs2xo8fj06dOgEAVq5ciaJFi2Lt2rUYOHAgqlWrhi1btsjHKF++PKZNm4aePXsiJSUFlpapIfr5+QEAVqxYYZ7giIjeIScXfouIq2cAAM3GLII27hmEELB2dJG3sVBbIzExMUflBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB0/K/3OtnBxxD8OzVE55ux3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29jq7bAixcvclwWUX6kqDknMTGpVz5cXFK/dO7cuYPw8HC0bNlS3kaj0aBp06Y4ceIEBg4cmOlxHB0d5cQkO7RaLbRarbwcGxub7WMREeV3jQZPBwDcProd/6ydiUaD/YH/v5L9kshxOU1Hp55QhxxYh7NLJ8Bn9K+QkPvlAOljajZ6Ya4c93Wvx9Ry6iaTlAOYLyYAuLBuJmIf3cZ7w2cBAC5t+gX1vpiMck0/QfT9G9gxtBniS7nmqIws9TuRv/rd7196AwBWHgvF/zZcxaoB3hmURVRwKeZpXUIIjBw5Ek2aNEG1atUAAOHh4QCAokWLGmxbtGhR+bPXRUZGYsqUKZkmLlnl7+8PJycn+cfDI/du8xMR5VflfDog4upZeTkx9uUwLl2SNsdXytN4tvgMYReOycsvnj2V/x0f8QAWGptcKQd4GVNOh+y8TVpMr7aZqZg6pkub5uLu8V1oOXUTLK1tkRgTiXsndqNc008AAA7upaG2d0J0dHSulPemfpcQGQYLdf7rd5838cDh65Hy8pPYlxdEE5J0sLHJvbKI8hPFJCdfffUVLl68iHXr1qX7THrtKokQIt06IPXuRps2beDl5YWJEyfmqD7jxo1DTEyM/BMamrNbxkRE+VHyi3gkREfIy6FnD0Jt7wS1vRNK1W+BkAPrAQBRt69An5wk3/k2lj4lBQmRLy863T2+CxpHF2gcCqGMTwdc27kUAPDkRjBeREdA4+Bskphy05tiym3migkArv6xCLePbEEr/23Q/P/x1fbOsLDSIOzicQBAYkwkkuJj4OCQvWdO6XUpeBH9RF7OrN9F3rqMxJjIbMdpzn4X+yIZj6JfDnvcFhQGV3s1XOys0KVeMcw/dBcAcO7uM2hT9HB2zn5ZRPmZIoZ1DRs2DDt27MDRo0dRsmRJeb27uzuA1DsoxYq9fOJHREREurspcXFxaNWqFezt7bFt27YcTcIDUoePaTSat29IRPQOS06Ix4kFY6FLSoSkUkHjUAhNv5kPSZJQ87OvcWrBt9g5sg1UFpZwLl0ZKlX2rnnpdck4PK0v9MlaQFLB2qkwWkxeD0mSUK//JATOGITNfetAZalGk5FzcW37YpPEdGX7UoQcWAdtXDRO/fodLKzUcCxRPtdjurB+Fq7tXIbEmKf4e+ZQWFhp4Fy6MoDs/e0yV0wp2kScW+YHh2Jl8OfodgAAlZUG7X/5C83HL8eZX8dDr0uBPiUJDsXKZPsEW+hScHzuKOiSk97c7yytUP/Lyfh3/9pslWPOfhfzIgU9fv0HL5L0UKkANwcNdo2oB0mSENClCnot+QeeYw7BykIF71KO2f5/iSi/y9PkRAiBYcOGYdu2bThy5AjKljV8cknZsmXh7u6OAwcOwNs7dYxmUlISAgMDERAQIG8XGxsLX19faDQa7NixI9eGFRARFXS2ru7wnZL+jjYA2DgVRvNxqSdruiQtjv0yKtvlWGps0GLKBlhmMDzHplARtPLfKi+nJCXm6CTxTTFV7fAFqnb4Ql7OSVxviqnmpyNR89OR8nJKUiIOT+2TrXIAc8Zkjd47wzKMqUTtZihR+wiAnMdjobZG02/mw0Kd/iLhq/0OSI0nu8mJOfudh4sNzkx4P8PPijppsP+b1PfPJCbr0GV+EJKzXRJR/panycnQoUOxdu1abN++HQ4ODvI8EicnJ9jY2ECSJIwYMQLTp0+Hp6cnPD09MX36dNja2qJ79+4AUu+YtGzZEgkJCVi9ejViY2Plyetubm6wsLAAANy/fx9RUVG4f/8+dDodzp8/DwCoUKEC7O3tzR88EREREREZyNPkZOHC1KeINGvWzGD98uXL0adPHwDA6NGj8eLFCwwZMkR+CeP+/fvlcaxBQUE4ffo0gNRE41V37txBmTJlAAATJkzAypUr5c/S7sQcPnw4XflERERERGR+eT6s620kScKkSZMwadKkDD9v1qxZlo6zYsUKvuOEiIiIiEjBONuKiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBMu8rgARESmXLiUpV7d7E32yFilZ3C4njKlrTuMqqDHlNB7AfH3PXL8jbbI+V7cjelcxOSEiokydXDDObGUFBgw0SzmMKWfetZjMFU/Pxf+YpRyi/I7JCRERZah2CQezlVXTzcos5TCmnHnXYjJXPPCob/w+ycm5Xw+ifEASQoi8rkR+EBsbCycnJ8TExMDR0TGvq0NEZDJCCGi12R/CotFoIEmSosrKaTnmLOtdi+ld7A/mKCc2NhZFixbleQcVOLxzQkREBiRJgrW19TtVFmPKH2WxnJeSknI+j4soP+LTuoiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiGJWcpKSkYOXKlQgPDzdVfYiIiIiIqIAyKjmxtLTE4MGDodVqTVUfIiIiIiIqoIwe1tWgQQOcP3/eBFUhIiIiIqKCzNLYHYYMGYKRI0ciNDQUderUgZ2dncHnNWrUyLXKERV0Qogc3anUaDSQJEkx5ZizrJyWY86yCmo55izLnDEREVH2SUIIYcwOKlX6my2SJEEIAUmSoNPpcq1yShIbGwsnJyfExMTA0dExr6tDBURiYiK6dOmS7f03bdoEa2trxZRjzrJyWo45yyqo5ZizLHPGRJQbeN5BBZXRd07u3LljinoQ0RsEP4wzep/aJRyM3ufCk2Sj96npZmX0PoCyYwKyF5eSY1JyPIAZ+17oGeP38ahv/D5ERJQtRicnpUuXNkU9iOgtGg3xh4Wl+q3b6VKScHLBuGyX03TMr1BZad66nT5Zi8CAgdkuB1BeTEDO41JaTPklHsB8Ma0e4A2N1dunXGqT9ei5+J9sl0NERMYzOjlJc/XqVdy/fx9JSUkG69u3b5/jShFRehaWalios3aCnRMqKw0s1W8fvpKSC2UpLSYg53EpLab8Eg9gvpg0VipYW1nk8ChERGQKRicnt2/fxieffIJLly7Jc00AyBMF39U5J0REREREZFpGP0r4v//9L8qWLYvHjx/D1tYWV65cwdGjR1G3bl0cOXLEBFUkIiIiIqKCwOg7JydPnsShQ4fg5uYGlUoFlUqFJk2awN/fH8OHD8c//3B8LhERERERGc/oOyc6nQ729vYAgMKFC+PRo0cAUifK37hxI3drR0REREREBYbRd06qVauGixcvoly5cmjQoAFmzJgBtVqNxYsXo1y5cqaoIxERERERFQBGJyffffcdnj9/DgCYOnUq2rZti/fffx+urq7YsGFDrleQiIiIiIgKBqOTE19fX/nf5cqVw9WrVxEVFYVChQrJT+wiIiIiIiIyltFzTtLcvHkT+/btw4sXL+Di4pKbdSIiIiIiogLI6OQkMjISH374ISpWrIjWrVsjLCwMAPDFF19g1KhRuV5BIiIiIiIqGIwe1vX111/DysoK9+/fR5UqVeT13bp1w9dff42ZM2fmagWJiIiIKGM6nQ7Jycl5XQ2iN1Kr1VCpsnZPxOjkZP/+/di3bx9KlixpsN7T0xP37t0z9nBEREREZCQhBMLDw/Hs2bO8rgrRW6lUKpQtWxZqtfqt2xqdnDx//hy2trbp1j99+hQajcbYwxERERGRkdISkyJFisDW1pYPJSLF0uv1ePToEcLCwlCqVKm39lWjkxMfHx/8/vvvmDJlCgBAkiTo9Xr8+OOPaN68efZqTURERERZotPp5MTE1dU1r6tD9FZubm549OgRUlJSYGVl9cZtjU5OfvzxRzRr1gznzp1DUlISRo8ejStXriAqKgrHjx/PdqWJiIiI6O3S5phkNJKFSInShnPpdLq3JidGP63Ly8sLFy9eRP369dGiRQs8f/4cnTp1wj///IPy5ctnr8ZEREREZBQO5aL8wpi+avSdEwBwd3eHn59fdnYlIiIiIiLKkNF3TsqUKYPJkycjNDTUFPUhIiIiIqICyug7J6NGjcKKFSswefJkNG/eHP3798cnn3zCJ3URERER5bWZZh7qNUqYt7w8JkkStm3bho4dO+Z1VbKtWbNmqFWrFmbPnp3XVcmQ0XdOhg0bhqCgIAQFBcHLywvDhw9HsWLF8NVXXyE4ONgUdSQiIiKifE6SpDf+9OnTJ8/qVqZMmSydrIeFheHjjz/O8nFXrFgBZ2fn7FesADI6OUlTs2ZNzJkzBw8fPsTEiROxdOlS1KtXDzVr1sRvv/0GIQpWJk1EREREmQsLC5N/Zs+eDUdHR4N1c+bMMep4SUlJJqpp5tzd3fNktJBOp4Nerzd7uXkh28lJcnIyNm7ciPbt22PUqFGoW7culi5diq5du2L8+PHo0aNHbtaTiIiIiPIxd3d3+cfJyQmSJMnLVlZWGDRoEEqWLAlbW1tUr14d69atM9i/WbNm+OqrrzBy5EgULlwYLVq0AADs2LEDnp6esLGxQfPmzbFy5UpIkoRnz57J+544cQI+Pj6wsbGBh4cHhg8fjufPn8vHvXfvHr7++mv5Lk5mJEnCH3/8AQC4e/cuJEnC1q1b0bx5c9ja2qJmzZo4efIkAODIkSPo27cvYmJi5ONOmjQJAOTXcZQoUQJ2dnZo0KABjhw5IpeTdsdl165d8PLygkajwZIlS2BtbW0QFwAMHz4cTZs2BQBERkbis88+e2M7Kp3RyUlwcDCGDRuGYsWKYdiwYahatSouX76MY8eOoW/fvhg/fjx27NiBbdu2maK+RERERPSOSUxMRJ06dbBr1y5cvnwZAwYMQK9evXD69GmD7VauXAlLS0scP34cv/76K+7evYv//Oc/6NixI86fP4+BAwdi/PjxBvtcunQJvr6+6NSpEy5evIgNGzbg2LFj+OqrrwAAW7duRcmSJTF58mT5Lo4xxo8fj2+++Qbnz59HxYoV8dlnnyElJQWNGzdOd4fom2++AQD07dsXx48fx/r163Hx4kV06dIFrVq1QkhIiHzchIQE+Pv7Y+nSpbhy5Qp69uwJZ2dnbNmyRd5Gp9Nh48aN8k2BrLajkhk9Ib5evXpo0aIFFi5ciI4dO2b4IhUvLy98+umnuVJBIiIiInq3lShRQj5xB1LnOO/duxebNm1CgwYN5PUVKlTAjBkz5OWxY8eiUqVK+PHHHwEAlSpVwuXLlzFt2jR5mx9//BHdu3fHiBEjAACenp745Zdf0LRpUyxcuBAuLi6wsLCAg4MD3N3dja77N998gzZt2gAA/Pz8ULVqVdy8eROVK1c2uEOU5tatW1i3bh0ePHiA4sWLy8fYu3cvli9fjunTpwNIHaW0YMEC1KxZU963W7duWLt2Lfr37w8AOHjwIKKjo9GlSxej2lHJjE5Obt++jdKlS79xGzs7OyxfvjzblSIiIiKigkOn0+GHH37Ahg0b8PDhQ2i1Wmi1WtjZ2RlsV7duXYPlGzduoF69egbr6tevb7AcFBSEmzdvYs2aNfI6IQT0ej3u3LmDKlWq5KjuNWrUkP9drFgxAEBERAQqV66c4fbBwcEQQqBixYoG67VaLVxdXeVltVptcGwA6NGjBxo1aoRHjx6hePHiWLNmDVq3bo1ChQoByHo7KpnRycnbEhMiIiIiImPMnDkTP//8M2bPno3q1avDzs4OI0aMSDfp/fWTbCFEujkirz+USa/XY+DAgRg+fHi6ckuVKpXjur86iiitLm+avK7X62FhYYGgoCBYWFgYfGZvby//28bGJl1s9evXR/ny5bF+/XoMHjwY27ZtM7ghkNV2VLJsvSGeiIiIiCi3/P333+jQoQN69uwJIPUEPiQk5K13NSpXrow9e/YYrDt37pzBcu3atXHlyhVUqFAh0+Oo1WrodLps1j5zGR3X29sbOp0OEREReP/9940+Zvfu3bFmzRqULFkSKpVKHlIGZL8dlSTbT+siIiIiIsoNFSpUwIEDB3DixAlcu3YNAwcORHh4+Fv3GzhwIK5fv44xY8bg33//xcaNG7FixQoAL+9ijBkzBidPnsTQoUNx/vx5hISEYMeOHRg2bJh8nDJlyuDo0aN4+PAhnj59mmtxlSlTBvHx8Th48CCePn2KhIQEVKxYET169EDv3r2xdetW3LlzB2fPnkVAQEC6RCsjPXr0QHBwMKZNm4b//Oc/sLa2lj/LbjsqCe+cEBEREb0r8ukb27///nvcuXMHvr6+sLW1xYABA9CxY0fExMS8cb+yZcti8+bNGDVqFObMmYNGjRph/PjxGDx4sPw+kho1aiAwMBDjx4/H+++/DyEEypcvj27dusnHmTx5MgYOHIjy5ctDq9Xm2vv6GjdujEGDBqFbt26IjIzExIkTMWnSJCxfvhxTp07FqFGj8PDhQ7i6uqJRo0Zo3br1W4/p6emJevXq4ezZs+leHJnddlQSo5KT5ORkVKpUSX7mMhERERGRsfr06WPwRngXFxf5/SGZefU9IK9q37492rdvLy9PmzYNJUuWNLijUK9ePezfvz/TYzds2BAXLlx4a71fTVrKlCmTLolxdnZOt27hwoVYuHChwTorKyv4+fnBz88vw3Jeb5/XnTlzJsP1OWlHpTAqObGysoJWq33jy2mM4e/vj61bt+L69euwsbFB48aNERAQgEqVKsnbCCHg5+eHxYsXIzo6Gg0aNMD8+fNRtWpVAEBUVBQmTpyI/fv3IzQ0FIULF0bHjh0xZcoUODk5yceJjo7G8OHDsWPHDgCpHXnu3LlwdnbOlViITC3wp6FIjI2CJKlgZWOHOr3HoVCZykiMicTJReMR/zgUFlZq1O41NkflHPi+GxJjnv5/OfZoOHQGXMtXx4tnT3B0xmDEhd2BykqNBoN/MFlMV7YvwZ2/dyAu/B58Rs6Fe7WGOS5r77hOeBH9OF1cF9bNRMhf6xH78BY+mrQWxWs3U3xMQq/D4al9EPPgJiw1NrApVBSNh8+Cg3spPLkRjNOLxiH5RTwkSYU6/SbmKB4AOOw/AC/kPpFx31NZWsLK1hGAQ7bLMVffa/vzGUTEJUElSXCwtsTcnlVRq5QTImK16L3kPG5FPIfGygJzuvMiHFF+sGDBAtSrVw+urq44fvw4fvzxR/kdJpT/GD2sa9iwYQgICMDSpUthaZmzUWGBgYEYOnQo6tWrh5SUFIwfPx4tW7bE1atX5acxzJgxA7NmzcKKFStQsWJFTJ06FS1atMCNGzfg4OCAR48e4dGjR/jpp5/g5eWFe/fuYdCgQXj06BE2b94sl9W9e3c8ePAAe/fuBQD5pTQ7d+7MUQxE5tJoyA+wcS4MAHhw7iBOL5mAVtM24vyG2ShcoQaaj1mEyFuXcWzO13DyqPiWo2Wu6ZjFsHUpCgC4d2I3js36Ch3mB+LcMj+4VakL3+mb8eRGMA5N6Y1CZXN28pZZTEWrNkCphq1wZsmEHB3/Vc3HL4fGPvWCxatxFfNuirJNO+HYz8PecoSsMVdMnq16oXSj1pAkCVe3L8bxOSPgO30LDk7uhab/W4Ritd7Hs/v/Yu+4T/7/95T+nVRZ9d7wn6C2c0wX06t978n1YBz+YQD0nsWzXY65+t7qgd5wd0q9ovpHcDj6LbuAYD8fjN10HQ3LO2PvqAY4e/sZOs8/h+olHTg5k0jhQkJCMHXqVERFRaFUqVIYNWoUxo0bl9fVomwyOrs4ffo0Dh48iP3798uPKHvV1q1bs3ystEQhzfLly1GkSBEEBQXBx8cHQgjMnj0b48ePR6dOnQCkvhm0aNGiWLt2LQYOHIhq1aoZvCmzfPnymDZtGnr27ImUlBRYWlri2rVr2Lt3L06dOiW/gGbJkiVo1KgRbty4YXCnhkip1LYvr0gnJcTLdzBDT+1Du9mp/y+5lq8Ga0cXJMXHAHDMXjn2L+84Jj2PBaTUU7M7R/9Al5XnAQBulWrD2tkN2rhnQJGi2SoHyDymwhVqZLZLtmkyiatI5bqZ7ZIt5ohJUlmgZN0P5WMXqVIPV7YtgjY2Ctq4aBSrlfr0F+dSFaG2c0Tis6dA0ZLZLi8tMQEy73su5apCZaVGVFRU9ssxU99ztn2ZqMUkJEOlSo1n49lHuDPjAwBAvXLOKOKoQdTzZBTOVilEZC4///wzfv7557yuBuUSo5MTZ2dndO7c2RR1kSfruLi4AADu3LmD8PBwtGzZUt5Go9GgadOmOHHiBAYOHJjpcRwdHeU7OydPnoSTk5PBmzEbNmwIJycnnDhxIsPkJO2lNWliY2NzHiBRDp1c+C0irqaOM202ZhG0cc8ghIC1o4u8jW3h4oh/HJqjcgJnDEL4hb8BAC2nbUZibBSE0Mt3BADAvogH4sLu5KgcIH1MpvR6XKZizpgA4Mofv6JUw1awdnKFjbMb7v69A2Xeb4+I6+cQ+/A2HIuXzXEZWel7FmprJCYm5qgcc/W93kv+weFrkQCAvaMaIDI+CXoh4Oaokbcp7WqD2xHPc1QOEREZx+jkxFRvfhdCYOTIkWjSpAmqVasGAPKjz4oWNbw6VrRoUdy7dy/D40RGRmLKlCkGiUt4eDiKFCmSbtsiRYpk+ng1f3//TCcpEeWVRoOnAwBuH92Of9bORKPB/sDrc8By4QkjTUennlCHHFiHs0snwGf0r5Dw+lyz3HmSyesxNRu98C17ZN/rcbWcuskk5ZgzpgvrZiL20W28N3wWAOCjSWtwdtkkXFg/E4XKeKGIV30kxuT8sZhZ6nu50CfM1fd+/9IbALDyWCj+t+EqVg3wTldOLj2sh4iIjJDtobRPnjzBsWPHcPz4cTx58iTHFfnqq69w8eJFrFu3Lt1nGb35M6NJ+bGxsWjTpg28vLwwcaLhJNCMts/sOAAwbtw4xMTEyD+hoTm7Ek2Um8r5dEDE1bPycmLsy6E0CZFhsFBbZ7Sb0TxbfIawC8fk5RfPXp7kxkc8gIXGJlfKAV7GpI17lmvHzExaXK+2mymYOqZLm+bi7vFdaDl1EyytbQEALuWqwXfaZnSYHwif/y3Ei6hwWNnYv+VIWfemvqdL0ho8HScnzNX3Pm/igcPXI+XlJ7Ev75jfj3oBa7VFRrsREZGJGJ2cPH/+HP369UOxYsXg4+OD999/H8WLF0f//v2RkJCQrUoMGzYMO3bswOHDh1Gy5Mtx0e7u7gCQ7u5GREREurspcXFxaNWqFezt7bFt2zZYWVkZHOfx48fpyn3y5Em646TRaDRwdHQ0+CHKK3pdCl5Ev7wIEHr2INT2TlDbO6FU/RYIObAeABB56zISYyINxu4bVU5KChIiX/7/dvf4LmgcXaBxKIQyPh1wbedSAMCTG8F4ER0BjYOzSWLKbUkJcUiIDJOXX40rN5kzpqt/LMLtI1vQyn+bwXyahKiX33U39qyEpbUtNK8MvTJW8ot4JERHyMuZ9b2o21egT06Sh+Uay1x9L1mnx6NnL4eebQsKg6u9Gi52VuhSrxjmH7oLADh7+xkex2jhYpf9BwkQEZHxjB7WNXLkSAQGBmLnzp147733AADHjh3D8OHDMWrUqHTPcX4TIQSGDRuGbdu24ciRIyhb1nBcdNmyZeHu7o4DBw7A2zv1FnxSUhICAwMREBAgbxcbGwtfX19oNBrs2LEj3ZW7Ro0aISYmBmfOnEH9+vUBpE7sj4mJQePGjY1tAiKzE7oUHJ87CrrkJEgqFTQOhdD0m/mQJAk1P/sapxZ8i50j20BlaYX6X07Gv/vXZqscvS4Zh6f1hT5ZC0gqWDsVRovJ6yFJEur1n4TAGYOwuW8dqCzVaDJyLq5tX2ySmK5sX4qQA+ugjYvGqV+/g4WVGo4lyme7rOTnsQj8YQB0SS/SxXVh/Sxc27kMiTFP8ffMobCw0sC5dGVk5+lW5oopRZuIc8v84FCsDP4c3Q4AoLLSoP0vf+HGnhW4dWgTIAScSlVEs29/w5lfx2erHABITojHiQVjoUtKfHPfs7CEc+nKUKmyd0PeXH0vRSfQdUEwtMl6qFSAm4MGu0bUgyRJCOhSBb2W/APPMYegtlTht3418Mtfd7NVDhERZY/RycmWLVuwefNmNGvWTF7XunVr2NjYoGvXrkYlJ0OHDsXatWuxfft2ODg4yHdInJycYGNjA0mSMGLECEyfPh2enp7w9PTE9OnTYWtri+7duwNIvWPSsmVLJCQkYPXq1YiNjZUnr7u5ucHCwgJVqlRBq1at8OWXX+LXX38FkPoo4bZt2/JJXZQvWKit0fSb+bBQa9J9ZuNUGM3HvTxR0yVps52cWGps0GLKBlhmMCzMplARtPJ/+TS+lKTEHCUnb4qpaocvULXDF/KyLkmLY7+MynZZdm4l0H7uwQw/q/npSNT8dKS8nJKUiMNT+2SrHHPFZKmxRu+dYRn+nrx7joF3zzHyckpSziao27q6w3dK+uG2gGHfy+nvyFx9z0ZtgV1f14e1VfrhWkWdNNj/zcv3zyQm65icEJFZ9OnTB8+ePXvrCxSVbMWKFRgxYgSePXuWo+MYnZwkJCRkOBSqSJEiRg/rSktkXk10gNRJ92lvxRw9ejRevHiBIUOGyC9h3L9/PxwcUh/XGRQUhNOnTwMAKlSoYHCcO3fuoEyZMgCANWvWYPjw4fKTv9q3b4958+YZVV8iIiIiJSs86ahZy3s6yceo7fv06YOVK1cCACwtLeHh4YFOnTrBz88v3espCpI5c+ake7P820iShG3btqFjx46mqVQeMTo5adSoESZOnIjff/9dHj714sUL+Pn5oVGjRkYdKyu/BEmSMGnSJEyaNCnDz5s1a5al47i4uGD16tVG1Y+IiIiIclerVq2wfPlyJCcn4++//8YXX3yB58+fZzj6Jjk52WAesTmZouykpCSo1ep0652ccn9uYlblZRtnxOjBwXPmzMGJEydQsmRJfPjhh/joo4/g4eGBEydOYM6cOaaoIxERERG9IzQaDdzd3eHh4YHu3bujR48e8nCmSZMmoVatWvjtt99Qrlw5aDQaCCEQExODAQMGoEiRInB0dMQHH3yACxcuGBx3x44dqFu3LqytrVG4cGH5Bd5A6sXu14dMOTs7Y8WKFQCAu3fvQpIkbNy4Ec2aNYO1tTVWr16Ne/fuoV27dihUqBDs7OxQtWpV7NmzRz5GYGAg6tevD41Gg2LFimHs2LFISUmRP2/WrBm++uorjBw5EoULF0aLFi0ybJM+ffoY3AFp1qwZhg8fjtGjR8PFxQXu7u4GF+rTRgZ98sknkCRJXgaAnTt3ok6dOrC2tka5cuXg5+dnUCdJkrBo0SJ06NABdnZ2mDx5MkqWLIlFiwzfyxUcHAxJknD79m0AwKxZs+QXsHt4eGDIkCGIj4/PMJ6cMDo5qVatGkJCQuDv749atWqhRo0a+OGHHxASEoKqVavmegWJiIiI6N1lY2OD5ORkefnmzZvYuHEjtmzZgvPnzwMA2rRpg/DwcOzZswdBQUGoXbs2PvzwQ0RFpT7OfPfu3ejUqRPatGmDf/75BwcPHkTdunWNrsuYMWMwfPhwXLt2Db6+vhg6dCi0Wi2OHj2KS5cuISAgAPb2qY9nf/jwIVq3bo169erhwoULWLhwIZYtW4apU6caHHPlypWwtLTE8ePH5bnPWbFy5UrY2dnh9OnTmDFjBiZPnowDBw4AAM6eTX2k+/LlyxEWFiYv79u3Dz179sTw4cNx9epV/Prrr1ixYgWmTZtmcOyJEyeiQ4cOuHTpEr744gt8+umnWLNmjcE2a9euRaNGjVCuXDkAgEqlwi+//ILLly9j5cqVOHToEEaPHm1E62aN0cO6gNRO9OWXX+Z2XYiIiIioADlz5gzWrl2LDz/8UF6XlJSEVatWwc3NDQBw6NAhXLp0CREREdBoUh848tNPP+GPP/7A5s2bMWDAAEybNg2ffvqpwQu0a9asaXR9RowYYXDH5f79++jcuTOqV68OAPKJOgAsWLAAHh4emDdvHiRJQuXKlfHo0SOMGTMGEyZMkJ9eWKFCBcyYMcPoutSoUUN+b5+npyfmzZuHgwcPokWLFnLbODs7y6/eAIBp06Zh7Nix+Pzzz+X6TpkyBaNHjzZ4B2D37t3Rr18/eblHjx6YNWsW7t27h9KlS0Ov12P9+vX49ttvDdomTdmyZTFlyhQMHjwYCxYsMDq2N8lWcvLvv//iyJEjiIiIgF6vN/hswoQJuVIxIiIiInr37Nq1C/b29khJSUFycjI6dOiAuXPnyp+XLl1aPvkGUh9+FB8fD1dXV4PjvHjxArdu3QIAnD9/PlcunL9+t2X48OEYPHgw9u/fj48++gidO3dGjRo1AADXrl1Do0aNDF7o/d577yE+Ph4PHjxAqVKlMjxmVqWVk6ZYsWKIiIjIZOtUQUFBOHv2rMGdEp1Oh8TERCQkJMDW1jbDOnl7e6Ny5cpYt24dxo4di8DAQERERKBr167yNocPH8b06dNx9epVxMbGIiUlBYmJiXj+/HmuPszA6ORkyZIlGDx4MAoXLgx3d3eDX4gkSUxOiIiIiChTzZs3x8KFC2FlZYXixYunm4z9+omuXq9HsWLFcOTIkXTHcnZ2BpA6qudNJElK9wClV4eSZVb2F198AV9fX+zevRv79++Hv78/Zs6ciWHDhkEIYXAeDLx82NOr67N74v56u0iSlO6mwOv0ej38/PwM7v6kefU9gBnVqUePHli7di3Gjh2LtWvXwtfXF4ULFwYA3Lt3D61bt8agQYMwZcoUuLi44NixY+jfv3+G7ZgTRicnU6dOxbRp0zBmzJi3b0xERERE9Ao7O7t0r394k9q1ayM8PByWlpYGE79fVaNGDRw8eBB9+/bN8HM3NzeEhYXJyyEhIVl+BYaHhwcGDRqEQYMGYdy4cViyZAmGDRsGLy8vbNmyxSBJOXHiBBwcHFCiRIksx5ddVlZW0Ol0Butq166NGzduGNW+abp3747vvvsOQUFB2Lx5s8HT086dO4eUlBTMnDlTHq62cePGnAWQCaMnxEdHR6NLly6mqAsRERERkYGPPvoIjRo1QseOHbFv3z7cvXsXJ06cwHfffYdz584BSJ3gvW7dOkycOBHXrl3DpUuXDOZ5fPDBB5g3bx6Cg4Nx7tw5DBo0KEuPzx0xYgT27duHO3fuIDg4GIcOHUKVKlUAAEOGDEFoaCiGDRuG69evY/v27Zg4cSJGjhwpn8CbUpkyZXDw4EGEh4cjOjoaQOr0it9//x2TJk3ClStXcO3aNWzYsAHffffdW49XtmxZNG7cGP3790dKSgo6dOggf1a+fHmkpKRg7ty5uH37NlatWpXu6V65xeiW69KlC/bv32+KuhARERERGZAkCXv27IGPjw/69euHihUr4tNPP8Xdu3flF4M3a9YMmzZtwo4dO1CrVi188MEH8ku6AWDmzJnw8PCAj48Punfvjm+++Uaef/EmOp0OQ4cORZUqVdCqVStUqlRJngBeokQJ7NmzB2fOnEHNmjUxaNAg9O/fP0uJQG6YOXMmDhw4AA8PD3h7ewMAfH19sWvXLhw4cAD16tVDw4YNMWvWLJQuXTpLx+zRowcuXLiATp06GQyVq1WrFmbNmoWAgABUq1YNa9asgb+/v0niytKwrl9++UX+d4UKFfD999/j1KlTqF69erqsc/jw4blbQyIiIiLKEmPf2G5uae8VyUxmL952cHDAL7/8YnBO+rpOnTplONcCAIoXL459+/YZrHv27Jn87zJlymT4Uu9XJ+pnpGnTpjhz5kymn2c0TyYjr7dLRvu9/p6Wdu3aoV27dum28/X1ha+vb6Zlvenl5UOGDMGQIUMy/Ozrr7/G119/bbCuV69e8r/79OmDPn36ZHrsrMpScvLzzz8bLNvb2yMwMBCBgYEG6yVJYnJCRERERETZkqXk5M6dO6auBxERERERFXCmn61DRERERESUBUYnJ//5z3/www8/pFv/448/8ileRERERESUbUYnJ4GBgWjTpk269a1atcLRo0dzpVJERERE9GZvmthMpCTG9FWjk5P4+Hio1ep0662srBAbG2vs4YiIiIjICGlPSs3qSwSJ8lpSUhIAwMLC4q3bGv2G+GrVqmHDhg2YMGGCwfr169fDy8vL2MMRERERkREsLCzg7OyMiIgIAICtra38hnIipdHr9Xjy5AlsbW1hafn21MPo5OT7779H586dcevWLXzwwQcAgIMHD2LdunXYtGmT8TUmIiIiIqO4u7sDgJygECmZSqVCqVKlspREG52ctG/fHn/88QemT5+OzZs3w8bGBjVq1MBff/2Fpk2bZqvCRERERJR1kiShWLFiKFKkCJKTk/O6OkRvpFaroVJlbTaJ0ckJALRp0ybDSfFEREREZD4WFhZZGsdPlF9kKzkBUie2REREQK/XG6wvVapUjitFREREREQFj9HJSUhICPr164cTJ04YrBdCQJIk6HS6XKscEREREREVHEYnJ3369IGlpSV27dqFYsWK8ekQRERERESUK4xOTs6fP4+goCBUrlzZFPUhIiIiIqICyuiXMHp5eeHp06emqAsRERERERVgRicnAQEBGD16NI4cOYLIyEjExsYa/BAREREREWWH0cO6PvroIwDAhx9+aLCeE+KJiIiIiCgnjE5ODh8+bIp6EBERERFRAWd0cvKmt8CfP38+J3UhojfQpSTl6naZ0SdrkZLF7XJKaTGlbZsTSospv8QDmC8mbbL+7RsZsR0REeWebL+EMU1MTAzWrFmDpUuX4sKFCxzWRWQiJxeMM0s5gQEDzVIOwJhywlwxmSsewHwx9Vz8j1nKISIi42U7OTl06BB+++03bN26FaVLl0bnzp2xbNmy3KwbEf2/2iUczFJOTTcrs5QDMKacMFdM5ooHMOPvyaO+ecohIqJskYQQIqsbP3jwACtWrMBvv/2G58+fo2vXrli0aBEuXLgALy8vU9Yzz8XGxsLJyQkxMTFwdHTM6+pQASGEgFab/SEsGo0mSy9KNVc55iwrp+WYs6yCWo45yzJnTES5gecdVFBl+c5J69atcezYMbRt2xZz585Fq1atYGFhgUWLFpmyfkQFmiRJsLa2fmfKMWdZjEn55ZizLHPGRERE2Zfl5GT//v0YPnw4Bg8eDE9PT1PWiYiIiIiICqAsv4Tx77//RlxcHOrWrYsGDRpg3rx5ePLkiSnrRkREREREBUiWk5NGjRphyZIlCAsLw8CBA7F+/XqUKFECer0eBw4cQFxcnCnrSURERERE7zijJsS/7saNG1i2bBlWrVqFZ8+eoUWLFtixY0du1k8xODGNiIiIzIXnHVRQZfnOSUYqVaqEGTNm4MGDB1i3bl1u1YmIiIiIiAqgHN05KUh4BYOIiIjMhecdVFDl6M4JERERERFRbmFyQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSJY5nUF8pvExESo1Wqj99NoNJAk6a3bCSGg1WqzUzWjyjFnWfmlHHOVVZB/R+Yui4iIiPIXJidG6t27N6ysrIzeb9OmTbC2tn7rdlqtFl26dMlO1Ywqx5xl5ZdyzFVWQf4dmbssIiIiyl+YnBjpQlg8VBbGNVvtEg7Gl/Mk2eh9aroZnzQBQPDDOKP3UXJM2YkHME9M/B29IvSM8ft41M9eWURERJQvMDnJhkZD/GFh+fahXbqUJJxcMC7b5TQd8ytUVpq3bqdP1iIwYGC2ywHevZiyGg9gnpj4O8rY6gHe0Fi9feqbNlmPnov/yVFZREREpHxMTrLBwlINC/XbT95ySmWlgaX67cNXUnKhrHctJnPFA2QtJv6OMqaxUsHayiIXjkRERETvAj6ti4iIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBEs87Jwf39/bN26FdevX4eNjQ0aN26MgIAAVKpUSd5GCAE/Pz8sXrwY0dHRaNCgAebPn4+qVavK2yxevBhr165FcHAw4uLiEB0dDWdnZ4OygoODMWbMGJw9exYWFhbo3LkzZs2aBXt7e6PrHfjTUCTGRkGSVLCysUOd3uNQqExlJMZE4uSi8Yh/HAoLKzVq9xqb7bYBgAPfd0NizNP/L8ceDYfOgGv56njx7AmOzhiMuLA7UFmp0WDwDzkq500xXdm+BHf+3oG48HvwGTkX7tUamiSmC+tmIuSv9Yh9eAsfTVqL4rWb5Timw/4D8EIuyzQxCb0Oh6f2QcyDm7DU2MCmUFE0Hj4LDu6l8PTff3BywRjokhKh074AJBXgVjHbZb2L/a7tz2cQEZcElSTBwdoSc3tWRa1SToiI1aL3kvO4FfEcGisLzOnuleOyiIiISPnyNDkJDAzE0KFDUa9ePaSkpGD8+PFo2bIlrl69Cjs7OwDAjBkzMGvWLKxYsQIVK1bE1KlT0aJFC9y4cQMODg4AgISEBLRq1QqtWrXCuHHj0pXz6NEjfPTRR+jWrRvmzZuH2NhYjBgxAn369MHmzZuNrnejIT/AxrkwAODBuYM4vWQCWk3biPMbZqNwhRpoPmYRIm9dxrE5X8PJI/sno03HLIatS1EAwL0Tu3Fs1lfoMD8Q55b5wa1KXfhO34wnN4JxaEpvFCqbs5O3zGIqWrUBSjVshTNLJuTo+Gkyi6mYd1OUbdoJx34elivlAMB7w3+C2s4RgGlj8mzVC6UbtYYkSbi6fTGOzxmBVv5bcWz2f1G711iUatQazyPDsKl3LcSVK5btct7Ffrd6oDfcnawBAH8Eh6PfsgsI9vPB2E3X0bC8M/aOaoCzt5+h8/xzqF7Sgbd6iYiI3nF5mpzs3bvXYHn58uUoUqQIgoKC4OPjAyEEZs+ejfHjx6NTp04AgJUrV6Jo0aJYu3YtBg4cCAAYMWIEAODIkSMZlrNr1y5YWVlh/vz5UKlST2/mz58Pb29v3Lx5ExUqVDCq3mpbB/nfSQnxkCQJABB6ah/azU6NybV8NVg7uiApPgaAo1HHl8uxd3pZzvPY1CvvAO4c/QNdVp4HALhVqg1rZzdo454BRYpmqxwg85gKV6iR7WNmWE4mMRWpXDdXywEgJyaA6WKSVBYoWfdD+dhFqtTDlW2L5M+18bEAgJTEBEiSBCsrq2yX9S72O2fbl+0Rk5AMlSo1po1nH+HOjA8AAPXKOaOIowZRz5NRONslERERUX6Qp8nJ62JiYgAALi4uAIA7d+4gPDwcLVu2lLfRaDRo2rQpTpw4IScnb6PVaqFWq+XEBABsbGwAAMeOHcswOdFqtdBqtfJybGyswecnF36LiKtnAADNxiyCNu4ZhBCwdnSRt7EtXBzxj0OzVMfMBM4YhPALfwMAWk7bjMTYKAihl6+gA4B9EQ/Ehd3JUTlA+phM5fWYTMlcMaW58sevKNWwFQDg/VHz8dek7gheORWJMZFw8qgIa2vrHB3/Xex3vZf8g8PXIgEAe0c1QGR8EvRCwM1RI29T2tUGtyOe57gsIiIiUjbFjJIQQmDkyJFo0qQJqlWrBgAIDw8HABQtanhltmjRovJnWfHBBx8gPDwcP/74I5KSkhAdHY1vv/0WABAWFpbhPv7+/nBycpJ/PDw8DD5vNHg6Osz9C9W7DMM/a2emrvz/K9mvBJXlOmam6ehF6LbmCmr3+Q5nl6YOQ5LwWjnIeTlAJjGZQEYxmYq5YgKAC+tmIvbRbdTp8x0A4NKmX1Dvi8notvoy2s8/gpgHIYiPj89RGe9iv/v9S2+EzvoIUztVwv82XM2wrFwIiYiIiPIBxSQnX331FS5evIh169al+0ySXj9REenWvUnVqlWxcuVKzJw5E7a2tnB3d0e5cuVQtGhRWFhYZLjPuHHjEBMTI/+EhmZ8JbqcTwdEXD0rLyfGRsn/TogMg4U6Z1fK03i2+AxhF47Jyy+ePZX/HR/xABYam1wpB3gZkzbuWa4dMyNpMb3aZqZi6pgubZqLu8d3oeXUTbC0tkViTCTundiNck0/AQA4uJeG2t4J0dHRuVLeu9jvPm/igcPXI+XlJ7Ev71zej3oBa3XG/68SERHRu0MRycmwYcOwY8cOHD58GCVLlpTXu7u7A0C6uyQRERHp7qa8Tffu3REeHo6HDx8iMjISkyZNwpMnT1C2bNkMt9doNHB0dDT4AQC9LgUvop/I24WePQi1vRPU9k4oVb8FQg6sBwBE3rqMxJhIg/H7xtCnpCAh8mXcd4/vgsbRBRqHQijj0wHXdi4FADy5EYwX0RHQODhnq5y3xZSb3hRTbkt+EY+E6Ah52VQxAcDVPxbh9pEtaOW/DZr/P77a3hkWVhqEXTwOAEiMiURSfIz8EAdjvYv9Llmnx6NnifLytqAwuNqr4WJnhS71imH+obsAgLO3n+FxjBYudtmfr0NERET5Q57OORFCYNiwYdi2bRuOHDmSLlEoW7Ys3N3dceDAAXh7ewMAkpKSEBgYiICAgGyVmZbU/Pbbb7C2tkaLFi2Mq7NOh+NzR0GXnARJpYLGoRCafjMfkiSh5mdf49SCb7FzZBuoLK1Q/8vJ+Hf/2mzVU69LxuFpfaFP1gKSCtZOhdFi8npIkoR6/SchcMYgbO5bBypLNZqMnItr2xdnq5zUmFIyjenK9qUIObAO2rhonPr1O1hYqeFYonyux3Rh/Sxc27kMiTFP8ffMobCw0sC5dGUA2TshTU6Ix4kFY6FLSjRpTCnaRJxb5geHYmXw5+h2AACVlQbtf/kLzccvx5lfx0OvS4E+JQkOxcqke8R1Vr3pd5Rf+12KTqDrgmBok/VQqQA3Bw12jagHSZIQ0KUKei35B55jDkFtqcJv/Wrgl7/uZrssIiIiyh/yNDkZOnQo1q5di+3bt8PBwUG+Q+Lk5AQbGxtIkoQRI0Zg+vTp8PT0hKenJ6ZPnw5bW1t0795dPk54eDjCw8Nx8+ZNAMClS5fg4OCAUqVKyZPr582bh8aNG8Pe3h4HDhzA//73P/zwww9GnyxaqDVoPmYRLNSadJ/ZOBVG83EvT9Z0SdpsnyRaamzQYsoGWGYwPMemUBG08t8qL6ckJeboJNFCbY2m38zPMKaqHb5A1Q5fyMu6JC2O/TIqW+W8Kaaan45EzU9HysspSYk4PLVPtsoBAFtXd/hOST9EEMjtmKzRe2dYhjGVqN0MJWofAZDzeN70O8qv/c5GbYFdX9eHtVX64VpFnTTY/83L988kJuuYnBARERUAeZqcLFy4EADQrFkzg/XLly9Hnz59AACjR4/GixcvMGTIEPkljPv37zcYHrNo0SL4+fnJyz4+PumOc+bMGUycOBHx8fGoXLkyfv31V/Tq1ct0wRERERERkVHyfFjX20iShEmTJmHSpEmZbvO2zwHg999/N7J2RERERERkToqYEE9ERERERMTkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEREREZEiMDkhIiIiIiJFYHJCRERERESKwOSEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKYJlXlcgP9KlJOXqdpnRJ2uRksXtcupdi8mYepojJv6OMqZN1ufqdkRERJS/MTnJhpMLxpmlnMCAgWYpB3j3YjJXPMC7F5M5+13Pxf+YrSwiIiJSPiYnRqpZzB5WVlamL8fN9GWkqV3CwSzlmCsmc8UDvHsxmbPfwaO++coiIiKifEESQoi8rkR+EBsbCycnJzx+/BiOjo5G76/RaCBJ0lu3E0JAq83+cJmslmPOsvJLOeYqqyD/jsxdFhFRfpV23hETE5Ot8w6i/Ip3ToxkbW0Na2trkx1fkiSTHj8vynrXyjFnWe9aOeYui4iIiPIXPq2LiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEfi0rixKe+JybGxsHteEiIiI3nVp5xt84wMVNExOsiguLg4A4OHhkcc1ISIiooIiLi4OTk5OeV0NIrPhSxizSK/X49GjR3BwcOAL4IwQGxsLDw8PhIaG8iVSuYjtajpsW9Nh25oG29V08rJthRCIi4tD8eLFoVJxFD4VHLxzkkUqlQolS5bM62rkW46OjvyjaQJsV9Nh25oO29Y02K6mk1dtyzsmVBAxFSciIiIiIkVgckJERERERIrA5IRMSqPRYOLEidBoNHldlXcK29V02Lamw7Y1Dbar6bBticyPE+KJiIiIiEgReOeEiIiIiIgUgckJEREREREpApMTIiIiIiJSBCYnRERERESkCExOiIiIiIhIEZicEBERERGRIjA5oWy7cOECbt26ldfVeCdFRERAp9PldTWIsiw+Pj6vq/DO4vcBERUkTE7IaI8fP0b79u3x0UcfYd++fXjx4kVeV+mdIIRAUlISBgwYAF9fX5w8eTKvq/ROefz4MXbv3g2+2il3hYWFoUePHvjss8/Qv39/BAcH53WV3gn8PjCt8PBwTJ48GQsWLMCePXvyujpE9AomJ2SU0NBQtG3bFpIk4cSJE+jVqxdsbGzyulrvBEmSEBERgR07duDJkyc4dOgQYmJiAIAn1Dk0b948FC9eHO3atcOVK1fyujrvjNWrV6NatWpISkrCxx9/jEOHDiEgIADh4eF5XbV8j98HpjNlyhRUqFABZ86cwYoVK/DJJ59g7dq1ANi2RErA5ISMsmfPHri6umL79u3w9PTEvXv3cP/+faSkpOR11d4JycnJaNu2LXr16oXVq1fj1KlTAFJPVMh4Qgjs2bMHf/zxB2bMmAFvb2/4+flBr9fnddXyPZ1Oh99//x0jR47Epk2bMGTIEAQEBCAwMJAXLHIJvw9yl06nQ0BAAPbs2YONGzdi165dOHjwIEaOHIlx48YBYNsSKQGTE8qStKtJFy9eRPHixREVFYXmzZuja9euaNSoEXr06IGjR4/mcS3zvwcPHuDixYvw9/eHnZ0d1q1bJ18tJeNJkoSiRYuiV69eGDhwIH7++Wds2bIF+/bty+uq5XuXLl3C7du3Ubx4cXldQkICOnfuzD6bS/h9kLssLCyQlJSEDz74AK1atQIAODg4oGnTprC0tOQcSiKFYHJCGXr+/DlCQkIQGxsrr9Pr9YiOjoa9vT3Gjh0LT09PbNmyBbNnz0ZsbCzGjx/P4RxZkJSUlOk8nQcPHsDLywsAMHbsWBw9ehTr1q3DgAEDEBYWZs5q5ktxcXE4evQobt68Ka+rU6cOPv/8c9jb28PHxwddunTB+PHjERcXl4c1zV9e7bNpd528vLzg6uqKZcuWYfHixejatSv69euHf/75BzVq1MCIESMQERGRl9XOF2JjY3Hq1Ck8fPgw3Wf8PsiZjP6OffPNN5g2bRpUKpV80S0qKgrW1tYoX758XlWViF7B5ITSmTJlCqpXr46uXbuiVq1a+PPPP6HX66FSqdCoUSPMmzcP+/btw5AhQ1ClShV06dIFw4YNg06nw4YNG/K6+ooWEBCA6tWrp7vLlHbCFxsbi2fPngEAunXrBktLSwwfPhznzp2DJEkcD/0GU6ZMQfny5TFy5EjUqFEDs2bNSpdcA4C/vz+uX7+OFStW5FFN85fX+6xKpUJKSgrUajXmzJmDrl27Yvv27bh16xbOnDmDvXv3Yvbs2Thz5gwWLFiQx7VXNn9/f3h4eODLL7+El5cX5syZY5Ck8Psg+17/O5Y26T1tyKFer5eHcJ08eRLe3t4AUofSEVHeYnJCsnv37qFDhw7YsGED5s2bh5kzZ8LHxwf9+/fHkydPAED+IxodHQ2V6mX3adGiBZ4/f87xupmIiorC4MGDsXbtWoSHh2Px4sV4+vSp/HlaW96/fx++vr7466+/ULJkSbx48QIODg7o0aMHChcuzPbNwO3bt9GyZUts2rQJq1atwo4dOzB27Fj88MMPBndH0tq4XLlyGDVqFKZNm4YHDx4ASB2O9Pz58zypv1K9qc9aWFgAABo2bIjhw4dDq9WiX79+qFu3LhwdHdGnTx84ODjg8ePHPNnLxJ9//olVq1Zh5cqV2LFjB8aMGYMlS5ZgwoQJ8jZ3797l94GRMvs79sUXX+Dx48fydiqVSu6bp0+fRp06dQAAVlZWADgxnigvMTkh2alTp/Ds2TNs3rwZrVu3xgcffIAVK1bg+fPnOHv2LADA2toa33//PeLj4/Hnn3/KX+BarRaSJMHFxSUvQ1CsmJgYODo6wt/fH7t378a2bdvw119/yVfz0/5rYWGBoUOHolOnThgwYABCQ0PRs2dPrFy5EseOHcvLEBTr4cOHaNy4MbZt2wZfX18UL14cX3zxBRwdHTPdZ+zYsbC2tsaPP/6IVatWwdfXl48Tfc2b+uyrJ8X37t3DzZs30aBBA3ldQkICYmNjUapUKflkjwzt3bsX1tbW6NixI8qWLYtvv/0WgwYNwvHjx7Fo0SJ5O34fGOdNf8fOnDljsK2VlRVCQ0Nx9+5ddOrUCUDq76V79+64d+9eXlSfiABAUIGn1+uFEEJERUWJTZs2GXwWHh4uKlWqJPbv32+wvlevXqJKlSqiS5cuYufOnaJNmzaiTp064sGDB2ard36SkpIi7t27Jy937dpV1KhRQ9y5c8dgux07doiAgADx77//yusiIiJElSpVRGBgoLmqm68kJSWJ0NBQg+VPPvlENGnSREyZMkX8+++/QqfTCSGE/F8hhJg4caKQJEmo1Woxbtw4s9db6bLaZ4UQwtvbWzRt2lSsWrVKBAcHi7Zt24qqVauKCxcumLHG+YdOpxODBw8Wn376qUhMTJTXP3r0SAwcOFDUrFlTJCQkiL/++ktMnz6d3wdZkJ2/Y0IIsXr1avHhhx+K0NBQ8fHHHwtLS0sxatQos9SZiDLG5ISEEC+/2NOkncRdvXpVuLq6yn8cU1JShBBCxMTEiN9//134+PiI+vXri27duomoqCjzVjofSmvnyMhIYWVlJfz9/Q1OTtLa9/VlrVZrvkrmY9euXRO2traiXr16YsKECaJWrVqiUaNGYtmyZfI28fHxYujQoUKSJNG/f38RHR2ddxXOB97UZ9P6540bN0SdOnVEpUqVRLly5UTXrl35fZCJtPb09/cXHh4eGV6g8Pb2FitWrDDYXgh+H7xNVv+Ovbpt7969hSRJwsrKSrRp00Y8ffrUfBUmogxxWBe90dGjR1G2bFl4enpCCCGPNXd0dESvXr1w4MAB7N27F+vXr0ehQoXyuLbKJF4ZuyxJElJSUuDi4oLx48dj1qxZuHbtmvx52ryItH3S2lutVpuxxvmHeG1cuIeHB/bt24dTp07Bz88Pp0+fhrOzM86cOYOkpCQAwNOnT+Hg4IC///4bS5cuhbOzcx7UXBkSExMzXJ/VPmthYYGUlBRUrFgRf/31F3bv3o2DBw9iw4YN/D7IRNoQzhEjRiAmJgZr1qwx+LxZs2awsrKSn8b16hA6fh+kioiIMGpOyOt/x15laWmJatWq4cyZM9i1axdcXV1zu7pEZCQmJwVEaGgodu7ciUuXLkGn0wF4eQKSkpIi/wFM+yxt+e+//4aPj4+87tKlS7h8+bJ8XLVaXeBPQsLCwtClSxds3LgRwMs2BN7cthMnToRarcbChQsRHR2NAwcOYPXq1QbbFHShoaHYvHkzgoOD5cmrGfXbtJeA2traokmTJlCpVNDr9VCr1YiPj0d4eLh8Qle6dGn4+/vjvffey4OIlOHOnTuoWbMmpk+fnu4zY/ts2pu1nZ2dUb58eZQpU8Y8QShUWFgYTp48ibt376b7LCUlRU4wrK2tMWHCBAQEBODcuXPyNg4ODkhKSkJoaKi5qpxv3LlzB+3bt8eYMWNw9epVg8+y+3dszpw5uHjxImrVqmWmKIjobZicFADffPMNKleujDlz5qBJkyYYNmwYbt++DUmSoNfrYWlpCSEExowZg/Xr18tX9mJiYhAUFARfX1+EhYWha9euqFmzJicKvmbZsmXYsmULfv75ZyQkJMDCwkJuw4za1sLCQv7jOXfuXCxbtgxNmzaFr68v373xinHjxqFixYqYOXMmGjdujMGDB2fabzds2JBuorZKpcKZM2cgSRK+/PLLPIxEOYQQGDRoECpWrIiKFSti+PDh6bYxts/Gx8ebOwzFGjFiBKpXr47//ve/qFq1KhYsWGDw0sRX23b16tUYNWoUKlasiLFjx8oPZAgODoYQAh07dsyjKJQl7WLE77//jjp16sDGxgZDhw5F4cKFDT439u/Y/fv3AQD29vZ5EBURvQmTk3fcb7/9hhMnTmDfvn3Yu3cvlixZgsuXL6Nfv34AUk/gVq5cicKFC2P//v2oUaMGVCoVJElCSEgInj17hm3btqF8+fKIiYnB3bt30aZNmzyOSllOnDiBbt26Qa1WIyAgwOCzjNoWSB2e8fDhQ5w6dQp6vR5Vq1bF/fv3MWTIkLwIQXFOnz6N7du3Y/PmzTh8+DCWLFmCkJAQ9OrVC8DLfuvq6pquba9du4ZLly5hwoQJaN26Nby8vNC8efO8DEcRbt68CVdXVxw7dgxnzpzBpk2b5BO8V7HPGu/+/fto3749zpw5gx07dmDjxo0YMmQIFi5caPCEqFfbtmrVqgCAVatWwdHREZ988gl8fX3x/vvvo0qVKgX6zt6r0i5GrFu3Dt9//z02bNiAunXrwsHBQf4cAFasWMG/Y0TvCjPPcSETS5vkl/bf1q1bi549expsM2zYMCFJkli8eLEQQohJkyaJhQsXppuMPXfuXCFJkqhfv36GTzkpaF6fbJmcnCyEEKJfv35i27ZtYty4caJKlSri6tWrQgghYmNjxdSpU8WCBQvSta1WqxUjRowQLi4u4vDhw2apf34yduxYUbFiRYN1J06cEPb29mLmzJlCiMz77dKlS4W3t7eoV6+eOHjwoNnqrESv9tm7d++KqlWrioEDBwohhDh+/LgYOXKkmDZtmvjzzz9FXFycECL1KWYZtSv7bOZ2794tunXrJs6dO2ew3t3dXWzYsEEIIURcXJyYMmWKQdum/X5iYmLE/v37xbx588SxY8fMW3kFev279uDBg8LT01MkJyeL48ePi/bt2wtfX18xdOhQcfLkSSFE6vdBRt+1/DtGlP8wOXmHJCQkGDz5KTo6WrRu3VqMGzfO4BGq//vf/0SlSpVE4cKF5RPsV6X9YYiNjRXLly83eb3zg9fb9tU/ntWrVxdXrlwRZ8+eFc2bNxfDhw8XWq1WXL58Od0fyleFh4ebtM75RVpbvtpHZ82aJWrUqCGeP39usN2kSZNEoUKFDH4Xrx9Hq9WK06dPm7jWyvd6n9XpdGLLli1CkiTh6+srSpcuLTp37ixq1qwpihcvLj7//PO3HpN9NlVaX0v7/nz48KE4fvy4/LlOpxNJSUmiTp06Ys2aNQbr6c1e77dCCHHq1Cnh6uoqtm3bJurWrSvGjh0rJk2aJHx8fEShQoVEWFhYuuPw7xhR/sVhXe+IcePGoUmTJmjbti1++eUXPHv2DM7OzqhSpQoOHDiAqVOnIjIyEqNHj8aKFSswceJEWFlZYcmSJQDSP51HCAEHBwf06dMnjyJSjtfbNjY2Vh5q8PDhQ9jZ2aFMmTKoW7cu2rVrh7Vr18La2hoHDx40mBz/uqJFi5oxCmWaNWuWPCk7bfgQADg5OcHKygoHDx6U10mShM8//xx2dnaYNWsWgJdPPkr7HEh9SEP9+vXNUX3FyqjPqlQqNG/eHL169UJ8fDx27NiBNWvW4Pz585g0aRJOnTqFhQsXAjBs11exzxr22bR5DsWLF0fjxo0BpLadSqVCWFgYbty4gWrVqsn7vtrHKb2M+i2Q+vepVq1amD59OmrVqoVp06Zh4sSJ2LVrF0qUKIFvv/0WgOHDSPh3jCgfy9PUiHJMq9WK//znP8LLy0usX79e9O7dW3h5eQlfX18hROpQgv/+97+iQoUKwsXFRVSrVk2+qvzee++JWbNm5WX1FS2ztm3Tpo28TUxMjHj//fdFQkKC2Lp1q3BxcRFOTk6iZs2a8javD1EgIc6cOSOaNWsmJEkStWvXFidOnBBCpL5AUYjUdq1WrZoYMmSIePz4sbxfYmKi6NOnj+jbt+8b70oVVJn12datW8vbXLt2TZw9e1bo9Xr5Sn5kZKRo27atGDBgANs1E5n12czuhqxbt05Ur149w8/5nWAos3778ccfCyGEeP78ufjkk08MhiOn9dNly5aJEiVKyMMSiSj/42WcfO7WrVu4cOECZs+ejW7dumHlypVYvHgxjh49ih9++AH29vaYPXs2Dh8+jCNHjuDSpUuoX78+tFot/v33X2g0mrwOQbEya9tDhw7hxx9/BACcO3cON2/eRP369dGvXz98++23mDFjBiRJwoIFCwCkfxcHAfv27UPhwoXx22+/yf8FACsrKyQnJ8PR0RGDBg3CX3/9he3bt8v7aTQahISEQKVSyY9kpZcy67OHDx+W+2zlypVRt25dSJIElUoFIQRcXFxw/fp1tusbZNZn09rwdUFBQWjUqJF8t+Tw4cPYuXMnAD4q/HWZ9dsjR47ghx9+gK2tLb788ku4uLhg06ZNAF6+8yUkJASenp6Z/h6IKB/K29yIciooKEhIkiQiIyOFEIZvHy5UqJC4ceOGwfZpn//++++iQYMG4tGjR+atcD7yprZ1dnYWt2/fFsnJycLLy0sMGDBAftPzo0ePRNeuXYWPj0+GcyMKsrQ2vHfvnnzl2d/fXzRo0EBs3LhRCCEM5kF1795d1KpVS/z6668iOjpaBAUFidq1a4v169ebv/L5wNu+D159Q/ar/vzzT1GvXj2DeROUKit99vW7IykpKcLb21ts2LBB3L59W3zwwQdCrVbLk+PJ0Jv6rZOTk7h165YQInXSu6urq/j+++/Fv//+K65fvy6aNm0qJk+enGd1J6Lcx+Qkn/vnn39E1apVxdy5c4UQL7/Uk5KSRNmyZcWoUaOEEKl/LJ8+fSq2bt0qBgwYIOzs7MTkyZOFXq/nEINMvKlty5QpI0aMGCGEEOLx48fp2vDKlStMTLLo1q1bomPHjqJjx44iKipKCJE6zCPtswkTJggLCwtRp04dYWNjI/r37y8P/yJDWf0+0Ol04tKlS+LQoUNi4MCBwsnJSYwdO5ZDurIooz77aoJy4cIF4eDgID7++GNhaWkpunXrJmJjY/Oquor3tn6b9l0bHh4uFi9eLJydnUW1atWEg4OD6Nu3L79rid4xHNaVz5UuXRqenp44duwYwsLCIEkSUlJSYGVlha+++grr1q2TX6Km1+tx4sQJ3L59G8ePH8f3338PSZIK7BAD8ZYhAG9q22HDhskv/itSpIjchmnH9PLyKtBD5t7Wtq9uV65cObRr1w5hYWFYsWIFAMhvcy9Xrhz8/Pxw4cIF+Pn5ITg4GEuXLoWVlZWpqq5oOemzr34fqFQqBAcHY8qUKfj3338RGBgIf3//Aj2kK6d99tXJ7iEhIYiPj4dWq8XZs2exfv16+b0clN7b+m3ad23RokXx5Zdf4sqVK1i6dCmCg4Px22+/FejvWqJ3EZMTBQsNDUVQUBAePXqU7rOUlBQAQKFChdCuXTtcv34dGzduBJD6BBkg9YlHhQoVkt+E6+bmhgkTJuDAgQOoWbOmmaJQpidPniAhIUFefvXpRFltWxcXF4SGhhoct6Ameq/KStumSXu6zn/+8x94eXlh165dCAkJAZD6puy0/atWrYo2bdqgcuXKpq6+YkVERCAuLk5ezk6fLVSoEO7duwcA6Ny5M5YsWYJDhw4V+O+DrLRtmjf12XPnzgEAGjRogIMHD+LgwYOoVauWiWuvbGltmdGTC439rk1LIIsXL44GDRqgQoUK5giBiMyMyYkCJScnY+DAgahduzb69euHmjVr4vjx4wBeftFbWloiMTER69evR79+/VCrVi1s2LABhw8flo/z4MEDuLm5oUyZMvK6gn71Ljk5GQMGDMB7772Hdu3aoW/fvoiOjja46mlM25YuXTovwlCkrLZtcnIyVq5cKS/r9Xo4OjqiS5cu0Ov18PPzw4cffoi6deum278gSklJQf/+/VG/fn189NFH6NGjByIjI7PdZ8uWLQsAsLOzQ/ny5c0ej5JktW2z2mfr16+PyMhIlCxZEs2bN8+rsBQhOTkZQ4YMwcCBAwEY3lnKzt+x0qVL8+IPUUGRdyPKKCNxcXGiffv2onnz5iI4OFhcv35dtGzZUjRt2tRguzlz5ggXFxfRoUMHIUTqGOcePXoItVotBg8eLAYMGCAcHBzEwoULhRB8dKUQQkRFRYmPPvpING/eXBw7dkwsXrxYeHt7i8aNG4vr16/L27FtjWds23bu3Fkeq5/m3r17onz58kKSJPHpp5/yhX8i9eEAPXr0EA0bNhRHjhwRs2bNEtWqVRNNmjQRV69elbdjnzWesW3LPpt1p06dEj4+PsLNzU1YWVnJb71/fU4T+y0RZYTJicKcPn1aeHp6ikOHDsnrlixZItq3by9/Mc+bN0+UKVNGrFmzxmASpl6vF9OnTxdffvmlaN26NZ+885q9e/eKatWqGZwsX716VahUKjF8+HARHR0tli9fLkqVKsW2NZKxbfv6ScbBgweFvb29qFWrljh37py5q69Y9+/fF56enmLVqlXyurCwMFGiRAkxbNgwERUVxT6bTca2Lfts1s2ePVv0799f7NmzR3Tq1Ek0aNAg3TYLFiwQZcuWZb8lonSYnCjMsWPHhCRJ8hfykydPRK1atcSgQYPEokWLhBCpT4V5/vy5wX68ovR2K1euFM7Ozgbrjh8/LlxcXISnp6fYvXu30Ov1Ij4+3mAbtu3bZbdt0zx9+lSsXbvWHFXNV/755x9hY2MjQkJChBBCfirRvHnzhKenp9i5c6fQ6/X8PsiG7LZtGvbZ9NL6XWhoqLhy5YoQIvXChZubm1i6dKkQ4uWT+JKTk/ldS0QZKtiDufPYnj17ABg+Jea9995D8+bN0bdvX3z88ccoWrQo3N3doVar8d1336FLly64fPkybG1tDfbjWFxDGbWth4cHXF1dERAQIK9bunQp+vfvD71ej+3bt0OSJNjY2Bgci21rKDfbNu04rq6u+Oyzz0xfeQVbvHgxlixZgqNHj8rrPD094e7ujtWrVwN4OW5/6NChcHJywpYtW6DVamFra2twLPZZQ7nZtgD77KvS2jYwMFDudyVKlICXlxcAoG7duvj000/h5+cHnU4HtVoNvV4PS0tL2NnZGRyL/ZaIAHDOSV7YtWuXKFGihMEdEp1OJ9/ajo+PFyEhIaJx48bip59+kvc7f/68KFeunPziL0ovo7ZNG+ccFRUlfvzxRyFJkmjcuLGwt7cX1apVE8nJyWLu3LmiRIkSeVl1xWPbmsbatWtFkSJFRKNGjUStWrWEm5ubmDp1qhBCiJiYGDFmzBjh6ekpHj9+LIQQ4sWLF0IIIVatWiWcnJzkZUqPbWs6b2rb1+eWpA1X/uabb4QQ6V9aSUT0KiYnZvb333+LVq1aia+++kp8/PHHom7duhluFxwcLCpVqiQiIiLkW93JycnC2dnZIGGhl7LatoGBgWLu3Lli//798roffvhBNGnSRDx79sxc1c1X2LamsWbNGlGzZk15yObDhw/F3LlzhZ2dnYiJiRFCCHHgwAFRr149MWTIECHEy6Evhw8fFkWKFBEXLlzIm8orHNvWdN7Uthm9bPL58+fixx9/FE5OTuLevXtCiNQ2Tvs9EBG9isO6zET8/xCYokWLomXLlhg5ciSmTJmCq1evYtmyZQAMn61va2uLkJAQhIaGyre6d+3ahXLlyuGDDz4wfwAKZmzb+vj44KuvvkKLFi0AAElJSTh16hS8vb3h5ORk/gAUjG1rGmntmpycjAYNGqB3794AUt/f4O3tjRIlSuDq1asAgCZNmqB79+5YuXIltm3bhuTkZADA8ePH4eXlherVq+dNEArFtjWdrLTttWvX0u1na2uLDh06wNvbG126dEHdunXRuXNnREVFmbX+RJRP5GVmVBAEBQWlu2Kcdss7OTlZjBo1Sri5ucmTMdOu3EVGRorPPvtM2NraikGDBonevXsLBwcHMWHCBE4a/H/Gtu3rrl+/Lv7991/Ru3dvUbZsWXHy5EmT1zm/YNuaRlBQkIiOjpaXnz17lm4IzPnz54W7u7vBY2tjY2PF6NGjhYODg2jatKno0qWLsLGxEfPnzxdCcCKxEGxbU8pu277q0qVLokaNGkKSJDFkyBB5YjwR0et458REtmzZAg8PD3Tt2hU1atTAxIkTER4eDiB14qUQApaWlhg6dCisra0xfvx4AC+vTLm4uGDZsmUYOnQoEhMTAaS+fdjPz6/ATxrMadum2b17Nz7++GPcvXsX+/btQ8OGDc0ei9KwbU3j1XatWbMmJkyYgMePH8PJyQkWFhYGd58OHTqE8uXLo1ChQkhKSgKQ+vLUgIAA/Pbbb2jWrBlcXV0RHByMIUOGACjYE4nZtqaT07ZNc+zYMbRt21YeETB//nyo1Wpzh0NE+UVeZkbvqrNnz4rKlSuL2bNniwsXLogFCxYINzc3MXjwYBEZGSmEeHkVWq/XiwULFghLS0tx+/ZtIUTqIy1fHbebnJxs/iAUKqdtq9Vq5bZ99OiRCAoKyptAFIhtaxpZaVedTif/f/7JJ5+IoUOH5mWV8w22renkZts+evSId0+JKMuYnOSitNv/CxcuFCVLljSY7Ddv3jzRsGFDMWXKlHT7RUZGisaNG4sOHTqIoKAg0bJlS7Fq1SoOJ3hFbrctnxbzEtvWNIxtV51OJ/R6vShfvrzYtWuXEEKIGzduiE8//VTcv3/fvJVXOLat6bBtiSivcVhXLkq7/X/nzh1UrFgRlpaW8md9+vRBnTp18Oeff+LKlSsAAJ1OByB1CNeXX36JHTt2oF69elCr1ejcuXOBHk7wutxu27R3GhDb1lSMbVeVSoWzZ8/C1tYWtWvXxogRI1CjRg1ERkaiSJEieRKDUrFtTYdtS0R5jWcROXDgwAEMHz4cc+bMwZkzZ+T17733Hk6cOCGP1dfpdLCzs0OHDh0gSRL2798PALCwsEBSUhIWLFiA/v37w8fHBxcvXsTOnTszfFldQcK2NR22rWnktF2B1BdcXr58GZUqVcKBAwdw/Phx7N+/HxqNxuzxKAnb1nTYtkSkNExOsiEsLAzt2rVDz549ERUVhWXLlqFly5byF3vLli1RpkwZ+W3ZaVeiWrRoAZVKhZs3b8rHio6Oxr///ovly5fjyJEjqFq1qvkDUhC2remwbU0jN9vVysoKhQsXxooVK3DlyhXUqVPH/AEpCNvWdNi2RKRYeT2uLL95/vy5+Pzzz0W3bt3kicBCCFGvXj3Rp08fIUTqpOHff/9dqFQq+U3aaXr06CGaN29u1jrnF2xb02HbmkZutGuzZs3k5YiICPNUPB9g25oO25aIlIx3Toxka2sLjUaDPn36oGzZskhJSQEAtG3bVn75lIWFBbp27YoOHTrgiy++QGBgIIQQCA8PR0hICHr06JGXISgW29Z02LamkRvt2rNnT/l4bm5ueRKHErFtTYdtS0RKJgnx2gsK6K2Sk5NhZWUFIPX9DpIkoVevXrCxscHixYvldYmJifj4449x9epV1KpVC5cvX0apUqWwceNGeHh45HEUysS2NR22rWmwXU2HbWs6bFsiUiomJ7nEx8cH/fr1Q58+fSCEgF6vh4WFBR4/foyLFy/i7NmzKFOmDLp3757XVc132Lamw7Y1Dbar6bBtTYdtS0RKwOQkF9y+fRuNGzfG7t275YmASUlJfANuLmDbmg7b1jTYrqbDtjUdti0RKQXnnORAWl537Ngx2Nvby1/ofn5++O9//4uIiIi8rF6+xrY1HbatabBdTYdtazpsWyJSGsu3b0KZSXu04pkzZ9C5c2ccOHAAAwYMQEJCAlatWsUXUOUA29Z02LamwXY1Hbat6bBtiUhpOKwrhxITE1G9enXcunULarUafn5+GDNmTF5X653AtjUdtq1psF1Nh21rOmxbIlISJie5oEWLFvD09MSsWbNgbW2d19V5p7BtTYdtaxpsV9Nh25oO25aIlILJSS7Q6XSwsLDI62q8k9i2psO2NQ22q+mwbU2HbUtESsHkhIiIiIiIFIFP6yIiIiIiIkVgckJERERERIrA5ISIiIiIiBSByQkRERERESkCkxMiIiIiIlIEJidERERERKQITE6IiIiIiEgRmJwQEWVBnz59IEkSJEmClZUVihYtihYtWuC3336DXq/P8nFWrFgBZ2dn01WUiIgoH2NyQkSURa1atUJYWBju3r2LP//8E82bN8d///tftG3bFikpKXldPSIionyPyQkRURZpNBq4u7ujRIkSqF27Nr799lts374df/75J1asWAEAmDVrFqpXrw47Ozt4eHhgyJAhiI+PBwAcOXIEffv2RUxMjHwXZtKkSQCApKQkjB49GiVKlICdnR0aNGiAI0eO5E2gREREeYTJCRFRDnzwwQeoWbMmtm7dCgBQqVT45ZdfcPnyZaxcuRKHDh3C6NGjAQCNGzfG7Nmz4ejoiLCwMISFheGbb74BAPTt2xfHjx/H+vXrcfHiRXTp0gWtWrVCSEhInsVGRERkbpIQQuR1JYiIlK5Pnz549uwZ/vjjj3Sfffrpp7h48SKuXr2a7rNNmzZh8ODBePr0KYDUOScjRozAs2fP5G1u3boFT09PPHjwAMWLF5fXf/TRR6hfvz6mT5+e6/EQEREpkWVeV4CIKL8TQkCSJADA4cOHMX36dFy9ehWxsbFISUlBYmIinj9/Djs7uwz3Dw4OhhACFStWNFiv1Wrh6upq8voTEREpBZMTIqIcunbtGsqWLYt79+6hdevWGDRoEKZMmQIXFxccO3YM/fv3R3Jycqb76/V6WFhYICgoCBYWFgaf2dvbm7r6REREisHkhIgoBw4dOoRLly7h66+/xrlz55CSkoKZM2dCpUqd0rdx40aD7dVqNXQ6ncE6b29v6HQ6RERE4P333zdb3YmIiJSGyQkRURZptVqEh4dDp9Ph8ePH2Lt3L/z9/dG2bVv07t0bly5dQkpKCubOnYt27drh+PHjWLRokcExypQpg/j4eBw8eBA1a9aEra0tKlasiB49eqB3796YOXMmvL298fTpUxw6dAjVq1dH69at8yhiIiIi8+LTuoiIsmjv3r0oVqwYypQpg1atWuHw4cP45ZdfsH37dlhYWKBWrVqYNWsWAgICUK1aNaxZswb+/v4Gx2jcuDEGDRqEbt26wc3NDTNmzAAALF++HL1798aoUaNQqVIltG/fHqdPn4aHh0dehEpERJQn+LQuIiIiIiJSBN45ISIiIiIiRWByQkREREREisDkhIiIiIiIFIHJCRERERERKQKTEyIiIiIiUgQmJ0REREREpAhMToiIiIiISBGYnBARERERkSIwOSEiIiIiIkVgckJERERERIrA5ISIiIiIiBTh/wD/eko6SfVdNgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -214,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -368,7 +370,7 @@ "2017 [2017-08-01, 2017-08-31) " ] }, - "execution_count": 8, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -389,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -412,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -433,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -451,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -461,7 +463,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -485,7 +487,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -549,12 +551,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZbklEQVR4nO3deVyU1fcH8M+IgoiAOy6RuO/imlulFqVWpuZPy9xz+Vrihisq7om7klqZVraZWqktlkvmkvuKe+aCQsYiLiCIKPD8/jjNDCgqAwx35pnP+/V6Xj4z88zMUdQ5c++55xo0TdNAREREpBP5VAdARERElJuY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItKV/KoDyGtpaWn4999/4e7uDoPBoDocIiIiygJN03D79m2ULVsW+fI9fmzG4ZKbf//9F97e3qrDICIiomyIiIjAU0899dhrHC65cXd3ByB/OB4eHoqjISIioqyIj4+Ht7e36XP8cRwuuTFORXl4eDC5ISIisjNZKSlhQTERERHpCpMbIiIi0hUmN0RERKQrDldzk1Wpqam4f/++6jDIQgUKFICTk5PqMIiISCEmNw/QNA1RUVG4deuW6lAom4oUKYLSpUuzjxERkYNicvMAY2JTqlQpFCpUiB+QdkTTNNy5cwcxMTEAgDJlyiiOiIiIVGByk05qaqopsSlevLjqcCgbXF1dAQAxMTEoVaoUp6iIiBwQC4rTMdbYFCpUSHEklBPGnx9rpoiIHBOTm0xwKsq+8edHROTYmNwQERGRrjC5ISIiIl1hckOZ8vHxwaJFi5S/BhERkaW4WkonWrVqhXr16uVaMnHo0CG4ubnlymsREZED+eMPoFkz4L/Vqypw5MaBaJqGlJSULF1bsmRJrhojIiLLXLoEtGsHVK8OREcrC4PJTRYlJj76uHs369cmJWXtWkv06dMHO3fuREhICAwGAwwGAy5fvowdO3bAYDDgt99+Q8OGDeHi4oLdu3fj4sWL6NChA7y8vFC4cGE0btwYv//+e4bXfHBKyWAwYMWKFejUqRMKFSqEKlWq4KeffrIozvDwcHTo0AGFCxeGh4cHunbtiuh0f/mPHz+O1q1bw93dHR4eHmjYsCEOHz4MALhy5Qrat2+PokWLws3NDbVq1cKvv/5q2R8UERFZ15gxwL17ktyUKqUsDCY3WVS48KOPzp0zXluq1KOvbdcu47U+PplfZ4mQkBA0a9YMAwYMQGRkJCIjI+Ht7W16fNy4cZg1axbOnj2LunXrIiEhAa+88gq2bduGY8eOoW3btmjfvj3Cw8Mf+z5Tp05F165dceLECbzyyivo3r07bty4kaUY09LS0KFDB9y4cQM7d+7E1q1bcenSJbz55puma7p3746nnnoKhw4dwpEjRzBu3DgUKFAAADB48GAkJydj165dOHnyJGbPno3Clv5BERGR9ezcCfzwA5AvH7BgAaCwLQdrbnTA09MTzs7OKFSoEEqXLv3Q49OmTcNLL71kul2sWDH4+vqabk+fPh3r16/HTz/9BH9//0e+T58+fdCtWzcAwMyZM/HBBx/g4MGDaNu27RNj3LZtG06ePImwsDBT4vXll1+iVq1aOHToEBo3bozw8HCMHj0a1atXBwBUqVLF9Pzw8HB07twZderUAQBUrFjxie9JRER5JDUVGDFCzv/3P6BWLaXhMLnJooSERz/2YIf//7Y2ylS+B8bKLl/OdkhZ1qhRowy3ExISMGXKFGzcuBGRkZFISUlBUlLSE0du6tatazp3c3ODh4eHaR+nJzl79iy8vb0zjCjVrFkTRYoUwdmzZ9G4cWMEBASgf//++Oqrr+Dn54cuXbqgUqVKAIChQ4fi3XffxZYtW+Dn54fOnTtniIeIiBT64gvg2DHA0xOYOlV1NJyWyio3t0cfBQtm/doHi8cfdV3uxp7xBUeNGoX169dj5syZ+PPPPxEaGoo6derg3r17j30d4xSRkcFgQFpaWq7FOWXKFJw+fRqvvvoq/vjjD9SsWRPr168HAPTv3x+XLl1Cz549cfLkSTRq1AiLFy/OtfcmIqJsun0bGD9ezidNAkqWVBsPmNzohrOzM1JTU7N07Z49e9CnTx906tQJderUQenSpXHZykNINWrUQEREBCIiIkz3nTlzBrdu3ULNmjVN91WtWhUjRozAli1b8MYbb+Dzzz83Pebt7Y1BgwZh3bp1GDlyJJYvX27VmImIKAuCg2VlVOXKwGNKG/ISkxud8PHxwYEDB3D58mXExsY+dkSlSpUqWLduHUJDQ3H8+HG8/fbbuToCkxk/Pz/UqVMH3bt3x9GjR3Hw4EH06tULLVu2RKNGjZCUlAR/f3/s2LEDV65cwZ49e3Do0CHUqFEDADB8+HBs3rwZYWFhOHr0KLZv3256jIiIFLl8WYqHAWD+fMDZWWk4RkxudGLUqFFwcnJCzZo1UbJkycfWzyxYsABFixZF8+bN0b59e7Rp0wYNGjSwanwGgwE//vgjihYtiueffx5+fn6oWLEi1qxZAwBwcnLC9evX0atXL1StWhVdu3ZFu3btMPW/udvU1FQMHjwYNWrUQNu2bVG1alV8+OGHVo2ZiIieYOxYIDkZePFFoH171dGYGDRN01QHkZfi4+Ph6emJuLg4eHh4ZHjs7t27CAsLQ4UKFVDwwUIashv8OTqwLVvk2+MHHwDVqqmOhkjfdu8GnntOVsocOwZYeZHH4z6/H8SRGyLSh6Qk4J13JMHp2xew8lQrkUNLSwOGD5fzAQOsnthYiskNEenDhx8CV6/K+b59wJdfqo2HSM+++go4cgTw8ACmTVMdzUOY3BCR/YuLA2bOlPPmzeXXMWOAW7eUhUSkWwkJQGCgnE+cqHSbhUdhckNE9m/+fODGDdnP5vff5ddr16TnBhHlrtmzgchIoGJFYOhQ1dFkiskNEdm3mBjzUtQZM6RTprHB49KlwPHj6mIj0pvwcGDePDmfNw9wcVEbzyMwuSEi+/b++0BiItCoEfDGG3Kfnx/wf/8nRY/+/oBjLQolsp5x44C7d4FWrYCOHVVH80hMbojIfl25Anz8sZwHB2fchXjBAqBQIVmu+vXXauIj0pO9e4Fvv5V/ZwsXKt31+0mY3BCR/ZoyBbh3D3jhBRmtSc/bGwgKkvPRo6XomIiyJy3NvOt3v35AvXpKw3kSJjeUY61atcJwY78Dorxy5ox5uXdwcObXBAQAVavKvjdTpuRZaES6s2oVcPAgULgwMH266mieiMmNTlgjwejTpw862vCcKjm4iRPl22SnTsAzz2R+jbOzubh48WLg5Mm8i49ILxITpdYGACZMAEqXVhtPFjC5ISL7c/AgsH69tH2fMePx1778shQap6ayuJgoO+bOlQaZPj7mrsQ2jsmNDvTp0wc7d+5ESEgIDAYDDAYDLl++DAA4deoU2rVrh8KFC8PLyws9e/ZEbGys6bnff/896tSpA1dXVxQvXhx+fn5ITEzElClT8MUXX+DHH380veaOHTuyFM/NmzfRq1cvFC1aFIUKFUK7du1w/vx50+NXrlxB+/btUbRoUbi5uaFWrVr49ddfTc/t3r07SpYsCVdXV1SpUgWff/55rv1ZkU4YG4j16gXUrPnk6xculCXiu3ZJQSQRZc0//wBz5sj53LmAnezXl191ADZP04A7d9S8d6FCWapGDwkJwd9//43atWtj2n9tsEuWLIlbt27hhRdeQP/+/bFw4UIkJSVh7Nix6Nq1K/744w9ERkaiW7dumDNnDjp16oTbt2/jzz//hKZpGDVqFM6ePYv4+HhTclGsWLEshd2nTx+cP38eP/30Ezw8PDB27Fi88sorOHPmDAoUKIDBgwfj3r172LVrF9zc3HDmzBkULlwYABAUFIQzZ87gt99+Q4kSJXDhwgUkJSVl8w+QdOn334E//pApp6zW0Tz9tAynT5wIjBoFvPaatI0noscLDJR92557DujcWXU0Wcbk5knu3JECKhUSEgA3tyde5unpCWdnZxQqVAil082FLlmyBPXr18dMY1t6AJ999hm8vb3x999/IyEhASkpKXjjjTdQvnx5AECdOnVM17q6uiI5OTnDaz6JManZs2cPmv/XBv+bb76Bt7c3NmzYgC5duiA8PBydO3c2vVfFihVNzw8PD0f9+vXRqFEjAICPj0+W35scgKaZR20GDQL++3ubJaNGAStXAhcuyF44xkZkRJS5AwekjYIdLP1+kNJpqV27dqF9+/YoW7YsDAYDNmzY8Njrd+/ejRYtWqB48eJwdXVF9erVsXDhwrwJ1g4dP34c27dvR+HChU1H9erVAQAXL16Er68vXnzxRdSpUwddunTB8uXLcfPmzRy959mzZ5E/f340adLEdF/x4sVRrVo1nD17FgAwdOhQzJgxAy1atMDkyZNx4sQJ07XvvvsuVq9ejXr16mHMmDHYu3dvjuIhnVm3Djh8WJL+CRMse66LC/DBB3K+aBFw+nSuh0ekG5pmrq/p0wdo2FBlNBZTmtwkJibC19cXS5cuzdL1bm5u8Pf3x65du3D27FlMnDgREydOxCeffGK9IAsVkhEUFUehQjkKPSEhAe3bt0doaGiG4/z583j++efh5OSErVu34rfffkPNmjWxePFiVKtWDWFhYbn0h5e5/v3749KlS+jZsydOnjyJRo0aYfF/K1ratWuHK1euYMSIEfj333/x4osvYtSoUVaNh+xESopMKwGyxDs7m/W1awd06MDiYqInWb0a2L9fvki8/77qaCyn2QgA2vr16y1+XqdOnbQePXpk+fq4uDgNgBYXF/fQY0lJSdqZM2e0pKQki+NQ7aWXXtL8/f0z3Dd+/HitWrVq2v3797P0GikpKVq5cuW0+fPna5qmaQMGDNBee+21Jz6vZcuW2rBhwzRN07S///5bA6Dt2bPH9HhsbKzm6uqqfffdd5k+f9y4cVqdOnUyfezjjz/W3N3dsxS/kT3/HOkxPvtM0wBNK1ZM027dyv7rhIVpWsGC8lrffptr4RHpRmKipnl7y7+RGTNUR2PyuM/vB9n1aqljx45h7969aNmy5SOvSU5ORnx8fIZDj3x8fHDgwAFcvnwZsbGxSEtLw+DBg3Hjxg1069YNhw4dwsWLF7F582b07dsXqampOHDgAGbOnInDhw8jPDwc69atw7Vr11CjRg3Ta544cQLnzp1DbGws7t+//8Q4qlSpgg4dOmDAgAHYvXs3jh8/jh49eqBcuXLo0KEDAGD48OHYvHkzwsLCcPToUWzfvt30npMmTcKPP/6ICxcu4PTp0/jll19Mj5EDu3sXmDxZzsePBzw9s/9aPj7mup2RI4Hbt3McHpGuzJ8PRERIIX5AgOposicPkq0sgQUjN+XKldOcnZ21fPnyadOmTXvstZMnT9YAPHTobeTm3LlzWtOmTTVXV1cNgBYWFqZpmoykdOrUSStSpIjm6uqqVa9eXRs+fLiWlpamnTlzRmvTpo1WsmRJzcXFRatataq2ePFi02vGxMRoL730kla4cGENgLZ9+/ZM3zv9yI2madqNGze0nj17ap6enpqrq6vWpk0b7e+//zY97u/vr1WqVElzcXHRSpYsqfXs2VOLjY3VNE3Tpk+frtWoUUNzdXXVihUrpnXo0EG7dOmSRX8W9vxzpEdYuFC+RZYrp2l37uT89ZKSNK1iRXnN0aNz/npEevHPP5pWqJD821i9WnU0GVgycmPQNNuYdDYYDFi/fn2WOuKGhYUhISEB+/fvx7hx47BkyRJ069Yt02uTk5ORnJxsuh0fHw9vb2/ExcXB44GloHfv3kVYWBgqVKiAgnaylp8exp+jzty+DVSsCMTGAsuXA/37587r/vIL0L49kD8/cOIEwBFCIqB3b9nWpHlz2XTWhlZIxcfHw9PTM9PP7wfZ5VLwChUqAJBly9HR0ZgyZcojkxsXFxe4uLjkZXhElJsWLJDEpmpVWbWRW157TY5ffgGGDAG2brWp/8iJ8tzhw+b92hYtsut/D3ZdcwMAaWlpGUZmiEhHYmNl/h+Qzfry5/L3sZAQWSK+bRvw/fe5+9pE9iT90u9evYDGjZWGk1NKk5uEhATT8mRApptCQ0MRHh4OAAgMDESvXr1M1y9duhQ///wzzp8/j/Pnz+PTTz/FvHnz0KNHDxXhE5G1BQfLtFSDBsD//V/uv37FiuYNAQMCpAUDkSP67jtgzx5pQZKu8au9UjotdfjwYbRu3dp0O+C/quzevXtj5cqViIyMNCU6gIzSBAYGIiwsDPnz50elSpUwe/Zs/O9//8vz2InIyiIiAGMPrJkzZZNMaxg7Vobiw8Kkn0dwsHXeh8hWJSUBY8bI+dixQLlyauPJBTZTUJxXHleQZCxE9fHxgaurq6IIKaeSkpJw+fJlFhTbu/79gU8/BVq2BLZvt+78/08/SXO/AgWAkyeBatWs915EtmbmTOn4/dRTwLlzOW4gay2WFBTbfc1NbipQoAAA4I6qjTIpVxh/fsafJ9mhv/4CjLvBBwdbv7CxfXvglVeA+/eBoUPZuZgcR2SkeRpq9mybTWwsZZerpazFyckJRYoUQUxMDACgUKFCMNhxtbij0TQNd+7cQUxMDIoUKQInJyfVIVF2BQUBaWnA668DzZpZ//0MBiku/v13YMsWYP164I03rP++RKpNmAAkJgJNmwKPWHVsjzgt9QBN0xAVFYVbt27lfXCUK4oUKYLSpUszMbVXhw/LSg2DQfrP1K6dd+8dFATMmAF4ewNnz8q+OkR6dfQo0KiRjFTu2ycJjg3TfZ8bazIYDChTpgxKlSqVpe0GyLYUKFCAIzb2bvx4+bVHj7xNbADZluGrr4ArV2So3h43DCTKCk0DRoyQX7t3t/nExlIcuSEi27F9O/DCC1LYe+4c8F/DzjxlnJJydgZOnQKqVMn7GIis7YcfpL2Cq6v8W/P2Vh3RE7GgmIjsj6aZN7QcOFBNYgMAHTsCbdoA9+6xuJj06e5dYPRoOR892i4SG0sxuSEi2/Djj8CBA7JaY+JEdXEYDMAHH8jo0aZNEheRnoSESF+nsmXN/W10hskNEamXmiqrNgBpAV+6tNJwULUqMGqUnA8fDrA9BOlFVJS5lmzWLN0WzTO5ISL1vvkGOHMGKFrUPFyu2oQJMlx/5Yp8CBDpQVCQbGnSuLEUEusUkxsiUis5GZg0Sc7HjQOKFFEajombm+xIDgBz5gAXL6qNhyinQkOl6zcgu35ba0sTG6Df3xkR2YdPPpHRkTJlAH9/1dFk1Lkz4OcnCdiwYaqjIcq+9Eu/33oLaN5cdURWxeSGiNRJSJCmeYCM3tha63eDAVi8WIqLN24Efv5ZdURE2fPjj8COHUDBgg4xzcrkhojUWbQIiIkBKlUC+vVTHU3mqlcHAgLkfNgw2UGZyJ4kJ5sL5EeNAsqXVxtPHmByQ0RqXL8OzJ0r59Ony+iIrZo4UXZMDguT+hsie7J4sdSMlSkDjB2rOpo8weSGiNSYPRuIjwd8fYE331QdzeMVLgzMny/ns2ZJkkNkD2Ji5MsDIFuKFC6sNp48wuSGiPLe1avybRKQ/3DtYdVGly6yNcTdu9L7hsgeTJokXyIaNAB69VIdTZ6xg/9RiEh3pk2TJOHZZ4F27VRHkzUGA7BkCZA/P/DTT1JgTGTLTp4Eli+Xc50v/X6Q4/xOicg2nD9v7rURHCxJg72oUcM8ajN0qCRoRLbIuPQ7LU1GHZ97TnVEeYrJDRHlraAg2W7h1Vdl5MbeTJoke/JcumQuiCayNb/8AmzbBri4SH2bg2FyQ0R559gxYM0aOTfub2Nv3N2BefPkfOZM4PJlpeEQPeTePWDkSDkPCAAqVFAbjwJMbogo7xg3x+zWTVZJ2au33gJatpRpqREjVEdDlNHSpTL96+UFBAaqjkYJJjdElDd27QJ++00KcqdNUx1NzhiLi52cgA0bgE2bVEdEJGJjgalT5fz992Wk0QExuSEi69M08zfI/v2BypXVxpMbateWomIAGDJEusASqTZ5MhAXB9SrB/TpozoaZZjcEJH1bdwI7N0LuLpKQbFeTJkClC4NXLhgbvJHpMrp08DHH8v5woUysuigmNwQkXWlpQHjx8v50KGy0kgvPDzMK6ZmzADCw9XGQ45L06R4OC0NeOMNoFUr1REpxeSGiKzr22+lmZinpz73teneXXqIJCWZN9gkymu//QZs2QI4O3P/MzC5ISJrundP+sIAwJgxQNGiauOxhvTFxT/8AGzdqjoicjT375sT6+HDgUqVlIZjC5jcEJH1rFghze68vIBhw1RHYz116wL+/nI+ZIgkdUR55aOPgHPngJIlze0WHByTGyKyjsRE827EQUGAm5vaeKxt6lRJ4s6dk2JOorxw/boUtgNS9+XhoTQcW8HkhoisY/FiICpKuqMOGKA6Guvz9DTXOkyfDkREqI2HHMPUqcDNmzJ62K+f6mhsBpMbIsp9N2+a97OZNk2KHB1Bz55AixYyamVsf09kLWfPAh9+KOcOvvT7QUxuiCj3zZkD3Lolje66dVMdTd4xGKT1fb58wHffAb//rjoi0rORI2UT2g4dgBdeUB2NTWFyQ0S5KzISCAmR8/ffd7xvk76+wHvvyTmLi8laNm2S5d8FCnB3+kwwuSGi3DV9uvR8adYMaN9edTRqTJ8uK1f++suc6BHllpQU89LvoUOBKlXUxmODmNwQUe65eBFYvlzOg4NlmsYRFSlirjmaOhW4elVpOKQzy5ZJvU2JEsDEiaqjsUlMbogo90yaJN8q27QBWrZUHY1avXsDTZtKcfGoUaqjIb24edPcGHPaNEmk6SFMbogod5w4IVstAMDMmWpjsQX58klxscEArF4NbN+uOiLSg2nTgBs3gFq1HKPFQjYxuSGi3DFhgmze17Ur0KCB6mhsQ4MGwKBBcu7vL23yibLr3DnZ6gOQpd/586uNx4YxuSGinNuzB/jlF1kZZexKTGLGDKB4ceDMGWlsSJRdo0bJtO9rrwEvvaQ6GpvG5IaIckbTgMBAOX/nHaBqVbXx2JpixYBZs+R8yhRZKk9kqa1b5QtE/vzAvHmqo7F5TG6IKGc2bQL+/BNwcTEXOlJG77wDPPMMcPs2MHq06mjI3qRf+u3vD1SrpjYeO8DkhoiyLy3NPGrj7w889ZTaeGxV+uLib74Bdu1SHRHZkxUrgFOnZBSQXyCyhMkNEWXf2rXA8eOyE7ExyaHMNWoEDBwo5/7+8m2c6Elu3QKCguR86lSgaFGl4dgLJjdElD3375v/0x01Sopm6fHef1++fZ88KSM5RE8yYwYQGwvUqAH873+qo7EbTG6IKHs++wy4cEG2GRg+XHU09qF4cencDMj0QlSU2njItp0/D3zwgZwvWCD7SFGWMLkhIsslJUkzMUDav7u7q43HnvTrJ1NU8fHAmDGqoyFbNnq0jJC2awe0bas6GrvC5IaILLdkCfDvv0D58hwqt5STk7m4+KuvgN27VUdEtuiPP4Aff5S/L/Pnq47G7jC5ISLL3LplnlqZOlWWgJNlnnlGRnAAYPBgFhdTRqmpwIgRcv7ee1JvQxZhckNElpk3Tzbvq1kT6NFDdTT2KzhYVr6cOAF89JHqaMiWfPaZ/L0oWhSYPFl1NHaJyQ0RZV10tOxpA8gqDicntfHYsxIlZPUUIKvOoqPVxkO2IS5O9mkDJLHhKsRsYXJDRFk3YwZw545Mq3TsqDoa+zdwoGyuGRcHjBunOhqyBTNnAteuSRfi995THY3dYnJDRFkTFgYsWybnwcFSEEs54+Rk3uV55Upg3z6l4ZBiFy8CixbJ+fz5XPqdA0xuiChrpkyRZal+fsALL6iORj+aNQP69pXzwYOlmJQc05gxwL17wMsvA6+8ojoau8bkhoie7NQpWbYMyLA55a5Zs4AiRYBjx8yjY+RYduwA1q2TfcgWLODIaA4pTW527dqF9u3bo2zZsjAYDNiwYcNjr1+3bh1eeukllCxZEh4eHmjWrBk2b96cN8ESObKJEwFNAzp3Bho3Vh2N/pQqBUyfLucTJkjNBTmO1FTzrt+DBgG1aqmNRweUJjeJiYnw9fXF0izusbJr1y689NJL+PXXX3HkyBG0bt0a7du3x7Fjx6wcKZED279fmonly2f+AKbcN2gQUK+e9BHiJqSO5YsvZNTO01N6R1GOGTRN01QHAQAGgwHr169HRwtXYNSqVQtvvvkmJj1iG/jk5GQkJyebbsfHx8Pb2xtxcXHw8PDISchE+qdpUl+zYwfwzjvAp5+qjkjf9u4FWrSQ8337gKZN1cZD1nf7NlClirQCWLDA3LyPHhIfHw9PT88sfX7bdc1NWloabt++jWLFij3ymuDgYHh6epoOb2/vPIyQyM5t3SqJjbMzm4nlhebNgd695ZzFxY4hOFgSmypV5GdOucKuk5t58+YhISEBXbt2feQ1gYGBiIuLMx0RERF5GCGRHUtLA8aPl/P33gOeflptPI5i9myZnjh6FFi+XHU0ZE1hYTJaA0jnb2dntfHoiN0mN6tWrcLUqVOxdu1alCpV6pHXubi4wMPDI8NBRFnwww/AkSNA4cLmJIesz8vLvOP6+PFAbKzaeMh6xo4FkpOBF18E2rdXHY2u2GVys3r1avTv3x9r166Fn5+f6nCI9CclRVZIAcDIkUDJkmrjcTTvvQfUrSt7eDGx1Kc//wS++45Lv63E7pKbb7/9Fn379sW3336LV199VXU4RPq0ciXw99+yr41xiSrlnfz5zZ2LV6wADh1SGw/lrrQ0c+HwgAGSyFKuUprcJCQkIDQ0FKGhoQCAsLAwhIaGIjw8HIDUy/Tq1ct0/apVq9CrVy/Mnz8fTZo0QVRUFKKiohAXF6cifCJ9unvXvBx1wgSAU7lqPPec7LquaVJompamOiLKLV99JVO+Hh7mKUjKVUqTm8OHD6N+/fqoX78+ACAgIAD169c3LeuOjIw0JToA8MknnyAlJQWDBw9GmTJlTMewYcOUxE+kSx9+CPzzD+DtDbz7rupoHNucOYC7u4zccBm+PiQkmPsYBQVJA0fKdTbT5yavWLJOnsjhxMcDFSsC16/LdEi/fqojooULZWqweHGZKnxM6wuyA0FBwIwZQKVKwOnTgIuL6ojshsP0uSGiXDZ/viQ21aqZ+62QWv7+0o7/+nWZJiT7deWKLPkGgLlzmdhYEZMbIhIxMeaeGzNmSFErqVegAGDcombZMqnVIPs0bpzUtLVqBVjYjZ8sw+SGiMTMmVIP0LChbJBJtqNlS6BbNxYX27O9e4HVq2XJ98KFXPptZUxuiEiGyz/6SM6Dg/kfry2aN08aKh44IEv1yX6kpQHDh8t5v36yQSpZFZMbIpKl3/fuAa1bA2yMaZvKlgWmTJHzsWOlwR/Zh1WrZMWbu7tM+ZLVMbkhcnRnzgBffCHnM2dy1MaWDR0K1KwpWzIEBamOhrIiMVFqbQApCPfyUhuPg2ByQ+TogoJk2LxjR6BpU9XR0OMUKGDuXPzRR8CxY2rjoSebOxe4ehWoUAFgT7Y8w+SGyJEdOgSsWyejNRwutw+tWwNvvikJKYuLbVtEhDRiBOTXggXVxuNAmNwQOTJjp9SePaWXCtmHefMANzdg3z7gyy9VR0OPEhgIJCXJVhpcgZinmNwQOapt2+QoUMC8lxTZh6eeAv7bpgZjxgC3bikNhzKxfz/wzTdc+q0IkxsiR6Rp5lGbQYMAHx+l4VA2DB8OVK8OXLtmTnTINmiaeel3nz7SO4ryFJMbIke0fr3U27i5saW/vXJ2BhYvlvOlS4Hjx9XGQ2bffiv9iNzcgPffVx2NQ2JyQ+RoUlOBiRPlfMQILk21Z35+wP/9nxQV+/vLiAGpdeeOeen3+PFAmTJq43FQTG6IHM1XXwFnz8ru0qNGqY6GcmrBAqBQIWD3buDrr1VHQ/Pnyyqp8uXlywMpweSGyJEkJwOTJ8v5uHGAp6faeCjnvL3NI3GjRwNxcWrjcWRXrwKzZsn57NmAq6vaeBwYkxsiR/Lxx0B4uLTy9/dXHQ3lloAAoEoVIDravEUD5b3x42VaqnlzoGtX1dE4NCY3RI7i9m1zcePkyfxWqScuLubi4sWLgZMn1cbjiA4dMvccWrSIS78VY3JD5CgWLpRlw5UrA337qo6GclubNkCnTlIwzuLivJV+6XevXkDjxkrDISY3RI4hNla62gKyzUKBAmrjIetYuFBG5HbtkuXIlDfWrgX27pXC7pkzVUdDYHJD5BhmzZJpqXr1gC5dVEdD1lK+vLlv0ahRQHy82ngcQVISMHasnI8bB5QrpzYeAsDkhkj/IiLMO0nPnAnk4z97XRs1SqYeIyO5rUZeWLgQuHJFVq2NHKk6GvoP/5cj0rtp02QJ+PPPA23bqo6GrM3FBfjgAzkPCQFOn1Ybj55FRpqnoWbNkmkpsglMboj07Nw54PPP5Tw4mCs4HEW7dkCHDiwutrYJE4DERKBpU6BbN9XRUDpMboj0LChIPuBee016b5DjWLQIKFgQ2LEDWLNGdTT6c+QIsHKlnHPXb5vD5IZIr44cAb77Tv7T5eZ9jsfHx7zz+8iRUlBOuUPTZGsFTQO6d5eRG7IpTG6I9Gr8ePn17beBunXVxkJqjBkDVKwI/PsvMH266mj044cfgD//lGX3wcGqo6FMMLkh0qMdO4AtW4D8+blixpEVLChFxYBMnZw9qzYePbh7V5JGQH719lYbD2WKyQ2R3miaeTpi4ECgUiW18ZBar70mR0oKMGQIi4tzKiQECAuTfjajR6uOhh6ByQ2R3vz0E7B/vwyZG3eLJscWEiJLxLdtA77/XnU09isqyly/NmsW4OamNh56JCY3RHqSmmruUDtsGFCmjNp4yDZUrGjuohsQACQkqI3HXgUFSWF248ZSy0Y2i8kNkZ6sWiVN24oUMdcFEAGyNYCPD/DPP1w9lx2hocCnn8r5okXs9G3j+NMh0ot794BJk+R87FigaFG18ZBtcXWVD2UAmD9fGjxS1hh3/dY04K232DPKDjC5IdKLTz4BLl+WqaihQ1VHQ7bo9dele/H9+/J3hMXFWbNhA7Bzp6w+mzVLdTSUBUxuiPQgIQGYMUPOg4K4xw1lzmCQfaecnaVVwPr1qiOyfcnJshkpIL+WL682HsoSJjdEehASAkRHS+Fov36qoyFbVrmyuR5r+HDZG4kebfFi4NIlGRE1FmWTzWNyQ2TvbtwA5s6V8+nT5Vs50eMEBsoIRESEeVdrelhMjLmzc3AwULiw2ngoy5jcENm72bOBuDjZYuGtt1RHQ/agUCHpWAwA8+YB58+rjcdWTZoExMcDDRsCPXuqjoYswOSGyJ5dvSo1FIAs7+XyVMqqjh2BNm1klR2Lix924gSwfLmcL1zIf1t2hj8tIns2fbrsddOiBfDqq6qjIXtiLC4uUADYtAn48UfVEdkOTZNmh2lpQJcuwHPPqY6ILMTkhshenT8PrFgh58HB8mFFZImqVc0rgYYPB+7cURqOzfj5Z9mqwsVFpn3J7jC5IbJXkybJdgvt2vGbJWXfhAmys/WVK+zhAsg03ciRch4QAFSooDYeyhYmN0T2KDQUWL1azrnahXLCzQ1YsEDO58wBLl5UG49qS5cCFy4AXl6yqozsEpMbIntk3BzzrbeAevWUhkI60Lkz4OcnDeuGDVMdjTqxscDUqXI+cybg7q42Hso2JjdE9ubPP4FffwWcnIBp01RHQ3pgMEizugIFgI0bpebEEU2eLG0V6tUDevdWHQ3lAJMbInuiaeah8v79gSpV1MZD+lG9OjBihJwPGwYkJamNJ6+dOgV8/LGcL1woXx7IbjG5IbInv/4K7NkjG/gFBamOhvQmKAgoVw4IC5P6G0eRfun3G28ArVqpjohyiMkNkb1ISwPGj5fzIUPkQ4goNxUuDMyfL+ezZsmeSo7g11+BrVtl6xJHSup0jMkNkb1YvVq6pnp6AuPGqY6G9KprV+CFF6Q55PDhqqOxvvv3ZdQGkN9vpUpKw6HcweSGyB7cu2eehho9GihWTG08pF8GA7BkCZA/vxQWb9yoOiLr+vBD4O+/gVKlzKsQye4xuSGyB59+KlMEpUo59lJdyhs1aphHbYYOlVEcPbp+3bz0e8YMwMNDbTyUa5jcENm6O3dkDylARm8KF1YbDzmGSZOAsmUlqZ47V3U01jF1KnDzJlC3LvDOO6qjoVzE5IbI1i1eDERGAj4+wMCBqqMhR+HuDsybJ+czZwKXLysNJ9edPStTUgCXfusQkxsiW3bzpnm/n6lTZTUHUV556y2gZUuZljL2wNGLkSNlb7YOHaSAmnTFouQmJibmsY+npKTg4MGDWX69Xbt2oX379ihbtiwMBgM2bNjw2OsjIyPx9ttvo2rVqsiXLx+GO0IlPzm2uXOBW7eAWrWA7t1VR0OOxlhc7OQEbNgAbNqkOqLc8dtvchQooN8pNwdnUXJTpkyZDAlOnTp1EBERYbp9/fp1NGvWLMuvl5iYCF9fXyxdujRL1ycnJ6NkyZKYOHEifH19sx44kT2KjAQWLZLz99/nsDmpUbu2FBUD0l8pOVltPDl1/7551++hQ9nlW6fyW3KxpmkZbl++fBn3799/7DWP065dO7Rr1y7L1/v4+CAkJAQA8Nlnn2XpOcnJyUhO948xPj4+y+9HpNSMGdICv2lT4PXXVUdDjmzKFODbb2W37Pnzzc0k7dGyZVJvU6IEMHGi6mjISnK95sZgMOT2S+ZIcHAwPD09TYe3t7fqkIie7NIl4JNP5Dw4WKYHiFTx8DBP38yYAYSHq40nu27elM0xAVmBWKSI0nDIenRfUBwYGIi4uDjTkX4ajchmTZoEpKQAL7/MfW7INnTvDjz3nIwmGjv62ptp04AbN2SqrX9/1dGQFVk0LWUwGHD79m0ULFgQmqbBYDAgISHBNNVji1M+Li4ucHFxUR0GUdadPAmsWiXnM2eqjYXIyFhc3KAB8MMPshfTSy+pjirrzp2T+AFgwQLpwEy6ZXHNTdWqVTPcrl+/fobbtjYtRWR3JkyQXYq7dAEaNlQdDZFZ3brA4MHABx9IcfGJE/bTnmDUKBkNfe01+0rKKFssSm62b99urTiICAD27JH9fJyczF2JiWzJ1Kmyieu5c9L8buxY1RE92ZYtwC+/yGiNsTEh6ZpFyU3Lli1z9c0TEhJw4cIF0+2wsDCEhoaiWLFiePrppxEYGIirV6/iyy+/NF0TGhpqeu61a9cQGhoKZ2dn1KxZM1djI8pzmmZehdKnD1CtmtJwiDJVpAgwZ478HZ02DXj7bcCWF2qkpJhrhPz9+e/KQRg0C9Zup6SkIDU1NUMNS3R0ND7++GMkJibi9ddfx7PPPpvlN9+xYwdat2790P29e/fGypUr0adPH1y+fBk7duwwB5zJtFf58uVxOYutwePj4+Hp6Ym4uDh4cJM0siWbNgHt2gEuLsD587b9gUGOLS0NeP55GWns0gVYu1Z1RI/20UfAe+8BxYrJUvaiRVVHRNlkyee3RclN37594ezsjGXLlgEAbt++jVq1auHu3bsoU6YMzpw5gx9//BGvvPJKzn4HVsTkhmxSWprU14SGyrfM+fNVR0T0eMePS3FxWpoUF/v5qY7oYbduAZUry+7fS5ZIvRDZLUs+vy1aCr5nzx507tzZdPvLL79Eamoqzp8/j+PHjyMgIABz2cqayHLffSeJjbs7EBioOhqiJ/P1lRERQIqL791TG09mZsyQxKZmTeB//1MdDeUhi5Kbq1evokq6VtXbtm1D586d4enpCUCmk06fPp27ERLp3f37QFCQnI8aJZ1TiezB9OlAyZLAX38B/3WPtxnnz8uqLoBLvx2QRclNwYIFkZSUZLq9f/9+NGnSJMPjCQkJuRcdkSP4/HP5j7hkSf3tvEz6VqQIMHu2nE+dCly9qjScDEaPli8O7doBbdqojobymEXJTb169fDVV18BAP78809ER0fjhXRbxV+8eBFly5bN3QiJ9CwpST4UAFkp5e6uNh4iS/XuLfufJSbKyKMt2LYN+PFHaanA+jWHZFFyM2nSJISEhKBSpUpo06YN+vTpgzJlypgeX79+PVq0aJHrQRLp1tKlwL//Ak8/DQwapDoaIsvlyyd/jw0G6X+juh9aaqp5BPS994AaNdTGQ0pY3OfmyJEj2LJlC0qXLo0uXbpkeLxevXp45plncjVAIt2Ki5NNMQHZdblgQaXhEGVbgwaSnH/0kfSSCQ0FChRQE8unn8oWJkWLmjfJJIdj0VJwPeBScLIZQUGymqN6dfnPmAWPZM9u3ACqVpXVSfPnq9lcMy4OqFIFuHZNCpyHDs37GMhqrNbnZteuXVm67vnnn8/qS+Y5JjdkE6KjgUqVpE7hhx+AN95QHRFRzq1YAQwYILVj584B6coW8sTYsdI9uVo1+cKgavSIrMJqyU2+fPlMHYIf9TSDwYDU1FQLws1bTG7IJgwdCixeDDRuDBw4IPUKRPYuLQ1o1gw4eBDo3h34+uu8e++LF6Wfzb17wMaNgA03k6XssVoTv6JFi8Lb2xtBQUE4f/48bt68+dBx48aNHAVPpHuXLwMffyznM2cysSH9SF9c/M03QBZH+3PFmDGS2Lz8siz/JodmUXITGRmJ2bNnY9++fahTpw769euHvXv3wsPDA56enqaDiB5jyhTpv/Hii7bZsp4oJxo1kqkpQLY7uH/f+u+5Ywewbp0kVwsW8AsDWZbcODs7480338TmzZvx119/oW7duvD394e3tzcmTJiAlJQUa8VJpA+nTwPGXe5nzlQbC5G1zJwpG1WeOiUjOdaUfun3oEFArVrWfT+yCzleLRUWFoZ+/fph586duHbtGooVK5ZbsVkFa25IqU6dgA0b5Nd161RHQ2Q9n3wi+zl5eEhxcenS1nmfTz8F+vcHPD1l129uX6JbVqu5MUpOTsaqVavg5+eH2rVro0SJEti4caPNJzZESh04IIlNvnyyBJxIz/r1kymq+Hiph7GG27eBCRPkfPJkJjZkYlFyc/DgQbz77rsoXbo05s6di9dffx0RERFYu3Yt2rZta60Yieyfppl3++7VS1Z1EOmZk5O5uPirr4Ddu3P/PYKDpa1ClSpS30P0H4uXgj/99NPo3bs3GjZs+MjrXn/99VwJzho4LUVKbN0qqzicnYG//wbKl1cdEVHeGDBA+t/UrQscOZJ7zSrDwmRrheRk4KefgPbtc+d1yWZZtc/Nk7DPDdEDNE362Rw5AgwbBixapDoiorwTGyudi2/eBD74ABgyJHdet2tX4LvvZNXh1q1cIeUArFZzk5aW9sTj9u3bOQqeSHd++EESGzc32fmbyJGUKAG8/76cBwXJNFJO/fmnJDZc+k2PkK2C4swkJydjwYIFqFixYm69JJH9S0kBJk6U84AAoFQptfEQqTBwoGyuGRcHjBuXs9dKSwOGD5fzAQNkuovoARYlN8nJyQgMDESjRo3QvHlzbNiwAQDw2WefoUKFCli4cCFGGPsNEBHwxReyDLZ4cWDkSNXREKnh5AQsWSLnK1cC+/Zl/7W+/BI4elSWmE+blivhkf5YlNxMmjQJH330EXx8fHD58mV06dIFAwcOxKJFi7BgwQJcvnwZY8eOtVasRPbl7l3pRgzISil27yZH1qwZ0LevnA8eLM33LJWQYF51GBTEkVB6JIuSm++++w5ffvklvv/+e2zZsgWpqalISUnB8ePH8dZbb8HJyclacRLZn48+Av75B3jqKeC991RHQ6TerFlAkSLAsWPAsmXZe35UFFCpUu4VJpMuWZTc/PPPP6Yl4LVr14aLiwtGjBhh2imciP4TH28uopw8GXB1VRsPkS0oVQqYPl3OJ0wArl3L+nOvXAHmz5fzefMAF5fcj490w6LkJjU1Fc7Ozqbb+fPnR+HChXM9KCK7t2ABcP26LIHt00d1NES2Y9AgwNcXuHXLPMWUFePGyVRv69ZAhw5WC4/0weI+N+3atYPLfxnzzz//jBdeeAFubm4Zrltnw3vmsM8NWd21a0DFilIfsHYt0KWL6oiIbMuePcCzz8r5vn1A06aPv37vXqBFC1nyffQoUK+e1UMk22PJ57dFrSJ79+6d4XaPHj0sj45I72bOlMSmQQOgc2fV0RDZnhYtZBuSL7+U4uKDB2VFVWbSL/3u14+JDWVJjncFtzccuSGrCg+XfW7u3QM2bQLatFEdEZFtio6Wadv4eCm+HzQo8+u++koSIXd34Px5wMsrb+Mkm2H1XcGJ6BGmTpXEplUr2UuKiDLn5WUuLh4/XrZpeFBiornp34QJTGwoy5jcEOWWs2elQRkguxVzFSHR4733nnQYvnkz861J5swB/v0XqFBB9mUjyiImN0S5JShI6gNef/3JBZJEJDuEGzsXr1gBHDpkfiwiApg7V87nzgUKFsz7+MhuMbkhyg2HDskGmQaDub8NET3Zc88BPXoAmibFxWlpcn9gIJCUBDz/PPDGG2pjJLvD5IYoNxiH1Hv0AGrXVhsLkb2ZM0cKhg8dAj79FNi/H/jmG/mysHAhp3jJYkxuiHLqjz+A338HChSQgmIiskyZMuZ/O4GBgL+/nPfpIy0ViCzE5IYoJzTN3GX1f/+Twkcispy/P1CrlnT2PnIEcHPjFC9lG5MbopzYsEEakBUqBEycqDoaIvtVoACwdKn59vjxMqJDlA0WdSgmonRSU80JzfDh7MFBlFMtW8pozV9/ASNGqI6G7BiTG6Ls+vpr4MwZoGhRYPRo1dEQ6UNm/W6ILMRpKaLsSE4GJk2S83HjgCJFlIZDRERmTG6IsmPZMtlHqkwZ88oOIiKyCUxuiCx1+zYwY4acT54sxcRERGQzmNwQWWrRIuDaNaByZeCdd1RHQ0RED2ByQ2SJ69eBefPkfNo0Wb5KREQ2hckNkSVmzQLi4wFfX+DNN1VHQ0REmWByQ5RV//wDLF4s5zNnAvn4z4eIyBbxf2eirJo2TZaAP/ss0K6d6miIiOgRmNwQZcXffwOffSbnwcHcpZiIyIYxuSHKiqAg2W7h1Vdl5IaIiGwWkxuiJzl6FFi7Vs65SzERkc1jckP0JMa9bt5+W1ZJERGRTWNyQ/Q4O3cCmzcD+fNLQTEREdk8JjdEj6JpQGCgnPfvD1SqpDYeIiLKEiY3RI/y88/Avn2Aq6sUFBMRkV1gckOUmdRUYMIEOR86FChbVm08RESUZUqTm127dqF9+/YoW7YsDAYDNmzY8MTn7NixAw0aNICLiwsqV66MlStXWj1OckDffgucOgV4egJjx6qOhoiILKA0uUlMTISvry+WLl2apevDwsLw6quvonXr1ggNDcXw4cPRv39/bN682cqRkkO5dw+YNEnOx44FihZVGw8REVkkv8o3b9euHdpZ0Mb+448/RoUKFTB//nwAQI0aNbB7924sXLgQbdq0sVaY5GiWLwfCwgAvL5mSIiIiu2JXNTf79u2Dn59fhvvatGmDffv2PfI5ycnJiI+Pz3AQPVJiIjB9upwHBQFubmrjISIii9lVchMVFQUvL68M93l5eSE+Ph5JSUmZPic4OBienp6mw9vbOy9CJXsVEgJERwMVKgADBqiOhoiIskHptFReCAwMREBAgOl2fHy8dRKcGzekg2166TdXfHCjxew8lhuvwdd//GOrV8uv06YBzs4gIiL7Y1fJTenSpREdHZ3hvujoaHh4eMDV1TXT57i4uMDFxcX6wd27J51syf7Vrg1066Y6CiIiyia7Sm6aNWuGX3/9NcN9W7duRbNmzRRFlI6nJ/Dll+bbmvbk89y4Li/fyxGuc3IC3npLfiUiIrukNLlJSEjAhQsXTLfDwsIQGhqKYsWK4emnn0ZgYCCuXr2KL/9LGgYNGoQlS5ZgzJgxeOedd/DHH39g7dq12Lhxo6rfgpmrK9Czp+ooiIiIHJ7SguLDhw+jfv36qF+/PgAgICAA9evXx6T/eoxERkYiPDzcdH2FChWwceNGbN26Fb6+vpg/fz5WrFjBZeBERERkYtC0B8fo9S0+Ph6enp6Ii4uDh4eH6nCIiIgoCyz5/LarpeBERERET8LkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrNpHcLF26FD4+PihYsCCaNGmCgwcPPvLa+/fvY9q0aahUqRIKFiwIX19fbNq0KQ+jJSIiIlumPLlZs2YNAgICMHnyZBw9ehS+vr5o06YNYmJiMr1+4sSJWLZsGRYvXowzZ85g0KBB6NSpE44dO5bHkRMREZEtMmiapqkMoEmTJmjcuDGWLFkCAEhLS4O3tzeGDBmCcePGPXR92bJlMWHCBAwePNh0X+fOneHq6oqvv/76ie8XHx8PT09PxMXFwcPDI/d+I0RERGQ1lnx+Kx25uXfvHo4cOQI/Pz/Tffny5YOfnx/27duX6XOSk5NRsGDBDPe5urpi9+7dj7w+Pj4+w0FERET6pTS5iY2NRWpqKry8vDLc7+XlhaioqEyf06ZNGyxYsADnz59HWloatm7dinXr1iEyMjLT64ODg+Hp6Wk6vL29c/33QURERLZDec2NpUJCQlClShVUr14dzs7O8Pf3R9++fZEvX+a/lcDAQMTFxZmOiIgIq8WmaUCPHsC0acDmzcDNm1Z7KyIiInqE/CrfvESJEnByckJ0dHSG+6Ojo1G6dOlMn1OyZEls2LABd+/exfXr11G2bFmMGzcOFStWzPR6FxcXuLi45Hrsmbl6Ffjmm4z3Va0KPPMM0KQJ8MILQM2aeRIKERGRw1I6cuPs7IyGDRti27ZtpvvS0tKwbds2NGvW7LHPLViwIMqVK4eUlBT88MMP6NChg7XDfSJXVyAkBHj7baByZbnv77+Br78GhgwBPvnEfG1ioiRCFy7IiA8RERHlDqUjNwAQEBCA3r17o1GjRnjmmWewaNEiJCYmom/fvgCAXr16oVy5cggODgYAHDhwAFevXkW9evVw9epVTJkyBWlpaRgzZozK3wYAoHhxYOhQ8+3r14GDB+U4cABo3dr82OHDMoUFAMWKmUd3mjSR8+LF8zZ2IiIivVCe3Lz55pu4du0aJk2ahKioKNSrVw+bNm0yFRmHh4dnqKe5e/cuJk6ciEuXLqFw4cJ45ZVX8NVXX6FIkSKKfgePVrw40K6dHA9KSQGaNgWOHQNu3AA2bZLD6NNPgXfekfOkJMBgAB5YJEZERESZUN7nJq/ZWp+be/eA48dlZMc4wvP338D+/TKKAwCffQYMGgT4+mYc3alSBXhEHTUREZGuWPL5rXzkxtE5OwONG8thdOMGkP7ndvIkcP++TGUdPgwsXSr3Fykiz1u6VBIdIiIi4siN6nCyRNOAy5czju4cPQrcvSuPX7sGlCgh5yEhMupjrOGpX18KnYmIiOyZJZ/fTG7s1P37MqJz6hTQq5f5/pdeAn7/3Xw7f36gbl3zdNbbbwMFCuR9vERERDnB5OYx9JLcPMqff8px4IAc6VsIFSkiK7iMdTpr1siozjPPAI9oK0RERGQTWHPjwJ57Tg5AprMiIszTWZqWsQA5MBAIC5Pzp582Fyo3aQI0bAgUKpT38RMREeUUR24cVEoKMHCgJD1nzjzcSLBRI+DQIfPtS5eA8uUBJ6e8jZOIiAjgyA1lQf78ssQcAOLjZRWWsVj5wIGMq7fu3gWqV5c+O40aZVyOXrasmviJiIgehSM3lKnkZMC4JdeZM5LIJCY+fN1TTwHDhwMjR+ZpeERE5GA4ckM5ln6v0Zo1gbg4SXLSL0c/dQr455+MU1oXLwKdOmWs36lVi9NZRESUdzhyQ9mWkCD9dnx8pCAZkM1AjXtmGbm5SYFykyZAz55AnTp5HioREdk5LgV/DCY31nX9esal6IcOSRJktG6djOwAsq/W5s2S9DRqBLi7q4mZiIhsH6elSJnixYGOHeUAgNRU4K+/zNNZTZuar/35Z2DyZDk3GGT6K/10Vu3aUvhMRERkCY7ckDIbNgCrVknSc+XKw48fPy7dlQGp5cmfX6a/DIY8DZOIiGwAp6Ueg8mNbYqKkiTHWKx89qwkPMZC5D59gC++ALy8zCM7xumsIkVURk5ERHmByc1jMLmxD5qWcYSma1dg/XppPvigWrWkfse4Z9aDzyUiIvvHmhuyew8mJ2vXAklJksQYi5UPHjRvH5F+M9CXX5aePMbRnSZNZEUXEx4iIsfAkRuyazExQGQk4Osrt+/fBzw9JRFKr2RJmc5q0wYYMiTv4yQiopzhyA05jFKl5DDKnx8IDc3YbDA0FLh2Ddi4UTYONSY3mgb4+wM1asjojq8v4Oys4ndBRES5ickN6YrBAFStKkfPnnJfcrI54Slf3nztP/8AH35ovu3sDNSvDzRrBjRvDjz7LFCmTJ6GT0REuYDTUuSwoqKAZcvMNTw3bmR8fNgwYNEiOb97V7afqFuXvXeIiFTgtBRRFpQubW4iqGnSS+fAAWDfPmDvXhm5MTpwAGjVCihUSKawmjcHWrSQpoRFiyoJn4iIHoHJDRFkOqtyZTm6d3/48chIKVSOiwO2b5fDqGZN4IMPgBdfzLt4ifQoNRU4f162bKlRQ/alI8qOfKoDILIHb70l01anTgGffCJNBatUkcfOnJHEx2jtWuD114FZs4Bdu4A7d5SETGQ3/vhDRko9PSWpadxY9pqrXFn2okv/ZYIoKzhyQ5RF+fJJw8BatYABA+S+a9dkCsu4FB0Atm6VfbN+/llu588vhcrNm8vx6qv8RkqO5d494PRp4MgR4OhROUaPBjp3lscNBmDPHjl3dZXEJiZGpoovXjQvDgCALVuA8eOBOnXMR9260r2cyIjJDVEOlCwJdOiQ8b4hQyQB2rNHjshI2R390CEgJEQSImNys3+/NCCsWzdjI0Iie3f5MvD++5LInDwpPajS27fPnNw0agR8+SXQsCFQrZpsuxITI887eTLjhrtHjpiP9EqWlERnzhx5HXJsXC1FZEWaBoSHy+jO3r3A1avAunXmx198UYbkCxWSJoPpC5WLFVMXN1FWJCbKBrfGEZkWLYD+/eWxiAjZ6NaoaFGgQQM5GjaUv+PpWzNk1dWrUuB/8iRw4oT8euGC/FsDMm64u3ix1MMZR3eMIz2VKpn3rSP7wb2lHoPJDdmSrl1lGuvWrYcfa9ZMEiIiW5GUBHz8sTmZ+esvc1IBAB07yh5wgNw/fbqMYjZsKImMtbZAuXNHpr1OngR69DA34+zXD/jss4evd3WVhQBr1wIVK8p99+9z9NTWMbl5DCY3ZGvS0uRDwji6s2cP8PffQNu2wG+/ma9r3FiWrxtrdxo3lhEfotx2/brs43b0KFC4MPDee3J/Sgrg4ZFxe5OyZc2jMc8+C/j5qYk5M9euyeiOcYTn5ElJgozx374tvz9AupV/993Dozw1a/Lfma1gcvMYTG7IHsTGAjdvmldk/fsvUK5cxmvy5wfq1ZNE57XXgJdeyvMwSSe2bJGaMGOx7+XL5sdq1ZJVgkbjxklC0LChFMqXLp3n4eZIaipw6ZIsOX/lFfP9LVvK6sYHGdtEHDtmrpW7eVNWduXjeuM8xeTmMZjckD1KSZH/XPfsMY/u/Puv+fH33gOWLpXzu3dluXrz5rKKi0PtBMg00b//SvISHW2ujQEkgTlzJuP1lSrJiEzjxrKySe8SE+XPIP0oz8mTMvpTpkzGf29t2wJ//il/bulXbNWpI4XNZB1Mbh6DyQ3pgaZJwaZxKuuVV+Q/XEBut2gh566uUqjcooUkO02bAsWLq4ub8k54OHD4sCQzxhqZmBh5rFAhID7eXFQbGCjXGwt+69cHihRRFrpNiY6WIuYGDcz3Vaokoz+ZqV4dOHvWfPvSJUmOXF2tG6cjYHLzGExuSO/275dCzn37ZPj8QZ98Yu7Tc/++fMBxeN1+paXJB+jx48Abb5iLdjt0AH76KeO1Tk5SQ9KggeybxgQme1JTZYWWcXTHONpz6ZLUHaWf3qpcGQgLkynmB3vzVKjAf3uWYHLzGExuyFGkpQHnzmUsVDbebtZMrvn6a9kg1LgTurFQmU0GbVNqqhSbG2tjjEd8vDz+zz/m2qzgYCmQTb/8uk4dFsdaU2KiFGMbl8AnJwPe3jK1lZlnn5XpLaMDB2RUqEQJ68dqj5jcPAaTG3JksbFSCGmsw/H3N9fqGDk5mQuVx4wBnnoqz8MkSJ3V2bPyzd84pTF6NDBv3sPXurhIfdXy5eYeL2QbNA2IispYx2NctfX22+al6vfuyZeKlBQp0k6/Ysu4aqtgQbW/F9WY3DwGkxsis/v3ZTojfaHy1avmx//9V+oFAOCHH6TOp3lzSX6MvUQo5+7dkxVJ6Udjjh+X4vAdO2QlDwB88w0wcKDUxBhHZBo0kP2YWDhuX1JSZKTHuC9deDjQuvWja3neegv49ls5T0uTKcc6dRxrasuSz29uv0DkwAoUkNb3jRrJ9BRgLlQ+fdqc2ADAihXApk1yXrCgTF8ZOyo3a8ah9KxKSpJv88bpoTVrZO+kB7cnAGSPpago8+0uXeRDjt117V/+/Bk33H36adlH6/Ztc0PC9DU9deqYr710STYUBWS0p3btjCu2fH2lI7Qj48gNEWXJBx9IP5S9ex8uVHZ3l/uMH7qRkbKRoaN8o3yUhISM2xMcPSrLjZctk+65gNRZNG0qH0YNG2YckalUiX+GJMlwSop5dO7wYVkUcOaMjPo9aOJEWVQAADduAL/8IklPjRr2PbXFkRsiynVDh8qRliZFrcZprL17pS4n/WhCy5ZSRJm+UPmZZ8zdYPVI08wrlU6dkq01HtyewCh9T5n69WU1jTW3JyD7ZjBknHZs1Ej6XqWkSDPCB3vzpK+7OngQ6N1bzp2cgKpVM67YatZMn715OHJDRDmWfl+e+HiZzrpzJ+M1+fLJcHnXrtLl1p4ZtydIPyLTpQswc6Y8Hhtr/sBIvz2BcUSmXDkmMpQ3fv9dRnFOnsy8NcTKlebk59w5GZ01Tm/Z2ua9HLkhojyV/lulh4dsBHrihHkZ+t69UjB57Jh86zS6fx/o1cu8I3r9+rZbqHz7tnwIHD0KXLny8ONHjpjPS5SQDVFr17a/7QlIX/z85DB2qH6wN4+vr/narVtldNaobNmMq7batrWfUR6O3BBRnvjnH2ks+PTTQJMmct+hQ5LYGBUsKMmPsaNyixZ511E5/fYExhEZb2/zUnlNk2+yxh3cK1fO2EOmfn12fyb7tmED8OmnkvRklsDv3m3ufr59u3xpMU5v5cW0KpeCPwaTGyLbEREhy5uNozvXr2d8PDjYPIUVFyfX16yZu0W206fLe6ffnsCoQoWMS3PXrgVKlZKl8OzuS3oWHy+1Y+lHen7+2bzCa/hwICTEfL27e8ZVW+++m/vF8ExuHoPJDZFt0jQpjkzfUfnjj4HnnpPH16yRZdCeng8XKru7P/p109Jkia1xRCYuTlYrGTVqZJ5SSr89gXFExvhNlYjM1q6VZOfECWk2mb6VQdmyGftl5RYmN4/B5IbIPi1eLBs8JiZmvD9fPvmmuGKFJCOALH394w9JaI4dM29PAEh/kYQE6eoLAF99JbeN2xNwg0Miy9y/LysojSM8zs7AlCm5/z5Mbh6DyQ2R/UpJkf9AjUvQ9+411waEh0uNDCAjPGvWmJ9n3J7AOCLTvTv3WCKyN1wtRUS6lD+/FO7Wry/7YgEy/H34sDmxAYCOHaU2htsTEDkmjtwQERGRzbPk85uNvYmIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFZtIbpYuXQofHx8ULFgQTZo0wcGDBx97/aJFi1CtWjW4urrC29sbI0aMwN27d/MoWiIiIrJlypObNWvWICAgAJMnT8bRo0fh6+uLNm3aIObB7Xn/s2rVKowbNw6TJ0/G2bNn8emnn2LNmjUYP358HkdOREREtkh5h+ImTZqgcePGWLJkCQAgLS0N3t7eGDJkCMaNG/fQ9f7+/jh79iy2bdtmum/kyJE4cOAAdu/e/dD1ycnJSE5ONt2Oj4+Ht7c3OxQTERHZEbvpUHzv3j0cOXIEfn5+pvvy5csHPz8/7Nu3L9PnNG/eHEeOHDFNXV26dAm//vorXnnllUyvDw4Ohqenp+nwTr8BDREREemO0o0zY2NjkZqaCi8vrwz3e3l54a+//sr0OW+//TZiY2Px7LPPQtM0pKSkYNCgQY+clgoMDERAQIDptnHkhoiIiPRJec2NpXbs2IGZM2fiww8/xNGjR7Fu3Tps3LgR06dPz/R6FxcXeHh4ZDiIiIhIv5SO3JQoUQJOTk6Ijo7OcH90dDRKly6d6XOCgoLQs2dP9O/fHwBQp04dJCYmYuDAgZgwYQLy5bO7fI2IiIhykdLkxtnZGQ0bNsS2bdvQsWNHAFJQvG3bNvj7+2f6nDt37jyUwDg5OQEAslIbbbwmPj4+B5ETERFRXjJ+bmdpHZSm2OrVqzUXFxdt5cqV2pkzZ7SBAwdqRYoU0aKiojRN07SePXtq48aNM10/efJkzd3dXfv222+1S5cuaVu2bNEqVaqkde3aNUvvFxERoQHgwYMHDx48eNjhERER8cTPeqUjNwDw5ptv4tq1a5g0aRKioqJQr149bNq0yVRkHB4enmGkZuLEiTAYDJg4cSKuXr2KkiVLon379nj//fez9H5ly5ZFREQE3N3dYTAYcvX3YixWjoiIYG2PneLP0L7x52f/+DO0f9b6GWqahtu3b6Ns2bJPvFZ5nxs9sWQNPtkm/gztG39+9o8/Q/tnCz9DVt8SERGRrjC5ISIiIl1hcpOLXFxcMHnyZLi4uKgOhbKJP0P7xp+f/ePP0P7Zws+QNTdERESkKxy5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKk5tcsnTpUvj4+KBgwYJo0qQJDh48qDokssCuXbvQvn17lC1bFgaDARs2bFAdElkgODgYjRs3hru7O0qVKoWOHTvi3LlzqsMiC3z00UeoW7cuPDw84OHhgWbNmuG3335THRZl06xZs2AwGDB8+HAl78/kJhesWbMGAQEBmDx5Mo4ePQpfX1+0adMGMTExqkOjLEpMTISvry+WLl2qOhTKhp07d2Lw4MHYv38/tm7divv37+Pll19GYmKi6tAoi5566inMmjULR44cweHDh/HCCy+gQ4cOOH36tOrQyEKHDh3CsmXLULduXWUxcCl4LmjSpAkaN26MJUuWAJCdzb29vTFkyBCMGzdOcXRkKYPBgPXr15t2qif7c+3aNZQqVQo7d+7E888/rzocyqZixYph7ty56Nevn+pQKIsSEhLQoEEDfPjhh5gxYwbq1auHRYsW5XkcHLnJoXv37uHIkSPw8/Mz3ZcvXz74+flh3759CiMjclxxcXEA5MOR7E9qaipWr16NxMRENGvWTHU4ZIHBgwfj1VdfzfCZqILyXcHtXWxsLFJTU027mBt5eXnhr7/+UhQVkeNKS0vD8OHD0aJFC9SuXVt1OGSBkydPolmzZrh79y4KFy6M9evXo2bNmqrDoixavXo1jh49ikOHDqkOhckNEenL4MGDcerUKezevVt1KGShatWqITQ0FHFxcfj+++/Ru3dv7Ny5kwmOHYiIiMCwYcOwdetWFCxYUHU4TG5yqkSJEnByckJ0dHSG+6Ojo1G6dGlFURE5Jn9/f/zyyy/YtWsXnnrqKdXhkIWcnZ1RuXJlAEDDhg1x6NAhhISEYNmyZYojoyc5cuQIYmJi0KBBA9N9qamp2LVrF5YsWYLk5GQ4OTnlWTysuckhZ2dnNGzYENu2bTPdl5aWhm3btnGumCiPaJoGf39/rF+/Hn/88QcqVKigOiTKBWlpaUhOTlYdBmXBiy++iJMnTyI0NNR0NGrUCN27d0doaGieJjYAR25yRUBAAHr37o1GjRrhmWeewaJFi5CYmIi+ffuqDo2yKCEhARcuXDDdDgsLQ2hoKIoVK4ann35aYWSUFYMHD8aqVavw448/wt3dHVFRUQAAT09PuLq6Ko6OsiIwMBDt2rXD008/jdu3b2PVqlXYsWMHNm/erDo0ygJ3d/eHatzc3NxQvHhxJbVvTG5ywZtvvolr165h0qRJiIqKQr169bBp06aHiozJdh0+fBitW7c23Q4ICAAA9O7dGytXrlQUFWXVRx99BABo1apVhvs///xz9OnTJ+8DIovFxMSgV69eiIyMhKenJ+rWrYvNmzfjpZdeUh0a2SH2uSEiIiJdYc0NERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNEelOnz590LFjR9VhEJEiTG6IKFv69OkDg8Hw0NG2bVvVoSEkJMRmts0wGAzYsGGD6jCIHAr3liKibGvbti0+//zzDPe5uLgoigZITU2FwWCAp6enshiISD2O3BBRtrm4uKB06dIZjqJFi2LHjh1wdnbGn3/+abp2zpw5KFWqFKKjowHIJpf+/v7w9/eHp6cnSpQogaCgIKTf7i45ORmjRo1CuXLl4ObmhiZNmmDHjh2mx1euXIkiRYrgp59+Qs2aNeHi4oLw8PCHpqVatWqFIUOGYPjw4ShatCi8vLywfPlyJCYmom/fvnB3d0flypXx22+/Zfj9nTp1Cu3atUPhwoXh5eWFnj17IjY2NsPrDh06FGPGjEGxYsVQunRpTJkyxfS4j48PAKBTp04wGAym20RkXUxuiCjXtWrVCsOHD0fPnj0RFxeHY8eOISgoCCtWrICXl5fpui+++AL58+fHwYMHERISggULFmDFihWmx/39/bFv3z6sXr0aJ06cQJcuXdC2bVucP3/edM2dO3cwe/ZsrFixAqdPn0apUqUyjemLL75AiRIlcPDgQQwZMgTvvvsuunTpgubNm+Po0aN4+eWX0bNnT9y5cwcAcOvWLbzwwguoX78+Dh8+jE2bNiE6Ohpdu3Z96HXd3Nxw4MABzJkzB9OmTcPWrVsBAIcOHQIgu5NHRkaabhORlWlERNnQu3dvzcnJSXNzc8twvP/++5qmaVpycrJWr149rWvXrlrNmjW1AQMGZHh+y5YttRo1amhpaWmm+8aOHavVqFFD0zRNu3Lliubk5KRdvXo1w/NefPFFLTAwUNM0Tfv88881AFpoaOhDsXXo0CHDez377LOm2ykpKZqbm5vWs2dP032RkZEaAG3fvn2apmna9OnTtZdffjnD60ZERGgAtHPnzmX6upqmaY0bN9bGjh1rug1AW79+/SP+FInIGlhzQ0TZ1rp1a3z00UcZ7itWrBgAwNnZGd988w3q1q2L8uXLY+HChQ89v2nTpjAYDKbbzZo1w/z585GamoqTJ08iNTUVVatWzfCc5ORkFC9e3HTb2dkZdevWfWKs6a9xcnJC8eLFUadOHdN9xhGlmJgYAMDx48exfft2FC5c+KHXunjxoimuB9+7TJkyptcgIjWY3BBRtrm5uaFy5cqPfHzv3r0AgBs3buDGjRtwc3PL8msnJCTAyckJR44cgZOTU4bH0iccrq6uGRKkRylQoECG2waDIcN9xtdIS0szvX/79u0xe/bsh16rTJkyj31d42sQkRpMbojIKi5evIgRI0Zg+fLlWLNmDXr37o3ff/8d+fKZS/0OHDiQ4Tn79+9HlSpV4OTkhPr16yM1NRUxMTF47rnn8jp8NGjQAD/88AN8fHyQP3/2/6ssUKAAUlNTczEyInoSFhQTUbYlJycjKioqwxEbG4vU1FT06NEDbdq0Qd++ffH555/jxIkTmD9/fobnh4eHIyAgAOfOncO3336LxYsXY9iwYQCAqlWronv37ujVqxfWrVuHsLAwHDx4EMHBwdi4caPVf2+DBw/GjRs30K1bNxw6dAgXL17E5s2b0bdvX4uSFR8fH2zbtg1RUVG4efOmFSMmIiOO3BBRtm3atCnDFA0AVKtWDW+//TauXLmCX375BYBM43zyySfo1q0bXn75Zfj6+gIAevXqhaSkJDzzzDNwcnLCsGHDMHDgQNNrff7555gxYwZGjhyJq1evokSJEmjatClee+01q//eypYtiz179mDs2LF4+eWXkZycjPLly6Nt27YZRp+eZP78+QgICMDy5ctRrlw5XL582XpBExEAwKBp6ZpKEBHlkVatWqFevXpYtGiR6lCISGc4LUVERES6wuSGiIiIdIXTUkRERKQrHLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGu/D83ww6qVa1JtgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ00lEQVR4nO3deXyM1/cH8M/IJiKLNbbY932J2qpobdEq2h+tatCi9a0gtce+VVTtay1FV0tr6aZKq/YtQVBRa0hKImJJiAhJnt8fp5NJCJLI5M4883m/Xs/LMzPPzByCOXPvuecaNE3TQERERKQTeVQHQERERJSTmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFXvVAeS2lJQUXL16Fa6urjAYDKrDISIiokzQNA137txBiRIlkCfP08dmbC65uXr1Kry8vFSHQURERNkQERGBUqVKPfUam0tuXF1dAcgfjpubm+JoiIiIKDPi4uLg5eWV+jn+NDaX3Binotzc3JjcEBERWZnMlJSwoJiIiIh0hckNERER6QqTGyIiItIVm6u5yazk5GQ8fPhQdRiURQ4ODrCzs1MdBhERKcTk5hGapiEqKgq3b99WHQplk4eHB4oVK8Y+RkRENorJzSOMiU3RokWRL18+fkBaEU3TcO/ePURHRwMAihcvrjgiIiJSgclNGsnJyamJTaFChVSHQ9ng7OwMAIiOjkbRokU5RUVEZINYUJyGscYmX758iiOh52H8+bFmiojINjG5yQCnoqwbf35ERLaNyQ0RERHpCpMbIiIi0hUmN5ShsmXLYu7cucpfg4iIKKu4WkonWrZsibp16+ZYMhEUFAQXF5cceS0iIrIhO3YATZoA/61eVYEjNzZE0zQkJSVl6toiRYpw1RgREWXNxYuAjw9QtSpw7ZqyMJjcZFJ8/JOP+/czf21CQuauzYrevXtj165dmDdvHgwGAwwGAy5duoSdO3fCYDDg999/h7e3N5ycnLBnzx5cuHABnTp1gqenJ/Lnz4+GDRvijz/+SPeaj04pGQwGrFixAl26dEG+fPlQqVIl/PTTT1mKMzw8HJ06dUL+/Pnh5uaGbt264Vqav/zHjx9Hq1at4OrqCjc3NzRo0ADBwcEAgMuXL6Njx44oUKAAXFxcUKNGDWzZsiVrf1BERGReI0YADx5IclO0qLIwmNxkUv78Tz7efDP9tUWLPvlaH5/015Ytm/F1WTFv3jw0adIE/fr1Q2RkJCIjI+Hl5ZX6+IgRIxAYGIjTp0+jdu3auHv3Ljp06IA//vgDx44dQ7t27dCxY0eEh4c/9X0mTZqEbt264cSJE+jQoQN69OiBmzdvZipGTdPQuXNn3Lx5E7t27cL27dtx4cIFvPXWW6nX9OjRA6VKlUJQUBCOHDmCUaNGwcHBAQAwYMAAJCYmYvfu3Th58iQ+/fRT5M/qHxQREZnPrl3Ahg1AnjzA7NmAwrYcrLnRAXd3dzg6OiJfvnwoVqzYY49PnjwZbdq0Sb1dqFAh1KlTJ/X21KlTsWnTJvz000/w8/N74vv07t0b3bt3BwBMmzYNCxYswOHDh9G+fftnxvjHH3/gxIkTCAsLS028vv76a9SoUQNBQUFo2LAhwsPDMXz4cFStWhUAUKlSpdTnh4eH480330StWrUAAOXLl3/mexIRUS5JTgY+/ljOP/wQqFFDaThMbjLp7t0nP/Zoh///tjbKUJ5HxsouXcp2SJnm7e2d7nZ8fDwmTZqEX375BVevXkVSUhISEhKeOXJTu3bt1HMXFxe4urqm7uP0LKdPn4aXl1e6EaXq1avDw8MDp0+fRsOGDTFkyBD07dsXX3/9NVq3bo2uXbuiQoUKAIBBgwbhf//7H7Zt24bWrVvjzTffTBcPEREp9OWXwLFjgLs7MGmS6mg4LZVZLi5PPvLmzfy1jxaPP+m6nI09/QsOHz4cGzZswCeffII9e/YgJCQEtWrVwoMHD576OsYpIiODwYCUlJRMxaBpWoadg9PeP3HiRJw6dQqvvvoqduzYgerVq2PTpk0AgL59++LixYvw9fXFyZMn4e3tjQULFmTqvYmIyIzu3AFGj5bz8eOBIkXUxgMmN7rh6OiI5OTkTF27Z88e9O7dG126dEGtWrVQrFgxXDLzEFL16tURHh6OiIiI1PtCQ0MRGxuLatWqpd5XuXJlfPzxx9i2bRveeOMNrFq1KvUxLy8v9O/fHxs3bsTQoUOxfPlys8ZMRESZEBgoK6MqVgSeUtqQm5jc6ETZsmVx6NAhXLp0CTExMU8dUalYsSI2btyIkJAQHD9+HO+8806mR2Cyq3Xr1qhduzZ69OiBo0eP4vDhw+jZsydatGgBb29vJCQkwM/PDzt37sTly5exb98+BAUFpSY+/v7++P333xEWFoajR49ix44d6ZIiIiJS4NIlKR4GgFmzAEdHpeEYMbnRiWHDhsHOzg7Vq1dHkSJFnlo/M2fOHBQoUABNmzZFx44d0a5dO9SvX9+s8RkMBmzevBkFChTASy+9hNatW6N8+fJYt24dAMDOzg43btxAz549UblyZXTr1g0+Pj6Y9N/cbXJyMgYMGIBq1aqhffv2qFKlChYvXmzWmImI6BlGjgQSE4FXXgE6dlQdTSqDpmma6iByU1xcHNzd3REbGws3N7d0j92/fx9hYWEoV64c8j5aSENWgz9HG7Ztm3x7nD8fqFJFdTRE+rZ3L9C8uayUOXYMMPMij6d9fj+KIzdEpA8JCcD770uC8957gJmnWolsWkoK4O8v5/36mT2xySomN0SkD4sXA1euyPmBA8BXX6mNh0jPvv4aOHIEcHMDJk9WHc1jmNwQkfWLjQWmTZPzpk3l1xEjgNu3lYVEpFt37wIBAXI+dqzSbRaehMkNEVm/WbOAmzdlP5s//pBfr1+XnhtElLM+/RSIjATKlwcGDVIdTYaY3BCRdYuONi1FnTpVOmUaGzwuWgQcP64uNiK9CQ8HZs6U85kzAScntfE8AZMbIrJun3wCxMcD3t7AG2/Ifa1bA//3f1L06OcH2NaiUCLzGTUKuH8faNkS6NxZdTRPxOSGiKzX5cvA55/LeWBg+l2IZ88G8uWT5arffKMmPiI92b8fWLNG/p3NmaN01+9nYXJDRNZr4kTgwQPg5ZdltCYtLy9g3Dg5Hz5cio6JKHtSUky7fvfpA9StqzScZ2FyQ8+tZcuW8Df2OyDKLaGhpuXegYEZXzNkCFC5sux7M3FiroVGpDvffQccPgzkzw9MmaI6mmdicqMT5kgwevfujc4WPKdKNm7sWPk22aUL8MILGV/j6GgqLl6wADh5MvfiI9KL+HiptQGAMWOAYsXUxpMJTG6IyPocPgxs2iRt36dOffq1bdtKoXFyMouLibLjs8+kQWbZsqauxBaOyY0O9O7dG7t27cK8efNgMBhgMBhw6dIlAEBoaCg6dOiA/Pnzw9PTE76+voiJiUl97g8//IBatWrB2dkZhQoVQuvWrREfH4+JEyfiyy+/xI8//pj6mjt37sxUPLdu3ULPnj1RoEAB5MuXDz4+Pjh37lzq45cvX0bHjh1RoEABuLi4oEaNGtiyZUvqc3v06IEiRYrA2dkZlSpVwqpVq3Lsz4p0wthArGdPoHr1Z18/Z44sEd+9WwoiiShz/v0XmDFDzj/7DLCS/frsVQdg8TQNuHdPzXvny5epavR58+bh7NmzqFmzJib/1wa7SJEiiIyMRIsWLdCvXz/Mnj0bCQkJGDlyJLp164YdO3YgMjIS3bt3x4wZM9ClSxfcuXMHe/bsgaZpGDZsGE6fPo24uLjU5KJgwYKZCrt37944d+4cfvrpJ7i5uWHkyJHo0KEDQkND4eDggAEDBuDBgwfYvXs3XFxcEBoaivz58wMAxo0bh9DQUPz2228oXLgwzp8/j4SEhGz+AZIu/fEHsGOHTDllto6mdGkZTh87Fhg2DHjtNWkbT0RPFxAg+7Y1bw68+abqaDKNyc2z3LsnBVQq3L0LuLg88zJ3d3c4OjoiX758KJZmLnTJkiWoX78+phnb0gNYuXIlvLy8cPbsWdy9exdJSUl44403UKZMGQBArVq1Uq91dnZGYmJiutd8FmNSs2/fPjT9rw3+t99+Cy8vL2zevBldu3ZFeHg43nzzzdT3Kl++fOrzw8PDUa9ePXh7ewMAypYtm+n3JhugaaZRm/79gf/+3mbKsGHA6tXA+fOyF46xERkRZezQIWmjYAVLvx+ldFpq9+7d6NixI0qUKAGDwYDNmzc/9fq9e/eiWbNmKFSoEJydnVG1alXMmTMnd4K1QkeOHMFff/2F/Pnzpx5Vq1YFAFy4cAF16tTBK6+8glq1aqFr165Yvnw5bt269Vzvefr0adjb26NRo0ap9xUqVAhVqlTB6dOnAQCDBg3C1KlT0axZM0yYMAEnTpxIvfZ///sf1q5di7p162LEiBHYv3//c8VDOrNxIxAcLEn/mDFZe66TEzB/vpzPnQucOpXj4RHphqaZ6mt69wYaNFAZTZYpTW7i4+NRp04dLFy4MFPXu7i4wM/PD7t378bp06cxduxYjB07FsuWLTNfkPnyyQiKiiNfvucKPSUlBR07dkRISEi649y5c3jppZdgZ2eH7du347fffkP16tWxYMECVKlSBWFhYdl+T+0JxZqapsHwX9bft29fXLx4Eb6+vjh58iS8vb2x4L8VLT4+Prh8+TL8/f1x9epVvPLKKxg2bFi24yEdSUqSaSVAlnhnZ7M+Hx+gUycWFxM9y9q1wMGD8kXik09UR5N1moUAoG3atCnLz+vSpYv27rvvZvr62NhYDYAWGxv72GMJCQlaaGiolpCQkOU4VGvTpo3m5+eX7r7Ro0drVapU0R4+fJip10hKStJKliypzZo1S9M0TevXr5/22muvPfN5LVq00AYPHqxpmqadPXtWA6Dt27cv9fGYmBjN2dlZ+/777zN8/qhRo7RatWpl+Njnn3+uubq6Zip+I2v+OdJTrFypaYCmFSyoabdvZ/91wsI0LW9eea01a3IsPCLdiI/XNC8v+TcydarqaFI97fP7UVa9WurYsWPYv38/WrRo8cRrEhMTERcXl+7Qo7Jly+LQoUO4dOkSYmJikJKSggEDBuDmzZvo3r07Dh8+jIsXL2Lbtm14//33kZycjEOHDmHatGkIDg5GeHg4Nm7ciOvXr6NatWqpr3nixAmcOXMGMTExePjw4TPjqFSpEjp16oR+/fph7969OH78ON59912ULFkSnTp1AgD4+/vj999/R1hYGI4ePYodO3akvuf48ePx448/4vz58zh16hR++eWX1MfIht2/D0yYIOejRwPu7tl/rbJlTXU7Q4cCd+48d3hEujJrFhARIYX4Q4aojiZ7ciHZyhRkYeSmZMmSmqOjo5YnTx5t8uTJT712woQJGoDHDr2N3Jw5c0Zr3Lix5uzsrAHQwsLCNE2TkZQuXbpoHh4emrOzs1a1alXN399fS0lJ0UJDQ7V27dppRYoU0ZycnLTKlStrCxYsSH3N6OhorU2bNlr+/Pk1ANpff/2V4XunHbnRNE27efOm5uvrq7m7u2vOzs5au3bttLNnz6Y+7ufnp1WoUEFzcnLSihQpovn6+moxMTGapmnalClTtGrVqmnOzs5awYIFtU6dOmkXL17M0p+FNf8c6QnmzJFvkSVLatq9e8//egkJmla+vLzm8OHP/3pEevHvv5qWL5/821i7VnU06WRl5MagaZYx6WwwGLBp06ZMdcQNCwvD3bt3cfDgQYwaNQoLFy5E9+7dM7w2MTERiYmJqbfj4uLg5eWF2NhYuD2yFPT+/fsICwtDuXLlkNdK1vLT4/hz1Jk7d4Dy5YGYGGD5cqBv35x53V9+ATp2BOztgRMnAI4QEgG9esm2Jk2byqazFrRCKi4uDu7u7hl+fj/KKpeClytXDoAsW7527RomTpz4xOTGyckJTk5OuRkeEeWk2bMlsalcWVZt5JTXXpPjl1+AgQOB7dst6j9yolwXHGzar23uXKv+92DVNTeArMJJOzJDRDoSEyPz/4Bs1mefw9/H5s2TJeJ//gn88EPOvjaRNUm79LtnT6BhQ6XhPC+lyc3du3dTlycDMt0UEhKC8PBwAEBAQAB69uyZev2iRYvw888/49y5czh37hxWrVqFmTNn4t1331URPhGZW2CgTEvVrw/83//l/OuXL2/aEHDIEGnBQGSLvv8e2LdPWpCkafxqrZROSwUHB6NVq1apt4f8V5Xdq1cvrF69GpGRkamJDiB9WwICAhAWFgZ7e3tUqFAB06dPx4cffpjrsRORmUVEAIsWyfm0abJJpjmMHClD8WFh0s8jMNA870NkqRISgBEj5HzkSKBkSbXx5ACLKSjOLU8rSDIWopYtWxbOzs6KIqTnlZCQgEuXLrGg2Nr17Qt88QXQogXw11/mnf//6Sdp7ufgAJw8CVSpYr73IrI006ZJx+9SpYAzZ567gay5ZKWg2OprbnKSg4MDAOCeqo0yKUcYf37GnydZoX/+AYy7wQcGmr+wsWNHoEMH4OFDYNAgdi4m2xEZaZqG+vRTi01sssoqV0uZi52dHTw8PBAdHQ0AyJcvX+qWAWT5NE3DvXv3EB0dDQ8PD9jZ2akOibJr3DggJQV4/XWgSRPzv5/BIMXFf/wBbNsGbNoEvPGG+d+XSLUxY4D4eKBxY+AJq46tEaelHqFpGqKionD79u3cD45yhIeHB4oVK8bE1FoFB8tKDYNB+s/UrJl77z1uHDB1KuDlBZw+LfvqEOnV0aOAt7eMVB44IAmOBdN9nxtzMhgMKF68OIoWLZqp7QbIsjg4OHDExtqNHi2/vvtu7iY2gGzL8PXXwOXLMlRvjRsGEmWGpgEffyy/9uhh8YlNVnHkhogsx19/AS+/LIW9Z84A/zXszFXGKSlHR+Dvv4FKlXI/BiJz27BB2is4O8u/NS8v1RE9EwuKicj6aJppQ8sPPlCT2ABA585Au3bAgwcsLiZ9un8fGD5czocPt4rEJquY3BCRZfjxR+DQIVmtMXasujgMBmD+fBk92rpV4iLSk3nzpK9TiRKm/jY6w+SGiNRLTpZVG4C0gC9WTGk4qFwZGDZMzv39AbaHIL2IijLVkk2frtuieSY3RKTet98CoaFAgQKm4XLVxoyR4frLl+VDgEgPxo2TLU0aNpRCYp1ickNEaiUmAuPHy/moUYCHh9JwUrm4yI7kADBjBnDhgtp4iJ5XSIh0/QZk129zbWliAfT7OyMi67BsmYyOFC8O+Pmpjia9N98EWreWBGzwYNXREGVf2qXfb78NNG2qOiKzYnJDROrcvStN8wAZvbG01u8GA7BggRQX//or8PPPqiMiyp4ffwR27gTy5rWJaVYmN0Skzty5QHQ0UKEC0KeP6mgyVrUqMGSInA8eLDsoE1mTxERTgfywYUCZMmrjyQVMbohIjRs3gM8+k/MpU2R0xFKNHSs7JoeFSf0NkTVZsEBqxooXB0aOVB1NrmByQ0RqfPopEBcH1KkDvPWW6mieLn9+YNYsOZ8+XZIcImsQHS1fHgDZUiR/frXx5BImN0SU+65ckW+TgPyHaw2rNrp2la0h7t+X3jdE1mD8ePkSUb8+0LOn6mhyjRX8j0JEujN5siQJL74I+PiojiZzDAZg4ULA3h746ScpMCayZCdPAsuXy7nOl34/ynZ+p0RkGc6dM/XaCAyUpMFaVKtmGrUZNEgSNCJLZFz6nZIio47Nm6uOKFcxuSGi3DVunGy38OqrMnJjbcaPlz15Ll40FUQTWZpffgH+/BNwcpL6NhvD5IaIcs+xY8C6dXJu3N/G2ri6AjNnyvm0acClS0rDIXrMgwfA0KFyPmQIUK6c2ngUYHJDRLnHuDlm9+6ySspavf020KKFTEt9/LHqaIjSW7RIpn89PYGAANXRKMHkhohyx+7dwG+/SUHu5Mmqo3k+xuJiOztg82Zg61bVERGJmBhg0iQ5/+QTGWm0QUxuiMj8NM30DbJvX6BiRbXx5ISaNaWoGAAGDpQusESqTZgAxMYCdesCvXurjkYZJjdEZH6//grs3w84O0tBsV5MnAgUKwacP29q8kekyqlTwOefy/mcOTKyaKOY3BCReaWkAKNHy/mgQbLSSC/c3EwrpqZOBcLD1cZDtkvTpHg4JQV44w2gZUvVESnF5IaIzGvNGmkm5u6uz31tevSQHiIJCaYNNoly22+/Adu2AY6O3P8MTG6IyJwePJC+MAAwYgRQoIDaeMwhbXHxhg3A9u2qIyJb8/ChKbH29wcqVFAajiVgckNE5rNihTS78/QEBg9WHY351K4N+PnJ+cCBktQR5ZYlS4AzZ4AiRUztFmwckxsiMo/4eNNuxOPGAS4uauMxt0mTJIk7c0aKOYlyw40bUtgOSN2Xm5vScCwFkxsiMo8FC4CoKOmO2q+f6mjMz93dVOswZQoQEaE2HrINkyYBt27J6GGfPqqjsRhMbogo5926ZdrPZvJkKXK0Bb6+QLNmMmplbH9PZC6nTwOLF8u5jS/9fhSTGyLKeTNmALdvS6O77t1VR5N7DAZpfZ8nD/D998Aff6iOiPRs6FDZhLZTJ+Dll1VHY1GY3BBRzoqMBObNk/NPPrG9b5N16gAffSTnLC4mc9m6VZZ/Ozhwd/oMMLkhopw1ZYr0fGnSBOjYUXU0akyZIitX/vnHlOgR5ZSkJNPS70GDgEqV1MZjgZjcEFHOuXABWL5czgMDZZrGFnl4mGqOJk0CrlxRGg7pzNKlUm9TuDAwdqzqaCwSkxsiyjnjx8u3ynbtgBYtVEejVq9eQOPGUlw8bJjqaEgvbt0yNcacPFkSaXoMkxsiyhknTshWCwAwbZraWCxBnjxSXGwwAGvXAn/9pToi0oPJk4GbN4EaNWyjxUI2MbkhopwxZoxs3tetG1C/vupoLEP9+kD//nLu5ydt8omy68wZ2eoDkKXf9vZq47FgTG6I6Pnt2wf88ousjDJ2JSYxdSpQqBAQGiqNDYmya9gwmfZ97TWgTRvV0Vg0JjdE9Hw0DQgIkPP33wcqV1Ybj6UpWBCYPl3OJ06UpfJEWbV9u3yBsLcHZs5UHY3FY3JDRM9n61Zgzx7AyclU6Ejpvf8+8MILwJ07wPDhqqMha5N26befH1Clitp4rACTGyLKvpQU06iNnx9QqpTaeCxV2uLib78Fdu9WHRFZkxUrgL//llFAfoHIFCY3RJR969cDx4/LTsTGJIcy5u0NfPCBnPv5ybdxome5fRsYN07OJ00CChRQGo61YHJDRNnz8KHpP91hw6Rolp7uk0/k2/fJkzKSQ/QsU6cCMTFAtWrAhx+qjsZqMLkhouxZuRI4f162GfD3Vx2NdShUSDo3AzK9EBWlNh6ybOfOAfPny/ns2bKPFGUKkxsiyrqEBGkmBkj7d1dXtfFYkz59ZIoqLg4YMUJ1NGTJhg+XEVIfH6B9e9XRWBUmN0SUdQsXAlevAmXKcKg8q+zsTMXFX38N7N2rOiKyRDt2AD/+KH9fZs1SHY3VYXJDRFlz+7ZpamXSJFkCTlnzwgsyggMAAwawuJjSS04GPv5Yzj/6SOptKEuY3BBR1sycKZv3Va8OvPuu6misV2CgrHw5cQJYskR1NGRJVq6UvxcFCgATJqiOxioxuSGizLt2Tfa0AWQVh52d2nisWeHCsnoKkFVn166pjYcsQ2ys7NMGSGLDVYjZwuSGiDJv6lTg3j2ZVuncWXU01u+DD2RzzdhYYNQo1dGQJZg2Dbh+XboQf/SR6misFpMbIsqcsDBg6VI5DwyUglh6PnZ2pl2eV68GDhxQGg4pduECMHeunM+axaXfz4HJDRFlzsSJsiy1dWvg5ZdVR6MfTZoA770n5wMGSDEp2aYRI4AHD4C2bYEOHVRHY9WY3BDRs/39tyxbBmTYnHLW9OmAhwdw7JhpdIxsy86dwMaNsg/Z7NkcGX1OSpOb3bt3o2PHjihRogQMBgM2b9781Os3btyINm3aoEiRInBzc0OTJk3w+++/506wRLZs7FhA04A33wQaNlQdjf4ULQpMmSLnY8ZIzQXZjuRk067f/fsDNWqojUcHlCY38fHxqFOnDhYa55yfYffu3WjTpg22bNmCI0eOoFWrVujYsSOOHTtm5kiJbNjBg9JMLE8e0wcw5bz+/YG6daWPEDchtS1ffimjdu7u0juKnptB0zRNdRAAYDAYsGnTJnTO4gqMGjVq4K233sL4J2wDn5iYiMTExNTbcXFx8PLyQmxsLNzc3J4nZCL90zSpr9m5E3j/feCLL1RHpG/79wPNmsn5gQNA48Zq4yHzu3MHqFRJWgHMnm1q3kePiYuLg7u7e6Y+v6265iYlJQV37txBwYIFn3hNYGAg3N3dUw8vL69cjJDIym3fLomNoyObieWGpk2BXr3knMXFtiEwUBKbSpXkZ045wqqTm1mzZiE+Ph7dunV74jUBAQGIjY1NPSIiInIxQiIrlpICjB4t5x99BJQurTYeW/HppzI9cfQosHy56mjInMLCZLQGkM7fjo5q49ERq01u1qxZg4kTJ2LdunUoWrToE69zcnKCm5tbuoOIMmHDBuDIESB/flOSQ+bn6WnacX30aCAmRm08ZD4jRwKJicArrwAdO6qORlesMrlZt24d+vTpg/Xr16N169aqwyHSn6QkWSEFAEOHAkWKqI3H1nz0EVC7tuzhxcRSn/bsAb7/nku/zcTqkps1a9agd+/e+O677/Dqq6+qDodIn1avBs6elX1tjEtUKffY25s6F69YAQQFqY2HclZKiqlwuF8/SWQpRylNbu7evYuQkBCEhIQAAMLCwhASEoLw8HAAUi/Ts2fP1OvXrFmDnj17YtasWWjcuDGioqIQFRWF2NhYFeET6dP9+6blqGPGAJzKVaN5c9l1XdOk0DQlRXVElFO+/lqmfN3cTFOQlKOUJjfBwcGoV68e6tWrBwAYMmQI6tWrl7qsOzIyMjXRAYClS5ciKSkJAwYMQPHixVOPwYMHK4mfSJcWLwb+/Rfw8gL+9z/V0di2GTMAV1cZueEyfH24e9fUx2jcOGngSDnOYvrc5JasrJMnsjlxcUD58sCNGzId0qeP6ohozhyZGixUSKYKn9L6gqzAuHHA1KlAhQrAqVOAk5PqiKyGzfS5IaIcNmuWJDZVqpj6rZBafn7Sjv/GDZkmJOt1+bIs+QaAzz5jYmNGTG6ISERHm3puTJ0qRa2knoMDsGiRnC9dKrUaZJ1GjZKatpYtgSx246esYXJDRGLaNKkHaNBANsgky9GiBdC9O4uLrdn+/cDatbLke84cLv02MyY3RCTD5UuWyHlgIP/jtUQzZ0pDxUOHZKk+WY+UFMDfX8779JENUsmsmNwQkSz9fvAAaNUKYGNMy1SiBDBxopyPHCkN/sg6fPedrHhzdZUpXzI7JjdEti40FPjySzmfNo2jNpZs0CCgenXZkmHcONXRUGbEx0utDSAF4Z6eauOxEUxuiGzduHEybN65M9C4sepo6GkcHEydi5csAY4dUxsPPdtnnwFXrgDlygHsyZZrmNwQ2bKgIGDjRhmt4XC5dWjVCnjrLUlIWVxs2SIipBEjIL/mzas2HhvC5IbIlhk7pfr6Si8Vsg4zZwIuLsCBA8BXX6mOhp4kIABISJCtNLgCMVcxuSGyVX/+KYeDg2kvKbIOpUoB/21TgxEjgNu3lYZDGTh4EPj2Wy79VoTJDZEt0jTTqE3//kDZskrDoWzw9weqVgWuXzclOmQZNM209Lt3b+kdRbmKyQ2RLdq0SeptXFzY0t9aOToCCxbI+aJFwPHjauMhkzVrpB+RiwvwySeqo7FJTG6IbE1yMjB2rJx//DGXplqz1q2B//s/KSr285MRA1Lr3j3T0u/Ro4HixdXGY6OY3BDZmq+/Bk6flt2lhw1THQ09r9mzgXz5gL17gW++UR0NzZolq6TKlJEvD6QEkxsiW5KYCEyYIOejRgHu7mrjoefn5WUaiRs+HIiNVRuPLbtyBZg+Xc4//RRwdlYbjw1jckNkSz7/HAgPl1b+fn6qo6GcMmQIUKkScO2aaYsGyn2jR8u0VNOmQLduqqOxaUxuiGzFnTum4sYJE/itUk+cnEzFxQsWACdPqo3HFgUFmXoOzZ3Lpd+KMbkhshVz5siy4YoVgffeUx0N5bR27YAuXaRgnMXFuSvt0u+ePYGGDZWGQ0xuiGxDTIx0tQVkmwUHB7XxkHnMmSMjcrt3y3Jkyh3r1wP790th97RpqqMhMLkhsg3Tp8u0VN26QNeuqqMhcylTxtS3aNgwIC5ObTy2ICEBGDlSzkeNAkqWVBsPAWByQ6R/ERGmnaSnTQPy8J+9rg0bJlOPkZHcViM3zJkDXL4sq9aGDlUdDf2H/8sR6d3kybIE/KWXgPbtVUdD5ubkBMyfL+fz5gGnTqmNR88iI03TUNOny7QUWQQmN0R6duYMsGqVnAcGcgWHrfDxATp1YnGxuY0ZA8THA40bA927q46G0mByQ6Rn48bJB9xrr0nvDbIdc+cCefMCO3cC69apjkZ/jhwBVq+Wc+76bXGY3BDp1ZEjwPffy3+63LzP9pQta9r5fehQKSinnKFpsrWCpgE9esjIDVkUJjdEejV6tPz6zjtA7dpqYyE1RowAypcHrl4FpkxRHY1+bNgA7Nkjy+4DA1VHQxlgckOkRzt3Atu2Afb2XDFjy/LmlaJiQKZOTp9WG48e3L8vSSMgv3p5qY2HMsTkhkhvNM00HfHBB0CFCmrjIbVee02OpCRg4EAWFz+vefOAsDDpZzN8uOpo6AmY3BDpzU8/AQcPypC5cbdosm3z5skS8T//BH74QXU01isqylS/Nn064OKiNh56IiY3RHqSnGzqUDt4MFC8uNp4yDKUL2/qojtkCHD3rtp4rNW4cVKY3bCh1LKRxWJyQ6Qn330nTds8PEx1AUSAbA1Qtizw779cPZcdISHAF1/I+dy57PRt4fjTIdKLBw+A8ePlfORIoEABtfGQZXF2lg9lAJg1Sxo8UuYYd/3WNODtt9kzygowuSHSi2XLgEuXZCpq0CDV0ZAlev116V788KH8HWFxceZs3gzs2iWrz6ZPVx0NZQKTGyI9uHsXmDpVzseN4x43lDGDQfadcnSUVgGbNqmOyPIlJspmpID8WqaM2ngoU5jcEOnBvHnAtWtSONqnj+poyJJVrGiqx/L3l72R6MkWLAAuXpQRUWNRNlk8JjdE1u7mTeCzz+R8yhT5Vk70NAEBMgIREWHa1ZoeFx1t6uwcGAjkz682Hso0JjdE1u7TT4HYWNli4e23VUdD1iBfPulYDAAzZwLnzqmNx1KNHw/ExQENGgC+vqqjoSxgckNkza5ckRoKQJb3cnkqZVbnzkC7drLKjsXFjztxAli+XM7nzOG/LSvDnxaRNZsyRfa6adYMePVV1dGQNTEWFzs4AFu3Aj/+qDoiy6Fp0uwwJQXo2hVo3lx1RJRFTG6IrNW5c8CKFXIeGCgfVkRZUbmyaSWQvz9w757ScCzGzz/LVhVOTjLtS1aHyQ2RtRo/XrZb8PHhN0vKvjFjZGfry5fZwwWQabqhQ+V8yBCgXDm18VC2MLkhskYhIcDatXLO1S70PFxcgNmz5XzGDODCBbXxqLZoEXD+PODpKavKyCoxuSGyRsbNMd9+G6hbV2kopANvvgm0bi0N6wYPVh2NOjExwKRJcj5tGuDqqjYeyjYmN0TWZs8eYMsWwM4OmDxZdTSkBwaDNKtzcAB+/VVqTmzRhAnSVqFuXaBXL9XR0HNgckNkTTTNNFTety9QqZLaeEg/qlYFPv5YzgcPBhIS1MaT2/7+G/j8czmfM0e+PJDVYnJDZE22bAH27ZMN/MaNUx0N6c24cUDJkkBYmNTf2Iq0S7/feANo2VJ1RPScmNwQWYuUFGD0aDkfOFA+hIhyUv78wKxZcj59uuypZAu2bAG2b5etS2wpqdMxJjdE1mLtWuma6u4OjBqlOhrSq27dgJdfluaQ/v6qozG/hw9l1AaQ32+FCkrDoZzB5IbIGjx4YJqGGj4cKFhQbTykXwYDsHAhYG8vhcW//qo6IvNavBg4exYoWtS0CpGsHpMbImvwxRcyRVC0qG0v1aXcUa2aadRm0CAZxdGjGzdMS7+nTgXc3NTGQzmGyQ2Rpbt3T/aQAmT0Jn9+tfGQbRg/HihRQpLqzz5THY15TJoE3LoF1K4NvP++6mgoBzG5IbJ0CxYAkZFA2bLABx+ojoZshasrMHOmnE+bBly6pDScHHf6tExJAVz6rUNMbogs2a1bpv1+Jk2S1RxEueXtt4EWLWRaytgDRy+GDpW92Tp1kgJq0pUsJTeHDx9GcnJy6m1N09I9npiYiPXr12f69Xbv3o2OHTuiRIkSMBgM2Lx581Ovj4yMxDvvvIMqVaogT5488LeFSn6ybZ99Bty+DdSoAfTooToasjXG4mI7O2DzZmDrVtUR5YzffpPDwUG/U242LkvJTZMmTXDjxo3U2+7u7riYpg/C7du30b1790y/Xnx8POrUqYOFCxdm6vrExEQUKVIEY8aMQZ06dTIfOJE1iowE5s6V808+4bA5qVGzphQVA9JfKTFRbTzP6+FD067fgwaxy7dO2Wfl4kdHah69/aT7nsTHxwc+Pj6Zvr5s2bKYN28eAGDlypWZek5iYiIS0/xjjIuLy/T7ESk1daq0wG/cGHj9ddXRkC2bOBFYs0Z2y541y9RM0hotXSr1NoULA2PHqo6GzCTHa24MBkNOv+RzCQwMhLu7e+rh5eWlOiSiZ7t4EVi2TM4DA2V6gEgVNzfT9M3UqUB4uNp4suvWLdkcE5AViB4eSsMh89F9QXFAQABiY2NTj4iICNUhET3b+PFAUhLQti33uSHL0KMH0Ly5jCYaO/pam8mTgZs3Zaqtb1/V0ZAZZWlaCgBCQ0MRFRUFQKag/vnnH9y9excAEBMTk7PR5QAnJyc4OTmpDoMo806eBL77Ts6nTVMbC5GRsbi4fn1gwwbZi6lNG9VRZd6ZMxI/AMyeLR2YSbey/NN95ZVX0tXVvPbaawBkOkrTNIubliKyOmPGyC7FXbsCDRqojobIpHZtYMAAYP58KS4+ccJ62hMMGyajoa+9Zl1JGWVLlpKbsLAwc8VBRACwb5/s52NnZ+pKTGRJJk2STVzPnJHmdyNHqo7o2bZtA375RUZrjI0JSdeylNyUKVMmR9/87t27OH/+fOrtsLAwhISEoGDBgihdujQCAgJw5coVfPXVV6nXhISEpD73+vXrCAkJgaOjI6pXr56jsRHlOk0zrULp3RuoUkVpOEQZ8vAAZsyQv6OTJwPvvANY8kKNpCRTjZCfH/9d2QiDloW12zdv3sS9e/dQqlSp1PtOnTqFmTNnIj4+Hp07d8Y777yT6TffuXMnWrVq9dj9vXr1wurVq9G7d29cunQJO3fuNAWcwbRXmTJlcCmTrcHj4uLg7u6O2NhYuHGTNLIkW7cCPj6AkxNw7pxlf2CQbUtJAV56SUYau3YFstC8NdctWQJ89BFQsKAsZS9QQHVElE1Z+fzOUnLTvXt3FC9eHLNnzwYAREdHo2rVqihRogQqVKiA3377DV988QV8fX2f73dgRkxuyCKlpEh9TUiIfMucNUt1RERPd/y4FBenpEhxcevWqiN63O3bQMWKsvv3woVSL0RWKyuf31laCn7w4EG8nqaZ2FdffYWCBQsiJCQEP/74I6ZNm4ZFixZlL2oiW/b995LYuLoCAQGqoyF6tjp1ZEQEkOLiBw/UxpORqVMlsaleHfjwQ9XRUC7KUnITFRWFcuXKpd7esWMHunTpAvv/ltS9/vrrOHfuXM5GSKR3Dx8C48bJ+bBh0jmVyBpMmQIUKQL88w/wX/d4i3HunKzqArj02wZlKblxc3PD7du3U28fPnwYjRs3Tr1tMBjSbXVARJmwapX8R1ykiP52XiZ98/AAPv1UzidNAq5cURpOOsOHyxcHHx+gXTvV0VAuy1Jy88ILL2D+/PlISUnBDz/8gDt37uDlNFvFnz17ltsbEGVFQoJ8KACyUsrVVW08RFnVq5fsfxYfLyOPluDPP4Eff5SWCqxfs0lZSm6mTJmCH3/8Ec7OznjrrbcwYsQIFEhTeb527Vq0aNEix4Mk0q1Fi4CrV4HSpYH+/VVHQ5R1efLI32ODQfrf/PWX2niSk00joB99BFSrpjYeUiJLq6UA4Pr169i/fz+KFSuGRo0apXvs119/RfXq1dPV5VgarpYiixEbC5QvL3vdrFwJvPee6oiIsu+jj2TZdfXqUhzv4KAmjmXLpHi4QAGZ7i1USE0clOPMthRcD5jckMUYN05Wc1StKvtJseCRrNnNm0DlyrI6adYsNZtrxsYClSoB169LgfOgQbkfA5mN2ZKbtJ2Cn6Znz56Zfclcx+SGLMK1a0CFClKnsGED8MYbqiMien4rVgD9+knt2JkzQPHiufv+I0dK9+QqVeQLg6rRIzILsyU3efLkQf78+WFvb48nPc1gMODmzZtZizgXMbkhizBoELBgAdCwIXDokNQrEFm7lBSgSRPg8GGgRw/gm29y770vXJApsQcPgF9/BTp0yL33plxhtiZ+1apVg6OjI3r27Ildu3bh1q1bjx2WnNgQWYRLl4DPP5fzadOY2JB+pC0u/vZbYPfu3HvvESMksWnbVpZ/k03LUnJz6tQp/Prrr0hISMBLL70Eb29vLFmyBHFxceaKj0h/Jk6U/huvvGKZLeuJnoe3t0xNAbLdwcOH5n/PnTuBjRsluZo9m18YKGvJDQA0atQIS5cuRWRkJAYNGoT169ejePHi6NGjBxv4ET3LqVOAsXZt2jS1sRCZy7RpslHl33/LSI45pV363b8/UKOGed+PrEKWkxsjZ2dn9OzZE5MmTcILL7yAtWvX4t69ezkZG5H+jB0LaBrQpQvwwguqoyEyj0KFgMBAOZ8wAYiKMt97rV4tS8/d3U0NMcnmZSu5uXLlCqZNm4ZKlSrh7bffRsOGDXHq1Kl0Df2I6BGHDgGbN8vQ+dSpqqMhMq8+fWSKKi5O6mHM4c4dYMwYOZ8wgfuyUaosJTfr16+Hj48PKlWqhKCgIMyaNQsRERGYMWMGqlataq4Yiayfppl2++7ZU1Z1EOmZnZ2puPjrr4G9e3P+PQIDpa1CpUpS30P0nywvBS9dujR69OgBT0/PJ143yIIbJ3EpOCmxfbus4nB0BM6eBcqUUR0RUe7o10/639SuDRw5knPNKsPCZGuFxETgp5+Ajh1z5nXJYpmtz03ZsmVheEYVusFgwMWLFzP7krmOyQ3lOk2TfjZHjgCDBwNz56qOiCj3xMRI5+Jbt4D584GBA3Pmdbt1A77/XlYdbt/OFVI2QOn2C1euXEHJkiVz8iVzFJMbynU//AB07Qq4uAAXLwJFi6qOiCh3LVkie0+5u0vn4qeM/GfKnj3ASy9J/dqxYzIqRLpntiZ+TxMVFYVBgwahYsWKOfWSRNYvKUlWSAGy1w4TG7JFH3wA1K8vez+NGvV8r5WSAvj7y3m/fkxsKENZSm5u376NHj16oEiRIihRogTmz5+PlJQUjB8/HuXLl8eBAwewcuVKc8VKZH2+/FK+qRYqBAwdqjoaIjXs7ICFC+V89WrgwIHsv9ZXXwFHjwJubsDkyTkSHulPlpKb0aNHY/fu3ejVqxcKFiyIjz/+GK+99hr27t2L3377DUFBQejevbu5YiWyLvfvSzdiQFZKubsrDYdIqSZNgPfek/MBA6T5XlbdvWtadThuHEdC6YmylNz8+uuvWLVqFWbOnImffvoJmqahcuXK2LFjB1q0aGGuGIms05IlwL//AqVKSb0Bka2bPh3w8JA6maVLs/f8qCigQoWcK0wmXcpScnP16lVU/68/R/ny5ZE3b1707dvXLIERWbW4OOCTT+R8wgTA2VltPESWoGhRYMoUOR8zBrh+PfPPvXwZmDVLzmfOBJyccj4+0o0sJTcpKSlwcHBIvW1nZwcXF5ccD4rI6s2eDdy4IUtge/dWHQ2R5ejfH6hTB7h92zTFlBmjRslUb6tWQKdOZguP9CHLTfx8fHzg9F/G/PPPP+Pll19+LMHZuHFjzkaZg7gUnMzu+nWgfHmpD1i/XpaBE5HJvn3Aiy/K+YEDQOPGT79+/36gWTPpZXP0KFC3rtlDJMuTlc/vLLWK7NWrV7rb7777btajI9K7adMksalfH3jzTdXREFmeZs1kG5KvvpLi4sOHZUVVRtIu/e7Th4kNZUqON/GzdBy5IbMKD5d9bh48ALZuBdq1Ux0RkWW6dk2mbePipPi+f/+Mr/v6a0mEXF2Bc+eevwEgWS0lTfyICMCkSZLYtGwpe0kRUcY8PU3FxaNHyzYNj4qPNzX9GzOGiQ1lGpMbopxy+rQ0KANkt2LudUP0dB99JB2Gb92SBOdRM2YAV68C5crJvmxEmcTkhiinjBsn9QGvv/7sAkkikh3CjZ2LV6wAgoJMj0VEAJ99JueffQbkzZv78ZHVYnJDlBOCgoANG2S0xtjfhoierXlz4N13AU2T4uKUFLk/IABISJANMt94Q22MZHWY3BDlBOOQ+rvvAjVrqo2FyNrMmCEFw0FBwBdfAAcPAt9+K18W5szhFC9lGZMboue1Ywfwxx+Ag4MUFBNR1hQvbvq3ExAA+PnJee/e0lKBKIuY3BA9D00zdVn98EMpfCSirPPzA2rUkM7eR44ALi6c4qVsY3JD9Dw2b5YGZPnyAWPHqo6GyHo5OACLFplujx4tIzpE2ZClDsVElEZysimh8fdnDw6i59WihYzW/PMP8PHHqqMhK8bkhii7vvkGCA0FChQAhg9XHQ2RPmTU74YoizgtRZQdiYnA+PFyPmoU4OGhNBwiIjJhckOUHUuXyj5SxYubVnYQEZFFYHJDlFV37gBTp8r5hAlSTExERBaDyQ1RVs2dC1y/DlSsCLz/vupoiIjoEUxuiLLixg1g5kw5nzxZlq8SEZFFYXJDlBXTpwNxcUCdOsBbb6mOhoiIMsDkhiiz/v0XWLBAzqdNA/Lwnw8RkSXi/85EmTV5siwBf/FFwMdHdTRERPQETG6IMuPsWWDlSjkPDOQuxUREFozJDVFmjBsn2y28+qqM3BARkcVickP0LEePAuvXyzl3KSYisnhMboiexbjXzTvvyCopIiKyaExuiJ5m1y7g998Be3spKCYiIovH5IboSTQNCAiQ8759gQoV1MZDRESZwuSG6El+/hk4cABwdpaCYiIisgpMbogykpwMjBkj54MGASVKqI2HiIgyTWlys3v3bnTs2BElSpSAwWDA5s2bn/mcXbt2oUGDBsibNy/Kly+Pzz//3PyBku1Zswb4+2/A3R0YOVJ1NERElAVKk5v4+HjUqVMHCxcuzNT1YWFh6NChA5o3b45jx45h9OjRGDRoEDZs2GDmSMmmPHgAjB8v5yNHAgUKqI2HiIiyxF7lm/v4+MAnC23sP//8c5QuXRpz584FAFSrVg3BwcGYOXMm3nzzTTNFSTZn+XIgLAzw9JQpKSIisipWVXNz4MABtG3bNt197dq1Q3BwMB4+fJjhcxITExEXF5fuIHqi+HhgyhQ5HzcOcHFRGw8REWWZVSU3UVFR8PT0THefp6cnkpKSEBMTk+FzAgMD4e7unnp4eXnlRqhkrebNA65dA8qVA/r1Ux0NERFlg9JpqewwPLJhoaZpGd5vFBAQgCFDhqTejouLM0+Cc/OmdLBNK21Mj8aXncdy4jX4+k9/bO1a+XXyZMDREUREZH2sKrkpVqwYoqKi0t0XHR0Ne3t7FCpUKMPnODk5wcnJyfzBPXggnWzJ+tWsCXTvrjoKIiLKJqtKbpo0aYKff/453X3btm2Dt7c3HBwcFEX1H3d34KuvTLf/G1F66nlOXJeb72UL19nZAW+/Lb8SEZFVUprc3L17F+fPn0+9HRYWhpCQEBQsWBClS5dGQEAArly5gq/+Sxr69++PhQsXYsiQIejXrx8OHDiAL774AmvWrFH1WzBxdgZ8fVVHQUREZPOUJjfBwcFo1apV6m1jbUyvXr2wevVqREZGIjw8PPXxcuXKYcuWLfj444+xaNEilChRAvPnz+cycCIiIkpl0LRHx+j1LS4uDu7u7oiNjYWbm5vqcIiIiCgTsvL5bVVLwYmIiIiehckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeY3BAREZGuMLkhIiIiXWFyQ0RERLrC5IaIiIh0hckNERER6QqTGyIiItIVJjdERESkK0xuiIiISFeUJzeLFy9GuXLlkDdvXjRo0AB79ux56vWLFi1CtWrV4OzsjCpVquCrr77KpUiJiIjIGtirfPN169bB398fixcvRrNmzbB06VL4+PggNDQUpUuXfuz6JUuWICAgAMuXL0fDhg1x+PBh9OvXDwUKFEDHjh0V/A6IiIjI0hg0TdNUvXmjRo1Qv359LFmyJPW+atWqoXPnzggMDHzs+qZNm6JZs2b47LPPUu/z9/dHcHAw9u7dm6n3jIuLg7u7O2JjY+Hm5vb8vwkiIiIyu6x8fiublnrw4AGOHDmCtm3bpru/bdu22L9/f4bPSUxMRN68edPd5+zsjMOHD+Phw4dPfE5cXFy6g4iIiPRLWXITExOD5ORkeHp6prvf09MTUVFRGT6nXbt2WLFiBY4cOQJN0xAcHIyVK1fi4cOHiImJyfA5gYGBcHd3Tz28vLxy/PdCRERElkN5QbHBYEh3W9O0x+4zGjduHHx8fNC4cWM4ODigU6dO6N27NwDAzs4uw+cEBAQgNjY29YiIiMjR+NPSNODdd4HJk4Hffwdu3TLbWxEREdETKCsoLly4MOzs7B4bpYmOjn5sNMfI2dkZK1euxNKlS3Ht2jUUL14cy5Ytg6urKwoXLpzhc5ycnODk5JTj8WfkyhXg22/T31e5MvDCC0CjRsDLLwPVq+dKKERERDZL2ciNo6MjGjRogO3bt6e7f/v27WjatOlTn+vg4IBSpUrBzs4Oa9euxWuvvYY8eZQPQsHZGZg3D3jnHaBiRbnv7Fngm2+AgQOBZctM18bHSyJ0/ryM+BAREVHOULoUfMiQIfD19YW3tzeaNGmCZcuWITw8HP379wcgU0pXrlxJ7WVz9uxZHD58GI0aNcKtW7cwe/Zs/P333/jyyy9V/jZSFSoEDBpkun3jBnD4sByHDgGtWpkeCw6WKSwAKFjQNLrTqJGcFyqUu7ETERHphdLk5q233sKNGzcwefJkREZGombNmtiyZQvKlCkDAIiMjER4eHjq9cnJyZg1axbOnDkDBwcHtGrVCvv370fZsmUV/Q6erlAhwMdHjkclJQGNGwPHjgE3bwJbt8ph9MUXwPvvy3lCAmAwAI8sFCMiIqIMKO1zo4Kl9bl58AA4flxGdowjPGfPAgcPyigOAKxcCfTvD9Spk350p1IlwAJm44iIiMwuK5/fSkduCHB0BBo2lMPo5k0g7c/t5Eng4UOZygoOBhYtkvs9POR5ixZJokNEREQcuVEdTqZoGnDpUvrRnaNHgfv35fHr1wHjYrF582TUx1jDU6+eFDoTERFZs6x8fjO5sVIPH8qIzt9/Az17mu5v0wb44w/TbXt7oHZt03TWO+8ADg65Hy8REdHzYHLzFHpJbp5kzx45Dh2S49o102MeHrKCy1ins26djOq88AJQrJiScImIiDKFNTc2rHlzOQCZzoqIME1naVr6AuSAACAsTM5LlzYVKjdqBDRoAOTLl/vxExERPS+O3NiopCTggw8k6QkNfbyRoLc3EBRkun3xIlCmDPCEXS6IiIjMiiM39Ez29rLEHADi4mQVlrFY+dCh9Ku37t8HqlaVPjve3umXo5cooSZ+IiKiJ+HIDWUoMREwbskVGiqJTHz849eVKgX4+wNDh+ZqeEREZGM4ckPPLe1eo9WrA7GxkuSkXY7+99/Av/+mn9K6cAHo0iV9/U6NGpzOIiKi3MORG8q2u3el307ZslKQDMhmoMY9s4xcXKRAuVEjwNcXqFUr10MlIiIrx6XgT8Hkxrxu3Ei/FD0oSJIgo40bZWQHkH21fv9dkh5vb8DVVU3MRERk+TgtRcoUKgR07iwHACQnA//8Y5rOatzYdO3PPwMTJsi5wSDTX2mns2rWlMJnIiKirODIDSmzeTPw3XeS9Fy+/Pjjx49Ld2VAanns7WX6y2DI1TCJiMgCcFrqKZjcWKaoKElyjMXKp09LwmMsRO7dG/jyS8DT0zSyY5zO8vBQGTkREeUGJjdPweTGOmha+hGabt2ATZuk+eCjatSQ+h3jnlmPPpeIiKwfa27I6j2anKxfDyQkSBJjLFY+fNi0fUTazUDbtpWePMbRnUaNZEUXEx4iItvAkRuyatHRQGQkUKeO3H74EHB3l0QorSJFZDqrXTtg4MDcj5OIiJ4PR27IZhQtKoeRvT0QEpK+2WBICHD9OvDrr7JxqDG50TTAzw+oVk1Gd+rUARwdVfwuiIgoJzG5IV0xGIDKleXw9ZX7EhNNCU+ZMqZr//0XWLzYdNvREahXD2jSBGjaFHjxRaB48VwNn4iIcgCnpchmRUUBS5eaanhu3kz/+ODBwNy5cn7/vmw/Ubs2e+8QEanAaSmiTChWzNREUNOkl86hQ8CBA8D+/TJyY3ToENCyJZAvn0xhNW0KNGsmTQkLFFASPhERPQGTGyLIdFbFinL06PH445GRUqgcGwv89ZccRtWrA/PnA6+8knvxEulRcjJw7pxs2VKtmuxLR5QdeVQHQGQN3n5bpq3+/htYtkyaClaqJI+FhkriY7R+PfD668D06cDu3cC9e0pCJrIaO3bISKm7uyQ1DRvKXnMVK8pedGm/TBBlBkduiDIpTx5pGFijBtCvn9x3/bpMYRmXogPA9u2yb9bPP8tte3spVG7aVI5XX+U3UrItDx4Ap04BR44AR4/KMXw48Oab8rjBAOzbJ+fOzpLYREfLVPGFC6bFAQCwbRswejRQq5bpqF1bupcTGTG5IXoORYoAnTqlv2/gQEmA9u2TIzJSdkcPCgLmzZOEyJjcHDwoDQhr107fiJDI2l26BHzyiSQyJ09KD6q0DhwwJTfe3sBXXwENGgBVqsi2K9HR8ryTJ9NvuHvkiOlIq0gRSXRmzJDXIdvG1VJEZqRpQHi4jO7s3w9cuQJs3Gh6/JVXZEg+Xz5pMpi2ULlgQXVxE2VGfLxscGsckWnWDOjbVx6LiJCNbo0KFADq15ejQQP5O562NUNmXbkiBf4nTwInTsiv58/LvzUg/Ya7CxZIPZxxdMc40lOhgmnfOrIe3FvqKZjckCXp1k2msW7ffvyxJk0kISKyFAkJwOefm5KZf/4xJRUA0Lmz7AEHyP1TpsgoZoMGksiYawuUe/dk2uvkSeDdd03NOPv0AVaufPx6Z2dZCLB+PVC+vNz38CFHTy0dk5unYHJDliYlRT4kjKM7+/YBZ88C7dsDv/1muq5hQ1m+bqzdadhQRnyIctqNG7KP29GjQP78wEcfyf1JSYCbW/rtTUqUMI3GvPgi0Lq1mpgzcv26jO4YR3hOnpQkyBj/nTvy+wOkW/n33z8+ylO9Ov+dWQomN0/B5IasQUwMcOuWaUXW1atAyZLpr7G3B+rWlUTntdeANm1yPUzSiW3bpCbMWOx76ZLpsRo1ZJWg0ahRkhA0aCCF8sWK5Xq4zyU5Gbh4UZacd+hgur9FC1nd+Chjm4hjx0y1crduycquPFxvnKuY3DwFkxuyRklJ8p/rvn2m0Z2rV02Pf/QRsGiRnN+/L8vVmzaVVVwcaidApomuXpXk5do1U20MIAlMaGj66ytUkBGZhg1lZZPexcfLn0HaUZ6TJ2X0p3jx9P/e2rcH9uyRP7e0K7Zq1ZLCZjIPJjdPweSG9EDTpGDTOJXVoYP8hwvI7WbN5NzZWQqVmzWTZKdxY6BQIXVxU+4JDweCgyWZMdbIREfLY/nyAXFxpqLagAC53ljwW68e4OGhLHSLcu2aFDHXr2+6r0IFGf3JSNWqwOnTptsXL0py5Oxs3jhtAZObp2ByQ3p38KAUch44IMPnj1q2zNSn5+FD+YDj8Lr1SkmRD9Djx4E33jAV7XbqBPz0U/pr7eykhqR+fdk3jQlM9iQnywot4+iOcbTn4kWpO0o7vVWxIhAWJlPMj/bmKVeO//aygsnNUzC5IVuRkgKcOZO+UNl4u0kTueabb2SDUONO6MZCZTYZtEzJyVJsbqyNMR5xcfL4v/+aarMCA6VANu3y61q1WBxrTvHxUoxtXAKfmAh4ecnUVkZefFGmt4wOHZJRocKFzR+rNWJy8xRMbsiWxcRIIaSxDsfPz1SrY2RnZypUHjECKFUq18MkSJ3V6dPyzd84pTF8ODBz5uPXOjlJfdXy5aYeL2QZNA2Iikpfx2NctfXOO6al6g8eyJeKpCQp0k67Ysu4aitvXrW/F9WY3DwFkxsik4cPZTojbaHylSumx69elXoBANiwQep8mjaV5MfYS4Se34MHsiIp7WjM8eNSHL5zp6zkAYBvvwU++EBqYowjMvXry35MLBy3LklJMtJj3JcuPBxo1erJtTxvvw2sWSPnKSky5Virlm1NbWXl85vbLxDZMAcHaX3v7S3TU4CpUPnUKVNiAwArVgBbt8p53rwyfWXsqNykCYfSMyshQb7NG6eH1q2TvZMe3Z4AkD2WoqJMt7t2lQ85dte1fvb26TfcLV1a9tG6c8fUkDBtTU+tWqZrL16UDUUBGe2pWTP9iq06daQjtC3jyA0RZcr8+dIPZf/+xwuVXV3lPuOHbmSkbGRoK98on+Tu3fTbExw9KsuNly6V7rmA1Fk0biwfRg0apB+RqVCBf4YkyXBSkml0LjhYFgWEhsqo36PGjpVFBQBw8ybwyy+S9FSrZt1TWxy5IaIcN2iQHCkpUtRqnMbav1/qctKOJrRoIUWUaQuVX3jB1A1WjzTNtFLp779la41HtycwSttTpl49WU1jzu0JyLoZDOmnHb29pe9VUpI0I3y0N0/auqvDh4FeveTczg6oXDn9iq0mTfTZm4cjN0T03NLuyxMXJ9NZ9+6lvyZPHhku79ZNutxaM+P2BGlHZLp2BaZNk8djYkwfGGm3JzCOyJQsyUSGcscff8gozsmTGbeGWL3alPycOSOjs8bpLUvbvJcjN0SUq9J+q3Rzk41AT5wwLUPfv18KJo8dk2+dRg8fAj17mnZEr1fPcguV79yRD4GjR4HLlx9//MgR03nhwrIhas2a1rc9AelL69ZyGDtUP9qbp04d07Xbt8vorFGJEulXbbVvbz2jPBy5IaJc8e+/0liwdGmgUSO5LyhIEhujvHkl+TF2VG7WLPc6KqfdnsA4IuPlZVoqr2nyTda4g3vFiul7yNSrx+7PZN02bwa++EKSnowS+L17Td3P//pLvrQYp7dyY1qVS8GfgskNkeWIiJDlzcbRnRs30j8eGGiawoqNleurV8/ZItspU+S9025PYFSuXPqluevXA0WLylJ4dvclPYuLk9qxtCM9P/9sWuHl7w/Mm2e63tU1/aqt//0v54vhmdw8BZMbIsukaVIcmbaj8uefA82by+Pr1skyaHf3xwuVXV2f/LopKbLE1jgiExsrq5WMvL1NU0pptycwjsgYv6kSkcn69ZLsnDghzSbTtjIoUSJ9v6ycwuTmKZjcEFmnBQtkg8f4+PT358kj3xRXrJBkBJClrzt2SEJz7JhpewJA+ovcvStdfQHg66/ltnF7Am5wSJQ1Dx/KCkrjCI+jIzBxYs6/D5Obp2ByQ2S9kpLkP1DjEvT9+021AeHhUiMDyAjPunWm5xm3JzCOyPTowT2WiKwNV0sRkS7Z20vhbr16si8WIMPfwcGmxAYAOneW2hhuT0BkmzhyQ0RERBYvK5/fbOxNREREusLkhoiIiHSFyQ0RERHpCpMbIiIi0hUmN0RERKQrTG6IiIhIV5jcEBERka4oT24WL16McuXKIW/evGjQoAH27Nnz1Ou//fZb1KlTB/ny5UPx4sXx3nvv4caju+0RERGRzVKa3Kxbtw7+/v4YM2YMjh07hubNm8PHxwfh4eEZXr9371707NkTffr0walTp/D9998jKCgIffv2zeXIiYiIyFIpTW5mz56NPn36oG/fvqhWrRrmzp0LLy8vLFmyJMPrDx48iLJly2LQoEEoV64cXnzxRXz44YcIDg5+4nskJiYiLi4u3UFERET6pSy5efDgAY4cOYK2bdumu79t27bYv39/hs9p2rQp/v33X2zZsgWapuHatWv44Ycf8Oqrrz7xfQIDA+Hu7p56eKXdgIaIiIh0R1lyExMTg+TkZHh6eqa739PTE1FRURk+p2nTpvj222/x1ltvwdHREcWKFYOHhwcWLFjwxPcJCAhAbGxs6hEREZGjvw8iIiKyLMoLig0GQ7rbmqY9dp9RaGgoBg0ahPHjx+PIkSPYunUrwsLC0L9//ye+vpOTE9zc3NIdREREpF/2qt64cOHCsLOze2yUJjo6+rHRHKPAwEA0a9YMw4cPBwDUrl0bLi4uaN68OaZOnYrixYubPW4iIiKybMqSG0dHRzRo0ADbt29Hly5dUu/fvn07OnXqlOFz7t27B3v79CHb2dkBkBGfzDBex8JiIiIi62H83M7U572m0Nq1azUHBwftiy++0EJDQzV/f3/NxcVFu3TpkqZpmjZq1CjN19c39fpVq1Zp9vb22uLFi7ULFy5oe/fu1by9vbUXXngh0+8ZERGhAeDBgwcPHjx4WOERERHxzM96ZSM3APDWW2/hxo0bmDx5MiIjI1GzZk1s2bIFZcqUAQBERkam63nTu3dv3LlzBwsXLsTQoUPh4eGBl19+GZ9++mmm37NEiRKIiIiAq6vrE2t7sisuLg5eXl6IiIhgbY+V4s/QuvHnZ/34M7R+5voZapqGO3fuoESJEs+81qBpmZzPoWeKi4uDu7s7YmNj+Y/SSvFnaN3487N+/BlaP0v4GSpfLUVERESUk5jcEBERka4wuclBTk5OmDBhApycnFSHQtnEn6F148/P+vFnaP0s4WfImhsiIiLSFY7cEBERka4wuSEiIiJdYXJDREREusLkhoiIiHSFyU0OWbx4McqVK4e8efOiQYMG2LNnj+qQKAt2796Njh07okSJEjAYDNi8ebPqkCgLAgMD0bBhQ7i6uqJo0aLo3Lkzzpw5ozosyoIlS5agdu3acHNzg5ubG5o0aYLffvtNdViUTYGBgTAYDPD391fy/kxucsC6devg7++PMWPG4NixY2jevDl8fHzSbR1Bli0+Ph516tTBwoULVYdC2bBr1y4MGDAABw8exPbt25GUlIS2bdsiPj5edWiUSaVKlcL06dMRHByM4OBgvPzyy+jUqRNOnTqlOjTKoqCgICxbtgy1a9dWFgOXgueARo0aoX79+liyZEnqfdWqVUPnzp0RGBioMDLKDoPBgE2bNqFz586qQ6Fsun79OooWLYpdu3bhpZdeUh0OZVPBggXx2WefoU+fPqpDoUy6e/cu6tevj8WLF2Pq1KmoW7cu5s6dm+txcOTmOT148ABHjhxB27Zt093ftm1b7N+/X1FURLYtNjYWgHw4kvVJTk7G2rVrER8fjyZNmqgOh7JgwIABePXVV9G6dWulcSjdFVwPYmJikJycDE9Pz3T3e3p6IioqSlFURLZL0zQMGTIEL774ImrWrKk6HMqCkydPokmTJrh//z7y58+PTZs2oXr16qrDokxau3Ytjh49iqCgINWhMLnJKQaDId1tTdMeu4+IzM/Pzw8nTpzA3r17VYdCWVSlShWEhITg9u3b2LBhA3r16oVdu3YxwbECERERGDx4MLZt24a8efOqDofJzfMqXLgw7OzsHhuliY6Ofmw0h4jMa+DAgfjpp5+we/dulCpVSnU4lEWOjo6oWLEiAMDb2xtBQUGYN28eli5dqjgyepYjR44gOjoaDRo0SL0vOTkZu3fvxsKFC5GYmAg7O7tci4c1N8/J0dERDRo0wPbt29Pdv337djRt2lRRVES2RdM0+Pn5YePGjdixYwfKlSunOiTKAZqmITExUXUYlAmvvPIKTp48iZCQkNTD29sbPXr0QEhISK4mNgBHbnLEkCFD4OvrC29vbzRp0gTLli1DeHg4+vfvrzo0yqS7d+/i/PnzqbfDwsIQEhKCggULonTp0gojo8wYMGAAvvvuO/z4449wdXVNHUl1d3eHs7Oz4ugoM0aPHg0fHx94eXnhzp07WLt2LXbu3ImtW7eqDo0ywdXV9bEaNxcXFxQqVEhJ7RuTmxzw1ltv4caNG5g8eTIiIyNRs2ZNbNmyBWXKlFEdGmVScHAwWrVqlXp7yJAhAIBevXph9erViqKizDK2YWjZsmW6+1etWoXevXvnfkCUZdeuXYOvry8iIyPh7u6O2rVrY+vWrWjTpo3q0MgKsc8NERER6QprboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdIXJDREREekKkxsiIiLSFSY3REREpCtMbohId3r37o3OnTurDoOIFGFyQ0TZ0rt3bxgMhseO9u3bqw4N8+bNs5htMwwGAzZv3qw6DCKbwr2liCjb2rdvj1WrVqW7z8nJSVE0QHJyMgwGA9zd3ZXFQETqceSGiLLNyckJxYoVS3cUKFAAO3fuhKOjI/bs2ZN67axZs1C4cGFERkYCkE0u/fz84OfnBw8PDxQqVAhjx45F2u3uHjx4gBEjRqBkyZJwcXFBo0aNsHPnztTHV69eDQ8PD/zyyy+oXr06nJyccPny5cempVq2bImBAwfC398fBQoUgKenJ5YtW4b4+Hi89957cHV1RYUKFfDbb7+l+/2FhoaiQ4cOyJ8/Pzw9PeHr64uYmJh0rzto0CCMGDECBQsWRLFixTBx4sTUx8uWLQsA6NKlCwwGQ+ptIjIvJjdElONatmwJf39/+Pr6IjY2FsePH8eYMWOwfPlyFC9ePPW6L7/8Evb29jh06BDmz5+POXPmYMWKFamPv/fee9i3bx/Wrl2LEydOoGvXrmjfvj3OnTuXes29e/cQGBiIFStW4NSpUyhatGiGMX355ZcoXLgwDh8+jIEDB+J///sfunbtiqZNm+Lo0aNo164dfH19ce/ePQBAZGQkWrRogbp16yI4OBhbt27FtWvX0K1bt8de18XFBYcOHcKMGTMwefJkbN++HQAQFBQEQHYnj4yMTL1NRGamERFlQ69evTQ7OzvNxcUl3TF58mRN0zQtMTFRq1evntatWzetRo0aWt++fdM9v0WLFlq1atW0lJSU1PtGjhypVatWTdM0TTt//rxmMBi0K1eupHveK6+8ogUEBGiapmmrVq3SAGghISGPxdapU6d07/Xiiy+m3k5KStJcXFw0X1/f1PsiIyM1ANqBAwc0TdO0cePGaW3btk33uhERERoA7cyZMxm+rqZpWsOGDbWRI0em3gagbdq06Ql/ikRkDqy5IaJsa9WqFZYsWZLuvoIFCwIAHB0d8c0336B27dooU6YM5s6d+9jzGzduDIPBkHq7SZMmmDVrFpKTk3H06FFomobKlSune05iYiIKFSqUetvR0RG1a9d+Zqxpr7Gzs0OhQoVQq1at1Ps8PT0BANHR0QCAI0eO4K+//kL+/Pkfe60LFy6kxvXoexcvXjz1NYhIDSY3RJRtLi4uqFix4hMf379/PwDg5s2buHnzJlxcXDL92ikpKbCzs8ORI0dgZ2eX7rG0CYezs3O6BOlJHBwc0t02GAzp7jO+RkpKSuqvHTt2xKeffvrYa6WdWsvodY2vQURqMLkhIrO4cOECPv74Yyxfvhzr169Hz5498eeffyJPHlOp38GDB9M95+DBg6hUqRLs7OxQr149JCcnIzo6Gs2bN8/t8FG/fn1s2LABZcuWhb199v+rdHBwQHJycg5GRkTPwoJiIsq2xMREREVFpTtiYmKQnJwMX19ftG3bFu+99x5WrVqFv//+G7NmzUr3/IiICAwZMgRnzpzBmjVrsGDBAgwePBgAULlyZfTo0QM9e/bExo0bERYWhqCgIHz66afYsmWL2X9vAwYMwM2bN9G9e3ccPnwYFy9exLZt2/D+++9nKVkpW7Ys/vzzT0RFReHWrVtmjJiIjDhyQ0TZtnXr1nRTNABQpUoVvPPOO7h06RJ+/vlnAECxYsWwYsUKdOvWDW3atEHdunUBAD179kRCQgJeeOEF2NnZYeDAgfjggw9SX2vVqlWYOnUqhg4diitXrqBQoUJo0qQJOnToYPbfW4kSJbBv3z6MHDkS7dq1Q2JiIsqUKYP27dunG316llmzZmHIkCFYvnw5SpYsiUuXLpkvaCICABg0LU1TCSKiXNKyZUvUrVs3w0JjIqLnwWkpIiIi0hUmN0RERKQrnJYiIiIiXeHIDREREekKkxsiIiLSFSY3REREpCtMboiIiEhXmNwQERGRrjC5ISIiIl1hckNERES6wuSGiIiIdOX/AfewDez6rcttAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/workflow/pred_temperature_transformer.ipynb b/workflow/pred_temperature_transformer.ipynb index 223a490..8638489 100644 --- a/workflow/pred_temperature_transformer.ipynb +++ b/workflow/pred_temperature_transformer.ipynb @@ -42,9 +42,20 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import lilio\n", "import numpy as np\n", @@ -59,7 +70,11 @@ "\n", "sys.path.append(\"../src/\")\n", "from transformer import Transformer\n", - "import utils" + "import utils\n", + "\n", + "# for reproducibility \n", + "np.random.seed(1)\n", + "torch.manual_seed(2)" ] }, { @@ -72,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -87,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -107,7 +122,7 @@ ")" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -128,9 +143,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "('t2m_daily_1959-2021_2deg_clustered_226_300E_30_70N.nc',\n", + " )" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# URL of the dataset from zenodo\n", "sst_url = \"https://zenodo.org/record/8186914/files/sst_daily_1959-2021_5deg_Pacific_175_240E_25_50N.nc\"\n", @@ -144,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -157,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -209,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -297,7 +324,7 @@ "2019 [2019-08-01, 2019-08-31) " ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -316,7 +343,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +365,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -359,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -377,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -387,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -398,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -419,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -450,14 +477,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Pytorch version 2.0.1+cu117\n", + "Pytorch version 2.0.1\n", "Is CUDA available? False\n", "Device to be used for computation: cpu\n" ] @@ -482,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -490,68 +517,8 @@ "output_type": "stream", "text": [ "Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n", - "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mgit-yang\u001b[0m (\u001b[33mai4s2s\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33ms-p-vijverberg\u001b[0m (\u001b[33mai4s2s-demo\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" ] - }, - { - "data": { - "text/html": [ - "Tracking run with wandb version 0.15.4" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Run data is saved locally in /home/yangliu/AI4S2S/cookbook/workflow/wandb/run-20230623_145035-vm4vj2j9" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "Syncing run vocal-fire-2 to Weights & Biases (docs)
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View project at https://wandb.ai/ai4s2s/test-transformer" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - " View run at https://wandb.ai/ai4s2s/test-transformer/runs/vm4vj2j9" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -582,7 +549,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -607,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -712,7 +679,7 @@ "[]" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -737,7 +704,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -765,514 +732,514 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch : 0 [0/36(0%)]\tLoss: 506.848511\n", - "Epoch : 0 [8/36(22%)]\tLoss: 479.035522\n", - "Epoch : 0 [16/36(44%)]\tLoss: 440.041077\n", - "Epoch : 0 [24/36(67%)]\tLoss: 390.214905\n", - "Epoch : 0 [32/36(89%)]\tLoss: 335.310120\n", - "Epoch : 1 [0/36(0%)]\tLoss: 293.446838\n", - "Epoch : 1 [8/36(22%)]\tLoss: 259.905426\n", - "Epoch : 1 [16/36(44%)]\tLoss: 216.974609\n", - "Epoch : 1 [24/36(67%)]\tLoss: 172.168121\n", - "Epoch : 1 [32/36(89%)]\tLoss: 124.433838\n", - "Epoch : 2 [0/36(0%)]\tLoss: 93.938248\n", - "Epoch : 2 [8/36(22%)]\tLoss: 67.571129\n", - "Epoch : 2 [16/36(44%)]\tLoss: 44.122723\n", - "Epoch : 2 [24/36(67%)]\tLoss: 22.394480\n", - "Epoch : 2 [32/36(89%)]\tLoss: 8.160757\n", - "Epoch : 3 [0/36(0%)]\tLoss: 2.009966\n", - "Epoch : 3 [8/36(22%)]\tLoss: 0.719012\n", - "Epoch : 3 [16/36(44%)]\tLoss: 2.384625\n", - "Epoch : 3 [24/36(67%)]\tLoss: 4.834548\n", - "Epoch : 3 [32/36(89%)]\tLoss: 7.573400\n", - "Epoch : 4 [0/36(0%)]\tLoss: 5.742430\n", - "Epoch : 4 [8/36(22%)]\tLoss: 1.594237\n", - "Epoch : 4 [16/36(44%)]\tLoss: 2.898134\n", - "Epoch : 4 [24/36(67%)]\tLoss: 1.557976\n", - "Epoch : 4 [32/36(89%)]\tLoss: 3.145669\n", - "Epoch : 5 [0/36(0%)]\tLoss: 2.663598\n", - "Epoch : 5 [8/36(22%)]\tLoss: 0.843780\n", - "Epoch : 5 [16/36(44%)]\tLoss: 4.107868\n", - "Epoch : 5 [24/36(67%)]\tLoss: 3.902971\n", - "Epoch : 5 [32/36(89%)]\tLoss: 1.992874\n", - "Epoch : 6 [0/36(0%)]\tLoss: 2.885126\n", - "Epoch : 6 [8/36(22%)]\tLoss: 2.093903\n", - "Epoch : 6 [16/36(44%)]\tLoss: 0.867421\n", - "Epoch : 6 [24/36(67%)]\tLoss: 1.338427\n", - "Epoch : 6 [32/36(89%)]\tLoss: 2.824705\n", - "Epoch : 7 [0/36(0%)]\tLoss: 0.421961\n", - "Epoch : 7 [8/36(22%)]\tLoss: 0.625339\n", - "Epoch : 7 [16/36(44%)]\tLoss: 1.148382\n", - "Epoch : 7 [24/36(67%)]\tLoss: 0.898688\n", - "Epoch : 7 [32/36(89%)]\tLoss: 2.202924\n", - "Epoch : 8 [0/36(0%)]\tLoss: 0.652444\n", - "Epoch : 8 [8/36(22%)]\tLoss: 0.860731\n", - "Epoch : 8 [16/36(44%)]\tLoss: 0.394376\n", - "Epoch : 8 [24/36(67%)]\tLoss: 0.981092\n", - "Epoch : 8 [32/36(89%)]\tLoss: 1.431546\n", - "Epoch : 9 [0/36(0%)]\tLoss: 0.444997\n", - "Epoch : 9 [8/36(22%)]\tLoss: 0.336203\n", - "Epoch : 9 [16/36(44%)]\tLoss: 0.597337\n", - "Epoch : 9 [24/36(67%)]\tLoss: 1.194982\n", - "Epoch : 9 [32/36(89%)]\tLoss: 1.307454\n", - "Epoch : 10 [0/36(0%)]\tLoss: 0.473219\n", - "Epoch : 10 [8/36(22%)]\tLoss: 0.273837\n", - "Epoch : 10 [16/36(44%)]\tLoss: 0.553731\n", - "Epoch : 10 [24/36(67%)]\tLoss: 0.798171\n", - "Epoch : 10 [32/36(89%)]\tLoss: 1.150871\n", - "Epoch : 11 [0/36(0%)]\tLoss: 0.492550\n", - "Epoch : 11 [8/36(22%)]\tLoss: 0.177561\n", - "Epoch : 11 [16/36(44%)]\tLoss: 0.655222\n", - "Epoch : 11 [24/36(67%)]\tLoss: 0.843735\n", - "Epoch : 11 [32/36(89%)]\tLoss: 1.034000\n", - "Epoch : 12 [0/36(0%)]\tLoss: 0.154700\n", - "Epoch : 12 [8/36(22%)]\tLoss: 0.228733\n", - "Epoch : 12 [16/36(44%)]\tLoss: 0.488245\n", - "Epoch : 12 [24/36(67%)]\tLoss: 0.571231\n", - "Epoch : 12 [32/36(89%)]\tLoss: 0.877148\n", - "Epoch : 13 [0/36(0%)]\tLoss: 0.368715\n", - "Epoch : 13 [8/36(22%)]\tLoss: 0.330869\n", - "Epoch : 13 [16/36(44%)]\tLoss: 0.166710\n", - "Epoch : 13 [24/36(67%)]\tLoss: 0.713053\n", - "Epoch : 13 [32/36(89%)]\tLoss: 1.331161\n", - "Epoch : 14 [0/36(0%)]\tLoss: 0.270578\n", - "Epoch : 14 [8/36(22%)]\tLoss: 0.162220\n", - "Epoch : 14 [16/36(44%)]\tLoss: 0.677632\n", - "Epoch : 14 [24/36(67%)]\tLoss: 0.858638\n", - "Epoch : 14 [32/36(89%)]\tLoss: 0.536049\n", - "Epoch : 15 [0/36(0%)]\tLoss: 0.262854\n", - "Epoch : 15 [8/36(22%)]\tLoss: 0.130524\n", - "Epoch : 15 [16/36(44%)]\tLoss: 0.395074\n", - "Epoch : 15 [24/36(67%)]\tLoss: 0.340181\n", - "Epoch : 15 [32/36(89%)]\tLoss: 0.352723\n", - "Epoch : 16 [0/36(0%)]\tLoss: 0.384992\n", - "Epoch : 16 [8/36(22%)]\tLoss: 0.103216\n", - "Epoch : 16 [16/36(44%)]\tLoss: 0.229468\n", - "Epoch : 16 [24/36(67%)]\tLoss: 0.437432\n", - "Epoch : 16 [32/36(89%)]\tLoss: 0.284868\n", - "Epoch : 17 [0/36(0%)]\tLoss: 0.314149\n", - "Epoch : 17 [8/36(22%)]\tLoss: 0.125167\n", - "Epoch : 17 [16/36(44%)]\tLoss: 0.292324\n", - "Epoch : 17 [24/36(67%)]\tLoss: 0.342788\n", - "Epoch : 17 [32/36(89%)]\tLoss: 0.475190\n", - "Epoch : 18 [0/36(0%)]\tLoss: 0.312881\n", - "Epoch : 18 [8/36(22%)]\tLoss: 0.596178\n", - "Epoch : 18 [16/36(44%)]\tLoss: 0.203140\n", - "Epoch : 18 [24/36(67%)]\tLoss: 0.300921\n", - "Epoch : 18 [32/36(89%)]\tLoss: 0.282739\n", - "Epoch : 19 [0/36(0%)]\tLoss: 0.605104\n", - "Epoch : 19 [8/36(22%)]\tLoss: 0.193903\n", - "Epoch : 19 [16/36(44%)]\tLoss: 0.074257\n", - "Epoch : 19 [24/36(67%)]\tLoss: 0.393801\n", - "Epoch : 19 [32/36(89%)]\tLoss: 0.163913\n", - "Epoch : 20 [0/36(0%)]\tLoss: 0.205284\n", - "Epoch : 20 [8/36(22%)]\tLoss: 0.360815\n", - "Epoch : 20 [16/36(44%)]\tLoss: 0.537282\n", - "Epoch : 20 [24/36(67%)]\tLoss: 0.345712\n", - "Epoch : 20 [32/36(89%)]\tLoss: 0.180386\n", - "Epoch : 21 [0/36(0%)]\tLoss: 0.450000\n", - "Epoch : 21 [8/36(22%)]\tLoss: 0.364916\n", - "Epoch : 21 [16/36(44%)]\tLoss: 0.206945\n", - "Epoch : 21 [24/36(67%)]\tLoss: 0.408634\n", - "Epoch : 21 [32/36(89%)]\tLoss: 0.256134\n", - "Epoch : 22 [0/36(0%)]\tLoss: 0.214822\n", - "Epoch : 22 [8/36(22%)]\tLoss: 0.188485\n", - "Epoch : 22 [16/36(44%)]\tLoss: 0.132451\n", - "Epoch : 22 [24/36(67%)]\tLoss: 0.599292\n", - "Epoch : 22 [32/36(89%)]\tLoss: 0.067293\n", - "Epoch : 23 [0/36(0%)]\tLoss: 0.161922\n", - "Epoch : 23 [8/36(22%)]\tLoss: 0.789965\n", - "Epoch : 23 [16/36(44%)]\tLoss: 0.772256\n", - "Epoch : 23 [24/36(67%)]\tLoss: 0.432028\n", - "Epoch : 23 [32/36(89%)]\tLoss: 0.841089\n", - "Epoch : 24 [0/36(0%)]\tLoss: 0.606690\n", - "Epoch : 24 [8/36(22%)]\tLoss: 0.774147\n", - "Epoch : 24 [16/36(44%)]\tLoss: 0.182367\n", - "Epoch : 24 [24/36(67%)]\tLoss: 0.159290\n", - "Epoch : 24 [32/36(89%)]\tLoss: 0.240445\n", - "Epoch : 25 [0/36(0%)]\tLoss: 0.619967\n", - "Epoch : 25 [8/36(22%)]\tLoss: 0.648902\n", - "Epoch : 25 [16/36(44%)]\tLoss: 0.587635\n", - "Epoch : 25 [24/36(67%)]\tLoss: 0.235405\n", - "Epoch : 25 [32/36(89%)]\tLoss: 0.475745\n", - "Epoch : 26 [0/36(0%)]\tLoss: 0.333566\n", - "Epoch : 26 [8/36(22%)]\tLoss: 0.191834\n", - "Epoch : 26 [16/36(44%)]\tLoss: 0.344198\n", - "Epoch : 26 [24/36(67%)]\tLoss: 0.377331\n", - "Epoch : 26 [32/36(89%)]\tLoss: 0.092283\n", - "Epoch : 27 [0/36(0%)]\tLoss: 0.410456\n", - "Epoch : 27 [8/36(22%)]\tLoss: 0.163014\n", - "Epoch : 27 [16/36(44%)]\tLoss: 0.143389\n", - "Epoch : 27 [24/36(67%)]\tLoss: 0.305504\n", - "Epoch : 27 [32/36(89%)]\tLoss: 0.186263\n", - "Epoch : 28 [0/36(0%)]\tLoss: 0.540375\n", - "Epoch : 28 [8/36(22%)]\tLoss: 0.056296\n", - "Epoch : 28 [16/36(44%)]\tLoss: 0.204373\n", - "Epoch : 28 [24/36(67%)]\tLoss: 0.244346\n", - "Epoch : 28 [32/36(89%)]\tLoss: 0.130143\n", - "Epoch : 29 [0/36(0%)]\tLoss: 0.242088\n", - "Epoch : 29 [8/36(22%)]\tLoss: 0.079659\n", - "Epoch : 29 [16/36(44%)]\tLoss: 0.230799\n", - "Epoch : 29 [24/36(67%)]\tLoss: 0.128707\n", - "Epoch : 29 [32/36(89%)]\tLoss: 0.321657\n", - "Epoch : 30 [0/36(0%)]\tLoss: 0.189523\n", - "Epoch : 30 [8/36(22%)]\tLoss: 0.126227\n", - "Epoch : 30 [16/36(44%)]\tLoss: 0.216011\n", - "Epoch : 30 [24/36(67%)]\tLoss: 0.234395\n", - "Epoch : 30 [32/36(89%)]\tLoss: 0.126628\n", - "Epoch : 31 [0/36(0%)]\tLoss: 0.113820\n", - "Epoch : 31 [8/36(22%)]\tLoss: 0.128858\n", - "Epoch : 31 [16/36(44%)]\tLoss: 0.192441\n", - "Epoch : 31 [24/36(67%)]\tLoss: 0.169585\n", - "Epoch : 31 [32/36(89%)]\tLoss: 0.192076\n", - "Epoch : 32 [0/36(0%)]\tLoss: 0.209211\n", - "Epoch : 32 [8/36(22%)]\tLoss: 0.194972\n", - "Epoch : 32 [16/36(44%)]\tLoss: 0.138663\n", - "Epoch : 32 [24/36(67%)]\tLoss: 0.185183\n", - "Epoch : 32 [32/36(89%)]\tLoss: 0.196941\n", - "Epoch : 33 [0/36(0%)]\tLoss: 0.157668\n", - "Epoch : 33 [8/36(22%)]\tLoss: 0.485672\n", - "Epoch : 33 [16/36(44%)]\tLoss: 0.105384\n", - "Epoch : 33 [24/36(67%)]\tLoss: 0.074767\n", - "Epoch : 33 [32/36(89%)]\tLoss: 0.264901\n", - "Epoch : 34 [0/36(0%)]\tLoss: 0.162515\n", - "Epoch : 34 [8/36(22%)]\tLoss: 0.180244\n", - "Epoch : 34 [16/36(44%)]\tLoss: 0.214017\n", - "Epoch : 34 [24/36(67%)]\tLoss: 0.110434\n", - "Epoch : 34 [32/36(89%)]\tLoss: 0.034858\n", - "Epoch : 35 [0/36(0%)]\tLoss: 0.089005\n", - "Epoch : 35 [8/36(22%)]\tLoss: 0.180495\n", - "Epoch : 35 [16/36(44%)]\tLoss: 0.258385\n", - "Epoch : 35 [24/36(67%)]\tLoss: 0.171338\n", - "Epoch : 35 [32/36(89%)]\tLoss: 0.119491\n", - "Epoch : 36 [0/36(0%)]\tLoss: 0.198059\n", - "Epoch : 36 [8/36(22%)]\tLoss: 0.309062\n", - "Epoch : 36 [16/36(44%)]\tLoss: 0.094557\n", - "Epoch : 36 [24/36(67%)]\tLoss: 0.108073\n", - "Epoch : 36 [32/36(89%)]\tLoss: 0.111008\n", - "Epoch : 37 [0/36(0%)]\tLoss: 0.208943\n", - "Epoch : 37 [8/36(22%)]\tLoss: 0.179174\n", - "Epoch : 37 [16/36(44%)]\tLoss: 0.374412\n", - "Epoch : 37 [24/36(67%)]\tLoss: 0.116462\n", - "Epoch : 37 [32/36(89%)]\tLoss: 0.355236\n", - "Epoch : 38 [0/36(0%)]\tLoss: 0.231515\n", - "Epoch : 38 [8/36(22%)]\tLoss: 0.129103\n", - "Epoch : 38 [16/36(44%)]\tLoss: 0.249394\n", - "Epoch : 38 [24/36(67%)]\tLoss: 0.144955\n", - "Epoch : 38 [32/36(89%)]\tLoss: 0.359770\n", - "Epoch : 39 [0/36(0%)]\tLoss: 0.304215\n", - "Epoch : 39 [8/36(22%)]\tLoss: 0.131935\n", - "Epoch : 39 [16/36(44%)]\tLoss: 0.973840\n", - "Epoch : 39 [24/36(67%)]\tLoss: 0.268413\n", - "Epoch : 39 [32/36(89%)]\tLoss: 0.217418\n", - "Epoch : 40 [0/36(0%)]\tLoss: 0.237138\n", - "Epoch : 40 [8/36(22%)]\tLoss: 1.206033\n", - "Epoch : 40 [16/36(44%)]\tLoss: 0.840835\n", - "Epoch : 40 [24/36(67%)]\tLoss: 0.761829\n", - "Epoch : 40 [32/36(89%)]\tLoss: 1.335101\n", - "Epoch : 41 [0/36(0%)]\tLoss: 0.655939\n", - "Epoch : 41 [8/36(22%)]\tLoss: 0.101246\n", - "Epoch : 41 [16/36(44%)]\tLoss: 0.686123\n", - "Epoch : 41 [24/36(67%)]\tLoss: 0.428574\n", - "Epoch : 41 [32/36(89%)]\tLoss: 0.123327\n", - "Epoch : 42 [0/36(0%)]\tLoss: 0.583178\n", - "Epoch : 42 [8/36(22%)]\tLoss: 0.859293\n", - "Epoch : 42 [16/36(44%)]\tLoss: 0.331502\n", - "Epoch : 42 [24/36(67%)]\tLoss: 0.329749\n", - "Epoch : 42 [32/36(89%)]\tLoss: 0.509361\n", - "Epoch : 43 [0/36(0%)]\tLoss: 0.453968\n", - "Epoch : 43 [8/36(22%)]\tLoss: 0.421292\n", - "Epoch : 43 [16/36(44%)]\tLoss: 0.152019\n", - "Epoch : 43 [24/36(67%)]\tLoss: 0.403852\n", - "Epoch : 43 [32/36(89%)]\tLoss: 0.247997\n", - "Epoch : 44 [0/36(0%)]\tLoss: 0.285804\n", - "Epoch : 44 [8/36(22%)]\tLoss: 0.626770\n", - "Epoch : 44 [16/36(44%)]\tLoss: 0.089035\n", - "Epoch : 44 [24/36(67%)]\tLoss: 0.338086\n", - "Epoch : 44 [32/36(89%)]\tLoss: 0.330154\n", - "Epoch : 45 [0/36(0%)]\tLoss: 0.158841\n", - "Epoch : 45 [8/36(22%)]\tLoss: 0.115720\n", - "Epoch : 45 [16/36(44%)]\tLoss: 0.215260\n", - "Epoch : 45 [24/36(67%)]\tLoss: 0.053637\n", - "Epoch : 45 [32/36(89%)]\tLoss: 0.149543\n", - "Epoch : 46 [0/36(0%)]\tLoss: 0.309592\n", - "Epoch : 46 [8/36(22%)]\tLoss: 0.234094\n", - "Epoch : 46 [16/36(44%)]\tLoss: 0.061765\n", - "Epoch : 46 [24/36(67%)]\tLoss: 0.097515\n", - "Epoch : 46 [32/36(89%)]\tLoss: 0.165004\n", - "Epoch : 47 [0/36(0%)]\tLoss: 0.523732\n", - "Epoch : 47 [8/36(22%)]\tLoss: 0.249221\n", - "Epoch : 47 [16/36(44%)]\tLoss: 0.091936\n", - "Epoch : 47 [24/36(67%)]\tLoss: 0.380973\n", - "Epoch : 47 [32/36(89%)]\tLoss: 0.260711\n", - "Epoch : 48 [0/36(0%)]\tLoss: 0.217910\n", - "Epoch : 48 [8/36(22%)]\tLoss: 0.177622\n", - "Epoch : 48 [16/36(44%)]\tLoss: 0.055748\n", - "Epoch : 48 [24/36(67%)]\tLoss: 0.692775\n", - "Epoch : 48 [32/36(89%)]\tLoss: 0.267048\n", - "Epoch : 49 [0/36(0%)]\tLoss: 0.250883\n", - "Epoch : 49 [8/36(22%)]\tLoss: 0.325217\n", - "Epoch : 49 [16/36(44%)]\tLoss: 0.390601\n", - "Epoch : 49 [24/36(67%)]\tLoss: 0.264333\n", - "Epoch : 49 [32/36(89%)]\tLoss: 0.584951\n", - "Epoch : 50 [0/36(0%)]\tLoss: 0.374119\n", - "Epoch : 50 [8/36(22%)]\tLoss: 0.105202\n", - "Epoch : 50 [16/36(44%)]\tLoss: 0.255951\n", - "Epoch : 50 [24/36(67%)]\tLoss: 0.155214\n", - "Epoch : 50 [32/36(89%)]\tLoss: 0.213034\n", - "Epoch : 51 [0/36(0%)]\tLoss: 0.289947\n", - "Epoch : 51 [8/36(22%)]\tLoss: 1.034734\n", - "Epoch : 51 [16/36(44%)]\tLoss: 0.143418\n", - "Epoch : 51 [24/36(67%)]\tLoss: 0.230599\n", - "Epoch : 51 [32/36(89%)]\tLoss: 0.838659\n", - "Epoch : 52 [0/36(0%)]\tLoss: 0.359575\n", - "Epoch : 52 [8/36(22%)]\tLoss: 0.177598\n", - "Epoch : 52 [16/36(44%)]\tLoss: 0.144284\n", - "Epoch : 52 [24/36(67%)]\tLoss: 0.230643\n", - "Epoch : 52 [32/36(89%)]\tLoss: 0.403467\n", - "Epoch : 53 [0/36(0%)]\tLoss: 0.130289\n", - "Epoch : 53 [8/36(22%)]\tLoss: 0.289564\n", - "Epoch : 53 [16/36(44%)]\tLoss: 0.110637\n", - "Epoch : 53 [24/36(67%)]\tLoss: 0.140722\n", - "Epoch : 53 [32/36(89%)]\tLoss: 0.221947\n", - "Epoch : 54 [0/36(0%)]\tLoss: 0.178951\n", - "Epoch : 54 [8/36(22%)]\tLoss: 0.286507\n", - "Epoch : 54 [16/36(44%)]\tLoss: 0.052972\n", - "Epoch : 54 [24/36(67%)]\tLoss: 0.148073\n", - "Epoch : 54 [32/36(89%)]\tLoss: 0.271139\n", - "Epoch : 55 [0/36(0%)]\tLoss: 0.376206\n", - "Epoch : 55 [8/36(22%)]\tLoss: 0.058762\n", - "Epoch : 55 [16/36(44%)]\tLoss: 0.175952\n", - "Epoch : 55 [24/36(67%)]\tLoss: 0.243074\n", - "Epoch : 55 [32/36(89%)]\tLoss: 0.479789\n", - "Epoch : 56 [0/36(0%)]\tLoss: 0.060441\n", - "Epoch : 56 [8/36(22%)]\tLoss: 0.083182\n", - "Epoch : 56 [16/36(44%)]\tLoss: 0.310517\n", - "Epoch : 56 [24/36(67%)]\tLoss: 0.134782\n", - "Epoch : 56 [32/36(89%)]\tLoss: 0.351070\n", - "Epoch : 57 [0/36(0%)]\tLoss: 0.202404\n", - "Epoch : 57 [8/36(22%)]\tLoss: 0.455333\n", - "Epoch : 57 [16/36(44%)]\tLoss: 0.536763\n", - "Epoch : 57 [24/36(67%)]\tLoss: 0.118149\n", - "Epoch : 57 [32/36(89%)]\tLoss: 0.517128\n", - "Epoch : 58 [0/36(0%)]\tLoss: 0.347775\n", - "Epoch : 58 [8/36(22%)]\tLoss: 0.236945\n", - "Epoch : 58 [16/36(44%)]\tLoss: 0.130258\n", - "Epoch : 58 [24/36(67%)]\tLoss: 0.287902\n", - "Epoch : 58 [32/36(89%)]\tLoss: 0.655633\n", - "Epoch : 59 [0/36(0%)]\tLoss: 0.462769\n", - "Epoch : 59 [8/36(22%)]\tLoss: 0.135369\n", - "Epoch : 59 [16/36(44%)]\tLoss: 0.188913\n", - "Epoch : 59 [24/36(67%)]\tLoss: 0.085767\n", - "Epoch : 59 [32/36(89%)]\tLoss: 0.133039\n", - "Epoch : 60 [0/36(0%)]\tLoss: 0.140621\n", - "Epoch : 60 [8/36(22%)]\tLoss: 0.569223\n", - "Epoch : 60 [16/36(44%)]\tLoss: 0.514103\n", - "Epoch : 60 [24/36(67%)]\tLoss: 0.742989\n", - "Epoch : 60 [32/36(89%)]\tLoss: 0.612317\n", - "Epoch : 61 [0/36(0%)]\tLoss: 0.205751\n", - "Epoch : 61 [8/36(22%)]\tLoss: 0.423879\n", - "Epoch : 61 [16/36(44%)]\tLoss: 0.258010\n", - "Epoch : 61 [24/36(67%)]\tLoss: 0.174012\n", - "Epoch : 61 [32/36(89%)]\tLoss: 0.275707\n", - "Epoch : 62 [0/36(0%)]\tLoss: 0.561602\n", - "Epoch : 62 [8/36(22%)]\tLoss: 0.180038\n", - "Epoch : 62 [16/36(44%)]\tLoss: 0.392376\n", - "Epoch : 62 [24/36(67%)]\tLoss: 0.406189\n", - "Epoch : 62 [32/36(89%)]\tLoss: 0.114902\n", - "Epoch : 63 [0/36(0%)]\tLoss: 0.353193\n", - "Epoch : 63 [8/36(22%)]\tLoss: 0.567040\n", - "Epoch : 63 [16/36(44%)]\tLoss: 0.136843\n", - "Epoch : 63 [24/36(67%)]\tLoss: 0.252463\n", - "Epoch : 63 [32/36(89%)]\tLoss: 0.500932\n", - "Epoch : 64 [0/36(0%)]\tLoss: 0.202716\n", - "Epoch : 64 [8/36(22%)]\tLoss: 0.313177\n", - "Epoch : 64 [16/36(44%)]\tLoss: 0.620070\n", - "Epoch : 64 [24/36(67%)]\tLoss: 0.167405\n", - "Epoch : 64 [32/36(89%)]\tLoss: 0.665032\n", - "Epoch : 65 [0/36(0%)]\tLoss: 0.203738\n", - "Epoch : 65 [8/36(22%)]\tLoss: 0.543210\n", - "Epoch : 65 [16/36(44%)]\tLoss: 0.613920\n", - "Epoch : 65 [24/36(67%)]\tLoss: 0.361434\n", - "Epoch : 65 [32/36(89%)]\tLoss: 1.751765\n", - "Epoch : 66 [0/36(0%)]\tLoss: 0.618242\n", - "Epoch : 66 [8/36(22%)]\tLoss: 0.392969\n", - "Epoch : 66 [16/36(44%)]\tLoss: 0.338882\n", - "Epoch : 66 [24/36(67%)]\tLoss: 0.856144\n", - "Epoch : 66 [32/36(89%)]\tLoss: 1.006482\n", - "Epoch : 67 [0/36(0%)]\tLoss: 0.252412\n", - "Epoch : 67 [8/36(22%)]\tLoss: 0.563535\n", - "Epoch : 67 [16/36(44%)]\tLoss: 0.528036\n", - "Epoch : 67 [24/36(67%)]\tLoss: 0.759142\n", - "Epoch : 67 [32/36(89%)]\tLoss: 0.573742\n", - "Epoch : 68 [0/36(0%)]\tLoss: 0.474981\n", - "Epoch : 68 [8/36(22%)]\tLoss: 0.326544\n", - "Epoch : 68 [16/36(44%)]\tLoss: 0.313856\n", - "Epoch : 68 [24/36(67%)]\tLoss: 0.775568\n", - "Epoch : 68 [32/36(89%)]\tLoss: 0.076462\n", - "Epoch : 69 [0/36(0%)]\tLoss: 0.144858\n", - "Epoch : 69 [8/36(22%)]\tLoss: 0.101875\n", - "Epoch : 69 [16/36(44%)]\tLoss: 0.260904\n", - "Epoch : 69 [24/36(67%)]\tLoss: 0.346376\n", - "Epoch : 69 [32/36(89%)]\tLoss: 0.733353\n", - "Epoch : 70 [0/36(0%)]\tLoss: 0.447490\n", - "Epoch : 70 [8/36(22%)]\tLoss: 0.108432\n", - "Epoch : 70 [16/36(44%)]\tLoss: 0.418013\n", - "Epoch : 70 [24/36(67%)]\tLoss: 0.075870\n", - "Epoch : 70 [32/36(89%)]\tLoss: 0.305480\n", - "Epoch : 71 [0/36(0%)]\tLoss: 0.644891\n", - "Epoch : 71 [8/36(22%)]\tLoss: 0.385999\n", - "Epoch : 71 [16/36(44%)]\tLoss: 0.911676\n", - "Epoch : 71 [24/36(67%)]\tLoss: 0.426606\n", - "Epoch : 71 [32/36(89%)]\tLoss: 0.233098\n", - "Epoch : 72 [0/36(0%)]\tLoss: 0.244345\n", - "Epoch : 72 [8/36(22%)]\tLoss: 0.444482\n", - "Epoch : 72 [16/36(44%)]\tLoss: 0.205612\n", - "Epoch : 72 [24/36(67%)]\tLoss: 0.492621\n", - "Epoch : 72 [32/36(89%)]\tLoss: 0.310789\n", - "Epoch : 73 [0/36(0%)]\tLoss: 0.323392\n", - "Epoch : 73 [8/36(22%)]\tLoss: 0.856434\n", - "Epoch : 73 [16/36(44%)]\tLoss: 0.477649\n", - "Epoch : 73 [24/36(67%)]\tLoss: 0.367764\n", - "Epoch : 73 [32/36(89%)]\tLoss: 0.070272\n", - "Epoch : 74 [0/36(0%)]\tLoss: 0.304791\n", - "Epoch : 74 [8/36(22%)]\tLoss: 0.128368\n", - "Epoch : 74 [16/36(44%)]\tLoss: 0.334180\n", - "Epoch : 74 [24/36(67%)]\tLoss: 0.195161\n", - "Epoch : 74 [32/36(89%)]\tLoss: 0.085249\n", - "Epoch : 75 [0/36(0%)]\tLoss: 0.183626\n", - "Epoch : 75 [8/36(22%)]\tLoss: 0.552058\n", - "Epoch : 75 [16/36(44%)]\tLoss: 0.409967\n", - "Epoch : 75 [24/36(67%)]\tLoss: 0.189552\n", - "Epoch : 75 [32/36(89%)]\tLoss: 0.451177\n", - "Epoch : 76 [0/36(0%)]\tLoss: 0.329867\n", - "Epoch : 76 [8/36(22%)]\tLoss: 0.136543\n", - "Epoch : 76 [16/36(44%)]\tLoss: 0.386204\n", - "Epoch : 76 [24/36(67%)]\tLoss: 0.378852\n", - "Epoch : 76 [32/36(89%)]\tLoss: 0.282318\n", - "Epoch : 77 [0/36(0%)]\tLoss: 0.289674\n", - "Epoch : 77 [8/36(22%)]\tLoss: 0.300620\n", - "Epoch : 77 [16/36(44%)]\tLoss: 0.277177\n", - "Epoch : 77 [24/36(67%)]\tLoss: 0.553929\n", - "Epoch : 77 [32/36(89%)]\tLoss: 0.427097\n", - "Epoch : 78 [0/36(0%)]\tLoss: 0.307480\n", - "Epoch : 78 [8/36(22%)]\tLoss: 0.654997\n", - "Epoch : 78 [16/36(44%)]\tLoss: 0.641936\n", - "Epoch : 78 [24/36(67%)]\tLoss: 0.173159\n", - "Epoch : 78 [32/36(89%)]\tLoss: 0.268265\n", - "Epoch : 79 [0/36(0%)]\tLoss: 0.538889\n", - "Epoch : 79 [8/36(22%)]\tLoss: 0.094089\n", - "Epoch : 79 [16/36(44%)]\tLoss: 0.417990\n", - "Epoch : 79 [24/36(67%)]\tLoss: 0.160866\n", - "Epoch : 79 [32/36(89%)]\tLoss: 0.378208\n", - "Epoch : 80 [0/36(0%)]\tLoss: 0.601766\n", - "Epoch : 80 [8/36(22%)]\tLoss: 0.165433\n", - "Epoch : 80 [16/36(44%)]\tLoss: 0.544712\n", - "Epoch : 80 [24/36(67%)]\tLoss: 0.707402\n", - "Epoch : 80 [32/36(89%)]\tLoss: 0.541544\n", - "Epoch : 81 [0/36(0%)]\tLoss: 0.132002\n", - "Epoch : 81 [8/36(22%)]\tLoss: 0.211833\n", - "Epoch : 81 [16/36(44%)]\tLoss: 0.077363\n", - "Epoch : 81 [24/36(67%)]\tLoss: 0.674272\n", - "Epoch : 81 [32/36(89%)]\tLoss: 0.210960\n", - "Epoch : 82 [0/36(0%)]\tLoss: 0.262706\n", - "Epoch : 82 [8/36(22%)]\tLoss: 0.203072\n", - "Epoch : 82 [16/36(44%)]\tLoss: 0.288109\n", - "Epoch : 82 [24/36(67%)]\tLoss: 0.157536\n", - "Epoch : 82 [32/36(89%)]\tLoss: 0.104414\n", - "Epoch : 83 [0/36(0%)]\tLoss: 0.220589\n", - "Epoch : 83 [8/36(22%)]\tLoss: 0.162281\n", - "Epoch : 83 [16/36(44%)]\tLoss: 0.182407\n", - "Epoch : 83 [24/36(67%)]\tLoss: 0.055218\n", - "Epoch : 83 [32/36(89%)]\tLoss: 0.117788\n", - "Epoch : 84 [0/36(0%)]\tLoss: 0.171839\n", - "Epoch : 84 [8/36(22%)]\tLoss: 0.060537\n", - "Epoch : 84 [16/36(44%)]\tLoss: 0.286876\n", - "Epoch : 84 [24/36(67%)]\tLoss: 0.422444\n", - "Epoch : 84 [32/36(89%)]\tLoss: 0.047662\n", - "Epoch : 85 [0/36(0%)]\tLoss: 0.019567\n", - "Epoch : 85 [8/36(22%)]\tLoss: 0.192655\n", - "Epoch : 85 [16/36(44%)]\tLoss: 0.174887\n", - "Epoch : 85 [24/36(67%)]\tLoss: 0.129845\n", - "Epoch : 85 [32/36(89%)]\tLoss: 0.031812\n", - "Epoch : 86 [0/36(0%)]\tLoss: 0.189844\n", - "Epoch : 86 [8/36(22%)]\tLoss: 0.253176\n", - "Epoch : 86 [16/36(44%)]\tLoss: 0.127147\n", - "Epoch : 86 [24/36(67%)]\tLoss: 0.426703\n", - "Epoch : 86 [32/36(89%)]\tLoss: 0.052161\n", - "Epoch : 87 [0/36(0%)]\tLoss: 0.108247\n", - "Epoch : 87 [8/36(22%)]\tLoss: 0.093209\n", - "Epoch : 87 [16/36(44%)]\tLoss: 0.093898\n", - "Epoch : 87 [24/36(67%)]\tLoss: 0.207033\n", - "Epoch : 87 [32/36(89%)]\tLoss: 0.200808\n", - "Epoch : 88 [0/36(0%)]\tLoss: 0.043087\n", - "Epoch : 88 [8/36(22%)]\tLoss: 0.089898\n", - "Epoch : 88 [16/36(44%)]\tLoss: 0.202342\n", - "Epoch : 88 [24/36(67%)]\tLoss: 0.058563\n", - "Epoch : 88 [32/36(89%)]\tLoss: 0.200725\n", - "Epoch : 89 [0/36(0%)]\tLoss: 0.040310\n", - "Epoch : 89 [8/36(22%)]\tLoss: 0.102071\n", - "Epoch : 89 [16/36(44%)]\tLoss: 0.168990\n", - "Epoch : 89 [24/36(67%)]\tLoss: 0.285932\n", - "Epoch : 89 [32/36(89%)]\tLoss: 0.103282\n", - "Epoch : 90 [0/36(0%)]\tLoss: 0.029690\n", - "Epoch : 90 [8/36(22%)]\tLoss: 0.169831\n", - "Epoch : 90 [16/36(44%)]\tLoss: 0.056690\n", - "Epoch : 90 [24/36(67%)]\tLoss: 0.417997\n", - "Epoch : 90 [32/36(89%)]\tLoss: 0.121710\n", - "Epoch : 91 [0/36(0%)]\tLoss: 0.073497\n", - "Epoch : 91 [8/36(22%)]\tLoss: 0.199093\n", - "Epoch : 91 [16/36(44%)]\tLoss: 0.176235\n", - "Epoch : 91 [24/36(67%)]\tLoss: 0.525791\n", - "Epoch : 91 [32/36(89%)]\tLoss: 0.092257\n", - "Epoch : 92 [0/36(0%)]\tLoss: 0.201691\n", - "Epoch : 92 [8/36(22%)]\tLoss: 0.068071\n", - "Epoch : 92 [16/36(44%)]\tLoss: 0.329633\n", - "Epoch : 92 [24/36(67%)]\tLoss: 0.141586\n", - "Epoch : 92 [32/36(89%)]\tLoss: 0.123630\n", - "Epoch : 93 [0/36(0%)]\tLoss: 0.040553\n", - "Epoch : 93 [8/36(22%)]\tLoss: 0.282625\n", - "Epoch : 93 [16/36(44%)]\tLoss: 0.309049\n", - "Epoch : 93 [24/36(67%)]\tLoss: 0.122125\n", - "Epoch : 93 [32/36(89%)]\tLoss: 0.133711\n", - "Epoch : 94 [0/36(0%)]\tLoss: 0.071071\n", - "Epoch : 94 [8/36(22%)]\tLoss: 0.093829\n", - "Epoch : 94 [16/36(44%)]\tLoss: 0.143103\n", - "Epoch : 94 [24/36(67%)]\tLoss: 0.198800\n", - "Epoch : 94 [32/36(89%)]\tLoss: 0.164563\n", - "Epoch : 95 [0/36(0%)]\tLoss: 0.038688\n", - "Epoch : 95 [8/36(22%)]\tLoss: 0.093938\n", - "Epoch : 95 [16/36(44%)]\tLoss: 0.110451\n", - "Epoch : 95 [24/36(67%)]\tLoss: 0.367351\n", - "Epoch : 95 [32/36(89%)]\tLoss: 0.023568\n", - "Epoch : 96 [0/36(0%)]\tLoss: 0.054144\n", - "Epoch : 96 [8/36(22%)]\tLoss: 0.444904\n", - "Epoch : 96 [16/36(44%)]\tLoss: 0.120347\n", - "Epoch : 96 [24/36(67%)]\tLoss: 0.379137\n", - "Epoch : 96 [32/36(89%)]\tLoss: 0.339739\n", - "Epoch : 97 [0/36(0%)]\tLoss: 0.290379\n", - "Epoch : 97 [8/36(22%)]\tLoss: 0.175280\n", - "Epoch : 97 [16/36(44%)]\tLoss: 0.424046\n", - "Epoch : 97 [24/36(67%)]\tLoss: 0.420090\n", - "Epoch : 97 [32/36(89%)]\tLoss: 0.159792\n", - "Epoch : 98 [0/36(0%)]\tLoss: 0.143495\n", - "Epoch : 98 [8/36(22%)]\tLoss: 0.492418\n", - "Epoch : 98 [16/36(44%)]\tLoss: 0.090576\n", - "Epoch : 98 [24/36(67%)]\tLoss: 0.322962\n", - "Epoch : 98 [32/36(89%)]\tLoss: 0.154129\n", - "Epoch : 99 [0/36(0%)]\tLoss: 0.167062\n", - "Epoch : 99 [8/36(22%)]\tLoss: 0.813580\n", - "Epoch : 99 [16/36(44%)]\tLoss: 0.282443\n", - "Epoch : 99 [24/36(67%)]\tLoss: 0.036228\n", - "Epoch : 99 [32/36(89%)]\tLoss: 0.470829\n", - "--- 0.39097688992818197 minutes ---\n" + "Epoch : 0 [0/36(0%)]\tLoss: 506.288513\n", + "Epoch : 0 [8/36(22%)]\tLoss: 480.882629\n", + "Epoch : 0 [16/36(44%)]\tLoss: 442.111633\n", + "Epoch : 0 [24/36(67%)]\tLoss: 393.690186\n", + "Epoch : 0 [32/36(89%)]\tLoss: 336.929871\n", + "Epoch : 1 [0/36(0%)]\tLoss: 293.624023\n", + "Epoch : 1 [8/36(22%)]\tLoss: 264.280457\n", + "Epoch : 1 [16/36(44%)]\tLoss: 220.802582\n", + "Epoch : 1 [24/36(67%)]\tLoss: 174.945816\n", + "Epoch : 1 [32/36(89%)]\tLoss: 126.990173\n", + "Epoch : 2 [0/36(0%)]\tLoss: 96.945274\n", + "Epoch : 2 [8/36(22%)]\tLoss: 72.392868\n", + "Epoch : 2 [16/36(44%)]\tLoss: 45.645382\n", + "Epoch : 2 [24/36(67%)]\tLoss: 24.536964\n", + "Epoch : 2 [32/36(89%)]\tLoss: 9.549816\n", + "Epoch : 3 [0/36(0%)]\tLoss: 2.185776\n", + "Epoch : 3 [8/36(22%)]\tLoss: 0.664143\n", + "Epoch : 3 [16/36(44%)]\tLoss: 1.865931\n", + "Epoch : 3 [24/36(67%)]\tLoss: 12.184790\n", + "Epoch : 3 [32/36(89%)]\tLoss: 10.271686\n", + "Epoch : 4 [0/36(0%)]\tLoss: 12.655171\n", + "Epoch : 4 [8/36(22%)]\tLoss: 7.840872\n", + "Epoch : 4 [16/36(44%)]\tLoss: 2.946728\n", + "Epoch : 4 [24/36(67%)]\tLoss: 1.726549\n", + "Epoch : 4 [32/36(89%)]\tLoss: 3.392499\n", + "Epoch : 5 [0/36(0%)]\tLoss: 1.953744\n", + "Epoch : 5 [8/36(22%)]\tLoss: 2.609076\n", + "Epoch : 5 [16/36(44%)]\tLoss: 4.160960\n", + "Epoch : 5 [24/36(67%)]\tLoss: 1.378318\n", + "Epoch : 5 [32/36(89%)]\tLoss: 1.825573\n", + "Epoch : 6 [0/36(0%)]\tLoss: 1.155504\n", + "Epoch : 6 [8/36(22%)]\tLoss: 1.733736\n", + "Epoch : 6 [16/36(44%)]\tLoss: 1.440493\n", + "Epoch : 6 [24/36(67%)]\tLoss: 1.631983\n", + "Epoch : 6 [32/36(89%)]\tLoss: 1.634773\n", + "Epoch : 7 [0/36(0%)]\tLoss: 0.662487\n", + "Epoch : 7 [8/36(22%)]\tLoss: 0.612980\n", + "Epoch : 7 [16/36(44%)]\tLoss: 2.357862\n", + "Epoch : 7 [24/36(67%)]\tLoss: 1.898876\n", + "Epoch : 7 [32/36(89%)]\tLoss: 3.135081\n", + "Epoch : 8 [0/36(0%)]\tLoss: 0.506580\n", + "Epoch : 8 [8/36(22%)]\tLoss: 0.430499\n", + "Epoch : 8 [16/36(44%)]\tLoss: 1.125903\n", + "Epoch : 8 [24/36(67%)]\tLoss: 0.883283\n", + "Epoch : 8 [32/36(89%)]\tLoss: 2.156403\n", + "Epoch : 9 [0/36(0%)]\tLoss: 1.214713\n", + "Epoch : 9 [8/36(22%)]\tLoss: 0.418286\n", + "Epoch : 9 [16/36(44%)]\tLoss: 1.767805\n", + "Epoch : 9 [24/36(67%)]\tLoss: 1.203190\n", + "Epoch : 9 [32/36(89%)]\tLoss: 1.631625\n", + "Epoch : 10 [0/36(0%)]\tLoss: 0.410423\n", + "Epoch : 10 [8/36(22%)]\tLoss: 0.791678\n", + "Epoch : 10 [16/36(44%)]\tLoss: 0.888190\n", + "Epoch : 10 [24/36(67%)]\tLoss: 2.235648\n", + "Epoch : 10 [32/36(89%)]\tLoss: 1.250241\n", + "Epoch : 11 [0/36(0%)]\tLoss: 0.859174\n", + "Epoch : 11 [8/36(22%)]\tLoss: 0.669450\n", + "Epoch : 11 [16/36(44%)]\tLoss: 1.157634\n", + "Epoch : 11 [24/36(67%)]\tLoss: 0.686028\n", + "Epoch : 11 [32/36(89%)]\tLoss: 1.580044\n", + "Epoch : 12 [0/36(0%)]\tLoss: 0.854773\n", + "Epoch : 12 [8/36(22%)]\tLoss: 0.317646\n", + "Epoch : 12 [16/36(44%)]\tLoss: 0.904310\n", + "Epoch : 12 [24/36(67%)]\tLoss: 2.004745\n", + "Epoch : 12 [32/36(89%)]\tLoss: 1.851592\n", + "Epoch : 13 [0/36(0%)]\tLoss: 0.351876\n", + "Epoch : 13 [8/36(22%)]\tLoss: 0.865300\n", + "Epoch : 13 [16/36(44%)]\tLoss: 0.567187\n", + "Epoch : 13 [24/36(67%)]\tLoss: 19.535656\n", + "Epoch : 13 [32/36(89%)]\tLoss: 1.512537\n", + "Epoch : 14 [0/36(0%)]\tLoss: 0.482298\n", + "Epoch : 14 [8/36(22%)]\tLoss: 0.698655\n", + "Epoch : 14 [16/36(44%)]\tLoss: 0.904668\n", + "Epoch : 14 [24/36(67%)]\tLoss: 1.398644\n", + "Epoch : 14 [32/36(89%)]\tLoss: 1.905795\n", + "Epoch : 15 [0/36(0%)]\tLoss: 0.551823\n", + "Epoch : 15 [8/36(22%)]\tLoss: 0.761483\n", + "Epoch : 15 [16/36(44%)]\tLoss: 1.166809\n", + "Epoch : 15 [24/36(67%)]\tLoss: 0.928520\n", + "Epoch : 15 [32/36(89%)]\tLoss: 2.614235\n", + "Epoch : 16 [0/36(0%)]\tLoss: 0.625603\n", + "Epoch : 16 [8/36(22%)]\tLoss: 0.449200\n", + "Epoch : 16 [16/36(44%)]\tLoss: 1.275402\n", + "Epoch : 16 [24/36(67%)]\tLoss: 1.513879\n", + "Epoch : 16 [32/36(89%)]\tLoss: 2.886382\n", + "Epoch : 17 [0/36(0%)]\tLoss: 0.639693\n", + "Epoch : 17 [8/36(22%)]\tLoss: 0.562317\n", + "Epoch : 17 [16/36(44%)]\tLoss: 1.641831\n", + "Epoch : 17 [24/36(67%)]\tLoss: 1.750331\n", + "Epoch : 17 [32/36(89%)]\tLoss: 1.503120\n", + "Epoch : 18 [0/36(0%)]\tLoss: 0.502997\n", + "Epoch : 18 [8/36(22%)]\tLoss: 0.350194\n", + "Epoch : 18 [16/36(44%)]\tLoss: 2.553683\n", + "Epoch : 18 [24/36(67%)]\tLoss: 1.571282\n", + "Epoch : 18 [32/36(89%)]\tLoss: 1.332312\n", + "Epoch : 19 [0/36(0%)]\tLoss: 0.867609\n", + "Epoch : 19 [8/36(22%)]\tLoss: 0.827173\n", + "Epoch : 19 [16/36(44%)]\tLoss: 0.545723\n", + "Epoch : 19 [24/36(67%)]\tLoss: 1.145101\n", + "Epoch : 19 [32/36(89%)]\tLoss: 2.281080\n", + "Epoch : 20 [0/36(0%)]\tLoss: 0.498846\n", + "Epoch : 20 [8/36(22%)]\tLoss: 0.686224\n", + "Epoch : 20 [16/36(44%)]\tLoss: 1.281934\n", + "Epoch : 20 [24/36(67%)]\tLoss: 1.317553\n", + "Epoch : 20 [32/36(89%)]\tLoss: 2.048429\n", + "Epoch : 21 [0/36(0%)]\tLoss: 0.718626\n", + "Epoch : 21 [8/36(22%)]\tLoss: 0.344674\n", + "Epoch : 21 [16/36(44%)]\tLoss: 1.805239\n", + "Epoch : 21 [24/36(67%)]\tLoss: 1.761542\n", + "Epoch : 21 [32/36(89%)]\tLoss: 2.168238\n", + "Epoch : 22 [0/36(0%)]\tLoss: 0.554766\n", + "Epoch : 22 [8/36(22%)]\tLoss: 0.452126\n", + "Epoch : 22 [16/36(44%)]\tLoss: 1.020820\n", + "Epoch : 22 [24/36(67%)]\tLoss: 1.061687\n", + "Epoch : 22 [32/36(89%)]\tLoss: 2.321961\n", + "Epoch : 23 [0/36(0%)]\tLoss: 0.672471\n", + "Epoch : 23 [8/36(22%)]\tLoss: 0.270646\n", + "Epoch : 23 [16/36(44%)]\tLoss: 1.791718\n", + "Epoch : 23 [24/36(67%)]\tLoss: 1.500830\n", + "Epoch : 23 [32/36(89%)]\tLoss: 1.686144\n", + "Epoch : 24 [0/36(0%)]\tLoss: 0.710227\n", + "Epoch : 24 [8/36(22%)]\tLoss: 0.904980\n", + "Epoch : 24 [16/36(44%)]\tLoss: 0.857339\n", + "Epoch : 24 [24/36(67%)]\tLoss: 0.793677\n", + "Epoch : 24 [32/36(89%)]\tLoss: 1.478383\n", + "Epoch : 25 [0/36(0%)]\tLoss: 0.605092\n", + "Epoch : 25 [8/36(22%)]\tLoss: 0.634058\n", + "Epoch : 25 [16/36(44%)]\tLoss: 1.273583\n", + "Epoch : 25 [24/36(67%)]\tLoss: 1.200606\n", + "Epoch : 25 [32/36(89%)]\tLoss: 1.917290\n", + "Epoch : 26 [0/36(0%)]\tLoss: 0.649089\n", + "Epoch : 26 [8/36(22%)]\tLoss: 0.133817\n", + "Epoch : 26 [16/36(44%)]\tLoss: 1.968169\n", + "Epoch : 26 [24/36(67%)]\tLoss: 1.215914\n", + "Epoch : 26 [32/36(89%)]\tLoss: 1.737328\n", + "Epoch : 27 [0/36(0%)]\tLoss: 0.841222\n", + "Epoch : 27 [8/36(22%)]\tLoss: 0.436612\n", + "Epoch : 27 [16/36(44%)]\tLoss: 0.904064\n", + "Epoch : 27 [24/36(67%)]\tLoss: 1.400861\n", + "Epoch : 27 [32/36(89%)]\tLoss: 2.073082\n", + "Epoch : 28 [0/36(0%)]\tLoss: 0.630042\n", + "Epoch : 28 [8/36(22%)]\tLoss: 0.470796\n", + "Epoch : 28 [16/36(44%)]\tLoss: 1.328790\n", + "Epoch : 28 [24/36(67%)]\tLoss: 2.014283\n", + "Epoch : 28 [32/36(89%)]\tLoss: 1.425196\n", + "Epoch : 29 [0/36(0%)]\tLoss: 0.793072\n", + "Epoch : 29 [8/36(22%)]\tLoss: 0.454909\n", + "Epoch : 29 [16/36(44%)]\tLoss: 1.277652\n", + "Epoch : 29 [24/36(67%)]\tLoss: 0.969495\n", + "Epoch : 29 [32/36(89%)]\tLoss: 1.498101\n", + "Epoch : 30 [0/36(0%)]\tLoss: 0.961029\n", + "Epoch : 30 [8/36(22%)]\tLoss: 0.722560\n", + "Epoch : 30 [16/36(44%)]\tLoss: 0.930190\n", + "Epoch : 30 [24/36(67%)]\tLoss: 1.103357\n", + "Epoch : 30 [32/36(89%)]\tLoss: 1.513961\n", + "Epoch : 31 [0/36(0%)]\tLoss: 0.693312\n", + "Epoch : 31 [8/36(22%)]\tLoss: 0.457587\n", + "Epoch : 31 [16/36(44%)]\tLoss: 0.759752\n", + "Epoch : 31 [24/36(67%)]\tLoss: 0.973490\n", + "Epoch : 31 [32/36(89%)]\tLoss: 2.477153\n", + "Epoch : 32 [0/36(0%)]\tLoss: 0.748175\n", + "Epoch : 32 [8/36(22%)]\tLoss: 0.602801\n", + "Epoch : 32 [16/36(44%)]\tLoss: 0.675269\n", + "Epoch : 32 [24/36(67%)]\tLoss: 1.557212\n", + "Epoch : 32 [32/36(89%)]\tLoss: 2.126549\n", + "Epoch : 33 [0/36(0%)]\tLoss: 0.544363\n", + "Epoch : 33 [8/36(22%)]\tLoss: 0.684808\n", + "Epoch : 33 [16/36(44%)]\tLoss: 1.629571\n", + "Epoch : 33 [24/36(67%)]\tLoss: 1.270846\n", + "Epoch : 33 [32/36(89%)]\tLoss: 1.550725\n", + "Epoch : 34 [0/36(0%)]\tLoss: 0.322897\n", + "Epoch : 34 [8/36(22%)]\tLoss: 0.519688\n", + "Epoch : 34 [16/36(44%)]\tLoss: 0.639193\n", + "Epoch : 34 [24/36(67%)]\tLoss: 1.504702\n", + "Epoch : 34 [32/36(89%)]\tLoss: 1.790509\n", + "Epoch : 35 [0/36(0%)]\tLoss: 0.495434\n", + "Epoch : 35 [8/36(22%)]\tLoss: 0.314136\n", + "Epoch : 35 [16/36(44%)]\tLoss: 0.949226\n", + "Epoch : 35 [24/36(67%)]\tLoss: 1.318868\n", + "Epoch : 35 [32/36(89%)]\tLoss: 1.733057\n", + "Epoch : 36 [0/36(0%)]\tLoss: 0.317806\n", + "Epoch : 36 [8/36(22%)]\tLoss: 0.486717\n", + "Epoch : 36 [16/36(44%)]\tLoss: 0.923091\n", + "Epoch : 36 [24/36(67%)]\tLoss: 1.506555\n", + "Epoch : 36 [32/36(89%)]\tLoss: 1.455022\n", + "Epoch : 37 [0/36(0%)]\tLoss: 0.717310\n", + "Epoch : 37 [8/36(22%)]\tLoss: 0.617082\n", + "Epoch : 37 [16/36(44%)]\tLoss: 1.141389\n", + "Epoch : 37 [24/36(67%)]\tLoss: 1.330632\n", + "Epoch : 37 [32/36(89%)]\tLoss: 1.203163\n", + "Epoch : 38 [0/36(0%)]\tLoss: 0.431493\n", + "Epoch : 38 [8/36(22%)]\tLoss: 0.586900\n", + "Epoch : 38 [16/36(44%)]\tLoss: 0.785393\n", + "Epoch : 38 [24/36(67%)]\tLoss: 1.674906\n", + "Epoch : 38 [32/36(89%)]\tLoss: 1.312811\n", + "Epoch : 39 [0/36(0%)]\tLoss: 0.801077\n", + "Epoch : 39 [8/36(22%)]\tLoss: 0.648545\n", + "Epoch : 39 [16/36(44%)]\tLoss: 0.866263\n", + "Epoch : 39 [24/36(67%)]\tLoss: 0.808345\n", + "Epoch : 39 [32/36(89%)]\tLoss: 1.149895\n", + "Epoch : 40 [0/36(0%)]\tLoss: 0.373481\n", + "Epoch : 40 [8/36(22%)]\tLoss: 0.425000\n", + "Epoch : 40 [16/36(44%)]\tLoss: 0.702104\n", + "Epoch : 40 [24/36(67%)]\tLoss: 0.973041\n", + "Epoch : 40 [32/36(89%)]\tLoss: 0.955079\n", + "Epoch : 41 [0/36(0%)]\tLoss: 0.507935\n", + "Epoch : 41 [8/36(22%)]\tLoss: 0.610599\n", + "Epoch : 41 [16/36(44%)]\tLoss: 0.641439\n", + "Epoch : 41 [24/36(67%)]\tLoss: 0.624779\n", + "Epoch : 41 [32/36(89%)]\tLoss: 1.040448\n", + "Epoch : 42 [0/36(0%)]\tLoss: 0.519217\n", + "Epoch : 42 [8/36(22%)]\tLoss: 0.660326\n", + "Epoch : 42 [16/36(44%)]\tLoss: 0.860402\n", + "Epoch : 42 [24/36(67%)]\tLoss: 0.849528\n", + "Epoch : 42 [32/36(89%)]\tLoss: 1.380258\n", + "Epoch : 43 [0/36(0%)]\tLoss: 0.364194\n", + "Epoch : 43 [8/36(22%)]\tLoss: 0.385415\n", + "Epoch : 43 [16/36(44%)]\tLoss: 0.480986\n", + "Epoch : 43 [24/36(67%)]\tLoss: 1.580062\n", + "Epoch : 43 [32/36(89%)]\tLoss: 0.982637\n", + "Epoch : 44 [0/36(0%)]\tLoss: 0.134865\n", + "Epoch : 44 [8/36(22%)]\tLoss: 0.416096\n", + "Epoch : 44 [16/36(44%)]\tLoss: 0.468269\n", + "Epoch : 44 [24/36(67%)]\tLoss: 0.945390\n", + "Epoch : 44 [32/36(89%)]\tLoss: 0.746951\n", + "Epoch : 45 [0/36(0%)]\tLoss: 0.249265\n", + "Epoch : 45 [8/36(22%)]\tLoss: 0.264366\n", + "Epoch : 45 [16/36(44%)]\tLoss: 0.519599\n", + "Epoch : 45 [24/36(67%)]\tLoss: 0.633743\n", + "Epoch : 45 [32/36(89%)]\tLoss: 0.902503\n", + "Epoch : 46 [0/36(0%)]\tLoss: 0.526347\n", + "Epoch : 46 [8/36(22%)]\tLoss: 0.214518\n", + "Epoch : 46 [16/36(44%)]\tLoss: 0.203281\n", + "Epoch : 46 [24/36(67%)]\tLoss: 0.884957\n", + "Epoch : 46 [32/36(89%)]\tLoss: 0.385164\n", + "Epoch : 47 [0/36(0%)]\tLoss: 0.211916\n", + "Epoch : 47 [8/36(22%)]\tLoss: 0.639714\n", + "Epoch : 47 [16/36(44%)]\tLoss: 0.601463\n", + "Epoch : 47 [24/36(67%)]\tLoss: 0.679437\n", + "Epoch : 47 [32/36(89%)]\tLoss: 0.872297\n", + "Epoch : 48 [0/36(0%)]\tLoss: 0.323996\n", + "Epoch : 48 [8/36(22%)]\tLoss: 0.669297\n", + "Epoch : 48 [16/36(44%)]\tLoss: 0.409399\n", + "Epoch : 48 [24/36(67%)]\tLoss: 0.395883\n", + "Epoch : 48 [32/36(89%)]\tLoss: 0.229484\n", + "Epoch : 49 [0/36(0%)]\tLoss: 0.491477\n", + "Epoch : 49 [8/36(22%)]\tLoss: 0.715454\n", + "Epoch : 49 [16/36(44%)]\tLoss: 0.475574\n", + "Epoch : 49 [24/36(67%)]\tLoss: 0.510074\n", + "Epoch : 49 [32/36(89%)]\tLoss: 0.748042\n", + "Epoch : 50 [0/36(0%)]\tLoss: 0.243171\n", + "Epoch : 50 [8/36(22%)]\tLoss: 0.965991\n", + "Epoch : 50 [16/36(44%)]\tLoss: 0.891370\n", + "Epoch : 50 [24/36(67%)]\tLoss: 0.460753\n", + "Epoch : 50 [32/36(89%)]\tLoss: 0.332097\n", + "Epoch : 51 [0/36(0%)]\tLoss: 0.797704\n", + "Epoch : 51 [8/36(22%)]\tLoss: 0.596169\n", + "Epoch : 51 [16/36(44%)]\tLoss: 0.577800\n", + "Epoch : 51 [24/36(67%)]\tLoss: 0.281899\n", + "Epoch : 51 [32/36(89%)]\tLoss: 0.178084\n", + "Epoch : 52 [0/36(0%)]\tLoss: 0.459448\n", + "Epoch : 52 [8/36(22%)]\tLoss: 0.391562\n", + "Epoch : 52 [16/36(44%)]\tLoss: 0.616678\n", + "Epoch : 52 [24/36(67%)]\tLoss: 0.679317\n", + "Epoch : 52 [32/36(89%)]\tLoss: 0.215395\n", + "Epoch : 53 [0/36(0%)]\tLoss: 0.630188\n", + "Epoch : 53 [8/36(22%)]\tLoss: 0.445468\n", + "Epoch : 53 [16/36(44%)]\tLoss: 0.167564\n", + "Epoch : 53 [24/36(67%)]\tLoss: 0.359804\n", + "Epoch : 53 [32/36(89%)]\tLoss: 0.900341\n", + "Epoch : 54 [0/36(0%)]\tLoss: 0.644723\n", + "Epoch : 54 [8/36(22%)]\tLoss: 0.394837\n", + "Epoch : 54 [16/36(44%)]\tLoss: 0.512847\n", + "Epoch : 54 [24/36(67%)]\tLoss: 0.354758\n", + "Epoch : 54 [32/36(89%)]\tLoss: 0.414760\n", + "Epoch : 55 [0/36(0%)]\tLoss: 0.236479\n", + "Epoch : 55 [8/36(22%)]\tLoss: 0.798447\n", + "Epoch : 55 [16/36(44%)]\tLoss: 0.135716\n", + "Epoch : 55 [24/36(67%)]\tLoss: 0.084129\n", + "Epoch : 55 [32/36(89%)]\tLoss: 0.578379\n", + "Epoch : 56 [0/36(0%)]\tLoss: 0.864843\n", + "Epoch : 56 [8/36(22%)]\tLoss: 0.428818\n", + "Epoch : 56 [16/36(44%)]\tLoss: 0.213532\n", + "Epoch : 56 [24/36(67%)]\tLoss: 0.956470\n", + "Epoch : 56 [32/36(89%)]\tLoss: 0.639012\n", + "Epoch : 57 [0/36(0%)]\tLoss: 0.325826\n", + "Epoch : 57 [8/36(22%)]\tLoss: 0.815993\n", + "Epoch : 57 [16/36(44%)]\tLoss: 0.718356\n", + "Epoch : 57 [24/36(67%)]\tLoss: 0.291124\n", + "Epoch : 57 [32/36(89%)]\tLoss: 0.786189\n", + "Epoch : 58 [0/36(0%)]\tLoss: 0.325139\n", + "Epoch : 58 [8/36(22%)]\tLoss: 0.161412\n", + "Epoch : 58 [16/36(44%)]\tLoss: 0.065001\n", + "Epoch : 58 [24/36(67%)]\tLoss: 0.389233\n", + "Epoch : 58 [32/36(89%)]\tLoss: 0.137945\n", + "Epoch : 59 [0/36(0%)]\tLoss: 0.379550\n", + "Epoch : 59 [8/36(22%)]\tLoss: 0.339680\n", + "Epoch : 59 [16/36(44%)]\tLoss: 0.484449\n", + "Epoch : 59 [24/36(67%)]\tLoss: 0.189678\n", + "Epoch : 59 [32/36(89%)]\tLoss: 0.483047\n", + "Epoch : 60 [0/36(0%)]\tLoss: 0.529709\n", + "Epoch : 60 [8/36(22%)]\tLoss: 0.284432\n", + "Epoch : 60 [16/36(44%)]\tLoss: 0.153005\n", + "Epoch : 60 [24/36(67%)]\tLoss: 0.097822\n", + "Epoch : 60 [32/36(89%)]\tLoss: 0.147200\n", + "Epoch : 61 [0/36(0%)]\tLoss: 0.325960\n", + "Epoch : 61 [8/36(22%)]\tLoss: 0.303913\n", + "Epoch : 61 [16/36(44%)]\tLoss: 0.099939\n", + "Epoch : 61 [24/36(67%)]\tLoss: 0.347207\n", + "Epoch : 61 [32/36(89%)]\tLoss: 0.477277\n", + "Epoch : 62 [0/36(0%)]\tLoss: 0.229806\n", + "Epoch : 62 [8/36(22%)]\tLoss: 0.429058\n", + "Epoch : 62 [16/36(44%)]\tLoss: 0.301177\n", + "Epoch : 62 [24/36(67%)]\tLoss: 0.186964\n", + "Epoch : 62 [32/36(89%)]\tLoss: 0.274163\n", + "Epoch : 63 [0/36(0%)]\tLoss: 0.389898\n", + "Epoch : 63 [8/36(22%)]\tLoss: 0.090159\n", + "Epoch : 63 [16/36(44%)]\tLoss: 0.078048\n", + "Epoch : 63 [24/36(67%)]\tLoss: 0.245624\n", + "Epoch : 63 [32/36(89%)]\tLoss: 0.218807\n", + "Epoch : 64 [0/36(0%)]\tLoss: 0.308351\n", + "Epoch : 64 [8/36(22%)]\tLoss: 0.154591\n", + "Epoch : 64 [16/36(44%)]\tLoss: 0.303545\n", + "Epoch : 64 [24/36(67%)]\tLoss: 0.372813\n", + "Epoch : 64 [32/36(89%)]\tLoss: 0.219333\n", + "Epoch : 65 [0/36(0%)]\tLoss: 0.429220\n", + "Epoch : 65 [8/36(22%)]\tLoss: 0.333800\n", + "Epoch : 65 [16/36(44%)]\tLoss: 0.167216\n", + "Epoch : 65 [24/36(67%)]\tLoss: 0.089571\n", + "Epoch : 65 [32/36(89%)]\tLoss: 0.457341\n", + "Epoch : 66 [0/36(0%)]\tLoss: 0.618464\n", + "Epoch : 66 [8/36(22%)]\tLoss: 0.091554\n", + "Epoch : 66 [16/36(44%)]\tLoss: 0.110960\n", + "Epoch : 66 [24/36(67%)]\tLoss: 0.083160\n", + "Epoch : 66 [32/36(89%)]\tLoss: 0.235499\n", + "Epoch : 67 [0/36(0%)]\tLoss: 0.359852\n", + "Epoch : 67 [8/36(22%)]\tLoss: 0.709614\n", + "Epoch : 67 [16/36(44%)]\tLoss: 0.175773\n", + "Epoch : 67 [24/36(67%)]\tLoss: 0.269384\n", + "Epoch : 67 [32/36(89%)]\tLoss: 0.551928\n", + "Epoch : 68 [0/36(0%)]\tLoss: 0.489021\n", + "Epoch : 68 [8/36(22%)]\tLoss: 0.238376\n", + "Epoch : 68 [16/36(44%)]\tLoss: 0.853923\n", + "Epoch : 68 [24/36(67%)]\tLoss: 0.302385\n", + "Epoch : 68 [32/36(89%)]\tLoss: 0.978922\n", + "Epoch : 69 [0/36(0%)]\tLoss: 0.354770\n", + "Epoch : 69 [8/36(22%)]\tLoss: 0.296320\n", + "Epoch : 69 [16/36(44%)]\tLoss: 0.459848\n", + "Epoch : 69 [24/36(67%)]\tLoss: 0.149894\n", + "Epoch : 69 [32/36(89%)]\tLoss: 0.771522\n", + "Epoch : 70 [0/36(0%)]\tLoss: 0.650216\n", + "Epoch : 70 [8/36(22%)]\tLoss: 0.304323\n", + "Epoch : 70 [16/36(44%)]\tLoss: 0.562739\n", + "Epoch : 70 [24/36(67%)]\tLoss: 0.363791\n", + "Epoch : 70 [32/36(89%)]\tLoss: 0.514291\n", + "Epoch : 71 [0/36(0%)]\tLoss: 0.258998\n", + "Epoch : 71 [8/36(22%)]\tLoss: 0.509017\n", + "Epoch : 71 [16/36(44%)]\tLoss: 0.132292\n", + "Epoch : 71 [24/36(67%)]\tLoss: 0.240794\n", + "Epoch : 71 [32/36(89%)]\tLoss: 0.606044\n", + "Epoch : 72 [0/36(0%)]\tLoss: 0.269256\n", + "Epoch : 72 [8/36(22%)]\tLoss: 1.172725\n", + "Epoch : 72 [16/36(44%)]\tLoss: 0.654196\n", + "Epoch : 72 [24/36(67%)]\tLoss: 0.391358\n", + "Epoch : 72 [32/36(89%)]\tLoss: 1.035118\n", + "Epoch : 73 [0/36(0%)]\tLoss: 0.819709\n", + "Epoch : 73 [8/36(22%)]\tLoss: 0.425301\n", + "Epoch : 73 [16/36(44%)]\tLoss: 0.512377\n", + "Epoch : 73 [24/36(67%)]\tLoss: 0.898789\n", + "Epoch : 73 [32/36(89%)]\tLoss: 0.507210\n", + "Epoch : 74 [0/36(0%)]\tLoss: 0.213247\n", + "Epoch : 74 [8/36(22%)]\tLoss: 1.498713\n", + "Epoch : 74 [16/36(44%)]\tLoss: 0.666471\n", + "Epoch : 74 [24/36(67%)]\tLoss: 0.176403\n", + "Epoch : 74 [32/36(89%)]\tLoss: 0.913494\n", + "Epoch : 75 [0/36(0%)]\tLoss: 1.011625\n", + "Epoch : 75 [8/36(22%)]\tLoss: 0.051137\n", + "Epoch : 75 [16/36(44%)]\tLoss: 0.149667\n", + "Epoch : 75 [24/36(67%)]\tLoss: 0.084055\n", + "Epoch : 75 [32/36(89%)]\tLoss: 0.369974\n", + "Epoch : 76 [0/36(0%)]\tLoss: 0.349695\n", + "Epoch : 76 [8/36(22%)]\tLoss: 0.213109\n", + "Epoch : 76 [16/36(44%)]\tLoss: 0.190797\n", + "Epoch : 76 [24/36(67%)]\tLoss: 0.680883\n", + "Epoch : 76 [32/36(89%)]\tLoss: 0.126780\n", + "Epoch : 77 [0/36(0%)]\tLoss: 0.202069\n", + "Epoch : 77 [8/36(22%)]\tLoss: 0.522708\n", + "Epoch : 77 [16/36(44%)]\tLoss: 0.229130\n", + "Epoch : 77 [24/36(67%)]\tLoss: 0.193652\n", + "Epoch : 77 [32/36(89%)]\tLoss: 0.161229\n", + "Epoch : 78 [0/36(0%)]\tLoss: 0.178700\n", + "Epoch : 78 [8/36(22%)]\tLoss: 0.362007\n", + "Epoch : 78 [16/36(44%)]\tLoss: 0.110874\n", + "Epoch : 78 [24/36(67%)]\tLoss: 0.096787\n", + "Epoch : 78 [32/36(89%)]\tLoss: 0.362947\n", + "Epoch : 79 [0/36(0%)]\tLoss: 0.289360\n", + "Epoch : 79 [8/36(22%)]\tLoss: 0.121294\n", + "Epoch : 79 [16/36(44%)]\tLoss: 0.194621\n", + "Epoch : 79 [24/36(67%)]\tLoss: 0.246184\n", + "Epoch : 79 [32/36(89%)]\tLoss: 0.172720\n", + "Epoch : 80 [0/36(0%)]\tLoss: 0.204013\n", + "Epoch : 80 [8/36(22%)]\tLoss: 0.318917\n", + "Epoch : 80 [16/36(44%)]\tLoss: 0.212389\n", + "Epoch : 80 [24/36(67%)]\tLoss: 0.147694\n", + "Epoch : 80 [32/36(89%)]\tLoss: 0.140818\n", + "Epoch : 81 [0/36(0%)]\tLoss: 0.094828\n", + "Epoch : 81 [8/36(22%)]\tLoss: 0.120834\n", + "Epoch : 81 [16/36(44%)]\tLoss: 0.094614\n", + "Epoch : 81 [24/36(67%)]\tLoss: 0.501428\n", + "Epoch : 81 [32/36(89%)]\tLoss: 0.188465\n", + "Epoch : 82 [0/36(0%)]\tLoss: 0.436271\n", + "Epoch : 82 [8/36(22%)]\tLoss: 0.287587\n", + "Epoch : 82 [16/36(44%)]\tLoss: 0.093921\n", + "Epoch : 82 [24/36(67%)]\tLoss: 0.052513\n", + "Epoch : 82 [32/36(89%)]\tLoss: 0.273936\n", + "Epoch : 83 [0/36(0%)]\tLoss: 0.242681\n", + "Epoch : 83 [8/36(22%)]\tLoss: 0.197379\n", + "Epoch : 83 [16/36(44%)]\tLoss: 0.388335\n", + "Epoch : 83 [24/36(67%)]\tLoss: 0.086991\n", + "Epoch : 83 [32/36(89%)]\tLoss: 0.098031\n", + "Epoch : 84 [0/36(0%)]\tLoss: 0.215259\n", + "Epoch : 84 [8/36(22%)]\tLoss: 0.066958\n", + "Epoch : 84 [16/36(44%)]\tLoss: 0.117248\n", + "Epoch : 84 [24/36(67%)]\tLoss: 0.272121\n", + "Epoch : 84 [32/36(89%)]\tLoss: 0.196314\n", + "Epoch : 85 [0/36(0%)]\tLoss: 0.224682\n", + "Epoch : 85 [8/36(22%)]\tLoss: 0.251145\n", + "Epoch : 85 [16/36(44%)]\tLoss: 0.204288\n", + "Epoch : 85 [24/36(67%)]\tLoss: 0.092765\n", + "Epoch : 85 [32/36(89%)]\tLoss: 0.474862\n", + "Epoch : 86 [0/36(0%)]\tLoss: 0.293877\n", + "Epoch : 86 [8/36(22%)]\tLoss: 0.182487\n", + "Epoch : 86 [16/36(44%)]\tLoss: 0.106114\n", + "Epoch : 86 [24/36(67%)]\tLoss: 0.087559\n", + "Epoch : 86 [32/36(89%)]\tLoss: 0.283533\n", + "Epoch : 87 [0/36(0%)]\tLoss: 0.324256\n", + "Epoch : 87 [8/36(22%)]\tLoss: 0.767582\n", + "Epoch : 87 [16/36(44%)]\tLoss: 0.057250\n", + "Epoch : 87 [24/36(67%)]\tLoss: 0.286330\n", + "Epoch : 87 [32/36(89%)]\tLoss: 0.115046\n", + "Epoch : 88 [0/36(0%)]\tLoss: 0.285211\n", + "Epoch : 88 [8/36(22%)]\tLoss: 0.282969\n", + "Epoch : 88 [16/36(44%)]\tLoss: 0.154579\n", + "Epoch : 88 [24/36(67%)]\tLoss: 0.240497\n", + "Epoch : 88 [32/36(89%)]\tLoss: 0.391563\n", + "Epoch : 89 [0/36(0%)]\tLoss: 0.201680\n", + "Epoch : 89 [8/36(22%)]\tLoss: 0.058009\n", + "Epoch : 89 [16/36(44%)]\tLoss: 0.433691\n", + "Epoch : 89 [24/36(67%)]\tLoss: 0.050090\n", + "Epoch : 89 [32/36(89%)]\tLoss: 0.239721\n", + "Epoch : 90 [0/36(0%)]\tLoss: 0.302079\n", + "Epoch : 90 [8/36(22%)]\tLoss: 0.401616\n", + "Epoch : 90 [16/36(44%)]\tLoss: 0.253316\n", + "Epoch : 90 [24/36(67%)]\tLoss: 0.102305\n", + "Epoch : 90 [32/36(89%)]\tLoss: 0.791049\n", + "Epoch : 91 [0/36(0%)]\tLoss: 0.179025\n", + "Epoch : 91 [8/36(22%)]\tLoss: 0.127644\n", + "Epoch : 91 [16/36(44%)]\tLoss: 0.450296\n", + "Epoch : 91 [24/36(67%)]\tLoss: 0.436036\n", + "Epoch : 91 [32/36(89%)]\tLoss: 0.238472\n", + "Epoch : 92 [0/36(0%)]\tLoss: 0.452666\n", + "Epoch : 92 [8/36(22%)]\tLoss: 0.617693\n", + "Epoch : 92 [16/36(44%)]\tLoss: 0.073080\n", + "Epoch : 92 [24/36(67%)]\tLoss: 0.210897\n", + "Epoch : 92 [32/36(89%)]\tLoss: 0.489112\n", + "Epoch : 93 [0/36(0%)]\tLoss: 0.561874\n", + "Epoch : 93 [8/36(22%)]\tLoss: 0.246189\n", + "Epoch : 93 [16/36(44%)]\tLoss: 0.329986\n", + "Epoch : 93 [24/36(67%)]\tLoss: 0.030310\n", + "Epoch : 93 [32/36(89%)]\tLoss: 0.278912\n", + "Epoch : 94 [0/36(0%)]\tLoss: 0.189728\n", + "Epoch : 94 [8/36(22%)]\tLoss: 0.093273\n", + "Epoch : 94 [16/36(44%)]\tLoss: 0.231805\n", + "Epoch : 94 [24/36(67%)]\tLoss: 0.181126\n", + "Epoch : 94 [32/36(89%)]\tLoss: 0.241944\n", + "Epoch : 95 [0/36(0%)]\tLoss: 0.190990\n", + "Epoch : 95 [8/36(22%)]\tLoss: 0.098240\n", + "Epoch : 95 [16/36(44%)]\tLoss: 0.089967\n", + "Epoch : 95 [24/36(67%)]\tLoss: 0.084645\n", + "Epoch : 95 [32/36(89%)]\tLoss: 0.449748\n", + "Epoch : 96 [0/36(0%)]\tLoss: 0.098608\n", + "Epoch : 96 [8/36(22%)]\tLoss: 0.252927\n", + "Epoch : 96 [16/36(44%)]\tLoss: 0.184189\n", + "Epoch : 96 [24/36(67%)]\tLoss: 0.111730\n", + "Epoch : 96 [32/36(89%)]\tLoss: 0.365133\n", + "Epoch : 97 [0/36(0%)]\tLoss: 0.210667\n", + "Epoch : 97 [8/36(22%)]\tLoss: 0.153346\n", + "Epoch : 97 [16/36(44%)]\tLoss: 0.111157\n", + "Epoch : 97 [24/36(67%)]\tLoss: 0.144891\n", + "Epoch : 97 [32/36(89%)]\tLoss: 0.141351\n", + "Epoch : 98 [0/36(0%)]\tLoss: 0.278175\n", + "Epoch : 98 [8/36(22%)]\tLoss: 0.103703\n", + "Epoch : 98 [16/36(44%)]\tLoss: 0.151022\n", + "Epoch : 98 [24/36(67%)]\tLoss: 0.206378\n", + "Epoch : 98 [32/36(89%)]\tLoss: 0.472528\n", + "Epoch : 99 [0/36(0%)]\tLoss: 0.099299\n", + "Epoch : 99 [8/36(22%)]\tLoss: 0.299711\n", + "Epoch : 99 [16/36(44%)]\tLoss: 0.244982\n", + "Epoch : 99 [24/36(67%)]\tLoss: 0.179594\n", + "Epoch : 99 [32/36(89%)]\tLoss: 0.853592\n", + "--- 0.06143799622853597 minutes ---\n" ] } ], @@ -1337,12 +1304,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9qUlEQVR4nOzdd3xT5fcH8E+6dwsIbVmlIHtvAWXIVraCIChLcTBEUJSfLHGgqKCIX0BEigqKLMUBiAxlTwGZApYllN2W7tLc3x8nNzdp09Jx06Tp5/165ZXk5vbmaZo2Pfec5zwGRVEUEBEREREREZHTcXP0AIiIiIiIiIjINgbtRERERERERE6KQTsRERERERGRk2LQTkREREREROSkGLQTEREREREROSkG7UREREREREROikE7ERERERERkZNi0E5ERERERETkpBi0ExERERERETkpBu1ERERERC6qbdu2aNu2ba73rVOnjn0HZFKpUiUMGTKkUJ6LqKhj0E5EVqKiomAwGGAwGLB9+/YsjyuKggoVKsBgMKBbt27m7QkJCZg6dSrq1KkDf39/lCpVCg0aNMBLL72Ey5cvm/ebNm2a+fi2LjExMYXyfRIREeWW+tm4f/9+Rw+lwC5fvoxp06bh0KFDjh6KbipVqgSDwYAOHTrYfHzhwoXm/zMy/wy3b9+Orl27oly5cvDx8UHFihXRvXt3LFu2zGq/nP53ef755+32vREBgIejB0BEzsnHxwfLli3Dgw8+aLX9jz/+wKVLl+Dt7W3elp6ejtatW+PkyZMYPHgwRo8ejYSEBBw7dgzLli1D7969UbZsWavjzJs3DwEBAVmeNyQkxC7fDxERUXH022+/Wd2/fPky3nzzTVSqVAkNGjRwzKAAnDp1Cm5u+uUPfXx8sGXLFsTExCAsLMzqsaVLl8LHxwcpKSlW21esWIEnnnjCnGQoUaIEoqOj8eeff2LhwoV48sknrfbv2LEjnn766SzPXa1aNd2+DyJbGLQTkU2PPPIIVqxYgTlz5sDDQ/tTsWzZMjRu3Bg3btwwb/vhhx/w119/YenSpVk+4FJSUpCWlpbl+I8//jjuu+8++30DRERExVhSUhL8/Pzg5eXl6KHYZHnyXw+tWrXCvn37sHz5crz00kvm7ZcuXcK2bdvQu3dvrFq1yuprpk2bhlq1amH37t1ZXqdr165leY5q1aph0KBBuo6bKDdYHk9ENg0YMAA3b97Exo0bzdvS0tKwcuXKLIH52bNnAcgHZmY+Pj4ICgqy72CJiIicwF9//YWuXbsiKCgIAQEBaN++PXbv3p1lvyNHjqBNmzbw9fVF+fLl8fbbb2Px4sUwGAw4d+6ceb8ff/wRjz76KMqWLQtvb29UqVIFb731FjIyMqyOp85FP3DgAFq3bg0/Pz/83//9n/kxdU771q1b0bRpUwDA0KFDzeXdUVFRVsc7fvw42rVrBz8/P5QrVw4zZ860enzr1q0wGAz4/vvv8eabb6JcuXIIDAzE448/jri4OKSmpmLs2LEoU6YMAgICMHToUKSmplodw9ac9tjYWLz88suoVKkSvL29Ub58eTz99NNWiYLs+Pj4oE+fPlnK2r/99luUKFECnTt3zvI1Z8+eRdOmTW2e2ChTpsw9n5OosDDTTkQ2VapUCS1atMC3336Lrl27AgDWrVuHuLg49O/fH3PmzDHvGxERAQD46quvMGnSJBgMhnse/9atW1m2eXh4sDyeiIiKpGPHjuGhhx5CUFAQJkyYAE9PTyxYsABt27bFH3/8gebNmwMA/vvvP7Rr1w4GgwETJ06Ev78/vvjiC5uZ56ioKAQEBGDcuHEICAjA5s2bMWXKFMTHx+ODDz6w2vfmzZvo2rUr+vfvj0GDBiE0NDTL8WrWrInp06djypQpGDFiBB566CEAQMuWLc373L59G126dEGfPn3Qr18/rFy5Eq+99hrq1q1r/n9ANWPGDPj6+uL111/HmTNn8Omnn8LT0xNubm64ffs2pk2bht27dyMqKgqRkZGYMmVKtq9fQkICHnroIZw4cQLDhg1Do0aNcOPGDaxduxaXLl3KVXXek08+iU6dOuHs2bOoUqUKAKkQfPzxx+Hp6Zll/4iICGzatAmXLl1C+fLl73n8lJQUmycQgoKCnLaigVyEQkRkYfHixQoAZd++fcrcuXOVwMBAJSkpSVEURenbt6/Srl07RVEUJSIiQnn00UcVRVGUpKQkpXr16goAJSIiQhkyZIiyaNEi5erVq1mOP3XqVAWAzUv16tUL7xslIiLKJcvPxuz06tVL8fLyUs6ePWvedvnyZSUwMFBp3bq1edvo0aMVg8Gg/PXXX+ZtN2/eVEqWLKkAUKKjo83b1c9fS88995zi5+enpKSkmLe1adNGAaDMnz8/y/5t2rRR2rRpY76/b98+BYCyePFim/sCUL766ivzttTUVCUsLEx57LHHzNu2bNmiAFDq1KmjpKWlmbcPGDBAMRgMSteuXa2O26JFCyUiIsJqW0REhDJ48GDz/SlTpigAlNWrV2cZl9FozLIt87EeffRR5e7du0pYWJjy1ltvKYqiKMePH1cAKH/88YfNn+GiRYsUAIqXl5fSrl07ZfLkycq2bduUjIyMLM+R3f8uAJRvv/02x/ERFRTL44koW/369UNycjJ+/vln3LlzBz///HOW0ngA8PX1xZ49e/Dqq68CkMzA8OHDER4ejtGjR2cpiQOAVatWYePGjVaXxYsX2/17IiIi0ltGRgZ+++039OrVC5UrVzZvDw8Px5NPPont27cjPj4eALB+/Xq0aNHCqglcyZIlMXDgwCzH9fX1Nd++c+cObty4gYceeghJSUk4efKk1b7e3t4YOnRogb+XgIAAq3nbXl5eaNasGf79998s+z799NNWGezmzZtDURQMGzbMar/mzZvj4sWLuHv3brbPu2rVKtSvXx+9e/fO8lhuKvgAwN3dHf369cO3334LQBrQVahQwVxRkNmwYcOwfv16tG3bFtu3b8dbb72Fhx56CFWrVsXOnTuz7N+zZ88s/7ts3LgR7dq1y9X4iPKL5fFElK3SpUujQ4cOWLZsGZKSkpCRkYHHH3/c5r7BwcGYOXMmZs6cifPnz2PTpk348MMPMXfuXAQHB+Ptt9+22r9169ZsREdERC7h+vXrSEpKQvXq1bM8VrNmTRiNRly8eBG1a9fG+fPn0aJFiyz73X///Vm2HTt2DJMmTcLmzZvNQb8qLi7O6n65cuV0KdEuX758liC5RIkSOHLkSJZ9K1asaHU/ODgYAFChQoUs241GI+Li4lCqVCmbz3v27Fk89thjBRk6ACmRnzNnDg4fPoxly5ahf//+OQb9nTt3RufOnZGUlIQDBw5g+fLlmD9/Prp164aTJ09azW0vX758tsvKEdkTM+1ElKMnn3wS69atw/z589G1a9dczTmPiIjAsGHDsGPHDoSEhGDp0qX2HygREZELiY2NRZs2bXD48GFMnz4dP/30EzZu3Ij3338fAGA0Gq32t8zKF4S7u7vN7Yqi5HrfvBxDb82bN0eVKlUwduxYREdH26wQtMXPzw8PPfQQ5s6di0mTJuH27dtYt26dnUdLlDvMtBNRjnr37o3nnnsOu3fvxvLly/P0tSVKlECVKlVw9OhRO42OiIjI8UqXLg0/Pz+cOnUqy2MnT56Em5ubOfscERGBM2fOZNkv87atW7fi5s2bWL16NVq3bm3eHh0dXaCx5rbUvLDp+f/CgAED8Pbbb6NmzZr5Wou+SZMmAIArV67oMh6igmKmnYhyFBAQgHnz5mHatGno3r27zX0OHz5ss5vq+fPncfz4cZvlgkRERK7C3d0dnTp1wo8//mi1ZNvVq1exbNkyPPjgg+blTzt37oxdu3bh0KFD5v1u3bqVpSpNzVZbZqfT0tLwv//9r0Bj9ff3ByCZfGfy2GOP4fDhw1izZk2Wx/KaoX/mmWcwdepUfPTRRznut2nTJpvbf/31VwDg/y/kNJhpJ6J7Gjx4cI6Pb9y4EVOnTkWPHj3wwAMPICAgAP/++y++/PJLpKamYtq0aVm+ZuXKlQgICMiyvWPHjjaXqSEiInK0L7/8EuvXr8+y/aWXXsLbb7+NjRs34sEHH8SLL74IDw8PLFiwAKmpqVbrnE+YMAHffPMNOnbsiNGjR5uXfKtYsSJu3bplzoS3bNkSJUqUwODBgzFmzBgYDAZ8/fXXBS4xr1KlCkJCQjB//nwEBgbC398fzZs3R2RkZIGOW1CvvvoqVq5cib59+2LYsGFo3Lgxbt26hbVr12L+/PmoX79+ro8VERFh83+PzHr27InIyEh0794dVapUQWJiIn7//Xf89NNPaNq0aZZkxT///INvvvkmy3FCQ0PRsWPHXI+PKK8YtBNRgT322GO4c+cOfvvtN2zevBm3bt1CiRIl0KxZM4wfP95mV9UXXnjB5rG2bNnCoJ2IiJzSvHnzbG4fMmQIateujW3btmHixImYMWMGjEYjmjdvjm+++ca8RjsgTdq2bNmCMWPG4N1330Xp0qUxcuRI+Pv7Y8yYMfDx8QEAlCpVCj///DPGjx+PSZMmoUSJEhg0aBDat2+Pzp075/t78PT0xJIlSzBx4kQ8//zzuHv3LhYvXuzwoD0gIADbtm3D1KlTsWbNGixZsgRlypRB+/btc7WGen588cUX+PHHH/H999/j8uXLUBQFlStXxhtvvIHXXnsNHh7WoZLaLT6zNm3aMGgnuzIohdERgoiIiIiIsjV27FgsWLAACQkJ2TZyI6LiiXPaiYiIiIgKUXJystX9mzdv4uuvv8aDDz7IgJ2IsmB5PBERERFRIWrRogXatm2LmjVr4urVq1i0aBHi4+MxefJkRw+NiJwQg3YiIiIiokL0yCOPYOXKlfj8889hMBjQqFEjLFq0yGppNyIiFee0ExERERERETkpzmknIiIiIiIiclIM2omIiIiIiIicFOe0AzAajbh8+TICAwNhMBgcPRwiIirmFEXBnTt3ULZsWbi58fw6AEybNg1vvvmm1bbq1avj5MmTufp6ftYTEZGzye3nPYN2AJcvX0aFChUcPQwiIiIrFy9eRPny5R09DKdRu3Zt/P777+b7Hh65/zeGn/VEROSs7vV5z6AdQGBgIAB5sYKCghw8GiIiKu7i4+NRoUIF8+cTCQ8PD4SFheXra/lZT0REzia3n/cM2gFzmVxQUBA/yImIyGmwjNva6dOnUbZsWfj4+KBFixaYMWMGKlasaHPf1NRUpKammu/fuXMHAD/riYjI+dzr854T5YiIiMjpNW/eHFFRUVi/fj3mzZuH6OhoPPTQQ+ZgPLMZM2YgODjYfGFpPBERFVVcpx1SlhAcHIy4uDiefSciIofj59K9xcbGIiIiArNmzcLw4cOzPJ45066WIPI1JSIiZ5Hbz3uWxxMREVGRExISgmrVquHMmTM2H/f29oa3t3chj4qIiEh/DNqJiPIgIyMD6enpjh4GuQBPT0+4u7s7ehhFVkJCAs6ePYunnnrK0UMhIhejKAru3r2LjIwMRw+Fijh3d3d4eHgUuEcNg3YiolxKSEjApUuXwFlFpAeDwYDy5csjICDA0UMpEl555RV0794dERERuHz5MqZOnQp3d3cMGDDA0UMjIheSlpaGK1euICkpydFDIRfh5+eH8PBweHl55fsYDNqJiHIhIyMDly5dgp+fH0qXLs2u3lQgiqLg+vXruHTpEqpWrcqMey5cunQJAwYMwM2bN1G6dGk8+OCD2L17N0qXLu3ooRGRizAajYiOjoa7uzvKli0LLy8vft5TvimKgrS0NFy/fh3R0dGoWrUq3Nzy1weeQTsRUS6kp6dDURSULl0avr6+jh4OuYDSpUvj3LlzSE9PZ9CeC999952jh0BELi4tLQ1GoxEVKlSAn5+fo4dDLsDX1xeenp44f/480tLS4OPjk6/jcMk3IqI84Bl30gvfS0REzim/2VAiW/R4P/EdSUREREREROSkGLQTEREREREROSkG7URElCeVKlXCxx9/nOv9t27dCoPBgNjYWLuNCQCioqIQEhJi1+cgIiIqDvhZ71wYtBMRuSiDwZDjZdq0afk67r59+zBixIhc79+yZUtcuXIFwcHB+Xo+IiIiso2f9cUDu8cTEbmoK1eumG8vX74cU6ZMwalTp8zbLNcHVxQFGRkZ8PC498dCXpfY8vLyQlhYWJ6+hoiIiO6Nn/XFAzPtOjp1CqhfH2jb1tEjISJ7UxQgMdExF0XJ3RjDwsLMl+DgYBgMBvP9kydPIjAwEOvWrUPjxo3h7e2N7du34+zZs+jZsydCQ0MREBCApk2b4vfff7c6buaSOYPBgC+++AK9e/eGn58fqlatirVr15ofz1wyp5a2bdiwATVr1kRAQAC6dOli9Y/H3bt3MWbMGISEhKBUqVJ47bXXMHjwYPTq1StPP6d58+ahSpUq8PLyQvXq1fH1119b/AwVTJs2DRUrVoS3tzfKli2LMWPGmB//3//+h6pVq8LHxwehoaF4/PHH8/Tc5JoUBWjfHoiIACzeskTkgvhZ/7H5Pj/rHYtBu47u3gWOHAGOH3f0SIjI3pKSgIAAx1ySkvT7Pl5//XW89957OHHiBOrVq4eEhAQ88sgj2LRpE/766y906dIF3bt3x4ULF3I8zptvvol+/frhyJEjeOSRRzBw4EDcunUrh9cvCR9++CG+/vpr/Pnnn7hw4QJeeeUV8+Pvv/8+li5disWLF2PHjh2Ij4/HDz/8kKfvbc2aNXjppZcwfvx4HD16FM899xyGDh2KLVu2AABWrVqF2bNnY8GCBTh9+jR++OEH1K1bFwCwf/9+jBkzBtOnT8epU6ewfv16tG7dOk/PT67JYADOnAEuXACiox09GiKyJ37WW+NnvQMppMTFxSkAlLi4uAId59QpRQEUJThYn3ERkfNITk5Wjh8/riQnJyuKoigJCfL77ohLQkLex7948WIl2OKP05YtWxQAyg8//HDPr61du7by6aefmu9HREQos2fPNt8HoEyaNMl8PyEhQQGgrFu3zuq5bt++bR4LAOXMmTPmr/nss8+U0NBQ8/3Q0FDlgw8+MN+/e/euUrFiRaVnz565/h5btmypPPvss1b79O3bV3nkkUcURVGUjz76SKlWrZqSlpaW5VirVq1SgoKClPj4+Gyfr6Ayv6cs6fW5RBo9X9M2beR38ZtvCj4uInIe/KznZ7096PF5z0y7jry85Do93bHjICL78/MDEhIcc/Hz0+/7aNKkidX9hIQEvPLKK6hZsyZCQkIQEBCAEydO3PPse7169cy3/f39ERQUhGvXrmW7v5+fH6pUqWK+Hx4ebt4/Li4OV69eRbNmzcyPu7u7o3Hjxnn63k6cOIFWrVpZbWvVqhVOnDgBAOjbty+Sk5NRuXJlPPvss1izZg3u3r0LAOjYsSMiIiJQuXJlPPXUU1i6dCmS9Ex7UJEWGSnX5845dBhEZGf8rLfGz3rHYdCuI09PuU5Lc+w4iMj+DAbA398xF4NBv+/D39/f6v4rr7yCNWvW4N1338W2bdtw6NAh1K1bF2n3+MPmqf4BNL8+BhiNxjztr+R2Ap9OKlSogFOnTuF///sffH198eKLL6J169ZIT09HYGAgDh48iG+//Rbh4eGYMmUK6tevb/elbKhoUIN2lscTuTZ+1lvjZ73jMGjXkZppv3s3980jiIicyY4dOzBkyBD07t0bdevWRVhYGM4VcjoxODgYoaGh2Ldvn3lbRkYGDh48mKfj1KxZEzt27LDatmPHDtSqVct839fXF927d8ecOXOwdetW7Nq1C3///TcAwMPDAx06dMDMmTNx5MgRnDt3Dps3by7Ad0augkE7ERVl/Kwvep/1XPJNR2rQDkiJvOV9IqKioGrVqli9ejW6d+8Og8GAyZMn53gW3V5Gjx6NGTNm4P7770eNGjXw6aef4vbt2zDkIfXw6quvol+/fmjYsCE6dOiAn376CatXrzZ3yI2KikJGRgaaN28OPz8/fPPNN/D19UVERAR+/vln/Pvvv2jdujVKlCiBX3/9FUajEdWrV7fXt0xFCIN2IirK+Flf9D7rGbTryLICJC2NQTsRFT2zZs3CsGHD0LJlS9x333147bXXEB8fX+jjeO211xATE4Onn34a7u7uGDFiBDp37gx3d/dcH6NXr1745JNP8OGHH+Kll15CZGQkFi9ejLamdTlDQkLw3nvvYdy4ccjIyEDdunXx008/oVSpUggJCcHq1asxbdo0pKSkoGrVqvj2229Ru3ZtO33HVJSoQfuFC1Jdl4slj4mInAY/64veZ71BKeyJBU4oPj4ewcHBiIuLQ1BQUL6Pc/euFrjfvAmULKnTAInI4VJSUhAdHY3IyEj4+Pg4ejjFjtFoRM2aNdGvXz+89dZbjh6OLnJ6T+n1uUQaPV9To1GaRKWmSra9UiV9xkhEjsXPesdyxc96QJ/Pe54b1pG7uzSNUBR2kCciKojz58/jt99+Q5s2bZCamoq5c+ciOjoaTz75pKOHRgQ3NyAiAvjnHwbtRET5xc/63GMjOh0ZDOwgT0SkBzc3N0RFRaFp06Zo1aoV/v77b/z++++oWbOmo4dGBEAL1DmvnYgof/hZn3vMtOvMy0sCdmbaiYjyr0KFClm6wRI5jdWrMSQpBjvxFKKjAx09GiKiIomf9bnHTLvOmGknIiJycSNGYMD2kaiIC8y0ExGR3TFo15naMZ5BOxERkYsqU0aucI1BOxER2R2Ddp2pQTvL44mIiFwUg3YiIipEDNp1xvJ4IiIiF1e6tFzhOq5cAZKTHTweIiJyaQzadcZMOxERkYszZdrLe14DAJw/78jBEBGRq2PQrjNm2omIiFycKdNeOVCCdpbIExGRPTFo1xkb0RGRq2nbti3Gjh1rvl+pUiV8/PHHOX6NwWDADz/8UODn1us4OZk2bRoaNGhg1+cgF6Nm2r2vA2DQTkRFHz/rnRuDdp2xPJ6InEX37t3RpUsXm49t27YNBoMBR44cyfNx9+3bhxEjRhR0eFay+zC9cuUKunbtqutzERWYKWgPNTDTTkSOxc/64oFBu85YHk9EzmL48OHYuHEjLl26lOWxxYsXo0mTJqhXr16ej1u6dGn4+fnpMcR7CgsLg7e3d6E8F1GumcrjS6YzaCcix+JnffHg0KD9zz//RPfu3VG2bFmbZRGKomDKlCkIDw+Hr68vOnTogNOnT1vtc+vWLQwcOBBBQUEICQnB8OHDkZCQUIjfhTWWxxMVE4oCJCY65qIouRpit27dULp0aURFRVltT0hIwIoVKzB8+HDcvHkTAwYMQLly5eDn54e6devi22+/zfG4mUvmTp8+jdatW8PHxwe1atXCxo0bs3zNa6+9hmrVqsHPzw+VK1fG5MmTkW4qSYqKisKbb76Jw4cPw2AwwGAwmMec+bPh77//xsMPPwxfX1+UKlUKI0aMsPqbP2TIEPTq1QsffvghwsPDUapUKYwcOdL8XLlhNBoxffp0lC9fHt7e3mjQoAHWr19vfjwtLQ2jRo1CeHg4fHx8EBERgRkzZgCQz61p06ahYsWK8Pb2RtmyZTFmzJhcPzcVEaZMu3+ylMefO+fAsRCR/fCz3nyfn/WO/az3sOvR7yExMRH169fHsGHD0KdPnyyPz5w5E3PmzMGSJUsQGRmJyZMno3Pnzjh+/Dh8fHwAAAMHDsSVK1ewceNGpKenY+jQoRgxYgSWLVtW2N8OAC3TzvJ4IheXlAQEBDjmuRMSAH//e+7m4eGBp59+GlFRUXjjjTdgMBgAACtWrEBGRgYGDBiAhIQENG7cGK+99hqCgoLwyy+/4KmnnkKVKlXQrFmzez6H0WhEnz59EBoaij179iAuLs5qTpwqMDAQUVFRKFu2LP7++288++yzCAwMxIQJE/DEE0/g6NGjWL9+PX7//XcAQHBwcJZjJCYmonPnzmjRogX27duHa9eu4ZlnnsGoUaOs/lnZsmULwsPDsWXLFpw5cwZPPPEEGjRogGefffae3w8AfPLJJ/joo4+wYMECNGzYEF9++SV69OiBY8eOoWrVqpgzZw7Wrl2L77//HhUrVsTFixdx8eJFAMCqVaswe/ZsfPfdd6hduzZiYmJw+PDhXD0vFSGmoN0r4TY8kI7oaE8HD4iI7IKf9QD4We8Un/WKkwCgrFmzxnzfaDQqYWFhygcffGDeFhsbq3h7eyvffvutoiiKcvz4cQWAsm/fPvM+69atUwwGg/Lff/9l+1wpKSlKXFyc+XLx4kUFgBIXF1fg76NnT0UBFGXBggIfioicSHJysnL8+HElOTlZNiQkyC+7Iy4JCbke94kTJxQAypYtW8zbHnroIWXQoEHZfs2jjz6qjB8/3ny/TZs2yksvvWS+HxERocyePVtRFEXZsGGD4uHhYfU3d926dVn+pmf2wQcfKI0bNzbfnzp1qlK/fv0s+1ke5/PPP1dKlCihJFh8/7/88ovi5uamxMTEKIqiKIMHD1YiIiKUu3fvmvfp27ev8sQTT2Q7lszPXbZsWeWdd96x2qdp06bKiy++qCiKoowePVp5+OGHFaPRmOVYH330kVKtWjUlLS0t2+dTZXlPWYiLi9Ptc4mErq9pRoaiuLsrCqCE4bICKAp/VERFHz/rXzLf52e9Pp/1iqLP573TzmmPjo5GTEwMOnToYN4WHByM5s2bY9euXQCAXbt2ISQkBE2aNDHv06FDB7i5uWHPnj3ZHnvGjBkIDg42XypUqKDbuNmIjqiY8POTs+COuORhjlmNGjXQsmVLfPnllwCAM2fOYNu2bRg+fDgAICMjA2+99Rbq1q2LkiVLIiAgABs2bMCFCxdydfwTJ06gQoUKKFu2rHlbixYtsuy3fPlytGrVCmFhYQgICMCkSZNy/RyWz1W/fn34W2QeWrVqBaPRiFOnTpm31a5dG+7u7ub74eHhuHbtWq6eIz4+HpcvX0arVq2strdq1QonTpwAIGV5hw4dQvXq1TFmzBj89ttv5v369u2L5ORkVK5cGc8++yzWrFmDu3fv5un7pCLAzQ247z4AQPUQzmsncln8rAfAz3pn+Kx32qA9JiYGABAaGmq1PTQ01PxYTEwMyphK1FQeHh4oWbKkeR9bJk6ciLi4OPNFLXXQAxvRERUTBoOUrTniYip9y63hw4dj1apVuHPnDhYvXowqVaqgTZs2AIAPPvgAn3zyCV577TVs2bIFhw4dQufOnZGm4x+xXbt2YeDAgXjkkUfw888/46+//sIbb7yh63NY8vS0LlU2GAwwGo26Hb9Ro0aIjo7GW2+9heTkZPTr1w+PP/44AKBChQo4deoU/ve//8HX1xcvvvgiWrdunad5dlREmJrR1SnDoJ3IZfGzPtf4WW/fz3qnDdrtydvbG0FBQVYXvbARHRE5m379+sHNzQ3Lli3DV199hWHDhpnnvO3YsQM9e/bEoEGDUL9+fVSuXBn//PNPro9ds2ZNXLx4EVeuXDFv2717t9U+O3fuREREBN544w00adIEVatWxfnz56328fLyQkZGxj2f6/Dhw0hMTDRv27FjB9zc3FC9evVcjzknQUFBKFu2LHbs2GG1fceOHahVq5bVfk888QQWLlyI5cuXY9WqVbh16xYAwNfXF927d8ecOXOwdetW7Nq1C3///bcu4yPx3nvvwWAw2JxTWWhMSYNqJbhWOxE5Hj/rc68oftY7tBFdTsLCwgAAV69eRXh4uHn71atXzev7hYWFZSmDuHv3Lm7dumX++sLG8ngicjYBAQF44oknMHHiRMTHx2PIkCHmx6pWrYqVK1di586dKFGiBGbNmoWrV69afWjlpEOHDqhWrRoGDx6MDz74APHx8XjjjTes9qlatSouXLiA7777Dk2bNsUvv/yCNWvWWO1TqVIlREdH49ChQyhfvjwCAwOzLP8ycOBATJ06FYMHD8a0adNw/fp1jB49Gk899VSWqqyCePXVVzF16lRUqVIFDRo0wOLFi3Ho0CEsXboUADBr1iyEh4ejYcOGcHNzw4oVKxAWFoaQkBBERUUhIyMDzZs3h5+fH7755hv4+voiIiJCt/EVd/v27cOCBQvytYSRrkxBe6Q/M+1E5Hj8rM+bovZZ77SZ9sjISISFhWHTpk3mbfHx8dizZ495DkWLFi0QGxuLAwcOmPfZvHkzjEYjmjdvXuhjBlgeT0TOafjw4bh9+zY6d+5sNSdt0qRJaNSoETp37oy2bdsiLCwMvXr1yvVx3dzcsGbNGiQnJ6NZs2Z45pln8M4771jt06NHD7z88ssYNWoUGjRogJ07d2Ly5MlW+zz22GPo0qUL2rVrh9KlS9tcisbPzw8bNmzArVu30LRpUzz++ONo37495s6dm7cX4x7GjBmDcePGYfz48ahbty7Wr1+PtWvXomrVqgCkO+7MmTPRpEkTNG3aFOfOncOvv/4KNzc3hISEYOHChWjVqhXq1auH33//HT/99BNKlSql6xiLq4SEBAwcOBALFy5EiRIlHDsYU3l8eS8G7UTkHPhZn3tF7bPeoCi5XATQDhISEnDmzBkAQMOGDTFr1iy0a9cOJUuWRMWKFfH+++/jvffes1ry7ciRI1ZLvnXt2hVXr17F/PnzzUu+NWnSJE9LvsXHxyM4OBhxcXEFLpUfNw6YPRt4/XXAtJQfEbmAlJQUREdHIzIy0vz3h6ggcnpP6fm55EoGDx6MkiVLYvbs2Wjbti0aNGhgtY6wpdTUVKSmpprvx8fHo0KFCvq9pm+/DUyejEtdnkGF9QtRuzZw9GjBD0tEjsPPerIHPT7vHVoev3//frRr1858f9y4cQDkQzkqKgoTJkxAYmIiRowYgdjYWDz44INYv3691Te7dOlSjBo1Cu3bt4ebmxsee+wxzJkzp9C/FxUz7URERPr77rvvcPDgQezbty9X+8+YMQNvvvmm/QZkyrSHpGuZdkXJc+8oIiKie3Jo0N62bVvklOg3GAyYPn06pk+fnu0+JUuWzFNW3d7YiI6IiEhfFy9exEsvvYSNGzfmOvs1ceJEczIA0DLtujHNafdLkKA9KQm4fRsoWVK/pyAiIgKcuBFdUcVGdERERPo6cOAArl27hkaNGpm3ZWRk4M8//8TcuXORmppqtV4vICvFZG5wpCtT0O524zp8fYHkZCAujkE7ERHpj0G7zlgeT0REpK/27dtnWUpn6NChqFGjBl577bUsAXuhMJXH49o1hIRoQTsREZHeGLTrjOXxRK7Ngb07ycXwvZR7gYGBqFOnjtU2f39/lCpVKsv2QmPKtOPOHZQOT8GVKz4M2olcBP8+k570eD857ZJvRZWaaWd5PJFrUTN5aTwjRzpR30sOyRJTwQUHmz/0I/yuAwBiYx04HiIqME/T73RSUpKDR0KuRH0/qe+v/GCmXWfMtBO5Jg8PD/j5+eH69evw9PSEmxvPeVL+GY1GXL9+HX5+fvDw4EdxfmzdutWxAzAYpET+8mVU8LkGoAIz7URFnLu7O0JCQnDtmjSY9PPzg4FLQlA+KYqCpKQkXLt2DSEhIQU6Sc//FHTGRnRErslgMCA8PBzR0dE4f/68o4dDLsDNzQ0VK1bkP4RFWZkywOXLKOspmXYG7URFX1hYGACYA3eiggoJCTG/r/KLQbvO2IiOyHV5eXmhatWqLJEnXXh5ebFio6gzNaMLd5N/7hm0ExV96kn6MmXKIJ1ZOCogT09PXabBMWjXGcvjiVybm5tbrteJJiIXZ2pGV1ph0E7katzd3dlzhJwGT/HrjOXxRERExYQpaC9lZHk8ERHZD4N2nbE8noiIqJgwlceHpDHTTkRE9sOgXWfMtBMRERUTpkx7UAqDdiIish8G7Tpjpp2IiKiYMAXt/slcp52IiOyHQbvO2IiOiIiomDCVx/vGM9NORET2w6BdZyyPJyIiKiZMmXavOAbtRERkPwzadcbyeCIiomLClGl3S0mGHxIZtBMRkV0waNcZy+OJiIiKiYAAwMcHAFAG15CUxEo7IiLSH4N2namZdn5oExERuTiDwVwiXxrSjC4+3pEDIiIiV8SgXWfMtBMRERUjphL5Ct6c105ERPbBoF1nbERHRERUjJgy7RE+DNqJiMg+GLTrTC2PNxqBjAzHjoWIiIjszBS0l/OS8ngG7UREpDcG7TpTM+0AS+SJiIhcnqk8PtxDMu2xsQ4cCxERuSQG7TqzDNpZIk9EROTiTJn2ULA8noiI7INBu87U8niAmXYiIiKXZ8q0l1JYHk9ERPbBoF1nbm6Au7vcZqadiIjIxZky7SXTmWknIiL7YNBuB2q2nZl2IiIiF2cK2oNSGbQTEZF9MGi3A67VTkREVEyYyuMDkq8DUBi0ExGR7hi02wHXaiciIiomTEG7R0YaAnGHQTsREemOQbsdsDyeiIiomPD11W4imUE7ERHpjkG7HbA8noiIqJgwGABvbwCAD1K4TjsREemOQbsdqJl2lscTEREVAz4+AABvpDLTTkREumPQbgfMtBMRERUjFpl2Bu1ERKQ3Bu12wEZ0RERExQgz7UREZEcM2u2AjeiIiIiKEVPQ7oMUJCfzpD0REemLQbsdsDyeiIioGLEojwfAbDsREemKQbsdsDyeiIioGDFl2oO9UwEwaCciIn0xaLcDlscTEREVI6ZMe0k/ZtqJiEh/DNrtgJl2IiKiYsSUaQ/xZaadiIj0x6DdDphpJyIi0te8efNQr149BAUFISgoCC1atMC6descPSyhBu0+kmmPjXXgWIiIyOUwaLcDNqIjIiLSV/ny5fHee+/hwIED2L9/Px5++GH07NkTx44dc/TQzOXxQT7MtBMRkf48HD0AV8TyeCIiIn11797d6v4777yDefPmYffu3ahdu7aDRmViyrQHeXFOOxER6Y9Bux2wPJ6IiMh+MjIysGLFCiQmJqJFixY290lNTUVqaqr5fnx8vP0GpGbaPRm0ExGR/lgebwfMtBMREenv77//RkBAALy9vfH8889jzZo1qFWrls19Z8yYgeDgYPOlQoUK9huYKdPu78HyeCIi0h+Ddjtgpp2IiEh/1atXx6FDh7Bnzx688MILGDx4MI4fP25z34kTJyIuLs58uXjxov0GZg7amWknIiL9sTzeDtiIjoiISH9eXl64//77AQCNGzfGvn378Mknn2DBggVZ9vX29oa3qWzd7kzP4+fOTDsREemPmXY7YHk8ERGR/RmNRqt56w5jyrT7GZhpJyIi/THTbgcsjyciItLXxIkT0bVrV1SsWBF37tzBsmXLsHXrVmzYsMHRQzNn2n0MXKediIj0x6DdDlgeT0REpK9r167h6aefxpUrVxAcHIx69ephw4YN6Nixo6OHZs60+4Dl8UREpD8G7XbA8ngiIiJ9LVq0yNFDyJ4paPdWWB5PRET645x2O2B5PBERUTFiKo/3VJhpJyIi/TFotwNm2omIiIoRU6bdM0My7SkpPHFPRET6YdCup3/+AZo0QY+5Mr+OH9hERETFgCnT7pGeYt7EbDsREemFQbue0tOBAwdQ6tJhAAzaiYiIigVTpt2QloqAANnEoJ2IiPTCoF1Ppsns7hkSrbM8noiIqBgwZdqRkoLgYLnJoJ2IiPTCoF1PpsnsbhkSrTPTTkREVAyYMu1ITWXQTkREunPqoD0jIwOTJ09GZGQkfH19UaVKFbz11ltQFMW8j6IomDJlCsLDw+Hr64sOHTrg9OnTjhmwKdPudpeZdiIiomJDDdotMu2xsQ4bDRERuRinDtrff/99zJs3D3PnzsWJEyfw/vvvY+bMmfj000/N+8ycORNz5szB/PnzsWfPHvj7+6Nz585ISUnJ4ch2Ys603wWgMNNORERUHKjl8cy0ExGRHXg4egA52blzJ3r27IlHH30UAFCpUiV8++232Lt3LwDJsn/88ceYNGkSevbsCQD46quvEBoaih9++AH9+/cv3AGra70B8EQ60tK8ctiZiIiIXIJFpj0kRG4yaCciIr04daa9ZcuW2LRpE/755x8AwOHDh7F9+3Z07doVABAdHY2YmBh06NDB/DXBwcFo3rw5du3ale1xU1NTER8fb3XRhak8HgC8kMbyeCIiouKAjeiIiMiOnDrT/vrrryM+Ph41atSAu7s7MjIy8M4772DgwIEAgJiYGABAaGio1deFhoaaH7NlxowZePPNN/UfsEWm3QtpLI8nIiIqDtRM+927CAnMAODOoJ2IiHTj1Jn277//HkuXLsWyZctw8OBBLFmyBB9++CGWLFlSoONOnDgRcXFx5svFixf1GbC7O2AwAFDL4/U5LBERETkxNWgHUNI/FQAz7UREpB+nzrS/+uqreP31181z0+vWrYvz589jxowZGDx4MMLCwgAAV69eRXh4uPnrrl69igYNGmR7XG9vb3irpWx6MhikRD4tTTLtLI8nIiJyfRb/U0jQ7segnYiIdOPUmfakpCS4uVkP0d3dHUajEQAQGRmJsLAwbNq0yfx4fHw89uzZgxYtWhTqWM1MJfLMtBMRERUTHh6A6f+VEr6yeg2DdiIi0otTZ9q7d++Od955BxUrVkTt2rXx119/YdasWRg2bBgAwGAwYOzYsXj77bdRtWpVREZGYvLkyShbtix69erlmEGbmtGxER0REVExYTBItj05GcHeDNqJiEhfTh20f/rpp5g8eTJefPFFXLt2DWXLlsVzzz2HKVOmmPeZMGECEhMTMWLECMTGxuLBBx/E+vXr4WMxv6xQmTLtbERHRERUjPj4SNDuI3PaY2MdOxwiInIdBkVRFEcPwtHi4+MRHByMuLg4BAUFFexgFSsCFy+iMfbjIBrDaDT3piMiIsoVXT+XCEAhvKZlywJXruDUd3+hRv8GKFMGuHpV/6chIiLXkdvPJqee014kWZTHA8Ddu44cDBERERUKUzO6QC/JtN+548jBEBGRK2HQrjeL8ngALJEnIiIqDkzT8rwVmdOenAywlpGIiPTAoF1vFt3jAbAZHRERUXFgyrT7IMW8iSfuiYhIDwza9ZapPJ4f2ERERMWAKdPupaSaNyUnO2owRETkShi0682UafdzZ9BORERUbJiCdo+7KeqS7QzaiYhIFwza9WYK2n09WB5PRERUbJjK4w1pqfD1lU0M2omISA8M2vVmKo/3ZaadiIio+DBl2pGSwqCdiIh0xaBdb6ZMu4+7pNgZtBMRERUDpkw7UplpJyIifTFo11umTDvL44mIiIoBZtqJiMhOGLTrzZxpZ3k8ERFRsaFm2hm0ExGRzhi0600N2t3YiI6IiKjYUDPtLI8nIiKdMWjXm6k83seNmXYiIqJig+XxRERkJwza9WbOtDNoJyIiKjbYiI6IiOyEQbveTEG7N8vjiYiIig9m2omIyE4YtOvNVB7vbWCmnYiIqNhgIzoiIrITBu16UzPtBi75RkREpIcZM2agadOmCAwMRJkyZdCrVy+cOnXK0cOyxkZ0RERkJwza9WYK2r0MEq0z005ERFQwf/zxB0aOHIndu3dj48aNSE9PR6dOnZCYmOjooWlYHk9ERHbi4egBuBxTebwXy+OJiIh0sX79eqv7UVFRKFOmDA4cOIDWrVs7aFSZsBEdERHZCYN2vWXKtLM8noiISF9xcXEAgJIlS2a7T2pqKlJTU8334+Pj7TsoZtqJiMhOWB6vNzXTrjDTTkREpDej0YixY8eiVatWqFOnTrb7zZgxA8HBweZLhQoV7DswNqIjIiI7YdCuNzXTDgbtREREehs5ciSOHj2K7777Lsf9Jk6ciLi4OPPl4sWL9h0YG9EREZGdsDxeb6ag3RMsjyciItLTqFGj8PPPP+PPP/9E+fLlc9zX29sb3mr2uzCwPJ6IiOyEQbveTOXxniyPJyIi0oWiKBg9ejTWrFmDrVu3IjIy0tFDyoqN6IiIyE4YtOvNnGnnOu1ERER6GDlyJJYtW4Yff/wRgYGBiImJAQAEBwfDV42QHY2ZdiIishPOadebKWj3ULhOOxERkR7mzZuHuLg4tG3bFuHh4ebL8uXLHT00DTPtRERkJ8y0600tjzeyPJ6IiFzLwYMH4enpibp16wIAfvzxRyxevBi1atXCtGnT4GU6ca03RVHsclxdMdNORER2wky73syZdpbHExGRa3nuuefwzz//AAD+/fdf9O/fH35+flixYgUmTJjg4NE5GIN2IiKyEwbtejNl2t2NLI8nIiLX8s8//6BBgwYAgBUrVqB169ZYtmwZoqKisGrVKscOztHU8nijEb6edwEwaCciIn0waNebmmk3MtNORESuRVEUGI1GAMDvv/+ORx55BABQoUIF3Lhxw5FDczw10w7Azy0FAIN2IiLSB4N2vZmCdmbaiYjI1TRp0gRvv/02vv76a/zxxx949NFHAQDR0dEIDQ118OgczGJNeD/3VAAM2omISB8M2vWmlsdnsBEdERG5lo8//hgHDx7EqFGj8MYbb+D+++8HAKxcuRItW7Z08OgczN0d8JD+vr4GybSnpwMZGY4cFBERuQJ2j9ebmmnPYHk8ERG5lnr16uHvv//Osv2DDz6Au7u7A0bkZHx8gIQE+CDFvCk5GQgIcOCYiIioyGOmXW/moJ3l8URE5FouXryIS5cume/v3bsXY8eOxVdffQVPU6VZsWYqkfdGqnkTS+SJiKigGLTrzfRPixvL44mIyMU8+eST2LJlCwAgJiYGHTt2xN69e/HGG29g+vTpDh6dEzA1o3NLSzFPcWfQTkREBcWgXW+mTLvbXZbHExGRazl69CiaNWsGAPj+++9Rp04d7Ny5E0uXLkVUVJRjB+cM1Eg9NZVrtRMRkW4YtOtNDdoz0gEozLQTEZHLSE9Ph7cpMP3999/Ro0cPAECNGjVw5coVRw7NOajLvqWkMGgnIiLdMGjXm6k83qAocEcGM+1EROQyateujfnz52Pbtm3YuHEjunTpAgC4fPkySpUq5eDROQFm2omIyA4YtOvNlGkHAC+kMdNOREQu4/3338eCBQvQtm1bDBgwAPXr1wcArF271lw2X6wx005ERHbAJd/0ZtE91xPpDNqJiMhltG3bFjdu3EB8fDxKlChh3j5ixAj4+fk5cGROgkE7ERHZAYN2vVkE7V5IY3k8ERG5FHd3d9y9exfbt28HAFSvXh2VKlVy7KCcBcvjiYjIDlgerzc3N8BDzoUw005ERK4kMTERw4YNQ3h4OFq3bo3WrVujbNmyGD58OJKSkhw9PMdjpp2IiOyAQbs9mLLtzLQTEZErGTduHP744w/89NNPiI2NRWxsLH788Uf88ccfGD9+vKOH53jMtBMRkR2wPN4evLyA5GR4IQ23mWknIiIXsWrVKqxcuRJt27Y1b3vkkUfg6+uLfv36Yd68eY4bnDNgpp2IiOyAmXZ7MHWQZ3k8ERG5kqSkJISGhmbZXqZMGZbHAwzaiYjILhi02wPL44mIyAW1aNECU6dORUpKinlbcnIy3nzzTbRo0cKBI3MSLI8nIiI7YHm8PZgy7V5IQ0YGkJEBuLs7eExEREQF9Mknn6Bz584oX768eY32w4cPw8fHBxs2bHDw6JwAM+1ERGQHDNrtwaI8HgDS0xm0ExFR0VenTh2cPn0aS5cuxcmTJwEAAwYMwMCBA+GrRqnFmWWm3bSMPYN2IiIqKAbt9mBRHg9I0K6efCciIirK/Pz88Oyzzzp6GM6JmXYiIrIDBu32kCnTzmZ0RERUVK1duzbX+/bo0cOOIykCGLQTEZEdMGi3B1Om3ceQBihgMzoiIiqyevXqlav9DAYDMjIy7DsYZ8dGdEREZAcM2u3BlGn3dU8D7jLTTkRERZfRaHT0EIoOZtqJiMgOuOSbPahBuwfL44mIiIoNZtqJiMgOGLTbg6k83tdDa0RHRERELo6ZdiIisgMG7fagZtrdJGhnpp2IiKgYUIN2ZtqJiEhHTh+0//fffxg0aBBKlSoFX19f1K1bF/v37zc/rigKpkyZgvDwcPj6+qJDhw44ffq0A0cMc9Du466t005EREQuTi2PZ6adiIh05NRB++3bt9GqVSt4enpi3bp1OH78OD766COUKFHCvM/MmTMxZ84czJ8/H3v27IG/vz86d+6MlJQUxw1c7R7PTDsREVHxwfJ4IiKyA6fuHv/++++jQoUKWLx4sXlbZGSk+baiKPj4448xadIk9OzZEwDw1VdfITQ0FD/88AP69+9f6GMGYN09HgzaiYjINfz6669wd3dH586drbZv2LABRqMRXbt2ddDInAQb0RERkR04daZ97dq1aNKkCfr27YsyZcqgYcOGWLhwofnx6OhoxMTEoEOHDuZtwcHBaN68OXbt2pXtcVNTUxEfH2910ZUpaPd2Y3k8ERG5jtdff93mWuyKouD11193wIicDDPtRERkB04dtP/777+YN28eqlatig0bNuCFF17AmDFjsGTJEgBATEwMACA0NNTq60JDQ82P2TJjxgwEBwebLxUqVNB34KbyeG8DM+1EROQ6Tp8+jVq1amXZXqNGDZw5c8auz/3nn3+ie/fuKFu2LAwGA3744Qe7Pl++ZJNpVxTHDYmIiIo+pw7ajUYjGjVqhHfffRcNGzbEiBEj8Oyzz2L+/PkFOu7EiRMRFxdnvly8eFGnEZtkyrQzaCciIlcQHByMf//9N8v2M2fOwN/f367PnZiYiPr16+Ozzz6z6/MUiI1MOwCkpjpmOERE5BqcOmgPDw/Pcka/Zs2auHDhAgAgLCwMAHD16lWrfa5evWp+zBZvb28EBQVZXXSVKdPO8ngiInIFPXv2xNixY3H27FnztjNnzmD8+PHo0aOHXZ+7a9euePvtt9G7d2+7Pk+BWAbtPlp6nSXyRERUEE4dtLdq1QqnTp2y2vbPP/8gIiICgDSlCwsLw6ZNm8yPx8fHY8+ePWjRokWhjtWKmmlneTwREbmQmTNnwt/fHzVq1EBkZCQiIyNRs2ZNlCpVCh9++KGjh2fF7v1rbFHL4wF4Ih3u7nKbQTsRERWEU3ePf/nll9GyZUu8++676NevH/bu3YvPP/8cn3/+OQDAYDBg7NixePvtt1G1alVERkZi8uTJKFu2LHr16uW4gZuCdi8DG9EREZHrCA4Oxs6dO7Fx40YcPnwYvr6+qFevHlq3bu3ooWUxY8YMvPnmm4X7pGqmHTCVyHshIYFBOxERFYxTB+1NmzbFmjVrMHHiREyfPh2RkZH4+OOPMXDgQPM+EyZMQGJiIkaMGIHY2Fg8+OCDWL9+PXwsPzgLm6k83ouZdiIicjEGgwGdOnVCp06dHD2UHE2cOBHjxo0z34+Pj9e/8WxmppP2AMzN6Bi0ExFRQTl10A4A3bp1Q7du3bJ93GAwYPr06Zg+fXohjuoe1PJ4MGgnIqKibc6cORgxYgR8fHwwZ86cHPcdM2ZMIY3q3ry9veFtUa5eKNzc5H+AtDQu+0ZERLpx+qC9SDIF7Z5geTwRERVts2fPxsCBA+Hj44PZs2dnu5/BYHCqoN1hfHwYtBMRka4YtNuDqTzek5l2IiIq4qKjo23eLmwJCQlWa8FHR0fj0KFDKFmyJCpWrOiwcWWRzVrtRERE+cWg3R7URnQKl3wjIiLSw/79+9GuXTvzfXW++uDBgxEVFeWgUdlgY612Bu1ERFQQ+QraL168CIPBgPLlywMA9u7di2XLlqFWrVoYMWKErgMskkyZdg9TeTwz7URE5AoURcHKlSuxZcsWXLt2DUaj0erx1atX2+2527ZtC0VR7r2jozHTTkREOsvXOu1PPvkktmzZAgCIiYlBx44dsXfvXrzxxhvO1RDOUdQ57QrL44mIyHWMHTsWTz31FKKjoxEQEIDg4GCrC4GZdiIi0l2+Mu1Hjx5Fs2bNAADff/896tSpgx07duC3337D888/jylTpug6yCLHFLR7KGxER0REruPrr7/G6tWr8cgjjzh6KM5LDdqZaSciIp3kK9Oenp5uXkbl999/R48ePQAANWrUwJUrV/QbXVGlNqIzMtNORESuIzg4GJUrV3b0MJybWh7PTDsREekkX0F77dq1MX/+fGzbtg0bN25Ely5dAACXL19GqVKldB1gkaRm2hm0ExGRC5k2bRrefPNNJDMKzR7L44mISGf5Ko9///330bt3b3zwwQcYPHgw6tevDwBYu3atuWy+WDMF7e4sjyciIhfSr18/fPvttyhTpgwqVaoET1NlmergwYMOGpkTYSM6IiLSWb6C9rZt2+LGjRuIj49HiRIlzNtHjBgBPz8/3QZXZKnd45lpJyIiFzJ48GAcOHAAgwYNQmhoKAwGg6OH5HyYaSciIp3lK2hPTk6GoijmgP38+fNYs2YNatasic6dO+s6wCJJzbRncJ12IiJyHb/88gs2bNiABx980NFDcV5sREdERDrL15z2nj174quvvgIAxMbGonnz5vjoo4/Qq1cvzJs3T9cBFklq0G7kOu1EROQ6KlSogKCgIEcPw7mxER0REeksX0H7wYMH8dBDDwEAVq5cidDQUJw/fx5fffUV5syZo+sAiyRTebz7XZbHExGR6/joo48wYcIEnDt3ztFDcV4sjyciIp3lqzw+KSkJgYGBAIDffvsNffr0gZubGx544AGcP39e1wEWSaZMuxvL44mIyIUMGjQISUlJqFKlCvz8/LI0ort165aDRuZE2IiOiIh0lq+g/f7778cPP/yA3r17Y8OGDXj55ZcBANeuXWPZHGDOtLtlsDyeiIhcx8cff+zoITg/ZtqJiEhn+Qrap0yZgieffBIvv/wyHn74YbRo0QKAZN0bNmyo6wCLJDXTfpeZdiIich2DBw929BCcHzPtRESks3wF7Y8//jgefPBBXLlyxbxGOwC0b98evXv31m1wRZYatBszYIARqan5ah1ARETkdIxGI86cOYNr167BaDRaPda6dWsHjcqJMNNOREQ6y1fQDgBhYWEICwvDpUuXAADly5dHs2bNdBtYkWYxx88T6UhN9XbgYIiIiPSxe/duPPnkkzh//jwURbF6zGAwICMjw0EjcyIM2omISGf5SgEbjUZMnz4dwcHBiIiIQEREBEJCQvDWW29lOeteLJky7QDghTSkpDhwLERERDp5/vnn0aRJExw9ehS3bt3C7du3zRc2oTNheTwREeksX5n2N954A4sWLcJ7772HVq1aAQC2b9+OadOmISUlBe+8846ugyxyLIJ2ybQ7cCxEREQ6OX36NFauXIn777/f0UNxXsy0ExGRzvIVtC9ZsgRffPEFevToYd5Wr149lCtXDi+++CKDdnd3wGAAFAVeSGPQTkRELqF58+Y4c+YMg/acMNNOREQ6y1fQfuvWLdSoUSPL9ho1arA8TuXlBaSmwgtpiGPQTkRERdSRI0fMt0ePHo3x48cjJiYGdevWzbJOe7169Qp7eM6HmXYiItJZvoL2+vXrY+7cuZgzZ47V9rlz5/IDW2UK2j2RzjntRERUZDVo0AAGg8Gq8dywYcPMt9XH2IjORA3aLTLtd+/KxSPf7X+JiKg4y9fHx8yZM/Hoo4/i999/N6/RvmvXLly8eBG//vqrrgMsskzZBy+kIS0NUBSpmCciIipKoqOjHT2EokUtj7fItAOSbQ8MdMyQiIioaMtX9/g2bdrgn3/+Qe/evREbG4vY2Fj06dMHx44dw9dff633GIsmUzM6T6QDANLSHDkYIiKi/FFXiYmIiMD58+dRrlw5q20REREoV64czp8/7+ihOgeL8nj1JsASeSIiyr98F2qVLVs2S8O5w4cPY9GiRfj8888LPLAizyLTDgApKdrJdyIioqKoXbt2uHLlCsqUKWO1PS4uDu3atWN5PGDViM5gkBg+JYVBOxER5V++Mu2UC6ZMuxq0s4M8EREVderc9cxu3rwJf39/B4zICVlk2gGwGR0RERUYW6LYiylo9/NIB+4yaCcioqKrT58+AKTp3JAhQ+BtUTqWkZGBI0eOoGXLlo4annNRT17ExwNpafD19cLt2wzaiYgo/xi024upPD7AKw24C3aQJyKiIis4OBiAZNoDAwPha9FhzcvLCw888ACeffZZRw3PuUREAGXKANeuAbt2wde3DQAG7URElH95CtrVM+3ZiY2NLchYXIs5087yeCIiKtoWL14MAKhUqRJeeeUVlsLnxM0N6NwZ+PprYP16Bu1ERFRgeQra1TPtOT3+9NNPF2hALkMN2j2lezyDdiIiKuqmTp3q6CEUDVZB+wwADNqJiCj/8hS0q2faKRdM5fFqpp3l8UREVBQ1atQImzZtQokSJdCwYUObjehUBw8eLMSRObFOnQCDATh0COWaX8E+hDNoJyKifOOcdntheTwREbmAnj17mhvP9erVy7GDKSpKlwYaNwb270erxN/wAwYzaCcionxj0G4vpky7jwfL44mIqOhSS+IzMjLQrl071KtXDyEhIY4dVFHQpQuwfz+a314PMGgnIqIC4Drt9mLKtPu6szyeiIiKPnd3d3Tq1Am3b9929FCKhi5dAAANrv8GN2QwaCcionxj0G4v5qCdmXYiInINderUwb///uvoYRQNzZsDwcEITLuFJtjPoJ2IiPKNQbu9qOXxbpzTTkREruHtt9/GK6+8gp9//hlXrlxBfHy81cXePvvsM1SqVAk+Pj5o3rw59u7da/fnzDcPD6BjRwBAF6xn0E5ERPnGoN1eTJl2NWhneTwRERV1jzzyCA4fPowePXqgfPnyKFGiBEqUKIGQkBCUKFHCrs+9fPlyjBs3DlOnTsXBgwdRv359dO7cGdeuXbPr8xaIqUSeQTsRERUEG9HZixq0szyeiIhcxJYtWxz23LNmzcKzzz6LoUOHAgDmz5+PX375BV9++SVef/11h40rR507AwCaYS9+uH0TQCnHjoeIiIokBu32YiqP9zawPJ6IiFxDmzZtHPK8aWlpOHDgACZOnGje5ubmhg4dOmDXrl02vyY1NRWpFh++hVG+n0X58rgWWgdlrh5F5NnfATxR+GMgIqIij0G7vZgy7WrQzvJ4IiJyFUlJSbhw4QLS0tKstterV88uz3fjxg1kZGQgNDTUantoaChOnjxp82tmzJiBN9980y7jyYsLtbqgzNWjqHl+PRi0ExFRfjBotxc1aHdjeTwREbmG69evY+jQoVi3bp3NxzMyMgp5RNmbOHEixo0bZ74fHx+PChUqFPo4rtbpAGz5EFWv7Sj05yYiItfARnT2YiqP9wLL44mIyDWMHTsWsbGx2LNnD3x9fbF+/XosWbIEVatWxdq1a+32vPfddx/c3d1x9epVq+1Xr15FWFiYza/x9vZGUFCQ1cURUiKqAwDuSzoPGI0OGQM5sePHgcqVgS++cPRIiMiJMWi3F1OmnUE7ERG5is2bN2PWrFlo0qQJ3NzcEBERgUGDBmHmzJmYMWOG3Z7Xy8sLjRs3xqZNm8zbjEYjNm3ahBYtWtjtefWglCuPu3CHl5IGxMQ4ejjkbBYsAKKjgWXLHD0SInJiDNrtRc20G6Q8nnPaiYioqEtMTESZMmUAACVKlMD169cBAHXr1sXBgwft+tzjxo3DwoULsWTJEpw4cQIvvPACEhMTzd3knZVPgAcuobzcOXfOoWMhJ6RONbl0ybHjICKnxjnt9mLKtHsqzLQTEZFrqF69Ok6dOoVKlSqhfv36WLBgASpVqoT58+cjPDzcrs/9xBNP4Pr165gyZQpiYmLQoEEDrF+/PktzOmcTFAREIxKVcB6pJ6Ph3bKlo4dEzuLMGeD0abl96RKgKIDB4NgxEZFTYtBuL2rQDjaiIyIi1/DSSy/hypUrAICpU6eiS5cuWLp0Kby8vBAVFWX35x81ahRGjRpl9+fRU/PmwFr/SkAisHv5ObQZ5ugRkdOwbOiYnAzcvg2ULOm48RCR02LQbi+m8ng1087yeCIiKuoGDRpkvt24cWOcP38eJ0+eRMWKFXHfffc5cGTOy9sbqNapErAGOLflHOrcBEqVcvSoyClkXoXh0iUG7URkE+e024sp0+7B8ngiInJRfn5+aNSoEQP2e6jbvRIAoGz6Obz7rmPHQk4iORnYskVuqysbcF47EWWDmXZ7UYN2I8vjiYjINViue27JYDDAx8cH999/P3r27ImSzBZacatcCQBQCecwdy4wejRQqZJDh0SO9scfUoZZvjxQvz7wyy8M2okoWwza7cVUHu9hZHk8ERG5hr/++gsHDx5ERkYGqleX9cf/+ecfuLu7o0aNGvjf//6H8ePHY/v27ahVq5aDR+tEIiMBAJUM53E3LQOTJ7vj668dPCZyLLU0vmtXwN1dbv/3n+PGQ0ROjeXx9mLKtLsbWR5PRESuoWfPnujQoQMuX76MAwcO4MCBA7h06RI6duyIAQMG4L///kPr1q3x8ssvO3qozqVsWcDDA55KOsJxBUuXAocOOXpQ5FC//irXjzwi2XaAmXYiyhaDdnsxB+0sjyciItfwwQcf4K233kKQOgcXQHBwMKZNm4aZM2fCz88PU6ZMwYEDBxw4Sifk4QFUqAAAeKb9OSgKMGIEq/CKrTNn5OLpCbRvD5QrJ9sZtFNepaUBFy86ehRUCBi024upPN49g+XxRETkGuLi4nDt2rUs269fv474+HgAQEhICNLS0gp7aM7PNIl9VLdzKFkS2LdPAndFceywyAHU0vgHHwQCA5lpp/xRFKBbN/nbsmePo0dDdsag3V7UTPtdlscTEZFr6NmzJ4YNG4Y1a9bg0qVLuHTpEtasWYPhw4ejV69eAIC9e/eiWrVqjh2oMzIF7ffdicb338s05q+/BmbNcuywyAEs57MDDNopf6KigI0bAaMRWLrU0aMhOytSQft7770Hg8GAsWPHmrelpKRg5MiRKFWqFAICAvDYY4/h6tWrjhukypRpd8tgeTwREbmGBQsWoH379ujfvz8iIiIQERGB/v37o3379pg/fz4AoEaNGvjiiy8cPFInZGpGh3Pn0L69FqxPmABs2OC4YVEhs1zqTQ3a1fL4+Hi5FBXLlgH9+wNJSY4eSfFz/Trwyiva/R9/ZNmOiysy3eP37duHBQsWoF69elbbX375Zfzyyy9YsWIFgoODMWrUKPTp0wc7duxw0EhNTJl2w12WxxMRkWsICAjAwoULMXv2bPz7778AgMqVKyMgIMC8T4MGDRw0OienrvF27hwAWfbtyBFg0SLgiSeAvXsBFigUwNy5cvajdGmgTBm51K0LtG1rTqQ4hZ07taXeateWbYGBQHAwEBcnHeQtekY4talTZW5+//6AqdKGCskrrwC3bsl7/MwZ4MIF4PBhgH9/XVaRyLQnJCRg4MCBWLhwIUqUKGHeHhcXh0WLFmHWrFl4+OGH0bhxYyxevBg7d+7E7t27HThimIN2ZtqJiMjVBAQEoGTJkihZsqRVwE45yBS0GwzAZ58BLVtKrDZtWu4O88orQNWqwO3b9hhkEZWSAowdC/z8M7B4MfD++8D48UCnTkBYGDB8uJSkp6c7eqQSWAHAAw/Im0CllsgXlWXf7t41v5dx9qxDh1LsbN4MfPWVvH8WLpT3OQCsXevYcZFdFYmgfeTIkXj00UfRoUMHq+0HDhxAenq61fYaNWqgYsWK2LVrV7bHS01NRXx8vNVFd6azuoZ0ybSnpbFqhYiIijaj0Yjp06cjODjYXB4fEhKCt956C0aj0dHDc25q0H7hApCRAQDw9tbK5Neulcrpe1m2TBJre/faZ5h2deKEfc42nDkjr2lgIPDOO8BLL0n5Qpkyko388ktZWq1fP/2fO6+OHJHrunWttxe1ee0XLkjgDjBoL0wpKcDzz8vtF18EmjcHevaU+z/+6Lhxkd05fdD+3Xff4eDBg5gxY0aWx2JiYuDl5YWQkBCr7aGhoYiJicn2mDNmzEBwcLD5UsG0DIuu1PL4dK2DLrPtRERUlL3xxhuYO3cu3nvvPfz111/466+/8O677+LTTz/F5MmTHT0851a2rJzQv3vXKpvarBlQsSKQmKj1J8uO0QiozfuvX7fjWO3h77+BOnWAxx7T/9gnT8p17drA//0f8PHHwHffAZcvy/zxkSNl2b0ffgCOHs369f/9Bzz9tLT0t7e//5broh60WwbqDNoLz0cfAadPA+HhcoIKAB59VLLuBw9y+TcX5tRB+8WLF/HSSy9h6dKl8PHx0e24EydORFxcnPly0R5vcFPQblmKxaCdiIiKsiVLluCLL77ACy+8gHr16qFevXp48cUXsXDhQkRFRTl6eM7N3V2ic0ArK4b8r923r9xesSLnQ9y8aU7SF72gfccOOeuwZYv+gYUatNeoYb3d3V3mtM+dC/ToIdsWLcr69a+/Lq38hw+3b1lkRgZw/Ljczhy0F7W12hm0F76MDGDePLn9/vvSBwGQipKWLeU2S+RdllMH7QcOHMC1a9fQqFEjeHh4wMPDA3/88QfmzJkDDw8PhIaGIi0tDbGxsVZfd/XqVYSFhWV7XG9vbwQFBVlddKeWx6elAZAPAAbtRERUlN26dQs1MgdGkKlpt27dcsCIiphM89pVatX2Tz/lXCJvuThOkQva1WAVkIy3ntSgvXr17Pd55hm5/uor63/ILl2SrDwgWXA9WvmvWSOXzM6ckfJmPz+gcmXrx4papv3MGe32+fNaqTzZz++/S1VIyZJZp3qoJ6UYtLsspw7a27dvj7///huHDh0yX5o0aYKBAweab3t6emLTpk3mrzl16hQuXLiAFi1aOHDk0DLtAPw85Q8ZO8gTEVFRVr9+fcydOzfL9rlz56J+/foOGFERk03Q3rQpEBFx7xJ5y5l/RS5oP3FCu20roC2IU6fk2sYJJbNOnSQwvnXLeu7vnDkScLqZ/iX+4IOCjSUmBnj8cSmfyLwEsVoaX6eO9nyqoha0W2bX795lWXZhWLxYrp98UhpiWFLntW/ZIp0tyeU4ddAeGBiIOnXqWF38/f1RqlQp1KlTB8HBwRg+fDjGjRuHLVu24MCBAxg6dChatGiBBx54wLGDtwjaA33YQZ6IiIq+mTNn4ssvv0StWrUwfPhwDB8+HLVq1UJUVBQ+KGiwUxxkE7Rblsh//332X+4ymfY//5Rafz0oSvbl8Zbc3YGhQ+X2F1/IdXw8sGCB3J47V+a9b94MHDiQ//Fs3CjTADIygO3brR/LrgkdULSDdlv3nYnRKJUWzz4rDfRyw9k6SN++rVWoqO9jS9WryyU9HVi/PnfHvHZNMvbq7wM5NacO2nNj9uzZ6NatGx577DG0bt0aYWFhWL16taOHZbUmaICXNKNj0E5EREVZmzZt8M8//6B3796IjY1FbGws+vTpg1OnTuGhhx5y9PCcX2SkXEdHZ3lIDdp//hlISrL95UU20x4XJ03hAKBKFQlof/pJn2NfvgwkJEhQnrnkPDM12Nm4UU6cLFokgXuNGsBzz8l640DBsu2//abd3rbN+rHsmtABWtB+86bzl2Yqihakq1MSnDloP3pUftZffAFUqwa89hqQaWqtlY0bJZP9v/8V2hDv6dtvJZCoVw9o2ND2PnkpkY+NBTp3lkYaEyc61wkKsqnIBe1bt27Fxx9/bL7v4+ODzz77DLdu3UJiYiJWr16d43z2QsOgnYiIXFDZsmXxzjvvYNWqVVi1ahXefvttGI1GjBgxwtFDc37ZZNqB3JXIF9mgXS2NL1sWGDRIbutVIq9m2atUsapytCkyElCXCV64ULrMA7Kmu5sb8Oqrcn/FCu3EiqJIhnP0aCmtz4nRKAGf6s8/rR/PKWgPCZG57oDzr9UeEyNnltzcgHbtZJszB+2HD8u1h4f8Mz5zJnD//dmfOFLLXb75pnDGlxtqafyQIVKaY4taIv/rr1aNsLNISgK6dwcOHZL7N27kvgKBHKbIBe1FhsEgfxwA+HvJL46znzglIiLKj5s3b2KRra7cZE0N2i9ezNK4y2DQektl10W+yJbHq0F7zZpA795y+7ff5AxFQeVmPrul4cPleuZMCVTKlNFOJNSrJ9lHoxGYNUtOrnTvLmOeO1fWe8/J33/LD0k9eXD4sDa/ODER+PdfuW0raDcYik6JvBqgV6yove5FIWh//nkJ1GvWlIqG55+3nWFWp0ccOJC7f94vXcp6gkZPR48C+/dLXKG+V2154AGgVCnJoh88aHuftDRZdnH7duk+r65oURjLHVKBMGi3J9MfbWbaiYiICOHhUomXkWEzm6qWyP/0k+0SectMe2xszsk0p6LOZ69VSwLjyEgJhvTo1J6b+eyWevWS7tvqSZNRowDLZYXVbPsXX8h4f/lFe+xegZlaGt+xo2T+jUZg507ZduyYBIhhYUDp0ra/vqgs+6YG6PffL9+n5TZnpAbt9esD3bppAfDly1kb6KWmSpAMyC9Ybvob9O8PtGkD/PGHvuNWqVn2bt2yf+8AMkVEPSH0zz+29xk6VOa8+/lJRr5rV9m+f79+4yW7YNBuT6ag3c+TjeiIiIiKPTc3qYEHbJbIN2kiyfikJNsl8pmbkd+4ofsI7cMy024waNl2PUrkc7PcmyUfHy1b6esLvPCC9eMPPww0aiQnFZKTZZ33qCh5TF1rPjtq0N6pE6D2eFAD/Zya0KmKSqZdXe6tShXroN0Z50UrinXQDkjAWq+e3N6zx3r/v/+2Phu2Y0fOx09N1Y5hj3L69HTtuLYa0GVWrZpc2wraT58Gli2TExarV8va7k2ayGMM2nPvzz/l5F52J0bshEG7PZnmtft7Sqad5fFERETFXA7N6AwG4JFH5Lat/6EtM+1AESqRt8y0A5LtBqTrXm7LBRTF9lrgec20A8DLL8uya2+9Bdx3n/VjBgMwfz7QpQuwZIl0k3/ySQn0bt2yXrrOUlKS1niuUyegdWu5rW7LaT67qqgE7WpWvUoVeT8bDNIM0BnfkDExMi43N/mZq5o3l+vMQXvmzLpaKZGdEye09+Xq1fqXv6xbJ13ey5TRsuI5UYP206ezPnbsmFzXry/TQADroD2nE1KkmTsX+PBDWS6yEHkU6rMVN6ZMuxq0M9NORERFUZ8+fXJ8PDanTsxkLXMzOjWjW6IEAC1xmTkRn5GhZdZLlJAVoIpEpj0pSftmataU65Ytpcz3+nVg61YpJ7+XV18FPvtMgii1e3ZiolbenNtMOyA/AzWItqVpU+tSB09PmS+8ebME4bVrZ/2abdvkH70KFWQspr5G2LtXfr6uGLTff79ULpQrJ2M+e1aCS2eiZtmrVZPKCtUDDwDz5mUftLdtK+/NnTvlhFF2zd/UZm6AnNTZvFkLiPWgTs8YMMCqyXW2qlaVa1tZYPWEk+UJrtq15WcYFyc/P/XrybZr17Sl9559tlCfmpl2ezIF7b4eLI8nIqKiKzg4OMdLREQEnn76aUcPs2hQg/aZMwF/fwkkSpYEpk61ejhz0H79uiTC3Ny0hLUzJjazOHVKgp5SpbT5uO7uWqfrlSvvfYz0dOn2npIiWXCVGpjcd58c354efFCuM6+9rrIsjTcY5OxLeLiMfc+evAXtzt493jLTbnmtNtqzJT1dKhu+/tq+Y8ssc2m8Ss20HzhgnR1Xg/Znn5Vl365f16YD5HR8N1NIlV0XyfxSx9OqVe72tyyPzzxdwXKaisrTE2jQQG6zRP7eliyR90vz5lnfU3bGTLs9mc6I+XmwPJ6IiIquxWojJCo4NVhITrbePn060KgRKlWSYDZz0K6Wxt93n/QyAwo5aFcUCV6Sk7X5wLmReT67qn9/afb2zTfAu+/mHHRv2ybrqQPAqlVSnurpmb/S+PxS56hnXntdZRm0A/K9PvSQLB+2YoWURViecbGlKGTaY2Ol8zoAVK4s11WqSBO2nJrRvfoq8MkncvvcOWDyZHuOUpNd0F61qiyzFxsrJ1QaNZLsmnpyRZ3vvWOHZNuzy0Crxx80CPjqKymRnzcv56z4li3yS2wZPNuSlqaNp3HjnPdVVa4s77PERPmjER6uPab+vmR+3iZNgN27pYP8gAG5e57iSFHk5CFQ6Fl2gJl2+1Ib0XmwPJ6IiIggjc7+/lvKps+elaBhzBh5bPBgRGZIVi8mxjquV5vQWTYftxm0nzkDnD+vz1jT04HvvpNl0ipVkixe/frArl25P4YatGcOVh9+WMrck5Kk7D0nlutp37wpJchA4QbtDzwgFQIXLmRd0/ryZek4bjAA7dtr29VA/6uv5LpqVesS7czUoD0mxn5LA6xbp81tzg81MA8NBQIC5LYavGcXtH/9tRawA8CUKVJZUhiN67IL2t3cgGbN5LZaIq82oStZUhpGtmwp27NrRqcoWnn86NHymty+DWzalP14jh+X90inTveeQ370qATuJUpovTDuxctLK9exLJFXlOx/X9iMzlp8PPDcc9rfGdUff0ivgMBA4IknCn1YDNrtyXSWzced5fFEREQECezq1JF505Ury1rJH3wgAUJcHEKeeQyl/WW9N8vYUM205xi0x8fLcVu00CfoGzpUMm9ffmk9mLyUAKtN6DJn9wwGYMIEuf3pp7bXuAMk2FCDdjVwWb5crtU12vMynz2/AgIkGwtkLZHfuFGumzSxrhhQm9ElJMh1TqXxgJRReHnJ93zlSsHHnNmPP0qnw0aNpIt4fljOZ1fltOzb/v1aVnLyZHmvA1JZMnmyvGd//13u9++ffSVDfqSkaO8RW6XMmZvRqaXojRvL+1MtSc+uGd2lSxKke3jIz/axx2T7999nP6ZNm+Tne+mSdkIhO+p4GjXKfk69LbY6yP/3H3Dnjpx4svzZAVrQfvCgNM8o7hYvBj7/HOjRQ/v7Bcg2QBpTqiesChGDdntS57S7szyeiIiIsuHlJf/olykDw5EjWOj5AgDFqkRezbSHhuYQtB8/Lpn7K1e0tabz68ABYOlSCRbGjZO1nZcskcd+/TX3x8ku0w4Ajz8ugfiNG9pa1JmdOiXBoJeXBPeAlCCnphZuph3Q5rVnDiwzl8ar6tSREmzVvYJ2NzegbFm5rXeJvNFo7puAtDRg4EBgxoy8Z7stl3tTZRe0X7smy/ulpsoa49OmAa+8AsyeLY+/8468Ph07ytiWLweef16/DPyxYxKEliqlva6WcgraATn5pR7HVrNNNcteo4bMf+/XT+6vWSOvsS3qEoCA9r7JTubx5JatoF39Pbz/fnN8YlajhvTXSEzUTnIUNYqiX3WK+jNKTAT69JETSzdvytQcABgxQp/nySMG7fZk+qVgpp2IiIhyVK6clKK7uaFn7FfohR+sgvZcZdot/+HO3BU7ryZNkuuBA4GPPpKO2D17SlZRDaTvJT1dW3rK1vxdDw9g/Hi5/eGHtpd0U7PsbdvKkldly0qn6/Xrte+3sIJ2W/Par16VpeuArF3w3dy0QB+4d9AO2G9e+w8/SGY3IAB48UXZ9n//J2XAtl737GRuQmd5OyZGAh1AThI88YR8H9WqSe8CtVnb2LHaCRhFkRM36rJ6x4/fe5m13LIsjbeVqVbL40+elKA8c5BcpoyWlbY1JUQ9vtrI7cEH5Rc0NlaqBzJTFOv3jr2Ddstl37Kbzw5I9l2tItm3L2/P5SxGjZJpDbaqF4xGeX898ohURuREUbRKGn9/+RszbJicsExLk5+F+loVMgbt9qSWx7txTjsRERHdQ7t2kmkE0B6b8p5pt8ys7d2b/3Fs2yZBsYeHZEdVwcFaEJqbbPuZMxIQBgRowWhmQ4dKWfi5c7Y7yatBe/fuEvT17Sv3P/hAShgt5/Dam/q9Hzsmy3sBwEsvSSauYUPrAF2lBvpA4QTtQ4bInGnL9QAts+xjx0oPgU8/lddz4UIJmkePltLte2UrbQXtJUtqFQVqB/k1a2TJNH9/OWEQHGx9nFGjJKi8fFm+ZulSbZ6wWoZcUNnNZ1eVLq3Nx9+xw3bTt5xK5NVMu3p8d3epHgFsl8ifPi2/yOrJi+3btZMcmaWlAUeOZB1Pbtha9s3Wcm+WnH1ee1qa/I2wVYWRnAxERck0lLffzvr4r78C334r/Ry6dNGaWtpy+rRUiHh7y9d5ekqG/Y035HEHNKBTMWi3JzXT7sbyeCIiIsqFpk0BADVxIttM+333yW27ZNoVRTKwgDSgswzOAMlWAbkL2i3ns2c3J9fPTwJGAHj/fet/ym/e1JqAde8u12pgp26//35tTXR7K11aC3p27JA1tJcv14Jfd/esX9OmjVwHBmoBYk7UoD3z8gG5ER0tGcHNm6UqwbLj/tGjQFCQTHUAJGhes0aC7UuXpCN/hw7yBlPXobbF1px2wLpEPiNDms0B8nzZdUm//37r7ubPPSfX339/74xobtwraAekwSAgKxmkp0vTN8uTQGozOltBe+ZMO6CVyP/wQ9ZsnZplb9UKqFhRAlHLcnlLahO6kJDcvW8sqZl29WcB2F7uzZLp745TBe27d0uvg/bt5XWIjLTdtHLrVq0nxurVWauA3ntPu713r/xuqH0mMlOz7M2aSU8KtYFiSoqcgHJgd30G7fZkCtq93VgeT0RElF/vvPMOWrZsCT8/P4RYzhF2RaZ/qjMH7bYy7TdvZmpAbRm0nziRc0YpOxs2yD+u3t62l+VSg/YtW7JvHmc5BuDeS1uNHCnB+6FD1icD1q+Xb7BuXenmDUiQpd4GCq80XqVm09etA154QW6PG5d9NrRZM5nD/fXXWoY1Jw0bynV+SsQtu5bv3y/TGRITgTfflG1jx0pQqurRQzLdP/0kJ2hKl5YKgiFDZHtmyclaBUDmkzmWa7UvXy4nbEJCtJMEudGsmSwnmJIi5fQFoSi5C9rVee1r18q12oROpQbte/ZYTyO4c0eb3295/FattCkcmU9sqQF669Za/wO1iWFmmZvi5UWFCvL7m5amNZDMqTwe0DLthw7Zb+WCvHj3XekpMHWqnIRSl9KYPz/rvr/8ot02GoFZs7T727fLCTYvL9kvJER+t7p3t/33Sz2xov6eP/888NRTcvupp+TEl4MwaLcnU3m8t4Hl8URERPmVlpaGvn374gU1SHJlpn+qy+IKbv0ba95sK9NuNGpV2jAatTmsvr4StOQ1a6YoWhnoqFEyzz6zWrUkaE5NzbokUmZqpj2ntckBaRSmNnfq318LZCxL41UGg5bNBAo/aFfL3efNAy5elOyfGhTbYjBIsNyzZ+6Or2bm//pLAr+8UOdR9+kjmf2tW2X+7bFjUp7+8stZv8bXV5rEffGFBOpNm8rzjhyZtRQ5Olqug4Ksu+QDWjb41CmtFP/VV60b8d2LwaC9DxYsKFhDuosXZW65h0fOJ43UoF09+5X55EutWvLaJSZq5eqAVkpftqx2Fg2QEzMDB8ptdak/lRq0P/SQFrRnN689v/PZAan4UE+i/POPvA7qH5DsVlqoUkW+z5SU/C0JePWq9L74v/+zXqsyP374Qfs71Lu3ZNd375bA+9gx6yabiqL1lFBPEC1erE0PUbPsQ4bICccNG7TfDVtZczVoV3/PDQZZPWPdOvn+HIhBuz2pmXYDy+OJiIjy680338TLL7+MurmZE2ySmpqK+Ph4q0uREBSEjHAJlkteO4HkZEl83bwpD4eGyr8X6hRhc4n8hQsSSHt5SfknkPd57StXyrJPAQHA66/b3sdgyH2JfG4z7YBWBpuQIMdfskQy7YAElZYs10gujOXeLFnOUQckuPTz0+/45cpJ2bjRmHVpOUDK5pcuzRrQGo1apv3llyWQ8fHR5jWPG3fvANrDQ4J3Dw8JnNRu2SrL+eyZs79qkPj115KBvu8+YMyYe3yzNgwcKCcSjh2z3fwtt9Qse82aknXOToMG1t3UMwfJbm5aF3nL5nI5ZfGfflquf/lFCx4vXpSfnZubZO/bt5fX8NgxWY4ts4IE7YB1B3n197BcuewzxW5u2nPl9mRfRoYsI9irlxz7lVdkRYJhw/J/wuXvv4FBg+T2qFFS7v7ii3JyRf279u232v7HjgHnz8t7ffp0+R6SkyXQP3JEfgZubnICCZBqjvXrJbG6dq3WlwCQVTfOnpWfi/ozB+T3oUsXfX/P84FBuz2Z/gh4GVgeT0REVJhmzJiB4OBg86VChQqOHlKuudXWSuQvXJC+SIAk0NQEZ5ZmdGpp/P33W5f05tatW1qQNX68ls63xTJoz+6f84wMrST3Xpl2QLJfv/4q2a+7dyUzFhcn36ja5VvVqJGUzLu5ZX3M3ipV0ioQnn46a8d4PbRtK9dbt2Z97MknJaiJirLefuSIBIgBARLgtG4tQbeHh7yGL72Uu+euVw+YOFFujxxpUcoBrRw883x2QAva1Szr66/nby3rkBCptgAK1pAuN6XxgAT0lnPSbQXJvXrJ9cyZ2uuhBnuWX6uqU0feo+npsiIEoGVwGzWS93rJkto88swl8gVpQqey7CB/r9J4lTqexYvlvZfTmu2KIr+rvXpJ4J6RISX2Hh7yPdtqCHcvN27IlI3ERODhh63L3AEtM/7dd9rfHbU0vl07mXM+YYLc//RTrQLm8cet37MtW0oGH5CTbir1JFm9enmrECkkDNrtyVQe7wWWxxMRERWmiRMnIi4uzny5ePGio4eUawZTkFsLx3HunFbZGhqqTYvOErSrGdVq1bRANi+Z9pdekieqUSP7LLuqXTsJds6f17J4mR09KiWG3t5SQp4bXl4yl3nsWG3bo49mbfBmMEiZ6759hV8ebzBI5/onn9TWG9dbdkH7+fNa9nnRIuvH1Cxwmzbm/z/xyCMyReHgwazd23PyxhsS4F27Jidwrl+XwFKtrMg8nz3ztvBwbb5/fqgl8suX574h3Xvvyff+1lsSsOc2aAe0EvkSJWy/V4cPB2rXlnIXtfT/XscfPFiu1RL5zGXXQPYl8seO5b8JncpWpv1eQbv6vtu5U37Hy5WTbLetSoBFi4AVK+S99uqrMuZ9+4D//U8enzJFHs+tuDgJrs+dk/fS999r72NVt26S7f73X60aQC2NV6tx+vSRn+HNm5KlB4DXXsv6fGrTw6VLtaZ0atCeuZrGSTBotyc10w6WxxMREVl6/fXXYTAYcrycVDNE+eDt7Y2goCCrS5GRqRmdZRM6VbaZ9urVJZvn7i5zlHOzdNjatdo62lFRUmqaE39/+acesG4CZUnt8vzII7a7qmfHzU0ybLNnS0A+cqTt/cLDHbZeMgYMkH/2S5a0z/HVee0HD1rPa7dcEm/HDuvGg2rQ3qGD9bGqVs1+ub3seHtLmbzBIO+HMmUkwFSfw1blRLlyWhn6G28UrJS4eXOppEhJyV22/dIlYNIkmTM+ZYpkv9XXKjdB+8MPy/VDD9lu+ubhoXUR/9//JGBXM+HZHX/AAPm6ffskaLZsQqeybEZn2VFSLY1v1CjvTehUlsu+3Wu5N1WXLjLFYtgwOYFx9ar8HrdqpfUzACR7r1ZuvPOOVCCo74lnn9VOug0eLN/L3buSuUxKypq9v3tXst1VqwJ//CFVCD/+mLVnAiB/d3r0kNvffitVD2rDxkcflWsPD+vmh5062f470a6dnNi4c0crt8/chM7JMGi3J9MZIk+wPJ6IiMjS+PHjceLEiRwvlfObZSrqLDLt589bN6FTqUG7eTluy6Dd319KdIF7Z9tv3dKyTq+8omUd7yWnee03bsjcZsB287N7UZu3nTihdbUuTsqX1+a1q0vbAVrm0tdXrhcvluuUFC0ozBy051fLltY/u6pVgb595WSKZSNAlbu7ZLufeUYuBWEwaEHhlCnSlC8nCxdKMFi7tgR16uvj46N1489Jz55y4spWZ3JV+/bAY4/Jz+SJJ2QagK+vFhxnVrq09jsya5bWlNEyIHzgAZlCcOOG9dzqgs5nB7RM+7lz1vP77+XhhyWLHhMjv9tVq0qFR9u2kuFOT5fpGUlJEviOH5/1GB98ICcAkpPl99fTU34W/v4yp75FC6nE+Phj+fk8/7ycfaxeXZ6zdu3sx6dOnVi+XPY1GuVvneWKEkOHatN7curNYdn0MD5ee52cNGiHQkpcXJwCQImLi9P3wK++qiiAcrbPeAVQlEaN9D08ERG5Jrt9LhVxixcvVoKDg/P1tUXqNb12TVEAJQMGZXDfROXddxUFUJQhQ7RdXn9dto0ZY9pQsaJs2L5d7o8YIfdfey3n5xo4UParWVNRkpNzP8YzZ+TrPDwU5epV68feflsx/+NjNOb+mKR55hl5DV99Ve6fPy/3DQZF+ewzuR0erijp6YqyebPcDw3V9/XOyFCUo0cVJT5ev2PmltGoKN27y/dVpYqiZPd7m5YmrwOgKMuXy7bEREX55RdF2btX3zFFRyuKj488F6AozZrlvP/KldrPDFCUWrWy7qN+jzNmaNuaNrX+fvLDaFSUwEBtrICiXLmS9+P895+iVK8uX1++vPZ3JSREUS5cyP7rYmMVpXlz6+fP7lKihKLMmSM/y3tJSVGU4GD5uvvvz/5v3NGjirJuXc7Hun5dUby85Bjq36zIyHuPQWe5/Wxipt2eTOXxngoz7URERPl14cIFHDp0CBcuXEBGRgYOHTqEQ4cOIUGdi+hqSpdGamApuEEBTp3KMdN+/Tok66Wux6x2U1fntefUjG7VKinzzm1ZvKUqVaTs9O5dyVipjaHS0rTS+Jdfzn95b3Gnlsir89rVTu4PPSSZ7Pvuk27XGzZYl8br+Xq7uUnWMzBQv2PmllqaX7GidPR+9lnbTQ9//FFeh7AwrWGcn59kudXGanqpVElrdAbYbkJnqVs3KTNXx21ZGq9SS+Tff1/m49+4UfAmdIC8fmq2HZCeBpbza3KrbFl5D9asKdMQ1OkK8+fLevDZCQ6W/gvXrsn88thYKUU/cULK0V97TUraJ0yQBoejR2edw26Lt7fMWwe0xoiZV5cA5H3bpUvOx7rvPqkeAeS1B5x2PjvA8nj7Mr35PBTOaSciIsqvKVOmoGHDhpg6dSoSEhLQsGFDNGzYEPvzug55EZJ2v5TI+184btWITmUVtKvrs5csqZWFqkH7/v22u0D/+6802ALkH+j8dGFftEgSFD/+qP0zv2KFBFHh4bbLqCl31KD9wAEp3VVL4x9/XF7zp56S+19+mf189qKuZEkpg/bwkMZktsrX1cZnzzxjvXSbvbz2mhas3qungre3Vs4N2A4IBw6UbuWxsTIVoGJFyfIVpAmdyrJ0v2bN/J/QCQsDtmzRytYHDbJedjE7BoP8oSpZUoL4gACZV9+/v0yl+PlnOVmR194Qlq9piRIyzSC/1KlBamaVQXsxpWbajeweT0RElF9RUVFQFCXLpa3a7dgFedaV+afhsSdw/rxsyzbTbtk5XlWrlswhTUjI2uE9LU3+8Y2Lk7nL6tJIedWggazLDEhW/cQJraP6yJGFE0S5qgoVpJrBaJQlrtSu8Y89JtfDhsn12rVaJ+327Qt/nPb2wAMS2AHyHlObhQHyftuyRSoC1PnJ9ubnB/z0kzTbU9djz4naRR6wHRCWKCENB5ctk8BaXTKvIE3oVJZ/D3Iznz0noaHSX+HHH+VEkSM9/LD2B7BrVzmpk18PPmj92jjrfHYwaLcv04eVO8vjiYiIKA+8G2rN6NQeVdlm2i2b0Knc3bUmbpmb0U2YIF2tS5aUUtXclKVmZ+xYKfFNTpY1yw8ckDJ7NYNF+aeelJo0Sa5btZJyZUCabzVpItMTjEb52edUrlyUvfyyNJhLTZVqAnXt83nz5LpHj8L93uvXl3XI1YZ3OWnWDPi//wOmT89+jO7u0m3+6FGpKOjXT/YvKD2DdkCy5T16FOzvhR48PKSc3mDQqoXyy2CQRniAVClZ/g11Mgza7Uktj89geTwRERHlnqGWtuybetI/u0y7YitoB7RO8Dt3aktKrVmjLV+1ZImU4xaEOh/+vvu09Zyfekor06f8U4N2dV0/df6tSs22A65XGm/JYJCTS717S5XIgAGyXvqSJfL4iy86dnw5MRhkWbTJk++9r5ub/IyXL5cTNAVlWR5/r+XeippJk6SKSF2uryCGD5eO87NnO3UPDgbt9qRm2lkeT0RERHlhyozdjzPwhPwfYStoT08HMk7YKI8HtHnqixZJIqFkSW0+6Kuv2m7glB/h4dryY4C2XBcVjDqvXaWWxqsGDNCaB7piabwlPz+Z168uQzd9usz1r1rV9b/3/NI70+5MDAZ5T+jB319K/gcN0ud4dlKASQB0T2rQniHl8Wlp0kDSiU/iEBERkTMoXx4pngHwSU/A/TiDs161EBKiPezrK/9rJiYqMPyTTaa9fXsJak6flkz77duyvVUryf7pqVs3rWw5p3WWKfcqVJBmZP/+K2tbly9v/XhIiDRi27tXvxMwzszdXdY8r1IFGDNG3tPPPy8ZasoqJEROcsTGymtGRRqDdnsylce7mcrjAcm252VFFSIiIiqGDAbcDquJ8Iv7UBMnkBBaK8tJ/9KlAf/Ea3C/EycZgcz/mIeESJO6lBT5x11ddql2bfvMS81NR2nKmx49gI8/tm5oZmnoULkUJyNHSuZ40ybnLo13BrNmOXoEpBMG7fakZtrvMmgnIiKivEmtXAu4uA+1cBwXQk2l0Skpsu5xuXIoXRrwPmcqjY+IyL4xlo+P1NZb1tdT0fDuu7LMW8uWjh6Jc3n4YX3mMxMVEawnsSfTWWyDqTwe4Lx2IiIiyh2PulozurAwADExsqZzhQrA/PnS7BjZlMaTa/D1lekMnFtJVKwxaLcnb28AgCE11bxUKTvIExERUW4ENdeC9siQ27K02unT0iDnhRcwNGaGFrRnbkJHREQug+Xx9qR2NUxKgo+PNKJjpp2IiIhyI7C5rNVeAyfxypZHgf/+lhL3vn2BTz9F37/+D/EIlJ2ZaSciclkM2u3J31+uExLUpDuDdiIiIsoVQ+VIpBq84aukoOJ/u4ASJYCNG4E6dYDISGDcOAThjuzMoJ2IyGWxPN6eAgLkOjHRHLSzPJ6IiIhyxd0d10Kk7D3D1x9Yt04CdgB4+WVsG/olMuCGDIM7l1kjInJhDNrtiZl2IiIiKoDw1wbjblh5uP/0I9C8udVjsb2HogV2Ycz964DwcAeNkIiI7I1Buz2pQXtqKvy8M9SbRERERLni8dp4eFy5CLRvn+Wx0qWBfWiGX9I6OmBkVBh27gT69AHOnXP0SIjIkRi025NaHg8gxDMRAMvjiYiISB+lS8v19euOHQfZz5w5wJo1wOefO3okRORIDNrtydsbcJOXOMQjAQAz7URERKQPNWhPSpILuZ7//pPr/fsdOw4iciwG7fZkMJiz7cEekmln0E5ERER6CAwEgoPl9ujRwN27jh0P6e/yZbnevx9QFMeOhYgch0G7vZnmtQe5szyeiIiI9GMwAJ98IkV9X34J9OoFJCY6elSkF0UBrlyR27dvA//+69jxEJHjMGi3NzVod2N5PBEREelr8GCZ8+zjA/zyC/Dww8CNG44eFekhLg5ITtbu79uXdZ9Ll2xvJyLXwqDd3kzl8YFuLI8nIiIi/fXoAWzaBJQsCezdC7RuLQEfFW1qll2VeV67ogBduwIPPACcOFF44yKiwseg3d5MmfYAA4N2IiIiso+WLYHt24GyZSWAGzIEMBodPSoqCHU+uypz0P7PP8DRo/Jz3r278MZFRIWPQbu9qUE7pDyec9qJiIjIHmrWlFJ5Ly/ghx+A99/Pef8TJ4Dhw4HNmwtleJRHatAeFibXBw4AGRna4+vWabf//rvwxkVEhY9Bu72ZyuOZaSciIiJ7a9YMmDtXbk+aBGzcaHu/bdskO//ll0CXLsDKlYU3RsodtTy+XTvAzw9ISJDsuopBO1HxwaDd3kyZdj8jG9ERERGR/T37rGTQjUagf3/g3Dnrx1esADp0AGJjZR58ejrwxBNAVJQDBkvZUjPtFSsCjRrJbbXpXGIisHWrtu/Ro4U6NCIqZAza7U0N2hUu+UZERESFY+5coEkT4NYtoFo1ycCPHg28+irQrx+Qlgb07g2cP68F+EOHall6cjw1aA8Pl58loM1r37JFfobh4XI/JoarBhC5Mgbt9mYqj/c1sjyeiIiICoePD7BqlcxzT0+XDO3cucCHH8rjo0ZJxj0gAFi4EBg7VraPHi3byfHU8viyZYGmTeW2GrSrpfG9egGVK8ttlsgTuS4PRw/A5Zky7b4ZLI8nIiKiwlOxInDsmJTH79kjl5MngZ49geeeAwwG2c9gAGbNkuD+s8+Ar74C+vZ16NAJWqa9bFmgdGm5/ddf8nP69Ve537Ur8N9/wL//Sol8u3aOGauzSUoC7t4FgoIcPRIifTBotzdT0O6dwfJ4IiIiKlwGAxAZKZf+/XPe75lnJGhXS6+9vApvnGRNUazL4ytVAoKDgbg4YPVqORHj5QU8/LCcjFm7lpl2laIAzZtLz4aTJ83/ihdYQgKwY4f0Erh+XVZnKFVKn2MT3QvL4+3NVB7vfZfl8UREROS86tWTjG5iouPX/f7jD6BjR+tu6cVJXJyW6AkPB9zcgMaN5f5bb8l1mzYSkNatK/cZtIvLl6Xq4NIlYO/egh/vwAFZaSEkRFZaeO89YNEiYPLkgh+bKLcYtNubmmlPZ3k8EREROS83N+kqDwC//ebYsXz0EfD778Dbbzt2HI6iZtlDQgBfX7mtNqM7dkyuu3aV6zp15ProUckyF3enT2u39+wp+PHefhvYtQvIyJCKhz59ZPsXXwAXLhT8+ES5waDd3kyZdq90lscTERGRc+vUSa6zW99dTydPAsnJth87dEiuV6+WzH9mp08D69fbbWgOZzmfXaU2o1OpQXu1aoCnp5Rvnz9fOONzZpbVGQUN2tPSgE2b5PbvvwPR0dLgsW1b6S3w7rsFOz5Rbjl10D5jxgw0bdoUgYGBKFOmDHr16oVTp05Z7ZOSkoKRI0eiVKlSCAgIwGOPPYarV686aMQ2mDLtnqnMtBMREZFz69hRrvfvl+Xi7GXNGulsP3581sdu3QIuXpTbiYkyX9tSaqrM5e7aFdi+3X5jdCTLzvEqNdMOSI+C6tXltqenvJYAS+QB60x7Qcvjd+0C7twB7rvPusnfm2/K9Zdf8kQJFQ6nDtr/+OMPjBw5Ert378bGjRuRnp6OTp06IdHilOvLL7+Mn376CStWrMAff/yBy5cvo49at+IM1KA9jXPaiYiI8urcuXMYPnw4IiMj4evriypVqmDq1KlIS0tz9NBcUrlyQK1asm775s32e55PPpFrtQu6pcOHre9/8431/WXLZL4yAHz7rf5jcwaWTehUERESPAJywkLt/g9Yl8gXd5aZ9suXtfdKfqjVHJ07y/QRVevWQPv2km1/5538H58ot5w6aF+/fj2GDBmC2rVro379+oiKisKFCxdw4MABAEBcXBwWLVqEWbNm4eGHH0bjxo2xePFi7Ny5E7sd3UFFZSqP90hleTwREVFenTx5EkajEQsWLMCxY8cwe/ZszJ8/H//3f//n6KG5LDXbbq8S+dOnpdEcIFnKzAWSatCuBqIbNki3bkBOJqhrzQNSqpyRYZ9xOpKtTLvBAHTrJsHjgAHW+7MZnUbNtKtBdkFK5Netk2t1KoIlNdu+eLGUzRPZk1MH7ZnFxcUBAEqWLAkAOHDgANLT09FB7ZoCoEaNGqhYsSJ27dqV7XFSU1MRHx9vdbEbU6bdPZnl8URERHnVpUsXLF68GJ06dULlypXRo0cPvPLKK1i9erWjh+ay1KD9t9/s09jsyy+t72cuYVbns/ftKx3TMzKA77+XbevWAcePA4GB0qTt6lVg2zb9x+hotua0A8D//gecPQs8+KD1dgbtIiNDXh9Aex/nN2i/fFlOIBkMWq8HS61ayXPcvctsO9lfkQnajUYjxo4di1atWqGO6dRrTEwMvLy8EBISYrVvaGgoYmJisj3WjBkzEBwcbL5UqFDBfgNXg/aURAAKg3YiIqICiouLM5/Az06hnqB3MW3ayDzpc+e0AEgv6elAVJTcLldOrrML2uvXBwYNkttqifzMmXL93HNA795ye8UKfcfoDGyVxwPSSb5Spaz7q1UJJ09K87Ti6sIF+f69vIDHH5dt+Q3a1RUUGjeWpRBtUbPtUVGc2072VWSC9pEjR+Lo0aP47rvvCnysiRMnIi4uzny5qHY7sQdTebzBaIQ3UlkeT0REVABnzpzBp59+iueeey7H/Qr1BL2LCQiQdamB7EvkjUbg+edlibg7d3J/7F9/BWJigDJlgAkTZJtl0J6WJpl0AGjQAOjfX8qcd++W+et//iknFF56CejXT/ZzxRJ5W+XxOalYEQgKkqxvcV3bHtBK46tUAVq0kNv798vrklfqfPYuXbLfp0ULmd+ekQH8+GPen4Mot4pE0D5q1Cj8/PPP2LJlC8qXL2/eHhYWhrS0NMTGxlrtf/XqVYSFhWV7PG9vbwQFBVld7MaUaQeAACQw005ERATg9ddfh8FgyPFy8uRJq6/577//0KVLF/Tt2xfPPvtsjscv1BP0Luhe89rfegtYsECWw5o7N/fH/eILuR48WCvx3rtXK8M/cUKy8SEhEoiGhWlrxw8fLtdPPgmULy+NwEqUcL0SeUXJvjw+OwaDlm0vziXy6gmLatWAGjVkGkVSknYiKLcyMrRMe05BOwB07y7X+VmC0GiU35/MzReJMnPqoF1RFIwaNQpr1qzB5s2bERkZafV448aN4enpiU3qAooATp06hQsXLqCFenrN0dzdAW9vAIA/Ehm0ExERARg/fjxOnDiR46Vy5crm/S9fvox27dqhZcuW+Pzzz+95/EI9Qe+C1Dm8mzZlzVKuXQtMm6bd/+ij3GXb//tP6xY/fLjMw/bxAWJjtQypGrzUr691R1dL5NU13V95Ra49PV2zRD42VmtcnLk8PifsIK+9j6pWlX/B1bXt81oiv28fcPu2nDxq3jznfdWgfutW7T2aWz//DIweLYF/enrevpaKF6cO2keOHIlvvvkGy5YtQ2BgIGJiYhATE4Nk029EcHAwhg8fjnHjxmHLli04cOAAhg4dihYtWuCBBx5w8OgtmErk/ZGItDQ5q0ZERFSclS5dGjVq1Mjx4uXlBUAy7G3btjWvEuPm5tT/vriERo0kix0fL9lxNXA/eVILol94QTKaN28Cn31272MuWSL/Az34oKwx7ukpzwNoJfKW89lVvXrJXG5AunirwSkgzeoA1yqRV0vjS5SQkxq5xWZ01pl2QAu4LYP22Fjpvj91avaBsto1vmNHwMMj5+esXVv6MyQny/SNvNi5U64vXgRWrszb11Lx4tSfevPmzUNcXBzatm2L8PBw82X58uXmfWbPno1u3brhscceQ+vWrREWFuZ8HWVNJfIBkA7yxblBCBERUV6oAXvFihXx4Ycf4vr16+aT+GQ/7u4SLAMSnEdGSofsnj0lq966tay1Pnmy7PPhh0BCQvbHMxqBRYvk9jPPaNubNZNrNWhXM+0NGmj7BAbK/HkfHwm0LLliiXx2TejuxdFB+9NPy8/TtNiTQ1hm2gHbQfuYMcB33wHTp0tQnnnJQSB389lVBoO2JFxeS+T37dNuf/ihfVZrINfg1EG7oig2L0OGDDHv4+Pjg88++wy3bt1CYmIiVq9eneN8doewyLQDXPaNiIgotzZu3IgzZ85g06ZNKF++vNVJfLKvTz4B3nhDOmdfugRMmiSZzAoVpBzd01MaxeUm2/7778C//0qzNLWrN2AdtCuKlmm3DNoBKcGPi8taquyKJfJ5nc+uUisQzp2TZfX0DgB37ZKTJ7duZX3s5Eng668lCJ0/X9/nza20NPneAS3Trr6/jh2Tk00//ijjdHOTf8//+EO6w1sG9TduaMF05865e241uM9L0G40SpM8QAL/gwdlPES2OHXQ7jIyZdrZQZ6IiCh3hgwZku1JfLKvwEDg7bdlGa0lS2R+cFgYsGaNdH8HpHR40iS5/cEH2WfbP/hArocMserRaw6q/vpLgvpbt+SYtWpZf73BIMt42aKWyH/3HfDpp1rgVlTltXO8qlQpoE8fuT18ONCjh3Tq18vrr0vzwRkzsj62dKl2++OPHfO/bnS0TJHw99eqFMLD5SSTokhAPWKEbH/lFQnMa9SQXgutWwNNmkiwX7267F+3rrYs4b20by/VKSdP5v79d/q0TD/x8dGqTz78ME/fsu7i4pjtzywxUaqErl937DgYtBcG06dTsDsz7URERFS0+PhI6fPevRJQNm5s/fiAAVKOnF22/eBBybS7uwPjxlk/VrmyBJtpacBXX8m2mjXNPXxzpX17Cc5u3ZLS58hIyTovWJC379NZ5Lc8HgC+/x54/305wfHzzzLf+pdfCj6m9HQt+xwVZf2/rKIAy5bJbXd3OVHw9dcFf86cxMZal5YD1qXxahNDQKvOGD4cuHZNTgi9+aYE7Hv2SKVGWhpw4IAcQ60kGDw49+MJCdGWmNuwIXdfo46/YUPg1VdlzL/8Iiso6GXlSuDzz3MXiO/bJ7+L48fr9/yu4NNP5aRK69ZSheEoDNoLg6k8PtiDQTsRERG5Fg8PbW77Bx9knSOsZtn79wciIqwfMxi0bLs6592yCV1ueHrKCYUPPgDatJHA8dgxmYuvBsBFSX4z7YB87xMmSNl1gwYSgD75ZP7WKbd0+LDWGf3GDam2UO3eLVUS/v4SDAPys7BnY8D+/eV98/PP2ja1CZ06n12lBu137sjr89VXWoO/oCBpYrh1qxxr2zb5Xi9dynvwqpbIq03s7kUN2ps2lTH37Cn3Z83K2/Nm5/p1eZ2eew4YNerejbB/+01+Zrk96VBc7Ngh1ydPSu+C3KyUYQ8M2guDKdMe4iE1YwzaiYiIyJUMGCDlxDdvSnd5NUCIjtbmmr/6qu2vVYP2//6T68zz2XOjfHkped66VbKpTZpIdvH77/N+LEfL75x2S3XrShbZz09KsM+eLdiYdu2SazWDbVnFoJbG9+oFvPSSNAY8fRr44YeCPWd2/v1XCyw//VTbrmba1fnsKvX9BQD/939ZK0UMBjnZ8+ijsrJBvXq5L4u3pDaj27Qpd02nLYN2QFvK8OuvtRNfRmP+T378+qv2tf/7nwTvOR3r2DG5Pn264Cd5XMmBA3Lt5SUnw3r1ckwsx6C9MJiC9iBTeTzntBMREZEr8fCQOeV+flIK/957sn32bAkUOnXKPoNuGVQBec+0Z1aypJTzA8C33xbsWI5QkPJ4S15eMtUA0AKy/Nq9W66feUaauG3dCpw6JWXz6qJOAwdKcenIkXL//fftMz9anUYBSHb433/ldubO8armzSUw7thR679gDw0aSK+HhARtKbfspKdLHwdAC9pbtpSxpqbKSQM3N6kM8PeXaoC8+ukn7bhubrJ049Ch2QfkR49qY1Nf0+Lu8mWpfHFzk/daQACwebM+1St5xaC9MJjK4wPdWB5PRERErqlWLW1O++TJkmn94gu5P2FC9l+nBi2qggbtANCvn/yjvXdvwbPMhUlRClYen1nt2nJ9/Hju9k9Oth1oq5n2vn2BRx6R259/DmzcKOXypUtLUAwAo0dL+fm+fRLc68lo1IL24GC5XrhQrjOv0a7y9pb3wW+/Zd/MUA9ublq3+Xt1kT92TJJ4QUHaSQaDQVvSMCND+zmkpgKLF9s+zqefSqB/8aL19rQ0rRph9mw5eeXuLln855/Pepz0dCn/Vuk5r74oU7PstWpJNcYPP8h7aPVqqSopTAzaC4OaaXdjeTwRERG5rsGDgaeekuCqTx8JAhs1Ah5+OPuvKV1amscBEqiWLl3wcYSGSoM6QCoAiorYWK0iU49VDdUu/LkJ2tetk0qJzHOqr16VaQ4GgwSIzz0n25cskaXlAOCJJ6TaApBs87Bhcvv99wv+PVjavl3GEhgIzJ0r2778UqYAqIFr5kx7YbKc155TlYFaGt+kiQT7qq5d5STIhQty8mbzZtm+bVvW0nZFAd59V05IfPSR9WN//CEZ/7AweY5+/bRpKurrZenMGQncVQzahboknzqlon17OQFSsqS85wsTg/bCoC75ZmB5PBEREbkug0Hmz1arpgUtEyZYd/O2RW0Wlp/57NkZMECuly0rOstYqaXxJUpozdIKQg3ac1Me//nncq1OaVCpWfbatSUz3LWrLKN286ZWtj1okPWxxo+Xn/mGDVqvAj1ERcl1v34SNIWFSQ8D9URDSIh0QHeUTp3k+z5yBKhYUTrWL1+eNUjOPJ/dUqlS8vqGhUnH8qAg+frDh633O35cW9Jv8WLr5RbV0vhu3bSTAr17y5gURcsgq9TSeJVl1r04U4P2Jk20bX36yPSB1q0LdywM2guDqTxeXaedmXYiIiJyVQEB0gAuIECWXnvssXt/Tf/+cv344/qNo3dvKWU9fhz4+2/9jmtPepbGA1p5/KlTOc/BTUmR8nFAguw//9QeU+ezq0uaubtr64oDQJUqWfsSVK6sBaTqcQsqMVHLFg8ZIqsGDB8u99X1zatVu/cJInu67z5Z1tDbWzrQf/mlvLfr1wdu39b2yylot+TuLs3xAMmeW/r9d+12fDzwzTdyW1G0oL17d+uvUX9Oe/dab1eDdvWEBzPt1ic3MjcvVKdmFCYG7YXBlGn3B+e0ExERkeurXx84d04CPrVsOic9e0rgOGSIfmMICdHmX+elId3y5ZLpzu3SXXrSqwmdKiIC8PWV/z2jo7Pfb/NmIClJu692hAe0TPsDD2jbhg+XgBKQBnS2AuXczu/OrdWrJZtcpQrQqpVse+YZee5E+RfboaXxqg8/lAB9/XoJ4MPC5HdBbYKXnKydRLpX0A7IXGog+6D9/vvl+rPPJNA8dkyez8cH6NDB+mvuFbT37i3XJ04UneoUe/nvP5ka4u6uT5+NgmLQXhhMmXZfheXxREREVDyUKmXOW+SKt7f+WdInn5Tr777LXRCSkSHLgsXG6rdedm5dvaotUadXpt3dHahRQ27nVCKvZmbr1ZPrlSvl/9X0dC0rrGbaAeluPno0UKmSddbdkjq/e+NGfdZsX7JErp9+WnufVKqknRwAsjahcxRfXxnXRx/J9AwAmDdPXstDh+T1KFNGyuDvRQ3at23TllJMT9ea/H3+ufQiOHpUKiTUn2X79rLdUnZBu/re6NlT3jN37mhVH8WVZRO6zK+jIzBoLwymTyw/I8vjiYiIiApLt26SO1Gz/vfyyy/acldbtsi8bXtLSgLeeUcypr/8ItvattXv+PfqIG9ZTv3uu7LmfVycrPN95IhkhkNCgOrVrb9u9mzJ3mcXeDZrJl93+7YW+OfXhQtaUzZ1OT/ViBHabWfItGfWrp3M+VcU4IUXtPdh06a5O0nVqJGEErduaRnxvXul6qBUKQnq1Z4Cc+dmXxoPSJm3m5uU7qtVHSkp2nJ5jRpJJQPAEnlb89kdiUF7YTAF7b5GlscTERERFRZfX6BXL7n96quyhviQIdKkTl0Sy9Inn2i3MzKAtWvtO759+yQTPmmSBGFNmkgZ9NCh+j3HvTrI//WXlAL7+0t21rKBnxpgNm9u3eU8Nzw8tGXgCloi/803EvS2bSvZdUvdukmDNYMBaNiwYM9jLx9+KPOgDxyQEzRA7krjAZm7r04HUEvk1dL49u3l5zJypNxfs0b7mXXrlvVYAQHa+0E9kXLypGTwS5SQaRk1a8r24h60q5l2Bu3Fiak83ieD5fFEREREhUktkd+xQzrbL1ki5fJ9+0oGXvX335LNdXPTlixTu6Pbw65dMuf44kUJOpcuBfbs0b8r9b06yKuZ2Y4dZR60+nr9/LMWbFuWxueFXvPa1a9XTyhY8vSUn9vmzdpUAGcTGipVDIBWvZHboB3IOq990ya5Vues16sn7xt1ffdGjWQKgy2ZS+TV90WdOnLiQ30Ni3PQrihZl3tzNAbthUHNtN9leTwRERFRYerSRUq5x40DJk8G3ntPAqY7d2RdeXW+9Zw5ct27N/Dyy3J748asy3XlRWqqlCl37SqBljqvfts2WR4sPl6CraNHJVjOazY7N9Ty+JMnbc8tV4P2Hj3kun59CfRTUyVwBwoetO/dm/+pBmlpWlZYDV4zq1JF3ykF9vDcc9ZZ2/wE7X/+Ke9btTlg+/baPmq2HbBdGq/KHLSrJfd16si1mmkvzsu+XbwIXL8u1SJqnwdHY9BeGExBu9ddlscTERERFSaDARg7VpqCTZ8OvPaaZNoDAiQImj0buHFDWzLrpZck0K1WTQJGdZ55fmzbpmWsO3SQ4Hf2bDmRkJAAPPywzB0PDNTlW7UpMlKa/KWkWFcWAFIWf+CAvEaPPirbDAbpCG8p85JuuVW+vASDimK9RFleHDwoY7/vPudpNJcf7u7SjM7bWzLhpUvn/mubNpWpHtevAwsWyPJ9kZGytJ5KXYfdYJC1xLOj/iz37ZOyeDVoV0/usDxeK42vXVted2fAoL0wmMrjvTJS4IYMlscTEREROVDlyhI8A8AbbwDjx0tg2LChrIttMGjryxekRH7PHrmuUEFKz/fskYx/UpJk2n/+OW8d9vMjpw7yaia9eXPpZq5SS+QBybqHhOT/+dUu8vktkd+xQ65btnTsGux6aNIEOHUq7ycwvLzk+weA99+X68zLuXl6Skf57dtzzg7XqSPvxbg4aUBnWR4PaA0Hr1yRfYojZ2tCBzBoLxwWf439kchMOxEREZGDDR8uzbrS0oCvvpJtL72kBYZq0L5unfUa5nmhNgUbP16y3K+9Jg2/Hn8c+PHHwsviZddBPnNpvKpSJa35WX5L41WW89rzs/b39u1yrY6nqIuIkPdAXqkl8jduyHXmoB2Q7Lsa3GfH01My/YD0AYiOltvqeyQ4WFtysLiWyDtbEzqAQXvh8PExfwIwaCciIiJyPIMBWLhQls0CJNPcv7/2eKNGErwmJeUvS6wo1t3XQ0NlPv3Nm8CKFfLvYWGx1UE+MVHL+NqaA/3OO1KWbTlXOj8efFDWuY6JkSXk8kJRtEy7qwTt+ZV5Pv/DD+f/WGqJfFSUXIeFyfQDVXEukXfGJnQAg/bCYTCYS+QDkMDyeCIiIiInEBYm3eRDQoCpU2W+scpybnB+SuSjoyUr6uVlvRSZI0q8bXWQ//576bNUqZKWZbXUpo00KyvoMmo+PrJWOaCd/DAaZf32I0ck2z93rrz+6nrhqjNnZB63l5dzBVCO0KyZ9v5s0MA6yM7PsQCtGV3mn39x7iB//rycWPP0dJ4mdADg4egBFBv+/sCdO8y0ExERETmRRx+VANKWxx4DZs2SwHLzZpmPfOyYBKKvv55z4KRm2Rs0sD4Z4AhqUHbihATMsbFSqg8Azz9v/xMJXbpIQ7+335bX8+ZN253sN23SyuEBLcvetGnhViY4Ix8f4IEHZNk3W6XxeZG5saA6n11VnDvIf/GFXNep4/jfW0sM2guLaV67PxLNc1GIiIiIyHk98IDM77182Xp5LQBYu1bmu1epYvtr1SZ0Dzxg3zHmRuXKkq1OTpa59TNmSAa7Vi1teTt76tZN5vUnJMhFVaqUzPGOiJATIzt2SPZdzXCyNN7a1KnAhx8CY8YU7DiVKwMlSwK3bsn97IL24pRpVxRg2jSZFgIAI0Y4dDhZsDy+sFiUx1+86OCxEBEREdE9ublJUOvpKYFO9+7Aq6/K0lqnT0uTNrXEODM10+4MQbuHh9YV/PPPtWziggUSzNtbpUrA4cNSrXD4sCw1l5Ii0wcOHABWr5YlywBZFk3FoN1au3ZSsVChQsGOYzBYZ9szB+1qefzZs8VjqWpFkVUkpk+X+++9JxUozoRBe2GxyLRfvJi/7plEREREVLheeUUCl7NnJbs+c6YE5A0bSra6bVvpBG8pNRU4dEhuN29e2CO2TS2RV5cMGz5cmsQVlho1JOisV0+qFzKXHr/wglx/8w0QHy9ZYDXTe6+O6JR3lkG72vNAFR4OBAXJVIozZwp3XI4wYYJUnwAyfUOdOuJMGLQXFlOm3R+JSEnRylGIiIiIyLllnvMdHi5zi7t0kZLzxx+3nv/711+ylFzp0rIMlzOwDMxKl5aTD86kbVsJ7BMSJHDfuVO2V69esKZrZJtaAVKpkgTolgyG4tOM7sABmXIASEPEwpgukh8M2guLKdMeHiATeVgiT0RERFR0BQZK5r1jR+DuXesg2HKpN0d0i7fFskP4Rx/JnGZnYjBo2fZ581gab2+dOwNvvSXLHtpSXOa1Hz0q1w8/XPDlDe2JQXthMQXtZYMTATBoJyIiIirqPD21ebBff639f+dMTehUbdoA5csDffsCgwY5ejS2Pf20rOl+9Kg2755Bu324uQGTJmXfiV49yaNO83BV587JdeXKDh3GPTFoLyym8vgwZtqJiIiIXMYDD0hp9927Mh8WcK4mdKpSpYALF4Dly50n+59ZSAgwYIDcVldbKsx596RR37s7d7p2L67oaLmuVMmhw7gnBu2FxZRpv8+PmXYiIiIiVzJxolx//jlw/Lhk7wwGWV/cmRgMzhuwq158UbtdujRQtarjxlKcNWkiqw7ExADnzzt6NPajZtqdpfdEdhi0FxZT0F7Sm0E7ERERkSvp2FG6ySclAUOGyLZatbI2+KJ7a9RI62zesqXzn2RwVb6+8rMAtKaArkgN2plpJ2Eqjy/hIeXxly45cjBEREREpBeDQcu279sn186y1FtR9O67EkQ521rZxY261J6rBu3p6VoilUE7CVOmPdCNmXYiIiIiV9Onj3UptzPNZy9q2reXucZdujh6JMWbGrSrnfzzy2gEhg8HRo92rvnxly7J2Ly9gbAwR48mZwzaC4spaPeHBO3qm4SIiIiIij53d2DCBO0+g3Yq6tTO/UeOAHfu5P84u3YBX34p66BfuKDP2PSglsZHREg3fWfm5MNzIabyeO+7CTAYgLQ04Pp1B4+JiIioCOjRowcqVqwIHx8fhIeH46mnnsLly5cdPSyiLJ56SprPtWghc9qJirKyZSWgNRqBvXvzf5w1a7Tb27YVfFz79wPPPgvcvFmw4xSVzvEAg/bCY8q0uyUlIjRUNrFEnoiI6N7atWuH77//HqdOncKqVatw9uxZPP74444eFlEW3t6yRvvOnZJ5JyrqCjqvXVGA1au1+9u3F3xMzz0HfPEF8OGHBTtOUekcDzBoLzymTDsSE1GhgtxkMzoiIqJ7e/nll/HAA//f3p1HSVXe+R9/36rqWrrpvelulmZTBERUIoqgmUyCc0CdicQl0cNou0TGCEbjjJG4JZkcB+c3cxyzeDDJKMmZEElwFI1xDSRkVDYVUGRVUZamu4Gm96W6q57fHw9V1dXdQHXRdlXbn9c599Tte2/deupbt+rp732e+9wLGT16NDNnzmTRokWsW7eO9vb2VBdNpBuNdi6fJ6eatG/ZEmvRhlNvaX/3XTsBPP/8qe1roIwcD0ra+8+xlnYaG6NJu1raRUREeqempoZly5Yxc+ZMMjIyjrtdW1sb9fX1cZOIiPRO5Lr2tWuTG48r0sp+8cX2cdu2U+vW/t//HZvfvh12705+X+oeL91FkvZOLe1K2kVERBJz7733kpWVRWFhIXv37uX5kzSxLF68mNzc3OhUFql8RUQkYVOm2DSmrs4m3L0VSdrnz4eJE+18sq32zc2wbJmdLy62j6fS2q7u8dJdpHt8YyNlI+29DpS0i4jIYLVo0SIcxznhtGPHjuj299xzD5s2beK1117D7XZzww03YE5w76Dvfe971NXVRad9qnRFRHrN44Hp0+18b5PtXbvggw/sPv7+7+GLX7TLk+0iv2IF1NfbJPuBB+yylSuT21cwCAcO2PmB0NLuSXUBBo1IS3s4zKiSNsCvpF1ERAatf/7nf+bGG2884Tbjxo2LzhcVFVFUVMQZZ5zBpEmTKCsrY926dcyYMaPH5/p8Pnw+X18WWURkUJo5E1avtkn7/Pk9b/Pzn8Mrr8Djj9tR5yE2avxXvgL5+baL/C9/mfxgdJGu8bfcAnPnwre/bctUXR1reU/U3r12kLxAoPfPTQUl7f0lkrQDo4uaAL8GohMRkUFr6NChDB06NKnnho9dWNnW1taXRRIRkR5Erms/Xkt7Rwfce6/tQr9rF6xZA0VFsa7xV15pHyPXtb/9NrS02IQ5UTt22GTf5YKbbrInBr7wBTso3Ysvws039+49dR6EbiAMHqnu8f3F47H3AQFG5jUCtktGKJTKQomIiKS39evX87Of/YzNmzfz6aefsnr1aq677jpOO+2047ayi4hI37nwQvu4e7dt1e5q7VqbsIO97n32bNi61d7b3XHgiivsurFjbbLd3t77+74/+aR9vPzyWEv+3Ln2MZnr2gfSyPGgpL1/HWttL85qwuWyZ6WqqlJcJhERkTSWmZnJs88+y6xZs5gwYQK33HILZ599NmvWrFH3dxGRfpCXB5Mn2/m1a7uvf/ll+/g3fwNDh9rW70ir+syZUFpq5x0ntrw317UHg/DrX9v5b34ztjxyMuC116CpKfH9wcAaOR6UtPevY0m7p60peoZI17WLiIgc35QpU1i9ejVHjhyhtbWVPXv2sGTJEkaMGJHqoomIDBqRZDuSoHf20kv28dZb4fXXbZIfaXmPdI2PiAxG15vr2p97Dg4dgmHD4LLLYsunTLFJd2urfd3eGEgjx4OS9v7VaQT5kSPtrJJ2ERERERFJZ9dcYx+XL7dJckRFBWzZYlvRZ8+Gc86xA9INGQIZGXDVVfH7iST/b72V2GXChw/D3Xfb+VtusVccRzhO8l3k1T1ejq+He7VrMDoREREREUlnX/4ylJXZFvTOCfIrr9jH88+3XePB3iLuvfdg40YYPTp+P1OmQE4ONDTYbU7EGJuoV1TYe7wvWtR9m0gX+T/8wV56nCh1j5fj6yFpV0u7iIiIiIikM5cLysvt/K9+FVse6S5/6aXx248da1vdu3K77XXucPIu8k88AS+8AF4vPP103M24oi6+GAoK4MiR2C3hTqa1FQ4ejJVzIFDS3p86dY9X0i4iIiIiIgPFDTfYx9des63f7e2xa8m7Ju0nkshgdFu3xrrF//u/w7nn9rydx2Pv1w5w++2wdOnJX3/vXvuYlQWFhQkVOeWUtPcntbSLiIiIiMgANH68vWd7OAy/+U3sVm+FhTBtWuL7iQxG9/LL8OGH3de3tMB119kW8TlzYkn58Tz0ECxcGOtO37knQE86d40fCPdoByXt/UsD0YmIiIiIyADVuYt8pGv87Nm223uiLrrItrY3NsLVV9skPaK93SbsW7dCcbF9HddJMlbHgZ/8BBYssIn7zTefOHEfaCPHg5L2/tVDS/vBg70bNEFERERERCQVvv518Pth+3b4+c/tss63YUuE2w2/+51Nyrdssa3kYEeTv+EGO9Cdz2dHqi8pSWyfjgM//Wkscb/lFti0qedtB9rI8aCkvX91StpLSuw1GOFwbCAEERERERGRdJWbG7v3+tGjsVu99dbw4fDb39pW9KeegiefhPnzbaKekQH/+792xPreiCTuV15pc6wHHuh5u4E2cjwoae9fnbrHu90wYoT9U13kRURERERkIIh0kQd7q7eiouT2M2sW/Ou/2vlvftMm7y6XTeYvvzy5fTqOHbjO7YaXXrL3g+9K3ePlxCIt7X/8I9x3H7Nz1+EQVtIuIiIiIiIDwqxZscbH3owa35PvfS+2D8ex16JfffWp7fP00+Gmm+z8/ffb7vKdqXt8Cj3++OOMGTMGv9/P9OnT2bBhQ6qL1N3MmRAIQGUlLF7Mz9+bwQFG4H1oES/8eA9vvGG7a9TV2S4dMgiFw7BzJ/zP/8Add8A118Dvf6+BD6T3WlvtaC4iIiIifcjthh//2HaL/6d/OrV9uVx2JPoFC2DFCrj++r4p40MP2fu7/+UvsGpVbPnRo1BVZecHUtLuGNP13MPA87vf/Y4bbriBJ554gunTp/PYY4+xYsUKdu7cSXFx8UmfX19fT25uLnV1deTk5Hy2hT161A61+PzztK58GX+wAYAwDi9xGUu5iRoKcDkwJMuQnesif2QWRaOzKBmXxchzCpn2t0MoLY3tsqoKnnkGVq6EzEyYNw+++lU7SERUKGT74efmQn5+8uXv6ID6entmoaXFJpnhsN1/Vpa9QCVyGcCJGGPLs3at7beybZsdjWLcONtXZcwY29emoMBOgUD3ezK0tMCBA/ZGkaEQlJbaKS/PLluzxk5vvmnL7Dj2l8Fx7IACkcnrtc8bOdJOQ4fCkSP25EplJTQ02GWR/efmQjAYmwIBe0pv/HgYPdru0xibNDU02Pf54Yfw0Uf21F5BAUycaKfRo+17f/NNG4d162xsuyors6N03Hpr8p9fW5stl88Xi6Ux0NRkX7OhwZbd54tNbreNmdtt151oaNCGBvvL+Oqr9tcxIwP+7u/sL/oXv2jjBLFjqLERmpvt67e02O0DAXvg+v22bJHjy+Wy7zs3t2/uzREMwo4ddvSTbdtsmbxeO/n99hicONF+poEA1NTYYUw/+ACqq+1xOmGCnXJzu++/pcXuP7LvESPsd2PECMjJ6f4ejLHH3MGD9n2Wltp4H09NDezaZY+p/fvtMbZ/v33+oUN2amy0+4iUdeJEmDLF9mM744zYUKxtbfZ9bd0KtbX282hstDEaNw4mT7ZTOt3INHJsRB5druPHq7HR/j5kZ3cffjYUiv02+P3x342eXrOmxn7+Pp/9vcvMtPuMxLy62k5XXtnzcdEL/VovDRKKqYjI4HLXXfbkwgUX2H+xN2+Gb3wDdu+2/1p/+mnqb/mWaN30uUjap0+fzvnnn8/PfvYzAMLhMGVlZdxxxx0sWrTopM9PVUV+5GCQ17/zEmf+dQlnH3wt4edVMIy9vjNoHDGBqvBQDnzSjod2MmjH4NCBB5c3gwmTXJyWsZeCyg/Iq9yBp6MNgGBmLs3FY2gtHk3Y64djB6tjDE6wDSfYiivYhivYgifYjKetGXdbE57WRjytTSctXzgrm/bi4YRz8iAQwPH7we/D1daKq7Eep6EO15HDOIeqE37PxuPBeH2EM3yEPV6cYBsZDUd7fv0ML672YML77lMej/1HvrEx+e4Sfj+cdx7m/Avs/FNP4lTHYtVRUExz3nBqM4fT6s4kO3iEzJYj+JtrcMJhgkPyaQ3k0+rPx9PRwpD6Cvw1FXgaaqP7MD4fxuvDaW7CCYUSLpo5lqw4WVl2PmwwYUM4bHAf3I9znJbdsM+Pyc3D1VCP09KcXFzAnjQoKLAnZgIBCAQwgQDG68O4Mwgfm2gP4m6ow9VQh9NQj2nvIISLsHERDht8VXtxdZy8Fdo4ji13bc/HGkB7dj6hwBA7+YfgaaolUPERznE+f+P1YgoKIb8Ak5eHU3MEZ99enOZYXIzLRXhoKe1Dh4HXi+Nx42R47Hfo4924ao70OnRxZcjOpv2sqbhqj+LevR0ngZ4c4YJC8Ptx3C6cSJIcOdERSXZbWuyJmOZmm/SHQrHJ47HHc+TETE8ngDqfWAuF7AmPUMj2GGhpiU09HWd5efZEX2Gh3UdVlT3pFomr49hEOi/P7rO21p5o6srvj22Xl2e/z5WVsHevPaGRgNDGd3FPm5rQtsejBLPvKaYiIoNLVZVtf2huttfhP/20/fekrMx2ZL3wwlSXcBAl7cFgkMzMTJ555hnmzp0bXV5eXk5tbS3PP/98t+e0tbXR1tYW/bu+vp6ysrLUVuS7d8OSJfCnPxHuCNn/c8MOoWAI09iEq6UJT1sT3nDbyfd1HG148dE3yWwzAZrJJISbMC7CuMihnmwaE95HB242cy5vMZPNnEsRhxnLHsbxMWXso5AjFFBDBsdPKJrI5AAjCOOihCryqQUghItNTGUNX+Kv/A0VDMfBRCc3ITx04KEDP60M4yBl7GMk+xnKIQ5TRBWlVLtKaXCyKQwfosRUUkolOdQTxEsQHx0uL7lOHaeFP2Ss+YgArd3KWOWUsMd9Op+4T2e/Zwz5ocOMbd/JGaEdjGQ/exjDWmbyljOT9c4M3jNTCJqM6PN9tHIty7mLxziXLYl/SL3QjodGsnHTgY+2pI+TjxjHq8zmdf4OL0Fm8yqzeZURVHTbtg0vTWTRTCatTgAPHQRMCz5a8dOKwYkeWx46eoztqaglly2cw/tMoYUA3mOf6hAaOY2PmMT26PEE8Amj2cpZVFHCaXzEBHYyjMrj7v8IBXzAZFrxM4IDDKcibn89OUwhudSd8JiP2MdIPuR09lHGPso46BpJlWsYFR3FVDOUwxSRRRMT2MlEdjCRHUxlE1/gXTJpidvXEQp4j7OpooQmsmh1ZWHcbsZ27OZM8wFj+eSk5RksjpKHlyBZxE6ytOKjmmIOMZRqiin77f/jrOumnNLrKMHse4qpiMjgc999sHhx7O8rrrAD3hUUpK5MnSVaN52g/+XAcPjwYUKhECVdbuJXUlLCjh07enzO4sWL+eEPf9gfxUvc+PHw6KOAHWjABWT0tF1tLU2bdvHJa7uoXb+TQLCWcRO95BVl2O7FxmDaO9i/p50Pd3RQYYbxadaZfJI1mQMZY3CCbRQ1fsLQxj0UtuzDHe7AwUQHaGh3++nw+Gn3+Olw+2g+llQ1mizqQ1kcCuZS3ZpDbbOXYND2GO3cQzXX1cAIVwUjqGBIuJ6MUCsZoRYyQq20EKCOXOrJoY5cdjCRZrJwHFt0ny/WaOd2H+s53WjwtDWSSx2Z7iD5WUHyM9twMjzsC4/gUDCX1jaHcNg+b4inlWGuKuqcPLuu1fZSj/Skhe6DUZzQyRrLO613CDOCAwRooYFsGsimmUyMcUEHdupyzsVDOx2RT9ocm7pow8+vuZFfU04Rh5mYXcGUwgomZh8g29NCdUcBB9oK2d9cSEfYRYmvluKMoxS6j9Ia9rEnOJwPm4azu6GU5qAHn2nFG27FRytNZFFLHs1kEu1ycey9ZNCO27ZP4yZEBu1k0kwWTQyhES/BTqdBHA47xXxkxsWV/fd8AzCc5dmJz7RSE7KffQPZtOONbZjAZ+KjlUKOUMgR8qjFfyy5D9CCjzYyjvU2yaCdDjzUkRud2snA5wmTmx0mZ0iY/U4ZO1tH09DoRBtiI43HkR7U4ZCxJ2vCB9njjKPRyY5ud6yRnxJ/HSOdA2SaJjJNE1mmkWYTYLtrMhWhEoLtDsEg0eMwQDNFHI6+j3yOUkMBexnFPspow49DmGKqGe3az8iMKtzhdkwohBMOEcLNR5zGbsbTTFb3Y7HL8VpLPgcYyWpmRZe56eBMtnEumzlKPps5l/2MjPv8u+5rCA2M4RM8dESPCQ8d0RMdXoK4CNNMJi3HTugF8UZP6oVw4yZEgJboZ+bqUtjOJ9VchI+dUotNrfhpIUALAdrwxZ0w9BKkkCMUcZgiDuMmhD3FVkoVJXTgIZc68jlKHrV04KGWvOjxAcQdT7nUkUct+RxlCI1UUcKnjI5+RpGDNkALHkI0MCQufhvHn/x4FhERkc/ePffA0qX2Crf//E97tWmqu8QnY8C3tFdUVDBixAjeeustZsyYEV3+3e9+lzVr1rB+/fpuz0nLlvZBIHLpeyhk591um6x3vcy0q0jv2BNdbtpboVDskvSuPW07n4gIhex85HLuyGWzHR32ee3tdpvO5Yo8v/PU+X137lXs9XZ/XqR3cOSx8+Tz2d66fcEYezlzpDdzS0vsdSOT12s/I6/X/t35fRsTS14jn004bNcFg7Hnezzxl9BHPs/IdpHpZGUNh2O9pSOX5neOY0ZGbHKc2Gu0t8cuk+/p+AmHY/H9LEXi3fUEUuQ46+iw836//Ywzupy1i2zXdVlbW2yKnLyKxMZx4j8ztzs+bl3L0PkEQzAYK0ukPG1ttod4ZBiC9vbY/js64ochMMa+XmSKvFbn47zz+s6fb+T46jx1/oy6fi8cJ7afyO9J5575PX0nO3/PO+8X4od18Pli34fI9yNy3AcCsSEsIsd2OJzY79rJqFW47ymmIiKD06FDtp5OYKizfjdoWtqLiopwu91URYYBPKaqqorSzqO1deLz+fD5fP1RPOkk8o9v12TkZDr/099X3O7YP92DVWTsLb+/77oIuVyxROd4rxkZ/++zjv2JytHZqSZXiYrEO1mR709Xp/pTFklEI2MQZmcff9vIdybZ+7F+XkVOHPTXsSQiIiKJGzo01SU4dQP+Xwyv18t5553Hqk5j+YfDYVatWhXX8i4iIiIiIiIy0Az4lnaAu+++m/LycqZNm8YFF1zAY489RlNTEzfddFOqiyYiIiIiIiKStM9F0v6Nb3yDQ4cO8dBDD1FZWcm5557LK6+80m1wOhEREREREZGB5HORtAMsXLiQhQsXproYIiIiIiIiIn1mwF/TLiIiIiIiIvJ5paRdREREREREJE0paRcRERERERFJU0raRURERERERNKUknYRERERERGRNKWkXURERERERCRNKWkXERERERERSVNK2kVERERERETSlJJ2ERERERERkTSlpF1EREREREQkTXlSXYB0YIwBoL6+PsUlERERidVHkfpJTp3qehERSTeJ1vdK2oGGhgYAysrKUlwSERGRmIaGBnJzc1NdjM8F1fUiIpKuTlbfO0an8QmHw1RUVJCdnY3jOKe0r/r6esrKyti3bx85OTl9VMLPP8Wt9xSz5ChuvaeYJedU4maMoaGhgeHDh+Ny6Uq2vqC6PvUUt95TzJKjuCVHceu9U41ZovW9WtoBl8vFyJEj+3SfOTk5OtiToLj1nmKWHMWt9xSz5CQbN7Ww9y3V9elDces9xSw5iltyFLfeO5WYJVLf6/S9iIiIiIiISJpS0i4iIiIiIiKSppS09zGfz8f3v/99fD5fqosyoChuvaeYJUdx6z3FLDmK2+eXPtvkKG69p5glR3FLjuLWe/0VMw1EJyIiIiIiIpKm1NIuIiIiIiIikqaUtIuIiIiIiIikKSXtIiIiIiIiImlKSbuIiIiIiIhImlLS3ocef/xxxowZg9/vZ/r06WzYsCHVRUorixcv5vzzzyc7O5vi4mLmzp3Lzp0747ZpbW1lwYIFFBYWMmTIEK666iqqqqpSVOL088gjj+A4DnfddVd0mWLWswMHDvCP//iPFBYWEggEmDJlCm+//XZ0vTGGhx56iGHDhhEIBLjkkkvYvXt3CkuceqFQiAcffJCxY8cSCAQ47bTT+NGPfkTn8UoHe9z++te/8g//8A8MHz4cx3FYuXJl3PpE4lNTU8O8efPIyckhLy+PW265hcbGxn58F3KqVN8fn+r6U6e6PnGq63tPdX1i0q6+N9Inli9fbrxer3nqqafMBx98YG699VaTl5dnqqqqUl20tDF79myzdOlSs3XrVrN582Zz2WWXmVGjRpnGxsboNrfddpspKyszq1atMm+//ba58MILzcyZM1NY6vSxYcMGM2bMGHP22WebO++8M7pcMeuupqbGjB492tx4441m/fr15uOPPzavvvqq+fDDD6PbPPLIIyY3N9esXLnSbNmyxXz1q181Y8eONS0tLSkseWo9/PDDprCw0Lz44otmz549ZsWKFWbIkCHmxz/+cXSbwR63l156ydx///3m2WefNYB57rnn4tYnEp85c+aYc845x6xbt8783//9nzn99NPNdddd18/vRJKl+v7EVNefGtX1iVNdnxzV9YlJt/peSXsfueCCC8yCBQuif4dCITN8+HCzePHiFJYqvVVXVxvArFmzxhhjTG1trcnIyDArVqyIbrN9+3YDmLVr16aqmGmhoaHBjB8/3rz++uvmS1/6UrQiV8x6du+995qLL774uOvD4bApLS01//Ef/xFdVltba3w+n3n66af7o4hp6fLLLzc333xz3LIrr7zSzJs3zxijuHXVtRJPJD7btm0zgNm4cWN0m5dfftk4jmMOHDjQb2WX5Km+7x3V9YlTXd87quuTo7q+99Khvlf3+D4QDAZ55513uOSSS6LLXC4Xl1xyCWvXrk1hydJbXV0dAAUFBQC88847tLe3x8Vx4sSJjBo1atDHccGCBVx++eVxsQHF7HheeOEFpk2bxjXXXENxcTFTp07ll7/8ZXT9nj17qKysjItbbm4u06dPH9RxmzlzJqtWrWLXrl0AbNmyhTfeeINLL70UUNxOJpH4rF27lry8PKZNmxbd5pJLLsHlcrF+/fp+L7P0jur73lNdnzjV9b2juj45qutPXSrqe8+pF1sOHz5MKBSipKQkbnlJSQk7duxIUanSWzgc5q677uKiiy7irLPOAqCyshKv10teXl7ctiUlJVRWVqaglOlh+fLlvPvuu2zcuLHbOsWsZx9//DFLlizh7rvv5r777mPjxo18+9vfxuv1Ul5eHo1NT9/ZwRy3RYsWUV9fz8SJE3G73YRCIR5++GHmzZsHoLidRCLxqayspLi4OG69x+OhoKBAMRwAVN/3jur6xKmu7z3V9clRXX/qUlHfK2mXlFiwYAFbt27ljTfeSHVR0tq+ffu48847ef311/H7/akuzoARDoeZNm0a//Zv/wbA1KlT2bp1K0888QTl5eUpLl36+v3vf8+yZcv47W9/y+TJk9m8eTN33XUXw4cPV9xEpNdU1ydGdX1yVNcnR3X9wKTu8X2gqKgIt9vdbRTPqqoqSktLU1Sq9LVw4UJefPFF/vznPzNy5Mjo8tLSUoLBILW1tXHbD+Y4vvPOO1RXV/OFL3wBj8eDx+NhzZo1/OQnP8Hj8VBSUqKY9WDYsGGceeaZccsmTZrE3r17AaKx0Xc23j333MOiRYu49tprmTJlCtdffz3f+c53WLx4MaC4nUwi8SktLaW6ujpufUdHBzU1NYrhAKD6PnGq6xOnuj45quuTo7r+1KWivlfS3ge8Xi/nnXceq1atii4Lh8OsWrWKGTNmpLBk6cUYw8KFC3nuuedYvXo1Y8eOjVt/3nnnkZGRERfHnTt3snfv3kEbx1mzZvH++++zefPm6DRt2jTmzZsXnVfMurvooou63WJo165djB49GoCxY8dSWloaF7f6+nrWr18/qOPW3NyMyxVfLbjdbsLhMKC4nUwi8ZkxYwa1tbW888470W1Wr15NOBxm+vTp/V5m6R3V9yenur73VNcnR3V9clTXn7qU1PfJjqIn8ZYvX258Pp/51a9+ZbZt22bmz59v8vLyTGVlZaqLlja+9a1vmdzcXPOXv/zFHDx4MDo1NzdHt7ntttvMqFGjzOrVq83bb79tZsyYYWbMmJHCUqefziPKGqOY9WTDhg3G4/GYhx9+2OzevdssW7bMZGZmmt/85jfRbR555BGTl5dnnn/+efPee++ZK664YtDdzqSr8vJyM2LEiOhtYJ599llTVFRkvvvd70a3Gexxa2hoMJs2bTKbNm0ygHn00UfNpk2bzKeffmqMSSw+c+bMMVOnTjXr1683b7zxhhk/frxu+TaAqL4/MdX1fUN1/cmprk+O6vrEpFt9r6S9D/30pz81o0aNMl6v11xwwQVm3bp1qS5SWgF6nJYuXRrdpqWlxdx+++0mPz/fZGZmmq997Wvm4MGDqSt0GupakStmPfvDH/5gzjrrLOPz+czEiRPNL37xi7j14XDYPPjgg6akpMT4fD4za9Yss3PnzhSVNj3U19ebO++804waNcr4/X4zbtw4c//995u2trboNoM9bn/+8597/B0rLy83xiQWnyNHjpjrrrvODBkyxOTk5JibbrrJNDQ0pODdSLJU3x+f6vq+obo+Marre091fWLSrb53jDGm9+3zIiIiIiIiIvJZ0zXtIiIiIiIiImlKSbuIiIiIiIhImlLSLiIiIiIiIpKmlLSLiIiIiIiIpCkl7SIiIiIiIiJpSkm7iIiIiIiISJpS0i4iIiIiIiKSppS0i4iIiIiIiKQpJe0iknKO47By5cpUF0NEREQ+I6rrRZKnpF1kkLvxxhtxHKfbNGfOnFQXTURERPqA6nqRgc2T6gKISOrNmTOHpUuXxi3z+XwpKo2IiIj0NdX1IgOXWtpFBJ/PR2lpadyUn58P2O5sS5Ys4dJLLyUQCDBu3DieeeaZuOe///77fOUrXyEQCFBYWMj8+fNpbGyM2+app55i8uTJ+Hw+hg0bxsKFC+PWHz58mK997WtkZmYyfvx4Xnjhhc/2TYuIiAwiqutFBi4l7SJyUg8++CBXXXUVW7ZsYd68eVx77bVs374dgKamJmbPnk1+fj4bN25kxYoV/OlPf4qrqJcsWcKCBQuYP38+77//Pi+88AKnn3563Gv88Ic/5Otf/zrvvfcel112GfPmzaOmpqZf36eIiMhgpbpeJI0ZERnUysvLjdvtNllZWXHTww8/bIwxBjC33XZb3HOmT59uvvWtbxljjPnFL35h8vPzTWNjY3T9H//4R+NyuUxlZaUxxpjhw4eb+++//7hlAMwDDzwQ/buxsdEA5uWXX+6z9ykiIjJYqa4XGdh0TbuI8OUvf5klS5bELSsoKIjOz5gxI27djBkz2Lx5MwDbt2/nnHPOISsrK7r+oosuIhwOs3PnThzHoaKiglmzZp2wDGeffXZ0Pisri5ycHKqrq5N9SyIiItKJ6nqRgUtJu4iQlZXVrQtbXwkEAgltl5GREfe34ziEw+HPokgiIiKDjup6kYFL17SLyEmtW7eu29+TJk0CYNKkSWzZsoWmpqbo+jfffBOXy8WECRPIzs5mzJgxrFq1ql/LLCIiIolTXS+SvtTSLiK0tbVRWVkZt8zj8VBUVATAihUrmDZtGhdffDHLli1jw4YNPPnkkwDMmzeP73//+5SXl/ODH/yAQ4cOcccdd3D99ddTUlICwA9+8ANuu+02iouLufTSS2loaODNN9/kjjvu6N83KiIiMkiprhcZuJS0iwivvPIKw4YNi1s2YcIEduzYAdjRXpcvX87tt9/OsGHDePrppznzzDMByMzM5NVXX+XOO+/k/PPPJzMzk6uuuopHH300uq/y8nJaW1v5r//6L/7lX/6FoqIirr766v57gyIiIoOc6nqRgcsxxphUF0JE0pfjODz33HPMnTs31UURERGRz4DqepH0pmvaRURERERERNKUknYRERERERGRNKXu8SIiIiIiIiJpSi3tIiIiIiIiImlKSbuIiIiIiIhImlLSLiIiIiIiIpKmlLSLiIiIiIiIpCkl7SIiIiIiIiJpSkm7iIiIiIiISJpS0i4iIiIiIiKSppS0i4iIiIiIiKSp/w8TikPyVptJQwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACv0klEQVR4nOzdd3hT1RsH8G+692C1BUope+8hGwRk7yWCsgQHG1RANsqvDEVElCUCKiAbcbBBZE9ZsqGWMlpGaUtbOnN/f5zcjDbdN03Sfj/PkyfJvTf3noTQm/e+7zlHJUmSBCIiIiIiIiKyODbmbgARERERERERGcegnYiIiIiIiMhCMWgnIiIiIiIislAM2omIiIiIiIgsFIN2IiIiIiIiIgvFoJ2IiIiIiIjIQjFoJyIiIiIiIrJQDNqJiIiIiIiILBSDdiIiIiIiIiILxaCdiIiIiCifatmyJVq2bJnlbatVq2baBmmULl0agwcPzpNjEVk7Bu1EZGDt2rVQqVRQqVQ4duxYmvWSJMHf3x8qlQqdO3fWLo+JicHMmTNRrVo1uLq6onDhwqhVqxbGjh2LR48eabebNWuWdv/GbmFhYXnyPomIiLJKPjeeO3fO3E3JtUePHmHWrFm4ePGiuZuimNKlS0OlUqFNmzZG169atUr7OyP1v+GxY8fQoUMHlChRAk5OTihVqhS6dOmCDRs2GGyX0W+X999/32TvjQgA7MzdACKyTE5OTtiwYQOaNm1qsPzIkSN48OABHB0dtcuSkpLQvHlz3LhxA4MGDcLo0aMRExODf//9Fxs2bECPHj1QvHhxg/0sW7YMbm5uaY7r5eVlkvdDRERUEO3bt8/g+aNHjzB79myULl0atWrVMk+jANy8eRM2NsrlD52cnHD48GGEhYXB19fXYN369evh5OSE+Ph4g+VbtmxBv379tEkGb29vBAcH4++//8aqVavw1ltvGWzftm1bvPPOO2mOXaFCBcXeB5ExDNqJyKiOHTtiy5YtWLJkCezsdH8qNmzYgLp16+LZs2faZTt37sQ///yD9evXpznBxcfHIzExMc3+e/fujSJFipjuDRARERVgcXFxcHFxgYODg7mbYpT+xX8lNGnSBGfPnsWmTZswduxY7fIHDx7g6NGj6NGjB7Zt22bwmlmzZqFKlSo4depUms/pyZMnaY5RoUIFDBw4UNF2E2UFy+OJyKj+/fvj+fPn2L9/v3ZZYmIitm7dmiYwv3v3LgBxwkzNyckJHh4epm0sERGRBfjnn3/QoUMHeHh4wM3NDa1bt8apU6fSbHf58mW0aNECzs7OKFmyJD7//HOsWbMGKpUK//33n3a7X3/9FZ06dULx4sXh6OiIsmXL4rPPPkNKSorB/uS+6OfPn0fz5s3h4uKCTz/9VLtO7tP+119/oX79+gCAIUOGaMu7165da7C/a9euoVWrVnBxcUGJEiWwYMECg/V//fUXVCoVNm/ejNmzZ6NEiRJwd3dH7969ERUVhYSEBIwbNw7FihWDm5sbhgwZgoSEBIN9GOvTHhkZifHjx6N06dJwdHREyZIl8c477xgkCtLj5OSEnj17pilr37hxI7y9vdGuXbs0r7l79y7q169v9MJGsWLFMj0mUV5hpp2IjCpdujQaNWqEjRs3okOHDgCA3bt3IyoqCm+++SaWLFmi3TYgIAAA8OOPP2LatGlQqVSZ7j8iIiLNMjs7O5bHExGRVfr333/RrFkzeHh44JNPPoG9vT1WrFiBli1b4siRI2jYsCEA4OHDh2jVqhVUKhWmTJkCV1dXfP/990Yzz2vXroWbmxsmTJgANzc3HDp0CDNmzEB0dDQWLlxosO3z58/RoUMHvPnmmxg4cCB8fHzS7K9y5cqYM2cOZsyYgREjRqBZs2YAgMaNG2u3efHiBdq3b4+ePXuib9++2Lp1KyZNmoTq1atrfw/IgoKC4OzsjMmTJ+POnTv45ptvYG9vDxsbG7x48QKzZs3CqVOnsHbtWgQGBmLGjBnpfn4xMTFo1qwZrl+/jqFDh6JOnTp49uwZdu3ahQcPHmSpOu+tt97CG2+8gbt376Js2bIARIVg7969YW9vn2b7gIAAHDx4EA8ePEDJkiUz3X98fLzRCwgeHh4WW9FA+YRERKRnzZo1EgDp7Nmz0tKlSyV3d3cpLi5OkiRJ6tOnj9SqVStJkiQpICBA6tSpkyRJkhQXFydVrFhRAiAFBARIgwcPllavXi2Fh4en2f/MmTMlAEZvFStWzLs3SkRElEX658b0dO/eXXJwcJDu3r2rXfbo0SPJ3d1dat68uXbZ6NGjJZVKJf3zzz/aZc+fP5cKFSokAZCCg4O1y+Xzr7733ntPcnFxkeLj47XLWrRoIQGQli9fnmb7Fi1aSC1atNA+P3v2rARAWrNmjdFtAUg//vijdllCQoLk6+sr9erVS7vs8OHDEgCpWrVqUmJionZ5//79JZVKJXXo0MFgv40aNZICAgIMlgUEBEiDBg3SPp8xY4YEQNq+fXuadqnV6jTLUu+rU6dOUnJysuTr6yt99tlnkiRJ0rVr1yQA0pEjR4z+G65evVoCIDk4OEitWrWSpk+fLh09elRKSUlJc4z0frsAkDZu3Jhh+4hyi+XxRJSuvn374tWrV/j999/x8uVL/P7772lK4wHA2dkZp0+fxscffwxAZAaGDRsGPz8/jB49Ok1JHABs27YN+/fvN7itWbPG5O+JiIhIaSkpKdi3bx+6d++OMmXKaJf7+fnhrbfewrFjxxAdHQ0A2LNnDxo1amQwCFyhQoUwYMCANPt1dnbWPn758iWePXuGZs2aIS4uDjdu3DDY1tHREUOGDMn1e3FzczPot+3g4IAGDRrg3r17abZ95513DDLYDRs2hCRJGDp0qMF2DRs2RGhoKJKTk9M97rZt21CzZk306NEjzbqsVPABgK2tLfr27YuNGzcCEAPQ+fv7aysKUhs6dCj27NmDli1b4tixY/jss8/QrFkzlC9fHidOnEizfbdu3dL8dtm/fz9atWqVpfYR5RTL44koXUWLFkWbNm2wYcMGxMXFISUlBb179za6raenJxYsWIAFCxYgJCQEBw8exBdffIGlS5fC09MTn3/+ucH2zZs350B0RESULzx9+hRxcXGoWLFimnWVK1eGWq1GaGgoqlatipCQEDRq1CjNduXKlUuz7N9//8W0adNw6NAhbdAvi4qKMnheokQJRUq0S5YsmSZI9vb2xuXLl9NsW6pUKYPnnp6eAAB/f/80y9VqNaKiolC4cGGjx7179y569eqVm6YDECXyS5YswaVLl7Bhwwa8+eabGQb97dq1Q7t27RAXF4fz589j06ZNWL58OTp37owbN24Y9G0vWbJkutPKEZkSM+1ElKG33noLu3fvxvLly9GhQ4cs9TkPCAjA0KFDcfz4cXh5eWH9+vWmbygREVE+EhkZiRYtWuDSpUuYM2cOfvvtN+zfvx/z588HAKjVaoPt9bPyuWFra2t0uSRJWd42O/tQWsOGDVG2bFmMGzcOwcHBRisEjXFxcUGzZs2wdOlSTJs2DS9evMDu3btN3FqirGGmnYgy1KNHD7z33ns4deoUNm3alK3Xent7o2zZsrh69aqJWkdERGR+RYsWhYuLC27evJlm3Y0bN2BjY6PNPgcEBODOnTtptku97K+//sLz58+xfft2NG/eXLs8ODg4V23Naql5XlPy90L//v3x+eefo3Llyjmai75evXoAgMePHyvSHqLcYqadiDLk5uaGZcuWYdasWejSpYvRbS5dumR0NNWQkBBcu3bNaLkgERFRfmFra4s33ngDv/76q8GUbeHh4diwYQOaNm2qnf60Xbt2OHnyJC5evKjdLiIiIk1Vmpyt1s9OJyYm4rvvvstVW11dXQGITL4l6dWrFy5duoQdO3akWZfdDP27776LmTNn4ssvv8xwu4MHDxpd/ueffwIAf7+QxWCmnYgyNWjQoAzX79+/HzNnzkTXrl3x2muvwc3NDffu3cMPP/yAhIQEzJo1K81rtm7dCjc3tzTL27Zta3SaGiIiInP74YcfsGfPnjTLx44di88//xz79+9H06ZN8eGHH8LOzg4rVqxAQkKCwTznn3zyCX7++We0bdsWo0eP1k75VqpUKURERGgz4Y0bN4a3tzcGDRqEMWPGQKVS4aeffsp1iXnZsmXh5eWF5cuXw93dHa6urmjYsCECAwNztd/c+vjjj7F161b06dMHQ4cORd26dREREYFdu3Zh+fLlqFmzZpb3FRAQYPS3R2rdunVDYGAgunTpgrJlyyI2NhYHDhzAb7/9hvr166dJVty6dQs///xzmv34+Pigbdu2WW4fUXYxaCeiXOvVqxdevnyJffv24dChQ4iIiIC3tzcaNGiAiRMnGh1V9YMPPjC6r8OHDzNoJyIii7Rs2TKjywcPHoyqVavi6NGjmDJlCoKCgqBWq9GwYUP8/PPP2jnaATFI2+HDhzFmzBj873//Q9GiRTFy5Ei4urpizJgxcHJyAgAULlwYv//+OyZOnIhp06bB29sbAwcOROvWrdGuXbscvwd7e3usW7cOU6ZMwfvvv4/k5GSsWbPG7EG7m5sbjh49ipkzZ2LHjh1Yt24dihUrhtatW2dpDvWc+P777/Hrr79i8+bNePToESRJQpkyZTB16lRMmjQJdnaGoZI8WnxqLVq0YNBOJqWS8mJECCIiIiIiSte4ceOwYsUKxMTEpDuQGxEVTOzTTkRERESUh169emXw/Pnz5/jpp5/QtGlTBuxElAbL44mIiIiI8lCjRo3QsmVLVK5cGeHh4Vi9ejWio6Mxffp0czeNiCwQg3YiIiIiojzUsWNHbN26FStXroRKpUKdOnWwevVqg6ndiIhk7NNOREREREREZKHYp52IiIiIiIjIQjFoJyIiIiIiIrJQ7NMOQK1W49GjR3B3d4dKpTJ3c4iIqICTJAkvX75E8eLFYWPD6+sAMGvWLMyePdtgWcWKFXHjxo0svZ7neiIisjRZPd8zaAfw6NEj+Pv7m7sZREREBkJDQ1GyZElzN8NiVK1aFQcOHNA+t7PL+s8YnuuJiMhSZXa+Z9AOwN3dHYD4sDw8PMzcGiIiKuiio6Ph7++vPT+RYGdnB19f3xy9lud6IiKyNFk93zNoB7Rlch4eHjyRExGRxWAZt6Hbt2+jePHicHJyQqNGjRAUFIRSpUoZ3TYhIQEJCQna5y9fvgTAcz0REVmezM737ChHREREFq9hw4ZYu3Yt9uzZg2XLliE4OBjNmjXTBuOpBQUFwdPTU3tjaTwREVkrztMOUZbg6emJqKgoXn0nIiKz43kpc5GRkQgICMCiRYswbNiwNOtTZ9rlEkR+pkREZCmyer5neTwRERFZHS8vL1SoUAF37twxut7R0RGOjo553CoiIiLlMWgnIsqGlJQUJCUlmbsZlA/Y29vD1tbW3M2wWjExMbh79y7efvttczeFiPIZSZKQnJyMlJQUczeFrJytrS3s7OxyPUYNg3YioiyKiYnBgwcPwF5FpASVSoWSJUvCzc3N3E2xCh999BG6dOmCgIAAPHr0CDNnzoStrS369+9v7qYRUT6SmJiIx48fIy4uztxNoXzCxcUFfn5+cHBwyPE+GLQTEWVBSkoKHjx4ABcXFxQtWpSjelOuSJKEp0+f4sGDByhfvjwz7lnw4MED9O/fH8+fP0fRokXRtGlTnDp1CkWLFjV304gon1Cr1QgODoatrS2KFy8OBwcHnu8pxyRJQmJiIp4+fYrg4GCUL18eNjY5GweeQTsRURYkJSVBkiQULVoUzs7O5m4O5QNFixbFf//9h6SkJAbtWfDLL7+YuwlElM8lJiZCrVbD398fLi4u5m4O5QPOzs6wt7dHSEgIEhMT4eTklKP9cMo3IqJs4BV3Ugq/S0RElimn2VAiY5T4PvEbSURERERERGShGLQTERERERERWSgG7URElC2lS5fG4sWLs7z9X3/9BZVKhcjISJO1CQDWrl0LLy8vkx6DiIioIOC53rIwaCciyqdUKlWGt1mzZuVov2fPnsWIESOyvH3jxo3x+PFjeHp65uh4REREZBzP9QUDR48nIsqnHj9+rH28adMmzJgxAzdv3tQu058fXJIkpKSkwM4u89NCdqfYcnBwgK+vb7ZeQ0RERJnjub5gYKZdQTdvAjVrAi1bmrslRGRqkgTExprnJklZa6Ovr6/25unpCZVKpX1+48YNuLu7Y/fu3ahbty4cHR1x7Ngx3L17F926dYOPjw/c3NxQv359HDhwwGC/qUvmVCoVvv/+e/To0QMuLi4oX748du3apV2fumROLm3bu3cvKleuDDc3N7Rv397gh0dycjLGjBkDLy8vFC5cGJMmTcKgQYPQvXv3bP07LVu2DGXLloWDgwMqVqyIn376Se/fUMKsWbNQqlQpODo6onjx4hgzZox2/XfffYfy5cvDyckJPj4+6N27d7aOTfmTJAFt2gClSwN6X1kiyod4rl+sfc5zvXkxaFdQcjJw+TJw7Zq5W0JEphYXB7i5mecWF6fc+5g8eTLmzZuH69evo0aNGoiJiUHHjh1x8OBB/PPPP2jfvj26dOmC+/fvZ7if2bNno2/fvrh8+TI6duyIAQMGICIiIoPPLw5ffPEFfvrpJ/z999+4f/8+PvroI+36+fPnY/369VizZg2OHz+O6Oho7Ny5M1vvbceOHRg7diwmTpyIq1ev4r333sOQIUNw+PBhAMC2bdvw1VdfYcWKFbh9+zZ27tyJ6tWrAwDOnTuHMWPGYM6cObh58yb27NmD5s2bZ+v4lD+pVMCdO0BICPDff+ZuDRGZEs/1hniuNyOJpKioKAmAFBUVlav93LwpSYAkeXoq0y4ishyvXr2Srl27Jr169UqSJEmKiRH/381xi4nJfvvXrFkjeer9cTp8+LAEQNq5c2emr61atar0zTffaJ8HBARIX331lfY5AGnatGna5zExMRIAaffu3QbHevHihbYtAKQ7d+5oX/Ptt99KPj4+2uc+Pj7SwoULtc+Tk5OlUqVKSd26dcvye2zcuLE0fPhwg2369OkjdezYUZIkSfryyy+lChUqSImJiWn2tW3bNsnDw0OKjo5O93i5lfo7pU+p8xLpKPmZNm8u/i9u2KBAw4jIYvBcz3O9KShxvmemXUEODuI+MdG87SAi03NxAWJizHNzcVHufdSrV8/geUxMDD766CNUrlwZXl5ecHNzw/Xr1zO9+l6jRg3tY1dXV3h4eODJkyfpbu/i4oKyZctqn/v5+Wm3j4qKQnh4OBo0aKBdb2tri7p162brvV2/fh1NmjQxWNakSRNcv34dANCnTx+8evUKZcqUwfDhw7Fjxw4kJycDANq2bYuAgACUKVMGb7/9NtavX484JdMeZNVKlxb3ISFmbQYRmRjP9YZ4rjcfBu0KkoP2pCTztoOITE+lAlxdzXNTqZR7H66urgbPP/roI+zYsQP/+9//cPToUVy8eBHVq1dHYiZXI+3t7VN9Piqo1epsbS9ltQOfQvz9/XHz5k189913cHZ2xocffojmzZsjKSkJ7u7uuHDhAjZu3Ag/Pz/MmDEDNWvWNPlUNmQdAgLEPcvjifI3nusN8VxvPgzaFSR/L5OTgQy+v0REFuv48eMYPHgwevTogerVq8PX1xf/5XFk4unpCR8fH5w9e1a7LCUlBRcuXMjWfipXrozjx48bLDt+/DiqVKmife7s7IwuXbpgyZIl+Ouvv3Dy5ElcuXIFAGBnZ4c2bdpgwYIFuHz5Mv777z8cOnQoF++M8gtm2onImvFcb33nek75piA50w6IbLujo/naQkSUE+XLl8f27dvRpUsXqFQqTJ8+PcOr6KYyevRoBAUFoVy5cqhUqRK++eYbvHjxAqpspB4+/vhj9O3bF7Vr10abNm3w22+/Yfv27doRcteuXYuUlBQ0bNgQLi4u+Pnnn+Hs7IyAgAD8/vvvuHfvHpo3bw5vb2/8+eefUKvVqFixoqneMlkRZtqJyJrxXG9953oG7Qpi0E5E1m7RokUYOnQoGjdujCJFimDSpEmIjo7O83ZMmjQJYWFheOedd2Bra4sRI0agXbt2sLW1zfI+unfvjq+//hpffPEFxo4di8DAQKxZswYtNfNyenl5Yd68eZgwYQJSUlJQvXp1/PbbbyhcuDC8vLywfft2zJo1C/Hx8Shfvjw2btyIqlWrmugdkzXRz7RLkrJlrEREpsZzvfWd61VSXncssEDR0dHw9PREVFQUPDw8cryf5GRdifzz50ChQgo1kIjMLj4+HsHBwQgMDISTk5O5m1PgqNVqVK5cGX379sVnn31m7uYoIqPvlFLnJdJR8jNNTAScnETAHh4OFCumUCOJyKx4rjev/HiuB5Q53zPTriBbW3G1XZI4GB0RUW6EhIRg3759aNGiBRISErB06VIEBwfjrbfeMnfTiODgABQvDjx8KLLtDNqJiLKP5/qs40B0ClKpOO0bEZESbGxssHbtWtSvXx9NmjTBlStXcODAAVSuXNncTSMCwH7tRES5xXN91jHTrjB7eyAhgUE7EVFu+Pv7pxkNlsiSBAaoceKECiEh7NBORJQTPNdnHTPtCuNc7URERPlcYCB+/MUeZXCPmXYiIjI5Bu0KkweiY6adiIgon5Ik2EhqFMVTBu1ERGRyDNoVxj7tRERE+VzRouIOTxESYua2EBFRvsegXWEsjyciIsrn9IL2//4Ts8YQERGZCoN2hbE8noiIKJ8rUgSACNpjYoAXL8zcHiIiytcYtCuM5fFERET5nCbTXtrlKQBO+0ZERKbFoF1hLI8novymZcuWGDdunPZ56dKlsXjx4gxfo1KpsHPnzlwfW6n9ZGTWrFmoVauWSY9B+YwmaC+lCdrZr52IrB3P9ZaNQbvCWB5PRJaiS5cuaN++vdF1R48ehUqlwuXLl7O937Nnz2LEiBG5bZ6B9E6mjx8/RocOHRQ9FlGuaYL24nbMtBORefFcXzAwaFcYy+OJyFIMGzYM+/fvx4MHD9KsW7NmDerVq4caNWpke79FixaFi4uLEk3MlK+vLxwdHfPkWERZpgnai4CZdiIyL57rCwazBu1///03unTpguLFixsti5AkCTNmzICfnx+cnZ3Rpk0b3L5922CbiIgIDBgwAB4eHvDy8sKwYcMQExOTh+/CEMvjiQoISQJiY81zy+JQ1Z07d0bRokWxdu1ag+UxMTHYsmULhg0bhufPn6N///4oUaIEXFxcUL16dWzcuDHD/aYumbt9+zaaN28OJycnVKlSBfv370/zmkmTJqFChQpwcXFBmTJlMH36dCRp/lCuXbsWs2fPxqVLl6BSqaBSqbRtTn1uuHLlCl5//XU4OzujcOHCGDFihMHf/MGDB6N79+744osv4Ofnh8KFC2PkyJHaY2WFWq3GnDlzULJkSTg6OqJWrVrYs2ePdn1iYiJGjRoFPz8/ODk5ISAgAEFBQQDEeWvWrFkoVaoUHB0dUbx4cYwZMybLxyYroQnaPZOeAWCmnSjf4rle+5znevOe6+1MuvdMxMbGombNmhg6dCh69uyZZv2CBQuwZMkSrFu3DoGBgZg+fTratWuHa9euwcnJCQAwYMAAPH78GPv370dSUhKGDBmCESNGYMOGDXn9dgCwPJ6owIiLA9zczHPsmBjA1TXTzezs7PDOO+9g7dq1mDp1KlQqFQBgy5YtSElJQf/+/RETE4O6deti0qRJ8PDwwB9//IG3334bZcuWRYMGDTI9hlqtRs+ePeHj44PTp08jKirKoE+czN3dHWvXrkXx4sVx5coVDB8+HO7u7vjkk0/Qr18/XL16FXv27MGBAwcAAJ6enmn2ERsbi3bt2qFRo0Y4e/Ysnjx5gnfffRejRo0y+LFy+PBh+Pn54fDhw7hz5w769euHWrVqYfjw4Zm+HwD4+uuv8eWXX2LFihWoXbs2fvjhB3Tt2hX//vsvypcvjyVLlmDXrl3YvHkzSpUqhdDQUISGhgIAtm3bhq+++gq//PILqlatirCwMFy6dClLxyUrognaXWKZaSfK13iuB8BzvUWc6yULAUDasWOH9rlarZZ8fX2lhQsXapdFRkZKjo6O0saNGyVJkqRr165JAKSzZ89qt9m9e7ekUqmkhw8fZvnYUVFREgApKioq1++je3dJAiRp+fJc74qILMirV6+ka9euSa9evRILYmLEf3Zz3GJistzu69evSwCkw4cPa5c1a9ZMGjhwYLqv6dSpkzRx4kTt8xYtWkhjx47VPg8ICJC++uorSZIkae/evZKdnZ3B39zdu3en+Zue2sKFC6W6detqn8+cOVOqWbNmmu3097Ny5UrJ29tbitF7/3/88YdkY2MjhYWFSZIkSYMGDZICAgKk5ORk7TZ9+vSR+vXrl25bUh+7ePHi0ty5cw22qV+/vvThhx9KkiRJo0ePll5//XVJrVan2deXX34pVahQQUpMTEz3eLI03yk9Sp6XSFD0M42M1P5/dEKc5OWV+10SkfnxXD9W+5znemXO9ZKkzPneYvu0BwcHIywsDG3atNEu8/T0RMOGDXHy5EkAwMmTJ+Hl5YV69eppt2nTpg1sbGxw+vTpdPedkJCA6Ohog5tSWB5PVEC4uIir4Oa4ZaOPWaVKldC4cWP88MMPAIA7d+7g6NGjGDZsGAAgJSUFn332GapXr45ChQrBzc0Ne/fuxf3797O0/+vXr8Pf3x/FixfXLmvUqFGa7TZt2oQmTZrA19cXbm5umDZtWpaPoX+smjVrwlUv89CkSROo1WrcvHlTu6xq1aqwtbXVPvfz88OTJ0+ydIzo6Gg8evQITZo0MVjepEkTXL9+HYAoy7t48SIqVqyIMWPGYN++fdrt+vTpg1evXqFMmTIYPnw4duzYgeTk5Gy9T7ICHh7a0rqieIrISCAqyrxNIiIT4LkeAM/1lnCut9igPSwsDADg4+NjsNzHx0e7LiwsDMWKFTNYb2dnh0KFCmm3MSYoKAienp7am7+/v2LtZnk8UQGhUomyNXPcNKVvWTVs2DBs27YNL1++xJo1a1C2bFm0aNECALBw4UJ8/fXXmDRpEg4fPoyLFy+iXbt2SFTwj9jJkycxYMAAdOzYEb///jv++ecfTJ06VdFj6LOX/xBrqFQqqNVqxfZfp04dBAcH47PPPsOrV6/Qt29f9O7dGwDg7++Pmzdv4rvvvoOzszM+/PBDNG/ePFv97MgKqFTaEvnyXiyRJ8q3eK7PMp7rTXuut9ig3ZSmTJmCqKgo7U3un6AEjh5PRJamb9++sLGxwYYNG/Djjz9i6NCh2j5vx48fR7du3TBw4EDUrFkTZcqUwa1bt7K878qVKyM0NBSPHz/WLjt16pTBNidOnEBAQACmTp2KevXqoXz58ghJFeE4ODggJSUl02NdunQJsbGx2mXHjx+HjY0NKlasmOU2Z8TDwwPFixfH8ePHDZYfP34cVapUMdiuX79+WLVqFTZt2oRt27YhIiICAODs7IwuXbpgyZIl+Ouvv3Dy5ElcuXJFkfaRBdEE7VWKcNo3IjI/nuuzzhrP9WYdiC4jvr6+AIDw8HD4+flpl4eHh2vn9/P19U1TBpGcnIyIiAjt641xdHQ02bQCLI8nIkvj5uaGfv36YcqUKYiOjsbgwYO168qXL4+tW7fixIkT8Pb2xqJFixAeHm5w0spImzZtUKFCBQwaNAgLFy5EdHQ0pk6darBN+fLlcf/+ffzyyy+oX78+/vjjD+zYscNgm9KlSyM4OBgXL15EyZIl4e7unubv9IABAzBz5kwMGjQIs2bNwtOnTzF69Gi8/fbbaaqycuPjjz/GzJkzUbZsWdSqVQtr1qzBxYsXsX79egDAokWL4Ofnh9q1a8PGxgZbtmyBr68vvLy8sHbtWqSkpKBhw4ZwcXHBzz//DGdnZwQEBCjWPrIQzLQTkQXhuT57rO1cb7GZ9sDAQPj6+uLgwYPaZdHR0Th9+rS2D0WjRo0QGRmJ8+fPa7c5dOgQ1Go1GjZsmOdtBlgeT0SWadiwYXjx4gXatWtn0Cdt2rRpqFOnDtq1a4eWLVvC19cX3bt3z/J+bWxssGPHDrx69QoNGjTAu+++i7lz5xps07VrV4wfPx6jRo1CrVq1cOLECUyfPt1gm169eqF9+/Zo1aoVihYtanQqGhcXF+zduxcRERGoX78+evfujdatW2Pp0qXZ+zAyMWbMGEyYMAETJ05E9erVsWfPHuzatQvly5cHIEbHXbBgAerVq4f69evjv//+w59//gkbGxt4eXlh1apVaNKkCWrUqIEDBw7gt99+Q+HChRVtY0E3b948qFQqo6MX5xlN0B7gykw7EVkGnuuzztrO9SpJyuIkgCYQExODO3fuAABq166NRYsWoVWrVihUqBBKlSqF+fPnY968eQZTvl2+fNlgyrcOHTogPDwcy5cv1075Vq9evWxN+RYdHQ1PT09ERUXBw8MjV+9p4kRg0SJg0iRg3rxc7YqILEh8fDyCg4MRGBio/ftDlBsZfaeUPC/lN2fPnkXfvn3h4eGBVq1aGcwjnBHFP9MxY4BvvsG5NpNR/0AQevUCtm7N/W6JyHx4ridTUOJ8b9ZM+7lz51C7dm3Url0bADBhwgTUrl0bM2bMAAB88sknGD16NEaMGIH69esjJiYGe/bsMXiz69evR6VKldC6dWt07NgRTZs2xcqVK83yfgD2aSciIjKVmJgYDBgwAKtWrYK3t7d5G6PJtBcFM+1ERGRaZu3T3rJlS2SU6FepVJgzZw7mzJmT7jaFChXKVlbd1FgeT0REZBojR45Ep06d0KZNG3z++ecZbpuQkICEhATtcyWndwWgDdq9ktmnnYiITMtiB6KzVhyIjoiISHm//PILLly4gLNnz2Zp+6CgIMyePdt0DdIE7a5xImh/9gyIjRUzNRERESnJYgeis1bMtBMRESkrNDQUY8eOxfr167Pcz9SU07sC0AbtthFPYadJgbx4oewhiIiIAGbaFcc+7UT5mxnH7qR8ht+lrDt//jyePHmCOnXqaJelpKTg77//xtKlS5GQkABbW1uD15hyelcA2qBd9ewZPD2B588BpSvwicg8+PeZlKTE94lBu8JYHk+UP8kBQWJiIpydnc3cGsoPEjVXd1MHm5RW69atceXKFYNlQ4YMQaVKlTBp0iTzfIaaoB2RkSgcmITnz+0RFZX3zSAi5dhrSmbj4uJ4rifFxMXFAdB9v3KCQbvCWB5PlD/Z2dnBxcUFT58+hb29PWxs2LuIck6tVuPp06dwcXGBnR1PxZlxd3dHtWrVDJa5urqicOHCaZbnmUKFABsbQK1GKZdnuAU/Bu1EVs7W1hZeXl548uQJADFnuEqlMnOryFpJkoS4uDg8efIEXl5eubrAzF8KCmN5PFH+pFKp4Ofnh+DgYIRwmGhSgI2NDUqVKsUfhNbKxgYoXBh4+hT+Tk8B+LE8nigf8PX1BQBt4E6UW15eXtrvVU4xaFcYy+OJ8i8HBweUL19eW9ZMlBsODg6s2MiFv/76y9xNECXyT5+ihIMYQZ6ZdiLrJ1+kL1asGJL4g55yyd7eXpEuXAzaFcbyeKL8zcbGJsujVxNRPqfp1+5ry6CdKL+xtbXlmCNkMXiJX2EsjyciIiogNEF7MZUI2lkeT0REpsCgXWEsjyciIiogNEF7YTUz7UREZDoM2hXG8ngiIqICokgRAIB3MoN2IiIyHQbtCmN5PBERUQGhybR7JLI8noiITIdBu8JYHk9ERFRAaIJ2t1fMtBMRkekwaFcYy+OJiIgKCE3Q7hLLoJ2IiEyHQbvCWB5PRERUQGiCdseXzwCwPJ6IiEyDQbvCWB5PRERUQGiCdvvo51BBzUw7ERGZBIN2hbE8noiIqIDQjB6vUqtRCBEM2omIyCQYtCuMmXYiIqICwt4e8PICABTFUyQkAAkJ5m0SERHlPwzaFabfp12SzNsWIiIiMjFNiXxRcNo3IiIyDQbtCpPL4wEgOdl87SAiIqI8oAna/Z04gjwREZkGg3aFyZl2gCXyRERE+V6qoJ2ZdiIiUhqDdoXpZ9o5GB0REVE+pwnai9sx005ERKbBoF1hDNqJiIgKEM0I8r4M2omIyEQYtCtMpdIF7iyPJyIiyuc0mfZiHIiOiIhMhEG7CXCudiIiogJCE7QXUjPTTkREpsGg3QT0p30jIiKifEwTtHsnM2gnIiLTYNBuAnLQzvJ4IiKifE4TtHskPgPA8ngiIlIeg3YTYHk8ERFRAaEJ2t1ePQUgMdNORESKY9BuAiyPJyIiKiA0o8fbpiTBHS8ZtBMRkeIYtJsAy+OJiIgKCGdn3UO8Ynk8EREpjkG7CbA8noiIqIBQqQBHRwCAIxKYaSciIsUxaDcBlscTEREVIJqg3QnxzLQTEZHiGLSbAMvjiYiIChAnJwDMtBMRkWkwaDcBlscTEREVICyPJyIiE2LQbgIsjyciIipA9MrjX74E1Gozt4eIiPIVBu0mwPJ4IiKiAkSvPF6SgJgYM7eHiIjyFQbtJsDyeCIiogJEk2l3tU0AAJbIExGRohi0mwAz7URERAWIJmgv5BIPABxBnoiIFMWg3QTYp52IiKgA0ZTHezkz005ERMpj0G4CLI8nIiIqQDSZdi8nkWln0E5EREpi0G4CLI8nIiIqQDRBu4ejyLSzPJ6IiJTEoN0EmGknIiJS1rJly1CjRg14eHjAw8MDjRo1wu7du83dLEFTHu/uyPJ4IiJSHoN2E2CfdiIiImWVLFkS8+bNw/nz53Hu3Dm8/vrr6NatG/79919zN02XabdneTwRESnPztwNyI9YHk9ERKSsLl26GDyfO3culi1bhlOnTqFq1apmapWGJtPuZs/yeCIiUh6DdhNgeTwREZHppKSkYMuWLYiNjUWjRo2MbpOQkICEhATt82hTRtLyPO12LI8nIiLlsTzeBFgeT0REpLwrV67Azc0Njo6OeP/997Fjxw5UqVLF6LZBQUHw9PTU3vz9/U3XMDlot2V5PBERKY9BuwmwPJ6IiEh5FStWxMWLF3H69Gl88MEHGDRoEK5du2Z02ylTpiAqKkp7Cw0NNV3DNOXxzjYsjyciIuWxPN4EWB5PRESkPAcHB5QrVw4AULduXZw9exZff/01VqxYkWZbR0dHOGoy4CanOY6TDcvjiYhIecy0m4CDvQSAQTsREZEpqdVqg37rZqMJ2p3B8ngiIlIeM+1KunwZqFsXQ12LYQwesjyeiIhIIVOmTEGHDh1QqlQpvHz5Ehs2bMBff/2FvXv3mrtp2vJ4B7A8noiIlMegXUl2dkByMmxSRIqdmXYiIiJlPHnyBO+88w4eP34MT09P1KhRA3v37kXbtm3N3TRtpt1RzUw7EREpj0G7kjSd2W0ZtBMRESlq9erV5m5C+jRBu73EPu1ERKQ89mlXkmbYeJtkEa2zPJ6IiKgA0JTH26eIoD0xEbCErvZERJQ/MGhXkhy0p4honZl2IiKiAkCTabdNitcuYradiIiUwqBdSZryeBt1CmyQwqCdiIioINBk2lWJCXB3F4sYtBMRkVIsOmhPSUnB9OnTERgYCGdnZ5QtWxafffYZJEnSbiNJEmbMmAE/Pz84OzujTZs2uH37tnkarMm0A4A9klgeT0REVBDI88EnJMDDQzzkCPJERKQUiw7a58+fj2XLlmHp0qW4fv065s+fjwULFuCbb77RbrNgwQIsWbIEy5cvx+nTp+Hq6op27dohPj4+gz2bSKqgnZl2IiKiAkAO2uPj4ekpHjLTTkRESrHo0eNPnDiBbt26oVOnTgCA0qVLY+PGjThz5gwAkWVfvHgxpk2bhm7dugEAfvzxR/j4+GDnzp14880387bBmvJ4AHBAIoN2IiKigkBTHo+EBHj6iocM2omISCkWnWlv3LgxDh48iFu3bgEALl26hGPHjqFDhw4AgODgYISFhaFNmzba13h6eqJhw4Y4efJkuvtNSEhAdHS0wU0RtraAjfhIHZDI8ngiIqKCgOXxRERkQhadaZ88eTKio6NRqVIl2NraIiUlBXPnzsWAAQMAAGFhYQAAHx8fg9f5+Pho1xkTFBSE2bNnm6bRDg5AfDzL44mIiAoKlscTEZEJWXSmffPmzVi/fj02bNiACxcuYN26dfjiiy+wbt26XO13ypQpiIqK0t5CQ0MVajG0JfLMtBMRERUQ+uXxDNqJiEhhFp1p//jjjzF58mRt3/Tq1asjJCQEQUFBGDRoEHx9Rcex8PBw+Pn5aV8XHh6OWrVqpbtfR0dHOMpXxZWmGYyOfdqJiIgKCPk3RXIyPN1SANiyPJ6IiBRj0Zn2uLg42NgYNtHW1hZqtRoAEBgYCF9fXxw8eFC7Pjo6GqdPn0ajRo3ytK1amqCd5fFEREQFhF4ioJBrAgBm2omISDkWnWnv0qUL5s6di1KlSqFq1ar4559/sGjRIgwdOhQAoFKpMG7cOHz++ecoX748AgMDMX36dBQvXhzdu3c3T6NZHk9ERFSwyOXxkIN2FwbtRESkGIsO2r/55htMnz4dH374IZ48eYLixYvjvffew4wZM7TbfPLJJ4iNjcWIESMQGRmJpk2bYs+ePXDSO4HmKb3yeLUaSEkRg8oTERFRPmVnB6hUgCTByykeAEePJyIi5Vh00O7u7o7Fixdj8eLF6W6jUqkwZ84czJkzJ+8alhG98ngASEwEnJ3N2SAiIiIyKZVKlMjHx8PLmeXxRESkLIvu026V9MrjAbBEnoiIqCDQVPh5OjFoJyIiZTFoV5peeTwADkZHRERUEGgGo3O3Z3k8EREpi0G70jRBu6ONrjyeiIiI8jlNpt3dgZl2IiJSFoN2pWnK411sWR5PRERUYGgy7c42Imh/9cqcjSEiovyEQbvSNJl2Z1uWxxMRERUYmqDdURLl8cnJvHBPRETKYNCuNDlot2N5PBERUYGhKY93UiVoFzHbTkRESmDQrjRNebwzy+OJiIgKDk2m3V6dAJVKLGLQTkRESmDQrjRNpt3JhuXxREREBYYmaFclxMtJd8TFmbE9RESUbzBoV5octNuyPJ6IiKjAkCP1hAS4uIiHzLQTEZESGLQrTVMeL2faWR5PRERUAGgy7YiPh7OzeMhMOxERKYFBu9K087SzPJ6IiKjAkIN2ZtqJiEhhDNqVpg3aWR5PRERUYOiVx8uZdgbtRESkBAbtSpPL41UsjyciIiowWB5PREQmwqBdaXKmXcXyeCIiogKDA9EREZGJMGhXmiZod1CJFDsz7URERAWAXp92ZtqJiEhJDNqVpimPdwAz7URERAWGXnk8M+1ERKQkBu1K02baGbQTEREVGByIjoiITIRBu9LkoB0sjyciIiowWB5PREQmwqBdaZryeHuWxxMRERUcLI8nIiITYdCuNG2mnUE7ERFRgWGkPJ6ZdiIiUgKDdqVpgnZ7ieXxRERESggKCkL9+vXh7u6OYsWKoXv37rh586a5m2VIrzyemXYiIlISg3alyeXxEjPtRERESjhy5AhGjhyJU6dOYf/+/UhKSsIbb7yB2NhYczdNR688ngPRERGRkuzM3YB8R5Npt2PQTkREpIg9e/YYPF+7di2KFSuG8+fPo3nz5mZqVSosjyciIhNh0K40bdDO8ngiIiJTiIqKAgAUKlQo3W0SEhKQkJCgfR4dHW3aRnEgOiIiMhGWxytNLo9XM9NORET5y4ULF3DlyhXt819//RXdu3fHp59+isQ8OuGp1WqMGzcOTZo0QbVq1dLdLigoCJ6entqbv7+/aRvGTDsREZkIg3alyZl2Bu1ERJTPvPfee7h16xYA4N69e3jzzTfh4uKCLVu24JNPPsmTNowcORJXr17FL7/8kuF2U6ZMQVRUlPYWGhpq2oZxIDoiIjIRBu1K0wTttiyPJyKifObWrVuoVasWAGDLli1o3rw5NmzYgLVr12Lbtm0mP/6oUaPw+++/4/DhwyhZsmSG2zo6OsLDw8PgZlIciI6IiEyEQbvSNOXxtinMtBMRUf4iSRLUajUA4MCBA+jYsSMAwN/fH8+ePTPpcUeNGoUdO3bg0KFDCAwMNNmxcozl8UREZCIciE5pcqadQTsREeUz9erVw+eff442bdrgyJEjWLZsGQAgODgYPj4+JjvuyJEjsWHDBvz6669wd3dHWFgYAMDT0xPOcoRsbiyPJyIiE2GmXWly0K5meTwREeUvixcvxoULFzBq1ChMnToV5cqVAwBs3boVjRs3Ntlxly1bhqioKLRs2RJ+fn7a26ZNm0x2zGwzUh7PTDsRESmBmXalsTyeiIjyqRo1ahiMHi9buHAhbG1tTXZcSZJMtm/FyOXxajVcHJIB2DHTTkREimCmXWmaTLtNMoN2IiLKX0JDQ/HgwQPt8zNnzmDcuHH48ccfYa+5aF1gyZl2AM42Yn74xEQgJcVcDSIiovyCQbvS5KA9heXxRESUv7z11ls4fPgwACAsLAxt27bFmTNnMHXqVMyZM8fMrTMz/aBdFa99zGw7ERHlFoN2pWkyDTYpyVBBzUw7ERHlG1evXkWDBg0AAJs3b0a1atVw4sQJrF+/HmvXrjVv48zNzg7QdBGQM+0Ag3YiIso9Bu1K02TaAcAeScy0ExFRvpGUlARHTUb5wIED6Nq1KwCgUqVKePz4sTmbZhk0n41NYrw28c7B6IiIKLcYtCstVdDOTDsREeUXVatWxfLly3H06FHs378f7du3BwA8evQIhQsXNnPrLIDeXO2c9o2IiJTCoF1pegPxOCCRQTsREeUb8+fPx4oVK9CyZUv0798fNWvWBADs2rVLWzZfoOnN1S5P+8agnYiIcotTvinN1hZQqQBJggMSWR5PRET5RsuWLfHs2TNER0fD29tbu3zEiBFwkVPLBRnnaiciIhNg0K40lUqUyCcksDyeiIjyHVtbWyQnJ+PYsWMAgIoVK6J06dLmbZSlYHk8ERGZAMvjTUFTIs/yeCIiyk9iY2MxdOhQ+Pn5oXnz5mjevDmKFy+OYcOGIY4pZaPl8fxYiIgotxi0m4JmMDqWxxMRUX4yYcIEHDlyBL/99hsiIyMRGRmJX3/9FUeOHMHEiRPN3Tzz0yuPZ6adiIiUwvJ4U9AE7SyPJyKi/GTbtm3YunUrWrZsqV3WsWNHODs7o2/fvli2bJn5GmcJ9MrjORAdEREphZl2U2B5PBER5UNxcXHw8fFJs7xYsWIsjwdYHk9ERCbBoN0U9MrjU1IAtdrM7SEiIlJAo0aNMHPmTMTHx2uXvXr1CrNnz0ajRo3M2DILwfJ4IiIyAZbHm4JeeTwAJCXpzuNERETW6uuvv0a7du1QsmRJ7Rztly5dgpOTE/bu3Wvm1lkAI+XxzLQTEVFuMWg3Bb3yeABITGTQTkRE1q9atWq4ffs21q9fjxs3bgAA+vfvjwEDBsBZjlILMr3yeGbaiYhIKQzaTUGvPB4AR5AnIqJ8w8XFBcOHDzd3MyyTXnk8B6IjIiKlMGg3BW3QLqJ1DkZHRETWateuXVnetmvXriZsiRVgeTwREZkAg3ZT0JTHu9glAskM2omIyHp17949S9upVCqkpKSYtjGWTn8guqLiITPtRESUWwzaTUGTaZeDdpbHExGRtVJzCpSsY6adiIhMgFO+mYImaHeyZXk8ERFRgcGB6IiIyAQYtJuCpjze2VY3ejwRERHlcxyIjoiITIBBuyloMu1y0M7yeCIiogKA5fFERGQCDNpNQRO0O9qwPJ6IiKjAYHk8ERGZgMUH7Q8fPsTAgQNRuHBhODs7o3r16jh37px2vSRJmDFjBvz8/ODs7Iw2bdrg9u3bZmwxtOXxTjbMtBMRERUYRsrjmWknIqLcsuig/cWLF2jSpAns7e2xe/duXLt2DV9++SW8vb212yxYsABLlizB8uXLcfr0abi6uqJdu3aIj483X8Plgehs2KediIjyjz///BN79+5Ns3zv3r3YvXu3GVpkYfTK45lpJyIipVh00D5//nz4+/tjzZo1aNCgAQIDA/HGG2+gbNmyAESWffHixZg2bRq6deuGGjVq4Mcff8SjR4+wc+dO8zWc5fFERJQPTZ482ehc7JIkYfLkyWZokYXRK4/nQHRERKQUiw7ad+3ahXr16qFPnz4oVqwYateujVWrVmnXBwcHIywsDG3atNEu8/T0RMOGDXHy5Ml095uQkIDo6GiDm6I05fGOKpbHExFR/nH79m1UqVIlzfJKlSrhzp07ZmiRhdErj5cz7SyPJyKi3LLooP3evXtYtmwZypcvj7179+KDDz7AmDFjsG7dOgBAWFgYAMDHx8fgdT4+Ptp1xgQFBcHT01N78/f3V7bhcqZdxfJ4IiLKPzw9PXHv3r00y+/cuQNXV1cztMjCGBk9Pj4eUKvN1yQiIrJ+Fh20q9Vq1KlTB//73/9Qu3ZtjBgxAsOHD8fy5ctztd8pU6YgKipKewsNDVWoxRqaoN2B5fFERJSPdOvWDePGjcPdu3e1y+7cuYOJEyeia9euZmyZhTAyEJ3mKRERUY5ZdNDu5+eXpgyvcuXKuH//PgDA19cXABAeHm6wTXh4uHadMY6OjvDw8DC4KUoujwfL44mIKP9YsGABXF1dUalSJQQGBiIwMBCVK1dG4cKF8cUXX5i7eeZnJNMOsF87ERHljp25G5CRJk2a4ObNmwbLbt26hYCAAABAYGAgfH19cfDgQdSqVQsAEB0djdOnT+ODDz7I6+bqyJl2sDyeiIjyD09PT5w4cQL79+/HpUuX4OzsjBo1aqB58+bmbppl0BuIzs5OXMNPSmLQTkREuWPRQfv48ePRuHFj/O9//0Pfvn1x5swZrFy5EitXrgQAqFQqjBs3Dp9//jnKly+PwMBATJ8+HcWLF0f37t3N13A5aFexPJ6IiPIXlUqFN954A2+88Ya5m2J59MrjAcDFBYiK4mB0RESUOxYdtNevXx87duzAlClTMGfOHAQGBmLx4sUYMGCAdptPPvkEsbGxGDFiBCIjI9G0aVPs2bMHTnKJmjloyuMdWB5PRERWbsmSJRgxYgScnJywZMmSDLcdM2ZMHrXKQumVxwOAs7MI2plpJyKi3LDooB0AOnfujM6dO6e7XqVSYc6cOZgzZ04etioTmky7vcTyeCIism5fffUVBgwYACcnJ3z11VfpbqdSqRi065XHQ5Lg7KwCwEw7ERHljsUH7VZJDtrB8ngiIrJuwcHBRh/ntb///hsLFy7E+fPn8fjxY+zYscO8XeGMkYN2SQKSkuDiIn4PMNNORES5YdGjx1stTXm8nGlneTwREVHuxMbGombNmvj222/N3ZT06XfN0xtBnkE7ERHlRo4y7aGhoVCpVChZsiQA4MyZM9iwYQOqVKmCESNGKNpAq6TJtNuxPJ6IiPIRSZKwdetWHD58GE+ePIFarTZYv337dpMdu0OHDujQoYPJ9q8IOdMOAAkJcHFxB8DyeCIiyp0cZdrfeustHD58GAAQFhaGtm3b4syZM5g6dapl9S03F22fdpbHExFR/jFu3Di8/fbbCA4OhpubGzw9PQ1uliQhIQHR0dEGN5OzsQHsNPmQ+Hhm2omISBE5yrRfvXoVDRo0AABs3rwZ1apVw/Hjx7Fv3z68//77mDFjhqKNtDqa8ng7lscTEVE+8tNPP2H79u3o2LGjuZuSqaCgIMyePTvvD+zkBMTEGJTHM9NORES5kaNMe1JSEhw1JWAHDhxA165dAQCVKlXC48ePlWudtZLL41NYHk9ERPmHp6cnypQpY+5mZMmUKVMQFRWlvYWGhubNgfVGkHdxEQ+ZaSciotzIUdBetWpVLF++HEePHsX+/fvRvn17AMCjR49QuHBhRRtolTRBuy3L44mIKB+ZNWsWZs+ejVdWEIU6OjrCw8PD4JYn5MHoWB5PREQKyVF5/Pz589GjRw8sXLgQgwYNQs2aNQEAu3bt0pbNF2hyeXwKy+OJiCj/6Nu3LzZu3IhixYqhdOnSsNec72QXLlwwU8ssiJFMO8vjiYgoN3IUtLds2RLPnj1DdHQ0vL29tctHjBgBF/kMVZDJmXY1y+OJiCj/GDRoEM6fP4+BAwfCx8cHKpUqz44dExODO3fuaJ8HBwfj4sWLKFSoEEqVKpVn7ciUHLRrMu0uiMVbG/oB/l2A994zb9uIiMgq5Shof/XqFSRJ0gbsISEh2LFjBypXrox27dop2kCrpAnabVJEip2ZdiIiyg/++OMP7N27F02bNs3zY587dw6tWrXSPp8wYQIAcSFh7dq1ed6edMnl8ZqB6NphL6oE/wEsus2gnYiIciRHQXu3bt3Qs2dPvP/++4iMjETDhg1hb2+PZ8+eYdGiRfjggw+Ubqd10ZQL2nIgOiIiykf8/f3zrm94Ki1btoQkSWY5drakKo+vin/F8+fPzdcmIiKyajkaiO7ChQto1qwZAGDr1q3w8fFBSEgIfvzxRyxZskTRBloluTyeQTsREeUjX375JT755BP8999/5m6K5UpVHl8F18TzFy8Atdp87SIiIquVo0x7XFwc3N3dAQD79u1Dz549YWNjg9deew0hISGKNtAqyeXxySyPJyKi/GPgwIGIi4tD2bJl4eLikmYguoiICDO1zILolce7uOgF7Wo1EBUF6I0FRERElBU5CtrLlSuHnTt3okePHti7dy/Gjx8PAHjy5InZyuYsiuZHjOjTLiEhIe8G6iEiIjKVxYsXm7sJlk+/PN4pGZVwQ7fu+XMG7URElG05CtpnzJiBt956C+PHj8frr7+ORo0aARBZ99q1ayvaQKukybQDgD2SkJjokMHGRERE1mHQoEHmboLl0yuPL5J4D47Q6yPHSgQiIsqBHAXtvXv3RtOmTfH48WPtHO0A0Lp1a/To0UOxxlmtVEF7QgKDdiIiyh/UajXu3LmDJ0+eQJ2qj3bz5s3N1CoLolceXyT6X8N1HIyOiIhyIEdBOwD4+vrC19cXDx48AACULFkSDRo0UKxhVk2vj58DEpGQ4GrGxhARESnj1KlTeOuttxASEpJmJHeVSoWUlBQztcyC6JXHez2+ZriOmXYiIsqBHI0er1arMWfOHHh6eiIgIAABAQHw8vLCZ599luaqe4Fkp7sW4oBExMebsS1EREQKef/991GvXj1cvXoVERERePHihfbGQeg05Ex7fDw8QlMF7cy0ExFRDuQo0z516lSsXr0a8+bNQ5MmTQAAx44dw6xZsxAfH4+5c+cq2kiro1KJEvnERE15vLkbRERElHu3b9/G1q1bUa5cOXM3xXLpD0T3nyiPf2hTEiXUD5hpJyKiHMlR0L5u3Tp8//336Nq1q3ZZjRo1UKJECXz44YcM2gFRIp+YCAckIoqZdiIiygcaNmyIO3fuMGjPiBy0x8bCMViMHH9c1Qx9sZGZdiIiypEcBe0RERGoVKlSmuWVKlVieZzMwQGIjdX0aTd3Y4iIiHLm8uXL2sejR4/GxIkTERYWhurVq6eZp71GjRp53TzLI5fH37gBm8QExMEZZ1PqMGgnIqIcy1HQXrNmTSxduhRLliwxWL506VKesGWaEeTtkYSkJECtBmxyNIIAERGR+dSqVQsqlcpg4LmhQ4dqH8vrOBCdhpxpv3ABAHAdlfEERcUyJjaIiCgHchS0L1iwAJ06dcKBAwe0c7SfPHkSoaGh+PPPPxVtoNXSZB8cNPOzJiQAzs7mbBAREVH2BQcHm7sJ1kUO2iMjAQDXUAURKCSWWVim/fx5oGtXYN484O23zd0aIiJKT45yvy1atMCtW7fQo0cPREZGIjIyEj179sS///6Ln376Sek2WidNpl0/aCciIrI28iwxAQEBCAkJQYkSJQyWBQQEoESJEggJCTF3Uy2DXB6vcUNVBc9RWDyxsEz7gQPAo0fArl3mbgkREWUkx/O0Fy9ePM2Ac5cuXcLq1auxcuXKXDfM6umVxwMM2omIyPq1atUKjx8/RrFixQyWR0VFoVWrViyPB3SZdo07jlUREW+ZmfaXLw3viYjIMrGXtaloyuPd7EWmnXO1ExGRtZP7rqf2/PlzuLq6mqFFFihV0P6fi16mPSoKSE42Q6OMY9BORGQdcpxpp0xoMu2u9olAEjPtRERkvXr27AlADDo3ePBgOOoFpikpKbh8+TIaN25sruZZFv3yeCcnPHULxIsI3SB+ePECKFo079tlBIN2IiLrwKDdVDRBu4s9y+OJiMi6eXp6AhCZdnd3dzjrjazq4OCA1157DcOHDzdX8yyLfqa9UiU4JdgiBUCyqyfsYqNEv3YLCdpjYsQ9g3YiIsuWraBdvtKenkjNSKkEbXm8ix3L44mIyLqtWbMGAFC6dGl89NFHLIXPiH7QXrUqnK+Lh4nuhUXQbkH92uVgXQ7eiYjIMmUraJevtGe0/p133slVg/INOdNux9HjiYgof5g5c6a5m2D59Mvjq1SB83/iYYJrIbjgnkWNIM/yeCIi65CtoF2+0k5ZoAnane1YHk9ERNarTp06OHjwILy9vVG7dm2jA9HJLly4kIcts1D6mfYqVeDyl3j4yqUwvAGLzLQnJABJSdoiQSIisjDs024qmjOfsy3L44mIyHp169ZNO/Bc9+7dzdsYa6Cfaa9aFXL3/zhnMe1bcvhzfLUQ6NwZqFzZDO3To18W//IlUKiQ+dpCRETpY9BuKtpMO8vjiYjIeskl8SkpKWjVqhVq1KgBLy8v8zbKkrm7i3tnZyAwEC4u4mmMo5j27ezeCHxyCDh+HNi50zxNlOmXxTNoJyKyXAzaTUUTtDvZsDyeiIisn62tLd544w1cv36dQXtGAgKAOXOAwEDAzk6baY+xFxFx6EVRHn//vrkaqKMftHMwOiIiy8Wg3VQ05fFONiyPJyKi/KFatWq4d+8eAgMDzd0UyzZ9uvahHLRH24tMu6QZiO7JkzxvlYHkZMPfJhyMjojIctmYuwH5llweb8vyeCIiyh8+//xzfPTRR/j999/x+PFjREdHG9woLbk8PtJWBO2FITLtT54AkmSuVqXNrDNoJyKyXMy0m4omaHdgeTwREeUTHTt2BAB07drVYBR5SZKgUqmQkpJirqZZLDnTHgFRHl8IItOelARERQHm6mmQOkhn0E5EZLkYtJuKXB6vYnk8ERHlD4cPHzZ3E6yOnGk/cLEwRgEoqnoOVxcgNhYID2fQTkREmWPQbiqaTLujiuXxRESUP7Ro0cLcTbA6cqb96iORaS9qFwFfX+DuXVEiX7GiedqVOkjnQHRERJaLQbupyOXxKpbHExFR/hIXF4f79+8jMTHRYHmNGjXM1CLLJQftzyH6tDslxaBE0UTcvetg1sHo2KediMh6MGg3FU15vANYHk9ERPnD06dPMWTIEOzevdvoevZpT0suj4+CJ1JgA1uoUcYrAn/D16xBO8vjiYisB0ePNxVtpp3l8URElD+MGzcOkZGROH36NJydnbFnzx6sW7cO5cuXx65du8zdPIskZ9ol2CDe2RsAEOCmG0HeXBi0ExFZD2baTUUTtNuD5fFERJQ/HDp0CL/++ivq1asHGxsbBAQEoG3btvDw8EBQUBA6depk7iZaHDnTDgB2xQoBIc9R0plBOxERZR0z7aYil8dLLI8nIqL8ITY2FsWKFQMAeHt74+nTpwCA6tWr48KFC+ZsmsUqXx6wsQGaNgUc/US/dj9HMe1beLj52pW6TzsHoiMislwM2k1FzrRLLI8nIqL8oWLFirh58yYAoGbNmlixYgUePnyI5cuXw8/Pz8yts0zlygHXrgG//QagsAjai9laTqbd3d3wORERWR6Wx5uKJmi3k1geT0RE+cPYsWPx+PFjAMDMmTPRvn17rF+/Hg4ODli7dq15G2fBtNO6FRLTvhWCyLRbQtBevDhw8yaDdiIiS8ZMu6loyuPtWB5PRET5xMCBAzF48GAAQN26dRESEoKzZ88iNDQU/fr1M/nxv/32W5QuXRpOTk5o2LAhzpw5Y/JjKkqTafdMtpxMe/Hihs+JiMjyMGg3FTnTrmZ5PBER5U8uLi6oU6cOihQpYvJjbdq0CRMmTMDMmTNx4cIF1KxZE+3atcMTc0a+2aXJtLslikz7ixdAqqnu84zch13u1cCgnYjIcrE83lS0QTvL44mIKH+YMGGC0eUqlQpOTk4oV64cunXrhkKa4FRJixYtwvDhwzFkyBAAwPLly/HHH3/ghx9+wOTJkxU/nkloMu2OMc9hawukpABPnwIlSuR9U+QgXQ7aORAdEZHlYtBuKpryeFs1y+OJiCh/+Oeff3DhwgWkpKSgoqaj9q1bt2Bra4tKlSrhu+++w8SJE3Hs2DFUqVJFseMmJibi/PnzmDJlinaZjY0N2rRpg5MnTxp9TUJCAhL0rphHR0cr1p4c01zMUL2IQNGiQFiYKJE3Z9DO8ngiIsvH8nhT0WTabVNYHk9ERPlDt27d0KZNGzx69Ajnz5/H+fPn8eDBA7Rt2xb9+/fHw4cP0bx5c4wfP17R4z579gwpKSnw8fExWO7j44OwsDCjrwkKCoKnp6f25u/vr2ibckSTacfz59DMnGe2fu2pg/aEBCApyTxtISKijDFoNxVN0G6TwvJ4IiLKHxYuXIjPPvsMHh4e2mWenp6YNWsWFixYABcXF8yYMQPnz583YyuFKVOmICoqSnsLDQ01d5N0QXtEhNmD9tR92gFm24mILBWDdlORy+OTWR5PRET5Q1RUlNGB354+faotP/fy8kKiwqOrFSlSBLa2tggPDzdYHh4eDl9fX6OvcXR0hIeHh8HN7OS+/haUaff2BhwdxWP2ayciskwM2k1Fm2lneTwREeUP3bp1w9ChQ7Fjxw48ePAADx48wI4dOzBs2DB0794dAHDmzBlUqFBB0eM6ODigbt26OHjwoHaZWq3GwYMH0ahRI0WPZVJypj0+HiW84wCYP2h3dxc3/WVERGRZrCponzdvHlQqFcaNG6ddFh8fj5EjR6Jw4cJwc3NDr1690lyJNwtN0K5KZnk8ERHlDytWrEDr1q3x5ptvIiAgAAEBAXjzzTfRunVrLF++HABQqVIlfP/994ofe8KECVi1ahXWrVuH69ev44MPPkBsbKx2NHmr4OYG2IkxgEu5iWnfzPGTJTkZePVKPHZ3F80CGLQTEVkqqxk9/uzZs1ixYgVq1KhhsHz8+PH4448/sGXLFnh6emLUqFHo2bMnjh8/bqaWamjK422SWB5PRET5g5ubG1atWoWvvvoK9+7dAwCUKVMGbnLUB6BWrVomOXa/fv3w9OlTzJgxA2FhYahVqxb27NmTZnA6i6ZSiWx7eDhKOj8HUNIsmfbYWN1jZtqJiCyfVWTaY2JiMGDAAKxatQre3t7a5VFRUVi9ejUWLVqE119/HXXr1sWaNWtw4sQJnDp1yowthi7Trgnak5MBtdqcDSIiIlKGm5sbChUqhEKFChkE7KY2atQohISEICEhAadPn0bDhg3z7NiK0fRr97EXmXZzBO1ycG5nJ36uMGgnIrJsVhG0jxw5Ep06dUKbNm0Mlp8/fx5JSUkGyytVqoRSpUqlO28rIOZujY6ONrgpThO0I1k3fwpL5ImIyJqp1WrMmTMHnp6e2vJ4Ly8vfPbZZ1DzynTWaPq1F1E9B2DeoN3dXST/5aCdA9EREVkmiy+P/+WXX3DhwgWcPXs2zbqwsDA4ODjAy8vLYHlG87YCYu7W2bNnK91UQ5ryeFViIgAJgArx8YCzs2kPS0REZCpTp07F6tWrMW/ePDRp0gQAcOzYMcyaNQvx8fGYO3eumVtoBTSZdm9Jl2mXJBE85xX9oF3/npl2IiLLZNFBe2hoKMaOHYv9+/fDyclJsf1OmTIFEyZM0D6Pjo6Gv7+/YvsHoMu0A7BHMpJgz0w7ERFZtXXr1uH7779H165dtctq1KiBEiVK4MMPP2TQnhWaTLtHksi0JyQA0dGAp2feNUHOqMvBOgeiIyKybBZdHn/+/Hk8efIEderUgZ2dHezs7HDkyBEsWbIEdnZ28PHxQWJiIiIjIw1el9G8rUAezd2qF7S7O3LaNyIisn4RERGoVKlSmuWVKlVCRESEGVpkhTRBu0NMhDZYzusSeTk4l4/PTDsRkWWz6KC9devWuHLlCi5evKi91atXDwMGDNA+tre3N5i39ebNm7h//775523VlMcDgJuj6NfOEeSJiMia1axZE0uXLk2zfOnSpahZs6YZWmSFNOXxeP4cxYqJh+YK2lkeT0RkHSy6PN7d3R3VqlUzWObq6orChQtrlw8bNgwTJkxAoUKF4OHhgdGjR6NRo0Z47bXXzNFkHb2gnZl2IiLKDxYsWIBOnTrhwIED2ovjJ0+eRGhoKP78808zt85KaDLtePYMxYoB9+5ZTtDOgeiIiCyTRWfas+Krr75C586d0atXLzRv3hy+vr7Yvn27uZslRpTRBO6u9gzaiYjI+rVo0QK3bt1Cjx49EBkZicjISPTs2RM3b95Es2bNzN0861CqlLgPDjZbpj11n3Zm2omILJtFZ9qN+euvvwyeOzk54dtvv8W3335rngZlxN4eSEqCqwPL44mIKH8oXrx4mgHnHjx4gBEjRmDlypVmapUVqVBB3N++DZ+GagA2Zu/TzoHoiIgsm9Vn2i2aZjA6Nwdm2omIKP96/vw5Vq9ebe5mWIeAAHFRPyEBFZxDAQDh4XnbBPZpJyKyLgzaTUkTtLvYMWgnIiIiALa2QLlyAICy6tsALKdPO4N2IiLLxKDdlDR92l3sWR5PREREGpoSef9XtwBYTp92DkRHRGSZGLSbkibTzoHoiIiISEsTtPtEmSdo5zztRETWxeoGorMqmqDdmeXxRERkxXr27Jnh+sjIyLxpSH6hCdq9npg3aJeDdQ5ER0Rk2Ri0m5KmPN7ZluXxRERkvTw9PTNd/8477+RRa/KB8uUBAC4PRND+/DmQlKT92WBy6fVpT0jI23YQEVHWMGg3JQ5ER0RE+cCaNWvM3YT8RZNpt7kfDEdVIhIkBzx7Bvj55c3h0+vTDoiAvlChvGkHERFlDfu0m5JcHm/LoJ2IiIg0fH0BNzeo1GrU9b4HIG9L5FNn2u3tAUdH8ZiD0RERWR4G7aakqS9zYnk8ERERyVQqbba9jlve92tPPRAdwMHoiIgsGYN2U9Jk2p1smGknIiIiPZqgvapD3gbtKSlAXJx4rF8Wz8HoiIgsF4N2U2LQTkRERMZogvby6rwN2mNjdY/1g3Zm2omILBeDdlPSlMc72rA8noiIiPRogvaABBG0h4fnzWHloNzOTtePHWDQTkRkyRi0mxIz7URERGSMJmj3fSmC9oMHAUky/WH1+7OrVLrlctDOgeiIiCwPg3ZT0gTtDioG7URERKRHM1e7W/RjFHZ4iXPngBMnTH/Y1CPHy5hpJyKyXAzaTUlTHu+gYnk8ERER6fHyAooVAwCM6XAbALB4sekPm3qOdhmDdiIiy8Wg3ZQ0mXZHMNNOREREqWhK5Ac3EUH79u1ASIhpD5lepp2jxxMRWS4G7aYkl8czaCciIqLUNEF7qfhbaN0aUKuBb7817SGNzdEOMNNORGTJGLSbkqY83h4sjyciIqJUNEE7bt3CuHHi4apVph0MLrM+7RyIjojI8jBoNyVm2omIiCg9ekF7x45AuXJAZCTw44+6TSRJ2VHl2aediMj6MGg3JU3QbicxaCciIqJUNCPI49Yt2KgkjB0rnn79NbBvHzB6NBAYCHh4ANevK3NIjh5PRGR9GLSbklweL7E8noiIiFIpW1ZMlh4ZCTx7hkGDRIB+6xbQrh2wdKkYmC4mBvjtN2UOmV6fdg5ER2QB7t4FmjYFdu40d0vIwjBoNyU5065mpp2IiIhScXYGSpUSj2/dgrs7MGGCeOrnBwwfDvTrJ55fvarMIVkeTxbr/n0gJcXcrTCvL78Ejh8H5s0zd0ss26tXwMmTyvYdsnAM2k2JQTsRERFlRK9fOwBMnw6EhgIPHgArVwL9+4vVSgXtHIiOLNK+fUBAAPDJJ+ZuifkkJwPbtonH588DsbHmbY8lGz8eaNxY93kVAAzaTUlTHm/L8ngiIiIyRg7ab94EANjYACVLinsAqFZN3F+7Jn7T5xb7tFOO/fij+ELevq38vk+fFvfHjim/b2vx99/AkyficXKy7jMhQ8nJwObN4vHRo+ZtSx5i0G5KcqY9hZl2IiIiMiJVpj21wEDAxUX8hrh7N/eH4zztlGM//AD8+69yAyzoCwkR90p8ya2VHIjKClBAmi0nTwIvXojHSo3QaQUYtJuSJmi3ZdBORERExlSsKO41mfbUbGyAqlXFYyVK5NPr0y4H8QkJQFJS7o9D+dD9++I+ONh0+37+XAzMWNDol8b36CHuGbQb98cfusfXrpmvHXmMQbspaYJ2G7U4+yUnc3wNIiKi7Jo7dy4aN24MFxcXeHl5mbs5ypKD9jt30v2RIJfIKxG0Z1Yer79NanFxuoQoFTApKWKgBQD47z/l9y8H7UDBzLb/9Rfw7BlQpIgY2AIQGWVeQUvr9991jx8+BKKjzdeWPMSg3ZTkPu3JidpFzLYTERFlT2JiIvr06YMPPvjA3E1RXqlSgJMTkJiYbjAkB+1XruT+cOkF7fb2gKOjeGxsMDpJArp0EbPUHT+e+3aQlQkP1wWQSgftkmQYtN+5o+z+rYFcGt+rF1CzJuDtLa6S/fOPedtlaf77T3TRsLERnxFQYErkGbSbkibTrmLQTkRElGOzZ8/G+PHjUb16dXM3RXk2NkD58uJxOiXypsi0p+7TDmTcr/3PP4FDh0TClbNRFUD6QXVwsLJTbT1/LqbwkhW0THtSErB9u3jct6/4m9CkiXjOEnlDcml848ZA3bricVZK5B89MvwOWyEG7aakuWStSkyASiUWcQR5IiIi00tISEB0dLTBzWJl0q9dvlZx+3bufkeo1bpZpFJn2vWXpQ7a1Wpg6lTd899/B27cyHk7yArp94uIjRWBtlJSB1MFLdN++LD4PIsVA5o3F8uaNRP3DNoNyUF7585A5cricWaZ9pgYoFYtoFIl4MIFkzbPlBi0m5KLCwBAFRsLJyexiJl2IiIi0wsKCoKnp6f25u/vb+4mpS+ToN3XFyhUSATPuQmW9ad9Nha0y9n31EH75s3ApUuAhwfQqpVYtnhxzttBVih1YK1kiXxBD9r1S+Pt7MRjOWg/dkz8xyfxB+zQIfG4c2egShXxOLNM++bNwNOnopqjZ08xdoAVYtBuSvLZLzZW20+MQTsREREwefJkqFSqDG83chGhTpkyBVFRUdpbaGiogq1XWCZBu0qlTL92ORi3tYU2maDPWKY9KUk3LtbHHwOzZ4vH69aJ38GZUatFm7/9Fhg0KO2sVmQl8iJoL1VK3Bek8vjUpfGyunUBZ2eRgc+vZS3nzmWvZP3QIRFIBQSIgD2rmfZVq8S9ra2oGHnzTTE6uJVh0G5Krq7iXi9oZ3k8ERERMHHiRFy/fj3DW5kyZXK8f0dHR3h4eBjcLFYmQTugTL92/f7scrc9fXLQrj8Q3dq1IvFZtCgwdizQtClQr574PbNsWfrHCgkBBg4Ur6tRAxg1CvjxR+Ctt4AjR3L+HtKjVivbzTojSUnAkyd5cyyLIQdX8hdHyWnf5H2//rq4f/RIDMJWEKxaJeYc9/HRZdcBMS5Ww4bicX4skT98GGjQQFycyOoFVXnU+M6dxfdQzrQHBxuOiaDv6lXg1ClRwbB3r4jNDh4EPv009+8hjzFoNyU5aI+JYXk8ERGRnqJFi6JSpUoZ3hw0A7rme3LQ/vhxutMXKRG0pzdHuyx1pv3VK11mfepUsV6lAiZOFMu+/TZtMiIpCfjiC/F7ev16ICJC/Bxq2xZo2VIMZNenT9Z/p2dFSooo2w8IAHbvTrv+zBmgfXtgwYLcHysuTnQ7LlkSuHgx9/uzGnJgXbOmuDdFpr1WLUCe0vHePeX2bwpKlKyfPw+MHy8eT5okMsH6zN2vPTlZBMr6/WoycvIksHx55tPUJSYCI0eKq2zPngG9e2ceIEmSrj97p07ivmhRoHBhsS69C57ffy/uu3QBWrcGfvhBPF+4ENi0KWvvKzJSXKH87jtRKnToEHD5srjYkocYtJuSHLQnJcHVQXyBGbQTERFlz/3793Hx4kXcv38fKSkpuHjxIi5evIgYY3OTWSNPT5FpA4Bbt4xuIg9Glzpol6Ssxw/pTfcmk5dv2SJK2Zs1E9Mg+/sD772n265XL7HsyRMRmAPi9+sff4gs/Mcf64LbY8fEun37xPpatURZfc+eylUf7toF/P23uBDQsaO4qJCYKH5zTZ0KNGokkmzTp6c/B31WqNXiczl1SsQl332nTPutghxYywOlmao8vlw58diS+7X/739iurGsBn3GvHghgtXERKB7d2DcuLTbmDtoHzVKBLvvv5/5tuvXi+/GBx8AgweLK2npWbxYlLQXLSoG6zhzxvj713fpkvhj5OKiG1gDyLhfe3w88NNP4vHw4eK+b1/gk0/E43ffBR48yPi49++Lkeo//FBcaOjXTwT/NWsCixZl/FqlSSRFRUVJAKSoqChldxwfL0nifCo1rvJCAiRp3z5lD0FERPmPyc5LVmrQoEESgDS3w4cPZ3kfFv+ZNm8ufjP8/LPR1RER2p8UkvwWEhMl6bXXJCkgQJJCQjI/xI4d4vUNGhhfP2GC7hj6t3Xr0m77xRdiXdGiklSmjOH2hQtL0g8/SJJanfZ1wcGSVKiQ2G7IEOPbyNvNnClJp09n/r6aNBH7q1JF14a6dSWpRg3dcwcHcb95c+b7S8+nn4p9qFTi3t1dkmJicr4/q/Hype6D3LpV3FeurNz+/fzEPs+dk6R+/cTjL75Qbv9KUqslqUQJ0UYbG0n66afs7yMlRZI6dxb7KFNGkl68ML7dy5eSZGsrtkvvP7habZov4a5dun9zGxtJunUr/W2//jrtH41hw8T7TO3+fUlycRHbrF0rSbt36/5DrVljfP83b0pS06Zimy5dDNeNGCGWT5uW9nUbNoh1/v6SlJysW56UJP5wApLUo0f67+vSJUkqXlxsV7y4JPXqJf5OV6kiScWKSdLSpem/Nhuyem5i0C6Z8ESuVmv/s3Ws+UACJOm335Q9BBER5T8WH2BaIYv/TIcPFz8Op09PdxM5Vjh+XDxfuNAwSI2Ly/gQQ4fqgmVjbt+WpEGDJOnDDyVp3jzxm/fcOeOBdWSkCFr1f6eXKSNe+/Rpxu3Yv1/EAYAkffdd2vWJiZJUvbpuv/XriwsHr16l3fbUKbGNvb0kPXokSb/+qrsoAEhSkSIizvzoI/F8wICM25aetWt1+1y7VpLKltU9tio3bkjSs2fZe821a+LNenqKLwkgSc7O6V9xyQ69BJf05IkkTZ0qHr//fu73bQqXLxt+6VUqcYUqO+bNE691dJSkCxcy3rZePbGtsYsDCQmS1LGjiDXGjBH/KZUQFiauxgGS5OYm7ocOTbudWi3+XsmfxZgx4qqY/J971Ki035FevcS6pk1162bPFsucnCRpyxZxgUKtFv/hZ87UXXFzcpKk1BdqFy8W63r2TNu+118X62bOTLvu8mVJsrMT63fuTLv+4EFJ8vAQ66tWFRcbTIRBezaY9ESu+QfvX/em9gIlERFRRiw+wLRCFv+Zyqnrvn3T3aRdO7HJihWS9OCBJLm6GmaR3347/TgqKkqX4Dp6VJkmHzsmmr1/vyQ9f56918oXHBwcJOmffwzXff65Ll6Q3xsgSb6+4iKCvr59xbpBg3TLQkNFbPDOO5IUHi6WHT0qtvPyEhcFsuPvv8VFAUBk2yVJkubOFc+bN8/evszq4kURqDRsmL3X7d4t3myNGiLIljOj8oebG3fv6gIytVoEwIAktW2b+31nR0xM1i5CLFgg2te+vSR98IHuy7liRdaOc/SoLqhdtSrz7T/+WJfpvXlTt1ytlqSBAw0vIPj4iKtbubmYolaLCwGAuHL211/isZ2dKH8x1jZAkj77THfcn37SfUeGDpWk7dsl6coVcUUNEBcZLl/W7SclRXdM+ebqKrLZ8vP27cV3JbW9e8X6SpUMl9+5o7uo8t9/xt/r5Mlim5IlJSk6Wvf+lyzR/Ydv3lyUOZkQg/ZsMOmJXFPy816DCxKQbtUbERGRlsUHmFbI4j9TuRy1Zs10N5k4UWwyerQkvfmmeNy4sSQdOKCrol282PhrV64U6ytWVCZBmltqtah0ldv08qVYfv26LlD/+WcRF/7vf+J3tRy4y5XCwcG6+OfSpYyPl5ysSx4ePJj1dj58qIsdevfWVfyGhuqOnVHlsEUZNUoXBKUOwDKyYoV4TefO4rlc8nHqVO7bdPiw2FeFCuL533+L54GBud93Vp05I4LSt97K/D9Hq1aifUuWiG3HjtV9pocOZfzaiAhRqp3ZFTZ9T56ITC8gYorr18VyOeC0tRWZ+4oVde1o2VL3Hyq7vvtOVwUgB9Zt2ohlH3yg2275ct3xjJXLyN8ZY7fx49Nu/+KFJL37ruh2IWfA5f/wmzal/1mFhuouKiQk6JZPmaIL9tMTG6vr2zN2rPisO3XSHbtPH+PlPQpj0J4NJj2Rly8vSYD0caOjEiBJq1crfwgiIspfLD7AtEIW/5nevKkrOzbWF1TSlWj7+Ih7Gxtdlvqrr3S/4Y3FDg0bivULF5rsHWTbs2e6+G/wYPG25a6rHToY/k6PitKVzFevLp6PG5e9pOyQIboq3qxITNS1p0YN8RtfX4cOYt2UKRnv599/TVpdmzUJCWKwgYwCrfTIJesffiieyx/KL7/kvl3r1ol9tWkjnj96pPty6wdhpiT3G8noqpckiWysnIGVr9So1bovVq1ahn2n9anVutLwcuV0md2sCA/Xffl9fCRp0iRde+V+4AkJkjR/vq78ZsSIrO9fkkTQ/OWX4u8PIP6gyORsu4ODuIq1f7/uKuFnn6W/z23bJKl/f1Hi7+mpuxiT2d/gxETRJWP//sy3Vat1/XT+/Vcsi4oS/WIA0YaMyJl6Gxvd1TlHR91FmTzAoD0bTHoir1VLkgBpTpM9EiBJ336r/CGIiCh/sfgA0wpZ/GeamKjLMKUz6NS5c4YJq1GjdOv0q2WLFBEJKJncDdfOTpmKZiX99ZcuY921q64y1lhFa0iISLwBktS6ta677Z49WTvWzp1i+4CArP0elwfm8/Awnk2Xx2Tz8xNjWxlz4IB4fw4OomIgve1MTh6FUL516pT11779tnjNvHniufxFk5/nxmef6cqoJUn8w8j9OPKihCE+XhdQAiIoT2/0Q/kLVLas4fKnT3X7SK9/u5x5trdP28cjK54+FVU4+v+GxgLmw4d1pem//57xPpOSxFW/Dz7QfeaA6Iejf+FQrdZdqOnZU/QxAcT3IKuBrVot3oMpMtcNGoj2yH2Q5Sx7xYpZ6wvz1lu69165cuZlOwrL6rmJU76ZmmbaNzeVmJaGU74RERFRGvb2QNmy4nE6075VrizmSQfEbEmffaZbp1IBK1cCtWuLqY/79dNNl7x6tbjv2hUoViwbbfr7bzHH2ePHmW+bkiLmguvWTczvnEUtWgAzZojHu3aJ+6AgMed6aqVKiWmjXVyAgwfFvPNVqwJvvJG1Y7VtCzg7AyEhwJUrGW+7bZtuRqe1a4Hy5dNu06ULUKSI+Hj27k27PjwcGDhQTBWXmAh8+qmYfi71tH154scfxX27duL+0CHg1ausvVZ/SjYAKF1a3Csx7VvqfatUuv8HeTHt2+7dQFQUUKKE+P4mJYn/PMbm4N69W9y3b2+4vEgRMZ8gIOYYTD0V5b//AmPHisdBQUDdutlvZ5Ei4ktfu7Z4/t574liptWypm/t92DAxv6IsORlYtw4YOlTMzejuLva3bJmYo7FaNfFH5NdfARu9EFGl0r2/7dvFvOVNmog50OU/SJlRqcR7cHLK7jvPnP60b/fvA199JZ4vWCD+rmZm8WIx9/v48cC5c0CNGsq3UQEM2k1NE7S7q2IBMGgnIiKidFSsKO5v3jS62sVF/K4GxO9RLy/D9c7OYo51T0/gxAlg8mTDqYrffTcbbYmMBPr0EcFeZnMoAyLK3b5dRN7ZnL962jQRvAPAa6+JKZHTU7cusGGDLlaYMCHrcYOLiwjcARGXGKNWiznlhwwRzz/+GOjRw/i2Dg7A22+Lx/KFEf39DBoEhIWJCwurVol/r3PngDp1RGyUZ54/F1c7AGDhQhGgvnoFHDmStdenDqwDA8V9cHDu25Z634AuaL97N/f7z8zGjeK+Xz/xj1imjLgYMXSoyL3KJAnYs0c87tAh7X5GjRKvffxYfMayK1fExYD4eHHBRA6oc6JwYeD4ceDUKRFop/fFnztXfOnCw8Uc65IkXlevnphDfc0a4Px50SYXFzFP/KFDwOXLYj5zR8e0+2zbFqhfXzwODAR27DC+nTlUrizur18XFzLi48UflC5dsvb6okXF/49Fi8TnYanyKPNv0UxaMtejhyQB0oZm30mA8VkHiIiI9Fl8KbcVsorPVB6NefRo4+svX5ZeNm4rRRevKKlvpl86rF8JPWCAuC9Z0kh3W7VajChurIR05EjDUtwTJ9Jvd0qK4RxtVaqk2y8/PU+fivLxhw+ztv3mzaIKNrsjwa9eLZpYt27a4y9cqB2KSALEwNGZlbNfuaIbS2DGDN2sW/Pn64YouHpVLHv4UNcFwN7ecABt2cmTYqwzpUb4lyRJzCcNSFKdOuK5PL1get8zfcnJun7ccsf8gwd15ce5VamS2NeBA7pl8vx8Y8fmfv8ZeflS14f77Fmx7Nw53UiI+gNAyNPeOTqmPy+63F/C2VmS7t0TU5nJn52fn5hKLa9cuKA7dosWui+1t7eYAmHbNjF9X3b+n168KAaf0B/F3hL89pt4b/pjNuSkC4KZsE97Npj0RK7p97Oz6UIJEIM9EhERZcQqAkwrYxWf6fffix+cb7xhuPzFCzF6mjz4kzwyWgYTs8sjzcu3GTOMbCQPMPbaa4YDPp07p+sXK49g99pr6fdfladycnfXzW28Y0d2372hvXvFaOUXL+ZuP6mEheneWmioCJyHDDGcWs7dXYy5ltXpzOVp5wAxR/zHH+uGJ0g9q5daLUndu4t19esbXkh59Eg3yGD16tm+7pE+uc+vPMiafFWnTJnM+yQ/eKC7KiFfwUg9TVtOpdd/fdkysUwerd5Ufv5ZNzCc/vv49luxXKUSszpIkhikDch41EO1WpKaNdMF7vKXont38Y+b1+R5CeX3Mny4uDqV38jTu8m3gQPN3aJsYdCeDSY9kb/3niQB0r4msyTA+CwHRERE+qwiwLQyVvGZypOJBwTolm3erJurDBAVfPIox/LgXUYkJkpSkya63+tpZvj64w/DH7pNmogRrZOTxWjPgBig6dEj3YjUxkYLV6tF9AmI1Penn4rH9erlPKC7eVM3ylxgoC59rZDGjXUxq/5HULeuCLKzO1uWWi2SrHLSWL7162f8I3j4UDdu2ZdfimVJSSKzr//6X3/N9VsVU4QBhqMQ6o+CnlnW9MSJtN/JxETd6IG5CUafPdO9Wf0LUPv3i2Wp597Wl5KS+1EV5em9pk83XK5Wa3+/S66u4sJR27bi+aJFGe/z7FndeypcWJI2bjTfHItJSSKAbds2/cH18oPkZHEBSb6QlM5AnpaKQXs2mPRErhl69GijjyXAcIpDIiIiY6wiwLQyVvGZPnmii7JjYnRzMcsBzP79Yjt5SHIg/dGqJZEkrV/fSJVxSIhICcsXAeTRoJs1EyXBgMiYP34stp89WywrXTrt6M979ugyi0+eiJucZdy7N/ufQVxc2lGy+/RRNPCRS9cB8TH26ZNx9X9WJSWJf46yZSWpdu2MrzWsWqX72O7ckaRPPtFl+fv312Xic/225ZG0u3QxXN66tViuP7WXMb/8ovtu6CtVKvNuE5m5cEHso1gxw+X37onlDg7Gp1BLSBB9CGxsjE9dFx4u3l+TJumXsj97piuHuHYt7frERN1nVLKkrhTD2LapLV8usnSWNlVDflanju7CoZVh0J4NJj2Rz5ghSYB0ruGHmV0UJyIikiTJSgJMK2MVn6laLfqcymlfObL8+OO0c1bLU2U5OWWvhDwhQVfyXq+emPLq7FnDaa8ASfrmG91rYmIkqXhxsXzBAsP2yul8/VLCsWN1fWmzS85wFi0qSdu36wKrFSvSvo9z50SJ8/TpIq39/vsis5yJiAgRqE+caHxqOSVkFmyr1SLuBAz70W/ZkvvrHlrXr+v+3bZsMVyXlXJvSRL/3oAYHEGfXBawYUPO2ydPoVavnuHypCRdJYCxrOn77xt+V1eu1K179EhM2yWvS29auuXLxfpatdJvX0SE6Lcv7yurcwVS3jtyRATssbHmbkm2MWjPBpOeyDWXc6/WG2T0bx4REVFqVhFgWhmr+Uxfe00XJDg5SdL69ca3S0mRpA4dxHZFioigdf58kYW/eFGSjh2TpN27RbC2fbvIiP/9ty7g8fISGU3Z6dO6/ui1a6fNcK5Zo8vAT5okAq5t23QZUf0R5EJDdUHXsWOG+1GrRaS8ebMItlevFiXaarUoJZYrDeRoVQ4anZxEB/Tbt8VFjCJFDAM3+aZSSdKbb+pGf7Ngd+4Ydn3Wv+4xfrzxBHeWhIeLTvnyGAh+fuLijD65bN7BIeP+AKNGGc9gDhoklv/vfzlooMaSJWIfPXumXSdfyTh0yHC5PN+5SiWqB+QP74cfxEB55crpytoBcRHsxYu0+5cHZ5s/P+M23r6tq0p5772cvlOidDFozwaTnsg1I3bertVLAiSpVy/lD0FERPmL1QSYVsRqPlN5ZG9//8xHQH72TBekZPdmrMP0uXOSNGKE4aBgspQU3YBmqW/G+v7J76NYMVE10LixiED1++fr34oW1Q1KNnWq4XHlixOpqwEKFRL7fPddEdzLI7zJtypVxIhuNWuKCxETJ2atw7paLfp954FFi0RTmzQxHAn/4UNdRfaRI+m/fl6fc9I3RWZJEcM/EaPBDxokauzlz6BbNxF4pqZWi/EC0vsuyOTh7pctM1w+c6ZYPnx4Nt5tKvIo8ePGpV0n/5t/+61u2bFjuotBc+eK9zBmjC6I9/UVj0uXFu9Zzrin7rP+77+60Qiz0v/5zBlJevttw4tcRAph0J4NJj2Ra65M36/WXgJMPxAmERFZP6sJMK2I1XymDx6I0uWs9oeNjZWkffskKShI1HyXLSuGIC9XTpT+Nm0qAuZatSSpQgXRFzmn2dGXL8UI9+++K0nVqonAx9PTeI35nTu6waFS3+zsRCA/ZIgIuh0ddeuMzbP25InIFsvBWYcOItNvbD62ixclqXfv9C9WlC4tPq/UkpNFUPjRR7oLIWXLikzzn39mOFJ/bqjVknT8uPGq3g8+yLiC/f65cOk5vI2/z7p1Jenw4YwPLk/rN2JE+tvUqiW2+eMPw+Vy5UVm5fUZkYfdNza42+jRuvdSvry4GCEPrd+7t65MXa3WfVCA+LeTp6aTK0Hc3MR3SJLEOA2lS4vl7drlvO1ECsnquUklSZJk+tngLVt0dDQ8PT0RFRUFDw8PZXe+ZQvQty/CKzaD782/0bYtsG+fsocgIqL8xaTnpQKKn6kJREUBKhWQ3ucZHAzcvQskJupuAQFAzZqAk5Nuu4QE4Px54Pp1oFcvwMsr7b5u3AB27wa6dwcCAzNv29274vhyOPfsGfDpp0BIiFg/dChQt6445vXrwMWLwPPnGe/T0VF3c3cHSpUCSpcWt7JlxfuqVAmwt9e95tUr4L//gHv3RJvu3gUePRLv8803Mzzcf/8B5csDycnAqVNAw4aG6y/XfBs1Lv+Mm6iA39EZfmVc0G+oC2yrVAK6dQNsbDJ+P7t3Ax07Aj4+wMOHgK1t2m0KFwYiIoArV4Bq1XTL//oLaNVKNPDWrYyPk55GjcQb27YN6NnTcN0//wDvvANcvWq4vHp14MQJwM1Nt0ytBmbNAi5fBpYtA/z8xHJJAurXF9+tCROA2bOBli3F87JlxX6KFctZ24kUktVzE4N2mPhE/uefQKdOeBFYB4WCz6NZM+Dvv5U9BBER5S8MMJXHz5QQEyMC96VLRUCXmqcn0LmzuDDQpAlw+rQIbHfvBkJDs3YMBwegalXA2VlcNHj8OP1tv/oKGDcuw90NHQqsWSOa9dtvuuXqA4dg07Y11FBh6YBTmLy9AV69AsaMAb7+OmtNRWKiCNgjI0UQ3qKF4fqYGHFxAhAXaPT/34SEiIsVDg7iwkRmFwiMKVFCXMA4exaoV8/4NhERIrA/cQJ48EAE3gEBWT/G3r1A+/biQkvjxsDhw0CRIsDJk0C5ctlvM5HCGLRng0lP5EeOAC1b4mWJivB4eAMNGohzABERUXoYYCqPnylpHTsGzJ0L2NkBlSuLW5UqQJ06hllymSQBT58C8fGiKiAhQQS6ISEiHf7ff8DNmyJb//Jl2te7uwNlyojsbtmyIhBdvVqsW7QIGD8+3abevi2S92o1cOECULs2gIQExJarAdcHt7DSYSTejlyKP/8EevcWr1m+HHjvvSx+FkOGAGvXAh9+CHz7reG6a9fEBQgvL+DFC8N1ycmiWiIlRQTTJUpk8YAaiYni9ZIEhIebLuMtSSK7LmfMnJ1F4J66bIHITLJ6brLLwzZlW1BQELZv344bN27A2dkZjRs3xvz581GxYkXtNvHx8Zg4cSJ++eUXJCQkoF27dvjuu+/g4+NjxpbrcXUFANgnxAIQf+eJiIiIyEyaNhXZ86xSqYwHlU2bGj5Xq0UAf+mSCErLlBGl/IULi33IJEmUcH/+uSjbTkkBPvrI6KHLlxdV9Bs2iM23bQMwfz5cH9zCY/jixsC5cHYW1faffw5MmwaMGgXUqCGqzzPVt68I2rdtA5YsMSyRv39f3JcqlfZ1dnaAv794vzduZD9of/hQfA6OjkDRotl7bXaoVOICTbNmohpg40YG7GSVclDLkneOHDmCkSNH4tSpU9i/fz+SkpLwxhtvIDY2VrvN+PHj8dtvv2HLli04cuQIHj16hJ6p+8WYkyZot9UE7fHx5mwMEREREZmEjY0I1Hv0APr1E/2pixQxDNgB8XzOHGDGDPH844+ByZNFoG/E1KniJdu3Azd/vw3pf/8DAIzDYrz1gad2u08/FTF4crI4fGZd9AEArVuLTHp4uKhA0JdR0A6IDDYArFyZhQOlcv26bt+pPx+lNW0qLkrs2SP6+hNZIYsO2vfs2YPBgwejatWqqFmzJtauXYv79+/j/PnzAICoqCisXr0aixYtwuuvv466detizZo1OHHiBE6dOmXm1mtoBsqwjWemnYiIiIggAtXZs8UAagAwf77IAKceeA1AlYBYfNFwCzajD0p3rwlVQgL24g1cr9YXdesa7nLVKtFVOzQUGDRIJP8z5OAgLjIAwObNhuvu3BH36QXtEyaI+61bRf/9rJIk4LPPxGM58De1nj2Btm3z5lhEJmDRQXtqUVFRAIBChQoBAM6fP4+kpCS0adNGu02lSpVQqlQpnDx5Mt39JCQkIDo62uBmMppMu01SIuyQxKCdiIiIiISZM8VMQ4ULiz7xdeuKcu7ly0U/82bNgGLFMOFUX/TBVjimvMJN+6p4H8sxdJgqTZLaw0PsztER+OMP0WU+U336iPtt20SpPiCC8GXLxOMGDYy/rnp1oF07cWVg8WLDdZIkln39ddpB/zZtEoPLubrqLlrkI48fi7EIiJRkNUG7Wq3GuHHj0KRJE1TTTDkRFhYGBwcHeKWaGsTHxwdhYWHp7isoKAienp7am7+/v+kargnaAcAVsSyPJyIiIiKd3r1Fhr1zZ1EiP20a8MEHImg+dgyIiwMCA7G1/GTUxgVUSrqCh/aBGDjQ+O5q1dKNID95shh4PUOtWwPe3roSebVaDFAXEyMuGqR3IEDXF//778UAe7KlS8UAe+PGGQbmr14BkyaJx5MmAcWLZ9I46yKPe1ezZvaKD4gyYzVB+8iRI3H16lX88ssvud7XlClTEBUVpb2FZnUaj5xwcNAO6uGKWGbaiYiIiMiQry+wa5cYVb5ePaBDBxHU/vyzCOjv3kXgxiBcRG0AKnTrJrrLp2fECDGAXUqKuBawbp3xWe4AiN+q3buLx5s3A998I2Y/cnUV880Zm79d1rq1iFDj4kR1ACCy6BMn6raZM0cE9YDIvt+/D5QsabhNPhESIqatf/UKWL/e3K2h/MQqgvZRo0bh999/x+HDh1GyZEntcl9fXyQmJiIyMtJg+/DwcPj6+qa7P0dHR3h4eBjcTEal0mbbGbQTERERkVEqlZiY/exZ4M8/gXnzgAEDxLRrKhXq1hVJeRsbMUJ8ZrtauVJU2794AQweDLRpk0HZdt++AICX3/+C5I8ni2VffCGmqMvsQHK2fckSMSp8nz5AUpK4nzZNrHv/fTFKvWYQPcybB7i4ZPaJWJ1z53SP16/P4EJJDj19Kj5GxhMFj0UH7ZIkYdSoUdixYwcOHTqEwMBAg/V169aFvb09Dh48qF128+ZN3L9/H42yNM9FHtEL2lNSxKieRERERETZ8fPPYpa1Fi0y39bdHTh5UsTHTk7AoUOiG/qqVUY2bt0aMQ7ecE+MgF1SPK74tcXLt7I42Xu/fmLKt/BwMWL+gwdAhQoiuz5nDvDOOyLlL5fcN2gA9O+f4S4lCXjyJGuHtyT6QfuNG2KYguxITAR++EFc+0gtPl5ceBkyRATuVLBYdNA+cuRI/Pzzz9iwYQPc3d0RFhaGsLAwvHr1CgDg6emJYcOGYcKECTh8+DDOnz+PIUOGoFGjRnjttdfM3Ho9ekE7wKtjRERERJR9jo5ievSssrcXVfZXr4rB0xMSgNGj0waF9x/bY0tSdwBAJDzR8fFq1KmrgmbCpswPMm6cePz4MeDsLEaU9/DQDWmvN2g0Fi0S5QIZ+OEHwMdHFB7IY+NZg7Nnxb1cRJDdEvl164Bhw8QsdamH55o0Cbh8WTzO0r8L5SsWHbQvW7YMUVFRaNmyJfz8/LS3TZs2abf56quv0LlzZ/Tq1QvNmzeHr68vtm/fbsZWG8GgnYiIiIjMpGxZYO9eMa5cQoKYYU7f0qXAPGkSLnk1x4P566Hy98edOyJx7uwsLhbY2YlB7o0ObDd8OOCpmTN+xQqR0pc5OIggvm9fkXlv0iTT9sqZ5DVrgLffto4qVbVaF0x/8om437gxexcd5Mmv/vsP6NQJePlSPP/jD9H7QHbtWq6bS1ZGJUlK97awPtHR0fD09ERUVJRp+rc3bQocP47eqm3YJvXEw4f5brBMIiJSkMnPSwUQP1MiUSLfurUIwu/eFVXtMTEiex8ZCfz2mxi4LiJCxOHG8mBlyoiMr94EScKFCyLT3qlTrtr49KkYl0+tFhcKkpOBXr2ADRtE/G+pbt0CKlYUXRGePRNj7UVGis+8Vaus7aN2bVFSb2Mj3n+7dqJQoW5d8bm0aQMcOCAG+3/+HGmm/CPrk9Vzk0Vn2vMNzV81L7sYAMy0ExEREVHea9VK5JL0s+3r1ongsnx5oGNHsaxQITFt+8OHYuqy+/eBO3dEIHrvHjBlipGd16mT64AdEFlltVpMXbd9uwjUt20Tgbsl/4aW+7PXqiV++vfpI55ntUQ+MRH491/x+JdfRIn93r2iaOHpUzFI/5YtIlB/8cI6+/xTzjFozwuaoN3TnuXxRERERGQeKpVu2vSVK8WYcfKc7mPHpu1qXrw4ULq0yMSXLStmpAN0s8KZwq5d4r5bN6BLF/HcyQn4/Xfgxx9Nc0wlyEF7/fri/q23xP3WrWIQucz8+68YdN/bW8wSsGmT+PeIihJdFDZuBLy8RKUDwBL5goZBe17QBO0etiJoz8p/XCIiIiIipb3+ui7b3qWLmAbOywsYNCjz177xhiibB3SDwefEmTNAjx5pg/BXr0R2GQC6dhX37drpxrmz5AHY5EHo6tUT982bi8qEqChg924xIv6FC2I0f2MXPC5cEPe1aomLK507iwH5AgLExZLKlcX6KlXEPYP2goVBe16Qg3YbZtqJiIiIyHz0s+3ylGTDhwNubll7/RdfAKVKibL5yZOzd+yXL0VG/7XXgJ07gffeE9l+2aFDQFycCHZr19Ytr1pV3F+/nr3j5ZWUFF3QLWfabWx0M9t98okIvuvWFV0LevRIO7jeP/+I+zp1dMsGDRKD0unPkMegvWBi0J4XNEG7O4N2IiIiIjIzOdsOALa2wKhRWX+th4euTP7bb4GJE0WGPDN//ikCziVLRNa5cGFRfTpnjm4buTS+a1fDQdbkLLOlBu3Xr4uLDW5uYop62YAB4v7OHSA0VIQEjo6iT7qcmZfJQbv+xQpjGLQXTAza84ImaHezYXk8EREREZmXSgUEBYlB3oYNE5nz7GjTBvj0U/F40SKRHT5zJv3tz58XpfgPHgCBgcC+fcCvv4p1P/wA3LwpBp/TD9r1Vaok7p8+FaOmWxq5P3vduuIiiKxGDfE5v/++GJn/6VPde9u3T7ddSoqu6oFBOxnDoD0vyEE752knIiLKlv/++w/Dhg1DYGAgnJ2dUbZsWcycOROJiYnmbhqRVWvaVATAy5bl7PVz54rB4Xx9gRs3gEaNgJkzRRY9tZkzRVDeuTNw9SrQtq2Yrr1LFxGwTp8uAt+wMMDdHWjZ0vD1rq66CwuWmG2Xg3a5P7tMpRJdCJYtE+/d2VmMCwAYBu23b4tMvbOzmDYuI/IFjCdPxNRyVDAwaM8Lmk5CrioG7URERNlx48YNqNVqrFixAv/++y+++uorLF++HJ/KaT4iyjE3t7QjxmdHp05i1PO33hJB+Zw5wNq1htucPi2mcbO1FVl5FxfdurlzRWC7ZQswe7ZY1r69KCFPzZJL5FMPQpeRtm3F/enTYpA6QFcaX7OmYabeGDc30T8esMzPgkyDQXte0GTaXSUxxCbL44mIiLKmffv2WLNmDd544w2UKVMGXbt2xUcffYTt27ebu2lEBDGn+/r1wOefi+fjx4v53WUzZ4r7d94Rc8Hrq15d1+/7zz/FferSeJmlBu2JicClS+KxPAhdRgICRL/3lBTg8GGxLKv92WUskS94GLTnBU3Q7iIx005ERJRbUVFRKFSoUIbbJCQkIDo62uBGRKYzaRLQoIHIHr/3niiTP35cTOFmZwdMm2b8dbNnA/b24rGtLdCxo/HtLDVov3pV/Lb39tbNoZ6Z1CXy8sjz+iPHZ4RBe8HDoD0vaIJ2ZzWDdiIioty4c+cOvvnmG7z33nsZbhcUFARPT0/tzd/fP49aSFQw2dkBa9aIwe3++AP4+Wddln3IkPQD2jJlRJAPiLnN07seZ6lBu35/dv0R7zOiH7RLEjPtlDkG7XkhVdDO8ngiIiroJk+eDJVKleHtxo0bBq95+PAh2rdvjz59+mD48OEZ7n/KlCmIiorS3kJDQ035dogIIpiU54B/7z3g4EGRRZ86NePXBQWJ/vDffZf+NnLQHhICxMYq0lxFZKc/u6xlS3GR4+5d4MgRICJCPK9WLWuvZ9Be8NiZuwEFgiZod0pmpp2IiAgAJk6ciMGDB2e4TRm91NyjR4/QqlUrNG7cGCtXrsx0/46OjnA0NpoVEZnUxx8D27aJad4A4N13dQOnpcfNTYwgn5EiRcTt2TMxRVxWS8lNLSdBu7u7GG3/6FFg/nyxrGpV4wPwGSNfwHj0CIiMBLy8sn5ssk4M2vOCJmh3TGHQTkREBABFixZF0aJFs7Ttw4cP0apVK9StWxdr1qyBTW6GuyYik7KzEyPIy3OWKznRQ+XKItC9ft0ygvaXL4ErV8Tj117L3mvfeEO8lz17xPOslsYDgKcnUKKEGPDv+nVxAYDyN5718oIctCezPJ6IiCg7Hj58iJYtW6JUqVL44osv8PTpU4SFhSEsLMzcTSOidFSrJvp6nz0LlCyp3H7lDHOqnjMGkpKAHj2A118XQbUpnT0rproLCACKF8/ea+V+7bLsXoRgiXzBwkx7XtAE7XYpibBDEhIS7M3cICIiIuuwf/9+3LlzB3fu3EHJVL/+JUkyU6uIKDPVqyu/z6wMRjd3LrBzp3g8enTaeeOVdOKEuM9JprtuXTHi/IsX4nl2Mu2ACNr377e8gfnINJhpzwtubtqHrohleTwREVEWDR48GJIkGb0RUcFSqZK4Ty9QPX1aN188AKxbJ+aQN5WTJ8V9ToJ2W1ugdWvxWKUCatbM3uvlCxgFIdMeFwds2lSwq5UZtOcFBwfxPxMiaC/IXzgiIiIiopyQA9Xbt4HkZMN1sbHA228DKSlA//666eY++ECM0q40tVoXtDdunLN9yCXy5cuLwemyI3V5fGgoMHIk0K8fEBWVs/ZYqsWLgTffFFUUBRWD9rygUmlL5JlpJyIiIiLKPn9/wMVF9FtPHYh//LEI5kuUAL79Fpg2DWjWTPRr798fSExUti23bonSdmfn7GfJZQMGiNH1Fy7M/mvloD0kBBgzRgT+330HbN4MDBwoLirkF/JgfwcOGF9/+zbw889izvv8ikF7XtEL2i1pbkkiIiIiImtgY2O8RH73bmDZMvF47VrRV9zOTgRy3t5iwLgZM5Rti9yfvX59MRd9Tri4AKtWAV27Zv+1hQsDxYqJx998I2anatoUcHICfv8dmD07Z22yRPfvi/vz54FXr9Kuf/ttcfvjj7xtV15i0J5X9IL2R4/M3BYiIiIiIiuUejC6sDBgyBDxeOxYoE0b3balSgHffy8ef/klEBGhXDty059dKfI0c/XqAfv2AX//DaxcKZbNmaMbkM/ayUF7UpKYlUDf8+fAmTPi8d9/52278hKD9ryiF7Q/eGDmthARERERWSH9oD0lRZSCh4eLaeaCgtJu37MnUKOG6AOvZBArZ9pz2p9dCT/+KC4enDkDtG0reuS+/bYolwfEY2sfXT4pCQYJz+PHDdf/9ZeuLP7UqTxrVp5j0J5X9IL2sDDl+9UQEREREeV3+kF7UBBw8KAoM9+8WfQvN6ZvX3G/ebMybYiM1A0AJ2e7zcHTUxxfpTJc/sUXQIsWQEyMuGiRetA+a/LokWH//NRB+8GDusfnzokgPz9i0J5XNEG7p20sJAl4/NjM7SEiIiIisjJy0H7pkm6E+O++0y03pk8fcX/ggCinzi05o1uunK5fuSWxtwe2bAG8vIAbN9KWlFsTuTTeRhO1njhhGMQfOqR7/OoVcPVq3rUtLzFozyuaudpLesUAAEvkiYiIiIiyqVw5MchcUpII3gYNEreMVKgA1Kolyul37Mh9GyyhP3tmihYFXn9dPNYPbK1NaKi4b9RIVFJERAA3b4plDx+KxzY2QIMGYpmpS+STk80zSj2D9ryiybT7eYih4xm0ExERERFlj729CNwBMZL80qVZe52SJfKW0J89K/JD0C5n2suW1QXmcom8/L7q1gXatxePTR20L10qvn/Ll5v2OKkxaM8rmqC9mKsI2uWrRkRERERElHUffCAGl9uyRVvMmik5aD90CHj6NOfHTkkBTp8Wjy050w7ogvbjx8WUcNZIDtpLlQKaNBGP5aBd7s/eurVubAFTB+2//grcuwfEx5v2OKkxaM8rmqC9iAsz7UREREREOTVmjOjTXq1a1l9TtqzIyOa2RP7ff4GXL8XFguwc3xwqVQJ8fUWAaa0jq6cXtEuSLmh//XVdFv7WLWXGLTDm+XPdtHLdupnmGOlh0J5XNEF7IQcG7UREREREeU2JEnm5P3vDhoCtbe7bZEoqFdCqlXhsrSXyctDu76/Lpt++LbooPHgAODiIYL5wYTF2AaCbt11pf/whxlGoUQMIDDTNMdLDoD2vyKPH27M8noiIiIgor8mjyB8+DDx5kv3XJyQAv/wiHlt6f3aZtfdr18+0FyoEVKkinn/+ubhv1EhM+Qfognq5+4LSfv1V3Od1lh1g0J53NEG7u4qZdiIiIiKivBYYCNSvL7Kl27dn77WxsUCXLsBff4nsbu/eJmmi4uSg/dQp8R6UsmoVULs2EBKi3D5Ti44GoqLEY39/cS+XyO/ZI+5bt9Zt37ChuDdFV4BXr3THZNCen2mCdleI/y2PH4upKoiIiIiIKG/IJfITJoh+0IMHA0FBwJQpwJtvimUBAcDAgaLPtFoNvHgBtG0L7N8vftL/+acokbYGgYHi/SQnA8eOKbPPBw/EuAIXLwIbNyqzT2PkymRvb8DdXTyWg3aZfFECMMy068/lroSDB4G4OKBkSaBOHWX3nRV2eX/IAkoztKVDUgzs7MR/nMePRakHERERERGZ3oABwBdfAOHhwNmz4mbM+vXiVqoU4OQkBjjz9hYBuxwcWgOVSgS2a9aIbgHt2uV+n9Om6UZPP3cu9/sDREDs7CzaK9MvjZfpB+1ubroB6ACgenWxj8hI8e9VqZIybQMMS+P125hXGLTnFU2mXRUbixIlRCnJgwcM2omIiIiI8oqfn8jg3r0rRoK/dk0EeF5eIisdGAh4eADbtoksshw4+voC+/aJwNDatGolgnYl+rVfugT8+KPueXoXPbJj716gZ09xQWXlSt1y/UHoZGXLAsWKiTEJmjcH7O116+ztgXr1gKNHRYm8UkF7Sgqwa5d43L27MvvMLgbteUUTtCM2Fv7+uqCdiIiIiIjyjr29COgqVQJ69TK+TevWwKJFIsN68qQoBy9TJm/bqRR5BPnz50UW2ssrZ/uRJOCjj8R9p06i6uD+fRFAFyuWs31evy66LMTFAVu2AMuXAzaaDtzGMu1y5cAvvxivGnjtNV3QPnhwztqU2unT4j16egItWiizz+xin/a8ohe0lywpHjJoJyIiIiKyTE5OQL9+wOLF1huwA6IfdoUKop+3PM94TuzdCxw4IAbi++YboGJFsTynJfLPn4vB/aKjxfPISBHEy4wF7YC4mPL998CHH6bdpzwYXXZGkH/2TFfub4xcGt+xo2FmPy8xaM8rRoJ2TvtGRERERESmltnUb8nJInMeEWF8fUoK8PHH4vHo0bqR+IGcBe1JSWIKvrt3gdKldYO7nTih20aOlVIH7X5+wLBhgJ2RmnF5vIHLl7M2Wv7t22L//funv83OneLeXKXxAIP2vJOqPB5gpp2IiIiIiExPLpH/808xfZk+tRoYOlSUvDdtmnY9IKZ4u3pVDMY3dapYVq+euM9uv/aEBJElP3xYDCb3229Ahw5inX7Qnl6mPSMlSoibWg1cuJD59jt3ivf7++/G3/eNG2LMA3t7oH37rLdDaQza84octCcmwt8vGQCDdiIiIiIiMr3WrUWAfPs28MYbYho7QPRPHzkS+Okn8fz6dV1QLrtyRUyRBwAzZojAHdBl2s+eFfvJzMuXwJdfiq4G338v+qdv2ABUqwY0biy2OX5c3Kek6GIl/YHosqJ2bXF/6VLm28qVB8nJxi8+/PabuG/dWgxQaC4M2vOKHLQDKFVY1GqwPJ6IiIiIiEytcGHgjz/EYGrHjomR1x8+FCXvy5eLAHrkSLHtV1+JLDggAu0+fUQW+o03xIB8spo1AVtbMX3ew4eGx0tMFPO479wp9vfhh2K++I8+Ah49AooXF6PQd+kitm/USNzfvg08fSr2mZQkBqUrXjx777VmTXGfWdCemCgGrZPpZ/llBw+Ke3Nm2QGOHp93HB3Ft06tRgnPGACeePxYXNUx1h+DiIiIiIhIKc2biyC1XTtR6l6lim4QuO+/FyXyiYmiFH7wYNEv/L33gJs3Rcn5zz/rRnYHABcXkSW/dElkqeVxu9Rq0bf8n3/StqFCBWDSJDG9m6Ojbrm3t2jPtWtitH55NPoSJbIfK9WqJe4vXsx4u7NnDfu9pw7a9YN6eUwAc2GmPa+oVKImBUBRl1jY2YkvdFiYmdtFREREREQFQvXqIjitUEEXsH/9tQjYATEye5kyoj/5a68BmzaJoHnzZqBo0bT7MzYY3e7dImB3cAAaNBBTuk2aJLLu166JY+kH7DL9Evmc9GeXyUH7lSsiQZoeuTRenhngxAnDMv+zZ8VUdEWLAlWrZr8dSmLQnpc0JfK28bHaMg+WyBMRERERUV4pXVoExiNGAKtXG5a8u7mJsnWVSgzCBgDz5+sC6tSMDUb3zTfiftQoMfXapk3AvHlAt26inD49TZqI+xMn0h85PivKlBHvIyFBDCKXHjloHztWTO/3/Lnh9vL6li0NKwzMgUF7XuJc7UREREREZGZFigArVugy7PqaNAEmTxaPe/YExo9Pfz/6mXZJEqX0e/ca9pHPKvnCwNmzom87kP1B6AARYNeoIR6nVyL/6pWuHL59e9370C+Rl4N2c5fGAwza8xanfSMiIiIiIgs3dy5w6hTwyy8iAE9PtWqiDP7FC+DePeDbb8Xyzp11ZedZVb68uJiQkKAbtT0nmXYg88HoTpwQfdZLlhTHTT16vX5Qz6C9oGGmnYiIiIiILJxKBTRsKOYnz4iDg64P+aFDwNq14vHo0Tk7phw8P3ok7nMatGc2GJ1+Fl2lMizNB8RgeImJYiC88uVz1gYlMWjPS0aCdvZpJyIiIiIiayWXlk+fLqaIq1QJaNMmZ/uSg2dZbjPtWQnaAd2Uc9evAxERuvWtWmVcaZBXGLTnJWbaiYiIiIgoH5EHowsPF/ejRuU80E094F1Og/bq1UXf9idP0s7WFR2tGzivVStxX6QIULGieHzypGX1ZwcYtOctOWiPiWGfdiIiIiIisnpyph0A3N2Bd97J+b7q1dOV5Lu6Al5eOduPi4uY1g5Im20/ehRISQHKlTO8KCBfMNi7FzhzRjxm0F4QaeZplzPtFXEDHz74FCn3QszbLiIiIiIiohyoVEmXmxwyRATuOeXkBNStKx6XKpW70vT0SuTTy6LLQfvq1SKoDwwEAgJyfnwlMWjPS3rl8b7/7MZpNMRkKQjqTl2A+Hjzto2IiIiIiCibbG2Bt98GfH2BceNyvz+5X3tOS+Nl8mB0qUeQP3hQ3KcO2uXjxsUZX29ODNrzkhy0b9sG226d4YloAID9jSvAtGlmbFha9+4BK1eK6Q6IiIjMqWvXrihVqhScnJzg5+eHt99+G4/koYWJiMjsli0TI74HBuZ+X0OHiuz94MG524+xTHtwsC6Ib9nScPuKFQFvb91zBu0FlRy037sHqNXYVWwYemGrWPbll7i65BB27NBd3TGXR4/Elab33hMlLpJk3vYQEVHB1qpVK2zevBk3b97Etm3bcPfuXfTu3dvczSIiIj1KjbJepYoYxf3NN3O3HznTfuuWLr6SKwFefx3w8THc3sbGcCA8eZA6S8CgPS/Jl25sbIDFi/Fz8/+3d+/BUdX3/8ef55zdPbsJ5AKBhNQgoCh4rRWNQefXaWUq6tSq2FYn2mg7ZVCgqN+2YhUv06HYb2esrfrFr36rnfmWisVRpNRLbbC2WrlIBUQhWvWrVE0AI+S6t3M+vz9OdmEBJQmX3ZDXY+Yzuznn7O77vPfyzud8Pnv2IZ5gGotLpgNQOqeB7176KXV18K9/5SfERAIuvXTXWRYfewz+8z/zE4uIiAjADTfcwFlnncXRRx/N5MmTmTt3LitXriSVSuU7NBERKVBVVTBiBPg+bNwIy5YFLRSCe+/d920ynfYJE2DUqMMX6/4cMZ32+++/nzFjxhCNRqmtrWV15pR/hWTaNJg9G/78Z5gzh7HjgsNR32u7m7cYTw3/5n8i17FhQ3AChqVLD294xsB118GqVcGZGm++OVh+883wzDOHNxYREZF9aW1tZdGiRUyePJlw5hTD+5BIJGhra8tpIiIyeFjWrtH2f/wj6IYB/Md/BKP5+9LQEMw4njfvsITYa5YxA3/y82OPPcZ3vvMdHnjgAWpra7nnnntYsmQJTU1NjBw5cr+3b2tro7S0lJ07d1JSUnIYIg5s2QI//3nw3Y+vV65m/NWTsTyP92ITWdp9Hn/ma0yY/mVqv1LEiBHBkaKSkuBokecFlyUlwVGkgzEd5f77g99VtG14+mn42teCKfIPPQSlpcFPH2R+OkEkR+Zj5GDNi9rzvhOJ4HSig5Ux0NEBnZ3BB4Hj5DuiwpVMBh+OA/z1kq+6VMhuuukm7rvvPrq6ujjrrLNYvnw5w4cP/8zt77jjDu688869liunIiKDx49/DL/4RfAjXh0dwdng33hj17eW86239f6I6LTX1tZyxhlncN999wHg+z41NTXMnj2buXPn7vf2BfPP0b33wg03BD3yHh427zGWJo6nieP5iGpsfEKkCZHGwSMW9hg5LE1FuUfIdYj7Ebr9CHEvgrEdnJAVtLBFyAmmhDhO0JJJiCcg3g1vbvSx/RRf/1qSc85MgufhWSEe+d8Q72wJU1JicVRFnJCfIOLF8X1DRypKezpGeypK2grjRi3cqEU0ZhGxkrjpLlyvi0i6ixRhuq2ioBEjbRyMAQNYxhAKGcIhdruEUNgiFLawLDDJJCaRxEok8H2DZ0fwQxE8JwKOQ9jxCTs+IdvH9wzJhCGRCPp7BgvLsbPNNxa+H/xvbwxEojbRYodYsY1b5GBh8H3AGIwftMzGvg+ptEXKs0inreB62iKdhnQ6yGs0CtGYRSxGNn7LtrAcCy8NXtqQSgWXlgWObbDt4LZ22MFxQ9iREHbYIeU7JD2HlGfjYxMJG9yIwXXBjRjCIUM4bIiEDJaXJt2ZINWRwOsOOi+Z59qxDSHbx7F8QpaHg0c40UE43k6ou41QvBNTPARTVo4pL4eycpLhYhLhISRCxSTtKI6fyrbIjq0Uv7OBonc2UPzOBqxUkvjYE4iPP4nkcSfhVddguW6QDNcN9s0PXre2n8Y3Vs+rOETaOJBOYxJJSCaxO9ooeud1Yk3rcDevw/n0E9Ijq+kedyIdo0+gq3IshBws28K2LUKOoSicIuokce0UjmUgHMY4IXwnjPENfjKNSaXxk2kIh7BjUaxYFLvIxcHH8tKQSgVvivZ2aGsLWldX8IOhrrurRSLBskgkeL+2tgbtk08gkcCEwng9r8207ZKwY8StGN3EsGyLkO0RtjzCtoedSmAlE1iJOFYygZOOE0rFcdIJ7O5O2L4da/tW7GQCAOM4JCuqSVbWkB5WmX0czw5j2RZRK0nEShIxCRzLYGwH4wRvfCsSAdfFKopiuW5wjMXzdh0FzLwhMi2zLLNNIhH80kU8HrzYi4t3tUgkyN2eLZUKmmUF22Ry5zjBskyLx4Ncd3UF10OhnjdS8PrJ2ZaeuNNpTNrDdHRibWvBammBTz8Nthk9Go47Dn/8cVBahp3oDs6s2d0dPL87dsDOnUGzrOBxYrFdl5kWjQY5yLzBM/uTea1kPq8zcVkW/Nd/BWezOQAFU5cOoblz5/Lzn//8c7fZtGkTEyZMAGD79u20trby/vvvc+edd1JaWsry5cuxPuNgYSKRIJFIZP9ua2ujpqbmiM6piIjkWrQIrrxy199PPQUXXZS/ePY0aDrtyWSSoqIiHn/8cS6++OLs8oaGBnbs2MFTTz21120KupB/+mnwOwR//jNdS5+jaNsH+Y1HRET6ZPP/rmHClZMO6D4GQ6d927ZtfPLJJ5+7zbhx44hEInst//e//01NTQ3/+Mc/qKur69XjDYaciohIrjfegJNOCq5fdFHQaS8kva1NocMY0yGxfft2PM+jco/T/1VWVrJ58+Z93mbBggX7nDJXEMrL4bLL4LLLKPpvAx9/HJzysKkpuNy6tWcIOhgu93DY2eHwaZtD604HL+XjWkkiJHBNAmMMvmfw08GlZyz83QbVQqFg0CschlgRfGFMBDvaMxrmONmRpXhnmg+3+KTDMfxwFD8SxbYhSpwocSJ+N1YqRSppSKUMqaQh7bh4kRieW4QfiWGbNJFUF6FUF6FkFzYGLAjGSAy+b+Ht3rye2D2D8cmOcFpuBNsGK53C8lLYqSSk08G8g57bWo4djNZHekbqMeD5+F4wamhZYGcG7jCkkz6phE864eElvd1G9ei5tMncyLLAsUzP6LjJjpLbNjg2+AbSqWAkPZ3aNWKPH4xeBqPDYDkWtgXGsnpWW+AbjOeDF4zqWV6aEB625RPCwzJ+8Bz64PvBpWfsnmUWaSuEH3Ix4Qh+OIJvh4LBUz94eM+38YxN2jikjU23VUyHXUK7VUIXRbipDoakPmVI+lOGejsYanUwhE6K6MQlgUeIlBUmRZh2u5S3IiezyT2VpsgpdJsox8TfYHxiI+OTGxnubcM1cVwTJ2q68bFIESZpwngEsxnCVpowaUJWmrQVJmVFSFoucStGkz2R9XyRdeZU/s8fzcTIO5zivMEJvMkXzJZsPo2BtG/RlYoQ94PYDBZhUoRIEyaFIRjVTxE8doh09rUbJY6PTSqIhBRh2ijJti6Kstu7JIiQJEwqe2mwaGUYnzCcVoYRJ0oQRQqXBMVOgjK3m7JIF0ND3VgYEl6IRNoJGi5J2yVpRUng0ulFaUtG6fRcuonRalXQNWQkiZIROMVRhqVaGJnYQmVyC+XpbUTtJBE7hWunMJ5PW8JlZ1cw28ZgEXxKeIRIEyGJSwKXBFHiAD1rg+ZjY7LvSCu7zMfGwyFOlG5ixIniY1NEF8V0MoQOIiSDfQk+fYLnmkhPJoLvHWceP0ISGx8Lk21xonRRRBdFJHAJkc7GGSUevIche+nhELw7grhaqKSFSpqpwsFjPG9zHG9xHG8xhA66iWVbO0PZQRk7KWUnpQDE6CZKPOcycz3zWJnHy+xXkggeu76qkInthyPHHepKcUQYMWIEI0aM6Ndtfd8HyDkALyIisqfjj4ejjgom2f3qV/mOpv8GfKe9P26++WZuvPHG7N+ZkfaCY1lQXR20PX9IsIcDDOtpxxzCUKKH+P5lYPp/ey05Drhkv7czZv9ff//yXktGAGd97m2SyWBGeyrFrq8b2Lu+DpK5bsyuGd89s6yzs533PBn1Z8WamaNkTHC/meM8oVDu7OpQPz9lPS+IJxrd8/Gre1rtZ97WmGAWeDK571nlu+93MhnMes98FXz32fGWtWvfMve7+6z5zMGqzHa759j3d82Qz/Srdl+/Z053j3H3x7V7TpeaiTWVCu57yBAYOjRomZn5mZn7ngeuOxLXPRvX3XVahHg8yEvmud49tt33JXMwM3N8dPdZ8en0ruWZbTIHPjOtoqJ/z7ns26pVq1izZg3nnHMO5eXlvPPOO8ybN49jjjmm16PsIiIyOIVC8M9/Bv8bVFXlO5r+G/Cd9oqKChzHoaWlJWd5S0sLVZ/xzLiui+u6hyM8EdmHQ3G+Ogg6b0dKh8lxgk5/f1gWFBUFTWSgKyoq4oknnuD222+ns7OTUaNGMXXqVG699VbVchER2a9+TuoqKAO+0x6JRDj99NNpbGzMfqfd930aGxuZNWtWfoMTERGRA3LyySezYsWKfIchIiKSNwO+0w5w44030tDQwKRJkzjzzDO555576Ozs5Jprrsl3aCIiIiIiIiL9dkR02r/97W+zbds2brvtNpqbm/niF7/Is88+u9fJ6UREREREREQGkiOi0w4wa9YsTYcXERERERGRI4qd7wBEREREREREZN/UaRcREREREREpUOq0i4iIiIiIiBQoddpFRERERERECpQ67SIiIiIiIiIFSp12ERERERERkQKlTruIiIiIiIhIgVKnXURERERERKRAqdMuIiIiIiIiUqDUaRcREREREREpUKF8B1AIjDEAtLW15TkSERGRXfUoU5/kwKnWi4hIoeltvVenHWhvbwegpqYmz5GIiIjs0t7eTmlpab7DOCKo1ouISKHaX723jA7j4/s+H330EUOHDsWyrAO6r7a2NmpqatiyZQslJSUHKcIjn/LWd8pZ/yhvfaec9c+B5M0YQ3t7O9XV1di2vsl2MKjW55/y1nfKWf8ob/2jvPXdgeast/VeI+2AbdscddRRB/U+S0pK9GLvB+Wt75Sz/lHe+k4565/+5k0j7AeXan3hUN76TjnrH+Wtf5S3vjuQnPWm3uvwvYiIiIiIiEiBUqddREREREREpECp036Qua7L7bffjuu6+Q5lQFHe+k456x/lre+Us/5R3o5cem77R3nrO+Wsf5S3/lHe+u5w5UwnohMREREREREpUBppFxERERERESlQ6rSLiIiIiIiIFCh12kVEREREREQKlDrtIiIiIiIiIgVKnfaD6P7772fMmDFEo1Fqa2tZvXp1vkMqKAsWLOCMM85g6NChjBw5kosvvpimpqacbeLxODNnzmT48OEMGTKEadOm0dLSkqeIC89dd92FZVlcf/312WXK2b59+OGHXHnllQwfPpxYLMbJJ5/Mq6++ml1vjOG2225j1KhRxGIxpkyZwttvv53HiPPP8zzmzZvH2LFjicViHHPMMfz0pz9l9/OVDva8/e1vf+PrX/861dXVWJbF0qVLc9b3Jj+tra3U19dTUlJCWVkZ3/ve9+jo6DiMeyEHSvX+s6nWHzjV+t5Tre871freKbh6b+SgWLx4sYlEIubhhx82b7zxhvn+979vysrKTEtLS75DKxjnnXeeeeSRR8zGjRvNunXrzAUXXGBGjx5tOjo6stvMmDHD1NTUmMbGRvPqq6+as846y0yePDmPUReO1atXmzFjxphTTjnFzJkzJ7tcOdtba2urOfroo83VV19tVq1aZd59913z3HPPmX/961/Zbe666y5TWlpqli5datavX28uuugiM3bsWNPd3Z3HyPNr/vz5Zvjw4Wb58uXmvffeM0uWLDFDhgwxv/rVr7LbDPa8Pf300+aWW24xTzzxhAHMk08+mbO+N/mZOnWqOfXUU83KlSvN3//+d3PssceaK6644jDvifSX6v3nU60/MKr1vada3z+q9b1TaPVenfaD5MwzzzQzZ87M/u15nqmurjYLFizIY1SFbevWrQYwL774ojHGmB07dphwOGyWLFmS3WbTpk0GMK+88kq+wiwI7e3tZvz48eb55583X/7yl7OFXDnbt5tuusmcc845n7ne931TVVVlfvGLX2SX7dixw7iuax599NHDEWJBuvDCC813v/vdnGWXXnqpqa+vN8Yob3vas4j3Jj9vvvmmAcyaNWuy2zzzzDPGsizz4YcfHrbYpf9U7/tGtb73VOv7RrW+f1Tr+64Q6r2mxx8EyWSStWvXMmXKlOwy27aZMmUKr7zySh4jK2w7d+4EYNiwYQCsXbuWVCqVk8cJEyYwevToQZ/HmTNncuGFF+bkBpSzz7Js2TImTZrEN7/5TUaOHMlpp53GQw89lF3/3nvv0dzcnJO30tJSamtrB3XeJk+eTGNjI2+99RYA69ev56WXXuL8888HlLf96U1+XnnlFcrKypg0aVJ2mylTpmDbNqtWrTrsMUvfqN73nWp976nW941qff+o1h+4fNT70IGHLdu3b8fzPCorK3OWV1ZWsnnz5jxFVdh83+f666/n7LPP5qSTTgKgubmZSCRCWVlZzraVlZU0NzfnIcrCsHjxYv75z3+yZs2avdYpZ/v27rvvsnDhQm688UZ+8pOfsGbNGn7wgx8QiURoaGjI5mZf79nBnLe5c+fS1tbGhAkTcBwHz/OYP38+9fX1AMrbfvQmP83NzYwcOTJnfSgUYtiwYcrhAKB63zeq9b2nWt93qvX9o1p/4PJR79Vpl7yYOXMmGzdu5KWXXsp3KAVty5YtzJkzh+eff55oNJrvcAYM3/eZNGkSP/vZzwA47bTT2LhxIw888AANDQ15jq5w/eEPf2DRokX8/ve/58QTT2TdunVcf/31VFdXK28i0meq9b2jWt8/qvX9o1o/MGl6/EFQUVGB4zh7ncWzpaWFqqqqPEVVuGbNmsXy5ct54YUXOOqoo7LLq6qqSCaT7NixI2f7wZzHtWvXsnXrVr70pS8RCoUIhUK8+OKL/PrXvyYUClFZWamc7cOoUaM44YQTcpZNnDiRDz74ACCbG71nc/3oRz9i7ty5XH755Zx88slcddVV3HDDDSxYsABQ3vanN/mpqqpi69atOevT6TStra3K4QCget97qvW9p1rfP6r1/aNaf+DyUe/VaT8IIpEIp59+Oo2Njdllvu/T2NhIXV1dHiMrLMYYZs2axZNPPsmKFSsYO3ZszvrTTz+dcDick8empiY++OCDQZvHc889l9dff51169Zl26RJk6ivr89eV872dvbZZ+/1E0NvvfUWRx99NABjx46lqqoqJ29tbW2sWrVqUOetq6sL284tC47j4Ps+oLztT2/yU1dXx44dO1i7dm12mxUrVuD7PrW1tYc9Zukb1fv9U63vO9X6/lGt7x/V+gOXl3rf37PoSa7Fixcb13XNb3/7W/Pmm2+a6dOnm7KyMtPc3Jzv0ArGtddea0pLS81f//pX8/HHH2dbV1dXdpsZM2aY0aNHmxUrVphXX33V1NXVmbq6ujxGXXh2P6OsMcrZvqxevdqEQiEzf/588/bbb5tFixaZoqIi87vf/S67zV133WXKysrMU089ZTZs2GC+8Y1vDLqfM9lTQ0OD+cIXvpD9GZgnnnjCVFRUmB//+MfZbQZ73trb281rr71mXnvtNQOYu+++27z22mvm/fffN8b0Lj9Tp041p512mlm1apV56aWXzPjx4/WTbwOI6v3nU60/OFTr90+1vn9U63un0Oq9Ou0H0b333mtGjx5tIpGIOfPMM83KlSvzHVJBAfbZHnnkkew23d3d5rrrrjPl5eWmqKjIXHLJJebjjz/OX9AFaM9Crpzt2x//+Edz0kknGdd1zYQJE8yDDz6Ys973fTNv3jxTWVlpXNc15557rmlqaspTtIWhra3NzJkzx4wePdpEo1Ezbtw4c8stt5hEIpHdZrDn7YUXXtjn51hDQ4Mxpnf5+eSTT8wVV1xhhgwZYkpKSsw111xj2tvb87A30l+q959Ntf7gUK3vHdX6vlOt751Cq/eWMcb0fXxeRERERERERA41faddREREREREpECp0y4iIiIiIiJSoNRpFxERERERESlQ6rSLiIiIiIiIFCh12kVEREREREQKlDrtIiIiIiIiIgVKnXYRERERERGRAqVOu4iIiIiIiEiBUqddRPLOsiyWLl2a7zBERETkEFGtF+k/ddpFBrmrr74ay7L2alOnTs13aCIiInIQqNaLDGyhfAcgIvk3depUHnnkkZxlruvmKRoRERE52FTrRQYujbSLCK7rUlVVldPKy8uBYDrbwoULOf/884nFYowbN47HH3885/avv/46X/3qV4nFYgwfPpzp06fT0dGRs83DDz/MiSeeiOu6jBo1ilmzZuWs3759O5dccglFRUWMHz+eZcuWHdqdFhERGURU60UGLnXaRWS/5s2bx7Rp01i/fj319fVcfvnlbNq0CYDOzk7OO+88ysvLWbNmDUuWLOEvf/lLTqFeuHAhM2fOZPr06bz++ussW7aMY489Nucx7rzzTr71rW+xYcMGLrjgAurr62ltbT2s+ykiIjJYqdaLFDAjIoNaQ0ODcRzHFBcX57T58+cbY4wBzIwZM3JuU1tba6699lpjjDEPPvigKS8vNx0dHdn1f/rTn4xt26a5udkYY0x1dbW55ZZbPjMGwNx6663Zvzs6OgxgnnnmmYO2nyIiIoOVar3IwKbvtIsIX/nKV1i4cGHOsmHDhmWv19XV5ayrq6tj3bp1AGzatIlTTz2V4uLi7Pqzzz4b3/dpamrCsiw++ugjzj333M+N4ZRTTsleLy4upqSkhK1bt/Z3l0RERGQ3qvUiA5c67SJCcXHxXlPYDpZYLNar7cLhcM7flmXh+/6hCElERGTQUa0XGbj0nXYR2a+VK1fu9ffEiRMBmDhxIuvXr6ezszO7/uWXX8a2bY4//niGDh3KmDFjaGxsPKwxi4iISO+p1osULo20iwiJRILm5uacZaFQiIqKCgCWLFnCpEmTOOecc1i0aBGrV6/mN7/5DQD19fXcfvvtNDQ0cMcdd7Bt2zZmz57NVVddRWVlJQB33HEHM2bMYOTIkZx//vm0t7fz8ssvM3v27MO7oyIiIoOUar3IwKVOu4jw7LPPMmrUqJxlxx9/PJs3bwaCs70uXryY6667jlGjRvHoo49ywgknAFBUVMRzzz3HnDlzOOOMMygqKmLatGncfffd2ftqaGggHo/zy1/+kh/+8IdUVFRw2WWXHb4dFBERGeRU60UGLssYY/IdhIgULsuyePLJJ7n44ovzHYqIiIgcAqr1IoVN32kXERERERERKVDqtIuIiIiIiIgUKE2PFxERERERESlQGmkXERERERERKVDqtIuIiIiIiIgUKHXaRURERERERAqUOu0iIiIiIiIiBUqddhEREREREZECpU67iIiIiIiISIFSp11ERERERESkQKnTLiIiIiIiIlKg/j+z+/Mz2p2M+QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1376,9 +1343,21 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'Path' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[24], line 9\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# save the checkpoint model training\u001b[39;00m\n\u001b[1;32m 2\u001b[0m output_path \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m../models/\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m torch\u001b[39m.\u001b[39msave({\n\u001b[1;32m 5\u001b[0m \u001b[39m'\u001b[39m\u001b[39mepoch\u001b[39m\u001b[39m'\u001b[39m: epoch,\n\u001b[1;32m 6\u001b[0m \u001b[39m'\u001b[39m\u001b[39mmodel_state_dict\u001b[39m\u001b[39m'\u001b[39m: model\u001b[39m.\u001b[39mstate_dict(),\n\u001b[1;32m 7\u001b[0m \u001b[39m'\u001b[39m\u001b[39moptimizer_state_dict\u001b[39m\u001b[39m'\u001b[39m: optimizer\u001b[39m.\u001b[39mstate_dict(),\n\u001b[1;32m 8\u001b[0m \u001b[39m'\u001b[39m\u001b[39mloss\u001b[39m\u001b[39m'\u001b[39m: loss\u001b[39m.\u001b[39mitem()\n\u001b[0;32m----> 9\u001b[0m }, Path(output_path,\u001b[39m'\u001b[39m\u001b[39mtransformer_train_checkpoint.pt\u001b[39m\u001b[39m'\u001b[39m))\n", + "\u001b[0;31mNameError\u001b[0m: name 'Path' is not defined" + ] + } + ], "source": [ "# save the checkpoint model training\n", "output_path = \"../models/\"\n", @@ -1402,7 +1381,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1497,21 +1476,42 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get climatology of target period\n", + "left = target_series_sel.sel(i_interval=1).left_bound[0]\n", + "right = target_series_sel.sel(i_interval=1).right_bound[0]\n", + "days_ofyear = pd.date_range(pd.to_datetime(left.values), pd.to_datetime(right.values), freq=\"D\").day_of_year\n", + "\n", + "preprocessor = preprocess.Preprocessor(\n", + " rolling_window_size=25,\n", + " detrend=None,\n", + " subtract_climatology=True,\n", + ")\n", + "preprocessor.fit(target_field[\"t2m\"].sel(cluster=3)) # only fitting, not transforming\n", + "target_clim = preprocessor._climatology.sel(dayofyear=days_ofyear).mean().values" + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The MSE loss is 0.427\n" + "The MSE of LSTM forecasts is 0.861\n", + "The MSE of climatology is 1.033\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGwCAYAAABGogSnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD80lEQVR4nO3de1zUVeL/8feACshlCG24KBqpqYTdvKWW2WZIFy9tm9vFjOqXfQ1KsjLdXVNLI93atdrCLrtYa3b5fosit2jJC2UKluamWWSG5iZoac4oBtnM5/cHMTUCCjrDzPB5PR+Pedh8PmfOnM+IzZtzzucci2EYhgAAAEwixN8NAAAAaE2EHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCrt/N2AQORyubRr1y5FR0fLYrH4uzkAAKAZDMPQgQMHlJSUpJCQpvt3CD+N2LVrl5KTk/3dDAAAcBx27typrl27Nnme8NOI6OhoSXUfXkxMjJ9bAwAAmsPhcCg5Odn9Pd4Uwk8j6oe6YmJiCD8AAASZY01ZYcIzAAAwFcIPAAAwFcIPAAAwFeb8AAAChtPp1OHDh/3dDASo9u3bKzQ09ITrIfwAAPzOMAxVVVVp//79/m4KAlxsbKwSEhJOaB0+wg8AwO/qg4/NZlPHjh1ZYBYNGIahQ4cOac+ePZKkxMTE466L8AMA8Cun0+kOPp06dfJ3cxDAIiIiJEl79uyRzWY77iEwJjwDAPyqfo5Px44d/dwSBIP6n5MTmRtG+AEABASGutAc3vg5Ydirtbic0o410sHdUlS81H2oFHLiM9YBAEDL+LXnJzc3VwMHDlR0dLRsNpvGjRun8vJyjzIjRoyQxWLxePzP//zPUes1DEP33XefEhMTFRERoZEjR2rr1q2+vJSj21IoLUyTnrtcevXmuj8XptUdBwAArcqv4aekpERZWVkqLS1VcXGxDh8+rPT0dFVXV3uUu+WWW1RZWel+LFiw4Kj1LliwQI899pgWLVqksrIyRUZGatSoUaqpqfHl5TRuS6H0ykTJscvzuKOy7jgBCABwDJmZmRo3bpz7+YgRI5STk3NCdXqjjmDl12GvoqIij+eLFy+WzWbT+vXrNXz4cPfxjh07KiEhoVl1GoahhQsX6k9/+pPGjh0rSXr++ecVHx+v119/XVdffbX3LuBYXE6p6F5JRmMtlWSRiqZLfS5jCAwAvMDpMrSuYp/2HKiRLTpcg1LiFBriu7lEmZmZeu655yTVLcDXrVs3TZw4UX/4wx/Urp3vvmJfe+01tW/fvlllV61apQsvvFDff/+9YmNjj6uOtiag5vzY7XZJUlxcnMfxF154QUuWLFFCQoJGjx6tmTNnNnlXQEVFhaqqqjRy5Ej3MavVqsGDB2vt2rWNhp/a2lrV1ta6nzscDm9cTt0cnyN7fDwYkuObunIp53vnPQHApIo2V2rOm1tUaf+llz/RGq5Zo1OVkXb8a8IcS0ZGhvLz81VbW6u33npLWVlZat++vWbMmOFR7scff1SHDh288p5Hfk/6q45gFTB3e7lcLuXk5GjYsGFKS0tzH7/22mu1ZMkSrVy5UjNmzNA///lPTZgwocl6qqqqJEnx8fEex+Pj493njpSbmyur1ep+JCcne+GKVDe52ZvlAACNKtpcqclLNngEH0mqstdo8pINKtpc6bP3DgsLU0JCgrp3767Jkydr5MiRKiwsdA9VzZs3T0lJSerdu7ckaefOnRo/frxiY2MVFxensWPHavv27e76nE6npk6dqtjYWHXq1EnTpk2TYXiOIBw5ZFVbW6t7771XycnJCgsLU8+ePfX3v/9d27dv14UXXihJOumkk2SxWJSZmdloHd9//70mTpyok046SR07dtQll1ziMV928eLFio2N1TvvvKO+ffsqKipKGRkZqqz85bNdtWqVBg0apMjISMXGxmrYsGHasWOHlz5p7wmY8JOVlaXNmzfrpZde8jg+adIkjRo1Sv369dN1112n559/XgUFBdq2bZvX3nvGjBmy2+3ux86dO71TcVT8scu0pBwAoAGny9CcN7c0OcFAkua8uUVOV2MlvC8iIkI//vijJGn58uUqLy9XcXGxli1bpsOHD2vUqFGKjo7W+++/rw8++MAdIupf88gjj2jx4sX6xz/+odWrV2vfvn0qKCg46ntOnDhRL774oh577DF99tlneuqppxQVFaXk5GS9+uqrkqTy8nJVVlbq0UcfbbSOzMxMffTRRyosLNTatWtlGIYuvfRSj/V0Dh06pIcfflj//Oc/9d577+nrr7/W3XffLUn66aefNG7cOF1wwQX65JNPtHbtWk2aNCkglzAIiGGv7OxsLVu2TO+99566du161LKDBw+WJH355Zfq0aNHg/P1c4N2797tsfT17t27ddZZZzVaZ1hYmMLCwo6z9UfRfagUk1Q3ubnRf5aWuvPdh3r/vQHAJNZV7GvQ4/NrhqRKe43WVezTkB6+W0HaMAwtX75c77zzjm6//XZ9++23ioyM1LPPPuse7lqyZIlcLpeeffZZdyjIz89XbGysVq1apfT0dC1cuFAzZszQb3/7W0nSokWL9M477zT5vl988YVeeeUVFRcXu6d8nHrqqe7z9cNbNpvNY87Pr23dulWFhYX64IMPNHRo3XfSCy+8oOTkZL3++uu66qqrJNUtLLho0SL39292drbuv/9+SXVTRux2uy6//HL3+b59+7b8g2wFfu35MQxD2dnZKigo0IoVK5SSknLM12zcuFFS03t6pKSkKCEhQcuXL3cfczgcKisr05AhQ7zS7mYLCZUy5v/85Mjk+/PzjIeY7AwAJ2DPgebdydvcci21bNkyRUVFKTw8XJdccol+//vfa/bs2ZKkfv36eczz+c9//qMvv/xS0dHRioqKUlRUlOLi4lRTU6Nt27bJbrersrLS/Yu+JLVr104DBgxo8v03btyo0NBQXXDBBcd9DZ999pnatWvn8b6dOnVS79699dlnn7mPdezY0aPjITEx0b3XVlxcnDIzMzVq1CiNHj1ajz76qMeQWCDxa/jJysrSkiVLtHTpUkVHR6uqqkpVVVX64YcfJEnbtm3TAw88oPXr12v79u0qLCzUxIkTNXz4cJ1xxhnuevr06ePuErRYLMrJydHcuXNVWFioTZs2aeLEiUpKSvK4TbDVpI6Rxj8vxRwR1mKS6o6njmn9NgFAG2KLDvdquZa68MILtXHjRm3dulU//PCDnnvuOUVGRkqS+896Bw8eVP/+/bVx40aPxxdffKFrr732uN6/fr+r1nDk3WEWi8VjPlJ+fr7Wrl2roUOH6uWXX9Zpp52m0tLSVmtfc/l12CsvL09S3aSrX8vPz1dmZqY6dOigd999VwsXLlR1dbWSk5N15ZVX6k9/+pNH+fLycvedYpI0bdo0VVdXa9KkSdq/f7/OO+88FRUVKTzcNz/4x5Q6pu52dlZ4BgCvG5QSp0RruKrsNU1NMFCCte62d1+IjIxUz549m1X2nHPO0csvvyybzaaYmJhGyyQmJqqsrMy95MtPP/2k9evX65xzzmm0fL9+/eRyuVRSUuJxp3O9+p4np9PZZLv69u2rn376SWVlZe5hr71796q8vFypqanNurZ6Z599ts4++2zNmDFDQ4YM0dKlS3Xuuee2qA5f82v4OXL2+pGSk5NVUlLS4nosFovuv/9+9zhkQAgJ5XZ2APCB0BCLZo1O1eQlG2SR5wzL+gkHs0an+nS9n+a67rrr9Oc//1ljx47V/fffr65du2rHjh167bXXNG3aNHXt2lVTpkzRQw89pF69eqlPnz76y1/+ov379zdZ5ymnnKIbbrhBN910kx577DGdeeaZ2rFjh/bs2aPx48ere/fuslgsWrZsmS699FJFREQoKirKo45evXpp7NixuuWWW/TUU08pOjpa06dPV5cuXdxr5h1LRUWFnn76aY0ZM0ZJSUkqLy/X1q1bNXHixBP5yHwiYO72AgDgeGWkJSpvwjlKsHr28CdYw5U34RyfrvPTEh07dtR7772nbt266be//a369u2rm2++WTU1Ne6eoLvuukvXX3+9brjhBg0ZMkTR0dG64oorjlpvXl6efve73+m2225Tnz59dMstt7h3S+jSpYvmzJmj6dOnKz4+XtnZ2Y3WkZ+fr/79++vyyy/XkCFDZBiG3nrrrWYvhNixY0d9/vnnuvLKK3Xaaadp0qRJysrK0q233tqCT6h1WIxjdb+YkMPhkNVqld1ub7JbEgDgHTU1NaqoqFBKSsoJT09o7RWe0fqO9vPS3O/vgLjVHQAAbwgNsfj0dna0DQx7AQAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AAAAUyH8AABgQrNnz9ZZZ53l72ZoxIgRysnJadX3JPwAAHACqqqqNGXKFPXs2VPh4eGKj4/XsGHDlJeXp0OHDvm7ecdt1apVslgsR91XzJ/1nQhWeAYAtB0up7RjjXRwtxQVL3UfWrextI989dVXGjZsmGJjY/Xggw+qX79+CgsL06ZNm/T000+rS5cuGjNmTKOvPXz4cLP3zQpkP/74o3vn+GBBzw8AoG3YUigtTJOeu1x69ea6Pxem1R33kdtuu03t2rXTRx99pPHjx6tv37469dRTNXbsWP3rX//S6NGj3WUtFovy8vI0ZswYRUZGat68eZLqNiXt0aOHOnTooN69e+uf//yn+zXbt2+XxWLRxo0b3cf2798vi8WiVatWSfqlR2X58uUaMGCAOnbsqKFDh6q8vNyjrQ899JDi4+MVHR3t3ky1Kdu3b9eFF14oSTrppJNksViUmZkpqW6YKjs7Wzk5OercubNGjRp1zHYerT5JcrlcmjZtmuLi4pSQkKDZs2c396/guBB+AADBb0uh9MpEybHL87ijsu64DwLQ3r179e9//1tZWVmKjIxstIzF4rmp6uzZs3XFFVdo06ZNuummm1RQUKApU6borrvu0ubNm3Xrrbfqxhtv1MqVK1vcnj/+8Y965JFH9NFHH6ldu3a66aab3OdeeeUVzZ49Ww8++KA++ugjJSYm6sknn2yyruTkZL366quSpPLyclVWVurRRx91n3/uuefUoUMHffDBB1q0aNEx29ac+iIjI1VWVqYFCxbo/vvvV3FxcYs/g+Zi2AsAENxcTqnoXklGIycNSRapaLrU5zKvDoF9+eWXMgxDvXv39jjeuXNnd69KVlaW5s+f7z537bXX6sYbb3Q/v+aaa5SZmanbbrtNkjR16lSVlpbq4YcfdveUNNe8efN0wQUXSJKmT5+uyy67TDU1NQoPD9fChQt188036+abb5YkzZ07V++++26TvT+hoaGKi4uTJNlsNsXGxnqc79WrlxYsWOB+vn379qO27Vj1nXHGGZo1a5a77r/97W9avny5Lr744mZde0vR8wMACG471jTs8fFgSI5v6sq1gnXr1mnjxo06/fTTVVtb63FuwIABHs8/++wzDRs2zOPYsGHD9Nlnn7X4fc844wz3fycmJkqS9uzZ436fwYMHe5QfMmRIi9+jXv/+/Y/7tY35dduluvbXt90X6PkBAAS3g7u9W66ZevbsKYvF0mBuzamnnipJioiIaPCapobHmhISUtdHYRi/9GodPny40bK/njxdP9zmcrla9H7NdeR1tKSdjTly4rfFYvFZ2yV6fgAAwS4q3rvlmqlTp066+OKL9be//U3V1dXHVUffvn31wQcfeBz74IMPlJqaKkk6+eSTJUmVlZXu87+eVNyS9ykrK/M4VlpaetTX1N/B5XQ6j1l/c9rZkvp8jZ4fAEBw6z5Uikmqm9zc6LwfS9357kO9/tZPPvmkhg0bpgEDBmj27Nk644wzFBISog8//FCff/75MYeH7rnnHo0fP15nn322Ro4cqTfffFOvvfaa3n33XUl1vUfnnnuuHnroIaWkpGjPnj3605/+1OJ2TpkyRZmZmRowYICGDRumF154QZ9++qm7l6ox3bt3l8Vi0bJly3TppZcqIiJCUVFRjZZtTjtbUp+v0fMDAAhuIaFSRv2kYssRJ39+nvGQT9b76dGjhz7++GONHDlSM2bM0JlnnqkBAwbo8ccf1913360HHnjgqK8fN26cHn30UT388MM6/fTT9dRTTyk/P18jRoxwl/nHP/6hn376Sf3791dOTo7mzp3b4nb+/ve/18yZMzVt2jT1799fO3bs0OTJk4/6mi5dumjOnDmaPn264uPjlZ2dfdTyx2pnS+vzJYvx6wE6SJIcDoesVqvsdrtiYmL83RwAaNNqampUUVGhlJQUhYeHH39FWwrr7vr69eTnmC51wSe18YUGEXyO9vPS3O9vhr0AAG1D6pi629lbcYVnBCfCDwCg7QgJlVLO93crEOCY8wMAAEyF8AMAAEyF8AMACAjcf4Pm8MbPCeEHAOBX9av7Hjp0yM8tQTCo/zk5clXolmDCMwDAr0JDQxUbG+vey6ljx44NdkMHDMPQoUOHtGfPHsXGxio09Pjv4iP8AAD8LiEhQZJ8upkl2obY2Fj3z8vxIvwAAPzOYrEoMTFRNputRRtiwlzat29/Qj0+9Qg/AICAERoa6pUvN+BomPAMAABMhfADAABMhfADAABMhfADAABMhfADAABMhbu98AuXU9qxRjq4W4qKl7oPrdshGQCANoTwgzpbCqWieyXHrl+OxSRJGfOl1DH+axcAAF7GsBfqgs8rEz2DjyQ5KuuObyn0T7sAAPABwo/ZuZx1PT5qbJfcn48VTa8rBwBAG+DX8JObm6uBAwcqOjpaNptN48aNU3l5eaNlDcPQJZdcIovFotdff/2o9WZmZspisXg8MjIyfHAFbcCONQ17fDwYkuObunIAALQBfg0/JSUlysrKUmlpqYqLi3X48GGlp6erurq6QdmFCxe2aJffjIwMVVZWuh8vvviiN5vedhzc7d1yAAAEOL9OeC4qKvJ4vnjxYtlsNq1fv17Dhw93H9+4caMeeeQRffTRR0pMTGxW3WFhYSe866spRMV7txwAAAEuoOb82O12SVJcXJz72KFDh3TttdfqiSeeaFGYWbVqlWw2m3r37q3Jkydr7969TZatra2Vw+HweJhG96F1d3WpqV41ixTTpa4cAABtQMCEH5fLpZycHA0bNkxpaWnu43feeaeGDh2qsWPHNruujIwMPf/881q+fLnmz5+vkpISXXLJJXI6G5+0m5ubK6vV6n4kJyef8PUEjZDQutvZJTUMQD8/z3iI9X4AACfO5ZQq3pc2/V/dn366mcZiGEZjt/m0usmTJ+vtt9/W6tWr1bVrV0lSYWGh7rrrLn388ceKioqSJFksFhUUFGjcuHHNrvurr75Sjx499O677+qiiy5qcL62tla1tbXu5w6HQ8nJybLb7YqJiTmxCwsWja7z06Uu+LDODwDgRLXCenIOh0NWq/WY398Bschhdna2li1bpvfee88dfCRpxYoV2rZtm2JjYz3KX3nllTr//PO1atWqZtV/6qmnqnPnzvryyy8bDT9hYWEKCws7kUsIfqljpD6XscIzAMD76teTO3JZlfr15MY/36q/aPs1/BiGodtvv10FBQVatWqVUlJSPM5Pnz5d/+///T+PY/369dNf//pXjR49utnv89///ld79+5t9mRp0woJlVLO93crAABtyTHXk7PUrSfX57JW+4Xbr3N+srKytGTJEi1dulTR0dGqqqpSVVWVfvjhB0lSQkKC0tLSPB6S1K1bN4+g1KdPHxUUFEiSDh48qHvuuUelpaXavn27li9frrFjx6pnz54aNWpU618kAABmFoDryfk1/OTl5clut2vEiBFKTEx0P15++eUW1VNeXu6+Uyw0NFSffPKJxowZo9NOO00333yz+vfvr/fff5+hLQAAWlsArifn92Evb7zm18ciIiL0zjvvnFC7AACAlwTgenIBc6s7AABogwJwPTnCDwAA8J0AXE+O8AMAAHwrdUzd7ewxR9x1HZPU6re5SwGyzg8AAGjjAmg9OcIPAABoHQGynhzDXgAAwFTo+WklTpehdRX7tOdAjWzR4RqUEqfQkKZmvgMAAF8h/LSCos2VmvPmFlXaa9zHEq3hmjU6VRlpbLkBBC2XMyDmLwBoGcKPjxVtrtTkJRsa7GhSZa/R5CUblDfhHAIQEIxaYYdqAL7BnB8fcroMzXlzS5NbuUnSnDe3yOlq+UrXAPyofofqI/crqt+hekuhf9oFoFkIPz60rmKfx1DXkQxJlfYaravY13qNAnBijrlDtep2qHY5W7NVAFqA8ONDew40HXyOpxyAABCAO1QDaBnCjw/ZosO9Wg5AAAjAHaoBtAzhx4cGpcQp0Rp+tK3clGitu+0dQJAIwB2qAbQM4ceHQkMsmjU6VVKTW7lp1uhU1vsBgkkA7lANoGUIPz6WkZaovAnnKMHqObSVYA3nNncgGAXgDtUAWsZiGAb3WR/B4XDIarXKbrcrJibGK3WywjPQxjS6zk+XuuDDOj+AXzT3+5tFDltJaIhFQ3p08nczAHhLAO1QDaBlCD8AcLwCZIdqAC3DnB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqhB8AAGAqfg0/ubm5GjhwoKKjo2Wz2TRu3DiVl5c3WtYwDF1yySWyWCx6/fXXj1qvYRi67777lJiYqIiICI0cOVJbt271wRUAAIBg49fwU1JSoqysLJWWlqq4uFiHDx9Wenq6qqurG5RduHChLBZLs+pdsGCBHnvsMS1atEhlZWWKjIzUqFGjVFNT4+1LAAAAQcZiGIbh70bU+/bbb2Wz2VRSUqLhw4e7j2/cuFGXX365PvroIyUmJqqgoEDjxo1rtA7DMJSUlKS77rpLd999tyTJbrcrPj5eixcv1tVXX93gNbW1taqtrXU/dzgcSk5Olt1uV0xMjHcvEgAA+ITD4ZDVaj3m93dAzfmx2+2SpLi4OPexQ4cO6dprr9UTTzyhhISEY9ZRUVGhqqoqjRw50n3MarVq8ODBWrt2baOvyc3NldVqdT+Sk5NP8EoAAECgCpjw43K5lJOTo2HDhiktLc19/M4779TQoUM1duzYZtVTVVUlSYqPj/c4Hh8f7z53pBkzZshut7sfO3fuPM6rAAAAga6dvxtQLysrS5s3b9bq1avdxwoLC7VixQp9/PHHPn3vsLAwhYWF+fQ9AABAYAiInp/s7GwtW7ZMK1euVNeuXd3HV6xYoW3btik2Nlbt2rVTu3Z1We3KK6/UiBEjGq2rfmhs9+7dHsd3797drGEzAADQtvk1/BiGoezsbBUUFGjFihVKSUnxOD99+nR98skn2rhxo/shSX/961+Vn5/faJ0pKSlKSEjQ8uXL3cccDofKyso0ZMgQn10LAAAIDn4d9srKytLSpUv1xhtvKDo62j0nx2q1KiIiQgkJCY321nTr1s0jKPXp00e5ubm64oorZLFYlJOTo7lz56pXr15KSUnRzJkzlZSU1OQdYgAAwDz8Gn7y8vIkqcEQVn5+vjIzM5tdT3l5uftOMUmaNm2aqqurNWnSJO3fv1/nnXeeioqKFB4e7o1mAwCAIBZQ6/wEiuauEwAAAAJHUK7zAwAA4GuEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCqEHwAAYCrt/N0AAIDJuZzSjjXSwd1SVLzUfagUEurvVqENI/wAAPxnS6FUdK/k2PXLsZgkKWO+lDrGf+1Cm8awFwDAP7YUSq9M9Aw+kuSorDu+pdA/7QpWLqdU8b606f/q/nQ5/d2igEXPDwCg9bmcdT0+Mho5aUiySEXTpT6XMQTWHPSgtQg9PwCA1rdjTcMeHw+G5PimrhyOjh60FiP8AABa38Hd3i1nVsfsQVNdDxpDYB4IPwgujGkDbUNUvHfLmRU9aMeFOT8IHoxpA21H96F1/34dlWq818JSd7770NZuWXChB+240POD4MCYNtC2hITW/eIiSbIccfLn5xkPMdn5WOhBOy6EHwQ+xrSBtil1jDT+eSkm0fN4TFLdcXp0j62+B61BgKxnkWK60IN2BL+Gn9zcXA0cOFDR0dGy2WwaN26cysvLPcrceuut6tGjhyIiInTyySdr7Nix+vzzz49ab2ZmpiwWi8cjIyPDl5cCX2JMG2i7UsdIOZulG5ZJV/697s+cTQSf5qIH7bj4NfyUlJQoKytLpaWlKi4u1uHDh5Wenq7q6mp3mf79+ys/P1+fffaZ3nnnHRmGofT0dDmdR/8tPyMjQ5WVle7Hiy++6OvLga8wpg20bSGhUsr5Ur/f1f3JF3XL0IPWYn6d8FxUVOTxfPHixbLZbFq/fr2GDx8uSZo0aZL7/CmnnKK5c+fqzDPP1Pbt29WjR48m6w4LC1NCQoJvGo7WxZg2ABxd6pi6BSHZI61ZAupuL7vdLkmKi4tr9Hx1dbXy8/OVkpKi5OTko9a1atUq2Ww2nXTSSfrNb36juXPnqlOnTo2Wra2tVW1trfu5w+E4ziuAT3BXCAAcW30PGo4pYCY8u1wu5eTkaNiwYUpLS/M49+STTyoqKkpRUVF6++23VVxcrA4dOjRZV0ZGhp5//nktX75c8+fPV0lJiS655JImh8pyc3NltVrdj2MFK7QyxrQBAF5kMQyjsV+lW93kyZP19ttva/Xq1eratavHObvdrj179qiyslIPP/ywvvnmG33wwQcKDw9vVt1fffWVevTooXfffVcXXXRRg/ON9fwkJyfLbrcrJibmxC4M3tPoOj9d6oIPY9oAYHoOh0NWq/WY398BMeyVnZ2tZcuW6b333msQfCS5e2R69eqlc889VyeddJIKCgp0zTXXNKv+U089VZ07d9aXX37ZaPgJCwtTWFjYCV8HfIwxbQCAF/g1/BiGodtvv10FBQVatWqVUlJSmvUawzA8emqO5b///a/27t2rxMTEYxdGYGNMGwBwgvw65ycrK0tLlizR0qVLFR0draqqKlVVVemHH36QVDdclZubq/Xr1+vrr7/WmjVrdNVVVykiIkKXXnqpu54+ffqooKBAknTw4EHdc889Ki0t1fbt27V8+XKNHTtWPXv21KhRo/xynQAAIHD4Nfzk5eXJbrdrxIgRSkxMdD9efvllSVJ4eLjef/99XXrpperZs6d+//vfKzo6WmvWrJHNZnPXU15e7r5TLDQ0VJ988onGjBmj0047TTfffLP69++v999/n6EtAMDxYVPlNuWEJjzX1NTo5ZdfVnV1tS6++GL16tXLm23zm+ZOmAIAmACbKgeN5n5/Nzv8TJ06VYcPH9bjjz8uSfrxxx81ePBgffrpp+rYsaN++uknFRcXa8iQId65Aj8i/AAAJP2yqXKDNcZ+XmaDFZQDSnO/v5s97PXvf/9bF198sfv5Cy+8oB07dmjr1q36/vvvddVVV2nu3Lkn1moAAAIFmyq3Wc0OP19//bVSU1Pdz//973/rd7/7nbp37y6LxaIpU6bo448/9kkjAQBodWyq3GY1O/yEhITo1yNkpaWlOvfcc93PY2Nj9f3333u3dQAA+AubKrdZzQ4/ffv21ZtvvilJ+vTTT/X111/rwgsvdJ/fsWOH4uPZWBIA0EawqXKb1exFDqdNm6arr75a//rXv/Tpp5/q0ksv9ViU8K233tKgQYN80kgAAFodmyq3Wc3u+bniiiv01ltv6YwzztCdd97pXounXseOHXXbbbd5vYEAAPgFmyq3Wc2+1f3+++/X3XffrY4dO/q6TX7Hre4AADc2VQ4aXl/nJzQ0VJWVlR4rK7dVhB8AgAeXk02Vg4DXd3U/gYWgAQAIbmyq3Ka0aG8vi+XIMU8AAIDg0uyeH0k67bTTjhmA9u3bd0INAgAA8KUWhZ85c+bIarX6qi0AAAA+16Lwc/XVV5tiwjMAAGi7mj3nh/k+AACgLWh2+OFuLwAA0BY0e9jL5XL5sh0AAACtokW3ugMAAAQ7wg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADAVwg8AADCVdv5uANASTpehdRX7tOdAjWzR4RqUEqfQEIu/mwUACCJ+7fnJzc3VwIEDFR0dLZvNpnHjxqm8vNyjzK233qoePXooIiJCJ598ssaOHavPP//8qPUahqH77rtPiYmJioiI0MiRI7V161ZfXgpaQdHmSp03f4WueaZUU17aqGueKdV581eoaHOlv5sGAAgifg0/JSUlysrKUmlpqYqLi3X48GGlp6erurraXaZ///7Kz8/XZ599pnfeeUeGYSg9PV1Op7PJehcsWKDHHntMixYtUllZmSIjIzVq1CjV1NS0xmXBB4o2V2rykg2qtHv+HVbZazR5yQYCEACg2SyGYRj+bkS9b7/9VjabTSUlJRo+fHijZT755BOdeeaZ+vLLL9WjR48G5w3DUFJSku666y7dfffdkiS73a74+HgtXrxYV199dYPX1NbWqra21v3c4XAoOTlZdrtdMTExXro6HC+ny9B581c0CD71LJISrOFafe9vGAIDABNzOByyWq3H/P4OqAnPdrtdkhQXF9fo+erqauXn5yslJUXJycmNlqmoqFBVVZVGjhzpPma1WjV48GCtXbu20dfk5ubKarW6H03VDf9YV7GvyeAjSYakSnuN1lXsa71GAQCCVsCEH5fLpZycHA0bNkxpaWke55588klFRUUpKipKb7/9toqLi9WhQ4dG66mqqpIkxcfHexyPj493nzvSjBkzZLfb3Y+dO3d64YrgLXsONG+4srnlAADmFjDhJysrS5s3b9ZLL73U4Nx1112njz/+WCUlJTrttNM0fvx4r87fCQsLU0xMjMcDgcMWHe7VcgAAcwuI8JOdna1ly5Zp5cqV6tq1a4PzVqtVvXr10vDhw/V///d/+vzzz1VQUNBoXQkJCZKk3bt3exzfvXu3+xyCy6CUOCVaw9XUbB6LpERr3W3vAAAci1/Dj2EYys7OVkFBgVasWKGUlJRmvcYwDI8Jyr+WkpKihIQELV++3H3M4XCorKxMQ4YM8Vrb0XpCQyyaNTpVkhoEoPrns0anMtkZANAsfg0/WVlZWrJkiZYuXaro6GhVVVWpqqpKP/zwgyTpq6++Um5urtavX6+vv/5aa9as0VVXXaWIiAhdeuml7nr69Onj7gmyWCzKycnR3LlzVVhYqE2bNmnixIlKSkrSuHHj/HGZ8IKMtETlTThHCVbPoa0Ea7jyJpyjjLREP7UMABBs/LrCc15eniRpxIgRHsfz8/OVmZmp8PBwvf/++1q4cKG+//57xcfHa/jw4VqzZo1sNpu7fHl5uftOMUmaNm2aqqurNWnSJO3fv1/nnXeeioqKFB7OnJBglpGWqItTE1jhGQBwQgJqnZ9A0dx1AgAAQOAIynV+AAAAfI3wAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATMWv21sAbZLLKe1YIx3cLUXFS92HSiGh/m4VAOBnhB/Am7YUSkX3So5dvxyLSZIy5kupY/zXLgCAG8NegLdsKZRemegZfCTJUVl3fEuhf9oFAPBA+AG8weWs6/FRY/sE/3ysaHpdOQCAXxF+AG/YsaZhj48HQ3J8U1cOAOBXhB/AGw7u9m45AIDPEH4Ab4iK9245AIDPEH4Ab+g+tO6uLlmaKGCRYrrUlQMA+BXhB/CGkNC629klNQxAPz/PeIj1fgAgABB+AG9JHSONf16KSfQ8HpNUd5x1fgAgILDIIeBNqWOkPpexwjMABDDCD+BtIaFSyvn+bgUAoAmEHwCBiT3SAPgI4QdA4GGPNAA+xIRnAIGFPdIA+BjhB0DgYI80AK2A8AMgcLBHGoBWQPgBEDjYIw1AKyD8AAgc7JEGoBUQfgAEDvZIA9AKCD8AAgd7pAFoBYQfAIGFPdIA+BiLHAIIPOyRBsCHCD8AAhN7pAHwEYa9AACAqdDzAwDwK6fL0LqKfdpzoEa26HANSolTaEhTd/wBJ47wAwDwm6LNlZrz5hZV2mvcxxKt4Zo1OlUZaYlHeSVw/Bj2AkzI6TK0dttevbHxG63dtldOV2N7aQG+VbS5UpOXbPAIPpJUZa/R5CUbVLS50k8tQ1tHzw9gMkWbK/VA4SYlH/yPbNqvPYrVzqgzNXNMP37TRqtxugzNeXNLk1vYWiTNeXOLLk5NYAisDQmUIU7CD2AiRZsr9frSRfrf9s8rqcM+9/FdtXG6f+lE6dr/IQChVayr2Negx+fXDEmV9hqtq9inIT06tV7D4DOBNMTJsBdgEk6XoVWv/0NPtl+oBO3zOJegfXqy/UKtev0fDIGhVew50HTwOZ5yCGyBNsTp1/CTm5urgQMHKjo6WjabTePGjVN5ebn7/L59+3T77berd+/eioiIULdu3XTHHXfIbrcftd7MzExZLBaPR0ZGhq8vBwho67Z9qzsOPytJOrKXuf75HYf/rnXbvm3llsGMbNHhXi2HwHWsIU6pboizNX/x8mv4KSkpUVZWlkpLS1VcXKzDhw8rPT1d1dXVkqRdu3Zp165devjhh7V582YtXrxYRUVFuvnmm49Zd0ZGhiorK92PF1980deXAwQ05/YPlGTZ1yD41AuxSEmWvXJu/6B1GwZTGpQSp0Rr+NG2sFWitW5OCIJbS4Y4W4tf5/wUFRV5PF+8eLFsNpvWr1+v4cOHKy0tTa+++qr7fI8ePTRv3jxNmDBBP/30k9q1a7r5YWFhSkhI8FnbgWBjs+z3ajngRISGWDRrdKomL9kgi+TRK1AfiGaNTmWycxsQiEOcATXnp344Ky6u6aRvt9sVExNz1OAjSatWrZLNZlPv3r01efJk7d27t8mytbW1cjgcHg+grelxag+vlgNOVEZaovImnKMEq+fQVoI1XHkTzmHyfRsRiEOcFsMwAmJ2o8vl0pgxY7R//36tXr260TLfffed+vfvrwkTJmjevHlN1vXSSy+pY8eOSklJ0bZt2/SHP/xBUVFRWrt2rUJDG26MOHv2bM2ZM6fB8fqgBbQJLqd++HOqwg5VNTr05TKk2o4JirhnCxuIolUFyu3P8A2ny9B581eoyl7T6Lwfi+oC7+p7f3PCf+8Oh0NWq/WY398BE34mT56st99+W6tXr1bXrl0bnHc4HLr44osVFxenwsJCtW/fvtl1f/XVV+rRo4feffddXXTRRQ3O19bWqra21uO9kpOTCT9oe7YUynhlogwZHt2+LkkWWWQZ/3zdjuoA4EX1d3tJjQ9xequnr7nhJyCGvbKzs7Vs2TKtXLmy0eBz4MABZWRkKDo6WgUFBS0KPpJ06qmnqnPnzvryyy8bPR8WFqaYmBiPB9AmpY6RZfzzssQkeRy2xHQh+ADwmUAb4vTrhGfDMHT77beroKBAq1atUkpKSoMyDodDo0aNUlhYmAoLCxUe3vIxwf/+97/au3evEhMZPwaUOkaWPpdJO9ZIB3dLUfGydB/KUBcAn8pIS9TFqQkBMcTp12Gv2267TUuXLtUbb7yh3r17u49brVZFRETI4XAoPT1dhw4dUkFBgSIjI91lTj75ZPf8nT59+ig3N1dXXHGFDh48qDlz5ujKK69UQkKCtm3bpmnTpunAgQPatGmTwsLCjtmu5nabAQCAwNHc72+/9vzk5eVJkkaMGOFxPD8/X5mZmdqwYYPKysokST179vQoU1FRoVNOOUWSVF5e7r5TLDQ0VJ988omee+457d+/X0lJSUpPT9cDDzzQrOADAADatoCZ8BxI6PkBAAQb7poLkp4fAABw4gJp09BgEBB3ewEAgOMTaJuGBgPCDwAAQSoQNw0NBoQfAACCVCBuGhoMCD8AAASpQNw0NBgQfgAACFKBuGloMCD8AAAQpAalxCnRGq6mbmi3qO6ur0Epca3ZrIBH+AGANszpMrR22169sfEbrd22l4mvbUxoiEWzRqdKUoMAVP981uhU0633cyys8wMAbRRrv5hD/aahR/5dJ/B33SRWeG4EKzwDCHb1a78c+T/4+t///bGTNnyLFZ5Z4RkATOtYa79YVLf2y8WpCab7cmzLQkMsGtKjk7+bERSY8wMAbQxrvwBHR/gBgDaGtV+Ao2PYCwDaGNZ+8T7m07QthB8AaGPq136pstc0Ou/Horo7gVj7pXm4a67tYdgLANoY1n7xHnZMb5sIPwDQBtWv/ZJg9RzaSrCGc5t7M7FjetvFsBcAtFEZaYm6ODWBuSrHqSV3zXGLeXAh/ABAG8baL8ePu+baLoa9AABoBHfNtV2EHwAAGsGO6W0X4QcAgEZw11zbRfiBm9NlaO22vXpj4zdau20vdzAAMD3ummubmPAMSSziBQBN4a65tsdiGAa/3h/B4XDIarXKbrcrJibG383xufpFvI78Qaj/Z81vNwCAYNDc72+GvUyORbwAAGZD+DG5liziBQBAW0D4MTkW8QIAmA3hx+RYxAsAYDbc7WVy9Yt4VdlrGp33Y1HdLZ0s4oXW5nQZ3F0DwCcIPyZXv4jX5CUbZJE8AhCLeMFfWHoBgC8x7AUW8UJAqV964ciJ+FX2Gk1eskFFmyv91DIAbQU9P5DEIl4IDMdaesGiuqUXLk5N4GcTwHEj/MAtNMSiIT06+bsZMLGWLL3AzyqA40X4ARAwgm3pBSZlA8GJ8AMgYATT0gtMygaCFxOeAQSM+qUXmuo7saguYPh76QUmZQPBjfADIGDUL70gqUEACpSlF9gPDwh+hB8AASXQl15gPzwg+DHnB0DACeSlF4JtUjaAhgg/AAJSoC69EEyTsgE0zq/DXrm5uRo4cKCio6Nls9k0btw4lZeXu8/v27dPt99+u3r37q2IiAh169ZNd9xxh+x2+1HrNQxD9913nxITExUREaGRI0dq69atvr4cACYQLJOyATTNr+GnpKREWVlZKi0tVXFxsQ4fPqz09HRVV1dLknbt2qVdu3bp4Ycf1ubNm7V48WIVFRXp5ptvPmq9CxYs0GOPPaZFixaprKxMkZGRGjVqlGpq6IYGcGKCYVI2gKOzGIYRMLckfPvtt7LZbCopKdHw4cMbLfO///u/mjBhgqqrq9WuXcNRO8MwlJSUpLvuukt33323JMlutys+Pl6LFy/W1Vdf3eA1tbW1qq2tdT93OBxKTk6W3W5XTEyMl64OQFvCOj9A4HE4HLJarcf8/g6oOT/1w1lxcU13F9dfUGPBR5IqKipUVVWlkSNHuo9ZrVYNHjxYa9eubTT85Obmas6cOSfYegBmEsiTsj24nNKONdLB3VJUvNR9qBQS6u9WAX4VMOHH5XIpJydHw4YNU1paWqNlvvvuOz3wwAOaNGlSk/VUVVVJkuLj4z2Ox8fHu88dacaMGZo6dar7eX3PDwAcTaBOynbbUigV3Ss5dv1yLCZJypgvpY7xX7sAPwuY8JOVlaXNmzdr9erVjZ53OBy67LLLlJqaqtmzZ3v1vcPCwhQWFubVOgHAr7YUSq9MlI5cjtFRWXd8/PMEIJhWQCxymJ2drWXLlmnlypXq2rVrg/MHDhxQRkaGoqOjVVBQoPbt2zdZV0JCgiRp9+7dHsd3797tPgcAbZrLWdfjc7R1qIum15UDTMiv4ccwDGVnZ6ugoEArVqxQSkpKgzIOh0Pp6enq0KGDCgsLFR5+9LUzUlJSlJCQoOXLl3vUUVZWpiFDhnj9GgAg4OxY4znU1YAhOb6pKweYkF/DT1ZWlpYsWaKlS5cqOjpaVVVVqqqq0g8//CDpl+BTXV2tv//973I4HO4yTucvv7H06dNHBQUFkiSLxaKcnBzNnTtXhYWF2rRpkyZOnKikpCSNGzfOH5cJAK3r4O5jl2lJOaCN8eucn7y8PEnSiBEjPI7n5+crMzNTGzZsUFlZmSSpZ8+eHmUqKip0yimnSJLKy8s9Fj6cNm2aqqurNWnSJO3fv1/nnXeeioqKjtlrBABtQlT8scu0pBzQxgTUOj+BornrBABAQHI5pYVpdZObG533Y6m76ytnE7e9o01p7vd3QEx4BgB4UUho3e3skppchzrjIYIPTIvwAwBtUeqYutvZY45YbTomidvcYXoBs84PAMDLUsdIfS5jhWfgCIQfAGjLQkKllPP93QogoDDsBQAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXtLQAvc7oMravYpz0HamSLDteglDiFhhy5szYAwF8IP4AXFW2u1Jw3t6jSXuM+lmgN16zRqcpISzzKKwEArYVhL8BLijZXavKSDR7BR5Kq7DWavGSDijZX+qllAIBfI/wAXuB0GZrz5hYZjZyrPzbnzS1yuhorAQBoTYQfwAvWVexr0OPza4akSnuN1lXsa71GAQAaRfgBvGDPgaaDz/GUAwD4DuEH8AJbdLhXywEAfIfwA3jBoJQ4JVrD1dQN7RbV3fU1KCWuNZsFAGgE4QfwgtAQi2aNTpWkBgGo/vms0ams9wMAAYDwA3hJRlqi8iacowSr59BWgjVceRPOYZ0fAAgQLHIIeFFGWqIuTk1ghWcACGCEH8DLQkMsGtKjk7+bAQBoAsNeAADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVFjhuRGGYUiSHA6Hn1sCAACaq/57u/57vCmEn0YcOHBAkpScnOznlgAAgJY6cOCArFZrk+ctxrHikQm5XC7t2rVL0dHRsli8tyGlw+FQcnKydu7cqZiYGK/VazZ8jt7B5+gdfI7ewefoHWb/HA3D0IEDB5SUlKSQkKZn9tDz04iQkBB17drVZ/XHxMSY8ofS2/gcvYPP0Tv4HL2Dz9E7zPw5Hq3Hpx4TngEAgKkQfgAAgKkQflpRWFiYZs2apbCwMH83JajxOXoHn6N38Dl6B5+jd/A5Ng8TngEAgKnQ8wMAAEyF8AMAAEyF8AMAAEyF8AMAAEyF8NOKnnjiCZ1yyikKDw/X4MGDtW7dOn83Kajk5uZq4MCBio6Ols1m07hx41ReXu7vZgW9hx56SBaLRTk5Of5uStD55ptvNGHCBHXq1EkRERHq16+fPvroI383K6g4nU7NnDlTKSkpioiIUI8ePfTAAw8cc28ms3vvvfc0evRoJSUlyWKx6PXXX/c4bxiG7rvvPiUmJioiIkIjR47U1q1b/dPYAET4aSUvv/yypk6dqlmzZmnDhg0688wzNWrUKO3Zs8ffTQsaJSUlysrKUmlpqYqLi3X48GGlp6erurra300LWh9++KGeeuopnXHGGf5uStD5/vvvNWzYMLVv315vv/22tmzZokceeUQnnXSSv5sWVObPn6+8vDz97W9/02effab58+drwYIFevzxx/3dtIBWXV2tM888U0888USj5xcsWKDHHntMixYtUllZmSIjIzVq1CjV1NS0cksDlIFWMWjQICMrK8v93Ol0GklJSUZubq4fWxXc9uzZY0gySkpK/N2UoHTgwAGjV69eRnFxsXHBBRcYU6ZM8XeTgsq9995rnHfeef5uRtC77LLLjJtuusnj2G9/+1vjuuuu81OLgo8ko6CgwP3c5XIZCQkJxp///Gf3sf379xthYWHGiy++6IcWBh56flrBjz/+qPXr12vkyJHuYyEhIRo5cqTWrl3rx5YFN7vdLkmKi4vzc0uCU1ZWli677DKPn0s0X2FhoQYMGKCrrrpKNptNZ599tp555hl/NyvoDB06VMuXL9cXX3whSfrPf/6j1atX65JLLvFzy4JXRUWFqqqqPP5tW61WDR48mO+cn7GxaSv47rvv5HQ6FR8f73E8Pj5en3/+uZ9aFdxcLpdycnI0bNgwpaWl+bs5Qeell17Shg0b9OGHH/q7KUHrq6++Ul5enqZOnao//OEP+vDDD3XHHXeoQ4cOuuGGG/zdvKAxffp0ORwO9enTR6GhoXI6nZo3b56uu+46fzctaFVVVUlSo9859efMjvCDoJSVlaXNmzdr9erV/m5K0Nm5c6emTJmi4uJihYeH+7s5QcvlcmnAgAF68MEHJUlnn322Nm/erEWLFhF+WuCVV17RCy+8oKVLl+r000/Xxo0blZOTo6SkJD5H+AzDXq2gc+fOCg0N1e7duz2O7969WwkJCX5qVfDKzs7WsmXLtHLlSnXt2tXfzQk669ev1549e3TOOeeoXbt2ateunUpKSvTYY4+pXbt2cjqd/m5iUEhMTFRqaqrHsb59++rrr7/2U4uC0z333KPp06fr6quvVr9+/XT99dfrzjvvVG5urr+bFrTqv1f4zmka4acVdOjQQf3799fy5cvdx1wul5YvX64hQ4b4sWXBxTAMZWdnq6CgQCtWrFBKSoq/mxSULrroIm3atEkbN250PwYMGKDrrrtOGzduVGhoqL+bGBSGDRvWYKmFL774Qt27d/dTi4LToUOHFBLi+VUUGhoql8vlpxYFv5SUFCUkJHh85zgcDpWVlfGd8zOGvVrJ1KlTdcMNN2jAgAEaNGiQFi5cqOrqat14443+blrQyMrK0tKlS/XGG28oOjraPXZttVoVERHh59YFj+jo6AbzpCIjI9WpUyfmT7XAnXfeqaFDh+rBBx/U+PHjtW7dOj399NN6+umn/d20oDJ69GjNmzdP3bp10+mnn66PP/5Yf/nLX3TTTTf5u2kB7eDBg/ryyy/dzysqKrRx40bFxcWpW7duysnJ0dy5c9WrVy+lpKRo5syZSkpK0rhx4/zX6EDi79vNzOTxxx83unXrZnTo0MEYNGiQUVpa6u8mBRVJjT7y8/P93bSgx63ux+fNN9800tLSjLCwMKNPnz7G008/7e8mBR2Hw2FMmTLF6NatmxEeHm6ceuqpxh//+EejtrbW300LaCtXrmz0/4c33HCDYRh1t7vPnDnTiI+PN8LCwoyLLrrIKC8v92+jA4jFMFhGEwAAmAdzfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgAAgKkQfgCYTmZmJsv8AyZG+AHgE5mZmbJYLA0eGRkZ/m6aHn30US1evNjfzZAkWSwWvf766/5uBmAqbGwKwGcyMjKUn5/vcSwsLMxPrZGcTqcsFousVqvf2gDA/+j5AeAzYWFhSkhI8HicdNJJWrVqlTp06KD333/fXXbBggWy2WzavXu3JGnEiBHKzs5Wdna2rFarOnfurJkzZ+rX2xHW1tbq7rvvVpcuXRQZGanBgwdr1apV7vOLFy9WbGysCgsLlZqaqrCwMH399dcNhr1GjBih22+/XTk5OTrppJMUHx+vZ555RtXV1brxxhsVHR2tnj176u233/a4vs2bN+uSSy5RVFSU4uPjdf311+u7777zqPeOO+7QtGnTFBcXp4SEBM2ePdt9/pRTTpEkXXHFFbJYLO7nAHyL8AOg1Y0YMUI5OTm6/vrrZbfb9fHHH2vmzJl69tlnFR8f7y733HPPqV27dlq3bp0effRR/eUvf9Gzzz7rPp+dna21a9fqpZde0ieffKKrrrpKGRkZ2rp1q7vMoUOHNH/+fD377LP69NNPZbPZGm3Tc889p86dO2vdunW6/fbbNXnyZF111VUaOnSoNmzYoPT0dF1//fU6dOiQJGn//v36zW9+o7PPPlsfffSRioqKtHv3bo0fP75BvZGRkSorK9OCBQt0//33q7i4WJL04YcfSpLy8/NVWVnpfg7Ax/y8qzyANuqGG24wQkNDjcjISI/HvHnzDMMwjNraWuOss84yxo8fb6Smphq33HKLx+svuOACo2/fvobL5XIfu/fee42+ffsahmEYO3bsMEJDQ41vvvnG43UXXXSRMWPGDMMwDCM/P9+QZGzcuLFB28aOHevxXuedd577+U8//WRERkYa119/vftYZWWlIclYu3atYRiG8cADDxjp6eke9e7cudOQZJSXlzdar2EYxsCBA417773X/VySUVBQ0MSnCMAXmPMDwGcuvPBC5eXleRyLi4uTJHXo0EEvvPCCzjjjDHXv3l1//etfG7z+3HPPlcVicT8fMmSIHnnkETmdTm3atElOp1OnnXaax2tqa2vVqVMn9/MOHTrojDPOOGZbf10mNDRUnTp1Ur9+/dzH6nuk9uzZI0n6z3/+o5UrVyoqKqpBXdu2bXO368j3TkxMdNcBwD8IPwB8JjIyUj179mzy/Jo1ayRJ+/bt0759+xQZGdnsug8ePKjQ0FCtX79eoaGhHud+HUgiIiI8AlRT2rdv7/HcYrF4HKuvw+Vyud9/9OjRmj9/foO6EhMTj1pvfR0A/IPwA8Avtm3bpjvvvFPPPPOMXn75Zd1www169913FRLyy1TEsrIyj9eUlpaqV69eCg0N1dlnny2n06k9e/bo/PPPb+3m65xzztGrr76qU045Re3aHf//Stu3by+n0+nFlgE4FiY8A/CZ2tpaVVVVeTy+++47OZ1OTZgwQaNGjdKNN96o/Px8ffLJJ3rkkUc8Xv/1119r6tSpKi8v14svvqjHH39cU6ZMkSSddtppuu666zRx4kS99tprqqio0Lp165Sbm6t//etfPr+2rKws7du3T9dcc40+/PBDbdu2Te+8845uvPHGFoWZU045RcuXL1dVVZW+//57H7YYQD16fgD4TFFRkccQkCT17t1b1157rXbs2KFly5ZJqhsmevrpp3XNNdcoPT1dZ555piRp4sSJ+uGHHzRo0CCFhoZqypQpmjRpkruu/Px8zZ07V3fddZe++eYbde7cWeeee64uv/xyn19bUlKSPvjgA917771KT09XbW2tunfvroyMDI/eq2N55JFHNHXqVD3zzDPq0qWLtm/f7rtGA5AkWQzjV4tmAECAGDFihM466ywtXLjQ300B0MYw7AUAAEyF8AMAAEyFYS8AAGAq9PwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABTIfwAAABT+f+m2Rio2G8e7AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHACAYAAADqeOi0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwAklEQVR4nOzdd3RU5dbH8e+k994bJEBCCb2LAjZALwiKBcFXsRfw6lXsFUSxC14FrwXQKwgqoIKKIr33KpBQAgRISCMJSUidef8IyTXSMiHJSfl91jprmXPOnNkTxszs8+xnPyaLxWJBREREREREROo8G6MDEBEREREREZHKURIvIiIiIiIiUk8oiRcRERERERGpJ5TEi4iIiIiIiNQTSuJFRERERERE6gkl8SIiIiIiIiL1hJJ4ERERERERkXpCSbyIiIiIiIhIPWFndAB1kdls5vjx47i7u2MymYwOR0RERERERBo4i8XCqVOnCAkJwcbm/OPtSuLP4fjx44SHhxsdhoiIiIiIiDQyiYmJhIWFnfe4kvhzcHd3B0p/eR4eHgZHIyIiIiIiIg1ddnY24eHh5fno+SiJP4eyEnoPDw8l8SIiIiIiIlJrLjalW43tREREREREROoJJfEiIiIiIiIi9YSSeBEREREREZF6QnPiRURERESkwbFYLBQXF1NSUmJ0KCIA2NraYmdnd8nLmCuJFxERERGRBqWwsJCkpCTy8vKMDkWkAhcXF4KDg3FwcKjyNZTEi4iIiIhIg2E2m0lISMDW1paQkBAcHBwueeRT5FJZLBYKCwtJTU0lISGBFi1aYGNTtdntSuJFRERERKTBKCwsxGw2Ex4ejouLi9HhiJRzdnbG3t6ew4cPU1hYiJOTU5Wuo8Z2IiIiIiLS4FR1lFOkJlXH+1LvbBEREREREZF6Qkm8iIiIiIiISD1haBI/YcIEunbtiru7OwEBAQwZMoS4uLgK5/Tt2xeTyVRhe+ihhy54XYvFwssvv0xwcDDOzs5cc8017Nu3ryZfioiIiIiISK1o2rQpEydONDqMarNs2TJMJhOZmZlGh1IvGJrEL1++nFGjRrFu3ToWLVpEUVER/fr1Izc3t8J5999/P0lJSeXb22+/fcHrvv3223z44Yd88sknrF+/HldXV/r3709+fn5NvhwREREREZFLkpiYyD333FPeWb9JkyY89thjpKenGx1atejbty+PP/54hX2XXXYZSUlJeHp6GhNUPWNod/qFCxdW+Hn69OkEBASwefNmevfuXb7fxcWFoKCgSl3TYrEwceJEXnzxRQYPHgzAV199RWBgID/88APDhg2rvhdgsPyiEmxMJhzsNCtCRERERKS+O3jwID179iQ6OppvvvmGyMhI/vzzT5566il+/fVX1q1bh4+PT63HVVJSgslkqrFmgQ4ODpXO96SOzYnPysoCOOuNOWPGDPz8/IiNjeW5554jLy/vvNdISEggOTmZa665pnyfp6cn3bt3Z+3ated8TEFBAdnZ2RW2+uC1Bbu5acpq9qfkGB2KiIiIiEidZLFYyCssNmSzWCxWxTpq1CgcHBz4/fff6dOnDxEREVx33XX88ccfHDt2jBdeeKH83FOnTnH77bfj6upKaGgoH3/8cYXX/OqrrxIREYGjoyMhISH885//LD9eUFDAmDFjCA0NxdXVle7du7Ns2bLy49OnT8fLy4uffvqJ1q1b4+joyOeff46Tk9NZJe+PPfYYV111FQDp6encfvvthIaG4uLiQtu2bfnmm2/Kzx05ciTLly9n0qRJ5VOlDx06dM5y+jlz5tCmTRscHR1p2rQp7733XoXnbdq0KW+88Qb33HMP7u7uRERE8Omnn5YfLywsZPTo0QQHB+Pk5ESTJk2YMGGCVf8edVWdWSfebDbz+OOP06tXL2JjY8v3Dx8+nCZNmhASEsKOHTt45plniIuLY+7cuee8TnJyMgCBgYEV9gcGBpYf+7sJEyYwduzYanoltSM9p4BfdiZxMq+Igf9eyUsDWzO8WwQmk8no0ERERERE6ozTRSW0fvk3Q55797j+uDhULuXKyMjgt99+4/XXX8fZ2bnCsaCgIEaMGMHs2bOZPHkyAO+88w7PP/88Y8eO5bfffuOxxx4jOjqaa6+9ljlz5vDBBx8wa9Ys2rRpQ3JyMtu3by+/3ujRo9m9ezezZs0iJCSEefPmMWDAAHbu3EmLFi0AyMvL46233uLzzz/H19eXsLAwXn75ZebMmcO9994LlI7Qz549m9dffx2A/Px8OnfuzDPPPIOHhwc///wz//d//0ezZs3o1q0bkyZNIj4+ntjYWMaNGweAv78/hw4dqvB6N2/ezK233sqrr77Kbbfdxpo1a3jkkUfw9fVl5MiR5ee99957vPbaazz//PN8//33PPzww/Tp04eYmBg+/PBDfvrpJ7799lsiIiJITEwkMTGx8v94dVidSeJHjRrFrl27WLVqVYX9DzzwQPl/t23bluDgYK6++moOHDhAs2bNquW5n3vuOZ544onyn7OzswkPD6+Wa9cUXzdHFj7emzHfbWflvjRemLeLpXtTeWtoW3zdHI0OT0RERERErLBv3z4sFgutWrU65/FWrVpx8uRJUlNTAejVqxfPPvssANHR0axevZoPPviAa6+9liNHjhAUFMQ111yDvb09ERERdOvWDYAjR44wbdo0jhw5QkhICABjxoxh4cKFTJs2jTfeeAOAoqIiJk+eTPv27ctjGDZsGDNnzixP4hcvXkxmZiZDhw4FIDQ0lDFjxpSf/+ijj/Lbb7/x7bff0q1bNzw9PXFwcLjodOn333+fq6++mpdeeqn89e3evZt33nmnQhJ//fXX88gjjwDwzDPP8MEHH7B06VJiYmI4cuQILVq04PLLL8dkMtGkSZNK/kvUfXUiiR89ejQLFixgxYoVhIWFXfDc7t27A7B///5zJvFlb4YTJ04QHBxcvv/EiRN06NDhnNd0dHTE0bH+Jb6BHk58eXc3pq5O4O2Fcfyx5wQDJmXy3i3t6R3tb3R4IiIiIiKGc7a3Zfe4/oY9t7UqW4Lfs2fPs34u61h/yy23MHHiRKKiohgwYADXX389gwYNws7Ojp07d1JSUkJ0dHSFxxcUFODr61v+s4ODA+3atatwzogRI+jRowfHjx8nJCSEGTNm8I9//AMvLy+gdGT+jTfe4Ntvv+XYsWMUFhZSUFCAi4uLVb+DPXv2lPc3K9OrVy8mTpxISUkJtralv9e/xmcymQgKCiIlJQUoLd2/9tpriYmJYcCAAQwcOJB+/fpZFUddZeiceIvFwujRo5k3bx5LliwhMjLyoo/Ztm0bQIUE/a8iIyMJCgpi8eLF5fuys7NZv379WW/0hsDGxsR9V0Txw6hetAhwI/VUAXdO3cC4+bvJLyoxOjwREREREUOZTCZcHOwM2ayZ6tq8eXNMJhN79uw55/E9e/bg7e2Nv//FB+vCw8OJi4tj8uTJODs788gjj9C7d2+KiorIycnB1taWzZs3s23btvJtz549TJo0qfwazs7OZ8XftWtXmjVrxqxZszh9+jTz5s1jxIgR5cffeecdJk2axDPPPMPSpUvZtm0b/fv3p7CwsNK/B2vY29tX+NlkMmE2mwHo1KkTCQkJvPbaa5w+fZpbb72Vm2++uUbiqG2GJvGjRo3i66+/ZubMmbi7u5OcnExycjKnT58G4MCBA7z22mts3ryZQ4cO8dNPP3HnnXfSu3fvCnddWrZsybx584DSf7jHH3+c8ePH89NPP7Fz507uvPNOQkJCGDJkiBEvs1a0DvFg/qOXc1fP0jKRqasTGPLxauKSTxkcmYiIiIiIXIyvry/XXnstkydPLs+HyiQnJzNjxgxuu+228sR63bp1Fc5Zt25dhVJ8Z2dnBg0axIcffsiyZctYu3YtO3fupGPHjpSUlJCSkkLz5s0rbJXpED9ixAhmzJjB/PnzsbGx4R//+Ef5sdWrVzN48GDuuOMO2rdvT1RUFPHx8RUe7+DgQEnJhQcbW7VqxerVqyvsW716NdHR0eWj8JXh4eHBbbfdxmeffcbs2bOZM2cOGRkZlX58XWVoEj9lyhSysrLo27cvwcHB5dvs2bOB0n/gP/74g379+tGyZUuefPJJhg4dyvz58ytcJy4urryzPcDTTz/No48+ygMPPEDXrl3Jyclh4cKFODk51errq21O9raMHRzL1JFd8HNzYG/yKQZ9tIrpqxOs7owpIiIiIiK166OPPqKgoID+/fuzYsUKEhMTWbhwIddeey2hoaHlDeSgNKl9++23iY+P5+OPP+a7777jscceA0q7y3/xxRfs2rWLgwcP8vXXX+Ps7EyTJk2Ijo5mxIgR3HnnncydO5eEhAQ2bNjAhAkT+Pnnny8a44gRI9iyZQuvv/46N998c4VpyS1atGDRokWsWbOGPXv28OCDD3LixIkKj2/atCnr16/n0KFDpKWllY+c/9WTTz7J4sWLee2114iPj+fLL7/ko48+qjDf/mLef/99vvnmG/bu3Ut8fDzfffcdQUFB5aX/9Zmhc+IvlliGh4ezfPlyq69jMpkYN25cecfDxuaqloH8+lhvnvp+O8viUnl1/m6Wxafyzs3t8Xevf3P/RUREREQagxYtWrBp0yZeeeUVbr31VjIyMggKCmLIkCG88sorFZbifvLJJ9m0aRNjx47Fw8OD999/n/79S+f+e3l58eabb/LEE09QUlJC27ZtmT9/fvmc92nTpjF+/HiefPJJjh07hp+fHz169GDgwIEXjbF58+Z069aNDRs2lM/BL/Piiy9y8OBB+vfvj4uLCw888ABDhgypMOA6ZswY7rrrLlq3bs3p06dJSEg46zk6derEt99+y8svv8xrr71GcHAw48aNq9DU7mLc3d15++232bdvH7a2tnTt2pVffvmlxta6r00mi4Zoz5KdnY2npydZWVl4eHgYHU6VWSwWvlp7mNd/2UNhsRlfVwfeuaUdV7UMvPiDRURERETqofz8fBISEoiMjGzwlbhS/1zo/VnZPLT+34aQ8zKZTNx1WVPmj76clkHupOcWcs/0Tbz84y41vRMREREREamHlMQ3AjFB7vwwqhf3Xl7a/f+rtYcZ+O9V/Hk86yKPFBERERERkbpESXwj4WRvy0sDW/PlPd3wd3dkf0oON368hs9XHsRs1owKERERERGR+kBJfCPTJ9qfhY9dwTWtAiksMTP+5z3cOXUDJ7LzjQ5NRERERERELkJJfCPk6+bIZ3d25vUbY3Gyt2HV/jT6T1zBwl3JRocmIiIiIiIiF6AkvpEymUyM6N6EBY9eQZsQDzLzinjo6808N3cHeYXFRocnIiIiIiIi56AkvpFrHuDGvEd68WCfKEwm+GZDIgM/XMWOo5lGhyYiIiIiIiJ/oyRecLCz4bnrWjHj3u4EeThxMC2XmyavYfKy/ZSo6Z2IiIiIiEidoSReyl3W3I+Fj1/BdbFBFJstvL0wjuGfreN45mmjQxMRERERkWoycuRIhgwZUv5z3759efzxxy/pmtVxDakcJfFSgZeLA5NHdOLtm9vh4mDL+oQMBkxcwYIdx40OTURERESkQRs5ciQmkwmTyYSDgwPNmzdn3LhxFBfXbM+quXPn8tprr1Xq3GXLlmEymcjMzKzyNWrKq6++SocOHc57PCEhgeHDhxMSEoKTkxNhYWEMHjyYvXv3Mn369PLf/fm2Q4cO8eqrr2IymRgwYMBZ13/nnXcwmUz07du35l4kSuLlHEwmE7d2CeeXf15B+3AvsvOLGT1zK09+u52cAjW9ExERERGpKQMGDCApKYl9+/bx5JNP8uqrr/LOO++cdV5hYWG1PaePjw/u7u6GX6MmFRUVce2115KVlcXcuXOJi4tj9uzZtG3blszMTG677TaSkpLKt549e3L//fdX2BceHg5AcHAwS5cu5ejRoxWeY+rUqURERNT4a1ESL+fV1M+V7x/qyaNXNcfGBHO2HOX6SSvZcuSk0aGJiIiIiNSoErOFtQfS+XHbMdYeSK+1XlGOjo4EBQXRpEkTHn74Ya655hp++umn8hL4119/nZCQEGJiYgBITEzk1ltvxcvLCx8fHwYPHsyhQ4f+9zpKSnjiiSfw8vLC19eXp59+Goul4mv5eyl8QUEBzzzzDOHh4Tg6OtK8eXO++OILDh06xJVXXgmAt7c3JpOJkSNHnvMaJ0+e5M4778Tb2xsXFxeuu+469u3bV358+vTpeHl58dtvv9GqVSvc3NzKb2CUWbZsGd26dcPV1RUvLy969erF4cOHq/R7/fPPPzlw4ACTJ0+mR48eNGnShF69ejF+/Hh69OiBs7MzQUFB5ZuDgwMuLi4V9tna2gIQEBBAv379+PLLL8uvv2bNGtLS0vjHP/5RpfisoSReLsje1oYn+8Uw64GehHo5cyQjj1s+WcukP/ZRXGI2OjwRERERkWq3cFcSl7+1hNs/W8djs7Zx+2fruPytJSzclXTxB1czZ2fn8lH3xYsXExcXx6JFi1iwYAFFRUX0798fd3d3Vq5cyerVq8uT4bLHvPfee0yfPp2pU6eyatUqMjIymDdv3gWf88477+Sbb77hww8/ZM+ePfznP//Bzc2N8PBw5syZA0BcXBxJSUlMmjTpnNcYOXIkmzZt4qeffmLt2rVYLBauv/56ioqKys/Jy8vj3Xff5b///S8rVqzgyJEjjBkzBoDi4mKGDBlCnz592LFjB2vXruWBBx7AZDJV6ffo7++PjY0N33//PSUlJVW6xl/dc889TJ8+vfznqVOnMmLECBwcHC752hejJF4qpVukD788dgU3tA+hxGzhgz/iue3TdSRm5BkdmoiIiIhItVm4K4mHv95CUlZ+hf3JWfk8/PWWWkvkLRYLf/zxB7/99htXXXUVAK6urnz++ee0adOGNm3aMHv2bMxmM59//jlt27alVatWTJs2jSNHjrBs2TIAJk6cyHPPPcdNN91Eq1at+OSTT/D09Dzv88bHx/Ptt98ydepUbrzxRqKiorj66qu57bbbsLW1xcfHBygdjQ4KCjrntfbt28dPP/3E559/zhVXXEH79u2ZMWMGx44d44cffig/r6ioiE8++YQuXbrQqVMnRo8ezeLFiwHIzs4mKyuLgQMH0qxZM1q1asVdd91V5XL10NBQPvzwQ15++WW8vb256qqreO211zh48GCVrjdw4ECys7NZsWIFubm5fPvtt9xzzz1Vupa1lMRLpXk62/Ph7R2ZeFsH3Bzt2Hz4JNdNWsm8rUcv/mARERERkTquxGxh7PzdnKtwvmzf2Pm7a7S0fsGCBbi5ueHk5MR1113HbbfdxquvvgpA27ZtK4z0bt++nf379+Pu7o6bmxtubm74+PiQn5/PgQMHyMrKIikpie7du5c/xs7Oji5dupz3+bdt24atrS19+vSp8mvYs2cPdnZ2FZ7X19eXmJgY9uzZU77PxcWFZs2alf8cHBxMSkoKUDrHfuTIkfTv359BgwYxadKk8lL7I0eOlL9eNzc33njjjUrFNWrUKJKTk5kxYwY9e/bku+++o02bNixatMjq12hvb88dd9zBtGnT+O6774iOjqZdu3ZWX6cq7GrlWaRBGdIxlM5NvHl89jY2Hz7Jv2ZvZ1lcKuMGx+LpbG90eCIiIiIiVbIhIeOsEfi/sgBJWflsSMigZzPfGonhyiuvZMqUKTg4OBASEoKd3f9SNldX1wrn5uTk0LlzZ2bMmHHWdfz9/av0/M7OzlV6XFXY21fMHUwmU4X5+tOmTeOf//wnCxcuZPbs2bz44ossWrSILl26sG3btvLzyqoDKsPd3Z1BgwYxaNAgxo8fT//+/Rk/fjzXXnut1fHfc889dO/enV27dtXaKDxoJF6qKNzHhdkP9OCJa6OxtTHx47bjXD9pJRsSMowOTURERESkSlJOnT+Br8p5VeHq6krz5s2JiIiokMCfS6dOndi3bx8BAQE0b968wubp6YmnpyfBwcGsX7++/DHFxcVs3rz5vNds27YtZrOZ5cuXn/N4WSXAheaVt2rViuLi4grPm56eTlxcHK1bt77ga/q7jh078txzz7FmzRpiY2OZOXMmdnZ2FV6rNUn8X5lMJlq2bElubm6VHl82rWHXrl0MHz68SteoCiXxUmV2tjb88+oWfPdQTyJ8XDiWeZphn67lvd/jKFLTOxERERGpZwLcnar1vJo2YsQI/Pz8GDx4MCtXriQhIYFly5bxz3/+s3z5s8cee4w333yTH374gb179/LII4+ctcb7XzVt2pS77rqLe+65hx9++KH8mt9++y0ATZo0wWQysWDBAlJTU8nJyTnrGi1atGDw4MHcf//9rFq1iu3bt3PHHXcQGhrK4MGDK/XaEhISeO6551i7di2HDx/m999/Z9++fbRq1eqCjzt9+jTbtm2rsB04cIBt27YxePBgvv/+e3bv3s3+/fv54osvmDp1aqVjOpclS5aQlJSEl5dXla9hLSXxcsk6RXjzy2NXMLRTGGYL/HvJfm7+ZC2H0qp2R0tERERExAjdIn0I9nTifP3PTUCwpxPdIqs28lvdXFxcWLFiBREREeWN6+69917y8/Px8PAA4Mknn+T//u//uOuuu+jZsyfu7u7ceOONF7zulClTuPnmm3nkkUdo2bIl999/f/lodWhoKGPHjuXZZ58lMDCQ0aNHn/Ma06ZNo3PnzgwcOJCePXtisVj45Zdfziqhv9Br27t3L0OHDiU6OpoHHniAUaNG8eCDD17wcfHx8XTs2LHC9uCDDxIWFkbTpk0ZO3Ys3bt3p1OnTkyaNImxY8fywgsvVCqmcylb/q42mSx/XyRQyM7OxtPTk6ysrPI3v1TO/O3HeWHeTrLzi3FxsOXVG9pwS+ewKi8FISIiIiJijfz8fBISEoiMjMTJyfoR87Lu9ECFBndl32an3NGJAbHBlx6oNEoXen9WNg/VSLxUq0HtQ/j18d50j/Qhr7CEp7/fwaiZW8jMKzQ6NBERERGRixoQG8yUOzoR5FkxwQrydFICL3WCutNLtQv1cmbm/T34z4oDvP97PL/sTGbL4Uzev609lzXzMzo8EREREZELGhAbzLWtg9iQkEHKqXwC3EtL6G1tVF0qxlMSLzXC1sbEI32bc3lzPx6btY2EtFxGfL6eB3pH8eS1MTjYqQhEREREROouWxtTjS0jJ3IplElJjWoX5sXP/7yc27uFY7HAf5Yf5KYpq9mfcnYXSxEREREREbkwJfFS41wc7JhwUzs+uaMzXi727DqWzcB/r2TG+sOor6KIiIiIiEjlKYmXWjMgNojfHu/N5c39yC8y88K8Xdz/1WbScwqMDk1ERERERKReUBIvtSrQw4mv7unGi/9ohYOtDX/sOcGASStZEZ9qdGgiIiIiIiJ1npJ4qXU2NibuuyKKeaMuo3mAG6mnCrhz6gbGzd9NflGJ0eGJiIiIiIjUWUrixTBtQjyZP/py7uzZBICpqxMY8vFq4pJPGRyZiIiIiIhI3aQkXgzl7GDLuMGxfHFXF3xdHdibfIpBH61i+uoENb0TEREREfkbk8nEDz/8AMChQ4cwmUxs27bN0JjOp67HV18piZc64epWgfz6+BX0ifansNjMq/N3c/f0jaSeUtM7EREREWk8kpOTefTRR4mKisLR0ZHw8HAGDRrE4sWLzzo3PDycpKQkYmNjazQmJeN1i5J4qTMC3J2YfndXXh3UGgc7G5bFpTJg4gqW7D1hdGgiIiIiIjXu0KFDdO7cmSVLlvDOO++wc+dOFi5cyJVXXsmoUaPOOt/W1pagoCDs7OwMiFaMoiRe6hSTycTIXpHMH305LYPcSc8t5J7pm3j5x11qeiciIiIiDdojjzyCyWRiw4YNDB06lOjoaNq0acMTTzzBunXrzjr/7yPky5Ytw2Qy8dtvv9GxY0ecnZ256qqrSElJ4ddff6VVq1Z4eHgwfPhw8vLyyq+zcOFCLr/8cry8vPD19WXgwIEcOHCg/HhkZCQAHTt2xGQy0bdvXwDMZjPjxo0jLCwMR0dHOnTowMKFCy/4GpcvX063bt1wdHQkODiYZ599luLi4vLjp06dYsSIEbi6uhIcHMwHH3xA3759efzxxwEYN27cOSsPOnTowEsvvVSp33N9pyRe6qSYIHd+GNWLe3qV/sH4au1hBv57FX8ezzI4MhERERGpTywWC7m5uYZs1vR4ysjIYOHChYwaNQpXV9ezjnt5eVX6Wq+++iofffQRa9asITExkVtvvZWJEycyc+ZMfv75Z37//Xf+/e9/l5+fm5vLE088waZNm1i8eDE2NjbceOONmM1mADZs2ADAH3/8QVJSEnPnzgVg0qRJvPfee7z77rvs2LGD/v37c8MNN7Bv375zxnXs2DGuv/56unbtyvbt25kyZQpffPEF48ePLz/niSeeYPXq1fz0008sWrSIlStXsmXLlvLj99xzD3v27GHjxo3l+7Zu3cqOHTu4++67K/07qs9UdyF1lpO9LS8Pak2fGH/GfLed/Sk53PjxGp4eEMM9vSKxsTEZHaKIiIiI1HF5eXm4ubkZ8tw5OTnnTMjPZf/+/VgsFlq2bHnJzzt+/Hh69eoFwL333stzzz3HgQMHiIqKAuDmm29m6dKlPPPMMwAMHTq0wuOnTp2Kv78/u3fvJjY2Fn9/fwB8fX0JCgoqP+/dd9/lmWeeYdiwYQC89dZbLF26lIkTJ/Lxxx+fFdfkyZMJDw/no48+wmQy0bJlS44fP84zzzzDyy+/TG5uLl9++SUzZ87k6quvBmDatGmEhISUXyMsLIz+/fszbdo0unbtWn5Onz59yl9fQ6eReKnz+kT7s/CxK7imVSCFJWbG/7yHO6du4ER2vtGhiYiIiIhUi+pcmaldu3bl/x0YGIiLi0uFBDcwMJCUlJTyn/ft28ftt99OVFQUHh4eNG3aFIAjR46c9zmys7M5fvx4+c2CMr169WLPnj3nfMyePXvo2bMnJpOpwvk5OTkcPXqUgwcPUlRURLdu3cqPe3p6EhMTU+E6999/P9988w35+fkUFhYyc+ZM7rnnngv8RhoWjcRLveDr5shnd3Zm5oYjvLZgN6v2p9F/4grevKkdA2KDLn4BEREREWmUXFxcyMnJMey5K6tFixaYTCb27t17yc9rb29f/t8mk6nCz2X7ykrlAQYNGkSTJk347LPPCAkJwWw2ExsbS2Fh4SXHUhMGDRqEo6Mj8+bNw8HBgaKiIm6++Wajw6o1SuKl3jCZTIzo3oTukb48Nmsrfx7P5qGvN3N7t3BeGtgaFwe9nUVERESkIpPJVOmSdiP5+PjQv39/Pv74Y/75z3+eFXNmZqZV8+IrKz09nbi4OD777DOuuOIKAFatWlXhHAcHBwBKSv7XaNrDw4OQkBBWr15Nnz59yvevXr26wkj6X7Vq1Yo5c+ZgsVjKR+NXr16Nu7s7YWFheHt7Y29vz8aNG4mIiAAgKyuL+Ph4evfuXX4dOzs77rrrLqZNm4aDgwPDhg3D2dm5Gn4b9YPK6aXeaR7gxrxHevFgnyhMJvhmQyIDP1zFjqOZRocmIiIiIlJlH3/8MSUlJXTr1o05c+awb98+9uzZw4cffkjPnj1r5Dm9vb3x9fXl008/Zf/+/SxZsoQnnniiwjkBAQE4OzuzcOFCTpw4QVZWabPpp556irfeeovZs2cTFxfHs88+y7Zt23jsscfO+VyPPPIIiYmJPProo+zdu5cff/yRV155hSeeeAIbGxvc3d256667eOqpp1i6dCl//vkn9957LzY2NhVK8AHuu+8+lixZwsKFCxtVKT0oiZd6ysHOhueua8WMe7sT5OHEwbRcbpq8hsnL9lNirr75RCIiIiIitSUqKootW7Zw5ZVX8uSTTxIbG8u1117L4sWLmTJlSo08p42NDbNmzWLz5s3Exsbyr3/9i3feeafCOXZ2dnz44Yf85z//ISQkhMGDBwPwz3/+kyeeeIInn3yStm3bsnDhQn766SdatGhxzucKDQ3ll19+YcOGDbRv356HHnqIe++9lxdffLH8nPfff5+ePXsycOBArrnmGnr16kWrVq1wcnKqcK0WLVpw2WWX0bJlS7p3717Nv5W6zWSpzg4KDUR2djaenp5kZWXh4eFhdDhyESdzC3l+3k5+3ZUMQPdIHz64rQMhXo2npEZERERESuXn55OQkEBkZORZiZ/UP7m5uYSGhvLee+9x7733lu+3WCy0aNGCRx555KzKgbrsQu/PyuahGomXes/b1YHJIzrx9tB2uDjYsj4hgwETV7Bgx3GjQxMRERERESts3bqVb775hgMHDrBlyxZGjBgBUD76D5CamspHH31EcnJyo1kb/q/UCUwaBJPJxK1dw+ka6cPjs7ay/WgWo2duZeneVMYOboObo97qIiIiIiL1wbvvvktcXBwODg507tyZlStX4ufnV348ICAAPz8/Pv30U7y9vQ2M1BjKbKRBifRz5fuHL2PSH/v4eNl+5mw5ysZDGUwc1oFOEY3vf3ARERERkfqkY8eObN68+YLnNPYZ4SqnlwbH3taGMf1jmHV/D0K9nDmSkcctn6xl0h/7KC4xX/wCIiIiIiIidZSSeGmwukf58stjVzCofQglZgsf/BHPbZ+uIzEjz+jQREREREREqsTQJH7ChAl07doVd3d3AgICGDJkCHFxcec812KxcN1112Eymfjhhx8ueN2RI0diMpkqbAMGDKiBVyB1naezPR8O68AHt7XHzdGOzYdPcsNHq0jOyjc6NBERERGpQY295Frqpup4XxqaxC9fvpxRo0axbt06Fi1aRFFREf369SM3N/escydOnIjJZKr0tQcMGEBSUlL59s0331Rn6FKPmEwmbuwYxq+PXUFMoDsn84p4ft5O/WEXERERaYDs7e0ByMtT9aXUPWXvy7L3aVUY2thu4cKFFX6ePn06AQEBbN68md69e5fv37ZtG++99x6bNm0iODi4Utd2dHQkKCioWuOV+i3cx4UPb+/IoH+vYsneFOZsOcbNncOMDktEREREqpGtrS1eXl6kpKQA4OLiYtVgoEhNsFgs5OXlkZKSgpeXF7a2tlW+Vp3qTp+VlQWAj49P+b68vDyGDx/Oxx9/bFVSvmzZMgICAvD29uaqq65i/Pjx+Pr6nvPcgoICCgoKyn/Ozs6u4iuQui4myJ3HrmnBO7/FMXb+n1ze3I8gTyejwxIRERGRalSWN5Ql8iJ1hZeX1yUPNpssdaSm2Gw2c8MNN5CZmcmqVavK9z/44IOUlJTw+eefA6Wl0fPmzWPIkCHnvdasWbNwcXEhMjKSAwcO8Pzzz+Pm5sbatWvPecfj1VdfZezYsWftz8rKwsPD49JfnNQpxSVmhk5Zw/ajWVwZ48/UkV11d1ZERESkASopKaGoqMjoMESA0hL6C43AZ2dn4+npedE8tM4k8Q8//DC//vorq1atIiystMT5p59+4sknn2Tr1q24ubkBlUvi/+7gwYM0a9aMP/74g6uvvvqs4+caiQ8PD1cS34DtO3GKf3y4isISM2/f3I5bu4QbHZKIiIiIiDRilU3i68QSc6NHj2bBggUsXbq0PIEHWLJkCQcOHMDLyws7Ozvs7Eqr/4cOHUrfvn0rff2oqCj8/PzYv3//OY87Ojri4eFRYZOGrUWgO49f2wKA1+bvJinrtMERiYiIiIiIXJyhSbzFYmH06NHMmzePJUuWEBkZWeH4s88+y44dO9i2bVv5BvDBBx8wbdq0Sj/P0aNHSU9Pr3RTPGkcHrgiivbhXpwqKObZOepWLyIiIiLSEJnNDet7vqFJ/KhRo/j666+ZOXMm7u7uJCcnk5yczOnTpaOiQUFBxMbGVtgAIiIiKiT8LVu2ZN68eQDk5OTw1FNPsW7dOg4dOsTixYsZPHgwzZs3p3///rX/IqXOsrO14d2b2+Fga8Py+FS+23TU6JBERERERKQaJWfl02/iCpbubThNDg1N4qdMmUJWVhZ9+/YlODi4fJs9e7ZV14mLiyvvbG9ra8uOHTu44YYbiI6O5t5776Vz586sXLkSR0fHmngZUo+1CHTnX9dGA/Dagt0cz1RZvYiIiIhIQ1BcYuaf32xlf0oO7y2Ko6SBjMgbusRcVcqXz/WYv+5zdnbmt99+u6S4pHG5/4pIFv6ZzPbETJ6du5Mv71a3ehERERGR+u69RfFsOJSBm6MdH93eCVubhvEdv040thMxkp2tDe/d0g4HOxtWxKfy7aZEo0MSEREREZFLsHRvClOWHQDg7Zvb0dTP1eCIqo+SeBGgeYA7T54pqx+/YI/K6kVERERE6qnjmaf517fbALirZxOub9uwGpwriRc5474rougYUdqt/pk5O9StXkRERESknikqMfPoN1vJzCuibagnz/+jldEhVTsl8SJn2NqYeOfm9jjY2bByXxqzNqqsXkRERESkPnn3tzg2Hz6Ju5MdHw/vhKOdrdEhVTsl8SJ/0TzAjTH9SsvqX/95D8dUVi8iIiIiUi8s3nOC/6w4CMA7N7cnwtfF4IhqhpJ4kb+59/IoOkV4kVNQzLMqqxcRERERqfOOnszjiW+3A3B3r6YMiA0yOKKaoyRe5G9sbUy8c0t7HM+U1X+zQWX1IiIiIiJ1VWGxmdEzt5J1uoj24V48d13Dmwf/V0riRc6hmb8bY/rFAPD6z7s5ejLP4IhERERERORc3lq4l22JmXg42fHR7R1xsGvYaW7DfnUil+CeyyPp3MSb3MISnp2zU2X1IiIiIiJ1zG9/JvPFqgQA3ru1A+E+DXMe/F8piRc5j9Ju9e1wtLNh1f40Zm44YnRIIiIiIiJyRmJGHmO+K50Hf/8VkVzbOtDgiGqHkniRC4jyd+Op/qVl9W/8vIfEDJXVi4iIiIgYraC4hFEzt3Aqv5hOEV48PaCl0SHVGiXxIhdxd69Iupwpq39mzg7MZpXVi4iIiIgYacIve9lxNAsvF3v+PbwT9raNJ7VtPK9UpIrKutU72duw5kA6M1RWLyIiIiJimF92JjF9zSEA3r+1PaFezsYGVMuUxItUQqSfK0/1Ly3RmfCLyupFROqbycv20+m1RcQlnzI6FBERuQSH03N55vsdADzYJ4qrWjaOefB/pSRepJLuvqwpXZt6k1dYwtPfq6xeRKS+yCko5uMl+8nILeTbTYlGhyMiIlWUX3RmHnxBMV2aeJcvCd3YKIkXqSQbGxPv3FxaVr/2YDoz1h82OiQREamEn7YdJ7ewBIDl8akGRyMiIlX1+s972HUsGx9XB/49vGOjmgf/V43zVYtUUVM/V54uK6v/da/K6kVE6jiLxVLhpuv+lByOntTfbhGR+mb+9uP8d13p3/P3b21PsGfjmgf/V0riRaw08rKmdGvqQ15hCU99v11l9SIiddi2xEz+PJ6Ng50NLYPcAVgWp9F4EZH6JCEtl+fm7gRg1JXN6BsTYHBExlISL2IlGxsTb9/cDmd7W9YdzOBrldWLiNRZM9aXrigysF0wA9sFAyqpFxGpT/KLSnhkxhZyCorpHunDv66JNjokwymJF6mCpn6uPDOgtJHGhF/2ciRdpZkiInVNVl4R87cfB2BE9yblIzdr9qdRWGw2MjQREamksfN3sycpG19XBz68vSN2jXQe/F/pNyBSRXf2bEr3SB9OF6msXkSkLpqz5SgFxWZaBrnTKcKL1sEe+Lk5kFtYwqbDGUaHJyIiF/HjtmN8s+EIJhNMGtaRQA8no0OqE5TEi1RRWbd6Z3tb1idk8NXaQ0aHJCIiZ/y1od2IHk0wmUzY2JjoHe0PwHLNixcRqdP2p+SUz4N/9KoWXN7Cz+CI6g4l8SKXIMLXhWevK+1W/9bCOA6n5xockYiIAKxPyOBAai4uDrYM6RBSvr9PWRKvefEiInXW6cISRs3YQl5hCT2jfHns6hZGh1SnKIkXuUT/16MJPaLKyup3qKxeRKQOKGtoN7hDKO5O9uX7e7fwx2SCvcmnSMo6bVR4IiJyAa/+9CdxJ07h5+bIpNs7YGtjMjqkOkVJvMglsrEx8fbQ9rg42LIhIYMvVVYvImKotJwCFu5KAmBE94gKx7xdHWgf5gXACo3Gi4jUOXO3HGX2pkRsTPDhsA4EuGse/N8piRepBhXL6vdyKE1l9SIiRvlu01GKSiy0D/ciNtTzrON9Y0pL6rVevIhI3bLvxClemLcLgMeujuay5poHfy5K4kWqyR3dm9Azypf8IjNPq6xeRMQQZrOFmRvONLT72yh8mbJ58av2pVFUoqXmRETqgrzCYh6ZsYXTRSVc3tyP0Vc1NzqkOktJvEg1sbEx8fbN7UrL6g9lMH3NIaNDEhFpdFbuTyMx4zQeTnYMahdyznPahXnh7WLPqYJith7JrN0ARUTknF764U/2peQQ4O7IxGGaB38hSuJFqlG4jwvPXd8KgLd/20uCyupFRGrVjHWlo/BDO4fh7GB7znNs/7LU3LK4lFqLTUREzu3bTYnM2XK0dB787R3xc3M0OqQ6za4yJ+3YscPqC7du3Ro7u0pdXqRBGdEtgl93JrHmQDpPfbed2Q/21J1EEZFakJR1msV7S5Py85XSl+kT7c+P246zPD6Vpwe0rI3wRETkHOKST/Hyj6Xz4J/sF0OPKF+DI6r7KpVld+jQAZPJhMVSuTm+NjY2xMfHExUVdUnBidRHNjYm3hrajgETV7Dp8EmmrU7gviv0/4KISE2bvTGRErOF7pE+NA9wv+C5ZSPxfx7PJuVUvrofi4gYILegmEdmbCa/yEyfaH8e7tPM6JDqhUoPla9fvx5/f/+LnmexWIiNjb2koETqu7Ky+hd/2MU7v8VxVcsAovzdjA5LRKTBKi4xM2tDIgAjejS56Pl+bo60DfVk57EsVsSncXPnsJoOUURE/sJisfDCvJ0cSM0lyMOJ929tj42qVyulUkl8nz59aN68OV5eXpW6aO/evXF2dr6UuETqvRHdI/h1VxKr96fz1Pc7+FZl9SIiNWbJ3hSSs/PxdXWgf5vASj2mb4w/O49lsSwuRUm8iEgtm7UxkR+2HcfWxsS/h3fEV/PgK61Sje2WLl1a6QQe4JdffiE4OLiqMYk0CCZTaVm9q4Mtm8+U1YuISM2Ysf4IALd0CcfR7twN7f6ubKm5lfvSKNGyoCIitWb38Wxe+elPAMb0i6FrUx+DI6pfrOpOn52djdl89nqqJSUlZGdnV1tQIg1FmLcLz/+jtFv9O7/FcSA1x+CIREQaniPpeazYlwrA8G4Xbmj3Vx3CvfBwsiPrdBHbEjNrKDoREfmrnIJiRs/cQmGxmStj/Hmwt3pHWavSSfy8efPo0qUL+fn5Zx3Lz8+na9euzJ8/v1qDE2kIhneL4PLmfhQUm3nqu+0a7RERqWbfbDyCxVLarC7C16XSj7OzteGKFqWj8cvjU2sqPBEROcNisfDc3J0cTMslxNOJ92/toHnwVVDpJH7KlCk8/fTTuLic/eHo6urKM888w0cffVStwYk0BCaTibduboebox1bjmQydZXK6kVEqktBcQnfbjzT0O4iy8qdS5+YM0m81osXEalxM9YfYf7249jZmPj38E54uzoYHVK9VOkkfteuXfTt2/e8x3v37s3OnTurIyaRBifUy5kXzpTVv/u7yupFRKrLb3+eID23kEAPR65uGWD148vmxe84lkV6TkF1hyciImfsOpbFuAW7AXhmQEs6N/E2OKL6q9JJ/MmTJykuLj7v8aKiIk6ePFktQYk0RMO6hnNFi9Ky+jEqqxcRqRYz1h0GYFjXCOxsrWr1A0CghxOtgj2wWEob3ImISPXLzi9i1Jl58Ne0CuS+KyKNDqleq/SnXdOmTdm0adN5j2/atIkmTS6+LqtIY2UymXhzaGlZ/dYjmXy+8qDRIYmI1Gv7U06xPiEDGxMM6xZe5ev0PVNSv0wl9SIi1c5isfDsnB0cTs8j1MuZ925pj8mkefCXotJJ/E033cQLL7zAiRMnzjqWnJzMiy++yNChQ6s1OJGGJtTLmRfPlNW/tyie/SmnDI5IRKT+KltW7upWgQR7Olf5OmUl9Sv2pWFWlZSISLX6au1hftmZjL2tiY9HdMLTxd7okOq9Sifxzz77LO7u7rRo0YJHHnmESZMmMWnSJB5++GGio6Nxc3Pj2WefrclYRRqE27qG0zvan8JiM2O+26GyehGRKjhdWMKczUeBqjW0+6vOTbxxc7QjI7eQnceyqiM8EREBdhzNZPzPpfPgn7uuFR3CvYwNqIGodBLv7u7O6tWrueOOO5g9ezb/+te/+Ne//sXs2bO54447WLVqFe7u7jUZq0iDYDKZePOmtrg72rEtMZPPVFYvImK1BTuOk51fTJi3M73PLBNXVfa2NvRq7gtoqTkRkeqSdbp0HnxRiYX+bQK5u1dTo0NqMKzqAOPp6cnkyZNJS0vjxIkTJCcnk56ezuTJk/H2VndBkcoK8XLmpYGtAXhfZfUiIlYrK6Uf3j2iWtYY7htT2tle8+JFRC6dxWLh6e+3k5hxmnAfZ96+WfPgq5P1bVwpHUn09/cnICBA/xgiVXRLlzD6xpSW1T/53Q6KS8xGhyQiUi/sOpbFtsRM7G1N3NK56g3t/qpsXvy2xEwy8wqr5ZoiIo3VtNWH+O3PEzjY2vDx8E54OmsefHWqUhIvIpfOZDIx4aa2uDvZsT0xk89WJhgdkohIvTBzQ+kofP82Qfi7O1bLNUO8nIkOdMOspeZERC7JtsRMJvy6B4AX/tGKdmFexgbUABmaxE+YMIGuXbvi7u5OQEAAQ4YMIS4u7pznWiwWrrvuOkwmEz/88MMFr2uxWHj55ZcJDg7G2dmZa665hn379tXAKxC5NMGe/yur/2BRPPtOqKxeRORCcgqK+XHrMQDu6FG9S9uWjcZrXryISNVk5hUyakbpPPh/tA3mzp5agrwmGJrEL1++nFGjRrFu3ToWLVpEUVER/fr1Izc396xzJ06cWOnS/bfffpsPP/yQTz75hPXr1+Pq6kr//v3Jz8+v7pcgcslu6RzGlTH+FJaYGfPddpXVi4hcwA9bj5FbWEIzf1e6R/pU67XL5sUvj0/VUnMiIlayWCyM+W4HxzJP08TXhQlD22rqdQ25pCT+UpPihQsXMnLkSNq0aUP79u2ZPn06R44cYfPmzRXO27ZtG++99x5Tp0696DUtFgsTJ07kxRdfZPDgwbRr146vvvqK48ePX3QEX8QIpWX17UrL6o9m8Z8V6lYvInIuFoulvKHdiO5Nqv3LYZem3rg42JJ6qoA9ydnVem0RkYbu85UJ/LHnBA52pfPgPZw0D76mWJ3Em81mXnvtNUJDQ3Fzc+PgwdKE46WXXuKLL764pGCyskrXZvXx+d+d9by8PIYPH87HH39MUFDQRa+RkJBAcnIy11xzTfk+T09Punfvztq1a8/5mIKCArKzsytsIrUpyNOJl8+U1U/6Yx9xySqrFxH5u62JmexJysbRzoahncKq/fqOdrZc1qx0qbllcSqpFxGprM2HT/LWwr0AvDywNbGhngZH1LBZncSPHz+e6dOn8/bbb+Pg4FC+PzY2ls8//7zKgZjNZh5//HF69epFbGxs+f5//etfXHbZZQwePLhS10lOTgYgMDCwwv7AwMDyY383YcIEPD09y7fw8OrpdCtijZs7h3FVywAKS8w89b3K6kVE/m7GutJR+EHtQ/B0qZkRnj5lJfVK4kVEKuVkbiGPztxCsdnCoPYhjOgeYXRIDZ7VSfxXX33Fp59+yogRI7C1tS3f3759e/bu3VvlQEaNGsWuXbuYNWtW+b6ffvqJJUuWMHHixCpftzKee+45srKyyrfExMQafT6RczGZTLxxY2m3+h0qqxcRqSAzr5AFO44D1OgXxL5nmtttPnKS7PyiGnseEZGGwGy28MS32zielU+knysTbtI8+NpgdRJ/7NgxmjdvftZ+s9lMUVHVPuxGjx7NggULWLp0KWFh/yuPW7JkCQcOHMDLyws7Ozvs7OwAGDp0KH379j3ntcpK7k+cOFFh/4kTJ85bju/o6IiHh0eFTcQIQZ5OvDqoDQAT/4hXWb2IyBlzthyjoNhM62APOoR71djzhPu4EOXvSonZwmotNScickH/WXGQpXGpOJ6ZB+/maGd0SI2C1Ul869atWbly5Vn7v//+ezp27GjVtSwWC6NHj2bevHksWbKEyMjICsefffZZduzYwbZt28o3gA8++IBp06ad85qRkZEEBQWxePHi8n3Z2dmsX7+enj17WhWfiBFu6hTK1S0DKCqxMOa77RSprF5EGrnShnaHARjRI6LGR3m01JyIyMVtPJTBu7+XLg/+6g1taB2igdDaYvWtkpdffpm77rqLY8eOYTabmTt3LnFxcXz11VcsWLDAqmuNGjWKmTNn8uOPP+Lu7l4+Z93T0xNnZ2eCgoLOOXoeERFRIeFv2bIlEyZM4MYbb8RkMvH4448zfvx4WrRoQWRkJC+99BIhISEMGTLE2pcrUutMJhNv3NSWa99fzs5jWfxn+QFGX9XC6LBERAyz7mAGB1NzcXWwZXCH0Bp/vr4xAUxbfYhlcalYLBaVhoqI/E16TgGPztxKidnCkA4hDOuqnmK1yeqR+MGDBzN//nz++OMPXF1defnll9mzZw/z58/n2muvtepaU6ZMISsri759+xIcHFy+zZ4926rrxMXFlXe2B3j66ad59NFHeeCBB+jatSs5OTksXLgQJycnq64rYpRADydevaG0rH7S4n3s1VJHItKIfX1mFH5Ix9BaKdXsHumDo50Nydn5xJ/IqfHnExGpT8xmC//6djvJ2fk083fl9Rs1D762mSwWi8XoIOqa7OxsPD09ycrK0vx4MYzFYuH+rzbxx54UYkM9mPdIL+xtrb7vJiJSr6WeKqDnhMUUmy388s8raq1cc+S0DSyLS+W561ryYJ9mtfKcIiL1wcdL9/POb3E42dvw46jLiQlyNzqkBqOyeWiVMoLMzEw+//xznn/+eTIyMgDYsmULx44dq1q0InKWsm71ns727DqWzZRlB4wOSUSk1n27KZFis4WOEV61Ot9S8+JFRM627mA6752ZBz9ucKwSeINYncTv2LGD6Oho3nrrLd555x0yMzMBmDt3Ls8991x1xyfSqAV4OPHqDa0B+PeSfexJUlm9iDQeJWYL32woXRt+RPcmtfrcfc+sF7/xUAY5BcW1+twiInVR6qkC/vnNVswWGNopjFu7aB68UaxO4p944glGjhzJvn37Kswxv/7661mxYkW1BiciMKRDKNe0ClS3ehFpdFbsS+XoydN4ONkxsF1wrT53pJ8rTXxdKCqxsGa/lpoTkcatxGzhX7O3kXKqgBYBbrw2pI3RITVqVifxGzdu5MEHHzxrf2hoaHl3eRGpPqXd6mPxcrHnz+PZTF6qsnoRaRxmrCsdhb+5czhO9ra1/vwqqRcRKfXRkv2s2p+Gs70tk0d0wsVB68Ebyeok3tHRkezss0t64+Pj8ff3r5agRKSiAHcnxp7pVv/vJfvYfVxl9SLSsB3PPM2SvScAGN49wpAY+saUfq8pW2pORKQxWrM/jYmL4wEYPySWFoGaB280q5P4G264gXHjxlFUVASUjhIeOXKEZ555hqFDh1Z7gCJS6ob2IfRrHUixWWX1ItLwzdqYiNkCPaJ8aB7gZkgMPaJ8cbC14VjmaQ6k5hoSg4iIkVJO5fPPWduwWODWLmEM7RxmdEhCFZL49957j5ycHAICAjh9+jR9+vShefPmuLu78/rrr9dEjCJC6Q2z8TeWltXvTsrm46X7jQ5JRKRGFJWYmWVQQ7u/cnGwo3uUDwDL4lIMi0NExAglZguPfbONtJwCYgLdGXtDrNEhyRlWJ/Genp4sWrSIBQsW8OGHHzJ69Gh++eUXli9fjqura03EKCJn/LWs/qMl+/nzeJbBEYmIVL/Fe1JIOVWAn5sD/dsEGRqL5sWLSGM1afE+1h5Mx8XBlo9HdMLZofZ7k8i5WdWRoKioCGdnZ7Zt20avXr3o1atXTcUlIudxQ/sQftmZxG9/nmDMdzv4cVQvHOysvh8nIlJnzVh/GIBbu4Qb/vetb4w/43/ew/qEDE4XluhLrIg0Civ3pfLvJfsAmHBTW8OmNcm5WfXJaG9vT0REBCUlJTUVj4hchMlkYvyQtni72LMnKZuPVFYvIg3I4fRcVu5Lw2SC27sZ09Dur5r5uxHq5UxhsZl1B9ONDkdEpMadyM7n8TPz4G/vFsHgDqFGhyR/Y/Xt7RdeeIHnn3+ejIyMmohHRCrB392RsYNL5yVNXrqfXcdUVi8iDcPMM3Ph+0T7E+7jYnA0pTdO+5R3qde8eBFp2IpLzDz6zVbScwtpFezBK4NaGx2SnIPVSfxHH33EihUrCAkJISYmhk6dOlXYRKR2DGoXzIA2QeXd6guL1a1eROq3guISvtt0FDC2od3faV68iDQWH/wRz4aEDNwc7Zg8ohNO9ppCVBdZNSceYMiQITUQhohYq6xb/YZDGexNPsVHS/bxRL8Yo8MSEamyhbuSycgtJNjTiSvPjH7XBb2a+2Fva+JQeh6H0nJp6qdGviLS8CyLS+HjpQcAeHNoWyL1t67OsjqJf+WVV2oiDhGpAj83R8YNbsPomVv5eNkB+rUJIjbU0+iwRESqZMb60lL6YV0jsLOtOw073Rzt6NLEh7UH01kWl8JIv0ijQxIRqVZJWaf51+xtAPxfjyYMbBdibEByQXXnE1JEqmRguxCubxtEicrqRaQe23fiFBsSMrC1MXFb13CjwzlL2bx4ldSLSENTVGLm0ZlbOZlXRGyoBy/8o5XRIclFWJ3Ee3t74+Pjc9bm6+tLaGgoffr0Ydq0aTURq4icx7jBsfi4OrA3+VT5ciAiIvVJ2Sj8Na0CCPJ0Mjias/U9k8SvPZhOfpFW6RGRhuPd3+PYdPgk7o52fDxc8+DrA6uT+JdffhkbGxv+8Y9/MHbsWMaOHcs//vEPbGxsGDVqFNHR0Tz88MN89tlnNRGviJyDn5sjr5V1q192gJ1H1a1eROqP04UlzNlS9xra/VVMoDtBHk7kF5nZkKAVekSkYVi85wT/WX4QgLdvbkcTX82Drw+snhO/atUqxo8fz0MPPVRh/3/+8x9+//135syZQ7t27fjwww+5//77qy1QEbmwf7QL5pedwfy8M4kx323np0d74WinO6kiUvfN336cU/nFRPi4cHlzP6PDOSeTyUSfaH9mb0pkWVwqvaPrTuM9EZGqOJZ5mie/2w7AyMuacl3bYIMjksqyeiT+t99+45prrjlr/9VXX81vv/0GwPXXX8/BgwcvPToRscq4wW3wdXUg7sQpPlyssnoRqR9mrD8MwPDuEdjYmAyO5vz+Ny9e68WLSP1WOg9+C5l5RbQP8+S561saHZJYweok3sfHh/nz55+1f/78+fj4+ACQm5uLu7v7pUcnIlbxdXPktSGlZfWfLD/IjqOZxgYkInIRO49msf1oFva2Jm7pHGZ0OBfUq7kftjYmDqTmkpiRZ3Q4IiJV9vbCvWw5komHkx0fDe+k6s16xupy+pdeeomHH36YpUuX0q1bNwA2btzIL7/8wieffALAokWL6NOnT/VGKiKVcn3bYP7RLpifd5SW1c9/9HL9YRaROmvmhtJR+Otig/F1czQ4mgvzdLanU4QXGw+dZHl8Knf0qJvz90VELmTR7hN8tjIBgHduaU+4j4vBEYm1rB6Jv//++1m+fDmurq7MnTuXuXPn4uLiwvLly7n33nsBePLJJ5k9e3a1BysilfPa4Fj83ByIP5HDpD+qXlZfYraw9kA6P247xtoD6ZSYLdUYpYg0dtn5Rfy47TgAI7pHGBxN5fSNCQBgWZyWmhOR+icxI48nv90GwL2XR9K/TZCxAUmVWD0SD9CrVy969epV3bGISDXxcXVg/JBYHvp6C58sP0D/NkG0D/ey6hoLdyUxdv5ukrLyy/cFezrxyqDWDIhV4xMRuXQ/bj1GXmEJzQPc6BbpY3Q4ldIn2p93fotjzYE0CovNONhZPR4iImKIwmIzo7/ZSnZ+MR3CvXhmQOOYB19itrAhIYOUU/kEuDvRLdIH2zrcf6UyqvTJc+DAAV588UWGDx9OSkppc5dff/2VP//8s1qDE5GqGxAbzKD2IZgtMOa77Vata7xwVxIPf72lQgIPkJyVz8Nfb2HhrqTqDldEGhmLxVK+NvyI7hGYTPXjC1XrYA/83BzJKyxh0yEtNSci9ceEX/ewPTETT2d7PhresVHchFy4K4nL31rC7Z+t47FZ27j9s3Vc/taSev9d1up/ueXLl9O2bVvWr1/PnDlzyMnJAWD79u288sor1R6giFTd2Bva4OfmwL6UHCZVslt9idnC2Pm7OVfhfNm+sfN3q7ReRC7JliMn2Zt8Cid7G27qWLcb2v2VjU3pUnMAy+JVUi8i9cPCXUlMW30IgPduaU+Yd8OfB9+QB6WsTuKfffZZxo8fz6JFi3BwcCjff9VVV7Fu3bpqDU5ELk1pWX1bAP6z/ADbEjMv+pgNCRln/bH7KwuQlJXPhgSNQIlI1c1YVzoKP6hdCJ4u9gZHY53ypeY0L15E6oEj6Xk89f0OAB7oHcU1rQMNjqjmNfRBKauT+J07d3LjjTeetT8gIIC0tLRqCUpEqs+A2CBusKKsPuXU+RP4qpwnIvJ3J3MLWbCzdARkRD3s8H5Fcz9sTBB34hTHM08bHY6IyHkVFJcwauYWTuUX07mJN0/1jzE6pFrR0AelrE7ivby8SEo6u/Rg69athIaGVktQIlK9SsvqHdmfksMHf8Rf8NwAd6dKXbOy54lcjFZBaHzmbDlKYbGZ2FAP2od5Gh2O1bxdHcqbha5QSb2I1GFv/LyHncey8Hax59+3d8TetuHPg4eGPyhl9b/isGHDeOaZZ0hOTsZkMmE2m1m9ejVjxozhzjvvrIkYReQSebs68PqNsQB8tuIgW46cPO+53SJ9CPZ04nwtpkyUdqmvL52kpW5rqA1n5PwqNrRrUm8a2v1d32gtNSciddvPO5L4cu1hAN6/rQMhXs4GR1R7GvqglNVJ/BtvvEHLli0JDw8nJyeH1q1b07t3by677DJefPHFmohRRKpB/zZBDOlQWlb/1AXK6m1tTLwyqDXAWYl82c+vDGpd75fmEOM15IYzcn5rD6STkJaLm6MdN7QPMTqcKiubF796fxpFJWaDoxERqehQWi7PzCmdB/9w32ZcGRNgcES1q6EPSlmdxDs4OPDZZ59x4MABFixYwNdff83evXv573//i62tbU3EKCLV5NUb2uDv7siB1Fw+WHT+svoBscFMuaMTQZ4V704GeTox5Y5OWideLllDbzgj51c2Cn9jx1BcHe0Mjqbq2oV64uPqwKmCYrYcPn91k4hIbcsvKuGRGVvIKSimW1Mfnrw22uiQal1DH5Sq8qdnREQEERER1RmLiNQwLxcH3rixLfd/tYnPVh6kf2wQnSK8z3nugNhgrm0dxIaEDFJO5RPgXnq3sr7+sZO6xZqGMz2b+dZeYFKjUk7l89ufyQAM716/v0PY2Ji4ooUfP247zvL4VLpH6X0qInXDawt2szspG19XBz68vSN2jWQe/N+VDUqNnb+7wneOIE8nXhnUul4PSlUqiX/iiScqfcH333+/ysGISM27tnUgN3YMZd7WY4z5bju//PMKnOzPXUVja2NSAiU1oqE3nJFz+27TUYrNFjo38aZVsIfR4VyyvjH+/LjtOMviUnl6QEujwxER4cdtx5ix/ggmE3xwW4ezqiobm4Y6KFWpJH7r1q0Vft6yZQvFxcXExJQuURAfH4+trS2dO3eu/ghFpNq9Mqg1q/ancTA1l/cXxfP89a2MDkkamYbecEbOVmK2MLO8oV39HoUv07uFPyYT7E7KJiU7nwCPhvN+LTFbGtyXXpGG7kBqDs/P3QnA6Cub0zva3+CI6oaGOChVqSR+6dKl5f/9/vvv4+7uzpdffom3d2kZ7smTJ7n77ru54ooraiZKEalWXi4OTLixLfeVldW3CaJzk3OX1YvUhLKGM8lZ+eecF2+itNytvjackbOtiE/lWOZpvFzsub5t/S1h/CtfN0fahnqy42gWy+NTuaVLuNEhVYuFu5LOKj8NbgDlpyINwflusOUXlTBqxhZyC0voEeXD49c0vnnwjYnVEyTee+89JkyYUJ7AA3h7ezN+/Hjee++9ag1ORGrONa0DualjKJaLdKsXqQkNveGMnG3G+tJljm7uFHbeKTz1Ud8zI13LGsh68Vo1QqTuutCyrK/+9Cd7k0/h5+bAh8M66vOzgbM6ic/OziY19ewPqtTUVE6dOlUtQYlI7XhlUBsC3B05mJbLu7/FGR2ONDJaBaHxOJZ5miV7UwC4vYGU0pcpW2pu1b40iuv5UnNaNUKk7rrQDbaHvt7CrI2JmEwwaVjHBjW1R87N6u70N954I3fffTfvvfce3bp1A2D9+vU89dRT3HTTTdUeoIjUHE8Xeybc1JZ7v9zEF6sTGBAbRJemKl+W2tNQG85IRbM2HMFsgcua+dLM383ocKpV+zAvPJ3tyTpdxPajmXRuUn//hmrVCJG6qTI32AAevbI5vZr71VZYYiCrR+I/+eQTrrvuOoYPH06TJk1o0qQJw4cPZ8CAAUyePLkmYhSRGnR1q0CGdgorLav/fgenC1VWL7WrrOHM4A6h9GzmqwS+gSkqMTNrYyIAI7o3MTia6mdna8PlLUq/NC+Pq98l9Vo1QqRuutgNtjLdI3VzrbGwOol3cXFh8uTJpKens3XrVrZu3UpGRgaTJ0/G1dW1JmIUkRr28qDWBHo4kpCWy7u/q6xeRKrPH7tPkHqqAD83R65tHWh0ODWiocyL16oRl+7oyTy2HDlJUT2fWiF1S2VvnKXlFtRwJFJXWF1OX8bV1ZV27dpVZywiYhBPZ3vevKkdd0/fyNQzZfVdVVYvItVgxpll5W7rGoaDndVjB/VCnzNJ/I6jWaTllN6wqI+0asSlyS0o5oaPVpORW4i7ox29mvvRJ8afPtH+hHg5Gx2e1GO6wSZ/V6lP05tuuons7OxKX3TEiBGkpKRUOSgRqX1Xtgzg5s5h5d3qVVYvIpcqIS2XVfvTMJlgWNeG1dDurwI8nGgd7AHAyn31dzReq0Zcmh+2HSMjtxCAUwXFLPwzmefm7uSyN5fQ74PlvP7zblbvT6OgWJ+vYp2yG2zn+z/PROkykLrB1nhUKon/8ccfSU1NJTs7+6JbVlYW8+fPJycnp6ZjF5Fq9tLA1gR5OHEoPY931K1eRC7RNxtKR+H7RvsT7uNicDQ1q++ZLvX1fV68Vo2oGovFwtfrSt/vz13Xkh9H9eJf10TTKcILGxPEn8jhs5UJjPh8PR3GLuLe6Rv579pDHEnPMzhyqQ9sbUy8PLDVOStkyugGW+NSqXJ6i8VCdHR0TcciIgbzdLZnwtC23D1tI9PWlJbV666uiFRFflEJ321quA3t/q5PtD+Tlx1gxb40zGYLNvX4y7RWjbDeliOZ7EnKxsHOhlu7hOPt6kD7cC8eu6YFmXmFrNyXxvL4VJbHp5J6qoDFe1NYvDcF+JNIP1f6RPvTJ8afnlG+ONnbGv1ypA6wWCwcSs9j3cF01h9MZ93BjHOeF+zpxCuDWusGWyNTqSR+6dKlVl84NDTU6seIiPGujAngls5hfLf5KE9/v51fHrsCF4cqt88QkUZq4a5kTuYVEeLpxJUtA4wOp8Z1auKNu6MdGbmF7DyWRftwL6NDuiRlq0ZI5cxYdxiAge2C8XZ1qHDMy8WBQe1DGNQ+BIvFwu6k7NKEPi6VzYdPkpCWS0JaLtPXHMLRzobuUb70ifanb4w/UX6umEy6edIYWCwWDqblnknaM1h3MJ2UUxUb1TnY2tA+3JMwbxfahXnSMshDN9gaqUp9M+/Tp09NxyEidciLA1uzcl8ah9LzeHthHK/e0MbokESknpmxvjSpGdYtolF8wbS3taFXcz8W/pnMsrjUep/ES+WdzC1kwc4kAO7oceGqE5PJRJsQT9qEePJI3+Zk5xexZn/6maQ+heNZ+ayIT2VFfCqvLYAwb+czCX0APZv54uaom+oNhcViYX9KDusSMsoT97ScvyXtdjZ0DPeie5QvPaJ86BThrUoNAS6hO72INFyezva8ObQtI6dtZPqaQ1wXG0T3KI3IiEjlxCWfYuOhk9jamBjWNdzocGpN3xj/0iQ+PoXHrmlhdDhSS77ffJTCYjOtgz3oaOXNGw8newbEBjEgNqg8qVsen8qyuFQ2JGRw9ORpZqw/woz1R7C3NdGliQ99Y0pL72MC3TVKX4+YzRb2peSwPiGddQfT2ZCQQVpOYYVzHO1s6BThTfcoH3pE+dIh3EtJu5yToUn8hAkTmDt3Lnv37sXZ2ZnLLruMt956i5iYmPJzHnzwQf744w+OHz+Om5tb+TktW7Y873VHjhzJl19+WWFf//79WbhwYY29FpGGpm9MALd1CWf2pkSe+HY78x65jAAPLV0iIhc388wofL/WgY3q70afM83ttidmcjK38Kyyaml4zGZLedXJHT2aXFJSbTKZaBHoTotAd+67Ioq8wmLWHUxnWVxpUn8kI4+1B9NZezCdCb/uJcjDqXwufa/mfng621fXy5JqYDZbiDtxqnw++4ZDGeWrF5RxsrehcxNvukf60iPKl/bhnjjaKWmXizM0iV++fDmjRo2ia9euFBcX8/zzz9OvXz92796Nq6srAJ07d2bEiBFERESQkZHBq6++Sr9+/UhISMDW9vxv8gEDBjBt2rTynx0d6+earSJGemFgK9YnpHMoPY+7pm1k9oM98HDSlwQROb+8wmLmbjkGNI6Gdn8V7OlMTKA7cSdOsXJ/Gje0DzE6JKlhqw+UTj1zc7RjcIfq/fd2cbDjqpaBXNUyEIBDabksi0theXwqaw+mk5ydz+xNiczelIitjYlOEV6lSX10AG1CPOp1c8X6yGy2sCc5u3w++4ZDGWTmFVU4x9neli5NvekeWTrS3i7MCwe7Si0WJlKByWKxXGi1glqVmppKQEAAy5cvp3fv3uc8Z8eOHbRv3579+/fTrFmzc54zcuRIMjMz+eGHH6oUR3Z2Np6enmRlZeHh4VGla4g0FEfS87hpyhrScgroEeXD9Lu7qbRLRM5r9sYjPDNnJ019XVjyZN9Gl0i88csePl1xkKGdwnjv1vZGhyM17MH/buK3P09wZ88mjBscW2vPm19UwoaEjPKO9/tTKi7t7OfmQO8WpaP0V7Twx0dVIdWuxGxhT1I2686MtG88lEHW6YpJu4uDLV2a+pQn7W1DPZW0ywVVNg+t0kh8cXExy5Yt48CBAwwfPhx3d3eOHz+Oh4cHbm5uVQ46KysLAB+fcy9plZuby7Rp04iMjCQ8/MJz7JYtW0ZAQADe3t5cddVVjB8/Hl/fc8/pLSgooKDgf40ksrOzq/gKRBqeCF8Xpt/dlWGfrmPdwQye+HYb/769U6NoVCUi1puxvnSt7OHdIxpdAg/QN9qfT1ccZHl8ar1fak4uLDkrnz/2pAAXb2hX3Zzsbekd7U/vaH9eAhIz8lixr7Tj/er9aaTlFDJ36zHmbj2GyQTtwrzKO963D/PSZ3gVFJeY2Z1UcaT9VH5xhXNcHWzpGulzpjzeh9hQT+xtlbRL9bN6JP7w4cMMGDCAI0eOUFBQQHx8PFFRUTz22GMUFBTwySefVCkQs9nMDTfcQGZmJqtWrapwbPLkyTz99NPk5uYSExPDzz//fN5ReIBZs2bh4uJCZGQkBw4c4Pnnn8fNzY21a9eeswT/1VdfZezYsWft10i8yP+s2Z/GyGkbKSwxc2fPJoy9oY0a6ohIBTuOZnLDR6txsLVh3fNXN8rRv4LiEjqOW0ReYQkLHr2c2FBPo0OSGvLBongmLd5Ht6Y+fPtQT6PDKVdYbGbz4ZNnGuSlsDf5VIXjns72XNHCj74xAfSO9iPAvfH0rbBGcYmZXcezz8xpT2fToZOcKqiYtLs72p1J2ktH2tuEeGCnpF0uQWVH4q1O4ocMGYK7uztffPEFvr6+bN++naioKJYtW8b999/Pvn37qhTwww8/zK+//sqqVasICwurcCwrK4uUlBSSkpJ49913OXbsGKtXr8bJqXJ/dA4ePEizZs34448/uPrqq886fq6R+PDwcCXxIn+zYMdxHv1mKxYLPHltNI9ere7LIvI/z87ZwayNiQzpEMLEYR2NDscw9325iT/2nOCp/jGMurK50eFIDSgqMXP5W0s4kV3ApGEdGNwh1OiQzutEdn75uvQr96WS/bfR49bBHqUd76P96dTEu9GOHBeVmNl5LKt8pH3ToQxyC0sqnOPuZEf38pF2X1qHeKiqQapVjZXTr1y5kjVr1uDgUPHuetOmTTl27Jj1kQKjR49mwYIFrFix4qwEHsDT0xNPT09atGhBjx498Pb2Zt68edx+++2Vun5UVBR+fn7s37//nEm8o6OjGt+JVMLAdiGknSrg1fm7eW9RPP7ujgzrFmF0WCJSB2TnF/HjtuMAjKjl0uK6pm+MP3/sOcHyuFQl8Q3U4j0nOJFdgK+rAwNig4wO54ICPZy4tUs4t3YJp7jEzPajmSyLK51Lv+NoFruTstmdlM3kZQdwd7SjV3M/+pxJ6kO8nI0Ov8YUFpvZeSyTdWeS9s2HT5L3t6Td09mebn8ZaW8VrKRd6gark3iz2UxJSclZ+48ePYq7u7tV17JYLDz66KPMmzePZcuWERkZWanHWCyWCiPnF3P06FHS09MJDg62Kj5pWErMFjYkZJByKp8Adye6RfroD3EVjOwVSWpOAR8vPcDz83bi6+bIta0DjQ5LRAz2w9ZjnC4qITrQjS5NvI0Ox1B9okuXmtt85CRZp4u09FcD9PW60t4Pt3YNr1dLgtnZ2tC5iQ+dm/jwZL8Y0nIKWHlmLv2KfWlk5Bay8M9kFv6ZDEB0oNuZufQBdGnqXa9e698VFJew42hW+ZJvmw+f5HRRxZzGy8W+wkh7yyB39bWQOsnqJL5fv35MnDiRTz/9FChd0zInJ4dXXnmF66+/3qprjRo1ipkzZ/Ljjz/i7u5OcnLpHwxPT0+cnZ05ePAgs2fPpl+/fvj7+3P06FHefPNNnJ2dKzxXy5YtmTBhAjfeeCM5OTmMHTuWoUOHEhQUxIEDB3j66adp3rw5/fv3t/blSgOxcFcSY+fvJikrv3xfsKcTrwxqzYBY3dyx1ph+MaSeKuDbTUcZPXMLM+7rTpem525IKSINn8ViYcaZpGZE90tbK7shCPdxoZm/KwdSc1mzP43r2upzpiFJSMtl1f40TCYYXs+r0fzcHLmxYxg3dgzDbLaw81hWecf7rUdOEn8ih/gTOXy2MgFne1sua+Z7pvQ+gAhfF6PDv6CC4hK2HclkfULpSPuWIyfJLzJXOMfH1eFM0u5Dj2a+RAcoaZf6weo58YmJiQwYMACLxcK+ffvo0qUL+/btw8/PjxUrVhAQEFD5Jz/Ph/y0adMYOXIkx48f57777mPz5s2cPHmSwMBAevfuzcsvv0xMTEyF65Q95vTp0wwZMoStW7eSmZlJSEgI/fr147XXXiMwsHKjhVpirmFZuCuJh7/ewt/f6GXvvil3dFIiXwXFJWYe/O9mFu9NwcPJju8fvozoQOuqcUSkYdh4KINbPlmLs70t61+4Gg8njTyPm7+bqasTuK1LOG/d3M7ocKQajV+wm89XJdA3xp/pd3czOpwak5lXyKr9aSw/U3qfcqpiFWykn2vpuvQx/vSI9MXZwdhR+vyiErYeyWTdwXTWJ6Sz5UgmhcUVk3ZfVwd6RPnSPaq0PL65v5uSdqlTaqyxHZQuMTd79my2b99OTk4OnTp1YsSIETg7N4x5M0riG44Ss4XL31pSYQT+r0xAkKcTq565SqX1VXC6sIQRn69jy5FMgj2dmPPwZQ16/pyInNvjs7byw7bjSlj/YkV8KndO3UCQhxNrn7uq0VcnNBT5RSV0f2MxWaeL+PzOLlzTSKaTWSwW9iSdKu94v/nwSYrN/0shHO1s6B7lW5rUR/vTzN+1xt/z+UUlbDl8knVnRtq3JZ6dtPu5OdIjyofuUb70jPKhmb+b/l+UOq1GkviioiJatmzJggULaNWqVbUEWhcpiW841h5I5/bP1l30vG/u70HPZr61EFHDk5lXyM2frGV/Sg7NA9z4/qGeeLk0vmWlRBqrjNxCeryxmMISMz+N7kW7MC+jQ6oT8otK6DDud/KLzCx8/ApaBun7REPw/eajjPluO6Fezqx4+spGOwBwKr+INQfSSxvkxaVw/G+DJWHezuUJ/WXN/XBztHoG71nyCovZcjiT9QmlS75tT8yisKRi0h7g7lhhpD3Kr+ZvJohUpxrpTm9vb09+/rlHNEXqopRTlXu/VvY8OZuXiwNf3dONmyavYX9KDvdM38iM+3oYXlYnIrXj+82JFJaYaRvqqQT+L5zsbekZ5cvSuFSWxaUqiW8gvl53GIDbu4U32gQewN3Jnv5tgujfJgiLxcKB1JzyjvfrD2Zw9ORpZqw/woz1R7C3NdGliQ99YvzpG+NPTKB7pRLr3IJiNh8+eSZpz2DH0UyKSiqOPQZ5OJWPtPeI8qWpr4uSdmkUrL4tNmrUKN566y0+//xz7Owu/a6aSE0KcHeq1vPk3EK8nPnq3m7cPGUNW45kMnrmFv7zf52xa6RrzYo0FmazhZnryxra1e8GXzWhT7Q/S+NKO38/1KeZ0eHIJdp1LIttiZnY2Zi4tWv4Wccb6yo4JpOJ5gHuNA9w574rosgrLGbdwXSWx6WyLD6Vw+l5rD2YztqD6bz5614CPRzLO973au5XvnpDTkExmw5lsO5gBusT0tl5NKtCyT5AiKdThZH2CB8l7dI4WZ2Fb9y4kcWLF/P777/Ttm1bXF1dKxyfO3dutQUncqm6RfoQ7OlEclb+WY3t4H9z4rtFqrP6pYoOdGfqyK6M+Hw9i/em8Py8nbw1tJ0+XEUasDUH0jmUnoe7ox2D2ocYHU6d0zcmAObvZtPhDHIKiqulpFiMM+PMDav+sUFn3fzXKjj/4+Jgx1UtA7mqZWm/gENpueVz6dceTOdEdunqNt9uOoqtjYmO4V4UmS3sOpZFyd+S9lAv5/KkvWeUL2HezvpeIUIVkngvLy+GDh1aE7GIVDtbGxOvDGrNw19vwQQVEvmyj4BXBrVuFHfKa0OXpj58NLwTD/53E99uOoq/uyNP9W9pdFgiUkNmrC8tLb6xUyiuSlDP0tTPlSa+LhxOz2PN/jT6tQkyOiSpolP5Rfy47RgAd3RvUuHY+VbBSc7K5+GvtzT6VXCa+rnS1M+Vuy5rSn5RCRsPZZSX3u9PyWHT4ZPl54b7OJev0d490odwn7q9jJ2IUaz+xJ02bVpNxCFSYwbEBjPljk5n3SEPaqR3yGvata0DeePGtjw7dycfLz2Av5sjI3tFGh2WiFSzE9n5/L77BFC6NrycW99of75ce5hl8alK4uuxeVuPkVdYQvMAN3pE/a96r8RsYez83ees9rNQOmAwdv5urm0dpAEDSntFXNHCnyta+PMScPRkHmv2p2Nna6J7lC+hWuFGpFJ021wahQGxwVzbOqhRzlUzwrBuEaSeKuC9RfGMXbAbP3dHBrZTqa1IQ/LtxkRKzBa6NvUmJsjd6HDqrL4xAXy59jDL41KxWCwqBa6HLBZLeUO7Ed0jKvwbbkjIOO8ytlCayCdl5bMhIUOr4JxDmLcLt3bVaLuItaxO4iMjIy/4AXTw4MFLCkgqp7E2T7kUtjYmfYDWotFXNSc1p4Cv1h7midnb8XFx4LLmfkaHJSLVoMRs4ZsNZQ3tNAp/IT2ifHGws+FY5mkOpObQPEA3POqbjYdOEn8iB2d7W27qFFbhmFbBEREjWJ3EP/744xV+LioqYuvWrSxcuJCnnnqquuKSC1DzFKkPTCYTrwxqQ1pOAb/sTOaB/25m1gM9iA31NDo0EblEy86sC+3tYs+AWJWIX4izgy3dI31YuS+NZXGpSuLrobJR+Bvah5R3Ui+jVXBExAhWJ/GPPfbYOfd//PHHbNq06ZIDkgtT8xSpT2xtTLx/awcycjew7mAGI6dtZO7DlxHhq9I5kfqsrEv3LV3CcbK3NTiauq9PtD8r96WxPD6V+66IMjocsUJaTgG/7koC4I4eZ1edaBUcETFCtS3ifN111zFnzpzqupycw8Wap0Bp85S/L88hYiQne1s+vbMLrYI9SMsp4M6p60nLKTA6LBGpoqMn81galwLA7d20Nnxl9I0JAGD9wQzyCosNjkas8e2mRIpKLLQP86Rt2NmVZGWr4MD/Vr0po1VwRKSmVFsS//333+Pjo7uMNcma5ikidYmHkz1f3t2VMG9nDqXncfe0jeQU6IusSH00a0MiFgtc3tyPSD9Xo8OpF5r5uxLq5UxhiZl1B9ONDkcqqcRsYeaZqpMR5xiFL1O2Ck6QZ8WS+SBPJ1VIXkSJ2cLaA+n8uO0Yaw+kayBKpJKsLqfv2LFjhcZ2FouF5ORkUlNTmTx5crUGJxWpeYrUZwEeTnx1Tzdu/mQtO49l8dB/NzN1ZFcc7KrtXqKI1LCiEjOzNiYCpV26pXJMJhN9Y/yZsf4Iy+JSuaploNEhSSWsiE/l6MnTeDjZMegiK6xoFRzrqceTSNVZncQPHjy4QhJvY2ODv78/ffv2pWXLltUanFSk5ilS30X5uzFtZFdu/2wdq/anMea77Uy8rQM2+pIjUi8s2n2CtJwC/N0duaa1ElFr9IkuTeKXx6caHYpUUllDu5s7h+PscPHeD1oFp/LU40nk0lidxL/66qs1EIZUhpqnSEPQPtyLKXd05t7pG/lp+3H83Bx5aWArrZ0sUg/MWF+a1AzrGo69raporHFZcz/sbU0cTs8jIS1XUxHquKMn81hypvfDcFWdVKuL9XgyUdrj6drWQapkEDkPqz+BbW1tSUlJOWt/eno6trbqUFuT1DxFGoo+0f68e0t7AKauTuA/Kw4aHJGIXMzB1BxW70/HxgTD1NDOam6OdnRtWnqTfXnc2d+jpG75ZsMRLBboGeVL8wA3o8NpUNTjSeTSWZ3EWyznbjhRUFCAg4PDJQckF6bmKdJQDOkYygvXtwLgzV/3MmfzUYMjqh5q0iMN1TcbSht8XRkTQKiXs8HR1E99ov0BWKaS+jqtsNjM7DO9H861rJxcGvV4Erl0lS6n//DDD4HS5iyff/45bm7/uytZUlLCihUrNCe+lqh5ijQU9/eOIjWngE9XHOTpOTvwcXXgypYBRodVZWrSIw1VflEJ35250Taih0bhq6pvTAATft3LuoPp5BeV4GSvCsa66Lc/k0nLKcTf3ZF+bdT7obqpx5PIpat0Ev/BBx8ApSPxn3zySYXSeQcHB5o2bconn3xS/RHKOal5ijQUzw5oSeqpAuZtPcYjM7Yw8/7udIzwNjosq6lJjzRkv+xMIjOviFAvZ/pE178bbSVmS5248R0d6EaQhxPJ2fmsT8goH5mXukW9H2qWejyJXLpKJ/EJCQkAXHnllcydOxdv7/r3JVtE6h4bGxNv39yO9NxCVsSncs/0jXz30GX1ag6imvRIQzfjzFrZt3cLr3fv4bpUIVO21NysjYksi0tREl8H7U85xbqDGdiY4Hb1fqgRZT2eHv56Cyao8NmpHk8ilWP17cWlS5cqgReRamVva8OUEZ1oH+bJybwi7pq6geQLNL2pa9SkRxqyPUnZbD58EjsbE7d2CTc6HKuUVcj8/f/PsgqZhbuSaj2mssRdS83VTV+vK71hdVXLQELU+6HGqMeTyKWxeok5gKNHj/LTTz9x5MgRCgsLKxx7//33qyUwEWlcXB3tmDqyKzd/spaEtFzumrqBbx/qiaezvdGhXZSa9EhDNvPMKHy/NoEEeNSfOap1tUKmVws/bG1MHEzNJTEjj3Afl1p7brmwvMJi5mwp7f1wh3o/1Dj1eBKpOquT+MWLF3PDDTcQFRXF3r17iY2N5dChQ1gsFjp16lQTMYpII+Hr5shX93TjpilriDtxivu/3MRX93ar882f1KRHGqrcgmLmbT0GwIju9atLtzUVMrXZY8bDyZ7OEd5sOJTBsvhU/k/dz+uM+duPcyq/mAgfF3q30FSH2qAeTyJVY3U5/XPPPceYMWPYuXMnTk5OzJkzh8TERPr06cMtt9xSEzGKSCMS7uPCl3d3w93Rjg2HMnhs1tY6v0xbWZOe840dmCidg6smPVLf/LT9ODkFxUT6udIzqn590a7LFTJ9Ys6U1Gu9+DqlrJR+ePcIbDQaLCJ1mNVJ/J49e7jzzjsBsLOz4/Tp07i5uTFu3Djeeuutag9QRBqf1iEefHpnFxxsbfjtzxO89OMuLJa6m8iXNekBzkrk1aRH6iuLxcLX60q7dA/vVv+SmrpcIVM2L37NgXQKiktq/fnlbNsTM9l5LAsHWxtu6RxmdDgiIhdkdRLv6upaPg8+ODiYAwcOlB9LS0urvshEpFHr2cyXicM6YDKVzsmdtHif0SFdkJr0SEOz42gWfx7PxsHOhpvrYVJTlytk2oR44O/uSF5hCZsOnaz155ezld2wur5tEL5ujgZHIyJyYVbPie/RowerVq2iVatWXH/99Tz55JPs3LmTuXPn0qNHj5qIUUQaqevbBjNucCwv/bCLiX/sw8/NkTvq8PxRNemR2lBba56XrZU9sG0w3q4O1X79mlaXl7EymUz0ifbn+81HWR6fSq/mfrUeg/xPVl4R83ccB6jTnzEiImWsTuLff/99cnJyABg7diw5OTnMnj2bFi1aqDO9iFS7/+vRhNTsfD5csp+Xf9yFn5sjA2KDjA7rvNSkR2pSba15nnW6iJ+2lyY1I+pxl+6yCpm//86CDFon/q/KkvhlcSk8f30rw+IQ+H7LUfKLzLQMcqdzEy2jLCJ1n1VJfElJCUePHqVdu3ZAaWn9J598UiOBiYiU+de10aTmFPDNhkT+OWsr/72nG93rWZMtkUtVtub537tDlK15Xp3TNub9JanpFFG/k5q6WiFzRQs/bEwQfyKH45mntSa5QSwWS3nVyYgeTTCZVDklInWfVXPibW1t6devHydPav6WiNQek8nEa4NjubZ1IIXFZu77ahN7k7ONDkuk1lxszXMoXfO8OlZyKE1qSrt0j+ge0SCSmrIKmcEdQunZzNfwBB7Ay8WBDuFeACyPTzU2mEZs7YF0Dqbm4upgy40dQ40OR0SkUqxubBcbG8vBgwdrIhYRkfOys7Xh37d3pGtTb07lF3PX1A0cPZlndFgitcKaNc8v1cZDJ9mXkoOLgy1DlNTUqL4xAQAs01Jzhvn6zCj84I6huDlaPctURMQQVifx48ePZ8yYMSxYsICkpCSys7MrbCIiNcXJ3pbP7+xKdKAbJ7ILuHPqBjJyC40OS6TG1eaa52WlxYM7hODuZH/J15PzK1tqbvX+dIpKzAZH0/ikZOfz+58nALijuxraiUj9YXUSf/3117N9+3ZuuOEGwsLC8Pb2xtvbGy8vL7y96/e8ORGp+zxd7Pnynm6EeDpxMDWXu6dvJK+w2OiwRGpUba15np5TwK87kwEY3k1JTU1rG+qJj6sDOQXFbD6sqYq1bdbGRIrNFjpFeNE6xMPocEREKs3quqGlS5fWRBwiIpUW7OnMV/d24+ZP1rI9MZNHZmzhszu7YG9r9X1JkXqhbM3z5Kz8c86LN1Hacf1S1zz/fvNRCkvMtA/zpG2Y5yVdSy7OxsZE7xZ+/LDtOMvjU+mhhp21prjEzDcbSns/aFk5EalvrE7i+/TpUxNxiIhYpXmAO1/c1ZURn69jWVwqz8zZwXu3tG8QTbhE/q421jw3my3M3FDW0E5JTW3pGxPAD9uOl/4dG9DS6HAajaVxqSRl5ePtYs/1bY1balBEpCqqNGy1cuVK7rjjDi677DKOHTsGwH//+19WrVpVrcGJiFxI5ybefDy8E7Y2JuZuOcabC/caHZJIjSlb8zzIs2LJfJCnU7UsL7f6QBqH0/Nwd7JjYHslNbXlihZ+mEywJymbE9mX3tNAKufrdaW9H27pEo6Tva3B0YiIWMfqJH7OnDn0798fZ2dntmzZQkFBAQBZWVm88cYb1R6giMiFXN0qkAk3tQXgP8sP8sWqBIMjEqk5A2KDWfXMVXxzfw8mDevAN/f3YNUzV1XL+vBlSc3QTmG4OKhLd23xdXOkXWjp1AUtNVc7jqTnsWJf6e96eLcIg6MREbFelbrTf/LJJ3z22WfY2/+va22vXr3YsmVLtQYnIlIZt3YJ56n+MQC8tmA3P247ZnBEIjWnJtY8T87K5489pcucDe+upKa29Tmz1JyS+NoxY8NhLJbSKoimfq5GhyMiYjWrk/i4uDh69+591n5PT08yMzOrIyYREas90rcZIy9rCsCY77azcp++DItU1uyNiZSYLXRr6kN0oLvR4TQ6ZUvNrYxPpVhLzdWoguISvtt0FFBDOxGpv6xO4oOCgti/f/9Z+1etWkVUVFS1BCUiYi2TycTLA1szsF0wRSUWHvrvZnYezTI6LJE6r7jEzKyNZxra9dAovBE6hHvh6WxPdn4x249mGh1Og/brzmQycgsJ9nTi6pYBRocjIlIlVifx999/P4899hjr16/HZDJx/PhxZsyYwZgxY3j44YdrIkYRkUqxsTHx3q3t6dXcl9zCEkZO20BCWq7RYYnUaWVdun1cHRgQG2R0OI2SrY2JK1r4AbAsTlVENams98OwrhHYaVlSEamnrP7r9eyzzzJ8+HCuvvpqcnJy6N27N/fddx8PPvggjz76aE3EKCJSaY52tnxyR2fahHiQnlvInVPXk3JKHZ9FzmfG+jNdujuH4WinLt1G6XtmXryS+JqzNzmbTYdPYmtjYli3cKPDERGpMquTeJPJxAsvvEBGRga7du1i3bp1pKam8tprr9VEfCIiVnN3smf63d2I8HEhMeM0I6du5FR+kdFhidQ5iRl55c3UbleXbkP1ji4did95LIu0nAKDo2mYykbh+7UOJNDD6SJni4jUXVWuI3JwcMDd3Z3g4GDc3NyqMyYRkUvm7+7IV/d0w8/Ngd1J2Tz4380UFJcYHZZInfLNhiPq0l1HBLg70SbEA4AV6lJf7XIKipm3pXTlEjW0E5H6zuokvri4mJdeeglPT0+aNm1K06ZN8fT05MUXX6SoSCNdIlJ3NPVzZdrIbrg62LLmQDpPfLsds9lidFgidUJhsZlvNyUCMKK7kpq6oKxLvZaaq34/bD1GbmEJUX6uXNbM1+hwREQuiZ21D3j00UeZO3cub7/9Nj179gRg7dq1vPrqq6SnpzNlypRqD1LOZrFYyMvLMzoMkTovytuOiUNb8dDXm5m/KQFPuxKev74VJtOlr60tUp/9ujOJlIxsAjwc6BHhSm6umkAarXu4Kx8V5rN0VyLZp1pga6O/U9XBYrEwfflezIX5DG3XRN+fRBoxFxeXhvEd0GIlDw8Pyy+//HLW/p9//tni4eFh1bXeeOMNS5cuXSxubm4Wf39/y+DBgy179+6tcM4DDzxgiYqKsjg5OVn8/PwsN9xwg2XPnj0XvK7ZbLa89NJLlqCgIIuTk5Pl6quvtsTHx1c6rqysLAtgycrKsur11KacnBwLoE2bNm3atGnTpk2bNm3aKrHl5OQYncZdUGXzUKvL6R0dHWnatOlZ+yMjI3FwcLDqWsuXL2fUqFGsW7eORYsWUVRURL9+/SqMBnTu3Jlp06axZ88efvvtNywWC/369aOk5PxzW99++20+/PBDPvnkE9avX4+rqyv9+/cnP18dqkVERERERKT+MlksFos1Dxg3bhx79+5l2rRpODo6AlBQUMC9995LixYteOWVV6ocTGpqKgEBASxfvpzevXuf85wdO3bQvn179u/fT7Nmzc46brFYCAkJ4cknn2TMmDEAZGVlERgYyPTp0xk2bNhF48jOzsbT05OsrCw8PDyq/HpqkkXl9CJV8t7vcXy+MgFbGxP/vr0DV7YMNDokkVr35q97+HLNYa5sGcDkEZ2MDkf+4vvNibz0w5+0D/dk1gM9jQ6n3svILeTKd5ZRWGJm1gPdaR/ubXRIImKgul5OX9k81Oo58Vu3bmXx4sWEhYXRvn17ALZv305hYSFXX301N910U/m5c+fOteraWVlZAPj4+JzzeG5uLtOmTSMyMpLw8HOv75mQkEBycjLXXHNN+T5PT0+6d+/O2rVrz5nEFxQUUFDwv+VcsrOzrYrbCCaTCVdXdRIWsdZLQzqSVWTLnC1HGfNDHDPu86Jzk3P/zRFpiPKLSvjpzwxsHJwY2SdGnyV1TL/2TXjllwPsSimgEHu8Xa2rcpSKZmxOptjWgbbhHvSMCa3TX95FRCrL6iTey8uLoUOHVth3voTaGmazmccff5xevXoRGxtb4djkyZN5+umnyc3NJSYmhkWLFp23dD85ORmAwMCKo2uBgYHlx/5uwoQJjB079pJfg4jUfSaTiTeHtiUjt4ClcancM30T3z/UkxaB7kaHJlIrft6RRNbpIsK8nendwt/ocORvgj2daRnkzt7kU6zcn8YN7UOMDqneMpstzFh/BChdVk4JvIg0FFYn8dOmTauJOBg1ahS7du1i1apVZx0bMWIE1157LUlJSbz77rvceuutrF69Gicnp2p57ueee44nnnii/Ofs7OxquTEhInWTva0NH4/oxPDP1rMtMZM7p25g7iOXEezpbHRoIjVuxvrDANzeLULdz+uoPtH+7E0+xbK4FCXxl2DV/jQOp+fh7mjH4A76PYpIw2F1Y7uaMHr0aBYsWMDSpUsJCws767inpyctWrSgd+/efP/99+zdu5d58+ad81pBQUEAnDhxosL+EydOlB/7O0dHRzw8PCpsItKwuTjYMXVkV6L8XUnKyufOLzaQmVdodFgiNWr38Wy2HMnEzsbErV10s7qu6hNTWiGxIj4Vs9mq1kXyF1+vK71hdVOnUFwcrB63EhGps6xO4tPT0xk1ahStW7fGz88PHx+fCps1LBYLo0ePZt68eSxZsoTIyMhKPcZisVSYw/5XkZGRBAUFsXjx4vJ92dnZrF+/vnxdexERAB9XB766pxuBHo7sS8nhvi83kV90/pUvROq7mRtKk5r+sUH4uzsaHI2cT5cmPrg62JKWU8jupLrfp6cuSso6zR97Sgd0RvRoYnA0IiLVy+rbkv/3f//H/v37uffeewkMDLyk+UWjRo1i5syZ/Pjjj7i7u5fPWff09MTZ2ZmDBw8ye/Zs+vXrh7+/P0ePHuXNN9/E2dmZ66+/vvw6LVu2ZMKECdx4442YTCYef/xxxo8fT4sWLYiMjOSll14iJCSEIUOGVDlWEWmYwrxd+PKebtzyyVo2HT7J6Jlb+eSOTtjZ1olCJZFqk1NQzLwtxwAY0T3C4GjkQhzsbLisuR+Ldp9gWVwKsaGeRodU73yzIRGzBbpF+hCtnici0sBYncSvXLmSVatWlXemvxRTpkwBoG/fvhX2T5s2jZEjR+Lk5MTKlSuZOHEiJ0+eJDAwkN69e7NmzRoCAgLKz4+LiyvvbA+UN8F74IEHyMzM5PLLL2fhwoXVNodeRBqWlkEefH5nF/5v6gb+2HOCF3/YxYSb2qoJkjQoP247Rm5hCVF+rvSM8jU6HLmIvjH+LNp9guXxqYy+qoXR4dQrRSVmZm34X0M7EZGGxuokvmXLlpw+fbpanvxiS9SHhITwyy+/WH0dk8nEuHHjGDdu3CXFJyKNR/coX/59e0ce/nozszYm4u/uyJP9YowOS6RaWCwWvl5XmtQM7x6hG1T1QJ/o0nnxW45kknW6CE9ne4Mjqj/+2H2ClFMF+Lk5MKDNufshiYjUZ1bXi06ePJkXXniB5cuXk56eTnZ2doVNRKS+6t8miPFD2gLw7yX7+e/aQ8YGJFJNtiVmsicpGwc7G27ufHYDWal7wrxdaB7gRonZwur9aUaHU698fWYFhlu7hONgp6lRItLwWP2XzcvLi+zsbK666ioCAgLw9vbG29sbLy8vvL29ayJGEZFaM7x7BI9fU1q6+vJPf/LLziSDIxK5dGVrZQ9sF4yXi4PB0UhllY3GL4tLMTiS+uNgag6r96djMpUuoygi0hBZXU4/YsQI7O3tmTlz5iU3thMRqYseu7oFqacKmLH+CI/P2oaXiz2XNfMzOiyRKsnKK2L+9uMAjOiu+cH1Sd8Yf75YlcDy+FQsFou+c1VC2Q2rK2MCCPdxMTgaEZGaYXUSv2vXLrZu3UpMjOaKikjDZDKZGDc4lvScQhb+mcyDX21m9oM9aR3iYXRoIlabs+UoBcVmWga50ynCy+hwxApdm/rgbG/LiewC9iafolWw/gZdSH5RCd9vPgrAHT00Ci8iDZfV5fRdunQhMTGxJmIREakzbG1MTBzWgW6RPpwqKOauaRtIzMgzOiwRq1gsFmacmR88okcTjeTWM072tvRsVrqSwLK4VIOjqfvmbz9O1ukiQr2c6RMdcPEHiIjUU1Yn8Y8++iiPPfYY06dPZ/PmzezYsaPCJiLSUDjZ2/LZnV1oGeRO6qkC7py6gfScAqPDEqm09QkZHEjNxcXBliEdQowOR6qgbF788njNi7+Yr9f/bwUGWxvdsBKRhsvqcvrbbrsNgHvuuad8n8lkKp+rVVJSUn3RiYgYzNPZni/v6cZNk9eQkJbLPdM3MvP+Hrg6Wv3nU6TWlc0PHtIxFHcnLVFWH/WNKU3iNx06yan8Iv07nseuY1lsT8zE3tbErV3CjQ5HRKRGWf0tNCEhoSbiEBGpswI9nPjq3m7cPGUN249m8dDXm/nirq5aukjqtLScAhbuKl1dYbi6dNdbTXxdaerrwqH0PNYcSKe/1j0/p7JpI/3bBOHv7mhwNCIiNcvqb6BNmjS54CYi0hA183dj6siuONvbsnJfGk9/vx2z2WJ0WCLn9d2moxSVWOgQ7kVsqKfR4cgl6BtTOr9b8+LPLTu/iB+2lq7AcEcPfRcVkYavSsNI//3vf+nVqxchISEcPlx653PixIn8+OOP1RqciEhd0jHCm8l3dMLOxsQP244z4dc9Rockck5ms4WZG840tOuuUfj6rs+ZkvoVZ5aak4rmbTnG6aISWgS40T3Sx+hwRERqnNVJ/JQpU3jiiSe4/vrryczMLJ8D7+XlxcSJE6s7PhGROuXKmADeGtoOgM9WJvDpigMGRyRytpX700jMOI2Hkx0D26mhXX3XI9IXBzsbjmWeZn9KjtHh1CkWi4Wv1/3vhpVWYBCRxsDqJP7f//43n332GS+88AK2trbl+7t06cLOnTurNTgRkbpoaOcwnruuJQBv/LKXuVuOGhyRSEUzziQ1QzuH4exge5Gzpa5zdrClR1TpUnPL41VS/1cbEjLYl5KDs70tN3UOMzocEZFaYXUSn5CQQMeOHc/a7+joSG5ubrUEJSJS1z3QO4p7L48E4Onvd7AsTss/Sd2QlHWaxXtL348qpW84ypaa07z4isqWlRvcIQQPde4XkUbC6iQ+MjKSbdu2nbV/4cKFtGrVqjpiEhGp80wmEy9c34rBHUIoNlt4ZMYWtiVmGh2WCLM3JlJittA90ofmAe5GhyPVpGypuQ0JGeQVFhscTd2Qeup/KzCooZ2INCaVTuLHjRtHXl4eTzzxBKNGjWL27NlYLBY2bNjA66+/znPPPcfTTz9dk7GKiNQpNjYm3rm5PVe08COvsIR7pm/kYKrmq4pxikvMzNqQCMAIJTUNSpSfK2HezhSWmFl7IN3ocOqEbzclUlRiob1WYBCRRqbSSfzYsWPJycnhvvvu46233uLFF18kLy+P4cOHM2XKFCZNmsSwYcNqMlYRkTrHwc6GKXd0pm2oJxm5hdw5dQMp2flGhyWN1JK9KSRn5+Pr6kD/NoFGhyPVyGQylY/Gq6QeSswWZp4ppb9D00ZEpJGpdBL/1yVNRowYwb59+8jJySE5OZmjR49y77331kiAIiJ1nZujHdPu7kpTXxeOnjzNnVM3kJ1fZHRY0gjNOJPU3NIlHEc7NbRraPpEn1kvPj6l0S81tzw+hWOZp/F0tmdQe63AICKNi1Vz4v++bIeLiwsBAQHVGpCISH3k5+bIV/d0x8/Nkb3Jp+j3/gom/bGPExqVl1pyJD2PFftKR2iHd9PIZEN0WTNf7G1NJGacJiGtcTcT/npd6Q2rmzuH4WSvG1Yi0rhYlcRHR0fj4+NzwU1EpLGK8HXhy3u6EuDuSHJ2Ph/8Ec9lby7hof9uZtW+NMzmxj1yJjVr5oYjWCzQO9qfCF8Xo8ORGuDqaEfXpqXftRrzUnOJGXksjdMKDCLSeNlZc/LYsWPx9FTjEBGR82kT4snKZ65k4a5kvl53mI2HTrLwz2QW/plMpJ8rw7tFcHPnMLxdHYwOVRqQguISvtt0pqGdkpoGrW+MP2sOpLMsLpW7e0UaHY4hvjlzw6pXc1+i/N2MDkdEpNZZlcQPGzZM5fMiIhfhaGfL4A6hDO4Qyt7kbGauP8LcLcdISMvl9V/28M7vcQxsG8yIHk3oFOF11lQlEWv99ucJ0nMLCfRw5OqW+pxuyPrGBPDGL3tZdzCd/KKSRldKXlhs5tszN6zu6K4VGESkcap0Ob2+ZIqIWK9lkAfjBsey/vmreePGtrQO9qCw2MzcrccYOmUN13+4iq/XHSanQOs+S9XNWHcYgGFdI7CztWqmnNQzLQLcCPZ0oqDYzLqDjW+puYV/JpOWU0iAuyPXtNYKDCLSOFWpO72IiFjH1dGO4d0j+PmflzPvkcu4uXMYjnY27EnK5sUfdtH99T94Yd5O9iRlGx2q1DP7U06xPiEDGxMM6xZudDhSw/661FxjnBf/vxtW4djrhpWINFKV/utnNptVSi8icolMJhMdI7x595b2rH/+al78Ryui/FzJLSxhxvojXDdpJUOnrGHe1qPkF5UYHa7UA2XLyl3dKpBgT2eDo5Ha0Cf6TBLfyNaL33firzes1PtBRBovq+bEi4hI9fFyceC+K6K49/JI1h5IZ8b6I/z2ZzKbD59k8+GTjJu/m1u6hDO8WwRN/VyNDlfqoNOFJczZfBSAO3pofnBjcVlzP+xsTBxMy+VIel6jWY3grzesQrx0w0pEGi/VIYmIGMxkMnFZcz8+HtGJNc9exZPXRhPi6cTJvCI+XXGQvu8u4/++WM/CXckUl5iNDlfqkAU7jpOdX0y4jzNXNPczOhypJR5O9nRq4g3A8vgUg6OpHXmFxbphJSJyhpJ4EZE6JMDDiUevbsHKZ67i8zu70DfGH5MJVu5L46GvN9PrrSV8sCie5Kx8o0OVOqBsZHJ4tybY2KgBbWNSNi9+WSMpqf9p23FOFRTTxNdFN6xEpNFTEi8iUgfZ2pi4pnUg0+/uxoqnruThvs3wdXXgRHYBkxbvo9dbS3jgq02siE/FbFbj0cZo17EstiVmYm9r4pYuYUaHI7WsbF78mgPpFBQ37P4ZFouFr9eXNrQb3i1CN6xEpNFTEi8iUseF+7jwzICWrHnuKj68vSPdIn0oMVv4ffcJ7py6gSvfW8Z/lh8gI7fQ6FClFs3cUDoKPyA2GD83R4OjkdrWOtiDAHdHTheVsDHhpNHh1KjtR7PYdSwbBzsbbumiFRhERJTEi4jUE452ttzQPoRvH+zJ7//qzcjLmuLuaMfh9Dwm/H97dx4fZXX3//892Sb7BlkIWdnCLltYihJwIbiiYlUkFZRqVbiR+67S2g2q9YdafFj91dr7vouggiJouYtUQcoSESHsO4QtkEAIIeuEbGS5vn+EjB0TECSzJa/n4zF/5LrOnPM5cAjzmXOdc744rOH/31rNXLJL208WcyxoG3ehpk7/2HVGkjRpGLt0t0cmk+nbXerb+Lr4RZeOlbuzXyeFB/g4ORoAcD6SeABwQz2igjTnnj7K/PUtenVCP/XrHKKL9Q36v915euCvm3X7mxv1weaTKq+udXaoaCUVNXX6+mih3lhzROl/y1TFxXp1jQjQsKRwZ4cGJ0ltB+viSysv6rM9eZKk9OF8YQUAEkfMAYBb8/fx0kMp8XooJV57cku1OPOUVuzJ0+H8cv32Hwc094vDGj+gs9KHx6tPTIizw8U1KLpQo20nS7TtZLG2nyzW/jyL6r+z/8ETN3WRycT64Pbqpm4R8jBJRwsu6ExplTq3wWPXPtlxWjV1DeoZHaRB8WHODgcAXAJJPAC0ETfEheqGuFD9+o7e+nTnaS3OPKXj5yv00dYcfbQ1RwPjQ5U+LEF39u8kX29PZ4eLf2MYhk6XVGlrdrG2nWx8HT9f0axc51A/pSSGaUhiuIZ3CVe3yCAnRAtXEeLvrYHxYdpxqkQZWef1SBtbWmEYhj68dAJD+vAEvrACgEtI4gGgjQnx99bjNybpsZGJ2nKiWIszT2n1gXztyinVrpxSvfTPg3pgUKweGRavLhGBzg63XWpoMJR1rlzbThZra3axtp8sUb6l+bGBPaIClZIYrqFJ4RqSGN4mZ1pxfUb3iGhM4o8UtLkk/pvjRTpRWKEAH0/dO7Czs8MBAJdBEg8AbZTJZNKIrh00omsHnS+v0dLtufowM0dnSqv0t6+z9bevszWyWwelD0vQrb2j5O3JNin2UlNXr32ny7T1ZLG2ZRdr+6kSlVfX2ZTx8jCpX2yIhiaGKyUxXEMSwxTqzyZeuLLU5Ai9vuaINh0r0sW6Bvl4tZ1/x00b2t03qLMCzXxkBYAm/EYEgHYgIsisaWO66anUrso4UqBFW3K0PqtAm44VadOxIkUGmfVwSpweHhqvGGZ7r5ululY7TpVo+8libcsu0e7TpbpY12BTJsDHU4MSwpRyKWkfEBcqPx+WOeDa9I0JUYcAHxVVXNTOnBIN79LB2SG1inOWan158JykxkfpAQDfIokHgHbE08Okm3tG6eaeUTpdUqmPtubo4225Kiiv0VvrjunP64/p5p5RSh8er1HdI+ThwRrUq1FgqdbWk42PxW/NLtbhfIu+swedOgb6aEhCuFKSwjU0MVy9OgXJi6cfcJ08PEwa1SNCy3ed0Yas820miV+yNVf1DYaGJISpZ3Sws8MBAJdCEg8A7VRsmL+eT+upZ2/poS8P5mvRllPacqJY/zp0Tv86dE5x4X56ZGiCHhwSqw6BZmeH6zIMw1B2YcWlDegad48/VVTZrFxCB/9Ls+yNs+1JHQPYmAt2MTq5KYkv0C9v7+nscK5bXX2DPtrauKHdJI6VA4BmSOIBoJ3z8fLQXf1jdFf/GB0rKNfizBx9suO0cour9Oqqw3pjzRGN6xut9OEJSkkMa3eJaF19gw6dLb80096YuBdeqLEpYzJJvaKDL21A15i0RwX7OilitDc3dY+QySQdzi/XOUu124+9dYcLlG+pVpi/t27v28nZ4QCAyyGJBwBYdYsM0uy7+2hWWk99tjdPi7ec0p7TZVqxJ08r9uSpR1SgJg1L0H2DOivY19vZ4dpFdW29duWUWo9623mqRBUX623K+Hh5aEBsqFKSGhP2QQlhbfbPA64vPMBH/WNDtSe3VBlZ5/VgSpyzQ7ouiy4dK/fgkDiOwwSAFpDEAwCa8fPx1IND4vTgkDjtO12mxZmn9I/deTpy7oJmrzigV744rPEDYpQ+PEF9O4c4O9zrUlp5UdsvPRa/9WSx9p8pU2297YL2IF8vDUkIs65n7xcbIrMXyQVcx+geEY1J/BH3TuJPFVXoqyPnJanNHZkHAK2FJB4AcEX9YkP0Smx/vXBHLy3feVqLM3N0tOCClmzL1ZJtubohLlSThsXr7v4xbrG7+pnSKm2/dD77tpPFOnLuQrMyUcFm6/nsKYnhSo4KYpM/uLTU5Ai9ufaoNh49r7r6BrfdNPHDS7Pwo3pEKKFDgJOjAQDXRBIPALgqIX7emjIySZN/lKit2cVanJmjL/af1Z7cUu3JLdUfVh7UA4Pj9MiweHWLDHR2uJKkhgZDx85faHw0PrtxPfuZ0qpm5bpGBFiPehuaFK7YML92t/Yf7u2G2FCF+nurtLJWu3NLNSQx3NkhXbPq2not3Z4rSUpnFh4ALoskHgBwTUwmk4Z16aBhXTqo8EJvLd2eqw8zc3S6pErvbsrWu5uyNaJLB6UPT9BtvaPk4+W4GcGLdQ3an1d2aaa9RNtPFau0stamjKeHSX1jgpWSGK4hl3aPZ/d9uDtPD5Nu6h6hz/bkaUPWebdM4r/Yf1YllbXqFOKrm3tGOjscAHBZJPEAgB+sY6BZz4zupqdGdVXG0fNavOWU1h0u0OYTRdp8okgdA816OCVOE4fFq3OoX6u3X1FTp505JY1HvWUXa1duiaprG2zK+Hl7amB8qHWWfUBcqALM/PeHtmd0j8YkPuPIeT2XluzscK7Zoi2Nj9JPHBrvtssBAMAR+BQDALhuHh4mjUmO1JjkSJ0prdKSrTlasi1X58tr9Of1x/SXDcc0JjlS6cMTNKpHhDx/4Prywgs1NrPsB/Isqm+w3YQuzN9bQxIbN6BLSQpXn5hgeZMQoB0Y1SNCkrTvTJnOl9coIsh9njA5dNaiHadK5OVh0sNuvDEfADgCSTwAoFV1DvXTz8cma8Yt3bXm4Dkt2nJK3xwv0trDBVp7uECxYX6aODReDw6Ju2KSYRiGcourtNW6nr1YJworWmyvaQO6oUlh6tIxkE3o0C5FBJnVt3Ow9p+xaOPR87p/UKyzQ7pqi7ackiSN7ROlSDc/5x4A7M2pSfzcuXP197//XYcPH5afn59+9KMf6dVXX1VycuMjYMXFxZo9e7a+/PJL5eTkKCIiQvfee69eeuklhYRc/kijKVOm6L333rO5lpaWplWrVtm1PwCAb3l7euiOfp10R79OOn7+gj7MzNEnO07rdEmV/rg6S3/61xGl9YlW+vAEDUsKV4MhZeWXW496236yWOcsNTZ1mkxSclSQhiSGWTeii7HDY/qAu0rtEaH9ZyzakOU+SfyFmjr9364zkqT0YQlOjgYAXJ9Tk/iMjAxNmzZNKSkpqqur069+9SuNHTtWBw8eVEBAgPLy8pSXl6d58+apd+/eOnXqlJ566inl5eXpk08+uWLd48aN04IFC6w/m83u80gZALQ1XSMC9du7euv5tGSt3HtWi7ac0u7cUq3ce1Yr955VfLi/Siovqry6zuZ93p4m9Y8N1ZDEMA1NDNeQhHCF+Hs7qReA6xudHKm31x/XV0fPq77B+MFLVxxp+a4zqrhYry4RARrRtYOzwwEAl+fUJP67M+MLFy5UZGSkduzYoVGjRqlv37769NNPrfe7du2ql19+Wenp6aqrq5OX1+XDN5vNio6OtlvsAIBr5+vtqQcGx+qBwbHaf6ZMizNz9I/dZ5RTXClJCjR7aVBCmIYmhmlIYuMmdL7ern/2POAqBsaFKsjXS6WVtdp7ulQD48OcHdIVGYahxZcepZ80LIGjHQHgKrjUmviysjJJUnj45Y9FKSsrU3Bw8BUTeEnasGGDIiMjFRYWpptvvll/+MMf1KFDy9/u1tTUqKbm20c2LRbLD4geAHAt+nYO0dz7++mFO3pq8/EidQ71U8/oIHalBq6Dl6eHbureUZ/vy9eGrPMun8TvOFWiw/nl8vX20ANu8vg/ADiby3xSamho0MyZMzVy5Ej17du3xTKFhYV66aWX9OSTT16xrnHjxun999/X2rVr9eqrryojI0O333676uvrWyw/d+5chYSEWF9xceyKCgCOEuzrrbQ+0erbOYQEHmgFo3s0nrGeceS8kyP5fk0b2t3dP4alMgBwlUyGYRjfX8z+nn76aX3xxRf6+uuvFRvb/JtYi8Wi2267TeHh4VqxYoW8va/+F/2JEyfUtWtX/etf/9Itt9zS7H5LM/FxcXHWWX8AAAB3kV9WreFz18pkknb85jaFB/g4O6QWFV2o0Yi563SxvkH/mDZSN8SFOjskAHAqi8WikJCQ781DXWLKY/r06Vq5cqXWr1/fYgJfXl6ucePGKSgoSMuXL7+mBF6SunTpoo4dO+rYsWMt3jebzQoODrZ5AQAAuKPoEF/1jA6SYUgbj7rubPwnO07rYn2D+nYOVv/Yy586BACw5dQk3jAMTZ8+XcuXL9e6deuUlJTUrIzFYtHYsWPl4+OjFStWyNf32s8OPX36tIqKitSpU6fWCBsAAMClpSZHSJIyslwziW9oMPTh1hxJjcfKsaEdAFw9pybx06ZN06JFi/Thhx8qKChI+fn5ys/PV1VVlaRvE/iKigrNnz9fFovFWubf17f37NlTy5cvlyRduHBBzz//vLZs2aKTJ09q7dq1Gj9+vLp166a0tDSn9BMAAMCRmtbFf3X0vBoaXGLlpI2Nxwp1qqhSQb5eumdAjLPDAQC34tTd6d955x1J0ujRo22uL1iwQFOmTNHOnTuVmZkpSerWrZtNmezsbCUmJkqSsrKyrDvbe3p6au/evXrvvfdUWlqqmJgYjR07Vi+99BJnxQMAgHZhcEKYAnw8VXjhog7kWdTPxR5Xb9rQbsKgWPn7uNRhSQDg8pz6W/P79tQbPXr095b5bj1+fn5avXr1dccGAADgrny8PDSyW0d9efCcNmQVuFQSn1dapbWHzkmSJg2Ld3I0AOB+XGJjOwAAALQu67p4FztqbsnWHDUY0rCkcHWPCnJ2OADgdkjiAQAA2qDRyY3r4nfmlKisstbJ0TSqrW/Qkm25kqT04QlOjgYA3BNJPAAAQBvUOdRP3SMD1WBIXx8rdHY4kqQ1B8+poLxGHQPNSusT7exwAMAtkcQDAAC0Uak9Gh+p35BV4ORIGjVtaPdQSqx8vPgYCgA/BL89AQAA2qimR+ozjpy/qs2C7en4+Qv65niRTCZp4lA2tAOAH4okHgAAoI1KSQqTn7enCsprdOhsuVNjWbwlR5J0c3KkYsP8nRoLALgzkngAAIA2yuzlqR917SDJubvUV12s1yc72NAOAFoDSTwAAEAb1nTUnDPXxX+2N0+W6jrFhvlp1KV1+gCAH4YkHgAAoA0b3aNxXfyOUyUqr3bOUXOLL21o98iweHl6mJwSAwC0FSTxAAAAbVh8B38ldQxQXYOhTceKHN7+vtNl2nO6TN6eJj04JM7h7QNAW0MSDwAA0MY1HTWXccTxj9Qvzmychb+9byd1DDQ7vH0AaGtI4gEAANq4pnXxGVmOPWrOUl2rf+zOkyRNGsaxcgDQGkjiAQAA2rgRXTrI7OWhvLJqHS244LB2/77jtKpq69UjKlBDk8Id1i4AtGUk8QAAAG2cr7enhne5dNRclmOOmjMMQ4syG8+GnzQsQSYTG9oBQGsgiQcAAGgHmtbFb3DQuvjM7GIdK7ggP29P3Teos0PaBID2gCQeAACgHRh9aV38tuwSVdTU2b29RZeOlbt3YIyCfb3t3h4AtBck8QAAAO1AUscAxYX76WJ9gzYft+9Rc+fLa7T6QL6kxkfpAQCthyQeAACgHTCZTBrdI1KSlHHEvuvil27PVW29oQFxoerbOcSubQFAe0MSDwAA0E78+7p4ex01V99g6MNLG9qlD2cWHgBaG0k8AABAOzGiawf5eHoot7hK2YUVdmljQ1aBzpRWKcTPW3f172SXNgCgPSOJBwAAaCcCzF5KSQqTJG2w01FzTRva/XhwrHy9Pe3SBgC0ZyTxAAAA7UjTuvgNdlgXn1tcaa13Eo/SA4BdkMQDAAC0I01HzWWeKFJ1bX2r1v3h1hwZhnRjt45K6hjQqnUDABqRxAMAALQj3SIDFRPiq5q6Bm0+0XpHzdXU1WvptlxJUvrw+FarFwBgiyQeAACgHTGZTEpNvnTUXCuui1+1P19FFRcVFWzWrb2iWq1eAIAtkngAAIB2pumoudY8L37xlsZj5R5OiZeXJx8xAcBe+A0LAADQzozs1kFeHiZlF1boVNH1HzV35Fy5tp4slqeHSROH8ig9ANgTSTwAAEA7E+TrrcEJjUfNtcZs/OJLx8rd0jNS0SG+110fAODySOIBAADaodGttC6+oqZOf995RpKUzrFyAGB3JPEAAADtUNO6+G+OX99Rcyv25Km8pk4JHfx1Y7eOrRUeAOAySOIBAADaoV6dghQZZFZVbb22nyz5QXUYhqFFlx6lnzQsXh4eptYMEQDQApJ4AACAdshkMlln4zdkFfygOnbnlupAnkU+Xh768eC41gwPAHAZJPEAAADtVNO6+A0/cHO7RZeOlburXyeFBfi0WlwAgMsjiQcAAGinbuzeUZ4eJh0ruKDTJZXX9N7SyotauTdPkjSJDe0AwGFI4gEAANqpED9vDYwLlXTtR819suO0auoa1KtTsAbFh7Z+cACAFpHEAwAAtGOjkxvXxV/LUXMNDYYWZzY+Sp8+PF4mExvaAYCjkMQDAAC0Y6k9GtfFbzpWqIt1DVf1nm+OFym7sEKBZi/dO6CzPcMDAHwHSTwAAEA71icmWB0DfVRxsV47Tl3dUXNNx8rdN7CzAsxe9gwPAPAdJPEAAADtmIeHSaO6Xzpq7sj3HzWXX1atNYfOSZLS2dAOAByOJB4AAKCdS72GdfFLtuWovsFQSmKYkqOD7B0aAOA7SOIBAADauZu6R8hkkg7nlyu/rPqy5erqG7Rka64kZuEBwFlI4gEAANq58AAf3RAbKkn66gpHza09XKB8S7U6BPhoXN9oB0UHAPh3JPEAAACwHjV3pXXxTRva/XhInMxeng6JCwBgiyQeAAAASu3RmMRvPFqouvrmR82dLKzQxqOFMpmkR4bGOzo8AMAlJPEAAABQ/9hQhfl7q7y6TrtyS5vd/3BrjiRpVPcIxXfwd3B0AIAmJPEAAACQp4dJNzUdNZdl+0h9dW29lm1nQzsAcAVOTeLnzp2rlJQUBQUFKTIyUvfee6+ysrKs94uLi/Uf//EfSk5Olp+fn+Lj4zVjxgyVlZVdsV7DMPS73/1OnTp1kp+fn2699VYdPXrU3t0BAABwa03r4jO+s7nd5/vOqqSyVjEhvrq5Z6QzQgMAXOLUJD4jI0PTpk3Tli1btGbNGtXW1mrs2LGqqKiQJOXl5SkvL0/z5s3T/v37tXDhQq1atUpTp069Yr2vvfaa3nrrLf31r39VZmamAgIClJaWpurqyx+ZAgAA0N41zcTvP2NRQfm3n5uaNrSbODRenh4mp8QGAGhkMgzDcHYQTc6fP6/IyEhlZGRo1KhRLZZZtmyZ0tPTVVFRIS8vr2b3DcNQTEyMfv7zn+u5556TJJWVlSkqKkoLFy7Uww8//L1xWCwWhYSEqKysTMHBwdfXKQAAADdy9///tfadKdPrP75BEwbH6mCeRXe8tVFeHiZ988LNigzydXaIANAmXW0e6lJr4psekw8PD79imeDg4BYTeEnKzs5Wfn6+br31Vuu1kJAQDRs2TJs3b27xPTU1NbJYLDYvAACA9qhpl/oNlx6pX5TZOAuf1ieaBB4AXIDLJPENDQ2aOXOmRo4cqb59+7ZYprCwUC+99JKefPLJy9aTn58vSYqKirK5HhUVZb33XXPnzlVISIj1FRcX9wN7AQAA4N6a1sVvPHpeZVW1+r9dZyRJk4ZzrBwAuAKXSeKnTZum/fv3a8mSJS3et1gsuvPOO9W7d2/NmTOnVdt+4YUXVFZWZn3l5ua2av0AAADuYkBcqIJ9vVRaWavff3ZAlRfr1TUiQCO6dHB2aAAAuUgSP336dK1cuVLr169XbGxss/vl5eUaN26cgoKCtHz5cnl7e1+2rujoaEnSuXPnbK6fO3fOeu+7zGazgoODbV4AAADtkZenh3WDu7/vvDQLPyxBJhMb2gGAK3BqEm8YhqZPn67ly5dr3bp1SkpKalbGYrFo7Nix8vHx0YoVK+Tre+W1WElJSYqOjtbatWtt6sjMzNSIESNavQ8AAABtTeqlR+olydfbQxMGN59kAQA4h1OT+GnTpmnRokX68MMPFRQUpPz8fOXn56uqqkrStwl8RUWF5s+fL4vFYi1TX19vradnz55avny5JMlkMmnmzJn6wx/+oBUrVmjfvn169NFHFRMTo3vvvdcZ3QQAAHArTZvbSdI9N8QoxO/yT0ECAByr5S3eHeSdd96RJI0ePdrm+oIFCzRlyhTt3LlTmZmZkqRu3brZlMnOzlZiYqIkKSsry7qzvSTNmjVLFRUVevLJJ1VaWqobb7xRq1at+t5ZfAAAAEhRwb4alhSuXTmlmvyjRGeHAwD4Ny51Tryr4Jx4AADQ3pVX16q0slZx4f7ODgUA2oWrzUOdOhMPAAAA1xTk660gXx6jBwBX4xK70wMAAAAAgO9HEg8AAAAAgJsgiQcAAAAAwE2QxAMAAAAA4CZI4gEAAAAAcBMk8QAAAAAAuAmSeAAAAAAA3ARJPAAAAAAAboIkHgAAAAAAN0ESDwAAAACAmyCJBwAAAADATZDEAwAAAADgJkjiAQAAAABwEyTxAAAAAAC4CS9nB+CKDMOQJFksFidHAgAAAABoD5ryz6Z89HJI4ltQXl4uSYqLi3NyJAAAAACA9qS8vFwhISGXvW8yvi/Nb4caGhqUl5enoKAgmUwmZ4dzWRaLRXFxccrNzVVwcLCzw0EbxTiDIzDOYG+MMTgC4wyOwDhruwzDUHl5uWJiYuThcfmV78zEt8DDw0OxsbHODuOqBQcH8w8Ydsc4gyMwzmBvjDE4AuMMjsA4a5uuNAPfhI3tAAAAAABwEyTxAAAAAAC4CZJ4N2Y2mzV79myZzWZnh4I2jHEGR2Ccwd4YY3AExhkcgXEGNrYDAAAAAMBNMBMPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPFONnfuXKWkpCgoKEiRkZG69957lZWVZVOmurpa06ZNU4cOHRQYGKgJEybo3LlzNmVmzJihwYMHy2w2a8CAAS22tXfvXt10003y9fVVXFycXnvtNXt1Cy7EUWNsw4YNGj9+vDp16qSAgAANGDBAixcvtmfX4EIc+busybFjxxQUFKTQ0NBW7g1clSPHmWEYmjdvnnr06CGz2azOnTvr5ZdftlfX4CIcOcZWr16t4cOHKygoSBEREZowYYJOnjxpp57BlbTGONuzZ48mTpyouLg4+fn5qVevXnrzzTebtbVhwwYNGjRIZrNZ3bp108KFC+3dPTgASbyTZWRkaNq0adqyZYvWrFmj2tpajR07VhUVFdYy//mf/6nPPvtMy5YtU0ZGhvLy8nT//fc3q+vxxx/XQw891GI7FotFY8eOVUJCgnbs2KE//vGPmjNnjv7nf/7Hbn2Da3DUGPvmm2/Uv39/ffrpp9q7d68ee+wxPfroo1q5cqXd+gbX4ahx1qS2tlYTJ07UTTfd1Op9gety5Dh79tln9be//U3z5s3T4cOHtWLFCg0dOtQu/YLrcNQYy87O1vjx43XzzTdr9+7dWr16tQoLC1usB21Pa4yzHTt2KDIyUosWLdKBAwf061//Wi+88IL+/Oc/W8tkZ2frzjvv1JgxY7R7927NnDlTP/3pT7V69WqH9hd2YMClFBQUGJKMjIwMwzAMo7S01PD29jaWLVtmLXPo0CFDkrF58+Zm7589e7Zxww03NLv+l7/8xQgLCzNqamqs137xi18YycnJrd8JuDR7jbGW3HHHHcZjjz3WKnHDvdh7nM2aNctIT083FixYYISEhLR2+HAT9hpnBw8eNLy8vIzDhw/bLXa4B3uNsWXLlhleXl5GfX299dqKFSsMk8lkXLx4sfU7Apd2veOsyTPPPGOMGTPG+vOsWbOMPn362JR56KGHjLS0tFbuARyNmXgXU1ZWJkkKDw+X1PgtW21trW699VZrmZ49eyo+Pl6bN2++6no3b96sUaNGycfHx3otLS1NWVlZKikpaaXo4Q7sNcYu11ZTO2hf7DnO1q1bp2XLluntt99uvYDhluw1zj777DN16dJFK1euVFJSkhITE/XTn/5UxcXFrdsBuDx7jbHBgwfLw8NDCxYsUH19vcrKyvTBBx/o1ltvlbe3d+t2Ai6vtcbZdz93bd682aYOqfHz//V+voPzkcS7kIaGBs2cOVMjR45U3759JUn5+fny8fFptuYzKipK+fn5V113fn6+oqKimtXRdA/tgz3H2HctXbpU27Zt02OPPXY9IcMN2XOcFRUVacqUKVq4cKGCg4NbM2y4GXuOsxMnTujUqVNatmyZ3n//fS1cuFA7duzQAw880JpdgIuz5xhLSkrSl19+qV/96lcym80KDQ3V6dOntXTp0tbsAtxAa42zb775Rh9//LGefPJJ67XLff63WCyqqqpq3Y7AobycHQC+NW3aNO3fv19ff/21s0NBG+WoMbZ+/Xo99thj+t///V/16dPHrm3B9dhznD3xxBN65JFHNGrUqFavG+7FnuOsoaFBNTU1ev/999WjRw9J0vz58zV48GBlZWUpOTm51duE67HnGMvPz9cTTzyhyZMna+LEiSovL9fvfvc7PfDAA1qzZo1MJlOrtwnX1BrjbP/+/Ro/frxmz56tsWPHtmJ0cFXMxLuI6dOna+XKlVq/fr1iY2Ot16Ojo3Xx4kWVlpbalD937pyio6Ovuv7o6OhmO6c2/Xwt9cB92XuMNcnIyNDdd9+tN954Q48++uj1hg03Y+9xtm7dOs2bN09eXl7y8vLS1KlTVVZWJi8vL7377rut1Q24OHuPs06dOsnLy8uawEtSr169JEk5OTnXFzzcgr3H2Ntvv62QkBC99tprGjhwoEaNGqVFixZp7dq1yszMbK1uwMW1xjg7ePCgbrnlFj355JP6zW9+Y3Pvcp//g4OD5efn17qdgUORxDuZYRiaPn26li9frnXr1ikpKcnm/uDBg+Xt7a21a9dar2VlZSknJ0cjRoy46nZGjBihr776SrW1tdZra9asUXJyssLCwq6/I3BZjhpjUuMxJnfeeadeffVVm8e50PY5apxt3rxZu3fvtr5efPFFBQUFaffu3brvvvtarT9wTY4aZyNHjlRdXZ2OHz9uvXbkyBFJUkJCwnX2Aq7MUWOssrJSHh62H8M9PT0lNT4JgrattcbZgQMHNGbMGE2ePLnFIzBHjBhhU4fU+Pn/Wj/fwQU5c1c9GMbTTz9thISEGBs2bDDOnj1rfVVWVlrLPPXUU0Z8fLyxbt06Y/v27caIESOMESNG2NRz9OhRY9euXcbPfvYzo0ePHsauXbuMXbt2WXejLy0tNaKiooyf/OQnxv79+40lS5YY/v7+xn//9387tL9wPEeNsXXr1hn+/v7GCy+8YNNOUVGRQ/sL53DUOPsudqdvXxw1zurr641BgwYZo0aNMnbu3Gls377dGDZsmHHbbbc5tL9wPEeNsbVr1xomk8n4/e9/bxw5csTYsWOHkZaWZiQkJNi0hbapNcbZvn37jIiICCM9Pd2mjoKCAmuZEydOGP7+/sbzzz9vHDp0yHj77bcNT09PY9WqVQ7tL1ofSbyTSWrxtWDBAmuZqqoq45lnnjHCwsIMf39/47777jPOnj1rU09qamqL9WRnZ1vL7Nmzx7jxxhsNs9lsdO7c2XjllVcc1Es4k6PG2OTJk1u8n5qa6rjOwmkc+bvs35HEty+OHGdnzpwx7r//fiMwMNCIiooypkyZwpeS7YAjx9hHH31kDBw40AgICDAiIiKMe+65xzh06JCDegpnao1xNnv27BbrSEhIsGlr/fr1xoABAwwfHx+jS5cuNm3AfZkMwzCuYyIfAAAAAAA4CGviAQAAAABwEyTxAAAAAAC4CZJ4AAAAAADcBEk8AAAAAABugiQeAAAAAAA3QRIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAHBhRUVFioyM1MmTJx3a7sKFCxUaGmqXuletWqUBAwaooaHBLvUDANCWkcQDAODCXn75ZY0fP16JiYnN7qWlpcnT01Pbtm1zfGDXYdy4cfL29tbixYsvW2bq1Knq16+fLl68aHP9888/l4+Pj3bu3GnvMAEAcEkk8QAAuKjKykrNnz9fU6dObXYvJydH33zzjaZPn653333XCdH9MLW1tZKkKVOm6K233rpsuTfeeEPl5eWaPXu29VppaameeOIJ/fa3v9WgQYPsFhsAAK6MJB4AABf1+eefy2w2a/jw4c3uLViwQHfddZeefvppffTRR6qqqrK5P3r0aM2YMUOzZs1SeHi4oqOjNWfOHJsypaWl+tnPfqaoqCj5+vqqb9++WrlypU2Z1atXq1evXgoMDNS4ceN09uxZ672Ghga9+OKLio2Nldls1oABA7Rq1Srr/ZMnT8pkMunjjz9WamqqfH19rbPvd999t7Zv367jx4+32Pfg4GAtWLBAr7/+ujIzMyVJM2fOVOfOnfXCCy8oNzdXDz74oEJDQxUeHq7x48fbLDnYtm2bbrvtNnXs2FEhISFKTU1tNntvMpn0zjvv6J577lFAQIBefvnly/xNAADgOkjiAQBwURs3btTgwYObXTcMQwsWLFB6erp69uypbt266ZNPPmlW7r333lNAQIAyMzP12muv6cUXX9SaNWskNSbgt99+uzZt2qRFixbp4MGDeuWVV+Tp6Wl9f2VlpebNm6cPPvhAX331lXJycvTcc89Z77/55pt6/fXXNW/ePO3du1dpaWm65557dPToUZs4fvnLX+rZZ5/VoUOHlJaWJkmKj49XVFSUNm7ceNn+jxkzRs8884wmT56sZcuWaenSpXr//fdlGIbS0tIUFBSkjRs3atOmTdYvGZoevy8vL9fkyZP19ddfa8uWLerevbvuuOMOlZeX27QxZ84c3Xfffdq3b58ef/zx7/srAQDA+QwAAOCSxo8fbzz++OPNrn/55ZdGRESEUVtbaxiGYbzxxhtGamqqTZnU1FTjxhtvtLmWkpJi/OIXvzAMwzBWr15teHh4GFlZWS22vWDBAkOScezYMeu1t99+24iKirL+HBMTY7z88svN2njmmWcMwzCM7OxsQ5Lxpz/9qcU2Bg4caMyZM6fFe00qKyuN5ORkw8PDw3jjjTcMwzCMDz74wEhOTjYaGhqs5Wpqagw/Pz9j9erVLdZTX19vBAUFGZ999pn1miRj5syZV2wfAABXw0w8AAAuqqqqSr6+vs2uv/vuu3rooYfk5eUlSZo4caI2bdrU7NH0/v372/zcqVMnFRQUSJJ2796t2NhY9ejR47Lt+/v7q2vXri2+32KxKC8vTyNHjrR5z8iRI3Xo0CGba0OGDGmxfj8/P1VWVl62/aYyzz33nPz9/fXss89Kkvbs2aNjx44pKChIgYGBCgwMVHh4uKqrq61/BufOndMTTzyh7t27KyQkRMHBwbpw4YJycnKuKjYAAFyVl7MDAAAALevYsaNKSkpsrhUXF2v58uWqra3VO++8Y71eX1+vd99912Zdt7e3t817TSaT9Vg3Pz+/722/pfcbhnHN/QgICGjxenFxsSIiIr73/V5eXvL09JTJZJIkXbhwQYMHD25xd/um+iZPnqyioiK9+eabSkhIkNls1ogRI5rtdn+52AAAcFXMxAMA4KIGDhyogwcP2lxbvHixYmNjtWfPHu3evdv6ev3117Vw4ULV19dfVd39+/fX6dOndeTIkR8UW3BwsGJiYrRp0yab65s2bVLv3r2/9/1Ns+YDBw685rYHDRqko0ePKjIyUt26dbN5hYSEWOOYMWOG7rjjDvXp00dms1mFhYXX3BYAAK6GJB4AABeVlpamAwcO2MzGz58/Xw888ID69u1r85o6daoKCwttdoe/ktTUVI0aNUoTJkzQmjVrlJ2drS+++OKq3y9Jzz//vF599VV9/PHHysrK0i9/+Uvt3r3b+tj7lWzZssU6O36tJk2apI4dO2r8+PHauHGjsrOztWHDBs2YMUOnT5+WJHXv3l0ffPCBDh06pMzMTE2aNOmqnj4AAMDVkcQDAOCi+vXrp0GDBmnp0qWSpB07dmjPnj2aMGFCs7IhISG65ZZbNH/+/Kuu/9NPP1VKSoomTpyo3r17a9asWVc9ky9JM2bM0H/913/p5z//ufr166dVq1ZpxYoV6t69+/e+96OPPtKkSZPk7+9/1e018ff311dffaX4+Hjdf//96tWrl6ZOnarq6moFBwdLavyyo6SkRIMGDdJPfvITzZgxQ5GRkdfcFgAArsZk/JDFbQAAwCH++c9/6vnnn9f+/fvl4dE2vnsvLCxUcnKytm/frqSkJGeHAwCAW2FjOwAAXNidd96po0eP6syZM4qLi3N2OK3i5MmT+stf/kICDwDAD8BMPAAAAAAAbqJtPJcHAAAAAEA7QBIPAAAAAICbIIkHAAAAAMBNkMQDAAAAAOAmSOIBAAAAAHATJPEAAAAAALgJkngAAAAAANwESTwAAAAAAG6CJB4AAAAAADfx/wAduX1G5sbtFwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1519,17 +1519,32 @@ } ], "source": [ - "print(f\"The MSE loss is {hist_test[0]:.3f}\")\n", + "print(\n", + " f\"The MSE of LSTM forecasts is {mean_squared_error(ground_truth, np.concatenate(predictions)):.3f}\"\n", + ")\n", + "print(\n", + " f\"The MSE of climatology is {mean_squared_error(ground_truth, np.repeat(target_clim, ground_truth.anchor_year.size)):.3f}\"\n", + ")\n", + "\n", + "ground_truth = target_series_sel[:,-1][-test_samples:]\n", "\n", - "fig = plt.figure()\n", - "instances = np.arange(len(np.concatenate(predictions)))\n", - "plt.scatter(instances, np.concatenate(predictions), label=\"Predictions\")\n", - "plt.scatter(instances, np.mean(test_y_torch.squeeze().numpy(), 1), label=\"Ground truth\")\n", - "plt.xlabel(\"Experiment\")\n", - "plt.ylabel(\"TS\")\n", + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "ax.plot(ground_truth.anchor_year, ground_truth.values.ravel(), label=\"Observations\")\n", + "plt.scatter(ground_truth.anchor_year, np.concatenate(predictions), label=\"Predictions-LSTM\")\n", + "ax.plot(ground_truth.anchor_year, np.repeat(target_clim, ground_truth.anchor_year.size), \n", + " label=\"Climatology\", c=\"black\")\n", + "plt.xlabel(\"(Anchor) Year\")\n", + "plt.ylabel(\"Temperature [degree C]\")\n", "plt.legend()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {