Skip to content

Commit 3a3932f

Browse files
committed
Fix sin function
1 parent 42525c6 commit 3a3932f

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

math_differential_calculus.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -5908,7 +5908,7 @@
59085908
"\\begin{align*}\n",
59095909
"f'(x) & = \\underset{\\theta \\to 0}\\lim\\dfrac{f(x+\\theta) - f(x)}{\\theta} && \\quad\\text{by definition}\\\\\n",
59105910
"& = \\underset{\\theta \\to 0}\\lim\\dfrac{\\sin(x+\\theta) - \\sin(x)}{\\theta} && \\quad \\text{using }f(x) = \\sin(x)\\\\\n",
5911-
"& = \\underset{\\theta \\to 0}\\lim\\dfrac{\\cos(x)\\sin(\\theta) + \\sin(x)\\cos(\\theta) - \\sin(x)}{\\theta} && \\quad \\text{since } sin(a+b)=\\cos(a)\\sin(b)+\\sin(a)\\cos(b)\\\\\n",
5911+
"& = \\underset{\\theta \\to 0}\\lim\\dfrac{\\cos(x)\\sin(\\theta) + \\sin(x)\\cos(\\theta) - \\sin(x)}{\\theta} && \\quad \\text{since } \\sin(a+b)=\\cos(a)\\sin(b)+\\sin(a)\\cos(b)\\\\\n",
59125912
"& = \\underset{\\theta \\to 0}\\lim\\dfrac{\\cos(x)\\sin(\\theta)}{\\theta} + \\underset{\\theta \\to 0}\\lim\\dfrac{\\sin(x)\\cos(\\theta) - \\sin(x)}{\\theta} && \\quad \\text{since the limit of a sum is the sum of the limits}\\\\\n",
59135913
"& = \\cos(x)\\underset{\\theta \\to 0}\\lim\\dfrac{\\sin(\\theta)}{\\theta} + \\sin(x)\\underset{\\theta \\to 0}\\lim\\dfrac{\\cos(\\theta) - 1}{\\theta} && \\quad \\text{bringing out } \\cos(x) \\text{ and } \\sin(x) \\text{ since they don't depend on }\\theta\\\\\n",
59145914
"& = \\cos(x)\\underset{\\theta \\to 0}\\lim\\dfrac{\\sin(\\theta)}{\\theta} && \\quad \\text{since }\\underset{\\theta \\to 0}\\lim\\dfrac{\\cos(\\theta) - 1}{\\theta}=0\\\\\n",

0 commit comments

Comments
 (0)