|
| 1 | +import warnings |
| 2 | + |
| 3 | +warnings.filterwarnings("ignore") |
| 4 | + |
| 5 | +import pandas as pd |
| 6 | +from IPython import display |
| 7 | + |
| 8 | +display.set_matplotlib_formats("svg") |
| 9 | + |
| 10 | +from meta import config |
| 11 | +from meta.data_processor import DataProcessor |
| 12 | +from main import check_and_make_directories |
| 13 | +from meta.data_processors.tushare import Tushare, ReturnPlotter |
| 14 | +from meta.env_stock_trading.env_stocktrading_China_A_shares import ( |
| 15 | + StockTradingEnv, |
| 16 | +) |
| 17 | +from agents.stablebaselines3_models import DRLAgent |
| 18 | +import os |
| 19 | +from typing import List |
| 20 | +from argparse import ArgumentParser |
| 21 | +from meta import config |
| 22 | +from meta.config_tickers import DOW_30_TICKER |
| 23 | +from meta.config import ( |
| 24 | + DATA_SAVE_DIR, |
| 25 | + TRAINED_MODEL_DIR, |
| 26 | + TENSORBOARD_LOG_DIR, |
| 27 | + RESULTS_DIR, |
| 28 | + INDICATORS, |
| 29 | + TRAIN_START_DATE, |
| 30 | + TRAIN_END_DATE, |
| 31 | + TEST_START_DATE, |
| 32 | + TEST_END_DATE, |
| 33 | + TRADE_START_DATE, |
| 34 | + TRADE_END_DATE, |
| 35 | + ERL_PARAMS, |
| 36 | + RLlib_PARAMS, |
| 37 | + SAC_PARAMS, |
| 38 | + ALPACA_API_KEY, |
| 39 | + ALPACA_API_SECRET, |
| 40 | + ALPACA_API_BASE_URL, |
| 41 | +) |
| 42 | +import pyfolio |
| 43 | +from pyfolio import timeseries |
| 44 | + |
| 45 | +pd.options.display.max_columns = None |
| 46 | + |
| 47 | +print("ALL Modules have been imported!") |
| 48 | + |
| 49 | + |
| 50 | +### Create folders |
| 51 | + |
| 52 | +import os |
| 53 | + |
| 54 | +""" |
| 55 | +use check_and_make_directories() to replace the following |
| 56 | +
|
| 57 | +if not os.path.exists("./datasets"): |
| 58 | + os.makedirs("./datasets") |
| 59 | +if not os.path.exists("./trained_models"): |
| 60 | + os.makedirs("./trained_models") |
| 61 | +if not os.path.exists("./tensorboard_log"): |
| 62 | + os.makedirs("./tensorboard_log") |
| 63 | +if not os.path.exists("./results"): |
| 64 | + os.makedirs("./results") |
| 65 | +""" |
| 66 | + |
| 67 | +check_and_make_directories( |
| 68 | + [DATA_SAVE_DIR, TRAINED_MODEL_DIR, TENSORBOARD_LOG_DIR, RESULTS_DIR] |
| 69 | +) |
| 70 | + |
| 71 | + |
| 72 | +### Download data, cleaning and feature engineering |
| 73 | + |
| 74 | +ticker_list = [ |
| 75 | + "600000.SH", |
| 76 | + "600009.SH", |
| 77 | + "600016.SH", |
| 78 | + "600028.SH", |
| 79 | + "600030.SH", |
| 80 | + "600031.SH", |
| 81 | + "600036.SH", |
| 82 | + "600050.SH", |
| 83 | + "600104.SH", |
| 84 | + "600196.SH", |
| 85 | + "600276.SH", |
| 86 | + "600309.SH", |
| 87 | + "600519.SH", |
| 88 | + "600547.SH", |
| 89 | + "600570.SH", |
| 90 | +] |
| 91 | + |
| 92 | +TRAIN_START_DATE = "2015-01-01" |
| 93 | +TRAIN_END_DATE = "2019-08-01" |
| 94 | +TRADE_START_DATE = "2019-08-01" |
| 95 | +TRADE_END_DATE = "2020-01-03" |
| 96 | + |
| 97 | + |
| 98 | +TIME_INTERVAL = "1d" |
| 99 | +kwargs = {} |
| 100 | +kwargs["token"] = "27080ec403c0218f96f388bca1b1d85329d563c91a43672239619ef5" |
| 101 | +p = DataProcessor( |
| 102 | + data_source="tushare", |
| 103 | + start_date=TRAIN_START_DATE, |
| 104 | + end_date=TRADE_END_DATE, |
| 105 | + time_interval=TIME_INTERVAL, |
| 106 | + **kwargs, |
| 107 | +) |
| 108 | + |
| 109 | + |
| 110 | +# download and clean |
| 111 | +p.download_data(ticker_list=ticker_list) |
| 112 | + |
| 113 | + |
| 114 | +p.clean_data() |
| 115 | + |
| 116 | + |
| 117 | +# add_technical_indicator |
| 118 | +p.add_technical_indicator(config.INDICATORS) |
| 119 | +p.clean_data() |
| 120 | +print(f"p.dataframe: {p.dataframe}") |
| 121 | + |
| 122 | + |
| 123 | +### Split traning dataset |
| 124 | + |
| 125 | +train = p.data_split(p.dataframe, TRAIN_START_DATE, TRAIN_END_DATE) |
| 126 | +print(f"len(train.tic.unique()): {len(train.tic.unique())}") |
| 127 | + |
| 128 | +print(f"train.tic.unique(): {train.tic.unique()}") |
| 129 | + |
| 130 | +print(f"train.head(): {train.head()}") |
| 131 | + |
| 132 | +print(f"train.shape: {train.shape}") |
| 133 | + |
| 134 | +stock_dimension = len(train.tic.unique()) |
| 135 | +state_space = stock_dimension * (len(config.INDICATORS) + 2) + 1 |
| 136 | +print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") |
| 137 | + |
| 138 | +### Train |
| 139 | + |
| 140 | +env_kwargs = { |
| 141 | + "stock_dim": stock_dimension, |
| 142 | + "hmax": 1000, |
| 143 | + "initial_amount": 1000000, |
| 144 | + "buy_cost_pct": 6.87e-5, |
| 145 | + "sell_cost_pct": 1.0687e-3, |
| 146 | + "reward_scaling": 1e-4, |
| 147 | + "state_space": state_space, |
| 148 | + "action_space": stock_dimension, |
| 149 | + "tech_indicator_list": config.INDICATORS, |
| 150 | + "print_verbosity": 1, |
| 151 | + "initial_buy": True, |
| 152 | + "hundred_each_trade": True, |
| 153 | +} |
| 154 | + |
| 155 | +e_train_gym = StockTradingEnv(df=train, **env_kwargs) |
| 156 | + |
| 157 | +## DDPG |
| 158 | + |
| 159 | +env_train, _ = e_train_gym.get_sb_env() |
| 160 | +print(f"print(type(env_train)): {print(type(env_train))}") |
| 161 | + |
| 162 | +agent = DRLAgent(env=env_train) |
| 163 | +DDPG_PARAMS = { |
| 164 | + "batch_size": 256, |
| 165 | + "buffer_size": 50000, |
| 166 | + "learning_rate": 0.0005, |
| 167 | + "action_noise": "normal", |
| 168 | +} |
| 169 | +POLICY_KWARGS = dict(net_arch=dict(pi=[64, 64], qf=[400, 300])) |
| 170 | +model_ddpg = agent.get_model( |
| 171 | + "ddpg", model_kwargs=DDPG_PARAMS, policy_kwargs=POLICY_KWARGS |
| 172 | +) |
| 173 | + |
| 174 | +trained_ddpg = agent.train_model( |
| 175 | + model=model_ddpg, tb_log_name="ddpg", total_timesteps=10000 |
| 176 | +) |
| 177 | + |
| 178 | +## A2C |
| 179 | + |
| 180 | +agent = DRLAgent(env=env_train) |
| 181 | +model_a2c = agent.get_model("a2c") |
| 182 | + |
| 183 | +trained_a2c = agent.train_model( |
| 184 | + model=model_a2c, tb_log_name="a2c", total_timesteps=50000 |
| 185 | +) |
| 186 | + |
| 187 | +### Trade |
| 188 | + |
| 189 | +trade = p.data_split(p.dataframe, TRADE_START_DATE, TRADE_END_DATE) |
| 190 | +env_kwargs = { |
| 191 | + "stock_dim": stock_dimension, |
| 192 | + "hmax": 1000, |
| 193 | + "initial_amount": 1000000, |
| 194 | + "buy_cost_pct": 6.87e-5, |
| 195 | + "sell_cost_pct": 1.0687e-3, |
| 196 | + "reward_scaling": 1e-4, |
| 197 | + "state_space": state_space, |
| 198 | + "action_space": stock_dimension, |
| 199 | + "tech_indicator_list": config.INDICATORS, |
| 200 | + "print_verbosity": 1, |
| 201 | + "initial_buy": False, |
| 202 | + "hundred_each_trade": True, |
| 203 | +} |
| 204 | +e_trade_gym = StockTradingEnv(df=trade, **env_kwargs) |
| 205 | + |
| 206 | +df_account_value, df_actions = DRLAgent.DRL_prediction( |
| 207 | + model=trained_ddpg, environment=e_trade_gym |
| 208 | +) |
| 209 | + |
| 210 | +df_actions.to_csv("action.csv", index=False) |
| 211 | +print(f"df_actions: {df_actions}") |
| 212 | + |
| 213 | +### Backtest |
| 214 | + |
| 215 | +# matplotlib inline |
| 216 | +plotter = ReturnPlotter(df_account_value, trade, TRADE_START_DATE, TRADE_END_DATE) |
| 217 | +# plotter.plot_all() |
| 218 | + |
| 219 | +plotter.plot() |
| 220 | + |
| 221 | +# matplotlib inline |
| 222 | +# # ticket: SSE 50:000016 |
| 223 | +# plotter.plot("000016") |
| 224 | + |
| 225 | +#### Use pyfolio |
| 226 | + |
| 227 | +# CSI 300 |
| 228 | +baseline_df = plotter.get_baseline("399300") |
| 229 | + |
| 230 | + |
| 231 | +daily_return = plotter.get_return(df_account_value) |
| 232 | +daily_return_base = plotter.get_return(baseline_df, value_col_name="close") |
| 233 | + |
| 234 | +perf_func = timeseries.perf_stats |
| 235 | +perf_stats_all = perf_func( |
| 236 | + returns=daily_return, |
| 237 | + factor_returns=daily_return_base, |
| 238 | + positions=None, |
| 239 | + transactions=None, |
| 240 | + turnover_denom="AGB", |
| 241 | +) |
| 242 | +print("==============DRL Strategy Stats===========") |
| 243 | +print(f"perf_stats_all: {perf_stats_all}") |
| 244 | + |
| 245 | + |
| 246 | +daily_return = plotter.get_return(df_account_value) |
| 247 | +daily_return_base = plotter.get_return(baseline_df, value_col_name="close") |
| 248 | + |
| 249 | +perf_func = timeseries.perf_stats |
| 250 | +perf_stats_all = perf_func( |
| 251 | + returns=daily_return_base, |
| 252 | + factor_returns=daily_return_base, |
| 253 | + positions=None, |
| 254 | + transactions=None, |
| 255 | + turnover_denom="AGB", |
| 256 | +) |
| 257 | +print("==============Baseline Strategy Stats===========") |
| 258 | + |
| 259 | +print(f"perf_stats_all: {perf_stats_all}") |
0 commit comments